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Preface

The goal of  Artificial Intelligence is to design algorithms that can perform:

“data based automated decision-making under uncertainty”. To understand

the  theory  of  automated  decision-making,  a  descent  knowledge  in  the

following mathematical concepts is essential: (1) Linear algebra (2) Vector

calculus  (3)  Probability  (4)  Statistics.  This  book  covers  in  depth  these fundamental  mathematical  concepts.  Each  of  these  have  a  very  vast

literature of its own. So, we always wonder where to start and how far to

go. In this book we have tried to put together the most essential topics from

all  these  four  areas  of  Mathematics.  We  have  avoided  detailed  proofs

wherever possible and tried to explain more intuitively these concepts. As

new advancements are being made almost every day in the field of AI, it’s

hard  to  keep  oneself  updated  by  constant  study  of  latest  research

publications. However, with a strong mathematical foundation provided by

this book, the learning curve will appear much less steep. 

This  book  takes  a  practical  approach  for  introducing  the  mathematical

theory.  It  provides  code  or  pseudocode  in  python  for  most  of  the

mathematical concepts discussed, enabling the readers to use these concepts

in their projects wherever applicable. For example, computation of gradient

of  a  function  of  several  variables  is  introduced  mathematically  and  then corresponding  code  is  also  given  both  in  naive  python,  numpy  and

tensorflow to clarify the concepts. This book also covers the application of

the mathematical theory in building various AI algorithms. Also, this book

discusses  about  a  majority  of  popular  neural  network  architectures.  The readers  should  be  able  to  reuse  these  building  blocks  for  custom  neural network architecture engineering. 

This book is divided into twelve chapters. The first six chapters are theory

oriented, and we strongly suggest the readers to read them in order as there

are many interdependencies in these chapters. The  remaining  chapters  are

applications of these concepts and hence can be read in any order. 

Chapter  1   Overview  of  AI:  Chapter  provides  a  high-level  overview  of Artificial  Intelligence  and  its  subcomponents.  The  common  terminologies

like  model,  data,  parameters  of  models,  dependent  and  independent

variables  and  model  evaluation  metrices  will  be  explained  in  this  chapter and will be referenced repeatedly in later chapters. 

Chapter  2   Linear  Algebra:  Covers  most  topics  of  Linear  Algebra  with examples that finds its application in AI. Well thought figures in the chapter

helps  reader  to  understand  the  concept  with  clarity.  This  chapter  will discuss  about  representing  the  real-world  data  in  numeric  form  called

vectors and introduce the required mathematical tools to process vectors. 

Chapter 3  Vector Calculus: Chapter discuss differentiation and integration of vectors. The concept of tensors is also introduced in this chapter along

with  basic  tensor  algebra  and  tensor  calculus.  Moreover,  this  chapter

provides  basic  optimization  topics  for  function  of  several  variables  and functions over tensor. 

Chapter  4   Basic  Statistics  and  Probability  Theory:  This  chapter  covers introductory concepts of statistics like collecting, organizing, analyzing of

data  for  the  purpose  of  effective  decision-making.  Real  world  data  has various  sources  of  uncertainty.  To  quantify  this  uncertainty  in  data, 

probability theory is introduced. 

Chapter  5   Statistical  Inference  and  Applications:  Statistical  inference covers  the  techniques  of  decision  making  under  uncertainty.  In  machine

learning  uncertainty  can  arise  from  noisy  data,  incomplete  information

about  the  problem  domain  etc.  This  chapter  covers  the  core  concepts  of statistical  inference  and  its  application  to  linear  models  in  ML  like  linear regression, curvilinear regression, and logistic regression. 

Chapter 6  Neural Networks: Most of latest the AI algorithms are based on neural networks. This chapter introduces neural networks in general. Also, 

the  fundamental  back  propagation  algorithm  is  explained  in  details

including  the  application  of  tensor  calculus  to  compute  layer  wise

derivatives if the network. 

Chapter  7   Clustering:  In  few  domains,  data  will  be  unlabeled.  In  these scenarios, task would be to find natural groups among data samples. Each

identified group has unique characteristics which are learnt by algorithms. 

Learning  will  help  in  assigning  new  data  samples  to  the  existing  groups based on its characteristics. This chapter will discuss about these algorithms

that identifies natural groups. 

Chapter  8   Dimensionality  Reduction:  In  most  cases,  real-world  data sample  is  of  more  than  three  dimensions.  Higher  dimensional  data  will

result  in  data  sparsity  which  in  turn  decreases  accuracy  of  learning

algorithms. Also,  visualization  of  data  whose  dimensions  are  greater  than three  is  not  possible.  This  chapter  will  discuss  algorithms  that  would  be used in reducing dimensions of the data. 

Chapter  9   Computer  Vision:  This  chapter  provides  some  theoretical background  for  the  state-of-the-art  AI  models  in  computer  vision.  A

specialized  neural  network  architecture  called  convolution  neural  network or  CNNs  used  of  such  models,  is  explained  in  details.  Variations  of  the CNN  architectures  are  used  for  different  types  of  vision  tasks.  The

motivation  behind  these  architectures  and  how  to  train  these  networks  is covered  and  references  are  provided  for  the  model  and  code  of  these

architectures. 

Chapter  10   Sequence  Learning  Models:  In  few  domains,  data  is sequential. Audio  clips,  video  clips,  time-series  data  are  few  examples  of sequential  data.  Here,  prediction  of  the  future  output  will  depend  on

previous  data  history.  This  chapter  will  discuss  about  algorithms  which would help in learning and predicting based on sequential ordered data. 

Chapter  11   Natural  Language  Processing:  Natural  Language  has  been important communication tool among humans and has grown in complexity

which  our  brain  can  comprehend.  This  chapter  will  discuss  about

algorithms  that  would  learn  to  understand  natural  language,  represent

natural language in concise human readable form. 

Chapter  12   Generative  Models:  Generative  modeling  is  a  branch  of  AI which  involves  automatically  discovering  and  learning  the  regularities  or patterns in input data in such a way that the model can be used to generate

new  examples  that  plausibly  could  have  been  drawn  from  the  original

dataset.  This  chapter  covers  various  generative  modelling  techniques  like variational  autoencoders,  different  types  of  generative  adversarial  nets

(GAN). 
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CHAPTER 1

Overview of AI

From the age of civilization, humans are making machines to reduce physical

labor. Today, the world is full of machines. Machines cultivate and harvest our

crops, make our houses, fly our planes, assemble our cars, control traffic, cook and  pack  food,  entertain  us,  and  even  take  care  of  us  when  we  are  sick. 

Machines  have  not  only  replaced  physical  labor  but  have  also  exponentially increased  human  capability.  However,  a  majority  of  these  machines  work  by following  a  set  of  predefined  steps  required  to  complete  a  task  successfully. 

Computing  machines  and  algorithms  are  at  the  core  of  these  big  and  small machine.  Algorithms  help  us  formally  define  the  steps  to  be  executed  by  a machine,  and  the  computer  hardware  execute  these  steps  in  sequence  to

complete  the  given  task.  With  advancement  of  computing  capability,  new

algorithms to solve more complex problems have evolved. 

For  the  past  few  decades,  we  have  been  trying  to  build  intelligent  machines that can think and take decisions. Since then, machines are taking over more

and more tasks from us. They began to control other machines for us. On this

path of evolution, we have strived to impart human intelligence like reasoning, 

creativity,  analyzing,  problem  solving  ability,  and  natural  language

understanding  to  computers.  The  field  of  algorithms  that  strive  to  impart human intelligence to machines is called Artificial Intelligence (AI). 

Structure

In this chapter, we will cover the following topics:

AI Systems

Categories of AI Algorithms

Applications of AI

Role of Mathematics in AI

Objectives

This  chapter  gives  a  high-level  overview  of  AI  and  its  various  components. 

You  will  be  able  to  learn  about  common  terminologies  like  model,  data, parameters of models, and dependent and independent variables in this chapter, 

which will be referenced repeatedly in the subsequent chapters. Lastly, we will

cover why mathematics is important for understanding AI. 

AI systems

AI is a multidisciplinary field of research with a goal to create technology that can  enable  machines  to  function  like  humans.  Human  mind  consists  of

memories,  intellect,  thoughts  (emotions),  and  a  sense  of  identity.  Human intellect  is  the  discriminative  faculty  of  the  mind  that  determines  whether  an action  is  right  or  wrong.  The  sense  organs  present  the  current  situation someone  is  in,  to  their  intellect.  Then,  intellect  consults  the  memory,  past experiences,  present  thoughts,  and  emotions  and  decides  the  action.  The actions can be speaking, running, smiling, crying, fighting and so on. So, for a machine to function like a human, it should have all these capabilities. Well, 

machines  may  not  have  emotions  to  influence  their  decisions!  But machines must learn from past experiences, and these experiences must influence their

decisions. At  first,  a  machine  should  have  the  sense  organs  by  which  it  can digitally map and record our physical world. Then, it must have the ability to

learn from the mistakes it makes. 

AI  systems  are  classified  by  their  ability  to  imitate  human  behavior.  The classification is as follows:

Artificial  narrow  intelligence  (ANI  or  narrow  AI)  refers  to  a computer’s  ability  to  perform  a  single  task  extremely  well.  This  is  the only  type  of  AI  that  exists  in  reality.  For  example,  voice  assistants  like Siri, computer playing chess, flying aeroplanes, recommending products

and  online  content  as  per  our  interest.  These  machines  don’t  think,  and they also don’t have emotions like humans. 

Artificial general intelligence (AGI or strong AI) is when a computer program can perform any intellectual task exactly like a human, that is, 

machines  exhibit  human  intelligence.  They  can  reason,  represent

knowledge including common sense, plan, learn, and converse in natural

language. The general AI does not exist in reality today, but the idea is

depicted  in  many  sci-fi  movies  like   Interstellar.  Also,  there  are  many theoretical frameworks and models proposed for AGI. Alan Turing, who

first posed the question in 1950, ‘can machines think?’ also suggested a

test to evaluate this.  Turing Test: A machine and a human converse with a second human who cannot see or know with whom they are conversing. 

This second human should evaluate and conclude who is human and who

is machine. If the machine can fool the human evaluator, it means AGI is

achieved. 

Artificial super intelligence (ASI) is an AI system that surpasses human intellect, that is, machines having greater problem solving and decision-making  capabilities  that  are  far  superior  to  human  beings.  This  is

hypothetical AI. For such machines to be of any use for life, they must be

ethical, must understand human emotions, and must be self-aware. Self-

awareness  is  required  for  safety,  effectiveness,  trustworthiness, 

transparency  or  explainability  of  decision-making.  Self-awareness  also

allows  for  faster  reactions  and  adaptations  to  changes  in  dynamic

environments.  This  means  machines  must  have  some  level  of

consciousness  like  humans  or  possibly,  much  higher  levels  of

consciousness than humans! 

In  this  book,  we  will  limit  our  discussions  to  ANI  only.  Figure  1.1  depicts various forms of ANI at a very high level. Each of these is a huge independent

literature in its own. Refer to the following figure:
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 Figure 1.1: Subcomponents of AI present today

The  computer  vision  literature  gives  eyes  to  the  AI  system.  The  speech processing literature helps the system to listen by acting as its ears. Robotics uses these artificial senses and gives limbs to the AI system, like robotic arms that  can  perform  highly  sophisticated  tasks  like  microscopic  surgery. 

Analyzing  natural  language  spoken  by  human  and  understanding  it  helps  the system to converse with humans in any natural language. An expert system is a computer system emulating the decision-making ability of a human expert. 

The  first  expert  system  was  built  in  1970s,  which  had  two  main  parts:  a knowledge  base  that  represented  facts  and  rules,  and   inference  engine  that applies the rules to the known facts to deduce new facts. All these together are

[image: Image 8]

essential  parts  of  a  future  AGI  system. Machine  learning  (ML)  is  a  broad class of algorithms that is used to build these components of an AI system. 

Machine Learning

Machine  Learning  (ML)  includes  the  study,  design,  and  development  of algorithms  to  give  computers  the  capability  to  learn  from  data  instead  of requiring  explicit  programming  of  hard-coded  rules.  The  process  of

discovering  an  algorithm  involves  manual  analysis  of  input-output  examples and  deriving  set  of  rules  and  steps  such  that  given  the  input,  we  can  always find the output by following these steps. This may be easy for certain class of

problems,  but  when  the  number  of  possible  rules  is  very  high,  it  becomes almost  impossible  to  figure  out  all  possible  rules  to  find  a  robust  algorithm. 

 Figure 1.2 shows the difference of classical algorithm development vs ML:

 Figure 1.2: Difference b/w classical programming and machine learning To  understand  this  better,  let  us  consider  the  problem  of  classifying  flowers. 

Consider a huge basket of flowers, and assume that there are three categories

of flowers, as shown in  Figure 1.3:
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 Figure 1.3: Three species of Iris flower

Flowers vary in size, colour, texture, and shape. We want to build an algorithm

than can classify the flowers to a type. The first step is to select the properties or  features  of  flowers  that  will  be  useful  to  identify  flower  species.  Once selected,  these  features  are  represented  with  a  numerical  value  that  an algorithm  can  take  as  input.  Here,  we  have  considered  sepal  length,  sepal width  and  petal  length,  petal  width  as  the  four  features.  Figure 1.4  shows  a sample of five flowers and their corresponding features and categories:

 Figure 1.4: Iris flower’s features values and its species/category

Once features are identified, we must define set of rules to classify a flower. 

Here, our output or  target variable is the category of flower. This is also called independent  variable  and  the  features  are  termed  as   dependent  variables. 

 Figure 1.5 is an example of rules using only the first two features. The range of values  of  sepal  length  and  petal  length  differ.  We  can  apply  some  data transformations such that all the feature values in the dataset to are mapped a

common  scale,  without  distorting  differences  in  the  ranges  of  values.  This is called  data   normalization.  The  feature  values  are  normalized  or  scaled  such

[image: Image 11]

that they are centred around zero; that’s why we see negative and zero values

in  the  axes.  The  original  data  set  has  all  positive  quantities  as  all  the  four flower features are length or width. Refer to the following figure:

 Figure 1.5: Identifying the Iris species using first two features

Simple rules to classify the flowers into the respective categories by observing only two features are as below:

If the normalized sepal length < 0 and normalized sepal width > 0, then

it’s setosa. 

If  the  sepal  length  and  width  fall  in  the  lower  triangular  region,  it’s versicolor with a high chance. This triangular region can be defined by

three straight line equations. 

Otherwise, its virginica. 

This collection of rules or a mathematical function representing these rules that helps to identify flower type is called a  model. 

Manually  deriving  rules  or  a  mathematical  function  is  time-consuming  task. 

Machine learning algorithms try to automate this process by learning rules or

decision boundaries or a mathematical function that takes a flower’s numeric

representation as input and outputs the possible category of the flower. 

Does  selection  of  features  impact  the  classification  accuracy  of  the  learned model? Yes,  classification  accuracy  depends  on  selected  features  of  flowers. 

We see in the preceding example that, as we have chosen only two features, we
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are unable to properly distinguish the two classes: versicolor and virginica. In the next section, we will discuss a step-by-step process for designing an ML-based model. 

How are ML Models created? 

Building a ML model is an iterative process. It  starts  with  understanding  the business  problem  and  then  collecting  data  related  to  the  problem  domain. 

Then,  this  data  is  processed,  cleaned,  and  prepared  for  modelling.  This  is

depicted in  Figure 1.6:

 Figure 1.6: Building ML model

Following are the various steps for building ML model:

1. Data collection: The process of collecting observations or data related to the  problem  is  called  data  collection.  In  Iris  flower  subtype

classification,  we  must  measure  petals  and  sepal’s  length  and  width  for each flower in the collected sample. Will these features of the flower and

number of sample flowers sufficient for solving the problem? The answer

is,  we  can’t  initially  say  if  these  features  or  the  number  of  collected samples will be sufficient. Human domain expert in flower identification

can provide useful information about sufficiency of the selected features. 

How many samples of flowers we need to collect? This will not be clear

initially. After the model building and initial analysis, we can revisit this

question. A rule of thumb is, if we have more features for each sample, 

we must collect more data samples. 

2. Data preparation:  In  this  step,  the  observations  are  analyzed  to  check whether there are any missing values, any error in data collection like an

abnormal  value  of  observation,  and  if  so,  those  must  be  corrected  or

removed from dataset. 

3. Feature extraction/selection: The features of the cleaned data are further analyzed for obvious intercorrelations. It may happen that some features

are very highly correlated, and using any one of these related features is sufficient  to  solve  the  problem.  There  may  be  features  that  are  not

important  at  all  for  the  problem.  These  are  statistical  checks  that  are discussed  in  detail  in   Chapter  5,  Statistical  Inference  and  Applications. 

After this step, a few features are selected. Sometimes, we may have to

derive  a  new  feature  from  the  collected  features.  For  example,  we  may use  a  logarithm  function  to  transform  a  feature  value  and  use  the  log value as the feature. This step is also called  feature engineering. 

4. Train  model:  Choosing  a  mathematical  function  that  accepts  selected features  and  outputs  desired  result:   Model  selection.  Generally,  these mathematical functions are  parametric, that is, their functional forms are fixed,  but  changing  the  parameters  will  change  the  function.  In  the  Iris flower  classification  shown  in   Figure  1.5,  the  parametric  function  is  a straight line in two dimensions having the general equation:  ax +  by +  c =

0, where  a,  b,  c are parameters. In fact, we have 3 such lines; hence, we need  9  parameters  to  define  the  model  function.  For  one  set  of  fixed values of these parameters, we have a decision boundary or rules that we

call model. The process of finding these parameter values that provides

results near to the expected (or ground truth) is called  model training. 

5. Model evaluation: Various metrices are designed to access the quality of the models created in the previous step. These metrices are different for

different  types  of  ML  algorithm.  These  are  discussed  in  the  following

section on ML model types. 

6. If it’s found that the model quality is not acceptable, then various ways of

improving  the  models  are  tried.  This  may  involve  choosing  a  different

functional form, like using a quadratic function  ax2 +  bx +  cxy +  d = 0 as the  model,  and  its  parameters  are  again  estimated.  If  we  are  still

unsuccessful at finding a good model, we may have to go back to the data

preparation  stage  and  design  more  features  or  may  have  to  go  back

further  to  collect  more  relevant  data  and  features  to  solve  the  problem. 

These are depicted as the dotted lines going backward in  Figure 1.6. 

There  are  various  types  of  ML  algorithm  for  solving  different  types  of problems. All these algorithms are built iteratively by learning from data. The

data  or  observations  about  a  problem  domain  is  the  starting  point  of  ML

algorithms,  and  then  these  algorithms  are  iteratively  improved  by  taking feedback from the data. We will first discuss briefly the different types of data and then the different types of ML algorithm. 
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Data types

Data is the starting point for solving any problem in AI. Data can be broadly

categorized  into  two  types:  structured  and  unstructured.  Structured  data  is tabular data where we have certain predefined features or attributes, that is, the columns are defined in the table. The rows in the table contain values of these

attributes. Unstructured data is information that is not arranged according to a pre-defined  data  model  or  schema,  and  therefore,  cannot  be  put  in  a  tabular form.  In   Figure  1.7, these  two  categories  are  further  split  into  different subcategories with examples:

 Figure 1.7: Data types

All data types must be converted to numerical form before feeding them into

machine  learning  model.  This  is  done  in  the  feature  extraction  phase  of  ML

model building. 

Learning From data

For algorithms to learn from data, there needs to be feedback about the rules or logic  learnt  by  the  algorithms.  Based  on  the  feedback,  algorithms  will  learn better representation of the data to achieve desired output. Different algorithms
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are required for different degrees of feedback obtained. Next, we will discuss

the various types of these algorithms. 

Types of ML algorithm

We  can  categorize  machine  learning  model  types  based  on  the  level  of  the feedback that algorithms receive during its learning phase. This is depicted in

 Figure 1.8. Let’s discuss these three types of algorithms in further detail. Refer to the following figure:

 Figure 1.8: Model types based on feedback during learning

Unsupervised learning

Unsupervised learning is about identifying unknown patterns/groups from the given unlabeled data. Here, classes of data samples or total number of classes

or desired output for each data sample is not part of the data; this kind of data is called  unlabeled data. Two popular techniques that fall under this category are clustering and dimensionality reduction. 

Clustering  is  about  automatically  discovering  natural  groups/clusters  in  the unlabeled  data  so  that  the  degree  of  similarity  between  samples  of  the  same cluster and the degree of dissimilarity between samples of different clusters are maximized. Similarity and dissimilarity criteria can vary based on the problem

statement.  The  similarity  between  data  points  is  defined  using  a  distance function.  There  are  also  various  ways  of  evaluating  the  quality  of  clusters formed, which are discussed in further detail in the  Chapter 7, Clustering. 

Dimensionality  reduction  is  transformation  of  data  from  high-dimensional space  to  low-dimensional  space,  such  that  data  represented  in  lower-dimensional space retains the properties of original data to achieve the required
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task.  Figure 1.9 shows a simple example of dimensionality reduction. Here, we have a two-dimensional data distributed, represented with axis  f 1 &  f 2. We need two dimensions to represent the data. Suppose we now rotate the axis along the

line  of  distribution;  we  can  then  represent  the  points  using  one  axis   e 1  by projecting these points on  e 1. Here, the scattering of the data was along the  e 1

direction, and we have rotated the axes. We can reduce dimensionality of the

data  using  this  principle  and  some  mathematical  tools  from  linear  algebra. 

Refer to the following figure:

 Figure 1.9: Finding optimal number of new axes for the given data

Reducing dimensionality is beneficial as algorithms will overcome sparse data

representation and  curse of dimensionality. The phrase  Curse of dimensionality is coined by Richard E Bellman, and it refers to various challenges that arise

when analyzing data in high-dimensional spaces. As dimensionality increases, 

volume of the space increases exponentially, which make existing data sparse. 

For  algorithms  to  work  reliably,  we  need  to  increase  the  data  exponentially. 

Choosing right features and converting data to lower-dimension space plays an

important  role  in  the  success  of  machine  learning  algorithms.  Due  to  this, dimensionality  reduction  is  often  used  as  an  intermediate  step  for  various machine  learning  algorithms.  We  will  discuss  these  techniques  and  its

applications in greater detail in  Chapter 8, Dimensionality Reduction. 

Reinforcement learning

There exist many situations where there is partial feedback or the feedback is

delayed. Consider the game of chess where the objective of the task is to win

the match. There do not exist feedback about every move. Feedback is delayed

to the end of the game. There do exist partial feedback during the game when a

piece  is  captured.  Capturing  opponent’s  piece  is  positive  sign  but  doesn’t guarantee  the  win.  When  rewards  or  feedback  is  received  from  the

game/environment, it must be recorded, and the path taken to reach the present

state  must  be  rewarding  accordingly.  This  approach  of  utilizing  partial  or delayed rewards/feedback to learn actions for various situations/states is called Reinforcement Learning (RL). The objective of the RL algorithm is to find optimal action for each state that would result in maximum cumulative long-term reward. 

 Figure 1.10 shows an example of a simple RL problem: A robot trying to walk as  long  as  possible  without  falling:  The  robot  can  be  in  three  states:  Fallen state, Standing state, or Moving state. The robot can perform only two actions:

moving the legs slowly, as depicted in  Figure 1.10 with light-colored arrows, and  moving  the  legs  aggressively/fast,  as  depicted  in   Figure 1.10  with  dark-colored  arrows.  Given  that  the  robot  is  in  any  of  these  three  states,  the  dark arrows show what happens with slow action, and the light arrows show what

happens with the aggressive action. The number over these arrows shows the

partial feedback or reward on taking the action. These rewards are given by the

environment where the robot is walking. The  ultimate  goal  of  the  robot  is  to learn a strategy or policy such that it can walk for very long time, that is, to discover the best possible action (slow or fast moving) at each state so as to

maximize the cumulative future reward. Refer to the following figure:
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 Figure 1.10: State transition experienced by the robot

 Figure  1.10  represents  the  environment  the  robot  is  walking  as  a  state transition diagram. One important point to note here is that this environment is not deterministic, that is, taking a fixed action at a given state may either lead the robot to any of the possible states reachable from the given state. Suppose

the robot is in fallen state; it may be able to stand by moving its legs slowly or may remain fallen. The chance of landing to another state may vary and is an

inherent property of the environment. The objective of RL is to learn the best

possible  strategy  under  these  uncertain  conditions.  Figure  1.11  shows examples of 3 possible policies π1, π2, π3 the RL algorithm can learn. Policies

are outputs of RL algorithm. Refer to the following figure:

 Figure 1.11: RL policies

Following are the different components of a RL problem:

Agent: This is the component that makes the decision of what action to

take; it is the robot’s decision-making algorithm in the previous example. 

Environment:  This  is  the  thing  agent  interacts  with,  comprising

everything outside the agent. The floor area on which the robot can move

along with external factors like wind adds uncertainty to the outcome of

action. States the robot is in are associated with the body of the robot. So, 

the body of robot is also part of the environment. 

State:  This  is  the  current  condition  of  the  environment,  for  example, whether the robot is fallen or standing or moving. 

Action: This is the move taken by the agent. In previous example, there

are two possible actions at every stage: slow moving and fast moving. 

Policy: Defines the agent’s way of behaving at a given time and state. It’s a  mapping  from  perceived  states  of  the  environment  to  actions  to  be

taken when in those states. This is the output of the RL algorithm. 

If number of states are few and transition probabilities are known, then there

exist dynamic programming-based algorithms like  policy iteration, q-learning to  learn  the  policy.  For  large  state  space,  function  approximators  are  used  to learn the policy. 

In industry, RL-based robots are used to automate various tasks. One example

is  AI  agents  by  DeepMind  to  cool  Google  data  centers,  which  led  to  a  40%

reduction in energy spending. RL algorithms can learn policies from medical

diagnosis  of  patients  and  then  can  act  as  a  virtual  doctor  where  patients  can receive treatment from policies learned by RL systems. RL is also being used

for stock trading. 

Next, let’s look at another class of ML algorithms where complete feedback is

provided from the data. Here, the data used to build the model is called training data. Each instance of the training data has one or more target features, which

act as feedback to the training algorithm. 

Supervised learning

Supervised learning is about learning parameters of the function based on the labelled data. In labelled data, desired output for each data sample is provided. 

Output desired for each data sample can be either categorical data representing

a  class  label  for  the  data  instance  or  real  number  (continuous  variable) indicating some measurement. If desired output represents class number, then

it is called  classification. If desired output represents continuous variable, then it is called  regression. Identifying the type of Iris flower discussed before is an example of supervised classification where the target label are the three classes of flowers. An example of regression would be predicting the price of a house

based on its location, square foot area, and so on. There are various types of

supervised learning algorithms, which we will cover in this book. We will be

first providing the mathematical tools required to understand the theory behind

these algorithms and then introduce these algorithms along with applications to

solve various ANI tasks. Various metrics are defined to evaluate the quality of

the  learned  model  for  regression  or  classification.  Let’s  first  discuss  the classification metrices. 

Metrices for evaluating classification model

We  will  consider  an  example  of  10  predictions  for  the  flower  classification problem  ( Figure  1.3)  to  illustrate  these  metrices.  The  predictions  are  made using the model shown in  Figure 1.5 by checking which region the point falls. 

 Table  1.1  shows  a  sample  prediction  output  of  a  model  built  on  two  sepal features, and the true output is depicted in the target column:

sepal length (cm)

sepal width (cm)

prediction

target

0

0.192454015

2.08478395

setosa

setosa

1

1.132206284

-1.72578699

virginica

virsicolor

2

-0.959849197

2.173531324

setosa

setosa

3

2.952024909

2.138220415

virginica

virsicolor

4

-0.505463006

-2.149987293

virsicolor

virginica

5

0.80187062

0.622172986

virginica

virginica

6

-0.958066983

-2.170298289

virsicolor

virsicolor

7

0.877714008

0.053590407

virginica

virginica

8

-4.388166428

-0.23903155

virsicolor

setosa

9

-1.419429199

-0.686692025

setosa

setosa

 Table 1.1: Prediction by a model on test data
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We  will  first  define  some  terms  and  then  define  the  metrics  using  those.  We

will apply these terms and metrics on the output of a model captured in  Table

 1.1:

True Positive (TP):  If  the  model  predicts  target  class  A  as  A,  then  the case  is  called  True  Positive.  In  previous  table,  there  are  four  actual samples  from  class  setosa,  and  the  model  has  predicted  three  as  setosa. 

So, the TP count for this class is three. 

False  Negative  (FN):  If  the  model  predicts  the  class  A  as   not  A  (any class other than A) then it is called False Negative. For setosa class here, 

we have one FN count. 

False Positive (FP): If the model predicts  not A (any class other than A) as A, then it is called False Positive. Considering the versicolor class, we

see sample numbers 4 and 8 are predicted as versicolor but are actually

not of that type. So, for versicolor, the FP count is 2. However, for setosa

class, there is no FP. 

True Negative (TN):  If  the  model  correctly  predicts  the  class   not  A  as not  A,  then  it  is  called  True  Negative.  For  the  setosa  class  again,  not setosa means all the 6 samples whose true labels are not setosa. we see

none of them are predicted as setosa. so, TN count for setosa is 6. 

Following are the metrics for evaluating a classification model:

Following are the metrics for evaluating a classification model:

Classification  accuracy:  Fraction  of  predicted  labels  matching  exactly with  true  target  labels.  Here  we  have  6  rows  out  of  10  where  we  find exact match and hence  accuracy = 

. 

Class-wise accuracy: Ratio of number of correct predictions for a target

class to the total number of actual labels for the target class:

 accuracy = 

For setosa,  TP = 3,  TN = 6,  FP = 0,  FN = 1 and hence, accuracy = 

For versicolor,  TP = 1,  TN = 5,  FP = 2,  FN = 2 and hence, accuracy = 
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For virginica,  TP = 2,  TN = 5,  FP = 2,  FN = 1 and hence, accuracy = 

Precision:  The  ratio  of  TP  count  for  a  class  A  to  total  number  of predicted labels A by the model. 

 precision = 

Recall:  The  ratio  of  TP  count  to  the  total  actual  positive  count  for  the class. This is also known as True Positive Rate (TPR) or Sensitivity: recall = 

F1 score: The harmonic mean of recall and precision is called F1-score. 

It provides a balanced score for precision and recall. The F1 will be high

only when both precision and recall are high. Generally, increasing recall

by  modifying  the  prediction  algorithm  will  decrease  precision  and  vice

versa.  This  is  called  precision/recall  trade-off.  Using  the  Python  Scikit metrics.classification_report  function,  we  can  calculate  the  F1

score,  precision,  recall  and  accuracy  together;  the  output  is  captured  in

 Figure 1.12:

 Figure 1.12: Classification report

Confusion matrix:  Consider  a   n  x  n  matrix  (where   n  is  the  number  of targets) with rows representing an actual class and columns representing

a predicted class. The row sum of this matrix will be equal to the support

or number of true class labels for each class. The diagonal element will

show the TP count the ( i,  j) the entry of the matrix, where  i ≠  j represents number of misclassifications of the ith class as jth class. Confusion matrix

for the example is captured in  Figure 1.13:
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 Figure 1.13: Confusion matrix

The  best  desired  confusion  matrix  is  one  which  has  large  diagonal

elements and small entries in the rest of the matrix. 

Based  on  the  classification  problem  we  are  solving,  some  of  these  metrices may  have  more  importance  than  others.  For  example,  if  we  are  detecting whether a transaction is fraudulent, it’s more important to detect a fraud. We

need  high  recall  in  this  case  at  the  cost  of  precision.  As  most  of  the  models output  some  score  for  a  prediction,  these  adjustments  in  predictions  can  be done  by  putting  some  thresholds.  For  this  fraud  detection  case,  suppose  our model outputs a score between [0, 1]. We  may  predict  a  transaction  as  fraud even  if  score  >  0.3  and  non-fraud  otherwise.  Thus,  increasing  recall  and compromising on precision. Varying the prediction thresholds, we can come up

with the following metrics and get the best out of our model:

Specificity  or  True  Negative  Rate  (TNR):  The  ratio  of  number  of negative classes, that is,  not A, which are correctly being classified as  not A. 
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 TNR = 

False Positive Rate (FPR): The ratio of number of negative classes, that is,  not A, which are inaccurately being classified as A. 

 FPR = 

 , thus FPR = 1 – TNR

We  can  also  compare  two  different  prediction  models  using  these  rates.  For that,  we  need  another  metric  called  Receiver  Operating  Characteristics (ROC). 

Receiver Operating Characteristic (ROC) curve: ROC plots the True

Positive Rate (TPR) vs False Positive Rate (FPR), as shown in  Figure

 1.14.  The  area  under  the  curve  is  used  as  a  measure.  For  a  perfect

classifier,  the  area  under  the  ROC  curve  is  1,  and  hence,  the  closer  the area under the ROC curve is to 1, the better the classifier. It’s generally

used to compare two different prediction models. Refer to the following

figure:
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 Figure 1.14: ROC curve

Next, let’s look at the metric used for regression tasks. 

Metrices for evaluating regression model

For  discussing  the  regression  metrices,  let’s  take  a  simple  linear  regression example.  Suppose  we  want  to  predict  the  weight  gain  based  upon  calories consumed only, and we have a sample data collected as shown in  Table 1.2: id

calories

weight_gain

0

1489

5.167585591

1

1446

6.172757721

2

1222

6.38994428
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3

1141

3.915110902

4

206

4.047348025

5

1247

3.285284391

6

1338

4.404260107

7

196

3.160958623

8

213

6.701951781

9

738

3.64042916

 Table 1.2: Calories intake and resulting weight gain

Here, we have only one independent variable, which is the calories consumed

( x). We have plotted this data in  Figure 1.15. Suppose our mathematical model for regression is a straight line  y = 0.0004  x  +  4.2,  as  shown  in   Figure 1.15. 

Then, for calorie consumed = 1222 (2nd sample above), the predicted weight

gain is 4.7 but the actual wight gain is 6.38 kg. Refer to the following figure:

 Figure 1.15: Plot of calories and resulting weight gain

Following are the metrics for evaluating a regression model:

Mean  Absolute  Error  (MAE):  MAE  is  a  very  simple  metric  that calculates  the  average  absolute  difference  between  actual  and  predicted

values.  In  the  previous  example,  the  predicted  value  by  our  model  is

point on the line corresponding to each value of the calories in the x-axis; 

thus:
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 MAE =   (|5.18 – 4.79|+|6.17 – 4.78|+ … +|3.64 – 4.49|) = 1.075

This indicates that, on an average, the weight gain estimate by our model

above  is  going  to  have  an  error  of  ±1.075  kg  error.  This  error  has  the same unit as the target variable. 

Mean Squared Error (MSE): MSE finds the average squared difference between actual and predicted value. 

 MSE =   ((5.18 – 4.79)2 + (6.17 – 4.78)2 + … + (3.64 – 4.49)2 ) = 1.536

The squared error is more for points far away from the predicted value

compared to MAE. But the error is now a squared quantity and does not

have the same unit as the predicted value. 

Root Mean Squared Error (RMSE): RMSE is a simple square root of

mean squared error. This has the same unit as the target. 

There  are  few  other  metrics  for  measuring  regression  like  R-squared  and adjusted R-squared for measuring regression error. We will be revisiting these

metrices in the subsequent chapters. 

For comparing various models of regression, there are few statistical measures. 

Models are scored both on their performance on the training dataset and based

on the number of model parameters or the complexity of the model. 

Akaike  Information  Criterion  (AIC):  AIC  penalizes  models  that  use more parameters. 

 AIC = 2k – 2ln(L)

 k  is  the  number  of  model  parameters.  L  log  of  the  probability  that  the model could have produced your observed target values. Lower the AIC, 

better  is  the  model.  Calculation  of  these  log  probabilities  will  be

discussed in the later chapters. 

Bayesian Information Criterion (BIC): Another similar metric that also takes the number of examples into consideration for scoring the models is

called  BIC.  Lower  BIC  values  indicate  better  models.  We  will  provide

the  mathematical  formula  for  this  later  as  it  requires  some  more

theoretical foundations of regressions to be introduced. 

AIC, BIC can be also calculated for classification models and compare them. 

In all the above types of ML algorithms, supervised, unsupervised and RL, one important  step  is  feature  engineering.  This  is  a  manual  step  that  involves handcrafting  features  from  the  observations  using  domain  knowledge.  To

understand  the  complexity  of  this  step,  let’s  take  another  example  of  feature engineering  for  a  slightly  complex  classification  problem:  face  recognition. 

Given a query face image and a database of known faces, the task is to find the

closest match of the query image with images in the database. The first logical

step to solve this problem is to extract features from face images and represent the faces in the database numerically. The query image can be also converted

to  a  set  of  numeric  observations,  and  then  we  can  compare  query  image observations with numeric representation of all the images in the database. In

order to come up with this representation of the image, we have used domain

knowledge  –  what  are  the  most  distinguishing  features  of  a  face:  eyes, eyebrows, nose, jawline, mouth, and relative distance between these. Then, we

have to design algorithms to find these points from a face image. 

Thus, we see that the feature engineering step is the most time consuming and

difficult  in  ML.  Is  there  a  way  we  can  automate  the  feature  engineering process? A subclass of ML algorithms discussed in following section addresses

this. 

Deep learning

Deep  learning  is  a  subfield  of  machine  learning,  where  a  hierarchical representation of the data is created. Higher levels of the hierarchy are formed by  the  composition  of  lower-level  representations.  More  importantly,  this hierarchy  of  representation  is  learned  automatically  from  data  by  completely automating  feature  engineering.  Automatically  learning  features  at  multiple levels  of  abstraction  allows  a  system  to  learn  complex  representations  of  the input  to  the  output  directly  from  data,  without  depending  on  human-crafted features. Models used in deep learning are generically called neural networks. 

Neural networks consist of small computation units called neurons (inspired by

the  biological  neurons  in  human  brain),  which  are  basically  parametric

functions of the input. The output of a neuron is a single real number. Thus, 

having  N  neurons,  we  can  get  a  set  of   N  real  numbers  or  set  of   N  features. 

Changing  the  parameter  values  gives  different  feature  vectors  for  the  same input. For the face recognition example, we can design a neural network which

takes a raw digital image as input. The input image is a  n ×  n array or matrix of pixels. We define a parametric function that computes the weighted average of
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every set of consecutive 3 × 3 pixels in the image and outputs a single value. 

The  weights,  used  in  computing  the  weighted  average,  are  the  parameters  of the neuron. These parameters are learned from data. We can have many such

neurons  with  different  sets  of  weights  and  thus  have  a  layer  of  neurons representing  various  image  features  like  edges,  color,  and  texture.  Putting multiple hierarchy of layers like this, we can have a network of neurons called

deep  neural  network.  The  depth  of  the  network  is  defined  by  the  number  of layers of neurons. A comparison between deep learning’s approach and classic

machine learning’s approach is depicted in  Figure 1.16:

 Figure 1.16: Deep learning vs classic machine learning

We  will  discuss  neural  networks  in  greater  detail  in   Chapter  6,  Neural

 Networks,  but most of the mathematical tools required to understand the theory

of  neural  networks  is  covered  in  Chapters  2  to  5. We  will  cover  various applications  of  neural  networks  Chapter  9  onward.  The  success  of  neural networks  depends  on  the  availability  of  large  volumes  of  data  and  immense computing power of present day. 

Dataset preparation

Neural  networks  need  large  volumes  of  data  for  computing  features

automatically. How much data is sufficient for the algorithm to learn? The rule

of  thumb  is  that  the  dataset  size  must  increase  with  an  increase  in  learnable parameters and dimensions of the data. 

 Tip: We must make sure that samples in the dataset are not repeated or the

 number of samples of a category is higher as compared to others. This will

 push  a  model  to  learn  better  representation  for  the  skewed

 category/samples,  leading  to  lower  performance  for  other  categories  or

 samples. 

In practice, the entire dataset is not used for training the neural network model. 

After cleaning of the data, it is divided into three sets: training, validation, and test. Dividing should be such that variation of the data is captured in all three sets. The neural network learning algorithm and many other machine learning

algorithm is an iterative algorithm. 

Most  learning  algorithms  generally  start  with  a  random  initialization  of parameters  and  iteratively  improve  the  parameter  values  by  taking  feedback from  training  data.  As  learning  algorithm  learns  parameter  values  during training phase, it needs to validate whether it is moving in the right direction. 

For this, validation dataset is used. After few iterations of learning parameters from  the  training  data,  partially  trained  model  is  run  on  validation  set  with recently run parameters. Performance on the validation set gives direction for

the  model  to  search  for  better  parameter’s  values.  The  need  for  model validation is to restrict the model to only work on the training examples and

fail  miserably  on  any  data  outside  training  examples.  Such  a  model  is  of  no use, and it’s called  overfitted model. The performance evaluation of the model on validation data makes sure that the model is learning general patterns in the data and not memorising the training examples. 

Another scenario can also arise. We see that the model is not even able to learn the  training  data  well,  and  thus,  the  performance  on  validation  is  also  not improving.  Such  a  scenario  is  called  an   underfitted  model.  This  generally indicates that our model needs more parameters or more capacity to learn the

pattens in the data. After completion of training, trained model is evaluated on test set, and these numbers are reported as model performance. 

 Note:  The  test  set  is  never  used  in  training  or  validation.  The  model

 performance must always be reported on the test set. 

For  reasonable  size  dataset,  we  can  split  the  dataset  into  training:  80%,  and test:  20%.  Out  of  the  training  set,  5%  can  be  used  as  validation  dataset.  If

dataset size if over million samples, then we can split the dataset into training: 98%  and  test:  2%.  The  validation  set  can  be  2%  of  the  training  examples. 

Divided  sets  should  reflect  similar  patterns  (statistical  distribution)  when analysed. Skewed  data  towards  any  pattern  or  class  in  any  of  the  sets  would lead to degradation of the learning algorithm’s performance. 

 Tip:  To  obtain  similar  statistical  distribution  or  patterns  among  all  three

 sets, we can randomly shuffle the dataset and select the samples for each

 set. If  it  is  classification  dataset,  then  make  sure  that  samples  from  each

 class are proportionally represented in each set. 

While selecting the validation set out of the training set, we can take either a fixed validation set or randomly take out few examples from the training set in

each  training  iteration  and  use  these  examples  as  validation.  The  latter technique is called  cross-validation and is considered more robust in situations when  the  dataset  size  is  small.  Few  popular  cross-validation  strategies  are mentioned below:

K-fold cross validation: Training samples are randomly partitioned into

 k  equal-sized  sets.  In  an  iteration  of  training,  one  set  is  selected  as validation set and remaining  k-1 sets are considered for training. This is repeated   k  times  where  a  set  is  considered  as  validation  set  only  one. 

These k results are then averaged to produce single estimation.  k can be any value, usually  k=10 which is depicted in  Figure 1.17. In the figure, represents  the  cost  or  error  associated  with  the  iteration.  ‘ E’  represents single  estimation  obtained  by  averaging  all  ’s.  Refer  to  the  following figure:
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 Figure 1.17: 10-fold cross-validation

Leave-p-out cross validation: Out of  n training set samples, this method uses   p  observation  as  validation  set  and  remaining   n-p  observations  as training set for one iteration of training. This is repeated on all possible 

sets.  p  can  be  any  value.  The  most  popular  value  is   p=1,  which  is called Leave-one-out cross validation. 

Repeated random sub-sampling method: This method is also known as

Monte-Carlo  cross-validation.  Here,  sample  set  is  randomly  split  into

training and validation set. Split set is used for one iteration of training. 

For  each  iteration  of  training,  sample  set  is  randomly  split  every  time. 

Results  are  then  averaged  to  produce  single  estimation.  Number  of

iterations  will  not  depend  on  sample  set  size.  In  this  method,  it  may happen that a few samples may never be selected for validation set, and a

few samples may end up being selected more than once. 

In  many  situations,  the  dataset  is  not  exhaustive  enough  to  capture  all variations  of  the  real  data.  This  leads  to  high  performance  on  training  and cross-validation  dataset  and  does  good  even  on  test  set,  but  it  will  perform poorly when deployed in a real environment. We should collect more samples

that would reflect statistical distribution of real data. 

Data  augmentation  is  one  of  the  techniques  to  make  a  dataset  robust.  Data augmentation technique adds more samples to the dataset by imparting slight modification  to  the  existing  dataset  or  synthesize  new  samples  from  the existing  dataset.  Modification  or  synthesis  should  be  performed  such  a  way that the label of original sample and its corresponding modified or synthesized

sample should remain the same. 

Techniques to augment the data depends on the nature of the data and desired

output. 

Consider  dataset  of  images  to  recognize  dog  or  cat.  For  this  dataset,  we  can apply  rotation,  translation,  shear,  flipping  techniques  on  the  existing  images. 

Do note that, these techniques don’t change the label from original sample to

transformed sample. Image containing cat will still be recognized as cat after

these  transformations.  Few  of  these  image  augmentation  techniques  will  be discussed in  Chapter 9, Computer Vision. 

Application of AI

AI  is  being  used  across  industries  for  better  decision-making,  increasing efficiency, and eliminating repetitive work. AI is augmenting human capacity

in all fields, including healthcare, education, agriculture, automobile, finance, gamming,  ecommerce,  fashion  design,  and  advanced  scientific  research  like space exploration and particle physics.  Figure 1.18 depicts one application in each of these fields:
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 Figure 1.18: Applications of ML

All these applications of AI fall under the category of ANI or specialized AI. 

These  AI  systems  rely  largely  on  human-generated  data  and  excel  at

mimicking  human  behaviour  on  well-known  tasks.  They  also  incorporate

human  biases  as  the  bias  is  in  the  training  data  itself.  These  systems  lack robustness,  that  is,  the  ability  to  perform  consistently  under  changing circumstances.  Moreover,  these  systems  often  have  the  problem  of

explainability, that is, we are unable to explain why a decision is taken by the system under a given circumstance. These problems open up new frontiers for

research, the ultimate goal being AGI, which experts agree is far in the future. 

Role of Mathematics in AI

The goal of AI is to design algorithms that can perform  data-based automated decision-making under uncertainty. Data is the starting point, and this data is always insufficient. It’s never possible to capture all possible scenarios in any

dataset,  and  if  we  can,  then  there  is  no  need  for  AI.  We  don’t  need  AI  for writing  an  algorithm  that  can  compute  the  sum  of  any  two  numbers,  as  we know  all  possible  scenarios  that  can  come  and  have  rules  for  all  of  them. 

Insufficiency in data is a primary source of  uncertainty, that is, working with imperfect or incomplete information. 

Other sources of uncertainty are noise in data, errors while collecting data, and assumptions  made  while  modelling.  We  can  represent  this  uncertainty

qualitatively  with  the  mathematical  theory  of  probability  and  statistics. 

Probability  provides  the  foundation  and  tools  for  quantifying,  handling,  and harnessing  uncertainty.  Statistics  deals  with  the  methods  of  collecting, presenting,  analysing,  interpreting,  and  inferencing  from  data.  Data  is

represented  numerically  as  a  point  in  high-dimensional  space  called  vector space.  However,  beyond  three  dimensions,  we  cannot  visualize  data;  thus, every  observation  collected  is  an  abstract  numerical  object.  Linear  algebra provides  us  with  all  the  tools  to  operate  with  these  abstract  objects  called vectors  and  also  define  concepts  of  similarity,  distance,  and  angle  between these vectors. 

With  all  these  tools,  we  are  equipped  to  mathematically  define  decision-making, which is required to automate decision-making from data, that is, to

achieve the final goal of AI. These decisions can be of two types: discrete or

continuous. Discrete decisions are like classification or deciding an action in a RL scenario, and continuous decisions are like regression. 

Mathematically, discrete decisions can be represented as a way of partitioning

the high dimensional space where the data points lie and assigning a category

to each partition. Continuous decisions, on the other hand, are some functions

mapping a point in high dimensional space to a real number. In both cases, a

set  of  parametric  mathematical  functions  must  be  found  that  can  output  the best possible decisions. To do this, we need tools for function optimization in

high-dimensional  space,  and  this  is  given  by  the  theory  of  vector  calculus. 

These  four  mathematical  tools,  i.e.,  Linear  algebra,  Vector  calculus, 

Probability, and Statistics, are the four pillars of AI, depicted in  Figure 1.19. 

Each of these topics are vast, and it is not necessary to gain completer mastery on these topics to understand the theory of AI. In this book, we have presented

the  essential  concepts  from  these  topics  required  to  get  a  good  in-depth understanding of AI. Refer to the following figure:
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 Figure 1.19: Pillars of AI

As the era of AI is still in the initial stages, there is a huge scope for all of us to contribute  to  this  field.  These  mathematical  tools  are  the  foundation  of  the technology that is already in use and all that is yet to come. Having a deeper

understanding  of  these  mathematical  basics  will  help  the  reader  become  a successful contributor to the next generation AI technologies and appropriately

use the existing technology. 

Conclusion

In this chapter, we provided a high-level overview of AI and discussed various

types of algorithms and the challenges in AI. The next four chapters will be on

the four foundational mathematical pillars of AI.  Chapter 6, Neural Networks

will discuss about deep learning – the core of most of the state-of-the-art ANI components. After  that,  various  ANI  topics  will  be  covered  in  the  remaining chapters.  These  chapters  will  be  based  on  the  theory  discussed  in  first  six chapters. We  strongly  encourage  the  reader  to  go  through  chapters  1-6  first, and the remaining chapters can be read in any order. 

CHAPTER 2

Linear Algebra

Linear  algebra  is  a  branch  of  mathematics  dealing  with  vectors  and  linear functions on vectors. A vector is a representation of an abstract object as a

mathematical entity. As we can add, subtract, and multiply numbers, we can

do  similar  operations  with  two  or  more  vectors  to  get  a  new  vector.  For example, a digital image can be represented as a vector of pixels. Let’s take

two digital images shot from the same camera position. The first is of a lady

in front of her house, and the next is of a car with the same background as

the lady’s image. If we add these two images, we get a new image with the

lady along with a car in front of her house. Many such image operations can

be represented with vector operations and transformation of vectors. 

In  machine  learning,  representation  of  an  abstract  object  as  a  vector  is  the first challenge, called  feature engineering. Traditionally, this process used to be  completely  manual  and  was  time-consuming.  Deep  learning  partially

automates  this  task.  Internally,  deep  learning  uses  the  power  of  linear algebra, vector calculus, and optimisation techniques to achieve this. We will

cover a small example of linear neural network in this chapter itself once we

introduce linear transformations of vectors. 

Linear  algebra  equips  us  with  mathematical  tools  to  represent  abstract

problem statements from various domains in a crisp, organized, and formal

notation. The simplest mathematical representation of a problem is possibly

done with a linear equation. Often, we need more than one linear equation to

represent a problem, and we call it a system of linear equations. We will start

with system of linear equations and see how vector representation help study

solutions of system of equations with large number of unknowns. 

Structure

The following topics of linear algebra will be discussed in this chapter:

Linear equation
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Matrices

Euclidean space

Vector spaces

Linear transformation

Eigen values and eigen vectors

Matrix decomposition

Objectives

After studying this chapter, you should be able to learn the basics of Linear

algebra that are essential for the development of AI algorithms. The chapter

contains code and examples that will help readers apply the concepts on real

data. 

Linear equations

A linear equation with two variables  x,  y represents a straight line:  y =  mx +

 c, where  m is called the slope and  c is called the intercept of the line. Here, slope  m  controls  the  angle  ( slope = tan(angle))  the  line  makes  with  the  y-axis,  and  the  intercept   c  tells  us  where  the  line  intersects  the  y-axis.  The intercept represents the value of  y when  x = 0. We encounter such equations in our day-to-day life. For example, we use the following linear equation to

convert temperature measured in Celsius(C) scale to Fahrenheit(F):

Refer to  Figure 2.1:
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 Figure 2.1: Line represents mapping between Celsius and Fahrenheit

Equations  of  first  order  are  called  linear  equations.  Rewriting  the  linear equation in the form 9 C – 5 F + 160 = 0 results in general form  ax +  by +  c =

0. This is called the general form of linear equation as we can easily extend

this for more than two variables as  a 1 x 1 +  a 2 x 2 + … +  anxn +  a 0 = 0. The constant  ai is called the coefficient and  a 0 is called intercept of the equation. 

A  linear  equation  in  three  variables  ( ai  ≠  0;  1  ≤   i  ≤  3)  geometrically represents  a  hyperplane  or  plane  in  three  dimensions.  The  idea  of

hyperplanes can be extended to  n-dimensions. 

When more than one linear equation is represented in  n-dimensional space, it’s  interesting  to  analyse  common  points  or  intersection  points  of  these hyperplanes represented by these equations. These common points lie on all

the hyperplanes simultaneously and are known as  solutions of the system of linear equations. 

Now, let’s formulate a simple problem as system of linear equations and find

a solution. 

Consider a situation where a group of friends plan to visit a shopping mall. 

They  plan  to  spend  time  on  movie,  bowling,  and  play  station.  With

difference of opinion on where to start, they get divided into three groups. 

After spending time in the mall, they all gather at one place for discussion. 

The  first  group   G 1  mentions  that  they  spent  ₹1500  on  1   bowling alleys,  1

 play stations  and  1   movie tickets. The  second  group   G 2  spent  ₹4400  on  3
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 bowling alleys, 4  play stations and 2  movie tickets. The third group  G 3 spent

₹6500  on  5   bowling  alleys,  3   play  stations  and  5   movie  tickets.  With  this information, can the price of a bowling alley, play station, and movie ticket

be derived? One can represent preceding data in equations format as follows:

 G1:1 bowling alleys + 1 play stations + 1 movie tickets = ₹ 1500

 G2:3 bowling alleys + 4 play stations + 2 movie tickets = ₹ 4400

 G3:5 bowling alleys + 3 play stations + 5 movie tickets = ₹ 6500

Representing system of linear equations by replacing  bowling alleys with  b, play stations with  p and  movie tickets with  m, one obtains 3 linear equations: e 1: 1 b + 1 p + 1 m = 1500

 e 2: 3 b + 4 p + 2 m = 4400

 e 3: 5 b + 3 p + 5 m = 6500

Let’s visualize geometrical representation of these equations in 3D with x-

axis  for   bowling alley,  y-axis  for   play station,  and  z-axis  for   movie  ticket. 

Each equation will be a plane in 3D space. Consider equation 1 b + 1 p + 1 m

= 1500 for representing in 3D space. Variable  b &  p can be free running with positive  values  (cost  of  bowling,  play  station  &  movie  ticket  should  be positive), but value of  m will be assigned by using equation  e 1 as  m = 1500 –

 b –  p. These values representing equations will span a plane in 3D, as shown

in  Figure 2.2  (Left):

 Figure 2.2: (Left) A plane representing equation 1b+1p+1m=1500 (Right) Add plane representing 3b+4p+2m=4400 to left figure, two planes intersect along a line

Similarly,  a  plane  representing  equation   e 2  is  plotted  in  3D.  In  this  case, planes representing  e 1 &  e 2 intersect along the line in 3D, whose line can be

represented with equations  b + 2 p = 1400 &  m =  p + 100, as shown in  Figure

 2.2  (Right).  Intersecting  line  can  be  plotted  by  making   b  as  free  running

variable, and other dependent variables are assigned with  p = (100 –  b)/2 & m =  p + 100. This signifies that all points that lie on the intersection line will also lie on both the planes. 

In the same way, a plane representing equation  e 3 could be plotted in 3D, as shown  in   Figure  2.3.  These  three  planes  fortunately  intersect  at  a  unique point  p(400,500,600). This  signifies  that  the  intersection  point   p  lie  on  all three planes representing each of the three equations. Solution for these set

of equations is (400,500,600), which signifies cost of a  bowling  alley( b) is ₹

400,  play  station( p)  is  ₹  500  and   movie  ticket( m)  is  ₹600.  The  solution obtained for system of equations is through geometric way. 

In this example, each equation representing a plane intersected at a unique

point.  This  is  the  case  of   unique  solution.  This  need  not  be  the  situation always. If planes intersect along a single line or hyperplane, all points that

lie  on  the  intersecting  line  or  hyperplane  are  solutions  to  the  equations representing these planes. This provides the case of  infinitely many solutions or   infinite  solutions.  There  can  be  another  situation  where  planes  do  not intersect  at  any  point,  providing  the  case  of   no  solution  or   inconsistent systems. A system of linear equations that do not have solutions is called an inconsistent  systems.  Further  discussions  will  revolve  around  these categories of solutions and analytical method to obtain these solutions. Refer

to the following figure:
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 Figure 2.3: Intersection of three planes representing three equations at a unique point (400,500,600)

Solving system of equations analytically

Obtaining  solution  to  the  equations  geometrically  is  not  the  preferred  way due  to  difficulty  in  visualizing  the  solution.  Consider  a  linear  equation  of four or more variables; visualizing hyperplanes formed by these equations is

not  possible.  Let  us  discuss  a  generic  approach  to  find  the  solution  for system of equations. Analytically, one can perform series of valid operations

on  these  equations  to  obtain  the  same  solution.  These  operations  include multiplication and addition. 

Multiplication: Multiplying the same non-zero real number on the left-hand side (LHS) and the right-hand side (RHS) of the equation doesn’t alter the
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equality  of  the  equation.  For  example,  equation   e 1  multiplied  by  non-zero real  value  3,  operation  represented  as  3 e 1  →   e 1  says  that  equation  is multiplied by  e 1 on both sides and the resulting equation is called  e 1: Equation e 1 : 1b + 1p + 1m = 1500

 Multiplication: 3*e 1 →  e 1

 Resulting Equation e 1  : 3b + 3p + 3m = 4500

Addition: Adding the same real number on the left-hand side (LHS) and the right-hand  side  (RHS)  of  the  equation  doesn’t  alter  the  equality  of  the equation. One  can  also  add  equality  equations  as  LHS  are  RHS  are  equal. 

For example, add  e 2 to  e 1, and the resulting equation will be assigned to  e 1, operation represented as  e 1 +  e 2 →  e 1:

 Equations e 1  : 1b + 1p + 1m = 1500, e 2  : 3b + 4p + 2m = 4400

 Addition: e 1  + e 2 →  e 1

 Resulting equation e 1  : 4b + 5p + 3m = 5900

To  obtain  solution  for  the  equations,  let’s  perform  series  of  multiplication and  addition  on  these  three  systems  of  linear  equation.  Solution  obtained through geometric and analytic methods are same.:

 Note:  What  if  friends  had  divided  themselves  into  two  groups  to  play

 three games? In this case, a unique solution doesn’t exist as one would

 require  at  least  three  linear  equations  for  three  unknowns.  This  case

 might result in either infinitely many solutions or no solution. 

Infinitely many solutions

Consider  modification  to  preceding  example  with  the  following  set  of

equations:

 e 1 : 1b + 1p + 1m = 1500

 e 2 : 3b + 4p + 2m = 4400

 e 3 : 2b + 2p + 2m = 3000)

Let’s  plot  planes  representing  equations   e 1  &  e 3  in  3D  for  geometric analysis.  One  can  visualize  that  these  two  planes  overlap  each  other,  as

shown in  Figure 2.4  (Left). In other words, these two planes are the same but are represented with different equations. If planes are the same, then can one

obtain equation  e 3 from  e 1? The answer is yes, equation  e 3 can be obtained from  e 1 analytically by multiplication as 2 *  e 1 ≡  e 3. To find the solution to these  equations,  plot  plane  representing   e 2.  As  equations   e 1  &  e 3  are  the same, let’s use only  e 1 for plotting with  e 2, as shown in  Figure 2.4  (Right). 

One  can  visualize  that  planes  representing   e 1 &  e 2 intersect along the line whose equation is  b + 2 p = 1400 &  m =  p + 100. Solution to this example of system of equations is b=-2 m + 1500 &  p =  m – 100, where  m is free running variable whose value will be in range (100,750) so that the value of  b &  p can be positive. Refer to the following figure:
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 Figure 2.4: (Left) Overlapping of two planes representing two equations. Points that form both planes are same (Right) Three planes intersecting along a line. All points of the line lie on all three planes. 

Apply multiplication and addition to the system of equations for finding the

solution:

As cost of  bowling alley( b),  play station( p) and  movie ticket( m) are positive; this restricts the range of  movie ticket to  m > 100. Variables  b and  p can have various positive values based on equation  b + 2m = 1600, p – m = –100 with m > 100 &  m < 750. Choosing any value of m between this range can get b and  p.  Hence,  there  exists   infinitely  many  solutions  for  this  system  of equations. 

Inconsistent system

There  is  no  guarantee  that  a  solution  exists  for  all  variations  of  system  of linear  equations.  Consider  modifying  the  preceding  example  with  the

following system of equations:
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To visualize this geometrically, let’s plot planes representing  e 1 &  e 2. Planes representing these two equations are parallel and never intersect, as shown in

 Figure 2.5 (Left). Now, add a plane representing  e 2. One can see, in  Figure

 2.5 (Right), that all three planes do not intersect at a common point. Plane

representing  e 2 intersects planes representing  e 1 &  e 2 but at different points. 

Hence,  no  solution  exists  for  these  equations.  These  equations  form

 inconsistent system. Refer to the following figure:

 Figure 2.5: (Left) Two planes that are parallel and never intersect (Right) Plane representing intersects other two parallel planes but not at any common point

Apply  multiplication  and  addition  to  the  system  of  equations  for  finding solution:

 Tip:  It  is  not  always  necessary  to  solve  the  equations  to  know  whether

 there exists unique or infinite or no solution. 
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So  far,  our  discussion  revolved  around  solving  linear  equations  of  three variables  analytically  and  geometrically.  As  number  of  variables  and

equations  increase,  it  becomes  difficult  to  solve  them  using  any  of  these methods.  Also,  it’s  hard  to  automate  these  operations  unless  we  have  an approach  that  generalizes  to  linear  equations  with  very  large  number  of variables  and  equations.  One  needs  a  succinct  representation  of  linear

equations to deal with very large number of equations and variables, and this

is provided by  matrices. 

Introducing matrix

 Matrix  is  a  rectangular  array  of  numbers  for  which  operations  such  as addition and multiplication are defined. The horizontal and vertical lines of

entries in a matrix are called rows and columns, respectively. The size of a

matrix  is  defined  by  the  number  of   rows  and   columns  that  it  contains.  A matrix with  m rows and  n columns is called  m × n matrix, or  m-by-n matrix, while  m and  n are called its dimensions. Each entry is indexed with row and column  numbers  as   axy,  where   x  represents  row  number  and  is  column number. 

A  matrix  with  the  same  number  of  rows  and  columns;  m  =  n  is  called  a square  matrix,  represented  as   Am.  A  matrix  whose  entries  are  only  real numbers is called  real matrix. Most of the matrix operations in this book will be concentrating on real matrices. 

Augmented matrix

While representing equations in matrix form, each equation takes one row of

the matrix. Coefficient of variables from the equation is represented left side

of the row, followed by the vertical line and then the RHS of equation, which

is a real number, is specified after the vertical line. Similarly, all equations are represented, where each row of the matrix represents one equation. This

matrix form of representing system of linear equations is called  augmented
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 matrix. Augmented matrix representation of example with equations  e 1: 1 b +

1 p + 1 m = 1500,  e 2: 3 b + 4 p + 2 m = 4400 &  e 3: 5 b + 3 p + 5 m = 6500 is: For  solving  the  system  of  equations  analytically,  the  operations  performed on equations previously are applied on rows of the augmented matrix as each

row  represents  one  equation.  There  are  three  types  of  elementary  row

operations  that  may  be  performed  on  the  rows  of  a  matrix.  These  row

operations  do  not  change  the  solution  of  the  underlying  system  of  linear equations.  These  elementary  operations  will  help  to  represent  augmented

matrix in a form that will facilitate finding a solution to the system of linear equations. Rows  r 1,  r 2 and  r 3  represent  first,  second  and  third  rows  of  the matrix, respectively. A few elementary operations performed on augmented

matrix that do not alter the solution are explained below:

Swap two rows:

Multiply a row by a non-zero real number:

Add to one row a scalar multiple of another

Let’s  reconsider  the  example  over  which  series  of  multiplication  and

addition  steps  were  performed  previously  that  resulted  in  unique  solution. 

From those series of steps, consider a system of linear equations that resulted
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after  the  application  of  two  sets  of  operations  to  be  represented  in  matrix format:

The resulting matrix is said to be in row echelon form. Matrix is said to be in

 row echelon form if:

All rows that consist of only zero values are at the bottom of the matrix

The leading coefficient (leftmost non-zero entry) of a non-zero row is

always to the right of the leading coefficient of the row above it:

The final set of equations obtained before the solution is stated below, along

with  matrix  representation.  This  form  of  matrix  is  called  reduced  row

echelon form:

Matrix is said to be in  reduced row echelon form (also called row canonical form) if:

Matrix is in row echelon form

Leading entry in all non-zero rows is 1

Each column containing leading 1 has zeros in all other entries
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Let’s apply row operations on the augmented matrix to obtain row echelon

form matrix. Application of row operations on the matrix to convert it to row

echelon form is called  forward substitution, where  rx row is used to modify row  ry such that  x <  y:

Further reduction of rows can be performed through row operation where  rx

row is used to modify row  ry such that  x >  y to obtain matrix in reduced row echelon form. This operation is called  back substitution:

The first column of the augmented matrix represented coefficient of variable

 b,  so  the  first  row  of  matrix  gives  the  value  of   bowling  alley( b)  as  ₹400. 

Similarly,  from  the  second  and  third  rows,  the  value  of   play  station( p)  is

₹500  and  that  of   movie  ticket( m)  is  ₹600.  This  process  of  using  row operations on a matrix to obtain row echelon form and then further reducing

it to reduced row echelon form is called  Gauss-Jordan Elimination method. 

Pseudocode forward substitution

Consider  matrix   Amxn,  whose   ith  row  and   jth  column  entry  is  accessed through   A[ i,  j].  The  following  code  provides  pseudocode  for  forward substitution. This stage would result in upper triangular matrix. 

1. for row_idx = 1 to m do

2.  pivot_row = select_pivot_from_ref(row_idx)

3.  swap_rows(pivot_row, row_idx)

4.  normalize_row(row_idx)

5.  for tr_row = row_indx + 1 to m do

6.   for tr_col = row_idx to n do

7.    A[tr_row,tr_col] = A[tr_tow,tr_col]-

A[row_idx,tr_col]*A[tr_row,row_idx]

8.   end for

9.  end for
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10. end for

Pseudocode back substitution

Apply  back  substitution  on  upper  triangular  matrix  to  obtain  a  diagonal matrix. The following code provides steps for back substitution:

1. for row_idx = m to 1 do

2.  normalize_row(row_idx)

3.  for tr_row = row_indx - 1 to 1 do

4.   for tr_col = row_idx to n do

5.    A[tr_row,tr_col] = A[tr_row,tr_col]-

A[row_idx,tr_col]*A[tr_row,row_idx]

6.   end for

7.  end for

8. end for

We  now  have  an  algorithm  to  solve  any  system  of  linear  equations  with  a large number of variables using a sequence of matrix operations. Similar to

operations like add, subtract, multiply, and inverse on real numbers, one can

define  operations  on  a  whole  matrix  as  matrix  can  be  viewed  as  abstract numerical object. 

Basic matrix operations

Few  basic  operations  other  than  row  operations  that  can  be  defined  are matrix  addition,  scalar  multiplication,  transposition,  and  matrix

multiplication. 

 Addition of two matrices can be performed if their dimensions are equal. The sum of  Amxn and  Bmxn, denoted  A +  B, is computed by adding corresponding elements of matrices  A and  B :
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 Product of scalar value  k and matrix  Amxn is obtained by multiplying every entry of with scalar value . 

 Transpose  of  matrix   Amxn  is  obtained  by  turning  rows  into  columns  (or columns into rows). Matrix  Amxn after transpose would produce matrix with mxn dimensions, denoted as  AT. 

Properties of transpose are:

( AB) T =  BT  AT

( A +  B) T =  AT +  BT
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 Multiplication of two matrices  Amxn &  Bmxn is defined if and only if  n =  p (that is, number of columns of left matrix is same as number of rows of right

matrix). Elements of product matrix is defined as:

Matrix multiplication can also be interpreted in the following way. The first

column of the resultant matrix is obtained by linear combination of columns

of  matrix   A  with  weights  for  each  column  is  first  column  of  matrix   B. 

Similarly, other columns of resultant matrix can be obtained with the second

and third columns for matrix  B. 

Properties of multiplication: Consider dimensions of matrices  A,  B &  C such that multiplication of matrices is defined. 

Associativity: ( AB) C =  A( BC)

Distributivity: Satisfies both left and right distributivity:

 (A + B) C = AC + BC &  C(A + B) = CA + CB

Non-commutative:   AB  ≠   BA.  Matrix  multiplication  operation  of  AB

and BA is defined only if columns count of A = rows count of B and

rows count of A = columns count of B

 Trace  of  a  square  matrix   Am  is  defined  as  sum  of  diagonal  elements  of  a matrix. 
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Properties  of  trace:   A,  B,  C  are  matrices  of  appropriate  dimensions  that multiplication or addition is defined. 

 trace(A) = trace(A T )

 trace(AB) = trace(BA)

 trace(A + B) = trace(A) + trace(B)

 trace(ABC) = trace(BCA) = trace(CAB)

Matrices enabled us to solve set of linear equations with  n unknowns. It’s not possible  to  visualize  the  solution  space  of  these  system  of  equations  in   n-

dimensions.  Analysis  of  problems  with  three  unknown  variables  was

comparatively simple as it restricted us to three-dimensional space. We need

to  generalize  the  concepts  of  three-dimensional  to  n-dimensional  space

where  n is positive integer. To represent a point in three-dimensional space, one requires three values that are represented on each of the dimension axis. 

Similarly,  to  represent  a  point   p  in   n-dimensional  space   n,  one  would require  ordered   n-tuple  ( x 1,  x 2,  …,  x n)  where   xi  ∈    and  each   xi  would correspond to a value along a dimension. A set of these all ordered  n-tuples form  Euclidean n-space. Every element of this set is represented by ordered n-tuple that are called  vectors. 

Euclidean space

Euclidean space was introduced by Greek mathematician Euclid to abstract

physical  space  around  us.  A  linear  equation  in   n-dimensional  Euclidean space  represents  a  hyperplane  -  a  generalization  of  plane  from  three-dimensions  to   n-dimensions.  Solutions  to  these  equations  are  points  or vectors in  n-dimensional space. This section will introduce notion of length, distance, rotation, translation, angle among these  n-dimensional vectors in  n-

dimensional Euclidean space. 

Vectors and basic properties
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Vector  word  is  derived  from  Latin  and  means  ‘ carrier’. Vectors  were  first introduced in geometry to represent both magnitude and direction. Rules are

defined  for  interaction  of  these  vectors,  which  are  mostly  interpreted  from understanding of the universe. 

Representing vector

Vectors  connects  two  points,  it  represents  both  magnitude  and  direction  in space,  denoted  by  small  letter  with  arrow  above  as    or  small  letter  with bold  as  υ.  Vector  representation  in  the  space  is  a  directed  line  from  initial point to end point. If the initial point is 0  (origin), then the vector is called positional  vector.  Any  point   P( x1,  x2,  …,  xn)  in  n  is  represented  by  a positional vector ending at  P. 

In  Figure 2.6 (Left), vectors and points are plotted in 2-dimensional space 2.  Vector  υ  connects  start  point  O(0,  0)  and  end  point  A(3,  4).  To  obtain vector  in  cartesian  coordinates,  perform  end  point’s  value  minus  the  start point’s value for each dimension. Vector  u would be written as  u = (3 – 0, 4

–  0)  =  (3,  4).  Similarly,  vector  υ  that  connects  start  point  A(2,  1)  and  end point B(5, 5) will result in  v = (5 – 2, 5 – 1) = (3, 4). Refer to the following figure:

 Figure 2.6: (Left) Representation of vectors that connect two points (Right) Angle induced by vector with axis
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 Note: Vectors in Figure 2.6  are the same. Two vectors are said be equal if

 their magnitude and direction are the same. 

Norm

 Norm of a vector represents length of the vector. Also called  magnitude of a vector  can  be  obtained  through  use  of  Pythagoras  theorem  in  Euclidean

space. From  Figure 2.5  (Right), length of υ, denoted as ǁ v ǁ is calculated as the consequence of the Pythagoras theorem. 

Similarly, norm of 

. Generalizing to 

 n, norm or length of a vector  v = ( a 1,  a 2, … an ) in   n is obtained by

. 

Any vector  w is called  Unit vector if its magnitude is 1, that is ǁ w ǁ = 1. 

In real line, we can define neighboring points of a real number  a as the open interval ( a – ∈,  a + ∈) that is, set of all real numbers within an distance from a or  x∈ R:| x –  a| < ∈, where ∈ > 0 is chosen arbitrarily small. This concept of neighbourhood  of  a  point  can  be  extended  to  higher  dimensions.  In  two dimensions,  this  open  interval  becomes  a  circle  of  radius  ∈  with  centre  at point  a = ( x c,  y c) and is defined as the set of all two dimensional points  x =

( x 1,  x 2) within the circle ( x 1 –  x c)2 + ( x 2 –  y c )2 = ∈2 as This  is  called   Euclidean Ball  in   R 2. In   R 3,  the  Euclidean  ball  represents  a sphere  or  radius  centered  at  a.   In  n-dimension,  we  call  this  n-dimensional Euclidean ball:

Direction

 Direction  of  a  vector  is  the  angle  it  makes  with  respect  to  the  axes  of  the space. In two-dimensional space, vector will make angle with both  x and  y axes. Generally, in  n-dimensional space, vector will make angle with every  n

axes of the space. Consider vector  v = (3, 4) from the  Figure 2.6  (Right) that connected  points  from  (2,  1)  to  (5,  5).  Draw  lines  parallel  to   x  and   y axes passing through start point and end point of the vector respectively to form

right-angled triangle with the vector as hypotenuse, as shown in  Figure 2.6. 

To find angle θ between  v &  x- axis, use trigonometry formula  tan(θ). In this right-angled triangle, length of the side parallel to  x- axis is  x- axis component of  the  vector,  and  similarly  for   y-axis.  From   Figure  2.6,  θ  =   arctan( ⁄ )  =

53.13°. Similarly, for vector  u, angle with  x-axis, θ = 53.13°. 

 Tip: General way to obtain angle between vectors is through dot product

 in Euclidean space. Dot product is explained in the next section. 

In  the   Figure  2.6,  as  both  vectors   v  and   u  have  the  same  magnitude  and direction, they are equal, that is,  u ≡  v. 

 Note: Two vectors are said to be equal if they have same magnitude and

 direction.  This  gives  rise  to  an  important  notion  that  vectors’  starting

 point doesn’t matter, what matters is their magnitude and direction. 

Scalar multiplication

 Scalar  multiplication  is  changing  the  magnitude  or  length  of  a  vector  by multiplying with real number  k (called scalar) without altering its direction. 

Vector when multiplied by non-zero scalar value  k changes its magnitude by factor of  k. Multiplying with positive scalar value keeps the direction same, and the direction of the vector is flipped by an angle of 180° with a negative

scalar value. Multiplying vector  v  =  ( a 1,  a 2, … an)  with  scalar  value   k will result in  w  = kv = k(a 1 , a 2 , …a n ) = (k * a 1 , k * a 2 , … k * an). In  Figure 2.7

 (left),  multiply  vector   u  =  (3,  3)  with  scalar  value  2  &  -1.  The  resulting vectors will be  w = 2 u = 2 * (3, 3) = (2 * 3, 2 * 3) = (6, 6) and  v = (–1)u = –1

* (3, 3) = (–1 * 3, –1 * 3) = (–3, –3). Refer to the following figure:
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 Figure 2.7: (Left) Scaling of vector (Right) Addition and Subtraction of vectors

Addition/subtraction of vectors

 Addition  (subtraction)  of  two  vectors  is  performed  by  adding  (subtracting) their respective components. Addition of two vectors  u  = (a 1 , a 2 , …a n ) &   v

 = (b 1 , b 2 , …b n ) will result in:

 u + v  = (a 1 , a 2 , …a n ) + (b 1 , b 2 , …b n ) = (a 1  + b 1 , a 2  + b 2 , …a n  + b n ) Similarly, for subtraction:

 u – v  = (a 1 , a 2 , …a n ) + (b 1 , b 2 , …b n ) = (a 1  – b 1 , a 2  – b 2 , …a n  – b n ) In  Figure  2.7   (Right),  vectors   u  =  (10,0)  and   v  =  (2,8).  Addition  of  these vectors is performed by adding the respective components, resulting in  u + v

=  (10  +2,  0  +  8)  =  (12,8).  Subtraction  of  vectors  is  also  performed  by subtracting the respective components of vectors, resulting in  u – v = (10 –

2, 0 – 8) = (8, –8). 

Distance between vectors

Distance  between  two  vectors  are  obtained  with  norm  over  subtract

operation. Distance between two vectors  u  = (a 1 , a 2 , …a n ) &   v  = (b 1 , b 2 , …

 b n ) is defined as:

In  Figure 2.7, distance between vectors is calculated as follows:
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Dot product and orthogonality

Dot  product  of  two  vectors   u   =  (a 1 ,  a 2 ,  …a n )  &  v   =  (b 1 ,  b 2 ,  …b n )  in   n dimensions denoted as u ⋅ v, is defined as

where  ǁ u ǁ  &  ǁ v ǁ  denotes  norm  of  the  vectors,  and  θ  is  angle  between  the vectors  u &  v in n-dimensional space. 

Let’s analyse dot product of vectors in 2D, as shown in  Figure 2.8. ǁ v ǁ cosθ

is  magnitude  of  vector   v  along  the  direction  of  vector   u.   Dot  product  of vectors  would  be  u  ⋅  v  =  (10,2)  ⋅  (6,6)  =  10  *  6  +  2  *  6  =  72.  One  can calculate using the angle between vectors and length of the vectors as u ⋅ v =

ǁ u ǁǁ v ǁ cosθ = 10.2 * 8.49 * cos(33.7°) = 72. Refer to the following figure:

 Figure 2.8: Projection of one vector over another in two-dimensional space Vectors  are  said  to   orthogonal  if  their  dot  product  is  0.  In  other  words, vectors are orthogonal if the angle between them is θ = 90°. When θ is 90°, 

 cos(θ)  =  0  this  validates  dot  product  to  0.  Any  vector  along   x-axis  is orthogonal  to  any  vector  along   y-axis  due  to  90°  angle  between  them. 

Vectors are said to be  Orthonormal if they are orthogonal to each other and
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their norm is 1. In other words, vectors  u &  v are said to be orthonormal if u

⋅ v = 0 & ǁ u ǁ = ǁ v ǁ = 1. 

Linear Combination of Vectors

 Span  of  a  vector   u  is  set  of  all  possible  vectors  that  can  be  obtained  by performing scalar multiplication on  u.  Span of more than one vector is set of all possible vectors that can be obtained by performing scalar multiplication

and addition on all those vectors. From  Figure 2.9, span of vector  u = (3,1) is all vectors along the line that passes through  u and origin:

 span( u) =  ku where  k∈

Span of two vectors  u = (3,1) &  v = (1,3) is calculated as: where 

Similarly, one can generalize span of  n vectors as:

 span(v 1 , v 2 ,  … , v n  ) = k 1  v 1  + k 2  v 2  + … + k n  v n where  ki ∈ . Refer to the following figure:

 Figure 2.9: Vector spanning in two-dimensional space

One can express a vector  u  using  multiplication  and  addition  operation  on the  vectors   v 1 ,  v 2 ,  …,  v n.  Operation  of  expressing  a  vector  from  scalar
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multiplication  and  addition  operation  of  the  vectors  is  called   linear combination. 

where 

If one can express the vector  u as linear combination of vector  v 1 , v 2 , …, vn s, then vector  u is said to be in span of vectors  v 1 , v 2 , …, vn. Set of vectors

{ v 1 , v 2 , …, vn} are said to be  independent if there doesn’t exist a vector in the set that can be expressed as linear combination of other vectors from the

set. In  other  words,  if  there  is  a  vector  in  the  set  that  can  be  expressed  as linear  combination  of  other  vectors  in  the  set,  then  the  set  of  vectors  are called  linearly dependent vectors. 

Consider a vector set  A = {(3,1), (1,3)} in  2 from  Figure 2.9. Is the vector set  A independent? Yes, there doesn’t exist any vector that can be expressed as linear combination of other vectors. Now, add vector (5,6) to the set,  B =

{(3,1), (1,3), (5,6)}. Is the vector set  B independent? No, vector (5,6) can be expressed as linear combination of other vectors (3,1), (1,3) from the set as

What is span of vector set  A? Vector set  A can span all vectors of  2. Adding any vector from  2 would make this set dependent. 

 Tip: How many numbers of independent vectors are required to span a

 Euclidean space of  n? Answer is n. 

A linear combination of vectors  k 1  v 1  + k 2  v 2  + … + k n  v n is called a  convex combination if ∑ k i = 1 and 0 ≤  k i ≤ 1. The set of all convex combination is called the  convex hull of the set of vectors  vi :  i = 1, …,  n. As a particular example, every convex combination of two points lies on the line segment

between the points. In n-dimension, a line segment between vectors  x and  y

is represented as  αx + (1 –  a)  y : α∈[0,1 ]. A set is  convex if it contains all convex combinations of its points. The convex hull of a given set of points is

identical to the set of all their convex combinations. 

Dimension and basis of the space
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 Dimension  of  a  space  is  count  of  the  independent  vectors  that  spans  all vectors  of  the  space.  In  previous  example,  vectors   u  =  (3,  1)  &  v  =  (1,  3) spanned all points in  2 and are linearly independent, so the dimension of  2

is . In generic way, dimension of Euclidean space of  n is  n. If dimensions of a space are finite, then it is called  finite-dimensional space. If dimensions of a space are infinite, then it is called  infinite-dimensional space. 

Set of independent vectors that span all vectors of the space are called  basis vectors of that space. For the previous example of  2,  basis = {(3,1), (1,3)}

as they spanned all points in  2 and are independent set. Another example of

basis vectors for  2 is {(1,0), (0,1)}. 

Orthogonal and orthonormal basis

Basis  vectors  are  said  to  be   orthogonal  basis  if  every  basis  vector  is orthogonal to other basis vectors. Vectors are said to be orthogonal if their

dot  product  is  0  or  angle  between  them  is  90°.  Consider  two  sets  of  basis vectors in  2 {(3,1),(1,3)} and {(-1,2),(2,1)}. Dot product of first set, (3,1) ⋅

(1,3)  =  3  *  1  +  1  *  3  =  9,  so  these  basis  vectors  are  not  orthogonal.  Dot product  of  second  set,  (–1,2)  ⋅  (2,1)  =  –1  *  2  +  2  *  1  =  0,  so  these  basis vectors are called orthogonal basis. 

Basis  vectors  of  a  space  are  said  to  be   orthonormal  basis  if  they  are orthogonal basis and are unit vectors (norm of all vectors is 1). Vectors (1,0)

&  (0,1)  form  orthogonal  basis  of  space 

2  and  their  norm  is 

.  This  set  of

vectors {(1,0), (0,1)} form orthonormal basis of  2. 

Natural orthonormal basis of  n

Orthonormal basis for Euclidean space of   n would be:

{(1, 0, 0, …, 0, 0), (0, 1, 0, …, 0, 0), …, (0, 0, 0, …, 1, 0) (0, 0, 0, …, 0, 1)}

where  first  basis  vector  will  have  1  in  first  position  and  zero  in  all  others; similarly,  for   kth  basis,  vector  will  have  1  in   kth  position  and  zero  in  all others. Total number of basis vectors for space of   n will be in  n, which is the dimension of   n. These basis vectors are orthogonal to each other, and their  norm  is  1.  These  orthonormal  basis  vectors  are  widely  used  in

Euclidean  space.  For  all  examples  in  this  section,  these  orthonormal  bases
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were  used  to  plot  vectors  of  the  space.  Value  used  for  the  vector

representation   u   =  (a 1 ,  a 2 ,  …,  a n-1 ,  a n )  were  scalar  multiplies  of  the respective orthonormal basis required for expressing  u as linear combination of orthonormal basis vectors:

Subspaces

A  non-empty  subset  of  Euclidean  space  S  ⊆  n  is  called   subspace  if  S  is closed  under  linear  combinations.  In  other  words,  non-empty  subset  of

Euclidean space is called  subspace if all vectors spanned by any subset of S

belongs  to  S.  Subspace  can  also  be  called  vector  space  (explained  later). 

Formally, a subset of Euclidean space forms  subspace if:

then 

where 

Example  of  trivial  subspace:  Consider  Euclidean  space  n.  Only  zero vector  o  =  (0,0,…,0)  of  this  space  can  be  subspace. This  subspace  of  only zero vector is called trivial subspace. 

Example  of  a  line  in  2:  Consider  any  line  (-∞  to  ∞)  that  passes  through origin.  All  vectors  on  the  line  are  closed  under  addition  and  scalar

multiplication. So, any line that passes through the origin is subspace. 

Dimension of subspace

Count  of  independent  vectors  that  spans  all  vectors  of  the  subspace  with their linear combination is the  dimension of that subspace. 

Example  of  a  line  in   n:  Any  line  that  passes  through  the  origin  is subspace. How many independent vectors are required to span all the vectors

of  the  line?  Only  one  vector  along  the  direction  of  the  line  is  sufficient  to span all the vectors of the line. So, dimension of line subspace is 1. 

 Note: Dimensions of Euclidean space  n is n. 

Hyperplanes and Halfspaces
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A  hyperplane in   n is set of all vectors  x  = (x 1 , x 2 ,  … , x n ) that satisfies the equation  a 1  x 1  + a 2  x 2  + … + a n  x n  = b where  b ∈   ,  ∃  ai such that  ai ≠ 0

Dimension of the hyperplane in   n is  n – 1. Hyperplane becomes subspace when   b  =  0,  that  is,  when  hyperplane  is  passing  through  origin.  Let’s represent the coefficients of hyperplane equation by the vector  a = ( a 1,  a 2, 

…,  a n).  We  can  write  the  linear  equation  representing  the  hyperplane  by using dot product as  aT ⋅  x  = b. 

