

[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

Practical

Mathematics for AI

and Deep Learning

 A Concise yet In-Depth Guide on

 Fundamentals

 of Computer Vision, NLP, Complex Deep

 Neural

 Networks and Machine Learning

Tamoghna Ghosh

Shravan Kumar Belagal Math

www.bpbonline.com

[image: Image 6]

FIRST EDITION 2023

Copyright © BPB Publications, India

ISBN: 978-93-5551-194-2

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

 From Tamoghna

 My grandfather, late Mr. Dukari Roychoudhury who introduced

 me to a great Mathematics teacher and always guided me with

 his wise words.

 My beloved grandmother, late Mrs. Renuka Roychoudhury.

 From Shravan

 Parents Basavaraj & Sulakshana, who supported me in all phases

 of life and continue to do so.

 Brother Chethan, whose thinking always is in sync with mine,

 rarely we disagree on any topic.

 Charming spouse Sudha, who has always encouraged me to

 achieve greater heights.

 Adorable kids Anvika & Anirudh, whose presence keeps us

 cheerful.

About the Authors

Tamoghna is an AI Software Solutions Engineer in Client Computing Group at Intel and has 15 years of work experience. He has a master’s in

computer science from Indian Statistical Institute and a master’s in

mathematics form Calcutta University. He has 4 US patents, 3 IEEE papers

and has also authored book on Transfer learning.

Shravan is currently an AI Engineer at Intel’s Client Computing Group with 11 years of working experience. He had Master of Engineering degree

from Indian Institute of Science, Computer Science and Automation

department. He has been granted with 4 US patents. His interest lies in application of AI algorithms to solve real world problems.

About the Reviewer

Koushik Bhattacharyya is an accomplished Software Professional, who after completing M.Sc Pure Mathematics from Burdwan University and

M.Tech in Computer Science (Gold Medalist) from Indian Statistical

Institute, Kolkata, worked for technology giants like NVIDIA, AMD,

Toshiba and Intel. He has more than 18 years of experience in software development with Architectures and Lead roles in diverse domains and

technologies, including Medical Image Processing, Computer Vision,

Machine Learning, Deep Learning, GPGPU and more. Koushik has also

authored a book viz. OpenCL Programming by Example. His present

interests include AR/VR and Blockchain.

Acknowledgements

There are a few people we want to thank for the continued and ongoing support they have given us during the writing of this book. We would like

to thank our managers for continuously encouraging us for writing the

book. Also, without the support of our family members could have never completed this book.

We are grateful to the technical reviewer of the book Mr. Koushik

Bhattacharyya who is a AI Software Solutions Engineer in Intel Habana

Labs division. His diligent reviews helped us correct few unintended

mistakes. He also suggested some subtopics to be rephrased for better

clarity.

Our gratitude also goes to the team at BPB Publication (including Surbhi,

Shali, Lubna) for being supportive enough to provide us quite a long time to

finish the first part of the book and also allow us to make some late changes

to the content of the book.

Preface

The goal of Artificial Intelligence is to design algorithms that can perform:

“data based automated decision-making under uncertainty”. To understand

the theory of automated decision-making, a descent knowledge in the

following mathematical concepts is essential: (1) Linear algebra (2) Vector

calculus (3) Probability (4) Statistics. This book covers in depth these fundamental mathematical concepts. Each of these have a very vast

literature of its own. So, we always wonder where to start and how far to

go. In this book we have tried to put together the most essential topics from

all these four areas of Mathematics. We have avoided detailed proofs

wherever possible and tried to explain more intuitively these concepts. As

new advancements are being made almost every day in the field of AI, it’s

hard to keep oneself updated by constant study of latest research

publications. However, with a strong mathematical foundation provided by

this book, the learning curve will appear much less steep.

This book takes a practical approach for introducing the mathematical

theory. It provides code or pseudocode in python for most of the

mathematical concepts discussed, enabling the readers to use these concepts

in their projects wherever applicable. For example, computation of gradient

of a function of several variables is introduced mathematically and then corresponding code is also given both in naive python, numpy and

tensorflow to clarify the concepts. This book also covers the application of

the mathematical theory in building various AI algorithms. Also, this book

discusses about a majority of popular neural network architectures. The readers should be able to reuse these building blocks for custom neural network architecture engineering.

This book is divided into twelve chapters. The first six chapters are theory

oriented, and we strongly suggest the readers to read them in order as there

are many interdependencies in these chapters. The remaining chapters are

applications of these concepts and hence can be read in any order.

Chapter 1 Overview of AI: Chapter provides a high-level overview of Artificial Intelligence and its subcomponents. The common terminologies

like model, data, parameters of models, dependent and independent

variables and model evaluation metrices will be explained in this chapter and will be referenced repeatedly in later chapters.

Chapter 2 Linear Algebra: Covers most topics of Linear Algebra with examples that finds its application in AI. Well thought figures in the chapter

helps reader to understand the concept with clarity. This chapter will discuss about representing the real-world data in numeric form called

vectors and introduce the required mathematical tools to process vectors.

Chapter 3 Vector Calculus: Chapter discuss differentiation and integration of vectors. The concept of tensors is also introduced in this chapter along

with basic tensor algebra and tensor calculus. Moreover, this chapter

provides basic optimization topics for function of several variables and functions over tensor.

Chapter 4 Basic Statistics and Probability Theory: This chapter covers introductory concepts of statistics like collecting, organizing, analyzing of

data for the purpose of effective decision-making. Real world data has various sources of uncertainty. To quantify this uncertainty in data,

probability theory is introduced.

Chapter 5 Statistical Inference and Applications: Statistical inference covers the techniques of decision making under uncertainty. In machine

learning uncertainty can arise from noisy data, incomplete information

about the problem domain etc. This chapter covers the core concepts of statistical inference and its application to linear models in ML like linear regression, curvilinear regression, and logistic regression.

Chapter 6 Neural Networks: Most of latest the AI algorithms are based on neural networks. This chapter introduces neural networks in general. Also,

the fundamental back propagation algorithm is explained in details

including the application of tensor calculus to compute layer wise

derivatives if the network.

Chapter 7 Clustering: In few domains, data will be unlabeled. In these scenarios, task would be to find natural groups among data samples. Each

identified group has unique characteristics which are learnt by algorithms.

Learning will help in assigning new data samples to the existing groups based on its characteristics. This chapter will discuss about these algorithms

that identifies natural groups.

Chapter 8 Dimensionality Reduction: In most cases, real-world data sample is of more than three dimensions. Higher dimensional data will

result in data sparsity which in turn decreases accuracy of learning

algorithms. Also, visualization of data whose dimensions are greater than three is not possible. This chapter will discuss algorithms that would be used in reducing dimensions of the data.

Chapter 9 Computer Vision: This chapter provides some theoretical background for the state-of-the-art AI models in computer vision. A

specialized neural network architecture called convolution neural network or CNNs used of such models, is explained in details. Variations of the CNN architectures are used for different types of vision tasks. The

motivation behind these architectures and how to train these networks is covered and references are provided for the model and code of these

architectures.

Chapter 10 Sequence Learning Models: In few domains, data is sequential. Audio clips, video clips, time-series data are few examples of sequential data. Here, prediction of the future output will depend on

previous data history. This chapter will discuss about algorithms which would help in learning and predicting based on sequential ordered data.

Chapter 11 Natural Language Processing: Natural Language has been important communication tool among humans and has grown in complexity

which our brain can comprehend. This chapter will discuss about

algorithms that would learn to understand natural language, represent

natural language in concise human readable form.

Chapter 12 Generative Models: Generative modeling is a branch of AI which involves automatically discovering and learning the regularities or patterns in input data in such a way that the model can be used to generate

new examples that plausibly could have been drawn from the original

dataset. This chapter covers various generative modelling techniques like variational autoencoders, different types of generative adversarial nets

(GAN).

Code Bundle and Coloured Images

Please follow the link to download the

 Code Bundle and the Coloured Images of the book:

https://rebrand.ly/5m25ppc

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Practical-Mathematics-for-AI-and-

Deep-Learning. In case there's an update to the code, it will be updated on

the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos

available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging

reading experience to our subscribers. Our readers are our mirrors, and we

use their inputs to reflect and improve upon human errors, if any, that may

have occurred during the publishing processes involved. To let us maintain

the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB

Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get in

touch with us at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive

exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the

internet, we would be grateful if you would provide us with the

location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an

author

If there is a topic that you have expertise in, and you are interested in

either writing or contributing to a book, please visit

www.bpbonline.com. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights

with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or

submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why

not leave a review on the site that you purchased it from? Potential

readers can then see and use your unbiased opinion to make purchase

decisions. We at BPB can understand what you think about our

products, and our authors can see your feedback on their book.

Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. Overview of AI

Structure

Objectives

AI systems

Machine Learning

 How are ML Models created?

Data types

Learning From data

Types of ML algorithm

 Unsupervised learning

 Reinforcement learning

 Supervised learning

Metrices for evaluating classification model

Metrices for evaluating regression model

Deep learning

Dataset preparation

Application of AI

Role of Mathematics in AI

Conclusion

2. Linear Algebra

Structure

Objectives

Linear equations

 Solving system of equations analytically

 Infinitely many solutions

 Inconsistent system

Introducing matrix

 Augmented matrix

 Pseudocode forward substitution

 Pseudocode back substitution

 Basic matrix operations

Euclidean space

 Vectors and basic properties

 Representing vector

 Norm

 Direction

 Scalar multiplication

 Addition/subtraction of vectors

 Distance between vectors

 Dot product and orthogonality

 Linear Combination of Vectors

 Dimension and basis of the space

 Orthogonal and orthonormal basis

 Natural orthonormal basis of ℝ n

 Subspaces

 Dimension of subspace

 Hyperplanes and Halfspaces

 Defining vector space

 Vector spaces

 Normed vector space

 Norm of real numbers

 lp Norm

 Maximum norm

 Matrix norm

 Inner product

 Application on real dataset

 K-nearest neighbor

Representing vectors in matrix

 Matrix rank

Matrices types

 Identity matrix

 Symmetric matrix

 Skew symmetric matrix

 Invertible matrices

 Properties of Matrix Inverse

 Permutation matrix

 Orthogonal matrix

Matrices in ML problem formulation

 Feature/data matrix

 One hot encoding

 Distance matrix

 Gram matrix

 Covariance matrix

 Correlation matrix

 Jacobian and Hessian matrix

Subspaces of matrix and orthogonality

 Null space

 Orthogonality among subspaces

 Determinant

 Inverse of Matrix

Orthonormalization

 Applications of Orthonormalization

Linear transformation

 Matrix associated with linear map

 Composition of linear transformation

 Eigenvalues and vectors

 Eigen properties

 Geometric analysis

 Existence of zero eigenvalue

 Eigen properties of symmetric matrices

 Positive definite

Matrix decomposition

 LU decomposition

 By-product of Gauss-Jordan elimination

 QR decomposition

 Eigen decomposition

 Real symmetric matrix

 Singular value decomposition

Conclusion

Points to remember

Further Reading

3. Vector Calculus

Structure

Objectives

Analysis of real functions

 Limit of a function

 Continuous functions

 Derivative of a function

 Higher Order derivatives

 Taylor series expansion

Scalar and vector fields

 Limits and continuity

 Derivative of scalar fields w.r.t. vector

 Directional derivative and partial derivatives

 Total derivative

 Geometry of gradient vector

 Derivative of vector fields w.r.t. vector

 Chain rule for derivatives of vector fields

 Matrix form of the chain rule

 Tensors

 Einstein notation

 Dot product of tensors

 Tensor calculus

 Total derivative of tensor

Mathematical optimization

 Maxima, minima, and saddle point

 Decent methods

 Function optimization with constraints: Lagrange multipliers

 Optimization with inequality constraints

 The Lagrange dual function

 Convex functions

 Properties of convex functions

 Convex optimization

 Karush-Kuhn-Tucker conditions (KKT)

Conclusion

Points to remember

Further readings

4. Basic Statistics and Probability Theory

Structure

Objectives

Basic statistics

Measures of central tendency

 Mean

 Median

 Mode

Partition Values

Measures of dispersion

 Range

 Interquartile Range

 Mean deviation

 Standard deviation

 Coefficients of dispersion

Moments

Skewness and kurtosis

Correlation

Probability and odds

Random experiment

 Events as sets

 Conditional probability

 Independent Events

 Conditional independence

Total probability theorem

Bayes theorem

Bayesian Decision Theory

Random variable

Discrete probability distributions

 Bernoulli and categorical distribution

 Binomial distribution

 Poisson distribution

Continuous probability distributions

Cumulative Probability Distribution Function (C.D.F)

Uniform distribution

Gaussian distribution or normal distribution

Exponential Distribution

Mathematical expectation of a random variable

Joint Probability Distributions

Transformation of a random variable

Multivariate distributions

 Multinomial distribution

 Multivariate gaussian distribution

Information theory

 Entropy

 Relative entropy or KL divergence

 Mutual information

Decision tree

Conclusion

Points to remember

Further reading

5. Statistical Inference and Applications

Structure

Objectives

Large Sample Theory

 Sample statistics

 Sampling from known distributions

 Hypothesis testing

Statistical inference

Estimator properties

Minimum Variance Unbiased (M.V.U) estimators

 Likelihood function

 Cramer-Rao inequality

 Method of Maximum Likelihood Estimation (MLE)

 Bias-variance decomposition of estimator

Applications – Formulating ML problems as statistical inferencing

 Data distribution

 Classification

 Naive Bayes classifier

 Regression

 Linear and curvilinear regression

 Estimating model parameters

 Iterative estimation of model parameters

 Overfitting and underfitting

 Bias variance trade-off

 Logistic Regression

 Multiclass logistic regression

 Poisson regression

 Interpretability of linear models

Conclusion

Points to remember

Further Reading

6. Neural Networks

Structure

Objectives

Artificial neuron: An adaptive basis function

Feed Forward neural network

Training neural network

Stochastic Gradient Descent

Computing error derivatives

Backpropagation algorithm

Challenges of training neural networks

 Modifications of SGD

 Momentum methods

 Adaptive learning rate

 Bias-variance trade-off in neural networks

 Regularization of neural nets

Sensitivity of neural networks to small perturbations

Neural Network Architectures

Conclusion

Points to remember

Further Reading

7. Clustering

Structure

Objectives

Forming clusters

Distance and similarity

Cluster quality

Internal evaluation

 Davies-Bouldin indicator

 Dunn indicator

 Silhouette coefficient

External evaluation

 Rand index

 F-measure

 Fowlkes–Mallows index

 Jaccard index

Clustering algorithms

 Partition-based clustering

 K-means

 K-medoids

 Density-based clustering

 DBSCAN

 Distribution-based clustering

 Gaussian Mixture Model

 Hierarchical-based clustering

 Agglomerative clustering

 Distance between clusters

 BIRCH

 Graph-based clustering

 Fuzzy theory-based clustering

 Fuzzy c-means

Conclusion

References

8. Dimensionality Reduction

Structure

Objectives

Reducing dimensionality

Principal Component Analysis

Loading Iris dataset

Calculating covariance matrix

Decomposition of covariance matrix

Reducing with principal components

Variance retention

When to use PCA

Autoencoder

Iris autoencoder

t-SNE

Choosing σi

PCA vs t-SNE

t-SNE on Iris Dataset

Conclusion

Further reading

References

9. Computer Vision

Structure

Objectives

Digital Image Formation

 Capture the light

 Sampling and quantization

Pixels

 Accessing pixels

Spatial filtering

 Geometric spatial transformation

 Neighbor pixel operation

 Convolution properties

 Separable kernels

 Convolution with separable kernels

 Gaussian kernel

 Discrete approximation of Gaussian function

 Application of Gaussian filter

 Image derivative-based kernels

 Laplacian kernel – Second order derivative

 Sobel kernel: First order derivative

 Non-linear filters

Learning filters

Convolution Neural Networks

 Convolution layer

 Pooling layer

 Spatially separable convolution

 Depthwise separable convolution

 Depthwise convolution

 Pointwise convolution

 Optimization

 Upsampling: Transposed convolution

Development of CNN

 AlexNet

 TensorFlow Model

 Counting trainable parameters

 Inception

 VGG

 ResNet

 Xception

Application of CNN models

Image classification

 Object detection

 R-CNN – Regions with CNN features

 YOLO – You Only Look Once

 Image segmentation

 U-Net

Summary

Further reading

Points to remember

References

10. Sequence Learning Models

Structure

Objectives

Time series models

 Decomposition of time series

 Differencing

 Time series forecasting

 OLS model

 Exponential smoothing

 Autoregressive Integrated Moving Average

Probabilistic sequence models

 Markov chain

 Hidden Markov model

Recurrent neural networks

 Training RNN

 Long Short-Term Memory (LSTM)

 Gated Recurrent Unit (GRU)

 Stacked LSTM/RNN

Generative models for sequence

 Handwriting generation

 Mixture Density Network

Sequence classification

 Bi-directional RNN

Sequence to Sequence

 Connectionist Temporal Classification

 Training CTC network: Maximum likelihood

 DP formulation for CTC loss

 Inferencing from CTC network

 Encoder-Decoder architecture

 Attention mechanism

 Key-value-query formulation of attention

 Language translation model

 Speech recognition model

 Self-attention and transformers

 Computing self-attention

 Transformer architecture

Conclusion

Points to remember

Further Reading

11. Natural Language Processing

Structure

Objectives

Natural language

 Syntactic structure of language

 Parts of Speech (POS)

 Phrases

 Clause

 Sentence

 Document and Text corpus

 Semantic structure of language

 Wordnet

Text preprocessing

Models for text

 Bag of Words (BoW) model

 Vector Space Model

 Count based or Boolean

 Term Frequency (TF)-Inverted Document Frequency (IDF)

 Latent Semantic Indexing (LSI) model

 Probabilistic models of text

 Topic models

 Probabilistic generative models: Latent Dirichlet allocation

 Neural language models

 Contextual models

 ELMo model

 BERT

 Position encoding

 Pre-training BERT

 Input representation for pre-training tasks of BERT

 WordPiece tokenization

 ERNIE

 Generative Pre-Training by OpenAI

Conclusion

Points to remember

Further reading

12. Generative Models

Structure

Objectives

A simple generative model

 Variational Autoencoders (VAE)

 Generative Adversarial Nets

 Equilibrium state for GAN training

 Implementing GAN

 GAN training challenges

 Solutions for mitigating GAN training issues

 Wasserstein GAN (WGAN)

 Some properties of EM distance

 WGAN training

 Ensuring Lipschitz Constraint in Discriminator

 Conditional GAN (cGAN)

 Cycle GAN (CycleGAN)

Autoregressive generative models

Applying generative models

Conclusion

Points to remember

Further Reading

Index

CHAPTER 1

Overview of AI

From the age of civilization, humans are making machines to reduce physical

labor. Today, the world is full of machines. Machines cultivate and harvest our

crops, make our houses, fly our planes, assemble our cars, control traffic, cook and pack food, entertain us, and even take care of us when we are sick.

Machines have not only replaced physical labor but have also exponentially increased human capability. However, a majority of these machines work by following a set of predefined steps required to complete a task successfully.

Computing machines and algorithms are at the core of these big and small machine. Algorithms help us formally define the steps to be executed by a machine, and the computer hardware execute these steps in sequence to

complete the given task. With advancement of computing capability, new

algorithms to solve more complex problems have evolved.

For the past few decades, we have been trying to build intelligent machines that can think and take decisions. Since then, machines are taking over more

and more tasks from us. They began to control other machines for us. On this

path of evolution, we have strived to impart human intelligence like reasoning,

creativity, analyzing, problem solving ability, and natural language

understanding to computers. The field of algorithms that strive to impart human intelligence to machines is called Artificial Intelligence (AI).

Structure

In this chapter, we will cover the following topics:

AI Systems

Categories of AI Algorithms

Applications of AI

Role of Mathematics in AI

Objectives

This chapter gives a high-level overview of AI and its various components.

You will be able to learn about common terminologies like model, data, parameters of models, and dependent and independent variables in this chapter,

which will be referenced repeatedly in the subsequent chapters. Lastly, we will

cover why mathematics is important for understanding AI.

AI systems

AI is a multidisciplinary field of research with a goal to create technology that can enable machines to function like humans. Human mind consists of

memories, intellect, thoughts (emotions), and a sense of identity. Human intellect is the discriminative faculty of the mind that determines whether an action is right or wrong. The sense organs present the current situation someone is in, to their intellect. Then, intellect consults the memory, past experiences, present thoughts, and emotions and decides the action. The actions can be speaking, running, smiling, crying, fighting and so on. So, for a machine to function like a human, it should have all these capabilities. Well,

machines may not have emotions to influence their decisions! But machines must learn from past experiences, and these experiences must influence their

decisions. At first, a machine should have the sense organs by which it can digitally map and record our physical world. Then, it must have the ability to

learn from the mistakes it makes.

AI systems are classified by their ability to imitate human behavior. The classification is as follows:

Artificial narrow intelligence (ANI or narrow AI) refers to a computer’s ability to perform a single task extremely well. This is the only type of AI that exists in reality. For example, voice assistants like Siri, computer playing chess, flying aeroplanes, recommending products

and online content as per our interest. These machines don’t think, and they also don’t have emotions like humans.

Artificial general intelligence (AGI or strong AI) is when a computer program can perform any intellectual task exactly like a human, that is,

machines exhibit human intelligence. They can reason, represent

knowledge including common sense, plan, learn, and converse in natural

language. The general AI does not exist in reality today, but the idea is

depicted in many sci-fi movies like Interstellar. Also, there are many theoretical frameworks and models proposed for AGI. Alan Turing, who

first posed the question in 1950, ‘can machines think?’ also suggested a

test to evaluate this. Turing Test: A machine and a human converse with a second human who cannot see or know with whom they are conversing.

This second human should evaluate and conclude who is human and who

is machine. If the machine can fool the human evaluator, it means AGI is

achieved.

Artificial super intelligence (ASI) is an AI system that surpasses human intellect, that is, machines having greater problem solving and decision-making capabilities that are far superior to human beings. This is

hypothetical AI. For such machines to be of any use for life, they must be

ethical, must understand human emotions, and must be self-aware. Self-

awareness is required for safety, effectiveness, trustworthiness,

transparency or explainability of decision-making. Self-awareness also

allows for faster reactions and adaptations to changes in dynamic

environments. This means machines must have some level of

consciousness like humans or possibly, much higher levels of

consciousness than humans!

In this book, we will limit our discussions to ANI only. Figure 1.1 depicts various forms of ANI at a very high level. Each of these is a huge independent

literature in its own. Refer to the following figure:

[image: Image 7]

 Figure 1.1: Subcomponents of AI present today

The computer vision literature gives eyes to the AI system. The speech processing literature helps the system to listen by acting as its ears. Robotics uses these artificial senses and gives limbs to the AI system, like robotic arms that can perform highly sophisticated tasks like microscopic surgery.

Analyzing natural language spoken by human and understanding it helps the system to converse with humans in any natural language. An expert system is a computer system emulating the decision-making ability of a human expert.

The first expert system was built in 1970s, which had two main parts: a knowledge base that represented facts and rules, and inference engine that applies the rules to the known facts to deduce new facts. All these together are

[image: Image 8]

essential parts of a future AGI system. Machine learning (ML) is a broad class of algorithms that is used to build these components of an AI system.

Machine Learning

Machine Learning (ML) includes the study, design, and development of algorithms to give computers the capability to learn from data instead of requiring explicit programming of hard-coded rules. The process of

discovering an algorithm involves manual analysis of input-output examples and deriving set of rules and steps such that given the input, we can always find the output by following these steps. This may be easy for certain class of

problems, but when the number of possible rules is very high, it becomes almost impossible to figure out all possible rules to find a robust algorithm.

 Figure 1.2 shows the difference of classical algorithm development vs ML:

 Figure 1.2: Difference b/w classical programming and machine learning To understand this better, let us consider the problem of classifying flowers.

Consider a huge basket of flowers, and assume that there are three categories

of flowers, as shown in Figure 1.3:

[image: Image 9]

[image: Image 10]

 Figure 1.3: Three species of Iris flower

Flowers vary in size, colour, texture, and shape. We want to build an algorithm

than can classify the flowers to a type. The first step is to select the properties or features of flowers that will be useful to identify flower species. Once selected, these features are represented with a numerical value that an algorithm can take as input. Here, we have considered sepal length, sepal width and petal length, petal width as the four features. Figure 1.4 shows a sample of five flowers and their corresponding features and categories:

 Figure 1.4: Iris flower’s features values and its species/category

Once features are identified, we must define set of rules to classify a flower.

Here, our output or target variable is the category of flower. This is also called independent variable and the features are termed as dependent variables.

 Figure 1.5 is an example of rules using only the first two features. The range of values of sepal length and petal length differ. We can apply some data transformations such that all the feature values in the dataset to are mapped a

common scale, without distorting differences in the ranges of values. This is called data normalization. The feature values are normalized or scaled such

[image: Image 11]

that they are centred around zero; that’s why we see negative and zero values

in the axes. The original data set has all positive quantities as all the four flower features are length or width. Refer to the following figure:

 Figure 1.5: Identifying the Iris species using first two features

Simple rules to classify the flowers into the respective categories by observing only two features are as below:

If the normalized sepal length < 0 and normalized sepal width > 0, then

it’s setosa.

If the sepal length and width fall in the lower triangular region, it’s versicolor with a high chance. This triangular region can be defined by

three straight line equations.

Otherwise, its virginica.

This collection of rules or a mathematical function representing these rules that helps to identify flower type is called a model.

Manually deriving rules or a mathematical function is time-consuming task.

Machine learning algorithms try to automate this process by learning rules or

decision boundaries or a mathematical function that takes a flower’s numeric

representation as input and outputs the possible category of the flower.

Does selection of features impact the classification accuracy of the learned model? Yes, classification accuracy depends on selected features of flowers.

We see in the preceding example that, as we have chosen only two features, we

[image: Image 12]

are unable to properly distinguish the two classes: versicolor and virginica. In the next section, we will discuss a step-by-step process for designing an ML-based model.

How are ML Models created?

Building a ML model is an iterative process. It starts with understanding the business problem and then collecting data related to the problem domain.

Then, this data is processed, cleaned, and prepared for modelling. This is

depicted in Figure 1.6:

 Figure 1.6: Building ML model

Following are the various steps for building ML model:

1. Data collection: The process of collecting observations or data related to the problem is called data collection. In Iris flower subtype

classification, we must measure petals and sepal’s length and width for each flower in the collected sample. Will these features of the flower and

number of sample flowers sufficient for solving the problem? The answer

is, we can’t initially say if these features or the number of collected samples will be sufficient. Human domain expert in flower identification

can provide useful information about sufficiency of the selected features.

How many samples of flowers we need to collect? This will not be clear

initially. After the model building and initial analysis, we can revisit this

question. A rule of thumb is, if we have more features for each sample,

we must collect more data samples.

2. Data preparation: In this step, the observations are analyzed to check whether there are any missing values, any error in data collection like an

abnormal value of observation, and if so, those must be corrected or

removed from dataset.

3. Feature extraction/selection: The features of the cleaned data are further analyzed for obvious intercorrelations. It may happen that some features

are very highly correlated, and using any one of these related features is sufficient to solve the problem. There may be features that are not

important at all for the problem. These are statistical checks that are discussed in detail in Chapter 5, Statistical Inference and Applications.

After this step, a few features are selected. Sometimes, we may have to

derive a new feature from the collected features. For example, we may use a logarithm function to transform a feature value and use the log value as the feature. This step is also called feature engineering.

4. Train model: Choosing a mathematical function that accepts selected features and outputs desired result: Model selection. Generally, these mathematical functions are parametric, that is, their functional forms are fixed, but changing the parameters will change the function. In the Iris flower classification shown in Figure 1.5, the parametric function is a straight line in two dimensions having the general equation: ax + by + c =

0, where a, b, c are parameters. In fact, we have 3 such lines; hence, we need 9 parameters to define the model function. For one set of fixed values of these parameters, we have a decision boundary or rules that we

call model. The process of finding these parameter values that provides

results near to the expected (or ground truth) is called model training.

5. Model evaluation: Various metrices are designed to access the quality of the models created in the previous step. These metrices are different for

different types of ML algorithm. These are discussed in the following

section on ML model types.

6. If it’s found that the model quality is not acceptable, then various ways of

improving the models are tried. This may involve choosing a different

functional form, like using a quadratic function ax2 + bx + cxy + d = 0 as the model, and its parameters are again estimated. If we are still

unsuccessful at finding a good model, we may have to go back to the data

preparation stage and design more features or may have to go back

further to collect more relevant data and features to solve the problem.

These are depicted as the dotted lines going backward in Figure 1.6.

There are various types of ML algorithm for solving different types of problems. All these algorithms are built iteratively by learning from data. The

data or observations about a problem domain is the starting point of ML

algorithms, and then these algorithms are iteratively improved by taking feedback from the data. We will first discuss briefly the different types of data and then the different types of ML algorithm.

[image: Image 13]

Data types

Data is the starting point for solving any problem in AI. Data can be broadly

categorized into two types: structured and unstructured. Structured data is tabular data where we have certain predefined features or attributes, that is, the columns are defined in the table. The rows in the table contain values of these

attributes. Unstructured data is information that is not arranged according to a pre-defined data model or schema, and therefore, cannot be put in a tabular form. In Figure 1.7, these two categories are further split into different subcategories with examples:

 Figure 1.7: Data types

All data types must be converted to numerical form before feeding them into

machine learning model. This is done in the feature extraction phase of ML

model building.

Learning From data

For algorithms to learn from data, there needs to be feedback about the rules or logic learnt by the algorithms. Based on the feedback, algorithms will learn better representation of the data to achieve desired output. Different algorithms

[image: Image 14]

are required for different degrees of feedback obtained. Next, we will discuss

the various types of these algorithms.

Types of ML algorithm

We can categorize machine learning model types based on the level of the feedback that algorithms receive during its learning phase. This is depicted in

 Figure 1.8. Let’s discuss these three types of algorithms in further detail. Refer to the following figure:

 Figure 1.8: Model types based on feedback during learning

Unsupervised learning

Unsupervised learning is about identifying unknown patterns/groups from the given unlabeled data. Here, classes of data samples or total number of classes

or desired output for each data sample is not part of the data; this kind of data is called unlabeled data. Two popular techniques that fall under this category are clustering and dimensionality reduction.

Clustering is about automatically discovering natural groups/clusters in the unlabeled data so that the degree of similarity between samples of the same cluster and the degree of dissimilarity between samples of different clusters are maximized. Similarity and dissimilarity criteria can vary based on the problem

statement. The similarity between data points is defined using a distance function. There are also various ways of evaluating the quality of clusters formed, which are discussed in further detail in the Chapter 7, Clustering.

Dimensionality reduction is transformation of data from high-dimensional space to low-dimensional space, such that data represented in lower-dimensional space retains the properties of original data to achieve the required

[image: Image 15]

task. Figure 1.9 shows a simple example of dimensionality reduction. Here, we have a two-dimensional data distributed, represented with axis f 1 & f 2. We need two dimensions to represent the data. Suppose we now rotate the axis along the

line of distribution; we can then represent the points using one axis e 1 by projecting these points on e 1. Here, the scattering of the data was along the e 1

direction, and we have rotated the axes. We can reduce dimensionality of the

data using this principle and some mathematical tools from linear algebra.

Refer to the following figure:

 Figure 1.9: Finding optimal number of new axes for the given data

Reducing dimensionality is beneficial as algorithms will overcome sparse data

representation and curse of dimensionality. The phrase Curse of dimensionality is coined by Richard E Bellman, and it refers to various challenges that arise

when analyzing data in high-dimensional spaces. As dimensionality increases,

volume of the space increases exponentially, which make existing data sparse.

For algorithms to work reliably, we need to increase the data exponentially.

Choosing right features and converting data to lower-dimension space plays an

important role in the success of machine learning algorithms. Due to this, dimensionality reduction is often used as an intermediate step for various machine learning algorithms. We will discuss these techniques and its

applications in greater detail in Chapter 8, Dimensionality Reduction.

Reinforcement learning

There exist many situations where there is partial feedback or the feedback is

delayed. Consider the game of chess where the objective of the task is to win

the match. There do not exist feedback about every move. Feedback is delayed

to the end of the game. There do exist partial feedback during the game when a

piece is captured. Capturing opponent’s piece is positive sign but doesn’t guarantee the win. When rewards or feedback is received from the

game/environment, it must be recorded, and the path taken to reach the present

state must be rewarding accordingly. This approach of utilizing partial or delayed rewards/feedback to learn actions for various situations/states is called Reinforcement Learning (RL). The objective of the RL algorithm is to find optimal action for each state that would result in maximum cumulative long-term reward.

 Figure 1.10 shows an example of a simple RL problem: A robot trying to walk as long as possible without falling: The robot can be in three states: Fallen state, Standing state, or Moving state. The robot can perform only two actions:

moving the legs slowly, as depicted in Figure 1.10 with light-colored arrows, and moving the legs aggressively/fast, as depicted in Figure 1.10 with dark-colored arrows. Given that the robot is in any of these three states, the dark arrows show what happens with slow action, and the light arrows show what

happens with the aggressive action. The number over these arrows shows the

partial feedback or reward on taking the action. These rewards are given by the

environment where the robot is walking. The ultimate goal of the robot is to learn a strategy or policy such that it can walk for very long time, that is, to discover the best possible action (slow or fast moving) at each state so as to

maximize the cumulative future reward. Refer to the following figure:

[image: Image 16]

[image: Image 17]

 Figure 1.10: State transition experienced by the robot

 Figure 1.10 represents the environment the robot is walking as a state transition diagram. One important point to note here is that this environment is not deterministic, that is, taking a fixed action at a given state may either lead the robot to any of the possible states reachable from the given state. Suppose

the robot is in fallen state; it may be able to stand by moving its legs slowly or may remain fallen. The chance of landing to another state may vary and is an

inherent property of the environment. The objective of RL is to learn the best

possible strategy under these uncertain conditions. Figure 1.11 shows examples of 3 possible policies π1, π2, π3 the RL algorithm can learn. Policies

are outputs of RL algorithm. Refer to the following figure:

 Figure 1.11: RL policies

Following are the different components of a RL problem:

Agent: This is the component that makes the decision of what action to

take; it is the robot’s decision-making algorithm in the previous example.

Environment: This is the thing agent interacts with, comprising

everything outside the agent. The floor area on which the robot can move

along with external factors like wind adds uncertainty to the outcome of

action. States the robot is in are associated with the body of the robot. So,

the body of robot is also part of the environment.

State: This is the current condition of the environment, for example, whether the robot is fallen or standing or moving.

Action: This is the move taken by the agent. In previous example, there

are two possible actions at every stage: slow moving and fast moving.

Policy: Defines the agent’s way of behaving at a given time and state. It’s a mapping from perceived states of the environment to actions to be

taken when in those states. This is the output of the RL algorithm.

If number of states are few and transition probabilities are known, then there

exist dynamic programming-based algorithms like policy iteration, q-learning to learn the policy. For large state space, function approximators are used to learn the policy.

In industry, RL-based robots are used to automate various tasks. One example

is AI agents by DeepMind to cool Google data centers, which led to a 40%

reduction in energy spending. RL algorithms can learn policies from medical

diagnosis of patients and then can act as a virtual doctor where patients can receive treatment from policies learned by RL systems. RL is also being used

for stock trading.

Next, let’s look at another class of ML algorithms where complete feedback is

provided from the data. Here, the data used to build the model is called training data. Each instance of the training data has one or more target features, which

act as feedback to the training algorithm.

Supervised learning

Supervised learning is about learning parameters of the function based on the labelled data. In labelled data, desired output for each data sample is provided.

Output desired for each data sample can be either categorical data representing

a class label for the data instance or real number (continuous variable) indicating some measurement. If desired output represents class number, then

it is called classification. If desired output represents continuous variable, then it is called regression. Identifying the type of Iris flower discussed before is an example of supervised classification where the target label are the three classes of flowers. An example of regression would be predicting the price of a house

based on its location, square foot area, and so on. There are various types of

supervised learning algorithms, which we will cover in this book. We will be

first providing the mathematical tools required to understand the theory behind

these algorithms and then introduce these algorithms along with applications to

solve various ANI tasks. Various metrics are defined to evaluate the quality of

the learned model for regression or classification. Let’s first discuss the classification metrices.

Metrices for evaluating classification model

We will consider an example of 10 predictions for the flower classification problem (Figure 1.3) to illustrate these metrices. The predictions are made using the model shown in Figure 1.5 by checking which region the point falls.

 Table 1.1 shows a sample prediction output of a model built on two sepal features, and the true output is depicted in the target column:

sepal length (cm)

sepal width (cm)

prediction

target

0

0.192454015

2.08478395

setosa

setosa

1

1.132206284

-1.72578699

virginica

virsicolor

2

-0.959849197

2.173531324

setosa

setosa

3

2.952024909

2.138220415

virginica

virsicolor

4

-0.505463006

-2.149987293

virsicolor

virginica

5

0.80187062

0.622172986

virginica

virginica

6

-0.958066983

-2.170298289

virsicolor

virsicolor

7

0.877714008

0.053590407

virginica

virginica

8

-4.388166428

-0.23903155

virsicolor

setosa

9

-1.419429199

-0.686692025

setosa

setosa

 Table 1.1: Prediction by a model on test data

[image: Image 18]

[image: Image 19]

[image: Image 20]

[image: Image 21]

We will first define some terms and then define the metrics using those. We

will apply these terms and metrics on the output of a model captured in Table

 1.1:

True Positive (TP): If the model predicts target class A as A, then the case is called True Positive. In previous table, there are four actual samples from class setosa, and the model has predicted three as setosa.

So, the TP count for this class is three.

False Negative (FN): If the model predicts the class A as not A (any class other than A) then it is called False Negative. For setosa class here,

we have one FN count.

False Positive (FP): If the model predicts not A (any class other than A) as A, then it is called False Positive. Considering the versicolor class, we

see sample numbers 4 and 8 are predicted as versicolor but are actually

not of that type. So, for versicolor, the FP count is 2. However, for setosa

class, there is no FP.

True Negative (TN): If the model correctly predicts the class not A as not A, then it is called True Negative. For the setosa class again, not setosa means all the 6 samples whose true labels are not setosa. we see

none of them are predicted as setosa. so, TN count for setosa is 6.

Following are the metrics for evaluating a classification model:

Following are the metrics for evaluating a classification model:

Classification accuracy: Fraction of predicted labels matching exactly with true target labels. Here we have 6 rows out of 10 where we find exact match and hence accuracy =

.

Class-wise accuracy: Ratio of number of correct predictions for a target

class to the total number of actual labels for the target class:

 accuracy =

For setosa, TP = 3, TN = 6, FP = 0, FN = 1 and hence, accuracy =

For versicolor, TP = 1, TN = 5, FP = 2, FN = 2 and hence, accuracy =

[image: Image 22]

[image: Image 23]

[image: Image 24]

[image: Image 25]

For virginica, TP = 2, TN = 5, FP = 2, FN = 1 and hence, accuracy =

Precision: The ratio of TP count for a class A to total number of predicted labels A by the model.

 precision =

Recall: The ratio of TP count to the total actual positive count for the class. This is also known as True Positive Rate (TPR) or Sensitivity: recall =

F1 score: The harmonic mean of recall and precision is called F1-score.

It provides a balanced score for precision and recall. The F1 will be high

only when both precision and recall are high. Generally, increasing recall

by modifying the prediction algorithm will decrease precision and vice

versa. This is called precision/recall trade-off. Using the Python Scikit metrics.classification_report function, we can calculate the F1

score, precision, recall and accuracy together; the output is captured in

 Figure 1.12:

 Figure 1.12: Classification report

Confusion matrix: Consider a n x n matrix (where n is the number of targets) with rows representing an actual class and columns representing

a predicted class. The row sum of this matrix will be equal to the support

or number of true class labels for each class. The diagonal element will

show the TP count the (i, j) the entry of the matrix, where i ≠ j represents number of misclassifications of the ith class as jth class. Confusion matrix

for the example is captured in Figure 1.13:

[image: Image 26]

 Figure 1.13: Confusion matrix

The best desired confusion matrix is one which has large diagonal

elements and small entries in the rest of the matrix.

Based on the classification problem we are solving, some of these metrices may have more importance than others. For example, if we are detecting whether a transaction is fraudulent, it’s more important to detect a fraud. We

need high recall in this case at the cost of precision. As most of the models output some score for a prediction, these adjustments in predictions can be done by putting some thresholds. For this fraud detection case, suppose our model outputs a score between [0, 1]. We may predict a transaction as fraud even if score > 0.3 and non-fraud otherwise. Thus, increasing recall and compromising on precision. Varying the prediction thresholds, we can come up

with the following metrics and get the best out of our model:

Specificity or True Negative Rate (TNR): The ratio of number of negative classes, that is, not A, which are correctly being classified as not A.

[image: Image 27]

[image: Image 28]

 TNR =

False Positive Rate (FPR): The ratio of number of negative classes, that is, not A, which are inaccurately being classified as A.

 FPR =

 , thus FPR = 1 – TNR

We can also compare two different prediction models using these rates. For that, we need another metric called Receiver Operating Characteristics (ROC).

Receiver Operating Characteristic (ROC) curve: ROC plots the True

Positive Rate (TPR) vs False Positive Rate (FPR), as shown in Figure

 1.14. The area under the curve is used as a measure. For a perfect

classifier, the area under the ROC curve is 1, and hence, the closer the area under the ROC curve is to 1, the better the classifier. It’s generally

used to compare two different prediction models. Refer to the following

figure:

[image: Image 29]

 Figure 1.14: ROC curve

Next, let’s look at the metric used for regression tasks.

Metrices for evaluating regression model

For discussing the regression metrices, let’s take a simple linear regression example. Suppose we want to predict the weight gain based upon calories consumed only, and we have a sample data collected as shown in Table 1.2: id

calories

weight_gain

0

1489

5.167585591

1

1446

6.172757721

2

1222

6.38994428

[image: Image 30]

3

1141

3.915110902

4

206

4.047348025

5

1247

3.285284391

6

1338

4.404260107

7

196

3.160958623

8

213

6.701951781

9

738

3.64042916

 Table 1.2: Calories intake and resulting weight gain

Here, we have only one independent variable, which is the calories consumed

(x). We have plotted this data in Figure 1.15. Suppose our mathematical model for regression is a straight line y = 0.0004 x + 4.2, as shown in Figure 1.15.

Then, for calorie consumed = 1222 (2nd sample above), the predicted weight

gain is 4.7 but the actual wight gain is 6.38 kg. Refer to the following figure:

 Figure 1.15: Plot of calories and resulting weight gain

Following are the metrics for evaluating a regression model:

Mean Absolute Error (MAE): MAE is a very simple metric that calculates the average absolute difference between actual and predicted

values. In the previous example, the predicted value by our model is

point on the line corresponding to each value of the calories in the x-axis;

thus:

[image: Image 31]

[image: Image 32]

 MAE = (|5.18 – 4.79|+|6.17 – 4.78|+ … +|3.64 – 4.49|) = 1.075

This indicates that, on an average, the weight gain estimate by our model

above is going to have an error of ±1.075 kg error. This error has the same unit as the target variable.

Mean Squared Error (MSE): MSE finds the average squared difference between actual and predicted value.

 MSE = ((5.18 – 4.79)2 + (6.17 – 4.78)2 + … + (3.64 – 4.49)2) = 1.536

The squared error is more for points far away from the predicted value

compared to MAE. But the error is now a squared quantity and does not

have the same unit as the predicted value.

Root Mean Squared Error (RMSE): RMSE is a simple square root of

mean squared error. This has the same unit as the target.

There are few other metrics for measuring regression like R-squared and adjusted R-squared for measuring regression error. We will be revisiting these

metrices in the subsequent chapters.

For comparing various models of regression, there are few statistical measures.

Models are scored both on their performance on the training dataset and based

on the number of model parameters or the complexity of the model.

Akaike Information Criterion (AIC): AIC penalizes models that use more parameters.

 AIC = 2k – 2ln(L)

 k is the number of model parameters. L log of the probability that the model could have produced your observed target values. Lower the AIC,

better is the model. Calculation of these log probabilities will be

discussed in the later chapters.

Bayesian Information Criterion (BIC): Another similar metric that also takes the number of examples into consideration for scoring the models is

called BIC. Lower BIC values indicate better models. We will provide

the mathematical formula for this later as it requires some more

theoretical foundations of regressions to be introduced.

AIC, BIC can be also calculated for classification models and compare them.

In all the above types of ML algorithms, supervised, unsupervised and RL, one important step is feature engineering. This is a manual step that involves handcrafting features from the observations using domain knowledge. To

understand the complexity of this step, let’s take another example of feature engineering for a slightly complex classification problem: face recognition.

Given a query face image and a database of known faces, the task is to find the

closest match of the query image with images in the database. The first logical

step to solve this problem is to extract features from face images and represent the faces in the database numerically. The query image can be also converted

to a set of numeric observations, and then we can compare query image observations with numeric representation of all the images in the database. In

order to come up with this representation of the image, we have used domain

knowledge – what are the most distinguishing features of a face: eyes, eyebrows, nose, jawline, mouth, and relative distance between these. Then, we

have to design algorithms to find these points from a face image.

Thus, we see that the feature engineering step is the most time consuming and

difficult in ML. Is there a way we can automate the feature engineering process? A subclass of ML algorithms discussed in following section addresses

this.

Deep learning

Deep learning is a subfield of machine learning, where a hierarchical representation of the data is created. Higher levels of the hierarchy are formed by the composition of lower-level representations. More importantly, this hierarchy of representation is learned automatically from data by completely automating feature engineering. Automatically learning features at multiple levels of abstraction allows a system to learn complex representations of the input to the output directly from data, without depending on human-crafted features. Models used in deep learning are generically called neural networks.

Neural networks consist of small computation units called neurons (inspired by

the biological neurons in human brain), which are basically parametric

functions of the input. The output of a neuron is a single real number. Thus,

having N neurons, we can get a set of N real numbers or set of N features.

Changing the parameter values gives different feature vectors for the same input. For the face recognition example, we can design a neural network which

takes a raw digital image as input. The input image is a n × n array or matrix of pixels. We define a parametric function that computes the weighted average of

[image: Image 33]

every set of consecutive 3 × 3 pixels in the image and outputs a single value.

The weights, used in computing the weighted average, are the parameters of the neuron. These parameters are learned from data. We can have many such

neurons with different sets of weights and thus have a layer of neurons representing various image features like edges, color, and texture. Putting multiple hierarchy of layers like this, we can have a network of neurons called

deep neural network. The depth of the network is defined by the number of layers of neurons. A comparison between deep learning’s approach and classic

machine learning’s approach is depicted in Figure 1.16:

 Figure 1.16: Deep learning vs classic machine learning

We will discuss neural networks in greater detail in Chapter 6, Neural

 Networks, but most of the mathematical tools required to understand the theory

of neural networks is covered in Chapters 2 to 5. We will cover various applications of neural networks Chapter 9 onward. The success of neural networks depends on the availability of large volumes of data and immense computing power of present day.

Dataset preparation

Neural networks need large volumes of data for computing features

automatically. How much data is sufficient for the algorithm to learn? The rule

of thumb is that the dataset size must increase with an increase in learnable parameters and dimensions of the data.

 Tip: We must make sure that samples in the dataset are not repeated or the

 number of samples of a category is higher as compared to others. This will

 push a model to learn better representation for the skewed

 category/samples, leading to lower performance for other categories or

 samples.

In practice, the entire dataset is not used for training the neural network model.

After cleaning of the data, it is divided into three sets: training, validation, and test. Dividing should be such that variation of the data is captured in all three sets. The neural network learning algorithm and many other machine learning

algorithm is an iterative algorithm.

Most learning algorithms generally start with a random initialization of parameters and iteratively improve the parameter values by taking feedback from training data. As learning algorithm learns parameter values during training phase, it needs to validate whether it is moving in the right direction.

For this, validation dataset is used. After few iterations of learning parameters from the training data, partially trained model is run on validation set with recently run parameters. Performance on the validation set gives direction for

the model to search for better parameter’s values. The need for model validation is to restrict the model to only work on the training examples and

fail miserably on any data outside training examples. Such a model is of no use, and it’s called overfitted model. The performance evaluation of the model on validation data makes sure that the model is learning general patterns in the data and not memorising the training examples.

Another scenario can also arise. We see that the model is not even able to learn the training data well, and thus, the performance on validation is also not improving. Such a scenario is called an underfitted model. This generally indicates that our model needs more parameters or more capacity to learn the

pattens in the data. After completion of training, trained model is evaluated on test set, and these numbers are reported as model performance.

 Note: The test set is never used in training or validation. The model

 performance must always be reported on the test set.

For reasonable size dataset, we can split the dataset into training: 80%, and test: 20%. Out of the training set, 5% can be used as validation dataset. If

dataset size if over million samples, then we can split the dataset into training: 98% and test: 2%. The validation set can be 2% of the training examples.

Divided sets should reflect similar patterns (statistical distribution) when analysed. Skewed data towards any pattern or class in any of the sets would lead to degradation of the learning algorithm’s performance.

 Tip: To obtain similar statistical distribution or patterns among all three

 sets, we can randomly shuffle the dataset and select the samples for each

 set. If it is classification dataset, then make sure that samples from each

 class are proportionally represented in each set.

While selecting the validation set out of the training set, we can take either a fixed validation set or randomly take out few examples from the training set in

each training iteration and use these examples as validation. The latter technique is called cross-validation and is considered more robust in situations when the dataset size is small. Few popular cross-validation strategies are mentioned below:

K-fold cross validation: Training samples are randomly partitioned into

 k equal-sized sets. In an iteration of training, one set is selected as validation set and remaining k-1 sets are considered for training. This is repeated k times where a set is considered as validation set only one.

These k results are then averaged to produce single estimation. k can be any value, usually k=10 which is depicted in Figure 1.17. In the figure, represents the cost or error associated with the iteration. ‘ E’ represents single estimation obtained by averaging all ’s. Refer to the following figure:

[image: Image 34]

[image: Image 35]

 Figure 1.17: 10-fold cross-validation

Leave-p-out cross validation: Out of n training set samples, this method uses p observation as validation set and remaining n-p observations as training set for one iteration of training. This is repeated on all possible

sets. p can be any value. The most popular value is p=1, which is called Leave-one-out cross validation.

Repeated random sub-sampling method: This method is also known as

Monte-Carlo cross-validation. Here, sample set is randomly split into

training and validation set. Split set is used for one iteration of training.

For each iteration of training, sample set is randomly split every time.

Results are then averaged to produce single estimation. Number of

iterations will not depend on sample set size. In this method, it may happen that a few samples may never be selected for validation set, and a

few samples may end up being selected more than once.

In many situations, the dataset is not exhaustive enough to capture all variations of the real data. This leads to high performance on training and cross-validation dataset and does good even on test set, but it will perform poorly when deployed in a real environment. We should collect more samples

that would reflect statistical distribution of real data.

Data augmentation is one of the techniques to make a dataset robust. Data augmentation technique adds more samples to the dataset by imparting slight modification to the existing dataset or synthesize new samples from the existing dataset. Modification or synthesis should be performed such a way that the label of original sample and its corresponding modified or synthesized

sample should remain the same.

Techniques to augment the data depends on the nature of the data and desired

output.

Consider dataset of images to recognize dog or cat. For this dataset, we can apply rotation, translation, shear, flipping techniques on the existing images.

Do note that, these techniques don’t change the label from original sample to

transformed sample. Image containing cat will still be recognized as cat after

these transformations. Few of these image augmentation techniques will be discussed in Chapter 9, Computer Vision.

Application of AI

AI is being used across industries for better decision-making, increasing efficiency, and eliminating repetitive work. AI is augmenting human capacity

in all fields, including healthcare, education, agriculture, automobile, finance, gamming, ecommerce, fashion design, and advanced scientific research like space exploration and particle physics. Figure 1.18 depicts one application in each of these fields:

[image: Image 36]

 Figure 1.18: Applications of ML

All these applications of AI fall under the category of ANI or specialized AI.

These AI systems rely largely on human-generated data and excel at

mimicking human behaviour on well-known tasks. They also incorporate

human biases as the bias is in the training data itself. These systems lack robustness, that is, the ability to perform consistently under changing circumstances. Moreover, these systems often have the problem of

explainability, that is, we are unable to explain why a decision is taken by the system under a given circumstance. These problems open up new frontiers for

research, the ultimate goal being AGI, which experts agree is far in the future.

Role of Mathematics in AI

The goal of AI is to design algorithms that can perform data-based automated decision-making under uncertainty. Data is the starting point, and this data is always insufficient. It’s never possible to capture all possible scenarios in any

dataset, and if we can, then there is no need for AI. We don’t need AI for writing an algorithm that can compute the sum of any two numbers, as we know all possible scenarios that can come and have rules for all of them.

Insufficiency in data is a primary source of uncertainty, that is, working with imperfect or incomplete information.

Other sources of uncertainty are noise in data, errors while collecting data, and assumptions made while modelling. We can represent this uncertainty

qualitatively with the mathematical theory of probability and statistics.

Probability provides the foundation and tools for quantifying, handling, and harnessing uncertainty. Statistics deals with the methods of collecting, presenting, analysing, interpreting, and inferencing from data. Data is

represented numerically as a point in high-dimensional space called vector space. However, beyond three dimensions, we cannot visualize data; thus, every observation collected is an abstract numerical object. Linear algebra provides us with all the tools to operate with these abstract objects called vectors and also define concepts of similarity, distance, and angle between these vectors.

With all these tools, we are equipped to mathematically define decision-making, which is required to automate decision-making from data, that is, to

achieve the final goal of AI. These decisions can be of two types: discrete or

continuous. Discrete decisions are like classification or deciding an action in a RL scenario, and continuous decisions are like regression.

Mathematically, discrete decisions can be represented as a way of partitioning

the high dimensional space where the data points lie and assigning a category

to each partition. Continuous decisions, on the other hand, are some functions

mapping a point in high dimensional space to a real number. In both cases, a

set of parametric mathematical functions must be found that can output the best possible decisions. To do this, we need tools for function optimization in

high-dimensional space, and this is given by the theory of vector calculus.

These four mathematical tools, i.e., Linear algebra, Vector calculus,

Probability, and Statistics, are the four pillars of AI, depicted in Figure 1.19.

Each of these topics are vast, and it is not necessary to gain completer mastery on these topics to understand the theory of AI. In this book, we have presented

the essential concepts from these topics required to get a good in-depth understanding of AI. Refer to the following figure:

[image: Image 37]

 Figure 1.19: Pillars of AI

As the era of AI is still in the initial stages, there is a huge scope for all of us to contribute to this field. These mathematical tools are the foundation of the technology that is already in use and all that is yet to come. Having a deeper

understanding of these mathematical basics will help the reader become a successful contributor to the next generation AI technologies and appropriately

use the existing technology.

Conclusion

In this chapter, we provided a high-level overview of AI and discussed various

types of algorithms and the challenges in AI. The next four chapters will be on

the four foundational mathematical pillars of AI. Chapter 6, Neural Networks

will discuss about deep learning – the core of most of the state-of-the-art ANI components. After that, various ANI topics will be covered in the remaining chapters. These chapters will be based on the theory discussed in first six chapters. We strongly encourage the reader to go through chapters 1-6 first, and the remaining chapters can be read in any order.

CHAPTER 2

Linear Algebra

Linear algebra is a branch of mathematics dealing with vectors and linear functions on vectors. A vector is a representation of an abstract object as a

mathematical entity. As we can add, subtract, and multiply numbers, we can

do similar operations with two or more vectors to get a new vector. For example, a digital image can be represented as a vector of pixels. Let’s take

two digital images shot from the same camera position. The first is of a lady

in front of her house, and the next is of a car with the same background as

the lady’s image. If we add these two images, we get a new image with the

lady along with a car in front of her house. Many such image operations can

be represented with vector operations and transformation of vectors.

In machine learning, representation of an abstract object as a vector is the first challenge, called feature engineering. Traditionally, this process used to be completely manual and was time-consuming. Deep learning partially

automates this task. Internally, deep learning uses the power of linear algebra, vector calculus, and optimisation techniques to achieve this. We will

cover a small example of linear neural network in this chapter itself once we

introduce linear transformations of vectors.

Linear algebra equips us with mathematical tools to represent abstract

problem statements from various domains in a crisp, organized, and formal

notation. The simplest mathematical representation of a problem is possibly

done with a linear equation. Often, we need more than one linear equation to

represent a problem, and we call it a system of linear equations. We will start

with system of linear equations and see how vector representation help study

solutions of system of equations with large number of unknowns.

Structure

The following topics of linear algebra will be discussed in this chapter:

Linear equation

[image: Image 38]

Matrices

Euclidean space

Vector spaces

Linear transformation

Eigen values and eigen vectors

Matrix decomposition

Objectives

After studying this chapter, you should be able to learn the basics of Linear

algebra that are essential for the development of AI algorithms. The chapter

contains code and examples that will help readers apply the concepts on real

data.

Linear equations

A linear equation with two variables x, y represents a straight line: y = mx +

 c, where m is called the slope and c is called the intercept of the line. Here, slope m controls the angle (slope = tan(angle)) the line makes with the y-axis, and the intercept c tells us where the line intersects the y-axis. The intercept represents the value of y when x = 0. We encounter such equations in our day-to-day life. For example, we use the following linear equation to

convert temperature measured in Celsius(C) scale to Fahrenheit(F):

Refer to Figure 2.1:

[image: Image 39]

 Figure 2.1: Line represents mapping between Celsius and Fahrenheit

Equations of first order are called linear equations. Rewriting the linear equation in the form 9 C – 5 F + 160 = 0 results in general form ax + by + c =

0. This is called the general form of linear equation as we can easily extend

this for more than two variables as a 1 x 1 + a 2 x 2 + … + anxn + a 0 = 0. The constant ai is called the coefficient and a 0 is called intercept of the equation.

A linear equation in three variables (ai ≠ 0; 1 ≤ i ≤ 3) geometrically represents a hyperplane or plane in three dimensions. The idea of

hyperplanes can be extended to n-dimensions.

When more than one linear equation is represented in n-dimensional space, it’s interesting to analyse common points or intersection points of these hyperplanes represented by these equations. These common points lie on all

the hyperplanes simultaneously and are known as solutions of the system of linear equations.

Now, let’s formulate a simple problem as system of linear equations and find

a solution.

Consider a situation where a group of friends plan to visit a shopping mall.

They plan to spend time on movie, bowling, and play station. With

difference of opinion on where to start, they get divided into three groups.

After spending time in the mall, they all gather at one place for discussion.

The first group G 1 mentions that they spent ₹1500 on 1 bowling alleys, 1

 play stations and 1 movie tickets. The second group G 2 spent ₹4400 on 3

[image: Image 40]

 bowling alleys, 4 play stations and 2 movie tickets. The third group G 3 spent

₹6500 on 5 bowling alleys, 3 play stations and 5 movie tickets. With this information, can the price of a bowling alley, play station, and movie ticket

be derived? One can represent preceding data in equations format as follows:

 G1:1 bowling alleys + 1 play stations + 1 movie tickets = ₹ 1500

 G2:3 bowling alleys + 4 play stations + 2 movie tickets = ₹ 4400

 G3:5 bowling alleys + 3 play stations + 5 movie tickets = ₹ 6500

Representing system of linear equations by replacing bowling alleys with b, play stations with p and movie tickets with m, one obtains 3 linear equations: e 1: 1 b + 1 p + 1 m = 1500

 e 2: 3 b + 4 p + 2 m = 4400

 e 3: 5 b + 3 p + 5 m = 6500

Let’s visualize geometrical representation of these equations in 3D with x-

axis for bowling alley, y-axis for play station, and z-axis for movie ticket.

Each equation will be a plane in 3D space. Consider equation 1 b + 1 p + 1 m

= 1500 for representing in 3D space. Variable b & p can be free running with positive values (cost of bowling, play station & movie ticket should be positive), but value of m will be assigned by using equation e 1 as m = 1500 –

 b – p. These values representing equations will span a plane in 3D, as shown

in Figure 2.2 (Left):

 Figure 2.2: (Left) A plane representing equation 1b+1p+1m=1500 (Right) Add plane representing 3b+4p+2m=4400 to left figure, two planes intersect along a line

Similarly, a plane representing equation e 2 is plotted in 3D. In this case, planes representing e 1 & e 2 intersect along the line in 3D, whose line can be

represented with equations b + 2 p = 1400 & m = p + 100, as shown in Figure

 2.2 (Right). Intersecting line can be plotted by making b as free running

variable, and other dependent variables are assigned with p = (100 – b)/2 & m = p + 100. This signifies that all points that lie on the intersection line will also lie on both the planes.

In the same way, a plane representing equation e 3 could be plotted in 3D, as shown in Figure 2.3. These three planes fortunately intersect at a unique point p(400,500,600). This signifies that the intersection point p lie on all three planes representing each of the three equations. Solution for these set

of equations is (400,500,600), which signifies cost of a bowling alley(b) is ₹

400, play station(p) is ₹ 500 and movie ticket(m) is ₹600. The solution obtained for system of equations is through geometric way.

In this example, each equation representing a plane intersected at a unique

point. This is the case of unique solution. This need not be the situation always. If planes intersect along a single line or hyperplane, all points that

lie on the intersecting line or hyperplane are solutions to the equations representing these planes. This provides the case of infinitely many solutions or infinite solutions. There can be another situation where planes do not intersect at any point, providing the case of no solution or inconsistent systems. A system of linear equations that do not have solutions is called an inconsistent systems. Further discussions will revolve around these categories of solutions and analytical method to obtain these solutions. Refer

to the following figure:

[image: Image 41]

 Figure 2.3: Intersection of three planes representing three equations at a unique point (400,500,600)

Solving system of equations analytically

Obtaining solution to the equations geometrically is not the preferred way due to difficulty in visualizing the solution. Consider a linear equation of four or more variables; visualizing hyperplanes formed by these equations is

not possible. Let us discuss a generic approach to find the solution for system of equations. Analytically, one can perform series of valid operations

on these equations to obtain the same solution. These operations include multiplication and addition.

Multiplication: Multiplying the same non-zero real number on the left-hand side (LHS) and the right-hand side (RHS) of the equation doesn’t alter the

[image: Image 42]

[image: Image 43]

[image: Image 44]

equality of the equation. For example, equation e 1 multiplied by non-zero real value 3, operation represented as 3 e 1 → e 1 says that equation is multiplied by e 1 on both sides and the resulting equation is called e 1: Equation e 1 : 1b + 1p + 1m = 1500

 Multiplication: 3*e 1 → e 1

 Resulting Equation e 1 : 3b + 3p + 3m = 4500

Addition: Adding the same real number on the left-hand side (LHS) and the right-hand side (RHS) of the equation doesn’t alter the equality of the equation. One can also add equality equations as LHS are RHS are equal.

For example, add e 2 to e 1, and the resulting equation will be assigned to e 1, operation represented as e 1 + e 2 → e 1:

 Equations e 1 : 1b + 1p + 1m = 1500, e 2 : 3b + 4p + 2m = 4400

 Addition: e 1 + e 2 → e 1

 Resulting equation e 1 : 4b + 5p + 3m = 5900

To obtain solution for the equations, let’s perform series of multiplication and addition on these three systems of linear equation. Solution obtained through geometric and analytic methods are same.:

 Note: What if friends had divided themselves into two groups to play

 three games? In this case, a unique solution doesn’t exist as one would

 require at least three linear equations for three unknowns. This case

 might result in either infinitely many solutions or no solution.

Infinitely many solutions

Consider modification to preceding example with the following set of

equations:

 e 1 : 1b + 1p + 1m = 1500

 e 2 : 3b + 4p + 2m = 4400

 e 3 : 2b + 2p + 2m = 3000)

Let’s plot planes representing equations e 1 & e 3 in 3D for geometric analysis. One can visualize that these two planes overlap each other, as

shown in Figure 2.4 (Left). In other words, these two planes are the same but are represented with different equations. If planes are the same, then can one

obtain equation e 3 from e 1? The answer is yes, equation e 3 can be obtained from e 1 analytically by multiplication as 2 * e 1 ≡ e 3. To find the solution to these equations, plot plane representing e 2. As equations e 1 & e 3 are the same, let’s use only e 1 for plotting with e 2, as shown in Figure 2.4 (Right).

One can visualize that planes representing e 1 & e 2 intersect along the line whose equation is b + 2 p = 1400 & m = p + 100. Solution to this example of system of equations is b=-2 m + 1500 & p = m – 100, where m is free running variable whose value will be in range (100,750) so that the value of b & p can be positive. Refer to the following figure:

[image: Image 45]

[image: Image 46]

[image: Image 47]

 Figure 2.4: (Left) Overlapping of two planes representing two equations. Points that form both planes are same (Right) Three planes intersecting along a line. All points of the line lie on all three planes.

Apply multiplication and addition to the system of equations for finding the

solution:

As cost of bowling alley(b), play station(p) and movie ticket(m) are positive; this restricts the range of movie ticket to m > 100. Variables b and p can have various positive values based on equation b + 2m = 1600, p – m = –100 with m > 100 & m < 750. Choosing any value of m between this range can get b and p. Hence, there exists infinitely many solutions for this system of equations.

Inconsistent system

There is no guarantee that a solution exists for all variations of system of linear equations. Consider modifying the preceding example with the

following system of equations:

[image: Image 48]

[image: Image 49]

[image: Image 50]

[image: Image 51]

To visualize this geometrically, let’s plot planes representing e 1 & e 2. Planes representing these two equations are parallel and never intersect, as shown in

 Figure 2.5 (Left). Now, add a plane representing e 2. One can see, in Figure

 2.5 (Right), that all three planes do not intersect at a common point. Plane

representing e 2 intersects planes representing e 1 & e 2 but at different points.

Hence, no solution exists for these equations. These equations form

 inconsistent system. Refer to the following figure:

 Figure 2.5: (Left) Two planes that are parallel and never intersect (Right) Plane representing intersects other two parallel planes but not at any common point

Apply multiplication and addition to the system of equations for finding solution:

 Tip: It is not always necessary to solve the equations to know whether

 there exists unique or infinite or no solution.

[image: Image 52]

So far, our discussion revolved around solving linear equations of three variables analytically and geometrically. As number of variables and

equations increase, it becomes difficult to solve them using any of these methods. Also, it’s hard to automate these operations unless we have an approach that generalizes to linear equations with very large number of variables and equations. One needs a succinct representation of linear

equations to deal with very large number of equations and variables, and this

is provided by matrices.

Introducing matrix

 Matrix is a rectangular array of numbers for which operations such as addition and multiplication are defined. The horizontal and vertical lines of

entries in a matrix are called rows and columns, respectively. The size of a

matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n columns is called m × n matrix, or m-by-n matrix, while m and n are called its dimensions. Each entry is indexed with row and column numbers as axy, where x represents row number and is column number.

A matrix with the same number of rows and columns; m = n is called a square matrix, represented as Am. A matrix whose entries are only real numbers is called real matrix. Most of the matrix operations in this book will be concentrating on real matrices.

Augmented matrix

While representing equations in matrix form, each equation takes one row of

the matrix. Coefficient of variables from the equation is represented left side

of the row, followed by the vertical line and then the RHS of equation, which

is a real number, is specified after the vertical line. Similarly, all equations are represented, where each row of the matrix represents one equation. This

matrix form of representing system of linear equations is called augmented

[image: Image 53]

[image: Image 54]

[image: Image 55]

[image: Image 56]

 matrix. Augmented matrix representation of example with equations e 1: 1 b +

1 p + 1 m = 1500, e 2: 3 b + 4 p + 2 m = 4400 & e 3: 5 b + 3 p + 5 m = 6500 is: For solving the system of equations analytically, the operations performed on equations previously are applied on rows of the augmented matrix as each

row represents one equation. There are three types of elementary row

operations that may be performed on the rows of a matrix. These row

operations do not change the solution of the underlying system of linear equations. These elementary operations will help to represent augmented

matrix in a form that will facilitate finding a solution to the system of linear equations. Rows r 1, r 2 and r 3 represent first, second and third rows of the matrix, respectively. A few elementary operations performed on augmented

matrix that do not alter the solution are explained below:

Swap two rows:

Multiply a row by a non-zero real number:

Add to one row a scalar multiple of another

Let’s reconsider the example over which series of multiplication and

addition steps were performed previously that resulted in unique solution.

From those series of steps, consider a system of linear equations that resulted

[image: Image 57]

[image: Image 58]

[image: Image 59]

[image: Image 60]

after the application of two sets of operations to be represented in matrix format:

The resulting matrix is said to be in row echelon form. Matrix is said to be in

 row echelon form if:

All rows that consist of only zero values are at the bottom of the matrix

The leading coefficient (leftmost non-zero entry) of a non-zero row is

always to the right of the leading coefficient of the row above it:

The final set of equations obtained before the solution is stated below, along

with matrix representation. This form of matrix is called reduced row

echelon form:

Matrix is said to be in reduced row echelon form (also called row canonical form) if:

Matrix is in row echelon form

Leading entry in all non-zero rows is 1

Each column containing leading 1 has zeros in all other entries

[image: Image 61]

[image: Image 62]

Let’s apply row operations on the augmented matrix to obtain row echelon

form matrix. Application of row operations on the matrix to convert it to row

echelon form is called forward substitution, where rx row is used to modify row ry such that x < y:

Further reduction of rows can be performed through row operation where rx

row is used to modify row ry such that x > y to obtain matrix in reduced row echelon form. This operation is called back substitution:

The first column of the augmented matrix represented coefficient of variable

 b, so the first row of matrix gives the value of bowling alley(b) as ₹400.

Similarly, from the second and third rows, the value of play station(p) is

₹500 and that of movie ticket(m) is ₹600. This process of using row operations on a matrix to obtain row echelon form and then further reducing

it to reduced row echelon form is called Gauss-Jordan Elimination method.

Pseudocode forward substitution

Consider matrix Amxn, whose ith row and jth column entry is accessed through A[i, j]. The following code provides pseudocode for forward substitution. This stage would result in upper triangular matrix.

1. for row_idx = 1 to m do

2. pivot_row = select_pivot_from_ref(row_idx)

3. swap_rows(pivot_row, row_idx)

4. normalize_row(row_idx)

5. for tr_row = row_indx + 1 to m do

6. for tr_col = row_idx to n do

7. A[tr_row,tr_col] = A[tr_tow,tr_col]-

A[row_idx,tr_col]*A[tr_row,row_idx]

8. end for

9. end for

[image: Image 63]

10. end for

Pseudocode back substitution

Apply back substitution on upper triangular matrix to obtain a diagonal matrix. The following code provides steps for back substitution:

1. for row_idx = m to 1 do

2. normalize_row(row_idx)

3. for tr_row = row_indx - 1 to 1 do

4. for tr_col = row_idx to n do

5. A[tr_row,tr_col] = A[tr_row,tr_col]-

A[row_idx,tr_col]*A[tr_row,row_idx]

6. end for

7. end for

8. end for

We now have an algorithm to solve any system of linear equations with a large number of variables using a sequence of matrix operations. Similar to

operations like add, subtract, multiply, and inverse on real numbers, one can

define operations on a whole matrix as matrix can be viewed as abstract numerical object.

Basic matrix operations

Few basic operations other than row operations that can be defined are matrix addition, scalar multiplication, transposition, and matrix

multiplication.

 Addition of two matrices can be performed if their dimensions are equal. The sum of Amxn and Bmxn, denoted A + B, is computed by adding corresponding elements of matrices A and B :

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

[image: Image 68]

[image: Image 69]

 Product of scalar value k and matrix Amxn is obtained by multiplying every entry of with scalar value .

 Transpose of matrix Amxn is obtained by turning rows into columns (or columns into rows). Matrix Amxn after transpose would produce matrix with mxn dimensions, denoted as AT.

Properties of transpose are:

(AB) T = BT AT

(A + B) T = AT + BT

[image: Image 70]

[image: Image 71]

[image: Image 72]

[image: Image 73]

 Multiplication of two matrices Amxn & Bmxn is defined if and only if n = p (that is, number of columns of left matrix is same as number of rows of right

matrix). Elements of product matrix is defined as:

Matrix multiplication can also be interpreted in the following way. The first

column of the resultant matrix is obtained by linear combination of columns

of matrix A with weights for each column is first column of matrix B.

Similarly, other columns of resultant matrix can be obtained with the second

and third columns for matrix B.

Properties of multiplication: Consider dimensions of matrices A, B & C such that multiplication of matrices is defined.

Associativity: (AB) C = A(BC)

Distributivity: Satisfies both left and right distributivity:

 (A + B) C = AC + BC & C(A + B) = CA + CB

Non-commutative: AB ≠ BA. Matrix multiplication operation of AB

and BA is defined only if columns count of A = rows count of B and

rows count of A = columns count of B

 Trace of a square matrix Am is defined as sum of diagonal elements of a matrix.

[image: Image 74]

[image: Image 75]

[image: Image 76]

Properties of trace: A, B, C are matrices of appropriate dimensions that multiplication or addition is defined.

 trace(A) = trace(A T)

 trace(AB) = trace(BA)

 trace(A + B) = trace(A) + trace(B)

 trace(ABC) = trace(BCA) = trace(CAB)

Matrices enabled us to solve set of linear equations with n unknowns. It’s not possible to visualize the solution space of these system of equations in n-

dimensions. Analysis of problems with three unknown variables was

comparatively simple as it restricted us to three-dimensional space. We need

to generalize the concepts of three-dimensional to n-dimensional space

where n is positive integer. To represent a point in three-dimensional space, one requires three values that are represented on each of the dimension axis.

Similarly, to represent a point p in n-dimensional space n, one would require ordered n-tuple (x 1, x 2, …, x n) where xi ∈ and each xi would correspond to a value along a dimension. A set of these all ordered n-tuples form Euclidean n-space. Every element of this set is represented by ordered n-tuple that are called vectors.

Euclidean space

Euclidean space was introduced by Greek mathematician Euclid to abstract

physical space around us. A linear equation in n-dimensional Euclidean space represents a hyperplane - a generalization of plane from three-dimensions to n-dimensions. Solutions to these equations are points or vectors in n-dimensional space. This section will introduce notion of length, distance, rotation, translation, angle among these n-dimensional vectors in n-

dimensional Euclidean space.

Vectors and basic properties

[image: Image 77]

[image: Image 78]

[image: Image 79]

[image: Image 80]

Vector word is derived from Latin and means ‘ carrier’. Vectors were first introduced in geometry to represent both magnitude and direction. Rules are

defined for interaction of these vectors, which are mostly interpreted from understanding of the universe.

Representing vector

Vectors connects two points, it represents both magnitude and direction in space, denoted by small letter with arrow above as or small letter with bold as υ. Vector representation in the space is a directed line from initial point to end point. If the initial point is 0 (origin), then the vector is called positional vector. Any point P(x1, x2, …, xn) in n is represented by a positional vector ending at P.

In Figure 2.6 (Left), vectors and points are plotted in 2-dimensional space 2. Vector υ connects start point O(0, 0) and end point A(3, 4). To obtain vector in cartesian coordinates, perform end point’s value minus the start point’s value for each dimension. Vector u would be written as u = (3 – 0, 4

– 0) = (3, 4). Similarly, vector υ that connects start point A(2, 1) and end point B(5, 5) will result in v = (5 – 2, 5 – 1) = (3, 4). Refer to the following figure:

 Figure 2.6: (Left) Representation of vectors that connect two points (Right) Angle induced by vector with axis

[image: Image 81]

[image: Image 82]

[image: Image 83]

[image: Image 84]

[image: Image 85]

[image: Image 86]

[image: Image 87]

 Note: Vectors in Figure 2.6 are the same. Two vectors are said be equal if

 their magnitude and direction are the same.

Norm

 Norm of a vector represents length of the vector. Also called magnitude of a vector can be obtained through use of Pythagoras theorem in Euclidean

space. From Figure 2.5 (Right), length of υ, denoted as ǁ v ǁ is calculated as the consequence of the Pythagoras theorem.

Similarly, norm of

. Generalizing to

 n, norm or length of a vector v = (a 1, a 2, … an) in n is obtained by

.

Any vector w is called Unit vector if its magnitude is 1, that is ǁ w ǁ = 1.

In real line, we can define neighboring points of a real number a as the open interval (a – ∈, a + ∈) that is, set of all real numbers within an distance from a or x∈ R:| x – a| < ∈, where ∈ > 0 is chosen arbitrarily small. This concept of neighbourhood of a point can be extended to higher dimensions. In two dimensions, this open interval becomes a circle of radius ∈ with centre at point a = (x c, y c) and is defined as the set of all two dimensional points x =

(x 1, x 2) within the circle (x 1 – x c)2 + (x 2 – y c)2 = ∈2 as This is called Euclidean Ball in R 2. In R 3, the Euclidean ball represents a sphere or radius centered at a. In n-dimension, we call this n-dimensional Euclidean ball:

Direction

 Direction of a vector is the angle it makes with respect to the axes of the space. In two-dimensional space, vector will make angle with both x and y axes. Generally, in n-dimensional space, vector will make angle with every n

axes of the space. Consider vector v = (3, 4) from the Figure 2.6 (Right) that connected points from (2, 1) to (5, 5). Draw lines parallel to x and y axes passing through start point and end point of the vector respectively to form

right-angled triangle with the vector as hypotenuse, as shown in Figure 2.6.

To find angle θ between v & x- axis, use trigonometry formula tan(θ). In this right-angled triangle, length of the side parallel to x- axis is x- axis component of the vector, and similarly for y-axis. From Figure 2.6, θ = arctan(⁄) =

53.13°. Similarly, for vector u, angle with x-axis, θ = 53.13°.

 Tip: General way to obtain angle between vectors is through dot product

 in Euclidean space. Dot product is explained in the next section.

In the Figure 2.6, as both vectors v and u have the same magnitude and direction, they are equal, that is, u ≡ v.

 Note: Two vectors are said to be equal if they have same magnitude and

 direction. This gives rise to an important notion that vectors’ starting

 point doesn’t matter, what matters is their magnitude and direction.

Scalar multiplication

 Scalar multiplication is changing the magnitude or length of a vector by multiplying with real number k (called scalar) without altering its direction.

Vector when multiplied by non-zero scalar value k changes its magnitude by factor of k. Multiplying with positive scalar value keeps the direction same, and the direction of the vector is flipped by an angle of 180° with a negative

scalar value. Multiplying vector v = (a 1, a 2, … an) with scalar value k will result in w = kv = k(a 1 , a 2 , …a n) = (k * a 1 , k * a 2 , … k * an). In Figure 2.7

 (left), multiply vector u = (3, 3) with scalar value 2 & -1. The resulting vectors will be w = 2 u = 2 * (3, 3) = (2 * 3, 2 * 3) = (6, 6) and v = (–1)u = –1

* (3, 3) = (–1 * 3, –1 * 3) = (–3, –3). Refer to the following figure:

[image: Image 88]

[image: Image 89]

 Figure 2.7: (Left) Scaling of vector (Right) Addition and Subtraction of vectors

Addition/subtraction of vectors

 Addition (subtraction) of two vectors is performed by adding (subtracting) their respective components. Addition of two vectors u = (a 1 , a 2 , …a n) & v

 = (b 1 , b 2 , …b n) will result in:

 u + v = (a 1 , a 2 , …a n) + (b 1 , b 2 , …b n) = (a 1 + b 1 , a 2 + b 2 , …a n + b n) Similarly, for subtraction:

 u – v = (a 1 , a 2 , …a n) + (b 1 , b 2 , …b n) = (a 1 – b 1 , a 2 – b 2 , …a n – b n) In Figure 2.7 (Right), vectors u = (10,0) and v = (2,8). Addition of these vectors is performed by adding the respective components, resulting in u + v

= (10 +2, 0 + 8) = (12,8). Subtraction of vectors is also performed by subtracting the respective components of vectors, resulting in u – v = (10 –

2, 0 – 8) = (8, –8).

Distance between vectors

Distance between two vectors are obtained with norm over subtract

operation. Distance between two vectors u = (a 1 , a 2 , …a n) & v = (b 1 , b 2 , …

 b n) is defined as:

In Figure 2.7, distance between vectors is calculated as follows:

[image: Image 90]

[image: Image 91]

[image: Image 92]

Dot product and orthogonality

Dot product of two vectors u = (a 1 , a 2 , …a n) & v = (b 1 , b 2 , …b n) in n dimensions denoted as u ⋅ v, is defined as

where ǁ u ǁ & ǁ v ǁ denotes norm of the vectors, and θ is angle between the vectors u & v in n-dimensional space.

Let’s analyse dot product of vectors in 2D, as shown in Figure 2.8. ǁ v ǁ cosθ

is magnitude of vector v along the direction of vector u. Dot product of vectors would be u ⋅ v = (10,2) ⋅ (6,6) = 10 * 6 + 2 * 6 = 72. One can calculate using the angle between vectors and length of the vectors as u ⋅ v =

ǁ u ǁǁ v ǁ cosθ = 10.2 * 8.49 * cos(33.7°) = 72. Refer to the following figure:

 Figure 2.8: Projection of one vector over another in two-dimensional space Vectors are said to orthogonal if their dot product is 0. In other words, vectors are orthogonal if the angle between them is θ = 90°. When θ is 90°,

 cos(θ) = 0 this validates dot product to 0. Any vector along x-axis is orthogonal to any vector along y-axis due to 90° angle between them.

Vectors are said to be Orthonormal if they are orthogonal to each other and

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

their norm is 1. In other words, vectors u & v are said to be orthonormal if u

⋅ v = 0 & ǁ u ǁ = ǁ v ǁ = 1.

Linear Combination of Vectors

 Span of a vector u is set of all possible vectors that can be obtained by performing scalar multiplication on u. Span of more than one vector is set of all possible vectors that can be obtained by performing scalar multiplication

and addition on all those vectors. From Figure 2.9, span of vector u = (3,1) is all vectors along the line that passes through u and origin:

 span(u) = ku where k∈

Span of two vectors u = (3,1) & v = (1,3) is calculated as: where

Similarly, one can generalize span of n vectors as:

 span(v 1 , v 2 , … , v n) = k 1 v 1 + k 2 v 2 + … + k n v n where ki ∈ . Refer to the following figure:

 Figure 2.9: Vector spanning in two-dimensional space

One can express a vector u using multiplication and addition operation on the vectors v 1 , v 2 , …, v n. Operation of expressing a vector from scalar

[image: Image 98]

[image: Image 99]

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

multiplication and addition operation of the vectors is called linear combination.

where

If one can express the vector u as linear combination of vector v 1 , v 2 , …, vn s, then vector u is said to be in span of vectors v 1 , v 2 , …, vn. Set of vectors

{ v 1 , v 2 , …, vn} are said to be independent if there doesn’t exist a vector in the set that can be expressed as linear combination of other vectors from the

set. In other words, if there is a vector in the set that can be expressed as linear combination of other vectors in the set, then the set of vectors are called linearly dependent vectors.

Consider a vector set A = {(3,1), (1,3)} in 2 from Figure 2.9. Is the vector set A independent? Yes, there doesn’t exist any vector that can be expressed as linear combination of other vectors. Now, add vector (5,6) to the set, B =

{(3,1), (1,3), (5,6)}. Is the vector set B independent? No, vector (5,6) can be expressed as linear combination of other vectors (3,1), (1,3) from the set as

What is span of vector set A? Vector set A can span all vectors of 2. Adding any vector from 2 would make this set dependent.

 Tip: How many numbers of independent vectors are required to span a

 Euclidean space of n? Answer is n.

A linear combination of vectors k 1 v 1 + k 2 v 2 + … + k n v n is called a convex combination if ∑ k i = 1 and 0 ≤ k i ≤ 1. The set of all convex combination is called the convex hull of the set of vectors vi : i = 1, …, n. As a particular example, every convex combination of two points lies on the line segment

between the points. In n-dimension, a line segment between vectors x and y

is represented as αx + (1 – a) y : α∈[0,1]. A set is convex if it contains all convex combinations of its points. The convex hull of a given set of points is

identical to the set of all their convex combinations.

Dimension and basis of the space

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

[image: Image 112]

[image: Image 113]

[image: Image 114]

[image: Image 115]

[image: Image 116]

[image: Image 117]

[image: Image 118]

 Dimension of a space is count of the independent vectors that spans all vectors of the space. In previous example, vectors u = (3, 1) & v = (1, 3) spanned all points in 2 and are linearly independent, so the dimension of 2

is . In generic way, dimension of Euclidean space of n is n. If dimensions of a space are finite, then it is called finite-dimensional space. If dimensions of a space are infinite, then it is called infinite-dimensional space.

Set of independent vectors that span all vectors of the space are called basis vectors of that space. For the previous example of 2, basis = {(3,1), (1,3)}

as they spanned all points in 2 and are independent set. Another example of

basis vectors for 2 is {(1,0), (0,1)}.

Orthogonal and orthonormal basis

Basis vectors are said to be orthogonal basis if every basis vector is orthogonal to other basis vectors. Vectors are said to be orthogonal if their

dot product is 0 or angle between them is 90°. Consider two sets of basis vectors in 2 {(3,1),(1,3)} and {(-1,2),(2,1)}. Dot product of first set, (3,1) ⋅

(1,3) = 3 * 1 + 1 * 3 = 9, so these basis vectors are not orthogonal. Dot product of second set, (–1,2) ⋅ (2,1) = –1 * 2 + 2 * 1 = 0, so these basis vectors are called orthogonal basis.

Basis vectors of a space are said to be orthonormal basis if they are orthogonal basis and are unit vectors (norm of all vectors is 1). Vectors (1,0)

& (0,1) form orthogonal basis of space

2 and their norm is

. This set of

vectors {(1,0), (0,1)} form orthonormal basis of 2.

Natural orthonormal basis of n

Orthonormal basis for Euclidean space of n would be:

{(1, 0, 0, …, 0, 0), (0, 1, 0, …, 0, 0), …, (0, 0, 0, …, 1, 0) (0, 0, 0, …, 0, 1)}

where first basis vector will have 1 in first position and zero in all others; similarly, for kth basis, vector will have 1 in kth position and zero in all others. Total number of basis vectors for space of n will be in n, which is the dimension of n. These basis vectors are orthogonal to each other, and their norm is 1. These orthonormal basis vectors are widely used in

Euclidean space. For all examples in this section, these orthonormal bases

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

[image: Image 124]

[image: Image 125]

[image: Image 126]

[image: Image 127]

were used to plot vectors of the space. Value used for the vector

representation u = (a 1 , a 2 , …, a n-1 , a n) were scalar multiplies of the respective orthonormal basis required for expressing u as linear combination of orthonormal basis vectors:

Subspaces

A non-empty subset of Euclidean space S ⊆ n is called subspace if S is closed under linear combinations. In other words, non-empty subset of

Euclidean space is called subspace if all vectors spanned by any subset of S

belongs to S. Subspace can also be called vector space (explained later).

Formally, a subset of Euclidean space forms subspace if:

then

where

Example of trivial subspace: Consider Euclidean space n. Only zero vector o = (0,0,…,0) of this space can be subspace. This subspace of only zero vector is called trivial subspace.

Example of a line in 2: Consider any line (-∞ to ∞) that passes through origin. All vectors on the line are closed under addition and scalar

multiplication. So, any line that passes through the origin is subspace.

Dimension of subspace

Count of independent vectors that spans all vectors of the subspace with their linear combination is the dimension of that subspace.

Example of a line in n: Any line that passes through the origin is subspace. How many independent vectors are required to span all the vectors

of the line? Only one vector along the direction of the line is sufficient to span all the vectors of the line. So, dimension of line subspace is 1.

 Note: Dimensions of Euclidean space n is n.

Hyperplanes and Halfspaces

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

[image: Image 134]

A hyperplane in n is set of all vectors x = (x 1 , x 2 , … , x n) that satisfies the equation a 1 x 1 + a 2 x 2 + … + a n x n = b where b ∈ , ∃ ai such that ai ≠ 0

Dimension of the hyperplane in n is n – 1. Hyperplane becomes subspace when b = 0, that is, when hyperplane is passing through origin. Let’s represent the coefficients of hyperplane equation by the vector a = (a 1, a 2,

…, a n). We can write the linear equation representing the hyperplane by using dot product as aT ⋅ x = b.

This geometric interpretation can be clearly understood by expressing the hyperplane in the form x:aT ⋅ (x – x 0), where x0 is any point in the hyperplane, and hence, aT x 0 = b. For any arbitrary vector x on the hyperplane, (x – x 0) is a vector along the hyperplane. Hence, aT (x – x 0) = 0

implies vector a must be perpendicular to (x – x0). Thus, vector a is perpendicular to the hyperplane or is a normal vector to the hyperplane.

The hyperplane H = {x: aT ⋅ x = b} can be interpreted as the set of points with a constant dot product b to a given vector a, or as a hyperplane with normal vector a; the constant b ∈ determines the offset of the hyperplane from the origin. The hyperplane divides Euclidian space n into two halfspaces. One satisfies the inequality aT ⋅ x ≥ b and is denoted by H+ = x ∈ n :

 aT ⋅ x ≥ b, and the another one satisfies aT ⋅ x < b, denoted by H– = x∈ n :

 aT x < b. These half-spaces and are called positive half-space and negative half-space, respectively. Half-spaces in two-dimensional space are captured

in Figure 2.10:

[image: Image 135]

 Figure 2.10: Positive half-space and negative half-space in two-dimensional space In Euclidean space, the vectors were n-tuples of real numbers. One can generalize this concept of vector by replacing these n-tuples with any abstract object that exhibits the same properties as n-tuples. For example, consider set of all m x n real or complex matrixes. Properties like scalar multiplication and addition are well-defined even for these matrices. These

matrices can be considered as vectors and define a set of basis matrices that

spans the set of all m x n matrices with orthonormal basis. We can also define inner product of two matrices. So, these set of matrices can form a space of

own. Let’s now formally introduce vector space by abstracting out the

properties enjoyed by Euclidean space.

Defining vector space

A space is a mathematical structure in which mathematical objects are represented using points, and the mathematical structure defines relations between points of the space. It is these relationships that define the nature of the space.

[image: Image 136]

[image: Image 137]

[image: Image 138]

[image: Image 139]

[image: Image 140]

[image: Image 141]

[image: Image 142]

[image: Image 143]

Before mathematically defining the vector space, let us understand the

cartesian product operator (×) and the map operator (→). Cartesian product

of two sets A and B, denoted as A × B, is set of all ordered pairs (a, b) where a ∈ A and b ∈ B. Another way to define cartesian product on A & B is A × B

= {(a, b)| a ∈ A and b ∈ B}. Map operator maps every element of a set to one element of another set b, denoted as A → B.

Vector spaces

A vector space over real or complex numbers denoted by (= ℝ for real numbers or = ℂ for complex numbers) is a set of vectors V, along with two operations addition and scalar multiplication, that satisfy eight axioms. Let’s

formally define addition and scalar operation on vectors:

Addition or vector addition (closure over addition) defined as + : V × V

→ V, inputs any two vectors v ∈ V and w ∈ V (vectors are represented by small bold letters, like u or arrow over small letter like u→) and outputs a third vector v ∈ V written as u = v + w where u is called the sum of v & w vectors.

Scalar multiplication (closure over scalar multiplication) defined as ⋅:

× V → V, takes any scalar a ∈ and any vector v ∈ V and outputs vector u = av where u ∈ V.

Let’s discuss the eight axioms that must be followed by addition and scalar

multiplication operation. Consider vectors u, v, w ∈ V and scalars a, b ∈ : Addition

associativity:

Addition commutativity:

Addition identity vector: ∃ o∈ V (called zero vector) such that v + o =

 v ∀ v∈ V

Addition inverse vector: ∀ v∈ V ∃ – v ∈V (called additive inverse) such that v + (– v) = where o is the identity element of addition Compatibility of scalar and field multiplication: a(bv) = (ab)v ∀ a, b∈ ∀ v∈ V

Scalar multiplication identity element: 1 v = v where denotes multiplicative identity in

[image: Image 144]

[image: Image 145]

[image: Image 146]

[image: Image 147]

[image: Image 148]

[image: Image 149]

[image: Image 150]

[image: Image 151]

[image: Image 152]

[image: Image 153]

Scalar multiplication distributivity over vector addition: a(u + v) =

 au + av ∀ a∈ ∀ u,v∈ V

Scalar multiplication distributivity over scalar (field) addition: (a +

 b)u = au + bu ∀ a, b∈ ∀ u∈ V

 Note: Scalar multiplication should not be confused with the scalar

 product (also called inner product or dot product).

Example of Euclidean space n is vector space: Consider u = (a 1, a 2, …, an)

∈ n & v = (b 1, b 2, …, bn) ∈ n of Euclidean space, where addition is defined as u + v = (a 1 + b 1, a 2 + b 2, …, an + bn) and scalar multiplication for s ∈ is defined as su = (sa 1 , sa 2 , … , san). These two operations follow closure property over addition and scalar multiplication. They also follow eight axioms with zero vector o = (0, 0, …, 0) and additive inverse –u = (–a 1 , –a 2 ,

 …, –an). So, Euclidean space of n is vector space.

Example of real numbers: Set of real numbers, a ∈ with standard multiplication and addition. Zero vector will be o = 0 and additive inverse will be – a.

Example of matrices: Set of all matrices Amxn forms vector space where addition and scalar multiplication of matrices are as defined in section ‘ Basic Matrix Operations’. Each Amxn is considered vector in this vector space.

Verify that these two operations meet all eight axioms.

Example of l1 sequence space: The l1 sequence space is defined to be the

set of all sequences whose series is absolutely convergent that is,

. Addition of two sequences is element-wise addition of the

corresponding elements of the sequences and scalar multiplication is

element-wise multiplication by a scalar. l1 sequence space is a vector space

where each sequence is a vector. Addition of absolutely convergent series is

convergent, and scalar multiplication of convergent series is still convergent.

Verifying if these operations hold all eight axioms is left to the reader. This

vector space is not finite dimensional space. The norm of a sequence can be

defined as the finite sum

, which is always finite

due to absolute convergence. So, l1 sequence space is an infinite dimensional

normed linear space. The infinite basis set for this is the set of all infinite

[image: Image 154]

[image: Image 155]

[image: Image 156]

[image: Image 157]

sequences ith whose element is 1 and all other elements of this sequence is 0.

This is like a generalization of the standard basis for n.

Example: Set of all polynomials with real coefficients forms an infinite dimensional vector space where each polynomial is a vector. The basis of this vector space is the set of polynomials with one term: x n : n = 0, 1, 2, …. .

Every polynomial can be represented as a finite linear combination of

polynomials from this basis set.

Example: L2[a, b]: The set of all real-valued functions square integrable in the interval [a, b], that is, set of functions f : [a, b] → R, such that forms a vector space. This set of functions forms a

vector space. We define addition of functions f and g as a square integrable

function h = f + g, where h(x) = f(x) + g(x) and scalar multiplication of function is defined as cf(x).

Vector spaces define addition of vectors and scalar multiplication but doesn’t

define the length of a vector, distance between vectors, or angles among vectors. To have meaning to these parameters among vectors, additional

structure over vector space are to be defined like Normed vector space and

Inner product space.

Normed vector space

Normed vector space is vector space over which norm is defined. Norm

represents “length” of a vector that can be any abstract object like a matrix, a function, or a sequence. We already defined norm in Euclidean space called

Euclidean norm. Now, let’s generalize that concept to arbitrary vector

spaces. Norm of vector is denoted as ǁ v ǁ, which must have the following properties:

Non-negative ∀ v∈ V, ǁ v ǁ ≥ 0

Positive norm value for non-zero vector ǁ v ǁ = 0 ⇔ v = o where o is additive identity vector (zero vector) in vector space

Triangle inequality holds:

Properties of norm

Parallelogram law

[image: Image 158]

[image: Image 159]

[image: Image 160]

[image: Image 161]

[image: Image 162]

[image: Image 163]

[image: Image 164]

[image: Image 165]

A norm can be turned into a distance metric, using:

This is called the metric induced by the norm. In general, a distance metric is defined as a function, which takes two vectors and outputs the distance between them. Distance must by always non-negative between two points.

Distance from a to b should be same as the distance from b to a; this is called

symmetry property of distance. Another important property of distance is triangle inequality, which states that if we have three vectors u, v, w, then in the triangle formed by these vectors, the sum of distances of any two sides

must be greater than third side. We can write these properties in terms of norm as follows: ǁ u – v ǁ ≥ 0

ǁ u – v ǁ = 0 if and only if u = v

Symmetry, ǁ u – v ǁ = ǁ(–1)(v – u)ǁ = ǁ v – u ǁ, Triangle inequality, ǁ u – v ǁ ≤ ǁ u – w ǁ + ǁ w – v ǁ

Norm of real numbers

The set of real numbers also form a trivial vector space. Norm of a real number can be defined as follows. Does this definition follow all four properties of norm? Verification task is left to the reader as an exercise.

Euclidean space is a normed linear space endowed with Euclidean norm.

There are other norms defined in Euclidean spaces called lp norms.

 lp Norm

 lp-norm of

is defined as

, where

&

.

[image: Image 166]

[image: Image 167]

[image: Image 168]

[image: Image 169]

For p=1 this reduces to:

Any norm can be used to define the distance between two vectors as norms

introduce a distance metric given by d(u, v) = ǁ u – v ǁ.

The, l 1 introduces the Manhattan distance.

Streets of Manhattan city are in grid layout. To move from one point to another, a person must drive along these roads that form grid layout.

Distance calculated between points where movement is possible only in gird

format is called Manhattan distance.

Maximum norm

When p → ∞ for lp-norm, it provides l-norm or maximum norm of vector u

and is defined as:

Verify that lp norm follows all four properties of the norm definition.

 Note: Minkowski Distance between vectors u = (a 1 , a 2 , …, an) & v = (b 1 ,

 b 2 , …, b n) is defined for p (integer) below. The formula is the same

 as p-norm for p ≥ 1.

 dist(u,v) = (|a 1 – b 1 | p +|a 2 – b 2 | p + … +|a n – b n | p) ⁄p

 For p ≥ 1, it follows all four properties of the distance metric. When p <

 1, it fails in triangle inequality property

 dist((0,0), (1,1)) > dist((0,0), (0,1)) + dist((0,1), (1,1))

Let sequence space be denoted as lp and this set is defined as

[image: Image 170]

[image: Image 171]

[image: Image 172]

The norm where 1 ≤ p ≤ ∞, can be defined on the lp sequence space by extending the finite sum of p th power terms to an infinite sum of p th power series. So, the sequence space lp is a normed linear space, where the norm ǁ⋅ǁp is defined as:

Similarly, for function space L p, the norm ǁ⋅ǁp of a function f ∈ L p is defined as:

Matrix norm

Norms are also defined for matrices as matrices can also be treated as vectors in vector space. There exist various matrix norms. Among these, we

will discuss important matrix norms.

Like L p norm for vectors, Lp,q norm for matrices can be defined. Lp,q norm for matrix Amxn is defined as follows:

Frobenius norm: Keeping values p = q = 2 for matrix norm ǁ A ǁp,q, one obtains L 2,2 norm, which is also called Frobenius norm or Hilbert-Schmidt norm.

[image: Image 173]

[image: Image 174]

[image: Image 175]

[image: Image 176]

[image: Image 177]

[image: Image 178]

[image: Image 179]

[image: Image 180]

[image: Image 181]

[image: Image 182]

Example: An image can be represented as a matrix of pixel values. We can

compare how close two images are using Forbenius norm.

 Norm ball: Just like the Euclidean norm defines a neighborhood of a point using Euclidean ball, any norm in an abstract vector space can define a norm

ball:

So, in the function space L p, we define the neighborhood of a function f as: that is, set of all functions h that closely approximate the function f.

Norm defines the length of a vector, the distance between vectors and few

properties of distances between vectors, but it does not define angle between

abstract vectors. Let’s discuss Inner product spaces that provide meaning to

angle between vectors in vector space.

Inner product

An inner product is a generalization of the concept of dot product in Euclidean space, which is denoted by

and satisfies four

properties for

&

.

Distribution

Linearity

Symmetry or Commutativity

Positive definiteness: If o is identity element of addition in vector space V, then 〈 v, v〉 = 0 iff v = o else 〈 v, v〉 > 0

An inner product naturally induces an associated norm (length) of a vector u

∈ V and is defined as

. A normed linear space is called an

 inner product space if the norm is introduced by an inner product. With definition of norm one can define distance between vectors u, v ∈ V as

[image: Image 183]

[image: Image 184]

[image: Image 185]

[image: Image 186]

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

 distance (u, v) = ǁ u – v ǁ. Along with this, there are a few other properties that result from the definition of norm in inner product space:

Cauchy–Schwarz inequality

Orthogonality: Two vectors u, v ∈ V are orthogonal if 〈 u, v〉 = 0.

Geometrically, orthogonal means perpendicular.

Pythagorean theorem

Example of Euclidean space n: Consider u = (a 1, a 2, …, a n)∈ n & v =

(b 1, b 2, …, b n)∈ n of Euclidean space where dot product is defined as u ⋅ v

= a 1 * b 1 + a 2 * b 2 + … + an * bn. One can verify that dot product follows all four properties of inner product map. So, Euclidean space of n is inner product vector space with dot product as inner product; 〈 u, w〉 = u ⋅ v.

Example of real numbers: Set of real numbers a, b ∈ with standard multiplication as inner product 〈 a, b〉 = a * b.

Application on real dataset

Roland Fisher in his 1938 paper published a data set consisting of 50

samples from each of the three species of Iris flower (setosa, virginica, and

versicolor). Each sample of the flower was measured for four features in centimeters: length and width of sepals and petals. Let’s represent flowers data in vectors using TensorFlow framework; setosa, virginica, and

versicolor represent labels 0, 1, and 2. As each flower is represented by four

features, vectors representing the flower will belong to 4. The following code provides steps to load iris data. Few samples from the data set are then

copied to the TensorFlow array for further analysis.

1. import tensorflow as tf

2. import tensorflow_datasets as tfds

3. import numpy as np

4. iris_ds = tfds.load(‘iris’, split=’train’) # load Iris

 dataset

5. SAMPLE_SIZE = 6 # consider few samples from the dataset

[image: Image 191]

6. iris_ex = iris_ds.take(SAMPLE_SIZE) # consider first few

 samples from the dataset

 7. # Tensor array to store dataset samples

8. tf_arr = tf.TensorArray(tf.float32, size=0,

dynamic_size=True, clear_after_read=False)

9. index = 0

10. for sample in iris_ex:

11. feat = sample[“features”]

12. label = sample[“label”]

13. tf_arr = tf_arr.write(index, feat) # Add sample to

 array

14. index = index + 1

15. vec_norm = tf.norm(feat) # Calculate norm of the

 vector

16. tf.print(“label=”, label, ‘ vector v’, index, ‘=’,

feat, “ Euclidean Norm=”, vec_norm, sep=””)

Code outputs vector’s values, label and Euclidean norm, which is captured

in Figure 2.11:

 Figure 2.11: Few vectors from Iris Dataset

 Note: How is the angle between two vectors defined in higher

 dimensions? Two independent vectors span a plane in higher

 dimensions. Plane forms a subspace, and its dimension would be 2. The

 angle between the vectors in the subspace plane is defined.

Let’s calculate the distance and angle between these sample vectors stored in

TensorFlow array. The following code provides steps to calculate the

Euclidean distance:

1. for ref_index in range(0, SAMPLE_SIZE):

2. vec_ref = tf_arr.read(ref_index)

[image: Image 192]

[image: Image 193]

3. for arr_index in range(0, SAMPLE_SIZE):

4. vec = tf_arr.read(arr_index)

5. vec_sub = tf.math.subtract(vec_ref, vec)

6. distance = tf.math.reduce_euclidean_norm(vec_sub)

Output of the code is captured in Figure 2.12 (Left). From captured distance matrix data, we can conclude that v 1 is close to v 5, v 2 to v 4 and v 3 to v 6. We can notice that vectors belonging to same class are closer. Refer to the following figure:

 Figure 2.12: (Left) Distance between vectors (Right) Angle between vectors The following code provides steps to calculate angle between vectors. The

output of the code is captured in Figure 2.12 (Right). From the captured angle matrix data, we can conclude that v 1 is close to v 5, v 4 to v 3 & v 3 and v 4

to v 6.

1. for ref_index in range(0, SAMPLE_SIZE):

2. vec_ref = tf_arr.read(ref_index)

3. vec_ref_eu_nr = tf.math.reduce_euclidean_norm(vec_ref)

4. for arr_index in range(0, SAMPLE_SIZE):

5. vec = tf_arr.read(arr_index)

6. vec_eu_nr = tf.math.reduce_euclidean_norm(vec)

7. dot_prod = tf.math.reduce_sum(vec_ref * vec)

8. angle_d = tf.math.acos(dot_prod/(vec_eu_nr *

vec_ref_eu_nr))

Visualizing these vectors in 4 is not possible as we can comprehend till three dimensions only. Let’s represent 100 vectors of the data set as two-dimensional vectors using t-SNE algorithm. The t-SNE algorithm is a nonlinear dimensionality reduction technique well-suited for embedding high-

dimensional data in low-dimensional space of two or three dimensions for

visualization. More discussion on t-SNE will be available in chapter 8

[image: Image 194]

Dimensionality Reduction. The output of the mapping is shown in Figure

 2.13. As you can see in Figure 2.13, setosa class can be differentiated easily

while other two classes are closer:

 Figure 2.13: Visualizing vectors from high dimension in two dimensions Iris dataset also has the class labels or flower names associated with each of

the 150 observations. If we are given the measurement vector or observation

of a new flower belonging to any of these three flower categories, can we tell what is the correct type of the new flower? Using distance metric induced by norm alone, we can build a simple classifier for the Iris dataset.

One such algorithms that works on the principle of distance between vectors

is K-Nearest Neighbour. It uses the entire dataset to derive a conclusion about the possible category of the new observation.

K-nearest neighbor

[image: Image 195]

K-nearest neighbour (KNN) algorithm works on the principle of distance

between vectors. Mostly, Euclidean distance is used to calculate the distance.

In this algorithm, the distance of the new observation vector is computed with every vector in the dataset. The class of the new observation vector is

decided based on its nearest neighbours in the given dataset whose classes

are already known. The neighbours are defined as the best K nearest vectors

in the given dataset with respect to the chosen distance metric. The number

of nearest neighbours K is a parameter of the algorithm and is determined empirically. Figure 2.14 shows the classification of the new sample based on values of K. For K=3, new sample would get classified as Class B, but for K=7, new sample would get classified as Class A. Refer to the following figure:

 Figure 2.14: Classifying the sample based on K-nearest neighbors

The following code explains main logic of KNN algorithm. Out of 150

samples of Iris dataset, first 120 samples are considered for training and the

rest are for testing. We can consider the remaining 30 samples in the test set

as new unseen observations. Each sample from test set is assigned label based on maximum repetition of labels among K-nearest neighbours from the training set. The following code runs for a range of K values in steps of 3. For, two samples are mispredicted, and for, one sample is mispredicted:

 1. # Load Iris dataset of 150 samples into train and test test

2. iris_train = tfds.load(‘iris’, split=’train[:120]’)

3. iris_test = tfds.load(‘iris’, split=’train[120:]’)

 4. # Extract features and labels of iris samples

5. iris_train_feat, iris_train_label =

get_features_labels(iris_train)

6. iris_test_feat, iris_test_label =

get_features_labels(iris_test)

 7. # Assign labels to test samples based on k-nearest

 neighbours

8. for k_val in range(3, 34, 3):

9. test_knn_labels = np.zeros((0), dtype=np.int)

10. outer_index = 0

11. # Calculate Euclidean distance between a test vector &

 all training vectors

12. # Select k-nearest neighbors based on the distance

13. for test_feat_samp in iris_test_feat:

14. eu_dis = np.zeros((0), dtype=np.float)

15. inner_index = 0

16. for train_feat_samp in iris_train_feat:

17. euclidean_distance =

np.linalg.norm(train_feat_samp - test_feat_samp)

18. eu_dis = np.insert(eu_dis, inner_index,

euclidean_distance, axis=0)

19. inner_index = inner_index + 1 # Move to next

 train vector

20. sorted_index = np.argsort(eu_dis) # Sort based on

 euclidean distance

21. # labels of k-shortest distance

22. nearest_k_labels =

iris_train_label[sorted_index[0:k_val]]

23. (labels, count) = np.unique(nearest_k_labels,

return_counts=True)

24. # Assign maximum repeated label

25. test_samp_knn_pred_label = labels[np.argmax(count)]

26. test_knn_labels = np.insert(

27. test_knn_labels, outer_index,

test_samp_knn_pred_label, axis=0)

[image: Image 196]

[image: Image 197]

[image: Image 198]

[image: Image 199]

[image: Image 200]

[image: Image 201]

[image: Image 202]

28. outer_index = outer_index + 1 # Move to next test

 vector

29. correct_prediction = np.sum(test_knn_labels ==

iris_test_label)

30. wrong_prediction = iris_test_label.shape[0] -

correct_prediction

31.

32. print(“k-val:”, k_val, “\nPD:”, test_knn_labels,

“\nGT:”, iris_test_label)

33. print(“correct prediction”, correct_prediction, “,wrong

prediction”, wrong_prediction)

This section discussed vectors, their interaction in vector space, and its properties, along with the formal definition of Euclidean space. Next, let’s look at representing these vectors in matrix format.

Representing vectors in matrix

Vectors can be represented in other format that is beneficial in matrix operations. They can be represented either with column matrices or row matrices. In matrix Amxn, each column of the matrix can be treated as vector in m space, and each row can be treated as vector in n space.

Let’s represent vectors

as

columns in a matrix. Let’s represent each vector in matrix format separately,

and then combine these vectors as columns of a rectangular matrix:

Representing the vectors as columns:

Space spanned by all columns of a matrix is called column space of A, denoted as C(A). Similarly, space spanned by all rows of a matrix is called row space of A, denoted as C(AT). These two spaces C(A) & C(AT) associated with a matrix A are subspaces of 2 & 3.

What would be dimensions of these two subspaces?

[image: Image 203]

[image: Image 204]

[image: Image 205]

[image: Image 206]

[image: Image 207]

[image: Image 208]

[image: Image 209]

Dimension of column subspace C(A) of A would be equal to the number of linearly independent column vectors of A. Similarly, dimension of row subspace C(AT) of A would be equal to the number of linearly independent row vectors of A. In the preceding example, column set and row set of A has two independent vectors each.

With dimensions of these two subspaces of matrix, one can define the rank

of a matrix. This property of the matrix is widely used.

 Note: Usually, vectors are represented as columns, but when they are

 represented as vectors, the transpose operator ‘T’ is used. Representing

 the vectors v 1 = (1,2), v 2 = (3,1) & v 3 (2,5) ∈ 2 as rows provides

Matrix rank

 Rank of a matrix is defined as the minimum of the dimensions of its column subspace and row subspace.

Rank of

is 2 as dimension of column, and row subspace is 2. Rank of

is 2 as dimension of column, and row subspace is 2. Here is

another example of a matrix

whose rank is 1.

Matrices types

Matrix is said to be real matrix if all entries of the matirx are real numbers.

Matrix is called square matrix if the number of rows and columns are equal.

[image: Image 210]

[image: Image 211]

[image: Image 212]

 Diagonal of square matrix runs from the top-left corner to the bottom-right corner of the matrix. All entries of Diagonal Matrix (D) outside main diagonal are zero. All entries of upper triangular matrix (U) below the diagonal are zero. All entries of lower triangular matrix (L) above the diagonal are zero. Here are a few examples:

Identity matrix

 Identity matrix represented as In is nxn matrix whose diagonal elements are equal to 1, and all other entries are zeros. Any square matrix Sn multiplied by identity matrix In of the same dimensions results in the same matrix Sn; due to this, In is called identity matrix. In is an identity element for matrix multiplication.

Symmetric matrix

 Symmetric matrix is a square matrix that is equal to its transpose A = AT. In other words, matrix Am is symmetric if a xy = a yx, where 1 ≤ x, y ≤ m. All identity matrices are symmetric. The distance between vectors shown in

 Figure 2.9 is symmetric matrix.

Properties of symmetric matrices A, B:

 A + B & A – B results in symmetric matrix

 An is symmetric matrix for n ∈

[image: Image 213]

[image: Image 214]

 A–1 is symmetric

Skew symmetric matrix

 Skew-symmetric matrix is a square matrix that is equal to the negative of its transpose A = – AT. In other words, square matrix Am is skew-symmetric if a xy = –a yx, where 1 ≤ x, y ≤ m. By definition, all diagonal elements of skew-symmetric matrices are zero. All identity matrices are not skew-symmetric

as diagonal elements are non-zero. Here are a few examples:

Properties of skew-symmetric matrices A m , B m:

 kA m is symmetric where k ∈

 A + B is skew-symmetric

 A + I is always invertible

Invertible matrices

 Invertible / Non-Singular / Non-Degenerate Matrix An is a square matrix, and there exists a matrix Bn such that:

 AB = BA = In

where In is identity matrix and multiplication used is ordinary matrix multiplication. In this case, matrix B is uniquely determined by A, represented as A-1. Square matrix that is not invertible is called singular or degenerate matrix.

Question: Under what conditions does the inverse of a matrix exists?

 Invertible matrix theorem states that real square matrix An is invertible if and only if any one of the following conditions hold:

 An is row-equivalent to identity matrix In

 An is column-equivalent to identity matrix In

[image: Image 215]

[image: Image 216]

[image: Image 217]

[image: Image 218]

[image: Image 219]

[image: Image 220]

[image: Image 221]

[image: Image 222]

[image: Image 223]

[image: Image 224]

[image: Image 225]

[image: Image 226]

 An has n pivot positions (a pivot position in a matrix is a location that corresponds to a leading 1 in the reduced echelon form of the matrix)

 rank(An) = n, that is, rank of An is full rank

Equation Ax = 0 has only the trivial solution x = 0, zero vector Equation Ax = b has exactly one solution for ∀ b ∈ n Columns of A are linearly independent

Column subspace C(A) = n

Columns of A form basis of n

∃ B n such that AB = BA = In

Transpose of matrix AT is invertible

Properties of Matrix Inverse

The following inverse properties hold for non-singular matrices A, B & Ai:

, where

are inverse of each other

 A-1 is unique

Only solution for

is

Examples of matrices and their inverse

Verify the independence of rows and columns of invertible matrices. Note that inverse of first and third matrices below are their own. These kinds of

matrices are called involutory matrix, that is, A 2 = I.

