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Preface

The international conferences on Integral Methods in Science and Engineering

(IMSE) started in 1985 at the University of Texas–Arlington and, from 1996, 

continued biennially in a variety of venues around the world. These events bring

together specialists who make use of integration techniques as essential tools in

their research. These types of procedures are characterized by generality, elegance, and efficiency, which are essential ingredients in the work of a wide category of

practitioners. 

The time and place of the first 14 IMSE conferences are listed below:

1985, 1990:

University of Texas–Arlington, USA

1993:

Tohoku University, Sendai, Japan

1996:

University of Oulu, Finland

1998:

Michigan Technological University, Houghton, MI, USA

2000:

Banff, AB, Canada (organized by the University of Alberta, Edmon-

ton)

2002:

University of Saint–Étienne, France

2004:

University of Central Florida, Orlando, FL, USA

2006:

Niagara Falls, ON, Canada (organized by the University of Waterloo)

2008:

University of Cantabria, Santander, Spain

2010:

University of Brighton, UK

2012:

Bento Gonçalves, Brazil (organized by the Federal University of Rio

Grande do Sul)

2014:

Karlsruhe Institute of Technology, Germany

2016:

University of Padova, Italy

The 2018 event, the 15th in the series, was hosted by the University of Brighton, 

UK, July 16–20, gathering participants from 16 countries on 5 continents, whose

high-quality presentations consolidated the well-deserved reputation of the IMSE

conferences as a vehicle for scientists and engineers to communicate their most

recent results and ideas and to forge contacts for future professional collaboration. 

v
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Preface

The Organizing Committee of the conference, assisted by Laura Williams and

Richard Huck of Southwest Conferences, was comprised of:

Paul Harris (University of Brighton), Chairman

Jenny Venton (University of Brighton)

Dmitry Savostyanov (University of Brighton)

The accomplishments of the IMSE 2018 meeting were due to a large extent

to the financial support received from the School of Computing, Engineering and

Mathematics at the University of Brighton. The participants and the Organizing

Committee wish to thank this academic body for its underwriting of the success of

the conference. 

IMSE 2018 included two minisymposia:

Asymptotic Analysis: Homogenization and Thin Structures; organizer: M.E. Pérez–

Martínez (University of Cantabria)

Boundary: Domain Integral Equations; organizer: S. Mikhailov (Brunel University

London)

The next IMSE conference will be held at the University of St. Petersburg, 

Russia, July 13–17, 2020. Further details will be posted in due course on the

conference web site. 

The peer-reviewed chapters of this volume, arranged alphabetically by first

author’s name, consist of 36 papers presented in Brighton. The editors would like

to thank the reviewers for their valuable help and the staff at Birkhäuser–New York

for their courteous and professional handling of the publication process. 

Tulsa, OK, USA

Christian Constanda

Brighton, UK

Paul Harris

January 2019

The International Steering Committee of

IMSE

Christian Constanda (The University of Tulsa),  Chairman

Bardo E.J. Bodmann (Federal University of Rio Grande do Sul)

Haroldo F. de Campos Velho (INPE, Saõ José dos Campos)

Paul J. Harris (University of Brighton)

Andreas Kirsch (Karlsruhe Institute of Technology)

Mirela Kohr (Babes–Bolyai University of Cluj–Napoca)

Massimo Lanza de Cristoforis (University of Padova)

Sergey Mikhailov (Brunel University London)

Dorina Mitrea (University of Missouri–Columbia)

Marius Mitrea (University of Missouri–Columbia)

David Natroshvili (Georgian Technical University)

Maria Perel (St. Petersburg State University)

Maria Eugenia Pérez–Martínez (University of Cantabria)

Ovadia Shoham (The University of Tulsa)

Iain W. Stewart (University of Dundee)

Continuing a tradition started at the preceding conference, IMSE 2018 hosted

an exhibition of digital art that consisted of five portraits of participants and a

special conference poster, executed by artist Walid Ben Medjedel using different

techniques. The exhibits were much appreciated by the participants, who, as before, 

commented on the relationship between digital art and mathematics. 

The portraits and the poster have been reduced to scale and reproduced on the

next page. 
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Chapter 1

Singularity Subtraction for Nonlinear

Weakly Singular Integral Equations

of the Second Kind

Mario Ahues, Filomena D. d’Almeida, Rosário Fernandes, 

and Paulo B. Vasconcelos

1.1

Introduction

The reference Banach space is the set  X :=  C 0 ([ a, b] ,  R )  with the supremum norm. 

We consider the operator  K  defined by

 b

 K(x)(s):=  g(| s −  t| )N(s, t, x(t)) dt, 

 x ∈  X, s ∈ [ a, b] , 

 a

where  g  is a weakly singular function in the following sense:

lim  g(s) = +∞ ,  and  g ∈  C 0 (]0 , b −  a] ,  R+ ) ∩  L 1 ([0 , b −  a] ,  R+ ). 

 s→0+

To be consistent with [An81] and [AhEtAl01], we assume that  g  is a decreasing function on ]0 , b −  a]. 

The factor  N , containing the values  x(t) ∈ R of the functional variable  x ∈  X

for  t ∈ [ a, b], is a continuous function

 N : [ a, b] × [ a, b] × R → R , (s, t, u) →  N(s, t, u), with continuous partial derivative with respect to the third variable. 
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Then the operator  K  maps  X  into itself, and it is Fréchet-differentiable over  X. 

When  N (s, t, x(t))

:=  κ(s, t) x(t)  for some continuous function  κ :

[ a, b]×[ a, b] → R, then  K  is a linear bounded operator from  X  into itself. 

In this paper, we are interested in the general, possibly nonlinear, case. 

The main idea of the singularity subtraction method is to compensate the

singularity of  g(| s −  t| )  along the diagonal  s =  t, by multiplying  g(| s −  t| )  by a factor which tends to 0 as  t →  s. If  K  is linear, this factor is  κ(s, t)(x(t) −  x(s)). 

In the general case, the factor is  N (s, t, x(t)) −  N(s, s, x(s)). 

This leads to rewrite  K  as

 b

 K(x)(s) :=

 g(| s −  t| )[ N(s, t, x(t))− N(s, s, x(s))]  dt a

 b

+ N(s, s, x(s)) g(| s− t| ) dt. 

(1.1)

 a

The singularity subtraction method builds an approximation of  K  as it is written in (1.1), and, as described in [An81] for the linear case, it is a double approximation scheme consisting of truncation and numerical integration. 

The ideas worked out in [An81] and [AhEtAl01] for the linear case are extended here to the nonlinear case. 

Truncation Given  δ ∈ ]0 , b −  a[, we replace  g  with a truncated approximation g  in a  δ-right-neighborhood of 0. This function coincides with  g  outside a small δ

interval [0 , δ], and is constantly equal to  g(δ)  in [0 , δ]. Hence  g  is a continuous δ

function. In the sequence of singularity subtraction approximations, the role of  δ  is played by a sequence  (an)n≥2 in ]0 , b −  a[ leading to the function  gn  defined by g(a

 g

 n)  for  s ∈ [0 , an] , 

 n(s) :=

 g(s)

for  s ∈ ] an, b −  a] . 

Numerical Integration To proceed with the singularity subtraction idea—like in the linear case—we define a general grid with  n ≥ 2 points on [ a, b]: a ≤  τn,  1  < τn,  2  < . . . < τn,n ≤  b. 

(1.2)

This grid is called the basic grid, and it determines  n − 1 subintervals of [ a, b]. 

The integrals in the first line of (1.1), after replacing  g  with  gn, are approximated by some quadrature rule  Qn  with  p(n)  nodes depending on the nodes of the basic grid. For instance, if  Qn  is the composite trapezoidal rule, then the quadrature grid is the basic grid, so  p(n) =  n; if  Qn  is the composite Simpson rule, then its nodes are the points of the basic grid and the mid-points of the corresponding subintervals, and hence  p(n) = 2 n − 1; for some other rules  Qn, the nodes are the so-called Gaussian points, which are obtained by shifting to each subinterval of the basic grid the zeros
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of a polynomial of a given degree  m  belonging to a complete sequence of orthogonal polynomials in some particular Hilbert space, and hence  p(n) =  m(n − 1 ). 

In this paper, we consider a sequence  (Qn)n≥2 of quadrature rules built upon the basic grid. The nodes of  Qn  are denoted by  tp(n),j ,  j = 1 , . . . , p(n), and are numbered so that  a ≤  tp(n),  1  < · · ·  < tp(n),p(n) ≤  b. The weights of  Qn  are denoted by  wp(n),j ,  j = 1 , . . . , p(n). We suppose that they are all positive, and that there exists a constant  γ >  0 such that

 wp(n),j ≤  γ (d − c)  when  a ≤  c < d ≤  b,  and  I  is ] c,d] or [ c,d[

 tp(n),j ∈ I

(1.3)

(cf. hypothesis (H) in [AhEtAl01, page 225]). Almost all commonly used quadrature rules satisfy (1.3). The constant  γ  plays an active role in the proof of Theorem 1. 

 b

Ideally, 

 g(| s −  t| ) dt  should be available in closed form. If not, a specially a

fine numerical quadrature formula should give an accurate value of this integral for any fixed value of  s ∈ [ a, b]. 

1.2

Singularity Subtraction

Consider the basic grid (1.2) and define  hn,j :=  τn,j+1 −  τn,j  for  j = 1 , . . . , n − 1, and  hn :=

max

 hn,j . The singularity subtraction technique, as presented in

 j =1 ,...,n−1

[An81], relates truncation and numerical integration through the following condition on the sequences  (an)n≥2 and  (Qn)n≥2: There exist constants  α 1  >  0 and  β 1  >  0

such that

 α 1 hn ≤  an ≤  β 1 hn  for all  n ≥ 2 , i.e., the width of truncation must tend to zero at the same rate as the mesh sizes. 

These considerations lead to approximate  K, as written in (1.1), by the following operator  Kn: For  x ∈  X, and  s ∈ [ a, b], 

 p(n)







 Kn(x)(s) :=

 wp(n),j gn(| s −  tp(n),j | ) N(s, tp(n),j , x(tp(n),j )) −  N(s, s, x(s)) j =1

 b

+ N(s, s, x(s)) g(| s −  t| ) dt. 

 a

The exact equation, to be solved numerically, is: For  y ∈  X, find  ψ ∈  X  such that ψ =  K(ψ) +  y, 

(1.4)
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i.e.,  F (ψ) = 0, if  F :  X →  X  is the operator defined by  F (x) :=  x −  K(x) −  y for all  x ∈  X. We assume that 1 is not in the spectrum of the Fréchet-derivative of K  at  ψ, so  ψ  is an isolated solution of (1.4). 

The approximate equation, to be solved exactly, is: Find  ψn ∈  X  such that ψn =  Kn(ψn) +  y, 

(1.5)

i.e.,  Fn(ψn) = 0, if  Fn :  X →  X  is the operator defined by  Fn(x) :=  x− Kn(x)− y for all  x ∈  X. 

If we take the values of (1.5) at  tp(n),i,  i = 1 , . . . , p(n), we get the following, possibly nonlinear, system of order  p(n)  with unknowns x n(i) :=  ψn(tp(n),i),  i =

1 , . . . , p(n):

 p(n)



x n(i) =

 wp(n),j gn(| tp(n),i − tp(n),j | )[ N(tp(n),i, tp(n),j ,  x n(j )) j =1

− N(tp(n),i, tp(n),i,  x n(i))]  b

+  N(tp(n),i, tp(n),i,  x n(i)) g(| tp(n),i −  t| ) dt +  y(tp(n),i). 

 a

This  p(n)-dimensional system can be written as

F n( x n) = 0 , 

(1.6)

where, for all x ∈ R p(n)×1, and  i = 1 , . . . , p(n), 

 p(n)



F n( x )(i) := x (i) −

 wp(n),j gn(| tp(n),i −  tp(n),j | )[ N(tp(n),i, tp(n),j ,  x (j )) j =1

− N(tp(n),i, tp(n),i,  x (i))]  b

− N(tp(n),i, tp(n),i,  x (i)) g(| tp(n),i −  t| ) dt −  y(tp(n),i)) a

 p(n)



= x (i) −

 wp(n),j gn(| tp(n),i −  tp(n),j | )N(tp(n),i, tp(n),j ,  x (j )) j =1

 p(n)



+ N(tp(n),i, tp(n),i,  x (i))

 wp(n),j gn(| tp(n),i −  tp(n),j | )

 j =1

 b



−  g(| tp(n),i −  t| ) dt −  y(tp(n),i). 

 a
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The system (1.6) must be solved accurately by some numerical methods, for instance, Gauss’ method in the linear case, and Newton’s method—as described

in the sequel—in the nonlinear case. 

The Jacobian matrix of F n : R p(n)×1 → R p(n)×1 at x ∈ R p(n)×1 is given by

 ∂N

F  n( x )(i, j) =  δi,j −  wp(n),j gn(| tp(n),i −  tp(n),j | ) (tp(n),i, tp(n),j ,  x (j ))

 ∂u

 p(n)



+

 ∂N

 δi,j

 (tp(n),i, tp(n),i,  x (i))

 wp(n),j gn(| tp(n),i −  tp(n), | )

 ∂u

 =1

 b



−  g(| tp(n),i −  t| ) dt , 

 a

where  δi,j  is the Kronecker delta, and  i, j = 1 , . . . , p(n). 





The Newton’s sequence x[ k]

 n

in R p(n)×1 is defined, for a given starting

 k≥0

column x[0]

 n

∈ R p(n)×1, by

F 

= −

:=

+

 n( x[ k]

 n ) c[ k]

 n

F n( x[ k]

 n ), 

x[ k+1]

 n

x[ k]

 n

c[ k]

 n , 

 k ≥ 0 , 

where c[ k]

 n

is the unknown. Equivalently, 

F 

=

−

 n( x[ k]

 n ) x[ k+1]

 n

F  ( x[ k]

 n ) x[ k]

 n

F n( x[ k]

 n ), 

 k ≥ 0 , 

where x[ k+1]

 n

is the unknown, i.e. 

 ( I − A[ k] −

=

 n

D[ k]

 n ) x[ k+1]

 n

b[ k]

 n , 

where I is the identity matrix of order  p(n), and, for  i, j = 1 , . . . , p(n), 

 ∂N

A[ k]

 n (i, j ) :=  wp(n),j gn(| tp(n),i −  tp(n),j | )

 (tp(n),i, tp(n),j ,  x[ k]

 ∂u

 n (j )), 



 ∂N

 b

D[ k]

 n (i, j ) :=  δi,j

 (tp(n),i, tp(n),i,  x[ k]

 g(| tp(n),i − t| ) dt

 ∂u

 n (i))

 a

 p(n)





−

 wp(n), gn(| tp(n),i − tp(n), | ) , 

(1.7)

 =1
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 p(n)



 ∂N

b[ k]

 n (i) := −

 wp(n),j gn(| tp(n),i − tp(n),j | )

 (tp(n),i, tp(n),j ,  x[ k]

 ∂u

 n (j )) x[ k]

 n (j )

 j =1

 p(n)



+

 ∂N

x[ k]

 n (i)

 (tp(n),i, tp(n),i,  x[ k]

 wp(n),gn(| tp(n),i − tp(n), | )

 ∂u

 n (i))

 =1

 b



−  g(| tp(n),i − t| ) dt

 a

 p(n)



+

 wp(n),j gn(| tp(n),i − tp(n),j | ) N(tp(n),i, tp(n),j ,  x[ k]

 n (j ))

 j =1

 p(n)



− N(tp(n),i, tp(n),i,  x[ k]

 n (i))

 wp(n),j gn(| tp(n),i − tp(n),j | )

 j =1

 b



−

 g(| tp(n),i − t| ) dt +  y(tp(n),i). 

(1.8)

 a

1.3

Convergence

p

n

cc

Let → denote pointwise convergence, → norm convergence, → collectively

 ν

compact convergence (cf. [An71]), and → the  ν-convergence (cf. [AhEtAl01]). 

Theorem 1  Let (Qn)n≥2  be a sequence of composite quadrature rules with nodes tp(n),j and weights wp(n),j , j = 1 , . . . , p(n), satisfying (1.3).  Then Kn is

 n≥2







 pointwise convergent to K, Fn

 is pointwise convergent to F , and ψ

 is

 n≥2

 n n≥2

 convergent with limit ψ. 

 Proof  The Fréchet-derivatives  T :=  K  and  Tn :=  (Kn)  at  ψ  are given by: b

[

 ∂N (s, t, ψ(t ))

 T (ψ)f ] (s) =

 g(| s −  t| )

 f (t ) dt , 

 f ∈  X, s ∈ [ a, b] , 

 a

 ∂u

 p(n)



 ∂N (s, t

[

 p(n),j , ψ (tp(n),j ))

 Tn(ψ)f ] (s) =

 wp(n),j gn(| s −  tp(n),j | )

 f (tp(n),j )

 ∂u

 j =1

 p(n)



−

 ∂N (s, s, ψ(s))

 wp(n),j gn(| s −  tp(n),j | )

 f (s)

 ∂u

 j =1

 b

+ ∂N(s, s, ψ(s))f (s) g(| s −  t| ) dt, f ∈  X, s ∈ [ a, b] . 

 ∂u

 a
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Let us consider the decomposition  Tn(ψ) =  T A

 n (ψ ) +  T B

 n (ψ ), where

 p(n)



 ∂N (s, t

[

 p(n),j , ψ (tp(n),j ))

 T A

 n (ψ )f ] (s) :=

 wp(n),j gn(| s −  tp(n),j | )

 f (tp(n),j ), 

 ∂u

 j =1

 p(n)



[

 ∂N (s, s, ψ(s))

 T B

 n (ψ )f ] (s) := −

 wp(n),j gn(| s −  tp(n),j | )

 f (s)

 ∂u

 j =1

 b

+ ∂N(s, s, ψ(s))f (s)

 g(| s −  t| ) dt

 ∂u

 a

for  f ∈  X, and  s ∈ [ a, b]. 

We define, for  x ∈  X, and  s ∈ [ a, b], 

 b

 (U x)(s) :=

 g(| s −  t| )x(t) dt and (Unx)(s)

 a

 p(n)



:=

 wp(n),j gn(| s −  tp(n),j | ) x(tp(n),j ). 

 j =1

cc

p

By (1.3),  Un →  U , so  Un →  U (cf. Proposition 4.18 in [AhEtAl01, page 227]). 

The proof is done in five steps:

p

 ν

1. We show that  Tn(ψ) →  T (ψ)  and that  Tn(ψ) →  T (ψ)  too: As  Tn(ψ)  and  T (ψ)  are bounded linear operators, we use the results of

[An81]. 

Since  (s, t, u) →  ∂N(s, t, u)  is a continuous function, and since (1.3) holds, 

 ∂u

then  Tn(ψ)  and  T A

 n (ψ )  satisfy the hypotheses of Proposition 4.18 in [AhEtAl01, 

cc

p

page 227], and  T A

→

→

 n (ψ )

 T (ψ). Hence  T A

 n (ψ )

 T (ψ). Recall that  T (ψ)  is

 ν

compact because  K  is compact. This implies that  T A

→

 n (ψ )

 T (ψ). 

For any  f ∈  X  such that  f  = 1, 

 b

[ T B

 n (ψ )f ] (s) =  ∂ N (s, s, ψ (s)) f (s)

 g(| s −  t| ) dt

 ∂u

 a

 p(n)





−

 wp(n),j gn(| s −  tp(n),j | )

 j =1





=  ∂N(s, s, ψ(s))f (s) (Ue)(s) −  (Une)(s) , 

 ∂u

8
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where  e(s) := 1 for  s ∈ [ a, b]. Hence

 T B



 n (ψ )f  ≤   ∂N (· , · , ψ (· ))

 Une −  U e , 

 ∂u

p

n

p

which tends to 0 as  n → ∞, since  Un →  U . Hence  T B

→

→

 n (ψ )

 O, so  Tn(ψ)

 ν

 T (ψ). Hence  Tn(ψ) →  T (ψ) (cf. Lemma 2.2 (b) (i) in [AhEtAl01, page 73]). 

2. We show that  I −  Tn(ψ)  is invertible:

 ν

Since  (I −  T (ψ))−1 exists, and  Tn(ψ) →  T (ψ), there exists  n 0 ≥ 2 such that, for  n ≥  n 0, 

 (I −  T (ψ))−1   (Tn(ψ) −  T (ψ)) Tn(ψ)  <  1 . 

Hence  (I −  Tn(ψ))−1 exists and is uniformly bounded (cf. [An81, page 413]). 

By continuity, the same holds for  ((I −  Tn(x))−1 for all  x  close enough to  ψ. 

3. We prove that  Fn  is locally invertible with continuous inverse in a neighborhood of 0:

 I −  Kn  is a continuously differentiable operator from the Banach space  X  into itself. By the Inverse Function Theorem,  I −  Tn(ψ), being invertible, there is a neighborhood of  ψ  where  I −  Kn  is invertible with continuous inverse in some neighborhood of  y. Hence  F −1

 n

exists and is continuous in some neighborhood

of 0. 

4. We prove that  (Kn)n≥2 is pointwise convergent to  K, and  (Fn)n≥2 is pointwise convergent to  F :

An auxiliary operator 

 Kn  is used in the proof. For  x ∈  X, and  s ∈ [ a, b], define

 p(n)





 Kn(x)(s) :=

 wp(n),j gn(| s −  tp(n),j | )N(s, tp(n),j , x(tp(n),j )). 

 j =1

 Kn  can be rewritten as

 Kn(x)(s) = 

 Kn(x)(s) +  N(s, s, x(s))(U −  Un)e(s). 

(1.9)

Define

 σ (x) :=

max

| N(s, t, x(t))| , 

 a ≤  s , t ≤  b

which is finite because of the continuity of  N  in its three variables, and of  x  in its single one. In the linear case,  σ (x) =  ρ x for some constant  ρ >  0. Now, 

| Kn(x)(s) − 

 Kn(x)(s)| ≤  σ (x) (U −  Un)e → 0 and

 Kn(x) − 

 Kn(x) → 0 as  n → ∞ , 
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p

since  Un →  U  as stated in the beginning of this proof. Following the ideas of the proof of Proposition 4.18 in [AhEtAl01], we decompose



 Kn(x) −  K(x) =  λδ +  μn +  ηn, 

where  λδ,  μn  and  ηn  are defined as follows. Let  γ >  0 be the constant introduced δ

in (1.3). Given   >  0, there exists  δ ∈ ]0 , b −  a] such that g(u) du < 

0

 

1

min{1 , 

}. Set

18

3 γ

min{ b,s+ δ}



 λδ(s) :=

[ g(δ) −  g(| s −  t| )] N(s, t, x(t))dt, 

max{ a,s− δ}

 p(n)



 μn(s) =

 wp(n),j [ gn(| s −  tp(n),j | ) −  g (| s −  t δ

 p(n),j | )] N (s, tp(n),j , x(tp(n),j )), 

 j =1

 p(n)



 ηn(s) :=

 wp(n),j g (| s −  t

 δ

 p(n),j | )N (s, tp(n),j , x(tp(n),j ))

 j =1

 b

−  g (| s −  t| )N(s, t, x(t)) dt. 

 δ

 a

Then the following upper bounds hold for all  n  greater than some integer  n 0 (x): δ

| λδ(s)| ≤ 6  σ(x) g(u) du ≤  σ(x), 

0

3





| μn(s)| ≤  σ(x)

 wp(n),j gn(| s −  tp(n),j | ) + 2 γ δg(δ) ≤  σ (x) , 3

| s− tp(n),j | <δ

| ηn(s)| ≤  σ(x). 

3

Since

| 

 Kn(x)(s) −  K(x)(s)| ≤ | λδ(s)| + | μn(s)| + | ηn(s)| ≤  σ (x), p

p

p

we conclude that 

 Kn →  K.  Kn →  K, and  Fn →  F . 

5. We prove that  (ψn)n≥2 is convergent with limit  ψ:

Since  F  and  Fn  are invertible and Fréchet-differentiable, the derivative of their inverses at 0 is equal to the inverse of the derivative of the direct operators at the inverse image of 0, and the integral form of the Mean Value Theorem for

10
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Derivatives gives:

 F −1

 n

 ( 0 ) −  F −1 ( 0 ) =  ψn −  ψ =  F −1

 n

 (F (ψ)) −  F −1

 n

 (Fn(ψ))

1

=

 (F −1

 n

 )  (Fn(ψ) +  t (F (ψ) −  Fn(ψ)) dt (F (ψ) −  Fn(ψ)). 

0

Hence

1

 Fn(ψn) −  Fn(ψ) =

 F   n(ψ +  t(ψn −  ψ)) dt (ψn −  ψ). 

0

Since the sequence  (Fn)n≥2 is pointwise convergent to  F  and  F (ψ) = 0, then vn(t) :=  Fn(ψ) +  t (F (ψ) −  Fn(ψ))  tends to 0 uniformly in  t ∈ [0 ,  1] as n → ∞. On the other hand,  (F −1

 n

 )  (vn(t)) =  (I −  Tn(un(t)))−1 is uniformly

bounded for  n  large enough and  t ∈ [0 ,  1], where  un(t) :=  F −1

 n

 (vn(t)). Finally, 

 F   n(x) =  I −  Tn(x)  is bounded uniformly in  x  for  x  in any bounded set of  X, and in  t ∈ [0 ,  1]. Hence there exist constants  α 2  >  0 and  β 2  >  0 such that α 2 Fn(ψ) ≤  ψn −  ψ ≤  β 2 Fn(ψ) , 

(1.10)

so the sequence  (ψn)n≥2 is convergent with limit  ψ. 

1.4

Numerics

Data The operator  K  is defined with  a = 0,  b = 1,  N(s, t, u) :=  u 3, and with the weakly singular decreasing function  g  defined by  g(s) := − log (s)  for  s ∈ ]0 ,  1]. 

The solution of (1.4) is chosen to be the function  ψ  defined by 2 / 3

 ψ(s) :=  s − 1

 , 

 s ∈ [0 ,  1] . 

2

√

Then the function  y =  ψ −  K(ψ)  takes the values  y( 0 ) =  y( 1 ) = 1 /  3 4 − 1 / 9, and 2 / 3

 s 2

 y(s) =  s − 1

− 1  s 2 −  s + 1 +  s  log (s)

−  s + 1

2

3

3

2

2

4





+ ( 1 −  s)  log ( 1 −  s) s 2 −  s + 1  , s ∈ ]0 ,  1[ . 

3

2

4

Programming The numerical implementation was carried on MATLAB 2017b. 

Newton Because of its fast convergence, we have performed seven iterations of Newton’s method for each fixed value of  n. 

1
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Table 1.1 The grid-valued

 n

 rn

relative errors for nine values

10

1 .  8 e − 03

of  n

20

2 .  9 e − 04

40

4 .  9 e − 05

80

8 .  5 e − 06

160

1 .  5 e − 06

320

2 .  6 e − 07

640

4 .  6 e − 08

1280

8 .  3 e − 09

2560

1 .  6 e − 09

10–4

10–6

log of the relative (true) error 10–8

10

20

40

80

160

320

640

1280

2560

n

Fig. 1.1 The grid-valued relative errors in a loglog scale

Quadrature The basic grid was chosen to be uniform. We used a composite

quadrature rule built with three Gauss points on each one of the  n − 1 subintervals of the basic grid: the zeros of a Chebyshev polynomial of degree 3. Hence, we had

been led to a nonlinear system of order 3 (n − 1 )  for each value of  n, and to a linear system of order 3 (n−1 )  at each Newton’s iteration. The numerical integration of the explicit integrals in (1.7) and (1.8) was performed by adaptive quadrature based on a Gauss-Kronrod method (cf. [Sh08]). The use of strict tolerances for the numerical adaptive quadrature approach is mandatory, otherwise finer discretizations would

not deliver the predicted convergence results. 

Results For some selected values of  n, Table 1.1 shows the grid-valued relative errors

max

|x[7]

 n (j ) −  ψ(tp(n),j )|

 j =1 ,...,p(n)

 rn :=

 . 

max

| ψ(tp(n),j )|

 j =1 ,...,p(n)

Figure 1.1 shows the relative errors of Table 1.1 in a loglog scale. 
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1.5

Conclusions

In this paper, we have extended to nonlinear integral operators, the singularity

subtraction technique for approaching linear weakly singular integral operators

in the framework of real valued continuous functions. The singularity subtraction

technique cannot be settled in Lebesgue spaces. 

The equation to be solved numerically, written as  F (ψ) = 0, is discretized as Fn(ψn) = 0, which leads to a finite-dimensional nonlinear problem which is solved by Newton’s method. 

We have proved that the sequence  (Fn)n≥2 is pointwise convergent to  F , and that the sequence  (ψn)n≥2 is convergent with limit  ψ. The double bound (1.10)

shows that the convergence of the latter is neither slower nor faster than that of the sequence of  (Fn(ψ))n≥2 to 0. 

Since the values of  ψn  are approximated by Newton’s method only at the  p(n) nodes of the quadrature grid,  ψn  could be globally approximated by interpolation, if needed. In fact, oppositely to the linear case, once the unknowns x n(i) =  ψn(tp(n),i) are approximated by the values x[7]

 n (i)  issued from Newton’s method, no natural

interpolation formula is available for a closed formula of  ψn  since, for each s ∈ [ a, b],  ψn(s)  is hidden implicitly in the nonlinear expression (1.5). This is a significant difference between the linear case and the nonlinear case. 

The expression (1.9) shows that the order of the pointwise convergence to K  of the sequence of approximations  (Kn)n≥2 is dominated by the order of convergence of the sequence of quadrature rules  Qn

. In the case of the

 n≥2

numerical computations presented in this paper, the sequence of quadrature rules

converges in theory to the exact integral at the same rate as  n−2 tends to 0, when n → ∞ (cf. [XiEtAl12]). This is confirmed in practice, as it is shown in the loglog plotting of Fig. 1.1, where we observe that the slope of the straight line is around

−2. 

A major survey on numerical approximation of nonlinear integral equations

is [At92]. This paper studies numerical methods for calculating fixed points of nonlinear integral operators, i.e. equations of the form  ψ =  K(ψ)  with the notation of our paper. This corresponds to the case  y = 0 and is less general than the work presented here since  y  cannot be incorporated as a part of the integral operator  K. 

Methods treated in [At92] include a product integration type scheme for weakly singular Hammerstein operators, projection methods and Nyström methods. As

in our paper, all those methods require the solution of finite-dimensional systems

of nonlinear equations. An auxiliary numerical method is needed to solve these

nonlinear finite-dimensional systems. 
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Chapter 2

On the Flow of a Viscoplastic Fluid

in a Thin Periodic Domain

María Anguiano and Renata Bunoiu

2.1

Introduction

We study in this paper the steady incompressible nonlinear flow of a Bingham

fluid in a thin periodic domain, which is a model of porous media. The model

of thin porous media of thickness much smaller than the parameter of periodicity

was introduced in [Zh08], where a stationary incompressible Navier-Stokes flow was studied. Recently, the model of the thin porous medium under consideration

in this paper was introduced in [FaEtAl16], where the flow of an incompressible viscous fluid described by the stationary Navier-Stokes equations was studied by

the multiscale asymptotic expansion method, which is a formal but powerful tool

to analyze homogenization problems. These results were rigorously proved in

[AS18] using an adaptation (introduced in [AS17]) of the unfolding method from

[CiEtAl08]. This adaptation consists of a combination of the unfolding method with a rescaling in the height variable, in order to work with a domain of fixed height, 

and to use monotonicity arguments to pass to the limit. In [AS17], in particular, the flow of an incompressible stationary Stokes system with a nonlinear viscosity, 

being a power law, was studied. For nonstationary incompressible viscous fluid flow

in a thin porous medium, we refer to [An17], where a nonstationary Stokes system is considered, and [An217], where a nonstationary non-Newtonian Stokes system, where the viscosity obeys the power law, is studied. For the unfolding method

applied to the study of problems stated in other type of thin periodic domains, we
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refer, for instance, to [Gr04] for crane type structures and to [GrEtAl17] for thin layers with thin beam structures, where elasticity problems are studied. 

Viscoplastic fluids are quite often encountered in real life. We mention oils, 

polymer solutions, volcanic lavas, muds and clays, avalanches, liquid chocolate. The theory of the fluid mechanics of such materials has several different applications, 

as for instance in the oil and gas industry, which can be found in the ground, 

which is a porous medium. The most commonly studied viscoplastic fluid is the

Bingham fluid. In our thin porous medium, we consider the flow of a nonlinear

viscoplastic Bingham flow, whose yield stress itself depends on the small parameter

characterizing the geometry of the domain, denoted  ε. The first study of this type of problem is due to [LiEtAl81], where the problem was studied in a classical porous medium, by using the multiscale asymptotic expansion method. A nonlinear

Darcy law was obtained after the passage to the limit  ε → 0. The corresponding convergence result was proved in [BoEtAl93] with the two-scale convergence method and then recovered in [BuEtAl13] with the periodic unfolding method from

[CiEtAl08]. For the study in a porous medium with a doubly periodic structure, we refer to [BuEtAl17], where a more involved nonlinear Darcy law was derived. The flow of a Bingham fluid was also studied in thin domains of small height, denoted

 ε. We refer the reader to [BuEtAl03, BuEtAl04] and [BuEtAl18] for these studies, where a lower dimensional Bingham-like law was exhibited from the limit problem, 

after the passage to the limit  ε → 0. This law was already used in the engineering (see [LiEtAl90]), but no rigorous mathematical derivation was previously known. 

The paper is organized as follows. In Sect. 2.2 we state the problem: we define in (2.1) the thin porous medium (see also Fig. 2.3), in which we consider the flow of a viscoplastic Bingham fluid with velocity verifying the nonlinear variational

inequality (2.3). In Sect. 2.3 we state and prove the main result of our paper, Theorem 1. We then give in Sect. 2.4 some conclusions and perspectives and we end the paper with a list of References. 

2.2

Statement of the Problem

The Domain The periodic porous medium is defined by a domain  ω  and an associated microstructure, or periodic cell  Y   = [−1 / 2 ,  1 / 2]2, which is made of two complementary parts: the fluid part  Y   , and the solid part  Y  

 Y   =  Y   and

 f

 s ( Y  

 f

 s



 Y  

 Y   = ∅). More precisely, we assume that  ω  is a smooth, bounded, connected f

 s

set in R2, and that  Y   s  is an open connected subset of  Y   with a smooth boundary



 ∂Y   s, such that  Y s  is strictly included in  Y  . 

The microscale of the porous medium is a small positive number  ε. The domain ω  is covered by a regular mesh of square of size  ε: for  k  ∈ Z2, each cell  Y  

=

 k  ,ε

 εk  +  εY   is divided in a fluid part  Y  

and a solid part  Y  

 f

 s

 k   ,ε

 k   ,ε , i.e. is similar to the

unit cell  Y   rescaled to size  ε. We define  Y =  Y   ×  ( 0 ,  1 ) ⊂ R3, which is divided in a fluid part  Yf =  Y   ×  ( 0 ,  1 )  and a solid part  Y

×  ( 0 ,  1 ), and consequently

 f

 s =  Y   s
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Fig. 2.1 Views of the

domain  Λε

 e

 w

Fig. 2.2 Views of the

domain  ωε

 Yk  ,ε =  Y  

×  ( 0 ,  1 ) ⊂ R3, which is divided in a fluid part  Y

 k  ,ε

 fk   ,ε  and a solid part

 Ysk  ,ε. 

We define  Λε (see Fig. 2.1) by

 Λε =  ω ×  ( 0 , ε). 







We denote by  τ (Y sk  ,ε)  the set of all translated images of  Y sk  ,ε. The set  τ(Y sk  ,ε) represents the solids in R2. The fluid part of the bottom  ωε ⊂ R2 of the porous medium is defined by  ωε =  ω\

 Y

 k ∈ Kε

 sk   ,ε (see Fig. 2.2), where  Kε = { k  ∈

Z2 :  Y   ∩  ω = ∅}. The whole fluid part  Ω

 k  ,ε

 ε ⊂ R3 in the thin porous medium is

defined by

 Ωε = { (x 1 , x 2 , x 3 ) ∈  ωε × R : 0  < x 3  < ε} . 

(2.1)



We make the assumption that the solids  τ (Y sk  ,ε)  do not intersect the boundary  ∂ω

(see Fig. 2.2):

We define  Y ε

=

×

 s

 Y  

 ( 0 , ε). Denote by  Sε  the set of the solids contained in

 k   ,ε

 sk   ,ε

 Ωε (see Fig. 2.3). Then,  Sε  is a finite union of solids, i.e. 



 ε

 Sε =

 Y sk  ,ε. 

 k ∈ Kε

We define



 Ωε =  ωε ×  ( 0 ,  1 ), 

 Ω =  ω ×  ( 0 ,  1 ). 

(2.2)
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Fig. 2.3 Views of the

domain  Ωε

 e

 Se

 we





We observe that 

 Ωε =  Ω\

 Y

 Y

 k ∈ K

 s

 s

 ε

 k   ,ε ,  and we define  Tε =

 k ∈ Kε

 k   ,ε  as

the set of the solids contained in 

 Ωε. 

The Problem In the domain  Ωε  defined in (2.1), we consider the stationary flow of an incompressible Bingham fluid. Following [DuEtAl72], the problem is formulated in terms of a nonlinear variational inequality. 

For a vectorial function  v, we define (1 ≤  i, j ≤ 3)





 (D(v))i,j = 1  ∂x vi +  ∂x vj , 

| D(v)|2 =  D(v) :  D(v), 

2

 j

 i

where : denotes the full contraction of two matrices: for  A =  (ai,j ) 1≤ i,j≤3 and B =  (b

3

 i,j ) 1≤ i,j ≤3, we have  A :  B =

 i,j =1  aij bij . 

We consider the space

 V (Ωε) = { v ∈  (H  10 (Ωε)) 3 | div  v = 0 in  Ωε} , and for  u, v ∈  (H  1 (Ω

0

 ε )) 3, we introduce



 a(u, v) = 2 μ

 D(u) :  D(v)dx, 

 Ωε

√



 j (v) =

2 g ε

| D(v)| dx, 

 Ωε



 (u, v)Ω =

 u ·  v dx, 

 ε

 Ωε

where the positive real  μ  is the viscosity of the Bingham fluid and the positive real g  is related to the yield stress of the Bingham fluid. More precisely, the yield stress of the Bingham fluid under consideration in this work is of the form  gε, where  ε

is the parameter related to the geometry of the domain. This yield stress is exactly the one considered by [LiEtAl81], where the flow of a Bingham fluid in a classical porous medium was studied. 
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Let  f ∈  (L 2 (Ω)) 3 be given such that  f =  (f   ,  0 )  and  fε ∈  (L 2 (Ωε)) 3 be defined by

 fε(x) =  f (x  , x 3 /ε),  a.e.  x ∈  Ωε. 

The model of the flow is described by the following nonlinear variational inequality: Find  uε ∈  V (Ωε)  such that

 a(uε, v −  uε) +  j (v) −  j (uε) ≥  (fε, v −  uε)Ω , 

∀ v ∈  V (Ω

 ε

 ε ). 

(2.3)

From [DuEtAl72], we know that for every fixed  ε  there exists a unique  uε ∈

 V (Ωε)  solution of problem (2.3). 

2.3

Main Convergence Result

Our aim is to study the asymptotic behavior of  uε, solution of problem (2.3), when ε  tends to zero. For this purpose, we first use the dilatation of the domain  Ωε  in the variable  x 3, namely

 y 3 =  x 3  , 

(2.4)

 ε

in order to have the functions defined in an open set with fixed height, denoted 

 Ωε

and given by (2.2). 

Namely, we define ˜ uε ∈  (H  1 ( 

 Ω

0

 ε )) 3 by

˜ uε(x  , y 3 ) =  uε(x  , εy 3 ) a.e. (x  , y 3 ) ∈ 

 Ωε. 

Let us introduce some notation which will be useful in the following: for a vectorial function  v =  (v  , v 3 ) (and, analogously, for a scalar function  w), associated with the change of variables (2.4), we introduce the operators  Dε, D ε, div ε  and ∇ ε, defined by (Dεv)i,j =  ∂x v

 ∂ v

 j

 i  for  i = 1 ,  2 ,  3 , j = 1 ,  2 , (Dεv)i,  3 = 1  y i  for  i = 1 ,  2 ,  3 , 

 ε

3





D ε [ v] = 1  Dεv +  Dt , |D ε [ v] |2 = D ε [ v] : D ε [ v]  , 2

 ε v

1

div εv = div x  v  + 1  ∂y v 3 , 

∇ εw =  (∇ x  w, ∂y w)t. 

 ε

3

 ε

3
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We consider the space

 V ( 

 Ωε) = { ˜ v ∈  (H  10 ( 

 Ωε)) 3 | div ε ˜ v = 0 in 

 Ωε} , 

and for ˜ u, ˜ v ∈  V ( 

 Ωε), we introduce







 aε( ˜ u, ˜ v) = 2 μ

D ε ˜ u : D ε ˜ v dx  dy 3 , 



 Ωε

√



 jε( ˜ v) =

2 g ε

|D ε[˜ v]| dx  dy 3 , 



 Ωε



 ( ˜ u, ˜ v)  =

˜

 Ω

 u · ˜ v dx  dy 3 . 

 ε



 Ωε

Using the transformation (2.4), the variational inequality (2.3) can be rewritten as:

Find ˜ uε ∈  V ( 

 Ωε)  such that

 aε( ˜ uε, ˜ v − ˜ uε) +  jε( ˜ v) −  jε( ˜ uε) ≥  (f, ˜ v − ˜ uε) Ω , 

∀˜ v ∈  V ( 

 Ωε). 

(2.5)

 ε

We start by obtaining some  a priori  estimates for ˜ uε, stated in the next lemma. 

Lemma 1  There exists a constant C independent of ε, such that if ˜ uε ∈  (H  1 ( 

 Ω

0

 ε )) 3

 is the solution of problem (2.5),  one has





˜ u





 ε 

D ˜

≤

 (L 2 ( 

 Ω

 ε uε

 Cε, 

(2.6)

 ε )) 3 ≤  Cε 2 , 

 (L 2 ( 

 Ωε)) 3×3

 Dε ˜ uε (L 2 ( Ωε)) 3×3 ≤  Cε. 

(2.7)

We extend the velocity ˜ uε  by zero to the  Ω\ 

 Ωε  and denote the extension by the same

symbol. Obviously, estimates (2.6)–(2.7) remain valid for the extended function and the extension is divergence free too. According to this extension, problem (2.5) can be written as:









√



2 μ

D ε ˜ uε : D ε ˜ v − ˜ uε dx  dy 3 + 2 g ε

|D ε[˜ v]| dx  dy 3

(2.8)

 Ω

 Ω

√





− 2 g ε

|D ε[ ˜ uε]| dx  dy 3 ≥

 f ·  ( ˜ v − ˜ uε) dx  dy 3 , 

 Ω

 Ω

for every ˜ v  that is the extension by zero to the whole  Ω  of a function in  (H  1 ( 

 Ω

0

 ε )) 3. 
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Our main result is the following theorem:

Theorem 1  Let ˜ uε be the solution of problem (2.8).  There exists  ˆ u ∈  L 2 (ω;  H  1 

 (Y ) 3 ) (here “” denotes Y   -periodicity), such that



˜ uε 

ˆ udy   in L 2 (Ω), 

 ε 2

 Y  



 Y   ˆ

 u 3 dy  = 0 ,  ˆ u = 0  on ω ×  Ys,  ˆ u = 0  on y 3 = {0 ,  1} ,  div y  ˆ u = 0  in ω ×  Y , div x 

ˆ u  (x  , y)dy = 0  in ω, 

ˆ u  (x  , y)dy ·  n = 0  on ∂ω, 

 Y

 Y

 and  ˆ u is the unique solution of the limit problem









√ 





2 μ

D





 y

ˆ u : D y ˜ v − D y  ˆ u dx  dy + 2 g

D y ˜ v dx  dy

 ω× Y

 ω× Y

√ 









− 2 g

D



 y

ˆ u dx  dy ≥

 f   · ˜ v  − ˆ u   dx  dy, 

(2.9)

 ω× Y

 ω× Y

 for every ˜ v ∈  L 2 (ω;  H  1 (Y ) 3 ) such that ˜ v(x  , y) = 0  in ω ×  Y

 

 s ,  div y ˜

 v = 0  in ω ×  Y , 









div x 

˜ v  (x  , y)dy = 0  in ω, 

˜ v  (x  , y)dy ·  n = 0  on ∂ω. 

 Y

 Y

 Proof

First Step

A priori estimates

The change of variable (2.4) does not provide the information we need about the behavior of ˜ uε  in the microstructure associated with 

 Ωε. To solve this difficulty, 

we use an adaptation of the unfolding method from [CiEtAl08]. In order to apply the unfolding method, we will need the following notation: for  k  ∈ Z2, we define κ : R2 → Z2 by

 κ(x  ) =  k  ⇐⇒  x  ∈  Y  

 . 

(2.10)

 k  ,  1

Remark that  κ  is well defined up to a set of zero measure in R2 (the set

∪ k ∈Z2 ∂Y  ). Moreover, for every  ε >  0, we have

 k  ,  1



 x 

 κ

=  k  ⇐⇒  x  ∈  Y    . 

 ε

 k  ,ε
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According to the adaptation introduced in [AS17] of the unfolding method, we divide the domain  Ω  in rectangular cuboids of lateral lengths  ε  and vertical length 1. For this purpose, given ˜ uε ∈  (H  1 (Ω)) 3, we define ˆ u 0

 ε  by





ˆ

 x 

 uε(x  , y) = ˜ uε εκ

+  εy  , y 3  ,  a.e.  (x  , y) ∈  ω ×  Y, (2.11)

 ε

where the function  κ  is defined in (2.10). 

For  k  ∈  Kε, the restriction of ˆ uε  to  Y  

×  Y  does not depend on  x , whereas as

 k  ,ε

a function of  y  it is obtained from ˜ uε  by using the change of variables y  =  x  −  εk   , 

 ε

which transforms  Yk  ,ε  into  Y . 

We can obtain a priori estimates for the sequence ˆ uε. There exists a constant  C

independent of  ε, such that ˆ uε  defined by (2.11) satisfies ˆ u 





 ε

≤  Cε 2 , 

D ˆ u

≤ Cε 2 . 

 (L 2 (ω× Y )) 3

 y

 ε

 (L 2 (ω× Y )) 3×3

Second Step

Convergence results

As in [AS17], we can obtain compactness results for the sequences ˜ uε  and ˆ uε

satisfying the a priori estimates given before. 

For a subsequence of  ε  still denoted by  ε, there exist ˜ u ∈  H  1 ( 0 ,  1;  L 2 (ω) 3 ), where ˜ u 3 = 0 and ˜ u = 0 on  y 3 = {0 ,  1}, ˆ u ∈  L 2 (ω;  H  1 (Y ) 3 ), with ˆ u = 0 on

 



1

 ω ×  Ys  and ˆ u = 0 on  y 3 = {0 ,  1} such that ˆ u(x  , y)dy =

˜ u(x  , y

 Y

0

3 )dy 3 with

ˆ u

 Y

3 dy = 0, such that

˜ uε  (˜ u  ,  0 )  in  H 1 ( 0 ,  1;  L 2 (ω) 3 ), ε 2

ˆ uε   ˆ u  in  L 2 (ω;  H 1 (Y) 3 ), 

(2.12)

 ε 2

div y  ˆ u = 0 in  ω ×  Y, 

(2.13)









1

1

div x 

˜ u  (x  , y 3 )dy 3 = 0 in  ω, 

˜ u  (x  , y 3 )dy 3 ·  n = 0 on  ∂ω, 

0

0









div x 

ˆ u  (x  , y)dy = 0 in  ω, 

ˆ u  (x  , y)dy ·  n = 0 on  ∂ω. 

 Y

 Y

(2.14)
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Third Step

Passage to the limit

By using (2.11), we first transform the variational inequality (2.8) in a variational inequality stated in the domain  ω ×  Y.  Then, by choosing suitable test functions, we pass to the limit  ε → 0 .  By using convergences (2.12), (2.13), (2.14) we find the limit problem (2.9). The uniqueness of the solution ˆ u  of problem (2.9) is proved by contradiction. 

2.4

Conclusions and Perspectives

By using dimension reduction and homogenization techniques, we studied the

limiting behavior of the velocity for a nonlinear viscoplastic Bingham flow with

small yield stress  gε, in a thin porous medium of small height  ε  and for which the relative dimension of the pores is  ε. We found in Theorem 1 the limit problem (2.9), 

in which both effects of a nonlinear Darcy law and a lower-dimensional  Bingham-

 like  law appear. Indeed, as in [LiEtAl81](see also [BuEtAl17]), problem (2.9) can be written as a nonlinear Darcy law set in the domain  ω. The third component of the velocity of filtration appearing in the nonlinear Darcy law equals zero and

this phenomenon corresponds precisely to a two-dimensional  Bingham-like  law (see

[BuEtAl04]). 

In the forthcoming work [AnEtAl] we study the cases of thin porous media, whose periodicity parameter is  aε  instead of  ε. Different cases are analyzed, following the ratio between the height  ε  of the porous media and the relative dimension  aε  of the periodically distributed pores. Moreover, we consider the more involved case in which the convergence of the pressure of the flow is also studied. 

Acknowledgements María Anguiano has been supported by Junta de Andalucía (Spain), Proyecto de Excelencia P12-FQM-2466. 
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Chapter 3

 q-Calculus Formalism for Non-extensive

Particle Filter

Amarisio S. Araújo, Helaine C. M. Furtado, and Haroldo F. de Campos Velho

3.1

Introduction

The  q-calculus was developed by the English reverend Frank Hilton [Ja1908, 

Ja1910a, Ja1910b] defining  q-derivative,  q-integral, and  q-functions. The quantum calculus (ordinary calculus without taking limits) is also based on the  q-calculus

[KaCh02]. Such formalism has been applied to different contexts: hypergeometric functions [Er03], statistical mechanics [UmEtAl08], optimization with  q-gradient ( q-steepest descent method) [SoEtAl11], and inverse vibration problem [ToEtAl15]. 

Campos Velho and Furtado have proposed a new approach for particle filter


with an adaptive likelihood operator [CaFu11]. The proposed filter belongs to the Bayesian strategy for estimation theory, where a non-linear and non-Gaussian

assumptions can be employed. For the proposed adaptive particle filter, the like-

lihood function is defined as the Tsallis’ statistics distribution [Ts88, Ts99]. Such adaptive filter can also be applied to the probability density function with statistical moments not defined [CaFu11]. Tsallis’ distribution1 was derived to be associated with the non-extensive form for the entropy [Ts88], and the non-extensive parameter 1Here, the word  distribution  will have the same meaning as  probability density function (PDF). 
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 q  has a key role in the Tsallis’ thermostatistics. When the non-extensive parameter q → 1, the Boltzmann-Gibbs thermodynamics is recovered. Here, the worked

particle filter will be named as  Non-Extensive Particle Filter (NEx-PF). In the Adaptive NEx-PF, a secondary particle filter is employed to estimate the  q-

parameter. 

Our goal is to apply the  q-calculus formalism for deriving some properties of a framework to pave the road for enhancing the understanding and new developments

to the NEx-PF. In particular, the  q-stability is derived to the Tsallis’ distribution, as a  q-analogue to the standard definition in statistics [No05]. 

3.2

The Non-extensive Particle Filter

A class of sequential Monte Carlo estimation is usually called particle filter. This is one methodology available to the estimation theory—a branch of mathematics

and statistics with focus on determining parameters and/or functions from measured

or desired properties. A key issue to the particle filter is the likelihood operator

[RiEtAl04] doing the comparison between the distribution of the observed/desired property and the distribution calculated from a mathematical model [KaSo04]. 

Particle filters are the most general and robust approaches dealing with non-linear

problems and/or non-Gaussian distributions. The posterior density function is rep-

resented by a set of random samples (particles) with associated weights, computed

from the product between the likelihood operator and the prior distribution. 

The Tsallis’ probability density function from the non-extensive thermo-statistics

has used by Campos Velho and Furtado [CaFu11] to define a family of likelihood operators. As already mentioned, the value of the non-extensive parameter  q  for a particular application can be determined by using a secondary particle filter

[CaFu11]. 

The algorithm for the standard and non-extensive particle filters is summarized

in the steps below. 

1. Compute the initial particle ensemble:



 M

 w(i)

∼  p (w

0| n−1

 w 0

0 )

 i=0

(initial PDF: Gaussian with zero mean and  σ = 5, i.e.,  pw (w

0

0 ) =  N ( 0 ,  5 )); 

2. Compute:

 r(i) =

 n

 p(yn| wn| n−1 ) =  p et (yn −  h(wn, tn))

3

 q-Calculus Formalism for NEx-PF

27

where  yn  denotes observations,  h(.)  is the observation operator, and  p et is the likelihood operator:

 N

 p

 z( 0 ,  1 ) (regular assumption: Gaussian distribution)

et (z) =

 Tz( 0 ,  1 ) (applying NEx-PF: Tsallis’ distribution)

being the innovation  z  expressed by:

 z =  yn −  h(wn, tn)

3. Normalize:

˜ r(i) =

 r(i)

 n

; 

 n

 M (j)

 j =1  rn

4. Resampling: extract  M  particles, with substitution—see [Sc06]:

 (j )

 (j )

Pr{ w(i) =  w

} = ˜ q

 n| n

 n| n−1

 n , i = 1 , . . . , M ; 

Resampling step:

– Generate  M  ordered numbers:  uk =  M−1 [ (k − 1 ) + ˜ u], with: ˜ u ∼  U ( 0 ,  1 ) (uniform distribution), 

– Resampled particles are obtained by producing  mi  copies of particle  w(i): mi = number of  uk





 i−1



 i



 uk ∈

˜ r(s)

˜

 n , 

 r(s)

 n

 s=1

 s=1

5. Time up-dating: compute the new particles:

 w(i)

=  f (w(i) , t

 n+1| n

 n| n

 n) +  μn , 

with:  μn ∈  N ( 0 ,  1 )

and:  w(i)

∼  p(w(i) | w(i) ), being  i = 1 ,  2 , . . . , M; n+1| n

 n+1| n

 n| n

6. Set:  tn+1 =  tn +  Δt, and go to step-2. 

The kernel of the algorithm coming from the application of the Bayes’ theorem and

of the Markov property:

 p(wn| Yn) =  p(wn| yn, Yn−1 )

=  p(yn| wn) p(wn| Yn−1 )

 p(yn| Yn−1 )

∝  p(yn| wn) p(wn| Yn−1 )

(3.1)

28

A. S. Araújo et al. 

suggesting the following choice:

 p(wn| Yn)

∝  p(yn| wn)

 p(wn| Yn−1 )





 . 

(3.2)

posterior ( wn )

likelihood ( wn )

prior ( wn )

The equiprobability condition produces the maximum for the entropy. For the

non-extensive form to the entropy, the latter condition leads to special distributions

[Ts99]. Three conditions for the Tsallis’ distribution are shown below. 

q  > 1 :



! 

 x  2 −1 /(q−1 )

 pq (x) =  α+

 q

1 − 1 −  q

(3.3)

3 −  q σ

q = 1 :



! 

1

1 / 2

 pq (x) = 1

 e− (x/σ ) 2 / 2

(3.4)

 σ

2 π

q  < 1 :



! 

 x  2 1 /(q−1 )

 pq (x) =  α−

 q

1 − 1 −  q

(3.5)

3 −  q σ

where—here,  Γ (· )  denotes the gamma function:

+∞

−∞  x 2[ pq (x)] q dx

 σ  2 =  +∞

 , 

−∞ [ pq (x)] q dx







! 

1

 q − 1

1 / 2

 Γ

 q−1

 α+ = 1





 q

 , 

 σ

 π( 3 −  q)

 Γ

3− q

2 (q−1 )







! 

5−3 q

1 −  q

1 / 2  Γ

2 ( 1− q)

 α− = 1





 q

 . 

 σ

 π( 3 −  q)

 Γ

2− q

1− q

The distributions above applies if | x|  < σ [ ( 3− q)/( 1− q)]1 / 2, otherwise  pq(x) = 0. 

For distributions with  q <  5 / 3, the standard central limit theorem applies, implying that if  pi  is written as a sum of  M  random independent variables, in the limit case M → ∞, the probability density function for  pi  in the distribution space is the normal (Gaussian) distribution. However, for 5 / 3  < q <  3 the Levy-Gnedenko’s central limit theorem applies, resulting for  M → ∞ the Lévy distribution as the probability density function for the random variable  pi. The index in such Lévy distribution is  α =  ( 3 −  q)/(q − 1 ) [Ts99, TsQu07]. 

3

 q-Calculus Formalism for NEx-PF

29

3.3

Definition of Stable Probability Density Function

A probability density function (PDF) is defined as a  stable-PDF if the distribution of the linear combination of two independent random copies of the same

random variable belongs to the same class of the distribution, including location

(parameter—scalar or vector—to determine the location or shift of the distribution:

 pz(x) =  p(x −  z)) and scale parameters [No05]. The  scale  is a parameter where the cumulative distribution function satisfies:  F (x;  s, λ) =  F (xs−1 ,  1 , λ). 

Examples of stable distributions:



! 

1

1 / 2

Gaussian:  pμ,σ (x) = 1

 e− (x− μ)/( 2 σ  2 )

 σ

2 π



! 

 γ

Cauchy:  pμ,γ (x) = 1

 π

 (x −  μ) 2 +  γ  2

"  c ec/[2 (x− μ)]

Lévy:  pμ,c(x) =

 e− (x− μ)/( 2 σ  2 )

2 π (x =  μ) 3 / 2

For establishing the stability property for a given PDF, it is convenient to deal

with the characteristic function of a distribution:

+∞

 ϕ(w) =

 eiwx p(x) dx . 

(3.6)

−∞

For a Gaussian distribution it is easy to show the stability probability:

+∞

1

 ϕp

 (w) =

 eiwx √

 e− (x− μ) 2 /( 2 σ  2 ) dx =  e[ iwμ− (σ 2 w 2 )/ 2]

(3.7)

 μ,σ

−∞

2 π σ  2

Clearly, the distribution can be obtained from its characteristic function:

+∞

 p(x) = 1

 ϕ(w) e− iwx dx . 

(3.8)

2 π −∞

One important result is the Lévy-Khinchin theorem for the characteristic function

of stable-PDF:

 iμw −  c| w| α[1 −  iβ(w/| w| ) tan (π/ 1 α)] if  α = 1

log[ ϕ(w)] =

(3.9)

 iμw −  c| w| α[1 +  iβ( 2 w/(π | w| ))  log (| w|] if  α = 1

where 0 ≤  α ≤ 1,  β ∈ [−1 ,  1],  c >  0, and  μ  is the mean. 

The  q-calculus and  q-algebra will help to define a  q-stability for a distribution. 
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3.4

 q-Calculus

Considering a differentiable function  ϕ(x), the  q-derivative can be defined as

[Er03]:

⎧

⎪

⎨ ϕ(q x) −  ϕ(x) ,  if  x = 0 and  q = 1 , 

 (D

 q x −  x

 q ϕ) (x) ≡ ⎪

(3.10)

⎩ dϕ(x) , 

otherwise , 

 dx

In addition, at  x = 0, the operator is defined as follows:  (Dqϕ) (x) ≡  dϕ( 0 )/dx, for all  q-value. 

Considering the fundamental limits



 n

lim

1 +  x

= lim  ( 1 +  n x) 1 /n =  ex

(3.11)

 x→∞

 n

 x→0

lim  T ( 0 , σ  2 ) =  N( 0 , σ  2 )

(3.12)

 x→1

the  q-exponential and  q-logarithm can be defined as [UmEtAl08]:

1

 ex ≡ [

1− q

 q

1 +  ( 1 −  q)x]

 , 

(3.13)

log q(x) ≡  x 1− q − 1  . 