This  geometric  interpretation  can  be  clearly  understood  by  expressing  the hyperplane  in  the  form   x:aT  ⋅   (x  –  x 0 ),  where   x0  is  any  point  in  the hyperplane,  and  hence,  aT   x 0   =  b.  For  any  arbitrary  vector   x  on  the hyperplane, ( x –  x 0) is a vector along the hyperplane. Hence,  aT  (x – x 0 ) = 0

implies  vector   a  must  be  perpendicular  to  ( x  –  x0).  Thus,  vector  a  is perpendicular to the hyperplane or is a  normal vector to the hyperplane. 

The hyperplane  H = {x: aT ⋅  x = b} can be interpreted as the set of points with a constant dot product  b to a given vector a,  or  as  a  hyperplane  with normal vector a; the constant  b ∈  determines the offset of the hyperplane from  the  origin.  The  hyperplane  divides  Euclidian  space   n  into  two  halfspaces. One satisfies the inequality  aT ⋅  x ≥  b and is denoted by  H+ =  x ∈  n :

 aT ⋅  x ≥  b, and the another one satisfies  aT ⋅  x <  b, denoted by  H– =  x∈ n :

 aT  x < b. These half-spaces and are called  positive half-space and  negative half-space, respectively. Half-spaces in two-dimensional space are captured

in  Figure 2.10:
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 Figure 2.10: Positive half-space and negative half-space in two-dimensional space In  Euclidean  space,  the  vectors  were   n-tuples  of  real  numbers.  One  can generalize  this  concept  of  vector  by  replacing  these   n-tuples  with  any abstract  object  that  exhibits  the  same  properties  as  n-tuples.  For  example, consider  set  of  all   m x n  real  or  complex  matrixes.  Properties  like  scalar multiplication and addition are well-defined even for these matrices. These

matrices can be considered as vectors and define a set of basis matrices that

spans the set of all  m x n matrices with orthonormal basis. We can also define inner product of two matrices. So, these set of matrices can form a space of

own.  Let’s  now  formally  introduce  vector  space  by  abstracting  out  the

properties enjoyed by Euclidean space. 

Defining vector space

A   space  is  a  mathematical  structure  in  which  mathematical  objects  are represented  using  points,  and  the  mathematical  structure  defines  relations between points of the space. It is these relationships that define the nature of the space. 
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Before  mathematically  defining  the  vector  space,  let  us  understand  the

cartesian product operator (×) and the map operator (→). Cartesian product

of two sets  A and  B, denoted as  A ×  B, is set of all ordered pairs  (a, b) where a ∈  A and  b ∈  B. Another way to define cartesian product on  A &  B is  A ×  B

= {( a,  b)| a ∈  A and  b ∈  B}. Map operator maps every element of a set to one element of another set  b, denoted as  A →  B. 

Vector spaces

A  vector space  over  real  or  complex  numbers  denoted  by    (=  ℝ for real numbers or = ℂ for complex numbers) is a set of vectors  V, along with two operations addition and scalar multiplication, that satisfy eight axioms. Let’s

formally define addition and scalar operation on vectors:

Addition or vector addition (closure over addition) defined as + : V × V

→ V, inputs any two vectors  v ∈ V and  w ∈ V (vectors are represented by  small  bold  letters,  like   u  or  arrow  over  small  letter  like   u→)  and outputs a third vector  v ∈ V written as u = v + w where  u is called the sum of v & w vectors. 

Scalar multiplication (closure over scalar multiplication) defined as ⋅:

×  V  →  V,  takes  any  scalar   a  ∈    and  any  vector   v  ∈   V  and  outputs vector  u =  av where  u ∈  V. 

Let’s discuss the eight axioms that must be followed by addition and scalar

multiplication operation. Consider vectors  u,  v,  w ∈  V and scalars  a,  b ∈  : Addition 

associativity: 

Addition commutativity: 

Addition identity vector: ∃ o∈ V (called zero vector) such that  v +  o =

 v ∀ v∈ V

Addition  inverse  vector:  ∀ v∈ V  ∃  –   v  ∈V  (called  additive  inverse) such that  v + (– v) = where  o is the identity element of addition Compatibility  of  scalar  and  field  multiplication:  a(bv)  =  (ab)v ∀ a, b∈  ∀ v∈ V

Scalar  multiplication  identity  element:  1 v  =   v  where  denotes multiplicative identity in 
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Scalar multiplication distributivity over vector addition:  a(u  +  v) =

 au  + av ∀ a∈  ∀ u,v∈ V

Scalar multiplication distributivity over scalar (field) addition:  (a +

 b)u = au + bu ∀ a, b∈  ∀ u∈ V

 Note:  Scalar  multiplication  should  not  be  confused  with  the  scalar

 product (also called inner product or dot product). 

Example of Euclidean space   n is vector space: Consider  u = ( a 1,  a 2, …,  an)

∈  n &  v = ( b 1,  b 2, …,  bn) ∈  n of Euclidean space, where addition is defined as  u +  v = ( a 1 +  b 1,  a 2 +  b 2, …,  an +  bn) and scalar multiplication for  s ∈   is defined  as   su   =  (sa 1 ,  sa 2 ,   … ,  san).  These  two  operations  follow  closure property  over  addition  and  scalar  multiplication.  They  also  follow  eight axioms with zero vector  o = (0, 0, …, 0) and additive inverse  –u = (–a 1 , –a 2 , 

 …, –an). So, Euclidean space of   n is vector space. 

Example  of  real  numbers:  Set  of  real  numbers,  a  ∈    with  standard multiplication and addition. Zero vector will be  o  =  0  and  additive  inverse will be – a. 

Example  of  matrices:  Set  of  all  matrices   Amxn  forms  vector  space  where addition and scalar multiplication of matrices are as defined in section ‘ Basic Matrix  Operations’.  Each   Amxn  is  considered  vector  in  this  vector  space. 

Verify that these two operations meet all eight axioms. 

Example of l1 sequence space: The l1 sequence space is defined to be the

set  of  all  sequences  whose  series  is  absolutely  convergent  that  is, 

. Addition of two sequences is element-wise addition of the

corresponding  elements  of  the  sequences  and  scalar  multiplication  is

element-wise multiplication by a scalar. l1 sequence space is a vector space

where each sequence is a vector. Addition of absolutely convergent series is

convergent, and scalar multiplication of convergent series is still convergent. 

Verifying if these operations hold all eight axioms is left to the reader. This

vector space is not finite dimensional space. The norm of a sequence can be

defined as the finite sum 

, which is always finite

due to absolute convergence. So, l1 sequence space is an infinite dimensional

normed  linear  space.  The  infinite  basis  set  for  this  is  the  set  of  all  infinite
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sequences  ith whose element is 1 and all other elements of this sequence is 0. 

This is like a generalization of the standard basis for   n. 

Example:  Set  of  all  polynomials  with  real  coefficients  forms  an  infinite dimensional  vector  space  where  each  polynomial  is  a  vector.  The  basis  of this vector space is the set of polynomials with one term:  x n  : n = 0, 1, 2, …. . 

Every  polynomial  can  be  represented  as  a  finite  linear  combination  of

polynomials from this basis set. 

Example: L2[a, b]: The set of all real-valued functions square integrable in the  interval  [a,  b],  that  is,  set  of  functions   f  :  [a,  b]  →   R,  such  that forms  a  vector  space.  This  set  of  functions  forms  a

vector space. We define addition of functions f and g as a square integrable

function   h  =  f  +  g,  where   h(x)  =  f(x)  +  g(x)  and  scalar  multiplication  of function is defined as  cf( x). 

Vector spaces define addition of vectors and scalar multiplication but doesn’t

define  the  length  of  a  vector,  distance  between  vectors,  or  angles  among vectors.  To  have  meaning  to  these  parameters  among  vectors,  additional

structure over vector space are to be defined like Normed vector space and

Inner product space. 

Normed vector space

Normed  vector  space  is  vector  space  over  which  norm  is  defined.  Norm

represents “length” of a vector that can be any abstract object like a matrix, a function, or a sequence. We already defined norm in Euclidean space called

Euclidean  norm.  Now,  let’s  generalize  that  concept  to  arbitrary  vector

spaces.  Norm  of  vector  is  denoted  as  ǁ v ǁ,  which  must  have  the  following properties:

Non-negative ∀ v∈ V, ǁ v ǁ ≥ 0

Positive  norm  value  for  non-zero  vector  ǁ v ǁ  =  0  ⇔   v  =   o  where   o  is additive identity vector (zero vector) in vector space

Triangle inequality holds: 

Properties of norm

Parallelogram law
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A norm can be turned into a distance metric, using:

This is called the  metric induced by the norm. In general, a distance metric is defined  as  a  function,  which  takes  two  vectors  and  outputs  the  distance between them. Distance  must  by  always  non-negative  between  two  points. 

Distance from a to b should be same as the distance from b to a; this is called

symmetry  property  of  distance.  Another  important  property  of  distance  is triangle inequality, which states that if we have three vectors  u,  v,  w, then in the triangle formed by these vectors, the sum of distances of any two sides

must  be  greater  than  third  side.  We  can  write  these  properties  in  terms  of norm as follows: ǁ u –  v ǁ ≥ 0

ǁ u –  v ǁ = 0 if and only if  u =  v

Symmetry, ǁ u –  v ǁ = ǁ(–1)( v –  u)ǁ = ǁ v –  u ǁ, Triangle inequality, ǁ u –  v ǁ ≤ ǁ u –  w ǁ + ǁ w –  v ǁ

Norm of real numbers

The  set  of  real  numbers  also  form  a  trivial  vector  space.  Norm  of  a  real number  can  be  defined  as  follows.  Does  this  definition  follow  all  four properties of norm? Verification task is left to the reader as an exercise. 

Euclidean  space  is  a  normed  linear  space  endowed  with  Euclidean  norm. 

There are other norms defined in Euclidean spaces called  lp norms. 

 lp Norm

 lp-norm of 

is defined as 

, where 

& 

. 

[image: Image 166]

[image: Image 167]

[image: Image 168]

[image: Image 169]

For p=1 this reduces to:

Any norm can be used to define the distance between two vectors as norms

introduce a distance metric given by  d( u,  v) = ǁ u –  v ǁ. 

The,  l 1 introduces the  Manhattan distance. 

Streets  of  Manhattan  city  are  in  grid  layout.  To  move  from  one  point  to another,  a  person  must  drive  along  these  roads  that  form  grid  layout. 

Distance calculated between points where movement is possible only in gird

format is called  Manhattan distance. 

Maximum norm

When  p → ∞ for  lp-norm, it provides  l-norm or  maximum norm of vector  u

and is defined as:

Verify that  lp norm follows all four properties of the norm definition. 

 Note: Minkowski Distance between vectors u = (a 1 , a 2 , …, an) & v = (b 1 , 

 b 2 , …, b n ) is defined for p  (integer) below. The formula is the same

 as p-norm for p ≥ 1. 

 dist(u,v) = (|a 1  – b 1 | p  +|a 2  – b 2 | p  + … +|a n  – b n  | p ) ⁄p

 For p ≥ 1, it follows all four properties of the distance metric. When p < 

 1, it fails in triangle inequality property

 dist((0,0), (1,1)) > dist((0,0), (0,1)) + dist((0,1), (1,1))

Let sequence space be denoted as  lp and this set is defined as
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The  norm  where  1  ≤   p  ≤  ∞,  can  be  defined  on  the   lp  sequence  space  by extending the finite sum of  p th power terms to an infinite sum of  p th power series. So, the  sequence space lp is a normed linear space, where the norm ǁ⋅ǁp is defined as:

Similarly, for function space  L p, the norm ǁ⋅ǁp of a function  f ∈  L p is defined as:

Matrix norm

Norms  are  also  defined  for  matrices  as  matrices  can  also  be  treated  as vectors in vector space. There exist various matrix norms. Among these, we

will discuss important matrix norms. 

Like  L p norm for vectors, Lp,q norm for matrices can be defined. Lp,q  norm for matrix  Amxn is defined as follows:

Frobenius  norm:  Keeping  values   p  =   q  =  2  for  matrix  norm  ǁ A ǁp,q,  one obtains  L 2,2  norm, which is also called  Frobenius norm or  Hilbert-Schmidt norm. 
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Example: An image can be represented as a matrix of pixel values. We can

compare how close two images are using Forbenius norm. 

 Norm ball: Just like the Euclidean norm defines a neighborhood of a point using Euclidean ball, any norm in an abstract vector space can define a norm

ball:

So, in the function space  L p, we define the neighborhood of a function f as: that is, set of all functions h that closely approximate the function  f. 

Norm defines the length of a vector, the distance between vectors and few

properties of distances between vectors, but it does not define angle between

abstract vectors. Let’s discuss Inner product spaces that provide meaning to

angle between vectors in vector space. 

Inner product

An  inner  product  is  a  generalization  of  the  concept  of  dot  product  in Euclidean  space,  which  is  denoted  by 

and  satisfies  four

properties for 

& 

. 

Distribution 

Linearity 

Symmetry or Commutativity 

Positive  definiteness:  If   o  is  identity  element  of  addition  in  vector space  V, then 〈 v,  v〉 = 0 iff  v =  o else 〈 v,  v〉 > 0

An inner product naturally induces an associated norm (length) of a vector  u

∈  V and is defined as 

. A normed linear space is called an

 inner  product  space  if  the  norm  is  introduced  by  an  inner  product.  With definition  of  norm  one  can  define  distance  between  vectors   u,  v  ∈   V  as
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 distance ( u,  v) = ǁ u –  v ǁ. Along with this, there are a few other properties that result from the definition of norm in inner product space:

Cauchy–Schwarz inequality

Orthogonality:  Two  vectors   u,  v  ∈   V  are  orthogonal  if  〈 u,  v〉  =  0. 

Geometrically, orthogonal means perpendicular. 

Pythagorean theorem

Example of Euclidean space   n: Consider  u = ( a 1,  a 2, …,  a n)∈  n &  v  =

( b 1,  b 2, …,  b n)∈  n of Euclidean space where dot product is defined as u ⋅ v

=  a 1 *  b 1 +  a 2 *  b 2 + … +  an *  bn. One can verify that dot product follows all four  properties  of  inner  product  map.  So,  Euclidean  space  of   n  is  inner product vector space with dot product as inner product; 〈 u,  w〉 =  u ⋅  v. 

Example  of  real  numbers:  Set  of  real  numbers   a,  b  ∈    with  standard multiplication as inner product 〈 a,  b〉 =  a *  b. 

Application on real dataset

Roland  Fisher  in  his  1938  paper  published  a  data  set  consisting  of  50

samples from each of the three species of Iris flower (setosa, virginica, and

versicolor).  Each  sample  of  the  flower  was  measured  for  four  features  in centimeters:  length  and  width  of  sepals  and  petals.  Let’s  represent  flowers data  in  vectors  using  TensorFlow  framework;  setosa,  virginica,  and

versicolor represent labels 0, 1, and 2. As each flower is represented by four

features,  vectors  representing  the  flower  will  belong  to  4.  The  following code provides steps to load iris data. Few samples from the data set are then

copied to the TensorFlow array for further analysis. 

1. import tensorflow as tf

2. import tensorflow_datasets as tfds

3. import numpy as np

4. iris_ds = tfds.load(‘iris’, split=’train’)  # load Iris

 dataset

5. SAMPLE_SIZE = 6   # consider few samples from the dataset
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6. iris_ex = iris_ds.take(SAMPLE_SIZE)   # consider first few

 samples from the dataset

 7. # Tensor array to store dataset samples

8. tf_arr = tf.TensorArray(tf.float32, size=0, 

dynamic_size=True, clear_after_read=False)

9. index = 0

10. for sample in iris_ex:

11.     feat = sample[“features”]

12.     label = sample[“label”]

13.     tf_arr = tf_arr.write(index, feat)   # Add sample to

 array

14.     index = index + 1

15.     vec_norm = tf.norm(feat)   # Calculate norm of the

 vector

16.     tf.print(“label=”, label, ‘ vector v’, index, ‘=’, 

feat, “ Euclidean Norm=”, vec_norm, sep=””)

Code outputs vector’s values, label and Euclidean norm, which is captured

in  Figure 2.11:

 Figure 2.11: Few vectors from Iris Dataset

 Note:  How  is  the  angle  between  two  vectors  defined  in  higher

 dimensions?  Two  independent  vectors  span  a  plane  in  higher

 dimensions. Plane forms a subspace, and its dimension would be 2. The

 angle between the vectors in the subspace plane is defined. 

Let’s calculate the distance and angle between these sample vectors stored in

TensorFlow  array.  The  following  code  provides  steps  to  calculate  the

Euclidean distance:

1. for ref_index in range(0, SAMPLE_SIZE):

2.     vec_ref = tf_arr.read(ref_index)

[image: Image 192]

[image: Image 193]

3.     for arr_index in range(0, SAMPLE_SIZE):

4.         vec = tf_arr.read(arr_index)

5.         vec_sub = tf.math.subtract(vec_ref, vec)

6.         distance = tf.math.reduce_euclidean_norm(vec_sub)

Output of the code is captured in  Figure 2.12  (Left). From captured distance matrix data, we can conclude that  v 1 is close to  v 5,  v 2 to  v 4 and  v 3 to  v 6. We can  notice  that  vectors  belonging  to  same  class  are  closer.  Refer  to  the following figure:

 Figure 2.12: (Left) Distance between vectors (Right) Angle between vectors The following code provides steps to calculate angle between vectors. The

output  of  the  code  is  captured  in   Figure  2.12   (Right).  From  the  captured angle matrix data, we can conclude that  v 1 is close to  v 5,  v 4 to  v 3 &  v 3 and  v 4

to  v 6. 

1. for ref_index in range(0, SAMPLE_SIZE):


2.     vec_ref = tf_arr.read(ref_index)

3.     vec_ref_eu_nr = tf.math.reduce_euclidean_norm(vec_ref)

4.     for arr_index in range(0, SAMPLE_SIZE):

5.         vec = tf_arr.read(arr_index)

6.         vec_eu_nr = tf.math.reduce_euclidean_norm(vec)

7.         dot_prod = tf.math.reduce_sum(vec_ref * vec)

8.         angle_d = tf.math.acos(dot_prod/(vec_eu_nr *

vec_ref_eu_nr))

Visualizing  these  vectors  in  4  is  not  possible  as  we  can  comprehend  till three  dimensions  only.  Let’s  represent  100  vectors  of  the  data  set  as  two-dimensional vectors using  t-SNE algorithm. The  t-SNE algorithm is a nonlinear  dimensionality  reduction  technique  well-suited  for  embedding  high-

dimensional  data  in  low-dimensional  space  of  two  or  three  dimensions  for

visualization.  More  discussion  on   t-SNE  will  be  available  in  chapter  8
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Dimensionality Reduction.  The  output  of  the  mapping  is  shown  in   Figure

 2.13. As you can see in  Figure 2.13, setosa class can be differentiated easily

while other two classes are closer:

 Figure 2.13: Visualizing vectors from high dimension in two dimensions Iris dataset also has the class labels or flower names associated with each of

the 150 observations. If we are given the measurement vector or observation

of  a  new  flower  belonging  to  any  of  these  three  flower  categories,  can  we tell  what  is  the  correct  type  of  the  new  flower?  Using  distance  metric induced by norm alone, we can build a simple classifier for the Iris dataset. 

One such algorithms that works on the principle of distance between vectors

is  K-Nearest  Neighbour.  It  uses  the  entire  dataset  to  derive  a  conclusion about the possible category of the new observation. 

K-nearest neighbor
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K-nearest neighbour (KNN) algorithm works on the principle of distance

between vectors. Mostly, Euclidean distance is used to calculate the distance. 

In  this  algorithm,  the  distance  of  the  new  observation  vector  is  computed with every vector in the dataset. The class of the new observation vector is

decided based on its nearest neighbours in the given dataset whose classes

are already known. The neighbours are defined as the best K nearest vectors

in the given dataset with respect to the chosen distance metric. The number

of  nearest  neighbours  K  is  a  parameter  of  the  algorithm  and  is  determined empirically.  Figure 2.14 shows the classification of the new sample based on values of K. For K=3, new sample would get classified as  Class B, but for K=7,  new  sample  would  get  classified  as   Class  A.  Refer  to  the  following figure:

 Figure 2.14: Classifying the sample based on K-nearest neighbors

The  following  code  explains  main  logic  of  KNN  algorithm.  Out  of  150

samples of Iris dataset, first 120 samples are considered for training and the

rest are for testing. We can consider the remaining 30 samples in the test set

as  new  unseen  observations.  Each  sample  from  test  set  is  assigned  label based  on  maximum  repetition  of  labels  among   K-nearest  neighbours  from the training set. The following code runs for a range of  K values in steps of 3. For, two samples are mispredicted, and for, one sample is mispredicted:

 1. # Load Iris dataset of 150 samples into train and test test

2. iris_train = tfds.load(‘iris’, split=’train[:120]’)

3. iris_test = tfds.load(‘iris’, split=’train[120:]’)

 4. # Extract features and labels of iris samples

5. iris_train_feat, iris_train_label =

get_features_labels(iris_train)

6. iris_test_feat, iris_test_label =

get_features_labels(iris_test)

 7. # Assign labels to test samples based on k-nearest

 neighbours

8. for k_val in range(3, 34, 3):

9.     test_knn_labels = np.zeros((0), dtype=np.int)

10.     outer_index = 0

11.  # Calculate Euclidean distance between a test vector & 

 all training vectors

12.  # Select k-nearest neighbors based on the distance

13.     for test_feat_samp in iris_test_feat:

14.         eu_dis = np.zeros((0), dtype=np.float)

15.         inner_index = 0

16.         for train_feat_samp in iris_train_feat:

17.             euclidean_distance =

np.linalg.norm(train_feat_samp - test_feat_samp)

18.             eu_dis = np.insert(eu_dis, inner_index, 

euclidean_distance, axis=0)

19.             inner_index = inner_index + 1   # Move to next

 train vector

20.         sorted_index = np.argsort(eu_dis)   # Sort based on

 euclidean distance

21.  # labels of k-shortest distance

22.         nearest_k_labels =

iris_train_label[sorted_index[0:k_val]]

23.         (labels, count) = np.unique(nearest_k_labels, 

return_counts=True)

24.  # Assign maximum repeated label

25.         test_samp_knn_pred_label = labels[np.argmax(count)]

26.         test_knn_labels = np.insert(

27.             test_knn_labels, outer_index, 

test_samp_knn_pred_label, axis=0)
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28.         outer_index = outer_index + 1   # Move to next test

 vector

29.     correct_prediction = np.sum(test_knn_labels ==

iris_test_label)

30.     wrong_prediction = iris_test_label.shape[0] -

correct_prediction

31. 

32.     print(“k-val:”, k_val, “\nPD:”, test_knn_labels, 

“\nGT:”, iris_test_label)

33.     print(“correct prediction”, correct_prediction, “,wrong

prediction”, wrong_prediction)

This  section  discussed  vectors,  their  interaction  in  vector  space,  and  its properties,  along  with  the  formal  definition  of  Euclidean  space.  Next, let’s look at representing these vectors in matrix format. 

Representing vectors in matrix

Vectors  can  be  represented  in  other  format  that  is  beneficial  in  matrix operations.  They  can  be  represented  either  with  column  matrices  or  row matrices. In matrix  Amxn, each column of the matrix can be treated as vector in   m space, and each row can be treated as vector in   n space. 

Let’s  represent  vectors 

as

columns in a matrix. Let’s represent each vector in matrix format separately, 

and then combine these vectors as columns of a rectangular matrix:

Representing the vectors as columns:

Space  spanned  by  all  columns  of  a  matrix  is  called   column  space  of   A, denoted as  C( A). Similarly, space spanned by all rows of a matrix is called row  space  of   A,  denoted  as   C( AT).  These  two  spaces   C( A)  &  C( AT) associated with a matrix  A are subspaces of  2 &  3. 

What would be dimensions of these two subspaces? 
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Dimension of column subspace  C( A) of  A would be equal to the number of linearly  independent  column  vectors  of   A.  Similarly,  dimension  of  row subspace  C( AT) of  A would be equal to the number of linearly independent row vectors of  A. In the preceding example, column set and row set of  A has two independent vectors each. 

With dimensions of these two subspaces of matrix, one can define the rank

of a matrix. This property of the matrix is widely used. 

 Note:  Usually,  vectors  are  represented  as  columns,  but  when  they  are

 represented as vectors, the transpose operator ‘T’ is used. Representing

 the vectors v 1  = (1,2), v 2  = (3,1) & v 3  (2,5) ∈  2  as rows provides

Matrix rank

 Rank of a matrix is defined as the minimum of the dimensions of its column subspace and row subspace. 

Rank of 

is 2 as dimension of column, and row subspace is 2. Rank of

is  2  as  dimension  of  column,  and  row  subspace  is  2.  Here  is

another example of a matrix 

whose rank is 1. 

Matrices types

Matrix is said to be  real matrix if all entries of the matirx are real numbers. 

Matrix is called  square matrix if the number of rows and columns are equal. 
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 Diagonal of square matrix runs from the top-left corner to the bottom-right corner  of  the  matrix.  All  entries  of   Diagonal  Matrix  ( D)  outside  main diagonal  are  zero.  All  entries  of   upper   triangular  matrix  ( U)  below  the diagonal  are  zero.  All  entries  of   lower  triangular  matrix  ( L)  above  the diagonal are zero. Here are a few examples:

Identity matrix

 Identity matrix represented as  In is  nxn matrix whose diagonal elements are equal to 1, and all other entries are zeros. Any square matrix  Sn multiplied by identity matrix  In of the same dimensions results in the same matrix  Sn; due to  this,  In  is  called  identity  matrix.  In  is  an  identity  element  for  matrix multiplication. 

Symmetric matrix

 Symmetric matrix is a square matrix that is equal to its transpose  A =  AT. In other words, matrix  Am is symmetric if  a xy =  a yx, where 1 ≤  x,  y ≤  m. All identity  matrices  are  symmetric.  The  distance  between  vectors  shown  in

 Figure 2.9 is symmetric matrix. 

Properties of symmetric matrices  A,  B:

 A + B &  A – B results in symmetric matrix

 An is symmetric matrix for  n ∈
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 A–1 is symmetric

Skew symmetric matrix

 Skew-symmetric matrix is a square matrix that is equal to the negative of its transpose  A = – AT. In other words, square matrix  Am is skew-symmetric if a xy  = –a yx, where  1 ≤ x, y ≤ m. By definition, all diagonal elements of skew-symmetric matrices are zero. All  identity  matrices  are  not  skew-symmetric

as diagonal elements are non-zero. Here are a few examples:

Properties of skew-symmetric matrices  A m , B m:

 kA m is symmetric where  k ∈

 A +  B is skew-symmetric

 A +  I is always invertible

Invertible matrices

 Invertible  /   Non-Singular  /   Non-Degenerate  Matrix   An  is  a  square  matrix, and there exists a matrix  Bn such that:

 AB = BA = In

where   In  is  identity  matrix  and  multiplication  used  is  ordinary  matrix multiplication.  In  this  case,  matrix   B  is  uniquely  determined  by   A, represented as  A-1. Square matrix that is not invertible is called  singular or degenerate matrix. 

Question: Under what conditions does the inverse of a matrix exists? 

 Invertible matrix theorem states that real square matrix  An is invertible  if and only if any one of the following conditions hold:

 An is row-equivalent to identity matrix  In

 An is column-equivalent to identity matrix  In
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 An has n pivot positions (a pivot position in a matrix is a location that corresponds to a leading 1 in the reduced echelon form of the matrix)

 rank(An) = n, that is, rank of  An is full rank

Equation  Ax = 0 has only the trivial solution  x = 0, zero vector Equation  Ax =  b has exactly one solution for ∀ b ∈  n Columns of  A are linearly independent

Column subspace  C( A) =   n

Columns of  A form basis of   n

∃ B n such that  AB = BA = In

Transpose of matrix  AT is invertible

Properties of Matrix Inverse

The following inverse properties hold for non-singular matrices  A,  B &  Ai:

, where 

are inverse of each other

 A-1 is unique

Only solution for 

is 

Examples of matrices and their inverse

Verify  the  independence  of  rows  and  columns  of  invertible  matrices.  Note that inverse of first and third matrices below are their own. These kinds of

matrices are called  involutory matrix, that is,  A 2 =  I. 

Example: The following matrices don’t have inverses as row/columns of the matrix are dependent:
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has dependent column set, 

has dependent column set, 

Permutation matrix

 Permutation matrix  is  a  square  matrix  that  only  one  entry  of  1  in  each  of rows and columns, and other entries are 0. Every permutation matrix can be

obtained  by  shuffling/permuting  the  rows  of  identity  matrix  of  the  same dimension. Obtain permutation matrix to shuffle rows of 4 x 4 matrix, where rx represents row  x of matrix  A to  r2, r1, r4, r3. Row permutation matrix can be obtained by moving the row vector of identity matrix. If  r2 of  A should be moved to the first row, and then move  r2 of identity matrix to the first row. 

Similarly,  one  can  permute  columns  of  a  matrix,  but  column  permuted

identity matrix should be multiplied to the right of matrix  A. 

Orthogonal matrix

 Orthogonal matrix or  orthonormal matrix is a real square matrix whose set of  columns  and  rows  form  orthonormal  sets.  For  any  orthonormal  matrix

 Q m, columns vector set  C and rows vector set  R are orthonormal sets. 

[image: Image 233]

[image: Image 234]

[image: Image 235]

[image: Image 236]

[image: Image 237]

[image: Image 238]

[image: Image 239]

Let’s represent matrix  Q m in terms of row vectors. Transpose of this matrix Q  T

m  can be stated in a simple way. Multiplying orthonormal matrix with its

transpose as  Q

T

m  Q m  can be stated using dot product. 

is

now number

where 

is multiplication of row vector with column vector resulting in

scalar value. Row and column vector set are orthogonal unit vectors. 
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Obtaining  identity  matrix  indicates 

inverse  of  orthonormal

matrix is its transpose. Here are a few properties of orthogonal matrices  Q m: Inverse of the matrix is its transpose 

Product of two orthogonal matrices will be orthogonal

Identity matrices  In are orthogonal

Transpose of orthogonal matrix is orthogonal

These  properties  of  orthogonal  matrices  are  helpful  in  decomposing  the

matrix and mapping vectors from one space to another, which will be further

discussed in matrix decomposition and linear transformation. 

Matrices in ML problem formulation

While formulating ML problem, properties of vectors are usually captured in

matrix format. This section will discuss those matrices. 

Feature/data matrix

Matrix  representing  samples  of  a  dataset  is  called   Feature  or  data  matrix. 

The samples of a dataset are represented as row vectors and columns of the

matrix  will  represent  features  of  each  sample.  This  compact  representation of dataset in matrix format helps in the implementation of ML algorithms. 

Consider  Iris  dataset  from  previous  section  of  this  chapter.  Iris  dataset contains samples of three types of Iris flowers: setosa, virginica, versicolor. 

Each  flower  is  captured  with  four  parameters  called  features:  petal  length, petal  width,  sepal  length,  and  sepal  width.  The  features  of  the  first  five samples for the Iris dataset are represented below as vectors:

Representing  these  vectors  of  sample  data  as  rows  of  a  matrix  is  called feature  matrix  or   data  matrix.  Classes  of  these  samples,  setosa,  virginica, and versicolor are numbered with values 0, 1, and 2, respectively. Classes of

the samples it belongs to are represented in  target vector  y,  where each entry
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of the vector is the class of the corresponding sample in feature matrix. Due

to  this,  the  number  of  rows  of  feature  matrix  and  target  vector  is  equal  to number of samples. Feature matrix and target vector of these sample vectors

are captured as follows:

One hot encoding

In the previous example, classes of Iris dataset were assigned numbers 0,1, 

and 2. For a new sample, ML algorithm must predict one of these numbers

associated  with  the  class.  As  algorithms  only  understand  numbers,  they

might  misinterpret  when  there  is  a  higher  number  allocated  to  versicolor class  as  compared  to  other  classes.  To  avoid  the  misinterpretation  by

algorithms, a class of samples can be represented with unit vector that has

zero entries for other classes, except for the true class whose entry will be 1. 

This  unit  vector   u  ∈ m,  where   m  is  total  number  of  classes.  These  unit vectors  that  indicate  the  classes  of  each  sample  are  represented  as  rows  of the target matrix. This form of representation of output vector is called  one hot  encoding.  One  hot  encoded  vector  would  have  only  one  element  as  1

(that is, hot), and the remaining entries are zeros. Let’s rewrite vector from

the previous example as 5x3 one-hot encoded matrix  E. 

One hot encoded matrix would turn out to be sparse. To reduce sparseness, 

we  can  reduce  its  dimensionality  to  obtain  full  matrix  called   embedding

 matrix  that  would  be  further  discussed  in  chapter  11  Natural  Language

Processing. 
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Distance matrix

Distance  matrix  captures  the  distance  between  vectors  where  each  column and row represent a vector whose element is distance from vector  aij to . The distance  between  vectors  is  symmetric  function,  which  implies  that  the

distance from  vi to  vj is the same as the distance from  vj to  vi. This  makes distance matrix symmetric. 

Consider  the  previous  example  of  Iris  dataset.  Euclidean  distance  between the five vectors is captured as follows:

Gram matrix

 Gram matrix represents inner product between vectors, where element of the matrix indicates inner product of vectors  vi &  vj that is,  aij  = 〈 vi, vj〉. Gram matrix is symmetric as inner product function is symmetric. 

Consider  the  previous  sample  of  Iris  dataset.  Dot  product  (which  is  inner product) between vectors (rounded to integer) is captured as follows:

Covariance matrix

 Covariance  matrix  captures  covariance  (joint  variability)  between  random vectors. Each  entry  of  the  matrix  denotes  covariance  between  two  random vectors.  As  covariance  is  symmetric  function,  covariance  matrix  will  be symmetric.  Covariance  matrix  is  also  known  as   auto-covariance  or dispersion or  variance or  variance-covariance matrix. A detailed discussion
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on covariance will be covered in  chapter 4 Basic Statistics and Probability

 Theory. 

Correlation matrix

 Correlation Matrix captures statistical relationship between random vectors, called  correlation  coefficient.  As  correlation  coefficient  is  symmetric

function,  correlation  matrix  is  symmetric.  A  detailed  discussion  on

correlation  will  be  covered  in   chapter  4  Basic  Statistics  and  Probability

 Theory.. 

Jacobian and Hessian matrix

Jacobian  and  Hessian  matrix  captures  first  order  and  second  order  partial derivates  of  functions  of  several  variables,  respectively.  Detailed  discussed of these matrices will be done in  Chapter 3 Vector Calculus. 

Two subspaces of a matrix were discussed previously, and these subspaces

dimensions  were  used  to  define  the  rank  of  the  matrix.  Let’s  discuss  more subspaces of a matrix and their relationship. 

Subspaces of matrix and orthogonality

 Column space of a matrix  Amxn is the span of its column vectors, denoted as C( Amxn).  Row space of the matrix is the span of its row vectors, denoted as C( ATmxn). Let’s interpret  Ax, where vector  x ∈  n linear combination of the columns of the matrix with corresponding weights from  x. 

To express any vector  b ∈  m in terms of  Ax, that is,  Ax = b, vector  b should be in column space of matrix  A, that is,  b ∈ C( A). Solution  doesn’t  exist  if

 b∉ C( A). 

How does solution for  Ax = b behave when  rank(A) = m? 
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If  rank(A) = m, then column space will span all vectors of   m, that is, C(A) =   m, and if  m < n, then there will exist more than one solution for ∀ b∈  m. 

If  rank(A) = m, then column space will span all vectors of   m, that is, C(A) =   m and if  m = n, then there will exist unique solution for ∀ b∈

 m. 

How does solution for  Ax = b behave when  rank(A) < m? 

If  rank(A) < m, then column vectors do not span all vectors of   m, that is,  C(A) ⊂   m  and  if   rank(A)  <  n  and   b ∈ C( A),  then  there  will  exist more than one solution. 

If  rank(A) < m, then column vectors do not span all vectors of   m, that is,  C(A) ⊂   m and if  rank(A) = n and  b ∈ C( A) then there will exist a unique solution. 

Null space

How does the solution behave when  b is zero vector? 

All possible values of  x ∈  n those result in  Ax = o, where  o is zero vector in m,  form  the   null space of the matrix  A,  denoted  as   N( A). Null  space  is  a vector  space  with  usual  definition  of  addition  and  scalar  multiplication (verification  is  left  to  the  reader  as  exercise).  Let’s  express   Ax  as  dot product,  with   ri  representing  row   i  of  matrix   A.  Dot  product  of   x  with  all rows   rk  should  result  in  0  value.  Indicating   x  should  be  orthogonal  to  all rows of  A. 

This  implies  that  null  space   N(A)  (subspace  of   n)  is  orthogonal  to  row space of  A (subspace of   n). If one wants to find solution to   n, then search should be restricted to subspace of  Ax = o, which is orthogonal to row space of  A denoted as 

. 
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Similarly, one can analyze  left null space of matrix  A as  xT  A = oT, where  o

is zero vector in   n &  x ∈  m. This is equivalent to expressing  A T  x = o.  Left null  space  of  is  all  possible  solutions  to   x  ∈  m  that  result  in   A T   x  =  o, represented as  N(A T ). N(A T )  is  subspace  of   m  will  be  orthogonal  to   C( A) column space  A. 

Orthogonality among subspaces

For  any  given  real  matrix   Amxn,  there  exist  four  fundamental  subspaces whose properties are captured as follows:

Column space  C(A) ⊆   m

Row space  C(A T ) ⊆   n

Null space  N(A) ⊆   n

Left null space  N(A T ) ⊆   m

Column space of  A is orthogonal to left null space  N(A T ) ⊥  C(A) Row space  A is orthogonal to null space  N(A T ) ⊥  N(A) Example:  Obtain  vectors  belonging  to  each  of  the  four  subspaces  of  the matrix  A 2x3 and verify these subspaces properties. Column set of this matrix is dependent, and  rank(A) = 2 = m, implies solution exists for ∀ b ∈ 2. As  m

 < n, more than one solution exists for  x = [c 1  c 2  c 3 ] T, and the number of free running variables would be  n – m = 3 – 2 = 1. So, consider one the three variables as free and assign a scalar value  k∈ ,  c 3 =  k: Case 1: Solution would be:

[image: Image 280]

[image: Image 281]

[image: Image 282]

[image: Image 283]

[image: Image 284]

[image: Image 285]

[image: Image 286]

[image: Image 287]

[image: Image 288]

Case 2: Solution for  Ax = o would be:

Now,  consider  the  transpose  of  the  previous  matrix   AT  whose  dimensions would be 3x2. Column set of the matrix is independent set, so  rank(A T ) = n

 = 2 < m implies that solution for  AT  x = b doesn’t exist for ∀ b∈ 3. 

Case 3: As  rank(A T ) = n, solution is unique if it exists. 

Solution for 

Let’s consider the solution for another value of  b. 

Solution for 

doesn't exit as 

Case 4:  Let’s  consider  the  solution  for   AT   x  =  o.  As   rank(A T )  =  n;  there exists a unique solution, and the solution is zero vector. 

Let’s summarize all four cases. Solutions obtained in these cases belong to

different subspaces of matrix as explained below. 

Case 1: 

Case 2: For  k = 1 solution becomes 

Case 3: 

Case 4: Solution is 
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Verify the orthogonality concepts  N(A T ) ⊥  C(A) &  C(A T )  ⊥   N(A)  from  the obtained vectors belonging to each of the subspace of matrix . 

Determinant

 Determinant of a square matrix  A is a scalar value obtained from the entries of the square matrix denoted as  det(A) or |A|.  Determinant of  nxn matrix  A through Laplace expansion can be calculated using any fixed row number  i

and is defined as:

Where  j is column number,  a i,j is element in  ith row and  jth column of  A, and M i,j called  minor, is determinant of submatrix obtained by removing  ith row and  jth column of  A. Term  C ij  = (–1) i+j  M ij is called  Cofactor of  a i,j in matrix A. This operation is applied in recursion till the dimension of  M reduces to 1x1. 

Inverse of Matrix

 Cofactor matrix C of a matrix  An consists of cofactors  Cij of elements  aij. 

 Inverse of non-singular matrix  An is defined using determinant and cofactor matrix as:

Example:  Determinant  of  2x2  matrix  can  be  calculated  using  preceding formula. Let’s fix row  i = 1 then:
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Verify that the determinants of the preceding matrix obtained by fixing row

number  i = 2 and  i = 1 are the same? 

Example:  Determinant  of  3x3  be  can  constructed  using  formula  obtained from 2x2 matrix. Fix row  i = 1:

Example: Find inverse of a matrix  A:

Recursively,  one  can  obtain  the  determinant  for  any   nxn  matrix. 

Determinants  of  any   nxn  square  matrices  and  real  scalar  value   k ∈   have these properties:

Determinant of identity matrix is 1,  det(In) = 1

Determinant  remains  the  same,  but  its  sign  (+/-)  changes  when  two

rows (two columns) are swapped

Determinant doesn’t change if scalar multiple of one row (column) is

added to another row (column)

Determinant is multiplied by  k if row or column is multiplied by  k

 det(kA) = k n  det(A)

 det(A) = 0 iff A is non-invertible or has dependent rows (columns) or

its  rank(A) < n. In other words,  det(A) ≠ 0 iff A is invertible If  matrix  is  triangular,  then  its  determinant  is  equal  to  product  of

diagonal elements

 det(AB) = det(A) * det(B)
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 det(A T ) = det(A)

Orthonormalization

 Orthogonalization is the process of finding a set of orthogonal vectors that span a subspace. Consider independent vector set  {v 1 , v 2 , …, vk} that spans subspace  of  inner  product  space  in   n,  where   k  ≤  n.  Orthogonalization  is process of obtaining orthogonal vector set  {w 1 , w 2 , …, wk} that spans same subspace as  {v 1 , v 2 , …, vk}. Further reduction on the derived orthogonal set can  be  performed  to  obtain  orthonormal  vector  set   {u 1 , u 2 ,  …,  uk},  where length/norm of all vectors is 1 and spans the same subspace as  {v 1 , v 2 , …, 

 vk}. The process of obtaining orthonormal set for a given subspace is called Orthonormalization.  Gram-Schmidt process is one of the orthonormalization techniques  that  derives  orthonormal  vectors  through  projection  in  an  inner product space. 

Understanding  the  projection  of  one  vector  over  other  through  dot  product will  give  better  insights  into  the  Gram-Schmidt  process.  As  discussed  in Euclidean  space,  dot  product  between  two  vectors   v 1  ⋅   v 2  provides  the product of the first vector and the projected length of the second along the

first vector. To obtain the ratio for the projection length with respect to the

length  of   v 1,   divide  it  by  the  dot  product  of  the  first  vector  with  itself (projection of the first vector with itself):

The ratio obtained is scalar; to obtain direction, multiply the ratio with  v 1 as

 v 2 is projected along the direction of  v 1. Projection of vector  v 2 over  v 1 along the direction of  v 1 can be defined as follows:

 projv 1   (v 2 )  is  a  vector  that  is  part  of   v 2  along  the  direction  of   v 1;  the remaining part of  v 2 is  v 2 –  projv 1  (v 2 ), which will be orthogonal to  v 1. With
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this,  we  have  obtained  two  orthogonal  vectors:   w 1   =  v 1  and   w 2   =  v 2   –

 projv 1 (v 2 ). To verify orthogonality, let’s take dot product: Geometrically,  let’s  visualize  the  algorithm  in  two-dimensional  form  with two independent vectors, as shown in  Figure 2.15:

 Figure 2.15: Projection of a vector along the direction of another vector through inner product To  obtain  the  third  orthogonal  vector   w 3  from   v 3  of  the  independent  set, subtract the projection on  w 1 and  w 2 from  v 3, as follows: Similarly, any  ith orthogonal vector is obtained as follows:

The obtained vector set  {w 1 , w 2 , …, wk} is orthogonal but their length is not. 

To obtain vectors with unit length, divide the vector by their length:
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Example: Consider a matrix  A for orthonormalization with column vectors

 {v 1 , v 2 , v 3 }:

One can verify that  {w 1 , w 2 , w 3 } are orthogonal through dot product (approx. 

to  three  decimal  places).  Converting  these  vectors  to  unit  vectors,  one obtains:

Express these orthonormal vectors as matrix  Q and verify if  Q T  Q = I (round off to 3 decimal places):

 Tip:  Simple  modification  of  Gram-Schmidt  is  proposed  to  obtain  ith

 orthogonal vector for stable calculation. Instead of projecting vector on

 orthogonal  vectors  at  once,  it  is  performed  in  a  chain.  The  resultant

 vector after projection over one orthogonal vector is used for projection

 on the next orthogonal vector. 
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Applications of Orthonormalization

Expressing  a  vector  with  respect  to  orthogonal  vectors  has  advantages  as changes  to  the  vector  along  any  orthogonal  vector  doesn’t  impact  other orthogonal  vectors.  From  a  system  perspective,  one  can  consider  these

orthogonal  vectors  to  be  knobs,  and  tuning  these  knobs  can  be  considered equivalent to changing independent factors of a system. 

Consider the example of television set that has knobs to control brightness, 

contrast, length, and the width of frames. Tuning these knobs changes only

one property of the frame and leaves the other properties unaffected. What if

there  existed  a  knob  that  would  change  brightness,  contrast,  length,  and width  of  a  frame  simultaneously  by  a  small  percentage  each.  Will  you  be comfortable  using  this  knob  to  achieve  the  desired  frame  quality? 

Undoubtedly not. 

The  same  concept  can  be  applied  for  tuning  process  of  ML  algorithms. 

Tuneable parameters of the algorithm must behave orthogonally; otherwise, 

analysing the behaviour of individual parameters would be difficult. 

Orthonormalization  is  an  important  step  to  express  a  matrix  as  product  of matrices  that  includes  orthonormal  matrix,  which  will  be  discussed  in  the later sections of this chapter. Next, let’s discuss transforming a vector from

one subspace to another. 

Linear transformation

 Linear  transformation,  also  called   Linear  map  or   Linear  mapping,  is  a mapping  of  vectors  from  linear  vector  subspace   V  ⊆   n  to  linear  vector subspace  W ⊆   m, both over the same scalar field  , denoted as  T : V →  W. 

Additionally,  it  must  preserve  vector  addition  and  scalar  multiplication
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operations.  To  state  formally,  map   T  :  V  →   W  is  linear  if  ∀ u,    v  ∈ V  and scalar s ∈  ensure that the following two conditions are satisfied:

 T(u  +  v) = T(u) + T(v) preserving addition operation T(su) = sT(u) preserving scalar multiplication

In  other  words,  it  doesn’t  matter  whether  linear  map  is  applied  before  or after the operations of addition and scalar multiplication. 

Example: Derivative operator   and integral operator ∫ dx of a function of single  variable  is  linear  transformation  as  both  addition  and  scalar

multiplication is preserved:

Example: Expectation of random variable is linear transformation:

 Addition: E[X + Y] = E[X] + E[Y]; Scalar Mult: E[2X] = 2E[X]

Matrix associated with linear map

Linear transformations from finite dimensional vector space to another can

be expressed by  Transformation Matrix  Amxn with respect to the given basis vectors. How can you determine transformation matrix for the given linear

transformation  T(⋅ )? 

Let subspace  V ∈  m be spanned by basis vectors  B = [b 1  b 2  …  b n ] where  bi

∈  m (here, basis is ordered as it is required to define the coordinates of an element),  vector   u  ∈ V  expressed  as  the  linear  combination  of  its  basis vectors  with  coefficients  as   [u]B  =  [c 1   c 2   …  cn] T  (these  are  called coordinates of  u w.r.t. ordered basis  B). 

Apply the transformation function  T(⋅) on  u with basis :
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This indicates that applying transformation function  T(⋅) on the vector  u is equivalent  to  the  multiplication  of   A  and   [u] B,  where  A = [ T( b 1)   T( b 2)  …

 T( b n)]  &  [ u]B  are  coefficients  required  to  express  vector  as  linear combination of basis vectors B = [( b 1  b 2 …  b n)]. 

One can view the multiplication  Av = u of a matrix  A mxn and a vector  v ∈ n, which results in vector  u ∈ m through transformation. Matrix can be viewed as mapping (linear map) vector  v of  n-dimension subspace that is expressed as weights of linear combination of columns of matrix  A to a vector  u of  m-dimension. 

Example:  Transformation  function   T( x)  is  the  function  that  rotates  a  two-dimensional vector by θ = 90°:

Given 

Let  u = [14 7]T be expressed as linear combination of three vectors  b 1 = [1

2]T,  b 2 = [2 1]T &  b 3 = [3 1]T with coefficients [ u]B = [1 2 3]T where  B = [ b 1

 b 2  b 3]. 

For given transformation function, transformation matrix with respect to  B is obtained by applying transformation function on each column of  B. 

obtain 

Apply  transformation  matrix   A  on  vector  [ u]B,  which  is  equivalent  to applying the transformation function  T(⋅) on vector  u:
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As  transformation  function  rotates  vector  by  90°,  vectors   u  =  [14  7]T  and linearly  mapped  vector   v  =  [–7  14]T  should  be  orthogonal.  One  can  verify their orthogonality through dot product. 

 Tip: Transformation function T(x) = kx scales a vector by factor k and

 can be represented by matrix kIn. 

Composition of linear transformation

Composition of linear transformations is a linear transformation. Let  T :  V →

 W  be  a  linear  transformation  and   S  :  W  →   X  be  another  linear transformation,  as  depicted  in   Figure  2.16. Then,  the  composition  of  the linear transformation is a linear transformation that maps  u ∈ V directly to X

by   S( T( u)).  The  important  fact  is  that  the  matrix  of  the  composite transformation  is  equal  to  the  product  of  the  matrices  of  the  two  original maps. Refer to the following figure:

 Figure 2.16: Composition of linear transformation

Example of linear neural network: Consider a simple network of nodes, as

shown in  Figure 2.17. Circles in the figure are called nodes. Nodes at level 1

[image: Image 330]

[image: Image 331]

[image: Image 332]

[image: Image 333]

are labelled  n 11,  n 12, and  n 13, and at level 2, they are  n 21 and  n 22. Output is provided through node  n 31. The line connecting the first node  n 11 of layer 1

to  the  first  node  of  layer  2  multiplies  input   n

1

21  by  weight   w 11   .  The  line

connecting  the  second  node   n 12  of  layer  1  to  the  first  node   n 21  of  layer  2

multiplies input  x

1

2 by weight  w 21  . Similarly, all weights are labelled based

on levels and the nodes they are connecting. Refer to the following figure:

 Figure 2.17: Simple neural network

Input to  n

1

21 from  n 11 would be  x 1 *  w 12  . All inputs from nodes to  n 21  and n 22 are summed as:

This can be written in matrix form as:

We call the vector n the  hidden layer of the network. So, the hidden layer n is  obtained  by  applying  a  linear  transformation  defined  by  matrix  W.  This transformation  converts  the  three-dimensional  input  vector  to  a  two-
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dimensional  vector  n.  Again,  final  output  can  be  written  as  a  linear transformation of n to a real number. 

Whole of the neural network above can be regarded as a composition of two

linear  transformations.  As  a  composition  of  two  linear  transformations  is also a linear transformation, we can represent this input output relation  x →

 y  as  a  single  linear  transformation   W T   x  =   y,  where   W  =   W 1   W 2,  that  is, putting a linear hidden layer is redundant. This suggests that any number of

linear layers added to the network doesn’t change linearity of the network, 

and  the  whole  network  can  be  expressed  as  a  single  transformation  matrix W.  That’s  the  reason  a  non-linear  function  is  applied  after  every  linear transformation  of  the  input  space  while  constructing  deep  neural  network (discussed  in   chapter  7  Neural  Networks)  with  multiple  layers.  We  will encounter many diverse network topologies in the later chapters. 

Eigenvalues and vectors

In vector spaces, there might exist certain special non-zero vectors. Square

transformation matrix  A corresponding to linear transformation function  T(⋅) when  applied  on  these  special  non-zero  vectors   e,  results  in  changing  the vector by a real scalar factor λ as  T( e) =  Ae = λ e. These vectors are called Eigen vectors, and the corresponding scaling factor λ by which eigen vector scales are called  Eigen values of square matrix  A. 

 Ae = λ e equation can be stated as ( A – λ I) e =  o where  e is non-zero vector. 

This  will  help  you  to  obtain  the  eigenvalues  and  vectors.  Non-zero  eigen vector   e  will  exist  if  and  only  if  matrix   B  =  ( A  –  λ I)  has  dependent columns/rows, or null space of should have non-zero vector. In other words, 

a non-zero solution for  e will exist if matrix  B is non-invertible. 

Any non-invertible matrix  B will have its determinant as zero, that is, |A –

λ I|  =  0.  This  equation  is  called   Characteristic  equation,  which  is  a polynomial  function  of  the  variable  λ  and  degree  of  this  polynomial  is   n (order of matrix  A). Polynomial function is called  Characteristic polynomial of  A. Characteristic polynomial of degree  n can be factored into product of  n linear terms as | A – λ I| = ( λ 1 –  λ)( λ 2 –  λ)…( λn –  λ), where  λi's are roots of the
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polynomial  and  are  called  eigenvalues  of  the  matrix   A.  Eigenvalues  of  a matrix  is  not  always  unique;  there  can  be  repetitions.  Eigenvalues  of  real matrix can also be complex numbers. 

Once  eigen  values  are  calculated,  the  corresponding  eigen  vector  are

obtained  using  .  The  number  of  eigen  vectors  corresponding  to  one

eigenvalue  are  infinite,  and  they  can  be  represented  concisely  using  scalar multiplication of vector (see the following examples). 

Also,  every  square  matrix  A  satisfies  its  own  characteristics  polynomial. 

This is known as  Cayley–Hamilton theorem.  So, if we substitute A in place of  λ in the above-mentioned characteristic equation, we get a matrix equation equating to zero matrix. 

Will  eigen  vectors  corresponding  to  distinct  eigenvalues  always  be

independent? 

Consider distinct eigenvalues λ1 ≠ λ2 and corresponding eigen vectors as  e 1, 

 e 2 of matrix  A. If  e 1 =  ke 2 then  Ae 1 =  Ake 2 ⇒ λ1  e 1 = λ2  ke 2 ⇒ λ1 = λ2, which leads  to  contradiction.  So,  eigen  vectors  corresponding  to  distinct

eigenvalues will always be independent. 

Eigen properties

Let’s discuss a few important eigen properties:

Eigen  vectors  corresponding  to  distinct  eigenvalues  are  linearly

independent. 

Trace of a matrix is equal to the sum of all its eigenvalues. 

Determinant of a matrix is equal to the product of all its eigenvalues. 

Eigenvalues  of   Ak,  where   k  is  positive  integer,  are  λ  ki,  where  λ i  is eigenvalue of  A. 

If   A  is  invertible,  then  eigenvalues  of   A-1  are  ⁄λ i,  where  λ i  is  the eigenvalue of  A. 

Example:  Consider  2x2  matrix  and  obtain  its  eigen  values  by  solving  its characteristic polynomial:
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Use the obtained eigenvalues in ( A – λ I) e = o to obtain corresponding eigen vectors. Select one among possible eigen vectors for λ1 = 4 as  e 1 = [1 1]T, as follows:

Select  one  among  possible  eigen  vectors  for  λ2  =  2  as   e 2  =  [1  –1]T,  as follows:

Verify if transformation on eigen vectors results in scaling of eigen vector by

the corresponding eigenvalue:

, 

one 

obtains 

, one obtains 

Appyling transformation on non-eigenvector  v = [1 2]T, will it be scaled by  k

∈ ? 

Example:  Consider  matrix 

.  This  matrix  has  repeating

eigenvalues. Will repeating eigenvalues have independent eigen vectors? 
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As there are two free running variables, we can have two eigen vectors that

are independent, that is,  e 1 = [1 0]T &  e 2 = [0 1]T. 

Example: Consider matrix 

. This matrix has repeating

eigenvalues. Will repeating eigenvalues have independent eigen vectors? 

Roots of | A – λ I| will be λ1 = 1, λ2 = –2, λ3 = –2. For λ1 = 1, one obtains: Applying Gauss-Jordan elimination method on this matrix will simplify the

solution for (A – λ I) e =  o. 

For repeating eigenvalues λ2 = –2, apply Gauss-Jordan elimination method

on  A – (–2) I. One obtains:

The  number  of  free  running  variable  is  only  one.  So,  two  eigen  vectors corresponding  to  the  eigen  value  λ  =  –2  that  are  independent  do  not  exit. 

Eigen vector would be  e 2 = [–3α α 0]T. 

Geometric analysis

Analysing  transformation  on  eigen  vectors  geometrically  provides  good

insights  for  understanding  the  concept.  Consider  transformation  matrix 

from  the  previous  example.  Eigenvalues  and  vectors  of  this

matrix are:
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For each eigenvalue, let’s plot two eigen vectors with values in solid lines, as

shown in  Figure 2.18:

Plot non-eigen vectors with values in dashed lines:

Refer to the following figure:

 Figure 2.18: Representation of eigen vectors and non-eigen vectors

After transformation, eigen vectors denoted with thick black line keep their

direction  with  length  changed  by  factor  of  its  eigen  value  and  non-eigen vectors  denoted  with  dotted  grey  line  don’t  maintain  their  direction,  as

shown in  Figure 2.19:
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 Figure 2.19: Representation of eigen vectors and non-eigen vectors after transformation

Existence of zero eigenvalue

Under what conditions will a square matrix have zero eigenvalue? 

Definition of eigen vector  e states that it is a non-zero vector that changes by a scalar factor λ when transformation  A is applied. The corresponding scalar factor is called its eigenvalue. From definition:

As   e  is  non-zero  vector,  N( A)  should  have  non-zero  vectors,  which  is possible  only  when   rank( An)  <  n  ⇒  matrix  has  at  least  one  dependent column/row. Repetition of eigenvalue λ = 0 will happen if dimension of null

subspace is greater than zero, that is,  dimension( N( A)) > 0. Also, the number of times zero eigenvalue repeats will be equal to  dimension( N( A)). 

Eigen properties of symmetric matrices

Symmetric  matrices  are  important  due  the  following  properties  of

eigenvalues and eigenvectors:

Eigenvalues of real symmetric matrices are always real. 

There exist exactly  n eigen values (need not be distinct) for symmetric

matrix  An. 
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There exist  n eigen vectors corresponding to each eigenvalue that are

mutually orthogonal. 

Example: In the preceding example, eigenvalues and vectors of a symmetric matrix 

resulted in:

Verify if eigen values corresponding to different eigenvalues are orthogonal. 

Example:  Consider  another  real  symmetric  matrix  that  has  repeating eigenvalues. Two orthogonal eigen vectors can be obtained for this repeating

eigen value. One can verify the orthogonality of eigen vectors. 

Positive definite

 Quadratic  form  is  a  function   Q  from   n  to    defined  with  respect  to  a symmetric matrix  A as:

Consider  the  example  of  symmetric  matrix 

;  the

corresponding quadratic form in  2 is given by:

Note that  Q( x) is a scalar or a real number for real vector  x. Real symmetric matrix   A  is  called   positive-definite  if  the  real  number   Q( x)  =   xT   Ax  is positive for every non-zero real column vector  x. A positive-definite matrix is denoted by the notation  A ≽ 0. 

Let   v  be  any  eigen  vector  (it  is  always  non-zero)  of  the  positive-definite matrix  A corresponding to the eigenvalue λ. Then, we have  Av = λ v. Hence, 

 Q( v) =  v T (λ v) = λ v T  v = λǁ v ǁ2 > 0. Here, denotes the Euclidean norm and ǁ v ǁ2

>  0  always.  Therefore,  λ  >  0  that  is,  the  eigenvalues  of  a  positive  definite matrix are all positive. 
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If  A ≽ 0, then set ε = { x :  Q( x) < 1} is called an  ellipsoid in   n. An  ellipsoid is a generalization of ellipse in  n-dimensions. A two-dimensional ellipse has two axes: one is called  major axis and the other the  minor axis, as shown in

 Figure 2.20:

 Figure 2.20: Ellipsoid

Eigenvalues λ i and corresponding eigenvectors  qi of matrix  A ≽ 0 determine the direction and length of semiaxes  si of ellipsoid ε as:

If we arrange the eigen vectors  q 1,  q 2, …,  qn corresponding to eigenvalues in decreasing  order  as  λ1  ≥  λ2  ≥  …  ≥  λ n,  the  value  of   xT   Ax  is  large  in  the direction of  q 1. Hence, ellipsoid is thin and elongated in the direction of  q 1. 

This is the direction of major axis. In direction of  q n, the value of  xT  Ax is small, so ellipsoid is fat in direction of  q n. We will encounter these ellipsoids
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again in  Chapter 4 Basic Statistics and Probability Theory while introducing

multivariate Gaussian distribution. 

Using quadratic form, we can also define another norm for a matrix. For any

 m ×  n matrix  A,  A T  A is always a square symmetric matrix. We can calculate the eigen values of  A T  A. Let λ be any eigen value of  A T  A; then, we have  A T

 Ax = λ x for the corresponding eigen vector  x. The  spectral norm of a matrix A is defined as:

We have:

Hence:

Therefore, 

.  The

 spectral norm of a matrix  A is the largest  singular value of  A.  Singular value of  matrix   A  is  defined  as  the  square  root  of  non-zero  eigenvalue  of   A T   A matrix. 

Now, any vector  v can be also viewed as a matrix with one column. Hence, we can define spectral norm for any vector. But  v T  v is the dot product, and hence, is a scalar. The eigenvalue of a scalar or 1x1 matrix is the scalar itself. 

So, we can write spectral norm of vector  v as 

, which is actually the

Euclidean  norm  of  the  vector   v.  Using  spectral  norm  definition,  we  can write:

So, if we consider the linear transformation defined by the map  T: x →  Ax, the  length  of  the  mapped  vector   Ax  is,  at  most,  λ1 times the length of the input vector  x, where λ1 is the maximum singular value of the matrix  A. 
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Matrix decomposition

The  process  of  expressing  a  matrix  as  product  of  matrices  is  called   matrix decomposition  or   matrix  factorization.  There  exist  many  methods  to decompose  the  matrix.  Each  method  finds  use  in  particular  class  of

problems.  The  main  advantage  of  matrix  decomposition  is  to  express  a

matrix in a form that helps to solve the problem. 

Computing  inverse  of  a  matrix,  if  exists,  might  be  compute  intensive.  But when  expressed  as  a  product  of  matrices,  it  could  be  done  with

comparatively less compute resources. Let say, matrix  A can be expressed as the  product  of  any  three  matrices   P,  Q,  R  whose  inverse  calculation  is simple.  So,  decomposing  a  matrix  into  appropriate  matrices  can  result  in lesser compute:

Similarly,  calculating  the  determinant  of  a  matrix  becomes  easier  when  a matrix  is  expressed  as  the  product  of  any  three  matrices   P,  Q,  R,  whose determinants are easier to calculate. 

LU decomposition

 LU decomposition is process of expressing the square matrix as the product of the lower and upper triangular matrices  A =  LU:

From the product,  a 11 =  l 11 *  u 11, there arise many possible values for  l 11 & u 11.  To  obtain  consistency  in  decomposition,  the  diagonals  of  lower triangular are assigned 1. In the following example, the value of  lxx = 1. With fixed value of  lxx, we can find other values as:

Use obtained values,  u 11 = 1 to solve  l 21  u 11 = 3 we get  l 21 = 3
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Use obtained values,  u 12 = 3,  l 21 = 3 to solve  l 21  u 12 +  l 22  u 22 = 1 we get  u 22

= -8

Similarly, one can obtain values for all entries of  L &  U matrices. 

What happens when the value of  a 11 = 0? 

When   a 11  =  0,  a 11  =   l 11  *   u 11  ⇒   l 11  =  1,  u 11  =  0,  but  this  situation  is impossible if  rank( A) =  n as assigning  u 11 = 0 will lead to  rank( U) <  n that leads to  rank( A) <  n. This situation can be avoided if one shuffles the rows of matrix  A. Shuffling or permutation of the rows can be performed through permutation matrix  P, as discussed in  Matrices section. Permutated rows of matrix   A  will  be  decomposed  as   PA  =   LU.  Every  square  matrix  can  be decomposed into this form:

One  can  assign  all  diagonal  entries  of   U  matrix  with  1  by  introducing  the diagonal matrix  D that has 0 entries in non-diagonal elements between the  L

and  U matrices. 

By-product of Gauss-Jordan elimination

 LU  decomposition  can  be  viewed  as  by-product  of  Gauss-Jordan

elimination.  Elimination  method  consists  of  two  stages  forward  &  back
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substitution. Representing forward substitution in matrix format provides  L

matrix. 

Forward  substitution:  We  can  represent  each   ith  step  of  forward substitution method by elementary matrix  Ei.  Elementary matrix differs from identity  matrix  by  one  single  elementary  row  operation.  Suppose  the  row operation  to  be  conducted  on  a  3×3  matrix   A  is  2  *   r 2  +   r 3  →   r 3,  then elementary matrix  E representing this operation is:

Multiplying  E on the left side of matrix  A is equivalent to performing row operation of 2 *  r 2 +  r 3 →  r 3 on  A. 

 E 1  is  the  matrix  representing  the  first  elementary  row  operation  to  be conducted  on   A,  E 2 will represent the second, and  Ei will represent the  ith row  operation.  All  steps  of  forward  substitution  (row  operations)  can  be represented  as  a  single  matrix   E  =  E α   …  E 2   E 1.  The  resultant  matrix  of forward substitution is upper triangular matrix  U. 

Example:  Consider  the  matrix   A.  In  forward  substitution,  a  total  of  three operations are performed to obtain row echelon matrix. Operation on step 1:

(-3) *  r 1 +  r 2 →  r 2 & (-5) *  r 1 +  r 3 →  r 3 and on step 2: 2 *  r 2 +  r 3 →  r 3. 

Operation of step is represented with matrix  Ei. 
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 QR decomposition

 QR  decomposition  is  about  decomposing  a  matrix   A m×n,  where   m  ≥   n  & rank( A)  =   n  into  the  product  of  two  matrices  as   A  =   QR,  where   Q  is orthogonal  matrix  and   R  is  upper  triangular  matrix.  Orthogonal  matrices have properties like  Q–1 =  Q T  that  are  helpful  in  solving  certain  classes  of problems.  Matrix   Q  can  be  obtained  from   A  through  one  of  the  various orthonormalization algorithms called Gram-Schmidt. Let’s represent  A &  Q

with column vectors as follows:

Matrix  R  (A  =  QR  ⇒   Q–1  A  =  Q–1  QR  =  R)  can  be  expressed  as  the  dot product of columns of  Q &  A:

Example:  Consider  the  example  of  a  matrix   A  and  obtain  orthonormal matrix   Q  through  Gram-Schmidt  process.  Verify  if   A  =   QR  (round  to  2

decimal places):

Example:  Consider  rectangular  matrix   A 4 x 3  whose  rank  is  3.  Obtain orthonormal matrix  Q through Gram-Schmidt process:

Eigen decomposition

Consider a square matrix  Sn× n that has  n linearly independent eigenvectors

 e 1,  e 2, …,  en corresponding to eigenvalues λ1, λ2, …, λ n. Let  Q = [ e 1  e 2 …
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 en], then:

 Λ is diagonal matrix with corresponding eigenvalues. Multiply by  Q–1 on the right side of equation  SQ =  QΛ. This provides  SQQ–1 =  QΛQ–1 ⇒  S =  QΛQ–

1. 

Eigen  decomposition  helps  in  reducing  complexity  while  solving  many

problems, like finding inverse of a matrix if it exists or power of a matrix  S–1

as:

Real symmetric matrix

As discussed in the eigen value section, real square symmetric matrix has  n

eigen  real  values  and  corresponding  eigenvectors  are  mutually  orthogonal. 

This property helps to obtain interesting format of eigen decomposition as  S

=  QΛQ–1 =  QΛQ T as  Q is orthogonal matrix  Q–1 =  Q T. 

Example:  Eigenvalues  of  matrix 

are  λ1  =  2,  λ2  =  4  and

corresponding 

unit 

eigen 

vectors 

will 

be 

. 

Verify 

if 

the

following decomposition is valid:

Singular value decomposition

 Singular  value  decomposition  is  generalization  of  Eigen  decomposition  to rectangular  matrices.  Eigenvalue  λ  and  corresponding  eigen  vector   e  of  a square matrix  S followed  Se = λ e.  As  Sn×n is square matrix, the multiplied
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vector  and  resultant  vector  belong  to   n,  and  they  are  the  same  (all  in  the same  dimensional  subspace).  Consider  a  rectangular  matrix   Am×n,  when multiplied by vector  v ∈  n, results in vector  u ∈  m. As the multiplied and resultant vectors belong to different dimensional subspace, one needs to map

in both ways using  A (maps   n →   m) and  A T (maps   m →   n). 

where non-negative scalar value σ ≥ 0 is called  singular value of  A,  u is  left-singular vector of σ and  v is  right-singular vector of σ. 

Decompose rectangular matrix into product of three matrices:

where 

,  ∑

is 

diagonal 

matrix 

with 

σ i 

≥ 

0 

values 

such 

that 

are orthogonal matrices. 

How can we find these singular-values and corresponding left-singular and

right-singular  vectors  of  a  matrix  that  are  orthonormal  in  their  respective subspaces? 

Any  matrix  multiplied  by  its  transpose  results  in  symmetric  matrix.  This property  will  help  in  providing  the  relation  between  singular-values  and eigenvalues. 

 U 

& 

 V 

are 

orthogonal 

matrices 

implying 

. As Σ is diagonal matrix, ΣT = Σ:

Symmetric matrix  AA T =  UΣ 2  U T can be mapped to eigen decomposition of symmetric matrix  S =  QΛQ T, where both  U &  Q are orthogonal matrix and Σ 2  &  Λ  are  diagonal  matrices.  This  implies  that  σ 2

 i   are  eigenvalues  of

symmetric  matrix  [ AA T]m×m,  columns  of   U  (left-singular  vectors   ui)  are orthogonal  eigenvectors  corresponding  to  eigenvalues  of  symmetric  matrix

 AA T. 

Similar  analysis  holds  on  symmetric  matrix   A T   A  =   VΣ 2   V T.  σ 2

 i   are

eigenvalues  of  symmetric  matrix  [ A T   A] n×n,  columns  of   V  (right-singular
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vectors   vi)  are  orthogonal  eigenvectors  corresponding  to  eigenvalues  of symmetric matrix  A T A. 

Example:  Decompose  square  matrix 

.  Calculate  the

eigenvalues and eigen vectors of  A T  A. 

Obtained unit orthogonal vectors  vi from  A T A. To obtain  U, use  ui =  ⁄σ i  Avi. 

There is no restriction to first obtain  vi. One can first obtain  ui from  AA T and derive  vi =  ⁄σ i  A T  ui. 

Verity 

Example:  Consider  a  rectangular  matrix 

. In  the  previous

example of a square matrix, one could start with either  A T A or  AA T. But in case  of  a  rectangular  matrix,  choose  the  one  that  results  in  more

[image: Image 420]

[image: Image 421]

[image: Image 422]

[image: Image 423]

[image: Image 424]

columns/rows.  If  rectangular  matrix   Am×n  has   m  <  n,  then  choose   A T A otherwise choose  AA T. Calculate the eigenvalues and vectors of  A T A: One obtains:

Use  ui =  ⁄ σ i Avi or  AV = UΣ:

Verify if  A =  UΣV T. 

SVD  is  applied  in  various  domains,  like  data  compression  and

recommendation systems. We will be using eigen value decomposition and

SVD  in  various  concepts  in  the  subsequent  chapters.  These  topics  will include  dimensionality  reduction,  semantic  representation  of  text,  or  latent semantic indexing. 

Conclusion

The discussion of linear algebra in this chapter started with introduction of

system of linear equations and its solutions with real examples. Representing

large data with linear equations has its limitations. For better representation, we  introduced  vectors  and  matrices.  We  discussed  the  types  of  spaces  and properties  whose  elements  are  vectors.  Matrices  and  their  properties  were discussed,  which  helped  analyze  solutions  to  system  of  linear  equations through  matrix  subspaces.  Next,  we  discussed  linear  transformation  and

various matrix decomposition techniques. Matrix decomposition techniques

help  in  reducing  dimensionality  of  the  data,  which  will  be  discussed  in

 Chapter 8, Dimensionality Reduction. The concepts discussed in this chapter will lay the foundation for the AI algorithms discussion. 

In  the  next   chapter  3,  Vector  Calculus,  we  will  discuss  differentiation  and integration of vectors and their optimization. 

Points to remember

Real-world  objects  can  be  represented  mathematically  as  vectors  in

vector space. Properties of real-world environment in which the objects

interact will help us to define the properties of the vector space. 

Matrices help us to represent vector space concisely. 

Selecting  appropriate  basis  for  a  vector  space  makes  some

mathematical operations simple. 

Matrix multiplication with a vector is viewed as linear transformation

of a vector from one vector space to another. This is important step for

a  few  ML  algorithms  as  it  reduces  dimensionality  of  the  data,  which

helps in reducing the effects of  Curse of Dimensionality. 

Decomposing a matrix is important step for various ML algorithms. 

Further Reading

Linear algebra is an old branch of mathematics, so one can find numerous resources through books, online courses, and webpages, as follows:

Introduction  to  Linear  Algebra  book  by  Prof.  Gilbert  Strang  provides

information  on  concepts  and  its  applicability.  Video  lecture  series  by

the 

professor 

is 

also 

available

(http://web.mit.edu/18.06/www/videos.shtml). 

YouTube  channel  provides  explanation  for  a  few  concepts

(https://www.youtube.com/c/MathTheBeautiful). 

For 

mathematical 

definitions, 

one 

can 

refer 

to

https://www.wolframalpha.com/. 

CHAPTER 3

Vector Calculus

Vector calculus is the study of vector fields and scalar fields. A scalar field is a mapping that assigns a scalar or a real number to every point in a vector space. A vector field assigns a new vector to each point in a vector space. Vector calculus includes computation of derivatives of scalar and vector fields and integrals over scalar fields. These are the essential tools required in defining optimisation theory and parameter estimation in probability theory, which are the foundational pillars of  ML/AI.  The  theory  of  vector  calculus  is  a  generalization  of  the  calculus  of functions of single variable to functions of several variables. 

We  will  first  introduce  the  fundamentals  of  real  analysis,  that  is,  real  valued functions  that  are  easy  to  visualize.  We  will  elaborate  on  the  differentiability concepts as they are the basis of all function optimisation theory discussed later. 

Then,  will  see  how  these  concepts  are  generalized  for  functions  of  several variables: scalar and vector fields. 

Structure

In this chapter, we will cover the following topics:

Fundamentals of real analysis

Scalar and vector fields

Tensors and tensor fields

Total derivative, partial derivative, derivatives with respect to tensors

Introduction to function optimization

Convex functions, Lagrange multipliers

Gradient descent algorithm

Objectives

This  chapter  introduces  fundamental  mathematical  background  required  for

understanding  deeper  concepts  in  ML.  For  readers  who  are  fresh  college graduates, most of these concepts may be a refresher for them. The main goal of
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this chapter is to introduce the mathematical optimization theory and algorithms to solve mathematical optimization problems in general. 

Analysis of real functions

Real  analysis  is  the  area  of  mathematics  dealing  with  real  numbers    and  the properties of real-valued functions and sequences. In this section, we will cover a few topics of real analysis, specifically, real functions that are relevant for ML/AI. 

We will start with the real line definition. 

The  rational numbers are numbers that can be represented exactly by a ratio of any  two  integers 

.  There  exist  numbers

that cannot be represented in this form, for example, there is no rational number whose square is 2, that is, √2 is an  irrational number. The set of all rational and irrational  numbers  is  called  the  set  of   real  numbers  and  is  denoted  by  . 

Geometrically, the set   of points can be represented by a line with no beginning and no end. There exists a real number that is smaller than the smallest number

you can think of. Also, there exists a real number that is greater than the greatest number we can think. The set   is dense, that is, between any two real numbers a and b however close one can think of, there exists another real number c such that a <  c <  b. The set of integers is not dense, as there are no integers between two consecutive integers. 

Definition: Let  a,  b ∈ ,  a <  b. An  open interval  I is a subset of   represented by I = ( a,  b) = { x ∈ :  a <  x <  b}. The entire real line is denoted by the open interval (-∞, +∞). Similarly, a  closed and  bounded interval is defined by the set by  I = [ a, b] = { x ∈ :  a ≤  x ≤  b}. 

Definition of (∈− neighbourhood): A symmetric open interval around the point  x 0

∈ :  ( x 0  –  ∈,  x 0  +  ∈),  ∈  >  0  is  called  a  ∈- neighbourhood  at   x 0  for  a  given  ∈. 

Choosing  ∈  arbitrarily  small  positive  number,  we  can  get  points  that  are  very close  to   x 0  and  then  study  the  function  behaviour  in  the  close  locality  of   x 0. 

Formally, ∈- neighbourhood is represented as a set of all real number  x such that | x

–  x 0| < ∈. Refer to the following figure:
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 Figure 3.1: Neighborhood in real line

Definition  of  interior  point:  Let 

.  A  point 

is  said  to  be  interior

point of  S if there exists a neighbourhood 

, such that 

. If

each  point  of   S  is  an  interior  point,  then  the  set   S  is  called   open  set.  Finite intersection and arbitrary union of open sets is open. 

Definition  of  upper  and  lower  bounds,  sup  and  inf  of  subset  of  :  A  real number  M is called an  upper bound for 

if  x ≤ M for all  x ∈  S. The set  S is

said to be  bounded above if it has an upper bound. Similarly, we can define  lower bound. A real number α is called the least upper bound (supremum/sup) of  S if (i) α is an upper bound for  S and (ii) there does not exist an upper bound for  S that is strictly  smaller  than  α.  If  supremum  exists,  is  unique,  and  is  denoted  by   sup S. 

The greatest lower bound (or infimum or inf) is defined analogously and denoted

by  inf S. 

 Note: The largest element of a set is called maximum element. Sup  S  is  not

 same as Maximum(S). In fact, every set (bounded above) may not even have a

 maximum. For example, S = {1 –  , n = 1, 2, …} has no maximum element. 1

 is an upper bound of the set, but 1 ∈ S. However, Sup S = 1. 

Completeness axiom:  Any  nonempty  subset  of    that  is  bounded  above  has  a least  upper  bound  or  supremum.  Similarly,  any  nonempty  subset  of   bounded from below has an infimum. 

Now,  let’s  define  a  real  function.  The  idea  of  function  is  to  mathematically represent how a varying quantity depends on another quantity. For example, the

position of a planet is a function of time. 

Definition  of  real  valued  function  of  single  variable:  A  function   f  of  a  real variable is a mapping that assigns a real number  f(x) to each real number  x in the domain of the function. The  domain of the function is the subset of the real line where  the  function  is  defined  to  be  valid  and  is  denoted  by 

,  where 

is the domain of function. 

Example:  f(x) = √x; the domain  D of this function is  D =  + 

. 

Each positive real number is mapped to its square root by this function. 
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Definition: ( Composition of functions) Let 

and 

be a function. 

Let 

be a function on  E, where 

. Then, for each 

,  f( x)∈ E,  and  therefore,  g( f( x))  ∈ .  The  function such  that   h( x)  =

 g( f( x)),  x∈ D. Then,  h is said to be the composite function of  f, g and the function  h is denoted as  g °  f. 

Limit of a function

Let  f( x) = 

. 

This function is not defined at  x=1 as the denominator vanishes at x=1. But as we go closer to 1, what value does the function take? This is answered by the limit of the function  f as  x → 1, represented as 

 f( x). 

Definition: ( Limit of a function 

at a given point  a)  L is called the limit

of  a  function  at  a  given  point  if,  for  any  chosen  δ-neighbourhood  of   L, (choose however  small),  there  exists  a  ∈-neighbourhood  of   a  such  that  for  all   x  in  ∈-

neighbourhood of  a,  f(x) is in δ-neighbourhood of  L that is for all  x, | x –  a|< ∈ ⇒

| f( x) – L|< δ and we write the following:

 f(x) = L

Now, as for any point  x in neighbourhood of 1 and  x ≠ 1, we can rewrite: as 

Let  L = 2. Applying the preceding definition, if we choose a δ > 0, then for any  x such that | x – 1| < δ, we have | f( x) – L| = | x + 1 – 2 | = | x – 1| ≤ δ. Therefore, f( x) = 2. Refer to the following figure:
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 Figure 3.2: Plot of 

Let’s take another example:

This function is not defined at  x=0. From the plot, it seems that the limit of the function at  x=0 may be  L=0. Choosing a small neighbourhood of  L=0: Taking, ∈ = δ we have:

Continuous functions

A function  f(x) is said to be  continuous at a point  x 0 in the domain of  f if it maps points close to  x 0 in the domain of  f to close by points in the range. 

To  understand  this  better,  let’s  first  consider  an  example  for  non-continuous functions that maps close by points to far off points. 
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, the sign functions. 

Take two points  a > 0,  b < 0 in the open interval (- ∈/2, ∈/2), ∈> 0. Choosing ∈

arbritrarily small, we have | a- b|≤ | a|+| b| 

= ∈ but  f( a) = 1 and  f( b) = –1. So, 

 f( a)  and   f( b)  are  very  far  off,  even  though  are  very  close.  Hence,  f  is  not continuous at the point 0. 

A  function is said to be continuous if it’s continuous at every point in its domain, that  is,  it  always  maps  nearby  points  to  nearby  values.  We  can  represent  this formally using the neighbourhood. 

Definition ( Continuous function) Let  f: D →  , where  D ⊆  , and suppose that  c

∈   D.  Then,  f  is  continuous  at   c  if  for  every  chosen  ϵ-neighbourhood  of   c,  there exists  a  δ-neighbourhood  of   f( c)  such  that:  Any   x  in  ϵ-neighbourhood  of   c  is mapped to some point  f( x) in  δ-neighbourhood of  f( c), that is,  |x – c|<  ∈  and  x ∈

 D ⇒  |f(x) – f(c)| <  δ. 

This is same as the limit definition if we write  L = f(c). So, we say a function is continuous  at  c  if 

 f(x)  =  f(c). For  example,  the  function   f(x)  =|x|,  x  ∈   is continuous 

function 

on 

since 

for 

any 

A function 

is called  continuous if it’s continuous at every point of its

domain. 

Following  are  a  few  important  theorems  for  continuous  functions  that  we  will state without proof:

Bolzano theorem: Let 

be a closed and bounded interval and 

be continuous on 

. If 

and 

are of opposite signs, then there exists

at least one point  c in 

such that 

. A  more  generalized  result  is

given by the following theorem:

Intermediate  value  theorem:  Let 

be  a  closed  and  bounded  interval  and 

be  continuous  on 

.  If 

,  then   f  attains  every

value in the interval (

at least once in 

. 

 Figure 3.3 explains these theorems:
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 Figure 3.3: Theorems for continuous functions. (Left) Here u ∈ (f(a), f(b)). We found a point c ∈ [a,b] such that f(c) = u. (Right) f(a) < 0 and f(b) > 0 so we found a point c ∈ [a, b] such that f(c) = 0

Derivative of a function

Derivative of a function at a point represents the rate of change of the function at that point. The process of finding the derivative is called  differentiation. 

Definition:   Right-derivative  of  a  function 

at 

where 

is  a

point  in  the  domain  of  the  function  is  defined  as  the  rate  at  which  the  function changes in the right proximity of the point  . The  rate of change is the ratio of the  change  in  function  value  for  a  small  change  in  the  value  of    towards  the right side of   in the axis, say 

, where  h(>0) is small. The rate of change

is given by:

This ratio represents the slope of the secant line, as shown in  Figure 3.4:
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 Figure 3.4: Derivatives and tangent

As  h becomes very small, this secant line tends to become a tangent line at  x 0. The slope of this tangent line to the graph of the function at the point  ,  f( ) is the right derivative of the function  f at   and is formally written as:

Let’s  call  this 

as 

is  in  the  right  side  of 

.  Similarly,  we  can

define the left derivative 

as:

for any point 

is the left side of   in the axis. 

The   function  f  is  differentiable  at 

if  and  only  if   f  has  both  a  right-hand

derivative and a left-hand derivative at  , and these derivatives are equal. This means the plot of the function is smooth in proximity of  , that is, if you take a very small segment of the function in the proximity of  , you can approximate it by a small line segment. That is the reason why differentiable functions are also called  smooth  functions.  Now,  if  the  function  is  differentiable,  we  can  rewrite derivative as a symmetric difference quotient:
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Example:  (Power  function)  The  derivative  of  the  power  function 

can  be

calculated using the general derivative equation:

Using the definition of derivative, we can calculate the derivatives of most of the common  mathematical  functions  like  trigonometric,  logarithmic,  exponential. 

However, in practice, we will encounter many functions that are made up of sums, products,  and  composition  of  these  functions,  like   f(x)  =  log  (2  +  sin(x)).  To compute the derivative of such complicated functions, we use the following rules of derivatives:

1. Derivative is linear operator:

2. Product rule of derivative:

3. Chain rule of derivative (for function compositions):

Example: The sigmoid function is defined as:

Let 

and 

.  Therefore, 

.  Applying

chain rule:

Therefore, 

Example: The  tanh function is defined as:
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Applying product rule and chain rule of derivatives the derivative of tanh can be found as follows:

These derivatives are computed for any arbitrary point in the domain of  f, and we can visualize their plots in  Figure 3.5:

 Figure 3.5: Derivatives as a function

Next, we state few useful theorems for differentiable functions. 

Theorem: A differentiable function is continuous but not conversely. 

Example: Let 

. At 

, Also,  f is continuous

at 



and 

As 

,  f  is  not  differentiable  at 

. 

Differentiability  implies  smoothness.  At 

,  there  is  a  sharp  corner  in  the 

plot.  Change  of  direction  by  90  degrees.  Hence,  geometrically,  we

can see the non-differentiability of   at 0, so the continuity of a function does not always guarantee differentiability. 

Mean  value  theorem  (Lagrange):  Let 

be  continuous  on 

and  differentiable  at  every  point  in 

. Then,  there  exists  at  least  one  point 
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such that:

Rolle’s theorem: Let 

be continuous on 

and differentiable at

every  point  in 

.  If 

then,  there  exists  at  least  one  point 

such that 

. 