Example: The following matrices don’t have inverses as row/columns of the matrix are dependent:

[image: Image 227]

[image: Image 228]

[image: Image 229]

[image: Image 230]

[image: Image 231]

[image: Image 232]

has dependent column set,

has dependent column set,

Permutation matrix

 Permutation matrix is a square matrix that only one entry of 1 in each of rows and columns, and other entries are 0. Every permutation matrix can be

obtained by shuffling/permuting the rows of identity matrix of the same dimension. Obtain permutation matrix to shuffle rows of 4 x 4 matrix, where rx represents row x of matrix A to r2, r1, r4, r3. Row permutation matrix can be obtained by moving the row vector of identity matrix. If r2 of A should be moved to the first row, and then move r2 of identity matrix to the first row.

Similarly, one can permute columns of a matrix, but column permuted

identity matrix should be multiplied to the right of matrix A.

Orthogonal matrix

 Orthogonal matrix or orthonormal matrix is a real square matrix whose set of columns and rows form orthonormal sets. For any orthonormal matrix

 Q m, columns vector set C and rows vector set R are orthonormal sets.

[image: Image 233]

[image: Image 234]

[image: Image 235]

[image: Image 236]

[image: Image 237]

[image: Image 238]

[image: Image 239]

Let’s represent matrix Q m in terms of row vectors. Transpose of this matrix Q T

m can be stated in a simple way. Multiplying orthonormal matrix with its

transpose as Q

T

m Q m can be stated using dot product.

is

now number

where

is multiplication of row vector with column vector resulting in

scalar value. Row and column vector set are orthogonal unit vectors.

[image: Image 240]

[image: Image 241]

[image: Image 242]

Obtaining identity matrix indicates

inverse of orthonormal

matrix is its transpose. Here are a few properties of orthogonal matrices Q m: Inverse of the matrix is its transpose

Product of two orthogonal matrices will be orthogonal

Identity matrices In are orthogonal

Transpose of orthogonal matrix is orthogonal

These properties of orthogonal matrices are helpful in decomposing the

matrix and mapping vectors from one space to another, which will be further

discussed in matrix decomposition and linear transformation.

Matrices in ML problem formulation

While formulating ML problem, properties of vectors are usually captured in

matrix format. This section will discuss those matrices.

Feature/data matrix

Matrix representing samples of a dataset is called Feature or data matrix.

The samples of a dataset are represented as row vectors and columns of the

matrix will represent features of each sample. This compact representation of dataset in matrix format helps in the implementation of ML algorithms.

Consider Iris dataset from previous section of this chapter. Iris dataset contains samples of three types of Iris flowers: setosa, virginica, versicolor.

Each flower is captured with four parameters called features: petal length, petal width, sepal length, and sepal width. The features of the first five samples for the Iris dataset are represented below as vectors:

Representing these vectors of sample data as rows of a matrix is called feature matrix or data matrix. Classes of these samples, setosa, virginica, and versicolor are numbered with values 0, 1, and 2, respectively. Classes of

the samples it belongs to are represented in target vector y, where each entry

[image: Image 243]

[image: Image 244]

[image: Image 245]

of the vector is the class of the corresponding sample in feature matrix. Due

to this, the number of rows of feature matrix and target vector is equal to number of samples. Feature matrix and target vector of these sample vectors

are captured as follows:

One hot encoding

In the previous example, classes of Iris dataset were assigned numbers 0,1,

and 2. For a new sample, ML algorithm must predict one of these numbers

associated with the class. As algorithms only understand numbers, they

might misinterpret when there is a higher number allocated to versicolor class as compared to other classes. To avoid the misinterpretation by

algorithms, a class of samples can be represented with unit vector that has

zero entries for other classes, except for the true class whose entry will be 1.

This unit vector u ∈ m, where m is total number of classes. These unit vectors that indicate the classes of each sample are represented as rows of the target matrix. This form of representation of output vector is called one hot encoding. One hot encoded vector would have only one element as 1

(that is, hot), and the remaining entries are zeros. Let’s rewrite vector from

the previous example as 5x3 one-hot encoded matrix E.

One hot encoded matrix would turn out to be sparse. To reduce sparseness,

we can reduce its dimensionality to obtain full matrix called embedding

 matrix that would be further discussed in chapter 11 Natural Language

Processing.

[image: Image 246]

[image: Image 247]

Distance matrix

Distance matrix captures the distance between vectors where each column and row represent a vector whose element is distance from vector aij to . The distance between vectors is symmetric function, which implies that the

distance from vi to vj is the same as the distance from vj to vi. This makes distance matrix symmetric.

Consider the previous example of Iris dataset. Euclidean distance between the five vectors is captured as follows:

Gram matrix

 Gram matrix represents inner product between vectors, where element of the matrix indicates inner product of vectors vi & vj that is, aij = 〈 vi, vj〉. Gram matrix is symmetric as inner product function is symmetric.

Consider the previous sample of Iris dataset. Dot product (which is inner product) between vectors (rounded to integer) is captured as follows:

Covariance matrix

 Covariance matrix captures covariance (joint variability) between random vectors. Each entry of the matrix denotes covariance between two random vectors. As covariance is symmetric function, covariance matrix will be symmetric. Covariance matrix is also known as auto-covariance or dispersion or variance or variance-covariance matrix. A detailed discussion

[image: Image 248]

[image: Image 249]

[image: Image 250]

on covariance will be covered in chapter 4 Basic Statistics and Probability

 Theory.

Correlation matrix

 Correlation Matrix captures statistical relationship between random vectors, called correlation coefficient. As correlation coefficient is symmetric

function, correlation matrix is symmetric. A detailed discussion on

correlation will be covered in chapter 4 Basic Statistics and Probability

 Theory..

Jacobian and Hessian matrix

Jacobian and Hessian matrix captures first order and second order partial derivates of functions of several variables, respectively. Detailed discussed of these matrices will be done in Chapter 3 Vector Calculus.

Two subspaces of a matrix were discussed previously, and these subspaces

dimensions were used to define the rank of the matrix. Let’s discuss more subspaces of a matrix and their relationship.

Subspaces of matrix and orthogonality

 Column space of a matrix Amxn is the span of its column vectors, denoted as C(Amxn). Row space of the matrix is the span of its row vectors, denoted as C(ATmxn). Let’s interpret Ax, where vector x ∈ n linear combination of the columns of the matrix with corresponding weights from x.

To express any vector b ∈ m in terms of Ax, that is, Ax = b, vector b should be in column space of matrix A, that is, b ∈ C(A). Solution doesn’t exist if

 b∉ C(A).

How does solution for Ax = b behave when rank(A) = m?

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

[image: Image 255]

[image: Image 256]

[image: Image 257]

[image: Image 258]

[image: Image 259]

[image: Image 260]

[image: Image 261]

[image: Image 262]

[image: Image 263]

[image: Image 264]

[image: Image 265]

[image: Image 266]

[image: Image 267]

If rank(A) = m, then column space will span all vectors of m, that is, C(A) = m, and if m < n, then there will exist more than one solution for ∀ b∈ m.

If rank(A) = m, then column space will span all vectors of m, that is, C(A) = m and if m = n, then there will exist unique solution for ∀ b∈

 m.

How does solution for Ax = b behave when rank(A) < m?

If rank(A) < m, then column vectors do not span all vectors of m, that is, C(A) ⊂ m and if rank(A) < n and b ∈ C(A), then there will exist more than one solution.

If rank(A) < m, then column vectors do not span all vectors of m, that is, C(A) ⊂ m and if rank(A) = n and b ∈ C(A) then there will exist a unique solution.

Null space

How does the solution behave when b is zero vector?

All possible values of x ∈ n those result in Ax = o, where o is zero vector in m, form the null space of the matrix A, denoted as N(A). Null space is a vector space with usual definition of addition and scalar multiplication (verification is left to the reader as exercise). Let’s express Ax as dot product, with ri representing row i of matrix A. Dot product of x with all rows rk should result in 0 value. Indicating x should be orthogonal to all rows of A.

This implies that null space N(A) (subspace of n) is orthogonal to row space of A (subspace of n). If one wants to find solution to n, then search should be restricted to subspace of Ax = o, which is orthogonal to row space of A denoted as

.

[image: Image 268]

[image: Image 269]

[image: Image 270]

[image: Image 271]

[image: Image 272]

[image: Image 273]

[image: Image 274]

[image: Image 275]

[image: Image 276]

[image: Image 277]

[image: Image 278]

[image: Image 279]

Similarly, one can analyze left null space of matrix A as xT A = oT, where o

is zero vector in n & x ∈ m. This is equivalent to expressing A T x = o. Left null space of is all possible solutions to x ∈ m that result in A T x = o, represented as N(A T). N(A T) is subspace of m will be orthogonal to C(A) column space A.

Orthogonality among subspaces

For any given real matrix Amxn, there exist four fundamental subspaces whose properties are captured as follows:

Column space C(A) ⊆ m

Row space C(A T) ⊆ n

Null space N(A) ⊆ n

Left null space N(A T) ⊆ m

Column space of A is orthogonal to left null space N(A T) ⊥ C(A) Row space A is orthogonal to null space N(A T) ⊥ N(A) Example: Obtain vectors belonging to each of the four subspaces of the matrix A 2x3 and verify these subspaces properties. Column set of this matrix is dependent, and rank(A) = 2 = m, implies solution exists for ∀ b ∈ 2. As m

 < n, more than one solution exists for x = [c 1 c 2 c 3] T, and the number of free running variables would be n – m = 3 – 2 = 1. So, consider one the three variables as free and assign a scalar value k∈ , c 3 = k: Case 1: Solution would be:

[image: Image 280]

[image: Image 281]

[image: Image 282]

[image: Image 283]

[image: Image 284]

[image: Image 285]

[image: Image 286]

[image: Image 287]

[image: Image 288]

Case 2: Solution for Ax = o would be:

Now, consider the transpose of the previous matrix AT whose dimensions would be 3x2. Column set of the matrix is independent set, so rank(A T) = n

 = 2 < m implies that solution for AT x = b doesn’t exist for ∀ b∈ 3.

Case 3: As rank(A T) = n, solution is unique if it exists.

Solution for

Let’s consider the solution for another value of b.

Solution for

doesn't exit as

Case 4: Let’s consider the solution for AT x = o. As rank(A T) = n; there exists a unique solution, and the solution is zero vector.

Let’s summarize all four cases. Solutions obtained in these cases belong to

different subspaces of matrix as explained below.

Case 1:

Case 2: For k = 1 solution becomes

Case 3:

Case 4: Solution is

[image: Image 289]

[image: Image 290]

[image: Image 291]

Verify the orthogonality concepts N(A T) ⊥ C(A) & C(A T) ⊥ N(A) from the obtained vectors belonging to each of the subspace of matrix .

Determinant

 Determinant of a square matrix A is a scalar value obtained from the entries of the square matrix denoted as det(A) or |A|. Determinant of nxn matrix A through Laplace expansion can be calculated using any fixed row number i

and is defined as:

Where j is column number, a i,j is element in ith row and jth column of A, and M i,j called minor, is determinant of submatrix obtained by removing ith row and jth column of A. Term C ij = (–1) i+j M ij is called Cofactor of a i,j in matrix A. This operation is applied in recursion till the dimension of M reduces to 1x1.

Inverse of Matrix

 Cofactor matrix C of a matrix An consists of cofactors Cij of elements aij.

 Inverse of non-singular matrix An is defined using determinant and cofactor matrix as:

Example: Determinant of 2x2 matrix can be calculated using preceding formula. Let’s fix row i = 1 then:

[image: Image 292]

[image: Image 293]

[image: Image 294]

[image: Image 295]

[image: Image 296]

[image: Image 297]

Verify that the determinants of the preceding matrix obtained by fixing row

number i = 2 and i = 1 are the same?

Example: Determinant of 3x3 be can constructed using formula obtained from 2x2 matrix. Fix row i = 1:

Example: Find inverse of a matrix A:

Recursively, one can obtain the determinant for any nxn matrix.

Determinants of any nxn square matrices and real scalar value k ∈ have these properties:

Determinant of identity matrix is 1, det(In) = 1

Determinant remains the same, but its sign (+/-) changes when two

rows (two columns) are swapped

Determinant doesn’t change if scalar multiple of one row (column) is

added to another row (column)

Determinant is multiplied by k if row or column is multiplied by k

 det(kA) = k n det(A)

 det(A) = 0 iff A is non-invertible or has dependent rows (columns) or

its rank(A) < n. In other words, det(A) ≠ 0 iff A is invertible If matrix is triangular, then its determinant is equal to product of

diagonal elements

 det(AB) = det(A) * det(B)

[image: Image 298]

[image: Image 299]

[image: Image 300]

 det(A T) = det(A)

Orthonormalization

 Orthogonalization is the process of finding a set of orthogonal vectors that span a subspace. Consider independent vector set {v 1 , v 2 , …, vk} that spans subspace of inner product space in n, where k ≤ n. Orthogonalization is process of obtaining orthogonal vector set {w 1 , w 2 , …, wk} that spans same subspace as {v 1 , v 2 , …, vk}. Further reduction on the derived orthogonal set can be performed to obtain orthonormal vector set {u 1 , u 2 , …, uk}, where length/norm of all vectors is 1 and spans the same subspace as {v 1 , v 2 , …,

 vk}. The process of obtaining orthonormal set for a given subspace is called Orthonormalization. Gram-Schmidt process is one of the orthonormalization techniques that derives orthonormal vectors through projection in an inner product space.

Understanding the projection of one vector over other through dot product will give better insights into the Gram-Schmidt process. As discussed in Euclidean space, dot product between two vectors v 1 ⋅ v 2 provides the product of the first vector and the projected length of the second along the

first vector. To obtain the ratio for the projection length with respect to the

length of v 1, divide it by the dot product of the first vector with itself (projection of the first vector with itself):

The ratio obtained is scalar; to obtain direction, multiply the ratio with v 1 as

 v 2 is projected along the direction of v 1. Projection of vector v 2 over v 1 along the direction of v 1 can be defined as follows:

 projv 1 (v 2) is a vector that is part of v 2 along the direction of v 1; the remaining part of v 2 is v 2 – projv 1 (v 2), which will be orthogonal to v 1. With

[image: Image 301]

[image: Image 302]

[image: Image 303]

[image: Image 304]

this, we have obtained two orthogonal vectors: w 1 = v 1 and w 2 = v 2 –

 projv 1 (v 2). To verify orthogonality, let’s take dot product: Geometrically, let’s visualize the algorithm in two-dimensional form with two independent vectors, as shown in Figure 2.15:

 Figure 2.15: Projection of a vector along the direction of another vector through inner product To obtain the third orthogonal vector w 3 from v 3 of the independent set, subtract the projection on w 1 and w 2 from v 3, as follows: Similarly, any ith orthogonal vector is obtained as follows:

The obtained vector set {w 1 , w 2 , …, wk} is orthogonal but their length is not.

To obtain vectors with unit length, divide the vector by their length:

[image: Image 305]

[image: Image 306]

[image: Image 307]

[image: Image 308]

[image: Image 309]

[image: Image 310]

Example: Consider a matrix A for orthonormalization with column vectors

 {v 1 , v 2 , v 3 }:

One can verify that {w 1 , w 2 , w 3 } are orthogonal through dot product (approx.

to three decimal places). Converting these vectors to unit vectors, one obtains:

Express these orthonormal vectors as matrix Q and verify if Q T Q = I (round off to 3 decimal places):

 Tip: Simple modification of Gram-Schmidt is proposed to obtain ith

 orthogonal vector for stable calculation. Instead of projecting vector on

 orthogonal vectors at once, it is performed in a chain. The resultant

 vector after projection over one orthogonal vector is used for projection

 on the next orthogonal vector.

[image: Image 311]

[image: Image 312]

[image: Image 313]

[image: Image 314]

Applications of Orthonormalization

Expressing a vector with respect to orthogonal vectors has advantages as changes to the vector along any orthogonal vector doesn’t impact other orthogonal vectors. From a system perspective, one can consider these

orthogonal vectors to be knobs, and tuning these knobs can be considered equivalent to changing independent factors of a system.

Consider the example of television set that has knobs to control brightness,

contrast, length, and the width of frames. Tuning these knobs changes only

one property of the frame and leaves the other properties unaffected. What if

there existed a knob that would change brightness, contrast, length, and width of a frame simultaneously by a small percentage each. Will you be comfortable using this knob to achieve the desired frame quality?

Undoubtedly not.

The same concept can be applied for tuning process of ML algorithms.

Tuneable parameters of the algorithm must behave orthogonally; otherwise,

analysing the behaviour of individual parameters would be difficult.

Orthonormalization is an important step to express a matrix as product of matrices that includes orthonormal matrix, which will be discussed in the later sections of this chapter. Next, let’s discuss transforming a vector from

one subspace to another.

Linear transformation

 Linear transformation, also called Linear map or Linear mapping, is a mapping of vectors from linear vector subspace V ⊆ n to linear vector subspace W ⊆ m, both over the same scalar field , denoted as T : V → W.

Additionally, it must preserve vector addition and scalar multiplication

[image: Image 315]

[image: Image 316]

[image: Image 317]

[image: Image 318]

[image: Image 319]

[image: Image 320]

[image: Image 321]

operations. To state formally, map T : V → W is linear if ∀ u, v ∈ V and scalar s ∈ ensure that the following two conditions are satisfied:

 T(u + v) = T(u) + T(v) preserving addition operation T(su) = sT(u) preserving scalar multiplication

In other words, it doesn’t matter whether linear map is applied before or after the operations of addition and scalar multiplication.

Example: Derivative operator and integral operator ∫ dx of a function of single variable is linear transformation as both addition and scalar

multiplication is preserved:

Example: Expectation of random variable is linear transformation:

 Addition: E[X + Y] = E[X] + E[Y]; Scalar Mult: E[2X] = 2E[X]

Matrix associated with linear map

Linear transformations from finite dimensional vector space to another can

be expressed by Transformation Matrix Amxn with respect to the given basis vectors. How can you determine transformation matrix for the given linear

transformation T(⋅)?

Let subspace V ∈ m be spanned by basis vectors B = [b 1 b 2 … b n] where bi

∈ m (here, basis is ordered as it is required to define the coordinates of an element), vector u ∈ V expressed as the linear combination of its basis vectors with coefficients as [u]B = [c 1 c 2 … cn] T (these are called coordinates of u w.r.t. ordered basis B).

Apply the transformation function T(⋅) on u with basis :

[image: Image 322]

[image: Image 323]

[image: Image 324]

[image: Image 325]

[image: Image 326]

[image: Image 327]

[image: Image 328]

This indicates that applying transformation function T(⋅) on the vector u is equivalent to the multiplication of A and [u] B, where A = [T(b 1) T(b 2) …

 T(b n)] & [u]B are coefficients required to express vector as linear combination of basis vectors B = [(b 1 b 2 … b n)].

One can view the multiplication Av = u of a matrix A mxn and a vector v ∈ n, which results in vector u ∈ m through transformation. Matrix can be viewed as mapping (linear map) vector v of n-dimension subspace that is expressed as weights of linear combination of columns of matrix A to a vector u of m-dimension.

Example: Transformation function T(x) is the function that rotates a two-dimensional vector by θ = 90°:

Given

Let u = [14 7]T be expressed as linear combination of three vectors b 1 = [1

2]T, b 2 = [2 1]T & b 3 = [3 1]T with coefficients [u]B = [1 2 3]T where B = [b 1

 b 2 b 3].

For given transformation function, transformation matrix with respect to B is obtained by applying transformation function on each column of B.

obtain

Apply transformation matrix A on vector [u]B, which is equivalent to applying the transformation function T(⋅) on vector u:

[image: Image 329]

As transformation function rotates vector by 90°, vectors u = [14 7]T and linearly mapped vector v = [–7 14]T should be orthogonal. One can verify their orthogonality through dot product.

 Tip: Transformation function T(x) = kx scales a vector by factor k and

 can be represented by matrix kIn.

Composition of linear transformation

Composition of linear transformations is a linear transformation. Let T : V →

 W be a linear transformation and S : W → X be another linear transformation, as depicted in Figure 2.16. Then, the composition of the linear transformation is a linear transformation that maps u ∈ V directly to X

by S(T(u)). The important fact is that the matrix of the composite transformation is equal to the product of the matrices of the two original maps. Refer to the following figure:

 Figure 2.16: Composition of linear transformation

Example of linear neural network: Consider a simple network of nodes, as

shown in Figure 2.17. Circles in the figure are called nodes. Nodes at level 1

[image: Image 330]

[image: Image 331]

[image: Image 332]

[image: Image 333]

are labelled n 11, n 12, and n 13, and at level 2, they are n 21 and n 22. Output is provided through node n 31. The line connecting the first node n 11 of layer 1

to the first node of layer 2 multiplies input n

1

21 by weight w 11 . The line

connecting the second node n 12 of layer 1 to the first node n 21 of layer 2

multiplies input x

1

2 by weight w 21 . Similarly, all weights are labelled based

on levels and the nodes they are connecting. Refer to the following figure:

 Figure 2.17: Simple neural network

Input to n

1

21 from n 11 would be x 1 * w 12 . All inputs from nodes to n 21 and n 22 are summed as:

This can be written in matrix form as:

We call the vector n the hidden layer of the network. So, the hidden layer n is obtained by applying a linear transformation defined by matrix W. This transformation converts the three-dimensional input vector to a two-

[image: Image 334]

dimensional vector n. Again, final output can be written as a linear transformation of n to a real number.

Whole of the neural network above can be regarded as a composition of two

linear transformations. As a composition of two linear transformations is also a linear transformation, we can represent this input output relation x →

 y as a single linear transformation W T x = y, where W = W 1 W 2, that is, putting a linear hidden layer is redundant. This suggests that any number of

linear layers added to the network doesn’t change linearity of the network,

and the whole network can be expressed as a single transformation matrix W. That’s the reason a non-linear function is applied after every linear transformation of the input space while constructing deep neural network (discussed in chapter 7 Neural Networks) with multiple layers. We will encounter many diverse network topologies in the later chapters.

Eigenvalues and vectors

In vector spaces, there might exist certain special non-zero vectors. Square

transformation matrix A corresponding to linear transformation function T(⋅) when applied on these special non-zero vectors e, results in changing the vector by a real scalar factor λ as T(e) = Ae = λ e. These vectors are called Eigen vectors, and the corresponding scaling factor λ by which eigen vector scales are called Eigen values of square matrix A.

 Ae = λ e equation can be stated as (A – λ I) e = o where e is non-zero vector.

This will help you to obtain the eigenvalues and vectors. Non-zero eigen vector e will exist if and only if matrix B = (A – λ I) has dependent columns/rows, or null space of should have non-zero vector. In other words,

a non-zero solution for e will exist if matrix B is non-invertible.

Any non-invertible matrix B will have its determinant as zero, that is, |A –

λ I| = 0. This equation is called Characteristic equation, which is a polynomial function of the variable λ and degree of this polynomial is n (order of matrix A). Polynomial function is called Characteristic polynomial of A. Characteristic polynomial of degree n can be factored into product of n linear terms as | A – λ I| = (λ 1 – λ)(λ 2 – λ)…(λn – λ), where λi's are roots of the

[image: Image 335]

polynomial and are called eigenvalues of the matrix A. Eigenvalues of a matrix is not always unique; there can be repetitions. Eigenvalues of real matrix can also be complex numbers.

Once eigen values are calculated, the corresponding eigen vector are

obtained using . The number of eigen vectors corresponding to one

eigenvalue are infinite, and they can be represented concisely using scalar multiplication of vector (see the following examples).

Also, every square matrix A satisfies its own characteristics polynomial.

This is known as Cayley–Hamilton theorem. So, if we substitute A in place of λ in the above-mentioned characteristic equation, we get a matrix equation equating to zero matrix.

Will eigen vectors corresponding to distinct eigenvalues always be

independent?

Consider distinct eigenvalues λ1 ≠ λ2 and corresponding eigen vectors as e 1,

 e 2 of matrix A. If e 1 = ke 2 then Ae 1 = Ake 2 ⇒ λ1 e 1 = λ2 ke 2 ⇒ λ1 = λ2, which leads to contradiction. So, eigen vectors corresponding to distinct

eigenvalues will always be independent.

Eigen properties

Let’s discuss a few important eigen properties:

Eigen vectors corresponding to distinct eigenvalues are linearly

independent.

Trace of a matrix is equal to the sum of all its eigenvalues.

Determinant of a matrix is equal to the product of all its eigenvalues.

Eigenvalues of Ak, where k is positive integer, are λ ki, where λ i is eigenvalue of A.

If A is invertible, then eigenvalues of A-1 are ⁄λ i, where λ i is the eigenvalue of A.

Example: Consider 2x2 matrix and obtain its eigen values by solving its characteristic polynomial:

[image: Image 336]

[image: Image 337]

[image: Image 338]

[image: Image 339]

[image: Image 340]

[image: Image 341]

[image: Image 342]

[image: Image 343]

[image: Image 344]

[image: Image 345]

Use the obtained eigenvalues in (A – λ I) e = o to obtain corresponding eigen vectors. Select one among possible eigen vectors for λ1 = 4 as e 1 = [1 1]T, as follows:

Select one among possible eigen vectors for λ2 = 2 as e 2 = [1 –1]T, as follows:

Verify if transformation on eigen vectors results in scaling of eigen vector by

the corresponding eigenvalue:

,

one

obtains

, one obtains

Appyling transformation on non-eigenvector v = [1 2]T, will it be scaled by k

∈ ?

Example: Consider matrix

. This matrix has repeating

eigenvalues. Will repeating eigenvalues have independent eigen vectors?

[image: Image 346]

[image: Image 347]

[image: Image 348]

[image: Image 349]

[image: Image 350]

As there are two free running variables, we can have two eigen vectors that

are independent, that is, e 1 = [1 0]T & e 2 = [0 1]T.

Example: Consider matrix

. This matrix has repeating

eigenvalues. Will repeating eigenvalues have independent eigen vectors?

Roots of | A – λ I| will be λ1 = 1, λ2 = –2, λ3 = –2. For λ1 = 1, one obtains: Applying Gauss-Jordan elimination method on this matrix will simplify the

solution for (A – λ I) e = o.

For repeating eigenvalues λ2 = –2, apply Gauss-Jordan elimination method

on A – (–2) I. One obtains:

The number of free running variable is only one. So, two eigen vectors corresponding to the eigen value λ = –2 that are independent do not exit.

Eigen vector would be e 2 = [–3α α 0]T.

Geometric analysis

Analysing transformation on eigen vectors geometrically provides good

insights for understanding the concept. Consider transformation matrix

from the previous example. Eigenvalues and vectors of this

matrix are:

[image: Image 351]

[image: Image 352]

[image: Image 353]

[image: Image 354]

For each eigenvalue, let’s plot two eigen vectors with values in solid lines, as

shown in Figure 2.18:

Plot non-eigen vectors with values in dashed lines:

Refer to the following figure:

 Figure 2.18: Representation of eigen vectors and non-eigen vectors

After transformation, eigen vectors denoted with thick black line keep their

direction with length changed by factor of its eigen value and non-eigen vectors denoted with dotted grey line don’t maintain their direction, as

shown in Figure 2.19:

[image: Image 355]

[image: Image 356]

 Figure 2.19: Representation of eigen vectors and non-eigen vectors after transformation

Existence of zero eigenvalue

Under what conditions will a square matrix have zero eigenvalue?

Definition of eigen vector e states that it is a non-zero vector that changes by a scalar factor λ when transformation A is applied. The corresponding scalar factor is called its eigenvalue. From definition:

As e is non-zero vector, N(A) should have non-zero vectors, which is possible only when rank(An) < n ⇒ matrix has at least one dependent column/row. Repetition of eigenvalue λ = 0 will happen if dimension of null

subspace is greater than zero, that is, dimension(N(A)) > 0. Also, the number of times zero eigenvalue repeats will be equal to dimension(N(A)).

Eigen properties of symmetric matrices

Symmetric matrices are important due the following properties of

eigenvalues and eigenvectors:

Eigenvalues of real symmetric matrices are always real.

There exist exactly n eigen values (need not be distinct) for symmetric

matrix An.

[image: Image 357]

[image: Image 358]

[image: Image 359]

[image: Image 360]

[image: Image 361]

[image: Image 362]

[image: Image 363]

[image: Image 364]

[image: Image 365]

There exist n eigen vectors corresponding to each eigenvalue that are

mutually orthogonal.

Example: In the preceding example, eigenvalues and vectors of a symmetric matrix

resulted in:

Verify if eigen values corresponding to different eigenvalues are orthogonal.

Example: Consider another real symmetric matrix that has repeating eigenvalues. Two orthogonal eigen vectors can be obtained for this repeating

eigen value. One can verify the orthogonality of eigen vectors.

Positive definite

 Quadratic form is a function Q from n to defined with respect to a symmetric matrix A as:

Consider the example of symmetric matrix

; the

corresponding quadratic form in 2 is given by:

Note that Q(x) is a scalar or a real number for real vector x. Real symmetric matrix A is called positive-definite if the real number Q(x) = xT Ax is positive for every non-zero real column vector x. A positive-definite matrix is denoted by the notation A ≽ 0.

Let v be any eigen vector (it is always non-zero) of the positive-definite matrix A corresponding to the eigenvalue λ. Then, we have Av = λ v. Hence,

 Q(v) = v T (λ v) = λ v T v = λǁ v ǁ2 > 0. Here, denotes the Euclidean norm and ǁ v ǁ2

> 0 always. Therefore, λ > 0 that is, the eigenvalues of a positive definite matrix are all positive.

[image: Image 366]

[image: Image 367]

[image: Image 368]

If A ≽ 0, then set ε = { x : Q(x) < 1} is called an ellipsoid in n. An ellipsoid is a generalization of ellipse in n-dimensions. A two-dimensional ellipse has two axes: one is called major axis and the other the minor axis, as shown in

 Figure 2.20:

 Figure 2.20: Ellipsoid

Eigenvalues λ i and corresponding eigenvectors qi of matrix A ≽ 0 determine the direction and length of semiaxes si of ellipsoid ε as:

If we arrange the eigen vectors q 1, q 2, …, qn corresponding to eigenvalues in decreasing order as λ1 ≥ λ2 ≥ … ≥ λ n, the value of xT Ax is large in the direction of q 1. Hence, ellipsoid is thin and elongated in the direction of q 1.

This is the direction of major axis. In direction of q n, the value of xT Ax is small, so ellipsoid is fat in direction of q n. We will encounter these ellipsoids

[image: Image 369]

[image: Image 370]

[image: Image 371]

[image: Image 372]

[image: Image 373]

[image: Image 374]

again in Chapter 4 Basic Statistics and Probability Theory while introducing

multivariate Gaussian distribution.

Using quadratic form, we can also define another norm for a matrix. For any

 m × n matrix A, A T A is always a square symmetric matrix. We can calculate the eigen values of A T A. Let λ be any eigen value of A T A; then, we have A T

 Ax = λ x for the corresponding eigen vector x. The spectral norm of a matrix A is defined as:

We have:

Hence:

Therefore,

. The

 spectral norm of a matrix A is the largest singular value of A. Singular value of matrix A is defined as the square root of non-zero eigenvalue of A T A matrix.

Now, any vector v can be also viewed as a matrix with one column. Hence, we can define spectral norm for any vector. But v T v is the dot product, and hence, is a scalar. The eigenvalue of a scalar or 1x1 matrix is the scalar itself.

So, we can write spectral norm of vector v as

, which is actually the

Euclidean norm of the vector v. Using spectral norm definition, we can write:

So, if we consider the linear transformation defined by the map T: x → Ax, the length of the mapped vector Ax is, at most, λ1 times the length of the input vector x, where λ1 is the maximum singular value of the matrix A.

[image: Image 375]

[image: Image 376]

[image: Image 377]

[image: Image 378]

Matrix decomposition

The process of expressing a matrix as product of matrices is called matrix decomposition or matrix factorization. There exist many methods to decompose the matrix. Each method finds use in particular class of

problems. The main advantage of matrix decomposition is to express a

matrix in a form that helps to solve the problem.

Computing inverse of a matrix, if exists, might be compute intensive. But when expressed as a product of matrices, it could be done with

comparatively less compute resources. Let say, matrix A can be expressed as the product of any three matrices P, Q, R whose inverse calculation is simple. So, decomposing a matrix into appropriate matrices can result in lesser compute:

Similarly, calculating the determinant of a matrix becomes easier when a matrix is expressed as the product of any three matrices P, Q, R, whose determinants are easier to calculate.

LU decomposition

 LU decomposition is process of expressing the square matrix as the product of the lower and upper triangular matrices A = LU:

From the product, a 11 = l 11 * u 11, there arise many possible values for l 11 & u 11. To obtain consistency in decomposition, the diagonals of lower triangular are assigned 1. In the following example, the value of lxx = 1. With fixed value of lxx, we can find other values as:

Use obtained values, u 11 = 1 to solve l 21 u 11 = 3 we get l 21 = 3

[image: Image 379]

[image: Image 380]

[image: Image 381]

[image: Image 382]

Use obtained values, u 12 = 3, l 21 = 3 to solve l 21 u 12 + l 22 u 22 = 1 we get u 22

= -8

Similarly, one can obtain values for all entries of L & U matrices.

What happens when the value of a 11 = 0?

When a 11 = 0, a 11 = l 11 * u 11 ⇒ l 11 = 1, u 11 = 0, but this situation is impossible if rank(A) = n as assigning u 11 = 0 will lead to rank(U) < n that leads to rank(A) < n. This situation can be avoided if one shuffles the rows of matrix A. Shuffling or permutation of the rows can be performed through permutation matrix P, as discussed in Matrices section. Permutated rows of matrix A will be decomposed as PA = LU. Every square matrix can be decomposed into this form:

One can assign all diagonal entries of U matrix with 1 by introducing the diagonal matrix D that has 0 entries in non-diagonal elements between the L

and U matrices.

By-product of Gauss-Jordan elimination

 LU decomposition can be viewed as by-product of Gauss-Jordan

elimination. Elimination method consists of two stages forward & back

[image: Image 383]

[image: Image 384]

[image: Image 385]

[image: Image 386]

[image: Image 387]

substitution. Representing forward substitution in matrix format provides L

matrix.

Forward substitution: We can represent each ith step of forward substitution method by elementary matrix Ei. Elementary matrix differs from identity matrix by one single elementary row operation. Suppose the row operation to be conducted on a 3×3 matrix A is 2 * r 2 + r 3 → r 3, then elementary matrix E representing this operation is:

Multiplying E on the left side of matrix A is equivalent to performing row operation of 2 * r 2 + r 3 → r 3 on A.

 E 1 is the matrix representing the first elementary row operation to be conducted on A, E 2 will represent the second, and Ei will represent the ith row operation. All steps of forward substitution (row operations) can be represented as a single matrix E = E α … E 2 E 1. The resultant matrix of forward substitution is upper triangular matrix U.

Example: Consider the matrix A. In forward substitution, a total of three operations are performed to obtain row echelon matrix. Operation on step 1:

(-3) * r 1 + r 2 → r 2 & (-5) * r 1 + r 3 → r 3 and on step 2: 2 * r 2 + r 3 → r 3.

Operation of step is represented with matrix Ei.

[image: Image 388]

[image: Image 389]

[image: Image 390]

[image: Image 391]

 QR decomposition

 QR decomposition is about decomposing a matrix A m×n, where m ≥ n & rank(A) = n into the product of two matrices as A = QR, where Q is orthogonal matrix and R is upper triangular matrix. Orthogonal matrices have properties like Q–1 = Q T that are helpful in solving certain classes of problems. Matrix Q can be obtained from A through one of the various orthonormalization algorithms called Gram-Schmidt. Let’s represent A & Q

with column vectors as follows:

Matrix R (A = QR ⇒ Q–1 A = Q–1 QR = R) can be expressed as the dot product of columns of Q & A:

Example: Consider the example of a matrix A and obtain orthonormal matrix Q through Gram-Schmidt process. Verify if A = QR (round to 2

decimal places):

Example: Consider rectangular matrix A 4 x 3 whose rank is 3. Obtain orthonormal matrix Q through Gram-Schmidt process:

Eigen decomposition

Consider a square matrix Sn× n that has n linearly independent eigenvectors

 e 1, e 2, …, en corresponding to eigenvalues λ1, λ2, …, λ n. Let Q = [e 1 e 2 …

[image: Image 392]

[image: Image 393]

[image: Image 394]

[image: Image 395]

[image: Image 396]

[image: Image 397]

 en], then:

 Λ is diagonal matrix with corresponding eigenvalues. Multiply by Q–1 on the right side of equation SQ = QΛ. This provides SQQ–1 = QΛQ–1 ⇒ S = QΛQ–

1.

Eigen decomposition helps in reducing complexity while solving many

problems, like finding inverse of a matrix if it exists or power of a matrix S–1

as:

Real symmetric matrix

As discussed in the eigen value section, real square symmetric matrix has n

eigen real values and corresponding eigenvectors are mutually orthogonal.

This property helps to obtain interesting format of eigen decomposition as S

= QΛQ–1 = QΛQ T as Q is orthogonal matrix Q–1 = Q T.

Example: Eigenvalues of matrix

are λ1 = 2, λ2 = 4 and

corresponding

unit

eigen

vectors

will

be

.

Verify

if

the

following decomposition is valid:

Singular value decomposition

 Singular value decomposition is generalization of Eigen decomposition to rectangular matrices. Eigenvalue λ and corresponding eigen vector e of a square matrix S followed Se = λ e. As Sn×n is square matrix, the multiplied

[image: Image 398]

[image: Image 399]

[image: Image 400]

[image: Image 401]

[image: Image 402]

[image: Image 403]

[image: Image 404]

[image: Image 405]

[image: Image 406]

[image: Image 407]

[image: Image 408]

[image: Image 409]

[image: Image 410]

[image: Image 411]

vector and resultant vector belong to n, and they are the same (all in the same dimensional subspace). Consider a rectangular matrix Am×n, when multiplied by vector v ∈ n, results in vector u ∈ m. As the multiplied and resultant vectors belong to different dimensional subspace, one needs to map

in both ways using A (maps n → m) and A T (maps m → n).

where non-negative scalar value σ ≥ 0 is called singular value of A, u is left-singular vector of σ and v is right-singular vector of σ.

Decompose rectangular matrix into product of three matrices:

where

, ∑

is

diagonal

matrix

with

σ i

≥

0

values

such

that

are orthogonal matrices.

How can we find these singular-values and corresponding left-singular and

right-singular vectors of a matrix that are orthonormal in their respective subspaces?

Any matrix multiplied by its transpose results in symmetric matrix. This property will help in providing the relation between singular-values and eigenvalues.

 U

&

 V

are

orthogonal

matrices

implying

. As Σ is diagonal matrix, ΣT = Σ:

Symmetric matrix AA T = UΣ 2 U T can be mapped to eigen decomposition of symmetric matrix S = QΛQ T, where both U & Q are orthogonal matrix and Σ 2 & Λ are diagonal matrices. This implies that σ 2

 i are eigenvalues of

symmetric matrix [AA T]m×m, columns of U (left-singular vectors ui) are orthogonal eigenvectors corresponding to eigenvalues of symmetric matrix

 AA T.

Similar analysis holds on symmetric matrix A T A = VΣ 2 V T. σ 2

 i are

eigenvalues of symmetric matrix [A T A] n×n, columns of V (right-singular

[image: Image 412]

[image: Image 413]

[image: Image 414]

[image: Image 415]

[image: Image 416]

[image: Image 417]

[image: Image 418]

[image: Image 419]

vectors vi) are orthogonal eigenvectors corresponding to eigenvalues of symmetric matrix A T A.

Example: Decompose square matrix

. Calculate the

eigenvalues and eigen vectors of A T A.

Obtained unit orthogonal vectors vi from A T A. To obtain U, use ui = ⁄σ i Avi.

There is no restriction to first obtain vi. One can first obtain ui from AA T and derive vi = ⁄σ i A T ui.

Verity

Example: Consider a rectangular matrix

. In the previous

example of a square matrix, one could start with either A T A or AA T. But in case of a rectangular matrix, choose the one that results in more

[image: Image 420]

[image: Image 421]

[image: Image 422]

[image: Image 423]

[image: Image 424]

columns/rows. If rectangular matrix Am×n has m < n, then choose A T A otherwise choose AA T. Calculate the eigenvalues and vectors of A T A: One obtains:

Use ui = ⁄ σ i Avi or AV = UΣ:

Verify if A = UΣV T.

SVD is applied in various domains, like data compression and

recommendation systems. We will be using eigen value decomposition and

SVD in various concepts in the subsequent chapters. These topics will include dimensionality reduction, semantic representation of text, or latent semantic indexing.

Conclusion

The discussion of linear algebra in this chapter started with introduction of

system of linear equations and its solutions with real examples. Representing

large data with linear equations has its limitations. For better representation, we introduced vectors and matrices. We discussed the types of spaces and properties whose elements are vectors. Matrices and their properties were discussed, which helped analyze solutions to system of linear equations through matrix subspaces. Next, we discussed linear transformation and

various matrix decomposition techniques. Matrix decomposition techniques

help in reducing dimensionality of the data, which will be discussed in

 Chapter 8, Dimensionality Reduction. The concepts discussed in this chapter will lay the foundation for the AI algorithms discussion.

In the next chapter 3, Vector Calculus, we will discuss differentiation and integration of vectors and their optimization.

Points to remember

Real-world objects can be represented mathematically as vectors in

vector space. Properties of real-world environment in which the objects

interact will help us to define the properties of the vector space.

Matrices help us to represent vector space concisely.

Selecting appropriate basis for a vector space makes some

mathematical operations simple.

Matrix multiplication with a vector is viewed as linear transformation

of a vector from one vector space to another. This is important step for

a few ML algorithms as it reduces dimensionality of the data, which

helps in reducing the effects of Curse of Dimensionality.

Decomposing a matrix is important step for various ML algorithms.

Further Reading

Linear algebra is an old branch of mathematics, so one can find numerous resources through books, online courses, and webpages, as follows:

Introduction to Linear Algebra book by Prof. Gilbert Strang provides

information on concepts and its applicability. Video lecture series by

the

professor

is

also

available

(http://web.mit.edu/18.06/www/videos.shtml).

YouTube channel provides explanation for a few concepts

(https://www.youtube.com/c/MathTheBeautiful).

For

mathematical

definitions,

one

can

refer

to

https://www.wolframalpha.com/.

CHAPTER 3

Vector Calculus

Vector calculus is the study of vector fields and scalar fields. A scalar field is a mapping that assigns a scalar or a real number to every point in a vector space. A vector field assigns a new vector to each point in a vector space. Vector calculus includes computation of derivatives of scalar and vector fields and integrals over scalar fields. These are the essential tools required in defining optimisation theory and parameter estimation in probability theory, which are the foundational pillars of ML/AI. The theory of vector calculus is a generalization of the calculus of functions of single variable to functions of several variables.

We will first introduce the fundamentals of real analysis, that is, real valued functions that are easy to visualize. We will elaborate on the differentiability concepts as they are the basis of all function optimisation theory discussed later.

Then, will see how these concepts are generalized for functions of several variables: scalar and vector fields.

Structure

In this chapter, we will cover the following topics:

Fundamentals of real analysis

Scalar and vector fields

Tensors and tensor fields

Total derivative, partial derivative, derivatives with respect to tensors

Introduction to function optimization

Convex functions, Lagrange multipliers

Gradient descent algorithm

Objectives

This chapter introduces fundamental mathematical background required for

understanding deeper concepts in ML. For readers who are fresh college graduates, most of these concepts may be a refresher for them. The main goal of

[image: Image 425]

[image: Image 426]

[image: Image 427]

[image: Image 428]

[image: Image 429]

[image: Image 430]

[image: Image 431]

[image: Image 432]

[image: Image 433]

[image: Image 434]

this chapter is to introduce the mathematical optimization theory and algorithms to solve mathematical optimization problems in general.

Analysis of real functions

Real analysis is the area of mathematics dealing with real numbers and the properties of real-valued functions and sequences. In this section, we will cover a few topics of real analysis, specifically, real functions that are relevant for ML/AI.

We will start with the real line definition.

The rational numbers are numbers that can be represented exactly by a ratio of any two integers

. There exist numbers

that cannot be represented in this form, for example, there is no rational number whose square is 2, that is, √2 is an irrational number. The set of all rational and irrational numbers is called the set of real numbers and is denoted by .

Geometrically, the set of points can be represented by a line with no beginning and no end. There exists a real number that is smaller than the smallest number

you can think of. Also, there exists a real number that is greater than the greatest number we can think. The set is dense, that is, between any two real numbers a and b however close one can think of, there exists another real number c such that a < c < b. The set of integers is not dense, as there are no integers between two consecutive integers.

Definition: Let a, b ∈ , a < b. An open interval I is a subset of represented by I = (a, b) = { x ∈ : a < x < b}. The entire real line is denoted by the open interval (-∞, +∞). Similarly, a closed and bounded interval is defined by the set by I = [a, b] = { x ∈ : a ≤ x ≤ b}.

Definition of (∈− neighbourhood): A symmetric open interval around the point x 0

∈ : (x 0 – ∈, x 0 + ∈), ∈ > 0 is called a ∈- neighbourhood at x 0 for a given ∈.

Choosing ∈ arbitrarily small positive number, we can get points that are very close to x 0 and then study the function behaviour in the close locality of x 0.

Formally, ∈- neighbourhood is represented as a set of all real number x such that | x

– x 0| < ∈. Refer to the following figure:

[image: Image 435]

[image: Image 436]

[image: Image 437]

[image: Image 438]

[image: Image 439]

[image: Image 440]

[image: Image 441]

[image: Image 442]

[image: Image 443]

[image: Image 444]

[image: Image 445]

[image: Image 446]

[image: Image 447]

[image: Image 448]

 Figure 3.1: Neighborhood in real line

Definition of interior point: Let

. A point

is said to be interior

point of S if there exists a neighbourhood

, such that

. If

each point of S is an interior point, then the set S is called open set. Finite intersection and arbitrary union of open sets is open.

Definition of upper and lower bounds, sup and inf of subset of : A real number M is called an upper bound for

if x ≤ M for all x ∈ S. The set S is

said to be bounded above if it has an upper bound. Similarly, we can define lower bound. A real number α is called the least upper bound (supremum/sup) of S if (i) α is an upper bound for S and (ii) there does not exist an upper bound for S that is strictly smaller than α. If supremum exists, is unique, and is denoted by sup S.

The greatest lower bound (or infimum or inf) is defined analogously and denoted

by inf S.

 Note: The largest element of a set is called maximum element. Sup S is not

 same as Maximum(S). In fact, every set (bounded above) may not even have a

 maximum. For example, S = {1 – , n = 1, 2, …} has no maximum element. 1

 is an upper bound of the set, but 1 ∈ S. However, Sup S = 1.

Completeness axiom: Any nonempty subset of that is bounded above has a least upper bound or supremum. Similarly, any nonempty subset of bounded from below has an infimum.

Now, let’s define a real function. The idea of function is to mathematically represent how a varying quantity depends on another quantity. For example, the

position of a planet is a function of time.

Definition of real valued function of single variable: A function f of a real variable is a mapping that assigns a real number f(x) to each real number x in the domain of the function. The domain of the function is the subset of the real line where the function is defined to be valid and is denoted by

, where

is the domain of function.

Example: f(x) = √x; the domain D of this function is D = +

.

Each positive real number is mapped to its square root by this function.

[image: Image 449]

[image: Image 450]

[image: Image 451]

[image: Image 452]

[image: Image 453]

[image: Image 454]

[image: Image 455]

[image: Image 456]

[image: Image 457]

[image: Image 458]

[image: Image 459]

[image: Image 460]

[image: Image 461]

[image: Image 462]

Definition: (Composition of functions) Let

and

be a function.

Let

be a function on E, where

. Then, for each

, f(x)∈ E, and therefore, g(f(x)) ∈ . The function such that h(x) =

 g(f(x)), x∈ D. Then, h is said to be the composite function of f, g and the function h is denoted as g ° f.

Limit of a function

Let f(x) =

.

This function is not defined at x=1 as the denominator vanishes at x=1. But as we go closer to 1, what value does the function take? This is answered by the limit of the function f as x → 1, represented as

 f(x).

Definition: (Limit of a function

at a given point a) L is called the limit

of a function at a given point if, for any chosen δ-neighbourhood of L, (choose however small), there exists a ∈-neighbourhood of a such that for all x in ∈-

neighbourhood of a, f(x) is in δ-neighbourhood of L that is for all x, | x – a|< ∈ ⇒

| f(x) – L|< δ and we write the following:

 f(x) = L

Now, as for any point x in neighbourhood of 1 and x ≠ 1, we can rewrite: as

Let L = 2. Applying the preceding definition, if we choose a δ > 0, then for any x such that | x – 1| < δ, we have | f(x) – L| = | x + 1 – 2 | = | x – 1| ≤ δ. Therefore, f(x) = 2. Refer to the following figure:

[image: Image 463]

[image: Image 464]

[image: Image 465]

[image: Image 466]

[image: Image 467]

 Figure 3.2: Plot of

Let’s take another example:

This function is not defined at x=0. From the plot, it seems that the limit of the function at x=0 may be L=0. Choosing a small neighbourhood of L=0: Taking, ∈ = δ we have:

Continuous functions

A function f(x) is said to be continuous at a point x 0 in the domain of f if it maps points close to x 0 in the domain of f to close by points in the range.

To understand this better, let’s first consider an example for non-continuous functions that maps close by points to far off points.

[image: Image 468]

[image: Image 469]

[image: Image 470]

[image: Image 471]

[image: Image 472]

[image: Image 473]

[image: Image 474]

[image: Image 475]

[image: Image 476]

[image: Image 477]

[image: Image 478]

[image: Image 479]

[image: Image 480]

[image: Image 481]

[image: Image 482]

[image: Image 483]

[image: Image 484]

[image: Image 485]

[image: Image 486]

[image: Image 487]

[image: Image 488]

, the sign functions.

Take two points a > 0, b < 0 in the open interval (- ∈/2, ∈/2), ∈> 0. Choosing ∈

arbritrarily small, we have | a- b|≤ | a|+| b|

= ∈ but f(a) = 1 and f(b) = –1. So,

 f(a) and f(b) are very far off, even though are very close. Hence, f is not continuous at the point 0.

A function is said to be continuous if it’s continuous at every point in its domain, that is, it always maps nearby points to nearby values. We can represent this formally using the neighbourhood.

Definition (Continuous function) Let f: D → , where D ⊆ , and suppose that c

∈ D. Then, f is continuous at c if for every chosen ϵ-neighbourhood of c, there exists a δ-neighbourhood of f(c) such that: Any x in ϵ-neighbourhood of c is mapped to some point f(x) in δ-neighbourhood of f(c), that is, |x – c|< ∈ and x ∈

 D ⇒ |f(x) – f(c)| < δ.

This is same as the limit definition if we write L = f(c). So, we say a function is continuous at c if

 f(x) = f(c). For example, the function f(x) =|x|, x ∈ is continuous

function

on

since

for

any

A function

is called continuous if it’s continuous at every point of its

domain.

Following are a few important theorems for continuous functions that we will state without proof:

Bolzano theorem: Let

be a closed and bounded interval and

be continuous on

. If

and

are of opposite signs, then there exists

at least one point c in

such that

. A more generalized result is

given by the following theorem:

Intermediate value theorem: Let

be a closed and bounded interval and

be continuous on

. If

, then f attains every

value in the interval (

at least once in

.

 Figure 3.3 explains these theorems:

[image: Image 489]

[image: Image 490]

[image: Image 491]

[image: Image 492]

[image: Image 493]

[image: Image 494]

[image: Image 495]

[image: Image 496]

[image: Image 497]

 Figure 3.3: Theorems for continuous functions. (Left) Here u ∈ (f(a), f(b)). We found a point c ∈ [a,b] such that f(c) = u. (Right) f(a) < 0 and f(b) > 0 so we found a point c ∈ [a, b] such that f(c) = 0

Derivative of a function

Derivative of a function at a point represents the rate of change of the function at that point. The process of finding the derivative is called differentiation.

Definition: Right-derivative of a function

at

where

is a

point in the domain of the function is defined as the rate at which the function changes in the right proximity of the point . The rate of change is the ratio of the change in function value for a small change in the value of towards the right side of in the axis, say

, where h(>0) is small. The rate of change

is given by:

This ratio represents the slope of the secant line, as shown in Figure 3.4:

[image: Image 498]

[image: Image 499]

[image: Image 500]

[image: Image 501]

[image: Image 502]

[image: Image 503]

[image: Image 504]

[image: Image 505]

[image: Image 506]

[image: Image 507]

[image: Image 508]

[image: Image 509]

[image: Image 510]

[image: Image 511]

[image: Image 512]

[image: Image 513]

[image: Image 514]

 Figure 3.4: Derivatives and tangent

As h becomes very small, this secant line tends to become a tangent line at x 0. The slope of this tangent line to the graph of the function at the point , f() is the right derivative of the function f at and is formally written as:

Let’s call this

as

is in the right side of

. Similarly, we can

define the left derivative

as:

for any point

is the left side of in the axis.

The function f is differentiable at

if and only if f has both a right-hand

derivative and a left-hand derivative at , and these derivatives are equal. This means the plot of the function is smooth in proximity of , that is, if you take a very small segment of the function in the proximity of , you can approximate it by a small line segment. That is the reason why differentiable functions are also called smooth functions. Now, if the function is differentiable, we can rewrite derivative as a symmetric difference quotient:

[image: Image 515]

[image: Image 516]

[image: Image 517]

[image: Image 518]

[image: Image 519]

[image: Image 520]

[image: Image 521]

[image: Image 522]

[image: Image 523]

[image: Image 524]

[image: Image 525]

[image: Image 526]

Example: (Power function) The derivative of the power function

can be

calculated using the general derivative equation:

Using the definition of derivative, we can calculate the derivatives of most of the common mathematical functions like trigonometric, logarithmic, exponential.

However, in practice, we will encounter many functions that are made up of sums, products, and composition of these functions, like f(x) = log (2 + sin(x)). To compute the derivative of such complicated functions, we use the following rules of derivatives:

1. Derivative is linear operator:

2. Product rule of derivative:

3. Chain rule of derivative (for function compositions):

Example: The sigmoid function is defined as:

Let

and

. Therefore,

. Applying

chain rule:

Therefore,

Example: The tanh function is defined as:

[image: Image 527]

[image: Image 528]

[image: Image 529]

[image: Image 530]

[image: Image 531]

[image: Image 532]

[image: Image 533]

[image: Image 534]

[image: Image 535]

[image: Image 536]

[image: Image 537]

[image: Image 538]

[image: Image 539]

[image: Image 540]

[image: Image 541]

[image: Image 542]

[image: Image 543]

Applying product rule and chain rule of derivatives the derivative of tanh can be found as follows:

These derivatives are computed for any arbitrary point in the domain of f, and we can visualize their plots in Figure 3.5:

 Figure 3.5: Derivatives as a function

Next, we state few useful theorems for differentiable functions.

Theorem: A differentiable function is continuous but not conversely.

Example: Let

. At

, Also, f is continuous

at

and

As

, f is not differentiable at

.

Differentiability implies smoothness. At

, there is a sharp corner in the

plot. Change of direction by 90 degrees. Hence, geometrically, we

can see the non-differentiability of at 0, so the continuity of a function does not always guarantee differentiability.

Mean value theorem (Lagrange): Let

be continuous on

and differentiable at every point in

. Then, there exists at least one point

[image: Image 544]

[image: Image 545]

[image: Image 546]

[image: Image 547]

[image: Image 548]

[image: Image 549]

[image: Image 550]

[image: Image 551]

[image: Image 552]

[image: Image 553]

[image: Image 554]

[image: Image 555]

[image: Image 556]

[image: Image 557]

[image: Image 558]

[image: Image 559]

[image: Image 560]

[image: Image 561]

such that:

Rolle’s theorem: Let

be continuous on

and differentiable at

every point in

. If

then, there exists at least one point

such that

.

 Figure 3.6 depicts these two theorems pictorially:

 Figure 3.6: Theorems on derivative:(Left) The slope of the secant line from f(a)to f(b) is given by and the tangent at

 is parallel to this secant line. (Right) As f(a)=f(b) the function must turn at some point and at that point, the derivative is 0.

Higher Order derivatives

The derivative of a function f is itself a function. We represent it by (x). Let

. Then,

(x)

. So, we can compute the derivative of the

derivative function:

This is called the second order derivative. Hence, for this function, we have

. Derivative function can be computed any number of times to

obtain nth order derivative. This is depicted with the following notation: Refer to the following figure:

[image: Image 562]

[image: Image 563]

[image: Image 564]

[image: Image 565]

[image: Image 566]

 Figure 3.7: Higher order derivatives

There are many applications of higher order derivatives like approximating functions and finding maximum or minimum values attained by a bounded

function. We will briefly look at the Taylor series expansion of a function using higher order derivatives.

Taylor series expansion

If a real valued function satisfies the following conditions:

The function should be differentiable any number of times

The function should be defined at the given point a

Then,

This is called the Taylor series expansion of the function f at the point a. It’s an infinite series, that is, the number of terms in this series is infinite and is represented more formally with summation notation, as follows:

Now, if we take x sufficiently close to the point a, then the higher degree terms of the polynomial

for n > 2 become negligibly small and can be ignored.

In general, for any point x, we can approximate

using a finite number of

terms. Suppose is differentiable n times in the neighbourhood of a; we can consider the Taylor polynomial with n terms only. There will be an error in this approximation proportional to the distance of x from a and is given by

[image: Image 567]

[image: Image 568]

[image: Image 569]

[image: Image 570]

[image: Image 571]

[image: Image 572]

[image: Image 573]

, where c is some point between a and x. This is called Lagrange form of remainder. The second order Taylor’s polynomial with Lagrange form of remainder is given by:

Example:

and let

. For x in neighborhood of 0:

Or

Here, if x is sufficiently close to x=0, even the Taylor series expansion truncated to 1 term approximates the sin function well. This is a linear approximation of sin

function near x=0 with the Taylor polynomial TS 1(x) = x, as shown in Figure

 3.8. As we include more terms, we see that the Taylor series polynomial coincides

more with sin(x), that is, we get an improved approximation. Refer to the following figure:

 Figure 3.8: Function approximation locally (Taylor series)

[image: Image 574]

[image: Image 575]

[image: Image 576]

[image: Image 577]

[image: Image 578]

 Note: If we have a differentiable function f, calculating the first derivative of a

 function f’(a) at a point x = a, we can approximate the function close to "a"

 by a line y = f(a) + f'(a). This approximation is valid and very close to the

 point.

 For example, if we take the function |x|. At any non-zero point, the function

 represents a straight line. However, at 0, where its not differentiable, we

 cannot approximate the function by a like however small interval around zero

 we take.

So far, we have covered a few basic concepts for studying the functions of a single real variable. In ML, we will mostly encounter function of several variables. These concepts of real analysis can be extended to the functions of several variables. In fact, this way of approximating a differentiable function locally by a line will be useful in defining the derivative of functions of several variables. In the following sections, we will study functions of several variables.

Scalar and vector fields

In the previous chapter, we studied linear transformations

, from one

linear vector space V to another vector space W. Let both of these vector spaces be finite dimensional. Let the dimension of the domain space V is dim(V) = n and dimension of range space W be dim(W) = m. We call T a real valued function or a scalar field or a vector field based on n and m. Here, T need not be a linear function.

 Scalar field represents functions that maps a point in n-dimensional space to a real number. For example, if at each point

of the atmosphere, we

assign a real number f(a) representing the temperature at a, the function f is a scalar field. As we move from point ‘ a’ to nearby point in space, the scalar field will vary. In ML, scalar fields arise while we train models. A model can be represented as a scalar field on the parameter space. It maps each possible parameter vector to total error value (a real number) w.r.t the given data points.

Let’s first see how points close to the vector a look like. In real line, points near number ‘ a’ are points in the ∈ neighbourhood of a

More

formally, a set of all real numbers x such that

. For vectors, this

[image: Image 579]

[image: Image 580]

[image: Image 581]

[image: Image 582]

[image: Image 583]

[image: Image 584]

[image: Image 585]

[image: Image 586]

[image: Image 587]

[image: Image 588]

generalizes to the concept of open ball: Set of all vectors x in V such that : is called an open ball around a. The open ball around a represents points that are within a sphere of radius ∈. A two-dimensional open ball is shown by the shaded region in Figure 3.9:

 Figure 3.9: Open ball

Limits and continuity

The concepts of limit and continuity can be easily extended to scalar and vector fields. Function

with domain

. Let

and

.

Then,

means the limit:

This is the usual limit for real valued function as

is a real valued function.

Similarly, function f is said to be continuous at a if f is defined at a and

. f is said to be continuous on the set S if its continuous at every point in S.

[image: Image 589]

Theorem: For vector valued function, the function is continuous if each component is continuous. For example,

.

Each component is continuous, and hence, f is continuous.

So, we see that the definitions are straightforward extensions of those in the real valued functions in one-dimensional case. However, extending concept of

derivative at a point for scalar fields requires some more work.

Derivative of scalar fields w.r.t. vector

Generally, the manner in which a field changes depends on the direction in which we move away from a. Let’s take the temperature scalar field example. Starting from a, the temperature increases moving towards the heat source, and it decreases as we move away from it. The rate of change or derivative of a scalar

field is defined only in a fixed direction. Starting from the same point a and going in a different direction, there may be a different rate of change.

Directional derivative and partial derivatives

Let’s first choose a direction represented by a vector u and then compute rate of change in that direction. Let u be a unit vector. To compute rate of change in the direction of u, let’s choose an arbitrary point x close to a. Let u be a unit vector, that is, ǁ u ǁ = 1. For any real number h, the vector a + hu represents all points on the line parallel to vector u. If we choose h sufficiently small, then we can find a vector y = a + hu that is within the -ball around and lies on the line parallel to direction vector u, as shown in Figure 3.10:

[image: Image 590]

[image: Image 591]

 Figure 3.10: Directional derivatives

Similar to the case of single variable, we can now write the derivative of a scalar field formally as:

This is called the directional derivative of scalar field f at a in the direction of u.

In particular, if u = ek (the kth unit coordinate vector ek = (0, 0, …, 1, …, 0), with 1 at the kth coordinate only), the directional derivative f '(a, ek) is called the

 partial derivative with respect to ek and is denoted by symbols as follows:

[image: Image 592]

[image: Image 593]

[image: Image 594]

[image: Image 595]

[image: Image 596]

[image: Image 597]

[image: Image 598]

[image: Image 599]

[image: Image 600]

[image: Image 601]

Calculating partial derivatives is fairly simpler compared to arbitrary directional derivatives because only the rate of change along one of the coordinate axes is being measured. So, we can treat all other coordinate variables as fixed as we move parallel to only one axis. Hence, we can use all known formulas and rules

for derivatives of single variable to compute partial derivatives.

Example: Let

Real valued function with one variable differentiability implies continuity at that point. For scalar fields, does the existence of all directional derivatives at a point imply continuity at that point? The following scalar field shows an exception:

If we approach (0,0) along any line through origin other than x axis represented by a vector u = (a, b) where

.

So, all the directional derivatives exist for f. Now, if we choose

,

we have

. So, there are infinite points in the ∈ ball around (0,0) where

 f takes the value ½, but f(0,0) is 0. Hence, f is not continuous at origin as close by points near origin are not mapped to close values. So , even the existence of all the directional derivatives does not imply continuity of the scalar field at given point.

We need a better generalization of derivative for functions of several variables.

Total derivative

We have seen that for real valued function

we can approximate f

locally at a point by a line using first order Taylor series expansion. This shows a way of extending the concept of differentiability to the higher-dimensional case using linear function.

[image: Image 602]

[image: Image 603]

[image: Image 604]

[image: Image 605]

[image: Image 606]

[image: Image 607]

[image: Image 608]

[image: Image 609]

[image: Image 610]

[image: Image 611]

[image: Image 612]

[image: Image 613]

[image: Image 614]

[image: Image 615]

[image: Image 616]

[image: Image 617]

[image: Image 618]

[image: Image 619]

[image: Image 620]

[image: Image 621]

[image: Image 622]

[image: Image 623]

[image: Image 624]

[image: Image 625]

[image: Image 626]

[image: Image 627]

[image: Image 628]

[image: Image 629]

Definition (Differentiable Scalar Field): We say that

is

differentiable at ‘ a’ if there exists a linear transformation

such that

, where

for some r > 0

and

as

is the error in the approximation and is

of smaller order than

. The linear transformation

is called the total

derivative of f at a. Here,

is a real number. Note that the derivative is a

 linear transformation and not a number. We will see how to calculate this linear transformation

. Suppose the total derivative of a scalar field f exists. Then:

For any point

, If we choose

, where h is chosen

small enough such that

. Then:

Dividing

both

sided

by

 h,we

have,

Taking the limit

, we have:

 Note: The linear transformation

 maps any

 to the directional

 derivative vector f

 at the point a along the direction of x. If we choose

 as the kth unit basis vector, that is, the one hot vector with kth entry as

 1, then

 f

 is the partial derivative.

We can define

as follows for all points

such that x is close to a, that

is,

where '⋅' represents inner product.

[image: Image 630]

[image: Image 631]

[image: Image 632]

[image: Image 633]

[image: Image 634]

[image: Image 635]

[image: Image 636]

[image: Image 637]

[image: Image 638]

[image: Image 639]

[image: Image 640]

[image: Image 641]

[image: Image 642]

[image: Image 643]

[image: Image 644]

[image: Image 645]

[image: Image 646]

[image: Image 647]

[image: Image 648]

is called gradient of scalar

 field f at ' a'.

 Note: Thus,

 is the projection of x along the direction of the gradient

 vector at ‘a’.

 With this new definition of total derivative, we can now say that if a scalar

 field f is differentiable at ‘a’, then its continuous at ‘a’.

For any vector x close to a, that is,

. If f is

differentiable at a:

The last part of the inequality is using Cauchy-Swartz inequality for norms. Here, and hence,

. Therefore:

Taking the limit

on both sides, we have:

This proves that scalar field f is differentiable at ‘a’, then its continuous at ‘a’.

So, we can use the gradient of a scalar field to compute the total derivative of the scalar field. Here are some examples of gradient computations for some commonly used functions:

Geometry of gradient vector

Let f be a scalar field defined on a set

. Consider the points where

has

a

constant

value

say

.

We

denote

this

by

. The set

is called level set. In

, we

[image: Image 649]

[image: Image 650]

[image: Image 651]

[image: Image 652]

[image: Image 653]

[image: Image 654]

[image: Image 655]

[image: Image 656]

[image: Image 657]

call this a level surface. In ML, level surfaces occur very often. We will see surfaces of constant probability density and error surfaces with constant error contours.

Let’s first see how we can define curves in higher dimension as a parametric function. For example, a circle in 3D parallel to horizontal xy plane can be written as (rcos(θ), rsin(θ), c), where c is the constant height of the circle above horizontal xy plane and r is the radius of the circle.

Let

represent any curve on the level surface,

where

are real valued functions of the parameter. Then,

.

Using chain rule,

(Dot product of

perpendicular vectors is zero, refer to Linear Algebra Chapter). For the curve represents the tangent vector. Hence, the gradient vector at any point on the curve is perpendicular to the tangent vector

at that point.

Refer to the following figure:

[image: Image 658]

[image: Image 659]

[image: Image 660]

[image: Image 661]

[image: Image 662]

[image: Image 663]

[image: Image 664]

[image: Image 665]

[image: Image 666]

[image: Image 667]

[image: Image 668]

[image: Image 669]

 Figure 3.11: Gradient vector normal to the surface

Derivative of vector fields w.r.t. vector

A

vector

field

can

be

represented

as

where each component

is a scalar

field. Hence, we can generalize the concept of derivative to vector fields easily.

A vector field

is differentiable at

if there exists a

linear

transformation

such

that

, where

for some

0

and

. The linear transformation

is called the

[image: Image 670]

[image: Image 671]

[image: Image 672]

[image: Image 673]

[image: Image 674]

[image: Image 675]

[image: Image 676]

[image: Image 677]

[image: Image 678]

[image: Image 679]

[image: Image 680]

[image: Image 681]

[image: Image 682]

[image: Image 683]

[image: Image 684]

[image: Image 685]

[image: Image 686]

[image: Image 687]

[image: Image 688]

[image: Image 689]

[image: Image 690]

[image: Image 691]

[image: Image 692]

[image: Image 693]

[image: Image 694]

 total derivative of f at a. Since

is a linear transformation from finite

dimensional space of dimension n to finite dimensional space of dimension m, it can be represented by a

matrix

such that any point

can be

transformed to a point

, by matrix multiplication with .

Now, for each component scalar field, we have the total derivative defined using gradient vector as

; thus, we can write:

This matrix is called the Jacobian matrix of f at a. Hence, the total derivative of the vector field f is represented by the matrix product

.

Example: Suppose

and f

is a vector

field, where

is a real valued and differentiable function. In f, the

function g is applied component-wise. Then,

,

for all i, with ith entry only non-zero being equal to

and all other entries is

zero.

Example:

Let

be

a

linear

map

defined

by

matrix. The ith component of

is given

by

, so

. Hence:

Chain rule for derivatives of vector fields

Let f and g be vector fields such that the composition h = f ° g is defined in a neighbourhood of a point a. Assume that g is differentiable at a, with total derivative

. Let

and assume that f is differentiable at b, with total derivative

. Then, is differentiable at a, and the total derivative h’(a) is given by the following:

[image: Image 695]

[image: Image 696]

[image: Image 697]

[image: Image 698]

[image: Image 699]

[image: Image 700]

[image: Image 701]

[image: Image 702]

[image: Image 703]

[image: Image 704]

[image: Image 705]

[image: Image 706]

[image: Image 707]

[image: Image 708]

that is, the composition of linear transformations

.

Matrix form of the chain rule

We can rewrite the chain rule in terms of the Jacobian matrices. Since composition of linear transformations corresponds to multiplication of their matrices, representing

and

we have

.

Example: Suppose g is a linear transformation

, where

and

 W is a constant

matrix and

, where

is sigmoid function. We define:

Hence,

, whose ith entry is only

non-zero.

We want to find the derivative

 g' (x) = W (This is discussed in above example)

[image: Image 709]

[image: Image 710]

[image: Image 711]

[image: Image 712]

[image: Image 713]

[image: Image 714]

[image: Image 715]

[image: Image 716]

[image: Image 717]

[image: Image 718]

[image: Image 719]

[image: Image 720]

[image: Image 721]

Example: Let’s consider the linear map again

; now,

is not

a fixed matrix but is a constant vector. We want to compute

. We

can think of W as a vector of dimension

, and thus, the Jacobian

must be of dimension

. The entire derivative is a three-dimensional

array or a three-dimensional matrix. We call this a tensor. Tensors are generalization of matrices and are represented using n-dimensional arrays.

Vectors and matrices are also tensors. A vector is a one-dimensional or first order tensor, a matrix is a two-dimensional or second order tensor, and a scalar is a zero-order tensor.

Let’s compute the derivative of one component of f, that is, fi w.r.t. one component of tensor W, say

. For example, let’s compute partial derivative of

 f 3 w.r.t W 56. Expanding f 3, we have

.

This expression is independent of W 56, and hence,

0. However, for any

component in the third column of W,

. We can write in general:

Hence, the tensor

is a sparse three-dimensional tensor.

While applying chain rule in practice, for example, when we apply it for differentiating neural networks, we can encounter such higher-order tensors. We

will briefly digress from the current topic of matrix form of chain rule and introduce basics of tensor algebra in the next section. Thereafter, we will revisit chain rule and introduce the more generic form of it using tensors.

Tensors

A tensor can be represented as a multidimensional array. Tensors are extensions

of vectors and matrices (which are one- or two-dimensional arrays) to n dimensional arrays. The individual elements in these n-dimensional arrays are

[image: Image 722]

[image: Image 723]

[image: Image 724]

[image: Image 725]

[image: Image 726]

called the components of the tensor. Figure 3.12 depicts tensors of up to four dimensions. In the previous section, we saw how tensors naturally occur while computing derivatives of the functions of several variables.

Tensors are heavily used in physics as they provide a concise mathematical framework for formulating and solving physics problems. Tensors are represented

using index notation or indicial notation. For example, a 3-dimensional vector a

can be represented as follows:

Similarly, a matrix can be represented in index notation as follows:

The number of indices used to represent the tensor is called the rank or order or dimension of the tensor.

We can represent the scalar multiplication of a matrix in index notation as follows:

A matrix A and vector (column) v multiplication can be denoted in index notation as follows:

Here, the index j is repeated in the right-hand side of the expression and indices summation over the jth index. This is also called Einstein summation notation, which is discussed in the next section. Refer to the following figure:

[image: Image 727]

[image: Image 728]

[image: Image 729]

[image: Image 730]

[image: Image 731]

[image: Image 732]

[image: Image 733]

 Figure 3.12: Visual representation of tensors, a stack of 1-D tensors make a 2-D tensor. A stack of n=4, 2-D

 tensors make a 3-D tensor and a stack of m=5 3-D tensors make a 4-D tensor and so on.

Einstein notation

Performing tensor operation for high-dimension tensors becomes very

cumbersome and are hard to code. Einstein notation was introduced by Albert Einstein in 1916 in Physics for compact representation of summation over a set of indexed terms in a formula. All the tensor operations discussed earlier can be written in terms of Einstein sum. Moreover, using Einstein notation, many common multi-dimensional, linear algebraic array operations can be represented

in a simple fashion. Code written using Einstein summation is highly readable and compact.

Einstein sum takes arguments in two parts: equation string and tensors on which

the operation is performed. An example of equation string for matrix transpose operation is

. Here, each of the small letters denote a dimension of the

tensor. All indices on the left side of arrow are indices of input tensor, and those on the right side of arrow are indices of output tensor. For multiple input tensors, we can separate the indices by commas. For example, matrix multiplication is represented by the equation string

. The indices that are missing on

the right side of arrow are the axes over which the summations are performed, that is, the elements of jth row of left matrix are multiplied to the corresponding elements of the kth column of the right matrix and summed. The dot products and

outer products discussed earlier can be computed easily using Einstein

summation.

NumPy documentation (refer to Further Reading [9]) has many examples of Einstein summation. Table 3.1 lists are a few useful notations:

Notation

Description

a, b are 2 vectors or 1-D tensors of same size, and we want to compute elementwise multiplication, which is another vector C.

A is a matrix, and we want to compute the trace of the matrix, that

is, the sum of all diagonal elements.

A and B are matrices, and we want to compute the matrix

multiplication.

We have a 3-D tensor A and want to compute the sum along the

third axis.

Outer product (of vectors), discussed in the following sections.

Inner product of vectors, discussed in the following sections.

[image: Image 734]

[image: Image 735]

[image: Image 736]

[image: Image 737]

[image: Image 738]

[image: Image 739]

[image: Image 740]

[image: Image 741]

[image: Image 742]

[image: Image 743]

[image: Image 744]

[image: Image 745]

[image: Image 746]

[image: Image 747]

[image: Image 748]

[image: Image 749]

[image: Image 750]

[image: Image 751]

Transpose of a matrix is a matrix with swapped rows/columns, that

is, swapped axes or a reordering of axes. For tensors, any

permutation of the axes list can be defined as a transpose of the

tensor. Here, we compute transpose of a 4D tensor A by reordering

axes 0,1,2,3 as: 1->3, 0->1, 3->2, 2->0.

 Table 3.1: Einstein notation examples

The outer product ⊗ of two one-dimensional tensors is a two-dimensional tensor represented by:

In general, outer product of two tensors of order

will yield a tensor of order

. In the preceding example,

. So, the order of this outer product

is 1 + 1 = 2. This operation is non-commutative, that is,

.

Since

is a second order tensor or a matrix, we can view it as a linear

transformation T, which transforms a vector w to

.

The length of the new vector is

times

, and the new vector has the same

direction as u.

Example: The 3 × 3 identity matrix is a second order tensor, and we can rewrite it in terms of outer product:

. Here,

represents the standard basis vectors or one-hot vectors. In Einstein notation

. The outer product

is a second order tensor with only the

element as 1 and all other elements as 0. The following code shows this:

1. e2 = np.array([0.,1.,0.,0.])

2. e3 = np.array([0.,0.,1.])

3. np.tensordot(e2, e3, axes=0) #passing axes=0 computes outer

 product

This will output a second order tensor with (2,3) element as 1. Therefore, the set of all such possible outer products forms a standard basis for the any real matrix of size 4 × 3.

Any vector can be represented as a linear combination of basis vectors. Can we do the same for tensors? A second order tensor T of size 3 is a 3 × 3 matrix and has 9

elements represented as

.

[image: Image 752]

[image: Image 753]

[image: Image 754]

[image: Image 755]

[image: Image 756]

[image: Image 757]

[image: Image 758]

[image: Image 759]

[image: Image 760]

[image: Image 761]

[image: Image 762]

[image: Image 763]

[image: Image 764]

[image: Image 765]

[image: Image 766]

[image: Image 767]

[image: Image 768]

[image: Image 769]

Representing this in index notation, we have:

. We can

similarly define a third order tensor

, where each is a

first order tensor. This tensor T can transform a vector v as follows to a second order tensor:

A tensor is called a special tensor if it can be represented as a product of finite first order tensors. Suppose A and B are two special tensors of order m and n formed by the tensor product of m vectors

and n vectors

, that is:

Applying A on a vector v, we have:

This is a tensor of order m – 1.

The dot product (A ⋅ B) between these special tensors A and B can be computed as follows:

We see that only if

, then

for these special tensors.

Dot product of tensors

For computing the dot product (or inner product) of two vectors, we would have

done

. Can we extend the definition of dot product for tensors? Dot

product of second order tensor with a first order tensor is he same as the matrix multiplication of a matrix and a column vector. The order of the output will be a vector, that is, the order of the output is

. Dot product of the first

order tensor with a second order tensor is obtained by computing the matrix

[image: Image 770]

[image: Image 771]

[image: Image 772]

[image: Image 773]

[image: Image 774]

[image: Image 775]

multiplication of the matrix transpose with the column vector, and we again obtain a first order tensor.

Multiplying two matrices of matching order will give another matrix, that is, tensor of order 2 = 2 + 2 – 2. Hence, the tensor dot product of two second order tensors is another second order tensor. Hence, order of output of dot product of two tensors of order is

a tensor of order p + q – 2. This notion of dot product

of tensors can be generalized further to high order tensors: doing a dot product over the specified dimensions, keeping all the other dimensions fixed.

Suppose we have two tensors

of order

respectively. Suppose we want

to compute the dot product along k-axes where

. Then, we must specify

which of the k axes of

we want the dot product to be computed and the

output tensor will have order:

. This is implemented in NumPy and

other deep learning frameworks like TensorFlow and PyTorch as the “Tensordot”

operation. The axes on which the dot product is applied are called contracted axes. The shape of the output tenor consists of the non-contracted axes of the first tensor, followed by the non-contracted axes of the second. The following code shows how to compute tensor dot using NumPy:

1. import numpy as np

2. A = np.arange(24).reshape(4,2,3)

3. B = np.ones(12).reshape(2,3,2)

4. k=2 #num contraction axes

5. order_output = len(A.shape)+len(B.shape)-2*k

 6. # Dot product of last k(=2) axes of A and first k axes of B

7. out1 = np.tensordot(A, B, axes=[[1, 2],[0, 1]])

8.

 9. # what is happening inside tensordot

10. out2 = np.zeros(A.shape[:-k]+B.shape[k:])

11. for p in range(4):

12. for s in range(2):

13. for q in range(2):

14. for r in range(3):

15. out2[p, s]+=A[p,q,r]*B[q,r,s]

16. np.equal(out1, out2)

 Figure 3.13 shows the input output tensors. Lines 10-15 show how to calculate the dot product along k chosen axes using nested loops. This is very slow computation but helps us understand clearly what is actually happening inside the Tensordot operation. However, the actual implementation of Tensordot is not with nested loops but is optimized and gives us a much faster way to compute.

[image: Image 776]

[image: Image 777]

[image: Image 778]

 Figure 3.13: Output of preceding code

Now, let’s check how good our generalization of the dot product is. We know the

dot product of a vector a with itself is the norm squared

. If we take

a tensor of order 2 that is a matrix, is the tensordot equal to the Frobinius norm squared of the matrix? The following code checks for this, and it’s true:

1. M = np.arange(12).reshape((3,4))

2. out = np.tensordot(M, M, axes=([0,1], [0,1]))

3. fob_norm = np.array(np.linalg.norm(M)**2)

4. print(fob_norm==out)

Now that we have generalized all the properties and operations on vectors for tensors, we can also extend the concept of vector fields to tensors and calculus of vectors are generalised to the calculus of higher-order tensors.

Tensor calculus

The gradient of a scalar field

can be written as follows:

[image: Image 779]

[image: Image 780]

[image: Image 781]

[image: Image 782]

[image: Image 783]

[image: Image 784]

[image: Image 785]

[image: Image 786]

[image: Image 787]

[image: Image 788]

(in

index notation)

The gradient of a vector field

, that is, the Jacobian is defined to be

the second order tensor:

Like vector fields, a tensor field assigns a tensor to each point of the space. The gradient of a second order tensor field T is defined in a manner analogous to that of the gradient of a vector.

Properties of gradients are as follows:

, where φ is a scalar field

Total derivative of tensor

For a tensor valued function of a scalar

, we can define the derivative as

follows:

This turns out to be a tensor whose components are the derivatives

:

[image: Image 789]

[image: Image 790]

[image: Image 791]

[image: Image 792]

[image: Image 793]

[image: Image 794]

[image: Image 795]

[image: Image 796]

[image: Image 797]

[image: Image 798]

[image: Image 799]

[image: Image 800]

[image: Image 801]

[image: Image 802]

[image: Image 803]

Let

be a scalar valued function of a second order tensor T. We can write

in index notation. Hence, we have:

Let’s consider more general form, that is, a tensor valued function of a tensor. For example, the derivative of a second order tensor A with respect to another second order tensor B is given by the fourth order tensor:

Using this, we can compute

in the example above where f

where

are first order tensors and W is a second

order tensor.

Why

? This can be easily seen by expanding the matrix

multiplication with vector x. Only will have non-zero derivative w.r.t the jth row elements of matrix, that is, as

. This explains why

is chosen and

.

We can validate this with the implementation of gradient in any of the libraries, like TensorFlow. We will create a random tensor W and a vector x, as shown in the following code XX. The GradientTape function is used to compute the Jacobian.

1. import tensorflow as tf

2. W = tf.random.uniform(shape=[4,4])

3. x = tf.expand_dims(tf.Variable([1., 2., 3., 4]), axis =1)

4.

5. with tf.GradientTape() as tape:

6. tape.watch(W)

7. y = tf.matmul(W,x)

[image: Image 804]

[image: Image 805]

[image: Image 806]

[image: Image 807]

[image: Image 808]

8. dy_dW = tape.jacobian(y, W)

Now, let’s implement the gradient that we found in the preceding theory and check whether they match.

1. e1,e2,e3,e4 = np.eye(4)

2. x=np.array([1.,2.,3.,4.])

3. grad = None

4. for k, ek in enumerate([e1,e2,e3,e4]):

5. for j, ej in enumerate([e1,e2,e3,e4]):

6. tmp = x[k]*np.tensordot(ej,ej, axes=0)

7. if grad is not None:

8. grad+= np.tensordot(tmp, ek,axes=0)

9. else:

10. grad = np.tensordot(tmp, ek,axes=0)

We can see that the output in both the implementations is the same third order tensor, as shown in Figure 3.14:

 Figure 3.14: Output of the preceding code

 Note: We observe that the gradient of a scalar or 0-order tensor is a first order

 tensor, and the gradient of a vector field or a first order tensor is a second

 order tensor. In general, the gradient operator always adds the orders of the

 two tensors.

Example: The trace operator on a matrix

is a scalar field:

(in index

notation)

Following similar steps, we can derive the following matrix derivatives:

[image: Image 809]

[image: Image 810]

[image: Image 811]

[image: Image 812]

[image: Image 813]

[image: Image 814]

[image: Image 815]

[image: Image 816]

[image: Image 817]

[image: Image 818]

[image: Image 819]

[image: Image 820]

[image: Image 821]

[image: Image 822]

[image: Image 823]

[image: Image 824]

[image: Image 825]

[image: Image 826]

Chain rule for tensors: Suppose g is a tensor valued function

and f is

a scalar valued function of a tensor

. Then,

.

Example: Suppose is a linear transformation

, where

and W is a second order tensor and

, being

the sigmoid function. Let’s define

. We want to compute

. In neural network training, we will encounter similar operations.

, by chain rule

Here,

is a diagonal matrix or a second order tensor

:

Hence, we have:

Here,

we

can

use

the

property

of

outer

product

and simplify the product as follows:

This is a third order tensor, being gradient of first order w.r.t. second, its order is (1 + 2 = 3). This is implemented in the following code:

1. W = tf.random.uniform(shape=[4,4])

2. y = tf.matmul(W,x)

3. y1=tf.sigmoid(y)*(1-tf.sigmoid(y)).numpy()

4. grad = None

5. for j, ej in enumerate([e1,e2,e3,e4]):

6. for k, ek in enumerate([e1,e2,e3,e4]):

7. tmp = np.tensordot(ej,ek, axes=0)

8. if grad is not None:

9. grad+= np.tensordot(x[k]*y1[j]*ej,tmp,axes=0)

10. else:

11. grad = np.tensordot(x[k]*y1[j]*ej,tmp,axes=0)

[image: Image 827]

12. grad

13.

The shape of grad is 4 × 4 × 4. Again, using the Tensorflow GradientTape function to compute the Jacobian, we have:

1. with tf.GradientTape() as tape:

2. tape.watch(W)

3. y = tf.sigmoid(tf.matmul(W,x))

4. dy_dW = tape.jacobian(y, W)

Following is the output of the preceding code:

 Figure 3.15

The shape of the Jacobian of the output with respect to the weight matrix is those two shapes concatenated together.

[image: Image 828]

[image: Image 829]

[image: Image 830]

[image: Image 831]

[image: Image 832]

[image: Image 833]

[image: Image 834]

[image: Image 835]

[image: Image 836]

[image: Image 837]

[image: Image 838]

[image: Image 839]

[image: Image 840]

[image: Image 841]

Mathematical optimization

Finding the minimum or maximum value taken by a real valued function is called

 function optimization. For example, the function f(x) = | x| attains its minimum value at x = 0. The temperature on a surface can be represented as a scalar field and point at which the temperature is maximum of the surface is the location of

the heat source. Problems in probability theory and ML can be represented as functions of several variables. In ML, we are trying to find an approximating function that maps input examples to output examples. The problem of finding a

good approximating function can be framed as a function optimization. These are

parametrized functions, and methods of function optimization are used to find the best possible values of these parameter by minimizing the error of approximation.

Maxima, minima, and saddle point

Definition (Global and Local minimum): A scalar field

is said to

have a global (or absolute) minimum at a point c of a set if:

for all

The function f is said to have a local (or relative) minimum at c if the preceding inequality holds only in a ∈-ball around c and not for all

. We can define

global and local maximum similarly. A vector that is either a relative maximum or a relative minimum of f is called an optimum or extremum of f.

If f has an extremum at an interior point and is differentiable there, then the gradient of f at that point must be zero, that is,

. However, the converse is

not true. If f is differentiable at a point a, it’s called a stationary point of

. There may be points where the gradient is zero, but it need not

be an extremum point, and such stationary points are called saddle points. In any close neighbourhood

of a saddle point a, we will find points

such that

and

.

Example:

. This represents a surface (a hyperbolic paraboloid).

Near the origin, this surface looks like a horse saddle, as shown in Figure 3.16.

The gradient vector at zero is

at origin. However,

in close neighbourhood of the origin, we can find points from 1st and 3rd quadrant where f is positive. Also, close to the origin, there are points from the 2nd and 4th quadrant where x, y is of opposite signs, f is negative. So, the origin is a saddle point of this function. Refer to the following figure:

[image: Image 842]

[image: Image 843]

[image: Image 844]

[image: Image 845]

[image: Image 846]

[image: Image 847]

 Figure 3.16: Saddle point, (This figure is adopted from T.M Apostol [1] chapter 9)

Example:

, the origin is a saddle point as depicted in

 Figure 3.17.

We can use second order Taylor’s series expansion to figure out the nature of the stationary point, that is, whether it’s a maxima or minima or saddle point. The eigen values of the Hessian matrix can give us clear idea about the nature of stationary point. This is stated in the following theorem. Refer to the following figure as well:

 Figure 3.17: Saddle point, (This figure is adopted from T.M Apostol [1] chapter 9)

Theorem: Let f be a sacalar field with continuous second order partial derivatives in an n-ball

. Let

denote the hessian matrix at a stationary point a.

Then, we have the following:

If all eigen values of

are positive, then f has a relative minimum at a

[image: Image 848]

[image: Image 849]

[image: Image 850]

[image: Image 851]

[image: Image 852]

[image: Image 853]

[image: Image 854]

[image: Image 855]

[image: Image 856]

[image: Image 857]

[image: Image 858]

[image: Image 859]

[image: Image 860]

[image: Image 861]

[image: Image 862]

[image: Image 863]

[image: Image 864]

[image: Image 865]

If all eigen values of

are negative, then has a relative maximum at a

If

has both positive and negative eigen values, then a is a saddle point of

Example:

. Here,

at origin

 a = (0, 0). So, origin a is a stationary point of f.

. This is a

positive definite, and hence,

is a relative minimum.

Let f be a scalar field with continuous second order partial derivatives in an n-ball

; then, using the Taylors formula for real functions, we can derive the second

order Taylor’s formula for scalar fields. We will give a high-level flow of the proof of this here.

Let

for

.

Then,

. Using second order Taylors

formula with Lagrange form of remainder for the real function g, we have: Here, g is a function of the

function, where r

.

Applying the chain rule of derivatives, we have:

In particular,

Applying chain rule once more on this, we get:

Substituting these in the Taylor expansion, we have:

[image: Image 866]

[image: Image 867]

[image: Image 868]

[image: Image 869]

[image: Image 870]

[image: Image 871]

[image: Image 872]

[image: Image 873]

[image: Image 874]

[image: Image 875]

[image: Image 876]

[image: Image 877]

[image: Image 878]

[image: Image 879]

[image: Image 880]

[image: Image 881]

[image: Image 882]

[image: Image 883]

[image: Image 884]

[image: Image 885]

[image: Image 886]

[image: Image 887]

[image: Image 888]

[image: Image 889]

[image: Image 890]

[image: Image 891]

[image: Image 892]

[image: Image 893]

[image: Image 894]

We define an error term

by the following equation:

and use it to reformulate the preceding equation in terms of this :

Here,

. This is the Taylor expansion for scalar fields.

At any stationary point a, we have

. Hence:

Since the Hessian

is a real symmetric matrix, the quadratic form

is positive definite if and only if all its eigen values are positive and negative definite if all eigen values are negative.

Suppose all eigen values of

are positive and

.

We choose

then,

. Clearly,

, are the eigen

values of

. The quadratic form is as follows:

Now,

, using the definition of limit for any chosen

positive

there exists a

such that

.

Multiplying

both

sides

of

this

inequality

by

,

we

get

. Choosing the arbitrary number

, we

have

.

Hence, a is a relative minimum. Similarly, we can prove the statements of the theorem for maximum and saddle point.

Example: Locate and classify the stationary points for the surface We have

and

. At a stationary point, both

the partial derivatives should vanish. Clearly, origin

is a

[image: Image 895]

[image: Image 896]

[image: Image 897]

[image: Image 898]

[image: Image 899]

[image: Image 900]

[image: Image 901]

[image: Image 902]

[image: Image 903]

[image: Image 904]

[image: Image 905]

[image: Image 906]

[image: Image 907]

[image: Image 908]

[image: Image 909]

[image: Image 910]

[image: Image 911]

[image: Image 912]

[image: Image 913]

[image: Image 914]

[image: Image 915]

[image: Image 916]

[image: Image 917]

[image: Image 918]

[image: Image 919]

[image: Image 920]

[image: Image 921]

[image: Image 922]

[image: Image 923]

[image: Image 924]

[image: Image 925]

stationary point.

Now,

and

. This contradicts

.

Thus (0, 0) is the only stationary point.

Now, let’s discuss an iterative algorithm that can be used to minimize any differentiable function.

Decent methods

In practice, the functions of several variables are encountered, we will have no idea where in the domain of the function it will attain its optimum value. In fact, we may never be able to find the exact minimum . Our target is to reach as close as possible to the minimum, . So, we must start at some arbitrary point and then take small steps

in the direction in which the

function value decreases:

Here, is the step size in the direction of the search direction

. Our target

is to choose

and

such that

. These sequence of

points

(should converge to the minimum).

Using first order Taylor series expansion, let

and

be a point very close to a, that is,

. Let

:

, where

Here,

represents the directional derivative in the direction of the

change vector

. If this term is negative, we can reduce the value of f

at

. So, v must make an acute angle with the negative gradient

. We call such a direction as descent direction. The best case is when the angle between the vectors

and

is zero or the vectors are

parallel, that is, if for some

. This is called the

 direction of steepest descent. The direction of the negative gradient at a point is the direction of steepest descent.

Hence, we can define an iterative algorithm for minimizing a function as follows:

[image: Image 926]

[image: Image 927]

[image: Image 928]

[image: Image 929]

[image: Image 930]

[image: Image 931]

[image: Image 932]

[image: Image 933]

[image: Image 934]

[image: Image 935]

[image: Image 936]

[image: Image 937]

[image: Image 938]

[image: Image 939]

[image: Image 940]

[image: Image 941]

[image: Image 942]

[image: Image 943]

Given a starting point

Repeat:

Choose a step size

Update

Stopping criteria for the preceding iterative algorithm is generally based on norm of the gradient. As we are finding a stationary point iteratively, the algorithm can converge when the gradient at the point is close to 0, that is,

where

and is small.

is a pre-defined fixed number indicating

acceptable level of error. This algorithm is called gradient decent algorithm. Now, we also need a way of choosing the step size. The step size should not be too short or too long. The following example shows the effect of step size.

Example: Let’s take a real valued function

. Being a function on real

line, we have only two possible directions

; we can choose the descent

direction as

. Note that this decent

direction is also parallel to the negative gradient direction, as

. We

will use two different step sizes (1)

which is a big

step size, and (2)

which is a monotonically decreasing

small step size. Now, starting with initial point

and following the

preceding update equation

, we see that with (1), the

function value eventually oscillates between -1 and 1 and with step size (2), the decrease in function value becomes very small and almost converges at 1. The following code shows an implementation of this:

1. def step(k, type=1):

2. if type ==1:

3. return 2+3/np.math.pow(2, k+1)

4. elif type==2:

5. return 1/np.math.pow(2, k+1)

6. else: return 1

7.

8. def update(x, k, type=1):

9. return x+np.sign(-x)*step(k, type)

10.

11. x = 2

12. for k in range(20):

13. x = update(x, k, type=1)

[image: Image 944]

[image: Image 945]

[image: Image 946]

[image: Image 947]

[image: Image 948]

[image: Image 949]

[image: Image 950]

[image: Image 951]

[image: Image 952]

[image: Image 953]

14. print(k, x, x**2)

15. k=k+1

 Figure 3.18 shows the output with step type (1) and (2):

 Figure 3.18: Gradient descent (Left) very long step (Right) very small steps One approach to find appropriate step size is exact line search, where the function is minimized along the line

, that is:

This is a valid method but is not cost effective. So, inexact line search methods are used where we are looking for a step size that reduces f enough. One such method is called backtracking line search. This depends on two parameters

. Given a decent direction

, we start with unit step

size and then reduce the step size by a factor of b until some stopping criteria is reached. The first order Taylor’s formula can give us a stopping criterion. By first order Taylors approximation,

So, in the successive step, we reduce the step size by a constant factor

(this restricts the steps size from being too small), and we see that f is reduced by at least a fixed fraction of the reduction promised by first order Taylor’s formula. This also restricts the step size from being too long. This condition is called Armijo condition.

There are other heuristics that are also used for step size selection in gradient descent.

Constant step size: Choose one fixed value

.

[image: Image 954]

[image: Image 955]

[image: Image 956]

[image: Image 957]

[image: Image 958]

[image: Image 959]

Variable step size: 3 or 4 values of step are chosen in each iteration, and whichever gives the best reduction of function value is chosen.

Golden search: A range between two values is used and divided into sections.

Example: (Rosenbrock function):

.

This function has a global minimum at the point

where

. The global minimum is located inside a long, narrow,

parabolic shaped flat valley, as shown in Figure 3.19 for 10.

The gradient of the function is given by:

Refer to the following figure:

 Figure 3.19: Rosenbrock function with gradient descent

Following are some advantages and disadvantages of steepest descent:

Converges to a local minimum from any starting point

[image: Image 960]

[image: Image 961]

[image: Image 962]

[image: Image 963]

[image: Image 964]

[image: Image 965]

Convergence can be very slow sometimes

Intuitively, it may seem that the method of steepest descent is the best direction for minimizing a function. But this is not true! A more general search direction is defined as a solution to a system of linear equations

, where

 B is a positive definite matrix. For the solution to be a valid search direction, it must satisfy

. This holds true because of the positive

definiteness of

. A particular

case for this is choosing B to be the Hessian at

. If the Hessian is positive

definite at

. This is called Newton’s method. The main disadvantage of Newton’s method is the cost associated with finding the inverse of the Hessian and ensuring that the Hessian inverse matrix is positive definite. Figure 3.20

shows the convergence with Newton’s method:

 Figure 3.20: Rosenbrock function with Newton’s method

Function optimization with constraints: Lagrange

multipliers

[image: Image 966]

[image: Image 967]

[image: Image 968]

[image: Image 969]

[image: Image 970]

[image: Image 971]

[image: Image 972]

[image: Image 973]

[image: Image 974]

[image: Image 975]

[image: Image 976]

[image: Image 977]

[image: Image 978]

[image: Image 979]

[image: Image 980]

[image: Image 981]

[image: Image 982]

[image: Image 983]

[image: Image 984]

[image: Image 985]

[image: Image 986]

[image: Image 987]

[image: Image 988]

[image: Image 989]

[image: Image 990]

[image: Image 991]

[image: Image 992]

[image: Image 993]

[image: Image 994]

[image: Image 995]

A constraint is a limit placed on the values of a variable, that is, the solution to the optimization problem is restricted to a subset of the domain of the function. For example, we may have a problem in economics where we want to maximize the

utility

function

subject

to

the

constraint

. If the form of the constraint is complicated, then

solving constrained optimization is very hard. However, for some simpler forms

of constrains, for example, the constraint represents a curve or a surface, then they can be solved by the method of Lagrange multipliers.

Suppose a scalar field

has a relative extremum when its subject

to the constrains

, where

, then there exists scalars

such that:

These scalars are called Lagrange multipliers; one multiplier is there for each constraint. We assume that the scalar field f and the constrains are all differentiable functions. Let’s understand this geometrically.

Let

represent a scalar field temperature function in three-dimensional

space. We want to find the maximum value of the temperature along a curve C.

We can represent C as the intersection of two surfaces

and

. So, we must solve the following constrained optimization

problem:

subject to the constrains

and

The gradient vectors

and

must be normal to the respective surfaces, as

shown in the Figure 3.21. At the extremum point, the gradient vector is

normal to the curve C. Suppose C is represented by the vector values function:

and let

represent the temperature along the curve. The

maximum value of the temperature is attained at

or

. Hence,

must be perpendicular to the tangent

to

the curve, that is, its normal to the curve.

Now, since all the three vectors

,

,

are normal to the curve at the

extremum point, they all must lie on same plane. So, if

,

are linearly

independent, we can write

. Refer to the following

figure:

[image: Image 996]

[image: Image 997]

[image: Image 998]

[image: Image 999]

[image: Image 1000]

[image: Image 1001]

 Figure 3.21: Constraint gradient and gradient of objective

With the use of Lagrange multipliers, we can convert a constrained optimization

problem to an unconstrained problem. This unconstrained problem has m more variables to optimize: the multipliers . We can minimize the function:

This technique will be widely used in many constrained optimization problems that we will encounter in ML. One of them is regularization of ML models, which

we will discuss in the next chapter.

Optimization with inequality constraints

We can write the optimization problem in general form as follows:

Here, we have only equality constraints, and for this, we can apply Lagrange multiplier

trick.

But

if

we

have

inequality

constraints

like

, we can convert this inequality constrains to equality

constrains by introduction of extra variable called slack variables.

[image: Image 1002]

[image: Image 1003]

[image: Image 1004]

[image: Image 1005]

[image: Image 1006]

[image: Image 1007]

[image: Image 1008]

[image: Image 1009]

[image: Image 1010]

[image: Image 1011]

[image: Image 1012]

[image: Image 1013]

[image: Image 1014]

[image: Image 1015]

Suppose denotes n slack variables corresponding to each inequality constraint.

These are positive quantities such that

. So now, we convert the

inequality constraints to equality constraints and again use Lagrange multipliers to convert the problem to unconstrained optimisation problem. Additionally, slack variable are positive.

where

.

The Lagrange dual function

The Lagrange dual function L is defined as the minimum value of the Lagrangian for any given value of the multipliers

.

Suppose is a feasible solution of the problem, that is,

and

; then:

Hence, for the optimal feasible solution :

By definition of infimum:

Also, by definition of supremum, we have the following:

Therefore, we have a new optimization problem:

[image: Image 1016]

[image: Image 1017]

[image: Image 1018]

[image: Image 1019]

[image: Image 1020]

[image: Image 1021]

[image: Image 1022]

[image: Image 1023]

[image: Image 1024]

[image: Image 1025]

[image: Image 1026]

[image: Image 1027]

[image: Image 1028]

[image: Image 1029]

[image: Image 1030]

[image: Image 1031]

This is called the dual problem associated with the original constrained optimization problem, which we call primal problem. We call

the

 Lagrange dual function.

The optimum value of both the primal and dual problems must always satisfy the

following condition:

This is called weak duality. Suppose the equality above holds. Then, its termed as strong duality. This happens when the objective function and constraints are of certain form that is, they are convex functions. In the following section, we will discuss convex functions and optimization of convex functions. Many

optimization problems encountered in ML can be formulated as convex

optimization problems.

Convex functions

We have already discussed convex sets in the previous chapter. A scalar field is called a convex function if the domain of f is a convex set and for

any two points

and

we have the following:

We define f as concave if – f is convex.

Examples:

for any real a is convex,

is concave.

Every norm in

is a convex function because of the triangle inequality

obeyed by any valid norm:

The max function in

is convex.

Geometric mean function,

Negative entropy function in

is convex.

The function

is concave.

Properties of convex functions

Following are a few useful properties of convex functions:

[image: Image 1032]

[image: Image 1033]

[image: Image 1034]

[image: Image 1035]

[image: Image 1036]

[image: Image 1037]

[image: Image 1038]

[image: Image 1039]

[image: Image 1040]

[image: Image 1041]

[image: Image 1042]

[image: Image 1043]

[image: Image 1044]

[image: Image 1045]

First order conditions: Suppose f is differentiable scalar field; then, f is convex if and only if the first order Taylor approximation of f underestimates f. that is, for any two point

:

This is a very important property of convex functions and is easy to prove as well.

Suppose f is convex and let

; then, for any two points

in domain of

 f, we have the following by convexity property:

Taking the limit as

, the ratio in the right side above shows the directional

derivative of f in the direction of

, and hence, can be written as

. This proves the first order condition. We can also derive the

converse, that is, convexity of f from the first order condition. Interested readers may refer to [4] for the proof.

 Note: If

 , then we have

 for convex function.

 Hence, x is a global minimum of the function. So, any stationary point is a

 global minimum for convex functions. This property makes the convex

 optimization problem a special class.

Second order conditions: Suppose f is twice differentiable, and its Hessian or the second derivative

exists. Then, f is convex if and only if its Hessian is

positive semidefinite, that is,

, for all x in the domain of f. To view this

geometrically, we can think f represents a surface; then, the surface must have positive curvature given its convex.

 Tip: The first and second order conditions hold good for concave functions as

 well with the following modifications:

 Any stationary point is a global maximum

 f is concave if and only if

 , for all x in domain of f

[image: Image 1046]

[image: Image 1047]

[image: Image 1048]

[image: Image 1049]

[image: Image 1050]

[image: Image 1051]

[image: Image 1052]

[image: Image 1053]

[image: Image 1054]

[image: Image 1055]

[image: Image 1056]

[image: Image 1057]

[image: Image 1058]

[image: Image 1059]

[image: Image 1060]

[image: Image 1061]

[image: Image 1062]

[image: Image 1063]

[image: Image 1064]

[image: Image 1065]

[image: Image 1066]

[image: Image 1067]

Example: The quadratic function

. We have

and

. Hence, by second order condition, f is

convex if

.

Example: The least square objective function

. We have

is convex for any A since

is a

real symmetric matrix, and hence, is positive definite.

Restriction of a convex function to a line: A function

is convex if

and only if the function

, where

is convex in t,

where

is in domain of f and t is a real number. Example: The function

.

Here are the eigen values of

Jensen’s inequality: If f is convex, then for

,

Convex optimization

A convex optimization problem is of the following form:

Here, the objective function f and the inequality constrains are convex and the equality constrains are linear or affine:

A fundamental property of convex optimization problems is any locally optimal

 solution is also (globally) optimal. The gradient descent algorithm discussed above can be proved to converge to the global minima for unconstraint convex optimization problem, given strong convexity assumption, that is, there exists positive constants m, M such that

.

[image: Image 1068]

[image: Image 1069]

[image: Image 1070]

[image: Image 1071]

[image: Image 1072]

[image: Image 1073]

[image: Image 1074]

[image: Image 1075]

[image: Image 1076]

[image: Image 1077]

[image: Image 1078]

[image: Image 1079]

[image: Image 1080]

[image: Image 1081]

[image: Image 1082]

 Note: The condition number of the hessian

 is bounded by m/M, and

 the number of iterations N required for gradient descent algorithm to

 converge is bounded above by m/M. We have the relation

 .

For constraint convex optimization, we can use the Lagrange multiplier trick to convert to unconstraint optimization problem. There, the strong duality holds under certain basic assumptions on the inequality constraints called Slater’s condition.

Slater’s condition: There exists an x in domain of f such that the strict inequality holds true:

and

. Such a point is also called a strict

 feasible solution.

 Note: The Slater’s theorems states that if slater conditions hold, then the

 convex optimization will have strong duality, that is, the maximum value of

 Lagrange dual will be equal to the minimum value of the objective:

 . This property can give us a stopping criterion for any

 iterative optimization algorithm. If we iteratively reach a point

 such

 that

 , then we can guarantee that we are close to the

 optimal solution, that is,

 .

The strong duality also gives us certain necessary and sufficient conditions that can help solve the optimization problem analytically. These are discussed in the next section.

Karush-Kuhn-Tucker conditions (KKT)

Suppose strong duality holds for an optimization problem. Let the problem be convex optimization where Slater’s condition holds:

Then, and

are the primal and dual solutions if and only if

and

satisfy following conditions:

, (primal feasibility condition)

, (primal feasibility condition)

[image: Image 1083]

[image: Image 1084]

[image: Image 1085]

[image: Image 1086]

[image: Image 1087]

, (dual feasibility condition)

(complementary slackness condition)

The point

minimizes

, so we must have the following

 stationarity condition:

These conditions are called Karush-Kuhn-Tucker (KKT) conditions.

 Note: For any optimization problem (convex or non-convex) with

 differentiable objective function and constraint functions, such that strong

 duality holds, any pair of primal and dual optimal points must satisfy the KKT

 conditions.

These KKT conditions play an important role for ML models like Support Vector Machines (SVM). SVM formulates the ML classification problem as a convex optimization and uses Lagrange duality and KKT conditions to solve the

optimization problem. We will see applications of Lagrange multipliers in solving many optimization problems in the probability theory chapter as well.

Conclusion

In this chapter, we covered the differential calculus for functions of vectors and tensors. We used them to introduce the optimization theory of functions of vectors and tensors. We will be using these concepts throughout the rest of the book, in almost all the algorithms we discuss. In the next chapter, we will discuss another important pillar on which the theory of AI relies – the probability theory that quantifies the uncertainty naturally arising in AI problems and provides us mathematical tools to deal with the uncertainty.

Points to remember

Any differentiable function of single variable can be approximated locally by a line using first order Taylor series expansion.

For functions several variables, we must compute directional derivatives because the function values changes based on the direction in which we move away from a point. The directional derivatives along the axes are called partial derivatives.

Existence of all the directional derivatives does not imply continuity of the scalar field at given point.

A function is differentiable at a point if total derivative exists at that point, which means that the function can be approximated locally by a linear transformation at that point.

Further readings

Tom IN. Apostol. CALCULUS. VOLUME II. Multi Variable Calculus

Convex Optimization / Stephen Boyd & Lieven Vandenberghe

KKT Conditions: https://www.cs.cmu.edu/~ggordon/10725-F12/slides/16-

kkt.pdf

Convexity

Properties:

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523

_S16_Lec7_gh.pdf

Gradient

Descent:

https://people.maths.ox.ac.uk/hauser/hauser_lecture2.pdf

Tensor

Calculus:

https://cedar.buffalo.edu/~srihari/CSE676/6.5.2%20Chain%20Rule.pdf

http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanics

Books/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_15_Tenso

r_Calculus_2.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html

https://www.tensors.net/p-tutorial-1

CHAPTER 4

Basic Statistics and Probability Theory

The probability theory provides us the mathematical tools to quantify the uncertainty of decision-making where we have incomplete information. In

machine learning, uncertainty naturally arises from noisy data or incomplete

information about the problem domain. With such given uncertainties, we must come up with a predictive model that can estimate the outcome of an

unseen event. There are a range of ML models that are completely built on

probabilistic settings, like Bayesian nets, generative models, linear and logistic regression. Most objective functions used in training deep neural net

models are derived using a probabilistic framework. However, even before

we attempt to quantize the uncertainty in information, we must collect and

organize information associated with a given problem. Thereafter, we can draw conclusions and make inferences or predictions based on these data.

The science that deals with the collection, organization, analysis,

interpretation, and inference of numerical facts or data by applying

mathematical theories of probability is known as statistics. Statistics has a wide range of applications in almost every field of study, like medicine, economics, sociology, psychology and astronomy. However, the laws of

statistics are true on aggregate of facts and cannot be applied for single observation, that is, statistics does not study individuals. Unlike the laws of

physics, the laws of statistics are not exact but are approximate.

Structure

In this chapter, we will cover the following topics:

Basic statistics

Probability theory

Introduction to Bayesian decision theory

Random variable and probability density function

Expectation, correlation, and covariance

Information theory

Objectives

Probability theory is one of the foundational pillars of ML and AI, which are

one of the applications of inferential statistics. This is the preparatory chapter for understanding inferential statistics and probabilistic

interpretation of ML and AI problems covered in the next chapter.

Basic statistics

The science of collecting, organizing, analyzing, and inferencing from data

for the purpose of effective decision-making is called statistics. Statistics has following two major branches:

Descriptive statistics: Collecting and organizing data

Inferential statistics: Drawing conclusions from data

Here, data can be defined as a collection of facts or information from which conclusions can be drawn. Data can be of various types:

Qualitative (Categorical):

Nominal: Unordered categorical data like color, gender, location,

ethnicity, marital status, weather.

Ordinal: Ordered categorical data for example, level of education,

economic status, designation in a corporate ladder, knowledge

level in a technology.

Quantitative (Numerical):

Discrete: Integral values that can be finite or countably infinite, like counts of vehicles at a traffic crossing

Continuous: Any real value within a defined range, which can be

infinite as well; for example, room temperature, blood pressure,

height of a person, and stock price

Unstructured: Text, image, audio, video

Quantitative data can exhibit certain general characteristics. The very first step to study such quantitative data is to compute the frequency distribution

[image: Image 1088]

[image: Image 1089]

[image: Image 1090]

[image: Image 1091]

[image: Image 1092]

[image: Image 1093]

that graphically represents the number of observations taking a particular value or number of observations in a certain interval. We may observe some

larger frequencies for certain values or for certain range of values, that is, a tendency to concentrate at certain values. This is known as central tendency.

There are various ways to compute this central value, which are collectively

known as measures of central tendency. The data about the measure of central tendency can vary, and this measure of deviation is called a measure of dispersion. The data may show a symmetrical distribution about the central value or show asymmetry. The metrics to measure these degrees of

symmetry is called the measure of skewness. Also, data may sometimes show a peak at certain central values, and the degree of sharpness of the peak can be measured by measures of kurtosis.

Qualitative data can also show central tendency, which is nothing but the most popular category. There are measures of dispersion for qualitative data

as well. Unstructured data needs to be converted to structured data, which can be numeric or categorical, before being analyzed further. Text can be viewed as a bag of words where each word is a category. Digital image is a

matrix of numeric pixel values.

Measures of central tendency

There are three types of central tendency measures, which are discussed in

detail below.

Mean

For a set of n observations,

Arithmetic Mean of S denoted by and defined as

.

We call the quantity

as the deviation of the point from the

point a. Two simple but useful properties of deviation are as follows:

Sum of all deviations about mean is zero or

.

The sum square of deviations is minimum when deviations are

computed about the arithmetic mean.

Proof of 1 is trivial, and we can use differential calculus for 2.