(3.14)

1 −  q

A  q-algebra can also be defined [UmEtAl08] applying the generalized operation for sum and product:

 x   y ≡  x +  y +  ( 1 −  q)xy , 

(3.15)

1

 x   y ≡ [ x 1− q +  y 1− q − 1] 1− q . 

(3.16)

with the following neutral and inverse elements:

 x   (− x)q = 0  , 

with:  (− x)q = − x[1 +  ( 1 −  q)x]−1

(3.17)

1

 x   (x−1 )

1− q

 q = 1  . 

with:  (x−1 )q = [2 −  x 1− q]

 . 

(3.18)

Properties

 y

 x y

1.  ex ˙

 q eq =  eq

 y

 x+ y

2.  ex 

 q

 eq =  eq

3. log q(x ˙ y) = log q(x)  log q(y)

3
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4. log q(x   y) = log q(x) + log q(y)

5.  q-sum and  q-product  ( ,  ):

a. Commutativity: yes

b. Associativity: yes

c. Distributivity: no

The real space vector with regular sum and product operations R (+ , × )  is a  field, and the R ( ,  )  defines a  quasi-field. 

 3.4.1

 q-Fourier Transform, q-Gaussian Function, 

 and q-Stability

From the definition of the  q-exponential, the complex form to the  q-exponential is given by

 x+ iy

 iy

 ez =



 q

 eq

=  exq eq

(3.19)

√

with  i =

−1 as the imaginary unit number. 

Definition 1 ( q-Fourier Transform)

+∞

[ q]

 ϕ[

 eixω   f (x)dx

(3.20)

 f ] (ω) ≡

 q

−∞

The expression in Eq. (3.20) can also be written as:

+∞

[ q]

 ixω[ f (x)] q−1

 ϕ[

 f (x) e

 f ] (ω) =

 q

 dx . 

(3.21)

−∞

The above expression is derived just applying the definitions:

1

 eixω 

1− q 

 q

 f (x) = [1 +  ( 1 −  q)ixω]

 f (x)

1

= {[1 +  ( 1 −  q)ixω] + [ f (x)]1− q − 1}1− q

1

= {[ f (x)]1− q +  ( 1 −  q)ixω}1− q

1

= {[ f (x)]1− q[1 +  ( 1 −  q)ixω[ f (x)] q−1]}1− q 1

=  f (x)[1 +  ( 1 −  q)ixω[ f (x)] q−1]}1− q

=

 ixω[ f (x)] q−1

 f (x)eq
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Definition 2 ( q-Gaussian Function)

− ( x ) 2

 G

 σ

 q (x) ≡  gq eq

(3.22)

the coefficient  gq  is a parameter indicating a  family  of  q-Gaussian functions. 

Theorem 1  The Tsallis’ distribution is a q-Gaussian function. 

 Proof  Using a new notation for Eqs. (3.3) and (3.5)

⎧

⎪



1

⎨

2  q−1

 α+

 x

 q

1 − 1− q

 ,  if

1  < q <  3

3− q

 σ

 h± =

 q

⎪





(3.23)

⎩



1

2  q−1

 α−

 x

 q

1 − 1− q

 ,  if − ∞  < q <  1

3− q

 σ

doing some manipulation



! 1





! 1

 x  2  q−1

1

 x  2  q−1

 α±

=

 q

1 − 1 −  q

 α±

1 −  (q − 1 )

3 −  q σ

 q

 q − 3

 σ



! 1

2

 q−1

≡

 x

 H ±

 q

1 −  (q − 1 ) σ

=

 ( x ) 2

 H ±

 σ

 q eq



where:

⎧





⎪

⎪

1

⎪

⎪

⎪  α+

if

1  < q <  3

⎪  q

⎨

 q − 3

1

 H ± =

√

if

 q = 1

 q

⎪

⎪

⎪

⎪ 2 π σ 2



⎪

⎪

1

⎩  α− q

if − ∞  < q <  1

 q − 3

Definition 3 ( q-Characteristic

Function) Let

 p(x)

be

a

distribution. 

The  q-characteristic function for the distribution  p(x)  is expressed by

+∞

 q

 ϕp(w) =

 eixw 

 q

 p(x) dx

(3.24)

−∞

Definition 4 ( q-Stable Distribution) A distribution is said  q-stable if such distribution and its  q-characteristic function are the same type, including location and scale parameters. 

Theorem 2  Tsallis’ distribution is q-stable. 

3
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 Proof  The Tsallis’ distribution is a  q-Gaussian function. Applying the definition of  q-characteristic function to a  q-Gaussian function, with  q ∈ [−1 ,  1 ), results (changing variable  x):

+∞

+∞

+

[

 q ]2 (q−1 )ω 2

 q]

 ( x ) 2

− y 2−  σ 2[ H

 ϕ

 σ

4

[

 eixw   e

 e

 G

 q

 dx =  σ H +

 q

 dy . 

 q ] (w) =

 q

 q

−∞

−∞

Now, using the Cauchy theorem on integrals over closed curves

' (

) 

*

[ q]

 ω 2 σ  2

3 −  q

 ϕ[

−



(3.25)

 Gq ] (w) = exp q

4 −  σ  2 q[ H +

 q ]2 ( 1− q)

2

3.5

Final Remarks

The non-extensive particle filter obtained a better result for state estimation using an adaptive likelihood function based on Tsallis’ distribution [CaFu11]. Here, the q-algebra defined the  quasi-field. The quasi-field and the  q-calculus are the framework to derive the  q-Fourier transform and to define a  q-Gaussian function. 

The distribution associated with the Tsallis’ non-extensive entropy is a  q-

Gaussian distribution [UmEtAl08]. From the framework established, the  q-stability for  q-Gaussian distribution was derived. 

Appendix: Non-extensive Tsallis’ Thermostatistics

A non-extensive form to the entropy can be expressed as [Ts88]:

⎛

⎞

 Np

 q

 S

⎝

⎠

 q (p) ≡

 k

1 −

 p

 . 

(3.26)

 q − 1

 i

 i=1

and the  q-expectation of an observable is given by

 Np

 q

 Oq ≡  O q =

 p O

 i

 i . 

(3.27)

 i=1

Some properties are derived to the non-extensive entropy  Sq . 
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1. If  q → 1:

 Np



 S 1 =  k

 pi  ln  pi , 

(3.28)

 i=1

 Np



 O 1 =

 piOi . 

(3.29)

 i=1

2. The non-extensive entropy has a positive value:  Sq ≥ 0. 

3. Non-extensivity:

 Sq (A +  B) =  Sq(A) +  Sq(B) +  ( 1 −  q)Sq(A)Sq(B) (3.30)

 Oq (A +  B) =  Oq(A) +  Oq(B) +  ( 1 −  q)[ Oq (A)Sq(B) +  OqSq(A)]  . 

(3.31)

 q

4. Maximum for the  Sq  under the constraint  Oq =

 p 

 i

 i

 i (canonical ensemble):

 pi = 1 [1 −  β( 1 −  q)i]1 /( 1− q)

(3.32)

 Zq

where  i  is the energy for the state- i,  Oq =  Uq  is the non-extensive form to the internal energy and the normalization factor  Zq (partition function), for 1  < q < 3, is given by



! 

 π

1 / 2  Γ [ ( 3 −  q)/ 2 (q − 1 )]

 Zq =

 . 

(3.33)

 β( 1 −  q)

 Γ [1 /(q − 1 )]

For  q = 1, the normalization is written as

 pi =  eβi /Z 1  . 

(3.34)
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Chapter 4

Two-Operator Boundary-Domain

Integral Equations for

Variable-Coefficient Dirichlet Problem

with General Data

Tsegaye G. Ayele

4.1

Preliminaries

In this paper, the Dirichlet problem for linear second-order scalar elliptic PDE

with variable coefficient is considered. The PDE on the right-hand side belongs

to  H −1 (Ω)  and is extended to 

 H −1 (Ω)  when necessary. Using the two-operator

approach and an appropriate parametrix (Levi function) this problem is reduced to

two different systems of boundary domain integral equations, briefly BDIEs. The

equivalence of the original BVP to the two-operator BDIE systems is shown. 

Let  Ω  be an open bounded three-dimensional region of R3. For simplicity, we assume that the boundary  ∂Ω  is simply connected, closed, infinitely smooth surface. 

Let  a ∈  C∞ (Ω), a(x) >  0 for  x ∈  Ω.  Let also  ∂j =  ∂x :=  ∂/∂x j

 j (j =

1 ,  2 ,  3 ), ∂x =  (∂x , ∂ , ∂ ).  We consider the scalar elliptic differential equation, 1

 x 2

 x 3

which for sufficiently smooth  u  has the following strong form:

3







 ∂

 ∂u(x)

 Au(x) :=  A(x, ∂x)u(x) :=

 a(x)

=  f (x), x ∈  Ω, 

(4.1)

 ∂xi

 ∂xi

 i=1

where  u  is the unknown function and  f  is a given function in  Ω. 

In what follows  D(Ω) =  C∞ (Ω), H s(Ω) =  H s(Ω), H s(∂Ω) =  H s(∂Ω) 0

2

2

are the Bessel potential spaces, where  s ∈ R is an arbitrary real number (see, e.g., 

[Lio72, McL00]). We recall that  H s  coincides with the Sobolev-Slobodetski spaces W s  for any non-negative  s. We denote by 

 H s (Ω)  the subspace of  H s ( R3 ), 

2



 H s (Ω) := { g :  g ∈  H s( R3 ),  supp (g) ⊂  Ω}

T. G. Ayele ()

Addis Ababa University, Addis Ababa, Ethiopia

e-mail: tsegaye.ayele@aau.edu.et

© Springer Nature Switzerland AG 2019

37

C. Constanda, P. Harris (eds.),  Integral Methods in Science and Engineering, 

https://doi.org/10.1007/978-3-030-16077-7_4

38

T. G. Ayele

while  H s (Ω)  denotes the space of restriction on  Ω  of distributions from  H ( R3 ), H s (Ω) = { r g :  g ∈  H s( R3 )}

 Ω

where  r  denotes the restriction operator on  Ω.  We will also use the notation  g| :=

 Ω

 Ω

 r g. We denote by  H s

the following subspace of  H ( R3 ) (and 

 H (Ω)), 

 Ω

 ∂Ω

 H s

:= { g :  g ∈  H s( R3 ),  supp (g) ⊂  ∂Ω} . 

 ∂Ω

From the trace theorem (see, e.g., [Lio72, McL00]) for  u ∈  H  1 (Ω), it follows that 1

 γ + u ∈  H  2  (∂Ω),  where  γ + =  γ + are the trace operators on  ∂Ω  from  Ω. Let also

 ∂Ω

1

 γ −1 :  H  2  (∂Ω) →  H  1 (Ω)  denote a (non-unique) continuous right inverse to the 1

trace operator  γ +, i.e.,  γ +  γ −1 w =  γ + γ −1 w =  w  for any  w ∈  H  2  (∂Ω), and

 ∂Ω ∂Ω

1

 (γ −1 )∗ : 

 H −1 (Ω) →  H − 12  (∂Ω)  is continuous operator dual to  γ −1 :  H  2  (∂Ω) →

 H  1 (Ω), i.e.,  (γ −1 )∗ ˜

 f , w ∂Ω :=  ˜

 f , γ −1 w Ω  for any ˜

 f ∈ 

 H −1 (Ω)  and  w ∈

1

 H  2  (∂Ω). 

For  u ∈  H  2 (Ω), we denote by  T +

 a

the canonical (strong) co-normal derivative

operator on  ∂Ω  in the sense of traces, 

3



 T +

=

 a u :=

 a(x)ni(x)γ +  ∂u(x)

 a(x)γ +  ∂u(x) , 

(4.2)

 ∂xi

 ∂n(x)

 i=1

where  n(x)  is the outward (to  Ω)  unit normal vector at the point  x ∈  ∂Ω.  However the classical conormal derivative operator in (4.2) is generally not well defined if u ∈  H  1 (Ω) (see, e.g., [Cos88, Mik11] and [Mik15, Appendix Section A]). 

For  u ∈  H  1 (Ω),  the PDE  Au  in Eq. (4.1) is understood in the sense of distributions, 

 Au, v Ω := − Ea(u, v), 

∀ v ∈  D(Ω), 

(4.3)



where  Ea(u, v) :=

 a(x)∇ u(x). ∇ v(x)dx  and the duality brackets  g, · denote Ω

 Ω

the value of a linear functional (distribution)  g, extending the usual  L 2 inner product. 

Since the set  D(Ω)  is dense in 

 H  1 (Ω),  Eq. (4.3) defines a continuous operator A :  H  1 (Ω) →  H −1 (Ω) = [ 

 H  1 (Ω)]∗, 

 Au, v Ω := − Ea(u, v), ∀ u ∈  H 1 (Ω), ∀ v ∈ 

 H  1 (Ω). 
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Let us consider also the operator, ˇ

 A :  H  1 (Ω) → 

 H −1 (Ω) = [ H  1 (Ω)]∗, 



ˇ

 Au, v Ω := − Ea(u, v) = −

 a(x)∇ u(x). ∇ v(x)dx

 Ω



= −

˚

 E[ a∇ u] (x). ∇ V (x)dx

R3

= ∇ . ˚

 E[ a∇ u] , V  R3

= ∇ . ˚

 E[ a∇ u] , v Ω , 

∀ u ∈  H 1 (Ω), ∀ v ∈  H 1 (Ω)

which is evidently continuous and can be written as

ˇ

 Au = ∇ . ˚

 E[ a∇ u] . 

(4.4)

Here  V ∈  H  1 ( R3 )  is such that  rΩ V =  v  and ˚

 E  denotes the operator of extension

of the functions, defined in  Ω, by zero outside  Ω  in R3. For any  u ∈  H  1 (Ω), the functional ˇ

 Au  belongs to 

 H −1 (Ω)  and is the extension of the functional  Au ∈

 H −1 (Ω), which domain is thus extended from 

 H  1 (Ω)  to the domain  H  1 (Ω)  for

ˇ

 Au. 

Inspired by the first Green identity for smooth functions, we can define  the

 generalised co-normal derivative (cf. [McL00, Lemma 4.3], [Mik11, Definition 3.1]). 

Definition 1 Let  u ∈  H  1 (Ω)  and  Au =  r

˜

 Ω f  in  Ω  for some ˜

 f ∈ 

 H −1 (Ω).  Then

the generalised co-normal derivative  T +

 a ( ˜

 f , u) ∈  H − 12  (∂Ω)  is defined as

 T +

:=  ˜

 a ( ˜

 f , u), w

 f , γ −1 w

 ∂Ω

 Ω +  Ea (u, γ −1 w)

=  ˜

1

 f − ˇ

 Au, γ −1 w Ω , 

∀ w ∈  H  2  (Ω), 

(4.5)

that is,  T +

 a ( ˜

 f , u) :=  (γ −1 )∗ ( ˜

 f − ˇ

 Au). 

Due to [McL00, Lemma 4.3] and [Mik11, Theorem 5.3], we have the estimate T +

≤

+

 a ( ˜

 f , u) − 1

 C 1 u H 1 (Ω)

 C 2 ˜

 f  

 , 

(4.6)

 H −1 (Ω)

 H

2  (∂Ω)

and for  u ∈  H  1 (Ω)  such that  Au =  r

˜

 Ω f  in  Ω  for some

˜

 f ∈ 

 H −1 (Ω)  the first

Green identity holds in the following form:

 T +

:=  ˜

 a ( ˜

 f , u), γ + v

 f , v

 ∂Ω

 Ω +  Ea (u, v) =  ˜

 f − ˇ

 Au, v Ω , ∀ v ∈  H  1 (Ω)

(4.7)
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As follows from Definition 1, the generalised co-normal derivative (4.5) is nonlinear with respect to  u  for a fixed ˜

 f , but still linear with respect to the couple  ( ˜

 f , u), i.e., 

 α

˜

˜

1 T +

 a ( ˜

 f 1 , u 1 ) +  α 2 T +

 a ( ˜

 f 2 , u 2 ) =  T +

 a (α 1 f 1 , α 1 u 1 ) +  T +

 a (α 2 f 2 , α 2 u 2 )

=  T +

˜

˜

 a (α 1 f 1 +  α 2 f 2 , α 1 u 1 +  α 2 u 2 ) for any complex numbers  α 1 , α 2 . 

Let us also define some subspaces of  H s (Ω), cf. [Cos88, Gri85, Mik11, Mik13]. 

Definition 2 Let  s ∈ R and  A∗ :  H s(Ω) →  D∗ (Ω)  be a linear operator. For t ≥ − 1 we introduce the space

2

 H s,t (Ω;  A∗ ) := { g :  g ∈  H s(Ω) :  A∗ g| = ˜

 f

 , 

˜

 f

 Ω

 g | Ω

 g ∈ 

 H t (Ω)}



12

endowed with the norm:  g Hs,t(Ω;  A



+  ˜

∗ ) :=

 g 2

 f

and the inner

 H s (Ω)

 g  2

 H t (Ω)

product:  (g, h)Hs,t(Ω;  A∗ ) =  (g, h)Hs(Ω) +  ( ˜

 fg, ˜

 fh) 

 .  We will mostly use the

 H t (Ω)

operators  A, B  or  Δ  as  A∗ in this definition. 

Definition 3 For  u ∈  H  1 , − 12  (Ω;  A), we define the canonical co-normal derivative T +

 a u ∈  H − 12  (∂ Ω )  as

 T +

:=  ˜

 a u, w

 Au, γ −1 w

 ∂Ω

 Ω +  Ea (u, γ −1 w)

=  ˜

1

 Au − ˇ

 Au, γ −1 w Ω , 

∀ w ∈  H  2  (Ω), 

(4.8)

that is,  T +

 a u :=  (γ −1 )∗ ( ˜

 Au − ˇ

 Au). 

The canonical co-normal derivative  T +

 a u  in (4.8) is independent of (non-unique)

choice of the operator  γ −1, the operator  T + :

 a

 H  1 , − 12  (Ω;  A) →  H − 12  (∂Ω)  is

continuous, and the first Green identity holds in the following form:

 T +

:=  ˜

 a u, γ + v

 Au, v

 ∂Ω

 Ω +  Ea (u, v) , 

∀ v ∈  H 1 (Ω). 

Let  u ∈  H  1 , − 12  (Ω;  A). Then Definitions 1 and 3 imply that the generalised conormal derivative for arbitrary extension ˜

 f ∈ 

 H −1 (Ω)  of the distribution  Au  can

be expressed as



1

 T +

:= 

2

 a ( ˜

 f , u), w

 T +

 (Ω). 

 ∂Ω

 a u, w ∂Ω +  ˜

 f − ˇ

 Au, γ −1 w Ω , 

∀ w ∈  H

For  b ∈  C∞ (Ω), b(x) >  0 for  x ∈  Ω,  consider the auxiliary linear elliptic partial differential operator  B  given by

3







 ∂

 ∂u(x)

 Bu(x) :=  B(x, ∂x)u(x) :=

 b(x)

 . 

(4.9)

 ∂xi

 ∂xi

 i=1
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Since  Au −  aΔu = ∇ a∇ u ∈  L 2 (Ω)  and  Bu −  bΔu = ∇ b∇ u ∈  L 2 (Ω), for  u ∈  H  1 (Ω),  we have  H  1 ,  0 (Ω;  A) =  H  1 ,  0 (Ω;  Δ) =  H  1 ,  0 (Ω;  B).  Then for u ∈  H  1 (Ω)  and  v ∈  H  1 ,  0 (Ω;  B),  we write  the first Green identity  associated with operator  B  as



 Eb(u, v) +

 u(x)Bv(x)dx =  T + v, γ + u

 b

 ∂Ω

(4.10)

 Ω

If  Au = ˜

 f  in  Ω,  where ˜

 f ∈ 

 H −1 (Ω),  then subtracting (4.10) from (4.7), we obtain the two-operator second Green identity (cf. [Mik05b, AM11, AM10]), 





˜

 f , v Ω −

 u(x)Bv(x)dx +

[ a(x) −  b(x)]∇ u(x) · ∇ v(x)dx

 Ω

 Ω

=  T +

 a ( ˜

 f , u), γ + v ∂Ω −  T + v, γ + u

 b

 ∂Ω . 

(4.11)

If, moreover  u, v ∈  H  1 ,  0 (Ω;  A) =  H  1 ,  0 (Ω;  B)  then (4.11) becomes





[ v(x)Au(x) −  u(x)Bv(x)] dx +

[ a(x) −  b(x)]∇ u(x) · ∇ v(x)dx

 Ω

 Ω

=  T +

 a u, γ + v ∂Ω −  T + v, γ + u

 b

 ∂Ω . 

(4.12)

Note that if  a =  b  then the last domain integral in (4.11) and (4.12) disappears, and the generalised two-operator second Green identity (4.11) reduces to the one operator generalised second Green identity [Mik15, Eq.(2.17)] while (4.12) reduces to [Mik15, Eq.(2.18)]. 

4.2

Parametrix-Based Potential Operators

Definition 4 A function  Pb(x, y)  of two variables  x, y ∈  Ω  is a parametrix (Levi function) for the operator  B(x;  ∂x)  in R3 if

 B(x, ∂x)Pb(x, y) =  δ(x −  y) +  Rb(x, y), 

where  δ(.)  is the Dirac distribution and  Rb(x, y)  is the remainder with weak (integrable) singularity at  x =  y,  i.e., 

 Rb(x, y) =  O(| x −  y|− )  with   <  3 . 

(4.13)

For the operator  B(x;  ∂x)  defined by the right-hand side of (4.9) and  x, y ∈ R3 the function

−1

 Pb(x, y) =

1  PΔ(x,y) =

 , 

(4.14)

 b(y)

4 π b(y)| x −  y|
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is a parametrix and

∇ b(x). ∇ yPΔ(x, y)

 Rb(x, y) = ∇ b(x). ∇ xPb(x, y) = −

=  (x −  y). ∇ b(x) , 

 b(y)

4 π b(y)| x −  y|3

(4.15)

is the corresponding remainder which satisfies estimate (4.13) with   = 2, due to smoothness of the function  b(x). 

Evidently, the parametrix  Pb(x, y)  given by (4.14) is the fundamental solution to the operator  B(y, ∂x) :=  b(y)Δ(∂x)  with “frozen” coefficient  b(x) =  b(y)  and B(y, ∂x)Pb(x, y) =  δ(x −  y). 

Let  b ∈  C∞ ( R3 )  and  b(x) >  0 a.e. in R3 .  Similar to [Mik02, CMN09b], 

we define the parametrix-based Newtonian and the remainder potential operators

corresponding to the parametrix (4.14) and the remainder (4.15) by P bg(y) :=

 Pb(x, y)g(x)dx

(4.16)

R3



 Pbg(y) :=

 Pb(x, y)g(x)dx

(4.17)

 Ω



 Rbg(y) :=

 Rb(x, y)g(x)dx. 

(4.18)

 Ω

For  g ∈  H s(Ω), s ∈ R, (4.16) is understood as P bg = 1 P

 b

 Δg,  where the

Newtonian potential operator P Δ  for Laplacian  Δ  is well defined in terms of the Fourier transform (i.e., as pseudo-differential operator), on any space  H s ( R3 ). For g ∈ 

 H s (Ω), and any  s ∈ R, definitions in (4.17) and (4.18) can be understood as Pbg = 1  rΩP Δg, Pbg = 1  rΩP Δg  and  Rbg = −1 rΩ∇ . P Δ(g∇ b), b

 b

 b

(4.19)

while for  g ∈  H s(Ω), − 1  < s <  1 , as (4.19) with  g  replaced by Eg, where

2

2



 E :  H s(Ω) → 

 H s (Ω), − 1  < s <  1 , is the unique extension operator related with 2

2

the operator ˚

 E  of extension by zero, cf. [Mik11, Theorem 16]. 

For  y /

∈  ∂Ω, the single layer and the double layer surface potential operators, 

corresponding to the parametrix (4.14) are defined as



 Vbg(y) := −

 Pb(x, y)g(x)dSx = 1  VΔg(y), 

(4.20)

 ∂Ω

 b



 Wbg(y) := −

[ Tb(x, n(x), ∂x)Pb(x, y)] g(x)dSx = 1  WΔ(bg)(y), 

(4.21)

 ∂Ω

 b
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where  g  is some scalar density function, and the integrals are understood in the distributional sense if  g  is not integrable. 

The corresponding boundary integral (pseudo-differential) operators of direct

surface values of the single layer potential  Vb  and the double layer potentials  Wb for  y ∈  ∂Ω  are



 Vbg(y) := −

 Pb(x, y)g(x)dSx = 1  VΔg(y), 

(4.22)

 ∂Ω

 b



 Wbg(y) := −

 Tb(x, n(x), ∂x)Pb(x, y)g(x)dSx = 1  WΔ(bg)(y)

(4.23)

 ∂Ω

 b

We can also calculate at  y ∈  ∂Ω  the co-normal derivatives, associated with the operator  A, of the single and of the double layer potentials corresponding to the parametrix (4.14). 

 T ±

 a Vbg(y) =  a(y) T ± Vbg(y), 

(4.24)

 b(y) b

 L ± g(y) :=  T ±

 T ± W

 L ± g(y)

(4.25)

 ab

 a Wbg(y) =  a(y)

 bg(y) =:  a(y)

 b(y) b

 b(y)

 b

The direct value operators associated with (4.24) are



 W  

[

 W  

 abg(y) := −

 Ta(y, n(y), ∂y)Pb(x, y)] g(x)dSx =  a(y) b g(y), (4.26)

 ∂Ω

 b(y)



 W  

[

 b g(y) := −

 Tb(y, n(y), ∂y)Pb(x, y)] g(x)dSx. 

(4.27)

 ∂Ω

From Eqs. (4.16)–(4.27) we deduce representations of the parametrix-based surface potential boundary operators in terms of their counterparts for  b = 1 ,  that is, associated with the fundamental solution  PΔ = − ( 4 π| x −  y| )−1 of the Laplace operator  Δ. 

P ag = 1 P Δg, 

P bg = 1 P Δg, 

 Pag = 1  PΔg, Pbg = 1 PΔg. (4.28)

 a

 b

 a

 b



 a

 bg

 Vag =  Vbg = 1  VΔg; 

 a Wa

=  Wbg = 1 WΔ (bg) , 

(4.29)

 b

 b

 b

 a

 b



 a V

 bg

 a g =  Vbg = 1  VΔg; 

 a Wa

=  Wbg = 1 WΔ (bg) , 

(4.30)

 b

 b

 b

 a

 b







/

 W  

 ∂

1

 abg =  a W   bg =  a

 W   Δ (bg) +  b

 VΔg , 

(4.31)

 b

 b

 ∂n b







/

 L ±

 ∂

1

 g =  a L ± g =  a L

 b

 γ ± W

 . 

(4.32)

 ab

 Δ(bg) +

 Δ(bg)

 b

 b

 b

 ∂n b
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It is taken into account that  b  and its derivatives are continuous in R3 and LΔ(bg) :=  L + (bg) =  L − (bg)

 Δ

 Δ

by the Lyapunov-Tauber theorem. Hence, 

 Δ(bVbg) = 0 , Δ(bWbg) = 0 in  Ω, 

∀ g ∈  Hs(∂Ω) (∀ s ∈ R ), 

(4.33)

 Δ(bPg) =  g  in  Ω, 

∀ g ∈ 

 H s (Ω)

 (∀ s ∈ R ). 

(4.34)

1

For  g 1 ∈  H − 12  (∂Ω),  and  g 2 ∈  H  2  (∂Ω).  Then there hold the following relations on

 ∂Ω, 

 γ ± Vbg 1 =  Vbg 1 , 

(4.35)

 γ ± Wbg 2 = ∓ 1  g 2 +  Wbg 2 , 

(4.36)

2

 a

 T ±

 a Vbg 1 = ± 1

 g 1 +  W   abg 1 . 

(4.37)

2  b

The jump relations (4.35)–(4.37) follow from the corresponding relations in

[Mik15] and Eqs. (4.28)–(4.34). 

4.3

Third Green Identities and Integral Relations

Applying some limiting procedures (see, e.g., [Mir70]), we obtain the parametrix based two-operator third Green identities. 

Theorem 1

 (i) If u ∈  H  1 (Ω), then the following third Green identity holds: u +  Z

ˇ

 bu +  Rbu +  Wbγ + u =  PbAu

in

 Ω, 

(4.38)

 where the operator  ˇ

 A is defined in (4.4) , and for u ∈  C 1 (Ω), P  ˇ

 bAu(y) :=  ˇ

 Au, Pb(., y) Ω



= − Ea(u, Pb(., y)) = −

 a(x)∇ u(x). ∇ xPb(x, y)dx

(4.39)

 Ω
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 (ii) If Au =  r

˜

 Ω f in Ω , where

˜

 f ∈ 

 H −1 (Ω), then the generalised two-operator

 third Green identity has the form, 

 u +  Z

˜

 bu +  Rbu −  VbT +

 a ( ˜

 f , u) +  Wbγ + u =  Pbf

 in

 Ω, 

(4.40)

 where it was taken into account that

 T +

˜

 a ( ˜

 f , u), Pb(x, y) ∂Ω = − VbT +

 a ( ˜

 f , u) , 

˜

 f , Pb(x, y) Ω =  Pbf

 and



 Zbu = −

[ a(x) −  b(x)]∇ xPb(x, y) · ∇ u(x)dx

 Ω

3







= 1

 ∂j PΔ (a −  b)∂j u

 in

 Ω. 

(4.41)

 b(y) j=1

 Proof

(i) Let first  u ∈  D(Ω). Let  y ∈  Ω, B(y) ⊂  Ω  be a ball centred at  y  with sufficiently small radius  , and  Ω :=  Ω \  B(y). For the fixed  y, evidently, Pb(., y) ∈  D(Ω) ⊂  H  1 ,  0 (A;  Ω)  and has the coinciding classical and canonical co-normal derivatives on  ∂Ω. Then from (4.14) and the first Green identity (4.10) employed for  Ω  with  v =  Pb(., y)  we obtain





−

 T +

 x Pb(x, y)γ + u(x)d sx −

 TxPb(x, y)γ + u(x)dsx

 ∂B (y)

 ∂Ω



= −

 b(x)∇ u(x). ∇ xPb(x, y)dx, 

 Ω

which we rewrite as





−

 T +

 x Pb(x, y)γ + u(x)d sx −

 TxPb(x, y)γ + u(x)dsx

 ∂B (y)

 ∂Ω



−

[ a(x) −  b(x)] ∇ u(x)∇ xPb(x, y)dx

 Ω 

= −

 a(x)∇ u(x). ∇ xPb(x, y)dx. 

(4.42)

 Ω

Taking the limit as   → 0, Eq. (4.42) reduces to the third Green identity (4.38)–

(4.39) for any  u ∈  D(Ω). Taking into account the density of  D(Ω)  in  H  1 (Ω), and the mapping properties of the integral potentials, see Appendix, we obtain

that (4.38)–(4.39) hold true also for any  u ∈  H  1 (Ω). 
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(ii) Let { ˜

 fk} ∈  D(Ω)  be a sequence of covering to ˜

 f  in 

 H −1 (Ω)  as  k → ∞. 

Then, according to [Mik15, Theorem B.1] there exists a sequence { uk} ∈  D(Ω) converging to  u  in  H  1 (Ω)  such that  Au

˜

 k =  rΩ fk  and  T +

 a (uk ) =  T +

 a ( ˜

 fk, uk)

converge to  T +

 a ( ˜

 f , u)  in  H − 12  (∂Ω). For such  uk  by (4.39) and (4.7), we have P  ˇ

 bAuk (y) = − lim

 a(x)∇ uk(x)PΔ(x, y)dx = − lim  EΩ (u

 

 k , Pb(., y))

 →0  Ω

 →0

 

⎡

⎤





= −

⎢

⎥

lim ⎣

˜

 fkPb(x, y)dx −

 Pb(x, y)T +

 a uk (x)d S(x)⎦

 →0

 Ω

 ∂B (y)



+ lim

 P

˜

 b(x, y)T +

 a uk (x)d S(x) =  Pbfk +  VbT +

 a uk (y). 

 →0

 ∂Ω

(4.43)

Taking the limits as  k → ∞, in (4.43), we obtain  P  ˇ

˜

 bAu(y) =  Pbf +

 V

˜

 bT +

 a f , u), which substitution to (4.38) gives (4.40). 

! 

Using the Gauss divergence theorem, we can rewrite Eq. (4.41) in the form that does not involve derivatives of  u, 



! 

 Z

 a(y)

 bu(y) :=

− 1  u(y) + 

 Zbu(y), 

 b(y)



 Zbu(y) :=  a(y)Waγ + u(y) −  Wbγ + u(y) +  a(y)Rau(y) −  Rbu(y), b(y)

 b(y)

which allows to call  Zb  integral operator in spite of its integro-differential representation (4.41). 

For some functions ˜

 f , Ψ, Φ  let us consider a more general “indirect” integral

relation, associated with (4.40). 

 u +  Z

˜

 bu +  Rbu −  VbΨ +  WbΦ =  Pbf

in

 Ω. 

(4.44)

1

Lemma 1  Let u ∈  H  1 (Ω), Ψ ∈  H − 12  (∂Ω), Φ ∈  H  2  (∂Ω) and ˜

 f ∈ 

 H −1 (Ω), 

 satisfy (4.44) . Then

 Au =  r

˜

 Ω f

in

 Ω, 

(4.45)

 rΩ Vb(Ψ −  T +

 a ( ˜

 f , u)) −  rΩ Wb(Φ −  γ + u) = 0 in  Ω, 

(4.46)

 γ + u +  γ + Z

˜

 bu +  γ + Rbu −  VbΨ − 1  Φ +  WbΦ =  γ + Pbf on

 ∂Ω, 

2

(4.47)
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 T +

 Z

 R

 a ( ˜

 f , u) +  T +

 a

 bu +  T +

 a

 bu −  a Ψ −  W   abΨ +  L +  Φ

2 b

 ab

=  T +

˜

˜

 a ( ˜

 f + ˚

 ERb∗ f ,Pbf )  on  ∂Ω, 

(4.48)

 where

3



 Rb ˜

˜

∗  f (y) := −

 ∂j [ (∂j b)Pbf ] . 

(4.49)

 j =1

 Proof  Subtracting (4.44) from identity (4.38), we obtain VbΨ (y) −  Wb(Φ −  γ + u)(y) =  Pb[ ˇ

 Au(y) − ˜

 f ] (y), 

 y ∈  Ω. 

(4.50)

Multiplying equality (4.50) by  b(y), applying the Laplace operator  Δ  and taking into account (4.33), (4.34), we get  r

˜

 Ω f =  rΩ (  ˇ

 Au) =  Au  in  Ω. This means ˜

 f  is

an extension of the distribution  Au ∈  H −1 (Ω)  to 

 H −1 (Ω), and  u  satisfies (4.45). 

Then (4.7) implies

 Pb[ ˇ

 Au − ˜

 f ] (y) =  ˇ

 Au − ˜

 f , Pb(., y) Ω

= − T +

 a ( ˜

 f , u), Pb(.y) ∂Ω =  VbT +

 a ( ˜

 f , u), 

 y ∈  Ω. (4.51)

Substituting (4.51) into (4.50) leads to (4.46). Equation (4.47) follows from (4.44)

and jump relations in (4.35) and (4.36). To prove (4.48), let us first remark that for u ∈  H  1 (Ω), we have  H  1 ,  0 (Ω;  A) =  H  1 ,  0 (Ω;  Δ) =  H  1 ,  0 (Ω;  B)  and similar to

[Mik15, Eq. (4.13)], we have

 BP ˜

˜

 bf = ˜

 f +  Rb∗ f  in  Ω, 

(4.52)

due to (4.45) and (4.52), which implies  B(P ˜

˜

˜

 bf −  u) =  Rb

∗  f  in  Ω, where  Rb∗ f

given by (4.49) and  Rb ˜

˜

∗  f ∈  L 2 (Ω). Then  B(Pbf −  u)  can be canonically extended (by zero) to 

 B(P ˜

˜

 bf −  u) = ˚

 ERb∗ f ∈ 

 H  0 (Ω) ⊂ 

 H −1 (Ω). Thus there exists a

canonical co-normal derivative of  (P ˜

 bf −  u)  associated with operator  B,  see, e.g., 

[Mik15, Eq. (4.14)] and written as

 T + (P ˜

 f −  u) =  T + ( ˜

 f + ˚

 ERb ˜

 f , P ˜

 f ) −  T + ( ˜

 f , u). 

(4.53)

 b

 b

 b

∗

 b

 b

Hence, 





 T +  P ˜

=  a

˜

˜

˜

 a

 bf −  u

 T + (Pbf −  u) =  T +

 f , Pbf ) −  T +

 b b

 a ( ˜

 f + ˚

 ERb∗

 a ( ˜

 f , u). 

(4.54)

48

T. G. Ayele

From (4.44) it follows that  P ˜

 bf − u =  Zbu+ Rbu− VbΨ + WbΦ  in  Ω . Substituting this on the left-hand sides of (4.53) and (4.54) and taking into account the jump relation (4.37), we arrive at (4.48). 

! 

 Remark 1  If ˜

 f

∈ 

 H − 12  (Ω) ⊂ 

 H −1 (Ω), then ˜

 f + ˚

 ERb ˜

∗  f ∈ 

 H − 12  (Ω)  as

well, which implies ˜

 f + ˚

 ERb ˜

˜

˜

˜

∗  f = ˜

 BPbf . Then  T + ( ˜

 f + ˚

 ERbf , P f ) =

 b

∗

 b

 T + ( ˜

 BP ˜

 f , P ˜

 f ) =  T + P ˜

 f ,  and

 b

 b

 b

 b

 b

 T +

˜

˜

˜

˜

 P ˜

 a ( ˜

 f + ˚

 ERb∗ f , Pbf ) =  T +

 a ( ˜

 BPbf , Pbf ) =  T +

 a

 bf . 

(4.55)

Furthermore, if the hypotheses of Lemma 1 are satisfied, then (4.45) implies  u ∈

 H  1 , − 12  (Ω;  A)  and  T +

 a  ( ˜

 f , u) =  T +

 a ( ˜

 Au, u) =  T +

 a u. Henceforth (4.48) takes the

familiar form, cf. [AM11, equation (3.23)], 

 T +

 Z

 R

 P ˜

 a u +  T +

 a

 bu +  T +

 a

 bu −  a Ψ −  W  

 Φ =  T +

 bf

on

 ∂Ω. 

2 b

 abΨ +  L +

 ab

 a

 Remark 2  Let ˜

 f ∈ 

 H −1 (Ω)  and a sequence { φi} ∈ 

 H −1 (Ω)  converge to ˜

 f  in



 H −1 (Ω). By the continuity of operators [Mik15, C.1 and C.2], estimate (4.6) and relation (4.55) for  φi, we obtain that

 T +

˜

˜

 P

 a ( ˜

 f + ˚

 ERb∗ f , Pbf ) = lim  T +

 a (φi + ˚

 ERb∗ φi, Pbφi) = lim  T +

 a

 bφi . 

 i→∞

 i→∞

in  H − 12  (∂Ω), cf. also [Mik15, Theorem B.1]. 

Lemma 1 and the third Green identity (4.40) imply the following assertion. 

Corollary 1  If u ∈  H  1 (Ω) and ˜

 f ∈ 

 H −1 (Ω) are such that Au =  r

˜

 Ω f in Ω , then

 γ + u +  γ + Z

˜

 bu +  γ + Rbu −  Vb( ˜

 f , u) +  Wbγ + u =  γ + Pbf

on

 ∂Ω

(4.56)





1 −  a

 T +

 Zbu +  T + Rbu −  W   abT +

 γ + u

2 b

 a ( ˜

 f , u) +  T +

 a

 a

 a ( ˜

 f , u) +  L +

 ab

=  T +

˜

˜

 a ( ˜

 f + ˚

 ERb∗ f , Pbf )  on  ∂Ω. 

(4.57)

Similar to [Mik15, Lemma 4.6] and [Mik15, Theorem 4.7], we have Lemma 2

 (i) If Ψ ∗ ∈  H − 12  (∂Ω) and rΩ VbΨ ∗ = 0  in Ω, then Ψ = 0 . 

1

 (ii) If Φ∗ ∈  H  2  (∂Ω) and rΩ WbΦ∗ = 0  in Ω, then Φ = 0 . 

Theorem 2  Let ˜

 f ∈ 

 H −1 (Ω). A function u ∈  H  1 (Ω) is a solution of PDE Au =

 r

˜

 Ω f in Ω if and only if it is a solution of BDIE (4.40) . 
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4.4

The Dirichlet Problem and Two-Operator BDIEs

We shall derive and investigate the  two-operator  BDIE systems for the following Dirichlet problem:  Find a function u ∈  H  1 (Ω) satisfying equations Au =  f

in

 Ω, 

(4.58)

 γ + u =  ϕ 0

on

 ∂Ω, 

(4.59)

1


 where ϕ 0 ∈  H  2  (∂Ω) and f ∈  H −1 (Ω). 

Equation (4.58) is understood in the distributional sense (4.3) and the Dirichlet boundary condition (4.59) in the trace sense. 

Theorem 3  The Dirichlet problem (4.58) –(4.59)  is uniquely solvable in H  1 (Ω). 

 The solution is u =  (A D)−1 (f, ϕ 0 )T , where the inverse operator, (A D)−1 : 1

 H  2  (∂Ω) ×  H −1 (Ω) →  H  1 (Ω), to the left-hand side operator, A D :  H  1 (Ω) →

1

 H  2  (∂Ω) ×  H −1 (Ω), of the Dirichlet problem (4.58) –(4.59) , is continuous. 

For  u ∈  H  1 (Ω), we shall reduce the Dirichlet problem (4.58)–(4.59) with f ∈  H −1 (Ω)  into two different systems of  segregated two-operator  BDIEs. 

Corresponding formulations for the mixed problem for  u ∈  H  1 ,  0 (Ω, Δ)  with f ∈  L 2 (Ω)  were introduced and analysed in [Mik05b, AM11, AM10]. 

Let ˜

 f

∈ 

 H −1 (Ω)  be an extension of  f

∈  H−1 (Ω) (i.e.,  f =  r ˜

 Ω f ), 

which always exists, see Lemma 2.15 and Theorem 2.16 in [Mik15]. We represent in (4.40), (4.56) and (4.57) the generalised co-normal derivative and the trace of the function  u  as

 T + ( ˜

 f , u) =  ψ, 

 γ + u =  ϕ 0

respectively, and will regard the new unknown function  ψ ∈  H − 12  (∂Ω)  as formally segregated of  u. Thus we will look for the couple  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω). 

BDIE System (D1) To reduce BVP (4.58)–(4.59) to one of the BDIE systems we will use Eq. (4.40) in  Ω  and Eq. (4.56) on  ∂Ω. Then we arrive at the system of BDIEs (D1), 

 u +  Zbu +  Rbu −  Vbψ =  F D 1

1

in

 Ω, 

(4.60)

 γ + Zbu +  γ + Rbu −  Vbψ =  F D 1

2

on

 ∂Ω, 

(4.61)

where

⎡

⎤

⎡

⎤

 F D 1

 F D

 F D 1 := ⎣ 1 ⎦ = ⎣

0

⎦ and  F D :=  P ˜

0

 bf −  Wbϕ 0 . (4.62)

 F D 1

 γ + F D −  ϕ

2

0

0
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1

For  ϕ 0 ∈  H  2  (∂Ω), we have the inclusions  F D ∈  H  1 (Ω)  if ˜

 f ∈ 

 H −1 (Ω)  and

0

due to the mapping properties of operators involved in (4.62), we have the inclusion F D 2 ∈

1

 H  1 (Ω) ×  H  2  (∂Ω). 

BDIE System (D2) To obtain a segregated BDIE system of  the second kind, we will use Eq. (4.40) in  Ω  and Eq. (4.57) on  ∂Ω. Then we arrive at the system, (D2), of BDIEs, 

 u +  Z

˜

 bu +  Rbu −  Vbψ =  Pbf −  Wbϕ 0

in

 Ω, 

(4.63)





1 −  a

 ψ +  T + Zbu +  T + Rbu −  W  

2 b

 a

 a

 abψ

=  T +

˜

˜

 a ( ˜

 f + ˚

 ERb∗ f , Pbf ) −  L + ϕ

 ab  0

on  ∂Ω, 

(4.64)

where

⎡

⎤

⎡

⎤

 F D 2

 P ˜

 bf −  Wbϕ 0

 F D 2 := ⎣ 1 ⎦ = ⎣

⎦  . 

(4.65)

 F D 2

 T +

˜

 f , P ˜

 f ) −  L + ϕ

2

 a ( ˜

 f + ˚

 ERb∗

 b

 ab  0

Due to the mapping properties of operators involved in (4.65), we have the inclusion F D 2 ∈  H 1 (Ω) ×  H−12  (∂Ω). 

4.5

Equivalence and Invertibility of BDIE Systems

1

Theorem 4  Let ϕ 0 ∈  H  2  (∂Ω), f ∈  H −1 (Ω) and ˜

 f ∈ 

 H −1 (Ω) is such that

 r

˜

 Ω f =  f . Then

 (i) If u ∈  H  1 (Ω) solves the BVP (4.58) –(4.59) , then the couple (u, ψ) ∈  H  1 (Ω)×

 H − 12  (Ω), where

 ψ =  T +

 a ( ˜

 f , u), 

on  ∂Ω, 

(4.66)

 solves the BDIE systems (D1) and (D2). 

 (ii) If a couple (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω) solves one of the BDIE systems, (D1) or (D2), then this solution is unique and solves the other system, while u solves the Dirichlet BVP, and ψ satisfies (4.66) . 

 Proof

(i) Let  u ∈  H  1 (Ω)  be a solution to BVP (4.58)–(4.59). Due to Theorem 3

it is unique. Setting  ψ  by (4.66) evidently implies,  ψ ∈  H − 12  (∂Ω).  From Theorem 2 and relations (4.56)–(4.57) follows that the couple  (u, ψ)  satisfies
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the BDIE systems (D1) and (D2), with the right-hand sides (4.62) and (4.65)

respectively, which completes the proof of item (i). 

(ii) Let now a couple  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω)  solve BDIE system (4.60)–

(4.61). Taking trace of Eq. (4.60) on  ∂Ω  and subtracting Eq. (4.61) from it we obtain

 γ + u =  ϕ 0

on  ∂Ω, 

(4.67)

i.e.,  u  satisfies the Dirichlet condition (4.59). 

Equation (4.60) and Lemma 1 with  Ψ =  ψ, Φ =  ϕ 0 imply that  u  is a solution of PDE (4.58) and  VbΨ ∗ −  WbΦ∗ = 0 ,  in  Ω,  where  Ψ ∗ =  ψ −  T +

 a ( ˜

 f , u)  and

 Φ∗ =  ϕ 0 −  γ + u.  Due to Eq. (4.67),  Φ∗ = 0 .  Then Lemma (2)(i) implies  Ψ ∗ = 0 , which proves condition (4.66). Thus  u  obtained from the solution of BDIE system (D1) solves the Dirichlet problem and hence, by item (i) of the theorem,  (u, ψ)

solve also BDIE system (D2). 

Due to (4.62), the BDIE system (4.60)–(4.61) with zero right-hand side can be considered as obtained for ˜

 f = 0 , ϕ 0 = 0 ,  implying that its solution is

given by a solution of the homogeneous problem (4.58)–(4.59), which is zero by Theorem 3. This implies uniqueness of the solution of the inhomogeneous BDIE

system (4.60)–(4.61). Similar arguments work if we suppose that instead of the BDIE system (4.60)–(4.61), the couple  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω)  solves BDIE

system (4.63)–(4.64). 

! 

4.6

Conclusion

The Dirichlet problem for the linear second-order scalar elliptic differential equation with variable coefficient and extended right-hand side is considered. Using the

two-operator approach and appropriate parametrix (Levi function) this problem

is reduced to two different segregated systems of BDIEs. The equivalence of the

original BVP to the two-operator BDIE systems is proved. The invertibility of the

associated boundary integral operators in the appropriate Sobolev spaces can be

also shown. In a similar way one can consider also the two-operator versions of

the BDIEs for Dirichlet problem for non-smooth coefficient on Lipschitz domains, 

which were analysed for 3D case in [Mik18]. 
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Chapter 5

Two-Operator Boundary-Domain

Integral Equations for Variable

Coefficient Dirichlet Problem in 2D

Tsegaye G. Ayele and Solomon T. Bekele

5.1

Preliminaries

In this paper we will consider the Dirichlet problem for the second order elliptic

PDE with variable coefficient in two-dimensional bounded domain. Using an

appropriate parametrix (Levi function) and applying the two-operator approach the

problem is reduced to two systems of boundary-domain integral equations (BDIEs). 

Although the theory of BDIEs in 3D is well developed, cf. [Mi02, ChEtAl09b, 

Mi05b, AyMi11], the BDIEs in 2D need a special consideration due to their different equivalence properties. As a result, we need to set conditions on the domain or on the associated Sobolev spaces to ensure the invertibility of corresponding parametrix-based integral layer potentials and hence the unique solvability of BDIEs. The

properties of corresponding potential operators are investigated. The equivalence

of the original BVP and the obtained BDIEs is analysed and the invertibility of

the BDIE operators is proved in appropriate Sobolev-Slobodecki (Bessel potential)

spaces. 

Let  Ω  be a domain in R2 bounded by simple closed infinitely smooth curve

 ∂Ω, the set of all infinitely differentiable function on  Ω  with compact support is denoted by  D(Ω). The function space  D  (Ω)  consists of all continuous linear functionals over  D(Ω). For  s ∈ R, we denote by  H s( R2 )  the Bessel potential space. For any non-empty open set  Ω ⊂ R2, we define  H s(Ω) = { u ∈  D  (Ω) : u =  U | Ω  for some  U ∈  H s( R2 )}. The space H s (Ω)  is defined to be the closure of

 D(Ω)  with respect to the norm of  Hs( R2 ). Note that the space  H 1 ( R2 )  coincides with the Sobolev space  W  1 ( R2 )  with equivalent norm and  H − s( R2 )  is the dual 2

space to  H s ( R2 ) (see, e.g., [Mc00]). 
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We shall consider the scalar elliptic differential equation

2





! 

 ∂

 ∂u(x)

 Au(x) =

 a(x)

=  f (x)

in  Ω, 

 ∂x i

 ∂xi

 i=1

where  u  is the unknown function and  f  is a given function in  Ω. We assume that a ∈  C∞ ( R2 ), 

0  < a min ≤  a(x) ≤  a max  < ∞ , 

∀  x ∈ R2 .  For  u ∈  H 2 (Ω)  and

 v ∈  H  1 (Ω), if we put  h(x) =  a(x) ∂u(x) v(x)  and applying the Gauss-Ostrogradsky

 ∂xj

Theorem, we obtain the following  Green’s first identity:





 Ea(u, v) = −  (Au)(x)v(x)dx +

 T c+ u(x)γ + v(x)dsx, 

(5.1)

 Ω

 ∂Ω

2



 ∂u(x) ∂v(x)

where  Ea(u, v) :=

 a(x)

 dx  is the symmetric bilinear form,  γ +

 ∂xi

 ∂xi

 i=1  Ω

is the trace operator and

2





! 

 ∂

 T c+ u(x) :=

 ni(x)γ +  a(x)

 u(x)

for  x ∈  ∂Ω, 

(5.2)

 ∂x i

 i=1

is the  classical co-normal derivative. 

 Remark 1  For  v ∈  D(Ω),  γ + v = 0. If  u ∈  H  1 (Ω), then we can define  Au  as a distribution on  Ω  by  (Au, v) = − Ea(u, v)  for  v ∈  D(Ω). 

The subspace  H  1 ,  0 (Ω;  A)  is defined as in [Co88] (see also, [Mi11])

 H  1 ,  0 (Ω;  A) := { g ∈  H  1 (Ω) :  Ag ∈  L 2 (Ω)} , with the norm  g 2

:=  g 2

+  Ag 2

 . 

 H  1 ,  0 (Ω;  A)

 H  1 (Ω)

 L 2 (Ω)

For  u ∈  H  1 (Ω)  the classical co-normal derivative (5.2) is not well defined, but for  u ∈  H  1 ,  0 (Ω;  A), there exists the following continuous extension of this definition hinted by the first Green identity (5.1) (see, e.g., [Co88, Mi11] and the references therein). 

Definition 1 For  u ∈  H  1 ,  0 (Ω;  A)  the co-normal derivative  T +

 a u ∈  H − 12  (∂ Ω )  is

defined in the following weak form, 





1

 T +

2

 a u, w ∂Ω :=  Ea (u, γ +

−  w) +

 (Au)γ +  wdx

for all w ∈  H (∂Ω)

(5.3)

1

−1

 Ω

5

Two-Operator BDIEs in 2D

55

1

where  γ +

− :  H  2  (∂Ω) →  H  1 (Ω)  is a continuous right inverse of the trace operator 1

1

 γ +, which maps  H  1 (Ω) →  H  2  (∂Ω), while · , · ∂Ω  denote the duality brackets 1

between the spaces  H − 12  (∂Ω)  and  H  2  (∂Ω), which extend the usual  L 2 (∂Ω)  inner product. 

 Remark 2  The first Green identity (5.1) also holds for  u ∈  H  1 ,  0 (Ω;  A)  and  v ∈

 H  1 (Ω), cf. [Co88, Mi11]. 





 Ea(u, v) = −  (Au)(x)v(x)dx +

 T +

 a u(x)γ + v(x)d sx , 

(5.4)

 Ω

 ∂Ω

By interchanging the role of  u  and  v  in the first Green identity and subtracting the result, we obtain  the second Green identity  for  u, v ∈  H  1 ,  0 (Ω;  A), (vAu −  uAv)dx =  T +

 a u, γ + v ∂Ω −  T +

 a v, γ + u ∂Ω . 

 Ω

For  b ∈  C∞ ( R2 ), 

0  < b min ≤  b(x) ≤  b max  < ∞ , 

∀  x ∈ R2, let us consider the

auxiliary linear elliptic partial differential operator  B  defined by

2





! 

 ∂

 ∂u(x)

 Bu(x) :=  B(x, ∂x)u(x) :=

 b(x)

 . 

(5.5)

 ∂x i

 ∂xi

 i=1

Then for  u ∈  H  1 ,  0 (Ω, Δ) =  H  1 ,  0 (Ω;  B)  the associate co-normal derivative operator  T + is defined by (5.3) (and for  u ∈  H  2 (Ω)  by (5.2)) with  a  replaced b

by  b. For  v ∈  H  1 ,  0 (Ω;  B)  and  u ∈  H  1 (Ω)  the first Green identity associated with operator B in (5.5) is





 Eb(u, v) = −  (Bv)(x)u(x)dx +

 T + v(x)γ + u(x)ds

 b

 x , 

(5.6)

 Ω

 ∂Ω

If  u, v ∈  H  1 ,  0 (Ω, Δ), then subtracting (5.6) from (5.4) we obtain  the two-operator second Green identity (cf. [Mi05b, AyMi11]), 



[ u(x)Bv(x) −  v(x)Au(x)]  dx

 Ω







=

 γ + u(x)T + v(x) −  γ + v(x)T +

 dS(x)

 b

 a u(x)

 ∂Ω



−

[ a(x) −  b(x)]∇ v(x) · ∇ u(x)dx. 

(5.7)

 Ω
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Note that if  a =  b  in then the last domain integral in (5.7) disappears, and the two-operator second Green identity (5.7) reduces to the classical second Green identity. 

5.2

Parametrix and Potential Type Operators

Definition 2 A function  Pb(x, y)  of two variables  x, y ∈  Ω  is a parametrix (Levi function) for the operator  B(x;  ∂x)  in R2 if

 B(x, ∂x)Pb(x, y) =  δ(x −  y) +  Rb(x, y), 

where  δ(.)  is the Dirac-delta distribution, while  Rb(x, y)  is the remainder with weak (integrable) singularity at  x =  y. 

For 2D, the parametrix and hence the corresponding remainder can be chosen as





| x −  y|

 Pb(x, y) =

1

log

 , 

2 π b(y)

 r 0

2



 xi −  yi

 ∂b(x)

 Rb(x, y) =

 , 

 x, y ∈ R2 . 

2 π b(y)| x −  y|2  ∂xi

 i=1

Similar to [Mi02, ChEtAl09b], we define the parametrix-based Newtonian and remainder potential operators as





 Pbg(y) :=

 Pb(x, y)g(x)dx, 

 Rbg(y) :=

 Rb(x, y)g(x)dx

(5.8)

 Ω

 Ω

and the single layer and double layer potential operators as



 Vbg(y) : = −

 Pb(x, y)g(x)dSx, 

(5.9)

 ∂Ω



 Wbg(y) : = −

[ T + (x, n(x), ∂

 b

 x )Pb(x, y)] g(x)d Sx

(5.10)

 ∂Ω

where  g  is some scalar function and the integrals are understood in the distributional sense if  g  is not integrable. For  y ∈  ∂Ω,  the corresponding boundary integral (pseudo-differential) operators of direct surface values of the single layer potential Vb  and of the double layer potential  Wb  are



 Vbg(y) : = −

 Pb(x, y)g(x)dSx, 

(5.11)

 ∂Ω



 Wbg(y) : = −

[ T + (x, n(x), ∂

 b

 x )Pb(x, y)] g(x)d Sx . 

(5.12)

 ∂Ω
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We can also calculate at  y ∈  ∂Ω, the co-normal derivatives associated with the operator  A  of the single layer potential and of the double layer potential: T +

 a Vbg(y) :=  a(y) T + Vbg(y), 

(5.13)

 b(y) b

 L + g(y) :=  T +

 T + W

 L + g(y), 

(5.14)

 ab

 a Wbg(y) =  a(y)

 bg(y) =  a(y)

 b(y) b

 b(y)

 b

The direct value operators associated with (5.13) are



 W  

[

 W  

 abg(y) := −

 T +

 a (y, n(y), ∂y )Pb(x, y)] g(x)d Sx =  a(y)

 b g(y), 

(5.15)

 ∂Ω

 b(y)



 W  

[

 b g(y) := −

 T + (y, n(y), ∂

 b

 y )Pb(x, y)] g(x)d Sx . 

(5.16)

 ∂Ω

From Eqs. (5.8)–(5.16), we deduce representations of the parametrix-based surface potential boundary operators in terms of their counterparts for  b = 1, that is, 





|

associated with the fundamental solution  P

 x− y|

 Δ =  ( 2 π )−1 log

of the Laplace

 r 0

operator  Δ. 

3







 Pbg = 1 PΔg, Rbg = −1

 ∂j PΔ g(∂j b) , 

(5.17)

 b

 b j=1



 a

 bg

 Vag =  Vbg = 1  VΔg; 

 a Wa

=  Wbg = 1 WΔ (bg) , 

(5.18)

 b

 b

 b

 a

 b



 a V

 bg

 a g =  Vbg = 1  VΔg; 

 a Wa

=  Wbg = 1 WΔ (bg) , 

(5.19)

 b

 b

 b

 a

 b







/

 W  

 W  

 W  

 ∂

1

 V

 abg =  a

 b

 Δg

 , 

(5.20)

 b

 b g =  a

 b

 Δ (g) +

 ∂n b







/

 L ±

 ∂

1

 g =  a L ± g =  a L

 b

 γ ± W

 . 

