

[image: Image 1]

[image: Image 2]

Microservices

Communication

in .NET Using gRPC

A practical guide for .NET developers to build efficient

communication mechanism for distributed apps

Fiodar Sazanavets

BIRMINGHAM—MUMBAI

Microservices Communication in .NET

Using gRPC

Copyright © 2022 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi

Publishing Product Manager: Sathya Mohan

Senior Editor: Rohit Singh

Content Development Editor: Kinnari Chohan

Technical Editor: Maran Fernandes

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Sejal Dsilva

Production Designer: Prashant Ghare

Marketing Coordinator: Sonakshi Bubbar

First published: January 2022

Production reference: 1050122

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-643-8

www.packt.com

 To my mother, Liliya Sazanavets, and to the memory of my father, Dzmirty Sazanavets, who sadly isn't with us anymore, for their sacrifices and for making me the person I am today. To my wife, Olga Sazanavets, who has always inspired and supported me in all of my endeavors.

 – Fiodar Sazanavets

Contributors

About the author

Fiodar Sazanavets is an experienced lead software developer. His main areas of expertise are ASP.NET, SQL Server, Azure, Docker, Internet of Things, microservices architecture, and various frontend technologies.

Fiodar built his software engineering experience while working in a variety of industries, including water engineering, financial, railway, and defense. He has played a leading role in various projects and, as well as writing software, his duties have included performing architectural tasks.

Fiodar is passionate about teaching other people programming skills. He has published a number of programming courses on various online platforms. Fiodar regularly writes about software development on his personal website, scientificprogrammer.net.

 I want to thank all the people who have supported and mentored me

 throughout my career, including Dikaios Papadogkonas, Vache Chek, Ian Turner, Paul Eccleston, Frank Lawrence, and all the other people I have worked or collaborated with.

About the reviewer

James Carter is a self-taught software developer located in the Midlands, UK. He is especially passionate about microservice-driven architectures and building large-scale cloud-based platforms. He is currently working at CSL Group doing just that – building a scalable IoT platform that will be capable of handling millions of devices.

In just 5 years of being a developer, James has developed a large range of skills in this area, from gRPC to Docker, building on solid expertise in Linux and Windows systems.

Besides developing software, James enjoys running and maintaining his home lab, comprising many servers and pieces of networking equipment, as well as spending time with his family and two cats, Oreo and Kitkat.

Table of Contents

Preface

Section 1: Basics of gRPC on .NET

1Creating a Basic gRPC Application on ASP.NET Core

Technical requirements

4

Adding gRPC client components to the

Introduction to gRPC

4

application 24

Applying gRPC client components to

gRPC on ASP.NET Core

6

the code

27

Using gRPC in your own distributed

ASP.NET Core application

6

Understanding how proto files

Preparing your system

6

generate C# code

29

Where is auto-generated code stored? 30

Setting up your environment on Windows 7

Modifying Protobuf namespaces

31

Setting up your environment on Mac

9

Setting up your environment on Linux 10

Sharing a proto file between

Downloading the .NET SDK (all

the client and the server

34

operating systems)

11

Creating a shared class library

34

Setting up a gRPC server

11

Adding shared gRPC components to

the class library

35

Initializing an ASP.NET Core project via

an IDE

12

Sharing gRPC dependencies between

different projects

37

Adding gRPC server components to an

ASP.NET Core project

16

Running a gRPC service on Mac 39

Adding some code to use gRPC

Configuring server-side components

39

components 20

Modifying the client-side configuration 39

Setting up a gRPC client

22

Summary 40

Initializing the project for the

Questions 40

client application

23

Further reading

42

viii Table of Contents

2When gRPC Is the Best Tool and When It Isn't

Technical requirements

44

Testing asynchronous gRPC endpoints 72

Why gRPC is a great tool for

Why gRPC is not the best tool

microservices 44

for browsers

74

Setting up a solution and shared

Setting up a Blazor WebAssembly

dependencies 45

gRPC client

74

Setting up the status manager

Modifying the gRPC server to enable

microservice 49

gRPC-Web 79

Setting up a REST API gateway service

55

Launching the gRPC-Web application

80

Launching the distributed application

62

Where SignalR would beat gRPC 81

How gRPC can be a good

tool for asynchronous

Setting up a SignalR application

81

communication

64

Adding a SignalR client and launching

the application

83

Adding client-streaming and server-

streaming gRPC endpoints

64

Summary 88

Configuring the gRPC client for

Questions 89

asynchronous communication

68

Further reading

90

3Protobuf – the Communication Protocol of gRPC

Technical requirements

92

Using collections in Protobuf

109

The RPC types supported

Repeated fields

109

by gRPC

92

Map fields

111

The RPC types that Protobuf supports

93

Using special keywords in

Making comments in Protobuf

95

Protobuf 113

Reviewing the native Protobuf

How the oneof keyword can make

data types

95

communication more efficient

114

Integer data types

97

Customizing the behavior with the

Non-integer numeric types

101

option keyword

117

Non-numeric data types

102

Referencing other proto files

121

Enums 104

Importing external proto packages

121

Nested messages

106

Referencing internal proto files

122

Using proto files as relays

124

Table of Contents ix

Summary 125

Further reading

127

Questions 126

Section 2: Best Practices of Using gRPC

4Performance Best Practices for Using gRPC on .NET

Technical requirements

132

When streaming is better than

Why you need to reuse a gRPC

individual calls

154

channel

132

Setting up a bi-directional streaming

Setting up the server application

133

RPC 155

Setting up the client application

137

Monitoring the performance of the bi-

Comparing the performance of

directional streaming call

158

different client types

146

Using binary payloads to

How to not get held up by

decrease the

a concurrent stream limit

149

data's size

160

Configuring connection concurrency

Adding binary fields to Protobuf

160

on the gRPC client

149

Summary 164

Comparing the performance between

a single connection and multiple

Questions 164

connections 152

Further reading

165

Ensuring that your connection

remains alive

153

Setting up keep-alive pings on the

gRPC client

153

5

Applying Versioning to the gRPC API

Technical requirements

168

Implementing the gRPC client logic

173

Why an API versioning strategy

Verifying that the client can talk to

is important

168

the server

174

Creating a server application

169

What the sequence numbers in

Implementing the server-side gRPC

the proto file represent

176

components 170

Modifying the Protobuf definition in

Creating the gRPC client application

172

the server application

177

x Table of Contents

Modifying the Protobuf definition in

How to factor in API versioning

the client application

178

at the design stage

190

Launching modified applications

179

Adding multiple Protobuf versions to

Why you must not modify

the server application

191

existing fields in future

Allowing the server application to use

Protobuf versions

181

multiple Protobuf versions

192

Making the gRPC client

Modifying Protobuf definitions on the

implementation version-specific

194

client side

183

Making a gRPC call to a versioned

Launching the applications

183

endpoint 195

Making further changes to the client

application 185

Summary 196

Re-launching the applications

186

Questions 197

How to deprecate old, unused

Further reading

198

fields in gRPC

187

Applying the reserved keyword to the

server-side Protobuf interface

187

Testing the application

189

6Scaling a gRPC Application

Technical requirements

200

Enabling a DNS resolver for the

Introduction to load balancing 200

load balancer

219

Using a static resolver for the load

Adding shared gRPC dependencies

201

balancer 221

Creating a shared library for server-

Creating custom load balancers

side application instances

202

and resolvers

224

Creating multiple instances of the

server-side application

204

Proxy load balancing with gRPC 230

Creating a client application

205

Building a web application to act

Running a load-balanced application

214

as a proxy

230

Client-side load balancing

Launching the HTTP/2 proxy

233

with gRPC

216

Summary 235

Updating the NuGet package

216

Questions 235

Enabling client-side load balancing

Further reading

236

components 217

Table of Contents xi

Section 3: In-Depth Look at gRPC on .NET

7Using Different Call Types Supported by gRPC

Technical requirements

242

server 269

Making unary calls on gRPC

242

Adding a server-streaming RPC

Setting up shared gRPC dependencies 243

to Protobuf

269

Creating server-side implementations

Setting up a server-streaming call on

of the Protobuf definitions

245

the server side

270

Building the gRPC client

251

Making a server-streaming call from

Applying different types of client-side

a gRPC client

273

call implementations

255

Enabling bi-directional

Using gRPC dependencies in the client

streaming 274

application 260

Enabling server-side components for

Testing different types of unary call

bi-directional streaming

275

endpoints 262

Adding a client-side implementation of

Streaming data from the client 265

a bi-directional streaming call

276

Adding a client-streaming call to the

Testing how to stream gRPC calls

278

server application

266

Summary 280

Adding client logic for a client-

streaming gRPC call

267

Questions 281

Further reading

282

Reading streams from the

8Using Well-Known Types to Make Protobuf More Handy

Technical requirements

284

Using dates and times

Using nullable types in Protobuf 285

in Protobuf

299

Setting up a gRPC server application

286

Adding timestamp and duration to

Examining auto-generated code for

the server

300

wrapper fields

287

Applying changes to the gRPC client

Adding logic to gRPC server application 292

and launching the app

301

Setting up shared dependencies

294

Exchanging empty messages

303

Setting up the gRPC client

296

Adding the Empty data type to the

Running the application

298

server-side application

303

Applying an Empty object on the client 305

xii Table of Contents

Using loosely typed fields in

Summary 317

a Protobuf message

308

Questions 317

Adding Any and Value data types to

Further reading

319

the gRPC server

308

Populating the Any and Value fields

from the gRPC client

313

9Securing gRPC Endpoints in Your ASP.NET Core Application

with SSL/TLS

Technical requirements

322

Windows using PowerShell

341

Configuring the gRPC client

Creating a self-signed certificate on

and server for unencrypted

Unix using OpenSSL

344

communication 323

Applying a certificate on ASP.NET Core 345

The role of TLS certificates

323

Testing custom certificates and HTTPS

redirection 348

Setting up a gRPC service application

325

Removing TLS on both HTTP/1.1

Applying certificate

and HTTP/2

329

authentication on the gRPC

Exposing Protobuf definitions to clients 330

client and server

351

Building the client for gRPC

Configuring the gRPC server for

communication 333

certificate authentication

352

Adding the remaining client logic

336

Enabling certificate authentication on

Creating and trusting a self-

the gRPC client

355

signed certificate

339

Testing certificate authentication

356

The basics of a TLS certificate

339

Summary 358

Trusting a default development

Questions 358

certificate

340

Further reading

359

Creating a self-signed certificate on

10

Applying Authentication and Authorization to gRPC

Endpoints

Technical requirements

362

Configuring IdentityServer4

366

Setting up the authentication

Adding SSO users, roles, and clients

369

backend 363

Forcing login redirect on a web

OpenID Connect and OAuth flow

364

application 372

Table of Contents xiii

Restricting gRPC endpoints to

Applying different authorization

authenticated users

378

rules to different gRPC endpoints

395

Setting up shared gRPC dependencies 378

Applying gRPC client changes

397

Setting up the gRPC server

380

Summary 401

Enabling gRPC client functionality

386

Questions 401

Restricting endpoints to

Further reading

403

authorized users only

391

Configuring SSO provider to insert

role claim into the JWT

392

11

Using Logging, Metrics, and Debugging in gRPC on .NET

Technical requirements

406

Applying logs to gRPC

429

Debugging gRPC client

Configuring a logger on the gRPC client 430

components inside a .NET

Applying a logger on the gRPC server

433

application 407

Testing our log output

435

Setting up shared gRPC dependencies 407

Applying metrics to gRPC

438

Adding a gRPC service application and

getting it to display detailed errors

409

Configuring metrics on the gRPC server 439

Adding a gRPC client with additional

Enabling metric collection on the

debugging capabilities

413

gRPC client

440

Viewing gRPC error information on

Viewing gRPC metrics

442

the client

421

Summary 444

Debugging gRPC server

Questions 445

components inside a .NET

Further reading

446

application 423

Viewing the debug output on the gRPC

server console

427

Assessments

Index

Other Books You May Enjoy

Preface

This book explains how to use all the fundamental components of gRPC on .NET. As well as covering the core technical functionality of gRPC, this book also explains the best practices of using it.

gRPC is an efficient mechanism of communication over the web that was originally developed by Google. It has now been accepted as one of the web standards. As it runs over HTTP/2, it is much faster than the standard HTTP communication. gRPC is especially suitable for facilitating direct communication between microservices inside a distributed application.

RPC stands for remote procedure call, so applying it in the code to call endpoints on a remote server is just as easy as calling functions and methods inside an application.

gRPC is standardized, so it's possible to find a suitable implementation of it in any modern programming language. Your distributed application does not have to have every component written in the same language. All services will still work together, regardless of which language they are written in.

Developers working with .NET will be able to put their knowledge to work with this practical guide to using gRPC. This book provides a hands-on approach to the implementation and the associated methodologies and will have you up and running and productive in no time.

You'll start with the fundamentals of gRPC and how to use it inside .NET apps. Along with learning technical details, you'll explore best practices for performance and more. Next, you'll focus on scaling a gRPC app. Finally, you'll use different call types that gRPC supports and apply authentication and authorization to gRPC endpoints.

By the end of this book, you will be able to use gRPC in .NET applications to enable direct communication between microservices.

xvi Preface

Who this book is for

.NET developers who work with microservices and are looking for efficient solutions to facilitate communication between the services will find this book useful. Anyone who knows the fundamentals of .NET Core, is somewhat familiar with the microservices architecture, but doesn't necessarily know anything about gRPC should be able to consume the content of the book.

What this book covers

 Chapter 1, Creating a Basic gRPC Application on ASP.NET Core, explains how to build a basic ASP.NET Core server application that uses gRPC. We will also build a basic console application that will act as a gRPC client.

 Chapter 2, When gRPC Is the Best Tool and When It Isn't, outlines use cases where gRPC is the best tool for the job. It will also cover some scenarios where other tools would be more suitable than gRPC.

 Chapter 3, Protobuf – the Communication Protocol of gRPC, takes you through the structure of Protobuf – the communication protocol that gRPC uses. You will be shown the basic structure of a proto file – a file that defines the interface that both the client and the server use to communicate with each other. All native data types available with Protobuf will be covered, along with other structural components of the protocol.

 Chapter 4, Performance Best Practices of Using gRPC on .NET, explains how to apply gRPC

inside the code in the most efficient way possible. You will learn a few ways to make your gRPC communication as fast as it can be.

 Chapter 5, How to Apply Versioning to the gRPC API, emphasizes the importance of applying a good versioning strategy to your server-side gRPC endpoints, also known as application programming interfaces (APIs). You will also learn some techniques for making API versioning easy.

 Chapter 6, Scaling a gRPC Application, explains how microservices are supposed to be designed in such a way that they can easily be scaled. An assumption of microservices architecture is that it should be possible to add new instances of any given microservices when needed, especially when they are stateless. As gRPC has been primarily designed to enable communication between microservices, it needs to be scalable too.

 Chapter 7, Using All Different Call Types That gRPC Supports, covers the four different types of calls – unary, client-streaming, server-streaming, and bi-directional streaming – that gRPC supports.

[image: Image 3]

Preface xvii

 Chapter 8, Using Well-Known Types to Make Protobuf More Handy, explains that since native Protobuf data types don't perfectly map to data types commonly used in programming languages, Google has created a library of so-called well-known types to make this process easier. This enables developers to send requests without payloads, use nullable fields, work with dates, and exchange loosely-typed payloads.

 Chapter 9, Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS, explains that just like any standard HTTP endpoint, gRPC endpoints can be secured with SSL or TLS encryption and made accessible via the HTTPS protocol. This chapter will show you how to enable this encryption and protocol.

 Chapter 10, Applying Authentication and Authorization to gRPC Endpoints, explains that, if needed, gRPC endpoints can be made accessible only to authenticated users or users with specific permissions. This chapter shows how to enable this functionality for gRPC

endpoints on .NET.

 Chapter 11, Using Logging, Metrics, and Debugging in gRPC on .NET, explains that it's important to be able to identify problems with an application while it is being developed.

It's also important to monitor what the application is doing once it's been deployed. This chapter shows how to do all of these things. You will learn how to debug an application that's under development and how to use logging and metrics inside an application that has already been deployed.

To get the most out of this book

You need to be somewhat familiar with C#, the .NET platform, ASP.NET Core, and web development in general. You need to have a suitable IDE or code editor installed on your machine. However, if you don't have one installed, instructions on how to do so will be provided in the first chapter.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

xviii Preface

Please note that there will be some differences between .NET 5 and .NET 6

implementations. However, where they are present, the text will mention it.

Also, some of the functionality described in the book will not work on macOS due to the absence of some fundamental features on the OS. However, when such cases occur, clear workaround instructions will be provided.

The book assumes that the reader is already somewhat familiar with ASP.NET Core and C#. These concepts are outside the scope of the book.

Download the example code files

You can download the example code files for this book from GitHub at https://

github.com/PacktPublishing/Microservices-Communication-in-.

NET-Using-gRPC. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

Code in Action

The Code in Action videos for this book can be viewed at https://bit.ly/3lXSruD.

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/

downloads/9781803236438_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.

Here is an example: "This class library project will be called GrpcDependencies."

Preface xix

A block of code is set as follows:

enum ClientStatus {

OFFLINE = 0;

ONLINE = 1;

BUSY = 2;

}

Any command-line input or output is written as follows:

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client

dotnet add GrpcBlazorClient.csproj package Google.Protobuf

dotnet add GrpcBlazorClient.csproj package Grpc.Tools

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client.Web

Tips or Important Notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at

customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

xx Preface

Share Your Thoughts

Once you've read Microservices Communication in .NET Using gRPC, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

Section 1:

Basics of gRPC

on .NET

This part teaches how to build a basic .NET application that uses gRPC. The chapters cover the most fundamental parts of gRPC functionality. After completing this part, you will know how to enable gRPC inside an ASP.NET Core application and how to connect to it from external applications. This part contains the following chapters:

• Chapter 1, Creating a Basic gRPC Application on ASP.NET Core

• Chapter 2, When gRPC Is the Best Tool and When It Isn't

• Chapter 3, Protobuf – the Communication Protocol of gRPC

1

Creating a Basic

gRPC Application on

ASP.NET Core

In this chapter, we will learn how to build a basic ASP.NET Core server application that uses gRPC. We will also build a basic console application that will act as a gRPC client.

The main objectives of this chapter are to introduce you to gRPC and to show you how easy it is to set up and use as a communication mechanism between separate services inside a distributed application. This would especially be relevant in a microservice architecture, where many different services act as one application with many moving components. You will see that using gRPC for communication between separate applications is almost as easy as calling methods inside the same application.

In this chapter, we will cover the following topics:

• Introduction to gRPC

• Preparing your system

• Setting up a gRPC server

• Setting up a gRPC client

4 Creating a Basic gRPC Application on ASP.NET Core

• Understanding how Proto files generate C# code

• Sharing a Proto file between the client and the server

• Running a gRPC service on Mac

By the end of this chapter, you will have learned how to set up all the fundamental gRPC

components on .NET and how to use them on both the client and server side. You will have also learned how to efficiently share protocol definitions between the client and the server.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either Windows, Mac, or Linux installed

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)

• .NET 5 SDK

The instructions for how to set up an SDK and IDE/code editor will be provided later in this chapter for all the supported operating systems. The code files for this chapter are available on GitHub at https://github.com/PacktPublishing/

Microservices-Communication-in-.NET-Using-gRPC/tree/main/

Chapter-01.

Please visit the following link to check the CiA videos: https://bit.ly/3dQ78eM

Introduction to gRPC

gRPC is a communication mechanism that was first introduced by Google, primarily to enable self-contained components within a distributed application, such as microservices, to communicate with each other easily. It was first made publicly available in 2016. Since then, it has been widely adopted by developers. Official libraries for it were written in the most popular programming languages.

gRPC stands for Google Remote Procedure Call. And, as the name suggests, its primary intention is to enable separate applications to call procedures inside each other's code remotely via the network.

Introduction to gRPC 5

Inside a single application, you would define your callable components (procedures, functions, or methods, depending on the language). By doing that, you can call them from any place within the same application. This means that you call the components of third-party libraries that you import into your application as they become part of your application once imported. But with an RPC mechanism in place, the code that calls your callable components doesn't have to be inside the same application as those components.

So long as separate applications are hosted on the same network, they can be set up to call each other's endpoints in the code.

gRPC just happens to be the most widely adopted RPC mechanism. As well as being easy to set up compared to the alternatives, it's also very fast. Its communication protocol, known as Protocol Buffer, or Protobuf, enables very efficient message serialization while messages are in transit.

On top of this, gRPC runs on HTTP/2, which has many performance benefits over its predecessor, HTTP/1.1. Some of those benefits include multiplexing (working with multiple streams of data in a single request), header compression (which reduces message size), and server push (which enables messages to be sent from the server to a connected client without an explicit response from the client). gRPC utilizes these features, but it requires HTTP/2 protocol to be enabled on the network it's running on.

The key benefits of gRPC include the following:

• Highly performant due to the utilization of HTTP/2 features and a lightweight messaging mechanism.

• Multiple connection options instead of just a standard request/response mechanism available with bare HTTP.

• Easy and intuitive to set up with built-in code generators.

• Easy to write code against due to it having a strongly typed API schema that was designed to be highly readable.

• Widely adopted by developers with many existing libraries and code samples available.

• It is the de facto standard mechanism for direct communication between microservices.

• Official implementations are available on most of the popular programming languages and frameworks.

• Can enable communication between applications written in different languages.

• Has an in-built mechanism for hassle-free API versioning.

6 Creating a Basic gRPC Application on ASP.NET Core

gRPC on ASP.NET Core

While gRPC has been publicly available since 2016, until 2019, it was only available on ASP.NET Core via third-party libraries, such as the Grpc.Core NuGet package. But with the release of ASP.NET Core 3.0, it was made available as one of the core components of the framework itself.

This has significantly simplified the process of setting up gRPC inside ASP.NET Core applications. As well as there being less boilerplate code to write, there is now better integration between gRPC and the .NET runtime, which improves the stability of the application.

On top of this, there are now pre-defined project templates available in Visual Studio IDE

and the dotnet CLI (command-line interface) environment to allow you to initialize your projects with gRPC components that have already been enabled.

gRPC, along with existing features of ASP.NET Core, made it incredibly easy to build distributed applications by using a microservice architecture. The standard gRPC

components are very easy to add to your application and the standard .NET build process will auto-generate all the relevant code for you.

As well as this, proto files, which, in gRPC, are used to define communication contracts, can be shared between the client and the server applications by using the standard library referencing mechanism of .NET, so the same proto file doesn't have to be duplicated in a separate project. Proto files can be stored in a reference library that both the client and the server applications use. Then, both of them can be updated simultaneously with the same copy of the communication contract so that no mismatches or incompatibility will accidentally be introduced.

Using gRPC in your own distributed ASP.NET Core

application

We will start with the most fundamental part – step-by-step instructions on how to set up an ASP.NET Core application as a gRPC server and how to set up a .NET client that can talk to it.

Preparing your system

To be able to use gRPC on ASP.NET Core, you will need an integrated development environment (IDE) or a code editor that has full .NET support. You will also need the latest software development kit (SDK) version of .NET, which, at the time of writing, is .NET 5.

[image: Image 4]

Preparing your system 7

Other than these components, you don't need anything else to start developing a gRPC

application for .NET. It's already included in the framework. And whenever you need an add-on library, you will be instructed on how to obtain it.

Because .NET is an OS-independent framework, you can write applications for it on either Windows, Mac, or Linux. However, your setup steps will be slightly different, so please follow the section that is relevant to your system.

Setting up your environment on Windows

On Windows, you have three main options regarding an IDE for .NET. They are listed here in order of preference, based on how many features they have and how easy they are to use:

• JetBrains Rider

• Microsoft Visual Studio

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the other options, it has many additional tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/

download/ and follow the setup instructions provided: Figure 1.1 – JetBrains Rider download page

[image: Image 5]

8 Creating a Basic gRPC Application on ASP.NET Core

Alternatively, you can download Visual Studio. It's the official IDE for .NET from Microsoft. And, unlike Rider, it has a free tier version known as Community Edition.

To download the latest version of Visual Studio (Visual Studio 2019, at the time of writing), go to https://visualstudio.microsoft.com/downloads/:

Figure 1.2 – Microsoft Visual Studio download page

Lastly, there is Visual Studio Code, which, despite sounding similar to Visual Studio, is a completely different product. While Visual Studio is a fully-fledged IDE, Visual Studio Code is merely a code editor.

However, despite being just a code editor, it's still a powerful tool that you can develop your code in. And it's highly configurable, so you will be able to use it to write code in many different languages, not just the ones that are specific to .NET.

The advantage of Visual Studio Code over either Visual Studio or Rider is that it's lightning-fast. Because it's just an editor that lacks many tools that IDEs have, it has far fewer things to load and run in the background.

The disadvantage of using Visual Studio Code over either Visual Studio or Rider is that, as a code editor, it lacks some basic features that are typically embedded into an IDE. For example, you will not be able to compile your project without integrating the editor with some add-on tool or using the CLI.

[image: Image 6]

Preparing your system 9

Visual Studio Code can be obtained via https://code.visualstudio.com/

download:

Figure 1.3 – Visual Studio Code download page

Once you have downloaded your preferred IDE, you can proceed with its installation.

Setting up your environment on Mac

On Mac, you have three main options regarding an IDE for .NET. They are listed here in their order of preference, based on how many features they have and how easy they are to use:

• JetBrains Rider

• Microsoft Visual Studio for Mac

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the alternative options, it has many additional tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/

download/ and follow the setup instructions provided.

10 Creating a Basic gRPC Application on ASP.NET Core

Alternatively, you can download Visual Studio for Mac. It's the official IDE for .NET from Microsoft. And, unlike Rider, it can be downloaded for free.

To download the latest version of Visual Studio for Mac, go to https://

visualstudio.microsoft.com/vs/mac.

Lastly, there is Visual Studio Code, which, despite sounding similar to Visual Studio for Mac, is a completely different product. While Visual Studio for Mac is a fully-fledged IDE, Visual Studio Code is merely a code editor.

However, despite being just a code editor, it's still a powerful tool for developing your code. And it's highly configurable, so you will be able to use it to write code in many different languages, not just the ones that are specific to .NET.

The advantage of Visual Studio Code over either Visual Studio for Mac or Rider is that it's lightning-fast. Because it's just an editor that lacks many tools that IDEs have, it has far fewer things to load and run in the background.

The disadvantage of using Visual Studio Code over either Visual Studio for Mac or Rider is that, as a code editor, it lacks some basic features that are embedded into an IDE. For example, you will not be able to compile your project without integrating the editor with some add-on tool or using the CLI.

Visual Studio Code can be obtained via https://code.visualstudio.com/

download.

Setting up your environment on Linux

On Linux, you have two main options regarding an IDE for .NET. They are listed here in their order of preference, based on how many features they have and how easy they are to use:

• JetBrains Rider

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the alternative options, it has many additional tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/

download/ and follow the setup instructions provided.

Setting up a gRPC server 11

Lastly, there is Visual Studio Code, which is a highly configurable code editor, so you will be able to use it to write code in many different languages, not just the ones that are specific to .NET.

The advantage of Visual Studio Code over Rider is that it's lightning-fast. Because it's just an editor that lacks many tools that IDEs have, it has far fewer things to load and run in the background.

The disadvantage of using Visual Studio Code over Rider is that, as a code editor, it lacks some basic features that are embedded into an IDE. For example, you will not be able to compile your project without integrating the editor without some add-on tool or using the CLI.

Visual Studio Code can be obtained via https://code.visualstudio.com/

download.

With this, our IDE setup is complete.

Downloading the .NET SDK (all operating systems)

Lastly, to write .NET applications, you will need to download the .NET platform.

There are two versions of it: runtime and SDK. As a developer, you will need the SDK. The runtime is only suitable for running .NET applications that have already been compiled; it cannot be used to write application code and compile applications.

The .NET SDK can be obtained via the following link. Please use the latest full release version. Further instructions are available at https://dotnet.microsoft.com/

download/dotnet.

Now that your environment has been set up, you can start building an ASP.NET Core application with basic gRPC capabilities.

Setting up a gRPC server

Now that your environment has been set up, you are ready to create your gRPC

server application.

There are several ways to proceed. Regardless of whether you've chosen to use the IDE or CLI, you will be able to use the gRPC project template to initialize your application code, with all the gRPC capabilities already pre-defined. However, in real-life scenarios, you may want to add gRPC capabilities to an existing hosted web service. Therefore, we will go through the process of creating a bare-bones ASP.NET Core application and then add gRPC capabilities to it.

[image: Image 7]

12 Creating a Basic gRPC Application on ASP.NET Core

Initializing an ASP.NET Core project via an IDE

If you are using an IDE (Rider, Visual Studio, or Visual Studio for Mac), the process of initializing a new ASP.NET Core project is the same. When you launch the IDE, you will be presented with the option to create a new project. Click on this option and, from the list of templates, choose Web App.

This template will be called slightly differently, depending on what IDE you are using. For example, on Visual Studio for Windows, multiple templates represent an ASP.NET Core web application. For this project, any of them would be suitable. However, since you will only be using basic ASP.NET Core features, you should choose the most basic template.

On the Windows version of Visual Studio, it is called ASP.NET Core Web App: Figure 1.4 – Web App project template in Visual Studio 2019

[image: Image 8]

Setting up a gRPC server 13

JetBrains Rider will have a similar project template name with some variations, depending on the version. However, if you are using Visual Studio for Mac, the project template that you need will be called Web Application:

Figure 1.5 – Web Application template on Visual Studio for Mac

[image: Image 9]

14 Creating a Basic gRPC Application on ASP.NET Core

Once you select the template, you will be asked for the project's name. I have called mine BasicGrpcService. You can give yours any name, but for the convenience of following the instructions, you should give your project the same name:

Figure 1.6 – Naming your project

When you're asked which framework version you would like to use, select the latest one, which, at the time of writing, is .NET 5.

Also, if you are asked for the authentication type, select None. If you have the Configure for HTTPS option, make sure that it's selected. Leave the remaining settings as-is and click on Create:

[image: Image 10]

Setting up a gRPC server 15

Figure 1.7 – Runtime selection and ensuring HTTPS is enabled

At this point, a solution should have been created with an ASP.NET Core project inside it.

Initializing an ASP.NET Core project via the dotnet CLI

If you don't have access to an IDE or if you prefer to work with the command line, you can create the project via the dotnet CLI, which will be available on any system that has the

.NET 5 SDK installed. To do so, navigate to the folder that you want to place your project in and execute the following command:

dotnet new webapp -o BasicGrpcService

Finally, since you have selected to enable HTTPS (which is recommended for gRPC), you will need to install and trust the development HTTPS certificate for .NET.

If you are using a Mac, then you will not be able to configure the HTTPS on gRPC

endpoints, so you will need to enable HTTP too. The instructions on how to do so are available in the Running a gRPC service on Mac section.

16 Creating a Basic gRPC Application on ASP.NET Core

If you are using an IDE, such as Visual Studio or Rider, the process of installing and trusting the development certificate will happen automatically. You will receive a prompt when you launch your application via the IDE for the first time. Otherwise, you can configure the certificate via a CLI command.

To do so on Windows or Mac, you can execute the following command inside your project folder:

dotnet dev-certs https --trust

On Linux, this command may not work, as different Linux distributions have completely different mechanisms for trusting self-signed HTTPS certificates. If you are using Linux, you will need to obtain this information from the documentation that's specific to the distribution you are using.

Congratulations! You now have a functioning ASP.NET Core application that you can start adding gRPC server components to.

Adding gRPC server components to an ASP.NET

Core project

Because you have initially chosen a basic ASP.NET Core application template, your project file (BasicGrpcService.csproj) should only contain the most basic markup, such as this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

</Project>

Now, we will need to modify it to add gRPC components. First, we will run the following command from the project folder to install the required NuGet package:

dotnet add BasicGrpcService.csproj package Grpc.AspNetCore

Here, we have added a NuGet package reference to the Grpc.AspNetCore library.

This library adds all the necessary components to enable gRPC inside an ASP.NET

Core application.

Setting up a gRPC server 17

There is also another element that you may not be familiar with if you haven't used gRPC

inside an ASP.NET Core application before. It's called Protobuf and its role is to tell the application which protocol buffer files are available for writing code against. This element will ensure that the right code snippets are generated inside your application.

You will need to add the following markup snippet to the BasicGrpcService.

csproj file to enable this:

<ItemGroup>

<Protobuf Include="Protos\greeter.proto"

GrpcServices="Server" />

</ItemGroup>

Your file will look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<Protobuf Include="Protos\greeter.proto"

GrpcServices="Server" />

</ItemGroup>

<ItemGroup>

<PackageReference Include="Grpc.AspNetCore"

Version="2.34.0" />

</ItemGroup>

</Project>

Please note that the Protobuf element has the GrpcServices attribute set to Server.

We've done this to tell our compiler that we only expect our application to act as a server while using the greeter.proto file from inside the Protos folder. This will ensure that only server-related classes will be generated by the compiler.

You can choose the Client role as well. In this case, it's only the client-side components that will be generated from our proto file. But since we are building the server-side application right now, it's certainly not the right role to choose.

Also, you can choose to omit the GrpcServices attribute completely. In this case, you will be able to generate both server-side and client-side components for your code.

18 Creating a Basic gRPC Application on ASP.NET Core

Next, we will need to add a proto file that defines the communication mechanism between the client and the server. To do so, create a Protos folder inside your project folder and place the greeter.proto file inside it with the following content:

syntax = "proto3";

option csharp_namespace = "BasicGrpcService";

package greeter;

// The greetings manager service definition.

service GreetingsManager {

// Request the service to generate a greeting message.

rpc GenerateGreeting (GreetingRequest) returns

(GreetingResponse);

}

// The request message definition containing the name to be

addressed in the greeting message.

message GreetingRequest {

string name = 1;

}

// The response message definition containing the greeting

text.

message GreetingResponse {

string greetingMessage = 1;

}

This is a very bare-bones proto file. It's the equivalent of a Hello World application as it's only there to demonstrate the very basic functionality to a complete beginner.

We will cover the format of the proto file in more detail later. For now, let's go through the basics by using this example.

The first element is syntax. In our case, its value is set to proto3. There were several iterations of the gRPC communication protocol and the current one is the third iteration.

Due to this, we have explicitly specified it here, as some applications may otherwise assume that this file represents an older version of the protocol.

Setting up a gRPC server 19

Then, we have the csharp_namespace option. This option is specific to the C#

language as it's the language that we will be working with. It tells our compiler what namespace it should use while generating classes based on these proto definitions. So, the server and client classes that are based on the service elements of the proto file will be under the namespace defined here.

Next, we have the package element. package in Protobuf is conceptually similar to C#

namespaces, but it's intended for Protobuf rather than the code that gets generated from it. package allows one proto definition to reference other definitions, just like the C#

class can reference external libraries by using namespaces.

Next, we have the service definition. A single proto file can have lots of these. But essentially, a single proto service represents a single client or server class in the code.

Inside the server, rpc definitions represent remotely called procedures, which are equivalent to C# methods. Each of those definitions has a unique name, a single message definition as its parameter (the request message), and a single message definition as its return object (the response message).

The RPC definition must always have a single request and a single response. You cannot have RPC without putting anything into the parameters or its return statement. Nor can you specify multiple message definitions in either of those places.

However, there are ways of sending or returning empty messages in gRPC calls. Even though a message definition must be specified, it doesn't need to have any fields.

Likewise, there are multiple ways of sending or receiving multiple messages. First, both the client and the server can stream messages, which will enable the system to send or receive multiple messages of the same schema rather than one. Also, each message can have other messages as data types in its fields. It can also use collections, which allows it to put multiple messages of the same kind into a single field.

Messages are defined by the message keyword in a proto file. The closest equivalent in C# is basic classes or structs that are used for data transfer.

Each message can have zero or any number of data fields. Each data field is defined by its data type (which we will cover in more detail in Chapter 3, Protobuf – the Communication Protocol of gRPC), unique name, and unique sequence number. For example, this is the only data field that we will use inside GreetingRequest:

string name = 1;

The sequence number at the end must start with 1 and be unique for each field. These sequence numbers simplify the process of API versioning in gRPC, which we will cover in more detail in Chapter 3, Protobuf – the Communication Protocol of gRPC.

20 Creating a Basic gRPC Application on ASP.NET Core

Finally, our example contains multiple comments, which, just like in C#, start with //.

They are completely ignored by the compiler.

Adding some code to use gRPC components

Now, we are ready to start modifying our application so that it can use the gRPC

components that we have added.

First, you will need to create a Services folder inside your project folder. Then, we must add a file to it and name it GreetingsManagerService.cs. Then, we must put the following content into this file:

using System.Threading.Tasks;

using Grpc.Core;

namespace BasicGrpcService

{

public class GreetingsManagerService :

GreetingsManager.GreetingsManagerBase

{

public override Task<GreetingResponse>

GenerateGreeting(GreetingRequest request,

ServerCallContext context)

{

return Task.FromResult(new GreetingResponse

{

GreetingMessage = "Hello " + request.Name

});

}

}

}

Please note that, at this stage, you may receive a compiler error. If you do, it will persist until you build the application. But don't worry about it for now.

This class represents the server-side logic that is defined by the GreetingsManager service, which we specified in the greeter.proto file. The basic code

placeholders are auto-generated from the proto file and, in our case, are placed in the GreetingsManager.GreetingsManagerBase class, which our class extends. Then, we just need to override the methods from this class to apply our custom logic.

Setting up a gRPC server 21

The override of the GenerateGreeting task is the representation of the

GenerateGreeting RPC, which is defined inside the GreetingsManagerer

service in the greeter.proto file. However, you may have noticed that it doesn't match the definition. Yes – as the proto file has specified, it accepts a parameter of the GreetingRequest type and returns an object of the GreetingResponse type.

However, it also has an additional input parameter of the ServerCallContext type.

Well, this parameter is nothing but a collection of metadata that was populated by the client sending the request. It contains information such as the username and connection state. It plays a similar role to HttpContext, which is used by the HTTP endpoints (MVC, REST API, and so on) of ASP.NET Core.

This code is very simple. When a client calls this method, the Name property of the GreetingRequest input parameter is read. This value is inserted at the end of the Hello text. So, for example, if the name is John, the output would be Hello John.

Then, this value is inserted into the GreetingMessage property of a newly initialized instance of the GreetingResponse object, which is returned to the calling client.

Next, we will need to modify our Startup class to register the

GreetingsManagererService class as a valid gRPC endpoint. To do so, first, add the following line inside the ConfigureServices method. If you are using

.NET 6 project template, there will be no Startup class. And neither will there be ConfigureServices method. So, you will just need to apply the following code to the main body of Program.cs class, replacing services with builder.Services. And it will need to be placed before the Build event:

services.AddGrpc();

Next, add the following code inside the call to app.UseEndpoints, inside the Configure method:

endpoints.MapGrpcService<GreetingsManagerService>();

Finally, inside your Properties folder in the root of your project folder, locate the profiles element and replace its content with the following:

"profiles": {

"BasicGrpcService": {

"commandName": "Project",

"dotnetRunMessages": "true",

"launchBrowser": false,

"applicationUrl":

[image: Image 11]

22 Creating a Basic gRPC Application on ASP.NET Core

"http://localhost:5000;https://localhost:5001",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}

}

}

That's it – our gRPC server has been fully configured. Now, you can launch your application and see if it works correctly. If it does, you should see some console output, and the application shouldn't throw any visible errors:

Figure 1.8 – Console output from the gRPC server

With this, we have set up our gRPC server. Now, let's move on to the next step and set up a gRPC client that can talk to it.

Setting up a gRPC client

Now, we will add a basic gRPC client that will be able to communicate with our service via gRPC. This will be a basic console application. The process will consist of the following steps:

1. Initialize the console application project.

2. Add some gRPC client dependencies to the project.

3. Add some code to connect to the gRPC client.

Once you've followed these steps, your basic console application will be able to send requests to the gRPC server and receive responses from it.

[image: Image 12]

Setting up a gRPC client 23

Initializing the project for the client application

If you are using an IDE, you can add a new project to your solution. The template that you will need is called Console Application or Console Project, depending on which IDE

you're using. However, you need to make sure that you don't choose the .NET Framework version of the template, which will be clearly labeled. Likewise, make sure that you select the C# template as the IDE may present you with options for other languages too: Figure 1.9 – Console Application template on Visual Studio 2019

As console application is a very basic application type; there won't be any complex setup options to select while creating the project. You can leave all the default options selected.

Let's call our new project BasicGrpcClient.

24 Creating a Basic gRPC Application on ASP.NET Core

If you are using a code editor and CLI instead of a fully-fledged IDE, you can create the project by executing a dotnet CLI command. Please ensure that you execute this command from the folder where the BasicGrpcService project folder is located.

It will create the new project folder at the same level inside of your filesystem that your original project folder is located at. The command will be as follows:

dotnet new console -o BasicGrpcClient

Adding gRPC client components to the application

Now, to make your console application act as a gRPC client, you will need to add some NuGet references to your project. You can do so by executing the following commands inside your BasicGrpcClient project folder:

dotnet add BasicGrpcClient.csproj package Grpc.Net.Client

dotnet add BasicGrpcClient.csproj package Google.Protobuf

dotnet add BasicGrpcClient.csproj package Grpc.Tools

Once the packages have been installed, the content of your BasicGrpcClient.

csproj file should be similar to this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<OutputType>Exe</OutputType>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<PackageReference Include="Google.Protobuf"

Version="3.17.3" />

<PackageReference Include="Grpc.Net.Client"

Version="2.38.0" />

<PackageReference Include="Grpc.Tools" Version="2.38.1">

<IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive</IncludeAssets>

<PrivateAssets>all</PrivateAssets>

</PackageReference>

Setting up a gRPC client 25

</ItemGroup>

</Project>

Next, we will need to add the following section to the project file, which references the proto file we will be using to communicate with the server:

<ItemGroup>

<Protobuf Include="Protos\greeter.proto"

GrpcServices="Client"

/>

</ItemGroup>

This will make our project file look like this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<OutputType>Exe</OutputType>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<PackageReference Include="Google.Protobuf"

Version="3.17.3" />

<PackageReference Include="Grpc.Net.Client"

Version="2.38.0" />

<PackageReference Include="Grpc.Tools" Version="2.38.1">

<IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive</IncludeAssets>

<PrivateAssets>all</PrivateAssets>

</PackageReference>

</ItemGroup>

<ItemGroup>

<Protobuf Include="Protos\greeter.proto"

GrpcServices="Client" />

26 Creating a Basic gRPC Application on ASP.NET Core

</ItemGroup>

</Project>

This is similar to what we've done with the server application. But this time, we are telling our application to only generate code for the client components. This is why we have set the GrpcServices attribute to Client.

Because we will be connecting to the server we created previously, we need a proto file with package, service, rpc, and message definitions that are identical to what we had in our server-side proto file. However, our C# namespace can be different.

Therefore, what you'll need to do next is create a Protos folder inside your BasicGrpsClient project folder. Then, you must insert the greeter.proto file into this folder and ensure it has the following content:

syntax = "proto3";

option csharp_namespace = "BasicGrpcClient";

package greeter;

// The greetings manager service definition.

service GreetingsManager {

// Request the service to generate a greeting message.

rpc GenerateGreeting (GreetingRequest) returns

(GreetingResponse);

}

// The request message definition containing the name to be

addressed in the greeting message.

message GreetingRequest {

string name = 1;

}

// The response message definition containing the greeting

text.

message GreetingResponse {

Setting up a gRPC client 27

string greetingMessage = 1;

}

Please note that this file is identical to the one we have in our server application project, except for the csharp_namespace element. This element is used by the gRPC tools inside your specific .NET project and it does not affect compatibility between the server and client versions of the proto file. However, the rest of the elements must be the same for the communication system to recognize that it's meant to be the same interface.

Some differences are tolerated (which we will talk about when we cover API versioning in Chapter 5, How to Apply Versioning to the gRPC API). But the fundamental structure of your standard gRPC element definitions must match.

Applying gRPC client components to the code

In your BasicGrpcClient project, locate the Program.cs class and change its content to the following:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

namespace BasicGrpcClient

{

class Program

{

static async Task Main()

{

// The port number(5001) must match the port of

the gRPC server.

using var channel =

GrpcChannel.ForAddress(" https://localhost:5001");

var client = new

GreetingsManager.GreetingsManagerClient(channel);

var reply = await client.GenerateGreetingAsync(

new GreetingRequest { Name = "BasicGrpcClient" });

Console.WriteLine("Greeting: " + reply.

GreetingMessage);

Console.WriteLine("Press any key to exit...");

28 Creating a Basic gRPC Application on ASP.NET Core

Console.ReadKey();

}

}

}

Please note that the highlighted URL represents the HTTPS access point to the gRPC server. This will not be available if you are running your software on Mac.

The workaround to this is described in the Running a gRPC service on Mac section of this chapter.

This code does the following:

1. First, it initializes the gRPC channel for the hardcoded address of https://

localhost:5001. Please note that this is the same address that we defined in the launchSettings.json file in the BasicGrpcService project. But in a real

commercial application, this will be configurable rather than hardcoded.

2. Then, it uses this channel to initialize a new instance of the gRPC client that was generated by the GreetingsManager service definition in our

greeter.proto file.

3. Next, it calls the GenerateGreetingAsync method of the client object

with a new instance of GreetingRequest that has its Name property set to

BasicGrpcClient. Please note that it represents the GenerateGreeting

rpc definition from the proto file, but the Async part has been added to the name.

This is because, in .NET, each gRPC procedure is represented by synchronous and asynchronous methods on the client side. The async version returns an awaitable task, so the calling code can be set to do something else while we are waiting for the reply. The synchronous version, which has the same name as the original rpc definition but without "Async" at the end, blocks execution of the calling code until the result has been received.

4. From this call, we receive an instance of GreetingResponse.

5. Then, we read the value of its GreetingMessage field and print it in the console.

6. Finally, the console prompts the user to press any key to exit.

Now, you can launch both of your applications and see how they communicate with each other. It's better to launch the server application first to make sure that it has fully loaded before the client application tries to communicate with it.

[image: Image 13]

Understanding how proto files generate C# code 29

The simplest way to launch both applications is to open two instances of the command-line window (cmd, PowerShell, or Terminal, depending on your operating system and your preferences). In one command-line window, navigate to the BasicGrpcService project folder and execute the following command:

dotnet run

This will build and run the server application for you. Once it's showing the output that indicates that the gRPC server is running, open the other instance of the command-line window, navigate to the BasicGrpcClient project folder, and execute the same command.

You should receive the following output, which indicates that the client was able to successfully call the method on the server via the network:

Figure 1.10 – Console output from the gRPC client application

Now, if you re-examine the code from your client and your server, you will see that it looks almost as if you are calling the code from inside the same application. And that's precisely what makes gRPC so easy to use.

In both the applications that we covered, you saw how relevant code is automatically generated from proto files. In certain scenarios, it would be useful to know how this mechanism works. This is what we will have a look at now.

Understanding how proto files generate

C# code

Normally, you wouldn't need to worry about how C# classes are generated from proto files. The compiler does it all for you. But occasionally, there may be a problem with the process. Therefore, it would be useful to know how to find the generated code and what the expected output should be.

30 Creating a Basic gRPC Application on ASP.NET Core

Where is auto-generated code stored?

At this point, you know that the .NET compiler generates code from the proto files. This can then be referenced from inside your application code. And you can also get it to share the same namespace as your application. But despite the ability of this code to inter-operate with your application code, it's not part of your application.

The auto-generated code is placed in the obj folder inside your project folder. The purpose of this folder is to store intermediate resources that are required to compile your application. Since auto-generated classes aren't part of your main application, but your application cannot be compiled without them, they are placed alongside other intermediate files in this folder.

More precisely, the location of those auto-generated files is as follows. This represents the path on the Windows system. For a Unix-based system, such as macOS or Linux, replace back-slashes (\) with forward-slashes (/):

{your project folder}\obj\{build configuration}\{framework

name}\Ptotos

So, for our BasicGrpcService project, which is based on .NET 5's built-in Debug mode, the path would be as follows:

BasicGrpcService\obj\Debug\net5.0\Ptotos

For each proto file that you reference in your project, a pair of files containing C# code will be generated:

• {PascalCase proto file name}.cs

• {PascalCase proto file name}Grpc.cs

The {PascalCase proto file name}.cs file contains a C# representation of the proto messages that your services use, while {PascalCased proto file name}

Grpc.cs contains a C# representation of the services themselves, whether it's overridable base classes for the server or ready-made classes for the client.

In our example, which uses the greeter.proto file, we would end up with two files with the following names:

• Greeter.cs

• GreeterGrpc.cs

[image: Image 14]

Understanding how proto files generate C# code 31

The content of those auto-generated files would be similar to the following: Figure 1.11 – An example of auto-generated gRPC C# code

You can examine the structure of these files if you like. Now, let's learn how making changes to the namespaces in Protobuf will affect the auto-generated code.

Modifying Protobuf namespaces

So far, we have been using the csharp_namespace option inside our proto files to set the namespaces of auto-generated code classes to the same root namespace that our application uses. But it doesn't have to be this way. You can set the namespaces in autogenerated code to absolutely anything.

You can also omit the csharp_namespace option entirely. If you do so, the namespace that will be applied to your auto-generated code will be the PascalCase version of the package name that's specified in the package element of the proto file.

In our case, since the package is called greeter, the C# namespace that's generated from it will be Greeter.

32 Creating a Basic gRPC Application on ASP.NET Core

Now, go ahead and remove the csharp_namespace element from both the client and server versions of the greeter.proto file. Both copies of the files should now look as follows:

syntax = "proto3";

package greeter;

// The greetings manager service definition.

service GreetingsManager {

// Request the service to generate a greeting message.

rpc GenerateGreeting (GreetingRequest) returns

(GreetingResponse);

}

// The request message definition containing the name to be

addressed in the greeting message.

message GreetingRequest {

string name = 1;

}

// The response message definition containing the greeting

text.

message GreetingResponse {

string greetingMessage = 1;

}

Now, if you try to compile the projects, they will show errors. What you need to do is add a using statement to both the client and the server code referencing this namespace.

The content of the GreetingsManagerService.cs file inside the

BasicGreeterService project should now look as follows:

using System.Threading.Tasks;

using Greeter;

using Grpc.Core;

namespace BasicGrpcService

{

Understanding how proto files generate C# code 33

public class GreetingsManagerService :

GreetingsManager.GreetingsManagerBase

{

public override Task<GreetingResponse>

GenerateGreeting(GreetingRequest

request, ServerCallContext context)

{

return Task.FromResult(new GreetingResponse

{

GreetingMessage = "Hello " + request.Name

});

}

}

}

The content of the Program.cs file inside the BasicGreeterClient project should now look as follows:

using System;

using System.Threading.Tasks;

using Greeter;

using Grpc.Net.Client;

namespace BasicGrpcClient

{

class Program

{

static async Task Main()

{

// The port number(5001) must match the port of

the gRPC server.

using var channel =

GrpcChannel.ForAddress("https://

localhost:5001");

var client = new

GreetingsManager.

GreetingsManagerClient(channel);

34 Creating a Basic gRPC Application on ASP.NET Core

var reply = await client.GenerateGreetingAsync(

new GreetingRequest { Name = "BasicGrpcClient" });

Console.WriteLine("Greeting: " +

reply.GreetingMessage);

Console.WriteLine("Press any key to exit...");

Console.ReadKey();

}

}

}

Now, you know how easy it is to regenerate relevant code after making changes to the Protobuf definition. At this point, you have two copies of the greeter.proto file that are identical.

At this stage, you may be wondering whether having separate copies of this file would violate the don't repeat yourself (DRY) principle, which is a commonly accepted best practice when writing software. Will any problems occur if you update one of these files while forgetting to update the other? Isn't it possible to keep a single shared copy of the file that both the client and the server use?

Fortunately, you can share the same file between multiple applications in .NET. Let's have a look at how.

Sharing a proto file between the client and

the server

In .NET, if you want to share common functionality between different applications, you would put this functionality into a class library and then add this library to all the projects that need to use it. The good news is that you can do the same with proto files. To share this between applications, you can just add it to a class library and then add the class library as a reference.

Let's do this with our client and server projects.

Creating a shared class library

Inside the folder that holds both the BasicGrpcService and BasicGrpcClient project folders, create a new class library project and call it GrpcDependencies.

Sharing a proto file between the client and the server 35

If you are using an IDE, you can add a project by choosing the Class Library template. Please ensure that .NET 5 is selected as the framework. Otherwise, keep all other options as-is.

If you prefer to use a CLI, you can execute the following command inside the folder hosting your existing projects to create a class library:

dotnet new classlib -o GrpcDependencies

Please note that, with a class library that is shared between projects, it would be more convenient to manage them if you have all these projects, including the class library itself, added to a solution.

If you have been using an IDE up to this point with all the default options selected, unless specified otherwise, you probably have the solution set up and all of your projects will already be a part of it.

If this is what your setup already looks like, you can skip to the next section. Otherwise, you can execute the following command inside the folder that hosts all your project folders to create a solution file:

dotnet new sln

This will create a file with the .sln extension that has the same name as the folder that hosts it.

Now, you can add all your projects to the folder by executing the following commands: dotnet sln add GrpcDependencies/GrpcDependencies.csproj

dotnet sln add BasicGrpcService/BasicGrpcService.csproj

dotnet sln add BasicGrpcClient/BasicGrpcClient.csproj

You should now have a solution set up and all projects added to it. If you choose the build solution option, all the projects will be built together. You no longer have to build them individually.

Adding shared gRPC components to the class library

Since you now have a shared library for storing proto files, you no longer need to store a copy of the greeter.proto file in every project that uses it. You just need to store one copy in the class library itself.

So, copy the entire proto folder from either the BasicGrpcService or

BasicGrpcClient folder into the GrpcDependencies folder.

36 Creating a Basic gRPC Application on ASP.NET Core

Next, we will need to add the right NuGet dependencies to our GrpcDependencies class library. The dependencies that we used to reference our client and server projects will only need to be referenced in the class library, so our dependency tree will be kept clean.

To add the required dependencies, execute the following CLI commands inside the GrpcDependencies folder:

dotnet add GrpcDependencies.csproj package Grpc.Net.Client

dotnet add GrpcDependencies.csproj package Google.Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.AspNetCore

Please note that these are the standard NuGet packages that are used by both the gRPC client and server. Because our shared class library will be used by both types of applications, we need both sets of dependencies.

Now, add a proto reference to your GrpcDependencies.csproj file. We will amend the GrpcServices element to this as we need to be able to build both the client and server gRPC components from the class library. Therefore, the markup block that we need to add to the project file will look like this:

<ItemGroup>

<Protobuf Include="Protos\greeter.proto" />

</ItemGroup>

Finally, remove any other greet.proto file references from your project file, which could have been auto-generated when you copied the file into the project folder.

Now, the content of your GrpcDependencies.csproj file should look similar to this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<PackageReference Include="Google.Protobuf"

Version="3.17.3" />

<PackageReference Include="Grpc.Net.Client"

Version="2.38.0" />

Sharing a proto file between the client and the server 37

<PackageReference Include="Grpc.Tools" Version="2.38.1">

<IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive</IncludeAssets>

<PrivateAssets>all</PrivateAssets>

</PackageReference>

<PackageReference Include="Grpc.AspNetCore"

Version="2.34.0" />

</ItemGroup>

<ItemGroup>

<Protobuf Include="Protos\greeter.proto" />

</ItemGroup>

</Project>

Now, we are ready to use this class library in our applications.

Sharing gRPC dependencies between different

projects

First, you will need to reference the newly created class library from both the BasicGrpcService.csproj and BasicGrpcClient.csproj files. To do so, add

the following section to both of the files:

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

Now, you can remove all the gRPC-related NuGet dependencies from both of those files.

All of them are present in the shared class library, so when you reference the class library, all of those dependencies will be implicitly referenced too.

After cleaning up your project files, the BasicGrpcService.csproj file should look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

38 Creating a Basic gRPC Application on ASP.NET Core

</PropertyGroup>

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

The content of the BasicGrpcClient.csproj file should be very similar and look like this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<OutputType>Exe</OutputType>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

Please note that the only differences between the two project files are the SDK type and the output type, which represent different types of applications.

Now, to verify that all the dependencies have been set up successfully, build your solution and ensure there aren't any build errors. If it builds successfully, launch your BasicGrpcService project, followed by the BasicGrpcClient project, to ensure that everything still works correctly.

The applications are expected to produce the same output that they did previously.

However, this time, a single copy of the proto file will be shared between them, so you no longer run the risk of making two copies of the file incompatible while updating them.

Another important thing to note is that, just like any other class library, a library containing proto files can be published as a NuGet package.

Running a gRPC service on Mac 39

Running a gRPC service on Mac

At the time of writing, you cannot apply TLS while running gRPC Server on Mac. This is because of missing Application Layer Protocol Negotiation (ALPN) support on the operating system. So, to make it work, you need to enable HTTP access to the server instead of HTTPS.

Configuring server-side components

First, you need to enable an unencrypted endpoint HTTP/2 endpoint inside your application. To do so, open the Program.cs file inside your gRPC server project. Then, add the following using statement on top of it:

using Microsoft.AspNetCore.Server.Kestrel.Core;

Then, inside the Main method (which is the entry point into the application), add the following block of code inside the call to the ConfigureWebHostingDefaults method:

webBuilder.ConfigureKestrel(options =>

{

options.ListenLocalhost(<port number> , o => o.Protocols =

HttpProtocols.Http2);

});

Replace <port number> with the actual port number of the HTTP endpoint, which can be found under the applicationUrl key in the launchSettings.json file, which is located in the Properties folder of the project.

Once you've done this, your application will be ready to accept insecure HTTP/2 requests on the specified port number.

Modifying the client-side configuration

Because TLS doesn't work on the server, you won't be able to send requests to it via the HTTPS endpoint. So, while creating the GrpcChannel object in the client application, you will need to pass the HTTP URL into it. The specific URL can be found under the applicationUrl key in the launchSettings.json file, which is located in the Properties folder of the gRPC server project.

40 Creating a Basic gRPC Application on ASP.NET Core

Summary

In this chapter, we learned how to set up both the gRPC client and the server. We did so by manually adding gRPC capabilities to our .NET projects instead of creating new projects from the gRPC template. For our server, we started with a standard ASP.NET

Core project template, while our client used the most basic Console Application template.

We had a look at how the gRPC compiler generates code from Protobuf files and how that auto-generated code is affected by changes that are made to the content of those files.

Finally, we covered the process of sharing the same proto file between different applications via a shared class library so that you, as a developer, would not accidentally apply incompatible Protobuf definitions to your client and the server.

In the next chapter, we will have a more detailed look at the use cases of gRPC. Although it's a great communication protocol, it has its limitations, and it's not the best solution for every situation. So, you will learn when it's best to use gRPC and when alternative solutions might be better.

Questions

Answer the following questions to test your knowledge of this chapter:

1. Please select the false statement:

A. In Protobuf, a service is defined by the service keyword, while its methods are defined by the rpc keyword.

B. You cannot have a Protobuf message definition without any fields.

C. A Protobuf message can have collections of objects and can use other message definitions as field types.

D. You have to specify a request object in a response object inside a gRPC method definition and you can only use a single object type in each of those.

2. Which platforms can you run a .NET implementation of gRPC on?

A. Windows, Linux, and macOS

B. Windows and macOS only

C. Unix-based (macOS and Linux) only

D. Windows only

Questions 41

3. How do you enable server-side gRPC components in .NET applications?

A. So long as you reference the Grpc.AspNetCore NuGet package, it will be automatically enabled for you.

B. You just need to add a proto file to your project; the compiler will do everything else for you.

C. You need to define a proto element inside the project file. It can be blank or you can set its GrpcServices attribute to either Server or Both.

D. You need to define a proto element inside the project file and you must set its GrpcServices attribute to Server.

4. After adding the relevant proto files to your server-side application project, what modifications do you need to make to your code?

A. You just need to override the methods from the auto-generated C# code files with your functionality.

B. You need to modify the auto-generated C# classes and add your functionality to them.

C. You need to create a new class that inherits from the auto-generated base class, add gRPC to your application services via the ConfigureServices method

of the Startup class, and then register the newly created class as one of the endpoints in your middleware.

D. The system will generate all the required code for you. You just need to fill the methods with your logic.

5. Can the .NET implementation of the .NET client call RPCs both synchronously and asynchronously?

A. It can only call methods synchronously.

B. It can only call methods asynchronously.

C. There is both a synchronous and asynchronous version of each method that's generated for the client to use.

D. All auto-generated methods are asynchronous, but you can change the

implementation to make them synchronous.

42 Creating a Basic gRPC Application on ASP.NET Core

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following resources:

• The official ASP.NET Core gRPC documentation: https://docs.microsoft.

com/en-us/aspnet/core/grpc/

• C# code generation documentation: https://developers.google.com/

protocol-buffers/docs/reference/csharp-generated

• Troubleshooting gRPC on .NET Core: https://docs.microsoft.com/

en-us/aspnet/core/grpc/troubleshoot

2

When gRPC Is the

Best Tool and When

It Isn't

In this chapter, we will cover use cases for Google Remote Procedure Call (gRPC). We will use sample applications to demonstrate why gRPC is a great tool to be used in some scenarios but isn't the best one for other scenarios.

The main objective of this chapter is to demonstrate how convenient it is to use gRPC

for microservices architecture and asynchronous communication, but you will also be shown how inconvenient it is to use gRPC in a browser or on any platform that doesn't support the HyperText Transfer Protocol 2 (HTTP/2) protocol. You will also be shown alternative technologies you can use when gRPC is not the best answer.

We will cover the following topics in this chapter:

• Why gRPC is a great tool for microservices

• How gRPC can be a good tool for asynchronous communication

• Why gRPC is not the best tool for browsers

• Where SignalR would beat gRPC

44 When gRPC Is the Best Tool and When It Isn't

By the end of this chapter, you will have learned how to decide whether or not to use gRPC in a particular situation. You will have also learned what to do if gRPC doesn't appear to be the best solution for your particular case.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Mac, or Linux operating system

• A supported integrated development environment (IDE) or code editor (Visual Studio, Visual Studio Code (VS Code), or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HTTP Secure (HTTPS) certificate that is enabled on your machine

Instructions on how to set all of these up were provided in the previous chapter.

You can find the code files for this chapter on GitHub at https://github.com/

PacktPublishing/Microservices-Communication-in-.NET-Using-

gRPC/tree/main/Chapter-02.

Please visit the following link to check the CiA videos: https://bit.ly/3EXh2Y2

Why gRPC is a great tool for microservices

gRPC has been primarily developed to facilitate direct real-time communication (RTC) between microservices in a distributed application. Therefore, microservices architecture is where gRPC is often the most convenient tool to use.

To verify this assumption, we will build a solution that resembles a real-life distributed application consisting of microservices, each of which plays a distinct role. Our distributed application will consist of two microservices, as follows:

• A backend service that manages status information on connected clients

• A public-facing REpresentational State Transfer (REST) application programming interface (API) gateway that communicates with this service Both of these will share a Protocol Buffers (Protobuf) definition via a class library.

Why gRPC is a great tool for microservices 45

The status manager service will maintain a collection of key-value pairs representing the client name and its status. Any connected client will be able to perform the following operations via gRPC:

• Update status information on a particular client.

• Retrieve status information about a particular client.

• Retrieve a full list of all client statuses.

In a real-world scenario, this service might be hosted on a private network and hidden from the public. Therefore, we will have another service acting as a REST API gateway that will talk to the status manager that, in a real-life scenario, would be hosted on the same private network but also exposed to the public internet, which could be done via port mapping or other techniques.

This API gateway service will act as a gRPC client. It will accept HTTP requests and translate them into gRPC calls. It will then convert Protobuf messages into standard JavaScript Object Notation (JSON) and return them back to the client.

Setting up a solution and shared dependencies

Let's create a solution and call it GrpcMicroserviceSample. If you are using an IDE

such as Visual Studio or Rider, you will be able to do so while creating your first project from the relevant template. If you are using the dotnet command-line interface (CLI), you can instead create a folder named GrpcMicroserviceSample and execute the following command inside of it to initialize the solution:

dotnet new sln

Then, inside this solution folder, you will need to create a class library that will contain shared gRPC client and server dependencies. This class library project will be called GrpcDependencies. If you are using the command line, execute the following command inside your solution folder to create it:

dotnet new classlib -o GrpcDependencies

Inside the GrpcDependencies project folder, create a folder called Protos, then create a status.proto file inside this folder. Inside this file, we will first add a standard syntax reference, the package name, and the definition of our service, as follows: syntax = "proto3";

package status;

46 When gRPC Is the Best Tool and When It Isn't

service StatusManager {

rpc GetAllStatuses (ClientStatusesRequest) returns (stream

ClientStatusResponse);

rpc GetClientStatus (ClientStatusRequest) returns

(ClientStatusResponse);

rpc UpdateClientStatus (ClientStatusUpdateRequest) returns

(ClientStatusUpdateResponse);

}

Following that, we will add definitions of the messages, as follows:

message ClientStatusesRequest {

}

message ClientStatusRequest {

string clientName = 1;

}

message ClientStatusResponse {

string clientName = 1;

ClientStatus status = 2;

}

message ClientStatusUpdateRequest {

string clientName = 1;

ClientStatus status = 2;

}

message ClientStatusUpdateResponse {

bool success = 1;

}

Why gRPC is a great tool for microservices 47

Finally, we are introducing a new data type that we need for our models— enum, as illustrated in the following code snippet:

enum ClientStatus {

OFFLINE = 0;

ONLINE = 1;

BUSY = 2;

}

Inside this proto file, you will see some new components that we have not covered before.

First of all, you see a new definition type—enum. This is used as a field type in some of the message definitions.

This is just a standard enumeration, equivalent to a C# enum. It can be defined as an independent object (as we have done in our example), or its definition can be nested inside a message definition. You would do the former if you wanted to use the same enum definition in different messages, while you would use the latter if it's only a specific message definition that is meant to use a specific enum type.

The values inside an enum object are expected to have sequential numeric values starting from zero.

We will cover enums in more detail in the next chapter, which is dedicated to data types supported by Protobuf.

The other new keyword that we haven't seen before is stream, which is located before the return message of GetAllStatuses rpc of the StatusManager service. A stream is one of the ways of transferring a collection, rather than a single object, in gRPC between the client and the server. A stream is also something that can facilitate asynchronous communication, which we will cover later in this chapter.

We will examine streaming and non-streaming gRPC calls in more detail in Chapter 7, Using Different Call Types that gRPC Supports.

Also, in this proto file, we have an example of a message definition with no fields: ClientStatusesRequest. It has been placed there to demonstrate that, while it's mandatory to have a message definition in a remote procedure call (RPC), both as an input parameter and a return value, the definition itself can be empty.

48 When gRPC Is the Best Tool and When It Isn't

Once we've added our Protobuf definition, we just need to add all relevant dependencies to the class library project definition. The simplest way to do it would be to replace the original content of the GrpcDependencies.csproj file with the following code:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<PackageReference Include="Google.Protobuf"

Version="3.17.3" />

<PackageReference Include="Grpc.Net.Client"

Version="2.38.0" />

<PackageReference Include="Grpc.Tools" Version="2.38.1">

<IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive</IncludeAssets>

<PrivateAssets>all</PrivateAssets>

</PackageReference>

<PackageReference Include="Grpc.AspNetCore"

Version="2.34.0" />

</ItemGroup>

<ItemGroup>

<Protobuf Include="Protos\status.proto" />

</ItemGroup>

</Project>

You can update the version numbers of the NuGet packages if new releases have been made available.

Now, build the project to verify that there are no compilation errors. Then, if you have been using the dotnet CLI instead of a fully-fledged IDE, add the project to the solution by executing the following command inside the GrpcMicroserviceSample

solution folder:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

Why gRPC is a great tool for microservices 49

Now, we will set up our status manager microservice project that will act as a gRPC server.

Setting up the status manager microservice

Inside the solution folder, create a project named StatusMicroservice by using a standard gRPC Service project template. If you are using the dotnet CLI, run the following command from the GrpcMicroserviceSample solution folder to do so: dotnet new grpc -o StatusMicroservice

It will be created with a Protos folder and a sample gRPC server class inside the Services folder. You will not need any of these as you will be using the class library we created earlier for all of your gRPC dependencies.

To add those dependencies, replace the content of the StatusMicroservice.csproj file with the following code:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj">

<GlobalPropertiesToRemove></GlobalPropertiesToRemove>

</ProjectReference>

</ItemGroup>

</Project>

Then, completely remove the Protos folder from the project. We will not need the standard greet.proto file for this exercise.

Next, add a ClientStatus.cs file to the root of our project folder. It will be an enum with the following content:

namespace StatusMicroservice

{

public enum ClientStatus

{

50 When gRPC Is the Best Tool and When It Isn't

OFFLINE = 0,

ONLINE = 1,

BUSY = 2,

}

}

Then, add a StateStore.cs file that will contain the in-memory state. This file should have a StatusMicroservice namespace and import a System.Collections.

Generic package via a using statement. In this file, we will place an interface alongside our class. The interface should look like this:

public interface IStateStore

{

IEnumerable<(string ClientName, ClientStatus ClientStatus)>

GetAllStatuses();

ClientStatus GetStatus(string clientName);

bool UpdateStatus(string clientName, ClientStatus status);

}

Next, we will add a class that implements this interface. Its constructor and private members should look like this:

internal class StateStore : IStateStore

{

private Dictionary<string, ClientStatus> statuses;

public StateStore()

{

statuses = new Dictionary<string, ClientStatus>();

}

}

Finally, we will insert all required methods to implement the interface. The content of the GetAllStatuses method will look like this:

public IEnumerable<(string ClientName, ClientStatus

ClientStatus)> GetAllStatuses()

{

var returnedStatuses = new List<(string ClientName,

Why gRPC is a great tool for microservices 51

ClientStatus ClientStatus)>();

foreach (var record in statuses)

{

returnedStatuses.Add((record.Key, record.Value));

}

return returnedStatuses;

}

The GetStatus method will look like this:

public ClientStatus GetStatus(string clientName)

{

if (!statuses.ContainsKey(clientName))

{

return ClientStatus.OFFLINE;

}

return statuses[clientName];

}

And the UpdateStatus method will have the following implementation:

public bool UpdateStatus(string clientName, ClientStatus

status)

{

statuses[clientName] = status;

return true;

}

This example shows a class that implements an interface. Even though it's not strictly essential to have an interface instead of just a concrete class, we are mimicking the structure of a real-world microservices application. Therefore, we are applying the same best practices (for example, SOLID principles), as we would in a real commercial project.

52 When gRPC Is the Best Tool and When It Isn't

In a real-world application, having an interface would allow us to replace the implementation when needed—for example, we can mock the implementation while writing unit tests and inject the mocked instance into the classes that are being tested.

After this, add a file named StatusManagerService.cs to the Services folder. The class inside of it needs to have the following package imports:

using System.Threading.Tasks;

using Grpc.Core;

using Status;

The class should import an IStateStore instance via its constructor, as follows: public class StatusManagerService : StatusManager.

StatusManagerBase

{

private readonly IStateStore stateStore;

public StatusManagerService(IStateStore stateStore)

{

this.stateStore = stateStore;

}

}

And then, there should be a method corresponding to every remote procedure call (RPC) defined in the proto file. The implementation of the GetAllStatuses RPC will look like this:

public override async Task GetAllStatuses(ClientStatusesRequest

request, IServerStreamWriter<ClientStatusResponse>

responseStream,

ServerCallContext context)

{

foreach (var record in stateStore.GetAllStatuses())

{

await responseStream.WriteAsync(new

ClientStatusResponse

{

ClientName = record.ClientName,

Why gRPC is a great tool for microservices 53

Status = (Status.ClientStatus)record.

ClientStatus

});

}

}

The GetClientStatus implementation will look like this:

public override Task<ClientStatusResponse>

GetClientStatus(ClientStatusRequest request,

ServerCallContext

context)

{

return Task.FromResult(new ClientStatusResponse

{

ClientName = request.ClientName,

Status = (Status.ClientStatus)stateStore.

GetStatus(request.ClientName)

});

}

Finally, the content of the UpdateClientStatus method will be as shown here: public override Task<ClientStatusUpdateResponse>

UpdateClientStatus(ClientStatusUpdateRequest request,

ServerCallContext context)

{

return Task.FromResult(new

ClientStatusUpdateResponse

{

Success = stateStore.UpdateStatus(request.

ClientName

, (ClientStatus)request.Status)

});

}

54 When gRPC Is the Best Tool and When It Isn't

Please note that the GetAllStatuses method is different in its structure from the other methods. This is because it's a server-streaming method. We will cover those in Chapter 7, Using Different Call Types that gRPC Supports. For now, all you need to know is that it will return a collection to your client rather than a single object.

This example shows how we insert the IStateStore interface into a class that needs it instead of its concrete implementation. This allows us to insert any class that implements this interface into the constructor. Choosing a concrete class to insert will be handled by our dependency injection (DI) mechanism.

Once this file has been created, please make sure that any other files are removed from the Services folder; otherwise, they may throw compilation errors later.

Now, we will need to register the new gRPC endpoint in our Startup class

(or Program.cs file if you are using .NET 6 templates). This is also where we register services for DI. To register the newly created endpoint, please add the following line inside the call to the UseEndpoints method, which you will find inside the Configure method of the Startup class:

endpoints.MapGrpcService<StatusManagerService>();

Then, we will use an inbuilt DI mechanism by adding this line to the

ConfigureServices method (or the main body of the Program.cs file before the Build event if you are using .NET 6):

services.AddSingleton<IStateStore, StateStore>();

After executing this line, any class that isn't explicitly instantiated and has a constructor parameter of the IStateStore type will be given an instance of the StateStore class, and it will always be the same instance because we are registering it as a singleton.

There is an additional step you will need to perform to the gRPC service application if you intend to host it on a Mac operating system. This can be found in the Running a gRPC

 service on Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

In ASP.NET Core, controllers, gRPC services, background worker services, and some other standard class types would always accept construction parameters from DI systems as they are never instantiated explicitly in the code.

Finally, if you have been using the dotnet CLI and haven't yet added this new project to the solution, add it by executing the following command from inside the solution folder: dotnet sln add StatusMicroservice/StatusMicroservice.csproj

Now, we will add a REST API gateway that will act as a gRPC client.