Geometric Mean of S is denoted by G and is defined as:

[image: Image 1094]

[image: Image 1095]

[image: Image 1096]

[image: Image 1097]

[image: Image 1098]

For G to be well defined, we must have all

. G gives

comparatively more importance to smaller values and is robust to small

fluctuations or noise in data.

Harmonic Mean of S is denoted by H and is defined as

For H to be well defined

. Harmonic mean gives greater

importance to small numbers. Like geometric mean G, H is also not

affected by small fluctuations of data.

Among these three means, the arithmetic mean is greater than the geometric

mean, and the geometric mean is greater than the harmonic mean.

Median

The median m of a dataset is a value that divides the data set in two equal parts such that number of points more than m is the same as the number of

points less than m. So, if we have an odd number of points

, we

can sort the points and take the middle value m from ordered points with k

points on either side of m. If n is even, then there are two middle points, and

we can take the arithmetic mean of the two. Median is very robust to outliers

or extreme values, which may be introduced due to experimental error or mistakes while noting observations or some rare anomaly. Arithmetic mean

of data will move toward such extreme values, but median will be robust and

does not change in the presence of a few outliers.

Mode

The value that occurs most frequently in a set of observations is called the

mode. In case of discrete data, we can compute the frequency or number of

times each discrete value occurs in the data and value with maximum

frequency is the mode. Mode can be more than one as there may be more

[image: Image 1099]

[image: Image 1100]

[image: Image 1101]

than one value with maximum frequency. Mode of continuous data can be

found by bucketing the continuous data into equi-spaced interval and

computing the frequency of each interval. The interval with maximum

frequency contains the mode, and we call this the modal interval. Now, we

also need to find one value in the maximum frequency interval to represent

the mode. This can be taken to be the midpoint of the interval. A more precise way to compute mode is given by the following formula:

Where

is the frequency of the interval containing mode and

are the frequencies of the intervals preceding the modal class and following

the model class, respectively. l is the lower bound of the modal interval, and h is the interval width.

Let’s take the example of Iris dataset that we already discussed in Chapter 2,

 Linear Algebra, to discuss the various central tendency measures. This

dataset consists of five attributes of flowers: four numerical features about the flowers and one categorical attribute that depicts the type of flower.

 Figure 4.1 shows the histogram plot of the four continuous attributes. We have 50 samples from each flower category. The mean, median, and mode

are marked with vertical lines and indicated in legends. For sepal length and

sepal width, we observe a predominant frequency for one interval, and the

mode can be defined to be the midpoint of that interval. For the petal length

and width, we clearly see two peaks in the histogram plot, and this indicates

a multimodal distribution. These attributes have two modes. Unlike mean and median, mode is ill-defined. There can more than one mode. The

following code shows how to load Iris dataset and compute the central tendencies:

1. from sklearn import datasets

2. import numpy as np

3. import pandas as pd

4. iris = datasets.load_iris()

5. #compute mean, median using numpy

6. print(np.mean(iris.data[:, 0]), np.median(iris.data[:, 0]))

7. #loading into a pandas dataframe

8. df = pd.DataFrame(iris.data)

9. df.columns = iris.feature_names

[image: Image 1102]

10. #computing mean, median with pandas

11. print(df[‘sepal length (cm)’].median(), df[‘sepal length

(cm)’].mean())

In the code, pd.mode() will give you the modes of each of the attributes, but this implementation only computes the attribute value with highest

frequency. For sepal length, it outputs the mode as 5.0 because in the data, this value occurs highest number of times (10 times). The value 6.3 occurs 9

times, but it’s evident from the histogram of sepal length that most of the values occur between 5.5 and 6. Thus, it’s better to avoid computing the mode of continuous data only based on frequency of occurrence and use the

formula mentioned above to compute the true mode or at least plot a

histogram and take the midpoint of the high frequency bins as the modes.

Refer to the following figure:

 Figure 4.1: histogram of feature values for iris data

Slicing the data based on the modal intervals gives us some interesting insights, as depicted in the following code:

1. df[‘flower’]=np.apply_along_axis(lambda x:

iris.target_names[x], 0, iris.target)

2. #upper bound of first modal interval is 2

3. df[df[‘petal length (cm)’] < 2].flower.value_counts()

4. #setosa 50

5.

 6. #lower bound to second modal interval is 4.5

7. df[df[‘petal length (cm)’] > 4.5].flower.value_counts()

 8. #virginica 49

 9. #versicolor 14

10.

 11. # restricting to modal interval for petal width

12. df[(df[‘petal width (cm)’] >=1.0) & (df[‘petal width

(cm)’] <=1.5)].flower.value_counts()

 13. #versicolor 45

 14. #virginica 3

Line 3 and 7, 8, 12, and 13 show the output. This indicates that the attribute

petal length alone can be used to distinguish two classes of flowers setosa

and verginica easily. The second modal interval of the attribute petal width can be used to identify the versicolor class of flowers from all other flowers.

Using these insights from the mode of the attributes, we can design a simple

rule-based classification model, as follows:

petal length < 2.0 ⇒ setosa and petal length > 4.5 ⇒ verginica

1.0 ≤ petal width ≤ 1.5 ⇒ versicolor

Partition Values

In the preceding example, the mode was used to partition the data into subsets, and we saw how we can use these partitions. The median also partitions the data in two equal parts such that number of observations greater than median equals the number of observations less than or equal to

median. We can generalize these to any number of partitions. The partition

values or points that divide the dataset into four equal parts are called quartiles, and they are denoted by Q1, Q2, and Q3. Each partition contains ¼ of the total number of points in the dataset. These values can be obtained

by sorting all the observations in ascending order and then finding values such that Q1 exceeds 25% and is less than 75% of the observations. Q2

exceeds 50% of observations, that is, it coincides with the median. Q3 is a

point that has 75% of observation less than itself and 25% more than itself.

The quartiles are pictorially shown in a box plot in Figure 4.2:

[image: Image 1103]

[image: Image 1104]

 Figure 4.2: Histogram of feature values for iris data (min, max shown are not outliers) The following is the code to compute the quartiles using pandas and to plot

boxplot for any set of observations:

1. df.boxplot(figsize=(10,5))

The output plot is shown in Figure 4.3:

 Figure 4.3: Output of the code given above; the circles shown in sepal width plot are outliers Extending this concept of quartiles to more partitions, we have deciles and

percentiles. Nine points divide the dataset into 10 parts called deciles; similarly, 99 points divide the set into 100 parts called percentiles.

Percentiles are used for reporting examination scores.

All these central tendencies, viz mean, median and mode, are suitable for different types of data and frequency distribution of data. Mode is the best

central tendency measure if the data is qualitative. For continuous numerical data, median is used if the frequency distribution of data is skewed. Any of

the three measures can be used for symmetrical data distributions as they will mostly coincide or be very close.

Measures of dispersion

The measures of scatteredness or spread of data is called dispersion.

Suppose the central tendency of two sets of data is the same. For example,

time to commute to school from home by public transport and by private school van is measured for 2 months. Both the modes of transport show the

same mean, median and mode of 30 minutes. The distribution of data is symmetric, so all the three measures coincide. Then, we cannot decide which

mode of transport is better using central tendency alone. This is where the

measures of dispersion can help. In the following sections, we will discuss

various dispersion measures.

Range

The range is the difference between the extreme values of the observations.

The box plot in Figure 4.2 marks the min and max values as well. Range =

Max-Min. This is a crude measure of dispersion and is very sensitive to anomalies or outliers in data. This is simple to compute, but it does not consider all the data observations.

Interquartile Range

The Interquartile Range (IQR) is given by (Q3-Q1). This is a better measure than range as it uses 50% of the data and excludes anomalies. This

measure is used to get rid of the outliers in data by a simple rule of thumb

due to John Tukey. Tukey’s rule says that the outliers are values more than 1.5 times the interquartile range from the quartiles, that is, the values that are either below Q1 − 1.5IQR or above Q3 + 1.5IQR are considered outliers.

The sepal width box plot shows these outliers as circles in Figure 4.3.

Mean deviation

[image: Image 1105]

[image: Image 1106]

[image: Image 1107]

[image: Image 1108]

[image: Image 1109]

[image: Image 1110]

[image: Image 1111]

[image: Image 1112]

Mean deviation (MD) of a set of observations is given by average of the absolute deviations from a central tendency measure A, that is,

. Mean deviation is based on all observations and is better

than quartile. It can be proved that MD is minimum when A is taken to be

the median.

Standard deviation

The square root of the sum squared mean deviations is called standard deviation and is denoted by

. Standard deviation is

considered the best among all measures of dispersion. The square of

standard deviation is called the variance.

Coefficients of dispersion

If we want to compare variability of two series that differ widely in their means or are measured in different units, we calculate the Coefficient of Dispersion (C.D) for each series to compare them. C.D is dimensionless or unit free. This is like a normalized measure of dispersion. For each of the four measures of dispersions discussed earlier, we have separate coefficients

of dispersion:

C.D for range:

C.D for IQR:

C.D for mean deviation:

C.D for standard deviation: ,and

is called Coefficient of

Variation (C.V)

For comparing the variability of two series, C.V is computed, and the series

with greater value of C.V is said to have more variability. From the distribution plots of the four attributes in Iris dataset, it’s evident that sepal length and petal width have quite a difference in mean values. However, the standard deviations of these two series are 0.83 and 0.76, respectively, which

says the variability of sepal length is more than variability of petal width.

[image: Image 1113]

[image: Image 1114]

[image: Image 1115]

This is contradictory to the histogram plots. Sepal length appears to have much less variability. Let’s compute C.V for all the series using pandas, as

shown in the following code:

1. std = df.std() ; cv = 100*std/df.mean()

2. df1 = pd.concat([pd.DataFrame(std).T,

pd.DataFrame(cv).T]).reset_index()

3. df1.index=[[‘SD’, ‘CV’]]

This produces the following output:

 Figure 4.4: Comparing CV and SD

We can see that CV for petal width is very high compared to CV for sepal

length. This example shows the importance of CV for comparing variability.

Moments

The rth moments of a data set about a point A a given by

. Clearly, the arithmetic mean is the 1st moment at A =

0, and the variance is the 2nd moment about the arithmetic mean. Various moments give us idea about the shape of the distribution. The 3rd and 4th moments are used to define skewness and kurtosis, respectively, which are

discussed in the following sections. Higher moments tend to be less robust.

Skewness and kurtosis

Lack of symmetry in the data distribution is called skewness. This is measured by the deviation of the given data distribution with a symmetric distribution. A distribution is called asymmetric when mean ≠ mode ≠

 median. Skewness is measured by the difference mean-median or mean –

mode.

Kurtosis gives us an idea of how sharp or peaked the frequency curve of the

data is. It’s measured by the ratio of moments

. This quantity can be

interpreted as follows:

[image: Image 1116]

β2 = 3 means a normal frequency curve, neither too sharp not too flat

β2 > 3 means a sharply peaked around the mean

β2 < 3 eans a flat and not peaked about the mean

 Figure 4.5 shows how skewness and kurtosis define the shape of the distribution. The data distribution is positively skewed if mean > median > mode. Similarly, we can define negative skew as illustrated in Figure 4.5:

 Figure 4.5: Skewness and kurtosis of data distribution

The measures we discussed so far can give us detailed insights into

individual attributes or features of observations. This is collectively known

as univariate data analysis. In practice, the relation among different variables can also give us interesting insights. For example, in study of household expenditure and price or demand of commodities, there is a high

chance that these two can increase or decrease together, that is, they covary.

The pairwise analysis of various measurements associated with an

experiment is called bivariate analysis. In the next section, we will discuss how to visualize these relationships and how to measure them.

Correlation

If change in one variable affects the change in other variables, the variables

are correlated. The correlation is called positive or direct if increase (or decrease) of one variable causes increase (or decrease) in the other. One the

other hand, the correlation is called negative if the increase in one leads to a decrease in the other variable and vice versa. Correlation can be detected pictorially with a scatterplot of two variables plotted along the x and y axes.

For example, we can take the petal width in y-axis and any other attributes, like sepal length and width in x-axis, and plot a scatterplot as shown in

 Figure 4.6.

[image: Image 1117]

[image: Image 1118]

[image: Image 1119]

[image: Image 1120]

[image: Image 1121]

[image: Image 1122]

[image: Image 1123]

[image: Image 1124]

[image: Image 1125]

[image: Image 1126]

We can see that the rightmost plot of petal length versus petal width shows a

dense scattering about a nearly 45-degree angled line through origin. Also,

this correlation holds for all categories of flowers. For the other plots with sepal measurements, we see less density and more of uniform spread. Refer

to the following figure:

 Figure 4.6: Bivariate analysis of iris

To generate pairwise bivariate plots for all the four variables, we can use the

seaborn library, as shown here:

1. import seaborn as sns

2. sns.set_style(“whitegrid”)

3. sns.pairplot(df, hue=”flower”,size=3) #df of iris data

defined above

4. plt.show()

Karl Pearson’s coefficient of correlation: The degree of linear relation between two variables is measured using correlation coefficient. Let take two series of data points

and another series

, where and are two measurements related to the

same individual or event i. The sample covariance cov(x,y) between these

two series is the defined as an average of the product deviations

. Here,

denote the sample

means. The correlation coefficient between the two variables is denoted by

and is defined as follows:

[image: Image 1127]

[image: Image 1128]

[image: Image 1129]

[image: Image 1130]

[image: Image 1131]

[image: Image 1132]

[image: Image 1133]

[image: Image 1134]

If can be easily proved that

. If the two series are identical,

that is,

then

and if

, we have

.

Probability and odds

Probability and odds are two different ways of quantifying the uncertainty associated with an event. Let the event be “winning of a player in a game”.

Odds are the ratios of a player’s chances of losing to their chances of winning. Odds of 3 to 1 for a player means there are 3 chances of losing and

only 1 chance of winning. Here, the probability of winning of the player is

the ratio of the number of times won to the total number of games, that is:

Now, the probability of losing is similarly defined as the ratio of the number

of times the game is lost to the total number of games:

Also, the ratio of these two probabilities is the odds:

Therefore, odds express relative probabilities, generally called odds in favour. The odds in favour of an event is the ratio of the probability that the

event will happen to the probability that the event will not happen.

Random experiment

An experiment is an activity that produces an outcome. There may be

different number of possible outcomes. For example, rolling a die is an experiment with six possible outcomes. An experiment is called random experiment if it has more than one possible outcome, and it’s not possible to predict the outcome in advance, that is, before the experiment is performed.

We know the outcome of a dice roll only after rolling it!

Events as sets

[image: Image 1135]

[image: Image 1136]

[image: Image 1137]

[image: Image 1138]

[image: Image 1139]

[image: Image 1140]

[image: Image 1141]

[image: Image 1142]

[image: Image 1143]

[image: Image 1144]

[image: Image 1145]

[image: Image 1146]

An event can be considered as an outcome of a random experiment. For the event “winning of a player in a game” the experiment is the “player plays a game”. There are two possible outcomes of this experiment: the player wins/loses. We can represent these as a set of two events: {‘player wins’,

‘player loses’}. This is the set of all possible events associated with this experiment and is called sample space. The singleton events or elementary events {‘player wins’} & {‘player loses’} cannot happen together and are mutually exclusive events. The probability of an event is denoted by P.

Suppose n trials of an experiment are performed. The probability of a desired event E is the ratio of trials that result in E, denoted by

, to the

number of trials performed:

Here, P(player wins) = 0.25 and P(player loses) = 0.75. The probability of these two events are unequal, that is, they are not equally likely to happen.

Let’s take another random experiment: “Rolling a fair dice”. Here, the sample space is the set S = {1,2,3,4,5,6}. All the six outcomes are equally likely as it’s a fair dice, and hence, we can write

for i = 1,2,…,6.

The event “roll an even” is the set E = {2,4,6} and the event “roll an odd” is the set O = {1,3,5}. These two events are equally likely:

. Also, E and O are mutually exclusive:

. E and S are called disjoint events:

Also,

; hence, we call E and S exhaustive events, that is, there is no outcome possible outside the union of these event sets. For mutually

exclusive and exhaustive events, we have:

Let’s take another event “multiple of 3” represented by

. Here,

. As shown in Figure 4.7, T has intersection with both E

and O. T and O can happen together, and the probability of that is written as

; similarly,

. Refer to

the following figure:

[image: Image 1147]

[image: Image 1148]

[image: Image 1149]

[image: Image 1150]

 Figure 4.7: Event set example

Now, the probability of occurrence of either of the events E or T or both, that

is, the outcome is either an even number or a multiple of three is represented

as:

. Here, unlike mutually exhaustive

events:

Basic probability identities

If A and B are two events, then:

 P(not A) = P(A') = 1 – P(A)

 P(A ∩ B)' = P(A' ∪ B'), De Morgan’s Law for Probability

 P(A ∪ B)' = P(A' ∩ B'), De Morgan’s Law for Probability

 P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

 P(A and not B) = P(A ∩ B') = P(A) – P(A ∩ B)

 P(exactly one of A,B) = P((A and Not B)or (B and not A)) = P((A ∩

 B’)U (A’ ∩ B)) = P(A) + P(B) – 2P(A ∩ B)

[image: Image 1151]

[image: Image 1152]

[image: Image 1153]

[image: Image 1154]

[image: Image 1155]

[image: Image 1156]

[image: Image 1157]

[image: Image 1158]

[image: Image 1159]

Conditional probability

For the example in Figure 4.7, suppose it’s given that the event T has already occurred that is, someone tells that the dice is showing either 3 or 6.

Now, if we ask the chances of event E having occurred, it can occur only if

the output is 6. So, the number of possible outcomes of event E reduces from

three to one, given another event T has already occurred, and thus, the probability of occurrence of E changes to 1/2. We can write:

.

Definition: The probability of occurrence of an event A, given that B has already occurred, is called conditional probability. It is denoted by P(A|B): Let’s take another example of rolling a pair of dice together; we observe the

outcome as a 2-dimensional vector representing two face values. The sample

space contains 6 × 6 = 36 possible outcomes. Let A denote the event “sum of

the two face values is 7” and B denote the event “at least one of the face values is 2”, as shown in Figure 4.8.

and

.

Knowing that B has occurred reduces the possible outcomes for A to 2, that

is,

. Therefore, the conditional probability of A, assuming

that B has occurred,

. Now, let’s consider that

A is given, and we have to calculate P(B|A). We have

. So, we saw that the two

conditionals P(A|B) and P(B|A) are not the same.

Using the conditional probability definition, we can always write:

This is called the product rule of probability. We will be extensively applying this rule in many topics. This can be generalized for a set of n events by repeatedly applying this rule:

[image: Image 1160]

[image: Image 1161]

[image: Image 1162]

[image: Image 1163]

[image: Image 1164]

[image: Image 1165]

Equivalently,

So, we can factor the probability of intersection of three events in any of the

3! = 3x2x1 ways.

Independent Events

If occurrence or non-occurrence of A does not affect occurrence or non-occurrence of B, then A and B are called independent events.

and

Therefore,

Refer to the following figure:

 Figure 4.8: Sample space for pair of dice and event sets example

[image: Image 1166]

[image: Image 1167]

[image: Image 1168]

[image: Image 1169]

[image: Image 1170]

[image: Image 1171]

In general, for N independent events, the probability that all the events happen is the product of the N probabilities that the individual events happen.

Let E denote the event that the “first die shows even number”; then,

. Let O denote the event that the “second die shows odd

number”; then,

. The probability of occurrence of both E

and O, that is,

Hence, E and O

are independent events.

 Note: Mutually exclusive events are not the same as independent events.

 Events A and B are mutually exclusive, which means P(A) > 0, P(B) > 0

 and P(A ∩ B) = 0. However, independence of A and B means P(A ∩ B) =

 P(A)P(B) > 0.

Here, E and O in the experiment are independent but are not mutually exclusive.

Conditional independence

Again, taking the pair of dice example, let A denote the event “first die show 1” and B denote the event that the “second die shows 2”; then, A and B are clearly independent:

Now, let C be the event that the sum of two outcomes is S. Then, A and B

are not independent anymore, given C. So, we call A and B conditionally dependent:

Given one of the outcomes and fixing the sum of two outcomes = S, we can

have only one possible result: A|C = {(1, S-1)} and B|C = {(S-2, 2)}. Hence:

[image: Image 1172]

[image: Image 1173]

[image: Image 1174]

[image: Image 1175]

[image: Image 1176]

[image: Image 1177]

[image: Image 1178]

[image: Image 1179]

Therefore, P(A|C)P(B|C) ≠ P(A ∩ B|C).

Two events A and B are called conditionally independent, given event C, if:

P(A ∩ B|C) = P(A|C)P(B|C)

 Note: Independence of events does not imply conditional independence,

 as we saw in the example here. Also, conditional independence does not

 imply independence of events.

Total probability theorem

Let’s consider a set of three mutually exclusive and exhaustive events: and H 3. So, Hi’s are pairwise disjoint, and the union of all of them gives the entire sample space U.

. Let A be any event. A will have intersection with at

least one of the Hi’s as these Hi’s are mutually and exhaustive, as shown in

 Figure 4.9.

As Hi’s are mutually exclusive,

and

are also

mutually exclusive.

So,

Refer to the following figure:

[image: Image 1180]

[image: Image 1181]

[image: Image 1182]

[image: Image 1183]

 Figure 4.9: Total probability theorem

For a set of n mutually exclusive and exhaustive events

:

Bayes theorem

Let A and B be two events such that P(B) > 0; then, using product rule of

probability, we have:

This is called Bayes rule. As you can see, this is nothing but an alternate way

to write the product rule, but this rule has numerous applications in the theory of machine learning.

Here, P(A) represents the prior belief about occurrence of event A. Let B be another related event. Knowing about the occurrence of event B gives some

more information about event A, and we call the conditional P(A|B)

 posterior probability.

Let’s consider the following example of a medical test for a specific disease:

A = Event that a person from the population has the disease.

[image: Image 1184]

[image: Image 1185]

[image: Image 1186]

[image: Image 1187]

B = Event a person tests positive (irrespective of whether or not they

are sick).

Given that the test sensitivity is 95%, the test may fail to detect disease

in a real sick person for 5% cases. The test has 5% false negative rate, that is, P(B|A) = 0.95.

Given test specificity is 97%, that is, the test result is positive for 3% of

healthy people without the disease or test has 3% false positive rate, that is, P (B| not A) or P(B|A’) = 0.03].

Survey data shows that the fraction of population having this disease is about

20 in a 1000. This gives us the prior probability of the disease, that is, P(A)

= 20/1000 = 0.02.

Now, out of these 20 sick people 20x0.95 = 19 will test positive with the medical test. Also, out of 1000-20 = 980 healthy people, 3% will test positive, that is, 29.4 people will test positive. So, in total, we have 19 + 29

= 48 testing positive with this test out of 1000. This gives the unconditional

probability of testing positive as P(B) = 0.048.

Now, given that a person gets positive result, the chance that they are actually sick is

= 0.395 that is, 39.5 %. This is a simple application

of Bayes’ rule.

 Note: P(B) can also be calculated using the total probability theorem. We

 have two mutually exclusive and exhaustive events A and A’

 (complement of A), and by total probability theorem, we have P(B) =

 P(B|A) P(A) + P(B|A’) P(A’) = 0.95 × 0.02 + 0.03 × 0.98 = 0.0484.

Bayes theorem can be generalized for set of n events also. Let U be the sample space. Let

be mutually exclusive and exhaustive events such

that

. Let B be any event in U such that P(B)

> 0. Then:

Bayesian Decision Theory

[image: Image 1188]

[image: Image 1189]

[image: Image 1190]

[image: Image 1191]

[image: Image 1192]

[image: Image 1193]

Bayesian Decision Theory is a fundamental statistical approach to

classification problem. It is based on Bayes theorem and measures the risk of

assigning an input to a given class. Let’s try to understand this with the help

of a simple example inspired from the book on pattern recognition by Duda

and Hart (Further reading [4]). In a fish packing plant, incoming fish on a conveyor belt are sorted to different boxes manually based on type of fish.

Suppose there are two species that they ship: “sea salmon” or “sea bass”.

They want to automate this using a robotic arm, which can pick the fish from

belt and put it in the appropriate box. The first step for this is to build a classifier that can judge what type of fish is on the belt.

Let A be the event that the fish is “sea salmon”; then, A’ represents “sea bass”. We assume that the class prior probability for finding salmon is known. This may be based on the percent of availability during a particular

season or area of fishing and so on.

Case 1: There is no information available other than the class priors.

Then, we decide “salmon” if

, otherwise we decide

“sea bass”.

Case 2: We got a sensor that can measure lightness of the fish. Also,

we know the distribution of lightness for both the fish, as shown in

 Figure 4.10, which is obtained by measuring lightness from samples of manually sorted fish. From this, we also have the conditional

probability of lightness values given the fish category, that is, the

probability of lightness value(L) in range

, given that fish is

“sea bass” is

. Similarly,

given that fish is “salmon”,

and P(L ≥ 6|A) = (6 + 7

+ 7 + 15)/50 = 0.7.

Now, using Bayes rule we can compute the reverse conditionals, that is, given the lightness value from the sensor, what’s the probability of a particular fish type.

The denominator is the same for both the classes; hence, we can predict the

class with higher numerator value as the most likely class. Refer to the

[image: Image 1194]

[image: Image 1195]

[image: Image 1196]

[image: Image 1197]

[image: Image 1198]

following figure:

 Figure 4.10: Histogram of lightness measure computed from 50 samples of each fish type So, we can build a simple Bayesian classifier using the Bayes’ rule:

if

, then fish is salmon else sea bass.

Or

, then fish is salmon else sea bass.

Here, θ is the ratio of the prior probabilities or odds against finding salmon,

which is given, to

, which is the likelihood ratio of lightness

measures.

 Table 4.1: Different Decision Boundaries for lightness measures based on the prior probability ratio ; note how the classification changes based on the prior values

Using this equation, we can now compute decision boundary and derive a rule based on lightness values alone to decide the fish type, as shown in the

 Table 4.1, for various values of the given prior ratios.

The classifier must be designed to perform well over a range of prior probability values such that the worst overall misclassification risk for any

value of the priors is as small as possible. The decision boundary must be chosen such that the maximum possible overall risk of misclassification is minimized. Such a decision boundary is called Minimax Bayesian Risk solution.

Random variable

We have represented the outcomes of a random experiment as event sets.

These events are abstract objects. To use any of the mathematical tools, we

must map these abstract objects to some numbers. A Random Variable

(R.V.) maps these arbitrary events to real numbers or real vectors. For example, the outcomes of a coin toss are represented as the set {H, T}. We can define a mapping X : {H, T} → R, as follows, X(H) = 1, X(T) = -1.

Based on the range of values an r.v. takes, it can be categorized as discrete or continuous, as shown in Table 4.2. Refer to the following table: Discrete random variable

Continuous random variable

Takes distinct values, which are countable (need Takes all possible values within an interval, that not be finite) like set of all integers. For is, a continuum of values. For example, exact example, the r.v. representing coin toss output.

body temperature can be anywhere from 93 F to

105 F, including fractional values like

98.1366421 F.

 Table 4.2: Random variable definition

How is a r.v. different from a simple variable? For a simple variable, we cannot say how likely is it that the variable takes a given value or how likely

is its value to falls in each range because there is no probability associated

with the variables. For r.v., there is an associated probability measure that tells how likely it is that the variable takes certain value or certain range of values. This extra information about the variable distinguishes an r.v. from a

simple variable, and it’s represented as another function called the

[image: Image 1199]

[image: Image 1200]

[image: Image 1201]

[image: Image 1202]

[image: Image 1203]

[image: Image 1204]

[image: Image 1205]

Probability Mass Function (P.M.F) for a discrete random variable and Probability Density Function (P.D.F) for a continuous random variable.

Let the random experiment be tossing a coin three times. Let X denote the

count of heads from three-coin tosses. Clearly, X can take values from this

set {0,1,2,3}. From all possible eight outcomes, we can compute the

probability of each outcome, as shown in Figure 4.11. For example, there are three outcomes with X=1 total head viz {HTT, THT, TTH}, and hence,

. For all X = 0, …, 3, we can compute the probabilities, and

we get a discrete probability density function represented by

Note:

and

For any function of a random variable to be a probability density function, it

should satisfy these two properties. The density function f(x) is analogous to

distribution of unit mass of powder along a line. So, adding up all mass should become 1. Also, we cannot have negative mass on this line; we can

have at most unit mass and at least zero mass.

Discrete probability distributions

The probability distribution associated with a discrete r.v is called a discrete probability distribution. A discrete random variable taking only Boolean values 0 or 1 is called a binary random variable and one which takes one out of K discrete values is called a categorical random variable. Let’s now study a few important discrete distributions that we will be repeatedly using in the

subsequent chapters. The p.m.f f(x) of any discrete random variable X has the following two properties:

and

For discrete r.v.

Refer to the following figure:

[image: Image 1206]

[image: Image 1207]

[image: Image 1208]

[image: Image 1209]

 Figure 4.11: Probability distribution for 3-coin toss experiment

Bernoulli and categorical distribution

The most basic of all discrete random variables is the Bernoulli. X is said to have a Bernoulli distribution if X = 1 occurs with probability p and X = 0

occurs with probability. Here, is generally called the probability of success.

This is like a biased coin toss experiment where head occurs with chance p

and tail with chance 1 – p.

Generalized Bernoulli distribution (Categorical): In Bernoulli

experiment, we have only two possible outcomes. We can generalize this to

K possible outcomes. For example, we are given an urn of four different colored balls red, blue, green, and orange. Let X=0,3 represent the four colors, respectively. We have to find the probability of drawing a given colored ball, where each ball is drawn at random with replacement. Such a

r.v is called categorial random variable. In general, a categorical variable X

can take one of K possible values {1,2,…, K} with probability

, where

= 1. Sample from categorical distribution

can be represented as a one-hot-encoded vector of dimension K. In the urn

example, a blue ball can be represented as (0,1,0,0), and a green ball can be

represented as (0,0,1,0). Let x denote one-hot-encoded sample from a categorical distribution. Then, the mass function of vector x is defined by:

[image: Image 1210]

[image: Image 1211]

[image: Image 1212]

[image: Image 1213]

[image: Image 1214]

[image: Image 1215]

[image: Image 1216]

Binomial distribution

Consider a sequence of n independent Bernoulli trials with probability of success = p, which is constant for each trial. In n trials, if there are x success and n-x failures, and the probability of x success is given by

.

However, out of n consecutive trials any x trials can be success, and there are

possibilities for that. Then, the probability of x success is given by

. The probability distribution of the number of successes

is called binomial probability distribution. If X be binomially distributed:

, where n and p are the parameters of the distribution.

 Figure 4.12 shows binomial distribution histogram plots for various values of n and p. We see if p=.5, we get a symmetric distribution, otherwise its either left or right side skewed. Refer to the following figure:

 Figure 4.12: Binomial Distribution plots for various values of the parameters n, p

Poisson distribution

All distributions we studied so far have finite and known set of possible outcomes. Now, if we take the number of calls received every minute in a

call center or the number of vehicles at a traffic signal at a time of day, it’s not possible to predefine any max possible value. To define the distribution

of such count-based random variables, Poisson distribution is used. A

[image: Image 1217]

[image: Image 1218]

[image: Image 1219]

[image: Image 1220]

[image: Image 1221]

discrete random variable X is said to be Poisson distributed with parameter λ

> 0 if it has a probability mass function given by:

Continuous probability distributions

Probability distribution of a continuous random variable X is called

continuous probability distribution. The p.d.f f(x) of a continuous random variable has the following properties:

and

for all x

As X can take infinitely many values, the probability of X taking on any one

specific value is zero. This can be explained with the following example.

Suppose a species of bacteria typically lives 4 to 6 hours. What is the probability that a bacterium lives exactly 5 hours? A lot of bacteria live for

approximately 5 hours, but there is negligible chance that any given

bacterium dies at exactly 5.0000000000… hours. The probability of

is given by the integral:

However, the probability of X assuming any fixed value, that is, P(X=a) = 0.

Now, let’s now study a few important continuous distributions useful for understanding any ML algorithms.

 Note: For continuous probability density f(x) ≠ P(X = x), f(x) represents

 the density of the probability mass around the point X = x. The

 probability of the continuous random variable X taking any exact value x

 is zero. However, for discrete distributions, f(x) = P(X = x). Also, f(x) can

 be greater than one for some values of x for continuous distributions.

 For discrete distributions, however, f(x) ≤ 1 always as it represents a

 probability.

Example: The diameter of an electric cable manufactured from a factory can be assumed to be a continuous random variable X. Suppose the density

[image: Image 1222]

[image: Image 1223]

[image: Image 1224]

[image: Image 1225]

[image: Image 1226]

[image: Image 1227]

[image: Image 1228]

[image: Image 1229]

[image: Image 1230]

[image: Image 1231]

[image: Image 1232]

[image: Image 1233]

[image: Image 1234]

[image: Image 1235]

[image: Image 1236]

[image: Image 1237]

[image: Image 1238]

function of X is given by:

First, let’s verify that

is a density function. Clearly,

for

and

Now, we can also find the probability of producing a wire of length more than 2/3 units, as follows:

Here,

. So, density of a continuous distribution

can be greater than 1. However, the integral of the p.d.f over certain interval

represents a probability and is always less than or equal to one.

Cumulative Probability Distribution Function

(C.D.F)

As the name suggests, this function gives the cumulative probability of This function gives probability, and hence,

.

Also,

, that is, the total probability of X taking

all possible value should add up to 1. Also,

.

Being a cumulative function,

is always monotone increasing:

if

Using

,we can define probability of X in an interval as follows:

Another very important property of c.d.f is as follows:

[image: Image 1239]

[image: Image 1240]

[image: Image 1241]

[image: Image 1242]

[image: Image 1243]

[image: Image 1244]

[image: Image 1245]

[image: Image 1246]

[image: Image 1247]

[image: Image 1248]

[image: Image 1249]

[image: Image 1250]

[image: Image 1251]

c.d.f can be also defined for discrete distributions with integral replaced by

sum.

Uniform distribution

Let be a random variable that can take any real value in the closed interval

. X will be called uniform distributed if

it takes all values with equal probability

. So, we have

, for all

. As,

is probability density function,

. This implies

or

.

Therefore:

c.d.f of uniform distribution is

. You can find

it plotted in Figure 4.13:

 Figure 4.13: (Left) Uniform Density function (Right) Uniform cumulative distribution function

Gaussian distribution or normal distribution

[image: Image 1252]

A continuous random variable can take infinitely many values. However,

most of the naturally occurring continuous random variables, like heights of

people, blood pressure, students’ scores in a test, and the exact dimensions

of an object produced by a machine, are observed to have bell shaped distribution when plotted as a frequency distribution, that is, if we plot a sample of values taken by these random variables, we get the “bell shaped”

histogram shown in Figure 4.14:

 Figure 4.14: Gaussian Distribution

Normal distribution also arises naturally if we take the distribution of the sum of large number of any random variable. Let X be uniformly distributed

in the interval [0, 1] and Y = X 1 + X 2 + … + Xn. Then, as n increases, Figure

 4.15 shows that the distribution of values taken by the sum Y becomes closer

to the bell curve. This property of Gaussian is formally stated as the central limit theorem. Refer to the following figure:

[image: Image 1253]

[image: Image 1254]

[image: Image 1255]

[image: Image 1256]

[image: Image 1257]

[image: Image 1258]

[image: Image 1259]

[image: Image 1260]

[image: Image 1261]

 Figure 4.15: (Left) Uniform Density function (Right) Uniform cumulative distribution function Now, let’s look at the probabilistic interpretation of the bell curve in the preceding figure. This bell curve in Figure 4.14 has it peak at x = 75. The chance of finding a value of the random variable decreases as we move away

from this center point in both the directions. So, the probability is inversely

related to the distance of x from the center point. In fact, the chance of observing a value x of the random variable X decreases exponentially as we go away from the center point. Let’s denote the center point by μ. The normalized distance of any value x from the center point μ is

, where σ

> 0 is a measure of scatter or dispersion of the data around the center point μ.

The probability density function for Gaussian distribution is given by:

Here,

is a normalization term required to make this a probability

density function that satisfies

. This density function has

two parameters: center location and scale

It’s denoted by

.

Relation of continuous Gaussian distribution to discrete binomial

distribution

Let X be a random variable with distribution B(n, p). If n is large enough,

is a good approximation for B(n, p), where μ = np and

[image: Image 1262]

[image: Image 1263]

[image: Image 1264]

[image: Image 1265]

[image: Image 1266]

[image: Image 1267]

[image: Image 1268]

[image: Image 1269]

[image: Image 1270]

[image: Image 1271]

[image: Image 1272]

. The normal distribution is generally considered to be a

decent approximation for the binomial distribution when .

The dispersion can be used to divide the area under a normal curve, starting from the center location. The normal density plot shows how likely

it is to find a value within a specific distance from the center location .

This is called the Empirical rule or three sigma rule.

Approximately 68% of the data will fall within the interval

Approximately 95% of the data will fall within the interval

Approximately 97.5% of the data will fall within the interval

 Figure 4.16 shows the empirical rule for normal distribution:

 Figure 4.16: Empirical rule for normal distribution

If

, then

is a standard normal variate that is,

. This is proved in a later example. The standard normal

probability density function is denoted by

.

[image: Image 1273]

[image: Image 1274]

[image: Image 1275]

[image: Image 1276]

[image: Image 1277]

[image: Image 1278]

[image: Image 1279]

[image: Image 1280]

[image: Image 1281]

[image: Image 1282]

[image: Image 1283]

[image: Image 1284]

[image: Image 1285]

The c.d.f of

is denoted by

. However,

evaluating this integral is not very straightforward. One way is to expand the

exponent term as a power series and then integrate each term of series and

compute the infinite series sum. There are precomputed probability

distribution tables available for standard normal distribution, which give

 for equispaced values of z, as shown in Figure

 4.17. Using this table, we can compute the probability in the interval for

standard normal distribution

. The entry

in the table depicts the probability

for row label r

and column label c. For example, to compute probability

, we

take

and

and get P(Z ≤ 0.36) = 0.64058. Refer to the

following figure:

 Figure 4.17: Cumulative Distribution

Using the Python “scipy.stats” library, we can compute the c.d.f for many continuous distribution functions, as show in the following snippet:

1. from scipy.stats import norm

2. print(“P(Z<0.36) = “, norm.cdf(0.36))

3. print(“P(1.5<Z<3.2) = “, norm.cdf(3.2)-norm.cdf(1.5))

Example: Quality of a product produced by a machine is measured on a scale of 0-100. If an old machine outputs 58% products in the quality range

less than 75, 38% products are between quality range of [75 to 80] and only

4% were above 80. Assuming that the quality metric for each machine is

[image: Image 1286]

[image: Image 1287]

[image: Image 1288]

[image: Image 1289]

[image: Image 1290]

[image: Image 1291]

[image: Image 1292]

[image: Image 1293]

[image: Image 1294]

distributed normally, can we find the mean quality metric and the variance of

the quality metric?

Let the random variable X denote the quality index of the products. Let denote the mean and variance of the distribution and

be a

standard

normal

distributed,

given

,

and P(75 ≤ X ≤ 80) = 0.38. Referring to

the standard normal cumulative probability table discussed in Figure 4.17,

we can rewrite these probability equations in terms of standard normal variable Z, as follows:

Here, we have used the inverse of the c.d.f function called percent point function: ppf(0.58) = Φ-1(0.58) = 0.20. Percent point function takes probability as input and computes the corresponding x for the cumulative distribution function. This is also implemented in “scipy.stats” as norm.ppf() function:

Solving the previous two linear equations, we get

and

.

Standard normal distribution being symmetric around the origin, we have P(X < 0) = P(X > 0) = ½. This is also evident from the c.d.f plot for normal distribution showing Φ(x) = 0.5.

Exponential Distribution

The exponential distribution is another popularly used continuous

distribution. It is often used to represent the time elapsed between events.

The density function of a continuous random variable X following

exponential distribution is denoted by X~ Exp(λ), λ > 0 and is defined as follows:

[image: Image 1295]

[image: Image 1296]

[image: Image 1297]

[image: Image 1298]

Example: Airline tickets are booked in advance, and generally, the number of days ahead we book a ticket depends on factors like whether it’s planned

travel or unplanned. Is it during holiday season? Are the prices going to shoot up. The number of days ahead travelers purchase their airline tickets is

observed to follow an exponential distribution with an average of 15 days.

Mathematical expectation of a random variable

Probability distribution of a random variable X tells us the likelihood of X

taking a specific value or falling in a specific interval. In practice, a more easily interpretable information will be the average value taken by the random variable. For example, a company may be interested in the average

profit they are going to make on a new product being launched. A pediatric

doctor may be interested in the average height and average weight of a 5-year-old. The average value of a random variable is also termed as the mathematical expectation of the random variable denoted by E[X].

The expected value of a discrete random variable is the weighted average of

all possible values given by:

For continuous random variables, we must replace sum by integral and get

the definition:

Example: Let X denote the amount of time (minutes) a person must wait for an elevator in a high-rise building. Here, X is a continuous random variable

with the following distribution:

[image: Image 1299]

[image: Image 1300]

[image: Image 1301]

[image: Image 1302]

The expected value of X id given by the following:

So, the expected wait time for the elevator in the building is 1 minute.

Readers can plot this density function and observe that the maximum density

is also at x = 1 in this case.

We can calculate the expectation of the random variables with known

probability distributions discussed earlier. This is shown in the following table:

Distribution(X)

Mean or E[X]

Variance E[(X – E[X])2]

 X~Bernoulli(p)

 p

 p(1 – p)

 X~Binomial(n;p)

 np

 np(1 – p)

 X~Poisson(λ)

λ

λ

 X~N(μ, σ 2)

 μ

σ2

 X~Exponential(λ)

 1/ λ

 1/ λ2

 X~Uniform(a,b)

 1/2(a + b)

 1/12(b – a) 2

 Table 4.3: Mean and variance of few commonly used distributions

We can also define the expected value of a function of a random variable g(X) as follows:

For

, the expectation of g(X)

is called the rth moment about the mean of X. In particular, if r = 2, then the expectation of g(X) is called variance of the random variable and is often denoted by σ2.

[image: Image 1303]

[image: Image 1304]

[image: Image 1305]

[image: Image 1306]

[image: Image 1307]

[image: Image 1308]

[image: Image 1309]

[image: Image 1310]

[image: Image 1311]

[image: Image 1312]

[image: Image 1313]

[image: Image 1314]

Here are a few properties of expectations:

Expectation is a linear operator. Hence, the expectation of a linear

combination of random variables

is given by the

following:

for any constant a.

The expectation of a product of mutually independent random variables

is as follows:

Cauchy-Schwartz inequality: If X and Y are two random variables,

then

, where equality holds if and only if

for some real .

Jenson’s Inequality: Let g be a convex function of the random

variable X, then

.

Joint Probability Distributions

Till now, we have discussed probability distributions for a single random variable. In real life, we are often encounter several random variables that are correlated. Here are a few examples:

1. In ecology, one species may be prey of another, and hence, the number

of predators will be related to the number of prey. If we are modeling

the counts of the prey and predator as two random variables X 1 and X 2, there must be some dependency between them and the probability of

these random variables assuming some pair of values. So, it makes

sense to model the joint probability of the variables (X 1, X 2).

[image: Image 1315]

[image: Image 1316]

[image: Image 1317]

[image: Image 1318]

[image: Image 1319]

2. Suppose we are studying about different families in a locality. We can

represent statistics like household income, number of family members,

highest education in family as different random variables X 1, X 2, and X 3. There are high chances that these variables are dependent on each

other, and we study the distribution of them jointly.

Let X, Y be two discrete random variables such that X takes n distinct values and Y takes m distinct values

. The joint

probability mass of X and Y is defined as

.

For example, let X denote the length and Y denote the width in millimeters of a plastic cover manufactured in a packaging unit of factory. If we round of X, Y to the nearest integer, they take a discrete set of values. Let X∈{200,201,202,203} and Y∈{300,301}. Refer to the following table: Length X

 Table 4.4: Joint distribution example

The sum of all the probabilities in the table is 1.0. Given a joint probability

distribution for X and Y, the individual probability distribution for X or for

Y can be easily derived from the joint distribution.

P(X = 202) = P(X = 202|Y = 300) + P(X = 202|Y = 301) = 0.33 = column sum of the previous joint probability matrix, for 3rd column where X = 202.

P(Y = 301) = P(Y = 301|X = 200) + P(Y = 301|Y = 201) + P(Y = 301|X =

202) + P(Y = 301|Y = 203) = 0.17 + 0.20 + 0.26 = 0.63 = row sum of above

joint probability matrix, for 2nd row, where Y = 301.

The probability distribution P(X) appears in the column sums and the probability distribution P(Y) appears in the row sums, as shown in Table 4.4.

As they appear in the margin of the table, these are terms as the marginal probability distribution of the joint distributions.

Joint probability density function in two variables X and Y denoted by

,

is called bivariate probability density function.

[image: Image 1320]

[image: Image 1321]

[image: Image 1322]

[image: Image 1323]

[image: Image 1324]

[image: Image 1325]

[image: Image 1326]

[image: Image 1327]

[image: Image 1328]

The marginal densities are given by the following:

These definitions of joint probability and marginals can be extended to n

dimensions and are called multivariate probability density function. To find the marginals along any dimension, we must add the probability along n – 1

remaining dimensions. For example, marginal along the x-axis for a three-dimensional distribution

is:

For continuous random variables also, we can define the joint distribution and the corresponding marginals by replacing the sums with integrals.

Integral in two dimensions represents integral over a region in two

dimensions, and it gives the area of the region. For continuous distribution,

we have:

Probability of X, Y falling into a region R is given by:

[image: Image 1329]

[image: Image 1330]

[image: Image 1331]

[image: Image 1332]

[image: Image 1333]

[image: Image 1334]

[image: Image 1335]

[image: Image 1336]

[image: Image 1337]

[image: Image 1338]

[image: Image 1339]

[image: Image 1340]

[image: Image 1341]

[image: Image 1342]

[image: Image 1343]

[image: Image 1344]

The marginal probability densities are given as:

and

 Note: The conditional density function for Y|X = x can be defined as:

 For mutually independent random variables X, Y the joint distribution fxy

 (x,y) can be represented as the product of the marginals:

 fxy (x, y) = fx (x) fy (y)

We can represent n jointly distributed random variables

as a

random vector

. This random variable X is vector valued

and assumes values in the Euclidean space

. The multivariate density of

this random vector is represented by

or simply as

, where x is a

vector in

.

Expectation of jointly distributed variables

We have defined the mathematical expectation of a single variable in the previous sections. For two jointly distributed random variables X and Y, we

can define the expectation of a function

as follows:

, if X,Y are continuous

And

The joint central moment (rth central moment of X and sth central moment of

Y) is denoted by

and is defined as follows:

[image: Image 1345]

[image: Image 1346]

[image: Image 1347]

[image: Image 1348]

[image: Image 1349]

[image: Image 1350]

[image: Image 1351]

[image: Image 1352]

[image: Image 1353]

3. If

, we call it covariance and is denoted by COV (X, Y). So:

4. If

, the central joint moment reduces to variance of X,

that is,

5. If

, the central joint moment reduces to variance of Y, that

is,

The COV (X,Y) can be equivalently written as COV (X,Y) = E[XY] –

 E[X]E[Y]. The proof of this is simple. COV (X,Y) = E[(XY – XE[Y] – YE[X]

 + E[X]E[Y])] = E[XY] – E(X)E[Y] – E[Y]E[X] + E[X]E[Y] = E[XY] –

 E[X]E[Y].

Example: Let’s consider two random variables X and Y having joint density function:

The density is plotted in Figure 4.18, where each line represents contour of constant density parallel to the line

. The lighter shades

represent high density regions. As we move away from the origin, the

density decreases parallel to the line

. (However, the white

space between lines doesn’t not represent high density regions. The density

varies parallel to the lines there as well.) Refer to the following figure:

[image: Image 1354]

[image: Image 1355]

[image: Image 1356]

[image: Image 1357]

[image: Image 1358]

[image: Image 1359]

[image: Image 1360]

 Figure 4.18: Bivariate Density Contours (the diagonal lines represent fixed density) Let’s now calculate the marginal probability density functions:

We can also calculate the conditional distributions

and

:

Knowing the marginal distributions, we can also calculate the expectations

of the individual variables:

[image: Image 1361]

[image: Image 1362]

[image: Image 1363]

[image: Image 1364]

[image: Image 1365]

[image: Image 1366]

[image: Image 1367]

[image: Image 1368]

[image: Image 1369]

[image: Image 1370]

[image: Image 1371]

[image: Image 1372]

[image: Image 1373]

[image: Image 1374]

[image: Image 1375]

[image: Image 1376]

Similarly,

. Now, we can calculate the variance of the two

variables as follows:

To compute the covariance of the two variables, we need

:

Hence, we can now calculate the covariance using the following:

Theorem: Two independent random variables are uncorrelated. X, Y are independent implies

. However, the converse is not true, that is, two

 uncorrelated variables need not be independent.

Example:

,

. Here

.

However, E[XY] = × [–4 × 16 – 3 × 9 – 1 × 1 + 1 × 1 + 3 × 9 + 4 × 16] = 0

and E[X] = 0.

Therefore, COV(X, Y) = 0, and hence, ρ XY = 0, but X, Y are not independent as Y = X 2.

Transformation of a random variable

Let X be a random variable and g(.) be a function; then, Y = g(X) is also a random variable. Here,

are random vectors, and hence, g

must be vector field. We can represent g as

such that:

Where,

for all i are continuous differentiable functions.

If

represents the joint density function of X, then the joint distribution function of Y is given by

. Here, J denotes the Jacobian

[image: Image 1377]

[image: Image 1378]

[image: Image 1379]

[image: Image 1380]

[image: Image 1381]

[image: Image 1382]

[image: Image 1383]

[image: Image 1384]

[image: Image 1385]

[image: Image 1386]

[image: Image 1387]

[image: Image 1388]

[image: Image 1389]

matrix of the random variables, and represents the determinant of the Jacobian, and hence, is a polynomial.

If

are real valued random variables, then the Jacobian simplifies to

simple derivate; we write:

Example: Let

, where X is a random variable distributed as

.

We have:

Hence, the density function of the random variable Y is given by

Example: Let

and

, that is,

; we have

.

The

distribution

of

Z

is

Multivariate distributions

Now, let’s look at a few important multivariate distributions that will be used

in defining many ML models in the later chapters. We will also look at the

marginal distributions for some of these multivariate distributions.

Multinomial distribution

[image: Image 1390]

[image: Image 1391]

[image: Image 1392]

[image: Image 1393]

[image: Image 1394]

[image: Image 1395]

[image: Image 1396]

[image: Image 1397]

[image: Image 1398]

[image: Image 1399]

[image: Image 1400]

[image: Image 1401]

[image: Image 1402]

[image: Image 1403]

[image: Image 1404]

[image: Image 1405]

[image: Image 1406]

[image: Image 1407]

[image: Image 1408]

Consider a sequence of n independent categorical trials with categorical probability vector

, where

=1. which are constants

for each trial. For example, in the ball and the urn experiment, an urn contains many balls of K different colors. The color of the ball drawn is categorically distributed, and the sequence of n such trials with replacement

will be multinomial distributed. In n trials, if represents the count of

category obtained, then we must have

. These different

categories can be obtained in

ways, and the probability of

obtaining this category distribution is

.

Let X be multinomially distributed M (n, p). Here, X is a vector: and we write

.

, where

Text data can be modelled as a multinomial distribution over the words.

Assuming that the text is a collection of words, given a set of text documents, we can define a vocabulary set of K distinct words occurring in

the entire document collection. Based on the number of times a word occurs

in each document, we can represent each document as a categorical variable.

Multivariate gaussian distribution

For a vector

, the multivariate Gaussian distribution takes the

following form:

where

is d-dimensional mean vector, is a d × d covariance matrix,

and is the determinant of Σ. This is denoted by the notation

.

We will encounter this form of Gaussian distribution in several topics across

the book. So, we must understand this in detail. First, we will start with the

geometric interpretation of this density function, which will give us an idea

of how Gaussian distributed vectors are placed relative to each other in

.

Also, we will prove that p(x) indeed represents a density, that is:

[image: Image 1409]

[image: Image 1410]

[image: Image 1411]

[image: Image 1412]

[image: Image 1413]

[image: Image 1414]

[image: Image 1415]

[image: Image 1416]

[image: Image 1417]

[image: Image 1418]

[image: Image 1419]

[image: Image 1420]

[image: Image 1421]

[image: Image 1422]

[image: Image 1423]

[image: Image 1424]

[image: Image 1425]

[image: Image 1426]

[image: Image 1427]

[image: Image 1428]

[image: Image 1429]

[image: Image 1430]

[image: Image 1431]

Representing

as a vector dx, we have a succinct

representation of the normalization equation, that is,

The power in exponent term

is a quadratic

form since , being the covariance matrix, can be taken to be symmetric; hence, its inverse is also symmetric. Here, ∆ is called the Mahalanobis distance from to x, and it reduces to the Euclidean distance when Σ is the identity matrix.

Since

represents a quadratic form, so

, represents the

surfaces of constant probability density because the rest of the terms in the

expression of

are independent of x. Let’s consider two-dimensional

Gaussian distributed random variable

diagonal covariance

matrix

and

. Diagonal covariance matrix means that

the variables are mutually uncorrelated but have different dispersion or spread. We have

The quadratic form simplifies to:

So,

represents an ellipse

with major axis of

length

along the

axis and minor axis along of length

along the

axis, as shown in Figure 4.19 (left). If is not a diagonal matrix, that is, the variables are correlated, then we will have a tilted ellipse, as shown in

 Figure 4.19 (middle and right).

Anywhere on the ellipse for a given c, we have the same fixed probability

density

. Refer to the following figure:

[image: Image 1432]

[image: Image 1433]

[image: Image 1434]

[image: Image 1435]

[image: Image 1436]

[image: Image 1437]

[image: Image 1438]

[image: Image 1439]

[image: Image 1440]

[image: Image 1441]

[image: Image 1442]

[image: Image 1443]

[image: Image 1444]

 Figure 4.19: Elliptical contours of constant density for various covariance matrices

In Figure 4.19, the point on ellipse along x-axis is and point along

y-axis is

. The Euclidian distance of these points from the origin are

and

, but we have the same probability density at these points given

by

. This is in contrary with Gaussian distribution of single variable,

which is symmetric around the center , and hence, points that are not equidistant from mean have a different probability density. Now, instead of

Euclidean distance, if we consider Mahalanobis distance, then both the

points

and

are at the same distance

from the

center

. The Mahalanobis distance measures the distance relative to

the center or centroid of the distribution.

Mahalanobis distance is commonly used to find multivariate anomalies or outliers, which indicates unusual combinations of two or more variables. For example, it’s quite common to find a 6 feet tall woman weighing more than

180 pounds, but it’s very rare to find a 4 feet tall woman who weighs that

much.

For single variable x, the Mahalanobis distance of x from the center is given by

. This is also known as the standard scaler for any single variable x.

Given a data sample, we can approximate

by the sample mean and

sample standard deviation, respectively. Hence, the Mahalanobis distance for

a single variable isthe number of standard deviations; a sample observation x is away from the sample mean. Standard scalar is very useful and is applied

to data attributes before model building.

 Note: The elliptical shape of this distribution is guaranteed if the

 covariance matrix Σ ≻ 0, positive definite; so, if the eigen values of are

[image: Image 1445]

[image: Image 1446]

[image: Image 1447]

[image: Image 1448]

[image: Image 1449]

[image: Image 1450]

[image: Image 1451]

[image: Image 1452]

[image: Image 1453]

[image: Image 1454]

[image: Image 1455]

[image: Image 1456]

[image: Image 1457]

[image: Image 1458]

[image: Image 1459]

 all positive, then the quadratic form Δ 2 is ganranteed to represent an

 ellipsoid.

Now, let’s see whether the multivariate normal density function is

normalized. As Σ is a real symmetric matrix, the eigen values of Σ are all real. Let

be the eigenvalues of Σ and

denote the corresponding

eigen vector. Then, we have the following eigen value equation:

Also, eigenvectors of real symmetric matrices are orthogonal. Hence:

(where Iij represents the (i,j)th element of identity matrix)

Also, is diagonalizable and can be written as

, where is a

diagonal matrix of d-dimension with the eigenvalues of Σ as the diagonal entries and U being an orthogonal matrix with column vectors . Now, we

can write matrix as a sum of d matrices whose only one diagonal entry is non-zero and equal to and all other entries of the matrix are zero. So, we

have:

Here, denotes the standard coordinate basis vectors or one hot vectors with

only ith non-zero entry as 1. Therefore, we can write matrix Σ as follows by multiplying the preceding equation by and

from both sides:

Similarly,

Substituting this in the Mahalanobis distance expression, we have:

[image: Image 1460]

[image: Image 1461]

[image: Image 1462]

[image: Image 1463]

[image: Image 1464]

[image: Image 1465]

[image: Image 1466]

[image: Image 1467]

[image: Image 1468]

[image: Image 1469]

Taking as the simple dot product

, we have:

We can interpret as coordinates of point x in a new coordinate system defined by the orthonormal vectors whose origin is] shifted to and axes

rotated to align along the orthogonal eigen vectors. Let vector

, then

. This is depicted in Figure 4.20

for 2-dimentional Gaussian distribution:

 Figure 4.20: Elliptical contour of constant density, and major and minor axis are defined by the eigenvalues

[image: Image 1470]

[image: Image 1471]

[image: Image 1472]

[image: Image 1473]

[image: Image 1474]

[image: Image 1475]

[image: Image 1476]

[image: Image 1477]

[image: Image 1478]

[image: Image 1479]

[image: Image 1480]

[image: Image 1481]

[image: Image 1482]

[image: Image 1483]

For the Gaussian distribution to be well defined, it is necessary that all the

eigenvalues

, otherwise the distribution cannot be properly

normalized. In that case, the axes length of the ellipsoid is

.

As we have done a coordinate change, we must compute the Jacobian matrix

Matrix U being orthonormal

and

.

Hence, matrix

Therefore,

Here:

Now, we are all set to check the normalization condition of multivariate Gaussian. We will reduce

to a product of d Gaussian density functions

of single variable with zero mean and variance .

This shows that multivariate normal density function is normalized. This proof gives us a detailed understanding of the structure of multivariate Gaussian, which will be used in various models later.

[image: Image 1484]

[image: Image 1485]

Information theory

Any information can be broadly thought of as the resolution of uncertainty.

Knowing that someone has passed an examination may not be very

surprising, but knowing that someone topped the examination is quite

surprising. So, information can be viewed as the ‘degree of surprise’.

Information is more valuable when it’s about an unlikely event. Thus,

information content is associated with the inverse of the probability of an event. Let’s denote the information about an event A by a function H(A). If A and B are two unrelated events, the information gain from observing both

should be the sum of the separate information gained from each of them. that

is, H(A,B) = H(A) + H(B). Also, as A, B are unrelated or independent, we have P(A,B) = P(A)P(B). . Hence, the log function is a good candidate to relate probability to information gain. Also, H must be inversely related to P;

hence, we define information gained from observing an event A as follows:

The negative sign here ensures that information content is always positive or

zero, the base of the logarithm is arbitrary, and the choice of base gives a unit of the information measure. If measured with base e with natural logarithm, the information is measured in nats. If measured with base 2, the information is measured in terms of binary bits.

Entropy

Let X be any discrete random variable following a probability distribution p(x). A sender wants to communicate values of X to a receiver. The average

information transmitted can be computed by taking the expectation of

information sent, that is:

The average amount of information H[X] needed to specify the state of a random variable X is called the entropy of the random variable. For a discrete distribution, computation of entropy is simple. Let X be a discrete r.v taking integer values 1 to 5 with probability p = {0.1,0.6,0.05,0.05,0.2}.

[image: Image 1486]

[image: Image 1487]

[image: Image 1488]

[image: Image 1489]

[image: Image 1490]

[image: Image 1491]

[image: Image 1492]

Then, taking logarithm with base 2, we get the entropy in bits as H = –(.1 ×

log2.1 + .6 × log2.6 + 2 × .05 × log2.05 + .1 × log2.1 + .2 × log2.2) = 1.67.

In Figure 4.20 the leftmost distribution is sharply peaked at x=2, and the entropy of this distribution is the lowest as compared to the middle and right

distributions, which are spread evenly across more values. The rightmost distribution is uniform with maximum entropy. We can prove that the

maximum entropy configuration is achieved by uniform distribution for a discrete r.v., taking M possible discrete values with probabilities p = {p 1 , p 2 ,

 …,pM}, where

.

We can think of H as a scalar field

, (introduced in Chapter 3,

 Vector Calculus) which transforms and M-tuple of probabilities p to the

corresponding entropy and maximize H using Lagrange multiplier to enforce

the probability normalization constraint

, as follows:

Refer to the following figure:

 Figure 4.21: Elliptical contour of constant

[image: Image 1493]

[image: Image 1494]

[image: Image 1495]

[image: Image 1496]

[image: Image 1497]

[image: Image 1498]

[image: Image 1499]

[image: Image 1500]

[image: Image 1501]

[image: Image 1502]

[image: Image 1503]

[image: Image 1504]

[image: Image 1505]

[image: Image 1506]

This shows that the maximum entropy configuration for discrete distribution is the uniform distribution.

Similarly, entropy for continuous distributions can be defined as follows:

This is called differential entropy or continuous entropy. Differential entropy can be negative, unlike discrete entropy.

Now, let’s find the maximum entropy configuration for continuous

distributions. For a continuous distribution with given mean , the maximum

entropy

configuration

is

attained

by

exponential

distribution

. If the second moment or variance

of the

distribution is also specified, then the maximum entropy configuration is normal distribution

. These can be also proved using the

same Lagrange multiplier trick.

Entropy can be defined for joint distribution of variables X, Y in the same

way using the joint probability distribution

:

Using product rule of probability,

. So, we can

write:

Or,

Since,

, we can write

as:

Here,

is called the conditional entropy, that is, the remaining entropy of Y, given that X has taken a specific value x.

[image: Image 1507]

[image: Image 1508]

[image: Image 1509]

[image: Image 1510]

[image: Image 1511]

[image: Image 1512]

[image: Image 1513]

[image: Image 1514]

[image: Image 1515]

[image: Image 1516]

[image: Image 1517]

[image: Image 1518]

[image: Image 1519]

[image: Image 1520]

[image: Image 1521]

Relative entropy or KL divergence

Suppose a sender wants to communicate values of a random variable X to a

receiver. X follows some unknown distribution p(x) that we have

approximated with q(x). If q(x) is used to construct a coding scheme for transmitting values of x to a receiver, the average additional amount of information (in nats) required to encode X is given by the difference: This is denoted by the notation

and is called relative entropy or

 Kullback-Leibler divergence, or KL divergence. This also gives a measure of difference between two probability distributions p(x) and q(x) over the same

random variable X. However, it’s not a symmetric measure, that is,

. So, we cannot call it a distance function.

KL divergence is always positive,

, where equality holds

if and only if p(x) = q(x). The proof of this follows from the convexity of -

log function. We know that for a convex function f, given two points a, b, we

have the following for

 Jenson’s inequality generalizes this to n points: Given a convex function f and n points

in its domain:

Let p(x) represent any discrete distribution of discrete random variable X; then,

. Replacing by

in the Jenson’s inequality, we

have:

For continuous random variables also, the previous inequality holds, and we

can write:

[image: Image 1522]

[image: Image 1523]

[image: Image 1524]

[image: Image 1525]

[image: Image 1526]

[image: Image 1527]

[image: Image 1528]

[image: Image 1529]

[image: Image 1530]

[image: Image 1531]

[image: Image 1532]

[image: Image 1533]

[image: Image 1534]

[image: Image 1535]

[image: Image 1536]

[image: Image 1537]

Now, -log(x) is a convex function. So, we have:

Or,

Therefore,

, since

We will be using this property of KL divergence in many theories later, like

for variational inference in Chapter 12: Generative Models. KL divergence is not symmetric, that is,

. Jensen-Shannon (JS)

divergence is a symmetrized and smoothed version of the KL divergence defined by:

This is used for measuring the similarity between two probability

distributions.

Mutual information

Let’s consider the joint distribution of two random variables X, Y denoted

by p (x, y). If X, Y are independent we can write

. If

the variables are not independent, then we can measure how close they are to

independent variables by considering KL-divergence between

and

. This is called mutual information between the variables X and Y

denoted by

Since KL divergence is non-negative, we see that

where

equality holds if and only if, x and y are independent that is,

are independent. Also, its trivial to see that

. that is, mutual information is symmetric.

[image: Image 1538]

[image: Image 1539]

[image: Image 1540]

[image: Image 1541]

[image: Image 1542]

[image: Image 1543]

We can re-write mutual information in terms of conditional entropy as

follows:

This relation can be derived using the definition of KL-divergence and product rule of probability. Following are some properties of

which

follows from the conditional entropy-based definition above.

6.

7.

are independent

8.

mutual information is symmetric

Using these concepts of entropy and information gain, we can come up with

a simple algorithm for classification and regression called decision trees.

Decision tree

A decision tree is a simple but powerful supervised machine learning

algorithm used for solving both classifications are regression problems.

Decision tree training algorithm recursively partitions the data set into smaller and smaller subsets using certain criteria based on information gain

or mutual information. Let’s illustrate this with a simple example of how a

fruit can be categorized as orange or lemon given height and width of a fruit

measured, as shown in Figure 4.22 (rightmost):

 Figure 4.22: decision tree example

We have some sample data collected for a set of fruits, that is, their height

and widths as plotted in Figure 4.22 (leftmost). The tree in the middle shows

a decision tree where every rectangular node is a decision node. The first decision node is at the root where the entire data set is present. The check

whether the fruit width > 7 cm or not splits the data set vertically into two parts. Based on the height of the fruit, the two vertical splits of the data are split horizontally at height = 6 cm for the left vertical split and at height =

 10 cm for the right vertical split. Finally, we get four splits of the data, and only one class of fruit is predominant in each of the four splits. This tree representation of the data set is called decision tree. The final nodes are called leaf nodes of the tree. Leaf node represents a class. The class label of

the majority data points in the leaf node is the class represented by leaf node.

Now, given the height and width of a new fruit outside this data set, we can

predict whether it’s orange or lemon using the path it follows from root to

leaf. The majority class of fruit in the leaf node will be the predicted label

for the new fruit. For example, in the left-bottom partition of the data set shown in Figure 4.22, there are only two instances of lemon, and rest are all oranges. So, if a new fruit falls in this data partition, as its width ≤ 8 and height ≤ 7, we can classify it as orange as most of the instances falling here from training data are oranges, and only two are lemons.

The decision tree shown earlier can be built by visual inspection of the data

set. How do we generalize this for larger datasets? There are two primary questions we need to answer:

1. Attribute selection: Which attribute or feature shall we split the

dataset?

2. Where to split for a given attribute?

For the classification problem, with categorical target variable, we can calculate how much “information” an attribute gives us about the class. Let’s

represent the target by the random variable and the attributes fruit height, and width as the random variable . We can calculate the information content

or entropy of a set containing oranges and lemons.

 H[Y]= –p(y = orange) log(p(y = orange)) – p(y = lemon) log(p(y = lemon))

 Figure 4.23 show the entropy calculation for different proportions of fruits:

[image: Image 1544]

 Figure 4.23: High purity implies lower entropy

If we take the entire data set of fruits, we will have an impure node as it has

all classes in possibly equal proportions. Next, we need to measure the reduction of this impurity in our target Y, given additional information or attributes X. We can use mutual information or information gain for this: I[Y,X] = H[Y] – H[Y|X]. We have seen how to calculate H[Y]. Now, let’s compute H[Y|X] for each attribute height and width. Here, height and width are continuous variables, and we must find a suitable point x to split the data set into two parts height ≤ x and height > x. For discrete attribute, we can evaluate entropy for every discrete value of X. Algorithms like Iterative Dichotomiser 3 (ID3) and its improvements. like C4.5, CART are used to construct decision trees.

We will take a sample data set of 20 observations of lemons and 20 oranges

and compute the information gain for few split values, as shown in Figure

 4.24:

[image: Image 1545]

[image: Image 1546]

[image: Image 1547]

[image: Image 1548]

[image: Image 1549]

[image: Image 1550]

 Figure 4.24: Entropy computations for building decision tree

We have shown calculation for only three split values, but it calculated for

all distinct values of continuous attributes.

Entropy of target, given split height of, is calculated using weighted average:

The entire data set has 9 lemons and 11 oranges. Hence, the entropy of whole data set:

The information gain for the split point height = 6.31158 is given by:

Among the split points considered, the maximum information gain is obtained for a split point of width = 8.2. So, the best attribute to choose is

width, and the split point for this attribute is 8.2. So, width attribute becomes out first attribute to split the data set into two parts and create two nodes in the tree.

We can now use the Python sklearn DecisionTreeClassifier module to build

decision tree and visualize the tree using graphviz, as shown in Figure 4.24.

Here’s the sample code:

1. “””Building synthetic dataset”””

2. from np.random import multivariate_normal

3. np.random.seed(62)

4. lemon1 = multivariate_normal(mean=(7,10), cov=[[1,.5],

[.5,1]],size=20)

5. lemon2 = multivariate_normal(mean=(6,8), cov=[[1,.5],

[.5,1]],size=20)

6.

7. orange1 = multivariate_normal(mean=(10, 8),cov=[[1,0.5],

[0.5,1]],size=20)

8. orange2=multivariate_normal(mean=(4.5, 4.5),cov=[[1,0.5],

[0.5,1]], size=20)

9. orange = np.concatenate([orange1, orange2])

10. lemon = np.concatenate([lemon1, lemon2])

11.

12. df = pd.DataFrame(np.concatenate([lemon, orange]))

13. df.columns = [‘height’, ‘width’]

14. df[“fruit”] = [‘lemon’]*len(lemon)+[‘orange’]*len(orange)

15.

16. “””Training DT Classifier”””

17. from sklearn.tree import DecisionTreeClassifier

18. from sklearn.tree import export_graphviz

19. from sklearn.externals.six import StringIO

20. from IPython.display import Image

21. import pydotplus

22. clf = DecisionTreeClassifier(criterion = ‘entropy’,

min_samples_leaf=10)

23. clf.fit(df[[“height”,”width”]], df[“fruit”])

24.

[image: Image 1551]

25. dot_data = StringIO()

26. export_graphviz(clf, out_file=dot_data,

27. filled=True, rounded=True,

28. feature_names = df.columns.values[:-1],

29. class_names=[‘lemon’,’orange’])

30. graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

31. Image(graph.create_png())

 Figure 4.24 shows the decision tree plot output from previous code. Here, the tree is built on the entire dataset. However, we should follow all the standard model training steps, like splitting training data into train-test-validation, and then fine-tune model hyperparameters using validation test and repost classification accuracy using train step. Refer to the following figure:

 Figure 4.25: Visualizing a decision tree

Decision trees can be used for both regression and classification tasks. They

provide very fast inferencing and are lightweight as compared to many other

ML models.

Decision trees are prone to overfitting, and it happens if the tree is allowed

grow to without any restriction to very high depth. It tries to fit to every

[image: Image 1552]

[image: Image 1553]

[image: Image 1554]

single training data point. We need to prune the tree using hyperparameters

like the following:

max_depth: Maximum depth of the tree

min_impurity_decrease: Node will be split if this split induces a decrease of the impurity greater than or equal to given value

min_samples_leaf: Minimum number of samples required to be at a

leaf node

Here, we have used min_samples_leaf as the only metric for pruning the tree.

Conclusion

In this chapter, we discussed descriptive statistics and fundamentals of probability theory. We covered measures of central tendencies, dispersion, and correlation for univariate and bivariate data analysis. We also discussed

random variables, distributions, and expected values of functions of random

variable. Additionally, we introduced the concept of entropy and discussed

its application to entropy-based decision tree construction. These topics will

prove to be a rigid foundation for the advanced topics that we will be learning in this book.

In the next chapter, we will begin with inferential statistics. We will see how

to use probability concepts to formulate machine learning problems like classification, regression, and clustering as a probability problem. Then, we

will cover how inferential statistics, hypothesis testing and parameter

estimation techniques, can help us solve these problems.

Points to remember

Correlation measures the degree of linear relation between two random

variables. Random variables X and Y are independent

, but

 X, Y are independent.

Probability of a random variable taking value a,

,

the probability density at a, if X is continuous. Probability density at a point can be greater than one. The area under density curve for

univariate density is 1.

[image: Image 1555]

[image: Image 1556]

[image: Image 1557]

[image: Image 1558]

If X is continuous random variable,

.

The normal distribution is generally considered to be a decent

approximation of the binomial distribution B(n, p) when

.

If are independent random variables, then their joint density can be

written

as

the

product

of

the

marginal

densities:

.

Mathematical expectation

is a linear operator.

Further reading

The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. New York: Springer. Hastie, Trevor, Robert, Tibshirani and

J. H. Friedman

Fundamentals of mathematical statistics, S C Gupta, V K Kapoor

Publisher: New Delhi: Sultan Chand & Sons

Christopher Bishop, Pattern Recognition and Machine Learning,

Chapter 1 and 2

Pattern Classification by David G. Stork, Peter E. Hart, and Richard O.

Duda

Decision

Tree:

https://saiconference.com/Downloads/SpecialIssueNo10/Paper_3-

A_comparative_study_of_decision_tree_ID3_and_C4.5.pdf

https://www.math.arizona.edu/~rsims/ma464/standardnormaltable

.pdf

William Feller: An Introduction to Probability Theory and Its

Applications

CHAPTER 5

Statistical Inference and Applications

In statistics, population is the entire set of items or individuals that we want to study and draw some conclusions about. The number of individuals in a population is generally very large or infinite, so a study is often restricted to few samples drawn from it. Statistical Inference is the method of making propositions about a population from sample data drawn from the population.

In this process, some assumptions are made about the population, and then a

statistical model is built based on those assumptions. Making statistical inferences about the parameters of a probability distribution, assumed by the population, is called parameter estimation. In Machine Learning (ML), the training data can be viewed as a sample from some unknown population. We

make certain assumptions about the population and build a statistical model that is capable of making correct inferences on both the training data as well as unseen data, that is, on newer samples that are not part of training data. The

process of building the model is termed as training or learning, and using the model for prediction is referred to as inference.

Structure

In this chapter, we will cover the following topics:

Large Sample Theory

Statistical Inference and Parameter estimation

A good estimator and how to find it

Formulating ML problems in probabilistic terms

Linear models: Linear and Curvilinear regression

Generalized Linear models: Logistic, Poisson Regression

Interpreting linear models

Objectives

[image: Image 1559]

After going through this chapter, you will be able to connect to the statistical foundations on which the well-known ML models stand. There are several probabilistic assumptions behind each model, and the error functions that we

optimize to train a model is also derived from the probability theory. Even as

we move on to the next chapter on neural networks, we will see how the concepts learned in this chapter can be applied and extended for deep neural

nets on which most of the AI relies today. The interpretation of the learned models, for example, the coefficients of a linear regression model, is based on

statistical hypothesis testing.

Large Sample Theory

In statistics, a population is the exhaustive set of events associated with a given experiment. In the Iris example, the set of all possible measurements of the flower categories is the entire population. The dataset of 150 observations that we have is a finite subset or a sample from the entire population of flowers.

Here, the entire population is infinite, and it’s not possible to analyze the entire population of data to derive conclusions. Hence, we need to work with finite

samples of data. A good sample should ideally represent all the characteristics

of the population. Then, we can accurately calculate the population

characteristics by only analyzing the sample characteristics. There are many techniques for proper sampling from a population. The two popularly used in

ML are random sampling and stratified sampling:

Random sampling: Samples are chosen at random such that each unit in

the population has an equal chance of being selected. In case of a finite

population of size N, if we decide to choose samples of size k, we can take any subset of k data points from the population. There are

total possible combinations of k data points. Here, we are assuming sampling with replacement, that is, an event or observation is selected at random from the population. Before drawing the second sample, the first

sample is returned to the population. This makes the probability of

selection of each item equally likely. For random sampling, each of these

M samples have equal probability of being selected.

Stratified sampling: Here, the population is divided into small

homogeneous groups called strata, and then random sampling is applied

on each of the stratum. This technique accurately reflects the population

being studied, especially when the population is diverse. For example, a

[image: Image 1560]

[image: Image 1561]

[image: Image 1562]

[image: Image 1563]

[image: Image 1564]

[image: Image 1565]

[image: Image 1566]

[image: Image 1567]

[image: Image 1568]

[image: Image 1569]

[image: Image 1570]

[image: Image 1571]

survey is being conducted for an education institute that offers science, mathematics, and humanities courses. The number of humanities and

mathematics students in the college are almost double the number of

science students. A random sample of size 10 will most likely contain 4

students from mathematics, 4 students from humanities, and 2 from

science. However, the survey should give equal importance to all streams

and must choose an equal number of students from each stream. Here,

stratified sampling can be used to randomly choose equal number of

students from each stream who can participate in the survey.

Sample statistics

The population characteristics quantified the population constants like mean

and standard deviation , and the statistical constants of the population are called parameters of the population and the corresponding measures computed from samples of size k, like sample mean

and sample s.d.

are called statistic. A statistic, denoted by

, is a function of the sample values. In case of a finite

population of size N, for each sample of size k, the statistic t can be evaluated.

Let’s denote a sample of size k by

, M being the total number

of samples. Evaluating the statistic t for each sample

, we have a new set of

 M values

. Thus, the statistic t defines a random variable

 T, and we call its distribution the sampling distribution of the statistic.

We can now compute the expectation of T:

The Standard Deviation (SD) of the sampling distribution of is

called the Standard Error (S.E). The S.E plays very important role in large sample theory. If T is any statistic, then for large samples:

[image: Image 1572]

[image: Image 1573]

[image: Image 1574]

[image: Image 1575]

[image: Image 1576]

[image: Image 1577]

The standard error for a few test statistics is listed here. Here, is the population variance, and k is the sample size. The SE can be reduced by increasing the sample size. Refer to the following table:

Statistic

Standard Error

Sample Mean ()

Sample S.D. (s)

Sample Median

 Table 5.1: Standard Error

 Note: The SD of a sample measures the amount of variability or dispersion

 of the sample relative to its mean, while the SE of the sample mean statistic

 measures how far the sample mean (average) of the data is likely to be

 from the true population mean. The SE is always smaller than the SD.

For defining sampling distributions, we need to take multiple samples and estimate the statistics for each of the samples. In many practical scenarios, we may not always have large amounts of data to take several samples.

 Tip: If the sample size is very small, the normality assumption does not

 hold, and we have to find the exact sampling distribution, followed by the

 statistic t. In this case, the Student’s t-distribution is used in place of the

 normal distribution if we have small samples. t-distribution has heavier

 tails, that is, it can produce values that fall far from mean. For a large

 sample size, t-distribution looks like the normal distribution. The parameter

 of t-distribution is dependent on the sample size and is called the degree of

 freedom. A small sample of n observations from a normal distribution is

[image: Image 1578]

[image: Image 1579]

[image: Image 1580]

[image: Image 1581]

[image: Image 1582]

[image: Image 1583]

[image: Image 1584]

[image: Image 1585]

[image: Image 1586]

[image: Image 1587]

 said to be t-distributed with ν = n – 1 degrees of freedom. Refer to [4] in the

 Further Reading section for more on t-distribution.

Now, let’s look at another aspect of sampling. Suppose the probability distribution of a population is known, that is, the parameters of the distribution are known; can we create some synthetic sample data points from this

population?

Sampling from known distributions

Given a distribution with known population parameters, we can generate

samples from this distribution. For example, given a categorical distribution with categories

having probability

, we want to generate a sample from this distribution. A sample of size one most likely will be category

as it’s of the highest probability. A sample of

size two will possibly be

or

or

.

The CDF of the categorical distribution is

. A pseudo-

random number generator will give a random number

from uniform

distribution. We can partition this interval into consecutive intervals of lengths given by CDF, that is,

. Now, if r

belongs to kth partition, we can output kth category as the sample. As the length of the 2nd partition is the highest, the chances of r falling there is more, and we will generate more samples from there. Figure 5.1 shows histograms of three different random sample, each of size 20, from this categorical distribution:

 Figure 5.1: Samples from known distribution (Categorical)

For any general distribution the algorithm, to do this is called inverse transform sampling. Here, we first sample from a uniform distribution using a pseudo random number generator, and then using the CDF of target

distribution, we can find the value that matches the same quantile in target

[image: Image 1588]

[image: Image 1589]

[image: Image 1590]

[image: Image 1591]

[image: Image 1592]

[image: Image 1593]

[image: Image 1594]

[image: Image 1595]

[image: Image 1596]

[image: Image 1597]

[image: Image 1598]

[image: Image 1599]

[image: Image 1600]

distribution. This is implemented in the numpy.random package for most of the known distributions.

Hypothesis testing

In statistics, the assumptions made about a population characteristic based on

samples from the population is called hypotheses. An example of a hypothesis is: “sample mean is the same as the population mean”. So, if we know the population to be normally distributed with some unknown parameters

,

then the hypothesis is

. We need a method to check whether a

hypothesis is statistically significant and valid for the entire population or just for the sample chosen.

Let’s consider an example of an electric bulbs manufacturing company that has

invented a new manufacturing process. This process is expected to produce bulbs with higher life span. An expert team of scientists reviewed the process

and concluded that this new process may be as good as the old one. So, the expert’s hypothesis is that the mean life span of new process

is equal to

the average old life span

. In fact, a few scientists from the expert

committee believed the new process to be worse than the previous one, based

on theoretical analysis. For the company to take a decision about the adaptation of the new process, a statistical hypothesis testing needs to be performed. For the old process, the population mean is known and for the new process, we have observed the lifespan of good enough sample; we take

the average as the sample mean.

Following are the steps for testing of hypothesis:

1. Define null hypothesis (H0): An assumption that is tested for possible rejection; for example:

.

2. Define alternate hypothesis (H1): Any hypothesis complementary to null hypothesis is called an alternate hypothesis. Example

(called one-tailed test) or

(called two-tailed test).

3. Choose the level of significance (): We may commit two types of error in hypothesis testing:

Type I error: Rejection of when it is true

Type II error: Accepting when it is wrong, that is,

[image: Image 1601]

[image: Image 1602]

[image: Image 1603]

[image: Image 1604]

[image: Image 1605]

[image: Image 1606]

[image: Image 1607]

[image: Image 1608]

[image: Image 1609]

[image: Image 1610]

[image: Image 1611]

[image: Image 1612]

[image: Image 1613]

[image: Image 1614]

[image: Image 1615]

[image: Image 1616]

[image: Image 1617]

Let

and

The probability of type I error is also known as the level of significance.

This must be chosen in advance based on the amount of risk we are

allowed to take. Typical values of are 1%, 5% that is, 0.01, 0.05.

4. Choose test statistic: Based on the hypothesis, a corresponding statistic (T) must be chosen. For a large sample:

5.

Given a level of significance , we can define a test of significance.

A critical value of the statistic Z at significance level is defined as for two-tailed test. Here,

, implies

. This is depicted in the shaded

regions in Figure 5.2. So, we have

By symmetry,

. For testing alternate hypothesis with

one tail, we will have only one shaded region, either left or right, based

on the type of test, as shown in Figure 5.2; the shaded region is called critical region or rejection region:

 Figure 5.2: Critical region for hypothesis testing

6. Conclusion: The computed value of Z is compared with the significance

value at a given level of significance . If the value of Z falls in the

defined critical region, the null hypothesis is rejected with confidence

. Choosing

, we can say that the null hypothesis (that is,

the claim of expert committee here) is false and can be rejected with 99%

confidence.

Now, let’s look at a few examples on hypothesis testing where we follow the

mentioned steps to validate the statistical hypothesis.

Example: Testing whether a die is fair or unbiased (that is, all six face values are equally likely to occur). A die is thrown 9000 times, and the number of

[image: Image 1618]

[image: Image 1619]

[image: Image 1620]

[image: Image 1621]

[image: Image 1622]

[image: Image 1623]

[image: Image 1624]

[image: Image 1625]

[image: Image 1626]

[image: Image 1627]

[image: Image 1628]

[image: Image 1629]

[image: Image 1630]

[image: Image 1631]

[image: Image 1632]

[image: Image 1633]

[image: Image 1634]

[image: Image 1635]

[image: Image 1636]

[image: Image 1637]

[image: Image 1638]

[image: Image 1639]

times values 5 or 6 is observed is 3600. Is the die unbiased?

For an unbiased die, the probability of each face is

. We can take the

event of getting 5 or 6 as success and denote it by S. We have

. Getting any value other than 5 or 6 is considered a failure.

So, we have a binomial distributed variable with

trials, the

probability of success

, and the number of successes

observed is 3600. Here, the null hypothesis is

that is

, and the alternate hypothesis is

. Let random

variable X denote the count of success. For binomial distribution, we have mean as and variance as

:

Hence,

for large n

Therefore,

Since

choosing

the

significance

level

, and we know this by the empirical rule

for normal distribution. Hence,

falls inside the critical region or

rejection region. So, we can reject the null hypothesis with confidence of 99%.

Hence, the die is not a fair die.

Statistical inference

Let us consider a random variable X with probability density

. Here,

represents the set of parameters of the distribution or more formally, represents a parameter vector. For example, in case of normal distribution,

. The set of all possible values of the parameters is called the

 parameter space. Thus, the parameter space defines a family of probability distributions:

Now, let’s consider a random sample

of size n from a

population, with probability density function

. Can we estimate the

parameter vector as a function of sample values, that is, can we define a statistic t that can approximate a population parameter? Let vector

, then we want to find sample statistic:

[image: Image 1640]

[image: Image 1641]

[image: Image 1642]

[image: Image 1643]

[image: Image 1644]

[image: Image 1645]

[image: Image 1646]

[image: Image 1647]

[image: Image 1648]

[image: Image 1649]

[image: Image 1650]

[image: Image 1651]

[image: Image 1652]

[image: Image 1653]

[image: Image 1654]

[image: Image 1655]

[image: Image 1656]

[image: Image 1657]

[image: Image 1658]

[image: Image 1659]

[image: Image 1660]

[image: Image 1661]

[image: Image 1662]

[image: Image 1663]

[image: Image 1664]

[image: Image 1665]

[image: Image 1666]

[image: Image 1667]

[image: Image 1668]

[image: Image 1669]

[image: Image 1670]

[image: Image 1671]

[image: Image 1672]

[image: Image 1673]

[image: Image 1674]

such that the distribution of is concentrated around the true value of the population parameter . Here, depicts the estimator function for statistic .

In this case, the statistic is called an estimator of the population parameter

.

Estimator properties

Let’s now discuss what properties of a statistic makes it a good estimator:

Unbiasedness: An estimator is called an unbiased estimator of the population parameter

if

. Suppose, for an unknown

population with probability distribution

, we are given the

expectations:

and

. The sample point ’s can

be viewed as a set of n independent and identically distributed (i.i.d) random variables

, assuming values

and each

. Then, each is has mean

and

.

For

the

statistic

sample

mean

,

we

have

.

Hence, the sample mean is an unbiased estimate of the population mean.

The sample expectation of variance is as follows:

Reference to the proof is given in the Further reading section [3]. Hence, sample variance is not an unbiased estimate of population variance.

Consistency: For any estimator , we can define a sequence of variables

as follows:

. Here,

is dependent

on the number n of sample values taken. We call estimator a consistent estimator of parameter value if this sequence of values

converge in

probability to the true parameter value. We denote this as

,

where the operator indicates convergence in probability, that is, for any

arbitrarily small

:

[image: Image 1675]

[image: Image 1676]

[image: Image 1677]

[image: Image 1678]

[image: Image 1679]

[image: Image 1680]

[image: Image 1681]

[image: Image 1682]

[image: Image 1683]

Clearly, the sample mean is a consistent estimator of the population mean.

Efficiency: There may exist multiple unbiased and consistent estimators

for a population parameter. So, there is a need for some further criterion

to choose the best estimator. The one with lower variance is called an efficient estimator because it will tend to have values that are concentrated more closely around the correct value of the parameter, and

hence, our estimate will be closer to the actual value. For normal

distribution, because of the symmetry of the bell curve, the sample

median is also an unbiased estimate of the population mean . Now,

which one should you choose as a better estimator? Here, we can

compare the variance or square of standard error of both the estimators.

Now,

and it can be proved that for sample median Md,

. Hence, the sample mean is a more

efficient estimator of .

Sufficiency: An estimator is called sufficient if it contains all information in the sample regarding the population parameter being estimated. This

property of an estimator is out of scope of further discussion in this book.

Minimum Variance Unbiased (M.V.U) estimators

If a statistic T is unbiased estimator of a population parameter and T has the smallest variance among the class of all unbiased estimates, then T is called the minimum variance unbiased estimator of . Formally:

The MVU is unique. To check whether an unbiased estimator is MVU,

Cramer-Rao inequality is used. This inequality provides a lower bound for the variance of an unbiased estimator of a parameter. The quantity

is called the bias of the estimator in general. For unbiased estimator, bias is zero.

Likelihood function

[image: Image 1684]

[image: Image 1685]

[image: Image 1686]

[image: Image 1687]

[image: Image 1688]

[image: Image 1689]

[image: Image 1690]

[image: Image 1691]

[image: Image 1692]

[image: Image 1693]

[image: Image 1694]

[image: Image 1695]

[image: Image 1696]

[image: Image 1697]

[image: Image 1698]

[image: Image 1699]

[image: Image 1700]

[image: Image 1701]

Let X be a random variable following a probability distribution

. A

given random sample

from this probability distribution can be

viewed as a set of n i.i.d random variables

assuming values

and each

. We define the joint density function of these

random variables as the likelihood function L:

The joint density function is expressed as a product because the random variables are independent. Clearly, likelihood function is always positive,

. Applying logarithm to both sides converts the product to a sum of logs,

that is,

. This is called the log likelihood.

Cramer-Rao inequality

If T is an unbiased estimate of a function of the population parameter

,

then:

So, this provides a lower bound to the variance of an unbiased estimator. Here,

the quantity in the denominator is called the Fisher information on the parameter θ contained in the sample and is denoted by

. The higher the

Fisher information value, the more information there is in the sample about the

parameter.

If we want to estimate parameter , the function can be taken as the identity

function

, and hence,

. So, Cramer-Rao inequality takes

the following form:

In other words, the precision (that is, inverse of variance) to which we can estimate θ is limited by the Fisher information.

[image: Image 1702]

[image: Image 1703]

[image: Image 1704]

[image: Image 1705]

[image: Image 1706]

[image: Image 1707]

[image: Image 1708]

[image: Image 1709]

[image: Image 1710]

[image: Image 1711]

[image: Image 1712]

[image: Image 1713]

[image: Image 1714]

[image: Image 1715]

[image: Image 1716]

[image: Image 1717]

[image: Image 1718]

[image: Image 1719]

[image: Image 1720]

We will prove the Cramer-Rao inequality for univariate distribution with a single parameter under certain regularity assumptions. Understanding this proof is important as it shows us a way to find a MVU estimator.

Regularity assumptions:

Parameter space is open interval in R

The partial derivative

exists

exists and is positive for all

Differentiation under the integral sign is possible for the p.d.f function Proof of Cramer-Rao inequality: Since L is a joint p.d.f of sample where

,

differentiating w.r.t and using regularity conditions, we get:

Let be an unbiased estimator of

. Therefore,

.

Differentiating both sides w.r.t and using regularity condition to differentiate the integral:

Here, T and

are two real random variables that take a fixed real value

for any given sample. The covariance of any two r.v. X, Y is

. So, here:

[image: Image 1721]

[image: Image 1722]

[image: Image 1723]

[image: Image 1724]

[image: Image 1725]

[image: Image 1726]

[image: Image 1727]

[image: Image 1728]

[image: Image 1729]

[image: Image 1730]

[image: Image 1731]

[image: Image 1732]

[image: Image 1733]

The correlation

. Using Cauchy-Swartz inequality for

expectations, we have shown that

, if and only if X and Y are

linearly dependent.

Also,

, by definition of .

Therefore,

. Here:

Substituting this variance in above inequality are rearranging, we arrive at the Cramer-Rao inequality:

Now, we will see when this minimum variance bound is attained by an

unbiased estimator. Rearranging the previous equation, we have

Here:

This is in the form of Cauchy-Swartz inequality for expectation

and there we have seen that this reduces to equality

if and only if random variable X is linearly dependent on Y. Hence, the equality

[image: Image 1734]

[image: Image 1735]

[image: Image 1736]

[image: Image 1737]

[image: Image 1738]

[image: Image 1739]

[image: Image 1740]

[image: Image 1741]

[image: Image 1742]

[image: Image 1743]

[image: Image 1744]

[image: Image 1745]

[image: Image 1746]

[image: Image 1747]

[image: Image 1748]

[image: Image 1749]

[image: Image 1750]

[image: Image 1751]

[image: Image 1752]

[image: Image 1753]

[image: Image 1754]

will happen if and only if

is linearly dependent on

,

that is:

is a constant

Here, may depend on but is independent of the samples. In this case, the

unbiased estimator T is called a Minimum Variance Bound (MVB) estimator.

Example: Suppose

is a random sample from a normal distribution

with known zero mean and unknown scale parameter

. An MVB for

is

As,

, statistic T is an unbiased estimate of

. Now,

let’s see if T can attain the Cramer-Rao lower bound.

and likelihood of the sample is as follows:

Thus,

is linearly dependent on

because

is independent of

the samples. Hence, t is an MVB for . Similarly, we can prove that the MVB

estimator mean of normal distribution is sample mean , given that the population scale parameter is known. We suggest that you try this out.

So far, we have discussed how to check the quality of the estimator and choose

the best, but the estimator, being any arbitrary function of the samples, can take any functional form. How can you define an estimator? Is it based on intuition,

or there is a procedure to find a possible estimator? This is answered in the following section.

[image: Image 1755]

[image: Image 1756]

[image: Image 1757]

[image: Image 1758]

[image: Image 1759]

[image: Image 1760]

[image: Image 1761]

[image: Image 1762]

[image: Image 1763]

[image: Image 1764]

[image: Image 1765]

[image: Image 1766]

[image: Image 1767]

[image: Image 1768]

[image: Image 1769]

[image: Image 1770]

[image: Image 1771]

[image: Image 1772]

[image: Image 1773]

Method of Maximum Likelihood Estimation (MLE)

The principle of maximum likelihood consists of finding a value of unknown

parameter

such that

, for all possible values of

. This defines an optimization problem of optimizing a scalar field

, where denotes the parameter space.

Since

, and is a non-decreasing function of L, L and logL attain their optimum values at the same point. Hence, we can maximize logL instead of maximizing L. Using differential calculus, we can find the optimal value by solving

. To make sure this equation indeed gives us the

maximum value of likelihood, we must do the second derivative test

, or the Hessian matrix of

must be negative definite for

vector valued parameter.

Example: Let’s find the MLE estimate of the parameter for Poisson distribution.

Suppose

is a sample from the population and the likelihood function

is given as follows:

Also,

, since all samples from Poisson

distribution are positive, making always positive. The variance of the estimator can be obtained by the Cramer-Rao minimum variance bound:

[image: Image 1774]

[image: Image 1775]

[image: Image 1776]

[image: Image 1777]

[image: Image 1778]

[image: Image 1779]

[image: Image 1780]

[image: Image 1781]

[image: Image 1782]

[image: Image 1783]

[image: Image 1784]

[image: Image 1785]

[image: Image 1786]

[image: Image 1787]

[image: Image 1788]

[image: Image 1789]

[image: Image 1790]

[image: Image 1791]

[image: Image 1792]

[image: Image 1793]

[image: Image 1794]

[image: Image 1795]

[image: Image 1796]

Also,

is linearly dependent on

, and

hence, the equality in Cramer-Rao inequality should hold, that is,

.

 Note: A more general result as follows: If a given population with density

 and MVB estimator T exists, the solution to likelihood equation

 is T.

Also, MLE estimates are consistent and efficient. We will just state the following two theorems regarding that:

Theorem (Cramer-Rao): Given a sample of size n, as

 the likelihood

 equation

 has a solution that converges in probability to the true

 value of the parameter .

This theorem states that the MLE estimates are consistent.

Theorem: If MLE estimates exist, then they are the most efficient in the class of estimators.

Example: MLE estimates for parameters

of univariate normal

distribution are given as sample

from the univariate normal

distribution

.

The

is

given

by

We know that the estimate of

is not unbiased. Hence, MLE estimates

need not always be unbiased estimates.

Example: MLE estimates for multivariate Gaussian distribution. Suppose we have

sampled from a multivariate Gaussian distribution. We

want to estimate the parameters

of the distribution using MLE. Here is

a vector and is a matrix. Hence, we need to compute the partial derivatives of log likelihood w.r.t a vector and w.r.t a matrix. The derivation is easy to understand with the background of vector calculus discussed in Chapter 3.

Interested readers may refer to Further reading [5].

[image: Image 1797]

[image: Image 1798]

[image: Image 1799]

[image: Image 1800]

[image: Image 1801]

[image: Image 1802]

[image: Image 1803]

[image: Image 1804]

[image: Image 1805]

[image: Image 1806]

[image: Image 1807]

[image: Image 1808]

[image: Image 1809]

 Note: The MLE estimates are as follows:

There are other methods of estimation like method of least squares, method of

moments, Bayesian parameter estimation (MAP). We will briefly talk about Bayesian estimation where we estimate the parameters with the help of the

Bayes’ Rule.

We have to find the value for that maximizes the posterior probability

; this is called the Maximum Posteriori (MAP) estimate for the parameter .

The denominator P(X) is ignored because it has no direct functional dependence on the parameters with respect to which we want the right-hand

side to be maximized. As with the MLE, we can take the logarithm of the posteriors and have:

So, the only difference between MLE and MAP is that the latter allows us to

inject into the estimation calculation of prior beliefs regarding the parameters.

Now, if we use the simplest prior in the MAP estimation, that is, uniform prior, we assign equal weights everywhere, on all possible values of the , that is,

.

In

this

case,

the

MAP

estimate

is

, which is

the same as the MLE.

Bias-variance decomposition of estimator

[image: Image 1810]

[image: Image 1811]

[image: Image 1812]

[image: Image 1813]

[image: Image 1814]

[image: Image 1815]

[image: Image 1816]

[image: Image 1817]

[image: Image 1818]

[image: Image 1819]

[image: Image 1820]

[image: Image 1821]

[image: Image 1822]

[image: Image 1823]

[image: Image 1824]

[image: Image 1825]

[image: Image 1826]

We have defined the bias of an estimator as

. Treating

statistic T as a random variable, we can compute the mean-squared error (MSE) of T in estimating parameter as:

,where represents

the value of the statistic for ith sample.

We can easily prove that

. The proof is as

follows:

Hence,

. This is called the bias variance

decomposition, that is, both bias and variance contribute to MSE.

Applications – Formulating ML problems as

statistical inferencing

In this section, we will discuss how different ML problems can be formulated

in terms of probability theory. Then, we will see that learning a model is nothing but estimating parameters of a probability distribution using the techniques we have learned so far.

Data distribution

Suppose we are given a data set with N records. Each record has m attributes

or features, that is, each data sample is a vector

.

We can view any data point as a random vector. Each feature can be viewed

as a random variable taking values from the ith attribute column of the data

set. There are chances that many of these attributes are not mutually independent. Hence, we can represent the data set as a sample taken from a multivariate joint probability distribution

of the random vector

.

Generally, after the exploratory data analysis stage in practical machine learning, the raw observations are transformed to new engineered features.

This

can

be

viewed

as

a

vector

field

mapping

, where

are fixed non-linear

[image: Image 1827]

[image: Image 1828]

[image: Image 1829]

[image: Image 1830]

[image: Image 1831]

[image: Image 1832]

[image: Image 1833]

[image: Image 1834]

[image: Image 1835]

[image: Image 1836]

[image: Image 1837]

[image: Image 1838]

[image: Image 1839]

[image: Image 1840]

[image: Image 1841]

[image: Image 1842]

[image: Image 1843]

[image: Image 1844]

[image: Image 1845]

[image: Image 1846]

[image: Image 1847]

[image: Image 1848]

[image: Image 1849]

[image: Image 1850]

[image: Image 1851]

[image: Image 1852]

[image: Image 1853]

[image: Image 1854]

[image: Image 1855]

[image: Image 1856]

functions of the input variables and are called basis functions. Note that here, d may be less or greater than the raw data dimension k. s can be chosen such that the feature

s is mutually uncorrelated. Here are a few examples of

basis functions:

Suppose raw data vector is one-dimensional. We can define feature

mapping as

, that is,

, called polynomial

basis functions or radial basis functions:

Here, we are mapping a single feature x to a d-dimensional feature

vectors whose components are not (linearly) correlated.

Let data vector be three-dimensional

. We can define

, and have a two-

dimensional feature map

. Here,

is a

polynomial basis function also known as interaction term.

Classification

In a classification problem, an input vector or feature vector must be assigned to one of K classes, denoted by . We are given a dataset consisting of n pairs of examples

, called training data. Using this, we need to

come up with a function f that can map

. The simplest form of such a

function is a lookup table. But is that useful? Can it map unseen , (not in the training data) to a class label?

Assuming that the data vectors come from some probability distribution, we

can represent the data set by a random variable . Depending on whether

constitutes categorical or continuous attributes, follows either discrete or continuous probability distribution

. Representing the target class by a

categorical random variable which takes one of the K possible values, will have a categorical distribution

. If we take the subset of training data from

any particular class , then the probability of data vector can be represented by the conditional probability

and we have the class-conditional

probability density function

. This is also known as likelihood of

with respect to . Here, both the density functions f and p are unknown. The target distribution g can be easily estimated from the probability definition.

[image: Image 1857]

[image: Image 1858]

[image: Image 1859]

[image: Image 1860]

[image: Image 1861]

[image: Image 1862]

[image: Image 1863]

[image: Image 1864]

[image: Image 1865]

[image: Image 1866]

[image: Image 1867]

[image: Image 1868]

Taking the ratio of the number of examples from the given class to the total number of examples n in the training dataset. This is called the class prior probability. The classification problem can be defined as estimating the probability

. This is called the posterior probability of class

. If we know this probability for all k, then we can predict the class label associated with as follows:

Using Bayes, theorem we can write:

The denominator is fixed for all the K classes; hence, we can write this as:

So, we have posterior probability of class Ck ∝ likelihoood × class prior This formulation of classification problem as a probability model is called Bayesian classifier.

Now, let’s look at one simple classifier based on this interpretation of the pattern classification problem named Naive Bayes classifier.

Naive Bayes classifier

Suppose the data has m features, that is,

, and

these features are mutually independent, given that x is from class

.

Formally:

Substituting this in the Bayes equation, we have:

Hence, the probability of a new data x belonging to class k is given by:

[image: Image 1869]

[image: Image 1870]

[image: Image 1871]

[image: Image 1872]

[image: Image 1873]

[image: Image 1874]

[image: Image 1875]

[image: Image 1876]

[image: Image 1877]

[image: Image 1878]

[image: Image 1879]

[image: Image 1880]

[image: Image 1881]

[image: Image 1882]

[image: Image 1883]

[image: Image 1884]

[image: Image 1885]

[image: Image 1886]

[image: Image 1887]

[image: Image 1888]

[image: Image 1889]

[image: Image 1890]

[image: Image 1891]

[image: Image 1892]

This is Naïve Bayes classifier.

Here, the prior probability

estimation is easy, as discussed earlier.

We can also assume all classes to be equally likely, that is,

.

For estimation of

, we must figure out the distribution of each

of the attributes . If is discrete, we can assume multinomial distribution or categorical distribution. If

s is continuous, we can assume Gaussian

distribution.

For continuous attributes, the mean and variance of the attributes can be estimated for each class . Let’s call them and , respectively. Hence, we

now have:

 Note: We can also discretize continuous attribute by properly binning the

 feature values. For discrete attributes, suppose we take

 to be

 categorical distribution. Suppose the discrete attribute has T categories

 in total and

 represents the number of times category t appears in the

 samples from class k, and let

 represent total number of samples from

 class k. Hence, we have:

 Now, it may happen that in some class

 , all the T categories for are

 not present. This could be because of the limited samples that we have

 taken. So, it will be inappropriate to assume that category t for the attribute

 cannot appear in class k. Let be the total number of categories of the

 attribute . Then, we can rewrite:

 Here, is a smoothing parameter, which takes care of the missing category

 in the samples from any class, where

 by assigning

 some non-zero value.

[image: Image 1893]

[image: Image 1894]

[image: Image 1895]

[image: Image 1896]

[image: Image 1897]

[image: Image 1898]

[image: Image 1899]

[image: Image 1900]

[image: Image 1901]

[image: Image 1902]

[image: Image 1903]

[image: Image 1904]

Regression

In a regression problem, an input vector must be assigned to a real number y

or a real vector y. We are given a data set consisting of n pairs of examples

, called training data. Using this, we need to come up with a function f

that can map

. Here, y is continuous. Let’s first understand this with a

simple example where the input vector has only one attribute and target y is real. Let represent height of a father and y represent height of his adult son.

We have a data set of size N = 30 consisting of pairs

, and we have

plotted it in Figure 5.3 (left):

 Figure 5.3: Simple Regression (left) height of adult son vs father’s height (right) Curve fitting data We see from the plot that the son’s height can be modeled as a deterministic

function f of father’s height plus some random noise, that is:

In Figure 5.3 (right), we can see that, at father’s height ches, f(x)

underestimates the son’s height, and we can add some positive quantity to get

the corresponding adult son’s height y. For some values of x, f(x) may overestimate the son’s height, and we may have to subtract some variable quantity . So, the noise epsilon can be both positive and negative. Also, the

random noise is assumed to be symmetrically distributed or centered along the

curve f(x). So, one natural choice for the distribution of the random noise is Gaussian distribution with mean zero and some fixed variance

, that is,

. So, y is a random normal variable shifted by f(x). Hence, we can

write y:

[image: Image 1905]

[image: Image 1906]

[image: Image 1907]

[image: Image 1908]

[image: Image 1909]

[image: Image 1910]

[image: Image 1911]

[image: Image 1912]

[image: Image 1913]

[image: Image 1914]

[image: Image 1915]

[image: Image 1916]

[image: Image 1917]

[image: Image 1918]

[image: Image 1919]

The next step is to understand how to find f(x). We can assume f to be a parametrized function of the input, say f(x) is a polynomial of degree 2, where

are the parameters. We can

represent the parameters as a vector

and we can denote f as

. So, we now have

.

So, we have regression formulated as a probability model parameter

estimation.

Here, the parameter vector w is unknown, and we can estimate it using MLE

technique that we will discuss in greater detail in the linear model section. We will see that the MLE estimation technique boils down to minimizing sum squared error function. This formulation of regression as a probability model

can be generalized for vector input x and target vector y.

Linear and curvilinear regression

Given a training dataset

, the

goal is to find a linear function f such that

, for all i, that is,

approximates . This f will be called a linear regression model. So, f takes the form

, where

is called the

 bias. All these s are represented collectively as a vector

Now, the training data set is a sample of size N from a large population. A good model is one that will generalize well for most of the population and not

only for this training sample. We are going to make a few assumptions about

the population:

Linearity: The relationship between and the mean of y is linear. As shown in the following figure, the y values are scattered around a mean

line. ‘Regression’ means stepping backward, towards the average. The

function f models the average of the target y.

Homoscedasticity: As shown in Figure 5.4, the scattering of the target y values about the mean line is constant and is not a function of x, that is,

the variance of residual or error | f(x) – y| is the same for any value of x.

Normality of errors: For any fixed value of x, the target y is normally distributed, that is, the residuals are normally distributed.

No autocorrelation of errors: There should be no correlation between the residual (error) terms. Presence of autocorrelation may drastically

reduce the accuracy of the model.

[image: Image 1920]

[image: Image 1921]

[image: Image 1922]

[image: Image 1923]

[image: Image 1924]

[image: Image 1925]

[image: Image 1926]

[image: Image 1927]

[image: Image 1928]

[image: Image 1929]

[image: Image 1930]

[image: Image 1931]

[image: Image 1932]

[image: Image 1933]

[image: Image 1934]

[image: Image 1935]

[image: Image 1936]

[image: Image 1937]

[image: Image 1938]

[image: Image 1939]

No multicollinearity: The components of the data vector x, that is, the independent variables, should not be correlated. As shown in Figure 5.4, the regression model can be viewed as a distribution

or

equivalently

. Refer to the following figure:

 Figure 5.4: Normality assumptions and constant variance around line

Let’s see whether this model satisfies the assumptions mentioned earlier. Based

on assumption 1,

can be taken as a linear function of x, that is,

. Here,

is an unknown constant representing the

constant scattering as in assumption 2. The residue or error term

,

satisfying assumption 3. Assumption 5 expects all the components of the vector to be uncorrelated. We can ensure this by some feature engineering, that

is, using fixed basis functions discussed earlier, to transform the data, and we obtain

, where f

.

is a (M+1) dimensional vector of features

with

is required to estimate the bias parameter

. This is

depicted in Figure 5.5. Now, the location parameter of the normal distribution is represented as a function of vector

here. So,

represents the

parameters of the model that we can estimate using MLE. Refer to the following figure:

[image: Image 1940]

[image: Image 1941]

[image: Image 1942]

[image: Image 1943]

[image: Image 1944]

[image: Image 1945]

[image: Image 1946]

 Figure 5.5: Fixed basis function model

Estimating model parameters

First, let’s write the likelihood expression for the probability model. The log likelihood

function

is

given

by

.

The weights are independent of n, and we can take it out of the summation,

that is,

Let’s write these M equations in matrix form using the

design matrix:

[image: Image 1947]

[image: Image 1948]

[image: Image 1949]

[image: Image 1950]

[image: Image 1951]

[image: Image 1952]

[image: Image 1953]

[image: Image 1954]

[image: Image 1955]

[image: Image 1956]

[image: Image 1957]

[image: Image 1958]

[image: Image 1959]

[image: Image 1960]

[image: Image 1961]

[image: Image 1962]

[image: Image 1963]

[image: Image 1964]

[image: Image 1965]

[image: Image 1966]

[image: Image 1967]

[image: Image 1968]

[image: Image 1969]

[image: Image 1970]

[image: Image 1971]

[image: Image 1972]

[image: Image 1973]

we can write the r.h.s as

, and the l.h.s. as (

. Hence, we have the

system of linear equations (

. The coefficient matrix (

is

square matrix, so we can solve this as:

 Note: The bias parameter

 can be interpreted using the first equation

 .

 We

 have

 set

 .

 Therefore,

 ,

 that

 is,

 . Hence,

 The bias

 is the difference between the mean of the target values

 occurring in entire dataset and the weighted sum of the averages of the

 basis function values. Geometrically,

 is the intercept of the line with the

 y-axis, that is, for single variable case, it represents c in equation

 , the point where the regression line crosses the y-axis.

Iterative estimation of model parameters

The term

in the log likelihood expression

represents

the

total

sum-squared-error

(SSE),

where

is the error term contributed from data point

. Dividing by N, we get the MSE or mean squared error. Thus, for

fixed , the log L depends on the SSE alone. Also, maximizing

is the

same as minimizing

, that is, minimizing SSE. So, the weight vectors w

can be estimated by iterative optimization method like stochastic gradient decent. For very large datasets, directly finding the solution for regression requires computation of

, and this is a very costly computation.

Here, an iterative method like gradient descent is preferred. As discussed in

 Chapter 3, Vector Calculus, in gradient descent, we initialize the weights with random values denoted by

and iteratively update the weight as in the

direction of negative gradient:

. Here, is the

learning rate, and

represents the gradient of the error term, that is:

[image: Image 1974]

[image: Image 1975]

[image: Image 1976]

[image: Image 1977]

[image: Image 1978]

[image: Image 1979]

Example: Let’s take the iris data again. We saw in a previous chapter that the features petal length and petal width are correlated (Figure 5.6). Given the petal width, can we predict the petal length in cms?

Here, we are not doing any further feature engineering; thus, to apply the linear regression model, we will take

, the identity mapping. First, shuffle

the data and split it into two parts: train (120 data points) and test (30 data points). Then, we train a linear regression model and plot (Figure 5.6 (Left)) the learned regression line, as shown in the following code:

 Figure 5.6: Regression with single dependent variable

Using the identity basis function will impose severe limitations on the model.

Example: (curvilinear regression) We have the two-dimensional synthetic data generated by the process

, as shown in Figure 5.6

 (middle), with a line, we will have a very bad model. This is where the basis functions can help. Taking polynomial basis functions, we can map the single

variable

and then train a linear model, Figure 5.6

 (right). The learned model is

. This is a non-

linear function of x but its linear in the coefficients, so we still call it a linear model. It’s also known as curvilinear regression or polynomial regression model. The following code provides the process of data generation and model

fitting:

1. from sklearn.preprocessing import PolynomialFeatures

2. from sklearn.linear_model import LinearRegression

3. import matplotlib.pylab as plt

4.

5. def sin(n):

[image: Image 1980]

6. x = np.linspace(0, 1, n)

7. noise = np.random.normal(loc=0, scale=0.3, size=n)

8. y = np.array([np.math.sin(2*np.pi*a) for a in x.tolist()])

+ noise

9. return x, y

10.

11. X, y = sin(100)

12. polynomial_features= PolynomialFeatures(degree=3)

13. features =

polynomial_features.fit_transform(np.expand_dims(X, axis=1))

14. model= LinearRegression().fit(features, y)

15. line=model.predict(features)

16. plt.scatter(X, y)

17. plt.plot(X, line, color=’black’)

In the experiment, will we get a better model if we choose to model using higher-order polynomial instead of a degree three polynomial? This is

illustrated in Figure 5.7:

 Figure 5.7: Overfitting and underfitting

Overfitting and underfitting

We must check how well our machine learning model generalizes the new data

and whether it’s able to learn the inherent pattern in the training data. The poor generalization performance is termed as overfitting. This happens when the model learns the pattern as well as the noise in the training data. The inability to learn the pattern in training data because of some assumptions made by the

model is termed as underfitting. These are responsible for the poor performances of the machine learning algorithms.