(5.21)

 ab

 Δ(bg) +

 Δ(bg)

 b

 b

 b

 ∂n b

It is taken into account that  b  and its derivatives are continuous in R2 and LΔ(bg) :=  L + (bg) =  L − (bg)  by the Lyapunov-Tauber theorem. 

 Δ

 Δ

1

Let  g 1 ∈  H − 12  (∂Ω),  and  g 2 ∈  H  2  (∂Ω).  Then there hold the following relations on  ∂Ω, 

 γ ± Vbg 1 =  Vbg 1 , 

(5.22)

 γ ± Wbg 2 = ∓ 1  g 2 +  Wbg 2 , 

(5.23)

2

 a

 T ±

 a Vbg 1 = ± 1

 g 1 +  W  

2  b

 abg 1 . 

(5.24)
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The jump relations (5.22)–(5.24) follow from the corresponding relations in [DuMi15, Theorem 2] and relations (5.17)–(5.21), see also, [AyMi11, 

Theorem A.6]. 

5.3

Invertibility of the Single Layer Potential Operator in 2D

Due to [Mc00, Theorem 7.6] and the first relation in (5.19), the boundary integral 1

operator  Vb :  H − 12  (∂Ω) →  H  2  (∂Ω)  is a Fredholm operator of index zero, and by

[ChEtAl09b, Lemma 4.2(i)] is also injective implying its invertibility in 3D. But this is not the case in 2D. Remark 1.42(ii) in [Co00] and the proof of Theorem 6.22 in

[Se08] assert that for some 2D domains the Kernel of the operator  VΔ  is non-zero. 

Due to the first relation in (5.19) this shows the Kernel of the operator  Vb  is also non-zero for some domains. 

To ensure the invertibility of the single layer potential operator in 2D, we define

(see, e.g., [Se08, p. 147]) the subspaces  H s∗∗ (∂Ω)  of  H s(∂Ω)  by: H s∗∗ (∂Ω) := { g ∈  H s(∂Ω) :  g,  1 ∂Ω = 0}

where the norm in  H s∗∗ (∂Ω)  is the induced norm of  H s(∂Ω). 

The following assertions extend the result in Theorems 4 and 5 in [DuMi15]. 

− 1

Theorem 1  If Ψ ∈  H  2

∗∗  (∂Ω) satisfies VbΨ = 0  on ∂Ω, then Ψ = 0 . 

 Proof  For the case  a =  b, the proof follows from [Mc00, Corollary 8.11(ii)] and

[DuMi15, Theorem 4]. The case  a =  b  then follows from the relations in (5.18) and

[DuMi15, Theorem 4]. 

Theorem 2  Let Ω ⊂ R2  with diam(Ω) < r 0 . Then the single layer potential 1

 operator Vb :  H − 12  (∂Ω) →  H  2  (∂Ω) is invertible. 

 Proof  For the case  a =  b  the proof follows from [Se08, Theorem 6.23] and

[DuMi15, Theorem 5]. The case  a =  b  then follows from the relations in (5.18)

and [DuMi15, Theorem 5]. 

5.4

Dirichlet Problem and Two-Operator Third Green

Identity

We shall derive and investigate the  two-operator  BDIE systems for the following Dirichlet boundary value problem:  Find a function u ∈  H  1 (Ω) satisfying equations Au =  f

in

 Ω, 

(5.25)

 γ + u =  ϕ 0

on

 ∂Ω. 

(5.26)

1

 where ϕ 0 ∈  H  2  (∂Ω) and f ∈  L 2 (Ω). 
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Equation (5.25) is understood in the distributional sense as in Remark 1 and the Dirichlet boundary condition (5.26) in the trace sense. 

The following assertion is well-known and can be proved by using variational

settings and the Lax-Milgram lemma (see, e.g., [Mi05a, Corollary and Theorem 5], 

[Mi15, Theorem 5.1])

Theorem 3  The Dirichlet problem (5.25) –(5.26)  is uniquely solvable in H  1 ,  0 (Ω;  A). The solution is u =  (A D)−1 (f, ϕ 0 )T , where the inverse operator, 1

 (A D)−1 :  L 2 (Ω) ×  H  2  (∂Ω) →  H  1 ,  0 (Ω;  A), to the left-hand side operator, A D :

1

 H  1 ,  0 (Ω;  A) →  L 2 (Ω) ×  H  2  (∂Ω), of the Dirichlet problem (5.25) –(5.26) , is continuous. 

If  u ∈  H  1 ,  0 (Ω;  A), then substituting  v(x)  by  Pb(x, y)  in the two-operator second Green identity (5.7) for  Ω \  B(y, ε), where  B(y, ε)  is a disc of radius  ε  centred at y, and taking the limit  ε → 0, we arrive at the following parametrix-based two-operator third Green identity (cf. e.g.,[Mi02]), 

 u +  Zbu +  Rbu −  VbT +

 a u +  Wbγ + u =  PbAu

in

 Ω, 

(5.27)



where  Zbu(y) = −

 (a(x) −  b(x)) ∇ xPb(x, y) · ∇ u(x)dx. 

(5.28)

 Ω

Using the Gauss Divergence Theorem, we can rewrite  Zbu  in (5.27) in the form that does not involve derivative of  u, i.e., 



! 

 Z

 a(y)

 bu =

− 1  u(y) + 6

 Zbu(y), 

(5.29)

 b(y)

where

6

 Zbu(y) =  a(y)Waγ + u(y) −  Wbγ + u(y) +  a(y)Rau(y) −  Rbu(y), b(y)

 b(y)

(5.30)

which allows to call  Zb  integral operator in spite of its integro-differential representation (5.28). 

Note that substituting (5.29) and (5.30) in (5.27) and multiplying by  b(y)/a(y) one reduces (5.27) to the one-operator parametrix-based third Green identity obtained in [ChEtAl09b], 

 u +  Rau −  VaT +

 a u +  Wa γ + u =  Pa Au

in  Ω. 

Relations (5.28)–(5.30) and the mapping properties of  Pa,  Ra,  Rb,  Wa  and  Wb, imply the following assertion (see, e.g., [AyMi11, Appendix A]). 

60

T. G. Ayele and S. T. Bekele

Theorem 4  The operators

 Z

1

 b :  H s (Ω ) →  H s (Ω ), 

 s > 

 , 

2



 Zb :  Hs(Ω) →  Hs,  0 (Ω;  Δ), s ≥ 1 , 

 are continuous. 

If  u ∈  H  1 ,  0 (Ω;  Δ)  is a solution to Eq. (5.25) with  f ∈  L 2 (Ω),  then (5.27) gives u +  Zbu +  Rbu −  VbT +

 a u +  Wbγ + u =  Pbf

in

 Ω, 

(5.31)

Applying  the trace operator  to Eq. (5.31) and using the jump relations (5.22) and

(5.23), we have

1  γ+ u +  γ+ Zbu +  γ+ Rbu −  VbT +

2

 a u +  Wbγ + u =  γ + Pbf

on

 ∂Ω, 

(5.32)

Similarly, applying  the co-normal derivative operator  to Eq. (5.31), and using again the jump relation (5.24) and relations (5.13) and (5.14), we obtain 1 −  a

 T +

 Zbu +  T + Rbu −  W  

 γ + u =  T + Pbf  on  ∂Ω. 

2 b

 a u +  T +

 a

 a

 abT +

 a u +  L +

 ab

 a

(5.33)

Note that if  Pb  is not only the parametrix but also the fundamental solution of the operator  B, then the remainder operator  Rb  vanishes in (5.31)–(5.33) (and everywhere in the paper), while the operator  Zb  does not unless operators  A  and B  are equal. 

For some functions  f, Ψ, Φ,  let us consider a more general “indirect” integral relation, associated with (5.31), 

 u +  Zbu +  Rbu −  VbΨ +  WbΦ =  Pbf, 

in  Ω

(5.34)

1

Lemma 1  Let f ∈  L 2 (Ω), Ψ ∈  H − 12  (∂Ω), Φ ∈  H  2  (∂Ω), and u ∈  H  1 (Ω) satisfy (5.34).  Then u ∈  H  1 ,  0 (Ω;  Δ) and is a solution of PDE Au =  f in Ω and Vb Ψ −  T +

−

=

 a u

 Wb Φ −  γ + u

0

in  Ω. 

(5.35)

 Proof  The proof is similar to the one in 3D case in [AyMi11, Lemma 3.1]. 
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Lemma 2

− 1

 i) Let either Ψ ∗ ∈  H  2

∗∗  (∂Ω) or Ψ ∗ ∈  H − 12  (∂Ω) but  diam (Ω) < r 0 . If VbΨ ∗ = 0

 in Ω, then Ψ ∗ = 0 . 

1

 ii) Let Φ∗ ∈  H  2  (∂Ω). If WbΦ∗ = 0  in Ω, then Φ∗ = 0 . 

 Proof  For the case  a =  b  the proof follows from [DuMi15, Lemma 2]. The case a =  b  then follows from the relation (5.18) and [DuMi15, Lemma 2]. 

5.5

Two-Operator BDIEs for Dirichlet BVP

To reduce the variable-coefficient Dirichlet BVP (5.25)–(5.26) to a  segregated boundary-domain integral equation system, let us denote the unknown conormal

derivative as  ψ =  T + u ∈  H − 12  (∂Ω)  and will further consider  ψ  as formally independent on  u. 

Assuming that the function  u  satisfies (5.25), substituting the Dirichlet condition into the third Green identity (5.31) and either into its trace (5.32) or into its conormal derivative (5.33) on  ∂Ω, we can reduce the BVP (5.25)–(5.26) to two different  two-operator BDIE systems  for the unknown functions  u ∈  H  1 ,  0 (Ω;  A) and  ψ =  T + u ∈  H − 12  (∂Ω). 

BDIE system (D1) obtained from Eq. (5.31) in  Ω, and Eq. (5.32) on the whole boundary  ∂Ω  is:

 u +  Zbu +  Rbu −  Vbψ =  F 0

in

 Ω, 

(5.36)

 γ + Zbu +  γ + Rbu −  Vbψ =  γ + F 0 −  ϕ 0

in

 ∂Ω, 

(5.37)

where  F 0 :=  Pbf −  Wbϕ 0 . 

BDIE system (D2) obtained from Eq. (5.31) in  Ω, and Eq. (5.33) on the whole boundary  ∂Ω  is:

 u +  Zbu +  Rbu −  Vbψ =  F 0

in

 Ω, 

(5.38)





1 −  a

 ψ +  T + Zbu +  T + Rbu −  W  

2 b

 a

 a

 abψ =  T +

 a F 0

on

 ∂Ω. 

(5.39)

where  F 0 :=  Pbf −  Wbϕ 0 . 
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5.6

Equivalence and Invertibility Theorems

Now let us prove the equivalence of the original Dirichlet BVP (5.25)–(5.26) with the two-operator BDIE systems (D1) and (D2). 

1

Theorem 5  Let f ∈  L 2 (Ω) and ϕ 0 ∈  H  2  (∂Ω). 

 i. If some u ∈  H  1 (Ω) solves the Dirichlet BVP (5.25) –(5.26)  in Ω, then the pair (u, ψ) where

 ψ =  T +

 a u ∈  H − 12  (∂ Ω )

(5.40)

 solves BDIEs (D1) and (D2). 

 ii. If a pair (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω) solves BDIE system (D1) and diam(Ω) < r 0 , then u solves BDIEs (D2) and the BVP (5.25) –(5.26) , this solution is unique, and ψ satisfies (5.40) . 

 iii. If a pair (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω) solves BDIE system (D2), then u solves BDIEs (D1) and the BVP (5.25) –(5.26) , this solution is unique, and ψ

 satisfies (5.40) . 

 Proof

(i) Let  u ∈  H  1 (Ω)  be a solution of the BVP (5.25)–(5.26) then since  f ∈  L 2 (Ω), we have that  u ∈  H  1 ,  0 (Ω;  Δ). Setting  ψ  by (5.40) and recalling how the BDIE

systems (D1) and (D2) were constructed, we obtain that  (u, ψ)  solves them. 

This completes the proof of item (i). 

Let the pair  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω)  solve system (D1) or (D2). Due to the first equations in BDIE systems, (5.36) and (5.38), the hypotheses of Lemma 1 are satisfied implying that  u  belongs to  H  1 ,  0 (Ω;  A)  and solves PDE (5.25) in  Ω,  while Eq. (5.35) also holds. 

(ii) Let  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω)  solve system (D1). Taking the trace of (5.36) and subtracting (5.37) from it, we get  γ + u =  ϕ 0 on  ∂Ω. Thus, the Dirichlet boundary condition is satisfied, and using it in (5.35), we have Vb(ψ −  T + u)(y) = 0 in  Ω. Item (i) in Lemma 2 then implies  ψ =  T +

 a u. 

(iii) Let now the pair  (u, ψ) ∈  H  1 (Ω) ×  H − 12  (∂Ω)  solve system (D2). Taking the co-normal derivative of (5.38) and subtracting the second equation from it, we get  ψ =  T +

 a u  on  ∂Ω . Then substituting this in (5.35) gives  W (ϕ 0 − γ + u)(y) =

0 in  Ω  and item (ii) in Lemma 2 then implies  ϕ 0 =  γ + u  on  ∂Ω. 

The uniqueness of the BDIE system solutions follows form the fact that the corre-

sponding homogeneous BDIE systems can be associated with the homogeneous

Dirichlet problem, which has only the trivial solution. Then paragraphs (ii) and

(iii) above imply that the homogeneous BDIE systems also have only the trivial

solutions. 
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BDIE systems (D1) and (D2) with the right-hand sides (5.36) and (5.37) and (5.38)

and (5.39) can be written as D1 U D =  F D 1 and D2 U D =  F D 2 , , respectively. 

Here  U D :=  (u, ψ)T ∈  H  1 (Ω) ×  H − 12  (∂Ω), and

⎡

⎤

 I +  Zb +  Rb − Vb

D1 := ⎣

⎦ ; 

 γ + Zb +  γ + Rb Vb



! 

D2 :=

 I +  Zb +  Rb

− Vb





 T + Z

 R

 a

 b +  T +

 a

 b

1 −  a I −  W  

2 b

 ab

while  F D 1 and  F D 2 are given by:

⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

 F D 1

 F D

 F D 2

 F 0

 F D 1 := ⎣ 1 ⎦ = ⎣

0

⎦ ; 

 F D 2 := ⎣ 1 ⎦ = ⎣

⎦  . 

 F D 1

 γ + F D −  ϕ

 F D 2

 T +

2

0

0

2

 a F 0

Due to the mapping properties of the operators participating in D1 and D2 as

well as the right-hand sides  F D 1 and  F D 2 (see, e.g., [AyMi11, Appendix A]), we 1

have  F D 1 ∈  H  1 ,  0 (Ω;  A) ×  H  2  (∂Ω), F D 2 ∈  H  1 ,  0 (Ω;  A) ×  H − 12  (∂Ω),  while the operators

D1 :

1

 H  1 ,  0 (Ω;  A) ×  H − 12  (∂Ω) →  H  1 (Ω) ×  H  2  (∂Ω) (5.41)

D2 :  H 1 ,  0 (Ω;  A) ×  H−12  (∂Ω) →  H 1 (Ω) ×  H−12  (∂Ω) (5.42)

are continuous. Due to Theorem 5 item (ii) and (iii), operators (5.41) and (5.42) are injective. 

Theorem 6  If diam(Ω) < r 0 , then operator (5.41)  is continuous and continuously invertible. 

 Proof  The continuity of operator (5.41) is proved above. Theorem 5 (ii) implies that operator (5.41) is injective. To prove the invertibility of operator (5.41), let us consider the BDIE system (D1) with arbitrary right-hand side

 F D 1

1

∗

=  (F D 1

∗

2

1  , F D 1

∗2  )T ∈  H  1 ,  0 (Ω;  A) ×  H (∂Ω). 

Taking  F 1 =  F D 1

∗

and  Φ

− F D 1 in [AyMi11, Lemma B.3], we obtain

1

∗ =  γ + F D 1

∗1

∗2

the representation of  F D 1

∗

as:  F D 1

∗

=  (F D 1

∗  , F D 1 )T =  (F

1

∗2

1 , γ + F 1 − Φ∗ )T  where

the couple

1

 (f∗ , Φ∗ ) =  CΦF 1 ∈  L 2 (Ω) ×  H  2  (∂Ω) (5.43)
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is unique and the operator

 C

1

 F :  H  1 ,  0 (Ω;  A) →  L

2  (∂ Ω )

(5.44)

1

2 (Ω ) ×  H

is linear and continuous. If diam (Ω) < r 0, then applying Theorem 5 with  f =

 f∗ , Φ∗ =  ϕ 0 ,  we obtain that BDIE system (D1) is uniquely solvable and its solution is of the form:  U 1 =  (A D)−1 (f, ϕ 0 )T  and  U 2 =  γ + U 1 −  ϕ 0, where 1

the inverse operator,  (A D)−1 :  L 2 (Ω) ×  H  2  (∂Ω) →  H  1 ,  0 (Ω;  A), to the left-1

hand side operator,  A D :  H  1 ,  0 (Ω;  A) →  L 2 (Ω) ×  H  2  (∂Ω), of the Dirichlet problem (5.25)–(5.26), is continuous. Representation (5.43) and continuity of the operator (5.44) imply invertibility of (5.41). 

The following assertion is [Mi15, Lemma 6.6] redone for a more narrow space. 

Lemma 3  For any couple (F 1 , F 2 ) ∈  H  1 (Ω) ×  H − 12  (∂Ω) there exists a unique 1

 couple (f∗∗ , Φ∗ ) ∈  L 2 (Ω) ×  H  2  (∂Ω) such that F 1 =  Pbf∗∗ −  WbΦ∗

in

 Ω, 

(5.45)

 F 2 =  T +

 a (Pbf∗∗ −  WbΦ∗ )

on

 ∂Ω. 

(5.46)

 Moreover, (f∗∗ , Φ∗ ) =  CΦ(F 1 , F 2 )

1

 and CΦ :  H  1 (Ω)× H − 12  (∂Ω) →  L 2 (Ω)× H  2  (∂Ω) is a continuous linear operator given by

 f∗∗ =  Δ(bF 1 ), 

(5.47)



−1

 Φ∗ = 1 − 1  I +  WΔ

 γ +{− bF 1 +  PΔ[ Δ(bF 1 )]} . 

(5.48)

 b

2

The following similar assertion for the operator D2 holds without limitations on the diameter of the domain  Ω. 

Theorem 7  The operator (5.42)  is continuous and continuously invertible. 

The continuity of operator (5.42) is proved above. Theorem 5 (iii) implies that operator (5.42) is injective. To prove the invertibility of operator (5.42), let us consider the BDIE system (D2) with arbitrary right-hand side  F D 2

∗

=  (F D 2

∗  , F D 2 )T ∈

1

∗2

 H  1 ,  0 (Ω;  A) ×  H − 12  (∂Ω).  Take  F 1 =  F D 2

∗

and  F

 F

in Lemma 3

1

2 =  T +

 a

1 =  F D 2

∗2

to represent  F D 2

∗

as:  F D 2

∗

=  (F D 2

∗  , F D 2 )T =  (F

 F

1

∗2

1 , T +

 a

1 )T  where  F 1 and  F 2

are given, respectively, by (5.45) and (5.46), the couple (f∗∗ , Φ∗ ) =  C∗∗ (F 1 , F 2 ) ∈  L 2 (Ω) ×  H − 12  (∂Ω) (5.49)
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given by (5.47) and (5.48) is unique and the operator C∗∗ :  H 1 ,  0 (Ω;  A) ×  H−12  (∂Ω) →  L 2 (Ω) ×  H−12  (∂Ω) (5.50)

is linear and continuous. 

Applying Theorem 5 with  f∗∗ =  f, Φ∗ =  ϕ 0 ,  we obtain that BDIE system (D2) is uniquely solvable and its solution is of the form:  U 1 =  (A D)−1 (f, ϕ 0 )T  and U 2 =  T +

 a (f, U 1 ), for the same continuous inverse operator,  (A D )−1 .  Representation (5.49) and continuity of the operator (5.50) imply invertibility of (5.42). 

5.7

Conclusion

For a variable coefficient PDE in a two-dimensional domain, the two-operator

boundary-domain integral equations associated with the Dirichlet boundary con-

dition in the interior domain have been formulated and analysed in this paper. 

Equivalence of the BDIEs to the original BVP was shown in the case when the

1

PDE right-hand side is from  L 2 (Ω)  and the Dirichlet data from the space  H  2  (∂Ω). 

The invertibility of the associated boundary domain integral operators in the

corresponding Sobolev spaces was also proved. In a similar way one can consider

also the 2D versions of the two-operator BDIEs for the Neumann problem, mixed

problem in interior and exterior domains formulated and analysed in [AyMi11]. 
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Chapter 6

Solution of a Homogeneous Version

of Love Type Integral Equation

in Different Asymptotic Regimes

Laurent Baratchart, Juliette Leblond, and Dmitry Ponomarev

6.1

Introduction

For  h,  a >  0, we consider the following homogeneous Fredholm integral equation of the second kind



 h

 a

 f (t)

 dt =  λf (x) , 

 x ∈  (− a, a) , 

(6.1)

 π

− a (x −  t) 2 +  h 2

which can be viewed as a problem of finding eigenfunctions of the integral operator

 PhχA:  L 2  (A) →  L 2  (A)  with

∞

 f (t)

 Ph [ f ]  (x) :=  (ph   f ) (x) =  h

 dt, 

(6.2)

 π

−∞  (x −  t) 2 +  h 2

1

 ph (x) :=  h

 , 

(6.3)

 π x 2 +  h 2

and  χA  being the characteristic function of the interval  A :=  (− a, a). 

Integral equations with kernel function (6.3) have a long history (starting with

[Sn23] as the earliest mention we could trace and up to recent papers [TrWi16a, 

TrWi16b, TrWi18, Pr17]). It most commonly arises in rotationally symmetric L. Baratchart · J. Leblond
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electrostatic [Lo49] or fluid dynamics problems [Hu64a] (in such contexts it is most famously known as Love equation), quantum-mechanical statistics of Fermi/Bose

gases (known there as Gaudin/Lieb-Liniger equation, respectively) [Ga71, LiLi63], 

antiferromagnetic one-dimensional Heisenberg chains [Gr64], and is relevant as well in other contexts such as probability theory [KaPo50] and radiative transfer

[Tr69]. Since  ph  is the two-dimensional Poisson kernel for the upper half-plane, the integral equation (6.1) has also applications to problems of approximation by harmonic functions [LePo17] and it is instrumental in some inverse source problems for the Poisson PDE (e.g., the so-called inverse magnetization problems, 

see [BaEtAl13]). 

The class of exactly solvable convolution integral equations on interval is

extremely narrow and rarely exceeds the class of equations with kernels whose

Fourier transform is a rational function. Such approaches usually hinge on matrix

Wiener-Hopf factorization which are inapplicable due to non-smooth and non-

algebraic behavior at infinity of the Fourier transform of the kernel function (6.3):

ˆ ph (k) =  e−2 πh| k|. Therefore, the main hope for an analytical solution is a structural approach (i.e., when exact solutions are determined up to constants that cannot be

expressed in a closed-form) or an asymptotic one. Despite seeming simplicity of

the kernel function  ph, the integral equation (6.1) evades applicability of relevant constructive techniques: both for exact structural [LeMu65] and asymptotical solutions [KnKe91, Hu64b]. The problem of failure of asymptotic approaches (when the length of the interval is large) in [KnKe91, Hu64b] is the lack of sufficient decay of the kernel function at infinity (alternatively, the lack of existence of second-order derivative at the origin of the Fourier transform of the kernel function). The powerful approach of Leonard and Mullikin [LeMu65] aiming to obtain essentially exact sine/cosine solutions (with frequencies to be determined from unsolvable explicitly

auxiliary equations) breaks down since the inverse Laplace transform of the kernel

function is not of constant sign which the authors claim to be merely a technical

problem (according to them, the assumption of constant sign is made to “simplify

the discussion”). However, from results of our approach we will see that change of

the sign of this function that occurs infinite number of times results in a qualitatively different form of solutions which are beyond simple trigonometric functions shifted

by constants (see the results for the small interval and eigenfunctions of a higher

order in case of the large interval). 

To the best of our knowledge, the only available result in the literature regarding

Eq. (6.1) (except for its non-homogeneous version with  λ = ±1) is the exact exponential decay law of eigenvalues [Wi64] and a relevant reduction to a hypersingular equation which “appears too difficult to solve explicitly” [KnKe91] (see also Sect. 6.6). 

Consideration of the homogeneous version of the equation with the kernel (6.3)

is the most general in a sense that the obtained solutions (eigenfunctions) permit

construction of the resolvent kernel (in a form of a uniformly and absolutely

converging series, as a consequence of Mercer theorem for positive definite

kernels) for a general non-homogeneous equation or, as a more practical alternative
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(due to completeness and orthogonality of eigenfunctions and the fast decay of

eigenvalues), provide solution in a form of expansion over first few eigenfunctions. 

After discussing general spectral properties of the integral operator (Sect. 6.2), 

we propose original constructive techniques for obtaining asymptotical solution

for the case of small (Sect. 6.3) and large size of interval (Sect. 6.4). When the interval is small, the integral equation can be approximated by another one which

admits a commuting differential operator. This fact allows reduction of the problem

to solving a second-order boundary-value problem whose solutions upon further

approximations are prolate spheroidal harmonics (Slepian functions). When the

interval is large, the problem can be transformed into an integro-differential equation on a shifted half-line. Integral kernel function of such problem consists of two terms: one depends on the difference of the arguments, the other—on their sum. The latter

turns out to be small for large interval and hence we end up with approximation by

a convolution integro-differential equation which we solve by an extended Wiener-

Hopf method. Connection of this half-line problem solution to the solution of the

original equation inside the original interval is provided by analytic continuation

that can be performed by means of solution of an elementary non-homogeneous

ODE. Finally, we illustrate the obtained asymptotical results, compare them with

numerical solution (Sect. 6.5), and outline potential further work (Sect. 6.6). 

6.2

General Properties

Since the kernel  ph (x)  is an even and real-valued function, the operator  PhχA  is self-adjoint, and because of the regularity of  ph (x), the operator is also compact (e.g., as a Hilbert-Schmidt operator), and, by its analytic properties, has a dense

range in  L 2  (A). Hence the standard spectral theorem [NaSe00] reformulates as Theorem 1  There exists (λn)∞

∈ R , λ

 is a

 n=1

 n → 0  as n → ∞  and (fn)∞

 n=1

 complete set in L 2  (A). 

Basic properties of eigenfunctions and eigenvalues can be outlined in the following

proposition (see [Po16]). 

Proposition 1  For λ, f satisfying (6.1),  the following statements hold true: (a) All (λn)∞  are simple, and λ

 n=1

 n ∈  ( 0 ,  1 ), 

 (b) Each fn is either even or odd, real-valued (up to a constant multiplicator), and f

¯

 n ∈  C∞  A . Moreover, fn (± a) = 0 . 

The key result here is non-vanishing behavior of eigenfunctions at the endpoints

implying the multiplicity (simplicity) of the spectrum which, in particular, along

with the evenness of  ph, entails further the real-valuedness and a certain parity of each solution  fn, a fact that will be used constructively in Sect. 6.4. 
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The upper bound for the eigenvalues in part (a) of Proposition 1 can be improved to

 a

 λn ≤ 2 arctan  , 

 n ∈ N+ , 

 π

 h

and asymptotically exponential decay of higher-order eigenvalues is given by

 K ( sech  (π a/ h))

log  λn " − nπ

 , 

 n # 1

(6.4)

 K ( tanh  (π a/ h))



where

 π/ 2

 K (x) :=

 dθ

√

the complete elliptic integral of the first kind. 

0

1− x 2 sin2  θ

Note that, since the spectrum is simple, we can uniquely order eigenvalues as

0  < · · ·  < λ 3  < λ 2  < λ 1  <  1 , and denote  fn  the eigenfunction corresponding to  λn,  n ∈ N+. In what follows, when no comparison between different eigenvalues/eigenfunctions is made, we will

continue writing simply  f ,  λ  instead of  fn,  λn. 

Finally, observe that a scaling argument (with a change of variable; see further)

implies that the spectrum actually depends only on one parameter  β :=  h/a. The main results will be formulated in terms of the magnitude of this parameter. 

6.3

Small Interval ( β  1)

Setting  φ (x) :=  f (ax)  for  x ∈  (−1 ,  1 ), Eq. (6.1) rewrites as β

1

 φ (t)

 dt =  λφ (x) , 

 x ∈  (−1 ,  1 ) , 

(6.5)

 π

−1  (x −  t) 2 +  β 2

Since eigenfunctions are defined up to a multiplicatory constant, for the sake of

determinicity, let us choose this constant to be real and so that  φ

=

 L 2 (−1 ,  1 )

1. 

Observe that the kernel function essentially coincides with [0 / 2] Padé approxi-mant of hyperbolic secant function



sech  (x) =

1

+  O x 4  , | x| $ 1 , 

1 +  x 2 / 2

hence the formulation (6.5) can be approximated by

1



√







sech  (x −  t)  2 /β φ (t) dt =  πβλφ (x) +  O  1 /β 4  , x ∈  (−1 ,  1 ) , 

−1

(6.6)
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and we therefore expect its solutions to be close to those of (6.5) for large  β. 

We drop the error term, postponing precise approximation error analysis to a

further paper, and now focus on an eigenvalue problem for the integral operator

on the left of (6.6), which turns out to be again a positive compact self-adjoint operator on  L 2  (−1 ,  1 )  with a simple spectrum and the same law of decay of eigenvalues (6.4). However, this seemingly more complicated integral operator has an advantage over the original one since it belongs to a rather unique family

of convolution integral operators that admit a commuting differential operator

[Gr83, Wi64]: eigenfunctions of an integral operator with the kernel  b  sin  cx (with c  sinh  bx

constants  b,  c ∈ R ∪  i R) are also eigenfunctions of the differential operator









−  d  1 − sinh2 (bx) d +  b 2 +  c 2 sinh2 (bx)  with condition of finiteness at  x = ±1. 

 dx

sinh2  b

 dx

sinh2  b

√

√

Therefore, taking  c =  i  2 /β,  b = 2 2 /β, and denoting μ

√

an

2 sinh2 2 2 /β

eigenvalue of the differential operator, we reduce (6.6) to solving a boundary-value problem for ODE, for  x ∈  (−1 ,  1 ), 

((

√

√ )

)  (

(

√

))

4 2

4 2 x

4 2 x

cosh

− cosh

 φ   (x)

+  μ − 6 cosh

− 1

 φ (x) = 0

 β

 β

 β 2

 β

(6.7)

with boundary conditions



√



 μ + 6 /β 2 1 − cosh 4 2 /β

 φ   (±1 ) = ∓

√

√



 φ (±1 ) . 

(6.8)

4 2 β  sinh 4 2 /β

Alternatively, introducing









 β

√

√

√

 φ

√ log  e−2 2 /β −  e 2 2 /β s +  e−2 2 /β

2 2

 ψ (s) :=



√

√



√



 , 

(6.9)

1 / 2

 e−2 2 /β −  e 2 2 /β s +  e−2 2 /β

Equation (6.6) can be brought into a simpler integral equation arising in the context of singular-value analysis of the finite Laplace transform [BeGt85]

1  ψ (t)

√

 dt = − π  2 λψ (s) , 

 s ∈  ( 0 ,  1 ) , 

(6.10)

0

 s +  t +  γ

√

with  γ := 2 e−2 2 /β. The operator in the left-hand side of (6.10) is a truncated Stieltjes transform which again, by commutation with a differential operator, can be reduced to solving an ODE, for  s ∈  ( 0 ,  1 ), 
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 s ( 1 −  s) (γ +  s) (γ + 1 +  s) ψ   (s) −  ( 2 s (s +  γ ) +  μ) ψ (s) = 0

(6.11)

with boundary conditions enforcing regularity of solutions at the endpoints

 ψ   ( 0 ) =

 μ

 ψ ( 0 ) , 

 ψ   ( 1 ) = − 2  (γ + 1 ) +  μ ψ ( 1 ) . 

(6.12)

 γ (γ + 1 )

 (γ + 1 ) (γ + 2 )

Finally, it is remarkable that if we get back to (6.7) and Taylor-expand hyperbolic cosine functions due to smallness of 1 /β, we obtain













1 −  x 2  φ   (x) +  μ − 6  x 2  φ (x) = 0 , x ∈  (−1 ,  1 ) , 

(6.13)

 β 2

an ODE that coincides with the well-studied equation [OsEtAl13, SlPo61] whose

√ 

solutions are bounded on [−1 ,  1] only for special values  μ

6

 n =  χn

,  n = N

 β

0, 

√



and termed as prolate spheroidal (Slepian) wave functions  S

6

0 n

 , x

(with

 β

notation as in [SlPo61]). 

Note that even though differential operators presented here have the same

eigenfunctions as integral ones, eigenvalues are different. Once an eigenfunction

 φn  is obtained, the corresponding eigenvalue of the original integral operator can be 7





8

computed as  λn =  Pβ χ(−1 ,  1 )φn , φn

. 

 L 2 (−1 ,  1 )

6.4

Large Interval ( β  1)

Let us set  ϕ (x) :=  f (xh)  for  x ∈  (− a/ h, a/ h)  and, by a change of variable, rewrite (6.1) as



1

1 /β

 ϕ (t)

 dt =  λϕ (x) , 

 x ∈  (−1 /β,  1 /β) , 

(6.14)

 π

−1 /β (x −  t) 2 + 1

Denote  B :=  (−1 /β,  1 /β), choose normalization  ϕ

=

 L 2 (B)

1, and define the

analytic continuation to R of the solution of (6.14) as

1 /β

 ϕ (t)

 ϕ (x) = 1

 dt. 

(6.15)

 λπ

−1 /β (x −  t) 2 + 1

Then, building up on a transformation introduced in [Gr64], we can prove a non-evident yet very important result [Po16]

Lemma 1  The analytic continuation of solution of (6.14)  given by (6.15)  satisfies R 0  (x −  t) ϕ (t) dt =  ϕ (x) , 

 x ∈ R , 

(6.16)

R\ B
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 with

∞

 nλn

 R 0  (x) := − sin  (x  log  λ) − 1

 . 

(6.17)

tanh  (π x)

 π

 n 2 +  x 2

 n=1

The parity of solutions (part (b) of Proposition 1) allows reducing an integration to only one half-line. 

Theorem 2  The analytic continuations ϕext (x) :=  ϕ (x + 1 /β) of even/odd solutions of (6.14)  satisfy, for x ∈ R , 

∞  



! 

 R 0  (x −  t) ±  R 0  x +  t + 2

 ϕext (t) dt =  ϕext (x) , 

(6.18)

0

 β

 as well as an integro-differential equation

∞  



! 

 K (x −  t) ±  K x +  t + 2

 ϕext (t) dt =  ϕ   ext (x) + log2  λ ϕext (x)

0

 β

(6.19)

 with the kernel function



(

)

∞



 K

 d 2

sin  (x  log  λ)

 nλn

 (x) := −

+ log2  λ

+ 1

 . 

(6.20)

 dx 2

tanh  (π x)

 π

 n 2 +  x 2

 n=1

Here and onwards the upper sign corresponds to even solutions, the lower to odd

ones. 

We note that the first equation, which is a direct rephrasing of Lemma 1, even though simpler than the integro-differential equation, has a kernel (6.17) with an oscillatory behavior at infinity whereas  K (x)  decays. Indeed, it is easy to see that sin  (x  log  λ)

1

 R 0  (x) 

sin  (| x| log  λ) , 

 K (x) =  O

 . 

| x|#1 tanh  (π x)

| x|#1

 x 2

This decaying property of the kernel function of (6.19) is crucial for construction of approximation on the right half-line region since the sum part of the kernel



in (6.19) is uniformly small for  β $ 1 and  x, t >  0:  K (x +  t + 2 /β) =  O β 2 . 

Neglecting this small term (and thus again postponing tedious error analysis to a

further paper), we end up with an equation of Wiener-Hopf type. Even though the

presence of the derivative prohibits application of a standard Wiener-Hopf method, 

this difficulty can still be overcome by means of additional transformation leading to an explicitly solvable scalar Riemann-Hilbert problem giving thus an exact solution

of the approximate equation. These results presented in greater detail in [Po16]

are summarized here in Theorem 3 below. First of all, however, we should set up
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notations and define few auxiliary quantities, for  k ∈ R, 









 k 0 := − log  λ , 

 κ := −  π + 2 k 0 log  e 2 πk 0 − 1 + 1 Li2 1 −  e 2 πk 0  , 2 π

6

 π





ˆ

2 π  2  k 2 −  k 2  eπ(k 0−| k| )

 K (k) =

0

 , 

sinh  (π (k 0 − | k| ))

 k 2 −  k 2

 G (k) :=

0



[1 + coth  (π (| k| −  k 0 ))]  , 

2  k 2 + 1













! 

log  G (τ )

 X±  (k) := exp  P± log  G (k) =  G 1 / 2  (k)  exp ± 1 p.v. 

 dτ , 

2 π i

R

 τ −  k





 ( 1 +  κ)  1 + 4 π 2 k 2

1 − 4 π 2 k 2 + 2 κ

 C (k) :=

0

−

0

 ( 1 − 2 πik) 2

1 − 2 πik



! 

−

2  ( 1 −  πi· ) +  κ

 P+

ˆ

 K (· ) (k) , 

 ( 1 − 2 πi· ) 2

where we defined the Euler dilogarithm/Spence’s function, Fourier transform, and

projection operators on spaces of analytic functions of upper and lower half-planes

as follows:

 x

∞

log  ( 1 −  t)

 xn

Li2  (x) := −

 dt =

 , 

0

 t

 n 2

 n=1



ˆ F (k) :=  F [ F]  (x) =

 F (x) e 2 πikx dx, 

R

 F (t)

 P± [ F ]  (k) :=  F χ R± F −1 [ F ]  (k) = 1  F (k) ± 1 p.v. 

 dt. 

2

2 π i

R  t −  k

Now we are ready to state the following

Theorem 3  The integro-differential equation

∞  K (x − t)ϕext (t)dt =  ϕ   ext (x)+log2 λϕext (x), x >  0 , (6.21) 0

 possesses the unique solution given by







1

 P+ [ C /X−]  (k)

 ϕext (x) =  ϕ

 e− x ( 1 +  ( 1 +  κ) x) +

 e−2 πikx





 dk . 

 β

R

4 π  2  k 2 + 1  X+  (k)

(6.22)

 Moreover, this solution satisfies the endpoint condition ϕ  ext ( 0 ) =  κϕext ( 0 ). 
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Now we reuse Theorem 2 to recover solutions  ϕ (x) =  ϕext (x − 1 /β)  inside the interval  B  due to the fact that the left-hand side of (6.19) is now computable from (6.22). This non-homogeneous ODE is easily solvable and depending on a choice of the sign in the integral term of (6.19) we obtain either even or odd family of solutions. 

We conclude that even eigenfunctions are given by





1

 x

 ϕ (x) /ϕ

=  C 1  (λ, β)  cos  (x  log  λ) −

 N +  (t, λ, β)  sin  ((x −  t)  log  λ) dt, 

 β

0

0

(6.23)

and odd ones by





1

 x

 ϕ (x) /ϕ

=  C 2  (λ, β)  sin  (x  log  λ) −

 N −  (t, λ, β)  sin  ((x −  t)  log  λ) dt, 

 β

0

0

(6.24)

where







1







 β

1

 C 1  (λ, β) :=

1



1 +

 N +  (t, λ, β)  sin

−  t  log  λ dt , 

0

cos 1 log  λ

0

 β

 β







1







 β

1

 C 2  (λ, β) := −

1



1 +

 N −  (t, λ, β)  sin

−  t  log  λ dt , 

0

sin 1 log  λ

0

 β

 β

∞  







 N ±  (x, λ, β) :=

1

 K x −  t − 1 ±  K x +  t + 1

·

0

2 π k 0 0

 β

 β





! 

 P+ [ C /X−]  (k)

 e− t ( 1 +  ( 1 +  κ) t) +

 e−2 πikt





 dk dt. 

R

4 π  2  k 2 + 1  X+  (k)

Evaluation of derivatives and use of the boundary condition obtained in Theo-

rem 3 lead to characteristic equations for even and odd eigenvalues, respectively, 1

 κ

1

1

 β

cos

log  λ + sin

log  λ

= −

 N +  (t, λ, β)  cos  (t  log  λ) dt, 

log  λ

 β

 β

0

0

(6.25)









1

 κ

1

1

 β

sin

log  λ − cos

log  λ

= −

 N −  (t, λ, β)  sin  (t  log  λ) dt. 

log  λ

 β

 β

0

0

(6.26)
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6.5

Numerical Illustrations

We verify our results of both Sects. 6.3 and 6.4 by comparing them to a numerical (Nyström) method applied to a rescaled formulation (6.5). We use  N = 100 points Gauss-Legendre quadrature rule to approximate the integral operator

 N







 ωj pβ x −  tj φj =  λφ (x) , 

 x ∈  (−1 ,  1 )

(6.27)

 j =1





2 1− t 2

with

 j

 ωj :=

,  PN−1 being a  (N − 1 )-th Legendre polynomial, and solve

 N  2 P  2

 (t

 N −1

 j )



for  φj :=  φ tj ,  j = 1 , . . . , N, the following linear system N







 pβ ti −  tj ωj φj =  λφi, 

 i = 1 , . . . , N. 

(6.28)

 j =1

Eigenvalues are found from equating determinant of the system to zero, and

continuous eigenfunctions are then reconstructed from (6.27) as

 N







 φ (x) = 1

 ωj pβ x −  tj φj , 

 x ∈  (−1 ,  1 ) . 

(6.29)

 λ j=1

Numerical solutions demonstrate properties of a Sturm-Liouville sequence: even

and odd eigenfunctions interlace and each  φn,  n ∈ N+, has exactly  n − 1 zeros. 

In the case  β # 1, we compare numerical results with prolate spheroidal

wave functions which were computed using a Fortran code provided in [ZhJi96]

and converted into a MATLAB program with the software f2matlab. We see in

Fig. 6.1 that even double approximation (first, by a cumbersome boundary-value 0.71
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Asymptotical solution

0.708

1

0.706

0

-1

0.704

Numerical solution

-2

Asymptotical solution

0.702

-3

-1

-0.5

0

0.5

1

-1
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1

Fig. 6.1 Eigenfunctions  φ 1 (left plot) and  φ 6 (right plot).  β = 10
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problem (6.7) and (6.8) and then, proceeding further, by the one with ODE (6.13)

for standard special functions) already furnishes excellent results. 

In the case  β $ 1, we first solve characteristic Eqs. (6.25) and (6.26) by finding intersection of curves in left- and right-hand sides as function of  k 0 = − log  λ . They 2 π

are plotted in Fig. 6.2 along with vertical lines which correspond to eigenvalues obtained from the numerical solution described above. Plugging found eigenvalues

back in (6.23) and (6.24), we obtain even and odd family of solutions, respectively. 

We plot a couple of eigenfunctions in Fig. 6.3, namely, the third even eigenfunction and the tenth odd. As in Fig. 6.1, asymptotic solutions are almost indistinguishable from the numerical, however, Fig. 6.4 shows a breakdown of the asymptotic approximation for higher-order eigenfunctions (note also the discrepancies between

abscisses of circled intersection points and vertical lines in Fig. 6.2). 

More plots of eigenfunctions and approximation errors are available in [Po16]. 
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Fig. 6.2 Solving characteristic Eqs. (6.25) (left plot) and (6.26) (right plot).  β = 0 .  1
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 β = 0 .  1

6.6

Conclusion

We have presented two different methods to construct asymptotic solutions in

cases when the interval is small and large. In the first case we have exploited a

rather specific property of asymptotical closedness of the problem to an integral

equation with an admissible commuting differential operator and concluded that

solutions (eigenfunctions) can be approximated by those coming from either of

two auxiliary Sturm-Liouville problems and, if further approximation is pursued, 

they coincide with scaled versions of prolate spheroidal wave functions. In the

second case, when the interval is large, the developed approach is rather general

and should, in principle, be applicable to a wide class of integral equations with

even kernels. Computational details (and simplicity of the form of the kernel for the integral equation on the half-line), however, will depend on analytical structure of the Fourier transform of the kernel. This is a natural topic for further investigation. 

Also, in the case of the large interval, it is interesting to attempt to extend the

results for  λ = −1 (and a non-homogeneous term) recently obtained by Tracy and Widom [TrWi16b, TrWi18] or those given by a boundary-layer type of asymptotic constructions in [AtLe83], and compare these results with ours. Moreover, in the same large interval case, it was proven in [Po16] that Eq. (6.1) can be approximately reduced to a known non-homogeneous hypersingular equation known in air-foil



theory p.v.  a f   (t)

−

 dt =  μf (x)+ g (x)  which so far has been efficiently solved only

 a x− t

numerically [KaPo50, Tr69]. It seems worthy exploring this connection deeper on a constructive level. Nevertheless, of the primary importance is to provide rigorous justification of the obtained results (initiated in [Po16]) which were presented here heuristically and verified only numerically. This work in progress will soon be

published in a forthcoming paper. 
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Chapter 7

A Semi-analytical Solution for

One-Dimensional Oil Displacement by

Miscible Gas in a Homogeneous Porous

Medium

Luana C. M. Cantagesso, Luara K. S. Sousa, Tamires A. Marotto, 

Anna M. Radovanovic, Adolfo Puime Pires, and Alvaro M. M. Peres

7.1

Introduction

Enhanced oil recovery (EOR) methods are characterized by the injection of different

fluids into a hydrocarbon reservoir to increase the recovery. According to the main

physical–chemical mechanism that governs the oil displacement, EOR techniques

can be classified into three major categories: thermal (hot water flooding, steam

drive, or in situ combustion), chemical (alkaline flooding, surfactant flooding, or

micellar polymer flooding), or solvent (carbon dioxide, hydrocarbon, nitrogen, or

natural gas injection) [La89]. 

Gas flooding is the second most applied EOR method to date. In recent years, 

CO2 injection has become even more attractive for those projects that combine CO2

sequestration and EOR objectives [Ko14]. Over the last decades, a considerable number of gas injection projects have been undertaken [Ma00, Mc95, Mi92, Or84, 

Sh02, Ta92, Va86]. In all of them, mass transfer between displacing and displaced phases strongly affects the efficiency of the process. Miscible methods decrease

capillary and interfacial forces through mass transfer [Pi05]. 

We consider oil displacement by miscible gas injection at constant rate through

a homogeneous porous medium. The mathematical model consists of a three-

component, two-phase one-dimensional incompressible and isothermal flow. This

fluid flow problem is governed by a system of two hyperbolic equations, which

is solved by the method of characteristics for saturation and concentrations. The

pressure profile is then obtained by integrating Darcy’s law over the spatial domain. 

The next section describes the mathematical model, followed by its solution for

a typical set of rock and fluid properties illustrating a miscible gas flood calculation. 
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7.2

Physical and Mathematical Model

In this section, we present the physical and mathematical model for one-dimensional

oil displacement by miscible gas injection at constant rate. The porous medium is

homogeneous with uniform cross-sectional area, initially filled with a liquid phase. 

After the beginning of the gas injection, three different fluid regions may appear: a single-phase gas region beginning at the inlet point, followed by a two-phase region where mass transfer takes place, and a single-phase oil region up to the porous

medium outlet. A schematic representation of these regions is pictured in Fig. 7.1. 

The basic model assumptions are as follows:

• Isothermal fluid flow through a one-dimensional homogeneous porous medium. 

• Incompressible rock and fluid system. 

• Two-phase three-component flow. 

• Instantaneous phase equilibrium. 

• No adsorption, no chemical reactions. 

• Gravity, dispersion, and capillary effects are negligible. 

• Density of the component is independent of the phase. 

• Amagat and Darcy laws are valid. 

Under these assumptions, mass conservation for an  n-component system is given by

⎛

⎞

⎛

⎞

 Np

 Np

 ∂





⎝ φ

 ρ

⎠

⎝

⎠

 j sj wij

+  ∂

 ρj wij uj

= 0 , 

(7.1)

 ∂t

 ∂x

 j =1

 j =1

where  φ  is the porosity,  ρj  is the density of phase  j ,  wij  is the mass fraction of component  i  in phase  j ,  sj  is the saturation of phase  j ,  uj  is the velocity of phase j ,  t  is time,  x  is the spatial variable, and  Np  is the number of phases. 

If the pure component density is independent of the phase, we can rewrite the

mass conservation equation for component  i  in terms of the volume fraction in phase j  by using the relationship

 ρj wij =  ρicij , 

(7.2)

where  cij  is the volume fraction of the component  i  in phase  j  and  ρi  is the pure component density at pressure ( P ) and temperature ( T ) of the system. 

Fig. 7.1 Representation of

the three regions

gas

gas + oil

oil
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The macroscopic phase velocity can be expressed in terms of the fractional flow



function  fj  by

 uj

 fj =

⇔  uj =  fj uT , 

(7.3)

 uT

where the total velocity  uT  is given by

⎡

⎤

 Np

 krj(so)

 u

⎣

⎦  ∂p

 T = − k

 , 

(7.4)

 μ

 ∂x

 j =1

 j ( & 

 C)

in which  p  is the pressure,  k  denotes the absolute permeability,  krj  is the relative permeability of the phase  j ,  μj  is the viscosity of phase  j ,  so  is the oil saturation, and & 

 C  is the concentration vector. 

The term inside the brackets in Eq. (7.4) represents the total mobility  (λT ), so this equation can be written as

 ∂p

 uT = − λT (so, & 

 C)k

 . 

(7.5)

 ∂x

The total concentration  (Ci)  and total flow  (Fi)  variables for component  i  are defined by

 Np



 Ci =

 sj cij

(7.6)

 j =1

and

 Np



 Fi =

 fj cij . 

(7.7)

 j =1

The dimensionless time  (tD)  and spatial coordinate  (xD)  variables are defined by xD =  x , 

 tD =  uT t , 

(7.8)

 L

 φL

where  L  is the porous medium length. 

Using Amagat’s law [PrEtAl86] and applying Eqs. (7.2), (7.3), (7.6), (7.7), 

and (7.8) in Eq. (7.1), we arrive at the following hyperbolic system of equations for a three-component system:

⎧

⎪

⎨ ∂C 2 +  ∂F 2 = 0

 ∂tD

 ∂xD

⎪

(7.9)

⎩ ∂C 3 +  ∂F 3 = 0 . 

 ∂tD

 ∂xD
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The solution of the hyperbolic system (7.9) depends on the phase equilibrium conditions at system pressure and temperature, in this case, a ternary phase diagram

[Pi05]. The lines connecting the bubble and dew points in a ternary diagram define the vapor and liquid phases composition at equilibrium. Those lines are known as tie lines [Or07], and can be parameterized by two thermodynamic geometric variables α  and  β [Be93], given by

 c 2 o −  c 2 g

 α =

(7.10)

 c 3 o −  c 3 g

and

 β =  c 2 g −  αc 3 g. 

(7.11)

The subscripts  o  and  g  denote the oil phase and the gas phase, respectively. The variable  α  represents the tie-line slope, and the  β  values represent the intercept of the tie line with the vertical axis. From a collection of phase diagram tie lines, a specific phase equilibrium relationship of  α  as a function of  β  can be constructed. 

Using the above defined geometric variables, System (7.9) becomes

⎧

⎪

⎪  ∂C

⎪

⎪

+  ∂F = 0

⎨ ∂tD

 ∂xD

⎪

(7.12)

⎪

⎪

⎪

⎩ ∂(αC +  β) +  ∂(αF +  β) = 0 , 

 ∂tD

 ∂xD

where  C =  C 3 and  F =  F 3. 

The initial and boundary conditions for this problem are

'  C (xD,tD = 0 ) =  C(I), β (xD,tD = 0 ) =  β(I)

 C (xD = 0 , tD) =  C(J ), β (xD = 0 , tD) =  β(J ), 

where  C(I)  and  β(I)  denote, respectively, the total concentration of the third component and the tie-line intercept of fluid that initially saturates the porous media. 

The third component total concentration and the tie-line intercept of the injected gas at the inlet are represented by  C(J )  and  β(J ), respectively. 

The hyperbolic system can be recast in conservative form as

 ut +  Au

= 0 , 

(7.13)

 D

 xD

where the vector-column  u  and the 2 × 2 matrix A are given, respectively, by C

 u =

 β
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and

⎡

⎤

 ∂F

 ∂F

⎢

⎢  ∂C

 ∂β

⎥

⎢

⎥

 ∂α

⎥

 A = ⎢

⎢

 F

+ 1 ⎥  . 

⎢

 ∂β

⎥

⎣ 0

⎥

 ∂α

⎦

 C

+ 1

 ∂β

In Eq. (7.13), subscripts  tD  and  xD  denote partial derivatives taken with respect to dimensionless time and dimensionless distance. 

The main diagonal elements of the upper-triangular matrix A are the eigenvalues

of the hyperbolic system, with eigenpairs given by



1

 λ(I ) =  ∂F , 

 r(I ) =

 ∂C

0

and

⎛

⎞

− ∂F

 ∂α

⎜

⎟

 F

+ 1

⎜

 ∂β

⎟

 ∂β

⎜

 ∂α

⎟

 λ(I I ) =

 , 

 r(I I ) = ⎜

 F

+ 1 ⎟  . 

 ∂α

⎜  ∂F

 ∂β

⎟

 C

+ 1

⎜

⎝

−

⎟

⎠

 ∂β

 ∂C

 ∂α

 C

+ 1

 ∂β

The Riemann invariants of the problem are

⎛

⎞



 ∂α

⎜ F

+ 1

 ∂β

⎟

 R(I ) =  F −

⎜

⎝

−  ∂F ⎟

 ∂α

 ∂C ⎠  dC, 

 R(I I ) =  β. 

 C

+ 1

 ∂β

The rarefaction waves calculated from the right eigenvectors are

 β =  R(II)

and

⎛

⎞



 ∂α

⎜ F

+ 1

 ∂β

⎟

 F =

⎜

⎝

−  ∂F ⎟

 ∂α

 ∂C ⎠  dC +  R(I ). 

 C

+ 1

 ∂β
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The total concentration  C  changes, whereas the tie-line geometric variable  β

remains constant along the first rarefaction. In the second rarefaction family, both  β

and  C  vary. 

The shock wave speeds are obtained from the Rankine–Hugoniot conditions; 

they are

 D(I ) = [ F ]

[ C]

and

 F + + [ β]

 F − + [ β]

[ C]

[ C]

 D(I I ) =

=

 , 

 C+ + [ β]

 C− + [ β]

[ C]

[ C]

where [ A] =  A+ −  A− is the jump between the right and left conditions. Thus, [ A]

could represent the jump of  C,  F , or  β  variables. 

The solution of the hyperbolic system for a constant injected and original fluid

composition together with the fractional flow curves yields the saturation and phase composition profile along the porous medium. From this solution, the total mobility

 λT  spatial profile can be calculated for any dimensionless time. Then the pressure drop across the porous medium can be obtained by a straightforward integration of

Darcy’s law over the spatial coordinate [Pe03]. 

For constant gas injection rate at the inlet  (x = 0 ), the inner boundary condition in dimensional variables is



 kk



 rg (sor ) ∂p

 A

= − q(J)

 g,scBg,i , 

 μ(J )

 ∂x

 g,i

 x=0

where  A  is the porous medium cross-sectional area,  sor  is the residual oil saturation, μ(J )  and  B

 g,i

 g,i  represent the gas viscosity and the gas formation volume factor, 

respectively, both evaluated for constant injection fluid composition at the system

initial pressure. The term  q(J )

 g,sc  is a constant volumetric gas injection rate at standard

conditions. 

At the outlet  (x =  L), fluid flows out of the porous medium under constant pressure (initial system pressure  (pi)). Thus, the external boundary condition is p(x =  L, t) =  pi. 

The dimensionless pressure variable is defined by

 kkrg(sor )A

 pD =

 Δp. 

 q(J )

 g,scBg,i μ(J )L

 g,i
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Using the dimensionless variables definitions, Eq. (7.5) becomes

 uT (x, t)A

= −

 ∂pD(xD, tD)

 λT D(so, & 

 C)

 , 

(7.14)

 q(J )

 ∂x

 g,scBg,i (xD , tD )

 D

where the dimensionless total mobility is defined by

(

)

 k

 μ(J )

 ro(so)

 krg(sg)

 g,i

 λT D(so, & 

 C) =

+

 . 

 μo( & 

 C)

 μg( & 

 C)

 krg(sor )

The dimensionless inner and external boundary conditions are



 ∂p 

 D 

= −1

 ∂x 

 D xD=0

and

 pD(xD = 1 , tD) = 0 . 

(7.15)

In Eq. (7.14), the product  ut (x, t)A  represents the total volumetric flow rate at (x, t ). As the fluids are considered incompressible and the injection rate is constant, the total volumetric flow rate along the porous medium is also a constant at any

time. Thus, we must have  ut (x, t)A =  q(J )

 g,scBg,i , and Eq. (7.14) becomes

 ∂pD(xD, tD) = −

1

 . 

 ∂xD

 λT D(xD, tD)

Integrating the above equation from a given position  xD  to the outlet  xD = 1 and using Eq. (7.15), we calculate the dimensionless pressure drop from  xD  to  xD = 1

for any dimensionless time, that is, 

1

1



 pD(xD, tD) =



 dxD. 

(7.16)

 x

 λ

 , t

 D

 T D (xD D)

7.3

Example

This section presents an application of the solution presented in the previous section for a specific set of rock and fluid properties. The complete fluid data used here can be found in Chap. 3, page 47 of Pedersen and Christensen’s book [Pe06]. As our model has three components, it is necessary to lump the original fluid into three

pseudo-components. Table 7.1 shows the lumping of the original fluid obtained by a genetic algorithm [Sc17]. The pseudo-components critical properties, acentric
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Table 7.1 Component

Pseudo-components

Lumping

lumping of the original fluid

Pseudo 1

N2, CO2, C1 − C3

Pseudo 2

iC4− C13

Pseudo 3

C14− C20+

Table 7.2 The pseudo-component critical properties, acentric factor, molar weight, and global composition

Pseudo-components Pc (psia)

Tc (R)

w

M (g/mol)

Z (gmol/gmol)

Pseudo 1

6 .  6614E + 2 4 .  1659E + 2 4 .  4540E − 2 2 .  2116E + 1 0.5645

Pseudo 2

4 .  3762E + 2 9 .  8297E + 2 3 .  3989E − 1 1 .  0361E + 2 0.3093

Pseudo 3

1 .  9817E + 2 1 .  4952E + 3 1 .  0164E + 0 3 .  4442E + 2 0.1262

Table 7.3 The

Pseudo 1

Pseudo 2

Pseudo 3

pseudo-component

Injected

0.9899

0.0101

–

concentration for the initial

and injected fluid

Initial

–

0.0982

0.9018

Fig. 7.2 Pseudo-fluid ternary

diagram showing the binodal

curve, the injected, and initial

tie lines

1

PC

PC

2

(I)

(J)

PC3

factor, molar mass, and global composition are presented in Table 7.2. The initial and injected concentration for each pseudo-component is shown in Table 7.3. 