Why gRPC is a great tool for microservices 55

Setting up a REST API gateway service

You will now need to add a project to your GrpcMicroserviceSample

solution by using the ASP.Core Web API template. We will call this project ApiGateway. If you are using the dotnet CLI, run the following command from the GrpcMicroserviceSample folder:

dotnet new webapi -o ApiGateway

In this case, you will then also need to add it to the solution by executing the following command:

dotnet sln add ApiGateway/ApiGateway.csproj

Both HyperText Markup Language (HTML) web pages and REST APIs use the HTTP

protocol. However, unlike web pages, REST APIs are headless, which means they are not built with the user interface (UI), thus making them difficult to use in a browser. But we can make the process easy by adding Swagger (OpenAPI) components to our application.

Once added, those components will create a web page that will allow us to manipulate any of our REST API endpoints via standard page controls (textboxes, drop-down fields, and buttons).

To enable these components, we will need to add an NSwag.AspNetCore

NuGet package to our ApiGateway project. Then, since the API gateway will be acting as a gRPC client in the backend, we will also need to add a reference to the GrpcDependencies project we created earlier. Once done, the content of the ApiGateway.csproj file is expected to look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<PackageReference Include="NSwag.AspNetCore"

Version="13.12.1" />

</ItemGroup>

<ItemGroup>

56 When gRPC Is the Best Tool and When It Isn't

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

Next, we will add a ClientStatus.cs file to the ApiGateway project folder. It will be the same enum we used in StatusMicroservice but it will be intended for consumption by public clients. So, the content of the file will look like this: namespace ApiGateway

{

public enum ClientStatus

{

OFFLINE = 0,

ONLINE = 1,

BUSY = 2,

}

}

We will then need to add a model from which we will be generating the JSON that will be sent back to the clients of the REST API. For this, create a ClientStatusModel.cs file in the root of the project with the following content:

namespace ApiGateway

{

public class ClientStatusModel

{

public string Name { get; set; }

public ClientStatus Status { get; set; }

}

}

Now, we will add a GrpcStatusClient.cs file that will be a wrapper around our gRPC client functionality. We will first add all required dependencies to this file by putting the following statements on top of it:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

Why gRPC is a great tool for microservices 57

using Grpc.Core;

using Grpc.Net.Client;

using Status;

Next, we will add an ApiGateway namespace, and inside of it, we will add an interface with the following method definitions:

public interface IGrpcStatusClient

{

Task<IEnumerable<ClientStatusModel>> GetAllStatuses();

Task<ClientStatusModel> GetClientStatus(string clientName);

Task<bool> UpdateClientStatus(string clientName,

ClientStatus

status);

}

This will enable us to use the dependency inversion principle (DIP) in any place that will use the gRPC client wrapper. We will then add a class that implements both this interface and IDisposable, as follows:

internal class GrpcStatusClient : IGrpcStatusClient,

IDisposable

{

private readonly GrpcChannel channel;

private readonly StatusManager.StatusManagerClient client;

public GrpcStatusClient(string serverUrl)

{

channel = GrpcChannel.ForAddress(serverUrl);

client = new StatusManager.

StatusManagerClient(channel);

}

}

58 When gRPC Is the Best Tool and When It Isn't

Here, we are setting up the gRPC channel and the client based on the gRPC server Uniform Resource Locator (URL) provided. Next, we will need to implement an IGrpcStatusClient interface to make the gRPC client callable from the outside. Our GetAllStatuses method will have some stream-processing logic, as illustrated in the following code snippet:

public async Task<IEnumerable<ClientStatusModel>>

GetAllStatuses()

{

var statuses = new List<ClientStatusModel>();

using var call = client.GetAllStatuses(new

ClientStatusesRequest());

while (await call.ResponseStream.MoveNext())

{

var currentStatus = call.ResponseStream.Current;

statuses.Add(new ClientStatusModel

{

Name = currentStatus.ClientName,

Status = (ClientStatus)currentStatus.Status

});

}

return statuses;

}

The implementation of GetClientStatus is a simple unary method that translates a gRPC message into our own custom model, as follows:

public async Task<ClientStatusModel> GetClientStatus(string

clientName)

{

var response = await client.GetClientStatusAsync(new

ClientStatusRequest

{

ClientName = clientName

Why gRPC is a great tool for microservices 59

});

return new ClientStatusModel

{

Name = response.ClientName,

Status = (ClientStatus)response.Status

};

}

And we apply similar principles to the implementation of the UpdateClientStatus method, as follows:

public async Task<bool> UpdateClientStatus(string clientName,

ClientStatus status)

{

var response = await client.UpdateClientStatusAsync(new

ClientStatusUpdateRequest

{

ClientName = clientName,

Status = (Status.ClientStatus)status

});

return response.Success;

}

Finally, we need to implement an IDisposable interface by running the following code: public void Dispose()

{

channel.Dispose();

}

The class will implement an interface that will be used as a constructor parameter in any class that needs to use it, and because the GrpcChannel instance needs to be disposed of when the class is no longer used, we need to get the class to implement an IDisposable interface. If we don't dispose of GrpcChannel, we may have a memory leak—a portion of memory not being freed even when the application is no longer running on the machine.

60 When gRPC Is the Best Tool and When It Isn't

We will now add a controller that will use this gRPC client wrapper class. In the ApiGateway project folder, locate the Controllers folder and insert

a StatusController.cs file into it. The namespace of the file should be

ApiGateway.Controllers as per ASP.NET Core conventions, and we will need to add the following mandatory namespace references:

using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

We will add the standard REST API controller attributes to the class definition and we will pass an instance of the gRPC client wrapper via the constructor, as follows:

[ApiController]

[Route("[controller]")]

public class StatusController : ControllerBase

{

private readonly IGrpcStatusClient client;

public StatusController(IGrpcStatusClient client)

{

this.client = client;

}

}

Finally, we will add the following endpoint methods to our controller class:

[HttpGet]

public async Task<IEnumerable<ClientStatusModel>>

GetAllStatuses()

{

return await client.GetAllStatuses();

}

[HttpGet("{clientName}")]

public async Task<ClientStatusModel> GetClientStatus(string

clientName)

{

Why gRPC is a great tool for microservices 61

return await client.GetClientStatus(clientName);

}

[HttpPost("{clientName}/{status}")]

public async Task<bool> UpdateClientStatus(string clientName,

ClientStatus status)

{

return await client.UpdateClientStatus(clientName, status);

}

This is just a standard ASP.NET Core Web API controller that has a REST-equivalent method for every RPC we have defined in our Protobuf file. Once added, we will be able to call HTTP endpoints of our application via this URL, as follows:

{base URL}/status

But the problem with it is that it's a headless API, so we wouldn't be able to easily access these endpoints via a browser. Normally, we would need software such as Fiddler or Postman to send any custom HTTP requests to REST APIs. However, because we have added NSwag.AspNetCore, we will have a web page that will give us access to all of these endpoints. We just need to register certain components in our application's Startup class (or inside Program.cs file if you are using .NET 6

templates, while applying appropriate modifications to the code shown next). Inside the ConfigureServices method, we need to enable Swagger functionality by including the following line of code:

services.AddOpenApiDocument();

Then, we actually add all required Swagger functionality to the middleware pipeline by having the following two lines inside the Configure methods. These lines should be placed anywhere before the call to UseRouting:

app.UseOpenApi();

app.UseSwaggerUi3();

In the ConfigureServices method, we are also adding dependency mapping so that our gRPC client wrapper can be passed to the controller that needs to use it. This is done on the following line:

services.AddSingleton<IGrpcStatusClient>(p => new

GrpcStatusClient(Configuration["ServerUrl"]));

62 When gRPC Is the Best Tool and When It Isn't

But this time, we are instantiating a GrpcStatusClient class with a concrete constructor parameter that we take from the ServerUrl field of the settings. We do this because it's a primitive data type and, therefore, it cannot be registered inside the DI container. So, we need to specify it explicitly.

But to get the value, we need to add a ServerUrl field to the appsettings.json file in the root of our project, which would look like this:

"ServerUrl": "https://localhost:35095"

The value of the field represents the URL or StatusMicroservice application.

It is taken from the applicationUrl field of the launchSettings.json

file of the application, which is located inside the Properties folder in the StatusMicroservice project folder. If there is more than one URL, we want the one that uses the HTTPS protocol. However, if we are running our gRPC server application on a Mac operating system, we would need to select the HTTP URL due to the limitations of the operating system. For example, the previous value was taken from a launchSettings.json file that had the following content:

{

"profiles": {

"StatusMicroservice": {

"commandName": "Project",

"applicationUrl": "http://localhost:3638;https://

localhost:35095",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}

}

}

}

Now, we are set to launch our distributed application and see it in action.

Launching the distributed application

To launch our applications and get them to talk to each other, we need to open two instances of a CLI of your choice (Terminal, PowerShell, Command Prompt (CMD), and so on). One of them should be pointing at the StatusMicroservice folder, while the other one should be pointing at the ApiGateway folder.

[image: Image 15]

Why gRPC is a great tool for microservices 63

First, launch the following command inside your StatusMicroservice folder: dotnet run

Then, once the microservice is up and running, launch the same command inside the ApiGateway folder.

Now, you can navigate to the Swagger page of the API gateway to test its endpoints. To do so, firstly obtain the HTTPS URL of the application from the applicationUrl field in the ApiGateway section of the launchSettings.json file. This file is located inside the Properties folder in the ApiGateway project. Paste this URL into the browser and add /swagger to the address. For example, if the URL is https://

localhost:21123, then the Swagger address will be https://localhost:21123/

swagger.

You should now see a friendly UI that allows you to operate all REST API endpoints, as illustrated in the following screenshot:

Figure 2.1 – Swagger page for ApiGateway

64 When gRPC Is the Best Tool and When It Isn't

Now, you can see how relatively easy it is to enable direct RTC between microservices by using gRPC. We've seamlessly integrated the internal gRPC communication channel with a publicly accessible REST API, but you can also use gRPC for asynchronous long-running background tasks. In the next section, we will see how this can be achieved.

How gRPC can be a good tool for asynchronous

communication

In distributed applications, it's common for one microservice to outsource a large chunk of work to another microservice in an asynchronous fashion. Perhaps the task would take a relatively long time to execute, so you wouldn't want to wait for a response. All you would be interested in is that the task has been successfully initiated.

gRPC allows you to do this. Streaming calls, which we covered earlier, aren't only suitable to pass collections—they can also be used for asynchronous task execution.

In the following example, we will add another service to our StatusMicroservice application. This service will use two streaming endpoints and will mimic the execution of long-running tasks of two different types. We will then add a new controller to our ApiGateway project to initiate asynchronous communication with the server.

Adding client-streaming and server-streaming gRPC

endpoints

First, we will add another proto service definition to our Protos folder inside the GrpcDependencies project. This will be a worker.proto file with the following content:

syntax = "proto3";

package worker;

service JobManager {

rpc SendJobs (stream SendJobsRequest) returns

(SendJobsResponse);

rpc TriggerJobs (TriggerJobsRequest) returns (stream

TriggerJobsResponse);

}

How gRPC can be a good tool for asynchronous communication 65

message SendJobsRequest {

int32 jobId = 1;

string jobDescription = 2;

}

message SendJobsResponse {

bool completed = 1;

}

message TriggerJobsRequest {

int32 jobsCount = 1;

}

message TriggerJobsResponse {

int32 jobSequence = 1;

string jobMessage = 2;

}

Please note that we have two RPCs defined in the JobManager service. SendJobs is a client-streaming RPC as it has a stream keyword placed before the input parameter.

TriggerJobs, on the other hand, is a server-streaming RPC, and the stream keyword placed before the return type indicates this.

We will need to register this new Protobuf definition in our GrpcDependencies.

csproj file by adding the following line of code inside the ItemGroup element that contains a Protobuf reference to status.proto:

<Protobuf Include="Protos\worker.proto" />

Now, we will add a service definition that will implement this proto file. We will do this by placing a JobManagerService.cs file inside the Services folder of the StatusMicroservice project.

First, we will add the necessary package imports to the file, as follows: using System;

using System.Threading.Tasks;

using Grpc.Core;

using Worker;

66 When gRPC Is the Best Tool and When It Isn't

Then, we will add a class definition by inheriting from the class that has been autogenerated from our proto file, as follows:

namespace StatusMicroservice

{

public class JobManagerService : JobManager.JobManagerBase

{

}

}

We will then add the following override for our server-streaming TriggerJobs method: public override async Task TriggerJobs(TriggerJobsRequest

request,

IServerStreamWriter<TriggerJobsResponse> responseStream,

ServerCallContext context)

{

for (var i = 0; i < request.JobsCount; i++)

{

await Task.Delay(TimeSpan.FromSeconds(2));

await responseStream.WriteAsync(new TriggerJobsResponse

{

JobSequence = i + 1,

JobMessage = "Job executed successfully"

});

}

}

Then, we will add an override for our client-streaming SendJobs method, as follows: public override async Task<SendJobsResponse>

SendJobs(IAsyncStreamReader<SendJobsRequest> requestStream,

ServerCallContext context)

{

while (await requestStream.MoveNext())

{

Console.WriteLine($"Job Id: {requestStream.Current.

How gRPC can be a good tool for asynchronous communication 67

JobId}.

Job description: {requestStream.Current.

JobDescription}");

await Task.Delay(TimeSpan.FromSeconds(2));

}

return new SendJobsResponse

{

Completed = true

};

}

This service mimics long-running tasks that the gRPC client has asked it to perform.

In the TriggerJobs method, we are simply told how many jobs to trigger. Perhaps there is already a list of the jobs waiting in the queue on the server, so we are telling the application how many of them we want to get executed.

In our code, we are mimicking job execution by waiting 2 seconds. Then, we place a description of the successfully executed job in the server stream.

Essentially, when a client makes a call to this RPC, a channel between the client and the server is opened and the client gets instantly notified of any new item that is placed on the server stream. So, in this case, the client will be updated on every successfully executed job at an interval of 2 seconds.

SendJobs is similar, but it utilizes the client stream. This method simulates a scenario where a list of specific job descriptions is sent to the server. Once again, every job takes 2

seconds to execute. However, this time, the client doesn't get notified of its execution, only getting notified when all jobs have been successfully processed. But because, just as in the first case, the process is long-running, the client is expected to keep the communication channel open and receive the response in an asynchronous manner.

We will now need to register our new service inside the Startup class of the StatusMicroservice project. To do so, just add the following line of code inside the app.UseEndpoints() call next to the line where you have registered StatusManagerService as the gRPC endpoint:

endpoints.MapGrpcService<JobManagerService>();

Next, we will configure the right client inside the ApiGateway project.

68 When gRPC Is the Best Tool and When It Isn't

Configuring the gRPC client for asynchronous

communication

Our REST API gateway needs a suitable JSON model that will be able to convert it (the gateway) into a SendJobsRequest gRPC message. This will be achieved by placing a JobModel.cs file in the root of the ApiGateway project with the following content: namespace ApiGateway

{

public class JobModel

{

public int JobId { get; set; }

public string JobDescription { get; set; }

}

}

Then, we will add a wrapper for our client. This will be achieved by placing a GrpcJobsClient.cs file in the root of the ApiGateway project. We will first add the necessary namespace imports, as follows:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

using Grpc.Core;

using Grpc.Net.Client;

using Worker;

Then, we will place the following interface inside the namespace definition: public interface IGrpcJobsClient

{

Task SendJobs(IEnumerable<JobModel> jobs);

Task TriggerJobs(int jobCount);

}

We will add our class definition and set up our gRPC client in the constructor, as follows: internal class GrpcJobsClient : IGrpcJobsClient, IDisposable

{

private readonly GrpcChannel channel;

How gRPC can be a good tool for asynchronous communication 69

private readonly JobManager.JobManagerClient client;

public GrpcJobsClient(string serverUrl)

{

channel = GrpcChannel.ForAddress(serverUrl);

client = new JobManager.JobManagerClient(channel);

}

}

We will then add a client-side implementation of our client-streaming method, as follows: public async Task SendJobs(IEnumerable<JobModel> jobs)

{

using var call = client.SendJobs();

foreach (var job in jobs)

{

await call.RequestStream.WriteAsync(new SendJobsRequest

{

JobId = job.JobId,

JobDescription = job.JobDescription

});

}

await call.RequestStream.CompleteAsync();

await call;

}

Then, we will add an implementation of the server-streaming method, as follows: public async Task TriggerJobs(int jobCount)

{

using var call = client.TriggerJobs(new TriggerJobsRequest

{

JobsCount = jobCount });

while (await call.ResponseStream.MoveNext())

{

70 When gRPC Is the Best Tool and When It Isn't

Console.WriteLine($"Job sequence:

{call.ResponseStream.Current.JobSequence}. Job

description: {call.ResponseStream.Current.

JobMessage}");

await Task.Delay(TimeSpan.FromSeconds(2));

}

}

Finally, we will implement an IDisposable interface to dispose of the gRPC channel object once we are done with it, as follows:

public void Dispose()

{

channel.Dispose();

}

In the SendJobs method, this class will place all the job descriptions in the client stream and will then wait until the service has processed them all. In the TriggerJobs method, the client will send the original request to the server, then it will write into the console the content of each item that gets placed into the stream by the server. Again, this call will not be complete until the stream is closed.

Now, we will register this client, making it available for our REST API to access. To do so, add the following line of code anywhere inside the ConfigureServices method of the Startup class:

services.AddSingleton<IGrpcJobsClient>(p => new

GrpcJobsClient(Configuration["ServerUrl"]));

Finally, we will add a new controller to our application. Inside the Controllers folder, we will create a JobsController.cs file with the following content:

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

namespace ApiGateway.Controllers

{

[ApiController]

[Route("[controller]")]

public class JobsController : ControllerBase

How gRPC can be a good tool for asynchronous communication 71

{

private readonly IGrpcJobsClient client;

public JobsController(IGrpcJobsClient client)

{

this.client = client;

}

[HttpPost("")]

public void SendJobs([FromBody] IEnumerable<JobModel>

jobs)

{

_ = client.SendJobs(jobs);

}

[HttpPost("{jobsCount}")]

public void TriggerJobs(int jobsCount)

{

_ = client.TriggerJobs(jobsCount);

}

}

}

Here, we have an API endpoint for each of our RPC methods. In both cases, we don't care whether all the jobs have been executed successfully. After all, there may be many jobs that will take a long time to run, which will cause our HTTP client to time out. Instead, we just make sure that the jobs are triggered. It's up to the backend to actually take care of the execution.

In our case, we trigger asynchronous tasks without awaiting them by assigning return values of our client wrapper methods to _. This is done to explicitly let our compiler know that we don't want to wait for the outcome of the task, and we just want to move on.

Of course, we could just execute either a SendJobs or TriggerJobs method without assigning its return value to anything, but in this case, our IDE wouldn't know that it was intentional. It wouldn't know whether we actually wanted to skip the wait for the task's outcome or if we've just forgotten to put the await keyword, so it may warn us by highlighting the code.

[image: Image 16]

72 When gRPC Is the Best Tool and When It Isn't

We are now fully set up. Now, let's see asynchronous gRPC communication in action.

Testing asynchronous gRPC endpoints

As before, we will open the CLI in both the ApiGateway and StatusMicroservice project folders and run the following command:

dotnet run

When both applications are up and running, we will open a browser and navigate to the Swagger page of the ApiGateway application. You are now expected to see Jobs controller endpoints, as illustrated in the following screenshot:

Figure 2.2 – Swagger page with new endpoints

Now, if you try the first endpoint, which corresponds to the SendJobs RPC and fills up the request body with sample data, you should start seeing job-status entries appearing in the command-line terminal of StatusMicroservice at regular intervals, as illustrated in the following screenshot:

[image: Image 17]

[image: Image 18]

How gRPC can be a good tool for asynchronous communication 73

Figure 2.3 – Job-status entries in StatusMicroservice terminal

Now, if you execute the second endpoint on the Swagger page and get it to trigger a random number of jobs, you will start seeing entries appearing in the ApiGateway terminal at regular intervals, as illustrated in the following screenshot: Figure 2.4 – Job-status entries in ApiGateway terminal

74 When gRPC Is the Best Tool and When It Isn't

However, even though it took a while to execute all the jobs, in both cases the HTTP

response was returned from the API immediately. So, this clearly demonstrates how gRPC

communication channels can be used asynchronously.

Though gRPC is a great tool for both synchronous and asynchronous communication, it's not the best tool for all web-based communication types—for example, for use in browsers. We will now see why this is the case.

Why gRPC is not the best tool for browsers

The key reason why gRPC is not the best tool for browsers is that it relies on HTTP/2.

While modern browsers support HTTP/2, they don't support all of its features, but some of those unsupported features are precisely the features that gRPC needs.

To work around these limitations, a browser-specific implementation has been developed.

This is known as gRPC-Web.

However, even this implementation is not perfect. It comes with the following limitations that, arguably, nullify the utility of gRPC:

• It requires a proxy to run between the client and the server, converting browser-bound data into a format compatible with HTTP/1.1, increasing the latency and making the payload larger.

• It does not support client-streaming calls.

• It requires relaxing cross-origin resource sharing (CORS) policy on the server side, potentially creating security vulnerabilities.

• Both the client and the server require additional setup steps.

Now, to demonstrate that gRPC is not necessarily the most convenient tool to use in a browser, we will set up a Blazor WebAssembly project as a gRPC client. Just as with standard JavaScript, Blazor WebAssembly runs in the browser and has the same limitations as any other browser-based code.

Setting up a Blazor WebAssembly gRPC client

We will now create a .NET application that you can run in the browser after being compiled to WebAssembly. We could have used a standard JavaScript application instead, but since we have already been using .NET with our gRPC examples, we will continue to do so to minimize unnecessary cognitive load from learning new technology. In .NET, the Blazor project template allows you to compile code for execution in browsers.

Why gRPC is not the best tool for browsers 75

In the root of GrpcMicroserviceSample, execute the following command to create a Blazor WebAssembly project:

dotnet new blazorwasm -o GrpcBlazorClient

Because client-side Blazor cannot use server-side ASP.NET Core framework components, you will not be able to use a GrpcDependencies assembly, as it contains a reference to the server-side gRPC library. Therefore, you will need to create a Protos folder in the GrpcBlazorClient project folder and copy the status.proto file there. After that, add the following section to the GrpcBlazorClient.csproj file:

<ItemGroup>

<Protobuf Include="Protos\status.proto" />

</ItemGroup>

Next, add all necessary client-side NuGet dependencies by executing the following commands from inside the GrpcBlazorClient project folder:

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client

dotnet add GrpcBlazorClient.csproj package Google.Protobuf

dotnet add GrpcBlazorClient.csproj package Grpc.Tools

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client.Web

Please note that as well as adding the standard gRPC client packages, we have added the Grpc.Net.Client.Web package. This package is necessary for converting HTTP/2

gRPC responses from the server into HTTP/1.1 data that the client can understand.

Next, copy the ClientStatus.cs, ClientStatusModel.cs, and

GrpcStatusClient.cs files from the root of the ApiGateway project to the root of the GrpcBlazorClient project. After you've done this, open each of the copied files and change the namespace from ApiGateway to GrpcBlazorClient.

Next, we will modify our client channel so that it can actually use gRPC-Web. To do this, add the following using statement to the GrpcStatusClient.cs file inside the GrpcBlazorClient project:

using System.Net.Http;

using Grpc.Net.Client.Web;

76 When gRPC Is the Best Tool and When It Isn't

Then, inside the same file, change your constructor definition to the following: public GrpcStatusClient(string serverUrl)

{

channel = GrpcChannel.ForAddress(serverUrl, new

GrpcChannelOptions

{

HttpHandler = new GrpcWebHandler(new

HttpClientHandler())

});

client = new StatusManager.StatusManagerClient(channel);

}

This adds an HTTP handler to the channel so that gRPC communication will be converted to standard HTTP/1.1 communication that the browser client will be able to understand.

We will now need to create a page that will use our new gRPC-Web client. To do so, replace the content of the Index.razor file inside the Pages folder.

Inside this file, we will first add the path at which this page will be accessed in the browser.

After that, we will inject the service that we depend on. We do this by running the following code:

@page "/"

@inject IGrpcStatusClient Client

We will then add buttons that will trigger various gRPC actions, as follows:

<div class="row" style="padding-top: 50px;">

<div class="col-md-4">

<div>

<div>

<label for="clientName">Client Name</label>

<input @bind="clientName" type="text"

id="clientName" name="clientName" />

</div>

<button @onclick="() => SetStatus(1)"

Why gRPC is not the best tool for browsers 77

disabled="@(string.

IsNullOrWhiteSpace(clientName))"

>Set Status Online</button>

<button @onclick="() => SetStatus(0)"

disabled="@(string.

IsNullOrWhiteSpace(clientName))"

>Set Status Offline</button>

<button @onclick="() => SetStatus(2)"

disabled="@(string.

IsNullOrWhiteSpace(clientName))"

>Set Status Busy</button>

</div>

</div>

Then, we will add a panel that will display data that we will receive from the server, as follows:

<div class="col-md-7">

<p>Client Statuses</p>

<div>

@foreach (var status in statuses)

{

<div>@status</div>

}

</div>

<button @onclick="GetStatuses">Get All Client

Statuses</button>

</div>

</div>

All of our C# code will go into the following section, which we will place immediately below the markup:

@code {

private string clientName = string.Empty;

private List<string> statuses = new List<string>();

78 When gRPC Is the Best Tool and When It Isn't

private async Task SetStatus(int status)

{

await Client.UpdateClientStatus(clientName,

(ClientStatus)status);

await GetStatuses();

}

private async Task GetStatuses()

{

var newStatuses = await Client.GetAllStatuses();

statuses = new List<string>();

foreach (var status in newStatuses)

{

statuses.Add($"Client name: {status.Name}; status:

{status.Status}");

}

StateHasChanged();

}

}

We have a simple web page that allows us to update client statuses and obtain the latest client status data from the gRPC server.

Finally, we need to register our gRPC client dependency. To do so, add the following line of code to the Main method of the Program class of the project:

builder.Services.AddSingleton<IGrpcStatusClient>(p => new

GrpcStatusClient("https://localhost:35095"));

Make sure that this line goes before the following line of code:

await builder.Build().RunAsync();

In this example, we are hardcoding the URL because, with client-side Blazor, all settings that we have are visible to the user if they decide to view the page source. This might be acceptable for URLs but will definitely not be acceptable for sensitive private data such as secrets. Therefore, it's generally a better practice to recompile and redistribute the Blazor WebAssembly application when settings change, while populating the actual setting values in the code by an automated process.

Why gRPC is not the best tool for browsers 79

The URL that we are using is the public HTTPS URL configured in the

launchSettings.json file of the StatusMicroservice project.

Our client application is fully configured. Now, we can add the necessary modifications to our server application.

Modifying the gRPC server to enable gRPC-Web

What makes gRPC-Web difficult to use is that it's not enough to merely set up the relevant client components for it. We also need to modify our server to make it compatible with gRPC-Web.

gRPC-Web requires a proxy that will be able to translate between standard HTTP requests and gRPC, which, in a way, defeats the purpose of gRPC. Firstly, you cannot use a highly efficient Protobuf communication protocol. Secondly, you have to perform additional setup steps for enable even the most basic gRPC functionality.

We will now make the necessary changes to our StatusMicroservice application to demonstrate this in action. We will start by adding a Grpc.AspNetCore.Web NuGet reference to our StatusMicroservice project. We can do so by executing the following command from inside our project folder:

dotnet add StatusMicroservice.csproj package Grpc.AspNetCore.

 Web

Now, we will need to enable gRPC-Web components in the code. Because our calls will be done from a remote client over HTTP, we will need to tell our application to accept CORS requests with specific headers. To do so, we will add the following code into the ConfigureServices method of the Startup class:

services.AddCors(o => o.AddPolicy("AllowAnyGrpcWeb", builder =>

{

builder.AllowAnyOrigin()

.AllowAnyMethod()

.AllowAnyHeader()

.WithExposedHeaders("Grpc-Status",

"Grpc-Message", "Grpc-Encoding",

"Grpc-Accept-Encoding");

}));

[image: Image 19]

80 When gRPC Is the Best Tool and When It Isn't

Then, we will add both the CORS configuration and the gRPC-Web proxy to our request pipeline. To do so, locate the app.UseRouting(); line in the Configure method of the Startup class (or the main body of the Program.cs file on .NET 6 template) and add the following two lines of code immediately after this:

app.UseGrpcWeb();

app.UseCors();

Finally, we will need to tell our application that a specific gRPC endpoint can be reached by gRPC-Web requests. To do so, we will replace this line of code:

endpoints.MapGrpcService<StatusManagerService>();

The preceding line of code will be replaced with the following code:

endpoints.MapGrpcService<StatusManagerService>().

EnableGrpcWeb().Req

ireCors("AllowAnyGrpcWeb");

Now, we are ready to launch the application.

Launching the gRPC-Web application

Open a command-line terminal inside both the StatusMicroservice and

GrpcBlazorClient project folders and execute a dotnet run command.

Once both applications are up, you can open the browser at the address configured inside the GrpcBlazorClient project settings (https://localhost:5001 by default) and see gRPC-Web in action, as illustrated in the following screenshot:

Figure 2.5 – Blazor WebAssembly using gRPC-Web

You can now appreciate why gRPC is not the best tool to be used in browsers. Setting it up involves a lot of hassle and you don't get all the gRPC benefits in return.

Luckily, .NET has other tools that will allow you to achieve the functionality in a browser equivalent to gRPC with minimal effort. SignalR is perhaps the best of such tools.

Where SignalR would beat gRPC 81

Where SignalR would beat gRPC

SignalR is an ASP.NET Core library that enables real-time two-way communication between the client and the server. It can do everything that gRPC can do (making requests, receiving responses, streaming data to and from the client, and streaming data from the server). But in addition to this, it can also send data from the server to the client without receiving a request first.

Because SignalR runs over HTTP/1.1, it requires a persistent connection and it uses a fairly verbose JSON payload, so perhaps it's not the best tool to be used in the backend of a distributed microservice application. But it's ideal for browsers and it's relatively effortless to set up too, as we will see now.

Setting up a SignalR application

Create an ASP.NET Razor Pages project by executing the following command. This command can be executed from any folder of your choice, as this will be a standalone application:

dotnet new webapp -o SignalrApplication

SignalR is already embedded in ASP.NET Core, so you won't have to add any extra dependencies.

Now, we will add the server-side SignalR functionality in a so-called SignalR hub. To do so, create a Hubs folder inside your project and add a JobsHub.cs file to it with the following content:

using System;

using System.Collections.Generic;

using System.Runtime.CompilerServices;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.AspNetCore.SignalR;

namespace SignalrApplication.Hubs

{

public class JobsHub : Hub

{

}

}

82 When gRPC Is the Best Tool and When It Isn't

We will then start adding methods to the hub. SendSingleJob receives a single response and returns it back to the caller, as illustrated in the following code snippet: public async Task SendSingleJob(string jobDescription)

{

await Clients.Caller.SendAsync("ReceiveMessage", $"Job

executed successfully. Description: {jobDescription}");

}

StreamJobs receives a stream of data from the client, as illustrated in the following code snippet:

public async Task StreamJobs(IAsyncEnumerable<int> stream)

{

var jobsCount = 0;

await foreach (var item in stream)

{

Console.WriteLine($"Job {item} executed succesfully");

jobsCount++;

}

await Clients.Caller.SendAsync("ReceiveMessage",

$"{jobsCount}

jobs executed successfully.");

}

TriggerJobs gets initiated by the client and then sends a stream of data back to it, as illustrated in the following code snippet:

public async IAsyncEnumerable<string> TriggerJobs(

int jobsCount,

[EnumeratorCancellation]

CancellationToken cancellationToken)

{

for (var i = 0; i < jobsCount; i++)

{

cancellationToken.ThrowIfCancellationRequested();

yield return $"Job {i} executed succesfully";

Where SignalR would beat gRPC 83

await Task.Delay(2000, cancellationToken);

}

}

We have the following three methods here:

• SendSingleJob receives a single response and returns it back to the caller.

• StreamJobs receives a stream of data from the client.

• TriggerJobs gets initiated by the client and then sends a stream of data back to it.

We will now need to enable our SignalR components inside our Startup class, or Program.cs file if you are using .NET 6 template, with appropriate modifications of the following code samples. But first, we will need to add a reference to our hub namespace by adding the following using statement on top of the Startup.cs file:

using SignalrApplication.Hubs;

Then, we will need to enable SignalR by adding the following line of code to the ConfigureServices method:

services.AddSignalR();

Finally, we need to register the hub endpoint by adding the following line of code inside the call to the UseEndpoints method:

endpoints.MapHub<JobsHub>("/jobsHub");

Now, we are ready to start adding client components.

Adding a SignalR client and launching the application

Locate the Index.cshtml file inside the Pages folder and replace its content with the following:

@page

@model IndexModel

@{ ViewData["Title"] = "Home page"; }

<div class="row" style="padding-top: 50px;">

<div class="col-md-6">

84 When gRPC Is the Best Tool and When It Isn't

<div class="control-group">

<div>

<label for="job-description">Job

description:</label>

<input type="text" id="job-description"

name="job-description" />

</div>

<button id="btn-send-single">Send Single Job

</button>

</div>

<div class="control-group">

<div>

<label for="jobs-to-send">Number of jobs to

send:</label>

<input type="text" id="jobs-to-send"

name="jobs-to-send" />

</div>

<button id="btn-send-multiple">Send Multiple

Jobs</button>

</div>

<div class="control-group">

<div>

<label for="jobs-to-trigger">Number of jobs to

trigger:</label>

<input type="text" id="jobs-to-trigger"

name="jobs-to-trigger" />

</div>

<button id="btn-trigger-multiple">Trigger Multiple

Jobs</button>

</div>

</div>

<div class="col-md-7">

<p>Responses from the server:</p>

<pre id="signalr-message-panel"></pre>

Where SignalR would beat gRPC 85

</div>

</div>

<script src="https://cdnjs.cloudflare.com/ajax/libs/microsoft-

signalr/3.1.7/signalr.min.js"></script>

Please note that there is a script element at the bottom of the preceding code block.

This is where we are adding the SignalR JavaScript library.

After this, locate the site.js file in the wwwroot/js folder and delete any content that's already present in it.

In this file, we will start by initializing a SignalR connection by adding the following code: const connection = new signalR.HubConnectionBuilder()

.withUrl("/jobsHub")

.configureLogging(signalR.LogLevel.Information)

.build();

Then, we will register an event. Whenever a SignalR hub on the server sends a message to the ReceiveMessage endpoint on the client, an addMessage JavaScript function will be executed. The code is illustrated in the following snippet:

connection.on("ReceiveMessage", (message) =>

addMessage(message));

function addMessage(message) {

$('#signalr-message-panel').prepend($('<div />').

text(message));

}

We will then make one of our HTML buttons send a message to the SendSingleJob endpoint on our server-side hub by running the following code:

$('#btn-send-single').click(function () {

var jobDescription = $('#job-description').val();

connection.invoke("SendSingleJob", jobDescription).

catch(err =>

console.error(err.toString()));

});

86 When gRPC Is the Best Tool and When It Isn't

Then, we will make another button send a stream to the StreamJobs endpoint, as follows:

$('#btn-send-multiple').click(function () {

var numberOfJobs = parseInt($('#jobs-to-send').val(), 10);

var subject = new signalR.Subject();

var iteration = 0;

var intervalHandle = setInterval(() => {

iteration++;

subject.next(iteration);

if (iteration === numberOfJobs) {

clearInterval(intervalHandle);

subject.complete();

}

}, 2000);

connection.send("StreamJobs", subject);

});

Then, we will make another button trigger a server-side stream from the TriggerJobs endpoint and subscribe to it, as follows:

$('#btn-trigger-multiple').click(function () {

var numberOfJobs = parseInt($('#jobs-to-trigger').val(),

10);

connection.stream("TriggerJobs", numberOfJobs)

.subscribe({

next: (message) => addMessage(message)

});

});

Finally, we will add some error handling to our SignalR connection object and will start the connection, as follows:

async function start() {

try {

await connection.start();

[image: Image 20]

Where SignalR would beat gRPC 87

console.log('connected');

} catch (err) {

console.log(err);

setTimeout(() => start(), 5000);

}

};

connection.onclose(async () => {

await start();

});

start();

Here, we are registering an event handler for the ReceiveMessage call from the server.

We are also associating various SignalR calls with the buttons on our page, and then we instantiate a SignalR connection to the server.

We can now launch our application by executing a dotnet run command inside our project folder and opening it in the browser (https://localhost:5001 by default), which will take us to the following screen:

Figure 2.6 – SignalR client in action

88 When gRPC Is the Best Tool and When It Isn't

This application demonstrates how SignalR allows us to do everything that we could do with gRPC but do so in a browser. Also, it shows us that, for browser-based applications, SignalR is much more effortless to set up than gRPC-Web. And, unlike gRPC-Web, SignalR is capable of performing client-streaming calls.

SignalR is also the technology that is used by server-side Blazor to allow the in-browser components to communicate with the server, and server-side Blazor is another tool that will allow you to enable gRPC-like functionality in the browser.

The main advantage of using server-side Blazor over pure SignalR is that you won't have to learn JavaScript. You can write all of your code in C# and it will be automatically converted into in-browser code and markup.

The main disadvantage of server-side Blazor is that it can only be used to communicate with the backend of the same application that has served you the web page. Unlike pure SignalR, it cannot be configured to communicate with any arbitrary service on the network.

We will not cover server-side Blazor in detail here, but you will be able to find documentation on it in the Further reading section.

Summary

In this chapter, we saw how the gRPC communication mechanism is most suitable to be used for direct communication between microservices, as it uses a highly efficient Protobuf messaging protocol over HTTP/2. As well as making synchronous request-response calls, gRPC is capable of asynchronously streaming data both ways between the client and the server.

gRPC cannot work in browsers as it requires HTTP/2, which browsers don't fully support.

However, a gRPC-Web implementation has been created specifically to enable gRPC

in the browser. However, gRPC-Web still has severe limitations, as it requires many setup steps, is much less efficient than standard gRPC, and doesn't support client-streaming calls.

A good alternative to gRPC-Web for browsers is SignalR, which is already embedded in ASP.NET Core. It supports bi-directional messaging (both singular and streaming) and takes minimal effort to set up.

After reading this chapter, you should know how to apply gRPC as a communication mechanism between ASP.NET Core microservices. You also now know how to implement gRPC-like functionality in the browser when gRPC itself is not the best solution.

Questions 89

In the next chapter, we will have a more detailed look at the data types that are supported by gRPC Protobuf out of the box. We will cover all of the embedded data types and explain how each of them gets converted to C#.

Questions

1. Can gRPC support asynchronous calls?

A. No, it only supports synchronous calls.

B. Yes, by utilizing streaming.

C. Yes, but only by using async/await on the client.

D. Yes, but only on gRPC-Web.

2. Can you use gRPC inside a browser?

A. Not at all.

B. Yes, it just works out of the box.

C. Yes, but only via gRPC-Web.

D. Yes, but it only works with a Blazor client.

3. Which one of the following is NOT a limitation of gRPC-Web?

A. Server-streaming calls

B. Client-streaming calls

C. Having to convert messages to HTTP/1.1

D. Having to use a proxy

4. Do you need to make additional modifications to enable gRPC-Web if you already have gRPC enabled?

A. No, the framework will automatically convert gRPC to gRPC-Web.

B. Yes, both on the server and the client.

C. Yes, but only on the client.

D. Yes, but only on the server.

90 When gRPC Is the Best Tool and When It Isn't

5. What can SignalR do that gRPC can't?

A. Bi-directional streaming

B. Client-streaming calls

C. Asynchronous calls

D. Calls from the server to the client without a request from the client Further reading

• Core concepts, architecture, and lifecycle: https://grpc.io/docs/what-is-

grpc/core-concepts/

• The state of gRPC in the browser by Johan Brandhorst: https://grpc.io/blog/

state-of-grpc-web/

• Introduction to ASP.NET Core SignalR: https://docs.microsoft.com/

en-us/aspnet/core/signalr/introduction

• ASP.NET Core Blazor hosting models: https://docs.microsoft.com/

en-us/aspnet/core/blazor/hosting-models

3

Protobuf – the

Communication

Protocol of gRPC

We briefly covered the structure of a proto file in Chapter 1, Creating a Basic gRPC

 Application on ASP.NET Core. In Chapter 1, Creating a Basic gRPC Application on ASP.

 NET Core, we also had a look at the most basic type of remote procedure call (RPC), the unary call, which is equivalent to a standard HTTP request-response call. Then, we briefly covered streaming gRPC calls in Chapter 2, When gRPC Is the Best Tool and When It Isn't.

In this chapter, we will take an in-depth look at Protobuf – the communication protocol that is used by gRPC. We will also cover the structure and the syntax of a proto file.

Although the Protobuf protocol was designed to be as intuitive as possible, it's not always obvious how to use some of its components most optimally. Additionally, some Protobuf features are not very well known, despite their usefulness.

The objective of this chapter is to go through all of the built-in components of a proto file, explain how they are used, and demonstrate how they get translated into C# code.

92 Protobuf – the Communication Protocol of gRPC

We will cover the following topics:

• The types of RPCs available with gRPC

• The built-in Protobuf data types

• How these data types get converted to C# data types

• How to use collections in Protobuf messages

• Special keywords in the Protobuf protocol

• How to reference other proto files from a proto file

By the end of this chapter, you will have learned how to use all of the built-in features of the Protobuf protocol and how to optimize proto definitions for the most efficient data transfer.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with a Windows, Mac, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HTTPS certificate enabled on your machine

For instructions on how to set up these prerequisites, please refer to Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub repository: https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-03

The RPC types supported by gRPC

We will start by creating a solution from a standard gRPC Service template. We will call our project IndepthProtobuf. To create this project, execute the following command: dotnet new grpc -o IndepthProtobuf

The RPC types supported by gRPC 93

Now, we are ready to make modifications to our project to examine all the relevant Protobuf features.

The RPC types that Protobuf supports

Since we already have the greet.proto file placed in the Protos directory of our IndepthProtobuf project, and because we already have a basic implementation of the service represented by this file, we won't be replacing any existing functionality. Instead, we will add to it.

To make a start, we will replace the content of the greet.proto file with the following: syntax = "proto3";

option csharp_namespace = "IndepthProtobuf";

package greet;

service Greeter {

rpc SayHello (HelloRequest) returns (HelloReply);

// Unary RPC

rpc RequestManyHellos (stream HelloRequest) returns

(HelloReply);

// Client-streaming RPC

rpc SayManyHellos (HelloRequest) returns (stream HelloReply);

// Server-streaming RPC

rpc RequestAndSayManyHellos (stream HelloRequest) returns

(stream HelloReply); // Bi-directional streaming RPC

}

message HelloRequest {

string name = 1; // Name of the client to say hello to

}

message HelloReply {

string message = 1;

}

94 Protobuf – the Communication Protocol of gRPC

In this proto file, we have left the original SayHello rpc definition inside the Greeter service intact. But we have also added three additional rpc definitions to it, all of which reuse the same request and response objects.

The original SayHello rpc is a standard unary call. It receives a single request object and returns a single response object. A unary RPC call consists of an rpc keyword, the custom name of the RPC, and the request object type name in brackets, followed by the returns keyword, which is then followed by the name of the response object type in brackets. These are all of the components of a unary call. There aren't any additional keywords in use.

A newly added RequestManyHellos rpc is a client-streaming call. This is determined by the stream keyword being placed in front of the request message type name in brackets, but keyword needs to be present before the response message type name.

A client-streaming call allows you to send many instances of a specific message type to the server while only accepting a single response message once the entire stream of request messages has been processed. Using a client-streaming call allows you to keep the communication channel open for some time. Any new message placed in the stream by the client will be readable by the server immediately. However, the client would only expect the response to come when there are no further messages to be placed in the stream.

The messages can be added to the stream by the client in quick succession, or there can be some latency between the messages. Streaming gRPC calls are designed to be kept open for as long as necessary.

The SayManyHellos rpc is the opposite of RequestManyHellos, as it has the stream keyword next to the response object rather than the request object. This means that the client needs to trigger this endpoint by sending an initial singular request to it.

After this request, many instances of the response message are sent back to the client.

The client is notified that the stream has been closed as soon as the server-side method is complete.

Until then, the stream can be kept open for a configurable amount of time, which we will cover in Chapter 7, Using Different Call Types that gRPC Supports.

The final rpc definition that we have added, RequstAndSayManyHellos, has the stream keyword next to both the request and response objects. This is known as a bi-directional streaming call, and it works like a combination of the client-streaming and server-streaming calls.

Reviewing the native Protobuf data types 95

Making comments in Protobuf

Just like in your code, you can add any arbitrary, non-executable text to your proto files as comments. The comments are there purely to explain the code better. They don't have any effect whatsoever on the execution of the code.

Protobuf supports two types of comments, which will be familiar to anyone who has used the C# programming language.

If you put a double forward-slash (//) on any line, the rest of the line will be treated as a single-line comment. This is where you can put any arbitrary text. The following is an example of a single-line comment:

// This is a single line comment

It can occupy the whole line or can be placed after any executable code. We have examples of the latter next to our RPC and message field definitions in the code example in the previous section. For instance, the HelloRequest message has the following after its definition:

string name = 1; // Name of the client to say hello to

Multi-line comments are also supported by Protobuf. They are prefixed by /*. Any content that follows this combination of characters will be treated as a comment until the closing combination (*/) is found. An example of a multi-line comment would be the following:

/* This is

a multiline comment */

We have now covered the basic structure of a proto file and had a look at every RPC type that the Protobuf protocol supports. Now, let's have a look at the built-in data types that are available with Protobuf.

Reviewing the native Protobuf data types

We will need to modify our greet.proto file further. Let's add the following section at the bottom of it:

message BasicTypes {

int32 int_field = 1;

int64 long_field = 2;

uint32 unsigned_int_field = 3;

96 Protobuf – the Communication Protocol of gRPC

uint64 unsigned_long_field = 4;

sint32 signed_int_field = 5;

sint64 signed_long_field = 6;

fixed32 fixed_int_field = 7;

fixed64 fixed_long_field = 8;

sfixed32 signed_fixed_int_field = 9;

sfixed64 signed_fixed_long_field = 10;

float float_field = 11;

double double_field = 12;

bool boolean_field = 13;

string string_field = 14;

bytes bytes_field = 15;

}

This message definition, alongside the enum section that we have added, provides all of the basic built-in data types available in Protobuf. We have named each field after the data type it represents to make it easy to demonstrate each data type in action.

Please note that each field name uses the snake_case naming style (that is, the name consists of only lowercase letters and the words are separated by underscores). This is a universal convention that is independent of the Protobuf standard. When snake_case is used, any language-specific Protobuf compiler will apply standard naming conventions to the field names while converting the content of a proto file into code. For example, int_field would be converted into PascalCase (IntField) if used with C#, but camelCase (intField) if used with Java.

However, individual implementations of the Protobuf compiler can apply the correct naming conventions to field names even if snake_case conventions aren't applied. For example, if we apply camelCase field names, where we start the name with the lowercase letter and then start any new word with an uppercase letter, it will still be correctly converted into a PascalCase name in C#. We used some examples of this in Chapter 2, When gRPC Is the Best Tool and When It Isn't.

Please also note the sequence numbers after each field. This number is an integer and each one of them must be unique. These numbers are handy for API versioning, which we will cover in Chapter 5, How to Apply Versioning to the gRPC API.

Let's now go over the data types and see how each one gets converted to C# code.

[image: Image 21]

Reviewing the native Protobuf data types 97

Integer data types

Among the various data types, there are a few that are considered integer data types. We'll go through these in this section.

The int32 and int64 data types

The int32 and int64 data types are represented by the following fields:

int32 int_field = 1;

int64 long_field = 2;

The equivalent data types in C# would be int (Int32) and long (Int64). The int32

type is an integer data type that consists of 32 bits, while the int64 field is an integer data type consisting of 64 bits. Both accept positive and negative numbers. The only difference between them is the size of the number they can store.

The following C# code is generated from these fields, which can be viewed in the Greet.

cs file in the obj/{Build configuration}/{Framework version}/Protos

folder within the project folder:

Figure 3.1 – Code generated from the int32 and int64 fields

[image: Image 22]

98 Protobuf – the Communication Protocol of gRPC

But there is one key difference between the Protobuf and C# implementations of these data types. In C#, int and long will always occupy 32 and 64 bits of memory, respectively. In Protobuf, however, they will occupy as many bytes as needed to store a specific numeric value, up to either 32 or 64 bits. Protobuf has been designed to be very efficient. So, if you are using small numbers, those will use less storage than large numbers.

The uint32 and uint64 data types

The uint32 and uint64 data types are represented by the following fields: uint32 unsigned_int_field = 3;

uint64 unsigned_long_field = 4;

These are the equivalent of the uint and ulong data types in C#.

Figure 3.2 – A uint32 and uint64 C# implementation

These are unsigned integers, which means that they don't support negative values. But because they use the same number of bytes as their standard-integer counterparts, they can store much higher positive number values.

Just like int32 and int64, uint32 and uint64 will only use as many bytes in a Protobuf message as are strictly needed for storing a specific value.

[image: Image 23]

Reviewing the native Protobuf data types 99

The sint32 and sint64 data types

In our examples, the sint32 and sint64 data types are represented by the

following fields:

sint32 signed_int_field = 5;

sint64 signed_long_field = 6;

Just like ordinary integer data types, these can store both positive and negative values. In C#, they are converted into a standard int and a standard long data type, respectively.

Figure 3.3 – sint32 and sint64 representations in C#

But why do we even need separate data types for storing signed integral numbers if we already have int32 and int64? Well, this is just another way to optimize Protobuf messages. Even though sint32 and sint64 support both positive and negative values, they encode negative values more efficiently than int32 and int64. So, use signed integers when the numbers you are dealing with are likely to be negative. Otherwise, use ordinary integers.

[image: Image 24]

100 Protobuf – the Communication Protocol of gRPC

The fixed32 and fixed64 data types

The fixed32 and fixed64 data types are also unsigned integer data types, which are represented by the following fields:

fixed32 fixed_int_field = 7;

fixed64 fixed_long_field = 8;

They are different from uint32 and uint64 by being specifically intended for storing large numbers. The fixed32 and fixed64 data types always occupy 32 and 64 bits, respectively. They are fixed in size, and this is the reason they are called fixed. But they do encode large numbers more efficiently than regular int data types.

In C#, unsigned integers are always fixed in size. Therefore, these data types are represented by uint and ulong.

Figure 3.4 – fixed32 and fixed64 representations in C#

The name fixed is intuitively associated with just positive numeric values, so the fact that these data types don't support negative values needs to be memorized.

[image: Image 25]

Reviewing the native Protobuf data types 101

The sfixed32 and sfixed64 data types

The sfixed32 and sfixed64 data types are represented by the following fields: sfixed32 signed_fixed_int_field = 9;

sfixed64 signed_fixed_long_field = 10;

In C#, they are represented by ordinary int and long data types.

Figure 3.5 – sfixed32 and sfixed64 representations in C#

These are signed, fixed-width fields. They are primarily designed for processing multi-digit negative numbers.

These were all types of integers available with Protobuf. Now, let's have a look at other data types.

Non-integer numeric types

For non-integer numeric data types, we have the float and double data types.

[image: Image 26]

102 Protobuf – the Communication Protocol of gRPC

The float and double data types

The float and double data types are numbers that can store decimal points. The only difference between them is how much storage space they use. The more storage space, the greater the precision. The float data type occupies 4 bytes (32 bits), while the double data type occupies 8 bytes (64 bits).

C# has equivalent data types with the same names, as follows:

Figure 3.6 – Protobuf float and double data types converted to C#

We have now covered all of the built-in numeric data types available in Protobuf. Please note that none of them can be set to null. The default value for all of them is 0.

We will now move on to the other data types that Protobuf supports.

Non-numeric data types

The next data types are for non-numeric values. In this section, we will have a look at them.

[image: Image 27]

Reviewing the native Protobuf data types 103

The bool data type

The bool data type contains a Boolean true or false value. In Protobuf, it cannot be set to null. The default value is false if it's not set explicitly.

In our BasicTypes message definition example, bool is represented by the following field:

bool boolean_field = 13;

C# has a fully equivalent bool data type.

The string data type

The string data type stores text. Just like any other built-in data type in Protobuf, it cannot be null. The default value is an empty string.

This is an example of a string field:

string string_field = 14;

In C#, on the other hand, the equivalent string data type can be set to null. Therefore, the C# code that's generated from a string Protobuf field has a null check on it.

Figure 3.7 – A C# representation of a Protobuf string field with a null check Without this check, there would have been nothing in our code to prevent us from putting a null value into this field, resulting in an error.

The bytes data type

The bytes data type represents an array of bytes. In our example, it's represented by the following field:

bytes bytes_field = 15;

[image: Image 28]

104 Protobuf – the Communication Protocol of gRPC

Although a common way to process a byte array in C# is to have a collection of individual byte object entities, this is not how it's done by a C# code generator.

Instead, it's converted to the ByteString type from the Google.Protobuf .NET

library. However, this type has extension methods to convert to and from a standard byte array. This will be demonstrated in Chapter 4, Performance Best Practices for Using gRPC on .NET.

Figure 3.8 – A C# representation of the bytes data type

Because C# allows any custom class or struct type to be null, but Protobuf doesn't allow it for its built-in types, there is a null check in the generated code.

We have now covered all of the primitive types supported by Protobuf. Let's now move on to a more advanced topic – enums and nested messages.

Enums

Let's now add the following enum fields and the enum definition inside the BasicTypes message definition:

InternalEnum internal_enum_field = 16;

ExternalEnum external_enum_field = 17;

enum InternalEnum {

NONE = 0;

SINGLE = 1;

MANY = 2;

}

[image: Image 29]

Reviewing the native Protobuf data types 105

After this, add the following enum definition anywhere outside the BasicTypes message definition:

enum ExternalEnum {

NONE = 0;

SINGLE = 1;

MANY = 2;

}

The enum is an enumeration that is used for defining categories. It can have any number of name-value pairs. Each name can be any custom text consisting of alphanumeric characters. The value for each name is an integer number. We can use any value, but we must have an entry with 0, as this is the default value of an enum.

Because we have enum types in C#, we get an enum definition generated in the code from our Protobuf enum.

Figure 3.9 – C# code generated from a Protobuf enum definition

But there are two types of enum definitions – internal and external. An internal enum definition is defined inside the message definition. And even though it can be referenced from the outside (as we will see in a minute), it can only be referenced by its basic name from inside the same message definition where it's defined.

This is how we represent it in our example:

InternalEnum internal_enum_field = 16;

An external enum definition, on the other hand, can be referenced from any message in our proto file, as it's defined at the root level and not inside of any specific message definition. This is an example of its usage:

ExternalEnum external_enum_field = 17;

[image: Image 30]

106 Protobuf – the Communication Protocol of gRPC

Now, we will have a closer look at Protobuf message definitions and how the internal components of one message definition can be referenced in another message definition.

Nested messages

We will now modify our HelloReply message definition so that it will look like this: message HelloReply {

string message = 1;

BasicTypes basic_types_field = 2;

BasicTypes.InternalEnum internal_enum_field = 3;

ExternalEnum external_enum_field = 4;

NestedMessage nested_message_field = 5;

message NestedMessage {

}

}

The first field with the string type and the message name was originally present in the message definition. We haven't modified it.

The field with the sequence number 2 is an example of how you can use message definitions as the data types of fields inside other message definitions. This is similar to how you can use classes or structs as data types inside other classes or structs in C#: Figure 3.10 – Code generated from a field that uses a message definition as its data type Next, we have an example of how to use an enum that is defined inside another message definition. This is what we have previously referred to as an internal enum definition.

BasicTypes.InternalEnum internal_enum_field = 3;

[image: Image 31]

Reviewing the native Protobuf data types 107

Even if an enum definition is defined internally inside a particular message, you can still use it in another message. You just need to specify the fully qualified name of it, including the name of the message definition type. In this case, because the message type (where we have originally defined the InternalEnum type) is called BasicTypes, our fully qualified name of the enum type will be BasicTypes.InternalEnum.

C# also supports nested types. But an important thing to note is that when C# code is generated from Protobuf, the fully qualified name of the nested object will not be

{default Proto namespace}.{top-level type name}.{nested type}.

It will actually be {default Proto namespace}.{top-level type name}.

Types.{nested type}.

Therefore, for our InternalEnum reference that is nested inside BasicTypes, which belongs to the IndepthProtobuf namespace, the fully qualified name will be IndepthProtobuf.BasicTypes.Types.InternalEnum, as shown in the

following figure:

Figure 3.11 – Using the fully qualified names of nested enums in C#

Next, we have a field that references an enum defined at the root level of the proto package:

ExternalEnum extternal_enum_field = 4;

We've placed this field there purely to demonstrate how an externally defined enum can be shared between a message definition in the same proto file. We just specify the name of the type without having to fully qualify it.

Finally, we have another message defined inside our HelloReply message:

message NestedMessage {

}

[image: Image 32]

108 Protobuf – the Communication Protocol of gRPC

As you can see, we haven't added any fields to it – we have done this to demonstrate that empty message definitions are still supported by Protobuf.

Just like with nested and non-nested enums, to reference a nested message as a field data type inside the message that it's been defined in, we just specify its basic name, as we have done in this field:

NestedMessage nested_message_field = 5;

However, to reference it from the outside, we will need to specify the fully qualified name, including the name of the message definition that this type is nested in. In our case, it will be HelloReply.NestedMessage.

In C#, the fully qualified namespace will also contain the Types word before the nested type name. So, in this instance, the name will become HelloReply.Types.

NestedMessage:

Figure 3.12 – A C# representation of a nested message definition

Essentially, nested message definitions are analogous to nested enum definitions:

• You don't need to fully qualify the name of the type when it's inside the type it has been defined in.

• You need to fully qualify the name of the type when it's used outside the type it's been defined in.

• In C#, nested types aren't placed directly inside the class that represents their parent in Protobuf. Instead, public static partial class Types is created

where the nested object is placed.

This covers all of the basic data types available in Protobuf. We have also covered how to use nesting. Now, we will have a look at how to use different types of collections available in Protobuf.

Using collections in Protobuf 109

Using collections in Protobuf

Protobuf supports two types of collections: repeated fields and maps. Repeated fields are analogous to arrays or lists in C#. They represent a collection of singular objects. Maps are analogous to dictionaries in C#. They represent a collection of key-value pairs.

Repeated field collections can contain any data type, but you cannot use additional keywords inside of them. For example, you cannot have an equivalent of a multi-dimensional array by having a repeated keyword inside a repeated field.

Map fields can use any data type as a value, but its key needs to be either any of the integer types or a string. It cannot be a bytes, enum, float, or double data type, or any custom message type. Neither its key, its value, nor the whole field itself can be repeated. Let's discuss each type further in the next subsections.

Repeated fields

Inside the greet.proto file, add the following fields to the NestedMessage definition:

repeated string string_collection = 1;

repeated int32 int_collection = 2;

repeated BasicTypes object_collection = 3;

repeated ExternalEnum enum_collection = 4;

These fields demonstrate that any data type, regardless of whether it's built-in or custom, can be used as the data type for a repeated field.

In C#, a repeated field is represented by the RepeatedField<T> class of the Google.Protobuf.Collections namespace, where T is the data type of the items inside the collection. This class is similar to commonly used collection types from the System library of C#, such as List<T> from the System.Collections.Generic namespace. Both implement IList<T>, IEnumerable<T>, and ICollection<T> interfaces, so they have the same public methods for manipulating the collection.

[image: Image 33]

110 Protobuf – the Communication Protocol of gRPC

When C# code gets generated from a Protobuf definition, repeated fields become read-only, as can be seen in the following figure. Each field gets initialized once as an encapsulated private field. The public property then only comes with a getter and doesn't have a setter.

Figure 3.13 – A representation of repeated fields in C#

Making repeated fields read-only is done to make C# code as safe as possible. The default value for a repeated field in Protobuf is an empty collection. In C#, an empty collection is precisely what's created from a repeated field definition. You cannot replace it with a different collection, which may be set to null. You can only add items to the existing collection.

Let's have a look at how to use it in the code. In the Services folder, locate the GreeterService.cs file and replace the definition of the SayHello method with the following:

public override Task<HelloReply> SayHello(HelloRequest request,

ServerCallContext context)

{

var message = new HelloReply

{

Message = "Hello " + request.Name,

NestedMessageField = new HelloReply.Types.

NestedMessage()

};

Using collections in Protobuf 111

return Task.FromResult(message);

}

Because we cannot manually initialize RepeatedField types in our C# representations of Protobuf messages, we must initialize the message itself before we can manipulate the collection. Therefore, we have separated the initialization of the HelloReply message from the return statement. But because the repeated fields we are interested in are inside a NestedMessage type, we need to initialize this type too, as we have done in the following example.

Now, we will insert the following code before the return statement:

message.NestedMessageField.StringCollection.Add("entry 1");

message.NestedMessageField.StringCollection.Add(new

List<string>

{

"entry 2",

"entry 3"

});

In the preceding example, we have two examples of adding items to a collection:

• Adding a single entry

• Adding a collection of entries

Other than that, the collection can be manipulated just like any other collection in C#.

You can remove items from it, you can clear the entire collection, or you can clone the whole collection into a separate variable.

Map fields

Add the following fields to the NestedMessage definition in greet.proto:

map<string, string> string_to_string_map = 5;

map<int64, string> int_to_string_map = 6;

map<sfixed32, BasicTypes> signedfixed_to_object_map = 7;

map<uint64, ExternalEnum> unsignedint_to_enum_map = 8;

[image: Image 34]

112 Protobuf – the Communication Protocol of gRPC

These fields have been added to demonstrate the various data types that can be used as keys and values in a Protobuf map. Please note that we only have string and integer types as keys, while we also have message and enum types as values.

In C#, a Protobuf map is represented by the MapField<TKey, TValue> class of the Google.Protobuf.Collections namespace. The TKey and TValue represent any

data type that can be the key or the value, respectively.

Just like RepeatedField, MapField representations are made read-only in C#: Figure 3.14 – MapField representations in C#

The MapField class represents the standard C# collection interfaces (IEnumerbale, ICollection, and so on). But it also represents IDictionary<TKey, TValue>, so it can be used just like the standard Dictionary<TKey, TValue> class from the System.Collection.Generics namespace. You can add whole key-value pair

entries to it and also set a value by specifying a particular key.

To see some examples of how to use MapField in C#, add the following code before the return statement of the SayHello method inside the GreeterService class:

message.NestedMessageField.StringToStringMap.Add("entry 1",

"value 1");

message.NestedMessageField.StringToStringMap.Add(new

Dictionary<string, string>

{

{ "entry 2", "value 2" },

{ "entry 3", "value 3" }

});

Using special keywords in Protobuf 113

message.NestedMessageField.StringToStringMap["entry 4"] =

"value 4";

In this example, we have demonstrated three different ways of adding items to a MapField collection:

• As a singular key-value pair

• As a collection of key-value pairs

• Specifying a key and setting its value

Please note that each key needs to be unique. If you try to add a key-value pair with a key that already exists, an error will be thrown.

However, when you specify the key and square brackets and set its value by using the equality operator (==), as we have in the last example, it will work regardless of whether the key already exists or not. If the key doesn't exist, it will be added. However, if the key already exists, the entry will be overwritten with the new value.

So far, we have covered all of the inbuilt data types in Protobuf and collections. But Protobuf also supports some special keywords. Some of them will be analogous to what's used in various programming languages. However, there are also some that are unique to Protobuf. And this is what we will have a look at next.

Using special keywords in Protobuf

Protobuf has a range of special keywords that we haven't covered so far. Some of them are only used on rare occasions. For example, you may have to use special keywords to make your proto files compatible with an older version of Protobuf. We will not cover those in this chapter.

There are also some other Protobuf features that are only useful in a very narrow range of circumstances, such as using extensions and defining custom options. These will not be covered either due to their limited usefulness.

However, there are also some keywords that are very useful and accessible. The most prominent of them are oneof and option. These are the keywords that we will focus on now.

114 Protobuf – the Communication Protocol of gRPC

How the oneof keyword can make communication

more efficient

Inside the greet.proto file, we will modify the BasicTypes message definition.

First, we will replace the fields with the sequence numbers from 1 to 10 with the following:

oneof whole_number_field {

int32 int_field = 1;

int64 long_field = 2;

uint32 unsigned_int_field = 3;

uint64 unsigned_long_field = 4;

sint32 signed_int_field = 5;

sint64 signed_long_field = 6;

fixed32 fixed_int_field = 7;

fixed64 fixed_long_field = 8;

sfixed32 signed_fixed_int_field = 9;

sfixed64 signed_fixed_long_field = 10;

}

Then, we will replace the fields with the sequence numbers from 11 to 17 with the following:

oneof mixed_field {

float float_field = 11;

double double_field = 12;

bool boolean_field = 13;

string string_field = 14;

bytes bytes_field = 15;

InternalEnum internal_enum_field = 16;

ExternalEnum external_enum_field = 17;

}

So, as you may have noticed, we haven't really changed any fields or their data types. We have simply wrapped two bundles of fields in a code block that started with the oneof keyword and an arbitrary name.

This keyword means that only one of these fields will be set. If you set the value of one of the fields and then set the value for another field in the same oneof block, the first field that you've set will be unset.

[image: Image 35]

Using special keywords in Protobuf 115

The benefit of using oneof is that the message will be smaller when it is being transferred. The only field in a oneof block that has any size is the one that has been set last. And if such a block consists of many fields, the saving in terms of bandwidth usage will be significant.

In the previous example, we have deliberately chosen two different variations of a oneof field to demonstrate that there are no restrictions on which data types you can put together. In the first example, the whole_number_field oneof block, we have placed different types of integers together. But in our second example, the mixed_field oneof block, we have fields with completely different data types together. Some of them are inbuilt scalar data types, while others are custom messages and enums.

However, oneof doesn't support collections, so you can't place a repeated or map field inside a oneof block. Neither can you use any other keywords in your fields, such as option, a keyword we will have a look at shortly.

Even though the oneof keyword is placed at a field level inside a message definition, it's not really a field. When a proto file is translated into code, all the fields inside a oneof block are still accessible at the normal field level in the object that gets generated. But there is also some additional logic that gets added to make sure that only one of the fields is used.

In C#, oneof gets represented by an enum where there is a value for every field inside the original oneof block:

Figure 3.15 – A C# enum representation of a oneof block "whole_number_field"

The name of an enum generated from a oneof field will have the following structure:

{PascalCase version of the oneof block name}OneOfField

[image: Image 36]

[image: Image 37]

116 Protobuf – the Communication Protocol of gRPC

There is also a private field of this enum type that is stored inside the class definition that represents the message where the oneof block was originally defined. It holds the value of the last field that has been populated.

Setting the value of a property that represents a particular field from a oneof block will set the value of the private enum field to the enum value that corresponds to the property that has just been set. While attempting to retrieve the value of the property, the getter will first check whether the enum has been set to the value that corresponds to this property. Otherwise, it will just return a default value for this data type: Figure 3.16 – Using a oneof enum inside a getter and setter

This private enum field is also used inside the class constructor. When a Protobuf message is received, the C# representation of it will set the correct field from a oneof block based on the information it receives from the message. This is done via a switch statement, as shown in the following figure:

Figure 3.17 – The use of a oneof enum in a class constructor

Using special keywords in Protobuf 117

When we use any of the fields from a oneof block inside our own code, they are used just like any normal fields and properties in a C# class. For example, if we place the following block of code before the return statement inside the SayHello method of the GreeterService class, this will still be valid:

message.BasicTypesField = new BasicTypes

{

IntField = 1

};

However, if you then set another field from the same oneof block, the value you've given to IntField will not be used.

Customizing the behavior with the option keyword

We have already seen an example of the option keyword when we were setting the C#

namespace, as we are using the following line inside the greet.proto file: option csharp_namespace = "IndepthProtobuf";

This directive will override the default package name when generating C# code and will apply a custom namespace of IndepthProtobuf to any packages it generates. But there are also other modifications you can do by using the option keyword.

In Protobuf, option can be applied in three different scopes:

• Global scope

• Message-level scope

• Field-level scope

Let's discuss each scope in detail in the following subsections.

Global-level options

The previous example of ssharp_namespace is a global option, as it's placed at the file level. Usually, this option will contain a directive that is relevant to a specific programming language. As we are using C#, we have used a directive that is specific to C#. However, if you intend to use gRPC clients and/or servers written in other languages, here are some of the other directives you can use:

• java_package

• java_outer_classname

118 Protobuf – the Communication Protocol of gRPC

• go_package

• optimize_for

Message-level options

The message-level options are placed inside of the message and enum definitions at the same levels as their fields (or enum values). These options will modify the behavior of an entire message or enum.

To see an example of such an option, we will modify the ExternalEnum definition to be as follows:

enum ExternalEnum {

option allow_alias = true;

NONE = 0;

SINGLE = 1;

FEW = 2;

MANY = 2;

}

Here, we have applied the allow_alias option by setting it to true. With this option enabled, we can assign the same value to multiple enum names. But why would we want to do this?

To the running code, enums are just representations of numbers. So, in this example, FEW is no different from MANY, as they both have a value of 2. However, the reason we use names in enums is to make them readable to people who read our code. And from a human perspective, there might be a benefit of knowing a distinct scenario where a particular type of situation occurs.

In the previous example, it could be that the exact amount that the enum refers to doesn't make a difference to the downstream logic when it's above 1. However, the system that sends the data may need to have two distinct categories depending on the amount.

Another example would be a disconnection. To the downstream system, any type of disconnection is treated the same. However, to the client, there is a difference between an on-demand disconnection and a disconnection due to failure. So, in this case, it will make sense to have two distinct enum aliases that share the same enum value.

[image: Image 38]

[image: Image 39]

Using special keywords in Protobuf 119

In C#, such an enum will use the OriginalName attribute from the Google.

Protobuf.Reflection package for each of its values with the property of

PreferredAlias set to false on all but one of the entries that share the same numeric value:

Figure 3.18 – A C# representation of a Protobuf enum with the allow_alias option enabled Field-level options

Finally, there are also field-level options in Protobuf. These are placed after the sequence number next to a relevant field, but before the semicolon (;). In this case, you don't have to use the option keyword. You can just apply any option directly by wrapping it in square brackets ([]).

One of the most commonly used field-level options in Protobuf is deprecated. Let's see how this gets applied.

In the HelloReply message definition in our greet.proto file, locate nested_

message_field and replace it with the following:

NestedMessage nested_message_field = 5 [deprecated = true];

When the code gets generated, it will apply ObsoleteAttribute to the property that represents this field:

Figure 3.19 – A C# representation of the deprecated option being set to true

[image: Image 40]

120 Protobuf – the Communication Protocol of gRPC

If we use an IDE or a relevant code styling extension for our code editor, a warning will be generated whenever we attempt to use this field. If we have a look at the code in our GreeterService class, every instance of this field is highlighted to warn us that it has been deprecated:

Figure 3.20 – Visual Studio showing the deprecation warning

These are the most used Protobuf options, and they are the only ones that most developers will ever need.

Protobuf allows you to specify your own custom options, but this is reserved for very specific use cases. Therefore, we will not cover this here. But you will find a link to the relevant documentation in the Further reading section of this chapter.

There are also reserved keywords that we haven't covered. But, since these are mainly intended for enabling easy updates to proto file definitions, we will fully cover their use in Chapter 5, How to Apply Versioning to the gRPC API.

Now, we will cover how to reference other proto files from a proto file and how to create Protobuf libraries – that is, proto file definitions specifically intended to be referenced.

Referencing other proto files 121

Referencing other proto files

In any programming language, you can create reusable bundles of code and package them up into libraries that can be referenced by any application. In .NET, for example, you can create a project of a Class Library type that you can reference from your main application project. Or, if such a library is meant to be accessible by other projects that aren't part of your solution, you can publish it as a NuGet package.

Similar principles are available in Protobuf. You can reference other proto files from inside your proto file. Another similarity between Protobuf and any major programming language is that you can add references to both internal and external proto files. We will have a look at how to apply them both.

Just like you would use namespaces in C# to import external libraries, you use the equivalent in Protobuf. The package directive in a proto file is what sets the name of the Protobuf package. Then, if any other proto file will need to reference this package, it will use this package name as a prefix to refer to the message, enum, and service types defined in this package. For example, if the package name inside our greet.proto file is greet and we have a HelloReply message defined inside the proto file, then any other proto file that will reference greet.proto will have to use a fully qualified name to refer to the HelloReply object (that is, greet.HelloReply).

Importing external proto packages

Importing either an internal or external package in proto files is done via the import directive. You would put this directive before the package directive on top of the proto file. The format would be as follows:

import "{path to proto file}"

We will now import one of the proto files from Google's collection of so-called well-known types, which we will examine in more detail in Chapter 8, Using Well-Known Types to Make Protobuf More Handy. But for now, we will import a package representing one of its data types, Any.

We will start by adding the following directive above our package directive inside the greet.proto file:

import "google/protobuf/any.proto";

This is a path to the any.proto file that contains the data type we need. It will be recognized by the Protobuf compiler, as the paths to the packages published by Google are pre-configured in the gRPC tools.

[image: Image 41]

122 Protobuf – the Communication Protocol of gRPC

We will now use this field in one of our messages. Inside the HelloReply message definition, add the following field after the last field:

google.protobuf.Any external_reference_field = 6;

As you can see, we are specifying the fully qualified data type name. The data type is called Any, and it comes from the google.protobuf package.

In this case, because the package was intended to be used by gRPC clients and servers written in any language, it doesn't have any language-specific package name or namespace directive. Therefore, when the code is generated, the C# namespace is created by applying the camelCase format to the original package name, as per C# naming conventions: Figure 3.21 – An imported external Protobuf object translated to C#

This is how external proto files can be referenced. Now, we will create some internal proto files and then see how to reference them.

Referencing internal proto files

Create a reference.proto file in the Protos folder of your project and populate it with the following content:

syntax = "proto3";

option csharp_namespace = "IndepthProtobuf.Reference";

package greet.reference;

message ReferenceMessage {

string description = 1;

}

Referencing other proto files 123

We are adding a package with the ReferenceMessage definition. As this proto file has no service definitions, the file is intended to be used purely as a reference package.

When we reference this file inside other proto files, we will need to use the greet.

reference package name to use the ReferenceMessage definition. However, when the C# code gets generated, the namespace of the class that represents the message will be IndepthProtobuf.Reference, as we have specified in the csharp_namespace

option.