The model with 1-degree polynomial is a poor fit, one with 3-degree

polynomial is a good fit, and a model with a high-order polynomial is an overfit.

[image: Image 1981]

[image: Image 1982]

[image: Image 1983]

[image: Image 1984]

[image: Image 1985]

[image: Image 1986]

[image: Image 1987]

[image: Image 1988]

[image: Image 1989]

[image: Image 1990]

[image: Image 1991]

[image: Image 1992]

Let’s now look at the coefficients of the fitted model with nine-degree polynomial shown in the first row in the following table:

 Table 5.2: Coefficients of regression model

The magnitude of the coefficients, specially of the higher order, is huge. This

means that the model has done some fine adjustments to the higher order terms

so that it can twist and turn and make a perfect fit polynomial for the training data. So, we may alleviate this problem by restricting the magnitude of the coefficients. This is achieved by putting a constraint like

to the SSE

minimization, as follows. Using the Lagrange multiplier trick, we add a regularization term to the SSE to control over-fitting so that the error function to be minimized takes the following form:

We can choose

to be Euclidean norm or , and in that case, we still have a

closed form solution:

. This choice of

regularizer is known as weight decay in machine learning literature as in sequential learning algorithms; it leads the weights to take small values close

to zero. This is also known as Ridge regression in statistics literature. The parameter is a hyperparameter that must be carefully chosen. The following

code shows Ridge regression for 9-degree polynomial where we choose

. Very small values of λ allow the model to become finely tuned to

the noise on each individual data point, nullifying the effect of regularization.

1. from sklearn.linear_model import Lasso, Ridge

2. reg = Ridge(alpha=0.01).fit(features, y)

3. line=reg.predict(features)

If we choose

to be norm, then we call the regression Lasso regression. It

has the property by which some of the coefficients are driven to zero; if we

choose to be sufficiently large, this leads to a sparse model in which the corresponding basis functions become redundant.

[image: Image 1993]

[image: Image 1994]

[image: Image 1995]

[image: Image 1996]

[image: Image 1997]

[image: Image 1998]

[image: Image 1999]

[image: Image 2000]

[image: Image 2001]

[image: Image 2002]

[image: Image 2003]

[image: Image 2004]

[image: Image 2005]

[image: Image 2006]

[image: Image 2007]

[image: Image 2008]

[image: Image 2009]

 Note: Over-fitting is an unfortunate property of MLE and can be mitigated

 by regularization or with Bayesian parameter estimation. In Bayesian

 estimation, as we consider the prior beliefs into the optimization, it

 naturally includes the regularization terms. Interested readers a may refer

 to book reference in further reading [2] Chapter 3 section 3.3.

Bias variance trade-off

As we saw in case of the synthetic data, the perfect model is

. In general, we can assume that the regression function is

an estimation of an unknown function

, such that:

.

Representing our linear regression model as

, the expected squared

error at a point x is:

Here,

being a function

of sample values can be viewed as a statistic, and it estimated the real model

parameter

. Using the bias-variance decomposition discussed earlier, we

can rewrite this as the sum of

and

, that is:

Here,

is the estimate of the sample statistic

The estimate of w

is based on some data set D. So, we need multiple datasets to compute these expectations. For, the synthetic sin dataset, we can generate multiple data sets and observe the relation between bias and variance as we change the model complexity by controlling the regularization parameter . Figure 5.8 depicts this with the

in the

:

[image: Image 2010]

[image: Image 2011]

[image: Image 2012]

[image: Image 2013]

[image: Image 2014]

[image: Image 2015]

 Figure 5.8: Bias variance trade-off as a function of model capacity

We have generated 200 datasets of size 25 and fit separate ridge regularized model with various regularization parameter . We have used polynomial basis

functions of degree 11 as the base model. As we vary , we get models with

varying capacity because higher values of will make the coefficients of higher order terms negligible, and hence, we end up having simpler models, which may underfit the data. Similarly, in the extreme left, we have very low

values of , which can allow large coefficients to higher order terms, making it overfit. From the model capacity plot in Figure 5.8, we can see that the minimum value of

occurs around ln λ = -4.5, which is

close to the value that gives the minimum error on the test data. Following is

the code for this bias variance trade-off. The sin function used here is defined in the code section before Figure 5.7.

1. datasets = [sin(25) for i in range(200)]

2. d = 11; bias_vars = {};

3. for lam in np.linspace(0.001, 1.1, 100):

4. preds = []; biases = []; variances = []; sses = [];

5. for X, y in datasets:

6. polynomial_features= PolynomialFeatures(degree=d)

7. features = polynomial_features.fit_transform(

8. np.expand_dims(X,

axis=1))

9. reg = Ridge(alpha=lam).fit(features, y)

10. line=reg.predict(features)

[image: Image 2016]

[image: Image 2017]

[image: Image 2018]

[image: Image 2019]

[image: Image 2020]

[image: Image 2021]

[image: Image 2022]

[image: Image 2023]

[image: Image 2024]

11. preds.append(line)

12. sses.append(np.mean(np.square(line-

np.sin(2*np.pi*X))))

13. E_y = np.mean(np.array(preds), axis=0)

14. bias_square = np.mean(np.square(E_y - np.sin(2*np.pi*X)))

15. variance = np.mean(np.square(line - E_y))

16. tot = bias_square + variance

17. test_error = np.mean(sses)

18. bias_vars[np.math.log(lam)]={‘$bias^2$+variance’:tot,

19. ‘$bias^2$’:bias_square, ‘variance’: variance,

20. ‘test_error’:test_error}

21. pd.DataFrame(bias_vars).transpose().plot()

In practice, we have only seen the single observed data set. Then, how can we

use this bias variance trade-off to choose the optimal hyperparameter . We can use k-fold cross-validation or leave-one-out validation to choose the best

possible experimentally.

Logistic Regression

For classification problem, the dependent variable is discrete, and hence, normality assumption in Linear Models (LM) does not hold true. So, we cannot directly apply linear regression model for classification. If we can transform the dependent variable such that it takes continuous values, we can

also validate the normality assumption after that. Suppose our dependent variable is binary, that is, we have a two-class classification problem. The class labels can be written as

. We can view this as a probability: when class

label is 1,

, and for

However, probability values are bound to lie in interval

, and thus, cannot

be assumed to be normally distributed. We know that odds can take any real

positive value and are related to probability by: odds in favor of class 1

. Now, or loge Odds or logit can take any real value in

. Using this transformation, we have our linear model:

[image: Image 2025]

[image: Image 2026]

[image: Image 2027]

[image: Image 2028]

 Note: The

 function is called the sigmoid function,

 which is S-shaped, and its range is (0,1). We represent the posterior

 probability of class

 as a sigmoid of linear combination of

 dependent variables.

To visualize this, we will consider a single dependent variable example for binary classification by taking a subset of iris dataset (verginica and versicolor) classes only as target and petal length as the only dependent variable to predict the two classes. The following code shows these data preparation steps on the iris data frame we created in the previous chapter:

1. df_sample = df[((df[‘flower’]==’virginica’)|

(df[‘flower’]==’versicolor’))][[‘petal length (cm)’, ‘flower’]]

2. #convert to binary labels

3. df_sample[‘y’]=df_sample[‘flower’].apply(lambda x: 1.0 if

x==’virginica’ else 0.0)

4. df_sample.plot.scatter(x=”petal length (cm)”, y=’y’,

marker=’*’)

 Figure 5.9 (left) shows the data plot, and Figure 5.9 (right) shows how the y values are scattered about an S-shaped sigmoid curve:

 Figure 5.9: Logistic regression

The spread of the y values around the sigmoid is always < 1. Thus, now we

have our normality assumption satisfied, and the constant variance is also satisfied to a great extent with the variance bound we have.

We can now find the coefficients of the linear equation by minimizing the following:

[image: Image 2029]

[image: Image 2030]

[image: Image 2031]

[image: Image 2032]

[image: Image 2033]

[image: Image 2034]

[image: Image 2035]

[image: Image 2036]

[image: Image 2037]

[image: Image 2038]

[image: Image 2039]

[image: Image 2040]

[image: Image 2041]

[image: Image 2042]

[image: Image 2043]

Sum squared error:

. However, this is hard to

optimize as it is a non-convex function. We can also estimate the parameters by our standard MLE techniques. Here, the

being binary can be viewed as a

Bernoulli distributed random variable.

Hence, the log likelihood takes the following form:

The

is called the binary cross entropy error or loss function. We will

need derivative of sigmoid function:

to maximize

.

Setting:

The quantity

represents probability that

belongs to class 1,

and we will denote it by

from now. In vector form, we can write the

gradient of

as follows:

[image: Image 2044]

[image: Image 2045]

[image: Image 2046]

[image: Image 2047]

[image: Image 2048]

[image: Image 2049]

[image: Image 2050]

[image: Image 2051]

[image: Image 2052]

[image: Image 2053]

[image: Image 2054]

[image: Image 2055]

[image: Image 2056]

[image: Image 2057]

[image: Image 2058]

[image: Image 2059]

[image: Image 2060]

[image: Image 2061]

[image: Image 2062]

[image: Image 2063]

Where is the N × M design matrix, whose nth row is given by

and

represents the vector of probability predictions

.

This is not a set of linear equations such that we can solve it by inverting coefficient matrix and get a closed form solution as we got for linear regression. The sigmoid function makes it non-linear equation. However, the function can be minimized by sequential method. Also, the

function here is concave, as we shall see shortly, and hence, it has a unique minimum. Starting with a random set of weights denoted by

, we

iteratively update the weight as follows:

Here, is the learning rate. This has a very similar form as in case of linear

regression.

 Note: We can check the convexity of

 by checking whether its Hessian

 is positive definite. The Hessian can be written as

 Refer to the further reading section [8], where is a

 diagonal

 matrix with elements

 , since

 . As each

 element of the diagonal matrix is positive, the Hessian is positive definite.

 The logL can be minimized by an efficient iterative technique based on the

 Hessian called Newton-Raphson and the updated formula is

 .

Multiclass logistic regression

Logistic regression can be extended for multiclass classification by building K-

1 binary classifiers, each of which separate points in k th class from the points not in that class. This is known as One-vs-Rest (OvR) scheme. For this, we can take one class as pivot class, say the largest class label K and model log of odds of being in class

vs being in class K as follows:

[image: Image 2064]

[image: Image 2065]

[image: Image 2066]

[image: Image 2067]

[image: Image 2068]

[image: Image 2069]

[image: Image 2070]

[image: Image 2071]

[image: Image 2072]

[image: Image 2073]

[image: Image 2074]

[image: Image 2075]

[image: Image 2076]

[image: Image 2077]

[image: Image 2078]

[image: Image 2079]

[image: Image 2080]

[image: Image 2081]

[image: Image 2082]

[image: Image 2083]

[image: Image 2084]

[image: Image 2085]

[image: Image 2086]

[image: Image 2087]

[image: Image 2088]

[image: Image 2089]

Exponentiating both sides:

Since

, adding all

equations, we get:

An alternative formulation is by assuming multinomial distribution for the class variable. Using Bayes, theorem we can write:

Where

. This

normalized exponential

denoted by

, is also known as the softmax

 function, as we can view this as a smoothed ‘ max’ function: if

,

then

and

.

Comparing with logistic regression where we modelled the log of odds as a linear function, we represent

. Here,

represents the weights

corresponding to jth class.

Now, we can represent class label

for each data point

as 1-of-K

representation or one hot encoded representing a realization of multinomial random variable with K categories. The target vector is a

matrix

, and the likelihood is given by:

where

. The

function is called the

categorical-cross-entropy error or loss function. The derivative (Jacobian) of softmax is given by

, where

represents

th entry

of the

identity matrix. Using this, we can compute the gradient of the

with respect to one of the weight vectors

:

[image: Image 2090]

[image: Image 2091]

[image: Image 2092]

[image: Image 2093]

[image: Image 2094]

[image: Image 2095]

[image: Image 2096]

[image: Image 2097]

[image: Image 2098]

[image: Image 2099]

[image: Image 2100]

Poisson regression

Poisson regression is like logistic regression, except that the dependent variable is an observed count that follows the Poisson distribution. Thus, the

possible values of Y are the non-negative integers: 0, 1, 2, 3, and so on.

Example application of Poisson regression is study of counts of bacteria related to various environmental conditions and dilutions. Clearly, the

dependent variable breaks the normality condition, and hence, we need to apply some transformation. Using log transform, we can model the logarithm

of the mean of dependent variable using a linear model.

Suppose we have a sample of n observations

, which can be

treated

as

independent

Poisson

random

variables

,

with

, and we can model the log of the mean as a

linear function of the dependent variables

. Then, we have the following

model:

We can use MLE to estimate the parameters . The log likelihood of data is

given by:

The gradient of

takes similar form as logistic regression:

Also, log L is a convex function and can be optimized using gradient decent or

by other gradient-based methods, like Newton-Raphson.

[image: Image 2101]

[image: Image 2102]

[image: Image 2103]

[image: Image 2104]

[image: Image 2105]

[image: Image 2106]

[image: Image 2107]

[image: Image 2108]

[image: Image 2109]

[image: Image 2110]

[image: Image 2111]

[image: Image 2112]

[image: Image 2113]

[image: Image 2114]

[image: Image 2115]

[image: Image 2116]

[image: Image 2117]

[image: Image 2118]

In Poisson distribution, we have

So, we are assuming equi-dispersion. That is, the mean and variance are equal:

 . But in practice, it’s very common to see

 overdispersion that is,

. The Negative Binomial

(NegBin) Model can accommodate over- and under-dispersion at the cost of an additional parameter.

 Note: In all the four meantioned variations of the linear models linear,

 logistic, Poison, Neg-binomial, we can see one common pattern:

 The response variable y follows an exponential family (ExpFam) of

 distributions (for example, binomial, Poisson, multinomial, normal)

 A linear model relates the expectation of the response variable via a link

 function

 g

 such

 and

 that

 .

 This representation is known as Generalized Linear Model (GLM). The

 Python statsmodel glm package, mentioned in Further Reading [9],

 provides implementation of all these variants of linear model.

Interpretability of linear models

Linear models are easy to interpret, which makes them very popular. We can

justify why the model works and get deeper insights into hidden patterns in data that can seed thoughts for further improvement of model by either feature

engineering or exploring newer data sources. We will start with the simplest linear model with identity basis function

as the line:

Here,

represents the predicted value of target variable,

and

represents the true value of the target. The prediction error is

. Here,

denote the MLE estimates of the coefficients.

Clearly,

, are all random variables being function of the target

random variable y. By model assumption,

, and hence,

.

Substituting

,

in

the

MLE

estimate

, we get:

[image: Image 2119]

[image: Image 2120]

[image: Image 2121]

[image: Image 2122]

[image: Image 2123]

[image: Image 2124]

[image: Image 2125]

[image: Image 2126]

[image: Image 2127]

[image: Image 2128]

[image: Image 2129]

[image: Image 2130]

[image: Image 2131]

[image: Image 2132]

[image: Image 2133]

[image: Image 2134]

[image: Image 2135]

[image: Image 2136]

[image: Image 2137]

The coefficient

can be computed as earlier:

Now:

The coefficient represents the slope of the line, that is, by what factor the target y changes for a unit change in the value of predictor.

 Note: This interpretation as slope can be extended for multiple predictors

 as well. For more than one predictor, we can view the weights as a factor by

 which the target will change for a unit change in the predictor, holding all

 other predictors constant. This interpretation of the coefficients can help us

 understand which predictors affect the target and how. However, this

 relation should not be considered a cause-and-effect relationship as it

 indicates correlations, and correlations do not imply causation.

These coefficients are random estimates; there is a chance that they are not accurate and may mislead us. To safeguard against such risk, we can employ

hypothesis testing (or test of significance of the coefficient). We test the hypothesis and check whether the coefficient

. Formally, we write it

like this in terms of null and alternate hypothesis:

against the alternative hypothesis

or

or

Since are normally distributed,

is normally distributed with mean 0 if

is true, and thus,

is t-distributed with degrees of freedom

associated with the sample variance

of

, that is,

computed

earlier.

Following the standard steps for hypothesis testing, we first choose the level of significance

and perform a two tailed t-test for testing the null

hypothesis against

. The critical value of Student’s t for the two-

tailed alternative hypothesis places probability α/2 in each tail of the distribution. The probability of falling in the critical region is called p-value.

[image: Image 2138]

[image: Image 2139]

[image: Image 2140]

[image: Image 2141]

[image: Image 2142]

[image: Image 2143]

[image: Image 2144]

[image: Image 2145]

 Small p-value

 indicates, we cannot reject the null hypothesis, and hence,

 the coefficient

 is not significant. We can also compute the confidence

interval of the coefficients. This is more informative as they reflect the precision of the estimates. Testing against the alternate hypothesis

the 95% confidence intervals for

and

are given by:

and

, respectively.

We can use the Python stats model for computing these confidence intervals and test the significance of each of the coefficients, as shown in the following

code. Here, we have used the petal width vs petal length, as shown in Figure

 5.9 (Left).

1. import statsmodels.formula.api as smf

2. model = smf.ols(formula=”petal_length ~ petal_width”, data=df)

3. results = model.fit()

4. print(results.summary())

Refer to the following figure:

 Figure 5.10: Regression Results

This statistical analysis of coefficients done so far for regression with a single variable can be easily extended to multiple variables using matrix algebra and

quadratic forms.

[image: Image 2146]

[image: Image 2147]

[image: Image 2148]

[image: Image 2149]

[image: Image 2150]

[image: Image 2151]

Interested readers may refer to Chapter 4, Analysis of Variance, from the book

[7].

In the result in Figure 5.10, we see scores called

and F-Statistic. These help

us access the overall goodness of model fit. Let’s see what they mean. It can be easily proved that (see Further reading [6]):

Total Sum of Squares (SST) = Sum of Squared Due to Regression (SSR) +

Sum of Squares of Errors (SSE). In this proof, we use the normality of errors assumption we had for linear regression that gives the mean of error terms

. Here, SST is the total variance of the target variable

irrespective of the model. The part of that variance is explained by the model

SSR and part is unexplained by model that is the squared error SSE. Dividing

the equation by SST, we have 1 =

. We define

as the

 coefficient of determination, which indicated the proportion of the total variance that is explained by the model. Clearly, . Greater values of indicated

better model fit.

 Note: This equation SST=SSR+SSE is perfectly valid for even more than

 one predictor variables. But as we add more predictors to the model, we will

 see the R2 value monotonically increasing. This does not always mean we

 are getting a better fit with more predictors as every predictor may not have

 an impact on the target. Hence, we use adjusted R2 as the number of

 predictors increase.

The adjusted R 2 tells you the percentage of variation explained by only the

 independent variables that actually affect the dependent variable.

The significance of the coefficients can be measured for other variations of the linear models, like logistic regression.

 Tip: For logistic regression model, this R2 statistic does not make sense, as

 its based-on ratio of variances explained. McFadden’s pseudo-R squared is

 defined as

 . Here, L denoted the maximized

 likelihood and Lnull denotes the intercept only model. Intuitively, we can

 understand this measure as follows. If the model has no predictive ability,

[image: Image 2152]

[image: Image 2153]

[image: Image 2154]

 the likelihood value for the model will not be much greater than the null

 model likelihood. Therefore, the ratio of the two log-likelihoods will be

 close to 1, and R2pseudo will be close to zero.

Conclusion

In this chapter, we discussed the fundamentals of statistical inference. We covered sample statistic, hypothesis testing, parameter estimation techniques and then various applications of these in ML. We discussed various ML

models in a probabilistic setting, and we understood that the error functions we minimize to train these ML models are derived from these probabilistic settings. We also introduced fixed basis function model, which gives a generic

structure to all the regression, classification models.

In the next chapter, this structure will be extended to neural networks. The same error functions derived in this chapter will be used here, after several applications of models, based on deep neural networks.

Points to remember

A statistic T is a function of samples from a population and is generally

used to estimate a population parameter from the sample values. We

can view a prediction model as a statistic and an estimator of the true population behavior. The training data can be viewed as a sample that can

be used to estimate the true population behavior.

Bias-variance decomposition: The Mean-Squared Error (MSE) of T

in estimating parameter can be decomposed as:

Bias-variance tradeoff: High bias model indicted our model is

oversimplified and is underfitting and thus prediction from these models

have high variance. Similarly, low bias implies overfitting and also

prediction from this model will have low variance.

If MVU exists for a statistic, then the MLE procedure will give that estimator.

MLE estimates are consistent and efficient, but need not be unbiased.

MLE estimates are prone to overfitting, and this can be mitigated by

Bayesian estimation with MAP or with regularization techniques.

Linear models discussed here should not be visualized only as lines or planes. Remember, linear means linear coefficients, and by using nonlinear basis functions like polynomial or radial basis functions, we can represent very complex multivariable non-linear functions (fixed basis function models).

The probabilistic view of linear, logistic and Poisson regression helps us

reduce the classification and regression problem as a convex optimization

problem that can be solved by iterative gradient-based optimization

methods.

The interpretability of linear models makes them more useful for solving

business problems. Testing of the statistical hypothesis for whether the coefficient is actually zero helps analyze the significance of the

coefficients. Lower p-value indicates low chances of rejecting the

hypothesis that the coefficient is zero, and hence, the corresponding

feature must be an important feature.

Further Reading

 Fundamentals of mathematical statistics, S C Gupta, V K Kapoor Publisher: New Delhi: Sultan Chand & Sons.

 Chris Bishop, Pattern Recognition and Machine Learning, Chapter 3 and

4.

Unbiased Estimator: https://dawenl.github.io/files/mle_biased.pdf.

Student’s t-distribution: https://en.wikipedia.org/wiki/Student%27s_t-

distribution.

MLE

for

multivariate

Gaussian:

https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-

readings/chapter13.pdf.

https://web.njit.edu/~wguo/Math644_2012/Math644_Chapter%201_

part4.pdf

 Applied Regression Analysis: A Research Tool by Rawlings, John O. , Pantula, Sastry G. , Dickey, David A

Hessian of log likelihood of logistic regression is positive definite:

https://www.cs.mcgill.ca/~dprecup/courses/ML/Lectures/ml-

lecture05.pdf

https://www.statsmodels.org/stable/glm.html

CHAPTER 6

Neural Networks

In the previous chapter, we discussed that with a clever choice of basis functions and using linear models alone, we can solve a wide range of ML

problems. So, it appears that linear basis function models constitute a general-

purpose framework for solving ML problems. However, there are certain

limitations:

1. These non-linear basis functions need to be defined before training, that

is, we must carefully perform feature engineering, which is a time-

consuming, manual effort and demands sound knowledge of the domain.

2. The number of basis functions grow rapidly, often exponentially with data dimension, that is, the curse of dimensionality (discussed in

Overview of AI chapter) problem arises. Hence, we need to look for

alternative models.

Neural network models are inspired by the way biological neural systems in human brain processes information. Neural networks solve these problems by

choosing fixed but adaptive basis functions. These are parametrized non-linear

basis functions whose parameters can be learned from the data during training

of the neural network model. This is called the training of the network. Also,

we can create a hierarchy of these parametrized basis functions. Each level in

the hierarchy is called a layer of the network. A layer consists of fixed number of basis functions, which takes the output of the previous layer as input. The

arrangement of these layers and connections among them in a particular form

is called the architecture or topology of the neural network. We will see how the knowledge of the problem domain can be easily incorporated in the neural

network architecture through choices in number of layers, units per layer, connections between layers, and so on. Now, the challenge of careful feature

engineering is transformed to network architectural engineering. For training these networks, the most popular method is gradient descent – the backpropagation algorithm. However, for training deep networks, that is, networks

with a large number of layers, simple gradient descent may not give us the best

solution, so many modifications of that algorithm are suggested, which we will discuss in this chapter.

Structure

In this chapter, we will cover the following topics:

Single neuron: An adaptive basis function

Multiple stacked layers or hierarchy of neurons

Training hierarchy of neurons: Back propagation algorithm

Basic neural network architectures: DNN, CNN, RNN, Transformers,

Autoencoders

Objectives

After studying this chapter, you will be familiar with the fundamental concepts

behind deep neural networks and state-of-the-art AI models. These concepts will be applied in the subsequent chapters, where specific deep neural network

models will be discussed for solving AI problems like speech recognition, handwriting recognition, language translation, image classification and

generation.

Artificial neuron: An adaptive basis function

The fundamental building block of a neural network is called a neuron. This term is borrowed from biology. where a neuron is a nerve cell that is the basic

building block of the nervous system. A single neuron may be connected to many other neurons such that the information transmitted is consumed by these

connected neurons. The biological neuron consists of three main parts:

 dendrites (the receivers), the cell body, and axon (the transmitter). Neurons communicate with one another at junctions called synapses, where one neuron sends a message to a target neuron, that is, another neuron cell. These are chemical messengers or ions. An artificial neuron closely mimics this structure

comprising of a set of dendrite-like connections, each taking an input and multiplying it by a (synaptic) weight (weight indicates strength of synaptic connection) associated with that edge. These weights are learnt in the learning

phase. These weighted inputs are summed up after going through a summation

 unit. The result is subsequently fed to an activation unit whose output is then

[image: Image 2155]

[image: Image 2156]

[image: Image 2157]

[image: Image 2158]

[image: Image 2159]

transmitted to the outside via an axon-like projection. The structure of a single

biological and artificial neuron is depicted in Figure 6.1:

 Figure 6.1: Biological neuron and artificial neuron

Given an input vector

, the computation in an

artificial neuron can be written in the form of a basis function

, as

follows:

Here,

is a non-linear activation function. Table 6.1 shows some common activation functions. Also refer to the following figure:

[image: Image 2160]

[image: Image 2161]

[image: Image 2162]

[image: Image 2163]

 Figure 6.2: Different basis functions created by various activations: first row shows various sigmoid activations, second row shows various tanh activations, and the last row shows relu activations

 Table 6.1: Activation functions

For a fixed set of weights , this basis function

is a fixed function, like

the one we have in linear basis function model, studied in the previous chapter.

[image: Image 2164]

[image: Image 2165]

[image: Image 2166]

[image: Image 2167]

[image: Image 2168]

[image: Image 2169]

[image: Image 2170]

Now, let’s see how we can get a family of basis functions by varying these weights. For example, we take a single variable input

and make an

adaptive basis function with two weights

:.

 Figure 6.2 shows how setting the weight parameters randomly gives each basis function a distinct shape.

Feed Forward neural network

The fixed basis functions (Figure 5.5 from Chapter 5: Statistical Inference and

 Applications) can be replaced with these adaptive basis functions in the linear

basis function model discussed for regression or classification (logistic regression), and the resulting model is called feedforward neural network

(shown in Figure 6.3):

 Figure 6.3: Neural network with single output neuron and one hidden layer; the weights connecting ith neuron of layer jth to neuron of layer (l + 1) is denoted by

The set of three adaptive basis functions transforming the input vector

to

is called a layer in the neural

network. The input vector is called input layer, assuming it’s a basis function layer with identity basis function, and the final output neuron(s) is called

[image: Image 2171]

[image: Image 2172]

[image: Image 2173]

[image: Image 2174]

[image: Image 2175]

[image: Image 2176]

[image: Image 2177]

[image: Image 2178]

[image: Image 2179]

[image: Image 2180]

[image: Image 2181]

[image: Image 2182]

[image: Image 2183]

[image: Image 2184]

[image: Image 2185]

[image: Image 2186]

[image: Image 2187]

[image: Image 2188]

 output layer. The layers between the input and output layers are called hidden layers. We can have more than one hidden layer. Numbering the layers of the network starting from the input layer numbered (0), the hidden layer numbered

(1), and the output layer numbered (2) in Figure 6.3. The weights connecting neuron of layer

to

neuron of layer

is denoted by

.

The set of all weights connecting layer

to layer

is denoted by

matrix

.

We can view these layers as set of vector fields as

, where r

denotes number of nodes in layer

, s denotes number of nodes in layer l,

and transforms the vector

to a vector

. The entire neural network

in Figure 6.3 can now be expressed as a composition of a set of vector fields:

 So,

where ∘ denotes function composition

Here, L 0, L 1, and L 2 represent the input, hidden, and output layers, respectively.

We have seen in Chapter 3:Vector Calculus in section chain rule for derivatives of vector fields, how to differentiate such composition of functions.

We will be using this in the following section.

Initializing all the weights and holding the weights connecting layer (0) to (1): as fixed, we have a fixed basis function network as before. The fixed basis function model is also a neural network with a single layer.

The number of hidden layers can be many based on the complexity of the problem we want to solve. Also, the number of neurons per layer may vary.

 Figure 6.4 depicts a generic multi-layered feed forward network with a single output node. Each layer’s adaptive non-linear basis functions are denoted by

. Refer to the following

figure:

[image: Image 2189]

[image: Image 2190]

[image: Image 2191]

[image: Image 2192]

 Figure 6.4: Neural network with single output neuron and many hidden layers. Here, p & q represents layers where q = p + 1, np denotes number of nodes in layer p, neural network has total of K+1 layers which includes one input layer, one output layer and K-1 hidden layers, and xl denotes lth layer output vector/tensor. Here, only one output node is shown, but in general, there can be many output nodes.

Training neural network

For finding the weights in a fixed basis function network, we could use linear

algebra and arrive at a closed form solution analytically. Moreover, the error functions E we arrived at, like sum-squared error or cross entropy error for classification, were convex functions with unique optimum that can be arrived

at by gradient based iterative optimization methods as well.

With adaptive basis functions, the error function E is now a function of the weights associated with the basis functions (in hidden layers also). This is because the predicted output is now a function of hidden layer weights. The error E being some function of target y and prediction is also a function of hidden layer weights. We want to find a set of weights w that minimizes the chosen error function E(w). Here, w represents all the weights of the network.

This task is called training of the neural network. Figure 6.4 depicts geometrically an error function for two-dimensional weight space. For any value of the weight vector

, we can plot the error value in

the z-axis and view the error function as a surface over the weight space.

The goal is to find a vector w such that E(w) takes its minimum value.

However, the error surface is typically non-convex because of having highly non-linear dependence on the weights and bias parameters, so there can be many local minima points in weight space at which the gradient almost vanishes.

[image: Image 2193]

In Figure 6.5,

is a local minimum. For training a neural network, it may not

be always necessary to find the global minimum, but what really matters is to

find a sufficiently good solution. Even if a global minima is actually found during training, we may not know it. We have already discussed how gradient

descent algorithm uses the derivatives of a function to find a minimum in

 Chapter 3: Vector Calculus, section: descent methods . However, gradient descent, in general, has often been regarded as slow or unreliable. Previously,

the application of gradient descent to non-convex optimization problems was

regarded as foolhardy or unprincipled. Today, nearly all neural networks are trained by one very important algorithm: Stochastic Gradient Descent (SGD) which is an extension of the gradient descent algorithm. Refer to the following

figure:

[image: Image 2194]

[image: Image 2195]

[image: Image 2196]

[image: Image 2197]

 Figure 6.5: Geometrical view of the error function E(w) for two-dimensional weight space, that is, as a surface sitting on weight space. Point is a local minimum and

 is the global minimum.

 At any point

 , the local gradient of the error surface is given by the vector ∇ E.

Stochastic Gradient Descent

We have seen in the Chapter 3: Vector Calculus the formulation of the error function for regression/classification problems. These functions being some form of log-likelihood, decompose as a sum over N training examples of some

per-example loss function:

[image: Image 2198]

[image: Image 2199]

[image: Image 2200]

[image: Image 2201]

[image: Image 2202]

[image: Image 2203]

[image: Image 2204]

[image: Image 2205]

[image: Image 2206]

In the gradient decent algorithm, we initialize the weights randomly and keep

updating the weights based on gradient information. Hence, for these additive

loss functions, we need to compute the gradient value at each training example.

As the training set size grows to billions of examples, the time to take a single gradient step becomes prohibitively long. The intuition behind SGD is that the

gradient is an expectation. The expectation may be approximately estimated using a small set of samples. Specifically, on each step of the algorithm, we can sample a mini batch of examples drawn uniformly from the training set.

For simplicity, assume that the mini batch size is 1. Now, at every step t, a random sample point

is chosen, and we update the

weights via the following:

The expectation of the gradient is given by the following:

We can interchange the gradient and expectation if

is a smooth or

continuously differentiable function . For a neural network, this assumption is valid as all the layer functions are continuously differentiable given that we are using differentiable nonlinearities in each layer. Now, the probability of choosing n is

. Thus, from the expectation definition, we have:

Hence,

Let’s try to apply SGD for training the two-layer neural network described in

 Figure 6.3 where the predicted output is a scalar .

Computing error derivatives

[image: Image 2207]

[image: Image 2208]

[image: Image 2209]

[image: Image 2210]

[image: Image 2211]

[image: Image 2212]

[image: Image 2213]

[image: Image 2214]

[image: Image 2215]

[image: Image 2216]

[image: Image 2217]

[image: Image 2218]

[image: Image 2219]

[image: Image 2220]

[image: Image 2221]

[image: Image 2222]

[image: Image 2223]

[image: Image 2224]

[image: Image 2225]

We

want

to

compute

the

gradient

,

where

is the weight tensor representing all N layer

weights of the networks. Any error function E depends on the predicted output (and given target y that is constant), and thus using chain rule of derivatives, we can write:

As

, we can write as

. The partial derivative of the error E w.r.t

any layer output tensor is denoted by

. There is a recursive

relation between

and

because of chain rule of derivatives (using

matrix form of chain rule for vector fields as E depends on the composition of the layers) that is:

where

are Jacobian matrices

We can write

and a is the activation

 function of L l+1. Therefore:

Like any other recursion relation, the base case must be defined from where the recursion begins. Here, the recursion begins at the last layer. We can think of the error function E as a layer

, and thus, define the base:

Now, coming back to the error derivative, we can represent them in terms of

:

[image: Image 2226]

[image: Image 2227]

[image: Image 2228]

[image: Image 2229]

[image: Image 2230]

[image: Image 2231]

[image: Image 2232]

[image: Image 2233]

[image: Image 2234]

[image: Image 2235]

[image: Image 2236]

[image: Image 2237]

[image: Image 2238]

[image: Image 2239]

[image: Image 2240]

[image: Image 2241]

[image: Image 2242]

[image: Image 2243]

w.r.t. the weight vector of the corresponding layer.

Example: If

is a sigmoid layer with n output neurons and m inputs, we can

write the layer function as

. Here, x is the

layer

input vector.

So,

will be given by the following product of Jacobians:

Here,

represents the derivative of a first order tensor with a second order

tensor. This derivative will be a third order tensor, as discussed in Chapter 3:

 Vector Calculus in section tensor calculus. We can represent this with tensor

outer product operation and Einstein summation notation, as follows:

The derivative of sigmoid function

. Therefore:

Using the property of outer product:

,

the previous dot product simplifies to the following:

 Note: The derivative of error function E w.r.t the corresponding layer

 weights

 can be written as a product of gradient message coming from

 the next layer, that is,

 and the derivative of the activation function of

 the layer w.r.t the weight vector

 . Here,

 is a layer specific

 Jacobian and does not depend on any other layers. Thus,

 depends on

 derivative messages from the layers above and not from the layers below.

[image: Image 2244]

[image: Image 2245]

[image: Image 2246]

[image: Image 2247]

[image: Image 2248]

[image: Image 2249]

[image: Image 2250]

[image: Image 2251]

[image: Image 2252]

[image: Image 2253]

[image: Image 2254]

For computing the error derivatives with SGD, we need to compute the

derivatives of the error function over subsets (or mini batch) of training examples and then compute the average error over the mini batch. In the previous computation, we computed the derivative for single example. A mini

batch can be represented as a matrix whose each row represents one training

example of the batch. So, x is now a second order tensor, and the corresponding layer output

will also be also a second order tensor.

Therefore, the partial derivatives will change as follows:

Now:

Hence:

Using the property of outer product:

,

the previous dot product simplifies to the following:

We know that the dot product

as it’s the Frobenius

norm of the matrix with only the

element as 1 and all other elements

as 0:

Let’s implement the same, and then we can compare it with the derivative computed by any deep learning library. In the following code, we will first implement sigmoid layer using TensorFlow:

1. import tensorflow as tf

2. batch_size =2

3. tf.random.set_seed(42)

 4. #create a Sigmoid layer with 4 output neurons

5. layer = tf.keras.layers.Dense(4, activation=tf.nn.sigmoid)

 6. #create a input tensor 3 neurons and batch size = batch_size

7. x = tf.random.normal([batch_size, 3])

8. z = layer(x)

The output tensor z is of shape (2, 4). Using the previous formula for the layer derivative, let’s compute the derivative of layer w.r.t the layer weights, which can be accessed by the layer.kernel property. Layer weights are initialized at random. The following code depicts this:

1. b1, b2 = tf.eye(2).numpy()

 2. #create the unit tensors ek abd ej

3. e1, e2, e3 = tf.eye(3).numpy()

4. f1, f2, f3, f4 = tf.eye(4).numpy()

5.

 6. #Compute Derivative

7. jacobian = None

8. y = tf.matmul(x, layer.kernel).numpy()

9. for b, eb in enumerate([b1,b2]):

10. for k, ek in enumerate([f1,f2,f3,f4]):

11. for j, ej in enumerate([e1,e2,e3]):

12. tmp = tf.tensordot(ej, ek, axes=0)

13. u = x[b][j]*tf.nn.sigmoid(y[b][k])

14. *(1-tf.nn.sigmoid(y[b][k]))*ek

15. v = tf.tensordot(eb,u, axes=0)

16. if jacobian is None:

17. jacobian = tf.tensordot(v, tmp, axes=0)

18. else:

19. jacobian += tf.tensordot(v, tmp, axes=0)

20. print(jacobian)

The computation is just one step using TensorFlow gradient tape, as shown here:

1. with tf.GradientTape(persistent=True) as tape:

[image: Image 2255]

[image: Image 2256]

[image: Image 2257]

[image: Image 2258]

[image: Image 2259]

[image: Image 2260]

[image: Image 2261]

[image: Image 2262]

2. z = layer(x)

3. jacobian = tape.jacobian(z, layer.kernel)

4. print(jacobian)

 Figure 6.6 shows the output obtained from either of the two implementations of layer derivative, that is, layer output w.r.t the layer weight

:

 Figure 6.6: Layer derivative tensor of shape (2,4,3,4)

 Note: The layer kernel matrix is of shape (3, 4). The shape of the derivative

 tensor or Jacobian of the output with respect to the kernel is those two

 shapes concatenated together.

We have shown how to compute the derivatives of each layer and a way to recursively compute the error for the entire network. We will now apply this

technique for computing error derivatives for specific error functions, like sum-squared error and binary cross entropy.

Backpropagation algorithm

Let’s take the three-layer neural network that we introduced before. In the linear regression section of the previous chapter, we learned that E is mean-squared error given by

. Here,

is

the previous layer (L 1) output. Also, the error function will be computed for a mini batch of samples of size

. So, we can write E in terms of layer

function as follows:

and thus,

[image: Image 2263]

[image: Image 2264]

[image: Image 2265]

[image: Image 2266]

[image: Image 2267]

[image: Image 2268]

[image: Image 2269]

[image: Image 2270]

[image: Image 2271]

[image: Image 2272]

[image: Image 2273]

[image: Image 2274]

[image: Image 2275]

[image: Image 2276]

[image: Image 2277]

This is the same gradient we obtained for linear regression, the only difference being that was a fixed function there.

Next, let’s compute

.

Since is a linear layer,

here

is a weight

matrix connecting n neurons in layer

to m neurons in layer

;

therefore,

Assuming

that

 tanh

activation

is

used

in

the

layer

This expression can be derived in the same way we derived the derivative for

sigmoid layer, only replacing the sigmoid derivative with the tanh derivative.

We now have all the required gradients to compute the gradient step needed for

gradient decent algorithm:

.

Now, we will implement these using TensorFlow. First, we create the model using functional API, as shown in the following code:

1. inp_vector = tf.keras.layers.Input(shape=(3,), name=’input’)

2. x = tf.keras.layers.Dense(units=4, activation=’tanh’,

3. name=’hidden’, use_bias=False)

(inp_vector)

4. x = tf.keras.layers.Dense(units=1, activation=’linear’,

5. name=’output’, use_bias=False)(x)

6. model = tf.keras.Model(inputs =[inp_vector], outputs=x)

7. print(model.summary())

Now, using gradient tape as before, we can directly compute the gradient of the loss function w.r.t both the weight tensors (model.trainable_variables) in the two layers. This is shown in the following code:

1. batch_size=5

2. X = tf.random.uniform([batch_size, 3])

3. Y = tf.random.uniform([batch_size, 1])

4.

5. def mse(y_true, y_pred):

6. return 1/2*tf.reduce_mean(tf.square(y_true-y_pred))

7.

8. with tf.GradientTape(persistent=True) as tape:

9. y_pred = model(X)

10. loss = mse(Y, y_pred)

11. gradient = tape.gradient(loss, model.trainable_variables)

Now, let’s validate that we get the same result by following the steps discussed earlier. Table 6.2 shows the step-by-step computation of error derivatives for all layers:

[image: Image 2278]

[image: Image 2279]

 Table 6.2: Error derivative computation for all layers (back propagating error derivative) This is called backpropagation algorithm. The name is given as we pass the messages backward.

 Note: The Einstein sums used in the previous table represent tensor dot

 products between Jacobians computed in various backward gradient

 computation steps. For computing

 , we have not used the tensor outer

 product formula that we derived; we used the TensorFlow gradient tape

 API to keep the code shorter. We have already shown how to implement the

 tensor dot product formulation for sigmoid activation, and this can be

 implemented by following the same steps for tanh activation.

We have discussed and implemented the algorithm for only three-layer

network so far, but this can be easily extended to any number of layers. We can

[image: Image 2280]

[image: Image 2281]

[image: Image 2282]

[image: Image 2283]

[image: Image 2284]

[image: Image 2285]

[image: Image 2286]

train very deep neural networks with this algorithm. For any pair of non-linear

hidden layers

let’s look at the steps for computing

. Let there be

 K layers in the network:

1. Choose a random sample (or mini-batch) of training examples.

2. Perform forward computation through the network and compute error E.

3. Compute the

for the output layer,

.

4. Compute the error derivative w.r.t layer weights

.

5. Go back one layer

.

6. Use recursive relation to compute

.

7. Repeat steps 4 to 6 until the input layer is reached.

The deep learning frameworks like TensorFlow uses a computation graph to remember the variable dependencies in the network and thus the order of forward computation. The same order is traversed backward to compute the derivative. This process is also known as automatic differentiation.

Challenges of training neural networks

Back propagation algorithm can be used to train any deep neural network with

a large number of hidden layers and many nodes per layer. However, in practice, there are many challenges we need to address first. Following are a

few lists of challenges and how they can be mitigated for successful training.

Slow training with SGD

As more layers are added to the network most of the time, we can find that the

learning is very slow by observing the rate of decrease of the loss function as

the training progresses. SGD is best suited for convex optimization problems,

where we have a convex error surface and unique global minima. In these problems, taking small steps toward the negative gradient direction makes sure

we reach the global minima. In the previous sections, we have discussed the complexity of the error surface for deep non-linear neural networks. Along with that, there are a few other challenges related to the complexity of the error surface:

Ill-conditioning: The condition number of a matrix is the ratio of the largest singular value to the smallest singular value. An ill-conditioned

[image: Image 2287]

[image: Image 2288]

matrix is one with high condition number. This indicates that a few rows

of the matrix are heavily correlated with each other. If we have an ill-conditioned data set, then the error surface defined by that is relatively flat in one or more directions and strongly curved in other directions.

This leads to very slow convergence of SGD. This can be identified by

monitoring the square of the gradient norm.

Cliffs and exploding gradients: For very deep neural networks with highly non-linear activations, the error surfaces may consist of extremely

steep, regions resembling cliffs, as shown in Figure 6.7. Moving in the direction of a negative gradient by the SGD algorithm can move the

weights far off by taking a big jump off the cliff. This will mislead the

algorithm and will go away from the minima at a point when we are very

close to reaching it. One way to mitigate this risk is by clipping the norm

of the gradient, that is, there is a maximum allowed value of the gradient

norm. Gradients are restricted from blowing up by rescaling them as

if . Figure 6.7 depicts this for a hypothetical two-

dimensional error surface with a cliff close to minima:

 Figure 6.7: Cliff in error surface and gradient clipping in SGD

Weight initialization: To begin the training, the layer weights must be initialized. This choice of initial points impacts the convergence of the algorithm. Also, various layers in the network must have different

initializations to break symmetry, otherwise all layers will get the same

gradient update and end up learning same function. In general, biases are

initialized with 0 and weights are initialized with random numbers. These random numbers should not be very large because that will cause very

high value to be passed to the activation functions like sigmoid, which take a value 1 and have very low gradient for higher input values. So, the

learning becomes very low. The weights initialized with low values get

mapped to 0 by activation functions and face similar flat gradient issue as

earlier. There are various heuristics to initialize the weights like Xavier Initialization, He Initialization. You are advised to refer to Further Readings [1], [2].

Modifications of SGD

Error functions have regions of high curvature and small but consistent gradients. This is due to the ill conditioning of the Hessian matrix and variance in the SGD, and the learning may slow down a lot in such regions. Following

are two categories of techniques for improving SGD.

Momentum methods

The momentum algorithm accumulates the Exponentially Weighted Moving

Average (EWMA) of previous gradients and makes a move in that direction instead of the local gradient direction suggested by SGD. The exponential weighting is controlled by parameter α ∈ [0,1) for exponential weighting, that

is, how quickly the effect of the previous gradient decays. The momentum method damps the oscillations in directions of high curvature by combining gradients of opposite signs.

Adaptive learning rate

We saw that the same learning rate is applied to all parameter updates for SGD

and momentum methods. Adaptive gradient descent algorithms, such as

AdaGrad, AdaDelta, RMSprop and Adam, provide alternatives to classical

SGD by keeping per parameter learning rates:

AdaGrad: It adapts the learning rate for each connection by scaling them

inversely proportional to the square root of all previous gradients’ sum-

squared values. Thus, larger gradient changes are made in the gently

sloped direction of the error surface. This may lead to shrinking of some

learning rates drastically.

[image: Image 2289]

RMSProp (Root Mean Squared Propagation): RMSProp modifies the

AdaGrad algorithm by taking the EWMA of previous squared gradients.

The moving average parameter controls the length and scale of the

moving average. This is one of the most successful algorithms for deep

neural network training.

Adam: Adaptive Moments (Adam) takes the best of both momentum-based and adaptive-learning-rate algorithms and combines them. Here,

the momentum algorithm is applied to rescaled gradients computed by

RMSprop.

Bias-variance trade-off in neural networks

The bias variance tradeoff that we studied for general ML models also exists

for neural networks. During iterative training of the model, the validation error is slightly more than the training error. If the gap between the test error and the validation error increases over iterations, it’s a case of overfitting, that is, high bias and low variance. If the training error stops decreasing after a few iterations, we can conclude that the model is underfitting, that is, high variance and low bias.

Underfitting can be mitigated by increasing the model capacity, that is, the number of layers or the nodes per layers or the activation functions used in a

layer (these are the hyperparameters defining network structure). Overfitting is handled by various regularization techniques.

 Figure 6.8 shows this trade-off as a function of model capacity for neural networks and compares neural network complexity in terms of layers and number of neurons with the classical ML models:

 Figure 6.8: Overfitting and underfitting in neural networks

Generally, a validation data set is used to compute the prediction error of the models. This can help us choose the best model capacity or network structure

related hyper parameters for the given problem.

Regularization of neural nets

Various strategies are developed to avoid overfitting and reduce generalization

errors while training neural networks. These strategies are collectively known

as regularization. Following are a few popular techniques for regularization: Weight-decay: In the previous chapter, we discussed that one effect of overfitting is directly related to explosion of the weights of the model, and this can be mitigated by adding weight penalty terms like l 1 , l 2

weight constraints.

Dropout: The output of a fraction of nodes from a layer chosen randomly

are masked by setting their output to zero during the training. It’s

equivalent to removing a fraction of nodes from a layer and creating a new neural network with fewer nodes. This can be compared to model-averaging method (ensemble learning), where many models are created

by changing the number of active nodes at various layers of the base model on which dropout is applied. This is a computationally

inexpensive but powerful method of regularizing deep neural networks.

 Figure 6.9 shows that the third node in the hidden layer is masked. All of its output connection weights are set to zero. Refer to the following figure:

[image: Image 2290]

 Figure 6.9: Dropout: Showing the dropped node while training

Weight sharing: Using the same set of weights in different layers in the

network, we have fewer parameters to optimize. RNN (discussed in the

 Chapter 10: Sequence to Sequence Models) and CNN (discussed in

 Chapter 9: Computer Vision) use weight sharing.

Batch normalization: Standard scaling of inputs has shown

improvements in the model performance. Batch normalization applies the

same trick to the hidden layers. It normalizes the previous layer’s

activations by subtracting the mini-batch mean, μ, of activations and

dividing by the mini-batch standard deviation, σ. During inferencing, μ

and σ are replaced by an average over all the values collected during training.

Sensitivity of neural networks to small

perturbations

[image: Image 2291]

[image: Image 2292]

[image: Image 2293]

Deep neural networks are often found to be very sensitive to small well-chosen

perturbations. A well-chosen small perturbation of an input image can mislead

a neural network, resulting in significant decrease in its classification accuracy.

One metric to assess the robustness of neural networks to small perturbations is the Lipschitz constant. A vector valued function

is called

 Lipschitz continuous if there exists a constant L such that for all The smallest L for which this

inequality holds is called Lipchitz constant. Neural network can be seen as a vector valued function. Lower value of L shows a more robust neural net model. However, the exact computation of the Lipschitz constant of neural networks is NP-hard, as proved in [4].

It can be proved that the Lipschitz constant is the largest singular value of the weight matrix of the layer for linear and convolutional layers. While training

neural networks, we can keep optimizing the Lipchitz constant as well. This is

called Lipchitz regularization. Some techniques of enforcing Lipchitz regularization are discussed in the GANs chapter. Interested reader may refer

to Further Reading [5].

Neural Network Architectures

Architecture refers to the overall structure of the neural network, like the number of layers, the number of units in each layer, connections between layers, and so on. Modular deep learning frameworks, such as Caffe, Torch, and TensorFlow, have revolutionized complex neural network architecture

designs. However, these designs are backed by problem domain knowledge

and are not just random guesses or trial and error. A neural network solving a

classification task in computer vision domain, like image segmentation or object detection, does not use a simple multi-layered neural network. We know

in computer vision domain image filters are commonly used for feature

extraction. These are basically some fixed convolution operations applied on the images. Inspired by this, the architecture design for solving almost all computer vision problems used Convolution Neural Networks (CNN), which mainly consist of a sequence of filter-learning and filter processing. Following are a list of different architectures that we will discuss in the later chapters, along with some domain knowledge required to understand the models:

Autoencoder Architecture: Used for dimensionality reduction, and

popular for generative modelling

Generative Adversarial Network (GAN) used for generative modelling

that we have discussed in greater detail in Chapter 12: Generative

 Models.

Convolutional Neural Network (CNN): Mostly used for computer vision problems and image processing, and also used for natural language

processing; it will be discussed in Chapter 9: Computer Vision .

Recurrent Neural Nets (RNN): Used for sequential data. We will

discuss these in the Chapter 10: Sequence to Sequence Models.

Transformers: The state-of-the-art text analysis models like BERT are based on transformers. These are also being applied for other tasks like

handwriting recognition and speech recognition. We have discussed this

in the Chapter 11: Natural Language Processing.

Siamese neural network: This architecture contains two identical

subnetworks that have the same configuration, with the same parameters

and weights. It is used to find the similarity of the inputs by comparing

their feature vectors.

There are many architectures that combine these basic architectures and build a

new architecture. For example, a combination of CNN and RNN can be used

to build a cursive handwriting recognizer that reads cursive handwriting from

an image using CNN and then converts it into the corresponding text using RNN. The entire architecture is trained end to end using a data set consisting

of handwriting images and corresponding text pair.

Conclusion

In this chapter, we discussed the basic concepts of neural networks. We covered the fundamental back propagation algorithm in detail and how it’s implemented in the automatic differentiation framework available in most deep

learning frameworks. We also discussed the challenges of training neural networks with SGD and ways to mitigate it at the high level. These concepts

will be revisited in the following chapters on the applications of neural networks to solve specific problems.

In the next chapter, we will introduce one more important topic, that is, unsupervised clustering, and then the following chapters will mostly be applications of the concepts learned so far for solving various AI problems.

Points to remember

A node in a neural network can be viewed as an adaptive basis function.

Even with fixed non-linear activations changing the weights, we get

various basis functions.

Each layer in the neural network can be viewed as a vector fields or tensor field that maps an input tensor/vector to the next layer’s input tensor/vector. These vector fields must be differentiable, that is, the activation function used must be differentiable for the network to be

trainable using back propagation algorithm. The entire network can be

viewed as a composition of a finite sequence of vector fields.

Using automatic differentiation technique discussed here, we can train

any arbitrary neural network architecture, provided we use functions and

operations that are differentiable.

Overfitting and under fitting tradeoff are also faced by neural networks,

and these are mitigated by proper regularization techniques and adjusting

model capacity.

Further Reading

http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds02.pdf

http://cs231n.stanford.edu/vecDerivs.pdf

https://www.jeremyjordan.me/neural-networks-training/

https://papers.nips.cc/paper/2018/file/d54e99a6c03704e95e6965532de

c148b-Paper.pdf

https://mi.nemzetilabor.hu/sites/default/files/2020-

12/milab_lipreg.pdf

 Deep Learning Book: Ian Goodfellow and Yoshua Bengio and Aaron Courville

CHAPTER 7

Clustering

Clustering is about automatically discovering natural groups/clusters in unlabeled data such that the degree of similarity between samples of the same

cluster and the degree of dissimilarity between samples of different clusters is maximized. It is one of the unsupervised learning techniques where learning is

based on unlabeled data. Let us understand this with an example.

A company wants to grow its business. To grow the business, the company has

decided to group customers so that offers can be fine-tuned to each group. The

company doesn’t have specific rules to decide the group of a customer. It wants to find groups that are natural and have similar buying patterns so that

the offers can be fine-tuned to enhance the buying experience of their products.

The process of finding the groups, also called clusters, by analyzing the unlabeled data to find natural patterns is called clustering analysis.

Data samples with similar patterns can form one group called cluster. Now, we can rephrase the company’s project as finding clusters among customers so that the offers can be fine-tuned for each cluster to grow the business. There

are other areas where clustering analysis brings value, like anomaly detection,

genetics, pharmacy, and document information retrieval.

Anomaly detection includes fraud detection of financial transaction, labelling

newly produced mechanical item as defective and many others. In genetics, clustering analysis can be used to identify DNA that produces similar

behavioral patterns in animals. In turn, it helps to understand the evolution of living things on earth. In pharmacy, proven medicines and newly discovered drugs are clustered. One among the many newly discovered drugs is selected,

which is closest to the proven drug cluster. The selected new drug is then used

for next stage experimentation. This helps to pick the best suited drug for a disease with less time and resources.

There are numerous clustering algorithms with applications in various domains

for analysis. In this chapter, we will discuss popular algorithms belonging to different clustering categories. Along with algorithms, we will discuss cluster

evaluation methods necessary for the comparison of clustering algorithms.

Structure

In this chapter, we will cover the following topics:

Defining cluster and approaches to form clusters

Similarity and dissimilarity metrics

Evaluation of clustering algorithms

Categories of clustering algorithms

Few popular algorithms in each category

Objectives

After going through this chapter, you will be able to understand the meaning of

a cluster and the domains where clustering algorithms can be applied. You will

learn about the different categories of clustering algorithms, along with a few

popular algorithms under each category. You will learn about the metric to measure similarity or dissimilarity between data samples. You will also be introduced to various evaluation techniques applicable for clustering

algorithms.

Forming clusters

Clustering is an unsupervised learning technique that identifies natural clusters such that the degree of similarity between samples of the same cluster and the

degree of dissimilarity between samples of different clusters is maximized.

Similarity and dissimilarity criteria can vary based on the problem statement and the clustering algorithm.

Grouping of data samples result in a cluster. Definition of a cluster varies based on the algorithm due to the similarity/dissimilarity metrics chosen. The

objective of all algorithms remains the same: group all the samples that possess similar characteristics into one cluster and those with dissimilar characteristics to different clusters. The approach of forming clusters by assigning data samples can be broadly classified into two categories:

Hard clustering: Every data sample either belongs to one cluster or doesn’t belong to any. K-means is a hard clustering algorithm where each

data sample is assigned to only one cluster. Financial fraud detection uses

hard clustering approaches.

[image: Image 2294]

[image: Image 2295]

[image: Image 2296]

Soft clustering: Every data sample belongs to every cluster formed by the algorithm. Belongingness of a data sample to a cluster is represented

by a numerical value. For example, numerical value can be likelihood of

a data sample belonging to the cluster. Fuzzy theory-based algorithms

follow soft clustering. Streaming websites suggest movies of different

genre based on a customer’s watched videos. Suggested videos will

contain more from the genre customer likes.

Variations are possible between these extremes:

Strict partitioning clustering with outliers: Every data sample belongs to a maximum of one cluster. Data samples that don’t belong to any

cluster are called outliers. K-medoids clustering algorithm partitions the

data samples with outliers.

Overlapping clustering: Data sample can belong to more than one

cluster in hard way. Clustering algorithms based on fuzzy theory have

overlapping clusters.

Hierarchical clustering: Clusters are related to each other in

hierarchically. A data sample belonging to child cluster also belongs its

parent cluster. Balanced Iterative Reducing and Clustering using

Hierarchies (BIRCH) is a popular hierarchical clustering algorithm.

We discussed ways of forming clusters from the data samples. Next, let us discuss metrics that are used to decide the belongings of a data sample to the

cluster.

Distance and similarity

Metric or distance or dissimilarity function is a non-negative real valued function, which provides a notion of how far the two elements of the set are.

 Metric function on a non-empty set X is defined as d: X × X → [0, ∞), where the following properties must hold for x, y, z ∈ X:

Identity of indiscernible

Symmetry

Triangle inequality

The main criteria to judge whether data points are similar is based on the distance between them. The distance metric is preferred for quantitative data where each sample is associated with unique numerical value. The higher the

[image: Image 2297]

[image: Image 2298]

[image: Image 2299]

[image: Image 2300]

value of distance metric between data points, the farther the samples. For example: revenue in rupees, height in meters, distance between stars in light years, and age in years/months/days.

For qualitative data, which is primarily non-numerical in nature, similarity metric is commonly used. The higher the value of similarity metric between data points, the closer the samples.

For example: color of an object, texture of an object, like shiny or dull.

Popular distance and similarity metrics are summarized in Table 7.1. Let two data samples be represented in vector space of d-dimensions as

. Refer to the following table:

 Table 7.1: Popular distance and similarity metrics and their formula

Let us understand the Minkowski distance with different values of n. For different values of n, we get different metrics, which are used in different

[image: Image 2301]

[image: Image 2302]

[image: Image 2303]

[image: Image 2304]

[image: Image 2305]

[image: Image 2306]

contexts. When n < 1, distance function follows only the first two properties due to which it cannot be called a metric function. But when n ≥ 1, distance function follows all three properties due to which it can be called metric function. Let us understand the behavior of Minkowski distance with three values of n = 1, 2, ∞ in two-dimensional space (with d=2). While calculating the distance between vectors, let us consider one of the vectors as origin, that is, b = 0. Then, Minkowski distance from origin in two-dimensional space becomes:

Let us consider all points that are unit distance (distance_from_origin = 1) from the origin for various values of n. Figure 7.1 shows these unit distance points from the origin for values of

:

 Figure 7.1: Plotting of all points that are unit distance from the center, where Minkowski distance is used with various values of n, (left) n=1, (middle) n=2, (right) n=

Consider the analysis of documents where each document can be of any

number of pages. Documents need not be of the same page count. One way to

represent documents numerically is to count the occurrences of important words in the document. If we are interested in d number of words, then each document is represented by a vector of d-dimensions. Each word is represented with one dimension. Value for the document in a particular dimension

represents the frequency of the occurrence of that word representing that dimension. Once the documents are represented with vectors, which metric do

you use to find the distance between these vectors?

[image: Image 2307]

[image: Image 2308]

[image: Image 2309]

[image: Image 2310]

[image: Image 2311]

[image: Image 2312]

[image: Image 2313]

[image: Image 2314]

[image: Image 2315]

Let us consider two documents

and two important words

. Then,

vectors

representing these documents will belong to

, as shown in

 Figure 7.2. The ratio between the count of words

for both documents

are similar

. The metric we use should reflect the same, saying they are

closer. Refer to the following figure:

 Figure 7.2: Euclidean distance and angle between two vectors

Euclidean distance between these vectors would be:

Whereas the cosine distance between these vectors would be:

From the calculation, we can conclude that cosine distance is better suited metric for comparison as compared to Euclidean distance. A detailed

discussion about representing documents in vector space is discussed in

 Chapter 11, Natural Language Processing

[image: Image 2316]

[image: Image 2317]

Mahalanobis distance can find the distance between a point and the

distribution. It uses covariance information for calculating distance, due to which it is useful on multivariate data. It has application in anomaly detection and other fields as well. Let us consider a few samples of data points and calculate their mean and the Mahalanobis distance of samples from the mean.

Before calculating the Mahalanobis distance, we need to calculate the

covariance matrix, where rows/columns represent dimensions of the data

points. Code 7.1 provides the steps to calculate covariance matrix and its inverse on data samples:

1. import numpy as np

2. from numpy.linalg import pinv

3. cluster_samples = np.array([

4. [10,15], [16,24], [25.,21], [33,28], [38,45], [40.,36],

[37.,20]

5.])

6. cluster_mean = np.mean(cluster_samples, axis=0)

 7. # Calculating covariance matrix

8. clust_cov = np.cov(cluster_samples.T)

9. clust_cov_inv = pinv(clust_cov)

 Code 7.1: Calculation of covariance matrix and its inverse

The preceding code would output cluster mean as and inverse of the

covariance matrix

as follows:

 Code 7.2 provides the functions to calculate Mahalanobis and Euclidean distance:

1. def mahalanobis_dist_sqr(sample1, sample2, cov_matrix_inv):

2. mean_smp_diff = sample1 - sample2

3. return

np.dot(np.dot(mean_smp_diff.T,cov_matrix_inv),mean_smp_diff)

4. def euclidean_dist_sqr(sample1, sample2):

5. return np.sum(np.square(np.subtract(sample1, sample2)))

 Code 7.2: Calculation of Mahalanobis and Euclidean distance

Let us consider two samples from the cluster to calculate Mahalanobis and Euclidean distance, as shown in Code 7.3:

1. outlier_smp = cluster_samples[6]

2. cluster_smp = cluster_samples[5]

 3. # cluster mean vs cluster sample

4. mhl_dist_sqr_smp1 = mahalanobis_dist_sqr(cluster_mean,

cluster_smp, clust_cov_inv)

5. eucl_dist_sqr_smp1 = euclidean_dist_sqr(cluster_mean,

cluster_smp)

 6. # cluster mean vs cluster outlier

7. mhl_dist_sqr_smp2 = mahalanobis_dist_sqr(cluster_mean,

outlier_smp, clust_cov_inv)

8. eucl_dist_sqr_smp2 = euclidean_dist_sqr(cluster_mean,

outlier_smp)

 Code 7.3: Measuring distances between two sample points

The preceding code would output the following information. Table 7.2

contains the square of distances of samples from the mean:

 With respect to cluster_mean

 Mahalanobis distance square

 Euclidean distance square

cluster_smp

1.04

214.9

outlier_smp

3.14

122.5

 Table 7.2: Mahalanobis and Euclidean distance of two samples from the cluster mean Euclidean distance was not able to find the outlier with respect to cluster distribution. In fact, Euclidean value indicates that the outlier sample is nearer to the cluster mean than the cluster sample. On the other hand, Mahalanobis distance is clearly indicating that outlier sample is far as compared to the cluster sample. These samples are captured in Figure 7.3:

[image: Image 2318]

 Figure 7.3: Plotting of data samples with special markers on cluster’s mean, a data sample in cluster and outlier

Cluster quality

Challenges to evaluate these unsupervised clustering algorithms are different as compared to supervised algorithms. Clustering algorithms are used to extract natural patterns from the unlabeled data. As these patterns are not known before, algorithms would extract patterns based on the approach or heuristics. Most times, we cannot decide whether the extracted patterns are right or wrong.

Evaluation of clustering algorithms can be categorized into internal and external. Internal evaluation is based on the assumption that data samples belonging to one cluster should be more similar as compared to data samples

belonging to different clusters. External evaluation is performed on the labeled data set. This labeled data set is not seen by the algorithms. Most times, these kinds of labeled datasets are created by humans who are experts in the problem

domain we are solving. These are also called benchmarks. The process of

[image: Image 2319]

[image: Image 2320]

[image: Image 2321]

[image: Image 2322]

[image: Image 2323]

[image: Image 2324]

[image: Image 2325]

evaluating algorithms using standard labeled dataset is called external evaluation.

Internal evaluation

Internal evaluation techniques assign higher score to algorithms that produces

clusters with high similarity within a cluster and low similarity between clusters. However, we should keep in mind that these indicators don’t imply that the algorithms produce valid/invalid results.

For example: Consider that an indicator assumes natural clusters are convex in

shape then this indicator would score high for algorithms that work on similar

heuristics. Definitely, this indicator will score low for algorithms that do not assume convex patterns in the data.

Davies-Bouldin indicator

Let there be n clusters denoted as

. Let us use centroid to

represent a cluster (group of similar data samples) with a single vector.

 Centroid of a cluster is defined as arithmetic mean of all samples belonging to the cluster. Let the centroid of these clusters be denoted as

. Let

denote the average distance of all data samples belonging to

cluster, and let denote the average distance of all data samples belonging to

cluster . Let the distance metric between two centroids be denoted as

. Distance function can be any one of the distance metrics. Davies-

 Bouldin indicator is defined as follows:

Dunn indicator

Dunn indicator helps us in identifying the algorithm that extracts dense and well-separated clusters. It is calculated as the ratio between minimum inter-cluster distance and the maximum intra-cluster distance. It is defined as follows:

[image: Image 2326]

[image: Image 2327]

[image: Image 2328]

[image: Image 2329]

[image: Image 2330]

[image: Image 2331]

[image: Image 2332]

[image: Image 2333]

[image: Image 2334]

[image: Image 2335]

[image: Image 2336]

[image: Image 2337]

[image: Image 2338]

[image: Image 2339]

[image: Image 2340]

[image: Image 2341]

Where

measures the distance between cluster and and

measures intra-cluster distance of cluster

. Choice of these

distance functions can vary based on the problem domain. Algorithms produce

clusters with high Dunn indicator value is preferred.

Silhouette coefficient

Silhouette coefficient measure of each data sample depends on how similar the

data sample is to its assigned cluster, called cohesion, and how dissimilar the data sample is compared to data samples belonging to other clusters, called separation. Cohesion and separation with respect to one data sample is shown

in Figure 7.4:

 Figure 7.4: (left) cohesion: with in the cluster (right) separation: outside the cluster Consider a data sample

belonging to the

cluster

.

represents

the count of data samples assigned to the cluster

. Then, similarity or

cohesion of the data point

with respect to the other data samples of

the same cluster is defined as follows:

Value

signifies how well it is assigned to the cluster

; a smaller

value indicates better assignment. Dissimilarity or separation of the data

[image: Image 2342]

[image: Image 2343]

[image: Image 2344]

[image: Image 2345]

[image: Image 2346]

[image: Image 2347]

[image: Image 2348]

[image: Image 2349]

[image: Image 2350]

[image: Image 2351]

sample

with respect to the samples of the other clusters

, where

is defined as follows:

Value

signifies the smallest mean distance/dissimilarity of the point

to all other points in any other cluster

. Cluster the smallest mean

dissimilarity with data sample

is called the neighbor cluster for the data

sample.

Using the terms of similarity and dissimilarity, silhouette value is defined as follows:

Silhouette value ranges [–1, 1]. A higher value indicates that the data sample is well matched to the cluster it is assigned to and more dissimilar to a neighbor

cluster. A higher value is preferrable for the data sample. A larger percentage

of data samples having high silhouette value is preferred. This evaluation indicator can be used with any distance metric. Using the silhouette value of all N data samples, we can define Silhouette Coefficient (SC) as follows: Plotting silhouette coefficient of data samples will help us in deciding the right number of clusters. The right number of clusters occur when the SC score of

all data samples is near to the overall average SC score. For more information,

refer to the link stated in References [2].

External evaluation

[image: Image 2352]

[image: Image 2353]

[image: Image 2354]

[image: Image 2355]

[image: Image 2356]

[image: Image 2357]

[image: Image 2358]

[image: Image 2359]

External evaluation of the algorithms is performed on standard labeled data set.

As the data set is labeled, we can identify whether the test samples are correctly clustered. After the application of any algorithm on test data, which is already labeled (ground truth), we have clusters containing this labeled data.

Clusters formed by the selected algorithm may be different from the ground truth. Evaluation of the selected algorithm will be performed by comparing the

clusters formed by the algorithm and the ground truth (labeled test data).

Consider one cluster out of all clusters produced by the selected algorithm, and then we define the following terms:

True Positive - TP: Data samples that belong to the cluster and are correctly assigned to the cluster .

True Negative - TN: Data samples that belong to another cluster are rightly not assigned to .

False Positive - FP: Data samples that belong to another cluster are assigned to cluster .

False Negative - FN: Data samples that belong to cluster but are incorrectly assigned to another cluster.

Rand index

Rand Index (RI) computes the similarity between clusters formed from the algorithm versus the ground truth data of labeled data set. RI for each cluster is defined as follows:

F-measure

F-measure indirectly weights the terms TP, TN, FP, FN through the parameter

to provide one number for each cluster or class. Two measures that

used to define F-measure are Precision and Recall.

Precision (P) of a cluster is the ratio between the number of correctly assigned samples and the count of all samples assigned to the cluster, defined as follows:

[image: Image 2360]

[image: Image 2361]

[image: Image 2362]

[image: Image 2363]

[image: Image 2364]

Recall (R) of a cluster is the ratio between the number of correctly assigned samples and the count of all samples that rightly belong to the cluster (based

on ground truth), defined as follows:

Using precision and recall, we can define F-measure using parameter

as

follows:

Fowlkes–Mallows index

Fowlkes-Mallows index (FM) computes similarity between two clusters. FM

can be defined as the geometric mean of precision P and recall R. A higher value indicates that clusters are more similar. FM is defined as follows:

Jaccard index

Jaccard index provides value in range while comparing two sets. Value of 0

indicates that the sets have no common elements. Value of 1 indicates that the

sets are identical. Jaccard index for comparing two sets is defined as follows:

Clustering algorithms

There exist many factors to choose the clustering algorithm for our task.

Factors include data type, dataset size, data sample dimensions, scaling of algorithm based on the larger/newer data, time complexity and resource

requirements of the algorithm, domain of the problem, similarity/dissimilarity

comparison between data samples. Based on these factors, we can choose the

clustering algorithm. There exist many types of clustering algorithms, each of

[image: Image 2365]

[image: Image 2366]

[image: Image 2367]

[image: Image 2368]

[image: Image 2369]

[image: Image 2370]

[image: Image 2371]

[image: Image 2372]

[image: Image 2373]

[image: Image 2374]

[image: Image 2375]

which is suited for a particular context. Next, we will discuss a few important

categories of clustering algorithms.

Partition-based clustering

In this clustering approach, each cluster is represented by a central or centroid vector, which need not be the data set vector. This central or centroid vector is representative of the corresponding cluster. There exist various methods to calculate this representation vector. Algorithm might remain the same, but the

method to choose a vector representing a cluster might differ, resulting in different clusters and interpretation. k-means and k-medoids are the most popular clustering algorithms in partition-based clustering.

K-means

K-means [3] clustering algorithm partitions the data set samples into k (given) clusters such that it minimizes With-In Cluster Sum of Squares (WCSS) (which is variance). Centroid or central vector of a cluster is calculated by taking the mean of all samples belonging to the cluster, hence the name k-

means.

Formally, k-means divides the samples

, where

and d

= dimensionality of data-sample vector, into k distinct sets

such that:

Where μ i is mean of the data vectors belonging to cluster .

Finding the optimal solution is NP-hard problem, time complexity is

. Most of the proposed approximate algorithms work on heuristics

and converge quickly to local optimum. Popular approximate solution is k-

means; the k-means algorithm follows the given steps with the given k value.

1. Initialize randomly, k data samples as centroid of k clusters

.

2. Every data sample is assigned to a cluster whose centroid vector is

nearest to the sample vector . In other words, is assigned to a cluster

[image: Image 2376]

[image: Image 2377]

[image: Image 2378]

whose centroid is , where j is

.

3. Calculate centroids

for k clusters by taking the mean of

all samples assigned to the respective cluster.

4. If there is change in any centroid of the cluster, then go to step 2, else stop.

Algorithm would output k clusters where each data sample is assigned to one cluster. The value of k is input to the algorithm. How do we know the right value of k? There doesn’t exist a correct way to find the value of k. We must try with different values of k and infer each of the output based on our objective. Elbow method helps to find right number of clusters but may not work in all situations.

Elbow method

Plot the graph with k-value on one axis and error on another. In some cases, we can notice that error decreases gradually with increase in k value and then suddenly, the rate of error diminishes. The value of k at this juncture, known as elbow, can be considered. This method to determine the value of k may produce right result in a few cases, and there is no supporting mathematical foundation stating that this method will work in all cases.

Challenges

K-means algorithm is not widely used due to the following challenges:

The algorithm works on the assumption that all clusters are of similar sizes.

An invalid k value will probably result in a few invalid clusters.

It works on the assumption that clusters are spherical. Clusters of Iris flower dataset are not spherical, and this algorithm fails to find right clusters on this dataset.

Algorithm output is influenced by presence of outlier or noise as centroid

vector selection is affected by outliers.

We can change the method to calculate the centroid of a cluster. Instead of mean, we can use medoids or medians. The algorithm that uses median to calculate cluster’s centroid is called k-medians, and the algorithm that uses medoids is called k-medoids. Other steps for these algorithms will remain similar as compared to k-means.

K-medoids

Medoid of the cluster is defined as the data sample of the cluster whose average dissimilarity to all the data samples within the cluster is minimum. K-medoids [4] chooses actual data points as centroid, and it aids better interpretability of the cluster centroids as compared to centroids k-means.

Since, k-medoids minimizes a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances (in case of k-means), it is more robust to noise and outliers than k-means. K-medoids can be used with arbitrary dissimilarity measures, whereas k-means works best with Euclidean distance. Here too, k-medoids problem is NP-hard to solve exactly. A few of the popular

approximate algorithms are Partitioning Around Medoids (PAM) [5], Clustering Large Applications (CLARA) and Clustering Large Applications based on Randomized Search (CLARANS) [6].

The PAM algorithm follows these steps:

1. Randomly initialize k data sample as centroids.

2. Assign all non-centroid data samples to the closest centroid.

3. For each centroid m and for each non-centroid x:

a. compute the cost by temporarily swapping m & x

b. remember the least cost combination

4. Swap m & x that gives least cost.

5. If there is change in any of the centroid of cluster, then go to step 3, else stop.

Partition based-clustering algorithms mostly form hard clusters. The main limitation of this category of algorithms is choosing the value of k. Next, let us discuss density-based clustering that do not require k value as input and outliers need not be assigned to any cluster.

Density-based clustering

Density-based clustering algorithms assigns data samples in high-density

region to the same cluster. The number of clusters is determined based on the

cluster density and a threshold. Clusters with lower density can be considered

outliers. Clusters output from these algorithms are often hard clusters. Popular algorithms in this category are Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [7], Ordering Points To Identify

[image: Image 2379]

[image: Image 2380]

[image: Image 2381]

[image: Image 2382]

[image: Image 2383]

[image: Image 2384]

[image: Image 2385]

[image: Image 2386]

[image: Image 2387]

Cluster Structure (OPTICS) [8], Density-based Clustering (DENCLUE)

 [9].

DBSCAN

In DBSCAN [7], data points are classified as core points, directly reachable points, reachable points, and outliers. Before defining these, let us define the ε

parameter and the neighborhood. Let the ε-parameter (input to algorithm) that

specifies ε-neighborhood with respect to a point p belonging to dataset D be defined as follows:

Where

can be any distance metric. Let’s define min_pts as a

positive integer value that is input to the algorithm. We can define different types of points with respect to ε-neighborhood, as shown in Figure 7.5.

Definitions of these points are captured as follows:

A point is called core point if the number of points within the distance of ε (including the point under consideration) from the core point is ≥

 min_pts.

A point q is said to be directly reachable from p if q is within the ε

distance from the core point p.

A point q is said to be reachable from core point p if there is a path

, where

, and every

is directly

reachable from , where

.

Points that are not reachable from any other point are called outliers.

Refer to the following figure:

[image: Image 2388]

 Figure 7.5: Types of points with respect to ε-neighborhood

Each cluster will have at least one core point and at least min_pts – 1 number of points directly reachable from the core point. Reachability is not symmetric as only core points can reach non-core points.

Let us define a symmetric relation. Two points p and q are said to be density-connected if they are reachable from a common point, say o. Figure 7.6

depicts density-connected points. From the definition, the common point o must be core point as reachability is defined only for the core points. With this symmetric relation, we can define the clusters formed by DBSCAN algorithm.

These clusters satisfy two properties:

All points within a cluster are mutually density-connected.

If a point is density-reachable from any point of the cluster, then it must

be part of that cluster. Refer to the following figure:

[image: Image 2389]

 Figure 7.6: Density connected points

Pseudo code

Let us now write pseudo code:

For each non-processed point p belonging to the dataset D:

If p is a core point (as shown in Figure 7.5), then:

 C = { q | q is density-connected with p,

for given ε & min_pts where q ∈ D}

Mark all points belonging to as processed.

Output cluster .

Else, mark point p as outlier and processed.

Choosing parameters

Parameter ε>0 is real number, min_pts is a positive integer, and distance metric is an input to the DBSCAN. Choice of these parameters impacts the end

result of the DBSCAN. A few approaches for the selection of these values are

discussed as follows:

Parameter min_pts influences the number of points in one cluster. The higher the value, more points are assigned to the same cluster. Keeping

the value large will result in addition of noise or outliers to the clusters.

Low value will result in a greater number of clusters and outliers.

The value of ε can be chosen by plotting the average of distances from

every point to its min_pts nearest neighbors. These average min_pts distances from points are plotted in increasing order and the value of ε

will be the “knee” point, where there is a sharp increase in the graph. For more information, refer to [20] in the References section. A lower value will result in a high number of clusters and high number of outliers, whereas a higher value will result in low number of clusters.

The choice of distance function is tightly coupled with ε value. Its choice should be based on the domain problem we are solving.

Advantages

DBSCAN has a few advantages, mentioned as follows:

The number of clusters are formed based on the input parameter. There is

no requirement to input the number of clusters to the algorithm, like in k-

means.

It can find clusters of different shapes. This algorithm works even when

one cluster is surrounded by another.

It is robust to outliers and is mostly insensitive to the order of points being processed.

Limitations

A few challenges faced by applications of DBSCAN are mentioned as follows:

Performance degrades if there exist clusters with large differences in their

densities.

Performance depends on the distance metric being used. The most

common metric used is Euclidean distance. Choosing the value of ε

based on Euclidean distance in higher dimensions is challenging.

 Figure 7.7 shows clusters formed by k-means and DBSCAN. We can see that DBSCAN forms clusters with connected points. As k-means forms clusters

around the centroid, we can see that one circle is divided into two clusters.

Refer to the following figure:

[image: Image 2390]

 Figure 7.7: Application of k-means and DBSCAN on two types of sample sets.

Distribution-based clustering

Distribution-based clustering is based on the assumption that if original data maps to more than one distribution, then samples belonging to the same cluster

should come from one distribution. One of the popular algorithms under this

category is Gaussian Mixture Model (GMM) [10].

Gaussian Mixture Model

In the K-means algorithm we just discussed, we have shown the cluster center

using a single point (may not always be data point) and assigned each data point to the nearest center point. Suppose the groups or clusters have to overlap. Then, assigning every data point to a single cluster is not possible. For example, let’s take a look at sample two-dimensional data in Figure 7.8. We can see the formation of two groups in the data, one of which has a lot of spread horizontally and one that has a lot of spread vertically, but both are centered at the same place. k-means will not be able to discover this pattern as it will try to find two circular non-overlapping clusters, assuming that Euclidean distance is used. Refer to the following figure:

[image: Image 2391]

 Figure 7.8: Sample data points from two distributions

GMMs are an extension of the k-means model, in which each cluster is modeled with multivariate Gaussian distributions. So, we have to not only find

the mean but also a covariance that describes their ellipsoidal shape of the clusters. The parameters of this distribution can be estimated by maximizing the likelihood of the observed data, which is done by an algorithm called Expectation Maximization (EM), discussed in the following sections. This is a soft clustering technique where we assign data to each cluster with some soft

probability. Moreover, with this approach of clustering, we are essentially

creating a probabilistic generative model (explained in chapter 12 Generative

[image: Image 2392]

[image: Image 2393]

[image: Image 2394]

[image: Image 2395]

[image: Image 2396]

[image: Image 2397]

[image: Image 2398]

[image: Image 2399]

[image: Image 2400]

[image: Image 2401]

[image: Image 2402]

 Models) for the data. Hence, with GMM, we can even sample new data points

that resemble the points in the data set; we can impute missing data values.

Let’s understand the GMM probability distribution model in one dimension, as

shown in the Figure 7.9. Here, we have taken a mixture of three univariate Gaussian distributions with different means and variance . The probability of

observing

any

point

from

this

distribution

is

given

by

. Here, are called the mixture weights, and we

have

. Suppose we have 20 points from the

leftmost cluster, 10 from the middle cluster, and another 20 from the rightmost

cluster; then, we can take

. Refer to the following

figure:

 Figure 7.9: Three univariate Gaussian distributions

We can interpret this joint probability distribution over x in a simple generative way. To draw a sample x from P(x), we first select one of the components with discrete probability

, that is, if we denote the mixture component by the

discrete random variable Z, then

. Components with large

probability are selected more often. This is similar to choosing one cluster centre in k-means. Now, we can sample X from the corresponding Gaussian

. Thus, these two distributions make a joint model

over X and Z together.

The variable Z is sometimes called latent or hidden variable. The presence of the unknown value of Z helps explain the patterns in the values of X. Detailed

discussion about this topic can be found in Chapter 5, Statistical Inference and

 Applications and Chapter 12, Generative Models.

[image: Image 2403]

[image: Image 2404]

[image: Image 2405]

[image: Image 2406]

[image: Image 2407]

[image: Image 2408]

[image: Image 2409]

[image: Image 2410]

[image: Image 2411]

[image: Image 2412]

[image: Image 2413]

[image: Image 2414]

[image: Image 2415]

[image: Image 2416]

[image: Image 2417]

[image: Image 2418]

[image: Image 2419]

[image: Image 2420]

[image: Image 2421]

For clustering problem, we have multivariate data and hence we use a

multivariate Gaussian with vector mean

of length n (the same size as the

number of features in a data) and an

covariance matrix

. Now, we

need to estimate these parameters by Maximum Likelihood Estimation

(MLE). But direct application of MLE is hard for mixture models and hence we will use iterative algorithm called Expectation Maximization (EM) algorithm. EM has two steps: expectation step (E-step) and maximization step (M-step). We know how to calculate MLE parameter estimates of a Gaussian

model: Let be the mean of the data, that is,

, and the

covariance estimate the mean of the

matrices formed by the outer

product of X minus with itself, that is,

.

EM Algorithm

Let us now discuss the steps of EM algorithm:

Initialize the means

, covariances and mixing coefficients

: One

way to initiate the GMM is to first run k-means and choose the centres as

initial estimates for

. k-means also tells us which data points belong to

which cluster. A good starting estimate for the

is the within-cluster

covariances, and the weights are the fractions of data points allocated

to each cluster.

Expectation (E-step):

for each data point :

for each cluster c:

Compute a measure of relative probability

(called

responsibilities) as follows:

Maximization (M-step): Re-estimate the parameters using the

responsibilities as follows:

for each cluster c:

Total responsibility associated with the cluster

[image: Image 2422]

[image: Image 2423]

[image: Image 2424]

[image: Image 2425]

[image: Image 2426]

[image: Image 2427]

[image: Image 2428]

[image: Image 2429]

Iterate E-step and M-step until convergence, that is, until the norm of the estimated parameters stop changing significantly. Every step of EM algorithm

increases the log-likelihood (explained in Chapter 5, Statistical Inference and

 Applications) of our model.

 Note: EM algorithm is very similar to k-means algorithm. k-means does

 not estimate the covariances of the clusters but only the cluster means. It

 assumes the clusters are circular by taking fixed Identity covariance

 matrices. Choosing Σc = ∈ I, where ∈ is a variance parameter that is shared

 by all the components, the responsibilities become

 Taking the limit

 , in the denominator, the term

 , which

 is closest to zero, will vanish slowly and the responsibility for that term will

 approach 1. So, we get a hard assignment of data points to clusters, that is,

 each data point is assigned to the cluster having the closest mean. Thus,

 EM algorithm reduces to k-means with the fixed circular covariance

 assumption.

The EM algorithm can be generalized for any model with hidden variables. A

probabilistic model is one in which we denote all the observed variables by X

and all the hidden variables by Z. The joint distribution

is governed

by a set of parameters denoted . The likelihood function is given by

.

Hierarchical-based clustering

Hierarchical clustering builds hierarchy of clusters from the data points.

Approaches to build the hierarchy of clusters can be divided into two types: agglomerative and divisive:

Agglomerative is a bottom-up approach where initially, each data point is treated as a cluster, and then clusters are merged while moving up the

hierarchical structure.

Divisive is a top-down approach where initially, all data points are treated as one cluster, and then clusters are split while moving down the

hierarchical structure.

Finding optimal hierarchical structure is NP-hard. So, most times, merging and

splitting of the clusters are decided in a greedy manner. Selection of clusters

for merging and splitting is based on the distances between clusters. And the

choice of the distance metric greatly influences the shape of the clusters.

Popular algorithms under this category are Balanced Iterative Reducing and

Clustering Using Hierarchies (BIRCH) [11], Clustering Using Representatives (CURE) [12], and Robust Clustering using links (ROCK)

 [13].

Agglomerative clustering

Algorithms under this category start by treating every data sample as a cluster

on its own. Distances among all existing clusters are calculated. Two clusters

with the shortest distance are merged to form one cluster at one level up in a

hierarchical way. These two steps are performed repeatedly till we reduce clusters to the required number of clusters.

Example: Let us understand the approach with a few data samples, as shown in Figure 7.10. Initially, every sample is the clusters, as shown in (a).

Distances among all clusters are calculated, and the shortest distance is chosen for merging two clusters. As shown in (b), two clusters with the shortest distance are merged. These two steps of calculating distances among clusters

and merging the shortest distance clusters is repeated until we obtain the desired number of clusters. Here, the simple Euclidean metric is used for distance calculation. Refer to the following figure:

[image: Image 2430]

[image: Image 2431]

[image: Image 2432]

[image: Image 2433]

[image: Image 2434]

 Figure 7.10: Agglomerative hierarchical clustering: At each step, two closest clusters or data samples are merged

Distance between clusters

How do we calculate the distance between clusters? Algorithms used to

calculate the distance between clusters are called linkage algorithms. Let us understand the categories of linkage algorithms that are popularly used to calculate distance between two clusters

:

Single linkage: Distance between two clusters is defined as the shortest

distance between two data samples belonging to each cluster. It is defined

as follows:

Complete linkage: Distance between two clusters is defined as the longest distance between two data samples belonging to each cluster. It is

defined as follows:

Average linkage: Distance between two clusters is defined as average of

distances between every point in one cluster to every point of another cluster.

[image: Image 2435]

Centroid Linkage: Distance between two clusters is defined as the distance between the centroids of the clusters.

Ward linkage: Objective of this approach is to minimize the total within-

cluster variance. Merging of clusters always leads to an increase in

within-cluster variance. Two clusters are chosen for merging, which

minimizes the increase of within-cluster variance.

The comparison of linkage methods on a sample data set is captured in Figure

 7.11. Single linkage and complete linkage are sensitive to outliers due to the

distance calculation employed. As average linkage and centroid linkage

calculate distance by considering all samples of the cluster, they are less sensitive to outliers. Refer to the following figure:

 Figure 7.11: Comparison of linkage algorithms on two data sets

The main objective of all hierarchical clustering algorithm is to find two clusters for merging in the bottom-up approach and one cluster for splitting in

the top-down approach. Criteria to choose the cluster varies by the algorithm,

as discussed. To perform these operations on a larger data set, we need to use a data structure that works efficiently.

BIRCH

[image: Image 2436]

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

 [11] first generates a compact summary of the original that retains as much distribution information as possible, and then the clustering algorithm is applied on the summary instead of the original data set. Various hierarchical algorithms can use this approach on large data sets, where the complete data

set doesn’t fit into the available memory. With little modification, it can be adapted to non-hierarchical algorithms, like k-means.

Graph-based clustering

In the graph-based approach, data samples are represented as nodes of the graph, and edges between these nodes represent their relationship. Once data

samples are represented in graph form, we can apply graph-based algorithms to

obtain the desired results. Popular algorithms in this category are CLICK [14], algorithms based on minimum spanning tree [15][16], normalized cuts and image segmentation [17], and spectral clustering [18]. Graph-based clustering algorithms are commonly used in social network analysis, power grid

networks, telecommunication networks, and spreading of a disease through contact.

Spectral clustering

Spectral clustering techniques make use of eigenvalues (spectrum) of the similarity matrix to perform dimensionality reduction. Any clustering

algorithm can then be applied on the dimensionality reduced data set.

Before applying graph techniques, we must represent data in graph form. Data

samples represent nodes, and edges represent the similarity relationship between data samples. Value of these edges will form similarity matrix. We must partition the graph into the required number of groups such that edges between different groups have low value (lower similarity) and edges within the group have high value (higher similarity). Graph partitioning is NP-hard problem. Approximate solution can be found by using Graph Laplacians.

Considering all data samples as enumerated, similarity matrix can be defined

as a symmetric matrix Α where

represents similarity relationship

between data samples i & j. The next step is to obtain Laplacian matrix of Α.

There exist various ways to define the Laplacian matrix, and each one impacts

clustering algorithms differently. One of the ways to define Laplacian matrix is as follows:

[image: Image 2437]

[image: Image 2438]

[image: Image 2439]

[image: Image 2440]

[image: Image 2441]

[image: Image 2442]

[image: Image 2443]

Here are a few properties of Graph Laplacian that help us to find an approximate solution quickly:

is positive semidefinite when

and Α is symmetric

Eigenvalues of are real and non-negative, and the corresponding eigen

vectors form orthonormal basis

Dimensions of null space of is equal to the number of connected

components of the graph

Algorithm to partitioning the graph is as follows:

1. Create similarity matrix A.

2. Construct graph Laplacian .

3. Calculate eigenvalues and corresponding eigen vectors.

4. Pick k eigen vectors corresponding to the smallest k eigenvalues (eigenvalues of a positive definite real symmetric matrix are always real).

5. Construct projection matrix P using k eigen vectors.

6. Project the data to lower k-dimensions using

.

7. Apply clustering algorithm on dimensionality reduced data.

Let us use spectral and k-means clustering algorithms implemented in Scikit-

learn library on the toy dataset to understand the differences in the resulting

clusters. Figure 7.12 illustrates the output of k-means and spectral algorithm:

[image: Image 2444]

[image: Image 2445]

[image: Image 2446]

[image: Image 2447]

[image: Image 2448]

 Figure 7.12: Application of k-means and spectral algorithm on three data sets

Fuzzy theory-based clustering

Fuzzy means vagueness. This occurs in scenarios where classification of an object cannot be performed deterministically. The object can belong to more than one class with certain probability. Fuzzy set theory is an extension of classical set theory, where elements belong to a set with certain probability (called degree of membership). Consider classifying the people based on age into two sets: young and old. As there is no universally agreed age threshold

after which a person becomes old, this is an example of fuzziness. A person with age 35 will belong to young with probability 0.6 and old with 0.4.

In fuzzy theory clustering algorithms, data sample’s relationship to the cluster is replaced from discrete value {0,1} to a continuous value [0,1]. Here, each

data sample can belong to more than one cluster, and the degree of

belongingness to a cluster is represented by the continuous value [0,1]. One of

the most popular algorithms in this category is Fuzzy C-Mean algorithm (FCM) [19]. Algorithms under this category output soft or overlapping clusters. Fuzzy algorithms are relatively insensitive to initial conditions.

Fuzzy c-means

Consider an n data sample set

divided into m fuzzy

clusters

, where

is centroid of the

cluster.

[image: Image 2449]

[image: Image 2450]

[image: Image 2451]

[image: Image 2452]

[image: Image 2453]

[image: Image 2454]

[image: Image 2455]

[image: Image 2456]

[image: Image 2457]

[image: Image 2458]

[image: Image 2459]

[image: Image 2460]

[image: Image 2461]

[image: Image 2462]

Belongingness of to the cluster is represented by

, where

. This value is also called membership value. d is a hyper-parameter controlling the fuzziness of the clusters (higher value results in higher fuzziness). Membership value is defined as follows:

Fuzzy centroid of the

cluster is defined as follows:

The objective of FCM is to minimize the following function:

The K-means algorithm optimizes the same objective function stated before, but the membership value

will be either zero or one. Degree

of fuzziness is controlled by value of

. As

becomes

either 0 or 1, FCM turns to k-means algorithm.

We have discussed different categories of clustering algorithms. There are no

well-defined guidelines that talk about the best-suited algorithm for a particular domain. We must experiment different distance metrics and clustering

algorithms on our problem to meet the requirements.

Conclusion

In this chapter, we discussed distance metrics and clustering algorithms that are specifically used on unlabeled data. We also discussed various popular

categories of clustering algorithms with specific algorithm in each category.

There are different real scenarios where unlabeled data, or little labelled data is available. In these scenarios, we must use clustering algorithms.

In the next chapter, we will explore neural networks inspired by brain neurons, which have shown the capability to learn complex relations in data.

References

1. Xu, D. and Tian, Y., 2015. A comprehensive survey of clustering algorithms. Annals of Data Science, 2(2), pp.165-193.

2. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer P., Weiss, R., Dubourg, V.,

 Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &

 Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

3. MacQueen, J. , 1967, June. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley

 symposium on mathematical statistics and probability (Vol. 1, No. 14, pp.

281-297). Popularly known as k-means.

4. Park, H.S. and Jun, C.H. , 2009. A simple and fast algorithm for K-medoids clustering. Expert systems with applications, 36(2), pp.3336-3341. Popularly known as k-medoids.

5. Kaufman, L. and Rousseeuw, P.J., 1990. Partitioning around medoids (program pam). Finding groups in data: an introduction to cluster

 analysis, 344, pp.68-125.

6. Schubert, E. and Rousseeuw, P.J. , 2019, October. Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. In International conference on similarity search and applications (pp. 171-187). Springer, Cham.

7. Ester, M., Kriegel, H.P., Sander, J. and Xu, X. , 1996, August. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231). Popularly known as

DBSCAN.

8. Ankerst, M., Breunig, M., Kriegel, H.P., Ng, R. and Sander, J. , 2008.

 Ordering points to identify the clustering structure. In Proc. ACM

SIGMOD (Vol. 99). Popularly known as OPTICS.

9. Hinneburg, A. and Keim, D.A. , 1998, August. An efficient approach to clustering in large multimedia databases with noise. In KDD (Vol. 98, pp. 58-65). Popularly known as DENCLUE.

10. Rasmussen, C.E., 1999, November. The infinite Gaussian mixture model.

In NIPS (Vol. 12, pp. 554-560). Popularly known as GMM.

11. Zhang, T., Ramakrishnan, R. and Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. ACM sigmod record, 25(2), pp.103-114.

12. Guha, S., Rastogi, R. and Shim, K. , 1998. CURE: An efficient clustering algorithm for large databases. ACM Sigmod record, 27(2), pp.73-84.

13. Guha, S., Rastogi, R. and Shim, K., 2000 . ROCK: A robust clustering algorithm for categorical attributes. Information systems, 25(5), pp.345-366.

14. Sharan, R. and Shamir, R., 2000 , August. CLICK: a clustering algorithm with applications to gene expression analysis. In Proc Int Conf Intell Syst

 Mol Biol (Vol. 8, No. 307, p. 16).

15. Jain, A.K., Murty, M.N. and Flynn, P.J., 1999 . Data clustering: a review.

 ACM computing surveys (CSUR), 31(3), pp.264-323.

16. Hartuv, E. and Shamir, R., 2000. A clustering algorithm based on graph

 connectivity. Information processing letters, 76(4-6), pp.175-181.

17. Shi, J. and Malik, J., 2000 . Normalized cuts and image segmentation.

 IEEE Transactions on pattern analysis and machine intelligence, 22(8),

pp.888-905.

18. Ng, A.Y., Jordan, M.I. and Weiss, Y., 2002 . On spectral clustering: Analysis and an algorithm. In Advances in neural information processing

 systems (pp. 849-856).

19. Bezdek, J.C., Ehrlich, R. and Full, W., 1984 . FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 10(2-3), pp.191-203.

20. https://towardsdatascience.com/how-to-use-dbscan-effectively-

 ed212c02e62

CHAPTER 8

Dimensionality Reduction

Every object is mathematically represented through vectors before the

application of AI algorithms. Representing an object with a random vector

is definitely a bad idea as it fails to capture the relationship among the data, if at all it exists. Most times, there do exist relationships between data that

will be critical information for the AI algorithm to learn the required task. A

critical task to perform before learning is to numerically represent the objects that capture their relationships.

With an increase in the count of attributes describing an object,

dimensionality of the represented data increases. Most times, the

represented data is sparse, resulting in the effects of “curse of

dimensionality”, as explained in chapter 1 Overview of AI. We can mitigate this effect to a certain extent by reducing the dimensionality of the data. The

process of reducing the dimensionality of the data by preserving the

required structure of the original data is called dimensionality reduction.

This chapter will discuss algorithms that can be applied for reducing higher

dimensions data to lower dimensions data.

Structure

In this chapter, we will cover the following topics:

Principal Component Analysis

Autoencoders

t-Distributed stochastic neighbor embedding

Objectives

After going through this chapter, you will be able to understand

dimensionality reduction algorithms like PCA, Autoencoder, and t-SNE.

You will learn to apply these algorithms on the Iris dataset.

Reducing dimensionality

Dimensionality reduction provides various advantages. Feeding

dimensionality reduced data will help AI algorithms learn faster with less computing resources and data sets. It is not just about feeding the data to AI

algorithms; we may have to visualize the high-dimensional data. However,

our senses restrict our visualization capabilities to the maximum of three dimensions. So, the higher-dimensional data must be reduced to three

dimensions or lower for visualization through eye. While reducing the

dimensions, we must preserve the relationships between the data points to

the maximum extent possible. Reducing dimensionality of the data is not just for visualization purposes. Reducing dimensionality by removing

correlated variables/features and the least-important variables/features

results in reduction of noise, which further improves an AI model’s

accuracy.

Dimensionality reduction techniques to reduce dimensions of the data can

be broadly classified into linear and non-linear.

Linear reduction techniques perform linear transformation of high-

dimensional data to low dimension. Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis (ICA) are a few examples of linear reduction techniques.

Non-linear reduction techniques perform non-linear transformation.

Non-linear dimensionality reduction algorithms include Kernel PCA,

Autoencoder, t-SNE, and UMAF Uniform manifold approximation

and projection (UMAP).

Another way to broadly classify dimensionality reduction based on

approach is feature selection and feature extraction:

Feature selection approaches a select subset of the features or

attributes that are more relevant for learning the task. Filter strategy, wrapper strategy, and embedded strategy are a few examples of feature

selection approaches.

In feature extraction or feature projection, high-dimensional data is

transformed into lower-dimensional data. Technique used to transform

data to lower dimensions may be linear or non-linear.

[image: Image 2463]

Dimensionality reduction algorithms are commonly used in signal

processing, speech recognition, neuroinformatics, and bioinformatics. They

are used as an intermediate step in noise reduction, data visualization, and

cluster analysis. We will also come across many other applications and will

discuss three-dimensionality reduction algorithms PCA, Autoencoder, and

t-SNE in detail.

Principal Component Analysis

Principal Component Analysis (PCA) is a linear unsupervised dimensionality reduction technique that performs linear mapping of high-dimensional data to low-dimensional data by choosing new axes or basis vectors. Choosing appropriate basis vectors for the given data makes tasks

easier.

Consider a few data samples, as shown in Figure 8.1. From the left figure, we can visualize that two axes are necessary to represent the data with its

original variability. Can we reduce this to one dimension? By just removing

one axis out of two, we lose more information or variation in the data. To

reduce data to one dimension, we must select an appropriate axis or a basis

vector such that the variance of the original data is retained to the maximum

extent. This is depicted in the right part of Figure 8.1. One inclined basis vector is enough to capture most of the original data’s variance, as shown in

 Figure 8.1. This is how choosing appropriate axis or basis vector for the given data simplifies the given task. Refer to the following figure:

 Figure 8.1: (left) plot of data samples with regular axis (right) choosing appropriate new axis for the data

[image: Image 2464]

[image: Image 2465]

[image: Image 2466]

[image: Image 2467]

[image: Image 2468]

[image: Image 2469]

[image: Image 2470]

[image: Image 2471]

[image: Image 2472]

Let us consider the data in n-dimensional space. We need to find maximum of n vectors

called principal components such that all the

following three conditions are satisfied:

is unit vector and orthogonal to where

.

is the best-fitting line that minimizes the average squared distance

from the data vectors to the line in the direction of .

Principal components are numbered such that captures variance of

 n-dimensional data better than where

.

These principal components can form an orthonormal basis for the linear transformation from n-dimensions to lower l-dimensions. Principal component analysis is the process of computing principal components and

using them to linearly transform data from n-dimensions to lower l-

dimensions with only the first k principal components. PCA reduces dimensions of the data by projecting each data vector on to only the first k principal components to obtain lower-dimensional data while preserving as

much of the data’s variation as possible.

Principal components can be computed by eigen decomposition of data

covariance matrix or singular value decomposition of data matrix. We will

consider the Iris dataset and apply eigen decomposition on its data

covariance matrix to obtain principal components. We will consider a few

of these obtained principal components to reduce the dimensionality of the

Iris dataset.

Loading Iris dataset

The Iris dataset contains 50 samples from each of three species of Iris flower, namely, setosa, virginica, and versicolor. Every flower is

represented by four features: sepal length, sepal width, petal length, and petal width in centimetres. Code to load the data set is captured in Code 8.1: 1. from sklearn import datasets

2.

3. def load_iris_data(num_rows=150):

4. iris = datasets.load_iris()

5. x = iris.data[:num_rows, :]

6. y = iris.target[:num_rows]

[image: Image 2473]

[image: Image 2474]

[image: Image 2475]

[image: Image 2476]

[image: Image 2477]

7. return x, y

 Code 8.1: Loading Iris dataset

As each sample of the data is represented with four features, we will not be

able to plot the samples in two dimensions. Instead, we will draw two plots

with sepal’s length/width and another with petal’s length/width. These two

plots are shown in Figure 8.2, where three species of Iris flower is plotted in three different colors:

 Figure 8.2: (left) plotting of sepal’s length and width (right) plotting of petal’s length and width

Calculating covariance matrix

Now, we need to calculate covariance matrix from the loaded data x.

Covariance matrix contains covariance between each pair of features. As the number of features of Iris data is four, the shape of covariance matrix

would be 4 × 4. Covariance between two features F and G can be calculated as follows:

Where n is the total number of observations, and and represent values for features F and G during

observation. The Numpy library provides

functions to calculate covariance matrix, as shown in Code 8.2, which is a continuation from Code 8.1:

1. import numpy as np

[image: Image 2478]

[image: Image 2479]

2. x, y = load_iris_data()

 3. # Covariance matrix

4. cov_mat = np.cov(x.T)

 Code 8.2: Covariance matrix calculation

Covariance matrix will always be symmetric. Output from the previous

code would be as follows:

Decomposition of covariance matrix

Once covariance matrix is obtained, we need to decompose it with its eigen

vectors. These eigen vectors will act as principal components for

transforming data from higher to lower dimensions. Code 8.3 provides the steps to calculate eigenvalues and eigen vectors using NumPy. Covariance

matrix can then be decomposed as follows (discussed in chapter 2 Linear

 Algebra):

 Code 8.3 provides the steps to verify the Eigen decomposition of covariance (continuation from Code 8.2):

 1. # Eigen Decomposition of covariance matrix

2. eigen_val, eigen_vect = np.linalg.eig(cov_mat)

3. mat_p = eigen_vect

4. mat_p_inv = np.linalg.inv(mat_p)

 5. # Diagonal matrix

6. mat_d = np.array([

7. [eigen_val[0],0,0,0],

8. [0,eigen_val[1],0,0],

9. [0,0,eigen_val[2],0],

10. [0,0,0,eigen_val[3]]

11.])

12. # Matrix will be equal to covariance matrix

13. mat_obtained = np.matmul(np.matmul(mat_p,mat_d),mat_p_inv)

[image: Image 2480]

[image: Image 2481]

[image: Image 2482]

 Code 8.3: Eigen decomposition of a symmetric square matrix

The obtained eigenvalues and corresponding Eigen vectors for the Iris

dataset would be as follows:

We can verify that these eigen vectors are unit in length and are orthogonal.

These eigen vectors form the orthonormal basis for the linear

transformation.

Reducing with principal components

We can use all four eigen vectors for the linear transformation on the original data. However, the resulting vectors after transformation would still

be in four dimensions. Instead, we can select the first two eigen vectors that

captures top two maximum variations of the original data. Transformation

matrix with the first two eigen vectors, also called principal components, would be as follows:

We can apply transformation on original data to obtain the transformed data

in two dimensions, as shown in Code 8.4 (continuation of Code 8.3): 1. # Select two principal components

2. eigen_vect0 = eigen_vect[:, 0]

3. eigen_vect1 = eigen_vect[:, 1]

4. trans_mat = np.array([eigen_vect0, eigen_vect1]).T

 5. # Transform the data points

[image: Image 2483]

6. x_reduced = np.matmul(x, trans_mat)

 Code 8.4: Transforming the data to lower dimensions

As the transformed data is in two dimensions, we can plot the points as shown in Figure 8.3. With this, we have reduced the dimensionality of Iris dataset from four to two dimensions. From the figure, we can guess that simple linear separator algorithm would help us in classifying three species

of Iris flow with good accuracy. Refer to the following figure:

 Figure 8.3: Plotting of PCA transformed data

Variance retention

We can reduce the dimensions of the data by selecting a few principal components of data covariance matrix and performing linear transformation

of original data with chosen orthonormal basis. A question would definitely

arise in your mind about the number of principal components to choose.

Each of the principal components retains certain variance of the original

[image: Image 2484]

[image: Image 2485]

data. If all components are used, then all variance of the original data is retained. We can calculate the percentage of retention of the variance.

Based on this percentage of variance retention, we can decide on the

number of principal components.

Trace or sum of diagonal elements of the covariance matrix is equal to sum

of its eigenvalues. The percentage retention of one eigen vector can be calculated using the following:

To calculate percentage retention of more than one Eigen vector, we must

add its corresponding eigenvalues as follows:

On the Iris dataset, the first principal component would retain 92.5% of total variance. The first two principal components would retain 97.7% of total variance. Adding the third principal component would result in 99.5%.

For the Iris dataset, we can comfortably reduce the dimensions from four to

three by retaining 99.5% variance of the original data.

When to use PCA

AI algorithms assume that features are independent. If we want to make features independent, then PCA would be the right choice. With PCA, we

will be able to reduce dimensions of the data as well if a few principal components are able to retain the variance we needed, which, of course, depends on the data.

In original data, each dimension represents a feature. These features convey

meaning regarding the sample under consideration. However, when reduced

through PCA, dimensions/features of the reduced data may not make sense

to understand the sample. If you want to retain the meaning of each

dimension, do not use PCA for dimensionality reduction.

Autoencoder

 Autoencoders are non-linear unsupervised dimensionality reduction technique that learns the compact representation of the original data using

neural networks. Simple autoencoder model is depicted in Figure 8.4.

Dimensions of input and output layer would always be same. The objective

of the autoencoder model is to produce the output vector just like as the corresponding input vector while the data passes through hidden layer

where dimensions are reduced. In Figure 8.4, input and output dimensions are four, and there are total of three hidden layers between them. Encoded

 layer also called bottleneck, is the lowest dimension layer in the entire network. In this case, we have encoded the layer’s dimension as two.

Encoder model during training will learn compact representation of input data such that it is able to recreate the original data from the encoded data.

Part of the encoder model that represents input data in compact

representation through encoded layer is called Encoder. Part of the encoder model that creates original input data from the encoded data is called Decoder. Refer to the following figure:

[image: Image 2486]

 Figure 8.4: Simple Encoder Architecture

There exists variation in the architecture. Regularized autoencoders such as

sparse, denoising (creates corrupted copy of input by introducing noise) and

contractive (encoded layer has lower dimensions as compared to input) are

learning representation for classification tasks. Convolutional autoencoders

uses convolution operation to learn convolution filters. Variational

autoencoders finds its application in generative AI models. It assumes that

data is generated by a model, and encoder is learning an approximation of

posterior distribution. After training, sampling from the distribution,

followed by decoding, will generate new data. In this section, we will implement simple sparse autoencoder for the Iris dataset.

Iris autoencoder

Let us build an autoencoder for the Iris dataset with encoded layer of two

dimensions. As the Iris dataset contains four features, dimensions of input

and output layer would be four. To keep it simple, let us have one hidden

layer that will be the encoded layer. Code 8.5 provides the steps to create TensorFlow autoencoder model:

1. from sklearn import datasets

2. from sklearn.model_selection import train_test_split

3. import tensorflow as tf

4. from tensorflow.keras import layers, losses

5. from tensorflow.keras.models import Model

6. from tensorflow.keras.initializers import RandomUniform

7.

8. class Autoencoder(Model):

9. def __init__(self):

10. super(Autoencoder, self).__init__()

11. self.encoder = tf.keras.Sequential([

12. layers.Dense(

13. units=2, activation=’relu’,

14.

kernel_initializer=RandomUniform(minval=0., maxval=1.,

15. seed=10))

,

16.])

17. self.decoder = tf.keras.Sequential([

18. layers.Dense(

19. units=4, activation=’relu’,

20.

kernel_initializer=RandomUniform(minval=0., maxval=1.,

21. seed=10))

,

22.])

23. def call(self, x):

24. encoded = self.encoder(x)

25. decoded = self.decoder(encoded)

26. return decoded

 Code 8.5: Simple autoencoder

We can now create an instance of this model class. Once it is created, we

can train the model with the Iris dataset, as shown in Code 8.6

(load_iris_data() function is defined in Code 8.1):

1. x, y = load_iris_data()

 2. # Split the data into train & test

3. x_train, x_test, y_train, y_test =\

4. train_test_split(x, y, random_state=10, test_size=.3)

 5. # Training the model

6. autoencod_model = Autoencoder()

7. autoencod_model.compile(optimizer=’sgd’,

loss=losses.MeanSquaredError())

8. autoencod_model.fit(

9. x_train, x_train, epochs=40, batch_size=30,

10. validation_data=(x_test, x_test)

11.)

 Code 8.6: Training the autoencoder with Iris dataset

After training is complete, we can pass the Iris samples and capture the corresponding values at encoded layer, as shown in Code 8.7:

 1. # Obtain encoded information of the dataset

2. encoded_vect = autoencod_model.encoder(x).numpy()

 Code 8.7: Reduced dimensionality of Iris dataset

As the encoded vector is two-dimensional, we can plot the vectors. This is

shown in Figure 8.5:

[image: Image 2487]

[image: Image 2488]

[image: Image 2489]

[image: Image 2490]

[image: Image 2491]

[image: Image 2492]

 Figure 8.5: Plotting of Autoencoder reduced Iris data

There exist various algorithms to reduce dimensionality of data to two or three dimensions for visualization purposes. In the next section, we will discuss one of these algorithms called t-SNE.

t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) [1] is an unsupervised non-linear dimensionality reduction technique suitable for

visualization of high-dimensional data in two or three dimensions. t-SNE

calculates similarity measure between data in high-dimension and its

corresponding points in low-dimensions, and then it optimizes these two similarities.

Let us consider a data set of n samples

belonging to high

dimensions space

, which will be mapped to n samples

of lower dimensions space where

. Compute pairwise similarity

[image: Image 2493]

[image: Image 2494]

[image: Image 2495]

[image: Image 2496]

[image: Image 2497]

[image: Image 2498]

[image: Image 2499]

[image: Image 2500]

[image: Image 2501]

[image: Image 2502]

[image: Image 2503]

[image: Image 2504]

[image: Image 2505]

[image: Image 2506]

[image: Image 2507]

[image: Image 2508]

[image: Image 2509]

[image: Image 2510]

[image: Image 2511]

[image: Image 2512]

[image: Image 2513]

[image: Image 2514]

in high dimensions. Then, find ’s such that pairwise similarity measures

in lower dimensions space are equal to their corresponding similarity

measure in higher dimensions space.

Similarity between two samples

is the conditional probability

,

that would pick as its neighbour (in higher dimension space

) if

neighbours were picked in proportion to their probability density under a Gaussian distribution centered at . It is defined as follows:

where is the variance of the Gaussian centered at

. Methods to

determine will be discussed later. As we are interested in only pairwise

similarities, we can set

. This pairwise similarities in high

dimensions causes problem when is an outlier. For an outlier, probability

value will be extremely small

, due to which the location of

corresponding mapped has little impact on cost function. Due to this, the

mapped position of the outlier is not well determined. This problem

can be overcome by defining the joint probabilities

in the high-

dimensional space to be the symmetrized conditional probabilities:

This ensures that

for

, as a result every data sample,

makes significant contribution to the cost function.