 Figure 3.6 depicts these two theorems pictorially:

 Figure 3.6: Theorems on derivative:(Left) The slope of the secant line from f(a)to f(b) is given by and the tangent at 

  is parallel to this secant line. (Right) As f(a)=f(b) the function must turn at some point and at that point, the derivative is 0. 

Higher Order derivatives

The  derivative  of  a  function   f  is  itself  a  function.  We  represent  it  by  (x).  Let 

.  Then, 

(x) 

.  So,  we  can  compute  the  derivative  of  the

derivative function:

This  is  called  the   second  order  derivative.  Hence,  for  this  function,  we  have 

.  Derivative  function  can  be  computed  any  number  of  times  to

obtain  nth order derivative. This is depicted with the following notation: Refer to the following figure:
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 Figure 3.7: Higher order derivatives

There  are  many  applications  of  higher  order  derivatives  like  approximating functions  and  finding  maximum  or  minimum  values  attained  by  a  bounded

function. We will briefly look at the Taylor series expansion of a function using higher order derivatives. 

Taylor series expansion

If a real valued function satisfies the following conditions:

The function should be differentiable any number of times

The function should be defined at the given point a

Then, 

This is called the  Taylor series expansion of the function  f at the point  a. It’s an infinite  series,  that  is,  the  number  of  terms  in  this  series  is  infinite  and  is represented more formally with summation notation, as follows:

Now, if we take  x sufficiently close to the point  a, then the higher degree terms of the polynomial 

for  n > 2 become negligibly small and can be ignored. 

In  general,  for  any  point   x,  we  can  approximate 

using  a  finite  number  of

terms.  Suppose  is  differentiable   n  times  in  the  neighbourhood  of   a;  we  can consider the Taylor polynomial with  n terms only. There will be an error in this approximation  proportional  to  the  distance  of   x  from   a  and  is  given  by 
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, where  c is some point between  a and  x. This is called  Lagrange form of remainder. The second order Taylor’s polynomial with Lagrange form of remainder is given by:

Example: 

and let 

. For  x in neighborhood of 0:

Or 

Here, if  x is sufficiently close to  x=0, even the Taylor series expansion truncated to 1 term approximates the sin function well. This is a linear approximation of sin

function near  x=0  with  the  Taylor  polynomial   TS  1(x)  =  x,   as  shown  in   Figure

 3.8. As we include more terms, we see that the Taylor series polynomial coincides

more  with   sin(x),  that  is,  we  get  an  improved  approximation.  Refer  to  the following figure:

 Figure 3.8: Function approximation locally (Taylor series)
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 Note: If we have a differentiable function f, calculating the first derivative of a

 function f’(a) at a point x = a, we can approximate the function close to "a" 

 by  a  line  y  =  f(a)  +  f'(a).  This  approximation  is  valid  and  very  close  to  the

 point. 

 For example, if we take the function |x|. At any non-zero point, the function

 represents  a  straight  line.  However,  at  0,  where  its  not  differentiable,  we

 cannot approximate the function by a like however small interval around zero

 we take. 

So  far,  we  have  covered  a  few  basic  concepts  for  studying  the  functions  of  a single  real  variable.  In  ML,  we  will  mostly  encounter  function  of  several variables.  These  concepts  of  real  analysis  can  be  extended  to  the  functions  of several  variables.  In  fact,  this  way  of  approximating  a  differentiable  function locally by a line will be useful in defining the derivative of functions of several variables. In the following sections, we will study functions of several variables. 

Scalar and vector fields

In  the  previous  chapter,  we  studied  linear  transformations 

, from one

linear vector space  V to another vector space  W. Let both of these vector spaces be finite dimensional. Let the dimension of the domain space  V is  dim(V) = n and dimension of range space  W be  dim(W) = m. We call  T a real valued function or a scalar  field  or  a  vector  field  based  on   n  and   m.  Here,  T  need  not  be  a  linear function. 

 Scalar field represents functions that maps a point in  n-dimensional space to a real number.  For  example,  if  at  each  point 

of  the  atmosphere,  we

assign  a  real  number   f(a)  representing  the  temperature  at   a,  the  function   f  is  a scalar field. As we move from point ‘ a’ to nearby point in space, the scalar field will  vary.  In  ML,  scalar  fields  arise  while  we  train  models.  A  model  can  be represented  as  a  scalar  field  on  the  parameter  space.  It  maps  each  possible parameter vector to total error value (a real number) w.r.t the given data points. 

Let’s first see how points close to the vector  a look like. In real line, points near number ‘ a’ are points in the ∈ neighbourhood of  a 

More

formally,  a  set  of  all  real  numbers   x  such  that 

.  For  vectors,  this
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generalizes  to  the  concept  of  open  ball:  Set  of  all  vectors   x  in   V  such  that  : is called an  open ball around  a. The open ball around a represents points that are within a sphere of radius ∈. A two-dimensional open ball is shown by the shaded region in  Figure 3.9:

 Figure 3.9: Open ball

Limits and continuity

The concepts of limit and continuity can be easily extended to scalar and vector fields.  Function 

with  domain 

.  Let 

and 

. 

Then, 

means the limit:

This  is  the  usual  limit  for  real  valued  function  as 

is  a  real  valued  function. 

Similarly,  function   f  is  said  to  be  continuous  at   a  if   f  is  defined  at   a  and 

.  f  is  said  to  be  continuous  on  the  set   S  if  its  continuous  at every point in  S. 
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Theorem:  For  vector  valued  function,  the  function  is  continuous  if  each component  is  continuous.  For  example, 

. 

Each component is continuous, and hence,  f is continuous. 

So, we see that the definitions are straightforward extensions of those in the real valued  functions  in  one-dimensional  case.  However,  extending  concept  of

derivative at a point for scalar fields requires some more work. 

Derivative of scalar fields w.r.t. vector

Generally, the manner in which a field changes depends on the direction in which we move away from a. Let’s take the temperature scalar field example. Starting from  a,  the  temperature  increases  moving  towards  the  heat  source,  and  it decreases as we move away from it. The rate of change or derivative of a scalar

field is defined only in a fixed direction. Starting from the same point  a and going in a different direction, there may be a different rate of change. 

Directional derivative and partial derivatives

Let’s first choose a direction represented by a vector  u and then compute rate of change in that direction. Let  u be a unit vector. To compute rate of change in the direction of  u, let’s choose an arbitrary point  x close to a. Let  u be a unit vector, that is, ǁ u ǁ = 1. For any real number  h, the vector  a +  hu represents all points on the line parallel to vector  u. If we choose  h sufficiently small, then we can find a vector  y =  a +  hu that is within the -ball around and lies on the line parallel to direction vector  u, as shown in  Figure 3.10:

[image: Image 590]

[image: Image 591]

 Figure 3.10: Directional derivatives

Similar to the case of single variable, we can now write the derivative of a scalar field formally as:

This is called the  directional derivative of scalar field  f at  a in the direction of  u. 

In particular, if  u =  ek (the  kth unit coordinate vector  ek = (0, 0, …, 1, …, 0), with 1  at  the  kth  coordinate  only),  the  directional  derivative   f  '( a,  ek)  is  called  the

 partial derivative with respect to  ek and is denoted by symbols as follows:
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Calculating partial derivatives is fairly simpler compared to arbitrary directional derivatives  because  only  the  rate  of  change  along  one  of  the  coordinate  axes  is being  measured.  So,  we  can  treat  all  other  coordinate  variables  as  fixed  as  we move parallel to only one axis. Hence, we can use all known formulas and rules

for derivatives of single variable to compute partial derivatives. 

Example: Let 

Real valued function with one variable differentiability implies continuity at that point. For scalar fields, does the existence of all directional derivatives at a point imply continuity at that point? The following scalar field shows an exception:

If we approach  (0,0) along any line through origin other than  x axis represented by a vector  u  = (a, b) where 

. 

So, all the directional derivatives exist for  f. Now, if we choose 

, 

we have 

. So, there are infinite points in the ∈ ball around  (0,0) where

 f takes the value ½, but  f(0,0) is  0. Hence,  f is not continuous at origin as close by points near origin are not mapped to close values. So , even the existence of all the directional derivatives does not imply continuity of the scalar field at given point. 

We need a better generalization of derivative for functions of several variables. 

Total derivative

We  have  seen  that  for  real  valued  function 

we  can  approximate   f

locally at a point by a line using first order Taylor series expansion. This shows a way of extending the concept of differentiability to the higher-dimensional case using linear function. 
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Definition  (Differentiable  Scalar  Field):  We  say  that 

is

differentiable at ‘ a’ if there exists a linear transformation 

such that 

,  where 

for  some   r  >  0

and 

as 

is the error in the approximation and is

of  smaller  order  than 

.  The  linear  transformation 

is  called  the  total

derivative of  f at  a. Here, 

is  a  real  number.  Note  that  the   derivative  is  a

 linear transformation and not a number. We will see how to calculate this linear transformation 

. Suppose the total derivative of a scalar field  f exists. Then:

For any point 

, If we choose 

,  where  h is chosen

small enough such that 

. Then:

Dividing 

both 

sided 

by 

 h,we 

have, 

Taking the limit 

, we have:

 Note:  The  linear  transformation 

   maps  any 

   to  the  directional

 derivative vector f 

  at the point a along the direction of x. If we choose 

  as the kth unit basis vector, that is, the one hot vector with kth entry as

 1, then 

  f 

  is the partial derivative. 

We can define 

as follows for all points 

such that  x is close to  a, that

is, 

where '⋅' represents inner product. 
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is  called   gradient  of  scalar

 field  f at '  a'. 

 Note: Thus, 

   is  the  projection  of  x  along  the  direction  of  the  gradient

 vector at ‘a’. 

 With  this  new  definition  of  total  derivative,  we  can  now  say  that  if  a  scalar

 field f is differentiable at ‘a’, then its continuous at ‘a’. 

For  any  vector   x  close  to   a,  that  is, 

.   If   f  is

differentiable at  a:

The last part of the inequality is using Cauchy-Swartz inequality for norms. Here, and hence, 

. Therefore:

Taking the limit 

on both sides, we have:

This proves that scalar field f is differentiable at ‘a’, then its continuous at ‘a’. 

So, we can use the gradient of a scalar field to compute the total derivative of the scalar  field.  Here  are  some  examples  of  gradient  computations  for  some commonly used functions:

Geometry of gradient vector

Let  f be a scalar field defined on a set 

. Consider the points where 

has 

a 

constant 

value 

say 

. 

We 

denote 

this 

by 

. The  set 

is  called   level set.  In 

,  we
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call  this  a   level  surface.  In  ML,  level  surfaces  occur  very  often.  We  will  see surfaces  of  constant  probability  density  and  error  surfaces  with  constant  error contours. 

Let’s  first  see  how  we  can  define  curves  in  higher  dimension  as  a  parametric function. For example, a circle in 3D parallel to horizontal xy plane can be written as  ( rcos(θ),  rsin(θ),  c),  where  c  is  the  constant  height  of  the  circle  above horizontal xy plane and r is the radius of the circle. 

Let 

represent any curve on the level surface, 

where 

are  real  valued  functions  of  the  parameter.  Then, 

. 

Using  chain  rule, 



(Dot  product  of

perpendicular  vectors  is  zero,  refer  to  Linear  Algebra  Chapter).  For  the  curve represents  the  tangent  vector.  Hence,  the  gradient  vector  at  any  point on the curve   is perpendicular to the tangent vector 

at that point. 

Refer to the following figure:
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 Figure 3.11: Gradient vector normal to the surface

Derivative of vector fields w.r.t. vector

A 

vector 

field 



can 

be 

represented 

as 

where  each  component 

is  a  scalar

field. Hence, we can generalize the concept of derivative to vector fields easily. 

A  vector  field 

is  differentiable  at 

if  there  exists  a

linear 

transformation 



such 

that 

,  where

for  some 

0

and 

.  The  linear  transformation 

is  called  the
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 total  derivative  of   f  at   a.  Since 

is  a  linear  transformation  from  finite

dimensional space of dimension  n to finite dimensional space of dimension  m, it can  be  represented  by  a 

matrix 

such  that  any  point 

can  be

transformed to a point 

, by matrix multiplication with  . 

Now, for each component scalar field, we have the total derivative defined using gradient vector as 

; thus, we can write:

This matrix   is called the  Jacobian matrix of  f at  a.  Hence, the total derivative of the vector field  f is represented by the matrix product 

. 

Example: Suppose 

and  f 

is a vector

field,  where

is  a  real  valued  and  differentiable  function.  In   f,  the

function  g is applied component-wise. Then, 

, 

for all  i, with  ith entry only non-zero being equal to 

and all other entries is

zero. 

Example: 

Let 



be 

a 

linear 

map 

defined 

by 

matrix. The ith component of 

is given

by 

, so 

. Hence:

Chain rule for derivatives of vector fields

Let  f  and   g  be  vector  fields  such  that  the  composition   h  =   f  °   g  is  defined  in  a neighbourhood  of  a  point   a.  Assume  that   g  is  differentiable  at   a,  with  total derivative 

. Let 

and assume that  f is differentiable at  b, with total derivative 

.  Then,  is  differentiable  at   a,  and  the  total  derivative   h’(a)  is given by the following:
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that is, the composition of linear transformations 

. 

Matrix form of the chain rule

We  can  rewrite  the  chain  rule  in  terms  of  the  Jacobian  matrices.  Since composition  of  linear  transformations  corresponds  to  multiplication  of  their matrices, representing

and 

we have 

. 

Example: Suppose  g is a linear transformation 

, where 

and

 W  is  a  constant 

matrix  and 

,  where 

is sigmoid function. We define:

Hence, 

,  whose  ith  entry  is  only

non-zero. 

We want to find the derivative 

 g' ( x) =  W (This is discussed in above example)
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Example: Let’s consider the linear map again 

; now, 

is not

a fixed matrix but is a constant vector. We want to compute 

. We

can think of  W as a vector of dimension 

, and thus, the Jacobian 

must be of dimension 

. The entire derivative is a three-dimensional

array  or  a  three-dimensional  matrix.  We  call  this  a   tensor.  Tensors  are generalization  of  matrices  and  are  represented  using   n-dimensional  arrays. 

Vectors and matrices are also tensors. A vector is a one-dimensional or first order tensor,  a  matrix  is  a  two-dimensional  or  second  order  tensor,  and  a  scalar  is  a zero-order tensor. 

Let’s  compute  the  derivative  of  one  component  of   f,  that  is,  fi  w.r.t.  one component of tensor  W, say 

. For example, let’s compute partial derivative of

 f 3 w.r.t  W 56. Expanding  f 3, we have 

. 

This expression is independent of  W 56, and hence, 

0. However,  for  any

component in the third column of W, 

. We can write in general:

Hence, the tensor 

is a sparse three-dimensional tensor. 

While  applying  chain  rule  in  practice,  for  example,  when  we  apply  it  for differentiating neural networks, we can encounter such higher-order tensors. We

will  briefly  digress  from  the  current  topic  of  matrix  form  of  chain  rule  and introduce basics of tensor algebra in the next section. Thereafter, we will revisit chain rule and introduce the more generic form of it using tensors. 

Tensors

A tensor can be represented as a multidimensional array. Tensors are extensions

of  vectors  and  matrices  (which  are  one-  or  two-dimensional  arrays)  to  n dimensional  arrays.  The  individual  elements  in  these  n-dimensional  arrays  are
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called  the   components  of  the  tensor.  Figure  3.12  depicts  tensors  of  up  to  four dimensions. In  the  previous  section,  we  saw  how  tensors  naturally  occur  while computing derivatives of the functions of several variables. 

Tensors  are  heavily  used  in  physics  as  they  provide  a  concise  mathematical framework for formulating and solving physics problems. Tensors are represented

using  index notation or indicial notation.  For example, a 3-dimensional vector  a

can be represented as follows:

Similarly, a matrix can be represented in index notation as follows:

The number of indices used to represent the tensor is called the  rank or order or dimension of the tensor. 

We  can  represent  the  scalar  multiplication  of  a  matrix  in  index  notation  as follows:

A matrix  A and vector (column)  v multiplication can be denoted in index notation as follows:

Here, the index j is repeated in the right-hand side of the expression and indices summation  over  the  jth  index.  This  is  also  called   Einstein  summation  notation, which is discussed in the next section. Refer to the following figure:
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 Figure 3.12: Visual representation of tensors, a stack of 1-D tensors make a 2-D tensor. A stack of n=4, 2-D

 tensors make a 3-D tensor and a stack of m=5 3-D tensors make a 4-D tensor and so on. 

Einstein notation

Performing  tensor  operation  for  high-dimension  tensors  becomes  very

cumbersome  and  are  hard  to  code.  Einstein  notation  was  introduced  by  Albert Einstein in 1916 in Physics for compact representation of summation over a set of indexed  terms  in  a  formula.  All  the  tensor  operations  discussed  earlier  can  be written  in  terms  of  Einstein  sum.  Moreover,  using  Einstein  notation,  many common multi-dimensional, linear algebraic array operations can be represented

in a simple fashion. Code written using Einstein summation is highly readable and compact. 

Einstein sum takes arguments in two parts: equation string and tensors on which

the  operation  is  performed.  An  example  of  equation  string  for  matrix  transpose operation is 

. Here, each of the small letters denote a dimension of the

tensor. All indices on the left side of arrow are indices of input tensor, and those on the right side of arrow are indices of output tensor. For multiple input tensors, we  can  separate  the  indices  by  commas.  For  example,  matrix  multiplication  is represented by the equation string 

. The indices that are missing on

the  right  side  of  arrow  are  the  axes  over  which  the  summations  are  performed, that is, the elements of jth row of left matrix are multiplied to the corresponding elements of the kth column of the right matrix and summed. The dot products and

outer  products  discussed  earlier  can  be  computed  easily  using  Einstein

summation. 

NumPy  documentation  (refer  to   Further  Reading  [9])  has  many  examples  of Einstein summation.  Table 3.1 lists are a few useful notations:

Notation

Description

a,  b  are  2  vectors  or  1-D  tensors  of  same  size,  and  we  want  to compute elementwise multiplication, which is another vector C. 

A is a matrix, and we want to compute the trace of the matrix, that

is, the sum of all diagonal elements. 

A  and  B  are  matrices,  and  we  want  to  compute  the  matrix

multiplication. 

We  have  a  3-D  tensor  A  and  want  to  compute  the  sum  along  the

third axis. 

Outer product (of vectors), discussed in the following sections. 

Inner product of vectors, discussed in the following sections. 
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Transpose of a matrix is a matrix with swapped rows/columns, that

is,  swapped  axes  or  a  reordering  of  axes.  For  tensors,  any

permutation  of  the  axes  list  can  be  defined  as  a  transpose  of  the

tensor. Here, we compute transpose of a 4D tensor A by reordering

axes 0,1,2,3 as: 1->3, 0->1, 3->2, 2->0. 

 Table 3.1: Einstein notation examples

The  outer product ⊗ of two one-dimensional tensors is a two-dimensional tensor represented by:

In general, outer product of two tensors of order 

will yield a tensor of order 

. In the preceding example, 

. So, the order of this outer product

is 1 + 1 = 2. This operation is non-commutative, that is, 

. 

Since 

is  a  second  order  tensor  or  a  matrix,  we  can  view  it  as  a  linear

transformation  T, which transforms a vector  w to 

. 

The length of the new vector is 

times 

, and the new vector has the same

direction as  u. 

Example: The 3 × 3 identity matrix is a second order tensor, and we can rewrite it in  terms  of  outer  product: 

.   Here, 

represents  the  standard  basis  vectors  or  one-hot  vectors.  In  Einstein  notation 

.  The outer product 

is a second order tensor with only the 

element as 1 and all other elements as 0. The following code shows this:

1. e2 = np.array([0.,1.,0.,0.])

2. e3 = np.array([0.,0.,1.])

3. np.tensordot(e2, e3, axes=0)  #passing axes=0 computes outer

 product

This will output a second order tensor with (2,3) element as 1. Therefore, the set of all such possible outer products forms a standard basis for the any real matrix of size 4 × 3. 

Any vector can be represented as a linear combination of basis vectors. Can we do the same for tensors? A second order tensor  T of size 3 is a 3 × 3 matrix and has 9

elements represented as 

. 
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Representing  this  in  index  notation,  we  have: 

.   We  can

similarly  define  a  third  order  tensor 

,  where  each    is  a

first order tensor. This tensor  T can transform a vector  v as follows to a second order tensor:

A tensor is called a special tensor if it can be represented as a product of finite first  order  tensors.  Suppose   A  and   B  are  two  special  tensors  of  order   m  and   n formed  by  the  tensor  product  of   m  vectors 

and   n  vectors 

, that is:

Applying  A on a vector  v, we have:

This is a tensor of order  m – 1. 

The dot product ( A ⋅  B) between these special tensors  A and  B can be computed as follows:

We see that only if 

, then 

for these special tensors. 

Dot product of tensors

For computing the dot product (or inner product) of two vectors, we would have

done 



.  Can we extend the definition of dot product for tensors? Dot

product of second order tensor with a first order tensor is he same as the matrix multiplication of a matrix and a column vector. The order of the output will be a vector, that is, the order of the output is 

.  Dot product of the first

order  tensor  with  a  second  order  tensor  is  obtained  by  computing  the  matrix
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multiplication  of  the  matrix  transpose  with  the  column  vector,  and  we  again obtain a first order tensor. 

Multiplying  two  matrices  of  matching  order  will  give  another  matrix,  that  is, tensor of order 2 = 2 + 2 – 2. Hence, the tensor dot product of two second order tensors is another second order tensor. Hence, order of output of dot product of two tensors of order is 

a tensor of order  p +  q – 2. This notion of dot product

of  tensors  can  be  generalized  further  to  high  order  tensors:  doing  a  dot  product over the specified dimensions, keeping all the other dimensions fixed. 

Suppose we have two tensors 

of order 

respectively. Suppose we want

to compute the dot product along  k-axes where 

. Then, we must specify

which of the  k axes of 

we want the dot product to be computed and the

output tensor will have order: 

. This  is  implemented  in   NumPy and

other deep learning frameworks like  TensorFlow and  PyTorch as the “Tensordot” 

operation.  The  axes  on  which  the  dot  product  is  applied  are  called   contracted axes. The shape of the output tenor consists of the non-contracted axes of the first tensor,  followed  by  the  non-contracted  axes  of  the  second.  The  following  code shows how to compute tensor dot using NumPy:

1. import numpy as np

2. A = np.arange(24).reshape(4,2,3)

3. B = np.ones(12).reshape(2,3,2)

4. k=2  #num  contraction axes

5. order_output = len(A.shape)+len(B.shape)-2*k

 6. # Dot product of last k(=2) axes of A and first k axes of B

7. out1 = np.tensordot(A, B, axes=[[1, 2],[0, 1]])

8. 

 9. # what is happening inside tensordot

10. out2 = np.zeros(A.shape[:-k]+B.shape[k:])

11. for p in range(4):

12.    for s in range(2):

13.        for q in range(2):

14.            for r in range(3):

15.                out2[p, s]+=A[p,q,r]*B[q,r,s]

16. np.equal(out1, out2)

 Figure 3.13  shows  the  input  output  tensors.  Lines  10-15  show  how  to  calculate the  dot  product  along  k  chosen  axes  using  nested  loops.  This  is  very  slow computation but helps us understand clearly what is actually happening inside the Tensordot operation. However, the actual implementation of Tensordot is not with nested loops but is optimized and gives us a much faster way to compute. 
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 Figure 3.13: Output of preceding code

Now, let’s check how good our generalization of the dot product is. We know the

dot product of a vector  a with itself is the norm squared 

. If we take

a tensor of order 2 that is a matrix, is the tensordot equal to the Frobinius norm squared of the matrix? The following code checks for this, and it’s true:

1. M = np.arange(12).reshape((3,4))

2. out = np.tensordot(M, M, axes=([0,1], [0,1]))

3. fob_norm = np.array(np.linalg.norm(M)**2)

4. print(fob_norm==out)

Now  that  we  have  generalized  all  the  properties  and  operations  on  vectors  for tensors, we can also extend the concept of vector fields to tensors and calculus of vectors are generalised to the calculus of higher-order tensors. 

Tensor calculus

The gradient of a scalar field 

can be written as follows:
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(in

index notation)

The gradient of a vector field 

, that is, the Jacobian is defined to be

the second order tensor:

Like vector fields, a tensor field assigns a tensor to each point of the space. The gradient of a second order tensor field T is defined in a manner analogous to that of the gradient of a vector. 

Properties of gradients are as follows:

, where φ is a scalar field

Total derivative of tensor

For a tensor valued function of a scalar 

, we can define the derivative as

follows:

This turns out to be a tensor whose components are the derivatives 

:
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Let 

be a scalar valued function of a second order tensor T. We  can  write 

in index notation. Hence, we have:

Let’s consider more general form, that is, a tensor valued function of a tensor. For example, the derivative of a second order tensor A with respect to another second order tensor B is given by the fourth order tensor:

Using  this,  we  can  compute 

in  the  example  above  where   f

where 

are  first  order  tensors  and   W  is  a  second

order tensor. 

Why 

?  This  can  be  easily  seen  by  expanding  the  matrix

multiplication  with  vector   x. Only    will  have  non-zero  derivative  w.r.t  the  jth row elements of matrix, that is, as 



. This explains why 

is chosen and 

. 

We can validate this with the implementation of gradient in any of the libraries, like TensorFlow. We will create a random tensor  W and a vector  x,  as shown in the  following  code  XX.  The  GradientTape  function  is  used  to  compute  the Jacobian. 

1. import tensorflow as tf

2. W = tf.random.uniform(shape=[4,4])

3. x = tf.expand_dims(tf.Variable([1., 2., 3., 4]), axis =1)

4. 

5. with tf.GradientTape() as tape:

6.    tape.watch(W)

7.    y = tf.matmul(W,x)
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8. dy_dW = tape.jacobian(y, W)

Now,  let’s  implement  the  gradient  that  we  found  in  the  preceding  theory  and check whether they match. 

1. e1,e2,e3,e4 = np.eye(4)

2. x=np.array([1.,2.,3.,4.])

3. grad = None

4. for k, ek in enumerate([e1,e2,e3,e4]):

5.    for j, ej in enumerate([e1,e2,e3,e4]):

6.        tmp = x[k]*np.tensordot(ej,ej, axes=0)

7.        if grad is not None:

8.            grad+= np.tensordot(tmp, ek,axes=0)

9.        else:

10.            grad = np.tensordot(tmp, ek,axes=0)

We  can  see  that  the  output  in  both  the  implementations  is  the  same  third  order tensor, as shown in  Figure 3.14:

 Figure 3.14: Output of the preceding code

 Note: We observe that the gradient of a scalar or 0-order tensor is a first order

 tensor,  and  the  gradient  of  a  vector  field  or  a  first  order  tensor  is  a  second

 order tensor. In general, the gradient operator always adds the orders of the

 two tensors. 

Example: The trace operator on a matrix 

is a scalar field:

(in index

notation)

Following similar steps, we can derive the following matrix derivatives:
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Chain rule for tensors: Suppose  g is a tensor valued function 

and  f is

a scalar valued function of a tensor 

. Then, 

. 

Example: Suppose is a linear transformation 

, where 

and  W is a second order tensor and 

,   being

the  sigmoid  function.  Let’s  define 



.  We  want  to  compute 

. In neural network training, we will encounter similar operations. 

, by chain rule

Here, 

is a diagonal matrix or a second order tensor 

:

Hence, we have:

Here, 

we 

can 

use 

the 

property 

of 

outer 

product 

and simplify the product as follows:

This is a third order tensor, being gradient of first order w.r.t. second, its order is (1 + 2 = 3). This is implemented in the following code:

1. W = tf.random.uniform(shape=[4,4])

2. y = tf.matmul(W,x)

3. y1=tf.sigmoid(y)*(1-tf.sigmoid(y)).numpy()

4. grad = None

5. for j, ej in enumerate([e1,e2,e3,e4]):

6.    for k, ek in enumerate([e1,e2,e3,e4]):

7.        tmp = np.tensordot(ej,ek, axes=0)

8.        if grad is not None:

9.            grad+= np.tensordot(x[k]*y1[j]*ej,tmp,axes=0)

10.        else:

11.            grad = np.tensordot(x[k]*y1[j]*ej,tmp,axes=0)
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12. grad

13. 

The  shape  of  grad  is  4  ×  4  ×  4.  Again,  using  the  Tensorflow  GradientTape function to compute the Jacobian, we have:

1. with tf.GradientTape() as tape:

2.    tape.watch(W)

3.    y = tf.sigmoid(tf.matmul(W,x))

4. dy_dW  = tape.jacobian(y, W)

Following is the output of the preceding code:

 Figure 3.15

The shape of the Jacobian of the output with respect to the weight matrix is those two shapes concatenated together. 
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Mathematical optimization

Finding the minimum or maximum value taken by a real valued function is called

 function  optimization.  For  example,  the  function   f( x)  =  | x|  attains  its  minimum value at  x = 0. The temperature on a surface can be represented as a scalar field and point at which the temperature is maximum of the surface is the location of

the  heat  source.  Problems  in  probability  theory  and  ML  can  be  represented  as functions  of  several  variables.  In  ML,  we  are  trying  to  find  an  approximating function that maps input examples to output examples. The problem of finding a

good approximating function can be framed as a function optimization. These are

parametrized functions, and methods of function optimization are used to find the best possible values of these parameter by minimizing the error of approximation. 

Maxima, minima, and saddle point

Definition  (Global  and  Local  minimum):  A  scalar  field 

is  said  to

have a  global (or  absolute)  minimum at a point  c of a set if:

for all 

The function  f is said to have a  local (or  relative)  minimum at  c if the preceding inequality holds only in a ∈-ball around  c and not for all 

. We  can  define

global and local maximum similarly. A vector that is either a relative maximum or a relative minimum of  f is called an  optimum or extremum of  f. 

If   f  has  an  extremum  at  an  interior  point  and  is  differentiable  there,  then  the gradient of  f at that point must be zero, that is, 

. However, the converse is

not  true.  If   f  is  differentiable  at  a  point   a,  it’s  called  a   stationary  point  of 

. There may be points where the gradient is zero, but it need not

be an extremum point, and such stationary points are called  saddle points. In any close neighbourhood 

of a saddle point  a, we will find points 

such that 

and 

. 

Example: 

.  This  represents  a  surface  (a  hyperbolic  paraboloid). 

Near the origin, this surface looks like a horse saddle, as shown in  Figure 3.16. 

The gradient vector at zero is 



at origin. However, 

in close neighbourhood of the origin, we can find points from 1st and 3rd quadrant where f is positive. Also, close to the origin, there are points from the 2nd and 4th quadrant where x, y is of opposite signs,  f is negative. So, the origin is a saddle point of this function. Refer to the following figure:
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 Figure 3.16: Saddle point, (This figure is adopted from T.M Apostol [1] chapter 9)

Example: 

,  the  origin  is  a  saddle  point  as  depicted  in

 Figure 3.17. 

We can use second order Taylor’s series expansion to figure out the nature of the stationary  point,  that  is,  whether  it’s  a  maxima  or  minima  or  saddle  point.  The eigen  values  of  the  Hessian  matrix  can  give  us  clear  idea  about  the  nature  of stationary point. This  is  stated  in  the  following  theorem.  Refer  to  the  following figure as well:

 Figure 3.17: Saddle point, (This figure is adopted from T.M Apostol [1] chapter 9)

Theorem: Let  f be a sacalar field with continuous second order partial derivatives in  an  n-ball 

. Let 

denote  the  hessian  matrix  at  a  stationary  point   a. 

Then, we have the following:

If all eigen values of 

are positive, then  f has a relative minimum at  a

[image: Image 848]

[image: Image 849]

[image: Image 850]

[image: Image 851]

[image: Image 852]

[image: Image 853]

[image: Image 854]

[image: Image 855]

[image: Image 856]

[image: Image 857]

[image: Image 858]

[image: Image 859]

[image: Image 860]

[image: Image 861]

[image: Image 862]

[image: Image 863]

[image: Image 864]

[image: Image 865]

If all eigen values of 

are negative, then has a relative maximum at  a

If 

has both positive and negative eigen values, then  a is a saddle point of

Example: 

. Here, 

at origin

 a  =  (0,  0).  So,  origin   a  is  a  stationary  point  of   f. 

.  This  is  a

positive definite, and hence, 

is a relative minimum. 

Let  f be a scalar field with continuous second order partial derivatives in an n-ball 

; then, using the Taylors formula for real functions, we can derive the second

order  Taylor’s  formula  for  scalar  fields.  We  will  give  a  high-level  flow  of  the proof of this here. 

Let 



for 

. 

Then, 

.  Using  second  order  Taylors

formula with Lagrange form of remainder for the real function  g, we have: Here,  g is a function of the 

function, where  r 

. 

Applying the chain rule of derivatives, we have:

In particular, 

Applying chain rule once more on this, we get:

Substituting these in the Taylor expansion, we have:
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We define an error term 

by the following equation:

and use it to reformulate the preceding equation in terms of this  :

Here, 

. This is the Taylor expansion for scalar fields. 

At any stationary point  a, we have 

. Hence:

Since the Hessian 

is a real symmetric matrix, the quadratic form 

is  positive  definite  if  and  only  if  all  its  eigen  values  are  positive  and  negative definite if all eigen values are negative. 

Suppose  all  eigen  values  of 

are  positive  and 

. 

We choose 

then, 

. Clearly, 

, are the eigen

values of 

. The quadratic form is as follows:

Now, 

,  using  the  definition  of  limit  for  any  chosen

positive 

there exists a 

such that 

. 

Multiplying 

both 

sides 

of 

this 

inequality 

by 

, 

we 

get 

.   Choosing  the  arbitrary  number 

,  we

have 

. 

Hence,  a  is  a  relative  minimum.  Similarly,  we  can  prove  the  statements  of  the theorem for maximum and saddle point. 

Example:  Locate  and  classify  the  stationary  points  for  the  surface We have 

and 

. At a stationary point, both

the  partial  derivatives  should  vanish.  Clearly,  origin 

is  a
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stationary point. 

Now, 



and 

.  This  contradicts 



. 

Thus (0, 0) is the only stationary point. 

Now,  let’s  discuss  an  iterative  algorithm  that  can  be  used  to  minimize  any differentiable function. 

Decent methods

In  practice,  the  functions  of  several  variables  are  encountered,  we  will  have  no idea where in the domain of the function it will attain its optimum value. In fact, we  may  never  be  able  to  find  the  exact  minimum  . Our  target  is  to  reach  as close as possible to the minimum,  . So,  we  must  start  at  some  arbitrary  point and then take small steps 

in the direction in which the

function value decreases:

Here,   is the  step size in the direction of the search direction 

.  Our target

is  to  choose 

and 

such  that 

. These  sequence  of

points 

(should converge to the minimum  ). 

Using  first  order  Taylor  series  expansion,  let 

and 

be  a  point  very  close  to   a,  that  is, 

.  Let 

:

, where 

Here, 

represents  the  directional  derivative  in  the  direction  of  the

change vector 



. If this term is negative, we can reduce the value of  f

at 

.  So,  v  must  make  an  acute  angle  with  the  negative  gradient 

. We call such a direction as  descent direction. The best case is when the angle  between  the  vectors 

and 

is  zero  or  the  vectors  are

parallel,  that  is,  if  for  some 

. This  is  called  the

 direction of steepest descent. The direction of the negative gradient at a point is the direction of steepest descent. 

Hence, we can define an iterative algorithm for minimizing a function as follows:
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Given a starting point 

Repeat:

Choose a step size 

Update 

Stopping criteria for the preceding iterative algorithm is generally based on norm of the gradient. As we are finding a stationary point iteratively, the algorithm can converge when the gradient at the point   is close to 0, that is, 

where 

and  is  small. 

is  a  pre-defined  fixed  number  indicating

acceptable level of error. This algorithm is called  gradient decent algorithm. Now, we  also  need  a  way  of  choosing  the  step  size.  The  step  size  should  not  be  too short or too long. The following example shows the effect of step size. 

Example: Let’s take a real valued function 

. Being a function on real

line,  we  have  only  two  possible  directions 

;  we  can  choose  the  descent

direction as 



. Note that this decent

direction  is  also  parallel  to  the  negative  gradient  direction,  as 

. We

will  use  two  different  step  sizes  (1) 

which  is  a  big

step  size,  and  (2) 

which  is  a  monotonically  decreasing

small  step  size.  Now,  starting  with  initial  point 

and  following  the

preceding  update  equation 



,   we  see  that  with  (1),  the

function value eventually oscillates between -1 and 1 and with step size (2), the decrease  in  function  value  becomes  very  small  and  almost  converges  at  1.  The following code shows an implementation of this:

1. def step(k, type=1):

2.    if type ==1:

3.        return 2+3/np.math.pow(2, k+1)

4.    elif type==2:

5.        return 1/np.math.pow(2, k+1)

6.    else: return 1

7. 

8. def update(x, k, type=1):

9.    return x+np.sign(-x)*step(k, type)

10. 

11. x = 2

12. for k in range(20):

13.    x = update(x, k, type=1)
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14.    print(k, x, x**2)

15.    k=k+1

 Figure 3.18 shows the output with step type (1) and (2):

 Figure 3.18: Gradient descent (Left) very long step (Right) very small steps One approach to find appropriate step size is  exact line search, where the function is minimized along the line 

, that is:

This is a valid method but is not cost effective. So, inexact line search methods are  used  where  we  are  looking  for  a  step  size  that  reduces   f  enough.  One  such method  is  called   backtracking  line   search.  This  depends  on  two  parameters 

.  Given  a  decent  direction 

,  we  start  with  unit  step

size and then reduce the step size by a factor of b until some stopping criteria is reached. The first order Taylor’s formula can give us a stopping criterion. By first order Taylors approximation, 

So, in the successive step, we reduce the step size by a constant factor 

(this restricts the steps size from being too small), and we see that  f is reduced by at  least  a  fixed  fraction    of  the  reduction  promised  by  first  order  Taylor’s formula. This  also  restricts  the  step  size  from  being  too  long.  This  condition  is called  Armijo condition. 

There  are  other  heuristics  that  are  also  used  for  step  size  selection  in  gradient descent. 

Constant step size: Choose one fixed value 

. 
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Variable  step  size:  3  or  4  values  of  step  are  chosen  in  each  iteration,  and whichever gives the best reduction of function value is chosen. 

Golden  search:  A  range  between  two  values  is  used  and  divided  into sections. 

Example:  ( Rosenbrock  function): 

. 

This  function  has  a  global  minimum  at  the  point 

where 

.  The  global  minimum  is  located  inside  a  long,  narrow, 

parabolic  shaped  flat  valley,  as  shown  in   Figure  3.19  for 10. 

The gradient of the function is given by:

Refer to the following figure:

 Figure 3.19: Rosenbrock function with gradient descent

Following are some advantages and disadvantages of steepest descent:

Converges to a local minimum from any starting point
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Convergence can be very slow sometimes

Intuitively, it may seem that the method of steepest descent is the best direction for minimizing a function. But this is not true! A more general search direction is defined as a solution to a system of linear equations 

,  where

 B is a positive definite matrix. For the solution to be a valid search direction, it must  satisfy 

.   This  holds  true  because  of  the  positive

definiteness of 

. A  particular

case  for  this  is  choosing   B  to  be  the  Hessian  at 

.  If  the  Hessian  is  positive

definite  at 

.  This  is  called   Newton’s  method.   The  main  disadvantage  of Newton’s  method  is  the  cost  associated  with  finding  the  inverse  of  the  Hessian and  ensuring  that  the  Hessian  inverse  matrix  is  positive  definite.  Figure  3.20

shows the convergence with Newton’s method:

 Figure 3.20: Rosenbrock function with Newton’s method

Function optimization with constraints: Lagrange

multipliers
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A constraint is a limit placed on the values of a variable, that is, the solution to the optimization problem is restricted to a subset of the domain of the function. For example, we may have a problem in economics where we want to maximize the

utility 

function 



subject 

to 

the 

constraint 

.  If  the  form  of  the  constraint  is  complicated,  then

solving constrained optimization is very hard. However, for some simpler forms

of constrains, for example, the constraint represents a curve or a surface, then they can be solved by the method of Lagrange multipliers. 

Suppose a scalar field 

has a relative extremum when its subject

to  the  constrains 

,  where 

, then there exists scalars 

such that:

These scalars   are called  Lagrange multipliers; one multiplier is there for each constraint.  We  assume  that  the  scalar  field   f  and  the  constrains  are  all differentiable functions. Let’s understand this geometrically. 

Let 

represent a scalar field temperature function in three-dimensional

space. We want to find the maximum value of the temperature along a curve C. 

We  can  represent  C  as  the  intersection  of  two  surfaces 

and 

.  So,  we  must  solve  the  following  constrained  optimization

problem:

subject  to  the  constrains 

and 

The gradient vectors 

and 

must be normal to the respective surfaces, as

shown  in  the   Figure  3.21. At  the  extremum  point,  the  gradient  vector is

normal to the curve C. Suppose C is represented by the vector values function:

and  let 

represent  the  temperature  along  the  curve.  The

maximum  value  of  the  temperature  is  attained  at 

or 

. Hence, 

must be perpendicular to the tangent 

to

the curve, that is, its normal to the curve. 

Now,  since  all  the  three  vectors 

, 

, 

are  normal  to  the  curve  at  the

extremum  point,  they  all  must  lie  on  same  plane.  So,  if 

, 

are  linearly

independent,  we  can  write 



.  Refer  to  the  following

figure:
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 Figure 3.21: Constraint gradient and gradient of objective

With the use of Lagrange multipliers, we can convert a constrained optimization

problem  to  an  unconstrained  problem.  This  unconstrained  problem  has   m  more variables to optimize: the multipliers  . We can minimize the function:

This  technique  will  be  widely  used  in  many  constrained  optimization  problems that we will encounter in ML. One of them is regularization of ML models, which

we will discuss in the next chapter. 

Optimization with inequality constraints

We can write the optimization problem in general form as follows:

Here,  we  have  only  equality  constraints,  and  for  this,  we  can  apply  Lagrange multiplier 

trick. 

But 

if 

we 

have 

inequality 

constraints 

like 

,  we  can  convert  this  inequality  constrains  to  equality

constrains by introduction of extra variable called  slack variables. 
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Suppose   denotes  n slack variables corresponding to each inequality constraint. 

These are positive quantities such that 

. So now, we convert the

inequality  constraints  to  equality  constraints  and  again  use  Lagrange  multipliers to convert the problem to unconstrained optimisation problem. Additionally, slack variable are positive. 

where 

. 

The Lagrange dual function

The   Lagrange  dual  function   L  is  defined  as  the  minimum  value  of  the Lagrangian for any given value of the multipliers 

. 

Suppose    is  a  feasible  solution  of  the  problem,  that  is, 

and 

; then:

Hence, for the optimal feasible solution  :

By definition of infimum:

Also, by definition of supremum, we have the following:

Therefore, we have a new optimization problem:
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This  is  called  the   dual  problem  associated  with  the  original  constrained optimization  problem,  which  we  call   primal  problem.  We  call 

the

 Lagrange dual function. 

The optimum value of both the primal and dual problems must always satisfy the

following condition:

This is called  weak duality. Suppose the equality above holds. Then, its termed as strong duality. This  happens  when  the  objective  function  and  constraints  are  of certain form that is, they are  convex functions. In the following section, we will discuss  convex  functions  and  optimization  of  convex  functions.  Many

optimization  problems  encountered  in  ML  can  be  formulated  as  convex

optimization problems. 

Convex functions

We  have  already  discussed  convex  sets  in  the  previous  chapter.  A  scalar  field is called a convex function if the domain of  f is a convex set and for

any two points 



and 

we have the following:

We define  f as  concave if  – f is  convex. 

Examples:

for any real  a is convex, 

is concave. 

Every  norm  in 

is  a  convex  function  because  of  the  triangle  inequality

obeyed by any valid norm: 

The max function in 

is convex. 

Geometric mean function, 

Negative entropy function in 

is convex. 

The function 

is concave. 

Properties of convex functions

Following are a few useful properties of convex functions:
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First order conditions: Suppose  f is differentiable scalar field; then,  f is convex if and only if the first order Taylor approximation of  f underestimates  f. that is, for any two point 



:

This is a very important property of convex functions and is easy to prove as well. 

Suppose  f is convex and let 

; then, for any two points 

in domain of

 f, we have the following by convexity property:

Taking the limit as 

, the ratio in the right side above shows the directional

derivative  of   f  in  the  direction  of 

,   and  hence,  can  be  written  as 

. This  proves  the  first  order  condition.  We  can  also  derive  the

converse, that is, convexity of  f from the first order condition. Interested readers may refer to [4] for the proof. 

 Note:  If 

 ,  then  we  have 

   for  convex  function. 

 Hence,  x  is  a  global  minimum  of  the  function. So,  any  stationary  point  is  a

 global  minimum  for  convex  functions.  This  property  makes  the  convex

 optimization problem a special class. 

Second order conditions: Suppose  f is twice differentiable, and its Hessian or the second  derivative 

exists.  Then,  f  is  convex  if  and  only  if  its  Hessian  is

positive semidefinite, that is, 

, for all  x in the domain of  f. To view this

geometrically,  we  can  think   f  represents  a  surface;  then,  the  surface  must  have positive curvature given its convex. 

 Tip: The first and second order conditions hold good for concave functions as

 well with the following modifications:

 Any stationary point is a global maximum

 f is concave if and only if 

 , for all x in domain of f
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Example:  The  quadratic  function 

.  We  have 

and 

.  Hence,  by  second  order  condition,  f  is

convex if 

. 

Example:  The  least  square  objective  function 

.  We  have 



is convex for any A since 

is a

real symmetric matrix, and hence, is positive definite. 

Restriction of a convex function to a line: A function 

is convex if

and  only  if  the  function 

,  where 

is  convex  in  t, 

where 

is in domain of  f and t is a real number. Example:  The  function 

. 

Here   are the eigen values of 

Jensen’s inequality: If f is convex, then for 

, 

Convex optimization

A convex optimization problem is of the following form:

Here,  the  objective  function   f  and  the  inequality  constrains  are  convex  and  the equality constrains are linear or affine: 

A fundamental property of convex optimization problems is  any locally optimal

 solution  is  also  (globally)  optimal.  The  gradient  descent  algorithm  discussed above  can  be  proved  to  converge  to  the  global  minima  for  unconstraint  convex optimization  problem,  given  strong  convexity  assumption,  that  is,  there  exists positive constants  m,  M such that 

. 
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 Note: The condition number of the hessian 

  is bounded by m/M, and

 the  number  of  iterations  N  required  for  gradient  descent  algorithm  to

 converge is bounded above by m/M. We have the relation 

 . 

For  constraint  convex  optimization,  we  can  use  the  Lagrange  multiplier  trick  to convert  to  unconstraint  optimization  problem.  There,  the  strong  duality  holds under  certain  basic  assumptions  on  the  inequality  constraints  called  Slater’s condition. 

Slater’s condition: There exists an  x in domain of  f such that the strict inequality holds  true: 

and 

.   Such  a  point  is  also  called  a   strict

 feasible solution. 

 Note:  The  Slater’s  theorems  states  that  if  slater  conditions  hold,  then  the

 convex  optimization  will  have  strong  duality,  that  is,  the  maximum  value  of

 Lagrange  dual  will  be  equal  to  the  minimum  value  of  the  objective: 

 .  This  property  can  give  us  a  stopping  criterion  for  any

 iterative optimization algorithm. If we iteratively reach a point 

  such

 that 

 ,  then  we  can  guarantee  that  we  are  close  to  the

 optimal solution, that is, 

 . 

The  strong  duality  also  gives  us  certain  necessary  and  sufficient  conditions  that can help solve the optimization problem analytically. These are discussed in the next section. 

Karush-Kuhn-Tucker conditions (KKT)

Suppose  strong  duality  holds  for  an  optimization  problem.  Let  the  problem  be convex optimization where Slater’s condition holds:

Then,    and 

are  the  primal  and  dual  solutions  if  and  only  if 

and 

satisfy following conditions:

, (primal feasibility condition)

, (primal feasibility condition)
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, (dual feasibility condition)

(complementary slackness condition)

The  point 

minimizes 

,   so  we  must  have  the  following

 stationarity condition:

These conditions are called Karush-Kuhn-Tucker (KKT) conditions. 

 Note:  For  any  optimization  problem  (convex  or  non-convex)  with

 differentiable  objective  function  and  constraint  functions,  such  that  strong

 duality holds, any pair of primal and dual optimal points must satisfy the KKT

 conditions. 

These  KKT  conditions  play  an  important  role  for  ML  models  like  Support Vector Machines (SVM). SVM  formulates  the  ML  classification  problem  as  a convex optimization and uses Lagrange duality and KKT conditions to solve the

optimization problem. We will see applications of Lagrange multipliers in solving many optimization problems in the probability theory chapter as well. 

Conclusion

In this chapter, we covered the differential calculus for functions of vectors and tensors. We used them to introduce the optimization theory of functions of vectors and tensors. We will be using these concepts throughout the rest of the book, in almost all the algorithms we discuss. In the next chapter, we will discuss another important  pillar  on  which  the  theory  of  AI  relies  –  the  probability  theory  that quantifies  the  uncertainty  naturally  arising  in  AI  problems  and  provides  us mathematical tools to deal with the uncertainty. 

Points to remember

Any  differentiable  function  of  single  variable  can  be  approximated  locally by a line using first order Taylor series expansion. 

For  functions  several  variables,  we  must  compute  directional  derivatives because  the  function  values  changes  based  on  the  direction  in  which  we move  away  from  a  point.  The  directional  derivatives  along  the  axes  are called  partial derivatives. 

Existence of all the directional derivatives does not imply continuity of the scalar field at given point. 

A function is differentiable at a point if total derivative exists at that point, which  means  that  the  function  can  be  approximated  locally  by  a  linear transformation at that point. 

Further readings

Tom IN. Apostol. CALCULUS. VOLUME II. Multi Variable Calculus

Convex Optimization / Stephen Boyd & Lieven Vandenberghe

KKT Conditions: https://www.cs.cmu.edu/~ggordon/10725-F12/slides/16-

kkt.pdf

Convexity 

Properties:

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523

_S16_Lec7_gh.pdf

Gradient 

Descent:

https://people.maths.ox.ac.uk/hauser/hauser_lecture2.pdf

Tensor 

Calculus:

https://cedar.buffalo.edu/~srihari/CSE676/6.5.2%20Chain%20Rule.pdf

http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanics

Books/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_15_Tenso

r_Calculus_2.pdf

http://cs231n.stanford.edu/vecDerivs.pdf
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https://www.tensors.net/p-tutorial-1

CHAPTER 4

Basic Statistics and Probability Theory

The  probability  theory  provides  us  the  mathematical  tools  to  quantify  the uncertainty  of  decision-making  where  we  have  incomplete  information.  In

machine learning, uncertainty naturally arises from noisy data or incomplete

information  about  the  problem  domain.  With  such  given  uncertainties,  we must come up with a predictive model that can estimate the outcome of an

unseen event. There are a range of ML models that are completely built on

probabilistic  settings,  like  Bayesian  nets,  generative  models,  linear  and logistic regression. Most objective functions used in training deep neural net

models are derived using a probabilistic framework. However,  even  before

we attempt to quantize the uncertainty in information, we must collect and

organize  information  associated  with  a  given  problem.  Thereafter,  we  can draw  conclusions  and  make  inferences  or  predictions  based  on  these  data. 

The  science  that  deals  with  the  collection,  organization,  analysis, 

interpretation,  and  inference  of  numerical  facts  or  data  by  applying

mathematical  theories  of  probability  is  known  as  statistics.  Statistics  has  a wide  range  of  applications  in  almost  every  field  of  study,  like  medicine, economics,  sociology,  psychology  and  astronomy.  However,  the  laws  of

statistics  are  true  on  aggregate  of  facts  and  cannot  be  applied  for  single observation, that is, statistics does not study individuals. Unlike the laws of

physics, the laws of statistics are not exact but are approximate. 

Structure

In this chapter, we will cover the following topics:

Basic statistics

Probability theory

Introduction to Bayesian decision theory

Random variable and probability density function

Expectation, correlation, and covariance

Information theory

Objectives

Probability theory is one of the foundational pillars of ML and AI, which are

one  of  the  applications  of  inferential  statistics.  This  is  the  preparatory chapter  for  understanding  inferential  statistics  and  probabilistic

interpretation of ML and AI problems covered in the next chapter. 

Basic statistics

The science of collecting, organizing, analyzing, and inferencing from data

for the purpose of effective decision-making is called statistics. Statistics has following two major branches:

Descriptive statistics: Collecting and organizing data

Inferential statistics: Drawing conclusions from data

Here,  data can be defined as a collection of facts or information from which conclusions can be drawn. Data can be of various types:

Qualitative (Categorical):

Nominal: Unordered categorical data like color, gender, location, 

ethnicity, marital status, weather. 

Ordinal: Ordered categorical data for example, level of education, 

economic  status,  designation  in  a  corporate  ladder,  knowledge

level in a technology. 

Quantitative (Numerical):

Discrete:  Integral  values  that  can  be  finite  or  countably  infinite, like counts of vehicles at a traffic crossing

Continuous: Any real value within a defined range, which can be

infinite  as  well;  for  example,  room  temperature,  blood  pressure, 

height of a person, and stock price

Unstructured: Text, image, audio, video

Quantitative  data  can  exhibit  certain  general  characteristics.  The  very  first step to study such quantitative data is to compute the  frequency distribution
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that  graphically  represents  the  number  of  observations  taking  a  particular value or number of observations in a certain interval. We may observe some

larger frequencies for certain values or for certain range of values, that is, a tendency to concentrate at certain values. This is known as  central tendency. 

There are various ways to compute this central value, which are collectively

known  as   measures  of  central  tendency.  The  data  about  the  measure  of central tendency can vary, and this measure of deviation is called a  measure of  dispersion.  The  data  may  show  a  symmetrical  distribution  about  the central value or show asymmetry. The metrics to measure these degrees of

symmetry  is  called  the   measure  of  skewness.  Also,  data  may  sometimes show  a  peak  at  certain  central  values,  and  the  degree  of  sharpness  of  the peak can be measured by  measures of kurtosis. 

Qualitative  data  can  also  show  central  tendency,  which  is  nothing  but  the most popular category. There are measures of dispersion for qualitative data

as well. Unstructured  data  needs  to  be  converted  to  structured  data,  which can  be  numeric  or  categorical,  before  being  analyzed  further.  Text  can  be viewed as a bag of words where each word is a category. Digital image is a

matrix of numeric pixel values. 

Measures of central tendency

There are three types of central tendency measures, which are discussed in

detail below. 

Mean

For a set of n observations, 

Arithmetic  Mean  of   S  denoted  by    and  defined  as 

. 

We call the quantity 

as the  deviation of the point   from the

point a. Two simple but useful properties of deviation are as follows:

Sum of all deviations about mean is zero or 

. 

The  sum  square  of  deviations  is  minimum  when  deviations  are

computed about the arithmetic mean. 

Proof of 1 is trivial, and we can use differential calculus for 2. 

Geometric Mean of S is denoted by G and is defined as:
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For  G  to  be  well  defined,  we  must  have  all 

.  G  gives

comparatively more importance to smaller values and is robust to small

fluctuations or noise in data. 

Harmonic Mean of S is denoted by H and is defined as

For  H  to  be  well  defined 

.  Harmonic  mean  gives  greater

importance  to  small  numbers.  Like  geometric  mean  G,  H  is  also  not

affected by small fluctuations of data. 

Among these three means, the arithmetic mean is greater than the geometric

mean, and the geometric mean is greater than the harmonic mean. 

Median

The median m of a dataset is a value that divides the data set in two equal parts such that number of points more than m is the same as the number of

points less than m. So, if we have an odd number of points 

, we

can sort the points and take the middle value m from ordered points with  k

points on either side of m. If n is even, then there are two middle points, and

we can take the arithmetic mean of the two. Median is very robust to outliers

or  extreme  values,  which  may  be  introduced  due  to  experimental  error  or mistakes while noting observations or some rare anomaly. Arithmetic mean

of data will move toward such extreme values, but median will be robust and

does not change in the presence of a few outliers. 

Mode

The value that occurs most frequently in a set of observations is called the

mode. In case of discrete data, we can compute the frequency or number of

times  each  discrete  value  occurs  in  the  data  and  value  with  maximum

frequency  is  the  mode.  Mode can be more than one as there may be more
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than one value with maximum frequency. Mode of continuous data can be

found  by  bucketing  the  continuous  data  into  equi-spaced  interval  and

computing  the  frequency  of  each  interval.  The  interval  with  maximum

frequency contains the mode, and we call this the modal interval. Now, we

also need to find one value in the maximum frequency interval to represent

the  mode.  This  can  be  taken  to  be  the  midpoint  of  the  interval.  A  more precise way to compute mode is given by the following formula:

Where 

is the frequency of the interval containing mode and 

are the frequencies of the intervals preceding the modal class and following

the model class, respectively.  l is the lower bound of the modal interval, and h is the interval width. 

Let’s take the example of Iris dataset that we already discussed in  Chapter 2, 

 Linear  Algebra,  to  discuss  the  various  central  tendency  measures.  This

dataset  consists  of  five  attributes  of  flowers:  four  numerical  features  about the  flowers  and  one  categorical  attribute  that  depicts  the  type  of  flower. 

 Figure 4.1  shows  the  histogram  plot  of  the  four  continuous  attributes.  We have 50 samples from each flower category. The mean, median, and mode

are marked with vertical lines and indicated in legends. For sepal length and

sepal width, we observe a predominant frequency for one interval, and the

mode can be defined to be the midpoint of that interval. For the petal length

and width, we clearly see two peaks in the histogram plot, and this indicates

a  multimodal  distribution.  These  attributes  have  two  modes.  Unlike  mean and  median,  mode  is  ill-defined.  There  can  more  than  one  mode.  The

following  code  shows  how  to  load  Iris  dataset  and  compute  the  central tendencies:

1. from sklearn import datasets

2. import numpy as np

3. import pandas as pd

4. iris = datasets.load_iris()

5.  #compute mean, median using numpy

6. print(np.mean(iris.data[:, 0]), np.median(iris.data[:, 0]))

7.  #loading into a pandas dataframe

8. df = pd.DataFrame(iris.data)

9. df.columns = iris.feature_names
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10.  #computing mean, median with pandas

11. print(df[‘sepal length (cm)’].median(), df[‘sepal length

(cm)’].mean())

In the code, pd.mode() will give you the modes of each of the attributes, but this  implementation  only  computes  the  attribute  value  with  highest

frequency. For  sepal length,  it outputs the mode as 5.0 because in the data, this value occurs highest number of times (10 times). The value 6.3 occurs 9

times, but it’s evident from the histogram of sepal length  that  most  of  the values  occur  between  5.5  and  6.  Thus,  it’s  better  to  avoid  computing  the mode of continuous data only based on frequency of occurrence and use the

formula  mentioned  above  to  compute  the  true  mode  or  at  least  plot  a

histogram  and  take  the  midpoint  of  the  high  frequency  bins  as  the  modes. 

Refer to the following figure:

 Figure 4.1: histogram of feature values for iris data

Slicing  the  data  based  on  the  modal  intervals  gives  us  some  interesting insights, as depicted in the following code:

1. df[‘flower’]=np.apply_along_axis(lambda x:

iris.target_names[x], 0, iris.target)

2.  #upper bound of first modal interval is 2

3. df[df[‘petal length (cm)’] < 2].flower.value_counts()

4.  #setosa    50

5. 

 6. #lower bound to second modal interval is 4.5

7. df[df[‘petal length (cm)’] > 4.5].flower.value_counts()

 8. #virginica     49

 9. #versicolor    14

10. 

 11. # restricting to modal interval for petal width

12. df[ (df[‘petal width (cm)’] >=1.0) & (df[‘petal width

(cm)’] <=1.5)].flower.value_counts()

 13. #versicolor    45

 14. #virginica      3

Line 3 and 7, 8, 12, and 13 show the output. This indicates that the attribute

petal length alone can be used to distinguish two classes of flowers  setosa

and  verginica easily. The second modal interval of the attribute petal width can be used to identify the  versicolor class of flowers from all other flowers. 

Using these insights from the mode of the attributes, we can design a simple

rule-based classification model, as follows:

petal length < 2.0 ⇒ setosa and petal length > 4.5 ⇒ verginica

1.0 ≤ petal width ≤ 1.5 ⇒ versicolor

Partition Values

In  the  preceding  example,  the  mode  was  used  to  partition  the  data  into subsets,  and  we  saw  how  we  can  use  these  partitions.  The  median  also partitions  the  data  in  two  equal  parts  such  that  number  of  observations greater than median equals the number of observations less than or equal to

median. We can generalize these to any number of partitions. The partition

values  or  points  that  divide  the  dataset  into  four  equal  parts  are  called quartiles, and they are denoted by Q1, Q2, and Q3. Each partition contains ¼ of the total number of points in the dataset. These values can be obtained

by  sorting  all  the  observations  in  ascending  order  and  then  finding  values such  that  Q1  exceeds  25%  and  is  less  than  75%  of  the  observations.  Q2

exceeds 50% of observations, that is, it coincides with the median. Q3 is a

point that has 75% of observation less than itself and 25% more than itself. 

The quartiles are pictorially shown in a  box plot in  Figure 4.2:
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 Figure 4.2: Histogram of feature values for iris data (min, max shown are not outliers) The following is the code to compute the quartiles using pandas and to plot

boxplot for any set of observations:

1. df.boxplot(figsize=(10,5))

The output plot is shown in  Figure 4.3:

 Figure 4.3: Output of the code given above; the circles shown in sepal width plot are outliers Extending this concept of quartiles to more partitions, we have deciles and

percentiles.  Nine  points  divide  the  dataset  into  10  parts  called   deciles; similarly,  99  points  divide  the  set  into  100  parts  called   percentiles. 

Percentiles are used for reporting examination scores. 

All  these  central  tendencies,  viz  mean,  median  and  mode,  are  suitable  for different types of data and frequency distribution of data. Mode is the best

central tendency measure if the data is qualitative. For continuous numerical data, median is used if the frequency distribution of data is skewed. Any of

the  three  measures  can  be  used  for  symmetrical  data  distributions  as  they will mostly coincide or be very close. 

Measures of dispersion

The  measures  of  scatteredness  or  spread  of  data  is  called  dispersion. 

Suppose the central tendency of two sets of data is the same. For example, 

time  to  commute  to  school  from  home  by  public  transport  and  by  private school van is measured for 2 months. Both the modes of transport show the

same  mean,  median  and  mode  of  30  minutes.  The  distribution  of  data  is symmetric, so all the three measures coincide. Then, we cannot decide which

mode of transport is better using central tendency alone. This  is  where  the

measures of dispersion can help. In the following sections, we will discuss

various dispersion measures. 

Range

The range is the difference between the extreme values of the observations. 

The box plot in  Figure 4.2 marks the min and max values as well.  Range =

Max-Min.  This  is  a  crude  measure  of  dispersion  and  is  very  sensitive  to anomalies  or  outliers  in  data.  This  is  simple  to  compute,  but  it  does  not consider all the data observations. 

Interquartile Range

The  Interquartile  Range  (IQR)  is  given  by  (Q3-Q1).  This  is  a  better measure than range as it uses 50% of the data and excludes anomalies. This

measure is used to get rid of the outliers in data by a simple rule of thumb

due to John Tukey.  Tukey’s rule says that the outliers are values more than 1.5 times the interquartile range from the quartiles, that is, the values that are either  below  Q1  −  1.5IQR  or  above  Q3  +  1.5IQR  are  considered  outliers. 

The sepal width box plot shows these outliers as circles in  Figure 4.3. 

Mean deviation
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Mean deviation (MD)  of  a  set  of  observations  is  given  by  average  of  the absolute  deviations  from  a  central  tendency  measure  A,  that  is, 

.  Mean  deviation  is  based  on  all  observations  and  is  better

than quartile. It can be proved that MD is minimum when A is taken to be

the median. 

Standard deviation

The  square  root  of  the  sum  squared  mean  deviations  is  called  standard deviation  and  is  denoted  by 

. Standard  deviation  is

considered  the  best  among  all  measures  of  dispersion.  The  square  of

standard deviation   is called the  variance. 

Coefficients of dispersion

If  we  want  to  compare  variability  of  two  series  that  differ  widely  in  their means  or  are  measured  in  different  units,  we  calculate  the  Coefficient  of Dispersion (C.D) for each series to compare them. C.D is dimensionless or unit free. This  is  like  a  normalized  measure  of  dispersion.  For  each  of  the four measures of dispersions discussed earlier, we have separate coefficients

of dispersion:

C.D for range: 

C.D for IQR: 

C.D for mean deviation: 

C.D  for  standard  deviation:  ,and 

is  called  Coefficient  of

Variation (C.V)

For comparing the variability of two series, C.V is computed, and the series

with  greater  value  of  C.V  is  said  to  have  more  variability.  From  the distribution plots of the four attributes in Iris dataset, it’s evident that  sepal length and  petal width have quite a difference in mean values. However, the standard deviations of these two series are 0.83 and 0.76, respectively, which

says  the  variability  of   sepal length  is  more  than  variability  of   petal  width. 
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This  is  contradictory  to  the  histogram  plots.  Sepal  length  appears  to  have much less variability. Let’s compute C.V for all the series using pandas, as

shown in the following code:

1. std = df.std() ;  cv = 100*std/df.mean()

2. df1 = pd.concat([pd.DataFrame(std).T, 

pd.DataFrame(cv).T]).reset_index()

3. df1.index=[[‘SD’, ‘CV’]]

This produces the following output:

 Figure 4.4: Comparing CV and SD

We can see that CV for petal width is very high compared to CV for sepal

length. This example shows the importance of CV for comparing variability. 

Moments

The  rth  moments  of  a  data  set  about  a  point  A  a  given  by 

. Clearly, the arithmetic mean is the 1st moment at  A =

0,  and  the  variance  is  the  2nd  moment  about  the  arithmetic  mean.  Various moments  give  us  idea  about  the  shape  of  the  distribution.  The  3rd  and  4th moments are used to define skewness and kurtosis, respectively, which are

discussed in the following sections. Higher moments tend to be less robust. 

Skewness and kurtosis

Lack  of  symmetry  in  the  data  distribution  is  called  skewness.  This  is measured  by  the  deviation  of  the  given  data  distribution  with  a  symmetric distribution.  A  distribution  is  called  asymmetric  when   mean  ≠  mode  ≠

 median.  Skewness  is  measured  by  the  difference  mean-median  or  mean  –

mode. 

Kurtosis gives us an idea of how sharp or peaked the frequency curve of the

data is. It’s measured by the ratio of moments 

. This quantity can be

interpreted as follows:
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β2 = 3 means a normal frequency curve, neither too sharp not too flat

β2 > 3 means a sharply peaked around the mean

β2 < 3 eans a flat and not peaked about the mean

 Figure  4.5  shows  how  skewness  and  kurtosis  define  the  shape  of  the distribution. The data distribution is  positively skewed if  mean > median > mode. Similarly, we can define negative skew as illustrated in  Figure 4.5:

 Figure 4.5: Skewness and kurtosis of data distribution

The  measures  we  discussed  so  far  can  give  us  detailed  insights  into

individual attributes or features of observations. This is collectively known

as   univariate  data  analysis.  In  practice,  the  relation  among  different variables  can  also  give  us  interesting  insights.  For  example,  in  study  of household expenditure and price or demand of commodities, there is a high

chance that these two can increase or decrease together, that is, they covary. 

The  pairwise  analysis  of  various  measurements  associated  with  an

experiment is called  bivariate analysis. In the next section, we will discuss how to visualize these relationships and how to measure them. 

Correlation

If change in one variable affects the change in other variables, the variables

are  correlated.  The  correlation  is  called  positive  or  direct  if  increase  (or decrease) of one variable causes increase (or decrease) in the other. One the

other hand, the correlation is called negative if the increase in one leads to a decrease  in  the  other  variable  and  vice  versa.  Correlation  can  be  detected pictorially with a scatterplot of two variables plotted along the x and y axes. 

For example, we can take the  petal width in y-axis and any other attributes, like  sepal  length  and  width  in  x-axis,  and  plot  a  scatterplot  as  shown  in

 Figure 4.6. 
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We can see that the rightmost plot of petal length versus petal width shows a

dense scattering about a nearly 45-degree angled line through origin. Also, 

this correlation holds for all categories of flowers. For  the  other  plots  with sepal measurements, we see less density and more of uniform spread. Refer

to the following figure:

 Figure 4.6: Bivariate analysis of iris

To generate pairwise bivariate plots for all the four variables, we can use the

seaborn library, as shown here:

1. import seaborn as sns

2. sns.set_style(“whitegrid”)

3. sns.pairplot(df, hue=”flower”,size=3) #df of iris data

defined above

4. plt.show()

Karl  Pearson’s  coefficient  of  correlation:  The  degree  of  linear  relation between  two  variables  is  measured  using  correlation  coefficient.  Let  take two  series  of  data  points 

and  another  series 

,  where    and    are  two  measurements  related  to  the

same individual or event i. The sample covariance cov(x,y) between these

two  series  is  the  defined  as  an  average  of  the  product  deviations 

.  Here, 

denote  the  sample

means. The correlation coefficient between the two variables is denoted by 

and is defined as follows:
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If can be easily proved that 

. If the two series are identical, 

that is, 

then 

and if 

, we have 

. 

Probability and odds

Probability  and  odds  are  two  different  ways  of  quantifying  the  uncertainty associated with an event. Let the event be “winning of a player in a game”. 

Odds  are  the  ratios  of  a  player’s  chances  of  losing  to  their  chances  of winning. Odds of 3 to 1 for a player means there are 3 chances of losing and

only 1 chance of winning. Here, the probability of winning of the player is

the ratio of the number of times won to the total number of games, that is:

Now, the probability of losing is similarly defined as the ratio of the number

of times the game is lost to the total number of games:

Also, the ratio of these two probabilities is the  odds:

Therefore,  odds  express  relative  probabilities,  generally  called  odds  in favour. The odds in favour of an event is the ratio of the probability that the

event will happen to the probability that the event will not happen. 

Random experiment

An  experiment  is  an  activity  that  produces  an  outcome.  There  may  be

different  number  of  possible  outcomes.  For  example,  rolling  a  die  is  an experiment  with  six  possible  outcomes.  An  experiment  is  called  random experiment if it has more than one possible outcome, and it’s not possible to predict the outcome in advance, that is, before the experiment is performed. 

We know the outcome of a dice roll only after rolling it! 

Events as sets
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An  event can be considered as an outcome of a  random experiment. For the event “winning of a player in a game” the experiment is the “player plays a game”.  There  are  two  possible  outcomes  of  this  experiment:  the  player wins/loses. We  can  represent  these  as  a  set  of  two  events:  {‘player  wins’, 

‘player  loses’}.  This  is  the  set  of  all  possible  events  associated  with  this experiment and is called  sample space.  The singleton events or elementary events  {‘player  wins’}  &  {‘player  loses’}  cannot  happen  together  and  are mutually exclusive events. The probability of an event is denoted by P. 

Suppose  n  trials  of  an  experiment  are  performed.  The  probability  of  a desired event E is the ratio of trials that result in E, denoted by 

, to the

number of trials performed:

Here,  P(player wins) = 0.25 and P(player loses) = 0.75. The probability of these two events are unequal, that is, they are not  equally likely to happen. 

Let’s  take  another  random  experiment:  “Rolling  a  fair  dice”.  Here,  the sample space is the set  S = {1,2,3,4,5,6}. All the six outcomes are equally likely as it’s a fair dice, and hence, we can write 

for  i = 1,2,…,6. 

The event “roll an even” is the set  E = {2,4,6} and the event “roll an odd” is the  set   O  =  {1,3,5}.  These  two  events  are  equally  likely: 

.  Also,  E  and  O  are  mutually  exclusive: 

.  E  and  S  are  called  disjoint  events: 

Also, 

;  hence,  we  call  E  and  S   exhaustive events,  that  is,  there  is  no outcome  possible  outside  the  union  of  these  event  sets.  For  mutually

exclusive and exhaustive events, we have:

Let’s  take  another  event  “multiple  of  3”  represented  by 

.  Here, 

. As  shown  in   Figure 4.7,  T  has  intersection  with  both  E

and O. T and O can happen together, and the probability of that is written as 

;  similarly, 

.  Refer  to

the following figure:
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 Figure 4.7: Event set example

Now, the probability of occurrence of either of the events E or T or both, that

is, the outcome is either an even number or a multiple of three is represented

as:

. Here, unlike mutually exhaustive

events:

Basic probability identities

If A and B are two events, then:

 P(not A) = P(A') = 1 – P(A)

 P(A ∩ B)' = P(A' ∪  B'), De Morgan’s Law for Probability

 P(A ∪  B)' = P(A' ∩ B'), De Morgan’s Law for Probability

 P(A ∪  B) = P(A) + P(B) – P(A ∩ B)

 P(A and not B) = P(A ∩ B') = P(A) – P(A ∩ B)

 P(exactly one of A,B) = P((A and Not B)or (B and not A)) = P((A ∩

 B’)U (A’ ∩ B)) = P(A) + P(B) – 2P(A ∩ B)
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Conditional probability

For  the  example  in   Figure  4.7,  suppose  it’s  given  that  the  event  T  has already occurred that is, someone tells that the dice is showing either 3 or 6. 

Now, if we ask the chances of event E having occurred, it can occur only if

the output is 6. So, the number of possible outcomes of event E reduces from

three  to  one,  given  another  event  T  has  already  occurred,  and  thus,  the probability of occurrence of E changes to 1/2. We can write: 

. 

Definition:  The  probability  of  occurrence  of  an  event  A,  given  that  B  has already occurred, is called  conditional probability. It is denoted by P(A|B): Let’s take another example of rolling a pair of dice together; we observe the

outcome as a 2-dimensional vector representing two face values. The sample

space contains 6 × 6 = 36 possible outcomes. Let A denote the event “sum of

the  two  face  values  is  7”  and  B  denote  the  event  “at  least  one  of  the  face values  is  2”,  as  shown  in   Figure  4.8. 

and 

. 

Knowing that B has occurred reduces the possible outcomes for A to 2, that

is, 

. Therefore,  the  conditional  probability  of  A,  assuming

that B has occurred, 

. Now, let’s consider that

A  is  given,  and  we  have  to  calculate  P(B|A).  We  have 



.  So,  we  saw  that  the  two

conditionals P(A|B) and P(B|A) are not the same. 

Using the conditional probability definition, we can always write:

This  is  called  the   product  rule  of  probability.  We  will  be  extensively applying  this  rule  in  many  topics.  This  can  be  generalized  for  a  set  of  n events by repeatedly applying this rule:
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Equivalently, 

So, we can factor the probability of intersection of three events in any of the

3! = 3x2x1 ways. 

Independent Events

If  occurrence  or  non-occurrence  of  A  does  not  affect  occurrence  or  non-occurrence of B, then A and B are called  independent events. 

and 

Therefore, 

Refer to the following figure:

 Figure 4.8: Sample space for pair of dice and event sets example
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In  general,  for  N  independent  events,  the  probability  that  all  the  events happen  is  the  product  of  the  N  probabilities  that  the  individual  events happen. 

Let  E  denote  the  event  that  the  “first  die  shows  even  number”;  then, 

. Let  O  denote  the  event  that  the  “second  die  shows  odd

number”; then, 

. The probability of occurrence of both E

and  O,  that  is, 

Hence,  E  and  O

are independent events. 

 Note: Mutually exclusive events are not the same as independent events. 

 Events A and B are mutually exclusive, which means P(A) > 0, P(B) > 0

 and P(A ∩ B) = 0. However, independence of A and B means P(A ∩ B) =

 P(A)P(B) > 0. 

Here,  E  and  O  in  the  experiment  are  independent  but  are  not  mutually exclusive. 

Conditional independence

Again, taking the pair of dice example, let A denote the event “first die show 1” and B denote the event that the “second die shows 2”; then, A and B are clearly independent:

Now, let C be the event that the sum of two outcomes is S. Then, A and B

are  not  independent  anymore,  given  C.  So,  we  call  A  and  B  conditionally dependent:

Given one of the outcomes and fixing the sum of two outcomes = S, we can

have only one possible result: A|C = {(1, S-1)} and B|C = {(S-2, 2)}. Hence:
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Therefore, P(A|C)P(B|C) ≠ P(A ∩ B|C). 

Two events A and B are called conditionally independent, given event C, if:

P(A ∩ B|C) = P(A|C)P(B|C)

 Note: Independence of events does not imply conditional independence, 

 as we saw in the example here. Also, conditional independence does not

 imply independence of events. 

Total probability theorem

Let’s  consider  a  set  of  three  mutually  exclusive  and  exhaustive  events: and  H 3. So,  Hi’s are pairwise disjoint, and the union of all of them gives the entire sample space U. 

. Let  A  be  any  event.  A  will  have  intersection  with  at

least one of the  Hi’s as these  Hi’s are mutually and exhaustive, as shown in

 Figure 4.9. 

As   Hi’s  are  mutually  exclusive, 

and 

are  also

mutually exclusive. 

So, 

Refer to the following figure:
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 Figure 4.9: Total probability theorem

For a set of n mutually exclusive and exhaustive events 

:

Bayes theorem

Let A and B be two events such that P(B) > 0; then, using product rule of

probability, we have:

This is called Bayes rule. As you can see, this is nothing but an alternate way

to  write  the  product  rule,  but  this  rule  has  numerous  applications  in  the theory of machine learning. 

Here, P(A) represents the  prior belief about occurrence of event A. Let B be another related event. Knowing about the occurrence of event B gives some

more  information  about  event  A,  and  we  call  the  conditional  P(A|B)

 posterior probability. 

Let’s consider the following example of a medical test for a specific disease:

A = Event that a person from the population has the disease. 
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B = Event a person tests positive (irrespective of whether or not they

are sick). 

Given that the test sensitivity is 95%, the test may fail to detect disease

in a real sick person for 5% cases. The test has 5%  false negative rate, that is, P(B|A) = 0.95. 

Given test specificity is 97%, that is, the test result is positive for 3% of

healthy  people  without  the  disease  or  test  has  3%   false  positive  rate, that is, P (B| not A) or P(B|A’) = 0.03]. 

Survey data shows that the fraction of population having this disease is about

20 in a 1000. This gives us the prior probability of the disease, that is, P(A)

= 20/1000 = 0.02. 

Now,  out  of  these  20  sick  people  20x0.95  =  19  will  test  positive  with  the medical  test.  Also,  out  of  1000-20  =  980  healthy  people,  3%  will  test positive, that is, 29.4 people will test positive. So, in total, we have 19 + 29

= 48 testing positive with this test out of 1000. This gives the unconditional

probability of testing positive as P(B) = 0.048. 

Now,  given  that  a  person  gets  positive  result,  the  chance  that  they  are actually sick is 

= 0.395 that is, 39.5 %. This is a simple application

of Bayes’ rule. 

 Note: P(B) can also be calculated using the total probability theorem. We

 have  two  mutually  exclusive  and  exhaustive  events  A  and  A’

 (complement  of  A),  and  by  total  probability  theorem,  we  have  P(B)  =

 P(B|A) P(A) + P(B|A’) P(A’) = 0.95 × 0.02 + 0.03 × 0.98 = 0.0484. 

Bayes  theorem  can  be  generalized  for  set  of  n  events  also.  Let  U  be  the sample  space.  Let 

be   mutually  exclusive  and  exhaustive  events  such

that 

. Let B be any event in U such that P(B)

> 0. Then:

Bayesian Decision Theory
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Bayesian  Decision  Theory  is  a  fundamental  statistical  approach  to

classification problem. It is based on Bayes theorem and measures the risk of

assigning an input to a given class. Let’s try to understand this with the help

of a simple example inspired from the book on pattern recognition by Duda

and Hart ( Further reading [4]). In a fish packing plant, incoming fish on a conveyor belt are sorted to different boxes manually based on type of fish. 

Suppose  there  are  two  species  that  they  ship:  “sea salmon”  or  “sea  bass”. 

They want to automate this using a robotic arm, which can pick the fish from

belt  and  put  it  in  the  appropriate  box.  The  first  step  for  this  is  to  build  a classifier that can judge what type of fish is on the belt. 

Let  A  be  the  event  that  the  fish  is  “sea salmon”;  then,  A’  represents  “sea bass”.  We  assume  that  the  class   prior  probability  for  finding  salmon  is known. This may be based on the percent of availability during a particular

season or area of fishing and so on. 

Case 1:  There  is  no  information  available  other  than  the  class  priors. 

Then,  we  decide  “salmon”  if 

,  otherwise  we  decide

“sea bass”. 

Case 2: We got a sensor that can measure lightness of the fish. Also, 

we  know  the  distribution  of  lightness  for  both  the  fish,  as  shown  in

 Figure 4.10, which is obtained by measuring lightness from samples of manually  sorted  fish.  From  this,  we  also  have  the  conditional

probability  of  lightness  values  given  the  fish  category,  that  is,  the

probability of lightness value(L) in range 

, given that fish is

“sea  bass”  is 



.  Similarly, 

given that fish is “salmon”, 

and P(L ≥ 6|A) = (6 + 7

+ 7 + 15)/50 = 0.7. 

Now,  using  Bayes  rule  we  can  compute  the  reverse  conditionals,  that  is, given  the  lightness  value  from  the  sensor,  what’s  the  probability  of  a particular fish type. 

The denominator is the same for both the classes; hence, we can predict the

class  with  higher  numerator  value  as  the  most  likely  class.  Refer  to  the
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following figure:

 Figure 4.10: Histogram of lightness measure computed from 50 samples of each fish type So, we can build a simple Bayesian classifier using the Bayes’ rule:

if 

, then fish is salmon else sea bass. 

Or 

, then fish is salmon else sea bass. 

Here, θ is the ratio of the prior probabilities or odds against finding salmon, 

which  is  given,  to 

,  which  is  the   likelihood  ratio  of  lightness

measures. 

 Table 4.1: Different Decision Boundaries for lightness measures based on the prior probability ratio ; note how the classification changes based on the prior values

Using  this  equation,  we  can  now  compute  decision  boundary  and  derive  a rule based on lightness values alone to decide the fish type, as shown in the

 Table 4.1, for various values of the given prior ratios. 

The  classifier  must  be  designed  to  perform  well  over  a  range  of  prior probability values such that the worst overall misclassification risk for any

value  of  the  priors  is  as  small  as  possible.  The  decision  boundary  must  be chosen  such  that  the  maximum  possible  overall  risk  of  misclassification  is minimized.  Such  a  decision  boundary  is  called   Minimax  Bayesian  Risk solution. 

Random variable

We  have  represented  the  outcomes  of  a  random  experiment  as  event  sets. 

These events are abstract objects. To use any of the mathematical tools, we

must  map  these  abstract  objects  to  some  numbers.  A  Random  Variable

(R.V. )  maps  these  arbitrary  events  to  real  numbers  or  real  vectors.  For example, the outcomes of a coin toss are represented as the set  {H, T}. We can  define  a  mapping   X  :  {H,  T}  →   R,  as  follows,  X(H)  =  1,  X(T)  =  -1. 

Based on the range of values an r.v. takes, it can be categorized as discrete or continuous, as shown in  Table 4.2. Refer to the following table: Discrete random variable

Continuous random variable

Takes distinct values, which are countable (need Takes all possible values within an interval, that not  be  finite)  like  set  of  all  integers.  For is,  a  continuum  of  values.  For  example,  exact example, the r.v. representing coin toss output. 

body temperature can be anywhere from 93 F to

105  F,  including  fractional  values  like

98.1366421 F. 

 Table 4.2: Random variable definition

How  is  a  r.v.  different  from  a  simple  variable?  For  a  simple  variable,  we cannot say how likely is it that the variable takes a given value or how likely

is its value to falls in each range because there is no probability associated

with  the  variables.  For  r.v.,  there  is  an  associated  probability  measure  that tells how likely it is that the variable takes certain value or certain range of values. This extra information about the variable distinguishes an r.v. from a

simple  variable,  and  it’s  represented  as  another  function  called  the
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Probability  Mass  Function  (P.M.F)  for  a  discrete  random  variable  and Probability Density Function (P.D.F) for a continuous random variable. 

Let the random experiment be tossing a coin three times. Let X denote the

count of heads from three-coin tosses. Clearly, X can take values from this

set  {0,1,2,3}.  From  all  possible  eight  outcomes,  we  can  compute  the

probability of each outcome, as shown in  Figure 4.11. For example, there are three  outcomes  with  X=1  total  head  viz   {HTT,  THT,  TTH},  and  hence, 

. For all  X = 0, …, 3, we can compute the probabilities, and

we  get  a  discrete  probability  density  function  represented  by 

Note: 

and 

For any function of a random variable to be a probability density function, it

should satisfy these two properties. The density function f(x) is analogous to

distribution  of  unit  mass  of  powder  along  a  line.  So,  adding  up  all  mass should become 1. Also, we cannot have negative mass on this line; we can

have at most unit mass and at least zero mass. 

Discrete probability distributions

The probability distribution associated with a discrete r.v is called a discrete probability  distribution.  A  discrete  random  variable  taking  only  Boolean values 0 or 1 is called a  binary random variable and one which takes one out of K discrete values is called a  categorical random variable. Let’s now study a few important discrete distributions that we will be repeatedly using in the

subsequent chapters. The  p.m.f   f( x)  of  any  discrete  random  variable  X  has the following two properties:

and 

For discrete r.v. 

Refer to the following figure:
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 Figure 4.11: Probability distribution for 3-coin toss experiment

Bernoulli and categorical distribution

The most basic of all discrete random variables is the  Bernoulli. X is said to have a Bernoulli distribution if X = 1 occurs with probability  p and X = 0

occurs with probability. Here, is generally called the probability of success. 

This is like a biased coin toss experiment where head occurs with chance p

and tail with chance 1 – p. 