We will need to ensure that the reference.proto file is recognized by our project. To do so, we will locate the ItemGroup section inside of IndepthProtobuf.csproj that contains the Protobuf reference to the greet.proto file and replace it with the following:

<ItemGroup>

<Protobuf Include="Protos\greet.proto" GrpcServices="Server"

/>

<Protobuf Include="Protos\reference.proto"

GrpcServices="Server" />

</ItemGroup>

Now, we will import this file into our greet.proto file. We will do so by adding the following directive before the package directive:

import "Protos/reference.proto";

This is a Unix-style path to the file relative to the root of the project.

Now, we will use a custom data type from the reference.proto file. We do so by adding the following field to the HelloReply message definition:

greet.reference.ReferenceMessage internal_reference_field = 7;

[image: Image 42]

124 Protobuf – the Communication Protocol of gRPC

The fully-qualified name of the ReferenceMessage custom data type uses the original Protobuf package name, which is greet.reference. But the C# code generated from it uses the namespace defined in the csharp_namespace option directive in the reference.proto file:

Figure 3.22 – A namespace conversion for a package with the csharp_namespace option So, the process of importing internal and external Protobuf packages is broadly the same.

But there is one additional handy feature that Protobuf has when working with internal packages. If you need to move the reference package to another location for whatever reason, you can still do so without changing any code inside the file that imports the package.

Using proto files as relays

If you move your proto file to a different location (for example, to make it accessible by other projects), you may still do so without changing any code in the proto files that reference it. However, you will still need to make some changes to enable this.

We will start by creating another file inside our Protos folder, which we will call new.

proto. And then we will copy the entire content from the reference.proto file.

Please note that we will still need our reference.proto file to be exactly where it was before. We will just need to change its content to make the file act purely as a relay. We will do so by replacing its content with the following:

syntax = "proto3";

option csharp_namespace = "IndepthProtobuf.Reference";

import public "Protos/new.proto";

package greet.reference;

Summary 125

The directive that makes this file act as a relay for new.proto is import public.

With this directive in place, the reference.proto file will act as if the content of the new.proto file is its own content. So, anything that imports reference.proto will implicitly import new.proto. And this is why, as long as you don't change anything in the proto file that you have moved, every proto file that used to import the content from the old proto file will still be valid.

The final change that we need to make is to add a new.proto reference to our IndepthProtobuf.csproj file so that it's recognized by the internal gRPC tools:

<ItemGroup>

<Protobuf Include="Protos\greet.proto" GrpcServices="Server"

/>

<Protobuf Include="Protos\reference.proto"

GrpcServices="Server" />

<Protobuf Include="Protos\new.proto" GrpcServices="Server" />

</ItemGroup>

If your code doesn't compile after making these changes, you may need to delete the

.vs, obj, and bin folders from your project folder and try again. But other than this, everything is expected to work as before, and identical code is expected to be generated.

Summary

In this chapter, you learned how to use all of the core structural components of Protobuf.

You now know all of the rpc types supported by Protobuf. You also learned all of the possible ways of annotating your Protobuf elements with comments.

You learned about all of the inbuilt data types in Protobuf and how they get converted to C# data types. We covered all of the types of integers available in Protobuf and how to choose the right data type depending on what kind of values it's intended to represent. We also covered other scalar types, such as bool, string, and float. In addition to this, you learned how to use nested message and enum definitions.

You also learned how to use two types of collections in Protobuf – repeated fields and maps – and learned that the former is used for creating collections of single values, while the latter is used for creating a dictionary-like collection of key-value pairs. You also learned which data types and keywords aren't compatible with Protobuf collections.

126 Protobuf – the Communication Protocol of gRPC

We also covered the use of the keywords that are unique to Protobuf. You learned how to create bundles of mutually exclusive fields by using the oneof keyword. You also learned how to modify the default behavior of Protobuf objects by adding the option directive at the file, message, and field levels.

Finally, you learned how to reference other proto files from a single proto file, both internally and externally. You now also know how to use a proto file as a relay for another proto file if one has been moved elsewhere, so your original code can remain unchanged.

We have now completed an overview of gRPC and its messaging protocol, Protobuf. In the next part of the book, we will cover some best practices for using gRPC in ASP.NET Core applications. In the next chapter, we will have a look at the techniques you can apply to optimize the performance of this communication mechanism.

Questions

1. What is the equivalent of the fixed64 data type in C#?

A. long

B. ulong

C. int

D. uint

2. What is the difference between int32 and fixed32?

A. The int32 data type will have only as many bytes allocated as necessary, while fixed32 always occupies 4 bytes.

B. There is no difference. Two data types exist purely for backward compatibility.

C. The int32 data type only accepts positive numbers, while fixed32 accepts negative numbers.

D. The int32 data type accepts only whole numbers, while fixed32 accepts decimal point numbers.

3. How do you create a multi-dimensional array in Protobuf?

A. Apply the repeated repeated keyword to the field.

B. There is no way of creating anything that resembles a multi-dimensional array in Protobuf.

C. Create a repeated field of a message that itself has a repeated field.

D. You can only do it if you apply a custom option.

Further reading 127

4. What happens if you assign a value on a field within a oneof block if another field has already been set?

A. A compiler error is thrown.

B. The original field gets unset, and the new field gets set.

C. The original field remains set, and nothing happens to the new field.

D. A runtime error is thrown.

5. How can you keep your main proto file unchanged if you must move one of the files that it references?

A. You will have no choice but to change the import directive.

B. The only option is to move all your files to the same location and change the references in the csproj file.

C. You will have no choice but to change both your proto file and your code.

D. You can keep the original proto file that is specified in the import directive but get it to import the new proto file via the import public directive.

Further reading

• The official Protobuf language guide:

https://developers.google.com/protocol-buffers/docs/proto3

• Specifying custom options in Protobuf:

https://developers.google.com/protocol-buffers/docs/

proto#extensions

Section 2:

Best Practices of

Using gRPC

This part covers best practices of using gRPC. It will show you how to use it in the most optimal way in code, how to scale it, and how to apply API versioning. The following chapters will be covered in this part:

• Chapter 4, Performance Best Practices of Using gRPC on .NET

• Chapter 5, How to Apply Versioning to the gRPC API

• Chapter 6, Scaling a gRPC Application

4

Performance Best

Practices for Using

gRPC on .NET

Since gRPC is often used for processing large volumes of data inside a distributed application, this communication mechanism must be optimized for the best performance.

In this chapter, we will cover some best practices when it comes to using gRPC on ASP.NET Core to optimize its performance as much as possible.

If you don't know how to optimize gRPC for the best performance, you are running the risk of not being able to cope with the volume of data that your application is intended to process. Alternatively, you may need to scale your application out, which would require you to use additional software and hardware resources. If you are running your application under a cloud subscription, such as Microsoft Azure or Amazon AWS, unnecessarily scaling your application out will probably cost you some additional money. This is why it's important to use gRPC to its maximum potential before scaling out is required.

In this chapter, we will cover the following topics:

• Why you need to reuse a gRPC channel

• How to not get held up by a concurrent stream limit

132 Performance Best Practices for Using gRPC on .NET

• Ensuring that your connection remains alive

• When streaming is better than individual calls

• Using binary payloads to decrease the data's size

By the end of this chapter, you will have learned how to fine-tune your gRPC client and server applications to make them suitable for optimally handling large amounts of data.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either the Windows, Mac, or Linux operating system installed

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)

• .NET 5 SDK

• A self-signed development HTTPS certificate enabled on the machine

The instructions for how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub repository:

https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-04

Please visit the following link to check the CiA videos: https://bit.ly/3m1Eg7I

Why you need to reuse a gRPC channel

When you connect the gRPC client to the server, you do so via a configurable channel.

When the channel is opened, the following things happen:

1. A socket is opened

2. The TCP connection is established

3. Transport Layer Security (TLS) is negotiated and applied 4. An HTTP/2 connection is started

Once these steps have been completed, gRPC calls can be made to the server.

Because opening a channel requires all these steps to take place, which represent multiple roundtrips to the server, it's better to reuse the channel while you can. If you already have an existing channel open, you can start making gRPC calls on it right away. However, if you recreate the channel every time you make a call, you will need to perform all these steps every single time. If you need to make many calls, this may slow down your system substantially.

Why you need to reuse a gRPC channel 133

In C#, the gRPC channel is represented by the GrpcChannel class from the

Grpc.Net.Client namespace. An object of this type needs to be reused rather than an implementation of the gRPC client.

The gRPC client's implementation is nothing but a thin layer of abstraction around the Protobuf definition. It's there merely to provide strongly typed representations of the Protobuf RPCs that you can call. All the heavy lifting is done by GrpcChannel.

Therefore, it doesn't matter if we reuse the client object or instantiate a new one every time we need to make a call. What matters is that we reuse the channel if we can.

Let's set up some gRPC server and client applications to see how the channel object can be reused.

Setting up the server application

First, we need to create a solution that will hold both our client and server applications, along with their shared gRPC dependencies. To do so, we'll create a folder called GrpcBestPractices and run the following command inside it to create a solution with the same name:

dotnet new sln

Then, while still in the same folder, we will create a gRPC service application by executing the following command:

dotnet new grpc -o PerformanceService

Then, we will add the newly created project to the solution by executing the following command:

dotnet sln add PerformanceService/PerformanceService.csproj

Now, we will add a console application that will hold the shared gRPC dependencies between the client and the server.

Adding a library with shared Protobuf dependencies

We can create a shared library project by executing the following command: dotnet new classlib -o GrpcDependencies

We can add this project to our solution by executing the following command: dotnet sln add GrpcDependencies/GrpcDependencies.csproj

134 Performance Best Practices for Using gRPC on .NET

Now, let's add all the required NuGet dependencies to our shared class library project.

We can do so by navigating to the GrpcDependencies project folder and executing the following commands:

dotnet add GrpcDependencies.csproj package Grpc.Net.Client

dotnet add GrpcDependencies.csproj package Google.Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.AspNetCore

Now, we will add a Protobuf definition to our shared library. To do so, we will create a Protos folder inside the GrpcDependencies project folder and add a performance.proto file to it. The content of this file will be as follows: syntax = "proto3";

package performance;

service Monitor {

rpc GetPerformance (PerformanceStatusRequest) returns

(PerformanceStatusResponse);

}

message PerformanceStatusRequest {

string client_name = 1;

}

message PerformanceStatusResponse {

double cpu_percentage_usage = 1;

double memory_usage = 2;

int32 processes_running = 3;

int32 active_connections = 4;

}

It's a simple service definition with a single unary RPC called GetPerformance. The service that we are building is emulating a performance monitor. It receives a request with a client name, and it returns performance statistics, including CPU and memory usage, the number of active processes that are running, and the number of active connections.

Why you need to reuse a gRPC channel 135

But don't worry. We won't have to be monitoring a actual system. We are purely emulating these statistics for demonstration purposes.

To finish off our reference library, we need to insert the following section anywhere inside the <Project> element in the GrpcDependencies.csproj file:

<ItemGroup>

<Protobuf Include="Protos\performance.proto" />

</ItemGroup>

This project now contains all the gRPC dependencies that both the server and the client applications need. Therefore, it's no longer essential to have them explicitly defined in either of those projects.

Now, we will add this library to our server project while removing all the redundant dependencies from it.

Adding a shared Protobuf library to the server project

Inside GrpcBestPractices, navigate to the PerformanceService project folder and replace the content of the PerformanceService.csproj file with the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

Now that all the necessary dependencies are in place, we are ready to implement the server-side components for our solution. But first, we need to remove the auto-generated gRPC service implementation for the default greet.proto file. As we no longer use this file, we will need to remove the GreeterService.cs file from the Services folder inside the PerformanceService project folder. Otherwise, we will get a compiler error.

136 Performance Best Practices for Using gRPC on .NET

Implementing server-side gRPC components

Once we've deleted all the redundant files, we can put the PerformanceMonitor.cs file in its place. The content of this file will be as follows:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Performance;

namespace PerformanceService

{

public class PerformanceMonitor : Monitor.MonitorBase

{

public override Task<PerformanceStatusResponse>

GetPerformance(PerformanceStatusRequest request,

ServerCallContext context)

{

var randomNumberGenerator = new Random();

return Task.FromResult(new

PerformanceStatusResponse

{

CpuPercentageUsage =

randomNumberGenerator.NextDouble() * 100,

MemoryUsage = randomNumberGenerator.

NextDouble() * 100,

ProcessesRunning = randomNumberGenerator.

Next(),

ActiveConnections = randomNumberGenerator.

Next()

});

}

}

}

Why you need to reuse a gRPC channel 137

Essentially, the implementation of the GetPerformance RPC accepts a request from the client and returns a single response with emulated performance statistics. All of these statistics are completely random numbers.

Now, we need to register this gRPC service implementation. To do so, we need to open the Startup.cs file inside the project folder and, inside the Configure method, locate a call to UseEndpoints. If you are using .NET 6 template, this call will be located in the main body of Program.cs class. Inside this call, locate the line with a call to MapGrpcService. We will replace this line with the following code:

endpoints.MapGrpcService<PerformanceMonitor>();

Note

If you are running your server-side application on a Mac, you will need to apply some modifications to it. Instructions on how to do so can be found in the Running a gRPC service on a Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

Now, you can compile the application to ensure that we have added all the components correctly and haven't missed anything. If so, we are ready to start adding our client application.

Setting up the client application

Our client application will be a standard ASP.NET Core web API. To create it from a relevant template, open your command-line terminal inside the GrpcBestPractices solution folder and execute the following command:

dotnet new webapi -o ApiGateway

Next, we will add it to our solution by executing the following command:

dotnet sln add ApiGateway/ApiGateway.csproj

After this, we will add all the required gRPC dependencies to our project. We will also add a NuGet package to give us access to Swagger. So, we will replace the content of ApiGateway.csproj with the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

138 Performance Best Practices for Using gRPC on .NET

</PropertyGroup>

<ItemGroup>

<PackageReference Include="NSwag.AspNetCore"

Version="13.12.1" />

</ItemGroup>

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

The API endpoints of the application will return a JSON representation of the PerformanceStatusResponse message from our performance.proto file. We

will also measure how long it takes to execute various types of calls. Therefore, the return object will also contain a field to store the time in milliseconds.

To represent the response object, we will create a ResponseModel.cs file in the root of our ApiGateway project and populate it with the following content:

using System.Collections.Generic;

namespace ApiGateway

{

public class ResponseModel

{

public List<PerformanceStatusModel> PerformanceStatuses

{

get; } = new();

public double RequestProcessingTime { get; set; }

public class PerformanceStatusModel

{

public double CpuPercentageUsage { get; set; }

public double MemoryUsage { get; set; }

public int ProcessesRunning { get; set; }

Why you need to reuse a gRPC channel 139

public int ActiveConnections { get; set; }

}

}

}

To demonstrate the importance of reusing a gRPC channel, we will set up three different types of clients in our application.

The first one will be a wrapper class, where a new client object is created every time a new call is made, but the channel remains active until the wrapper object is disposed of. This wrapper class will be inside the GrpcPerformanceClient.cs file, which we will place in the root of the ApiGateway project folder. Inside this file, we will place all the required using statements, namespace, and the class definition. So, it will look as follows initially:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Performance;

namespace ApiGateway

{

internal class GrpcPerformanceClient

{

}

}

Inside the namespace, we will add the interface definition for our class: public interface IGrpcPerformanceClient

{

Task<ResponseModel.PerformanceStatusModel>

GetPerformanceStatus(string clientName);

}

140 Performance Best Practices for Using gRPC on .NET

Next, we will add a constructor to our class, which will set the client channel when it's initialized:

private readonly GrpcChannel channel;

public GrpcPerformanceClient(string serverUrl)

{

channel = GrpcChannel.ForAddress(serverUrl);

}

After this, we will ensure that our class implements both the

IGrpcPerformanceClient and IDisposable interfaces. The class needs to

implement the method that we have defined in the interface. Likewise, we need to ensure that we dispose of the channel once an instance of this class is destroyed. Therefore, we will change the class definition line to the following:

internal class GrpcPerformanceClient : IGrpcPerformanceClient,

IDisposable

Now, let's implement the IGrpcPerformanceClient interface by adding the following method to our class:

public async Task<ResponseModel.PerformanceStatusModel>

GetPerformanceStatus(string clientName)

{

var client = new Monitor.MonitorClient(channel);

var response = await client.GetPerformanceAsync(new

PerformanceStatusRequest

{

ClientName = clientName

});

return new ResponseModel.PerformanceStatusModel

{

CpuPercentageUsage = response.CpuPercentageUsage,

MemoryUsage = response.MemoryUsage,

ProcessesRunning = response.ProcessesRunning,

ActiveConnections = response.ActiveConnections

Why you need to reuse a gRPC channel 141

};

}

Then, we will implement an IDisposable interface by adding the following method to the class:

public void Dispose()

{

channel.Dispose();

}

Now, we need to register this wrapper class alongside our other dependencies. So, we will apply some changes to the Startup.cs file, (or Program.cs file if you are on a

.NET 6 template), which is located within the root of the ApiGateway project folder.

First, we will ensure that the class imports all the necessary namespaces. The full collection of using statements should be as follows:

using System;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using Performance;

Then, we will ensure that we inject all the necessary dependencies into our code by placing the following content inside the ConfigureServices method. If you are using .NET

6 template, the following code will go into the main body of Program.cs file before the Build event. And you will need to replace services with builder.Services: services.AddControllers();

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcPerformanceClient>(p => new

GrpcPerformanceClient(Configuration["ServerUrl"]));

services.AddGrpcClient<Monitor.MonitorClient>(o =>

{

o.Address = new Uri(Configuration["ServerUrl"]);

});

142 Performance Best Practices for Using gRPC on .NET

Here, we are adding API controllers. Then, we are adding Swagger dependencies so that we can generate web pages based on REST API endpoints. Then, we are making the application configuration available to the other classes (we will need this to instantiate gRPC clients on demand). After this, we are registering an instance of our wrapper class that we have just created.

The final registration method, AddGrpcClient, is an in-built way to register a gRPC client inside the ASP.NET Core application without using any custom wrapper. If we have this registration call, then we can inject the client type (in this case, Monitor.MonitorClient) into the constructors of our controllers and it will get resolved to a functioning instance. This makes client registration more convenient.

However, as we will see later, outsourcing client registration to the underlying framework doesn't necessarily improve its performance.

Next, we will need to add Swagger elements to our pipeline. To do so, we will place the following lines into the configure method. They will need to be placed anywhere before the calls to UseRouting and UseHttpsRedirection:

app.UseOpenApi();

app.UseSwaggerUi3();

As you may have noticed, we have inserted the value of the ServerUrl element from our configuration. So, we will need to add it to our appsetting.json file.

The value of the element will be the secure (HTTPS) application URL we defined in the applicationUrl element of the launchSettings.json file from the

PerformanceService project. However, if you are running the gRPC service

application on a Mac, you will need to use the HTTP URL. In my case, the URL is https://localhost:5001. So, let's add the following field to the appsettings.

json file of the ApiGateway project:

"ServerUrl": "https://localhost:5001"

Also, since we are adding a Swagger page to our project, we can make things easier for us by enabling automatic navigation to this page whenever the application is launched. To do so, open the launchSettings.json file in the ApiGateway project and replace the values of all the launchUrl elements with swagger.

Now, we are ready to add the controller that will provide the interface between the gRPC

client and the outside world. Before we do this, we will remove any existing files from the Controllers folder inside the ApiGateway project. We won't need them anymore.

Then, we will create the PerformanceController.cs file inside this folder.

Why you need to reuse a gRPC channel 143

We will start by populating this file with the basic ASP.NET Core Web API controller structure:

using System.Diagnostics;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Configuration;

using Performance;

namespace ApiGateway.Controllers

{

[ApiController]

[Route("[controller]")]

public class PerformanceController : ControllerBase

{

}

}

Then, we will add the constructor and the private fields:

private readonly Monitor.MonitorClient factoryClient;

private readonly IGrpcPerformanceClient clientWrapper;

private readonly string serverUrl;

public PerformanceController(Monitor.MonitorClient

factoryClient,

IGrpcPerformanceClient clientWrapper,

IConfiguration configuration)

{

this.factoryClient = factoryClient;

this.clientWrapper = clientWrapper;

serverUrl = configuration["ServerUrl"];

}

144 Performance Best Practices for Using gRPC on .NET

Here, we are inserting a dependency of IGrpcPerformanceClien – the gRPC client wrapper that we created earlier. We are also inserting the Monitor.MonitorClient instance, which we registered via AddGrpcClient in the Startup class (or

Program.cs file, depending on your platform version). Finally, we are inserting configuration so that we can store the URL of the gRPC server for later.

Now, let's add three endpoints that have identical logical flows but use different gRPC

client types. We will start by adding an endpoint that uses the client that was created by the internal factory method of ASP.NET Core. This method will look as follows:

[HttpGet("factory-client/{count}")]

public async Task<ResponseModel>

GetPerformanceFromFactoryClient(int count)

{

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

for (var i = 0; i < count; i++)

{

var grpcResponse = await

factoryClient.GetPerformanceAsync(new

PerformanceStatusRequest { ClientName =

$"client {i + 1}" });

response.PerformanceStatuses.Add(new

ResponseModel.PerformanceStatusModel

{

CpuPercentageUsage = grpcResponse.

CpuPercentageUsage,

MemoryUsage = grpcResponse.MemoryUsage,

ProcessesRunning = grpcResponse.ProcessesRunning,

ActiveConnections = grpcResponse.ActiveConnections

});

}

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

Why you need to reuse a gRPC channel 145

What we have done here is accept a parameter containing a count of the gRPC calls we are about to make. Then, we generate that many gRPC requests on the client that we have inserted into our controller directly. The client is expected to reuse the channel, but we don't know how else it has been configured internally.

Now, let's add an endpoint that uses the gRPC client wrapper, which will have the following content:

[HttpGet("client-wrapper/{count}")]

public async Task<ResponseModel>

GetPerformanceFromClientWrapper(int

count)

{

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

for (var i = 0; i < count; i++)

{

var grpcResponse = await

clientWrapper.GetPerformanceStatus($"client

{i + 1}");

response.PerformanceStatuses.Add(grpcResponse);

}

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

The principle here is the same, but we are making all the gRPC calls via the wrapper that we created previously. Here, we have full control over the gRPC client. We are reusing the same channel between the calls but are creating a new client for every call.

Finally, we will add a method where we will be recreating a new instance of the gRPC

channel and the client every time we make a gRPC call:

[HttpGet("initialized-client/{count}")]

public async Task<ResponseModel>

GetPerformanceFromNewClient(int

146 Performance Best Practices for Using gRPC on .NET

count)

{

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

for (var i = 0; i < count; i++)

{

using var channel = GrpcChannel.ForAddress(serverUrl);

var client = new Monitor.MonitorClient(channel);

var grpcResponse = await client.GetPerformanceAsync(new

PerformanceStatusRequest { ClientName =

$"client {i + 1}" });

response.PerformanceStatuses.Add(new

ResponseModel.PerformanceStatusModel

{

CpuPercentageUsage = grpcResponse.

CpuPercentageUsage,

MemoryUsage = grpcResponse.MemoryUsage,

ProcessesRunning = grpcResponse.ProcessesRunning,

ActiveConnections = grpcResponse.ActiveConnections

});

}

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

Here, we are, once again, making a specified number of gRPC calls. However, we are also creating a new channel and a new client for every call.

Now, we are in a position to launch our application and see which of the endpoints performs best.

Comparing the performance of different client types

First, we need to launch the application that represents the gRPC server. To do so, execute the dotnet run command from the PerformanceService project folder. Then,

execute the same command from the ApiGateway project folder.

[image: Image 43]

[image: Image 44]

Why you need to reuse a gRPC channel 147

Once both applications are running, navigate to the API gateway's Swagger page in your browser. The address will be the secure URL from the launchUrl element of the launchSettings.json file of the ApiGateway project, followed by the /swagger path. For example, the URL that I have in my launchSettings file is https://

localhost:36670. Therefore, the web page I need to access will be located at https://localhost:36670/swagger.

You will be presented with visual representations of all three endpoints that we have added to the controller:

Figure 4.1 – Swagger representation of PerformanceController

Now, let's try each endpoint with the same count parameter to see how they perform.

Let's pick up a relatively high number – for example, 1,000 – and see how long it takes to process the request on each of the endpoints.

The best-performing endpoint will be the one that uses a client wrapper. This is where we have full control over the client and we reuse the same channel:

Figure 4.2 – A request on the client-wrapper endpoint taking just over 15 seconds

[image: Image 45]

[image: Image 46]

148 Performance Best Practices for Using gRPC on .NET

Unsurprisingly, the endpoint that creates a new gRPC channel for every call has performed worse. Unlike the client wrapper endpoint, which took approximately 15

seconds to execute, the endpoint that uses a new channel for every call took approximately 25 seconds:

Figure 4.3 – A request on the initialized-client endpoint taking around 25 seconds However, the surprising outcome was that the client that was created by the framework had the worst performance. Even though it used the same channel for all its calls, it probably wasn't configured optimally by the framework:

Figure 4.4 – A request on the factory-client endpoint taking around 50 seconds The conclusion is that reusing the gRPC channel on your client does improve performance. However, if you want to get the best performance, you need to control how you create your client as much as possible. You can outsource this task to the framework, which will mean that there will be less code to write. However, what you gain in convenience might be lost in terms of performance.

How to not get held up by a concurrent stream limit 149

Reusing the gRPC channel on your client is just one of the ways of improving performance. There is also a limit on the number of streams that can be used at the same time inside the same server connection. And if this limit is exceeded, any additional calls need to be queued. But there is a way to work around this, which we will have a look at in the next section.

How to not get held up by a concurrent

stream limit

The HTTP/2 connection that gRPC relies on has a limit on concurrent streams on a connection that can be applied at the same time. If this limit is exceeded, the subsequent calls cannot be made right away. They have to be queued.

The default concurrent connection limit is normally set to 100 streams. This can be configured on the server; however, this approach is not recommended. This can introduce separate performance issues, such as connection packet loss, resulting in all the TCP calls to the server being blocked. There can also be a conflict between different threads trying to write to the same connection.

The recommended way to work around this concurrent stream limit is to configure your client channel to open additional connections when the concurrency limit is exceeded.

And this is easy enough to achieve using the .NET implementation of the gRPC client.

Configuring connection concurrency on the gRPC

client

In this section, we will create a new controller with two endpoints that are identical to each other except for one detail: the gRPC client that's used by one endpoint will have a default single-connection configuration applied, while the other client will be configured to open additional connections when needed.

In our ApiGateway project folder, place the ConcurrencyController.cs file inside the Controllers folder. First, let's add the following content to this file: using System.Collections.Generic;

using System.Diagnostics;

using System.Net.Http;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Microsoft.AspNetCore.Mvc;

150 Performance Best Practices for Using gRPC on .NET

using Microsoft.Extensions.Configuration;

using Performance;

namespace ApiGateway.Controllers

{

[ApiController]

[Route("[controller]")]

public class ConcurrencyController : ControllerBase

{

}

}

Now, let's add the private member and the constructor to the class:

private readonly string serverUrl;

public ConcurrencyController(IConfiguration configuration)

{

serverUrl = configuration["ServerUrl"];

}

Following this, we will add an endpoint that uses a standard gRPC client to make the specified number of concurrent gRPC calls to the server:

[HttpGet("single-connection/{count}")]

public ResponseModel GetDataFromSingleConnection(int count)

{

using var channel = GrpcChannel.ForAddress(serverUrl);

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

var concurrentJobs = new List<Task>();

for (var i = 0; i < count; i++)

{

var client = new Monitor.MonitorClient(channel);

concurrentJobs.Add(Task.Run(() =>

{

client.GetPerformance(new PerformanceStatusRequest

{

How to not get held up by a concurrent stream limit 151

ClientName = $"client {i + 1}" });

}));

}

Task.WaitAll(concurrentJobs.ToArray());

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

We create this concurrency by generating as many tasks that are specified in the count parameter as quickly as possible.

Finally, we will add another endpoint, which has very similar logic but one notable difference, as highlighted in the following code block:

[HttpGet("multiple-connections/{count}")]

public ResponseModel GetDataFromMultipleConnections(int count)

{

using var channel = GrpcChannel.ForAddress(serverUrl, new

 GrpcChannelOptions

 {

 HttpHandler = new SocketsHttpHandler

 {

 EnableMultipleHttp2Connections = true,

 }

 });

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

var concurrentJobs = new List<Task>();

for (var i = 0; i < count; i++)

{

concurrentJobs.Add(Task.Run(() =>

{

var client = new Monitor.MonitorClient(channel);

client.GetPerformance(new PerformanceStatusRequest

{

ClientName = $"client {i + 1}" });

[image: Image 47]

152 Performance Best Practices for Using gRPC on .NET

}));

}

Task.WaitAll(concurrentJobs.ToArray());

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

In this case, when we are creating the channel, we are passing the

GrpcChannelOptions object into it. Inside this object, we are setting a custom HttpHandler. To allow our client to open additional connections when needed, we are setting this field to a new instance of SocketsHttpHandler. Then, we are setting its EnableMultipleHttp2Connections field to true.

This is all we need to do to make our client open additional HTTP/2 connections when needed. Now, let's launch our application and test it.

Comparing the performance between a single

connection and multiple connections

We will launch both of our applications by running the dotnet run command inside both the PerformanceService and ApiGateway project folders. Then, we will navigate to the Swagger page of the ApiGateway application, where we should be able to see our new concurrency controller endpoints:

Figure 4.5 – The ConcurrencyController endpoints on the Swagger page

Ensuring that your connection remains alive 153

This time, it may not be enough to run each endpoint once because when you use a high number, creating so many tasks may have a performance overhead. This is why, if you run each endpoint once, you may get overlapping numbers. However, this is still perhaps the simplest demonstration of concurrent calls. And, as such, it will still take advantage of multiple connection settings.

The best way to test the performance difference between these two endpoints is to run each of them multiple times and check the average. In my case, after running each endpoint 50 times, the average request processing time for a single-connection endpoint was around 35 seconds, while it was 30 seconds for a multiple-connections one. That's not a huge difference, but it's still significant. Therefore, it makes sense to apply the EnableMultipleHttp2Connections setting to

HttpHandler of the gRPC client if you expect many concurrent calls to be made by it.

Ensuring that your connection remains alive

Your application, which acts as a gRPC client, might experience prolonged periods of idleness where no gRPC calls are made to the server. In this period, your connection to the server may get interrupted. Therefore, while reusing a gRPC channel is good for performance, you need to ensure that the channel can still be used every time you need to rely on it.

Fortunately, ensuring that the connection remains alive is relatively easy to implement. To some extent, this functionality will already be configured by default. But you can also fine-tune it to suit your needs.

Setting up keep-alive pings on the gRPC client

Inside the ConcurrencyController class of the ApiGateway application, locate the GetDataFromMultipleConnections method. Inside this method, replace the initialization of the channel variable with the following code:

using var channel = GrpcChannel.ForAddress(serverUrl, new

GrpcChannelOptions

{

HttpHandler = new SocketsHttpHandler

{

PooledConnectionIdleTimeout =

System.Threading.Timeout.InfiniteTimeSpan,

KeepAlivePingDelay = TimeSpan.FromSeconds(60),

KeepAlivePingTimeout = TimeSpan.FromSeconds(30),

154 Performance Best Practices for Using gRPC on .NET

EnableMultipleHttp2Connections = true,

}

});

We have retained the client's ability to create new HTTP/2 connections whenever the concurrent stream limit is exceeded. However, we have also added several options to fine-tune keep-alive pings to make sure that the connection remains active.

The PooledConnectionIdleTimeout setting controls how long a connection can be idle before it can be considered reusable. In our case, we have set it to an infinite time to keep the connection reserved.

KeepAlivePingDelay is a setting that controls the interval at which keep-alive pings are sent to the server. These pings are lightweight requests. Their purpose is to keep the connection active. In this case, they are sent every 60 seconds.

KeepAlivePingTimeout is a setting that controls the time window that the response from the keep-alive ping is expected to be received within. If nothing is received within this time window after sending the ping, the client will close the connection. The default value is 20 seconds, but in this example, we are setting it to 30 seconds.

The main performance benefit of correctly applied keep-alive ping settings is that these pings will keep your connection fresh. Your client will still work if you use it once the connection has been closed, but it will require establishing a new connection, which is almost equivalent to creating a new channel. And this is where the performance penalty comes from when you submit the first request after a period of inactivity.

But if the connection was kept alive all this time, it has already been fully prepared for you. When you make the first request after a period of inactivity, the client will not have to establish a new connection. You will be able to use a fully functioning connection in the same way as if the period of inactivity didn't happen at all.

So, reusing your channels, opening additional connections for concurrent calls, and configuring keep-alive pings will improve your performance to an extent. But there is a way to improve your performance by an order of magnitude if you need to create communication-heavy applications. This is what we will have a look at now.

When streaming is better than individual calls

So far, we have only had one RPC in our solution. This was a unary RPC,

GetPerformance, which is where we've been sending a single response message and retrieving a single request message. Having a unary RPC is acceptable in scenarios where it's only meant to be called occasionally.

When streaming is better than individual calls 155

However, we haven't been using it this way. We have been bombarding this endpoint with many repeated calls. And this is precisely the type of situation where a unary RPC is not the best tool for the job. A bi-directional streaming RPC would be a better option as it will improve our performance significantly.

Setting up a bi-directional streaming RPC

Let's open the performance.proto file, which resides inside the Protos folder of the GrpcDependencies project. Now, add the following RPC to the Monitor service definition:

rpc GetManyPerformanceStats (stream PerformanceStatusRequest)

returns (stream PerformanceStatusResponse);

This RPC uses the same request and response messages as GetPerformance, but it uses both of those inside streams.

Now, we need to implement this RPC definition on the server side. To do so, open the PerformanceMonitor class of the PerformanceService project and add the

following method to it:

public override async Task

GetManyPerformanceStats(IAsyncStreamReader<PerformanceStatus

Request> requestStream,IServerStreamWriter<Performance

StatusResponse> responseStream, ServerCallContext

context)

{

while (await requestStream.MoveNext())

{

var randomNumberGenerator = new Random();

await responseStream.WriteAsync(new

PerformanceStatusResponse

{

CpuPercentageUsage = randomNumberGenerator.

NextDouble()

* 100,

MemoryUsage = randomNumberGenerator.NextDouble() *

100,

ProcessesRunning = randomNumberGenerator.Next(),

ActiveConnections = randomNumberGenerator.Next()

156 Performance Best Practices for Using gRPC on .NET

});

}

}

In this method, we are doing a similar thing to what we have been doing in the GetPerformance method. But instead of just accepting a single request and sending back a single response, we read all the messages from the request stream. Then, for each of those, we write a response message into the response stream.

The principle remains the same – we process the request messages in the same order as they come in and we produce a response for every request. But we no longer have to make separate gRPC calls to process multiple messages.

Now, let's make the necessary changes to our client. First, in the

GrpcPerformanceClient.cs file of the ApiGateway project, add the following using statements to the top of the file:

using System.Collections.Generic;

using Grpc.Core;

Following this, add the following method signature to the IGrpcPerformanceClient interface:

Task<IEnumerable<ResponseModel.PerformanceStatusModel>>

GetPerformanceStatuses(IEnumerable<string> clientNames);

Now, we need to implement this method inside the GrpcPerformanceClient class.

We will start by adding the method definition:

public async Task<IEnumerable<ResponseModel.

PerformanceStatusModel>>

GetPerformanceStatuses(IEnumerable<string> clientNames)

{

}

Now, let's create a gRPC client from the existing channel and open a streaming call: var client = new Monitor.MonitorClient(channel);

using var call = client.GetManyPerformanceStats();

var responses = new List<ResponseModel.

PerformanceStatusModel>();

When streaming is better than individual calls 157

Following this, we will create an asynchronous task that will listen for any response messages being placed on the server stream. We will convert each of these messages into ResponseModel.PerformanceStatusModel and add it to the list of responses as soon as we receive it:

var readTask = Task.Run(async () =>

{

await foreach (var response in

call.ResponseStream.ReadAllAsync())

{

responses.Add(new ResponseModel.PerformanceStatusModel

{

CpuPercentageUsage = response.CpuPercentageUsage,

MemoryUsage = response.MemoryUsage,

ProcessesRunning = response.ProcessesRunning,

ActiveConnections = response.ActiveConnections

});

}

});

Then, we must populate the client stream with a list of request messages that correspond to the collection of client names that we have received as the method parameter: foreach (var clientName in clientNames)

{

await call.RequestStream.WriteAsync(new

PerformanceStatusRequest

{

ClientName = clientName

});

}

Finally, we will close the client stream, wait for all the messages to be extracted from the response stream, and return the collection of responses to the caller.

Now, let's create an endpoint inside our PerformanceController class that will use this method.

158 Performance Best Practices for Using gRPC on .NET

First, ensure that your PerformanceController.cs file contains the following using statement:

using System.Collections.Generic;

Then, add the following method to the class:

[HttpGet("streaming-call/{count}")]

public async Task<ResponseModel>

GetPerformanceFromStreamingCall(int

count)

{

var stopWatch = Stopwatch.StartNew();

var response = new ResponseModel();

var clientNames = new List<string>();

for (var i = 0; i < count; i++)

{

clientNames.Add($"client {i + 1}");

}

response.PerformanceStatuses.AddRange(await

clientWrapper.GetPerformanceStatuses(clientNames));

response.RequestProcessingTime = stopWatch.

ElapsedMilliseconds;

return response;

}

This endpoint takes the same parameter as the other endpoints in this controller and returns the same object type. But this time, we are just making a single RPC call and populating the request stream with multiple messages. Let's see how it performs compared to making a unary call multiple times.

Monitoring the performance of the bi-directional

streaming call

Launch both the PerformanceService and ApiGateway applications and navigate to the Swagger page of ApiGateway. You should be able to see the new streaming-call endpoint on the Performance controller:

[image: Image 48]

[image: Image 49]

When streaming is better than individual calls 159

Figure 4.6 – The Swagger representation of PerformanceController with the streaming-call endpoint Now, we will run this endpoint with the count parameter set to 1,000, as we did with the other endpoints before this:

Figure 4.7 – A request on the streaming-call endpoint taking around 3 seconds Our call was fully processed in just over 3 seconds. This is five times faster than our previous fastest call, although we have submitted the same number of requests and have received the same number of response objects.

So, if you expect your gRPC application to process a large number of messages regularly

– create streaming RPCs for them. They are faster than individual unary calls by a large margin.

There is also a modification you can apply to your Protobuf messages to transfer them faster due to the reduced bandwidth that they would require. This is what we will have a look at next.

160 Performance Best Practices for Using gRPC on .NET

Using binary payloads to decrease the

data's size

If you want to minimize a Profobuf message's size while fitting as much data as possible into it, you can convert your data into a binary form. In Protobuf, there is a bytes data type that exists specifically for this.

Even though this data type is represented by the ByteString type from the Google.Protobuf library in C#, there are multiple ways of inserting a standard byte array into the fields of this type, which makes it compatible with any byte-processing functionality available in C#.

Let's have a look at various ways of writing data into this field and reading data from it.

Adding binary fields to Protobuf

In the GrpcDependencies project, open the performance.proto file inside the Protos folder and add the following fields to the PerformanceStatusResponse message definition:

bytes data_load_1 = 5;

bytes data_load_2 = 6;

Now, let's apply some modifications to the PerformanceMonitor class from the PerformanceService project. First, we will add the following using statement to the top of the file containing the class:

using Google.Protobuf;

Because both of the public endpoint methods will use similar functionality, we will refactor the class. First, we will add the following private method to it: private PerformanceStatusResponse GetPerformaceResponse()

{

var randomNumberGenerator = new Random();

var dataLoad1 = new byte[100];

var dataLoad2 = new byte[100];

randomNumberGenerator.NextBytes(dataLoad1);

randomNumberGenerator.NextBytes(dataLoad2);

return new PerformanceStatusResponse

{

Using binary payloads to decrease the data's size 161

CpuPercentageUsage = randomNumberGenerator.NextDouble()

* 100,

MemoryUsage = randomNumberGenerator.NextDouble() * 100,

ProcessesRunning = randomNumberGenerator.Next(),

ActiveConnections = randomNumberGenerator.Next(),

DataLoad1 = UnsafeByteOperations.UnsafeWrap(dataLoad1),

DataLoad2 = ByteString.CopyFrom(dataLoad2)

};

}

Now, we will change both public endpoint methods to the following:

public override Task<PerformanceStatusResponse>

GetPerformance(PerformanceStatusRequest request,

ServerCallContext

context)

{

return Task.FromResult(GetPerformaceResponse());

}

public override async Task

GetManyPerformanceStats(IasyncStreamReader

<PerformanceStatusRequest> requestStream,

IServerStreamWriter

<PerformanceStatusResponse>

responseStream, ServerCallContext context)

{

while (await requestStream.MoveNext())

{

await responseStream.

WriteAsync(GetPerformaceResponse());

}

}

So, to populate the two bytes fields that we've added, we are generating two byte arrays, each with a length of 100, and populating those with randomly generated bytes.

162 Performance Best Practices for Using gRPC on .NET

Then, we are using two different methods to write the data from these two byte arrays into the bytes fields:

• UnsafeByteOperations.UnsafeWrap, which is similar to adding the

byte array to a ByteString field by reference. It's not merely the data that gets copied. If you do anything to the original byte array after you've added it this way, modifying this array may corrupt the data. The advantage of using this method is that it's faster than copying.

• ByteString.CopyFrom copies the original array into the ByteString field.

This method is safer but slower.

Now, let's modify our client so that it can read the data.

First, we will add the following field to the PerformanceStatusModel class, which is nested inside the ResponseModel class of the ApiGateway project:

public byte[] DataLoad1 { get; set; }

public byte[] DataLoad2 { get; set; }

Now, let's make some changes to the GrpcPerformanceClient class so that it can read the bytes data from the newly added fields. But first, we will need to add the following using statement to the top of the file containing the class:

using System.Runtime.InteropServices;

Now, let's add the following private method to the class:

private ResponseModel.PerformanceStatusModel

ReadResponse(PerformanceStatusResponse response)

{

return new ResponseModel.PerformanceStatusModel

{

CpuPercentageUsage = response.CpuPercentageUsage,

MemoryUsage = response.MemoryUsage,

ProcessesRunning = response.ProcessesRunning,

ActiveConnections = response.ActiveConnections,

DataLoad1 = response.DataLoad1.ToByteArray(),

DataLoad2 =

MemoryMarshal.TryGetArray(response.DataLoad2.Memory,

out var segment) ? segment.Array :

[image: Image 50]

Using binary payloads to decrease the data's size 163

response.DataLoad2.Memory.ToArray()

};

}

Here, once again, we have two different ways of converting ByteString into a byte array:

• ToByteArray will convert ByteString into a byte array.

• MemoryMarshal.TryGetArray will try to obtain a specific array segment. If this fails, we can try to convert the read-only memory segment of the ByteString object into the byte array by calling the ToArray method.

Now, we can apply this private method to both of our public methods. In the GetPerformanceStatus method, change the return statement to the following: return ReadResponse(response);

In the GetPerformanceStatuses method, replace the statement that starts with responses.Add with the following code:

responses.Add(ReadResponse(response));

Now, we can get this data on our Swagger page:

Figure 4.8 – The HTTP response data with byte array fields

Even though we used raw bytes in this example, any kind of data can be packaged into this binary format. C# has a lot of in-built tools for working with bytes and converting them into other data types.

164 Performance Best Practices for Using gRPC on .NET

Summary

In this chapter, you learned that reusing existing gRPC channels is good for performance, while performance isn't affected by reusing a client object. You also saw that even though it's convenient to outsource the process of creating a gRPC client to the framework, this isn't necessarily good for performance. Therefore, for optimal performance, it's better to control how the client is created as much as possible.

We covered the fact that there is a streaming limit on active HTTP/2 connections. But you also learned that there is a setting that allows you to create a new connection from your gRPC client when this limit is about to be exceeded.

Then, we covered how to keep the gRPC connection between the client and the server alive while you aren't actively using it. This allows you to start using it as soon as you need it without having to reestablish it.

After that, we learned how using bi-directional streaming instead of unary calls improves the processing speed by an order of magnitude when repeated calls need to be made.

Finally, we covered how to transfer binary data in Protobuf messages, which significantly reduces the message's size and minimizes the bandwidth usage.

In the next chapter, we will cover the best practices surrounding gRPC API versioning.

You will learn how to update your server-side API in such a way that it doesn't break the existing clients.

Questions

1. For the best performance in terms of gRPC communication, which of the following client-side objects would you need to reuse?

A. Client

B. Channel

C. Both the client and the channel

D. Neither

2. What is the default concurrent stream limit on the HTTP/2 connection?

A. 1,000

B. 10

C. 100

D. 1

Further reading 165

3. What happens if no data is received within the timeout window after sending a keep-alive ping?

A. The connection is terminated

B. The next ping is sent

C. The connection is marked as idle

D. This configuration parameter is made redundant

4. How do you define a bi-directional streaming call in Protobuf?

A. Apply the stream keyword before the rpc keyword

B. Apply the stream keyword after the rpc keyword

C. Apply the stream keyword before the input parameter

D. Apply the stream keyword before both the input and output parameters

5. When shouldn't you use UnsafeByteOperations.UnsafeWrap to populate

ByteString?

A. When you intend to modify the original byte array after this call

B. You should be able to use it in any situation

C. When you haven't made a copy of the original array

D. When you want higher performance

Further reading

• Performance best practices for gRPC: https://docs.microsoft.com/

en-us/aspnet/core/grpc/performance.

5

Applying Versioning

to the gRPC API

So far, we have had a look at the uses of gRPC in ASP.NET Core where both the client and server applications are present in the same solution and rely on the same reference library. When this is the case and the applications at both ends of gRPC communication are in the same repository, then those components are probably meant to be deployed together. This is where API versioning is not critical, as you can simply apply Protobuf changes to both the client and server at the same time. Even if these are breaking changes, only the applications from the same repository will be affected.

But not all gRPC implementations are like this. Quite often, your client and your server will be in different repositories and will be deployed as separate components. It might even be the case that the client and the server are developed by separate teams or even separate organizations. Just like with a REST API, your server might have a public gRPC

endpoint that any authorized client should be able to access.

This is where API versioning becomes critically important. If you make updates to your server, these changes should not cause the existing clients to break or behave in an unexpected manner. Luckily, Protobuf has been designed for easy API versioning. And this is what we will have a look at in this chapter.

168 Applying Versioning to the gRPC API

We will cover the following topics:

• Why an API versioning strategy is important

• What the sequence numbers in the proto file represent

• Why you must not modify existing fields in future Protobuf versions

• How to deprecate old, unused fields in gRPC

• How to factor in API versioning at the design stage

By the end of this chapter, you will have learned how to apply API versioning so that you can make changes to the gRPC server without breaking any of its existing clients.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with a Windows, Mac, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)

• The .NET 5 software development kit (SDK) (or newer)

• A self-signed development HTTPS certificate enabled on your machine

For instructions on how to set up all of these prerequisites, please refer to Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub repository:

https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-05

Please visit the following link to check the CiA videos: https://bit.ly/3pT2hPA

Why an API versioning strategy is important

We will begin by setting up two applications. We will pretend that these two applications are developed by different teams and they don't have access to shared gRPC dependencies.

This setup will be done to demonstrate why API versioning is so important.

For convenience, while using an IDE, you may add these applications to the same solution. But this is not necessary, as these applications will not share any dependencies.

Why an API versioning strategy is important 169

Creating a server application

We will start by executing the following command to create an ASP.NET Core application based on the gRPC Service template:

dotnet new grpc -o GrpcServer

In the GrpcServer project folder that has been created, we will remove the default greet.proto file from the Protos folder. Then, we will place the stats.proto file in there with the following service definition:

syntax = "proto3";

package stats;

service Status {

rpc GetStatus (StatusRequest) returns (StatusResponse);

}

The definition of the StatusRequest message will be as follows:

message StatusRequest {

string client_name = 1;

string client_description = 2;

bool ready = 3;

bool authorized = 4;

}

And the definition of the StatusResponse message should be as follows:

message StatusResponse {

string server_name = 1;

string server_description = 2;

int32 number_of_connections = 3;

double cpu_usage = 4;

double memory_usage = 5;

uint64 errors_logged = 6;

uint32 catastrophic_failures_logged = 7;

bool active = 8;

}

170 Applying Versioning to the gRPC API

Essentially, our server application will receive some basic information from a client and will send back its performance statistics, such as memory usage, the number of errors logged, and so on. Of course, all of these measurements will be mocked, as the scope of this exercise is purely gRPC communication and not the collection of any internal metrics.

This newly added file will need to be registered in the server role in the project. To do so, we need to ensure that the following section is added to the GrpcServer.csproj file:

<ItemGroup>

<Protobuf Include="Protos\stats.proto" GrpcServices="Server"

/>

</ItemGroup>

We are now ready to implement the server-side components of this Protobuf definition.

Implementing the server-side gRPC components

Since we have removed the default greet.proto file, we need to remove the GreeterService.cs file from the Services folder of the GrpcServer project. We will also need to remove the line that references the GreeterService class from our Startup.cs file (or Program.cs file if you are using .NET 6 template). Otherwise, our code won't compile.

Once we have done this, we will create a StatusService.cs file in the Services folder. The file will contain a class definition with the following namespace imports: using System;

using System.Threading.Tasks;

using Grpc.Core;

using Stats;

namespace GrpcServer

{

public class StatusService : Stats.Status.StatusBase

{

}

}

Why an API versioning strategy is important 171

The class will have the following override method, which will output the details of the request into the console:

public override Task<StatusResponse> GetStatus(StatusRequest

request, ServerCallContext context)

{

Console.WriteLine($"Client name is {request.ClientName}");

Console.WriteLine($"Client description is

{request.ClientDescription}");

Console.WriteLine($"Is client ready? {request.Ready}");

Console.WriteLine($"Is client authorized?

{request.Authorized}");

}

At the end of the method, we will insert the following block, which will return a response object populated by some randomized values:

var randomNumberGenerator = new Random();

return Task.FromResult(new StatusResponse

{

ServerName = "TestServer",

ServerDescription = "This is a test server that is used for

generating status metrics",

NumberOfConnections = randomNumberGenerator.Next(),

CpuUsage = randomNumberGenerator.NextDouble() * 100,

MemoryUsage = randomNumberGenerator.NextDouble() * 100,

ErrorsLogged = (ulong)randomNumberGenerator.Next(),

CatastrophicFailuresLogged = (uint)randomNumberGenerator.

Next(),

Active = true

});

Now, we will need to register this gRPC service implementation as an endpoint. To do so, add the following line to the expression inside the app.UseEndpoints call, which is inside the Configure method in the Startup class (or the main body of Program.cs class for .NET 6):

endpoints.MapGrpcService<StatusService>();

172 Applying Versioning to the gRPC API

Note

If you are running your server-side application on a Mac, you will need to apply some modifications to it. The instruction on how to do so can be found in the Running a gRPC service on Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

Now, we are ready to configure the client that will communicate with our gRPC server application.

Creating the gRPC client application

Our client application will be nothing more than a basic console app, as we will be focusing purely on gRPC communication. We will create the application project by executing the following command in any folder outside of any of our .NET project folders: dotnet new console -o GrpcClient

We will then add all NuGet packages to the project that are required for the gRPC client implementation. This will be done by executing the following commands from inside the GrpcClient project folder:

dotnet add GrpcClient.csproj package Grpc.Net.Client

dotnet add GrpcClient.csproj package Google.Protobuf

dotnet add GrpcClient.csproj package Grpc.Tools

After we've added all the dependencies, we will create a Protos folder in the GrpcClient project folder. We will then copy the stats.proto file from the Protos folder of the GrpcServer project to this newly created Protos folder in the GrpcClient project. Once done, we need to register this Protobuf definition in the GrpcClient.csproj file by adding the following section to it:

<ItemGroup>

<Protobuf Include="Protos\stats.proto" GrpcServices="Client"

/>

</ItemGroup>

There is an important reason why we copied the proto file instead of getting two applications to share it. This is what we will probably have to do in real life too – when the client is developed separately from the server.

Why an API versioning strategy is important 173

Of course, even in this case, you may have a separate class library that holds the proto files that both your client and your server will reference, even if they are completely separate from each other. For example, you may have the class library published as a NuGet package on a NuGet feed that both the client and the server can access.

This will only work if both the client and the server are .NET applications. However, if your gRPC server is meant to be accessible to external clients, it's unreasonable to assume that all of those clients will be built on the same technology stack. The developers of the client application will know the API specification (in this case, a Protobuf definition), and it will be up to them to choose the technology to build the client on. Therefore, when you make your gRPC API available to the outside, the best way to share the API specifications is to publish the proto files, which the developers can copy into their own client applications. And this is what we are emulating here.

Now, we will need to implement the client logic.

Implementing the gRPC client logic

To make it simple, all of our client-side gRPC logic will be placed into the entry point method of the Program.cs file of the GrpcClient application. First, we will add all of the required namespace references to the class by placing the following using statements at the top of the file:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

Then, replace the content of the Main method of the Program class with the following lines:

Console.WriteLine("Please enter gRPC server address:");

var serverUrl = Console.ReadLine();

var client = new

Stats.Status.StatusClient(GrpcChannel.ForAddress(serverUrl));

Console.WriteLine("Please enter client name:");

var clientName = Console.ReadLine();

Console.WriteLine("Please enter client description:");

var clientDescription = Console.ReadLine();

174 Applying Versioning to the gRPC API

We have added an interactive script, where we specified the address of the gRPC server to connect to. Next, we type in the name and the description of our client, which will be placed into the request object during the gRPC call.

We then create the request object and make a call to the server:

var response = await client.GetStatusAsync(new Stats.

StatusRequest

{

ClientName = clientName,

ClientDescription = clientDescription,

Ready = true,

Authorized = true

});

Finally, we print out the data we received from the server in the console: Console.WriteLine($"Server name: {response.ServerName}");

Console.WriteLine($"Server description:

{response.ServerDescription}");

Console.WriteLine($"Number of connections:

{response.NumberOfConnections}");

Console.WriteLine($"CPU usage: {response.CpuUsage}");

Console.WriteLine($"Memory usage: {response.MemoryUsage}");

Console.WriteLine($"Errors logged: {response.ErrorsLogged}");

Console.WriteLine($"Catastrophic failures logged:

{response.CatastrophicFailuresLogged}");

Console.WriteLine($"Active: {response.Active}");

Console.ReadKey();

Now, we will launch both of our applications to verify that they are working correctly.

Verifying that the client can talk to the server

We will first need to launch our server application. To do so, execute the dotnet run command from the GrpcServer project folder. Then, once our server is

running and is ready to start accepting calls, we execute the same command from the GrpcClient folder.

[image: Image 51]

[image: Image 52]

Why an API versioning strategy is important 175

Once the console application is launched, you will be asked to provide the address of your gRPC server application, which can be found in the applicationUrl field of the launchSettings.json file that is located in the Properties folder of the GrpcServer project. It should be https://localhost:5001 by default. However, if you are running the gRPC service application on Mac, you would need to use the HTTP

version, which is http://localhost:5000 by default.

Following this, you will be asked to provide the name of the client and its description, both of which can be any arbitrary text.

Once you have provided those, you should see the following response from the server in your console window if your setup has worked correctly.

Figure 5.1 – The server response logged in the client console window

Once the connection has been verified from the client side, you can now also verify that the server application has printed the client data into its own console:

Figure 5.2 – Client request data being printed to the server console

176 Applying Versioning to the gRPC API

So, we have established that both of our client and server applications are working correctly, despite having independent copies of the Protobuf definition. But to make sure the applications can communicate with each other, we rely on these copies to match each other.

In our example, because the client and the server use independent copies of the proto file, there is nothing that stops either copy from being modified to such an extent that it becomes incompatible with the other. And this is what may happen in a real-life scenario.

Developers of the server applications don't have control over what the developers of the client application are doing. And the developers of the client application don't have access to the code of the server applications. So, if the team maintaining the server application needs to update the Protobuf definition, the copy of the proto files that the client uses will become outdated.

Depending on the complexity of the server application and how many client applications are using it, bringing all clients up to date may take a relatively long time. And until this happens, the existing clients are expected to still function correctly. And this is precisely why you need to apply the API versioning strategy.

The good news is that the Protobuf protocol was designed from the outset to make API versioning as painless as possible. The sequence numbers next to the fields in the Protobuf message definitions are there to help with this task.

What the sequence numbers in the proto file

represent

What makes Protobuf different from any other communication protocols or data storage formats is that each field, in its objects, has an equality sign (==) at the end, followed by a unique integer number. The equality sign followed by a numeric value is how you would normally assign a numeric value to a variable, but in Protobuf, it represents a unique sequence number of the field.

The reason these sequence numbers exist is that they are the only field identifiers that are used when the message is being transferred between the client and the server. The Protobuf messaging format has been designed to be as efficient as possible. Using arbitrary byte arrays to represent human-readable field names isn't very efficient. Instead, using numeric identifiers is the simplest way of both keeping track of each unique field and keeping the data payload size as small as possible.

What the sequence numbers in the proto file represent 177

Another feature that makes Protobuf so efficient is that you don't have to set every single field in each message. If you don't explicitly set the value of any given field, the field will simply be omitted from the message.

Each data type has its default value. And when the gRPC middleware in your application receives a message with a field missing, it will simply assign the default value to this field.

The application that consumes this message will not see that any of the fields in it haven't been populated.

Also, when there are sequence numbers in a particular message payload that aren't defined in the proto file of the consuming application, no error is thrown. Instead, these are simply ignored.

These behavioral characteristics make the sequence numbers in the message definitions so useful for API versioning. If you add any new fields to the Protobuf definition on the server side, they will not be relevant to the old client and will simply be ignored.

Likewise, if any field is removed from message on the server-side Protobuf definition, old clients will still be able to consume data from the server. The client will still see this field, but the field will always contain the default value for its data type.

We still have to be careful in this situation though. If the consuming application did expect something other than the default value, it may be a breaking behavior change.

Nevertheless, at the very least, adding or removing fields in a Protobuf definition of one application would not cause its interface to be incompatible with the other application that was designed to communicate with it.

Now, we will make some changes to the Protobuf definition on both the client and server applications and see whether they still work afterward.

Modifying the Protobuf definition in the server

application

Let's open the stats.proto file in the Protos folder of the GrpcServer application and make some changes to it.

Let's pretend that we no longer care how many errors were logged by the server application. And we also realize that having an active flag is redundant because the server just wouldn't respond if it was not active. But we also want to know whether or not the server is busy, which we didn't previously have a metric for.

178 Applying Versioning to the gRPC API

So, we remove the errors_logged and active fields from the StatusResponse message definition and we add the busy field to it with a new sequence number. Our StatusResponse message definition in the server application will now look like this: message StatusResponse {

string server_name = 1;

string server_description = 2;

int32 number_of_connections = 3;

double cpu_usage = 4;

double memory_usage = 5;

uint32 catastrophic_failures_logged = 7;

bool busy = 9;

}

Now, we will need to modify the logic inside the StatusService class. We will change the return statement in the GetStatus method to the following:

return Task.FromResult(new StatusResponse

{

ServerName = "TestServer",

ServerDescription = "This is a test server that is used for

generating status metrics",

NumberOfConnections = randomNumberGenerator.Next(),

CpuUsage = randomNumberGenerator.NextDouble() * 100,

MemoryUsage = randomNumberGenerator.NextDouble() * 100,

CatastrophicFailuresLogged = (uint)randomNumberGenerator.

Next(),

Busy = true

});

Now, we will make some changes to our client too. But not the ones we have applied on the server.

Modifying the Protobuf definition in the client

application

Let's pretend that the developers of the client application are unaware of the changes that have been applied on the server. But, at the same time, they have realized that one of the fields in the StatusRequest message definition is redundant.

What the sequence numbers in the proto file represent 179

Why does the client need to explicitly tell the server that it's ready when the fact that the client could connect to the server already implies that it's ready? So, we will remove the ready field from the StatusRequest message definition of the stats.proto file that's located in the Protos folder of the GrpcClient project. The message definition should now look like this:

message StatusRequest {

string client_name = 1;

string client_description = 2;

bool authorized = 4;

}

To make sure that the code of the client application still compiles, we need to remove all the references to the field that no longer exists in the message definition. We only had one, and it was being applied during the request to the server. So, in the Main method of the Program class, modify the statement that makes the request so that it looks like this: var response = await client.GetStatusAsync(new Stats.

StatusRequest

{

ClientName = clientName,

ClientDescription = clientDescription,

Authorized = true

});

Now, we will launch our applications to see how their behavior has changed.

Launching modified applications

Execute the dotnet run command from the GrpcServer project folder. Then,

once the server application is up and running, execute the same command from the GrpcClient folder.

In the console window of the client application, enter the server application address followed by any arbitrary client name and client description. Now, you will be able to see how both of the applications behave.

[image: Image 53]

[image: Image 54]

180 Applying Versioning to the gRPC API

You will see in your client console window that the number of errors reported by the server is 0, while the server also appears to be inactive. This is because the errors_

logged and active fields have been removed from the StatusReponse message definition on the server side, so they are populated with default values (which happen to be false for bool and 0 for uint64). Your console window will look similar to this: Figure 5.3 – The Errors logged and Active fields on the client side being populated with default values Our server application is unaware that the active field is no longer used in the StatusRequest message definition on the client. But it hasn't been removed from the corresponding message definition on the server. So it just gets populated with the default value of false, as can be seen in the following console output:

Figure 5.4 – The Active field of the StatusRequest message definition

being populated with the default value of false

Why you must not modify existing fields in future Protobuf versions 181

This demonstrates that the removal and addition of fields in your Protobuf message definitions is the safest way to update your gRPC API. Neither of these changes will make the interface incompatible with the old applications that use it. Removed fields will be populated with default values, while additional fields will be ignored.

Of course, this doesn't make API updates 100% safe. Therefore, it's up to developers to verify whether any specific changes will result in unintended behavior. From the application's perspective, the concept of no data may be treated differently from 0, an empty string, or a Boolean value of false. So, we need to be mindful of the fact that removing a field from the Protobuf definition of one application may completely change the meaning of the message to the application that communicates with it.

 Well-known types from the Google library will allow you to easily distinguish between no data and any specific value. We will cover these types in Chapter 8, Using Well-Known Types to Make Protobuf More Handy. But even with these types applied, you need to make sure that any given field doesn't have a special meaning in the application that consumes the message.

As well as adding or removing fields, you can make modifications to the existing fields when updating Protobuf definitions. However, this is rarely a good idea – let's see why.

Why you must not modify existing fields in

future Protobuf versions

Protobuf doesn't prevent you from changing data types on your fields. But not all data types are compatible with each other. If you change the data type of just one of your fields to a data type that isn't compatible with it, you will make your whole interface incompatible with the existing clients.

In the following list, each bullet contains the data types that can be interchanged with each other:

• int32, uint32, int64, uint64, and bool

• int32, uint32, int64, uint64, and enum values

• sint32 and sint64

• string and bytes, but only if the bytes value uses UTF-8 encoding

• fixed32 and sfixed32

• fixed64 and sfixed64

182 Applying Versioning to the gRPC API

However, just because you can change the data type of a field, it doesn't mean that you should. For example, what would happen if you sent a negative value as int32, but consumed it as a positive-only uint32 data type on the other side? The original value cannot be held into the destination's data type. So how will it be modified?

What would happen if you sent a large int64 value and consumed it as int32? The target data type won't be able to store such a large value, so it will have to truncate it, potentially breaking your logic.

The same arguments can be applied to all data type conversions. Every one of these conversions may cause a situation where data is either lost or it is altered to such an extent that it's no longer useful. This is why, despite the fact that you can convert certain data types without breaking the interface, you shouldn't do so unless absolutely necessary and you know that the risk of such action is low.

The same applies to field names. We have already established that the actual human-readable field names from message definitions are not used during

communication. And this is what allows us to change the field names. As long as the sequence number of the field stays the same and it has the same (or a compatible) data type, the interface will still work.

The same can be applied to the names of message or enum definitions. Even though you don't apply specific numeric identifiers to the definitions of these objects, from the perspective of Protobuf, they are simply object placeholders. And as long as their structure remains the same, they will still be correctly interpreted by the consuming application.

But, once again, because the option to change field names and message names exists, it doesn't mean that you should use it. By changing the name, you may change the verbal meaning of it. And you may make it harder for yourself to update your application once the new version of the Protobuf definition has been published.

What you cannot make changes to in Protobuf are rpc names. Each RPC is represented as a path in an HTTP URL, so its name must match. Otherwise, if your client and server implementations of Protobuf have different names specified for the same RPC, you will get an UNIMPLEMENTED error code.

We will now make some changes to our application to see how it behaves if we modify some Protobuf fields at one end, but leave them unmodified at the other end.

Why you must not modify existing fields in future Protobuf versions 183

Modifying Protobuf definitions on the client side

Open the stats.proto file in the Protos folder of the GrpcClient project. In this file, change the sequence number of the authorized field in the StatusRequest message definition from 4 to 3. Let's pretend that a new developer has joined a team and they don't fully understand what the sequence numbers are for. The developer sees that the numbers aren't sequential, so they make them sequential again.

Your message definition should now look like this:

message StatusRequest {

string client_name = 1;

string client_description = 2;

bool authorized = 3;

}

Now, we will modify some fields in the StatusResponse message definition. We will change the data type of the number_of_connections field from int32 to uint32. Then, we will set the data types of the errors_logged and catastrophic_

failures_logged fields to int32. Your StatusResponse message definition

should now look like this:

message StatusResponse {

string server_name = 1;

string server_description = 2;

uint32 number_of_connections = 3;

double cpu_usage = 4;

double memory_usage = 5;

int32 errors_logged = 6;

int32 catastrophic_failures_logged = 7;

bool active = 8;

}

Let's launch our applications and see what effect these changes have.

Launching the applications

After executing the dotnet run command in both the GrpcServer and

GrpcClient project folders and typing the required information in the console window of the client app, you should expect to see that the applications are able to communicate with one another.

[image: Image 55]

[image: Image 56]

184 Applying Versioning to the gRPC API

The client was able to read the data from the server, even where the data types of the fields were different. This can be seen in the following console output:

Figure 5.5 – The successful conversion between signed and unsigned int data types However, an interesting thing happens when we look at the console window of the server application. It seems to think that the client application had its ready field populated, even though this field no longer exists on the client. Moreover, the server read the value of the authorized field as false, even when the client had set it to true.

Figure 5.6 – The server reading the value of the authorized field of the

client as the value of the ready field

So, how is this even possible? Well, the answer is simple. Because field names are irrelevant to gRPC communication, we haven't really assigned a value to the authorized field on the client. We have merely reinstated the field with the sequence number of 3 and changed the label on it from ready to authorized. But our code on the client side didn't change at all, as all of the field names that we used were already present in the code that was generated from the proto file.

Why you must not modify existing fields in future Protobuf versions 185

However, the server sees it differently. We have retained the original StatusRequest structure on the server with both the ready and authorized fields present. And ready happens to be the label of the field with the sequence number of 3, which was populated by the client.

This demonstrates why you should avoid modifying definitions of individual fields in Protobuf. A subtle change may cause the client and the server to get lost in translation.

When we thought that we were sending the authorized attribute to the server, this is not what the server saw.

Now, we will make a further change to our client to eliminate any misunderstanding between it and the server.

Making further changes to the client application

In the stats.proto file of the GrpcClient project, rename the authorized field of the StatusRequest message definition to allowed and change its sequence number back to 4. Your message definition should now look like this:

message StatusRequest {

string client_name = 1;

string client_description = 2;

bool allowed = 4;

}

After this, we will need to make a change to our code to make sure it still compiles.

In the Main method of the Program class, replace the gRPC request statement with the following:

var response = await client.GetStatusAsync(new Stats.

StatusRequest

{

ClientName = clientName,

ClientDescription = clientDescription,

Allowed = true

});

Now, let's see whether our applications can still intercommunicate after all these changes.

[image: Image 57]

186 Applying Versioning to the gRPC API

Re-launching the applications

After launching both applications, the server application was still able to read the value of the authorized field, even though it was renamed to allowed on the client side: Figure 5.7 – The server reading the value from the authorized field,

despite its name being different on the client

In our experiment, we have confirmed that changing the human-readable name of a Protobuf message field doesn't affect its functionality, even if the name doesn't match any field names of the proto file on the other side. Nevertheless, the fact that the applications can still communicate with each other actually represents a risk that we need to be mindful of, as we saw when we changed the sequence number of the original authorized field.

This is why it's important to know what sequence numbers in Protobuf represent. And this is why it's important not to modify fields when updating your interface unless it's absolutely necessary.

There is also another problem in Protobuf we need to be aware of. We may modify our interface definition by removing some fields, which, as we have already established, won't be a breaking change. But what if somebody who was not aware of the original fields joins our team and adds completely new fields with the old sequence numbers? If there are still some clients that used the old interface with the original fields, they will no longer be able to communicate with the server.

The chances are that the old fields will be incompatible with the new fields, which will make the whole interface incompatible and prevent any communication from happening.

But even if those fields happened to have compatible data types, their meaning would be different, so it still may be a breaking behavioral change for the existing clients.

How to deprecate old, unused fields in gRPC 187

In the next section, you will learn how to mitigate this problem. In a similar way, the same technique can minimize the chances of somebody accidentally changing sequence numbers on the existing fields.

How to deprecate old, unused fields in gRPC

To prevent anyone from inserting fields into proto files with the same sequence numbers as the ones of the fields that have been removed, you can use the reserved keyword. To use it, you just need to place it into your message definition at the same level that you put your fields in.

To specify the field sequence numbers that you don't want anyone to use, you just place them after the reserved keyword. If you need to specify multiple sequence numbers, you just separate them by a comma. Otherwise, you can specify a sequential range by using the to keyword. For example, if you use 6 to 12, all sequence numbers starting from 6 and ending with 12 will be unavailable. If you try to use them, you will receive an error when trying to generate code from the proto file.

There is also another way that you can use the reserved keyword. Instead of specifying field sequence numbers, you can specify field names. If you do so, you will not be able to use these field names in any of the fields.

However, as field names are purely there to provide human-readable field definitions, this approach is less useful than reserving field sequence numbers. Even though it will stop you from using specific field names, it will not stop you from accidentally inserting fields with the same sequence numbers as the ones that have already been removed.

Nevertheless, we will have a look at both approaches.

Applying the reserved keyword to the server-side

Protobuf interface

In our stats.proto file in the Protos folder of the GrpcServer project, we will remove the busy field with the sequence number 9 from the StatusResponse

message definition. Perhaps we have decided that this field is redundant, as we can establish how busy the server is by looking at its CPU and memory usage data.

We also found out the server_description field isn't really useful on the client side.

So, we will remove this field too.

[image: Image 58]

188 Applying Versioning to the gRPC API

Now, we will add two reserved blocks to our message definition. The first one will contain the field sequence numbers 6, 8, and 9. It will look like this:

reserved 6,8 to 9;

The second reserved block will specify the server_description field by name: reserved "server_description";

Your message definition should now look like this:

message StatusResponse {

string server_name = 1;

int32 number_of_connections = 3;

double cpu_usage = 4;

double memory_usage = 5;

uint32 catastrophic_failures_logged = 7;

reserved 6,8 to 9;

reserved "server_description";

}

Now, if you try to add the following field to your message definition, the errors shown in Figure 5.8 will be displayed if you try to compile the project:

string server_description = 6;

The errors will be displayed as follows:

Figure 5.8 – Error messages during an attempt to use reserved fields

Let's now remove this field.

But another thing that we need to do to get our project to compile is to remove all the unwanted fields from the code. To do so, go to the StatusService class and replace the return statement of the GetStatus method with the following:

return Task.FromResult(new StatusResponse

{

ServerName = "TestServer",

NumberOfConnections = randomNumberGenerator.Next(),

[image: Image 59]

How to deprecate old, unused fields in gRPC 189

CpuUsage = randomNumberGenerator.NextDouble() * 100,

MemoryUsage = randomNumberGenerator.NextDouble() * 100,

CatastrophicFailuresLogged = (uint)randomNumberGenerator.

Next()

});

We are now ready to test it with our client to see what changes in behavior it caused.

Testing the application

As usual, we will execute the dotnet run command in both the GrpcServer and GrpcClient projects. If we then fill in the required details in the console window of the client application, we will see that we are no longer receiving a server_description field from the server. The value of this field is blank.

Figure 5.9 – No server_description field is returned to the client

This shows how the reserved keyword acts as a safety mechanism against accidental field insertions while not altering any other gRPC behavior.

So far, we have gone through the techniques you can use in gRPC to ensure that you don't introduce any breaking changes when updating your interface. But, as we have already covered, those only apply to the interface itself. You can still cause breaking behavioral changes.

Also, if you keep updating your application on a regular basis, you will probably eventually encounter a situation where you will need to introduce some breaking changes.

Even though the techniques that we have covered will minimize problems during API updates, the best way to deal with API versioning is to factor it in at the design stage. You can design your application in such a way that making updates to it will be easy. This way, you will never accidentally introduce breaking behavioral changes. And introducing breaking interface changes will become easy.

190 Applying Versioning to the gRPC API

This is what we will cover in the next section.

How to factor in API versioning at the

design stage

There are some standard ways of applying versioning to REST APIs. Usually, you will have some subpath in your URL that contains the version number. This way, you can host several different versions of the API simultaneously. And your clients will never communicate with the wrong version, as the version number will be written into the address that they submit requests to.

For example, you may have a URL like this:

https://example.com/status/v1

In this example, v1 would represent the API version number. Then, if you need to update your API, you will not modify the original endpoints. Instead, you will host another version of it at the address that ends with v2. This way, the functionality of the existing clients will not change at all, as nothing in the backend that they are talking to would have changed. And this is why you don't have to worry about your new API being compatible with the old clients.

The same principles can be applied to gRPC. After all, gRPC is simply a middleware wrapper around the HTTP protocol. It still uses standard HTTP addresses. If you examine the console window of a server-side gRPC application, you will see that every gRPC call is just a POST request to a specific address. And this address will have the following pattern:

{base URL}/{Protobuf package name}.{Protobuf service name}/{rpc

name}

This is precisely why, in order to make the gRPC client compatible with the server, at the very least, the following details in the Protobuf definitions should match exactly:

• gRPC package name

• Service name

• RPC name

How to factor in API versioning at the design stage 191

Therefore, if we are to apply API versioning at the design stage, it would be a good practice to specify the version identifier in the package statement of a proto file. Likewise, by convention, your proto file name should be the same as your package name. So, if you have changed your package name from stats to stats.v1, a good practice would be to also change the name of the file from stats.proto to stats.v1.proto.