The thermodynamic equilibrium for the lumped fluid was calculated by means

of the Peng–Robinson equation of state [PR76]. Figure 7.2 shows the binodal curve for 200 Bar and 338.75 K. The initial and injected fluids tie lines are indicated by the red and green curves, respectively. Several tie lines were calculated to obtain a set of geometric variables pairs  (α, β)  for this pseudo-fluid. A polynomial fit to these variable pair was then implemented:

 α = 4517 .  9 β 2 − 7 .  1254 β. 
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Fig. 7.3 Relative

1

permeability curves
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Table 7.4 Physical properties

Symbol

Value

Unit

System pressure

P

200

Bar

System temperature

T

338.75

K

Oil viscosity (initial condition)

 μ(I )

 o

2.7497

Pa s

Gas viscosity (injection condition)

 μ(J )

 g

0.0366

Pa s

Gas residual saturation

 Sgr

0

–

Oil residual saturation

 Sor

0

–

End-point relative permeability of gas phase

 k 0 rg

1

–

End-point relative permeability of oil phase

 k 0 ro

1

–

Corey’s exponent of gas phase

 ng

2

–

Corey’s exponent of oil phase

 no

2

–

Here, the relative permeability curves are given by Corey’s model [CoEtAl56]:

⎛

⎞ nj

⎜

⎜

⎟

⎜

⎟

 s

⎟

 j −  srj

 k

⎜

⎟

 rj (so) =  k 0

 , 

 rj ⎜

⎜

 N

⎟

 p

⎝

⎟

1 −

 s ⎠

 rj

 j =1

where  krj  is the relative permeability of phase  j ,  k 0 is the end-point relative rj

permeability of phase  j ,  sj  is the saturation of phase  j ,  sjr  is the residual saturation of phase  j ,  nj  is Corey’s exponent of phase  j , and  Np  is the number of phases. 

Figure 7.3 shows the gas phase and the oil phase relative permeability curves obtained with Corey’s parameters shown in Table 7.4. 
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 PC2

 (I)

 (1) (2)

 (F)

 (3)

 (J)

 PC3

 PC1

 F

(I)

 (F)

 d

 a = (  )

 (3)

 d

 (J)

 b =

 (2)

 d

 (1)

 c = (  )

 (A)

 d

 (I)

 (J)

 c

 b a

 C

Fig. 7.4 Ternary diagram and solution path

System (7.12) was solved by the method of characteristics for saturation and concentration. The structure of the solution path (Fig. 7.4) is given by (J) → (1) −

(2) → (3) − (F) → (I), where → denotes a shock wave and − indicates a rarefaction

wave. The solution begins at injection conditions (J), which corresponds to single

7

Oil Displacement by Miscible Gas Injection

91

phase gas (region 1), connected to point (1) in the two-phase region (region 2)

through a concentration shock. The transition from single phase to two-phase or

from two-phase to single phase is always a concentration shock [Be93]. From point (1), there is a concentration rarefaction up to point (2). Next, there is a concentration and  β  shock linking points (2) and (3). From (3), there is another concentration rarefaction wave up to (F), which is connected to initial conditions (I) through a

concentration shock. The solution is presented in Eq. (7.17) and the solution path in Fig. 7.4. 

⎧

⎪

⎪

⎪

⎪ C(J), β(J)

0  < xD < D(I) = 7 .  71 × 10−4

⎪

 t

⎪

 D

⎪

⎪

⎪ C

 < D(I I ) = 0 .  13

⎨  ( 1 R), β(J)

 D(I ) < xD

 tD

 C (x

 ∂F

 D , tD ) =  C 1 = 0 .  42 , β(I) D(II) < xD < 

= 1 .  80

(7.17)

 β

 t

 (x

 D

 ∂C

 D , tD )

⎪

⎪

⎪

⎪

⎪

 ∂F

⎪

⎪ C

= 1 .  80  < xD < D(I) = 1 .  94

⎪  ( 2 R), β(I)

 t

⎪

 ∂C

 D

⎩ C(I), β(I)

 D(I ) < xD < +∞ , 

 tD

where  C(iR)  represents the concentration change along the  i-th concentration rarefaction wave. 

The miscible solution described is compared to an equivalent immiscible solution

given (with the same porous medium and fluid properties) by

⎧

⎪

⎪

 x

⎨ s(J)

 D

 g

= 0

 tD

 sg (xD, tD) = ⎪ s

 < D

⎪  g(R)  0  < xD

 t

 BL = 4 .  66

⎩

 D

 s(I )

 g

 DBL < xD < +∞ , 

 tD

where  sg(R)  represents the gas saturation along the rarefaction wave and  DBL  is the Buckley–Leverett shock [Bu42]. 

The gas saturation for both solutions is presented in Fig. 7.5. It is important to point out that the gas saturation for the miscible case is calculated with

Eqs. (7.6), (7.7), (7.10), and (7.11). An important technical and economic factor of every EOR design project is the recovery factor, which is defined as the relationship between the accumulated produced oil and the total original volume of oil in the

reservoir. Figure 7.6 shows that miscible displacement is clearly a much more efficient process than the immiscible one for the fluid and rock data considered in

this sample calculation. 

Equation (7.16) can be used to compute the dimensionless pressure at the injection point  (xD = 0 )  for any dimensionless time once the saturation and concentration profiles are solved. As the single-phase gas region 1 is very small

and can be neglected, Eq. (7.16) is rewritten as
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Fig. 7.5 Saturation profile
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=
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+ 1

 x



 D

 DF −  D(I I )tD

0

 λ( 2 a)(x , t

 λ( 2 b)

 T

 D

 D )

 T

 D(I)t





 D

+

1



 dx

+ 1

1 −  D(I)t

 , 



 D

 D

 xDF

 λ( 2 c)(x , t

 λ( 3 )

 T

 D

 D )

 T

(7.18)

where  xDF =  ∂F tD  and the superscript in the dimensionless total mobility

 ∂C

variable denotes the saturation regions. Note that the integration is split according to the rarefaction and constant states. Furthermore, the integration along the
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Fig. 7.7 Pressure behavior at
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the injection point: miscible
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two-phase region 2

0  < xD < D(I)tD  is subdivided into a rarefaction region









2 a

0  < xD < D(II)tD , a constant state region 2 b D(II)tD < xD < xDF , as well as a rarefaction region 2 c xDF < xD < D(I)tD . The last term in Eq. (7.18)

represents the pressure change due to the single-phase oil region 3. Equation (7.18)

1

holds up to  tD < 

, which is the time required to completely displace the

 D(I I )

single-phase oil region out the porous medium. 

The pressure evolution with time at the inlet point is shown in Fig. 7.7. This plot shows that until the time when the injected gas reaches the outlet, there is

a sharp decline in injection pressure because a low mobility oil (original porous

medium liquid) is displaced by a higher mobility injected gas. After that time, the

pressure curve flattens out as gas saturation increases at the porous medium exit

point. Figure 7.7 shows that the pressure curve for an immiscible displacement has a similar behavior. 

7.4

Summary and Conclusions

We have presented an analytical solution for one-dimensional oil displacement by

miscible gas injection at constant rate for a three-component fluid. This problem is described by a system of two hyperbolic equations which is solved by the method of

characteristics for saturation and concentrations. The solution path is composed of

rarefaction and shock waves and constant states. The pressure profile is obtained by integrating Darcy’s law over the spatial domain once the saturation, composition, 

and total mobility are calculated. The results for a specific set of rock and fluid

properties are presented to illustrate this miscible gas flood calculation method. For this data set, the solution shows a two-phase region displacing the original single
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oil phase. The two-phase region consists of two rarefaction waves separated by a

constant state. The solution is compared to the immiscible case, which presents, 

as expected, a much earlier breakthrough time than the miscible process, and, 

consequently, a lower recovery factor at all times. The injection pressure declines

faster up to the breakthrough time as the displacing fluid has higher mobility than

the displaced oil. The overall pressure behavior of the miscible displacement is

similar to the pressure behavior shown by an immiscible displacement. The solution

presented here can be used for screening a miscible method for a given petroleum

field. 

Acknowledgements The authors wish to express their gratitude for the financial support provided by the Brazilian Government Agencies CAPES and CNPq, by Petrobras SIGER Research

Network, and by the Universidade Estadual do Norte Fluminense (UENF). 

References

[Be93] Bedrikovetsky, P. G.:  Mathematical Theory of Oil and Gas Recovery, Kluwer Academic Publishers, London (1993). 

[Bu42] Buckley, S. E., and Leverett, M. C.: Mechanisms of fluid displacement in sands.  Amer. 

 Inst. Min. Metall. Pet. Eng. , 146, 107–116 (1942). 

[CoEtAl56] Corey, A. T., Rathjens, C. H., Henderson, J. H., and Wyllie, M. R. J.: Three-phase relative permeability.  J. Can. Pet. Technol. , 8, 63–65 (1956). 

[Ko14] Koottungal, L.: Survey: Miscible CO2 continues to eclipse steam in US EOR

production.  Oil & Gas Journal, 112.4, 78–91 (2014). 

[La89] Lake, W. L.:  Enhanced Oil Recovery, Prentice-Hall, Englewood Cliffs, NJ (1989). 

[Ma00] Malik, M. M., and Islam, M. R.: CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas storage with horizontal

wells.  In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, SPE 59327

(2000). 

[Mc95] McGuire, P. L., and Stalkup F.I.: Performance analysis and optimization of the Prudhoe Bay miscible-gas project.  SPE Reservoir Engineering, 10, 88–93, SPE 22398

(1995). 

[Mi92] Mizenko, G. J.: North Cross (Devonian) Unit CO2 Flood: Status Report.  In SPE/DOE

 Improved Oil Recovery Symposium, Tulsa, OK, SPE 24210 (1992). 

[Or84] Orr Jr., F. M., and Taber, J. J.: Use of carbon dioxide in Enhanced Oil Recovery. 

 Science, 24, 563–569 (1984). 

[Or07] Orr Jr., F. M.:  Theory of Gas Injection Processes, Tie-Line Publications, Copenhagen, Denmark (2007). 

[Pe03] Peres, A. M. M., and Reynolds, A. C.: Theory and analysis of injectivity tests on horizontal wells.  SPE J. , 8(2), 147–159, SPE 84957 (2003). 

[Pe06] Pedersen, K. S., and Christensen, P. L.:  Phase Behavior of Petroleum Reservoir Fluids, Taylor & Francis Group, Boca Raton, FL (2006). 

7

Oil Displacement by Miscible Gas Injection

95

[Pi05] Pires, A. P., and Bedrikovetsky, P. G.: Analytical modeling of 1D n-component miscible displacement of ideal fluids.  In SPE Latin American and Caribbean Petroleum Engineering, Rio de Janeiro, Brazil, SPE 94855 (2005). 

[PR76] Peng, D. Y., and Robinson, D. B.: A new two-constant equation of state.  Industrial & Engineering Chemistry Fundamentals, 15, 59–64 (1976). 

[PrEtAl86] Prausnitz, J. M., Lichtenthaler, R. N., and Azevedo, E. G.:  Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986). 

[Sc17] Scardini, R. B.: Utilizacão de um algoritmo genético para agrupamento de componentes de petróleo condicionada a experimentos PVT.  M.Sc. Thesis, Universidade Estadual do Norte Fluminense, Macaé (2017). 

[Sh02] Shaw, J., and Bachu, S.: Screening, evaluation, and ranking of oil reservoirs suitable for CO2-flood EOR and carbon dioxide sequestration.  Journal of Canadian Petroleum Technology, 41, 51–61 (2002). 

[Ta92] Tanner, C. S., Baxley, P. T., Crump, J. G., and Miller, W. C.: Production performance of the Wasson Denver unit CO2 flood.  In SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, SPE 24156 (1992). 

[Va86] Varotsis, N., Stewart G., Todd, A. C., and Clancy, M.: Phase behavior of systems comprising North Sea reservoir fluids and injection gases.  Journal of Petroleum

 Technology, 41, 1221–1233, SPE 12647 (1986). 

[image: Image 113]

Chapter 8

Bending of Elastic Plates: Generalized

Fourier Series Method for the Robin

Problem

Christian Constanda and Dale Doty

8.1

Introduction

Generalized Fourier series methods are based on the availability of a suitable

complete set of functions in the space of the solution. Here, we design such a set

for the so-called interior Robin problem, by means of the details generated by the

application of the boundary integral equation method to the mathematical model. 

A desirable complete set is thus constructed, which permits us to compute highly

accurate approximations. The method is problem specific and has already been used

in the case of the interior Dirichlet [CoDo17a] and Neumann [CoDo17b] boundary value problems. 

Let  S  be a finite domain in R2 bounded by a simple, closed,  C 2-curve  ∂S, let  x and  y  be generic points in  S  or on  ∂S, and let  h 0 = const  >  0,  h 0 $ diam  S. The three-dimensional region  (S ∪  ∂S) × [− h 0 / 2 , h 0 / 2] is assumed to be filled with a homogeneous and isotropic material of Lamé constants  λ  and  μ. 

In the absence of body forces, the equilibrium state in the process of bending of

an elastic plate with transverse shear deformation is described by the system [Co14]

 A(∂x)u(x) = 0 , 

(8.1)

where  A(∂x) =  A(∂ 1 , ∂ 2 )  is the matrix

⎛

⎞

 h  2 μΔ +  h  2 (λ +  μ)∂ 2 −  μ

 h  2 (λ +  μ)∂ 1 ∂ 2

− μ∂ 1

⎜

1

⎝

⎟

 h  2 (λ +  μ)∂ 1 ∂ 2

 h  2 μΔ +  h  2 (λ +  μ)∂ 2 −  μ − μ∂ ⎠  , 2

2

 μ∂ 1

 μ∂ 2

 μΔ
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√

 u =  (u 1 , u 2 , u 3 ) T is a vector characterizing the displacements,  h =  h 0 /  12, and  Δ

is the two-dimensional Laplace operator. 

It is not difficult to see that the columns  f (i)  of the matrix

⎛

⎞

1

0 0

 f = ⎝ 0

1 0⎠

− x 1 − x 2 1

form a basis for the space  F  of rigid displacements.  D(x, y) =  A∗ (∂x)t (x, y)  is a matrix of fundamental solutions for the operator − A,  A∗ is the adjoint of  A,  t (x, y) is a solution of the equation





 ΔΔ Δ − 1

 t (x, y) = −

1

 δ(| x −  y | ), 

 h  2

 h 4 μ 2 (λ + 2 μ)

and  δ  is the Dirac delta distribution. In the analytic handling of the problem, an important role is also played by the matrix of singular solutions



T

 P (x, y) =  T (∂y)D(y, x) , 

(8.2)

where  T (∂x) =  T (∂ 1 , ∂ 2 )  is the boundary moment–force operator defined by the matrix

⎛

⎞

 h  2 (λ + 2 μ)ν 1 ∂ 1 +  h  2 μν 2 ∂ 2

 h  2 μν 2 ∂ 1 +  h  2 λν 1 ∂ 2

0

⎜

⎝

⎟

 h  2 λν 2 ∂ 1 +  h  2 μν 1 ∂ 2

 h  2 μν 1 ∂ 1 +  h  2 (λ + 2 μ)ν 2 ∂ 2

0

⎠  , 

 μν 1

 μν 2

 μ(ν 1 ∂ 1 +  n 2 ∂ 2 )

 ∂α =  ∂/∂xα,  α = 1 ,  2 , ν =  (ν 1 , ν 2 ) T is the unit vector of the outward normal to  ∂S, and a superscript T denotes matrix transposition. We can easily convince ourselves that the columns  D(i)(x, y)  of  D(x, y)  and  P (i)(x, y)  of  P (x, y)  satisfy system (8.1) for  x =  y. 

8.2

The Boundary Value Problem

In the Robin problem, we solve the system (8.1) in  S  with the boundary condition (T +  σ (x))u(x) =  R(x), 

 x ∈  ∂S, 

(8.3)

where  σ  is a symmetric, positive definite 3 × 3 matrix and  R  is a 3 × 1 vector function prescribed on  ∂S. In what follows, we denote  S  by  S+ and R2 \ ¯ S+ =  S−. 
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Theorem 1 ([Co14])  Problem (8.1) , (8.3)  has a unique solution u ∈  C 2 (S+ ) ∩

 C 1 ( ¯

 S+ ) for any R ∈  C 0 ,α(∂S), α ∈  ( 0 ,  1 ), which admits the integral representation formula (Somigliana formula)



 u(x) =

[ D(x, y)(T u)(y) −  P (x, y)u(y)]  ds(y), x ∈  S+ , 

 ∂S



(8.4)

0 =

[ D(x, y)(T u)(y) −  P (x, y)u(y)]  ds(y), x ∈  S− . 

 ∂S

Let  ∂S∗ be a simple, closed,  C 2–curve surrounding  S ∪  ∂S, let  S+

∗ and  S−

∗ be

the interior and exterior domains to  ∂S∗, and select a collection of points { x(k),  k =

1 ,  2 , . . . } densely distributed on  ∂S∗. We consider the set of 3 × 1 vector functions on  ∂S

 G = { σf (i), θ(jk), i, j = 1 ,  2 ,  3 , k = 1 ,  2 , . . . } , where

 θ (jk)(x) =  (T +  σ (x))D(j)(x, x(k)), j = 1 ,  2 ,  3 , k = 1 ,  2 , . . . 

(8.5)

and  D(j)  are the columns of the matrix  D. 

Theorem 2  The set G is linearly independent on ∂S and complete in L 2 (∂S). 

 Proof  Assuming the opposite, let  N  be a positive integer and  ci  and  cjk,  i, j =

1 ,  2 ,  3 , k = 1 ,  2 , . . . , N,  real numbers, not all zero, such that 3



3

 N



 ciσ (x)f (i )(x) +

 cjkθ(jk)(x) = 0 , 

 x ∈  ∂S. 

(8.6)

 i=1

 j =1  k=1

By (8.5) and (8.6), 

3



3

 N



 ω(x) =

 cif (i)(x) +

 cjkD (j )(x, x(k))

 i=1

 j =1  k=1

is a solution of the (interior) Robin problem

 Aω = 0 in  S+ , 

 (T +  σ )ω = 0 on  ∂S. 
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Since the solution of this problem is unique [Co14], we have  ω = 0 in  S+ and then, by analyticity, 

 ω = 0 in  S+

∗  . 

(8.7)

Written in terms of components, for  x ∈  S+

∗ we can write

3



3

 N



 ωl(x) =

 cifli(x) +

 cjkDlj (x, x(k)), 

 l = 1 ,  2 ,  3 . 

(8.8)

 i=1

 j =1  k=1

Let  x(q)  be any of the points  x( 1 ), . . . , x(N). As  x →  x(q)  from within  S+

∗ , all the

terms on the right-hand side in (8.8) remain bounded except  clq Dll(x, x(q)), which (see [Co14]) is of order  O( ln | x −  x(q)| ). This contradicts (8.7) unless all  clq = 0

for  l = 1 ,  2 ,  3 and  q = 1 , . . . , N. Then 3



 ω =

 cif (i) = 0 in  S+ , 

 i=1

which, since the  f (i)  are linearly independent, implies that  ci = 0,  i = 1 ,  2 ,  3 . 

Consequently, the set  G  is linearly independent on  ∂S. 

Suppose now that for all  i, j = 1 ,  2 ,  3 and  k = 1 ,  2 , . . . ,  a vector function ϕ ∈  L 2 (∂S)  satisfies





 (σf (i )) T ϕ ds =

 (θ (jk)) T ϕ ds = 0 . 

(8.9)

 ∂S

 ∂S

Since  σ  is symmetric, we have  (σf (i)) T =  (f (i)) T σ  T =  (f (i)) T σ,  so (8.9) can be rewritten as

 p(σ ϕ) = 0 , 

(8.10)



[ (T +  σ(x))D(j)(x, x(k))]T ϕ(x) ds = 0 , k = 1 ,  2 , . . . , (8.11)

 ∂S

where  p  is the vector-valued functional defined on vector functions  g ∈  L 2 (∂S)  by

[Co14]



 pg =

 f  T g ds. 

 ∂S

To simplify the notation, unless otherwise stipulated, in what follows we adopt

the convention of summation from 1 to 3 over repeated subscripts. 
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By (8.2),  Pji(x, y) = [ T (y)D(y, x)] ij =  Til(y)Dlj (y, x) = [ T (y)D(j)(y, x)] i, so





[ T D(j)(x, x(k))]T ϕ ds = [ T D(j)(x, x(k))] iϕi ds

 ∂S

 ds





! 

=

 Pji(x(k), x)ϕi ds =

 P (x(k), x)ϕ ds

 . 

 j

 ∂S

 ∂S

Since  D(x, y) = [ D(y, x)]T [Co14] and  σ  is symmetric, we see that

[ σ (x)D(j)(x, x(k))]T ϕ(x) = [ σil(x)Dlj (x, x(k))] ϕi(x)

= [ Djl(x(k), x)σli(x)] ϕi(x) = [ D(x(k), x)σ(x)ϕ(x)] j . 

(8.12)

For  x ∈  S+ ∪  S−, we consider the single-layer and double-layer potentials V (σ ϕ)(x) =

 D(x, y)σ (y)ϕ(y) ds(y), 

 W ϕ(x) =

 P (x, y)ϕ(y) ds(y), 

 ∂S

 ∂S

and set  U =  V (σ ϕ) +  W ϕ. 

In the sequel, for any function  F (x)  defined in  S+ ∪  S−, we denote by  F + (x) and  F − (x)  the limiting values of  F (x)  as  x  approaches  ∂S  from within  S+ and  S−, respectively (if appropriate, along the support line of the normal vector to  ∂S), and by  F 0 (x)  the direct value of  F  on  ∂S, if it exists. 

By (8.2) and (8.12), for  j = 1 ,  2 ,  3 and  k = 1 ,  2 , . . . , 0 =

 (θ (jk)) T ϕ ds =

[ (T +  σ(x))D(j)(x, x(k))]T ϕ(x) ds

 ∂S

 ∂S

=  (Wϕ)j (x(k)) + [ V (σϕ)] j (x(k)) =  Uj (x(k)). 

From the continuity of  V  and  W  on  ∂S∗, (8.9), and the fact that the points  x(k) are densely distributed on  ∂S∗, it follows that  U = 0 on  ∂S∗. Also, by (8.10), 

 U ∈  A , where  A  is the class of functions with a specific far-field pattern indicated in [Co14]. Since, in addition [Co14],  AV =  AW = 0 in  S+ ∪  S−, we see that  U  is the solution of the homogeneous exterior Dirichlet problem

 AU = 0 in  S−

∗  , 

 U = 0 on  ∂S∗ , 

 U ∈  A , 
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so  U = 0 in ¯ S−

∗ and, by analyticity,  U = 0 in  S−. This means that

 U − = 0 , 

 (T U )− = 0 , 

(8.13)

which, in turn, by Theorem 4.20 in [Co14], implies that





1  ϕ(x)+  D(x, y)σ(y)ϕ(y) ds(y)+  P (x, y)ϕ(y) ds(y) = 0 for a.a.  x ∈  ∂S, 2

 ∂S

 ∂S

where the second integral is understood as principal value. Since  D(x, y)σ (y) +

 P (x, y)  is an  α-regular singular kernel [Co14], repeating the proof of Theorem 6.12

in [Co14], we conclude that  ϕ ∈  C 0 ,α(∂S),  α ∈  ( 0 ,  1 ). Then all the properties of the potentials with Hölder continuous densities proved in Chapter 4 in [Co14] apply to U , and we have

 (T U )+ =  (T V (σ ϕ))+ +  (T W ϕ)+ = 1  σ ϕ +  (T V (σ ϕ)) 2

0 +  (T W ϕ)+

= 1  σϕ + [ 1  σϕ +  (T V (σϕ))−] =  (T U)− +  σϕ, 

2

2

 (σ U )+ =  σ [ (V (σ ϕ))+ +  (W ϕ)+] =  σ [ (V (σ ϕ))+ − 1  ϕ +  (Wϕ) 2

0]

=  σ[ (V (σϕ))− − 1  ϕ +  ( − 1  ϕ +  (Wϕ)−] =  σU− −  σϕ, 2

2

which yields [ (T +  σ )U ]+ = [ (T +  σ )U ]− on  ∂S. Therefore, by (8.13),  U  is a solution of the homogeneous interior Robin problem

 AU = 0 in  S+ , 

[ (T +  σ )U]+ = 0 on  ∂S, 

so  U = 0 in  S+, which implies that  (T U )+ = 0. Since, by (8.13), we also have (T U )− = 0, we deduce that

 (T V (σ ϕ))+ +  (T W ϕ)+ =  (T V (σ ϕ))− +  (T W ϕ)− . 

Given that  (T W ϕ)+ =  (T W ϕ)−, we now have  (T V (σ ϕ))+ =  (T V (σ ϕ))−, or

[Co14]

1  σ ϕ +  (T V (σϕ))

 σ ϕ +  (T V (σ ϕ))

2

0 = − 1

2

0 . 

Hence,  σ ϕ = 0, which, in view of the positive definiteness of  σ , yields  ϕ = 0. The completeness of  G  in  L 2 (∂S)  now follows from the fact that  L 2 (∂S)  is a Hilbert space and the orthogonal complement of  G  in it consists of the zero vector alone. 
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8.3

The Computational Algorithm

In what follows, ·  , · and  ·  are the inner product and norm in  L 2 (∂S). 

Denoting by  ψ  the trace of  u  on  ∂S  and setting  T u =  R −  σ ψ  and L(x) =

 D(x, y)R(y) ds(y), 

 x ∈  S+ ∪  S− , 

(8.14)

 ∂S

we rewrite Eqs. (8.4) as



 u(x) = −

[ D(x, y)σ (y)ψ(y) +  P (x, y)ψ(y)]  ds(y) +  L(x), x ∈  S+ , 

 ∂S

(8.15)



 L(x) =

[ D(x, y)σ (y)ψ(y) +  P (x, y)ψ(y)]  ds(y), x ∈  S− . 

(8.16)

 ∂S

As all the  x(k)  lie in  S−, for  j = 1 ,  2 ,  3 and  k = 1 ,  2 , . . . ,  from (8.16) we have Lj (x(k)) =

[ Djh(x(k), x)(σψ)h(x) +  Pjl(x(k), x)ψl(x)]  ds. 

 ∂S

From the definition of  P  it follows that  Pjl(x(k), x) =  TlhDhj (x, x(k)), so Lj (x(k)) =

[ Djh(x(k), x)σhl(x)ψl(x) +  TlhDhj (x, x(k))ψl(x)]  ds

 ∂S



= [ σlh(x)Dhj (x, x(k)) +  TlhDhj (x, x(k)] ψl(x) ds

 ∂S



= [ T +  σ(x)] lh(Dj )h(x, x(k))ψl(x) ds

 ∂S





= [

 (j k)

 (T +  σ (x))Dj (x, x(k))] lψl(x) ds =

 θ

 ψ

 l

 l ds

 ∂S

 ∂S



=  (θ(jk)) T ψ ds. 

 ∂S

Combining this with  L(x(k))  given by (8.14), we deduce that for  j = 1 ,  2 ,  3 and k = 1 ,  2 , . . . , 





 (θ (jk)) T ψ ds =  Lj (x(k)) =

[ D(x(k), x)R(x)] j ds. 

(8.17)

 ∂S

 ∂S
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Also, 







 (σf (i)) T ψ ds =

 (f (i)) T σ  T ψ ds =

 (f (i)) T σ ψ ds =  (p(σ ψ))i, 

 i = 1 ,  2 ,  3 . 

 ∂S

 ∂S

 ∂S

Since  T u =  R −  σ ψ  is the Neumann boundary data for  u, we have  p(T u) = 0

[Co14], so  p(σ ψ) =  pR, which means that





 (σf (i)) T ψ ds =  (pR)i =

 (f (i)) T R ds, 

 i = 1 ,  2 ,  3 . 

(8.18)

 ∂S

 ∂S

We reorder the elements of  G  as the sequence

{ σf ( 1 ), σf ( 2 ), σf ( 3 ), θ( 11 ), θ( 21 ), θ( 31 ), θ( 12 ), θ( 22 ), θ( 32 ), . . . }

and re-index them:

 G = { θ( 1 ), θ( 2 ), θ( 3 ), θ( 4 ), θ( 5 ), θ( 6 ), . . . } . 

We orthonormalize the set  G  in  L 2 (∂S)  to generate a sequence { η(i)}∞ . This i=1

orthonormalization is implemented by three different procedures: the classical

Gram–Schmidt (CGS), the modified Gram–Schmidt (MGS), and the Householder

reflections (HR), all of which give rise to an equality of the form

 n



 η(n) =

 knmθ(m), 

 n = 1 ,  2 , . . . . 

(8.19)

 m=1

Then the approximation of the unknown vector function  ψ  is

 n



 ψ(n) =

 ψ, η(r) η(r)

 r=1

 n

 r



 r



/

=

 krm ψ, θ(m)

 krq θ(q)

 , 

 n = 1 ,  2 , . . . . 

(8.20)

 r=1

 m=1

 q=1

It is easily verified that for each  m = 4 ,  5 , . . . ,  there is a unique pair  (j, k), j ∈ {1 ,  2 ,  3},  k ∈ {1 ,  2 , . . . }, such that  m =  j + 3 k. Then  θ(m) =  θ(j+3 k) =  θ(jk), so, by (8.17), 



 ψ, θ(m) =  ψ, θ(jk) =  Lj (x(k)) = [ D(x(k), x)R(x)] j ds, m = 4 ,  5 , . . . . 

 ∂S

(8.21)
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For  m = 1 ,  2 ,  3 ,  by (8.18), 



 ψ, θ(m) =  ψ, σf (m) =  (f (m)) T R ds. 

(8.22)

 ∂S

In conclusion,  ψ(n)  is computed from (8.20) with the coefficients  krm  and ψ, θ(m) supplied, respectively, by the orthonormalization process (8.19) and equalities (8.21) and (8.22). For  x ∈  S+ and  n = 1 ,  2 , . . . ,  this and (8.15) now yield the approximate solution



 u(n)(x) = −

[ D(x, y)σ (y) +  P (x, y)] ψ(n)(y) ds(y) +  L(x). 

(8.23)

 ∂S

Theorem 3  The sequence { u(n)}∞  converges uniformly to the exact solution u on n=1

 any closed subdomain S   of S as n → ∞ . 

 Proof  Let  x ∈  S  be arbitrary, and let  P(i)(x, y), i = 1 ,  2 ,  3 ,  be the rows of  P (x, y); then



 ui(x) = −

[ P (x, y)ψ(y)] i ds(y) +  Li(x)

 ∂S



= −

 P(i)(x, y)ψ(y) ds(y) +  Li(x) = − P(i)(x, · ), ψ +  Li(x). 

 ∂S

We subtract from this the  i th component of  u(n)  given by (8.23) to arrive at

| ui(x) −  u(n)(x)| ≤ | P

 i

 (i)(x, · ), ψ −  ψ (n)| ≤  P(i)(x, · )  ψ −  ψ (n) . 

Denoting by | · |3 the Euclidean norm in R3, we have

3



3





| u(x) −  u(n)(x)|3 ≤

| ui(x) −  u(n)(x)| ≤

 P

 ψ −  ψ(n) , 

 i

 (i)(x, · )

 i=1

 i=1

which, combined with the fact that the  P(i)(x, · ) are uniformly bounded on  S 

(since  x =  y) and  ψ −  ψ(n) → 0 as  n → ∞, proves the assertion. 

 Remark 1  It is obvious that each of the vector functions  u(n)  is a solution of (8.1). 
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8.4

Numerical Example

Let  S+ be the disk of radius 1 centered at the origin, and let (after suitable rescaling) h = 0 .  5 and  λ =  μ = 1. We choose the matrix  σ  and the boundary data (written in terms of the polar angle  θ  with the pole at the origin)

⎛

⎞

 x 2 +  x 2 0  x 2 −  x 2

⎜ 1

2

1

2 ⎟

 σ (x) = ⎝

0

2

0

⎠  , 

 x 2 −  x 2 0  x 2 +  x 2

1

2

1

2

⎛

⎞

1  ( 8 + 18 cos  θ − 6 cos ( 2 θ) + 5 cos ( 3 θ) − 2 cos ( 4 θ) + cos ( 5 θ)) 2

 R

⎜

⎟

 (x) = ⎝

− 10 sin  θ + 13 sin ( 2 θ)

⎠  , 

− 1 + 13 cos  θ + 3 cos ( 3 θ) − cos ( 4 θ)

for which our boundary value problem has the exact solution

⎛

⎞

4 x

⎜

1 + 4 x 2

2

⎟

 u(x) = ⎝

−4 x 2 + 8 x 1 x 2

⎠  , x ∈  S+ . 

6 x 1 − 2 x 2 + 2 x 2 − 4 x

1

2

1 x 2

2

We take the auxiliary curve  ∂S∗ to be the circle of radius 2 centered at the origin. 

This choice is recommended by the fact that if  ∂S∗ is too far from  ∂S, the set  G

becomes “less linearly independent,” and if  ∂S∗ is too close to  ∂S, then the elements of  G  become too sensitive to the singularities of  D  and  P . 

The approximation accuracy depends on the selection of the dense set { x(k) ∈

 ∂S∗ , k = 1 ,  2 , . . . } .  For convenience, we choose uniformly spread points; that is, for any  n = 1 ,  2 , . . . , 

{ x(k) :  k = 1 ,  2 , . . . , n}Cartesian = { ( 2 ,  2 πk/n) :  k = 1 ,  2 , . . . , n}Polar . 

 Remark 2  In this numerical example, floating-point computation is performed with machine precision of approximately 100 digits. As expected, the most sensitive

element in the procedure is the evaluation of integrals in inner products, for which we set a target of 100 significant digits. However, as computation proceeds, this

number deteriorates. 

The three-dimensional physical displacement vector in this model [Co14] is (x 3 u 1 , x 3 u 2 , u 3 ) T. The graph of the functions  u( 63 ),  i = 1 ,  2 ,  3 ,  computed from i

 ψ( 63 )  with MGS for 0 ≤  r <  1 .  0 ,  0 ≤  θ <  2 π,  are shown in Fig. 8.1. 

Figure 8.2 displays the graphs of  u( 63 )|

 i

 ∂S ,  i = 1 ,  2 ,  3. 

We are interested in evaluating computational errors. For  n = 20 (our case), the three components of the absolute error  u( 63 ) −  u  are graphed in Fig. 8.3. 

[image: Image 114]
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Fig. 8.1 The functions  u( 63 ),  i = 1 ,  2 ,  3 ,  in  S+

 i

5

0

–5

0

π

2π

Fig. 8.2 The traces of  u( 63 ),  i = 1 ,  2 ,  3 ,  on  ∂S

 i

Fig. 8.3 The errors  u( 63 ) −  u

 i

 i ,  i = 1 ,  2 ,  3 ,  in  S+

2×10–2

0

- 2×10–2

0

π

2π

Fig. 8.4 The traces of  u( 63 ) −  u

 i

 i ,  i = 1 ,  2 ,  3 ,  on  ∂S

The approximation is 4–5 digits of accuracy near the boundary  ∂S  and improves significantly away from  ∂S. 

Figure 8.4 shows the graphs of the components of the absolute error  (u( 63 ) −

 i

 ui)| ∂S,  i = 1 ,  2 ,  3 . 

The graph of the relative error

 (u( 3 n+3 ) −  u)| ∂S

 u| ∂S

108

C. Constanda and D. Doty

in the approximation of the boundary trace  u| ∂S, as a function of  n (best least square linear fit), is shown in Fig. 8.5. 

The relative error decreases exponentially, approximately by half for each

additional point added on  ∂S∗. Our use of floating-point precision of 100 digits avoids contamination of the numerical result. The vertical axis above is displayed

logarithmically to base 10. For our chosen example, the relative error is 179 .  5 ×

10−0 .  2957 n. 

Another type of error refers to the floating-point conditioning. We have added

Row Reduction (RR) as a fourth computational method, which bypasses the need

for orthonormalization. MGS, HR, and RR exhibit similar numerical accuracy; CGS

has significantly reduced accuracy. 

The number of significant digits remaining in the computation of  u( 3 n+3 )| ∂S  with MGS, as a function of  n, when fixed floating-point of 100 significant digits is used, is shown in Fig. 8.6. 

For  n = 200, floating-point computation with 100 digits does not contaminate the corresponding computed relative error. Of course, this changes as  n  increases. 

 Remark 3  In CGS, each vector  θ (k)  is projected on to the space orthogonal to span{ η( 1 ), . . . , η(k−1 )}. The obvious drawback is that, as calculation proceeds,  θ(k) tends to become increasingly “parallel” to its projection on span{ η( 1 ), . . . , η(k−1 )}, so the difference between them becomes increasingly smaller in magnitude, which

leads to computational ill-conditioning. All the inner products  η(i), η(j) for  i =  j should be zero. However, as  n  increases, the CGS process deteriorates until loss of orthogonality occurs. 

In MGS, the mutual orthogonality of the  η(i)  is used to factor the projection operator of CGS in a different form (see [CoDo17b]), where the computation involves the full magnitude of the  θ (k), preventing the magnitude of the difference Fig. 8.5 The relative error as

1

a function of  n

10-25

10-50

0

100

200

Fig. 8.6 The number of

100

significant digits as a function

of  n

70

0

100

200
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between  η(k)  and its projection on span{ η( 1 ), . . . , η(k−1 )} from becoming too small and, thus, avoiding computational ill-conditioning. 

Unlike the CGS and MGS methods, in HR, the orthogonal projections used

in the computational procedure are invertible and also norm-preserving. Details

of this technique can be found in [Tr10]. CGS and MGS start with an incoming set { θ( 1 ), . . . , θ(n)} and predetermined rules for producing an orthonormal set

{ η( 1 ), . . . , η(n)}. HR starts with both an incoming set { θ( 1 ), . . . , θ(n)} and a pres-elected orthonormal set { e( 1 ), . . . , e(n)}, and computes the rules for the matrix that transforms the former into the latter. As a consequence, numerical computation with

HR offers an improvement over the Gram–Schmidt procedures, subject to machine

limitations. 

RR is a pure algebraic procedure which, although not based on the use of

orthonormalized systems, nevertheless yields a degree of accuracy comparable to

that in MGS and HR. 

Our specific choice of orthonormal vector functions  e(k), which allows for

periodicity on 0 ≤  θ <  2 π, is the same as that used in [CoDo17b]. 
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Chapter 9

The Adjoint Spectral Green’s Function

Method Applied to Direct and Inverse

Neutral Particle Source–Detector

Problems

Jesús P. Curbelo, Odair P. da Silva, and Ricardo C. Barros

9.1

Introduction

The need to determine the state of a system from future observations or the

identification of physical parameters from the observation of the system’s evolution leads to define and solve and reverse the problem [EnEtAl96]. That is, while the solution of a direct problem is to find effects (reactions) based on a complete

description of its causes, it is possible to state that solving an inverse problem

consists in determining unknown causes (stimuli) from desired or observed effects

[Al94, EnEtAl96, MoSi13]. In source–detector problems the causes are the boundary conditions, the sources of particles and the material properties of the domain. 

On the other hand, the effects are the detector response, as well as the profiles

of particle flux (forward problem) or the importance function distribution (adjoint

problem). 

In direct transport problems the input parameters are geometry, distribution of

external sources (including boundary conditions) and material properties. Never-

theless, in inverse transport problems, at least one of these parameters is unknown

[HyAz11, Mc92]. In direct source–detector problems the use of the adjoint technique allows to obtain the detector response due to multiple sources by a single

solution to the adjoint problem in each energy group. On the other hand, in inverse

source–detector problems it is possible to calculate the intensity of the source in

each energy group, given its location and the detector response. 

This work is based on the application of the adjoint spectral Green’s function

method (SGF†) [MiEtAl12, CuEtAl17, CuEtAl18] for numerically solving slab-J. P. Curbelo () · O. P. da Silva · R. C. Barros
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geometry direct and inverse source–detector transport problems in the energy

multigroup discrete ordinates ( SN ) formulation with arbitrary  L  th-order of scattering anisotropy. The offered SGF† method, along with the one-region block

inversion iterative scheme, generates numerical solutions that are completely free

from spatial truncation errors; therefore a spatial reconstruction scheme is developed to analytically determine the detector response in direct problems and source

intensities in inverse problems. In this chapter we describe how to estimate the

intensity of a source of neutral particles  Qg ( g = 1 :  G) located in a specific region within the domain, knowing the detector response for each energy group  g, the geometry and material properties of the domain. In addition, we also describe a

technique to determine the intensity of incident particles by measuring the detector response due to sources placed outside the slab. 

9.2

The Adjoint  SN Transport Problem

Let us consider a multilayer slab of thickness  H  where the regions  Υj ( j = 1 :  J ) have width  hj  and constant material parameters. For steady-state source–detector problems in non-multiplying media, the energy multigroup, slab-geometry adjoint

 SN  equations, considering arbitrary  L  th  order of scattering anisotropy, provided L < N , can be written as

−

 d

 μm

 ψ†

 ψ†

 dx

 mg (x) +  σTg,j

 mg (x)

 L



 G



 N




=

2 l + 1  Pl(μm)

 σ (l)

 Pl(μn) ωn ψ†

 , 

2

 Sg→ g   ,j

 ng   (x) +  Q†

 g,j

 l=0

 g =1

 n=1

 x ∈  Υj , m = 1 :  N , g = 1 :  G , 

(9.1)

with boundary conditions

 ψ†

 mg ( 0 ) =  α ψ †

 ng ( 0 ) , μm <  0  , μm = − μn , g = 1 :  G

and

 ψ†

 mg (H ) =  α ψ †

 ng (H ) , μm >  0  , μm = − μn , g = 1 :  G , 

where  α = 1 indicates that reflective boundary condition is considered and  α = 0

for zero adjoint flux in the exiting directions. We refer to the importance function ψ†

 mg (x)  as the adjoint angular flux in the discrete ordinate direction  μm  in energy group  g; the quantity  Q† is defined as the group macroscopic absorption cross section of the material the detector is made of [DuMa79, PrLa10]; otherwise, the notation is standard [LeMi93]. 
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In order to determine the importance of neutral particles of all energy groups to

the detector response only in the energy group  g, the adjoint  SN  problem must be solved considering the adjoint source numerically equal to the detector absorption

macroscopic cross section for energy group  g  and equal to zero for all the other energy groups. Once the adjoint  SN  equations are solved, we obtain the detector response for energy group  g  as [LeMi93]

 H G



 N



†  g

 R† =

 g

 Qg  (x)

 ωn ψng  (x) dx

0

 g =1

 n=1

 G



 G



+

†  g

†  g

 μn ωn ψ

| μ

 ng   ( 0 ) 

 ψg  ( 0 ) +

 n|  ωn ψng   (H ) 

 ψg  (H ) , 

 g =1  μn>  0

 g =1  μn<  0

(9.2)

where  g = 1 :  G, 

 ψg  ( 0 )  and 

 ψg  (H )  are the forward fluxes, considering prescribed

isotropic boundary conditions at  x = 0 and  x =  H , respectively. In Eq. (9.2) the

†  g

quantity  ψng  (x)  is read as the adjoint angular flux in the discrete ordinates direction μn, in energy group  g , obtained by solving the adjoint  SN  equations considering Q† distinct from zero only for the energy group  g. 

In the next section we summarize the main ingredients of the generalized SGF†

method [CuEtAl18] that we use along with the one-region block inversion iterative scheme to obtain numerical solutions absolutely free from spatial truncation errors. 

9.3

The Adjoint Spectral Green’s Function (SGF†) Method

The SGF† method was first presented by [MiEtAl12] for monoenergetic slab-geometry adjoint  SN  problems with isotropic scattering. In the work by [CuEtAl18]

is described the generalization of the SGF† method to energy multigroup  SN

problems considering arbitrary  L  th  order of scattering anisotropy, provided  L < N , and non-zero prescribed boundary conditions for the forward  SN  transport problem. The method uses the standard discretized spatial balance  SN  equations for the adjoint problem





−  μm

†

 ψ†

−  ψ†

+  ψ

 σ

 mg,j

 mg,j −1

 mg,j

 T

 h

 g,j

 j

 G

 N



 L



/

 Q†

=

†

2 l + 1

 g,j

 ωn ψ

+

 ng  ,j

 c(l)

 Pl(μm) Pl(μn)

 , 

2

 g→ g   ,j

 σT

 g =1  n=1

 l=0

 g,j

 j = 1 :  J , m = 1 :  N , g = 1 :  G , 

(9.3)
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which is exact as it is obtained by integrating Eq. (9.1) over a region  Υj  by using 1

 xj

†

the operator

 (· ) dx. We have defined  ψ

 h

 mg,j  as the group region-average

 j

 xj−1

adjoint angular flux. 

In order to solve the system of  N ×  G  algebraic linear equations in 3 ×  N ×  G

unknowns represented in Eq. (9.3) by requiring uniqueness of the solution, we use the  N × G  equations for the continuity and/or boundary conditions and define  N × G

auxiliary equations

 G



 G



†

 j

 j

 ψ

=

+

+

 mg,j

 Λ

 ψ†

 Λ

 ψ†

 B

 ng → mg ng  ,j −1

 ng → mg ng  ,j

 mg,j , 

 g =1  μn<  0

 g =1  μn>  0

 j = 1 :  J , m = 1 :  N , g = 1 :  G . 

(9.4)

This auxiliary equation expresses each region-average adjoint angular flux as a

combination of the adjoint source located within the region and all the region-edge

adjoint angular fluxes in all exiting directions and energy groups. The quantities

 j

 Λ

play the role of the Green’s function and are constructed by using a

 ng → mg

spectral analysis based on local analytic solutions of Eq. (9.1) inside each region and  Bmg,j  is a function of the interior adjoint source. 

The general solution of the system of  N ×  G  ordinary differential equations represented in Eq. (9.1) can be written as

 N × G



− (x− λj )

 ψ†

 ξk

+

 mg (x) =

 βk a† mg(ξk) e

 ψ†  P , 

 g, j

 k=1

 x ∈  Υj , m = 1 :  N , g = 1 :  G , 

(9.5)

where  ψ†  P

 g

 (x)  is a particular solution which is isotropic for each energy group, 

provided the adjoint source  Q†

is independent of the angular directions, and first

 g,j

term of the right-hand side in Eq. (9.5) represents the homogeneous component of the local general solution of Eq. (9.1) in  Υj . The quantities  ξk  and  a† mg(ξk)  are obtained by solving an eigenvalue problem of order  N ×  G  and  βk  are arbitrary constants for each region. 

The spatially discretized adjoint balance  SN  Eqs. (9.3) together with the auxiliary Eqs. (9.4) and boundary and continuity conditions constitute the nodal equations in the SGF† method. In order to generate numerical solutions of SGF† equations, we

use the partial one-region block inversion iterative scheme. More details about the

SGF† method can be found in reference [CuEtAl18]. 
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9.4

Spatial Reconstruction Scheme for the SGF† Solution

The SGF† method has the advantage of computational efficiency due to the

possibility of setting up coarse-mesh in the discretization of the spatial variables; however, it has the disadvantage of not generating a detailed profile of the solution. 

An alternative is to perform an analytical reconstruction inside each homogenized

region of the domain. 

According to the general solution of the adjoint  SN  Eqs. (9.5), we have the angular flux in the energy group  g  and in each direction  μm  in the position  x ∈  Υj . 

Therefore, using the adjoint angular flux in the energy group  g  and in the direction μm  at the region edges, we obtain

 N

 G



− (xj−1− λj )

 ψ†

 ξng 

+

 mg (xj −1 ) =

 βng   a† mg(ξng  ) e

 ψ†  P

 , μ

 g,j −1

 m <  0

(9.6a)

 n=1  g =1

and

 N

 G



− (xj − λj )

 ψ†

 ξng 

+

 mg (xj ) =

 βng   a† mg(ξng  ) e

 ψ†  P , μ

 g,j

 m >  0  , 

(9.6b)

 n=1  g =1

where the values of  ψ†

 mg (xj −1 )  e  ψ †

 mg (xj )  are generated by the SGF† method. At

this point, it is possible to form a system of  N ×  G  linear and algebraic equations in N ×  G  unknowns to obtain the constants  βng  which appear in Eqs. (9.6). 

Following this procedure, the set of coefficients  βng  for each region can be stored and used in calculations of local quantities of interest such as the adjoint scalar flux at any point of the slab. Then, it is possible to determine the detector response by substituting analytically the adjoint angular flux in Eq. (9.2). In the next section we present the procedure in order to obtain the intensity of a source of neutral particles located within the slab or on the boundaries, by solving an inverse problem. 

9.5

Source–Detector Inverse Problems

Substituting the analytical general solution of the adjoint  SN  Eqs. (9.5) into Eq. (9.2), we rewrite the detector response  R† for each energy group  g  located in region  Υj  due to a source of neutral particles  Q  within a limited region  x 0  < x < xf

− (x

− (x

 G

 N



 G

 N



! 

0− λj )

 f − λj ) ! 

 j

 j

 j,g

 j

 j

 j

 ξ

 ξ

 R† =

×

 ng 

−

 ng 

 g

 β

 Q

 e

 e

 ng   ξng 

 g    a†

 mg    (ξng   ) ωm

 g =1  n=1

 g  =1  m=1

 G

 N



+

 j

†  P , g

 (xf −  xo)

 Qg    ψg  

 ωm , g = 1 :  G , 

(9.7)

 g  =1  m=1
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 j,g

where the quantities  βng  are calculated by using the spatial reconstruction scheme for the SGF† solution described in the previous section; also  λj =  xf  and  λj =  x 0

for  ξ <  0 and  ξ >  0, respectively. Once we obtain the adjoint flux distribution and we know the detector response  R† g, it is possible to calculate the intensity of the source  Q  for each energy group  g  by solving the system of  G  linear equations represented in Eq. (9.7), which, in matrix form, appears as

M Q = R†  , 

where M is the coefficient matrix of vector Q in Eq. (9.7) and R† is the vector whose entries are the multigroup detector responses due to interior source distribution. 

An analogous procedure allows to determine the intensities of the sources located

on one boundary of the domain. At this point we rewrite Eq. (9.2), only considering the terms corresponding to the prescribed boundary conditions, as indicated by the

superscript  BC

 G

 N/ 2



 G



 N



†  g

†  g

 R†  BC =

|

 g

 μn ωn ψ

 μ

 ng   ( 0 ) 

 ψg  ( 0 ) +

 n|  ωn ψng   (H ) 

 ψg  (H ) , 

 g =1  n=1

 g =1  n=  N +1

2

 g = 1 :  G . 

(9.8)

For either left or right boundary, we consider the first or second term on the right-hand side of Eq. (9.8), which can be represented in matrix form as M u 

 Ψ (u) = R† u . 

Here  u = 0 for the left boundary and  u =  H  for the right boundary, respectively; M u  is the coefficient matrix of vector 

 Ψ (u)  and R† u  is the vector whose entries are

the multigroup detector responses due to incident flux of particles in one boundary

of the slab. 

In the next section we solve a classical source detector model problem by using

the adjoint technique. First we solve the direct problem to determine the detector

response due to sources of neutral particles located in the interior of the domain and in one boundary. Then, we perform an inverse problem to estimate the intensity

of the sources to illustrate the application of the SGF† method in such type of

problems. 
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9.6

Numerical Examples

Let us consider a model problem consisting of a multilayer slab (Fig. 9.1), 20

energy groups and anisotropic scattering of order  L = 10. The total and scattering macroscopic cross sections can be found in references [GaSi83] and [CuEtAl18]. 

We set up two interior sources  Q 1 g  and  Q 2 g  located as illustrated in Fig. 9.1 and a unit isotropic source only in the first energy group as the prescribed left boundary condition. First we determine the response by a detector  Dg  located in the third region of the domain, as it is performed in the work by [CuEtAl18]. To solve the adjoint problem, the adjoint source is considered numerically equal to the

detector absorption macroscopic cross section for each energy group. We used the

 S 32 Gauss–Legendre angular quadrature set [LeMi93] and the stopping criterion for solving the direct problem required that the discrete maximum norm of the

relative deviation between two consecutive estimates for the region-average adjoint

scalar fluxes was less than 10−6. All numerical results were obtained by running a

computer code developed with the programming language  C++ Code::Blocks 13.12

 IDE. Table 9.1 shows the detector response for each energy group due to the two interior sources and the source located on the left boundary. 

Using the results from Table 9.1 it is possible to perform the numerical experiment consisting in determining the intensities of the sources of particles by

solving the inverse problem represented in Eqs. (9.7) and (9.8). In order to obtain the intensities of the interior sources  Q 1 g  and  Q 2 g, we solved two linear systems from Eq. (9.7) by forming the independent vector using the values of  R† 1

 g

and  R† 2

 g , 

respectively. Then, we solved the linear system from Eq. (9.8) considering only the first term on the right-hand side and defining the independent vector using the

 R†  LBC

 g

values. 

Table 9.2 shows the intensities of the sources of particles by solving the inverse problem. It is possible to observe that for the first energy group the results agree with the expected from the conditions in the Model Problem. On the other hand, for

the other energy groups, we observe numerical imprecision due to finite arithmetic. 

 ψmg (0) =  δ 1 ,g

 D

 Q 2

 ψ

 Q  1

 g = 2  δ

 g

1 ,g

 mg (20) = 0

 g =  δ 1 ,g

 μm >  0

 μ

0  Z

2

5

9

14

20 cm

 m <  0

1

 Z 2

 Z 3

 Z 4

 Z 5

 g = 1 :  G

 g = 1 :  G

Fig. 9.1 Slab for the model problem
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Table 9.1 Detector response for the model problem (cm−2 s−1) ( S 32) ( G = 20) Energy group

 R† 1 a

 g

 R† 2

 g

 R†  LBC

 g

1

1 .  0201 × 100

3 .  9029 × 10−1

9 .  4875 × 10−2

2

4 .  3265 × 10−2

2 .  1048 × 10−2

5 .  0325 × 10−3

3

3 .  1290 × 10−2

1 .  3183 × 10−2

3 .  4399 × 10−3

4

2 .  4644 × 10−2

9 .  7539 × 10−3

2 .  6023 × 10−3

5

1 .  8557 × 10−2

7 .  5262 × 10−3

2 .  0114 × 10−3

6

1 .  7897 × 10−2

6 .  8100 × 10−3

1 .  8127 × 10−3

7

1 .  5660 × 10−2

5 .  9077 × 10−3

1 .  5631 × 10−3

8

1 .  3986 × 10−2

5 .  2528 × 10−3

1 .  3816 × 10−3

9

1 .  2682 × 10−2

4 .  7526 × 10−3

1 .  2434 × 10−3

10

1 .  1370 × 10−2

4 .  2468 × 10−3

1 .  1172 × 10−3

11

1 .  0881 × 10−2

4 .  0715 × 10−3

1 .  0571 × 10−3

12

1 .  0148 × 10−2

3 .  7983 × 10−3

9 .  8246 × 10−4

13

9 .  5428 × 10−3

3 .  5736 × 10−3

9 .  2140 × 10−4

14

9 .  0360 × 10−3

3 .  3860 × 10−3

8 .  7060 × 10−4

15

8 .  6097 × 10−3

3 .  2286 × 10−3

8 .  2811 × 10−4

16

8 .  2527 × 10−3

3 .  0972 × 10−3

7 .  9266 × 10−4

17

7 .  9593 × 10−3

2 .  9894 × 10−3

7 .  6359 × 10−4

18

7 .  7295 × 10−3

2 .  9053 × 10−3

7 .  4082 × 10−4

19

7 .  5735 × 10−3

2 .  8489 × 10−3

7 .  2527 × 10−4

20

7 .  5280 × 10−3

2 .  8339 × 10−3

7 .  2042 × 10−4

a R† 1

 g ,  R† 2

 g

and  R†  LBC

 g

are the detector responses due to the sources  Q 1 g,  Q 2 g  and the prescribed left boundary condition, respectively

The higher imprecision values appear for the interior source  Q 2 g, which is located in a region more distant from the detector. We note that the determinant of the

coefficient matrix of each linear system in the inverse problem has a small value

very close to zero. Since the numerical values displayed in Table 9.2 were generated using  double  precision, we decided to improve the accuracy by using  long double precision and the results are displayed in Table 9.3. As we observe, the use of  long double  precision reduces the numerical imprecision in the results up to the order of 10−8. 

9.7

Conclusions and Perspectives

The solution of the adjoint transport equation gives the importance distribution of

neutral particles within the domain. In this chapter we have used the SGF† method to
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Table 9.2 Interior sources and prescribed boundary condition estimation (cm−3 s−1) from solving the inverse problem by using  double  precision

Energy group

 Q 1 g

 Q 2 g

 LBC

1

1 .  0000 × 100

2 .  0000 × 100

1 .  0000 × 100

2

1 .  7634 × 10−8

5 .  7664 × 10−8

8 .  2354 × 10−9

3

1 .  7044 × 10−8

−1 .  6843 × 10−8

−9 .  5094 × 10−9

4

8 .  8436 × 10−9

3 .  1717 × 10−7

1 .  2826 × 10−8

5

4 .  3494 × 10−9

−2 .  3686 × 10−8

−1 .  8759 × 10−8

6

9 .  1616 × 10−9

1 .  2000 × 10−7

1 .  0146 × 10−7

7

1 .  5998 × 10−8

4 .  6784 × 10−6

−1 .  3000 × 10−7

8

1 .  2149 × 10−8

1 .  4126 × 10−5

2 .  3886 × 10−7

9

1 .  2684 × 10−8

2 .  2510 × 10−5

1 .  7519 × 10−7

10

1 .  3279 × 10−9

7 .  7176 × 10−6

2 .  8223 × 10−7

11

1 .  0746 × 10−8

6 .  1387 × 10−4

1 .  4375 × 10−6

12

1 .  5123 × 10−8

2 .  1579 × 10−3

−7 .  9032 × 10−7

13

7 .  8770 × 10−9

−1 .  9296 × 10−3

−3 .  8905 × 10−7

14

8 .  6346 × 10−9

−7 .  2322 × 10−3

−2 .  2462 × 10−6

15

9 .  6922 × 10−9

3 .  3536 × 10−2

1 .  2142 × 10−6

16

1 .  0069 × 10−8

−4 .  7418 × 10−2

−6 .  2359 × 10−6

17

9 .  6819 × 10−9

3 .  7633 × 10−2

4 .  5428 × 10−6

18

6 .  1442 × 10−9

7 .  1690 × 10−2

−2 .  4602 × 10−7

19

7 .  0298 × 10−9

2 .  6944 × 100

8 .  9967 × 10−6

20

7 .  9253 × 10−9

1 .  3303 × 10−2

1 .  1664 × 10−5

numerically solve the adjoint multigroup slab-geometry  SN  equations. The coarse-mesh SGF† method generates numerical solutions that are completely free from

spatial truncation errors. Then, we used the analytical solution to solve inverse

source–detector problems in order to obtain the intensity of sources of particles, 

given their location and the detector responses. 

According to the numerical results to the inverse problem presented in the

previous section, we conclude that they are very sensitive to finite arithmetic

calculations. To remedy this drawback of the present methodology we used  long

 double  precision. 