Generalized  Bernoulli  distribution  (Categorical):  In  Bernoulli

experiment, we have only two possible outcomes. We can generalize this to

K  possible  outcomes.  For  example,  we  are  given  an  urn  of  four  different colored  balls  red,  blue,  green,  and  orange.  Let  X=0,3  represent  the  four colors,  respectively.  We  have  to  find  the  probability  of  drawing  a  given colored ball, where each ball is drawn at random with replacement. Such a

r.v is called categorial random variable. In general, a categorical variable X

can  take  one  of  K  possible  values  {1,2,…,  K}  with  probability 

, where 

= 1. Sample from categorical distribution

can be represented as a one-hot-encoded vector of dimension K. In the urn

example, a blue ball can be represented as (0,1,0,0), and a green ball can be

represented  as  (0,0,1,0).  Let  x  denote  one-hot-encoded  sample  from  a categorical distribution. Then, the mass function of vector x is defined by:
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Binomial distribution

Consider  a  sequence  of  n  independent  Bernoulli  trials  with  probability  of success = p, which is constant for each trial. In n trials, if there are x success and n-x failures, and the probability of x success is given by 

. 

However,  out  of  n  consecutive  trials  any  x  trials  can  be  success,  and  there are 

possibilities for that. Then, the probability of x success is given by 

. The probability distribution of the number of successes

is  called  binomial  probability  distribution.  If  X  be  binomially  distributed: 

, where n and p are the parameters of the distribution. 

 Figure 4.12 shows binomial distribution histogram plots for various values of  n  and  p.  We  see  if  p=.5,  we  get  a  symmetric  distribution,  otherwise  its either left or right side skewed. Refer to the following figure:

 Figure 4.12: Binomial Distribution plots for various values of the parameters n, p

Poisson distribution

All  distributions  we  studied  so  far  have  finite  and  known  set  of  possible outcomes. Now, if we take the number of calls received every minute in a

call center or the number of vehicles at a traffic signal at a time of day, it’s not possible to predefine any max possible value. To define the distribution

of  such  count-based  random  variables,  Poisson  distribution  is  used.  A
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discrete random variable X is said to be Poisson distributed with parameter λ

> 0 if it has a probability mass function given by:

Continuous probability distributions

Probability  distribution  of  a  continuous  random  variable  X  is  called

continuous  probability  distribution.  The  p.d.f   f(x)  of  a  continuous  random variable has the following properties:

and 

for all  x

As X can take infinitely many values, the probability of X taking on any one

specific  value  is  zero.  This  can  be  explained  with  the  following  example. 

Suppose  a  species  of  bacteria  typically  lives  4  to  6  hours.  What  is  the probability that a bacterium lives exactly 5 hours? A lot of bacteria live for

approximately  5  hours,  but  there  is  negligible  chance  that  any  given

bacterium  dies  at  exactly  5.0000000000…  hours.  The  probability  of 

is given by the integral:

However, the probability of X assuming any fixed value, that is, P(X=a) = 0. 

Now,  let’s  now  study  a  few  important  continuous  distributions  useful  for understanding any ML algorithms. 

 Note: For continuous probability density f(x) ≠ P(X = x), f(x) represents

 the  density  of  the  probability  mass  around  the  point  X  =  x.  The

 probability of the continuous random variable X taking any exact value x

 is zero. However, for discrete distributions, f(x) = P(X = x). Also, f(x) can

 be  greater  than  one  for  some  values  of  x  for  continuous  distributions. 

 For  discrete  distributions,  however,  f(x)  ≤  1  always  as  it  represents  a

 probability. 

Example: The diameter of an electric cable manufactured from a factory can be  assumed  to  be  a  continuous  random  variable   X.  Suppose  the  density
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function of X is given by:

First,  let’s  verify  that 

is  a  density  function.  Clearly, 

for 

and

Now,  we  can  also  find  the  probability  of  producing  a  wire  of  length  more than 2/3 units, as follows:

Here, 

. So, density of a continuous distribution

can be greater than 1. However, the integral of the p.d.f over certain interval

represents a probability and is always less than or equal to one. 

Cumulative Probability Distribution Function

(C.D.F)

As  the  name  suggests,  this  function  gives  the  cumulative  probability  of This  function  gives  probability,  and  hence, 

. 

Also, 

,  that  is,  the  total  probability  of  X  taking

all possible value should add up to 1. Also, 



. 

Being a cumulative function, 

is always monotone increasing:

if 

Using 

,we can define probability of X in an interval as follows:

Another very important property of c.d.f is as follows:
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c.d.f can be also defined for discrete distributions with integral replaced by

sum. 

Uniform distribution

Let be a random variable that can take any real value in the closed interval 



.  X will be called uniform distributed if

it takes all values with equal probability 

. So, we have 

,  for  all 

.  As, 

is  probability  density  function, 

. This implies 

or 

. 

Therefore:

c.d.f of uniform distribution is 

. You can find

it plotted in  Figure 4.13:

 Figure 4.13: (Left) Uniform Density function (Right) Uniform cumulative distribution function

Gaussian distribution or normal distribution
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A  continuous  random  variable  can  take  infinitely  many  values.  However, 

most of the naturally occurring continuous random variables, like heights of

people, blood pressure, students’ scores in a test, and the exact dimensions

of  an  object  produced  by  a  machine,  are  observed  to  have  bell  shaped distribution  when  plotted  as  a  frequency  distribution,  that  is,  if  we  plot  a sample of values taken by these random variables, we get the “bell shaped” 

histogram shown in  Figure 4.14:

 Figure 4.14: Gaussian Distribution

Normal  distribution  also  arises  naturally  if  we  take  the  distribution  of  the sum of large number of any random variable. Let X be uniformly distributed

in the interval [0, 1] and  Y =  X 1 +  X 2 + … +  Xn. Then, as n increases,  Figure

 4.15 shows that the distribution of values taken by the sum Y becomes closer

to the bell curve. This property of Gaussian is formally stated as the  central limit theorem. Refer to the following figure:
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 Figure 4.15: (Left) Uniform Density function (Right) Uniform cumulative distribution function Now,  let’s  look  at  the  probabilistic  interpretation  of  the  bell  curve  in  the preceding figure. This bell curve in  Figure 4.14 has it peak at  x = 75. The chance of finding a value of the random variable decreases as we move away

from this center point in both the directions. So, the probability is inversely

related  to  the  distance  of   x  from  the  center  point.  In  fact,  the  chance  of observing a value  x of the random variable  X decreases  exponentially as we go  away  from  the  center  point.  Let’s  denote  the  center  point  by  μ.  The normalized distance of any value  x from the center point μ is 

, where σ

> 0 is a measure of scatter or dispersion of the data around the center point μ. 

The probability density function for Gaussian distribution is given by:

Here, 

is  a  normalization  term  required  to  make  this  a  probability

density function that satisfies 

. This density function has

two  parameters:  center  location    and  scale 

It’s  denoted  by 

. 

Relation  of  continuous  Gaussian  distribution  to  discrete  binomial

distribution

Let X be a random variable with distribution B(n, p). If n is large enough, 

is  a  good  approximation  for  B(n,  p),  where  μ  =  np  and 
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. The  normal  distribution  is  generally  considered  to  be  a

decent approximation for the binomial distribution when . 

The  dispersion    can  be  used  to  divide  the  area  under  a  normal  curve, starting from the center location. The normal density plot shows how likely

it  is  to  find  a  value  within  a  specific  distance  from  the  center  location  . 

This is called the  Empirical rule or three sigma rule. 

Approximately  68%  of  the  data  will  fall  within  the  interval 

Approximately  95%  of  the  data  will  fall  within  the  interval 

Approximately  97.5%  of  the  data  will  fall  within  the  interval 

 Figure 4.16 shows the empirical rule for normal distribution:

 Figure 4.16: Empirical rule for normal distribution

If 

,  then 

is  a   standard  normal  variate  that  is, 

.  This  is  proved  in  a  later  example.  The  standard  normal

probability density function is denoted by 

. 
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The  c.d.f  of 

is  denoted  by 

.  However, 

evaluating this integral is not very straightforward. One way is to expand the

exponent term as a power series and then integrate each term of series and

compute  the  infinite  series  sum.  There  are  precomputed  probability

distribution  tables  available  for  standard  normal  distribution,  which  give 

 

 for equispaced values of z, as shown in  Figure

 4.17.  Using  this  table,  we  can  compute  the  probability  in  the  interval  for

standard  normal  distribution 



.  The  entry 

in the table depicts the probability 

for row label  r

and column label  c. For example, to compute probability 

, we

take 

and 

and  get  P(Z  ≤  0.36)  =  0.64058.  Refer  to  the

following figure:

 Figure 4.17: Cumulative Distribution

Using the Python “scipy.stats”  library,  we  can  compute  the  c.d.f  for  many continuous distribution functions, as show in the following snippet:

1. from scipy.stats import norm

2. print(“P(Z<0.36) = “, norm.cdf(0.36))

3. print(“P(1.5<Z<3.2) = “, norm.cdf(3.2)-norm.cdf(1.5))

Example:  Quality  of  a  product  produced  by  a  machine  is  measured  on  a scale of 0-100. If an old machine outputs 58% products in the quality range

less than 75, 38% products are between quality range of [75 to 80] and only

4%  were  above  80.  Assuming  that  the  quality  metric  for  each  machine  is
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distributed normally, can we find the mean quality metric and the variance of

the quality metric? 

Let  the  random  variable  X  denote  the  quality  index  of  the  products.  Let denote  the  mean  and  variance  of  the  distribution  and 

be  a

standard 

normal 

distributed, 

given 

, 

and  P(75 ≤  X ≤ 80) = 0.38. Referring to

the  standard  normal  cumulative  probability  table  discussed  in   Figure  4.17, 

we  can  rewrite  these  probability  equations  in  terms  of  standard  normal variable Z, as follows:

Here,  we  have  used  the  inverse  of  the  c.d.f  function  called   percent  point function:   ppf(0.58)  =  Φ-1(0.58)  =  0.20.  Percent  point  function  takes probability  as  input  and  computes  the  corresponding  x  for  the  cumulative distribution  function.  This  is  also  implemented  in  “scipy.stats”  as norm.ppf() function:

Solving the previous two linear equations, we get 

and 

. 

Standard  normal  distribution  being  symmetric  around  the  origin,  we  have P(X < 0) = P(X > 0) = ½. This is also evident from the c.d.f plot for normal distribution showing Φ( x) = 0.5. 

Exponential Distribution

The  exponential  distribution  is  another  popularly  used  continuous

distribution. It is often used to represent the time elapsed between events. 

The  density  function  of  a  continuous  random  variable  X  following

exponential  distribution  is  denoted  by   X~ Exp(λ),  λ  >  0  and  is  defined  as follows:
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Example: Airline tickets are booked in advance, and generally, the number of days ahead we book a ticket depends on factors like whether it’s planned

travel  or  unplanned.  Is  it  during  holiday  season?  Are  the  prices  going  to shoot up. The number of days ahead travelers purchase their airline tickets is

observed to follow an exponential distribution with an average of 15 days. 

Mathematical expectation of a random variable

Probability distribution of a random variable X tells us the likelihood of X

taking  a  specific  value  or  falling  in  a  specific  interval.  In  practice,  a  more easily  interpretable  information  will  be  the  average  value  taken  by  the random variable. For example, a company may be interested in the average

profit they are going to make on a new product being launched. A pediatric

doctor  may  be  interested  in  the  average  height  and  average  weight  of  a  5-year-old.  The  average  value  of  a  random  variable  is  also  termed  as  the mathematical expectation of the random variable denoted by  E[ X]. 

The expected value of a discrete random variable is the weighted average of

all possible values given by:

For continuous random variables, we must replace sum by integral and get

the definition:

Example: Let X denote the amount of time (minutes) a person must wait for an elevator in a high-rise building. Here, X is a continuous random variable

with the following distribution:
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The expected value of X id given by the following:

So,  the  expected  wait  time  for  the  elevator  in  the  building  is  1  minute. 

Readers can plot this density function and observe that the maximum density

is also at  x = 1 in this case. 

We  can  calculate  the  expectation  of  the  random  variables  with  known

probability  distributions  discussed  earlier.  This  is  shown  in  the  following table:

Distribution(X)

Mean or E[X]

Variance  E[(X – E[X])2]

 X~Bernoulli(p)

 p

 p(1 – p)

 X~Binomial(n;p)

 np

 np(1 – p)

 X~Poisson(λ)

λ

λ

 X~N(μ, σ 2 )

 μ

σ2

 X~Exponential(λ)

 1/ λ

 1/ λ2

 X~Uniform(a,b)

 1/2(a + b)

 1/12(b – a) 2

 Table 4.3: Mean and variance of few commonly used distributions

We  can  also  define  the  expected  value  of  a  function  of  a  random  variable g( X) as follows:

For 

, the expectation of  g(X)

is called the rth moment about the mean of  X. In particular, if  r = 2, then the expectation  of   g(X)  is  called   variance  of  the  random  variable  and  is  often denoted by σ2. 
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Here are a few properties of expectations:

Expectation  is  a  linear  operator.  Hence,  the  expectation  of  a  linear

combination  of  random  variables 

is  given  by  the

following:

for any constant a. 

The expectation of a product of mutually independent random variables

is as follows:

Cauchy-Schwartz inequality:  If  X  and  Y  are  two  random  variables, 

then 



,  where  equality  holds  if  and  only  if 

for some real  . 

Jenson’s  Inequality:  Let  g  be  a  convex  function  of  the  random

variable X, then 

. 

Joint Probability Distributions

Till  now,  we  have  discussed  probability  distributions  for  a  single  random variable. In  real  life,  we  are  often  encounter  several  random  variables  that are correlated. Here are a few examples:

1. In ecology, one species may be prey of another, and hence, the number

of predators will be related to the number of prey. If we are modeling

the counts of the prey and predator as two random variables  X 1 and  X 2, there  must  be  some  dependency  between  them  and  the  probability  of

these  random  variables  assuming  some  pair  of  values.  So,  it  makes

sense to model the joint probability of the variables ( X 1,  X 2). 
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2. Suppose we are studying about different families in a locality. We can

represent statistics like household income, number of family members, 

highest  education  in  family  as  different  random  variables   X 1,  X 2,  and X 3. There are high chances that these variables are dependent on each

other, and we study the distribution of them jointly. 

Let  X,  Y be two discrete random variables such that  X takes n distinct values and   Y  takes  m  distinct  values 

.  The  joint

probability mass of  X and  Y is defined as 

. 

For example, let  X denote the length and  Y denote the width in millimeters of a plastic cover manufactured in a packaging unit of factory. If we round of  X, Y  to  the  nearest  integer,  they  take  a  discrete  set  of  values.  Let X∈{200,201,202,203} and  Y∈{300,301}. Refer to the following table: Length X

 Table 4.4: Joint distribution example

The sum of all the probabilities in the table is 1.0. Given a joint probability

distribution for X and Y, the individual probability distribution for X or for

Y can be easily derived from the joint distribution. 

P(X = 202) = P(X = 202|Y = 300) + P(X = 202|Y = 301) = 0.33 = column sum of the previous joint probability matrix, for 3rd column where  X = 202. 

P(Y = 301) = P(Y = 301|X = 200) + P(Y = 301|Y = 201) + P(Y = 301|X =

202) + P(Y = 301|Y = 203) = 0.17 + 0.20 + 0.26 = 0.63 = row sum of above

joint probability matrix, for 2nd row, where Y = 301. 

The  probability  distribution   P(X)  appears  in  the  column  sums  and  the probability distribution  P(Y) appears in the row sums, as shown in  Table 4.4. 

As  they  appear  in  the  margin  of  the  table,  these  are  terms  as  the   marginal probability distribution of the joint distributions. 

Joint probability density function in two variables X and Y denoted by 

, 

is called  bivariate probability density function. 
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The marginal densities are given by the following:

These  definitions  of  joint  probability  and  marginals  can  be  extended  to   n

dimensions and are called  multivariate probability density function. To find the marginals along any dimension, we must add the probability along  n  –  1

remaining dimensions. For  example,  marginal  along  the  x-axis  for  a  three-dimensional distribution 

is:

For  continuous  random  variables  also,  we  can  define  the  joint  distribution and  the  corresponding  marginals  by  replacing  the  sums  with  integrals. 

Integral  in  two  dimensions  represents  integral  over  a  region  in  two

dimensions, and it gives the area of the region. For continuous distribution, 


we have:

Probability of  X,  Y falling into a region R is given by:
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The marginal probability densities are given as:

and 

 Note: The conditional density function for Y|X = x can be defined as:

 For mutually independent random variables X, Y the joint distribution fxy

 (x,y) can be represented as the product of the marginals:

 fxy  (x, y) = fx  (x) fy  (y)

We can represent n jointly distributed random variables 

as a

random vector 



. This  random  variable  X  is  vector  valued

and assumes values in the Euclidean space 

. The multivariate density of

this random vector is represented by 

or simply as 

, where  x is a

vector in 

. 

Expectation of jointly distributed variables

We  have  defined  the  mathematical  expectation  of  a  single  variable  in  the previous sections. For two jointly distributed random variables X and Y, we

can define the expectation of a function 

as follows:

, if X,Y are continuous

And 

The joint central moment (rth central moment of X and sth central moment of

Y) is denoted by 

and is defined as follows:
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3. If 

, we call it covariance and is denoted by COV (X, Y). So:

4. If 

,  the  central  joint  moment  reduces  to  variance  of  X, 

that is, 

5. If 

, the central joint moment reduces to variance of Y, that

is, 

The   COV  (X,Y)  can  be  equivalently  written  as   COV  (X,Y)  =  E[XY]  –

 E[X]E[Y]. The proof of this is simple.  COV (X,Y) = E[(XY – XE[Y] – YE[X]

 +  E[X]E[Y])]  =   E[XY]  –  E(X)E[Y]  –  E[Y]E[X]  +  E[X]E[Y]  =  E[XY]  –

 E[X]E[Y]. 

Example: Let’s consider two random variables X and Y having joint density function:

The density is plotted in  Figure 4.18, where each line represents contour of constant  density  parallel  to  the  line 

.  The  lighter  shades

represent  high  density  regions.  As  we  move  away  from  the  origin,  the

density  decreases  parallel  to  the  line 

. (However,  the  white

space between lines doesn’t not represent high density regions. The density

varies parallel to the lines there as well.) Refer to the following figure:
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 Figure 4.18: Bivariate Density Contours (the diagonal lines represent fixed density) Let’s now calculate the marginal probability density functions:

We can also calculate the conditional distributions 

and 

:

Knowing the marginal distributions, we can also calculate the expectations

of the individual variables:
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Similarly, 

.  Now,  we  can  calculate  the  variance  of  the  two

variables as follows:

To compute the covariance of the two variables, we need 

:

Hence, we can now calculate the  covariance using the following:

Theorem:  Two  independent  random  variables  are  uncorrelated.  X,  Y  are independent implies 

. However, the converse is not true, that is,  two

 uncorrelated variables need not be independent. 

Example: 

, 

.  Here 

. 

However,  E[ XY] =   × [–4 × 16 – 3 × 9 – 1 × 1 + 1 × 1 + 3 × 9 + 4 × 16] = 0

and  E[ X] = 0. 

Therefore,  COV( X,  Y) = 0, and hence, ρ XY = 0, but  X,  Y are not independent as  Y = X 2. 

Transformation of a random variable

Let  X be a random variable and g(.) be a function; then,  Y = g(X) is also a random variable. Here, 

are random vectors, and hence, g

must be vector field. We can represent g as 

such that:

Where, 

for all i are continuous differentiable functions. 

If 

represents the joint density function of  X,  then the joint distribution function of  Y is given by 

. Here, J denotes the Jacobian
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matrix  of  the  random  variables,  and    represents  the  determinant  of  the Jacobian, and hence, is a polynomial. 

If 

are  real  valued  random  variables,  then  the  Jacobian  simplifies  to

simple derivate; we write:

Example: Let 

, where X is a random variable distributed as 

. 

We have:

Hence,  the  density  function  of  the  random  variable  Y  is  given  by 

Example:  Let 

and 

,  that  is, 

;  we  have 

. 

The 

distribution 

of 

Z 

is 

Multivariate distributions

Now, let’s look at a few important multivariate distributions that will be used

in defining many ML models in the later chapters. We will also look at the

marginal distributions for some of these multivariate distributions. 

Multinomial distribution
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Consider  a  sequence  of  n  independent  categorical  trials  with  categorical probability vector 



, where 

=1. which are constants

for  each  trial.  For  example,  in  the  ball  and  the  urn  experiment,  an  urn contains  many  balls  of   K  different  colors.  The  color  of  the  ball  drawn  is categorically distributed, and the sequence of n such trials with replacement

will be multinomial distributed. In n trials, if   represents the count of 

category  obtained,  then  we  must  have 

.  These  different

categories  can  be  obtained  in 

ways,  and  the  probability  of

obtaining  this  category  distribution  is 

. 

Let  X  be  multinomially  distributed  M  (n, p).  Here,  X  is  a  vector: and we write 

. 

, where 

Text  data  can  be  modelled  as  a  multinomial  distribution  over  the  words. 

Assuming  that  the  text  is  a  collection  of  words,  given  a  set  of  text documents, we can define a vocabulary set of K distinct words occurring in

the entire document collection. Based on the number of times a word occurs

in each document, we can represent each document as a categorical variable. 

Multivariate gaussian distribution

For  a  vector 

,  the  multivariate  Gaussian  distribution  takes  the

following form:

where 

is  d-dimensional mean vector,   is a  d × d covariance matrix, 

and   is the determinant of Σ. This is denoted by the notation 

. 

We will encounter this form of Gaussian distribution in several topics across

the book. So, we must understand this in detail. First, we will start with the

geometric interpretation of this density function, which will give us an idea

of how Gaussian distributed vectors are placed relative to each other in 

. 

Also, we will prove that p(x) indeed represents a density, that is:
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Representing 

as  a  vector   dx,  we  have  a  succinct

representation of the normalization equation, that is, 

The  power  in  exponent  term 

is  a  quadratic

form  since  ,  being  the  covariance  matrix,  can  be  taken  to  be  symmetric; hence,  its  inverse  is  also  symmetric.  Here,  ∆  is  called  the   Mahalanobis distance from   to  x, and it reduces to the Euclidean distance when Σ is the identity matrix. 

Since 

represents  a  quadratic  form,  so 

,  represents  the

surfaces of constant probability density because the rest of the terms in the

expression  of 

are  independent  of   x.  Let’s  consider  two-dimensional

Gaussian  distributed  random  variable 

diagonal  covariance

matrix 

and 

. Diagonal covariance matrix means that

the  variables  are  mutually  uncorrelated  but  have  different  dispersion  or spread. We have 



The quadratic form   simplifies to:

So, 

represents  an  ellipse 

with  major  axis  of

length 

along the 

axis and minor axis along of length 

along the 

axis, as shown in  Figure 4.19  (left). If is not a diagonal matrix, that is, the variables are correlated, then we will have a tilted ellipse, as shown in

 Figure 4.19  (middle and right). 

Anywhere on the ellipse for a given c, we have the same fixed probability

density 

. Refer to the following figure:
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 Figure 4.19: Elliptical contours of constant density for various covariance matrices

In  Figure 4.19, the point on ellipse along x-axis is and point along

y-axis is 

. The Euclidian distance of these points from the origin are 

and 

, but we have the same probability density at these points given

by 

. This is in contrary with Gaussian distribution of single variable, 

which  is  symmetric  around  the  center  ,  and  hence,  points  that  are  not equidistant from mean have a different probability density. Now, instead of

Euclidean  distance,  if  we  consider  Mahalanobis  distance,  then  both  the

points 

and 

are  at  the  same  distance 

from  the

center 

. The  Mahalanobis  distance  measures  the  distance  relative  to

the center or centroid of the distribution. 

Mahalanobis  distance  is  commonly  used  to  find   multivariate  anomalies  or outliers, which indicates unusual combinations of two or more variables. For example, it’s quite common to find a 6 feet tall woman weighing more than

180 pounds, but it’s very rare to find a 4 feet tall woman who weighs that

much. 

For single variable  x, the Mahalanobis distance of  x from the center is given by 

. This is also known as the  standard scaler for any single variable x. 

Given  a  data  sample,  we  can  approximate 

by  the  sample  mean  and

sample standard deviation, respectively. Hence, the Mahalanobis distance for

a single variable isthe number of standard deviations; a sample observation  x is away from the sample mean. Standard scalar is very useful and is applied

to data attributes before model building. 

 Note:  The  elliptical  shape  of  this  distribution  is  guaranteed  if  the

 covariance matrix Σ ≻  0, positive definite; so, if the eigen values of are
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 all  positive,  then  the  quadratic  form  Δ 2   is  ganranteed  to  represent  an

 ellipsoid. 

Now,  let’s  see  whether  the  multivariate  normal  density  function  is

normalized. As  Σ  is  a  real  symmetric  matrix,  the  eigen  values  of  Σ  are  all real. Let 

be  the  eigenvalues  of  Σ  and 

denote  the  corresponding

eigen vector. Then, we have the following eigen value equation:

Also, eigenvectors of real symmetric matrices are orthogonal. Hence:

( where  Iij represents the (i,j)th element of identity matrix)

Also,  is  diagonalizable  and  can  be  written  as 

,  where    is  a

diagonal  matrix  of   d-dimension  with  the  eigenvalues  of  Σ  as  the  diagonal entries and U being an orthogonal matrix with column vectors  . Now, we

can write matrix   as a sum of  d matrices whose only one diagonal entry is non-zero and equal to   and all other entries of the matrix are zero. So, we

have:

Here,   denotes the standard coordinate basis vectors or one hot vectors with

only  ith non-zero entry as 1. Therefore, we can write matrix Σ as follows by multiplying the preceding equation by   and 

from both sides:

Similarly, 

Substituting this in the Mahalanobis distance expression, we have:
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Taking   as the simple dot product 

, we have:

We  can  interpret    as  coordinates  of  point   x  in  a  new  coordinate  system defined by the orthonormal vectors   whose origin is] shifted to   and axes

rotated  to  align  along  the  orthogonal  eigen  vectors.  Let  vector 

, then 

.  This is depicted in  Figure 4.20

for 2-dimentional Gaussian distribution:

 Figure 4.20: Elliptical contour of constant density, and major and minor axis are defined by the eigenvalues
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For the Gaussian distribution to be well defined, it is necessary that all the

eigenvalues 

,  otherwise  the  distribution  cannot  be  properly

normalized. In that case, the axes length of the ellipsoid is 

. 

As we have done a coordinate change, we must compute the Jacobian matrix

Matrix   U  being  orthonormal 

and 

. 

Hence, matrix 

Therefore, 

Here:

Now,  we  are  all  set  to  check  the  normalization  condition  of  multivariate Gaussian. We will reduce 

to a product of  d Gaussian density functions

of single variable with zero mean and variance  . 

This  shows  that  multivariate  normal  density  function  is  normalized.  This proof  gives  us  a  detailed  understanding  of  the  structure  of  multivariate Gaussian, which will be used in various models later. 
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Information theory

Any information can be broadly thought of as the resolution of uncertainty. 

Knowing  that  someone  has  passed  an  examination  may  not  be  very

surprising,  but  knowing  that  someone  topped  the  examination  is  quite

surprising.  So,  information  can  be  viewed  as  the  ‘degree  of  surprise’. 

Information  is  more  valuable  when  it’s  about  an  unlikely  event.  Thus, 

information  content  is  associated  with  the  inverse  of  the  probability  of  an event. Let’s denote the information about an event A by a function  H( A). If A and B are two unrelated events, the information gain from observing both

should be the sum of the separate information gained from each of them. that

is,  H(A,B) = H(A) + H(B). Also, as A, B are unrelated or independent, we have   P(A,B)  =  P(A)P(B). .  Hence,  the  log  function  is  a  good  candidate  to relate probability to information gain. Also, H must be inversely related to P; 

hence, we define information gained from observing an event A as follows:

The negative sign here ensures that information content is always positive or

zero,  the  base  of  the  logarithm  is  arbitrary,  and  the  choice  of  base  gives  a unit  of  the  information  measure.  If  measured  with  base   e  with  natural logarithm, the information is measured in  nats. If measured with base 2, the information is measured in terms of binary bits. 

Entropy

Let  X  be  any  discrete  random  variable  following  a  probability  distribution p(x). A sender wants to communicate values of X to a receiver. The average

information  transmitted  can  be  computed  by  taking  the  expectation  of

information sent, that is:

The  average  amount  of  information   H[X]  needed  to  specify  the  state  of  a random  variable   X  is  called  the   entropy  of  the  random  variable.  For  a discrete distribution, computation of entropy is simple. Let  X  be  a  discrete r.v taking integer values 1 to 5 with probability  p = {0.1,0.6,0.05,0.05,0.2}. 
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Then, taking logarithm with base 2, we get the entropy in bits as H = –(.1 ×

log2.1 + .6 × log2.6 + 2 × .05 × log2.05 + .1 × log2.1 + .2 × log2.2) = 1.67. 

In   Figure  4.20  the  leftmost  distribution  is  sharply  peaked  at  x=2,  and  the entropy of this distribution is the lowest as compared to the middle and right

distributions,  which  are  spread  evenly  across  more  values.  The  rightmost distribution  is  uniform  with  maximum  entropy.  We  can  prove  that  the

maximum  entropy  configuration  is  achieved  by  uniform  distribution  for  a discrete r.v., taking M possible discrete values with probabilities  p = {p 1 , p 2 , 

 …,pM}, where 

. 

We can think of H as a scalar field 

, (introduced in  Chapter 3, 

 Vector  Calculus)  which  transforms  and  M-tuple  of  probabilities  p  to  the

corresponding entropy and maximize H using Lagrange multiplier to enforce

the probability normalization constraint 

, as follows:

Refer to the following figure:

 Figure 4.21: Elliptical contour of constant
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This shows that the  maximum entropy configuration for discrete distribution is the  uniform distribution. 

Similarly, entropy for continuous distributions can be defined as follows:

This is called  differential entropy or continuous entropy. Differential entropy can be negative, unlike discrete entropy. 

Now,  let’s  find  the  maximum  entropy  configuration  for  continuous

distributions. For a continuous distribution with given mean  , the maximum

entropy 

configuration 

is 

attained 

by 

exponential 

distribution 

.  If  the  second  moment  or  variance 

of  the

distribution  is  also  specified,  then  the  maximum  entropy  configuration  is normal distribution 

. These can be also proved using the

same Lagrange multiplier trick. 

Entropy can be defined for joint distribution of variables X, Y in the same

way using the joint probability distribution 

:

Using  product  rule  of  probability, 

.  So,  we  can

write:

Or, 

Since, 

, we can write 

as:

Here, 

is called the  conditional entropy, that is, the remaining entropy of Y, given that X has taken a specific value x. 
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Relative entropy or KL divergence

Suppose a sender wants to communicate values of a random variable X to a

receiver.  X  follows  some  unknown  distribution  p(x)  that  we  have

approximated  with  q(x).  If  q(x)  is  used  to  construct  a  coding  scheme  for transmitting  values  of  x  to  a  receiver,  the  average  additional  amount  of information  (in  nats)  required  to  encode  X  is  given  by  the  difference: This is denoted by the notation 

and is called relative entropy or

 Kullback-Leibler divergence, or KL divergence.  This also gives a measure of difference between two probability distributions p(x) and q(x) over the same

random  variable  X.  However,  it’s  not  a  symmetric  measure,  that  is, 

. So, we cannot call it a distance function. 

KL divergence is always positive, 

, where equality holds

if and only if p(x) = q(x). The proof of this follows from the convexity of -

log function. We know that for a convex function f, given two points a, b, we

have the following for 

 Jenson’s inequality  generalizes  this  to   n  points:  Given  a  convex  function   f and  n points 



in its domain:

Let  p(x)  represent  any  discrete  distribution  of  discrete  random  variable  X; then, 

.  Replacing    by 

in  the  Jenson’s  inequality,  we

have:

For continuous random variables also, the previous inequality holds, and we

can write:
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Now, -log(x) is a convex function. So, we have:

Or, 

Therefore, 

, since 

We will be using this property of KL divergence in many theories later, like

for variational inference in  Chapter 12: Generative Models. KL divergence is  not  symmetric,  that  is, 



. Jensen-Shannon  (JS)

divergence  is  a  symmetrized  and  smoothed  version  of  the  KL  divergence defined by:

This  is  used  for  measuring  the  similarity  between  two  probability

distributions. 

Mutual information

Let’s consider the joint distribution of two random variables X, Y denoted

by p (x, y). If X, Y are independent we can write 

. If

the variables are not independent, then we can measure how close they are to

independent  variables  by  considering  KL-divergence  between 

and 

. This is called mutual information between the variables X and Y

denoted by 

Since  KL  divergence  is  non-negative,  we  see  that 

where

equality  holds  if  and  only  if,  x  and  y  are  independent  that  is, 

are  independent.  Also,  its  trivial  to  see  that 

. that is, mutual information is symmetric. 
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We  can  re-write  mutual  information  in  terms  of  conditional  entropy  as

follows:

This  relation  can  be  derived  using  the  definition  of  KL-divergence  and product rule of probability. Following are some properties of 

which

follows from the conditional entropy-based definition above. 

6. 

7. 

are independent

8. 

mutual information is symmetric

Using these concepts of entropy and information gain, we can come up with

a simple algorithm for classification and regression called decision trees. 

Decision tree

A  decision  tree  is  a  simple  but  powerful  supervised  machine  learning

algorithm  used  for  solving  both  classifications  are  regression  problems. 

Decision  tree  training  algorithm  recursively  partitions  the  data  set  into smaller and smaller subsets using certain criteria based on information gain

or mutual information. Let’s illustrate this with a simple example of how a

fruit can be categorized as orange or lemon given height and width of a fruit

measured, as shown in  Figure 4.22  (rightmost):

 Figure 4.22: decision tree example

We have some sample data collected for a set of fruits, that is, their height

and widths as plotted in  Figure 4.22  (leftmost). The tree in the middle shows

a  decision  tree  where  every  rectangular  node  is  a  decision  node.  The  first decision node is at the root where the entire data set is present. The check

whether the fruit  width > 7 cm or not splits the data set vertically into two parts. Based on the height of the fruit, the two vertical splits of the data are split horizontally at  height = 6 cm for the left vertical split and at  height =

 10 cm for the right vertical split. Finally, we get four splits of the data, and only  one  class  of  fruit  is  predominant  in  each  of  the  four  splits.  This  tree representation  of  the  data  set  is  called   decision  tree.  The  final  nodes  are called leaf nodes of the tree. Leaf node represents a class. The class label of

the majority data points in the leaf node is the class represented by leaf node. 

Now, given the height and width of a new fruit outside this data set, we can

predict whether it’s orange or lemon using the path it follows from root to

leaf. The majority class of fruit in the leaf node will be the predicted label

for  the  new  fruit.  For  example,  in  the  left-bottom  partition  of  the  data  set shown in  Figure 4.22, there are only two instances of lemon, and rest are all oranges. So,  if  a  new  fruit  falls  in  this  data  partition,  as  its   width  ≤  8  and height ≤ 7, we can classify it as orange as most of the instances falling here from training data are oranges, and only two are lemons. 

The decision tree shown earlier can be built by visual inspection of the data

set. How  do  we  generalize  this  for  larger  datasets?  There  are  two  primary questions we need to answer:

1. Attribute  selection:  Which  attribute  or  feature  shall  we  split  the

dataset? 

2. Where to split for a given attribute? 

For  the  classification  problem,  with  categorical  target  variable,  we  can calculate how much “information” an attribute gives us about the class. Let’s

represent  the  target  by  the  random  variable  and  the  attributes  fruit  height, and width as the random variable . We can calculate the information content

or entropy of a set containing oranges and lemons. 

 H[Y]= –p(y = orange) log(p(y = orange)) – p(y = lemon) log(p(y = lemon))

 Figure 4.23 show the entropy calculation for different proportions of fruits:
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 Figure 4.23: High purity implies lower entropy

If we take the entire data set of fruits, we will have an impure node as it has

all  classes  in  possibly  equal  proportions.  Next,  we  need  to  measure  the reduction  of  this  impurity  in  our  target  Y,  given  additional  information  or attributes  X.  We  can  use  mutual  information  or  information  gain  for  this: I[Y,X]  =  H[Y]  –  H[Y|X]. We  have  seen  how  to  calculate   H[Y]. Now,  let’s compute  H[Y|X] for each attribute height and width. Here, height and width are continuous variables, and we must find a suitable point  x to split the data set into two parts  height ≤ x and height > x. For discrete attribute, we can evaluate  entropy  for  every  discrete  value  of  X.  Algorithms  like  Iterative Dichotomiser 3 (ID3) and its improvements. like C4.5, CART are used to construct decision trees. 

We will take a sample data set of 20 observations of lemons and 20 oranges

and compute the information gain for few split values, as shown in  Figure

 4.24:
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 Figure 4.24: Entropy computations for building decision tree

We have shown calculation for only three split values, but it calculated for

all distinct values of continuous attributes. 

Entropy of target, given split height of, is calculated using weighted average:

The  entire  data  set  has  9  lemons  and  11  oranges.  Hence,  the  entropy  of whole data set:

The information gain for the split point  height = 6.31158 is given by:

Among  the  split  points  considered,  the  maximum  information  gain  is obtained for a split point of width = 8.2. So, the best attribute to choose is

width, and the split point for this attribute is 8.2. So, width attribute becomes out first attribute to split the data set into two parts and create two nodes in the tree. 

We can now use the Python sklearn DecisionTreeClassifier module to build

decision tree and visualize the tree using graphviz, as shown in  Figure 4.24. 

Here’s the sample code:

1. “””Building synthetic dataset””” 

2. from np.random import multivariate_normal

3. np.random.seed(62)

4. lemon1 = multivariate_normal(mean=(7,10), cov=[[1,.5], 

[.5,1]],size=20)

5. lemon2 = multivariate_normal(mean=(6,8), cov=[[1,.5], 

[.5,1]],size=20)

6. 

7. orange1 = multivariate_normal(mean=(10, 8),cov=[[1,0.5], 

[0.5,1]],size=20)

8. orange2=multivariate_normal(mean=(4.5, 4.5),cov=[[1,0.5], 

[0.5,1]], size=20)

9. orange = np.concatenate([orange1, orange2])

10. lemon = np.concatenate([lemon1, lemon2])

11. 

12. df = pd.DataFrame(np.concatenate([lemon, orange]))

13. df.columns = [‘height’, ‘width’]

14. df[“fruit”] = [‘lemon’]*len(lemon)+[‘orange’]*len(orange)

15. 

16. “””Training DT Classifier””” 

17. from sklearn.tree import DecisionTreeClassifier

18. from sklearn.tree import export_graphviz

19. from sklearn.externals.six import StringIO

20. from IPython.display import Image

21. import pydotplus

22. clf = DecisionTreeClassifier(criterion = ‘entropy’, 

min_samples_leaf=10)

23. clf.fit(df[[“height”,”width”]], df[“fruit”])

24. 
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25. dot_data = StringIO()

26. export_graphviz(clf, out_file=dot_data, 

27.                  filled=True, rounded=True, 

28.                  feature_names = df.columns.values[:-1], 

29.                  class_names=[‘lemon’,’orange’])

30. graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

31. Image(graph.create_png())

 Figure 4.24  shows  the  decision  tree  plot  output  from  previous  code.  Here, the  tree  is  built  on  the  entire  dataset.  However,  we  should  follow  all  the standard  model  training  steps,  like  splitting  training  data  into  train-test-validation,  and  then  fine-tune  model  hyperparameters  using  validation  test and  repost  classification  accuracy  using  train  step.  Refer  to  the  following figure:

 Figure 4.25: Visualizing a decision tree

Decision trees can be used for both regression and classification tasks. They

provide very fast inferencing and are lightweight as compared to many other

ML models. 

Decision trees are prone to overfitting, and it happens if the tree is allowed

grow  to  without  any  restriction  to  very  high  depth.  It  tries  to  fit  to  every
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single training data point. We need to prune the tree using hyperparameters

like the following:

max_depth: Maximum depth of the tree

min_impurity_decrease:  Node  will  be  split  if  this  split  induces  a decrease of the impurity greater than or equal to given value

min_samples_leaf:  Minimum  number  of  samples  required  to  be  at  a

leaf node

Here,  we  have  used  min_samples_leaf  as  the  only  metric  for  pruning  the tree. 

Conclusion

In  this  chapter,  we  discussed  descriptive  statistics  and  fundamentals  of probability  theory.  We  covered  measures  of  central  tendencies,  dispersion, and correlation for univariate and bivariate data analysis. We also discussed

random variables, distributions, and expected values of functions of random

variable. Additionally, we introduced the concept of entropy and discussed

its application to entropy-based decision tree construction. These topics will

prove  to  be  a  rigid  foundation  for  the  advanced  topics  that  we  will  be learning in this book. 

In the next chapter, we will begin with inferential statistics. We will see how

to  use  probability  concepts  to  formulate  machine  learning  problems  like classification, regression, and clustering as a probability problem. Then, we

will  cover  how  inferential  statistics,  hypothesis  testing  and  parameter

estimation techniques, can help us solve these problems. 

Points to remember

Correlation measures the degree of linear relation between two random

variables.  Random  variables   X  and   Y  are  independent 

, but 

 X, Y are independent. 

Probability of a random variable taking value a, 

, 

the probability density at a, if  X is continuous. Probability density at a point  can  be  greater  than  one.  The  area  under  density  curve  for

univariate density is 1. 
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If  X is continuous random variable, 

. 

The  normal  distribution  is  generally  considered  to  be  a  decent

approximation of the binomial distribution B(n, p) when 

. 

If  are  independent  random  variables,  then  their  joint  density  can  be

written 

as 

the 

product 

of 

the 

marginal 

densities: 

. 

Mathematical expectation 

is a linear operator. 
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CHAPTER 5

Statistical Inference and Applications

In statistics,  population is the entire set of items or individuals that we want to study  and  draw  some  conclusions  about.  The  number  of  individuals  in  a population is generally very large or infinite, so a study is often restricted to few   samples  drawn  from  it. Statistical  Inference  is  the  method  of  making propositions about a population from sample data drawn from the population. 

In this process, some assumptions are made about the population, and then a

statistical  model  is  built  based  on  those  assumptions.  Making  statistical inferences  about  the  parameters  of  a  probability  distribution,  assumed  by  the population,  is  called  parameter  estimation.  In Machine  Learning  (ML),  the training data can be viewed as a sample from some unknown population. We

make  certain  assumptions  about  the  population  and  build  a  statistical  model that is capable of making correct inferences on both the training data as well as unseen data, that is, on newer samples that are not part of training data. The

process of building the model is termed as  training or  learning, and using the model for prediction is referred to as  inference. 

Structure

In this chapter, we will cover the following topics:

Large Sample Theory

Statistical Inference and Parameter estimation

A good estimator and how to find it

Formulating ML problems in probabilistic terms

Linear models: Linear and Curvilinear regression

Generalized Linear models: Logistic, Poisson Regression

Interpreting linear models

Objectives
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After going through this chapter, you will be able to connect to the statistical foundations  on  which  the  well-known  ML  models  stand.  There  are  several probabilistic assumptions behind each model, and the error functions that we

optimize to train a model is also derived from the probability theory. Even as

we  move  on  to  the  next  chapter  on  neural  networks,  we  will  see  how  the concepts learned in this chapter can be applied and extended for deep neural

nets  on  which  most  of  the  AI  relies  today.  The  interpretation  of  the  learned models, for example, the coefficients of a linear regression model, is based on

statistical hypothesis testing. 

Large Sample Theory

In statistics, a  population is the exhaustive set of events associated with a given experiment. In  the  Iris  example,  the  set  of  all  possible  measurements  of  the flower categories is the entire population. The dataset of 150 observations that we have is a finite subset or a sample from the entire population of flowers. 

Here, the entire population is infinite, and it’s not possible to analyze the entire population of data to derive conclusions. Hence, we need to work with finite

samples of data. A good sample should ideally represent all the characteristics

of  the  population.  Then,  we  can  accurately  calculate  the  population

characteristics  by  only  analyzing  the  sample  characteristics.  There  are  many techniques for proper sampling from a population. The two popularly used in

ML are  random sampling and  stratified sampling:

Random sampling: Samples are chosen at random such that each unit in

the population has an equal chance of being selected. In case of a finite

population  of  size  N,  if  we  decide  to  choose  samples  of  size   k,  we  can take any subset of  k data points from the population. There are 

total  possible  combinations  of   k  data  points.  Here,  we  are  assuming sampling with replacement, that is, an event or observation is selected at random from the population. Before drawing the second sample, the first

sample  is  returned  to  the  population.  This  makes  the  probability  of

selection of each item equally likely. For random sampling, each of these

M samples have equal probability of being selected. 

Stratified  sampling:  Here,  the  population  is  divided  into  small

homogeneous groups called strata, and then random sampling is applied

on each of the stratum. This technique accurately reflects the population

being studied, especially when the population is diverse. For example, a
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survey  is  being  conducted  for  an  education  institute  that  offers  science, mathematics,  and  humanities  courses.  The  number  of  humanities  and

mathematics  students  in  the  college  are  almost  double  the  number  of

science students. A random sample of size 10 will most likely contain 4

students  from  mathematics,  4  students  from  humanities,  and  2  from

science. However, the survey should give equal importance to all streams

and  must  choose  an  equal  number  of  students  from  each  stream.  Here, 

stratified  sampling  can  be  used  to  randomly  choose  equal  number  of

students from each stream who can participate in the survey. 

Sample statistics

The population characteristics quantified the population constants like mean 

and  standard  deviation  ,  and  the  statistical  constants  of  the  population  are called  parameters of the population and the corresponding measures computed from  samples  of  size   k,  like  sample  mean 

and  sample  s.d. 

are  called   statistic.  A  statistic,  denoted  by 

,  is  a  function  of  the  sample  values.  In  case  of  a  finite

population of size N, for each sample of size  k, the statistic t can be evaluated. 

Let’s denote a sample of size k by 

,  M being the total number

of samples. Evaluating the statistic t for each sample 

,  we have a new set of

 M values 



. Thus, the statistic t defines a random variable

 T, and we call its distribution the  sampling distribution of the statistic. 

We can now compute the expectation of T:

The  Standard  Deviation  (SD)  of  the  sampling  distribution  of is

called the Standard Error  (S.E ).  The S.E plays very important role in large sample theory. If T is any statistic, then for large samples:
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The  standard  error  for  a  few  test  statistics  is  listed  here.  Here,    is  the population  variance,  and   k  is  the  sample  size.  The  SE  can  be  reduced  by increasing the sample size. Refer to the following table:

Statistic

Standard Error

Sample Mean ( )

Sample S.D. (s)

Sample Median

 Table 5.1: Standard Error

 Note: The SD of a sample measures the amount of variability or dispersion

 of the sample relative to its mean, while the SE of the sample mean statistic

 measures  how  far  the  sample  mean  (average)  of  the  data  is  likely  to  be

 from the true population mean. The SE is always smaller than the SD. 

For  defining  sampling  distributions,  we  need  to  take  multiple  samples  and estimate the statistics for each of the samples. In many practical scenarios, we may not always have large amounts of data to take several samples. 

 Tip:  If  the  sample  size  is  very  small,  the  normality  assumption  does  not

 hold, and we have to find the exact sampling distribution, followed by the

 statistic  t.  In  this  case,  the  Student’s  t-distribution  is  used  in  place  of  the

 normal  distribution  if  we  have  small  samples.  t-distribution  has  heavier

 tails,  that  is,  it  can  produce  values  that  fall  far  from  mean.  For  a  large

 sample size, t-distribution looks like the normal distribution. The parameter

 of t-distribution is dependent on the sample size and is called the degree of

 freedom. A  small  sample  of  n  observations  from  a  normal  distribution  is
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 said to be t-distributed with ν = n – 1 degrees of freedom. Refer to [4] in the

 Further Reading section for more on t-distribution. 

Now,  let’s  look  at  another  aspect  of  sampling.  Suppose  the  probability distribution of a population is known, that is, the parameters of the distribution are  known;  can  we  create  some  synthetic  sample  data  points  from  this

population? 

Sampling from known distributions

Given  a  distribution  with  known  population  parameters,  we  can  generate

samples  from  this  distribution.  For  example,  given  a  categorical  distribution with categories 

having probability 

,  we  want  to  generate  a  sample  from  this  distribution.  A  sample  of  size  one most likely will be category 

as it’s of the highest probability. A sample of

size two will possibly be 

or 

or 

. 

The  CDF  of  the  categorical  distribution  is 

. A  pseudo-

random number generator will give a random number 

from uniform

distribution. We can partition this interval into consecutive intervals of lengths given  by  CDF,  that  is, 

.  Now,  if   r

belongs to kth partition, we can output kth category as the sample. As the length of the 2nd partition is the highest, the chances of r falling there is more, and we will generate more samples from there.  Figure 5.1 shows histograms of three different random sample, each of size 20, from this categorical distribution:

 Figure 5.1: Samples from known distribution (Categorical)

For  any  general  distribution  the  algorithm,  to  do  this  is  called   inverse transform sampling. Here, we first sample from a uniform distribution using a pseudo  random  number  generator,  and  then  using  the  CDF  of  target

distribution,  we  can  find  the  value  that  matches  the  same  quantile  in  target
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distribution. This is implemented in the numpy.random package for most of the known distributions. 

Hypothesis testing

In statistics, the assumptions made about a population characteristic based on

samples from the population is called  hypotheses. An example of a hypothesis is:  “sample  mean  is  the  same  as  the  population  mean”.  So,  if  we  know  the population  to  be  normally  distributed  with  some  unknown  parameters 

, 

then  the  hypothesis  is 

.  We  need  a  method  to  check  whether  a

hypothesis is statistically significant and valid for the entire population or just for the sample chosen. 

Let’s consider an example of an electric bulbs manufacturing company that has

invented  a  new  manufacturing  process.  This  process  is  expected  to  produce bulbs with higher life span. An expert team of scientists reviewed the process

and  concluded  that  this  new  process  may  be  as  good  as  the  old  one.  So,  the expert’s hypothesis is that the mean life span of new process 

is equal to

the  average  old  life  span 

.  In  fact,  a  few  scientists  from  the  expert

committee believed the new process to be worse than the previous one, based

on  theoretical  analysis.  For  the  company  to  take  a  decision  about  the adaptation  of  the  new  process,  a  statistical  hypothesis  testing  needs  to  be performed. For  the  old  process,  the  population  mean   is known and for the new process, we have observed the lifespan of good enough sample; we take

the average   as the sample mean. 

Following are the steps for testing of hypothesis:

1. Define  null  hypothesis  (H0): An assumption that is tested for possible rejection; for example: 

. 

2. Define  alternate  hypothesis  (H1):  Any  hypothesis  complementary  to null  hypothesis  is  called  an  alternate  hypothesis.  Example 

(called  one-tailed test) or 

(called  two-tailed test). 

3. Choose the level of significance ( ): We may commit two types of error in hypothesis testing:

Type I error: Rejection of   when it is true

Type II error: Accepting   when it is wrong, that is, 
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Let 



and 

The probability of type I error is also known as the  level of significance. 

This  must  be  chosen  in  advance  based  on  the  amount  of  risk  we  are

allowed to take. Typical values of   are 1%, 5% that is, 0.01, 0.05. 

4. Choose test statistic: Based on the hypothesis, a corresponding statistic (T) must be chosen. For a large sample:

5. 

Given a level of significance  , we can define a test of significance. 

A  critical  value  of  the  statistic  Z  at  significance  level    is  defined  as for  two-tailed  test.  Here, 

,  implies 

.  This  is  depicted  in  the  shaded

regions  in   Figure  5.2. So,  we  have 

By symmetry, 

. For testing alternate hypothesis with

one tail, we will have only one shaded region, either left or right, based

on  the  type  of  test,  as  shown  in   Figure 5.2; the  shaded  region  is  called critical region or rejection region:

 Figure 5.2: Critical region for hypothesis testing

6. Conclusion: The computed value of Z is compared with the significance

value   at a given level of significance  . If the value of Z falls in the

defined  critical  region,  the  null  hypothesis  is   rejected  with  confidence 

. Choosing 

, we can say that the null hypothesis (that is, 

the claim of expert committee here) is false and can be rejected with 99%

confidence. 

Now, let’s look at a few examples on hypothesis testing where we follow the

mentioned steps to validate the statistical hypothesis. 

Example: Testing whether a die is fair or unbiased (that is, all six face values are  equally  likely  to  occur).  A  die  is  thrown  9000  times,  and  the  number  of
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times values 5 or 6 is observed is 3600. Is the die unbiased? 

For an unbiased die, the probability of each face is 

. We can take the

event  of  getting  5  or  6  as  success  and  denote  it  by  S.  We  have 

. Getting any value other than 5 or 6 is considered a failure. 

So,  we  have  a  binomial  distributed  variable  with 

trials,  the

probability  of  success 

,  and  the  number  of  successes

observed  is  3600.  Here,  the  null  hypothesis  is 

that  is 

,  and  the  alternate  hypothesis  is 

.  Let  random

variable  X  denote  the  count  of  success.  For  binomial  distribution,  we  have mean as and variance as 

:

Hence, 

for large n

Therefore, 

Since 



choosing 

the 

significance 

level 

, and we know this by the empirical rule

for  normal  distribution.  Hence, 

falls  inside  the  critical  region  or

rejection region. So, we can reject the null hypothesis with confidence of 99%. 

Hence, the die is not a fair die. 

Statistical inference

Let us consider a random variable X with probability density 

. Here, 

represents  the  set  of  parameters  of  the  distribution  or  more  formally, represents  a  parameter  vector.  For  example,  in  case  of  normal  distribution, 

. The set of all possible values of the parameters is called the

 parameter  space.  Thus,  the  parameter  space  defines  a  family  of  probability distributions:

Now,  let’s  consider  a  random  sample 

of  size   n  from  a

population,  with  probability  density  function 

.  Can  we  estimate  the

parameter  vector    as  a  function  of  sample  values,  that  is,  can  we  define  a statistic  t  that  can  approximate  a  population  parameter?  Let  vector 

, then we want to find sample statistic:
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such  that  the  distribution  of    is  concentrated  around  the  true  value  of  the population parameter  . Here,   depicts the estimator function for statistic  . 

In this case, the statistic   is called an  estimator of the population parameter

. 

Estimator properties

Let’s now discuss what properties of a statistic makes it a good estimator:

Unbiasedness:  An  estimator    is  called  an   unbiased  estimator  of  the population  parameter 

if 

.  Suppose,  for  an  unknown

population  with  probability  distribution 

,  we  are  given  the

expectations: 

and 

. The sample point ’s   can

be viewed as a set of  n independent and identically distributed  (i.i.d ) random  variables 

,  assuming  values 

and  each 

. Then, each   is has mean 

and 

. 

For 

the 

statistic 

sample 

mean 

, 

we 

have 



. 

Hence, the sample mean is an  unbiased estimate of the population mean. 

The sample expectation of variance is as follows:

Reference to the proof is given in the  Further reading section [3]. Hence, sample variance is not an unbiased estimate of population variance. 

Consistency: For any estimator  , we can define a sequence of variables

as follows: 



. Here, 

is dependent

on the number  n of sample values taken. We call estimator   a consistent estimator of parameter value   if this sequence of values 

converge in

probability  to  the  true  parameter  value.  We  denote  this  as 

, 

where the operator   indicates convergence in probability, that is, for any

arbitrarily small 

:
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Clearly,  the  sample  mean  is  a   consistent  estimator  of  the  population mean. 

Efficiency: There may exist multiple unbiased and consistent estimators

for a population parameter. So, there is a need for some further criterion

to  choose  the  best  estimator.  The  one  with  lower  variance  is  called  an efficient  estimator  because  it  will  tend  to  have  values  that  are concentrated more closely around the correct value of the parameter, and

hence,  our  estimate  will  be  closer  to  the  actual  value.  For  normal

distribution,  because  of  the  symmetry  of  the  bell  curve,  the  sample

median  is  also  an  unbiased  estimate  of  the  population  mean  .  Now, 

which  one  should  you  choose  as  a  better  estimator?  Here,  we  can

compare the variance or square of standard error of both the estimators. 

Now, 

and  it  can  be  proved  that  for  sample  median   Md, 

.  Hence,  the  sample  mean  is  a  more

efficient estimator of  . 

Sufficiency: An estimator is called sufficient if it contains all information in  the  sample  regarding  the  population  parameter  being  estimated.  This

property of an estimator is out of scope of further discussion in this book. 

Minimum Variance Unbiased (M.V.U) estimators

If a statistic T is unbiased estimator of a population parameter   and T has the smallest variance among the class of all unbiased estimates, then T is called the minimum variance unbiased estimator of  . Formally:

The  MVU  is  unique.  To  check  whether  an  unbiased  estimator  is  MVU, 

Cramer-Rao inequality  is  used.  This  inequality  provides  a  lower  bound  for the variance of an unbiased estimator of a parameter. The quantity 

is  called  the   bias  of  the  estimator  in  general.  For  unbiased  estimator,  bias  is zero. 

Likelihood function
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Let   X  be  a  random  variable  following  a  probability  distribution 

.  A

given random sample 

from this probability distribution can be

viewed  as  a  set  of   n   i.i.d  random  variables 

assuming  values 

and each 

. We define the joint density function of these

random variables   as the  likelihood function  L:

The  joint  density  function  is  expressed  as  a  product  because  the  random variables    are  independent.  Clearly,  likelihood  function  is   always  positive, 

. Applying logarithm to both sides converts the product to a sum of logs, 

that is, 

. This is called the  log likelihood. 

Cramer-Rao inequality

If  T  is  an  unbiased  estimate  of  a  function  of  the  population  parameter 

, 

then:

So, this provides a lower bound to the variance of an unbiased estimator. Here, 

the  quantity  in  the  denominator  is  called  the   Fisher  information  on  the parameter θ contained in the sample and is denoted by 

. The higher the

Fisher information value, the more information there is in the sample about the

parameter. 

If we want to estimate parameter  , the function   can be taken as the identity

function 

, and hence, 

. So, Cramer-Rao inequality takes

the following form:

In  other  words,  the  precision  (that  is,  inverse  of  variance)  to  which  we  can estimate θ is limited by the Fisher information. 
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We  will  prove  the  Cramer-Rao  inequality  for  univariate  distribution  with  a single  parameter    under  certain  regularity  assumptions.  Understanding  this proof is important as it shows us a way to find a MVU estimator. 

Regularity assumptions:

Parameter space is open interval in R

The partial derivative 

exists

exists and is positive for all 

Differentiation  under  the  integral  sign  is  possible  for  the  p.d.f  function Proof  of  Cramer-Rao  inequality:  Since  L  is  a  joint  p.d.f  of  sample where 

, 

differentiating w.r.t   and using regularity conditions, we get:

Let be an unbiased estimator of 

. Therefore, 

. 

Differentiating both sides w.r.t   and using regularity condition to differentiate the integral:

Here,  T and 

are two real random variables that take a fixed real value

for  any  given  sample.  The  covariance  of  any  two  r.v.  X,  Y  is 

. So, here:
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The  correlation 

.  Using  Cauchy-Swartz  inequality  for

expectations,  we  have  shown  that 

,  if  and  only  if   X  and   Y are

linearly dependent. 

Also, 

, by definition of  . 

Therefore, 

. Here:

Substituting this variance in above inequality are rearranging, we arrive at the Cramer-Rao inequality:

Now,  we  will  see  when  this  minimum  variance  bound  is  attained  by  an

unbiased  estimator.  Rearranging  the  previous  equation,  we  have 

Here:

This  is  in  the  form  of  Cauchy-Swartz  inequality  for  expectation 

and there we have seen that this reduces to equality

if and only if random variable  X is linearly dependent on  Y. Hence, the equality
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will  happen  if  and  only  if 

is  linearly  dependent  on 

, 

that is:

is a constant

Here,   may depend on   but is independent of the samples. In this case, the

unbiased estimator T is called a Minimum Variance Bound (MVB) estimator. 

Example: Suppose 

is a random sample from a normal distribution

with known zero mean and unknown scale parameter 

. An MVB for 

is 

As, 

,  statistic  T  is  an  unbiased  estimate  of 

.  Now, 

let’s see if T can attain the Cramer-Rao lower bound. 

and likelihood of the sample is as follows:

Thus, 

is linearly dependent on 

because 

is independent of

the samples. Hence,  t is an MVB for  . Similarly, we can prove that the MVB

estimator  mean    of  normal  distribution  is  sample  mean  ,  given  that  the population scale parameter is known. We suggest that you try this out. 

So far, we have discussed how to check the quality of the estimator and choose

the best, but the estimator, being any arbitrary function of the samples, can take any functional form. How can you define an estimator? Is it based on intuition, 

or  there  is  a  procedure  to  find  a  possible  estimator?  This  is  answered  in  the following section. 
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Method of Maximum Likelihood Estimation (MLE)

The principle of maximum likelihood consists of finding a value   of unknown

parameter 



such that 

, for all possible values of 

.  This  defines  an  optimization  problem  of  optimizing  a  scalar  field 

, where   denotes the parameter space. 

Since 

,  and  is  a  non-decreasing  function  of   L,  L  and   logL  attain  their optimum  values  at  the  same  point.  Hence,  we  can  maximize   logL  instead  of maximizing  L.  Using  differential  calculus,  we  can  find  the  optimal  value  by solving 

.  To  make  sure  this  equation  indeed  gives  us  the

maximum  value  of  likelihood,  we  must  do  the  second  derivative  test 

,  or  the  Hessian  matrix  of 

must  be  negative  definite  for

vector valued parameter. 

Example:  Let’s  find  the  MLE  estimate  of  the  parameter    for  Poisson distribution. 

Suppose 

is a sample from the population and the likelihood function

is given as follows:

Also, 

,  since  all  samples  from  Poisson

distribution  are  positive,  making    always  positive.  The  variance  of  the estimator can be obtained by the Cramer-Rao minimum variance bound:
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Also, 

is linearly dependent on 

, and

hence, the equality in Cramer-Rao inequality should hold, that is, 

. 

 Note: A more general result as follows: If a given population with density 

   and  MVB  estimator  T  exists,  the  solution  to  likelihood  equation 

  is T. 

Also,  MLE  estimates  are  consistent  and  efficient.  We  will  just  state  the following two theorems regarding that:

Theorem (Cramer-Rao):  Given a sample of size n, as 

  the likelihood

 equation 

  has a solution that converges in probability to the true

 value   of the parameter  . 

This theorem states that the MLE estimates are consistent. 

Theorem:  If MLE estimates exist, then they are the most efficient in the class of estimators. 

Example:  MLE  estimates  for  parameters 

of  univariate  normal

distribution  are  given  as  sample 

from  the  univariate  normal

distribution 

. 

The 



is 

given 

by 

We know that the estimate   of 

is not unbiased. Hence, MLE estimates

need not always be unbiased estimates. 

Example: MLE estimates for multivariate Gaussian distribution. Suppose we have 

sampled  from  a  multivariate  Gaussian  distribution.  We

want to estimate the parameters 

of the distribution using MLE. Here   is

a vector and   is a matrix. Hence, we need to compute the partial derivatives of log  likelihood  w.r.t  a  vector  and  w.r.t  a  matrix.  The  derivation  is  easy  to understand  with  the  background  of  vector  calculus  discussed  in   Chapter  3. 

Interested readers may refer to  Further reading [5]. 
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 Note: The MLE estimates are as follows:

There are other methods of estimation like method of least squares, method of

moments,  Bayesian  parameter  estimation  (MAP).  We  will  briefly  talk  about Bayesian estimation where we estimate the parameters   with the help of the

Bayes’ Rule. 

We  have  to  find  the  value  for    that  maximizes  the  posterior  probability 

;  this  is  called  the  Maximum  Posteriori  (MAP)  estimate  for  the parameter  . 

The  denominator   P(X)  is  ignored  because  it  has  no  direct  functional dependence on the parameters   with respect to which we want the right-hand

side  to  be  maximized.  As  with  the  MLE,  we  can  take  the  logarithm  of  the posteriors and have:

So, the only difference between MLE and MAP is that the latter allows us to

inject into the estimation calculation of prior beliefs regarding the parameters. 

Now, if we use the simplest prior in the MAP estimation, that is, uniform prior, we  assign  equal  weights  everywhere,  on  all  possible  values  of  the  ,  that  is, 

. 

In 

this 

case, 

the 

MAP 

estimate 

is 



,  which  is

the same as the MLE. 

Bias-variance decomposition of estimator
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We have defined the bias of an estimator as 

. Treating

statistic  T  as  a  random  variable,  we  can  compute  the  mean-squared  error (MSE)  of  T  in  estimating  parameter    as: 



,where    represents

the value of the statistic for ith sample. 

We  can  easily  prove  that 

.  The  proof  is  as

follows:

Hence, 

.  This  is  called  the  bias  variance

decomposition, that is, both  bias and  variance contribute to MSE. 

Applications – Formulating ML problems as

statistical inferencing

In this section, we will discuss how different ML problems can be formulated

in  terms  of  probability  theory.  Then,  we  will  see  that  learning  a  model  is nothing  but  estimating  parameters  of  a  probability  distribution  using  the techniques we have learned so far. 

Data distribution

Suppose we are given a data set with N records. Each record has m attributes

or features, that is, each data sample is a vector 

. 

We can view any data point as a random vector. Each feature   can be viewed

as a random variable taking values   from the ith attribute column of the data

set.  There  are  chances  that  many  of  these  attributes  are   not  mutually independent. Hence,  we  can  represent  the  data  set  as  a  sample  taken  from  a multivariate  joint  probability  distribution 

of  the  random  vector 

. 

Generally,  after  the  exploratory  data  analysis  stage  in  practical  machine learning,  the  raw  observations  are  transformed  to  new  engineered  features. 

This 

can 

be 

viewed 

as 

a 

vector 

field 

mapping 

,  where 

are  fixed  non-linear
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functions of the input variables and are called  basis functions. Note that here,  d may be less or greater than the raw data dimension  k.  s can be chosen such that the feature 

s is mutually uncorrelated. Here are a few examples of

basis functions:

Suppose  raw  data  vector  is  one-dimensional.  We  can  define  feature

mapping as 



, that is, 

, called polynomial

basis functions or radial basis functions:

Here,  we  are  mapping  a  single  feature  x  to  a  d-dimensional  feature

vectors whose components are not (linearly) correlated. 

Let  data  vector  be  three-dimensional 

.  We  can  define 



,  and  have  a  two-

dimensional  feature  map 

.  Here, 

is  a

polynomial basis function also known as interaction term. 

Classification

In  a  classification  problem,  an  input  vector  or  feature  vector    must  be assigned to one of  K classes, denoted by  . We are given a dataset consisting of  n  pairs  of  examples 

,  called  training  data.  Using  this,  we  need  to

come up with a function  f that can map 

. The simplest form of such a

function is a lookup table. But is that useful? Can it map unseen  , (not in the training data) to a class label? 

Assuming that the data vectors   come from some probability distribution, we

can represent the data set by a random variable  . Depending  on  whether 

constitutes  categorical  or  continuous  attributes,    follows  either  discrete  or continuous  probability  distribution 

.  Representing  the  target  class  by  a

categorical random variable   which takes one of the  K possible values,   will have a categorical distribution 

. If we take the subset of training data from

any particular class  , then the probability of data vector   can be represented by  the  conditional  probability 

and  we  have  the   class-conditional

probability density function 

. This is also known as  likelihood of 

with respect to  . Here, both the density functions  f and  p are unknown. The target  distribution  g  can  be  easily  estimated  from  the  probability  definition. 
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Taking  the  ratio  of  the  number  of  examples  from  the  given  class  to  the  total number  of  examples  n  in  the  training  dataset.  This  is  called  the   class  prior probability.  The  classification  problem  can  be  defined  as  estimating  the probability 



. This is called the  posterior probability of class

. If  we  know  this  probability  for  all   k,  then  we  can  predict  the  class  label associated with   as follows:

Using Bayes, theorem we can write:

The denominator is fixed for all the K classes; hence, we can write this as:

So, we have  posterior probability of class Ck ∝  likelihoood × class prior This  formulation  of  classification  problem  as  a  probability  model  is  called Bayesian classifier. 

Now,  let’s  look  at  one  simple  classifier  based  on  this  interpretation  of  the pattern classification problem named Naive Bayes classifier. 

Naive Bayes classifier

Suppose  the  data  has  m  features,  that  is, 

,  and

these  features  are  mutually  independent,  given  that  x  is  from  class 

. 

Formally:

Substituting this in the Bayes equation, we have:

Hence, the probability of a new data x belonging to class k is given by:
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This is Naïve Bayes classifier. 

Here, the  prior probability 

estimation is easy, as discussed earlier. 

We can also assume all classes to be equally likely, that is, 

. 

For estimation of 

, we must figure out the distribution of each

of the attributes  . If   is discrete, we can assume multinomial distribution or categorical  distribution.  If 

s  is  continuous,  we  can  assume  Gaussian

distribution. 

For  continuous  attributes,  the  mean  and  variance  of  the  attributes    can  be estimated for each class  . Let’s call them   and  , respectively. Hence, we

now have:

 Note: We can also discretize continuous attribute by properly binning the

 feature values. For discrete attributes, suppose we take 

  to be

 categorical distribution. Suppose the discrete attribute   has T categories

 in total and 

  represents the number of times category t appears in the

 samples from class k, and let 

   represent  total  number  of  samples  from

 class k. Hence, we have:

 Now, it may happen that in some class 

 , all the T categories for   are

 not  present.  This  could  be  because  of  the  limited  samples  that  we  have

 taken. So, it will be inappropriate to assume that category t for the attribute

  cannot appear in class k. Let   be the total number of categories of the

 attribute  . Then, we can rewrite:

 Here, is a smoothing parameter, which takes care of the missing category

 in  the  samples  from  any  class,  where 

   by  assigning 

  some non-zero value. 
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Regression

In a regression problem, an input vector   must be assigned to a real number y

or  a  real  vector  y. We  are  given  a  data  set  consisting  of  n  pairs  of  examples 

, called training data. Using this, we need to come up with a function  f

that can map 

. Here, y is continuous. Let’s first understand this with a

simple  example  where  the  input  vector  has  only  one  attribute  and  target  y  is real. Let   represent height of a father and y represent height of his adult son. 

We  have  a  data  set  of  size  N  =  30  consisting  of  pairs 

,  and  we  have

plotted it in  Figure 5.3 (left):

 Figure 5.3: Simple Regression (left) height of adult son vs father’s height (right) Curve fitting data We see from the plot that the son’s height can be modeled as a deterministic

function  f of father’s height plus some random noise, that is:

In  Figure 5.3 (right), we can see that, at father’s height ches,  f(x)

underestimates the son’s height, and we can add some positive quantity to get

the  corresponding  adult  son’s  height  y.  For  some  values  of   x,  f(x)  may overestimate  the  son’s  height,  and  we  may  have  to  subtract  some  variable quantity  . So, the noise epsilon can be both positive and negative. Also, the

random noise is assumed to be symmetrically distributed or centered along the

curve  f(x). So,  one  natural  choice  for  the  distribution  of  the  random  noise  is Gaussian  distribution  with  mean  zero  and  some  fixed  variance 

,  that  is, 

. So, y is a random normal variable shifted by  f(x). Hence, we can

write y:
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The  next  step  is  to  understand  how  to  find   f(x).  We  can  assume   f  to  be  a parametrized  function  of  the  input,  say   f(x)  is  a  polynomial  of  degree  2, where 

are the parameters. We can

represent the parameters as a vector 

and we can denote  f as

. So, we now have 

. 

So,  we  have  regression  formulated  as  a  probability  model  parameter

estimation. 

Here, the parameter vector w is unknown, and we can estimate it using MLE

technique that we will discuss in greater detail in the linear model section. We will  see  that  the  MLE  estimation  technique  boils  down  to  minimizing  sum squared error function. This formulation of regression as a probability model

can be generalized for vector input  x and target vector y. 

Linear and curvilinear regression

Given a training dataset 

, the

goal  is  to  find  a   linear  function   f  such  that 

,  for  all   i,  that  is, 

approximates  . This  f will be called a linear regression model. So,  f takes the form 





, where 

is called the

 bias. All these s are represented collectively as a vector 

Now,  the  training  data  set  is  a  sample  of  size  N  from  a  large  population.  A good model is one that will generalize well for most of the population and not

only for this training sample. We are going to make a few assumptions about

the population:

Linearity:  The  relationship  between    and  the  mean  of  y  is  linear.  As shown in the following figure, the y values are scattered around a mean

line.  ‘Regression’  means  stepping  backward,  towards  the  average.  The

function  f models the average of the target y. 

Homoscedasticity: As shown in  Figure 5.4, the scattering of the target y values about the mean line is constant and is not a function of x, that is, 

the variance of  residual or error | f( x) –  y| is the same for any value of  x. 

Normality of errors: For any fixed value of  x, the target y is normally distributed, that is, the residuals are normally distributed. 

No  autocorrelation  of  errors:  There  should  be  no  correlation  between the  residual  (error)  terms.  Presence  of  autocorrelation  may  drastically

reduce the accuracy of the model. 
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No multicollinearity: The components of the data vector  x,  that  is,  the independent variables, should not be correlated. As shown in  Figure 5.4, the  regression  model  can  be  viewed  as  a  distribution 



or 

equivalently 

. Refer to the following figure:

 Figure 5.4: Normality assumptions and constant variance around line

Let’s see whether this model satisfies the assumptions mentioned earlier. Based

on  assumption  1, 

can  be  taken  as  a  linear  function  of   x,  that  is, 



.  Here, 

is  an  unknown  constant  representing  the

constant scattering as in assumption 2. The residue or error term 

, 

satisfying  assumption  3.  Assumption  5  expects  all  the  components  of  the vector to be uncorrelated. We can ensure this by some feature engineering, that

is, using fixed basis functions discussed earlier, to transform the data, and we obtain 

,  where  f 

. 

is a (M+1) dimensional vector of features 

with 



is  required  to  estimate  the  bias  parameter 

.  This  is

depicted in  Figure 5.5. Now, the location parameter of the normal distribution is  represented  as  a  function  of  vector 

here.  So, 

represents  the

parameters  of  the  model  that  we  can  estimate  using  MLE.  Refer  to  the following figure:
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 Figure 5.5: Fixed basis function model

Estimating model parameters

First,  let’s  write  the  likelihood  expression  for  the  probability  model.  The  log likelihood 

function 

is 

given 

by 

. 

The weights   are independent of n, and we can take it out of the summation, 

that is, 

Let’s write these M equations in matrix form using the 

design matrix:
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we can write the r.h.s as 

, and the l.h.s. as (

. Hence, we have the

system of linear equations (

.  The coefficient matrix (

is 

square matrix, so we can solve this as:

 Note:  The  bias  parameter 

   can  be  interpreted  using  the  first  equation 

 . 

 We 

 have 

 set 

 . 

 Therefore, 

 , 

 that 

 is, 

 . Hence, 

 The  bias 

   is  the  difference  between  the  mean  of  the  target  values

 occurring  in  entire  dataset  and  the  weighted  sum  of  the  averages  of  the

 basis function values. Geometrically, 

  is the intercept of the line with the

 y-axis,  that  is,  for  single  variable  case,  it  represents  c  in  equation 

 , the point where the regression line crosses the y-axis. 

Iterative estimation of model parameters

The  term 

in  the  log  likelihood  expression

represents 

the 

total 

sum-squared-error 

(SSE), 

where 

is  the  error  term  contributed  from  data  point 

.  Dividing  by  N,  we  get  the  MSE  or  mean  squared  error.  Thus,  for

fixed  , the log L depends on the SSE alone. Also, maximizing 

is the

same as minimizing 

, that is, minimizing SSE. So, the weight vectors w

can  be  estimated  by  iterative  optimization  method  like  stochastic  gradient decent.  For  very  large  datasets,  directly  finding  the  solution  for  regression requires  computation  of 

,   and  this  is  a  very  costly  computation. 

Here,  an  iterative  method  like  gradient  descent  is  preferred.  As  discussed  in

 Chapter 3, Vector Calculus, in gradient descent, we initialize the weights with random  values  denoted  by 

and  iteratively  update  the  weight  as  in  the

direction  of  negative  gradient: 

.  Here,    is  the

learning rate, and 

represents the gradient of the error term, that is:
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Example: Let’s take the iris data again. We saw in a previous chapter that the features   petal  length  and   petal  width  are  correlated  ( Figure  5.6). Given  the petal width, can we predict the petal length in cms? 

Here, we are not doing any further feature engineering; thus, to apply the linear regression model, we will take 

, the identity mapping. First, shuffle

the  data  and  split  it  into  two  parts:  train  (120  data  points)  and  test  (30  data points). Then, we train a linear regression model and plot ( Figure 5.6   (Left)) the learned regression line, as shown in the following code:

 Figure 5.6: Regression with single dependent variable

Using the identity basis function will impose severe limitations on the model. 

Example: (curvilinear regression) We have the two-dimensional synthetic data generated  by  the  process 

,  as  shown  in   Figure  5.6

 (middle), with a line, we will have a very bad model. This is where the basis functions can help. Taking polynomial basis functions, we can map the single

variable 

and  then  train  a  linear  model,  Figure  5.6

 (right). The learned model is 

. This is a non-

linear function of x but its  linear in the coefficients,  so we still call it a linear model.  It’s  also  known  as   curvilinear   regression  or   polynomial  regression model. The following code provides the process of data generation and model

fitting:

1. from sklearn.preprocessing import PolynomialFeatures

2. from sklearn.linear_model import LinearRegression

3. import matplotlib.pylab as plt

4. 

5. def sin(n):
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6.     x = np.linspace(0, 1, n)

7.     noise = np.random.normal(loc=0, scale=0.3, size=n)

8.     y = np.array([np.math.sin(2*np.pi*a) for a in x.tolist()])

+ noise  

9.     return x, y

10. 

11. X, y = sin(100)

12. polynomial_features= PolynomialFeatures(degree=3)

13. features =

polynomial_features.fit_transform(np.expand_dims(X, axis=1))

14. model= LinearRegression().fit(features, y)

15. line=model.predict(features)

16. plt.scatter(X, y)

17. plt.plot(X, line, color=’black’)

In  the  experiment,  will  we  get  a  better  model  if  we  choose  to  model  using higher-order  polynomial  instead  of  a  degree  three  polynomial?  This  is

illustrated in  Figure 5.7:

 Figure 5.7: Overfitting and underfitting

Overfitting and underfitting

We must check how well our machine learning model generalizes the new data

and whether it’s able to learn the inherent pattern in the training data. The poor generalization  performance  is  termed  as   overfitting.  This  happens  when  the model learns the pattern as well as the noise in the training data. The inability to learn the pattern in training data because of some assumptions made by the

model  is  termed  as   underfitting.  These  are  responsible  for  the  poor performances of the machine learning algorithms. 

The  model  with  1-degree  polynomial  is  a  poor  fit,  one  with  3-degree

polynomial  is  a  good  fit,  and  a  model  with  a  high-order  polynomial  is  an overfit. 
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Let’s  now  look  at  the  coefficients  of  the  fitted  model  with  nine-degree polynomial shown in the first row in the following table:

 Table 5.2: Coefficients of regression model

The magnitude of the coefficients, specially of the higher order, is huge. This

means that the model has done some fine adjustments to the higher order terms

so that it can twist and turn and make a perfect fit polynomial for the training data.  So,  we  may  alleviate  this  problem  by  restricting  the  magnitude  of  the coefficients. This is achieved by putting a constraint like 

to the SSE

minimization,  as  follows.  Using  the  Lagrange  multiplier  trick,  we  add  a regularization term to the SSE to control over-fitting so that the error function to be minimized takes the following form:

We can choose 

to be Euclidean norm or  , and in that case, we still have a

closed  form  solution: 

.   This  choice  of

regularizer  is  known  as   weight  decay  in  machine  learning  literature  as  in sequential learning algorithms; it leads the weights to take small values close

to  zero.  This  is  also  known  as   Ridge  regression  in  statistics  literature.  The parameter   is a hyperparameter that must be carefully chosen. The following

code  shows  Ridge  regression  for  9-degree  polynomial  where  we  choose 

. Very small values of λ allow the model to become finely tuned to

the noise on each individual data point, nullifying the effect of regularization. 

1. from sklearn.linear_model import Lasso, Ridge

2. reg = Ridge(alpha=0.01).fit(features, y)

3. line=reg.predict(features)

If we choose 

to be   norm, then we call the regression  Lasso regression. It

has the property by which some of the coefficients   are driven to zero; if we

choose    to  be  sufficiently  large,  this  leads  to  a  sparse  model  in  which  the corresponding basis functions become redundant. 

[image: Image 1993]

[image: Image 1994]

[image: Image 1995]

[image: Image 1996]

[image: Image 1997]

[image: Image 1998]

[image: Image 1999]

[image: Image 2000]

[image: Image 2001]

[image: Image 2002]

[image: Image 2003]

[image: Image 2004]

[image: Image 2005]

[image: Image 2006]

[image: Image 2007]

[image: Image 2008]

[image: Image 2009]

 Note: Over-fitting is an unfortunate property of MLE and can be mitigated

 by  regularization  or  with  Bayesian  parameter  estimation.  In  Bayesian

 estimation,  as  we  consider  the  prior  beliefs  into  the  optimization,  it

 naturally includes the regularization terms. Interested readers a may refer

 to book reference in further reading [2] Chapter 3 section 3.3. 

Bias variance trade-off

As  we  saw  in  case  of  the  synthetic  data,  the  perfect  model  is 

. In general, we can assume that the regression function is

an  estimation  of  an  unknown  function 

,  such  that: 



. 

Representing  our  linear  regression  model  as 

,  the  expected  squared

error at a point  x is: 

Here, 

being a function

of sample values can be viewed as a statistic, and it estimated the real model

parameter 

. Using the bias-variance decomposition discussed earlier, we

can  rewrite  this  as  the  sum  of 

and 



, that is:

Here, 

is the estimate of the sample statistic 

The estimate of w

is based on some data set  D.  So, we need multiple datasets to compute these expectations. For, the synthetic  sin dataset, we can generate multiple data sets and  observe  the  relation  between  bias  and  variance  as  we  change  the  model complexity  by  controlling  the  regularization  parameter  .  Figure  5.8  depicts this with the 

in the 

:
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 Figure 5.8: Bias variance trade-off as a function of model capacity

We  have  generated  200  datasets  of  size  25  and  fit  separate  ridge  regularized model with various regularization parameter  . We have used polynomial basis

functions of degree 11 as the base model. As we vary  , we get models with

varying  capacity  because  higher  values  of    will  make  the  coefficients  of higher  order  terms  negligible,  and  hence,  we  end  up  having  simpler  models, which may underfit the data. Similarly, in the extreme left, we have very low

values of  , which can allow large coefficients to higher order terms, making it overfit.  From  the  model  capacity  plot  in   Figure  5.8, we  can  see  that  the minimum  value  of 

occurs  around  ln  λ  =  -4.5,  which  is

close to the value that gives the minimum error on the test data. Following is

the code for this bias variance trade-off. The sin function used here is defined in the code section before  Figure 5.7. 

1. datasets = [sin(25) for i in range(200)]

2. d = 11; bias_vars = {}; 

3. for lam in np.linspace(0.001, 1.1, 100):

4.     preds = []; biases = []; variances = []; sses = []; 

5.     for X, y in datasets:

6.         polynomial_features= PolynomialFeatures(degree=d)

7.         features = polynomial_features.fit_transform(

8.                                       np.expand_dims(X, 

axis=1))

9.         reg = Ridge(alpha=lam).fit(features, y)

10.         line=reg.predict(features)
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11.         preds.append(line)

12.         sses.append(np.mean(np.square(line-

np.sin(2*np.pi*X))))

13.     E_y = np.mean(np.array(preds), axis=0)

14.     bias_square = np.mean(np.square(E_y - np.sin(2*np.pi*X)))

15.     variance = np.mean(np.square(line - E_y))

16.     tot = bias_square + variance

17.     test_error = np.mean(sses)

18.     bias_vars[np.math.log(lam)]={‘$bias^2$+variance’:tot, 

19.         ‘$bias^2$’:bias_square, ‘variance’: variance, 

20.         ‘test_error’:test_error}

21. pd.DataFrame(bias_vars).transpose().plot()

In practice, we have only seen the single observed data set. Then, how can we

use  this  bias  variance  trade-off  to  choose  the  optimal  hyperparameter  .  We can use k-fold cross-validation or leave-one-out validation to choose the best

possible   experimentally. 

Logistic Regression

For  classification  problem,  the  dependent  variable  is  discrete,  and  hence, normality  assumption  in  Linear  Models  (LM)  does  not  hold  true.  So,  we cannot  directly  apply  linear  regression  model  for  classification.  If  we  can transform the dependent variable such that it takes continuous values, we can

also  validate  the  normality  assumption  after  that.  Suppose  our  dependent variable is binary, that is, we have a two-class classification problem. The class labels can be written as 

. We can view this as a probability: when class

label  is  1, 

,  and  for 

However, probability values are bound to lie in interval 

, and thus, cannot

be assumed to be normally distributed. We know that odds can take any real

positive  value  and  are  related  to  probability  by:  odds  in  favor  of  class  1 

.  Now,  or   loge   Odds  or  logit  can  take  any  real  value  in 

. Using this transformation, we have our linear model:

[image: Image 2025]

[image: Image 2026]

[image: Image 2027]

[image: Image 2028]

 Note:  The 

   function  is  called  the  sigmoid  function, 

 which  is  S-shaped,  and  its  range  is  (0,1).  We  represent  the  posterior

 probability  of  class 

   as  a  sigmoid  of  linear  combination  of

 dependent variables. 

To  visualize  this,  we  will  consider  a  single  dependent  variable  example  for binary  classification  by  taking  a  subset  of  iris  dataset  (verginica  and versicolor)  classes  only  as  target  and  petal  length  as  the  only  dependent variable  to  predict  the  two  classes.  The  following  code  shows  these  data preparation steps on the iris data frame we created in the previous chapter:

1. df_sample = df[((df[‘flower’]==’virginica’)|

(df[‘flower’]==’versicolor’ ))][[‘petal length (cm)’, ‘flower’]]

2. #convert to binary labels

3. df_sample[‘y’]=df_sample[‘flower’].apply(lambda x: 1.0 if

x==’virginica’ else 0.0)

4. df_sample.plot.scatter(x=”petal length (cm)”, y=’y’, 

marker=’*’)

 Figure 5.9  (left) shows the data plot, and  Figure 5.9  (right) shows how the y values are scattered about an S-shaped sigmoid curve:

 Figure 5.9: Logistic regression

The spread of the y values around the sigmoid is always < 1. Thus, now we

have  our  normality  assumption  satisfied,  and  the  constant  variance  is  also satisfied to a great extent with the variance bound we have. 