If you don't specify additional namespace modifiers in your proto files, such as csharp_

namespace, different Protobuf versions will be placed into different namespaces of the generated code. Therefore, you can maintain multiple versions of a Protobuf definition and run them in parallel inside the same application.

Let's now see what this might look like in practice.

Adding multiple Protobuf versions to the server

application

As we have modified our stats.proto file since the beginning of this chapter, we will pretend that we are now on version two of it. Therefore, inside the Protos folder of the GrpcServer project, we will rename the file stats.v2.proto. And we will also change the package definition inside this file to the following:

package stats.v2;

Now, we will make a copy of this file and rename it stats.v1.proto. Its package name will also be changed to stats.v1.

In the stats.v1.proto file, we will restore the StatusResponse message definition to its original state. But we will mark all fields that don't exist in the second version as deprecated. So, our message definition will now look like this:

message StatusResponse {

string server_name = 1;

string server_description = 2 [deprecated = true];

int32 number_of_connections = 3;

double cpu_usage = 4;

double memory_usage = 5;

uint64 errors_logged = 6 [deprecated = true];

uint32 catastrophic_failures_logged = 7;

bool active = 8 [deprecated = true];

}

192 Applying Versioning to the gRPC API

We will now need to ensure that both of our proto files are registered in the project. To do so, we need to open the GrpcServer.csproj file and add the following section to it:

<ItemGroup>

<Protobuf Include="Protos\stats.v1.proto"

GrpcServices="Server" />

<Protobuf Include="Protos\stats.v2.proto"

GrpcServices="Server" />

</ItemGroup>

There should be no other Protobuf elements in this file and no references to any other proto files.

Now, we will need to make some changes to our code to allow it to use both API versions.

Allowing the server application to use multiple

Protobuf versions

After applying these changes, our StatusService class – the representation of the Protobuf service – will no longer compile, as the classes it inherits from are no longer present in its original namespace. So, we will need to update the namespace references.

But first, we will rename the StatusService.cs file to StatusServiceV2.cs. And we will rename the class inside it from StatusService to StatusServiceV2.

Then, we will need to update all the namespace references. To do so, we will replace the existing using statements inside the file with the following:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Stats.V2;

Then, we will change the line with the class definition to the following: public class StatusServiceV2 : Stats.V2.Status.StatusBase

Now, we have a service implementation of version two of our Protobuf. Let's implement version one too. To do so, we will copy the StatusServiceV2.cs class and rename the newly created file to StatusServiceV1.cs.

Inside this file, we will replace the class name with StatusServiceV1. Then, we will also replace all V2 namespace references with V1.

How to factor in API versioning at the design stage 193

Finally, because stats.v1.proto has more fields in the StatusResponse

message definition than stats.v2.proto, we will apply these additional fields to the return object. The return statement inside the GetStatus method of the StatusServiceV1 class will be as follows:

return Task.FromResult(new StatusResponse

{

ServerName = "TestServer",

ServerDescription = "This is a test server that is used for

generating status metrics",

NumberOfConnections = randomNumberGenerator.Next(),

CpuUsage = randomNumberGenerator.NextDouble() * 100,

MemoryUsage = randomNumberGenerator.NextDouble() * 100,

ErrorsLogged = (ulong)randomNumberGenerator.Next(),

CatastrophicFailuresLogged = (uint)randomNumberGenerator.

Next(),

Active = true

});

Now, we need to register both services as gRPC endpoints. To do so, we will need to open the Startup class (or Program.cs file if you are using .NET 6 template) and locate the line that contains this statement:

endpoints.MapGrpcService<StatusService>();

We will need to replace it with the following:

endpoints.MapGrpcService<StatusServiceV1>();

endpoints.MapGrpcService<StatusServiceV2>();

Now, we have two implementations of the Status gRPC service. But because we have changed our namespace, neither of them will be compatible with the existing client.

Assuming we are running our application on localhost, our old service implementation was accessible via the https://localhost:5001/stats.Status/ URL.

But now, we have two separate URLs for the separate service implementations:

• https://localhost:5001/stats.v1.Status/

• https://localhost:5001/stats.v2.Status/

194 Applying Versioning to the gRPC API

So, we need to apply some changes to our client to make it compatible with the server once again.

Making the gRPC client implementation version-

specific

We will pretend that we have an old version of the client that talks to version one of the server API. To do so, we will need to rename the stats.proto file in the Protos folder of the GrpcCleint project to stats.v1.proto. And then we will change the package name inside this file to stats.v1.

We then need to verify that the following section is present inside the GrpcClient.

csproj file:

<ItemGroup>

<Protobuf Include="Protos\stats.v1.proto"

GrpcServices="Client" />

</ItemGroup>

There should be no other Protobuf elements present in the file and no references to any other proto files. Then, we need to update the namespaces inside the code. There are only two places in the Main method of the Program class where we need to do this.

The line where we are instantiating a client variable needs to be replaced with the following:

var client = new

Stats.V1.Status.StatusClient(GrpcChannel.

ForAddress(serverUrl));

Then, the statement where we are making a gRPC request needs to be replaced with the following:

var response = await client.GetStatusAsync(new

Stats.V1.StatusRequest

{

ClientName = clientName,

ClientDescription = clientDescription,

Allowed = true

});

[image: Image 60]

[image: Image 61]

How to factor in API versioning at the design stage 195

Now, we are ready to test our application to see whether it can still reach the server.

Making a gRPC call to a versioned endpoint

As we have done multiple times, we will execute the dotnet run command inside the GrpcServer project folder and, once the application is up and running, we'll execute the same command in the GrpcClient project folder.

After filling in all the details in the console window of the client application, we can see that all the fields in the server response have been populated, which confirms that we have been able to reach version one of the endpoint. The console will display an output similar to the following:

Figure 5.10 – The fields from the stats.v1 Protobuf definitions are present in the server response Additionally, if we look at the server-side console, we can confirm that it was the URL

associated with the v1 endpoint that the request was submitted to:

Figure 5.11 – The server logs indicating that the v1 gRPC endpoint has been triggered

196 Applying Versioning to the gRPC API

So, we have confirmed that behavioral changes associated with version two of the Protobuf definition, such as the removal of certain fields, will not affect any clients that have been pre-configured to communicate with version one. In fact, it would be impossible for the client to communicate with other versions of the endpoint, even by accident. From the perspective of gRPC middleware, those versions are represented by different gRPC

packages, which this client wasn't configured to use.

This example demonstrates that, by far, the easiest way to apply API versioning to your gRPC applications is to implement an API versioning strategy at the design stage. This way, you will have much more freedom when updating your API. If you do it correctly, then you will not be running the risk of breaking any compatibility with the existing clients. Old clients and new clients will be able to work with your server application in parallel.

Summary

In this chapter, you have learned why API versioning in gRPC is important when using public endpoints or clients that have been developed by external teams. You now know that the sequence numbers of Protobuf fields are used as field identifiers during the transit of the message, while human-readable field names are simply labels. However, despite the fact that changing the field name to any arbitrary value will not break interface compatibility, modifying the existing fields in any way is still not a good practice.

You have learned that the safest way to change a Protobuf definition without causing compatibility issues is to either remove some fields or add new fields with new sequence numbers. Any fields that haven't been populated will be populated with default values by gRPC middleware. Any fields that don't exist in a Protobuf definition will be ignored if they are present in the message.

You are now aware that to prevent anyone from accidentally adding new fields with the same sequence numbers as the fields that have been removed, a good practice is to use the reserved keyword to specify all the sequence numbers that aren't to be used.

But, as you have learned, the easiest way to apply API versioning in gRPC is to factor in an API versioning strategy at the design stage. This way, you can create multiple distinct versions of gRPC services and each client will only be talking to a specific version.

In the next chapter, you will learn the best practices for scaling your gRPC application.

 Scaling is important when your distributed application is expected to handle a large amount of data or deal with large numbers of simultaneous requests. The gRPC

framework has a number of ways of achieving this, and we will cover them all.

Questions 197

Questions

1. What would happen if you changed the name of one of your fields in the Protobuf message definition on your client but not on the server?

A. It will make the interface incompatible with the server.

B. It will throw an error unless you also change the sequence number.

C. It will not affect the functionality.

D. The server will associate the value with the wrong field.

2. Which of these data types cannot be interchanged?

A. Bytes and string

B. sfixed32 and int32

C. uint64 and int32

D. uint64 and bool

3. What would happen if you removed a field from a Protobuf response message definition on the server, but not on the client?

A. It will be populated with the default value on the client.

B. It will make the client incompatible with the server.

C. The client will have mismatching field values.

D. No error will be thrown, but the client will not be able to interpret the data.

4. What's the best way to prevent new fields from being accidentally reinstated with the sequence numbers of the old fields that have been removed?

A. Only add sequence numbers that are bigger than the last one.

B. Maintain up-to-date documentation.

C. Use the reserved keyword, followed by a list of the removed field names.

D. Use the reserved keyword, followed by the sequence numbers of the

removed fields.

198 Applying Versioning to the gRPC API

5. What's the best way of minimizing the risk of breaking changes during the gRPC

API update?

A. Never modifying the data types of the fields

B. Never modifying the names of the fields

C. Using separate Protobuf definitions for separate API versions

D. Using the reserved keyword

Further reading

• Versioning gRPC services:

https://docs.microsoft.com/en-us/aspnet/core/grpc/

versioning

• Protobuf Language Guide, Updating a Message Type:

https://developers.google.com/protocol-buffers/docs/

proto3#updating

• Protobuf Language Guide, Reserved Fields:

https://developers.google.com/protocol-buffers/docs/

proto3#reserved

6

Scaling a gRPC

Application

If you expect your web application to support a high number of connections, running a single instance of it will not be enough. You will have to scale it.

There are two types of scaling you can do – scaling up and scaling out. Scaling up is when you add more hardware to the machine running the server-side components of your application. This is a pure hardware solution and it has its limits. Therefore, we will not cover it in this chapter.

Scaling out, on the other hand, is when you run multiple instances of the same application, so any particular instance of it will not be overwhelmed by an excessive number of connections. The connections will be distributed evenly between the running instances.

The ability to easily scale out granular components of a distributed application is one of the main purposes of microservices architecture. This is what we will cover in this chapter.

To evenly distribute incoming connections between multiple instances of an application, you would need a load balancer. In this chapter, we will focus on how to apply different types of load balancing in the context of gRPC.

200 Scaling a gRPC Application

We will cover the following topics:

• Introduction to load balancing

• Client-side load balancing with gRPC

• Proxy load balancing with gRPC

By the end of this chapter, you will have learned how to evenly distribute incoming connections between multiple instances of a gRPC service so that you can prevent excessive latency and bottlenecks.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Macintosh, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or

JetBrains Rider)

• A .NET 5 SDK

• A self-signed development HTTPS certificate enabled on the machine

The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core. All the code samples used in this chapter can be found at https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-06.

Please visit the following link to check the CiA videos: https://bit.ly/3IKF76x

Introduction to load balancing

When you have multiple instances of the same service running in the backend of your server, you will need to implement some kind of a gateway that will decide which particular instance any particular client would connect to. This gateway software would need to have a logic that will decide which specific instance any specific client connection will need to go to. This is what load balancing is.

A load balancer is a piece of software that is positioned between the client and the server-side application instances. It can be a component of the client application itself, or it can be a proxy that the client communicates directly with.

But regardless of what type of load balancer you use, its operation principles will be the same. When it receives the instruction from the client to send a request to the server, it will decide which specific server-side endpoints the request should go to.

Introduction to load balancing 201

We will now build a basic distributed application to demonstrate the fundamental principles of load balancing.

Adding shared gRPC dependencies

We will first create a solution that will contain all our projects:

1. To do so, create a folder called GrpcLoadBalancing. Then, run the following command inside this folder:

dotnet new sln

2. Now, we create a class library that will contain all our gRPC dependencies. To do so, execute the following command inside the solution folder:

dotnet new classlib -o GrpcDependencies

3. We now add this project to our solution by executing the following command: dotnet sln add GrpcDependencies/GrpcDependencies.csproj

4. Next, we navigate to the GrpcDependencies project folder. From there, we execute the following commands to add necessary NuGet packages to the project: dotnet add GrpcDependencies.csproj package Grpc.Net.

 Client

dotnet add GrpcDependencies.csproj package Google.

 Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.

 AspNetCore

5. Next, we create the Protos folder inside the GrpcDependencies project folder and add the data_processor.proto file to it. The content of the file is as follows:

syntax = "proto3";

package data_processor;

service Ingestor {

rpc ProcessData (DataRequest) returns

(DataResponse);

202 Scaling a gRPC Application

}

message DataRequest {

int32 id = 1;

string name = 2;

string description = 3;

}

message DataResponse {

bool success = 1;

}

6. Finally, we register this file inside the GrpcDependencies.csproj file by adding the following markup to it:

<ItemGroup>

<Protobuf Include="Protos\data_processor.proto" />

</ItemGroup>

Now, we create another class library that will contain all the server-side logic that will be shared between gRPC service instances.

Creating a shared library for server-side application

instances

We now navigate back to the GrpcLoadBalancing solution folder. From there, we execute the following command to create a new class library project:

dotnet new classlib -o GrpcServerCommon

Next, we add this new project to the solution by executing the following command: dotnet sln add GrpcServerCommon/GrpcServerCommon.csproj

Next, we will navigate to GrpcServerCommon project folder. From there, we will open the GrpcServerCommon.csproj file and add the following markup snippet to it:

<ItemGroup>

<ProjectReference Include="..

Introduction to load balancing 203

\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

This project now references the class library that contains all shared gRPC dependencies.

So, we are ready to start adding custom logic to our library. To do so, create an IngestorService.cs file in the project folder. The content of the file will be as follows:

using System;

using System.Threading.Tasks;

using DataProcessor;

using Grpc.Core;

namespace GrpcServerCommon

{

public class IngestorService : Ingestor.IngestorBase

{

public override Task<DataResponse>

ProcessData(DataRequest request,

ServerCallContext context)

{

Console.WriteLine($"Object id: {request.Id}");

Console.WriteLine($"Object name:

{request.Name}");

Console.WriteLine($"Object description:

{request.Description}");

return Task.FromResult(new DataResponse

{

Success = true

});

}

}

}

Essentially, we receive a request object from the client, print out the data from the request object, and return a response object back with the value of the Success field set to true.

Now, we are ready to create multiple instances of the server-side gRPC application.

204 Scaling a gRPC Application

Creating multiple instances of the server-side

application

In a real-life scenario, you would create a single application and then launch multiple instances of it to scale it. But in our case, we will be creating two identical applications to mimic this process. This way, it will be much simpler to demonstrate the principle of load balancing in action. You will just be able to launch both of these applications from your solution at the same time, and you won't have to do any additional configuration or complex orchestration that you would have to do in a real-life scenario.

This is precisely why we moved the core logic into a class library. We want our web application projects to be as lightweight as possible. We will start by creating the first application:

1. To do so, navigate to the GrpcLoadBalancing solution folder and execute the following command:

dotnet new web -o GrpcServer1

2. Next, add this project to the solution by executing the following command: dotnet sln add GrpcServer1/GrpcServer1.csproj

3. After this, navigate to the GrpcServer1 project folder and modify

the GrpcServer1.csproj file by registering a reference to the

GrpcServerCommon project in it. This can be achieved by adding the following markup snippet:

<ItemGroup>

<ProjectReference Include="..\GrpcServerCommon

\GrpcServerCommon.csproj" />

</ItemGroup>

4. Now, your server application will be able to use all the server-side gRPC logic. We just need to register the endpoint in its Startup class (or Program.cs file if you have .NET 6 project template). To do so, add the following using statement on top of the Startup.cs or Program.cs file as per your .NET version:

using GrpcServerCommon;

5. Then, add the following line to the ConfigureServices method:

Services.AddGrpc();

Introduction to load balancing 205

6. After this, add the following line inside the call of the app.UseEndpoints: endpoints.MapGrpcService<IngestorService>();

Important Note

If you are running your server-side application on a Macintosh, you will need to apply some modifications to it. The instruction on how to do so can be found in the Running gRPC Service on Mac section in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

Your first instance of the server-side application is now ready to start accepting requests from the connected clients. We now need to create a second instance.

To do so, create another project inside the GrpcLoadBalancing solution folder via the following command:

dotnet new web -o GrpcServer2

After this, finalize it by following the same process you did to prepare the GrpcServer1

project. Repeat the steps from 2 to 5, but this time, use GrpcServer2 as the project name. Don't forget to make an additional modification to the project if you intend to run it on Macintosh.

Now, you have two identical web application projects in your solution that can run as two instances of the same gRPC service application. They will be absolutely identical in their functionality. The only difference would be their access URLs, which would have been auto-generated by the dotnet new command. Because the project-creation process allocates randomized port numbers to ASP.NET Core projects, it is unlikely that there will be any port clash between these projects and any of your existing applications running on the machine. But if the clash does occur, you can change those endpoints by modifying the URLs listed under the applicationUrl key of the launchSettings.json file that can be found in the Properties folder inside the project folder.

Now, we are ready to create the client application.

Creating a client application

Our client application will be a web API web application. It will receive REST API HTTP

requests and those will trigger gRPC requests to one of our gRPC service application instances.

206 Scaling a gRPC Application

First, we create a new project by running the following command from the

GrpcLoadBalancing solution folder:

dotnet new webapi -o ApiGateway

We then add the project to the solution by executing the following command: dotnet sln add ApiGateway/ApiGateway.csproj

Next, we navigate to the ApiGateway project folder and register the shared class library as a dependency by adding the following snippet inside the ApiGateway.csproj file:

<ItemGroup>

<ProjectReference Include="..\GrpcDependencies

\GrpcDependencies.csproj" />

</ItemGroup>

Next, we install the Swagger library to the project by running the following command: dotnet add ApiGateway.csproj package NSwag.AspNetCore

Now, we are ready to start adding logic to our application.

Adding backend components

The first class we add will be the representation of the REST API response that the application will return to the HTTP clients. We will create the ApiResponse.cs file inside the ApiGateway project folder. The content of this file will be as follows: namespace ApiGateway

{

public class ApiResponse

{

public int DataItemsProcessed { get; set; }

public double RequestProcessingTime { get; set; }

}

}

Introduction to load balancing 207

Then, we add a wrapper for our gRPC client objects. To do so, we add the

GrpcClientWrapper.cs file to the ApiGateway project folder. The file will have the following using statements:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

using DataProcessor;

using Grpc.Net.Client;

Then, we add the namespace and the interface definition to this file:

namespace ApiGateway

{

public interface IGrpcClientWrapper

{

Task<int> SendDataViaStandardClient(int

requestCount);

Task<int> SendDataViaLoadBalancer(int

requestCount);

}

}

Below the interface definition, we add a class definition that will be implementing this interface, along with its constructor and private methods:

internal class GrpcClientWrapper : IGrpcClientWrapper,

IDisposable

{

private int currentChannelIndex = 0;

private readonly GrpcChannel standardChannel;

private readonly List<GrpcChannel> roundRobinChannels;

public GrpcClientWrapper(List<string> addresses)

{

roundRobinChannels = new List<GrpcChannel>();

standardChannel =

GrpcChannel.ForAddress(addresses[0]);

208 Scaling a gRPC Application

foreach (var address in addresses)

{

roundRobinChannels.Add(GrpcChannel.ForAddress(

address));

}

}

}

Essentially, we are creating three gRPC channels. One will be reserved for a client that doesn't use load balancing, while the two other channels that are added to the list are there to demonstrate the basic principles of load balancing.

We then add a method that will use a single client without any load balancing applied: public async Task<int> SendDataViaStandardClient(int

requestCount)

{

var count = 0;

for (var i = 0; i < requestCount; i++)

{

var client = new

Ingestor.IngestorClient(standardChannel);

await client.ProcessDataAsync

(GenerateDataRequest(i));

count++;

}

return count;

}

This method will accept an arbitrary number as a parameter and then make as many gRPC calls as the number specifies. Then, we add another method that demonstrates the principles of load balancing:

public async Task<int> SendDataViaLoadBalancer(int

requestCount)

{

var count = 0;

Introduction to load balancing 209

for (var i = 0; i < requestCount; i++)

{

var client = new Ingestor.IngestorClient

(roundRobinChannels[GetCurrentChannelIndex()]);

await

client.ProcessDataAsync(GenerateDataRequest(i));

count++;

}

return count;

}

This method is similar, but this time, the calls get alternated between two different endpoints. This is done in a round-robin fashion, which means that endpoints are always called in the same sequence.

This is how the most basic load balancing logic works. Instead of sending all the requests to the same server application instance, the calls are evenly spread between multiple instances. So each instance will receive only half as many calls. This will help to prevent the instance from reaching its maximum capacity.

We then add the private method to perform the actual sequence selection:

private int GetCurrentChannelIndex()

{

if (currentChannelIndex == roundRobinChannels.Count -

1)

currentChannelIndex = 0;

else

currentChannelIndex++;

return currentChannelIndex;

}

But we also need to add the method that will generate the response object: private DataRequest GenerateDataRequest(int index)

{

return new DataRequest

210 Scaling a gRPC Application

{

Id = index,

Name = $"Object {index}",

Description = $"This is an object with the index of

{index}."

};

}

Finally, we need to add a method to dispose of the gRPC channels to prevent the locking up of available resources:

public void Dispose()

{

standardChannel.Dispose();

foreach (var channel in roundRobinChannels)

{

channel.Dispose();

}

}

You may have noticed that this class violates the single responsibility principle. There is no relationship between load-balanced and non-load-balanced clients. That means that there is low cohesion between the methods that use them, which would make them good candidates to be moved into separate classes.

However, this is intentional. Both methods have been placed into the same class because this way of setting up the solution requires far less code. But in a real-life scenario, you would need to follow the accepted standards and place these two methods into separate classes.

Adding the controller

We now create a controller that will generate our REST API endpoints. To do so, add the DataController.cs file to the Controllers folder of the ApiGateway project folder. The class definition, along with all its namespace imports, will look as follows: using System.Diagnostics;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

Introduction to load balancing 211

namespace ApiGateway.Controllers

{

[ApiController]

[Route("[controller]")]

public class DataController : ControllerBase

{

private readonly IGrpcClientWrapper clientWrapper;

public DataController(IGrpcClientWrapper

clientWrapper)

{

this.clientWrapper = clientWrapper;

}

}

}

We then add an endpoint method for triggering a gRPC client that doesn't use any load balancing:

[HttpPost("standard-client/{count}")]

public async Task<ApiResponse>

PostDataViaStandardClient(int count)

{

var stopWatch = Stopwatch.StartNew();

var processedCount = await

clientWrapper.SendDataViaStandardClient(count);

return new ApiResponse

{

DataItemsProcessed = processedCount,

RequestProcessingTime =

stopWatch.ElapsedMilliseconds

};

}

212 Scaling a gRPC Application

Then, we add an endpoint method that triggers a load-balanced client:

[HttpPost("load-balancer/{count}")]

public async Task<ApiResponse> PostDataViaLoadBalancer(int

count)

{

var stopWatch = Stopwatch.StartNew();

var processedCount = await

clientWrapper.SendDataViaLoadBalancer(count);

return new ApiResponse

{

DataItemsProcessed = processedCount,

RequestProcessingTime =

stopWatch.ElapsedMilliseconds

};

}

After this, we need to register all relevant dependencies in the Startup class (or Program.cs file) of the ApiGateway project.

Registering required dependencies

All of our custom gRPC components have now been added. We have also added all the relevant REST API endpoints. Now, we need to register our custom components inside the dependency injection system to make them accessible to any classes that need to use them. Also, we need to apply Swagger dependencies to make our REST API accessible via a browser:

1. First, we need to make sure that the Startup class of the ApiGateway

(or Program.cs file if you are on .NET 6) project has all of the following using statements:

using System.Collections.Generic;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

Introduction to load balancing 213

2. Then, we register the gRPC client dependency by adding the following code to the ConfigureServices method:

var addresses = Configuration.

GetSection("ServerAddresses").Get<List

<string>>();

services.AddSingleton<IGrpcClientWrapper>(new

GrpcClientWrapper(addresses));

3. Then, we add Swagger dependencies. To do so, we place this line anywhere inside the ConfigureServices method. If you are using .NET 6 project template,

this code will need to be inserted into the main body of Program.cs file

before the Build event, while services would need to be replaced with

builder.Services:

services.AddOpenApiDocument();

4. Then, we add these lines anywhere in the Configure method before the call to app.UseRouting():

app.UseOpenApi();

app.UseSwaggerUi3();

5. If there is an existing call to app.UseSwagger() inside the Configure method that has been added by the template, remove it. This came from another Swagger library, which will be in conflict with yours.

6. Finally, we will need to add the URLs of our server application instances to the appsetting.json file of the ApiGateway project. This is done by adding the following section to it:

"ServerAddresses": [

"https://localhost:6992",

"https://localhost:46785"

]

The URLs presented here can be found under the applicationUrl key in the

launchSettings.json files from the GrpcServer1 and GrpcServer2 projects.

Normally, you would use an HTTPS URL. However, if you are running your gRPC server applications on a Macintosh, you would not be able to use TLS with it. So, in this case, use an HTTP URL.

Now, we are ready to run our applications to see how load balancing works.

[image: Image 62]

214 Scaling a gRPC Application

Running a load-balanced application

To launch all instances of the application, you will first need to navigate to the GrpcServer1 project folder and execute the dotnet run command. Then, do the same from the GrpcServer2 project folder. Finally, once both applications are up and their console output indicates that they are ready to receive calls, execute the same command from the ApiGateway folder.

If you navigate to the HTTPS address specified under the applicationUrl key of launchSettings.json file of the ApiGateway project and then add the /swagger path to this URL, you will be presented with the following page, which displays both of the endpoints:

Figure 6.1 – Swagger page of the ApiGateway application

If you then execute the standard-client endpoint with an arbitrary value of the count parameter, you will see that all of the requests will go to only one of the available gRPC server application instances. You will expect only one console window to be filled with sequential data from the client, while the console window of the other instance would remain empty, as shown here:

[image: Image 63]

[image: Image 64]

Introduction to load balancing 215

Figure 6.2 – Only one gRPC service instance receives requests

However, if you submit a request to a load-balancer endpoint, you will see that both instances receive the requests. But, as shown here, the requests aren't duplicated. Instead, different requests go to different instances of the server-side application: Figure 6.3 – The requests are evenly distributed between both instances of the gRPC service application If both of these gRPC service application instances were connected to the same backend system, as they would be in real life, then it wouldn't matter whether it's not the same application instance that receives all the data. All the data will still reach its intended destination.

216 Scaling a gRPC Application

But because requests get evenly distributed between multiple instances, there isn't any single application instance that can become a bottleneck. Adding only one instance increases the number of simultaneous requests the system can handle without slowing down by an order of magnitude. Adding any subsequent instances increases this capacity even further. This is why load balancing is so important when the application is intended to interact with many simultaneous connections.

But this was only a very basic representation of load-balancing logic. Next, we will have a look at some in-built mechanisms for performing client load balancing that are available in the gRPC libraries for .NET.

Client-side load balancing with gRPC

Client-side load balancing is similar in principle to the example that we previously looked at. This is where the client decides which server endpoints to connect to. Then, client-side gRPC middleware connects to those endpoints directly.

gRPC .NET libraries have inbuilt components that enable client-side load balancing. But, at the time of writing, those are only available in preview. Therefore, we need to update one of our NuGet packages to a prerelease version.

The caveat is that the specific code implementations may change once the feature is fully released. But even if this happens, the principles of applying it will remain the same.

Updating the NuGet package

All the client-side load balancing components are available in the Grpc.Net.Client NuGet package, but they are only available in the package versions that have a pre-release tag. However, since by default the dotnet CLI command will apply the latest full-release version, we need to rerun this command while explicitly defining the version we want.

The earliest package version where client-side load balancing was made available is 2.39.0-pre1. However, any later version with a pre tag will have this feature too.

At the time of writing, 2.40.0-pre1 was the latest version. However, this is just an example. You need to make sure that the pre-release version that you choose is higher than the version of your existing Grpc.Net.Client package. Otherwise, you will get a package downgrade error and your code won't compile. To apply this, you need to navigate to the GrpcDependencies project folder and execute the following command: dotnet add package Grpc.Net.Client -v 2.40.0-pre1

Client-side load balancing with gRPC 217

If the command has executed successfully, you should see the following entry inside the GrpcDependencies.csproj file:

<PackageReference Include="Grpc.Net.Client"

Version="2.40.0-pre1" />

Now, we are ready to start registering the relevant components in the gRPC client application.

Enabling client-side load balancing components

Some of the load-balancing components we are about to implement require an instance of IServiceProvider – the same object that is used for the inbuilt dependency injection mechanism in ASP.NET Core. This implementation (and all the dependencies it contains) is automatically passed to any object that the dependency injection system knows. For this to work, the class that the object is constructed from needs to have an instance of IServiceProvider as one of its interface parameters. Also, that class needs to be registered without an explicit call to its constructor.

To make our GrpcClientWrapper class inside the ApiGateway project compatible with this mechanism, we need to change its constructor. So, we replace the existing one with the following:

public GrpcClientWrapper(IConfiguration configuration,

IServiceProvider serviceProvider)

{

this.serviceProvider = serviceProvider;

roundRobinChannels = new List<GrpcChannel>();

var addresses =

configuration.GetSection("ServerAddresses")

.Get<List<string>>();

standardChannel = GrpcChannel.ForAddress(addresses[0]);

foreach (var address in addresses)

{

roundRobinChannels.Add

(GrpcChannel.ForAddress(address));

}

}

218 Scaling a gRPC Application

We need to add the following private field to the class:

private readonly IServiceProvider serviceProvider;

We also need to add the following using statements to the top of the file, as we will need this later:

using Grpc.Core;

using Grpc.Net.Client.Configuration;

using Microsoft.Extensions.Configuration;

The rest of the structure remains the same. But because we no longer have a generic collection of primitive string data types as a constructor parameter, we no longer have to explicitly call the constructor when registering the class instance. All required parameters will be resolved automatically.

Now, we need to change the structure of the ConfigureServices method in the Startup class of the ApiGateway project. The easiest way would be to replace its content with the following:

services.AddControllers();

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcClientWrapper,

GrpcClientWrapper>();

If you are using .NET 6 project template, you will need to insert these lines in Program.

cs file in the place of all the lines that start with builder.Services and modify the code accordingly. We no longer need to resolve values from the application settings, as we are now doing it inside the constructor of the GrpcClientWrapper class. But we will need to add the instance of an IConfiguration object to our dependency injection system, which we are doing by passing the Configuration variable to it via the AddSingleton method.

Now, we are ready to add different types of load balancers to our application.

Client-side load balancing with gRPC 219

Enabling a DNS resolver for the load balancer

Selection of a specific resolver for the client-side load balancer is done when the GrpcChannel object is instantiated. The resolver type is selected by applying a URL

schema. But instead of the protocol (HTTP, HTTPS, TCP, WS, and so on), you provide the name of the resolver type. And if this is a type the system knows about, you will have a specific type of object that will resolve all relevant endpoints for load balancing.

The first resolver type we will have a look at is the DNS resolver, which can be selected by specifying the following URI while creating a gRPC channel:

dns://{DNS host name}

The DNS hostname will represent a key in the DNS table accessible by your machine. All endpoints that match this key will be returned, and this will be your list of addresses of the available gRPC service instances.

Configuring DNS on your machine is very OS-specific and is beyond the scope of this book. Also, if you do it incorrectly, you may end up not being able to access anything on the web. But links to some instructions will be provided in the Further reading section of this chapter if you want to try it.

However, as it's one of the inbuilt resolvers available with the standard gRPC client NuGet package, we will still cover it here. And to demonstrate its implementation, we will add the following code to the GrpcClientWrapper class:

public async Task<int> SendDataViaDnsLoadBalancer(int

requestCount)

{

using var channel =

GrpcChannel.ForAddress("dns://myhost", new

GrpcChannelOptions

{

Credentials = ChannelCredentials.SecureSsl,

ServiceProvider = serviceProvider,

ServiceConfig = new ServiceConfig {

LoadBalancingConfigs = { new PickFirstConfig() }

}

});

var client = new Ingestor.IngestorClient(channel);

220 Scaling a gRPC Application

var count = 0;

for (var i = 0; i < requestCount; i++)

{

await

client.ProcessDataAsync(GenerateDataRequest(i));

count++;

}

return count;

}

In the preceding example, myhost is just an arbitrary hostname that we expect to be present in the DNS table. When we are defining GrpcChannelOptions, we are specifying Credentials as ChannelCredentials.SecureSsl. However, this

is only applicable if the endpoints that we will be accessing are protected by TLS and use HTTPS protocol. Otherwise, you would use ChannelCredentials.Insecure

credentials. This will be applicable if the server-side gRPC applications are running on a Macintosh.

Next, we are specifying the load-balancing config. We can manually populate various values, but we can also just use the inbuilt PickFirstConfig class. With this setting applied, the client doesn't evenly distribute the load between different server instances.

Instead, it just stays connected to the first instance it was able to successfully connect to.

But if it can't connect to any specific instance within a particular period of time, it will try to connect to a different one.

This type of load balancing is more reactive than proactive. Instead of evenly distributing the load from the start, it attempts to add the load to a service that's already under a high load.

The rest of the logic is identical to what we had in the other methods of the client wrapper class. Now, we need to add the signature of this method to the IGrpcClientWrapper interface by adding the following line to it:

Task<int> SendDataViaDnsLoadBalancer(int requestCount);

Finally, we can add the following endpoint method to the DataController class:

[HttpPost("dns-load-balancer/{count}")]

public async Task<ApiResponse>

PostDataViaDnsLoadBalancer(int count)

Client-side load balancing with gRPC 221

{

var stopWatch = Stopwatch.StartNew();

var processedCount = await

clientWrapper.SendDataViaDnsLoadBalancer(count);

return new ApiResponse

{

DataItemsProcessed = processedCount,

RequestProcessingTime =

stopWatch.ElapsedMilliseconds

};

}

Now, we will have a look at another inbuilt load balancer available with the gRPC client NuGet package.

Using a static resolver for the load balancer

Another type of load balancer resolver that's available in the gRPC client NuGet package is a static resolver. But unlike the DNS resolver, you need to configure it and register it in the dependency injection system before you can use it.

The static resolver doesn't attempt to retrieve any endpoints based on a hostname listed in DNS records. Instead, it will have a preconfigured list of endpoints. But the rest of its functionality is identical.

We will register an instance of the static resolver and populate it with entries from the application settings. To do so, we add the following snippet to the ConfigureServices method of the Startup class of the ApiGateway project (or the main body of the Program.cs file if you are using .NET 6 template):

var addresses = Configuration.GetSection("ServerAddresses").

Get<List<string>>();

services.AddSingleton<ResolverFactory>

(new StaticResolverFactory(addr => addresses

.Select(a => new DnsEndPoint(a.Replace("//",

string.Empty).Split(':')[1],

int.Parse(a.Split(':')[2])))

.ToArray()));

222 Scaling a gRPC Application

We also need the following using statements to make it work:

using Grpc.Net.Client.Balancer;

using System.Net;

This will register an instance of the StaticResolverFactory class and create an endpoint for every URL entry we have in the ServerAddresses section of the appsetting.json file. In our case, because we have them as fully qualified URIs, we will need to remove the protocol and split the hostname from the port number.

This is because a pure hostname and port number are the constructor parameters of the DnsEndPoint class, which the static resolver uses to represent the endpoints.

Whether the protocol is HTTP or HTTPS will be controlled at the time when the gRPC

channel is created by using either Insecure or SecureSsl as the channel credential configuration.

Now, we can start using the static load balancer resolver inside a gRPC client. To do so, we will add the following method to the GrpcClientWrapper class:

public async Task<int> SendDataViaStaticLoadBalancer(int

requestCount)

{

using var channel =

GrpcChannel.ForAddress("static://localhost", new

GrpcChannelOptions

{

Credentials = ChannelCredentials.SecureSsl,

ServiceProvider = serviceProvider,

ServiceConfig = new ServiceConfig {

LoadBalancingConfigs = { new RoundRobinConfig() }

}

});

var client = new Ingestor.IngestorClient(channel);

var count = 0;

for (var i = 0; i < requestCount; i++)

{

await

client.ProcessDataAsync(GenerateDataRequest(i));

count++;

Client-side load balancing with gRPC 223

}

return count;

}

The implementation is almost identical to the DNS resolver, but we are using the static keyword in the gRPC channel URI instead of dns. In this case, the hostname can be absolutely anything, as it's purely a label for our convenience. It doesn't actually represent a real hostname.

The only major difference is that we have used a different load-balancing configuration here. We have applied RoundRobinConfig. This class will make our load balancer work similar to the primitive load-balancing mechanism we have previously built ourselves.

It will make endpoint requests in a round-robin fashion.

To be able to use this newly added method, we need to add the signature of this method to the IGrpcClientWrapper interface and then add the following endpoint method to our DataController class:

[HttpPost("static-load-balancer/{count}")]

public async Task<ApiResponse>

PostDataViaStaticLoadBalancer(int count)

{

var stopWatch = Stopwatch.StartNew();

var processedCount = await

clientWrapper.SendDataViaStaticLoadBalancer(count);

return new ApiResponse

{

DataItemsProcessed = processedCount,

RequestProcessingTime =

stopWatch.ElapsedMilliseconds

};

}

But those are not the only types of endpoint resolvers and load balancers you can use with your gRPC clients. You can also create custom resolvers and custom load balancers.

224 Scaling a gRPC Application

Creating custom load balancers and resolvers

What if we wanted to read endpoint URIs from a file on the disk? Or what if we could query a specific website to retrieve the list of the endpoints? Well, with available components, you can achieve either of these.

All existing resolvers inherit from the Resolver base class, and you can write your own resolvers to do the same.

As an example, we will create a resolver that will read from a file on the disk. To do so, we will add the addresses.txt file to the ApiGateway application project.

The content of the file will be the addresses of the gRPC server applications without the protocol and with the hostname and the port number separated by whitespace.

For example, if your addresses are https://localhost:6992 and https://

localhost:46785, the content of this file will be as follows:

localhost 6992

localhost 46785

To make sure that this file is moved into the application folder during the build, we will add the following snippet to the ApiGateway.csproj file:

<ItemGroup>

<None Update="addresses.txt">

<CopyToOutputDirectory>Always</CopyToOutputDirectory>

</None>

</ItemGroup>

Now, we are ready to create the resolver. To do so, we create the DiskResolver.cs file inside our ApiGateway application folder. The namespace imports and the general structure of the file will be as follows:

using Grpc.Net.Client.Balancer;

using System;

using System.Collections.Generic;

using System.IO;

using System.Net;

using System.Threading;

using System.Threading.Tasks;

namespace ApiGateway

Client-side load balancing with gRPC 225

{

public class DiskResolver : Resolver

{

private readonly Uri _address;

private Action<ResolverResult> _listener;

public DiskResolver(Uri address)

{

_address = address;

}

}

Now, we can add logic to it that will read the file from the disk and extract endpoint addresses from it:

public override Task RefreshAsync(CancellationToken

cancellationToken)

{

var addresses = new List<DnsEndPoint>();

foreach (var line in File.ReadLines(_address.Host))

{

var addresComponents = line.Split(' ');

addresses.Add(new DnsEndPoint(addresComponents[0],

int.Parse(addresComponents[1])));

}

_listener(ResolverResult.ForResult(addresses,

serviceConfig: null));

return Task.CompletedTask;

}

226 Scaling a gRPC Application

Then, we need to add a method that will start the resolver:

public override void Start(Action<ResolverResult> listener)

{

_listener = listener;

}

But this is not all. Inside the same file, we need to put a resolver factory class. This is the class that will map our newly created resolver to a disk keyword in the URI schema. It will look like this:

public class DiskResolverFactory : ResolverFactory

{

public override string Name => "disk";

public override Resolver Create(ResolverOptions

options)

{

return new DiskResolver(options.Address);

}

}

But what if, as well as being unsatisfied with existing resolvers, we also aren't satisfied with the existing load-balancer rules? What if we want the load balancer to access endpoints at random? Well, we can do this too.

We add the RandomizedBalancer.cs file to the ApiGateway project folder. The basic structure of the class inside the file will be as follows:

using Grpc.Net.Client.Balancer;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

namespace ApiGateway

{

public class RandomizedBalancer :

SubchannelsLoadBalancer

{

Client-side load balancing with gRPC 227

public RandomizedBalancer(IChannelControlHelper

controller, ILoggerFactory loggerFactory)

: base(controller, loggerFactory)

{

}

}

}

Then, we add the following class inside the RandomizedBalancer class.

This is a nested class with the private access modifier:

private class RandomizedPicker : SubchannelPicker

{

private readonly IReadOnlyList<Subchannel>

_subchannels;

private readonly Random _randomNumberGenerator;

public RandomizedPicker(IReadOnlyList<Subchannel>

subchannels)

{

_subchannels = subchannels;

_randomNumberGenerator = new Random();

}

public override PickResult Pick(PickContext context)

{

return

PickResult.ForSubchannel(_subchannels

[_randomNumberGenerator.Next

(0, _subchannels.Count)]);

}

}

After this, we add the necessary override method that uses this class:

protected override SubchannelPicker

CreatePicker(IReadOnlyList<Subchannel> readySubchannels)

{

228 Scaling a gRPC Application

return new RandomizedPicker(readySubchannels);

}

Finally, we add the following factory class to the same file at the same level that RandomizedBalancer is positioned at:

public class RandomizedBalancerFactory :

LoadBalancerFactory

{

public override string Name => "randomized";

public override LoadBalancer Create(LoadBalancerOptions

options)

{

return new RandomizedBalancer(options.Controller,

options.LoggerFactory);

}

}

Now, we need to register both the resolver and the load balancer in the

ConfigureServices method of the Startup class (or the main body of the

Program.cs file if you are using .NET 6 template):

services.AddSingleton<ResolverFactory, DiskResolverFactory>();

services.AddSingleton<LoadBalancerFactory,

RandomizedBalancerFactory>();

Now we can use them both by adding the following method to the

GrpcClientWrapper class:

public async Task<int> SendDataViaCustomLoadBalancer(int

requestCount)

{

using var channel =

GrpcChannel.ForAddress("disk://addresses.txt", new

GrpcChannelOptions

{

Credentials = ChannelCredentials.SecureSsl,

ServiceProvider = serviceProvider,

Client-side load balancing with gRPC 229

ServiceConfig = new ServiceConfig {

LoadBalancingConfigs = { new

LoadBalancingConfig("random") } }

});

var client = new Ingestor.IngestorClient(channel);

var count = 0;

for (var i = 0; i < requestCount; i++)

{

await

client.ProcessDataAsync(GenerateDataRequest(i));

count++;

}

return count;

}

To access the custom resolver we've created, we use disk as the resolver name. Then, we specify the file path, which, in our case, is addresses.txt, as the file is located in the same folder where the compiled application is.

Now, to use it from the outside, we need to add the signature of this method to the IGrpcClientWrapper interface and add the following method to DataController:

[HttpPost("custom-load-balancer/{count}")]

public async Task<ApiResponse>

PostDataViaCustomLoadBalancer(int count)

{

var stopWatch = Stopwatch.StartNew();

var processedCount = await

clientWrapper.SendDataViaCustomLoadBalancer(count);

return new ApiResponse

{

DataItemsProcessed = processedCount,

RequestProcessingTime =

stopWatch.ElapsedMilliseconds

};

}

230 Scaling a gRPC Application

Even though client-side load balancing is effective, it's not always a viable solution. Quite often, the client wouldn't know the addresses of the individual endpoints. But fortunately, there is a solution for this. Load balancing can be done by a proxy running on a server.

Proxy load balancing with gRPC

Proxy load balancing is the most popular type of load balancing used by standard web applications. With it in place, the client doesn't know the exact addresses of individual endpoints. It only knows the address of a single endpoint that the proxy is hosted on. And it's the job of the proxy to then redirect the request to the actual endpoints.

Large-scale user-facing applications would use this type of load balancing. Because web applications like Facebook or YouTube would not be able to support the number of requests they receive if they just ran as a single instance, they have to be scaled out and run as many duplicate instances. The number of these instances may change as the number of requests changes. Also, the instances may get moved to different hardware if the original machine fails, which regularly happens in data centers.

As the user, you would never be expected to know the ever-changing list of the endpoint addresses. All you have to do is type a standard address in the browser. And this is precisely how the proxy works. When you type the address, it resolves to the IP address of the proxy, and it's then the proxy that redirects the request to the actual application.

And you can do exactly the same type of load balancing with gRPC. The only caveat is that you would need a proxy that supports HTTP/2. But luckily, there are several that do.

A few examples would be Envoy, Linkerd, and YARP.

But there are several more. All you need to do is to check whether any particular product supports HTTP/2.

But to demonstrate how proxy load balancing works, we will build our own. Luckily, we will have to do minimal work, as the bulk of load-balancing logic has already been added to the YARP NuGet package.

Building a web application to act as a proxy

We navigate to the GrpcLoadBalancing solution folder and execute the following command to create an empty ASP.NET Core application project:

dotnet new web -o Http2Proxy

Proxy load balancing with gRPC 231

Then, we add the new project to the solution by executing the following command: dotnet sln add Http2Proxy/Http2Proxy.csproj

Next, we navigate to the Http2Proxy project folder and add the Yarp.ReverseProxy NuGet package. At the time of writing, this NuGet package was available in preview only.

Therefore, you would need to specify the version while running the command: dotnet add package Yarp.ReverseProxy -v 1.0.0-preview.12.21451.3

If you are using an IDE, you can find the latest version via the NuGet package manager.

Next, we add the necessary dependency to the Startup class of the Http2Proxy application, or Program.cs file if it's based on .NET 6 template. First, we need to ensure that the following using statements are present:

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

Next, we need to make sure that the application configuration is passed to the class, as it may not be for an empty ASP.NET Core application by default. To do so, we need to make sure that the following property and the following constructor are present: public IConfiguration Configuration { get; }

public Startup(IConfiguration configuration)

{

 Configuration = configuration;

}

Next, we register the reverse proxy by adding this to the ConfigureServices method: var proxyBuilder = services.AddReverseProxy();

proxyBuilder.LoadFromConfig(Configuration.GetSection("Rever

seProxy"));

232 Scaling a gRPC Application

Then, inside the Configure method, we replace the call to app.UseEndpoints with the following:

app.UseEndpoints(endpoints =>

{

endpoints.MapReverseProxy();

});

Now, we need to configure our proxy to talk to specific endpoints. To do so, add the following section to the appsettings.json file:

"ReverseProxy": {

"Routes": {

"route1": {

"ClusterId": "cluster1",

"Match": {

"Path": "{**catch-all}"

},

}

},

"Clusters": {

"cluster1": {

"Destinations": {

"cluster1/destination1": {

"Address": "https://localhost:6992"

},

"cluster1/destination2": {

"Address": "https://localhost:46785"

}

}

}

}

}

Here, we are adding a cluster of endpoints. The cluster has two destinations, which contain the addresses of the GrpcServer1 and GrpcServer2 applications. Normally, you would use HTTPS addresses, but if you are running those applications on a Macintosh, then you would use HTTP addresses.

Proxy load balancing with gRPC 233

Finally, we modify the launchSettings.json file that is located inside the Properties folder of the Http2Proxy project. Because it's no longer a normal web application, we need to prevent it from automatically running in the browser. And we won't use IIS Express. To enable these changes, replace the content of this file with the following:

{

"profiles": {

"Http2Proxy": {

"commandName": "Project",

"dotnetRunMessages": "true",

"launchBrowser": false,

"applicationUrl":

"https://localhost:5001;http://localhost:5000",

"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"

}

}

}

}

Now, our proxy application is ready to act as a load balancer. We will just need to configure the client application to connect to it. To do so, just replace the first entry in the ServerAddresses section of the appsettings.json file from the ApiGateway

project folder with the address of the Http2Proxy application. If you are running the Http2Proxy application on a Macintosh, use the HTTP address; otherwise, use the HTTPS one.

Launching the HTTP/2 proxy

To launch the application, execute the dotnet run command from inside the GrpcServer1, GrpcServer2, Http2Proxy, and ApiGateway application folders.

Then, open the Swagger page of ApiGateway application in the browser and execute the standard-client endpoint with an arbitrarily defined value of the count parameter.

[image: Image 65]

234 Scaling a gRPC Application

Now, if you look at the console output of the GrpcServer1 and GrpcServer2

applications, you will see that requests have been distributed between both of them. This can be seen on the following screenshot:

Figure 6.4 – Proxy load balancing has distributed requests between two instances As we have demonstrated, both client-side and proxy load balancers work well. The choice of the load balancer type would depend on the situation.

If you need to run a load balancer on an internal network, then perhaps client-side load balancing would be the best. With it, you would not have to add additional components, such as services that are acting as proxies.

But if you expect clients to connect to your network from the outside, then proxy load balancing would be better suited. The clients won't have to know the addresses of all of your endpoints. All they need to know is a single address that will take them to the proxy.

Summary 235

Summary

In this chapter, you have learned that load balancing is needed when the number of connections you expect to receive would exceed what a single instance of an application would be able to handle. Load balancing is performed by having several instances of the application and distributing requests between them.

You saw multiple ways that load balancing can be done. A common way is to call the endpoints in a round-robin fashion. But it's also possible to get the load balancer to connect to the first available endpoint and maintain the connection for as long as it can.

You now know that client-side load balancing is performed by getting the client to directly connect to the individual endpoints. In order to obtain these addresses, the gRPC client would need to use a resolver.

You have also learned that proxy load balancing is performed by a proxy service on the server that the client connects to. For gRPC, you can use any proxy that supports HTTP/2.

And now we have completed the section about gRPC best practices. Next, we will start going into various gRPC concepts in depth. In the next chapter, we will cover different types of gRPC calls in more detail. You will also learn how to apply various configuration options to them.

Questions

1. Why would you need load balancing?

A. To improve the application performance

B. To split queries into smaller sub-queries

C. To split a large number of requests between multiple instances of the application D. To protect your server-side components from hacking

2. How is client-side load balancing done?

A. By sending requests to a server endpoint, which then redirects the call B. By getting the server hostname resolved into a list of IP addresses

C. By getting the list of individual endpoint addresses and calling them directly D. By trying to call all addresses specified in the local DNS configuration

236 Scaling a gRPC Application

3. Which one of these is a valid type of load balancing?

A. Connecting to endpoints in a round-robin fashion

B. Connecting to the first available endpoint

C. Connecting to endpoints at random

D. All of the above

4. How does a proxy load balancer work?

A. The client connects to the proxy endpoint and the proxy redirects it to individual application instances.

B. The client requests the full list of addresses from the proxy and connects directly to them.

C. The client obtains the address of the server that will contain the list of endpoints it will connect to.

D. The client requests a single address to the endpoint that it will connect to next.

5. What's required to enable proxy load balancing with gRPC?

A. Protobuf on the proxy

B. GRPC middleware on the proxy

C. Support for HTTP/2

D. An SSL certificate on the proxy

Further reading

• gRPC client-side load balancing: https://docs.microsoft.com/en-us/

aspnet/core/grpc/loadbalancing

• Envoy proxy: https://www.envoyproxy.io/

• Linkerd proxy: https://linkerd.io/

• YARP reverse proxy: https://microsoft.github.io/reverse-proxy/

• DNS fundamentals: https://www.thegeekstuff.com/2013/12/

dns-basics/

Further reading 237

• Local DNS configuration on the Macintosh: https://markinns.com/

archive/how-to-setup-a-local-dns-host-file-on-mac-os-x.

html

• Local DNS configuration on Windows: https://helpdeskgeek.com/

networking/edit-hosts-file/

• Local DNS configuration on Linux: https://www.thegeekstuff.

com/2014/01/install-dns-server/

Section 3:

In-Depth Look at

gRPC on .NET

This part delves deeper into gRPC functionality on .NET. It covers all supported types of gRPC calls, gRPC security, and different ways of debugging gRPC applications. This section comprises the following chapters:

• Chapter 7, Using Different Call Types That gRPC Supports

• Chapter 8, Using Well-Known Types to Make Protobuf More Handy

• Chapter 9, Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

• Chapter 10, Applying Authentication and Authorization to gRPC Endpoints

• Chapter 11, Using Logging, Metrics, and Debugging in gRPC on .NET

7

Using Different

Call Types Supported

by gRPC

In the previous chapters, we covered several ways you can make a gRPC call to and from a .NET application. In this chapter, we will have an in-depth look at how to make these calls and what happens in the background when these calls are made.

In this chapter, you will not only learn how to make the different types of calls that are available with gRPC, but you will also learn what happens in the background while these calls are being made. We will cover how Protobuf RPC definitions are resolved by gRPC

middleware into paths that are understood by the HTTP protocol, as well as how gRPC

middleware deals with errors.

You will also learn how to apply various configuration options, both to the gRPC channel and to individual calls. Finally, you will learn how to extract metadata from gRPC calls, both on the client and the server.

242 Using Different Call Types Supported by gRPC

In this chapter, we will cover the following topics:

• Making unary calls on gRPC

• Streaming data from the client

• Reading streams from the server

• Enabling bi-directional streaming

By the end of this chapter, you will have learned how to use all the available gRPC call types optimally and how to prevent unintentional errors while using them.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either Windows, Mac, or Linux installed

• A supported IDE or code editor (Visual Studio, Visual Studio Code,

or JetBrains Rider)

• .NET 5 SDK

• A self-signed development HTTPS certificate that's enabled on your machine The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core. All the code samples for this chapter can be found at https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-07.

Please visit the following link to check the CiA videos: https://bit.ly/3m5o8SR

Making unary calls on gRPC

In this section, we will learn how to make the most basic gRPC call—a unary call. Even though we have used this call type in previous chapters, we will look into it in more detail here. You will learn the difference between blocking and non-blocking unary call implementations on .NET, as well as how to work with its metadata.

We will also provide examples of unary calls that cover other fundamental aspects of gRPC and its .NET implementation. For example, you will learn how the URI path to RPCs gets constructed based on whether or not you use the package keyword inside a Protobuf definition. You will also learn how to extract metadata from the requests and responses, both on the client and the server.

Making unary calls on gRPC 243

But first, we will set up our solution.

Setting up shared gRPC dependencies

We will place all of our projects into the same solution with shared dependencies.

Let's get started:

1. To create the solution, create the GrpcCallTypes folder. Then, execute the following command inside it:

dotnet new sln

2. Then, execute the following command inside the solution folder to create a class library that will hold all shared dependencies:

dotnet new classlib -o GrpcDependencies

3. Next, add this project to the solution by executing the following command: dotnet sln add GrpcDependencies/GrpcDependencies.csproj

4. After this, navigate to the GrpcDependencies project folder and add all the necessary NuGetDependencies by executing the following commands:

dotnet add GrpcDependencies.csproj package Grpc.Net.

 Client

dotnet add GrpcDependencies.csproj package Google.

 Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.

 AspNetCore

We are now ready to start adding Protobuf definitions. But this time, we will do something unusual – we will add three files with almost identical content. The only difference between them will be in the way they use the package keyword. We will do this later to demonstrate how the .NET implementations of the Protobuf definitions are generated under different scenarios. You will also learn how the package attribute (or its absence) affects the URI path to the RPC endpoint.

244 Using Different Call Types Supported by gRPC

The first definition will have the package keyword, but no csharp_namespace. The second definition will have no package keyword; it will have the csharp_namespace attribute instead. The third package will have neither. The following steps show you how these files can be set up:

1. We will start by creating the Protos folder inside the GrpcDependencies project folder. Next, we will place the device_management.proto file in this folder. In this file, we must define the service:

syntax = "proto3";

package device_management;

service DeviceManager {

rpc UpsertDeviceStatus (DeviceDetails) returns

(UpsertDeviceResponse);

rpc GetDevice (GetDeviceRequest) returns

(DeviceDetails);

}

2. Then, we must add the message and enum definitions:

message DeviceDetails {

int32 device_id = 1;

string name = 2;

string description = 3;

DeviceStatus status = 4;

}

message GetDeviceRequest {

int32 device_id = 1;

}

message UpsertDeviceResponse {

bool success = 1;

}

enum DeviceStatus {

OFFLINE = 0;

ONLINE = 1;

BUSY = 2;

Making unary calls on gRPC 245

ERRORED = 3;

}

3. Now, we must copy this file and rename the copy device_management_cs_

namespace.proto. In this file, we will replace the package definition with the following code:

option csharp_namespace = "GrpcDependencies.Protos";

4. After this, make another copy of the device_management.proto file and call it device_management_no_package.proto. Inside this file, we will remove

the package directive altogether.

5. Next, we will register all of these Protobuf definitions by inserting this section into the GrpcDependencies.csproj file:

<ItemGroup>

<Protobuf Include="Protos\device_management.proto" />

<Protobuf

Include="Protos\device_management_cs_namespace.proto"

/>

<Protobuf

Include="Protos\device_management_no_package.proto"

/>

</ItemGroup>

Now, we are ready to start creating server-side implementations of all three Protobuf definitions we have added.

Creating server-side implementations of the

Protobuf definitions

Inside the GrpcCallTypes solution folder, we will create a project based on the gRPC

template. Then, we will link this project to the class library we have created and create implementations of the Protobuf definitions we have added to it. Let's get started: 1. Execute the following command to create a project from the gRPC service template: dotnet new grpc -o DeviceManagerService

246 Using Different Call Types Supported by gRPC

2. Then, add it to the solution by executing the following command:

dotnet sln add DeviceManagerService/DeviceManagerService.

 csproj

3. Now, navigate to the DeviceManagerService project folder and

link the shared class library to it by adding the following snippet to the DeviceManagerService.csproj file:

<ItemGroup>

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj"

/>

</ItemGroup>

Now, we can remove the direct gRPC NuGet references from this file since we have already defined them in the class library. Once we've done this, we can add the implementation for our Protobuf definitions. We will start by placing the ManagerService.cs file in the Services folder. The class definition inside the file will look as follows:

using System;

using System.Threading.Tasks;

using Grpc.Core;

namespace DeviceManagerService.Services

{

public class ManagerService :

DeviceManagement.DeviceManager.DeviceManagerBase

{

}

}

This is the implementation for the device_management.proto file. Now,

we can add the implementation of the UpsertDeviceStatus rpc to this class, as follows:

public override Task<DeviceManagement.

UpsertDeviceResponse>

UpsertDeviceStatus(DeviceManagement.DeviceDetails

request,

Making unary calls on gRPC 247

ServerCallContext context)

{

Console.WriteLine($"DeviceManagerService triggered.

Peer:

{context.Peer}. Host: {context.Host}.");

Console.WriteLine($"Device id: {request.DeviceId},

Name:

{request.Name}, Description: {request.Description},

Status {request.Status}.");

return Task.FromResult(new

DeviceManagement.UpsertDeviceResponse

{

Success = true

});

}

We will not include the implementation of GetDevice rpc. We've done this on purpose so that we can demonstrate what will happen if the client attempts to make a call to this endpoint later. But for now, let's examine the server-side implementation of a unary gRPC call on .NET.

A unary call will always be an override of a method that has been added to auto-generated code by gRPC tools on .NET. The format of the method signature will always be as follows:

public override Task<{return message type}> {RPC name}({request

message type} request, ServerCallContext context)

Of course, just like with any C# Task, you can add the async keyword to it if you intend to use the await keyword inside the method. Both the return object and the input message types will vary, depending on the rpc definition in Protobuf. But there will always be an input parameter of the ServerCallContext type. This is the parameter that contains the metadata of the request.

This object will contain information such as the request headers, if any were applied. Some standard metadata fields are represented by class properties. For example, you can extract information about logged-in users.

248 Using Different Call Types Supported by gRPC

In the preceding example, we are extracting peer and host information from the context parameter. The former represents the address of the client, while the latter represents the address of the host running the application. We output this information to the console.

Then, we output the data from the input message itself. Let's continue:

1. First, we will copy this file and name the copy ManagerServiceCsNamespace.

cs. We will change the class signature inside the file to the following since we are now implementing the device_management_cs_namespace.proto file:

public class ManagerServiceCsNamespace :

GrpcDependencies.Protos.DeviceManager.DeviceManagerBase

2. Then, we will replace the implementation of the UpsertDeviceStatus rpc with the following:

public override Task<GrpcDependencies.Protos.

UpsertDeviceResponse>

UpsertDeviceStatus(GrpcDependencies.Protos.

DeviceDetails

request, ServerCallContext context)

{

Console.WriteLine($"ManagerServiceCsNamespace

triggered.

Peer: {context.Peer}. Host: {context.Host}.");

Console.WriteLine($"Device id: {request.DeviceId},

Name:

{request.Name}, Description: {request.Description},

Status {request.Status}.");

return Task.FromResult(new

GrpcDependencies.Protos.UpsertDeviceResponse

{

Success = true

});

}

Making unary calls on gRPC 249

3. Next, we will make another copy of the ManagerService.cs file and rename it ManagerServiceNoPackage.cs. Inside this file (which is the

implementation of device_management_no_package.proto), we will

change the class signature to the following:

public class ManagerServiceNoPackage : DeviceManager.

DeviceManagerBase

4. Then, we will replace the implementation of the UpsertDeviceStatus rpc with the following:

public override Task<UpsertDeviceResponse>

UpsertDeviceStatus(DeviceDetails request,

ServerCallContext

context)

{

Console.WriteLine($"ServiceNoPackage triggered. Peer:

{context.Peer}. Host: {context.Host}.");

Console.WriteLine($"Device id: {request.DeviceId},

Name:

{request.Name}, Description: {request.Description},

Status {request.Status}.");

return Task.FromResult(new UpsertDeviceResponse

{

Success = true

});

}

Please note that we haven't used any additional namespace imports in this file.

This is because the service and message implementations won't have any

namespaces in auto-generated code if they represent a Protobuf definition that has neither package nor csharp_namespace defined.

250 Using Different Call Types Supported by gRPC

5. Now, we have all implementations of all three Protobuf definitions we created previously. Let's make them accessible to the clients. To do so, we need to make sure that the Startup class inside the DeviceManagerService project (or

Program.cs file if you are using .NET 6 template) has the following using statements specified:

using DeviceManagerService.Services;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

6. Then, we will need to add the following statements inside the call to app.

UseEndpoints:

endpoints.MapGrpcService<ManagerService>();

endpoints.MapGrpcService<ManagerServiceCsNamespace>();

endpoints.MapGrpcService<ManagerServiceNoPackage>();

We now have an application with three almost identical gRPC service implementations.

However, they are based on Protobuf definitions with different package configurations, so there are differences in how they can be accessed by gRPC clients. Each service implementation will input its class name into the console. So, we will now be able to build a client and see if we can reliably reach the service we want to reach.

Note

If you are running your server-side application on a Mac, you will need to make some modifications to it. The instructions on how to do so can be found in the Running the gRPC service on Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

Making unary calls on gRPC 251

Building the gRPC client

Our gRPC client will be a standard ASP.NET Core web API application. As we did previously, we will add Swagger dependencies to it to make all the API endpoints accessible via a standard browser. Let's get started:

1. First, we must navigate to the GrpcCallTypes solution folder and execute the following command to create a project from the Web API template:

dotnet new webapi -o ApiGateway

2. Then, we must add this project to the solution by executing the following command: dotnet sln add ApiGateway/ApiGateway.csproj

3. Next, we must navigate to the ApiGateway project folder and insert the following snippet into the ApiGateway.csproj file to link it to the class library that contains all the shared dependencies:

<ItemGroup

<ProjectReference

Include="..\GrpcDependencies\GrpcDependencies.csproj"

/>

</ItemGroup>

4. Next, we must add the Swagger dependency to the project by executing the following command:

dotnet add ApiGateway.csproj package NSwag.AspNetCore

5. Next, we must create a class that will represent the API response and request object.

We will create the DeviceDetails.cs file inside the ApiGateway project

folder. The content of this file is as follows:

namespace ApiGateway

{

public class DeviceDetails

{

public int Id { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public DeviceStatus Status { get; set; }

252 Using Different Call Types Supported by gRPC

}

public enum DeviceStatus

{

OFFLINE = 0,

ONLINE = 1,

BUSY = 2,

ERRORED = 3

}

}

Please note that the class and enum names have been intentionally chosen to be the same as the corresponding message and enum names from the Protobuf definitions. This was done to demonstrate how any potential naming conflicts are resolved by C# when we are dealing with auto-generated gRPC abstractions that don't use namespaces, such as the ones that are based on the device_

management_no_package.proto file.

6. Now, we must add the ClientType.cs file to the root of the ApiGateway project. It will be an enum that allows us to select a specific client implementation: namespace ApiGateway

{

public enum ClientType

{

PackageName,

NoPackage,

CsNamespace

}

}

7. Next, we must add a class that will act as a wrapper for gRPC clients that are based on different Protobuf definitions. The file will be called GrpcClientWrapper.

cs and it will be placed in the root of the ApiGateway project folder. This file will have the following using statements and the following namespace definition: using System;

using System.Threading.Tasks;

using Grpc.Core;

using Grpc.Net.Client;

Making unary calls on gRPC 253

using Microsoft.Extensions.Configuration;

namespace ApiGateway

{

}

8. Now, we must place the following interface definition inside the namespace: public interface IGrpcClientWrapper

{

DeviceDetails GetDevice(ClientType clientType, int

deviceId);

bool UpsertDeviceStatus(ClientType clientType,

DeviceDetails details);

Task<bool> UpsertDeviceStatusAsync(ClientType

clientType, DeviceDetails details);

}

9. Next, we must add a class that will implement this interface. This class will reuse the same gRPC channel for all its calls since all Protobuf implementations are hosted by the same server-side application:

internal class GrpcClientWrapper : IGrpcClientWrapper,

IDisposable

{

private readonly GrpcChannel channel;

public GrpcClientWrapper(IConfiguration

configuration)

{

channel = GrpcChannel.ForAddress(configuration

["ServerUrl"], new GrpcChannelOptions

{

Credentials = ChannelCredentials.SecureSsl,

});

}

}

254 Using Different Call Types Supported by gRPC

Please note that we are using GrpcChannelOptions as one of the constructor parameters for the channel. We've done this to demonstrate how the gRPC channel can be configured.

We are applying the Credential options and setting them to

ChannelCredentials.SecureSsl, which will ensure that the channel will only be able to connect to HTTPS endpoints. This option is relevant so long as the machine hosting your gRPC service application can support TLS or SSL (which will not be the case with a Mac, so you will need to remove this option if you are running your setup on a Mac). However, you also have the following options that you can apply to your channel:

• CompressionProviders: This option allows you to customize how message

compression is performed.

• HttpClient: You can reuse an HttpClient instance as the client for gRPC

communication. This option allows you to set such a client. There might be some valid reasons to reuse an existing HTTP client. For example, it might have already been pre-populated with request headers you want to reuse, such as authentication tokens.

• DisposeHttpClient: If you are using a custom instance of HttpClient,

this option, when set to true, will dispose of this instance when the instance of GrpcChannel is disposed of.

• HttpHandler: This option allows you to apply some custom middleware logic that will be triggered when gRPC calls are made. For example, you may want to record some metrics for every gRPC response you receive. Using an HTTP handler will allow you to apply the code for it in one central place.

• LoggerFactory: This allows you to apply custom loggers to gRPC calls. We will cover this in more detail in Chapter 11, Using Logging, Metrics, and Debugging in gRPC on .NET.

• MaxReceiveMessageSize: This option controls the maximum size of a single message that can be received from the server. By default, it's set to 4 megabytes.

Setting it to null will remove this limit.

• MaxSendMessageSize: This option limits the size of the request message. The default value is null, which means that there is no limit.

There are also some other options available, but at the time of writing, they are marked as experimental APIs that are subject to being changed or removed. Therefore, we will not cover them here.

Making unary calls on gRPC 255

Applying different types of client-side call

implementations

Now, let's get back to building the rest of our class since we need implementations for both the IGrpcClientWrapper and IDisposable interfaces:

1. To implement the IDisposable interface, we must add the following method, where we will dispose of the channel:

public void Dispose()

{

channel.Dispose();

}

2. Then, we must add a private method that will be used by a number of our public methods:

private DeviceDetails GetDeviceDetails(int id, string

name,

string description, DeviceStatus status)

{

return new DeviceDetails

{

Id = id,

Name = name,

Description = description,

Status = status

};

}

3. After this, we must add an implementation of the GetDevice method from the IGrpcClientWrapper interface:

public DeviceDetails GetDevice(ClientType clientType, int

deviceId)

{

switch(clientType)

{

}

}

256 Using Different Call Types Supported by gRPC

4. The switch statement will be populated by the following cases:

case ClientType.PackageName:

var packageClient = new DeviceManagement.

DeviceManager.

DeviceManagerClient(channel);

var packageResponse = packageClient.GetDevice(new

DeviceManagement.GetDeviceRequest { DeviceId =

deviceId

});

return GetDeviceDetails(packageResponse.DeviceId,

packageResponse.Name, packageResponse.Description,

(DeviceStatus)packageResponse.Status);

case ClientType.CsNamespace:

var csNamespaceClient = new

GrpcDependencies.Protos.DeviceManager.

DeviceManagerClient(channel);

var csNamespaceResponse = csNamespaceClient.

GetDevice(new

GrpcDependencies.Protos.GetDeviceRequest

{ DeviceId = deviceId });

return GetDeviceDetails(csNamespaceResponse.DeviceId,

csNamespaceResponse.Name, csNamespaceResponse

.Description, (DeviceStatus)

csNamespaceResponse.Status);

default:

var client = new

DeviceManager.DeviceManagerClient(channel);

var response = client.GetDevice(new GetDeviceRequest

{

DeviceId = deviceId });

return GetDeviceDetails(response.DeviceId, response.

Name,

response.Description, (DeviceStatus) response.

Status);

Making unary calls on gRPC 257

5. Now, we must add the implementation of the UpsertDeviceStatus method.

First, we will add the method definition:

public bool UpsertDeviceStatus(ClientType clientType,

DeviceDetails details)

{

switch (clientType)

{

}

}

6. Then, we will add the following case block to our switch statement:

case ClientType.PackageName:

var packageClient = new

DeviceManagement.DeviceManager.

DeviceManagerClient(channel);

var packageResponse = packageClient.

UpsertDeviceStatus(new

DeviceManagement.DeviceDetails

{

DeviceId = details.Id,

Name = details.Name,

Description = details.Description,

Status = (DeviceManagement.DeviceStatus)details.

Status

});

return packageResponse.Success;

7. Then, we will add a case block for ClientType.CsNamespace:

case ClientType.CsNamespace:

var csNamespaceClient = new

GrpcDependencies.Protos.DeviceManager

.DeviceManagerClient(channel);

var csNamespaceResponse =

csNamespaceClient.UpsertDeviceStatus(new

GrpcDependencies.Protos.DeviceDetails

{

258 Using Different Call Types Supported by gRPC

DeviceId = details.Id,

Name = details.Name,

Description = details.Description,

Status = (GrpcDependencies.Protos.DeviceStatus)

details.Status

});

return csNamespaceResponse.Success;

8. After this, we will add the default case:

default:

var client = new

DeviceManager.DeviceManagerClient(channel);

var response = client.UpsertDeviceStatus(new

global::DeviceDetails

{

DeviceId = details.Id,

Name = details.Name,

Description = details.Description,

Status = (global::DeviceStatus)details.Status

});

return response.Success;

This is a good example of how the .NET compiler resolves naming conflicts. We have the DeviceDetails class and the DeviceStatus enum defined in the local namespace.

However, they are also defined without any namespaces in auto-generated code for gRPC implementations.

Having the same names in gRPC and REST API objects is not uncommon as those objects often have the same meaning. But the .NET compiler is capable of dealing with situations where an object with the same name exists in the local namespace and outside of any namespace. When you're specifying the object name without fully qualifying it, the compiler will assume that you mean the object that exists in the local namespace.

The object that doesn't have a namespace then needs to be qualified by applying the global:: prefix to it.

Making unary calls on gRPC 259

Now, let's add the implementation of the UpsertDeviceStatusAsync method. It will be similar to the previous method, but it will be using an asynchronous version of the gRPC calls:

1. The method can be defined as follows:

public async Task<bool> UpsertDeviceStatusAsync(ClientType

clientType, DeviceDetails details)

{

switch (clientType)

{

}

}

2. The first case block inside the switch statement will look as follows: case ClientType.PackageName:

var packageClient = new DeviceManagement.

DeviceManager .DeviceManagerClient(channel);

var packageResponseCall =

packageClient.UpsertDeviceStatusAsync(new

DeviceManagement.DeviceDetails

{

DeviceId = details.Id,

Name = details.Name,

Description = details.Description,

Status = (DeviceManagement.DeviceStatus)details.

Status

});

var packageResponse = await

packageResponseCall.ResponseAsync;

return packageResponse.Success;

Now, you can add blocks for the ClientType.CsNamespace and default

cases to use asynchronous calls on the CsNamespace and NoPackage clients, respectively, as per the examples from the UpsertDeviceStatus method.

260 Using Different Call Types Supported by gRPC

We now have two methods that make a unary call to the same gRPC endpoint; that is, UpsertDeviceStatus. However, one implementation uses synchronous blocking calls, while the other implementation uses asynchronous calls and waits for the results to be available. The .NET gRPC client implementation of unary calls gives us this choice by generating code for both of these call types. The blocking synchronous call will be the same as the original rpc name, while a non-blocking asynchronous call will have the Async suffix added to its name.

Other than one call being blocking while the other being non-blocking, there is also another significant difference between them. Blocking calls will always return just the response message. However, the asynchronous version can also give us metadata that's been sent by the server.

There are two ways to use the asynchronous call – await it as it's being made or store it in a variable. If we await the call as its being made, it will work similarly to awaiting a standard asynchronous Task. However, implementations of unary gRPC calls don't use Task. They use AsyncUnaryCall, which gives us more options.

If we store the call in a variable, as we did in the preceding example, we can retrieve the output message from it at any time by awaiting the ResponseAsync property of the object. However, if we also need the metadata, we can extract it by awaiting on the ResponseHeadersAsync property.

With that, we have completed the wrapper for all of our client implementations.

Now, let's register this class and add a controller that will use it.