We intend to apply the present adjoint technique to direct and inverse

energy multigroup source–detector problems in multidimensional rectangular

geometries. 
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Table 9.3 Interior sources and prescribed boundary condition estimation (cm−3 s−1) from solving the inverse problem by using  long double  precision

Energy group

 Q 1 g

 Q 2 g

 LBC

1

1 .  0000 × 100

2 .  0000 × 100

1 .  0000 × 100

2

−2 .  1118 × 10−17

0 .  0000 × 100

0 .  0000 × 100

3

0 .  0000 × 100

−1 .  4745 × 10−16

0 .  0000 × 100

4

6 .  5860 × 10−17

−2 .  2151 × 10−15

0 .  0000 × 100

5

−2 .  8303 × 10−17

1 .  1687 × 10−15

0 .  0000 × 100

6

2 .  5035 × 10−17

6 .  7542 × 10−15

0 .  0000 × 100

7

7 .  0931 × 10−18

−7 .  8302 × 10−14

0 .  0000 × 100

8

−2 .  7806 × 10−17

3 .  2497 × 10−13

0 .  0000 × 100

9

0 .  0000 × 100

−6 .  8479 × 10−13

0 .  0000 × 100

10

4 .  2348 × 10−18

6 .  2272 × 10−14

0 .  0000 × 100

11

1 .  0509 × 10−17

5 .  4287 × 10−12

0 .  0000 × 100

12

3 .  9706 × 10−17

−9 .  8525 × 10−12

0 .  0000 × 100

13

−1 .  2768 × 10−16

−9 .  8285 × 10−12

0 .  0000 × 100

14

−3 .  2371 × 10−17

−7 .  2851 × 10−11

0 .  0000 × 100

15

2 .  0556 × 10−17

−1 .  7133 × 10−10

0 .  0000 × 100

16

1 .  4415 × 10−17

1 .  2490 × 10−9

0 .  0000 × 100

17

7 .  5341 × 10−18

−1 .  0841 × 10−9

0 .  0000 × 100

18

−7 .  8197 × 10−18

−9 .  3299 × 10−9

0 .  0000 × 100

19

−3 .  6191 × 10−17

2 .  9434 × 10−8

0 .  0000 × 100

20

2 .  0379 × 10−17

−7 .  4047 × 10−8

0 .  0000 × 100
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Chapter 10

Relaxation of Periodic and Nonstandard

Growth Integrals by Means of Two-Scale

Convergence

Joel Fotso Tachago, Hubert Nnang, and Elvira Zappale

10.1

Introduction

In [F0Nn12], the authors extended the notion of two-scale convergence introduced by [Ng89] (see also [Al94, CiEtAl08, FoZa03, Vi06] among a wider literature for extensions and related notions) to the Orlicz-Sobolev setting and obtained, under

strict convexity assumption on  f  and suitable boundary conditions, the existence of a unique minimizer for a suitable limit functional as the limit of the minimizers of the original functionals

 f ( x , Du)dx  as  ε → 0. 

 Ω

 ε

In particular they proved (cf. [F0Nn12, Corollary 5.2]) that for every sequence (uε)ε ∈  W  1 LB(Ω; R )  such that  (Duε)ε  weakly 2 s-converges to D u 0 =  Du+ Dyu 1, where  u 0 =  (u, u 1 ) ∈  W  1 LB(Ω) ×  L 1 (Ω;  W  1 LB

 

per (Y )). Then









 x

 f (y,  D u 0 )dxdy ≤ lim inf

 f

 , Duε dx, 

(10.1)

 Ω× Y

 ε→0

 Ω

 ε

where  Y :=  ( 0 ,  1 )d ( d ∈ N) and D u 0 :=  Du+ Dyu 1 (see Sect. 10.2 for the notations adopted in this introduction). 
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On the other hand, by the very nature of two-scale converge they obtained, under

homogeneous boundary conditions on  ∂Ω, (the same proof can be performed for

any boundary conditions), for  u  and  u 1 regular, the existence of a suitable sequence (uε)ε ⊆  W  1 LB(Ω)  such that  uε  u, and the opposite inequality holds: x

lim

 f

 , Duε dx =

 f (y,  D u 0 )dxdy. 

 ε→0  Ω

 ε

 Ω× Y

Here, by means of two-scale convergence we aim to extend their result to any

couple of functions  u 0 ≡  u +  u 1 (or  (u, u 1 )) ∈  W  1 LB(Ω) ×  L 1 (Ω;  W  1 LB

 

per (Y )), 

and also to obtain an integral representation result for









/

 x

inf lim inf

 f

 , Duε dx :  uε  u  weakly in  W  1 LB(Ω) . 

 ε→0

 Ω

 ε

Indeed, after stating preliminary results in Sect. 10.2 on Orlicz-Sobolev spaces and homogenization theory, in Sect. 10.3 we will prove the following theorem: Theorem 1  Let Ω be a bounded open set with Lipschitz boundary and let f : Ω × R d → R  be a Carathéodory function such that

 f (x, · ) is convex for a.e.x ∈  Ω, 

 and there exist constants c, c   and C ∈ R+  such that for a.e. x ∈  Ω and every ξ ∈ R d , 

 cB  (| ξ | ) −  c  ≤  f (x, ξ ) ≤  C( 1 +  B(| ξ | ) (10.2)

 with B, B   equivalent N -functions which satisfy the (2  condition. Then, it results that for every u ∈  W  1 LB(Ω), 









 x

inf lim inf

 f

 , Duε dx :  uε  u

 ε→0

 Ω

 ε



 weakly in W  1 LB (Ω)

(10.3)









/

=

 x

inf lim sup

 f

 , Duε dx :  uε  u weakly in W  1 LB(Ω)

 ε→0

 Ω

 ε



=

 f hom (Du)dx, 

 Ω

 where f hom : R d → R  is the density defined by



/

 f hom (ξ ) := inf

 f (y, ξ +  Du)dy :  u ∈  W  1 LB per (Y ) . 

(10.4)

 Y
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We underline that the analysis presented in this paper holds also in the vectorial

case, i.e. fields  u ∈  W  1 LB(Ω; R m), with the exact same techniques, provided that f (x, · )  is convex. 

Furthermore, in order to prove (10.3), we also obtain for every  u 0 ∈  W  1 LB(Ω)×

 L 1 (Ω;  W  1 LB

 

per (Y )), the following two-scale representation:









/

 x

2 s

inf lim inf

 f

 , Duε dx :  uε  u 0

 ε→0

 Ω

 ε









/



=

 x

2 s

inf lim sup

 f

 , Duε dx :  uε  u 0 =

 f (y,  D u 0 )dxdy. 

 ε→0

 Ω

 ε

 Ω× Y

10.2

Preliminaries

This section is devoted to fix notation adopted in the sequel and state preliminary

results on Orlicz-Sobolev spaces and homogenization results that will be exploited

in the next section. For more details concerning these latter results, for the sake of brevity, we will refer directly to [F0Nn12]. 

 Ω ⊂ R d ( d ∈ N) denotes a bounded open set with Lipschitz boundary. 

 10.2.1

 Orlicz-Sobolev Spaces

Let  B : [0 , +∞[ → [0 , +∞[ be an  N-function as in [Ad75], i.e.,  B  is continuous, convex, with  B (t) >  0 for  t >  0 , B(t) → 0 as  t → 0 ,  and  B(t) → ∞ as  t → ∞ . 

 t

 t



Equivalently, 

 t

 B  is of the form  B (t) =

 b (τ ) dτ,  where  b : [0 , +∞[ →

0

[0 , +∞[ is non decreasing, right continuous, with  b ( 0 ) = 0 , b (t) >  0 if  t >  0

and  b (t) → +∞ if  t → +∞ .  We denote by 

 B,  the Fenchel’s conjugate, also

called the complementary  N -function of  B  defined by



 B(t ) = sup { st −  B (s)}  , t ≥ 0 . 

 s≥0

It can be proven that (see [F0Nn12, Lemma 2.1]) if  B  is an  N -function and ˜

 B  is its

conjugate, then for all  t >  0, it results

 t b (t) ≥ 1 (>  1 if  b  is strictly increasing ), 

 B (t)



 B (b (t)) ≤  tb (t) ≤  B ( 2 t) . 

An  N -function  B  is of class (2 (denoted  B ∈ (2) if there are  α >  0 and  t 0 ≥ 0

such that  B ( 2 t) ≤  αB (t)  for all  t ≥  t 0. 
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In all what follows  B  and 

 B  are conjugates  N -function s  satisfying the ((2)

condition and  c  refers to a constant that may vary from line to line. 





/

The Orlicz-space  LB (Ω) =  u :  Ω → C measurable, lim

 B (δ | u (x)| ) dx = 0

 Ω

 δ→0+

is a Banach space for the Luxemburg norm:









/

|



 u (x)|

 u B,Ω = inf  k >  0 :

 B

 dx ≤ 1  < +∞ . 

 Ω

 k

It follows that:  C∞

 c

 (Ω)  is dense in  LB (Ω) , LB (Ω)  is separable and reflexive, the





dual of  LB (Ω)  is identified with  LB (Ω) ,  and the norm induced on  LB (Ω)  as a dual space is equivalent to  . 

 . 

 B,Ω

Analogously one can define the Orlicz-Sobolev space as follows:



/

 W  1 LB (Ω) =  u ∈  LB (Ω) :  ∂u ∈  LB (Ω) ,  1 ≤  i ≤  d , 

 ∂xi

where derivatives are taken in the distrib

utional



sense on  Ω.  Endowed with the





norm  u

= 

 d

 W  1 LB (Ω)

 u B,Ω +

 ∂u 

 , u ∈  W  1 LB

 i=1

 (Ω) , W  1 LB (Ω)

 ∂xi B,Ω

is a reflexive Banach space. We denote by  W  1 LB (Ω) ,  the closure of  C∞

0

 c

 (Ω)  in





 W  1 LB (Ω)  and the semi-norm  u →  u

=  Du

 d

 ∂u 

 W  1 LB (Ω)

 B,Ω =

 i=1

0

 ∂xi B,Ω

is a norm on  W  1 LB (Ω)  equivalent to  . 

0

 W  1 LB (Ω) . 

 10.2.2

 Homogenization

In order to deal with periodic integrands we will adopt the following notation. 

Let  Y :=  ( 0 ,  1 )d . The letter  ε  throughout will denote a family of positive real numbers converging to 0. The set R dy  will denote R d, but the subscript  y  emphasizes the fact that this is the set where the space variable  y  is. We also define C per (Y ) = { v ∈  C( R dy) :  Y − periodic} , and

 LB

per (Y ) := { v ∈  LB

loc ( R N

 y ) :  Y − periodic} . 

Moreover we observe that  LB

per (Y )  is a Banach space under the Luxemburg norm

·  B,Y , and  C per (Y )  is dense in  LB per (Y ) (see [F0Nn12, Lemma 2.1]). 
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For  v ∈  LB per (Y )  let



 x

 vε(x) =  v

 , x ∈ R d . 

 ε

Given  v ∈  LB (Ω × R N

loc

 y )  and  ε >  0, we put





 x

 vε(x) =  v x, 

 , x ∈ R d  whenever it makes sense. 

 ε

We define the vector space

 LB (Ω ×  Y per ) := { u ∈  LB loc (Ω × R Ny ) : for a.e.  x ∈  Ω, u(x, · )  is  Y − periodic} . 

and observe that the embedding  LB (Ω, C per (Y )) →  LB(Ω ×  Y per )  is continuous. 

Moreover we will make use of the space



/

 ∂u

 W  1 LB

per (Y ) :=

 u ∈  W  1 LB loc ( R Ny ) :  u, 

 , i = 1 , . . . , N, Y − periodic

 ∂xi

where the derivative  ∂u  is taken in the distributional sense on R N

 ∂xi

 y , and we endow





it with the norm  u

= 

 N

 W  1 LB

 u B,Y +

 ∂u 

, which makes it a Banach

per

 i=1

 ∂xi B,Y

space. 

We also consider the space





/

 W  1

  LB

per (Y ) =

 u ∈  W  1 LB per (Y ) :

 u(y)dy = 0  , 

 Y

and we endow it with the gradient norm

 N







 ∂u

 u

=





 . 

 W  1 LB





 

per (Y )

 ∂xi

 i=1

 B,Y

Denoting by  C∞

per (Y )

=  C per (Y ) ∩  C∞ ( R N), and recalling that the space C∞  (Y ; R ) =

 u ∈  C∞

:  u(y)dy = 0 is dense in  W 1 LB

 ,  per

per (Y ; R ) Y

 

per (Y ), one

can deduce (cf. [F0Nn12]) the density of the embedding

 C∞

 c (Ω ; R ) ⊗  C∞

 ,  per (Y ; R ) ⊆  L 1 (Ω ;  W  1

  LB

per (Y )). 

(10.5)

In [F0Nn12] the notion of two-scale convergence introduced by [Ng89] and developed by [Al94] (see also, among a wide literature, [CiEtAl08, FoZa03, Ne, 

Vi06] for further developments and related notions like periodic unfolding method), has been extended to the Orlicz-Sobolev setting. 
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Definition 1 A sequence of functions  (uε)ε  in  LB (Ω)  is said to be:





– weakly two-scale convergent in  LB (Ω)  to a function  u 0 ∈  LB Ω ×  Y per if for every  ε → 0 ,  we have









 u

 B

 ε f ε dx →

 u 0 f dxdy,  for all  f ∈  L

 Ω;  Cper (Y )

(10.6)

 Ω

 Ω× Y





– strongly two-scale convergent in  LB (Ω)  to  u 0 ∈  LB Ω ×  Y per if for  η >  0 and f ∈  LB Ω;  Cper (Y )  verifying  u 0 −  f 

≤  η

 LB (Ω× Y )

there exist  ρ >  0 such

2

that  uε −  f ε

≤

 LB (Ω)

 η  for all 0  < ε ≤  ρ. 





2 s

When (10.6) happens for all  f ∈  LB Ω;  Cper (Y )  we denote it by “uε  u 0

2 s

in  LB (Ω)  weakly” or simply”  uε →  u 0 in  LB (Ω)  two-scale weakly” and we will say that  u 0 is the weak two-scale limit in  LB (Ω)  of the sequence  (uε)ε .  In order to denote strong two-scale convergence of  uε →  u 0 we adopt the symbol uε −  u 0

→

2 s− LB (Ω× Y )

0. 

The following result, whose proof can be found in [F0Nn12], allows to extend the notion of weak two-scale convergence at Orlicz-Sobolev functions, guaranteeing, at

the same time, a compactness result. 

Proposition 1  Let Ω be a bounded open set in  R d and let (uε)ε be bounded in W  1 LB (Ω) . There exist a subsequence, still denoted in the same way, and u ∈





 W  1 LB (Ω) , u 1 ∈  L 1  Ω;  W  1 LB

 such that:

#

per  (Y )

2 s

 (i) uε  u in LB (Ω), 

2 s

 (ii) Dx u  D u +  D u

 i

 ε

 xi

 yi  1  in LB (Ω ),  1 ≤  i ≤  d. 

In the sequel we denote by  u 0 (x, y)  the function  u(x) +  u 1 (x, y), and by D u 0 the vector  Du +  Dyu 1. 

For the sake of brevity, we cannot explicitly quote all the results used throughout

the paper but we will refer to [F0Nn12] for further necessary properties of Orlicz-Sobolev spaces, two-scale convergence and homogenization in the Orlicz setting. 

10.3

Proof of Theorem 1

This section is devoted to the proof of Theorem 1. To this aim recall the definition of  f hom given by (10.4). 

 Proof (of Theorem 1)  We start observing that the coercivity assumptions on  f , the compactness result, given by Proposition 1, and (10.1) guarantee that for every uε  u ∈  W  1 LB(Ω)









 x

lim inf

 f

 , Duε dx ≥

 f (y,  D u 0 )dxdy, 

(10.7)

 ε→0

 Ω

 ε

 Ω× Y
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where  u 0 (x, y) =  u(x) +  u 1 (x, y)  is the weak two-scale limit of  (uε)ε. Clearly passing to the infimum on both sides of Eq. (10.7), and recalling that D u 0 =  Du +

 Dyu 1 ,  we obtain









 x

inf lim inf

 f

 , Duε dx :  uε  u

 ε→0

 Ω

 ε



in  W  1 LB (Ω)



/

≥ inf

 f (y, Du +  Dyu 1 )dxdy :  u 1 ∈  L 1 (Ω;  W  1 LB per (Y )) Ω× Y



=

 f hom (Du)dx, 

 Ω

where one can replicate the same proof as [CiEtAl06, Lemma 2.2] replacing  t by 1 and  f 1 by  f hom in (10.4) therein and exploit the convexity of  f  to replace functions with null boundary datum on  ∂Y , with periodic ones (see also end of [Ne, 

Chapter 3]). 

The upper bound exploits an argument very similar to the one presented in [Ne], 

relying, in the present context, on the density result in (10.5). Indeed we can first observe that, as in [F0Nn12, Corollary 5.1] for any given  u ∈  C∞ (Ω)  and  φ 1 ∈





 C∞

 c (Ω ) ⊗  C∞

per (Y )  it results that, given  φε (x) :=  u(x) +  εφ 1  x, x ε









 x

lim

 f

 , Dφε(x) dx =

 f (y, Du +  Dyφ 1 (x, y))dxdy. 

(10.8)

 ε→0  Ω

 ε

 Ω× Y

On the other hand, given  u ∈  W  1 LB(Ω)  and  u 1 ∈  L 1 (Ω;  W  1 LB

 

per (Y )), (10.5)

guarantees that for each  δ >  0 we can find maps  uδ ∈  C∞ (Ω)  and  vδ ∈

 C∞

 c (Ω ;  C∞

per (Y )) (this latter with zero average) such that

 u −  uδ

+ 

≤

 W  1 LB (Ω)

 u 1 −  vδ L 1 (Ω;  W 1 LB

 δ

(10.9)

per (Y )

Next defining, for every  δ, and for every  x ∈  Ω, 

 uδ,ε(x) :=  uδ(x) +  εvεδ(x), 

one has









 x

 x

 Duδ,ε(x) =  Duδ(x) +  εDxvδ x, 

+  Dyvδ x, 

 . 

 ε

 ε

Clearly, as  ε → 0, it results

 uδ,ε →  uδ  in  LB(Ω), 

2 s

 Duδ,ε(x) →  Duδ(x) +  Dyvδ(x, y)  strongly in  LB(Ω ×  Y per ). 
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Now we define











 c









 δ,ε :=  uδ,ε −  u

+

−

 W  1 LB (Ω)

 Duδ,ε

 Du −  D

 , 

 LB (Ω)

 y u 1  LB(Ω× Y )

(10.10)

having the aim of constructing, via a diagonalizing argument, a sequence strongly

two-scale convergent to  u 0 =  u +  u 1. 

Thus, it is easily seen that

lim lim  cδ,ε = 0 , 

 δ→0  ε→0

which allows us to apply H. Attouch Diagonalization Lemma, thus detecting a

sequence  δ(ε) → 0 as  ε → 0, such that  cδ(ε),ε → 0 and  uδ(ε),ε →  u  in  LB(Ω), with

2 s

 Duδ(ε),ε(x) →  Du(x) +  Dyu 1 (x, y)  strongly in  LB(Ω ×  Y per ). 

This latter convergence and [F0Nn12, Remark 4.1] ensure that  Duδ(ε),ε  Du weakly in  LB (Ω), thus, (10.8), the continuity of  f  in the second variable, (10.2), 

guarantee that for every  u 1 ∈  L 1 (Ω;  W  1 LB

 

per (Y )), 









 x

lim

 f

 , Duδ(ε),ε dx =

 f (y, Du +  Dyu 1 (x, y))dxdy. 

 ε→0  Ω

 ε

 Ω× Y

as desired. 

Thus we can conclude that









/

 x

inf lim sup

 f

 , Duε dx :  uε  u  in  W  1 LB(Ω)

 ε→0

 Ω

 ε









≤

 x

lim

 f

 , Duδ(ε),ε dx ≤

 f (y, Du(x) +  Dyu 1 (x, y)dxdy. 

 ε→0  Ω

 ε

 Ω× Y

Hence









/

 x

inf lim sup

 f

 , Duε dx :  uε  u  in  W  1 ,B(Ω; R )

 ε→0

 Ω

 ε



/

≤ inf

 f (y, Du +  Dyu 1 )dxdy :  u 1 ∈  L 1 (Ω;  W  1 LB per (Y )) . 

 Ω× Y

This together with the last equality in (10.7) concludes the proof. 
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Chapter 11

A Stiff Problem: Stationary Waves

and Approximations

Delfina Gómez, Santiago Navazo-Esteban, 

and María-Eugenia Pérez-Martínez

11.1

Introduction and Statement of the Problem

In this paper we revisit a Stiff problem, cf. (11.7), widely studied in the literature of Applied Mathematics using different techniques. It deals with the asymptotic

behavior of the eigenvalues and eigenfunctions of a problem for the Laplace

operator posed in a domain  Ω  of R N : this domain is composed of two parts in which the stiffness constants are of different order of magnitude, namely,  O(ε)  and O( 1 ), respectively, where  ε  is a parameter  ε $ 1. Here, for each fixed  ε, we give explicit formulas for the eigenvalues and the eigenfunctions which extend those

in [Pe95, LoPe97] for the dimension 1 of the space, while, as  ε → 0, we provide approaches to solutions of the evolution problem (11.1) via “standing waves”. These approaches are valid for long times which can also be estimated in terms of the

parameter  ε (cf. (11.34), (11.35), (11.38) and (11.39)). Due to the estimates (11.8), 

the so-called  low frequencies  are the eigenvalues  λε  of (11.7) of order  O(ε), while the eigenvalues of order  O(εα)  for  α <  1 are referred to as the  high frequencies. 

We mention [Gi82, Li85, Pa80, SaSa89] for the asymptotic analysis of the low frequencies, as  ε → 0, and [LoSa80, LoPe97, GoBa00, LoEtAl03] for that of the high frequencies. See [LoEtAl05] and [BaGo10] in connection with the elasticity system and a four order differential operator with double contrasts, respectively. 

Let us consider  Ω  a bounded domain of R N ,  N ≥ 2 ,  with a Lipschitz boundary

 ∂Ω, divided into two parts  Ω 0 and  Ω 1 by the interface  Σ. Namely,  Ω =  Ω 0 ∪

 Ω 1 ∪  Σ, where  Ω 0 , Ω 1 ⊂ R N  are two bounded domains which have a Lipschitz boundary and such that  Ω 0 ∩  Ω 1 = ∅,  ∂Ω 0 ∩  ∂Ω 1 =  Σ = ∅, and  ∂Ω ∩  Σ = ∅ (cf. 

Fig. 11.1). 
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Fig. 11.1 A possible division

of the domain  Ω

Let us consider the vibration problem

⎧

⎪

⎪ u ε −  Δ

⎪

xu ε = 0

in  Ω 0 , t >  0 , 

⎪  tt

⎪

⎪

⎪ u ε −  εΔxu ε = 0

in  Ω 1 , t >  0 , 

⎪  tt

⎨ u ε = 0

on  ∂Ω,  t >  0 , 

⎪ u ε|

(11.1)

⎪

 ∂Ω

⎪

0∩ Σ = u ε | ∂Ω 1∩ Σ , 

 t >  0 , 





⎪

⎪  ∂u ε 

 ∂u ε 

⎪

⎪



=  ε



 t >  0 , 

⎪

⎩  ∂n ∂Ω 0∩ Σ

 ∂n ∂Ω 1∩ Σ

u ε(x ,  0 ) =  φ 0 (x ), u εt(x ,  0 ) =  φ 1 (x )  for x ∈  Ω, where  ε  is a small positive parameter that we shall make to go to zero, and  n  is the outward normal vector to  Ω 0 on  Σ. (11.1) models the vibration of a body occupying the domain  Ω, one part of which  Ω 0 is very stiff with respect to the other. 

For suitable initial data,  φ 0 ∈  H  1 (Ω)  and  φ

0

1 ∈  L 2 (Ω ), (11.1) admits a weak

formulation: find u ε(t)  with values in V such that





 d 2u ε , v

+  aε(u ε, v) = 0

∀ v ∈ V , 

 dt  2

 L 2 (Ω)

(11.2)

 du ε

u ε(x ,  0 ) =  φ 0 , 

 (x ,  0 ) =  φ 1 , 

 dt

where V =  H  1 (Ω), H =  L 2 (Ω), and

0





 aε(u, v) =

∇x u · ∇x v dx +  ε

∇x u · ∇x v dx

∀ u, v ∈ V . 

(11.3)

 Ω 0

 Ω 1

Fixed  ε >  0, as  aε  is a bilinear, symmetric, continuous and coercive form on V, (11.2) is a standard vibration problem in the space V , H, V ⊂ H with compact imbedding. As is well known, problem (11.2) has a unique solution u ε(t), du ε

u ε ∈  L∞ ( 0 , ∞; V ), 

∈  L∞ ( 0 , ∞; H ), 

 dt

11

Stationary Waves and Approximations

135

and it satisfies the conservation of the energy





 du ε

2

 aε(u ε(t ), u ε(t )) + 

 (t )

=  aε(φ 0 , φ 0 ) +  φ 12

 , 

∀ t ∈ R; 

 dt

 L 2 (Ω)

 L 2 (Ω)

(11.4)

see Section III.8 in [LiMa68], Sections I.6 and III.11 in [SaSa89] and Sections IV.5

and XII.3 in [Sa80] for the general theory. 

The spectral problem associated with (11.2) is: find  λε,  uε ∈ V,  uε ≡ 0 such that







∇x uε · ∇x v dx +  ε

∇x uε · ∇x v dx =  λε

 uεv dx

∀ v ∈ V . 

(11.5)

 Ω 0

 Ω 1

 Ω

Fixed  ε >  0, let us consider

0  < λε ≤ · · · ≤  λε ≤ · · ·  n→∞

−−−→ ∞

(11.6)

1

 n

the sequence of the eigenvalues, with the usual convention of the repeated eigenval-

ues. Let { uε }

 n n≥1 be the corresponding eigenfunctions, which are assumed to be an



orthonormal basis in  L 2 (Ω), i.e. 

 uε

 Ω

 muε

 nd x =  δm,n.  Problem (11.5) is a variational formulation of the problem

⎧

⎪

⎪ −

⎪  Δx uε =  λεuε

in  Ω 0 , 

⎪

⎪

⎪

⎨ − εΔx uε =  λεuε

in  Ω 1 , 

 uε = 0

on  ∂Ω, 

⎪

(11.7)

⎪

⎪

⎪  uε| ∂Ω

⎪

0∩ Σ =  uε | ∂Ω 1∩ Σ , 





⎪

⎩  ∂uε 

 ∂uε



=



 ε



 . 

 ∂n ∂Ω 0∩ Σ

 ∂n ∂Ω 1∩ Σ

The asymptotic behavior, as  ε → 0 ,  of the eigenvalues and the eigenfunctions of (11.5) has been widely studied with different techniques; see, for example, 

[SaSa89, LoPe97] and the references therein. We state here some bounds for the eigenvalues as well as the main convergence result for the  low frequencies, which will be useful throughout the work. 

Lemma 1  Let { λε }

 n n≥1  be the eigenvalues of (11.5) . For each fixed n ∈ N , we have Cε ≤  λε ≤

 n

 Cnε, 

(11.8)

 where C, Cn are constants independent of ε, C independent of n, and Cn → ∞  as n → ∞ . Moreover, for each n ∈ N , the values λεn/ε converge with conservation of the multiplicity, when ε → 0 , towards the eigenvalues λ∗ n of the Dirichlet problem

− Δx u =  λu in Ω 1 , 

(11.9)

 u = 0

 on ∂Ω 1 . 
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 The corresponding eigenfunctions uε



=

 n,  uε

 n L 2 (Ω)

1 , converge towards u∗ n in

 L 2 (Ω), where u∗ n is an eigenfunction associated with λ∗ n of problem (11.9) , u∗ n extended by  0  to Ω 0 . 

Let us notice that on the one hand, it has been shown in [Pe95, LoPe97] that in the simplest case of dimension  N = 1, it may be not easy to obtain explicit formulas for the eigenvalues and eigenfunctions of (11.7). Also, dealing with the dimension N = 1 and explicit computations, we refer to [GoEtAl98, CaEtAl05] for vibrating systems with concentrated masses. On the other hand, it is well known that, for

 φ 0 (x ) =  αuε(x ), and  φ

 (x ), where  α,  β ∈ R,  k  fixed and { λε

}

 k

1 (x ) =  βuεk

 n, uε

 n n≥1 are

the eigenelements of (11.7), the solution of (11.1) is the standing wave (

; 

; 

)

u ε(x , t) =  uε(x ) α  cos ( λεt) +  β

< sin ( λεt) . 

(11.10)

 k

 k

 λε

 k

 k

However, to consider the eigenfunctions (11.7),  uε(x ), as initial data in (11.1) may k

not be useful to localize certain kinds of vibrations such as those affecting only the less stiff part of the body, namely, localized in  Ω 1. 

In this way, the aim of this paper is double. First, for fixed  ε, we obtain explicit formulas for the eigenelements of (11.7) when  N ≥ 2 and a certain separation of variables is allowed. These formulas strongly depend on the range of variation of

the spectral parameter  λε (cf. Remark 1). Second, using the eigenfunctions of the Dirichlet problem (11.9) as initial data in (11.1), namely, for  φ 0 (x ) =  αu∗ (x ), and k

 φ 1 (x ) =  βu∗ (x )  we show that its solution can be approached by k

(

; 

; 

)

 u∗ k(x ) α  cos ( λ∗ εt) +

 β

< 

sin ( λ∗ εt)

(11.11)

 k

 λ∗ ε

 k

 k

for  t ≤  tε,k,  where  (λ∗ , u∗ )  is defined in Lemma 1, and  t k

 k

 ε,k  depends on  ε  and the

convergence rate of the eigenvalues (i.e., | λε − λ∗ ε|), and fixed  k,  t

∞. Note

 k

 k

 ε,k −−→

 ε→0

that, in this case, the solution (11.10) can also be approached by (11.11) for  t ≤  tε,k (cf. Theorems 1 and 2). In any case, the associated vibrations leave the stiffer part Ω 0 almost at rest. 

In order to approach the solutions of the evolution problem (11.1), we need to obtain improved convergence results for the eigenfunctions of (11.7) which somewhat implies obtaining convergence rates for the eigenfunctions in  Ω 0 (cf. 

Proposition 1). Then, we use the technique developed in [Pe08] within a general abstract framework for second order evolution problems, which among other things

imply using the energy conservation law (11.4). This technique can be applied in our problem to localize other kinds of vibrations associated with the high frequencies, 

for instance, those affecting the stiffer part of the body  Ω 0 (cf. Remark 2). In this connection, we obtain approaches to solutions via “standing waves” in which

the eigenfunction (cf. (11.10)) must be replaced by “groups of eigenfunctions” 

associated with eigenvalues  λε  in “small intervals”. In this connection, let us refer to
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[Pe08] and [LoPe10] for long time approximations for solutions of wave equations via standing waves for vibrating systems with concentrated masses or for a Steklov

problem, respectively. 

11.2

Some Explicit Computations for Standing Waves

When the domains  Ω 0 and  Ω 1 appearing in (11.1) and (11.7) are such that a separation of variables can be performed, and  ε  is fixed, some explicit computations can be performed. This is the case when  Ω,  Ω 0, and  Ω 1 are prisms in R N . See

[Pe95, LoPe97] to compare with the explicit computations of the eigenelements of (11.7) when  N = 1. 

In this section, we write the main formulas for the dimension  N = 2, and

extend the results for the dimension  N >  2. The computations become much more complicated than when  N = 1 and, for the sake of simplicity, when  N = 2, we take  Ω 0 =  (−1 ,  0 ) ×  ( 0 ,  1 ),  Ω 1 =  ( 0 ,  1 ) ×  ( 0 ,  1 )  while, for  N >  2, we consider Ω 0 =  (−1 ,  0 ) × ˜

 Ω,  Ω 1 =  ( 0 ,  1 ) × ˜

 Ω, with ˜

 Ω  a bounded domain of R N−1. 

 11.2.1

 Results for the Dimension N = 2

Let us consider problems (11.1) and (11.7) where  Ω 0 =  (−1 ,  0 ) ×  ( 0 ,  1 ),  Ω 1 =

 ( 0 ,  1 )× ( 0 ,  1 ),  Ω =  (−1 ,  1 )× ( 0 ,  1 ), x =  (x, y) ∈ R2. Using separation of variables, we look for the eigenelements  (λε, uε)  of (11.7) in the form uε(x, y) =  Xε(x)Y ε(y). 

(11.12)

Replacing (11.12) in (11.7) we get

⎧

⎪

⎪  Xε   (x)

− Y ε   (y)

⎪

⎪

+  λε =

=  με  for  (x, y) ∈  Ω

⎪

0 , 

⎪

⎪  Xε(x)

 Y ε(y)

⎪

⎨  Xε   (x)

−

+  λε =  Y ε   (y) = ˆ με  for  (x, y) ∈  Ω 1 , 

⎪  Xε(x)

 ε

 Y ε(y)

(11.13)

⎪

⎪

⎪

⎪  Xε(−1 ) =  Xε( 1 ) = 0 , 

 Y ε( 0 ) =  Y ε( 1 ) = 0 , 

⎪

⎪

⎪

⎩  Xε( 0− )Y ε(y) =  Xε( 0+ )Y ε(y)  for  y ∈  ( 0 ,  1 ), Xε  ( 0− )Y ε(y) =  εXε  ( 0+ )Y ε(y)  for  y ∈  ( 0 ,  1 ), where  με  and ˆ

 με  are constants to be determined. It is easy to check that the only

values  με  and ˆ

 με  satisfying (11.13) with  uε(x, y) =  Xε(x)Y ε(y) ≡ 0 are με = ˆ

 με =  j  2 π 2 ,  with  j ∈ N , 

(11.14)

 j

 j
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and, consequently, 

 Y ε(y) = sin (j πy)  for  y ∈  ( 0 ,  1 ). 

(11.15)

 j

Thus, for  j ∈ N fixed,  (λε, Xε)  verify

⎧

⎪

⎪  Xε   (x) =  (j 2 π 2 −  λε)Xε(x)

for  x ∈  (−1 ,  0 ), 

⎪

⎪





⎨  Xε   (x) =  j 2 π 2 −  λε Xε(x)  for  x ∈  ( 0 ,  1 ), 

⎪

 ε

(11.16)

⎪

⎪

⎪

⎩  Xε( 0− ) =  Xε( 0+ ), 

 Xε  ( 0− ) =  εXε  ( 0+ ), 

 Xε(−1 ) =  Xε( 1 ) = 0 . 

For 0  < ε <  1 and  j ∈ N fixed, we distinguish five cases depending on the value of  λε; 0  < λε < εj  2 π  2,  λε =  εj  2 π 2 , εj  2 π 2  < λε < j  2 π 2,  λε =  j  2 π 2 and λε > j  2 π  2. We analyze the different cases. 

Cases I and II:

It is easy to check that in the two first cases, i.e., 0  < λε < εj  2 π  2

or  λε =  εj  2 π 2 ,  the only function satisfying (11.16) is  Xε ≡ 0 and there are no eigenfunctions of (11.7) in the form (11.12) for  λε ≤  εj  2 π 2 and  j ∈ N. 

Case III:

If  εj  2 π  2  < λε < j  2 π  2 with  j ∈ N fixed, it can be proved that only the values  λ  roots of the equation

; 



(" 

) =

(" 

)

 λ

 j  2 π  2 −  λ

 λ

tanh

 j  2 π  2 −  λ  cos

−  j 2 π 2 +

sin

−  j 2 π 2 = 0 , 

 ε

 ελ −  ε 2 j  2 π 2

 ε

(11.17)

verify (11.16) with  Xε ≡ 0. Moreover, in this case

⎧

< 



< 



⎪

⎪

⎪ tanh

 j  2 π  2 −  λ  cosh

 j  2 π  2 −  λx

⎪

⎪

⎪

< 



⎪

⎪

⎪ + sinh

 j  2 π  2 −  λx

for  x ∈  (−1 ,  0 ), 

⎪

⎨



(

)

< 



"  λ

 Xε(x) =

 j

⎪ tanh


 j  2 π  2 −  λ  cos

−  j 2 π 2 x

⎪

⎪

⎪

 ε

⎪

⎪ =

(

)

⎪

" 

⎪

⎪

⎪

 j  2 π  2 −  λ

 λ

⎩ +

sin

−  j 2 π 2 x

for  x ∈  ( 0 ,  1 ). 

 ελ −  ε 2 j  2 π 2

 ε

(11.18)

Thus, any  λ  root of (11.17),  λ ∈  (εj  2 π 2 , j  2 π 2 ), is an eigenvalue of (11.7) and the corresponding eigenfunction is

 uε (x, y) =  αεXε(x)  sin (j πy)

(11.19)

 j

 j

[image: Image 120]
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Fig. 11.2 Some examples of eigenfunctions of (11.7) in the ranges III, IV and V, respectively, for different values of  ε,  Ω 0 =  (−1 ,  0 ) ×  ( 0 ,  1 ),  Ω 1 =  ( 0 ,  1 ) ×  ( 0 ,  1 ). (a)  ε = 0 .  01;  λε ≈ 1 .  973289. 

(b)  ε ≈ 0 .  010094;  λε =  π 2. (c)  ε ≈ 0 .  091439;  λε ≈ 387 .  382

where  αε  is a constant such that  uε 

= 1, and  Xε  is given by (11.18); see, 

 j L 2 (Ω)

 j

for example, Fig. 11.2a. 

(

)

< 

"  λε

Case V:

If  λε > j  2 π  2 with  j ∈ N fixed, and cos ( λε − j  2 π 2 )  cos

− j 2 π 2

 ε

= 0, simple calculations show that the values  λε  satisfying (11.16) with  Xε ≡ 0

are the roots of the equation

; 

; 

; 

"  λ

 ελ −  ε 2 j  2 π 2 tan ( λ −  j  2 π 2 )+  λ −  j  2 π 2 tan

−  j 2 π 2 = 0 , 

(11.20)

 ε
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and the corresponding functions are

⎧

< 



< 



⎪

⎪

⎪ tan

 λ −  j  2 π 2 cos

 λ −  j  2 π 2 x

⎪

⎪

⎪

< 



⎪

⎪

⎪ + sin

 λ −  j  2 π 2 x

for  x ∈  (−1 ,  0 ), 

⎪

⎨





(" 

)

˜

< 

 λ

 Xε(x) =

 j

⎪ tan

 λ −  j  2 π 2 cos

−  j 2 π 2 x

⎪

⎪

⎪

 ε

⎪

⎪ =

(

)

⎪

" 

⎪

⎪

⎪

 λ −  j  2 π 2

 λ

⎩ +

sin

−  j 2 π 2 x  for  x ∈  ( 0 ,  1 ). 

 ελ −  ε 2 j  2 π 2

 ε

(11.21)

Thus, any  λ  root of (11.20) with  λ > j  2 π  2 (recall  j ∈ N fixed) is an eigenvalue of (11.7) and the corresponding eigenfunction is

 uε (x, y) =  αε ˜

 Xε(x)  sin (j πy)

 j

 j

where  αε  is a constant such that  uε 

= 1, and ˜ Xε  is given by (11.21). 

 j L 2 (Ω)

 j

< 

We observe that the possible eigenvalues  λ =  λε  such that cos ( λε −  j  2 π 2 ) = 0

(" 

)

 λε

and cos

−  j 2 π 2 = 0, with  j ∈ N fixed, are not included in (11.20). 

 ε

Each one of these values,  λ =  j  2 π 2 +  ( 2 k+1 ) 2 π 2 and  λ =  εj  2 π 2 +  ε( 2 l+1 ) 2 π 2

4

4

with  k, l ∈ N0 ,  is an eigenvalue of (11.16) (and, consequently, of (11.7)) only for certain values of  ε; those of the sequence

 εk,l = 4 j  2 +  ( 2 k + 1 ) 2  , 

 k, l ∈ N0 , k < l. 

4 j  2 +  ( 2 l + 1 ) 2

In this case, the corresponding eigenfunctions are

⎧





⎪

⎪

 ( 2 k + 1 )π

⎪

⎪

⎨ cos

 x

for  x ∈  (−1 ,  0 ), 

˜

2

˜

⎛=

⎞

 Xε (x) =

(11.22)

 j,k

⎪

⎪

 j  2 +  (  2 k+1  ) 2

⎪

⎪

⎝

2

⎠

⎩ cos

−  j 2 πx  for  x ∈  ( 0 ,  1 ), 

 ε

and

 uε (x, y) =  αε ˜˜

 Xε (x)  sin (j πy), 

 j,k

 j,k

˜

respectively, where  αε  is a constant such that  uε 

= 1, and ˜ Xε  is given

 j,k L 2 (Ω)

 j,k

by (11.22); see, for example, Fig. 11.2c where  j = 3 , k = 5 , l = 20. 
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Case IV:

Finally, we note that the values  λε =  j  2 π 2 with  j ∈ N fixed, are eigenvalues of (11.16) (and, hence of (11.7)) only for certain values of  ε  which are the roots of the equation

⎛=

⎞

⎛=

⎞

 j  2 π  2

 j  2 π  2

< 

sin ⎝

−  j 2 π 2⎠ + cos ⎝

−  j 2 π 2⎠  jπ ε −  ε 2 = 0 . 

 ε

 ε

In this case, the corresponding eigenfunctions are

⎧

√

⎪

⎪

⎪  jπ ε −  ε 2 ( 1 +  x)

for  x ∈  (−1 ,  0 ), 

⎪

⎛=

⎞

⎪

⎪

⎪

⎪

√

⎨

⎝  j 2 π 2 −

⎠

˜

 j π

 ε −  ε 2 cos

 j  2 π  2 x

˜ Xε (x) =

 ε

 j,  0

⎪

⎪

⎛=

⎞

⎪

⎪

⎪

⎪

⎪

 j  2 π  2

⎪

⎝

⎠

⎩ + sin

−  j 2 π 2 x

for  x ∈  ( 0 ,  1 ). 

 ε

(11.23)

and

 uε (x, y) =  αε ˜˜

 Xε (x)  sin (j πy), 

(11.24)

 j,  0

 j,  0

˜

respectively, where  αε  is a constant such that  uε 

= 1, and ˜ Xε  is given

 j,  0  L 2 (Ω)

 j,  0

by (11.23); see, for example, Fig. 11.2b. 

Once the eigenelements of (11.7) are determined, we get the standing waves



√

√



u ε(x, y, t) =  Xε(x)  sin (j πy) α  cos ( λεt) +  β

√ sin ( λεt) , 

 λε

where  α, β ∈ R,  Xε  is defined by (11.18), (11.21), (11.22) or (11.23) and  λε  is the corresponding eigenvalue (root of (11.17), (11.20),  λ =  j  2 π 2 +  ( 2 k+1 ) 2 π 2 or 4

 λ =  j  2 π 2, respectively). 

 Remark 1  Note that with the explicit formulas we do not determine the eigenvalues ordered as in the sequence (11.6). However, the low frequencies belong to the range III and Fig. 11.2a illustrates that the eigenfunctions almost vanish in the stiffer part. 

 Remark 2  Note that Fig. 11.2c shows the graphic of an eigenfunction associated with a  high frequency  and, further specifying, with an eigenvalue  λε  which coincides with an eigenvalue of the following problem in  Ω 0. 
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⎧

⎪

⎪

⎨ − Δx u =  λu  in  Ω 0 , 

 u = 0

on  ∂Ω 0 \  Σ, 

⎪

⎪

⎩  ∂u = 0

on  Σ. 

 ∂n

This is in good agreement with the results obtained in [LoPe97] for the high frequencies. In this case, for certain sequences of  ε, the associated eigenfunctions are far from vanishing in  Ω 0. This does not happen with the eigenfunctions

in Fig. 11.2a, b, which vanish asymptotically in  Ω 0, as it can be verified in formulas (11.18)–(11.19) and (11.23)–(11.24), respectively. 

 11.2.2

 Results for the Dimension N > 2

The explicit computations performed in Sect. 11.2.1 for dimension  N = 2 can be extended for  N >  2 when the domains  Ω 0 , Ω 1 are defined by  Ω 0 =  (−1 ,  0 ) × ˜

 Ω, 

 Ω 1 =  ( 0 ,  1 ) × ˜

 Ω, respectively, where ˜

 Ω  is a bounded domain of R N−1; we briefly

outline the main differences here. 

Using separation of variables, we look for the eigenelements  (λε, uε)  of (11.7)

in the form

 uε(x ) =  Xε(x)Y ε(y ). 

(11.25)

where x =  (x, y )  with  x ∈ R and y =  (x 2 , · · ·  , xN ) ∈ R N−1. Replacing (11.25)

in (11.7) we get

⎧

⎪

⎪  Xε   (x)

− Δ

⎪

y Y ε (y )

⎪

+  λε =

=  με  for  (x, y ) ∈  Ω

⎪

0 , 

⎪

⎪  Xε(x)

 Y ε(y )

⎪

⎨  Xε   (x)

− Δ

+  λε =

y Y ε (y ) = ˆ με  for  (x, y ) ∈  Ω 1 , 

⎪  Xε(x)

 ε

 Y ε(y )

(11.26)

⎪

⎪

⎪

⎪  Xε(−1 ) =  Xε( 1 ) = 0 , 

 Y ε = 0

on  ∂ ˜

 Ω, 

⎪

⎪

⎪

⎩  Xε( 0− )Y ε(y ) =  Xε( 0+ )Y ε(y ) for y ∈ ˜

 Ω, 

 Xε  ( 0− )Y ε(y ) =  εXε  ( 0+ )Y ε(y ) for y ∈ ˜

 Ω, 

where  με  and ˆ

 με  are constants to be determined. It is easy to check that the only

values  με  and ˆ

 με  satisfying (11.26) with  uε(x ) =  Xε(x)Y ε(y ) ≡ 0 are  με = ˆ

 με =

 μ  the eigenvalues of the Dirichlet problem

− Δy Y =  μY  in ˜ Ω, 

(11.27)

 Y = 0

on  ∂ ˜

 Ω. 
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Let us denote by 0  < μ 1 ≤  μ 2 ≤ · · · ≤  μj ≤ · · · −−−→ ∞ the sequence of j →∞

the eigenvalues of (11.27) and let { Yj (y )} j≥1 be the corresponding eigenfunctions, which are assumed to be an orthonormal basis in  L 2 ( ˜

 Ω). Thus, for  j ∈ N

fixed,  (λε, Xε)  verify (11.16) replacing  j  2 π  2 by the eigenvalues  μj  of (11.27). 

Consequently, the different expressions obtained in Sect. 11.2.1 for  Xε,  uε  and u ε

in the two-dimensional case are also valid for  N >  2 replacing the values  j  2 π  2

and the functions sin (j πy) (cf. (11.14) and (11.15)) by the eigenvalues  μj  and the corresponding eigenfunctions  Yj (y )  of (11.27), respectively. 

11.3

On Approaches to Solutions of the Evolution Problem

In this section we use the convergence result for the low frequencies of prob-

lem (11.7) (cf. Lemma 1 and Proposition 1) to get some approaches by standing waves for certain solutions of the evolution problem (11.1). We also provide estimates for the time  t  in which these standing waves approach their solutions as ε → 0 . 

First, we introduce the following result which improves the convergence given in

Lemma 1. 

Proposition 1  Let { λε

}

 n, uε

 n n≥1

 be the eigenelements of

(11.5)  such that

 uε

=

 n L 2 (Ω)

1 . Then, for each fixed n ∈ N , uεn converges towards u∗ n in H  1 (Ω), 0

 as ε → 0 , where u∗ n is an eigenfunction associated with the n-th eigenvalue λ∗ n of problem (11.9) , u∗ n extended by  0  to Ω 0 . Moreover, 1 ∇ uε 2

→ 0  as ε → 0 . 

(11.28)

 ε

 n L 2 (Ω 0 )

 Proof  Taking into account (11.5) for  λε =  λεn,  uε =  uεn, and  v =  uεn, the normalization of  uεn  and estimate (11.8), we get

∇ uε 2

+

2

=  2

≤

 n

 ε∇ uε

 λε uε

 C

 L 2 (Ω

 n

 n

 n

 nε, 

(11.29)

0 )

 L 2 (Ω 1 )

 L 2 (Ω)

where  Cn  is a constant independent of  ε. Then, fixed  n, there exists a subsequence, still denoted by  ε, such that  uεn  converges towards  u∗ weakly in  H  1 (Ω), for some 0

 u∗ ∈  H  1 (Ω).  By Lemma 1,  u∗ =  u∗

0

 n, where  u∗

 n  is an eigenfunction associated with

the  n-th eigenvalue  λ∗ n  of problem (11.9),  u∗ n  extended by 0 to  Ω 0. By (11.29), it is clear that ∇ uε  2

→

 n

0 as  ε → 0 and, consequently,  uε

 L 2 (Ω

 n  converges towards

0 )

zero strongly in  H  1 (Ω 0 ). Thus, if we prove that

∇ uε 2

→ ∇ 2

 n

 u∗

as  ε → 0 , 

(11.30)

 L 2 (Ω

 n

1 )

 L 2 (Ω 1 )

the strong convergence of  uεn  towards  u∗ n  in  H  1 (Ω)  follows. 

0
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Let us prove (11.30). Since  uεn  converges towards  u∗ n  weakly in  H  1 (Ω), as 0

 ε → 0, 

∇ u∗2

≤

2

 n

lim inf

 . 

(11.31)

 L 2 (Ω)

 ε→0∇ uεn L 2 (Ω)

Besides, from (11.5) for  λε =  λεn,  uε =  uεn  and  v =  uεn/ε, and Lemma 1, we get

∇ uε 2

≤ 1∇ 2

+ ∇ 2

=  λεn  2

−−→  2

 n

 uε

 uε

 uε

 λ∗  u∗

 L 2 (Ω)

 ε

 n L 2 (Ω

 n

 n

 n

 n

0 )

 L 2 (Ω 1 )

 ε

 L 2 (Ω) ε→0

 L 2 (Ω)

(11.32)

and, using the fact that  u∗ n  is an eigenfunction associated with  λ∗ n  of problem (11.9), 

 u∗ n  extended by 0 to  Ω 0, yields

 λ∗ 2

=  2

= ∇ 2

= ∇ 2

 n u∗

 n

 λ∗  u∗

 u∗

 u∗

 . 

(11.33)

 L 2 (Ω)

 n

 n L 2 (Ω

 n

 n

1 )

 L 2 (Ω 1 )

 L 2 (Ω)

Consequently, gathering (11.31), (11.32), and (11.33), we conclude (11.30). 

Finally, we observe that the proof of (11.28) is included in the proof of (11.30). 

Indeed, by (11.32), (11.30), and (11.33), we have 1 ∇ uε 2

=  λεn  uε 2

− ∇ uε 2

−−→ 0 , 

 ε

 n L 2 (Ω

 n

 n

0 )

 ε

 L 2 (Ω)

 L 2 (Ω 1 ) ε→0

which concludes the proof. 

Theorem 1  Let (λ∗ , u∗ ) be an eigenelement of (11.9) , u∗  extended by zero to Ω

 k

 k

 k

0 . 

 Let U ε be the solution of (11.1)  for (φ 0 , φ 1 ) =  (u∗ ,  0 ). Then, for t >  0  and ε small k

 enough



; 





; 

; 











U ε(t) −  u∗

≤



−



 k  cos (

 λ∗ ε t )

 Cε 1 / 2  δ

 λε

 λ∗ ε t , 

(11.34)

 k

 ε +

 k

 k

 ε



; 

; 



; 

; 



 dU ε









 (t ) +

 λ∗ εu∗

 λ∗ ε t )

≤  Cε 1 / 2 δε +  C  λε −  λ∗ ε ( 1 +  ε 1 / 2 t), dt

 k

 k  sin (

 k



 k

 k

 L 2 (Ω)

(11.35)

 where C is a constant that may depend on (λ∗ , u∗ ) but is independent of ε and t, δ

 k

 k

 ε is

 a constant that converges towards zero as ε → 0 , and  ·  ε is the norm associated

√

 with the scalar product aε(· , · ) defined by (11.3) . In particular, if t ≤  O( 1 / ε), we have
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; 



∇





U ε(t)

+

→

 L 2 (Ω

∇ U ε(t) −  u∗

 λ∗ ε t ) 

0 , 

 as ε → 0 , 

0 )

 k  cos (

 k

 L 2 (Ω 1 )

(11.36)







; 

; 



 dU ε



 dU ε





 (t )

+ 

 (t ) +

 λ∗ εu∗

 λ∗ ε t )

→ 0 , as ε → 0 . 

 dt





 k

 k  sin (

 k



 L 2 (Ω

 dt

0 )

 L 2 (Ω 1 )

(11.37)

 Proof  Let u ε  be the solution of (11.1) for  (φ 0 , φ 1 ) =  (uε,  0 ). It is clear that u ε =

 k

< 

 uε  cos ( λεt).  Thus, 

 k

 k



; 





; 











U ε(t) −  u∗

≤

−  



 k  cos (

 λ∗ ε t )

U ε − u ε

 u∗

cos ( λεt)

 k

 ε +  uεk

 k ε

 k

 ε



; 

; 



+ 





 u∗ 



 k ε  cos (

 λεt ) − cos ( λ∗ εt) . 

 k

 k

Now, using Eq. (11.4) for  (φ 0 , φ 1 ) =  (u∗ −  uε,  0 ), the definition of  · 

 k

 k

 ε , and the

fact that  u∗ = 0 in  Ω

 k

0, we get



; 





; 

; 











U ε(t) −  u∗

≤

− 





 k  cos (

 λ∗ ε t )

2 uε

 u∗

cos ( λεt) − cos ( λ∗ εt)

 k

 k

 k ε +  u∗

 k ε

 k

 k

 ε

≤2 (∇ uε 2

+  ε∇ (uε −  u∗

 ) 1 / 2

 k L 2 (Ω

 k ) 2

0 )

 k

 L 2 (Ω 1 )



; 

; 



+





 ε 1 / 2∇ u∗





 k L 2 (Ω

cos ( λεt) − cos ( λ∗ εt) . 

1 )

 k

 k

Thus, by Proposition 1, (11.34) holds. 

Similarly, we can write



; 

; 







 dU ε



 d(U ε − u ε)



 (t ) +

 λ∗ εu∗

 λ∗ ε t )

≤ 



 dt

 k

 k  sin (

 k







 L 2 (Ω)

 dt

 L 2 (Ω)

; 

; 



; 

; 



; 



+ 











 uε −  u∗

 λε sin ( λεt) +  u∗

 λε −  λ∗ ε sin ( λεt)

 k

 k L 2 (Ω)

 k

 k

 k L 2 (Ω)

 k

 k

 k

; 



; 

; 



+ 





 u∗





 k L 2 (Ω)

 λ∗ ε  sin ( λεt) − sin ( λ∗ εt) , 

 k

 k

 k

and using (11.4) for  (φ 0 , φ 1 ) =  (u∗ −  uε,  0 ), (11.8), the definition of  · 

 k

 k

 ε , and

Proposition 1, (11.35) holds. 

Finally, (11.36) and (11.37) is a direct consequence of (11.34) and (11.35) and the convergence of  λε/ε  to  λ∗ as  ε → 0 (cf. Lemma 1). 

 k

 k

Theorem 2  Let (λ∗ , u∗ ) be an eigenelement of (11.9) , u∗  extended by zero to Ω

 k

 k

 k

0 . 

 Let U ε be the solution of (11.1)  for (φ 0 , φ 1 ) =  ( 0 , u∗ ). Then, for t >  0  and ε small k

 enough
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; 



; 

; 











U ε(t) − 1

< 

 u∗

 λ∗ ε t ) ≤  δε +  C  λε −  λ∗ ε (ε−1 / 2 +  t), (11.38)

 λ∗ ε k  sin (

 k



 k

 k

 k

 ε



; 



; 

; 



 dU ε









 (t ) −  u∗

 λ∗ ε t )

≤  δε +  C  λε −  λ∗ ε t, 

(11.39)

 dt

 k  cos (

 k



 k

 k

 L 2 (Ω)

 where C is a constant that may depend on (λ∗ , u∗ ) but is independent of ε and t, δ

 k

 k

 ε

 is a constant that converges towards zero as ε → 0 , and · ε is the norm associated

√

 with the scalar product aε(· , · ) defined by (11.3) . In particular, if t ≤  O( 1 / ε), we have







; 





→

U ε(t) − 1

< 

 u∗

 λ∗ ε t )

0 , 

 as ε → 0 , 

(11.40)

 λ∗ ε k  sin (

 k



 k

 ε



; 



 dU ε





 (t ) −  u∗

 λ∗ ε t )

→ 0 , as ε → 0 . 

(11.41)

 dt

 k  cos (

 k

 L 2 (Ω)

 Proof  Let u ε  be the solution of (11.1) for  (φ 0 , φ 1 ) =  ( 0 , uε). It is clear that u ε =

 k

< 

1

√  uε  sin ( λεt).  Thus, 

 λε

 k

 k

 k







; 





; 





≤ 

−  



U ε(t) − 1

< 

 u∗

 λ∗ ε t )

U ε − u ε ε + 1

< 

 uε

 u∗  ε sin ( λεt)

 λ∗ ε k  sin (

 k



 λε

 k

 k

 k

 k

 ε

 k



;    ; 

; 



 u∗

+ 

1





 ε 



 u∗  < 

− 1

< 



+

 k

< 





 k ε 

sin ( λεt)

sin ( λεt) − sin ( λ∗ εt) . 

 λε

 λ∗ ε 

 k

 λ∗ ε

 k

 k

 k

 k

 k

Now, from (11.4) for  (φ 0 , φ 1 ) =  ( 0 , u∗ −  uε)  and (11.8), we get k

 k







; 







U ε(t) − 1

< 

 u∗

 λ∗ ε t ) ≤  uε −  u∗

+

− 

 L 2 (Ω)

 Cε−1 / 2 uε

 u∗  ε

 λ∗ ε k  sin (

 k



 k

 k

 k

 k

 k

 ε

; 

; 





; 

; 



+









 Cε−1 u∗ 

−

+





 k ε

 λε

 λ∗ ε

 Cε−1 / 2 u∗

sin ( λεt) − sin ( λ∗ εt) , 

 k

 k

 k ε

 k

 k

where  C  is a constant independent of  ε  and  t (but may depend on  k). Thus, using the definition of  ·  ε, the fact that  u∗ = 0 in  Ω

 k

0, and Proposition 1, (11.38) holds. 
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Similarly, we can write



; 







 dU ε



 d(U ε − u ε)



 (t ) −  u∗

 λ∗ ε t )

≤ 



 dt

 k  cos (

 k







 L 2 (Ω)

 dt

 L 2 (Ω)



; 





; 

; 



+ 









 uε −  u∗

cos ( λεt) +  u∗

cos ( λεt) − cos ( λ∗ εt) , 

 k

 k L 2 (Ω)

 k

 k L 2 (Ω)

 k

 k

and using (11.4) for  (φ 0 , φ 1 ) =  ( 0 , u∗ −  uε), and Proposition 1, (11.39) holds. 

 k

 k

Finally, (11.40) and (11.41) is a direct consequence of (11.38) and (11.39) and the convergence of  λε/ε  to  λ∗ as  ε → 0 (cf. Lemma 1). 

 k

 k
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Chapter 12

Modelling Creep in Concrete Under

a Variable External Load

Layal Hakim

12.1

Introduction

Fracture mechanics is a mature subject. It is an essential topic for understanding

and predicting the failure of buildings and machines. For many centuries, engineers

have been studying the durability of materials; the main approach for this is to

identify when failure will occur. This mainly concerns nucleation and propagation

of cracks in a body. Cracks appear or grow due to stresses caused by external forces. 

The external load applied on the material could cause a crack to initiate, or could

cause growth of an already existing crack and the presence of a crack could lead to

rupture when the crack propagates directly through the body. To predict the strength of the material and where fracture will occur, the local approach or the non-local

approach can be used. The local approach uses the stress (or stress history) at the

point where the crack appears, while the non-local approach uses not only the stress (history) at the point but also in the vicinity of that point. 