We  can  now  find  the  coefficients  of  the  linear  equation  by  minimizing  the following:
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Sum  squared  error: 

.  However,  this  is  hard  to

optimize as it is a  non-convex function. We can also estimate the parameters by our standard MLE techniques. Here, the 

being  binary  can  be  viewed  as  a

Bernoulli distributed random variable. 

Hence, the log likelihood takes the following form:

The 

is called the  binary cross entropy error or loss function. We will

need derivative of sigmoid function:

to maximize 

. 

Setting:

The quantity 

represents probability that 

belongs to class 1, 

and  we  will  denote  it  by 

from  now.  In  vector  form,  we  can  write  the

gradient of 

as follows:
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Where   is the N × M design matrix, whose  nth row is given by 

and 

represents the vector of probability predictions 

. 

This  is  not  a  set  of  linear  equations  such  that  we  can  solve  it  by  inverting coefficient  matrix  and  get  a  closed  form  solution  as  we  got  for  linear regression. The  sigmoid  function  makes  it  non-linear  equation.  However,  the function  can  be  minimized  by  sequential  method.  Also,  the 

function  here  is  concave,  as  we  shall  see  shortly,  and  hence,  it  has  a  unique minimum.  Starting  with  a  random  set  of  weights  denoted  by 

,  we

iteratively update the weight as follows:

Here,   is the learning rate. This has a very similar form as in case of linear

regression. 

 Note: We can check the convexity of 

  by checking whether its Hessian

 is  positive  definite.  The  Hessian  can  be  written  as 

 Refer  to  the  further  reading  section  [8],  where    is  a 

   diagonal

 matrix  with  elements 

 ,  since 

 .  As  each

 element of the diagonal matrix is positive, the Hessian is positive definite. 

 The logL can be minimized by an efficient iterative technique based on the

 Hessian  called  Newton-Raphson  and  the  updated  formula  is 

 . 

Multiclass logistic regression

Logistic regression can be extended for multiclass classification by building  K-

1 binary classifiers, each of which separate points in  k th class from the points not in that class. This is known as One-vs-Rest (OvR)  scheme.  For  this,  we can take one class as pivot class, say the largest class label K and model log of odds of being in class 

vs being in class  K as follows:
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Exponentiating both sides:

Since 

, adding all 

equations, we get:

An  alternative  formulation  is  by  assuming  multinomial  distribution  for  the class variable. Using Bayes, theorem we can write:

Where 

.  This

normalized exponential 

denoted by 

, is also known as the  softmax

 function,  as  we  can  view  this  as  a  smoothed  ‘ max’  function:  if 

, 

then 



and 

. 

Comparing  with  logistic  regression  where  we  modelled  the  log  of  odds  as  a linear function, we represent 

. Here, 

represents the weights

corresponding to jth class. 

Now,  we  can  represent  class  label 

for  each  data  point 

as  1-of-K

representation  or  one  hot  encoded  representing  a  realization  of  multinomial random  variable  with  K  categories.  The  target  vector  is  a 

matrix 

,  and the likelihood is given by:

where 

.  The 

function  is  called  the

categorical-cross-entropy error or loss function. The derivative (Jacobian) of softmax is given by 

, where 

represents 

th entry

of the 

identity matrix. Using this, we can compute the gradient of the 

with respect to one of the weight vectors 

:
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Poisson regression

Poisson  regression  is  like  logistic  regression,  except  that  the  dependent variable is an observed count that follows the Poisson distribution. Thus,  the

possible  values  of  Y  are  the  non-negative  integers:  0,  1,  2,  3,  and  so  on. 

Example  application  of  Poisson  regression  is  study  of  counts  of  bacteria related  to  various  environmental  conditions  and  dilutions.  Clearly,  the

dependent  variable  breaks  the  normality  condition,  and  hence,  we  need  to apply some transformation. Using log transform, we can model the logarithm

of the mean of dependent variable using a linear model. 

Suppose  we  have  a  sample  of  n  observations 

,  which  can  be

treated 

as 

independent 

Poisson 

random 

variables 

, 

with 

, and we can model the log of the mean   as a

linear  function  of  the  dependent  variables 

.  Then,  we  have  the  following

model:

We can use MLE to estimate the parameters  . The log likelihood of data is

given by:

The gradient of 

takes similar form as logistic regression:

Also, log L is a convex function and can be optimized using gradient decent or

by other gradient-based methods, like  Newton-Raphson. 
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In  Poisson  distribution,  we  have 

So, we are assuming equi-dispersion. That is, the mean and variance are equal: 

 .   But  in  practice,  it’s  very  common  to  see

 overdispersion  that  is, 

. The  Negative  Binomial

(NegBin) Model can accommodate over- and under-dispersion at the cost of an additional parameter. 

 Note:  In  all  the  four  meantioned  variations  of  the  linear  models  linear, 

 logistic, Poison, Neg-binomial, we can see one common pattern:

 The  response  variable  y  follows  an  exponential  family  (ExpFam)  of

 distributions (for example, binomial, Poisson, multinomial, normal)

 A  linear  model  relates  the  expectation  of  the  response  variable  via  a  link

 function 

 g 

 such 

  

 and 

  that 

 . 

 This  representation  is  known  as  Generalized  Linear  Model  (GLM).  The

 Python  statsmodel  glm  package,  mentioned  in  Further  Reading  [9], 

 provides implementation of all these variants of linear model. 

Interpretability of linear models

Linear models are easy to interpret, which makes them very popular. We can

justify  why  the  model  works  and  get  deeper  insights  into  hidden  patterns  in data that can seed thoughts for further improvement of model by either feature

engineering  or  exploring  newer  data  sources.  We  will  start  with  the  simplest linear  model  with  identity  basis  function 

as  the  line: 

Here, 

represents the predicted value of target variable, 

and 

represents  the  true  value  of  the  target.  The  prediction  error  is 

.  Here, 

denote  the  MLE  estimates  of  the  coefficients. 

Clearly, 

,  are  all  random  variables  being  function  of  the  target

random  variable  y.  By  model  assumption, 

,  and  hence, 

. 

Substituting 

, 

in 

the 

MLE 

estimate 

, we get:
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The coefficient 

can be computed as earlier:

Now:

The coefficient represents the slope of the line, that is, by what factor the target y changes for a unit change in the value of predictor. 

 Note: This interpretation as slope can be extended for multiple predictors

 as well. For more than one predictor, we can view the weights as a factor by

 which the target will change for a unit change in the predictor, holding all

 other predictors constant. This interpretation of the coefficients can help us

 understand  which  predictors  affect  the  target  and  how.  However,  this

 relation  should  not  be  considered  a  cause-and-effect  relationship  as  it

 indicates correlations, and correlations do not imply causation. 

These  coefficients  are  random  estimates;  there  is  a  chance  that  they  are  not accurate and may mislead us. To safeguard against such risk, we can employ

hypothesis  testing  (or  test  of  significance  of  the  coefficient).  We  test  the hypothesis  and  check  whether  the  coefficient 

.  Formally,  we  write  it

like this in terms of null and alternate hypothesis:

against the alternative hypothesis

or 

or 

Since   are normally distributed, 

is normally distributed with mean 0 if 

is  true,  and  thus, 



is  t-distributed  with  degrees  of  freedom 

associated  with  the  sample  variance 

of 

,  that  is, 

computed

earlier. 

Following the standard steps for hypothesis testing, we first choose the level of significance 

and  perform  a  two  tailed  t-test  for  testing  the  null

hypothesis against 

. The critical value of Student’s t for the two-

tailed  alternative  hypothesis  places  probability  α/2  in  each  tail  of  the distribution. The probability of falling in the critical region is called  p-value. 
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 Small p-value 

  indicates, we cannot reject the null hypothesis, and hence, 

 the  coefficient 

   is  not  significant.   We  can  also  compute  the  confidence

interval  of  the  coefficients.  This  is  more  informative  as  they  reflect  the precision  of  the  estimates.  Testing  against  the  alternate  hypothesis 

the  95%  confidence  intervals  for 

and 

are  given  by: 

and 

, respectively. 

We  can  use  the  Python  stats  model  for  computing  these  confidence  intervals and test the significance of each of the coefficients, as shown in the following

code. Here, we have used the petal width vs petal length, as shown in  Figure

 5.9 (Left). 

1. import statsmodels.formula.api as smf

2. model = smf.ols(formula=”petal_length ~ petal_width”, data=df)

3. results = model.fit()

4. print(results.summary())

Refer to the following figure:

 Figure 5.10: Regression Results

This statistical analysis of coefficients done so far for regression with a single variable can be easily extended to multiple variables using matrix algebra and

quadratic forms. 
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Interested readers may refer to  Chapter 4, Analysis of Variance, from the book

[7]. 

In the result in  Figure 5.10, we see scores called 

and F-Statistic. These help

us access the overall goodness of model fit. Let’s see what they mean. It can be easily proved that (see  Further reading [6]):

Total Sum of Squares (SST) = Sum of Squared Due to Regression (SSR) +

Sum of Squares of Errors (SSE). In this proof, we use the normality of errors assumption  we  had  for  linear  regression  that  gives  the  mean  of  error  terms 

.  Here,  SST  is  the  total  variance  of  the  target  variable

irrespective of the model. The part of that variance is explained by the model

SSR and part is unexplained by model that is the squared error SSE. Dividing

the  equation  by   SST,  we  have  1  = 

.  We  define 

as  the

 coefficient  of  determination,  which  indicated  the  proportion  of  the  total variance that is explained by the model. Clearly, . Greater values of indicated

better model fit. 

 Note:  This  equation  SST=SSR+SSE  is  perfectly  valid  for  even  more  than

 one predictor variables. But as we add more predictors to the model, we will

 see the R2  value monotonically increasing. This does not always mean we

 are getting a better fit with more predictors as every predictor may not have

 an  impact  on  the  target.  Hence,  we  use  adjusted  R2   as  the  number  of

 predictors increase. 

The  adjusted   R 2  tells  you  the  percentage  of   variation  explained  by  only  the

 independent variables  that actually affect the dependent variable. 

The significance of the coefficients can be measured for other variations of the linear models, like logistic regression. 

 Tip: For logistic regression model, this R2  statistic does not make sense, as

 its based-on ratio of variances explained. McFadden’s pseudo-R squared is

 defined  as 

 .  Here,  L  denoted  the  maximized

 likelihood  and  Lnull  denotes  the  intercept  only  model.  Intuitively,  we  can

 understand this measure as follows. If the model has no predictive ability, 
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 the likelihood value for the model will not be much greater than the null

 model  likelihood.  Therefore,  the  ratio  of  the  two  log-likelihoods  will  be

 close to 1, and R2pseudo will be close to zero. 

Conclusion

In  this  chapter,  we  discussed  the  fundamentals  of  statistical  inference.  We covered  sample  statistic,  hypothesis  testing,  parameter  estimation  techniques and  then  various  applications  of  these  in  ML.  We  discussed  various  ML

models in a probabilistic setting, and we understood that the error functions we minimize  to  train  these  ML  models  are  derived  from  these  probabilistic settings. We also introduced fixed basis function model, which gives a generic

structure to all the regression, classification models. 

In  the  next  chapter,  this  structure  will  be  extended  to  neural  networks.  The same  error  functions  derived  in  this  chapter  will  be  used  here,  after  several applications of models, based on deep neural networks. 

Points to remember

A statistic T is a function of samples from a population and is generally

used  to  estimate  a  population  parameter    from  the  sample  values.  We

can  view  a  prediction  model  as  a  statistic  and  an  estimator  of  the  true population behavior. The training data can be viewed as a sample that can

be used to estimate the true population behavior. 

Bias-variance decomposition:  The  Mean-Squared Error (MSE)  of  T

in estimating parameter   can be decomposed as: 

Bias-variance  tradeoff:  High  bias  model  indicted  our  model  is

oversimplified and is underfitting and thus prediction from these models

have  high  variance.  Similarly,  low  bias  implies  overfitting  and  also

prediction from this model will have low variance. 

If  MVU  exists  for  a  statistic,  then  the  MLE  procedure  will  give  that estimator. 

MLE estimates are consistent and efficient, but need not be unbiased. 

MLE  estimates  are  prone  to  overfitting,  and  this  can  be  mitigated  by

Bayesian estimation with MAP or with regularization techniques. 

Linear  models  discussed  here  should  not  be  visualized  only  as  lines  or planes.  Remember,  linear  means  linear  coefficients,  and  by  using  nonlinear  basis  functions  like  polynomial  or  radial  basis  functions,  we  can represent  very  complex  multivariable  non-linear  functions  ( fixed  basis function models). 

The probabilistic view of linear, logistic and Poisson regression helps us

reduce the classification and regression problem as a convex optimization

problem  that  can  be  solved  by  iterative  gradient-based  optimization

methods. 

The interpretability of linear models makes them more useful for solving

business  problems.  Testing  of  the  statistical  hypothesis  for  whether  the coefficient  is  actually  zero  helps  analyze  the  significance  of  the

coefficients.  Lower  p-value  indicates  low  chances  of  rejecting  the

hypothesis  that  the  coefficient  is  zero,  and  hence,  the  corresponding

feature must be an important feature. 

Further Reading

 Fundamentals  of  mathematical  statistics,  S  C  Gupta,  V  K  Kapoor Publisher: New Delhi:  Sultan Chand & Sons. 

 Chris Bishop,  Pattern Recognition and Machine Learning, Chapter 3 and

4. 

Unbiased Estimator: https://dawenl.github.io/files/mle_biased.pdf. 

Student’s  t-distribution:  https://en.wikipedia.org/wiki/Student%27s_t-

distribution. 

MLE 

for 

multivariate 

Gaussian:

https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-

readings/chapter13.pdf. 

https://web.njit.edu/~wguo/Math644_2012/Math644_Chapter%201_

part4.pdf

 Applied  Regression  Analysis:  A  Research  Tool  by  Rawlings,  John  O. , Pantula,  Sastry G. ,  Dickey,  David A

Hessian  of  log  likelihood  of  logistic  regression  is  positive  definite:

https://www.cs.mcgill.ca/~dprecup/courses/ML/Lectures/ml-

lecture05.pdf

https://www.statsmodels.org/stable/glm.html

CHAPTER 6

Neural Networks

In  the  previous  chapter,  we  discussed  that  with  a  clever  choice  of  basis functions  and  using  linear  models  alone,  we  can  solve  a  wide  range  of  ML

problems. So, it appears that linear basis function models constitute a general-

purpose  framework  for  solving  ML  problems.  However,  there  are  certain

limitations:

1. These non-linear basis functions need to be defined before training, that

is,  we  must  carefully  perform  feature  engineering,  which  is  a  time-

consuming, manual effort and demands sound knowledge of the domain. 

2. The  number  of  basis  functions  grow  rapidly,  often  exponentially  with data  dimension,  that  is,  the  curse  of  dimensionality  (discussed  in

Overview  of  AI  chapter)  problem  arises.  Hence,  we  need  to  look  for

alternative models. 

Neural network models are inspired by the way biological neural systems in human brain processes information. Neural networks solve these problems by

choosing fixed but adaptive basis functions. These are parametrized non-linear

basis functions whose parameters can be learned from the data during training

of the neural network model. This is called the training of the network. Also, 

we can create a hierarchy of these parametrized basis functions. Each level in

the hierarchy is called a layer of the network. A layer consists of fixed number of basis functions, which takes the output of the previous layer as input. The

arrangement of these layers and connections among them in a particular form

is called the  architecture or  topology of the neural network. We will see how the knowledge of the problem domain can be easily incorporated in the neural

network  architecture  through  choices  in  number  of  layers,  units  per  layer, connections between layers, and so on. Now, the challenge of careful feature

engineering  is  transformed  to  network  architectural  engineering.  For training these  networks,  the  most  popular  method  is  gradient  descent  –  the  backpropagation algorithm. However, for training deep networks, that is, networks

with a large number of layers, simple gradient descent may not give us the best

solution, so many modifications of that algorithm are suggested, which we will discuss in this chapter. 

Structure

In this chapter, we will cover the following topics:

Single neuron: An adaptive basis function

Multiple stacked layers or hierarchy of neurons

Training hierarchy of neurons: Back propagation algorithm

Basic neural network architectures: DNN, CNN, RNN, Transformers, 

Autoencoders

Objectives

After studying this chapter, you will be familiar with the fundamental concepts

behind  deep  neural  networks  and  state-of-the-art  AI  models.  These concepts will be applied in the subsequent chapters, where specific deep neural network

models  will  be  discussed  for  solving  AI  problems  like  speech  recognition, handwriting  recognition,  language  translation,  image  classification  and

generation. 

Artificial neuron: An adaptive basis function

The fundamental building block of a neural network is called a  neuron.  This term is borrowed from biology. where a neuron is a nerve cell that is the basic

building  block  of  the  nervous  system.  A  single  neuron  may  be  connected  to many other neurons such that the information transmitted is consumed by these

connected  neurons.  The  biological  neuron  consists  of  three  main  parts:

 dendrites  (the  receivers),  the  cell  body,  and   axon  (the  transmitter).  Neurons communicate with one another at junctions called  synapses, where one neuron sends  a  message  to  a  target  neuron,  that  is,  another  neuron  cell.  These  are chemical messengers or ions. An artificial neuron closely mimics this structure

comprising  of  a  set  of  dendrite-like  connections,  each  taking  an  input  and multiplying  it  by  a  (synaptic)  weight  (weight  indicates  strength  of  synaptic connection) associated with that edge. These weights are learnt in the learning

phase. These weighted inputs are summed up after going through a  summation

 unit. The result is subsequently fed to an  activation unit whose output is then
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transmitted to the outside via an axon-like projection. The structure of a single

biological and artificial neuron is depicted in  Figure 6.1:

 Figure 6.1: Biological neuron and artificial neuron

Given  an  input  vector 

,  the  computation  in  an

artificial  neuron  can  be  written  in  the  form  of  a  basis  function 

,  as

follows:

Here, 

is a non-linear activation function.  Table 6.1 shows some common activation functions. Also refer to the following figure:
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 Figure 6.2: Different basis functions created by various activations: first row shows various sigmoid activations, second row shows various tanh activations, and the last row shows relu activations

 Table 6.1: Activation functions

For a fixed set of weights  , this basis function 

is a fixed function, like

the one we have in linear basis function model, studied in the previous chapter. 
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Now,  let’s  see  how  we  can  get  a  family  of  basis  functions  by  varying  these weights.  For  example,  we  take  a  single  variable  input 

and  make  an

adaptive  basis  function  with  two  weights 

:. 

 Figure 6.2 shows how setting the weight parameters randomly gives each basis function a distinct shape. 

Feed Forward neural network

The fixed basis functions ( Figure 5.5 from  Chapter 5: Statistical Inference and

 Applications) can be replaced with these adaptive basis functions in the linear

basis  function  model  discussed  for  regression  or  classification  (logistic regression),  and  the  resulting  model  is  called   feedforward  neural  network

(shown in  Figure 6.3):

 Figure 6.3: Neural network with single output neuron and one hidden layer; the weights connecting ith neuron of layer jth to neuron of layer (l + 1) is denoted by 

The set of three adaptive basis functions transforming the input vector 

to 



is  called  a   layer  in  the  neural

network. The input vector is called  input layer, assuming it’s a basis function layer  with  identity  basis  function,  and  the  final  output  neuron(s)  is  called
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 output layer. The layers between the input and output layers are called  hidden layers. We can have more than one hidden layer. Numbering the layers of the network starting from the input layer numbered (0), the hidden layer numbered

(1), and the output layer numbered (2) in  Figure 6.3. The weights connecting neuron  of  layer 

to 

neuron  of  layer 

is  denoted  by 

. 

The  set  of  all  weights  connecting  layer 

to  layer 

is  denoted  by

matrix 

. 

We  can  view  these  layers  as  set  of   vector  fields  as 

,  where   r

denotes number of nodes in layer 

,  s denotes number of nodes in layer  l, 

and   transforms the vector 

to a vector 

. The entire neural network

in  Figure 6.3 can now be expressed as a composition of a set of vector fields:

 So, 

where ∘ denotes function composition

Here,  L 0,  L 1, and  L 2 represent the input, hidden, and output layers, respectively. 

We  have  seen  in   Chapter  3:Vector  Calculus  in  section  chain  rule  for derivatives of vector fields, how to differentiate such composition of functions. 

We will be using this in the following section. 

Initializing all the weights and holding the weights connecting layer (0) to (1): as  fixed,  we  have  a  fixed  basis  function  network  as  before.  The  fixed basis function model is also a neural network with a single layer. 

The  number  of  hidden  layers  can  be  many  based  on  the  complexity  of  the problem  we  want  to  solve.  Also,  the  number  of  neurons  per  layer  may  vary. 

 Figure 6.4 depicts a generic multi-layered feed forward network with a single output node. Each  layer’s  adaptive  non-linear  basis  functions  are  denoted  by 



. Refer  to  the  following

figure:
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 Figure 6.4: Neural network with single output neuron and many hidden layers. Here, p & q represents layers where q = p + 1, np denotes number of nodes in layer p, neural network has total of K+1 layers which includes one input layer, one output layer and K-1 hidden layers, and xl denotes lth layer output vector/tensor. Here, only one output node is shown, but in general, there can be many output nodes. 

Training neural network

For finding the weights in a fixed basis function network, we could use linear

algebra  and  arrive  at  a  closed  form  solution  analytically.  Moreover,  the  error functions   E  we  arrived  at,  like  sum-squared  error  or  cross  entropy  error  for classification, were convex functions with unique optimum that can be arrived

at by gradient based iterative optimization methods as well. 

With  adaptive  basis  functions,  the  error  function   E  is  now  a  function  of  the weights  associated  with  the  basis  functions  (in  hidden  layers  also).  This  is because the predicted output   is now a function of hidden layer weights.  The error E being some function of target y and prediction   is also a function of hidden layer weights. We want to find a set of weights w  that  minimizes  the chosen error function  E(w). Here, w represents all the weights of the network. 

This  task  is  called   training  of  the  neural  network.  Figure  6.4  depicts geometrically  an  error  function  for  two-dimensional  weight  space.  For  any value of the weight vector 

, we can plot the error value in

the z-axis and view the error function as a surface over the weight space. 

The  goal  is  to  find  a  vector  w  such  that   E(w)  takes  its  minimum  value. 

However,  the  error  surface  is  typically  non-convex  because  of  having  highly non-linear  dependence  on  the  weights  and  bias  parameters,  so  there  can  be many  local  minima  points  in  weight  space  at  which  the  gradient  almost vanishes. 
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In  Figure 6.5, 

is a local minimum. For training a neural network, it may not

be always necessary to find the global minimum, but what really matters is to

find  a  sufficiently  good  solution.  Even  if  a  global  minima  is  actually  found during training, we may not know it. We have already discussed how gradient

descent  algorithm  uses  the  derivatives  of  a  function  to  find  a  minimum  in

 Chapter  3:  Vector  Calculus, section:  descent  methods  .  However,  gradient descent, in general, has often been regarded as slow or unreliable. Previously, 

the application of gradient descent to non-convex optimization problems was

regarded  as  foolhardy  or  unprincipled.  Today,  nearly  all  neural  networks  are trained by one very important algorithm: Stochastic Gradient Descent (SGD) which is an extension of the gradient descent algorithm. Refer to the following

figure:
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 Figure 6.5: Geometrical view of the error function E(w) for two-dimensional weight space, that is,  as a surface sitting on weight space. Point is a local minimum and 

  is the global minimum. 

 At any point 

 , the local gradient of the error surface is given by the vector ∇ E. 

Stochastic Gradient Descent

We have seen in the  Chapter 3: Vector Calculus  the  formulation  of  the  error function  for  regression/classification  problems.  These  functions  being  some form of log-likelihood, decompose as a sum over N training examples of some

per-example loss function:
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In the gradient decent algorithm, we initialize the weights randomly and keep

updating the weights based on gradient information. Hence, for these additive

loss functions, we need to compute the gradient value at each training example. 

As the training set size grows to billions of examples, the time to take a single gradient step becomes prohibitively long. The intuition behind SGD is that the

gradient  is  an  expectation.  The  expectation  may  be  approximately  estimated using  a  small  set  of  samples.  Specifically,  on  each  step  of  the  algorithm,  we can  sample  a  mini  batch  of  examples  drawn  uniformly  from  the  training  set. 

For  simplicity,  assume  that  the  mini  batch  size  is  1.  Now,  at  every  step   t,  a random  sample  point 

is  chosen,  and  we  update  the

weights via the following:

The expectation of the gradient is given by the following:

We  can  interchange  the  gradient  and  expectation  if 

is  a  smooth  or

continuously differentiable function .  For a neural network, this assumption is valid as all the layer functions are continuously differentiable given that we are using  differentiable  nonlinearities  in  each  layer.  Now,  the  probability  of choosing  n is 

. Thus, from the expectation definition, we have:

Hence, 

Let’s try to apply SGD for training the two-layer neural network described in

 Figure 6.3 where the predicted output is a scalar  . 

Computing error derivatives
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We 

want 

to 

compute 

the 

gradient 

, 

where 

is  the  weight  tensor  representing  all   N  layer

weights of the networks. Any error function  E depends on the predicted output (and given target y that is constant), and thus using  chain rule of derivatives, we can write:

As 

, we can write   as 

. The partial derivative of the error E w.r.t

any  layer  output  tensor    is  denoted  by 

.  There  is  a  recursive

relation  between 

and 

because  of  chain  rule  of  derivatives  (using

matrix form of chain rule for vector fields as  E depends on the composition of the layers) that is:

where 

are Jacobian matrices

We  can  write 

and   a  is  the  activation

 function of L l+1. Therefore:

Like  any  other  recursion  relation,  the  base  case  must  be  defined  from  where the recursion begins. Here, the recursion begins at the last layer. We can think of the error function  E as a layer 

, and thus, define the base:

Now, coming back to the error derivative, we can represent them in terms of 

:
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w.r.t. the weight vector of the corresponding layer. 

Example: If 

is a sigmoid layer with  n output neurons and  m inputs, we can

write the layer function as 

. Here,  x is the

layer 

input vector. 

So, 

will be given by the following product of Jacobians:

Here, 

represents the derivative of a first order tensor with a second order

tensor. This derivative will be a third order tensor, as discussed in  Chapter 3:

 Vector Calculus  in  section  tensor  calculus.  We  can  represent  this  with  tensor

outer product operation   and Einstein summation notation, as follows:

The derivative of sigmoid function 

. Therefore:

Using  the  property  of  outer  product: 

, 

the previous dot product simplifies to the following:

 Note:  The  derivative  of  error  function  E  w.r.t  the  corresponding  layer

 weights 

  can be written as a product of gradient message coming from

 the next layer, that is, 

  and the derivative of the activation function of

 the  layer  w.r.t  the  weight  vector 

 .  Here, 

   is  a  layer  specific

 Jacobian and does not depend on any other layers. Thus, 

  depends on

 derivative messages from the layers above and not from the layers below. 
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For  computing  the  error  derivatives  with  SGD,  we  need  to  compute  the

derivatives  of  the  error  function  over  subsets  (or  mini  batch)  of  training examples  and  then  compute  the  average  error  over  the  mini  batch.  In  the previous computation, we computed the derivative for single example. A mini

batch can be represented as a matrix whose each row represents one training

example  of  the  batch.  So,  x  is  now  a  second  order  tensor,  and  the corresponding layer output 

will also be also a second order tensor. 

Therefore, the partial derivatives will change as follows:

Now:

Hence:

Using  the  property  of  outer  product: 

, 

the previous dot product simplifies to the following:

We know that the dot product 

as it’s the Frobenius

norm of the matrix with only the 

element as 1 and all other elements

as 0:

Let’s  implement  the  same,  and  then  we  can  compare  it  with  the  derivative computed  by  any  deep  learning  library.  In  the  following  code,  we  will  first implement sigmoid layer using TensorFlow:

1. import tensorflow as tf

2. batch_size =2

3. tf.random.set_seed(42)

 4. #create a Sigmoid layer with 4 output neurons

5. layer = tf.keras.layers.Dense(4, activation=tf.nn.sigmoid)

 6. #create a input tensor 3 neurons and batch size = batch_size

7. x = tf.random.normal([batch_size, 3])

8. z = layer(x)

The output tensor z is of shape (2, 4). Using the previous formula for the layer derivative, let’s compute the derivative of layer w.r.t the layer weights, which can be accessed by the layer.kernel property. Layer weights are initialized at random. The following code depicts this:

1. b1, b2 = tf.eye(2).numpy()

 2. #create the unit tensors ek abd ej

3. e1, e2, e3 = tf.eye(3).numpy()

4. f1, f2, f3, f4 = tf.eye(4).numpy()

5. 

 6. #Compute Derivative

7. jacobian = None

8. y = tf.matmul(x, layer.kernel).numpy()

9. for b, eb in enumerate([b1,b2]):

10.     for k, ek in enumerate([f1,f2,f3,f4]):

11.        for j, ej in enumerate([e1,e2,e3]):

12.            tmp = tf.tensordot(ej, ek, axes=0)

13.            u = x[b][j]*tf.nn.sigmoid(y[b][k])

14.                         *(1-tf.nn.sigmoid(y[b][k]))*ek

15.            v = tf.tensordot( eb,u, axes=0)

16.            if jacobian is None:  

17.                jacobian = tf.tensordot(v, tmp, axes=0)

18.            else:

19.                jacobian += tf.tensordot(v, tmp, axes=0)

20. print(jacobian)

The  computation  is  just  one  step  using  TensorFlow  gradient  tape,  as  shown here:

1. with tf.GradientTape(persistent=True) as tape:
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2.     z = layer(x)

3. jacobian = tape.jacobian(z, layer.kernel)

4. print(jacobian)

 Figure 6.6 shows the output obtained from either of the two implementations of layer derivative, that is, layer output w.r.t the layer weight 

:

 Figure 6.6: Layer derivative tensor of shape (2,4,3,4)

 Note: The layer kernel matrix is of shape (3, 4). The shape of the derivative

 tensor  or  Jacobian  of  the  output  with  respect  to  the  kernel  is  those  two

 shapes concatenated together. 

We  have  shown  how  to  compute  the  derivatives  of  each  layer  and  a  way  to recursively compute the error for the entire network. We will now apply this

technique  for  computing  error  derivatives  for  specific  error  functions,  like sum-squared error and binary cross entropy. 

Backpropagation algorithm

Let’s  take  the  three-layer  neural  network  that  we  introduced  before.  In  the linear  regression  section  of  the  previous  chapter,  we  learned  that   E  is  mean-squared error given by 



. Here, 

is

the previous layer ( L 1) output. Also, the error function will be computed for a mini  batch  of  samples  of  size 

. So,  we  can  write   E  in  terms  of  layer

function as follows:

and thus, 
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This is the same gradient we obtained for linear regression, the only difference being that   was a fixed function there. 

Next, let’s compute 

. 

Since    is a linear layer, 

here 

is a weight

matrix  connecting  n  neurons  in  layer 

to  m  neurons  in  layer 

; 

therefore, 

Assuming 

that 

 tanh 

activation 

is 

used 

in 

the 

layer 

This expression can be derived in the same way we derived the derivative for

sigmoid layer, only replacing the sigmoid derivative with the tanh derivative. 

We now have all the required gradients to compute the gradient step needed for

gradient decent algorithm: 

. 

Now,  we  will  implement  these  using  TensorFlow.  First,  we  create  the  model using functional API, as shown in the following code:

1. inp_vector = tf.keras.layers.Input(shape=(3,), name=’input’)

2. x = tf.keras.layers.Dense(units=4, activation=’tanh’, 

3.                           name=’hidden’, use_bias=False)

(inp_vector)

4. x = tf.keras.layers.Dense(units=1, activation=’linear’, 

5.                           name=’output’, use_bias=False)(x)

6. model = tf.keras.Model(inputs =[inp_vector], outputs=x)

7. print(model.summary())

Now, using gradient tape as before, we can directly compute the gradient of the loss function w.r.t both the weight tensors (model.trainable_variables) in the two layers. This is shown in the following code:

1. batch_size=5

2. X = tf.random.uniform([batch_size, 3])

3. Y = tf.random.uniform([batch_size, 1])

4. 

5. def mse(y_true, y_pred):

6.     return 1/2*tf.reduce_mean(tf.square(y_true-y_pred))

7. 

8. with tf.GradientTape(persistent=True) as tape:

9.     y_pred = model(X)

10.     loss = mse(Y, y_pred)

11. gradient = tape.gradient(loss, model.trainable_variables)

Now, let’s validate that we get the same result by following the steps discussed earlier.  Table 6.2  shows  the  step-by-step  computation  of  error  derivatives  for all layers:
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 Table 6.2: Error derivative computation for all layers (back propagating error derivative) This is called backpropagation algorithm. The name is given as we pass the messages backward. 

 Note:  The  Einstein  sums  used  in  the  previous  table  represent  tensor  dot

 products  between  Jacobians  computed  in  various  backward  gradient

 computation steps. For computing 

 , we have not used the tensor outer

 product  formula  that  we  derived;  we  used  the  TensorFlow  gradient  tape

 API to keep the code shorter. We have already shown how to implement the

 tensor  dot  product  formulation  for  sigmoid  activation,  and  this  can  be

 implemented by following the same steps for tanh activation. 

We  have  discussed  and  implemented  the  algorithm  for  only  three-layer

network so far, but this can be easily extended to any number of layers. We can
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train very deep neural networks with this algorithm. For any pair of non-linear

hidden layers 

let’s look at the steps for computing 

. Let there be

 K layers in the network:

1. Choose a random sample (or mini-batch) of training examples. 

2. Perform forward computation through the network and compute error E. 

3. Compute the 

for the output layer, 

. 

4. Compute the error derivative w.r.t layer weights 

. 

5. Go back one layer 

. 

6. Use recursive relation to compute 

. 

7. Repeat steps 4 to 6 until the input layer is reached. 

The  deep  learning  frameworks  like  TensorFlow  uses  a  computation  graph  to remember  the  variable  dependencies  in  the  network  and  thus  the  order  of forward  computation.  The  same  order  is  traversed  backward  to  compute  the derivative. This process is also known as  automatic differentiation. 

Challenges of training neural networks

Back propagation algorithm can be used to train any deep neural network with

a  large  number  of  hidden  layers  and  many  nodes  per  layer.  However,  in practice, there are many challenges we need to address first. Following are a

few lists of challenges and how they can be mitigated for successful training. 

Slow training with SGD

As more layers are added to the network most of the time, we can find that the

learning is very slow by observing the rate of decrease of the loss function as

the training progresses. SGD is best suited for convex optimization problems, 

where  we  have  a  convex  error  surface  and  unique  global  minima.  In  these problems, taking small steps toward the negative gradient direction makes sure

we reach the global minima. In  the  previous  sections,  we  have  discussed  the complexity  of  the  error  surface  for  deep  non-linear  neural  networks.  Along with that, there are a few other challenges related to the complexity of the error surface:

Ill-conditioning:  The   condition  number  of  a  matrix  is  the  ratio  of  the largest  singular  value  to  the  smallest  singular  value.  An  ill-conditioned
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matrix is one with high condition number. This indicates that a few rows

of  the  matrix  are  heavily  correlated  with  each  other.  If  we  have  an  ill-conditioned  data  set,  then  the  error  surface  defined  by  that  is  relatively flat  in  one  or  more  directions  and  strongly  curved  in  other  directions. 

This leads to very slow convergence of SGD. This can be identified by

monitoring the square of the gradient norm. 

Cliffs  and  exploding  gradients:  For  very  deep  neural  networks  with highly non-linear activations, the error surfaces may consist of extremely

steep,  regions  resembling  cliffs,  as  shown  in   Figure 6.7. Moving  in  the direction  of  a  negative  gradient  by  the  SGD  algorithm  can  move  the

weights far off by taking a big jump off the cliff. This will mislead the

algorithm and will go away from the minima at a point when we are very

close to reaching it. One way to mitigate this risk is by clipping the norm

of the gradient, that is, there is a maximum allowed value of the gradient

norm.  Gradients  are  restricted  from  blowing  up  by  rescaling  them  as 

if .  Figure 6.7 depicts this for a hypothetical two-

dimensional error surface with a cliff close to minima:

 Figure 6.7: Cliff in error surface and gradient clipping in SGD

Weight initialization:  To  begin  the  training,  the  layer  weights  must  be initialized. This  choice  of  initial  points  impacts  the  convergence  of  the algorithm.  Also,  various  layers  in  the  network  must  have  different

initializations to break symmetry, otherwise all layers will get the same

gradient update and end up learning same function. In general, biases are

initialized with 0 and weights are initialized with random numbers. These random  numbers  should  not  be  very  large  because  that  will  cause  very

high  value  to  be  passed  to  the  activation  functions  like  sigmoid,  which take a value 1 and have very low gradient for higher input values. So, the

learning becomes very low. The  weights  initialized  with  low  values  get

mapped to 0 by activation functions and face similar flat gradient issue as

earlier. There  are  various  heuristics  to  initialize  the  weights  like   Xavier Initialization,  He  Initialization.  You  are  advised  to  refer  to   Further Readings [1],  [2]. 

Modifications of SGD

Error  functions  have  regions  of  high  curvature  and  small  but  consistent gradients. This is due to the ill conditioning of the Hessian matrix and variance in the SGD, and the learning may slow down a lot in such regions. Following

are two categories of techniques for improving SGD. 

Momentum methods

The momentum algorithm accumulates the Exponentially Weighted Moving

Average (EWMA) of previous gradients and makes a move in that direction instead  of  the  local  gradient  direction  suggested  by  SGD.  The  exponential weighting is controlled by parameter α ∈ [0,1) for exponential weighting, that

is,  how  quickly  the  effect  of  the  previous  gradient  decays.  The  momentum method  damps  the  oscillations  in  directions  of  high  curvature  by  combining gradients of opposite signs. 

Adaptive learning rate

We saw that the same learning rate is applied to all parameter updates for SGD

and  momentum  methods.  Adaptive  gradient  descent  algorithms,  such  as

AdaGrad,  AdaDelta,  RMSprop  and  Adam,  provide  alternatives  to  classical

SGD by keeping per parameter learning rates:

AdaGrad: It adapts the learning rate for each connection by scaling them

inversely proportional to the square root of all previous gradients’ sum-

squared  values.  Thus,  larger  gradient  changes  are  made  in  the  gently

sloped direction of the error surface. This may lead to shrinking of some

learning rates drastically. 
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RMSProp (Root Mean Squared Propagation): RMSProp modifies the

AdaGrad algorithm by taking the EWMA of previous squared gradients. 

The  moving  average  parameter  controls  the  length  and  scale  of  the

moving average. This is one of the most successful algorithms for deep

neural network training. 

Adam: Adaptive Moments (Adam) takes the best of both momentum-based  and  adaptive-learning-rate  algorithms  and  combines  them.  Here, 

the  momentum  algorithm  is  applied  to  rescaled  gradients  computed  by

RMSprop. 

Bias-variance trade-off in neural networks

The bias variance tradeoff that we studied for general ML models also exists

for neural networks. During iterative training of the model, the validation error is slightly more than the training error. If the gap between the test error and the validation error increases over iterations, it’s a case of  overfitting, that is, high bias  and  low  variance.  If  the  training  error  stops  decreasing  after  a  few iterations, we can conclude that the model is  underfitting, that is, high variance and low bias. 

Underfitting  can  be  mitigated  by  increasing  the   model  capacity,  that  is,  the number of layers or the nodes per layers or the activation functions used in a

layer (these are the hyperparameters defining network structure). Overfitting is handled by various regularization techniques. 

 Figure  6.8  shows  this  trade-off  as  a  function  of  model  capacity  for  neural networks  and  compares  neural  network  complexity  in  terms  of  layers  and number of neurons with the classical ML models:

 Figure 6.8: Overfitting and underfitting in neural networks

Generally, a validation data set is used to compute the prediction error of the models. This can help us choose the best model capacity or network structure

related hyper parameters for the given problem. 

Regularization of neural nets

Various strategies are developed to avoid overfitting and reduce generalization

errors while training neural networks. These strategies are collectively known

as regularization. Following are a few popular techniques for regularization: Weight-decay:  In  the  previous  chapter,  we  discussed  that  one  effect  of overfitting  is  directly  related  to  explosion  of  the  weights  of  the  model, and  this  can  be  mitigated  by  adding  weight  penalty  terms  like   l 1 ,  l 2

weight constraints. 

Dropout: The output of a fraction of nodes from a layer chosen randomly

are  masked  by  setting  their  output  to  zero  during  the  training.  It’s

equivalent  to  removing  a  fraction  of  nodes  from  a  layer  and  creating  a new neural network with fewer nodes. This can be compared to model-averaging  method  (ensemble  learning),  where  many  models  are  created

by  changing  the  number  of  active  nodes  at  various  layers  of  the  base model  on  which  dropout  is  applied.  This  is  a  computationally

inexpensive  but  powerful  method  of  regularizing  deep  neural  networks. 

 Figure 6.9 shows that the third node in the hidden layer is masked. All of its  output  connection  weights  are  set  to  zero.  Refer  to  the  following figure:
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 Figure 6.9: Dropout: Showing the dropped node while training

Weight sharing: Using the same set of weights in different layers in the

network, we have fewer parameters to optimize. RNN (discussed in the

 Chapter  10:  Sequence  to  Sequence  Models)  and  CNN  (discussed  in

 Chapter 9: Computer Vision ) use weight sharing. 

Batch  normalization:  Standard  scaling  of  inputs  has  shown

improvements in the model performance. Batch normalization applies the

same  trick  to  the  hidden  layers.  It  normalizes  the  previous  layer’s

activations  by  subtracting  the  mini-batch  mean,  μ,  of  activations  and

dividing  by  the  mini-batch  standard  deviation,  σ.  During  inferencing,  μ

and  σ  are  replaced  by  an  average  over  all  the  values  collected  during training. 

Sensitivity of neural networks to small

perturbations
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Deep neural networks are often found to be very sensitive to small well-chosen

perturbations. A well-chosen small perturbation of an input image can mislead

a neural network, resulting in significant decrease in its classification accuracy. 

One metric to assess the robustness of neural networks to small perturbations is the  Lipschitz  constant.  A  vector  valued  function 

is  called

 Lipschitz  continuous  if  there  exists  a  constant  L  such  that  for  all The  smallest  L  for  which  this

inequality holds is called  Lipchitz constant. Neural  network  can  be  seen  as  a vector  valued  function.  Lower  value  of  L  shows  a  more  robust  neural  net model.  However,  the  exact  computation  of  the  Lipschitz  constant  of  neural networks is NP-hard, as proved in  [4]. 

It can be proved that the Lipschitz constant is the largest singular value of the weight matrix of the layer for linear and convolutional layers. While training

neural networks, we can keep optimizing the Lipchitz constant as well. This is

called   Lipchitz  regularization.  Some  techniques  of  enforcing  Lipchitz regularization are discussed in the GANs chapter. Interested reader may refer

to Further Reading  [5]. 

Neural Network Architectures

Architecture  refers  to  the  overall  structure  of  the  neural  network,  like  the number  of  layers,  the  number  of  units  in  each  layer,  connections  between layers,  and  so  on.  Modular  deep  learning  frameworks,  such  as  Caffe,  Torch, and  TensorFlow,  have  revolutionized  complex  neural  network  architecture

designs.  However,  these  designs  are  backed  by  problem  domain  knowledge

and are not just random guesses or trial and error. A neural network solving a

classification  task  in  computer  vision  domain,  like  image  segmentation  or object detection, does not use a simple multi-layered neural network. We know

in  computer  vision  domain  image  filters  are  commonly  used  for  feature

extraction. These  are  basically  some  fixed  convolution  operations  applied  on the  images.  Inspired  by  this,  the  architecture  design  for  solving  almost  all computer vision problems used Convolution Neural Networks (CNN), which mainly consist of a sequence of filter-learning and filter processing. Following are  a  list  of  different  architectures  that  we  will  discuss  in  the  later  chapters, along with some domain knowledge required to understand the models:

Autoencoder  Architecture:  Used  for  dimensionality  reduction,  and

popular for generative modelling

Generative Adversarial Network (GAN) used for generative modelling

that  we  have  discussed  in  greater  detail  in   Chapter  12:  Generative

 Models. 

Convolutional  Neural  Network  (CNN):  Mostly  used  for  computer vision problems and image processing, and also used for natural language

processing; it will be discussed in  Chapter 9: Computer Vision . 

Recurrent  Neural  Nets  (RNN):  Used  for  sequential  data.  We  will

discuss these in the  Chapter 10: Sequence to Sequence Models. 

Transformers:  The  state-of-the-art  text  analysis  models  like  BERT  are based on transformers. These are also being applied for other tasks like

handwriting recognition and speech recognition. We have discussed this

in the  Chapter 11: Natural Language Processing. 

Siamese  neural  network:  This  architecture  contains  two  identical

subnetworks that have the same configuration, with the same parameters

and weights. It is used to find the similarity of the inputs by comparing

their feature vectors. 

There are many architectures that combine these basic architectures and build a

new architecture. For example, a combination of CNN and RNN can be used

to build a cursive handwriting recognizer that reads cursive handwriting from

an  image  using  CNN  and  then  converts  it  into  the  corresponding  text  using RNN. The entire architecture is trained end to end using a data set consisting

of handwriting images and corresponding text pair. 

Conclusion

In  this  chapter,  we  discussed  the  basic  concepts  of  neural  networks.  We covered  the  fundamental  back  propagation  algorithm  in  detail  and  how  it’s implemented in the automatic differentiation framework available in most deep

learning  frameworks.  We  also  discussed  the  challenges  of  training  neural networks with SGD and ways to mitigate it at the high level. These concepts

will  be  revisited  in  the  following  chapters  on  the  applications  of  neural networks to solve specific problems. 

In  the  next  chapter,  we  will  introduce  one  more  important  topic,  that  is, unsupervised  clustering,  and  then  the  following  chapters  will  mostly  be applications of the concepts learned so far for solving various AI problems. 

Points to remember

A node in a neural network can be viewed as an adaptive basis function. 

Even  with  fixed  non-linear  activations  changing  the  weights,  we  get

various basis functions. 

Each  layer  in  the  neural  network  can  be  viewed  as  a  vector  fields  or tensor  field  that  maps  an  input  tensor/vector  to  the  next  layer’s  input tensor/vector.  These  vector  fields  must  be  differentiable,  that  is,  the activation  function  used  must  be  differentiable  for  the  network  to  be

trainable  using  back  propagation  algorithm.  The  entire  network  can  be

viewed as a composition of a finite sequence of vector fields. 

Using  automatic  differentiation  technique  discussed  here,  we  can  train

any arbitrary neural network architecture, provided we use functions and

operations that are differentiable. 

Overfitting and under fitting tradeoff are also faced by neural networks, 

and these are mitigated by proper regularization techniques and adjusting

model capacity. 

Further Reading

http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds02.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

https://www.jeremyjordan.me/neural-networks-training/

https://papers.nips.cc/paper/2018/file/d54e99a6c03704e95e6965532de

c148b-Paper.pdf

https://mi.nemzetilabor.hu/sites/default/files/2020-

12/milab_lipreg.pdf
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CHAPTER 7

Clustering

Clustering  is  about  automatically  discovering  natural  groups/clusters  in unlabeled data such that the degree of similarity between samples of the same

cluster and the degree of dissimilarity between samples of different clusters is maximized. It is one of the unsupervised learning techniques where learning is

based on unlabeled data. Let us understand this with an example. 

A company wants to grow its business. To grow the business, the company has

decided to group customers so that offers can be fine-tuned to each group. The

company  doesn’t  have  specific  rules  to  decide  the  group  of  a  customer.  It wants to find groups that are natural and have similar buying patterns so that

the offers can be fine-tuned to enhance the buying experience of their products. 

The  process  of  finding  the  groups,  also  called  clusters,  by  analyzing  the unlabeled data to find natural patterns is called clustering analysis. 

Data samples with similar patterns can form one group called  cluster. Now, we can  rephrase  the  company’s  project  as  finding  clusters  among  customers  so that the offers can be fine-tuned for each cluster to grow the business. There

are other areas where clustering analysis brings value, like anomaly detection, 

genetics, pharmacy, and document information retrieval. 

Anomaly detection includes fraud detection of financial transaction, labelling

newly  produced  mechanical  item  as  defective  and  many  others.  In  genetics, clustering  analysis  can  be  used  to  identify  DNA  that  produces  similar

behavioral patterns in animals. In turn, it helps to understand the evolution of living  things  on  earth.  In  pharmacy,  proven  medicines  and  newly  discovered drugs are clustered. One among the many newly discovered drugs is selected, 

which is closest to the proven drug cluster. The selected new drug is then used

for  next  stage  experimentation.  This  helps  to  pick  the  best  suited  drug  for  a disease with less time and resources. 

There are numerous clustering algorithms with applications in various domains

for analysis. In  this  chapter,  we  will  discuss  popular  algorithms  belonging  to different clustering categories. Along with algorithms, we will discuss cluster

evaluation methods necessary for the comparison of clustering algorithms. 

Structure

In this chapter, we will cover the following topics:

Defining cluster and approaches to form clusters

Similarity and dissimilarity metrics

Evaluation of clustering algorithms

Categories of clustering algorithms

Few popular algorithms in each category

Objectives

After going through this chapter, you will be able to understand the meaning of

a cluster and the domains where clustering algorithms can be applied. You will

learn about the different categories of clustering algorithms, along with a few

popular  algorithms  under  each  category.  You  will  learn  about  the  metric  to measure  similarity  or  dissimilarity  between  data  samples.  You  will  also  be introduced  to  various  evaluation  techniques  applicable  for  clustering

algorithms. 

Forming clusters

Clustering is an unsupervised learning technique that identifies natural clusters such that the degree of similarity between samples of the same cluster and the

degree  of  dissimilarity  between  samples  of  different  clusters  is  maximized. 

Similarity  and  dissimilarity  criteria  can  vary  based  on  the  problem  statement and the clustering algorithm. 

Grouping  of  data  samples  result  in  a  cluster.  Definition  of  a  cluster  varies based on the algorithm due to the similarity/dissimilarity metrics chosen. The

objective of all algorithms remains the same: group all the samples that possess similar characteristics into one cluster and those with dissimilar characteristics to  different  clusters.  The  approach  of  forming  clusters  by  assigning  data samples can be broadly classified into two categories:

Hard  clustering:  Every  data  sample  either  belongs  to  one  cluster  or doesn’t belong to any. K-means is a hard clustering algorithm where each

data sample is assigned to only one cluster. Financial fraud detection uses

hard clustering approaches. 
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Soft clustering:  Every  data  sample  belongs  to  every  cluster  formed  by the algorithm. Belongingness of a data sample to a cluster is represented

by a numerical value. For example, numerical value can be likelihood of

a  data  sample  belonging  to  the  cluster.  Fuzzy  theory-based  algorithms

follow  soft  clustering.  Streaming  websites  suggest  movies  of  different

genre  based  on  a  customer’s  watched  videos.  Suggested  videos  will

contain more from the genre customer likes. 

Variations are possible between these extremes:

Strict partitioning clustering with outliers: Every data sample belongs to  a  maximum  of  one  cluster.  Data  samples  that  don’t  belong  to  any

cluster are called outliers. K-medoids clustering algorithm partitions the

data samples with outliers. 

Overlapping  clustering:  Data  sample  can  belong  to  more  than  one

cluster  in  hard  way.  Clustering  algorithms  based  on  fuzzy  theory  have

overlapping clusters. 

Hierarchical  clustering:  Clusters  are  related  to  each  other  in

hierarchically. A data sample belonging to child cluster also belongs its

parent  cluster.  Balanced  Iterative  Reducing  and  Clustering  using

Hierarchies (BIRCH) is a popular hierarchical clustering algorithm. 

We  discussed  ways  of  forming  clusters  from  the  data  samples.  Next,  let  us discuss metrics that are used to decide the belongings of a data sample to the

cluster. 

Distance and similarity

Metric  or  distance  or  dissimilarity  function  is  a  non-negative  real  valued function, which provides a notion of how far the two elements of the set are. 

 Metric function on a non-empty set  X is defined as  d: X × X →  [0, ∞), where the following properties must hold for  x, y, z ∈  X:

Identity of indiscernible 

Symmetry 

Triangle inequality 

The  main  criteria  to  judge  whether  data  points  are  similar  is  based  on  the distance between them. The  distance  metric  is  preferred  for  quantitative  data where each sample is associated with unique numerical value. The higher the
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value  of  distance  metric  between  data  points,  the  farther  the  samples.  For example:  revenue  in  rupees,  height  in  meters,  distance  between  stars  in  light years, and age in years/months/days. 

For  qualitative  data,  which  is  primarily  non-numerical  in  nature,  similarity metric  is  commonly  used.  The  higher  the  value  of  similarity  metric  between data points, the closer the samples. 

For example: color of an object, texture of an object, like shiny or dull. 

Popular distance and similarity metrics are summarized in  Table 7.1. Let two data  samples  be  represented  in  vector  space  of   d-dimensions  as 



. Refer to the following table:

 Table 7.1: Popular distance and similarity metrics and their formula

Let  us  understand  the  Minkowski  distance  with  different  values  of   n.  For different  values  of   n,  we  get  different  metrics,  which  are  used  in  different
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contexts. When  n < 1, distance function follows only the first two properties due to which it cannot be called a metric function. But when  n  ≥  1,  distance function  follows  all  three  properties  due  to  which  it  can  be  called  metric function.  Let  us  understand  the  behavior  of  Minkowski  distance  with  three values of  n = 1, 2, ∞ in two-dimensional space (with  d=2). While calculating the distance between vectors, let us consider one of the vectors as origin, that is,  b  =  0.  Then,  Minkowski  distance  from  origin  in  two-dimensional  space becomes:

Let  us  consider  all  points  that  are  unit  distance  (distance_from_origin  =  1) from the origin for various values of  n.  Figure 7.1  shows  these  unit  distance points from the origin for values of 



:

 Figure 7.1: Plotting of all points that are unit distance from the center, where Minkowski distance is used with various values of n, (left) n=1, (middle) n=2, (right) n=

Consider  the  analysis  of  documents  where  each  document  can  be  of  any

number of pages. Documents need not be of the same page count. One way to

represent  documents  numerically  is  to  count  the  occurrences  of  important words in the document. If we are interested in  d number of words, then each document is represented by a vector of  d-dimensions. Each word is represented with  one  dimension.  Value  for  the  document  in  a  particular  dimension

represents  the  frequency  of  the  occurrence  of  that  word  representing  that dimension. Once the documents are represented with vectors, which metric do

you use to find the distance between these vectors? 
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Let us consider two documents 

and two important words 

. Then, 

vectors 

representing  these  documents  will  belong  to 

,  as  shown  in

 Figure 7.2. The ratio between the count of words 

for both documents

are similar 

. The metric we use should reflect the same, saying they are

closer. Refer to the following figure:

 Figure 7.2: Euclidean distance and angle between two vectors

Euclidean distance between these vectors would be:

Whereas the cosine distance between these vectors would be:

From  the  calculation,  we  can  conclude  that  cosine  distance  is  better  suited metric  for  comparison  as  compared  to  Euclidean  distance.  A  detailed

discussion  about  representing  documents  in  vector  space  is  discussed  in

 Chapter 11, Natural Language Processing
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Mahalanobis  distance  can  find  the  distance  between  a  point  and  the

distribution.  It  uses  covariance  information  for  calculating  distance,  due  to which it is useful on multivariate data. It has application in anomaly detection and  other  fields  as  well.  Let  us  consider  a  few  samples  of  data  points  and calculate their mean and the Mahalanobis distance of samples from the mean. 

Before  calculating  the  Mahalanobis  distance,  we  need  to  calculate  the

covariance  matrix,  where  rows/columns  represent  dimensions  of  the  data

points.  Code  7.1  provides  the  steps  to  calculate  covariance  matrix  and  its inverse on data samples:

1. import numpy as np

2. from numpy.linalg import pinv

3. cluster_samples = np.array([

4.    [10,15], [16,24], [25.,21], [33,28], [38,45], [40.,36], 

[37.,20]

5. ])

6. cluster_mean = np.mean(cluster_samples, axis=0)

 7. # Calculating covariance matrix

8. clust_cov = np.cov(cluster_samples.T)

9. clust_cov_inv = pinv(clust_cov)

 Code 7.1: Calculation of covariance matrix and its inverse

The  preceding  code  would  output  cluster  mean  as  and  inverse  of  the

covariance matrix 

as follows:

 Code  7.2  provides  the  functions  to  calculate  Mahalanobis  and  Euclidean distance:

1. def mahalanobis_dist_sqr(sample1, sample2, cov_matrix_inv):

2.     mean_smp_diff = sample1 - sample2

3.     return

np.dot(np.dot(mean_smp_diff.T,cov_matrix_inv),mean_smp_diff)

4. def euclidean_dist_sqr(sample1, sample2):

5.     return np.sum(np.square(np.subtract(sample1, sample2)))

 Code 7.2: Calculation of Mahalanobis and Euclidean distance

Let  us  consider  two  samples  from  the  cluster  to  calculate  Mahalanobis  and Euclidean distance, as shown in  Code 7.3:

1. outlier_smp = cluster_samples[6]

2. cluster_smp = cluster_samples[5]

 3. # cluster mean vs cluster sample

4. mhl_dist_sqr_smp1 = mahalanobis_dist_sqr(cluster_mean, 

cluster_smp, clust_cov_inv)

5. eucl_dist_sqr_smp1 = euclidean_dist_sqr(cluster_mean, 

cluster_smp)

 6. # cluster mean vs cluster outlier

7. mhl_dist_sqr_smp2 = mahalanobis_dist_sqr(cluster_mean, 

outlier_smp, clust_cov_inv)

8. eucl_dist_sqr_smp2 = euclidean_dist_sqr(cluster_mean, 

outlier_smp)

 Code 7.3: Measuring distances between two sample points

The  preceding  code  would  output  the  following  information.  Table  7.2

contains the square of distances of samples from the mean:

 With respect to cluster_mean

 Mahalanobis distance square

 Euclidean distance square

cluster_smp

1.04

214.9

outlier_smp

3.14

122.5

 Table 7.2: Mahalanobis and Euclidean distance of two samples from the cluster mean Euclidean  distance  was  not  able  to  find  the  outlier  with  respect  to  cluster distribution. In fact, Euclidean value indicates that the outlier sample is nearer to  the  cluster  mean  than  the  cluster  sample.  On  the  other  hand,  Mahalanobis distance  is  clearly  indicating  that  outlier  sample  is  far  as  compared  to  the cluster sample. These samples are captured in  Figure 7.3:
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 Figure 7.3: Plotting of data samples with special markers on cluster’s mean, a data sample in cluster and outlier

Cluster quality

Challenges  to  evaluate  these  unsupervised  clustering  algorithms  are  different as  compared  to  supervised  algorithms.  Clustering  algorithms  are  used  to extract  natural  patterns  from  the  unlabeled  data.  As  these  patterns  are  not known  before,  algorithms  would  extract  patterns  based  on  the  approach  or heuristics.  Most  times,  we  cannot  decide  whether  the  extracted  patterns  are right or wrong. 

Evaluation  of  clustering  algorithms  can  be  categorized  into  internal  and external.  Internal  evaluation  is  based  on  the  assumption  that  data  samples belonging to one cluster should be more similar as compared to data samples

belonging to different clusters. External evaluation is performed on the labeled data set. This labeled data set is not seen by the algorithms. Most times, these kinds of labeled datasets are created by humans who are experts in the problem

domain  we  are  solving.  These  are  also  called   benchmarks.  The  process  of
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evaluating  algorithms  using  standard  labeled  dataset  is  called   external evaluation. 

Internal evaluation

Internal evaluation techniques assign higher score to algorithms that produces

clusters  with  high  similarity  within  a  cluster  and  low  similarity  between clusters. However,  we  should  keep  in  mind  that  these  indicators  don’t  imply that the algorithms produce valid/invalid results. 

For example: Consider that an indicator assumes natural clusters are convex in

shape then this indicator would score high for algorithms that work on similar

heuristics. Definitely,  this  indicator  will  score  low  for  algorithms  that  do  not assume convex patterns in the data. 

Davies-Bouldin indicator

Let  there  be   n  clusters  denoted  as 

.  Let  us  use  centroid  to

represent  a  cluster  (group  of  similar  data  samples)  with  a  single  vector. 

 Centroid of a cluster is defined as arithmetic mean of all samples belonging to the cluster. Let the centroid of these clusters be denoted as 

. Let 

denote  the  average  distance  of  all  data  samples  belonging  to

cluster, and let   denote the average distance of all data samples belonging to

cluster  .  Let  the  distance  metric  between  two  centroids  be  denoted  as 

. Distance function can be any one of the distance metrics.  Davies-

 Bouldin indicator is defined as follows:

Dunn indicator

Dunn  indicator  helps  us  in  identifying  the  algorithm  that  extracts  dense  and well-separated  clusters.  It  is  calculated  as  the  ratio  between  minimum  inter-cluster  distance  and  the  maximum  intra-cluster  distance.  It  is  defined  as follows:
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Where 

measures  the  distance  between  cluster    and    and 

measures  intra-cluster  distance  of  cluster 

.  Choice  of  these

distance functions can vary based on the problem domain. Algorithms produce

clusters with high Dunn indicator value is preferred. 

Silhouette coefficient

Silhouette coefficient measure of each data sample depends on how similar the

data sample is to its assigned cluster, called  cohesion, and how dissimilar the data  sample  is  compared  to  data  samples  belonging  to  other  clusters,  called separation. Cohesion and separation with respect to one data sample is shown

in  Figure 7.4:

 Figure 7.4: (left) cohesion: with in the cluster (right) separation: outside the cluster Consider  a  data  sample 

belonging  to  the 

cluster 

. 

represents

the  count  of  data  samples  assigned  to  the  cluster 

.  Then,  similarity  or

cohesion of the data point 

with respect to the other data samples of

the same cluster is defined as follows:

Value 

signifies  how  well  it  is  assigned  to  the  cluster 

;  a  smaller

value  indicates  better  assignment.  Dissimilarity  or  separation  of  the  data
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sample 

with  respect  to  the  samples  of  the  other  clusters 

, where 

is defined as follows:

Value 

signifies the smallest mean distance/dissimilarity of the point 

to  all  other  points  in  any  other  cluster 

.  Cluster  the  smallest  mean

dissimilarity  with  data  sample 

is  called  the  neighbor  cluster  for  the  data

sample. 

Using  the  terms  of  similarity  and  dissimilarity,  silhouette  value  is  defined  as follows:

Silhouette value ranges [–1, 1]. A higher value indicates that the data sample is well matched to the cluster it is assigned to and more dissimilar to a neighbor

cluster. A higher value is preferrable for the data sample. A larger percentage

of  data  samples  having  high  silhouette  value  is  preferred.  This  evaluation indicator can be used with any distance metric. Using the silhouette value of all N data samples, we can define Silhouette Coefficient (SC) as follows: Plotting  silhouette coefficient of data samples will help us in deciding the right number of clusters. The right number of clusters occur when the SC score of

all data samples is near to the overall average SC score. For more information, 

refer to the link stated in  References [2]. 

External evaluation
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External evaluation of the algorithms is performed on standard labeled data set. 

As  the  data  set  is  labeled,  we  can  identify  whether  the  test  samples  are correctly clustered. After the application of any algorithm on test data, which is already  labeled  (ground  truth),  we  have  clusters  containing  this  labeled  data. 

Clusters  formed  by  the  selected  algorithm  may  be  different  from  the  ground truth. Evaluation of the selected algorithm will be performed by comparing the

clusters  formed  by  the  algorithm  and  the  ground  truth  (labeled  test  data). 

Consider one cluster out of all clusters produced by the selected algorithm, and then we define the following terms:

True Positive - TP:  Data  samples  that  belong  to  the  cluster   and are correctly assigned to the cluster  . 

True  Negative  -  TN:  Data  samples  that  belong  to  another  cluster  are rightly not assigned to  . 

False  Positive  -  FP:  Data  samples  that  belong  to  another  cluster  are assigned to cluster  . 

False  Negative  -  FN:  Data  samples  that  belong  to  cluster    but  are incorrectly assigned to another cluster. 

Rand index

Rand Index (RI)  computes  the  similarity  between  clusters  formed  from  the algorithm versus the ground truth data of labeled data set. RI for each cluster is defined as follows:

F-measure

F-measure indirectly weights the terms TP, TN, FP, FN through the parameter 

to  provide  one  number  for  each  cluster  or  class.  Two  measures  that

used to define F-measure are Precision and Recall. 

Precision (P) of a cluster is the ratio between the number of correctly assigned samples  and  the  count  of  all  samples  assigned  to  the  cluster,  defined  as follows:
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Recall (R) of a cluster is the ratio between the number of correctly assigned samples and the count of all samples that rightly belong to the cluster (based

on ground truth), defined as follows:

Using precision and recall, we can define  F-measure using parameter 

as

follows:

Fowlkes–Mallows index

Fowlkes-Mallows index (FM) computes similarity between two clusters. FM

can  be  defined  as  the  geometric  mean  of  precision   P  and  recall   R. A  higher value indicates that clusters are more similar. FM is defined as follows:

Jaccard index

Jaccard index provides value in range while comparing two sets. Value of 0

indicates that the sets have no common elements. Value of 1 indicates that the

sets are identical. Jaccard index for comparing two sets is defined as follows:

Clustering algorithms

There  exist  many  factors  to  choose  the  clustering  algorithm  for  our  task. 

Factors  include  data  type,  dataset  size,  data  sample  dimensions,  scaling  of algorithm  based  on  the  larger/newer  data,  time  complexity  and  resource

requirements of the algorithm, domain of the problem, similarity/dissimilarity

comparison between data samples. Based on these factors, we can choose the

clustering algorithm. There exist many types of clustering algorithms, each of
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which is suited for a particular context. Next, we will discuss a few important

categories of clustering algorithms. 

Partition-based clustering

In this clustering approach, each cluster is represented by a  central or  centroid vector, which need not be the data set vector. This  central or  centroid vector is representative  of  the  corresponding  cluster.  There  exist  various  methods  to calculate this representation vector. Algorithm might remain the same, but the

method  to  choose  a  vector  representing  a  cluster  might  differ,  resulting  in different  clusters  and  interpretation.  k-means  and   k-medoids  are  the  most popular clustering algorithms in partition-based clustering. 

K-means

K-means  [3] clustering algorithm partitions the data set samples into  k (given) clusters  such  that  it  minimizes  With-In  Cluster  Sum  of  Squares  (WCSS) (which  is  variance).  Centroid  or  central  vector  of  a  cluster  is  calculated  by taking  the  mean  of  all  samples  belonging  to  the  cluster,  hence  the  name   k-

means. 

Formally,  k-means divides the samples 

, where 

and  d

=  dimensionality  of  data-sample  vector,  into   k  distinct  sets 

such that:

Where μ i is mean of the data vectors belonging to cluster  . 

Finding  the  optimal  solution  is  NP-hard  problem,  time  complexity  is 

. Most of the proposed approximate algorithms work on heuristics

and  converge  quickly  to  local  optimum.  Popular  approximate  solution  is   k-

means; the  k-means algorithm follows the given steps with the given  k value. 

1. Initialize  randomly,  k  data  samples  as  centroid  of   k  clusters 

. 

2. Every data sample   is assigned to a cluster whose centroid vector   is

nearest to the sample vector  . In other words,   is assigned to a cluster
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whose centroid is  , where  j is 

. 

3. Calculate centroids 

for  k clusters by taking the mean of

all samples assigned to the respective cluster. 

4. If  there  is  change  in  any  centroid  of  the  cluster,  then  go  to  step  2,  else stop. 

Algorithm would output  k clusters where each data sample is assigned to one cluster. The  value  of   k  is  input  to  the  algorithm.  How  do  we  know  the  right value of  k? There doesn’t exist a correct way to find the value of  k. We must try  with  different  values  of   k  and  infer  each  of  the  output  based  on  our objective. Elbow  method  helps  to  find  right  number  of  clusters  but  may  not work in all situations. 

Elbow method

Plot the graph with  k-value on one axis and error on another. In some cases, we can  notice  that  error  decreases  gradually  with  increase  in   k  value  and  then suddenly, the rate of error diminishes. The value of  k at this juncture, known as elbow,  can  be  considered.  This  method  to  determine  the  value  of   k  may produce  right  result  in  a  few  cases,  and  there  is  no  supporting  mathematical foundation stating that this method will work in all cases. 

Challenges

K-means algorithm is not widely used due to the following challenges:

The  algorithm  works  on  the  assumption  that  all  clusters  are  of  similar sizes. 

An invalid  k value will probably result in a few invalid clusters. 

It  works  on  the  assumption  that  clusters  are  spherical.  Clusters  of  Iris flower  dataset  are  not  spherical,  and  this  algorithm  fails  to  find  right clusters on this dataset. 

Algorithm output is influenced by presence of outlier or noise as centroid

vector selection is affected by outliers. 

We  can  change  the  method  to  calculate  the  centroid  of  a  cluster.  Instead  of mean,  we  can  use  medoids  or  medians.  The  algorithm  that  uses  median  to calculate  cluster’s  centroid  is  called   k-medians,  and  the  algorithm  that  uses medoids  is  called   k-medoids.  Other  steps  for  these  algorithms  will  remain similar as compared to  k-means. 

K-medoids

Medoid  of  the  cluster  is  defined  as  the  data  sample  of  the  cluster  whose average dissimilarity to all the data samples within the cluster is minimum. K-medoids   [4]  chooses  actual  data  points  as  centroid,  and  it  aids  better interpretability  of  the  cluster  centroids  as  compared  to  centroids   k-means. 

Since,  k-medoids minimizes a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances (in case of  k-means), it is more robust to noise and outliers than  k-means.  K-medoids can be used with arbitrary dissimilarity measures, whereas  k-means works best with Euclidean distance. Here too, k-medoids  problem  is  NP-hard  to  solve  exactly.  A  few  of  the  popular

approximate  algorithms  are  Partitioning  Around  Medoids  (PAM)   [5], Clustering  Large  Applications  (CLARA)  and  Clustering  Large Applications based on Randomized Search (CLARANS)  [6]. 

The PAM algorithm follows these steps:

1. Randomly initialize  k data sample as centroids. 

2. Assign all non-centroid data samples to the closest centroid. 

3. For each centroid  m and for each non-centroid  x:

a. compute the cost by temporarily swapping  m &  x

b. remember the least cost combination

4. Swap  m &  x that gives least cost. 

5. If there is change in any of the centroid of cluster, then go to step 3, else stop. 

Partition  based-clustering  algorithms  mostly  form  hard  clusters.  The  main limitation of this category of algorithms is choosing the value of  k. Next, let us discuss  density-based  clustering  that  do  not  require   k  value  as  input  and outliers need not be assigned to any cluster. 

Density-based clustering

Density-based  clustering  algorithms  assigns  data  samples  in  high-density

region to the same cluster. The number of clusters is determined based on the

cluster density and a threshold. Clusters with lower density can be considered

outliers. Clusters output from these algorithms are often hard clusters. Popular algorithms  in  this  category  are  Density-Based  Spatial  Clustering  of Applications  with  Noise  (DBSCAN)   [7], Ordering  Points  To  Identify
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Cluster  Structure  (OPTICS)   [8], Density-based  Clustering  (DENCLUE)

 [9]. 

DBSCAN

In DBSCAN  [7],  data  points  are  classified  as  core  points,  directly  reachable points, reachable points, and outliers. Before defining these, let us define the ε

parameter and the neighborhood. Let the ε-parameter (input to algorithm) that

specifies  ε-neighborhood with respect to a point  p  belonging  to  dataset   D  be defined as follows:

Where 

can  be  any  distance  metric.  Let’s  define   min_pts  as  a

positive  integer  value  that  is  input  to  the  algorithm.  We  can  define  different types  of  points  with  respect  to   ε-neighborhood,  as  shown  in   Figure  7.5. 

Definitions of these points are captured as follows:

A point is called  core point if the number of points within the distance of ε  (including  the  point  under  consideration)  from  the  core  point  is  ≥

 min_pts. 

A  point   q  is  said  to  be   directly  reachable  from   p  if   q  is  within  the  ε

distance from the core point  p. 

A  point   q  is  said  to  be   reachable  from  core  point   p  if  there  is  a  path 

,  where 

,  and  every 

is  directly

reachable from  , where 

. 

Points  that  are  not  reachable  from  any  other  point  are  called   outliers. 

Refer to the following figure:
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 Figure 7.5: Types of points with respect to ε-neighborhood

Each cluster will have at least one core point and at least  min_pts – 1 number of points  directly reachable from the core point. Reachability is not symmetric as only core points can reach non-core points. 

Let us define a symmetric relation. Two points  p and  q are said to be  density-connected  if  they  are   reachable  from  a  common  point,  say   o.  Figure  7.6

depicts  density-connected  points.  From  the  definition,  the  common  point   o must be core point as reachability is defined only for the core points. With this symmetric relation, we can define the clusters formed by DBSCAN algorithm. 

These clusters satisfy two properties:

All points within a cluster are mutually density-connected. 

If a point is density-reachable from any point of the cluster, then it must

be part of that cluster. Refer to the following figure:
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 Figure 7.6: Density connected points

Pseudo code

Let us now write pseudo code:

For each non-processed point  p belonging to the dataset  D:

If  p is a core point (as shown in  Figure 7.5), then:

 C = { q |  q is density-connected with  p, 

for given ε &  min_pts where  q ∈  D}

Mark all points belonging to as processed. 

Output cluster . 

Else, mark point  p as outlier and processed. 

Choosing parameters

Parameter  ε>0  is  real  number, min_pts  is  a  positive  integer,  and   distance metric is an input to the DBSCAN. Choice of these parameters impacts the end

result of the DBSCAN. A few approaches for the selection of these values are

discussed as follows:

Parameter min_pts  influences  the  number  of  points  in  one  cluster.  The higher the value, more points are assigned to the same cluster. Keeping

the value large will result in addition of noise or outliers to the clusters. 

Low value will result in a greater number of clusters and outliers. 

The value of ε can be chosen by plotting the average of distances from

every  point  to  its  min_pts  nearest  neighbors.  These  average  min_pts distances  from  points  are  plotted  in  increasing  order  and  the  value  of  ε

will be the “knee” point, where there is a sharp increase in the graph. For more information, refer to  [20] in the  References section. A lower value will  result  in  a  high  number  of  clusters  and  high  number  of  outliers, whereas a higher value will result in low number of clusters. 

The choice of  distance function is tightly coupled with ε value. Its choice should be based on the domain problem we are solving. 

Advantages

DBSCAN has a few advantages, mentioned as follows:

The number of clusters are formed based on the input parameter. There is

no requirement to input the number of clusters to the algorithm, like in  k-

means. 

It can find clusters of different shapes. This algorithm works even when

one cluster is surrounded by another. 

It  is  robust  to  outliers  and  is  mostly  insensitive  to  the  order  of  points being processed. 

Limitations

A few challenges faced by applications of DBSCAN are mentioned as follows:

Performance degrades if there exist clusters with large differences in their

densities. 

Performance  depends  on  the  distance  metric  being  used.  The  most

common  metric  used  is  Euclidean  distance.  Choosing  the  value  of  ε

based on Euclidean distance in higher dimensions is challenging. 

 Figure 7.7 shows clusters formed by k-means and DBSCAN. We can see that DBSCAN  forms  clusters  with  connected  points.  As  k-means  forms  clusters

around  the  centroid,  we  can  see  that  one  circle  is  divided  into  two  clusters. 

Refer to the following figure:
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 Figure 7.7: Application of k-means and DBSCAN on two types of sample sets. 

Distribution-based clustering

Distribution-based clustering is based on the assumption that if original data maps to more than one distribution, then samples belonging to the same cluster

should come from one distribution. One of the popular algorithms under this

category is Gaussian Mixture Model (GMM)  [10]. 

Gaussian Mixture Model

In the K-means algorithm we just discussed, we have shown the cluster center

using  a  single  point  (may  not  always  be  data  point)  and  assigned  each  data point  to  the  nearest  center  point.  Suppose  the  groups  or  clusters  have  to overlap. Then, assigning every data point to a single cluster is not possible. For example,  let’s  take  a  look  at  sample  two-dimensional  data  in   Figure 7.8. We can  see  the  formation  of  two  groups  in  the  data,  one  of  which  has  a  lot  of spread  horizontally  and  one  that  has  a  lot  of  spread  vertically,  but  both  are centered at the same place. k-means will not be able to discover this pattern as it  will  try  to  find  two  circular  non-overlapping  clusters,  assuming  that Euclidean distance is used. Refer to the following figure:
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 Figure 7.8: Sample data points from two distributions

GMMs  are  an  extension  of  the  k-means  model,  in  which  each  cluster  is modeled with multivariate Gaussian distributions. So, we have to not only find

the  mean  but  also  a  covariance  that  describes  their  ellipsoidal  shape  of  the clusters. The  parameters  of  this  distribution  can  be  estimated  by  maximizing the  likelihood  of  the  observed  data,  which  is  done  by  an  algorithm  called Expectation Maximization (EM), discussed in the following sections. This is a soft clustering technique where we assign data to each cluster with some soft

probability.  Moreover,  with  this  approach  of  clustering,  we  are  essentially

creating a probabilistic generative model (explained in  chapter 12 Generative
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 Models) for the data. Hence, with GMM, we can even sample new data points

that resemble the points in the data set; we can impute missing data values. 

Let’s understand the GMM probability distribution model in one dimension, as

shown  in  the   Figure  7.9. Here,  we  have  taken  a  mixture  of  three  univariate Gaussian distributions with different means and variance  . The probability of

observing 

any 

point 

from 

this 

distribution 

is 

given 

by 

. Here,   are called the  mixture weights, and we

have 



.  Suppose  we  have  20  points  from  the

leftmost cluster, 10 from the middle cluster, and another 20 from the rightmost

cluster; then, we can take 

. Refer to the following

figure:

 Figure 7.9: Three univariate Gaussian distributions

We can interpret this joint probability distribution over  x in a simple generative way. To draw a sample  x from  P(x), we first select one of the components with discrete  probability 

,  that  is,  if  we  denote  the  mixture  component  by  the

discrete  random  variable   Z,  then 

.  Components  with  large

probability  are  selected  more  often.  This  is  similar  to  choosing  one  cluster centre  in  k-means.  Now,  we  can  sample   X  from  the  corresponding  Gaussian 

.  Thus,  these  two  distributions  make  a  joint  model

over  X and  Z together. 

The variable  Z is sometimes called  latent or  hidden variable. The presence of the unknown value of  Z helps explain the patterns in the values of  X. Detailed

discussion about this topic can be found in  Chapter 5, Statistical Inference and

 Applications and  Chapter 12, Generative Models. 
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For  clustering  problem,  we  have  multivariate  data  and  hence  we  use  a

multivariate Gaussian with vector mean 

of length  n (the same size as the

number  of  features  in  a  data)  and  an 

covariance  matrix 

.   Now,  we

need  to  estimate  these  parameters  by  Maximum  Likelihood  Estimation

(MLE). But direct application of MLE is hard for mixture models and hence we  will  use  iterative  algorithm  called  Expectation  Maximization  (EM) algorithm. EM has two steps: expectation step (E-step) and maximization step (M-step). We know how to calculate MLE parameter estimates of a Gaussian

model:  Let    be  the  mean  of  the  data,  that  is, 

,  and    the

covariance  estimate  the  mean  of  the 

matrices  formed  by  the  outer

product of  X minus   with itself, that is, 

. 

EM Algorithm

Let us now discuss the steps of EM algorithm:

Initialize the means 

, covariances   and mixing coefficients 

: One

way to initiate the GMM is to first run k-means and choose the centres as

initial estimates for 

. k-means also tells us which data points belong to

which  cluster.  A  good  starting  estimate  for  the 

is  the  within-cluster

covariances, and the weights   are the fractions of data points allocated

to each cluster. 

Expectation (E-step):

for each data point  :

for each cluster c:

Compute  a  measure  of  relative  probability 

(called

responsibilities) as follows:

Maximization  (M-step):  Re-estimate  the  parameters  using  the

responsibilities as follows:

for each cluster c:

Total responsibility associated with the cluster 
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Iterate  E-step  and  M-step  until  convergence,  that  is,  until  the  norm  of  the estimated parameters stop changing significantly. Every step of EM algorithm

increases the log-likelihood (explained in  Chapter 5, Statistical Inference and

 Applications) of our model. 

 Note:  EM  algorithm  is  very  similar  to  k-means  algorithm.  k-means  does

 not estimate the covariances of the clusters but only the cluster means. It

 assumes  the  clusters  are  circular  by  taking  fixed  Identity  covariance

 matrices. Choosing Σc  = ∈ I, where ∈  is a variance parameter that is shared

 by all the components, the responsibilities become

 Taking the limit 

 , in the denominator, the term 

 , which

 is closest to zero, will vanish slowly and the responsibility for that term will

 approach 1. So, we get a hard assignment of data points to clusters, that is, 

 each  data  point  is  assigned  to  the  cluster  having  the  closest  mean.  Thus, 

 EM  algorithm  reduces  to  k-means  with  the  fixed  circular  covariance

 assumption. 

The EM algorithm can be generalized for any model with hidden variables. A

probabilistic model is one in which we denote all the observed variables by  X

and all the hidden variables by  Z. The joint distribution 

is governed

by  a  set  of  parameters  denoted  .  The  likelihood  function  is  given  by 

. 

Hierarchical-based clustering

Hierarchical  clustering  builds  hierarchy  of  clusters  from  the  data  points. 

Approaches  to  build  the  hierarchy  of  clusters  can  be  divided  into  two  types: agglomerative and divisive:

Agglomerative is a bottom-up approach where initially, each data point is treated as a cluster, and then clusters are merged while moving up the

hierarchical structure. 

Divisive is a top-down approach where initially, all data points are treated as  one  cluster,  and  then  clusters  are  split  while  moving  down  the

hierarchical structure. 

Finding optimal hierarchical structure is NP-hard. So, most times, merging and

splitting of the clusters are decided in a greedy manner. Selection of clusters

for merging and splitting is based on the distances between clusters. And the

choice  of  the  distance  metric  greatly  influences  the  shape  of  the  clusters. 

Popular algorithms under this category are Balanced Iterative Reducing and

Clustering  Using  Hierarchies  (BIRCH)   [11], Clustering  Using Representatives  (CURE)   [12],  and  Robust  Clustering  using  links  (ROCK)

 [13]. 

Agglomerative clustering

Algorithms under this category start by treating every data sample as a cluster

on its own. Distances among all existing clusters are calculated. Two clusters

with the shortest distance are merged to form one cluster at one level up in a

hierarchical  way.  These  two  steps  are  performed  repeatedly  till  we  reduce clusters to the required number of clusters. 

Example: Let us understand the approach with a few data samples, as shown in   Figure  7.10. Initially,  every  sample  is  the  clusters,  as  shown  in   (a). 

Distances among all clusters are calculated, and the shortest distance is chosen for  merging  two  clusters.  As  shown  in   (b),  two  clusters  with  the  shortest distance are merged. These two steps of calculating distances among clusters

and  merging  the  shortest  distance  clusters  is  repeated  until  we  obtain  the desired  number  of  clusters.  Here,  the  simple  Euclidean  metric  is  used  for distance calculation. Refer to the following figure:
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 Figure 7.10: Agglomerative hierarchical clustering: At each step, two closest clusters or data samples are merged

Distance between clusters

How  do  we  calculate  the  distance  between  clusters?  Algorithms  used  to

calculate  the  distance  between  clusters  are  called  linkage  algorithms.  Let  us understand  the  categories  of  linkage  algorithms  that  are  popularly  used  to calculate distance between two clusters 

:

Single linkage: Distance between two clusters is defined as the shortest

distance between two data samples belonging to each cluster. It is defined

as follows:

Complete  linkage:  Distance  between  two  clusters  is  defined  as  the longest distance between two data samples belonging to each cluster. It is

defined as follows:

Average linkage: Distance between two clusters is defined as average of

distances  between  every  point  in  one  cluster  to  every  point  of  another cluster. 
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Centroid  Linkage:  Distance  between  two  clusters  is  defined  as  the distance between the centroids of the clusters. 

Ward linkage: Objective of this approach is to minimize the total within-

cluster  variance.  Merging  of  clusters  always  leads  to  an  increase  in

within-cluster  variance.  Two  clusters  are  chosen  for  merging,  which

minimizes the increase of within-cluster variance. 

The comparison of linkage methods on a sample data set is captured in  Figure

 7.11. Single  linkage  and  complete  linkage  are  sensitive  to  outliers  due  to  the

distance  calculation  employed.  As  average  linkage  and  centroid  linkage

calculate  distance  by  considering  all  samples  of  the  cluster,  they  are  less sensitive to outliers. Refer to the following figure:

 Figure 7.11: Comparison of linkage algorithms on two data sets

The  main  objective  of  all  hierarchical  clustering  algorithm  is  to  find  two clusters for merging in the bottom-up approach and one cluster for splitting in

the top-down approach. Criteria to choose the cluster varies by the algorithm, 

as discussed. To perform these operations on a larger data set, we need to use a data structure that works efficiently. 

BIRCH
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Balanced  Iterative  Reducing  and  Clustering  using  Hierarchies  (BIRCH)

 [11]  first  generates  a  compact  summary  of  the  original  that  retains  as  much distribution  information  as  possible,  and  then  the  clustering  algorithm  is applied  on  the  summary  instead  of  the  original  data  set.  Various  hierarchical algorithms can use this approach on large data sets, where the complete data

set  doesn’t  fit  into  the  available  memory.  With  little  modification,  it  can  be adapted to non-hierarchical algorithms, like k-means. 

Graph-based clustering

In  the  graph-based  approach,  data  samples  are  represented  as  nodes  of  the graph, and edges between these nodes represent their relationship. Once data

samples are represented in graph form, we can apply graph-based algorithms to

obtain the desired results. Popular algorithms in this category are CLICK  [14], algorithms  based  on  minimum  spanning  tree   [15][16],  normalized  cuts  and image segmentation  [17], and spectral clustering  [18]. Graph-based clustering algorithms  are  commonly  used  in  social  network  analysis,  power  grid

networks,  telecommunication  networks,  and  spreading  of  a  disease  through contact. 