Using gRPC dependencies in the client application

First, we will apply all the necessary configurational changes to the Startup class of the ApiGateway application, or Program.cs file if you have created the project from

.NET 6 template:

1. Replace the content of the ConfigureServices method with the following.

If you are using .NET 6 template, you would need to place this code before the Build event and replace services with builder.Services:

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcClientWrapper,

GrpcClientWrapper>();

services.AddControllers();

Making unary calls on gRPC 261

2. Then, place the following lines anywhere at the beginning of the Configure method:

app.UseOpenApi();

app.UseSwaggerUi3();

3. If the template already contains a line stating app.UseSwagger();, remove it.

This will cause conflicts with the components from the NSwag library.

4. To complete the configuration, we will need to add the following section to the appsettings.json file:

"ServerUrl": "https://localhost:5001"

The value will be https://localhost:5001 by default. However, if you are using a Mac, you will need to use http://localhost:5000. These URLs can be found inside the launchSettings.json file of the DeviceManagerService project.

Now, let's add the controller that we will be able to call:

1. Add the DeviceController.cs class to the Controllers folder. Add the

following content to the file:

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

namespace ApiGateway.Controllers

{

[ApiController]

[Route("[controller]")]

public class DevicesController : ControllerBase

{

private readonly IGrpcClientWrapper

clientWrapper;

public DevicesController(IGrpcClientWrapper

clientWrapper)

{

this.clientWrapper = clientWrapper;

}

}

}

262 Using Different Call Types Supported by gRPC

2. Then, add the following endpoint methods to the class:

[HttpGet("{clientType}/{deviceId}")]

public DeviceDetails GetDevice(ClientType clientType, int

deviceId)

{

return clientWrapper.GetDevice(clientType, deviceId);

}

[HttpPost("{clientType}")]

public async Task PostDeviceStatus(ClientType clientType,

[FromBody] DeviceDetails deviceDetails, [FromQuery]

bool

async = false)

{

if (async)

await clientWrapper.UpsertDeviceStatusAsync

(clientType, deviceDetails);

else

clientWrapper.UpsertDeviceStatus(clientType,

deviceDetails);

}

Now that both our client and server applications have been completed, we are ready to start testing them.

Testing different types of unary call endpoints

We will launch both the DeviceManagerService and ApiGateway applications by executing the dotnet run command in each of those folders. Then, you will be able to open the Swagger page for the ApiGateway application in your browser, which can be accessed by writing the base application URL into the address bar, followed by the

/swagger path.

[image: Image 66]

[image: Image 67]

Making unary calls on gRPC 263

First, we will call the GetDevice API endpoint, which corresponds to a gRPC

method that we haven't implemented on the server. Calling this method will give us an Unimplemented error. This error will have also been thrown if we hadn't registered the server-side endpoint. Unimplemented is the error that is thrown if the client was able to successfully connect to the server, but the path couldn't be resolved as any specific RPC.

The Swagger page is expected to produce an output similar to the following: Figure 7.1 – Unimplemented gRPC error returned while attempting

to reach a non-existent server endpoint

Then, we can call the PostDeviceStatus endpoint. If we specify the client with an index of 0, which is based on the device_management.proto file, we are expected to receive an HTTP status code indicating success. In the console of the gRPC service application, we can see the full path that was called, as shown in the following screenshot: Figure 7.2 – Console output from the gRPC service application showing the full URL of the request Under the default configuration, a URL pointing at a gRPC endpoint will have the following structure:

{base URL}/{gRPC package name}.{gRPC service name}/{gRPC rpc

name}

[image: Image 68]

264 Using Different Call Types Supported by gRPC

However, if no package name was specified in a Protobuf file, then the URL will be as follows:

{base URL}/{gRPC service name}/{gRPC rpc name}

This creates a conflict for us as we have two Protobuf files with identical object names.

There was no conflict while generating the code as one of them had the csharp_

namespace directive, while the other one didn't. This ensured that the code was generated with completely different fully qualified names. But how would these services behave if we were to attempt to make a gRPC call to them?

The short answer is that the gRPC middleware will throw an error. If the path that's specified by the gRPC client can match more than one object, you will receive an Unknown error code. The output on the Swagger page will look similar to the following: Figure 7.3 – An unknown gRPC error is returned when the specified path

matches multiple gRPC endpoints

However, an interesting thing will happen if you open the Startup class of the DeviceManagementService project, or Program.cs file if you are using .NET

6 template, and remove the MapGrpcService statement, which registers either ManagerServiceCsNamespace or ManagerServiceNoPackage. Then, if you

execute the PostDeviceStatus endpoint from the Swagger page, selecting either 1 or 2 as the client type index (NoPackage or CsNamespace, respectively) will route the call to the same service – the remaining service that is still mapped.

[image: Image 69]

Streaming data from the client 265

In the following example, we have an unregistered ManagerServiceNoPackage service. Both implementations of the client that were based on Protobuf files without the package definition have successfully reached the ManagerServiceCsNamespace service. This is because even though the client implementations were based on different Protobuf definitions, they produced identical URLs and the objects that they worked with had identical structures. Here is the console output from the gRPC service application that demonstrates this:

Figure 7.4 – Two separate gRPC client implementations that generate identical URLs that will reach the same endpoint

So, when you make a gRPC call, remember that the middleware will construct a URL to reach the server. You also need to make sure that the endpoint that's specified in the URL

is only implemented once.

But gRPC is not only limited to unary calls. You can also use it to stream data. This is what we will talk about next, starting with the client-streaming call type.

Streaming data from the client

Another type of call that gRPC supports is the client-streaming call. With this call, a client can send a stream of messages while the server still returns only a single message as the response.

For the remainder of this chapter, we will only be using client and server implementations of the device_management.proto file. The other Protobuf files are now redundant as they have already served their purpose to demonstrate how gRPC middleware resolves the URL path and how it deals with conflicts.

266 Using Different Call Types Supported by gRPC

Adding a client-streaming call to the server application

We will start by adding a new client-streaming rpc to the service definition inside a Protobuf definition. Then, we will implement this rpc as a C# method in the gRPC

service application:

1. Add the following rpc to the DeviceManager service definition inside the device_management.proto file, which is located in the GrpcDependencies

project:

rpc UpsertDeviceStatuses (stream DeviceDetails) returns

(UpsertDeviceResponse);

2. Now, add the following method to the ManagerService class inside the

DeviceManagerService project:

public override async Task<DeviceManagement.

UpsertDeviceResponse> Upsert

DeviceStatuses(IAsyncStreamReader<DeviceManagement.

Device

Details> requestStream, ServerCallContext context)

{

await foreach (var status in requestStream.

ReadAllAsync())

{

Console.WriteLine($"Device id: {status.DeviceId},

Name: {status.Name}, Description:

{status.Description}, Status {status.

Status}.");

}

return new DeviceManagement.UpsertDeviceResponse

{

Success = true

};

}

Here is the breakdown of what we've done. In the proto file, we have defined a client-streaming call by placing the stream keyword before the request message, while the response message was still defined as singular.

Streaming data from the client 267

The server-side implementation of a client-streaming method has the following signature.

As we did previously, we can also use the async keyword in the signature if we wish to use the await keyword inside the method, as we did in the preceding example: public override Task<{response message name}> {RPC

name}(IAsyncStreamReader<request message name> requestStream,

ServerCallContext context)

Inside this method, there are two ways we can extract individual messages from the requestStream parameter. First, we can call the ReadAllAsync method in

a foreach loop, where we will need to await on foreach, as we did in the previous example. Alternatively, we can call the MoveNext method inside a while loop and access each message by using the Current property. The MoveNext method will return true if there are still items in the stream and return false if there aren't any. It will also move the iterator to the next item so that the Current property will be referring to it.

In the preceding example, we are simply iterating through all the request objects, printing their data to the console, and returning a response object once we have processed all of the objects. Next, we will add some client logic that will call this method.

Adding client logic for a client-streaming gRPC call

Let's add a new method to the gRPC client wrapper class. Then, we will add a REST API endpoint to call this method:

1. Add the following using statement to the top of the file:

using System.Collections.Generic;

2. Add the following method signature to the IGrpcClientWrapper interface in the ApiGateway project:

Task<bool>

UpsertDeviceStatusesAsync(IEnumerable<DeviceDetails>

devices);

3. Then, add the following method implementation to the GrpcClientWrapper class:

public async Task<bool>

UpsertDeviceStatusesAsync(IEnumerable<DeviceDetails>

devices)

{

268 Using Different Call Types Supported by gRPC

var client = new DeviceManagement.DeviceManager

.DeviceManagerClient(channel);

using var call = client.UpsertDeviceStatuses();

foreach (var device in devices)

{

await call.RequestStream.WriteAsync(new

DeviceManagement.DeviceDetails

{

DeviceId = device.Id,

Name = device.Name,

Description = device.Description,

Status = (DeviceManagement.DeviceStatus)

device.Status

});

}

await call.RequestStream.CompleteAsync();

var response = await call;

return response.Success;

}

4. After, add the following endpoint method to the DevicesController class:

[HttpPost("")]

public async Task PostDeviceStatuses([FromBody]

IEnumerable<DeviceDetails> deviceDetails)

{

await clientWrapper.UpsertDeviceStatusesAsync

(deviceDetails);

}

Here, a collection of device status objects are being posted to the API endpoint. Then, we created an instance of AsyncClientStreamingCall by calling the implementation of the UpsertDeviceStatuses method on the client. For each item in the device's status collection, we are creating an implementation of the DeviceDetails Protobuf message and immediately placing it on the stream by calling the WriteAsync method on the RequestStream property of the AsyncClientStreamingCall object instance.

As soon as we do that, this message becomes available to the server application, which consumes the stream.

Reading streams from the server 269

Then, we closed the stream by calling the CompleteAsync method on the

RequestStream property. Then, we await for the AsyncClientStreamingCall

instance to extract the response object from it.

Reading streams from the server

A server-streaming gRPC call is the opposite of the client-streaming one. The client sends a singular object in its request. This is what will trigger the server stream to open. While the stream is open, multiple response objects can be sent to the client.

Server streaming is frequently used to retrieve a collection of items from a server.

This is what we will use it for in the following example.

Adding a server-streaming RPC to Protobuf

First, we will add a server-streaming rpc to the Protobuf definition. In the following example, we will use an empty request object, which is one of the so-called well-known types that we will cover in Chapter 8, Using Well-Known Types to Make Protobuf More Handy: 1. Add the following import statement above the package directive in the device_

management.proto file in the GrpcDependencies project:

import "google/protobuf/empty.proto";

2. Then, add the following rpc definition to the DeviceManager service:

rpc GetAllStatuses (google.protobuf.Empty) returns

(stream DeviceDetails);

In this example, we have imported a Protobuf definition of the Empty message type from the Google library of well-known types. This will allow us to send a request that doesn't contain any data in it. The server-streaming rpc definition can be identified by the presence of the stream keyword in front of the response object, while it's absent in front of the request object.

270 Using Different Call Types Supported by gRPC

Setting up a server-streaming call on the server side

Now, let's implement the server-streaming call on the server. But before we do that, we will add an object that will store the in-memory cache of device status objects. This will allow us to test the insertion functionality alongside the retrieval functionality: 1. Add the DeviceStatusCache.cs file to the root of the

DeviceManagerService project. The file will contain the following

interface definition:

using System.Collections.Generic;

namespace DeviceManagerService

{

public interface IDeviceStatusCache

{

void UpsertDeviceDetail(DeviceManagement.

DeviceDetails

status);

List<DeviceManagement.DeviceDetails>

GetAllDeviceDetails();

}

}

2. Then, add the following class to implement it:

internal class DeviceStatusCache : IDeviceStatusCache

{

private readonly List<DeviceManagement.DeviceDetails>

deviceStatuses;

public DeviceStatusCache()

{

deviceStatuses = new

List<DeviceManagement.DeviceDetails>();

}

public List<DeviceManagement.DeviceDetails>

GetAllDeviceDetails()

Reading streams from the server 271

{

return deviceStatuses;

}

public void

UpsertDeviceDetail(DeviceManagement.DeviceDetails

status)

{

deviceStatuses.Add(status);

}

}

3. Now, let's register this class in the dependency injection system by adding the following statement to the ConfigureServices method of the Startup class.

If you are using .NET 6 template, this statement will need to go into the main body of Program.cs file and modified accordingly:

services.AddSingleton<IDeviceStatusCache,

DeviceStatusCache>();

4. Then, add the following constructor and the private field to the

ManagerService class:

private readonly IDeviceStatusCache deviceStatusCache;

public ManagerService(IDeviceStatusCache

deviceStatusCache)

{

this.deviceStatusCache = deviceStatusCache;

}

5. Next, we will add the following using statement above the class:

using Google.Protobuf.WellKnownTypes;

6. Then, we will add the following line anywhere inside the UpsertDeviceStatus method, before the return statement:

deviceStatusCache.UpsertDeviceDetail(request);

272 Using Different Call Types Supported by gRPC

7. Now, we will add the following line inside the foreach loop of the

UpsertDeviceStatuses method:

deviceStatusCache.UpsertDeviceDetail(status);

8. Now, let's add the implementation of the GetAllStatuses rpc, as follows: public override async Task GetAllStatuses(Empty request,

IServerStreamWriter<DeviceManagement.DeviceDetails>

responseStream, ServerCallContext context)

{

foreach (var device in

deviceStatusCache.GetAllDeviceDetails())

{

if (DateTime.UtcNow.AddSeconds(1) > context.

Deadline)

break;

await responseStream.WriteAsync(device);

await Task.Delay(500);

}

}

The method signature of the server-side server-streaming RPC implementation is as follows:

public override Task {RPC name}({request message type}

request, IServerStreamWriter<{response message type}>

responseStream, ServerCallContext context)

It doesn't have a return type (other than a plain Task) since the client will receive every message as soon as it gets written into the response stream.

In the preceding example, we also demonstrated how to use an important per-call configuration option – deadline. Deadline is a time value that the call is expected to complete. If the call hasn't been completed by the deadline, the call will be terminated and an error will be returned. The deadline configuration parameter can be accessed with any gRPC call type, but it's especially relevant for the calls that deal with streams, as these types of calls are more likely to deal with large volumes of data that take a long time to process.

Reading streams from the server 273

Because the deadline can be accessed on the server, it can be used to make sure that at least some data is returned instead of the whole call being terminated. In the preceding code, we added a condition that will stop processing the stream when it is within 1 second of the deadline. We also added a delay to make it easier to test the deadline logic.

Making a server-streaming call from a gRPC client

In our ApiGateway project, we will add a client implementation of the server-streaming RPC. Then, we will add an API endpoint to call it:

1. First, we need to add the following using statement to the

GrpcClientWrapper.cs file:

using Google.Protobuf.WellKnownTypes;

2. Then, we must add the following method signature to the IGrpcClientWrapper interface:

Task<IEnumerable<DeviceDetails>> GetAllDevices(int

deadlineSeconds = 0);

3. Now, let's add the implementation of this method to the GrpcClientWrapper class. First, we will create an instance of AsynServerStreamingCall. We will do so by passing the request object into it. But this time, we will also apply the optional deadline parameter:

public async Task<IEnumerable<DeviceDetails>>

GetAllDevices(int deadlineSeconds = 0)

{

var client = new DeviceManagement.DeviceManager.

DeviceManagerClient(channel);

DateTime? deadline = deadlineSeconds > 0 ?

DateTime.UtcNow.AddSeconds(deadlineSeconds) : null;

var call = client.GetAllStatuses(new Empty(),

deadline:

deadline);

}

274 Using Different Call Types Supported by gRPC

4. We will complete this method by reading it from the response stream:

var devices = new List<DeviceDetails>();

while (await call.ResponseStream.MoveNext())

{

var device = call.ResponseStream.Current;

devices.Add(GetDeviceDetails(device.DeviceId, device.

Name,

device.Description, (DeviceStatus)device.Status));

}

return devices;

5. Then, we will add the following method to the DevicesController class:

[HttpGet("")]

public async Task<IEnumerable<DeviceDetails>>

GetAllDevices([FromQuery] int deadlineSeconds = 0)

{

return await clientWrapper.

GetAllDevices(deadlineSeconds);

}

Now, we can insert the data into an in-memory cache and retrieve it. We can also verify how our server-streaming call behaves if we adjust the deadlineSeconds value.

So long as there aren't any processes that interfere with your deployment and create additional latency, you should expect the GetAllDevices endpoint to always return data. However, the quantity of data you receive is expected to vary, depending on the deadline's duration.

With that, we have covered how gRPC can be used to stream data either from the client to the server or from the server to the client. But it's also possible to stream data in both directions at the same time. This is what we will cover next.

Enabling bi-directional streaming

We have now reached the final type of gRPC call—a bi-directional streaming RPC. As the name suggests, this RPC can have both client-initiated and server-initiated streams – and those streams don't necessarily have to depend on one another.

Enabling bi-directional streaming 275

Enabling server-side components for bi-directional

streaming

As we did previously, first, we will add a bi-directional rpc to the relevant proto file.

Then, we will add the method's implementation to our C# code:

1. First, we will add the following rpc definition to the DeviceManager service definition in the device_management.proto file, which is located in the

GrpcDependencies project:

rpc UpdateAndConfirmBatch (stream DeviceDetails) returns

(stream DeviceDetails);

2. Add the following method signature to the IDeviceStatusCache interface of the DeviceManagerService project:

DeviceManagement.DeviceDetails GetDevice(int deviceId);

3. Add the following method implementation to the DeviceStatusCache class: public DeviceManagement.DeviceDetails GetDevice(int

deviceId)

{

return deviceStatuses.FirstOrDefault(d => d.DeviceId

== deviceId);

}

4. Now, add the following implementation of this method to the ManagerService class inside the DeviceManagerService project:

public override async Task

UpdateAndConfirmBatch(IAsyncStreamReader

<DeviceManagement.Devi

ceDetails> requestStream, IServerStreamWriter

<DeviceManagement.DeviceDetails> responseStream,

ServerCallContext context)

{

await foreach (var device in requestStream.

ReadAllAsync())

{

deviceStatusCache.UpsertDeviceDetail(device);

276 Using Different Call Types Supported by gRPC

var newDevice =

deviceStatusCache.GetDevice(device.DeviceId);

if (newDevice is not null)

await responseStream.WriteAsync(newDevice);

await Task.Delay(500);

}

}

In a proto file, a bi-directional streaming rpc can be identified by the stream keyword, which is next to both the request and response message definitions. The method signature of the C# implementation of a bi-directional streaming method is as follows: public override Task {RPC name}(IAsyncStreamReader<{request

message name}> requestStream, IServerStreamWriter<{response

message name}>

responseStream, ServerCallContext context)

In this example, we are inserting multiple DeviceDetails objects into the memory cache and, for each of them, we query the cache to verify that it has been inserted successfully. This is an example of using a bi-directional stream in a request-response fashion. For each read of the client stream, there is a write into the server stream.

But it doesn't have to be like this. The streams can be made completely independent of each other.

We have also added a delay to the method. It was placed there so you can see what happens if a gRPC call exceeds a deadline.

Adding a client-side implementation of a bi-directional

streaming call

Now, let's update the gRPC client wrapper inside the ApiGateway project and add a REST API endpoint to call the bi-directional streaming method:

1. In the IGrpcClientWrapper interface, add the following method signature: Task<IEnumerable<DeviceDetails>>

UpdateAndConfirmBatch(IEnumerable<DeviceDetails> devices,

int

deadlineSeconds = 0);

Enabling bi-directional streaming 277

2. Then, add the implementation of this method to the GrpcClientWrapper class.

First, create an instance of the client and initiate a bi-directional streaming call: public async Task<IEnumerable<DeviceDetails>>

UpdateAndConfirmBatch(IEnumerable<DeviceDetails> devices,

int

deadlineSeconds = 0)

{

var client = new DeviceManagement.DeviceManager.

DeviceManagerClient(channel);

DateTime? deadline = deadlineSeconds > 0 ?

DateTime.UtcNow.AddSeconds(deadlineSeconds) : null;

var call = client.UpdateAndConfirmBatch(deadline:

deadline);

}

3. Next, add a task that will listen to the server stream and populate a local collection variable from it:

var outputDevices = new List<DeviceDetails>();

var readTask = Task.Run(async () =>

{

await foreach (var device in

call.ResponseStream.ReadAllAsync())

{

outputDevices.Add(GetDeviceDetails(device.

DeviceId, device.Name, device.Description,

(DeviceStatus) device.Status));

}

});

4. Then, populate the request stream:

foreach (var device in devices)

{

await call.RequestStream.WriteAsync(new

DeviceManagement.DeviceDetails

{

278 Using Different Call Types Supported by gRPC

DeviceId = device.Id,

Name = device.Name,

Description = device.Description,

Status = (DeviceManagement.DeviceStatus)device.

Status

});

}

5. We will complete the method by closing the request stream and waiting for the response stream listener to finish:

await call.RequestStream.CompleteAsync();

await readTask;

return outputDevices;

6. Finally, add the following endpoint method to the DevicesController class:

[HttpPost("batch")]

public async Task<IEnumerable<DeviceDetails>>

PostDeviceStatusBatch(

[FromBody] IEnumerable<DeviceDetails>

deviceDetails,

[FromQuery] int deadlineSeconds = 0)

{

return await clientWrapper.UpdateAndConfirmBatch

(deviceDetails, deadlineSeconds);

}

Now, we can launch our application and see how the streaming methods operate.

We will also be able to see how they deal with deadline configuration.

Testing how to stream gRPC calls

Let's launch our applications by executing the dotnet run command in both the DeviceManagerService and ApiGateway project folders. By doing this, we can see how the deadline parameter affects the execution of the call.

[image: Image 70]

[image: Image 71]

Enabling bi-directional streaming 279

We don't have any deadline-handling logic in the backend of the

UpdateAndConfirmBatch gRPC call. So, if we call the POST Devices/batch

endpoint via the Swagger page with a collection of input values while setting the deadlineSeconds parameter to 1, we expect to receive a DeadlineExceeded error, as shown in the following screenshot:

Figure 7.5 – The DeadlineExceeded error is displayed if the gRPC call could not be completed before the deadline

However, if we insert a collection of device statuses via the POST Devices/ endpoint, we will still be able to retrieve them via the GET Devices/ endpoint. It just won't be the full collection if we set a short deadline. For example, setting the deadline to 2 seconds causes the endpoint to return two out of the four items that are stored in the cache, as shown in the following screenshot:

Figure 7.6 – A deadline of 2 seconds prevented the full collection from being returned This is because the gRPC method that was called, GetAllStatuses, had

deadline-handling logic in the backend. And instead of just terminating the call and returning no data, it returned as much data as it could.

280 Using Different Call Types Supported by gRPC

With that, we have covered the different types of gRPC calls in detail. Now, let's summarize what we have learned.

Summary

In this chapter, you learned that gRPC supports four types of calls – unary, client streaming, server streaming, and bi-directional streaming. You learned that in a Protobuf definition, the type of the call is controlled by the stream keyword or a lack thereof.

We looked at the server-side method signatures that are used for implementing gRPC calls of different kinds. Each of these signatures includes the context parameter, as well as the actual request and response data. This parameter is used for extracting metadata from the call, which may include user information and request headers.

You also learned that a gRPC channel can be configured by using the

GrpcChannelOptions object. This object allows you to restrict the message's size, reuse HttpClient, apply any custom middleware logic, and more.

We also looked at what happens when multiple gRPC implementations correspond to the same HTTP path. If those paths have identical service and rpc names, an error will be returned. If you don't implement any specific gRPC method in the server-side application, the gRPC middleware will also return an error.

You then learned that individual gRPC calls can have a deadline configured. The call will fail if the deadline is exceeded. However, because the deadline can be accessed by the server-side implementations of RPCs, you can use it on the server to make sure that a valid result is always returned before the deadline is exceeded.

In the next chapter, we will look at how to use the so-called well-known types from the Google Protobuf library so that you can easily handle nullable objects, empty messages, and other data types that aren't available in Protobuf natively, such as date and time representations.

Questions 281

Questions

Answer the following questions to test your knowledge of this chapter:

1. Can you use Protobuf with no package defined?

A. No

B. Yes

C. Only if there is a csharp_namespace directive

D. Only if you import another Protobuf definition

2. How can you extract response metadata from a unary gRPC call?

A. It's not possible.

B. Only when you make blocking synchronous calls.

C. Only when you make asynchronous calls.

D. When you make either a synchronous or an asynchronous call.

3. What exception will be thrown if there is a clash between server-side Protobuf implementations?

A. Unknown

B. NotFound

C. Unimplemented

D. Unresolved

4. What is the deadline parameter used for in a gRPC call?

A. To set the delay on the call

B. To let the server know the client's preferences regarding the response duration C. To set a strict timeout on the call's completion time

D. To synchronize the clocks between the server and the client

5. How do you define a bi-directional streaming call in Protobuf?

A. By using the stream keyword before the request message definition

B. By using the stream keyword before the response message definition

C. By using the stream keyword before the RPC name

D. By using the stream keyword between both the request and response

message definitions

282 Using Different Call Types Supported by gRPC

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following resources:

• ASP.NET Core gRPC call types: https://docs.microsoft.com/en-us/

aspnet/core/grpc/client

• gRPC for .NET Configuration: https://docs.microsoft.com/en-us/

aspnet/core/grpc/configuration

• gRPC and Deadlines: https://grpc.io/blog/deadlines/

8

 Using Well-Known

Types to Make

Protobuf More

Handy

We learned in Chapter 3, Protobuf – the Communication Protocol of gRPC, that data types that are native to Protobuf cannot be null and must have the default value. The default value will be applied if you don't explicitly set the value in the code. For example, the default value for the string data type is an empty string value. The default value for any of the integer data types is 0. The default value for bool is false.

This presents a problem. Sometimes, you will be in a situation where you will need to distinguish between a value that has been deliberately set and a value that was automatically set to the default. For example, the count of 0 has a different meaning than

"no data." Likewise, Boolean false has a very different meaning from "no answer has been given."

284 Using Well-Known Types to Make Protobuf More Handy Luckily, there is a neat solution to this problem. Protobuf has access to a library of so-called "well-known types." This library provides you with a collection of wrapper data types that make the standard Protobuf data types nullable. The default value of a nullable data type is null. And this is what makes them ideal for the scenarios where it's important to know the difference between the absence of data and any value that has been deliberately assigned.

But the library of well-known types doesn't stop there. It also provides you with commonly used data types that aren't natively available in Protobuf. These include representations of dates and time durations.

These libraries also give you a mechanism of putting an empty message in either the request or the response. Finally, it has a mechanism of applying any arbitrary message type to a field without having to write a complex oneof block.

We will cover the following topics:

• Using nullable types in Protobuf

• Using dates and times in Protobuf

• Exchanging empty messages

• Using loosely-types fields in a Protobuf message

By the end of this chapter, you will have learned how to make your Protobuf definitions much more flexible without having to make them excessively complex and less readable.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Macintosh, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or

JetBrains Rider)

• .NET 5 SDK (or later)

• A self-signed development HTTPS certificate enabled on the machine

The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

Using nullable types in Protobuf 285

All code samples used in this chapter can be found at https://github.com/

PacktPublishing/Microservices-Communication-in-.NET-Using-

gRPC/tree/main/Chapter-08.

Please visit the following link to check the CiA videos: https://bit.ly/3ywE4Ta

Using nullable types in Protobuf

Natively, there are no nullable data types in Protobuf. Any primitive non-message data type, such as string or int32, has a default value. The default value will be used if the field hasn't been deliberately set to anything. Therefore, if a field of a particular data type in Protobuf returns its default value, it's not easy to determine whether this value was set deliberately or whether the field hasn't been set to anything at all.

The proto2 version of Protobuf dealt with this option by having the optional keyword. However, this keyword was removed from the proto3 syntax.

Another way of determining whether or not a particular field has been deliberately set is by using a oneof block. For example, such a block may have two fields, one carrying the value we are interested in and one telling us whether this value has been set. If the second field is set, then we know that the original field hasn't been set.

But this solution creates some issues. If you have multiple fields of this sort, then your Protobuf definition may be excessively complex and difficult to follow. Therefore, Google has introduced a much more elegant solution – having wrappers for native data types in its importable library.

Wrappers are message definitions that encapsulate a primitive data type. So, because a message field, unlike a primitive data type, can be set to null, any field that has such message definition as its data type is nullable. And because there is a primitive value inside the message, this value can still be transmitted when needed.

But these message wrapper definitions aren't treated like any standard message definition by the language-specific Protobuf compilers. When you use these fields in the code, you won't have to create a new object and then set a field on it. Instead, the field will be resolved to a nullable data type specific to that language.

For example, if you use an Int32Value data type on one of your message fields, the C#

representation of that type won't be a class called Int32Value. It would actually be an int? data type, which is a nullable version of int.

Wrapper data type names are written in the following format:

{PascalCase name of the original primitive data type}Value

286 Using Well-Known Types to Make Protobuf More Handy The full list includes the following:

• DoubleValue

• FloatValue

• Int64Value

• UInt64Value

• Int32Value

• UInt32Value

• BoolValue

• StringValue

• BytesValue

All of these are available in the google/protobuf/wrappers.proto Protobuf package, which needs to be imported into your own Protobuf definition before you can start using them. We will now create a sample application that uses these nullable types.

Setting up a gRPC server application

As previously, we will create a solution, which we will then populate with gRPC server application, gRPC client application, and a library that contains shared dependencies: 1. We will create a GrpcWellKnownTypes folder and instantiate a solution with the same name inside of it by executing the following command:

dotnet new sln

2. We will then instantiate a gRPC service project inside this folder by executing the following command:

dotnet new grpc -o GrpcServiceApp

3. Next, we will add this project to the solution by executing the following command: dotnet sln add GrpcServiceApp/GrpcServiceApp.csproj

4. We are now ready to add well-known nullable types to our Protobuf definition. By default, our GrpcServiceApp project was created with the greet.proto file inside the Protos folder. We will open this file and add the following statement after the syntax = "proto3"; line:

import "google/protobuf/wrappers.proto";

Using nullable types in Protobuf 287

5. Now, we can use nullable types inside our message definitions. We will use all of the available types by replacing the content of the HelloReply message with the following:

message HelloReply {

google.protobuf.StringValue message = 1;

google.protobuf.UInt32Value message_processed_count =

2;

google.protobuf.UInt64Value message_length_in_bytes =

3;

google.protobuf.Int32Value message_length_in_letters =

4;

google.protobuf.Int64Value milliseconds_to_deadline =

5;

google.protobuf.FloatValue seconds_to_deadline = 6;

google.protobuf.DoubleValue minutes_to_deadline = 7;

google.protobuf.BoolValue last_name_present = 8;

google.protobuf.BytesValue message_bytes = 9;

}

We have now added representations of all wrapper fields to the Protobuf definition. Now, we can build the application and have a look at how these fields are represented in C#.

Examining auto-generated code for wrapper fields

If we open the Greet.cs file that should have been placed inside the Protos folder in the obj folder of the GrpcWellKnownTypes project, we can have a look at the code that has been generated for our HelloReply message definition that is populated by wrapper data types of every kind. Let's first examine the representation of the following field:

google.protobuf.StringValue message = 1;

[image: Image 72]

[image: Image 73]

288 Using Well-Known Types to Make Protobuf More Handy

This field is represented by string data type in C#, which makes it no different from a regular string Protobuf field. This is because the string type in C# is nullable already. This can be seen in the following screenshot:

Figure 8.1 – C# representation of a StringValue field

Next, let's have a look at C# code for the following field:

google.protobuf.UInt32Value message_processed_count = 2;

As the following screenshot shows, the UInt32Value data type is represented by the uint? data type in C#, which is a nullable version of uint:

Figure 8.2 – C# representation of UInt32Value data type

We will then move on to the following field:

google.protobuf.UInt64Value message_length_in_bytes = 3;

[image: Image 74]

[image: Image 75]

Using nullable types in Protobuf 289

As the following screenshot demonstrates, the UInt64Value data type is represented by ulong?, which is a nullable version of ulong:

Figure 8.3 – C# representation of the UInt64Value data type

Next, we will examine the following field:

google.protobuf.Int32Value message_length_in_letters = 4;

In C#, the Int32Value data type is represented by the int? data type – a nullable version of int. This can be seen on the following screenshot:

Figure 8.4 – C# representation of the Int32Value data type

Next, let's examine the following field:

google.protobuf.Int64Value milliseconds_to_deadline = 5;

[image: Image 76]

[image: Image 77]

290 Using Well-Known Types to Make Protobuf More Handy

C# representation of this data type would be long? – a nullable version of long. It can be confirmed by looking at this code:

Figure 8.5 – C# representation of the Int64Value data type

Then, we move on to the data types containing floating-point numbers. We will first examine the following field:

google.protobuf.FloatValue seconds_to_deadline = 6;

As demonstrated by the following screenshot, in C# this field is represented by a nullable float data type:

Figure 8.6 – C# representation of the FloatValue data type

It's the same principle for the following field:

google.protobuf.DoubleValue minutes_to_deadline = 7;

[image: Image 78]

[image: Image 79]

Using nullable types in Protobuf 291

As the following screenshot demonstrates, the DoubleValue data type is represented by a nullable double in C#:

Figure 8.7 – C# representation of the DoubleValue data type

Next, we will have a look at the nullable Boolean, which is represented by this field: google.protobuf.BoolValue last_name_present = 8;

C# uses a nullable bool data type to represent BoolValue. This can be seen in the following screenshots:

Figure 8.8 – C# representation of the BoolValue data type

Finally, we have reached the following BytesValue field:

google.protobuf.BytesValue message_bytes = 9;

[image: Image 80]

292 Using Well-Known Types to Make Protobuf More Handy

As the following screenshot demonstrates, C# representation of it is not different from the representation of the standard bytes data type. This is because ByteString is a class, which is always nullable in C#:

Figure 8.9 – C# representation of the ByteString data type

We have now had a look at representations of all nullable wrapper data types in C#. Next, we will add some logic to our application to see how these fields are used inside our code.

Adding logic to gRPC server application

We will now add a service to our GrpcWellKnownTypes project that keeps count of how many requests have been processed. Then, we will modify the server-side implementation of our Protobuf definition to use this service so that we can populate all the fields that we have added to the message response:

1. Add the MessageCounter.cs file to the GrpcWellKnownTypes project folder and populate it with the following content:

namespace GrpcServiceApp

{

public class MessageCounter

{

private uint messageCount = 0;

public uint IncrementCount()

{

messageCount++;

return messageCount;

}

}

}

Using nullable types in Protobuf 293

2. Register this class in the dependency injection container by adding the following line to the ConfigureServices method of the Startup class:

services.AddSingleton<MessageCounter>();

3. Ensure that the GreeterService.cs file inside the Services folder has the following using statements:

using System;

using System.Text;

using System.Threading.Tasks;

using Grpc.Core;

4. Add a constructor and the following private field to the GreeterService class: private readonly MessageCounter counter;

public GreeterService(MessageCounter counter)

{

this.counter = counter;

}

5. Replace the content of the SayHello method with the following:

if (!string.IsNullOrWhiteSpace(request.Name))

{

var message = "Hello " + request.Name;

var timeToDeadline = context.Deadline - DateTime.

UtcNow;

var messageBytes = Encoding.ASCII.GetBytes(message);

return Task.FromResult(new HelloReply

{

Message = message,

MessageProcessedCount = counter.IncrementCount(),

MessageLengthInBytes = (ulong)messageBytes.

Length,

MessageLengthInLetters = message.Length,

MillisecondsToDeadline = timeToDeadline.

Milliseconds,

294 Using Well-Known Types to Make Protobuf More Handy SecondsToDeadline =

(float)timeToDeadline.TotalSeconds,

MinutesToDeadline = timeToDeadline.TotalMinutes,

LastNamePresent = request.Name.Split(' ').Length

> 1,

MessageBytes = Google.Protobuf.ByteString.

CopyFrom(messageBytes)

});

}

return Task.FromResult(new HelloReply());

The application is now looking at the content of the request message and populates the response accordingly. If we receive a blank string as the name field of the request, we just return an empty response. Otherwise, we populate each field of the response.

Now, let's move the dependencies to a shared library so that we won't need to duplicate the Protobuf definition in our gRPC client project.

Setting up shared dependencies

We will create a class library inside our solution, which will contain all gRPC references alongside the shared Protobuf definition.

1. Execute the following command inside the GrpcWellKnownTypes solution

folder to create the class library:

dotnet new classlib -o GrpcDependencies

2. Add this project to the solution by executing the following command:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

3. Next, add all relevant NuGet packages to the class library by executing the following command inside the GrpcDependencies project folder:

dotnet add GrpcDependencies.csproj package Grpc.Net.

 Client

dotnet add GrpcDependencies.csproj package Google.

 Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

Using nullable types in Protobuf 295

dotnet add GrpcDependencies.csproj package Grpc.

 AspNetCore

4. We will next create the Protos folder inside the GrpcDependencies

project folder and will move the greet.proto file there from the

GrpcServiceApp project. We will then register this Protobuf definition inside the GrpcDependencies.csproj file by adding the following snippet to it:

<ItemGroup>

<Protobuf Include="Protos\greet.proto" />

</ItemGroup>

5. Next, we will reference this newly created class library from the

GrpcServiceApp.csproj file. We will also remove any redundant gRPC

NuGet dependencies from this file. After doing this, the content of your

GrpcServiceApp.csproj file should look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

</PropertyGroup>

<ItemGroup>

<ProjectReference Include=

"..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

</Project>

We can verify our setup by rebuilding the GrpcServiceApp project. Because we haven't changed the csharp_namespace directive inside the greet.proto file, our code is expected to compile without any further changes.

Important Note

If you are running your server-side application on a Macintosh, you will need to apply some modifications to it. The instruction on how to do so can be found in the Running a gRPC Service on Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

296 Using Well-Known Types to Make Protobuf More Handy Next, we will set up the gRPC client. We will then use it to see how nullable data types are handled by the logic that we've placed in our code.

Setting up the gRPC client

This time, for the sake of simplicity, our gRPC client will be a basic console application: 1. Execute the following command inside the GrpcWellKnownTypes solution

folder to create the console application project:

dotnet new console -o GrpcClient

2. Add the project to the solution by executing the following command:

dotnet sln add GrpcClient/GrpcClient.csproj

3. Reference the shared class library from the console application by adding the following snippet to the GrpcClient.csproj file:

<ItemGroup>

<ProjectReference Include=

"..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

4. Now, open the Program.cs class and ensure that the following using statements are applied:

using System;

using GrpcServiceApp;

using Grpc.Net.Client;

using System.Threading.Tasks;

5. Change the signature of Main method inside Program class to the following: static async Task Main()

6. Insert the following content into the method:

Console.WriteLine("Please enter the gRPC service URL.");

var url = Console.ReadLine();

using var channel = GrpcChannel.ForAddress(url);

var client = new Greeter.GreeterClient(channel);

Using nullable types in Protobuf 297

var proceed = true;

while (proceed)

{

}

Console.WriteLine("Press any key to exit...");

Console.ReadKey();

7. Insert the following code into the while statement:

Console.WriteLine("Please enter the name.");

var name = Console.ReadLine();

var reply = await client.SayHelloAsync(new HelloRequest

{

Name = name }, deadline: DateTime.UtcNow.

AddMinutes(1));

Console.WriteLine("Message: " + reply.Message);

Console.WriteLine("Messages processed: " +

reply.MessageProcessedCount);

Console.WriteLine("Message length in bytes: " +

reply.MessageLengthInBytes);

Console.WriteLine("Message length in letters: " +

reply.MessageLengthInLetters);

Console.WriteLine("Milliseconds to deadline: " +

reply.MillisecondsToDeadline);

Console.WriteLine("Seconds to deadline: " +

reply.SecondsToDeadline);

Console.WriteLine("Minutes to deadline: " +

reply.MinutesToDeadline);

Console.WriteLine("Last name present: " +

reply.LastNamePresent);

Console.WriteLine("Message bytes: " + reply.

MessageBytes);

We are now ready to run our application and see how it performs with different inputs.

[image: Image 81]

298 Using Well-Known Types to Make Protobuf More Handy

Running the application

To launch the applications, execute dotnet run command in GrpcServiceApp

folder. Then do the same in GrpcClient folder. Once the console application is up and running, you will be prompted to type the URL of the gRPC service, which can be found in the launchSettings.json file of the GrpcServiceApp project. It should be https://localhost:5001 by default. However, if you are using Mac, it will be http://localhost:5000.

Once the application is up and running, you will be able to apply any custom value to the name field of the request object. We do so when by typing the value in the console when prompted. And we will get a response object with all of its fields populated, as can be seen on the following screenshot:

Figure 8.10 – Console output when the name is provided

However, when we don't provide the name, all the fields in our response object will be set to null and show as blank in the console. This can be seen in the following screenshot:

[image: Image 82]

Using dates and times in Protobuf 299

Figure 8.11 – Console output when no name is provided

And this concludes our overview of nullable wrapper data types in Protobuf. Next, we will have a look at data types related to dates and times, which are also missing from the native Protobuf syntax.

Using dates and times in Protobuf

Date and time values are frequently used by software developers. So are data types representing durations. But they are completely missing from Protobuf.

There are some workarounds that can be applied. For example, we can transfer an integer value that represents a number of milliseconds from a specific date. Alternatively, we can construct our own message definitions that store days, months, years, hours, minutes, and seconds. But these workarounds are not necessarily easy to implement. For example, if we choose to represent a date as milliseconds only, there is no guarantee that both the client and the server use the same date as the standard origin. Likewise, if we opt to use a custom message definition, we will need to write additional code to convert it into proper date and time data in both the client and the server applications.

300 Using Well-Known Types to Make Protobuf More Handy Luckily, Google's library of well-known types has a much better solution for it. It has two data types to represent time – Timestamp and Duration. Timestamp represents a point in time. It consists of all recognizable date and time components – hours, days, years, and so on. It is equivalent to either DateTime or DateTimeOffset in C#.

Duration also contains a recognizable date and time components. But it represents a difference between two points in time rather than a single date/time value. In C#, the closest equivalent is TimeSpan. And, just like subtracting one DateTime value from another will give you a TimeSpan in C#, subtracting one Timestamp value from another will give you a Duration.

We will now add both of these data types to our application. You will then be able to examine them more closely.

Adding timestamp and duration to the server

We will first add the necessary import statements and fields to our Protobuf definition.

Then, we will populate these fields in our server-side gRPC application.

1. Open greet.proto file in GrpcDependencies project and add the following import statements to it:

import "google/protobuf/duration.proto";

import "google/protobuf/timestamp.proto";

2. Then, add the following field to the HelloRequest message definition: google.protobuf.Timestamp request_time_utc = 2;

3. Now, add the following fields to HelloReply message definition:

google.protobuf.Timestamp response_time_utc = 10;

google.protobuf.Duration call_processing_duration = 11;

4. We will now slightly change the implementation of SayHello method in

GreeterService class of GrpcServiceApp project. Replace the list of local variables before the first return statement with the following:

var message = "Hello " + request.Name;

var currentTime = DateTime.UtcNow;

var timeToDeadline = context.Deadline - currentTime;

var messageBytes = Encoding.ASCII.GetBytes(message);

Using dates and times in Protobuf 301

5. Then, add the following field assignment to the response class initialization inside the return statement (don't forget to add a comma at the end of the previous field assignment):

ResponseTimeUtc = Timestamp.FromDateTime(currentTime),

CallProcessingDuration = Timestamp.

 FromDateTime(currentTime) - request.RequestTimeUtc

6. To make it compile, we will need to add the following using statement to the class: using Google.Protobuf.WellKnownTypes;

Here, we have provided an example of how we can populate Timestamp and

Duration fields from C# code. These are represented in C# by classes of the same names. But they can be easily populated from the standard TimeSpan, DateTime, and DateTimeOffset data types from the System library.

Timestamp can be populated from DateTime or DateTimeOffset by using either the FromDateTime or FromDateTimeOffset static method respectively. Duration can be populated from TimeSpan by using the FromTimeSpan static method, but it can also be calculated by subtracting one Timestamp value from another.

Next, we will set up our client and test our application.

Applying changes to the gRPC client and launching

the app

We will make slight modifications to our client. Then, we will see how Timestamp and Duration values are represented inside the console:

1. In the Main method of the Program class of GrpcClient project, add the following using statement:

using Google.Protobuf.WellKnownTypes;

2. Then, replace the call to the SayHelloAsync method on the client object with the following:

var reply = await client.SayHelloAsync(

new HelloRequest { Name = name, RequestTimeUtc =

Timestamp.FromDateTime(DateTime.UtcNow) }, deadline:

DateTime.UtcNow.AddMinutes(1));

[image: Image 83]

302 Using Well-Known Types to Make Protobuf More Handy

3. Then, add the following lines to the block of console outputs:

Console.WriteLine("Call processing duration: " +

reply.CallProcessingDuration);

Console.WriteLine("Response time UTC: " +

reply.ResponseTimeUtc);

We have finished adding Timestamp and Duration to both our client and our server.

Next, we will launch both of these applications to see how this data is processed.

After launching both of the applications, specifying the address of the gRPC server, and entering an arbitrary name, we can see console output similar to the one displayed in the following screenshot:

Figure 8.12 – Console output now includes Timestamp and Duration

As we can see, both Timestamp and Duration are written in a nice human-readable format. This is because both of them have an implementation of the ToString method in C#, which gets called automatically when they are used in a string context. And it's this method that is set to output the values in a nice human-readable format.

Next, we will have a look at how to use empty requests and responses in Protobuf, which can be really convenient in certain use cases.

Exchanging empty messages 303

Exchanging empty messages

Each remote procedure call in gRPC must have a request and a response message defined.

You cannot have an RPC that doesn't accept an input parameter or doesn't return an output object. However, there are many use cases where either a request parameter or a response object would be redundant. For example, if you would want to retrieve a full unfiltered collection of data, you wouldn't need to specify the request attributes. Likewise, if you want to submit a new entry to the server, you probably won't expect to receive any data back. All you'll need is a basic confirmation that your action was successful.

When you use standard HTTP, both of these actions are easily achievable. A simple GET request that contains only a URL path and no parameters can be made to obtain an unfiltered collection of data. Likewise, when you submit a PUT, POST, PATCH, or DELETE

request, you won't usually receive any data back (although in some situations you could).

All you will usually care about is that your action was successful. And this would be indicated by an HTTP response code in the correct range (200 to 204).

But luckily, on gRPC, even though you must define both a message request and response, you don't necessarily need to have any fields in either of them. A completely empty message definition is still a valid message definition according to Protobuf.

Therefore, if you really don't need to use any specific parameters in any given situation, you can just create a message definition with no fields.

But there is an even better way than creating your own empty message definition. There is already the Empty data type that is available via the Google library of well-known types. The disadvantage of using a custom empty message definition is that there is no guarantee that someone would not misunderstand the intention behind it and wouldn't add some fields to it in the future. But if you use the Empty type from the library of well-known types, the intention behind it will be clear to everyone using the code.

Next, we will make some changes to our application to demonstrate the usage of the Empty data type.

Adding the Empty data type to the server-side

application

We will start by adding some rpc definitions to our Protobuf file. Then, we will implement these RPCs on the server side:

1. In the greet.proto file inside the GrpcDependencies project, we will add the following import statement:

import "google/protobuf/empty.proto";

304 Using Well-Known Types to Make Protobuf More Handy 2. Then, add the following two rpc definitions to the Greeter service:

rpc GetMessageProcessedCount (google.protobuf.Empty)

returns

(MessageCount);

rpc SynchronizeMessageCount (MessageCount) returns

(google.protobuf.Empty);

3. Then, add the following message definition to the file:

message MessageCount {

uint32 count = 1;

}

4. We will now modify the MessageCounter class inside the GrpcServiceApp project. We will add the following two methods to it:

public uint GetCurrentCount()

{

return messageCount;

}

public void UpdateCount(uint count)

{

messageCount = count;

}

5. Next, we will make some changes to the GreeterService class. We will first add the implementation of GetMessageProcessedCount that has an

empty request:

public override Task<MessageCount>

GetMessageProcessedCount(Empty request,

ServerCallContext

context)

{

return Task.FromResult(new MessageCount

{

Count = counter.GetCurrentCount()

Exchanging empty messages 305

});

}

6. Then, we will add the implementation of SynchronizeMessageCount that has an empty response:

public override Task<Empty>

SynchronizeMessageCount(MessageCount request,

ServerCallContext context)

{

counter.UpdateCount(request.Count);

return Task.FromResult(new Empty());

}

So, here is what we've done. Previously, the count of processed messages was incremented every time the SayHello RPC was called, but it only happened if the name attribute was provided. Also, there was no way to retrieve the count without incrementing it.

Now, we have added an RPC specifically to retrieve the count. Because there is only one kind of count, we don't really need to specify anything in the request parameters.

Therefore, we are using an empty request.

We have also added an RPC to update the count. For example, our client might count every message and not just the ones that had the name parameter defined. In this case, it may tell our server what the count should be updated to. And because we only care that this action is successful, we don't need any data in the server response. Therefore the response is empty.

Now, we will modify our client so that it can interact with our new RPCs.

Applying an Empty object on the client

We will now modify our gRCP client console application so that it won't be limited to only a single action. We will be able to choose which RPC to call:

1. At the beginning of the while loop inside the Main method of the Program class of the GrpcClient project, add the following prompt:

Console.WriteLine("Which acion you would like to take?");

Console.WriteLine("1 - get a greeting.");

Console.WriteLine("2 - Receive message count");

306 Using Well-Known Types to Make Protobuf More Handy Console.WriteLine("3 - Update message count");

var action = Console.ReadLine();

2. Then, immediately after this, add the following switch statement:

switch (action)

{

case "1":

break;

case "2":

var couterResponse = await client.

GetMessageProcessed

CountAsync(new Empty());

Console.WriteLine("Message processed count: " +

couterResponse.Count);

break;

case "3":

Console.WriteLine("Please type new message

count:");

var messageCount = Console.ReadLine();

await client.SynchronizeMessageCountAsync(new

MessageCount { Count = uint.Parse(messageCount)

});

Console.WriteLine("Message count successfully

updated to " + messageCount);

break;

default:

Console.WriteLine("Invalid selection option.");

break;

}

3. Then, cut and paste all the lines starting with Console.WriteLine("Please enter the name."); and ending with Console.WriteLine("Response

time UTC: " + reply.ResponseTimeUtc); inside the case "1"

condition.

[image: Image 84]

Exchanging empty messages 307

And this concludes our client setup. We can now launch our applications and verify that both of our new gRPC endpoints work correctly. As the following screenshot demonstrates, we should be able to update the message count to any arbitrary number. Then, this will be the number the server will return to us:

Figure 8.13 – gRPC console output indicating that both of our newly added endpoints are working To recap, you would use an empty request in a situation where there you cannot (or don't want to) apply a specific configuration to your query. For example, this will apply when you would want to retrieve a complete and unfiltered collection of items. Likewise, it would apply if there is only one kind of value that the endpoint can return (only one count value, as per the preceding example, or any other type of unconfigurable data).

An empty response is appropriate when you are performing an operation that creates, updates, or deletes some record or multiple records. All you would want in this case is that the operation was successful. And for this, an absence of errors in the response would be sufficient.

Next, you will learn what to do if the data type of any particular Protobuf field cannot be known in advance. The library of well-known types has an answer for this situation too.

308 Using Well-Known Types to Make Protobuf More Handy Using loosely typed fields in a Protobuf

message

So far, we have only used examples of strongly typed Protobuf definitions, which means that, if we have set the data type of any particular field, it cannot just dynamically change to a different data type. Yes, some data types are compatible with each other. For example, you can send an int32 value to an int64 field. But what you can't do is send a string value where int64 is expected.

But there might be cases where you will need the ability to change the data type of a variable depending on the situation. For example, this could be relevant when your system is expected to interoperate with loosely typed programming languages, such as JavaScript or PHP, or schema-less messaging formats, such as JSON.

Even C# has this capability, despite being a strongly typed language. In C#, there is a data type called dynamic. It can change to any data type depending on requirements.

Luckily, this is possible with gRPC too. There are two data types that allow you to do just that, Any and Value. If a Protobuf field uses the Any data type, its value can be set to any message definition. The Value data type, on the other hand, is used for basic data types, such as string, bool, and numeric types.

Without using either of these data types, you would probably be limited to either using byte arrays or writing excessively complex oneof statements. It will also be up to you to write complete logic to convert the data into its intended types. But these two well-known types have a range of convenient properties that will make your job much easier. We will now apply them both in our application.

Adding Any and Value data types to the gRPC server

We will first add some additional fields to our Protobuf definition. Then, we will modify our server-side logic to demonstrate how these data types are used in C#: 1. Add the following import statements to the greet.proto file in the

GrpcDependencies project:

import "google/protobuf/any.proto";

import "google/protobuf/struct.proto";

2. Now, add the following two fields to the HelloRequest message definition: google.protobuf.Any payload = 3;

google.protobuf.Value additional_payload = 4;

Using loosely typed fields in a Protobuf message 309

3. Add the following message definitions at the bottom of the file:

message IntegerPayload {

uint32 value = 1;

}

message DoublePayload {

double value = 1;

}

message BooleanPayload {

bool value = 1;

}

message CollectionPayload {

repeated string list = 1;

map<string, string> dictionary = 2;

}

4. We will now add the following lines at the beginning of the SayHello method of the GreeterService class of the GrpcServiceApp project:

Console.WriteLine($"Payload type is: {request.Payload?.

TypeUrl ?? "No payload provided"}");

var payloadExtracted = request.Payload is null;

5. Below it, we will add the following condition, which will check whether we have been provided with an integer payload:

if (!payloadExtracted && request.Payload.

Is(IntegerPayload.Descriptor))

{

Console.WriteLine($"Extracted the following integer

value from the payload: {request.Payload.Unpack

<IntegerPayload>().Value}");

Console.WriteLine($"Extracted the following integer

value from the additional payload: {Convert.ToInt32

310 Using Well-Known Types to Make Protobuf More Handy (request.AdditionalPayload.NumberValue)}");

payloadExtracted = true;

}

6. Then, we will add the following condition, which will check whether we have received a double payload:

if (!payloadExtracted && request.Payload.TryUnpack

<DoublePayload>(out var doublePayload))

{

Console.WriteLine($"Extracted the following double

value from the payload: {doublePayload.Value}");

Console.WriteLine($"Extracted the following double

value from the additional payload:

{request.AdditionalPayload.NumberValue}");

payloadExtracted = true;

}

7. After this, we will add the following condition, which will check whether we received a Boolean payload:

if (!payloadExtracted && request.Payload.TryUnpack

<BooleanPayload>(out var booleanPayload))

{

Console.WriteLine($"Extracted the following Boolean

value from the payload: {booleanPayload.Value}");

Console.WriteLine($"Extracted the following Boolean

value from the additional payload:

{request.AdditionalPayload.BoolValue}");

payloadExtracted = true;

}

Using loosely typed fields in a Protobuf message 311

8. Finally, there is another condition, to check for a collection payload: if (!payloadExtracted && request.Payload.Is

(CollectionPayload.Descriptor))

{

var primaryPayload =

request.Payload.Unpack<CollectionPayload>();

var secondaryPayload =

request.AdditionalPayload.StructValue;

foreach (var item in primaryPayload.List)

{

Console.WriteLine($"Item extracted from the list

in the primary payload: {item}");

}

foreach (var item in primaryPayload.Dictionary)

{

Console.WriteLine($"Item extracted from the

dictionary in the primary payload: key - {item.

Key}, value - {item.Value}");

}

foreach (var field in secondaryPayload.Fields)

{

Console.WriteLine($"Item extracted from the

fields in the secondary payload: key - {field.

Key}, value - {field.Value.StringValue}");

}

}

312 Using Well-Known Types to Make Protobuf More Handy In this example, we are processing Any and Value types simultaneously for the sake of simplicity. We had additional two fields added to the HelloRequest message –

payload and additional_payload. The former is of the Any type, while the latter is of the Value type. Please note that, while the Any data type comes from the any.

proto file of the google/protobuf namespace, the Value data type comes from the struct.proto definition.

We have added some message definitions purely for the sake of demonstrating how the Any data type works, and we have applied multiple conditional statements to it to demonstrate the different ways this data type can be read.

In its original state, the Any data type has two fields – TypeUrl and Value. TypeUrl is a string that contains the fully qualified name of the message definition that it holds. The Value field holds the actual data as a collection of bytes.

In C#, we are extracting the data from the Any data type by calling the Unpack<T> method on it, where T is the type that we are trying to extract. We can call Unpack directly if we know the data type we expect, or we can call TryUnpack<T> if we aren't sure about the data type. We can also check whether or not the field contains a message of a particular type by calling the Is method on the Any data type, which takes the static Descriptor property of the message type as its parameter.

The Value field works differently. To extract a specific data type from it, we need to call a corresponding static method on the class that represents the Value type in C#. The following options are available:

• NullValue: Represents null

• NumberValue: Equivalent to double

• StringValue: Represents string

• BoolValue: Represents bool

• ListValue: Represents a collection of Value items

• StructValue: Struct data type, which is equivalent to a dictionary

In this context, the Struct data type is very different from the struct keyword available in C#. The Struct data type from the Google.Protobuf library is a collection of dynamically typed fields, where the field name (which can also be seen as a dictionary key) is a string, while the field value is the Value data type. In the preceding example, we are unpacking a Struct object and outputting all of its keys and values into the console.

Using loosely typed fields in a Protobuf message 313

Our server-side part of the application is now complete. Next, we will modify our client to populate the payload and additional_payload fields in the HelloRequest message.

Populating the Any and Value fields from the gRPC

client

We will add some logic to our gRPC client console application to populate the Any and Value fields. Then, we will launch both of our applications to see whether the server interprets the data correctly:

1. In the Main method of the Program class of the GrpcClient application, locate the following lines:

Console.WriteLine("Please enter the name.");

var name = Console.ReadLine();

2. Underneath them, insert the following:

Console.WriteLine("Please enter the payload type:");

Console.WriteLine("1 - integer");

Console.WriteLine("2 - double");

Console.WriteLine("3 - boolean");

Console.WriteLine("4 - collection");

var payloadType = Console.ReadLine();

Any payload = null;

Value additionalPayload = null;

3. Immediately after this, insert the following switch block:

switch (payloadType)

{

case "1":

payload = Any.Pack(new IntegerPayload() { Value =

1 });

additionalPayload = Value.ForNumber(1);

break;

case "2":

314 Using Well-Known Types to Make Protobuf More Handy payload = Any.Pack(new DoublePayload() { Value =

1.5 });

additionalPayload = Value.ForNumber(1.5);

break;

case "3":

payload = Any.Pack(new BooleanPayload() { Value =

true });

additionalPayload = Value.ForBool(true);

break;

case "4":

break;

default:

Console.WriteLine("No payload value provided.");

break;

}

4. Then, insert the following logic under the case "4" statement: var collection = new List<string> { "item1", "item2",

"item3" };

var dictionary = new Dictionary<string, string> { { "1",

"item1" }, { "2", "item2" }, { "3", "item3" } }; var collectionPayload = new CollectionPayload();

collectionPayload.List.Add(collection);

collectionPayload.Dictionary.Add(dictionary);

payload = Any.Pack(collectionPayload);

additionalPayload = Value.ForStruct(new Struct

{

Fields =

{

["1"] = Value.ForString("item1"),

["2"] = Value.ForString("item2")

}

});

Using loosely typed fields in a Protobuf message 315

5. Now, replace the call to the client.SayHelloAsync method with the following: var reply = await client.SayHelloAsync(

new HelloRequest

{

Name = name,

RequestTimeUtc =

Timestamp.FromDateTime(DateTime.

UtcNow),

Payload = payload,

AdditionalPayload = additionalPayload

}, deadline: DateTime.UtcNow.AddMinutes(1));

Let's quickly overview what we have done. To populate a field that has the Any data type, what you need to do is call the static Pack method on the Any class. Any class that implements the IMessage interface (which would be any class that represents a Protobuf message definition) would be a suitable parameter.

To populate a field of Value type, we need to call a static method on the Value class that corresponds to this data type. The following methods are available:

• ForNull: Allows you to set the field to null

• ForNumber: Allows you to set the field to double

• ForString: Allows you to set the field to string

• ForBool: Allows you to set the field to bool

• ForList: Allows you to set the field to a collection of Value items

• ForStruct: Allows you to use the Struct data type in the field

We now know both how to write data into loosely typed Protobuf fields and how to then read it from them. If we will now launch our applications, we will be able to see whether the data sent by the client gets correctly interpreted by the server.

[image: Image 85]

[image: Image 86]

316 Using Well-Known Types to Make Protobuf More Handy

From the following screenshot of the server-side console, we can see that we have been able to extract the correct types of payload from both the Any and Value fields: Figure 8.14 – gRPC server has correctly extracted data from the Any and Value fields The following screenshot demonstrates that, when we populate our loosely typed payload fields with collections of items, the server was also able to successfully extract the correct data from them:

Figure 8.15 – Collections from the Any and Value fields were also correctly processed We have now completed the overview of loosely typed fields in Protobuf messages. Let's now summarize everything we've covered in this chapter.

Summary 317

Summary

In this chapter, you have learned that it's possible to use nullable data types in Protobuf messages. Even though nullable data types aren't natively available in Protobuf, they can be added to it by importing wrapper data types from Google's library of well-known types.

You have also learned that although there is no native support for time and duration data in Protobuf, there are Timestamp and Duration data types that have been designed specifically for this purpose. These data types need to be imported into your Protobuf definitions individually.

You now also know that although it is possible to create a Protobuf message definition with no fields, the library of well-known types already has a standardized message definition specifically to be used as an empty object. Unsurprisingly, it is called Empty.

We have also covered two ways you can use loosely typed fields in Protobuf. There is the Any data type, which you can use to assign any arbitrary message definition to a field.

There is also the Value type, which allows you to assign any primitive type to a field.

With the help of the examples that we used, you can probably now appreciate how much well-known types simplify the process of writing the code. With the help of various helper methods, there is a convenient way you can convert any of these data types into objects that you can use in your code.

And this concludes the chapter on well-known types. In the next chapter, we will have a detailed look at how to enable and disable encrypted communication while using gRPC, which is an important topic from the perspective of cybersecurity. You will learn how to use any custom TLS certificate in gRPC, as well as create your own.

Questions

1. Which proto file do you need to import to use the BoolValue data type?

A. google/protobuf/boolvalue.proto.

B. google/protobuf/value.proto.

C. goggle/protobuf/wrappers.proto.

D. google/protobuf/wellknowntypes.proto.

318 Using Well-Known Types to Make Protobuf More Handy 2. Which of the following does not exist among well-known types in Protobuf?

A. Int32Value.

B. Int64Value.

C. Fixed64Value.

D. UInt32Value.

3. Which of the following statements is incorrect?

A. Duration is equivalent to DateTimeOffset.

B. Timespan is equivalent to DateTimeOffset.

C. Timespan is equivalent to DateTime.

D. Duration is equivalent to TimeSpan.

4. Which of these scenarios is suitable for using the Empty message in an RPC

response?

A. When updating data.

B. When inserting data.

C. When deleting data.

D. All of the above.

5. How would you unpack a string value from a field of Any type?

A. Any.SringValue.

B. Any.ForString.

C. The Any data type cannot store strings.

D. Any.Unpack<string>.

Further reading 319

Further reading

• Protocol Buffers well-known types: https://developers.google.com/

protocol-buffers/docs/reference/google.protobuf

• google/protobuf/wrappers.proto Protobuf definition: https://

github.com/protocolbuffers/protobuf/blob/master/src/

google/protobuf/wrappers.proto

• google/protobuf/empty.proto Protobuf definition: https://github.

com/protocolbuffers/protobuf/blob/master/src/google/

protobuf/empty.proto

• google/protobuf/timestamp.proto Protobuf definition: https://

github.com/protocolbuffers/protobuf/blob/master/src/

google/protobuf/timestamp.proto

• google/protobuf/duration.proto Protobuf definition: https://

github.com/protocolbuffers/protobuf/blob/master/src/

google/protobuf/duration.proto

• google/protobuf/any.proto Protobuf definition: https://github.com/

protocolbuffers/protobuf/blob/master/src/google/protobuf/

any.proto

• google/protobuf/struct.proto Protobuf definition: https://github.

com/protocolbuffers/protobuf/blob/master/src/google/

protobuf/struct.proto

9

Securing gRPC

Endpoints in Your

ASP.NET Core

Application with

SSL/TLS

In this chapter, we will learn how to secure your ASP.NET Core gRPC service application with SSL/TLS certificates. We briefly touched on this topic in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core, where we saw how to use the .NET command-line interface (CLI) to create a self-signed development certificate. We also saw how this allows you to map your hosted application to a port that is accessible via HTTPS.

However, a self-signed development certificate is not something you would want to use in production. In a real-life scenario, you would want to protect your application with a bespoke certificate that has been issued by a recognized certification authority. This chapter will cover how such certificates work in detail.

322 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

We will cover the following topics:

• Configuring the gRPC client and server for unencrypted communication

• Creating and trusting a self-signed certificate

• Applying certificate authentication on the gRPC client and server

By the end of this chapter, you will have learned how an ASP.NET Core gRPC service application can be hosted for both HTTP/2 and HTTP/1.1 with no TLS enabled. You will also have learned how to create and sign your own TLS certificate with custom data.

Finally, you will have learned how to use any custom certificate to secure your gRPC

service application.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows or Linux operating system (OS) (or a Windows or Linux virtual machine (VM) if you are using macOS)

• A supported integrated development environment (IDE) or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)

• The .NET 5 software development kit (SDK)

Note

Due to the lack of Application-Layer Protocol Negotiation (ALPN) support on macOS, it won't be possible to secure HTTP/2 ports with TLS on Macs.

Therefore, if you are a Mac user, you will not be able to follow some of the instructions from this chapter. However, you will be able to implement the code samples if you set up either a Windows or Linux VM on your Mac.

The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core. All of the code samples used in this chapter can be found at https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-09.

Please visit the following link to check the CiA videos: https://bit.ly/3DVcy2F

Configuring the gRPC client and server for unencrypted communication 323

Configuring the gRPC client and server for

unencrypted communication

Before we start talking about the process of securing gRPC endpoints with a custom certificate, we will cover the base case – that is, how to set up your application to run without any such certificate. This is useful for real-life scenarios, as even though gRPC

was originally intended to primarily run over TLS, there are situations where using a certificate just adds unnecessary overhead. For example, if a gRPC endpoint represents a microservice that is only ever hosted on your internal network and is never exposed to the public internet, encrypting the communication within it (and going through the entire process of obtaining a valid certificate from a certification authority) might not be necessary.

Likewise, it's not necessary to use encryption when you are writing the software on your development machine. Even though a project created from the gRPC service

.NET template will have encryption enabled by default and will work with a self-signed development certificate created by the dotnet CLI, it will not work on Mac. An attempt to bind an HTTPS port for a gRPC endpoint will fail. Therefore, if you intend for your software to run on any development machine, it makes sense to apply additional configuration to your project so that it doesn't even attempt to use HTTPS when development mode is applied.

But before we go through the process of configuring gRPC for communication without TLS, let's briefly remind ourselves what TLS is used for.

The role of TLS certificates

TLS stands for Transport Layer Security. It is a successor to the Secure Sockets Layer (SSL) protocol. Even though SSL is now deprecated and isn't being used to secure modern applications, it is very common to hear the terms TLS and SSL used interchangeably. Even some parts of the inbuilt .NET libraries mention SSL where it should more accurately be TLS. This is why – even though it is technically incorrect – we have included SSL in some headings within this chapter.

Server certificates

TLS is a protocol that is designed to encrypt communication between the client and the server. In TLS, the data is transferred as a collection of seemingly random bytes that only the intended recipient can decrypt. If the message is intercepted, it would be meaningless to the entity that has intercepted it. This is why TLS (and the corresponding HTTPS, which stands for Hypertext Transfer Protocol Secure) is always used for the transfer of sensitive information such as personal details.

324 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

The encryption for TLS is achieved by using cryptographic keys. There are two types of keys that are stored by the server application – a public key and a private key. A public key is given to the client that wants to communicate with the server. The client can then use it to encrypt the data. But the same key cannot be used to decrypt the data. This can only be done by the private key, which the server application never shares with anyone.

The keys have been designed in such a way that it's impossible to calculate the private key even if you know the public key. And this is what makes the communication channel secure.

Now that we understand how encryption keys are used, we can assess the role of the certificate. No TLS communication is possible without one. The digital certificate (also known as a public key certificate) is a digital document that stores the public key and proves its ownership. The certificate includes information such as the hostname, which tells the connected client that the certificate definitely belongs to the correct server and hasn't been forged.

And here is where the certification authority (CA) has its role to play. A CA is a third-party organization that is universally recognized as a valid provider of certificates. The reason why a digital signature from such an organization is necessary is that it is not difficult to create your own digital signature. So, if the client connects to an endpoint that is protected by a self-signed certificate, there is no guarantee that such a certificate wasn't forged by a malicious agent. But if the certificate has been signed by a CA, it is guaranteed that you are dealing with a real certificate that has been issued specifically to protect the domain that you are connecting to.

Client certificates

So far, we have covered server-side certificates. But client-side certificates can also be used in TLS. Their purpose, however, is slightly different. And, unlike server-side certificates, they don't necessarily need to be signed by a third-party CA.

Client-side certificates contain information about the client that is trying to connect to the server. They are used for authentication to prove that the client is what it says it is.

They are rarely used for browser-based clients because such clients store authentication information in the browser cache and cookies. However, client certificates are useful with remote procedure calls (RPCs).

Configuring the gRPC client and server for unencrypted communication 325

In this chapter, we will cover both server-side and client-side certificates. But by now, you can probably appreciate that despite the benefits of enabling encryption, TLS certificates create quite a lot of overhead in terms of setup. This means they would affect the performance of your application, as additional computation would be required to encrypt and decrypt messages. This is why it is useful to know how to run your applications without using TLS, which we will demonstrate in the next section.

Setting up a gRPC service application

In this section, we will set up a gRPC service application that will be accessible via both HTTP/1.1 and HTTP/2 without encryption. Our application will be expected to work on any OS, including macOS.

The reason why we need both HTTP/1.1 and HTTP/2 access is that we will be exposing our proto files to the clients over standard REST API endpoints, and these endpoints will require HTTP/1.1 to function. Please complete the following steps:

1. Run the following command to create a project based on the gRPC service template: dotnet new grpc -o UserInfoManager

2. Inside the project folder that was created, open the Protos folder and create a users.proto file with the following content:

syntax = "proto3";

package users;

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

service UserManager {

rpc GetAllUsers (google.protobuf.Empty) returns

(stream UserInfo);

}

message UserInfo {

string first_name = 1;

string surname = 2;

string gender = 3;

google.protobuf.Timestamp date_of_birth = 4;

string nationality = 5;

AddressInfo address = 6;

326 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

}

message AddressInfo {

string first_line = 1;

string town = 2;

string postcode_or_zip_code = 3;

string country = 4;

}

3. The gRPC service application will deliver personal user information to the client as a stream. This data will originate from the UserDataCache class inside the UserInfoManager project. So, we will place a UserDataCache.cs file into the root of the project folder. The initial file structure will be as follows: using System;

using System.Collections.Generic;

using Google.Protobuf.WellKnownTypes;

using Users;

namespace UserInfoManager

{

public class UserDataCache

{

private readonly List<UserInfo> users;

public UserDataCache()

{

users = new List<UserInfo>();

}

public IEnumerable<UserInfo> GetUsers()

{

return users;

}

}

}

Configuring the gRPC client and server for unencrypted communication 327

4. We can now add as many entries to the list of users as we want. To do so, we can start adding entries at the end of our constructor block in the following way: users.Add(new UserInfo

{

FirstName = "John",

Surname = "Smith",

Gender = "M",

DateOfBirth =

Timestamp.FromDateTime(DateTime.UtcNow

.AddYears(-20)),

Nationality = "English",

Address = new AddressInfo

{

FirstLine = "51 Park Lane",

PostcodeOrZipCode = "SW2 5BL",

Town = "London",

Country = "UK"

}

});

5. We can now add the UserInfoService.cs file to the Services folder inside our project. The content of the file will be as follows:

using System.Threading.Tasks;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Users;

namespace UserInfoManager.Services

{

public class UserInfoService :

UserManager.UserManagerBase

{

private readonly UserDataCache userDataCache;

public UserInfoService(UserDataCache

userDataCache)

{

328 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

this.userDataCache = userDataCache;

}

public override async Task GetAllUsers(Empty

request, IServerStreamWriter<UserInfo>

responseStream, ServerCallContext context)

{

foreach (var item in

userDataCache.GetUsers())

{

await responseStream.WriteAsync(item);

}

}

}

}

6. Now, we need to register all of the components that we have added. First, we will need to add the following markup to the UserInfoManager.csproj file:

<ItemGroup>

<Protobuf Include="Protos\users.proto"

GrpcServices="Server" />

</ItemGroup>

7. Then, we will add the following statement to the ConfigureServices method of the Startup class. Alternatively, if we are using .NET 6 project template, we will add this statement to Program.cs file before the Build event and replace services with builder.Services:

services.AddSingleton<UserDataCache>();

8. Finally, we will add the following statement inside the call to app.UseEndpoints in the Startup class (or in the main body of Program.cs file if we are using

.NET 6, replacing endpoints with app):

endpoints.MapGrpcService<UserInfoService>();

Configuring the gRPC client and server for unencrypted communication 329

We have now registered our custom endpoints and our application is already pre-configured to use gRPC without TLS. To verify this, we can open the

appsetting.json file. Inside the Kestrel section, it will have a section called EndpointDefaults. This section will have an entry called Protocols, which should be set to Http2. This will mean that both HTTP and HTTPS ports will work with gRPC.

However, there are some caveats.

This configuration wouldn't work on macOS, as it will still attempt to bind an HTTPS

port for gRPC and fail. As a workaround, you can remove the HTTPS URL from the launchSettings.json file. But there is an additional caveat.

This time, we have decided to share Protobuf definitions with the clients via REST API endpoints. And in order for these to work, we need to have HTTP/1.1 available. To do so, we could just change the Protocols value to Http1AndHttp2. But there is an additional caveat to this. gRPC on ASP.NET Core is set up in such a way that if you use the Http1AndHttp2 option, both protocol versions will work with the HTTPS

endpoint. However, any HTTP calls will use HTTP/1.1, which will make the gRPC

endpoints unreachable. Therefore, we will need to apply some additional configurations to accommodate these caveats.