Creep is a time dependent permanent deformation of a solid material under the

influence of an external load. The long-term exposure of a material to high stress, 

and high temperature are the main reasons for creep to occur. Real life examples

such as steam turbine power plants, nuclear power plants, and heat exchangers are a

few examples where creep deformation is critical. Analysing the material behaviour

in such examples reduces the probability of manufacturing defects. Importantly

many real materials do not behave in a perfectly linear or idealised fashion and

issues such as creep, damage and time dependence contain open problems of high

relevance, where the assumptions used in linear elastic fracture mechanics do not

apply. In such cases, visco-elastic-plastic fracture mechanics has to be considered

instead. Cohesive Zone (CZ) models have been used as a tool to study the behaviour

of cracks in elasto-plastic materials. 
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Fig. 12.1 Cohesive zones

Assume we have a crack, of length ˆ a, present in a material. A CZ in a material is the region ahead of the crack tip, illustrated by the shaded area in Fig. 12.1. The CZ

tip coordinate is denoted by ˆ c. The material is subject to an external load ˆ q, however cohesive stresses ˆ σ  present at each CZ are opposing the effect of the external load, in the attempt to prevent crack growth. The crack tip opening, denoted by ˆ δ, increases with time as the CZ propagates. The Dugdale-Leonov-Panasyuk [Du60]

and [LePa59] model was the first model to consider perfectly plastic CZs in an elastic solid. In this model the stress acting on the CZs has the form ˆ σ =  σy, where σy  is a constant. Since this model was introduced in 1959, many other modifications and variations of this model have been introduced and used in many applications

in fracture mechanics. A contemporary example where CZ modelling is being used

is the modelling of wind turbine blades [NeEtAl12]. The rupture depends highly on the configuration of the crack tip as high local stress will lead to faster crack propagation. Generally, the three main components needed to study CZ models

of the nonlinear Dugdale-Leonov-Panasyuk type are (1) what are the constitutive

equations for the bulk of the material? (2) what is the criteria on the stress history on the CZ for the CZ to appear and propagate? (3) what is the criteria for the CZ to break and the crack to propagate? 

 12.1.1

 Objectives

The work carried out considers visco-elastic-plastic fracture mechanics while

incorporating a time and history dependent model. The essence of this objective

is to manifest the behaviour of real life materials. In this paper, we will give a
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modification of the classical Dugdale-Leonov-Panasyuk model and use it to study

the behaviour in the CZs and the rate of crack growth for the case of a time and

history dependent material. The results will be obtained for the case when the bulk

of the material is elastic, and when it is viscoelastic. For the viscoelastic case, we will consider using a creep function that models the behaviour of concrete materials as well as PMMA. The external load, denoted by ˆ q  in Fig. 12.1 generally depends on time. In this paper, we will extend cases implemented in the current literature

by taking other polynomial time-dependent external loads. Namely, in [HaMi18], 

a linear function ˆ q(t) =  t  was considered, here we will take ˆ q(t) =  tp  where α

 α





 p = 0 ,  1  ,  1 ,  3  ,  2 . 

2

2

12.2

Problem Formulation

A detailed formulation is given in [HaMi15] and [HaMi18] where the formulas for the normalisations can also be found. Here, we will give a brief summary of

the principal equations used in our model. We will replace the Dugdale-Leonov-

Panasyuk CZ condition ˆ σ =  σy  with the condition

 Λ(  ˆ σ ; ˆ t) = 1 , 

where  Λ(  ˆ σ ; ˆ t)  is the history-dependent normalised equivalent stress given by (



) 1

 β

ˆ t

 β

 β

 Λ(  ˆ σ ; ˆ t) =

| ˆ σ(  ˆ τ)| β( ˆ t − ˆ τ) −1

 b

 d  ˆ τ

(12.1)

 β

 bσ

0

0

where | ˆ σ | is the maximal principal stress, ˆ t  is time, and  σ 0,  β  and  b  are dimensionless material parameters. More details on the physical interpretation of these

parameters can be found in [MiNa11]. The parameters  σ 0 and  b  are material constants in the assumed power-type relation

− b

ˆ

ˆ σ

 t∞ (  ˆ σ ) =

(12.2)

 σ 0

between the physical rupture time ˆ t∞ and the constant uniaxial tensile stress ˆ σ

applied to a sample without cracks. The normalised equivalent stress given in

Eq. (12.1) was implemented in [HaMi11] and [MiNa03] where a crack growth problem was studied which does not assume the presence of a CZ. 

For the  constant loading  case, ˆ q( ˆ t) = ˆ q 0 is independent of time, and using Eq. (12.2) we obtain

− b

ˆ

ˆ q 0

 t∞ =

 . 

 σ 0
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Then we can introduce the normalised time, coordinate variable, crack tip coordi-

nate, CZ tip coordinate, and stress as follows:

ˆ t

ˆ x

ˆ a(t  ˆ t∞ )

ˆ c(t  ˆ t∞ )

ˆ σ (x  ˆ a 0 , t  ˆ t∞ )

 t = ˆ  , x =  , a(t) =

 , c(t ) =

 , σ (x, t ) =

 , 

 t∞

ˆ a 0

ˆ a 0

ˆ a 0

ˆ q 0

(12.3)

and the normalised external load becomes  q(t) = ˆ q( ˆ t)/  ˆ q 0 = 1. 

Now, we will introduce a time step denoted by  tc(x). This is the time when the point  x  becomes part of the CZ. Thus, preceding that step, the stress at those points, ahead of the CZ, are known. 

Equating Eq. (12.1) to 1, and splitting the integral into two parts—namely from τ = [0 , tc(x)] and  τ = [ tc(x), t], we arrive at the following CZ condition t

 t

 β

 c (x)

 β

 σ β (x, τ )(t −  τ ) −1

−1

 b

 dτ =  b −

 σ β (x, τ )(t −  τ ) b

 dτ

(12.4)

 t

 β

 c (x)

0

where we have used the normalisation formulas given in Eq. (12.3). Equation (12.4)

is an inhomogeneous nonlinear Volterra integral equation of the Abel type with

unknown function  σ (x, τ )  for  tc(x) ≤  τ ≤  t. 

The formula for the stress ahead of the CZ was obtained using the results

by Muskhelishvili [Mu54]. For an infinite elastic or viscoelastic plane under the traction  q(t)  at infinity, the normalised stress ahead of the CZ is given by (



< 

)

 c(t )

 c 2 (t ) −  ξ  2

 σ (x, t ) =

 x

< 

 q(t ) − 2

 σ (ξ, t )dξ

(12.5)

 x 2 −  c 2 (t)

 π

 a(t )

 x 2 −  ξ  2

for | x|  > c(t). 

A sufficient condition for the normalised equivalent stress,  Λ, to be bounded at the CZ tip is that the stress intensity factory is zero there. Denoted by  K, the normalised stress intensity factor is given by

" 

(



)

 c(t )

 c(t )

 σ (ξ, t )

 K(c(t ), t ) =

1 −

2

< 

 dξ

 . 

(12.6)

2

 π q(t ) a(t)

 c 2 (t ) −  ξ  2

While keeping the crack length  a(t)  as constant in time, we use Eqs. (12.4)–

(12.6) simultaneously to obtain the rate of the CZ. This was done by introducing a time mesh and solving Eq. (12.6) at each time step. The detailed steps of the algorithm used, as well as the solutions, are presented in [HaMi15] and [HaMi18]

where various sets of parameters were considered as well as an analysis of the

numerical solution indicating the robustness of our numerical method. 

Also using the representations by Muskhelishvili [Mu54], we deduce that the normalised crack opening in the elastic case is given by
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(

)

< 

 c(t)

[ ue(x;  t)] =  q(t)( 1 +  ) c(t) 2 −  x 2 + 1 +  

 σ (ξ, t )Γ (x, ξ ;  c(t))dξ

2 μ 0

2 π μ 0

 a(t )

where



< 



2 c 2 −  ξ  2 −  x 2 − 2  (c 2 −  x 2 )(c 2 −  ξ  2 ) Γ (x, ξ ;  c) = ln

< 

 . 

2 c 2 −  ξ  2 −  x 2 + 2  (c 2 −  x 2 )(c 2 −  ξ  2 ) Here,   =  ( 3 −  ν)/( 1 +  ν)  under the plane stress condition,  μ 0 =  E 0 /[2 ( 1 +  ν)]

is the shear modulus;  E 0 is Young’s modulus of elasticity and  ν  is Poisson’s ratio. 

The details of the derivation and normalisation can be found in [HaMi15]. 

Thus, the crack tip opening, for  x =  a(t)  in [ ue(x;  t)] is (

)

< 

 c(t)

 δe(t) = 1 +  

 q(t ) c 2 (t ) −  a 2 (t) + 1

 σ (ξ, t )Γ (a(t ), ξ, c(t ))dξ

 . 

2 μ 0

 π

 a(t )

In the case of having a viscoelastic material, we will replace 1 with a second

 μ 0

kind Volterra integral operator given by





 δv(t) =  μ−1 μ 0 δe (t)







 t

=  δ

˙

 e (t ) +

 J (t −  τ ) δe (τ ) dτ . 

(12.7)

0

In [HaMi15] and [HaMi18], we used the creep function of a polymer, to model creep in PMMA (also known as plexiglas)

˙ J (t −  τ) =  μ 0  e−1 (t− τ)

 θ

 , 

 η

where  J (t −  τ )  is the creep function of the material. Here,  θ  is the viscoelastic relaxation time with  η  denoting the viscosity. After normalisation, we have

< 

 c(t)

 δe(t) =

 c 2 (t ) −  a 2 (t) + 1

 σ (ξ, t )Γ (a(t ), ξ ;  c(t))dξ, 

 π

 a(t )

for the elastic case, and for the viscoelastic case we have

 t

 δv(t) =  δe(t) +  μ 0 t∞

 e−  t− τ

 θ

 δe(τ )dτ

(12.8)

 η

0

The results of the crack tip opening for both the elastic and viscoelastic cases

were obtained and presented in [HaMi15] and [HaMi18]. However, at a particular time, the crack will also start to propagate. This time is known as the delay time, 
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denoted by  td , and is reached when the critical crack tip opening reaches a critical value. For PMMA, we have used  δc = 1 .  13 which corresponds to the physical value of ˆ δc = 0 .  0016 mm. Therefore, during the crack propagation stage, we set δ =  δc  for  ti ≥  td , at each time step and iteratively solve the system of equations to obtain the rate of the CZ growth and the rate of the crack growth. In [HaMi15], 

solutions before crack growth started, and during crack growth, were obtained for

cases when the bulk of the material is elastic, and when the bulk of the material

is viscoelastic. For the viscoelastic case, we used the creep function for PMMA to

obtain the results. 

12.3

Viscoelastic Model Applied to Creeping Concrete

Many materials, such as concrete, exhibit creep visco-elastic behaviour, and time-

dependency of the stresses is a vital factor which should be taken into consideration. 

The first serious application of the theory of linear viscoelasticity was the study of creep in concrete. Proposed by Arutyunyan in 1952 [Ar52], the creep function in concrete can be modelled using the following equation



! 

˙

1

 J (t, τ ) =  ∂

+  C(t, τ)

 ∂τ

 E(τ )

where

 C(t, τ ) =  ϕ(τ )g(t −  τ ), 

where, on the basis of test results, [Ra69],  C(t, τ )  was given by g(t −  τ ) = 1 −  e−  t− τ

 θ

which models the viscoelastic behaviour of the non-ageing material, and

 ϕ(τ ) =  c 0 +  A 1

 τ

modelling the ageing effect of the concrete, where  θ, c 0 , A 1 are material constants. The creep function modelling concrete is of particular interest as it leads

to a non-convolution kernel for the viscoelastic operator, unlike the standard

creep functions used for polymers. The Arutyunyan model is a special case of

the time-variant Boltzmann’s model. A special case of the Arutyunyan model

is known as the Whitney-Dischinger Model. This model is referred to as the

time-variant Maxwell model since it can approximately interpret the creep of

concrete, and in this model,  c 0 = 0, [Ba66]. Substituting the creep function, 
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in the Whitney-Dischinger model, into Eq. (12.7), the expression for the viscoelastic crack tip opening, as given in Eq. (12.8) for PMMA, will now be given by

 t

 δv(t) =  δe(t) −  A 1 μ

 e−  τθ δe(τ )dτ

 θ

0

where  A 1 μ  is dimensionless. We will take the critical crack tip opening for θ

concrete to be  δc = 0 .  03 mm, see [WaEtAl11]. Furthermore, for this particular creep model, we have  A 1 = 1 , where  E

 E

0 is the effective basic creep modulus

0

for concrete, and occasionally referred to as Young’s modulus of concrete, see

[Ba66]. 

As well as on the age of concrete, Young’s modulus of elasticity, and hence

the viscosity depend highly on the composition of concrete, specifically on the

aggregate to water ratio. However, using approximate values of  E 0 = 30 GPa

and  μ = 12 .  7 GPa, and using experimental results such as in [CaEtAl97], with an external load of ˆ q = 50 MPa and an initial crack length of ˆ a 0 = 0 .  1 mm, we obtain ˆ t∞ ≈ 236 ,  637 h,  b ≈ 5, and  θ ≈ 3 .  15∗10−18. 

The numerical algorithms used here to solve the problems for PMMA and

concrete are given in Section 5.2 in [HaMi18], and the details of the algorithm are given therein (Fig. 12.2). 
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Fig. 12.2 Crack tip opening displacement vs. time for  b = 4
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Fig. 12.3 CZ length vs. time for  b = 4 (elastic)

 12.3.1

 Solutions

Here, we will present the solutions of the crack tip opening against time for the case b = 4 while comparing the results for PMMA and concrete. Shown in Figs. 12.3 and

12.4 is the evolution of the CZ with time. The maximum point of the curves indicates the points when the delay time is reached followed by the crack propagation stage. 

12.4

A Polynomial Function for the External Load

We will consider the case when the external load acts as a polynomial function in

time. Namely, when ˆ q( ˆ t) = ˙ q  ˆ tp, with  p ≥ 0 where ˙ q  is a constant. Let  t•∞ p denote the time when the CZ spreads over the infinite plane without crack, under the variable load ˆ q( ˆ t). We will find ˆ t•∞ p  by solving the following equation for ˆ t = ˆ tc ˆ t

 β

 bσ

˙

 β

 qβ

ˆ τpβ( ˆ t − ˆ τ) −1

0

 b

 d  ˆ τ =

 . 

(12.9)

0

 β

which was obtained form Eq. (12.4) for ˆ σ (  ˆ x,  ˆ τ) = ˆ q(  ˆ τ) = ˙ q  ˆ τp.  Solving Eq. (12.9)

for ˆ t = ˆ t•∞ gives



 b

ˆ

 σ 0

1+ pb

 t•∞ p =

 , 

(12.10)

˙ qαp
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Fig. 12.4 CZ length vs. time for  b = 4 (viscoelastic)

where

⎛

⎞−1 /β

 α

⎝

 b

⎠

 p :=





 , 

 β  B  β ,  1 +  β

 b

and B is the Beta-function. The load maximum, reached before rupture in the infinite

−1 /b

plane without a crack, is evidently ˆ q( ˆ t•∞

ˆ

 p ) = ˙

 q  ˆ t•∞ p. Also, let ˆ q 0 =  σ 0 t•∞ p denote the reference constant load under which the plane ruptures at time ˆ t•∞ p. 

Expressing ˙ q  and ˆ t•∞ p  in terms of ˆ q( ˆ t•∞ p)  and ˆ q 0 from these two equations and substituting them in Eq. (12.10), we obtain ˆ q 0 =  α  ˆ q( ˆ t•∞ p).  We will use the following normalised time, coordinate variable, crack tip coordinate, CZ tip

coordinate, and stress

ˆ t

ˆ tc

ˆ x

 t = ˆ  , tc =

 , 

 x =

 , 

 t•∞

ˆ

 p

 t•∞ p

ˆ a 0

ˆ a(t  ˆ t•∞ p)

ˆ c(t  ˆ t•∞ p)

ˆ σ(x  ˆ a 0 , t  ˆ t•∞ p)

 a(t ) =

 , 

 c(t ) =

 , 

 σ (x, t ) =

 , 

ˆ a 0

ˆ a 0

ˆ q 0

and the normalised external load becomes

ˆ q( ˆ t)

ˆ tp ˙ q

 t  ˆ t•∞ p ˙ q

 q(t ) =

=

=

=  tp . 

ˆ q 0

ˆ q 0

ˆ q 0

 αp
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 12.4.1

 Solutions

For the case when  p = 0 and  p = 1, the results were obtained and presented in

[HaMi18]. Here, we will consider other cases for  p, and collectively compare the solutions for  p = 0 ,  1  ,  1 ,  3  ,  2 . We present the solutions of the CZ tip coordinate 2

2

with time, before the crack propagation stage (Fig. 12.5), the crack tip opening displacement against time for PMMA and concrete (Figs. 12.6, 12.7, and 12.8), and the CZ length against time (Figs. 12.9, 12.10, 12.11, and 12.12). To demonstrate the results, we have taken  b = 4 and  β = 2. 
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Fig. 12.5 CZ tip coordinate vs. time

Fig. 12.6 Crack tip opening
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Fig. 12.7 Viscoelastic crack
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Fig. 12.8 Viscoelastic crack
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12.5

Conclusions and Ideas for Future Work

We can draw many conclusions form the findings. Similarly to PMMA, in a concrete

material, after the crack starts, the crack growth rate increases, while the CZ length decreases with time. The time when the CZ length becomes 0 coincides with the

time when the crack length becomes infinite and can be associated with the complete

fracture of the body. The delay time for a concrete material is less than that of a

polymer, which leads to faster rupture of the material. This is expected as concrete is very brittle and in most concrete structures, once the crack begins to grow, total failure occurs almost instantly. For both cases, PMMA and concrete, we can see
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Fig. 12.9 Elastic, PMMA
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Fig. 12.10 Viscoelastic, 
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that as the order, of the external load, increases, the delay time also increases, and the CZ decreases monotonically during the crack growth stage for all cases of the

external load considered. 

One of the main future goals is to compare our theoretical results with expe-

riential observations. We may need to make several assumptions in order to carry

out suitable experiments, since our CZ model contains many time and temperature


affected parameters which we assumed to be constant. However, comparing the

trend of the CZ length from experimental results may be adequate in confirming

that the CZ length does indeed decrease with time during the crack growth stage. 

Due to the composition of concrete, studying crack propagation leads to diffi-

culties as when the crack grows, it tends to pass through the interface between the
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Fig. 12.11 Elastic, concrete
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Fig. 12.12 Viscoelastic, 
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aggregate and the water-sand paste that is keeping the rock pieces together. Due

to the complexity of concrete, several other creep functions have been proposed, 

such as those proposed in [Ba88], where in some cases, experimental results were used to justify the theoretical behaviour of the crack. An interesting future goal is to implement our CZ model to study the behaviour of steel since this material has a

large plastic dominion so the deformation in the plastic region is more visible, both analytically and experimentally. 

As well as considering higher values of  p  for the order of the external load, it is also interesting to analyse a time and history dependent CZ model while considering

other time-dependent external loads. Such dependence of the variable load on time

could involve sinusoidal functions to demonstrate a periodic effect of the load on

the material. 
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Chapter 13

A Combined Boundary Element

and Finite Element Model of Cell Motion

due to Chemotaxis

Paul J. Harris

13.1

Introduction

It is well known that biological cells can secrete chemical signals, in the form of

proteins, into the fluid medium in which they are immersed in order to signal and

attract other nearby cells. A summary of the ways in which bacteria can secrete

proteins is given in [GrMe16]. When the cell is stationary the secreted chemical will spread out uniformly in all directions and this situation can mathematically

modeled using the standard diffusion equation. However if the cell is moving the

secreted chemical will move with the cell and the surrounding fluid. The work in this paper proposes a mathematical model based on coupling the convection–diffusion

equation for simulating how the secreted chemical spreads out from a cell with a

Stokes-flow model of fluid motion. 

The convection–diffusion equation (and the closely related convection–diffusion-

reaction equation) has been widely used to mathematically model and simulate

the behavior of biological systems (see [DeEtAl16, IsZa16, RiEtAl16] and the references therein for example). In particular, the diffusion–reaction equation has

been used to model how the concentrations of a type of cell change in response

to changes in the concentration of a chemical signal (Keller-Segel models, see

[ChEtAl12, GaZa98, KeSe71, LaSc74] and the references therein for example). 
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13.2

Mathematical Model

The main mathematical model presented in this paper consists of solving two

simultaneous and coupled problems: (1) the concentrations of the chemical secreted

from the cells and (2) the motion of the cells and fluid. Mathematically, the two

problems are coupled as a term depending on the velocity of the fluid appears in

the convection–diffusion equation for modelling the spread of the chemical, and the

cells experience as force that is proportional to gradient of the concentrations of the chemical which will influence their motion and the resulting motion of the fluid. 

For both the fluid flow and chemical concentration parts of the model let  Ω

denote the region containing both the fluid and the cells. Let  ΩF  denote the fluid-filled region exterior the cells. Let  Ωi  and  Γi  denote the interior and boundary of the  i th cell respectively, and let  ΩC =

 Ωi  be the union of the parts of the domain



occupied by the cells. Finally, it is noted that  ΩC

 ΩF =  Ω. 

 13.2.1

 Finite Element Method for the Chemical

 Concentrations

The concentration  c  of a chemical which is spreading through a domain containing a fluid which is moving with velocity u (x , t)  can be modeled using the convection–

diffusion equation [Ma99]

 ∂c(x , t ) = ∇ ·  (D(x ,t)∇ c(x ,t)) − ∇ ·  (c(x ,t)u (x ,t)) +  f(x ,t) (13.1)

 ∂t

where  D(x , t)  is the diffusion constant which controls how quickly the chemical spreads out over time and  f (x , t)  is a source term. The differential equation (13.1)

is solved on the whole of the domain  Ω  with different values of the parameters D(x , t )  and u (x , t)  depending on whether x is in a cell or in the fluid. In the model presented here, the value of  D  will be constant within each sub-domain  ΩC  and  ΩF

and hence

 D

 D(x , t ) =

 F x ∈  ΩF

 DC x ∈  ΩC

For points inside one of the cells, the velocity term u (x , t)  in (13.1) will be simply taken as v, the velocity of the cell, whilst in the exterior fluid the velocity will be calculated from that of the cell as described in Sect. 13.2.2 below. Under these conditions the concentrations  c  will be continuous at the cell boundary  Γ , but if the value of  D  in the cell is different from that in the fluid, the normal derivative of the concentrations will have a jump discontinuity at the boundary. 
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The finite element method has been used extensively to obtain the approximate

solutions of differential equations, and there are many texts on the subject, such as

[ZiTa89]. The use of the method to solve the convection–diffusion equation (and the related convection–diffusion-reaction equation) has been widely reported in the

literature, see [DeEtAl16, IsZa16, RiEtAl16] for example. 

For the problem under consideration here the domain  Ω  of the governing

differential equations is very large when compared to the size of a typical cell and, in general, it is not computationally feasible to apply the finite element method to the whole of  Ω. In order to apply the finite element method to this problem, the large domain  Ω  is replaced by a much smaller approximate domain  Ωa  which has an outer boundary  Γa. An approximate boundary condition is needed on the outer boundary  Γa. Here it is simply assumed that the outer boundary of  Ωa  is far enough away from the cell so that the diffusing chemical does not reach this boundary at the final time at which the concentrations are required, and hence there is no flow of the chemical across the boundary  Γa. This leads to the boundary condition

 (D(x , t )∇ c(x , t) −  c(x , t)u (x , t)) · n = 0 x ∈  Γa. 

Whilst this is not an ideal situation, it makes solving the problem computationally

feasible and it is possible to check that the concentrations near to the outer boundary are not significantly different from zero. 

Let c (t)  denote the vector of the time-dependent nodal values of the concentration. and let an over-dot denote differentiation with respect to time. The finite element method for solving (13.1) can be written in matrix notation as [ZiTa89]

 M ˙c =  K(t)c + f (t)

(13.2)

where



 Mij =

 ψi(x )ψj (x )  dx

 Ωa 





 Kij (t) = −

 D(x , t )∇ ψj (x ) −  ψj (x )u (x , t) · ∇ ψi(x )  dx Ω



 a

f i =

 f (x , t )ψi(x )  dx

 Ωa

and { ψi(x )} denotes the set of finite element basis functions. Here the simple linear triangular elements have been used. See [ZiTa89], for example, for more details on the finite element method and for other choices of basis functions. 
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 13.2.2

 Boundary Integral Method for the Fluid Flow

If at least one of the cells is moving, this will set up a flow in the exterior fluid. 

Assuming that the fluid is incompressible, the equations for the velocity u of the fluid can be expressed as the continuity equation [Li86]

∇ · u = 0

for the conservation of mass, and the Navier-Stokes equation





 ∂u

 ρ

+ u · ∇u = −∇ p +  μ∇2u +  ρb

(13.3)

 ∂t

which can be considered as an expression of Newton’s second law for a small

particle of the fluid. Here  ρ  and  μ  are used to denote the density and dynamic viscosity of the fluid,  p  is the pressure and b is a known body force (which is assumed to be zero in this work, but can be used to include effects such as gravity). 

For the flows under consideration here the Reynolds number is very small, and

the terms on the left-hand side of (13.3) can be neglected leading to the Stokes-flow equations [Li86]

−∇ p +  μ∇2u = 0

∇ ·

(13.4)

u = 0

The boundary conditions for the fluid flow problem are



! 

− (y −  y

u (x ) = v

 i )

 i +  ωi

x ∈  Γi

 (x −  xi)

u (x ) = 0

x ∈  ΓO

where  ΓO  is an outer boundary that is required to avoid the problems associated with Stokes paradox. Here v i  and  ωi  denote the velocity and angular velocity of the i th cell, where the rotation is assumed to be around the cells centre of mass located at  (xi, yi). In this work the outer boundary is taken to be a square with sides of length 5000 cell radii which corresponds to the cells being in a petri dish with sides length 5 cm. 

It can be shown that in two space dimensions, the fluid velocity which satisfies

(13.4) in a closed domain  ΩF  with a piecewise smooth boundary curve  Γ  also satisfies the boundary integral equation [Po92]

⎧

> 

> 

⎨ u (x0 ) x0 ∈  ΩF

 T (x , x

1

0 )u (x )  d Γx −

 G(x , x0 )F (x )  d Γx = ⎩ u (x (13.5)

2

0 ) x0 ∈  Γ

 Γ

 Γ

0

x ∈  ΩC
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where F are the surface forces, 



 r



 i rj

 Tij (x , x0 ) = − r · n  rirj Gij (x , x0 ) =

1

− δij  ln (r) +

 π r 4

4 π μ

 r 2

r = x − x0,  r = |r|, n is the unit normal to  Γ  directed onto the fluid domain  ΩF

and  δij  is the Kronecker delta function. Here  Γ  is the union of the boundaries of the cells and the outer fluid boundary. It should be noted that (13.5) for x0 ∈  Γ  is strictly only valid for points x0 which are on a smooth part of  Γ  and not at vertex of boundary curve. For the piecewise constant boundary element method used in this

work this is not a problem as x0 will always be chosen to be on a smooth part of the curve. However, if a higher-order approximation to the solution, such a piecewise

linear or piecewise quadratic, were used then this would need to be considered as

the collocation points for such methods can potentially be located at a vertex of the boundary curve. 

From the fluid velocity boundary condition, the value of u is known on the whole of  Γ , and hence (13.5) for x0 ∈  Γ  is a first kind Fredholm integral equation for the unknown force F on the boundary. Once the forces have been found, (13.5) for x0 ∈  ΩF  can be used to calculate the fluid velocity at any point in the fluid. 

In this work the integral equation (13.5) is solved using the boundary element method with a piecewise linear approximations to the boundary  Γ  and a piecewise constant approximation to the unknown forces F. A complete description of the boundary element method used to solve the integral equation will not be given here

as there are numerous texts available which give all the details of how to implement the boundary element method. 

It is noted here that the boundary integral equation (13.5) can be used to compute the fluid velocity at any given point in time. However, if the fluid velocities

are subsequently required at a different point in time, then the full boundary

integral/element calculations will have to be carried out for the new time. 

The boundary element method described above has been used to model the

motion of cell clusters moving through a viscous fluid where the chemical concen-

trations were simulated using a simple formula, and the results reported in [Ha18]. 

 13.2.3

 Time Integration Method

The translational and angular accelerations of each cell are given by





! 

dv i = a i(t) = 1

F (x , t)  d Γx +

 k∇ c(x , t)  d Ωx

d t

 mi

 Γi

 Ωi
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and



d ω





 i =  αi(t) = 1

 (x −  xi)fy(x ) −  (y −  yi)fx(x )  d Γx d t

 Ii

 Γi







! 

+

 ∂C

 ∂C

 k(x −  xc)

−  k(y −  yc)

d Ωx

 Ω

 ∂y

 ∂x

 C

respectively, where  mi  and  Ii  denote the mass and moment of inertia of the cell, and  k  is a constant which controls how strong the cells react to the gradient of the concentrations of the chemical. The value of  k  can be different for each cell, but here it is assumed to be the same for all cells. 

For each cell, the velocity v i, angular velocity  ωi, the location of its centre of mass p i  and rotation  θi  can be integrated through time using v i(t +  h) = v i(t) +  ha i

 ωi(t +  h) =  ωi(t) +  hαi

p i(t +  h) = p i(t) +  h (v i(t) + v i(t +  h)) (13.6)

2

 θi(t +  h) =  θi(t) +  h (ωi(t) +  ωi(t +  h)) 2

Using the values calculated in (13.6) it is possible to calculate the positions of the boundaries of the cells at the new time-step, and hence use the boundary integral

method to calculate the fluid velocities at the new time-step. Once these have been

found the finite element matrix  K(t +  h)  can be calculated so that the Crank-Nicholson [CrNi47] method can be applied to (13.2) to give c (t +  h) − c (t)

 M

=  K(t +  h)c (t +  h) +  K(t)c (t) + F (t) + F (t +  h). 

 h

2

2

(13.7)

Rearranging (13.7) gives

 ( 2 M −  hK(t +  h)) c (t + h) =  ( 2 M +  hK(t)) c (t)+ h (F (t) + F (t +  h)) (13.8)

which is a system of linear algebraic equations that can be solved for c (t +  h). 

The cell locations and velocities at the new time-step can be refined by using

v i(t +  h) = v i(t) +  h (a i(t) + a i(t +  h)) 2

 ωi(t +  h) =  ωi(t) +  h (αi(t) +  αi(t +  h)) 2

p i(t +  h) = p i(t) +  h (v i(t) + v i(t +  h)) (13.9)

2

 θi(t +  h) =  θi(t) +  h (ωi(t) +  ωi(t +  h)) 2
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where the accelerations at time  t +  h  are calculated using the concentrations calculated at time  t +  h. The refined cell locations and velocities can then be used in the boundary integral method and (13.8) to refine the concentrations at the new time-step. This iterative process can be continued until the locations and concentrations at the new time-step converge, although numerical experiments indicate that one

refinement is usually sufficient. 

13.3

Numerical Results

This paper considers cells moving in a square petri-dish with sides of length 5 cm, 

which corresponds to domain approximately 5000 times greater than the radius of a

typical cell. 

The results presented here are for two elongated cells where Cell 1 is secreting a

chemical which attracts Cell 2. The production of the left-hand cell is modeled by

using the source term

1 x ∈  Ω

 f (x , t ) =

1 and  t ≤ 1

0 Otherwise

where  Ω 1 denotes the interior of Cell 1. Figure 13.1a–d shows the spread of the chemical signal on the left and the resulting fluid motion on the right, where the

arrows indicate the direction of the fluid flow. In the diagrams blue denotes low

values of the chemical concentrations or fluid velocity, and red indicates high values. 

In order to check the accuracy of the results, the displacements and rotations of

the two cells were calculated using two different meshes. In the coarse meshes there were 15,488 elements with 7921 finite element nodes and 28 boundary elements on

each cell. For the fine meshes there were 61,952 finite elements with 31,329 nodes

and 56 boundary elements on each cell. The results for Cell 1 are shown in Fig. 13.2a

and those for Cell 2 are shown in Fig. 13.2b. The graphs of the various quantities computed using both cells as almost identical, indicating that the model is yielding accurate results. 

13.4

Conclusions and Future Work

This paper describes a combined finite element and boundary element which models

how cells move through a viscous fluid in response to chemical signals secreted

by other nearby cells. The numerical results show that the methods described in

the paper are yielding accurate results since when the finite element and boundary

element meshes are refined there is little difference in the calculated positions and rotations of the cells. 

[image: Image 124]
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Fig. 13.1 The spread of the

chemical signal and resulting

fluid motion for two

elongated cells. (a)  t = 0 .  0. 

(b)  t = 1 .  5. (c)  t = 3 .  0. (d) t = 4 .  5

(a)

(b)

(c)

(d)
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Fig. 13.2 The displacement and rotation of both cells using coarse and fine meshes. (a) Cell 1. (b) Cell 2

172

P. J. Harris

The present model can only continue a calculation up to the point where two (or

more) cells collide. There is some experimental evidence that the time-scale of the

collision is shorter than the time-scale of the overall cell motion which means that the collision can be considered to be instantaneous. This means that the collision

can be simulated in a separate calculation and then the original cells are replaced

by the new connected cells in the model. Suitable conservation laws can be used

to calculate quantities such as the velocity of the new combined cells from the

velocities of the individual cells before they collided. 
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Chapter 14

Numerical Calculation by Quadruple

Precision Higher Order Taylor Series

Method of the Pythagorean Problem of

Three Bodies

Hiroshi Hirayama

14.1

Introduction

Usually, explicit calculation methods [HaWa91] such as Euler method and Runge-Kutta method are used for numerical solution of ordinary differential equations. 

Through these methods, we consider the following differential equation of initial

value problem. 

y  = f (x, y )

y (x 0 ) = y0

The  s-stage explicit Runge-Kutta method can be written as follows:

⎧

⎪

⎪ k

⎪ 1 = f (xn, y n)

⎪

⎪

⎨ k2 = f (xn +  c 2 h, y n +  a 21 hk1 )

 .. 

⎪

⎪

 . 

⎪

⎪

⎪

⎩ k s = f (xn +  csh, y n +  as 1 hk1 +  as 2 hk2 + · · · +  as,s−1 hk s−1 ) y

 s

 n+1 = y n +

 i=1  bi k i

In these methods, the higher order formulas contain a large number of constants

proportional to the square of the number of stages, so there is a problem that it is difficult to use. Moreover, there is a problem that it is very difficult to obtain these constants. 

Many formulas below the tenth degree are introduced in the literature [EnUh96]. 

It is known that it is very necessary to calculate [Oh06] for the creation of higher-order formulas. 
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Fig. 14.1 The initial state of

 m

the Pythagorean three-body

3 (1, 3)

 y

problem

 x

 m 4 ( − 2,  − 1)

 m 5 (1,  − 1)

It is required to calculate a large scale system described by an ordinary differen-

tial equation with high accuracy over a long period of time. In these methods, the

order of calculation is limited, and calculation with high precision for a long time becomes very difficult. To solve these problems, Taylor expansion method which is

an arbitrary degree and variable step calculation method seems to be most suitable. 

In this paper, as an example, we tried solving astronomical three-body problem

using Taylor series method, examined the calculation accuracy, and investigated the

performance of Taylor series method. We chose Pythagoras’ three-body problem

[NaHi92, SzBu67] which is considered to be difficult to solve as an ordinary differential equation to calculate. The Pythagoras three-body problem is the problem of mass points 3, 4, 5 which are proportional to the length of each opposite side, at the vertexes of the right triangle with side lengths 3, 4, and 5 like Fig. 14.1, and using that state as an initial condition, these mass points are pursuing how to move after this by mutual attractive force. Defining the distance between the mass points m 3 and  m 4 as  r 34

; 

; 

 r 34 =

 (x 3 −  x 4 ) 2 +  (y 3 −  y 4 ) 2

 r 35 =

 (x 3 −  x 5 ) 2 +  (y 3 −  y 5 ) 2

; 

 r 45 =

 (x 4 −  x 5 ) 2 +  (y 4 −  y 5 ) 2

Writing the equation of motion using these symbols is as follows:

 d 2 x 3 = 4 (x 4 −  x 3 ) + 5 (x 5 −  x 3 ) d 2 y 3 = 4 (y 4 −  y 3 ) + 5 (x 5 −  x 3 ) dt  2

 r 3

 r 3

 dt  2

 r 3

 r 3

34

35

34

35

 d 2 x 4 = 3 (x 3 −  x 4 ) + 5 (x 5 −  x 4 ) d 2 y 4 = 3 (y 3 −  y 4 ) + 5 (x 5 −  x 4 ) dt  2

 r 3

 r 3

 dt  2

 r 3

 r 3

34

45

34

45
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 d 2 x 5 = 3 (x 3 −  x 5 ) + 4 (x 4 −  x 5 ) d 2 y 5 = 3 (y 3 −  y 5 ) + 4 (x 4 −  x 5 ) dt  2

 r 3

 r 3

 dt  2

 r 3

 r 3

35

45

35

45

(14.1)

The initial condition is

 x 3 = 1 , dx 3 = 0 , y

= 0  x

= 0 , y

= 0

 dt

3 = 3 , dy 3

 dt

4 = −2 , dx 4

 dt

4 = −1 , dy 4

 dt

 x 5 = 1 , dx 5 = 0 , y

= 0

(14.2)

 dt

5 = −1 , dy 5

 dt

For the calculation below, Visual Studio 2015 C ++ was used as a compiler, and the

personal computer (Intel Core i7 7700 K 4.2 GHz) was used as a calculator. 

14.2

Taylor Series of Ordinary Differential Equations

Here, we explain Taylor series method of ordinary differential equations easily. 

Since higher order ordinary differential equations can be written in the first order differential equations without loss of generality, we assume that they have the

following form:

 dy = f (x, y (x))

Initial condition:

y (x 0 ) = y0

 dx

Here, f, y is generally a vector function, it is sufficiently smooth and can be differentiated as many times as necessary. The initial condition y0 is a constant vector. Such a differential equation can be solved by the following Picard’s

successive approximation method [Sa93]. 

 x

y0 (x) = y0

y k+1 (x) = y0 +

f (t, y k(t))dt

 x 0

Substitute the Taylor expansion equation into the integrand of the above equation

and expand the integrand to the Taylor series. Compute the Taylor series of the

order of  k  by iterating  k  times [HiEtAl02]. 

Integrate the Taylor expansion of the  k  order and add the constant term y0 to calculate the solution of  k + 1 order. A high solution of at least 1 degree order is obtained by one calculation. 
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 14.2.1

 Solution of Simple Differential Equations by Taylor

 Series

Solve the following simple ordinary differential equation as an example. 

 dy

√

= 1 +  y

 y( 0 ) = 1

 dx

Since  y 0 (x) = 1 from the initial condition, this is substituted into Picard’s successive approximation [Sa93]. We get

 x

√

 y 1 (x) = 1 +

 ( 1 +

1 )dt = 1 + 2 x

0

The integrand is a zero-order constant, and the final calculation result is a linear expression. Further, calculate this result by substituting it into Picard’s successive approximation formula. Expand the integrand and take the first order equation. It is 1 + 2 x. By integrating this and calculate

 x

√

 y 2 (x) = 1 +

 ( 1 +

1 + 2 t)dt = 1 + 2 x + 0 .  5 x 2 +  O(x 3 )

0

By repeating such calculation twice, solutions up to the fourth order are obtained as follows:

 x

< 

 y 3 (x) = 1 +

 ( 1 +

1 + 2 t + 0 .  5 t 2 )dt

0

= 1 + 2 x + 0 .  5 x 2 − 0 .  08333333 x 3 +  O(x 4 ) x

< 

 y 4 (x) = 1 +

 ( 1 +

1 + 2 t + 0 .  5 t 2 − 0 .  0833333 t 3 )dt

0

= 1 + 2 x + 0 .  5 x 2 − 0 .  08333333 x 3 + 0 .  0520833 x 4 +  O(x 5 ) The above calculation can be calculated by the following program of C++ language

[El90]. 

// template program of Taylor series

#include "taylor_template.h" 

// coefficient is double precision

typedef taylor_template<double> taylor ; 

int main()

{
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double y0=1, h=0.1 ; 

// initial value, step size

taylor y ; 

// define Taylor series

y = y0 ; 

// set initial value to y

// compute Taylor series upto 5 order

for( int i=1 ; i<=5 ; i++ )

{

set_degree(i) ; 

// computing order i

y = y0 + integrate( 1.0+sqrt(y) ) ; // compute solution

cout << y << endl ; 

// out put solution

}

}

If this calculation is performed a necessary number of times, a Taylor series

solution of an arbitrary order is obtained. 

Using this Taylor series solution, calculate the function value in the next step. Let h  be the width of the next step to calculate  y(h). Using this value as the initial value of the next step, the function value of the next step is obtained in the same way as the previous method. Solve the differential equations by repeating this. 

Here, although it was calculated using Picard’s successive approximation

method, as a method of calculating the coefficients of the Taylor series, Picard’s

successive approximation method is the same as the series expansion method. 

 14.2.2

 Calculation of Square Root of Taylor Series

In the previous example we are calculating the Taylor series of the square root of the Taylor series. This calculation can be calculated by solving the following differential equation by a series expansion method. In general, we consider to multiply  α.  α =

1 , it becomes square root. 

2

Let  f (x)  and  g(x)  be the following Taylor series. 

 f (x) =  f 0+ f 1 x+· · ·+ fnxn+· · ·

 g(x) =  g 0+ g 1 x+· · ·+ gnxn+· · ·

(14.3)

The following differential equation is obtained by differentiating  g(x) =  f (x)α. 

 g  (x) =  αf (x)α−1 f   (x) f (x)g  (x) =  αg(x)f   (x) (14.4)

Substituting the Taylor series (14.3) and (14.4), as follows: (f 0 +  f 1 x +  f 2 x 2 + · · ·  )(g 1 + 2 g 2 x + 3 g 3 x 2 + · · ·  )

=  α(g 0 +  g 1 x +  g 2 x 2 + · · ·  )(f 1 + 2 f 2 x + 3 f 3 x 2 + · · ·  )
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When comparing the terms of  xn−1, the following equation is obtained. 

 n



 g 0 =  f α, 

 g

{ (α + 1 )i −  n} f

0

 n =

1

 i gn− i

 (n > = 1 )

 nf 0  i=1

The coefficient can be obtained from the above recurrence formula. In this way, it

is possible to calculate power of Taylor series, exponential logarithm, trigonometric function, etc. by using differential equations. 

14.3

Quad Precision Calculation

C ++ language used for this calculation cannot handle quadruple precision numbers. 

In this case, Bailey’s double–double algorithm [KoEtAl08] performs quadruple precision calculations. In the double–double algorithm, a quadruple-precision

floating-point number (real16) is represented by two double precision floating-point numbers and the upper digit is denoted by m0, and the lower digit is denoted by m1

and represented by the following structure. 

class real16 {

double

m0, m1 ; }

The quadruple precision variable a is expressed as follows using two double

precision variables a.m0 (upper digit) and a.m1 (lower digit). 

1

a = a .  m0 + a .  m0  ( ulp( a .  m0 ) ≥ |a .  m1| ) 2

Here,  ulp(x)  means the minimum bit (unit in the last place) of  x. At this time, a.m0 and a.m1 are double precision floating point numbers. For this reason, the

precision of the mantissa part is 53 bits, and by using two double precision floating point numbers, it can be expressed with accuracy of 106 bits. Therefore, the double–

double algorithm is inferior in accuracy by 8 bits when compared with the quadruple

precision of IEEE 754-2008. However, since the quadruple precision of IEEE

754-2008 is created by software, the calculation speed can be calculated quickly

by double–double quadruple precision because there are many parts to calculate

hardware, so a practical method it is said to be [HiEtAl00, YaEtal12]. 

Quadruple precision addition and multiplication can be programmed using the

double–double algorithm as follows:

Addition of double--double numbers

Multiplication of double--double numbers

real16 add( const real16 &a, 

real16 mul( const real16 &a, 

const real16 &b )

const real16 &b )

{

{

real16 c ; 

quad c ; 

double sh, eh, v ; 

double s1 ; 

sh = a.m0 + b.m0 ; 

c.m0 = a.m0 * b.m0 ; 

v = sh - a.m0 ; 

c.m1 = fma(a.m0, b.m0, -c.m0) ; 
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eh = (a.m0 -(sh-v)) + (b.m0 - v) ; 

c.m1 = c.m1 + (high * b.m1 +low * b.m0) ; 

eh = eh + a.m1 + b.m1 ; 

s1 = c.m0 +c.m1 ; 

c.m0 = sh + eh ; 

c.m1 =c.m1 - (s1 - c.m0) ; 

c.m1 = eh-(c.m0-sh) ; 

c.m0 =s1 ; 

return c ; 

return c ; 

}

}

By using this addition and multiplication, division, square root, exponential log

function, and trigonometric function, etc. can be calculated [HiEtAl00]. 

As a calculation example, we introduce a quadruple precision program to solve

the following quadratic equation. The following program is C++ program for

solving quadratic equations (  ax 2 +  bx +  c = 0 ). 

//Solving quadruple-precision quadratic equations

#include "real16.h" 

int main()

{

real16 a, b, c, d, x1, x2 ; 

a=2 ; b = 7.5 ; c=real16("-12.2") ; 

d=b*b-4*a*c ; d = sqrt(d) ; 

x1=(-b+d)/(2*a) ; x2=(-b-d)/(2*a) ; 

set_format("%35.32g") ; // set formatting

cout << "x1=" << x1 << endl ; 

cout << "x2=" << x2 << endl ; 

}

The calculation result is a solution of 2 x 2 + 7 .  5 x − 12 .  2 = 0, which is as follows: x1 =

1.2259071253425182195488491564024

x2 = -4.9759071253425182195488491564024

14.4

Calculation of Three-Body Problem of Pythagoras

We solved Eq. (14.1) using the initial condition (14.2) by using the Taylor series of the order of  n. The step width  h  is determined so that the absolute value of the coefficient of the highest degree term is smaller than the required accuracy  . 

If the coefficient of the highest degree term is zero, the coefficients of the low

order terms of the first degree are used. If the coefficient of that term is zero, repeat similarly again. 

If  an  is a coefficient of  n  order, then | an| hn < =  . That is, for each Taylor series, 

; 

we calculate  h =  n 

| an| . Let the minimum value be  h. 

In this calculation, we calculated the required accuracy   = 10−28 using the

24th order Taylor expansion formula ( n = 24). The resulting 11 decimal places are shown in Table 14.1. The result of this calculation is a result with higher accuracy than the result calculated using Levi-Civita conversion of Hiyama [NaHi92], but it agrees perfectly within the accuracy range. 
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1.00000000000

0.16261088749

0.06922569919

0.67948513605

0.77973745989

1.50968286968

0.57866925476

6.65911183491

−

−

−

−

−

12.10156027062

 y  5

−

1.00000000000

1.15298573630

0.69167435201

0.18858280389

0.23436656963

0.41612629162

0.65749276782

2.55767335732

4.62377236322

 x  5

−

−

−

−

1.00000000000

0.09721938415

0.47047605025

0.86596382772

2.36841044328

0.96081342494

0.73162439487

6.87246343582

−

−

−

−

−

−

12.35478120556

 y  4

−

2.00000000000

2.02509247798

1.38862653751

0.87798387903

0.17354455682

1.50593819242

0.26401033469

2.00300600260

3.55586671500

 x  4

−

−

−

−

−

−

3.00000000000

0.14139230029

0.51192523502

2.28709366370

1.85831815790

3.79722268272

1.93994795109

 y  3

−

20.26180430595

36.64230872512

coordinates

celestial

Three

1.00000000000

0.77848041014

3.00429263670

0.85634049890

0.62200369180

2.70146140927

0.74380750012

6.93346359901

 x  3

−

−

12.44744289203

14.1

bleaT  t  0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
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In order to confirm this calculation result, the path was calculated with the initial condition in which the velocity was reversed (v = −v) at the final time  t. We calculated how closely it returned to the initial value of the original problem. It

was necessary to calculate 10,633 times Taylor expansion with maximum step size

 hmax = 0 .  1362, minimum step width  hmin = 1 .  7092 × 10−7. 

A numerical value obtained by changing only the sign of the speed at the last

time point was calculated up to  t = 0 as an initial value. It was necessary to develop Taylor 10,635 times in this calculation. The number of calculations of

Taylor expansion is almost the same, but the inverse calculation was twice more. The difference between the initial value calculated here and the original initial value was up to 2 .  23 × 10−18 and it matched about 17 digits. From this result, the calculation seems to be correct by about 17 figures. 

It was also checked if energy on the way was preserved. Energy  E = − 769 has a 60

maximum relative error of 1 .  2×10−26. Energy was constant with accuracy of almost 25 orders of magnitude. It can be seen that the high precision energy conservation

law is established. 

Calculate the time and distance at which the object is closest. During the

calculation of the differential equation, it is found that the distance  r 45 between object 4 and object 5 becomes the minimum in the vicinity of  t = 15 .  829920. At this point it expands  r 45 to the Taylor series of time. The Taylor series is a series of 24th order as follows:

 r 45 (t) = 4 .  1403728 × 10−4 − 4 .  7226778 t + 2 .  6220212 × 107 t 2

+ 3 .  9888548 × 1011 t 3 + · · · − 1 .  6455306 × 10128 t 24

The constant term is small as 4 .  1404 × 10−4, but the 24th order coefficient is very large as −1 .  6455 × 10128. From this fact, it is found that the step size  h  needs to be very small. 

In order to find the closest point, solving  d r 45 (t) = 0 gives the time of the dt

closest point. Differentiating  r 45 (t)  yields following 23 orders Taylor series. 

 d r 45 (t) = −4 .  7226778 + 5 .  2440424 × 107 t + 1 .  196656412 t 2

 dt

− 4 .  4087319 × 1018 t 3 + · · · − 3 .  9492734 × 10129 t 23

To find the zero of this Taylor series, calculate the Taylor series of the inverse

function ( i 45 (s)) of  d r 45 (t). 

 dt

The Taylor series of the inverse function  y =  f −1 (x)  of the function  y =  f (x) can be easily obtained by solving differential equation  d y =

1

by Taylor series

 dx

 f   (y)

method. Since  y =  f ( 0 )  when  x = 0, the initial condition is reversed and solved as y = 0 when  x =  f ( 0 ). If you write the function  d r 45 (t)  as  DR 45 (t), the inverse dt
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function of  DR 45 (t)  becomes

 DR 45−1 (s) = 1 .  9069259 × 10−8 (s −  a) − 8 .  2979517 × 10−12 (s −  a) 2

+ 5 .  9019532 × 10−13 (s −  a) 3 + · · · − 2 .  3526647 × 10−56 (s −  a) 24

where  a =  d r 45 (t)|

 dt

 t =0 = −4 .  7226778. 

Substituting  s = 0 into the inverse function and finding the relative time  dt  of the zero point yields  dt = 8 .  99347711832073120 × 10−8. Therefore, the position of the zero point is  tzero = 15 .  8299202715809. Calculating the distance  r 45 between objects yields  r 45 = 4 .  13824836258701 × 10−4. As you can see, the results of Szebehely [SzBu67] ( tzero = 15 .  8230 , r 45 = 4 × 10−4) were able to be highly accurate. 

14.5

Conclusion

By using higher order formulas and quadruple precision numbers without coordinate

transformation such as Levi-Civita transformation, it was possible to calculate the

three-body problem of Pythagoras with sufficient accuracy. 

In addition to the calculation on the three-body problem of Pythagoras, this

method seems to be able to solve the ordinary differential equations of bad condition with sufficient accuracy with high accuracy. 

The Taylor series method can easily calculate higher order, it seems to be optimal

for such problems with features not found in Runge-Kutta. 

Currently mainstream CPUs are fast, but unfortunately quadruple precision

calculations are not implemented as hardware. It seems to be an indispensable

function to facilitate calculation of many ranges. 

It was calculated the required accuracy as 10−28, expecting about 25 digits of

result, but the result was about 17 digits. About eight digits of precision is lost. The future task is to investigate this reason. 
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Chapter 15

Shape Optimization for Interior

Neumann and Transmission Eigenvalues

Andreas Kleefeld

15.1

Introduction

The task is to optimize the shape of a domain  Ω ⊂ R2 with respect to the  k-th eigenvalue under the constraint that the area | Ω| of the domain is constant, say  A. 

Here, the domain is an open and bounded set with smooth boundary  ∂Ω  which is also allowed to be disconnected. In the sequel, we consider two different problems. 

First, we deal with the maximization of interior Neumann eigenvalues (INEs). 

Precisely, one has to find numbers  λ >  0 such that

 Δu +  λu = 0 in  Ω , 

 ∂νu = 0 on  ∂Ω

is satisfied for non-trivial  u, where  ν  denotes the normal pointing in the exterior. 

It is well-known that this problem is elliptic and the eigenvalues are discrete. The case  λ = 0 which corresponds to a constant function is not considered here. It has been shown in 1954 and 1956 that the first INE is maximized by a circle (see [Sz54, 

We56]) and recently that the second INE is maximized by two disjoint circles of the same size (see [GiNaPo09]). However, the existence and uniqueness of a shape maximizer for higher INEs is from the theoretically point of view still unknown. But numerical results suggest that such a maximizer might exist. We refer the reader to

[AnFr12, AnOu17] for recent results and a good overview over who has already worked in this direction. In Fig. 15.1 we show numerically the shape maximizer for the first six INEs. 

The optimal values  λk·  A  for  k = 1 , . . . ,  6 are 10 .  66, 21 .  28, 32 .  79, 43 .  43, 54 .  08, 67 .  04 (see [AnFr12]) which have been improved recently to 10 .  66, 21 .  28, 32 .  90, A. Kleefeld ()
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Fig. 15.1 Shape maximizer for the first six INEs obtained numerically. The recent optimal values λk·  A  for  k = 1 , . . . ,  6 are 10 .  66, 21 .  28, 32 .  90, 43 .  86, 55 .  17, 67 .  33 (see [AnOu17])

43 .  86, 55 .  17, 67 .  33 (see [AnOu17]). This paper reports improved values for the third and fourth INE and at the same time the boundary of the shape maximizer is

described explicitly in terms of two parameters. 

The second problem under consideration is the interior transmission problem. 

Interior transmission eigenvalues (ITEs) are numbers  λ ∈ C\{0} such that

 Δw +  λnw = 0

in  Ω , 

 Δv +  λ v = 0

in  Ω , 

 v =  w

on  ∂Ω , 

 ∂νv =  ∂νw  on  ∂Ω , 

has a non-trivial solution  (v, w) =  ( 0 ,  0 ), where  n  is the given index of refraction. 

However, this is a non-elliptic and non-self-adjoint problem appearing first in

1986 (see [Ki86]). Existence and discreteness for real-valued  λ  has been shown in [CaGiHa10]. But, the existence is still open for complex-valued  λ  except for special geometries (see [SlSt16, CoLe17]). The computation of ITEs for a given shape is therefore a very challenging task (see [KlPi18] for an excellent overview of existing methods). It is also noteworthy that neither theoretical nor numerical

results are available for a shape optimizer of the first two ITEs. Within this paper we give numerical evidence for a shape minimizer of the first two ITEs and state a

conjecture which researcher in this field might want to prove in the future. 

 15.1.1

 Contribution of the Paper

The contribution of this paper is twofold. First, improved numerical results for

the maximization of some interior Neumann eigenvalues are presented using

a simplified parametrization of the boundary. Second, the previous concept is

15

Shape Optimization

187

transferred in order to obtain numerical results for the minimization of interior

transmission eigenvalues for the first time for which no single theoretical result is yet available. 

 15.1.2

 Outline of the Paper

The paper is organized as follows: In Sect. 15.2, it is explained in detail how to compute interior Neumann eigenvalues using a boundary integral equation followed

by its discretization. Then, it is described how the resulting non-linear eigenvalue problem is solved numerically. Further, the new parametrization is introduced

and used to obtain improved numerical results for the maximization of some

interior Neumann eigenvalues. In Sect. 15.3, the concept of the previous section is applied for the minimization of interior transmission eigenvalues for which neither

numerical results nor theoretical results are yet available. Finally, a short summary and an outlook is given in Sect. 15.4. 

15.2

Shape Optimization for Interior Neumann Eigenvalues

Recall that interior Neumann eigenvalues (INEs) are numbers  λ =  κ 2 such that Δu +  κ 2 u = 0 in  Ω , 

 ∂νu = 0 on  ∂Ω

is satisfied. Note that this problem is elliptic and it is well-known that the

eigenvalues are discrete and positive real-valued numbers. In the sequel, we ignore

 κ = 0 which corresponds to the constant function. To find such INEs for a given domain  Ω, we use a boundary integral equation approach. A single layer ansatz with unknown density  ψ  given by



 u(X) =

 Φκ (X, y)ψ(y)  d s(y) , 

 X ∈  Ω

 ∂Ω

is used, where  Φκ (X, y) = i  H ( 1 )(κ X −  y )/ 4 is the fundamental solution of the 0

Helmholtz equation. Taking the normal derivative,  Ω ,  X →  x ∈  ∂Ω, and using the jump condition yields the following boundary integral equation of the second

kind



1  ψ(x) +

 ∂ν(x)Φκ (x, y)ψ(y)  d s(y) = 0  . 

(15.1)

2

 ∂Ω







 K(κ)
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Note that the operator  K(κ) :  H −1 / 2 (∂Ω) →  H −1 / 2 (∂Ω)  is compact assuming a regular boundary (see [Mc00]). Hence,  Z(κ) =  I / 2 +  K(κ)  is Fredholm of index zero for  κ ∈ C\R≤0 and thus the theory of eigenvalue problems for holomorphic Fredholm operator-valued functions applies to  Z(κ). 

The integral equation (15.1) is discretized via the boundary element collocation method. Precisely, we subdivide the boundary into  n/ 2 pieces, approximate it by quadratic interpolation (the approximated boundary is denoted by ? 

 ∂Ω), and define

on each piece a quadratic interpolation for  ψ. This leads to





1 I + M (κ) &  ψ = &0 , 

2







Z (κ)∈C n× n

where the matrix entries of M are numerically calculated with the Gauss-Kronrad quadrature (see [KlLi12] for details in the three-dimensional case). The resulting non-linear eigenvalue problem of the form

Z (κ) & 

 ψ = &0

is solved with the method of Beyn [Be12]. This method can find all eigenvalues  κ

including their multiplicities within any contour  C ⊂ C which is based on Keldysh’s theorem. Precisely, one integrates the resolvent over the given contour whereas the

integral is approximated with the trapezoidal rule (see [Be12] for more details). 

Hence, we are now able to compute highly accurate INEs for a given shape  Ω. 

Next, it is explained how to choose a parametrization for the boundary of  Ω. The idea is to use an implicit curve rather than an explicit representation of the curve. 

Equipotentials are implicit curves of the form

 m



1

=  c , 

(15.2)

 x −  Pi

 i=1

where the parameter  c  and the centers  Pi  are given. Here, ·  denotes the Euclidean norm. Precisely, all points  x ∈ R2 satisfying (15.2) for given points  Pi,  i = 1 , . . . , m and parameter  c  describe the implicit curve. 

√

√

 Example 1  We choose three points  (− 3 / 2 ,  1 / 2 ),  (  3 / 2 ,  1 / 2 ),  ( 0 , −1 )  for  m = 3

√

√

and  (−3 / 2 ,  0 ),  ( 3 / 2 ,  0 ),  ( 0 , − 3 / 2 ),  ( 0 ,  3 / 2 )  for  m = 4. The edge length of the

√

following geometric shapes as shown in Fig. 15.2 is

3. 