Now, let us compute similarities between mapped samples

in low-

dimensional space. In the high-dimensional space, we converted distances

into probabilities using a Gaussian distribution. In the low-dimensional map, we can use a probability distribution that has much heavier tails than a

Gaussian to convert distances into probabilities. This allows a moderate distance in the high-dimensional space to be faithfully modeled by a much

larger distance in low dimensions. t-SNE uses Student t-distribution with

[image: Image 2515]

[image: Image 2516]

[image: Image 2517]

[image: Image 2518]

[image: Image 2519]

[image: Image 2520]

[image: Image 2521]

[image: Image 2522]

[image: Image 2523]

[image: Image 2524]

[image: Image 2525]

[image: Image 2526]

[image: Image 2527]

[image: Image 2528]

[image: Image 2529]

one degree of freedom (Cauchy distribution) as the heavy-tailed distribution

in the low-dimensional space. Using this distribution, the joint probabilities

or pairwise similarities are calculated as follows:

Now, we have similarity measures or joint distributions in higher and lower

dimensions. The next step would be to calculate a single Kullback-Leibler

 divergence between a joint probability distribution in the high-dimensional space and a joint probability distribution Q in the low-dimensional space: Where

. We must learn the parameters that optimizes this

cost function. Gradient descent can be used to learn the parameters.

Gradient function of this cost function would be as follows:

Choosing σi

Bandwidth of a Gaussian is controlled by value of . It is not likely that there is a single value of that is optimal for all samples due to variation in the data density. In dense regions, smaller value of is more appropriate

than in sparser regions. The value of induces probability distribution

over all data samples. This distribution has entropy that increases with .

We can perform binary search for value of such that resulting produces

perplexity specified by the user. Perplexity is defined as follows:

Where

is Shannon entropy of measured in bits as follows:

[image: Image 2530]

Typical value of perplexity is range [5,50]. It can be interpreted as a smooth

measure of an effective number of neighbors.

PCA vs t-SNE

PCA is a linear dimension reduction technique that seeks to maximize

variance and preserves large pairwise distances. Data samples that are

different end up far apart. This can lead to poor visualization, especially when dealing with non-linear manifold structures. Think of a manifold

structure as cylinder, ball, or curve. t-SNE differs from PCA by preserving

only small pairwise distances or local similarities, whereas PCA is

concerned with preserving large pairwise distances to maximize variance.

PCA and t-SNE preserve global and local structure of the data, respectively.

Also, t-SNE has three hyperparameters, i.e. learning rate, number of steps,

and perplexity, while PCA doesn’t.

t-SNE on Iris Dataset

We can apply t-SNE dimensionality reduction on the Iris dataset using

Scikit provided libraries. Code 8.8 applies t-SNE on the Iris dataset (load_iris_data() function is defined in Code 8.1):

1. from sklearn.manifold import TSNE

2. from sklearn import datasets

3. x, y = load_iris_data()

4. tsne = TSNE(random_state=10)

5. x_transformed = tsne.fit_transform(x)

 Code 8.8: t-SNE on the Iris dataset

Dimensionally reduced data is plotted in Figure 8.6. We can visually make out three clusters pertaining to each of the three species of Iris flower.

[image: Image 2531]

 Figure 8.6: Plotting of t-SNE reduced Iris data

We have successfully reduced four dimensions Iris data to two dimensions

data using t-SNE. These exists many other dimensionality algorithms that can be applied on Iris data. Choice of the algorithm should be based on the

domain of the data.

Conclusion

This chapter introduced PCA, autoencoder and t-SNE dimensionality reduction techniques. One technique is preferred over others based on the domain or application. PCA is preferred when features are strongly

correlated. For visualization of data, t-SNE is preferred as it captures nonlinear relations among features. Autoencoder are preferred in image domain

like image compression, image denoising. In next chapter we will discuss

about computer vision algorithms that are used in image domain.

Further reading

Dimensionality reduction algorithms are being used in various fields, and reduction technique enhances the efficiency of many algorithms. We

discussed only a few reduction techniques. Wikipedia provides really good

source for further reading on dimensionality reduction algorithms. Many

standard AI frameworks or libraries provide tutorial [2] and guides [3]

about these reduction algorithms.

References

1. Van der Maaten, L. and Hinton, G., 2008 . Visualizing data using tSNE. Journal of machine learning research, 9(11)

2. Tutorial: https://www.tensorflow.org/tutorials/generative/autoencoder

3. https://scikit-

 learn.org/stable/auto_examples/manifold/plot_manifold_sphere.html#

 sphx-glr-auto-examples-manifold-plot-manifold-sphere-py

CHAPTER 9

Computer Vision

Living beings on Earth have evolved to understand the nature through

senses. Sense organs that help humans to sense things are eyes (light reflected from the object), tongue (taste of the object), skin (touch of the object), ears (sound emitted from the object), and nose (smell emitted from

the object). These senses feed information to the brain, which then processes

the information for interpretation and action if necessary. Humans have tried

replicating the performance of both senses and the brain.

Humans have developed cameras that work like eyes and capture

information about light reflected by the objects and convert it to digital images/videos. Computer Vision (CV) deals with analysing the information captured by camera, like the brain. Recent advancements of algorithms in CV field are inspired by visual information processing of the brain. This chapter will discuss computer vision algorithms that help interpret digital images/videos that are primarily captured by camera.

Structure

In this chapter, we will cover the following topics:

Digital images, pixels

Geometric transformation

Filters/Kernels: Spatial, Gaussian, Laplacian, Sobel

Learning filters using Convolution Neural Network (CNN)

Development of CNN

Applications of CNN

Objectives

After going through this chapter, you will have clear understanding of the theoretical background behind the state-of-the-art AI models in computer

[image: Image 2532]

vision. Most of the CV models are CNN-based. However, they differ widely

in their architecture. We will discuss the motivation behind these

architectures. Understanding these topologies will help you come up with your own custom topologies that best suits your problem domain.

Digital Image Formation

Light is part of the electromagnetic spectrum that is sensed by eye, which is

further divided into violet, indigo, blue, green, yellow, orange, and red.

Colors perceived (by eye) by looking at the object are determined by the category of light reflected by an object. An object is perceived as white when it reflects all wavelengths of light equally. An object appearing green

reflects green light and absorbs all other wavelengths of light. A black object

absorbs all wavelengths of light. Now, let us understand how this

information is captured in digital images.

Capture the light

Electromagnetic radiation reflected or emitted by the object is usually captured through two-dimensional array of sensors. Response of each sensor

is proportional to the integral of radiation energy projected on to the surface

of the sensor. Analog circuitry analyzes sensors output to produce analog

signal. Figure 9.1 shows capture of ellipse shaped object by analog circuitry.

This analog signal is then digitized to produce digital image. Digitizing involves two processes sampling and quantization. Refer to the following figure:

[image: Image 2533]

[image: Image 2534]

 Figure 9.1: Ellipse shaped object

Sampling and quantization

Output of most sensors are continuous voltage waveform whose amplitude

and spatial variation is related to electromagnetic waves sensed that are reflected by the object. Two processes, sampling and quantization, are

necessary to convert these analog signals to digital. Consider line AB on the

captured object, as shown in Figure 9.2(a). Intensity of pixels along this line

gradually increases and decreases as shown in Figure 9.2 (b):

 Figure 9.2: (a) A line on the object is considered (b) Intensity variation along line (c) Consider equally spaced samples along line (d) Sampled values along line

As AB line is continuous, we need to sample a few points along the line AB.

The number of samples required would depend on how close you need the

digital representation to be with respect to analog, as shown in Figure 9.2(c).

The higher the number of samples, the closer would be the representation.

This process of representing an image with sampled points is known as sampling.

Now let’s represent complete ellipse with six sample points along x-axis and

four along y-axis with total of 24 sample points, as shown in Figure 9.3(a).

Each of these 24 sample points will be represented with integer intensity values in range [0,255], as shown in Figure 9.3 (b). This is known as quantization of sample values. Outcome of sampling and quantization on

ellipse would look like in Figure 9.3(c):

 Figure 9.3: (a) sampling of intensity in 2D (b) Quantization of values (c) Resulting digitized image

In digitization of image, each of these cells that represented sampled value of real image are called pixels. In this example, ellipse image is represented using 24 pixels with 6 & 4 pixels along x and y axes, respectively. Count of the pixels used to represent an image is called its resolution. In this case, resolution of the ellipse image is mentioned as 6× 4.

Pixels

In the digital world, images are presented using pixels. Pixel also called picture element can be understood as a minute area of illumination on a display screen. Higher count of pixels results in higher resolution of the image, and higher resolution results in better representation. Each pixel of the image will denote a value of the intensity in that position. Intensity values are represented with integer value in range [0,255]. To represent one

pixel, one byte is sufficient. For grey ellipse image in the preceding example, 24=6∗4 bytes would be sufficient for digital representation of 24

sampled values. Programmatically, 2-dimensional unsigned byte array of

size 6×4 is sufficient to represent this image.

 Note: How many bytes are required to represent one color pixel?

 Appearance of the color pixel is dependent on values of Red, Green, and

 Blue components. In general, range for each of these components is

 [0,255]. So, 3 bytes are required to represent one color pixel. This format

 of representation of the image is called RGB. Programmatically, 3D

 array of size w×h×3) is required to represent color image of resolution

 w×h.

Accessing pixels

Once image is represented as arrays, accessing the pixels is the same as accessing arrays. Numbering of pixels starts from the top-left corner of the

image, as shown in Figure 9.4. Representing an image using its spatial knowledge with use of pixels is useful for techniques that operate based on

 spatial domain knowledge.

Another important way of representation is Fourier transform of the image.

This representation falls under frequency domain where image is represented as waves of various frequencies. Refer to the following figure:

[image: Image 2535]

 Figure 9.4: Pixel’s position

Spatial domain filtering is sufficient for a majority of tasks of computer vision. However, for many image processing and enhancement tasks,

frequency domain filters have been used successfully. Algorithms developed

in one domain can be successfully translated to another. In this chapter, we

will focus mainly on spatial domain.

Spatial filtering

Filtering is the name used for modifying or rejecting specific components of an image through the use of mathematical operations. The process of

applying a filter on an image represented in spatial domain is called spatial filtering. Spatial filtering modifies a pixel of an image by replacing it with function of the pixel value or its neighboring pixels values. We can broadly

classify spatial operations into three broad categories:

a. Single pixel operations

b. Neighbor pixels operations

c. Geometric spatial transformations

[image: Image 2536]

[image: Image 2537]

In single pixel operation, transformation function receives only one pixel input and outputs one value that will be used to replace the pixel under consideration. In neighbor pixels operation, transformation function accepts pixel under consideration along with its neighbors and outputs one values that will be used to replace the pixel under consideration. In geometric spatial transformation, modification is performed on spatial arrangement of pixels in an image.

Geometric spatial transformation

In geometric spatial transformation, transformation function accepts pixel coordinate (x, y) of original image and outputs new position coordinate (a, b) for the pixel in transformed image. Transformations in 2D that preserves points, straight lines, parallelism and planes is called affine transformations.

 Affine transformation preserves collinearity (that is, all points lying on a line initially still lie on that line even after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint of that line segment even after transformation).

In this section, we will be concentrating on affine transformations that includes scaling, shearing, translation, and rotation. Transformation function

relating to these operations can be expressed in matrix format. Each pixel of

the original image is represented by (x, y) coordinate and (a, b) represents the new coordinates of the pixel in transformed image. The following

transformation matrix is applied to every pixel position of the original image

to obtain pixel coordinates in transformed image:

Let’s perform few transformations on an image using this approach.

Transformations that we will discuss are rotation, shear, scaling, and

translation. Transformation matrices for these tasks will be of the form given

as follows. Along with the form of the matrix there is an example for the respective form:

[image: Image 2538]

[image: Image 2539]

We will use the OpenCV library to apply transformation. Before applying the transformation, let us read the image file and convert to gray scale using

the library, as shown in the following code:

1. import cv2 as cv

2. def read_image(path):

3. image = cv.imread(path)

4. # convert image to grayscale

5. image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

6. return image_gray

7. # IMAGE_PATH is absolute path of input image. Should be

 assgined.

8. image_gray = read_image(IMAGE_PATH)

 Code 9.1: Reading image and converting to gray scale

We can use the warpAffine() function of OpenCV library. It accepts image

and matrix of size 2×3 and applies the matrix to every pixel location of original image and outputs transformed image. Code to rotate the gray image

obtained previously is captured in the following code. Output of this code is

captured in Figure 9.5 (b). Rotation operation could move pixels out of the defined view. We might need to enlarge the current view to visualize the rotated pixels. Following code provides steps to rotate an image.

1. import numpy as np

2. def rotate(image, angle_degree=20):

3. (rows, cols) = image.shape[:2]

4. radians = np.deg2rad(angle_degree)

5. cos_val = np.cos(radians); sin_val = np.sin(radians)

6. rotate_matrix = np.float32(

7. [[cos_val,-1*sin_val,0],

[sin_val,cos_val,0]])

8. # applies transformation matrix to every pixel

 coordinate

[image: Image 2540]

9. rotate_image = cv.warpAffine(image, rotate_matrix,

(cols, rows))

10. return rotate_image

11. rotate_img = rotate(image_gray)

12. cv.imshow(“Rotated”, rotate_img)

 Code 9.2: Rotating image by 20 degrees

We can scale the image by using corresponding transformation matrix. The

following code shows steps to apply scaling to the gray image. Output of this

code is captured in Figure 9.5(d). Scaling operation changes only the aspect ratio of the original image. Following code applies scaling operation on an

image.

1. def scale(image, scale_x=0.3, scale_y=0.8):

2. (rows, cols) = image.shape[:2]

3. scaled_matrix = np.float32([[scale_x, 0, 0], [0,

scale_y, 0]])

4. scaled_img = cv.warpAffine(image, scaled_matrix, (cols,

rows))

5. return scaled_img

6. scaled_img = scale(image_gray)

7. cv.imshow(“Scaled”, scaled_img)

 Code 9.3: Scaling the image

Similarly, we can write code for application of other matrices by just modifying the transformation matrix and passing it to the warpAffine() function. Outputs of different transformation matrices specified before are

captured in Figure 9.5, along with parameter value used to create the matrix:

 Figure 9.5: (a) Original gray Image (b) Rotated image (c) Sheared image (d) Scaled image (e)

 Translated image

Till now, we changed the position of the pixel in transformed image. Next,

let us change the value of the pixel (intensity values) in the transformed image.

[image: Image 2541]

[image: Image 2542]

[image: Image 2543]

[image: Image 2544]

[image: Image 2545]

[image: Image 2546]

[image: Image 2547]

Neighbor pixel operation

Transformation function can consider the pixel and its neighboring pixels’

intensity values to output an intensity value that will be used to replace the

pixel under consideration in the transformed image. This transformation

function or the matrix representing the function is called filter or kernel or filter kernel. Process applying the filter or kernel to every pixel of the input image is called filtering the image. Filtering an image can also be viewed as extracting features from the image that helps to infer the image. Different filters offer various features of the image. If the transformation

function/matrix is linear, then it is called linear spatial filter; otherwise, it is known as nonlinear spatial filter.

Consider simple linear spatial filters that perform sum-of-product operations on an image I with filter . Let image I be 2-dimensional, with each pixel representing pixel intensity. Pixel of the image in position

is accessed

using I

. Filter w can be of various sizes. For simplicity, let’s consider 3×3 two-dimensional filter. Linear filter is applied to every pixel of the image to obtain transformed image G. The following formula shows the application of 3x3 kernel on a pixel at location

of an image.

Centre of the kernel aligns with the pixel under consideration. Kernel cells

are numbered by keeping the origin at the center, as shown in Figure 9.6.

After alignment, product of respective cells values are calculated and

summed. Resulting value

is used for replacing the pixel value at

location

. In this example, we considered kernel of size 3×3, but

kernel can be of any size. Usually, kernels with odd dimensions are chosen,

like

, where k is odd positive integer. The advantage is that after the alignment of the pixel of image under consideration and kernel origin, the number of surrounding pixels around pixel under consideration will remain

equal along every direction. Refer to the following figure:

[image: Image 2548]

 Figure 9.6: Kernel cells and part of image under consideration to change a pixel value

 Tip: What happens when all the surrounding pixels are not available,

 like in case of border pixels?

 If a pixel doesn’t have surrounding pixels that maps to kernel size, then

 we can use a constant value instead of the missing surrounding pixels.

 This is called padding.

[image: Image 2549]

[image: Image 2550]

[image: Image 2551]

[image: Image 2552]

This linear operation is called correlation or cross-correlation. For a kernel of size m × n where m = 2a + 1 & n = 2b + 1, correlation is defined as follows:

Another important type of linear operation is called convolution.

 Convolution operation is defined as follows:

 Convolution operation can be defined in terms of correlation as rotate kernel by 180° and perform correlation operation. Figure 9.7 depicts the cells of kernel that get multiplied with pixels of image:

 Figure 9.7: Mapping of neighboring pixels with kernel cells for linear operation

Convolution properties

Convolution operation follows commutative, associative, and distributive

properties.

[image: Image 2553]

[image: Image 2554]

[image: Image 2555]

[image: Image 2556]

[image: Image 2557]

[image: Image 2558]

[image: Image 2559]

[image: Image 2560]

[image: Image 2561]

[image: Image 2562]

[image: Image 2563]

[image: Image 2564]

[image: Image 2565]

[image: Image 2566]

[image: Image 2567]

[image: Image 2568]

[image: Image 2569]

[image: Image 2570]

[image: Image 2571]

[image: Image 2572]

[image: Image 2573]

[image: Image 2574]

[image: Image 2575]

[image: Image 2576]

[image: Image 2577]

As convolution operation follows commutative property, during operation

, either rotate kernel w or image I by 180° before performing correlation. Consider a situation where L kernels

are

convoluted on image I one after another. As convolution follows commutative property, instead of performing convolutions with L kernels, we can perform with one kernel w, which is obtained as

.

 Note: Correlation or cross-correlation follows distributive property only.

Separable kernels

Two-dimensional function

is said to be separable if it can be

expressed as the product of two one-dimensional functions as

. Kernel in two-dimensions is a matrix

and if

it can be expressed as outer product of two one-dimensional vectors

that has dimensions of

as

, then it is called

 separable kernel.

Convolution with separable kernels

Let’s understand computation required to perform convolution operation.

Consider image I of size

and kernel W of size

. One

convolution operation requires

multiplications and additions. This

operation must be applied on every pixel of the image, resulting in total of

multiplications and additions.

Can the computation be reduced with separable kernels? Yes, reduction is possible through use of separable kernels. Let the kernel of size

be

expressed as outer product of two one-dimensional vectors

that

has dimensions of

as

. Computation

required to apply

kernel on complete image is

. Application of

another kernel

would cost

. In total, computation cost of applying

[image: Image 2578]

[image: Image 2579]

[image: Image 2580]

[image: Image 2581]

[image: Image 2582]

[image: Image 2583]

[image: Image 2584]

[image: Image 2585]

[image: Image 2586]

kernels

on complete image is

. This provides

computation advantage that can be defined as follows:

 Tip: How do we determine whether kernel is separable?

 Rank of kernels

 is always 1 due to its dimension

 .

 Product of these rank 1 kernels would always result in rank 1 (Reason:

 Matrix multiplication AB can be expressed as a linear combination of

 columns of A using weights from columns of B, refer to Chapter 2

 Linear Algebra). In this case, kernel is separable if and only if its rank is

 1.

Example: Consider filter of size 3×3 that can be expressed as the product two 3×1 filter. Check their ranks:

Example: Consider another filter of size 3×3 called Sobel (more details in further sections). Check their rank:

There exists different filters or kernels that help extract distinct features of the image through convolution operation. These features help in inferring the

image. Among these, popular ones are smoothing filters like Gaussian and edge detection filters like Laplacian & Sobel, which will be discussed in the following sections.

Gaussian kernel

Gaussian function in one dimension using standard deviation and zero

mean

, is expressed as follows:

[image: Image 2587]

[image: Image 2588]

[image: Image 2589]

[image: Image 2590]

[image: Image 2591]

[image: Image 2592]

[image: Image 2593]

[image: Image 2594]

[image: Image 2595]

Distribution of Gaussian function values around mean are symmetric. Figure

 9.8 shows plot of

 Gaussian function

 without

normalization factor

. 68% of values fall under

distance from

mean. Within distance of

from mean, 95% of values are covered.

account for 99.7% of values. This information is vital for designing

Gaussian kernel of fixed length. Another important property is that Gaussian

function is never equal to zero. This property is useful in filtering operation

as higher weightage is given to nearer pixels and is symmetric in all directions. Refer to the following figure:

 Figure 9.8: Distribution of values in Gaussian function

To work with image, we need Gaussian function in 2D and its discrete approximation in form of 2D matrix. As 99% of the values are covered with

in

distance, kernel can have values within this distance. Due to this,

[image: Image 2596]

[image: Image 2597]

[image: Image 2598]

[image: Image 2599]

[image: Image 2600]

[image: Image 2601]

[image: Image 2602]

[image: Image 2603]

[image: Image 2604]

[image: Image 2605]

[image: Image 2606]

[image: Image 2607]

[image: Image 2608]

kernel of size

(

each in opposite directions of one axis) is

sufficient to capture the function behavior.

In two-dimension, Gaussian function is product of Gaussian functions along

each dimension. Product of Gaussian functions is Gaussian function. Kernel

obtained from Gaussian function are separable. Here, x denotes distance from origin along the

. Similarly, y denotes distance from origin

along

.

Discrete approximation of Gaussian function

Now, let’s obtain discrete approximation of Gaussian function that can be used as kernel in convolution operation on images. To make things simple,

let us consider zero mean

and standard deviation as

. With

these values, function becomes the following:

Consider only the variable part of the function as

for writing the

code. The following code shows the implementation. It accepts

coordinate values from 2D and outputs variable part of Gaussian function value: Following code shows implementation of Gaussian function.

1. import numpy as np

2. def gaussian_fn_2d(x, y):

3. # Exponent part of gaussain function mean=0, sd=1

4. exp_part = np.exp(-(np.power(x, 2.) + np.power(y, 2.)) /

2.)

5. return exp_part

 Code 9.4: Gaussian function in two dimensions

As discussed, considering

matrix is sufficient. We need odd

matrix, so for

, we should consider 7×7 matrix. Function parameter

values consider for discretization should be with in 3σ distance from origin.

We can consider

values, as shown in Figure 9.9(a), for the kernel

[image: Image 2609]

[image: Image 2610]

matrix. These coordinate values are used to kernel matrix, as shown in the

following code :

1. # 3 sigma distance from origin

2. X_START = Y_START = -3

3. X_STOP = Y_STOP = 3

4. def get_gaussian_kernel():

5. kernel_shape = (X_STOP-X_START+1, Y_STOP-Y_START+1)

6. gaussian_sample = np.zeros(shape=kernel_shape,

dtype=float)

7. ker_x = ker_y = 0

8. for y_idx in range(Y_START, Y_STOP+1):

9. for x_idx in range(X_START, X_STOP+1):

10. gaussian_sample[ker_x][ker_y] =

gaussian_fn_2d(x_idx, y_idx)

11. ker_y = ker_y + 1 # updating index

12. ker_x = ker_x + 1 # Updating index

13. ker_y = 0

14. return gaussian_sample

15. # Obtain gaussian kernel and normalize

16. gaussain_ker = get_gaussian_kernel()

17. div_part = 2. * np.pi

18. norm_gauss_kernel = (1./div_part) * gaussain_ker

 Code 9.5: Obtain Gaussian function value for few coordinates equidistant from origin Obtained kernel matrix using the code is captured in Figure 9.9 (b). Note that it is not normalized. Refer to the following figure:

 Figure 9.9: (a) (x,y) coordinates considered for creating 2D kernel (b) Gaussian kernel with μ=0, σ=1

 without normalization

Normalization of the preceding Gaussian kernel can be performed in two ways. One approach is to divide all values of the kernel by the constant part

of Gaussian function, that is,

(case: μ= ٠ , σ= ١). All values of the kernel

[image: Image 2611]

[image: Image 2612]

[image: Image 2613]

[image: Image 2614]

[image: Image 2615]

may not add to

(μ= ٠ , σ= ١) due limited kernel size. We can follow another approach, in which we can divide all values of the kernel by the sum

of all elements of the kernel. The second approach is better.

We have to use normalized Gaussian kernel for convolving with images.

Normalized Gaussian kernel is captured in Figure 9.10. Note that the sum of all elements of normalized kernel must equal 1. Refer to the following figure:

 Figure 9.10: Normalized Gaussian Kernel with μ=0, σ=1

Application of Gaussian filter

We have obtained normalized Gaussian kernel of size 7×7 that Gaussian

function of zero mean as

and standard deviation as

. Now, let’s

apply the kernel on gray image. Gray image can be obtained with code 9.1.

Apply normalized Gaussian kernel on gray image, shown in Figure 9.11, to obtain smoothed image:

 Figure 9.11: Snapshot of a Wikipedia page in gray scale

The following code shows the application of the kernel using OpenCV

library:

[image: Image 2616]

1. image_gray = read_image(IMAGE_PATH)

2. gauss_filtered_img = cv.filter2D(

3. image_gray, ddepth=-1,

kernel=norm_gauss_kernel)

4. cv.imshow(“Gaussian Smoothed Image”, gauss_filtered_img)

 Code 9.6: Convolve normalized Gaussian kernel with every possible pixel of the image using filter2D()

Output of the Code 9.6 is captured in Figure 9.12. Figure is smoothed using Gaussian kernel. Refer to the following figure:

 Figure 9.12: Smoothing of gray Wikipedia image with Gaussian 7×7 kernel of μ=0, σ=1

We can apply Gaussian kernel repeatedly too. Image is blurred further with

each application of Gaussian kernel.

 Note: Working with gray scale images is simple as it can be represented

 in 2D and values represent intensity. Gaussian filter is applied to

 intensity of these pixels. How to apply the filter on color images, which

 are usually represented in 3D using Red, Green & Blue? Gaussian filter

 cannot be applied to the color components. Instead, image is converted to

 YUV format where Y is luma/intensity, U & V represents blue and red

 channels. Gaussian kernel will be applied on Y component only.

We saw that image blurring/smoothing is accomplished in spatial domain

with the use of neighborhood pixel averaging technique (Gaussian function).

There are other blurring techniques, which will be discussed later in the Non-Linear Filters section. Next, we will create edge detection filters using differentiation. Differentiation at a point is proportional to magnitude of

[image: Image 2617]

[image: Image 2618]

intensity discontinuity. Thus, image differentiation enhances edges and other

discontinuities with respect to slowly varying intensities.

Image derivative-based kernels

Let us first understand the behavior of derivatives on constant intensity, onset and end of step and ramp intensity discontinuity/ramps. Figure 10.13

has plot of pixels intensity and depicts intensity ramp and step.

In image, along one dimension, pixels neighboring to pixel x are x+ 1 & x –

 1. Using this information, basic definition of first order derivative for one-dimensional function is stated as follows:

Properties of first order derivative are as follows:

Zero in area of constant intensity

Non-zero at onset and end of intensity ramp/step

Non-zero along intensity ramps

Similarly, definition of second order derivative can be stated as follows:

Properties of second order derivative are as listed here:

Zero in on areas of constant intensity

Non-zero at onset and end of intensity ramp/step

Zero along intensity ramps

 Figure 9.13 shows first and second order derivates of intensity values. We can verify the properties these derivates. Derivatives provide information about constant intensity, ramp up/down, and step intensity. Edges in digital

images behave like ramp intensity. Identifying these ramps will help us in finding edges that will aid in sharpening the image. Next, we will use second

order derivative for image sharpening. Refer to the following figure:

[image: Image 2619]

 Figure 9.13: Graph captures pixel intensity along 1D, table captures derivatives for each pixel

 Note: Due to the property “zero in area of constant intensity”, derivative

 kernels must sum up to zero.

Laplacian kernel – Second order derivative

The simplest derivative operator that is also isotropic (applies equally in all

direction) is Laplacian, and it is defined for function with two variables as follows:

[image: Image 2620]

[image: Image 2621]

[image: Image 2622]

[image: Image 2623]

[image: Image 2624]

[image: Image 2625]

[image: Image 2626]

As derivatives of any order are linear, Laplacian is linear operator. We need

to express the operator in discrete format for 2D images, as follows:

Discretized Laplacian can be written as follows:

Kernels that satisfy this equation is captured in Figure 9.14. Kernels (a) & (b) in the figure do not consider diagonal cells. When diagonal pixels are included, we obtain kernel as depicted in (c) & (d). As these kernels must satisfy the preceding equation, take negative of the kernel that satisfy the equation is also the valid kernel. Kernels (b) & (d) represents negative counterpart of (a) & (c). Refer to the following figure:

 Figure 9.14: Laplacian Kernels (a)(b) without diagonal cells (c)(d) with diagonal cells Laplacian kernel highlights sharp intensity transition and de-emphasis

slowly varying intensities areas of the image. This produces images with grey lines and other discontinuities, all superimposed on dark featureless background. Background features are recovered along with sharpening

effects by adding Laplacian image to the original.

Value of will depend on kind of Laplacian kernel used.

for kernel

 (a) & (c) and

for kernel (b) & (d) of Figure 10.14.

 Note: Laplacian is sensitive to noise. To counter this, image is often

 smoothed with Gaussian function before the application.

[image: Image 2627]

[image: Image 2628]

Let us apply Laplacian kernel of Figure 9.14(c) on Figure 9.12 (Gaussian smoothed image). We can use OpenCV library’s filter2D() function for filtering the image (similar to application of Gaussian kernel). The output of

this is depicted in Figure 9.15. We can see that edges are clearly visible.

 Tip: Why should derivative kernels be applied on smoothed image?

 Derivative expects function to be smooth for good behavior. To remove

 sharpness (noise) of the image, one needs to apply smoothing filters

 before applying derivative filters.

Refer to the following figure:

 Figure 9.15: Laplacian kernel of size 3×3 on Gaussian smoothed image mentioned in Figure 9.12

To obtain image along with background, we subtract the obtained image for

original image. The output of this operation is captured in Figure 9.16:

 Figure 9.16: Laplacian image subtracted from original image

[image: Image 2629]

[image: Image 2630]

[image: Image 2631]

We can combine Gaussian and Laplacian filters. As convolution is

associative, we can convolve Gaussian and Laplacian kernels before

applying on the image. This is termed as Laplacian of Gaussian (LoG).

Two-dimensional Laplacian of Gaussian function with mean

is stated

as follows:

The following code implements this function with μ=0 & σ=1:

1. def laplacian_of_gaussian_2d(x, y):

2. # Exponent part of gaussain function mean=0, sd=1

3. power_part = (np.power(x, 2.) + np.power(y, 2.)) / 2.

4. exp_part = np.exp(-power_part)

5. prod_part = (-1./np.pi) * (1. - power_part)

6. return prod_part * exp_part

 Code 9.7: Laplacian of Gaussian function with μ=0, σ=1 implementation To generate LoG kernel of size 7×7, use function get_gaussian_kernel() as stated before, but call laplacian_of_gaussian_2d() instead of

gaussian_fn_2d() with parameter values as used in Gaussian kernel generation. Once executed, we obtain LoG kernel, as shown in Figure 9.17:

 Figure 9.17: LoG kernel with μ=0, σ=1

Gradient kernels must sum (elementwise sum) to zero. Sum of the kernel elements in this case is -0.00817. Subtract this value from center of the kernel only. Now, the sum of kernel elements will equal zero. Value of LoG

kernel elements are low when compared to values of pixels whose range is

[0,255]. To have a good impact of filtering, we must scale the kernel values

[image: Image 2632]

[image: Image 2633]

by constant factor. In this case, let us multiply all elements of kernel by value 10. This would provide us the kernel mentioned in Figure 9.18:

 Figure 9.18: Laplacian of Gaussian Kernel μ=0, σ=1

 Tip: Multiplying all elements of the kernel with constant value doesn’t

 alter its properties. Larger values in kernel will have high impact on the

 image when filtered.

We can now apply the LoG kernel on the image. Result of LoG filtering is

captured in Figure 9.19. We can see that this LoG kernel has captured lines much better than previous 3×3 Laplacian kernel. Refer to the following figure:

 Figure 9.19: Application of LoG 7×7 kernel on original gray image

Now, subtract this image with the original image to obtain sharpened image

with background, as shown in Figure 9.20:

[image: Image 2634]

[image: Image 2635]

 Figure 9.20: Subtract LoG kernel filtered image with original gray image to obtain background

Sobel kernel: First order derivative

Laplacian kernel discussed so far is second order derivative that measured change of slope. While Sobel kernel is first order derivative that measures the slope and combines Gaussian smoothing like LoG.

Sobel kernel consists of two kernels that calculate approximations of

derivative along horizontal and vertical axis. OpenCV library can be used to

obtain Sobel filter of various sizes. Code 9.8 shows the steps to obtain Sobel filter. getDerivKernels() outputs two vectors of size dim×1, these two need to multiplied to obtain separable vector:

1. def get_sobel_kernel(dim=3):

2. sobelx_sep = cv.getDerivKernels(1, 0, dim,

normalize=True)

3. sobelx = np.outer(sobelx_sep[0], sobelx_sep[1])

4. sobely_sep = cv.getDerivKernels(0, 1, dim,

normalize=True)

5. sobely = np.outer(sobely_sep[0], sobely_sep[1])

6. return sobelx, sobely

 Code 9.8: Obtain Sobel filter using OpenCV library

Sobel filter of 3×3 obtained using the preceding codes is captured as follows.

To obtain kernel without normalization, set normalize to False in the code:

[image: Image 2636]

[image: Image 2637]

[image: Image 2638]

We can apply these normalized filters on Wikipedia page (using OpenCV

library’s filter2D() function as before). The result of application of horizontal kernel is captured in Figure 9.21; it highlights all horizontal gradient directions:

 Figure 9.21: Horizontal Sobel filter applied

The result of application of vertical kernel is captured in Figure 9.22; it highlights all vertical gradient directions:

 Figure 9.22: Vertical Sobel filter applied

We have discussed linear filters like Gaussian and Gradient based filters in

detail. Now, let us discuss few non-linear filters in brief, like average and median filters.

Non-linear filters

 Median filter is non-linear filter used to remove noise (effective on ‘ salt-and-pepper’ noise: it is a form of a noise caused by sharp and sudden disturbances and gets reflected as black and white pixels spread sparsely over the image) in the image. The median filter of size n×n, when applied on a pixel, replaces it with median of the pixel and its neighboring pixels (median of n×n pixels) with center of kernel aligned with the pixel under consideration. Filter is slid throughout the image. To cover border pixels, border replicate padding is normally used where values are padded at the border with the nearest pixel value.

 Average filter, when applied on a pixel, replaces it with average of the pixel and its neighboring pixels (average of n×n pixels) with the center of kernel aligned with the pixel under consideration. As for all other filters, this filter is applied on an image by sliding the filter over every possible pixel.

Similarly, maximum (minimum) filters replace pixel value with maximum (minimum) value among the n×n pixels (pixel and its neighbors) values.

This non-linear filter is widely in used on networks that infer images.

We discussed a few filters in spatial domain and their use in extracting various features of an image. These features help us to perform required manipulation/classify the images. Curating filters for various classification tasks is not straightforward. In fact, we may not be able to identify all filters that help in performing classification task. Due to these complications, researchers thought of learning these filters based on classification task.

Learning filters

Deep Neural Networks (DNN) perform a good job in automatically learning the features based on the classification task. Can we combine DNN

and convolution operations to automatically learn filters/kernels based on the

image modification/classification task? Yes, networks that combine these

two operations are called Convolution Neural Networks (CNN).

 Note: Can we feed images as input to DNN for image classification task?

 Yes, we can. Input layer dimension of DNN would equal to w × h × d

 (dimension of image). For 224×224 RGB image would need

 224×224×3=150,528 input layer dimension. Parameters to learn

[image: Image 2639]

[image: Image 2640]

 increases further with deep layers. So, due to higher dimension, DNN

 may fail to learn the parameters (curse of dimensionality).

Convolution Neural Networks

To overcome large parameter space of DNN in image processing,

convolution operation that shares parameters across the input data is utilized.

This parameter sharing of convolution operation, along with DNN, have

provided a boost to the image inferencing algorithms, and these networks are

called Convolution Neural Networks (CNN). Main building blocks of CNN are convolution, pooling (subsampling), and fully connected (FC) layers.

CNN consists of more than one convolution and pooling layers. Usually, convolution layer is followed by one pooling layer. This combination layers

repeat to extract better features. At the end of the network, there exist FC

layers that helps in classification based on the features extracted using convolution and pooling layers, as depicted in Figure 9.23:

 Figure 9.23: High level architecture of CNN

Convolution layer

This is the core building block of CNN where convolution operation is performed. Majority of the network’s computation occurs in this layer.

Suppose the input to the convolution layer is of dimension

.

There are n kernels of various sizes but with the same depth d to be applied in this layer, as shown in Figure 9.24.

Each kernel is convolved with input block to produce one 2D feature map.

Kernel is slid (w × h plane) from the top-left corner to the bottom-right corner on the input for convolution. Sliding of the kernel can be either one

pixel or more. This is called stride. Number of pixels slid/skipped in a

[image: Image 2641]

[image: Image 2642]

[image: Image 2643]

[image: Image 2644]

[image: Image 2645]

[image: Image 2646]

[image: Image 2647]

particular direction will be stride value in that particular direction. Stride is 1

if kernel is moved to the right or below by one pixel for the next convolution

operation.

Cells (w × h plane) along the border of the input block cannot be aligned with the center of the kernel due to the absence of cells mapping to the cells

of kernel. Convolution operation cannot be performed on every cell of the input block, which leads to reduced size of feature map (dimensions less than w × h). To avoid this, we can pad constant value (usually 0 value) along the border of input block such that center of the kernel can be aligned with

every cell in w × h plane. This is called padding.

There are three popular ways in which values can be padded:

Valid padding: In valid padding, convolution operation is performed only if there exists one to one mapping of the cells between input and

kernel. This reduces output size as valid convolution is not possible on

every cell of the input.

Same padding: In the same padding, input is padded with values such

that the size of the output is the same as of input (w × h plane).

Full padding: In full padding, input is padded with values such that the

size of the output will be more than the size of the input (w × h plane).

Generic formula to know the output size

, for input size of

after convolution is as follows. Kernel is of size

and stride is of S.

&

represents left and right padding along the width, and

represents top and below padding:

Refer to the following figures:

[image: Image 2648]

[image: Image 2649]

 Figure 9.24: Convolution layer in CNN

Example: Consider input block of

and kernel of 3×3.

There is no need to consider depth, as depth of input block and kernel will be

equal. In case of valid padding, stride S=1 would output 13×8 and S=2

would output 7×4. In case of the same padding, S=1 would output 15×10

and S=2 would output 8x5.

Output of convolution operation (feature maps) is normally fed to activation

function like ReLU (discussed in Chapter 7 Neural Networks). Output of the activation function is fed to pooling layer that acts as subsampling to further

reduce computation or parameters.

Pooling layer

Pooling layer reduces spatial dimension of input features, which, in turn, helps in the reduction of trainable parameters, resources, and computing time. This layer helps in extracting dominant features that are rotational and

positional invariant. Maximum and average non-linear filter is usually used

in this layer.

Consider part of the image of dimension 3×3, as shown in Figure 9.25 (a).

 Max pooling (application of maximum filter) would output 8 and average pooling would output value 4.3. This window of 3×3 is then moved, like

[image: Image 2650]

kernel sliding in convolution operation. The concept of stride is applicable

here as well. The formula to calculate the output dimension of the pooling

layer is the same as the convolution layer discussed earlier. Refer to the following figure:

 Figure 9.25: (a) Pooling applied on 3×3 size, (b) spatially separable convolution CNN will have many layers of convolution and pooling. At the end, output

would be fed to fully connected layers. Fully connected layers are the same as discussed in Chapter 7 Neural Networks.

Convolutions operation with parameter sharing kernels is still significant in

terms of computation resources and parameters count when depth/channels

input to the layer increases. The number of parameters and computation resources can be reduced with use of separable kernels discussed earlier.

Spatially separable convolution

Spatially separable convolution does not perform convolution with n×n kernel. Instead, it breaks the kernel into two kernels of size n×1 each.

Spatially separable convolution then applies convolution on input with one

 n×1 kernel; the output of this is again convolved with the second n×1

kernel. The concept is the same as explained in separable kernels. This is depicted in Figure 9.25(b). As every kernel is not separable, spatially separable convolution cannot be performed with every kernel. Kernel’s rank

must be 1 for it to be separable.

Depthwise separable convolution

Spatial separable convolution failed to exploit the depth/channels of input data. As the number of channels increases, computation resources would

[image: Image 2651]

[image: Image 2652]

[image: Image 2653]

[image: Image 2654]

[image: Image 2655]

[image: Image 2656]

[image: Image 2657]

[image: Image 2658]

[image: Image 2659]

[image: Image 2660]

[image: Image 2661]

[image: Image 2662]

[image: Image 2663]

[image: Image 2664]

substantially increase. Depthwise separable convolution provides solution.

Depthwise separable convolution breaks the operation into two stages: filtering stage or depthwise convolution, and combination stage or pointwise

convolution. Let us consider the input data of dimensions

.

Consider the application of one kernel. The depth of this kernel must be ,

which is equal to input data depth/channels. Dimension of this kernel will be

.

Depthwise convolution

In depthwise convolution stage, instead of one kernel of

size, kernels of each

dimension is used. Each of these

kernels is applied on only one channel of the input data. Output of this stage

is of depth equal to input data’s channel count (depth). In this stage, Multiplication Count =

and Parameters Count =

. Refer to

the following figure:

 Figure 9.26: Depthwise separable convolution

Pointwise convolution

Pointwise convolution uses kernel of size

. Due to kernel

dimension of 1 × 1, it is called pointwise convolution. Depth of the kernel

used in this stage is equal to channel count or depth of input data. Depth of

output data after this operation is 1 for one kernel. To obtain more channels

in output, we should use the same number of kernels of size

in

this stage. In this stage,

and

.

[image: Image 2665]

[image: Image 2666]

[image: Image 2667]

[image: Image 2668]

[image: Image 2669]

[image: Image 2670]

[image: Image 2671]

[image: Image 2672]

[image: Image 2673]

[image: Image 2674]

[image: Image 2675]

Optimization

Let us understand the benefit of this convolution with respect to regular convolution. Assume that we need output with

channels or depth.

Regular convolution requires

kernels of size

. This would

result

in

and

.

To obtain output with

channels or depth using depth-wise separable

convolution,

and

Optimization ratio for multiplications count would be as follows:

Optimization ratio for parameters count would be as follows:

Convolution and pooling layers either reduce/retain spatial dimensions

(height/width) of the input data. This reduction also called downsampling is beneficial for classification task but is of little help in other image tasks, like object detection or localization. For these tasks, it would be beneficial if the spatial dimension of input is increased, also called upsampling. Next, we will discuss the type of convolution operation that will perform upsampling:

 transposed convolution.

Upsampling: Transposed convolution

To understand transposed convolution, let us take input data of dimensions

 2×2×d, where d is the number of channels or depth and a kernel of size 2×2×d whose parameters are being learned during the training phase. Every cell of the input data is multiplied with all cells of the kernel to produce an

intermediate result corresponding to each cell of the input. It is then placed

in enlarged dimensions with provided stride to get intermediate results. In this case, we have considered stride=1. To obtain the final output, these

intermediate results are added as shown in Figure 9.27:

[image: Image 2676]

[image: Image 2677]

 Figure 9.27: Transposed convolution with input and kernel of size 2×2×d with stride=1

Increasing kernel size or stride will result in higher dimensions of the output

as compared to the input data. With stride=1, input size 2×2×d is increased to 3×3×d. With the same input data and kernel, stride=2 would result in output of size 4×4×d, as shown in Figure 9.28:

 Figure 9.28: Transposed convolution with input and kernel of size 2×2×d and stride=2

We discussed an upsampling approach that had parameters to be learned

during the training phase. There exist upsampling approaches that do not

need parameters to be learned.

We discussed building blocks of CNN. Building blocks or tricks of DNN

that help in training to learn better representation will be used in CNN too.

These have already been discussed in Chapter 7 Neural Networks. Next, let us discuss the development of CNN architectures.

Development of CNN

First network that had most of the building blocks of today’s CNN was published in 1998 by Yann LeCun called LeNet [3]. There were a few challenges, like availability of robust data set, compute resources due which

the development of CNN models were stalled for 14 years after this

submission. Data set availability issue was addressed by ImageNet dataset in

2010. It started annual competition, which is now known as ImageNet Large Scale Visual Recognition Challenge (ILSVRC). As part of this challenge in 2012, Alex Krizhevsky submitted AlexNet [4] that won the competition by beating the runners up with a huge margin of 10.8%. This received a lot of attention from researchers in CNN models and acted as the

turning point in the development of CNN models.

In the next few years, many CNN models were proposed each with a unique

way to enhance performance. Important models are Visual Geometry

Group (VGG) (2014) [6], Inception (2014) [5], ResNet (2015) [7], Xception (2015) [8]. Recent CNN models include most of the tricks or

proposals from these networks, along their novelty. Let us discuss a few of

these models to understand the working of CNN.

AlexNet

 AlexNet [4] is a simple CNN model. This architecture would be discussed in detail to understand the complete working of CNN models. AlexNet used

five convolutional layers for feature extraction, three max pooling layers for

subsampling, and three fully connected layers at the end to classify based on

extracted features. It introduced activation function Rectified Linear Unit (ReLUs) and used dropout (explained in Chapter 7 Neural Networks) for training.

Architecture of AlexNet is depicted in Figure 9.29 (a). Input to the network is the image of dimension 224×224×3. In the first layer, convolution

[image: Image 2678]

[image: Image 2679]

[image: Image 2680]

[image: Image 2681]

operation occurs with 96 kernels of 11×11 with valid padding and stride of 4.

Applying the formula discussed earlier, the output dimension of this layer is

54×54×96.

Depth (channels) is equal to the number of kernels used. It is then fed to the

ReLU activation layer (no change in dimension). Next, in the pooling layer,

max-pooling kernel of 3×3 is applied with a stride of 2 and valid padding.

Using the formula discussed earlier, the output of this layer would be 26×26×96.

The next layer is convolution, which applies 256 kernels of 5×5 (

) with stride of 1 and the same padding (

). Just like before,

we can apply the formula to obtain output dimension. Similarly, we can analyze the layers. The output of the last pooling layer is fed to the Fully Connected (FC) layer of 4096 size after flattening the data. Data then passes through two more FC layers before being fed to the Softmax layer.

This outputs probability of the input belonging to a class. Refer to the following figure:

[image: Image 2682]

 Figure 9.29: (a) AlexNet Model (b) Parameters and output dimension of each layer of AlexNet in TensorFlow framework

TensorFlow Model

TensorFlow code to create AlexNet is captured in the following code, and

the output of this code is captured in Figure 9.29(b): 1. from tensorflow import keras

2. alexnet = keras.models.Sequential([

3. keras.layers.Conv2D(filters=96, kernel_size=(11,11),

4. strides=(4,4), activation=’relu’,

5. input_shape=(224,224,3),

padding=”valid”),

6. keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)),

7. keras.layers.Conv2D(filters=256, kernel_size=(5,5),

strides=(1,1),

[image: Image 2683]

8. activation=’relu’, padding=”same”),

9. keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)),

10. keras.layers.Conv2D(filters=384, kernel_size=(3,3),

strides=(1,1),

11. activation=’relu’, padding=”same”),

12. keras.layers.Conv2D(filters=384, kernel_size=(3,3),

strides=(1,1),

13. activation=’relu’, padding=”same”),

14. keras.layers.Conv2D(filters=256, kernel_size=(3,3),

strides=(1,1),

15. activation=’relu’, padding=”same”),

16. keras.layers.MaxPool2D(pool_size=(3,3), strides=(2,2)),

17. keras.layers.Flatten(),

18. keras.layers.Dense(4096, activation=’relu’),

19. keras.layers.Dropout(0.5),

20. keras.layers.Dense(4096, activation=’relu’),

21. keras.layers.Dropout(0.5),

22. keras.layers.Dense(1000, activation=’softmax’)

23.])

24. print(alexnet.summary())

 Code 9.9: TensorFlow keras code to create AlexNet CNN model

Counting trainable parameters

The first convolution layer of the network performs convolution with 96

filters of size 11×11. The depth of these kernels is equal to depth of input data dimension to this layer. As input dimension to the first layer is 224×224×3, the depth of all kernels in the first layer would be 3. The number of trainable parameters in first layer would equal to the following:

Bias is single learnable parameter for every kernel. As there were 96 kernels

in this layer, learnable parameters for bias are 96.

Activation ReLU and max pooling layer don’t have trainable parameters.

Trainable parameters for the next few convolution layers can be calculated

as before. We can verify the calculation with the output of TensorFlow code

in Figure 10.26b. Output of last max pooling layer is flattened, which

[image: Image 2684]

outputs tensor of size 6400, which is fed to dense (fully connected) layer of

size 4096. Trainable parameters for this dense layer are calculated as follows:

 Note: What are the advantages of having deeper CNN networks?

 Initial convolution layers learn filters to detect local patterns. Deeper

 convolution layers learn filters hierarchically based on previous

 convolution layers learning. Due to this, deeper convolution layers learn

 complex and large patterns. This helps to solve complex tasks.

Inception

Inception V1 [5], also called GoogLeNet, submitted from Google was the winner of the ILSVRC 2014. It achieved a top-5 error rate of 6.67%. The main hallmark of this architecture is the improved utilization of the

computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network

while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle [9] and the intuition of multi-scale processing. It introduced an inception module that allows us to use multiple types of filter size, instead of being restricted to a single filter size, in a single layer, which will then be concatenated and passed on to the next layer. This inception module, which optimizes the convolution layer, helped the network to go deep. Inception module is

depicted in Figure 9.30:

[image: Image 2685]

 Figure 9.30: Inception V1 Module (Source: [5])

Inception module reduces computation by applying dimensionality reduction

and projection. 1×1 convolution helps in dimensionality reduction that

removes computational bottlenecks. It improves the utilization of computing

resources inside the network.

In 2015, a team submitted Inception-V3 [10] that makes convolution layer’s

computation much more efficient using the concept of separable kernels.

Separating n×n kernel into 1×n and n×1 kernel further reduced computation.

 Tip: Data required to train model increases exponentially with an

 increase in the number of training parameters. How can we mitigate this

 requirement to certain extent? The technique to create more data from

 existing training data is called data augmentation. Algorithms used for

 data augmentation depends on the task we are solving. For example, for

 image data that is used to identify animals like cat/dog, we can use affine

 transformation like rotation, scaling, shear, and translation discussed

 earlier.

VGG

VGG models are proposed by Visual Geometry Group (VGG) from University of Oxford. VGGNet [6] model proposed in 2014 secured the first and the second places in the localization and classification tracks,

respectively, in ILSVRC 2014. Main contribution is to increase depth using

an architecture with very small (3x3) convolution filters. Two 3×3

convolution layers (without spatial pooling in between) has an effective receptive field of 5×5, and three such layers have a 7×7 effective receptive

field. Using only 3×3 convolution layers make it uniform architecture.

 Note: What have we gained by using a stack of three 3×3 conv. layers

 instead of a single 7×7 layer?

 First, we incorporate three non-linear rectification layers instead of one,

 which makes the decision function more discriminative. Second, we

 decrease the number of parameters. This approach can also be seen as

 imposing a regularization on the 7 × 7 conv. filters, forcing them to have

 a decomposition through the 3 × 3 filters (with non-linearity injected in

 between).

TensorFlow provides popular models (along with trained weights on

ImageNet dataset) for importing in our code. Code 10.10 depicts the steps to import VGG16 model from TensorFlow library and print its architecture.

Number ‘ 16’ in VGG16 represents the number of trainable layers. VGG16

model is one of the ways to express VGGNet as mentioned in [6]:

1. import tensorflow as tf

2. # Instantiating built in vgg16 model

3. vgg16 = tf.keras.applications.vgg16.VGG16(

4. include_top=True, weights=None,

5. classes=1000, classifier_activation=’softmax’

6.)

7. print(vgg16.summary())

 Code 9.10: TensorFlow keras code to import vgg16 model

ResNet

ResNet [7] from Microsoft team won ILSVRC 2015 classification, detection, localization tasks. Model introduced residual learning framework

to ease the training of networks that are deeper. With the proposed

[image: Image 2686]

framework, they were able to go much deeper than the earlier CNN

networks. It reformulated the layers as learning residual functions with reference to the layer inputs instead of learning unreferenced functions. It provided comprehensive empirical evidence, showing that these residual

networks are easier to optimize and can gain accuracy from considerably increased depth. On the ImageNet dataset, it evaluates residual nets with a depth of up to 152 layers, 8 times deeper than VGG nets but still having lower complexity. Refer to the following figure (source[7]):

 Figure 9.31: Residual Learning Framework’s building block

[image: Image 2687]

Consider H(x) as an underlying mapping to be fit by a few stacked layers (not necessarily the entire net), with x denoting the inputs to the first of these layers. If one hypothesizes that multiple non-linear layers can asymptotically

approximate complicated functions, then it is equivalent to hypothesize that

they can asymptotically approximate the residual functions, that is, H(x) – x (assuming that the input and output are of the same dimensions). So, rather

than expecting stacked layers to approximate H(x), it explicitly let these layers approximate a residual function F(x) := H(x) – x. The original function thus becomes F(x) + x, as shown in Figure 9.31. Although both forms should be able to asymptotically approximate the desired functions (as

hypothesized), the ease of learning might be different.

Xception

Xception model [8] was proposed by François Chollet, creator of Keras deep learning library, in 2016. Proposed architecture is entirely based on depthwise separable convolution layers. It is based on the following

hypothesis: mapping of cross-channels correlations and spatial correlations in the feature maps of convolutional neural networks can be entirely

decoupled. As this hypothesis is a stronger version of the hypothesis

underlying the inception architecture, this architecture is named Xception, which stands for “Extreme Inception”.

The typical inception module first looks at cross-channel correlations via a

set of 1x1 convolutions, mapping the input data into two or four separate spaces that are smaller than the original input space, and then maps all correlations in these smaller 3D spaces, via regular 3x3 or 5x5 convolutions.

This is illustrated in Figure 9.32 (a):

 Figure 9.32: (a) Canonical Inception V3 module (b) “extreme” version of our Inception module, with one spatial convolution per output channel of the 1x1 convolution (Source: [8])

An “extreme” version of an Inception module, based on this stronger hypothesis, would first use a 1x1 convolution to map cross-channel

correlations, and it would then separately map the spatial correlations of every output channel. This is shown in Figure 9.32(b).

Xception model significantly outperformed Inception V3 on a larger image

classification dataset. Xception architecture has the same number of

parameters as Inception V3; the performance gains are not due to increased

capacity but to a more efficient use of model parameters. Depth separable convolutions proposed through this model are used in other popular models

like MobileNets[11].

Application of CNN models

CNN models have been used in a variety of tasks whose input is image or

video. We will discuss some of the tasks applicable on images like

classification, object detection, and segmentation.

Image classification

Image classification is a task that attempts to comprehend an entire image.

The goal is to classify the image by assigning it to a specific label. Typically, image classification refers to images in which only one object appears and is

analyzed.

The first CNN-based application used for hand-written digit classification is

LeNet [3]. CNN models discussed previously, like VGG, ResNet, Inception

models, can be applied directly to image classification tasks. Apart from these, popular models are ShuffleNet [26], NASNet [27], and

SqueezeNet [28]. These models are modifications to those mentioned earlier, and they are being used in almost all domains that deal with images like medical, sports, and medicines. For example, CNN models are applied for identifying lung infection [12] and breast cancer [13].

Object detection

The difference between object detection algorithms and classification algorithms is that in detection algorithms, bounding box is drawn around the

object of interest to locate it within the image. It might not necessarily be just one bounding box in an object detection case; there could be many

[image: Image 2688]

bounding boxes representing different objects of interest within the image, and it is not known how many beforehand.

A naïve approach to solve this problem would be to take different regions of

interest from the image and use a CNN model to classify the presence of the

object within that region. The problem with this approach is that the objects

of interest might have different spatial locations within the image and different aspect ratios. Hence, one would have to select a huge number of regions, and this could computationally blow up. Researchers have proposed

techniques to mitigate this cost. We will discuss some of these popular

models. Sample output of object detection algorithms is shown in Figure

 9.33:

 Figure 9.33: Object Detection – drawing bounding boxes around all items identified in an image (source: tensorflow.org)

R-CNN – Regions with CNN features

R-CNN [16] proposal combines two key insights: one can apply high-capacity CNN models to bottom-up region proposals to localize and segment

objects and when labeled training data is scarce, supervised pre-training for

an auxiliary task, followed by domain-specific fine-tuning, yields a

significant performance boost.

R-CNN accepts an image as input, extracts around 2000 bottom-up region proposals, computes the features for each proposal using a CNN model, and

then classifies each region using class-specific linear Support Vector Machines (SVMs). Improvements over this approach are proposed as Fast R-CNN [17], Faster R-CNN [18], Mask R-CNN [19].

YOLO – You Only Look Once

Prior work on object detection repurposes classifiers to perform detection.

Instead, YOLO [15] (2016) performed object detection as a regression problem to spatially separated bounding boxes and associated class

probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Several improvement versions of this

approach are proposed.

Image segmentation

Image segmentation is the process of assigning a unique label from a set of finite labels to every pixel in an image such that pixels with the same label

share certain characteristics (ex: color, intensity, texture). There are two broad categories of segmentation: semantic and instance.

Semantic segmentation associates every pixel of an image with a class label (ex: person, flower, car, foreground, background), where multiple

objects of the same class are treated as a single entity. Instance

segmentation too associates every pixel of an image with a class label but treats multiple objects of the same class as distinct individual instances.

Output of segmentation algorithm is shown in Figure 9.34:

[image: Image 2689]

 Figure 9.34: (a) Semantic segmentation (b) Instance segmentation Few popular models for semantic segmentation task are FCN [20], U-Net

 [21], and SegFast [22]. Popular models for instance segmentation task are Mast R-CNN [19] and YOLACT [23].

U-Net

U-Net [21] is primarily used for sematic segmentation. This network has inspired several networks used in various other image processing tasks, like

biomedical image segmentation, dense volumetric segmentation, and image-

to-image translation. This model consists of a contracting/encoding path (left

side) and an expansive/decoding path (right side), as shown in Figure 9.35.

The contracting path follows the typical architecture of a convolutional network. It consists of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a ReLU activation function and

a 2x2 max pooling operation with stride 2 for downsampling. At each downsampling step, the number of feature channels is doubled. Every step in

the expansive path consists of an upsampling of the feature map, followed

by a 2x2 convolution that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the

contracting path (dotted box in figure) and two 3x3 convolutions, each followed by a ReLU. The cropping (dotted box in figure) is necessary due to

the loss of border pixels in every convolution. At the final layer, a 1x1

convolution is used to map each 64-component feature vector to the desired

number of classes. Refer to the following figure (source[21]):

[image: Image 2690]

[image: Image 2691]

[image: Image 2692]

[image: Image 2693]

[image: Image 2694]

[image: Image 2695]

[image: Image 2696]

[image: Image 2697]

[image: Image 2698]

[image: Image 2699]

[image: Image 2700]

[image: Image 2701]

[image: Image 2702]

 Figure 9.35: U-Net architecture, blue box represents multi-channel feature map, number of channels denoted on top of box and spatial dimensions on left, white box represents copied feature maps Energy function is computed by a pixel-wise soft-max over the final feature

map combined with the cross-entropy loss function. The soft-max is defined

as follows:

Where

is approximated maximum-function,

denotes the

activation in feature channel k at the pixel position

with

.

for the k that has the maximum activation

and

for all other k. Cross-entropy then penalizes at each position the

deviation of

using the following:

Where

is the true label of each pixel and

is a

weight map that is introduced to give some pixels more importance in the

training.

Summary

In this chapter, we discussed about algorithms that applies filter using convolution to process the image and various categories of filters along with

examples. Next, we discussed about architectures that used both DNN and convolution operation, called CNN which helped us to learn filters

automatically based on the given task. We discussed about development of

CNN and few models in detail along with few applications. In next chapter

10 Sequence Learning Models, we will learn from the sequence data.

Further reading

The current trend of research in image processing has eventually become investigation and experimentation of various CNN architectures. The models

mentioned is this chapter are insufficient to understand the landscape of CNN models but would provide the platform to understand other models. To

understand the landscape of CNN models, you can go through survey papers

like [24] and [25]. Just to give a glimpse, popular CNN models are plotted in paper [25], along with learnable parameters and operations required for

one inference, as shown in Figure 9.36:

[image: Image 2703]

 Figure 9.36: Ball chart reporting Top-1 accuracy vs computational complexity, size of ball represents trainable parameters of the model (Source: [25])

Points to remember

Dimensions of images is large, due to which tasks like classification

cannot be applied directly. You need to extract features from the images

before performing the task.

Initially, features were extracted from the images with the use of filters.

These filters were manually developed based on the required task. This

task of identifying the filters for the required tasks is very tough.

CNN models learnt the filters based on the given task. These models have been successful on image tasks.

References

1. “Digital Image Processing” 4th edition by Rafael C Gonzalez, Richard E Woods.

2. “Deep Learning” by Ian Goodfellow, Yoshua Bengio, Aaron Courville

3. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based

 learning applied to document recognition,” in Proceedings of the IEEE,

Nov. 1998. Popularly called LeNet.

4. Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E,

 “ImageNet Classification with Deep Convolutional Neural Networks”

in Proceedings of the NIPS 2012, vol. 25. Popularly called AlexNet.

5. C. Szegedy et al., “Going deeper with convolutions,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. Popularly

known as Inception V1 or GoogLeNet.

6. S. Liu and W. Deng, “Very deep convolutional neural network based image classification using small training sample size,” 3rd IAPR Asian

Conference on Pattern Recognition (ACPR), 2015. Popularly known as

 VGGNet.

7. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for

 image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. Popularly known as ResNet.

8. Chollet, F., 2017 . Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition. Popularly known as Xception model.

9. The Hebbian Learning Rule specifies how much the weight of the

connection between two units should be increased or decreased in

proportion to the product of their activation. The rule builds on Hebbs’s

1949 learning rule, which states that the connections between two

neurons might be strengthened if the neurons fire simultaneously.

10. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016 .

 Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition. Popularly known as Inception V3.

11. Andrew, G. and Menglong, Z., 2017. Efficient convolutional neural networks for mobile vision applications. Popularly known as

 MobileNets.

12. Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng and M. Chen, “Medical

 image classification with convolutional neural network,” 2014 13th International Conference on Control Automation Robotics & Vision

(ICARCV), 2014.

13. Jiang, Y., Chen, L., Zhang, H. and Xiao, X., 2019. Breast cancer histopathological image classification using convolutional neural

 networks with small SE-ResNet module. PloS one, 14(3), p.e0214587.

14. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T. and

 Keutzer, K. , 2014. Densenet: Implementing efficient convnet descriptor pyramids. Popularly known as DenseNet.

15. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. , 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. Popularly

known as YOLO.

16. Girshick, R., Donahue, J., Darrell, T. and Malik, J. , 2014. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE conference on computer vision and pattern

recognition.

17. Girshick, R. , 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision.

18. Ren, S., He, K., Girshick, R. and Sun, J., 2015 . Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in

neural information processing systems.

19. He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017 . Mask r-cnn. In Proceedings of the IEEE international conference on computer vision.

20. Long, J., Shelhamer, E. and Darrell, T., 2015 . Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition. Popularly

known as FCN.

21. Ronneberger, O., Fischer, P. and Brox, T., 2015 , October. U-net: Convolutional networks for biomedical image segmentation. In

International Conference on Medical image computing and computer-

assisted intervention. Springer, Cham. Popularly known as U-Net.

22. Pal, A., Jaiswal, S., Ghosh, S., Das, N. and Nasipuri, M., 2018 , December. Segfast: A faster squeezenet based semantic image

 segmentation technique using depth-wise separable convolutions. In Proceedings of the 11th Indian Conference on Computer Vision,

Graphics and Image Processing (pp. 1-7). Popularly known as SegFast.

23. Bolya, D., Zhou, C., Xiao, F. and Lee, Y.J., 2019 . Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (pp. 9157-9166). Popularly known as

 YOLACT.

24. Li, Z., Liu, F., Yang, W., Peng, S. and Zhou, J. , 2021. A survey of convolutional neural networks: analysis, applications, and prospects.

IEEE Transactions on Neural Networks and Learning Systems.

25. Bianco, S., Cadene, R., Celona, L. and Napoletano, P., 2018 .

 Benchmark analysis of representative deep neural network

 architectures. IEEE Access.

26. Zhang, X., Zhou, X., Lin, M. and Sun, J., 2018 . Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE conference on computer vision and pattern

recognition. Popularly known as Shufflenet.

27. Qin, X. and Wang, Z., 2019 . Nasnet: A neuron attention stage-by-stage net for single image deraining. arXiv preprint arXiv:1912.03151.

Popularly known as NASNet.

28. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016 . SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

Popularly known as SqueezeNet.

CHAPTER 10

Sequence Learning Models

Many unstructured data types, like video, audio, and text, are sequential in

nature. Video is a sequence of image frames, audio is a sequence of audio

frames, and text is a sequence of words. Sequential data can also be structured in some scenarios. For example, time series: stock prices, sensor

data, and weather monitoring data. These data types have time as one of the

data dimensions. In sequential data, the elements of the sequence cannot be

assumed to be independent and identically distributed (i.i.d). For example, a video frame image at time t is very similar to the frame at time .

Given a word in a sentence, there are limited possibilities for the next word

for making the sentence meaningful. In all the models we discussed so far in

this book, the i.i.d assumption over the data points was always a necessary

condition to train the models. Hence, modelling sequences requires some specialised models, which can respect this dependency between successive data points in the sequence.

There are three major types of sequential modelling problems that we will discuss in this chapter:

1. Forecasting the future value of a sequence. For example, predicting

stock price tomorrow.

2. Classifying an entire sequence, like genome read categorization

3. Sequence to sequence models like translating text in one language to other, speech to text, or text to speech. We will start with some classical

probabilistic sequence models and then introduce Recurrent Neural

Networks (RNN) and its variations.

Structure

In this chapter, we will cover the following topics:

Time series models

Probabilistic sequence models: Markov chains, HMMs

Recurrent neural networks

LSTM, GRU, Bi-directional RNN

LSTM with attention

Sequence to Sequence Models: Encoder-Decoder Architecture

Self-attention and transformer architecture

Applications

Objectives

This chapter gives a detailed overview of various types of sequence models

and dives deep into some of the deep learning-based state-of-the-art

sequence models. These deep learning models are employed for solving

various AI problems and are already being used by many applications that

we encounter every day, for example, speech recognition, handwriting

recognition, language translation. After going through this chapter, you will

be able to formulate business problems to a sequence modelling problem and

employ a suitable class of sequence models to solve it.

Time series models

A time series is sequence of data points ordered in time. Here, time is the independent variable. A time series is called stationary if its statistical properties do not change over time, that is, it has constant mean and variance. Stationarity is one of the primary assumptions most time series models have. However, time series models encountered in practice are

generally non-stationary. They are made stationary using some

transformations, and then the stationary series is modeled.

A non-stationary time series may have trend, seasonality, and cyclical component. These are called deterministic components. If we can remove these components from the time series, the residual is often observed to be a

stationary stochastic component.

Decomposition of time series

Following are the components of a time series:

Trend: A long-term increase or decrease in value that might not be linear

Seasonal component: Exists when a series exhibits regular

fluctuations based on the season (e.g., every month/quarter/year).

Seasonality is always of a fixed and known period. The “frequency” of

a time series is defined as the number of observations before the

seasonal pattern repeats. A measure observed every minute might have

an hourly seasonality (frequency = 60), a daily seasonality (frequency

= 24 × 60 = 1440), or a weekly seasonality (frequency = 24 × 60 × 7).

Cyclical component: Exists when data exhibit rises and falls that are

not of fixed period. The average length of cycles is longer than the length of a seasonal pattern. In practice, the trend component is

assumed to also include the cyclical component. Sometimes, the trend

and cyclical components together are called trend-cycle.

Irregular component: This is a stationary process; it’s the residual time series after the removal of trend-cycle and seasonal components,

corresponding to the high frequency fluctuations of the series.

 Figure 10.1 shows an example time series: Airline Passengers dataset :

‘AirPassengers.csv’

[https://www.kaggle.com/rakannimer/air-

passengers], which contains the total number (in thousands) of monthly

airline passengers over a period.

 Note: Cyclic behavior must not be confused with seasonal behavior. They

 are quite different. If the fluctuations are not of a fixed frequency, then

 they are cyclic; if the frequency is constant and associated with some

 temporal aspect, then the pattern is seasonal.

Refer to the following figure:

[image: Image 2704]

[image: Image 2705]

[image: Image 2706]

[image: Image 2707]

[image: Image 2708]

[image: Image 2709]

[image: Image 2710]

[image: Image 2711]

[image: Image 2712]

 Figure 10.1: Airline passengers’ data

We can see a linearly increasing trend and some seasonal spikes in the passengers.

Mathematically, we can represent a time series as follows:

where

is a trend-cycle component,

is a deterministic seasonal

component, and is the irregular component. The functional form of f can be either additive or multiplicative, that is,

or

. However, taking logarithm of both sides, we get

. So, multiplicative relationship can

be fit by fitting additive relationship to the logarithms of the data and then

moving back to the original series by exponentiating. Figure 10.2 shows additive decomposition of a time series. We have used Python library

statsmodel’s seasonal_decompose function to generate this plot, as shown

in the following code:

1. import statsmodels.api as sm

2. import pandas as pd

3. df = pd.read_csv(‘AirPassengers.csv’, header=0)

4. df = df.reset_index(drop=True).set_index(‘Month’)

5. res = sm.tsa.seasonal_decompose(df, freq=12)

6. resplot = res.plot()

[image: Image 2713]

[image: Image 2714]

[image: Image 2715]

[image: Image 2716]

[image: Image 2717]

[image: Image 2718]

[image: Image 2719]

[image: Image 2720]

 Code 10.1:

This data has monthly passenger counts, and we observe that the seasonal pattern is yearly. Hence, the frequency of this time series is 12 (line 5 in the previous code snippet).

Estimating trend: The trend of a time series can be estimated using moving average. The average over a specific time window computed at each point t is called the moving average. This window can be two sided or one sided.

For example, considering a two-sided window of size 3, we have the moving

average time series:

Taking one sided window of size 3 (taking two past time stamp values), we

have:

This smoothens the time series. The window size is a parameter to the moving average time series:

If there is no seasonal component, the trend of the time series can be

estimated by simply taking any odd number moving average.

If there is seasonal component, then the length of the moving average

must be equal to the seasonal frequency.

Estimating seasonality: The seasonal factor can be extracted by subtracting the trend denoted by from the time series.

. If the frequency

of the time series is d, we must have

. Seasonal factors should

cancel out when added over one entire period, that is, we must have

. If this does not happen, then there is a way to correct it by

adjusting each seasonal factor as follows:

Refer to the following figure:

[image: Image 2721]

[image: Image 2722]

[image: Image 2723]

 Figure 10.2: Decomposition of time series of airline passenger data

Differencing

Considering the difference in consecutive values, we can create a difference

time series. The differenced series is the change between successive observations in original series and can be written as

. The

differenced series will have one value less than the original series. For example, daily stock prices timeseries is non-stationary, but the daily changes can be stationary. Thus, differencing is another way to make a non-stationary time series stationary. Sometimes, differenced data may not

appear to be stationary, and differentiating the data second time will make the series stationary:

. The send difference series will have

two points less than the original series. Similarly, we can compute the pth order difference series.

Transformations like logarithms can help to stabilize the variance of a time

series. Differencing can help stabilize the mean of a time series by removing

changes in the level of a time series, and therefore, eliminating (or reducing)

trend and seasonality.

[image: Image 2724]

[image: Image 2725]

[image: Image 2726]

[image: Image 2727]

[image: Image 2728]

[image: Image 2729]

[image: Image 2730]

Time series forecasting

Once we remove the seasonal and trend component from the time series, what remains is:

. But we still don’t have a way of

forecasting the value of the time series at a future point in time. If we observe some simple curvilinear form in the trend, we can model it with a

lower-degree polynomial.

OLS model

For the time series with simple trend and no seasonality, the Ordinary Least

Squares (OLS) or method can be used to estimate a polynomial trend and use that as an estimate. In this case, the problem reduces to a curvilinear regression with single variable ‘ t’.

We must choose the coefficients such that the prediction error between is minimized.

The two most widely used approaches on time series forecasting are

 exponential smoothing and ARIMA models. They provide complementary approaches to the problem.

Exponential smoothing

Exponential smoothing is technique of making forecasts using weighted averages of past observations, with the weights decaying exponentially as the observations get older. Hence, it’s also known as Exponential Weighted

Moving Average (EWMA). There are three main types of exponential smoothing algorithms: (1) simple exponential smoothing, (2) double

exponential smoothing or Holt, and (3) triple exponential smoothing (Holt-

Winters). In simple exponential smoothing, the smallest weights are

associated with the oldest observations:

Here, is called the smoothing parameter. This method generates reliable forecasts for a wide range of time series. Simple exponential smoothing has

a “flat” forecast function, that is, all forecasts take the same value:

[image: Image 2731]

[image: Image 2732]

[image: Image 2733]

[image: Image 2734]

[image: Image 2735]

[image: Image 2736]

[image: Image 2737]

[image: Image 2738]

[image: Image 2739]

[image: Image 2740]

[image: Image 2741]

[image: Image 2742]

[image: Image 2743]

[image: Image 2744]

. There is a recursive formula to calculate this. The recursion

starts at the first-time step as follows:

. Here, is

the first fitted value that we must estimate:

Hence, recursively, we are computing the following; this is an efficient way

to compute simple EWMA:

These forecasts will only be suitable if the time series has no trend or seasonal component.

 Holt (1957) extended simple exponential smoothing to capture trend in the data, thus providing a trending forecast unlike flat forecast before. This is also known as double exponential smoothing as there are two exponential smoothing equations: one for the trend

, and another for the remaining

series or level series

:

The initial values ,

are estimated by minimizing the Sum of the

Squared Errors (SSE) for the one-step training errors, that is:

 Holt and Winters (1960) extended Holt’s method to capture seasonality as well. Here, we have three smoothing equations: one for the level, one for the

trend, and one for the seasonal component.

Autoregressive Integrated Moving Average

[image: Image 2745]

[image: Image 2746]

[image: Image 2747]

[image: Image 2748]

[image: Image 2749]

[image: Image 2750]

Autoregressive Integrated Moving Average (ARIMA) models provide another approach to time series forecasting. While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in data.

An autoregressive model of order p denoted by AR(p) can be written as follows:

Moving-average model assumes that the output variable depends linearly on

the current and various past values of a stochastic term, like white noise.

Rather than using past values of the forecast variable in a regression, a moving average model uses past forecast errors in a regression.

This as a MA(q) model, a moving average model of order q. Combining time series differencing with autoregression and a moving average model, we obtain a non-seasonal ARIMA. An ARIMA(p,q,d) model is one where

dth order differencing is applied, and then the differenced series is modeled

as a combination of AR(p) + MA(q) model, as follows:

Clearly, p and q are two parameters of the model. To determine appropriate

p, q for the data, we sometimes use the Autocorrelation Plot (ACF) and the closely related Partial Autocorrelation (PACF) plot. You can refer to the Further Reading section for more details on this [1].

Probabilistic sequence models

Given a finite sequence

, what is the probability

of observing s, that is,

? In general, we can write the probability of the

sequence using product rule of probability as follows:

[image: Image 2751]

[image: Image 2752]

[image: Image 2753]

[image: Image 2754]

[image: Image 2755]

In terms of sequence, it means that the probability of observing depends

on all the previous values of the sequence, given by the conditional

. However, in practice, we observe that dependence

on all previous values of sequence is not very realistic. For example, whether

it will rain today may depend on cloudy weather for the last few days.

However, if it was cloudy a month ago, it cannot be a strong predictor for

today’s rain. Hence, we need to relax this assumption of dependence on all

previous values. The simplest form of such relaxation is given by first order Markov chains, where dependence on only the most recent previous value of sequence is assumed.

Markov chain

In a first order Markov chain, to predict the next observation in a sequence,

the prediction distribution will depend on immediately previous observation

only. Similarly, in a second order Markov chain, each observation is

assumed to be dependent on the previous two observations.

The assumption of 1st and 2nd order can be written mathematically as

follows:

In 2nd order Markov chain, for the first two elements of the sequence, the assumption of dependence on the previous two values does not hold. Hence,

we write the probability of a sequence following the 2nd order Markov chain

assumption as follows:

Refer to the following figure:

[image: Image 2756]

[image: Image 2757]

[image: Image 2758]

[image: Image 2759]

[image: Image 2760]

[image: Image 2761]

 Figure 10.3: Markov Chains

Similarly, probability of sequence following first order Markov chain is as follows:

Now, these conditionals must be defined to complete the model. We can assume that all these conditionals share the same probability distribution. It’s also known as homogeneous Markov chain. If the observed sequence is discrete and taking K different values, then the model is like a state space model. The conditional distribution

for the first order Markov

chain is given by a table called the state transition matrix P. The th

entry of the transition matrix denotes the probability

.

Clearly, the sum of row probabilities equals one as it indicates the

probability of landing to any other state given a current state. Figure 10.4 is an example of four-state transition matrix:

 Figure 10.4: Example Markov chains; the numbers indicate the transition probability

[image: Image 2762]

[image: Image 2763]

The arrows in Figure 10.4 indicate state transitions, and the numbers on the arrows indicate transition probability. Also, it is shown in a tabular form in

the right portion of Figure 10.4.

For modelling continuous variables with pth order Markov chain, we can use

linear-Gaussian conditional distributions, that is:

We can write it as follows:

Here, each conditional is a Gaussian distribution whose mean is linear function of its parents. This is an autoregressive or AR(p) model discussed

earlier.

Markov chain models, although simple to understand, looks very abstract, and hence, are not of much use in practice. We want to build a model for sequences that is not limited by the Markov assumption to any order, but it

can be specified using a limited number of free parameters. We can achieve

this by introducing additional hidden (latent) variables that follow a discrete

Markov chain, that is, we cannot directly observe these latent variables.

However, these latent states generate data that is given by some distribution

conditioned on the state. We call these hidden Markov models.

Hidden Markov model

Let’s start with an example to understand Hidden Markov Models (HMM).

Given an English sentence “Will Jane spot Mary? ”, we want to find the Parts Of Speech (POS) of each word in the sentence. For illustration purposes, we will assume that there are three parts of speech only: Noun (NN), Verb (VB), Modal (MD). We can represent the sentence graphically,

as shown in Figure 10.5:

[image: Image 2764]

[image: Image 2765]

[image: Image 2766]

[image: Image 2767]

[image: Image 2768]

[image: Image 2769]

 Figure 10.5: English sentence with simple parts of speech

Here, the numbers over the arrows indicate probabilities. The probability of

observing the word ‘will’ is 3/4, given the POS tag is MD. These are called

the emission probabilities, of the words in the sentence and are shown along the vertical arrows. The horizontal lines are representing all the transition probabilities: the probability of observing a NN after a MD is ¾ and the probability of observing a VB after a NN is 1. We can assume that the POS

sequence for any sentence is a Markov chain governed by these transition probabilities. Thus, any sentence can be assumed to be coming from a

generative process. First, POS are generated from an underlying hidden

Markov chain, and then, a word is generated from each POS category. An HMM follows the same graphical structure. We can pictorially represent an

HMM as shown in Figure 10.6. Here, the latent sequence follows a

discrete Markov chain. The observed variable

conditioned on the latent

variables is denotes as

, where φ is a set of parameters

governing the distribution and is known as emission probabilities. The initial latent node is special as it does not have a parent node. Refer to the following figure:

 Figure 10.6: Hidden Markov model

[image: Image 2770]

[image: Image 2771]

[image: Image 2772]

[image: Image 2773]

[image: Image 2774]

[image: Image 2775]

So, the marginal distribution

represented by a vector of probabilities

. We can represent the transition probabilities of the latent Markov chain

by A, the transition matrix. So, the entire parameter set for HMM can be represented by

. The joint probability distribution is given by

the following:

Now, the observed data is only

. So, we have to

marginalize the preceding distribution if we want to write the likelihood equation such that we get an equation for the observed data:

Directly optimizing this function is intractable. We can use the Expectation

Maximization (EM) algorithm, which was discussed in detail in Chapter 7,

 Clustering, in the GMM section, to find an efficient framework for

maximizing the likelihood function.

 Baum-Welch algorithm (or forward-backward algorithm) is a dynamic programming approach and a special case of EM algorithm that is used to train HMM.

In the E-step, given the observed data and the set of parameter matrices tuned before the expected hidden states are estimated.

The M-step updates formulas to tune the parameter matrices to best fit the

observed data and the expected hidden states. These two steps are then iterated over and over, until the parameters converge, or until the model has

reached a certain accuracy requirement.

The latent variables in HMM can have some meaningful interpretation. So,

it’s often useful to find the most probable sequence of hidden states for a given observed sequence. One such example we have already discussed here

is the POS tagging for a sentence. Also, in speech recognition, we can find

the most probable phoneme sequence for a given series of acoustic

observations. We can find the most probable hidden state sequence using

[image: Image 2776]

[image: Image 2777]

[image: Image 2778]

[image: Image 2779]

 Viterbi algorithm, a dynamic programming-based algorithm. You can refer to Further Reading [3], [4] for a detailed explanation of the Viterbi algorithm.

HMMs found applications in a wide variety of sequence modelling

problems. With advancement of deep learning and its ability to train models

on very large data sets, recurrent neural networks started outperforming on

many of the tasks that HMMs were used for.

Recurrent neural networks

Neural network can also be used for learning sequences. In feed forward neural network, two different inputs fed at different times are assumed to be

independent in the sense that first input or first input’s output – both don’t

impact the second output. So, we cannot directly use feed forward network

for modeling sequences. Recurrent Neural Network (RNN) models the sequence prediction problem as predicting the sequence for time step

,

given sequence

. RNN stores past time step information in a

state

and then uses this along with the current time step information to

predict the next time step. Also, the state is updated at every time step.

Let’s understand this with a simple example. Given a sequence of numbers,

we want to compute the EWMA (single) and output some function of

EWMA. Let’s take of EWMA as the desired output. The following code

does this:

1. import pandas as pd

2. import numpy as np

3.

4. seq = np.random.random(10)

5.

print(pd.DataFrame(seq).ewm(alpha=0.1,adjust=False).mean()/2)

6.

7. #Also, we can implement it as

8. S = seq[0]

9. alpha = 0.1

10. for i in range(len(seq)):

11. S = alpha*seq[i]+(1-alpha)*S

12. output = S/2

13. print(output, S)

[image: Image 2780]

[image: Image 2781]

[image: Image 2782]

[image: Image 2783]

[image: Image 2784]

[image: Image 2785]

[image: Image 2786]

[image: Image 2787]

[image: Image 2788]

[image: Image 2789]

[image: Image 2790]

[image: Image 2791]

[image: Image 2792]

[image: Image 2793]

[image: Image 2794]

 Code 10.2:

Here, the variable S can be thought of as a state variable keeping the processed sequence information. On the other hand,

is a parameter

of the state, which roughly determines how much previous information to store in the state. The state is initialized to be equal to the first element of the sequence. The state variable is used in every time step, along with new sequence input to compute the EWMA/2.

The structure of RNN is analogous to this example. We can replace the state

variable S by a tensor , (hidden state). is computed as a function of the

input, which is also a tensor , and the previous hidden state

. The

parameter can be replaced by a weight matrix

. The predicted output

by the network is a function of the state . Here,

are the bias terms

that depicts the mean hidden state vectors and the mean output vector, respectively. At

, we may initialize the hidden state by zero tensor.

Formally, this can be written as follows:

Here, and are activation functions for hidden state and output,

respectively. These are the RNN layer equations, also known as RNN cell. A RNN layer consists of applying the RNN cell for each element of the

sequence. The cell should take input and previous state vectors and output

next state and next sequence element. Unlike the feedforward neural

network layer, RNN cell has a feedback loop connection, as

is also

input to the layer that is the layer output in the previous time step. We can

pictorially represent this in two forms: one with feedback loop (Figure 10.7

(left)) and the other is unrolled loop (Figure 10.7 (right)):

[image: Image 2795]

[image: Image 2796]

[image: Image 2797]

[image: Image 2798]

[image: Image 2799]

[image: Image 2800]

[image: Image 2801]

[image: Image 2802]

[image: Image 2803]

 Figure 10.7: Simple RNN architecture

Training RNN

We must define a loss function for sequences to train RNN. The loss

function L of all time steps is defined based on the sum over the loss at every T time step:

. Here,

is the prediction at time t, and

is the

actual value of the sequence. E is the error function. The error function E for each time step is defined based on the type of problem we want to solve. For

predicting the next element of a sequence, we can compute the MSE of predicted with actual sequence at time t.

Theoretically, RNNs should be capable of learning from very long

sequences, but in practice, they are limited to looking back only a few steps.

The reason for this limitation lies in chain rule-based gradient update. For updating the weights

corresponding to the state tensor

, we must

compute the error gradient:

But

depends on all the previous time step hidden states. And we can

write this as follows:

[image: Image 2804]

[image: Image 2805]

[image: Image 2806]

[image: Image 2807]

[image: Image 2808]

[image: Image 2809]

is a product of Jacobians:

And hence the norm:

As the sequence length increases, if

, then the product can

become very small, and we call this the vanishing gradient problem for RNN

training. On the other hand, if

, these products can become

very large, leading to the exploding gradient problem.

To address these issues, some modifications to the RNN architecture are made using Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). These are called gated cells in general.

 Note: The backpropagation algorithm for training RNNs needs to unroll

 the input by first computing the forward step for each time step. It is

 called back-propagation through time (BPTT). BPTT cannot be

 parallelized because of this temporal dependency. So, another algorithm

 called teacher forcing is proposed, where the model receives ground truth

 output yt as input at time t + 1 during training time. Rather than feeding

 the model’s own output to itself, the target values specify what the correct

 output would be, and this can be easily parallelized. We can compute

 forward step for each time step in parallel, and hence, compute the loss

 in parallel.

Long Short-Term Memory (LSTM)

[image: Image 2810]

[image: Image 2811]

[image: Image 2812]

[image: Image 2813]

[image: Image 2814]

[image: Image 2815]

[image: Image 2816]

[image: Image 2817]

LSTMs consist of three or four gates, including input, output, and forget gates, which decide whether to write information to the memory or hidden

state. These gates are also small neural network-based functions, formulated

as follows, and are learned during the training phase. The following

equations define how information flows and state updating happens in a LSTM cell:

Forget gate:

Input gate:

Output gate:

Cell input activation vector:

Cell state output:

Hidden state vector:

 Figure 10.8 depicts a single LSTM cell taking input at time t:

 Figure 10.8: LSTM Cell (source [12])

For a detailed pictorial description of LSTM architecture, you may refer to

Further Reading [5].

 Note: LSTMs tend to not suffer from the vanishing gradient problem;

 they can have the exploding gradient problem. This can be mitigated by

 clipping gradient norm, that is, the gradients are rescaled when norm

 exceeds a threshold.

Gated Recurrent Unit (GRU)

[image: Image 2818]

[image: Image 2819]

The GRU unit combines the forget and input gates we had in LSTM into a

single “update gate.” It also merges the cell state and hidden state. GRU is a

simpler model with only two gates. GRU can be trained much faster. Figure

 10.9 shows the architecture and the cell update equations:

 Figure 10.9: GRU Cell (source [5])

Stacked LSTM/RNN

As we have seen in other deep neural network models, adding more layers

helps in learning complex feature representation of data; similarly, addition

of LSTM layers adds levels of abstraction of input observations over time.

This was first introduced for developing speech recognition model [6]. We will see in the following sections that this architecture is used in several sequence modelling tasks. Refer to the following figure:

 Figure 10.10: Stacked

The sequence models discussed so far are suitable for predicting the next element of the sequence. Now, let’s look at the other two types of sequence

modelling problem: sequence classification and predicting another sequence

or sequence generation.

Generative models for sequence

While inferencing from RNN, given a starting state and input, a trained RNN

can predict the next element of the sequence. This can be iteratively used to

generate very long sequence. Suppose we train a LSTM on a large collection

of text documents where each document is fed to the LSTM as a sequence of

characters. Then, given a seed state, we can generate new text that is representative of the text from the original corpus. The problem of

developing a model to generalize the structure of a collection of text documents is called language modelling, which we will discuss in the next chapter.

A generative LSTM is not really any new architecture; it is more of a change

in perspective about how the model is used and interpretation of what the model has learned from the data. Here, we will briefly discuss one

generative model for handwriting generation. We suggest that you go

through the paper “Generating Sequences with Recurrent Neural Networks”

 [13] for more on this, like handwriting generation and text generation. We will discuss handwriting generation in greater detail here. This model is trained on IAMOnline DB [14], which has the pen stroke handwriting data

collected from various authors who were asked to write on a smart board with a stylus. The pen stroke coordinated were captured in an XML format,

as shown in Figure 10.11. Here, a ‘stroke’ node in XML represents a continuous curve drawn without lifting the pen. The x, y pen coordinates of

each stroke data is sampled at the shown timestamp. The ground truth text is

attached as a label to the pen stroke coordinates data. Refer to the following

figure:

[image: Image 2820]

[image: Image 2821]

[image: Image 2822]

[image: Image 2823]

[image: Image 2824]

[image: Image 2825]

[image: Image 2826]

[image: Image 2827]

 Figure 10.11: IAMOn data sample

Handwriting generation

Handwriting is considered as a sequence of coordinates:

, where

the first two dimensions are the

coordinates of pen stroke and the third

is Boolean indicating whether the pen is up or down. So, in the preceding xml, whenever a new pen stroke starts, we must take

, otherwise

. Sometimes, we must lift the pen from the paper to complete certain

stokes, like the dot in small letter ‘i’ or the h2orizontal line in small letter ‘t’.

Stacked three layers of LSTM is used to model the first difference series of

coordinates. Also, skip connections are included for faster training and to avoid the vanishing gradient problem.

The difference series

is assumed to follow

Bivariate Gaussian Mixture Model (GMM) distribution. LSTM is used to

predict the parameters of this GMM distribution at each time step, that is, given a coordinate

, the model must be able to predict the

parameters

of GMM distribution from which the next coordinate

[image: Image 2828]

[image: Image 2829]

[image: Image 2830]

[image: Image 2831]

[image: Image 2832]

[image: Image 2833]

[image: Image 2834]

[image: Image 2835]

[image: Image 2836]

[image: Image 2837]

comes. Also, the pen touch probability can be modelled using

a Bernoulli distribution. Therefore:

Bivariate GMM distribution parameter

can be represented as set of M

mixture weights

, M location (mean) parameters

, and M covariance

matrix parameter of the Gaussians

:

That is, is a 6 M dimensional vector of parameters.

Mixture Density Network

Mixture Density Networks (MDN) are a class neural network of models obtained by combining a conventional neural network with a mixture density

model. The neural network outputs are used to parameterize a mixture

distribution. If RNN is used as the neural network, then the output

distribution is conditioned not only on the current input but also on the history of the previous input sequence. Figure 10.12 shows the MDN layer architecture for a bivariate Gaussian with three mixture components. There

are 6 × 3 = 18 nodes in the MDN layer. Here, mixture weight output nodes

are normalized with a softmax function to ensure that they form a valid categorical distribution. The other nodes for various parameter components

are passed through suitable functions to keep their values within meaningful

range. The variance should always be positive, and hence,

can be

passed though exponential activation function. The covariance can be positive or negative, but we don’t want it to take very large values, and hence, use tanh activation to limit its value in the range [-1, 1]. Refer to the following figure:

[image: Image 2838]

[image: Image 2839]

[image: Image 2840]

[image: Image 2841]

[image: Image 2842]

[image: Image 2843]

[image: Image 2844]

[image: Image 2845]

[image: Image 2846]

[image: Image 2847]

 Figure 10.12: MDN Layer output

For handwriting generation using MDN, we can replace the base neural

network by stacked LSTM. Let’s denote the stacked LSTM outputs at time t

by . We want to model

. Figure 10.12

gives the high-level architecture of the network. The final layer of the network is MDN, which will always output the parameters of a GMM. The

coordinates of the handwriting can be obtained by sampling from the learned

distribution, that is, learned GMM. For sampling, the first mixture

component must be chosen based on the parameters

. Then, we can

sample the coordinates

from the chosen bivariate mixture. Here,

and are not the actual coordinates but the first order difference of the coordinates. The actual coordinates can be obtained by computing the

cumulative sum of this sampled difference sequence

.

To train the network, we must maximize the log likelihood of the model. We

can write the log likelihood as follows:

Here,

is the output from the MDN layer. For

bivariate normal distribution, we can write the previous expression as

follows:

[image: Image 2848]

[image: Image 2849]

[image: Image 2850]

[image: Image 2851]

We

must

minimize

negative

log

likelihood

over the entire sequence to train

this neural network. We have the following:

Following is an implementation of this loss function. Here, epsilon is a small

constant to prevent underflow in log function:

1. epsilon = 1e-8

2. def mdn_loss(real_coords, e, pi, mu1, mu2, std1, std2, rho):

3. xs, ys, es = tf.unstack(real_coords, axis=2)

4. mrho = 1 - tf.square(rho)

5. xms = (tf.expand_dims(xs, axis=2) - mu1) / std1

6. yms = (tf.expand_dims(ys, axis=2) - mu2) / std2

7.

8. #Calculate probability for each element of the

 sequence

9. z = tf.square(xms) + tf.square(yms) - 2. * rho * xms

* yms

10. n = 1. / (2. * 3.14 * std1 * std2 * tf.sqrt(mrho))

11. n = n * tf.exp(-z / (2. * mrho))

12. mixture_probability = tf.reduce_sum(pi * n, axis=2)

13.

14. #binomial finish(sequence end) probability

15. e = tf.squeeze(e, axis = 2)

16. ep = es * e + (1. - es) * (1. - e)

17.

18. #-log likelihoods for sequence (sum over sequence)

19. sequence_loss = tf.reduce_mean(

20. -tf.math.log(mixture_probability +

epsilon) \

21. - tf.math.log(ep + epsilon), axis=1)

22. loss = tf.reduce_mean(sequence_loss)

23. return loss

 Code 10.3:

 Note: While training RNNs for generative modeling, the output and

 input of RNN are from the same distribution, that is, the RNN must

 output the next element of the input sequence. Then, the next element of

 sequence can be predicted by feeding the predicted output as input.

 However, the training becomes very slow if we do this. Hence, a different

 strategy called teacher forcing is used while training. This uses ground

 truth as input, instead of the model’s predicted output from a prior time

 step as an input.

For generating handwriting from this model, we can start with the coordinate

(0, 0, 1) as initial input to the RNN and generate the first parameter set from

the GMM layer. We can sample the coordinates by first choosing one of the

mixture components and then generating a sample from the corresponding

bivariate Gaussian, as shown in the following code from these parameters:

1. def sample(e, mu1, mu2, std1, std2, rho):

2. cov = np.array([[std1 * std1, std1 * std2 * rho],

3. [std1 * std2 * rho, std2 * std2]])

4. mean = np.array([mu1, mu2])

5.

6. x, y = np.random.multivariate_normal(mean, cov)

7. end = np.random.binomial(1, e)

8. return np.array([x, y, end])

 Code 10.4:

The sampled coordinates are passed as input to the network along with the

previous hidden states, and then the next time step coordinates are generated.

This is repeated for several time steps. Figure 10.13 shows a sample of the generated handwriting after training the model with the preceding loss

function and sampling:

[image: Image 2852]

 Figure 10.13: Sample generated handwriting

Sequence classification

Sequence classification is a predictive modeling problem, where given a sequence of observations, the task is to predict a category for the sequence.

Sequence classification has a wide range of applications, such as genomic analysis, information retrieval, health informatics, finance, anomaly

detection, gesture recognition, and motion recognition.

A sequence may carry a class label. For example, a time series of ECG data

may come from a healthy or ill person. A DNA sequence may belong to a

gene coding area or a non-coding area. A piece of text can be considered a

sequence of words. A movie review is a sequence of words, and it can be positive or negative. These are examples of binary sequence classification problems.

A typical architecture for sequence classification is an RNN to encode the variable length sequence input into one fixed size vector. This acts as the feature vector of the sequence, which is passed through a series of fully connected layer, followed by a softmax layer for classification. Figure 10.14

depicts this:

[image: Image 2853]

 Figure 10.14: Typical sequence classification architecture

RNNs process the sequence in forward direction only. For some sequences,

like text, it may be necessary to see words coming next to the current word

to get more context. In speech recognition also, classification for phonemes

can be better if we look at the future phonemes and not only the phonemes

already uttered. This is in line with human speech understanding. Many times, we understand a word uttered by a speaker only after listening to the

next word or may be after completion of the sentence. BRNNs, discussed in

the next section, can process sequences from both directions to extract better

sequence features.

Bi-directional RNN

Bi-directional RNNs (BRNN) process the sequence in both directions.

Typically, two separate RNNs are used: one for forward direction and one for reverse direction. This results in a hidden state from each RNN, which

are usually concatenated to form a single hidden state. The forward and backward RNNs don’t interact; they can be trained in the same way as the

standard RNNs. This is shown in Figure 10.15:

[image: Image 2854]

 Figure 10.15: Bi-directional RNN

Multiple layers of BRNNs can be stacked for more complex sequence

classification tasks. BRNNs are used in many other sequence modeling

tasks, like speech recognition, handwriting recognition, and sequence

anomaly detection.

Sequence to Sequence

Sequence-to-Sequence modelling (Seq2Seq) is about training models to convert sequences from one domain to sequences in another domain.

Following are a few examples of Seq2seq modelling:

Handwriting recognition

Language Translation: An English sentence to French

Speech Recognition: Audio to text transcript

Video captioning

Question-answering: chat bots

Text to speech

Text to handwriting ink coordinates

In all these examples, input sequences and output sequences have different

lengths. Although RNN models are powerful sequence learning models, the

input is unsegmented in many practical problems like handwriting (cursive) recognition, speech recognition, and gesture recognition. For example, in cursive handwriting recognition, we have the Sayre’s paradox: A word written in cursive cannot be recognized without being segmented and cannot

[image: Image 2855]

be segmented without being recognized. This means most OCR systems

based on character segmentation are not usable directly for cursive

handwriting. Figure 10.16 explains unsegmented input for handwriting recognition:

 Figure 10.16: Alignment issues in sequence to sequence

So, the main problem is the alignment of input to output, that is, which part of handwritten image corresponds to a character or which segment of the speech signal corresponds to a character. Had there been a way to segment

the input, a simple RNN-based architecture would have sufficed to build the

models, but that is not the case here. The first breakthrough in this was done

by Alex Graves in 2006 [7], where this problem was solved by introducing Connectionist Temporal Classification (CTC), which is an alignment free technique. Much later, in 2015, a novel neural network architecture was introduced by Google [8] to address this challenge.

Connectionist Temporal Classification

The idea of Connectionist Temporal Classification (CTC) is eradicating the need for explicit alignment, that is, to redefine the problem as an alignment-free problem with input and output sequence having the same length. The input is first split into equal-sized segments such that we get a sequence input from a raw audio/image. For each segment, we must have a

target label. For example, consider the handwriting example shown in Figure

 10.17:

[image: Image 2856]

 Figure 10.17: Alignment of handwritten image to characters

For each segment of the image, a character label mut be assigned. Here, we

see that the character ‘c’ is two segments long, ‘a’ is two segments long, and

‘t’ is one segment long. Suppose we had this labeling available as training

data; we could easily train a RNN to model this. Removing the repeated characters from the prediction would give the final output, but what if we had a word with repeated characters, like ‘ hello’. Suppose the alignment after image segmentation is [h, h, e, l, l, l, o]. Then, collapsing the repeats

will produce “helo” instead of “hello”. Let’s introduce a new character called the blank token ϵ. ϵ token doesn’t correspond to any character in output and

is simply removed from the output. Consider a possible alignment using ϵ, as

follows: [h, h, e, ϵ, ϵ l, l, l, ϵ, l, l, ϵ, o]. From this alignment, if we first

remove repeats and then ϵ, we will get the word ‘hello’, as shown in Figure

 10.18. CTC can help us achieve this without creating segment-wise labeling

or annotation for training a model. Refer to the following figure:

[image: Image 2857]

[image: Image 2858]

[image: Image 2859]

[image: Image 2860]

[image: Image 2861]

[image: Image 2862]

[image: Image 2863]

 Figure 10.18: Alignment of handwritten image to characters using CTC type encoding The alignment we saw earlier is not unique. Based on different handwriting

inputs, there may be different possible alignments. The word hello can be derived from any of the following [hhϵllϵlϵo, heeϵlllϵllo, hhhheϵllϵloo, …]. If

we have a predefined length of encoding sequence T, then there are possible sequences, where

. denotes the number of alphabets.

Hence, any encoded character output y of length T is a sample from a distribution over the set of all sequences

.

With this view of the target sequence, we can use simple RNN/LSTM with

softmax output layer (having

number of output nodes) to model the

output distribution. Given an input handwriting or audio segmented into T

parts, this model will output a probability distribution over characters at

each time step t. This is called CTC network, as shown in Figure 10.19.

Refer to the following figure:

[image: Image 2864]

[image: Image 2865]

[image: Image 2866]

[image: Image 2867]

[image: Image 2868]

[image: Image 2869]

[image: Image 2870]

[image: Image 2871]

[image: Image 2872]

[image: Image 2873]

[image: Image 2874]

[image: Image 2875]

[image: Image 2876]

 Figure 10.19: CTC Network

Now, how do we train such a model? We don’t have a target alignment defined so that we can evaluate cross entropy loss at each of T time steps.

The target label is still the given text corresponding to a handwriting or audio.

Training CTC network: Maximum likelihood

We can choose the subset of all encoded sequences of length T, which

represent the target sequence, out of all possible

sequences. For example,

let the target sequence be ‘hello’. If we take

, we have

. We must maximize the probability

of observing

, given input sequence x, that is,

:

The goal is to maximize the log probabilities of all the correct classifications in the training set, that is, minimizing the following objective function where Tr denotes the training set.

The probabilities

are given by the softmax activation. For any

, we can compute

as the product of T probabilities given by

their respective softmax activations. To compute these probabilities

[image: Image 2877]

[image: Image 2878]

[image: Image 2879]

[image: Image 2880]

[image: Image 2881]

[image: Image 2882]

[image: Image 2883]

[image: Image 2884]

efficiently, we can represent it in a tabular form with T=8 columns, and the

number of rows is the length of target sequence, that is, ‘ hello’. To allow blanks in the output, we modify the output sequence by interleaving empty

tokens between the characters “hello” and making it “∈h ∈e ∈l ∈l ∈o”. Any alignment

is a path from a node in t1 to a node in t8. A valid path

must satisfy the following:

We are allowed to move right or down.

Paths can include any number of ∈ tokens but must also include all

characters of the target string “hello”.

At least one ∈ must be included between the repreated characters “ll”

in any valid path.

One valid path corresponding to the alignment ‘hel’ is shown in Figure

 10.20:

 Figure 10.20: The path for ‘hel-lo--’

The probability of this path is as follows:

Here,

denotes the probability (given by softmax activation) at the time

step t for the character c. Other valid paths are “hel

”, “

”, and

so on. Many of these paths have portions in common; for example, “hel

” and “

” have “hel” in common, that is, they have a common

subproblem to solve. Hence, these probability computations can be further optimized by Dynamic Programming (DP).

[image: Image 2885]

[image: Image 2886]

[image: Image 2887]

[image: Image 2888]

[image: Image 2889]

[image: Image 2890]

[image: Image 2891]

[image: Image 2892]

DP formulation for CTC loss

Given a labeling l, we define

as forward variable:

= total probability of observing labeling

that is:

= total probability of observing first s symbols of l till time t.

= total probability of observing labeling

= all paths corresponding to l that go through symbol l[s]

at time t

To allow for blanks in the output paths, we modified label sequence l with blanks added to the beginning and the end and inserted between every pair

of labels. Let’s call this l’. The length of l’ is

. We can write

the probability of l as the sum of the total probabilities of l’ with and without the final blank at time T:

We will compute the forward and backward variables by CTC Forward-

Backward Algorithm: the algorithm to solve the previous DP. We are not providing the details of the solving DP. You may refer to the paper [7] to know more. Most DL frameworks have APIs available to compute CTC

loss. For TensorFlow, it’s “tf.nn.ctc_loss”. The gradient of this loss can be computed directly from the forward and backward variables and is also

discussed in the paper.

Inferencing from CTC network

Inferencing from CTC network can be done in two different ways: greedy search and beam search. Given an input sequence of length T, the CTC

network will output a sequence of probability distributions of length T. The greedy decoding chooses the output token that has the maximum probability

in each time step.

Instead of greedily choosing the most probable next step, as the output sequence is being decoded out of the probabilities, the beam search expands

all possible next steps and keeps the k most likely and controls the number of

beams or parallel searches through the sequence of probabilities. Figure

[image: Image 2893]

 10.21 shows an example beam search with beam width and for an output

alphabet {a, b, }. Refer to the following figure:

 Figure 10.21: Beam search diagrams [source: https://github.com/distillpub/post--ctc/issues/4]

Limitations of CTC are as follows:

CTC assumes that the model outputs for a given frame are independent

of the previous frames. The CTC layer is not recurrent.

Output sequences cannot be longer than the input sequence – the output

can be longer than the input for tasks like text-to-speech, or text to handwriting.

Next, we will discuss another architecture for sequence-to-sequence

modelling that mitigates these limitations.

Encoder-Decoder architecture

A simple encoder decoder architecture is depicted in Figure 10.22. This architecture supports different input sequence lengths for the source and target. The encoder is a recurrent neural network like LSTM or stacked LSTM, which encoded the source sequence into a fixed size vector. This is

[image: Image 2894]

[image: Image 2895]

[image: Image 2896]

[image: Image 2897]

[image: Image 2898]

called the encoder context vector. This is the final hidden state of the encoder. The context vector acts as an initial hidden state of the decoder. The

context vector has the responsibility of encoding all the information in each

source sequence to one single vector. This is challenging for longer

sequences. To solve this, a new technique called attention mechanism is introduced . BRNNs are also used in the encoder architecture instead of simple LSTMs. Refer to the following figure:

 Figure 10.22: Encoder-Decoder architecture

Attention mechanism

Attention allows the model to focus on the relevant parts of the input sequence as required, by accessing all the past hidden states of the encoder, instead of just the last one.

Here, a context vector is derived, which captures relevant source-side information. Attention mechanism-based models have two broad categories:

 global [Figure 10.23] and local attention. This means whether the

“attention” is placed on all source positions or on only a few source positions, that is, how the context vector is derived.

Global attention: The context vector c is the weighted sum of hidden states of the input sequence, weighted by alignment scores (a scalar):

[image: Image 2899]

[image: Image 2900]

[image: Image 2901]

[image: Image 2902]

[image: Image 2903]

[image: Image 2904]

[image: Image 2905]

[image: Image 2906]

[image: Image 2907]

[image: Image 2908]

Here, attention alignment scores are computed using one-hidden layer

feed-forward network with a softmax activation, as follows:

is the decoder hidden state at time t, and is the source sequence hidden state at time step s in the source sequence.

The current target hidden state is compared to all source states using score

function to derive

 . The score function outputs a scalar value. For

example, the score can be a dot product of the vectors

. Refer to the

following figure:

 Figure 10.23: Attention (source https://lilianweng.github.io/lil-log/2018/06/24/attention-

 attention.html)

Different attention mechanisms compute this score in different ways:

Dot product: Multiply the hidden states of the encoder by the hidden

state of the decoder at time t:

General: Very similar to the dot product, but a learnable weight matrix

is included to project the encoder hidden states and then perform

the dot:

[image: Image 2909]

[image: Image 2910]

[image: Image 2911]

[image: Image 2912]

[image: Image 2913]

[image: Image 2914]

[image: Image 2915]

[image: Image 2916]

[image: Image 2917]

[image: Image 2918]

[image: Image 2919]

[image: Image 2920]

[image: Image 2921]

[image: Image 2922]

[image: Image 2923]

[image: Image 2924]

[image: Image 2925]

[image: Image 2926]

[image: Image 2927]

[image: Image 2928]

Concat: The decoder hidden state and encoder hidden states are

concatenated

before being passed through a linear layer with a

tanh activation function and, finally, being multiplied by a weight

matrix

:

where

are trainable parameters.

Bahdanau attention: This is similar to the concat given earlier, except

that they have used the previous hidden state of the decoder

, and

instead of concatenating the hidden states, they used separate weight

matrices

:

The weight matrices

and the vector

are learned

during training.

Location based: The scores are computed from solely the target

hidden states, as follows:

Local attention: A single aligned position

for the current target is

predicted first. The source hidden states from a window

of

source time steps is used to compute a context vector . Local attention is

also known as window-based attention. Here, D is empirically selected.

Now, can be chosen in the following ways:

Monotonic alignment:

; here, it assumes that the source and

target sequence are monotonically aligned.

Predictive alignment:

, S

being the length of source sequence. Because of the sigmoid function,

.

We can now modify the alignment scores to give more weightage to

positions near the source alignment position

. We can do this using a

Gaussian centered at , that is:

[image: Image 2929]

[image: Image 2930]

[image: Image 2931]

Here, is a fixed variance that can be empirically chosen.

Key-value-query formulation of attention

An attention function can be described as mapping a query and a set of key-

value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values. In other

words, the output is the context-vector. We can view the constituents of attention layer as follows:

The ‘query’ is the last decoder hidden state till time step t.

The ‘values’ are the encoder outputs, that is, all the hidden states of the

encoder. The ‘query’ attends to all the ‘values’.

We may represent the values by some ‘key’ and compare the query

with the keys instead of directly comparing it with the values.

This is analogous to document search or retrieval. For searching a YouTube

video, we pass a text query. This query text is compared to various video descriptions (keys), and the relevant videos (values) are retrieved. For the types of attention discussed so far, we have value=key. With this

formulation, all the previous score functions have only two arguments, i.e.,

query and value:

For example, we can implement Bahdanau attention as follows:

1. class BahdanauAttention(tf.keras.layers.Layer):

2. def __init__(self, units):

3. super(BahdanauAttention, self).__init__()

4. self.W1 = tf.keras.layers.Dense(units)

5. self.W2 = tf.keras.layers.Dense(units)

6. self.va = tf.keras.layers.Dense(1)

7.

8. def call(self, query, values):

9. #query shape: [batch_size, hidden_size],

[image: Image 2932]

[image: Image 2933]

[image: Image 2934]

10. #values shape: [batch_size, inp_seq_len,

 hidden_size]

11. query = tf.expand_dims(query, 1)

12. scores = self.va(tf.nn.tanh(self.W1(query) +

self.W2(values)))

13. attention_weights = tf.nn.softmax(scores, axis=1)

14. context_vector = attention_weights * values

15. context_vector = tf.reduce_sum(context_vector,

axis=1)

16. return attention_weights, context_vector

 Code 10.5:

Now, let’s see how we can use this to implement a language translator model

that can translate a sentence in French to English.

Scaled dot-product attention: Using the key/value/query formulation, another attention scoring function can be defined, which is very similar to dot-product attention discussed earlier; it is called scaled dot product attention. Here, is the scaling factor, and it is equal to the dimension of

the query, key vectors:

The attention is defined as:

.

Here the values v need not be the same as keys.

Language translation model

Given a sequence of text in a source language, say French, the task is to convert it into a target language, like English. The natural ambiguity and flexibility of human language causes the lack of a single best translation of

the source text to another language. This makes the problem of language translation challenging. Classical models of language translation were either

rule-based or statistical. The rule-based models were developed by linguists,

and the collection of such rules was massive. Statistical approach is data driven, where a collection of pairs of source and target language were used

to convert phrases or sub-sentences from source to target language. It’s

[image: Image 2935]

known as Statistical Machine Translation (SMT). Neural network models when employed for this task outperformed both the previous approaches.

We can download French-English dataset, which consists of bilingual

sentence pairs, from http://www.manythings.org/anki/.

Text can be viewed as a sequence of words. Suppose there are N words in

the vocabulary of any language; we can represent them by numbers 1 to N.

Thus, the source sentence is a sequence of integer indices. We must convert

these integers to one hot encoded vector. Generally, N will be very large, so

converting it to one hot encoding will result in a high-dimensional and sparse vectors. To avoid this, words are converted to dense vector

representation using a lookup matrix that has N dense vectors of dimension

. This lookup matrix is called embedding matrix, and is called the embedding dimension. We will discuss embedding matrix in greater detail in the next chapter on NLP.

Following is the code for the encoder. This model takes a sequence of integers as input and uses the embedding layer in line 8 to convert the sequence of integers to sequence of dense vectors, which are processed by

the RNN (or GRU). Refer to the following code:

1. class Encoder(tf.keras.Model):

2. def __init__(self, vocab_size,

3. embedding_dim,

4. enc_units, batch_sz):

5. super(Encoder, self).__init__()

6. self.batch_sz = batch_sz

7. self.enc_units = enc_units

8. self.embedding =

tf.keras.layers.Embedding(vocab_size,

9. embedding

_dim)

10. self.gru = tf.keras.layers.GRU(self.enc_units,

11. return_sequences=True,

12. return_state=True,

13.

recurrent_activation=’sigmoid’)

14. def call(self, x, hidden):

15. x = self.embedding(x)

16. output, state = self.gru(x, initial_state = hidden)

17. return output, state

18. def initial_hidden_state(self):

19. #Generating encoder initial states as all zeros

20. return tf.zeros((self.batch_sz, self.enc_units))

 Code 10.6:

Following is the decoder model that uses Bahdanau attention to look at all

the source sequence hidden states with the current decoder hidden state as the query [line 21 in the following code snippet]. The context vector found by attention is concatenated with the embedded target language token at i th

step and passed to the decoder as the input.