Spectral clustering

Spectral  clustering  techniques  make  use  of  eigenvalues  (spectrum)  of  the similarity  matrix  to  perform  dimensionality  reduction.  Any  clustering

algorithm can then be applied on the dimensionality reduced data set. 

Before applying graph techniques, we must represent data in graph form. Data

samples  represent  nodes,  and  edges  represent  the  similarity  relationship between  data  samples.  Value  of  these  edges  will  form   similarity  matrix.  We must  partition  the  graph  into  the  required  number  of  groups  such  that  edges between  different  groups  have  low  value  (lower  similarity)  and  edges  within the  group  have  high  value  (higher  similarity).  Graph  partitioning  is  NP-hard problem. Approximate solution can be found by using Graph Laplacians. 

Considering all data samples as enumerated, similarity matrix can be defined

as  a  symmetric  matrix   Α  where 

represents  similarity  relationship

between data samples  i &  j. The next step is to obtain Laplacian matrix of  Α. 

There exist various ways to define the Laplacian matrix, and each one impacts

clustering algorithms differently. One of the ways to define Laplacian matrix is as follows:
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Here  are  a  few  properties  of  Graph  Laplacian  that  help  us  to  find  an approximate solution quickly:

is positive semidefinite when 

and  Α is symmetric

Eigenvalues of   are real and non-negative, and the corresponding eigen

vectors form orthonormal basis

Dimensions  of  null  space  of    is  equal  to  the  number  of  connected

components of the graph

Algorithm to partitioning the graph is as follows:

1. Create similarity matrix  A. 

2. Construct graph Laplacian  . 

3. Calculate eigenvalues and corresponding eigen vectors. 

4. Pick   k  eigen  vectors  corresponding  to  the  smallest   k  eigenvalues (eigenvalues of a positive definite real symmetric matrix are always real). 

5. Construct projection matrix  P using  k eigen vectors. 

6. Project the data to lower  k-dimensions using 

. 

7. Apply clustering algorithm on dimensionality reduced data. 

Let us use spectral and k-means clustering algorithms implemented in Scikit-

learn  library  on  the  toy  dataset  to  understand  the  differences  in  the  resulting

clusters.  Figure 7.12 illustrates the output of k-means and spectral algorithm:
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 Figure 7.12: Application of k-means and spectral algorithm on three data sets

Fuzzy theory-based clustering

Fuzzy  means  vagueness.  This  occurs  in  scenarios  where  classification  of  an object  cannot  be  performed  deterministically.  The  object  can  belong  to  more than  one  class  with  certain  probability.  Fuzzy  set  theory  is  an  extension  of classical  set  theory,  where  elements  belong  to  a  set  with  certain  probability (called  degree of membership). Consider  classifying  the  people  based  on  age into two sets: young and old. As there is no universally agreed age threshold

after  which  a  person  becomes  old,  this  is  an  example  of  fuzziness.  A person with age 35 will belong to young with probability 0.6 and old with 0.4. 

In fuzzy theory clustering algorithms, data sample’s relationship to the cluster is replaced from discrete value {0,1} to a continuous value [0,1]. Here, each

data  sample  can  belong  to  more  than  one  cluster,  and  the  degree  of

belongingness to a cluster is represented by the continuous value [0,1]. One of

the  most  popular  algorithms  in  this  category  is  Fuzzy  C-Mean  algorithm (FCM)   [19].  Algorithms  under  this  category  output  soft  or  overlapping clusters. Fuzzy algorithms are relatively insensitive to initial conditions. 

Fuzzy c-means

Consider  an   n  data  sample  set 

divided  into   m  fuzzy

clusters 

,  where 

is  centroid  of  the 

cluster. 
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Belongingness  of    to  the  cluster    is  represented  by 



,  where 

. This value is also called  membership value.  d is a hyper-parameter controlling  the  fuzziness  of  the  clusters  (higher  value  results  in  higher fuzziness).  Membership value is defined as follows:

Fuzzy centroid of the 

cluster   is defined as follows:

The objective of FCM is to minimize the following function:

The  K-means  algorithm  optimizes  the  same  objective  function  stated  before, but the membership value 

will be either zero or one. Degree

of  fuzziness  is  controlled  by  value  of 



.  As 

becomes

either 0 or 1, FCM turns to k-means algorithm. 

We have discussed different categories of clustering algorithms. There are no

well-defined guidelines that talk about the best-suited algorithm for a particular domain.  We  must  experiment  different  distance  metrics  and  clustering

algorithms on our problem to meet the requirements. 

Conclusion

In this chapter, we discussed distance metrics and clustering algorithms that are specifically  used  on  unlabeled  data.  We  also  discussed  various  popular

categories  of  clustering  algorithms  with  specific  algorithm  in  each  category. 

There are different real scenarios where unlabeled data, or little labelled data is available. In these scenarios, we must use clustering algorithms. 

In the next chapter, we will explore neural networks inspired by brain neurons, which have shown the capability to learn complex relations in data. 
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CHAPTER 8

Dimensionality Reduction

Every  object  is  mathematically  represented  through  vectors  before  the

application of AI algorithms. Representing an object with a random vector

is definitely a bad idea as it fails to capture the relationship among the data, if at all it exists. Most times, there do exist relationships between data that

will be critical information for the AI algorithm to learn the required task. A

critical  task  to  perform  before  learning  is  to  numerically  represent  the objects that capture their relationships. 

With  an  increase  in  the  count  of  attributes  describing  an  object, 

dimensionality  of  the  represented  data  increases.  Most  times,  the

represented  data  is  sparse,  resulting  in  the  effects  of  “curse  of

dimensionality”, as explained in  chapter 1 Overview of AI. We can mitigate this effect to a certain extent by reducing the dimensionality of the data. The

process  of  reducing  the  dimensionality  of  the  data  by  preserving  the

required  structure  of  the  original  data  is  called   dimensionality  reduction. 

This chapter will discuss algorithms that can be applied for reducing higher

dimensions data to lower dimensions data. 

Structure

In this chapter, we will cover the following topics:

Principal Component Analysis

Autoencoders

t-Distributed stochastic neighbor embedding

Objectives

After  going  through  this  chapter,  you  will  be  able  to  understand

dimensionality  reduction  algorithms  like  PCA,  Autoencoder,  and  t-SNE. 

You will learn to apply these algorithms on the Iris dataset. 

Reducing dimensionality

Dimensionality  reduction  provides  various  advantages.  Feeding

dimensionality  reduced  data  will  help  AI  algorithms  learn  faster  with  less computing resources and data sets. It is not just about feeding the data to AI

algorithms; we may have to visualize the high-dimensional data. However, 

our  senses  restrict  our  visualization  capabilities  to  the  maximum  of  three dimensions.  So,  the  higher-dimensional  data  must  be  reduced  to  three

dimensions  or  lower  for  visualization  through  eye.  While  reducing  the

dimensions, we must preserve the relationships between the data points to

the  maximum  extent  possible.  Reducing  dimensionality  of  the  data  is  not just  for  visualization  purposes.  Reducing  dimensionality  by  removing

correlated  variables/features  and  the  least-important  variables/features

results  in  reduction  of  noise,  which  further  improves  an  AI  model’s

accuracy. 

Dimensionality reduction techniques to reduce dimensions of the data can

be broadly classified into linear and non-linear. 

Linear  reduction  techniques  perform  linear  transformation  of  high-

dimensional  data  to  low  dimension. Principal Component Analysis

(PCA), Linear  Discriminant  Analysis  (LDA),  and  Independent Component Analysis (ICA)  are  a  few  examples  of  linear  reduction techniques. 

Non-linear  reduction  techniques  perform  non-linear  transformation. 

Non-linear  dimensionality  reduction  algorithms  include  Kernel  PCA, 

Autoencoder, t-SNE, and UMAF Uniform manifold approximation

and projection (UMAP). 

Another  way  to  broadly  classify  dimensionality  reduction  based  on

approach is feature selection and feature extraction:

Feature  selection  approaches  a  select  subset  of  the  features  or

attributes  that  are  more  relevant  for  learning  the  task. Filter strategy, wrapper strategy, and embedded strategy are a few examples of feature

selection approaches. 

In  feature  extraction  or  feature  projection,  high-dimensional  data  is

transformed into lower-dimensional data. Technique used to transform

data to lower dimensions may be linear or non-linear. 
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Dimensionality  reduction  algorithms  are  commonly  used  in  signal

processing, speech recognition, neuroinformatics, and bioinformatics. They

are used as an intermediate step in noise reduction, data visualization, and

cluster analysis. We will also come across many other applications and will

discuss  three-dimensionality  reduction  algorithms  PCA,  Autoencoder,  and

t-SNE in detail. 

Principal Component Analysis

Principal  Component  Analysis  (PCA)  is  a  linear  unsupervised dimensionality  reduction  technique  that  performs  linear  mapping  of  high-dimensional  data  to  low-dimensional  data  by  choosing  new  axes  or  basis vectors. Choosing appropriate basis vectors for the given data makes tasks

easier. 

Consider a few data samples, as shown in  Figure 8.1. From the left figure, we can visualize that two axes are necessary to represent the data with its

original variability. Can we reduce this to one dimension? By just removing

one axis out of two, we lose more information or variation in the data. To

reduce data to one dimension, we must select an appropriate axis or a basis

vector such that the variance of the original data is retained to the maximum

extent. This is depicted in the right part of  Figure 8.1. One  inclined  basis vector is enough to capture most of the original data’s variance, as shown in

 Figure 8.1. This  is  how  choosing  appropriate  axis  or  basis  vector  for  the given data simplifies the given task. Refer to the following figure:

 Figure 8.1: (left) plot of data samples with regular axis (right) choosing appropriate new axis for the data
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Let us consider the data in  n-dimensional space. We need to find maximum of  n vectors 

called  principal components such that all the

following three conditions are satisfied:

is unit vector and orthogonal to   where 

. 

is the best-fitting line that minimizes the average squared distance

from the data vectors to the line in the direction of  . 

Principal components are numbered such that   captures variance of

 n-dimensional data better than   where 

. 

These  principal  components  can  form  an  orthonormal  basis  for  the  linear transformation  from   n-dimensions  to  lower   l-dimensions.  Principal component analysis is the process of computing principal components and

using  them  to  linearly  transform  data  from   n-dimensions  to  lower   l-

dimensions  with  only  the  first   k  principal  components.  PCA  reduces dimensions of the data by projecting each data vector on to only the first  k principal components to obtain lower-dimensional data while preserving as

much of the data’s variation as possible. 

Principal  components  can  be  computed  by  eigen  decomposition  of  data

covariance matrix or singular value decomposition of data matrix. We will

consider  the  Iris  dataset  and  apply  eigen  decomposition  on  its  data

covariance matrix to obtain principal components. We will consider a few

of these obtained principal components to reduce the dimensionality of the

Iris dataset. 

Loading Iris dataset

The  Iris  dataset  contains  50  samples  from  each  of  three  species  of  Iris flower,  namely,  setosa,  virginica,  and  versicolor.  Every  flower  is

represented  by  four  features:  sepal  length,  sepal  width,  petal  length,  and petal width in centimetres. Code to load the data set is captured in  Code 8.1: 1. from sklearn import datasets

2. 

3. def load_iris_data(num_rows=150):

4.     iris = datasets.load_iris()

5.     x = iris.data[:num_rows, :]

6.     y = iris.target[:num_rows]
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7.     return x, y

 Code 8.1: Loading Iris dataset

As each sample of the data is represented with four features, we will not be

able to plot the samples in two dimensions. Instead, we will draw two plots

with sepal’s length/width and another with petal’s length/width. These two

plots are shown in  Figure 8.2, where three species of Iris flower is plotted in three different colors:

 Figure 8.2: (left) plotting of sepal’s length and width (right) plotting of petal’s length and width

Calculating covariance matrix

Now,  we  need  to  calculate  covariance  matrix  from  the  loaded  data   x. 

Covariance  matrix  contains  covariance  between  each  pair  of  features.  As the number of features of Iris data is four, the shape of covariance matrix

would be 4 × 4. Covariance between two features  F and  G can be calculated as follows:

Where  n is the total number of observations, and   and   represent values for features  F  and   G  during 

observation.  The  Numpy  library  provides

functions to calculate covariance matrix, as shown in  Code 8.2, which is a continuation from  Code 8.1:

1. import numpy as np
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2. x, y = load_iris_data()

 3. # Covariance matrix

4. cov_mat = np.cov(x.T)

 Code 8.2: Covariance matrix calculation

Covariance  matrix  will  always  be  symmetric.  Output  from  the  previous

code would be as follows:

Decomposition of covariance matrix

Once covariance matrix is obtained, we need to decompose it with its eigen

vectors.  These  eigen  vectors  will  act  as  principal  components  for

transforming data from higher to lower dimensions.  Code 8.3 provides the steps to calculate eigenvalues and eigen vectors using NumPy. Covariance

matrix can then be decomposed as follows (discussed in  chapter 2 Linear

 Algebra):

 Code  8.3  provides  the  steps  to  verify  the  Eigen  decomposition  of covariance (continuation from  Code 8.2):

 1. # Eigen Decomposition of covariance matrix

2. eigen_val, eigen_vect = np.linalg.eig(cov_mat)

3. mat_p = eigen_vect

4. mat_p_inv = np.linalg.inv(mat_p)

 5. # Diagonal matrix

6. mat_d = np.array([

7.         [eigen_val[0],0,0,0], 

8.         [0,eigen_val[1],0,0], 

9.         [0,0,eigen_val[2],0], 

10.         [0,0,0,eigen_val[3]]

11. ])

12.  # Matrix will be equal to covariance matrix

13. mat_obtained = np.matmul(np.matmul(mat_p,mat_d),mat_p_inv)
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 Code 8.3: Eigen decomposition of a symmetric square matrix

The  obtained  eigenvalues  and  corresponding  Eigen  vectors  for  the  Iris

dataset would be as follows:

We can verify that these eigen vectors are unit in length and are orthogonal. 

These  eigen  vectors  form  the  orthonormal  basis  for  the  linear

transformation. 

Reducing with principal components

We  can  use  all  four  eigen  vectors  for  the  linear  transformation  on  the original data. However, the resulting vectors after transformation would still

be in four dimensions. Instead, we can select the first two eigen vectors that

captures top two maximum variations of the original data. Transformation

matrix  with  the  first  two  eigen  vectors,  also  called   principal  components, would be as follows:

We can apply transformation on original data to obtain the transformed data

in two dimensions, as shown in  Code 8.4 (continuation of  Code 8.3): 1. # Select two principal components

2. eigen_vect0 = eigen_vect[:, 0]

3. eigen_vect1 = eigen_vect[:, 1]

4. trans_mat = np.array([eigen_vect0, eigen_vect1]).T

 5. # Transform the data points

[image: Image 2483]

6. x_reduced = np.matmul(x, trans_mat)

 Code 8.4: Transforming the data to lower dimensions

As  the  transformed  data  is  in  two  dimensions,  we  can  plot  the  points  as shown in  Figure 8.3. With this, we have reduced the dimensionality of Iris dataset  from  four  to  two  dimensions.  From  the  figure,  we  can  guess  that simple linear separator algorithm would help us in classifying three species

of Iris flow with good accuracy. Refer to the following figure:

 Figure 8.3: Plotting of PCA transformed data

Variance retention

We  can  reduce  the  dimensions  of  the  data  by  selecting  a  few  principal components of data covariance matrix and performing linear transformation

of original data with chosen orthonormal basis. A question would definitely

arise  in  your  mind  about  the  number  of  principal  components  to  choose. 

Each  of  the  principal  components  retains  certain  variance  of  the  original
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data.  If  all  components  are  used,  then  all  variance  of  the  original  data  is retained.  We  can  calculate  the  percentage  of  retention  of  the  variance. 

Based  on  this  percentage  of  variance  retention,  we  can  decide  on  the

number of principal components. 

Trace or sum of diagonal elements of the covariance matrix is equal to sum

of  its  eigenvalues.  The  percentage  retention  of  one  eigen  vector  can  be calculated using the following:

To calculate percentage retention of more than one Eigen vector, we must

add its corresponding eigenvalues as follows:

On  the  Iris  dataset,  the  first  principal  component  would  retain  92.5%  of total  variance.  The  first  two  principal  components  would  retain  97.7%  of total variance. Adding the third principal component would result in 99.5%. 

For the Iris dataset, we can comfortably reduce the dimensions from four to

three by retaining 99.5% variance of the original data. 

When to use PCA

AI  algorithms  assume  that  features  are  independent.  If  we  want  to  make features independent, then PCA would be the right choice. With PCA, we

will  be  able  to  reduce  dimensions  of  the  data  as  well  if  a  few  principal components  are  able  to  retain  the  variance  we  needed,  which,  of  course, depends on the data. 

In original data, each dimension represents a feature. These features convey

meaning regarding the sample under consideration. However, when reduced

through PCA, dimensions/features of the reduced data may not make sense

to  understand  the  sample.  If  you  want  to  retain  the  meaning  of  each

dimension, do not use PCA for dimensionality reduction. 

Autoencoder

 Autoencoders  are  non-linear  unsupervised  dimensionality  reduction technique that learns the compact representation of the original data using

neural  networks.  Simple  autoencoder  model  is  depicted  in   Figure  8.4. 

Dimensions of input and output layer would always be same. The objective

of  the  autoencoder  model  is  to  produce  the  output  vector  just  like  as  the corresponding  input  vector  while  the  data  passes  through  hidden  layer

where dimensions are reduced. In  Figure 8.4, input and output dimensions are four, and there are total of three hidden layers between them.  Encoded

 layer  also  called   bottleneck,  is  the  lowest  dimension  layer  in  the  entire network.  In  this  case,  we  have  encoded  the  layer’s  dimension  as  two. 

Encoder  model  during  training  will  learn  compact  representation  of  input data such that it is able to recreate the original data from the encoded data. 

Part  of  the  encoder  model  that  represents  input  data  in  compact

representation through encoded layer is called  Encoder. Part of the encoder model  that  creates  original  input  data  from  the  encoded  data  is  called Decoder. Refer to the following figure:
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 Figure 8.4: Simple Encoder Architecture

There exists variation in the architecture. Regularized autoencoders such as

sparse, denoising (creates corrupted copy of input by introducing noise) and

contractive (encoded layer has lower dimensions as compared to input) are

learning representation for classification tasks. Convolutional autoencoders

uses  convolution  operation  to  learn  convolution  filters.  Variational

autoencoders finds its application in generative AI models. It assumes that

data is generated by a model, and encoder is learning an approximation of

posterior  distribution.  After  training,  sampling  from  the  distribution, 

followed  by  decoding,  will  generate  new  data.  In  this  section,  we  will implement simple sparse autoencoder for the Iris dataset. 

Iris autoencoder

Let us build an autoencoder for the Iris dataset with encoded layer of two

dimensions. As the Iris dataset contains four features, dimensions of input

and output layer would be four. To keep it simple, let us have one hidden

layer that will be the encoded layer.  Code 8.5 provides the steps to create TensorFlow autoencoder model:

1. from sklearn import datasets

2. from sklearn.model_selection import train_test_split

3. import tensorflow as tf

4. from tensorflow.keras import layers, losses

5. from tensorflow.keras.models import Model

6. from tensorflow.keras.initializers import RandomUniform

7. 

8. class Autoencoder(Model):

9.     def __init__(self):

10.         super(Autoencoder, self).__init__()

11.         self.encoder = tf.keras.Sequential([

12.             layers.Dense(

13.                 units=2, activation=’relu’, 

14. 

kernel_initializer=RandomUniform(minval=0., maxval=1., 

15.                                                  seed=10))

, 

16.         ])

17.         self.decoder = tf.keras.Sequential([

18.             layers.Dense(

19.                 units=4, activation=’relu’, 

20. 

kernel_initializer=RandomUniform(minval=0., maxval=1., 

21.                                                  seed=10))

, 

22.         ])

23.     def call(self, x):

24.         encoded = self.encoder(x)

25.         decoded = self.decoder(encoded)

26.         return decoded

 Code 8.5: Simple autoencoder

We can now create an instance of this model class. Once it is created, we

can  train  the  model  with  the  Iris  dataset,  as  shown  in   Code  8.6

(load_iris_data() function is defined in  Code 8.1):

1. x, y = load_iris_data()

 2. # Split the data into train & test

3. x_train, x_test, y_train, y_test =\

4.    train_test_split(x, y, random_state=10, test_size=.3)

 5. # Training the model

6. autoencod_model = Autoencoder()

7. autoencod_model.compile(optimizer=’sgd’, 

loss=losses.MeanSquaredError())

8. autoencod_model.fit(

9.    x_train, x_train, epochs=40, batch_size=30, 

10.    validation_data=(x_test, x_test)

11. )

 Code 8.6: Training the autoencoder with Iris dataset

After  training  is  complete,  we  can  pass  the  Iris  samples  and  capture  the corresponding values at encoded layer, as shown in  Code 8.7:

 1. # Obtain encoded information of the dataset

2. encoded_vect = autoencod_model.encoder(x).numpy()

 Code 8.7: Reduced dimensionality of Iris dataset

As the encoded vector is two-dimensional, we can plot the vectors. This is

shown in  Figure 8.5:
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 Figure 8.5: Plotting of Autoencoder reduced Iris data

There  exist  various  algorithms  to  reduce  dimensionality  of  data  to  two  or three  dimensions  for  visualization  purposes.  In  the  next  section,  we  will discuss one of these algorithms called t-SNE. 

t-SNE

t-Distributed  Stochastic  Neighbour  Embedding  (t-SNE)   [1]  is  an unsupervised  non-linear  dimensionality  reduction  technique  suitable  for

visualization  of  high-dimensional  data  in  two  or  three  dimensions.  t-SNE

calculates  similarity  measure  between  data  in  high-dimension  and  its

corresponding  points  in  low-dimensions,  and  then  it  optimizes  these  two similarities. 

Let us consider a data set of  n samples 

belonging to high

dimensions space 

, which will be mapped to  n samples 

of lower dimensions space   where 

. Compute pairwise similarity
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in high dimensions. Then, find  ’s such that pairwise similarity measures

in  lower  dimensions  space  are  equal  to  their  corresponding  similarity

measure in higher dimensions space. 

Similarity between two samples 

is the conditional probability 

, 

that    would  pick    as  its  neighbour  (in  higher  dimension  space 

)  if

neighbours  were  picked  in  proportion  to  their  probability  density  under  a Gaussian distribution centered at  . It is defined as follows:

where    is  the  variance  of  the  Gaussian  centered  at 

.  Methods  to

determine   will be discussed later. As we are interested in only pairwise

similarities,  we  can  set 

.  This  pairwise  similarities  in  high

dimensions causes problem when   is an outlier. For an outlier, probability

value  will  be  extremely  small 

,  due  to  which  the  location  of

corresponding mapped   has little impact on cost function. Due to this, the

mapped position   of the outlier   is not well determined. This problem

can  be  overcome  by  defining  the  joint  probabilities 

in  the  high-

dimensional space to be the symmetrized conditional probabilities:

This  ensures  that 

for 

,  as  a  result  every  data  sample, 

makes significant contribution to the cost function. 

Now, let us compute similarities between mapped samples 

in low-

dimensional space. In the high-dimensional space, we converted distances

into  probabilities  using  a  Gaussian  distribution.  In  the  low-dimensional map, we can use a probability distribution that has much heavier tails than a

Gaussian  to  convert  distances  into  probabilities.  This  allows  a  moderate distance in the high-dimensional space to be faithfully modeled by a much

larger  distance  in  low  dimensions.  t-SNE  uses  Student   t-distribution  with
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one degree of freedom (Cauchy distribution) as the heavy-tailed distribution

in the low-dimensional space. Using this distribution, the joint probabilities

or pairwise similarities are calculated as follows:

Now, we have similarity measures or joint distributions in higher and lower

dimensions. The next step would be to calculate a single  Kullback-Leibler

 divergence between a joint probability distribution in the high-dimensional space and a joint probability distribution  Q in the low-dimensional space: Where 

.  We  must  learn  the  parameters  that  optimizes  this

cost  function.  Gradient  descent  can  be  used  to  learn  the  parameters. 

Gradient function of this cost function would be as follows:

Choosing σi

Bandwidth  of  a  Gaussian  is  controlled  by  value  of  . It  is  not  likely  that there is a single value of   that is optimal for all samples due to variation in the data density. In dense regions, smaller value of    is  more  appropriate

than in sparser regions. The value of   induces probability distribution 

over all data samples. This distribution has entropy that increases with  . 

We can perform binary search for value of   such that resulting   produces

perplexity specified by the user. Perplexity is defined as follows:

Where 

is Shannon entropy of   measured in bits as follows:
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Typical value of perplexity is range [5,50]. It can be interpreted as a smooth

measure of an effective number of neighbors. 

PCA vs t-SNE

PCA  is  a  linear  dimension  reduction  technique  that  seeks  to  maximize

variance  and  preserves  large  pairwise  distances.  Data  samples  that  are

different  end  up  far  apart.  This  can  lead  to  poor  visualization,  especially when  dealing  with  non-linear  manifold  structures.  Think  of  a  manifold

structure as cylinder, ball, or curve. t-SNE differs from PCA by preserving

only  small  pairwise  distances  or  local  similarities,  whereas  PCA  is

concerned  with  preserving  large  pairwise  distances  to  maximize  variance. 

PCA and t-SNE preserve global and local structure of the data, respectively. 

Also, t-SNE has three hyperparameters, i.e. learning rate, number of steps, 

and perplexity, while PCA doesn’t. 

t-SNE on Iris Dataset

We  can  apply  t-SNE  dimensionality  reduction  on  the  Iris  dataset  using

Scikit  provided  libraries.  Code  8.8  applies  t-SNE  on  the  Iris  dataset (load_iris_data() function is defined in  Code 8.1):

1. from sklearn.manifold import TSNE

2. from sklearn import datasets

3. x, y = load_iris_data()

4. tsne = TSNE(random_state=10)

5. x_transformed = tsne.fit_transform(x)

 Code 8.8: t-SNE on the Iris dataset

Dimensionally reduced data is plotted in  Figure 8.6. We can visually make out three clusters pertaining to each of the three species of Iris flower. 
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 Figure 8.6: Plotting of t-SNE reduced Iris data

We have successfully reduced four dimensions Iris data to two dimensions

data using  t-SNE. These  exists  many  other  dimensionality  algorithms  that can be applied on Iris data. Choice of the algorithm should be based on the

domain of the data. 

Conclusion

This  chapter  introduced  PCA,  autoencoder  and   t-SNE  dimensionality reduction techniques. One  technique  is  preferred  over  others  based  on  the domain  or  application.  PCA  is  preferred  when  features  are  strongly

correlated. For visualization of data,  t-SNE is preferred as it captures nonlinear relations among features. Autoencoder are preferred in image domain

like image compression, image denoising. In next chapter we will discuss

about computer vision algorithms that are used in image domain. 

Further reading

Dimensionality  reduction  algorithms  are  being  used  in  various  fields,  and reduction  technique  enhances  the  efficiency  of  many  algorithms.  We

discussed only a few reduction techniques. Wikipedia provides really good

source  for  further  reading  on  dimensionality  reduction  algorithms.  Many

standard  AI  frameworks  or  libraries  provide  tutorial   [2]  and  guides   [3]

about these reduction algorithms. 
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CHAPTER 9

Computer Vision

Living  beings  on  Earth  have  evolved  to  understand  the  nature  through

senses.  Sense  organs  that  help  humans  to  sense  things  are  eyes  (light reflected  from  the  object),  tongue  (taste  of  the  object),  skin  (touch  of  the object), ears (sound emitted from the object), and nose (smell emitted from

the object). These senses feed information to the brain, which then processes

the information for interpretation and action if necessary. Humans have tried

replicating the performance of both senses and the brain. 

Humans  have  developed  cameras  that  work  like  eyes  and  capture

information  about  light  reflected  by  the  objects  and  convert  it  to  digital images/videos. Computer Vision (CV) deals with analysing the information captured  by  camera,  like  the  brain.  Recent  advancements  of  algorithms  in CV  field  are  inspired  by  visual  information  processing  of  the  brain.  This chapter  will  discuss  computer  vision  algorithms  that  help  interpret  digital images/videos that are primarily captured by camera. 

Structure

In this chapter, we will cover the following topics:

Digital images, pixels

Geometric transformation

Filters/Kernels: Spatial, Gaussian, Laplacian, Sobel

Learning filters using Convolution Neural Network (CNN)

Development of CNN

Applications of CNN

Objectives

After  going  through  this  chapter,  you  will  have  clear  understanding  of  the theoretical  background  behind  the  state-of-the-art  AI  models  in  computer

[image: Image 2532]

vision. Most of the CV models are CNN-based. However, they differ widely

in  their  architecture.  We  will  discuss  the  motivation  behind  these

architectures.  Understanding  these  topologies  will  help  you  come  up  with your own custom topologies that best suits your problem domain. 

Digital Image Formation

Light is part of the electromagnetic spectrum that is sensed by eye, which is

further  divided  into  violet,  indigo,  blue,  green,  yellow,  orange,  and  red. 

Colors  perceived  (by  eye)  by  looking  at  the  object  are  determined  by  the category  of  light  reflected  by  an  object.  An  object  is  perceived  as  white when it reflects all wavelengths of light equally. An object appearing green

reflects green light and absorbs all other wavelengths of light. A black object

absorbs  all  wavelengths  of  light.  Now,  let  us  understand  how  this

information is captured in digital images. 

Capture the light

Electromagnetic  radiation  reflected  or  emitted  by  the  object  is  usually captured through two-dimensional array of sensors. Response of each sensor

is proportional to the integral of radiation energy projected on to the surface

of  the  sensor.  Analog  circuitry  analyzes  sensors  output  to  produce  analog

signal.  Figure 9.1 shows capture of ellipse shaped object by analog circuitry. 

This  analog  signal  is  then  digitized  to  produce  digital  image.  Digitizing involves  two  processes  sampling  and  quantization.  Refer  to  the  following figure:
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 Figure 9.1: Ellipse shaped object

Sampling and quantization

Output of most sensors are continuous voltage waveform whose amplitude

and  spatial  variation  is  related  to  electromagnetic  waves  sensed  that  are reflected  by  the  object.  Two  processes,  sampling  and  quantization,  are

necessary to convert these analog signals to digital. Consider line AB on the

captured object, as shown in  Figure 9.2(a). Intensity of pixels along this line

gradually increases and decreases as shown in  Figure 9.2 (b):

 Figure 9.2: (a) A line on the object is considered (b) Intensity variation along line (c) Consider equally spaced samples along line (d) Sampled values along line

As AB line is continuous, we need to sample a few points along the line AB. 

The number of samples required would depend on how close you need the

digital representation to be with respect to analog, as shown in  Figure 9.2(c). 

The  higher  the  number  of  samples,  the  closer  would  be  the  representation. 

This  process  of  representing  an  image  with  sampled  points  is  known  as sampling. 

Now let’s represent complete ellipse with six sample points along x-axis and

four along y-axis with total of 24 sample points, as shown in  Figure 9.3(a). 

Each  of  these  24  sample  points  will  be  represented  with  integer  intensity values  in  range  [0,255],  as  shown  in   Figure  9.3 (b).  This  is  known  as quantization  of  sample  values.  Outcome  of  sampling  and  quantization  on

ellipse would look like in  Figure 9.3(c):

 Figure 9.3: (a) sampling of intensity in 2D (b) Quantization of values (c) Resulting digitized image

In digitization of image, each of these cells that represented sampled value of real image are called  pixels. In this example, ellipse image is represented using  24 pixels with  6 &  4 pixels along  x and  y axes, respectively. Count of the  pixels  used  to  represent  an  image  is  called  its  resolution.  In  this  case, resolution of the ellipse image is mentioned as  6× 4. 

Pixels

In  the  digital  world,  images  are  presented  using  pixels.  Pixel  also  called picture  element  can  be  understood  as  a  minute  area  of  illumination  on  a display  screen.  Higher  count  of  pixels  results  in  higher  resolution  of  the image,  and  higher  resolution  results  in  better  representation.  Each  pixel  of the  image  will  denote  a  value  of  the  intensity  in  that  position.  Intensity values are represented with integer value in range [0,255]. To represent one

pixel,  one  byte  is  sufficient.  For  grey  ellipse  image  in  the  preceding example,  24=6∗4  bytes  would  be  sufficient  for  digital  representation  of  24

sampled  values.  Programmatically,  2-dimensional  unsigned  byte  array  of

size 6×4 is sufficient to represent this image. 

 Note: How many bytes are required to represent one color pixel? 

 Appearance of the color pixel is dependent on values of Red, Green, and

 Blue  components.  In  general,  range  for  each  of  these  components  is

 [0,255]. So, 3 bytes are required to represent one color pixel. This format

 of  representation  of  the  image  is  called  RGB.  Programmatically,  3D

 array  of  size  w×h×3)  is  required  to  represent  color  image  of  resolution

 w×h. 

Accessing pixels

Once  image  is  represented  as  arrays,  accessing  the  pixels  is  the  same  as accessing arrays. Numbering of pixels starts from the top-left corner of the

image,  as  shown  in   Figure  9.4. Representing  an  image  using  its  spatial knowledge with use of pixels is useful for techniques that operate based on

 spatial domain knowledge. 

Another important way of representation is Fourier transform of the image. 

This representation falls under  frequency domain where image is represented as waves of various frequencies. Refer to the following figure:
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 Figure 9.4: Pixel’s position

Spatial  domain  filtering  is  sufficient  for  a  majority  of  tasks  of  computer vision.  However,  for  many  image  processing  and  enhancement  tasks, 

frequency domain filters have been used successfully. Algorithms developed

in one domain can be successfully translated to another. In this chapter, we

will focus mainly on spatial domain. 

Spatial filtering

Filtering is the name used for modifying or rejecting specific components of an  image  through  the  use  of  mathematical  operations.  The  process  of

applying a filter on an image represented in spatial domain is called spatial filtering. Spatial filtering modifies a pixel of an image by replacing it with function of the pixel value or its neighboring pixels values. We can broadly

classify spatial operations into three broad categories:

a. Single pixel operations

b. Neighbor pixels operations

c. Geometric spatial transformations
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In   single  pixel  operation,  transformation  function  receives  only  one  pixel input  and  outputs  one  value  that  will  be  used  to  replace  the  pixel  under consideration. In  neighbor pixels operation, transformation function accepts pixel  under  consideration  along  with  its  neighbors  and  outputs  one  values that  will  be  used  to  replace  the  pixel  under  consideration.  In   geometric spatial transformation, modification is performed on spatial arrangement of pixels in an image. 

Geometric spatial transformation

In geometric spatial transformation, transformation function accepts pixel coordinate  (x, y) of original image and outputs new position coordinate  (a, b) for  the  pixel  in  transformed  image.  Transformations  in  2D  that  preserves points, straight lines, parallelism and planes is called  affine transformations. 

 Affine transformation preserves collinearity (that is, all points lying on a line initially still lie on that line even after transformation) and ratios of distances (e.g.,  the  midpoint  of  a  line  segment  remains  the  midpoint  of  that  line segment even after transformation). 

In  this  section,  we  will  be  concentrating  on  affine  transformations  that includes scaling, shearing, translation, and rotation. Transformation function

relating to these operations can be expressed in matrix format. Each pixel of

the original image is represented by  (x, y)  coordinate  and   (a, b)  represents the  new  coordinates  of  the  pixel  in  transformed  image.  The  following

transformation matrix is applied to every pixel position of the original image

to obtain pixel coordinates in transformed image:

Let’s  perform  few  transformations  on  an  image  using  this  approach. 

Transformations  that  we  will  discuss  are  rotation,  shear,  scaling,  and

translation. Transformation matrices for these tasks will be of the form given

as  follows.  Along  with  the  form  of  the  matrix  there  is  an  example  for  the respective form:
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We  will  use  the  OpenCV  library  to  apply  transformation.  Before applying the transformation, let us read the image file and convert to gray scale using

the library, as shown in the following code:

1. import cv2 as cv

2. def read_image(path):

3.     image = cv.imread(path)

4.  # convert image to grayscale

5.     image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

6.     return image_gray

7.  # IMAGE_PATH is absolute path of input image. Should be

 assgined. 

8. image_gray = read_image(IMAGE_PATH)

 Code 9.1: Reading image and converting to gray scale

We can use the warpAffine() function of OpenCV library. It accepts image

and  matrix  of  size  2×3  and  applies  the  matrix  to  every  pixel  location  of original image and outputs transformed image. Code to rotate the gray image

obtained previously is captured in the following code. Output of this code is

captured in  Figure 9.5 (b). Rotation operation could move pixels out of the defined  view.  We  might  need  to  enlarge  the  current  view  to  visualize  the rotated pixels. Following code provides steps to rotate an image. 

1. import numpy as np

2. def rotate(image, angle_degree=20):

3.     (rows, cols) = image.shape[:2]

4.     radians = np.deg2rad(angle_degree)

5.     cos_val = np.cos(radians); sin_val = np.sin(radians)

6.     rotate_matrix = np.float32(

7.                 [[cos_val,-1*sin_val,0], 

[sin_val,cos_val,0]])

8.  # applies transformation matrix to every pixel

 coordinate
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9.     rotate_image = cv.warpAffine(image, rotate_matrix, 

(cols, rows))

10.     return rotate_image

11. rotate_img = rotate(image_gray)

12. cv.imshow(“Rotated”, rotate_img)

 Code 9.2: Rotating image by 20 degrees

We can scale the image by using corresponding transformation matrix. The

following code shows steps to apply scaling to the gray image. Output of this

code is captured in  Figure 9.5(d). Scaling operation changes only the aspect ratio of the original image. Following code applies scaling operation on an

image. 

1. def scale(image, scale_x=0.3, scale_y=0.8):

2.     (rows, cols) = image.shape[:2]

3.     scaled_matrix = np.float32([[scale_x, 0, 0], [0, 

scale_y, 0]])

4.     scaled_img = cv.warpAffine(image, scaled_matrix, (cols, 

rows))

5.     return scaled_img

6. scaled_img = scale(image_gray)

7. cv.imshow(“Scaled”, scaled_img)

 Code 9.3: Scaling the image

Similarly,  we  can  write  code  for  application  of  other  matrices  by  just modifying  the  transformation  matrix  and  passing  it  to  the  warpAffine() function.  Outputs  of  different  transformation  matrices  specified  before  are

captured in  Figure 9.5, along with parameter value used to create the matrix:

 Figure 9.5: (a) Original gray Image (b) Rotated image (c) Sheared image (d) Scaled image (e)

 Translated image

Till now, we changed the position of the pixel in transformed image. Next, 

let  us  change  the  value  of  the  pixel  (intensity  values)  in  the  transformed image. 
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Neighbor pixel operation

Transformation  function  can  consider  the  pixel  and  its  neighboring  pixels’

intensity values to output an intensity value that will be used to replace the

pixel  under  consideration  in  the  transformed  image.  This  transformation

function or the matrix representing the function is called  filter or  kernel or filter kernel. Process applying the filter or kernel to every pixel of the input image is called  filtering the image. Filtering an image can also be viewed as extracting  features  from  the  image  that  helps  to  infer  the  image.  Different filters  offer  various  features  of  the  image.  If  the  transformation

function/matrix is linear, then it is called  linear spatial filter; otherwise, it is known as  nonlinear spatial filter. 

Consider simple  linear spatial filters that perform sum-of-product operations on  an  image   I  with  filter  .  Let  image   I  be  2-dimensional,  with  each  pixel representing pixel intensity. Pixel of the image in position 

is accessed

using  I 

. Filter  w can be of various sizes. For simplicity, let’s consider 3×3  two-dimensional  filter.  Linear  filter  is  applied  to  every  pixel  of  the image  to  obtain  transformed  image   G.  The  following  formula  shows  the application of 3x3 kernel on a pixel at location 

of an image. 

Centre of the kernel aligns with the pixel under consideration. Kernel cells

are  numbered  by  keeping  the  origin  at  the  center,  as  shown  in   Figure 9.6. 

After  alignment,  product  of  respective  cells  values  are  calculated  and

summed.  Resulting  value 

is  used  for  replacing  the  pixel  value  at

location 

.  In  this  example,  we  considered  kernel  of  size  3×3,  but

kernel can be of any size. Usually, kernels with odd dimensions are chosen, 

like 

, where  k is odd positive integer. The advantage is that after the alignment  of  the  pixel  of  image  under  consideration  and  kernel  origin,  the number of surrounding pixels around pixel under consideration will remain

equal along every direction. Refer to the following figure:
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 Figure 9.6: Kernel cells and part of image under consideration to change a pixel value

 Tip:  What  happens  when  all  the  surrounding  pixels  are  not  available, 

 like in case of border pixels? 

 If a pixel doesn’t have surrounding pixels that maps to kernel size, then

 we  can  use  a  constant  value  instead  of  the  missing  surrounding  pixels. 

 This is called padding. 

[image: Image 2549]

[image: Image 2550]

[image: Image 2551]

[image: Image 2552]

This linear operation is called  correlation or  cross-correlation. For a kernel of size  m × n where m = 2a + 1  &   n = 2b + 1,  correlation is defined as follows:

Another  important  type  of  linear  operation  is  called  convolution. 

 Convolution operation is defined as follows:

 Convolution operation can be defined in terms of correlation as rotate kernel by  180°  and  perform  correlation  operation.  Figure 9.7  depicts  the  cells  of kernel that get multiplied with pixels of image:

 Figure 9.7: Mapping of neighboring pixels with kernel cells for linear operation

Convolution properties

Convolution  operation  follows  commutative,  associative,  and  distributive

properties. 
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As  convolution  operation  follows  commutative  property,  during  operation 

,  either  rotate  kernel   w  or  image   I  by  180°  before  performing correlation.  Consider  a  situation  where   L  kernels 

are

convoluted  on  image   I  one  after  another.  As  convolution  follows commutative  property,  instead  of  performing  convolutions  with   L  kernels, we  can  perform  with  one  kernel   w,  which  is  obtained  as 

. 

 Note: Correlation or cross-correlation follows distributive property only. 

Separable kernels

Two-dimensional  function 

is  said  to  be   separable  if  it  can  be

expressed  as  the  product  of  two  one-dimensional  functions  as 

. Kernel in two-dimensions is a matrix 

and if

it can be expressed as outer product of two one-dimensional vectors 

that has dimensions of 

as 

,  then  it  is  called

 separable kernel. 

Convolution with separable kernels

Let’s  understand  computation  required  to  perform  convolution  operation. 

Consider  image   I  of  size 

and  kernel   W  of  size 

.  One

convolution  operation  requires 

multiplications  and  additions.  This

operation must be applied on every pixel of the image, resulting in total of 

multiplications and additions. 

Can  the  computation  be  reduced  with  separable  kernels?  Yes,  reduction  is possible through use of separable kernels. Let the kernel   of size 

be

expressed  as  outer  product  of  two  one-dimensional  vectors 

that

has  dimensions  of 

as 

.  Computation

required  to  apply 

kernel  on  complete  image  is 

.  Application  of

another kernel 

would cost 

. In total, computation cost of applying
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kernels 

on  complete  image  is 

.  This  provides

computation advantage that can be defined as follows:

 Tip: How do we determine whether kernel is separable? 

 Rank of kernels 

  is always 1 due to its dimension 

 . 

 Product of these rank 1 kernels would always result in rank 1 (Reason:

 Matrix  multiplication  AB  can  be  expressed  as  a  linear  combination  of

 columns  of  A  using  weights  from  columns  of  B,  refer  to  Chapter  2

 Linear Algebra). In this case, kernel is separable if and only if its rank is

 1. 

Example:  Consider  filter  of  size  3×3  that  can  be  expressed  as  the  product two 3×1 filter. Check their ranks:

Example: Consider another filter of size 3×3 called Sobel (more details in further sections). Check their rank:

There exists different filters or kernels that help extract distinct features of the image through convolution operation. These features help in inferring the

image. Among  these,  popular  ones  are  smoothing  filters  like  Gaussian  and edge detection filters like Laplacian & Sobel, which will be discussed in the following sections. 

Gaussian kernel

Gaussian  function  in  one  dimension  using  standard  deviation    and  zero

mean 

, is expressed as follows:
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Distribution of Gaussian function values around mean are symmetric.  Figure

 9.8  shows  plot  of 

  Gaussian  function 

  without

normalization  factor 

.  68%  of  values  fall  under 

distance  from

mean.  Within  distance  of 

from  mean,  95%  of  values  are  covered. 

account  for  99.7%  of  values.  This  information  is  vital  for  designing

Gaussian kernel of fixed length. Another important property is that Gaussian

function is never equal to zero. This property is useful in filtering operation

as  higher  weightage  is  given  to  nearer  pixels  and  is  symmetric  in  all directions. Refer to the following figure:

 Figure 9.8: Distribution of values in Gaussian function

To  work  with  image,  we  need  Gaussian  function  in  2D  and  its  discrete approximation in form of 2D matrix. As 99% of the values are covered with

in 

distance,  kernel  can  have  values  within  this  distance.  Due  to  this, 
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kernel  of  size 

(

each  in  opposite  directions  of  one  axis)  is

sufficient to capture the function behavior. 

In two-dimension, Gaussian function is product of Gaussian functions along

each dimension. Product of Gaussian functions is Gaussian function. Kernel

obtained  from  Gaussian  function  are  separable.  Here,  x  denotes  distance from  origin  along  the 

.  Similarly,  y  denotes  distance  from  origin

along 

. 

Discrete approximation of Gaussian function

Now,  let’s  obtain  discrete  approximation  of  Gaussian  function  that  can  be used as kernel in convolution operation on images. To make things simple, 

let  us  consider  zero  mean 

and  standard  deviation  as 

.  With

these values, function becomes the following:

Consider  only  the  variable  part  of  the  function  as 

for  writing  the

code.  The  following  code  shows  the  implementation.  It  accepts 

coordinate  values  from  2D  and  outputs  variable  part  of  Gaussian  function value: Following code shows implementation of Gaussian function. 

1. import numpy as np

2. def gaussian_fn_2d(x, y ):

3.  # Exponent part of gaussain function mean=0, sd=1

4.     exp_part = np.exp(-(np.power(x, 2.) + np.power(y, 2.)) /

2.)

5.     return exp_part

 Code 9.4: Gaussian function in two dimensions

As  discussed,  considering 

matrix  is  sufficient.  We  need  odd

matrix,  so  for 

,  we  should  consider  7×7  matrix.  Function  parameter

values consider for discretization should be with in 3σ distance from origin. 

We  can  consider 

values,  as  shown  in   Figure  9.9(a),  for  the  kernel
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matrix. These coordinate values are used to kernel matrix, as shown in the

following code :

1.  # 3 sigma distance from origin

2. X_START = Y_START = -3

3. X_STOP = Y_STOP = 3

4. def get_gaussian_kernel():

5.     kernel_shape = (X_STOP-X_START+1, Y_STOP-Y_START+1)

6.     gaussian_sample = np.zeros(shape=kernel_shape, 

dtype=float)

7.     ker_x = ker_y = 0

8.     for y_idx in range(Y_START, Y_STOP+1):

9.         for x_idx in range(X_START, X_STOP+1):

10.             gaussian_sample[ker_x][ker_y] =

gaussian_fn_2d(x_idx, y_idx)

11.             ker_y = ker_y + 1  # updating index

12.         ker_x = ker_x + 1  # Updating index

13.         ker_y = 0

14.     return gaussian_sample

15.  # Obtain gaussian kernel and normalize

16. gaussain_ker = get_gaussian_kernel()

17. div_part = 2. * np.pi

18. norm_gauss_kernel = (1./div_part) * gaussain_ker

 Code 9.5: Obtain Gaussian function value for few coordinates equidistant from origin Obtained kernel matrix using the code is captured in  Figure 9.9 (b). Note that it is not normalized. Refer to the following figure:

 Figure 9.9: (a) (x,y) coordinates considered for creating 2D kernel (b) Gaussian kernel with μ=0, σ=1

 without normalization

Normalization  of  the  preceding  Gaussian  kernel  can  be  performed  in  two ways. One approach is to divide all values of the kernel by the constant part

of Gaussian function, that is, 

(case:  μ= ٠ , σ= ١). All values of the kernel
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may  not  add  to 

( μ= ٠ ,  σ= ١)  due  limited  kernel  size.  We  can  follow another approach, in which we can divide all values of the kernel by the sum

of all elements of the kernel. The second approach is better. 

We  have  to  use  normalized  Gaussian  kernel  for  convolving  with  images. 

Normalized Gaussian kernel is captured in  Figure 9.10. Note that the sum of all  elements  of  normalized  kernel  must  equal  1.  Refer  to  the  following figure:

 Figure 9.10: Normalized Gaussian Kernel with μ=0, σ=1

Application of Gaussian filter

We  have  obtained  normalized  Gaussian  kernel  of  size  7×7  that  Gaussian

function of zero mean as 

and standard deviation as 

. Now, let’s

apply the kernel on gray image. Gray image can be obtained with  code 9.1. 

Apply normalized Gaussian kernel on gray image, shown in  Figure 9.11, to obtain smoothed image:

 Figure 9.11: Snapshot of a Wikipedia page in gray scale

The  following  code  shows  the  application  of  the  kernel  using  OpenCV

library:
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1. image_gray = read_image(IMAGE_PATH)

2. gauss_filtered_img = cv.filter2D(

3.                     image_gray, ddepth=-1, 

kernel=norm_gauss_kernel)

4. cv.imshow(“Gaussian Smoothed Image”, gauss_filtered_img)

 Code 9.6: Convolve normalized Gaussian kernel with every possible pixel of the image using filter2D()

Output of the  Code 9.6 is captured in  Figure 9.12. Figure is smoothed using Gaussian kernel. Refer to the following figure:

 Figure 9.12: Smoothing of gray Wikipedia image with Gaussian 7×7 kernel of μ=0, σ=1

We can apply Gaussian kernel repeatedly too. Image is blurred further with

each application of Gaussian kernel. 

 Note: Working with gray scale images is simple as it can be represented

 in  2D  and  values  represent  intensity.  Gaussian  filter  is  applied  to

 intensity of these pixels. How to apply the filter on color images, which

 are usually represented in 3D using Red, Green & Blue? Gaussian filter

 cannot be applied to the color components. Instead, image is converted to

 YUV  format  where  Y  is  luma/intensity,  U  &  V  represents  blue  and  red

 channels. Gaussian kernel will be applied on Y component only. 

We  saw  that  image  blurring/smoothing  is  accomplished  in  spatial  domain

with the use of neighborhood pixel averaging technique (Gaussian function). 

There  are  other  blurring  techniques,  which  will  be  discussed  later  in  the Non-Linear Filters section. Next, we will create edge detection filters using differentiation.  Differentiation  at  a  point  is  proportional  to  magnitude  of
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intensity discontinuity. Thus, image differentiation enhances edges and other

discontinuities with respect to slowly varying intensities. 

Image derivative-based kernels

Let  us  first  understand  the  behavior  of  derivatives  on  constant  intensity, onset and end of step and ramp intensity discontinuity/ramps.  Figure 10.13

has plot of pixels intensity and depicts intensity ramp and step. 

In image, along one dimension, pixels neighboring to pixel  x are  x+ 1 &  x –

 1. Using this information, basic definition of first order derivative for one-dimensional function is stated as follows:

Properties of first order derivative are as follows:

Zero in area of constant intensity

Non-zero at onset and end of intensity ramp/step

Non-zero along intensity ramps

Similarly, definition of second order derivative can be stated as follows:

Properties of second order derivative are as listed here:

Zero in on areas of constant intensity

Non-zero at onset and end of intensity ramp/step

Zero along intensity ramps

 Figure 9.13  shows  first  and  second  order  derivates  of  intensity  values.  We can  verify  the  properties  these  derivates.  Derivatives  provide  information about constant intensity, ramp up/down, and step intensity. Edges in digital

images  behave  like  ramp  intensity.  Identifying  these  ramps  will  help  us  in finding edges that will aid in sharpening the image. Next, we will use second

order derivative for image sharpening. Refer to the following figure:
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 Figure 9.13: Graph captures pixel intensity along 1D, table captures derivatives for each pixel

 Note: Due to the property “zero in area of constant intensity”, derivative

 kernels must sum up to zero. 

Laplacian kernel – Second order derivative

The simplest derivative operator that is also isotropic (applies equally in all

direction) is  Laplacian,  and it is defined for function with two variables as follows:
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As derivatives of any order are linear, Laplacian is linear operator. We need

to express the operator in discrete format for 2D images, as follows:

Discretized Laplacian can be written as follows:

Kernels that satisfy this equation is captured in  Figure 9.14. Kernels  (a) & (b)  in  the  figure  do  not  consider  diagonal  cells.  When  diagonal  pixels  are included, we obtain kernel as depicted in  (c) &  (d). As  these  kernels  must satisfy  the  preceding  equation,  take  negative  of  the  kernel  that  satisfy  the equation  is  also  the  valid  kernel.  Kernels   (b)  &  (d)  represents  negative counterpart of  (a) &  (c). Refer to the following figure:

 Figure 9.14: Laplacian Kernels (a)(b) without diagonal cells (c)(d) with diagonal cells Laplacian  kernel  highlights  sharp  intensity  transition  and  de-emphasis

slowly  varying  intensities  areas  of  the  image.  This  produces  images  with grey  lines  and  other  discontinuities,  all  superimposed  on  dark  featureless background.  Background  features  are  recovered  along  with  sharpening

effects by adding Laplacian image to the original. 

Value of will depend on kind of Laplacian kernel used. 

for kernel

 (a) &  (c) and 

for kernel  (b) &  (d) of  Figure 10.14. 

 Note:  Laplacian  is  sensitive  to  noise.  To  counter  this,  image  is  often

 smoothed with Gaussian function before the application. 
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Let  us  apply  Laplacian  kernel  of   Figure 9.14(c)  on   Figure  9.12  (Gaussian smoothed  image).  We  can  use  OpenCV  library’s   filter2D()  function  for filtering the image (similar to application of Gaussian kernel). The output of

this is depicted in  Figure 9.15. We can see that edges are clearly visible. 

 Tip: Why should derivative kernels be applied on smoothed image? 

 Derivative  expects  function  to  be  smooth  for  good  behavior.  To remove

 sharpness  (noise)  of  the  image,  one  needs  to  apply  smoothing  filters

 before applying derivative filters. 

Refer to the following figure:

 Figure 9.15: Laplacian kernel of size 3×3 on Gaussian smoothed image mentioned in Figure 9.12

To obtain image along with background, we subtract the obtained image for

original image. The output of this operation is captured in  Figure 9.16:

 Figure 9.16: Laplacian image subtracted from original image
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We  can  combine  Gaussian  and  Laplacian  filters.  As  convolution  is

associative,  we  can  convolve  Gaussian  and  Laplacian  kernels  before

applying  on  the  image.  This  is  termed  as  Laplacian  of  Gaussian  (LoG). 

Two-dimensional  Laplacian of Gaussian function with mean 

is stated

as follows:

The following code implements this function with μ=0 & σ=1:

1. def laplacian_of_gaussian_2d(x, y):

2.  # Exponent part of gaussain function mean=0, sd=1

3.     power_part = (np.power(x, 2.) + np.power(y, 2.)) / 2. 

4.     exp_part = np.exp(-power_part)

5.     prod_part = (-1./np.pi) * (1. - power_part)

6.     return prod_part * exp_part

 Code 9.7: Laplacian of Gaussian function with μ=0, σ=1 implementation To generate LoG kernel of size 7×7, use function get_gaussian_kernel() as stated  before,  but  call  laplacian_of_gaussian_2d()  instead  of

gaussian_fn_2d()  with  parameter  values  as  used  in  Gaussian  kernel generation. Once executed, we obtain LoG kernel, as shown in  Figure 9.17:

 Figure 9.17: LoG kernel with μ=0, σ=1

Gradient  kernels  must  sum  (elementwise  sum)  to  zero.  Sum  of  the  kernel elements  in  this  case  is  -0.00817.  Subtract  this  value  from  center  of  the kernel only. Now, the sum of kernel elements will equal zero. Value of LoG

kernel elements are low when compared to values of pixels whose range is

[0,255]. To have a good impact of filtering, we must scale the kernel values
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by  constant  factor.  In  this  case,  let  us  multiply  all  elements  of  kernel  by value 10. This would provide us the kernel mentioned in  Figure 9.18:

 Figure 9.18: Laplacian of Gaussian Kernel μ=0, σ=1

 Tip:  Multiplying  all  elements  of  the  kernel  with  constant  value  doesn’t

 alter its properties. Larger values in kernel will have high impact on the

 image when filtered. 

We can now apply the LoG kernel on the image. Result of LoG filtering is

captured in  Figure 9.19. We can see that this LoG kernel has captured lines much  better  than  previous  3×3  Laplacian  kernel.  Refer  to  the  following figure:

 Figure 9.19: Application of LoG 7×7 kernel on original gray image

Now, subtract this image with the original image to obtain sharpened image

with background, as shown in  Figure 9.20:
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 Figure 9.20: Subtract LoG kernel filtered image with original gray image to obtain background

Sobel kernel: First order derivative

Laplacian  kernel  discussed  so  far  is  second  order  derivative  that  measured change  of  slope.  While  Sobel  kernel  is  first  order  derivative  that  measures the slope and combines Gaussian smoothing like LoG. 

Sobel  kernel  consists  of  two  kernels  that  calculate  approximations  of

derivative along horizontal and vertical axis. OpenCV library can be used to

obtain Sobel filter of various sizes.  Code 9.8 shows the steps to obtain Sobel filter. getDerivKernels() outputs two vectors of size  dim×1, these two need to multiplied to obtain separable vector:

1. def get_sobel_kernel(dim=3):

2.     sobelx_sep = cv.getDerivKernels(1, 0, dim, 

normalize=True)

3.     sobelx = np.outer(sobelx_sep[0], sobelx_sep[1])

4.     sobely_sep = cv.getDerivKernels(0, 1, dim, 

normalize=True)

5.     sobely = np.outer(sobely_sep[0], sobely_sep[1])

6.     return sobelx, sobely

 Code 9.8: Obtain Sobel filter using OpenCV library

Sobel filter of 3×3 obtained using the preceding codes is captured as follows. 

To obtain kernel without normalization, set  normalize to False in the code:

[image: Image 2636]

[image: Image 2637]

[image: Image 2638]

We  can  apply  these  normalized  filters  on  Wikipedia  page  (using  OpenCV

library’s   filter2D()  function  as  before).  The  result  of  application  of horizontal  kernel  is  captured  in   Figure  9.21;  it  highlights  all  horizontal gradient directions:

 Figure 9.21: Horizontal Sobel filter applied

The  result  of  application  of  vertical  kernel  is  captured  in   Figure  9.22; it highlights all vertical gradient directions:

 Figure 9.22: Vertical Sobel filter applied

We have discussed linear filters like Gaussian and Gradient based filters in

detail. Now,  let  us  discuss  few  non-linear  filters  in  brief,  like  average  and median filters. 

Non-linear filters

 Median  filter  is  non-linear  filter  used  to  remove  noise  (effective  on  ‘ salt-and-pepper’  noise:  it  is  a  form  of  a  noise  caused  by  sharp  and  sudden disturbances  and  gets  reflected  as  black  and  white  pixels  spread  sparsely over the image) in the image. The  median filter of size  n×n, when applied on a  pixel,  replaces  it  with  median  of  the  pixel  and  its  neighboring  pixels (median  of   n×n  pixels)  with  center  of  kernel  aligned  with  the  pixel  under consideration.  Filter  is  slid  throughout  the  image.  To  cover  border  pixels, border replicate  padding  is  normally  used  where  values  are  padded  at  the border with the nearest pixel value. 

 Average filter, when applied on a pixel, replaces it with average of the pixel and its neighboring pixels (average of  n×n pixels) with the center of kernel aligned with the pixel under consideration. As for all other filters, this filter is applied on an image by sliding the filter over every possible pixel. 

Similarly,  maximum  (minimum)  filters  replace  pixel  value  with  maximum (minimum)  value  among  the   n×n  pixels  (pixel  and  its  neighbors)  values. 

This non-linear filter is widely in used on networks that infer images. 

We  discussed  a  few  filters  in  spatial  domain  and  their  use  in  extracting various  features  of  an  image.  These  features  help  us  to  perform  required manipulation/classify  the  images.  Curating  filters  for  various  classification tasks is not straightforward. In fact, we may not be able to identify all filters that  help  in  performing  classification  task.  Due  to  these  complications, researchers thought of learning these filters based on classification task. 

Learning filters

Deep  Neural  Networks  (DNN)  perform  a  good  job  in  automatically learning the features based on the classification task. Can we combine DNN

and convolution operations to automatically learn filters/kernels based on the

image  modification/classification  task?  Yes,  networks  that  combine  these

two operations are called Convolution Neural Networks (CNN). 

 Note: Can we feed images as input to DNN for image classification task? 

 Yes,  we  can.  Input  layer  dimension  of  DNN  would  equal  to  w  ×  h  ×  d

 (dimension  of  image).  For  224×224  RGB  image  would  need

 224×224×3=150,528  input  layer  dimension.  Parameters  to  learn
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 increases  further  with  deep  layers.  So,  due  to  higher  dimension,  DNN

 may fail to learn the parameters (curse of dimensionality). 

Convolution Neural Networks

To  overcome  large  parameter  space  of  DNN  in  image  processing, 

convolution operation that shares parameters across the input data is utilized. 

This  parameter  sharing  of  convolution  operation,  along  with  DNN,  have

provided a boost to the image inferencing algorithms, and these networks are

called  Convolution  Neural  Networks  (CNN).  Main  building  blocks  of CNN  are  convolution,  pooling  (subsampling),  and  fully  connected  (FC) layers. 

CNN  consists  of  more  than  one  convolution  and  pooling  layers.  Usually, convolution layer is followed by one pooling layer. This combination layers

repeat  to  extract  better  features.  At  the  end  of  the  network,  there  exist  FC

layers  that  helps  in  classification  based  on  the  features  extracted  using convolution and pooling layers, as depicted in  Figure 9.23:

 Figure 9.23: High level architecture of CNN

Convolution layer

This  is  the  core  building  block  of  CNN  where  convolution  operation  is performed.  Majority  of  the  network’s  computation  occurs  in  this  layer. 

Suppose  the  input  to  the  convolution  layer  is  of  dimension 

. 

There are  n kernels of various sizes but with the same depth  d to be applied in this layer, as shown in  Figure 9.24. 

Each kernel is convolved with input block to produce one 2D  feature map. 

Kernel  is  slid  ( w  ×  h  plane)  from  the  top-left  corner  to  the  bottom-right corner on the input for convolution. Sliding of the kernel can be either one

pixel  or  more.  This  is  called   stride.  Number  of  pixels  slid/skipped  in  a
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particular direction will be  stride value in that particular direction. Stride is 1

if kernel is moved to the right or below by one pixel for the next convolution

operation. 

Cells ( w  ×  h  plane)  along  the  border  of  the  input  block  cannot  be  aligned with the center of the kernel due to the absence of cells mapping to the cells

of kernel. Convolution  operation  cannot  be  performed  on  every  cell  of  the input  block,  which  leads  to  reduced  size  of  feature  map  (dimensions  less than  w × h). To avoid this, we can pad constant value (usually 0 value) along the border of input block such that center of the kernel can be aligned with

every cell in  w × h plane. This is called  padding. 

There are three popular ways in which values can be padded:

Valid padding:  In  valid  padding,  convolution  operation  is  performed only if there exists one to one mapping of the cells between input and

kernel. This reduces output size as valid convolution is not possible on

every cell of the input. 

Same padding: In the same padding, input is padded with values such

that the size of the output is the same as of input ( w × h plane). 

Full padding: In full padding, input is padded with values such that the

size of the output will be more than the size of the input ( w × h plane). 

Generic formula to know the output size 

,  for input size of 

after convolution is as follows. Kernel is of size 

and stride is of S. 

& 

represents  left  and  right  padding  along  the  width,  and 

represents top and below padding:

Refer to the following figures:
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 Figure 9.24: Convolution layer in CNN

Example:  Consider  input  block  of 

and  kernel  of  3×3. 

There is no need to consider depth, as depth of input block and kernel will be

equal.  In  case  of  valid  padding,  stride  S=1  would  output  13×8  and  S=2

would  output  7×4.  In  case  of  the  same  padding,  S=1  would  output  15×10

and S=2 would output 8x5. 

Output of convolution operation (feature maps) is normally fed to activation

function like ReLU (discussed in  Chapter 7 Neural Networks). Output of the activation function is fed to pooling layer that acts as subsampling to further

reduce computation or parameters. 

Pooling layer

Pooling  layer  reduces  spatial  dimension  of  input  features,  which,  in  turn, helps  in  the  reduction  of  trainable  parameters,  resources,  and  computing time. This layer helps in extracting dominant features that are rotational and

positional invariant. Maximum and average non-linear filter is usually used

in this layer. 

Consider part of the image of dimension 3×3, as shown in  Figure 9.25 (a). 

 Max pooling  (application  of  maximum  filter)  would  output   8  and   average pooling  would  output  value   4.3.  This  window  of  3×3  is  then  moved,  like
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kernel sliding in convolution operation. The concept of stride is applicable

here as well. The formula to calculate the output dimension of the pooling

layer  is  the  same  as  the  convolution  layer  discussed  earlier.  Refer  to  the following figure:

 Figure 9.25: (a) Pooling applied on 3×3 size, (b) spatially separable convolution CNN will have many layers of convolution and pooling. At the end, output

would be fed to fully connected layers.  Fully connected layers are the same as discussed in  Chapter 7 Neural Networks. 

Convolutions operation with parameter sharing kernels is still significant in

terms of computation resources and parameters count when depth/channels

input  to  the  layer  increases.  The  number  of  parameters  and  computation resources can be reduced with use of separable kernels discussed earlier. 

Spatially separable convolution

Spatially  separable  convolution  does  not  perform  convolution  with   n×n kernel.  Instead,  it  breaks  the  kernel  into  two  kernels  of  size   n×1  each. 

Spatially separable convolution then applies convolution on input with one

 n×1  kernel;  the  output  of  this  is  again  convolved  with  the  second   n×1

kernel. The  concept  is  the  same  as  explained  in  separable  kernels.  This  is depicted  in   Figure  9.25(b).  As  every  kernel  is  not  separable,  spatially separable convolution cannot be performed with every kernel. Kernel’s rank

must be 1 for it to be separable. 

Depthwise separable convolution

Spatial  separable  convolution  failed  to  exploit  the  depth/channels  of  input data.  As  the  number  of  channels  increases,  computation  resources  would
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substantially increase. Depthwise separable convolution provides solution. 

Depthwise  separable  convolution  breaks  the  operation  into  two  stages: filtering stage or depthwise convolution, and combination stage or pointwise

convolution.  Let  us  consider  the  input  data  of  dimensions 

. 

Consider the application of one kernel. The depth of this kernel must be  , 

which is equal to input data depth/channels. Dimension of this kernel will be

. 

Depthwise convolution

In  depthwise  convolution  stage,  instead  of  one  kernel  of 

size,    kernels  of  each 

dimension  is  used.  Each  of  these

kernels is applied on only one channel of the input data. Output of this stage

is  of  depth    equal  to  input  data’s  channel  count  (depth).  In  this  stage, Multiplication Count = 

and  Parameters Count = 

. Refer to

the following figure:

 Figure 9.26: Depthwise separable convolution

Pointwise convolution

Pointwise  convolution  uses  kernel  of  size 

.  Due  to  kernel

dimension of 1 × 1, it is called pointwise convolution. Depth of the kernel

used in this stage is equal to channel count or depth of input data. Depth of

output data after this operation is 1 for one kernel. To obtain more channels

in output, we should use the same number of kernels of size 

in

this  stage.  In  this  stage, 

and 

. 
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Optimization

Let  us  understand  the  benefit  of  this  convolution  with  respect  to  regular convolution.  Assume  that  we  need  output  with 

channels  or  depth. 

Regular convolution requires 

kernels of size 

. This would

result 

in 





and 

. 

To  obtain  output  with 

channels  or  depth  using  depth-wise  separable

convolution, 

and 

Optimization ratio for multiplications count would be as follows:

Optimization ratio for parameters count would be as follows:

Convolution  and  pooling  layers  either  reduce/retain  spatial  dimensions

(height/width) of the input data. This reduction also called  downsampling is beneficial for classification task but is of little help in other image tasks, like object detection or localization. For these tasks, it would be beneficial if the spatial  dimension  of  input  is  increased,  also  called   upsampling.  Next,  we will discuss the type of convolution operation that will perform upsampling:

 transposed convolution. 

Upsampling: Transposed convolution

To understand transposed convolution, let us take input data of dimensions

 2×2×d,  where   d  is  the  number  of  channels  or  depth  and  a  kernel  of  size 2×2×d whose parameters are being learned during the training phase. Every cell of the input data is multiplied with all cells of the kernel to produce an

intermediate result corresponding to each cell of the input. It is then placed

in  enlarged  dimensions  with  provided  stride  to  get  intermediate  results.  In this  case,  we  have  considered   stride=1.  To  obtain  the  final  output,  these

intermediate results are added as shown in  Figure 9.27:
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 Figure 9.27: Transposed convolution with input and kernel of size 2×2×d with stride=1

Increasing kernel size or stride will result in higher dimensions of the output

as compared to the input data. With  stride=1, input size  2×2×d is increased to   3×3×d.  With  the  same  input  data  and  kernel,  stride=2  would  result  in output of size  4×4×d, as shown in  Figure 9.28:

 Figure 9.28: Transposed convolution with input and kernel of size 2×2×d and stride=2

We  discussed  an  upsampling  approach  that  had  parameters  to  be  learned

during  the  training  phase.  There  exist  upsampling  approaches  that  do  not

need parameters to be learned. 

We  discussed  building  blocks  of  CNN.  Building  blocks  or  tricks  of  DNN

that help in training to learn better representation will be used in CNN too. 

These have already been discussed in  Chapter 7 Neural Networks. Next, let us discuss the development of CNN architectures. 

Development of CNN

First  network  that  had  most  of  the  building  blocks  of  today’s  CNN  was published  in  1998  by  Yann  LeCun  called   LeNet  [3].  There  were  a  few challenges, like availability of robust data set, compute resources due which

the  development  of  CNN  models  were  stalled  for  14  years  after  this

submission. Data set availability issue was addressed by ImageNet dataset in

2010.  It  started  annual  competition,  which  is  now  known  as  ImageNet Large  Scale  Visual  Recognition  Challenge  (ILSVRC).  As  part  of  this challenge  in  2012,  Alex  Krizhevsky  submitted   AlexNet  [4]  that  won  the competition  by  beating  the  runners  up  with  a  huge  margin  of  10.8%.  This received a lot of attention from researchers in CNN models and acted as the

turning point in the development of CNN models. 

In the next few years, many CNN models were proposed each with a unique

way  to  enhance  performance.  Important  models  are  Visual  Geometry

Group  (VGG)  (2014)  [6],  Inception  (2014)  [5],  ResNet  (2015)  [7], Xception  (2015)  [8].  Recent  CNN  models  include  most  of  the  tricks  or

proposals from these networks, along their novelty. Let us discuss a few of

these models to understand the working of CNN. 

AlexNet

 AlexNet [4] is a simple CNN model. This architecture would be discussed in detail  to  understand  the  complete  working  of  CNN  models.  AlexNet  used

five convolutional layers for feature extraction, three max pooling layers for

subsampling, and three fully connected layers at the end to classify based on

extracted  features.  It  introduced  activation  function  Rectified  Linear  Unit (ReLUs)  and  used  dropout  (explained  in   Chapter  7  Neural  Networks)  for training. 

Architecture of AlexNet is depicted in  Figure 9.29 (a). Input to the network is  the  image  of  dimension  224×224×3.  In  the  first  layer,  convolution
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operation occurs with 96 kernels of 11×11 with valid padding and stride of 4. 

Applying the formula discussed earlier, the output dimension of this layer is

54×54×96. 

Depth (channels) is equal to the number of kernels used. It is then fed to the

ReLU activation layer (no change in dimension). Next, in the pooling layer, 

max-pooling kernel of 3×3 is applied with a stride of 2 and valid padding. 

Using  the  formula  discussed  earlier,  the  output  of  this  layer  would  be 26×26×96. 

The  next  layer  is  convolution,  which  applies  256  kernels  of  5×5  (

)  with  stride  of  1  and  the  same  padding  (

). Just like before, 

we  can  apply  the  formula  to  obtain  output  dimension.  Similarly,  we  can analyze  the  layers.  The  output  of  the  last  pooling  layer  is  fed  to  the  Fully Connected  (FC)  layer  of  4096  size  after  flattening  the  data.  Data  then passes  through  two  more  FC  layers  before  being  fed  to  the  Softmax  layer. 

This  outputs  probability  of  the  input  belonging  to  a  class.  Refer  to  the following figure:

[image: Image 2682]

 Figure 9.29: (a) AlexNet Model (b) Parameters and output dimension of each layer of AlexNet in TensorFlow framework

TensorFlow Model

TensorFlow  code  to  create  AlexNet  is  captured  in  the  following  code,  and

the output of this code is captured in  Figure 9.29(b): 1. from tensorflow import keras

2. alexnet = keras.models.Sequential([

3.     keras.layers.Conv2D(filters=96, kernel_size=(11,11), 

4.                         strides=(4,4), activation=’relu’, 

5.                         input_shape=(224,224,3), 

padding=”valid”), 

6.     keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), 

7.     keras.layers.Conv2D(filters=256, kernel_size=(5,5), 

strides=(1,1), 
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8.                         activation=’relu’, padding=”same”), 

9.     keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), 

10.     keras.layers.Conv2D(filters=384, kernel_size=(3,3), 

strides=(1,1), 

11.                         activation=’relu’, padding=”same”), 

12.     keras.layers.Conv2D(filters=384, kernel_size=(3,3), 

strides=(1,1), 

13.                         activation=’relu’, padding=”same”), 

14.     keras.layers.Conv2D(filters=256, kernel_size=(3,3), 

strides=(1,1), 

15.                         activation=’relu’, padding=”same”), 

16.     keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), 

17.     keras.layers.Flatten(), 

18.     keras.layers.Dense(4096, activation=’relu’), 

19.     keras.layers.Dropout(0.5), 

20.     keras.layers.Dense(4096, activation=’relu’), 

21.     keras.layers.Dropout(0.5), 

22.     keras.layers.Dense(1000, activation=’softmax’)

23. ])

24. print(alexnet.summary())

 Code 9.9: TensorFlow keras code to create AlexNet CNN model

Counting trainable parameters

The  first  convolution  layer  of  the  network  performs  convolution  with  96

filters  of  size  11×11.  The  depth  of  these  kernels  is  equal  to  depth  of  input data  dimension  to  this  layer.  As  input  dimension  to  the  first  layer  is 224×224×3,  the  depth  of  all  kernels  in  the  first  layer  would  be  3.  The number of trainable parameters in first layer would equal to the following:

Bias is single learnable parameter for every kernel. As there were 96 kernels

in this layer, learnable parameters for bias are 96. 

Activation  ReLU  and  max  pooling  layer  don’t  have  trainable  parameters. 

Trainable parameters for the next few convolution layers can be calculated

as before. We can verify the calculation with the output of TensorFlow code

in   Figure  10.26b. Output  of  last  max  pooling  layer  is  flattened,  which
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outputs tensor of size 6400, which is fed to dense (fully connected) layer of

size  4096.  Trainable  parameters  for  this  dense  layer  are  calculated  as follows:

 Note: What are the advantages of having deeper CNN networks? 

 Initial  convolution  layers  learn  filters  to  detect  local  patterns.  Deeper

 convolution  layers  learn  filters  hierarchically  based  on  previous

 convolution layers learning. Due to this, deeper convolution layers learn

 complex and large patterns. This helps to solve complex tasks. 

Inception

Inception  V1  [5],  also  called  GoogLeNet,  submitted  from  Google  was  the winner  of  the  ILSVRC  2014.  It  achieved  a  top-5  error  rate  of  6.67%.  The main  hallmark  of  this  architecture  is  the  improved  utilization  of  the

computing  resources  inside  the  network.  This  was  achieved  by  a  carefully crafted design that allows for increasing the depth and width of the network

while  keeping  the  computational  budget  constant.  To  optimize  quality,  the architectural  decisions  were  based  on  the   Hebbian  principle  [9]  and  the intuition  of  multi-scale  processing.  It  introduced  an  inception  module  that allows us to use multiple types of filter size, instead of being restricted to a single  filter  size,  in  a  single  layer,  which  will  then  be  concatenated  and passed  on  to  the  next  layer.  This  inception  module,  which  optimizes  the convolution  layer,  helped  the  network  to  go  deep.  Inception  module  is

depicted in  Figure 9.30:
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 Figure 9.30: Inception V1 Module (Source: [5])

Inception module reduces computation by applying dimensionality reduction

and  projection.  1×1  convolution  helps  in  dimensionality  reduction  that

removes computational bottlenecks. It improves the utilization of computing

resources inside the network. 

In 2015, a team submitted Inception-V3 [10] that makes convolution layer’s

computation  much  more  efficient  using  the  concept  of  separable  kernels. 

Separating   n×n  kernel  into   1×n  and   n×1  kernel  further  reduced computation. 

 Tip:  Data  required  to  train  model  increases  exponentially  with  an

 increase in the number of training parameters. How can we mitigate this

 requirement  to  certain  extent?  The  technique  to  create  more  data  from

 existing  training  data  is  called  data  augmentation.  Algorithms used for

 data augmentation depends on the task we are solving. For example, for

 image data that is used to identify animals like cat/dog, we can use affine

 transformation  like  rotation,  scaling,  shear,  and  translation  discussed

 earlier. 

VGG

VGG  models  are  proposed  by  Visual  Geometry  Group  (VGG)  from University of Oxford. VGGNet  [6] model proposed in 2014 secured the first and  the  second  places  in  the  localization  and  classification  tracks, 

respectively, in ILSVRC 2014. Main contribution is to increase depth using

an  architecture  with  very  small  (3x3)  convolution  filters.  Two  3×3

convolution  layers  (without  spatial  pooling  in  between)  has  an  effective receptive field of 5×5, and three such layers have a 7×7 effective receptive

field. Using only 3×3 convolution layers make it uniform architecture. 

 Note:  What  have  we  gained  by  using  a  stack  of  three  3×3  conv.  layers

 instead of a single 7×7 layer? 

 First, we incorporate three non-linear rectification layers instead of one, 

 which  makes  the  decision  function  more  discriminative.  Second,  we

 decrease the number of parameters. This approach can also be seen as

 imposing a regularization on the 7 × 7 conv. filters, forcing them to have

 a decomposition through the 3 × 3 filters (with non-linearity injected in

 between). 

TensorFlow  provides  popular  models  (along  with  trained  weights  on

ImageNet dataset) for importing in our code.  Code 10.10 depicts the steps to import  VGG16  model  from  TensorFlow  library  and  print  its  architecture. 

Number ‘ 16’ in VGG16 represents the number of trainable layers. VGG16

model is one of the ways to express VGGNet as mentioned in  [6]:

1. import tensorflow as tf

2.  # Instantiating built in vgg16 model

3. vgg16 = tf.keras.applications.vgg16.VGG16(

4.     include_top=True, weights=None, 

5.     classes=1000, classifier_activation=’softmax’

6. )

7. print(vgg16.summary())

 Code 9.10: TensorFlow keras code to import vgg16 model

ResNet

ResNet   [7]  from  Microsoft  team  won  ILSVRC  2015  classification, detection, localization tasks. Model introduced residual learning framework

to  ease  the  training  of  networks  that  are  deeper.  With  the  proposed
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framework,  they  were  able  to  go  much  deeper  than  the  earlier  CNN

networks.  It  reformulated  the  layers  as  learning  residual  functions  with reference  to  the  layer  inputs  instead  of  learning  unreferenced  functions.  It provided  comprehensive  empirical  evidence,  showing  that  these  residual

networks  are  easier  to  optimize  and  can  gain  accuracy  from  considerably increased depth. On  the  ImageNet  dataset,  it  evaluates  residual  nets  with  a depth  of  up  to  152  layers,  8  times  deeper  than  VGG  nets  but  still  having lower complexity. Refer to the following figure (source[7]):

 Figure 9.31: Residual Learning Framework’s building block
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Consider  H(x)  as  an  underlying  mapping  to  be  fit  by  a  few  stacked  layers (not necessarily the entire net), with  x denoting the inputs to the first of these layers. If one hypothesizes that multiple non-linear layers can asymptotically

approximate complicated functions, then it is equivalent to hypothesize that

they can asymptotically approximate the residual functions, that is,  H(x) – x (assuming that the input and output are of the same dimensions). So, rather

than  expecting  stacked  layers  to  approximate   H(x),  it  explicitly  let  these layers  approximate  a  residual  function   F(x)  :=  H(x)  –  x.  The  original function  thus  becomes   F(x)  +  x,  as  shown  in   Figure  9.31. Although  both forms should be able to asymptotically approximate the desired functions (as

hypothesized), the ease of learning might be different. 

Xception

Xception  model  [8]  was  proposed  by  François  Chollet,  creator  of  Keras deep  learning  library,  in  2016.  Proposed  architecture  is  entirely  based  on depthwise  separable  convolution  layers.  It  is  based  on  the  following

hypothesis:  mapping  of  cross-channels  correlations  and  spatial  correlations in  the  feature  maps  of  convolutional  neural  networks  can  be  entirely

decoupled.  As  this  hypothesis  is  a  stronger  version  of  the  hypothesis

underlying  the  inception  architecture,  this  architecture  is  named  Xception, which stands for “Extreme Inception”. 

The typical inception module first looks at cross-channel correlations via a

set  of  1x1  convolutions,  mapping  the  input  data  into  two  or  four  separate spaces  that  are  smaller  than  the  original  input  space,  and  then  maps  all correlations in these smaller 3D spaces, via regular 3x3 or 5x5 convolutions. 

This is illustrated in  Figure 9.32 (a):

 Figure 9.32: (a) Canonical Inception V3 module (b) “extreme” version of our Inception module, with one spatial convolution per output channel of the 1x1 convolution (Source: [8])

An  “extreme”  version  of  an  Inception  module,  based  on  this  stronger hypothesis,  would  first  use  a  1x1  convolution  to  map  cross-channel

correlations,  and  it  would  then  separately  map  the  spatial  correlations  of every output channel. This is shown in  Figure 9.32(b). 

Xception model significantly outperformed Inception V3 on a larger image

classification  dataset.  Xception  architecture  has  the  same  number  of

parameters as Inception V3; the performance gains are not due to increased

capacity  but  to  a  more  efficient  use  of  model  parameters.  Depth  separable convolutions proposed through this model are used in other popular models

like  MobileNets[11]. 

Application of CNN models

CNN models have been used in a variety of tasks whose input is image or

video.  We  will  discuss  some  of  the  tasks  applicable  on  images  like

classification, object detection, and segmentation. 

Image classification

Image classification is a task that attempts to comprehend an entire image. 

The goal is to classify the image by assigning it to a specific label. Typically, image classification refers to images in which only one object appears and is

analyzed. 

The first CNN-based application used for hand-written digit classification is

LeNet [3]. CNN models discussed previously, like VGG, ResNet, Inception

models,  can  be  applied  directly  to  image  classification  tasks.  Apart  from these,  popular  models  are  ShuffleNet [26],  NASNet [27],  and

SqueezeNet [28]. These models are modifications to those mentioned earlier, and  they  are  being  used  in  almost  all  domains  that  deal  with  images  like medical,  sports,  and  medicines.  For  example,  CNN  models  are  applied  for identifying lung infection  [12] and breast cancer  [13]. 

Object detection

The  difference  between  object  detection  algorithms  and  classification algorithms is that in detection algorithms, bounding box is drawn around the

object  of  interest  to  locate  it  within  the  image.  It  might  not  necessarily  be just  one  bounding  box  in  an  object  detection  case;  there  could  be  many
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bounding  boxes  representing  different  objects  of  interest  within  the  image, and it is not known how many beforehand. 

A naïve approach to solve this problem would be to take different regions of

interest from the image and use a CNN model to classify the presence of the

object within that region. The problem with this approach is that the objects

of  interest  might  have  different  spatial  locations  within  the  image  and different  aspect  ratios.  Hence,  one  would  have  to  select  a  huge  number  of regions, and this could computationally blow up. Researchers have proposed

techniques  to  mitigate  this  cost.  We  will  discuss  some  of  these  popular

models.  Sample  output  of  object  detection  algorithms  is  shown  in   Figure

 9.33:

 Figure 9.33: Object Detection – drawing bounding boxes around all items identified in an image (source: tensorflow.org)

R-CNN – Regions with CNN features

R-CNN   [16]  proposal  combines  two  key  insights:  one  can  apply  high-capacity CNN models to bottom-up region proposals to localize and segment

objects and when labeled training data is scarce, supervised pre-training for

an  auxiliary  task,  followed  by  domain-specific  fine-tuning,  yields  a

significant performance boost. 

R-CNN  accepts  an  image  as  input,  extracts  around  2000  bottom-up  region proposals, computes the features for each proposal using a CNN model, and

then  classifies  each  region  using  class-specific  linear  Support  Vector Machines (SVMs).  Improvements over this approach are proposed as Fast R-CNN  [17], Faster R-CNN [18], Mask R-CNN [19]. 

YOLO – You Only Look Once

Prior  work  on  object  detection  repurposes  classifiers  to  perform  detection. 

Instead,  YOLO   [15]  (2016)  performed  object  detection  as  a  regression problem  to  spatially  separated  bounding  boxes  and  associated  class

probabilities.  A  single  neural  network  predicts  bounding  boxes  and  class probabilities  directly  from  full  images  in  one  evaluation.  Since  the  whole detection  pipeline  is  a  single  network,  it  can  be  optimized  end-to-end directly  on  detection  performance.  Several  improvement  versions  of  this

approach are proposed. 

Image segmentation

Image segmentation is the process of assigning a unique label from a set of finite labels to every pixel in an image such that pixels with the same label

share  certain  characteristics  (ex:  color,  intensity,  texture).  There  are  two broad categories of segmentation: semantic and instance. 