Next, we show the influence of the parameter  c. As one can see in Fig. 15.3 the larger the parameter  c  gets, the more constricting the boundary gets. Additionally, one can see that we are almost able to obtain a possible shape of the maximizer
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√

√

Fig. 15.2 The choice of the points for  m = 3 are  (− 3 / 2 ,  1 / 2 ),  (  3 / 2 ,  1 / 2 ),  ( 0 , −1 )  and for

√

√

 m = 4 are  (−3 / 2 ,  0 ),  ( 3 / 2 ,  0 ),  ( 0 , − 3 / 2 ),  ( 0 ,  3 / 2 )  shown as a red dot. The origin is shown as a black dot

Fig. 15.3 The influence of the parameter  c = 1 .  75, 2 .  00, 2 .  25, 2 .  50, 2 .  75, and 3 .  00 for  m = 3

(first and second row) and for  m = 4 (third and fourth row)

for the third and fourth INE. To add more flexibility, we introduce the additional

parameter  α. The modified equipotentials are given in the form

 m



1

=  c

(15.3)

 x −  Pi 2 α

 i=1

We introduce the two in front of the parameter  α  in order to avoid the computation of the square root in the norm definition. In Fig. 15.4 we show the influence of the
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Fig. 15.4 The influence of the parameter  α = 0 .  5, 1 .  0, 1 .  5, 2 .  0, 2 .  5, and 3 .  0 with fixed  c = 2 for m = 3 (first and second row) and for  m = 4 (third and fourth row)

parameter  α  fixing  c = 2. As one can see, we have enough flexibility to obtain very good approximations for a possible shape maximizer for the third and fourth INE. 

Thus, we have seen the influence of the parameters  α  and  c. We shortly explain how to generate  n  points on the boundary for the given parameters  α  and  c. This is done as follows. First, Eq. (15.3) is rewritten in polar coordinates. Then,  n + 1

equidistant angles  φi  in the interval [0 ,  2 π] are generated. Next, for each angle  φi the implicit equation is solved for the unique  ri  via a root finding algorithm. Finally, the points given in polar coordinates  (ri, φi),  i = 1 , . . . , n + 1 are transformed back to rectangular coordinates  (xi, yi) =  (ri  cos (φi), ri  sin (φi)),  i = 1 , . . . , n + 1. 

Hence, we obtain  n  different points on the boundary of the scatterer (the  (n + 1 )-th point is the same as the first point by construction). Those  n  points can now be used in the boundary element collocation method. 

In order to calculate the value  λk·  A, we need to numerically approximate the area enclosed by the given implicit curve (see (15.3)). That is, we have  n points distributed on the boundary  ∂Ω. With these points and the approximation via quadratic interpolation, the domain 

 Ω  with the boundary ? 

 ∂Ω  is defined. To

approximate the area of this region, we compute the area of the non-self-intersecting
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polygon spanned by choosing  p #  n  points including an additional point (the first point is the additional  (p + 1 )-th point). The approximate area is given by p





 A ≈  A  = 1 



 Ω

 (xi −  xi+1 )(yi +  yi+1 )

2 



 i=1

which is an easy consequence of the formula [Zw12, 4.6.1, p. 206]











1  x









1  x 2

 x 2  x 3

 xp x 1
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+ 
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1  y 2

 y 2  y 3

 yp y 1

The exterior normals on the boundary given implicitly by (15.3) are given by ν = ˜ ν/˜ ν with

 m



˜

 (x −  Pi)

 ν = −2 α

 . 

 x −  Pi 2 (α+1 )

 i=1

Now, we have everything together in order to optimize with respect to the two

parameters  c  and  α. First, we consider the third INE. The reference value given by Antunes and Oudet is given by 32 .  90 using 37 unknown coefficients. The

third eigenvalue has multiplicity three. If we fix  α = 3 / 2, then the optimization with respect to  c  yields the result  c = 1 .  8416 with 32 .  8929, 32 .  8929, 32 .  8929

for the third, fourth, and fifth, respectively. As we observe, the reported numbers

are more accurate. If we fix  α = 2, then we obtain  c = 1 .  6921 with 32 .  9018, 32 .  9018, 32 .  9018 which improves the result slightly compared to the value 32 .  90. 

But remember that we have only one unknown describing the boundary. If we

choose  α = 5 / 2, then we have  c = 1 .  6112 with 32 .  8970, 32 .  8970, 32 .  8970. 

Optimizing with respect to both parameters yields  α = 2 .  0171 and  c = 1 .  6883 with 32 .  9018, 32 .  9018, 32 .  9018. The situation slightly changes for the optimization of the fourth eigenvalue. The reference value of Antunes and Oudet is given by 43 .  86

with multiplicity three using 33 unknown coefficients. If we use  α = 2, we obtain c = 2 .  0571 with 43 .  6968, 43 .  6968, 44 .  2247. Using  α = 5 / 2 gives  c = 2 .  0794 with 43 .  8586, 43 .  8586, 43 .  8935 which is close to the value of Antunes and Oudet, but we have room for more considering the last eigenvalue. Fixing  α = 3 yields  c = 2 .  0875

with 43 .  7822, 43 .  7822, 44 .  0634. Optimizing with respect to the two parameters  α

and  c  gives  α = 2 .  5426 and  c = 2 .  0845 with 43 .  8694, 43 .  8694, 43 .  8694. This is a much better result. In Fig. 15.5 we show the three eigenfunctions of the possible shape optimizers for the third and fourth INE. 
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Fig. 15.5 The three eigenfunction of the shape optimizer for the third and fourth INE. The parameters are  α = 2 .  0171 and  c = 1 .  6883 with 32 .  9018 having multiplicity three for the third INE and  α = 2 .  5426 and  c = 2 .  0845 with 43 .  8694 having multiplicity three Note that we used  n = 512 for all numerical calculation to ensure that we have at least six digits accuracy for the values  λk·  A. This is guaranteed since we almost have a convergence of order four due to the fact that we have approximated the

boundary and the unknown density function by quadratic interpolation (refer to

[KlLi12] for a superconvergence proof for three-dimensional scattering objects). 
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15.3

Shape Optimization for Interior Transmission

Eigenvalues

Recall that interior transmission eigenvalues (ITEs) are numbers  λ =  κ 2 ∈ C\{0}

such that

 Δw +  κ 2 nw = 0

in  Ω , 

 Δv +  κ 2  v = 0

in  Ω , 

 v =  w

on  ∂Ω , 

 ∂νv =  ∂νw  on  ∂Ω , 

has a non-trivial solution  (v, w) =  ( 0 ,  0 ). Here,  n  is the given index of refraction. 

This is a non-elliptic and non-self-adjoint problem. Existence and discreteness for

real-valued  κ  has already been established. However, the existence is still open for complex-valued  κ  except for special geometries. To compute such ITEs for a given shape is therefore very challenging. We use the same technique as presented before

for the numerical calculation of interior Neumann eigenvalues; that is, reduce the

problem to a system of boundary integral equations, discretize it via a boundary

element collocation method, and solve the resulting non-linear eigenvalue problem

via the method of Beyn (see [Be12]). For more details, we refer the reader to [Kl13, 

Kl15] where ITEs for three-dimensional domains are computed and to [KlPi18]

for a good introduction for other methods to compute such ITEs. Straightforwardly

looking at real-valued ITEs using the index of refraction  n = 4 for different domains taken from [KlPi18] reveals that neither the circle is maximizing nor minimizing λ 1 =  A·  κ 2. The values  λ

1

1 for eight different domains are given in Fig. 15.6. 

29.1348

26.9563

25.2925

24.6688

40.4687

29.4600

24.7064

26.4683

Fig. 15.6 The values  λ 1 for eight different domains using  n = 4
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21.0047

19.5244

18.6247

18.2949

34.5451

23.0454

17.8872

17.2647

Fig. 15.7 The values | λ 1| for eight different domains using  n = 4

But recall that there might be complex-valued ITEs as well which are not taken

into account. If we consider | λ 1| instead of  λ 1 using the same eight domains, we obtain the results as presented in Fig. 15.7. 

As one can observe, it seems that the circle is minimizing | λ 1|. Hence, if we consider | λ 1| ≤ | λ 2| ≤ | λ 3| ≤ · · · , then we make the conjecture that the first absolute ITE is minimal for a circle for the index of refraction  n >  1. If this is true, 

√

then it is also true for 0  < n <  1 using the relation  κ( 1 /n) =

 nκ(n). Further, 

since  λ 1 is complex-valued, it comes in complex conjugate pairs. Hence, the second eigenvalue will be minimized by a circle as well. 

Further investigation of shapes that minimize higher interior transmission eigen-

values is a very interesting and challenging topic. 

15.4

Summary and Outlook

In this paper, it is shown how to efficiently compute interior Neumann eigenvalues

for a given domain in two dimensions. Additionally, the value of the shape

maximizer for the third and fourth interior Neumann eigenvalue has been improved

from 32 .  90 and 43 .  86 to 32 .  9018 and 43 .  8694 with multiplicity three, respectively. 

At the same time, the number of parameters describing the boundary of a possible

maximizer has been reduced to two parameters using modified equipotentials. The

conjecture is that the third and fourth interior Neumann eigenvalue might be given

by such modified equipotentials. This work presents very recent numerical results

and a further investigation has to be carried out in order to validate whether the shape maximizer for higher interior Neumann eigenvalues can be found with modified

equipotentials. This idea can easily be used for extending this approach to the three-dimensional case. 

Moreover, for the first time numerical results are presented for the minimiza-

tion of interior transmission eigenvalues in two dimensions although already the
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numerical calculation of those for a given domain is a very challenging task since

the problem is neither elliptic nor self-adjoint and hence complex-valued interior

transmission eigenvalues might exist. From the theoretical point of view, this fact

is still open. Additionally, it is open whether there exists a unique minimizer for

the first and second interior transmission eigenvalue. Here, we show numerically

and hence conjecture that the first and second interior transmission eigenvalue is

minimized by a circle. It remains to prove this observation, but it cannot be carried out by standard spectral arguments like for the Dirichlet, Neumann, Robin, or

Steklov eigenvalue problem. Moreover, one can now try to investigate the three-

dimensional case. 

Above all, one could also investigate the electromagnetic and/or the elastic

scattering case in two and three dimensions. 
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Chapter 16

On the Integro-Differential Radiative

Conductive Transfer Equation: A

Modified Decomposition Method

Cibele A. Ladeia, Bardo E. J. Bodmann, and Marco T. Vilhena

16.1

Introduction

The problem of integro-differential radiative conductive transfer in spherical geom-

etry has been the subject of numerous research, including the radiation transfer

in furnaces, nuclear reactors, combustion systems and the planetary atmosphere

[Mo13, HoEtAl16]. In this context, we derive a solution for the radiative conductive transfer equation in spherical geometry. The solution allows us to simulate the

radiation intensity and temperature field together with conductive and radiative

energy transport. In general, the equation of radiative conductive transfer in

spherical geometry is solved introducing some approximations, such as linearisation

or discretising angular terms, that turn the construction of an acceptably precise

solution to an approximate problem feasible. Solutions found in the literature are

typically determined by numerical means, see, for instance, [ThOz85, TsEtAl89, 

Th90, MiEtAl10]. Recently, the authors solved the aforementioned problem in a semi-analytical fashion and proved consistency and convergence of the solution

obtained by a decomposition method for the radiative conductive transfer equation

in cylinder geometry [LaEtAl18, ViEtAl11]. The Laplace method is related to procedures for linear problems, while the decomposition method allows to treat

the non-linear contribution as source terms in a linear recursive scheme and thus

opens a pathway to determine a solution, in principle to any prescribed precision

[ViEtAl11]. In the present discussion, we report on arithmetic stability issues for the recursive scheme. In order to stabilise convergence by virtue of limited arithmetic

precision, we propose a modification of the Adomian Decomposition Method by

splitting responsible terms for instability, i.e. the source terms incorporating the nonC. A. Ladeia · B. E. J. Bodmann () · M. T. Vilhena
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linearity and distributing them in a finite number of source terms. This procedure

results then in a finite number of modified recursion steps controlled by a splitting parameter  α, whereas all subsequent recursion steps follow the usual recursion scheme. Finally, we report on some case studies with numerical results for the

solutions and convergence behaviour. 

16.2

The Integro-Differential Radiative Conductive Transfer

Equation

We consider the one-dimensional steady state problem in spherical geometry for

a solid sphere. The problem of energy transfer is described in [Oz73] by the radiative conductive transfer equation coupled to the energy equation with spherical symmetry, with  T =  ( 1 −  ω(r)) Θ 4 (r), 



! 



 ∂

 ∂

1

 μ

+1− μ 2

+1  I (r, μ) =  ω(r)

 P(μ, μ  )I (r, μ  )dμ + T , (16.1)

 ∂r

 r

 ∂μ

2

−1

for  r ∈ [0 , R] and  μ ∈ [−1 ,  1]. Here,  μ = cos (θ),  θ  is the polar angle,  I  is the radiation intensity,  ω  is the single scattering albedo and  P(μ, μ  )  signifies the differential scattering coefficient, also called the phase function [Ch50]. The integral on the right-hand side of (16.1) is





1

L



1

 P (μ, μ  )I (r, μ  )dμ  =

 βl

 Pl(μ)Pl(μ  )I (r, μ  )dμ   , 

−1

−

 l=0

1

where  βl  are the expansion coefficients of the Legendre polynomials  Pl(μ)  and  l refers to the degree of anisotropy, for details see [ViEtAl11]. The energy equation for the temperature that connects the radiative flux to a temperature gradient is

 d

 d

 r 2  d 2  Θ(r) + 2 r

 Θ(r) =

1

[ r 2 q∗] −  r 2 H . 

(16.2)

 dr 2

 dr

4 π N

 r

 c dr

Here,  Nc =

 kβext

is the radiation conduction parameter with  k  the thermal

4 σ  n2 T  3

 r

conductivity,  βext  the extinction coefficient,  σ  the Stefan-Boltzmann constant, n the refractive index,  Tr  is a reference temperature,  H = [ kβ 2 ext Tr]−1 h  is the normalised constant, and  h  is used to denote a prescribed heat generation in the medium that is independent of the radiation intensity. The dimensionless radiative heat flux is

expressed in terms of the radiative intensity by

1

 q∗

 r (r ) = 2 π

 I (r, μ)μdμ . 

−1
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The boundary conditions of Eq. (16.1) are

 I ( 0 , μ) =  I ( 0 , − μ) , 

1

 I (R, μ) =  (R)Θ 4 (R) + 2 ρd (R)

 I (R, μ  )μ  dμ   , 

0

for  μ ∈ [−1 ,  1],  ρd  is the diffuse reflectivity,    is the emissivity, the thermal photon emission is according to the Stefan-Boltzmann law (see ref. [El09]). In Eq. (16.2), 

 r = 0 is not a physical boundary, and for the solution  Θ(r)  to be physically meaningful we need to impose at  r = 0 the condition that the solution shall be bounded at the origin. The boundary condition of Eq. (16.2) is

 Θ(r)| r= R =  ΘB . 

(16.3)

In addition, if the radiative heat flux is known, we can solve (16.2) and use Eq. (16.3)

to find





 R

 Θ(r) =  ΘB +  H R 2 −  r 2 −

1

 q∗

6

4 π N

 r (r   )d r    . 

(16.4)

 c

 r

16.3

Solution by the Modified Decomposition Method

In order to derive the solution, we use the  SN  approximation in the angular variable In ≡  In(r, μn). The  SN  approximation [Ch50] is based on the angular variable discretisation  Ω  in an enumerable set of angles or equivalently their direction cosines, in our work  μn. Then Eqs. (16.1) and (16.2) can be simplified using an enumerable set of angles following the collocation method, 







L

 N

 ∂I







 n

1 −  μ 2

 ∂In

 μ

 n



 n

+

+  In =  ω(r)

 βlPl(μn)

 &pPl(μp)Ip

 ∂r

 r

 ∂μ  μ= μ

2

 n

 l=0

 p=1

+  ( 1 −  ω(r)) Θ 4 (r) , 

(16.5)



 N

 d





 Θ(r) −  d Θ(r)

= 1

 &p[ Ip(r) −  Ip( 0 )]  . 

 dr

 dr

 r=0 2 Nc p=1

Here  n  indicates a discrete direction of  μn. The factor  &p  is the weight from the quadrature that approximates the integral explained in detail further down. The

integration is carried out with 1 ≤  n ≤  N. In this approximation Eq. (16.5) may be written as
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 n

1 −  μ 2

 ∂In

 μ

 n



 n

+

+  In =  Υ (r, μn) , 

(16.6)

 ∂r

 r

 ∂μ  μ= μn

L



 N



 Υ (r, μn) =  ω(r)

 βlPl(μn)

 &pPl(μp)Ip +  ( 1 −  ω(r)) Θ 4 (r) . 

2

 l=0

 p=1







1− μ 2



Instead of  μ ∂In

 n

 ∂In

 n

+



, we take as independent variable  ψ =

 ∂r

 r

 ∂μ μ= μn

 rξn  for 1 ≤  n ≤  N. Then Eq. (16.6) becomes  ∂In +  I

 ∂ψ

 n =  Υ (ψ )  or in the  SN

representation

L

 N

1  ∂I





 n +  In =  ω(r)

 βlPl(μn)

 &pPl(μp)Ip +  ( 1 −  ω(r)) Θ 4 (r) , 

 ξn ∂r

2

 l=0

 p=1



 N

 d





 Θ(r) −  d Θ(r)

= 1

 &p[ Ip(r) −  Ip( 0 )]  . 

(16.7)

 dr

 dr

 r=0 2 Nc p=1

Here  μn  are evaluation points, with 1 ≤  n ≤  N  and subject to the following boundary conditions:

 In( 0 ) = − IN− n+1 ( 0 ) , 

 N/ 2



 IN− n+1 (R) =  (R)Θ 4 (R) + 2 ρd(R)

 &pIp(R)μp . 

 p=1

As already indicated above, the integral over the angular variable is replaced

by Gauss-Legendre quadrature with weight  &p, with Gauss-Legendre weight



normalisation

 N

 p=1  &p = 1. The choice for the specific quadrature is due to

the phase function representation in terms of Legendre polynomials. The equation

system (16.7) may be cast in a first order differential equation system in matrix form d

A

I − BI =  Ψ , 

(16.8)

 dr

where A is a diagonal matrix of order  N  2 ×  N 2, with A nn = 1 /μn, B is a square matrix of the same order as A with elements





L



 Bi,j =  δij +  ωj (r)

 βlPl(μi)Pl(μj )

 , 

 l=0
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 δij  is the usual Kronecker symbol and the vector of the intensity of order  N 2 is T

defined by I =  I 1 , · · ·  , I N +  , · · ·  , I

. The non-linear terms are  N  sequences

1

 N

2

of  N  identical angular term for the  N  directions. 



 T

 Ψ =  ( 1 −  ω(r)) Θ 4 (r), . . . , ( 1 −  ω(r)) Θ 4 (r)

 . 

According to [ViEtAl11] the radiation intensity is expanded in an infinite series I =

∞ Y

 =0

 , thus introducing an infinite number of artificial degrees of freedom

which may be used to set up a non-unique recursive scheme of linear differential

equations, where the non-linear terms appear as source term containing known

solutions Y   from the previous recursion steps [ViEtAl11] and the solution of the linear differential equations is known. Equation (16.8) is then

∞





∞





 d



A

Y  − BY  =  (( 1 −  ω(r)) , . . . , ( 1 −  ω(r)))T

 G−1 {Y } −1  . 

 dr

 =0

 =0

 =0







 Θ 4 (r)

(16.9)

In order to solve the equation system (16.9) in a recursive fashion, the initialisation is chosen to be A  d Y

 dr

0−BY0 = 0 further subject to the original boundary conditions

and then making use of a recursive process of the equations for the remaining

components Y , with homogeneous boundary conditions. 





 d

A

Y  − BY  =  (( 1 −  ω(r)) , . . . , ( 1 −  ω(r)))T G−1 {Y } −1  , (16.10) dr

 =0

with   ∈ N+. Accordingly, the recursion initialisation corresponds to the homogeneous solution where all subsequent recursion steps result in particular solutions. 

The remaining  L −1 denotes the inverse Laplace transform operator,  s  is the r  dual complex variable from Laplace transform of Eq. (16.10), U = A−1B

and the decomposed matrix U = XDX−1 with D the diagonal matrix with distinct eigenvalues and X the eigenvector matrix. The general solution for each decomposition term Y (r)  is explicitly given by

Y (r) =  L −1 ((sI − U )Y ( 0 )) +  L −1 ((sI − U )A−1 Ψ (s))

= X eD rV  + X eD rX−1 ∗ A−1  (( 1 −  ω(r)) , . . . , ( 1 −  ω(r)))T G−1  . 







 J

The non-linearity from the temperature term  Θ 4 (r) =

 G

{Y

is

 =0

 

 } −1

 =0





represented by Adomian polynomials  G {Y } −1 . In the following the notation

 =0

 f ()  stands for the  -th functional derivative of the non-linearity at Y = Y

0

0, so that
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one may identify the first term  f ( 0 )  and all the subsequent terms of the series that 0

define the Adomian polynomials  G  are shown below (for details see [ViEtAl11]). 
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4

 G 0 (r) =  f ( 0 ) =  f (Y
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1
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6

4 π N
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 c
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 q∗


 dr 

0
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 dY
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1

2
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 q∗

 dr 

4 π N
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 ... 

(
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 −1
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 G(r) =  f ( 1 )Y

 f

Y bν

 . 

(16.11)

0

  +

 j ! 0

{ b

 ν

 i } −1

 j =2

 b

1

1 ,...,bl−1



 ν=1

 bi = j





 j

Here {

are the usual multinomial coefficients. In principle one has to solve an

 bi } −1

1

infinite number of equations, so that in a computational implementation one has to

truncate the scheme according to a prescribed precision. In the present state of the work the pertinent question of convergence as addressed in Sect. 16.4.2 is based on heuristic arguments. From the last term in Eq. (16.11) one observes that for a nonlinearity with polynomial structure there is only a limited number of combinations in the last term. Consequently, for  j  sufficiently large the factorial term  j ! controls the magnitude of the correction terms, that for increasing  j  tends to zero. One may now determine the temperature profile. To this end and in order to stabilise convergence a correction parameter  α  for the recursive scheme was introduced in Eq. (16.4), where 1 =  Zα, with  Z ∈ Z+, 

 Nc

 Θ 0 (r) =  ΘR(r) +  H (R 2 −  r 2 ) , 

6

 R

 Θ 1 (r) = −  α

 q∗

4 π

0 ,r (r   )d r    , 

 r

 R

 Θ 2 (r) = −  α

 (q∗

4 π

0 ,r (r   ) +  q∗

1 ,r (r   ))d r    , 

 r

 ... 
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 Z

 R

 ΘZ(r) = −  α

 q∗

4 π

 −1 ,r (r   ) dr    , 

 =1  r

 ... 





 R

 R

 ΘZ+1 (r) = −  α

 q∗

 q∗

4 π

 Z,r (r   )d r   −  α

 Z−1 ,r (r   )dr   −  . . . 

 r

4 π r

 R

−  α

 q∗

4 π

1 ,r (r   )d r    , 

 r

 Z+ j

 R

 ΘZ+ j (r) = −  α

 q∗

4 π

 −1 ,r (r   )dr   , , j = 1 ,  2 , . . . 

 =1+ j r

Here  δ 0 ,  is the Kronecker symbol,  M = min (Z, )  and



! 

 M

 R

 Θ(r) =  δ 0 , ΘB +  H (R 2 −  r 2 ) −  α

 q∗

6

4 π

 − i,r (r   )dr    . 

(16.12)

 i=1  r

16.4

Numerical Results and Discussion

To check if the proposed method is appropriate for solving the radiative conductive

transfer problem in a solid sphere, we evaluate the normalised temperature, the

conductive, the radiative and the total heat flux, respectively. 

 Qr (r) =

1

 q∗

 H −

1

 q∗

 H

(16.13)

4 π N

 r , 

 Qc(r) =  r

 r , 

 Q(r) =  r

 c

3

4 π Nc

3

For all the numerical results we consider isotropic scattering  ( L = 0 ),  N = 8

directions and  r  in multiples of  r/R  that varies between 0 and 1. 

Problem 1 The results in Fig. 16.1 are based on the parameter set with   = 0 .  8, ρd = 0 .  2,  ΘB = 1,  ω = 0 .  9,  R = 5,  Nc = 0 .  0005,  H = 0 and  α = 1, and show the temperature profile ( Θ), the conductive heat flux ( Qc(r)), the radiative heat flux ( Qr (r)) and the total heat flux ( Q(r)). We also show the temperature evolution dependence on the number of recursion steps. We used a stopping criterion such that

the last twenty recursions of temperature changed less than 10−6. Accordingly, the

series of Adomian polynomials was truncated at  J = 139. 
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Fig. 16.1 The temperature profile  Θ (top left) and the conductive  Qc, radiative  Qr , and total heat flux  Q (top right) against the relative radial optical depth, and the temperature evolution at  r/R

depending on the recursion depth (bottom centre), (Problem 1)

Problem 2 The results in Fig. 16.2 are based on the parameter set with   = 0 .  8, ρd = 0 .  2,  ΘB = 1,  ω = 0 .  9,  R = 1,  Nc = 0 .  0005,  H = 0 and  α = 10, and show the temperature profile ( Θ), the conductive heat flux ( Qc(r)), the radiative heat flux ( Qr (r)) and the total heat flux ( Q(r)), moreover, we show the temperature for a sequence of recursion steps. We used the same stopping criterion as in the

previous problem. Accordingly, the series of Adomian polynomials was truncated

at  J = 195. 

Problem 3 The results in Fig. 16.3 are based on the parameter set with   = 0 .  8, ρd = 0 .  2,  ΘB = 1,  ω = 0 .  9,  R = 0 .  5,  Nc = 0 .  0005,  H = 0 and  α = 10, and show the temperature profile ( Θ), the conductive heat flux ( Qc(r)), the radiative heat flux ( Qr (r)) and the total heat flux ( Q(r)), furthermore, we show the temperature evolution after a number of recursion steps. The same stopping criterion as in

Problem 1 was applied. Accordingly, the series of Adomian polynomials was truncated at  J = 1157. 
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Fig. 16.2 The temperature profile  Θ (top left) and the conductive  Qc, radiative  Qr , and total heat flux  Q (top right) against the relative radial optical depth, and the temperature evolution at  r/R

depending on the recursion depth (bottom centre), (Problem 2)

Problem 4 The results in Fig. 16.4 are based on the parameter set with   = 0 .  8, ρd = 0 .  2,  ΘB = 1,  ω = 0 .  9,  R = 0 .  5,  Nc = 0 .  0005,  H = 0 and  α = 1, and show the temperature profile ( Θ), the conductive heat flux ( Qc(r)), the radiative heat flux ( Qr (r)) and the total heat flux ( Q(r)), moreover, we show the temperature after a number of recursion steps. The stopping criterion was the same as in Problem 1. 

Accordingly, the series of Adomian polynomials was truncated at  J = 362. 

Figures 16.1, 16.2, 16.3, and 16.4 show the influence of the boundary radius  R. 

Note that in Figs. (16.1, 16.2, 16.3, and 16.4)—(top right) the conductive heat flux passes through the minimum whereas the radiative heat flux has a corresponding

maximum and Eq. (16.13) is satisfied. The values of  α  are related to the number of source terms whereto contributions which cause arithmetic instability in the

recursion steps are distributed. In order to stabilise convergence where necessary, 

 α  was changed in a decreasing succession from 10 to 1 until stable results were obtained. Large values ( α = 10) correspond to weak and small values ( α = 1) correspond to strong corrections. For example, in Problems 3 and 4 convergence is established using  α = 10 and  α = 1, respectively (see also Figs. 16.3—(bottom

centre) and 16.4—(bottom centre)). 
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Fig. 16.3 The temperature profile  Θ (top left) and the conductive  Qc, radiative  Qr , and total heat flux  Q (top right) against the relative radial optical depth, and the temperature evolution at  r/R

depending on the recursion depth (bottom centre), (Problem 3)

 16.4.1

 Consistency

In order to evaluate the truncation error of the recursive scheme we calculate the

residual term



⎛

⎞ 



 J

4





 R = 

⎝

⎠ 

 ( 1 −  ω(r))

 Θl(r)

 , 





 l=0

∞

 J

where ·∞ is the maximum norm and

 Θ

 l=0

 l (r )  represents the recursive scheme

that has been calculated from Eq. (16.12). Thus, in Fig. 16.5 are shown the residual terms for Problems 1, 2, 3 and 4. 

One observes that the residual terms of Problems 1, 2, 3 and 4 describe a zero sequence, which implies that the truncation error also tends to zero. 
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Fig. 16.4 The temperature profile  Θ (top left) and the conductive  Qc, radiative  Qr , and total heat flux  Q (top right) against the relative radial optical depth, and the temperature evolution at  r/R

depending on the recursion depth (bottom centre), (Problem 4)

 16.4.2

 A Convergence Criterion by Stability Analysis

In general convergence is not guaranteed by the decomposition method, so that the

solution quality shall be tested by a convenient criterion. Since standard convergence criteria do not apply to non-linear problems, we modify the Lyapunov-Boichenko

stability criterion [BoEtAl05] for dynamical systems into a stability criterion for convergence of recursive schemes. To this end let







∞













 δZJ  = 

 Θ 

 l

 , 





 l= J +1

∞

represent the major estimated difference between the solution obtained with trun-

 J

cation  J , in this case,  ΥJ = 

 Θ

 l=0

 l ∞, and the true solution, with  · ∞





the maximum norm. Then  δZJ  =  eΥJ λ | δZ 0| shows how the difference of
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Fig. 16.5 Residual terms of Problem 1 (top left), Problem 2 (top right), Problem 3 (bottom left) and Problem 4 (bottom right)

the recursion initialisation to the true solution evolves until recursion depth  J . 

If the exponent remains negative  λ <  0 for increasing  J  the series is exponentially convergent

(

)

 δZJ 

 λ =

1



ln

 . 

 J



 Θ 

| δZ 0|

 l=0

 l ∞















 J



 δZ 

Here 

 Θ 

is known and ln

 J

is estimated. The general term  Θ

 l=0

 l ∞

| δZ

 l  is

0|

expressed by Eq. (16.12). The last term in this Eq. (16.12) contains all the recursions of  Θi  for  i ≥ 1. 

Figure 16.6 shows the stability of the proposed methodology for the four presented problems, where the Lyapunov criterion has been met for truncation

orders  J = 139,  J = 195,  J = 1157 and  J = 362, respectively. Although the recursive scheme shows an oscillatory character, the solution is already stable

before the applied truncation since  λ  is negative and successive corrections are bound by the exponential horn. The oscillatory character is probably due to the use

of the maximum norm which yields a worst case estimate, nevertheless the average

solution may improve from one recursion step to the next one. 
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Fig. 16.6 Negative Lyapunov exponents with recursion depth; Problem 1 (top left), Problem 2

(top right), Problem 3 (bottom left) and Problem 4 (bottom right) 16.5

Conclusions

In the present work we presented a semi-analytical solution for the radiative

conductive transfer equation in spherical geometry and in the  SN  approximation. To this end the original non-linear problem was decomposed into a recursive scheme

of equation systems by the use of a modified decomposition method, following

the reasoning of reference [ViEtAl11]. The initialisation of the recursion is a linear equation system with known solution and subject to the original boundary

conditions. All the subsequent equation systems to be solved are of linear type, 

where the non-linearity appears as source term that contains only terms from

solutions of all previous recursion steps. It is noteworthy that the recursive scheme is not unique and convergence depends strongly on the recursion initialisation. 

Consistency was shown upon inserting the solution for each parameter set into the

original integro-differential equation where the residual term was determined by the use of the maximum norm. It is noteworthy that standard convergence criteria do

not apply for non-linear problems, so that we proposed a convergence criterion in

analogy to Lyapunov’s stability idea for dynamical systems [LaEtAl18]. In some of the considered problems, the specific parameter choice needed a corrective
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procedure for the recursion initialisation and the first number of recursion steps

as indicated by the parameter  α. Moreover, the recursion depth was fixed such that the Lyapunov exponent was strongly negative indicating exponential convergence

[LaEtAl18] and the quality of the solution was analysed evaluating consistency and convergence. 
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Chapter 17

Periodic Transmission Problems

for the Heat Equation

Paolo Luzzini and Paolo Musolino

17.1

Introduction

This paper is devoted to the application of layer potential methods to the solution of some initial-boundary value problems for the heat equation in parabolic cylinders

defined as the product of a bounded time interval and unbounded periodic domains. 

Layer heat potentials have been systematically exploited in the analysis of

boundary value problems for the heat equation. For example, we mention the

well-known monographs Ladyženskaja, Solonnikov and Ural’ceva [LaEtAl68] and Friedman [Fr64], where a large variety of parabolic problems are solved. Moreover, by layer potential methods, Fabes and Rivière [FaRi97] have solved the Dirichlet and Neumann problem for the heat equation in  C 1 cylinders with data in Lebesgue spaces. Later on, Brown [Br89, Br90] has considered the case of Lipschitz cylinders. 

Finally, we mention that Costabel [Co90] has obtained the solvability of some boundary value problem for the heat equation in Lipschitz cylinders with data in

anisotropic Sobolev spaces. 

In this paper, we are interested in developing potential theoretic techniques in

order to solve transmission problems in spatially periodic domains. A first step

has been done in [Lu18], where space-periodic layer heat potentials have been introduced. Moreover, as a consequence of the results of [LaLu18] for the classical layer heat potentials, regularizing properties for some boundary integral operators

related to the space-periodic layer heat potentials have been shown in [Lu18]. Then, the space-periodic versions of the Dirichlet and the Neumann problems for the heat

equation have been solved by means of space-periodic layer heat potentials. Here, 
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instead, we are interested in exploiting the results of [Lu18] in order to solve space-periodic transmission problems for the heat equation. 

Regarding spatially periodic evolution problems, we mention that Rodríguez-

Bernal [Ro17] has developed an  Lq  theory for the space-periodic heat equation. 

We now introduce the geometry of our setting. We fix once for all a natural

number  n ∈ N \ {0 ,  1} and an  n-tuple of positive real numbers  (q 11 , . . . , qnn) ∈

A

]0 , +∞[ n. Then we define the periodicity cell  Q ≡  n ]0 , q j =1

 jj [ and the diagonal

matrix  q ≡ diag (q 11 , . . . , qnn). Clearly,  q Z n ≡ { qz :  z ∈ Z n} is the set of vertices of a periodic subdivision of R n  corresponding to the cell  Q. Then we fix once and for all

 α ∈]0 ,  1[ , 

 m ∈ N \ {0} , 

 T ∈]0 , +∞[ , 

and a bounded open subset  Ω  of R n  of class  Cm,α  such that cl  Ω ⊆  Q. We denote by n Ω  and by n Q  the outward unit normal fields to  ∂Ω  and to  ∂Q, respectively. 

Then, we introduce the following  q-periodic sets:



S q[ Ω] ≡

 (qz +  Ω) =  q Z n +  Ω, 

S q[ Ω]− ≡ R n \ cl S q[ Ω] . 

 z∈Z n

In the pair of domains S q[ Ω] and S q[ Ω]− we consider two transmission problems for the heat equation: problem (17.4), known as non-ideal transmission problem, and problem (17.8), which is called ideal transmission problem. The aim of this paper is to solve the two problems in parabolic Schauder spaces of

space-periodic functions: more precisely, after some preliminaries (Sect. 17.2), in Sect. 17.3 we solve the non-ideal problem (17.4), while in Sect. 17.4 we consider the ideal problem (17.8). 

17.2

Preliminaries and Notation

If D ⊆ R n, then we set D T ≡] − ∞ , T ] × D, and  ∂T  D ≡  (∂ D )T =] − ∞ , T ] ×

 ∂ D. We have  ( cl D )T = cl D T . For the definition of the parabolic Schauder spaces m+ α

 C

;  m+ α

2

we refer to Ladyženskaja, Solonnikov and Ural’ceva [LaEtAl68, Chapter 1] (see also [Lu18]). We now introduce two subspaces useful for initial-boundary value problems with zero initial condition. If ˜

 Ω  is a subset of R n  of class  Cm,α, we

set

 m+ α ;  m+ α

 C  2

 ( cl ˜

 Ω

0

 T )





≡

 m+ α

 u ∈  C

;  m+ α

2

 ( cl ˜

 ΩT ) :  u(t, x) = 0 ∀  t ∈] − ∞ ,  0] , x ∈ cl ˜

 Ω , 
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 m+ α

which we regard as a Banach subspace of  C

;  m+ α

2

 ( cl ˜

 ΩT ). Moreover, we set

 m+ α ;  m+ α

 C  2

 (∂

˜

 Ω)

0

 T





≡

 m+ α

 u ∈  C

;  m+ α

2

 (∂

˜

 T Ω) :  u(t , x) = 0 ∀  t ∈] − ∞ ,  0] , x ∈  ∂ ˜

 Ω , 

 m+ α

which we regard as a Banach subspace of  C

;  m+ α

2

 (∂

˜

 T Ω). Now let D be a subset

of R n  such that  x ±  qei ∈ D for all  x ∈ D and for all  i ∈ {1 , . . . , n}, where

{ e 1 , . . . , en} denotes the canonical basis of R n. We say that a function  u  from D T

to C is  q-periodic in space, or simply  q-periodic, if  u(t, x) =  u(t, x +  qei)  for all  (t, x) ∈ D T , and for all  i ∈ {1 , . . . , n}. Since we will consider space-periodic problems, we introduce the following subspaces of parabolic Schauder spaces. 





 m+ α ;  m+ α

 m+ α

 C  2

;  m+ α

 q

 ( cl S q[ Ω] T ) ≡  u ∈  C  2

 ( cl S q[ Ω] T ) :  u  is  q-periodic in space  , (17.1)

 m+ α

which we regard as a Banach subspace of  C

;  m+ α

2

 ( cl S q[ Ω] T ), and





 m+ α ;  m+ α

 m+ α

 C  2

;  m+ α

 q

 ( cl S q[ Ω]− ) ≡  u ∈  C  2

 ( cl S

 ) :  u  is  q-periodic in space  , 

 T

 q [ Ω ]−

 T

(17.2)

 m+ α

which we regard as a Banach subspace of  C

;  m+ α

2

 ( cl S q[ Ω]− ). Then

 T

 m+ α ;  m+ α

 m+ α ;  m+ α

we can define  C  2

 ( cl S

2

 ( cl S

 )  replacing

0 ,q

 q [ Ω ] T )

and  C 0 ,q

 q [ Ω ]−

 T

 m+ α

 m+ α

 C

;  m+ α

;  m+ α

2

 ( cl S q[ Ω] T )  and  C  2

 ( cl S q[ Ω]− )  in the right-hand side of (17.1)

 T

 m+ α ;  m+ α

 m+ α ;  m+ α

and (17.2) by the spaces  C  2

 ( cl S

2

 ( cl S

 ), 

0

 q [ Ω ] T )  and  C 0

 q [ Ω ]−

 T

respectively. 

Next, in order to build space-periodic layer heat potentials, we plan to replace

the fundamental solution of the heat equation by a periodic analog. Therefore, we

introduce the function  Φq,n  from  ( R × R n) \  ({0} ×  q Z n)  to R defined by

⎧

⎨ 

1

 e− | x+ qz|2

4 t

if  (t, x) ∈]0 , +∞[×R n , 

 Φ

 z∈Z n

 n

 q,n(t , x) ≡ ⎩

 ( 4 π t)  2

0

if  (t, x) ∈  (] − ∞ ,  0] × R n) \  ({0} ×  q Z n) (see [Lu18]). As it is known,  Φq,n  is a  q-periodic analog of the (classical) fundamental solution of the heat equation. We are now ready to introduce the  q-

 m−1+ α ;  m−1+ α

periodic analog of the single layer heat potential. Let  μ ∈  C

2

 (∂

0

 T Ω). 
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Then, we set



 t

 vq [ ∂T Ω, μ] (t, x) ≡

 (Φq,n(t −  τ, x −  y)μ(τ, y) dσydτ, 

0

 ∂Ω

for all  (t, x) ∈  ( R n)T , where  dσ  denotes the area element of a manifold embedded in R n. Moreover, we set



 t

 ∂

 wq, ∗[ ∂T Ω, μ] (t, x) ≡

 Φq,n(t −  τ, x −  y)μ(τ, y) dσydτ, 

0

 ∂Ω ∂ n Ω (x)

for all  (t, x) ∈  ∂T Ω. The function  vq[ ∂T Ω, μ] is the  q-periodic in space single m−1+ α ;  m−1+ α

layer heat potential with density  μ. If  μ ∈  C

2

 (∂

0

 T Ω), then  vq [ ∂T Ω, μ]

is continuous in  ( R n)T , is  q-periodic and  vq[ ∂T Ω, μ] ∈  C∞ (( R n \  ∂ S q[ Ω] )T ). 

Moreover  vq [ ∂T Ω, μ] solves the heat equation in  ( R n \  ∂ S q[ Ω] )T . We denote by  v+[

[

 q ∂T Ω, μ] and  v−

 q ∂T Ω, μ] the restriction of  vq [ ∂T Ω, μ] to cl S q [ Ω ] T  and cl S q[ Ω]−, respectively. We have

 T

 ∂

 v±[ ∂T Ω, μ] (t, x) = ± 1  μ(t, x) +  wq, ∗[ ∂T Ω, μ] (t, x), (17.3)

 ∂n

 q

 Ω (x)

2

for all  (t, x) ∈  ∂T Ω (see [Lu18]). We now recall some basic properties of the space-periodic single layer heat potential. For a proof, we refer to [Lu18]. 

Theorem 1  The following statements hold. 

 m−1+ α ;  m−1+ α

 m+ α ;  m+ α

 (i) The operator from C

2

 (∂

2

 ( cl S

0

 T Ω) to C 0 ,q

 q [ Ω ] T ) which takes

 μ to v+[

 q ∂T Ω, μ]  is linear and continuous. The same statement holds with

 v+[

[

 q ∂T Ω, μ]  and  cl S q [ Ω ] T replaced by v−

 q ∂T Ω, μ]  and  cl S q [ Ω ]− , respec-

 T

 tively. 

 m−1+ α ;  m−1+ α

 (ii) The operator w

2

 q, ∗[ ∂T Ω, ·]  is compact from C

 (∂

0

 T Ω) to itself. 

Now we prove the following result on the invertibility of  vq [ ∂T Ω, ·]| ∂T Ω. 

Theorem 2  The operator vq [ ∂T Ω, ·]| ∂T Ω is a linear homeomorphism from the m−1+ α ;  m−1+ α

 m+ α ;  m+ α

 space C

2

 (∂

2

 (∂

0

 T Ω) to C 0

 T Ω). 

 Proof  By Theorem 1 (i) and by the continuity of the trace operator,  vq [ ∂T Ω, ·]| ∂T Ω

 m−1+ α ;  m−1+ α

 m+ α ;  m+ α

is linear and continuous from  C

2

 (∂

2

 (∂

0

 T Ω)  to  C 0

 T Ω). Accord-

ingly, by the Open Mapping Theorem, it suffices to show that  vq [ ∂T Ω, ·]| ∂T Ω  is a m−1+ α ;  m−1+ α

bijection. We first prove the injectivity. Let  μ ∈  C

2

 (∂

0

 T Ω)  be such that

 vq [ ∂T Ω, μ]| ∂T Ω = 0. The continuity of the single layer potential implies that both v+[

[

[

 q ∂T Ω, μ]| ∂

 ∂

 ∂

 T Ω

=  v− q T Ω, μ]| ∂T Ω = 0. Thus  v+ q T Ω, μ] solves a Dirichlet problem for the heat equation in [0 , T ] ×  Ω  with zero initial condition and with
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zero Dirichlet boundary condition. Accordingly, the uniqueness of the solution for

the classical Dirichlet problem implies that  v+[

 q ∂T Ω, μ] = 0 in [0 , T ] × cl  Ω . 

Moreover, since  v−[

[

 q ∂T Ω, μ]| ∂

 ∂

 T Ω

= 0, the function  v− q T Ω, μ] = 0 solves the

periodic Dirichlet problem

⎧

⎪

⎪  ∂

⎨  tu −  Δu = 0

in ]0 , T ] × S q[ Ω]− , 

 u(t, x +  qei) =  u(t, x) ∀  (t, x) ∈ [0 , T ] × cl S q[ Ω]− , ∀  i ∈ {1 , . . . , n} , 

⎪

⎪

⎩  u = 0

on [0 , T ] ×  ∂Ω, 

 u( 0 , · ) = 0

in cl S q[ Ω]− . 

Hence, by the maximum principle for the periodic heat equation we have that

 v−[

 q ∂T Ω, μ] = 0 in [0 , T ] × cl S q [ Ω ]− (see [Lu18]). Finally, the jump formula

(17.3) implies that

 μ =

 ∂ v+[ ∂T Ω,μ] −  ∂ v−[ ∂T Ω,μ] = 0 on [0 ,T ] ×  ∂Ω. 

 ∂n

 q

 q

 Ω

 ∂n Ω

 m+ α ;  m+ α

Next we prove the surjectivity. Let  φ ∈  C  2

 (∂

0

 T Ω). By the results of

 m+ α ;  m+ α

[Lu18, Section 5] there exists a unique function  u− ∈  C  2

 ( cl S

 φ

0

 q [ Ω ] T )  which

solves

⎧

⎪

⎪  ∂

⎨  tu −  Δu = 0

in ]0 , T ] × S q[ Ω]− , 

 u(t, x +  qei) =  u(t, x) ∀  (t, x) ∈ [0 , T ] × cl S q[ Ω]− , ∀  i ∈ {1 , . . . , n} , 

⎪

⎪

⎩  u =  φ

on [0 , T ] ×  ∂Ω, 

 u( 0 , · ) = 0

in cl S q[ Ω]− . 

 m−1+ α ;  m−1+ α

Since

 ∂

 u− ∈  C

2

 (∂

 ∂n

 T Ω), the results of [Lu18, Section 5] imply that

 Ω

 φ

0

 m−1+ α ;  m−1+ α

there exists a unique  μ ∈  C

2

 (∂

[ ∂

0

 T Ω)  such that  v−

 q

 T Ω, μ] solves the

problem

⎧

⎪

⎪

⎪  ∂

⎨  tu −  Δu = 0

in ]0 , T ] × S q[ Ω]− , 

 u(t, x +  qei) =  u(t, x) ∀  (t, x) ∈ [0 , T ] × cl S q[ Ω]− , ∀  i ∈ {1 , . . . , n} , 

⎪

⎪  ∂

⎪

 u =  ∂ u−

on [0 , T ] ×  ∂Ω, 

⎩  ∂n Ω

 ∂n Ω

 φ

 u( 0 , · ) = 0

in cl S q[ Ω]− . 

By the uniqueness of the solution for the periodic Neumann problem for the heat

equation (see [Lu18]), we have that  v−[

 q ∂T Ω, μ] =  u−. In particular, 

 φ

 vq [ ∂T Ω, μ]| ∂

[ ∂

 T Ω =  v−

 q

 T Ω, μ]| ∂T Ω =  φ

on [0 , T ] ×  ∂Ω, 

and accordingly the statement follows. 

! 
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17.3

A Periodic Non-ideal Transmission Problem

In this section we consider a periodic transmission problem which models the

heat diffusion in a two-phase composite material with thermal resistance at the

interface. We fix once and for all  λ+ , λ− , γ ∈]0 , +∞[. Then we take  f, g ∈

 m−1+ α ;  m−1+ α

 C

2

 (∂

0

 T Ω)  and we consider the following non-ideal transmission prob-

lem. 

⎧

⎪

⎪  ∂

⎪  tu+ −  Δu+ = 0

in ]0 , T ] × S q[ Ω] , 

⎪

⎪

⎪

⎪  ∂tu− −  Δu− = 0

in ]0 , T ] × S q[ Ω]− , 

⎪

⎪

⎪

⎪  u+ (t, x +  qe

⎨

 i ) =  u+ (t , x)

∀  (t, x) ∈ [0 , T ] × cl S q[ Ω] , ∀  i ∈ {1 , . . . , n} , u− (t, x +  qei) =  u− (t, x)

∀  (t, x) ∈ [0 , T ] × cl S q[ Ω]− , ∀  i ∈ {1 , . . . , n} , 

⎪

⎪

⎪  λ+  ∂ u+ +  γ (u+ −  u− ) =  f  on [0 , T ] ×  ∂Ω, 

⎪

 ∂n

⎪

 Ω

⎪

⎪  λ−  ∂ u− −  λ+  ∂ u+ =  g

on [0 , T ] ×  ∂Ω, 

⎪

⎪

 ∂n Ω

 ∂n Ω

⎪

⎪

⎩  u+ ( 0 , · ) = 0

in cl S q[ Ω] , 

 u− ( 0 , · ) = 0

in cl S q[ Ω]− . 

(17.4)

The set cl S q[ Ω]− plays the role of a matrix with thermal conductivity  λ− where the periodic array of inclusions cl S q[ Ω] with thermal conductivity  λ+ is inserted. The fifth condition of system (17.4) is the non-ideal transmission (or imperfect contact) condition, which models the thermal resistance at the interface. In particular this

condition says that the temperature field at the interface displays a jump proportional to the normal heat flux. Concerning parabolic transmission problems, we mention

the works of Donato and Jose [DoJo15], for the study of the asymptotic behavior of the approximate control of a parabolic transmission problem. For the stationary

case, we mention [DaMu13], where the authors consider a singularly perturbed stationary version of the above transmission problem in order to study the effective conductivity of a periodic composite. Incidentally, we observe that the discontinuity of the temperature field is a well-known phenomenon in physics which has been

studied since the work of Kapitza in 1941, in which the author has studied for the

first time the thermal interface behavior in liquid helium (see, e.g., Swartz and Pohl

[SwPo89], Lipton [Li98] and the references therein). We begin our analysis with the following uniqueness result for problem (17.4). 

1 ;1

1 ;1

Proposition 1  Let u+

∈  C  2  ( cl S

2

 ( cl S

 ) be one

0 ,q

 q [ Ω ] T ), u−

∈  C 0 ,q

 q [ Ω ]−

 T

 time continuously differentiable with respect to the time variable and two times continuously differentiable with respect to the space variables in ]0 , T ] × S q[ Ω]

 and ]0 , T ] × S q[ Ω]− , respectively. Moreover, let the pair (u+ , u− ) solve the system

 (17.4)  with f =  g = 0 . Then u+ = 0  in [0 , T ] × cl S q[ Ω]  and u− = 0  in

[0 , T ] × cl S q[ Ω]− . 
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 Proof  Let  e+ , e− be the functions from [0 , T ] to [0 , +∞[ defined by e+ (t ) ≡

 (u+ (t, y)) 2  dy, 

 e− (t ) ≡

 (u− (t, y)) 2  dy, 

∀  t ∈ [0 , T ]  . 

 Ω

 Q\cl  Ω

By the Dominated Convergence Theorem,  e+ , e− ∈  C 0 ([0 , T ] ). In addition, classical differentiation theorems for integrals depending on a parameter and the

approximation argument of Verchota [Ve84, Theorem 1.12, p. 581] if  m = 1 (see

[Lu18]) imply that  e+ , e− ∈  C 1 (]0 , T [ ). Also, by the Divergence Theorem, we have that





 d e+ (t) =2  u+ (t,y)∂tu+ (t,y)dy = 2  u+ (t,y)Δu+ (t,y)dy dt

 Ω

 Ω





= −

 ∂

2

| Du+ (t, y)|2  dy + 2

 u+ (t, y)

 u+ (t, y) dσy, 

 Ω

 ∂Ω

 ∂n Ω (y)

for all  t ∈]0 , T [. Moreover, in a similar way, exploiting the Divergence Theorem and the  q-periodicity of  u  we have that





 d e− (t) =2

 u− (t, y)∂t u− (t, y) dy = 2

 u− (t, y)Δu(t, y) dy

 dt

 Q\cl  Ω

 Q\cl  Ω





= −

 ∂

2

| Du− (t, y)|2  dy − 2

 u− (t, y)

 u− (t, y) dσy, 

 Q\cl  Ω

 ∂Ω

 ∂n Ω (y)

for all  t ∈]0 , T [. Then, if we set  e ≡  λ+ e+ +  λ− e−, we have that d e(t) = − 2  λ+ | Du+ (t,y)|2  dy +  λ−

| Du− (t, y)|2  dy

 dt

 Ω

 Q\cl  Ω





+

 ∂

 ∂

2 λ+

 u+ (t, y)

 u+ (t, y) dσy − 2 λ−

 u− (t, y)

 u− (t, y) dσy

 ∂Ω

 ∂n Ω (y)

 ∂Ω

 ∂n Ω (y)









= − 2  λ+

| Du+ (t, y)|2  dy +  λ−

| Du− (t, y)|2  dy

 Ω

 Q\cl  Ω



+

 ∂

2 λ+

 (u+ (t, y) −  u− (t, x))

 u+ (t, y) dσy

 ∂Ω

 ∂n Ω (y)









= − 2  λ+

| Du+ (t, y)|2  dy +  λ−

| Du− (t, y)|2  dy

 Ω

 Q\cl  Ω





2

− 2

 λ+

 ∂

 u+ (t, y)

 dσy

∀  t ∈]0 , T [ . 

 γ

 ∂Ω

 ∂n Ω (y)
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Hence  d e ≤ 0 in ]0 , T [. Since  e( 0 ) = 0 and  e ≥ 0 in [0 , T ], then  e = 0 in [0 , T ]. 

 dt

Then  u+ = 0 in [0 , T ] × cl  Ω,  u− = 0 in [0 , T ] × cl  Q \  Ω  and therefore the q-periodicity of  u+ , u− implies the validity of the statement. 

! 

Since we plan to solve the problem (17.4) with two space-periodic single layer heat potentials, we need to solve the related boundary integral equations. In order

to do so, we show the invertibility of the operators which appear in such integral

equations. 

 m−1+ α ;  m−1+ α

Lemma 1  Let J ≡  (J

2

1 , J 2 ) be the operator from the space (C

 (∂

0

 T Ω)) 2

 m−1+ α ;  m−1+ α

 to (C

2

 (∂

0

 T Ω)) 2  defined by





1

 J 1[ μ+ , μ−] ≡  λ+

 μ+ +  wq, ∗[ ∂T Ω, μ+]

(17.5)

2

+  γ (v+[

[

 q ∂T Ω, μ+]| ∂

 ∂

 T Ω −  v−

 q

 T Ω, μ−]| ∂T Ω ), 









1

 J 2[ μ+ , μ−] ≡  λ− − 1  μ− +  wq, ∗[ ∂T Ω, μ−] −  λ+

 μ+ +  wq, ∗[ ∂T Ω, μ+]  , 

2

2

 m−1+ α ;  m−1+ α

 for all (μ+ , μ− ) ∈  (C

2

 (∂

0

 T Ω)) 2 . Then J is a linear homeomorphism. 

 m−1+ α ;  m−1+ α

 Proof  Let  J # =  (J # , J # )  be the linear operator from  (C

2

 (∂

1

2

0

 T Ω)) 2 to

 m−1+ α ;  m−1+ α

 (C

2

 (∂

0

 T Ω)) 2 defined by

 J #[

[

1  μ+ , μ−] ≡  λ+  μ+ , 

 J #  μ+ , μ−] ≡ −  λ−  μ− −  λ+  μ+ , 2

2

2

2

 m−1+ α ;  m−1+ α

for all  (μ+ , μ− ) ∈  (C

2

 (∂

0

 T Ω)) 2. Clearly  J # is a linear homeomorphism. 

 m−1+ α ;  m−1+ α

Moreover, let ¯

 J =  ( ¯

 J

2

1 , ¯

 J 2 )  be the linear operator from  (C

 (∂

0

 T Ω)) 2 to

 m−1+ α ;  m−1+ α

 (C

2

 (∂

0

 T Ω)) 2 defined by

¯ J 1[ μ+ , μ−] ≡  λ+ wq, ∗[ ∂T Ω, μ+] +  γ (v+[

[

 q ∂T Ω, μ+]| ∂

 ∂

 T Ω −  v−

 q

 T Ω, μ−]| ∂T Ω ), 

¯ J 2[ μ+ , μ−] ≡  λ− wq, ∗[ ∂T Ω, μ−] −  λ+ wq, ∗[ ∂T Ω, μ+] , m−1+ α ;  m−1+ α

for all  (μ+ , μ− )

∈  (C  2

 (∂

0

 T Ω)) 2. By Theorem 1 (ii), the map

 m−1+ α ;  m−1+ α

 w

2

 q, ∗[ ∂T Ω, ·] is compact in  C

 (∂

[ ∂

0

 T Ω). By Theorem 1 (i),  v+

 q

 T Ω, ·]

 m−1+ α ;  m−1+ α

and  v−[

2

 q ∂T Ω, ·]

are linear and continuous from  C

 (∂

0

 T Ω)

to

 m+ α ;  m+ α

 m+ α ;  m+ α

 C  2

 ( cl S

2

 ( cl S

 ), respectively. Then, by the

0

 q [ Ω ] T )  and  C 0

 q [ Ω ]−

 T
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 m+ α ;  m+ α

 m+ α ;  m+ α

continuity of the trace operators from  C  2

 ( cl S

2

 (∂

0 ,q

 q [ Ω ] T )  to  C 0

 T Ω)

 m+ α ;  m+ α

 m+ α ;  m+ α

and from  C  2

 ( cl S

 )  to  C  2

 (∂

0 ,q

 q [ Ω ]−

 T

0

 T Ω), and by the compactness

 m+ α ;  m+ α

 m−1+ α ;  m−1+ α

of the embedding of  C  2

 (∂

2

 (∂

0

 T Ω)  into  C 0

 T Ω), which is a

consequence of the Ascoli-Arzelà Theorem,  v+[

[

 q ∂T Ω, ·]| ∂

 ∂

 T Ω  and  v−

 q

 T Ω, ·]| ∂T Ω

 m−1+ α ;  m−1+ α

are compact in  C

2

 (∂

0

 T Ω). Then the operator

¯ J  is compact in

 m−1+ α ;  m−1+ α

 (C

2

 (∂

0

 T Ω)) 2. Since compact perturbations of linear homeomorphisms

are Fredholm operators of index 0, we have that  J =  J # + ¯

 J  is a Fredholm

operator of index 0. Thus, to show that  J  is a linear homeomorphism, it suffices m−1+ α ;  m−1+ α

to show that  J  is injective. Let  (μ+ , μ− ) ∈  (C

2

 (∂

0

 T Ω)) 2 be such

that  J [ μ+ , μ−] =  ( 0 ,  0 ). Then,  v+[

[

 q ∂T Ω, μ+] and  v−

 q ∂T Ω, μ−] satisfy the

assumptions of Proposition 1 and thus  v+[

 q ∂T Ω, μ+] = 0 in [0 , T ] × cl S q [ Ω ]

and  v−[

 q ∂T Ω, μ−] = 0 in [0 , T ] × cl S q [ Ω ]−. In particular, by the continuity of the periodic single layer heat potential,  vq [ ∂T Ω, μ+]| ∂

[ ∂

 T Ω

=  v+ q T Ω, μ+]| ∂T Ω = 0

and  vq [ ∂T Ω, μ−]| ∂

[ ∂

 T Ω =  v−

 q

 T Ω, μ−]| ∂T Ω = 0. Accordingly, Theorem 2 implies that  μ+ =  μ− = 0 on [0 , T ] ×  ∂Ω, and the statement follows. 

! 