1. #Decoder with attention

2. class Decoder(tf.keras.Model):

3. def __init__(self, vocab_size,

4. embedding_dim,

5. dec_units, batch_sz):

6. super(Decoder, self).__init__()

7. self.batch_sz = batch_sz

8. self.dec_units = dec_units

9. self.embedding =

tf.keras.layers.Embedding(vocab_size,

10. embeddin

g_dim)

11. self.gru = tf.keras.layers.GRU(self.dec_units,

12. return_sequences=True,

13. return_state=True,

14.

recurrent_activation=’sigmoid’)

15. self.fc = tf.keras.layers.Dense(vocab_size)

16. self.attention = BahdanauAttention(dec_units)

17.

18. def call(self, x, hidden, enc_output):

19. # enc_output (batch_size, max_length, hidden_size)

20. # hidden (batch_size, hidden size)

21. attention_weights, context_vector =

self.attention(hidden,

22.

enc_output)

23. x = self.embedding(x)

24. #Concatenating previous output with contx_vec

25. x = tf.concat([tf.expand_dims(context_vector, 1),

x], axis=-1)

26. output, state = self.gru(x)

27. output = tf.reshape(output, (-1, output.shape[2]))

28. x = self.fc(output)

29. return x, state, attention_weights

30.

31. def initialize_hidden_state(self):

32. return tf.zeros(self.batch_sz, self.dec_units)

 Code 10.7:

The output of the decoder is passed through a dense layer [line 28 in the preceding code snippet] to predict the next decoded token. We must use a softmax layer to predict the probability of the next token. Here, we output

the logits that can be converted to probabilities in the loss function, as discussed in the following code:

1. def loss_function(self, real, pred):

2. loss_ =

tf.nn.sparse_softmax_cross_entropy_with_logits(

3. labels=real, logits=pred)

4. return tf.reduce_mean(loss_)

 Code 10.8:

Now, let’s discuss the training step that uses teacher forcing. We have used

two special tokens “<start>” and “<end> ” to indicate the beginning and end of a sentence in source or target language, respectively. For example, the sentence “Comment ça va? ” in French can be converted to the sequence

[<𝑠𝑡𝑎𝑟𝑡>,′𝑐𝑜𝑚𝑚𝑒𝑛𝑡′,

′ça,′𝑣𝑎′,′?′,

<𝑒𝑛𝑑>.

We

have

used

‘tf.keras.preprocessing.text.Tokenizer’ to covert the sentences into sequences, as shown in the code snippet 10.9. We will use teacher forcing to

train the network. So, the input to the decoder will be the real input from the

target language, not the input predicted by model in the previous step. This

is shown in line 36; in code 10.9. we have a loop to iterate through the entire decoder sequence. We have made sure that the length of each sequence in a

batch is the same by padding the sequences with zeros.

1. class NMTModel:

2. def __init__(self,

3. vocab_size_in,

4. embedding_dim_in,

5. vocab_size_out,

6. embedding_dim_out,

7. enc_units,

8. dec_units,

9. batch_size,

10. inp_lang_tokenizer,

11. targ_lang_tokenizer

12.):

13. super(NMTModel, self).__init__()

14. self.inp_lang_tokenizer = inp_lang_tokenizer

15. self.targ_lang_tokenizer = targ_lang_tokenizer

16. self.batch_size = batch_size

17. self.encoder = Encoder(vocab_size_in + 1,

18. embedding_dim_in, enc_units, batch_size

)

19. self.decoder = Decoder(vocab_size_out + 1,

20. embedding_dim_out, dec_units,

batch_size)

21. self.optimizer = tf.keras.optimizers.Adam()

22.

23.

24. @tf.function

25. def train_step(self, inp, targ):

26. loss = 0

27. hidden = self.encoder.initial_hidden_state()

28. with tf.GradientTape() as tape:

29. enc_output, enc_hidden = self.encoder(inp,

hidden)

30. #final encoder states are taken as initial

 decoder states

31. dec_hidden = enc_hidden

32. #Passing ‘<start>’ token as first token to

 decoder

33. dec_input = tf.expand_dims(

[image: Image 2936]

34. [self.targ_lang_tokenizer. \

35.

word_index[‘<start>’]]*self.batch_size, 1)

36. for t in range(1, targ.shape[1]) :

37. # passing enc_output to the decoder

38. predictions, dec_hidden, _ = self.decoder(

39. dec_input, dec_hidden, enc_output)

40. loss += self.loss_function(targ[:,t],

predictions)

41. # using teacher forcing

42. dec_input = tf.expand_dims(targ[:,t], 1)

43. batch_loss = (loss / int(targ.shape[1]))

44. variables = self.encoder.variables +

self.decoder.variables

45. gradients = tape.gradient(loss, variables)

46. self.optimizer.apply_gradients(zip(gradients,

variables))

47. return batch_loss

 Code 10.9:

The training time of encoder-decoder model is very high because of the loop

in the decoder step. This cannot be parallelized because of the dependency

on the previous time steps. Attention-based speech recognition models like

LAS, discussed as follows, were trained for about a month using GPUs to get the desired results.

Speech recognition model

Automatic Speech Recognition (ASR) or converting speech to text was traditionally approached by breaking the problem into multiple stages and solving using multiple independent models for each stage, as depicted in the

 Figure 10.24:

[image: Image 2937]

[image: Image 2938]

[image: Image 2939]

[image: Image 2940]

[image: Image 2941]

[image: Image 2942]

[image: Image 2943]

[image: Image 2944]

[image: Image 2945]

[image: Image 2946]

[image: Image 2947]

[image: Image 2948]

[image: Image 2949]

[image: Image 2950]

 Figure 10.24: Components speech recognition model

HMM-based acoustic model was used to create phonemes from audio signal

features. The phone sequence was converted to word sequence or text by another decoder model.

ASR can be viewed as a sequence-to-sequence modeling problem. The input

speech is a sequence of audio frames, and output is a sequence of characters

depicting the transcription corresponding to the speech signal. The speech signals can be hundreds to thousands of frames long. In the paper Listen, Attend and Spell (LAS) [9], pyramid structure stacked BRNN is used as the encoder architecture called listener, as shown in Figure 10.25. This helps to reduce the length of the input sequence considerably. Each layer reduces the

sequence length by a factor of 2; hence, with 3 layers, we have a factor of 8

reduction in the sequence length. Refer to the following figure:

 Figure 10.25: Pyramidal recurrent encoder

Next, they have used a decoder with attention over the encoded audio. This

is another RNN-based decoder that outputs a character distribution

in

every time step. The distribution for is a function of the decoder state

and context vector . The decoder state is a function of the previous state

, the previously emitted character

, and context

. The context

vector is produced by an attention mechanism. The attention mechanism

is content based: the contents of the decoder state (query) are matched to

the contents of encoder hidden states using dot product type attention:

Where and are neural networks learned during training.

[image: Image 2951]

[image: Image 2952]

[image: Image 2953]

Self-attention and transformers

Attending to elements of the same sequence is called self-attention or intra-attention. While modelling the input sequence with encoder, we assumed that every element of the sequence may have dependence on all previous elements. This need not be true all the time. So, while encoding the sequence

also, we can use attention mechanism over the same sequence. For example,

consider a sequence of words in the sentence. We will take two similar sentences:

“The animal didn’t cross the street because it was too tired”.

“The animal didn’t cross the street because it was too wide”.

In the first sentence, “it” refers to the animal and in the second, it refers to the street. Can we capture such relations and inter-dependencies within the

same sequence? This is what self-attention or intra attention is all about.

 Figure 10.26 shows the same. Sequence to sequence tasks like machine translation have improved using self-attention.

 Figure 10.26: Visualizing self-attention

Self-attention is an attention mechanism relating different positions of a single sequence to compute a representation of the sequence.

Computing self-attention

Self-attention is represented as a vector. For each input vector in an input sequence (like embedding vector in case of text sequence), the self-attention

vector is computed. First, each input vector

is projected to 3 separate

vectors

by a linear transformation, that

[image: Image 2954]

[image: Image 2955]

[image: Image 2956]

[image: Image 2957]

[image: Image 2958]

[image: Image 2959]

[image: Image 2960]

[image: Image 2961]

[image: Image 2962]

[image: Image 2963]

is, multiplying by a matrix. For query and key vectors, we use matrices of dimension

,where

is the input dimension or

embedding dimension.

is the projection dimension. For value, we

can use the projection matrix

of dimension

. We may choose

for simplicity, as shown in Figure 10.27, where

and

. The sequence length is 5. Using these projected vectors, we can

compute scaled dot product attention taking each input as query and all other

input’s keys and values. Then, we can add all the softmax weighted value vectors for each query and get the corresponding attention vector for each element of the sequence. Refer to the following figure:

 Figure 10.27: Pyramidal encoder

So, applying self-attention on a sequence, we get a sequence of the same length as the input. This sequence has the attention features encoded in its representation. This was first introduced in the paper “Attention is All you

Need” (Vaswani, et al., 2017). In this paper [11], a novel architecture called transformer is introduced, which is a recurrence free architecture for modelling sequences. Refer to the following figure:

[image: Image 2964]

 Figure 10.28: Multi headed attention

There, they have used multiple self-attention layers in parallel to encode different types of features in sequence. This is like the multiple filters we find in CNN architectures. They called this the multi-headed attention. This computes multiple attention vectors, one for each head, and these are

concatenated to form the final representation, as depicted in Figure 10.28.

Transformer architecture

The transformer architecture also has an encoder and a decoder for

modelling sequence to sequence tasks. Here, the encoder is a stack of transformer layers that creates a representation of the input sequence, just like all the hidden states generated by RNN-based encoder. However, the transformer is not recurrent. The decoder shares the same structure as the encoder, but it inserts another additional sub-layer, which performs multihead attention over the output of the encoder stack. This is called encoder-

decoder attention. The “Encoder-Decoder attention” layer works just like multiheaded self-attention, except that it creates its queries matrix from the

layer below it and takes the keys and values matrix from the output of the

encoder stack. This is shown in Figure 10.29. While training, the decoder self-attention layer must attend to earlier positions in the output sequence only. This is essential as the entire output sequence will not be available while inferencing from this network; only previously predicted elements will

[image: Image 2965]

be available. This restriction is done by masking future positions. You can refer to https://www.tensorflow.org/text/tutorials/transformer for more details on implementation.

Transformers are applied to various sequence modelling tasks, like speech recognition, handwriting recognition, and sequence classification. Using

transformers, many natural language processing tasks have improved

drastically. We will be discussing these models in the next chapter. Refer to

the following figure:

 Figure 10.29: Transformer Encoder-Decoder architecture [source: Further Reading [10]]

Conclusion

In this chapter, we covered various sequence models, like time series models

for structured data, probabilistic models like Markov chains, HMMs, neural

network models for unstructured data like RNN and LSTM, and transformer

models. We also covered the applications of these models for solving various

AI problems like speech recognition, handwriting recognition, language

translation, sequence generation, and sequence classification.

In the next chapter, we will see more applications of sequence models for modelling text and solving other natural language processing problems.

Points to remember

Sequence modelling tasks are of three major types: (1) forecasting the

future value of a sequence, (2) classifying an entire sequence, and (3)

Sequence to sequence models.

If our data set is small, we must restrict ourselves to simpler models,

like time series models, or hidden Markov models.

Neural models require large data sets for training. However, even with

small, labeled training data set, we can pretrain the network weights by

defining suitable unstructured pretraining tasks.

Pure RNNs cannot be used for learning long-range sequence patterns;

instead, we use the gated variants of RNNs like LSTM and GRU.

RNN/LSTM model training time is more because of BPTT algorithm,

and this can be addressed by using transformer architecture for

sequence models, which is pure feed forward architecture and can be

trained with normal BP.

Further Reading

1. Otexts.com. (2016). Forecasting: Principles and Practice. [online]

Available at: https://otexts.com/fpp2/

2. Buteikis, A. (n.d.). 03 Time series with trend and seasonality

 components. [online] Available at: http://web.vu.lt/mif/a.buteikis/wp-

content/uploads/2019/02/Lecture_03.pdf

3. HMM : Viterbi algorithm -a toy example H Start. (n.d.). [online]

Available at: https://www.cis.upenn.edu/~cis262/notes/Example-

Viterbi-DNA.pdf

4. Baum–Welch algorithm.

[online]

Wikipedia.

Available

at:

https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

5. Olah, C. (2015). Understanding LSTM Networks -- colah’s blog.

[online] Github.io. Available at: https://colah.github.io/posts/2015-

08-Understanding-LSTMs/

6. Graves, A., Mohamed, A. and Hinton, G. (2013). Speech Recognition

 with Deep Recurrent Neural Networks. [online] arXiv.org. Available at:

https://arxiv.org/abs/1303.5778

7. Graves, A., Ch, A., Fernández, S., Gomez, F., Schmidhuber, J. and Ch, J. (n.d.). Connectionist Temporal Classification: Labelling

 Unsegmented Sequence Data with Recurrent Neural Networks. [online]

Available at: https://www.cs.toronto.edu/~graves/icml_2006.pdf

8. (2014). Sequence to Sequence Learning with Neural Networks. [online]

Available at: https://arxiv.org/pdf/1409.3215.pdf

9. Chan, W., Jaitly, N., Le, Q. and Google Brain, V. (n.d.). Listen, Attend

 and Spell. [online] Available at: https://arxiv.org/pdf/1508.01210.pdf

10. Alammar, J. (n.d.). The Illustrated Transformer. [online] Available at:

https://jalammar.github.io/illustrated-transformer/

11. Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, Ł. and Polosukhin, I. (n.d.). Attention Is All You Need.

[online]

Available

at:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fb

d053c1c4a845aa-Paper.pdf

12. Jenkins, Ian & Gee, Ludvig & Knauss, Alessia & Yin, Hang & Schroeder, Jan. (2018). Accident Scenario Generation with Recurrent Neural Networks. 3340-3345. 10.1109/ITSC.2018.8569661.

13. Alex Graves. Generating Sequences With Recurrent Neural Networks,

[online] arXiv.org. Available at: https://arxiv.org/pdf/1308.0850.pdf

14. IAMDBOn:

https://fki.tic.heia-fr.ch/databases/iam-on-line-

handwriting-database

CHAPTER 11

Natural Language Processing

About 80% of the enterprise data is unstructured data, and majority of this data is text. This text can be in any language developed and evolved by humans, that is, any natural language. Natural language can be in the form of speech, handwriting, printed/typed text, or digitized text. The science of making computers capable to interpret natural language in the form of digitized text is called Natural Language Processing (NLP). The other forms of natural language like speech or handwriting are converted to digitized text to apply NLP. The first step in NLP is to represent the natural language in a numeric form as a vector. Once that is done, we can apply the tools from ML and DL

literature to formulate and solve various business problems. NLP has a wide range of application, for example, classifying textual documents to some predefined categories – email routing and classification, finding similarity between documents – search engines, understanding human intent -chat bots,

question answering system, chat bots, summarizing large text documents. NLP

literature is vast and may take several chapters to discuss various concepts in

detail. In this chapter, we will give a high-level overview of text processing required for text representation and discuss various models of text.

Structure

In this chapter, we will cover the following topics:

Structure of Natural Language

Text Preprocessing: Stemming, Lemmatization

Bag of words model, Vector Space Model

Probabilistic Models of Text: LSI, LDA and applications to Information

Retrieval

Dense Representation of text: Glove, Skip-Grams, CBOW

Contextual Models for Text ELMO, BERT

Objectives

After studying this chapter, you should be able to learn the basics of NLP. This chapter will help you in understanding the state-of-the-art papers in NLP, and

you should be able to implement and modify those models for solving your business problem. We will introduce the mathematical tools and concepts required for modelling text. We will cover some statistical models of text and

will also cover some state-of-the-art deep learning-based NLP models for text.

Natural language

A natural language is one developed and evolved by humans over ages for communicating with each other. There is a hierarchical structure in natural languages. Linguistics is a branch of science for understanding these structures in languages. Spoken language can be broken down to small set of sound or acoustic patterns called phones. For example, the word ‘ cup’ in English language can be broken into phones /k/,/uh/,/p/. This representation of atomic

units of speech are called phonemes. In written form of natural language, the atomic units are the characters or letters. Grapheme is a letter or group of letters that represent a single phoneme. The phonemes, in turn, are the constituents of morphemes, that is, minimal meaningful word segments. Words are comprised of one or more morphemes. Words are combined to form a group, expressing complete thoughts, called into phrases, such as noun phrases, verb phrases, adjective phrases, and prepositional phrases, which are

the structural components of sentences, expressing complete thoughts. At still higher levels, we have various types of discourse structure, like paragraphs and sections. The structure in natural language can be broadly divided into two types (1) syntactic structure and (2) semantic structure, which we will discuss

in detail in the following sections. The objective of studying these linguistic structures is to apply them for feature extraction from textual data. In this chapter, we will be discussing the English language syntax and semantics, but

most of these concepts can be extended to other languages as well.

Syntactic structure of language

There are certain rules that we collectively called the grammar of a language, which act as a guideline of how words are combined into phrases, phrases get

combines into clauses, and clauses get combined into sentences.

Parts of Speech (POS)

The number of words in any language is huge. To define any grammar, we need to first categorize the words into some small set of categories and then define rules over the categories and not for individual words. We can categorize English words into nine basic types according to its syntactic function. There are called Parts Of Speech (POS): noun, pronoun, adjective, determiner, verb, adverb, preposition, conjunction, and interjection.

Phrases

A phrase is one or more words that form a meaningful fragment of a

sentence/clause. There are five main types of phrases: Noun Phrase (NP), Verb

Phrase (VP), Adjective Phrase, Prepositional Phrase, and Adverb phrase. In each of these, a few words are added around the main word type. NP: a single

noun or a group of words built around a single noun. For example: ‘ The President of India’ is a NP. VP: a single verb or a group of words built around a single verb. For example, I will be going to France next week.

Clause

A clause is a group of words with some relation between them that usually contains a subject (a noun) and a predicate (verb with an object). The subject

need not always be present in a clause. There are two main types of clauses:

the main clause and the subordinate clause. The main clause is also known as

an independent clause because it can be a sentence by itself. The subordinate

or dependent clause depends on the main clause for its meaning.

Sentence

A sentence is a grammatical unit of one or more words that expresses an independent statement, question, request, command, exclamation, and so on.,

and that typically has a subject as well as a predicate. A sentence typically begins with a capital letter and ends with appropriate punctuation based on its

type. Refer to the following figure:

[image: Image 2966]

 Figure 11.1: Grammatical structure of a sentence shown as a tree. Each leaf node in the tree represents a word in the sentence with its parent representing the word type. Then, these words/word types are groups based on some rules to form noun phrase and verb phrases and so on.

Document and Text corpus

A collection of sentences in a written, printed, or digitized text file is called a text document. A collection of documents is called text corpus. It usually consists of bodies of written text, often stored in digitized form. There are many large text corpus build over time targeted for various NLP tasks.

Semantic structure of language

The study of meaning in language is called semantics. Words with similar meanings can be linked together in a database, which can be very useful in understanding the meaning of language. In any language like English, two words with same meaning can have different spellings based on the tense, number, and so on. In languages like French, different spellings are used for adjectives referring to different genders as well. The smallest meaningful and

syntactically correct unit of a language is called lemma or lexeme.

The meaning of a word may change based on the position in the sentence and

the context. There are words with the same spelling or pronunciation that have

different meanings, called homonyms. For example, in the two phrases, ‘a cricket bat’ and a ‘bat which is seen at night’, the word ‘bat’ has different meanings. The relationship between words of these types is called homonymy.

 Capitonyms are words that have the same spelling but different meanings when capitalized. Example, the month May and the phrase ‘may be’. Synonyms are words that have different spellings but have the same meaning. Polysemes are like homonymy. A word is polysemous if it can be used to express different meanings. The difference between these two concepts is very subtle. If you hear (or read) two words that sound (or are written) the same but are not identical in meaning, we must decide if it’s really two words (homonyms), or if

it is one word used in two different ways (polysemy). Example of polysemy is

“Good man” vs “Good artist”. In the first one, the word “good” describes a moral quality, and the second one is describing skill.

Wordnet

WordNet is a lexical database of semantic relations between words, as defined

earlier, in more than 200 languages with the synonyms being grouped into synsets with short definitions and usage examples. Its primary use is in automatic text analysis and artificial intelligence applications.

Text preprocessing

Extracting the preceding syntactic and semantic structures computationally from text as features of text is called text pre-processing. These structures help us convert an unstructured text document into a structured vectorized form, which can be used to train a model to solve various AI problems like text classification, text summarization, question answering, and so on. Following are a few standard text preprocessing techniques applied on any textual data for feature extraction:

Sentence splitting: The process of splitting a text into sentences is also known as sentence segmentation. This is mainly rule-based approach; for

example, sentence must begin with capital letter and end with certain

punctuation.

Word tokenization: This is the process of splitting sentences into its constituent words. Here, the punctuation characters are split and

separated into independent tokens. These are also rule based, and we can

specify the rules to split the tokens with regular expressions, or we can use the standard grammatical rules for splitting.

Text cleanup: Commonly occurring words in text like common verbs, conjunctions, for example, { a, an, and, but, how, in, is, are, on, or, the,

what, will} called stopwords and are removed from the word token list.

Lowercasing, removing special characters, blank spaces are also a

common preprocessing step.

Lemmatization: The word affixes are removed to get to a base form of

the word. This base form must be a semantically correct word. Generally,

wordnet type database is used to lemmatize a word. For example, all of

the following words {connection, connections, connective, connected,

connecting} originate from the root word ‘connect’ and is the lemma of

all.

Stemming: Stemming is similar to lemmatization except that the output

need not be a meaningful word. This is a rule-based approach. Potter

stemmer is a popular rule-based stemming algorithm.

Sub-word tokenization: Segmenting the word further into small chunks

that need not be any meaningful word is called sub-word tokenizing. This

is required to address Out Of Vocabulary (OOV) words. Suppose we extracted all words from a corpus, which we call the vocabulary of the

corpus. We build text features based on these words only and a text

model also takes these features as input. Now, given new text for

inferencing using the trained model, if this text has a new word that is not

in our vocabulary, we call it OOV word. If we have sub word tokens, then we can spit the new word into sub tokens, which are part of our vocabulary. Many state-of-the-art NLP models use this tokenization

technique. We discussed one sub-word tokenization in greater detail.

POS tagging: The parts of speech tags can also be used as features of text.

There are multiple text preprocessing libraries in various programming

languages. In Python, we have nltk, genism, scikit learn. Reader is suggested to refer to [1], [2] in Further Reading section for detailed examples. NLTK

documentations [3] also provide a lot of examples to get started.

Models for text

 “All models are wrong, but some are useful!”- this is a famous saying in statistics, generally attributed to the statistician named George Box. This holds true in NLP as well. There are various models for text, and each model is suitable for solving specific problems in text. None of these models alone can

represent all aspects of structure in text. For example, if we want to find whether an email is spam or not looking at certain key works, and key phrases

typically found in spam emails may be useful. So, for this problem, modelling

the text as a bag-of-words suffices. We may not need to consider the structural

details in the written text. However, if we want to analyse, whether a review

about a movie or a newly launched product is positive or negative, we many

need to use deeper semantic and syntactic relations in the text.

Text models can be built at all the hierarchies: document level, sentence level, paragraph level, and word level. If we want to compare or classify a collection

of documents, we would prefer document level text models. For building a chatbot, we need to build sentence or phrase level model that can keep track of

the context of the conversation and provide desired response sentences.

Bag of Words (BoW) model

From a given text document, we apply the standard pre-processing techniques

discussed earlier, and each document is represented as an unordered list of words. processed words present in the document. None of the syntactic or semantic attributes of text are captured in this representation. This is the simplest model of text. There are various approaches to convert the unordered

list of words to a numeric representation discussed as follows.

Vector Space Model

Given the BoW extracted from a document, we can create a feature vector for

the document, where each feature is a word, and the feature’s value should reflect the presence and importance of the word in the document. The entire document is represented as a feature vector, and each feature vector

corresponds to a point in a vector space. The dimension of this vector space is

 V, where V is the size of the vocabulary. Here, the vocabulary is built over the entire corpus.

Count based or Boolean

[image: Image 2967]

Given a corpus of documents, we can represent each document as a vector.

Suppose there are V unique words in the entire corpus. Then, each document

will be represented as a V dimensional vector. We call V the size of the vocabulary of the corpus. Each word in the vocabulary represents one feature in the vector. If a word w from the vocabulary is not present in a particular document, the corresponding feature value is zero; otherwise, the feature value

is the number of times the word occurs in particular document, that is, the word frequency. Table 11.1 shows an example of a corpus with two documents and their corresponding word count vector. There are seven unique words in the corpus.

Following is an example:

 Table 11.1: Count vector representation of documents

The entire corpus can be thus represented as a matrix where each row corresponds to a vector representation of a document. Each column

corresponds to a unique word in the corpus. This is called Document-Term matrix. Here is a code example from Python scikit learn:

1. from sklearn.feature_extraction.text import CountVectorizer

2. corpus = [“The cat sat on the mat”, “The mat was red”]

3. vectorizer = CountVectorizer()

4. X = vectorizer.fit_transform(corpus)

5. print(X.toarray())

 Code 11.1:

Term Frequency (TF)-Inverted Document Frequency (IDF)

The count-based or Boolean models give equal importance to all the words in

the corpus. There can exist a set of words that are more frequent in a corpus

and occur in almost every document. These words may not provide any

important feature for a document from the corpus. Rather, the rare words that

occur in very few documents may give some distinguishing features. The

[image: Image 2968]

document frequency is the number of documents where a word is seen. The Inverse Document Frequency denoted by IDF is computed by dividing the total number of documents in our corpus by the document frequency for each

term and then applying logarithmic scaling on the result. We can add 1 to the

document frequency for each term to prevent making idf = 0 for terms that occur in only one document and also for words not in corpus. This prevents divide by zero error while computing idf. The term frequency is the count of the term in a document and thus we weight the term frequency by idf, and we have the tf-idf for each wordp as follows:

 Note: The bag-of-words models treat each word as independent, and thus,

 the contextual sense of words is completely lost. This problem can be

 partially addressed by using phrases or n-grams along with single words

 and computing the term document matrix over n-grams, where n is the

 number of consecutive words you want to consider.

Replacing CountVectorizer in the preceding code by TfidfVectorizer , we can create tf-idf term document matrix with sklearn Python library.

Latent Semantic Indexing (LSI) model

The vector space models are unable to cope with two classic problems in natural languages: synonymy and polysemy. In the context of information retrieval, where we have a text query that needs to be matched with a collection of documents, the query should match documents with synonyms and not with documents with polysemes. This is impossible with vector space

model alone. The document-term C matrix obtained in vector space model can be modified to obtain a low-rank approximation Ck using singular value decomposition. This yields a new representation for each document in the corpus. We can cast queries into this low-rank representation as well, and thus, compute query-document similarity scores in this low-rank representation.

This process is known as Latent Semantic Indexing (LSI). This low-rank approximation is distance preserving in cosine similarity sense that is, two documents which are similar in the original vector space should be also similar

or close by in the lower dimensional subspace defined by LSI. Let’s take a

small corpus of documents, as shown in Figure 11.2, to understand this better:

[image: Image 2969]

[image: Image 2970]

[image: Image 2971]

[image: Image 2972]

[image: Image 2973]

 Figure 11.2: Term-document matrix of sample corpus

We discussed in detail in Chapter 3, Vector Calculus, how to compute SVD.

Using the same method, we can decompose the preceding term document

matrix, as shown in Figure 11.3:

 Figure 11.3: Singular value decomposition

Here, we have chosen the two largest singular values only; thus, the dimension

of our low-rank space is 2. The preceding

matrix gives us the document

representation in two-dimensional space, that is, each of the 5 documents in the corpus are represented as a two-dimensional column vector. This is known as

 document embedding. Similarly, the left matrix U represents each word as a dense 2-dimensional vector. This is called word embedding. Now, for a new document not in the corpus, we must have a similar representation to compare

it with any of the embedded documents. The new document is mapped into

its representation in the LSI space by the following transformation:

[image: Image 2974]

[image: Image 2975]

[image: Image 2976]

[image: Image 2977]

[image: Image 2978]

[image: Image 2979]

[image: Image 2980]

[image: Image 2981]

[image: Image 2982]

[image: Image 2983]

This enables us to do semantic querying on the corpus without even supplying

any synonym list to the query pre-processing using. The LSI representation has

leaned the similarity of words from the data give a large enough corpus. For

implementation of LSI refer to Gensim API reference for LSI [4] in the Further Reading section.

Probabilistic models of text

A sentence S is a sequence of words

. A probabilistic

language model estimate:

. Probability of an

upcoming word

can be estimated as

Thus,

applying the chain rule of conditional probability, the probability of observing a sentence is as follows:

In the preceding factorization, we can restrict the conditionals by the assumption that the nth word depends on only the last d words at most and not

all the words. The most simplistic assumption is that the current word is conditionally independent of all other words, which reduces this model to a bag-of-words model and is called unigram model.

Unigram model:

.

We can estimate

as count of the word in the corpus / total number

of words.

Bigram model: Approximating factors to condition on only the previous

word.

Estimating bigram probability:

These counts can be obtained by counting pairwise occurrences of the

words

in the entire corpus for every pair of words in the

vocabulary. Bigram estimates of sentence probability for an example

sentence can be calculated as follows:

P(〈s〉 I love English food 〈e〉) = P(I|〈 s〉) × P(love|I) × P(English|love) ×

 P(food| English) × P(〈 e〉 |food)

Here are special tokens indicating the start and end of sentence.

 N-gram Model: We can extend bigram to trigrams, 4-grams and 5-grams.

Google has published their n-gram model by processing

1,024,908,267,229 words of running text and computing counts for all

1,176,470,663 five-word sequences that appear at least 40 times. For any

given corpus, we can create our own n-gram model by counting

occurrences of n-word phrases.

Topic models

Any text document constitutes of information about a topic like science, technology, entertainment, health and well-being, sports, business, politics and so on. Document may have more than one topic but is very unlikely to have all

possible topics.

Given a corpus of documents, say news articles, we can always assign one or

more topics to it. Now, these topics can be expressed as a bag of words. For

example, Figure 11.4 shows an example document discussing four topics: arts, budget, children, and education. Each of these topics can be associated with some words from the document. The same word may be present in two

different topics. The word ‘state’ can come in two topics: state and education.

Assignment of words to a topic is done best by looking at multiple documents

and analysing the word frequencies across documents in various topics. This method of representing a text document as a mixture of topics is called topic model. These models represent the topic as a latent variable denoted by z.

There are two types of topic models that we will discuss in the next two sections. Refer to the following figure:

[image: Image 2984]

 Figure 11.4: Topics extracted from text (Source:

 https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf)

Probabilistic generative models: Latent Dirichlet allocation

Now, with this view of text documents as a mixture of words from a few topics, we can enhance the naive bag of words model to a probabilistic generative model called Latent Dirichlet Allocation (LDA). This is based on Dirichlet Distribution, hence the name LDA.

The basic idea of topic model is that documents are represented as mixtures of

topics(latent), where each topic is characterized by a distribution over words.

So, we can assume that each word in a document is generated by a two-stage sampling process:

1. Choose a topic from topic distribution.

[image: Image 2985]

[image: Image 2986]

[image: Image 2987]

[image: Image 2988]

[image: Image 2989]

[image: Image 2990]

[image: Image 2991]

[image: Image 2992]

[image: Image 2993]

[image: Image 2994]

[image: Image 2995]

[image: Image 2996]

[image: Image 2997]

[image: Image 2998]

[image: Image 2999]

[image: Image 3000]

[image: Image 3001]

[image: Image 3002]

[image: Image 3003]

2. Choose words from the topic based on the distribution of words

describing the topic.

Now, the topic distribution must be learned from the corpus. Assuming a finite

number of topics M, we can model the topic distribution follows as

Multinomial Distribution (discussed in Chapter 4, Probability Theory, under the Multivariate distributions section). Multinomial distribution for M

categories will have M parameters

, where

. How do

we find these ? We don’t have topics assigned to each document such that we can just do a frequency count of topics and assign probability to each topic

as a ratio of per topic count to total topics count. So, we take the Bayesian approach. We will assume a prior distribution for the parameters . This must

be a continuous distribution as is a continuous variable and also, we have to

restrict the samples of the distribution with the constraint

. The

 Dirichlet distribution denoted by

has this property, where

is a M dimensional vector. This is depicted in Figure 11.5 for various values of parameter .

 Note: Dirichlet distribution p.d.f is given by:

 Here, represents the gamma function, which is a generalization of

 factorial function for any positive real number. Note the similarity of the

 functional form of the Dirichlet distribution with multinomial distribution.

 The factorials are replaced by functions.

 For M=2 this Dirichlet distribution can be geometrically represented as a

 line segment from 0 to 1. The samples are

 , where

 . For M=3 this distribution can be represented by a triangular

 region in the first quadrant of the coordinate axes. As shown in Figure

 11.5, line AB represents

 . For any point inside the triangle

 . So, if we take

 then

 we meet the required condition

 . For M=4, we can choose points

 from a tetrahedron whose base is the triangle for M=3. For M>4, we have a

 n-dimensional simplex as the region.

Refer to the following figure:

[image: Image 3004]

[image: Image 3005]

[image: Image 3006]

[image: Image 3007]

[image: Image 3008]

[image: Image 3009]

[image: Image 3010]

[image: Image 3011]

[image: Image 3012]

[image: Image 3013]

 Figure 11.5: Dirichlet distribution (source: https://www.cs.cmu.edu/~epxing/Class/10701-

 08s/recitation/dirichlet.pdf)

Now, assuming that the parameters of the required multinomial distribution

follow the prior Dirichlet distribution, we can formally write the probability of observing latent topic (z) as follows:

A word

from a document can be generated from the multinomial word

distribution conditioned on the topic with probability:

Here, is a

matrix, k being the number of topics and V being the number of words in the vocabulary where

.

The basic assumption in LDA is that a document is a bag of words, and hence,

words are assumed to be independent of each other. So, the joint probability distribution of the words and topics can be written as follows:

[image: Image 3014]

[image: Image 3015]

[image: Image 3016]

[image: Image 3017]

[image: Image 3018]

[image: Image 3019]

[image: Image 3020]

[image: Image 3021]

[image: Image 3022]

We can define the joint distribution of the topic mixture , a set of N topics z (one for each word), and a set of N words w is given by the following:

This factorization is possible because of the conditional independence of on

. Hence, we have this:

This generative probabilistic model can be pictorially represented as in Figure

 11.6:

 Figure 11.6: Graphical model representation of LDA: The rectangular plates represent repetition. The outer plate represents repetition over M documents and inner plate repeats over N words in each document. Here, N is taken to be fixed but can be taken as a Poisson distributed variable as document lengths need not be fixed.

Now we must learn the two parameters of the model and from the text corpus, that is, what setting of these parameters will generate the text corpus

documents with very high probability. The log likelihood of the corpus of M

documents is as follows:

[image: Image 3023]

[image: Image 3024]

[image: Image 3025]

[image: Image 3026]

[image: Image 3027]

Here,

must be obtained by marginalizing the joint distribution

over the hidden variables and that is intractable. Hence, we

have to look for alternative ways of estimation, like EM algorithm or Bayesian

parameter estimation. We have discussed one Bayesian parameter estimation technique in Chapter 5: Statistics Inference and Applications called MAP

where the posterior distribution of the model parameters are computed and then we try to maximize the posterior density. However, if the posterior distribution function of the parameters also takes a complicated form,

optimizing those functions is hard. So, an alternative way is to find some other algorithms to explore the parameter space and find a best possible value of the

parameters using the form of the posterior distribution. Gibbs sampling is one such algorithm for exploring the parameter space by sampling from posterior

distribution. Most of the implementations of LDA use Gibbs sampling to estimate the parameters. This estimation algorithm can be run in a distributed

computing framework like Hadoop Spark [5]. Mallet is a java-based topic modelling tool and Gensim python library has a wrapper for this.

Neural language models

A neural network language model is a language model based on neural

networks. These models have been successful in creating dense vector

representations of words that can be used for writing vector equations, like the following:

Adding the dense vectors associated with the words king and woman while subtracting man is equal to the vector associated with queen. This describes how a gender relationship is captured in the dense word representation. One more example is: Paris – France + Poland = Warsaw. In this case, the vector

difference between Paris and France depicts the concept of capital city.

Continuous Bag-of-Words (CBOW) model: The CBOW is a neural network

architecture that predicts target word (the center word) based on the source context words (surrounding words). To predict the

word in a context

window of n words, we must maximize the conditional probability:

[image: Image 3028]

[image: Image 3029]

This network has a softmax output layer to model this probability. The high-

level architecture is shown in the Figure 11.7 (left):

 Figure 11.7: Neural language models

Skip-gram model: The skip-gram model achieves the reverse of CBOW

model (11.7 (right)). It tries to predict the source context words (surrounding

words) given a target word (the center word). This becomes slightly complex

since we have multiple words in our context. Simplification: breaking down each (target , context_words) pair into (target , context) pairs such that each context consists of only one word.

Contextual models

The models we discussed so far have a single representation for each word.

However, in many languages, including English, the meaning of a word

changes based on the context of the word. For example, the word bank may has two different meanings in the following phrases: ‘ bank of a river’, ‘ Indian Bank’. However, we will have one dense or sparse representation of this word.

This is not correct. Hence, we need contextual representation of words, that is, the word representation will change based on the neighbouring words. One way to capture this information is using sequence models like RNNs or bidirectional RNNs.

ELMo model

[image: Image 3030]

Unlike traditional word embeddings such as word2vec and GLoVe, the ELMo word embedding is a function of the entire sentence containing that word.

Therefore, the same word can have different word vector representation under

different contexts.

Embeddings from Language Model (ELMo) word vectors are computed using a two-layer bidirectional LSTM model. The input word embedding is derived from a CNN-based character embedding model. The character

representation uses 16-dimensional character embeddings and 128

convolutional filters of width three characters, a ReLU activation and max pooling. Refer to the following figure:

 Figure 11.8: ELMo model

In the output of the forward and reverse passes through the sentence by the bidirectional LSTM generated two output vectors per word. These are

concatenated and fed to the next bidirectional LSTM layer. The final

representation is the weighted sum of the raw word vectors and the two intermediate word vectors.

BERT

Bidirectional Encoder Representations from Transformers (BERT) [6] is another contextual language model that uses a stack of transformer layers.

[image: Image 3031]

[image: Image 3032]

Transformer architecture was first introduced in Language Translation in

 Chapter 11, Sequence Modelling. There we had a transformer encoder and decoder. The BERT model uses only the encoder part of the transformer. The

following figure shows the BERT architecture with two transformer encoder layers. The number of input tokens is the same as the number of output tokens

(N). We will call these

 transformed features. Refer to the

following figure:

 Figure 11.9: BERT architecture with 2 transformer encoder layers

The input is a sequence of tokens embeddings of size H. The output is a sequence of vectors of size H. Length of output sequence is the same as the input sequence. These vectors are contextual embedding of the input vectors.

For BERT, generally, fixed sequence lengths are used. However, inputs can be

of variable length, so inputs must be padded to make them of same length.

As the transformer architecture is not recurrent and sees the whole sequence at

once, we must have a way of preserving the sequential information in text.

Also, these are natural segments in text, like sentences and paragraphs.

[image: Image 3033]

[image: Image 3034]

[image: Image 3035]

[image: Image 3036]

[image: Image 3037]

[image: Image 3038]

Preserving this input information is important for better modelling of text. This is done by positional encoding and segment encoding.

Position encoding

As our word embeddings are vectors to encode the position of a word we cannot directly use integers. A vector representation of integers

is

used to encode position. We know the simplest vector representation of any integer is the binary (6-bit) representation as shown in the following table for integers 0-7. We see the least significant bit (LSB) is alternating between consecutive bits. The next bit changes in every two numbers and the next in every four numbers and so on. A continuous counter part of binary alternating

signal is sinusoidal functions

. Also, we can control the frequency of

how they are alternating by altering the parameter . So using sinusoidal functions we can define positional encoding for a sequence

is

defined as follows:

The following figure shows 128-dimensional positional encoding for a

sequence of length 50. We can see here the first component of the vector (the

left most vertical column) alternates between high positive and negative values

very similar to the LSB in binary representation and as we move to the right,

we see the frequency of change decreases. Refer to the following figure:

 Figure 11.10: BERT positional encoding Source:

 https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

[image: Image 3039]

Transformer architecture is equipped with residual connections, and this allows

to pass the sequence information till the top layer of the transformer. This position encoding can be used to encode both token level positions and sentence segment positions, as shown in the following figure:

 Figure 11.11: BERT Positional encoding

For training this architecture and creating these embeddings, there is no need

of any labelled training data. Training BERT transformer is done is an unsupervised fashion which is called pre-training.

Pre-training BERT

The following Table 11.2 lists two pre-training tasks: (1) Masked Language Model (MLM) and (2) Next Sentence Prediction (NSP). Labelled training data can be prepared for these two tasks easily without the need for any human

annotator.

Masked LM(MLM)

Next Sentence Prediction (NSP)

For each sentence 15% of the tokens are Next sentence prediction task is a binary classification task chosen at random and –

in which, given a pair of sentences, it is predicted if the

80% of the time tokens are replaced second sentence is the actual next sentence of the first with the token [MASK]

sentence.

10% of the time tokens are replaced

with a random token

10% of the time tokens are left

unchanged

The BERT loss function considers only

prediction of the masked values and

ignores the prediction of the non-masked

words.

 Table 11.2: Comparison between MLM and NSP

[image: Image 3040]

Input representation for pre-training tasks of BERT

As BERT takes fixed sized input, each sentence is first made to be of equal length by zero padding and the following steps are used to mark separation and

end of sentences.

1. The first token of every input sequence is the special classification token

– [CLS]. This token is used in classification tasks as an aggregate of the entire sequence representation. It is ignored in non-classification tasks.

2. For single text sentence tasks, this [CLS] token is followed by the WordPiece tokens and the separator token – [SEP].

3. For sentence pair tasks, the WordPiece tokens of the two sentences are separated by another [SEP] token. This input sequence also ends with the

[SEP] token.

WordPiece tokenization

Tokenization is fundamentally the process of breaking text into tokens. Out of vocabulary words (OOV) or words not included in the vocabulary, are treated as “unknown”. A better and modern approach to address this issue is by tokenizing text into sub word units, which in most of the spits can retain linguistic meaning. So, even though a word is unknown to the model,

individual sub word tokens may retain enough information for the model to infer the meaning. WordPiece is one such algorithm. Given text, WordPiece first pre-tokenizes the text into words (by splitting on punctuation and whitespaces) and then tokenizes each word into sub word units, called

wordpieces. For example, let’s take the sentence as shown in the following figure:

 Figure 11.12: WordPiece Source (https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html).

Pre-trained BERT model is generally performed on huge data sets. After pre-

training BERT model can act as a feature extractor for text and can be used to

solve other NLP tasks like text classification, text summarization and so on.

For these tasks generally we have smaller datasets. A few tasks specific layers

can be added on the top of BERT, as shown in the following figure and trained

with task specific data. This process is called fine-tuning. Depending on the size of the data set, we may choose to either use the BERT feature extractor as

a fixed function, which is not trainable or may train all the layers.

 Figure 11.13 shows various fine-tuning tasks performed by incorporating BERT with one additional output layer.

(Top Left in Figure 11.13) Sentence pair classification where given two sentences and the task is to find either the similarity score between them

or classify them as paraphrases, that is, they express the same meaning using different words. Quora question pairs and Microsoft Research

Paraphrase Corpus (MRPC) are the two popular benchmarking

datasets for these tasks, respectively.

(Top Right in Figure 11.13) The second task is sentence classification, where the computed sentence embedding [CLS] is used as features for sentence classification.

(Bottom Left in Figure 11.13) The third task is question answering or extractive summarization, where given a question sentence and a

paragraph containing the answer, the task is to pick the best sentence boundaries from the paragraph that can answer the question.

(Bottom Right in Figure 11.13) The fourth task is sentence token labelling, like POS tagging and named entity recognition. Refer to the following figure:

[image: Image 3041]

 Figure 11.13: BERT fine-tuning tasks

Masking used in BERT Is not adequate for Chinese language. In English, the

word serves as the semantic unit and single characters do not have any meaning. The same cannot be said for characters in Chinese: certain characters

do have inherent meaning fire (火, huŏ), water (水, shuĭ), or wood (木, mù).

The character 灵 (líng), for example, can either mean clever (机灵, jīlíng) or soul (灵 魂 , línghún), depending on its match. Baidu researchers developed other pretraining tasks that are suitable for Chinese languages. They developed

masking that hides strings of characters rather than single ones and named their model Enhanced Representation through kNowledge IntEgration

(ERNIE).

ERNIE

Enhanced Representation through kNowledge IntEgration (ERNIE) [7]

model is a transformer-based model that was designed to learn language representations enhanced by knowledge masking strategies that include entity-level masking and phrase-level masking. ERNIE outperforms Google’s BERT

in multiple Chinese language tasks.

Following are some other pre-training tasks specific to ERNIE:

1. Knowledge masking task: Random phrases are masked and named

entities are masked and model is trained to predict the whole masked

phrases or named entities.

2. Capitalization prediction task: Whether the word is capitalized or not.

3. Token-document relation prediction task: This task predicts whether the token in a segment appears in other segments of the original

document. It can enable the ability of a model to capture the key words of

the document to some extent.

4. Sentence distance task: Enhancement of NSP. This task is modeled as a

3-class classification problem. ”0” represents that the two sentences are

adjacent in the same document, ”1” ->two sentences are in the same document, but not adjacent, and ”2” ->two sentences are from two

different documents.

5. IR relevance task: It is a 3-class classification task that predicts the relationship between a query and a title. We take the query as the first sentence and the title as the second sentence. 0-> strong relevance, 1-

>weak relevance, 2->no relevance.

 Figure 11.14 shows the comparison of BERT and ERNIE pre-training strategies. Refer to the following figure:

[image: Image 3042]

 Figure 11.14: Masking strategies of BERT and ERNIE

Generative Pre-Training by OpenAI

Generative Pre-Training (GPT) is another transformer-based model, but it uses stack of decoder blocks from the transformer only. This is unlike BERT,

which uses the encoder blocks only and is non-auto-regressive, that is, uses only the previous tokens from the sequence to predict the next one. In the standard transformer architecture, the decoder takes a word embedding

concatenated with a context vector as input. In GPT-2, the context vector is zero-initialized for the first word embedding as there is no encoder block. GPT

was found to be better than BERT in many natural language understanding tasks.

Conclusion

In this chapter, we covered the linguistic structures in natural language, methods of preprocessing text using these linguistic structures, and feature extraction from textual data. We also covered various models for text like vector space models, probabilistic models, and neural language models. Using

these models, we demonstrated an overview of important applications of NLP,

like text classification, text similarity, and application to information retrieval, summarization, question answering, and so on.

In the next chapter, we will discuss different generative modelling techniques

with application to image generation and text generation.

Points to remember

Types of language models vector space, probabilistic, neural network

The word embeddings generated by LSI or any of the neural language

models are distance preserving, that is, words with similar meaning and

occurring in similar context will have embedding vectors that are close by in the embedding space.

Contextual language models can create different embeddings for the

same word based on the context of the word.

Neural language models do not always need large volumes of data as we

have models like BERT, ELMO, and GPT-3, which can be fine-tuned

with smaller data sets.

Further reading

1. Dipanjan Sarkar, Text Analytics with Python A Practitioners Guide to Natural Language Processing, APRESS

2. Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language

Processing with Python. O’Reilly Media Inc.

3. NLTK Documentations (https://www.nltk.org/)

4. GENSIM

API

Reference:

Latent

Semantic

Indexing

https://radimrehurek.com/gensim/models/lsimodel.html

5. Qiu, Z., Wu, B., Wang, B., Shi, C., Yu, L., Fan, W., Bifet, A., Yang, Q.

and Yu, P. (2014). Collapsed Gibbs Sampling for Latent Dirichlet

Allocation on Spark. JMLR: Workshop and Conference Proceedings,

[online]

36,

pp.17–28.

Available

at:

http://proceedings.mlr.press/v36/qiu14.pdf

6. Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). BERT: Pre-

training of Deep Bidirectional Transformers for Language

Understanding.

[online]

arXiv.org.

Available

at:

https://arxiv.org/abs/1810.04805

7. Peters, M., Neumann, M., Gardner, M., Clark, C., Lee, K. and

Zettlemoyer, L. (2018). Deep contextualized word representations.

[online] Available at: https://arxiv.org/pdf/1802.05365.pdf.s

CHAPTER 12

Generative Models

Generative modelling is a methodology of training machines to mimic seen data,

that is, to generate new data points that resemble seen data. We have generative capabilities; once we learn about a new type of object, we can recreate similar objects either with our drawing skills, describe it in detail with words, or build a 3D model of that object. Here, at first “representation learning” is performed to map the data in terms of low-dimensional features. Then, those representations can be tweaked slightly to create new data points.

Generative modelling was first applied for building classification models in supervised setting where we jointly learn the probability distribution p(x, y) of input x and class label y. Naive Bayes and Gaussian Mixture Model (GMM) are examples of such models. Later, generative models were applied in unsupervised

settings as well, for example, to model unlabelled text data using topic modelling or Latent Dirichlet Allocation (LDA). Text is modelled as a mixture of hidden topics, and each topic is modelled as a categorical distribution over words. These models can be collectively categorized as Bayesian Nets or probabilistic graphical models.

Restricted Boltzmann Machine (RBM) was the first neural network-based generative model. Variational Autoencoder (VAE) and the Generative Adversarial Network (GAN) are state-of-the-art neural network-based generative models with many successful real-world applications. Both these models were published long ago, but we see many modifications of these architectures and their training methodologies till date to develop newer models with application to high fidelity image, audio, video and text generation.

Structure

In this chapter, we will cover the following topics:

A simple generative model for two-dimensional data

Building a generative model for complicated two-dimensional data

Representing data distributions as transformation of known simple

distributions

[image: Image 3043]

Variational auto encoders

Generative adversarial networks

Challenges of training GANs and how to overcome them

Other GAN-based architectures: Cycle GAN, Conditional GAN

Real-world applications of GAN

Autoregressive generative models

Objectives

After studying this chapter, you should be able to formulate a real-world problem as a generative modelling problem and train such models for labeled/unlabeled data. This chapter will help you in understanding elegant mathematical theory behind the generative models. The loss functions used for training generative models are different from the other loss functions we have already encountered in supervised settings. We will derive these loss functions from the theory.

Additionally, we will guide you to implement these network topologies and their

training methodologies. Understanding the fundamental theory behind VAE and GAN will enable the reader to understand the state-of-the-art generative models

and applications.

A simple generative model

The basic idea of generative model is that data follows a probability distribution and tries to approximate underlying distribution such that we can generate new data points from the same distribution by sampling from the distribution. Now, let’s see what this means with the help of a simple example. Karl Pearson collected a data set consisting of the height of fathers and their adult sons in inches. He had 1078 cases. This data set is available from kaggle.com and is named Pearson.txt [refer to Further Reading 12]. Let’s first visualize a sample from this data set in the following figure:

[image: Image 3044]

[image: Image 3045]

[image: Image 3046]

[image: Image 3047]

[image: Image 3048]

[image: Image 3049]

[image: Image 3050]

[image: Image 3051]

[image: Image 3052]

 Figure 12.1: (Left) Sample of 300 points from Pearson dataset with two variables x1=Father’s height, x2=Adult Son’s height (Right) Triangular marks represent generated samples from this learned distribution.

We can assume that the dataset follows bivariate Gaussian distribution and estimate the parameters of this distribution by Maximum Likelihood Estimation (MLE). As discussed in the probability chapter, for a large sample, the MLE

estimate for mean of Bivariate Distribution is the sample mean and the covariance matrix is the sample covariance matrix. Let X and Y be the random variables representing father’s height and son’s height, respectively; then,

, where is the bivariate mean and is the 2×2 covariance

matrix. The correlation coefficient () between X, Y is 0.51. By definition of covariance, we have

.

,

these values are generated by the code below line 5.

Now, we can generate new samples from this distribution by random sampling from this distribution. This can be done using NumPy library’s build in multivariate normal sampling function, as shown in the following code. Also, we

have plotted 50 new data samples from this distribution, along with the actual

data points in Figure 12.1:

1. imoort pandas as pd

2. df = pd.read_csv(‘Pearson.txt’, sep=’\t’)

3. df.sample(300).plot.scatter(x=’Father’, y=’Son’)

4. “””Estimate sample mean and covariance”””

5. mu = df.mean()

6. sigma = df.cov()

7. “””Generate New Samples”””

8. samples = np.random.multivariate_normal(mean=mu, cov=sigma,

size=50)

9. plt.scatter(df[‘Father’].values, df[‘Son’].values)

10. plt.scatter(samples[:, 0], samples[:, 1], marker=’^’, c=’red’)

Now that we have a probabilistic model for the data, we can answer a few interesting questions, as follows:

Given the father’s height is 6 feet or 72 inches. What is the probability that

the son’s height is over six feet? that is,

How likely is it that the father’s height is 5 feet, and his son will grow over

6 feet tall, that is,

[image: Image 3053]

[image: Image 3054]

[image: Image 3055]

[image: Image 3056]

[image: Image 3057]

[image: Image 3058]

[image: Image 3059]

To answer these, we can compute the conditional distribution

.

For bivariate normal distribution, conditional probability distribution

is

a

univariate

normal

distribution

with

mean

70.9 and standard deviation

.

Hence,

we

can

compute

the

required

probability

by area under the pdf for X>72, as shown in Figure 12.2:

 Figure 12.2: Shaded region depicts the probability (area under curve. Note that the plot on the right also has a small shaded region showing negligible probability

In the preceding example, we assumed that the data follows bivariate normal distribution, and it was a fair guess from the plot. It may not be always possible to guess the data distribution from simple visualizations. Increase in dimensionality of the data makes such assumptions impossible. Not only with high-dimensional

data, even in the 2D data set shown in Figure 12.3, how do we guess the underlying distribution and estimate such probable distribution by simple parameter estimation techniques? Refer to the following figure:

[image: Image 3060]

[image: Image 3061]

[image: Image 3062]

 Figure 12.3: A synthetic two-dimensional data set

As we still can visualize the data, it seems the data follows some circular/oval distribution. Also, there is some noise in the data. There is no such known distribution function form like this whose parameters we can estimate as earlier.

However, if we generate points from a known distribution and then transform the

samples using a non-linear mapping, we may be able to generate samples from this distribution.

Taking sample z from standard bivariate normal distribution with mean at (0,0) and identity covariance matrix, let’s transform z as follows:

(as shown in Figure 12.4). Here, the first term normalizes the sample and puts them on the unit circle around the origin. Multiplying by , we can put the point at a distance from origin. Refer to the following figure:

[image: Image 3063]

[image: Image 3064]

[image: Image 3065]

[image: Image 3066]

 Figure 12.4: Transforming random samples from Gaussian distribution to the circular distribution The second term adds some noise by adding a small vector parallel to the unit vector such that the result f(z) does not lie exactly on the circle circumference.

Here, we choose

, as the data distribution is around circle of unit radius.

The data distribution can be even more complicated, like images or text, where the number of dimensions of data increases by many folds. Can we generate an

image data set following the approach described for the circular data distribution?

For that, a non-linear mapping is required, which can take a known distribution

and convert it to an image. Finding such mapping manually by inspection is not

easy. Here, our old friend “the universal function approximators”, that is, the neural networks can help. Variational autoencoders are a class of neural network topologies that can learn such non-linear transformation from the data.

Variational Autoencoders (VAE)

Autoencoders are neural network architectures that can learn a low-dimensional representation of the input space. VAE also does the same but in a probabilistic fashion, that is, the encoder here learns a probabilistic distribution in a latent space and not a single representation of the input to a latent space. We will introduce VAE using the preceding circular distribution example.

First, let’s formally rewrite the steps we followed in the previous circular distribution example:

1. We have a vector of variables z that we can easily sample according to some known probability density function p(z) over some space Z.

2. A family of deterministic function

, parametrized by vector

.

[image: Image 3067]

[image: Image 3068]

[image: Image 3069]

[image: Image 3070]

[image: Image 3071]

[image: Image 3072]

[image: Image 3073]

[image: Image 3074]

[image: Image 3075]

[image: Image 3076]

[image: Image 3077]

[image: Image 3078]

[image: Image 3079]

[image: Image 3080]

3. f is deterministic, but z is a random variable, and hence,

represents a

random variable.

We have to optimize parameter such that we can sample from a simple distribution p(z) and then

, with high probability resembles X. Therefore,

we can represent the random variable

by the conditional notation X|Z

because first we choose Z and then X is generated based on that. We can call Z as the latent variable or hidden variables.

By law of total probability

, where we can choose

the output distribution to be Gaussian:

, the

covariance equal to the identity matrix I times some scalar

. This σ can be

chosen based on the factor we use in the transformation to add noise.

Now, for any complicated data distributions also, we can estimate the model parameters by maximizing p(x). Instead of finding

by inspection, we let

it be a neural network. Maximizing p(x) is equivalent to minimizing

that is, MLE estimation.

Like before, we can choose p(z) =

. We can estimate P(X)

approximately by taking very large sample of size N from Z say {

}

and then averaging the probabilities as follows:

However, for most of the samples z from this distribution, the probability of generating a data point X is very low. To understand this better, let’s go back to the circular distribution example. Take a data point X from this distribution, as shown in Figure 12.5. x can only be generated by z from the shaded region in the left. For all points z outside the shaded region, p(x|z) is very small. This will make the estimation process intractable as the log of these very small quantities will lead to computational overflow. Refer to the following figure:

[image: Image 3081]

[image: Image 3082]

[image: Image 3083]

[image: Image 3084]

[image: Image 3085]

[image: Image 3086]

[image: Image 3087]

[image: Image 3088]

[image: Image 3089]

[image: Image 3090]

[image: Image 3091]

[image: Image 3092]

[image: Image 3093]

 Figure 12.5: Subset of values of z that can generate e a given x

Given a data point X, is there a way we can restrict the choice of samples z? This can be done by defining the conditional probability distribution

. Now, by

Bayes rule,

. This is computationally hard. Let’s

approximate

by another distribution

or

which we can

choose to be a tractable distribution. We can define the parameters of

such

that they are very similar to

and use them to perform approximate

inference of the intractable distribution.

The Kull back–Leibler divergence or KL divergence is a qualitative measure of

how one probability distribution p(x) is different from another probability distribution q(x). Here, we can design

such that KL (

) is

minimum.

By product rule of probability, we have

.

Substituting this in the preceding KL divergence equation, we have the following:

[image: Image 3094]

[image: Image 3095]

[image: Image 3096]

[image: Image 3097]

[image: Image 3098]

[image: Image 3099]

[image: Image 3100]

[image: Image 3101]

[image: Image 3102]

[image: Image 3103]

[image: Image 3104]

[image: Image 3105]

[image: Image 3106]

Using properties of log function, log(AB) = log(A) + log(B) and log(1/A) = ‒

log(A), we have the following:

Now, we can take out the terms independent of z outside the summation as a constant.

As q(z) is a probability distribution over z,

. Let’s represent

by the function

. So, we can rewrite the preceding

equation as follows:

Since

,

and KL divergence is non-

negative quantity, we can write

, that is,

is a lower

bound of

.

So, maximizing

means maximizing log likelihood of data: log(P(X)). Now

onward, we will try to simplify this lower bound function to derive our objective function.

We can write

. Refer to the following figure:

[image: Image 3107]

[image: Image 3108]

[image: Image 3109]

[image: Image 3110]

[image: Image 3111]

[image: Image 3112]

[image: Image 3113]

[image: Image 3114]

[image: Image 3115]

[image: Image 3116]

[image: Image 3117]

[image: Image 3118]

[image: Image 3119]

[image: Image 3120]

[image: Image 3121]

 Figure 12.6:

 is a lower bound of p(x). Maximizing

 means maximizing log likelihood of data:

 log(p(x)).

Therefore:

Therefore:

Pictorially, we can represent equation (II) as shown in Figure 12.6.

Here, E represents expectation of

over q(z). This technique of

approximating intractable integrals the way we did is called Variational Bayesian method in general, and this loss function

being a lower bound is known as

the variational lower bound or Evidence Lower Bound (ELBO).

We can assume q(z) to be multivariate Gaussian distribution with mean and diagonal covariance matrix

, where and

are n-dimensional vectors.

Suppose we find a deterministic function

that transforms X to the mean and

variance of the tractable distribution q(z). We could have directly generated z instead of mean and variance. However, as

is a deterministic function, we

will always get the same fixed z for a given X. Having mean and variance will enable us to take many samples from this distribution of the latent variables z.

[image: Image 3122]

[image: Image 3123]

[image: Image 3124]

[image: Image 3125]

[image: Image 3126]

[image: Image 3127]

[image: Image 3128]

[image: Image 3129]

[image: Image 3130]

[image: Image 3131]

[image: Image 3132]

[image: Image 3133]

[image: Image 3134]

[image: Image 3135]

[image: Image 3136]

[image: Image 3137]

[image: Image 3138]

[image: Image 3139]

can be represented as a neural network with the parameter as shown in

 Figure 12.7:

 Figure 12.7: Using DNN to learn latent distribution q(z|x)

Here, q(z|x) will restrict the choice of z, and hence, we can estimate our required parameter by maximizing log likelihood log(p(x)). Refer to the following figure:

 Figure 12.8: VAE block diagram: here, we have changed

 for ease in computation, which is

 described later.

So, now we can jointly estimate both the parameters and of the neural net

topology in Figure 12.8. To train this topology, our objective function is

.

We saw that

has two parts. The second part of

is the KL divergence,

which enforces the distribution q(z) to take a certain form. It represents KL-divergence between two multivariate Gaussian distributions

and

.

In general, KL-divergence between two k-dimensional multivariate Gaussians and

is given by the following:

Here,

and

, and hence,

[image: Image 3140]

[image: Image 3141]

[image: Image 3142]

[image: Image 3143]

[image: Image 3144]

[image: Image 3145]

[image: Image 3146]

[image: Image 3147]

[image: Image 3148]

[image: Image 3149]

[image: Image 3150]

[image: Image 3151]

[image: Image 3152]

So, all terms have sum over k, and thus, the second term in simplifies to the following:

Implementing this is simple, as shown in the following code. Let z_mean and z_log_var represent the tensors and

(as shown in Figure 12.8) of

dimension k=10, initialized randomly; then:

1. import tensorflow as tf

2. z_mean = tf.random.uniform([1,10])

3. z_log_var = tf.random.uniform([1,10])

4. kl_loss = tf.reduce_sum(

5. -0.5 * (z_log_var - tf.exp(z_log_var) - tf.square(z_mean) +

1),

6. axis=1)

7. kl_batch_loss = tf.reduce_mean(kl_loss)

The first part of

is an expectation

. This can be

approximated by taking average over samples from p(x|z). Assuming that p(x|z) is multivariate Gaussian.

, being a neural network is completely

deterministic, and hence, we can write p(x|z) as p (x|). p(x|), being Gaussian, will have an exponential term

, and hence, log(p(x|z)) will have the

squared error term

. So, the first part of conceptually represents the

reconstruction error, as we have seen in autoencoders. We can implement it as a

pixel-wise cross entropy loss as well, as we did for normal autoencoders, as shown in the following code:

1. ‘’’Following is a code will run only if valid data and

reconstruction tensors are provided from an AE’’’

2. ‘’’As sum squared’’’

3. reconstruction_loss = tf.reduce_mean(

4. tf.square(tf.norm(data-reconstruction))

[image: Image 3153]

[image: Image 3154]

[image: Image 3155]

[image: Image 3156]

[image: Image 3157]

[image: Image 3158]

[image: Image 3159]

[image: Image 3160]

[image: Image 3161]

[image: Image 3162]

[image: Image 3163]

[image: Image 3164]

5.)

6. ‘’’As pixel wise binary cross entropy loss’’’

7. reconstruction_loss = tf.reduce_mean(

8. tf.reduce_sum(

9. tf.keras.losses.binary_crossentropy(data,

reconstruction),

10. axis=(1, 2)

11.)

12.)

The first part of the network for generating the latent distribution q(z|x) is called the encoder, and the second part, which generated data points from samples of z, is called the decoder. We have the encoder-decoder architecture like autoencoders as both input to encoder and output from decoder is expected to be the same X,

that is,

.

For training, the network shown in Figure 12.8 first the forward pass is computed to create the reconstructed input and then the reconstruction loss is computed.

The derivative of the reconstruction loss is back propagated.

Forward pass: Input X, generate ,

. Then, sample vector z from

and pass it forward to generate .

Backward pass: Compute reconstruction error

+ kl-loss (as

shown in the following code) and back propagate error derivatives.

To implement the sampling in the forward pass, we have to use a trick called “re-parametrization”. So, we can use any standard deep learning framework to implement this. Along with a batch of data X of size n, we will sample n noise

vectors ~ N(0,1) at random. During forward pass, we will compute z as

, where denotes element-wise multiplication. Thus, the encoder

block takes batch of X and a batch of noise vectors z as input and outputs the triplet (z_mean, z_log_var , z), as shown in the following code. For reparameterization, we need , but we have

. So, we have to transform

z_log_var as tf.exp (0.5 * z_log_var).

1. def vae_encoder(latent_dim):

2. epsilon = layers.Input(shape=latent_dim)

3. img = layers.Input(shape=(28, 28, 1)) #For MNIST

4.

5. x = layers.Conv2D(filters=32, kernel_size=3,

6. strides=2, padding=’same’)(img)

7. x = layers.LeakyReLU(0.2)(x)

8. x = layers.Conv2D(filters=64, kernel_size=3

9. , strides=2, padding=’same’)(x)

10. x = layers.LeakyReLU(0.2)(x)

11. x = layers.Flatten()(x)

12. x = layers.Dense(16, activation=”relu”)(x)

13. z_mean = layers.Dense(latent_dim, name=”z_mean”)(x)

14. z_log_var = layers.Dense(latent_dim, name=”z_log_var”)(x)

15. z = z_mean + tf.exp (0.5 * z_log_var) * epsilon

16. return Model(inputs = [img, epsilon],outputs = [z_mean,

z_log_var, z])

The variational decoders can be implemented as shown in the following code using deconvolution operators. The decoder takes samples z ~ q(z|x) created by

encoder and reproduces X. If we are using normalized pixel input values in [0, 1]

for the image data, then we can apply sigmoid activation at the last layer of the decoder to get normalized pixel values for reconstructed image; refer to line 12 in the following code:

1. def vae_decoder(latent_dim):

2. z = layers.Input(shape=(latent_dim,))

3. x = layers.Dense(7 * 7 * 64, activation=”relu”)(z)

4. x = layers.Reshape((7, 7, 64))(x)

5. x = layers.Conv2DTranspose(filters=64, kernel_size=3,

6. strides=2, padding=”same”)(x)

7. x = layers.LeakyReLU(0.2)(x)

8. x = layers.Conv2DTranspose(filters=32, kernel_size=3,

9. strides=2, padding=”same”)(x)

10. x = layers.LeakyReLU(0.2)(x)

11. decoder_outputs = layers.Conv2DTranspose(1, 3,

12. activation=”sigmoid”,padding=”same”)(x)

13. return Model(z, decoder_outputs)

The decoder part of the VAE can be used as a generative model. We can choose

any z from the prior distribution p(z) that is unit Gaussian and then decode z to generate a sample image. Note that we do not require restricting z any more as this was intended only for training the decoder. Taking latent dimension = 2 and sampling z from the square unit grid bottom left [–1, –1], top right [1, 1], we can visualize the generated digits in a 2D grid, as shown in Figure 12.9. Position of the digit in the grid represents the position of sample z, which was used to generate the digit.

As you can see, the sharpness of the generated images by the VAE is poor. So, if we apply this technique to other complex data set with human faces, then the

[image: Image 3165]

obtained results will not be convincing at all. An example of face generation with VAE is available here: https://github.com/podgorskiy/VAE. The reason for poor generation may be that the model is unable to learn the true posterior distribution using variational inference. Refer to the following figure:

 Figure 12.9: two dimensional vectors z taken from square grid with bottom left [-1,-1],top right [1,1] and transformed to a handwritten digit image using trained VAE generator.

There are modifications of VAE like Vector Quantised Variational

Autoencoder (VQ-VAE) [1], which can generate high-quality images. Here, a discrete codebook component is added to the network. The output of the encoder

network is compared to all the vectors in the codebook and the nearest code is passed to the decoder.

[image: Image 3166]

[image: Image 3167]

[image: Image 3168]

[image: Image 3169]

[image: Image 3170]

Generative Adversarial Nets

Generative Adversarial Nets (GANs) is another class of generative models, designed by Ian Goodfellow in June 2014. GANs when used for image generation

can produce high-quality images compared to vanilla VAE. GANs do not try to

make any explicit density estimation, and with conditional GANs, we can enforce

the generator output desired class of data. GAN architecture consists of two components a generator and a discriminator. The generator G, which takes a random vector z from a known distribution, transforms it to a data point X. The

discriminator D is a binary classifier that outputs the probability of a data point X

being chosen from the real data set. If we present a fake X that is synthesized using the generator G, then D should output a very low score. Both G and D are

neural networks whose wights are randomly initialized. The two networks continuously update each other, becoming more smarted than the other. In practice, they are trained one at a time. Keeping the weights of G fixed, the weights of D are updated for some number of steps. Then, the other way, the wights of D are kept fixed and G is updated for a certain number of steps.

The discriminator network D wants to assign high probability to real images, that is, it wants to maximize log likelihood i.e.,

. D also wants to

assign low probability to the generated images. Hence, it wants to minimize or equivalently, it wants to maximize the quantity

, as shown in the following figure:

 Figure 12.10: GAN

For a batch of samples, discriminators objective is as follows:

 E denotes expectation. On the other hand, the generator network wants to improve its weight such that the generated images G(z) get high score from the discriminator. For a batch of samples from generator and real data, the generators objective is as follows:

[image: Image 3171]

[image: Image 3172]

[image: Image 3173]

[image: Image 3174]

[image: Image 3175]

[image: Image 3176]

[image: Image 3177]

[image: Image 3178]

[image: Image 3179]

[image: Image 3180]

 Note: If D is fixed, then the first term

 in the

 discriminator objective is constant. Adding this constant term to the generator

 objective is not going to affect the optimum; hence, write the objective for

 generator as follows:

 If

 we

 define

 ,

 then for fixed generator G, discriminator objective is

 .

 For fixed discriminator D, generator objective is

 .

 And we have minimax objective

 .

Combining generator and discriminator objectives, we have the following

minimax objective function:

This is similar to two-player minmax game in Game theory. We can take G and D

as two players.

In two player minimax games, like two person zero sum game, an equilibrium state exists where no player has the intensive to change their strategy. This is known as Nash equilibrium for zero sum minimax games. For GAN training, viewed as a game, is there any such equilibrium state? Yes; here, an equilibrium state will be attained when the discriminator does not need to change its weight and the generator also becomes an expert in creating a data point very close to the real data. Let’s see if such an equilibrium state can exist theoretically.

Equilibrium state for GAN training

First, observe that there exists such a theoretical equilibrium state for this GAN

game. The distribution of the samples G(z) is a probability distribution defined by the generator G, where

. So, at the equilibrium state, we should have the

following:

[image: Image 3181]

[image: Image 3182]

[image: Image 3183]

[image: Image 3184]

[image: Image 3185]

[image: Image 3186]

[image: Image 3187]

[image: Image 3188]

[image: Image 3189]

[image: Image 3190]

Next, we will see whether our defined minimax objective function can attain that equilibrium point.

Given any fixed generator G, the minimax objective can be written as follows: Here, the function inside the integral has the form

.

The function

,

attains its maximum at

.

For fixed G, the discriminator cost will attain its maximum at the point

. Hence, the optimal discriminator is given by the following:

Now, let’s look at the generator. The generator wants to minimize:

C(G) =

The max in this expression for C(G) is attained at

, as shown in equation IV.

We can write:

The generator wants to minimize C(G) in VI, that is:

[image: Image 3191]

[image: Image 3192]

[image: Image 3193]

[image: Image 3194]

[image: Image 3195]

[image: Image 3196]

[image: Image 3197]

[image: Image 3198]

[image: Image 3199]

[image: Image 3200]

[image: Image 3201]

[image: Image 3202]

[image: Image 3203]

Suppose we attain this equilibrium point, that is, if

, then

, and hence, the minimum value of C(G) is as follows:

Now, let’s check if we can reach this best possible value of C(G) at any other state of discriminator and generator where

. Expanding expectations in

equation VII:

Note that both the terms in the integral are in the KL divergence form. The first term is KL(

), and the second term is KL(

).

The KL divergence of two distributions need not be symmetric. The symmetric version of KL divergence is called Jensen–Shannon divergence (JS):

To write C(G) in terms of Jensen–Shannon divergence, we need to introduce a factor of half in the log above. Readjusting equation IX by adding and subtracting log (1/2) from both the KL terms:

Since

and

we can write:

[image: Image 3204]

[image: Image 3205]

[image: Image 3206]

[image: Image 3207]

[image: Image 3208]

[image: Image 3209]

[image: Image 3210]

[image: Image 3211]

[image: Image 3212]

[image: Image 3213]

Now, and

if

if

. Hence,

the lower bound for C(G) is

. We have already seen that if

,

this lower bound is attained. Hence, global minimum of the generator training objective function C(G) is attained if and only if that is

the

generative model starts perfectly replicating the data distribution.

Given that the generator and discriminators are neural networks, the preceding proof also suggests an algorithm for training these networks:

Randomly initialize the weights of the generator and discriminator

networks.

(Keep Generator fixed to obtain D*) Freeze the generator and find an

optimal discriminator for the given generator.

1. Run k number of SGD steps to optimize discriminator weights

(With fixed discriminator D*) Update Generator weights by optimizing

C(G) and keeping discriminator fixed. Note that only the second part of C(G) will be used, as the first part is constant for fixed D.

Implementing GAN

The generator network for images can be made using a CNN-based architecture.

The first layer of the network transforms the input noise vector to a three-dimensional array of dimension (height × width × channels). This is like a random image input, and then the deeper layers are de-convolution layers with every layer upscaling the image. Deep Convolutional GANs (DCGAN) architectures consist

of a CNN-based generator and a CNN-based discriminator, as shown in Figure

 12.11. Both generator and discriminator typically have the same number of

convolution layers, like autoencoder architectures. The discriminator layers will

[image: Image 3214]

be placed in reverse order as that of the generator like a decoder. Refer to the following figure:

 Figure 12.11: DCGAN Generator architecture

Following is the code implementing the generator and discriminator

corresponding to the architecture shown in Figure 12.11: 1. def generator(noise_dim):

2. z = layers.Input(shape=noise_dim)

3. x = layers.Dense(units=4*4*1024)(z)

4. x = layers.Reshape((4,4,1024))(x)

5. for filter_size in [512,256,128,3]:

6. x = layers.Conv2DTranspose(filters=filter_size,

7. kernel_size=5, strides=2, padding=’same’)(x)

8. x = layers.LeakyReLU(0.2)(x)

9. x = layers.BatchNormalization()(x)

10. return Model(inputs = z, outputs=x)

1. def discriminator():

2. img = layers.Input(shape=[64,64,3])

3. x = layers.Conv2D(filters=128, kernel_size=5, strides=2,

4. padding=’same’)(img)

5. for filter_size in [256, 512,1024]:

6. x = layers.Conv2D(filters=filter_size, kernel_size=5,

7. strides=2, padding=’same’)(x)

8. x = layers.LeakyReLU(0.2)(x)

9. x = layers.BatchNormalization()(x)

10. x = layers.Flatten()(x)

11. x = layers.Dense(1)(x)

12. return Model(inputs = img, outputs = x)

Since both the generator and the discriminator objective functions are defined in terms of the discriminator logits, we have cross-entropy loss function for both discriminator and generator. Cross-entropy loss requires binary class labels, which is 1 for real image and 0 for fake image from the generator. Hence, we define GAN adversarial loss in terms of cross-entropy, as shown in the following code:

1. cross_entropy =

tf.keras.losses.BinaryCrossentropy(from_logits=True)

2. def discriminator_loss(real_output, fake_output):

3. real_loss = cross_entropy(tf.ones_like(real_output),

real_output)

4. fake_loss = cross_entropy(tf.zeros_like(fake_output),

fake_output)

5. total_loss = real_loss + fake_loss

6. return total_loss

7.

8. def generator_loss(fake_output):

9. return cross_entropy(tf.ones_like(fake_output), fake_output)

For computing gradients required to update the parameters, we can use two gradient tapes: one for generator and another for discriminator, as they are updated separately. The two tapes will be used to calculate the gradients separately with respect to the discriminant parameters and generator parameters, as shown in the following code:

1. noise_dim = 100

2. G = generator(noise_dim)

3. D = discriminator()

4. noise = tf.random.normal([BATCH_SIZE, noise_dim])

5.

6. with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

7. generated_images = G(noise, training=True)

8. real_output = D(images, training=True)

9. fake_output = D(generated_images, training=True)

10.

11. gen_loss = generator_loss(fake_output)

12. disc_loss = discriminator_loss(real_output, fake_output)

13.

14. gradients_of_G = gen_tape.gradient(gen_loss,

G.trainable_variables)

15. gradients_of_D = disc_tape.gradient(disc_loss,

D.trainable_variables)

[image: Image 3215]

Here are the results, in Figure 12.12:

 Figure 12.12: DCGAN Generator output on Celeba faces dataset

GAN training challenges

Although there is a theoretical justification of the convergence of GANs, attaining the equilibrium state of this minimax game is quite hard in practice. Often, GAN

training suffers three types of problems:

1. Models do not converge, and training process is unstable due to non-convex

objective with continuous high-dimensional parameters.

2. Mode collapse: The generator produces a small variety of images, but the images are of good quality, so it’s able to fool the discriminator. But such a

generator has no use as it fails to represent the complex real-world data distribution. All outputs of generator race toward a single point that the discriminator currently approves as realistic image. As possible reason for

this is that as we minimize with respect to the generator and then maximize

with respect to the discriminator, we hold the discriminator constant such that a single region in space is the point that is most likely to be real.

3. Vanishing gradient for generator leading to slow training. With a perfect discriminator, the model we will have D(x) = 0 for all images from

generator; hence, the gradient presented to the generator is zero, and no update of generator happens.

Solutions for mitigating GAN training issues

Following are a few techniques to mitigate GAN training issues:

Feature matching: The generator can be constrained to generate data that

matches some descriptive statistics of the real data like mean and variance.

[image: Image 3216]

We train the generator with an additional objective to match the expected value of the features on an intermediate layer of the discriminator. This will

prevent the overfitting of the discriminant and mitigate the vanishing

gradient problem. Let f(x) denote activations on an intermediate layer of the discriminator. For DCGAN, we can take any of the fully connected dense layers at the end of the network. The new term in the objective function for

generator is

.

Let conv2d_2 be the name of the second convolution layer in the discriminator with 512 filters. We can use this layer as f(x), as shown in the

following code, and update the generator loss:

1. from tensorflow.keras import Model

2.

intermediate_D

=

Model(D.inputs,

D.get_layer(‘conv2d_2’).output)

3.

4. def generator_loss(real_output, fake_output):

5.

features_fake

=

tf.reduce_mean(intermediate_D(fake_output))

6.

features_real

=

tf.reduce_mean(intermediate_D(real_output))

7.

8. return cross_entropy(tf.ones_like(fake_output),

fake_output)

9. + tf.square(tf.norm(features_fake-

features_real))

Minibatch discrimination: To avoid mode collapse, we can make sure that

the discriminator model looks at multiple generated examples in

combination rather than one in isolation. It’s based on the idea that a random

sample from the real data set will have a diverse set of images, and hence, a

minibatch of real images will be diverse. So, if we somehow measure intra-

minibatch similarity of images for a true random sample, we should get a very low similarity score. The samples from generator should also have these characteristics if the generator is a good one. For measuring intra-batch similarity, output f(x) from an intermediate layer of the discriminator

is taken and then the layer output is projected to a low-dimensional space using random projection like distance-preserving operation.

[image: Image 3217]

[image: Image 3218]

[image: Image 3219]

[image: Image 3220]

[image: Image 3221]

[image: Image 3222]

[image: Image 3223]

[image: Image 3224]

[image: Image 3225]

[image: Image 3226]

[image: Image 3227]

[image: Image 3228]

[image: Image 3229]

[image: Image 3230]

[image: Image 3231]

[image: Image 3232]

[image: Image 3233]

[image: Image 3234]

[image: Image 3235]

[image: Image 3236]

[image: Image 3237]

[image: Image 3238]

[image: Image 3239]

[image: Image 3240]

[image: Image 3241]

[image: Image 3242]

Suppose f(x) is L-dimensional vector, and we choose an orthogonal projection matrix M of dimension

, then

is a d-dimensional

vector where

.

For each sample of a minibatch of n samples, we now have a low-

dimensional representation

. For every sample we can compute

L1 distance between and any other sample

that is,

. Now, similarity is inverse of distance, and hence,

we can apply negative exponential to get similarity values, and we can represent the similarity between two samples

and

as

To get a score for intra-minibatch

similarity of the images, we can just add up all these similarity measures and get a real number

for each image .

If a batch has similar looking images, we can expect these quantities to be

very high and if the minibatch is diverse, we will have a very low value for

all

. Now, instead of one projection matrix, we can take a set of K

such low-dimensional projection matrix such that we have a vector of intra-

batch similarity scores for each image instead of a single scalar

. To

implement this, we pre-multiply by a different matrix K of dimension

.

An alternate way for compact implementation of this is to stack all the K

projection matrices and create a tensor T of dimension

. For

example, if K=2, we can create T from 2 random matrices M1 and M2, as

shown in the following code:

1. M1 = tf.random.uniform([L,d]); M2 = tf.random.uniform([L,d])

2. T = tf.concat([tf.expand_dims(M1, axis=1),

3. tf.expand_dims(M2, axis=1)], axis=1)

Multiplying the vector f() by the tensor T, we get a matrix

of

dimension

, and this can be done using Einstein summation operation

in tensorflow, as shown in the following code:

1. fx = tf.random.uniform([n,L]); T =

tf.random.uniform([L,K,d])

2. features = tf.einsum(‘ij,jkl->ikl’,fx, T)

Here, K rows have the K projections of f(xi) of dimension d. For each xj, we get , and hence, for calculating pairwise distance, we can compute the L1

distance between the corresponding rows of the resulting matrix

across

samples

, as shown in Figure 12.13:

[image: Image 3243]

[image: Image 3244]

 Figure 12.13: Minibatch Discrimination

Computation of L1 distance and then the negative exponentiation is shown

in the following code:

1. row_wise_L1 = tf.abs(

2. tf.map_fn(lambda x: x - 2. features,

3. tf.expand_dims(2. features, [1])))

4.

5. sim_scores = tf.exp(-tf.reduce_sum(row_wise_L1), axis=

[3]))

6. sim_score_out = tf.reduce_sum(sim_scores, axis=[1])

Hence, for the entire batch of size n, we have a set of n vectors of dimension

K. We can concatenate these vectors to the intermediate layer output f(),

and we feed the result into the next layer of the discriminator. Minibatch features are computed separately for samples from the generator and the training data. Now, if the generator generates a batch of similar looking images, the discriminator can easily catch it from the minibatch

discrimination features getting very high value.

Other cost functions: For VAEs, we have used KL-divergence to define the

loss function, and for GANs, we have used Jensen–Shannon (JS) divergence to define the loss function. With a simple example, we can see that both these measures have some properties that can inhibit stable

[image: Image 3245]

[image: Image 3246]

[image: Image 3247]

[image: Image 3248]

[image: Image 3249]

[image: Image 3250]

[image: Image 3251]

[image: Image 3252]

[image: Image 3253]

learning with gradient decent. Wasserstein distance or earth mover’s

distance is another metric for quantifying similarity of two probability distributions. Using this metric, we can define another class of GANs called

WGAN or Wasserstein GAN that shows better learning stability.

Experimentally, it’s observed that WGANs always avoid mode collapse.

Using class Label information in both discriminator and generator: Conditional GANs mean that both the generator and discriminator can be conditioned on some kind of auxiliary information y. Here, y can be class

labels or data from other modalities. For example, y can be an image description in free text form, or structured form, or y can be an image category.

Wasserstein GAN (WGAN)

WGAN is based on Wasserstein distance or Earth Movers’(EM) distance

between the two distributions

 and

 that we encountered in Chapter 4:

 Basic Statistics and Probability Theory. We have seen that training GAN with the

minimax objective is equivalent to minimizing the JS-divergence:

WGAN reformulates the optimization problem as a

minimization of the Wasserstein distance between the real and generated distributions:

and . EM distance is continuous and differentiable almost

everywhere (that is, the set of points where it is not differentiable is very few). So, we can train the discriminator till optimality and avoid the vanishing gradient problem.

A probability distribution can be interpreted as a piling of unit mass of earth over a region. So, two different probability distributions represent two ways of piling up unit amount of earth over the region. The EMD is the minimum cost of turning

one pile into the other. The cost of moving the pile is the amount of earth moved times the distance by which it is moved. The following definition is a formal way of stating the same.

Definition (Wasserstein distance or EMD): Let

represent the set of all

joint distributions x, y whose marginals are p(x) and q(y). Then, we define:

Here, the distance moved is given by the norm

, and the amount of earth

to be moved is given by the joint distribution

.

[image: Image 3254]

[image: Image 3255]

[image: Image 3256]

[image: Image 3257]

[image: Image 3258]

[image: Image 3259]

[image: Image 3260]

[image: Image 3261]

[image: Image 3262]

[image: Image 3263]

[image: Image 3264]

[image: Image 3265]

[image: Image 3266]

[image: Image 3267]

[image: Image 3268]

[image: Image 3269]

[image: Image 3270]

[image: Image 3271]

[image: Image 3272]

[image: Image 3273]

[image: Image 3274]

[image: Image 3275]

[image: Image 3276]

[image: Image 3277]

[image: Image 3278]

[image: Image 3279]

[image: Image 3280]

[image: Image 3281]

[image: Image 3282]

[image: Image 3283]

[image: Image 3284]

WGAN network topology is the same as GAN. We have

and let the

generator function G be

, a parametrized function or a neural net with

parameter , which transforms a Gaussian noise vector z to a point in X. Let

represent the distribution of

. For a fixed z,

can be treated as a

function

of

the

parameters

.

So,

WGAN

objective

is

to

.

Some properties of EM distance

Let P be a fixed distribution over X and

be a parametrized function

with parameter . Let Q represents the distribution of

. For a fixed z,

can be treated as a function of the parameters .

1. If g is continuous in θ, so is EMD (P, Q):

Let and be two parameters that are close in the parameter space, that is,

0, as g is continuous in therefore,

and

should be

very close by, that is,

.

EMD is defined as an infimum, so it’s a lower bound, and hence:

EMD is a metric, so using triangle inequality:

, as

.

2. If g is locally Lipschitz continuous and satisfies 1, then EMD (P, Q) is

continuous everywhere and differentiable almost everywhere (that is, it

may not be differentiable on a small subset of points only).

Lipschitz continuity is a measure of how sensitive a function is to a small

variation of the inputs. A function

is said to be locally

Lipschitz at a point

if there exists an open ball

and a

real number K such that:

Here, K gives an upper bound on the degree of perturbation of f for small perturbations in input measures as

.

Here,

is a neural network. To make

Lipschitz, one crude method is

truncating each element of the weight matrices by weight clipping to a small

closed interval, like [‒0.01, 0.01]. However, this restricts the capacity of the network. There are other advanced methods like gradient penalty and

[image: Image 3285]

[image: Image 3286]

[image: Image 3287]

[image: Image 3288]

[image: Image 3289]

[image: Image 3290]

[image: Image 3291]

[image: Image 3292]

[image: Image 3293]

[image: Image 3294]

[image: Image 3295]

[image: Image 3296]

[image: Image 3297]

[image: Image 3298]

[image: Image 3299]

spectral weight normalization to enforce Lipschitz constraint in neural

networks.

is locally Lipschitz at

if there exists an open set U around

such that for all

:

The last part of the inequality holds for Euclidean norm. Taking

, we

have:

Now,

Therefore,

.

Hence,

is locally Lipschitz, and by Radamacher’s theorem,

we know that it has to be differentiable almost everywhere.

3. 1 and 2 are not true for JS and KL: Let us take two simple distributions shown in Figure 12.14, P and Q, which are uniformly distributed along the vertical y-axis with

but are shifted by a positive number

The probability of any sample from uniform distribution in

interval [a, b] is

= 1 if b=1, a=0. We can write P, Q as follows:

P is uniform [0, 1] along y-axis. Refer to the following figure:

[image: Image 3300]

[image: Image 3301]

[image: Image 3302]

[image: Image 3303]

[image: Image 3304]

[image: Image 3305]

[image: Image 3306]

 Figure 12.14: Samples from distributions P and Q

Here,

,

since

and

as they don’t have any region in common, and where P is non-zero, Q

becomes zero and vice-versa.

and

, as this is the distance by which we need to move the

unit probability mass.

At θ = 0, KL(P, Q)=KL(Q, P)=JS(P, Q) = EMD(P,Q) = 0. But for all 0 < θ <

1 only EMD varies smoothly as a function of . Both KLs and JS have infinite discontinuity and a jump discontinuity at

This shows that KL and JS don’t exhibit continuity and differentiability as

EMD does; hence, EMD is better suited for neural net training compared to

them.

WGAN training

An equivalent formulation of EMD can be derived using linear programming formulation and Kantorovich-Rubinstein duality. You may refer to section Further reading [13].

[image: Image 3307]

[image: Image 3308]

[image: Image 3309]

[image: Image 3310]

[image: Image 3311]

[image: Image 3312]

[image: Image 3313]

[image: Image 3314]

[image: Image 3315]

[image: Image 3316]

[image: Image 3317]

Here,

means f is a K-Lipschitz continuous, that is, for a small change

in the input, denoted by

, the change in f is bounded by K. f(x) is

 K-Lipschitz; then:

Now, if we can make sure that the discriminator function

in a GAN is

1-Lipschitz continuous (K=1) for any weight set w. The generator function be is a parametrized function or a neural net with parameter θ, which

transforms a Gaussian noise vector z to a point in X. Using the preceding formula, we can rewrite loss formulation as minimize EM(pdata, pg):

Or,

The expectation E in the preceding equation can be approximated by the mean over a sample batch

of size m, and hence, the gradient of the discriminator

objective is given by the following:

where will be kept fixed. The gradient for the generator is written as

. The implementation of generator and discriminator loss is

shown here:

1. def discriminator_loss_wasserstein(real_output, fake_output):

2. return tf.reduce_mean(D(real_output)) -

tf.reduce_mean(D(fake_output))

3.

4. def generator_loss_wasserstein(real_output, fake_output):

5. return -tf.reduce_mean(D(fake_output))

Here, one important assumption is overlooked. We have to make D satisfy Lipschitz constraint. This has been discussed in Chapter 7: Neural Networks, as a part of adversarial learning.

Ensuring Lipschitz Constraint in Discriminator

[image: Image 3318]

[image: Image 3319]

[image: Image 3320]

[image: Image 3321]

[image: Image 3322]

[image: Image 3323]

[image: Image 3324]

[image: Image 3325]

Deep neural nets are very sensitive to their input. For example, a carefully chosen small perturbation of input image can mislead the neural network and

significantly decrease its classification accuracy. A metric to evaluate the robustness of neural networks to small perturbations is the Lipschitz constant K, which upper bounds the relationship between input perturbation and output variation. In WGAN the following two methods are used to ensure Lipchitz condition:

1. Weight Clipping: Clamp the weights to a fixed box, say [-0.01, 0.01], after each gradient update. This can ensure Lipschitz condition. However, it takes

many more iterations and time to train. This is because weight-clipping significantly limits the capacity of the network. This can be implemented as

follows:

1. for p in D.trainable_variables:

2. p.assign(tf.clip_by_value(p, -0.01, +0.01))

2. Gradient Penalty (GP): Make sure that the gradient has norm at most 1.

This can be achieved by adding an error term to the WGAN objective that

enforces the gradient norm to lie close to unity:

,

where

is some point between a real and a fake sample:

, where

and

, both chosen

independently at random. This is shown in line 4 in the following code.

Alternatively, we can add small noise to the real data points and create perturbed input

, where

, and then the gradient

penalty is implemented as earlier:

.

1. D =discriminator()

2. def gradient_penalty(real_output, fake_output):

3. epsilon = tf.random.uniform([real_output.shape[0], 1, 1,

1], 0.0, 1.0)

4. x_hat = epsilon * real_output + (1 - epsilon) *

fake_output

5. with tf.GradientTape() as tape:

6. tape.watch(x_hat)

7. d_hat = D(x_hat)

8. gradients = tape.gradient(d_hat, x_hat)

9. gradnorm_sqr_reg = tf.reduce_mean((tf.norm(gradients) -

1.0) ** 2)

10. return gradnorm_sqr_reg

[image: Image 3326]

[image: Image 3327]

[image: Image 3328]

The GP loss term is added to the discriminator loss for enforcing Lipschitz

condition in the discriminator.

Conditional GAN (cGAN)

We can implement conditioning of generator/discriminator by feeding auxiliary information y into both the discriminator and generator as additional input. Here, y generally comes as some categorical data; hence, a natural choice will be to use an embedding layer to encode y and then feed the encoded label into both discriminator and generator. For example, consider text to image generation, where y is text. We can use an embedding later to encode the text representation.

However, if the number of categories is few, we can avoid using embedding layer.

Now, the discriminator D will be judging not just X but a point (x, y) from the

joint distribution (X, Y). Also, the corresponding generator G models the conditional joint probability distribution

, where z is a given noise

vector. Given a noise vector z, we should have G(z) = (X, Y). A more interesting and useful formulation of the generator is that we input the auxiliary information y as guidance to the generator G, stating what to generate, and then the generator takes a noise vector z as input to output the data point X conditioned on the auxiliary information. For example, in face generation, if Y represents a single Boolean variable gender, then setting y=0 the generator will generate a female face image. Here, generator models

. Refer to the following figure:

 Figure 12.15: Components of CGAN

Formally, we can define the conditional discriminator and conditional generator as follows:

[image: Image 3329]

[image: Image 3330]

[image: Image 3331]

[image: Image 3332]

[image: Image 3333]

[image: Image 3334]

[image: Image 3335]

[image: Image 3336]

[image: Image 3337]

[image: Image 3338]

[image: Image 3339]

[image: Image 3340]

[image: Image 3341]

[image: Image 3342]

[image: Image 3343]

[image: Image 3344]

[image: Image 3345]

We have a generator function

, which takes a noise data

and

label embedding

and outputs a data point

. Also, we have a

discriminator function that takes a datapoint

and a noise embedding

to output a probability score of whether the pair (x, y) came from the real distribution p(X,Y). Here, our data distribution can be represented as a joint probability distribution

. The generator wants to model the

conditional distribution

, where auxiliary data y follows a distribution

. So, to yield a point from the joint distribution (x, y), we can first sample y from and then use generator model to generate x from

, that is, we have

. The generator model is also conditioned on the

noise z, and hence, the generator actually estimates

. However, as Y

and Z are independent,

. So, we have:

Thus, we can modify our minimax loss function as follows:

At training time, we need to sample images from the generator to evaluate the two players G and D. This requires sampling from noise distribution, like before, for vanilla GANs and also sampling from the auxiliary data distribution

.

If we draw sample of y directly from the training examples, the generator can reach a spurious optimum where it exactly reproduces the training data given a conditional input. So, we don’t get any new data point generated and our generator acts as a database for the training data reproducing each training example from the given data set. To avoid this, we can draw y from a data distribution model trained using any classical density estimation technique, like a Parzen’s window estimate, using the conditional values

drawn from the

training data. The following is an implementation of conditional discriminator for CelebA dataset. CelebA comes with a list of 40 binary attributes for each face image. These attributes include gender. We can extract that as the class label, and we have a binary class label as the auxiliary information. The following is the discriminator code for conditional GAN:

1. def discriminator ():

2. img = layers.Input(shape=[64,64,3])

3. label = layers.Input(shape=[2,]) #for two classes

4. y = layers.Dense(64*64)(label)

5. x = layers.LeakyReLU(0.2)(x)

6. y = layers.Reshape((64,64,1))(y)

7.

8. x = layers.concatenate([img, y])

9.

10. x = layers.Conv2D(filters=128, kernel_size=5,

11. strides=2, padding=’same’)(x)

12. for filter_size in [256, 512,1024]:

13. x = layers.Conv2D(filters=filter_size, kernel_size=5,

14. strides=2,

padding=’same’)(x)

15. x = layers.LeakyReLU(0.2)(x)

16. x = layers.BatchNormalization()(x)

17.

18. x = layers.Flatten()(x)

19. x = layers.Dense(1)(x)

20. return Model(inputs = [img, label], outputs = x)

In line 8 of the preceding code, we are adding the auxiliary information of a new channel as the fourth channel, along with three channels of the input image. The rest of the code remains the same as before for the vanilla discriminator.

Similarly, for the conditional generator, we take the first convolution layer as is in the vanilla generator to create the first 3D tensor of size 4×4×1024 and then append the embedding layer of auxiliary information after mapping and reshaping

it to 4×4×1 as another channel.

The training loop remains the same as for the vanilla GAN, except that the generator also needs fake labels as input, and the discriminator requires real label as input. The rest of the code remains the same, as shown in the following code: 1. def train_step(images, labels):

2. noise = tf.random.normal([BATCH_SIZE, noise_dim])

3.

4. with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

5. generated_images = G(noise, training=True)

6. fake_labels = np.random.randint(0, 2, BATCH_SIZE)

7.

8. real_output = D([images,labels], training=True)

9. fake_output = D([generated_images, fake_labels],

training=True)

Conditional GANs are also used for image-to-image translation tasks. Image-to-

image translation is the task of taking images from one domain and transforming

them to another image so that they have the characteristics of images from

[image: Image 3346]

[image: Image 3347]

[image: Image 3348]

[image: Image 3349]

[image: Image 3350]

[image: Image 3351]

[image: Image 3352]

[image: Image 3353]

[image: Image 3354]

[image: Image 3355]

[image: Image 3356]

[image: Image 3357]

[image: Image 3358]

[image: Image 3359]

[image: Image 3360]

another domain. Instead of passing auxiliary data as input, we can pass image from source image to condition the generator. Also, the auxiliary information being so rich, the generator can take source image as input directly and random

noise vector is not required at all. To generate a good quality image output now, the simple CNN architecture we used so far may not be sufficient. We can use architectures with higher capacity, like U-Net or Resnet-50, to create the conditional generator. Pix2Pix model is a cGAN where output generation is conditioned on an input source image, and they use U-Net architecture for generator.

Cycle GAN (CycleGAN)

CycleGAN is a GAN architecture that uses two generators and two discriminators

and is primarily applied to various image-to-image translation tasks where paired image data from two domains are not available.

For example, if we define source image domain as a set of natural images. We take a hand-drawn image of a beach where we spent our holiday in childhood.

How nice would it be if we could input this hand-drawn image to the generator

and get a photo realistic beach image with our childhood memories! Image translation is a classical computer vision problem, and all the traditional approaches to solve this involves using paired training data set, that is, a data set that has pairwise images from two different domains. Examples of paired data sets are (1) pair of satellite image and Google map image, and (2) facades data set that consists of 506 Building Facades and the corresponding segmentations.

However, getting paired image data set is not always possible; this is where CycleGANs can be useful. Let’s now formally introduce CycleGANs.

Let

and

be data sets with image

samples from two different domains. We can denote the data distributions as and

. Let’s define two generators

and

. Note that unlike the previously defined generators, the generators

here take an image as input directly and not a random noise vector. Also, we define two adversarial discriminators

and

,

where

’s goal is to distinguish between images

and translated images {

()}, and

’s aims to discriminate between

and {

(x)}.

So, now we have four neural networks to train:

. We can define a

joint objective function for training this network. Also, we have to state the steps for training these networks. As there are two separate GANs, we have two adversarial losses:

[image: Image 3361]

[image: Image 3362]

[image: Image 3363]

[image: Image 3364]

[image: Image 3365]

[image: Image 3366]

[image: Image 3367]

[image: Image 3368]

[image: Image 3369]

[image: Image 3370]

[image: Image 3371]

[image: Image 3372]

[image: Image 3373]

[image: Image 3374]

and

This objective will also have the same issues as seen in vanilla GAN adversarial loss formulation, like vanishing gradient and mode collapse. Similar to the feature matching technique we used in vanilla GANs, we can enforce the generators F

and G to be consistent, that is, if

, then transforming x using G and then

applying F on the transformed image, we should get an image very close to x. If

. Refer to the following figure:

 Figure 12.16: CycleGAN

So,

should be minimized, that is,

should be minimized

and similarly,

should be minimized. We call the total quantity

cycle consistency loss:

Hence, the loss for CycleGAN can be written as adversarial loss + cycle consistency loss:

. Here, l is a

hyperparameter that controls how much weight should be given to the cycle consistency loss. For better colour preservation in the output, another loss term was proposed, which is optional and is called identity loss term. This is also a pixel wise L1 loss term, like

. The idea behind this is that for the generator

, if we take an image from the target domain

, we should leave

it as is because this image already belongs to Y, and hence, no transformation is

[image: Image 3375]

[image: Image 3376]

[image: Image 3377]

[image: Image 3378]

[image: Image 3379]

[image: Image 3380]

[image: Image 3381]

[image: Image 3382]

[image: Image 3383]

[image: Image 3384]

[image: Image 3385]

[image: Image 3386]

required. Ideally,

and

, and hence, we should minimize

the term

. So, our loss has

one more term and one more hyperparameter m:

Here, the adversarial loss terms can be replaced by Wasserstein loss for more stable training of the cycle GAN.

Here are the steps for training cycle GANs:

1. Choose hyperparameters l, m.

2. Randomly initialize the weights of the generator and discriminator

networks.

3. Freeze the generator and find an optimal discriminator for the given generator:

a. Take a batch of images

and

b. Run SGD to optimize discriminator weights by computing gradient of

the adversarial loss for discriminator.

4. Update Generator weights by optimizing the generator loss and keeping discriminator fixed:

a. For images

and

, compute:

i. Cycled x for all x in

ii. Cycled y for all y in

iii. Same x for identity loss: for all y in

iv. Same y for identity loss: for all x in

v. Compute all three loss components and then the total generator loss

gradient.

5. Repeat 3 and 4 until convergence.

TIP: The following link provides an implementation of cycle GAN using U-

Net generator and discriminator:

https://www.tensorflow.org/tutorials/generative/cyclegan

Autoregressive generative models

[image: Image 3387]

[image: Image 3388]

[image: Image 3389]

Most generative models discussed so far are suitable for image generation. Can we generate audio or music, speech, cursive handwriting, or literary text, like poetry? All these data types are sequential in nature. What we generate at a given instance is dependent on what we generated in the previous instant. For example, in natural language processing, a language model takes a certain set of words or characters as the input context to generate. Recurrent neural networks and their variants, like Long Short-Term Memory (LSTM), are best suited for these tasks. Similarly, for speech synthesis, we can use sequence to sequence models that can generate speech from text. Traditionally, Hidden Markov Model (HMM) were used for modelling sequences. HMMs are generative sequential models. We have discussed some of these models in the previous chapters. Now,

let’s look at some more generative models for sequences.

Music generation problem has similarity with text generation. A musical “note” is a symbol denoting a musical sound. Notes are the building blocks of written music, and they represent the pitch and duration of a sound in musical notation.

The music generator model should take both pitch and duration information as input at every timestep and generate an output note for the next timestep. This is looped back as input, and a sequence of notes generated. So, LSTMs can be used

here as well, to build simple music generator model. Combining the power of RNNs to model sequence with GAN, a hybrid model was proposed called C-RNN-GAN (Continuous RNN-GAN). This is trained with adversarial loss to

model the joint probability of a sequence and can generate sequences.

Let’s understand how the adversarial loss is calculated for sequences. The generator network is a RNN (stacked LSTM), which takes random vector as input

that is concatenated with the output of previous cell

. The output of the

generator cell is a note vector obtained from a fully connected dense layer output

. The discriminator is a bi-directional LSTM, which takes context in both directions into account and outputs the probability of whether an input sequence to the discriminator is real or fake, that is, whether it’s real music data or its generated using the generator network. This is shown in Figure 12.17:

[image: Image 3390]

[image: Image 3391]

[image: Image 3392]

 Figure 12.17: Continuous RNN GAN

Here, the generator is autoregressive model, as shown in detail in Figure 12.18.

The discriminator encodes the sequence input into a dense fixed length representation using stacked bidirectional RNNs, and then the fixed encoded vector is connected to a sigmoid dense layer to output the probability of the sequence being real/fake.

The adversarial loss function in this case is an extension of the normal adversarial loss to sequences. Here, the adversarial loss for each element of the sequence is computed and then averaged to get the adversarial loss for the entire sequence of arbitrary length m.

Refer to the following figure:

 Figure 12.18: Details of the recurrent autoregressive generator and the recurrent discriminator in C-RNN-GAN

There are other autoregressive GAN models, like MuseGAN [2], which can generate polyphonic music.

Autoregressive generative models are also applied on images. The pixels of an image can be viewed as a sequence starting from top left and then traversing the image matrix row wise or along the diagonal. Here, each pixel probability is conditioned on the previous pixels. PixelRNN [3] is a neural network architecture that consists of 12 fast, two-dimensional LSTM layers. They use residual connections around LSTM layers for training this very deep network.

Applying generative models

Let’s discuss some real-world applications of generative models:

Super Resolution (SR): Image super-resolution is a process of recovering high-resolution images from low-resolution images. It has a wide range of

real-world applications such as medical imaging, video conferencing, video

surveillance and security. Traditionally, SR was performed by various image

rescaling techniques in computer vision, like Bicubic Interpolation, Pyramid

Pooling, and Wavelet Transformation. At present, deep neural net models like FSRCNN- and GAN-based models like SRGAN [9] and ESRGAN [10]

have outperformed all these traditional approaches. To train such models, we need a data set of pairs of low- and high-resolution images. We can treat

the SR model as a generator, which takes a low-resolution image as input and outputs a high-resolution image. The discriminator judges whether the

input image is generated image or actual.

Synthetic Tabular Data Generation: Tabular/structured data is one of the

most common enterprise data modalities. Mostly, such data has Personally

Identifiable Information (PII). The data analyst must be very careful while publishing data analysis results so that no PII is disclosed. This is crucial for staying compliant with privacy regulations. This may restrict the

analyst from publishing many important insights of the data. The ability to

use synthetic datasets whose distribution is the same as true enterprise data

ensures that PII are not disclosed. Tabular GAN (TGAN) [4] generates high-quality and fully synthetic tabular data, including both discrete and continuous columns.

Text to Speech Generation: GAN-TTS [5] is a generative network for generating Text To Speech (TTS). Most neural network models for TTS

use an autoregressive generator that is slow at inferencing, but GAN-TTS

uses a convolutional feed forward network as the generator and is very efficient at inference time. Here, an ensemble of discriminators is trained

instead of one to criticize different aspects of the audio generated, and the result is a high-fidelity audio.

Text to Image generation: DALL·E [11] takes a piece of text and optionally, a part of an image, and it will output an image. It either continues the image whose part is given, or it generates the image by itself. It’s trained on a data set of text–image pairs. It can create plausible images for a wide

variety of sentences. It has the ability to combine disparate ideas to synthesize objects, some of which are unlikely to exist in the real world. So,

we can apply such models for interior designing, fashion designing. Here, VAE is used to encode the input to a discrete latent space, and then transformer-based auto-regressive decoder is used to construct the output.

Anomaly detection: Many practical business problems like fraud detection, intrusion detection, system failure prediction can be formulated as anomaly

detection. Also, anomaly detection and elimination are crucial steps in data

analysis. Anomalies are rare examples in data. The general approach to detect anomalies is to learn the normal distribution and then find a way of

assigning a score to each data point. As anomalies are rare, the learned distribution will give very low score to them. GANs and VAEs also try to

learn the data distribution and represent data in a latent space. So, they have

been successfully employed to solve reconstruction-based anomaly

detection problem. Here is a survey paper on various GAN-based anomaly

detection approaches [7]. There is a very recent study on unsupervised timeseries anomaly detection using LSTM-based generator called TagGAN

 [6].

Image-to-Image Generation: ArchiGAN [8] is a cGAN for apartment building design. It learnt topological features and space organization

directly from floor plan image.

Conclusion

In this chapter, we presented the core theory of deep learning-based generative models and a few applications. In the latest applications of GANs and VAEs, we

may find different architectures being tried out for the generator/decoder, which may be suitable for a particular problem domain. However, the loss functions for training such networks are still some derivatives of the known loss functions that we discussed here, like adversarial loss, reconstruction loss, ELBO, feature mapping, cycle consistency loss, and Wasserstein loss. This chapter should enable the readers to explore the state-of-the-art papers in generative modelling with cool applications and implement them for solving their own business problems.

Points to remember

Generative models are primarily unsupervised machine learning models.

Generative models can generate new data instances by learning underlying

probability distribution of data, whereas discriminative models discriminate

between different kinds of data instances by learning class conditionals.

VAE and VQ-VAEs are easier to train compared to GANs; moreover, the

encoder part of the VAE can be used as a dimensionality reduction

technique for representing data in low-dimensional latent space.

Training GAN with adversarial loss is equivalent to minimizing the JS-

divergence, whereas training VAE boiled down to minimizing KL-

divergence between true data distribution and generator data distribution.

We have theoretically proved the existence of equilibrium for GAN, but achieving this equilibrium numerically while training with adversarial loss

is hard. We may get stuck in many local Nash equilibrium state, which leads to mode collapse and unstable learning. These local equilibriums are far away from global equilibrium, and hence, we should always use some of the

tricks discussed here, like feature mapping, minibatch discrimination, and conditioning GANs to mitigate these challenges.

If we have sequential data, it’s better to use sequential generative models like HMM or recurrent neural network-based models, like C-RNN-GAN.