Removing TLS on both HTTP/1.1 and HTTP/2

The best way to enable both HTTP/1.1 and HTTP/2 communication in your ASP.NET

Core application is to explicitly assign a specific protocol to each specific port. If you assign only HTTP/1.1 to a port, you won't be able to use this port for gRPC. However, it will still be fully accessible by any HTTP client, including your browser. If you assign only HTTP/2 to a specific port, this port will not be accessible by normal HTTP clients. But you will be able to enable unencrypted gRPC communication via this port.

Configuring different ports for different protocol versions can be done via configuration.

But we can also do it directly in the code, which will override the configuration. In our case, we will use port 5000 for unencrypted gRPC communication. And we will dedicate port 5002 to unencrypted HTTP communication. To do so, we will open the Program class inside the UserInfoManager project and replace the CreateHostBuilder method with the following. If you are using .NET 6, the ConfigureKestrel

method will need to be placed after builder.WebHost.UseKestrel call in

Program.cs file.:

public static IHostBuilder CreateHostBuilder(string[] args) =>

Host.CreateDefaultBuilder(args)

.ConfigureWebHostDefaults(webBuilder =>

{

330 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

webBuilder.ConfigureKestrel(options =>

{

options.ListenLocalhost(5002, o =>

o.Protocols =

HttpProtocols.Http1);

options.ListenLocalhost(5000, o =>

o.Protocols =

HttpProtocols.Http2);

});

webBuilder.UseStartup<Startup>();

});

To make it work, we need to include the following using statement in the class: using Microsoft.AspNetCore.Server.Kestrel.Core

We have added two listeners, both of which are listening on the default IP address of the host machine, which is 127.0.0.1 and is also associated with the localhost domain.

This is done by calling the ListenLocalhost method. And then, we are associating ports 5002 and 5000 with HTTP/1.1 and HTTP/2, respectively.

Please note that our setup would still work if we associated Http1AndHttp2 with port 5002. In this case, the unencrypted request would be routed to HTTP/1.1 by default.

However, it is mandatory to restrict the gRPC port to HTTP/2 to prevent the same from happening.

Next, we will create a REST API endpoint to demonstrate why both HTTP/1.1 and HTTP/2 ports had to be enabled in our gRPC service application in the previous sections.

Exposing Protobuf definitions to clients

Our application will be exposing its Protobuf definitions so that the clients can always get up-to-date information on the schema that the server expects. If you are using Visual Studio on Windows as your IDE, you will be able to automate the process of synchronizing your client with the service application, as will be demonstrated later. But first, we will need to perform the following steps:

1. Add the following line to the ConfigureServices method of the Startup class of your application (or relevant section of Program.cs file if you are using

.NET 6 template):

services.AddControllers();

Configuring the gRPC client and server for unencrypted communication 331

2. Insert the following statement into the app.UseEndpoints call:

endpoints.MapControllers();

3. Create a Controllers folder inside the project and place a

ProtosController.cs file into the folder. The content of the file should be as follows:

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Mvc;

namespace UserInfoManager.Controllers

{

[Route("[controller]")]

[ApiController]

public class ProtosController : ControllerBase

{

private readonly string baseDirectory;

public ProtosController(IWebHostEnvironment

webHost)

{

baseDirectory = webHost.ContentRootPath;

}

}

}

332 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

4. Add the following method to the Controller class:

[HttpGet("")]

public ActionResult GetAll()

{

return

Ok(Directory.GetFiles($"{baseDirectory}/Protos")

.Select(Path.GetFileName));

}

5. Then, add the following method:

[HttpGet("{protoName}")]

public async Task<ActionResult> GetFileContent(string

protoName)

{

var filePath =

$"{baseDirectory}/Protos/{protoName}";

if (System.IO.File.Exists(filePath))

return Content(await

System.IO.File.ReadAllTextAsync(filePath));

return NotFound();

}

We have now added two endpoints. One of them lists all of the available proto files in our application. The other one returns the content of a selected proto file as plain text. Both of them use the GET HTTP verb. Therefore, they both can be accessed via a normal browser.

We can now launch our application by executing the dotnet run command inside the project folder. If we have configured everything correctly, the following content is expected to be displayed if you enter http://localhost:5002/protos/users.

proto in your browser address bar:

[image: Image 87]

Configuring the gRPC client and server for unencrypted communication 333

Figure 9.1 – The content of the users.proto file displayed in a browser window By performing this action, we have verified that we can use this endpoint to extract the Protobuf definition and build a client with it. And this is precisely what we will do next.

Keep this application running, as you will need it to build the client.

Building the client for gRPC communication

Execute the following command to build a new project from the Console

Application template:

dotnet new console -o UserManagementClient

Your next action will depend on which IDE you use. At the time of writing, only Visual Studio for Windows has the option of pulling a gRPC reference from the server and building the client based on it. However, if you use a different IDE, a similar option may be available for it.

[image: Image 88]

[image: Image 89]

334 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Configuring the gRPC client via a service reference

The following series of steps apply if the option of adding a gRPC service reference is available for the IDE that you are using. Depending on the IDE, the exact labels in the context menu may vary:

1. Right-click on the UserManagementClient project. Then, click Add and select Service Reference…, as demonstrated in the following screenshot:

Figure 9.2 – Selecting the Service Reference… option in the context menu

2. Select gRPC as the service type, as demonstrated in the following screenshot: Figure 9.3 – Selecting the gRPC service type

[image: Image 90]

Configuring the gRPC client and server for unencrypted communication 335

3. Select the URL option, enter http://localhost:5002/protos/users.

proto into the field, and select Client as the role, as demonstrated in the following screenshot:

Figure 9.4 – The final setup screen for the service reference

If you then click Next and wait for the process to finish, you should expect a copy of the users.proto file to be generated inside the Protos folder in the UserManagementClient project. At this point, all necessary NuGet

packages will be installed, and the proto file will be automatically registered in your UserManagementClient.csproj file.

If your IDE or code editor doesn't have the ability to import gRPC service references, then you will have to go through this process manually. We will describe how to do this in the next section.

Configuring the gRPC client manually

If you can't auto-generate gRPC client bindings based on a published web service definition, you can follow these steps to set up your client:

1. From the UserManagementClient project folder, run the following commands to install all of the necessary NuGet packages:

dotnet add UserManagementClient.csproj

 package Grpc.Net.ClientFactory

dotnet add UserManagementClient.csproj

 package Google.Protobuf

dotnet add UserManagementClient.csproj

 package Grpc.Tools

336 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

2. Create a Protos folder inside the UserManagementClient project

folder and copy the users.proto file into it from the Protos folder of the UserInfoManager project.

3. Add the following markup to the UserManagementClient.csproj file:

<ItemGroup>

<Protobuf Include="Protos\users.proto"

GrpcServices="Client">

<SourceUri>http://localhost:5000/protos/users.proto

</SourceUri>

</Protobuf>

</ItemGroup>

And that's it – our client project now has all of the required dependencies. And our project setup is identical to what it would have been if we had auto-generated the binding from the service reference.

Please note that the Protobuf reference inside the project file contains the SourceUri element. This element holds the address of the original service reference. Other than that, it can be ignored.

We are now ready to complete our gRPC client setup and make an unencrypted call from it to our gRPC server.

Adding the remaining client logic

Our client project consists of a single functional class: Program. This is the class that we will need to modify:

1. Ensure that the following using statements are referenced by our class: using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using System;

using System.Threading.Tasks;

using Users;

Configuring the gRPC client and server for unencrypted communication 337

2. Change the Main method signature to the following:

static async Task Main()

3. Replace the content of the Main method with the following:

Console.WriteLine("Please enter the gRPC service

URL.");

var url = Console.ReadLine();

using var channel = GrpcChannel.ForAddress(url);

var client = new

UserManager.UserManagerClient(channel);

using var call = client.GetAllUsers(new Empty());

while (await call.ResponseStream.MoveNext())

{

}

Console.ReadKey();

Insert the following code into the while loop:

var user = call.ResponseStream.Current;

Console.WriteLine("User details extracted");

Console.WriteLine($"First name: {user.FirstName}");

Console.WriteLine($"Surname: {user.Surname}");

Console.WriteLine($"Gender: {user.Gender}");

Console.WriteLine($"Date of birth:

{user.DateOfBirth.ToDateTime():yyyy-MM-dd}");

Console.WriteLine($"Nationality: {user.Nationality}");

Console.WriteLine($"Address:

{user.Address.FirstLine}");

Console.WriteLine($"Postcode or Zip code:

{user.Address.PostcodeOrZipCode}");

Console.WriteLine($"Town: {user.Address.Town}");

Console.WriteLine($"Country: {user.Address.Country}");

Console.WriteLine(string.Empty);

[image: Image 91]

338 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

The console application will prompt us to enter the URL of the gRPC server endpoint.

And if there is an unencrypted endpoint that we can use, the URL will work even if we use HTTP instead of HTTPS.

Prior to .NET 5, there was an additional configuration that you needed to apply on the gRPC client. Before you initialized the client, you needed to add the following statement: AppContext.SetSwitch("System.Net.Http.SocketsHttpHandler

.Http2UnencryptedSupport", true);

But .NET 5 has removed the need to do this. On .NET 5 and later, unencrypted URLs will work by default, as long as the server supports them. We can test this by launching our console application and entering http://localhost:5000 as our URL. If you remember, 5000 is the port number we've assigned to HTTP/2 on the server. And, as can be seen in the following screenshot, it will work without us having to apply any additional parameters:

/

Figure 9.5 – The gRPC client was able to successfully make an unencrypted call And because we have overridden the default configuration, there is no attempt by the server to apply TLS on any HTTP/2 port. This means that our application is expected to work equally well on any OS, including macOS.

But even though unencrypted communication is perfect for an OS-independent development environment, it is not something you would want to do in most production scenarios. This is why you need to know how to apply digital certificates to your applications. But before you can do this, we need to create a suitable certificate, and this is what we will cover next.

Creating and trusting a self-signed certificate 339

Creating and trusting a self-signed certificate

There are many different ways of creating TLS certificates for your web application. But regardless of the method you use, the principles remain the same.

For gRPC, all the principles of applying a certificate are identical to those for an ordinary web application that is accessible via HTTP/1.1. We even use the same kind of file to encrypt communication between the endpoints.

However, in an ASP.NET application, the application of the certificate differs depending on the kind of server you want to host your application on. Applying a certificate on IIS

would be different from applying one on Kestrel. But even on the same type of server, there are still different ways to apply a certificate. For example, just like the HTTP port mappings we covered in the previous section, you can reference the certificate directly in the code, or you can reference it in the application settings.

Covering all of the different ways of applying certificates on all types of servers is beyond the scope of this chapter. Here, we will show a limited number of examples, but the general principles will be the same, regardless of how you choose to configure the certificates.

The basics of a TLS certificate

In this chapter, we will not go into the advanced details of how TLS certificates work.

However, we will cover enough information for you to be confident applying certificates on your hosted web applications and troubleshooting the most frequent problems with them.

In order for your application to work with a TLS certificate, both the client machine and the server machine need to trust it. In our case, we will probably be running both the client and the server on the same machine, so getting the machine to trust any specific certificate will make the certificate trusted by both applications.

Trusting a certificate is important. By default, if an untrusted certificate is used, the client applications will either warn you when an attempt is made to connect to an endpoint protected by such a certificate, or it will refuse to connect. This is done to make sure that you aren't sharing data with potentially malicious applications.

In general, there are two ways of trusting a certificate. If the certificate is signed by a recognized CA, it will be trusted automatically. However, if you want to use a self-signed certificate that you have created yourself, you can also configure it to be trusted. In this scenario, it needs to be explicitly added to the list of trusted certificates. And this needs to happen for both the client and the server. Usually, this is done at the machine level, but it's also possible to get a specific application to trust a specific certificate.

340 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

A certificate doesn't just store the encryption keys and the signature of the relevant CA.

It also contains metadata, such as the name of the host that the certificate was assigned to, the certificate's expiry date, a hexadecimal string representing the certificate's identity (known as a thumbprint), the certificate's common name (known as a subject), and other pieces of information. These metadata fields can be used to confirm that the certificate is still valid and hasn't been revoked.

Usually, your server certificate can be exported into a file with the .pfx extension. This file contains a full certificate chain with all the metadata, but it also contains both the public and private keys. This is why such a file needs to be securely stored on the server and never shared with a client.

There are also other file extensions associated with TLS certificates, for example, the .cer and .crt extensions represent a file that contains a public key and the minimum amount of metadata needed to prove that the certificate is valid. This file can be shared with clients.

You can have many different certificates on the server and choose a specific one to encrypt your web application. Next, we will have a look at how you can create and trust a self-signed certificate.

Trusting a default development certificate

In Chapter 1, Creating a Basic gRPC Application on ASP.NET Core, we looked at an example of how to trust a development certificate that comes with the .NET SDK.

If you are on either a Windows or Linux machine, all you have to do is run the following command:

dotnet dev-certs https --trust

On Linux, there are additional steps you will need to apply to trust a development certificate. Those are distribution-specific – that is, the steps you will need to take on Fedora would be different from those you would need to follow on Ubuntu. And as there are several different Linux distributions available, covering them all would be beyond the scope of this chapter. However, the links to the relevant documentation will be provided in the Further reading section.

Creating and trusting a self-signed certificate 341

If you want to configure your application to use a specific certificate file, you can also do this with a development certificate. The dotnet dev-certs tool allows you to export the certificate into files of different formats. For example, this is a command you can use to export the certificate into a .pfx file that will reside inside the folder that you are running the command from:

dotnet dev-certs https -ep UserInfoManager.pfx -p password

The -ep parameter represents the path to the file. The -p parameter represents a certificate password. It is recommended that your .pfx file is protected by a strong password so that only approved applications can use it.

But the dotnet dev-certs tool abstracts away some important steps of certificate creation. It applies some default settings, such as assigning the certificate to the localhost domain. With these settings, the certificate will only be valid if you use the specified domain. For example, it will not work if you try to send an HTTPS request to the 127.0.0.1 IP address directly, which is the IP address that the localhost domain represents. There are some other tools you can use to apply even more customizations to a certificate and even create a production-grade certificate.

Creating a self-signed certificate on Windows using

PowerShell

If you are a Windows user, the easiest way to create a self-signed certificate is via PowerShell. To do so, you will need to run PowerShell as an administrator. Then, we can navigate to the folder that we want to export the certificate into and apply the following steps:

1. Create a new certificate by executing the following command:

New-SelfSignedCertificate -DnsName "localhost",

"localhost" -CertStoreLocation "cert:\LocalMachine\My"

-NotAfter (Get-Date).AddYears(20) -FriendlyName

"localhost-client" -KeyUsageProperty All -KeyUsage

CertSign, CRLSign, DigitalSignature

[image: Image 92]

342 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

2. This will create a certificate in the machine storage and associate it with the localhost domain. The certificate will be known under the name of

localhost-client and will be valid for 20 years from today. If the command executes successfully, we will get the certificate thumbprint output on the screen: Figure 9.6 – The certificate thumbprint and subject

Creating and trusting a self-signed certificate 343

3. We will need the thumbprint for later. But for now, let's create the certificate password by executing the following command:

$password = ConvertTo-SecureString -String "password"

-Force –AsPlainText

4. This command will create a password object with the value of password and store it as plain text. Next, we will export the certificate into a .pfx file by executing the following command. Please note that you need to replace the {thumbprint}

placeholder with the actual thumbprint. With the output we received previously, this would be 6682C8B7A8D8C600AB74B8DE3A7726B2E72C358E. But your

own output will be unique:

Get-ChildItem -Path cert:\localMachine\my\{thumbprint}

| Export-PfxCertificate -FilePath UserInfoManager.pfx

-Password $password

5. We will also create a certificate file, which we can then import to our trusted root folder:

Export-Certificate -Cert

cert:\localMachine\my\{thumbprint} -FilePath

UserInfoManager.crt

6. We will then trust the certificate by importing it into a trusted root. This can be done via the following command:

Import-Certificate -FilePath UserInfoManager.pfx -

CertStoreLocation 'Cert:\LocalMachine\Root'

We have now created a .pfx file with the same name that we previously created by running the dotnet dev-certs command. We have also added the certificate to our trusted root. Now, we will briefly go through the process of creating a self-signed certificate on the Unix OS, which applies to both macOS and Linux.

344 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Creating a self-signed certificate on Unix using

OpenSSL

OpenSSL is a command-line tool that is available on any OS, including Windows.

Normally, if you are using Git for source control, OpenSSL is already included with it. You can verify its presence by typing the following command in your terminal: openssl help

If you don't happen to have it installed, you can obtain the documentation on how to install it from its official GitHub repository, which can be found at https://github.

com/openssl/openssl.

Once the tool is available, we can complete the following steps to create a self-signed certificate:

1. Execute the following command to create the certificate and the key. Please note that the .crt and .key filenames should be the same as the name of the domain that you are assigning the certificate to:

openssl req -x509 -newkey rsa:4096 -sha256 -days 365

 -nodes

-keyout localhost.key -out localhost.crt -subj

"/CN=localhost" -extensions v3_ca -extensions v3_req

2. You will need to enter the certificate password when prompted. Then, export the certificate chain into a .pfx file by using the following command:

openssl pkcs12 -export -out UserInfoManager.pfx -inkey

localhost.key -in localhost.crt

If you are on Windows, trusting the certificate can be done by running the same Import-Certificate PowerShell command we described previously. However,

instructions for how to trust certificates on Unix-based OSes will be provided in the Further reading section.

In the next section, we will go over the process of applying a specific trusted .pfx file to enable TLS on the gRPC server.

Creating and trusting a self-signed certificate 345

Applying a certificate on ASP.NET Core

Note

The remaining instructions in this chapter cannot be implemented on macOS.

Therefore, if you are using a Mac as your development machine, you will

need to set up either a Linux or a Windows VM on it to be able to follow the instructions.

We will now modify our gRPC server application so that it will apply a custom self-signed certificate that we have created and subsequently enforce HTTPS. This means that if an attempt is made to connect to an unencrypted HTTP endpoint, it will be redirected to a dedicated HTTPS port. To do this, we will complete the following steps: 1. First, we need to add the following using statement to the Startup class in our UserInfoManager project, or Program.cs file if we are using .NET 6 template: using System.Net;

2. We will then add the following statement anywhere before the app.

UseRouting() call in the Configure method of the Startup class (or the

main body of Program.cs file on .NET 6):

app.UseHttpsRedirection();

3. This statement will ensure that whenever a call is made from a client to an unencrypted HTTP endpoint, it will be redirected to an encrypted HTTPS

port. However, it will not currently work, as we don't have an HTTPS endpoint configured. We will need to tell the application which port to redirect the request to.

To do this, we add the following snippet to the ConfigureServices method of the Startup class:

services.AddHttpsRedirection(options =>

{

options.RedirectStatusCode =

(int)HttpStatusCode.PermanentRedirect;

options.HttpsPort = 5001;

});

346 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

4. However, our redirection logic still will not work because we don't have any listeners configured for port 5001. To configure one, we will need to move into the Program class of the same application. In there, inside the call to the ConfigureKestrel method, we will need to add the following statement:

options.ListenAnyIP(5001, o => o.UseHttps());

5. We will then need to add the following using statement to the class:

using System.Security.Cryptography.X509Certificates;

6. Finally, we need to tell our application to use a specific .pfx file as the HTTPS

certificate. To do so, we need to insert the following statement at the beginning of the call to the ConfigureKestrel method:

options.ConfigureHttpsDefaults(o =>

{

o.ServerCertificate =

new X509Certificate2("UserInfoManager.pfx",

"password");

});

7. This call assumes that we have a UserInfoManager.pfx file inside the

folder that has the executable of our application in it. It also assumes that the certificate password is password. To make it work, we will need to create the UserInfoManager.pfx file by using any method we have previously

covered and get our system to trust it. Then, we will need to place the file inside the UserInfoManager project folder and apply the following setting to the UserInfoManager.csproj file:

<ItemGroup>

<None Update="UserInfoManager.pfx">

<CopyToOutputDirectory>PreserveNewest

</CopyToOutputDirectory>

</None>

</ItemGroup>

This setting will ensure that the file is copied into the output folder of our project whenever the code is compiled into the executable assemblies unless an up-to-date version of this file is already present inside the output folder.

Creating and trusting a self-signed certificate 347

There are also other ways we could have applied a certificate in our application. For example, instead of doing it directly in the code, we could have done it inside one of the configuration files. Or we could have done it at even a higher level – that is, in the settings of the server that hosts our application.

For example, we could have inserted the following entry into the appsettings.json file to enable the HTTPS port:

"https_port": 5001

Or, we could have applied the following Kestrel settings in that file:

"Kestrel": {

"Endpoints": {

"Http": {

"Url": "http://localhost:5000"

},

"Https": {

"Url": https://localhost:5001,

"Certificate": {

"Path": "UserInfoManager.pfx ",

"Password": "password"

}

}

}

Also, we have only demonstrated the Kestrel example in this instance, and different server types will have different configurations.

In a nutshell, there are many different ways to configure TLS on ASP.NET Core applications. There is no right or wrong way of doing it. Instead, the way you'll choose to configure it will depend on your needs and/or personal preferences.

But the principles will remain the same, regardless of how you have chosen to configure TLS. When the client application sends a request to your server, it will be able to do so via an encrypted HTTPS channel. And it will be the certificate of your choice that will provide the encryption.

[image: Image 93]

348 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

There is no difference between applying TLS to the standard HTTP/1.1 endpoints and applying it to gRPC – the principles are the same. In the preceding example, the same configuration will control both. We can now test both the HTTP/1.1 and HTTP/2

endpoints to make sure that both direct HTTPS requests and requests redirected from HTTP work correctly.

Testing custom certificates and HTTPS redirection

To ensure that our TLS configuration has been applied correctly, we will launch the UserInfoManager project in debug mode inside your IDE. Then, open a browser and enter the following URL:

https://localhost:5001/protos/users.proto

If the TLS certificates have been configured correctly, you should expect to see an output similar to the following screenshot:

Figure 9.7 – The Protobuf definition displayed via an HTTPS endpoint

[image: Image 94]

Creating and trusting a self-signed certificate 349

Then, if you replace the URL with http://localhost:5002/protos/users.

proto, you should expect to see it redirected back to https://localhost:5001/

protos/users.proto. This will confirm that HTTPS redirection works as expected for HTTP/1.1 communication.

Next, we will verify that the certificate we configured works for gRPC too. To do so, we will need to launch the UserManagementClient application by executing the dotnet run command inside its project folder. When the application has started and you have been prompted to enter the URL of the gRPC server, enter https://

localhost:5001. This should give you an output similar to that in the following screenshot:

Figure 9.8 – The gRPC client is able to make a call on an HTTPS endpoint

Next, we will test whether HTTPS redirection works with gRPC. To do so, we will launch the client application again. This time, we will input http://localhost:5000 as the URL. But before we do so, we will place a breakpoint anywhere inside the GetAllUsers method from the UserInfoService class of the UserInfoManager application.

[image: Image 95]

[image: Image 96]

350 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

So, if we launch the client application and enter http://localhost:5000 as the URL

when prompted, we will be able to examine the Host property of the context object to confirm that the request has been redirected to the HTTPS port, which is 5001. This is how it should look in your IDE:

Figure 9.9 – The Host property of the context parameter confirms that HTTPS redirection took place Then, if we allow the code to continue executing, we will see the standard results in the terminal of the client application, which should be similar to the ones displayed here: Figure 9.10 – The standard results are delivered to the client when the HTTP URL is entered

Applying certificate authentication on the gRPC client and server 351

This concludes our demonstration of TLS on the server. But the server is not the only place where you can apply for certificates. You can also do this on the client, and this is what we will cover next.

Applying certificate authentication on the

gRPC client and server

We have already established that on the server, security certificates are used for enabling TLS. That means a trusted certificate confirms to the client that it is safe to exchange keys with the server. This is how secure communication can be established between the client and the server.

But the same types of certificates can be used by clients too. However, their purpose is different from the server certificates. Client certificates are used for authentication. That means they are there to confirm that the client is allowed to access the server application.

To ensure that the client can be trusted, the certificate that the client shows to the server needs to be trusted by the server too. But this time, it's not necessary to get a CA involved to sign the certificate. For example, it is safe to use a certificate that has been issued by the server as the client certificate. The server will already trust it, and it will then be able to confirm that the data from the certificate matches the other data that the client sends.

Certificate authentication is especially relevant to gRPC because it is primarily used in RPC scenarios. In these scenarios, it will normally be another software application calling the server, rather than a human user. And this is why, instead of getting the client application to authenticate with a username and password in the way a human user would, it might be simpler to use a certificate that stays with the application – either permanently, or until it is revoked.

To enable certificate authentication, we need to apply the relevant configuration to the server. Then, we will need to configure the client to use a certificate.

352 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Configuring the gRPC server for certificate

authentication

We will now apply some changes to the UserInfoManager application to enable certificate authentication. To do so, we will complete the following steps: 1. Inside the call to the ConfigureHttpsDefaults method in the Program class, add the following statement:

o.ClientCertificateMode =

ClientCertificateMode.RequireCertificate;

2. This will ensure that clients will require a certificate. Now, open the Startup class (or Program.cs file if you are on .NET 6) and ensure that it contains all of the following using statements:

using Microsoft.AspNetCore.Authentication.Certificate;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using System;

using System.Net;

using System.Security.Claims;

using System.Threading.Tasks;

using UserInfoManager.Services;

3. We will now add some event handlers for certificate authentication. To do so, add the following block into the ConfigureServices method (or insert the

statement into Program.cs file if you are on .NET 6, while applying appropriate modifications, as per prior examples):

services.AddAuthentication(CertificateAuthentication

Defaults.AuthenticationScheme)

.AddCertificate(options =>

{

})

.AddCertificateCache();

Applying certificate authentication on the gRPC client and server 353

4. We will now add the following option to the AddCertificate call to ensure that we accept any type of certificates, including self-signed certificates:

options.AllowedCertificateTypes =

CertificateTypes.All;

5. Next, we will add the event handlers into the same call, which will be as follows: options.Events = new CertificateAuthenticationEvents

{

OnCertificateValidated = context =>

{

},

OnAuthenticationFailed = context =>

{

},

};

6. The OnCertificateValidated event will be triggered when the client

certificate has passed validation. We will populate this event handler with the following content, where we will be logging some data extracted from the certificate and using some of its other data as a claim principle, which we will need for authentication:

var claims = new[]

{

new Claim(ClaimTypes.Name,

context.ClientCertificate.Subject,

ClaimValueTypes.String,

context.Options.ClaimsIssuer)

};

context.Principal = new ClaimsPrincipal(

new ClaimsIdentity(claims, context.Scheme.Name));

Console.WriteLine($"Client certificate thumbprint

{context.ClientCertificate.Thumbprint}");

Console.WriteLine$"Client certificate subject:

{context.ClientCertificate.Subject}");

354 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

context.Success();

return Task.CompletedTask;

7. The OnAuthenticationFailed event will be fired when the validation of a certificate fails. We will populate its body with the following:

context.NoResult();

context.Response.StatusCode = 403;

context.Response.ContentType = "text/plain";

context.Response.WriteAsync(context.Exception.ToString

()).Wait();

return Task.CompletedTask;

8. To make it work, we will need to add the following call to the Configure method.

It should go anywhere before the app.UseRouting(); line:

app.UseAuthentication();

9. Finally, to see how the information extracted from the certificate has populated the context parameter of a gRPC method, we will insert the following block of code at the beginning of the GetAllUsers method in the UserInfoService class:

Console.WriteLine($"Client authenticated:

{context.AuthContext.IsPeerAuthenticated}");

if (context.AuthContext.IsPeerAuthenticated)

{

Console.WriteLine($"Auth property name:

{context.AuthContext.PeerIdentityPropertyName}");

Console.WriteLine($"Auth property value:

{context.AuthContext.Properties.FirstOrDefault()

?.Value}");

}

What we are doing here is confirming whether or not the client has been authenticated.

Then we extract and log the properties that the client has been authenticated with.

Of course, we could do much more with certificate authentication on the server side. We could add custom event handlers and extra validation logic. But this example is sufficient to demonstrate its basic principles.

Applying certificate authentication on the gRPC client and server 355

Now, we will go ahead and configure our client for certificate authentication. Then, we will verify that it all works as we expect it to.

Enabling certificate authentication on the gRPC client

Our client project, UserManagementClient, will only require a small number of alterations, as per the following steps:

1. Create a self-signed certificate by using either PowerShell or OpenSSL and export the UserManagementClient.pfx file. Ensure that the target domain of the

certificate (for example, the subject) is localhost. Set the certificate as trusted.

Please note that certificates generated by the dotnet dev-certs tool will not work as client authentication certificates.

2. Copy the .pfx file into the UserManagementClient project folder and add the following snippet to the UserManagementClient.csproj file:

<ItemGroup>

<None Update="UserManagementClient.pfx">

<CopyToOutputDirectory>PreserveNewest</CopyToOutput

Directory>

</None>

</ItemGroup>

3. Add the following using statements to the Program class inside the project: using System.Net.Http;

using System.Security.Cryptography.X509Certificates;

4. Add the following block of code just before the channel variable is instantiated: var certificate = new

X509Certificate2("UserManagementClient.pfx",

"password");

var handler = new HttpClientHandler();

handler.ClientCertificates.Add(certificate);

5. Replace the instantiation of the channel variable with the following: using var channel = GrpcChannel.ForAddress(url, new

GrpcChannelOptions

{

[image: Image 97]

356 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

HttpHandler = handler

});

And that's it – we can now test our application to see if the certificate authentication works correctly.

Testing certificate authentication

We will first launch the UserInfoManager application by executing the dotnet run command inside its project folder. Then, we will execute the same command inside the UserManagementClient project folder.

When prompted, we will enter https://localhost:5001 into the console of the gRPC client application. If everything has been configured correctly, we should see results similar to those in the console in the following screenshot:

Figure 9.11 – The gRPC call results when a client certificate is applied

Then, to verify that the server has been able to successfully validate the certificate, we will need to look at the server console. There, you should be able to see the information that gets logged when the validation event is fired. This will look similar to the following screenshot:

[image: Image 98]

[image: Image 99]

Applying certificate authentication on the gRPC client and server 357

Figure 9.12 – The client certificate information logged by the server-side validation event Then, we can verify that the gRPC call context has been successfully populated with the information extracted from the client certificate. If so, there will be entries in the console similar to the following:

Figure 9.13 – The client certificate information successfully added to the gRPC call context

358 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

And this concludes our chapter on using TLS to secure gRPC endpoints. Now, let's summarize what we have learned.

Summary

In this chapter, you have learned that TLS is used for securing HTTP endpoints, including the HTTP/2 endpoints used by gRPC. This is achieved with the use of HTTPS, which is enabled by digital security certificates.

You have learned that in order for the certificates to work, they need to be trusted by both the server and the client machines. Typically, this will be achieved by getting the certificate signed by a CA. However, it can also be achieved by explicitly marking the certificate as trusted on the machine.

You have learned that there are several tools that you can use to generate and trust certificates. These include PowerShell (which is Windows-only) and OpenSSL (which is OS-independent). We also discussed the dotnet dev-certs tool, which is available with the dotnet CLI. This is simpler to use than other tools, but it's not suitable for all scenarios.

You have also learned that security certificates aren't used only on the server side – they are used on the client side too. However, clients use them for different purposes, for example, as an authentication tool.

Authentication is something we have briefly touched on in this chapter. In the next chapter, we will cover authentication in more depth, and we will also cover the difference between authentication and authorization.

Questions

1. What would you use to encrypt HTTP communication between a client and a server?

A. SSL

B. TLS

C. gRPC

D. Bearer tokens

Further reading 359

2. Why can't you use the Http1AndHttp2 configuration for an unsecure gRPC port?

A. You can use Http1AndHttp2 for an unsecure gRPC port.

B. The port uses either HTTP/1.1 or HTTP/2 and you cannot have both.

C. With this configuration, unsecure requests are routed to HTTP/1.1.

D. You cannot use unsecure gRPC ports at all.

3. Which of the following tools can be used to generate a self-signed certificate?

A. PowerShell

B. The .NET CLI

C. OpenSSL

D. All of the above

4. What is the difference between .pfx and .crt files?

A. They are interchangeable.

B. They belong to different operating systems.

C. A .crt file stores the complete certificate chain, while a .pfx file only stores the public key and any related metadata.

D. A .pfx file stores the complete certificate chain, while a .crt file only stores the public key and any related metadata.

5. What is a client certificate used for?

A. For authentication

B. To store the public key of the server's certificate

C. To encrypt the server response

D. To encrypt server-sent events

Further reading

• Enforce HTTPS in ASP.NET Core: https://docs.microsoft.com/en-us/

aspnet/core/security/enforcing-ssl

• Configure endpoints for the ASP.NET Core Kestrel web server: https://docs.

microsoft.com/en-us/aspnet/core/fundamentals/servers/

kestrel/endpoints

360 Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

• Configure certificate authentication in ASP.NET Core: https://docs.

microsoft.com/en-us/aspnet/core/security/authentication/

certauth

• Generate self-signed certificates with the .NET CLI: https://docs.

microsoft.com/en-us/dotnet/core/additional-tools/self-

signed-certificates-guide

• OpenSSL documentation: https://www.openssl.org/docs/

• Making CA certificates available to Linux command-line tools: https://www.

redhat.com/sysadmin/ca-certificates-cli

• Importing the root CA certificate to Debian and Ubuntu: https://help.f-

secure.com/product.html?business/threatshield/latest/

en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-

latest-en

10

Applying

Authentication and

Authorization to

gRPC Endpoints

Authentication and authorization are very important topics in any type of application development. Almost any public-facing application will have at least some of its functionality restricted to only specific users, as you wouldn't want an anonymous user to gain access to sensitive information.

There are many different types of sensitive information that you would want to restrict access to. Personal information of registered users is one example; so is the history of their personal communication with other users; so is any financial information.

There are many examples of this on the public web. No social media platform would allow you to publish content or contact other users until you have logged in with a username and password. Neither would an online banking app grant you access to the account information without verifying who you are.

362 Applying Authentication and Authorization to gRPC Endpoints Because Google Remote Procedure Call (gRPC) endpoints are routinely used to provide access to all kinds of sensitive data, it is important to know how to ensure that only known and authorized users can use them, and this is where authentication and authorization come into play.

In the previous chapter, we have already had a look at how to enable gRPC client authentication by using Transport Layer Security (TLS) certificates, but this type of authentication would not be suitable in every scenario. The certificate will tell the server that the client is authorized to connect to it, but what if the client is being used by an anonymous user? This is why it is important to know how to restrict access to gRPC

endpoints.

We will cover the following topics in this chapter:

• Setting up the authentication backend

• Restricting gRPC endpoints to authenticated users

• Restricting endpoints to authorized users only

By the end of this chapter, you will have learned the difference between authentication and authorization and how to apply both in the context of gRPC on ASP.NET Core. You will also have learned how to set up your own single sign-on (SSO) system and use it to share authorization metadata between different applications of your ecosystem so that users don't have to log in separately to access separate applications.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Mac, or Linux operating system

• A supported integrated development environment (IDE) or code editor (Visual Studio, Visual Studio Code (VS Code), or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HyperText Transfer Protocol Secure (HTTPS) certificate enabled on the machine

Instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core. All the code samples used in this chapter can be found at https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-10.

Please visit the following link to check the CiA videos: https://bit.ly/3pXmFim

Setting up the authentication backend 363

Setting up the authentication backend

There are multiple ways of setting up the authentication backend of your application. It's common to see the user data being stored inside the main application itself. However, this approach is not scalable. The users stored directly inside the application will only be valid within the context of this application. So, if your estate has multiple applications, it will be problematic to authorize all of them with a single login.

An alternative approach is to use a separate authorization provider that all applications will integrate with. This way, when the user logs in, a token is issued to the user that is then stored in the session. Then, this user is free to access any other application until they log out or the token expires due to inactivity. This system is known as SSO.

When you use SSO, your authentication information will not be stored in any of the user-facing applications. Instead, there will be a dedicated application that will act as an authentication provider. All other applications will be registered on it as clients, and every time the user logs in, it will be the SSO application that authenticates the user and returns the token.

There are several ways of enabling an SSO, but the de facto standard for web-based applications is to use a combination of OpenID Connect and Open Authorization (OAuth). OpenID Connect is used for authentication, while OAuth is used for authorization. The differences between these two concepts are outlined here:

• Authentication verifies that the user is who they claim to be

• Authorization ensures that a specific user is allowed to access a specific resource The user is authenticated when they are able to prove they are who they say they are. One of the most common ways to do this is to enter a username and password, the latter of which—in theory—is supposed to be known only to the user. So, the user is authenticated if the username matches a record on the system and the user is able to provide secret information that is supposed to be only known to them.

There are also other security procedures, such as multi-factor authentication (MFA).

This is where the user is asked to provide more details about themselves, such as a temporary numeric code that is sent to their device. MFA is beyond the scope of this chapter, however.

364 Applying Authentication and Authorization to gRPC Endpoints Authorization refers to when the user record has specific attributes that allow them to access a specific resource. For example, users may be given roles, such as User and Admin. There might be some resource that only the user with the Admin role is allowed to access. In this case, if an authenticated user without such a role attempts to access the resource, the system would know who the user is but the user would not be granted access.

On the web, it is typical to receive a 401 (Unauthorized) HTTP response code for an unauthenticated user and 403 (Forbidden) for an authenticated user that doesn't have permission to access a particular resource.

We will set up an SSO provider, but before we do, let's have a brief look at how OpenID

Connect and OAuth work.

OpenID Connect and OAuth flow

OpenID Connect and OAuth are actually related. OAuth is a protocol that was developed to specify a pattern for granting authorization. However, it didn't specify how to authenticate the user, and that is what OpenID Connect was developed for.

OpenID Connect and OAuth work in tandem. There are multiple ways they can be used, but a typical flow looks like this:

1. If the user is not authenticated, the application redirects the user to the login page of the SSO provider, while passing client information in the request.

2. The user enters their credentials. If the login is successful, the SSO provider redirects the client back to the original application with a one-time access code (OTAC).

3. The code is sent back to the SSO provider, which returns a JavaScript Object Notation (JSON) Web Token (JWT) to the application.

4. If necessary, the web server uses the token to retrieve additional information about the user. But otherwise, the user is now authenticated and the token can be shared between relevant applications.

[image: Image 100]

Setting up the authentication backend 365

The following diagram provides a visualization of this flow:

Figure 10.1 – OpenID Connect flow

A JWT is a Base64-encoded string that, when decoded, consists of three JSON parts: a header, a payload, and a signature. Those elements are separated by full stops inside the encoded string.

The header contains an encryption algorithm and the token type, which will typically be HS256 and JWT respectively. Its structure will look similar to this:

{

"alg": "HS256",

"typ": "JWT"

}

The payload contains all relevant information about the user that the system needs to determine whether or not the user is allowed to access any particular resource. The fields inside the JSON payload object are known as claims. Some claims are standard, such as aud (audience) or iat (issued at time). However, any custom claims can be used too.

It's the claims in the JWT payload that indicate whether or not a user is authorized to use a resource—for example, they may contain roles the users are assigned to.

366 Applying Authentication and Authorization to gRPC Endpoints A payload would look similar to this. However, in a real-life scenario, it will probably contain way more fields than this:

{

"sub": "1234567890",

"name": "John Smith",

"iat": 1516239022

}

A signature is used for verification of the token. The SSO provider will have a so-called secret associated with a client application: an arbitrary string of characters that only the application will know. Without the secret, it will not be possible to obtain a matching signature, which is how the application knows that the token was issued by a valid SSO

provider. The formula for calculating the signature is shown here:

HMAC_SHA256(secret, base64urlEncoding(header) + '.' +

base64urlEncoding(payload))

The secret parameter is the value of the secret string that is used for SHA256 encoding.

The other parameters are a combination of a Base64-encoded header and a payload linked together by a period character.

This concludes our overview of how a JWT works for authorization. We will now build an SSO provider to enable authentication and authorization for the gRPC service we will build later.

Configuring IdentityServer4

There are many SSO providers that we can choose from. Some of them are premium with expensive enterprise-grade licenses, while others are free and open source. In our case, we will be using IdentityServer4, which is free and open source. Moreover, unlike other providers, it's built entirely on .NET, so we won't have to install any additional SDKs.

But the choice of an SSO provider isn't important. OpenID Connect and OAuth are standard protocols that all major SSO solutions use. Different providers will differ in terms of user interface (UI) and configuration, but they will work in exactly the same way. In fact, you can replace one SSO provider with another and, as long as you have configured it to run on the same domain, have the clients with the same identifiers (IDs), and make it produce the same claims in the JWT, chances are that your applications will still work the same way as before. Therefore, the principles that we will use to build SSO based on IdentityServer4 will be equally applicable to other providers, such as Keycloak and Okta.

Setting up the authentication backend 367

IdentityServer4 is easy to deploy because a number of .NET project templates were already provided for it. All we will have to do is install a relevant template, create a project from it, and reconfigure it to meet our needs, as follows:

1. Install the collection of IdentityServer4 templates by running the following command:

dotnet new -i IdentityServer4.Templates

2. We will need a solution for our projects to make the process easier. To create a solution, first, create a GrpcAuthentication folder. Then, open a terminal inside this folder and execute the following command:

dotnet new sln

3. We will need an instance of IdentityServer4 with a web-based management UI to make it as easy to configure as possible. To create such a project, we will run the following command inside the solution folder:

dotnet new is4admin -o AuthProvider

4. Now, from the solution folder, execute the following command to add the project to the solution:

dotnet sln add AuthProvider\AuthProvider.csproj

5. We will now need to configure our authentication provider to use HTTPS, as it will be then easier for the clients to access it without having to add extra configuration.

To do so, open the launchSettings.json file in the Properties folder of the AuthProvider project. Ensure that the applicationUrl entry has an HTTP

Uniform Resource Locator (URL) listed and that it comes first in the list. The entry should look like this:

"applicationUrl":

https://localhost:5001;http://localhost:5000

6. Next, we will need to open the env.js file that can be found in the wwwroot/

admin/assets folder and replace all URLs in there with the HTTP URL we

inserted into the launchSettings.json file previously. Then, we will launch the application by executing a dotnet run command inside its project folder.

[image: Image 101]

368 Applying Authentication and Authorization to gRPC Endpoints

7. To verify that the application works, we can navigate to the HTTP URL we set previously, followed by the /admin path. In the preceding example, it would be https://localhost:5001/admin. If everything has been configured

correctly, the following page should be displayed and no error messages should be shown:

Figure 10.2 – IdentityServer4 admin page

[image: Image 102]

Setting up the authentication backend 369

The admin page will attempt to connect to various backend components asynchronously, so it will display errors if anything hasn't been configured correctly. But if there are no errors, all you will need to do is click Start. This will take you to the management screen where you can start adding data.

Adding SSO users, roles, and clients

To make our authentication provider work, we will need to add roles, users, and clients.

We will start with roles, as follows:

1. In the admin UI, click on the Roles tab. Then, click on Add Role, enter User as the role name, and click Save.

2. Do the same for the Admin role. After you've done that, you should have the following roles listed:

Figure 10.3 – User and Admin roles are listed alongside the default reserved role

[image: Image 103]

370 Applying Authentication and Authorization to gRPC Endpoints

3. Now, navigate to the Users tab and click on the Add User button. Fill in the form with any details of your choice. Then, click Save & Configure.

4. On the screen that appears, navigate to the Roles tab (but not the one in the header). You should now be able to see all the roles listed on the left. To assign the user the role of the User, select the role from the list and click on the button with the arrow pointing right, as demonstrated in the following screenshot:

Figure 10.4 – Role assignment screen on IdentityServer4

Setting up the authentication backend 371

5. Now, navigate back to the Users section by clicking on the Users tab on top of the screen. Repeat Steps 3 and 4 to create a new user, but this time, assign the Admin role to the user.

6. Create another user and assign both Admin and User roles to them.

7. Create another user and assign no roles to them.

8. We will next create a client. To do so, click on the Clients tab and then click on Add Client. We will first select Web App and click Start. On the next screen, we will fill in the form with the following details:

• Client ID: userFacingApp

• Display Name: User Facing App

9. We will set our callback URL to https://localhost:44349/signin-oidc

and click Next. On the next screen, we will leave the logout URL blank and click Next.

10. On the next screen, we will set the Shared Secret value to

userFacingAppSecret. We made this value easy to work with. However, in a

real-life scenario, this should be some string that is hard to guess. We will need to click Add to get the secret added, and then we'll click Next.

11. On the next screen, we will assign profile and openid to the client and click Next. We will leave all other settings as default and keep clicking Next until we see a screen with a Save button. This is the button we will click to save the profile.

Our SSO provider has now been fully configured, and because it's a stateful application that saves data in a local database, it will keep all the data stored even if we bring the application down. The next time the application is brought up, it will have the same state as before.

Next, we will create a web application that will use the SSO provider. We need an application with a UI, so we will use ASP.NET Core MVC. We will force this application to redirect the user to the SSO provider if the user hasn't been authenticated.

372 Applying Authentication and Authorization to gRPC Endpoints Forcing login redirect on a web application

We will create a new project based on a Model-View-Controller (MVC) template.

Then, we will add all necessary dependencies to it so that it can use an SSO redirection mechanism. Finally, we will modify the application so that it can connect to our SSO

provider. Follow these next steps:

1. In the solution folder, run the following command to create a new project from the MVC template:

dotnet new mvc -o UserFacingApp

2. Add the project to the solution by executing the following command:

dotnet sln add UserFacingApp\UserFacingApp.csproj

3. We will now need to add a NuGet package that will allow us to enable OpenID

Connect middleware in our application so that we won't have to do the

authentication flow manually. To do so, run the following command from the UserFacingApp project folder:

dotnet add UserFacingApp.csproj package

Microsoft.AspNetCore.Authentication.OpenIdConnect

4. We will now open the Startup.cs file (or the Program.cs file if you are using a .NET Core project template) inside the project and ensure that all of the following using statements are present:

using System.IdentityModel.Tokens.Jwt;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

5. Then, insert the following code into the ConfigureServices method. If you are using a .NET 6 project template, you will just need to insert it into the main body anywhere before the Build event and replace services with builder.

Services:

JwtSecurityTokenHandler.DefaultMapInboundClaims =

false;

Setting up the authentication backend 373

services.AddAuthentication(options =>

{

options.DefaultScheme = "Cookies";

options.DefaultChallengeScheme = "oidc";

})

.AddCookie("Cookies")

.AddOpenIdConnect("oidc", options =>

{

options.Authority = "https://localhost:5001";

options.ClientId = "userFacingApp";

options.ClientSecret = "userFacingAppSecret";

options.ResponseType = "code";

options.CallbackPath = "/signin-oidc";

options.SaveTokens = true;

});

An important point to remember is that, in a real-life scenario, these values will be in a configuration file rather than hardcoded, but we didn't do that here to make the demonstration of the key concepts simpler.

This code will add middleware for authentication based on OpenID Connect, and this will store the token inside a cookie. The options under AddOpenIdConnect represent the configuration we have applied to the SSO application. Authority represents the base URL of our SSO application. ClientId represents the ID of the client we have configured. ClientSecret is the secret we have added to the client.

ResponseType with the value of code tells the middleware to use a one-time code (OTC) after the redirection to retrieve the token. CallbackPath represents the path in the current application that the SSO application will redirect to after successful authentication. It needs to match one of the redirection URLs defined in the client configuration on IdentityServer4. Finally, we tell the middleware to save the token by setting the SaveToken option to true.

6. We will now add the middleware to the pipeline. To do so, add the following lines of code in the Configure method (or in the main body of the code if you are using

.NET 6) after the app.UseRouting() call:

app.UseAuthentication();

app.UseAuthorization();

374 Applying Authentication and Authorization to gRPC Endpoints 7. Now, to force our application to redirect to the SSO login screen, we will need to replace the logic inside the UseEndpoints call with the following code:

endpoints

.MapDefaultControllerRoute()

.RequireAuthorization();

8. We will now modify our HomeController class, which is located inside the Controllers folder of the application. First, we will add the following using statements to it:

using Microsoft.AspNetCore.Authentication;

using Microsoft.AspNetCore.Authentication.Cookies;

9. Then, add the following code before the return statement inside the Index method:

var accessToken = await

HttpContext.GetTokenAsync("access_token");

Console.WriteLine($"Access token: {accessToken}");

10. Next, add the following method to the controller:

public IActionResult LogOut()

{

return new SignOutResult(new[]

{

CookieAuthenticationDefaults.AuthenticationScheme,

"oidc"

});

}

This will log the user out by clearing the authentication cookies, but we will need a link to this action method. To do so, we need to open the _Layout.cshtml file located in the Shared folder inside the Views folder. Locate the ul element with the class attribute set to navbar-nav flex-grow-1 and add the following

HyperText Markup Language (HTML) to it after the existing li items:

<li class="nav-item">

<a class="nav-link text-dark" asp-area="" asp-

controller="Home" asp-action="LogOut">Log Out

[image: Image 104]

Setting up the authentication backend 375

11. Finally, open the launchSettings.json file inside the Properties folder and ensure that the HTTPS URL is set to https://localhost:44349. This is

the base URL of the redirect URL that we have used inside the client configuration of the SSO application. If, for some reason, you can't use this particular port, then change it in both the launchSettings.json file of the current application and the client configuration of the SSO application.

We have now set up an SSO along with a user-facing application that can use it. We will now test our setup. If we launch both applications by executing the dotnet run command inside the corresponding project folders and then navigate to the URL of the MVC application, we should be redirected to the login screen of the SSO application, which should look like this:

Figure 10.5 – IdentityServer4 login screen

[image: Image 105]

376 Applying Authentication and Authorization to gRPC Endpoints

After successful login with any of the registered credentials, you should be redirected to the home page of your MVC application. Also, if you have a look at the console output of the application, you should see an access token similar to this:

Figure 10.6 – Access token in the console of MVC application

We can now decode the token and have a look at its header and payload. To do so, we can visit the https://jwt.io site and paste the token into the Encoded section. You should then see something similar to this:

[image: Image 106]

Setting up the authentication backend 377

Figure 10.7 – Decoded JWT

We can also test the logout functionality by going back to the home page of the MVC

application and clicking the Log Out tab. You should be redirected to the logout page of IdentityServer4. Then, entering the base URL of the MVC application will redirect us back to the login screen, and this demonstrates the OpenID Connect flow in action. If we configure our SSO client to connect to the SSO provider and its configuration matches the client configuration in the SSO application, we can force the client application to automatically redirect to the authentication screen provided by the SSO application. If the user has been successfully authenticated, we can then retrieve a JWT, which we can store in a cookie.

378 Applying Authentication and Authorization to gRPC Endpoints The token will be valid until we either log out by clearing the cookie or the token expires.

But while it is valid, the user remains authenticated and we don't get redirected to the login screen.

In the preceding examples, we have also demonstrated how we can extract the JWT with our backend code, and this is precisely what will allow us to authenticate into a protected gRPC application, which we will have a look at next.

Restricting gRPC endpoints to authenticated

users

gRPC is primarily designed for the backend; therefore, in most cases, it won't be possible to redirect to an SSO login. There simply won't be a UI that we will be able to do it from.

But because the OpenID Connect workflow obtains a token that is then stored in the application, we can simply reuse this token to get the user-facing application to authenticate into the gRPC application that it needs to communicate with. We will now demonstrate how to do this.

Setting up shared gRPC dependencies

We will start by creating a library that both the client and the server will share. As we did in the previous chapters, we will do so to ensure that both the client and the server use identical Protocol Buffers (Protobuf) definitions. Follow these next steps: 1. Navigate to the GrpcAuthentication solution folder and execute the following command to create a class library project:

dotnet new classlib -o GrpcDependencies

2. Add this project to the solution by executing the following command:

dotnet sln add

GrpcDependencies\GrpcDependencies.csproj

3. Next, navigate to the GrpcDependencies project folder and add the relevant NuGet packages by executing the following command:

dotnet add GrpcDependencies.csproj package

Grpc.Net.Client

dotnet add GrpcDependencies.csproj package

Google.Protobuf

Restricting gRPC endpoints to authenticated users 379

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package

Grpc.AspNetCore

4. We will then create a Protos folder inside the project folder and place a secrets.proto file there with the following package and service

definitions:

syntax = "proto3";

package secrets;

service SecretStore {

rpc GetSecret(GetSecretRequest) returns

(GetSecretResponse);

}

5. We will then add the relevant message definitions, as follows:

message GetSecretRequest {

int32 id = 1;

}

message GetSecretResponse {

oneof payload {

SecretData data = 1;

string error_message = 2;

}

}

message SecretData {

int32 id = 1;

string title = 2;

string description = 3;

SecretLevel level = 4;

}

enum SecretLevel {

380 Applying Authentication and Authorization to gRPC Endpoints RESTRICTED = 0;

SECRET = 1;

TOP_SECRET = 2;

}

6. This service will return a payload containing some secret information that only authorized users will be able to access. We will need to register this file inside GrpcDependencies.csproj by adding the following code to it:

<ItemGroup>

<Protobuf Include="Protos\secrets.proto" />

</ItemGroup>

We have now added a library with shared gRPC dependencies that both the client and the server will use. Now, we are ready to set up the gRPC server application.

Setting up the gRPC server

We will now add a gRPC service project with an endpoint that will only be accessible by authenticated users. Follow these next steps:

1. Navigate back to the GrpcAuthentication solution folder and execute the following command to create a new gRPC service project:

dotnet new grpc -o SecretsManager

2. We will then add the project to the solution by executing the following command: dotnet sln add SecretsManager\SecretsManager.csproj

3. We now need to add a library that will enable us to add JWT middleware to our application. To do so, navigate to the SecretsManager project folder and execute the following command:

dotnet add SecretsManager.csproj package

Microsoft.AspNetCore.Authentication.JwtBearer

4. Now, we will open the SecretsManager.csproj file and add the following code to it:

<ItemGroup>

<ProjectReference Include="..\GrpcDependencies

Restricting gRPC endpoints to authenticated users 381

\GrpcDependencies.csproj" />

</ItemGroup>

5. We can also remove the existing reference to Grpc.AspNetCore NuGet package from the project file, as this package will be implicitly referenced via the reference to the GrpcDependencies project.

6. We will now add a SecretsCache.cs file to the project with the following content:

using Secrets;

using System.Collections.Generic;

using System.Linq;

namespace SecretsManager

{

public class SecretsCache

{

private readonly List<SecretData> secrets;

public SecretsCache()

{

secrets = new List<SecretData>();

}

public SecretData GetSecret(int id)

{

return secrets.FirstOrDefault(s => s.Id ==

id);

}

}

}

7. We will then need to populate the secrets list with the initial data. To do so, we can add the following code into the constructor:

secrets.Add(new SecretData

{

Id = 1,

382 Applying Authentication and Authorization to gRPC Endpoints Title = "Undercover Operative",

Description = "We have an undercover operative in

Northern Alaska",

Level = SecretLevel.Restricted

});

secrets.Add(new SecretData

{

Id = 2,

Title = "Ship Position",

Description = "The current ship's coordinates are

54.55, 4.9",

Level = SecretLevel.Secret

});

secrets.Add(new SecretData

{

Id = 3,

Title = "Bioweapon",

Description = "A bioweapon has been in development

since 2009",

Level = SecretLevel.TopSecret

});

8. Now, we will add SecretsManagerService.cs to the Secrets folder of the project. The content of the file will be as follows:

using Grpc.Core;

using Microsoft.AspNetCore.Authorization;

using Secrets;

using System;

using System.Threading.Tasks;

namespace SecretsManager

{

[Authorize]

public class SecretsManagerService :

SecretStore.SecretStoreBase

{

Restricting gRPC endpoints to authenticated users 383

private readonly SecretsCache secretsCache;

public SecretsManagerService(SecretsCache

secretsCache)

{

this.secretsCache = secretsCache;

}

}

}

Please note that we have the Authorize attribute on top of the class signature.

This attribute, if specified without any additional parameters, will restrict access to all endpoints in the class to only those users who have successfully authenticated.

We can also place the attribute on an individual endpoint, which will restrict access to only this specific endpoint. It's the same attribute that is used in action methods of the controllers and inside the SignalR hub.

9. We will then add the GetSecret RPC implementation method to the class, which will look like this:

public override Task<GetSecretResponse>

GetSecret(GetSecretRequest request, ServerCall

Context context)

{

var secret = secretsCache.GetSecret(request.Id);

if (secret is not null)

return Task.FromResult(new GetSecretResponse

{

Data = secret

});

return Task.FromResult(new GetSecretResponse

{

ErrorMessage = $"No secret found for id

{request.Id}."

});

}

384 Applying Authentication and Authorization to gRPC Endpoints 10. We will then need to apply some changes to the Startup class (or the Program.

cs file if you are using a .NET 6 project template). First, we need to make sure that the class has the following using statement:

using Microsoft.IdentityModel.Tokens;

11. Next, we will add the JWT authentication middleware. To do so, we will insert the following code into the ConfigureServices method. If you are using a .NET 6

template, services will need to be replaced with builder.Services and the code will need to be inserted before the Build event:

services.AddAuthentication("Bearer")

.AddJwtBearer("Bearer", options =>

{

options.Authority = "https://localhost:5001";

options.TokenValidationParameters = new

TokenValidationParameters

{

ValidateAudience = false

};

});

Here, we are specifying the authority, which is the URL of our SSO application.

Then, we are switching off audience validation. This is because the intended audience of the token is the user-facing MVC application. So, we need to make sure that the token still works if passed into the current application.

12. After this, we have a choice. Since we already have the Authorize attribute on our SecretsManagerService class, we can add blank authorization

middleware by adding a services.AddAuthorization(); statement to

the ConfigureServices method. But to make it clearer, we can also add

authorization middleware that explicitly states that only authenticated users are allowed access. To do so, we will add the following statement:

services.AddAuthorization(options =>

{

options.AddPolicy("GrpcAuth", policy =>

{

policy.RequireAuthenticatedUser();

});

});

Restricting gRPC endpoints to authenticated users 385

13. Next, we will need to insert the following statements into the Configure method (or, for .NET 6, the main body of the file after the Build event) after the app.

UseRouting call:

app.UseAuthentication();

app.UseAuthorization();

14. We will then need to register our gRPC service implementation by adding the following statement to the UseEndpoints call:

endpoints.MapGrpcService<SecretsManagerService>();

15. Optionally, we can force the endpoint to use the authorization policy that we defined earlier by modifying the registration call, as follows:

endpoints.MapGrpcService<SecretsManagerService>()

.RequireAuthorization("GrpcAuth");

16. Finally, we will need to change the application ports in the project to make sure that they don't clash with other applications. To do so, we will open the launchSettings.json file and will replace the applicationUrl entry with

the following code:

"applicationUrl": "",

Note

If you are running your server-side application on a Mac, you will need to apply some modifications to it. Instructions on how to do so can be found in the Running a gRPC service on a Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

We are now ready to enable relevant changes on the UserFacingApp project, which will act as our gRPC client.

386 Applying Authentication and Authorization to gRPC Endpoints Enabling gRPC client functionality

We will now open the UserFacingApp project and make all the necessary changes to it to make it act as a gRPC client and to make it pass an authorization token to the gRPC

server. Follow these next steps:

1. We will first need to add shared gRPC dependencies to the project by adding the following code to the UserFacingApp.csproj file:

<ItemGroup>

<ProjectReference Include="..\GrpcDependencies

\GrpcDependencies.csproj" />

</ItemGroup>

2. We will then need to create a model for one of our views. To do so, insert a SecretDetails.cs file into the Models folder with the following content:

namespace UserFacingApp.Models

{

public class SecretDetails

{

public int Id { get; set; }

public string Title { get; set; }

public string Description { get; set; }

public string SecretLevel { get; set; }

}

}

3. Next, we will insert a GrpcClientWrapper.cs file into the root of the project and add the following content to it:

using Grpc.Core;

using Secrets;

using System;

using System.Threading.Tasks;

using UserFacingApp.Models;

namespace UserFacingApp

{

public class GrpcClientWrapper

Restricting gRPC endpoints to authenticated users 387

{

private readonly SecretStore.SecretStoreClient client;

public GrpcClientWrapper(SecretStore.SecretStoreClient

client)

{

this.client = client;

}

}

}

4. Next, we will add a method to the class that makes a call to the gRPC server and applies the authorization token to the header while doing so, as follows: public async Task<SecretDetails> GetSecret(int id,

string accessToken)

{

var metadata = new Metadata

{

{ "Authorization", $"Bearer {accessToken}" }

};

var request = new GetSecretRequest

{

Id = id

};

var response = await

client.GetSecretAsync(request, metadata);

if (string.IsNullOrEmpty(response.ErrorMessage))

return new SecretDetails

{

Id = response.Data.Id,

Title = response.Data.Title,

Description = response.Data.Description,

SecretLevel =

response.Data.Level.ToString()

388 Applying Authentication and Authorization to gRPC Endpoints

};

throw new Exception(response.ErrorMessage);

}

This method adds an Authorization header. The value of the header consists of the authorization type and the attribute that is used for authorization. In our case, we are using an authorization token, which is also known as a bearer token. In this case, we need to use Bearer as the authorization type. Then, we will just add the JWT that we have received from the SSO application.

5. This time, we will inject a gRPC client from an inbuilt factory. To do so, we will need to add the following using statement to the Startup class of the project (or the Program.cs file if you are using .NET 6):

using Secrets;

6. Then, we will add the following dependency injection (DI) registration statements to the ConfigureServices method. The client address is the address of the SecretsManager application we set up previously:

services.AddGrpcClient<SecretStore.SecretStoreClient>(

o =>

{

o.Address = new Uri("");

});

services.AddSingleton<GrpcClientWrapper>();

7. We will now insert a gRPC client wrapper into our HomeController class. To do so, we will add it as a private field and will replace the class constructor with the following code:

private readonly GrpcClientWrapper clientWrapper;

public HomeController(GrpcClientWrapper clientWrapper)

{

this.clientWrapper = clientWrapper;

}

Restricting gRPC endpoints to authenticated users 389

8. We will now add the following action method, where we will use the gRPC client wrapper class:

public async Task<IActionResult> Details(int id)

{

var accessToken = await

HttpContext.GetTokenAsync("access_token");

var secretDetails = await

clientWrapper.GetSecret(id, accessToken);

return View(secretDetails);

}

9. We will now need to add a view for this method. To do so, add a Details.

cshtml file to the Home folder of the Views folder with the following content:

@model UserFacingApp.Models.SecretDetails

@{

ViewData["Title"] = "Secret Details";

}

<h1>@ViewData["Title"]</h1>

<p>ID: @Model.Id</p>

<p>Title: @Model.Title</p>

<p>Description: @Model.Description</p>

<p>Secret Level: @Model.SecretLevel</p>

10. Then, replace the content of the Index.cshtml file with the following code:

@{

ViewData["Title"] = "Home Page";

}

<div class="text-center">

<h1 class="display-4">Please enter the id of the

secret you want to view:</h1>

<form asp-action="Details" method="get">

[image: Image 107]

390 Applying Authentication and Authorization to gRPC Endpoints

<p>

<input type="text" name="Id" />

<input type="submit" value="Submit" />

</p>

</form>

</div>

We are now ready to launch our applications and see how the authorization token is passed through to the gRPC service. After executing the dotnet run command inside all project folders except GrpcDependencies, we can open the MVC application in the browser and log in by using any of the available credentials. We should then be greeted by the following page:

Figure 10.8 – New home page of the MVC application

[image: Image 108]

Restricting endpoints to authorized users only 391

If we enter the value of 1, the page should change to the following:

Figure 10.9 – Screen showing successfully obtained data from gRPC

However, if you change your client code and don't pass the authorization token to the gRPC call, you will receive a 401 HTTP error instead of this page.

We have demonstrated how authentication works on gRPC, but now, we will go further and apply authorization to it too.

Restricting endpoints to authorized users only

User authorization is based on claims that are present in the payload of a JWT. We can use any claims for authorization, including any custom ones. For example, we can use a standard role claim to restrict endpoints to only those clients that have specific roles defined inside this claim, or we can just create a custom claim based on the combination of various fields in the object that represents the user. For example, we may add a particular claim to the payload of the token if the user has a specific role and also belongs to a specific organization. Then, on the server side, we can configure an authorization policy based on this claim.

392 Applying Authentication and Authorization to gRPC Endpoints There are many ways you can apply authorization in gRPC on ASP.NET Core, so we won't be able to cover them all in this chapter. We will focus on the standard role-based authorization. However, the general principles demonstrated in the following examples will be applicable to different types of authorization.

But before we apply authorization to our gRPC endpoints, we will need to make some changes to our SSO application because, as you may recall from Figure 10.6, IdentityServer4 doesn't insert a role claim into the JWT payload by default.

Configuring SSO provider to insert role claim into

the JWT

In order for our IdentityServer4 implementation to insert user roles into the JWT on successful authentication, we will need to add some custom code to it. So, we will need to stop any running instances of our application and apply the following changes to the AuthProvider project:

1. Insert a UserProfileService.cs file into the root of the project folder and add the following using statements to it:

using AuthProvider.Models;

using IdentityModel;

using IdentityServer4.Extensions;

using IdentityServer4.Models;

using IdentityServer4.Services;

using Microsoft.AspNetCore.Identity;

using System;

using System.Linq;

using System.Security.Claims;

using System.Threading.Tasks;

2. Then, we will add the following class body:

namespace AuthProvider

{

public class UserProfileService : IProfileService

{

private readonly

IUserClaimsPrincipalFactory<ApplicationUser>

claimsFactory;

Restricting endpoints to authorized users only 393

private readonly UserManager<ApplicationUser>

usersManager;

public UserProfileService(

UserManager<ApplicationUser> usersManager,

IUserClaimsPrincipalFactory<ApplicationUser>

claimsFactory)

{

this.usersManager = usersManager;

this.claimsFactory = claimsFactory;

}

}

}

3. Next, we will implement the interface by first adding the following method to it: public async Task

GetProfileDataAsync(ProfileDataRequestContext context)

{

var subject = context.Subject.GetSubjectId();

var user = await

usersManager.FindByIdAsync(subject);

var claimsPrincipal = await

claimsFactory.CreateAsync(user);

var claimsList = claimsPrincipal.Claims.ToList();

claimsList = claimsList.Where(c => context

.RequestedClaimTypes.Contains(c.Type)).ToList();

if (usersManager.SupportsUserRole)

{

foreach (var roleName in await

usersManager.GetRolesAsync(user))

{

claimsList.Add(new

Claim(JwtClaimTypes.Role, roleName));

}

394 Applying Authentication and Authorization to gRPC Endpoints

}

context.IssuedClaims = claimsList;

}

4. This method contains the logic to add a role claim to the token, but we will also need to add the following method as it's also defined in the interface:

public async Task IsActiveAsync(IsActiveContext

context)

{

var subject = context.Subject.GetSubjectId();

var user = await

usersManager.FindByIdAsync(subject);

context.IsActive = user != null;

}

5. Next, we will need to register this class in the DI container of the Startup class (or the Program.cs file if we are using .NET 6). To do so, we will first add the following using statement to the class:

using IdentityServer4.Services;

6. Then, we will add the following line at the end of the ConfigureServices method (or just before the Build event if you are using .NET 6):

services.AddScoped<IProfileService,

UserProfileService>();

It is important that we add this registration at the very end of the method; otherwise, it will be overwritten by the default implementation.

Next, we will add rpc definitions to our Protobuf. This will be needed so that we can apply different authorization rules to different endpoints.

Restricting endpoints to authorized users only 395

Applying different authorization rules to different

gRPC endpoints

We will first make some changes to the secrets.proto file. Then, we will add the new endpoints to the server-side code and apply authorization to them. Follow these next steps:

1. Add the following import statement to the secrets.proto file in the

GrpcDependencies project:

import "google/protobuf/empty.proto";

2. Add the following rpc definitions to the SecretStore service:

rpc GetSecretsCount (google.protobuf.Empty) returns

(SecretsCount);

rpc InsertSecret (SecretData) returns

(google.protobuf.Empty);

3. Now, add the following message definition:

message SecretsCount {

int32 count = 1;

}

4. We are now ready to add the implementations of these new RPCs to our

SecretsManagerService class of the SecretsManager application project.

But first, we will need to add the following methods to the SecretsCache class: public int GetCount()

{

return secrets.Count;

}

public void InsertSecret(SecretData data)

{

data.Id = secrets.Max(s => s.Id);

secrets.Add(data);

}

396 Applying Authentication and Authorization to gRPC Endpoints 5. Then, add the following using statement to it:

using Google.Protobuf.WellKnownTypes;

6. Then, add the following method to the class:

[AllowAnonymous]

public override Task<SecretsCount>

GetSecretsCount(Empty request, ServerCallContext

context)

{

return Task.FromResult(new SecretsCount

{

Count = secretsCache.GetCount()

});

}

The AllowAnonymous attribute allows clients to access this endpoint without any authorization token even if class-wide authorization was enabled. In our case, the endpoint is merely returning the count of secrets, which we don't deem to be sensitive information.

7. Next, we will add the following method to the class:

[Authorize(Roles = "Admin")]

public override Task<Empty> InsertSecret(SecretData

request, ServerCallContext context)

{

secretsCache.InsertSecret(request);

return Task.FromResult(new Empty());

}

We are restricting access to this endpoint to only those users that have the role of Admin. We could also specify multiple roles by separating them with commas. Also, we could restrict access by Policy (as with GrpcAuth, which we have specified in the Startup class) or AuthenticationScheme (as with

Bearer, Cookie, oidc, and so on). We could, for example, define a custom

policy that requires specific claims by calling the RequireClaim method on the AuthorizationPolicyBuilder object while registering the policy in the

Startup class.

Restricting endpoints to authorized users only 397

8. We will finish off by adding the following attribute to the GetSecret method:

[Authorize(Roles = "User")]

So, we now have three gRPC endpoints. The endpoint that returns secret information is restricted to those who have been assigned the role of User. The endpoint that allows you to insert a new secret is restricted to only those who have the role of Admin. And there is an unrestricted endpoint that can be accessed by absolutely anyone, even if they aren't authenticated at all.

The roles of Admin and User are independent of each other, so if the JWT contains only one of those roles, only one of these endpoints will be accessible. We will shortly see this principle in action. Let's make the necessary changes to the client to do so.

Applying gRPC client changes

We will now open the UserFacingApp project. We will first modify the gRPC client wrapper class. Then, we will add all necessary action methods to the controller and the corresponding views. Follow these next steps:

1. We will need to add the following using statement to the GrpcClientWrapper class:

using Google.Protobuf.WellKnownTypes;

2. Then, add the following method to it:

public async Task<int> GetSecretsCount()

{

var response = await

client.GetSecretsCountAsync(new Empty());

return response.Count;

}

3. Please note that we aren't passing the authorization token to the gRPC call, but we will pass one in the following method that we will add next:

public async Task InsertSecret(SecretDetails details,

string accessToken)

{

var metadata = new Metadata

{

{ "Authorization", $"Bearer {accessToken}" }

398 Applying Authentication and Authorization to gRPC Endpoints

};

var secret = new SecretData

{

Title = details.Title,

Description = details.Description,

Level = (SecretLevel)System.Enum.Parse

(typeof(SecretLevel), details.SecretLevel)

};

await client.InsertSecretAsync(secret, metadata);

}

4. We will then add the following methods to the HomeController class:

public IActionResult Add()

{

return View();

}

[HttpPost]

public async Task<IActionResult> Add(SecretDetails

details)

{

var accessToken = await

HttpContext.GetTokenAsync("access_token");

await clientWrapper.InsertSecret(details,

accessToken);

return RedirectToAction("Index");

}

5. These methods will correspond with the view that will allow us to insert a new secret and the POST action that gets triggered when we submit the form. We will also have the action method for getting the secret count, as illustrated in the following code snippet:

public async Task<IActionResult> Count()

{

Restricting endpoints to authorized users only 399

ViewData["Count"] = await

clientWrapper.GetSecretsCount();

return View();

}

6. We will then add the corresponding views. First, we will add an Add.cshtml file to the Home folder inside the Views folder. Its content will be as follows:

@model UserFacingApp.Models.SecretDetails

@{

ViewData["Title"] = "Add New Secret";

}

<h1>@ViewData["Title"]</h1>

<form asp-controller="Home" asp-action="Add"

method="post">

Title: <input asp-for="Title" />

Description: <input asp-for="Description" />

Description: <select data-val="true"

id="SecretLevel" name="SecretLevel">

<option value="Restricted">Restricted</option>

<option value="Secret">Secret</option>

<option value="TopSecret">Top Secret</option>

</select>

<button type="submit">Submit</button>

</form>

7. Then, we will add a Count.cshtml file with the following content:

@model UserFacingApp.Models.SecretDetails

@{

ViewData["Title"] = "Secret Count";

}

<h1>@ViewData["Title"]</h1>

<p>@ViewData["Count"]</p>

[image: Image 109]

400 Applying Authentication and Authorization to gRPC Endpoints

8. Finally, we will insert the following markup into the Index.cshtml file immediately after the closing form tag:

<a class="nav-link text-dark" asp-area="" asp-

controller="Home" asp-action="Count">Get secrets

count

<a class="nav-link text-dark" asp-area="" asp-

controller="Home" asp-action="Add">Add a new

secret

We can now launch all of our applications by executing the dotnet run command inside all three of our ASP.NET Core project folders. By then using different logins, we can check whether we can access various gRPC endpoints. If we just want to navigate to the Count view, we should be able to do so with absolutely any user. We should be able to see content on the page similar to this, regardless of which login we use:

Figure 10.10 – AllowAnonymous endpoint will return data to any user

Summary 401

On the other hand, if you try to either access secret details with a login that doesn't have a User role or insert a secret with a login that doesn't have an Admin role, you will get a 403 HTTP code returned.

This concludes our summary of applying authentication and authorization to gRPC

endpoints. Let's summarize what we have learned.

Summary

In this chapter, you have learned the fundamental principles of authentication and authorization and how to apply both to gRPC endpoints. You now know that authentication is when the user proves that they are who they claim to be, while authorization is making sure that the user has the necessary permissions to access a resource.

You have learned how a separate application can act as an SSO provider to allow you to authenticate a user into all applications inside your ecosystem. You have learned how the OpenID Connect protocol is used to authenticate the user into a relevant application, while OAuth is used for user authorization.

You have learned that a JWT contains a JSON payload object that describes the user so that the protected application can tell whether the user is who they claim to be and whether they have the necessary permissions. A JWT is validated by a signature to protect it from forgery.