Semantic  segmentation  associates  every  pixel  of  an  image  with  a  class label  (ex:  person,  flower,  car,  foreground,  background),  where  multiple

objects  of  the  same  class  are  treated  as  a  single  entity. Instance

segmentation too associates every pixel of an image with a class label but treats  multiple  objects  of  the  same  class  as  distinct  individual  instances. 

Output of segmentation algorithm is shown in  Figure 9.34:
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 Figure 9.34: (a) Semantic segmentation (b) Instance segmentation Few  popular  models  for  semantic  segmentation  task  are  FCN   [20],  U-Net

 [21],  and  SegFast [22].  Popular  models  for  instance  segmentation  task  are Mast R-CNN  [19] and YOLACT  [23]. 

U-Net

U-Net   [21]  is  primarily  used  for  sematic  segmentation.  This  network  has inspired several networks used in various other image processing tasks, like

biomedical image segmentation, dense volumetric segmentation, and image-

to-image translation. This model consists of a contracting/encoding path (left

side) and an expansive/decoding path (right side), as shown in  Figure 9.35. 

The  contracting  path  follows  the  typical  architecture  of  a  convolutional network.  It  consists  of  the  repeated  application  of  two   3x3  convolutions (unpadded convolutions), each followed by a ReLU activation function and

a   2x2  max  pooling  operation  with  stride  2  for  downsampling.  At  each downsampling step, the number of feature channels is doubled. Every step in

the expansive path consists of an upsampling of the feature map, followed

by  a   2x2  convolution  that  halves  the  number  of  feature  channels,  a concatenation  with  the  correspondingly  cropped  feature  map  from  the

contracting  path  (dotted  box  in  figure)  and  two   3x3  convolutions,  each followed by a ReLU. The cropping (dotted box in figure) is necessary due to

the  loss  of  border  pixels  in  every  convolution.  At  the  final  layer,  a   1x1

convolution is used to map each 64-component feature vector to the desired

number of classes. Refer to the following figure (source[21]):
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 Figure 9.35: U-Net architecture, blue box represents multi-channel feature map, number of channels denoted on top of box and spatial dimensions on left, white box represents copied feature maps Energy function is computed by a pixel-wise soft-max over the final feature

map combined with the cross-entropy loss function. The soft-max is defined

as follows:

Where 

is  approximated  maximum-function, 

denotes  the

activation  in  feature  channel   k  at  the  pixel  position 

with 

. 

for  the   k  that  has  the  maximum  activation 

and 

for all other  k. Cross-entropy then penalizes at each position the

deviation of 

using the following:

Where 

is the true label of each pixel and 

is a

weight  map  that  is  introduced  to  give  some  pixels  more  importance  in  the

training. 

Summary

In  this  chapter,  we  discussed  about  algorithms  that  applies  filter  using convolution to process the image and various categories of filters along with

examples. Next,  we  discussed  about  architectures  that  used  both  DNN  and convolution  operation,  called  CNN  which  helped  us  to  learn  filters

automatically based on the given task. We discussed about development of

CNN and few models in detail along with few applications. In next chapter

10 Sequence Learning Models, we will learn from the sequence data. 

Further reading

The  current  trend  of  research  in  image  processing  has  eventually  become investigation and experimentation of various CNN architectures. The models

mentioned  is  this  chapter  are  insufficient  to  understand  the  landscape  of CNN models but would provide the platform to understand other models. To

understand the landscape of CNN models, you can go through survey papers

like  [24] and  [25]. Just to give a glimpse, popular CNN models are plotted in paper  [25],  along  with  learnable  parameters  and  operations  required  for

one inference, as shown in  Figure 9.36:
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 Figure 9.36: Ball chart reporting Top-1 accuracy vs computational complexity, size of ball represents trainable parameters of the model (Source: [25])

Points to remember

Dimensions  of  images  is  large,  due  to  which  tasks  like  classification

cannot be applied directly. You need to extract features from the images

before performing the task. 

Initially, features were extracted from the images with the use of filters. 

These filters were manually developed based on the required task. This

task of identifying the filters for the required tasks is very tough. 

CNN  models  learnt  the  filters  based  on  the  given  task.  These models have been successful on image tasks. 
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CHAPTER 10

Sequence Learning Models

Many unstructured data types, like video, audio, and text, are sequential in

nature. Video is a sequence of image frames, audio is a sequence of audio

frames,  and  text  is  a  sequence  of  words.  Sequential  data  can  also  be structured in some scenarios. For example, time series: stock prices, sensor

data, and weather monitoring data. These data types have time as one of the

data dimensions. In sequential data, the elements of the sequence cannot be

assumed  to  be  independent  and  identically  distributed  (i.i.d).  For example, a video frame image at time  t is very similar to the frame at time . 

Given a word in a sentence, there are limited possibilities for the next word

for making the sentence meaningful. In all the models we discussed so far in

this book, the i.i.d assumption over the data points was always a necessary

condition  to  train  the  models.  Hence,  modelling  sequences  requires  some specialised  models,  which  can  respect  this  dependency  between  successive data points in the sequence. 

There  are  three  major  types  of  sequential  modelling  problems  that  we  will discuss in this chapter:

1. Forecasting  the  future  value  of  a  sequence.  For  example,  predicting

stock price tomorrow. 

2. Classifying an entire sequence, like genome read categorization

3. Sequence  to  sequence  models  like  translating  text  in  one  language  to other, speech to text, or text to speech. We will start with some classical

probabilistic  sequence  models  and  then  introduce  Recurrent  Neural

Networks (RNN) and its variations. 

Structure

In this chapter, we will cover the following topics:

Time series models

Probabilistic sequence models: Markov chains, HMMs

Recurrent neural networks

LSTM, GRU, Bi-directional RNN

LSTM with attention

Sequence to Sequence Models: Encoder-Decoder Architecture

Self-attention and transformer architecture

Applications

Objectives

This chapter gives a detailed overview of various types of sequence models

and  dives  deep  into  some  of  the  deep  learning-based  state-of-the-art

sequence  models.  These  deep  learning  models  are  employed  for  solving

various AI problems and are already being used by many applications that

we  encounter  every  day,  for  example,  speech  recognition,  handwriting

recognition, language translation. After going through this chapter, you will

be able to formulate business problems to a sequence modelling problem and

employ a suitable class of sequence models to solve it. 

Time series models

A  time  series  is  sequence  of  data  points  ordered  in  time.  Here,  time  is  the independent  variable.  A  time  series  is  called   stationary  if  its  statistical properties  do  not  change  over  time,  that  is,  it  has  constant  mean  and variance.  Stationarity  is  one  of  the  primary  assumptions  most  time  series models  have.  However,  time  series  models  encountered  in  practice  are

generally  non-stationary.  They  are  made  stationary  using  some

transformations, and then the stationary series is modeled. 

A   non-stationary  time  series  may  have  trend,  seasonality,  and  cyclical component.  These  are  called   deterministic  components.  If  we  can  remove these components from the time series, the residual is often observed to be a

stationary  stochastic component. 

Decomposition of time series

Following are the components of a time series:

Trend:  A  long-term  increase  or  decrease  in  value  that  might  not  be linear

Seasonal  component:  Exists  when  a  series  exhibits  regular

fluctuations  based  on  the  season  (e.g.,  every  month/quarter/year). 

Seasonality is always of a fixed and known period. The “frequency” of

a  time  series  is  defined  as  the  number  of  observations  before  the

seasonal pattern repeats. A measure observed every minute might have

an hourly seasonality (frequency = 60), a daily seasonality (frequency

= 24 × 60 = 1440), or a weekly seasonality (frequency = 24 × 60 × 7). 

Cyclical component: Exists when data exhibit rises and falls that are

not  of  fixed  period.  The  average  length  of  cycles  is  longer  than  the length  of  a  seasonal  pattern.  In  practice,  the  trend  component  is

assumed to also include the cyclical component. Sometimes, the trend

and cyclical components together are called trend-cycle. 

Irregular  component:  This  is  a  stationary  process;  it’s  the  residual time series after the removal of trend-cycle and seasonal components, 

corresponding to the high frequency fluctuations of the series. 

 Figure  10.1  shows  an  example  time  series:  Airline  Passengers  dataset  :

‘AirPassengers.csv’ 

[https://www.kaggle.com/rakannimer/air-

passengers],  which  contains  the  total  number  (in  thousands)  of  monthly

airline passengers over a period. 

 Note: Cyclic behavior must not be confused with seasonal behavior. They

 are quite different. If the fluctuations are not of a fixed frequency, then

 they  are  cyclic;  if  the  frequency  is  constant  and  associated  with  some

 temporal aspect, then the pattern is seasonal. 

Refer to the following figure:
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 Figure 10.1: Airline passengers’ data

We  can  see  a  linearly  increasing  trend  and  some  seasonal  spikes  in  the passengers. 

Mathematically, we can represent a time series as follows:

where 

is  a  trend-cycle  component, 

is  a  deterministic  seasonal

component, and   is the irregular component. The functional form of  f can be  either  additive  or  multiplicative,  that  is, 

or 

.  However,  taking  logarithm  of  both  sides,  we  get 



.  So,  multiplicative  relationship  can

be fit by fitting additive relationship to the logarithms of the data and then

moving  back  to  the  original  series  by  exponentiating.  Figure  10.2  shows additive  decomposition  of  a  time  series.  We  have  used  Python  library

statsmodel’s seasonal_decompose function to generate this plot, as shown

in the following code:

1. import statsmodels.api as sm

2. import pandas as pd

3. df = pd.read_csv(‘AirPassengers.csv’, header=0)

4. df = df.reset_index(drop=True).set_index(‘Month’)

5. res = sm.tsa.seasonal_decompose(df, freq=12)

6. resplot = res.plot()
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 Code 10.1:

This  data  has  monthly  passenger  counts,  and  we  observe  that  the  seasonal pattern is yearly. Hence, the frequency of this time series is 12 (line 5 in the previous code snippet). 

Estimating trend: The trend of a time series can be estimated using  moving average. The average over a specific time window computed at each point  t is called the moving average. This window can be two sided or one sided. 

For example, considering a two-sided window of size 3, we have the moving

average time series:

Taking one sided window of size 3 (taking two past time stamp values), we

have:

This  smoothens  the  time  series.  The  window  size  is  a  parameter  to  the moving average time series:

If there is no seasonal component, the trend of the time series can be

estimated by simply taking any odd number moving average. 

If there is seasonal component, then the length of the moving average

must be equal to the seasonal frequency. 

Estimating seasonality: The seasonal factor can be extracted by subtracting the trend denoted by   from the time series. 

. If the frequency

of  the  time  series  is   d,   we  must  have 



.  Seasonal  factors  should

cancel  out  when  added  over  one  entire  period,  that  is,  we  must  have 

. If  this  does  not  happen,  then  there  is  a  way  to  correct  it  by

adjusting each seasonal factor as follows:

Refer to the following figure:
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 Figure 10.2: Decomposition of time series of airline passenger data

Differencing

Considering the difference in consecutive values, we can create a difference

time  series.  The  differenced  series  is  the   change  between  successive observations  in  original  series  and  can  be  written  as 

.  The

differenced  series  will  have  one  value  less  than  the  original  series.  For example,  daily  stock  prices  timeseries  is  non-stationary,  but  the  daily changes can be stationary. Thus, differencing is another way to make a non-stationary  time  series  stationary.  Sometimes,  differenced  data  may  not

appear  to  be  stationary,  and  differentiating  the  data  second  time  will  make the series stationary: 

. The send difference series will have

two  points  less  than  the  original  series.  Similarly,  we  can  compute  the  pth order difference series. 

Transformations like logarithms can help to stabilize the variance of a time

series. Differencing can help stabilize the mean of a time series by removing

changes in the level of a time series, and therefore, eliminating (or reducing)

trend and seasonality. 
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Time series forecasting

Once  we  remove  the  seasonal  and  trend  component  from  the  time  series, what  remains  is: 



.  But  we  still  don’t  have  a  way  of

forecasting  the  value  of  the  time  series  at  a  future  point  in  time.  If  we observe some simple curvilinear form in the trend, we can model it with a

lower-degree polynomial. 

OLS model

For the time series with simple trend and no seasonality, the Ordinary Least

Squares (OLS) or method can be used to estimate a polynomial trend and use  that  as  an  estimate.  In  this  case,  the  problem  reduces  to  a  curvilinear regression with single variable ‘ t’. 

We  must  choose  the  coefficients    such  that  the  prediction  error  between is minimized. 

The  two  most  widely  used  approaches  on  time  series  forecasting  are

 exponential  smoothing  and   ARIMA  models.  They  provide  complementary approaches to the problem. 

Exponential smoothing

Exponential  smoothing  is  technique  of  making  forecasts  using  weighted averages  of  past  observations,  with  the  weights  decaying  exponentially  as the observations get older. Hence, it’s also known as Exponential Weighted

Moving  Average  (EWMA).  There  are  three  main  types  of  exponential smoothing  algorithms:  (1)  simple  exponential  smoothing,  (2)  double

exponential smoothing or Holt, and (3) triple exponential smoothing (Holt-

Winters).  In  simple  exponential  smoothing,  the  smallest  weights  are

associated with the oldest observations:

Here,    is  called  the  smoothing  parameter.  This  method  generates  reliable forecasts for a wide range of time series. Simple exponential smoothing has

a  “flat”  forecast  function,  that  is,  all  forecasts  take  the  same  value: 
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. There  is  a  recursive  formula  to  calculate  this.  The  recursion

starts  at  the  first-time  step  as  follows: 

. Here,    is

the first fitted value that we must estimate:

Hence, recursively, we are computing the following; this is an efficient way

to compute simple EWMA:

These  forecasts  will  only  be  suitable  if  the  time  series  has  no  trend  or seasonal component. 

 Holt (1957) extended simple exponential smoothing to capture trend in the data,  thus  providing  a  trending  forecast  unlike  flat  forecast  before.  This  is also  known  as  double  exponential  smoothing  as  there  are  two  exponential smoothing equations: one for the trend 

, and another for the remaining

series or level series 

:

The  initial  values  , 

are  estimated  by  minimizing  the  Sum  of  the

Squared Errors (SSE) for the one-step training errors, that is:

 Holt  and  Winters  (1960)  extended  Holt’s  method  to  capture  seasonality  as well. Here, we have three smoothing equations: one for the level, one for the

trend, and one for the seasonal component. 

Autoregressive Integrated Moving Average
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Autoregressive  Integrated  Moving  Average  (ARIMA)  models  provide another  approach  to  time  series  forecasting.  While  exponential  smoothing models  are  based  on  a  description  of  the  trend  and  seasonality  in  the  data, ARIMA models aim to describe the autocorrelations in data. 

An  autoregressive  model  of  order   p  denoted  by   AR(p)  can  be  written  as follows:

Moving-average model assumes that the output variable depends linearly on

the  current  and  various  past  values  of  a  stochastic  term,  like  white  noise. 

Rather  than  using  past  values  of  the  forecast  variable  in  a  regression,  a moving average model uses past forecast errors in a regression. 

This  as  a  MA(q)  model,  a  moving  average  model  of  order  q.  Combining time  series  differencing  with  autoregression  and  a  moving  average  model, we obtain a non-seasonal ARIMA. An  ARIMA(p,q,d)  model  is  one  where

dth order differencing is applied, and then the differenced series is modeled

as a combination of AR(p) + MA(q) model, as follows:

Clearly, p and q are two parameters of the model. To determine appropriate

p, q for the data, we sometimes use the Autocorrelation Plot (ACF) and the closely related Partial Autocorrelation (PACF) plot. You  can  refer  to  the Further Reading section for more details on this  [1]. 

Probabilistic sequence models

Given  a  finite  sequence 

,  what  is  the  probability

of observing  s, that is, 

? In general, we can write the probability of the

sequence using product rule of probability as follows:
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In terms of sequence, it means that the probability of observing   depends

on   all  the  previous  values  of  the  sequence,  given  by  the  conditional 

. However, in practice, we observe that dependence

on all previous values of sequence is not very realistic. For example, whether

it  will  rain  today  may  depend  on  cloudy  weather  for  the  last  few  days. 

However, if it was cloudy a month ago, it cannot be a strong predictor for

today’s rain. Hence, we need to relax this assumption of dependence on  all

previous values. The simplest form of such relaxation is given by  first order Markov chains, where dependence on only the most recent previous value of sequence is assumed. 

Markov chain

In a first order Markov chain, to predict the next observation in a sequence, 

the prediction distribution will depend on immediately previous observation

only.  Similarly,  in  a  second  order  Markov  chain,  each  observation  is

assumed to be dependent on the previous two observations. 

The  assumption  of  1st  and  2nd  order  can  be  written  mathematically  as

follows:

In 2nd  order  Markov  chain,  for  the  first  two  elements  of  the  sequence,  the assumption of dependence on the previous two values does not hold. Hence, 

we write the probability of a sequence following the 2nd order Markov chain

assumption as follows:

Refer to the following figure:
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 Figure 10.3: Markov Chains


Similarly,  probability  of  sequence  following  first  order  Markov  chain  is  as follows:

Now,  these  conditionals  must  be  defined  to  complete  the  model.  We  can assume that all these conditionals share the same probability distribution. It’s also  known  as   homogeneous  Markov  chain.  If  the  observed  sequence  is discrete  and  taking   K  different  values,  then  the  model  is  like  a  state  space model. The  conditional  distribution 

for the first order Markov

chain  is  given  by  a  table  called  the  state   transition  matrix  P.  The th

entry of the transition matrix denotes the probability 

. 

Clearly,  the  sum  of  row  probabilities  equals  one  as  it  indicates  the

probability of landing to any other state given a current state.  Figure 10.4 is an example of four-state transition matrix:

 Figure 10.4: Example Markov chains; the numbers indicate the transition probability
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The arrows in  Figure 10.4 indicate state transitions, and the numbers on the arrows indicate transition probability. Also, it is shown in a tabular form in

the right portion of Figure 10.4. 

For modelling continuous variables with pth order Markov chain, we can use

linear-Gaussian conditional distributions, that is:

We can write it as follows:

Here,  each  conditional  is  a  Gaussian  distribution  whose  mean  is  linear function of its parents. This is an autoregressive or AR(p) model discussed

earlier. 

Markov  chain  models,  although  simple  to  understand,  looks  very  abstract, and  hence,  are  not  of  much  use  in  practice.  We  want  to  build  a  model  for sequences that is not limited by the Markov assumption to any order, but it

can be specified using a limited number of free parameters. We can achieve

this by introducing additional hidden (latent) variables that follow a discrete

Markov  chain,  that  is,  we  cannot  directly  observe  these  latent  variables. 

However, these latent states generate data that is given by some distribution

conditioned on the state. We call these hidden Markov models. 

Hidden Markov model

Let’s start with an example to understand Hidden Markov Models (HMM). 

Given  an  English  sentence  “Will  Jane  spot  Mary? ”,  we  want  to  find  the Parts  Of  Speech  (POS)  of  each  word  in  the  sentence.  For  illustration purposes,  we  will  assume  that  there  are  three  parts  of  speech  only:  Noun (NN), Verb (VB), Modal (MD). We can represent the sentence graphically, 

as shown in  Figure 10.5:
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 Figure 10.5: English sentence with simple parts of speech

Here, the numbers over the arrows indicate probabilities. The probability of

observing the word ‘will’ is 3/4, given the POS tag is MD. These are called

the  emission probabilities, of the words in the sentence and are shown along the  vertical  arrows.  The  horizontal  lines  are  representing  all  the  transition probabilities:  the  probability  of  observing  a  NN  after  a  MD  is  ¾  and  the probability of observing a VB after a NN is 1. We can assume that the POS

sequence  for  any  sentence  is  a  Markov  chain  governed  by  these  transition probabilities.  Thus,  any  sentence  can  be  assumed  to  be  coming  from  a

generative  process.  First,  POS  are  generated  from  an  underlying  hidden

Markov  chain,  and  then,  a  word  is  generated  from  each  POS  category.  An HMM follows the same graphical structure. We can pictorially represent an

HMM  as  shown  in   Figure  10.6.  Here,  the  latent  sequence follows  a

discrete Markov chain. The observed variable 

conditioned on the latent

variables  is  denotes  as 

,  where  φ  is  a  set  of  parameters

governing the distribution and is known as  emission probabilities. The initial latent  node    is  special  as  it  does  not  have  a  parent  node.  Refer  to  the following figure:

 Figure 10.6: Hidden Markov model
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So, the marginal distribution 

represented by a vector of probabilities 

. We can represent the transition probabilities of the latent Markov chain

by A,   the  transition  matrix.  So,  the  entire  parameter  set  for  HMM  can  be represented by 

. The joint probability distribution is given by

the following:

Now,  the  observed  data  is  only 

.  So,  we  have  to

marginalize  the  preceding  distribution  if  we  want  to  write  the  likelihood equation such that we get an equation for the observed data:

Directly optimizing this function is intractable. We can use the Expectation

Maximization (EM) algorithm, which was discussed in detail in  Chapter 7, 

 Clustering,  in  the   GMM  section,  to  find  an  efficient  framework  for

maximizing the likelihood function. 

 Baum-Welch  algorithm  (or  forward-backward  algorithm)  is  a  dynamic programming  approach  and  a  special  case  of  EM  algorithm  that  is  used  to train HMM. 

In  the  E-step,  given  the  observed  data  and  the  set  of  parameter  matrices tuned before the expected hidden states are estimated. 

The M-step updates formulas to tune the parameter matrices to best fit the

observed  data  and  the  expected  hidden  states.  These  two  steps  are  then iterated over and over, until the parameters converge, or until the model has

reached a certain accuracy requirement. 

The latent variables in HMM can have some meaningful interpretation. So, 

it’s  often  useful  to  find  the  most  probable  sequence  of  hidden  states  for  a given observed sequence. One such example we have already discussed here

is the POS tagging for a sentence. Also, in speech recognition, we can find

the  most  probable  phoneme  sequence  for  a  given  series  of  acoustic

observations.  We  can  find  the  most  probable  hidden  state  sequence  using
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 Viterbi algorithm, a dynamic programming-based algorithm. You can refer to Further Reading  [3], [4] for a detailed explanation of the Viterbi algorithm. 

HMMs  found  applications  in  a  wide  variety  of  sequence  modelling

problems. With advancement of deep learning and its ability to train models

on very large data sets, recurrent neural networks started outperforming on

many of the tasks that HMMs were used for. 

Recurrent neural networks

Neural  network  can  also  be  used  for  learning  sequences.  In  feed  forward neural network, two different inputs fed at different times are assumed to be

independent in the sense that first input or first input’s output – both don’t

impact the second output. So, we cannot directly use feed forward network

for  modeling  sequences. Recurrent  Neural  Network  (RNN)  models  the sequence  prediction  problem  as  predicting  the  sequence  for  time  step 

, 

given sequence 

. RNN stores past time step information in a

state 

and then uses this along with the current time step information to

predict the next time step. Also, the state is updated at every time step. 

Let’s understand this with a simple example. Given a sequence of numbers, 

we  want  to  compute  the  EWMA  (single)  and  output  some  function  of

EWMA. Let’s take   of EWMA as the desired output. The following code

does this:

1. import pandas as pd

2. import numpy as np

3. 

4. seq = np.random.random(10)

5. 

print(pd.DataFrame(seq).ewm(alpha=0.1,adjust=False).mean()/2)

6. 

7.  #Also, we can implement it as

8. S = seq[0]

9. alpha = 0.1

10. for i in range(len(seq)):

11.     S = alpha*seq[i]+(1-alpha)*S

12.     output = S/2

13.     print(output, S)
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 Code 10.2:

Here,  the  variable  S  can  be  thought  of  as  a  state  variable  keeping  the processed sequence information. On the other hand, 

is a parameter

of  the  state,  which  roughly  determines  how  much  previous  information  to store in the state. The state is initialized to be equal to the first element of the sequence.  The  state  variable  is  used  in  every  time  step,  along  with  new sequence input to compute the EWMA/2. 

The structure of RNN is analogous to this example. We can replace the state

variable S by a tensor  , (hidden state).   is computed as a function of the

input,  which  is  also  a  tensor  ,  and  the  previous  hidden  state 

.  The

parameter   can be replaced by a weight matrix 

. The predicted output

by the network is a function of the state  . Here, 

are the bias terms

that  depicts  the  mean  hidden  state  vectors  and  the  mean  output  vector, respectively.  At 

,  we  may  initialize  the  hidden  state  by  zero  tensor. 

Formally, this can be written as follows:

Here,    and    are  activation  functions  for  hidden  state  and  output, 

respectively. These are the RNN layer equations, also known as  RNN cell. A RNN  layer  consists  of  applying  the  RNN  cell  for  each  element  of  the

sequence. The cell should take input and previous state vectors and output

next  state  and  next  sequence  element.  Unlike  the  feedforward  neural

network  layer,  RNN  cell  has  a  feedback  loop  connection,  as 

is  also

input to the layer that is the layer output in the previous time step. We can

pictorially represent this in two forms: one with feedback loop ( Figure 10.7

(left)) and the other is unrolled loop ( Figure 10.7 (right)):
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 Figure 10.7: Simple RNN architecture

Training RNN

We  must  define  a  loss  function  for  sequences  to  train  RNN.  The  loss

function  L of all time steps is defined based on the sum over the loss at every T time step:

.  Here, 

is  the  prediction  at  time   t,  and 

is  the

actual value of the sequence.  E is the error function. The error function  E for each time step is defined based on the type of problem we want to solve. For

predicting  the  next  element  of  a  sequence,  we  can  compute  the  MSE  of predicted with actual sequence at time  t. 

Theoretically,  RNNs  should  be  capable  of  learning  from  very  long

sequences, but in practice, they are limited to looking back only a few steps. 

The  reason  for  this  limitation  lies  in  chain  rule-based  gradient  update.  For updating  the  weights 

corresponding  to  the  state  tensor 

,  we  must

compute the error gradient:

But 

depends  on  all  the  previous  time  step  hidden  states.  And  we  can

write this as follows:
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is a product of Jacobians:

And hence the norm:

As  the  sequence  length  increases,  if 

,  then  the  product  can

become very small, and we call this the vanishing gradient problem for RNN

training.  On  the  other  hand,  if 

,  these  products  can  become

very large, leading to the exploding gradient problem. 

To  address  these  issues,  some  modifications  to  the  RNN  architecture  are made  using  Long  Short-Term  Memory  (LSTM)  and  Gated  Recurrent Units (GRU). These are called gated cells in general. 

 Note: The backpropagation algorithm for training RNNs needs to unroll

 the  input  by  first  computing  the  forward  step  for  each  time  step.  It  is

 called  back-propagation  through  time  (BPTT).  BPTT  cannot  be

 parallelized because of this temporal dependency. So, another algorithm

 called teacher forcing is proposed, where the model receives ground truth

 output yt  as input at time t + 1 during training time. Rather than feeding

 the model’s own output to itself, the target values specify what the correct

 output  would  be,  and  this  can  be  easily  parallelized.  We  can  compute

 forward step for each time step in parallel, and hence, compute the loss

 in parallel. 

Long Short-Term Memory (LSTM)
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LSTMs  consist  of  three  or  four  gates,  including  input,  output,  and  forget gates, which decide whether to write information to the memory or hidden

state. These gates are also small neural network-based functions, formulated

as  follows,  and  are  learned  during  the  training  phase.  The  following

equations  define  how  information  flows  and  state  updating  happens  in  a LSTM cell:

Forget gate: 

Input gate: 

Output gate: 

Cell input activation vector: 

Cell state output: 

Hidden state vector: 

 Figure 10.8 depicts a single LSTM cell taking input   at time t:

 Figure 10.8: LSTM Cell (source [12])

For a detailed pictorial description of LSTM architecture, you may refer to

Further Reading  [5]. 

 Note:  LSTMs  tend  to  not  suffer  from  the  vanishing  gradient  problem; 

 they can have the exploding gradient problem. This can be mitigated by

 clipping  gradient  norm,  that  is,  the  gradients  are  rescaled  when  norm

 exceeds a threshold. 

Gated Recurrent Unit (GRU)
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The GRU unit combines the forget and input gates we had in LSTM into a

single “update gate.” It also merges the cell state and hidden state. GRU is a

simpler model with only two gates. GRU can be trained much faster.  Figure

 10.9 shows the architecture and the cell update equations:

 Figure 10.9: GRU Cell (source [5])

Stacked LSTM/RNN

As we have seen in other deep neural network models, adding more layers

helps in learning complex feature representation of data; similarly, addition

of LSTM layers adds levels of abstraction of input observations over time. 

This was first introduced for developing speech recognition model  [6]. We will  see  in  the  following  sections  that  this  architecture  is  used  in  several sequence modelling tasks. Refer to the following figure:

 Figure 10.10: Stacked

The  sequence  models  discussed  so  far  are  suitable  for  predicting  the  next element of the sequence. Now, let’s look at the other two types of sequence

modelling problem: sequence classification and predicting another sequence

or sequence generation. 

Generative models for sequence

While inferencing from RNN, given a starting state and input, a trained RNN

can predict the next element of the sequence. This can be iteratively used to

generate very long sequence. Suppose we train a LSTM on a large collection

of text documents where each document is fed to the LSTM as a sequence of

characters.  Then,  given  a  seed  state,  we  can  generate  new  text  that  is representative  of  the  text  from  the  original  corpus.  The  problem  of

developing  a  model  to  generalize  the  structure  of  a  collection  of  text documents is called  language modelling, which we will discuss in the next chapter. 

A generative LSTM is not really any new architecture; it is more of a change

in  perspective  about  how  the  model  is  used  and  interpretation  of  what  the model  has  learned  from  the  data.  Here,  we  will  briefly  discuss  one

generative  model  for  handwriting  generation.  We  suggest  that  you  go

through the paper “Generating Sequences with Recurrent Neural Networks” 

 [13] for more on this, like handwriting generation and text generation. We will  discuss  handwriting  generation  in  greater  detail  here.  This  model  is trained on IAMOnline DB  [14], which has the pen stroke handwriting data

collected  from  various  authors  who  were  asked  to  write  on  a  smart  board with a stylus. The pen stroke coordinated were captured in an XML format, 

as  shown  in   Figure  10.11.  Here,  a  ‘stroke’  node  in  XML  represents  a continuous curve drawn without lifting the pen. The x, y pen coordinates of

each stroke data is sampled at the shown timestamp. The ground truth text is

attached as a label to the pen stroke coordinates data. Refer to the following

figure:
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 Figure 10.11: IAMOn data sample

Handwriting generation

Handwriting is considered as a sequence of coordinates: 

, where

the first two dimensions are the 

coordinates of pen stroke and the third

is  Boolean  indicating  whether  the  pen  is  up  or  down.  So,  in  the  preceding xml,  whenever  a  new  pen  stroke  starts,  we  must  take 

,  otherwise 

. Sometimes, we must lift the pen from the paper to complete certain

stokes, like the dot in small letter ‘i’ or the h2orizontal line in small letter ‘t’. 

Stacked three layers of LSTM is used to model the first difference series of

coordinates.  Also,  skip  connections  are  included  for  faster  training  and  to avoid the vanishing gradient problem. 

The  difference  series 

is  assumed  to  follow

Bivariate  Gaussian  Mixture  Model  (GMM)  distribution.  LSTM  is  used  to

predict  the  parameters  of  this  GMM  distribution  at  each  time  step,  that  is, given  a  coordinate 

,  the  model  must  be  able  to  predict  the

parameters 

of  GMM  distribution  from  which  the  next  coordinate 
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comes. Also, the pen touch probability can be modelled using

a Bernoulli distribution. Therefore:

Bivariate  GMM  distribution  parameter 

can  be  represented  as  set  of  M

mixture weights 

, M location (mean) parameters 

, and M covariance

matrix parameter of the Gaussians 

:

That is,   is a 6  M dimensional vector of parameters. 

Mixture Density Network

Mixture  Density  Networks (MDN)  are  a  class  neural  network  of  models obtained by combining a conventional neural network with a mixture density

model.  The  neural  network  outputs  are  used  to  parameterize  a  mixture

distribution.  If  RNN  is  used  as  the  neural  network,  then  the  output

distribution  is  conditioned  not  only  on  the  current  input  but  also  on  the history of the previous input sequence.  Figure 10.12 shows the MDN layer architecture for a bivariate Gaussian with three mixture components. There

are 6 × 3 = 18 nodes in the MDN layer. Here, mixture weight output nodes

are  normalized  with  a   softmax  function  to  ensure  that  they  form  a  valid categorical distribution. The other nodes for various parameter components

are passed through suitable functions to keep their values within meaningful

range.  The  variance  should  always  be  positive,  and  hence, 

can  be

passed  though   exponential  activation  function.  The  covariance  can  be positive  or  negative,  but  we  don’t  want  it  to  take  very  large  values,  and hence, use  tanh activation to limit its value in the range [-1, 1]. Refer to the following figure:
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 Figure 10.12: MDN Layer output

For  handwriting  generation  using  MDN,  we  can  replace  the  base  neural

network by stacked LSTM. Let’s denote the stacked LSTM outputs at time  t

by  .  We  want  to  model 

.    Figure  10.12

gives  the  high-level  architecture  of  the  network.  The  final  layer  of  the network is MDN, which will always output the parameters of a GMM. The

coordinates of the handwriting can be obtained by sampling from the learned

distribution,  that  is,  learned  GMM.  For  sampling,  the  first  mixture

component  must  be  chosen  based  on  the  parameters 

.  Then,  we  can

sample the coordinates 

from the chosen bivariate mixture. Here, 

and    are  not  the  actual  coordinates  but  the  first  order  difference  of  the coordinates.  The  actual  coordinates  can  be  obtained  by  computing  the

cumulative sum of this sampled difference sequence 

. 

To train the network, we must maximize the log likelihood of the model. We

can write the log likelihood as follows:

Here, 

is  the  output  from  the  MDN  layer.  For

bivariate  normal  distribution,  we  can  write  the  previous  expression  as

follows:
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We 

must 

minimize 

negative 

log 

likelihood 

over  the  entire  sequence  to  train

this neural network. We have the following:

Following is an implementation of this loss function. Here, epsilon is a small

constant to prevent underflow in log function:

1. epsilon = 1e-8

2. def mdn_loss(real_coords, e, pi, mu1, mu2, std1, std2, rho):

3.         xs, ys, es = tf.unstack(real_coords, axis=2)

4.         mrho = 1 - tf.square(rho)

5.         xms = (tf.expand_dims(xs, axis=2) - mu1) / std1

6.         yms = (tf.expand_dims(ys, axis=2) - mu2) / std2

7. 

8.  #Calculate probability for each element of the

 sequence

9.         z = tf.square(xms) + tf.square(yms) - 2. * rho * xms

* yms

10.         n = 1. / (2. * 3.14  * std1 * std2 * tf.sqrt(mrho))

11.         n = n * tf.exp(-z / (2. * mrho))

12.         mixture_probability = tf.reduce_sum(pi * n, axis=2)

13. 

14.  #binomial finish(sequence end) probability

15.         e = tf.squeeze(e, axis = 2)

16.         ep = es * e + (1. - es) * (1. - e)

17. 

18.  #-log likelihoods for sequence (sum over sequence)

19.         sequence_loss = tf.reduce_mean(

20.                      -tf.math.log(mixture_probability +

epsilon) \

21.                     - tf.math.log(ep + epsilon), axis=1)

22.         loss = tf.reduce_mean(sequence_loss)

23.         return loss

 Code 10.3:

 Note:  While  training  RNNs  for  generative  modeling,  the  output  and

 input  of  RNN  are  from  the  same  distribution,  that  is,  the  RNN  must

 output the next element of the input sequence. Then, the next element of

 sequence  can  be  predicted  by  feeding  the  predicted  output  as  input. 

 However, the training becomes very slow if we do this. Hence, a different

 strategy called teacher forcing is used while training. This uses ground

 truth as input, instead of the model’s predicted output from a prior time

 step as an input. 

For generating handwriting from this model, we can start with the coordinate

(0, 0, 1) as initial input to the RNN and generate the first parameter set from

the GMM layer. We can sample the coordinates by first choosing one of the

mixture  components  and  then  generating  a  sample  from  the  corresponding

bivariate Gaussian, as shown in the following code from these parameters:

1. def sample(e, mu1, mu2, std1, std2, rho):

2.     cov = np.array([[std1 * std1, std1 * std2 * rho], 

3.                     [std1 * std2 * rho, std2 * std2]])

4.     mean = np.array([mu1, mu2])

5. 

6.     x, y = np.random.multivariate_normal(mean, cov)

7.     end = np.random.binomial(1, e)

8.     return np.array([x, y, end])

 Code 10.4:

The sampled coordinates are passed as input to the network along with the

previous hidden states, and then the next time step coordinates are generated. 

This is repeated for several time steps.  Figure 10.13 shows a sample of the generated  handwriting  after  training  the  model  with  the  preceding  loss

function and sampling:
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 Figure 10.13: Sample generated handwriting

Sequence classification

Sequence  classification  is  a  predictive  modeling  problem,  where  given  a sequence of observations, the task is to predict a category for the sequence. 

Sequence  classification  has  a  wide  range  of  applications,  such  as  genomic analysis,  information  retrieval,  health  informatics,  finance,  anomaly

detection, gesture recognition, and motion recognition. 

A sequence may carry a class label. For example, a time series of ECG data

may come from a healthy or ill person. A DNA sequence may belong to a

gene coding area or a non-coding area. A piece of text can be considered a

sequence of words. A  movie  review  is  a  sequence  of  words,  and  it  can  be positive  or  negative.  These  are  examples  of  binary  sequence  classification problems. 

A  typical  architecture  for  sequence  classification  is  an  RNN  to  encode  the variable  length  sequence  input  into  one  fixed  size  vector.  This  acts  as  the feature  vector  of  the  sequence,  which  is  passed  through  a  series  of  fully connected layer, followed by a softmax layer for classification.  Figure 10.14

depicts this:
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 Figure 10.14: Typical sequence classification architecture

RNNs process the sequence in forward direction only. For some sequences, 

like text, it may be necessary to see words coming next to the current word

to get more context. In speech recognition also, classification for phonemes

can be better if we look at the future phonemes and not only the phonemes

already  uttered.  This  is  in  line  with  human  speech  understanding.  Many times, we understand a word uttered by a speaker only after listening to the

next word or may be after completion of the sentence. BRNNs, discussed in

the next section, can process sequences from both directions to extract better

sequence features. 

Bi-directional RNN

Bi-directional  RNNs  (BRNN)  process  the  sequence  in  both  directions. 

Typically,  two  separate  RNNs  are  used:  one  for  forward  direction  and  one for reverse direction. This results in a hidden state from each RNN, which

are  usually  concatenated  to  form  a  single  hidden  state.  The  forward  and backward RNNs don’t interact; they can be trained in the same way as the

standard RNNs. This is shown in  Figure 10.15:
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 Figure 10.15: Bi-directional RNN

Multiple  layers  of  BRNNs  can  be  stacked  for  more  complex  sequence

classification  tasks.  BRNNs  are  used  in  many  other  sequence  modeling

tasks,  like  speech  recognition,  handwriting  recognition,  and  sequence

anomaly detection. 

Sequence to Sequence

Sequence-to-Sequence  modelling  (Seq2Seq)  is  about  training  models  to convert  sequences  from  one  domain  to  sequences  in  another  domain. 

Following are a few examples of Seq2seq modelling:

Handwriting recognition

Language Translation: An English sentence to French

Speech Recognition: Audio to text transcript

Video captioning

Question-answering: chat bots

Text to speech

Text to handwriting ink coordinates

In all these examples, input sequences and output sequences have different

lengths. Although RNN models are powerful sequence learning models, the

input is  unsegmented in many practical problems like handwriting (cursive) recognition,  speech  recognition,  and  gesture  recognition.  For  example,  in cursive  handwriting  recognition,  we  have  the  Sayre’s  paradox:  A  word written in cursive cannot be recognized without being segmented and cannot
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be  segmented  without  being  recognized.  This  means  most  OCR  systems

based  on  character  segmentation  are  not  usable  directly  for  cursive

handwriting.  Figure  10.16  explains  unsegmented  input  for  handwriting recognition:

 Figure 10.16: Alignment issues in sequence to sequence

So, the main problem is the  alignment of input to output, that is, which part of  handwritten  image  corresponds  to  a  character  or  which  segment  of  the speech signal corresponds to a character. Had there been a way to segment

the input, a simple RNN-based architecture would have sufficed to build the

models, but that is not the case here. The first breakthrough in this was done

by Alex Graves in 2006  [7], where this problem was solved by introducing Connectionist  Temporal  Classification  (CTC),  which  is  an   alignment  free technique.  Much  later,  in  2015,  a  novel  neural  network  architecture  was introduced by Google [8] to address this challenge. 

Connectionist Temporal Classification

The  idea  of  Connectionist  Temporal  Classification  (CTC)  is  eradicating the  need  for  explicit  alignment,  that  is,  to  redefine  the  problem  as  an alignment-free  problem  with   input  and  output  sequence  having  the  same length. The input is first split into equal-sized segments such that we get a sequence input from a raw audio/image. For each segment, we must have a

target label. For example, consider the handwriting example shown in  Figure

 10.17:
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 Figure 10.17: Alignment of handwritten image to characters

For each segment of the image, a character label mut be assigned. Here, we

see that the character ‘c’ is two segments long, ‘a’ is two segments long, and

‘t’ is one segment long. Suppose we had this labeling available as training

data;  we  could  easily  train  a  RNN  to  model  this.  Removing  the  repeated characters  from  the  prediction  would  give  the  final  output,  but  what  if  we had  a  word  with  repeated  characters,  like  ‘ hello’.  Suppose  the  alignment after image segmentation is [h, h, e, l, l, l, o]. Then, collapsing the repeats

will produce “helo” instead of “hello”. Let’s introduce a new character called the blank token ϵ. ϵ token doesn’t correspond to any character in output and

is simply removed from the output. Consider a possible alignment using ϵ, as

follows:  [h,  h,  e,  ϵ,  ϵ  l,  l,  l,  ϵ,  l,  l,  ϵ,  o].  From  this  alignment,  if  we  first

remove repeats and then ϵ, we will get the word ‘hello’, as shown in  Figure

 10.18. CTC can help us achieve this without creating segment-wise labeling

or annotation for training a model. Refer to the following figure:
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 Figure 10.18: Alignment of handwritten image to characters using CTC type encoding The alignment we saw earlier is not unique. Based on different handwriting

inputs,  there  may  be  different  possible  alignments.  The  word  hello  can  be derived from any of the following [hhϵllϵlϵo, heeϵlllϵllo, hhhheϵllϵloo, …]. If

we  have  a  predefined  length  of  encoding  sequence   T,  then  there  are possible sequences, where 

.   denotes the number of alphabets. 

Hence,  any  encoded  character  output   y  of  length   T  is  a  sample  from  a distribution over the set of all sequences 

. 

With this view of the target sequence, we can use simple RNN/LSTM with

softmax  output  layer  (having 

number  of  output  nodes)  to  model  the

output distribution. Given  an  input  handwriting  or  audio  segmented  into  T

parts, this model will output a probability distribution over   characters at

each  time  step  t.  This  is  called  CTC  network,  as  shown  in   Figure  10.19. 

Refer to the following figure:
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 Figure 10.19: CTC Network

Now,  how  do  we  train  such  a  model?  We  don’t  have  a  target  alignment defined so that we can evaluate cross entropy loss at each of  T time steps. 

The  target  label  is  still  the  given  text  corresponding  to  a  handwriting  or audio. 

Training CTC network: Maximum likelihood

We can choose the subset   of all   encoded sequences of length T, which

represent the target sequence, out of all possible 

sequences. For example, 

let  the  target  sequence  be  ‘hello’.  If  we  take 

,  we  have 

. We must maximize the probability

of observing 

, given input sequence  x, that is, 

:

The goal is to maximize the log probabilities of all the correct classifications in  the  training  set,  that  is,  minimizing  the  following  objective  function where Tr denotes the training set. 

The  probabilities 

are  given  by  the  softmax  activation.  For  any 

, we can compute 

as the product of  T probabilities given by

their  respective  softmax  activations.  To  compute  these  probabilities
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efficiently, we can represent it in a tabular form with T=8 columns, and the

number  of  rows  is  the  length  of  target  sequence,  that  is,  ‘ hello’.  To  allow blanks in the output, we modify the output sequence by interleaving empty

tokens between the characters “hello” and making it “∈h ∈e ∈l ∈l ∈o”. Any alignment 

is  a  path  from  a  node  in  t1  to  a  node  in  t8.  A  valid  path

must satisfy the following:

We are allowed to move right or down. 

Paths  can  include  any  number  of  ∈  tokens  but  must  also  include  all

characters of the target string “hello”. 

At least one ∈ must be included between the repreated characters “ll” 

in any valid path. 

One  valid  path  corresponding  to  the  alignment  ‘hel’  is  shown  in   Figure

 10.20:

 Figure 10.20: The path for ‘hel-lo--’

The probability of this path is as follows:

Here, 

denotes the probability (given by softmax activation) at the time

step t for the character  c. Other valid paths are “hel

”, “

”, and

so  on.  Many  of  these  paths  have  portions  in  common;  for  example,  “hel

” and “

” have “hel” in common, that is, they have a common

subproblem  to  solve.  Hence,  these  probability  computations  can  be  further optimized by Dynamic Programming (DP). 
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DP formulation for CTC loss

Given a labeling  l, we define 

as forward variable:

= total probability of observing labeling 

that is:

= total probability of observing first s symbols of  l till time t. 

= total probability of observing labeling 

= all paths corresponding to  l that go through symbol  l[s]

at time t

To allow for blanks in the output paths, we modified label sequence  l with blanks added to the beginning and the end and inserted between every pair

of labels. Let’s call this  l’. The length of  l’ is 

. We can write

the probability of  l as the sum of the total probabilities of  l’ with and without the final blank at time  T:

We  will  compute  the  forward  and  backward  variables  by  CTC  Forward-

Backward  Algorithm:  the  algorithm  to  solve  the  previous  DP.  We  are  not providing  the  details  of  the  solving  DP.  You  may  refer  to  the  paper   [7] to know  more.  Most  DL  frameworks  have  APIs  available  to  compute  CTC

loss. For TensorFlow, it’s “tf.nn.ctc_loss”. The  gradient  of  this  loss  can be computed directly from the forward and backward variables and is also

discussed in the paper. 

Inferencing from CTC network

Inferencing  from  CTC  network  can  be  done  in  two  different  ways:   greedy search  and   beam  search.  Given  an  input  sequence  of  length   T,  the  CTC

network will output a sequence of probability distributions of length  T. The greedy decoding chooses the output token that has the maximum probability

in each time step. 

Instead  of  greedily  choosing  the  most  probable  next  step,  as  the  output sequence is being decoded out of the probabilities, the beam search expands

all possible next steps and keeps the  k most likely and controls the number of

beams  or  parallel  searches  through  the  sequence  of  probabilities.  Figure
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 10.21  shows  an  example  beam  search  with  beam  width  and  for  an  output

alphabet {a, b, }. Refer to the following figure:

 Figure 10.21: Beam search diagrams [source: https://github.com/distillpub/post--ctc/issues/4]

Limitations of CTC are as follows:

CTC assumes that the model outputs for a given frame are independent

of the previous frames. The CTC layer is not recurrent. 

Output sequences cannot be longer than the input sequence – the output

can  be  longer  than  the  input  for  tasks  like  text-to-speech,  or  text  to handwriting. 

Next,  we  will  discuss  another  architecture  for  sequence-to-sequence

modelling that mitigates these limitations. 

Encoder-Decoder architecture

A  simple  encoder  decoder  architecture  is  depicted  in   Figure  10.22. This architecture  supports  different  input  sequence  lengths  for  the  source  and target.  The  encoder  is  a  recurrent  neural  network  like  LSTM  or  stacked LSTM, which encoded the source sequence into a fixed size vector. This is
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called  the  encoder   context  vector.  This  is  the  final  hidden  state  of  the encoder. The context vector acts as an initial hidden state of the decoder. The

context vector has the responsibility of encoding all the information in each

source  sequence  to  one  single  vector.  This  is  challenging  for  longer

sequences.  To  solve  this,  a  new  technique  called   attention  mechanism  is introduced .   BRNNs  are  also  used  in  the  encoder  architecture  instead  of simple LSTMs. Refer to the following figure:

 Figure 10.22: Encoder-Decoder architecture

Attention mechanism

Attention  allows  the  model  to  focus  on  the  relevant  parts  of  the  input sequence as required, by accessing  all the past hidden states of the encoder, instead of just the last one. 

Here,  a  context  vector    is  derived,  which  captures  relevant  source-side information. Attention mechanism-based models have two broad categories:

 global  [ Figure  10.23]  and   local  attention.  This  means  whether  the

“attention”  is  placed  on  all  source  positions  or  on  only  a  few  source positions, that is, how the context vector   is derived. 

Global attention: The context vector  c is the weighted sum of hidden states of the input sequence, weighted by alignment scores   (a scalar):
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Here,  attention  alignment  scores    are  computed  using  one-hidden  layer

feed-forward network with a softmax activation, as follows:

is the decoder hidden state at time  t, and   is the source sequence hidden state at time step  s in the source sequence. 

The current target hidden state is compared to all source states using score

function  to  derive 

 .   The   score  function  outputs  a  scalar  value.  For

example, the score can be a dot product of the vectors 

. Refer to the

following figure:

 Figure 10.23: Attention (source https://lilianweng.github.io/lil-log/2018/06/24/attention-

 attention.html)

Different attention mechanisms compute this score in different ways:

Dot product: Multiply the hidden states of the encoder by the hidden

state of the decoder at time  t:

General: Very similar to the dot product, but a learnable weight matrix 

is included to project the encoder hidden states and then perform

the dot:
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Concat:  The  decoder  hidden  state  and  encoder  hidden  states  are

concatenated 

before being passed through a linear layer with a

tanh  activation  function  and,  finally,  being  multiplied  by  a  weight

matrix 

:

where 

are trainable parameters. 

Bahdanau attention: This is similar to the concat given earlier, except

that they have used the previous hidden state of the decoder 

, and

instead  of  concatenating  the  hidden  states,  they  used  separate  weight

matrices 

:

The  weight  matrices 

and  the  vector 

are  learned

during training. 

Location  based:  The  scores  are  computed  from  solely  the  target

hidden states, as follows:

Local  attention:  A  single  aligned  position 

for  the  current  target  is

predicted first. The source hidden states from a window 

of

source time steps is used to compute a context vector  . Local attention is

also  known  as   window-based  attention.  Here,  D  is  empirically  selected. 

Now,   can be chosen in the following ways:

Monotonic  alignment: 

;  here,  it  assumes  that  the  source  and

target sequence are monotonically aligned. 

Predictive  alignment: 

,  S

being the length of source sequence. Because of the sigmoid function, 

. 

We  can  now  modify  the  alignment  scores    to  give  more  weightage  to

positions  near  the  source  alignment  position 

.  We  can  do  this  using  a

Gaussian centered at  , that is:
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Here,   is a fixed variance that can be empirically chosen. 

Key-value-query formulation of attention

An attention function can be described as mapping a query and a set of key-

value  pairs  to  an  output,  where  the  query,  keys,  values,  and  output  are  all vectors. The output is computed as a weighted sum of the values. In other

words,  the  output  is  the  context-vector.  We  can  view  the  constituents  of attention layer as follows:

The ‘query’ is the last decoder hidden state till time step t. 

The ‘values’ are the encoder outputs, that is, all the hidden states of the

encoder. The ‘query’ attends to all the ‘values’. 

We  may  represent  the  values  by  some  ‘key’  and  compare  the  query

with the keys instead of directly comparing it with the values. 

This is analogous to document search or retrieval. For searching a YouTube

video,  we  pass  a  text  query.  This  query  text  is  compared  to  various  video descriptions  (keys),  and  the  relevant  videos  (values)  are  retrieved.  For  the types  of  attention  discussed  so  far,  we  have  value=key.  With  this

formulation, all the previous score functions have only two arguments, i.e., 

query and value:

For example, we can implement Bahdanau attention as follows:

1. class BahdanauAttention(tf.keras.layers.Layer):

2.         def __init__(self, units):

3.         super(BahdanauAttention, self).__init__()

4.         self.W1 = tf.keras.layers.Dense(units)

5.         self.W2 = tf.keras.layers.Dense(units)

6.         self.va = tf.keras.layers.Dense(1)

7. 

8.     def call(self, query, values):

9.  #query shape: [batch_size, hidden_size], 
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10.  #values shape: [batch_size, inp_seq_len, 

 hidden_size]

11.         query = tf.expand_dims(query, 1)      

12.         scores = self.va(tf.nn.tanh(self.W1(query) +

self.W2(values)))

13.         attention_weights = tf.nn.softmax(scores, axis=1)

14.         context_vector = attention_weights * values

15.         context_vector = tf.reduce_sum(context_vector, 

axis=1)

16.         return attention_weights, context_vector

 Code 10.5:

Now, let’s see how we can use this to implement a language translator model

that can translate a sentence in French to English. 

Scaled  dot-product  attention:  Using  the  key/value/query  formulation, another  attention  scoring  function  can  be  defined,  which  is  very  similar  to dot-product  attention  discussed  earlier;  it  is  called  scaled  dot  product attention. Here,   is the scaling factor, and it is equal to the dimension of

the query, key vectors:

The  attention  is  defined  as: 

. 

Here the values  v need not be the same as keys. 

Language translation model

Given  a  sequence  of  text  in  a  source  language,  say  French,  the  task  is  to convert  it  into  a  target  language,  like  English.  The  natural  ambiguity  and flexibility of human language causes the lack of a single best translation of

the  source  text  to  another  language.  This  makes  the  problem  of  language translation challenging. Classical models of language translation were either

rule-based or statistical. The rule-based models were developed by linguists, 

and  the  collection  of  such  rules  was  massive.  Statistical  approach  is  data driven, where a collection of pairs of source and target language were used

to  convert  phrases  or  sub-sentences  from  source  to  target  language.  It’s
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known as Statistical Machine Translation (SMT). Neural network models when employed for this task outperformed both the previous approaches. 

We  can  download  French-English  dataset,  which  consists  of  bilingual

sentence pairs, from http://www.manythings.org/anki/. 

Text can be viewed as a sequence of words. Suppose there are N words in

the vocabulary of any language; we can represent them by numbers 1 to N. 

Thus, the source sentence is a sequence of integer indices. We must convert

these integers to one hot encoded vector. Generally, N will be very large, so

converting  it  to  one  hot  encoding  will  result  in  a  high-dimensional  and sparse  vectors.  To  avoid  this,  words  are  converted  to  dense  vector

representation using a lookup matrix that has N dense vectors of dimension 

.  This  lookup  matrix  is  called   embedding  matrix,  and  is  called  the embedding dimension. We will discuss embedding matrix in greater detail in the next chapter on NLP. 

Following  is  the  code  for  the  encoder.  This  model  takes  a  sequence  of integers  as  input  and  uses  the  embedding  layer  in  line  8  to  convert  the sequence of integers to sequence of dense vectors, which are processed by

the RNN (or GRU). Refer to the following code:

1. class Encoder(tf.keras.Model):

2.     def __init__(self, vocab_size, 

3.                  embedding_dim, 

4.                  enc_units, batch_sz):

5.         super(Encoder, self).__init__()

6.         self.batch_sz = batch_sz

7.         self.enc_units = enc_units

8.         self.embedding =

tf.keras.layers.Embedding(vocab_size, 

9.                                                    embedding

_dim)

10.         self.gru = tf.keras.layers.GRU(self.enc_units, 

11.                                   return_sequences=True, 

12.                                   return_state=True, 

13. 

recurrent_activation=’sigmoid’)

14.     def call(self, x, hidden):

15.         x = self.embedding(x)

16.         output, state = self.gru(x, initial_state = hidden)

17.         return output, state

18.     def initial_hidden_state(self):

19.  #Generating encoder initial states as all zeros

20.         return tf.zeros((self.batch_sz, self.enc_units))

 Code 10.6:

Following is the decoder model that uses Bahdanau attention to look at all

the  source  sequence  hidden  states  with  the  current  decoder  hidden  state  as the query [ line 21 in the following code snippet]. The context vector found by attention is concatenated with the embedded target language token at i th

step and passed to the decoder as the input. 

1.  #Decoder with attention

2. class Decoder(tf.keras.Model):

3.     def __init__(self, vocab_size, 

4.                  embedding_dim, 

5.                  dec_units, batch_sz):

6.         super(Decoder, self).__init__()

7.         self.batch_sz = batch_sz

8.         self.dec_units = dec_units

9.         self.embedding =

tf.keras.layers.Embedding(vocab_size, 

10.                                                    embeddin

g_dim)

11.         self.gru = tf.keras.layers.GRU(self.dec_units, 

12.                                   return_sequences=True, 

13.                                   return_state=True, 

14. 

recurrent_activation=’sigmoid’)

15.         self.fc = tf.keras.layers.Dense(vocab_size)

16.         self.attention = BahdanauAttention(dec_units)

17. 

18.     def call(self, x, hidden, enc_output):

19.  # enc_output  (batch_size, max_length, hidden_size)

20.  # hidden (batch_size, hidden size)

21.         attention_weights, context_vector =

self.attention(hidden, 

22. 

enc_output)

23.         x = self.embedding(x)

24.  #Concatenating previous output with contx_vec

25.         x = tf.concat([tf.expand_dims(context_vector, 1), 

x], axis=-1)

26.         output, state = self.gru(x)

27.         output = tf.reshape(output, (-1, output.shape[2]))

28.         x = self.fc(output)

29.         return x, state, attention_weights

30. 

31.     def initialize_hidden_state(self):

32.         return tf.zeros(self.batch_sz, self.dec_units)

 Code 10.7:

The  output  of  the  decoder  is  passed  through  a  dense  layer  [ line  28  in  the preceding  code  snippet]  to  predict  the  next  decoded  token.  We  must  use  a softmax layer to predict the probability of the next token. Here, we output

the  logits  that  can  be  converted  to  probabilities  in  the  loss  function,  as discussed in the following code:

1. def loss_function(self, real, pred):

2.       loss_ =

tf.nn.sparse_softmax_cross_entropy_with_logits(

3.           labels=real, logits=pred)

4.       return tf.reduce_mean(loss_)

 Code 10.8:

Now, let’s discuss the training step that uses teacher forcing. We have used

two special tokens “<start>” and “<end> ” to indicate the beginning and end of  a  sentence  in  source  or  target  language,  respectively.  For  example,  the sentence  “Comment  ça  va? ”  in  French  can  be  converted  to  the  sequence

[<𝑠𝑡𝑎𝑟𝑡>,′𝑐𝑜𝑚𝑚𝑒𝑛𝑡′, 

′ça,′𝑣𝑎′,′?′, 

<𝑒𝑛𝑑>. 

We 

have 

used

‘tf.keras.preprocessing.text.Tokenizer’  to  covert  the  sentences  into sequences, as shown in the code snippet 10.9. We will use teacher forcing to

train the network. So, the input to the decoder will be the real input from the

target language, not the input predicted by model in the previous step. This

is shown in  line 36; in code 10.9. we have a loop to iterate through the entire decoder sequence. We have made sure that the length of each sequence in a

batch is the same by padding the sequences with zeros. 

1. class NMTModel:

2.     def __init__(self, 

3.                  vocab_size_in, 

4.                  embedding_dim_in, 

5.                  vocab_size_out, 

6.                  embedding_dim_out, 

7.                  enc_units, 

8.                  dec_units, 

9.                  batch_size, 

10.                  inp_lang_tokenizer, 

11.                  targ_lang_tokenizer

12.                 ):

13.         super(NMTModel, self).__init__()

14.         self.inp_lang_tokenizer = inp_lang_tokenizer

15.         self.targ_lang_tokenizer = targ_lang_tokenizer

16.         self.batch_size = batch_size

17.         self.encoder = Encoder(vocab_size_in + 1, 

18.                    embedding_dim_in, enc_units, batch_size

)

19.         self.decoder = Decoder(vocab_size_out + 1, 

20.                     embedding_dim_out, dec_units, 

batch_size)

21.         self.optimizer = tf.keras.optimizers.Adam()

22. 

23. 

24.     @tf.function

25.     def train_step(self, inp, targ):  

26.         loss = 0

27.         hidden = self.encoder.initial_hidden_state()

28.         with tf.GradientTape() as tape:

29.             enc_output, enc_hidden = self.encoder(inp, 

hidden)

30.  #final encoder states are taken as initial

 decoder states

31.             dec_hidden = enc_hidden

32.  #Passing ‘<start>’ token as first token to

 decoder

33.             dec_input = tf.expand_dims(
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34.                 [self.targ_lang_tokenizer. \

35. 

word_index[‘<start>’]]*self.batch_size, 1)

36.             for t in range(1, targ.shape[1]) :

37.  # passing enc_output  to the decoder

38.                 predictions, dec_hidden, _ = self.decoder(

39.                     dec_input, dec_hidden, enc_output)

40.                 loss += self.loss_function(targ[:,t], 

predictions)

41.  # using teacher forcing

42.                 dec_input = tf.expand_dims(targ[:,t], 1)

43.         batch_loss = (loss / int(targ.shape[1]))

44.         variables = self.encoder.variables +

self.decoder.variables

45.         gradients = tape.gradient(loss, variables)

46.         self.optimizer.apply_gradients(zip(gradients, 

variables))

47.         return batch_loss

 Code 10.9:

The training time of encoder-decoder model is very high because of the loop

in the decoder step. This cannot be parallelized because of the dependency

on the previous time steps. Attention-based speech recognition models like

LAS,  discussed  as  follows,  were  trained  for  about  a  month  using  GPUs  to get the desired results. 

Speech recognition model

Automatic  Speech  Recognition  (ASR)  or  converting  speech  to  text  was traditionally  approached  by  breaking  the  problem  into  multiple  stages  and solving using multiple independent models for each stage, as depicted in the

 Figure 10.24:
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 Figure 10.24: Components speech recognition model

HMM-based acoustic model was used to create phonemes from audio signal

features.  The  phone  sequence  was  converted  to  word  sequence  or  text  by another decoder model. 

ASR can be viewed as a sequence-to-sequence modeling problem. The input

speech is a sequence of audio frames, and output is a sequence of characters

depicting  the  transcription  corresponding  to  the  speech  signal.  The  speech signals  can  be  hundreds  to  thousands  of  frames  long.  In  the  paper   Listen, Attend and Spell (LAS) [9], pyramid structure stacked BRNN is used as the encoder architecture called  listener, as shown in  Figure 10.25. This helps to reduce the length of the input sequence considerably. Each layer reduces the

sequence length by a factor of 2; hence, with 3 layers, we have a factor of 8

reduction in the sequence length. Refer to the following figure:

 Figure 10.25: Pyramidal recurrent encoder

Next, they have used a decoder with attention over the encoded audio. This

is  another  RNN-based  decoder  that  outputs  a  character  distribution 

in

every time step. The distribution for   is a function of the decoder state 

and context vector  . The decoder state   is a function of the previous state 

,  the  previously  emitted  character 

,  and  context 

.  The  context

vector   is produced by an attention mechanism. The attention mechanism

is content based: the contents of the decoder state   (query) are matched to

the contents of encoder hidden states using dot product type attention:

Where   and   are neural networks learned during training. 
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Self-attention and transformers

Attending to elements of the same sequence is called self-attention or intra-attention. While  modelling  the  input  sequence  with  encoder,  we  assumed that  every  element  of  the  sequence  may  have  dependence  on  all  previous elements. This need not be true all the time. So, while encoding the sequence

also, we can use attention mechanism over the same sequence. For example, 

consider  a  sequence  of  words  in  the  sentence.  We  will  take  two  similar sentences:

“The animal didn’t cross the street because it was too tired”. 

“The animal didn’t cross the street because it was too wide”. 

In the first sentence, “it” refers to the animal and in the second, it refers to the street. Can we capture such relations and inter-dependencies within the

same  sequence?  This  is  what  self-attention  or  intra  attention  is  all  about. 

 Figure  10.26  shows  the  same.  Sequence  to  sequence  tasks  like  machine translation have improved using self-attention. 

 Figure 10.26: Visualizing self-attention

Self-attention  is  an  attention  mechanism  relating  different  positions  of  a single sequence to compute a representation of the sequence. 

Computing self-attention

Self-attention  is  represented  as  a  vector.  For  each  input  vector  in  an  input sequence (like embedding vector in case of text sequence), the self-attention

vector  is  computed.  First,  each  input  vector 

is  projected  to  3  separate

vectors 

by  a  linear  transformation,  that
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is,  multiplying  by  a  matrix.  For  query  and  key  vectors,  we  use  matrices of  dimension 

,where 

is  the  input  dimension  or

embedding dimension. 

is the projection dimension. For value, we

can  use  the  projection  matrix 

of  dimension 

.  We  may  choose 

for simplicity, as shown in  Figure 10.27, where 

and 

.  The  sequence  length  is  5.  Using  these  projected  vectors,  we  can

compute scaled dot product attention taking each input as query and all other

input’s  keys  and  values.  Then,  we  can  add  all  the  softmax  weighted  value vectors  for  each  query  and  get  the  corresponding  attention  vector  for  each element of the sequence. Refer to the following figure:

 Figure 10.27: Pyramidal encoder

So,  applying  self-attention  on  a  sequence,  we  get  a  sequence  of  the  same length as the input. This  sequence  has  the  attention  features  encoded  in  its representation. This was first introduced in the paper “Attention is All you

Need” (Vaswani, et al., 2017). In this paper [11], a novel architecture called transformer  is  introduced,  which  is  a  recurrence  free  architecture  for modelling sequences. Refer to the following figure:

[image: Image 2964]

 Figure 10.28: Multi headed attention

There,  they  have  used  multiple  self-attention  layers  in  parallel  to  encode different  types  of  features  in  sequence.  This  is  like  the  multiple  filters  we find in CNN architectures. They called this the  multi-headed attention. This computes  multiple  attention  vectors,  one  for  each  head,  and  these  are

concatenated to form the final representation, as depicted in  Figure 10.28. 

Transformer architecture

The  transformer  architecture  also  has  an  encoder  and  a  decoder  for

modelling  sequence  to  sequence  tasks.  Here,  the  encoder  is  a  stack  of transformer  layers  that  creates  a  representation  of  the  input  sequence,  just like  all  the  hidden  states  generated  by  RNN-based  encoder.  However,  the transformer  is  not  recurrent.  The  decoder  shares  the  same  structure  as  the encoder,  but  it  inserts  another  additional  sub-layer,  which  performs  multihead attention over the output of the encoder stack. This is called encoder-

decoder  attention.  The  “Encoder-Decoder  attention”  layer  works  just  like multiheaded self-attention, except that it creates its queries matrix from the

layer below it and takes the keys and values matrix from the output of the

encoder  stack.  This  is  shown  in   Figure 10.29.  While  training,  the  decoder self-attention  layer  must  attend  to  earlier  positions  in  the  output  sequence only.  This  is  essential  as  the  entire  output  sequence  will  not  be  available while inferencing from this network; only previously predicted elements will
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be available. This  restriction  is  done  by  masking  future  positions.  You can refer  to  https://www.tensorflow.org/text/tutorials/transformer  for  more details on implementation. 

Transformers  are  applied  to  various  sequence  modelling  tasks,  like  speech recognition,  handwriting  recognition,  and  sequence  classification.  Using

transformers,  many  natural  language  processing  tasks  have  improved

drastically. We will be discussing these models in the next chapter. Refer to

the following figure:

 Figure 10.29: Transformer Encoder-Decoder architecture [source: Further Reading [10]]

Conclusion

In this chapter, we covered various sequence models, like time series models

for structured data, probabilistic models like Markov chains, HMMs, neural

network models for unstructured data like RNN and LSTM, and transformer

models. We also covered the applications of these models for solving various

AI  problems  like  speech  recognition,  handwriting  recognition,  language

translation, sequence generation, and sequence classification. 

In  the  next  chapter,  we  will  see  more  applications  of  sequence  models  for modelling text and solving other natural language processing problems. 

Points to remember

Sequence modelling tasks are of three major types: (1) forecasting the

future value of a sequence, (2) classifying an entire sequence, and (3)

Sequence to sequence models. 

If our data set is small, we must restrict ourselves to simpler models, 

like time series models, or hidden Markov models. 

Neural models require large data sets for training. However, even with

small, labeled training data set, we can pretrain the network weights by

defining suitable unstructured pretraining tasks. 

Pure RNNs cannot be used for learning long-range sequence patterns; 

instead, we use the gated variants of RNNs like LSTM and GRU. 

RNN/LSTM model training time is more because of BPTT algorithm, 

and  this  can  be  addressed  by  using  transformer  architecture  for

sequence  models,  which  is  pure  feed  forward  architecture  and  can  be

trained with normal BP. 
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CHAPTER 11

Natural Language Processing

About 80% of the enterprise data is unstructured data, and majority of this data is text. This  text  can  be  in  any  language  developed  and  evolved  by  humans, that is, any  natural language. Natural language can be in the form of speech, handwriting,  printed/typed  text,  or  digitized  text.  The  science  of  making computers capable to interpret natural language in the form of digitized text is called  Natural  Language  Processing  (NLP).  The  other  forms  of  natural language  like  speech  or  handwriting  are  converted  to  digitized  text  to  apply NLP. The  first  step  in  NLP  is  to  represent  the  natural  language  in  a  numeric form as a vector. Once that is done, we can apply the tools from ML and DL

literature  to  formulate  and  solve  various  business  problems.  NLP  has  a  wide range  of  application,  for  example,  classifying  textual  documents  to  some predefined  categories  –  email  routing  and  classification,  finding  similarity between documents – search engines, understanding human intent -chat bots, 

question answering system, chat bots, summarizing large text documents. NLP

literature is vast and may take several chapters to discuss various concepts in

detail. In  this  chapter,  we  will  give  a  high-level  overview  of  text  processing required for text representation and discuss various models of text. 

Structure

In this chapter, we will cover the following topics:

Structure of Natural Language

Text Preprocessing: Stemming, Lemmatization

Bag of words model, Vector Space Model

Probabilistic Models of Text: LSI, LDA and applications to Information

Retrieval

Dense Representation of text: Glove, Skip-Grams, CBOW

Contextual Models for Text ELMO, BERT

Objectives

After studying this chapter, you should be able to learn the basics of NLP. This chapter will help you in understanding the state-of-the-art papers in NLP, and

you  should  be  able  to  implement  and  modify  those  models  for  solving  your business  problem.  We  will  introduce  the  mathematical  tools  and  concepts required for modelling text. We will cover some statistical models of text and

will also cover some state-of-the-art deep learning-based NLP models for text. 

Natural language

A   natural  language  is  one  developed  and  evolved  by  humans  over  ages  for communicating  with  each  other.  There  is  a  hierarchical  structure  in  natural languages. Linguistics is a branch of science for understanding these structures in languages. Spoken  language  can  be  broken  down  to  small  set  of  sound  or acoustic  patterns  called   phones.  For  example,  the  word  ‘ cup’  in  English language can be broken into phones /k/,/uh/,/p/. This representation of atomic

units of speech are called  phonemes. In written form of natural language, the atomic  units  are  the   characters  or  letters.  Grapheme  is  a  letter  or  group  of letters  that  represent  a  single  phoneme.  The  phonemes,  in  turn,  are  the constituents of  morphemes, that is, minimal meaningful word segments.  Words are  comprised  of  one  or  more   morphemes.  Words  are  combined  to  form  a group,  expressing  complete  thoughts,  called  into   phrases,  such  as  noun phrases, verb phrases, adjective phrases, and prepositional phrases, which are

the structural components of  sentences, expressing complete thoughts. At still higher levels, we have various types of discourse structure, like paragraphs and sections.  The  structure  in  natural  language  can  be  broadly  divided  into  two types (1) syntactic structure and (2) semantic structure, which we will discuss

in  detail  in  the  following  sections.  The  objective  of  studying  these  linguistic structures  is  to  apply  them  for  feature  extraction  from  textual  data.  In  this chapter, we will be discussing the English language syntax and semantics, but

most of these concepts can be extended to other languages as well. 

Syntactic structure of language

There are certain rules that we collectively called the  grammar of a language, which act as a guideline of how words are combined into phrases, phrases get

combines into clauses, and clauses get combined into sentences. 

Parts of Speech (POS)

The  number  of  words  in  any  language  is  huge.  To  define  any  grammar,  we need  to  first  categorize  the  words  into  some  small  set  of  categories  and  then define  rules  over  the  categories  and  not  for  individual  words.  We  can categorize  English  words  into  nine  basic  types  according  to  its  syntactic function. There are called Parts Of Speech (POS): noun, pronoun, adjective, determiner, verb, adverb, preposition, conjunction, and interjection. 

Phrases

A  phrase  is  one  or  more  words  that  form  a  meaningful  fragment  of  a

sentence/clause. There are five main types of phrases: Noun Phrase (NP), Verb

Phrase  (VP),  Adjective  Phrase,  Prepositional  Phrase,  and  Adverb  phrase.  In each of these, a few words are added around the main word type. NP: a single

noun  or  a  group  of  words  built  around  a  single  noun.  For  example:  ‘ The President of India’ is a NP. VP: a single verb or a group of words built around a single verb. For example, I  will be going to France next week. 

Clause

A  clause  is  a  group  of  words  with  some  relation  between  them  that  usually contains a subject (a noun) and a predicate (verb with an object). The subject

need not always be present in a clause. There are two main types of clauses:

the main clause and the subordinate clause. The main clause is also known as

an independent clause because it can be a sentence by itself. The subordinate

or dependent clause depends on the main clause for its meaning. 

Sentence

A  sentence  is  a  grammatical  unit  of  one  or  more  words  that  expresses  an independent statement, question, request, command, exclamation, and so on., 

and  that  typically  has  a  subject  as  well  as  a  predicate.  A  sentence  typically begins with a capital letter and ends with appropriate punctuation based on its

type. Refer to the following figure:
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 Figure 11.1: Grammatical structure of a sentence shown as a tree. Each leaf node in the tree represents a word in the sentence with its parent representing the word type. Then, these words/word types are groups based on some rules to form noun phrase and verb phrases and so on. 

Document and Text corpus

A collection of sentences in a written, printed, or digitized text file is called a text   document.  A  collection  of  documents  is  called  text   corpus.  It  usually consists  of  bodies  of  written  text,  often  stored  in  digitized  form.  There  are many large text corpus build over time targeted for various NLP tasks. 

Semantic structure of language

The  study  of  meaning  in  language  is  called  semantics.  Words  with  similar meanings  can  be  linked  together  in  a  database,  which  can  be  very  useful  in understanding  the  meaning  of  language.  In  any  language  like  English,  two words  with  same  meaning  can  have  different  spellings  based  on  the  tense, number,  and  so  on.  In  languages  like  French,  different  spellings  are  used  for adjectives referring to different genders as well. The smallest meaningful and

syntactically correct unit of a language is called  lemma or  lexeme. 

The meaning of a word may change based on the position in the sentence and

the context. There are words with the same spelling or pronunciation that have

different  meanings,  called   homonyms.  For  example,  in  the  two  phrases,  ‘a cricket  bat’  and  a  ‘bat  which  is  seen  at  night’,  the  word  ‘bat’  has  different meanings. The relationship between words of these types is called  homonymy. 

 Capitonyms are words that have the same spelling but different meanings when capitalized. Example, the month May and the phrase ‘may be’.  Synonyms are words that have different spellings but have the same meaning.  Polysemes are like homonymy. A  word  is  polysemous  if  it  can  be  used  to  express  different meanings.  The  difference  between  these  two  concepts  is  very  subtle.  If  you hear  (or  read)  two  words  that  sound  (or  are  written)  the  same  but  are  not identical in meaning, we must decide if it’s really two words (homonyms), or if

it is one word used in two different ways (polysemy). Example of polysemy is

“Good man”  vs  “Good artist”. In  the  first  one,  the  word  “good”  describes  a moral quality, and the second one is describing skill. 

Wordnet

WordNet is a lexical database of semantic relations between words, as defined

earlier,  in  more  than  200  languages  with  the  synonyms  being  grouped  into synsets  with  short  definitions  and  usage  examples.  Its  primary  use  is  in automatic text analysis and artificial intelligence applications. 

Text preprocessing

Extracting  the  preceding  syntactic  and  semantic  structures  computationally from text as features of text is called text pre-processing. These structures help us  convert  an  unstructured  text  document  into  a  structured  vectorized  form, which  can  be  used  to  train  a  model  to  solve  various  AI  problems  like  text classification,  text  summarization,  question  answering,  and  so  on.  Following are  a  few  standard  text  preprocessing  techniques  applied  on  any  textual  data for feature extraction:

Sentence splitting: The process of splitting a text into sentences is also known as sentence segmentation. This is mainly rule-based approach; for

example,  sentence  must  begin  with  capital  letter  and  end  with  certain

punctuation. 

Word  tokenization:  This  is  the  process  of  splitting  sentences  into  its constituent  words.  Here,  the  punctuation  characters  are  split  and

separated into independent tokens. These are also rule based, and we can

specify the rules to split the tokens with regular expressions, or we can use the standard grammatical rules for splitting. 

Text  cleanup:  Commonly  occurring  words  in  text  like  common  verbs, conjunctions, for example, { a, an, and, but, how, in, is, are, on, or, the, 

what, will} called  stopwords and are removed from the word token list. 

Lowercasing,  removing  special  characters,  blank  spaces  are  also  a

common preprocessing step. 

Lemmatization: The word affixes are removed to get to a base form of

the word. This base form must be a semantically correct word. Generally, 

wordnet type database is used to lemmatize a word. For example, all of

the  following  words  {connection,  connections,  connective,  connected, 

connecting} originate from the root word ‘connect’ and is the lemma of

all. 

Stemming: Stemming is similar to lemmatization except that the output

need  not  be  a  meaningful  word.  This  is  a  rule-based  approach.  Potter

stemmer is a popular rule-based stemming algorithm. 

Sub-word tokenization: Segmenting the word further into small chunks

that need not be any meaningful word is called sub-word tokenizing. This

is  required  to  address  Out  Of  Vocabulary  (OOV)  words.  Suppose  we extracted all words from a corpus, which we call the  vocabulary of the

corpus.  We  build  text  features  based  on  these  words  only  and  a  text

model  also  takes  these  features  as  input.  Now,  given  new  text  for

inferencing using the trained model, if this text has a new word that is not

in  our  vocabulary,  we  call  it  OOV  word.  If  we  have  sub  word  tokens, then  we  can  spit  the  new  word  into  sub  tokens,  which  are  part  of  our vocabulary.  Many  state-of-the-art  NLP  models  use  this  tokenization

technique. We discussed one sub-word tokenization in greater detail. 

POS tagging:  The  parts  of  speech  tags  can  also  be  used  as  features  of text. 

There  are  multiple  text  preprocessing  libraries  in  various  programming

languages. In Python, we have  nltk,  genism,  scikit learn. Reader is suggested to refer  to   [1],  [2]  in   Further  Reading  section  for  detailed  examples.  NLTK

documentations  [3] also provide a lot of examples to get started. 

Models for text

 “All  models  are  wrong,  but  some  are  useful!”-  this  is  a  famous  saying  in statistics, generally attributed to the statistician named George Box. This holds true  in  NLP  as  well.  There  are  various  models  for  text,  and  each  model  is suitable for solving specific problems in text. None of these models alone can

represent  all  aspects  of  structure  in  text.  For  example,  if  we  want  to  find whether an email is spam or not looking at certain key works, and key phrases

typically found in spam emails may be useful. So, for this problem, modelling

the text as a bag-of-words suffices. We may not need to consider the structural

details in the written text. However, if we want to analyse, whether a review

about a movie or a newly launched product is positive or negative, we many

need to use deeper semantic and syntactic relations in the text. 

Text models can be built at all the hierarchies: document level, sentence level, paragraph level, and word level. If we want to compare or classify a collection

of  documents,  we  would  prefer  document  level  text  models.  For  building  a chatbot, we need to build sentence or phrase level model that can keep track of

the context of the conversation and provide desired response sentences. 

Bag of Words (BoW) model

From a given text document, we apply the standard pre-processing techniques

discussed  earlier,  and  each  document  is  represented  as  an  unordered  list  of words.  processed  words  present  in  the  document.  None  of  the  syntactic  or semantic  attributes  of  text  are  captured  in  this  representation.  This  is  the simplest model of text. There are various approaches to convert the unordered

list of words to a numeric representation discussed as follows. 

Vector Space Model

Given the BoW extracted from a document, we can create a feature vector for

the  document,  where  each  feature  is  a  word,  and  the  feature’s  value  should reflect  the  presence  and  importance  of  the  word  in  the  document.  The entire document  is  represented  as  a  feature  vector,  and  each  feature  vector

corresponds to a point in a vector space. The dimension of this vector space is

 V,  where  V is the size of the vocabulary. Here, the vocabulary is built over the entire corpus. 

Count based or Boolean
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Given  a  corpus  of  documents,  we  can  represent  each  document  as  a  vector. 

Suppose there are V unique words in the entire corpus. Then, each document

will  be  represented  as  a  V  dimensional  vector.  We  call  V  the  size  of  the vocabulary of the corpus. Each word in the vocabulary represents one feature in  the  vector.  If  a  word  w  from  the  vocabulary  is  not  present  in  a  particular document, the corresponding feature value is zero; otherwise, the feature value

is  the  number  of  times  the  word  occurs  in  particular  document,  that  is,  the word frequency.  Table 11.1 shows an example of a corpus with two documents and  their  corresponding  word  count  vector.  There are seven unique words in the corpus. 

Following is an example:

 Table 11.1: Count vector representation of documents

The  entire  corpus  can  be  thus  represented  as  a  matrix  where  each  row corresponds  to  a  vector  representation  of  a  document.  Each  column

corresponds  to  a  unique  word  in  the  corpus.  This  is  called   Document-Term matrix. Here is a code example from Python scikit learn:

1. from sklearn.feature_extraction.text import CountVectorizer

2. corpus = [“The cat sat on the mat”, “The mat was red”]

3. vectorizer = CountVectorizer()

4. X = vectorizer.fit_transform(corpus)

5. print(X.toarray())

 Code 11.1:

Term Frequency (TF)-Inverted Document Frequency (IDF)

The count-based or Boolean models give equal importance to all the words in

the corpus. There can exist a set of words that are more frequent in a corpus

and  occur  in  almost  every  document.  These  words  may  not  provide  any

important feature for a document from the corpus. Rather, the rare words that

occur  in  very  few  documents  may  give  some  distinguishing  features.  The
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document  frequency  is  the  number  of  documents  where  a  word  is  seen.  The Inverse Document Frequency  denoted  by  IDF is computed by dividing the total number of documents in our corpus by the document frequency for each

term and then applying logarithmic scaling on the result. We can add 1 to the

document  frequency  for  each  term  to  prevent  making  idf  =  0  for  terms  that occur  in  only  one  document  and  also  for  words  not  in  corpus.  This  prevents divide by zero error while computing  idf. The  term frequency is the count of the term in a document and thus we weight the term frequency by  idf, and we have the tf-idf for each wordp as follows:

 Note: The bag-of-words models treat each word as independent, and thus, 

 the  contextual  sense  of  words  is  completely  lost.  This  problem  can  be

 partially  addressed  by  using  phrases  or  n-grams  along  with  single  words

 and  computing  the  term  document  matrix  over  n-grams,  where  n  is  the

 number of consecutive words you want to consider. 

Replacing CountVectorizer  in  the  preceding  code  by  TfidfVectorizer ,   we can create tf-idf term document matrix with sklearn Python library. 

Latent Semantic Indexing (LSI) model

The  vector  space  models  are  unable  to  cope  with  two  classic  problems  in natural  languages:   synonymy  and   polysemy.  In  the  context  of  information retrieval,  where  we  have  a  text  query  that  needs  to  be  matched  with  a collection  of  documents,  the  query  should  match  documents  with  synonyms and not with documents with polysemes. This is impossible with vector space

model alone. The document-term  C matrix obtained in vector space model can be  modified  to  obtain  a  low-rank  approximation   Ck  using  singular  value decomposition.  This  yields  a  new  representation  for  each  document  in  the corpus. We can cast queries into this low-rank representation as well, and thus, compute  query-document  similarity  scores  in  this  low-rank  representation. 

This  process  is  known  as  Latent  Semantic  Indexing  (LSI).  This  low-rank approximation  is  distance  preserving  in  cosine  similarity  sense  that  is,  two documents which are similar in the original vector space should be also similar

or  close  by  in  the  lower  dimensional  subspace  defined  by  LSI.  Let’s  take  a

small corpus of documents, as shown in  Figure 11.2, to understand this better:
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 Figure 11.2: Term-document matrix of sample corpus

We discussed in detail in  Chapter 3, Vector Calculus, how  to  compute  SVD. 

Using  the  same  method,  we  can  decompose  the  preceding  term  document

matrix, as shown in  Figure 11.3:

 Figure 11.3: Singular value decomposition

Here, we have chosen the two largest singular values only; thus, the dimension

of  our  low-rank  space  is  2.  The  preceding 

matrix  gives  us  the  document

representation in two-dimensional space, that is, each of the 5 documents in the corpus are represented as a two-dimensional column vector. This is known as

 document embedding. Similarly,  the  left  matrix  U  represents  each  word  as  a dense  2-dimensional  vector.  This  is  called   word embedding.  Now,  for  a  new document not in the corpus, we must have a similar representation to compare

it with any of the embedded documents. The new document   is mapped into

its representation in the LSI space by the following transformation:
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This enables us to do semantic querying on the corpus without even supplying

any synonym list to the query pre-processing using. The LSI representation has

leaned the similarity of words from the data give a large enough corpus. For

implementation  of  LSI  refer  to  Gensim  API  reference  for  LSI   [4]  in  the Further Reading section. 

Probabilistic models of text

A  sentence  S  is  a  sequence  of  words 

.  A  probabilistic

language  model  estimate: 

.  Probability  of  an

upcoming  word 

can  be  estimated  as 

Thus, 

applying the chain rule of conditional probability, the probability of observing a sentence is as follows:

In  the  preceding  factorization,  we  can  restrict  the  conditionals  by  the assumption that the nth word depends on only the last d words at most and not

all  the  words.  The  most  simplistic  assumption  is  that  the  current  word  is conditionally  independent  of  all  other  words,  which  reduces  this  model  to  a bag-of-words model and is called unigram model. 