Further Reading

1. VQ-VAE: https://arxiv.org/abs/1711.00937

2. MuseGAN: Multi-track Sequential, https://arxiv.org/abs/1709.06298

3. PixelRNN : https://slazebni.cs.illinois.edu/spring17/lec13_advanced.pdf

4. Tabular GAN (TGAN): https://arxiv.org/pdf/1811.11264.pdf

5. TTS-GAN: https://arxiv.org/pdf/1909.11646.pdf

6. TagGAN: https://arxiv.org/pdf/2009.07769v3.pdf

7. Anomaly Detection: https://arxiv.org/pdf/1906.11632.pdf

8. ArchiGAN:

https://developer.nvidia.com/blog/archigan-generative-

stack-apartment-building-design/

9. SRGAN for super resolution: https://arxiv.org/abs/1609.04802

10. ESRGAN : https://arxiv.org/abs/1809.00219

11. DALL.E: https://openai.com/blog/dall-e/

12. https://www.kaggle.com/datasets/abhilash04/fathersandsonheight

13. https://vincentherrmann.github.io/blog/wasserstein/s

Index

A

AdaGrad 269

Adaptive Moments (Adam) 269

agglomerative clustering 298

BIRCH 300

distance between clusters 299, 300

Akaike Information Criterion (AIC) 20

AlexNet 356

application

on real dataset 60-63

Arithmetic Mean 155

artificial general intelligence (AGI or strong AI) 3

Artificial Intelligence (AI) 1

applications 25, 26

role of mathematics 26-28

systems 2

artificial narrow intelligence (ANI or narrow AI) 2

artificial neuron 252-255

artificial super intelligence (ASI) 3

attention mechanism 405

Bahdanau attention 406

concat 406

dot product 406

general 406

key-value-query formulation 407, 408

language translation model 409-414

local attention 407

location based 406

speech recognition model 414-416

augmented matrix 38

Autocorrelation Plot (ACF) 381

autoencoder 315, 316

automatic differentiation 267

Automatic Speech Recognition (ASR) 414

autoregressive generative models 486-488

Autoregressive Integrated Moving Average (ARIMA) models 380

average filter 348

average pooling 351

B

backpropagation algorithm 264-267

backtracking line search 141

Bag of Words (BoW) model 429

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) 300

basis vectors 50

Bayesian Decision Theory 173-175

Bayesian Information Criterion (BIC) 20

Bayes theorem 172, 173

Bernoulli 177

Bi-directional RNNs (BRNN) 398

bigram model 433

binary cross entropy error 241

binary random variable 176

Binomial distribution 178

bivariate analysis 164

Bolzano theorem 108

bottleneck 315

C

categorical-cross-entropy error 243

categorical random variable 177

Cauchy-Schwartz inequality 188

Cayley–Hamilton theorem 86

central or centroid vector 287

central tendency 155

central tendency measures 155

mean 155, 156

median 156

mode 156-159

Characteristic equation 86

Characteristic polynomial 86

classification 13

classification model

classification accuracy 15

class-wise accuracy 15

confusion matrix 16

evaluation metrices 14, 15

F1 score 16

precision 15

recall 15

Receiver Operating Characteristic (ROC) curve 17

True Positive (TP) 14

clustering 10, 275, 276

hard clustering 277

soft clustering 277

clustering algorithms

agglomerative clustering 298

density-based clustering 290

distribution-based clustering 293

Fuzzy theory-based clustering 302

graph-based clustering 300, 301

hierarchical-based clustering 297

partition-based clustering 287

clustering analysis 275

cluster quality 283

CNN architecture 349

convolution layer 350, 351

depthwise convolution 353

depthwise separable convolution 352, 353

optimization 354

pointwise convolution 353

pooling layer 351, 352

spatially separable convolution 352

transposed convolution 354, 355

CNN development 356

AlexNet 356, 357

inception 359, 360

ResNet 361, 362

TensorFlow Model 358

trainable parameters, counting 359

VGG 360, 361

Xception 362, 363

CNN models application 363

image classification 363, 364

Coefficient of Dispersion (C.D) 162

Coefficient of Variation (C.V) 162

Computer Vision (CV) 325

Conditional GAN (cGAN) 480-483

Connectionist Temporal Classification (CTC) 399-401

DP formulation, for CTC loss 403

inferencing from 403

limitations 404

training 401, 402

constraint 143

contextual models 439

BERT 440, 441

Bidirectional Encoder Representations from Transformers (BERT) 440

ELMo model 439, 440

ERNIE model 446

Generative Pre-Training (GPT) 447

input presentation, for pre-training BERT 443

position encoding 441, 442

pre-training BERT 442

WordPiece tokenization 443-445

Continuous Bag-of-Words (CBOW) model 438

continuous entropy 200

continuous functions 107, 108

Bolzano theorem 108

intermediate value theorem 108

continuous probability distributions 179, 180

contracted axes 128

convex combination 50

convex function

properties 147, 148

convex functions 146

Convolution Neural Networks (CNN) 272, 273, 349

convolution operation 334

correlation 164, 165

correlation matrix 74

covariance 165

covariance matrix 74

calculating 311

decomposition 312, 313

Cramer-Rao inequality 219, 220

cross-validation 23

Cumulative Probability Distribution Function (C.D.F) 180

Cycle GAN (CycleGAN) 484-486

D

data 154

learning from 9

qualitative 154

quantitative 154, 155

data collection 7

dataset preparation 22, 23

data types 8, 9

Davies-Bouldin indicator 283

DBSCAN 290-292

advantages 292

limitations 293

decision tree 203-208

leaf node 204

Decoder 315

Deep Convolutional GANs (DCGAN) 468

deep learning 21, 22

Deep Neural Networks (DNN) 349

density-based clustering algorithms 290

DBSCAN 290-292

derivative of function 109

derivative of scalar fields, w.r.t. vector 116

directional derivative 116, 117

geometry of gradient vector 120

partial derivative 116-118

total derivative 118, 119

derivative of vector fields, w.r.t. vector 121

chain rule 122

dot product of tensors 127-129

Einstein notation 124-127

matrix form of chain rule 122, 123

tensor calculus 129, 130

tensors 123, 124

total derivative of tensor 130-134

determinant

inverse of matrix 78, 79

of square matrix 77

differential entropy 200

differentiation 109

digital image formation 326

light, capturing 326

quantization 327

sampling 327

dimensionality reduction 10, 307-309

dimension of space 50

dimension of subspace 52

directional derivative 117

discrete probability distribution 176, 177

dispersion 161

dispersion measures

coefficients of dispersion 162, 163

Interquartile Range 161

Mean deviation (MD) 161

range 161

standard deviation 162

dissimilarity function 277

distance and similarity metrics 277, 278

distribution-based clustering 293

Gaussian Mixture Model (GMM) 294-297

Document-Term matrix 430

dot product 48, 127

dual problem 146

Dunn indicator 284

E

eigen decomposition 96, 97

real symmetric matrix 97

singular value decomposition 97

eigenvalues

and vectors 86

Einstein notation 124

examples 125

ellipsoid 91

EM algorithm 296, 297

Embeddings from Language Model (ELMo) 439

EM distance

properties 476-478

Encoder 315

encoder decoder architecture 404

Enhanced Representation through kNowledge IntEgration (ERNIE) 445, 446

error derivatives

computing 259-264

estimator properties 218, 219

Euclidean ball 46

Euclidean distance 282

Euclidean space 44

vectors 44

Evidence Lower Bound (ELBO) 458

Expectation Maximization (EM) 294

expert system 4

exponential distribution 185, 186

Exponential Weighted Moving Average (EWMA) 269, 379

external evaluation 285, 286

F

False Negative (FN) 15

False Positive (FP) 15

False Positive Rate (FPR) 17

feature engineering 29

feature matching 472

feedforward neural network 255, 256

hidden layers 255

input layer 255

layer 255

output layer 255

filtering 329

finite-dimensional space 50

F-measure 286

forming clusters 277

forward substitution 40

forward substitution, in matrix 95

Fowlkes-Mallows index (FM) 287

frequency distribution 155

Frobenius norm 58

full padding 350

Fully Connected (FC) layer 357

function optimization 134

decent methods 138-142

maxima 135

minima 135

saddle point 135-138

with constraints 143-145

with inequality constraints 145

Fuzzy C-Mean algorithm (FCM) 303

Fuzzy theory-based clustering 302, 303

Fuzzy c-means 303

G

Gated Recurrent Unit (GRU) 388, 390

Gaussian distribution 181-185

Gaussian kernel 336, 337

discrete approximation 337-339

Gaussian filter, applying 339, 340

Gaussian Mixture Model (GMM) 293, 294, 449

Gauss-Jordan elimination 40

by-product 95

Generalized Bernoulli distribution 177, 178

Generative Adversarial Nets (GANs) 464, 465

challenges, for training 471

equilibrium state 465-468

implementing 468-471

solutions, for mitigating training issues 472-475

Generative Adversarial Network (GAN) 273, 449

generative model 450-454

handwriting generation 392, 393

for sequence 391

Mixture Density Networks (MDN) 393-396

Generative Pre-Training (GPT) 447

Geometric Mean 156

geometric spatial transformation 329-332

GoogLeNet 359

Gradient Penalty (GP) 479

GradientTape function 131

Gram-Schmidt process 79

graph-based clustering 300

Spectral clustering 301, 302

graphviz 206

H

halfspaces 53

Harmonic Mean 156

Hidden Markov Models (HMM) 383, 384

hierarchical-based clustering 297

hyperplane 52, 53

hypotheses 215

I

identity matrix 67

ILSVRC 356

image classification 363, 364

image segmentation 365

instance segmentation 365

object detection 364

semantic segmentation 365

U-Net, using 366

image derivative-based kernels 341

Laplacian kernel 342-346

Sobel kernel 346-348

inconsistent systems 33

index notation or indicial notation 123

inference 211

infinite-dimensional space 50

information theory 198, 199

entropy 199, 200

KL divergence 201, 202

mutual information 202, 203

relative entropy 201

intermediate value theorem 108

internal evaluation 283

Interquartile Range (IQR) 161

intra-attention 415

Inverse Document Frequency (IDF) 431

invertible matrices 68, 69

Iris autoencoder

building 316-318

Iris dataset

loading 310, 311

Iterative Dichotomiser 3 (ID3) 205

J

Jaccard index 287

Jacobian and Hessian matrix 74

Jacobian matrix 121

Jensen-Shannon (JS) divergence 202

Jensen–Shannon (JS) divergence 474

Jenson’s Inequality 188

joined probability distributions 188-192

K

Karl Pearson’s coefficient of correlation 165

Karush-Kuhn-Tucker (KKT) 150

k-fold cross validation 24

K-means clustering algorithm 288

challenges 289

elbow method 288

K-medoids 289

k-nearest neighbour (KNN) algorithm 63-65

kurtosis 163

L

Lagrange dual function 145

Lagrange multipliers 144

language translation model 409-414

Laplacian kernel 342-346

Laplacian of Gaussian (LoG) 344

Large Sample Theory 212

hypothesis testing 215-217

sample statistics 213, 214

sampling, from known distributions 215

Latent Dirichlet Allocation (LDA) 435-438, 449

Latent Semantic Indexing (LSI) model 431-433

layer.kernel property 262

leave-p-out cross validation 24

linear algebra 29

linear combination 49, 50

linear equation 30-33

inconsistent system 36, 37

infinitely many solutions 35, 36

system of linear equations, solving analytically 34

linearly dependent vectors 49

Linear mapping 82

Linear Models (LM) 239

linear transformation 82

composition 84, 85, 86

eigen properties 87, 88

eigen properties, of symmetric matrices 90, 91

eigenvalues 86

example 82

geometric analysis 89

matrix, with linear map 83, 84

positive definite 91-93

zero eigenvalue 90

Long Short-Term Memory (LSTM) 388, 389

lower triangular matrix 67

LU decomposition 93, 94

M

Machine Learning (ML) 4-6, 211

Mahalanobis distance 195, 280, 281

major axis 91

Manhattan distance 57

MA(q) model 381

Markov chain 381-383

mathematical expectation

example 186

of random variable 186, 187

properties 188

matrices, in ML problem formulation

correlation matrix 74

covariance matrix 74

distance matrix 73

feature/data matirx 72

gram matrix 73

Jacobian and Hessian matrix 74

one hot encoding 72, 73

matrix 38

augmented matrix 38-40

basic matrix operations 41-44

identity matrix 67

inverse properties 69, 70

invertible matrices 68, 69

null space 75

orthogonality 74, 75

orthogonal matrix 70, 71

permutation matrix 70

pseudocode back substitution 41

pseudocode forward substitution 40

rank 67

skew-symmetric matrices 68

subspaces 74

symmetric matrix 67, 68

types 67

vectors, representing 66

matrix decomposition 93

eigen decomposition 96, 97

LU decomposition 93, 94

QR decomposition 96

matrix factorization 93

matrix norms 58

Frobenius norm 58

inner product 59, 60

norm ball 59

Maximum Likelihood Estimation (MLE) 451

Maximum Posteriori (MAP) 225

max pooling 351

Mean Absolute Error (MAE) 19

Mean Squared Error (MSE) 19

mean value theorem (Lagrange) 112

measure of dispersion 155

measure of skewness 155

measures of central tendency 155

measures of kurtosis 155

median filter 348

metric function 277

metric induced by the norm 56

Microsoft Research Paraphrase Corpus (MRPC) 444

minibatch discrimination 472

Minimax Bayesian Risk solution 175

Minimum Variance Bound (MVB) estimator 222

Minimum Variance Unbiased (M.V.U) estimators 219

bias-variance decomposition 226

Cramer-Rao inequality 220-223

likelihood function 220

Maximum Likelihood Estimation (MLE) 223-225

Minkowski distance 279, 280

Mixture Density Networks (MDN) 393-396

ML algorithm

reinforcement learning 11-13

supervised learning 13, 14

types 9

unsupervised learning 10, 11

ML model

building 7

data collection 7

data preparation 7

evaluation 8

feature extraction/selection 7

training 8

ML problems, formulating as statistical inferencing

bias variance trade-off 237-239

classification 227, 228

curvilinear regression 230-232

data distribution 226, 227

linear models, interpretability 244-247

linear regression 230-232

logistic regression 239-241

model parameters, estimating 232, 233

model parameters, iterative estimation 233-235

multiclass logistic regression 242, 243

Naive Bayes classifier 228

overfitting 235, 236

Poisson regression 243, 244

regression 229, 230

underfitting 235, 236

moments 163

multivariate distributions 193

multinomial distribution 194

multivariate Gaussian distribution 194-198

multivariate probability density function 190

N

natural language 424, 425

syntactic structure 425

Natural Language Processing (NLP) 423

Negative Binomial (NegBin) Model 244

neighbor pixel operation 332-334

neural language models 438

neural network 21, 22, 251

challenges of training 267, 268

sensitivity, to small perturbations 272

training 257

neural network architectures 272

autoencoder architecture 272

Convolutional Neural Network (CNN) 273

Generative Adversarial Network (GAN) 273

Recurrent Neural Nets (RNN) 273

Siamese neural network 273

transformers 273

neural network traning, challenges

bias variance tradeo-ff 270

regularization, of neural nets 270

SGD modifications 269

slow traning, with SGD 267, 268

neuron 252

Newton’s method 142

N-gram model 434

non-linear filters 348

average filter 348

learning 349

median filters 348

normal distribution 181-185

null space 75

O

object detection algorithms 364

R-CNN 365

YOLO 365

odds 165, 166

one hot encoding 73

One-vs-Rest (OvR) scheme 242

optimization, with inequality constraints 145

convex functions 146, 147

convex optimization 148, 149

Karush-Kuhn-Tucker conditions (KKT) 149, 150

Lagrange dual function 145, 146

Ordinary Least Squares (OLS) 379

orthogonal basis 50

orthogonality among subspaces

among subspaces 76, 77

orthogonal matrix 70, 71

orthonormalization 79, 80

applications 81, 82

example 81

Out of vocabulary words (OOV) 428, 443

overfitted model 23

overfitting 235

P

Partial Autocorrelation (PACF) plot 381

partial derivative 117

partition-based clustering algorithms 287

K-means 288

K-medoids 289

Partitioning Around Medoids (PAM) 289

partition values 159-161

Parts Of Speech (POS) 384, 425

permutation matrix 70

petal width 162

phones 424

pixels 328

accessing 328

Poisson distribution 179

positional vector 44

position encoding 441, 442

positive-definite 91

positively skewed 164

preprocessing techniques 428

pre-training BERT 442

primal problem 146

Principal Component Analysis (PCA) 309, 310

using 315

versus t-SNE 321

principal components 313

reducing with 313, 314

probabilistic models, of text 433

Latent Dirichlet Allocation (LDA) 435-438

neural language models 438

topic models 434

probabilistic sequence models 381

Hidden Markov Models (HMM) 384, 385

Markov chain 381-383

probability 165, 166

Probability Density Function (P.D.F) 176

Probability Mass Function (P.M.F) 176

probability theory 153

pseudocode forward substitution 40, 41

Python sklearn DecisionTreeClassifier module 206

Q

QR decomposition 96

quadratic form 91

qualitative data 155

nominal 154

ordinal 154

quantitative data 155

continous 155

discrete 154

quantization 327

quartiles 159

R

Rand Index (RI) 286

random experiment 166

conditional independence 170, 171

conditional probability 168, 169

events as sets 166-168

independent events 169, 170

random sampling 212

random variable

mathematical expectation 186

transformation 193

Random Variable (R.V.) 175, 176

range 161

R-CNN 365

real analysis 104

continuous functions 107, 108

derivative of function 109-112

fundamentals 104-106

hgher order derivatives 112, 113

limit of function 106, 107

Taylor series expansion 113, 114

real matrix 67

real symmetric matrix 97

real-world applications, generative models

anomaly detection 489

Image-to-Image Generation 490

real-world applications 488, 489

Super Resolution (SR) 488

Synthetic Tabular Data Generation 489

Text to Image generation 489

Text to Speech Generation 489

Receiver Operating Characteristic (ROC) curve 17

Rectified Linear Unit (ReLUs) 356

Recurrent Neural Network (RNN) 273, 386

Gated Recurrent Unit (GRU) 390

Long Short-Term Memory (LSTM) 389, 390

stacked LSTM/RNN 390, 391

structure 387, 388

regression 13

regression model

evaluation metrices 18-20

regularization 270

batch normalization 271

dropout 271

weight-decay 271

weight sharing 271

Reinforcement Learning (RL) 11-13

repeated random sub-sampling method 24, 25

Restricted Boltzmann Machine (RBM) 449

RL problem, components

action 13

agent 13

environment 13

policy 13

state 13

RMSProp 269

Rolle’s theorem 112

Root Mean Squared Error (RMSE) 20

S

same padding 350

sampling 327

scalar field 115

derivative, w.r.t.vector 116

limit and continuity 116

scalar multiplication 46

second order derivative 112

self-attention 415, 416

calculating 416-418

semantics 427

Sensitivity 15

sepal length 162

separable kernels 335

convolution with 335, 336

sequence classification 397

Sequence-to-Sequence (Seq2Seq) modelling 398, 399

attention mechanism 405-407

CTC 399-402

encoder decoder architecture 404

transformer architecture 418

Siamese neural network 273

Silhouette coefficient 284, 285

singular or degenerate matrix 68

singular value decomposition 97-100

skewness 163

skew-symmetric matrices 68

skip-gram model 439

Sobel kernel 346-348

space 53

span of vector 49

spatial filtering 329

convolution operation 334

geometric spatial transformation 329-332

neighbor pixel operation 332-334

special tensor 127

Spectral clustering 301

speech recognition model 414, 415

square matrix 67

stacked LSTM/RNN 390, 391

standard deviation 162

standard scaler 196

statistical inference 211, 218

Statistical Machine Translation (SMT) 409

statistics 153, 154

descriptive statistics 154

inferential statistics 154

Stochastic Gradient Descent (SGD) 257-259

adaptive learning rate 269

momentum methods 269

stratified sampling 213

strong duality 146

subspaces 51

supervised learning 13

Support Vector Machines (SVM) 150

symmetric matrix 67, 68

synapses 253

syntactic structure of language

clause 425

Parts of Speech (POS) 425

phrase 425

sentence 426

text corpus 426

text document 426

system of linear equations 31

T

Tabular GAN (TGAN) 489

Taylor series expansion 113, 114

tensor 123

term frequency 431

Term Frequency (TF)-Inverted Document Frequency (IDF) 431

text models 429

Bag of Words (BoW) model 429

contextual models 439

Latent Semantic Indexing (LSI) model 431-433

probabilistic models 433

vector space model 429

text preprocessing 427

time series models 374, 375

ARIMA model 380, 381

decomposition 375-377

differencing 378

exponential smoothing 379, 380

forecasting 379

OLS model 379

topic model 434

total probability theorem 171, 172

transformation

of random variable 193

transformer 273, 417

architecture 418

triangular matrix 67

trivial subspace

example 51

True Negative (TN) 15

True Positive Rate (TPR) 15

t-SNE 319, 320

in Iris dataset 321, 322

U

underfitted model 23

underfitting 235

U-Net 366, 367

uniform distribution 181

unigram model 433

unique solution 33

univariate data analysis 164

unsupervised learning 10

V

valid padding 350

variance retention 314, 315

Variational Autoencoder (VAE) 449, 454-463

vector 29, 44

addition/subtraction 47

direction 46

distance between 47

dot product 48

linear combination 49, 50

magnitude 45

natural orthonormal basis 51

norm 45, 46

orthogonal basis 50

orthogonality 48

orthonormal basis 51

representing, in matrix 66

representing vector 44, 45

scalar multiplication 46, 47

span 49

Unit vector 45

vector calculus 103

vector field 115

limit and continuity 116

vector space 54, 55

defining 53

lp norm 57

matrix norm 58

maximum norm 57, 58

normed vector space 56

norm of real numbers 56, 57

vector space model 429

count based or Boolean 430

TF-IDF 431

Visual Geometry Group (VGG) 356-360

W

Wasserstein GAN (WGAN) 475

Lipschitz Constraint, ensuring in discriminator 479, 480

training 478, 479

weak duality 146

Weight Clipping 479

With-In Cluster Sum of Squares (WCSS) 288

WordNet 427

WordPiece tokenization 443, 444

Y

YOLO 365

Document Outline

	Cover Page

	Title Page

	Copyright Page

	Dedication Page

	About the Authors

	About the Reviewer

	Acknowledgements

	Preface

	Errata

	Table of Contents

	1. Overview of AI

	Structure

	Objectives

	AI systems

	Machine Learning

	How are ML Models created?

	Data types

	Learning From data

	Types of ML algorithm

	Unsupervised learning

	Reinforcement learning

	Supervised learning

	Metrices for evaluating classification model

	Metrices for evaluating regression model

	Deep learning

	Dataset preparation

	Application of AI

	Role of Mathematics in AI

	Conclusion

	2. Linear Algebra

	Structure

	Objectives

	Linear equations

	Solving system of equations analytically

	Infinitely many solutions

	Inconsistent system

	Introducing matrix

	Augmented matrix

	Pseudocode forward substitution

	Pseudocode back substitution

	Basic matrix operations

	Euclidean space

	Vectors and basic properties

	Representing vector

	Norm

	Direction

	Scalar multiplication

	Addition/subtraction of vectors

	Distance between vectors

	Dot product and orthogonality

	Linear Combination of Vectors

	Dimension and basis of the space

	Orthogonal and orthonormal basis

	Natural orthonormal basis of ℝn

	Subspaces

	Dimension of subspace

	Hyperplanes and Halfspaces

	Defining vector space

	Vector spaces

	Normed vector space

	Norm of real numbers

	lp Norm

	Maximum norm

	Matrix norm

	Inner product

	Application on real dataset

	K-nearest neighbor

	Representing vectors in matrix

	Matrix rank

	Matrices types

	Identity matrix

	Symmetric matrix

	Skew symmetric matrix

	Invertible matrices

	Properties of Matrix Inverse

	Permutation matrix

	Orthogonal matrix

	Matrices in ML problem formulation

	Feature/data matrix

	One hot encoding

	Distance matrix

	Gram matrix

	Covariance matrix

	Correlation matrix

	Jacobian and Hessian matrix

	Subspaces of matrix and orthogonality

	Null space

	Orthogonality among subspaces

	Determinant

	Inverse of Matrix

	Orthonormalization

	Applications of Orthonormalization

	Linear transformation

	Matrix associated with linear map

	Composition of linear transformation

	Eigenvalues and vectors

	Eigen properties

	Geometric analysis

	Existence of zero eigenvalue

	Eigen properties of symmetric matrices

	Positive definite

	Matrix decomposition

	LU decomposition

	By-product of Gauss-Jordan elimination

	QR decomposition

	Eigen decomposition

	Real symmetric matrix

	Singular value decomposition

	Conclusion

	Points to remember

	Further Reading

	3. Vector Calculus

	Structure

	Objectives

	Analysis of real functions

	Limit of a function

	Continuous functions

	Derivative of a function

	Higher Order derivatives

	Taylor series expansion

	Scalar and vector fields

	Limits and continuity

	Derivative of scalar fields w.r.t. vector

	Directional derivative and partial derivatives

	Total derivative

	Geometry of gradient vector

	Derivative of vector fields w.r.t. vector

	Chain rule for derivatives of vector fields

	Matrix form of the chain rule

	Tensors

	Einstein notation

	Dot product of tensors

	Tensor calculus

	Total derivative of tensor

	Mathematical optimization

	Maxima, minima, and saddle point

	Decent methods

	Function optimization with constraints: Lagrange multipliers

	Optimization with inequality constraints

	The Lagrange dual function

	Convex functions

	Properties of convex functions

	Convex optimization

	Karush-Kuhn-Tucker conditions (KKT)

	Conclusion

	Points to remember

	Further readings

	4. Basic Statistics and Probability Theory

	Structure

	Objectives

	Basic statistics

	Measures of central tendency

	Mean

	Median

	Mode

	Partition Values

	Measures of dispersion

	Range

	Interquartile Range

	Mean deviation

	Standard deviation

	Coefficients of dispersion

	Moments

	Skewness and kurtosis

	Correlation

	Probability and odds

	Random experiment

	Events as sets

	Conditional probability

	Independent Events

	Conditional independence

	Total probability theorem

	Bayes theorem

	Bayesian Decision Theory

	Random variable

	Discrete probability distributions

	Bernoulli and categorical distribution

	Binomial distribution

	Poisson distribution

	Continuous probability distributions

	Cumulative Probability Distribution Function (C.D.F)

	Uniform distribution

	Gaussian distribution or normal distribution

	Exponential Distribution

	Mathematical expectation of a random variable

	Joint Probability Distributions

	Transformation of a random variable

	Multivariate distributions

	Multinomial distribution

	Multivariate gaussian distribution

	Information theory

	Entropy

	Relative entropy or KL divergence

	Mutual information

	Decision tree

	Conclusion

	Points to remember

	Further reading

	5. Statistical Inference and Applications

	Structure

	Objectives

	Large Sample Theory

	Sample statistics

	Sampling from known distributions

	Hypothesis testing

	Statistical inference

	Estimator properties

	Minimum Variance Unbiased (M.V.U) estimators

	Likelihood function

	Cramer-Rao inequality

	Method of Maximum Likelihood Estimation (MLE)

	Bias-variance decomposition of estimator

	Applications – Formulating ML problems as statistical inferencing

	Data distribution

	Classification

	Naive Bayes classifier

	Regression

	Linear and curvilinear regression

	Estimating model parameters

	Iterative estimation of model parameters

	Overfitting and underfitting

	Bias variance trade-off

	Logistic Regression

	Multiclass logistic regression

	Poisson regression

	Interpretability of linear models

	Conclusion

	Points to remember

	Further Reading

	6. Neural Networks

	Structure

	Objectives

	Artificial neuron: An adaptive basis function

	Feed Forward neural network

	Training neural network

	Stochastic Gradient Descent

	Computing error derivatives

	Backpropagation algorithm

	Challenges of training neural networks

	Modifications of SGD

	Momentum methods

	Adaptive learning rate

	Bias-variance trade-off in neural networks

	Regularization of neural nets

	Sensitivity of neural networks to small perturbations

	Neural Network Architectures

	Conclusion

	Points to remember

	Further Reading

	7. Clustering

	Structure

	Objectives

	Forming clusters

	Distance and similarity

	Cluster quality

	Internal evaluation

	Davies-Bouldin indicator

	Dunn indicator

	Silhouette coefficient

	External evaluation

	Rand index

	F-measure

	Fowlkes–Mallows index

	Jaccard index

	Clustering algorithms

	Partition-based clustering

	K-means

	K-medoids

	Density-based clustering

	DBSCAN

	Distribution-based clustering

	Gaussian Mixture Model

	Hierarchical-based clustering

	Agglomerative clustering

	Distance between clusters

	BIRCH

	Graph-based clustering

	Fuzzy theory-based clustering

	Fuzzy c-means

	Conclusion

	References

	8. Dimensionality Reduction

	Structure

	Objectives

	Reducing dimensionality

	Principal Component Analysis

	Loading Iris dataset

	Calculating covariance matrix

	Decomposition of covariance matrix

	Reducing with principal components

	Variance retention

	When to use PCA

	Autoencoder

	Iris autoencoder

	t-SNE

	Choosing σi

	PCA vs t-SNE

	t-SNE on Iris Dataset

	Conclusion

	Further reading

	References

	9. Computer Vision

	Structure

	Objectives

	Digital Image Formation

	Capture the light

	Sampling and quantization

	Pixels

	Accessing pixels

	Spatial filtering

	Geometric spatial transformation

	Neighbor pixel operation

	Convolution properties

	Separable kernels

	Convolution with separable kernels

	Gaussian kernel

	Discrete approximation of Gaussian function

	Application of Gaussian filter

	Image derivative-based kernels

	Laplacian kernel – Second order derivative

	Sobel kernel: First order derivative

	Non-linear filters

	Learning filters

	Convolution Neural Networks

	Convolution layer

	Pooling layer

	Spatially separable convolution

	Depthwise separable convolution

	Depthwise convolution

	Pointwise convolution

	Optimization

	Upsampling: Transposed convolution

	Development of CNN

	AlexNet

	TensorFlow Model

	Counting trainable parameters

	Inception

	VGG

	ResNet

	Xception

	Application of CNN models

	Image classification

	Object detection

	R-CNN – Regions with CNN features

	YOLO – You Only Look Once

	Image segmentation

	U-Net

	Summary

	Further reading

	Points to remember

	References

	10. Sequence Learning Models

	Structure

	Objectives

	Time series models

	Decomposition of time series

	Differencing

	Time series forecasting

	OLS model

	Exponential smoothing

	Autoregressive Integrated Moving Average

	Probabilistic sequence models

	Markov chain

	Hidden Markov model

	Recurrent neural networks

	Training RNN

	Long Short-Term Memory (LSTM)

	Gated Recurrent Unit (GRU)

	Stacked LSTM/RNN

	Generative models for sequence

	Handwriting generation

	Mixture Density Network

	Sequence classification

	Bi-directional RNN

	Sequence to Sequence

	Connectionist Temporal Classification

	Training CTC network: Maximum likelihood

	DP formulation for CTC loss

	Inferencing from CTC network

	Encoder-Decoder architecture

	Attention mechanism

	Key-value-query formulation of attention

	Language translation model

	Speech recognition model

	Self-attention and transformers

	Computing self-attention

	Transformer architecture

	Conclusion

	Points to remember

	Further Reading

	11. Natural Language Processing

	Structure

	Objectives

	Natural language

	Syntactic structure of language

	Parts of Speech (POS)

	Phrases

	Clause

	Sentence

	Document and Text corpus

	Semantic structure of language

	Wordnet

	Text preprocessing

	Models for text

	Bag of Words (BoW) model

	Vector Space Model

	Count based or Boolean

	Term Frequency (TF)-Inverted Document Frequency (IDF)

	Latent Semantic Indexing (LSI) model

	Probabilistic models of text

	Topic models

	Probabilistic generative models: Latent Dirichlet allocation

	Neural language models

	Contextual models

	ELMo model

	BERT

	Position encoding

	Pre-training BERT

	Input representation for pre-training tasks of BERT

	WordPiece tokenization

	ERNIE

	Generative Pre-Training by OpenAI

	Conclusion

	Points to remember

	Further reading

	12. Generative Models

	Structure

	Objectives

	A simple generative model

	Variational Autoencoders (VAE)

	Generative Adversarial Nets

	Equilibrium state for GAN training

	Implementing GAN

	GAN training challenges

	Solutions for mitigating GAN training issues

	Wasserstein GAN (WGAN)

	Some properties of EM distance

	WGAN training

	Ensuring Lipschitz Constraint in Discriminator

	Conditional GAN (cGAN)

	Cycle GAN (CycleGAN)

	Autoregressive generative models

	Applying generative models

	Conclusion

	Points to remember

	Further Reading

	Index

index-153_5.jpg
lim Flxo + h) J(xo)

h—0

index-153_4.jpg

index-153_7.jpg

index-153_6.jpg

index-153_3.jpg

index-153_2.jpg

index-549_5.jpg
Fgq

index-549_7.jpg
p.q) = yx, x =yl = Inl -y Ix =¥l
II y
e E -Ef (xy)
@l yll =1 i B
EMD inf % E,
®.9) f i

index-549_6.jpg

index-550_4.jpg
Fq

index-550_3.jpg

index-550_5.jpg

index-549_9.jpg

index-549_8.jpg
|x — v

index-550_2.jpg

index-550_1.jpg
A~Ddata

index-550_7.jpg

index-550_6.jpg

index-550_9.jpg

index-550_8.jpg
minimize EM(Pgata.Pg)

index-550_15.jpg

index-550_14.jpg

index-550_11.jpg

index-550_10.jpg

index-550_13.jpg

index-550_12.jpg

index-547_12.jpg
en (i %) = e IMFG)-Mf@pIl,

index-547_11.jpg

index-547_13.jpg
Sy (x;) =

index-547_19.jpg

index-547_18.jpg

index-547_21.jpg

index-547_20.jpg

index-547_15.jpg

index-547_14.jpg
2. i CM(xirxj)

index-547_17.jpg
Sy (x;)

index-547_16.jpg
Sy (x;)

index-547_22.jpg

index-547_24.jpg

index-547_23.jpg

index-549_2.jpg
Fq

index-549_1.jpg
Pdata

index-549_4.jpg
Pdata

index-549_3.jpg
JS(Paatall Pg)-

index-547_26.jpg

index-547_25.jpg

index-548_2.jpg

index-548_1.jpg

index-542_3.jpg
Paata(x) Py (x) r—
0= J;p'i"‘“(x) log <pdm?x; +p, ()) g Lp")08 <P.mm(x) +p () og(*)
——— B e

index-542_2.jpg
Pg(x)
+ J;pg(x) log <m) dx +log(2) Lpg(x) dx — 2log(2)

index-542_5.jpg
/S(Pduta”Pg) >0

index-542_4.jpg
C(G) = 2J5(Paatall Pg) — 10g(4)

index-542_10.jpg
Pdata-

index-542_9.jpg

index-545_1.jpg

index-543_1.jpg

index-542_6.jpg
/S(Pdum”Pg) =0

index-542_8.jpg

index-542_7.jpg

index-547_1.jpg

index-546_1.jpg
|Exn, . fCO) —Epe. . F(G@)|

index-547_2.jpg

index-547_8.jpg
xj,j¢i,j=1...n,

index-547_7.jpg

index-547_10.jpg

index-547_9.jpg
|Mf (x;) — Mf("j)"1

index-547_4.jpg

index-547_3.jpg

index-547_6.jpg

index-547_5.jpg

index-253_4.jpg
Maximize H = —Z pilog(pi) + A(Tp; — 1)

index-253_6.jpg
oH 1
a=0 = Yp=1=Me 1+ =1 :e‘“‘l=pi=ﬁ

index-253_5.jpg
JH
— =0 = —1-log(p)+1=0 =p;=e 1+
ap;

index-254_5.jpg

index-254_4.jpg

index-254_6.jpg

index-254_1.jpg
H[X] = f p(x)log(p(x)) dx

index-253_7.jpg
.67

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Entropy=2.17

0.20

0.15

0.10

0.05

0.00

Entropy=2.32

index-254_3.jpg
p(x) =~ exp(=2)

index-254_2.jpg

index-541_12.jpg
L Pdata(¥) dx =1

index-541_11.jpg
1 Pg(x 1t
+ log 5 f pg(x) o g(pm(x)m(x))d" ~1og(3)

index-542_1.jpg
@) = [pana@tog (s—LLEEE) dx +108(@) [paacaa)

Paata(®) + pg(x)

index-541_13.jpg
| pg(x) =1,

index-541_10.jpg
1 Pdata(*)) 1
@ =10g(3) + pam(x)log(—pm(x)) ~tog 3)

index-541_9.jpg
JsPlIQ) ——{KL(P 1l —Q) + KL (Q I M))

index-551_9.jpg
|\EMD(P,gg) — EMD(P,gqr)|| < EMD(gg,94') < K||0 — 6|

index-551_8.jpg
EMD(gg,9¢') < E,|l190'(2) — gg(2)||]] < K||0 — 6°|

index-551_11.jpg

index-551_10.jpg
EMD(P, gg)

index-551_5.jpg
1ge(2) — gpr(Z2')|| £ K||(2,0) —(z,0)||<K(||6—=6"||+ ||lz—2z]|]).

index-551_7.jpg
19e(2) — gor(2)|| < K| — 0|

index-551_6.jpg

index-551_13.jpg

index-551_12.jpg

index-551_14.jpg
Liyfx=00=y=1
0, otherwise

P(x,y) = {

index-550_18.jpg
Ya'

index-550_17.jpg

index-550_20.jpg
|gor(2) —

index-550_19.jpg
Up

index-550_16.jpg

index-550_25.jpg
f:R*" > R™

index-550_22.jpg
EMD(gg,9¢') < E(xy)~yIlXx — ¥l = E,|llgg'(2) — gg(2)|[|] = O

index-550_21.jpg

index-550_24.jpg

index-550_23.jpg
|\EMD(P,gg) — EMD(P,gg)|| < EMD(gg,gg') = 0

index-550_29.jpg

index-550_28.jpg

index-550_31.jpg
Up

index-550_30.jpg
Up

index-550_27.jpg
Bix.r) c "

index-550_26.jpg

index-551_2.jpg

index-551_1.jpg
Up

index-551_4.jpg
(z',0°) e U

index-551_3.jpg

index-254_13.jpg
H|X,Y| = H|X|+ H|Y|X]

index-464_9.jpg

index-254_12.jpg

index-464_8.jpg
tm = (B iy)s Tom s Em =

index-255_1.jpg

index-465_1.jpg
Fully
Connected

index-254_14.jpg
H[Y|X] = — [[p(x,y) log(p(v|x)) dydx = —]f p(y|x)p(x)log(p(y|x))dydx

index-464_10.jpg

index-254_9.jpg
H[X,Y] = =] p(x)p(v|x)(log(p(x)) + log(y|x))dxdy

index-464_5.jpg

index-254_8.jpg

index-464_4.jpg

index-254_11.jpg
| p(ylx)dy = 1

index-464_7.jpg

index-254_10.jpg
HIX, Y] = =] p()log(p(x))dx | p(y|x)dy — || p(y|xX)p(x)log(p(yv|x))dydx

index-464_6.jpg
M

index-255_2.jpg
H|X~p(x)]

index-465_2.jpg

index-255_4.jpg

index-465_4.jpg

index-255_3.jpg
- [sy 1og(ac) ax (- [s 108(p 1) dx) = - [22 log(E ;)d

index-465_3.jpg
P(X¢i1,Ves1l €) ~GMM(B,)

index-255_10.jpg

index-465_10.jpg
0, = (!l]t' ”;' P;, ﬂf, eq)

index-255_9.jpg
Xi, 1l

index-465_9.jpg
ey, Z =1
PGrers Yertl €0 =) 1 N Geovnvenal WhofdypD {00 =2

index-255_12.jpg

index-255_11.jpg
f(z lm> < Zlif(xi),where Zli =1

index-466_1.jpg
N (xes1 Vel #5.05,00) =

2m

index-255_6.jpg
KL(p|lg) =0

index-465_6.jpg

index-255_5.jpg

index-465_5.jpg
(X¢, Ve)

index-255_8.jpg
f(Aa+ (1 —=A)b) < Af(a) + (1 —=A)f(b).

index-465_8.jpg
(X¢, Ve)

index-255_7.jpg

index-465_7.jpg

index-255_13.jpg

index-466_3.jpg
L(x) = Yi.i—log(Plxiis. Yiial o))

index-466_2.jpg
7= (xe+1 — ll;x) ()’t+1 Iljty)2 ZP;(th - ll,t‘x)(}’rﬂ - l‘;y)
ot? ot 2 - ot ot
‘ix 0y, jx%jy

index-255_15.jpg
f(E|x]) < E[f(:

index-468_1.jpg
pm\’t\/’ L SA A
b{\(my)4 el Paanefs wine e
it 9 Coegls e gander

Ahefle Saled Jeninp du Sy Ta &
e b bt canug, T eadp

index-255_14.jpg

index-466_4.jpg
T M

log(e), zp41 =1

L(x) = Z —log (Z 7 N (Xern Vesa| # 0 a,-‘y.p,‘-)> _{lag(l e o) ';til 0
t=1 =1

index-460_5.jpg
C; = f[s°C4_q1 + 1; © Cy

index-460_4.jpg
c, = tanh(Wx, +U_.h,_1 + b_)

index-460_7.jpg

index-460_6.jpg
n, = o0, o tanh(c,)

index-460_1.jpg
fe = sigmoid(Wex, + Ushy_q + Dy)

index-459_6.jpg

index-460_3.jpg
0, = sigmoid(W,x, +U,h,_1 + D,)

index-460_2.jpg
I, = sigmoid(W;x, + U;h,_1 + D;)

index-461_1.jpg
=0 (W- - [hy—1,24])
re=0 (W, [he-1,24])
e = tanh (W - [ry he_y, 2]

ho=(1—z)xhi_1+zxh

index-460_8.jpg
~, Cell state
c

Forget
9

_olt),

index-461_2.jpg
RNN

RNN

index-463_6.jpg
d, = (X — X¢—1, V¢ = Vi_1)

index-463_5.jpg

index-463_8.jpg

index-463_7.jpg
(X¢, Ve, Z¢)

index-463_2.jpg
(X¢, Ve, Z¢)

index-463_1.jpg
v<StrokeSet>
» <Stroke colour="black" start_time="13090871.35" end_time="13090871.78">

</stroke>
» <Stroke colou

"13090873.14">

black” start_time="13096872.18" end_time:

</Stroke>
» <Stroke colour="black" start_time="13096873.54" end_time="13096874.43">

start_time="13090876.38" end_time="13090876.75">

</strokeset>

v<stroke col "13090876.38" end_time="13090876.75">
<Point
<Point
<Point.
<Point
<Point
<Point
<Point
<Point

="black” start_til
776" y="1088" ti

index-463_4.jpg

index-463_3.jpg

index-464_1.jpg
(Xra1, Ves1)

index-254_7.jpg
HIX,Y] = E[-log(p(x,3))] = — ff p(x,) log(p(x,)) dxdy

index-464_3.jpg
Z++1~ Pgernoutii (€¢)

index-464_2.jpg
(X¢41, Ve+1)~ Popum (0)

index-458_9.jpg
W,

index-458_8.jpg
b RO o (i
oW, _ 8y, dh, oW,

index-459_2.jpg
ahy

index-459_1.jpg
9E, ~_ OE,d9, dh, dh,
W), ~ L4 3, oh, 3hy W,

index-458_5.jpg

index-458_7.jpg
oL 0, hereFom &
oW, y W, v Where E¢ = E(3, ye)

index-458_6.jpg

index-459_4.jpg
2= 11 I
o

index-459_3.jpg
dh, T 0hs
o~ L | an,

index-459_5.jpg

index-163_2.jpg
f:R> - Rdefined as f(x,vy,2)

index-163_1.jpg
Def (@) or 22 (@) or f, (@)

index-163_4.jpg
{ 0, otherwise

index-163_3.jpg
fi(,y,2) = 0—2xy, fy(x,y,2z2) = 0—x°.1, f,(x,y,2) = 3z — 0

index-161_1.jpg

index-162_2.jpg
flathu)—f(a)
h

f'(a,u) = lim

index-162_1.jpg
y=a+thu

index-163_6.jpg
fO+h)—-fO _ . flhahb) =~ ab” _b”
h A — Tt g

f'(0,u) = lim

index-163_5.jpg
1 = ()

index-163_7.jpg

index-160_4.jpg

index-160_3.jpg
155

-

index-160_6.jpg

index-160_5.jpg

index-270_1.jpg

index-160_2.jpg
Open Ball

around a

O (zero vector)

index-160_1.jpg

index-160_8.jpg
lim 1 (x) — bil

index-160_7.jpg
lim f(x) = b

index-160_10.jpg
lim f(x) = f(a)

index-160_9.jpg

index-270_3.jpg

index-270_2.jpg

index-270_9.jpg
MHq: U F U4

index-270_8.jpg
M U > U4

index-270_11.jpg

index-270_10.jpg

index-270_5.jpg

index-270_4.jpg

index-270_7.jpg

index-270_6.jpg

index-158_5.jpg
sm(O)

sin(x) = sin(0) + cos(0) (x — 0) — —-0)2+

index-158_4.jpg

index-158_7.jpg
31— 10 =sintx)

o TS Ltems
5 3terms
755 terms
2{- TS7tems

index-158_6.jpg

index-158_3.jpg

index-159_5.jpg
x —al| < €

index-159_2.jpg
n=m=1,T is real valued function
T:V->Wif{ n>1landm=1,T is Scalar field
n>1andm > 1,T is Vector field

index-159_1.jpg

index-159_4.jpg

index-159_3.jpg
a=(x:,¥1,21)

index-552_2.jpg
KL(P,Q)

index-552_1.jpg
20 Samples from P & Q

104 o samplesfrom P . s
o samples 1om 0.0-05 &
H 0
08
§ .
0 B
.
04
. .
. ' '
.
B
00
o =~ 3 = = =

09

index-552_4.jpg
Px.y)
o(x,y)

index-552_3.jpg

index-551_15.jpg
lLifx=0,0=sy=<1
0, otherwise

Q(x,y) ={

index-156_17.jpg
ffx)=

6x

index-156_16.jpg
d . _ddf(x) afx)
dxf) = e denoted by =

or f"'(x)

index-157_1.jpg
00 25 50 75 100 125 150 175 200

index-156_18.jpg
dfE® w
— - orf (€5

index-267_8.jpg

index-478_5.jpg
C; = a Ny +a,ny, +--any

index-267_7.jpg
K
S

index-478_4.jpg

index-267_9.jpg

index-158_2.jpg
flx) = =
Flay 4% f()
I a)+f”(r)
o

(x = a)?

index-158_1.jpg
(),
fM() (x—a)"

index-157_3.jpg
- f™
fe= YL@ gy
o |

nl

index-157_2.jpg
flx) = G —
x) = f(a) + 1!)(x—a)+f2—(:)(x—a)2+~-

index-157_5.jpg

index-157_4.jpg
—-a)”

index-268_3.jpg
<

index-268_2.jpg

index-268_5.jpg
o2

index-268_4.jpg

index-267_11.jpg
var(r] = E[r — EITY]" = 3+ > (&~ EIT1)

index-267_10.jpg
E[T] =%Z 4

index-268_1.jpg

index-267_12.jpg

index-156_6.jpg

index-156_8.jpg

index-156_7.jpg

index-269_1.jpg

index-268_6.jpg
1.250 /Vk

index-156_14.jpg

index-156_13.jpg

index-156_15.jpg
x4

index-156_10.jpg

index-156_9.jpg
H X
i | - la-1b) b

© 5
Rinii Ualhe Thaosain: Rolle's Theorem

index-156_12.jpg

index-156_11.jpg

index-269_2.jpg
p =4{0.2,0.4,0.1,0.1,0.2}

index-269_8.jpg

index-269_7.jpg
0.2,0.6,0.7,0.8,1.0]

index-269_10.jpg
" Sl Y Csomples

sssssss

index-269_9.jpg
0,.2), .2,.6),].6,.7),].7,.8),].8,1]

index-269_4.jpg

index-269_3.jpg

index-269_6.jpg

index-269_5.jpg

index-260_4.jpg
10 10
HIY|Height] = — x H[Y|height < 6.31158] + > x H[Y |height > 6.31158] = 0.92612

index-155_14.jpg
X

index-155_13.jpg

index-260_1.jpg
neignt
ey
weners
awsiss
sesisss

s
sosen

nsssas

e
e
e
T
sz
i
sosseea
sz

anrge
arrge
onnge

Heght sors305 s3uses 7.784869
interval < > < > < >
femon o 5 7 3 O)
orange 0 s €5 4 7 3
Entropy

Hifeotlheight] | 0| 0940286 | 0881201 | 0970951 | 0.996702 | 0.721928
Woighted Entropy| _0.658200171 0926120787 osasors7as
Information Gain | 0334569820 0066649253 0064694252
Width et w0001)
nterval < > < > < >
femon o s 1 5 s)
orangs) 7) 2 i o
Entropy

Hifuit|wideh) 3 oass006 | 0721928 | 006038 | o
Weighted Entropy| 0752228767 ososas1sas 0716830586
nformation Gain | 0.240541233 0397308156 0275939414

index-474_13.jpg

index-259_1.jpg
L
L

AR =0 - o) - o () <066t~ (£) - S (3) 085

Pure o T

index-474_12.jpg

index-260_3.jpg
6 6 i
HIY [height > 6.31158] = — - log; (10) 101 g2() = 0.970951

index-475_2.jpg
t
)
[N
®
®
®
)
[
)
[

index-260_2.jpg
£ 7 3
H[Y |height < 6.31158] = —=log, (10) 101 g2() =0.881291

index-475_1.jpg

index-156_3.jpg

index-156_2.jpg
fb) —j(a)

a) _ .
=B e

index-156_5.jpg

index-156_4.jpg

index-155_16.jpg
a, b

index-155_15.jpg
f:la,b] = R

index-156_1.jpg

index-155_17.jpg

index-155_12.jpg

index-263_1.jpg
= corr(X,Y) =

index-475_7.jpg
ccelo

index-262_1.jpg
samples = 80
value = [40, 40]

samples = 25
value =[1, 24]
class = orange

value =[1, 9]
class = orange class = orange class = orange

index-475_6.jpg

index-263_3.jpg

index-476_1.jpg

index-263_2.jpg
corr(X,Y) =0 #

index-475_8.jpg

index-475_3.jpg

index-260_6.jpg
I|\Y,Height| = H|Y| — H|Y|Height| = 0.99277 — 0.92612 = 0.06649

index-475_5.jpg
ccelo

index-260_5.jpg
HIY] = — —1 (9) o (11) 0.99277
==501082\55) ~50'082155) = ¥

index-475_4.jpg

index-155_3.jpg

index-264_2.jpg
np = 5

index-476_3.jpg

index-264_1.jpg

index-476_2.jpg

index-264_4.jpg

index-264_3.jpg

index-476_4.jpg

index-155_9.jpg
lim £279) iy B o =
SSE T wall | Gl B ey W

index-155_8.jpg
lim Z2779 iy Bl = gim 2= 1
SRRl R eali B B

index-155_11.jpg

index-155_10.jpg
PAC i)

index-155_5.jpg

index-155_4.jpg

index-155_7.jpg

index-155_6.jpg

index-155_2.jpg
a a
) = (e* + e~*)~1 X _gx x _ g X 4 g=x)-1
tanh'(x) = (e* + e™*) 52 (e e™) + (e e)dx (e* +e7¥)

index-155_1.jpg

index-267_4.jpg

index-478_1.jpg
Encoder

opan ey

Decoder

index-267_3.jpg

index-477_1.jpg
current proposed current proposed
hypotheses candidates hypotheses candidates

Standard beam search algorithm with an output
alphabiet .0 3t s hemin skee of theile.

T=3
current proposed
hypotheses candidates

®

OJONGIOIQ)

index-267_6.jpg
1toM

index-478_3.jpg

index-267_5.jpg
o § SOY e

X)

index-478_2.jpg

index-266_1.jpg
M= (")

index-476_6.jpg

index-476_5.jpg
pr—

index-267_2.jpg

index-476_8.jpg

index-267_1.jpg

index-476_7.jpg

index-256_6.jpg

index-473_2.jpg

index-256_5.jpg

index-473_1.jpg
 rem

index-256_7.jpg

index-256_2.jpg

index-470_1.jpg
[[swam | [00am]

[s00dm]

[s0am |

index-256_1.jpg
f(J xp(x)dx) < | fF(x)p(x)dx

index-469_1.jpg
Sequence Encoder

Encoding

index-256_4.jpg
0 =log(1) < KL(p||q)

index-472_1.jpg
Handwriten Image

input (.X)

o N B EcH [EGH N
ccaaat ggnment

c a t output (1)

index-256_3.jpg
~log (f p(x) (£3) dx) < — [p(x) log (233) dx = KL(pl|q)

index-471_1.jpg
“cles

w w o

index-154_10.jpg

index-154_9.jpg
g(x) =-

index-154_12.jpg

index-154_11.jpg
- [i 1 1
o' (x) = g' (RO () = (1+e"‘)2(et 1+e"‘1+e"‘=1+e"‘(1_1+e"‘)

index-154_6.jpg
da d(g(h(x))) d(h(x))
(g(h())) (g((X dix

index-154_5.jpg
a

a a 5 G
(900 h(®) = g0 = F () + F(X)=g(x) = 9GO &) + F(0)g')

index-154_8.jpg

index-154_7.jpg
o(x) =

140X

o

index-154_3.jpg

index-154_2.jpg
nx""*h + (terms with heigher powers of h)

(x+h)" —x"
= lim

h-0

h

index-154_4.jpg
d(af(x) +bg(x)) _ d(f(X)) d(y(X))
dx =a—_

= af'(x) + bg' (x)

index-256_9.jpg
p(x,y)

p(x)p(y)

index-473_5.jpg

index-256_8.jpg
1 L
JS(lla) = 5 KL(pllq) + 5 KL(ql|p)

index-473_4.jpg

index-256_11.jpg

index-473_7.jpg

index-256_10.jpg

index-473_6.jpg

index-473_3.jpg

index-257_1.jpg
I|X,Y| =H|X| —H|X|Y

index-256_16.jpg

index-474_5.jpg

index-256_13.jpg

index-474_2.jpg

index-256_12.jpg

index-474_1.jpg
Mo — o =

m o — Eoyis

mo — o

mo— 0o >

m oo T

mo — o >

Glo o =

Mo — 0o

e — o >

mnfol— o =

‘We start with an input sequence
like spectogram audio

The input sequence is
consumed by RNN

The network gives a
distribution over the
outputs {h, e, 1,0, €} for
each input step.

index-256_15.jpg
IIX,Y|=0 =2X,Y

index-474_4.jpg

index-256_14.jpg

index-474_3.jpg

index-153_16.jpg

index-153_15.jpg

index-154_1.jpg

index-153_17.jpg
fGo+h)—fxo—h)

f'(x = xp) = lim h

index-153_12.jpg

index-153_14.jpg

index-153_13.jpg

index-153_9.jpg
f-(xp)

index-153_8.jpg

index-153_11.jpg

index-153_10.jpg
li Fxo) —f(x0 — 1)
LN n

index-257_4.jpg
NnX,Y|=0=X,Y

index-474_9.jpg
p(y = hello|x) = Z
P

index-257_3.jpg

index-474_8.jpg

index-257_6.jpg

index-474_11.jpg

index-257_5.jpg

index-474_10.jpg
— L(xy)eTr 108 (V| X)

index-257_2.jpg
>~

index-474_7.jpg
y =" hello’

index-474_6.jpg
B = {ehelelo, helelo, heleleo, heleloe}

index-298_11.jpg
N
Z On = S (W)))i () = 0
n=1

index-559_10.jpg
Leyar(GF) = |[F(G()) — x|, + |G(FO)) — ¥,

index-559_9.jpg
(G(F(y)) —y|

index-298_13.jpg

index-559_12.jpg
L,

cycl

index-298_12.jpg
S (W e(xn))

index-559_11.jpg
L(G,Dy) + L(F,Dx) + AL, (G, F)

index-299_4.jpg

index-560_4.jpg
L(G,Dy) + L(F,Dx) + AL,y (G, F) + uLigentity(G, F)

index-299_3.jpg
d(x,)"

index-560_3.jpg
Lidentity (G, F) = ||F(x) — x|l; + lIG(y) — ¥l

index-299_5.jpg
P = (D1, .,

index-298_15.jpg

index-559_14.jpg
yeEY

index-298_14.jpg
Pn

index-559_13.jpg
Gy: X =Y

index-299_2.jpg

index-560_2.jpg

index-299_1.jpg
N

VE =) On = p)b(xa) = (= p) = €

n=1

index-560_1.jpg

index-299_7.jpg

index-560_7.jpg

index-299_6.jpg

index-560_6.jpg

index-299_9.jpg
wltt) = wt) L n(y, — p,)d(x,).

index-560_9.jpg
Xp: X2 6G(x)>y-=>F(y)— X

index-299_8.jpg
w (0)

index-560_8.jpg

index-560_5.jpg

index-299_15.jpg

index-299_14.jpg

index-561_2.jpg

index-299_11.jpg

index-560_11.jpg

index-299_10.jpg

index-560_10.jpg
Vi: V=2 F(y) =2 x->6G(x)—>)

index-299_13.jpg

index-561_1.jpg

index-299_12.jpg
=g
V?E, = ®'R®

index-560_12.jpg

index-296_3.jpg

index-296_2.jpg

index-558_3.jpg
X~Pdata(X)

index-296_4.jpg
P(Y=1|X)

index-558_5.jpg
Gy: X =Y

index-558_4.jpg
Y~Paata(V)

index-297_1.jpg
ew o)

arp e b sigmoid (W™ ¢ (x))

or, p(ylx) =

index-558_11.jpg

index-296_9.jpg
p(yI1%)
1-pUlx)

M
Z wi;(x) = wTp(x) = log,

index-558_10.jpg

index-297_3.jpg

index-558_13.jpg

index-297_2.jpg
S(x) =e*/(1+e")

index-558_12.jpg

index-296_6.jpg

index-558_7.jpg
Dy:X - 10,1]

index-296_5.jpg

index-558_6.jpg
Fy:Y = X

index-296_8.jpg

index-558_9.jpg

index-296_7.jpg

index-558_8.jpg
Dy:Y - (0,1)

index-297_4.jpg

index-558_14.jpg

index-298_2.jpg
Vi

index-559_1.jpg
L(G, Dy) = minmax Eypueq(v) log(Dy (V) + Ex~parax108(1 — Dy (G(X)))
¥

index-298_1.jpg
SN_ (3 — SWT ()’

index-558_15.jpg
Dy, Dy, Gy, Fy

index-298_8.jpg

index-559_7.jpg
X — X|

index-298_7.jpg
S (x) =S(x)(1 —-S5(x))

index-559_6.jpg
Real/fake X Real/fake Y

index-298_10.jpg
= Z)p(l P) ¢i(xn) = 0,since p = S(W' P(x,))

index-298_9.jpg
dloglL
aw; 0

> (sm+ (L= 30 7=) sigmota (W @) i) =

index-559_8.jpg
[F(G(x)) — x|

index-298_4.jpg
logL = log< pn(1— p)l’i"">
[1

index-559_3.jpg

index-298_3.jpg
P(Y|X = x)~ Bernoulli (p =5 (w7¢(x,.))).

index-559_2.jpg
L(F, D) = min max Ex-p;,,,(x) 108(Dx (X)) + Ey~pyaea(ry108(1 = Dx (F(Y))),
%

index-298_6.jpg

index-559_5.jpg
x>G(x)>y->F(y)—- X

index-298_5.jpg
N N
And, logL = Z log(p?»(1 - p)*) = Z Ynlogp + (1 —y,)log(1 — p)
n=1

index-559_4.jpg

index-555_2.jpg

index-555_1.jpg

index-555_3.jpg
-
Random m Real am\t

— Probability

Notse 2(2). i Real/fake
*—— — s —
Generated
data
Auxilary information Auiliary information

v (class label) ¥ (class label)

index-294_11.jpg

index-556_6.jpg
yeEY

index-294_10.jpg
variance E[{y(x;w) —

index-556_5.jpg

index-294_13.jpg

index-556_8.jpg

index-294_12.jpg

index-556_7.jpg
Do (X ¥)

index-294_7.jpg

index-556_2.jpg

index-556_1.jpg

index-294_9.jpg

index-556_4.jpg

index-294_8.jpg

index-556_3.jpg
yeEY

index-294_15.jpg

index-556_10.jpg

index-294_14.jpg

index-556_9.jpg
Py (V)

index-294_16.jpg

index-556_11.jpg

index-295_5.jpg

index-556_17.jpg
Vi

index-295_4.jpg

index-556_16.jpg

index-296_1.jpg

index-558_2.jpg

index-295_6.jpg
bias* + variance

index-558_1.jpg

index-295_1.jpg
Optimal Capacity

Overfitting
Zone

Underfitting
Zone

= B}

Model Capacity

In(A)

index-556_13.jpg

index-294_17.jpg
X — AXLS

index-556_12.jpg

index-295_3.jpg

index-556_15.jpg
min max Exy- pca(xy) 108(D (X, Y)) + Ez-p(z) y~p, () 108(1 — D(G(Z,Y),Y))

index-295_2.jpg

index-556_14.jpg
pe(x,y12) = pa(x|y|2z)p,(¥|z) = pe(x|y, 2)p, (¥|Z) = p,(x|y,2)p, (V)

index-553_2.jpg
| fll; < K

index-552_6.jpg
JS(P,Q) = —<1Xlog<0+1>+1xlog<0+1>>=log(2)

index-552_5.jpg
Qxy) _, o
P(x,y)

index-553_1.jpg
EMD (p,q) = E” sup Explf ()] = Ex-q[f ()]

index-552_7.jpg

index-553_6.jpg

index-553_5.jpg

index-553_8.jpg
San Ex-pUwH)] = Ez-p@)f w(96(2))]

index-553_7.jpg
iSun Ex~plfw(X)] = Ex—qlfw(¥)]

index-553_4.jpg
| f(x1) — f(x2)]| < K||x; — x5||, for all x4, x>.

index-553_3.jpg
€ = ||x; — Xo||

index-553_10.jpg
Vi [= 2 Fuw () — — fu(go(@)],

index-553_9.jpg

index-554_1.jpg
E:IV D), — 1]°

index-553_11.jpg
~Vo[— fuw(ge(2))]

index-554_6.jpg

index-554_5.jpg
A~Pdata

index-554_8.jpg
E:[IV D), — 1]°

index-554_7.jpg

index-554_2.jpg

index-554_4.jpg
X4
Pg

index-554_3.jpg

index-300_20.jpg

index-300_19.jpg
ynj = P(Y = Cj|x,)

index-300_22.jpg

index-300_21.jpg
05
—k = SiUkj — Sk)

index-300_16.jpg

index-300_18.jpg
N R

N
logL = log P(T|X) = logl_[P(y = C]le,,)t"" = Z Z £ In(Yns)

K
n=1j=1 n=17=1

index-300_17.jpg
I = (t,;)

index-300_24.jpg

index-300_23.jpg

index-300_25.jpg

index-301_5.jpg

index-301_4.jpg
(Y,,|X = x,,)~Poisson(A,,)

index-301_7.jpg
M
10g(An) = " Wit () = WIB(xa) L€, I = exp(wT ()

i=0

index-301_6.jpg

index-301_1.jpg
N
Vi, £ = D (ta) = Yy)b
n=1

index-300_26.jpg

index-301_3.jpg

index-301_2.jpg

index-301_9.jpg
N A’ﬂﬂﬂy N
log L = log (]—[) > Onlogn) = An — tog)
=1

o |

index-301_8.jpg

index-299_18.jpg
new

w'

ola

—H-1yE.

index-562_3.jpg
ol

Recurrent
Discriminstor

RecurentGeneratordeais e

index-299_17.jpg
0<o(x)<1

index-562_2.jpg
min max Extpdatagn!08 (D(x")) + By 10g(1— DG (2Y)

index-299_20.jpg

index-299_19.jpg

index-299_16.jpg

index-562_1.jpg
Real
Sequence

—.x‘\

Sequence data:
‘Music Notes.

Probability

Real/fake

Generated
Sequence

index-561_3.jpg

index-300_5.jpg
PX=xlY =CQ)P(Y =C) PX=xY =C)PY =C) e
P(X =x) TYPX=xr=C)P(Y=C) Xjey’

PY= Clx=a)=

index-300_2.jpg

index-300_1.jpg
P(Y =

=P(Y = K)e%i®® for i

index-300_4.jpg
1 ewi ¢

dP(Y =i)= , 1=12,..,K—1
T and P(Y = i) PR) i

P(Y=I()=1

index-300_3.jpg

index-300_9.jpg
ay > aj, forall j # Kk

index-300_8.jpg

index-300_11.jpg
P(Y=C(Ci|X=x)=0

index-300_10.jpg
P(lY=C.|X=x)=1

index-300_7.jpg

index-300_6.jpg
log.(P(X = x|Y = C;)P(Y =Cy)) = a;, forj =

index-300_13.jpg

index-300_12.jpg
a; = ,T¢(x)

index-300_15.jpg

index-300_14.jpg
VY

index-272_9.jpg

index-490_4.jpg

index-272_8.jpg
np(l—p)

index-490_3.jpg

index-272_11.jpg

index-272_10.jpg
3600-9000%(3)
7 = ——="=13.41
9000x2x2

index-490_5.jpg

index-272_5.jpg
Hy: Die i1s unbiased

index-489_3.jpg
query g, key K; and value v,

index-272_4.jpg

index-489_2.jpg

index-272_7.jpg

index-490_2.jpg
N, X dy

index-272_6.jpg

index-490_1.jpg
Wo, Wk

index-272_12.jpg

index-490_7.jpg

index-490_6.jpg

index-272_14.jpg

index-490_9.jpg
Ne

index-272_13.jpg

index-490_8.jpg

index-272_20.jpg

index-503_1.jpg
tfw X log(7—=)

1+df

index-272_19.jpg

index-502_1.jpg
Document Count Vectors

1: The cat sat on the mat.

2: The mat was red.

index-272_21.jpg

index-272_16.jpg

index-491_1.jpg
Scaled Dot-Product Attention Multi-Head Attention

index-272_15.jpg

index-490_10.jpg
-
a
Input Dim Wo
S T
H W QK
H softmax(W
£ hd Vi
A z
x Wi
Compute sl dot product
5 atenton: Ml aéhvaie
“ ‘vector by the softmax score. Sum
- up the weighted value vectors.
Th producs th otput o1 he
Sl temion aye.
Wy
input Sequence Weight Matrcs for prjectng Projected

SO inputs to Q.K, Vvectors. v

index-272_18.jpg
F=1{f(x;0;):6; € 0 }

index-498_1.jpg

index-272_17.jpg

index-492_1.jpg

index-273_1.jpg
ey X E =12 e

index-504_3.jpg

index-272_22.jpg
P = iy

index-504_2.jpg
data matrix

et

hany

dogger

e

-

e

e b

v
i

| “os

ol snprinr
Vaciors

u

03
“o3u
oars

0264
sz
0261
o

R acigl TP S
singuiar vaiues 2
= vT
v n

228 n][

o oty | [0 o ot —omm

o

index-273_3.jpg

index-504_5.jpg

index-273_2.jpg

index-504_4.jpg

index-504_1.jpg
romeo
juliet

happy

dagger

live

dic

free

T Py U4

ccccoco-—2

cocommmof

oo roReo NE

SRS SIS

mccccoccca

‘Suppose we have the following set of five documents

o and Julc
it O heppy dogger!

ses
g
|
:
{

e e or dic”, that's the New-Hampsbie’s mott,
+ Did you know, NewHampshire i in New England.

5.5

index-271_4.jpg
Z =

T-EIT]

Warlr]

~N(0,1)

index-483_1.jpg

index-271_3.jpg

index-482_3.jpg
—~

Attention(q, k,v) = softmax

index-271_6.jpg

index-488_1.jpg

index-271_5.jpg

index-487_1.jpg
Input Speech

]

Acoustic

Model
Inference

Decoder

Word
Sequence

index-270_13.jpg
1, LS true

index-481_3.jpg
score(query = hy,values(or keys) = h)

index-270_12.jpg

index-481_2.jpg

index-271_2.jpg
P(Accept Hy | Hy = true) = f

index-482_2.jpg
S
C
0
re(q
Lk
)
.. L)
k"

T

index-271_1.jpg
P(Reject Hy | Hy = true) = «

index-482_1.jpg

index-271_8.jpg
AR A

index-271_7.jpg
P(lZ| >z, =«

index-488_2.jpg

index-271_9.jpg
4 =20 L2,

index-488_4.jpg

index-488_3.jpg

index-271_15.jpg

index-488_10.jpg

index-271_14.jpg

index-488_9.jpg
Ct—1

index-271_17.jpg
a = 1Y%

index-488_12.jpg
scure(ht,ﬁs) = ¢(h{) ‘l’(ﬁs)

index-271_16.jpg

index-488_11.jpg

index-271_11.jpg
P(Z>z,)+P(Z<-z,)

index-488_6.jpg

index-271_10.jpg
where z, > 0

index-488_5.jpg

index-271_13.jpg
o Hon<m How

[b o

T :

index-488_8.jpg

index-271_12.jpg

index-488_7.jpg

index-272_1.jpg

index-488_13.jpg

index-272_3.jpg

index-489_1.jpg
opim
oo}
sem

asnedaq
o
oy
sso0
upp
jewive
aup

pon
o0}
sem

asneseq
Veass
aul
sso
PP
jewiue
oyl

opim
00}
sem

aul
ssoi0
PP,
lewive
ouL

pon
00}
sem
_,

asneoaq

100118

aul
ssoi0
10pIp.

Byl

index-272_2.jpg

index-488_14.jpg

index-480_5.jpg

index-480_4.jpg
v, W,

index-480_7.jpg
score(h;_q, hg) = vtanh(Wh,_{ + W3 hy)

index-480_6.jpg

index-480_1.jpg
h,; h]

index-480_3.jpg
score(hy, hg) = vl tanh(W[hy; hy])

index-480_2.jpg

index-480_9.jpg

index-480_8.jpg

index-480_10.jpg
a, = softmax(W, n;)

index-152_6.jpg

index-480_16.jpg
pr = S - sigmoid(vytanh(W,h,))

index-152_5.jpg

index-480_15.jpg

index-152_8.jpg

index-480_18.jpg

index-152_7.jpg

index-480_17.jpg

index-152_2.jpg

index-480_12.jpg

index-152_1.jpg
Intermediate Value Theorem Bolzano's Theorem

index-480_11.jpg

index-152_4.jpg

index-480_14.jpg

index-152_3.jpg

index-480_13.jpg

index-153_1.jpg
leftand right derivatives HopEtH tpint Bie et 2

index-480_20.jpg

index-152_9.jpg
f(xo +h) — f(x0)
h

index-480_19.jpg

index-481_1.jpg
_ _exp(score(hy, hy)) —(s—p)*
= % exp(score(hy, hy,)) (202

index-151_16.jpg
a, D}

index-151_15.jpg

index-151_18.jpg

index-151_17.jpg

index-151_12.jpg

index-151_14.jpg

index-151_13.jpg

index-151_20.jpg
f(a), f(b))

index-151_19.jpg

index-151_21.jpg

index-151_5.jpg

index-479_4.jpg

index-151_4.jpg

index-479_3.jpg

index-151_7.jpg
a € R, lim f(x) = lim|x| = |a| = f(a).
i e

index-479_6.jpg
S:, N,

index-151_6.jpg

index-479_5.jpg

index-151_3.jpg

index-479_2.jpg
0 = exp(score(hy, hy))
t 7Y exp(score(h,, he)))

index-151_2.jpg
N m

ST

index-479_1.jpg

index-151_9.jpg
a, D}

index-479_8.jpg
score(hy, hg) = hi hg

index-151_8.jpg

index-479_7.jpg
(Target) Ye1 Yo Decoder: RNN with input from
previous stale + dynamic

Sf> - - | contextvector.

- S f

Contextvec [C¢ = Qrihy + acohy + - agrhr

Global alignment weights

1
Attention layer: parameterized _
' Additive Attenti
by a simple feed-forward network itve Atendon

index-151_11.jpg
a, D}

index-479_10.jpg
score(hy, hg) = h{ W h

index-151_10.jpg

index-479_9.jpg

index-149_13.jpg
x-1)(x+1)
(x-1)

flx) = =@x+1

index-149_12.jpg

index-150_1.jpg
04

03

02

o1

00

—) = xsin(10) .

00

02

A

index-149_14.jpg

index-149_11.jpg

index-151_1.jpg
Foo={ "7

index-150_3.jpg
f(x) =xsin(i),x¢ 0

index-150_2.jpg
f(x) = xsin G)

index-150_5.jpg
Lig‘(l)f(x):L:O

index-150_4.jpg
f(x) — 0| = |xsine)| < x| |sine)| <|xl=|x—Ll<e

index-149_2.jpg

index-149_1.jpg

index-149_4.jpg

index-149_3.jpg
g:£ — IR

index-149_10.jpg

index-149_9.jpg

index-149_6.jpg

index-149_5.jpg

index-149_8.jpg

index-149_7.jpg

index-148_5.jpg

index-148_7.jpg

index-148_6.jpg

index-275_5.jpg

index-275_4.jpg

index-148_13.jpg

index-148_12.jpg

index-148_14.jpg
{x €

R: x = 0}

index-148_9.jpg

index-148_8.jpg

index-148_11.jpg

index-148_10.jpg

index-275_6.jpg

index-275_12.jpg
{r'(e}

Var[T] = E[T - y(6)]* > 7
E[(logL) 1

index-275_11.jpg

index-275_14.jpg

index-275_13.jpg

index-275_8.jpg

index-275_7.jpg
L

L (1,2, ..., X 0) = l_lf(xi;)

Tt

index-275_10.jpg

index-275_9.jpg

index-147_6.jpg

index-147_5.jpg

index-275_15.jpg

index-148_2.jpg

index-148_1.jpg
a+ e

index-148_4.jpg

index-148_3.jpg

index-147_8.jpg

index-147_7.jpg

index-147_10.jpg

index-147_9.jpg

index-147_4.jpg

index-142_8.jpg

index-273_27.jpg
B.(x1,%5, ., Xx),n=12,

index-508_13.jpg
(p,=rp,=1—17)

index-273_26.jpg

index-508_12.jpg

index-273_29.jpg

index-273_28.jpg

index-508_14.jpg

index-147_1.jpg

index-143_5.jpg

index-147_3.jpg

index-147_2.jpg
p,q¢0as§

index-143_2.jpg
—Z -1
Ive /s«/§
1 -7
dy=3=0f,e,= /‘/g =vzd=0=0fe3= /5,/§ =3

Y 5.

index-143_1.jpg
=/
10 5 9 35‘/7
5 5 8[A4=25=0cfe = /sﬁz‘yl
9 8 13 5/

5+/2.

ATA =

index-143_4.jpg

index-143_3.jpg
Isva e
] [0 V3 o]V_ 5wz G
Sern Y

s
/sy
_7/
5v3
5,
3

index-142_7.jpg
_/r /\/—

g
R T Y et It
vio /v10.

/ﬁ l/ﬁ 0 4«/']

index-142_6.jpg
-

i /r}[zr iy [1

1/‘/_ 1/‘/_

index-273_34.jpg
e > ()

index-273_33.jpg

index-274_1.jpg

index-273_35.jpg
P(IT" —6;] <e)=0asn—- o

index-273_30.jpg

index-273_32.jpg

index-273_31.jpg

index-274_3.jpg
Var(Md) = %%Z > Var(x)

index-274_2.jpg
Vi =
a
r(x)
=Z
=y

index-274_4.jpg

index-142_3.jpg
-3

/. p
A1=20=af&e,=v1=l1 m;lz=80=a§&e2=v2= 3\/ﬁ
A /o,

index-142_2.jpg

index-142_5.jpg
AV=U):=>AV=[“/110_° 210

J10 2v10.

index-142_4.jpg
0

P

/«/_ 0 45

I o
=[v1 v2]= 1/‘/_

index-141_13.jpg
AA" = UxviwEvH = uzvivetut = uvxrcut

index-141_12.jpg

index-142_1.jpg

index-141_14.jpg

index-141_10.jpg
Ui = W1 Uz , Viuxn = V1 V2

index-141_9.jpg
= i
Ricao =Tt o Pl

index-141_11.jpg
u&vVv
oiu;,
2 041, AV; Ik

index-275_1.jpg

index-274_9.jpg

index-275_3.jpg

index-275_2.jpg

index-274_6.jpg

index-274_5.jpg

index-274_8.jpg
Var|T| < Var|T'|, for any other unbiased estimate T of 6

index-274_7.jpg
E\T| = 0,T is unbiased

index-273_9.jpg

index-273_8.jpg

index-505_5.jpg
P(wi,wy, ...,Wwyn) = P(w)P(w,|w)P(ws|wyw,)P(WelWwiwows) ... P(W, [Wq... Wy _1)

index-273_5.jpg

index-505_2.jpg

index-273_4.jpg

index-505_1.jpg

index-273_7.jpg

index-505_4.jpg
P(Wec| Wy, Ws, Wy, Wy).

index-273_6.jpg

index-505_3.jpg

index-141_6.jpg

index-141_5.jpg

index-141_8.jpg
Av=0cu & A'u = ov

index-141_7.jpg

index-141_2.jpg

index-141_4.jpg

index-141_3.jpg

index-273_12.jpg

index-505_9.jpg
Count(wi, Wi—1)
Count(wWi_.)

P(wilwi—1) =

index-273_11.jpg

index-505_8.jpg
P(w;lwq...W;j_1) = P(W;|w;_1)

index-273_14.jpg

index-507_1.jpg
“Arts™ “Budgets” “Children™ “Education™

NEW MILLION CHILDREN
FILM AN WOMEN
SHOW

SCHOOL

MUsIC
MOVIE
PLAY

FIRST
YORK

ACTRESS
LOVE

HAITE

The William Randolph Hearst Foundation will give 135 million o Lincoln Center, Metropoli-
an Opcra Co., New York Philharmonic and Juilliard School. “Our board et that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
cvery bit as important as our traditional arcas of support in bealth, medical rescarch. cducation
and the sovial services.” Heant Foundation President Randolph A. Heanst said Monday in
snnouncing the grants. Lincoln Center's share will be $200,000 for its new building. which
will house young artists and provide new public faciliics. The Metropolitan Opera Co. and
New York Philharmonic will reccive $400,000 cach. The Juilliard School, where music and
the performing ans arc taught, will get $250.000. The Hearst Foundation, a lcading supportcr
of the Lincoln Center Consolidated Corporate Fund. will make its usual anoual $100.000
donation, too.

index-273_13.jpg
Var|X| =

index-505_10.jpg
W

Wi_1

index-273_10.jpg

index-505_7.jpg

index-505_6.jpg

index-273_19.jpg

index-273_16.jpg

index-508_2.jpg

index-273_15.jpg

index-508_1.jpg

index-273_18.jpg

index-508_4.jpg
i

index-273_17.jpg

index-508_3.jpg
i

index-273_23.jpg

index-508_9.jpg

index-273_22.jpg
E[X] = E [~ X, X;| = - % E[Xi]

index-508_8.jpg

index-273_25.jpg

index-508_11.jpg

index-273_24.jpg
E[s?]| =-E
= [Xhey O — %)% = =

index-508_10.jpg
1T (@) -1
P(p1, P2 > = s
(P1, P2 pul@) TG, @)) p;

index-508_5.jpg
i

index-273_21.jpg

index-508_7.jpg
Diricnlet(a)

index-273_20.jpg

index-508_6.jpg

index-509_5.jpg

index-509_4.jpg
p(z|0@)~Multinomial(60)

index-173_11.jpg

index-173_10.jpg

index-173_13.jpg

index-173_12.jpg

index-173_7.jpg

index-173_6.jpg

index-173_9.jpg

index-173_8.jpg
u@ v

index-509_6.jpg

index-173_4.jpg

index-173_3.jpg
Uq Vs Uqv; U
_ SO T %L 1V2 1 3) T
u = (uy,u;)", v = (v4,v5,v3)", thenu @ v (u2v1 v, wp.) = U

index-173_5.jpg

index-510_2.jpg

index-510_1.jpg
N
p@wiB) = [[pnlOpunlzn B)

n=1

index-510_4.jpg

index-510_3.jpg

index-509_8.jpg

index-509_7.jpg
p(wWy, |z, B)~Multinomial(f)

index-509_10.jpg
=1)

index-509_9.jpg

index-510_5.jpg

index-172_7.jpg

index-172_6.jpg

index-173_2.jpg
einsum(

index-173_1.jpg
einsum(i1 =

,U,v)

index-172_3.jpg

index-172_5.jpg

index-172_4.jpg
einsum("ii = ", A)

index-510_7.jpg
Qoo

index-510_6.jpg
N
p(6,2.wla, 8) = p(010) | [pal0Ip(walzn, B

n=1

index-171_5.jpg
PEREIE
[rea— A
wn
@ FCRESEIE] i e
i REREIEIE] iTs e
: Safwlats e B
: dalalaln] A Boh
s Shalsliln) 2 X
7 1 ED 3 DEYED 35
BRI
LbTemsortshape? e

3D Tensor of shape 7x5x4

“This Block represents
e e s e

4D tensor of shape 7x5xixS

index-171_4.jpg

index-172_2.jpg

index-172_1.jpg

index-511_4.jpg
King - man + woman = queen

index-511_3.jpg
p(0,z,w|a,)

index-512_1.jpg

index-511_5.jpg

index-510_9.jpg

index-510_8.jpg

index-511_2.jpg

index-511_1.jpg
M
L@, p) =) logp(walas)
d=1

index-171_1.jpg

index-170_13.jpg

index-171_3.jpg
CA,

ij

index-171_2.jpg
A i
jjord; ,i=1-nj=

index-170_12.jpg
af; ={x,- ifi=k
oW, l0ifi+k

index-170_11.jpg
ofs _
oW 3

index-235_6.jpg
80 —
=0.04 => P(Z < =1-10.04 =0.96 ~ ®(1.75)

index-170_10.jpg

index-235_5.jpg
19—
P(Z< —) 0.58 ~ ®(.20)

index-235_8.jpg
u

index-235_7.jpg
o—pu

=0.20 and

80—u

= 1.75

index-170_7.jpg

index-170_6.jpg

index-170_9.jpg
f3(x) = Wizxqy + Wozxy + -+ Wo3X,

index-235_4.jpg
0.04

index-170_8.jpg

index-236_4.jpg
x,0=x<1
fx)={2-x1<x<2
")

index-236_1.jpg
fa = (i x>0

index-235_9.jpg

index-236_3.jpg
E[X] =fmxf(x)dx

index-236_2.jpg
EX] =) %)

)

index-170_3.jpg
W wn

index-170_2.jpg

index-170_5.jpg
X
=

index-170_4.jpg
f'(w)or ==

AW

index-170_1.jpg
c)(1-0() 0.0
' (x) = 0 a(yz)(l — U(}’z)) -0 X W

00 .. zr(y,;)(l —o(y) .

index-169_14.jpg
VA®) o)(1=0(1)) 0..0
Fly) = (sz:(}’)> _| 0 0G)(1-0(7)) .. 0

i/ \00 .. oG -00m)

index-169_13.jpg
f'(y)eg(x), wherey

index-169_10.jpg

index-169_9.jpg
f) =(c(y1),002), ... (¥))

index-169_12.jpg
, .., 0¥)(1—0(y)),..,0)

index-169_11.jpg
“(8,m2)
o5)

h(x) = fog(x) =

index-509_1.jpg
A Dirichleta =(1,1,1) Dirichleta = (2,2,2) Dirichleta = (10,10,10)

AN

Dirichleta = (2,10, 2) Dirichleta = (2,2,10) \ Dirichleta = (0.9,0.9,0.9)

index-508_19.jpg

index-509_3.jpg
p(0@|a)~Dirichlet(a)

index-509_2.jpg
i

index-508_16.jpg

index-508_15.jpg

index-508_18.jpg
P, =X,pp=yandpz;=1—x—y

index-508_17.jpg

index-169_6.jpg

index-169_5.jpg
h'(a@)(x) = JR(x) =] J9x

index-169_8.jpg
X

index-169_7.jpg

index-233_8.jpg

index-233_10.jpg

index-233_9.jpg

index-234_5.jpg
P(—o0 £ 4 < 2)

index-234_4.jpg

index-234_6.jpg

index-234_1.jpg
-
—e Z,—-0<z<®

d(2) =

;“

index-233_11.jpg

index-234_3.jpg

index-234_2.jpg

index-234_8.jpg

index-234_7.jpg

index-234_10.jpg

index-234_9.jpg
P(—00 €4 <2,.,..)

index-235_3.jpg

index-235_2.jpg

index-234_12.jpg

index-234_11.jpg

index-235_1.jpg

index-234_13.jpg
©.d.1 of Normal Distribution

CNEERRNG IORNININ SEr e SV

= 0999313 - 0933192
= 0066120

3 3 4 POSSZS3D=PEs3-Pas1S)

2 T R ST
O R)

o[s sow so s s s

02 s son s sms s s

ofem am e e o s

o | o oo sns o0 o0 o

) R T T
P(z<036) = 064058

P.df of standard Normal
Z-N(0,1)

index-230_10.jpg

index-230_9.jpg
pf:dx=1

index-401_1.jpg
Wi &W>

index-230_11.jpg
1
f(x) = b—a a<x<bh
0, otherwise

index-401_3.jpg
Ll A i
mn(p+1r) p+r

index-401_2.jpg

index-232_3.jpg

index-401_9.jpg

index-232_2.jpg
x—ul

index-401_8.jpg

index-232_5.jpg
[
O f
(x)dx
=1

index-402_2.jpg

index-232_4.jpg
J2ma?

index-402_1.jpg
g(x) =

1

2o

_x
e 207

index-230_13.jpg
Fe()
feo)

index-401_5.jpg
pXl&rXl

index-230_12.jpg
0x<a
2 a<x<b
-a

1,x>b

index-401_4.jpg
Wi, Wo

index-232_1.jpg
[N=10

index-401_7.jpg
— N e

o oo

2|- -

]*[1 0 —1]

index-231_1.jpg
Normal
Distribution

"Bell Curve"

wonBs 10 20 30 40 50 60 70 80 90 100 110 120 130 140

index-401_6.jpg
SN

NIENEN

- N

-1

1
l*z[l 2 1]

index-232_6.jpg

index-402_3.jpg

index-232_8.jpg
N(u, o4

index-402_5.jpg
10

index-232_7.jpg
ag > 1)

index-402_4.jpg

index-233_5.jpg

index-403_2.jpg
30

index-233_4.jpg

index-403_1.jpg

index-233_7.jpg
Normal Distribution

68%

95%

u—-36 u—-20 pu-o u u+oc u+2c u+30

index-233_6.jpg

index-403_3.jpg
X AXLS

index-233_1.jpg
np(1—p)

index-402_7.jpg
30

index-232_9.jpg

index-402_6.jpg
20

index-233_3.jpg

index-402_9.jpg
30

index-233_2.jpg

index-402_8.jpg

index-530_9.jpg

index-531_2.jpg
KL@@Ip(eba)) = - Y alogE T2 +1og(e) Y. a()

index-531_1.jpg
X,z)
q(2)

== 4@10sED) 1 S g@on(oe)

KL(q(2)lp(zlx)) = —Zq(Z)[IOg() = log(p(x))]

index-531_4.jpg
P(X,2);
Y. q(2)log(*,7=°)

index-531_3.jpg

index-530_11.jpg
KL@@@Ip() = -) a(@log (”(z"‘))

q(2)

index-530_10.jpg

index-530_13.jpg
pxz)
KL IpC0) = - Zq(z)log("8) - ateog (PG5 x)
Z, X,

index-530_12.jpg
p(z|X) = BX2PE) _ P2

»(X) p(X)

index-531_5.jpg

index-529_7.jpg

index-529_6.jpg

index-529_9.jpg

index-529_8.jpg

index-529_3.jpg

index-529_5.jpg
p(x)

| p(x|z; 0)p(2)dz

index-529_4.jpg

index-529_11.jpg
p(x) = f p(x|; 6)p(2)dz

index-529_10.jpg

index-529_12.jpg

index-530_4.jpg

index-530_3.jpg
p(zlx) = pX12)p(2)
p(x)

index-530_6.jpg

index-530_5.jpg

index-529_14.jpg
PY=x) =)

index-529_13.jpg
1toN

index-530_2.jpg

index-530_1.jpg
-

LW

index-530_8.jpg

index-530_7.jpg

index-525_8.jpg
P(Y >72|X=72)?

index-525_7.jpg
Ld - 4 ”xy)_(7.53 3.87)

~ \3.87 7.93

= ’ = (67.69, 68. , Z=
= (uy, ty) = (67.69,6868), 1= (5 57

index-526_1.jpg

index-525_9.jpg
P(Y > 72| X = 60)?

index-525_6.jpg
cov(X,Y) = po,o,

index-526_6.jpg
P(Y > 72| X =72)

index-526_3.jpg
b= py + P_ (72 —) =

index-526_2.jpg
1)

index-526_5.jpg

index-526_4.jpg
o= o,(1—

index-527_3.jpg

index-527_2.jpg
f@) =6+

index-528_2.jpg

index-528_1.jpg
50 samples from Standard Triangular points represent the
Bivariate Normal tribution ‘mapped samples

index-527_1.jpg
-1.0 -05

index-526_7.jpg
o150
o125
o100
o075
o050
ooz

PIY>72| X=72) PIY>72] X=60)
o150
onzs
o0
oors
o050
ouzs
oo
@o &5 80 &5 mo 7©s mo 75 mo %o s @0 @s &0 @5 ®o ms no

“Son’s height(in)

Son's height(in)

index-528_4.jpg

index-528_3.jpg

index-529_2.jpg

index-529_1.jpg

index-512_2.jpg
INPUT PROJECTION OuTPUT INPUT PROJECTION OUTPUT

wt2) wa2)

wet))

] | o

wite1)! i

) was2)

SEOW Skip-gram

index-514_1.jpg

index-513_1.jpg

index-515_5.jpg
_) sin(wgt),if i =2k 1
p(t) = cos(wyt), if i = 2k + 1,Where o =——p
100007d

index-515_4.jpg

index-515_6.jpg
NI

index-515_1.jpg

index-514_2.jpg

index-515_3.jpg

index-515_2.jpg

index-517_1.jpg
Wi super cali fra gl istic ex pla lido cious

index-516_1.jpg
s) (cute) (1572) [ne) (ikes | (tay) (o) (1507

() () (0

index-521_1.jpg
BERT
[] ==

WOy
B e s e e G e e R EEER ees

ERNIE
LT] -] 1]

index-519_1.jpg
> o—
i =
Sentece 1 Seotence2

Sentence Pair Classification: Text
similarity, Paraphrase Detection

StrvEnd Span

Single Sentence Classification:
Sentiment, Spam

E] (=0 B

Paragragh

Question Answering Tasks

Sentence Token Classification:
Named entity recognition

index-525_5.jpg
Oxy =

index-525_4.jpg

index-525_1.jpg
p(X,Y)~N(u X)

index-524_1.jpg

index-525_3.jpg
))

index-525_2.jpg

index-403_4.jpg

index-403_10.jpg

index-403_9.jpg

index-403_12.jpg

index-403_11.jpg

index-403_6.jpg

index-403_5.jpg
x, 202
§(xy) = ——e” 29

index-403_8.jpg
1 _x*+y°
gl y) =5—e” 2

index-403_7.jpg

index-403_13.jpg

index-404_2.jpg
1T

index-404_1.jpg
330 23 [[0 119 | @3l 631
320 (1221 (1120 (02 [112) [0 |62
30 (62 [[on) [[0 o
130 [1200 [0 [00) [0 [0 6500 s
B[t 10 [[0 | e | 6
a2 [t) o2 [(a2 | 2) | G2 T
33 (23 (39 03 (13 [@3) [63) om0

index-242_3.jpg

index-424_1.jpg
Iy — Ky + P+ P, 224-11+0+0
o TR R e r 1=,

index-242_2.jpg
CoV (X,Y) =E[{(X = E[X])(Y — E[Y])]

index-422_2.jpg
ADARFRRECIIR TRNALE CINVESHOIERNG U1 Sack NN O U mpat ot

Final output

index-242_4.jpg

index-424_2.jpg
Iy — K, P+ 5 54—-3+0+0
T TATE) BRI D r1=26=0,

index-243_1.jpg

index-428_1.jpg
Filter

Concatenation
Conv 1x1 Conv 3x3 Conv 5x5 Conv 1x1
Conv 1x1 Conv 1x1 Max Pooling
3x3

Previous Layer

index-242_9.jpg

index-427_1.jpg

index-243_3.jpg
0 .
)= [feende= [(@-x-par=21-7-y=3-y.0<y<1
—00 0

index-431_1.jpg
Concat.

e e
5] = >3] (=] (=
o] [mrem] o] 3T —
iom | [maen] [waret] [t T channets
o T

Inpue.

index-243_2.jpg
o 1
fx(x)=f f(x,y)dy=f (2—x—y)dy=2.1—%—x=%—x,0<x<1
o0 0

index-430_1.jpg
Input
Skip be
Connection

Weight Layer

Identity RelU F(x)

Weight Layer

@F(x) +x

RelLU

index-242_6.jpg

index-424_4.jpg
as kernel is of 5 X 5, for same padding P; = P. = 2

index-242_5.jpg

index-424_3.jpg

index-242_8.jpg

index-426_1.jpg
Parms = numkernels * kerneldimension + bias = 96 * (11 * 11 * 3) + 96 = 34,944

index-242_7.jpg
st—x—=y,0=xy=s1
fl,y) = { 0 otherwise

index-425_1.jpg
Input image: 224x224¢3 waper (el Output Shage faran t
20 el 3,9 P VARG S| e e e S0 54,96
L e ww s
Saxsass— T — S oot Daelingdo G, 26, 26,5600
= x_pooling_24; Size: 43, Stride: (22)
26:26%5% Ty o, 26 26, 50wt
Convad; Kerne: 55, 256; Pad: Same; Stride: (11)
—TelT S peotinga] Wasiealingt Gene, 13, 2, 560
26:26x256
“Max_pooling 30;Sae: 53, Sirde: prrpyE— o, 13, 12, 00 =y
i T o, 1, 12, 500
Convad; Kernel: 33, 384; Pad: Same;strider (11) | o
apass =Ty o, 11, 2, 0w
Canvad; Kerne: 33, 384; pad: Same;stride: (11)
o Ty ——) v
2a2ama
‘Convad; Kernel: 3x3, 256; Pac: Same; Stride: (1,1) | £iaven (iaien) [v
Rl
12612256 ey) T
ling_20; Se: 363, Suide: (2.2)—
soams prsyr— [v
Flatten
I prgyr—) oo
dense: full connected; 4056
ReLU; Dropout frsygr— o, 1061 v
o, 100) o

e
el apon

Scaisable pazans: 50,044,008

cainable pacans: 0

index-243_5.jpg
fy1x

index-243_4.jpg
fxly

index-433_1.jpg
Mobile phone: 4%

=] ‘

ol orded e Mobile phone: 7
Mobile phone: 94% : 2 Mobile

index-243_6.jpg
LXKy L—=X—
fay () = —5— and fyx(y) = —5——
5=y 5F—X

index-436_1.jpg
=»conv 3x3, ReLU

= copy and crop
§ max pool 2x2
$upconv 22

= conv 1x1

index-435_1.jpg
R 202 Al 500 N
RNNL |

Semantic Segmentation ln nnnnnnnnnnnnnnnnn

index-244_5.jpg
COV(X,Y) = E[XY] — E[X]E[Y] = % -

index-436_7.jpg

index-244_4.jpg
E[XY] =L1L1xy(2—x—y)dxdy = J:y(z.

X%

2 3

index-436_6.jpg

index-244_7.jpg
X =1{—4-3,

-=1,1, 3

index-436_9.jpg

index-244_6.jpg

index-436_8.jpg

index-244_1.jpg
E[Y] ==

index-436_3.jpg

index-243_7.jpg
E[X] = J’_fox(x)dx = J:x(;—x)dx=15—2

index-436_2.jpg
exp(a(x))

=S exp(ap (D)

; K is number of classes

index-244_3.jpg

index-436_5.jpg
¥ € ()

index-244_2.jpg
=% 122

=0.076

index-436_4.jpg

index-240_9.jpg
+oo

y:_mfxy(ny) dxdy =1

index-240_6.jpg

index-420_6.jpg
Ky X K, X1

index-240_5.jpg
fr0) =) fiy(®)

index-420_5.jpg

index-240_8.jpg

index-420_8.jpg
P.P,K:1,;

index-240_7.jpg
&) =),) fya(e3.2)
L L

index-420_7.jpg

index-241_4.jpg
Fey(,¥)

f x =
W) == 3

index-420_13.jpg

index-241_3.jpg
f,¥) =). fiy(x,¥)dx

index-420_12.jpg
1 X1X1,

index-241_6.jpg

index-421_1.jpg

index-241_5.jpg

index-420_14.jpg
Parameters Count = I

index-420_9.jpg

index-241_2.jpg
fx (%) = |, fey (x, ¥)dy

index-420_11.jpg
1 X1XI1,

index-241_1.jpg
P((x.y) €R) = ffk fuy (6,y) dx dy

index-420_10.jpg
Apply one
kernel of size
Kok Iy I
ls
1 A
K & P Is
& .-
b Ky Pt Pu

Pu

Depthwise Convolution-

index-178_3.jpg
I'=T;e; ¥ e;

index-178_2.jpg

index-178_5.jpg
0A _04;je; Qe 04y
4B~ 0B " 4B

04;;
e,®e,EaB;;e,®e,®e,®eq

index-178_4.jpg

index-241_8.jpg

index-421_3.jpg
Ky X Ky X [

index-241_7.jpg
¥y &

index-421_2.jpg

index-178_1.jpg
dT dT,,
—=——(e;Q &)

index-241_10.jpg

index-241_9.jpg

index-421_4.jpg

index-178_10.jpg
X€;
—"g; =
aw,

index-178_7.jpg
(W) =Wx =y = y;e;

index-178_6.jpg

index-178_9.jpg
9 .. 9%

W= 6W ei®e Qe =x. Qe Qe

index-178_8.jpg

index-241_15.jpg
Moy

index-421_10.jpg
PnPyKilg + PyPy1404 _1 i 1
P,P,K21,0, T 0, K2

Multiplication Ratio =

index-241_14.jpg
Elg(X,Y)] = LiLjxiyiP(X =

Y = yj),if X,Y are discrete

index-421_9.jpg
Parameters Count = K21, + 1,0,.

index-242_1.jpg

index-422_1.jpg
Intermediate results

Final
output

/\

Input /
[Addingall
outputs
] —
Single Output of every Placing of
kernel input cell multiplied outputs with

with kernel stride=1

index-241_16.jpg
n..=E|(X—-E|X])'(Y —E|Y))?]

index-421_11.jpg
Kelg+1,0 1 1
P Ratio = =2 5—"L=— 4+ —
arameters Ratio K}I,,Oa Od K;

index-241_11.jpg

index-421_6.jpg
Parameters Count = K:1,0,

index-421_5.jpg
P.P,K:1,0,

index-241_13.jpg
Elg(x, V)] = f 9C6) (x,y)dxdy

index-421_8.jpg
Multiplication Count = P,P,KZ:1; + P,P,1,0,

index-241_12.jpg
g(X,Y)

index-421_7.jpg

index-177_2.jpg
f:R" - R™

index-238_5.jpg
E[g(X) + a] = E|g[X]| + a

index-414_3.jpg
I

WikterntA

eyl

pru s

P [T ——

ludlia

[T —

[e S r——)

o oy o 0l L 500 €075 oy B 5 5 O i
B
3 e U B A G s o B o s i, s
oo A5 0 s, Moo, o b e 0 st o By b B v,
0 b O, bl 40 oy o 5 o U A R A e B o s
ke i b, My e b,

iy

index-177_1.jpg
9f(a) of(a) 0of(a) =z 9f(a) f(ﬂ)

dx; T 9axy T Oxy, -

Vf(ﬂ)=(o eal e

index-238_4.jpg
E|Xis,a;X;| = a; Xz, E[X]]

index-414_2.jpg

index-177_4.jpg
T Bf()
gradT=W®ek e, ®e; Q e
X

index-177_3.jpg
Vi(a)
V()

V(@)

)=

0fi(a)
dx;

ofy(@)

j

@)

ax;

€j

€j

afi(a
x;

e‘®e,

index-238_6.jpg
E(X1X; ..X,| = E|X{]|E|X5] ... E[X},]

index-238_1.jpg
0% = E[x - EIX]]" = F (x — ©)?dx, where % = E[X]

index-413_1.jpg
A | Tk | | ot | Vi s | i it

Woarepid | India

s S ——

wanpoge i il i about o Ropuic o . For crar uss, 5o ks (dsarigutn).

i i, ol he Republc of i (e Bt Gaparyo) ™ .2 couny i South s s th sventhagest
S county b ea th socorcd-most populouscouny, v h ot populous demeeracy n e wor.Beunded by e
Ve i Ocean on e sou,the Arstian S on e southwest.and e By f Benglon e southesst, i shaes lnd
coctia orders wih Pakistn 0 he westCina, Nepa,and Buta ot nry: nd Bangladesh and Myaroar ot et n
psten o ncian Ocaan, i th ity of S Larka h Malives; 5 Andarman and Ncobar sads shre mari

o barder wih Thaland, Myanmar and Indonesa

index-237_4.jpg
gX)=(X—-E|[X]|)",r = 2is an integer

index-412_2.jpg
At | Tk s | Viw s Vew i

A,

A

85
{1

v
5

Wiezpra | India

B R ——

onpoge Thi il bouth R o . For oaruss, sas i (dsambigstn).

et i, ol he Republic of i (i Srat Gapasya) ™ s couty i South A st sventhsges
. county by e, h socod most ppulus county, an h ot populus demosracy n e wod.Bcunded by e
frosives cian Ocean ca e south, e Avabian S0 on e soulhwest,and e Bay of Banglcn e suthest, shres
Conctn bordars i Pakistn 1o he et Crina, Nepa,and Buia ot o and Bangladesh and yanmar ot st n
Corse e Incion Gcaan, i th ity of S Larka < the Mildves; s Andaman and Ncobar Ilands shre a marme

order with Thaland, Myanmar and Indonesia

index-238_3.jpg

index-414_1.jpg
1
not normalize ver = [—2
1

o oo
— N

—0125 0 0125
; normalized ver = —025 0 0.25
—0125 0 0125.

index-238_2.jpg

index-413_2.jpg
=1 =& =1 —0.125 -0.25 —=0.125
not normalize hor = I 0 0 0 [; normalized hor = 0 0 0
T 2 1 0125 025 0125

index-177_10.jpg
'
ar

index-177_9.jpg
T(t+h)—T(t)

index-177_6.jpg
grad(A) + grad(B)

index-177_5.jpg
grad(A-B) = Agrad(B) + B grad(A)

index-177_8.jpg

index-177_7.jpg
grad(¢p) @ A+ ¢pgrad(A)

index-238_8.jpg
EIX4Y*] <

index-417_1.jpg

index-238_7.jpg
Variance [aX + b| = a*Variancel|X], a, b are constants

index-416_2.jpg

index-238_10.jpg

index-417_3.jpg

index-238_9.jpg
E[X“|E[Y*]

index-417_2.jpg

index-416_1.jpg
[Pooling

Convolution
Convolution Poaling

Q)
[e)
p— o -

Classifcaton stage:
-~ Peature Bxraction Stage: Sack of comvolution and poolng layers——= oo o

[¢)

Inpat

index-174_18.jpg

index-239_4.jpg
Length X

index-239_3.jpg
p(x;,y;) =PX =x,Y =y;)

index-418_1.jpg
kernelk,

ot cndoond

oo e
n different kernels. W W Wy
of samesize |
Kuxkyxd L
" kemnelk
N Feature map F, representing kernel k,
= T N
£ H == _n feature maps of
5 === - _ samesize
) - Sufaxd

Widthw

Convdlution
operation

Feature map F, representing kernel k;

index-175_2.jpg
Ay,

index-175_1.jpg

index-238_12.jpg

index-417_5.jpg

index-238_11.jpg

index-417_4.jpg

index-239_2.jpg

index-417_7.jpg
Iy — Ky +P +P In — Kp + Py + P
0W=(w WS L r)+1J;0h={(h hst b)+1

index-239_1.jpg

index-417_6.jpg

index-176_2.jpg

index-176_1.jpg
A=array([[[@, 1, 2],
[3 511,

[re 7, 8],
[9, 18, 11]],

o

[[12, 13, 14],
[1s, 16, 1711,

[[1s, 19, 20},
[21, 22, 23111

-

B=array([[[1.
[1

-

f 10,
{1, 1.,
Liss 1435
. 131D

C=A; B wire

Cor = AparBs
*

A.B = array([[15.
[51.
[87.
[123.

15.1,
51.1,
87.1,

123.17)

index-176_3.jpg
" =R

index-175_4.jpg

index-175_3.jpg

index-175_6.jpg

index-175_5.jpg
Ay,

index-240_2.jpg

index-420_2.jpg

index-240_1.jpg

index-420_1.jpg
Ly X 1Ip X 14

index-240_4.jpg
i) =) fiy()
h'2

index-420_4.jpg
Ky X K, X [

index-240_3.jpg
g
<[

fey(ey) =1

index-420_3.jpg
Ky X Ky X [

index-239_5.jpg
fxy

index-419_1.jpg
Input Data

Kemel

Intermediate
Data

3
Kemel

Output of
Convolution

index-418_2.jpg

index-406_1.jpg
ncn Tk Rosd Vi soucn. View ik

India
LT ——

e i il i bout h Rusic ok For cvar uses,soe ks (dsarmbiguan)

o Icia i he Republc of i (i Bt Gararys) s 8 county i St A 1 e sventhiargst

b countey by aea, h socomost poguluscounty, e th o populus demeracy n e wor.Beunded by e

ozt i Ocoanon e souts, ha Avaian So on e southwest,and e Bay of Banglcn e sutheast. shaes d

Consatin bordes i Pakistn 10 he wetChina, Nepe,and Butan ot nrh, nd Bangladesh and Myarnar o e et

e Inian Ocean, i i th ity o 5 Larka d h Maldves; 5 Andarman and Nicoba ands share & marme.
barder wih Thatand, Mysnmar and indonesia.

index-405_5.jpg
A
N o
(B

o 7 -
e

Wipepid India

D) From Wikipedi. e free encycioped

5 il bt Rl o, o s 0 b (st

St India. oficially the Republic of India (Hind:: Sharat Gaparays).'”" is @ country in Soulh Asia. I s the sevenin-largest
= o o e i et ot e oo O il B
o Tt o oo i o At Sn o ke and s S o Bl n o sodbae v
e St Pk b ek, epal S o o Bl M o o el
= bk ona. il ity f S Larha e e s A s s e i

o ‘order wih Thaand, Myanmar and Indonesa

index-174_9.jpg

index-407_2.jpg
TS fat D+ = 1) = 2f @)
ﬁ—fx+

index-174_8.jpg

index-407_1.jpg
of _
L= fGr+ D)~ ()

index-405_2.jpg
.00001964 | .00023928 | .00107238 | .00176805 | .00107238 | .00023928 | 00001964
.00023928 | .00291502 | .01306423 | 02153928 | 01306423 | .00291502 | .00023928
100107238 | 01306423 | 05854983 .05854983 | 01306423 | .00107238
.00176805 | 02153928 115915494 .02153928 | .00176805
.00107238 | 01306423 | .05854983 .05854983 | 01306423 | .00107238
.00023928 | .00291502 | 01306423 | 02153928 | 01306423 | .00291502 | .00023928
.00001964 | .00023928 | .00107238 | .00176805 | .00107238 | .00023928 | .00001964

index-405_1.jpg
1T

index-405_4.jpg

index-405_3.jpg

index-174_15.jpg

index-174_14.jpg

index-174_17.jpg

index-174_16.jpg

index-174_11.jpg
m=2n=3A-B=(a{®@Ra,) (b ®b, @ b)) =(a, -bq)(a, - b,)b,

index-174_10.jpg
mn=2A-B=@®a,) (by ®b,) =(a,-bq)(a, - b,)

index-174_13.jpg
mn=3A-B=(aR®a,R®Rasz) (b ®b, ® b)) =(aq -bqy)(a, - -by)(as - by)

index-174_12.jpg
m=3n=2A-B=@®Ra,Ray) (by®b,) =a,(a, bq)(asz - -b,)

index-174_7.jpg

index-408_1.jpg
51 ooy
N
constant
4 pow--—
| constant
> i
2 i
2 i}
8 |
3 g1
2 i
& /
i
i
2 H
i
\ i
i
, constant |
1 R e]
1 2 3 4 5 6 7 8 9101 12131415
Pixel Position
Pielposition | 1 [2 [3][4] 56 3 EEN TN VN I I EN T
Pixelintensity | 5 |5 [5[s [al3l2[11]1[1]afafala
First order ofo]1]1]1]1]0]|0]| O 3 0 0 0
derivative
Second order ofo]1]o]Jo]jo|1]0]| 0O 3 3]0 0
derivative

index-409_2.jpg
°f a9°f
= fG L)+ - 1))~ 2f(53) & 55 = fGy + D)+ flxy — 1)~ 2f(x,7)

index-409_1.jpg

index-410_1.jpg
i Tk Road Vi sotca Vi o

Wikieepia India

TGS | o pesn on e
ngage Thi il i bout h Ropuic o . For cbaruss, 50 s (i)

- ndia, ol ha Republc ofdia i Sharat Gaparys) s 3 couiy in South A s th sventhisgest
Coional county by e h socordmost populus county, v h st populous dmoracy n e o, Scundod by he
oo esal Indan Octan o h s, h Araian Sea o h st and h By ofBangal o h souess,H shares o
Conct ordars i Pakistn o he vt Cina, Nepa,and Bhuia ot o and Bangladesh and yanmar o 1 st I
oot o ncion Ocaan, i th vy of S Lanka nd th ialves: s Andaman and Moo slads share a mari

. ‘order with Thakand, yanmar and Indonesi.

index-409_7.jpg

index-173_16.jpg

index-410_2.jpg
Avicn | Tk Resd | Vi sn View bk

India
EETR—
Ve T i ot 3 Rapuc o . P ctor 33, 00 e SsamBuE)

e, ofcialy ha RapublcofIndis 1 rs Gagerye) i ¢ cuny n S Ass s ho soverthagest

e ety e, o e e oon it et o daany b e Bowdd o
et oo e it st o B o Bt et s ek

= s P ko, gttt St et kB e e
== ot e ey oS 9 o A e St War s i

‘order wis Thatan, Mysnmar nd Indonesi.

index-409_4.jpg
-1

-1

-8

=1

-1

index-409_3.jpg
Vef(x,y)

flx+

1L,y+fx=-1,vY+flx,y+ 1D+ f(x,y—1)—4f(x,y)

index-409_6.jpg

index-409_5.jpg
glx,y)

flx,v) +c[Vf(x,y)]

index-174_4.jpg

index-174_3.jpg
I'=u{ @®u, ® u,

index-174_6.jpg

index-174_5.jpg
Tv = (U Qu; Quz)v=(uy @uy)(uz - v)

index-173_18.jpg

index-173_17.jpg

index-174_2.jpg
T=T;(e; ® ej)

index-174_1.jpg
I'=Ty181 @ e + 1121 @ €z + 11381 & €3 + 1716, @ €q + 128, @ €z + 13382 @ €3 + 3483
Req+Trex Rey +Taex @ eq

index-173_15.jpg

index-173_14.jpg

index-237_1.jpg
o 1 1 2
E[X]=J’_xf(x)dx=0+Lx.xdx+fx(2 x)dx+0—§ §=1

index-411_2.jpg
1 2 4 y2] _(¥+y°
L0G(x,y) =_W[1_%]e (55

index-411_1.jpg

index-237_3.jpg
E[g(X)] =f g(x)f (x)dx, for continuous X

index-412_1.jpg
.0031426 | .0263208 | .0857902 | .1237636 | .0857902 | .0263208 | .0031426
0263208 | 1749015 || 391527 | 4307856 || 391927 | 1749015 | 0263208
0857902 | 1391527 0 0 391927 | 0857902
1237636 | 4307856 31013828 307856 | 1237636
0857902 | 381927 0 0 391927 | 0857902
0263208 | 1749015 | 391527 | .4307856 | 391927 | 1749015 | 0263208
0031426 | 0263208 | 0857902 | 1237636 | 0857902 | 0263208 | 0031426

index-237_2.jpg
E[gX)] = Z g(xX)f(x), for discrete X

index-411_3.jpg
.00031426 | .00263208 | .00857902 | .01237636 | .00857902 | .00263208 | 00031426
100263208 | 01749015 | 0391927 | .04307856 | 0391927 | .01749015 | 00263208
100857902 | 0391927 o o 10391927 | 00857902
01237636 | 04307856 -.31830989 104307856 | 01237636
.00857902 | 0391927 °) 10391927 | 00857902
100263208 | 01749015 | 0391927 | .04307856 | 0391927 | .01749015 | 00263208
/00031426 | 00263208 | .00857902 | 01237636 | .00857902 | .00263208 | 00031426

index-533_7.jpg

index-164_22.jpg

index-164_21.jpg

index-164_24.jpg
()
(@e) =5

index-164_23.jpg
T,(e;) =

index-164_18.jpg
Fla) = lim D2 I g

index-164_20.jpg

index-164_19.jpg

index-533_9.jpg

index-533_8.jpg

index-164_15.jpg
fla+ hx) — f(a) =T,(hx) + ||hx| E (a, hx)

index-164_14.jpg

index-164_17.jpg
h—-0,E(ahx)—-0

index-164_16.jpg
fla+ hx) fla) IhllixllE(a, hx)
h

=Tq(x) +

index-533_15.jpg
—1c,
1 (dnm)) —k +trace(23'21) + (4 —)" 27" (2 M1)]
[08\ Zercz)

index-533_14.jpg
N(u,,2,)

index-533_17.jpg
det(Z,) = of07% ...07

index-533_16.jpg

index-533_11.jpg

index-533_10.jpg

index-533_13.jpg
N(uq,2q)

index-533_12.jpg
p(z)~N(0,I)

index-164_11.jpg
fla+v)—f(a)

T,(v) + ||v||E(a,v)

index-164_10.jpg

index-164_13.jpg

index-164_12.jpg

index-164_9.jpg
T,(v)

index-164_8.jpg

index-533_18.jpg
(.m(t;)) = — Y log(c?)

det(Z,).

index-164_7.jpg

index-534_2.jpg
(uy —) 25 (uy — pq) = uy uq, here 5" is identified as p(z) is standard normal

index-534_1.jpg
trace(251%,) = trace(Z,) = z of
-

index-164_4.jpg

index-164_3.jpg

index-164_6.jpg
|v|| = 0. E(a,v)

index-164_5.jpg

index-534_8.jpg

index-534_7.jpg

index-534_9.jpg

index-534_4.jpg
i B
*52[103(”3) — elo8(o) — i + 1]

T

index-534_3.jpg
= lall3 =) ik =) 1
k k

index-534_6.jpg

index-534_5.jpg

index-532_1.jpg
£(q,8) + KL(qllp) = P(X]6)

P(X16)
e LN
£(4.9)
—
L P 0 K

OK=LP and LO+LP = OP

index-531_13.jpg
n(x,z) =p(x|2)p(z)

index-532_2.jpg

index-163_10.jpg

index-163_9.jpg

index-164_2.jpg
]

index-164_1.jpg
f:S- RS cR"

index-163_8.jpg

index-532_8.jpg
log(p(x|z))

index-532_7.jpg
£(q) = E[log(n(x|2))] — KL(q(2)||p(2))

index-532_10.jpg

index-532_9.jpg

index-532_4.jpg
p(JrIZ)p(Z))
i @lo (q(2)
q(z)log(”) D

(@=),

index-532_3.jpg

index-532_6.jpg

index-532_5.jpg
= " 4@log(p(x12) -) a(2)log (%) = D 4@log(p(x12) ~ KL@DIIp()

index-532_12.jpg

index-532_11.jpg
o |

index-532_13.jpg

index-533_4.jpg

index-533_3.jpg

index-533_6.jpg

index-533_5.jpg
o“to log(c*)

index-532_15.jpg

index-532_14.jpg

index-533_2.jpg
q(z|x)

index-533_1.jpg

index-246_1.jpg

index-245_13.jpg
x—u

~N(0,1).
exp{-2(Zt) } = L exp{- 122}
fz(Z)=fx(x)a—m

index-246_3.jpg
D.i Di

index-246_2.jpg
(1,02, +» Pr)

index-246_9.jpg

index-246_8.jpg
K1y i 2K — 2
Pyt X Py X .. XX = [lip;

index-246_5.jpg

index-246_4.jpg

index-246_7.jpg

index-246_6.jpg

index-531_10.jpg

index-531_9.jpg
L(g) < log(p(x))

index-531_12.jpg

index-531_11.jpg

index-531_6.jpg
log(p(x)) = KL(q(2)|lp(z]X)) + L(q)

index-531_8.jpg
—o0 < log(p(X|6) <0

index-531_7.jpg
0 <p(X|f) <1

index-244_8.jpg
Y ={16,9,1,1,9,16}

index-244_10.jpg

index-244_9.jpg

index-244_16.jpg

index-244_15.jpg

index-245_2.jpg
ax

_6y=

dxq

ouy

9,

ou,

00Xy
duy
9,
ou,

index-245_1.jpg

index-244_12.jpg
g:X =Y

index-244_11.jpg

index-244_14.jpg

index-244_13.jpg

index-245_3.jpg

index-245_5.jpg

index-245_4.jpg
FO) = () [5f

index-245_11.jpg
X =0ZT U

index-245_10.jpg

index-245_12.jpg

index-245_7.jpg

index-245_6.jpg

index-245_9.jpg
X~N(u,o%)

index-245_8.jpg
Fr) =25 (37) 57

index-541_4.jpg
0g 3) | Paata dx +10g () | parx = —1ogea)

index-541_3.jpg
Dy (x) =~

index-541_6.jpg
Pg(x)
Paata(x) + pg(x)

Pdata(X)
Paata(X) + pg(x)

c@ = [p.m.,(xnog()+p,,(x>log()1 ax (v

index-541_5.jpg
Pdata * Pg

index-540_10.jpg
I
€(6) = Ex-paataco10g(D5 (X)) + E;-pp)log(1 — DG (G(2))) I\

index-540_9.jpg

index-541_2.jpg

index-541_1.jpg
minimiz: c@) = mbjn Ex~pdata(x) log(Dz (X)) + Ez-p(z)log (1 -Di(6 (z)))
=it | Paaca) 108D dx + [py () og(1 — D5 0)
x x

= mGinJ’ [Paata(x) log(Dg () + pg(x) log(1 — D (x))] dx

index-541_8.jpg
PgllPdata T Pg

index-541_7.jpg
Pdatal|Pdata T Pg

index-539_2.jpg
Ex. pdatax)log(D (X))

index-539_1.jpg
miniénize Ez-p(z)log(1 —D(G(2)))

index-539_4.jpg
V(G,D) = Ex.paatacx) 108(D (X)) + E,..(ylog(1 — D(G(2))

index-539_3.jpg
miniénize Ex~paata(x) log(D(X)) + E;-pz)108(1 = D(G(2))

index-538_5.jpg
maximize Ex-paata(x) log(D(X)) + Ez-p(z)log(1 — D(G(2))),

index-538_4.jpg
=
—
Real daw\‘

— — 2 —

Random Generated
Noise z~p(z) ey

. Probability
Real/fake

index-539_6.jpg
mGin V(G,D)

index-539_5.jpg
max V(G,D)

index-539_8.jpg
min max Ex_paata(x) log(D(X)) + Ez-p(z)log(1 — D(G(2)))

index-539_7.jpg
min max V(G,D)

index-540_3.jpg
alog(y) + blog(1 —y)

index-540_2.jpg
max Ex-pdata(x) log(D(X)) + Ez-p(»)log(1 — D(G(2)))
= max f Paata () log(D(x))dx + f P2(2) log(1 ~ D(G(2)))dz
X z
= mng’ Paata(x) log(D(x))dx + f pg(x) log(1 - D(x)) dx
= max f [Paata(®) 10g(D(x)) + pg(x) log(1 — D(x)) Jdx

= max J’ [Paata(x) 10g(y) + pg(x) log(1 — y)]dx, where y = D(x)

index-540_5.jpg
a+b

index-540_4.jpg
h:(0,1] = R, defined by h(y) = alog(y) + b log(1 — y)

index-539_9.jpg
Fq

index-540_1.jpg

index-539_10.jpg

index-540_7.jpg
DG(x) =

Pdata(X)

Pdara(®) + pg(x)

index-540_6.jpg
— —Pdata(X)
Pdata(X)+pg4(x)

index-540_8.jpg
max V(G,D) = max Ex-pdata(x) log(D(X)) + Ez-p(2)108(1 — D(G(2))).

index-534_11.jpg

index-534_10.jpg

index-534_13.jpg

index-534_12.jpg
o —lIX—X]|*

index-535_6.jpg

index-535_5.jpg

index-535_2.jpg

index-535_1.jpg
Sty

index-535_4.jpg

index-535_3.jpg

index-535_9.jpg
Z=Uu+ e@®o

index-535_8.jpg

index-535_11.jpg

index-535_10.jpg

index-535_7.jpg
|Ix — ||

index-538_3.jpg

index-537_1.jpg
COO0CO0IBIVIVWVWNVBNBHLHLLLLLLNNNNNNNY
COOOOIVVIVIVNVNYLYHHHLLLLLENNNNNNNYN
0000V VNV VN VUYLl kb W NNNNNNNN
OO0V VI TNV NN HH Lkl kb A NNNNNNNN
OO0V IV Ve e w9l kb ANNNNNNNN
DV VIV VWV LYYW LLLLLLLLNNNNNNNN]
999V L L IITIRHL L b L L ANNNNNNAN
R R R R I N S S N NN N NN NNN

999 P TTFYNNND 1 bt %% W ANNNNNNNNN]
PO S A FFANNNTD D0 &0 %% W ANNNNNNNNN
DS A AAANNNNG NN &G GE N ANNNNNNNNN]
LG L L L T A NN NN NN NNN
R L L L L L N N NN N VNN NN
R L L L L N S N NN NN N NN
A e S NN N NN NN
e e 0 0t 60 B 60 0o ot N R RN N NNNNN]
4 0 0 0 0 e 69 60 b 6o Go ot N R RN NNNNNN]
N e 9 69 60) 60) 0 6 09 60 60 B0 B0 B te S R RN ARNNNNN
3 (9 (9 9 69 60 0 00 60 0 60 6 9 60 b 60 0o o B & B XX NN NNNNN]
) (9 9 6 €0 (0) 6 (0 0 60 0 60 60 0 G0 6o Go S T M NNNN N
€)60 60) €0 (0 €0 60 11 0 60 60 60 60 60 60 6o m & 3 2 XX N NN NNN]
) ()60 10 €0 60 €0 60 60 0 60 60 6060 60 60 0 o tm & % T T NN NNNNN]
) () 60 60 60 60 60 60 60 0 60 60 60 60 60 60 G0 6m &m & = = T N N NN N
0 () (0 10 (0 60 60 60 60 60 00 0 00 00 0 60 60 m o & - = T 2 R NN
DONOOONNOOPOWEPEE@Eme TR NNNN
() 6D (0 10 (0 1N 6N (0 10 (0 (0 00 60 60 60 60 60 & & & o T D N O O N N 0N
L L T S SIS
NOONOPNPOPPPPEEEErrrrr TR NNN
) 000 10 (0 (0 (010 (0 (0 69 00 00 60 60 60 &r 6 & T & T T O O O N DN O
0 10 60 10 10 10 00 00 (0 09 6° 00 60 o0 & & & & o~ T - O O O O O O O O]

index-535_12.jpg

index-538_2.jpg

index-538_1.jpg

index-446_3.jpg

index-446_2.jpg
s It l_ 1+ 1
7 t—2tlh1t+ 1

index-446_5.jpg

index-446_4.jpg

index-445_8.jpg
log Y, =

index-445_7.jpg

index-446_1.jpg
s Iia T+ 1
7 =1 T 1+ Teq

index-445_9.jpg

index-446_6.jpg
e

index-446_8.jpg

index-446_7.jpg

index-448_3.jpg
Y. = By + Bt + B,t% + €,

index-448_2.jpg
Y, — T, — §,

index-448_5.jpg

index-448_4.jpg

index-447_2.jpg

index-447_1.jpg
paniasa0

s g
g R
puaiy

2
A%

|euoseas

] °©
|enpisay

1959

1957

1955
Month

1953

51

19!