And this concludes the chapter on applying authentication and authorization on gRPC

endpoints. In the next and final chapter, we will have a look at how to trace events in your gRPC application by applying logs and metrics to it.

Questions

1. What is authentication used for?

A. To ensure that only users with specific permissions can access the application B. To ensure that a user is who they claim to be

C. To ensure that only users that have specific roles are allowed to access the application

D. To ensure that only users that have an email address can access the system

402 Applying Authentication and Authorization to gRPC Endpoints 2. What is authorization used for?

A. To ensure that only users with specific permissions can access the application B. To ensure that a user is who they claim to be

C. To ensure that only users that have specific roles are allowed to access the application

D. To ensure that only users that have an email address can access the system 3. Which of the following statements is true?

A. OpenID Connect is used for authorization

B. OAuth is used for authentication

C. OpenID Connect is used for authentication

D. All of the above

4. Which parts does a JWT consist of?

A. Header, body, and footer

B. Header, payload, and footer

C. Header, payload, and signature

D. Payload and signature

5. What is a claim in a JWT payload?

A. An encrypted signature

B. Any JSON field in the payload

C. Any field in a JSON payload with a singular value

D. Specific reserved JSON fields

Further reading 403

Further reading

• IdentityServer4 documentation: https://identityserver4.readthedocs.

io/en/latest/

• OpenID Connect documentation: https://openid.net/connect/

• OAuth documentation

• Understanding OAuth 2.0 and OpenID Connect: https://blog.runscope.

com/posts/understanding-oauth-2-and-openid-connect

• Overview of ASP.NET Core authentication: https://docs.microsoft.com/

en-us/aspnet/core/security/authentication

• What is multifactor authentication and how does it work? : https://

searchsecurity.techtarget.com/definition/multifactor-

authentication-MFA

11

Using Logging,

Metrics, and

Debugging in gRPC

on .NET

We have reached the final chapter of the book, and it covers a very important topic that will help you to identify problems easily if something in your gRPC application isn't working as expected when you are writing it. Also, you will learn how to monitor your application once it's up and running. This will allow you to identify any issues early and respond to them proactively rather than reactively.

We will start by going through various debugging techniques you can use on both the gRPC

client and server. Of course, to debug your own code, all you have to do is place breakpoints in it. However, during the development of gRPC applications, you may encounter situations where it's not your own code that is generating an issue. Therefore, we will need to be able to extract as much information from the gRPC middleware as we can.

406 Using Logging, Metrics, and Debugging in gRPC on .NET

But once your application is up and running, you would want to know what it's doing.

Otherwise, you wouldn't be able to diagnose any problems that may arise with it. This is why you need to capture various pieces of information in the logs, especially details of any errors that happen inside your application's logic.

Finally, you might want to collect other data to use for various types of analytics. For example, you might want to know how many requests your application receives, how many errors occur inside of it, and how long it takes for the requests to get processed. This is where the concept of metrics comes in.

In this chapter, we will cover all of these concepts. We will go through the following topics:

• Debugging gRPC client components inside a .NET application

• Debugging gRPC server components inside a .NET application

• Applying logs to gRPC

• Applying metrics to gRPC

By the end of this chapter, you will have learned how to diagnose unexpected behavior and any other problems when developing your gRPC application. You will also have learned how to monitor your application once it's up and running by getting it to write data into logs and by getting it to generate metrics.

Technical requirements

To follow the instructions in this chapter, you will need the following:

• A computer with a Windows, Mac, or Linux operating system (OS)

• A supported integrated development environment (IDE) or code editor (for example, Visual Studio, Visual Studio Code, or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HTTPS certificate enabled on your machine

The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core. All of the code samples used in this chapter can be found at https://github.com/PacktPublishing/Microservices-

Communication-in-.NET-Using-gRPC/tree/main/Chapter-11.

Please visit the following link to check the CiA videos: https://bit.ly/3m3Wkht

Debugging gRPC client components inside a .NET application 407

Debugging gRPC client components inside a

.NET application

We all know how to debug our own code. We can place breakpoints on the line we want to see the behavior of. We can get the code to output to the console. We can get it to output to a file.

But what if we need to debug a third-party library? What if it's not our own code that doesn't behave as expected and we need to know why? After all, unless you try to decompile the library or try to get hold of its source code, its internal code is inaccessible to us. But even if we could get hold of the source code, it would be cumbersome to apply it to our own solution.

Luckily, gRPC libraries on .NET allow you to debug their internal middleware. If you are getting some unexpected behavior from them, you will be able to capture their actions and see what they are trying to do.

We will now go through the techniques you can apply to obtain as much debugging information from gRPC components as possible. We will start with the gRPC client side.

To debug gRPC from the client side, we will need to configure the server application to return detailed errors from it. This will allow us to identify the source of the problem down to the individual line. Then, we will apply interceptors to our client, which will allow us to intercept any type of communication event, log any relevant information from it, and handle any exceptions that may be thrown by the gRPC middleware.

Setting up shared gRPC dependencies

As we've done in the previous chapters, we will add a class library that will contain all of the gRPC dependencies we will need, and we will do this both on the server and the client side. This class library will then be used by both of the applications:

1. Create a folder called GrpcAnalytics anywhere on your machine and initiate a solution by running the following command inside of it:

dotnet new sln

2. In the solution folder, execute the following command to create a class library project:

dotnet new classlib -o GrpcDependencies

408 Using Logging, Metrics, and Debugging in gRPC on .NET

3. Then, execute the following command to add the project to the solution: dotnet sln add

GrpcDependencies/GrpcDependencies.csproj

4. Now, navigate to the GrpcDependencies project folder. Execute the following command to add the necessary NuGet package. This will be the only package that we will need, as it already references all of the other gRPC libraries that we will be using: dotnet add GrpcDependencies.csproj package

Grpc.AspNetCore

5. Create a Protos folder inside the project folder and add a iot_analytics.

proto file to it with the following content:

syntax = "proto3";

import "google/protobuf/empty.proto";

package iot_analytics;

service IotStatusManager {

rpc GetAllStatuses (google.protobuf.Empty) returns

(stream LocationStatusResponse);

rpc GetLocationStatus (LocationStatusRequest) returns

(LocationStatusResponse);

}

message LocationStatusRequest {

int32 location_id = 1;

}

message LocationStatusResponse {

int32 location_id = 1;

string location_name = 2;

string device_serial_number = 3;

int64 total_requests = 4;

int64 total_errors = 5;

}

Debugging gRPC client components inside a .NET application 409

6. To finish off our class library, we will add the following block to the GrpcDependencies.csproj file:

<ItemGroup>

<Protobuf Include="Protos\iot_analytics.proto" />

</ItemGroup>

So, as the name of our Protobuf suggests, we will pretend that we are monitoring the status of Internet of Things (IoT) devices. Next, we will build our gRPC service application and configure it so that the client will receive as much debugging information from it as possible.

Adding a gRPC service application and getting it to

display detailed errors

In this example, we will intentionally make one of the remote procedure calls (RPCs) throw an error to see what information the client will receive. We will be able to see how this information changes depending on whether detailed errors have been enabled on the server. Here's how it's done:

1. We will navigate back to our GrpcAnalytics solution folder and execute the following command to create a new gRPC service project:

dotnet new grpc -o IotDeviceManager

2. We will then add this project to the solution by running the following command: dotnet sln add

IotDeviceManager/IotDeviceManager.csproj

3. Then, we will navigate to our project folder and add the reference to the class library we created earlier by inserting the following section into the IotDeviceManager.csproj file:

<ItemGroup>

<ProjectReference Include="..\GrpcDependencies\

GrpcDependencies.csproj" />

</ItemGroup>

4. Also, because the class library already has a reference to the gRPC library that we need, we can remove any direct NuGet references from the IotDeviceManager.

csproj file.

410 Using Logging, Metrics, and Debugging in gRPC on .NET

5. We will then add a LocationDataCache.cs file to our project. The initial content of the file will be as follows:

using IotAnalytics;

using System;

using System.Collections.Generic;

using System.Linq;

namespace IotDeviceManager

{

public class LocationDataCache

{

private readonly List<LocationStatusResponse>

statuses;

public LocationDataCache()

{

statuses = new

List<LocationStatusResponse>();

}

6. We will then add the following public methods to the class:

public IEnumerable<LocationStatusResponse>

GetAllStatuses()

{

return statuses;

}

public LocationStatusResponse GetStatus(int

locationId)

{

return statuses.FirstOrDefault(s =>

s.LocationId == locationId);

}

}

}

Debugging gRPC client components inside a .NET application 411

7. We can pre-populate the statuses collection by inserting the following code into the constructor:

var random = new Random();

for (var i = 0; i < 100; i++)

{

statuses.Add(new LocationStatusResponse

{

LocationId = i + 1,

LocationName = $"Location {i}",

DeviceSerialNumber = $"{i}{i}{i}-DEMO-{i *

20}",

TotalRequests = random.Next(1000, 1000000),

TotalErrors = random.Next(1000)

});

}

8. Next, we will add the gRPC service implementation to the Services

folder of the project. The file we will insert into the folder will be called IotStatusManagerService.cs and it will have the following content:

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using IotAnalytics;

using System.Threading.Tasks;

namespace IotDeviceManager.Services

{

public class IotStatusManagerService :

IotStatusManager.IotStatusManagerBase

{

private readonly LocationDataCache dataCache;

public IotStatusManagerService

(LocationDataCache dataCache)

{

412 Using Logging, Metrics, and Debugging in gRPC on .NET

this.dataCache = dataCache;

}

}

}

9. Then, we will add rpc implementations as follows:

public override async Task GetAllStatuses(Empty

request, IServerStreamWriter<LocationStatusResponse>

responseStream, ServerCallContext context)

{

foreach (var status in dataCache.GetAllStatuses())

{

await responseStream.WriteAsync(status);

}

}

public override Task<LocationStatusResponse>

GetLocationStatus(LocationStatusRequest request,

ServerCallContext context)

{

throw new Exception("This call is not ready

yet.");

}

10. So, this is where we have deliberately made one of the rpc implementations throw an error to see what will happen if the client tries to call it. Next, we will open the Startup class (or the Program.cs file if you are using .NET 6 project templates).

In this file, we will add the following variable to indicate whether we are using the development environment:

private readonly bool isDevelopment =

Environment.GetEnvironmentVariable(

"ASPNETCORE_ENVIRONMENT") == "Development";

Debugging gRPC client components inside a .NET application 413

11. Then, replace the content of the ConfigureServices method with the

following. If you are using .NET 6, you will need to apply this code to the builder.Services property inside the main body of the code, and you will

need to delete the existing builder.Services.AddGrpc call:

services.AddGrpc(options =>

{

options.EnableDetailedErrors = isDevelopment;

});

services.AddSingleton<LocationDataCache>();

services.AddSingleton<TracingInterceptor>();

So, we have enabled detailed errors if the code is running on the development environment. Otherwise, the server would be expected to produce only the

standard error information, without revealing too many details.

12. We will then need to register our newly added gRPC service implementation by adding the following statement to the UseEndpoints call:

endpoints.MapGrpcService<IotStatusManagerService>();

Note

If you are running your server-side application on a Mac, you will need to apply some modifications to it. The instruction on how to do so can be found in the Running a gRPC Service on a Mac section in Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

And now we have everything we need on the server side. Let's now build the client and add some extra debugging capabilities to it.

Adding a gRPC client with additional debugging

capabilities

When an error comes from gRPC middleware on ASP.NET Core, it will throw an exception of the RpcException type. Of course, such an exception doesn't necessarily come from the internal components of gRPC libraries. We are free to throw this type of exception ourselves. But unless we throw an exception of this type manually, the only place it will be generated is in the internal gRPC middleware. And this is why – in order to diagnose the problem that originates inside the middleware – we need to catch an exception of this type.

414 Using Logging, Metrics, and Debugging in gRPC on .NET

We will now add a gRPC client and apply global exception handling to it. This means we won't have to catch it for every individual gRPC call. We will do this by applying the so-called interceptors. Also, once the client is completed, we will be able to see what happens with and without the EnableDetailedErrors option being set to true on the server:

1. First, we will navigate back to our GrpcAnalytics solution folder and run the following command to create a new ASP.NET Core Web API project: dotnet new webapi -o IotApiGateway

2. We will then add the project to the solution by executing the following command: dotnet sln add IotApiGateway/IotApiGateway.csproj

3. Then, we will open our project folder and insert the following markup into the IotApiGateway.csproj file:

<ItemGroup>

<ProjectReference Include="..\GrpcDependencies\

GrpcDependencies.csproj" />

</ItemGroup>

4. These are all of the dependencies we need. We will leave any existing NuGet dependencies as they are. Next, we will add a gRPC interceptor to the project. The interceptor will reside in the TracingInterceptor.cs file that will be placed into the root of the project folder. Its content will be as follows:

using Grpc.Core;

using Grpc.Core.Interceptors;

using System;

using System.Threading.Tasks;

namespace IotApiGateway

{

public class TracingInterceptor : Interceptor

{

}

}

Debugging gRPC client components inside a .NET application 415

5. This is a custom class that will override the logic inside the standard gRPC

interceptor that is run by the middleware. This class will allow us to trigger custom logic whenever a gRPC call of a particular type is made. We will add examples of interceptor methods for all call types. The first one is a blocking unary call, which will be as follows:

public override TResponse BlockingUnaryCall<TRequest,

TResponse>(TRequest request, ClientInterceptor

Context<TRequest, TResponse> context,

BlockingUnaryCallContinuation<TRequest,

TResponse> continuation)

{

try

{

return continuation(request, context);

}

catch (RpcException ex)

{

Console.WriteLine(ex);

throw;

}

}

6. The continuation parameter allows us to call the next step in the

middleware. And because the call is blocking, we can just return the result of the continuation call. It will throw an exception if there is a problem with the connection. Next, we will add a method for an async unary call:

public override AsyncUnaryCall<TResponse>

AsyncUnaryCall<TRequest, TResponse>(Trequest

request, ClientInterceptorContext<TRequest,

TResponse> context, AsyncUnaryCallContinuation

<TRequest, TResponse> continuation)

{

var call = continuation(request, context);

return new

416 Using Logging, Metrics, and Debugging in gRPC on .NET

AsyncUnaryCall<TResponse>(HandleCallResponse

(call.ResponseAsync), call.ResponseHeadersAsync,

call.GetStatus, call.GetTrailers,call.Dispose);

}

7. In this case, because the call is asynchronous, we won't be able to just catch the exception by calling the continuation parameter. Instead, we can attach

a custom handler to some of the actions. We have done this by attaching a call to HandleCallResponse to the ResponseAsync action. Whenever this method

is called by the code that uses the client, this handler will be called. So, we can place all of our exception-handling logic there. We will add this method later. But for now, we will add a client-streaming call:

public override AsyncClientStreamingCall<TRequest,

TResponse> AsyncClientStreamingCall<TRequest,

TResponse>(ClientInterceptorContext<TRequest,

TResponse> context, AsyncClientStreamingCall

Continuation<TRequest, TResponse> continuation)

{

var call = continuation(context);

return new AsyncClientStreamingCall<TRequest,

TResponse>(

call.RequestStream,

HandleCallResponse(call.ResponseAsync),

call.ResponseHeadersAsync,

call.GetStatus,

call.GetTrailers,

call.Dispose);

}

Debugging gRPC client components inside a .NET application 417

8. Because this type of call returns the same kind of response as a blocking unary call, we can apply the same handler to the method that returns its response. Next, we will add an interceptor method for a server-streaming call:

public override AsyncServerStreamingCall<TResponse>

AsyncServerStreamingCall<TRequest, TResponse>

(TRequest request, ClientInterceptorContext

<TRequest, TResponse> context, AsyncServer

StreamingCallContinuation<TRequest, TResponse>

continuation)

{

try

{

return continuation(request, context);

}

catch (RpcException ex)

{

Console.WriteLine(ex);

throw;

}

}

9. In here, we can also associate handlers with various actions. But we will need to write a different type of handler – one that is appropriate to the action. After this, we will add an interceptor method for a bi-directional call:

public override AsyncDuplexStreamingCall<TRequest,

TResponse> AsyncDuplexStreamingCall<TRequest,

TResponse>(ClientInterceptorContext<TRequest,

TResponse> context, AsyncDuplexStreamingCall

Continuation<TRequest, TResponse> continuation)

{

try

{

return continuation(context);

}

catch (RpcException ex)

{

418 Using Logging, Metrics, and Debugging in gRPC on .NET

Console.WriteLine(ex);

throw;

}

}

10. Once again, we haven't added any handlers to any of the actions. But you can experiment with this method and add your own. Finally, we will need to add the method for the actual handler that we referenced previously:

private async Task<TResponse> HandleCallResponse

<TResponse>(Task<TResponse> responseTask)

{

try

{

var response = await responseTask;

return response;

}

catch (RpcException ex)

{

Console.WriteLine(ex);

throw;

}

}

11. And all we have to do now is add this interceptor to our client. To do so, we will modify our Startup class (or the Program.cs file if you are using .NET 6

project templates). Whichever file we are using, we need to make sure that we have the following using statement in it:

using IotAnalytics;

12. Then, we will need to add the following code to the ConfigureServices method. If you are using a .NET 6 template, replace services with builder.

Services, and insert this code anywhere before the Build action. If you are running your gRPC server on macOS, the Address option should be HTTP with the relevant port number added:

services.AddGrpcClient<IotStatusManager.IotStatus

ManagerClient>(options =>

{

Debugging gRPC client components inside a .NET application 419

options.Address = new

Uri("https://localhost:5001");

})

.AddInterceptor<TracingInterceptor>();

13. The gRPC client has now been added to the dependency injection container and our custom interceptor has been added to it. We will now add a controller where we will be able to use the client. We will do this by adding a DevicesController.cs file to the Controllers folder with the following content:

using Google.Protobuf.WellKnownTypes;

using IotAnalytics;

using Microsoft.AspNetCore.Mvc;

using System.Collections.Generic;

using System.Threading;

using System.Threading.Tasks;

namespace IotApiGateway.Controllers

{

[ApiController]

public class DevicesController : ControllerBase

{

private readonly IotStatusManager

.IotStatusManagerClient client;

public DevicesController(IotStatusManager

.IotStatusManagerClient client)

{

this.client = client;

}

}

}

420 Using Logging, Metrics, and Debugging in gRPC on .NET

14. We will then add endpoint methods that correspond with both of the rpc definitions in Protobuf:

[HttpGet("")]

public async Task<IEnumerable<LocationStatusResponse>>

GetAllStatuses()

{

var response = new List<LocationStatusResponse>();

using var call = client.GetAllStatuses(new

Empty());

while (await call.ResponseStream.MoveNext

(CancellationToken.None))

{

response.Add(call.ResponseStream.Current);

}

return response;

}

[HttpGet("{id}")]

public async Task<LocationStatusResponse>

GetStatus(int id)

{

return await client.GetLocationStatusAsync(new

LocationStatusRequest

{

LocationId = id

});

}

We are now ready to launch our application and see what error information will be logged from it. After all, it will be easy to trigger an error, as we haven't implemented one of the rpc definitions on the server. Nonetheless, we have the code that will attempt to call it.

[image: Image 110]

Debugging gRPC client components inside a .NET application 421

Viewing gRPC error information on the client

Make sure that the launchSettings.json files in the IotApiGateway and

IotDeviceManager projects have different ports specified in the applicationUrl field. Otherwise, one application will prevent the other from running. Once this is done, launch the applications by executing the dotnet run command in each of the project folders.

We can now navigate to the Swagger page of the IotApiGateway application, which will be available at the following address:

{base URL as defined in launchSettings.json file}/swagger

This page will allow us to execute both of our DeviceController endpoints. The first endpoint calls a gRPC method that has been fully implemented, so you will be able to see some data returned. The second endpoint, however, will encounter an error that is being deliberately thrown by the server. If you try to execute the Devices/

{id} endpoint, you would expect to see the following error logged in the console of the IotApiGateway application:

Figure 11.1 – An exception from the gRPC server being logged with full information

[image: Image 111]

422 Using Logging, Metrics, and Debugging in gRPC on .NET

We can see the inner message of the exception that we have deliberately thrown. However, if we now stop both of our applications and set the EnableDetailedErrors option on the gRPC server to false, we will see a different outcome in our client console after re-launching the applications. The exception would still be caught and logged, but this time, there will be no original error message present, as this image demonstrates: Figure 11.2 – An exception from the gRPC server being logged without the inner error message In short, if we enable the EnableDetailedErrors option, the error message would be Exception was thrown by handler. This call is not ready yet.

But if we disable this option, it would just be Exception was thrown by handler.

This is how you can get detailed error information on the development environment while hiding it from the users in production.

But it's not only the client that allows you to use interceptors and extract inner error information from gRPC middleware – you can do this on the server too. And this is what we will do now.

Debugging gRPC server components inside a .NET application 423

Debugging gRPC server components inside a

.NET application

An ASP.NET Core application with gRPC capabilities allows you to get gRPC middleware to output internal debugging information to the application console. It is switched off by default, but we can turn it on by applying a simple change to the application settings.

Likewise, the gRPC server application allows you to use interceptors, just like we did on the client. The server-side interceptor would inherit from the same base class as the client-side one, but it will have different methods defined in it that are only applicable to the server-side events:

1. To enable the debug log from the gRPC middleware to be printed in the console, you would need to open the appsettings.json file (and appsettings.

Development.json, if you have it) in the IotDeviceManager project folder, locate the LogLevel section, and insert the following entry within it:

"Grpc": "Debug"

2. Now, we will add our server-side interceptor. To do this, we will add the ServerTracingInterceptor.cs file to the root of the project and add the

following content to it:

using Grpc.Core;

using Grpc.Core.Interceptors;

using System;

using System.Threading.Tasks;

namespace IotDeviceManager

{

public class ServerTracingInterceptor :

Interceptor

{

}

}

424 Using Logging, Metrics, and Debugging in gRPC on .NET

3. We will then add the call handling methods to it one by one. First, we would add the following handler for a unary call:

public override async Task<TResponse> Unary

ServerHandler<TRequest, TResponse>(TRequest request,

ServerCallContext context, UnaryServerMethod

<TRequest, TResponse> continuation)

{

try

{

return await continuation(request, context);

}

catch (Exception ex)

{

Console.WriteLine(ex);

throw;

}

}

4. Then, we will add a handler for a client-streaming call:

public override async Task<TResponse> Client

StreamingServerHandler<TRequest, TResponse>

(IAsyncStreamReader<TRequest> requestStream,

ServerCallContext context, ClientStreaming

ServerMethod<TRequest, TResponse> continuation)

{

try

{

return await continuation(requestStream,

context);

}

Debugging gRPC server components inside a .NET application 425

catch (Exception ex)

{

Console.WriteLine(ex);

throw;

}

}

5. Next, we will apply a handler for a server-streaming call:

public override async Task ServerStreamingServer

Handler<TRequest, TResponse>(TRequest request,

IServerStreamWriter<TResponse> responseStream,

ServerCallContext context, ServerStreaming

ServerMethod<TRequest, TResponse>

continuation)

{

try

{

await continuation(request, responseStream,

context);

}

catch (Exception ex)

{

Console.WriteLine(ex);

throw;

}

}

426 Using Logging, Metrics, and Debugging in gRPC on .NET

6. And finally, we will add a handler for a bi-directional streaming call: public override async Task DuplexStreamingServer

Handler<TRequest, TResponse>(IAsyncStreamReader

<TRequest> requestStream, IServerStreamWriter

<TResponse> responseStream, ServerCallContext

context, DuplexStreamingServerMethod

<TRequest, TResponse> continuation)

{

try

{

await continuation(requestStream,

responseStream, context);

}

catch (Exception ex)

{

Console.WriteLine(ex);

throw;

}

}

7. We will now need to register our handler. To do this, navigate to either the Startup.cs file (for .NET 5) or the Program.cs file (for .NET 6) and then place the following statement inside of the AddGrpc call:

options.Interceptors.Add<ServerTracingInterceptor>();

8. And we will also need to register the interceptor in our dependency injection container by adding the following statement, replacing services with builder.

Services if you are on .NET 6:

services.AddSingleton<ServerTracingInterceptor>();

[image: Image 112]

Debugging gRPC server components inside a .NET application 427

These are all of the changes we wanted to make on the server side. Let's now launch the applications and have a look at the changes in their behavior.

Viewing the debug output on the gRPC server console

Now, if we launch both of our applications and call the working gRPC method from the REST API via the Swagger page, we will be able to see debugging information in our gRPC server console. For example, the following figure demonstrates that each message on the stream is being read individually. Those entries are clearly marked as debug: Figure 11.3 – The debug output from gRPC in the server-side log

[image: Image 113]

428 Using Logging, Metrics, and Debugging in gRPC on .NET

As for the gRPC call that was deliberately designed to fail, we can see that we have been able to intercept the exception and print it to the console even before the default logger has picked it up, as can be seen in the following figure:

Figure 11.4 – The server-side interceptor intercepting the exception

And this is how you can use interceptors to handle all of your exceptions globally, instead of adding a try/catch block to every individual RPC implementation. If you have a handler for a specific RPC type, any exception that originates in any of the RPCs of that type would be caught in it.

So far, we have been logging our exceptions as plain messages directly in the console. This is acceptable for debugging, but if you want to release an application, you would need to use a proper logger. And this is what we will have a look at next.

Applying logs to gRPC 429

Applying logs to gRPC

In software development, logging is a very important concept. Not only will it allow you to identify problems while you are developing your application, but it will also allow you to monitor an application that has been released into production. If anything happens to the application, you would be able to have a look in the logs to see what the application was doing and whether it produced any errors.

There are many different types of logs. You can write the log messages to the console, as we did. You can write them to a file. You can write them to Azure Blob Storage somewhere in the cloud. You can select whichever method suits you best.

In ASP.NET Core applications, it's good practice to use dependency injection for logging, just as you would for other service types. The places in your code that write messages to the log would call relevant methods on the logger interface. And it's up to you to configure what exact implementation of that interface those objects would receive. This is how you can swap loggers of different types depending on the environment. For example, in the development environment, logging to the console may be all you need. But in the production environment, you will need to send your logs where it would be easy to query them.

When you use configurable loggers, it's not only the output type that you can configure but also the log level. You can get the logger to only output messages if they are of a specific severity. We saw this when we configured an inbuilt gRPC logger to output debug messages to the console of the server application. Typically, the severity levels of a logger would be as follows; however, some variations may exist depending on what logger you are using:

• Debug: This is for detailed information on internal functionality that is only useful for debugging purposes.

• Info: This is for information about important events happening inside the application.

• Warning: This means some unexpected behavior was detected but it is not classed as an error.

• Error: This means an error occurred inside the application.

• Critical/Failure: This means a critical error has occurred, which prevented an important functionality from working.

430 Using Logging, Metrics, and Debugging in gRPC on .NET

These severity levels are shown from the lowest to the highest. If you set a log severity level in your application, it will log everything from that severity level and above, but it will ignore anything below it. For example, if you set it to Debug, everything will be logged.

However, if you set it to Warning, the Debug and Info messages will be ignored. In other words, only the Warning, Error, and Critical messages will be logged.

With a custom logger, you can get gRPC middleware to write to your own log. But with interceptors in place, you can also associate custom log messages with gRPC calls. Now, we will go ahead and demonstrate how logging works both on the client and on the server.

Configuring a logger on the gRPC client

We will now configure a logging provider for the gRPC client application and will replace all console logs with proper logging:

1. In the Program.cs file of the IotApiGateway application, add the following block immediately after the call to CreateDefaultBuilder. If you are using a .NET 6 template, there will be no ConfigureLogging method, and the

statements inside of it will be added to builder.Logging:

.ConfigureLogging(logging =>

{

logging.ClearProviders();

logging.AddConsole();

})

2. We have now added a default console logger to our application. We are still logging into the console, but our output will now be annotated with a color-coded severity level. We will now be able to insert the logger into the places that need it via dependency injection. We will start with the TracingInterceptor class. To enable us to inject the logger, we will add the following using statement to it: using Microsoft.Extensions.Logging;

Applying logs to gRPC 431

3. Then, we will replace the class constructor, while also adding the logger as a private readonly field:

private readonly ILogger<TracingInterceptor> logger;

public TracingInterceptor(ILogger<TracingInterceptor>

logger)

{

this.logger = logger;

}

4. Next, we will replace the content of the LogException method with the following:

logger.LogError(ex, "gRPC error occured");

5. And we will add the following private method to the class:

private void LogException(RpcException ex)

{

logger.LogError(ex, "gRPC error occured");

}

6. Then, at the beginning of every call interceptor method, we will call this method like this:

LogCall(context.Method);

7. We can also inject our custom logger directly into a gRPC client. I will demonstrate this by creating another standalone instance of the client inside the DevicesController class. First, we will need to add the following using

statements to the class:

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

432 Using Logging, Metrics, and Debugging in gRPC on .NET

8. Then, we will add the following private readonly field:

private readonly ILoggerFactory loggerFactory;

9. Then, we will replace the class controller with the following:

public DevicesController(IotStatusManager.

IotStatusManager Client client, ILoggerFactory

loggerFactory)

{

this.client = client;

this.loggerFactory = loggerFactory;

}

10. Next, we will add the following method to use a single-use client. Please note how we are inserting our own logger into the gRPC channel:

[HttpGet("single-use-client")]

public async Task<IEnumerable<LocationStatusResponse>>

GetAllStatusesSingleUseClient()

{

var option = new GrpcChannelOptions

{

LoggerFactory = loggerFactory

};

var channel = GrpcChannel.ForAddress

("https://localhost:5001", option);

var localClient = new IotStatusManager.

IotStatusManagerClient(channel);

var response = new List<LocationStatusResponse>();

using var call = localClient.GetAllStatuses(new

Empty());

while (await call.ResponseStream.MoveNext

(CancellationToken.None))

{

Applying logs to gRPC 433

response.Add(call.ResponseStream.Current);

}

return response;

}

11. Finally, to actually see the debug output in our console, we need to open the appsetting.Development.json file (or appsettings.json, if you don't

have it) and set the Default LogLevel entry to Debug. We can also remove any other entries in that section.

Now, the internal middleware of the gRPC client will log its events into whichever place our logger has been configured to log them to. And we will be able to query those event messages the same way as we can query our own log entries.

Next, we will apply a logger to the server.

Applying a logger on the gRPC server

We will apply the same type of logger on the server as we did on the client. After that, we will look at the console output to see how it's different from what we had before: 1. We will first append the following call to the CreateDefaultBuilder call in the Program.cs file. We will need to modify these statements for .NET 6

implementations, as has been described previously:

.ConfigureLogging(logging =>

{

logging.ClearProviders();

logging.AddConsole();

})

2. Next, we will open the ServerTracingInterceptor.cs file and add the

following using statement to it:

using Microsoft.Extensions.Logging;

434 Using Logging, Metrics, and Debugging in gRPC on .NET

3. We will then add the following private readonly field and constructor: private readonly ILogger<ServerTracingInterceptor>

logger;

public ServerTracingInterceptor(Ilogger

<ServerTracingInterceptor> logger)

{

this.logger = logger;

}

4. Next, we will replace the content of the LogException method with

the following:

logger.LogError(ex, "gRPC error occurred");

5. We will then add the following method:

private void LogCall(ServerCallContext context)

{

logger.LogDebug($"gRPC call request:

{context.GetHttpContext().Request.Path}");

}

6. And we will also add a call to this method at the beginning of every handler method, like so:

LogCall(context);

7. We will now need to open the appsetting.Development.json file (or

appsettings.json, if you don't have it) and set the Default LogLevel entry to Debug. We can also remove any other entries in that section.

So, we are now ready to launch our applications and see what kind of output will be produced.

[image: Image 114]

Applying logs to gRPC 435

Testing our log output

We will launch both of our applications and the Devices/single-use-client endpoint from the Swagger page in the browser. If you then observe what happens in the console, you will see the full debug output coming from the gRPC client library, along with the custom debug message that we have added, as the following figure demonstrates: Figure 11.5 – The debug output in the console of the client application

[image: Image 115]

436 Using Logging, Metrics, and Debugging in gRPC on .NET

You will see all of the debugging information in the server console too, as can be seen in the following figure:

Figure 11.6 – The debug output in the gRPC server console

This logging is very useful to find out the exact point at which interceptor methods are being called. For example, it is apparent from the server console that gRPC reads the incoming message first, and only then calls the interceptor. And, of course, if you set the default log level to something other than Debug in your application's settings, you will not see any of this output in the console.

[image: Image 116]

Applying logs to gRPC 437

Now, we will call our Devices/{id} endpoint from the Swagger page to see how the exception is being logged. And, as can be seen in the following figure, our custom log message is now annotated with a color-coded severity level:

Figure 11.7 – The logged exception, annotated with a color-coded log severity level This concludes our overview of applying logging to the gRPC functionality in an ASP.NET

Core application. But logging individual messages is not the only way you can monitor your applications – you can also apply metrics to them. This is what we will have a look at next.

[image: Image 117]

438 Using Logging, Metrics, and Debugging in gRPC on .NET

Applying metrics to gRPC

Metrics are fundamentally different from log messages. Typically, metrics would represent fairly basic measurements, such as counters, durations, and so on. But they can work nicely alongside logging. For example, if you are counting errors, you can see when they occur, and you can then query the logs for this specific period of time. Likewise, if you measure request latency, you can see when it goes above the acceptable threshold. And then you can query the logs produced within the same period to find out exactly what was happening inside your application.

Metrics are typically stored in a time series database, such as Prometheus, InfluxDB, or TimescaleDB. Because metrics represent simple data, they can be easily aggregated and plotted on a time series graph. For example, Grafana software was specifically designed to visualize metrics information. It can plot metrics on graphs similar to that in the following figure:

Figure 11.8 – An example of a Grafana metrics graph

There are several different metrics technologies available, but they usually follow either of the following principles:

• Collect the metrics and push them to a database endpoint at set intervals.

• Publish metrics via a URL endpoint and let a third-party probe collect them.

Typically, if you have a URL endpoint, it will be hidden behind a firewall, so only the specific piece of software that collects the metrics will be able to access it. This is done because some of the metric types get reset during every collection.

Applying metrics to gRPC 439

The metrics types that get reset during every collection include counters. These metrics typically just increment the number of actions within a specific period of time. And in the next cycle, we will only be concerned with how many actions occurred within the current cycle. So, none of the previously incremented values get passed into the next collection cycle. Some examples of counters may include the number of requests, the number of errors, and more.

A gauge is an example of a metric type that doesn't get reset. These metrics get incremented and decremented when various events occur. And we are always interested in their real-time value. A gauge can be used, for example, to indicate how many user sessions are currently active.

In our example, we will generate Prometheus-style metrics that will be collectible via a URL endpoint.

Configuring metrics on the gRPC server

We will need to add some NuGet packages to the class library that is shared between the client and the server. Then, we will need to add some relevant configurations to our gRPC

server application:

1. First, open the GrpcDependencies project folder and execute the following commands to add the relevant NuGet dependencies:

dotnet add GrpcDependencies.csproj package prometheus-

net.AspNetCore

dotnet add GrpcDependencies.csproj package prometheus-

net.AspNetCore.Grpc

2. Next, we will open the Startup.cs file (or the Program.cs file if you are on

.NET 6) of the IotDeviceManager project and add this using statement to it: using Prometheus;

3. Next, we will add the following statement immediately after app.UseRouting: app.UseGrpcMetrics();

This will enable the automatic collection of metrics associated with gRPC.

4. Then, we will add the following statement inside the call to app.UseEndpoints: endpoints.MapMetrics();

440 Using Logging, Metrics, and Debugging in gRPC on .NET

This will add the default metrics collection endpoint to our application, which will be accessible via {base URL}/metrics.

With this setup, we are able to collect the default metrics from gRPC. But what if we wanted to apply some custom metrics too? Well, on our client, we will do exactly this.

Enabling metric collection on the gRPC client

On the gRPC client, we will do exactly the same metrics registration that we have done on the server. But this time, we will also apply some custom metrics:

1. In the IotApiGateway project, open the Startup.cs file (or Program.cs if you are on .NET 6) and add the following using statement to it:

using Prometheus;

2. Then, add the following statement immediately after app.UseRouting:

app.UseGrpcMetrics();

3. Next, add the following statement inside the call to app.UseEndpoints: endpoints.MapMetrics();

4. Now, let's open the TracingInterceptor class and add the following using statement on top of it:

using Prometheus;

5. Then, add the following private fields to the class:

private static readonly Counter

BlockingUnaryCallsCount = Metrics.

CreateCounter("blocking_unary_calls_count", "Count of

blocking unary calls.");

private static readonly Counter AsyncUnaryCallsCount =

Metrics.CreateCounter("async_unary_calls_count",

"Count of async unary calls.");

private static readonly Counter

ClientStreamingCallsCount = Metrics.

CreateCounter("client_streaming_calls_count", "Count of

client streaming calls.");

private static readonly Counter

Applying metrics to gRPC 441

ServerStreamingCallsCount = Metrics.

CreateCounter("server_streaming_calls_count", "Count

of server streaming calls.");

private static readonly Counter

DuplexStreamingCallsCount = Metrics.

CreateCounter("duplex_streaming_calls_count", "Count

of bi-directional streaming calls.");

private static readonly Counter FailedGrpcCallsCount =

Metrics.CreateCounter("failed_grpc_calls_count",

"Count of failed gRPC calls.");

private static readonly Histogram GrpcCallDuration =

Metrics.CreateHistogram("grpc_call_duration",

"Durations of gRPC calls.");

6. We will then add the following line just before the return statement of every interceptor method. This will measure the duration of the call:

using GrpcCallDuration.NewTimer();

7. And now we will increment our counters. First, insert the following line at the beginning of the BlockingUnaryCall method:

BlockingUnaryCallsCount.Inc();

8. After this, insert the following line at the beginning of the AsyncUnaryCall method:

AsyncUnaryCallsCount.Inc();

9. Then, insert the following line into the AsyncClientStreamingCall method: ClientStreamingCallsCount.Inc();

10. Afterward, insert the following line into the AsyncServerStreamingCall method:

ServerStreamingCallsCount.Inc();

11. Finally, insert this line at the beginning of the AsyncDuplexStreamingCall method:

DuplexStreamingCallsCount.Inc();

[image: Image 118]

442 Using Logging, Metrics, and Debugging in gRPC on .NET

We have now enabled custom metrics in our gRPC client application. Now, we will launch our applications and see how the metrics get produced.

Viewing gRPC metrics

After launching both applications and triggering a number of gRPC calls via the Swagger page, we can evaluate what metrics get collected by our applications. If you then navigate to the metrics endpoint of the client application, which is accessible via the base URL from the launchConfig.json file followed by the /metrics path, you will see a combination of core metrics produced by the gRPC middleware alongside the custom metrics that we added. This can be seen in the following figure:

Figure 11.9 – The metrics produced by the IotApiGateway application

[image: Image 119]

Applying metrics to gRPC 443

If you navigate to the metrics endpoint of the IotDeviceManager application, you will see a combination of metrics produced by ASP.NET Core system processes and gRPC

middleware, as the following figure demonstrates:

Figure 11.10 – The metrics generated by the IotDeviceManager application

444 Using Logging, Metrics, and Debugging in gRPC on .NET

Out of the box, the gRPC middleware generates only the most basic metrics. This is why it makes sense to generate your own to make application monitoring more targeted. The following metrics get produced by the gRPC client library:

• total-calls: Total calls

• current-calls: Current calls

• calls-failed: Total calls failed

• calls-deadline-exceeded: Total calls deadlines exceeded

• messages-sent: Total messages sent

• messages-received: Total messages received

The gRPC server library will generate the same metrics, but there is one additional metric that the server generates:

• calls-unimplemented: Total calls unimplemented

And this concludes the overview of gRPC metrics. Let's now summarize what we have learned in this chapter.

Summary

Congratulations! You have now reached the end of this book.

In this chapter, you have learned how to debug both client and server implementations of gRPC on .NET. You now know how to configure the server to return detailed errors to the client. Likewise, you have learned how to apply interceptors to both the client and the server to enable global error reporting and event logging.

You have also learned how to use loggers in gRPC on .NET. We have covered the fundamentals of configuring logging on ASP.NET Core, and you have learned how to insert these logs both into gRPC interceptors and internal gRPC processes.

We have also gone through the concept of applying metrics to your application. You now know that metrics consist of data that can be easily plotted on time series graphs to help you identify trends, and we explored counters and durations as an example of this.

You have been shown how to extract built-in metrics emitted by gRPC libraries on .NET.

Also, we have gone over some examples of how to apply custom metrics where necessary.

Questions 445

We have now concluded this book on using gRPC on .NET to enable effective communication between microservices. We have covered all the fundamental topics of using gRPC on .NET, so you should now be fully equipped to use it in your own solutions.

I hope you have enjoyed the journey and found the information in this book useful.

Questions

1. How do you get the gRPC server to send detailed error diagnostics to the client?

A. You have to add your custom logic to the gRPC service implementation.

B. You have to use interceptors.

C. You can set the EnableDetailedErrors option on the server.

D. You have to throw RpcException.

2. How do you enable the middleware of the gRPC service on ASP.NET Core to output debugging information?

A. Set the Grpc entry in the logging settings to Debug.

B. Attach event listeners to the gRPC assembly.

C. Insert a custom logger into the gRPC channel.

D. This is not possible.

3. What is the easiest way to determine if an error came from the inner gRPC

middleware on ASP.NET Core?

A. You can do this by looking up special keywords in the exception message.

B. You can do this by checking if the exception is of the RpcException type.

C. You can do this by checking if the exception is of the HttpException type.

D. You can do this by looking up special numeric codes in the exception message.

4. How can you pass a shared application logger to the inner middleware of the gRPC client?

A. You can do this by adding it to the interceptor.

B. You can do this by adding an ILoggerFactory implementation to the

GrpcChannel options.

C. This is not possible.

D. It's only possible when catching exceptions that originated from the inner middleware.

446 Using Logging, Metrics, and Debugging in gRPC on .NET

5. What is the difference between logs and metrics?

A. Metrics provide detailed information, while logs only contain basic messages.

B. Metrics consist of data that can be easily aggregated (for example, counters, gauges, histograms, and so on), while logs provide detailed information of each event.

C. Metrics represent the metadata behind the log entries.

D. Metrics are used strictly for measuring performance, while logs contain detailed event information.

Further reading

• Logging and diagnostics in gRPC on .NET: https://docs.microsoft.com/

en-us/aspnet/core/grpc/diagnostics

• Logging in .NET Core and ASP.NET Core: https://docs.microsoft.com/

en-us/aspnet/core/fundamentals/logging/

• An overview of Prometheus: https://prometheus.io/docs/

introduction/overview/

• The Prometheus-net library documentation: https://github.com/

prometheus-net/prometheus-net

• 30 best practices for logging at scale: https://www.loggly.com/blog/30-

best-practices-logging-scale/

Assessments

You'll find the answers to the questions in all chapters of the book in this section.

Chapter 1, Creating a Basic gRPC Application

on ASP.NET Core

1. B. "You cannot have a Protobuf message definition without any fields" is an incorrect statement. You can have empty message definitions in Protobuf.

2. A. ASP.NET Core is a cross-platform framework that works on Windows, Linux, and macOS, so gRPC can be implemented on them.

3. C. You need to register each proto file by adding a Proto element to your project file.

Then, you can specify the GrpcServices attribute inside it, which can be set to Server, Client, or Both. It's set to Both by default, so if you don't specify this attribute, both client and the server code will be generated. If you specify Server, only the server code will be generated. So, either Both or Server is a valid option for generating server code.

4. C. To get gRPC to work inside an ASP.NET Core server app, you need to add all the required references to the project. Then, for each gRPC service definition, you need to create a C# class that overrides from a class that was auto-generated from a proto file, representing one of its service definitions. Then, you need to register gRPC capabilities inside the Startup class. Finally, you need to register your custom C# implementation of a gRPC service as an endpoint in your

middleware.

5. C. The client-side code that's generated with both the synchronous and asynchronous versions of each RPC is defined in a proto file. The name of the synchronous function is the same as the one defined in the proto file. The asynchronous version has the same name but with Async at the end.

448 Assessments

Chapter 2, When gRPC Is the Best Tool and

When It Isn't

1. B. Yes, by utilizing streaming

2. C. Yes, but only by using async/await on the client

3. A. Server-streaming calls

4. B. Yes, both on the server and the client

5. D. Calls from the server to the client without a request from the client Chapter 3, Protobuf – the Communication

Protocol of gRPC

1. A. long.

2. A. The int32 data type will have only as many bytes allocated as necessary, while fixed32 always occupies 4 bytes.

3. C. Create a repeated field of a message that itself has a repeated field.

4. B. The original field gets unset, and the new field gets set.

5. D. You can keep the original Proto file that is specified in the import directive but get it to import the new proto file via the import public directive.

Chapter 4, Performance Best Practices for

Using gRPC on .NET

1. B. Channel.

2. C. 100.

3. A. Apply the stream keyword before the rpc keyword.

4. D. Apply the stream keyword before both the input and output parameters.

5. A. When you intend to modify the original byte array after this call.

Chapter 5, Applying Versioning to the gRPC API

1. C. It will not affect the functionality.

2. B. sfixed32 and int32.

3. A. It will be populated with the default value on the client.

Chapter 6, Scaling a gRPC Application 449

4. D. Use the reserved keyword, followed by the sequence numbers of the removed fields.

5. C. Using separate Protobuf definitions for separate API versions.

Chapter 6, Scaling a gRPC Application

1. C. To split a large number of requests between multiple instances of the application.

2. C. By getting the list of individual endpoint addresses and calling them directly.

3. D. All of the above.

4. A. The client connects to the proxy endpoint and the proxy redirects it to individual application instances.

5. C. Support for HTTP/2.

Chapter 7, Using Different Call Types

Supported by gRPC

1. B. Yes

2. C. Only when you make asynchronous calls

3. A. Unknown

4. C. To set a strict timeout on the call's completion time

5. D. By using the stream keyword between the request and response message definitions

Chapter 8, Using Well-Known Types to Make

Protobuf More Handy

1. C. google/protobuf/wrappers.proto.

2. C. Fixed64Value.

3. A. Duration is equivalent to DateTimeOffset.

4. D. All of the above.

5. C. The Any data type cannot store strings.

450 Assessments

Chapter 9, Securing gRPC Endpoints in Your

ASP.NET Core Application with SSL/TLS

1. B. TLS.

2. C. With this configuration, insecure requests are routed to HTTP/1.1.

3. D. All of the above.

4. D. A .pfx file stores the complete certificate chain, while a .crt file only stores the public key and any related metadata.

5. A. For authentication.

Chapter 10, Applying Authentication and

Authorization to gRPC Endpoints

1. B. To ensure that the user is who they claim to be.

2. A. To ensure that only users with specific permissions can access the application.

3. C. OpenID Connect is used for authentication.

4. C. Header, payload, and signature.

5. B. Any JSON field in the payload.

Chapter 11, Using Logging, Metrics, and

Debugging in gRPC on .NET

1. C. You can set the EnableDetailedErrors option on the server.

2. A. Set the Grpc entry in the logging settings to Debug.

3. B. By checking if the exception is of the RpcException type.

4. B. By adding the IloggerFactory implementation to the GrpcChannel options.

5. B. Metrics consist of data that can be easily aggregated (counters, gauges, histograms, and so on), while logs provide detailed information about each event.

Index

Symbols

gRPC client application,

.NET application

creating 172, 173

gRPC client components, debugging 407

gRPC client logic,

gRPC server components,

implementing 173, 174

debugging 423-426

server application, creating 169, 170

.NET CLI

server-side gRPC components,

used, for initializing ASP.NET

implementing 170, 171

Core project 15, 16

application

.NET SDK

launching 83-88, 301, 302

downloading 11

running 298

reference link 11

Application Layer Protocol

Negotiation (ALPN) 39

A

application programming

interface (API) 44

Any and Value data types

ASP.NET Core

adding, to gRPC server 308-312

about 413

Any and Value fields

self-signed certificate,

populating, from gRPC client 313-316

applying on 345-348

Any data type 122

ASP.NET Core project

API versioning

gRPC server, component

factoring, at design stage 190, 191

adding to 16-19

API versioning strategy

initializing, via IDE 12-15

need for 168

initializing, via .NET CLI 15, 16

API versioning strategy demonstration

asynchronous gRPC endpoints

client communication to server,

testing 72-74

verifying 174-176

452 Index

authenticated users

C

gRPC endpoints, restricting to 378

authentication backend

C# code

IdentityServer4, configuring 366-369

generating, with proto file 29

login redirect, forcing on web

certificate authentication

application 372-378

applying, on gRPC client 351

OAuth flow 364-366

applying, on gRPC server 351

OpenID Connect 364-366

enabling, on gRPC client 355

setting up 363, 364

gRPC server, configuring 352-354

SSO clients, adding 369-371

testing 356-358

SSO roles, adding 369-371

certification authority (CA) 324

SSO users, adding 369-371

claims 365

auto-generated code

client

examining, for wrapper fields 287-292

building, for gRPC communication 333

Azure Blob Storage 429

communication to server,

verifying 174-176

B

data, streaming from 265

Protobuf definitions,

bi-directional streaming

exposing to 330-333

enabling 274

client and server application

server-side components,

gRPC dependencies, sharing

enabling for 275, 276

between 37, 38

bi-directional streaming call

proto file, sharing between 34

about 94

shared class library, creating 34, 35

client-side implementation,

shared gRPC component, adding

adding of 276-278

to class library 35-37

performance, monitoring 158, 159

client application

bi-directional streaming RPC

backend components, adding 206-210

setting up 155-158

controller, adding 210-212

binary fields

creating 205

adding, to Protobuf 160-163

dependencies, registering 212, 213

binary payloads

gRPC dependencies, using in 260-262

using, to decrease data's size 160

Protobuf definition, modifying 178, 179

Blazor WebAssembly 74

setting up 137-146

client certificates 324, 325

Index 453

client logic

custom certificates

adding 336-338

testing 348-350

client-side call implementations

applying 255-260

D

client-side implementation

adding, of bi-directional

data

streaming call 276-278

streaming, from client 265

client-side load balancing, with gRPC

dates

about 216

using, in Protobuf 299, 300

components, enabling 217, 218

debug output

custom load balancers, creating 224-230

viewing, on gRPC server

DNS resolver, enabling for

console 427, 428

load balancer 219-221

default development certificate

NuGet package, updating 216, 217

trusting 340, 341

resolvers, creating 224-230

dependency injection (DI) 54, 388

static resolver, using for load

dependency inversion principle (DIP) 57

balancer 221-223

digital certificate 324

client-streaming call

dotnet CLI 323

about 94

duration

adding, to server application 266, 267

adding, to server 300, 301

client-streaming gRPC call

client logic, adding for 267, 268

E

client types

performance, comparing 146-149

Empty data type

collections

adding, to server-side

using, in Protobuf 109

application 303-305

collections types

empty messages

map fields 111-113

exchanging 303

repeated fields 109-111

Empty object

command-line interface (CLI) 45

applying, on client 305-307

Command Prompt (CMD) 62

enum data type 104, 105

comments

external enum definition 105

creating, in Protobuf 95

connection concurrency

F

configuring, on gRPC client 149-152

cross-origin resource sharing (CORS) 74

Fedora 340

cryptographic keys 324

454 Index

G

configuring, via service

reference 334, 335

Google Remote Procedure Calls (gRPC)

connection concurrency,

about 4, 5

configuring on 149-152

application, testing 189

functionality, enabling 386-391

benefits 5

keep-alive pings, setting up on 153, 154

for asynchronous communication 64

logs, configuring 430-433

for microservices 44, 45

manually, configuring 335, 336

logs, applying to 429

metrics collection, enabling 440-442

metrics, applying to 438, 439

project, initializing 23

not best for browser 74

server-streaming call, making

old and unused fields, deprecating 187

from 273, 274

on ASP.NET Core 6

setting up 22, 296, 297

supporting, RPC types 92

gRPC client application

unary calls, making on 242

creating 172, 173

using, in ASP.NET Core application 6

gRPC client components

Grafana software 438

debugging, in .NET application 407

gRPC call

gRPC client, adding with additional

making, to versioned endpoint 195, 196

debugging capabilities 413-420

streaming procedure, testing 278, 279

gRPC error information,

gRPC channels

viewing 421, 422

using, reasons 132, 133

gRPC service application,

gRPC client

adding 409-413

adding, with additional debugging

gRPC service application, adding to

capabilities 413-420

display detailed errors 409-413

Any and Value fields, populating

shared gRPC dependencies,

from 313-316

setting up 407-409

building 251-254

gRPC client implementation

certificate authentication, applying 351

version-specific

certificate authentication, enabling 355

creating 194

changes, applying 397-401

gRPC client logic

changes, applying to 301, 302

implementing 173, 174

component, adding to 24-27

gRPC communication

component, applying to code 27-29

client, building 333

configuring, for asynchronous

gRPC component

communication 68-71

code, adding to 20-22

configuring, for unencrypted

gRPC dependencies

communication 323

using, in client application 260-262

Index 455

gRPC endpoints

configuring, for unencrypted

authorization rules, applying

communication 323

to different 395, 396

logs, applying 433, 434

restricting, to authenticated users 378

metrics, configuring 439, 440

restricting, to authorized users 391, 392

running, on Mac 39

gRPC, for asynchronous communication

server-side component, configuring 39

client-streaming gRPC

setting up 11, 380-385

endpoints, adding 64-67

gRPC server application

server-streaming gRPC

logic, adding to 292-294

endpoints, adding 64-67

setting up 286, 287

gRPC, for microservices

gRPC server components

distributed application, launching 62, 63

debugging, in .NET application 423-426

REST API gateway service,

gRPC service application

setting up 55-62

adding, to display detailed

shared dependencies, setting up 45-48

errors 409-413

solution, setting up 45-48

setting up 325-329

status manager microservice,

setting up 49-54

H

gRPC metrics

viewing 442-444

HTTPS redirection

gRPC, not best for browser

testing 348-350

Blazor WebAssembly gRPC

HyperText Markup Language

client, setting up 74-78

(HTML) 55, 374

gRPC server, modifying to

Hypertext Transfer Protocol

enable gRPC-Web 79, 80

Secure (HTTPS) 323

gRPC-Web application, launching 80

gRPC server

I

Any and Value data types,

adding to 308-312

IdentityServer4

ASP.NET Core project,

configuring 366-369

initializing via IDE 12-15

InfluxDB 438

certificate authentication, applying 351

integer data types

client-side configuration, modifying 39

fixed32 and fixed64 data types 100

component, adding to ASP.

int32 and int64 data types 97

NET Core project 16-19

sfixed32 and sfixed64 data types 101

configuring, for certificate

sint32 and sint64 data types 99

authentication 352-354

uint32 and uint64 data types 98

456 Index

integrated development

multiple instances, creating of

environment (IDE)

server-side application 204, 205

about 6

shared gRPC dependencies,

setting up 6

adding 201, 202

setting up, on Linux 10, 11

shared library, creating for server-side

setting up, on Mac 9, 10

application instances 202, 203

setting up, on Windows 7-9

logger level

used, for initializing ASP.NET

critical/failure 429

Core project 12-15

debug 429

interceptors 414

error 429

internal enum definition 105

info 429

Internet of Things (IoT) 409

warning 429

logic

J

adding, to gRPC server

application 292-294

JavaScript Object Notation (JSON) 45

logs

JWT

applying, on gRPC server 433, 434

SSO provider, configuring to insert

applying, to gRPC 429

role claim into 392-394

configuring, on gRPC client 430-433

output, testing 435-437

K

loosely typed fields

using, in Protobuf message 308

keep-alive pings

setting up, on gRPC client 153, 154

M

Kestrel 339

Mac

L

gRPC server, running 39

IDE, setting up 9, 10

library

map field collections 111-113

adding, with Protobuf

metrics

dependencies 133-135

applying, to gRPC 438, 439

Linux

collection, enabling on gRPC

IDE, setting up 10, 11

client 440-442

load balancing 200

configuring, on gRPC server 439, 440

load balancing, fundamental principles

Model-View-Controller (MVC) 372

application, running 214-216

multi-factor authentication (MFA) 363

client application, creating 205

Index 457

multiple instances

OpenSSL

creating, of server-side

used, for creating self-signed

application 204, 205

certificate on Unix 344

multiple Protobuf versions

option keyword

adding, to server application 191, 192

field-level options 119, 120

server application, allowing

global-level options 117

to use 192, 193

message-level options 118

used, for customizing behavior 117

N

P

native Protobuf data types

enum 104, 105

PowerShell

integer data types 97

used, for creating self-signed

non-integer numeric data types 101

certificate on Windows 341-343

non-numeric data types 102

Prometheus 438

reviewing 95, 96

Protobuf

nested messages 106-108

about 409

non-integer numeric types

binary fields, adding to 160-163

double data types 102

collections, using 109

float data type 102

comments, creating 95

non-numeric data types

dates, using 299, 300

bool 103

nullable data types, using 285, 286

bytes 103

server-streaming RPC, adding to 269

string 103

special keywords, using 113

NuGet package 121

supporting, RPC types 93, 94

nullable data types

Protobuf definitions

using, in Protobuf 285, 286

exposing, to clients 330-333

modified applications,

O

launching 179-181

modifying, in client application 178, 179

OAuth flow 364-366

modifying, in server

oneof keyword

application 177, 178

making, communication

modifying, on client side 183

efficient 114-117

server-side implementations,

one-time access code (OTAC) 364

creating of 245-250

OpenID Connect 364-366

Protobuf dependencies

used, for adding library 133-135

458 Index

Protobuf message

repeated field collections 109-111

loosely typed fields, using 308

REpresentational State Transfer (REST) 44

Protobuf versions

reserved keyword

existing fields, modification

applying, to server-side Protobuf

avoidance 181, 182

interface 187, 188

Protobuf versions modification

Rider

avoiding, demonstration

download link 7

applications, launching 183, 184

RPC types

applications, re-launching 186, 187

Protobuf, supporting 93, 94

changes, making to client

supported, by gRPC 92

application 185

Protobuf definitions, modifying

S

on client side 183

Protocol Buffer (Protobuf) 5, 44, 378

self-signed certificate

proto files

applying, on ASP.NET Core 345-348

auto-generated code, storing 30, 31

creating 339

external proto packages,

creating, on Unix with OpenSSL 344

importing 121, 122

creating, on Windows with

internal proto files, referencing 122-124

PowerShell 341-343

Protobuf namespaces, modifying 31-34

trusting 339

referencing 121

sequence numbers

representing, sequence

in proto file 176, 177

numbers 176, 177

server

sharing, between client and

duration, adding to 300, 301

server application 34

timestamp, adding to 300, 301

used, for generating C# code 29

server application

using, as relays 124, 125

client-streaming call, adding to 266, 267

Proxy load balancing, with gRPC

creating 169, 170

about 230

Protobuf definition, modifying 177, 178

HTTP/2 proxy, launching 233, 234

setting up 133

web application, building 230-233

server certificates 323, 324

public key certificate 324

server project

shared Protobuf library, adding to 135

R

server-side application

Empty data type, adding to 303-305

real-time communication (RTC) 44

multiple instances, creating 204, 205

remote procedure calls

server-side application instances

(RPCs) 47, 52, 324, 409

shared library, creating 202, 203

Index 459

server-side components

option keyword, used for

enabling, for bi-directional

customizing behavior 117

streaming 275, 276

using, in Protobuf 113

server-side gRPC components

SSO clients

implementing 136, 137, 170, 171

adding 369-371

server-side implementations

SSO provider

creating, of Protobuf definitions 245-250

configuring, to insert role claim

server-side Protobuf interface

into JWT 392-394

reserved keyword, applying to 187, 188

SSO roles

server-streaming call

adding 369-371

making, from gRPC client 273, 274

SSO users

setting up, on server side 270-273

adding 369-371

server-streaming RPC

streams

adding, to Protobuf 269

reading, from server 269

service reference

subject 340

gRPC client, configuring via 334, 335

shared dependencies

T

setting up 294, 295

shared gRPC dependencies

thumbprint 340

adding 201, 202

TimescaleDB 438

setting up 243-245, 378-380, 407-409

timestamp

shared library

adding, to server 300, 301

creating, for server-side application

TLS certificates

instances 202, 203

basics 339

shared Protobuf library

client certificates 324, 325

adding, to server project 135

role 323

SignalR 81

server certificates 323, 324

SignalR application

Transport Layer Security (TLS) 132

setting up 81-83

removing, on HTTP/1.1 329, 330

SignalR client

removing, on HTTP/2 329, 330

adding 83-88

single connection and multiple

U

connections

performance, comparing 152, 153

Ubuntu 340

software development kit (SDK) 6

unary call endpoints

special keywords

testing 262-265

oneof keyword 114-117

unary calls

making, on gRPC 242

460 Index

Uniform Resource Locator (URL) 58, 367

Unix

self-signed certificate, creating

with OpenSSL 344

user interface (UI) 55

V

Visual Studio 2019

download link 8

Visual Studio Code

reference link 9

W

web application

login redirect, forcing on 372-378

Windows

IDE, setting up 7-9

self-signed certificate, creating

with PowerShell 341-343

wrapper fields

auto-generated code, examining

for 287-292

[image: Image 120]

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

• Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

[image: Image 121]

462 Other Books You May Enjoy

Other Books You

May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt: Embracing Microservices Design

Ovais Mehboob Ahmed Khan, Nabil Siddiqui, Timothy Oleson

ISBN: 978-1-80181-838-4

• Discover the responsibilities of different individuals involved in a microservices initiative

• Avoid the common mistakes in architecting microservices for scalability and resiliency

• Understand the importance of domain-driven design when developing microservices

• Identify the common pitfalls involved in migrating monolithic applications to microservices

• Explore communication strategies, along with their potential drawbacks and alternatives

• Discover the importance of adopting governance, security, and monitoring

• Understand the role of CI/CD and testing

[image: Image 122]

Other Books You May Enjoy 463

Practical Microservices with Dapr and .NET

Davide Bedin

ISBN: 978-1-80056-837-2

• Use Dapr to create services, invoking them directly and via pub/sub

• Discover best practices for working with microservice architectures

• Leverage the actor model to orchestrate data and behavior

• Use Azure Kubernetes Service to deploy a sample application

• Monitor Dapr applications using Zipkin, Prometheus, and Grafana

• Scale and load test Dapr applications on Kubernetes

464

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.

packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Microservices Communication in .NET Using gRPC, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight

to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

Document Outline

	Cover

	Title Page

	Copyright and Credits

	Dedication

	Contributors

	Table of Contents

	Preface

	Section 1: Basics of gRPC on .NET

	Chapter 1: Creating a Basic gRPC Application on ASP.NET Core

	Technical requirements

	Introduction to gRPC

	gRPC on ASP.NET Core

	Using gRPC in your own distributed ASP.NET Core application

	Preparing your system

	Setting up your environment on Windows

	Setting up your environment on Mac

	Setting up your environment on Linux

	Downloading the .NET SDK (all operating systems)

	Setting up a gRPC server

	Initializing an ASP.NET Core project via an IDE

	Adding gRPC server components to an ASP.NET Core project

	Adding some code to use gRPC components

	Setting up a gRPC client

	Initializing the project for the client application

	Adding gRPC client components to the application

	Applying gRPC client components to the code

	Understanding how proto files generate C# code

	Where is auto-generated code stored?

	Modifying Protobuf namespaces

	Sharing a proto file between the client and the server

	Creating a shared class library

	Adding shared gRPC components to the class library

	Sharing gRPC dependencies between different projects

	Running a gRPC service on Mac

	Configuring server-side components

	Modifying the client-side configuration

	Summary

	Questions

	Further reading

	Chapter 2: When gRPC Is the Best Tool and When It Isn't

	Technical requirements

	Why gRPC is a great tool for microservices

	Setting up a solution and shared dependencies

	Setting up the status manager microservice

	Setting up a REST API gateway service

	Launching the distributed application

	How gRPC can be a good tool for asynchronous communication

	Adding client-streaming and server-streaming gRPC endpoints

	Configuring the gRPC client for asynchronous communication

	Testing asynchronous gRPC endpoints

	Why gRPC is not the best tool for browsers

	Setting up a Blazor WebAssembly gRPC client

	Modifying the gRPC server to enable gRPC-Web

	Launching the gRPC-Web application

	Where SignalR would beat gRPC

	Setting up a SignalR application

	Adding a SignalR client and launching the application

	Summary

	Questions

	Further reading

	Chapter 3: Protobuf – the Communication Protocol of gRPC

	Technical requirements

	The RPC types supported by gRPC

	The RPC types that Protobuf supports

	Making comments in Protobuf

	Reviewing the native Protobuf data types

	Integer data types

	Non-integer numeric types

	Non-numeric data types

	Enums

	Nested messages

	Using collections in Protobuf

	Repeated fields

	Map fields

	Using special keywords in Protobuf

	How the oneof keyword can make communication more efficient

	Customizing the behavior with the option keyword

	Referencing other proto files

	Importing external proto packages

	Referencing internal proto files

	Using proto files as relays

	Summary

	Questions

	Further reading

	Section 2: Best Practices of Using gRPC

	Chapter 4: Performance Best Practices for Using gRPC on .NET

	Technical requirements

	Why you need to reuse a gRPC channel

	Setting up the server application

	Setting up the client application

	Comparing the performance of different client types

	How to not get held up by a concurrent stream limit

	Configuring connection concurrency on the gRPC client

	Comparing the performance between a single connection and multiple connections

	Ensuring that your connection remains alive

	Setting up keep-alive pings on the gRPC client

	When streaming is better than individual calls

	Setting up a bi-directional streaming RPC

	Monitoring the performance of the bi-directional streaming call

	Using binary payloads to decrease the data's size

	Adding binary fields to Protobuf

	Summary

	Questions

	Further reading

	Chapter 5: Applying Versioning to the gRPC API

	Technical requirements

	Why an API versioning strategy is important

	Creating a server application

	Implementing the server-side gRPC components

	Creating the gRPC client application

	Implementing the gRPC client logic

	Verifying that the client can talk to the server

	What the sequence numbers in the proto file represent

	Modifying the Protobuf definition in the server application

	Modifying the Protobuf definition in the client application

	Launching modified applications

	Why you must not modify existing fields in future Protobuf versions

	Modifying Protobuf definitions on the client side

	Launching the applications

	Making further changes to the client application

	Re-launching the applications

	How to deprecate old, unused fields in gRPC

	Applying the reserved keyword to the server-side Protobuf interface

	Testing the application

	How to factor in API versioning at the design stage

	Adding multiple Protobuf versions to the server application

	Allowing the server application to use multiple Protobuf versions

	Making the gRPC client implementation version-specific

	Making a gRPC call to a versioned endpoint

	Summary

	Questions

	Further reading

	Chapter 6: Scaling a gRPC Application

	Technical requirements

	Introduction to load balancing

	Adding shared gRPC dependencies

	Creating a shared library for server-side application instances

	Creating multiple instances of the server-side application

	Creating a client application

	Running a load-balanced application

	Client-side load balancing with gRPC

	Updating the NuGet package

	Enabling client-side load balancing components

	Enabling a DNS resolver for the load balancer

	Using a static resolver for the load balancer

	Creating custom load balancers and resolvers

	Proxy load balancing with gRPC

	Building a web application to act as a proxy

	Launching the HTTP/2 proxy

	Summary

	Questions

	Further reading

	Section 3: In-Depth Look at gRPC on .NET

	Chapter 7: Using Different Call Types Supported by gRPC

	Technical requirements

	Making unary calls on gRPC

	Setting up shared gRPC dependencies

	Creating server-side implementations of the Protobuf definitions

	Building the gRPC client

	Applying different types of client-side call implementations

	Using gRPC dependencies in the client application

	Testing different types of unary call endpoints

	Streaming data from the client

	Adding a client-streaming call to the server application

	Adding client logic for a client-streaming gRPC call

	Reading streams from the server

	Adding a server-streaming RPC to Protobuf

	Setting up a server-streaming call on the server side

	Making a server-streaming call from a gRPC client

	Enabling bi-directional streaming

	Enabling server-side components for bi-directional streaming

	Adding a client-side implementation of a bi-directional streaming call

	Testing how to stream gRPC calls

	Summary

	Questions

	Further reading

	Chapter 8: Using Well-Known Types to Make Protobuf More Handy

	Technical requirements

	Using nullable types in Protobuf

	Setting up a gRPC server application

	Examining auto-generated code for wrapper fields

	Adding logic to gRPC server application

	Setting up shared dependencies

	Setting up the gRPC client

	Running the application

	Using dates and times in Protobuf

	Adding timestamp and duration to the server

	Applying changes to the gRPC client and launching the app

	Exchanging empty messages

	Adding the Empty data type to the server-side application

	Applying an Empty object on the client

	Using loosely typed fields in a Protobuf message

	Adding Any and Value data types to the gRPC server

	Populating the Any and Value fields from the gRPC client

	Summary

	Questions

	Further reading

	Chapter 9: Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

	Technical requirements

	Configuring the gRPC client and server for unencrypted communication

	The role of TLS certificates

	Setting up a gRPC service application

	Removing TLS on both HTTP/1.1 and HTTP/2

	Exposing Protobuf definitions to clients

	Building the client for gRPC communication

	Adding the remaining client logic

	Creating and trusting a self-signed certificate

	The basics of a TLS certificate

	Trusting a default development certificate

	Creating a self-signed certificate on Windows using PowerShell

	Creating a self-signed certificate on Unix using OpenSSL

	Applying a certificate on ASP.NET Core

	Testing custom certificates and HTTPS redirection

	Applying certificate authentication on the gRPC client and server

	Configuring the gRPC server for certificate authentication

	Enabling certificate authentication on the gRPC client

	Testing certificate authentication

	Summary

	Questions

	Further reading

	Chapter 10: Applying Authentication and Authorization to gRPC Endpoints

	Technical requirements

	Setting up the authentication backend

	OpenID Connect and OAuth flow

	Configuring IdentityServer4

	Adding SSO users, roles, and clients

	Forcing login redirect on a web application

	Restricting gRPC endpoints to authenticated users

	Setting up shared gRPC dependencies

	Setting up the gRPC server

	Enabling gRPC client functionality

	Restricting endpoints to authorized users only

	Configuring SSO provider to insert role claim into the JWT

	Applying different authorization rules to different gRPC endpoints

	Applying gRPC client changes

	Summary

	Questions

	Further reading

	Chapter 11: Using Logging, Metrics, and Debugging in gRPC on .NET

	Technical requirements

	Debugging gRPC client components inside a .NET application

	Setting up shared gRPC dependencies

	Adding a gRPC service application and getting it to display detailed errors

	Adding a gRPC client with additional debugging capabilities

	Viewing gRPC error information on the client

	Debugging gRPC server components inside a .NET application

	Viewing the debug output on the gRPC server console

	Applying logs to gRPC

	Configuring a logger on the gRPC client

	Applying a logger on the gRPC server

	Testing our log output

	Applying metrics to gRPC

	Configuring metrics on the gRPC server

	Enabling metric collection on the gRPC client

	Viewing gRPC metrics

	Summary

	Questions

	Further reading

	Assessments

	Index

	About Packt

	Other Books You May Enjoy

index-386_1.jpg
Protected Application

Usemame

Password

S50 Provider

index-378_2.png
5\Microservices-Communication-in- NET-Using-gRPC\Chapter-09\Part3\GrpcTls\Userinfolar

ined in UseKestrel() instead. A
info: Microsoft.Hosting.Lifetime[6]
Now listening o /localhost:5062
info: Microsoft.Hosting
Now listening o
info: Microsoft.Hosting.Lifetime[6]
Now listening on: https://[::]:5601
Microsoft.Hosting. Lifetime[6]
Application started. Press Ctrl:C to shut down.
info: Microsoft.Hosting.Lifetime[6]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[6]
Content root path: C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-89\Part3\Grpc
T1s\UserInfoManager
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5601/users.UserHanager/GetAllUsers application/gr

pc -
Client certificate thumbprint: 6682C887ASDSCGE@AB74BEDEIAT726B2E72C358E
Client certificate subject: CN-localhost
info: Microsoft.AspNetCore.Routing. Endpointhiddleware[6]
Executing endpoint 'gRPC - /users.UserManager/GetAllUsers®
Client authenticated: True
Auth property name: x509_subject_alternative_name
Auth property value: localhost
info: Microsoft.AspNetCore.Routing. Endpointhiddleware[1]
Executed endpoint 'gRPC - /users.UserManager/GetAllUsers’
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5601/users.UserHanager/GetAllUsers application/gr
pc - - 200 - application/grpc 444.3169ms

index-300_1.png
Grpc.Core.RpcException: Status(StatusCode="DeadlineExceeded”, Detail="")

at Grpc.Net.Client.Internal.HttpContentClientStreamReader™ 2.MoveNextCore(CancellationToken cancellationToken)

at Grpc.Core.AsyncStreamReaderExtensions.ReadAllAsyncCore[T](IAsyncStreamReader™ 1 streamReader, CancellationToken ca

at Grpc.Core.AsyncStreamReaderExtensions.ReadAllAsyncCore[T](IAsyncStreamReader™ 1 streamReader, CancellationToken ca
e<System.Boolean>.GetResult()

at ApiGateway.GrpcClientWrapper.<>c__DisplayClass8_0.<<UpdateAndConfirmBatch>b__@>d.MoveNext() in C:\repos\Chapter-e
--- End of stack trace from previous location ---

at ApiGateway.GrpcClientWrapper.<>c__DisplayClass8_0.<<UpdateAndConfirmBatch>b__@>d.MoveNext() in C:\repos\Chapter-e
--- End of stack trace from previous location ---

at ApiGateway.GrpcClientWrapper.UpdateAndConfirmBatch(IEnumerable 1 devices, Int32 deadlineSeconds) in C:\repos\Chap
202

at ApiGateway.Controllers.DevicesController.PostDeviceStatusBatch(IEnumerable 1 deviceDetails, Int32 deadlineSeconds
lers\DevicesController.cs:1line 50

at lambda_method479(Closure , Object)

at Microsoft.AspNetCore.Mvc.Infrastructure.ActionMethodExecutor.AwaitableObjectResultExecutor.Execute(IActionResultT
ler, Object[] arguments)

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeActionMethodAsync>g_ Awaited|12_e(Controll

index-286_1.png
ManagerServiceCsNamespace triggered. Peer: ipv6:[::1]:56087. Host: localhost:5001.
Device id: 1, Name: Test, Description: Test, Status Offline.
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /DeviceManager/UpsertDeviceStatus'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5001/DeviceManager/UpsertDeviceStatus application/grpc - - 200
- application/grpc 735.2744ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/DeviceManager/UpsertDeviceStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /DeviceManager/UpsertDeviceStatus"'
ManagerServiceCsNamespace triggered. Peer: ipv6:[::1]:56087. Host: localhost:5001.
Device id: 1, Name: Test, Description: Test, Status Offline.
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /DeviceManager/UpsertDeviceStatus'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5001/DeviceManager/UpsertDeviceStatus application/grpc - - 200
- application/grpc 12.5724ms

index-309_1.png
/// <summary>Field number for the "message" field.</summary>
0 references
public const int MessageFieldNumber = 1;
21 references
private static readonly pb::FieldCodec<string> _single_message_codec = pb::FieldCodec.ForClassWrapper<string>(10);
656 references
private string message_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
81 references
public string Message {

get { return message_; }

set {

message_ = value;

}

}

index-300_2.png
{
"id": 1,
"name": "Test1l",
"description”: "Test 1",
"status": @

1

{
"id": 2,
“name": "Test2",
"description”: "Test 2",
"status": @

}

1

index-310_1.png
/// <summary>Field number for the "message_length_in_bytes" field.</summary>
0 references
public const int MessagelLengthInBytesFieldNumber = 3;
21 references
private static readonly pb::FieldCodec<ulong?> _single_messagelLengthInBytes_codec = pb::FieldCodec.ForStructWrapper<ulong>(26);
56 references
private ulong? messagelLengthInBytes_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global: :System.CodeDom.Compiler.GeneratedCode("protoc”, null)]
81 references
public ulong? MessagelLengthInBytes {

get { return messageLengthInBytes_; }

set {

messagelLengthInBytes_ = value;

}
}

index-398_1.png
@ Ad x|\ v x | B Poox | @817 x | @ B17 x| @ Proox | [Huse x| @Ko x| | Horx BSCx 4 o - 0B X

< C @ jutio * G EEECAE BN

Apps @ ciculsr sconomy .. &9 boot- Runbash scr.. () Launching bash i, () sbhetz22/Dsts-Scie.. [HackerNews The Tuehve-Factor » | [Resding it

Craftedby §3auth®

Encoded Decoded

HEADER:

eyJhbGci0iJSUZITNiIsImtpZCI6I1B4Um
VzTmw5Vmh4YmtVRUZLWEZiM1EiLCJBeXAL .
0iJhdCtqd3QifQ.eyJuYmYiOjE2MzY2N]jQ
5MzgsImV4cCI6MTYZNjY20DUzOCwiaXNzI
joiaHRBCHM6LY9sb2NhbGhvc3Q6NTAWMST l
sImNsaWVudF9pZCI6InVzZXJGYWNpbmdBc
HAiLCJzdWIiOiITOWM1ZWVmYi1imZWU1LTR
1IMTYt0DdjYi@4Nzk2Mjk1ZGFjMTEiLLCJhd {
XRoX3RpbWUi0jE2MzY2NjQ5MzUsImlkcCI
6ImxvY2FsIiwic2NvcGUi01sib3BlbmlkI
iwicHJvZm1sZSJdLCJhbXIi01sicHdkI1

9. BhwNhmmmr FHeHVKF7rZpC6Y3vtHkyrBI
py8bgfabsgumePSCt-91kKUQ1abk2P-
EeYNvHdZvc6xzL7VphogU89c0ie37z6jn0
9nvQJx1iFCXHR1SuKJWk6dsbhdw_QVRgYD
1Xvgk1HE510rQ8yYc4QVxSzF8pXETdsTKm .
aSBVV-ZgMgQYwMkR5yIZ42Pk9aDj- "pud
fSxTTzd1IXEg9fwDxbBKtfmUcXc208iqJG
6c4P50N8z0oPzTITrTVQ6pqv1ErX1RAGhbA
kqgiw_v485kUOHiINCnNp4Cx0_Y60BEeg7mp VERIFY SIGNATURE
ID66Eizngvd2FpgVdom1GXnWl-

b1lENpe1iwfSKZkORnmiA| CERE R

RS256",
PxResN19VhxbkUEFKXFb2Q" ,
at+jut”

PAYLOAD:

7cb-8796295dac1”

index-309_2.png
/// <summary>Field number for the "message_processed_count" field.</summary>
0 references
public const int MessageProcessedCountFieldNumber = 2;
21 references
private static readonly pb::FieldCodec<uint?> _single_messageProcessedCount_codec = pb::FieldCodec.ForStructWrapper<uint>(18);
56 references
private uint? messageProcessedCount_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global: :System.CodeDom. Compiler.GeneratedCode("protoc”, null)]
81 references
public uint? MessageProcessedCount {

get { return messageProcessedCount_; }

set {

messageProcessedCount_ = value;
}

}

index-397_1.png
CAWindows\System32\cmd.exe - dotnet run

Building...
info: Microsoft.Hosting.Lifetime[0]

Now listening on: https://localhost:44349
info: Microsoft.Hosting.Lifetime[0]

Now listening on: http://localhost:18436
info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]

Content root path: C:\Repos\Microservices-Communication-in-.N
ET-Using-gRPC\Chapter-10\Part1\GrpcAuthentication\UserFacingApp
Access token: eyJhbGciOiJSUzIINiIsImtpzZCI6I1B4AUMVZTmwS5VmhaYmtVRUZLW
EZiM1EiLCJ@eXA10iJhdCtqd3QifQ.eyJuymYiOjE2MzY2NjQ5MzgsImVAcCIBMTYzZN
jY20DUZzOCwiaXNzIjoiaHROcHM6LY9sb2NhbGhvc3QENTAWMSIsImNsaWVudF9pzZCI6
InVzZXJIGYWNpbmdBcHALLCIzdWIi0iI10WM1ZWVmYilmZWULLTRIMTYtODdjYie4Nzk
2Mjk1ZGFjMTELILCIhdXRoX3RpbWUi0OjE2MzY2NjQ5MzUsImlkcCI6ImxvY2FsIiwic2
NvcGUiOlsib3BlbmlkIiwicHIvZmlsZSJIdLCIhbXIi01sicHdkI119.BhwNhmmmrFHe
HVKF7rZpC6Y3vtHkyrBIpy8bqfabsgumePSCt-91kKuQla6k2P-EeYNVHdZvc6XxzL7V
phogU89c0ie37z6jn09nvQIx1iFCXHR1SuKIWk6dsbhdw_QVRgYD1XvgklHE510rQ8y
Yc4QVxSzF8pXETdsTKmaSBVV-ZgMgQYwMkR5yIZ42Pk9aDj-fSxTTzd1IXEg9fwDxbB
KtfmUcXc2081iqIG6c4P50N8z0PzTITrTVQ6pqv1ErX1RAGhbAkgiw_v485kUOHINCNN
p4Cx0_Y60BEeg7mpID66Eizngvd2FpgVdom1GXnWl-blENpeliwfSKzkeRnmiA

index-311_1.png
/// <summary>Field number for the "milliseconds_to_deadline" field.</summary>
0 references
public const int MillisecondsToDeadlineFieldNumber
12 references
private static readonly pb::FieldCodec<long?> _single_millisecondsToDeadline_codec = pb::FieldCodec.ForStructWrapper<long>(42);
32 references
private long? millisecondsToDeadline_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global: :System.CodeDom. Compiler.GeneratedCode("protoc", null)]
48 references
public long? MillisecondsToDeadline {

get { return millisecondsToDeadline_; }

set {

millisecondsToDeadline_ = value;

}

}

index-412_1.png
- o x
I Secret Details - UserfacingApp X + ©

< C @ localhost:44349/Homey/Details?ld=1 QX OV = &% %@

Apps @ ciculsr sconomy .. & boot - Run bash scr.. () Launching bash scri.. » | [Resdinglist

UserFacingApp Home Privacy Log Out

Secret Details

ID:1
Title: Undercover Operative
Description: We have an undercover operative in Northern Alaska

Secret Level: Restricted

© 2021 - UserFacingApp - Privacy

index-310_2.png
/// <summary>Field number for the "message_length_in_letters" field.</summary>
0 references
public const int MessagelLengthInLettersFieldNumber = 4;
21 references
private static readonly pb::FieldCodec<int?> _single_messagelLengthInLetters_codec = pb::FieldCodec.ForStructWrapper<int>(34);
56 references
private int? messagelLengthInLetters_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
81references
public int? MessageLengthInLetters {

get { return messageLengthInLetters_; }

set {

messagelLengthInLetters_ = value;

}

b

index-411_1.png
+ °
44349 a#% 0V LA BN B
i @ boot-Runbashscr.. () Launching bashscri.. () abhat222/Data-Sci.. B HockerNews » Reading st

UserFacingApp Home Privacy Log Out

Please enter the id of the
secret you want to view:

Submit

© 2021 - UserfacingApp - Privacy

index-312_1.png
/// <summary>Field number for the "minutes_to_deadline" field.</summary>
0 references
public const int MinutesToDeadlineFieldNumber = 7;
12 references
private static readonly pb::FieldCodec<double?> _single_minutesToDeadline_codec = pb::FieldCodec.ForStructWrapper<double>(58);
32 references
private double? minutesToDeadline_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
48 references
public double? MinutesToDeadline {

get { return minutesToDeadline_; }

set {

minutesToDeadline_ = value;

}

¥

index-390_1.png
®uo ddee x + °
<« C @ locahosts001/a.. O @ % W = @

Apps Q) ciculr economy » | B Reading ist

Community
Home
Roles
Add Role
Name ~
User ’
‘AdminUI Administrator Y
Admin Y

3 result(s) found

AdminUI 3.0.0 © 2017 - 2021 Rock Solid Knowledge Ltd

@) Chapter Templatedocx A Showall | X

index-311_2.png
/// <summary>Field number for the "seconds_to_deadline" field.</summary>
0 references
public const int SecondsToDeadlineFieldNumber = 6;
12 references
private static readonly pb::FieldCodec<float?> _single_secondsToDeadline_codec
32 references
private float? secondsToDeadline_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc”, null)]
48 references
public float? SecondsToDeadline {

get { return secondsToDeadline_; }

set {

secondsToDeadline_ = value;

pb: :FieldCodec.ForStructWrapper<float>(50);

}
}

index-389_1.png
® Ade | il O | B Proc | W B17

<« C @ localhost:5001/admin/en-GB aQa % OV - >

We [@po (@3 M. x +

Apps @ ciculsr sconomy .. & boot- fun bash scr.. () Launching bash scr..