Unigram  model: 

. 

We can estimate 

as count of the word in the corpus / total number

of words. 

Bigram model: Approximating factors to condition on only the previous

word. 

Estimating bigram probability:

These  counts  can  be  obtained  by  counting  pairwise  occurrences  of  the

words 

in  the  entire  corpus  for  every  pair  of  words  in  the

vocabulary.  Bigram  estimates  of  sentence  probability  for  an  example

sentence can be calculated as follows:

P(〈s〉 I love English food 〈e〉) = P(I|〈 s〉 ) × P(love|I) × P(English|love) ×

 P(food| English) × P(〈 e〉 |food)

Here are special tokens indicating the start and end of sentence. 

 N-gram Model: We can extend bigram to trigrams, 4-grams and 5-grams. 

Google  has  published  their  n-gram  model  by  processing

1,024,908,267,229  words  of  running  text  and  computing  counts  for  all

1,176,470,663 five-word sequences that appear at least 40 times. For any

given  corpus,  we  can  create  our  own  n-gram  model  by  counting

occurrences of n-word phrases. 

Topic models

Any  text  document  constitutes  of  information  about  a  topic  like  science, technology, entertainment, health and well-being, sports, business, politics and so on. Document may have more than one topic but is very unlikely to have all

possible topics. 

Given a corpus of documents, say news articles, we can always assign one or

more topics to it. Now, these topics can be expressed as a bag of words. For

example,  Figure 11.4 shows an example document discussing four topics: arts, budget,  children,  and  education.  Each  of  these  topics  can  be  associated  with some  words  from  the  document.  The  same  word  may  be  present  in  two

different topics. The word ‘state’ can come in two topics: state and education. 

Assignment of words to a topic is done best by looking at multiple documents

and  analysing  the  word  frequencies  across  documents  in  various  topics.  This method of representing a text document as a mixture of topics is called  topic model.  These  models  represent  the  topic  as  a  latent  variable  denoted  by   z. 

There  are  two  types  of  topic  models  that  we  will  discuss  in  the  next  two sections. Refer to the following figure:
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 Figure 11.4: Topics extracted from text (Source:

 https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf )

Probabilistic generative models: Latent Dirichlet allocation

Now,  with  this  view  of  text  documents  as  a  mixture  of  words  from  a  few topics,  we  can  enhance  the  naive  bag  of  words  model  to  a  probabilistic generative model called Latent Dirichlet Allocation (LDA). This is based on Dirichlet Distribution, hence the name LDA. 

The basic idea of topic model is that documents are represented as mixtures of

topics(latent), where each topic is characterized by a distribution over words. 

So, we can assume that  each word in a document is generated by a two-stage sampling process:

1. Choose a topic from topic distribution. 
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2. Choose  words  from  the  topic  based  on  the  distribution  of  words

describing the topic. 

Now, the topic distribution must be learned from the corpus. Assuming a finite

number  of  topics  M,  we  can  model  the  topic  distribution  follows  as

Multinomial  Distribution  (discussed  in   Chapter  4,  Probability  Theory, under the   Multivariate  distributions  section).  Multinomial  distribution  for  M

categories will have M parameters 

, where 

. How do

we find these  ? We  don’t  have  topics  assigned  to  each  document  such  that we can just do a frequency count of topics and assign probability to each topic

as  a  ratio  of  per  topic  count  to  total  topics  count.  So,  we  take  the  Bayesian approach. We will assume a prior distribution for the parameters  . This must

be a continuous distribution as   is a continuous variable and also, we have to

restrict  the  samples  of  the  distribution  with  the  constraint 

.  The

 Dirichlet  distribution  denoted  by 

has  this  property,  where

is  a  M  dimensional  vector.  This  is  depicted  in   Figure  11.5  for various values of parameter  . 

 Note: Dirichlet distribution p.d.f is given by:

 Here,    represents  the  gamma  function,  which  is  a  generalization  of

 factorial  function  for  any  positive  real  number.  Note  the  similarity  of  the

 functional form of the Dirichlet distribution with multinomial distribution. 

 The factorials are replaced by   functions. 

 For M=2 this Dirichlet distribution can be geometrically represented as a

 line segment from 0 to 1. The samples are 

 , where 

  

 . For  M=3  this  distribution  can  be  represented  by  a  triangular

 region  in  the  first  quadrant  of  the  coordinate  axes.  As  shown  in  Figure

 11.5,  line  AB  represents 

 .  For  any  point  inside  the  triangle 

 . So, if we take 

  then

 we meet the required condition 

 . For M=4, we can choose points

 from a tetrahedron whose base is the triangle for M=3. For M>4, we have a

 n-dimensional simplex as the region. 

Refer to the following figure:
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 Figure 11.5: Dirichlet distribution (source: https://www.cs.cmu.edu/~epxing/Class/10701-

 08s/recitation/dirichlet.pdf)

Now, assuming that the parameters   of the required multinomial distribution

follow the prior Dirichlet distribution, we can formally write the probability of observing latent topic (z) as follows:

A  word 

from  a  document  can  be  generated  from  the  multinomial  word

distribution conditioned on the topic   with probability:

Here,    is  a 

matrix,  k  being  the  number  of  topics  and   V  being  the number of words in the vocabulary where 

. 

The basic assumption in LDA is that a document is a bag of words, and hence, 

words  are  assumed  to  be  independent  of  each  other.  So,  the  joint  probability distribution of the words and topics can be written as follows:
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We can define the joint distribution of the topic mixture  , a set of  N topics z (one for each word), and a set of N words w is given by the following:

This factorization is possible because of the conditional independence of   on 

.  Hence, we have this:

This generative probabilistic model can be pictorially represented as in  Figure

 11.6:

 Figure 11.6: Graphical model representation of LDA: The rectangular plates represent repetition. The outer plate represents repetition over M documents and inner plate repeats over N words in each document. Here, N is taken to be fixed but can be taken as a Poisson distributed variable as document lengths need not be fixed. 

Now  we  must  learn  the  two  parameters  of  the  model   and    from  the  text corpus, that is, what setting of these parameters will generate the text corpus

documents with very high probability. The log likelihood of the corpus of M

documents is as follows:
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Here, 

must  be  obtained  by  marginalizing  the  joint  distribution 

over the hidden variables and that is intractable. Hence, we

have to look for alternative ways of estimation, like EM algorithm or Bayesian

parameter  estimation.  We  have  discussed  one  Bayesian  parameter  estimation technique  in   Chapter  5:  Statistics  Inference  and  Applications  called  MAP

where  the  posterior  distribution  of  the  model  parameters  are  computed  and then  we  try  to  maximize  the  posterior  density.  However,  if  the  posterior distribution  function  of  the  parameters  also  takes  a  complicated  form, 

optimizing those functions is hard. So, an alternative way is to find some other algorithms to explore the parameter space and find a best possible value of the

parameters using the form of the posterior distribution.  Gibbs sampling is one such algorithm for exploring the parameter space by sampling from posterior

distribution.  Most  of  the  implementations  of  LDA  use  Gibbs  sampling  to estimate the parameters. This estimation algorithm can be run in a distributed

computing  framework  like   Hadoop  Spark  [5].  Mallet  is  a  java-based  topic modelling tool and Gensim python library has a wrapper for this. 

Neural language models

A  neural  network  language  model  is  a  language  model  based  on  neural

networks.  These  models  have  been  successful  in  creating  dense  vector

representations of words that can be used for writing vector equations, like the following:

Adding  the  dense  vectors  associated  with  the  words   king  and   woman  while subtracting  man  is  equal  to  the  vector  associated  with   queen.  This  describes how  a  gender  relationship  is  captured  in  the  dense  word  representation.  One more example is: Paris – France + Poland = Warsaw. In this case, the vector

difference between  Paris and  France depicts the concept of capital city. 

Continuous Bag-of-Words (CBOW) model: The CBOW is a neural network

architecture  that  predicts  target  word  (the  center  word)  based  on  the  source context  words  (surrounding  words).  To  predict  the 

word  in  a  context

window of n words, we must maximize the conditional probability:
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This network has a softmax output layer to model this probability. The high-

level architecture is shown in the  Figure 11.7 (left):

 Figure 11.7: Neural language models

Skip-gram  model:  The  skip-gram  model  achieves  the  reverse  of  CBOW

model (11.7 (right)). It tries to predict the source context words (surrounding

words) given a target word (the center word). This becomes slightly complex

since  we  have  multiple  words  in  our  context.  Simplification:  breaking  down each (target ,  context_words)  pair into (target ,  context)  pairs such that each context consists of only one word. 

Contextual models

The  models  we  discussed  so  far  have  a  single  representation  for  each  word. 

However,  in  many  languages,  including  English,  the  meaning  of  a  word

changes  based  on  the  context  of  the  word.  For example, the word bank may has two different meanings in the following phrases: ‘ bank of a river’, ‘ Indian Bank’. However, we will have one dense or sparse representation of this word. 

This is not correct. Hence, we need contextual representation of words, that is, the  word  representation  will  change  based  on  the  neighbouring  words.  One way  to  capture  this  information  is  using  sequence  models  like  RNNs  or  bidirectional RNNs. 

ELMo model
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Unlike traditional word embeddings such as  word2vec and  GLoVe, the  ELMo word  embedding  is  a  function  of  the  entire  sentence  containing  that  word. 

Therefore, the same word can have different word vector representation under

different contexts. 

Embeddings  from  Language  Model  (ELMo)  word  vectors  are  computed using  a  two-layer  bidirectional  LSTM  model.  The  input  word  embedding  is derived  from  a  CNN-based  character  embedding  model.  The  character

representation  uses  16-dimensional  character  embeddings  and  128

convolutional  filters  of  width  three  characters,  a  ReLU  activation  and  max pooling. Refer to the following figure:

 Figure 11.8: ELMo model

In  the  output  of  the  forward  and  reverse  passes  through  the  sentence  by  the bidirectional  LSTM  generated  two  output  vectors  per  word.  These  are

concatenated  and  fed  to  the  next  bidirectional  LSTM  layer.  The  final

representation  is  the  weighted  sum  of  the  raw  word  vectors  and  the  two intermediate word vectors. 

BERT

Bidirectional Encoder Representations from Transformers (BERT)  [6]  is another  contextual  language  model  that  uses  a  stack  of  transformer  layers. 
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Transformer  architecture  was  first  introduced  in   Language  Translation  in

 Chapter  11,  Sequence  Modelling.  There  we  had  a  transformer  encoder  and decoder. The BERT model uses only the encoder part of the transformer. The

following  figure  shows  the  BERT  architecture  with  two  transformer  encoder layers. The number of input tokens is the same as the number of output tokens

(N).  We  will  call  these 

 transformed  features.  Refer  to  the

following figure:

 Figure 11.9: BERT architecture with 2 transformer encoder layers

The  input  is  a  sequence  of  tokens  embeddings  of  size  H.  The  output  is  a sequence  of  vectors  of  size  H.  Length  of  output  sequence  is  the  same  as  the input sequence. These vectors are contextual embedding of the input vectors. 

For BERT, generally, fixed sequence lengths are used. However, inputs can be

of variable length, so inputs must be padded to make them of same length. 

As the transformer architecture is not recurrent and sees the whole sequence at

once,  we  must  have  a  way  of  preserving  the  sequential  information  in  text. 

Also,  these  are  natural  segments  in  text,  like  sentences  and  paragraphs. 
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Preserving this input information is important for better modelling of text. This is done by positional encoding and segment encoding. 

Position encoding

As  our  word  embeddings  are  vectors  to  encode  the  position  of  a  word  we cannot directly use integers. A vector representation of integers 

is

used  to  encode  position.  We  know  the  simplest  vector  representation  of  any integer is the binary (6-bit) representation as shown in the following table for integers  0-7.  We  see  the  least  significant  bit  (LSB)  is  alternating  between consecutive bits. The  next  bit  changes  in  every  two  numbers  and  the  next  in every four numbers and so on. A continuous counter part of binary alternating

signal is sinusoidal functions 

. Also, we can control the frequency of

how  they  are  alternating  by  altering  the  parameter  .  So  using  sinusoidal functions  we  can  define  positional  encoding  for  a  sequence 

is

defined as follows:

The  following  figure  shows  128-dimensional  positional  encoding  for  a

sequence of length 50. We can see here the first component of the vector (the

left most vertical column) alternates between high positive and negative values

very similar to the LSB in binary representation and as we move to the right, 

we see the frequency of change decreases. Refer to the following figure:

 Figure 11.10: BERT positional encoding Source:

 https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Transformer architecture is equipped with residual connections, and this allows

to  pass  the  sequence  information  till  the  top  layer  of  the  transformer.  This position  encoding  can  be  used  to  encode  both  token  level  positions  and sentence segment positions, as shown in the following figure:

 Figure 11.11: BERT Positional encoding

For training this architecture and creating these embeddings, there is no need

of  any  labelled  training  data.  Training  BERT  transformer  is  done  is  an unsupervised fashion which is called  pre-training. 

Pre-training BERT

The following Table 11.2 lists two pre-training tasks: (1) Masked Language Model  (MLM)  and  (2)  Next  Sentence  Prediction  (NSP).  Labelled  training data can be prepared for these two tasks easily without the need for any human

annotator. 

Masked LM(MLM)

Next Sentence Prediction (NSP)

For each sentence 15% of the tokens are Next sentence prediction task is a binary classification task chosen at random and –

in  which,  given  a  pair  of  sentences,  it  is  predicted  if  the

80%  of  the  time  tokens  are  replaced second  sentence  is  the  actual  next  sentence  of  the  first with the token [MASK]

sentence. 

10%  of  the  time  tokens  are  replaced

with a random token

10%  of  the  time  tokens  are  left

unchanged

The  BERT  loss  function  considers  only

prediction  of  the  masked  values  and

ignores the prediction of the non-masked

words. 

 Table 11.2: Comparison between MLM and NSP
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Input representation for pre-training tasks of BERT

As  BERT  takes  fixed  sized  input,  each  sentence  is  first  made  to  be  of  equal length by zero padding and the following steps are used to mark separation and

end of sentences. 

1. The first token of every input sequence is the special classification token

– [CLS].  This token is used in classification tasks as an aggregate of the entire sequence representation. It is ignored in non-classification tasks. 

2. For  single  text  sentence  tasks,  this  [CLS]  token  is  followed  by  the WordPiece tokens and the separator token – [SEP]. 

3. For  sentence  pair  tasks,  the  WordPiece  tokens  of  the  two  sentences  are separated by another [SEP] token. This input sequence also ends with the

[SEP] token. 

WordPiece tokenization

Tokenization is fundamentally the process of breaking text into tokens. Out of vocabulary words (OOV) or words not included in the vocabulary, are treated as  “unknown”.  A  better  and  modern  approach  to  address  this  issue  is  by tokenizing  text  into  sub  word  units,  which  in  most  of  the  spits  can  retain linguistic  meaning.  So,  even  though  a  word  is  unknown  to  the  model, 

individual  sub  word  tokens  may  retain  enough  information  for  the  model  to infer  the  meaning.  WordPiece  is  one  such  algorithm.  Given  text,  WordPiece first  pre-tokenizes  the  text  into  words  (by  splitting  on  punctuation  and whitespaces)  and  then  tokenizes  each  word  into  sub  word  units,  called

wordpieces.  For  example,  let’s  take  the  sentence  as  shown  in  the  following figure:

 Figure 11.12: WordPiece Source (https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html). 

Pre-trained BERT model is generally performed on huge data sets. After pre-

training BERT model can act as a feature extractor for text and can be used to

solve  other  NLP  tasks  like  text  classification,  text  summarization  and  so  on. 

For these tasks generally we have smaller datasets. A few tasks specific layers

can be added on the top of BERT, as shown in the following figure and trained

with  task  specific  data.  This  process  is  called   fine-tuning. Depending  on  the size of the data set, we may choose to either use the BERT feature extractor as

a fixed function, which is not trainable or may train all the layers. 

 Figure  11.13  shows  various  fine-tuning  tasks  performed  by  incorporating BERT with one additional output layer. 

(Top Left in  Figure 11.13) Sentence pair classification where given two sentences and the task is to find either the similarity score between them

or  classify  them  as  paraphrases,  that  is,  they  express  the  same  meaning using  different  words.  Quora  question  pairs  and  Microsoft  Research

Paraphrase  Corpus  (MRPC)  are  the  two  popular  benchmarking

datasets for these tasks, respectively. 

(Top  Right  in   Figure 11.13)  The  second  task  is  sentence  classification, where  the  computed  sentence  embedding  [CLS]  is  used  as  features  for sentence classification. 

(Bottom  Left  in   Figure  11.13)  The  third  task  is  question  answering  or extractive  summarization,  where  given  a  question  sentence  and  a

paragraph  containing  the  answer,  the  task  is  to  pick  the  best  sentence boundaries from the paragraph that can answer the question. 

(Bottom  Right  in   Figure  11.13)  The  fourth  task  is  sentence  token labelling,  like  POS  tagging  and  named  entity  recognition.  Refer  to  the following figure:
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 Figure 11.13: BERT fine-tuning tasks

Masking used in BERT Is not adequate for Chinese language. In English, the

word  serves  as  the  semantic  unit  and  single  characters  do  not  have  any meaning. The same cannot be said for characters in Chinese: certain characters

do have inherent meaning fire (火,  huŏ), water (水,  shuĭ), or wood (木,  mù). 

The character 灵 ( líng), for example, can either mean clever (机灵,  jīlíng) or soul  ( 灵 魂 ,  línghún),  depending  on  its  match.  Baidu  researchers  developed other pretraining tasks that are suitable for Chinese languages. They developed

masking that hides strings of characters rather than single ones and named their model  Enhanced  Representation  through  kNowledge  IntEgration

(ERNIE). 

ERNIE

Enhanced  Representation  through  kNowledge  IntEgration  (ERNIE)   [7]

model  is  a  transformer-based  model  that  was  designed  to  learn  language representations enhanced by knowledge masking strategies that include entity-level masking and phrase-level masking. ERNIE outperforms Google’s BERT

in multiple Chinese language tasks. 

Following are some other pre-training tasks specific to ERNIE:

1. Knowledge  masking  task:  Random  phrases  are  masked  and  named

entities  are  masked  and  model  is  trained  to  predict  the  whole  masked

phrases or named entities. 

2. Capitalization prediction task: Whether the word is capitalized or not. 

3. Token-document  relation  prediction  task:  This  task  predicts  whether the  token  in  a  segment  appears  in  other  segments  of  the  original

document. It can enable the ability of a model to capture the key words of

the document to some extent. 

4. Sentence distance task: Enhancement of NSP. This task is modeled as a

3-class classification problem. ”0” represents that the two sentences are

adjacent  in  the  same  document,  ”1”  ->two  sentences  are  in  the  same document,  but  not  adjacent,  and  ”2”  ->two  sentences  are  from  two

different documents. 

5. IR  relevance  task:  It  is  a  3-class  classification  task  that  predicts  the relationship  between  a   query  and  a  title.   We  take  the  query  as  the  first sentence  and  the  title  as  the  second  sentence.  0->  strong  relevance,  1-

>weak relevance, 2->no relevance. 

 Figure  11.14  shows  the  comparison  of  BERT  and  ERNIE  pre-training strategies. Refer to the following figure:
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 Figure 11.14: Masking strategies of BERT and ERNIE

Generative Pre-Training by OpenAI

Generative  Pre-Training  (GPT)  is  another  transformer-based  model,  but  it uses stack of decoder blocks from the transformer only. This is unlike BERT, 

which  uses  the  encoder  blocks  only  and  is  non-auto-regressive,  that  is,  uses only  the  previous  tokens  from  the  sequence  to  predict  the  next  one.  In  the standard  transformer  architecture,  the  decoder  takes  a  word  embedding

concatenated  with  a  context  vector  as  input.  In  GPT-2,  the  context  vector  is zero-initialized for the first word embedding as there is no encoder block. GPT

was  found  to  be  better  than  BERT  in  many  natural  language  understanding tasks. 

Conclusion

In  this  chapter,  we  covered  the  linguistic  structures  in  natural  language, methods  of  preprocessing  text  using  these  linguistic  structures,  and  feature extraction  from  textual  data.  We  also  covered  various  models  for  text  like vector space models, probabilistic models, and neural language models. Using

these models, we demonstrated an overview of important applications of NLP, 

like text classification, text similarity, and application to information retrieval, summarization, question answering, and so on. 

In the next chapter, we will discuss different generative modelling techniques

with application to image generation and text generation. 

Points to remember

Types of language models vector space, probabilistic, neural network

The  word  embeddings  generated  by  LSI  or  any  of  the  neural  language

models are distance preserving, that is, words with similar meaning and

occurring  in  similar  context  will  have  embedding  vectors  that  are  close by in the embedding space. 

Contextual  language  models  can  create  different  embeddings  for  the

same word based on the context of the word. 

Neural language models do not always need large volumes of data as we

have  models  like  BERT,  ELMO,  and  GPT-3,  which  can  be  fine-tuned

with smaller data sets. 
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CHAPTER 12

Generative Models

Generative modelling is a methodology of training machines to mimic seen data, 

that is, to generate new data points that resemble seen data. We have generative capabilities;  once  we  learn  about  a  new  type  of  object,  we  can  recreate  similar objects either with our drawing skills, describe it in detail with words, or build a 3D model of that object. Here, at first “representation learning” is performed to map  the  data  in  terms  of  low-dimensional  features.  Then,  those  representations can be tweaked slightly to create new data points. 

Generative  modelling  was  first  applied  for  building  classification  models  in supervised  setting  where  we  jointly  learn  the  probability  distribution   p(x,  y)  of input  x and class label  y. Naive Bayes and Gaussian Mixture Model (GMM) are examples of such models. Later, generative models were applied in unsupervised

settings as well, for example, to model unlabelled text data using topic modelling or Latent Dirichlet Allocation (LDA). Text is modelled as a mixture of hidden topics, and each topic is modelled as a categorical distribution over words. These models can be collectively categorized as Bayesian Nets or probabilistic graphical models. 

Restricted  Boltzmann  Machine  (RBM)  was  the  first  neural  network-based generative  model. Variational  Autoencoder  (VAE)  and  the  Generative Adversarial  Network  (GAN)  are  state-of-the-art  neural  network-based generative  models  with  many  successful  real-world  applications.  Both  these models  were  published  long  ago,  but  we  see  many  modifications  of  these architectures and their training methodologies till date to develop newer models with application to high fidelity image, audio, video and text generation. 

Structure

In this chapter, we will cover the following topics:

A simple generative model for two-dimensional data

Building a generative model for complicated two-dimensional data

Representing  data  distributions  as  transformation  of  known  simple

distributions
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Variational auto encoders

Generative adversarial networks

Challenges of training GANs and how to overcome them

Other GAN-based architectures: Cycle GAN, Conditional GAN

Real-world applications of GAN

Autoregressive generative models

Objectives

After studying this chapter, you should be able to formulate a real-world problem as  a  generative  modelling  problem  and  train  such  models  for  labeled/unlabeled data.  This  chapter  will  help  you  in  understanding  elegant  mathematical  theory behind  the  generative  models.  The  loss  functions  used  for  training  generative models are different from the other loss functions we have already encountered in supervised  settings.  We  will  derive  these  loss  functions  from  the  theory. 

Additionally, we will guide you to implement these network topologies and their

training methodologies. Understanding  the  fundamental  theory  behind  VAE  and GAN will enable the reader to understand the state-of-the-art generative models

and applications. 

A simple generative model

The basic idea of generative model is that data follows a probability distribution and  tries  to  approximate  underlying  distribution  such  that  we  can  generate  new data  points  from  the  same  distribution  by  sampling  from  the  distribution.  Now, let’s  see  what  this  means  with  the  help  of  a  simple  example.  Karl  Pearson collected  a  data  set  consisting  of  the  height  of  fathers  and  their  adult  sons  in inches.  He  had  1078  cases.  This  data  set  is  available  from   kaggle.com  and  is named Pearson.txt [refer to  Further Reading 12]. Let’s first visualize a sample from this data set in the following figure:
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 Figure 12.1: (Left) Sample of 300 points from Pearson dataset with two variables x1=Father’s height, x2=Adult Son’s height (Right) Triangular marks represent generated samples from this learned distribution. 

We  can  assume  that  the  dataset  follows  bivariate  Gaussian  distribution  and estimate the parameters of this distribution by Maximum Likelihood Estimation (MLE).  As  discussed  in  the  probability  chapter,  for  a  large  sample,  the  MLE

estimate for mean of Bivariate Distribution is the sample mean and the covariance matrix  is  the  sample  covariance  matrix.  Let   X  and   Y  be  the  random  variables representing  father’s  height  and  son’s  height,  respectively;  then, 

, where   is the bivariate mean and   is the 2×2 covariance

matrix.  The  correlation  coefficient  ( )  between   X,  Y  is  0.51.  By  definition  of covariance, we have 



. 

, 

these values are generated by the code below  line 5. 

Now,  we  can  generate  new  samples  from  this  distribution  by  random  sampling from  this  distribution.  This  can  be  done  using  NumPy  library’s  build  in multivariate normal sampling function, as shown in the following code. Also, we

have  plotted  50  new  data  samples  from  this  distribution,  along  with  the  actual

data points in  Figure 12.1:

1. imoort pandas as pd

2. df = pd.read_csv(‘Pearson.txt’, sep=’\t’)

3. df.sample(300).plot.scatter(x=’Father’, y=’Son’ )

4. “””Estimate sample mean and covariance””” 

5. mu = df.mean()

6. sigma = df.cov()

7. “””Generate New Samples””” 

8. samples = np.random.multivariate_normal(mean=mu, cov=sigma, 

size=50)

9. plt.scatter(df[‘Father’].values, df[‘Son’].values)

10. plt.scatter(samples[:, 0], samples[:, 1], marker=’^’, c=’red’)

Now  that  we  have  a  probabilistic  model  for  the  data,  we  can  answer  a  few interesting questions, as follows:

Given the father’s height is 6 feet or 72 inches. What is the probability that

the son’s height is over six feet? that is, 

How likely is it that the father’s height is 5 feet, and his son will grow over

6 feet tall, that is, 
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To  answer  these,  we  can  compute  the  conditional  distribution 

. 

For  bivariate  normal  distribution,  conditional  probability  distribution 



is 

a 

univariate 

normal 

distribution 

with 

mean 

70.9  and  standard  deviation 

. 

Hence, 

we 

can 

compute 

the 

required 

probability 

by area under the pdf for  X>72, as shown in  Figure 12.2:

 Figure 12.2: Shaded region depicts the probability (area under curve. Note that the plot on the right also has a small shaded region showing negligible probability

In  the  preceding  example,  we  assumed  that  the  data  follows  bivariate  normal distribution, and it was a fair guess from the plot. It may not be always possible to guess the data distribution from simple visualizations. Increase in dimensionality of the data makes such assumptions impossible. Not only with high-dimensional

data,  even  in  the  2D  data  set  shown  in   Figure  12.3,  how  do  we  guess  the underlying  distribution  and  estimate  such  probable  distribution  by  simple parameter estimation techniques? Refer to the following figure:
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 Figure 12.3: A synthetic two-dimensional data set

As  we  still  can  visualize  the  data,  it  seems  the  data  follows  some  circular/oval distribution.  Also,  there  is  some  noise  in  the  data.  There  is  no  such  known distribution function form like this whose parameters we can estimate as earlier. 

However, if we generate points from a known distribution and then transform the

samples  using  a  non-linear  mapping,  we  may  be  able  to  generate  samples  from this distribution. 

Taking  sample   z  from  standard  bivariate  normal  distribution  with  mean  at  (0,0) and identity covariance matrix, let’s transform  z as follows: 

(as  shown  in   Figure 12.4). Here,  the  first  term  normalizes  the  sample  and  puts them on the unit circle around the origin. Multiplying by  , we can put the point at a distance from origin. Refer to the following figure:
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 Figure 12.4: Transforming random samples from Gaussian distribution to the circular distribution The  second  term  adds  some  noise  by  adding  a  small  vector  parallel  to  the  unit vector  such  that  the  result   f( z)  does  not  lie  exactly  on  the  circle  circumference. 

Here, we choose 

, as the data distribution is around circle of unit radius. 

The  data  distribution  can  be  even  more  complicated,  like  images  or  text,  where the number of dimensions of data increases by many folds. Can we generate an

image data set following the approach described for the circular data distribution? 

For that, a non-linear mapping is required, which can take a known distribution

and convert it to an image. Finding such mapping manually by inspection is not

easy.  Here,  our  old  friend  “the  universal  function  approximators”,  that  is,  the neural networks can help. Variational autoencoders are a class of neural network topologies that can learn such non-linear transformation from the data. 

Variational Autoencoders (VAE)

Autoencoders  are  neural  network  architectures  that  can  learn  a  low-dimensional representation of the input space. VAE also does the same but in a probabilistic fashion,  that  is,  the  encoder  here  learns  a  probabilistic  distribution  in  a  latent space  and  not  a  single  representation  of  the  input  to  a  latent  space.  We  will introduce VAE using the preceding circular distribution example. 

First,  let’s  formally  rewrite  the  steps  we  followed  in  the  previous  circular distribution example:

1. We have a vector of variables  z that we can easily sample according to some known probability density function  p( z) over some space Z. 

2. A family of deterministic function 

, parametrized by vector 

. 
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3.  f is deterministic, but  z is a random variable, and hence, 

represents a

random variable. 

We  have  to  optimize  parameter    such  that  we  can  sample  from  a  simple distribution  p( z) and then 

, with high probability resembles X. Therefore, 

we  can  represent  the  random  variable 

by  the  conditional  notation  X|Z

because first we choose Z and then  X is generated based on that. We can call Z as the  latent variable or  hidden variables. 

By law of total probability 

,  where  we  can  choose

the  output  distribution  to  be  Gaussian: 

,  the

covariance  equal  to  the  identity  matrix  I  times  some  scalar 

.  This   σ  can  be

chosen based on the factor we use in the transformation to add noise. 

Now,  for  any  complicated  data  distributions  also,  we  can  estimate  the  model parameters   by maximizing  p(x). Instead of finding 

by inspection, we let

it be a neural network. Maximizing  p(x) is equivalent to minimizing 

that is, MLE estimation. 

Like  before,  we  can  choose  p(z)  = 

.  We  can  estimate  P(X)

approximately by taking very large sample of size N from Z say {

}

and then averaging the probabilities as follows: 

However,  for  most  of  the  samples  z  from  this  distribution,  the  probability  of generating a data point X is very low. To understand this better, let’s go back to the  circular  distribution  example.  Take  a  data  point  X  from  this  distribution,  as shown in  Figure 12.5. x can only be generated by z from the shaded region in the left. For all points z outside the shaded region, p(x|z) is very small. This will make the  estimation  process  intractable  as  the  log  of  these  very  small  quantities  will lead to computational overflow. Refer to the following figure:
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 Figure 12.5: Subset of values of z that can generate e a given x

Given a data point X, is there a way we can restrict the choice of samples z? This can be done by defining the conditional probability distribution 

. Now, by

Bayes  rule, 

.  This  is  computationally  hard.  Let’s

approximate 

by  another  distribution 

or 

which  we  can

choose to be a tractable distribution. We can define the parameters of 

such

that  they  are  very  similar  to 

and  use  them  to  perform  approximate

inference of the intractable distribution. 

The Kull back–Leibler divergence or KL divergence is a qualitative measure of

how  one  probability  distribution  p(x)  is  different  from  another  probability distribution  q(x).  Here,  we  can  design 

such  that  KL  (

)  is

minimum. 

By  product  rule  of  probability,  we  have 

. 

Substituting this in the preceding KL divergence equation, we have the following:

[image: Image 3094]

[image: Image 3095]

[image: Image 3096]

[image: Image 3097]

[image: Image 3098]

[image: Image 3099]

[image: Image 3100]

[image: Image 3101]

[image: Image 3102]

[image: Image 3103]

[image: Image 3104]

[image: Image 3105]

[image: Image 3106]

Using  properties  of  log  function,  log(AB)  =  log(A)  +  log(B)  and  log(1/A)  =  ‒

log(A), we have the following:

Now,  we  can  take  out  the  terms  independent  of  z  outside  the  summation  as  a constant. 

As  q(z)  is  a  probability  distribution  over  z, 

.  Let’s  represent 

by  the  function 

.  So,  we  can  rewrite  the  preceding

equation as follows:

Since 

, 

and  KL  divergence  is  non-

negative  quantity,  we  can  write 

,  that  is, 

is  a  lower

bound of 

. 

So, maximizing 

means maximizing log likelihood of data: log(P(X)). Now

onward, we will try to simplify this lower bound function to derive our objective function. 

We can write 

. Refer to the following figure:
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 Figure 12.6: 

  is a lower bound of p(x). Maximizing 

  means maximizing log likelihood of data:

 log(p(x)). 

Therefore:

Therefore:

Pictorially, we can represent equation (II) as shown in  Figure 12.6. 

Here,  E  represents  expectation  of 


over  q(z).  This  technique  of

approximating intractable integrals the way we did is called Variational Bayesian method in general, and this loss function 

being a lower bound is known as

the variational lower bound or Evidence Lower Bound (ELBO). 

We  can  assume  q(z)  to  be  multivariate  Gaussian  distribution  with  mean    and diagonal  covariance  matrix 

,  where    and 

are  n-dimensional  vectors. 

Suppose we find a deterministic function 

that transforms X to the mean and

variance  of  the  tractable  distribution  q(z).  We  could  have  directly  generated  z instead of mean and variance. However, as 

is a deterministic function, we

will always get the same fixed z for a given X. Having  mean  and  variance  will enable  us  to  take  many  samples  from  this  distribution  of  the  latent  variables  z. 
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can  be  represented  as  a  neural  network  with  the  parameter  as  shown  in

 Figure 12.7:

 Figure 12.7: Using DNN to learn latent distribution q(z|x)

Here, q(z|x) will restrict the choice of z, and hence, we can estimate our required parameter    by  maximizing  log  likelihood  log(p(x)).  Refer  to  the  following figure:

 Figure 12.8: VAE block diagram: here, we have changed 

  for ease in computation, which is

 described later. 

So,  now  we  can  jointly  estimate  both  the  parameters    and    of  the  neural  net

topology in  Figure 12.8. To train this topology, our objective function is 

. 

We saw that 

has two parts. The second part of 

is the KL divergence, 

which  enforces  the  distribution  q(z)  to  take  a  certain  form.  It  represents  KL-divergence  between  two  multivariate  Gaussian  distributions 

and 

. 

In  general,  KL-divergence  between  two   k-dimensional  multivariate  Gaussians and 

is given by the following:

Here, 

and 

, and hence, 
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So,  all  terms  have  sum  over   k,  and  thus,  the  second  term  in  simplifies  to  the following:

Implementing  this  is  simple,  as  shown  in  the  following  code.  Let   z_mean  and z_log_var  represent  the  tensors    and 

(as  shown  in   Figure  12.8)  of

dimension  k=10, initialized randomly; then:

1. import tensorflow as tf

2. z_mean = tf.random.uniform([1,10])

3. z_log_var = tf.random.uniform([1,10])

4. kl_loss = tf.reduce_sum(

5.     -0.5 * (z_log_var - tf.exp(z_log_var) - tf.square(z_mean) +

1), 

6.           axis=1)

7. kl_batch_loss = tf.reduce_mean(kl_loss)

The  first  part  of 

is  an  expectation 

.  This  can  be

approximated by taking average over samples from p(x|z). Assuming that p(x|z) is multivariate  Gaussian. 

,  being  a  neural  network  is  completely

deterministic, and hence, we can write p(x|z) as p (x| ). p(x| ), being Gaussian, will  have  an  exponential  term 

,  and  hence,  log(p(x|z))  will  have  the

squared  error  term 

.  So,  the  first  part  of  conceptually  represents  the

reconstruction error, as we have seen in autoencoders. We can implement it as a

pixel-wise  cross  entropy  loss  as  well,  as  we  did  for  normal  autoencoders,  as shown in the following code:

1. ‘’’Following is a code will run only if valid data and

reconstruction tensors are provided from an AE’’’

2. ‘’’As sum squared’’’

3. reconstruction_loss = tf.reduce_mean(

4.         tf.square(tf.norm(data-reconstruction))
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5. )

6. ‘’’As pixel wise binary cross entropy loss’’’

7.  reconstruction_loss = tf.reduce_mean(

8.         tf.reduce_sum(

9.              tf.keras.losses.binary_crossentropy(data, 

reconstruction), 

10.              axis=(1, 2)

11.         )

12.     )

The first part of the network for generating the latent distribution q(z|x) is called the encoder, and the second part, which generated data points from samples of z, is called the decoder. We have the encoder-decoder architecture like autoencoders as both input to encoder and output from decoder is expected to be the same X, 

that is, 

. 

For training, the network shown in  Figure 12.8 first the forward pass is computed to create the reconstructed input   and then the reconstruction loss is computed. 

The derivative of the reconstruction loss is back propagated. 

Forward  pass:  Input  X,  generate  , 

.  Then,  sample  vector  z  from 

and pass it forward to generate  . 

Backward  pass:  Compute  reconstruction  error 

+  kl-loss  (as

shown in the following code) and back propagate error derivatives. 

To implement the sampling in the forward pass, we have to use a trick called “re-parametrization”.  So,  we  can  use  any  standard  deep  learning  framework  to implement this. Along with a batch of data X of size n, we will sample n noise

vectors    ~  N(0,1)  at  random.  During  forward  pass,  we  will  compute  z  as 

, where   denotes element-wise multiplication. Thus, the encoder

block  takes  batch  of  X  and  a  batch  of  noise  vectors  z  as  input  and  outputs  the triplet  (z_mean, z_log_var ,   z),  as  shown  in  the  following  code.  For reparameterization, we need  , but we have 

. So, we have to transform

z_log_var as tf.exp (0.5 * z_log_var). 

1. def vae_encoder(latent_dim):

2.     epsilon = layers.Input(shape=latent_dim)

3.     img = layers.Input(shape=(28, 28, 1)) #For MNIST

4. 

5.     x = layers.Conv2D(filters=32, kernel_size=3, 

6.                       strides=2, padding=’same’)(img)

7.     x = layers.LeakyReLU(0.2)(x)

8.     x = layers.Conv2D(filters=64, kernel_size=3

9.                      , strides=2, padding=’same’)(x)

10.     x = layers.LeakyReLU(0.2)(x)  

11.     x = layers.Flatten()(x)

12.     x = layers.Dense(16, activation=”relu”)(x)

13.     z_mean = layers.Dense(latent_dim, name=”z_mean”)(x)

14.     z_log_var = layers.Dense(latent_dim, name=”z_log_var”)(x)

15.     z = z_mean + tf.exp (0.5 * z_log_var) * epsilon

16.     return Model(inputs = [img, epsilon],outputs = [z_mean, 

z_log_var, z])

The  variational  decoders  can  be  implemented  as  shown  in  the  following  code using deconvolution operators. The decoder takes samples z ~ q(z|x) created by

encoder and reproduces X. If we are using normalized pixel input values in [0, 1]

for the image data, then we can apply  sigmoid activation at the last layer of the decoder to get normalized pixel values for reconstructed image; refer to  line 12 in the following code:

1. def vae_decoder(latent_dim):

2.     z = layers.Input(shape=(latent_dim,))

3.     x = layers.Dense(7 * 7 * 64, activation=”relu”)(z)

4.     x = layers.Reshape((7, 7, 64))(x)

5.     x = layers.Conv2DTranspose(filters=64, kernel_size=3, 

6.                                strides=2, padding=”same”)(x)

7.     x = layers.LeakyReLU(0.2)(x)

8.     x = layers.Conv2DTranspose(filters=32, kernel_size=3, 

9.                                strides=2, padding=”same”)(x)

10.     x = layers.LeakyReLU(0.2)(x)

11.     decoder_outputs = layers.Conv2DTranspose(1, 3, 

12.                 activation=”sigmoid”,padding=”same”)(x)

13.     return Model(z, decoder_outputs)

The decoder part of the VAE can be used as a generative model. We can choose

any z from the prior distribution p(z) that is unit Gaussian and then decode z to generate a sample image. Note  that  we  do  not  require  restricting  z  any  more  as this was intended only for training the decoder. Taking latent dimension = 2 and sampling z from the square unit grid  bottom left [–1, –1], top right [1, 1], we can visualize the generated digits in a 2D grid, as shown in  Figure 12.9. Position of the  digit  in  the  grid  represents  the  position  of  sample  z,  which  was  used  to generate the digit. 

As you can see, the sharpness of the generated images by the VAE is poor. So, if we  apply  this  technique  to  other  complex  data  set  with  human  faces,  then  the
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obtained results will not be convincing at all. An example of face generation with VAE is available here: https://github.com/podgorskiy/VAE. The reason for poor generation may be that the model is unable to learn the true posterior distribution using variational inference. Refer to the following figure:

 Figure 12.9: two dimensional vectors z taken from square grid with bottom left [-1,-1],top right [1,1] and transformed to a handwritten digit image using trained VAE generator. 

There  are  modifications  of  VAE  like  Vector  Quantised  Variational

Autoencoder  (VQ-VAE)   [1],  which  can  generate  high-quality  images.  Here,  a discrete codebook component is added to the network. The output of the encoder

network  is  compared  to  all  the  vectors  in  the  codebook  and  the  nearest  code  is passed to the decoder. 
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Generative Adversarial Nets

Generative  Adversarial  Nets  (GANs)  is  another  class  of  generative  models, designed by Ian Goodfellow in June 2014. GANs when used for image generation

can produce high-quality images compared to vanilla VAE. GANs  do  not  try  to

make any explicit density estimation, and with conditional GANs, we can enforce

the  generator  output  desired  class  of  data.  GAN  architecture  consists  of  two components  a  generator  and  a  discriminator.  The  generator  G,  which  takes  a random vector z from a known distribution, transforms it to a data point X. The

discriminator D is a binary classifier that outputs the probability of a data point X

being  chosen  from  the  real  data  set.  If  we  present  a  fake  X  that  is  synthesized using the generator G, then D should output a very low score. Both G and D are

neural  networks  whose  wights  are  randomly  initialized.  The  two  networks continuously  update  each  other,  becoming  more  smarted  than  the  other.  In practice,  they  are  trained  one  at  a  time.  Keeping  the  weights  of  G  fixed,  the weights  of  D  are  updated  for  some  number  of  steps.  Then,  the  other  way,  the wights of D are kept fixed and G is updated for a certain number of steps. 

The discriminator network D wants to assign high probability to real images, that is,  it  wants  to  maximize  log  likelihood  i.e., 

.  D  also  wants  to

assign  low  probability  to  the  generated  images.  Hence,  it  wants  to  minimize or  equivalently,  it  wants  to  maximize  the  quantity 

, as shown in the following figure:

 Figure 12.10: GAN

For a batch of samples, discriminators objective is as follows:

 E denotes expectation. On the other hand, the generator network wants to improve its  weight  such  that  the  generated  images  G(z)  get  high  score  from  the discriminator. For a batch of samples from generator and real data, the generators objective is as follows:
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 Note:  If  D  is  fixed,  then  the  first  term 

   in  the

 discriminator objective is constant. Adding this constant term to the generator

 objective  is  not  going  to  affect  the  optimum;  hence,  write  the  objective  for

 generator as follows:

 If 

 we 

 define 

 , 

 then for fixed generator G, discriminator objective is 

 . 

 For fixed discriminator D, generator objective is 

 . 

 And we have minimax objective 

 . 

Combining  generator  and  discriminator  objectives,  we  have  the  following

minimax objective function:

This is similar to two-player minmax game in Game theory. We can take G and D

as two players. 

In  two  player  minimax  games,  like  two  person  zero  sum  game,  an  equilibrium state  exists  where  no  player  has  the  intensive  to  change  their  strategy.  This  is known  as  Nash  equilibrium  for  zero  sum  minimax  games.  For  GAN  training, viewed as a game, is there any such equilibrium state? Yes; here, an equilibrium state will be attained when the discriminator does not need to change its weight and the generator also becomes an expert in creating a data point very close to the real data. Let’s see if such an equilibrium state can exist theoretically. 

Equilibrium state for GAN training

First, observe that there exists such a theoretical equilibrium state for this GAN

game. The distribution   of the samples G(z) is a probability distribution defined by the generator G, where 

. So, at the equilibrium state, we should have the

following:
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Next, we will see whether our defined minimax objective function can attain that equilibrium point. 

Given any  fixed generator G, the minimax objective can be written as follows: Here,  the  function  inside  the  integral  has  the  form 

. 

The  function 

, 

attains its maximum at 

. 

For  fixed  G,  the  discriminator  cost  will  attain  its  maximum  at  the  point 

. Hence, the optimal discriminator is given by the following:

Now, let’s look at the generator. The generator wants to minimize:

C(G) = 

The max in this expression for C(G) is attained at 

, as shown in equation IV. 

We can write:

The generator wants to minimize C(G) in VI, that is:
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Suppose we attain this equilibrium point, that is, if 

, then 

, and hence, the minimum value of C(G) is as follows:

Now, let’s check if we can reach this best possible value of C(G) at any other state of  discriminator  and  generator  where 

.  Expanding  expectations  in

equation VII:

Note that both the terms in the integral are in the KL divergence form. The first term  is  KL(

),  and  the  second  term  is  KL(

). 

The  KL  divergence  of  two  distributions  need  not  be  symmetric.  The symmetric version of KL divergence is called  Jensen–Shannon divergence (JS):

To  write  C(G)  in  terms  of  Jensen–Shannon  divergence,  we  need  to  introduce  a factor of half in the log above. Readjusting equation IX by adding and subtracting log (1/2) from both the KL terms:

Since 

and 

we can write:
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Now,  and 

if 

if 

.  Hence, 

the lower bound for C(G) is 

. We have already seen that if 

, 

this  lower  bound  is  attained.  Hence,  global  minimum  of  the  generator  training objective  function  C(G)  is  attained  if  and  only  if  that  is 

the

generative model starts perfectly replicating the data distribution. 

Given  that  the  generator  and  discriminators  are  neural  networks,  the  preceding proof also suggests an algorithm for training these networks:

Randomly  initialize  the  weights  of  the  generator  and  discriminator

networks. 

(Keep  Generator  fixed  to  obtain  D*)  Freeze  the  generator  and  find  an

optimal discriminator for the given generator. 

1. Run  k number of SGD steps to optimize discriminator weights

(With  fixed  discriminator  D*)  Update  Generator  weights  by  optimizing

C(G)  and  keeping  discriminator  fixed.  Note  that  only  the  second  part  of C(G) will be used, as the first part is constant for fixed D. 

Implementing GAN

The generator network for images can be made using a CNN-based architecture. 

The  first  layer  of  the  network  transforms  the  input  noise  vector  to  a  three-dimensional array of dimension (height × width × channels). This is like a random image input, and then the deeper layers are de-convolution layers with every layer upscaling the image. Deep Convolutional GANs (DCGAN) architectures consist

of  a  CNN-based  generator  and  a  CNN-based  discriminator,  as  shown  in   Figure

 12.11.  Both  generator  and  discriminator  typically  have  the  same  number  of

convolution  layers,  like  autoencoder  architectures.  The  discriminator  layers  will
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be  placed  in  reverse  order  as  that  of  the  generator  like  a  decoder.  Refer  to  the following figure:

 Figure 12.11: DCGAN Generator architecture

Following  is  the  code  implementing  the  generator  and  discriminator

corresponding to the architecture shown in  Figure 12.11: 1. def generator(noise_dim):

2.     z = layers.Input(shape=noise_dim)

3.     x = layers.Dense(units=4*4*1024)(z)

4.     x = layers.Reshape((4,4,1024))(x)

5.     for filter_size in [512,256,128,3]:

6.         x = layers.Conv2DTranspose(filters=filter_size, 

7.                kernel_size=5, strides=2, padding=’same’)(x)

8.         x = layers.LeakyReLU(0.2)(x)

9.         x = layers.BatchNormalization()(x)

10.     return Model(inputs = z, outputs=x)

1. def discriminator():

2.     img = layers.Input(shape=[64,64,3])

3.     x = layers.Conv2D(filters=128, kernel_size=5, strides=2, 

4.                       padding=’same’)(img)

5.     for filter_size in [256, 512,1024]:

6.         x = layers.Conv2D(filters=filter_size, kernel_size=5, 

7.                           strides=2, padding=’same’)(x)

8.         x = layers.LeakyReLU(0.2)(x)

9.         x = layers.BatchNormalization()(x)

10.     x = layers.Flatten()(x)

11.     x = layers.Dense(1)(x)

12.     return Model(inputs = img, outputs = x)

Since both the generator and the discriminator objective functions are defined in terms  of  the  discriminator  logits,  we  have  cross-entropy  loss  function  for  both discriminator and generator. Cross-entropy loss requires binary class labels, which is  1  for  real  image  and  0  for  fake  image  from  the  generator.  Hence,  we  define GAN adversarial loss in terms of cross-entropy, as shown in the following code:

1. cross_entropy =

tf.keras.losses.BinaryCrossentropy(from_logits=True)

2. def discriminator_loss(real_output, fake_output):

3.     real_loss = cross_entropy(tf.ones_like(real_output), 

real_output)

4.     fake_loss = cross_entropy(tf.zeros_like(fake_output), 

fake_output)

5.     total_loss = real_loss + fake_loss

6.     return total_loss

7. 

8. def generator_loss(fake_output):

9.     return cross_entropy(tf.ones_like(fake_output), fake_output)

For  computing  gradients  required  to  update  the  parameters,  we  can  use  two gradient  tapes:  one  for  generator  and  another  for  discriminator,  as  they  are updated  separately.  The  two  tapes  will  be  used  to  calculate  the  gradients separately with respect to the discriminant parameters and generator parameters, as shown in the following code:

1. noise_dim = 100

2. G = generator(noise_dim)

3. D = discriminator()

4. noise = tf.random.normal([BATCH_SIZE, noise_dim])

5. 

6. with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

7.     generated_images = G(noise, training=True)

8.     real_output = D(images, training=True)

9.     fake_output = D(generated_images, training=True)

10. 

11.     gen_loss = generator_loss(fake_output)

12.     disc_loss = discriminator_loss(real_output, fake_output)

13. 

14. gradients_of_G = gen_tape.gradient(gen_loss, 

G.trainable_variables)

15. gradients_of_D = disc_tape.gradient(disc_loss, 

D.trainable_variables)
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Here are the results, in  Figure 12.12:

 Figure 12.12: DCGAN Generator output on Celeba faces dataset

GAN training challenges

Although there is a theoretical justification of the convergence of GANs, attaining the equilibrium state of this minimax game is quite hard in practice. Often, GAN

training suffers three types of problems:

1. Models do not converge, and training process is unstable due to non-convex

objective with continuous high-dimensional parameters. 

2. Mode collapse: The generator produces a small variety of images, but the images are of good quality, so it’s able to fool the discriminator. But such a

generator  has  no  use  as  it  fails  to  represent  the  complex  real-world  data distribution.  All  outputs  of  generator  race  toward  a  single  point  that  the discriminator currently approves as realistic image. As  possible  reason  for

this is that as we minimize with respect to the generator and then maximize

with  respect  to  the  discriminator,  we  hold  the  discriminator  constant  such that a single region in space is the point that is most likely to be real. 

3. Vanishing  gradient  for  generator  leading  to  slow  training.  With  a  perfect discriminator,  the  model  we  will  have  D(x)  =  0  for  all  images  from

generator;  hence,  the  gradient  presented  to  the  generator  is  zero,  and  no update of generator happens. 

Solutions for mitigating GAN training issues

Following are a few techniques to mitigate GAN training issues:

Feature matching: The generator can be constrained to generate data that

matches some descriptive statistics of the real data like mean and variance. 
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We  train  the  generator  with  an  additional  objective  to  match  the  expected value of the features on an intermediate layer of the discriminator. This will

prevent  the  overfitting  of  the  discriminant  and  mitigate  the  vanishing

gradient problem. Let  f( x) denote activations on an intermediate layer of the discriminator. For  DCGAN,  we  can  take  any  of  the  fully  connected  dense layers at the end of the network. The new term in the objective function for

generator is 

. 

Let  conv2d_2  be  the  name  of  the  second  convolution  layer  in  the discriminator with 512 filters. We can use this layer as f(x), as shown in the

following code, and update the generator loss:

1. from tensorflow.keras import Model

2. 

intermediate_D 

= 

Model(D.inputs, 

D.get_layer(‘conv2d_2’).output)

3. 

4. def generator_loss(real_output, fake_output):

5. 









features_fake 

=

tf.reduce_mean(intermediate_D(fake_output))

6. 









features_real 

=

tf.reduce_mean(intermediate_D(real_output))

7. 

8.          return  cross_entropy(tf.ones_like(fake_output), 

fake_output)

9.                                +  tf.square(tf.norm(features_fake-

features_real))

Minibatch discrimination: To avoid mode collapse, we can make sure that

the  discriminator  model  looks  at  multiple  generated  examples  in

combination rather than one in isolation. It’s based on the idea that a random

sample from the real data set will have a diverse set of images, and hence, a

minibatch of real images will be diverse. So, if we somehow measure intra-

minibatch  similarity  of  images  for  a  true  random  sample,  we  should  get  a very  low  similarity  score.  The  samples  from  generator  should  also  have these  characteristics  if  the  generator  is  a  good  one.  For  measuring  intra-batch similarity, output f(x) from an intermediate layer of the discriminator

is  taken  and  then  the  layer  output  is  projected  to  a  low-dimensional  space using random projection like distance-preserving operation. 
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Suppose  f(x)  is   L-dimensional  vector,  and  we  choose  an  orthogonal projection  matrix  M  of  dimension 

,  then 

is  a   d-dimensional

vector where 

. 

For  each  sample    of  a  minibatch  of  n  samples,  we  now  have  a  low-

dimensional representation 

. For every sample    we  can  compute

L1 distance between   and any other sample 

that is, 

. Now, similarity is inverse of distance, and hence, 

we  can  apply  negative  exponential  to  get  similarity  values,  and  we  can represent  the  similarity  between  two  samples 

and 

as 

To  get  a  score  for  intra-minibatch

similarity  of  the  images,  we  can  just  add  up  all  these  similarity  measures and get a real number 



for each image  . 

If a batch has similar looking images, we can expect these quantities to be

very high and if the minibatch is diverse, we will have a very low value for

all 

. Now, instead of one projection matrix, we can take a set of K

such low-dimensional projection matrix such that we have a vector of intra-

batch similarity scores for each image instead of a single scalar 

. To

implement  this,  we  pre-multiply    by  a  different  matrix  K  of  dimension 

. 

An  alternate  way  for  compact  implementation  of  this  is  to  stack  all  the  K

projection  matrices  and  create  a  tensor  T  of  dimension 

.  For

example, if K=2, we can create T from 2 random matrices M1 and M2, as

shown in the following code:

1. M1 = tf.random.uniform([L,d]); M2 = tf.random.uniform([L,d])

2. T = tf.concat([tf.expand_dims(M1, axis=1), 

3.     tf.expand_dims(M2, axis=1)], axis=1)

Multiplying  the  vector  f( )  by  the  tensor  T,  we  get  a  matrix 

of

dimension 

, and this can be done using Einstein summation operation

in tensorflow, as shown in the following code:

1. fx = tf.random.uniform([n,L]); T =

tf.random.uniform([L,K,d])

2. features = tf.einsum(‘ij,jkl->ikl’,fx, T)

Here, K rows have the K projections of f(xi) of dimension d. For each  xj, we get  , and hence, for calculating pairwise distance, we can compute the L1

distance between the corresponding rows of the resulting matrix 

across

samples 

, as shown in  Figure 12.13:
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 Figure 12.13: Minibatch Discrimination

Computation of L1 distance and then the negative exponentiation is shown

in the following code:

1. row_wise_L1 = tf.abs(

2.     tf.map_fn(lambda x: x - 2. features, 

3.               tf.expand_dims(2. features, [1])))

4. 

5. sim_scores = tf.exp(-tf.reduce_sum( row_wise_L1 ), axis=

[3]))

6. sim_score_out = tf.reduce_sum( sim_scores, axis=[1])

Hence, for the entire batch of size n, we have a set of n vectors of dimension

K. We can concatenate these vectors to the intermediate layer output f( ), 

and  we  feed  the  result  into  the  next  layer  of  the  discriminator.  Minibatch features  are  computed  separately  for  samples  from  the  generator  and  the training  data.  Now,  if  the  generator  generates  a  batch  of  similar  looking images,  the  discriminator  can  easily  catch  it  from  the  minibatch

discrimination features getting very high value. 

Other cost functions: For VAEs, we have used KL-divergence to define the

loss  function,  and  for  GANs,  we  have  used  Jensen–Shannon  (JS) divergence to define the loss function. With a simple example, we can see that  both  these  measures  have  some  properties  that  can  inhibit  stable
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learning  with  gradient  decent.  Wasserstein  distance  or  earth  mover’s

distance  is  another  metric  for  quantifying  similarity  of  two  probability distributions. Using this metric, we can define another class of GANs called

WGAN  or  Wasserstein  GAN  that  shows  better  learning  stability. 

Experimentally, it’s observed that WGANs always avoid mode collapse. 

Using  class  Label  information  in  both  discriminator  and  generator: Conditional  GANs  mean  that  both  the  generator  and  discriminator  can  be conditioned on some kind of auxiliary information y. Here,  y  can  be  class

labels  or  data  from  other  modalities.  For  example,  y  can  be  an  image description  in  free  text  form,  or  structured  form,  or  y  can  be  an  image category. 

Wasserstein GAN (WGAN)

WGAN  is  based  on  Wasserstein  distance  or  Earth  Movers’(EM)  distance

between  the  two  distributions 

  and 

  that  we  encountered  in   Chapter 4:

 Basic Statistics and Probability Theory. We have seen that training GAN with the

minimax  objective  is  equivalent  to  minimizing  the  JS-divergence: 

WGAN  reformulates  the  optimization  problem  as  a

minimization  of  the  Wasserstein  distance  between  the  real  and  generated distributions: 

and  . EM distance is continuous and differentiable almost

everywhere (that is, the set of points where it is not differentiable is very few). So, we  can  train  the  discriminator  till  optimality  and  avoid  the  vanishing  gradient problem. 

A probability distribution can be interpreted as a piling of unit mass of earth over a region. So, two different probability distributions represent two ways of piling up unit amount of earth over the region. The EMD is the minimum cost of turning

one pile into the other. The cost of moving the pile is the amount of earth moved times the distance by which it is moved. The following definition is a formal way of stating the same. 

Definition (Wasserstein distance or EMD): Let 

represent the set of all

joint distributions x, y whose marginals are p(x) and q(y). Then, we define:

Here, the distance moved is given by the norm 

, and the amount of earth

to be moved is given by the joint distribution 

. 
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WGAN  network  topology  is  the  same  as  GAN.  We have 

and  let  the

generator function G be 

,  a parametrized function or a neural net with

parameter  , which transforms a Gaussian noise vector z to a point in X. Let 

represent  the  distribution  of 

.  For  a  fixed  z, 

can  be  treated  as  a

function 

of 

the 

parameters 

. 

So, 

WGAN 

objective 

is 

to 

. 

Some properties of EM distance

Let P be a fixed distribution over X and 

be a parametrized function

with parameter  . Let Q represents the distribution of 

. For a fixed z, 

can be treated as a function of the parameters  . 

1. If g is continuous in θ, so is EMD (P, Q):

Let   and   be two parameters that are close in the parameter space, that is, 

0,  as  g  is  continuous  in    therefore, 

and 

should  be

very close by, that is, 



. 

EMD is defined as an infimum, so it’s a lower bound, and hence:

EMD is a metric, so using triangle inequality:

, as 

. 

2. If g is locally Lipschitz continuous and satisfies 1, then EMD (P, Q) is

continuous everywhere and differentiable almost everywhere (that is, it

may not be differentiable on a small subset of points only). 

Lipschitz continuity is a measure of how sensitive a function is to a small

variation  of  the  inputs.  A  function 

is  said  to  be  locally

Lipschitz at a point 

if there exists an open ball 

and a

real number K such that:

Here, K gives an upper bound on the degree of perturbation of  f for small perturbations in input measures as 

. 

Here, 

is a neural network. To make 

Lipschitz, one crude method is

truncating each element of the weight matrices by weight clipping to a small

closed interval, like [‒0.01, 0.01]. However, this restricts the capacity of the network.  There  are  other  advanced  methods  like  gradient  penalty  and
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spectral  weight  normalization  to  enforce  Lipschitz  constraint  in  neural

networks. 

is locally Lipschitz at 

if there exists an open set U around 

such that for all 

:

The last part of the inequality holds for Euclidean norm. Taking 

, we

have:

Now, 

Therefore, 

. 

Hence, 

is  locally  Lipschitz,  and  by  Radamacher’s  theorem, 

we know that it has to be differentiable almost everywhere. 

3. 1 and 2 are not true for JS and KL: Let us take two simple distributions shown in  Figure 12.14, P and Q, which are uniformly distributed along the vertical  y-axis  with 

but  are  shifted  by  a  positive  number 

The probability of any sample from uniform distribution in

interval [a, b] is 

= 1 if b=1, a=0. We can write P, Q as follows:

P is uniform [0, 1] along y-axis. Refer to the following figure:
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 Figure 12.14: Samples from distributions P and Q

Here, 

, 

since 

and 

as  they  don’t  have  any  region  in  common,  and  where  P  is  non-zero,  Q

becomes zero and vice-versa. 

and 

, as this is the distance by which we need to move the

unit probability mass. 

At θ = 0, KL(P, Q)=KL(Q, P)=JS(P, Q) = EMD(P,Q) = 0. But for all 0 < θ < 

1  only  EMD  varies  smoothly  as  a  function  of  .  Both  KLs  and  JS  have infinite discontinuity and a jump discontinuity at

This shows that KL and JS don’t exhibit continuity and differentiability as

EMD does; hence, EMD is better suited for neural net training compared to

them. 

WGAN training

An  equivalent  formulation  of  EMD  can  be  derived  using  linear  programming formulation  and  Kantorovich-Rubinstein  duality.  You  may  refer  to  section Further reading [13]. 
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Here, 

means f is a K-Lipschitz continuous, that is, for a small change

in the input, denoted by 

, the change in  f is bounded by  K. f(x) is

 K-Lipschitz; then:

Now, if we can make sure that the discriminator function 

in a GAN is

1-Lipschitz  continuous  (K=1)  for  any  weight  set  w.  The  generator  function  be is  a  parametrized  function  or  a  neural  net  with  parameter  θ,  which

transforms a Gaussian noise vector z to a point in X. Using the preceding formula, we can rewrite loss formulation as  minimize EM( pdata, pg):

Or, 

The  expectation  E  in  the  preceding  equation  can  be  approximated  by  the  mean over a sample batch 

of size m, and hence, the gradient of the discriminator

objective is given by the following:

where  will  be  kept  fixed.  The  gradient  for  the  generator  is  written  as 

. The implementation of generator and discriminator loss is

shown here:

1. def discriminator_loss_wasserstein(real_output, fake_output):

2.     return tf.reduce_mean(D(real_output)) -

tf.reduce_mean(D(fake_output))

3. 

4. def generator_loss_wasserstein(real_output, fake_output):

5.     return -tf.reduce_mean(D(fake_output))

Here,  one  important  assumption  is  overlooked.  We  have  to  make  D  satisfy Lipschitz constraint. This has been discussed in  Chapter 7: Neural Networks, as a part of adversarial learning. 

Ensuring Lipschitz Constraint in Discriminator

[image: Image 3318]

[image: Image 3319]

[image: Image 3320]

[image: Image 3321]

[image: Image 3322]

[image: Image 3323]

[image: Image 3324]

[image: Image 3325]

Deep neural nets are very sensitive to their input. For example, a carefully chosen small  perturbation  of  input  image  can  mislead  the  neural  network  and

significantly  decrease  its  classification  accuracy.  A  metric  to  evaluate  the robustness of neural networks to small perturbations is the Lipschitz constant K, which  upper  bounds  the  relationship  between  input  perturbation  and  output variation.  In  WGAN  the  following  two  methods  are  used  to  ensure  Lipchitz condition:

1. Weight Clipping: Clamp the weights to a fixed box, say [-0.01, 0.01], after each gradient update. This can ensure Lipschitz condition. However, it takes

many  more  iterations  and  time  to  train.  This  is  because  weight-clipping significantly limits the capacity of the network. This can be implemented as

follows:

1. for p in D.trainable_variables:

2.     p.assign( tf.clip_by_value(p, -0.01, +0.01))

2. Gradient Penalty (GP):  Make  sure  that  the  gradient  has  norm  at  most  1. 

This can be achieved by adding an error term to the WGAN objective that

enforces  the  gradient  norm  to  lie  close  to  unity: 

, 

where 

is  some  point  between  a  real  and  a  fake  sample: 

,  where 

and 

,  both  chosen

independently  at  random.  This  is  shown  in  line  4  in  the  following  code. 

Alternatively,  we  can  add  small  noise  to  the  real  data  points  and  create perturbed  input 

,  where 

,  and  then  the  gradient

penalty is implemented as earlier: 

. 

1. D =discriminator()

2. def gradient_penalty(real_output, fake_output):

3.     epsilon = tf.random.uniform([real_output.shape[0], 1, 1, 

1], 0.0, 1.0)

4.          x_hat  =  epsilon  *  real_output  +  (1  -  epsilon)  *

fake_output

5.     with tf.GradientTape() as tape:

6.         tape.watch(x_hat)

7.         d_hat = D(x_hat)

8.     gradients = tape.gradient(d_hat, x_hat)

9.          gradnorm_sqr_reg  =  tf.reduce_mean((tf.norm(gradients)  -

1.0) ** 2)

10.     return gradnorm_sqr_reg
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The GP loss term is added to the discriminator loss for enforcing Lipschitz

condition in the discriminator. 

Conditional GAN (cGAN)

We  can  implement  conditioning  of  generator/discriminator  by  feeding  auxiliary information  y into both the discriminator and generator as additional input. Here, y generally comes as some categorical data; hence, a natural choice will be to use an  embedding  layer  to  encode  y  and  then  feed  the  encoded  label  into  both discriminator  and  generator.  For  example,  consider  text  to  image  generation, where  y is text. We can use an embedding later to encode the text representation. 

However, if the number of categories is few, we can avoid using embedding layer. 

Now, the discriminator D will be judging not just X but a point (x, y) from the

joint  distribution  (X,  Y).  Also,  the  corresponding  generator  G  models  the conditional  joint  probability  distribution 

,  where  z  is  a  given  noise

vector. Given a noise vector z, we should have G(z) = (X, Y). A more interesting and useful formulation of the generator is that we input the auxiliary information y as guidance to the generator G, stating what to generate, and then the generator takes  a  noise  vector  z  as  input  to  output  the  data  point  X  conditioned  on  the auxiliary  information.  For  example,  in  face  generation,  if  Y  represents  a  single Boolean  variable  gender,  then  setting  y=0  the  generator  will  generate  a  female face image. Here, generator models 

. Refer to the following figure:

 Figure 12.15: Components of CGAN

Formally,  we  can  define  the  conditional  discriminator  and  conditional  generator as follows:
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We have a generator function 

, which takes a noise data 

and

label  embedding 

and  outputs  a  data  point 

.  Also,  we  have  a

discriminator function that takes a datapoint 

and a noise embedding 

to  output  a  probability  score  of  whether  the  pair  (x,  y)  came  from  the  real distribution  p(X,Y).  Here,  our  data  distribution  can  be  represented  as  a  joint probability  distribution 

.  The  generator  wants  to  model  the

conditional  distribution 

,  where  auxiliary  data  y  follows  a  distribution 

. So, to yield a point from the joint distribution (x, y), we can first sample y from and then use generator model to generate x from 

, that is, we have 

.  The  generator  model  is  also  conditioned  on  the

noise  z,  and  hence,  the  generator  actually  estimates 

. However,  as  Y

and Z are independent, 

. So, we have:

Thus, we can modify our minimax loss function as follows:

At training time, we need to sample images from the generator to evaluate the two players G and D. This requires sampling from noise distribution, like before, for vanilla GANs and also sampling from the auxiliary data distribution 

. 

If  we  draw  sample  of  y  directly  from  the  training  examples,  the  generator  can reach  a  spurious  optimum  where  it  exactly  reproduces  the  training  data  given  a conditional  input.  So,  we  don’t  get  any  new  data  point  generated  and  our generator  acts  as  a  database  for  the  training  data  reproducing  each  training example  from  the  given  data  set.  To  avoid  this,  we  can  draw  y  from  a  data distribution model trained using any classical density estimation technique, like a Parzen’s  window  estimate,  using  the  conditional  values 

drawn  from  the

training data. The following is an implementation of conditional discriminator for CelebA  dataset.  CelebA  comes  with  a  list  of  40  binary  attributes  for  each  face image. These attributes include gender. We can extract that as the class label, and we  have  a  binary  class  label  as  the  auxiliary  information.  The  following  is  the discriminator code for conditional GAN:

1. def discriminator ():

2.     img = layers.Input(shape=[64,64,3])

3.     label = layers.Input(shape=[2,])  #for two classes

4.     y = layers.Dense(64*64)(label)

5.     x = layers.LeakyReLU(0.2)(x)

6.     y = layers.Reshape((64,64,1))(y)

7. 

8.     x = layers.concatenate([img, y])

9. 

10.     x = layers.Conv2D(filters=128, kernel_size=5, 

11.                                   strides=2, padding=’same’)(x)

12.     for filter_size in [256, 512,1024]:

13.         x = layers.Conv2D(filters=filter_size, kernel_size=5, 

14.                                        strides=2, 

padding=’same’)(x)

15.         x = layers.LeakyReLU(0.2)(x)

16.         x = layers.BatchNormalization()(x)

17. 

18.     x = layers.Flatten()(x)

19.     x = layers.Dense(1)(x)

20.     return Model(inputs = [img, label], outputs = x)

In  line 8 of the preceding code, we are adding the auxiliary information of a new channel as the fourth channel, along with three channels of the input image. The rest  of  the  code  remains  the  same  as  before  for  the  vanilla  discriminator. 

Similarly, for the conditional generator, we take the first convolution layer as is in the  vanilla  generator  to  create  the  first  3D  tensor  of  size  4×4×1024  and  then append the embedding layer of auxiliary information after mapping and reshaping

it to 4×4×1 as another channel. 

The  training  loop  remains  the  same  as  for  the  vanilla  GAN,  except  that  the generator also needs fake labels as input, and the discriminator requires real label as input. The rest of the code remains the same, as shown in the following code: 1. def train_step(images, labels):

2.     noise = tf.random.normal([BATCH_SIZE, noise_dim])

3. 

4.     with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

5.         generated_images = G(noise, training=True)

6.         fake_labels = np.random.randint(0, 2, BATCH_SIZE)

7. 

8.         real_output = D([images,labels], training=True)

9.         fake_output = D([generated_images, fake_labels], 

training=True)

Conditional GANs are also used for image-to-image translation tasks. Image-to-

image translation is the task of taking images from one domain and transforming

them  to  another  image  so  that  they  have  the  characteristics  of  images  from
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another  domain.  Instead  of  passing  auxiliary  data  as  input,  we  can  pass  image from  source  image  to  condition  the  generator.  Also,  the  auxiliary  information being so rich, the generator can take source image as input directly and random

noise vector is not required at all. To generate a good quality image output now, the  simple  CNN  architecture  we  used  so  far  may  not  be  sufficient.  We  can  use architectures  with  higher  capacity,  like  U-Net  or  Resnet-50,  to  create  the conditional  generator.  Pix2Pix  model  is  a  cGAN  where  output  generation  is conditioned  on  an  input  source  image,  and  they  use  U-Net  architecture  for generator. 

Cycle GAN (CycleGAN)

CycleGAN is a GAN architecture that uses two generators and two discriminators

and is primarily applied to various image-to-image translation tasks where paired image data from two domains are not available. 

For  example,  if  we  define  source  image  domain  as  a  set  of  natural  images.  We take  a  hand-drawn  image  of  a  beach  where  we  spent  our  holiday  in  childhood. 

How nice would it be if we could input this hand-drawn image to the generator

and  get  a  photo  realistic  beach  image  with  our  childhood  memories!  Image translation  is  a  classical  computer  vision  problem,  and  all  the  traditional approaches to solve this involves using paired training data set, that is, a data set that  has  pairwise  images  from  two  different  domains.  Examples  of  paired  data sets are (1) pair of satellite image and Google map image, and (2) facades data set that  consists  of  506  Building  Facades  and  the  corresponding  segmentations. 

However,  getting  paired  image  data  set  is  not  always  possible;  this  is  where CycleGANs can be useful. Let’s now formally introduce CycleGANs. 

Let 

and 

be data sets with image

samples  from  two  different  domains.  We  can  denote  the  data  distributions  as and 

.  Let’s  define  two  generators 

and 

.  Note  that  unlike  the  previously  defined  generators,  the  generators

here  take  an  image  as  input  directly  and  not  a  random  noise  vector.  Also,  we define  two  adversarial  discriminators 

and 

, 

where 

’s goal is to distinguish between images 

and translated images {

()}, and 

’s aims to discriminate between 

and {

(x)}. 

So, now we have four neural networks to train: 

. We can define a

joint objective function for training this network. Also, we have to state the steps for  training  these  networks.  As  there  are  two  separate  GANs,  we  have  two adversarial losses:
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and 

This objective will also have the same issues as seen in vanilla GAN adversarial loss formulation, like vanishing gradient and mode collapse. Similar to the feature matching  technique  we  used  in  vanilla  GANs,  we  can  enforce  the  generators  F

and  G  to  be  consistent,  that  is,  if 

,  then  transforming  x  using  G  and  then

applying F on the transformed image, we should get an image   very close to x. If

. Refer to the following figure:

 Figure 12.16: CycleGAN

So, 

should be minimized, that is, 

should be minimized

and similarly, 

should  be  minimized.  We  call  the  total  quantity

cycle consistency loss:

Hence,  the  loss  for  CycleGAN  can  be  written  as  adversarial  loss  +  cycle consistency  loss: 

.  Here,  l  is  a

hyperparameter  that  controls  how  much  weight  should  be  given  to  the  cycle consistency  loss.  For  better  colour  preservation  in  the  output,  another  loss  term was  proposed,  which  is  optional  and  is  called  identity  loss  term.  This  is  also  a pixel wise L1 loss term, like 

. The idea behind this is that for the generator 

, if we take an image from the target domain 

, we should leave

it as is because this image already belongs to Y, and hence, no transformation is
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required. Ideally, 

and 

,  and  hence,  we  should  minimize

the  term 

.  So,  our  loss  has

one more term and one more hyperparameter m:

Here,  the  adversarial  loss  terms  can  be  replaced  by  Wasserstein  loss  for  more stable training of the cycle GAN. 

Here are the steps for training cycle GANs:

1. Choose hyperparameters l, m. 

2. Randomly  initialize  the  weights  of  the  generator  and  discriminator

networks. 

3. Freeze  the  generator  and  find  an  optimal  discriminator  for  the  given generator:

a. Take a batch of images 

and 

b. Run SGD to optimize discriminator weights by computing gradient of

the adversarial loss for discriminator. 

4. Update  Generator  weights  by  optimizing  the  generator  loss  and  keeping discriminator fixed:

a. For images 

and 

, compute:

i. Cycled x for all x in 

ii. Cycled y for all y in 

iii. Same x for identity loss: for all y in 

iv. Same y for identity loss: for all x in 

v. Compute all three loss components and then the total generator loss

gradient. 

5. Repeat 3 and 4 until convergence. 

TIP: The following link provides an implementation of cycle GAN using U-

Net generator and discriminator:

https://www.tensorflow.org/tutorials/generative/cyclegan

Autoregressive generative models
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Most  generative  models  discussed  so  far  are  suitable  for  image  generation.  Can we  generate  audio  or  music,  speech,  cursive  handwriting,  or  literary  text,  like poetry? All these data types are sequential in nature. What we generate at a given instance is dependent on what we generated in the previous instant. For example, in natural language processing, a language model takes a certain set of words or characters  as  the  input  context  to  generate.  Recurrent  neural  networks  and  their variants,  like  Long  Short-Term  Memory  (LSTM),  are  best  suited  for  these tasks. Similarly,  for  speech  synthesis,  we  can  use  sequence  to  sequence  models that  can  generate  speech  from  text.  Traditionally, Hidden  Markov  Model (HMM)  were  used  for  modelling  sequences.  HMMs  are  generative  sequential models. We have discussed some of these models in the previous chapters. Now, 

let’s look at some more generative models for sequences. 

Music generation problem has similarity with text generation. A musical “note” is a  symbol  denoting  a  musical  sound.  Notes  are  the  building  blocks  of  written music, and they represent the pitch and duration of a sound in musical notation. 

The  music  generator  model  should  take  both  pitch  and  duration  information  as input at every timestep and generate an output note for the next timestep. This is looped back as input, and a sequence of notes generated. So, LSTMs can be used

here  as  well,  to  build  simple  music  generator  model.  Combining  the  power  of RNNs  to  model  sequence  with  GAN,  a  hybrid  model  was  proposed  called  C-RNN-GAN  (Continuous  RNN-GAN).  This  is  trained  with  adversarial  loss  to

model the joint probability of a sequence and can generate sequences. 

Let’s  understand  how  the  adversarial  loss  is  calculated  for  sequences.  The generator network is a RNN (stacked LSTM), which takes random vector as input

that is concatenated with the output of previous cell 

. The  output  of  the

generator cell is a note vector obtained from a fully connected dense layer output 

.  The  discriminator  is  a  bi-directional  LSTM,  which  takes  context  in  both directions into account and outputs the probability of whether an input sequence to  the  discriminator  is  real  or  fake,  that  is,  whether  it’s  real  music  data  or  its generated using the generator network. This is shown in  Figure 12.17:
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 Figure 12.17: Continuous RNN GAN

Here, the generator is autoregressive model, as shown in detail in  Figure 12.18. 

The  discriminator  encodes  the  sequence  input  into  a  dense  fixed  length representation  using  stacked  bidirectional  RNNs,  and  then  the  fixed  encoded vector  is  connected  to  a  sigmoid  dense  layer  to  output  the  probability  of  the sequence being real/fake. 

The adversarial loss function in this case is an extension of the normal adversarial loss to sequences. Here, the adversarial loss for each element of the sequence is computed and then averaged to get the adversarial loss for the entire sequence of arbitrary length m. 

Refer to the following figure:

 Figure 12.18: Details of the recurrent autoregressive generator and the recurrent discriminator in C-RNN-GAN

There  are  other  autoregressive  GAN  models,  like  MuseGAN   [2],  which  can generate polyphonic music. 

Autoregressive  generative  models  are  also  applied  on  images.  The  pixels  of  an image can be viewed as a sequence starting from top left and then traversing the image  matrix  row  wise  or  along  the  diagonal.  Here,  each  pixel  probability  is conditioned on the previous pixels. PixelRNN  [3] is a neural network architecture that  consists  of  12  fast,  two-dimensional  LSTM  layers.  They  use  residual connections around LSTM layers for training this very deep network. 

Applying generative models

Let’s discuss some real-world applications of generative models:

Super Resolution (SR): Image super-resolution is a process of recovering high-resolution images from low-resolution images. It has a wide range of

real-world applications such as medical imaging, video conferencing, video

surveillance and security. Traditionally, SR was performed by various image

rescaling techniques in computer vision, like Bicubic Interpolation, Pyramid

Pooling,  and  Wavelet  Transformation.  At  present,  deep  neural  net  models like FSRCNN- and GAN-based models like SRGAN [9] and ESRGAN [10]

have  outperformed  all  these  traditional  approaches.  To  train  such  models, we need a data set of pairs of low- and high-resolution images. We can treat

the  SR  model  as  a  generator,  which  takes  a  low-resolution  image  as  input and outputs a high-resolution image. The discriminator judges whether the

input image is generated image or actual. 

Synthetic Tabular Data Generation: Tabular/structured data is one of the

most common enterprise data modalities. Mostly, such data has Personally

Identifiable  Information  (PII).  The  data  analyst  must  be  very  careful while  publishing  data  analysis  results  so  that  no  PII  is  disclosed.  This  is crucial for staying compliant with privacy regulations. This may restrict the

analyst from publishing many important insights of the data. The ability to

use synthetic datasets whose distribution is the same as true enterprise data

ensures  that  PII  are  not  disclosed. Tabular  GAN  (TGAN)   [4]  generates high-quality  and  fully  synthetic  tabular  data,  including  both  discrete  and continuous columns. 

Text  to  Speech  Generation:  GAN-TTS   [5]  is  a  generative  network  for generating  Text  To  Speech  (TTS).  Most  neural  network  models  for  TTS

use  an  autoregressive  generator  that  is  slow  at  inferencing,  but  GAN-TTS

uses  a  convolutional  feed  forward  network  as  the  generator  and  is  very efficient  at  inference  time.  Here,  an  ensemble  of  discriminators  is  trained

instead of one to criticize different aspects of the audio generated, and the result is a high-fidelity audio. 

Text  to  Image  generation:  DALL·E   [11]  takes  a  piece  of  text  and optionally, a part of an image, and it will output an image. It either continues the image whose part is given, or it generates the image by itself. It’s trained on a data set of text–image pairs. It can create plausible images for a wide

variety  of  sentences.  It  has  the  ability  to  combine  disparate  ideas  to synthesize objects, some of which are unlikely to exist in the real world. So, 

we  can  apply  such  models  for  interior  designing,  fashion  designing.  Here, VAE  is  used  to  encode  the  input  to  a  discrete  latent  space,  and  then transformer-based auto-regressive decoder is used to construct the output. 

Anomaly detection: Many practical business problems like fraud detection, intrusion detection, system failure prediction can be formulated as anomaly

detection. Also, anomaly detection and elimination are crucial steps in data

analysis.  Anomalies  are  rare  examples  in  data.  The  general  approach  to detect anomalies is to learn the normal distribution and then find a way of

assigning  a  score  to  each  data  point.  As  anomalies  are  rare,  the  learned distribution will give very low score to them. GANs and VAEs also try to

learn the data distribution and represent data in a latent space. So, they have

been  successfully  employed  to  solve  reconstruction-based  anomaly

detection problem. Here is a survey paper on various GAN-based anomaly

detection  approaches   [7].  There  is  a  very  recent  study  on  unsupervised timeseries anomaly detection using LSTM-based generator called  TagGAN

 [6]. 

Image-to-Image  Generation:   ArchiGAN  [8]  is  a  cGAN  for  apartment building  design.  It  learnt  topological  features  and  space  organization

directly from floor plan image. 

Conclusion

In  this  chapter,  we  presented  the  core  theory  of  deep  learning-based  generative models and a few applications. In the latest applications of GANs and VAEs, we

may find different architectures being tried out for the generator/decoder, which may be suitable for a particular problem domain. However, the loss functions for training such networks are still some derivatives of the known loss functions that we  discussed  here,  like  adversarial  loss,  reconstruction  loss,  ELBO,  feature mapping, cycle consistency loss, and Wasserstein loss. This chapter should enable the readers to explore the state-of-the-art papers in generative modelling with cool applications and implement them for solving their own business problems. 

Points to remember

Generative models are primarily unsupervised machine learning models. 

Generative models can generate new data instances by learning underlying

probability distribution of data, whereas discriminative models discriminate

between different kinds of data instances by learning class conditionals. 

VAE  and  VQ-VAEs  are  easier  to  train  compared  to  GANs;  moreover,  the

encoder  part  of  the  VAE  can  be  used  as  a  dimensionality  reduction

technique for representing data in low-dimensional latent space. 

Training  GAN  with  adversarial  loss  is  equivalent  to  minimizing  the  JS-

divergence,  whereas  training  VAE  boiled  down  to  minimizing  KL-

divergence between true data distribution and generator data distribution. 

We  have  theoretically  proved  the  existence  of  equilibrium  for  GAN,  but achieving this equilibrium numerically while training with adversarial loss

is hard. We may get stuck in many  local Nash equilibrium state, which leads to  mode  collapse  and  unstable  learning.  These  local  equilibriums  are  far away from global equilibrium, and hence, we should always use some of the

tricks  discussed  here,  like  feature  mapping,  minibatch  discrimination,  and conditioning GANs to mitigate these challenges. 

If  we  have  sequential  data,  it’s  better  to  use  sequential  generative  models like HMM or recurrent neural network-based models, like C-RNN-GAN. 

Further Reading

1. VQ-VAE: https://arxiv.org/abs/1711.00937

2. MuseGAN: Multi-track Sequential, https://arxiv.org/abs/1709.06298

3. PixelRNN : https://slazebni.cs.illinois.edu/spring17/lec13_advanced.pdf

4. Tabular GAN (TGAN): https://arxiv.org/pdf/1811.11264.pdf

5. TTS-GAN: https://arxiv.org/pdf/1909.11646.pdf

6. TagGAN: https://arxiv.org/pdf/2009.07769v3.pdf

7. Anomaly Detection: https://arxiv.org/pdf/1906.11632.pdf

8. ArchiGAN: 

https://developer.nvidia.com/blog/archigan-generative-

stack-apartment-building-design/

9. SRGAN for super resolution: https://arxiv.org/abs/1609.04802

10. ESRGAN : https://arxiv.org/abs/1809.00219

11. DALL.E: https://openai.com/blog/dall-e/

12. https://www.kaggle.com/datasets/abhilash04/fathersandsonheight

13. https://vincentherrmann.github.io/blog/wasserstein/s
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One-vs-Rest (OvR) scheme 242

optimization, with inequality constraints 145

convex functions 146, 147

convex optimization 148, 149

Karush-Kuhn-Tucker conditions (KKT) 149, 150

Lagrange dual function 145, 146

Ordinary Least Squares (OLS) 379

orthogonal basis 50

orthogonality among subspaces

among subspaces 76, 77

orthogonal matrix 70, 71

orthonormalization 79, 80

applications 81, 82

example 81

Out of vocabulary words (OOV) 428, 443

overfitted model 23

overfitting 235

P

Partial Autocorrelation (PACF) plot 381

partial derivative 117

partition-based clustering algorithms 287

K-means 288

K-medoids 289

Partitioning Around Medoids (PAM) 289

partition values 159-161

Parts Of Speech (POS) 384, 425
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