9

194¢

index-448_1.jpg

index-447_3.jpg

index-448_6.jpg
Veoi =aY,+a(l—a) i +a(l—a)?Y, ,+-,0<a<1

index-246_11.jpg

index-449_1.jpg
Veii=Yeis

index-246_10.jpg

index-448_7.jpg

index-445_1.jpg
— #Passengers

198901 1950.09 1952.05 195601 1955.09 1957.05 195901 196009
Month

index-438_1.jpg
Top-1 accuracy [%)]

80 se-Restentsogaces)

%.W!
e
Ibensenet201@) Wensenet-161
o @i @cssrinen s
15 b e .
e ey
‘@ NASNet-A-Mobile
BvincSion @Restet:34 V66-13.8
|® MobileNet-v2 VGG 118N
70 .“M“'l»‘! VGG-16
A
wors
PsnuttieNet VG611
©ocogtotist
o son 7 o 150m
‘SqueezeNet-v1.1
' Samontecro
(@
55 +
o 5 10 15 20

Operations [G-FLOPS]

index-445_3.jpg

index-445_2.jpg

index-436_11.jpg
E = ernW(x) log (m(x) (x))

index-436_10.jpg
Pi(x)(X)

index-436_13.jpg

index-436_12.jpg

index-445_5.jpg

index-445_4.jpg

index-445_6.jpg

index-250_9.jpg

index-250_8.jpg

index-458_4.jpg
Vi

index-250_10.jpg

index-251_6.jpg
J=U".

index-251_5.jpg

index-251_8.jpg
F) = FEOUI = —
(2m)

index-251_7.jpg

index-251_2.jpg

index-251_1.jpg

index-251_4.jpg

index-251_3.jpg
J=

index-168_23.jpg

index-168_22.jpg

index-168_25.jpg

index-168_24.jpg
b=g(a)

index-251_9.jpg
3| = det(UAUT) = det(U) det(A) det(UT) = det(A) det(UUT) = det(4) .1 = 1_[.1 A
f=1

index-168_21.jpg
ofilx) _
%;

index-168_20.jpg

index-169_2.jpg
f'(b)and g (a)

index-169_1.jpg
h'(a)=f (b) g (a),

index-169_4.jpg

index-169_3.jpg

index-251_11.jpg

index-251_10.jpg
1 1
exp {_EAZ} = exp {_E

index-253_1.jpg
). D;

index-252_2.jpg
HIX] = E[~1og(p())] =), ~p(x)log(p(x)

)

index-253_3.jpg
). D;

index-253_2.jpg

index-251_13.jpg

index-251_12.jpg

index-252_1.jpg
= —log(P(A4)).
H(A) = log (P(A)) = —log(

index-251_14.jpg

index-168_12.jpg
(x) = (g(x1), g(x2), ..., g(x))

index-168_11.jpg

index-168_14.jpg
Vfi(x)

£0.0.....

Y i ¢ 3 Fe

index-168_13.jpg
g: R = IR

index-249_2.jpg

index-456_2.jpg

index-249_1.jpg

index-456_1.jpg

index-168_10.jpg
f(a)(x) =],

index-249_4.jpg

index-249_3.jpg

index-456_3.jpg

index-168_19.jpg

index-168_16.jpg
Vhax) g(x) 0 .. 0
J, = vfz_(x)>=<o g o)
ve) \o 0 . g

index-168_15.jpg

index-168_18.jpg
f(x) =Wx,where Wisam Xn

index-168_17.jpg
f:R*
- R™

index-249_9.jpg

index-457_5.jpg

index-249_8.jpg

index-457_4.jpg

index-249_11.jpg

index-457_7.jpg

index-249_10.jpg

index-457_6.jpg

index-249_5.jpg

index-457_1.jpg

index-456_4.jpg

index-249_7.jpg

index-457_3.jpg

index-249_6.jpg

index-457_2.jpg

index-168_1.jpg

index-167_12.jpg
PRE)

index-168_3.jpg

index-168_2.jpg
X
~

index-249_13.jpg

index-457_9.jpg
Dy, Dy,

index-249_12.jpg

index-457_8.jpg

index-249_14.jpg

index-168_9.jpg

index-168_8.jpg
Vh(a) Vii(a)
Jo= (Vﬁ:(“)> and To(x) = (szj(“)) x
V. (a). V. (a).

index-168_5.jpg
I,(x)=J,x€ R™

index-168_4.jpg

index-168_7.jpg

index-168_6.jpg

index-457_10.jpg

index-250_5.jpg
Vi

index-458_1.jpg
.

Unfolded

=

Wy

index-250_4.jpg

index-457_15.jpg

index-250_7.jpg

index-458_3.jpg

index-250_6.jpg

index-458_2.jpg

index-250_1.jpg
a
warl (e =) =) 47 G =)] (2 -)

index-457_12.jpg
ye = 0(W,h,+Dy)

index-249_15.jpg

index-457_11.jpg
n,=¢(W,x, + Wph,_1+by)

index-250_3.jpg

index-457_14.jpg

index-250_2.jpg
Vi

index-457_13.jpg

index-167_2.jpg
f:§- R"™, S cR"

index-247_20.jpg

index-247_19.jpg

index-452_3.jpg
P(x;|x;_1)

index-167_4.jpg

index-167_3.jpg

index-247_16.jpg
2 =) [V2 () =H 4 2

index-451_5.jpg
N
P(x1, Xz, ., Xn) = P(x1)P(%2|%1) l_[P(xy|Xi-1, Xi-2)

=3

index-247_15.jpg

index-451_4.jpg
P(xi|x1, X5, ..., Xi_1) = P(x4|x4_1, Xj_2) for 2™¢ order

index-247_18.jpg
Xz

= T e

index-452_2.jpg
N
P(x1, Xz, ., Xn) = P(x1) l_[P(xi|x1-1)

=2

index-247_17.jpg

index-452_1.jpg
st OderMarkov Chain P(S,1, 1)

A"
G- 5

SacondOrdar Markow Chain P(S,1,-1,5¢-2)

index-167_10.jpg

index-167_9.jpg

index-167_11.jpg
E(a,v) = 0as ||lv||—0

index-167_6.jpg

index-167_5.jpg
f:§- R",ScR"

index-167_8.jpg

index-167_7.jpg
]

R" - R™

index-247_23.jpg

index-453_1.jpg
P(xy|Xi—1, Xi—2,"**, Xi—p) = P1Xi_1 + P2Xi_2 + - + Pppx;_,, + €;, where €;~N(0, o)

index-247_22.jpg

index-452_6.jpg

index-248_2.jpg
(vV2c, 0)

index-454_1.jpg
Start | Modal

Noun ﬂ.l Verb .| Noun

3/4 l 29 1a a9

WILL JANE spot MARY

index-248_1.jpg

index-453_2.jpg
P(x;|xi—1, Xi—2,"**, Xj—p)~N(P1Xi_1 + P2X;_2 + -+ P x;_, ; 0)

index-247_21.jpg

index-452_5.jpg

index-452_4.jpg

index-248_7.jpg

index-166_2.jpg
x;(t)

index-166_1.jpg

index-248_4.jpg

index-454_3.jpg

index-248_3.jpg

index-454_2.jpg

index-248_6.jpg

index-454_5.jpg

index-248_5.jpg

index-454_4.jpg
P(X,|Zy, @)

index-166_8.jpg

index-166_7.jpg

index-167_1.jpg
Level Surface [

index-166_9.jpg

index-166_4.jpg
f'(r@®))

index-166_3.jpg
f(r(t)) =c

index-166_6.jpg
. (L)

index-166_5.jpg
Vf(r(t)).r’(t) =0

index-165_19.jpg

index-248_11.jpg

index-455_4.jpg
N N
P(X,Z16) = P(z;|m) 1_[P(zi2i-1,4) l_[P(xjlz;, @)
i=2 j=1

index-248_10.jpg

index-455_3.jpg

index-248_13.jpg

index-455_6.jpg
P(X|0) = Zzp(x,zw)

index-248_12.jpg

index-455_5.jpg
X =1{X1,X2, ..., XN}

index-454_6.jpg
2

X1

22

X2

index-248_9.jpg
(v2c,0)

index-455_2.jpg
/[A

index-248_8.jpg
(0,/c)

index-455_1.jpg

index-246_17.jpg
M

index-449_7.jpg

index-246_16.jpg
))

index-449_6.jpg
P =) a(l—)Y, + (1 —)t

index-165_10.jpg
lim Nf(x) —f@ll = lim ([Vf(@)llilvil + IviliE(a,v)l) = 0

|x—al|-0 llv||l-0

index-246_19.jpg
Rd

index-246_18.jpg

index-449_8.jpg

index-246_13.jpg

index-449_3.jpg

index-246_12.jpg

index-449_2.jpg
Y., =a¥, + (1 —a)l,

index-246_15.jpg

index-449_5.jpg
Yo=aYa+(1—a)¥,

index-246_14.jpg
p(x) = 19 - e)q){*—(x WrE(x— u)}
2n)z IEI2

index-449_4.jpg
Yo=a¥,+(1—a)¥,

index-165_16.jpg

index-165_15.jpg

index-165_18.jpg

index-165_17.jpg
L(c)={x|x € Sand f(x) = c}

index-165_12.jpg
ofix)

fQ) = Ixll3, V(o) = (52,5,) = (2x1,2xp, - 22y) = 2,

ox, ' ox,

index-165_11.jpg
ﬁf(x) 90 . HEN e e) =
TR A ST (c1,€2,7,€n)

f(x)

x=xTc=3cx;.S0,Vf(x) =

index-165_14.jpg

index-165_13.jpg
f(x)

xAx. VFi(x)

(A" + A)x

index-165_9.jpg

index-165_8.jpg

index-247_1.jpg
J‘J‘ J’p(x) dxydx; ..dxg =1

index-449_10.jpg
. =aY,+(1—a)(l;_1 + b;_4)

index-449_9.jpg
Yooy, = 1, + hb,

index-247_3.jpg
| p(x)dx = 1.

index-449_12.jpg

index-247_2.jpg

index-449_11.jpg
b, =B —l;_4)+ (1 —B)bs_4

index-247_9.jpg

index-450_4.jpg

index-247_8.jpg

index-450_3.jpg
Yi=c+ Vi1 + Yoo+ + @Y + 0161 + 0265+ + 0p€_g + €

index-247_10.jpg

index-247_5.jpg

index-449_14.jpg
£
SSE = z(}’t - y\:\t—l)z
=1

index-247_4.jpg
AZ -
=[x
—-u
P E 0
X
—u)

index-449_13.jpg

index-247_7.jpg

index-450_2.jpg
Y =c+ 01601 + 0265 + -+ 060 + €

index-247_6.jpg

index-450_1.jpg
Yi=c+ @ Yi1 + DYoo+ -+ @Y, + €

index-165_5.jpg
T:0D)

index-165_4.jpg

index-165_7.jpg
|\ T, (V)| < ||[Vf

(a)|ll|lv]]

index-165_6.jpg
Vf(a).v,

index-165_1.jpg
9f(a) of(a) df(a)

ax, | ox, | 0x,

Here, Vf(a) = (

index-164_28.jpg
i .l .

To(x) =T, (Z xkek> = Z To(xkex) = Z xiTalex) = i xif'(a, ex)
k: k=1

k=1 k=1

of (@)
dx

M’ it

Ta(x) = = Vf(a) - x,

~
i

1

index-165_3.jpg

index-165_2.jpg
e S

index-164_26.jpg

index-164_25.jpg

index-164_27.jpg

index-247_12.jpg
i

index-451_1.jpg

index-247_11.jpg

index-450_6.jpg
P(s) = P(x1,X2, .., Xy) = l_[P(x,-lxl,xz, e Xioq)

index-247_14.jpg
e

index-451_3.jpg
P(x;|x4,%X2, ..., X1_1) = P(x4|lx;_1) for 1°° order

index-247_13.jpg

index-451_2.jpg
AKX 1 X1 X i i Xp4)

index-450_5.jpg

index-191_15.jpg
Vg4

index-191_14.jpg
g,(x,v,z) =0

index-191_21.jpg
Vf(a(t)) ~a'(t) =0

index-191_20.jpg
d'(t) =0

index-191_23.jpg

index-191_22.jpg

index-191_17.jpg

index-191_16.jpg
Vg,

index-191_19.jpg

index-191_18.jpg

index-197_4.jpg

index-197_3.jpg
hi(x) <0

index-197_6.jpg

index-197_5.jpg

index-191_13.jpg
g.(x,v,z) =0

index-197_2.jpg

index-197_11.jpg

index-197_8.jpg
fxX)—f*< ¢

index-197_7.jpg
f(x) —qA,v) <e

index-197_10.jpg

index-197_9.jpg
minimize f(x)
subject to g;(x) = 0,
hi(x) <0,

index-191_4.jpg
g1(%4,%5,, %) = 0,4+, G (X4, X5, =

index-191_10.jpg
g1(x,v,z) =0

index-191_9.jpg

index-191_12.jpg
Maximize f(x,y,z)

index-191_11.jpg
g,(x,v,z) =0

index-191_6.jpg

index-191_5.jpg
A
-

index-191_8.jpg

index-191_7.jpg

index-197_15.jpg
hi(x*) <0, j=

index-197_14.jpg
gi(x*)=0,i=

index-198_2.jpg
*)=0, Vj
vihi(x*) =0, Vj

index-198_1.jpg

index-191_3.jpg
f(X1,X9,°,Xy)

index-191_2.jpg
g(x,y)=x+4y = 748

index-197_13.jpg

index-197_12.jpg

index-198_4.jpg

index-198_3.jpg

index-202_1.jpg

index-198_5.jpg
aL i * N\ - < *
o= = 0,thatis, 97 (') + ;1iagi(x) +]Zv,»ah,»(x)=

index-190_5.jpg

index-190_4.jpg

index-191_1.jpg

index-190_6.jpg

index-190_1.jpg
BAx"® = =Vf(x"™)

index-189_6.jpg
TR 2 4k = & o= a2 2 @ =

index-190_3.jpg
B, Vf(x*) Axk = —vf(x*) B-1vf(xk) < 0

index-190_2.jpg
vi(x¥) Axk < 0

index-196_4.jpg

index-352_2.jpg
dist(p, q)

index-352_1.jpg
N.(p) =1{qg | dist(p,q) <&, p€e D,q € D}

index-196_6.jpg

index-352_4.jpg
Pn

index-196_5.jpg

index-352_3.jpg

index-189_4.jpg

index-189_3.jpg

index-189_5.jpg
o) = (26— @) — 4b(y — 3%, 2b(y —x7))
V) = (51 5r) = (2 - @) = 4b(y = ¥)x

index-196_12.jpg

index-353_1.jpg
Directly
Reachable Points
 fromp

LU ., S

\
N\ L e? s e <—Re/achable Points
fromp

Core Point p

index-196_11.jpg

index-352_9.jpg

index-196_13.jpg

index-196_8.jpg
Al A

index-352_6.jpg

index-196_7.jpg
V4 f
(x)=2
AT
A

index-352_5.jpg

index-196_10.jpg
g:R = IR

index-352_8.jpg
i

index-196_9.jpg
" = R

index-352_7.jpg
Pis1

index-188_10.jpg
n; =a € (0,1)

index-188_9.jpg

index-189_2.jpg

index-189_1.jpg

index-188_6.jpg
fla+v) <f(a)+Vf(a)- v

index-188_8.jpg

index-188_7.jpg
» f(xt 4+ naxt) < f(xY) + 08 VF(x!)Ax!, where n;,; = an;

index-196_15.jpg
i
1 1
g(t) = log det(X) + log det (1 i x‘ivx‘i) =logdet(X) + Z log(1 + t;)

index-357_1.jpg

index-196_14.jpg
g(¢) = log det(X + tV) = log et [x (: FEXTIVXZ)]

index-356_1.jpg

index-196_17.jpg
—v—s
XY 2V X 2

index-358_2.jpg

index-196_16.jpg

index-358_1.jpg

index-188_3.jpg
= argmin f (x + sAx)
58

index-188_2.jpg

index-188_5.jpg
AXY

index-354_1.jpg

index-188_4.jpg

index-197_1.jpg
V2f
(x)

index-196_22.jpg

index-358_7.jpg
. s oee

-

index-196_19.jpg
fBx+(1-0)y) <0f(x)+ A -6)f(y)

index-358_4.jpg
o=

index-196_18.jpg

index-358_3.jpg

index-196_21.jpg
g;(x) = aj x — b;

index-358_6.jpg

index-196_20.jpg
minimize f(x)
subject to g;(x) = 0, i=1,-,m
hi(x) <0, j=

index-358_5.jpg

index-194_13.jpg

index-194_12.jpg
|10x + (1 —0)y|| < 8||x|| + (1 —8)||y]

index-347_7.jpg

index-187_17.jpg
xtt1l

index-187_16.jpg

index-188_1.jpg

index-187_18.jpg
n; Ax*

index-187_15.jpg

index-187_14.jpg

index-187_13.jpg

index-194_14.jpg
F) = ([T x)m

index-348_1.jpg
R= 0y

index-347_8.jpg
= TP+Fp

index-187_10.jpg

index-187_9.jpg

index-187_12.jpg

index-187_11.jpg

index-195_4.jpg

index-349_2.jpg
x; € R?

index-195_3.jpg
fO=2fX)+VFx)' (y—x)

index-349_1.jpg
I AT

index-195_6.jpg
Fy+A-0x) <tf(y)+ A -0)f (%)
or, f(x + t(y = x)) < tf(¥) + (1 = Of (%) = tf () + f (%) = tf (%)

or £ > £ + LEHHO =) =)

index-349_4.jpg
K
min " " llx = wlf

i=1 xes;

index-195_5.jpg

index-349_3.jpg
S =1{51,5;5,

index-194_16.jpg
f(X) = logdet(X)

index-348_3.jpg
r, = & T DPR
B~"B2ptrR

index-194_15.jpg

index-348_2.jpg

index-195_2.jpg
aomain(f)

index-348_5.jpg
(AB)_IAnBI_ TP
J(4, “JAUB| TP +FN+FP

index-195_1.jpg

index-348_4.jpg
FM =

index-195_7.jpg
t — ()

index-187_6.jpg
|Vf(x)[, <e

index-187_5.jpg

index-187_8.jpg
e > ()

index-187_7.jpg
e > ()

index-187_4.jpg
x'tt = xt + n;Ax?

index-187_3.jpg
U F

index-349_5.jpg

index-187_2.jpg
Ax' = —Vf(x)

index-195_9.jpg

index-349_7.jpg
1C1,C2, ", Ci }

index-195_8.jpg

index-349_6.jpg
O(deﬂ)

index-186_30.jpg
(x, —a)

index-186_29.jpg
—-Vf(a)

index-187_1.jpg
Xo € domain(f)

index-186_31.jpg

index-196_1.jpg
~xTPx+q"x+r

f(x)

index-350_2.jpg
m}_in dist(xi, c}-)

index-195_14.jpg

index-350_1.jpg

index-196_3.jpg

index-196_2.jpg

index-350_3.jpg
1C1,C2, ", Ci }

index-195_11.jpg

index-349_9.jpg

index-195_10.jpg

index-349_8.jpg

index-195_13.jpg
L
=0

index-349_11.jpg

index-195_12.jpg

index-349_10.jpg

index-193_5.jpg
AV

index-345_12.jpg

index-193_4.jpg
}'t,-(x) =hi(x) + s]-z

index-345_11.jpg

index-193_7.jpg

index-193_6.jpg
q4,v) = ILlfL(X, Av)

index-345_13.jpg

index-186_26.jpg
(x, — a)

index-186_25.jpg

index-186_28.jpg
-Vf(a)

index-186_27.jpg

index-186_23.jpg

index-186_22.jpg
= f(a)+ Vf(a)- v+ ||V||E(a,v)

index-186_24.jpg
Vi(a) - v

index-186_19.jpg
X, € domain(f)

index-186_18.jpg
a € domain(f)

index-186_21.jpg

index-186_20.jpg

index-193_12.jpg
LE AN = f@+ Y Agi@) + Y v < f&x)
=1 T

index-346_3.jpg

index-193_11.jpg

index-346_2.jpg

index-193_14.jpg
Supq(4,v) < f(X),whenv >0
v

index-346_5.jpg
b(x-

i

index-193_13.jpg
q(4,v) = h;nfL(x,l,v) < f(x") whenv >0

index-346_4.jpg
f
b(<f) = min ey > dist(xf 1)

Lecl
xkec

index-193_8.jpg

index-345_15.jpg
a(x;)

index-345_14.jpg
K xk

7

index-193_10.jpg
e fid
Zligi(i) n Zvjﬁj(i) <0ify20, v
i=1

index-346_1.jpg

index-193_9.jpg
xX)<0

index-345_16.jpg

index-194_2.jpg

index-346_7.jpg

index-194_1.jpg
maximize q(4,v)
subjecttov = 0

index-346_6.jpg

index-194_3.jpg

index-186_15.jpg
f(x¥*+D)) < £ (x)

index-186_17.jpg

index-186_16.jpg

index-186_12.jpg

index-186_11.jpg
)

index-186_14.jpg
)

index-346_8.jpg

index-186_13.jpg

index-186_8.jpg
x'% € domain(f)

index-186_7.jpg

index-186_10.jpg
x(kt+l) =

index-186_9.jpg

index-194_9.jpg
f(x) =e“*

index-347_4.jpg
(1

index-194_8.jpg
fBx+(1—-0)y) <0f(x)+(1-06)f(y)

index-347_3.jpg
(1

index-194_11.jpg

index-347_6.jpg
Rl = 7o

index-194_10.jpg

index-347_5.jpg
(1

index-194_5.jpg

index-346_10.jpg
sC = NZ s(xK)
LK

index-194_4.jpg
" =R

index-346_9.jpg
alxi) X K
b(xK)’ i if a(xf) < b(xf)

s(x)— 0 . ;lfzz(x) b(x)
G)— 1; if a(xK) > b(xK)

a(xk)

1-

index-194_7.jpg

index-347_2.jpg
(1

index-194_6.jpg
aomain(f)

index-347_1.jpg
(1

index-286_9.jpg

index-286_8.jpg

index-286_11.jpg

index-286_10.jpg

index-286_7.jpg

index-287_4.jpg

index-186_6.jpg

index-186_5.jpg

index-287_1.jpg
f(x) =wix% 4+ wox + ws,

index-286_12.jpg
y ~ N(f(x),0%)

index-287_3.jpg
w= (W, W, W)

index-287_2.jpg
(W, W>, Wa)

index-287_8.jpg

index-287_7.jpg

index-287_10.jpg

index-287_9.jpg
Vi

index-287_6.jpg

index-287_5.jpg

index-287_12.jpg
T T WgaX4

index-287_11.jpg
Wy + Wi X4

index-287_14.jpg

index-287_13.jpg

index-202_6.jpg

index-202_5.jpg

index-203_2.jpg

index-203_1.jpg
1
G = (x1.%5 .. X5,)7 o1 log(G) =

index-202_2.jpg

index-202_4.jpg
(x; — a)

index-202_3.jpg

index-203_4.jpg

index-203_3.jpg
7!

i=17%;

index-203_5.jpg
n=2k+1

index-97_4.jpg

index-293_8.jpg

index-97_3.jpg

index-97_6.jpg

index-97_5.jpg

index-293_5.jpg

index-96_10.jpg
[u|| = /(u,u)

index-293_4.jpg

index-96_9.jpg

index-293_7.jpg

index-97_2.jpg
lul|“ + |v||* = ||lu+v||* YVu,veVif (uv)=

index-293_6.jpg
Winodet = (AI + ¢T¢.)‘1¢1y

index-97_1.jpg

index-293_12.jpg

index-293_11.jpg

index-294_2.jpg

index-96_8.jpg
(av,u)

alv,u)

index-294_1.jpg
y(x)

sin(2mx)

index-96_7.jpg

index-293_10.jpg

index-293_9.jpg

index-96_3.jpg

index-96_2.jpg

index-96_5.jpg

index-96_4.jpg

index-294_4.jpg

index-95_2.jpg
b 1/P
I£l, = (/ IfI”dx> <

index-294_3.jpg

index-95_1.jpg
b
ilnl") <
|Ge)2allp = 2

index-294_6.jpg
El[{yv(x; w) — h(x)}*].

index-96_1.jpg
Loz = lAll,z = <Z @(d”)z»%

=

index-294_5.jpg

index-95_3.jpg
“la

n o, m Up
|Allpq = z (Zla,,|) wherep,q > 1

j=1 \i=1

index-96_6.jpg

index-94_4.jpg
P = {(x»;’;f Dl < eo}
1

index-290_21.jpg

index-93_7.jpg

index-290_20.jpg

index-93_6.jpg
p =1

index-94_1.jpg
|ull, = |la| + |ay,| + -+ |a,|

index-290_22.jpg

index-93_8.jpg
lull, = (lag|? + laz|P + - + |a,|P) /7

index-290_17.jpg
SN_ (3, — wTp(x,))

index-93_3.jpg
_ _faifa=0
lall = lal ={ % 7.2 2%

index-290_16.jpg

index-93_2.jpg

index-290_19.jpg
(- s]

index-93_5.jpg
jufl,

index-290_18.jpg
E,= (v, —wlp(x,))’

index-93_4.jpg

index-94_3.jpg
ull, = maxtlal,la,|, -, |a,l}

index-94_2.jpg
[*(u,v) = ||lu-v||, =|ay — b{| + |la, — b,| + -+ |a,, — b,]|

index-290_24.jpg
w(0)

index-290_23.jpg
(®7Td) ™

index-290_26.jpg

index-290_25.jpg
wlttl) = w(t) — pVE_

index-291_5.jpg
x = ¢d(x)

[§ & w0 b

index-91_10.jpg

index-291_4.jpg
y = sin(2mx) + noise

index-91_9.jpg
—qla;| < oo

index-92_2.jpg
[1f
(:
x)|?d.
X
<
e

index-92_1.jpg

index-291_1.jpg
WD = w® + (3, — WO P x)) Px)

index-91_6.jpg

index-290_27.jpg
VE,,

index-291_3.jpg
prp—

3y gty e

‘potal wigth tem)

index-91_8.jpg

index-291_2.jpg

index-91_7.jpg

index-92_4.jpg

index-92_3.jpg

index-93_1.jpg
llw +v[[* + [lu—v||* = 2[[u|l* + 2|v]I* vu,v eV

|(uq, 1) — (Uy,)|l < (llg — wo || + lvy — v |D); uq, u, € R™; w4, v, € R”

index-293_1.jpg
4 a 5

1784 (53123 (458009 (1974108 | 467144 (7135147 |461136.6 (2526027 |-5435.09

s |156 [616 [377 |78¢ |7.06 34 155|672

index-292_1.jpg

index-293_3.jpg
N
> On = W)’ + wl?
n=1

index-293_2.jpg

index-291_6.jpg
y = 11.3x — 33.6x“ + 22.6x°

index-289_6.jpg

index-90_7.jpg

index-289_5.jpg
w' Yo p(x,)P:(x,) = X>_1 Vdi(x,), foralli =

index-90_6.jpg

index-290_1.jpg
b’
y

index-91_1.jpg

index-289_7.jpg
P (x1) Po(x1) P1(x1) | Pm(x1)
b = ¢(f‘fz) = ¢n(xz)¢1(xz) ..A¢M§xz)>

'P(;‘N) ¢n('x1v)¢1(xw) m(f’M('xN)

index-90_8.jpg

index-289_2.jpg
N N
logL = —=log(2m) —=logo? — zi Ny O — wrtl)(x,,))Z

2

index-289_1.jpg
Fixed Basis Functions

Input
Vector(x)

o

Output

Weights associated with
Incoming arrows show $3(x) - feature maps ¢;

the dependency of each
¢; on all the features x;

index-289_4.jpg

index-90_5.jpg
u+v+w)=(u+v)+w Yuv,weV

index-289_3.jpg
dlogl _

N
Setting — = - Z 2(yp — W (%)) $i(x) = 0, foralli = 0, ..., M
=1

index-90_4.jpg

index-91_3.jpg

index-290_2.jpg
RN
)w

index-91_2.jpg

index-91_5.jpg

index-91_4.jpg

index-290_4.jpg
RN
)

index-290_3.jpg
RN

w = @
1z
y

index-290_10.jpg
Y1 2(yn —Wip(x,)).1=0

index-88_4.jpg

index-290_9.jpg

index-88_3.jpg

index-290_12.jpg
wo. 1 — Yz wii(x,)) = 0

index-88_6.jpg

index-290_11.jpg

index-88_5.jpg

index-290_6.jpg
Ly
Wote = (0T®) @7y
‘mle

index-290_5.jpg
<

index-290_8.jpg
awg

index-88_2.jpg

index-290_7.jpg

index-90_3.jpg

index-89_1.jpg

index-88_7.jpg

index-90_2.jpg

index-90_1.jpg

index-290_13.jpg
Zﬁ—ly -
=1Yn = 1WtN et 01(X) =7 — Ty wi B,

index-290_15.jpg

index-290_14.jpg

index-288_4.jpg

index-87_2.jpg

index-288_3.jpg

index-87_1.jpg
u=a, *(100,-,00)+a; *(0,10,-,0,0) + - + ap—, *(0,0,0,-+-,1,0)
+a, *(0,0,0,---,0,1)

index-288_6.jpg
)X
1 WiX;

index-87_4.jpg

index-288_5.jpg

index-87_3.jpg
Vv41,V9 €85, av¢ + fVy = Dy

index-287_15.jpg

index-288_2.jpg
y = f(x;w) + €, where e~N(0,0%)

index-288_1.jpg

index-88_1.jpg

index-87_9.jpg

index-288_8.jpg

index-87_6.jpg

index-288_7.jpg

index-87_5.jpg

index-87_8.jpg

index-288_9.jpg

index-87_7.jpg

index-288_15.jpg

index-86_5.jpg

index-288_14.jpg
(Po(x), P1(x), ..., Dy (X))

index-288_17.jpg

index-86_7.jpg

index-288_16.jpg
Do

index-86_6.jpg

index-288_11.jpg

index-288_10.jpg

index-288_13.jpg

index-288_12.jpg

index-86_13.jpg

index-86_12.jpg

index-86_14.jpg

index-288_19.jpg

index-86_9.jpg

index-288_18.jpg

index-86_8.jpg

index-86_11.jpg

index-86_10.jpg

index-288_20.jpg

index-209_4.jpg
Max—Min
Max+Min

index-85_3.jpg

index-85_2.jpg

index-209_1.jpg
1
gZi|xi—A|

index-364_1.jpg

index-207_2.jpg
“sepal length (cm) ‘seaal width fon) “etal length (cm) Detal width (am)

index-363_1.jpg
Single Linkage Jverage Linkage Complete Linkage

index-209_3.jpg

index-365_2.jpg

index-209_2.jpg

index-365_1.jpg
L := D — A; where D; —Z

index-86_2.jpg

index-86_1.jpg

index-86_4.jpg

index-86_3.jpg

index-85_5.jpg

index-85_4.jpg
2 15 </ 139 39
(56) ==+ (13) = (§+?§+§) = (5,6)

index-85_7.jpg

index-85_6.jpg

index-209_8.jpg
100 x

21 S

index-365_7.jpg

index-209_7.jpg

index-365_6.jpg

index-210_2.jpg
(= A
=~ Ty

index-366_2.jpg
X ={x1,X3,""", Xn }

index-210_1.jpg
index sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

sD 0 0.828066 0.435866 1.765298 0.762238
cv 0 14.171126 14.256420 46.974407 63.555114

index-366_1.jpg

index-365_3.jpg

index-209_6.jpg

index-365_5.jpg

index-209_5.jpg
g3-e1
03+01

index-365_4.jpg

index-211_1.jpg
B >3

B2 <3

“Kurtosis

index-366_4.jpg

index-210_3.jpg

index-366_3.jpg
C ={c1,C3,**,Cm}

index-212_2.jpg

index-212_1.jpg
potal lngth (o)

‘sepel width (am)

index-366_5.jpg

index-212_7.jpg

index-367_6.jpg
(

[l =
Il = el

)

index-212_6.jpg
cov(x,y) = = Ti(x; — ©) (¥ — 7)

index-367_5.jpg

index-212_9.jpg
FPxy

index-367_8.jpg

index-212_8.jpg

index-367_7.jpg

index-212_3.jpg

index-367_2.jpg

index-367_1.jpg

index-212_5.jpg
Vi

index-367_4.jpg

index-212_4.jpg

index-367_3.jpg

index-359_16.jpg

index-359_15.jpg

index-359_12.jpg

index-359_11.jpg

index-359_14.jpg

index-359_13.jpg
e

index-359_19.jpg
m. =),i¥ic

index-359_18.jpg
Vic

__ TN (Xilke, o)

T N (x|, 0.1)

index-360_2.jpg
¢
N = —Z Vie (X — 1) (% — 1)
Ml

index-360_1.jpg

index-359_17.jpg

index-360_7.jpg

index-360_4.jpg
e — U

index-360_3.jpg
Vic

meexp{=Ilx; — pcll*/2¢}

rwrexp{—||x; — w.r||2/2€}

index-360_6.jpg

index-360_5.jpg

index-204_3.jpg
=1, fam+1

index-362_3.jpg
min{dis(a,b):a € P,b € Q}

index-204_2.jpg
fu

index-362_2.jpg
I & ()

index-207_1.jpg
sepal length (cm)

Min

Max

}—

—

Lower Median Upper
Quartile @ Quartile
ai a3
as 50 55 80 65 70 7s

80

index-362_5.jpg
BB ‘1|Q| Z z dis(a, b)

aeP beQ

index-205_1.jpg
sepal length (cm)

Sopol vk)

petatength cm)

et width (cm)

index-362_4.jpg
maxi{dis(a,b):a € P,b € Q}

index-204_1.jpg

index-362_1.jpg
0 6] 15
© BB

index-360_8.jpg
P(X|0) =).,,P(X,Z|0)

index-358_8.jpg

index-358_10.jpg
P(x|c) = N (x|u., o.)

index-358_9.jpg

index-359_5.jpg

index-359_4.jpg

index-359_6.jpg

index-359_1.jpg
M

index-358_11.jpg
PCo2) =) plz =) N (xlue,0c)

index-359_3.jpg

index-359_2.jpg
X
~

index-359_8.jpg
M~

index-359_7.jpg
X
~

index-359_10.jpg
e

index-359_9.jpg
=¥, —)T (x; —)

index-191_24.jpg
Vg4

index-191_26.jpg

index-191_25.jpg
Vg,

index-192_2.jpg

index-192_1.jpg

index-192_3.jpg
L(x,A) =f(x)+A91(x) + 4,9, (x) + -+ 1,,9m(X)

index-191_28.jpg
Vg,

index-191_27.jpg
Vg4

index-191_30.jpg

index-191_29.jpg

index-184_12.jpg
or, g(1)—g(0) = g'(0) + gZ—(f),o <c<1

index-184_18.jpg
flaty)—f(a)=Vf(a) -y + %yﬂ(a+uy)yr,0<u< 1

index-184_17.jpg
g"(u) = ZZ;‘_I Dyf (r(w)ywy; = yH(r@w)y"
i=1 e

index-185_2.jpg
I¥I12E,(a,3) = 5 y[H(a +uy) — H@)] 37,0 <u < 1

index-185_1.jpg

index-184_14.jpg

index-184_13.jpg
gw) = f(rw))

index-184_16.jpg

index-184_15.jpg
g'(w) = Vf(r(u)) ') = Vf(r(u)) y= le D;f (r(w)y;

index-222_5.jpg
P(L =8|4) = 5—’0

index-222_4.jpg
A —0.52

index-223_1.jpg
Frequancy

= sea bass
- sea salmon

Ak

Lightness (lux)

IIII|

index-222_6.jpg
L=
d P(A'|
an

6=

)
6l4
PA)PUL =

)
P(L=6

index-184_11.jpg
g()

s =g+ L2 a-0+ L2

(1-02%0<c<1

index-184_10.jpg
fla+y)—f(a)

g(u

1)—g(u=0)

index-222_3.jpg
P(1<L<4lA)

index-222_2.jpg

index-223_3.jpg
pLiA) P(A)
P(LA) P

index-223_2.jpg

index-223_5.jpg
Likelihood Ratio: 214
A

0=05

0=20

=30

Sea bass

Sea bass

Seabass

Sea bass

Sea bass

Sea salmon

Sea salmon

Sea salmon

Sea salmon

Sea bass

Sea salmon

Sea salmon

Sea salmon

Sea salmon

Sea salmon

Sea salmon

Sea salmon

Sea salmon

index-223_4.jpg

index-184_7.jpg

index-184_6.jpg

index-184_9.jpg

index-184_8.jpg
g(u) = f(

a+ uy)

index-184_3.jpg

index-184_2.jpg

index-184_5.jpg
Ha)=[|

index-184_4.jpg
Vf = (gg) =(2%,2y) =0

index-183_6.jpg

index-183_5.jpg

index-184_1.jpg

index-183_2.jpg

index-183_1.jpg
ey .
N e

index-183_4.jpg

index-183_3.jpg

index-182_12.jpg

index-182_14.jpg
) =% =0

index-182_13.jpg

index-218_5.jpg
P(ANB) = % = % % = P(A)P(B)

index-218_4.jpg
= P(E)P(0)

index-219_1.jpg
1
P(4IC) = = = P(BIC)

index-218_6.jpg
PAANB|C)=P{(1,5-1),(5-2,2)} =%=%

index-182_9.jpg

index-182_8.jpg

index-182_11.jpg

index-182_10.jpg

index-219_7.jpg

index-219_6.jpg
P(A)=P(ANnU)=P(ANn(H{UH,UH3))= P((ANH)U (ANH,)U(ANH,))

index-219_3.jpg
U = H; UH, U Hj

index-219_2.jpg

index-219_5.jpg

index-219_4.jpg
ANH,ANH,

index-182_5.jpg

index-182_4.jpg

index-182_7.jpg

index-182_6.jpg

index-182_3.jpg

index-182_2.jpg

index-220_2.jpg

index-182_1.jpg
"= R

index-220_1.jpg
%

index-220_4.jpg
P(ANB) _ P(B|A)P(A)
P(AIB) = — == =—— ~——

index-220_3.jpg
P(A) =) P(AIHOP(H)

=%

index-180_17.jpg

index-180_16.jpg
grady(z) = (o'(v;)e; @ e;) - (xxe; @ e; @ ey)

index-181_1.jpg
dy_dW = [[[[©.02186307 ©.04372615 ©.06558922 ©.08745229]
o. 0. o. o.
o. 0. o. o.
9. 0. . 0.
[l[e. 0. o. o.
©.00421308 0.00842615 0.01263923 0.0168523
0. 9. . 0.
o. 0. o. o.
[l[e. 0. o. o.
o. 0. o. °.
©.01294293 0.02588586 0.03882878 0.05177171
o. 0. o. o.
[l[e. 0. o. °.
o. 0. 0. o.
o. 0. o. o.
©0.00108958 0.00217915 0.00326873 0.0043583 1

(None, TensorShape([4, 1, 4, 4]))

index-219_8.jpg
P(A) = P(A|H,{)P(H,) + P(A|H,)P(H,) + P(A|H3)P(H53)

index-180_18.jpg
grady(z) = (e; - xe;) (o' (v;)e;) @ (ej @ ex) = (xx-1.0'(y;)e;) @ (e; @ ey)

index-222_1.jpg

index-221_2.jpg

index-221_1.jpg
0.95X0.02
0048

index-221_4.jpg
P(H;)P(AlH;) P(H))P(AlH;)
P(B) Y, P(H)P(AlH)

P(H,IB) =

index-221_3.jpg
P(H;)) >0fori=123..n

index-215_2.jpg
TUE ={234,6}and P(TUE) =

index-180_13.jpg
Vi

index-180_12.jpg
z(’)y

grady(z) = Iy W

index-180_15.jpg
0% . 9%

oW 6W ei®e Qe =x Qe Qe

index-180_14.jpg

index-180_11.jpg
grady(z)

index-180_10.jpg

index-375_2.jpg
CovMat

index-180_9.jpg

index-215_4.jpg
P(TUE)=P(T)+P(E)—P(TnE)=§—%

index-376_2.jpg
—0.
Js = 0.0782,e5 = [gg%g };
05458

index-215_3.jpg
P(TUE)#P(T)+P(E)=§+§=§

index-376_1.jpg
0.8566 0.1733

—0.
)y = 4.2282,€;, = [—0-0345}; 1, = 0.2426,¢, = [—0.7301]
0.3582 00754

index-180_6.jpg

index-180_5.jpg

index-180_8.jpg

index-180_7.jpg
f) =(c(y1),0002),a(yn))

index-216_6.jpg
P(A|B) =

P(ANB) =
P(B)

=]

Bl

index-383_1.jpg

index-216_5.jpg

index-380_1.jpg
Encoded

Encoder Decoder

index-216_8.jpg
~# P(A|B)

index-216_7.jpg
P(BA) =

P(4nB) _
P(4)

2]l

index-383_2.jpg
S EYTEN A

index-216_2.jpg

index-377_1.jpg
axis 2

axis 1

index-216_1.jpg
P(E|T) =

index-376_3.jpg
—0.0845 —0.7301
0.8566 0.1733
03582 00754

03613 —0.6565
TransMat = }

index-216_4.jpg

index-378_2.jpg
(SumOfChosenEigenValues x 100)
CovarainceMatrixTrace

% Varaince Retention =

index-216_3.jpg

index-378_1.jpg
T (EigenValue * 100)
oY araince Relention = o e MatrixTFiie

index-180_2.jpg

index-180_1.jpg

index-180_4.jpg
grady(z) =

index-180_3.jpg

index-179_4.jpg
04;; ad
~ grad tr(4) = — el®e,7e,®e,7l le, tr(A):l

0A;;

index-216_9.jpg

index-383_4.jpg
Y1, VY2, Vnl

index-179_3.jpg
ad 5,411 04y, OAnn _ 0Ay
grad tr(A)— tr(A) Ta 4 +oet 2 =24

index-383_3.jpg
R4

index-217_2.jpg
P(A, NA; NA3z)
= P((Al N 4z) N A;)
= P((41 N 4;) |43)P(43)
= P(434; N A;)P(A; N A7)
= P(Az|A, N A,)P(4,|4,)P(4,) = P(A4|4; N A,)P(A,|A)P(4,)

index-383_6.jpg

index-179_5.jpg
a d T
_tr(A"B) = = =(a1
Mtr(A B) = Band =z Inj4| (a1

index-217_1.jpg
P(A; N A; NA3) = P(A; N (A2 N43))
= P(4;]42 N A3)P(A; N 43) = P(A1|42 N A3)P(43]42)P(A)
= P(A,|4, N A3)P(A,|42)P(42)

index-383_5.jpg
R

index-178_15.jpg

index-178_14.jpg

index-179_2.jpg

index-179_1.jpg
some

e.], [[e.

20, e
0], [3.,
.11, [e.,

cwes

index-218_2.jpg

index-384_6.jpg
R4

index-218_1.jpg

index-384_5.jpg

index-218_3.jpg

index-217_4.jpg

index-384_2.jpg

index-217_3.jpg
P(A\B) = P(A)

index-384_1.jpg
Vi

index-217_6.jpg
@y @s wn

Event A: Sum of two
outcomesis 7
@ (1

@ “3)

6.3 64 635 66

©o ©3 64 ©5 66

Event B: Atleast one
outcome is 2

@
e 6
@y @2 @3 @9

“? 4y &)

44 &5 (46

index-384_4.jpg

index-217_5.jpg
P(ANnB) = P(A)P(B).

index-384_3.jpg
Pijli

index-213_1.jpg
—1 < pyy =1

index-367_10.jpg
Skl
arg mmz Z Wu(xl)”xL c]”

=i =

index-212_10.jpg
cov(x,y)
oy = 0,0,

index-367_9.jpg
i=1 (Wﬁc (xi)) Xi

S wi(x)

index-213_2.jpg

index-178_11.jpg
Vi

index-178_13.jpg
2.k Wi xy

index-178_12.jpg
Wik as y;

index-367_11.jpg
wl-‘j- (x,
1) € {0,
,1)

index-213_8.jpg
probabuity of winning _ 3
probability of loosing 1

e,3tol

index-373_2.jpg
i

index-213_7.jpg
0.25 = 1 — Probability of winning.

index-373_1.jpg
1P1, P2, » Pn}t

index-214_2.jpg
P(E) =

n(E)
ThE

index-373_4.jpg

index-214_1.jpg

index-373_3.jpg
.

index-213_4.jpg

index-367_13.jpg

index-213_3.jpg
Pry = 1

index-367_12.jpg
d €

index-213_6.jpg
o L no of times won 1
probability of winning = W =133~ 0.25

index-372_1.jpg

index-213_5.jpg

index-367_14.jpg
d—»l,wi'}

index-214_4.jpg
P(E)=P(0) =>=0.5

index-214_3.jpg
P({i}) = -

index-373_5.jpg
i

index-214_5.jpg

index-373_7.jpg
i

index-373_6.jpg
i

index-214_11.jpg
P(TNE) = P({6}) =

index-374_4.jpg
Ui

index-214_10.jpg

index-374_3.jpg

index-215_1.jpg
Sample Space

index-375_1.jpg
0.685 —0.0424 1274 0.516
—0.042 0189 -0329 -0.121
1274 -0329 3116 1.295
0516 —-0.121 1.295 0.581

cov_mat =

index-214_12.jpg
P(TN0)=P({3) ==

index-374_5.jpg

index-214_7.jpg

index-373_9.jpg
] >1

index-214_6.jpg

index-373_8.jpg
Fi

index-214_9.jpg
I = {3,6}

index-374_2.jpg
1w
cov(F,G) = ;Z(ﬂ -N@i-9
i=1

index-214_8.jpg

index-374_1.jpg

cover_image.jpg
Ghosh T. Practical
Mathematics for
Al and

Z.amzar

index-1_1.jpg
Practical
Mathematics

for————

Al and Deep Learning

A Concise yet In-Depth Guide on Fundamentals of Computer Vision,
NLP, Complex Deep Neural Networks and Machine Learning

Tamoghna Ghosh
Shravan Kumar Belagal Math '%I

index-3_1.jpg

index-2_1.jpg
Practical
Mathematics

for————

Al and Deep Learning

A Concise yet In-Depth Guide on Fundamentals of Computer Vision,
NLP, Complex Deep Neural Networks and Machine Learning

Tamoghna Ghosh
Shravan Kumar Belagal Math '%I

index-3_3.jpg

index-3_2.jpg

index-31_1.jpg
Computer
Vision

Speech
Recognition,
Generation

"

Artificial Intelligence

Robotics

Machine
Learning

Deep
Learning

Natural
Language
Understanding

\

Expert
Systems

index-4_1.jpg
ToView Complte
BPB Publications Catalogue

Scan the QR Code:

index-32_1.jpg
Rules

Classical

A Answers
Programming

Data

Data

Machine —>» Rules
Answers learning

index-229_5.jpg
1 x2
J; f(x)dx = 6(7—

X3
?)'- 2

index-400_5.jpg

index-229_4.jpg

index-400_4.jpg

index-229_7.jpg

index-229_6.jpg
P(X>Z)—f1 dx=6(-%) s —6(1 1) e =088
3)=) J®ax=06l7-3)ls=6{3-3) 65~ 81)

index-400_6.jpg

index-229_12.jpg

index-400_12.jpg
W

index-229_11.jpg
F(+o0) =lmF(x) =1

index-400_11.jpg

index-229_14.jpg

index-400_14.jpg

index-229_13.jpg
lim F(x) =
Ry

index-400_13.jpg
X
-

index-229_8.jpg

index-400_8.jpg

index-400_7.jpg

index-229_10.jpg
0<F(x)<1,forall x

index-400_10.jpg
U & v

index-229_9.jpg
[7 f(x)dx

index-400_9.jpg
W xen

index-229_16.jpg

index-400_16.jpg

index-229_15.jpg
x<y=F(x)<F(y)

index-400_15.jpg

index-229_17.jpg
D
Pla<X<b)= f Fx)dx = F(b) - F(@

index-400_17.jpg

index-230_6.jpg

index-400_23.jpg
e

index-230_5.jpg
)=1p

index-400_22.jpg

index-230_8.jpg
[~
O f
(x)dx
=1

index-400_25.jpg

index-230_7.jpg

index-400_24.jpg

index-230_2.jpg
a,b|,where a <

index-400_19.jpg

index-230_1.jpg
dF(x)

=f)

index-400_18.jpg

index-230_4.jpg

index-400_21.jpg
wWiw,'

index-230_3.jpg

index-400_20.jpg
pXl&r Xl

index-226_3.jpg

index-226_2.jpg
pifx=1
f)={1—p, if x=0 = {"x(l —P)Ex =0
0, otherwise 0, otherwise

index-395_1.jpg
1 shy 0O 1 05 0
= y Yo
shear [shx 1 0] [0.1 1 o]

index-225_6.jpg
<f(x)<1

index-393_1.jpg
100

150

200

250

100 200 300 400

index-225_5.jpg

index-391_2.jpg
255 80180180 80255
50 120220220 120 50
50 120220220 120 50
255 80 180180 80255

index-226_1.jpg
0t

03

o

o1

,
PRI —

LR

1388558

index-394_2.jpg
[cos@ —sm@ 0][094 -—0.34
rotate = | .o o ol =lo3s 094 o

index-225_7.jpg
X,P(X =a) = f(a)

index-394_1.jpg
a
i~ =2 =
22 m:;] [;]
N

index-227_2.jpg
p*(1—-p)"*~*

index-397_2.jpg

index-227_1.jpg
K
f =] [
i=1

index-397_1.jpg

index-227_4.jpg
(P)p*(1 —p)™*

index-397_4.jpg
G(x,y) =w(-1,-DIx-1,y-1)+w(-1,0)I(x-1,y) + w(-1,DI(x -1,y + 1)
+w(0,-DI(x,y — 1) + w(0,0)I(x,y) + w(0,1)I(x,y + 1)
+w@l,-DIx+1,y-D+w@0)Ix+1,y)+w@l,DIx+1,y+ 1)

index-227_3.jpg

index-397_3.jpg

index-226_4.jpg
D.i Di

index-396_1.jpg
o — g T o Uy —— 5 gl - [R

index-395_2.jpg
0 0
scale = [58"][0'3 g 0]; translate =

"x] [1 0 150
08 0

3y 0 1 100

index-228_2.jpg
[~
O f
(x)dx
=1

index-227_6.jpg
p() = () p* (1 —p)" % x = 0,1,2,...,n

index-397_6.jpg

index-227_5.jpg

index-397_5.jpg

index-228_1.jpg

index-398_1.jpg
ESS

Pixel under
consideration

3x3 Kernel

(x1,y-1) | (x1y) |(xLy+1) 1

(10) | (1,42)

y-1) | (oy) | (oy+l) (0-1) | (00) | (041)

(x+Ly-1)| (x+Ly)

(x+1,y+1) +1,1)

+1,0) | (+#1,41)

index-227_7.jpg

index-397_7.jpg

index-229_1.jpg
f(x)=6x(1—x),0<x

<1

index-400_1.jpg

index-228_5.jpg
D
Pl@a<X<bh) =f f(x)dx

index-399_4.jpg
3x3 Kernel

[~
(xLy1) ﬁ (eLy+1) () | (0 | (1)
| s |-
>
%w) RN 00 | ©o | (0
>
!
foelyd) | edy) +1,y1)/ L) | (10 | e
™~

index-229_3.jpg
f(x) =0

index-400_3.jpg

index-229_2.jpg

index-400_2.jpg
Associative: f x(g*h) =(f xg) xh

index-399_1.jpg

index-228_4.jpg

index-399_3.jpg
a b

wxI(x,y) = z Z wis,)I(x —s,y — t)

ey c— 1)

index-228_3.jpg
f(x) =0

index-399_2.jpg
a b

wx1(x,y) = z z w(s, t)I(x +5,y +t)

o —

index-385_3.jpg

index-385_2.jpg
Pij

i log—2

C=I(L(P||Q)=ZZpU quij
i

index-385_4.jpg
aCc e
== 4Z(Pz‘f —ay) i —y) (1 + i - yillz)
-

9y;

index-384_21.jpg
VX,

index-384_20.jpg
i Pij > /o

index-385_1.jpg
1+ =

- (lly: y‘”Z B
J

Y1+ |ly. — yz?lz)‘l

index-384_22.jpg
Vi&Y;

index-385_6.jpg

index-385_5.jpg

index-385_8.jpg

index-385_7.jpg

index-185_25.jpg
» fl@+y) - £(@) = - yH@YT + [¥I2E;(a,3) = 5 yH(@)" ~ yI2E;(a,3) > 0

index-385_14.jpg

index-185_24.jpg
IYIIZ1E (@ »)I| < sullyll? <5 yH(a)y”

index-385_13.jpg
Perp(P;) = 2H(P)

index-185_27.jpg

index-185_26.jpg

index-385_10.jpg

index-385_9.jpg

index-385_12.jpg

index-385_11.jpg

index-186_4.jpg

index-186_3.jpg

index-185_29.jpg
(x,y) = (0,0)

index-185_28.jpg
oz 2
2= = 3
o 6xy + 3y

index-186_2.jpg
Z—;:O = y(y —2x) =0. So,ify # 0,y = 2x

index-186_1.jpg

index-225_2.jpg

index-387_1.jpg
axis2

20

10

index-225_1.jpg
P(X=1)=:

index-386_1.jpg
H(P) = —Z pjii loga by,

index-225_4.jpg
<f(x)=<1

index-391_1.jpg

index-225_3.jpg
=4+ 44-40=
Y f()=Z+Z+Z+240

index-390_1.jpg

index-385_15.jpg

index-185_14.jpg

index-185_16.jpg
y[H(a) — ully’ >0 vy = yH(a)y" > uyly' = ul|y||*

index-185_15.jpg

index-185_22.jpg
Iy112]
|E
@yl <7
=Anllyll?

index-185_21.jpg

index-185_23.jpg

index-185_18.jpg

index-185_17.jpg
E-(a,y) = 0asy—=0

index-185_20.jpg
|yl < a, 7/ n
6= A
IE(a Il
E(a, <

&

index-185_19.jpg

index-384_8.jpg

index-384_7.jpg

index-384_14.jpg
\'J]

index-384_13.jpg

index-185_5.jpg
E-(a,y) > 0asy—-0

index-384_16.jpg
Vi

index-185_4.jpg
fla
+
-
fla
)=
=Vf(a
yoy+ =
—yH(@y"
+
Iyl
E,(a,
,9),0
<%
<
1

index-384_15.jpg
Vi

index-384_10.jpg

index-384_9.jpg

index-384_12.jpg
Dili

index-384_11.jpg

index-185_11.jpg

index-185_10.jpg

index-185_13.jpg

index-185_12.jpg

index-185_7.jpg
fla+y) - £(@) = > yH@)T + IyI2E,(a,)

index-185_6.jpg

index-185_9.jpg

index-185_8.jpg

index-185_3.jpg

index-384_17.jpg

index-384_19.jpg
ili T Pilj
pyj = % where py; = pji,pu =

index-384_18.jpg
Fij

index-311_1.jpg
NN
APV

index-310_5.jpg
f:R—=S5SCER

index-311_3.jpg

index-311_2.jpg
Function Name (f)

Range (5)

Derivative f'(z) = L&

tanh (2) =5
an () =S

[11]

1—(tanh ()

sigmoid(2) = 1

[o1]

sigmoid(z)(1 —sigmoid(z))

ReLU(z) = max(0, z)

[0,5)

[U:/ZSO
zif 2> 0

exponential(z) = e*

[0,)

exponential(z)

LeakeyReLU(z)
{ zifz2>0
= lezif z< 0; cis constant

rw1<0
lifz=0

identity(

index-312_5.jpg

index-312_4.jpg
+1)

index-312_1.jpg

index-311_4.jpg

index-312_3.jpg
Hidden Layer
r I

index-312_2.jpg

index-313_1.jpg

index-312_7.jpg
(p+(x), D, (x), P2 (x)) € R3

index-313_3.jpg

index-313_2.jpg

index-312_6.jpg

index-313_8.jpg
A (Wil;l)

index-313_5.jpg

index-313_4.jpg

index-313_7.jpg

index-313_6.jpg

index-304_1.jpg

index-33_2.jpg
‘Sample Observations

Feapures

Clqss/Target

r
sepallength (cm) sepal widh (cm) _petallength (cm) _petal width cm) | type

1

7.1
62
56
54
50

30
29
30
34
36

Independent Variables

59
43
a1
17
14

24 virginica
13 versicolor
13 versicolor
02 setosa

02 setosa
Dependent Variable

index-33_1.jpg
s V 4 4
Iris Versicolor Iris Setosa Irls Vlrglnlca

index-35_1.jpg
Y
Collect Prepare Extract Train Evaluate
pata [Data Features Model [*] Model
) t T
L === =g

index-34_1.jpg
H
g
H
H
g

index-38_1.jpg
Unsupervised Reinforcement suputiad
Learning Learning Learning

= o= o= o e e Increase offecdback information on predicted result e e o

v &0

SO
Delayed or Partial feedback from

Complete feedback from the
‘the data during training abelied data during raining.

Nofeedback from the unlabelled
data during raining

index-37_1.jpg
Ethoicity Proentaxomic
Gender AL Colour pgon pmerican StudentRank Student Grade Sats
Womanman BondeBack, L FintSecond AWABGF Foor, Midde, High

" Nominal Dawa Original Data
(unordered) (orderec)
| Qualitative ‘
R Data -
Structured- i ey
Instructur
Data Data Types Data
9 7 Text:
Quantitative pined,handuriten
Data image:
Trtic uman acee
Discrte Data
Video:
o e -,
spoccs

Sdents wotkers Souts Human peech, Anmal

Nomberol Wamberol Namberof it s Soeed “okes

wwdenisin amployeesin goisina Weghtol squreox spedol

o} company | soccer match peole weacomred vawdes

D bidng

index-304_3.jpg

index-304_2.jpg

index-305_1.jpg

index-304_8.jpg
OLS Regression Results

Dep. Variable: petal length R-squared: 0.927
Hodel: OLS Adj. R-squared: 0.927
Method: Least Squares F-statistic: 1882.
Date: Tue, 31 Aug 2021 Prob (F-statistic): 4.68¢-86
Time: 16:49:52 Log-Likelihood: -101.18
No. Observations: 150 AIC: 206.4
DF Residuals: 48 BIC: 212.4
DF Model: 1

Covariance Type nonrobust

coef std err t Pt [o.025 0.975]

Intercept 1.083 e.073 14.85 6.000 6.939 1.228
petal width 2.2299 e.051 43.387 o.000 2.128 2.332

Omnibus 2.438 Durbin-Watsor 1.430
Prob(omnibus) : ©.295 Jarque-Bera (38): 1.966
Skew: 0.211 Prob(38): 0.374

Kurtosis: 3.363 Cond. No. 3.7

index-305_3.jpg

index-305_2.jpg
N N
Z.. 1(yn -y)?= Z 1(&; —)%+ eZ,i.e.SST = SSR + SSE
_ o

index-304_5.jpg

index-304_4.jpg

index-304_7.jpg
Wo £ £p. 025V ar(wp)

index-304_6.jpg
wy * £y 025 Var(w;)

index-305_4.jpg

index-305_6.jpg
— log(L)
Rpseudo = 1 10g(Lnyil)

index-305_5.jpg
R?

99K

index-310_3.jpg

index-310_2.jpg
x = (x4, X5,

index-310_4.jpg
600 = f (Z wm) =)

For

index-306_2.jpg

index-306_1.jpg

index-310_1.jpg
(® e

index-306_3.jpg
RBias® + Variance

index-302_17.jpg
LT
Wonte = (0T®) @7y
‘mle

index-302_16.jpg

index-302_18.jpg
% + ot Xnyn) _ Bl XY
@=’<xf1)(’“ x,,)l (2)(y1 o yyy = Gt Xnde) iz

YN x? T
. Xn 1

index-49_1.jpg
1400

1000

%0

Caleries Consumed

(63) uieS WM

index-48_1.jpg
Ture Positive Rate

1.0 —w< Perfect Classifier

o
®

°
&
|

o
2
|

0.2 —|

0.2 0.4 06 0.8 1.0
False Positive Rate

index-50_2.jpg

index-50_1.jpg

index-55_1.jpg
’ Training Set
Validati Trainir
e e] e
- i..mr - £

z"mmlm7 l | B =) £,

9™ iteration . =) £

10

0 =1

10"
teration l =) o

index-52_1.jpg
ML

Classic

Machine Ez;aatu;e | Classifier = Banana
. | :
Learning raction Algorithm
| e S— (2)

O
AN

Deep Banana

Learning

Neural Networks: Automatic Feature
extroction along with classification

index-57_1.jpg
M Il
BN Surveillance Health

Visualization of
aatior data Diagnosis and
Multidimensional Object
i
data COMPESSION. recognition & "E:""e"'“
- tracking e
 Dimensionality
Reduction pgricuiture Classification ealth
| Gene editing Drug discovery
unsup-rvlud supervised
Learning
Recommender
Netflix movie 7
recommender . Machine
Clustering Learning Regression
Finance
. - Factory
Credit card fraud dentifing Forecasting Growth
Weather popylation

detection commerce detect
Trgeted equipment
advertisements
for customer Gaming
Categoreis planning Robotics
strategieslike puromobpile PErTOrMing tasks
human based on s ytonomous like human, crop
environment el ke harvest

report,
Stock price

index-55_2.jpg

index-47_1.jpg
FP+IN

index-46_1.jpg
virginica

virsicolor

setosa virginica wvirsicolor
Predicted label

index-47_2.jpg
(i

FP+IN

index-303_6.jpg

index-303_5.jpg

index-303_8.jpg

index-303_7.jpg

index-303_2.jpg

index-303_1.jpg

index-303_4.jpg
W,

index-303_3.jpg
Var(w;) = Var (E—

index-303_10.jpg

index-303_9.jpg
Vi

index-44_2.jpg
TP+TN
TP+TN +FP+FN

index-44_4.jpg
10

index-44_3.jpg
10

index-45_2.jpg
TP
TP+FP

index-45_1.jpg
10

index-45_4.jpg
precision recall fl-score support

setosa 1.00 0.75 0.86 4
virginica 0.50 0.67 .57 3
virsicolor 0.33 0.33 0.33 3
accuracy 9.60 10
macro avg 0.61 0.58 0.59 10

weighted avg 0.65 0.60 0.61 10

index-45_3.jpg
(i

TP+EN

index-41_1.jpg
e -

A
F

+2

Standing

index-39_1.jpg
f2

Al

f1

index-303_11.jpg

index-44_1.jpg

index-41_2.jpg
s [m)]
fallen Slow

Standing Fast
Moving Fast

[= [me]

fallen

standing

moving

Slow

Slow

slow

fallen Slow

standing Slow
moving fast

index-303_17.jpg

index-303_16.jpg

index-303_19.jpg

index-303_18.jpg

index-303_13.jpg

index-303_12.jpg

index-303_15.jpg

index-303_14.jpg

index-70_3.jpg
e;:1b + 1p + 1m = 1500 92:5:2:91:92 ey:1b + 1p + 1m = 1500
e2: 3b + 4p + 2m = 4400 2217 o 0b + 1p — 1m = —100
e2: 2b + 2p + 2m = 2000 e3:0b + 0p + 0Om = —1000

ey+(~1)+e; e,
_—

index-70_2.jpg
g

8

2
¢
=
B
2
H
3
=

index-71_1.jpg
%11

12
az2

index-70_4.jpg
$1o0UphZm =000 o
e1 Ob +1p—1m = -100 thiid no solution as 0b + Op + O0m # —1000; b,p,m € R
e;: 0b + 0p + Om = —1000

index-72_2.jpg
4400 111
6500 2 5

111
[3 4 2 1500
6500

e 3 5

15001 swapry&r; [3 4 2
apntn

4400]

index-72_1.jpg
3 4 24400

1 1 1]1500
A=
5 3 516500.

index-72_4.jpg
15001 o _purysry [T 1 1

4400 ——3 |1 2 0
6500 £ 3 ¢

3 4 2
5§ 3 §

1400

[1 11
6500

1500]

index-72_3.jpg
111
3 4 2
5 3 §

2em—>r, [2 23000
——[3 4 2|4400
c 3 elgz00

4400
6500

1500]

index-73_2.jpg
&)
RS

o oo

c oo §

ay

o o

az

0

where a; # 0,a; € R

index-73_1.jpg
€16+ 0p + 2m = 1600 matrix representation 10 21600
e:0b+1p—1m=-100 ——— |0 1 -1|-100
e2: 0b + 0p — 2m = —1200 0 0 -21-1200.

index-70_1.jpg
e;:1o0 +1p + 1m = 1500
e;: 3b + 4p + 2m = 4400
e2:2b + 2p + 2m = 2000

index-302_2.jpg

index-302_1.jpg

index-302_4.jpg

index-302_3.jpg
Var|y, |x, | > E|y,, |X, |

index-301_11.jpg
N
VE =) On— A)b(xa) = @7y - 1

n=1

index-301_10.jpg
log (L)

index-302_6.jpg

index-302_5.jpg
P(Y|X)~ ExpFam(g~1(n)) = E[Y|X] =

index-302_8.jpg
Vo, = Wo + W1 X,,.

index-63_1.jpg
00,2120

cesusc

X

index-302_7.jpg
(x) =x

index-66_1.jpg
800
700
600

Movie Tickets

index-64_1.jpg

index-67_2.jpg
ep:1b + Op + 2m = 1600
(-1/2)xe3e5
e;:0b+1p—1m=—-100 ——— e,: 0b + 1p — 1m = —100
e,: 0b + 0p — 2m = —1200 e3:0b + 0p + 1m = 600

e1:1b + 0p + 2m = 1600 e;+(-2)re3-res

eztez—ez

index-67_1.jpg
e;:1b + 1p 4+ 1m = 1500 92+E—3;‘91*92 ey:1b + 1p + 1m = 1500 eq+(-1)rez-es

e ey
ep: 3b + 4p + 2m = 4400 227 o 0b 4+ 1p — 1m = —100 22275,
e2: 5b + 3p + 5m = 6500 e3:0b —2p + 0m = —=1000

index-69_1.jpg

index-67_3.jpg
e;:10 + Op + Om = 400 yields
e;:0b +1p +0m =500 = b =400, p = 500, m = 600
e2: 0b + 0p + 1m = 600

index-69_3.jpg
e;:1b +0p + 2m = 1600 yields
e;: 0b + 1p — 1m = =100 — b + 2m = 1600, p —m = —100
ex:0b+0p+0m=0

index-69_2.jpg
e;:1b + 1p + 1m = 1500 ez:E:;iwwez ey:1b + 1p + 1m = 1500
ep: 3b + 4p + 2m = 4400 227 0 0b + 1p — 1m = —100
e: 2b + 2p + 2m = 3000 e:0b+0p+0m=0

e1+(-1)vey ey
—_—

index-62_1.jpg
i
F=§E+3Z,

index-59_1.jpg
ARTIFICAL INTELLIGENCE

MECHEmNE=On

L OMCR = =

>EUROX U<SUDSD®

m=ZECXE <SRRI

FOUR PILLARS

index-302_13.jpg
w, Vn

index-302_12.jpg

index-302_15.jpg
Vai
(Y
=2
oy

index-302_14.jpg
Var(Y) =

index-302_9.jpg

index-302_11.jpg
En = (Vo — Vo)

index-302_10.jpg
VY

index-77_1.jpg
[AB; j = a; by j + ayzbyj + -+ aynby j irbrj wherel<i<m;1<j<gq

index-76_6.jpg

index-77_3.jpg
14314 3 %44+ 1420 1w14 3514140 1*‘2+3*r1+1*‘1v 17 4 6
2#3+4+4+3 %2 2*1‘+4*w w+3*w0 2*2+4*w w+3*w1 28 6 19
4n3ES Al 12 4151t 1n0 aw2tSaitiall l34 9 1

index-77_2.jpg
AB

NI

SN

— 0
=
N B 0

O I

— 1

index-78_1.jpg
e

trace(4) = z a;,

=1

index-77_4.jpg

index-78_3.jpg

index-78_2.jpg

index-79_2.jpg

index-79_1.jpg

index-73_3.jpg
€1: 10+ Op + Om = 200 matrix representation 1 0 0)400
e;: 0b + 1p + 0m = 500 ——— |0 1 0(500
e2: 0b + 0p + 1m = 600 0 0 1le00

index-74_1.jpg
1500 T +(=3)s1y o1y

Sl |
6500 =2 D

-100 1. =T
—1000 0 0 =2

-100
—1200

1500],3”%%[1 11 1500]
ikt 1Y

1. 1 4
3 4 2
[- A -3

index-73_4.jpg
where a, # 0,a, € R

l

o oo

o-oo
dooco

- 00 O

index-75_1.jpg
Amxn + Bman =

Am1

index-74_2.jpg
T

1500](71/2)Wﬁrg [1 0 2
R it Y Y

T1=2%7T39T

1600 100
Ty 41T,
01 -1 l—?’
o0 -2

—100 1 -1
—=1200. o0 1

—100 010
600 0o 0 1

11 1
500
600

400]

index-76_2.jpg
;A+B=

[

L+3 I+l 1+d
2+4 4+1 3+1|=
442 B4+0 141

+
ls
6

%
5
13

4
- §

:

index-76_1.jpg
a1+ Dby G+ D3 Gyp T iy
Gy1+ by @y tby v Gpn b

By By BuaFBus ™ Pl

index-76_4.jpg
kA=312 4 3 3x2 3%4 3+3|=|6 12 9

4 5 1 D2ad 228 Fx1 149 495 3

3 1] [3*1 3*3 3=*1 3 9 3]

index-76_3.jpg
k*ayy, k*a;p; - K*ap;,

kAmxn:lk*:an k*:uzz k*zaz"

kvan, kxan, " kta,.

index-76_5.jpg

index-83_1.jpg
distance(u,v) = |lu—v|| = ||[v — ul| = /82 + (—8)2 = 8V2 = 11.3

index-82_2.jpg
distance(w,v) = lu— vl = llv —ull = v/(a; — b1)? + (@ — b)? + -+ (an — by)?
=J(b, — ay)2 + (b, —)2 + - (b, — a,,)2

index-83_3.jpg
(6.92,1.38)

Julcos 11

6

2

index-83_2.jpg
u-v=a, *by+a, *xb, +-+-+a, *b, = |[ulll|v|| cosb

index-84_2.jpg
span(u,v) = kqu + k,v

index-84_1.jpg

index-84_4.jpg

index-84_3.jpg
Ki,K> € R

index-85_1.jpg
u=~Kv,+Kk,v,+ -+ Kk,v,

index-84_5.jpg

index-79_3.jpg

index-80_1.jpg
Length of hypotenuse = ||v|| =32 +42 =5

index-79_4.jpg
v=(5-2,5-1)=(3,4)

index-80_3.jpg

index-80_2.jpg
u=034)is||lull =v32+42 =5

index-80_5.jpg
|v|| = Va? + a + -+ a?.

index-80_4.jpg

index-80_7.jpg
B(a;r) ={x€ER":||x—all <€},e>0

index-80_6.jpg

index-82_1.jpg
2u=(6,6)

index-313_12.jpg

index-313_11.jpg
It

index-313_14.jpg
x = L%(x) » LY(LO(x); WD) - L2(LHL°); WV), w2)) =5

index-313_13.jpg

index-313_10.jpg

index-313_9.jpg

index-313_16.jpg
W (1)

index-313_15.jpg
Y =]%
2ot o [P{),

index-313_18.jpg

index-313_17.jpg
p'(x'™1) = (P1(x'71), Pz (1),

index-315_1.jpg

index-314_4.jpg
w = (w;,w,) € R®

index-316_2.jpg

index-316_1.jpg

index-314_1.jpg
Input Layer Hidden Layers-

index-314_3.jpg

index-314_2.jpg

index-316_4.jpg

index-316_3.jpg

index-317_1.jpg
N
1
E=E(wW) =5) B
n=1

index-278_14.jpg
i
2

e B .. z_z"_i

> logL = 2lcg(Zn) 2loga ’ 207

index-278_13.jpg

index-278_15.jpg

index-278_10.jpg
E[T] = ~E[X?] = o2

index-278_9.jpg

index-278_12.jpg

index-278_11.jpg

index-278_17.jpg
o
> logL

index-278_16.jpg

index-278_19.jpg

index-278_18.jpg
20”

index-279_4.jpg
L(6) > L(6)

index-279_3.jpg
e

index-278_21.jpg

index-278_20.jpg

index-279_2.jpg

index-279_1.jpg

index-279_7.jpg

index-279_6.jpg

index-279_9.jpg
i P
= logL =0

index-279_8.jpg

index-279_5.jpg

index-277_5.jpg
y'(0)% < Var[T]Var[(logL)]

index-277_4.jpg

index-277_7.jpg
Var[T] >&
£ |(Ztoor)
[aglogL)]

index-277_6.jpg
biar [(aae ’”gL)] ek [(:e l"gL)z] . [(aae l"“)]z =ik [(aael g")Z] =0

index-277_1.jpg

index-276_19.jpg
Cov [T, (% logL)] =E [T. (% lagL)] —E[TIE [(:—9 logL)] =y'(0) —0=1y'(8).

index-277_3.jpg
o(X,Y)* <1=Cov(X,Y) <Var|X|Var[Y]

index-277_2.jpg

index-277_8.jpg
y'(6)? < Var[T]E[lagL)]

index-277_10.jpg
— £[(7~ y(o). (55 logL)

index-277_9.jpg
Y'(0) = E [TA (% lagL)] —E [TA (% lagL)] —y(®).0=E [T (lugL)] Y(OE [(lugL)]

index-140_4.jpg

index-278_3.jpg
t—y(6)

Tl logL

=1=A(6),2

index-140_3.jpg

index-278_2.jpg
(5
lagL)

index-140_6.jpg
R Y A | | A a

index-278_5.jpg

index-140_5.jpg
e; =[1//2 —-1/v2]",ez

[1/V2 1/2]

index-278_4.jpg

index-139_4.jpg
0.5

_los

05

—0.5

05

index-277_12.jpg
o, E[(T ¥(9)). (lugL)] < E[T -y(0)]PE [(BB lugL)z]

index-139_3.jpg
0.26

7/
801
534

0.524
—0.586
0617

0:115
—0576

5 |

;R=QTA=[

3.74 294 294
0 231 1.02
0 0 208

|

index-277_11.jpg
~E [(T y(H)) (68 logL)] < Var[T]E [(69 lugL)z]

index-140_2.jpg

index-278_1.jpg

index-140_1.jpg
S€y

1A,e4

Ar,e,

index-277_13.jpg
E[XY)* < E[X|?E[Y]*

index-141_1.jpg

index-278_6.jpg

index-139_2.jpg
[e1

C2

“Cy
lhvc
‘71'2 42: 2
qz;
] =

¢y
‘Cl qn
qn -

“Cp
q1 .
qz

H .
qn

index-278_8.jpg

index-278_7.jpg

index-138_2.jpg
BA =% B EA=U=2A=F*=[lf=]=K*

index-276_2.jpg

index-138_1.jpg

index-276_1.jpg

index-138_4.jpg
EA =

index-276_4.jpg

index-138_3.jpg

index-276_3.jpg

index-137_2.jpg
Liaugg
Lyugy
I31Uq1

Lz
L1uiz + LpUzz
I31Uy7 + l3Usp;

Lz
Laus3 + lpzs
l31uy3 + I35Up3 + l33u33

index-275_16.jpg

index-137_1.jpg
13 1 b1 0 0qar Uiz Uz
[3 1 2]:[121 Iy, OHO Uz u23]=

1 2 30 lay Ly, LdlO 0 ugs

index-137_4.jpg

index-275_18.jpg

index-137_3.jpg
ra-|

001
010
1 0 O

I

03 1
312
1 2 3

|

1 2 3
3 12
0 3 1

|-

index-275_17.jpg

index-139_1.jpg

index-276_6.jpg
Xy X5 i

- B

index-138_5.jpg
1 0 0
L=E*=|3 1 0
B =2 1

index-276_5.jpg

index-276_7.jpg

index-135_5.jpg

index-276_13.jpg
E|T]

| t.L.dx

v(6)

index-135_4.jpg
|4l = max*=" = \/(max eigen value) =1,

max ===

index-276_12.jpg

index-136_1.jpg

index-276_15.jpg
J 7 oL g i
ﬁft.L.dx=y @ :ft.%dx—ft.(ﬁlogL)de—y ()

index-135_6.jpg
A
< |l or [lAx]| < llAllllx]

index-276_14.jpg

index-135_1.jpg
= ma;
x#0

index-276_9.jpg

index-276_8.jpg
Jdx=] [...[dx;dx, ..dx,

index-135_3.jpg
Axil _
e

index-276_11.jpg
N 61 L—laL:f(al L)Ld =01 E[(al L)]—O
ow,==logL = 7= =g 09 x=0ie., 5gl09L)| =

index-135_2.jpg
lAx|[* _ (Ax)"(Ax) x"A"Ax x"Ax _ Allx]® y
=2~ = x xTx x |x|?

index-276_10.jpg
 [Ldx=0= [dx=0
59 Lax = 29 %% =

index-136_3.jpg
Q1 G2 Og3 a0 0t Uz Uss 1 3 1
21 Q2 G3|=|lpy L, O[O0 uxm uxp|(=(3 1 2

azy Qazz Aazs logw Loy laall O 0 usz 1 2 3

index-276_17.jpg

index-136_2.jpg

index-276_16.jpg
or, E [T. (% logL)] =y'(6)

index-136_4.jpg
1,a45 32U =3,043

A1 = 11Uy Uqq 11U 1= u,

index-276_18.jpg
E(XY|—E|X]|E|Y]

index-133_6.jpg

index-133_5.jpg

index-133_8.jpg

index-133_7.jpg

index-133_4.jpg

index-133_3.jpg
2

l; M =8 =-1=-1e =[

1
¥]

ter-|2

2
. -

index-134_1.jpg

index-133_9.jpg
= 2T Ay = o 1),z _ 2
Q(x) = xTAx = [x1 xz][_1 2][362]_511 22,2 + 22

index-134_3.jpg

index-134_2.jpg

index-131_1.jpg
A,=4e;=a[1 1" & A, =2,e, =F[1 -1}

index-130_5.jpg

index-131_3.jpg

index-131_2.jpg
e =[2 2]',[3 3] forA, =4and e, =[2 -2]",[3 -3} for A, =2

index-130_4.jpg
1
0

l Seq+3e =065 =0 ey = —3ey1,62 = 0,03, =0

index-133_2.jpg
A=4&e;=al]1l 1]"& A, =2&e, =p[1 -1]"

index-132_1.jpg
E)

index-131_4.jpg
e

P P B3 6o

160

g

oo

index-133_1.jpg

index-132_2.jpg
Ae = Ae,for A=0weqget Ae=0=>e € N(A)

index-129_5.jpg
I,=2&e,=[1 -1}/

index-129_4.jpg

index-129_7.jpg

index-129_6.jpg

index-130_3.jpg
1 0 0 o2 0
A=AI=|0 0 1|=>(A-Ae= 0 o 1 en|=10
00 o0 0 0 olles

e, =es =0,e, =ax€ R=>eigenvector e; =[0 1 0]

index-130_2.jpg

index-129_9.jpg

index-129_8.jpg

index-130_1.jpg

index-129_10.jpg
- 0 = =11, =1
|A—ll|=|lol 1_A|=(1—A)(1—A)—0=>rootsareA1 1,4,

For A; =1,

[1 B L 1 E 1] [Zz] = [g] = ey = a,ey = ff,where a,f € R.

index-317_4.jpg
E,._-u|VE,|

VE, _ylE,]

index-317_3.jpg
wlttd) = w(t) — pPE

index-317_6.jpg
P(n) =~

index-317_5.jpg

index-317_2.jpg
n~Uniform(1,N)

index-125_1.jpg
R:T(S(u))

index-318_2.jpg
w=[wd w2 _ whj

index-126_2.jpg
_ 1 1 1
Ny = WiiXq + WX + W3y X3

index-126_1.jpg

index-317_8.jpg
E..u|\VE,| =VE,_yl|E,| =VE(w).

index-317_7.jpg
N N N
1
EucolEal = ' POOEL) = Y T En) = 1" En(W) = EG0)
n=1 n=1 n=1

index-318_1.jpg

index-317_9.jpg

index-129_2.jpg
for 2, =2; [3;2 312”52 :[Z::Zi] = [g]ﬂeu :—311z>e2:k[_11],kelk

index-129_1.jpg
=[] =Psen=en>e=k[]] keR

index-129_3.jpg
A=4&eq

1 1]

index-126_4.jpg
1
Wiy
(WH)Tx = n;where W' = [wi,

1
W23,

M21
T g

]

index-126_3.jpg
_ 1 1 1
Ny = WinX1 + WXy + W3pX3

index-128_1.jpg
S 1

[1]. —a) =
A_[l 3],det(A a=0= """ |

=22-6A+8=0=roots A =2,4

index-127_1.jpg
2

— w2 2 o
y = whny, +whing, = (W2)Tn, where W2 = [111]
Wyq

index-318_6.jpg

index-318_5.jpg

index-318_8.jpg
A

index-318_7.jpg
aiN

index-318_4.jpg
ok oE o0y
WM™ 95 oW ™

index-318_3.jpg

index-123_6.jpg

index-123_5.jpg

index-124_5.jpg
A=[T(by) T(by) T(bDl=[7" ' 77

e 3 3

index-124_4.jpg
cost —sind]_ _ [0 -1 — an
T(x) = [259 ~50 2 =" " H|xwheno =90

index-124_7.jpg
2 3 -1
A["]B=[1 2 3l|;

index-124_6.jpg
u=Bluly =1 +2[7]+3[]] =[]

index-124_1.jpg
Tu=T(cibi>= cT(by) = [T(by) T(bz) - T(bp)llulp
i=1 i=1

index-123_7.jpg
u = cy by +cby + -+ cpby

Z cib; = Blul

index-124_3.jpg

index-124_2.jpg

index-123_4.jpg
Addition: f(Zx +2)dx = f 2xdx + J’ 2dx; Scalar Mult: J’ 2xdx =2 f x dx

index-121_5.jpg
u; =)0.801|,u; =|-0.586(,u3z =| 0.115

0.267 [0.524 0.808
0534 0617 -0 576.

index-123_1.jpg

index-122_4.jpg

index-123_3.jpg
d(x*+2x) dx* d(2x) d(2x) 2dx
e Scalar Mult: =—

Addition: = =

index-123_2.jpg

index-122_1.jpg
wi = V. Proju, (vi)
1
= w,- — proju, (wf))

1) _ l;rﬂiwi,, (wgifl))

index-121_6.jpg
Q"Q =|0.524 —0.586 0.617 [[0.801 —0.586 0.115 010

0.801 0.534“0.267 0.524 0.808] [1 0 0]
0808 0115 —-0576J10534 0617 —0576. 00 1

index-122_3.jpg

index-122_2.jpg

index-121_4.jpg
3 11/14 2357[1.214 1.681
w3 = v3 — projy, (v3) — proj,,(vs) = |2| — [33/14| — T353 -1357|=| .24

1 22/14. 1.428 —-1.199.

index-121_3.jpg
Wy - D 11 17/14 1214
1 V2 _

= v, — proj,, (V) =v; — W=V, ——Wg = —19/14]— -1.357
Wy =V — D Jw,(2) 2 Wi W, 12 l20/14- L

index-280_14.jpg

index-280_13.jpg

index-280_15.jpg
—%log(Zn) —%loguz —— Nilx; — p)?

zvz

index-120_4.jpg
Wi = Vi — Proju, (V) — proju, (v;) — - — projy,_, (v;) where proj,, (v;) =

Wy Wy

index-120_3.jpg
W3 = V3 — projy. (v3) — projy, (v3)

index-121_2.jpg

index-121_1.jpg
_Wk/ |}
R T Tl
w1 %2 =

=" w1

index-119_3.jpg
G o Y1"%2
projection of v, along vy = ——v.
1 V1

index-119_2.jpg
PR 1 "2
proj ratio of v, along vy = ———
1 Vq

index-120_2.jpg
i=

5.2)

index-120_1.jpg
: ot St
vy (Vz - PWJv,(Vz)) =V V- vy v =0
VqVq

index-280_21.jpg

index-280_20.jpg
1 X X X}

index-280_23.jpg
))

index-280_22.jpg

index-280_17.jpg
nl 11 1 &
PP ZIOEL =05 Fgmg EFZ(Xi -w?=0= 0= ;Z(Xi -u? :;Z(xi — %) =+
- - -

index-280_16.jpg
9
alogL=0 > ——= T2t -w(E-D=0=>p==

20"

index-280_19.jpg

index-280_18.jpg

index-281_2.jpg

index-281_1.jpg
1 i
HMLE = ;z x; and Eyyp = ;2(11 = mee) (i — mie)”

index-279_14.jpg
R L 3
e~ A% (e*n/1 AZi=1 i)
=] [resn =] |5 = ooy

1 x11 20 X!

index-279_11.jpg

index-279_10.jpg
a“
= logL <0

index-279_13.jpg

index-279_12.jpg

index-279_18.jpg

index-279_17.jpg
“2 logL nx (—A—) <0

index-280_1.jpg
< =2(x- S
—logL A(x l):“logL

index-279_19.jpg

index-279_16.jpg
0 1 -
allogL—0=> —n+nxi=0=x—l

index-279_15.jpg
id

1

~ logL = —nAd + nXlogA — Z log(x;"), here X = =
]

index-280_3.jpg
Var(2) =

index-280_2.jpg

index-280_5.jpg
. =
ElogL =0

index-280_4.jpg

index-280_10.jpg

index-280_9.jpg

index-280_12.jpg
N(u, o)

index-280_11.jpg

index-280_6.jpg

index-280_8.jpg

index-280_7.jpg

index-326_2.jpg
] Fo
arl

index-326_1.jpg
5N

index-326_4.jpg

index-326_3.jpg
5 (L)

index-325_2.jpg
p—

index-327_2.jpg
Without clipping ‘With clipping

Clipping the gradient
norm helps intaking
smaler steps and
eventually leadsto the
minima

Takinga longer step along the
negative gradient here will lead to
drifting far away from the minima

index-326_6.jpg

index-326_5.jpg

index-327_1.jpg
A9
g <o if llgll >

index-326_7.jpg
5O = 9E
LAY §0+D oL’
arl

index-332_2.jpg
x,y €ER", ||f(x) = fWI> <

index-332_1.jpg
f:R*" = R™

index-337_1.jpg
dix,y)=0&x=Yy

index-332_3.jpg

index-331_1.jpg

index-329_1.jpg
Under fiting

Optmaititing | _Overteing

v
(decision
Boundary)

Network
model
with
waning

€ Underfitting | Overfitting >

ModelCapaciy

index-337_3.jpg

index-337_2.jpg

index-338_2.jpg

index-338_1.jpg
u=(@aa,, - ,ay),

index-322_5.jpg

index-322_7.jpg
F = %Z (O — L2Cen))?, where L2(x) = WO L (), 12Go) = £ (W),

e

index-322_6.jpg
m < NN

index-323_5.jpg

index-323_4.jpg
aw (L)

index-323_6.jpg
12(x) = W@ [1(x)

index-323_1.jpg
5@ = §3 2L
Al2 =

index-322_8.jpg

index-323_3.jpg

index-323_2.jpg
OE oL* 1
== 8@ s = — — (3, — LA(x)) L ()

index-323_8.jpg

index-323_7.jpg
W (2)

index-323_10.jpg

index-323_9.jpg

index-325_1.jpg
Step

Code

Initialize the weights of the network
w® randomly

Layers are initialized randomly by keras api here.

Forward-pass: ~ Compute the
prediction ¥ = L?(¥) for each
data point X,

1. y_pred = model(x)

Compute the eror value £ =
S TN,
=T, O = L2 ()

loss = mse(Y, y_pred)

Evaluate &0 recursively by
computing backward starting from

the output layer. @) = = (3, —
L2(xn)) and 5 = s@w@"

d2 = -1/batch_size*(Y - y_pred)
d1 = tf.einsun(“bi, jk->b3’,d2,
model.get_layer(“output’).kernel)

Using 6% compute the eror

derivative 2£.
awt

or
WD

o
w9

= 5@ (x,)

aL
awm

#Computing dL1_dw1

with tf.GradientTape() as tape:
hidden_out = model.get_layer(“hidden’)
x)

dL1_dw1 = tape. jacobian(hidden_out, model.

get_layer(‘hidden’).kernel)

dE_dw2 = tf.einsum(‘bk,bi->ik’,
d2, hidden_out)

dE_dw1 = tf.einsum(bk, bkik->ik’,
d1, dLa_da1)

print(dE_dWl, dE_dw2)

index-323_15.jpg
WO+ = O —

1=1,2

index-323_12.jpg

index-323_11.jpg
s = 52 ‘"‘Z
5@ = s@Q@"

index-323_14.jpg
aL” _oL” ox'
@ = 30 3@ = Xitanh’ (' p)e,®er®e;@ey

index-323_13.jpg
[}, [1:x - tanh(x"), where x' Wy

index-319_13.jpg
(e - ykej)(e(¥)(1—a(¥j))e) @ (e @ ex) = (xk-1.a(¥))(1 —a(¥;))e;) ® (e D ey)

index-319_12.jpg

index-319_14.jpg
aw

index-320_2.jpg
9y _ 9
aw® = Hy (l)eb®el®e]®ek

index-320_1.jpg

index-320_4.jpg
bi _ 0.if i g OLy; i 2 5
oW ® ={0,if i # k xpy,if i=k and m ={0'Wpi), b = j,i = k 0,0therwise
j

]k

index-320_3.jpg

index-319_16.jpg
L
aw)

index-319_15.jpg
5

index-319_18.jpg
ol

index-319_17.jpg
L
3w

index-320_5.jpg
L

aL
= xpje,®e,®e;®e; and —— = a'(yp;)e,®e; Be;, ey

dy
awa® 3y

index-320_7.jpg

index-320_6.jpg
oL oL") ay

ok 5y aw® = (0’ Vpi)er®e®e,®ey) - (xpj0, e ®e; ey)

index-322_2.jpg
SRF.Tiolors ShigLE, &) 3, 4); WEpeutiaEyl,

in
I

i

o 5 1.
. ; n
B 4 i
s26smmss, »

amaszse, I

925046575, i
. . e, , .o . o),
o , To s e L oeamseers).
b : o b © s

{ 5
B, s SO

index-322_1.jpg
aL®

aw @

index-322_4.jpg
YN (=W (xy)

index-322_3.jpg

index-320_9.jpg
(e;,Re;) - (e,Re,) =1

index-320_8.jpg
((xpep®ey) - (er®eyr)) (0’ (Vpi)e, Ve, e ey)

index-320_11.jpg
aL®)
awo

= xp;0’ (Vpi)er ey ®e;®ey,

index-320_10.jpg

index-318_10.jpg
5t+1)

index-318_9.jpg

index-318_12.jpg
9E_aL ™!

O

E =h(L" o L1)): 6O = L
FIGE s
arl

index-318_11.jpg
5 (L)

index-318_17.jpg
SN+1) — —— __ — 9k
SIND C gF

index-318_16.jpg
] (N+1)

index-318_19.jpg
OF _ OE 9L® _ .y oL
awd O aw® ~ 7 T awd

index-318_18.jpg
5 (L)

index-318_13.jpg
"} ot
arl

index-318_15.jpg
aLl+l aLl+1 al
OL™ 3L 0z _ iiaw®
= =g = @W

index-318_14.jpg
L1 = q(z),where z = wo !

index-319_2.jpg
L x = o(y),wherey = wO x

index-319_1.jpg
I(L)

index-319_3.jpg
I()

index-319_9.jpg
o (x) =0(x)(1-o0(x))

index-319_8.jpg
T i ®ey
xrej®e;
w @
(i
0

index-319_11.jpg
aL
ok (@)L = a())e;®e¢)) - (Vie;®e;®ey)

index-319_10.jpg
— = |0 — 0 a — 0 =0 -0 i®e;
'))el
(62)
D
i
1-00m)]
)
N O,'VI
10 -
=0 g
)) -
01
1
oL [e()(
ay

index-319_5.jpg
oL aL®) oy
aw® ~ gy awd®

index-319_4.jpg
aL\®
aw @

index-319_7.jpg

index-319_6.jpg
aw @D

index-103_2.jpg

index-103_1.jpg

index-103_3.jpg

index-99_2.jpg

index-99_1.jpg
Distance Matrix Angle Matrix

v v v | vy | s | v v | v | v | vy | v | v
v, | 0 | 57331517 014] 247 v, | 0 |048|0.41]049]002] 033
v, 5.7 0 |276|094 574|342 v, |[048| 0 |0.090.06|0.49]0.15
vy [331[276| O 2.08 | 3.38 | 0.91 vy [041/009| 0 |0.09|043| 0.1
v, |5.17[094]208| 0 |522] 28 v, 049006009 0 | 05 |06
v 0.14 | 574 |338|522| 0 |254 vs | 002|049 |043 | 0.5 0 |034
Ve | 247 (342|091 28 [254| O v [033]015| 0.1 [0.16 (034 O

index-101_1.jpg
M ClassA

A ClassB
@® Sample to be
classified

index-100_1.jpg
400

200

=200

-400

Mapping IRIS vectors to 2D using TSNE for visualization

A setosa
= versicolor
+ virginica

-200

-100

index-97_7.jpg

index-98_1.jpg
label=0 vector vi=[5.1 3.4
label=2 vector v2=[7.7 3 6.
vector v3=[5.7 2.8
vector v4=[6.8 3.2
label=0 vector v5=[5.2 3.4
label=1 vector v6=[5.6 2.9

©.2] Euclidean Norm=6.31347752
.3] Euclidean Norm=10.5256824

1.3] Euclidean Norm=7.89113426
2.3] Euclidean Norm=9.82751274
0.2] Euclidean Norm=6.37181282
1.3] Euclidean Norm=7.37699127

[P E T N
oo una

index-97_8.jpg

index-284_12.jpg
max P(Y = (P(x;|Y = Cy)
argn (k)l_[i k

index-284_11.jpg

index-284_8.jpg
X

{ O A

es) € R

index-284_7.jpg
P(Y=Ci|X =x) x P(X =x|Y =C,)P(Y = C})

index-284_10.jpg
P(X =x1Y =C;) = P(x41Y = G)P(x51Y = Cy) ... P(x |Y = C;.)

index-284_9.jpg

index-285_3.jpg
P(x;|Y = C;.)

index-285_2.jpg
P(Y =Cp) ==

index-285_5.jpg

index-285_4.jpg

index-285_1.jpg

index-118_5.jpg
=k V'
A:[; ﬂ;c=[_1Z ‘13]:|A|=—s;,¢rl:%c7=_is[_13 ‘12]=’3/£5 _1/‘;5]

index-118_4.jpg
Al = a(ei — fh) —b(di — fg) + c(dh — eg)

index-285_10.jpg

index-119_1.jpg

index-118_6.jpg

index-118_1.jpg
a b
& Ol= (=1)"ay My s + (—1)**%a; ,My , = ald]| - blc| = ad — b

index-285_7.jpg

index-117_3.jpg
-1

=

index-285_6.jpg

index-118_3.jpg

index-285_9.jpg
287

index-118_2.jpg
Q &8

B

c
f
i

DM ay My + (D 2a My + (1) 3My

index-285_8.jpg

index-285_14.jpg
N¢ig

index-285_13.jpg

index-117_2.jpg
(5T

Co1

.y

Ci2
G

Cin
Con

C e

index-285_16.jpg
Neik
P(x; =t|Y = Cp) = N
[

index-117_1.jpg
Al = Z(_l)i+jaijMij = Z
5

index-285_15.jpg

index-285_12.jpg
P(x;|Y = Gy)

index-285_11.jpg
P(x;|Y = C) =

1
2mo?

index-116_6.jpg
b= [i] € C(A)

index-283_20.jpg

index-116_5.jpg
1
1] ¢ C(A")

index-283_19.jpg

index-116_8.jpg
*
b= H e c(am)

index-283_22.jpg

index-116_7.jpg
|

(=k) /s
(=7k) /s
k

I

_1/5

=7
/s
51

€ N(A)

index-283_21.jpg

index-116_2.jpg

index-283_16.jpg

index-116_1.jpg
n ny [R
12 3, _0 1 5
31 2] [Z:] = [o]; x= [:il = l(_7k)/5] where k € R
7

index-283_15.jpg
o e M 0N

index-116_4.jpg

index-283_18.jpg

index-116_3.jpg

index-283_17.jpg

index-116_9.jpg
] e N4

index-283_23.jpg

index-115_12.jpg
{5~ k)/5

(%

x = IC:I =|(5—7k)/]where keR

c3 5
k

index-283_25.jpg

index-283_24.jpg

index-115_7.jpg

index-284_1.jpg

index-115_6.jpg

index-283_30.jpg

index-115_9.jpg

index-115_8.jpg

index-284_2.jpg

index-115_3.jpg

index-283_27.jpg

index-115_2.jpg

index-283_26.jpg

index-115_5.jpg

index-283_29.jpg

index-115_4.jpg

index-283_28.jpg
p(x|y = Cy)

index-115_11.jpg
12 3

A=[3 12

fo=lsone [§ 2 3]le| <[

index-115_10.jpg

index-284_4.jpg

index-284_3.jpg

index-284_6.jpg
P(X =x|Y = C)P(Y = Cy)
P(Y = CelX = x) = ——— ==

index-284_5.jpg
argmax P(Y = (i |X = x)
™

index-114_13.jpg

index-282_15.jpg

index-114_12.jpg

index-282_14.jpg

index-114_15.jpg

index-282_17.jpg
db;(x)

index-114_14.jpg

index-282_16.jpg
x - (p(x),d,(x), ..., 0 (x))

index-114_9.jpg

index-282_11.jpg
%

| T

o iy

index-282_10.jpg

index-114_11.jpg

index-282_13.jpg

index-114_10.jpg

index-282_12.jpg

index-114_17.jpg

index-283_2.jpg
d;(x)

index-114_16.jpg

index-283_1.jpg

index-115_1.jpg

index-283_3.jpg

index-114_2.jpg

index-283_9.jpg
log(x, +x3 + 1)

index-114_1.jpg

index-283_8.jpg
P1(X) = X1X5, Pr(X) =

index-114_4.jpg

index-283_11.jpg
D+

index-114_3.jpg

index-283_10.jpg

index-283_5.jpg

index-283_4.jpg
[x:%% s)

index-113_3.jpg

index-283_7.jpg
X

(x1,%x5,X3)

index-113_2.jpg

index-283_6.jpg
}i(x) = exp {— Lom ui)z}

2s2

index-114_6.jpg

index-114_5.jpg

index-283_12.jpg

index-114_8.jpg

index-114_7.jpg

index-283_14.jpg

index-283_13.jpg

index-110_2.jpg

index-281_6.jpg

index-110_1.jpg

index-281_5.jpg

index-111_1.jpg
5.1
77
feature matrix A = (5.7
6.8
Rooy

3.4
3.0
2.8
3.2
34

15
6.1
4.5
59

0.2
2.3
13(; y=
23
0.2

0
2
1|(targetvector)
2
0.

index-281_8.jpg

index-110_3.jpg
0.1
34
15
0.2

=i

1.7
3.0
6.1
b 5 3

||

2.7
2.8
4.5
1.3

-]

6.8
3.2
59
9.9,

o]

9.2
34]

14
0.2

index-281_7.jpg
PX10)P(0)
P(X)

By 4p = argmax = argmax L X P(0)
0 0

index-109_7.jpg

index-281_4.jpg

index-281_3.jpg
P(X10)P(0) _ likelihood L X Prior Probabtlity of ¢
P(X) - evidence

P(BIX) =

index-113_1.jpg

index-111_3.jpg
cCoroo
o= OoR O

3.4

3.0
2.8
3.2

1.5
6.1
4.5
59
14

coroo
O = Oor O

index-281_10.jpg

index-111_2.jpg

index-281_9.jpg
Ouap = argmax (logL + logP (@)
)

index-112_2.jpg
39

59

Gram matrix A = |45
54

0

110
82
103
59

45
82
62
77
45

103
77

54

59

45

54
")

index-281_12.jpg
6 4p = argmax (logL + const) =
0

index-112_1.jpg
0

5.7

Distance matrix A = [3.3
5.1

01

2.7

2.0

0.1
5.7
33
5.2

index-281_11.jpg
logP (@) = const

index-108_4.jpg

index-282_4.jpg

index-108_3.jpg

index-282_3.jpg
N

=¥t -

index-108_6.jpg
Qm =

Q11
az1

Am1

Aim
am

“fe-fl

211
az1

1l

index-282_6.jpg
MSE = Bias(T)* + Var(T)

index-108_5.jpg

index-282_5.jpg

index-281_13.jpg
argmax (logL) = Opyg
o

index-282_2.jpg

index-282_1.jpg

index-109_6.jpg
01if x # y,dot proauct of orthogonal vectors is zero
Uy V.
y = 1if x = y,dot product of unit vectors is one

index-109_5.jpg
VD,

index-109_2.jpg
Axq

Axz
wherev, =| |, vl =[x G

Gxm], X

xm.

index-282_8.jpg

index-109_1.jpg

index-282_7.jpg

index-109_4.jpg
ViV ViVz e ViVm V1V V1V . V1 Vqy
OmQL, = vivy viv, 7 Vv |_|V2 V1 V2 V2 v V2iVm
micm s : H : H 3 : i

v, viv, vy | Vm V1 Vm V2 'm " Vm.

index-109_3.jpg
Q

=

21
11 s
12 2

Arm
Biin

=[v

V2

V]

index-282_9.jpg

index-107_5.jpg

index-343_1.jpg
45

35

25

20

15

.
*
cluster_smp
°
v
cluster_mean
°
°
[
outlier_smp
°
10 15 20 25 30 35 40

index-107_7.jpg

index-107_6.jpg

index-340_9.jpg
| —cosf 1ottt loxs 50031
cosb~l———ro o~V

index-340_8.jpg
= /(14 — 4)2 + (12 — 4)? ~ 12.81

index-341_2.jpg

index-341_1.jpg

index-108_1.jpg

index-107_12.jpg
0 17 Inverserg 1 3 Qpmwerse 04 —0.2 9 L O nverse |V
] O O A e YR of =

H 10
10 10 1 4 —0.1 00 1

index-108_2.jpg

index-107_9.jpg
Ab =1, =2 A&D

index-107_8.jpg

index-107_11.jpg

index-107_10.jpg
Ax

index-344_4.jpg

index-344_3.jpg

index-344_6.jpg
dist(cl-, ci)

index-344_5.jpg

index-344_2.jpg
1,69,

index-344_1.jpg

index-105_1.jpg

index-104_7.jpg

index-345_1.jpg
,min dist(C;, C;)

max dist'(C)

index-344_7.jpg
Lid
1 d; + d;
nZ bl (dlSt(Cl, c]))

index-345_3.jpg

index-345_2.jpg
dist(C;, C;)

index-107_2.jpg

index-107_1.jpg

index-107_4.jpg

index-107_3.jpg

index-105_3.jpg

index-105_2.jpg

index-106_2.jpg

index-106_1.jpg

index-104_6.jpg

index-193_1.jpg

index-345_8.jpg

index-192_6.jpg
minimize f(x)
subject to g;(x) = 0,
hi(x) <0,

index-345_7.jpg

index-193_3.jpg
L(x,4v) = f(x) + Z Aigi(x) + Z Vil ()
=1 T

index-345_10.jpg

index-193_2.jpg

index-345_9.jpg

index-345_4.jpg

index-192_5.jpg
hi(x) <

index-345_6.jpg

index-192_4.jpg
minimize f(x)
subject to g;(x) =0,

index-345_5.jpg
dist' (Cy.)

index-103_4.jpg
v1=[

2.

|57z

[

3

Jiws=[2]

index-104_3.jpg
1
iy
ity

index-104_2.jpg

index-104_5.jpg

index-104_4.jpg
rank(A) = min (aim(c(A)),dim(c(AT)))

index-103_6.jpg

index-103_5.jpg
A=[v1 vz 7’3]=[

2 1 &5

index-104_1.jpg

index-103_7.jpg

index-338_4.jpg
lAnB| A, B are sets, |Al represents count of
AUBI elements in set .

1-J(A,B)

index-338_3.jpg
Explanation

Generalized distance metric; value of n
should depend on the problem domain.
n =1, Manhattan distance

n =2, Euclidean distance

. o, Chebyshev distance

Standardized
Euclidean
distance

0,15 standard deviation in * dimension.
Weighted Euclidean distance based on
standard deviation.

Cosine
similarity

uv

cosf=——_
lrellliwll

Used when length of the data vector is
insignificant in analysis.

Cosine
distance

3

1-cosf=1-m——0
[EIE

Used in document analysis.

‘Mahalanobis
distance

(@-v)r-v)"

Used when features are in different scales.
T is covariance matrix. Data samples used
for caleulation depends on the scope. It
can be all samples of a cluster or complete
data set samples.

index-339_2.jpg
for n = 2; distance_from_origin = +/(a;)? + (a,)?

index-339_1.jpg
forn = 1; distance_from_origin = |a,| + |a,|

index-340_2.jpg
Wi, Wo

index-340_1.jpg

index-339_4.jpg

index-339_3.jpg
for n = oo; distance_from_origin = max(|a,|, |as|)

index-339_6.jpg

index-339_5.jpg
O

index-340_5.jpg
Wi, Wo

index-340_4.jpg

index-340_7.jpg

index-340_6.jpg

index-340_3.jpg
Vi, Vo

index-285_18.jpg

index-285_17.jpg

index-285_20.jpg

index-285_19.jpg

index-286_1.jpg

index-285_24.jpg
P(x; =t|Y =C)

index-286_3.jpg
A=Y

index-286_2.jpg

index-285_21.jpg

index-285_23.jpg
Nyip

index-285_22.jpg
Py = tlY = G) = 1 °
N, + an;
c

index-286_5.jpg

index-286_4.jpg

index-286_6.jpg