Welcome to AdminUl

The leading user and configuration management tool for IdentityServer4.

For licensing enquiries, please contact: sales@identityserver.com

Start

APIDocs - Documentation - Support

S Latest News

Getting Started with Single Sign-on (SSO) Just Got Easier

If you are new to SSO, the leaming curve can appear quite daunting; not only do you have
to change the way your applications perform authentication, you also need to configure
and deploy the single sign-on server. Our All in one solution gets you started in minutes.

Installing IdentityServer and AdminUI on Linux
AdminUl has recently been made available as a universal project, meaning we now
support a Linux installation scenario rather than recommending Docker as a
multiplatform approach. This article will go through the steps needed to get AdminUl up

@) Chapter Templatedocx A B Rrepasissizpdf ~ Showall | X

index-396_1.png
® Adm |\ Cruc |6 Prod | G B17¢ | @ 8179 | @ Prote [} User | @B Kot @ e x + °

<« C @ localhost:5001/Account/Login?retumUri=%2Fconne... & @& % O V¥ - > § B

Apps @ cicular conomy .. & boot- Runbash scr.. () Launching bash scr.. () sbhat222/Dats-Sce.. » | [Resding it

®

Login

Local Login External Login
Username Google

admin
Password

J Remember My Login

@ Chapter Templatedocx A~ B reD3s18812pdf -~ @ B17972_09.docx A Showall | X

index-391_1.png
[H Userjobnsmith Roles - Admintl X °

< C @ localhost5001/admin/en-GB/users/59cSeefb-fe.. 0+ @ % O YV = & § #

Apps @ cicular conomy .. & boot- Runbash scr.. () Launching bash scr.. () sbhat222/Dats-Sce.. » | [Resding it

Community

Home / Users
John Smith

Details Roles Additional Details Applications ~ ExtemalLogins Audits

Available

Assigned
Q

O AdminUI Administrator O Admin
Administrator for AdminUI

O user

AdminUI3.0.0 ©2017-2021 Rock Solid Knowledge Ltd Documentation - Support

cover_image.jpg
@
Sazanavets F.

n Microservices
Communication

index-210_1.png
Please enter gRPC server address:
https://localhost:5001

Please enter client name:

Test Client

Please enter client description:
Client used for testing.

Server name: TestServer

Server description:

Number of connections: 1841976032
CPU usage: 80.94210404946567
Memory usage: 55.305362146024294
Errors logged: ©

Catastrophic failures logged: 1130955754
Active: False

index-216_2.png
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/stats.vl.Status/GetStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[@]
Executing endpoint 'gRPC - /stats.vl.Status/GetStatus'
Client name is Tester Client
Client description is Client for testing
Is client ready? False
Is client authorized? True
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /stats.vl.Status/GetStatus’
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]

Request finished HTTP/2 POST https://localhost:5001/stats.vl.Status/GetStatus application/grpc -
- 200 - application/grpc 237.1542ms

index-216_1.png
Please enter gRPC server address:
https://localhost:5001

Please enter client name:

Tester Client

Please enter client description:

Client for testing

Server name: TestServer

Server description: This is a test server that is used for generating status metrics
Number of connections: 833049075

CPU usage: 27.64067464863913

Memory usage: 37.44751710325829

Errors logged: 1460164990

Catastrophic failures logged: 1683121737
Active: True

index-236_1.jpg
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object

name: Object
description:
id: 1
name: Object
description:
id: 2
name: Object
description:
id: 3
name: Object
description:
id: 4
name: Object
description:
1d: 5
name: Object
description:
id: 6

is

is

is

is

is

an

an

an

an

an

an

object

object

object

object

object

object

with

with

with

with

with

with

the

the

the

the

the

the

index

index

index

index

index

index

of

of

of

of

of

of

finfo:

info:

info:

info:

info:

Microsoft.Hosting. Lifetime[@]

Now listening on: https://localhost:467
Microsoft.Hosting. Lifetime[@]

Now listening on: http://localhost:2094
Microsoft.Hosting. Lifetime[0]
Application started. Press Ctrl+C to sh
Microsoft.Hosting.Lifetime[8]

Hosting environment: Development
Microsoft.Hosting. Lifetime[@]

Content root path: C:\repos\Chapter-86\

index-235_1.png
servers

https://localhost:44312 v

Data

| /Data/standard-client/{count}

| /Data/load-balancer/{count}

Schemas

index-255_1.jpg
info: Microsoft.Hosting.Lifetime[0] info!
Now listening on: http://localhost:39298

info: Microsoft.Hosting.Lifetime[0] info
Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0] info
Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0] info
Content root path: C:\repos\Chapter-@6\Part3\GrpcLoal

Object id: 1 info:

Object name: Object 1

Object description: This is an object with the index of 1.

Object id: 4

Object

Object object with the index of 4.

Object

Object

Object object with the index of 5.

Object

Object name: Object 6

Object description: This is an object with the index of 6.

object id: 7

Object name: Object 7

Object description: This is an object with the index of 7.

: Microsoft.Hosting.Lifetime[@]

Now listening on: https://localhost:46785

: Microsoft.Hosting.Lifetime[]

Now listening on: http://localhost:20946

: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development
Microsoft.Hosting. Lifetime[8]

Content root path: C:\repos\Chapter-6\Part3\GrpcLoa
id: o

name: Object @

description: This is an object with the index of e.
id: 2

name: Object 2

description: This is an object with the index of 2.
id: 3

name: Object 3

description: This is an object with the index of 3.

index-236_2.png
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object

name: Object
description:
id: 6

name: Object
description:
id: 7

name: Object
description:
id: 8

name: Object
description:
id: 9

name: Object
description:
id: 1

name: Object
description:
id: 3

name: Object
description:

5
This

3
This

is

is

is

is

is

is

is

an

an

an

an

an

an

an

object with the

object

object

object

object

object

object

with

with

with

with

with

with

the

the

the

the

the

the

index o

index o

index o

index o

index o

index o

index of

info: Microsoft.Hosting.Lifetime[@]

Now listening on: https://localhost:46785
info: Microsoft.Hosting.Lifetime[@]

Now listening on: http://localhost:20946
linfo: Microsoft.Hosting.Lifetime[@]

Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting. Lifetime[o]
Hosting environment: Development
Microsoft.Hosting.Lifetime[0]
Content root path: C:\repos\Chapter-@6\Part1\GrpcLo
Object id: @
Object name: Object @
Object description: This is an object with the index of @
Object id: 2
Object name: Object 2
Object description: This is an object with the index of 2
Object id: 4
Object name: Object 4
Object description: This is an object with the index of 4
fobject id: 6

linf

index-284_2.png
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/device_management.DeviceManager/UpsertDeviceStatus application
/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /device_management.DeviceManager/UpsertDeviceStatus"’
DeviceManagerService triggered. Peer: ipv6:[::1]:55833. Host: localhost:5001.
Device id: 1, Name: Test, Description: Test, Status Offline.
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /device_management.DeviceManager/UpsertDeviceStatus’
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5001/device_management.DeviceManager/UpsertDeviceStatus application
/grpc - - 200 - application/grpc 145.4204ms

index-284_1.png
Grpc.Core.RpcException: Status(StatusCode="Unimplemented”, Detail="")
at Grpc.Net.Client.Internal.HttpClientCallInvoker.BlockingUnaryCall[
at Grpc.Core.Interceptors.InterceptingCallInvoker.<BlockingUnarycall
at Grpc.Core.ClientBase.ClientBaseConfiguration.ClientBaseConfigurat

kingUnaryCallContinuation™ 2 continuation)
at Grpc.Core. Interceptors.InterceptingCallInvoker.BlockingUnaryCall]
at DeviceManagement.DeviceManager.DeviceManagerClient.GetDevice(GetD

g\net5.2\Protos\DeviceManagementGrpc.cs:line 150
at DeviceManagement.DeviceManager.DeviceManagerclient.GetDevice(GetD

hapter-o7\Part1\GrpcCallTypes\GrpcDependencies\obj\Debug\net5.o\Protos\
at ApiGateway.GrpcClientWrapper.GetDevice(ClientType clientType, Int
at ApiGateway.Controllers.DevicesController.GetDevice(ClientType cli

index-285_1.png
Grpc.Core.RpcException: Status(StatusCode="Unknown", Detail="Bad gRPC response. HTTP status code: 5@00")

at ApiGateway.GrpcClientWrapper.UpsertDeviceStatusAsync(ClientType clientType, DeviceDetails details)
ne 125

at ApiGateway.Controllers.DevicesController.Use(ClientType clientType, DeviceDetails deviceDetails,
s\DevicesController.cs:line 29

at lambda_method48e(Closure , Object)

at Microsoft.AspNetCore.Mvc.Infrastructure.ActionMethodExecutor.AwaitableResultExecutor.Execute(IActi
bject[] arguments)

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeActionMethodAsync>g__ Awaite

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeNextActionFilterAsync>g__ Aw
cope, Object state, Boolean isCompleted)

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Rethrow(ActionExecutedContextSeale

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Next(State& next, Scope& scope, Ob

at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeInnerFilterAsync>g__ Awaited
Object state, Boolean isCompleted)

at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.<InvokeFilterPipelineAsync>g_ Awaited|19_e
e, Boolean isCompleted)

index-356_1.jpg
http://localhost:5002/protos/users.proto|

Select the type of class to be generated

Client

index-355_2.jpg
Add service reference

Select a service reference to add to your application

OpenAPI
Consume web services which conform to the OpenAPI Specification

gRPC

‘ SREC Consume and produce web services which conform to the gRPC open source universal RPC framework

index-363_1.png
Administr

windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\WINDOWS\system32> New-SelfSignedCertificate -Dnsllame)
ation
Date) . AddYears(20) -Friendlylian
11 -KeyUsage CertSign, CRLSign, DigitalSignature

PSParentPath: Microsoft.PowerShell.Security\Certificate
e\My

Thumbprint Subject

6682C8B7ABDBC600AB74BEDE3AT726B2E72C358E Cl=localhost.

PS C:\WINDOWS\system32> cd C:\Repos\Microservices-Communication-in-.NET]
-Using-gRPC\Chapter-9\Part3\GrpcTls\UserManagementClient

PS C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-09\P)
art3\GrpcTls\UserManagementClient> $password - ConvertTo-SecureString |
PlainText

PS C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-09\P)
art3\GrpcTls\UserManagementClient> Get-ChildItem -Path cert:\localMachi]
ne\my\6682C8B7ABDEC60OAB7ABEDEIAT726B2E72C358E | Export-PfxCertificate
-FilePath UserManagementClient.pfx -Password $password

Directory: C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\|
Chapter-89\Part3\GrpcTls\UserManagementClient

Mode LasthriteTime Length Name

03/11/2021 2677 UserManagementClient. p)

o
Fx

PS C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-09\P)
art3\GrpcTls\UserManagementClient> Export-Certificate
Machine\my\6682C8B7A8DBC60OAB74BSDE3A7726B2E72C358E —F i
ementClient.crt

Directory: C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\|
Chapter-89\Part3\GrpcTls\UserManagementClient

index-359_1.png
Please enter the gRPC service URL. |8
http://localhost:5060

User details extracted

John

Date of birth: 2601-11-65
Nationality: English
Address: 51 Park Lane
Postcode or Zip code: SW2 SBL
Town: London

Country: UK

index-370_1.png
Please enter the gRPC service URL.
https://localhost:5061
User details extracted

: John

: 2001-11-05
Nationality: English
Address: 51 Park Lane
Postcode or Zip code: SW2 SBL
Town: London

T

index-369_1.png
D [hipsslocsihestsoi/protosris x | - o x

¢ o (mrm

&« C) https//localhost:5001/protos/users.proto

syntax = "proto3";
package users;

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto”;

service UserManager {
rpc GetAllUsers (google.protobuf.Empty) returns (stream UserInfo);

}

message UserInfo {
string first_name = 1;
string surname = 2;
string gender = 3;
google.protobuf.Timestamp date_of_birth = 4;
string nationality = 5;
AddressInfo address = 6;

}

message AddressInfo {
string first_line = 1;
string town = 2;
string postcode_or_zip_code = 3;
string country = 4;

index-371_2.png
Please enter the gRPC service URL.

http://localhost:5060
User details extracted
John

Date of birth: 2601-11-65
Nationality: English
Address: 51 Park Lane
Postcode or Zip code: SW2 SBL
Town: London

T

index-371_1.png
04) Fle FEdt View Git Project Buid Debug Test Ansyze Tools Edtensions Window Help Search (Ctil-Q) P

©-O| 8-t M| - -|[Debug - [anycru | [UserinfoManager < b Contue~ ¢+ F @ i m O[> Y e
Process: [17216] UserinfoManager.exe + [Lifecycle Events ~ Thread: [11188] Worker Thread « X © % StackFrame: UserinfoManager Services.UserlnfoService =

W 0% _§ @ Application Insights ~

5
5
i
!

UserlnfoM:

~© GetAllsers(Empty request severStreamWrter<Usernfo> responseSiream, ServerCalCon' + [l € il processes have been debugged. This X
window iy shows data for
UserManagementClientexe (PD: 14032).

AR

Diagnostis session: 13 seconds (13.898 s selected)

1 N |

4Events

EEE—— |
8 EserManagerBase

9
10 ache;
11

TvVe

i

o
(31/12/9999 23:59:59} 4CPU (% of all processors)
(31/12/9999 23:59:59} 100
null

{Grpe.Shared DefaultDeserialzationContext) ‘

12 [-rDataCache)
13
14
15
16

e ek

false
true

- localhost5001"

- localhost 5001

A

Summary Events Memory Usage CPU Usage
Events

2+ Jusers.UserManager/GetAllUsers” & ST

17j EMpty request, IServerStreamWriter<UserInfo> responseStream, ServerCallConte
18 L’”—* (Grpc AspNetCore.S: e ts¢ CallContext) = @ Application Insights Events (0 of 0)

Memory Usage
B Take Snapshot

19 =2tUsers())

20 CPU Usage
21 item); @ Record CPU Profile
22

23

Output
P -l & searchDepth: 3~ | ¥ |Bg ‘Show output from: Debug
Value GetAllUsers application/grpc -
{Grpe.AspNetCore Server Intemal HitpContextServerCallContext)

wn 8 e ime\Mi

\Remote. r\x64\Runtime\Microsoft.
{Grpe.AspNetCore Server.Internal HitpContextStreamWiiter < Users. Userlnfo> } e (Gl
{UserlnfoManager Services.UserlnfoService} i \System.Text .RegularExpressions.dl1’ .
{UserinfoManager.UserDataCache]

n-in- NET-U

index-36_1.png
Additional information

ASP.NET Core Web App

Target Framework

c#

Linux.

macOS Windows

Cloud.

Service Web

NET 50 (Current)

Authentication Type

None

/] Configure for HTTPS.

Enable Docker

Docker OS

Linux

Enable Razor runtime compilation

Back

Create

index-378_1.png
s\Microsenvices-Communication-in- NET-Using-gRPC\Chapter-09\Part3\GrpcTis\UserlnfoMa

ined in UseKestrel() instead. A
info: Microsoft.Hosting.Lifetime[6]
Now listening o /localhost:5062
info: Microsoft.Hosting
Now listening o
info: Microsoft.Hosting.Lifetime[6]
Now listening on: https://[::]:5601
Microsoft.Hosting. Lifetime[6]
Application started. Press Ctrl:C to shut down.
info: Microsoft.Hosting.Lifetime[6]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[6]
Content root path: C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-89\Part3\Grpc
T1s\UserInfoanager
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5601/users.UserHanager/GetAllUsers application/gr

pc -
Client certificate thumbprint: 6682C887ASDSCGE@AB74BEDEIAT726B2E72C358E
Client certificate subject: CN-localhost
info: Microsoft.AspNetCore.Routing. Endpointhiddleware[6]
Executing endpoint 'gRPC - /users.UserManager/GetAllUsers®
Client authenticated: True
Auth property name: x509_subject_alternative_name
Auth property value: localhost
info: Microsoft.AspNetCore.Routing. Endpointhiddleware[1]
Executed endpoint 'gRPC - /users.UserManager/GetAllUsers’
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5601/users.UserHanager/GetAllUsers application/gr
pc - - 200 - application/grpc 444.3169ms

index-35_1.png
Configure your new project

ASP.NET Core Web App ~ C# linx macOS Windows Cloud Service Web

Project name.

Location

CA\Users\Fiodar.sazanavets\source\repos -

Solution name @

BasicGrpcService

Place solution and project in the same directory

Back Next

index-377_1.png
Please enter the gRPC service URL.
https://localhost:5061
User details extracted

: John

: 2001-11-05
Nationality: English

Address: 51 Park Lane
Postcode or Zip code: SW2 SBL
Town: London

T

index-44_1.png
ccnsclé X |

Clear all

C# - All platforms - Web -

No exact matches found

Other results based on your search

]

Console Application
A project for creating a command-line application that can run on .NET Core on
Windows, Linux and macOS

C# Linux macOS Windows -Ie
-Ie Application

A project for creating a command-line application that can run on .NET Core on
Windows, Linux and macOS

Visual Basic Linux macOS Windows -Ie

Console App

Run code in a Windows terminal. Prints “Hello World" by default.

C++ Windows -Ie

Console App (NET Framework)

A project for creating a command-line application

C# Windows -le

Back Next

index-43_1.png
info:

L H

info:

info:

info:

Microsoft.Hosting. Lifetime[0]

Now listening on: https://localhost:5001

Microsoft.Hosting.Lifetime[@]

Now listening on: http://localhost:5000

Microsoft.Hosting.Lifetime[@]

Application started. Press Ctrl+C to shut down

Microsoft.Hosting. Lifetime[@]

Hosting environment: Development

Microsoft.Hosting. Lifetime[0]

Content root path: C:\Users\Fiodar.sazanavets\source\repos\BasicGrpcService\BasicGrpcService

index-52_1.png
CoNouawN R

2

// <auto-generated>
/1 Generated by the protocol buffer compiler.
71 source: Protos/greeter.proto

71 </auto-generated>

#pragna warning disable 9414, 1591

#region Designer generated code

using grpc = global::Grpc.Core;

namespace BasicGrpcservice {
711 <sunmary>
/11 The greetings manager service definition.
711 </sunmary>
public static partial class GreetingsManager
{

static readonly string _ServiceName

static void _Helper_SerializeMessage(globa
{

DO NOT EDIT!

"greeter.GreetingsManager";

Google. Protobuf . IMessage message, grpc::SerializationContext context)

#if 1GRPC_DISABLE_PROTOBUF_BUFFER_SERIALIZATION
if (message is global::Google.Protobuf.IBuffertessage)

{

context.SetPayloadLength(message. CalculateSize());

globa
context. Complete();
return;

}

#endif

Google. Protobuf.MessageExtens ions. WriteTo(message, context.GetBufferWriter());

context. Conplete(global: :Google. Protobuf.HessageExtens ions. ToByteArray(message)) ;

¥

static class _Helper_MessageCache<T>
{

}

public static readonly bool IsBufferMessage = global::System.Reflection. IntrospectionExtensions.GetTypeInfo(typeof (globa

Goog

static T _Helper_Deserializelessage<T>(grpc: :DeserializationContext context, global::Google.Protobuf.MessageParser<T> parser)

{

#if 1GRPC_DISABLE_PROTOBUF_BUFFER_SERIALIZATION
if (_Helper_MessageCache<T>, IsBufferMessage)

{

return parser.ParseFron(context.PayloadAsReadonlySequence () ;

¥
#endif

return parser.ParseFrom(context.PayloadAshewBuffer());

index-50_1.png
B C:\Users\Fiodar.sazanavets\source\repos\BasicGrpcService\BasicGrpcClient\bin\Debug\net5.0\BasicGrpcClientexe — O X

Greeting: Hello BasicGrpcClient N
Press any key to exit...

index-312_2.png
/// <summary>Field number for the "last_name_present" field.</summary>
0 references
public const int LastNamePresentFieldNumber = 8;
21 references
private static readonly pb::FieldCodec<bool?> _single_lastNamePresent_codec = pb::FieldCodec.ForStructWrapper<bool>(66);
56 references
private bool? lastNamePresent_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global: :System.CodeDom.Compiler.GeneratedCode("protoc", null)]
81 references
public bool? LastNamePresent {
get { return lastNamePresent_; }
set {
lastNamePresent_

value;

}
}

index-319_1.png
5\Microservices-Communication-in- NET-Using-¢

Please enter the gRPC service URL.
https://localhost:5601

Please enter the name.

John Smith

Message: Hello John Smith

Messages processed: 1

Message length in bytes: 16

Message length in letters: 16
Milliseconds to deadline: 845

Seconds to deadline: 59.8451

Minutes to deadline: 6.9974183266666666
Last name present: True

Message bytes: Google.Protobuf.ByteString
Press Enter to continue or Escape to exit.

GRPC\Chapter-08\Part1\Grpc

KnownType:

GrpeClient\bin\ Debugh\nets.

GrpcClient.e

index-313_1.png
/// <summary>Field number for the "message_bytes" field.</summary>
0 references
public const int MessageBytesFieldNumber = 9;
21 references
private static readonly pb::FieldCodec<pb::ByteString> _single_messageBytes_codec = pb::FieldCodec.ForClassWrapper<pb::ByteString>(74);
56 references
private pb::ByteString messageBytes_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global: :System.CodeDom.Compiler.GeneratedCode("protoc", null)]
81 references
public pb::ByteString MessageBytes {

get { return messageBytes_; }

set {

messageBytes_ = value;

}

}

index-323_1.png
nin-NET-Using-gRPC\CI

Please enter the gRPC service URL.
https://localhost:5061

Please enter the name.

John Smith

Hessage: Hello John Smith

Hessages processed: 1

Hessage length in bytes: 16

Hessage length in letters: 16

Milliseconds to deadline: 885

Seconds to deadline: 59.885647

Minutes to deadline: ©.9986941433333334

Last name present: True

Message bytes: Google.Protobuf.Bytestring

Call processing duration: "1.615148s"

Response time UTC: "2021-11-82726:03:59.0638537002"
Press Enter to continue or Escape to exit.

index-320_1.png
5\Microservices- Communication-in- NET-Using-gRPC\Chapter-08\PartT\Grpc

Please enter the gRPC service URL.
https://localhost:5601

Please enter the name.

John Smith

Message: Hello John Smith

Messages processed: 1

Message length in bytes: 16

Message length in letters: 16
Milliseconds to deadline: 845

Seconds to deadline: 59.8451

Minutes to deadline: 6.9974183266666666
Last name present: True

Message bytes: Google.Protobuf.ByteString
Press Enter to continue or Escape to exit.
Please enter the name.

Message:
Messages processed:

Message length in bytes:

Message length in letters:

Milliseconds to deadline:

Seconds to deadline

Minutes to deadline:

Last name present:

Message bytes:

Press Enter to continue or Escape to exit.

KnownType:

GrpeClient\bin\ Debugh\nets.

GrpcClient.e

index-337_1.png
Payload type is: type.googleapis.com/greet.IntegerPayload
Extracted the following integer value from the payload: 1
Extracted the following integer value from the additional payload: 1
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
| Executed endpoint 'gRPC - /greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5001/greet.Greeter/Say
grpc 512.7934ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/greet.Greeter/Say
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
| Executing endpoint ‘'gRPC - /greet.Greeter/SayHello"'
Payload type is: type.googleapis.com/greet.DoublePayload
Extracted the following double value from the payload: 1.5
Extracted the following double value from the additional payload: 1.5
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:5001/greet.Greeter/Say
grpc 14.5028ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/greet.Greeter/Say
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint ‘'gRPC - /greet.Greeter/SayHello"'
Payload type is: type.googleapis.com/greet.BooleanPayload
Extracted the following Boolean value from the payload: True
Extracted the following Boolean value from the additional payload: True

index-328_1.png
ommunication-in- NET-Using

Please enter the gRPC service URL.
https://localhost:5061

which action you would like to take?

1 - get a greeting.

2 - Receive message count

3 - Update message count

3

Please type new message count:

125

Message count successfully updated to 125
Press Enter to continue or Escape to exit.
which action you would like to take?

1 - get a greeting.

2 - Receive message count

3 - Update message count

2

Message processed count: 125

Press Enter to continue or Escape to exit.

index-354_1.png
D [locshostso02protosserspre x| - @

< C @ localhostsc

protos/users.proto

5t (otsyneng @)

syntax = "proto3";
package users;

import "google/protobuf/empty.proto”;
import "google/protobuf/timestamp.proto”;

service UserManager {
rpc GetAllUsers (google.protobuf.Empty) returns (stream UserInfo);
iy

message UserInfo {
string first_name = 1;
string surname = 2;
string gender = 3;
google.protobuf.Timestamp date_of_birth = 4;
string nationality = 5;
AddressInfo address = 6;

}

message AddressInfo {
string first_line = 1;
string town = 2;
string postcode_or_zip_code = 3;
string country = 4;

index-337_2.png
Payload type is: type.googleapis.com/greet.CollectionPayload
list in the primary payload: iteml
list in the primary payload: item2
list in the primary payload: item3

extracted
extracted
extracted
extracted
extracted
extracted
extracted
extracted

from
from
from
from
from
from
from
from

the
the
the
the
the
the
the
the

dictionary in
dictionary in
dictionary in
fields in the
fields in the

the primary payload: key
the primary payload: key
the primary payload: key
secondary payload: key -
secondary payload: key -

- 1, value - iteml
- 2, value - item2
- 3, value - item3
1, value - iteml
2, value - item2

index-355_1.jpg
Boo

s

New Item...
Existing Item...
New Folder

REST API Client...

Project Reference...
Shared Project Reference...
COM Reference...

Connected Service
Class...

New EditorConfig

Ctrl+Shift+A
Shift+Alt+A

o

Manage NuGet Packages...
Manage User Secrets

Set as Startup Project
Debug

Git
Cut Ctrl+X

Unload Project

Load Direct Dependencies of Project
Load Entire Dependency Tree of Project
Copy Full Path

Open Folder in File Explorer

index-1_1.jpg
Microservices
Communication
In .NET Using gRPC

A practical guide for .NET developers to build efficient
communication mechanism for distributed apps

Fiodar Sazanavets

index-18_1.png
Software/hardware covered in the book

gRPC

Operating system requirements

Windows, macOS, or Linux

gRPC client and server functionality on
NET 5and 6

Windows, macOS, or Linux

TLS/SSL
OpenID Connect and OAuth

Windows, macOS, or Linux
Windows, macOS, or Linux

index-2_1.jpg

index-29_1.png
Downloads
pq =

Visual Studio 2019

Version 1610 Community Professional
Release notes > 3

Powerful IDE, free for Professional IDE best
Full-featured integrated development environment students, open-source suited to small teams

(IDE) for Android, iOS, Windows, web, and cloud contributors, and individuals

iti >

How to install offline >

Visual Studio 2019 Preview Get early access to latest features not yet in the main release
Release notes > Learn more >

Visual Studio 2022 Preview
Check out the next version of Visual Studio in 64 bit

Learn more >

Help me choose

Enterprise

Scalable, end-to-end
solution for teams of any
size

Free trial L

index-28_1.png
slutions Store

Download Rider

Windows ~ macos Linux

Free 30-day trial, no evaluation key required.

Version: 20211.3
Build: 211744220
26 May 2021

System requirements Get the Toolbox App to download Rider and its
Known issues future updates with ease

Other versions

Rider SDK X

index-33_1.png
Create a new project

Recent project templates

Alist of your recently accessed templates will be
displayed here.

web

c

&l

&l

Clear all

~ Al platforms - Web -

ASP.NET Core Web API

A project template for creating an ASP.NET Core application with an example
Controller for a RESTful HTTP service. This template can also be used for ASP.NET
Core MVC Views and Controllers.

C# Ll macOS Windows Cloud

Service

ASP.NET Core Web App

A project template for creating an ASP.NET Core application with example ASP.NET
Razor Pages content.

C# Ll macOS Windows Cloud

Service

ASP.NET Core Web App (Model-View- Controller)

A project template for creating an ASP.NET Core application with example ASP.NET
Core MVC Views and Controllers. This template can also be used for RESTful HTTP
services.

C# L macOS Windows Cloud

Service

ASP.NET Web Application (NET Framework)

Project templates for creating ASP.NET applications. You can create ASP.NET WeB
Forms, MVC, or WeB API applications and add many other features in ASP.NET.

C# Windows Cloud ~ Web

Back Next

index-30_1.png
> Visual Studio Code b Updates Blog

Version 1.58 is now able! Read a

Download Visual Studio Code

Free and built on open source. Integrated Git, debugging and extensions.

’

User Installer deb zip
System Installer pm
zip tar.gz

By downloading and using Visual Studio Code, you agree to the and

index-34_1.jpg
New Project

Choose a template for your new project

@ Recently used

D Web and Console

App
Library
Tests

£ Multiplatform

Library

@© Cloud

General

@ Other

NET
Miscellaneous

Cancel

General

ASP.NET Core

'Dlj Empty
-g API

Web Applicatio

Web Application (Model-View-Controller)

gRPC Service
Blazor Server App

5]
&)
@’__I Blazor WebAssembly App
5]

Razor Class Library

Angular

React.js
b

Web Application
A project template for creating an

ASP.NET Core application with example
ASP.NET Razor Pages content.

Previous Next

index-127_1.jpg
/// <summary>Field number for the "basic_types_field" field.</summary>
public const int BasicTypesFieldFieldNumber = 2;
private global::IndepthProtobuf.BasicTypes basicTypesField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public global::IndepthProtobuf.BasicTypes BasicTypesField {

get { return basicTypesField_; }

set {

basicTypesField_ = value;

7

}

index-126_1.jpg
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public static partial class Types {
public enum InternalEnum {
[pbr::0riginalName("NONE")] None = 0,
[pbr::0riginalName("SINGLE")] Single = 1,
[pbr::0riginalName("MANY")] Many = 2,
b

index-129_1.jpg
#region Nested types

/// <summary>Container for nested types declared in the HelloReply message type.</summary>
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public static partial class Types {
public sealed partial class NestedMessage : pb::IMessage<NestedMessage>
#if !'GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
» pb::IBufferMessage
#endif

index-128_1.png
/// <summary>Field number for the "internal_enum_field" field.</summary>
public const int InternalEnumFieldFieldNumber = 3;
private global::IndepthProtobuf.BasicTypes.Types.InternalEnum internalEnumField_ =
global::IndepthProtobuf.BasicTypes.Types.InternalEnum.None;
[global: :System.Diagnostics.DebuggerNonUserCodeAttribute]
public global::IndepthProtobuf.BasicTypes.Types.InternalEnum InternalEnumField {
get { return internalEnumField_; }
set {
internalEnumField_ = value;
}
}

index-133_1.png
/// <summary>Field number for the "string_to_string_map" field.</summary>
public const int StringToStringMapFieldNumber = 5;
private static readonly pbc::MapField<string, string>.Codec _map_stringToStringMap_codec
= new pbc::MapField<string, string>.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 42);

private readonly pbc::MapField<string, string> stringToStringMap_ = new pbc::MapField<string, string>();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public pbc::MapField<string, string> StringToStringMap {

get { return stringToStringMap_; }
}

/// <summary>Field number for the "int_to_string_map" field.</summary>
public const int IntToStringMapFieldNumber = 6;
private static readonly pbc::MapField<long, string>.Codec _map_intToStringMap_codec
= new pbc::MapField<long, string>.Codec(pb::FieldCodec.ForInt64(8, OL), pb::FieldCodec.ForString(18,

private readonly pbc::MapField<long, string> intToStringMap_ = new pbc::MapField<long, string>();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public pbc::MapField<long, string> IntToStringMap {

get { return intToStringMap_; }
}

index-131_1.png
/// <summary>Field number for the "string_collection" field.</summary>
public const int StringCollectionFieldNumber = 1;
private static readonly pb::FieldCodec<string> _repeated_stringCollection_codec
= pb::FieldCodec.ForString(10);

private readonly pbc::RepeatedField<string> stringCollection_ = new pbc::RepeatedField<string>();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public pbc::RepeatedField<string> StringCollection {

get { return stringCollection_; }

}

/// <summary>Field number for the "int_collection" field.</summary>
public const int IntCollectionFieldNumber = 2;
private static readonly pb::FieldCodec<int> _repeated_intCollection_codec
= pb::FieldCodec.ForInt32(18);

private readonly pbc::RepeatedField<int> intCollection_ = new pbc::RepeatedField<int>();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public pbc::RepeatedField<int> IntCollection {

get { return intCollection_; }
}

index-137_1.png
/// <summary>Field number for the "int_field" field.</summary>
public const int IntFieldFieldNumber = 1;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public int IntField {

get { return wholeNumberFieldCase_ == WholeNumberFieldOneofCase.IntField ? (int) wholeNumberField_ : @; }
set {
wholeNumberField_ = value;

wholeNumberFieldCase_ = WholeNumberFieldOneofCase.IntField;

+
}

index-136_1.png
private object wholeNumberField_;
/// <summary>Enum of possible cases for the "whole_number_field" oneof.</summary>
public enum WholeNumberFieldOneofCase {
None = 0,
IntField = 1
LongField = 2,
UnsignedIntFiled = 3,
UnsignedLongField = 4,
SignedIntField = 5,
SignedLongField = 6,
FixedIntField = 7,
FixedLongField = 8,
SignedFixedIntField
SignedFixedLongField = 10,

index-124_1.png
/// <summary>Field number for the "string_field" field.</summary>
public const int StringFieldFieldNumber = 14;
private string stringField_ = "";
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public string StringField {

get { return stringField_; }

set {

stringField_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

}

}

index-123_1.png
/// <summary>Field number for the "float_field" field.</summary>
public const int FloatFieldFieldNumber = 11;
private float floatField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public float FloatField {

get { return floatField_; }

set {

floatField_ = value;

}

}

/// <summary>Field number for the "double_field" field.</summary>
public const int DoubleFieldFieldNumber = 12;
private double doubleField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public double DoubleField {

get { return doubleField_; }

set {

doubleField_ = value;

}

}

index-125_1.png
/// <summary>Field number for the "bytes_field" field.</summary>
public const int BytesFieldFieldNumber = 15;
private pb::ByteString bytesField_ = pb::ByteString.Empty;
[global::System.Diagnostics.DebuggerNonUserCodeAttributel]
public pb::ByteString BytesField {

get { return bytesField_; }

set {

bytesField_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

}

}

index-101_1.png
GrpcBlazorClient

A Home

Client Name | Client 1 Client Statuses

Set Status Online || Set Status Offline || Set Status Busy Client name: Client 1; status: ONLINE
Get All Client Statuses

index-118_1.jpg
/// <summary>Field number for the "int_field" field.</summary>
public const int IntFieldFieldNumber = 1;
private int intField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public int IntField {

get { return intField_; }

set {

intField_ = value;

}

I

/// <summary>Field number for the "long_field" field.</summary>
public const int LongFieldFieldNumber = 2;
private long longField_;
[global: :System.Diagnostics.DebuggerNonUserCodeAttribute]
public long LongField {

get { return longField_; }

set {

longField_ = value;

}

}

index-108_1.png
SignalrApplication Home Privacy

Job description: Single job
Send Single Job

Number of jobs to send: 10
Send Multiple Jobs

Number of jobs to trigger: 10
Trigger Multiple Jobs

Responses from the server:

Job 9 executed succesfully
Job 8 executed succesfully
10 jobs executed successfully.
Job 7 executed succesfully

Job 6 executed succesfully
Job 5 executed succesfully
Job 4 executed succesfully
Job 3 executed succesfully
Job 2 executed succesfully
Job 1 executed succesfully
Job 0 executed succesfully

Job executed successfully. Description:

single job

index-120_1.png
/// <summary>Field number for the "signed_int_field" field.</summary>
public const int SignedIntFieldFieldNumber = 5;
private int signedIntField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public int SignedIntField {

get { return signedIntField_; }

set {

signedIntField_ = value;

}
}

/// <summary>Field number for the "signed_long_field" field.</summary>
public const int SignedLongFieldFieldNumber = 6;
private long signedLongField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public long SignedLongField {

get { return signedLongField_; }

set {

signedLongField_ = value;

}

}

index-119_1.png
/// <summary>Field number for the "unsigned_int_filed" field.</summary>
public const int UnsignedIntFiledFieldNumber = 3;
private uint unsignedIntFiled_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public uint UnsignedIntFiled {

get { return unsignedIntFiled_; }

set {

unsignedIntFiled_ = value;

}

}

/// <summary>Field number for the "unsigned_long_field" field.</summary>
public const int UnsignedLongFieldFieldNumber =
private ulong unsignedLongField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public ulong UnsignedLongField {

get { return unsignedLongField_; }

set {

unsignedLongField_ = value;

}

}

index-122_1.png
/// <summary>Field number for the "signed_fixed_long_field" field.</summary>
public const int SignedFixedLongFieldFieldNumber = 10;
private long signedFixedLongField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public long SignedFixedLongField {

get { return signedFixedLongField_; }

set {

signedFixedLongField_ = value;

}

¥

/// <summary>Field number for the "float_field" field.</summary>
public const int FloatFieldFieldNumber = 11;
private float floatField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public float FloatField {

get { return floatField_; }

set {

floatField_ = value;

}

}

index-121_1.png
/// <summary>Field number for the "fixed_int_field" field.</summary>
public const int FixedIntFieldFieldNumber = 7;
private uint fixedIntField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public uint FixedIntField {

get { return fixedIntField_; }

set {

fixedIntField_ = value;

}

+

/// <summary>Field number for the "fixed_long_field" field.</summary>
public const int FixedLongFieldFieldNumber =
private ulong fixedLongField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public ulong FixedLongField {

get { return fixedLongField_; }

set {

fixedLongField_ = value;

}

}

index-93_1.jpg
https:/localhost:21123 v

Jobs

posT [WEITH

/30bs/{jobsCount}

Status

/status/{clientName}

/status/{clientNane}/{status}

Schemas

index-84_1.jpg
Swagger

My Title © &

swaggervi/swagger json

servers

htps:/llocalhost:21123 v

Status

Select a definition

/status/{clientNane)

/status/{clientName}/{status}

Schemas

ClientStatusModel >

ClientStatus >

index-94_2.png
- dotnet run

Microsoft Windows [Version 10.0.19041.1052]
(c) Microsoft Corporation. All rights reserved.

C:\repos\GrpcMicroserviceSample\ApiGateway>dotnet run
info: Microsoft.Hosting.Lifetime[@]

Now listening on: https://localhost:21123
info: Microsoft.Hosting.Lifetime[@]

Now listening on: http://localhost:3736
info: Microsoft.Hosting.Lifetime[@]

Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[@]

Hosting environment: Development
info: Microsoft.Hosting.Lifetime[@]

Content root path: C:\repos\GrpcMicroserviceSample\ApiGateway

Job sequence: 1. Job description: Job executed successfully
Job sequence: 2. Job description: Job executed successfully
Job sequence: 3. Job description: Job executed successfully
Job sequence: 4. Job description: Job executed successfully
Job sequence: 5. Job description: Job executed successfully
Job sequence: 6. Job description: Job executed successfully
Job sequence: 7. Job description: Job executed successfully
Job sequence: 8. Job description: Job executed successfully
Job sequence: 9. Job description: Job executed successfully
Job sequence: 10. Job description: Job executed successfully

Job sequence: 11. Job description: Job executed successfully
Job sequence: 12. Job description: Job executed successfully

index-94_1.png
- dotnet run

Microsoft Windows [Version 10.0.19041.1052] ~
(c) Microsoft Corporation. All rights reserved.

C:\repos\GrpcMicroserviceSample\StatusMicroservice>dotnet run
info: Microsoft.Hosting.Lifetime[@]
Now listening on: http://localhost:3638
info: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:35095
info: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[@]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[@]
Content root path: C:\repos\GrpcMicroserviceSample\StatusMicroservice
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:35095/worker.JobManager/SendJobs application/grpc -
info: Microsoft. AspNetCore Routing.EndpointMiddleware[0]
Executing endpoint ‘gRPC - /worker.JobManager/SendJobs"*
Job Id: 1. Job description: jobl

Job Id: 2. Job description: job2
Job Id: 3. Job description: job3
Job Id: 4. Job description: job4
Job Id: 5. Job description: job5

Job Id: 6. Job description: jobé
info: Microsoft. AspNetCore Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /worker.JobManager/SendJobs'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST https://localhost:35095/worker.JobManager/SendJobs application/grpc - - 200 - applica
tion/grpc 12149.1637ms

index-482_1.jpg

index-464_1.png
< C @ localhostS001/metics @ & W =

®:

Apps @) ciculr economy . » | [Reading ist

HELP process_num_threads Total number of threads
TYPE process_num_threads gauge

process_nun_threads 30

HELP dotnet_total_memory_bytes Total knoun allocated memory
TYPE dotnet_total_memory_bytes gauge
dotnet_total_memory_bytes 3240688

HELP process_cpu_seconds_total Total user and system CPU
time spent in seconds.

TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 2.49625

HELP process_working_set_bytes Process working set

TYPE process_working_set_bytes gauge
process_working_set_bytes 63870208

HELP dotnet_collection_count_total GC collection count

TYPE dotnet_collection_count_total count
dotnet_collection_count_total{generatior
dotnet_collection_count_total{generatior
dotnet_collection_count_total{generation="6"} @

HELP grpc_requests_received_total Number of gRPC requests
received (including those currently being processed).

TYPE grpc_requests_received_total counter
grpc_requests_received_total{service="iot_analytics.Totstatus
Manager”, method="GetLocationStatus"} 1
grpc_requests_received_total{service.
Manager”, method="GetAlStatuses"} 2
HELP process_virtual_memory_bytes Virtual memory size in
bytes.

TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 2223084826624

HELP process_private_memory_bytes Process private memory
size

TYPE process_private_memory_bytes gauge
process_private_memory_bytes 64632768

HELP process_open_handles Number of open handles

TYPE process_open_handles gauge

process_open_handles 671

HELP process_start_time_seconds Start time of the process
since unix epoch in seconds.

TYPE process_start_time_seconds gauge
process_start_time_seconds 1637338017.166932

ot_analytics. Totstatus

index-484_1.jpg
Practical

Microservices
with Dapr and .NET

A developer's guide to building cloud-native applications
using the Dapr event-driven runtime

G e

Davide Bedin)

Foreword by Mark Russinovich, Azure CTO and Technical Fellow, Microsoft

index-483_1.jpg
Embracing
Microservices Design

A practical guide to revealing anti-patterns and
architectural pitfalls to avoid microservices fallacies

Ovais Mehboob Ahmed Khan | Nabil Siddiqui | Timothy Oleson
Foreword by Mark Fussell, Microsoft Partner Program Manager
Founder of the Distributed Application Runtime (Dapr) and Azure Service Fabric

D4

index-184_1.png
“cpuPercentagelisage”: £1.90360515467059,

“memoryUsage”: 67.90965272512463,

“processesRunning”: 1432912527,

“activeConnections™: 1384382357,

“dataload1”: "smRYixhm3401EPSASCIrViyz9qhUfnoCovy80dpj1Iz8AED
+rSHCVnyK341PpaCZuhlhxFObazTqVbkbaqhyontyROPVTKaNF58ryZ/3sy1bInfIge
‘B5YROZVFncgKzX1uwG3Q=="5

“dataload2”: "Yb3ELmtKrbRVGZXyooy/hy7qUKws4SHBRE261vIUSZLu1su
‘eXqBCNyKESQUDYbZQuCHO7LxapH33CDOdKBbBGY EDACZATS iNjRuk's/HCODaWat Xiiqu
TWLINp1ZiP6YLUOXbEA:

y

index-180_2.png
{
“cpuPercentagelsage”: 46.412748492515064,
“memoryUsage”: £6.45585694059257 5
“processesRunning”: 1351479921,
“activeConnections™: 1427337555

I

{
“cpuPercentagelisage”: £4.1785191484627,
“memoryUsage”: £3.5556322659624%,
“processesRunning”: 1231552551,
“activeConnections™: 732356560

¥

1

“requestProcessingTime™: 3420

¥

index-196_2.png
info: Microsoft.Hosting.Lifetime[@]
Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[@]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[@]
Content root path: C:\repos\Partl\ApiVersioning\GrpcServer
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/stats.Status/GetStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint ‘'gRPC - /stats.Status/GetStatus'
Client name is Test 1
Client description is This is a test
Is client ready? True
Is client authorized? True

index-196_1.png
oning

Please enter gRPC server address:
https://localhost:5001

Please enter client name:

Test 1

Please enter client description:

This is a test

Server name: TestServer

Server description: This is a test server that is used for generating status metrics
Number of connections: 1998712884

CPU usage: 73.3512969097827

Memory usage: 7.911506392020502

Errors logged: 276793787

Catastrophic failures logged: 971792556
Active: True

index-201_2.png
info: Microsoft.Hosting.Lifetime[@]
Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[@]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[@]
Content root path: C:\repos\Part2\ApiVersioning\GrpcServer
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/stats.Status/GetStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint ‘'gRPC - /stats.Status/GetStatus'
Client name is Test Client
Client description is This is a test client
Is client ready? False
hs client authorized? True

index-201_1.png
Please enter gRPC server address:
https://localhost:5001

Please enter client name:

Test Client

Please enter client description:

This is a test client

Server name: TestServer

Server description: This is a test server that is used for generating status metrics
Number of connections: 186299282

CPU usage: 25.271901453506157

Memory usage: 65.48899019392626

Errors logged: ©

Catastrophic failures logged: 75945647
Active: False

index-205_2.png
info: Microsoft.Hosting.Lifetime[0]
Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[0]
Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: C:\repos\Part3\ApiVersioning\GrpcServer
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/stats.Status/GetStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /stats.Status/GetStatus'
Client name is Test Client
Client description is This client is used for testing
Is client ready? True
Is client authorized? False

index-205_1.png
Please enter gRPC server address:
https://localhost:5001

Please enter client name:

Test Client

Please enter client description:

This client is used for testing

Server name: TestServer

Server description: This is a test server that is used for generating status metrics
Number of connections: 1188454209

CPU usage: 25.405058555959286

Memory usage: 82.5813088950614

Errors logged: ©

Catastrophic failures logged: 801045433
Active: False

index-209_1.png
[}] 0 Field "server_description" uses reserved number 6.

(¥} 18 Field name "server_description" is reserved.

index-207_1.png
info: Microsoft.Hosting.Lifetime[0O]
Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[©O]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[@]
Content root path: C:\repos\Part3\ApiVersioning\GrpcServer
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https://localhost:5001/stats.Status/GetStatus application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /stats.Status/GetStatus’
Client name is Test Client
Client description is This client is used for testing
Is client ready? False
Is client authorized? True

index-180_1.png
Performance

/Performance/factory-client/{count}

/Performance/client-wrapper/{count}

/Performance/initialized-client

S50 /{count)

/Performance/streaming-call/{count}

index-421_1.png
I Secret Count - Userfacinghpp X | + ©

<« C @ localhost44349/Hom... OV = &9 8 T@

Apps @ cicular sconomy .. & boot - Run bash scr. » | [Resdinglist

UserFacingApp Home Privacy Log Out

Secret Count

3

© 2021 - UserFacingApp - Privacy

index-443_1.png
cs. IotStatushanager/GetLocationStatus
in70: System.Net.Http.HttpClient.IotStatushanagerClient.ClientHandler[160]
Sending HTTP request POST https://localhost:5601/iot_analytics.Totsta
tushanager/GetLocationStatus
info: System.Net.Http.HttpClient.IotStatushanagerClient.ClientHandler[161]
Received HTTP response headers after 994.1111ms - 260
: System.Net.Http.HttpClient. IotStatushanagerClient. LogicalHandler[101]

End processing HTTP request after 1623.7332ms - 200
: Grpc.Net.Client. Internal.GrpcCall[3]

Call failed with gRPC error status. Status code: Unknown', Message:
"Exception was thrown by handler.®.
Grpc. Core . RpcException: Status(StatusCode="Unknown", Detail="Exception was
throun by handler.")

at IotApiGateway.TracingInterceptor.HandleCallResponse[TResponse] (Task 1
responseTask) in C:\Repos\Microservices-Comnunication-in-.NET-Using-gRPC\C
apter-11\Part1\GrpcAnalytics\IotApiGateway\TracingInterceptor.cs: line 71

Microsoft.AsphetCore.Diagnostics.DeveloperexceptionPagetiiddlevare[1]
An unhandled exception has occurred while executing the request.
Grpc.Core.RpcException: Status(StatusCode="Unknoun", Detail="Exceptio
was thrown by handler.")
at IotApiGateway.TracingInterceptor.HandleCallResponse[TResponse] (
Task™1 responseTask) in C:\Repos\Microservices-Communication-in-.NET-Using
gRPC\Chapter-11\Part1\GrpcAnalytics\IotApiGateway\TracingInterceptor.cs:1in
71

at IotApiGateway.Controllers.DevicesController.GetStatus(Int32 id)
in C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chapter-11\Part
1\GrpcAnalytics\IotApiGateway\Controllers\DevicesController.cs:line 36

at lambda_methods(Closure , Object)

at Microsoft.AspNetCore.Mvc.Infrastructure.ActionMethodExecutor. Aw

index-442_1.png
ics. IotStatushanager/GetLocationstatus
info: System.Net.Http.HttpClient.IotStatushanagerClient.ClientHandler[160]

Sending HTTP request POST https://localhost:5601/iot_analytics.Totst
atushanager/GetLocationStatus
in70: System.Net.Http.HttpClient.IotStatushanagerClient.ClientHandler[161]

Received HTTP response headers after 1675.6883ms - 200
10: System.Net.Http.HttpClient . IotStatushanagerClient. LogicalHandler[161]

1

End processing HTTP request after 1101.177ms - 260
info: Grpc.Net.Client.Internal.GrpcCall[3]

Call failed with gRPC error status. Status code: 'Unknown', Message:
*Exception was throun by handler. Exception: This call is not ready yet.

Grpc.Core . RpcException: Status(StatusCode="Unknoun”, Detail="Exception was|
throun by handler. Exception: This call is not ready yet.")

at TotApiGateway.TracingInterceptor.HandlecallResponse[TResponse] (Task™
1 responseTask) in C:\Repos\Microservices-Communication-in-.NET-Using-gRPC
\Chapter-11\Part1\GrpcAnalytics\IotApiGateway\TracingInterceptor. cs:line 7|
1
~1: Microsoft.AspNetCore.Diagnostics.DeveloperExceptionPageMiddleware[1]

An unhandled exception has occurred while executing the request.
Grpc.Core .RpcException: Status(StatusCode="Unknoun”, Detail="Exceptil
on was throun by handler. Exception: This call is not ready yet.")
at TotApiGateway.TracingInterceptor.HandleCallResponse[TResponse]
(Task™1 responseTask) in C:\Repos\Microservices-Communication-in-.NET-Usin
g-gRPC\Chapter-11\Part1\GrpcAnalytics\IotApiGateway\TracingInterceptor. ¢
Tine 71

index-140_2.png
/// <summary>Field number for the "nested_message_field" field.</summary>
public const int NestedMessageFieldFieldNumber = 5;
private global::IndepthProtobuf.HelloReply.Types.NestedMessage nestedMessageField_;
[global::System.ObsoleteAttribute]
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public global::IndepthProtobuf.HelloReply.Types.NestedMessage NestedMessageField {
get { return nestedMessageField_; }
set {
nestedMessageField_ = value;
+
}

index-143_1.png
/// <summary>Field number for the "external_reference_field" field.</summary>
public const int ExternalReferenceFieldFieldNumber = 6;
private global::Google.Protobuf.WellKnownTypes.Any externalReferenceField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttributel
public global::Google.Protobuf.WellknownTypes.Any ExternalReferenceField {

get { return externalReferenceField_; }

set {

externalReferenceField_ = value;

+

}

index-459_1.jpg
-

| I]|

Auth Metrics

LI]|

\WH! |

1117 11/18 11/19

= Logins - Login Errors == Logout == Logout Errors

11/20 11/21

11/22

11/23

index-141_1.png
public override Task<HelloReply> SayHello(HelloRequest request, ServerCallContext context)
{
var message = new HelloReply

{

Message = "Hello " + request.Name,

NestedMessageField = new HelloReply.Types.NestedMessage()
}

message.NestedMessageField.StringCollection.Add("entry 1");

message.NestedMessaaeField.StrinaCollection.Add(new List<strina>

went o B [deprecated] HelloReply.Types.NestedMessage HelloReply.NestedMessageField { get; set; }
entr:
"entr§ 3..' CS0612: 'HelloReply.NestedMessageField' is obsolete

s

message.NestedMessageFieId.StringToStringMap.Add("entry 1", "value 1");

message.NestedMessageField.StringToStringMap.Add(new Dictionary<string, string>

{ "entry 2", "value 2" },
{ "entry 3", "value 3" }
i

message.NestedMessageField.StringToStringMap[“entry 4"] = "value 4";

message.BasicTypesField = new BasicTypes
{

IntField = 1
}

return Task.FromResult(message);

index-458_1.png
on-in- NET-Using-gRPC\Chay

dbug: Grpc.AspletCore. Server. ServerCallHandler[15] h
Sending message.
dbug: Grpc.AspletCore. Server. ServerCallHandler[15]
Sending message.
dbug: Grpc.AspletCore. Server. ServerCallHandler[15]
Sending message.
: Grpc.AsplletCore. Server. ServerCallHandler[16]
Reading message.
: TotDeviceManager.ServerTracingInterceptor[6]
ERPC call request: /iot_analytics.IotStatushanager/GetLocationstat]

dbu

: IotDeviceManager.ServerTracingInterceptor[e]
gRPC error occured
System.Exception: This call is not ready yet.
at IotDeviceManager.Services. IotStatushanagerService. GetLocati
nStatus(LocationStatusRequest request, ServerCallContext context) in C:
Repos \Microservices-Communication-in- .NET-Using-gRPC\Chapter-11\Part3\Gr]
pcAnalytics\IotDeviceHanager\Services\IotStatusHanagerservice. cs:line 2
at Grpc.Shared. Server.UnaryServerHethodInvoker” 3.ResolvedInterc|
eptorInvoker(TRequest resolvedRequest, ServerCallContext resolvedContext]

)
at Grpc.Shared. Server.UnaryServerHethodInvoker” 3.ResolvedInter|
eptorInvoker(TRequest resolvedRequest, ServerCallContext resolvedContext]

)
at TotDeviceManager.ServerTracingInterceptor.UnaryServerandler|
[TRequest, TResponse] (TRequest request, ServerCallContext context, Unarys)
erveriethod 2 continuation) in C:\Repos\Microservices-Communication-in-.
NET-Using-gRPC\Chapter-11\Part3\GrpcAnalytics\IotDeviceManager\ServerTra]
cingInterceptor.cs:line 24
Grpc . AspNetCore. Server. ServerCallHandler[6] v

index-168_1.jpg
Performance

S /perornance/factory-client/{count}

S /perornance/client-urapper/{count}

S8 Jperformance/initialized-client/ {count}

index-145_1.png
/// <summary>Field number for the "internal_reference_field" field.</summary>
public const int InternalReferenceFieldFieldNumber = 7;
private global::IndepthProtobuf.Reference.ReferenceMessage internalReferenceField_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public global::IndepthProtobuf.Reference.ReferenceMessage InternalReferenceField {

get { return internalReferenceField_; }

set {

internalReferenceField_ = value;

I

}

index-463_1.png
< C @ localhostd4377/metri.. & % Y = & §

Apps Q) ciculr economy .. @ boot - Run bash scr.

HELP async_unary_calls_count Count of async unary calls.
TYPE async_unary_calls_count counter
async_unary_calls_count 1

HELP grpc_call_duration Durations of gRPC calls.

TYPE grpc_call_duration histogram
grpc_call_duration_sum ©.196431

grpc_call_duration_count 2
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{le:
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
grpc_call_duration_bucket{l
HELP grpc_requests_received_total Number of gRPC requests received
(including those currently being processed).

TYPE grpc_requests_received_total counter

HELP process_virtual_memory_bytes Virtual memory size in bytes.

TYPE process_virtual_memory_bytes gauge

process_virtual_memory_bytes 2223109646272

HELP dotnet_collection_count_total GC collection count

TYPE dotnet_collection_count_total counter
dotnet_collection_count_total{generation="1"} @
dotnet_collection_count_total{generation="6"} @
dotnet_collection_count_total{generation="2"} @

HELP process_cpu_seconds_total Total user and system CPU time spent in
seconds.

TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 4.53125

HELP process_open_handles Number of open handles

TYPE process_open_handles gauge

process_open_handles 744

HELP process_private_memory_bytes Process private memory size

TYPE process_private_memory_bytes gauge

process_private_memory_bytes 75671488

HELP server_streaming_calls_count Count of server streaming calls.

TYPE server_streaming_calls_count counter

server_streaming_calls_count 1

HELP process_num_threads Total number of threads

TYPE process_num_threads gauge

process_nun_threads 31

HELP duplex_streaming_calls_count Count of bi-directional streaming
calls.

index-169_1.png
T

"cpuPercentagelUsage™: 73.52017721790825,
“"memoryUsage”: 22.795029072187385,
“processesRunning”: 931767674,
“activeConnections": 171365762

I

{

"cpuPercentageUsage™: 70.10974596611165,
“"memoryUsage”: 2.044346053034225,
“processesRunning”: 784356151,
“activeConnections”: 1837297110

index-449_1.png
200 - application/grpc 676.8946ms

info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST https:

analytics.IotStatushanager/GetLocationStatus application/grpc |

: Microsoft.AspNetCore.Routing. Endpointhiddleware[6]
Executing endpoint 'gRPC - /iot_analytics.IotStatushanag|
er/GetLocationstatus”
dbug: Grpc.AspNetCore. Server. ServerCallHandler[16]
Reading message.

System.Exception: This call is not ready yet.

at IotDeviceManager.Services. IotStatushanagerservice.GetLoc
ationStatus(LocationStatusRequest request, ServerCallContext c|
ontext) in C:\Repos\Microservices-Communication-in-.NET-Using-
gRPC\Chapter-11\Part2\GrpcAnalytics\IotDevicelianager\Services\|
TotStatushanagerService.cs:line 28

at Grpc.Shared. Server.UnaryServerHethodInvoker” 3.ResolvedIn
terceptorInvoker(TRequest resolvedRequest, ServerCallContext r|
esolvedContext)

at Grpc.Shared. Server.UnaryServerHethodInvoker” 3.ResolvedIn
terceptorInvoker(TRequest resolvedRequest, ServerCallContext r|
esolvedContext)

at TotDeviceManager.ServerTracingInterceptor.UnaryServerHan
dler[TRequest, TResponse] (TRequest request, ServerCallContext c|
ontext, UnaryServeriethod 2 continuation) in C:\Repos\Microser|
vices-Communication-in-.NET-Using-gRPC\Chapter-11\Part2\GrpcAn|
alytics\TotDeviceManager\ServerTracingInterceptor.cs:line 14

: Grpc.AsplletCore. Server. ServerCallHandler[6]
Error when executing service method 'GetlLocationStatus

index-168_2.png
{
“cpuPercentagelisage”: 0.7024539637856436,

“memoryUsage”: 43.21941485572369,
“processesRunning™: 1159771203,
“activeConnections™: 182813043
I
{

“cpuPercentagelisage”: 54.24138105206255,

“memoryUsage”: 54.4859117150706%,
“processesRunning”: 1032314773,
“activeConnections™: 417261942

¥
1

“requestProcessingTime™: 15196
¥

index-448_1.jpg
info:
dbug:
dbug:
dbug:
dbug:
dbug:
dbug:

dbug:

Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /iot_analytics.IotStatusManager
Grpc.AsphNetCore.Server.ServerCallHandler[10]
Reading message.
Grpc.AspNetCore.Server.ServerCallHandler[15]
Sending message.
Grpc.AsphNetCore.Server.ServerCallHandler[15]
Sending message.
Grpc.AspNetCore.Server.ServerCallHandler[15]
Sending message.
Grpc.AsphNetCore.Server.ServerCallHandler[15]
Sending message.
Grpc.AspNetCore.Server.ServerCallHandler[15]
Sending message.
Grpc.AsphNetCore.Server.ServerCallHandler[15]
Sending message.

index-173_1.png
Concurrency

/concurrency/single-connection/{count}

/Concurrency/multiple-connections

S /{count)

Performance

/Performance/factory-client/{count}

/Performance/client-wrapper/{count}

/Performance/initialized-client

S /{count)

index-457_1.png
info:

‘ommunication-in-NET-Using-gRPC\C

: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development
Microsoft.Hosting. Lifetime[6]
Content root path: C:\Repos\Microservices-Communication-in-.NET-Ug]

ing-gRPC\Chapter-11\Part3\GrpcAnalytics\IotDevicetanager

dbu

dbug:
dbug:
dbug:
dbug:
dbug:
dbug:
dbug:
dbug:
dbug:
dbug:

dbug:

dbus

Grpc.AsplietCore. Server. ServerCallHandler[10]
Reading message.

TotDeviceManager. ServerTracingInterceptor[6]
gRPC call request: /iot_analytics.IotStatusianager/GetAllStatuses
Grpc.AsplietCore. Server . ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AsplietCore. Server. ServerCallHandler[15]
Sending message.
Grpc.AspNetCore . Server. ServerCallHandler[15]

index-169_2.png
A
"cpuPercentageUsage”: 55.91410363834076,
"memoryUsage”: 55.68/99232351034,
“processesRunning”: 499050745,
“activeConnections”: 535356275
I
{

"cpuPercentageUsage™: 59.17895560114596,
“"memoryUsage”: 77.78339217313723,
"processesRunning”: 901384745,
“activeConnections”: 1973813454

b

I

"requestProcessingTime

51024
b

index-456_1.png
in70: Microsoft.Hosting.Lifetime[@]
Now listening on: https://localhost:44377
Microsoft.Hosting. Lifetime[6]

: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl:C to shut doun.
Microsoft.Hosting. Lifetime[6]
Hosting environment: Development
Microsoft.Hosting. Lifetime[6]
Content root path: C:\Repos\Microservices-Communication-in-.NET-Using-gRPC\Chaptel
r-11\Part3\GrpcAnalytics\TotApiGateway
dbug: Grpc.Net.Client.Internal.GrpcCall[1]
Starting gRPC call. Method type: 'ServerStreaming’, URL:
iot_analytics.IotStatushanager/GetAllStatuses' .
dbug: Grpc.Net.Client.Internal.GrpcCall[18]
Sending message.
dbug: Grpc.Net.Client.Internal.GrpcCall[13]
Reading message.
: Grpc.Net.Client. Internal.GrpcCall[13]
Reading message.
dbug: Grpc.Net.Client.Internal.GrpcCall[13]
Reading message.
dbug: Grpc.Net.Client.Internal.GrpcCall[13]
Reading message.
: Grpc.Net.Client. Internal.GrpcCall[13]
Reading message.
dbug: Grpc.Net.Client.Internal.GrpcCall[13]
Reading message.
dbug: Grpc.Net.Client.Internal.GrpcCall[13]
Reading message.

*https://localhost:5601/|

dbu

dbu

index-140_1.png
public enum ExternalEnum {
[pbr::0riginalName("NONE")] None = @,
[pbr::0riginalName("SINGLE")] Single = 1,
[pbr::0riginalName("FEW")] Few = 2,
[pbr::0riginalName("MANY", PreferredAlias = false)]l Many = 2,

}

index-137_2.png
switch (other.MixedFieldCase) @

case MixedFieldOneofCase.FloatField:
FloatField = other.FloatField;
break;

case MixedFieldOneofCase.DoubleField:
DoubleField = other.DoubleField;
break;

case MixedFieldOneofCase.BooeanFild:
BooeanFild = other.BooeanFild;
break;

case MixedFieldOneofCase.StringField:
StringField = other.StringField;
break;

case MixedFieldOneofCase.BytesField:
BytesField = other.BytesField;
break;

case MixedFieldOneofCase.InternalEnumField:
InternalEnumField = other.InternalEnumField;
break;

case MixedFieldOneofCase.ExternalEnumField:
ExternalEnumField = other.ExternalEnumField;
break;