Finally we are ready to prove the following solvability result for the non-ideal

transmission problem (17.4). 

 m−1+ α ;  m−1+ α

Theorem 3  Let f, g ∈  C

2

 (∂

0

 T Ω). Then problem (17.4)  has a unique

 m+ α ;  m+ α

 m+ α ;  m+ α

 solution (u+ , u− ) ∈  C  2

 ( cl S

2

 ( cl S

 ). Moreover, 

0 ,q

 q [ Ω ] T ) ×  C 0 ,q

 q [ Ω ]−

 T

 u+ =  v+[

[

 q ∂T Ω, μ+]

 in  cl S q[ Ω] T , 

 u− =  v−

 q ∂T Ω, μ−]

 in  cl S q[ Ω]− , 

 T

(17.6)

 m−1+ α ;  m−1+ α

 where (μ+ , μ− ) is the unique solution in (C

2

 (∂

0

 T Ω)) 2  of

 J [ μ+ , μ−] =  (f, g)

 on ∂T Ω. 

(17.7)

 Proof  Proposition 1 implies that problem (17.4) has at most one solution. Then we only need to show that the pair  (u+ , u− )  defined by (17.6) is a solution of problem (17.4). Lemma 1 implies that there exists a unique solution  (μ+ , μ− )  in m−1+ α ;  m−1+ α

 (C

2

 (∂

0

 T Ω)) 2 of (17.7). Then by Theorem 1 (i) and by the definition

(17.5) of  J , the functions  u+ , u− defined by (17.6) are  q-periodic functions which solve the heat equation and which satisfy all the transmission conditions in (17.4). 

Thus  (u+ , u− )  is a solution of problem (17.4). 

! 
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17.4

A Periodic Ideal Transmission Problem

In this section we consider a periodic transmission problem which models the heat

diffusion in a two-phase composite material with perfect contact at the interface. 

 m+ α ;  m+ α

We fix once and for all  λ+ , λ− ∈]0 , +∞[. Then we take  f ∈  C  2

 (∂

0

 T Ω)

 m−1+ α ;  m−1+ α

and  g ∈  C

2

 (∂

0

 T Ω)  and we consider the following ideal transmission

problem. 

⎧

⎪

⎪  ∂

⎪  tu+ −  Δu+ = 0

in ]0 , T ] × S q[ Ω] , 

⎪

⎪

⎪

⎪  ∂tu− −  Δu− = 0

in ]0 , T ] × S q[ Ω]− , 

⎪

⎪

⎪

⎪  u+ (t, x +  qe

⎨

 i ) =  u+ (t , x)

∀  (t, x) ∈ [0 , T ] × cl S q[ Ω] , ∀  i ∈ {1 , . . . , n} , u− (t, x +  qei) =  u− (t, x) ∀  (t, x) ∈ [0 , T ] × cl S q[ Ω]− , ∀  i ∈ {1 , . . . , n} , 

⎪

⎪

⎪  u+ −  u− =  f

on [0 , T ] ×  ∂Ω, 

⎪

⎪

⎪

⎪  λ−  ∂ u− −  λ+  ∂ u+ =  g  on [0 , T ] ×  ∂Ω, 

⎪

⎪

 ∂n Ω

 ∂n Ω

⎪

⎪

⎩  u+ ( 0 , · ) = 0

in cl S q[ Ω] , 

 u− ( 0 , · ) = 0

in cl S q[ Ω]− . 

(17.8)

The set cl S q[ Ω]− plays the role of a matrix with thermal conductivity  λ− where the periodic array of inclusions cl S q[ Ω] with thermal conductivity  λ+ is inserted. 

The fifth and sixth conditions of system (17.8) are the ideal transmission (or perfect contact) conditions, which say that heat flux and the temperature field are continuous at the interface between the two materials. We mention Hofmann, Lewis, and

Mitrea [HoEtAl03] for the study of the non-periodic version of this transmission problem, in case  Ω  is a Lipschitz domain and the boundary conditions are in suitable Lebesgue spaces. For the study of the stationary version of ideal transmission

problems we mention Ammari, Kang, and Touibi [AmEtAl05] for the computation of the effective conductivity of a material with periodic inclusions and Pukhtaievych

[Pu18A, Pu18B] for the asymptotic behavior when the diameter of the periodic inclusions tends to zero. We start our analysis of problem (17.8) with the following uniqueness result that can be proved as the one of Proposition 1. 

1 ;1

1 ;1

Proposition 2  Let u+

∈  C  2  ( cl S

2

 ( cl S

 ) be one

0 ,q

 q [ Ω ] T ), u−

∈  C 0 ,q

 q [ Ω ]−

 T

 time continuously differentiable with respect to the time variable and two times continuously differentiable with respect to the space variables in ]0 , T ] × S q[ Ω]

 and ]0 , T ] × S q[ Ω]− , respectively. Moreover, let the pair (u+ , u− ) solve the system

 (17.8)  with f =  g = 0 . Then u+ = 0  in [0 , T ] × cl S q[ Ω]  and u− = 0  in

[0 , T ] × cl S q[ Ω]− . 

Our aim is to provide a solution of problem (17.8) in terms of space-periodic single layer heat potentials. By exploiting the potential theoretic method, we will

convert problem (17.8) into integral equations. Therefore, in order to prove the
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solvability of the integral equations, we need to perform a preliminary study of an

auxiliary integral operator. We do so in the following lemma. 

 m−1+ α ;  m−1+ α

 m−1+ α ;  m−1+ α

Lemma 2  Let K be the map from C

2

 (∂

2

 (∂

0

 T Ω) to C 0

 T Ω)

 defined by

 K[ μ] = − 1  μ +  λ− −  λ+

2

 λ− +  λ+  wq, ∗[ ∂T Ω, μ]

 m−1+ α ;  m−1+ α

 for all μ ∈  C

2

 (∂

0

 T Ω). Then K is a linear homeomorphism. 

 m−1+ α ;  m−1+ α

 Proof  By Theorem 1 (ii),  w

2

 q, ∗[ ∂T Ω, ·] is compact in  C

 (∂

0

 T Ω). 

Accordingly, the Fredholm Alternative implies that it suffices to show that  K  is m−1+ α ;  m−1+ α

injective. Let  μ ∈  C

2

 (∂

0

 T Ω)  be such that  K [ μ] = 0. Then

 λ+  ∂ v+[ ∂T Ω, μ]| ∂

 v−[ ∂T Ω, μ]| ∂

 ∂n

 q

 T Ω −  λ−

 ∂

 q

 T Ω = 0 . 

 Ω

 ∂n Ω

Accordingly, the pair  (v+[

[

 q ∂T Ω, μ] , v−

 q ∂T Ω, μ] )  satisfies all the assumptions of

Proposition 2 and then  (v+[

[

 q ∂T Ω, μ] , v−

 q ∂T Ω, μ] ) =  ( 0 ,  0 ). In particular, by the continuity of the periodic single layer potential we have that  vq [ ∂T Ω, μ]| ∂T Ω = 0

and accordingly Theorem 2 implies the validity of the statement. 

! 

In the following lemma, we prove the next step, which consists in showing the

invertibility of an operator which appears in the integral equations associated with the transmission problem (17.8). 

 m−1+ α ;  m−1+ α

Lemma 3  Let H ≡  (H

2

1 , H 2 ) be the map from the space (C

 (∂

0

 T Ω)) 2

 m+ α ;  m+ α

 m−1+ α ;  m−1+ α

 to C  2

 (∂

2

 (∂

0

 T Ω) ×  C 0

 T Ω) defined by

 H 1[ μ+ , μ−] ≡  v+[

[

 q ∂T Ω, μ+]| ∂

 ∂

 T Ω −  v−

 q

 T Ω, μ−]| ∂T Ω , 









1

 H 2[ μ+ , μ−] ≡  λ− − 1  μ− +  wq, ∗[ ∂T Ω, μ−] −  λ+

 μ+ +  wq, ∗[ ∂T Ω, μ+]  , 

2

2

 m−1+ α ;  m−1+ α

 for all (μ+ , μ− ) ∈  (C

2

 (∂

0

 T Ω)) 2 . Then H is a linear homeomorphism. 

 Proof  Theorem 1 implies that  H  is linear and continuous. Accordingly, by the Open Mapping Theorem, it suffices to show that it is a bijection. Let  (φ, ψ)  be m+ α ;  m+ α

 m−1+ α ;  m−1+ α

in  C  2

 (∂

2

 (∂

0

 T Ω) ×  C 0

 T Ω). We show that there exists a unique

 m−1+ α ;  m−1+ α

pair  (μ+ , μ− ) ∈  (C

2

 (∂

0

 T Ω)) 2 such that

 H [ μ+ , μ−] =  (φ, ψ). 

(17.9)

222

P. Luzzini and P. Musolino

 m−1+ α ;  m−1+ α

We first show the uniqueness. Let  (μ+ , μ− )

∈  (C  2

 (∂

0

 T Ω)) 2

be such that (17.9) holds. Theorem 2 implies that there exists a unique m−1+ α ;  m−1+ α

 μ# ∈  C

2

 (∂

0

 T Ω)  such that  vq [ ∂T Ω, μ#]| ∂T Ω

=  φ. Accordingly, 

 H 1[ μ+ , μ−] =  φ  implies that

 μ# =  μ+ −  μ− . 

(17.10)

By substituting the previous equality in the equality  H 2[ μ+ , μ−] =  ψ  we get





−1 μ+ +  λ− −  λ+

−1 μ# +  wq, ∗[ ∂T Ω, μ#]

2

 λ− +  λ+  wq, ∗[ ∂T Ω, μ+] =

 λ−

 λ− +  λ+

2

(17.11)

+

1

 λ− +  λ+  ψ. 

 m−1+ α ;  m−1+ α

Since the right-hand side of the previous equality belongs to  C

2

 (∂

0

 T Ω), 

 m−1+ α ;  m−1+ α

Lemma 2 implies that there exists a unique  μ+ ∈  C

2

 (∂

0

 T Ω)  such that

(17.11) holds, and accordingly  μ+ is uniquely determined. Then the equality (17.10)

uniquely determines  μ− and thus uniqueness follows. On the other hand, by reading backward the argument above, one deduces the existence of a pair  (μ+ , μ− ) ∈

 m−1+ α ;  m−1+ α

 (C

2

 (∂

0

 T Ω)) 2 such that (17.9) holds. 

! 

Finally, by exploiting Proposition 2, Lemma 3, and the properties of the space-periodic single layer heat potential, we can deduce the following result concerning

the solvability of the ideal transmission problem (17.8). 

 m+ α ;  m+ α

 m−1+ α ;  m−1+ α

Theorem 4  Let f

∈  C  2

 (∂

2

 (∂

0

 T Ω), g

∈  C 0

 T Ω). 

 Then

 m+ α ;  m+ α

 problem (17.8)  has a unique solution (u+ , u− ) ∈  C  2

 ( cl S

0 ,q

 q [ Ω ] T ) ×

 m+ α ;  m+ α

 C  2

 ( cl S

 ). Moreover, 

0 ,q

 q [ Ω ]−

 T

 u+ =  v+[

[

 q ∂T Ω, μ+]

 in  cl S q[ Ω] T , 

 u− =  v−

 q ∂T Ω, μ−]

 in  cl S q[ Ω]− , 

 T

 m−1+ α ;  m−1+ α

 where (μ+ , μ− ) is the unique solution in (C

2

 (∂

0

 T Ω)) 2  of

 H [ μ+ , μ−] =  (f, g)

 on ∂T Ω. 
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Chapter 18

On United Boundary-Domain

Integro-Differential Equations

for Variable Coefficient Dirichlet

Problem with General Right-Hand Side

Sergey E. Mikhailov and Zenebe W. Woldemicheal

18.1

Introduction

In this paper, the Dirichlet boundary value problem (BVP) for the linear stationary

diffusion partial differential equation with a variable coefficient is considered. 

The PDE right-hand side belongs to the Sobolev spaces  H −1 (Ω),  when neither classical nor canonical co-normal derivatives are well defined. Using an

appropriate parametrix (Levi function) the problem is reduced to a direct boundary-

domain integro-differential equation (BDIDE) or to a domain integral equation

supplemented by the original boundary condition thus constituting a boundary-

domain integro-differential problem (BDIDP). Solvability, solution uniqueness, and

equivalence of the BDIDE/BDIDP to the original BVP are analysed in Sobolev

(Bessel potential) spaces. 

Let  Ω  be a bounded open three-dimensional region of R3 .  For simplicity, we assume that the boundary  ∂Ω  is a simply connected, closed, infinitely smooth surface. Let  a ∈  C∞ (Ω),  a(x) >  0 for  x ∈  Ω. 

We consider the scalar elliptic differential equation, which for sufficiently smooth u  has the following strong form

3







 ∂

 ∂u(x)

 Au(x) :=  A(x, ∂x)u(x) :=

 a(x)

=  f (x), x ∈  Ω

(18.1)

 ∂xi

 ∂xi

 i=1

where  u  is an unknown function and  f  is a given function in  Ω. 
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In what follows  D(Ω) :=  C∞

 comp (Ω )  denotes the space of Schwartz test

functions,  H s (Ω) =  H s(Ω),  H s(∂Ω) =  H s(∂Ω)  are the Bessel potential spaces, 2

2

where  s ∈ R (see, e.g., [LiMa72, Mc00]). We recall that  H s  coincide with the Sobolev-Slobodetski spaces  W s  for any non-negative  s. We denote by H s (Ω)  the

2

subspace of  H s ( R3 ), 



 H s (Ω) := { g :  g ∈  H s( R3 ),  supp  g ⊂  Ω} . 

And the space  H s (Ω)  denotes the space of restriction on  Ω  of distributions from H s ( R3 ), 

 H s (Ω) = { r g :  g ∈  H s( R3 )}

 Ω

where  r  denotes the restriction operator on  Ω. 

 Ω

18.2

Co-normal Derivatives and the Boundary Value

Problem

For  u ∈  H  1 (Ω),  the partial differential operator  A  is understood in the sense of distributions, 

 Au, v Ω := − E (u, v) ∀ v ∈  D(Ω)

(18.2)

where



 E (u, v) :=

 a(x)∇ u(x) · ∇ v(x)dx

 Ω

and the duality brackets  g, · denote the value of a linear functional (distribution) Ω

 g, extending the usual  L 2 dual product. 

Since the set  D(Ω)  is dense in 

 H  1 (Ω), formula (18.2) defines (cf. e.g. [Mi11, 

Section 3.1]) the continuous linear operator  A :  H  1 (Ω) →  H −1 (Ω) = [ 

 H  1 (Ω)]∗, 

where

 Au, v Ω := − E (u, v) ∀ v ∈ 

 H  1 (Ω). 

Let us also consider the different operator, ˇ

 A :  H  1 (Ω) → 

 H −1 (Ω) = [ H  1 (Ω)]∗



ˇ

 Au, v Ω = − E (u, v) = −

 a(x)∇ u(x) · ∇ v(x)dx

 Ω



= −

˚

 E[ a∇ u] (x) · ∇ V (x)dx

R3
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= ∇ · ˚

 E[ a∇ u] , V  R3

= ∇ · ˚

 E[ a∇ u] , v Ω , ∀ u ∈  H  1 (Ω), v ∈  H  1 (Ω), (18.3)

which is evidently continuous and can be written as

ˇ

 Au := ∇ · ˚

 E[ a∇ u] . 

Here  V ∈  H  1 ( R3 )  is such that  rΩ V =  v  and ˚

 E  denotes the operator of extension

of functions, defined in  Ω,  by zero outside  Ω  in R3 .  For any  u ∈  H  1 (Ω),  the functional ˇ

 Au  belongs to 

 H −1 (Ω)  and is an extension of the functional  Au ∈

 H −1 (Ω)  which domain is thus extended from 

 H  1 (Ω)  to the domain  H  1 (Ω)  for

ˇ

 Au. 

From the trace theorem (see, e.g., [LiMa72, DaLi90, Mc00]) for  u ∈  H  1 (Ω), 1

it follows that  γ + u ∈  H  2  (∂Ω),  where  γ + :=  γ + is the trace operator on  ∂Ω

 ∂Ω

1

from  Ω. Let also  γ −1 :  H  2  (∂Ω) −→  H  1 (Ω)  denote a (non-unique) continuous 1

right inverse to the trace operator  γ + ,  i.e.,  γ + γ −1 w =  w  for any  w ∈  H  2  (∂Ω), and  (γ −1 )∗ : 

 H −1 (Ω) −→  H − 12  (∂Ω)  is the continuous operator dual to  γ −1 : 1

 H  2  (∂Ω) −→  H  1 (Ω),  i.e.,  (γ −1 )∗ ˜

 f , w ∂Ω :=  ˜

 f , γ −1 w Ω  for any ˜

 f ∈ 

 H −1 (Ω)

1

and  w ∈  H  2  (∂Ω). 

For  u ∈  H  2 (Ω), we can denote by  T c+ the corresponding classical (strong) co-normal derivative operator on  ∂Ω  in the sense of traces, 

3











 ∂u(x)

 ∂u(x)

 T c+ u(x) :=

 a(x)n+ (x)γ +

=  a(x)γ +

 , 

 i

 ∂xi

 ∂n(x)

 i=1

where  n+ (x)  is the outward (to  Ω) unit normal vectors at the point  x ∈  ∂Ω. 

However the classical co-normal derivative operator is generally not well defined

if  u ∈  H  1 (Ω) (cf. an example in [Mi15, Appendix A]). 

Definition 1 Let  u ∈  H  1 (Ω)  and ˜

 f ∈ 

 H −1 (Ω).  Then the  formal co-normal

 derivative T + ( ˜

 f , u) ∈  H − 12  (∂Ω)  is defined as

 T + ( ˜

 f , u), w

:=  ˜

 f , γ −1 w

 ∂Ω

 Ω +  E (u, γ −1 w)

=  ˜

1

 f − ˇ

 Au, γ −1 w Ω

∀ w ∈  H  2  (∂Ω). 

that is, 

 T + ( ˜

 f , u) :=  (γ −1 )∗ ( ˜

 f − ˇ

 Au) =  (γ −1 )∗ ˜

 f +  T + ( 0 , u). 

(18.4)

If, in addition,  Au =  r ˜

 f  in  Ω, then  T + ( ˜

 f , u)  becomes the  generalised co-

 Ω

 normal derivative, cf. Definition 3.1 in [Mi11] and Definition 5.2 in [Mi13]. Note
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that the formal co-normal derivative generally depends on the chosen right inverse, 

 γ −1, of the trace operator; however, the generalised co-normal derivative does not. 


Some other properties of the generalised conormal derivative also hold true for the

formal conormal derivative. In particular, similarly to [Mc00, Lemma 4.3], [Mi11, 

Theorem 5.3], we have the estimate

















 T + ( ˜

 f , u)

⩽

+

− 1

 C 1 u

 C 2 ˜

 f 

 . 

 H

2  (∂Ω)

 H  1 (Ω)



 H −1 (Ω)

The first Green identity holds in the following form for  u ∈  H  1 (Ω)  such that  Au =

 r

˜

 Ω f  in  Ω  for some ˜

 f ∈ 

 H −1 (Ω), 

 T + ( ˜

 f , u), γ + v

=  ˜

 f , v

 ∂Ω

 Ω +  E (u, v) =  ˜

 f − ˇ

 Au, v Ω

∀ v ∈  H 1 (Ω). 

(18.5)

As follows from Definition 1, the formal and generalised co-normal derivatives are non-linear with respect to u for a fixed ˜

 f ,  but still linear with respect to the couple

 ( ˜

 f , u). 

We will consider the following Dirichlet boundary value problem:

 Find a function u ∈  H  1 (Ω) satisfying the conditions

 Au =  f

in  Ω, 

(18.6)

 γ + u =  ϕ 0

on  ∂Ω, 

(18.7)

1

 where f ∈  H −1 (Ω) and ϕ 0 ∈  H  2  (∂Ω). 

Equation (18.6) is understood in the distributional sense (18.2) and the Dirichlet boundary condition (18.7) in the trace sense. 

The following assertion is well-known and can be proved, e.g., using variational

settings and the Lax-Milgram lemma. 

Theorem 1  The Dirichlet problem (18.6) –(18.7)  is uniquely solvable in H  1 (Ω). 

 The solution is u =  (AD)−1 (f, ϕ 0 )T where the inverse operator (AD)−1 : 1

 H  2  (∂Ω) ×  H −1 (Ω) −→  H  1 (Ω) to the left-hand side operator, AD :  H  1 (Ω) −→

1

 H  2  (∂Ω) ×  H −1 (Ω), of the Dirichlet problem (18.6) –(18.7)  is continuous. 

18.3

Parametrix and Potential Type Operators

We will say, a function  P (x, y)  of two variables  x, y ∈  Ω  is a parametrix (the Levi function) for the operator  A(x, ∂x)  in R3 if (see, e.g., [Mi02, Mi70, Po98a, Po98b])

 A(x, ∂x)P (x, y) =  δ(x −  y) +  R(x, y), 

(18.8)
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where  δ(.)  is the Dirac distribution and  R(x, y)  possesses a weak (integrable) singularity at  x =  y,  i.e., 

 R(x, y) =  O(| x −  y|− )  with   <  3 . 

(18.9)

It is easy to see that for the operator  A(x, ∂x)  given by the left-hand side in (18.1), 

the function

−1

 P (x, y) =

 , 

 x, y ∈ R3 , 

(18.10)

4 π a(y)| x −  y|

is a parametrix and the corresponding remainder function is

3



 xi −  yi

 ∂a(x)

 R(x, y) =

 , 

 x, y ∈ R3 , 

(18.11)

4 π a(y)| x −  y|3  ∂xi

 i=1

and satisfies estimate (18.9) with   = 2 ,  due to smoothness of the function  a(x). 

Evidently, the parametrix  P (x, y)  given by (18.10) is related with the fundamental solution to the operator  A(y, ∂x) :=  a(y)Δ(∂x)  with the “frozen” coefficient  a(x) =

 a(y)  and  A(y, ∂x)P (x, y) =  δ(x −  y). 

Let  a ∈  C∞ ( R3 )  and  a >  0 a.e. in R3 .  For scalar functions  g,  for which the integrals have sense, the parametrix-based volume potential operator and the

remainder potential operator, corresponding to parametrix (18.10) and remainder

(18.11) are defined as



P g(y) :=

 P (x, y)g(x)dx, y ∈ R3

R3



 Pg(y) :=

 P (x, y)g(x)dx, y ∈  Ω

 Ω



 Rg(y) :=

 R(x, y)g(x)dx, y ∈  Ω

 Ω

The single and double layer surface potential operators are defined as



 V g(y) := −

 P (x, y)g(x)dSx, y /

∈  ∂Ω

(18.12)

 ∂Ω



 W g(y) := −

[ T (x, n(x), ∂x)P (x, y)] g(x)dSx, y /∈  ∂Ω

(18.13)

 ∂Ω

where the integrals are understood in the distributional sense if  g  is not integrable. 

The corresponding boundary integral (pseudodifferential) operators of direct

surface values of the single layer potential  V  and of the double layer potential  W , 
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and the co-normal derivatives of the single layer potential  W   and of the double layer potential  L + ,  for  y ∈  ∂Ω  are



 V g(y) := −

 P (x, y)g(x)dSx, 

(18.14)

 ∂Ω



 W g(y) := −

[ T +

 x P (x, y)] g(x)d Sx

(18.15)

 ∂Ω



 W   g(y) := −

[ T +

 y P (x, y)] g(x)d Sx , 

(18.16)

 ∂Ω

 L + g(y) :=  T + Wg(y). 

(18.17)

When integrals in (18.12)–(18.16) are not well defined, they can be understood, e.g., as pseudo-differential operators or dual forms. 

From definitions (18.10), (18.12), (18.13) one can obtain representations of the parametrix-based potential operators in terms of their counterparts for  a = 1

(i.e. associated with the Laplace operator  Δ), which we equip with the subscript Δ,  cf. [CMN09], 

3



P g = 1 P( g, Pg = 1  P( g, Rg = − 1

 ∂iP([ g(∂ia)] , (18.18)

 a

 a

 a i=1

 V g = 1  V( g, Wg = 1  W( (ag), 

(18.19)

 a

 a

 V g = 1  V( g, W g = 1  W( (ag), 

(18.20)

 a

 a



! 

 W  

 ∂

1

 g =  W  ( g +  a

 V( g, 

(18.21)

 ∂n

 a



! 

 L ±

 ∂

1

 g =  L( (ag) +  a

 W ±

 ∂n

 a

(  (ag). 

(18.22)

Hence

 Δ(aV g) = 0 , Δ(aWg) = 0 in  Ω, ∀ g ∈  H s(∂Ω) ∀ s ∈ R , Δ(aPg) =  g  in  Ω, ∀ g ∈ 

 H s (Ω) ∀ s ∈ R

The jump relations as well as mapping properties of potentials and operators are

well known for the case  a = const .  They were extended to the case of variable coefficient  a(x)  in [CMN09]. 
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18.4

The Third Green Identity and Integral Relations

For  u ∈  H  1 (Ω)  and  v(x) =  P (x, y),  where the parametrix  P (x, y)  is given by

(18.10), the following  generalised third Green identity  can be obtained from (18.5), 

(18.3), (18.8), see [Mi15, Theorem 4.1], [Mi18, Theorem 4.1], u +  Ru +  W γ + u =  P  ˇ

 Au

in

 Ω, 

where



 P  ˇ

 Au(y) :=  ˇ

 Au, P (., y) Ω = − E (u, P (., y)) = −

 a(x)∇ u(x) · ∇ xP (x, y)dx. 

 Ω

If  r Au = ˜

 f  in  Ω, where ˜

 f ∈ 

 H −1 (Ω), then the generalised third Green identity

 Ω

takes the following form, 

 u +  Ru −  V T + ( ˜

 f , u) +  W γ + u =  P ˜

 f

in

 Ω, 

(18.23)

For some functions ˜

 f ,  Ψ  and  Φ, let us consider a more general “indirect” integral relation associated with Eq. (18.23), 

 u +  Ru −  V Ψ +  W Φ =  P ˜

 f

in  Ω

(18.24)

The following statement proved in [Mi15, Lemma 4.2] (see also [Mi18, Lemma 4.2]

for Lipschitz domains and more general spaces and coefficients) extends Lemma 4.1

from [CMN09], where the corresponding assertion was proved for ˜

 f ∈  L 2 (Ω). 

1

Lemma 1  Let u ∈  H  1 (Ω), Ψ ∈  H − 12  (∂Ω), Φ ∈  H  2  (∂Ω),  and ˜

 f ∈ 

 H −1 (Ω)

 satisfy Eq. (18.24) . Then

 Au =  r

˜

 Ω f  in  Ω, 

(18.25)

 rΩ V (Ψ −  T + ( ˜

 f , u)) −  rΩ W (Φ −  γ + u) = 0 in  Ω. 

(18.26)

The following statement was proved in [CMN09, Lemma 4.2]. 

Lemma 2

 (i) If Ψ ∗ ∈  H − 12  (∂Ω) and rΩ V Ψ ∗ = 0 in  Ω, then Ψ ∗ = 0 . 

1

 (ii) If Φ∗ ∈  H  2  (∂Ω) and rΩ W Φ∗ = 0 in  Ω, then Φ∗ = 0 . 

Let us now generalise Theorem 5.1 from [Mi06] to the right-hand side ˜

 f ∈



 H −1 (Ω). 
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Theorem 2  Let ˜

 f ∈ 

 H −1 (Ω). A function u ∈  H  1 (Ω) is a solution of PDE Au =

 r

˜

 Ω f in Ω if and only if it is a solution of boundary-domain integro-differential equation (18.23) . 

 Proof  If  u ∈  H  1 (Ω)  solves PDE  Au =  r

˜

 Ω f  in  Ω , then it satisfies (18.23). On the

other hand, if  u ∈  H  1 (Ω)  solves boundary-domain integro-differential Eq. (18.23), 

then using Lemma 1 with  Ψ =  T + ( ˜

 f , u)  and  Φ =  γ + u, we obtain that  u  satisfies

(18.25), which completes the proof. 

! 

18.5

United Boundary-Domain Integro-Differential

Equations

Let us consider reduction of the Dirichlet problem (18.6)–(18.7) with  f ∈  H −1 (Ω), for  u ∈  H  1 (Ω),  to a united boundary-domain integro-differential problem or to a united boundary-domain integro-differential equation. Formulations for the mixed

problem for  u ∈  H  1 ,  0 (Ω;  Δ)  with  f ∈  L 2 (Ω)  were introduced and analysed in

[Mi06]. Let ˜

 f ∈ 

 H −1 (Ω)  be an extension of  f ∈  H −1 (Ω) (i.e.,  f =  r

˜

 Ω f ), which

always exists, see [Mi11, Lemma 2.15 and Theorem 2.16]. 

 18.5.1

 United Boundary-Domain Integro-Differential Problem

Supplementing BDIDE (18.23) in the domain  Ω, where we take into account (18.4), 

with the original Dirichlet condition (18.7) on the boundary  ∂Ω, we arrive at the following united boundary-domain integro-differential problem, BDIDP, for  u  in  Ω, G Du =  F D

(18.27)

where



! 



! 

 G D

 u +  Ru −  V T + ( 0 , u) +  W γ + u

 P ˜

 f +  V (γ −1 )∗ ˜

 f

 u =

 , 

 F D =

 γ + u

 ϕ 0

(18.28)

and we invoked representation (18.4). Note also that by (18.12), 

 V (γ −1 )∗ ˜

 f (y) = − γ P (· , y), (γ −1 )∗ ˜

 f  ∂Ω = − γ −1 γ P (· , y), ˜

 f  Ω

= − P (· , y), γ ∗ (γ −1 )∗ ˜

 f  ∂Ω = − Pγ ∗ (γ −1 )∗ ˜

 f . 

BDIDP (18.27) is equivalent to the Dirichlet boundary value problem (18.6)–

(18.7) in  Ω,  in the following sense. 
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1

Theorem 3  Let f ∈  H −1 (Ω), ϕ 0 ∈  H  2  (∂Ω), and ˜

 f ∈ 

 H −1 (Ω) be such that

 r

˜

 Ω f =  f . A function u ∈  H  1 (Ω ) solves the Dirichlet BVP (18.6) –(18.7)  in Ω if and only if u solves BDIDP (18.27) . Such solution does exist and is unique. 

 Proof  A solution of BVP (18.6)–(18.7) does exist and is unique due to Theorem 1

and provides a solution to BDIDP (18.27) due to Theorem 2. On the other hand, due to the same Theorem 2, any solution of BDIDP (18.27) satisfies also BVP (18.6)–

(18.7), which is unique. 

! 

Due to the mapping properties of operators  V ,  W ,  P  and  R, cf. [CMN09], we 1

have  F D ∈  H  1 (Ω) ×  H  2  (∂Ω)  and the operator  G D :  H  1 (Ω) →  H  1 (Ω) ×

1

 H  2  (∂Ω)  is continuous. It is also injective due to Theorem 3. 

 18.5.2

 United Boundary-Domain Integro-Differential

 Equation

Substituting the Dirichlet boundary condition (18.7) and relation (18.4) into (18.23), 

we arrive at the following boundary-domain integro-differential equation, BDIDE, 

for  u ∈  H  1 (Ω) :

 G  2 u :=  u +  Ru −  V T + ( 0 , u) =  F  2  in Ω

(18.29)

where

 F  2 =  P ˜

 f +  V (γ −1 )∗ ˜

 f −  W ϕ 0

(18.30)

Let us prove the equivalence of BDIDE (18.29) to BVP (18.6)–(18.7). 

1

Theorem 4  Let f ∈  H −1 (Ω), ϕ 0 ∈  H  2  (∂Ω), and ˜

 f ∈ 

 H −1 (Ω) be such that

 r

˜

 Ω f =  f. A function u ∈  H  1 (Ω ) solves the Dirichlet BVP (18.6) –(18.7)  in Ω if and only if u solves BDIDE (18.29)  with right-hand side (18.30) . Such solution does exist and is unique. 

 Proof  Any solution of BVP (18.6)–(18.7) solves BDIDE (18.29) due to the third Green formula (18.23). On the other hand, if  u  is a solution of BDIDE (18.29) then Lemma 1 implies that  u  satisfies Eq. (18.6) and  rΩ W (ϕ 0− γ + u) = 0 in  Ω.  Lemma 2

(ii) then implies that  ϕ 0 −  γ + u = 0, i.e., the Dirichlet boundary condition (18.7)

is satisfied. Thus any solution of BDIDE (18.29) satisfies BVP (18.6)–(18.7). The unique solvability of BVP (18.6)–(18.7) and hence of BDIDE (18.29) is implied by Theorem 1. 

! 

The mapping properties of operators  V ,  W ,  P  and  R  imply the membership  F  2 ∈

 H  1 (Ω)  and continuity of the operator  G  2 in  H  1 (Ω),  while Theorem 4 implies its injectivity. 
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Note that Theorems 3 and 4 imply that the non-uniqueness of extension of f ∈  H −1 (Ω)  to ˜

 f ∈ 

 H −1 (Ω)  and the non-uniqueness of the right inverse to the

trace operator,  γ −1, involved in the definition of  T + ( ˜

 f , u), do not compromise the

uniqueness of solutions  u  of BDIDP (18.27) and BDIDE (18.29). 

18.6

Conclusion

A Dirichlet BVP for a variable-coefficient second order PDE with general right-

hand side function from  H −1 (Ω)  and with the Dirichlet data from the space 1

 H  2  (∂Ω)  was considered in this paper. It was shown that the BVP can be equivalently reduced to a united boundary-domain integro-differential problem, or

to a united boundary-domain integro-differential equation of the second kind. 

Similarly one can also consider the united BDIEs for the Neumann and mixed

problems in interior and exterior domains for the general right-hand side as well as the united versions of other BDIEs formulated and analysed in [AyMi11, ADM17, 

Mi02, Mi06]. 
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Chapter 19

Rescaling and Trace Operators in

Fractional Sobolev Spaces on Bounded

Lipschitz Domains with Periodic

Structure

Sergey E. Mikhailov, Paolo Musolino, and Julia Orlik

19.1

Introduction

We develop tools, which can be useful for elliptic boundary value problems

on domains with a periodic structure with holes involving some linear or non-

linear Robin-type conditions on the oscillating interface [GrEtAl12, KhEtAl17, 

GaEtAl16], or contact problems (see [GaMe18, GrOr18]). 

This paper considers rescaling of functions from the Bessel potential, Riesz

potential, and Sobolev–Slobodetskii spaces on the boundary or in the domain and

also rescaling of the boundary trace operator. 

Denote by  Ω  a bounded domain in R n  with Lipschitz boundary. Let  Y :=  ( 0 ,  1 )n be the reference cell. We denote by  T  a hole, that is, an open set, which closure is strictly included in  Y  and let  Y ∗ :=  Y \  T (see Fig. 19.1). Let  ∂T  be the Lipschitz boundary of  T  and  ν  be the outward to  Y ∗ unit normal vector on the boundary  ∂T . 

Recall, e.g., from [CiEtAl12] that in the periodic setting, every point  z ∈ R n  can

 

B C

be written as  z =  z +  z , 

[ z] ∈ Z n, { z} ∈  Y.  Here the integer function



· for a vector means the floor function .·/ for each of its components. Denote

B

C







 Ξε =  ξ ∈ Z n |  εξ + εY ⊂  Ω , 

 Ωε = interior

 εξ + εY

 , Λ

 ξ ∈ Ξ

 ε =  Ω \ 

 Ωε, 

 ε

i.e., the set  Λε  contains the parts of the cells intersecting the boundary  ∂Ω. 
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Fig. 19.1 Bounded domain

with periodically distributed

holes

Let us introduce the notations for the unions of all holes in the interior cells, 



B C





B C

 T

 x

 x

 ε :=

 x ∈ 

 Ωε 

∈  T , for the hole boundaries,  ∂T

 x ∈ 

 Ω



∈

 ε

 ε :=

 ε

 ε



 ∂T , in 

 Ωε  and for the remaining part, 

 Ω∗ = 

=

 ε

 Ωε \  Tε.  Let also  Ω∗ ε

 Ω \  Tε. 

19.2

Function Spaces

For an arbitrary non-empty open subspace  Ω  of R m, let  W s(Ω  ),  s ≥ 0 denote the 2

Sobolev–Slobodetskii space, cf. e.g., [Mc00]. If  s  is an integer, the space coincides with the Sobolev space and



 u 2

:=

| ∂αu(x)|2 dx. 

 W s (Ω  )

2

| α|≤ s Ω 

If  s  is not an integer, 

 u 2

:=  u 2

+  u 2

 , 

 W s (Ω  )

[ s]

 W s (Ω  )

2

 W

 (Ω  )

2

2

and the Slobodetskii seminorm is defined as

|



 ∂αu(x) −  ∂αu(y)|2

 u 2

:=

 dxdy, 

 μ :=  s − [ s] . 

 W s (Ω  )

2

| x −  y| m+2 μ

| α|=[ s]  Ω   Ω 

(19.1)

Let  S( R m)  be the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable functions on R m. Let  S∗ ( R m)  denote the space of sequentially continuous linear functionals on  S( R m) (temperate distributions). Let us denote by



ˆ u(η) ≡  F u(η) :=

 u(x)e− i 2 πη· x dx, 

R m



 u(x) ≡  F −1 ˆ u(x) :=

ˆ u(η)ei 2 πη· x dη, 

R m
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the direct and inverse Fourier transforms, respectively. These definitions, applicable to functions from  L 1 ( R m), are easily extended to  S∗ ( R m), see, e.g., [Mc00, p. 72]. 

Let us denote  ρ(η) :=  ( 1 + | η|2 ) 1 / 2. For  s ∈ R, we define the Bessel potential operator of order  s,  J s :  S( R m) →  S( R m), J s u(x) :=  F −1 (ρsF u)(x) =

 ( 1 + | η|2 )s/ 2 ˆ u(η)ei 2 πη· xdη  for  x ∈ R m, R m

which is extended, in the distribution sense, to the operator  J s :  S∗ ( R m) →

 S∗ ( R m). 

Let  s ∈ R,  H s( R m) = { u ∈  S∗ ( R m) :  J su(x) ∈  L 2 ( R m)} denote the Bessel potential space equipped with the norm  u Hs( R m) =  J su L 2 ( R m) =  ρs  ˆ u L 2 ( R m), cf., e.g., [Mc00, p. 75–76]. 

Similarly, let us define the Riesz potential operator



 J su(x) :=  F −1 (| η| sF u)(x) :=

| η| s  ˆ u(η)ei 2 πη· xdη  for  x ∈ R m. 

R m

Let  hs ( R m)  denote the Riesz potential space, i.e., the completion in the norm u hs( R m) =  J su L 2 ( R m) = | η| s  ˆ u L 2 ( R m)  of the space of infinitely smooth functions having compact supports in R m. 

If  s >  0, then  H s ( R m) ⊂  hs( R m)  and  u hs( R m)  is equivalent to the Sobolev–

Slobodetskii semi-norm  u 

, see, e.g., Theorem 4 in [Ma11, Section 10.1.2]. 

 W s ( R m)

2

Particularly, if 0  < s <  1, then

 u 2

=  a

 , 

(19.2)

 W s ( R m)

 s,m u 2

 hs ( R m)

2

where  as,m  is a number depending only on  s  and  m, which is finite and positive for any  s ∈  ( 0 ,  1 ), see, e.g., [Mc00, Lemma 3.15], hence u 2

=  u 2

+  u 2

=  u 2

+  a

 . 

(19.3)

 W s ( R m)

 L

 W s ( R m)

 L

 s,m u 2

 hs ( R m)

2

2 ( R m)

2

2 ( R m)

On the other hand, from the inequality

2 s−1 ( 1 +  ψs) ≤  ( 1 +  ψ)s ≤ 1 +  ψs, 

∀  ψ ∈  ( 0 , ∞ ), s ∈ [0 ,  1]

we obtain the following norm equivalence inequalities for any  s ∈ [0 ,  1], 2 s−1[ u 2

+  u 2

] ≤  u 2

≤  u 2

+  u 2

 . 

(19.4)

 L 2 ( R m)

 hs ( R m)

 H s ( R m)

 L 2 ( R m)

 hs ( R m)

For any non-empty open set  Ω ⊂ R m,  H s(Ω) := { u =  U | Ω  for some  U ∈

 H s ( R m)} .  This space is equipped with the norm  u Hs(Ω) = inf U| Ω= u, U∈ Hs( R m) U Hs( R m).  Also for the space  hs(Ω)  we define the norm in the similar way, u hs(Ω) = inf U| Ω= u, U∈ hs( R m) U hs( R m).  Moreover, one can prove that  hs(Ω) =

 H s (Ω)  if the domain  Ω  is bounded and − m/ 2  < s < m/ 2, cf. [Du77, Section 1.3]. 
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We further follow the notations of [Mc00, p. 98] for the definition of Bessel potential spaces on Lipschitz manifolds. Let  ∂T  be a Lipschitz boundary, and for a partition of unity { φj },  ∂T  is locally a Lipschitz hypograph of some function  ζj up to some rigid motion  κj ≡  ωj (· −  aj ) : R n → R n, where  aj ∈ R n  and  ωj  is a rotation. Let  uj :=  uφj . Then  u =

 u

 j

 j  and for  s ∈ [−1 ,  1] we have

the

following definition of the Bessel potential norm on the boundary, 



; 

 u 2

≡

 u

 (· , ζ

1 + |∇ ζ

 , 

(19.5)

 H s (∂T )

 j (κ (−1 )

 j

 j (· )))

 j (· )|2 2

 H s ( R n−1 )

 j

We recall that  H s  coincide with the Sobolev–Slobodetskii spaces  W s  for any non-2

negative  s. Replacing  H s  with  hs  or  W s  in (19.5), we arrive at definitions of the 2

norms in  hs (∂T )  and  W s (∂T ), respectively, in terms of their counterparts on R n−1. 

2

The same argument is valid, of course, if we replace  ∂T  with  ∂Tε. This implies an extension of the equality (19.2) to  T  and  Tε, 

 u 2

=  a

 , 

 u 2

=  a

 , 

(19.6)

 W s (T )

 s,n−1 u 2 hs (T )

 W s (T

 s,n−1 u 2 hs (T

2

2

 ε )

 ε )

where  as,n−1 is a number still depending only on  s  and  n − 1, which is finite and positive for any  s ∈  ( 0 ,  1 ). 





Let 

 v(ε−1· )(η) :=

 v(ε−1 x)e− i 2 πη· x dx, ˆ v(εη) :=

 v(y)e− i 2 πεη· y dy. 

R m

R m

Then, changing the variables, we evidently have



 v(ε−1· )(η) =  εm  ˆ v(εη), 



 v(ε· )(η) =  ε− m  ˆ v(ε−1 η), ∀ η ∈ R m . 

(19.7)

We will employ these relations for  m =  n  and  m =  n − 1. 

Let  ε ∈  ( 0 , ∞ ). If  α ∈ R, and  v ∈  hα( R m), then the substitution ¯ η =  εη  gives v(ε−1· ) 2

=

| 

 v(ε−1· )(η)|2| η|2 α dη =  ε 2 m

|ˆ v(εη)|2| η|2 α dη

 hα ( R m)

R m

R m



=  εm−2 α

|ˆ v( ¯ η)|2| ¯ η|2 α d ¯ η =  εm−2 α v 2

 . 

(19.8)

 hα ( R m)

R m

Replacing  ε  with 1 /ε  we obtain  v(ε· ) 2

=  ε− m+2 α v 2

 . 

 hα ( R m)

 hα ( R m)

Definition 1 For  s ∈ R, let us introduce the following  ε-dependent norm in the Bessel potential space  H s ( R m), 



 φ 2

:=

[ ρ(εη)]2 s| ˆ φ(η)|2  dη, 

 H sε ( R m)

R m

where  ρ(εη) =  ( 1 + | εη|2 ) 1 / 2,  ε = 0. 

For a domain  Ω ⊂ R m, this norm generates the corresponding  ε-dependent norm in the space  H s (Ω),  φ 2

:= inf

 , s ∈ R. 

 H s

 Φ∈ H s ( R m): rΩ Φ= φ  Φ 2

 ε (Ω )

 H sε ( R m)
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It is easy to verify that due to the first relation in (19.7), 

 φ(ε−1· ) 2

=  εm φ 2

 . 

(19.9)

 H sε( R m)

 H s ( R m)

Recall that the volume of the unit cell  Y  is | Y | = 1. Let us provide the following two definitions and two propositions from [CiEtAl12]. 

Definition 2 Let  p ∈ [1 , +∞] and  φ  be Lebesgue-measurable on Ω∗

 ε  and extended

by zero in  Ω∗ \ 

 ε

 Ω∗

 ε . The unfolding operator  Tε  from  Lp ( 

 Ω∗

 ε )  into  Lp (Ω ×  Y ∗ )  is

defined by

'  Tε(φ)(x,y) =  φ(ε[ x/ε] +  εy)  for a.e.  (x,y) ∈  Ωε ×  Y∗ , Tε(φ)(x, y) = 0

for a.e.  (x, y) ∈  Λε ×  Y ∗ . 

Proposition 1  Let p ∈ [1 , +∞] . 

 (i) If φ ∈  Lp(Ω∗ ε), then  Tε(φ) L

 φ

 p (Ω × Y ∗ ) = 1 

 Ω∗

 L

 ε

 p (Ω ∗

 ε ) ≤  φ Lp (Ω ∗

 ε ). 

 (ii) If φ ∈  W  1 p(Ω∗ ε), then ∇ yTε(φ)(x, y) =  εTε(∇ φ)(x, y) for a.e. (x, y) ∈

 Ω ×  Y ∗  and ∇ yTε(φ) L

∇ φ

 p (Ω × Y ∗ ) =  ε1 

 Ω∗

 L

 ε

 p (Ω ∗

 ε ). 

 Here 1   is the characteristic function of the set 

 Ω∗

 Ω∗

 ε

 ε . 

Definition 3 Let  p ∈ [1 , +∞]. The operator  T b

 ε  from  Lp (∂ Tε )  into  Lp (Ω ×  ∂T )

is defined by

'  T bε(φ)(x,y) =  φ(ε[ x/ε] +  εy)  for a.e.  (x,y) ∈  Ωε ×  ∂T, , ∀ φ ∈ Lp(∂Tε). 

 T b

 ε (φ)(x, y) = 0

for a.e.  (x, y) ∈  Λε ×  ∂T . 

Proposition 2  Let p ∈ [1 , +∞]  and φ ∈  Lp(∂Tε). Then T b

 ε (φ)(x, y) d xd σy =  ε

 φ (x) dσx, 

 Ω× ∂T

 ∂Tε

 T b

 ε (φ) Lp(Ω× ∂T ) =  ε 1 /p  φ Lp(∂Tε). 

19.3

Rescaling Norms on Oscillating Lipschitz Manifold

Definition 4 Similar to (19.5), we will employ the following norms on  ∂Tε =

∪ ξ∈ Ξ (εξ +  ε∂T ), 

 ε



; 

 u 2

:=

 u

 (· , ζ

1 + |∇ ζ

 , 

 hα (∂T

 ε,ξ,j (κ (−1 )

 ε,ξ,j (· )))

 ε,ξ,j (· )|2 2

 ε )

 ε,ξ,j

 hα ( R n−1 )

 ξ ∈ Ξε j
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; 

 u 2

:=

 u

 (· , ζ

1 + |∇ ζ

 . 

 H α

 ε,ξ,j (κ (−1 )

 ε,ξ,j (· )))

 ε,ξ,j (· )|2 2

 ε (∂ Tε )

 ε,ξ,j

 H α

 ε ( R n−1 )

 ξ ∈ Ξε j

(19.10)

It is evident that the norms  ·  Hsε(∂T )  and  ·  Hs(∂T )  are equivalent if  ε = 0, although with the equivalence inequality constants depending on  ε. 

In Definition 4,  uε,j (x) :=  u(x)φε,j (x), while  φε,j ,  κε,j ,  ζε,j  are some periodic families of partitions of unity, local rigid rotations and local Lipschitz hypographs. 

To this end, we can exploit the families  φj ,  κj ,  ζj , associated with  ∂T , and set φε,j (x) :=  φj ({ x/ε} ) , ζε,j (x) :=  εζj ({ x/ε} ) . 

where, as before, {·} denotes the fractional part of the vector (components). 





Moreover, if  κj (x) =  ωj (x −  aj ), we also set  κε,j (x) :=  εωj { x/ε} −  aj .  Note that





 x =  κ(−1 )( ¯ x) =  ε ω(−1 )( ¯ x/ε) +  a

+  εξ =  εκ(−1 )( ¯ x/ε) +  εξ . 

 ε,ξ,j

 j

 j

 j

As a consequence, 











! 

1

 κ(−1 ) x  , ζ

=  ε κ(−1 ) x  /ε, εζ

+  ξ

 ε,ξ,j

 ε,j (x  )

 j

 j (x  /ε)

 ε





=  εξ +  εκ(−1 ) x  /ε, ζ

 . 

 j

 j (x  /ε)

Moreover, 













 φε,j κ(−1 ) x  , ζ

=  φ

 εξ +  εκ(−1 ) x  /ε, ζ

 ε,ξ,j

 ε,j (x  )

 ε,j

 j

 j (x  /ε)







=  φj κ(−1 ) x  /ε, ζ

 . 

 j

 j (x  /ε)

; 

; 

; 

Finally, 

1 + |∇ ζε,j (x  )|2 =

1 +  ε 2 1 |∇

1 + |∇

 ε 2

¯ y   ζj (x  /ε)|2 =

¯ y   ζj (x  /ε)|2  . 

Let us return to the geometric setting from Sect. 19.1 and prove the following proposition. 

Theorem 1  Let u ∈  H α(∂Tε), −1 ≤  α ≤ 1 . Then



 u 2

=  ε−1−2 α T b

:=  ε−1−2 α

 T b

 dx . 

 hα (∂Tε)

 ε (u) 2

 L 2 (Ω,hα(∂T ))

 ε (u)(x, · ) 2

 hα (∂T )

 Ω

(19.11)

 Proof  By (19.8) and taking into account that | εY | =  εn, we obtain



; 

 uε,j (κ(−1 )(· , ζ

1 + |∇ ζ

 ε,ξ,j

 ε,j (· )))

 ε,j (· )|2 2

 hα ( R n−1 )

 j
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=

 u εξ +  εκ(−1 )(· /ε, ζ

 φ

 κ(−1 )(· /ε, ζ

 j

 j (· /ε))

 j

 j

 j (· /ε))

 j

; 

× 1 + |∇ ζj (· /ε)|2 2 hα( R n−1 )









=

 εn−1−2 α u εξ +  εκ(−1 )(· , ζ

 φ

 κ(−1 )(· , ζ

 j

 j (· ))

 j

 j

 j (· ))

 j

; 

× 1 + |∇ ζj (· )|2 2 hα( R n−1 )



= εn−1−2 α u(εξ +  ε· ) 2

=  εn−1−2 α

 u(ε.  x/ε/ +  ε· ) 2

 dx

 hα (∂T )

| εY |

 hα (∂T )

 ε(ξ + Y )



= ε−1−2 α

 T b

 ε (u)(x, · ) 2

 dx. 

 hα (∂T )

 ε(ξ + Y )

Finally, summing up in  ξ ∈  Ξε, and taking into account that  T b

 ε (u)(x, y) = 0 at

 x ∈  Λε =  Ω \ 

 Ωε, we obtain (19.11). 

! 

Theorem 2  Let u ∈  H α(∂Tε), −1 ≤  α ≤ 1 . Then

 u 2

=  ε−1 T b

 . 

(19.12)

 H α

 ε (∂ Tε )

 ε (u) 2

 L 2 (Ω,H α(∂T ))

 Proof  We will follow the same pattern as in the proof of Theorem 1. By (19.9), 

(19.10) and taking into account that | εY | =  εn, we obtain



; 

 uε,j (κ(−1 )(· , ζ

1 + |∇ ζ

 ε,ξ,j

 ε,j (· )))

 ε,j (· )|2 2

 H α

 ε ( R n−1 )

 j







=

 u εξ +  εκ(−1 )(· /ε, ζ

 φ

 κ(−1 )(· /ε, ζ

 j

 j (· /ε))

 j

 j

 j (· /ε))

 j

; 

× 1 + |∇ ζj (· /ε)|2 2 Hαε( R n−1 )







; 

=

 εn−1 u εξ +  εκ(−1 )(· , ζ

 φ

 κ(−1 )(· , ζ

1 + |∇ ζ

 j

 j (· ))

 j

 j

 j (· ))

 j (· )|2 2

 H α ( R n−1 )

 j



= εn−1 u(εξ +  ε· ) 2

=  εn−1

 u(ε.  x/ε/ +  ε· ) 2

 dx

 H α (∂T )

| εY |

 H α (∂T )

 ε(ξ + Y )



= ε−1

 T b

 ε (u)(x, · ) 2

 dx. 

 H α (∂T )

 ε(ξ + Y )

Finally, summing up in  ξ ∈  Ξε, and again taking into account that  T b ε (u)(x, y) = 0

at  x ∈  Λε =  Ω \ 

 Ωε, we obtain (19.12). 

! 
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 Remark 1  Rescaling (19.12) coincides with (19.9), i.e., passing from the hyper-plane to the Lipschitz boundaries and rescaling the parametrization and its Jacobian does not influence the order of the norm rescaling. 

Let us now obtain some inequalities for standard norms. 

Theorem 3  Let u ∈  H α(∂Tε). For α ∈ [0 ,  1] , the following norm equivalence holds





2 α−1 ε−1  T b

+

≤

 ε (u) 2

 ε−2 α T b

 L 2 (Ω× ∂T )

 ε (u)(x, · ) 2

 L 2 (Ω,hα(∂T ))





 u 2

≤  ε−1  T b

+  ε−2 α T b

 . 

 H α (∂Tε)

 ε (u) 2

 L 2 (Ω× ∂T )

 ε (u)(x, · ) 2

 L 2 (Ω,hα(∂T ))

 Proof  Owing to (19.4), for  α ∈ [0 ,  1], 2 α−1[ u 2

+  u 2

] ≤  u 2

≤  u 2

+  u 2

 . 

 L 2 (∂Tε)

 hα (∂Tε)

 H α (∂Tε)

 L 2 (∂Tε)

 hα (∂Tε)

This gives the equivalence of the norms. It suffices to note that by Proposition 2, 



 u 2

=  ε−1

 T b

 dx =  ε−1 T b

 , 

 L 2 (∂Tε)

 ε (u)(x, · ) 2

 L 2 (∂T )

 ε (u) 2

 L 2 (Ω× ∂T )

 Ω

and by Theorem 1, 



 u 2

=  ε−1−2 α

 T b

 dx =  ε−1−2 α T b

 . 

 hα (∂Tε)

 ε (u)(x, · ) 2

 hα (∂T )

 ε (u) 2

 L 2 (Ω,hα(∂T ))

 Ω

! 

Definition 5 On pair with Definition 1, we also define the following  ε-dependent norms equivalent to the standard ones for the Sobolev–Slobodetskii spaces  W s ( 

 Ω∗

2

 ε ), 

 s ≥ 0. If  s  is integer, then let



 v 2

:=

 ε 2| α| ∂αv 2

 . 

 W s ( 

 Ω∗

 L

2 ,ε

 ε )

2 ( 

 Ω∗

 ε )

| α|≤ s

If  s  is not integer, then let



 v 2

:=

 ε 2| α| ∂αv 2

+  ε 2 s v 2

 W s ( 

 Ω∗

 L

 W s ( 

 Ω∗

2 ,ε

 ε )

2 ( 

 Ω∗

 ε )

 ε )

|

2

 α|≤[ s]

Similarly, we define the equivalent  ε-dependent norm in the space  W s (∂T

2

 ε ),  s ∈

 ( 0 ,  1 ), cf. [GrOr18], 

 v 2

:=  v 2

+  ε 2 s v 2

 . 

(19.13)

 W s (∂T

 L

 W s (∂T

2 ,ε

 ε )

2 (∂ Tε )

2

 ε )
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Note that the semi-norm in (19.13) can be expressed as  v 2

:=

 W α (∂T

2

 ε )

 aα v 2

with the constant  a

 hα (∂T

 α  depending on  α  but not on  ε, cf. (19.3). 

 ε )

The following assertion is an immediate consequence of Theorem 1, Proposition 2 and relations (19.6). 

Corollary 1  Let u ∈  H α(∂Tε), α ∈  ( 0 ,  1 ). Then u 2

=  ε−1

 T b

 dx

 W α (∂T

 ε (u)(x, · ) 2

 L

2

 ε )

2 (∂ T )

 Ω



! 

+  ε−2 α

 T b

 ε (u)(x, · ) 2

 dx , 

 W α (∂T )

 Ω

2

 and in terms of the ε-dependent norm, 

|| u||2

=  ε−1 T b

 . 

(19.14)

 W α (∂T

 ε u 2

 L

 (∂T ))

2 ,ε

 ε )

2 (Ω ,W α

2

 Remark 2  By [GrOr18, Lem. 4.1], equality (19.14) is also valid for negative  α  in the sense of the dual to the Sobolev–Slobodetskii spaces. 

19.4

Unfolding in Sobolev–Slobodetskii Spaces in Perforated

Domains

Theorem 4

 (i) If φ ∈  W s( 

 Ω∗

2

 ε ),  0  < s <  1 , then

 Tε(φ) 2

≤  ε 2 s φ 2

 , 

(19.15)

 L 2 (Ω,W s (Y ∗ ))

2

 W s ( 

 Ω∗

2

 ε )

 Tε(φ) 2

≤  φ 2

+  ε 2 s φ 2

=  φ 2

 , 

 L 2 (Ω,W s (Y ∗ ))

2

 L 2 ( 

 Ω∗

 ε )

 W s ( 

 Ω∗

 W s ( 

 Ω∗

2

 ε )

2 ,ε

 ε )

(19.16)



 where  Tε(φ) 2

:=

 T

 dx. 

 L

 ε (φ)(x, · ) 2

2 (Ω ,W s (Y ∗ ))

 Ω

 W s (Y ∗ )

2

2

 (ii) If φ ∈  W  1 ( 

 Ω∗

2

 ε ), i.e., s = 1 , then

∇ Tε(φ) 2

=  ε 2∇ φ 2

 , 

(19.17)

 L 2 (Ω,L 2 (Y ∗ ))

 Ls ( 

 Ω∗

2

 ε )

 Tε(φ) 2

=  φ 2

+  ε 2∇ φ 2

=  φ 2

 . 

 L 2 (Ω,W  1 (Y ∗ ))

 L

 L

 W  1  ( 

 Ω∗

2

2 ( 

 Ω∗

 ε )

2 ( 

 Ω∗

 ε )

2 ,ε

 ε )

(19.18)
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 (iii) If φ ∈  W s( 

 Ω∗

2

 ε ),  1  < s <  2 , then (19.15)  still holds and Tε(φ) 2

≤  φ 2

+  ε 2∇ φ 2

+  ε 2 s φ 2

 L 2 (Ω,W s (Y ∗ ))

2

 L 2 ( 

 Ω∗

 ε )

 L 2 ( 

 Ω∗

 ε )

 W s ( 

 Ω∗

2

 ε )

=  φ 2

 . 

(19.19)

 W s ( 

 Ω∗

2 ,ε

 ε )

 (iv) If φ ∈  W s( 

 Ω∗

2

 ε ),  0  < s <  1 / 2 , then

 ε 2 s  φ 2

≤  C

 , 

(19.20)

 W s ( 

 Ω∗

1 Tε(φ) 2

 L

 (Y ∗ ))

2

 ε )

2 (Ω ,W s

2

 φ 2

+  ε 2 s φ 2

=  φ 2

≤  C

 , 

 L

2 Tε(φ) 2

2 ( 

 Ω∗

 L

 (Y ∗ ))

 ε )

 W s ( 

 Ω∗

 W s ( 

 Ω∗

2

 ε )

2 ,ε

 ε )

2 (Ω ,W s

2

(19.21)

 where C 1  and C 2  are independent on ε and φ. 

 (v) If φ ∈  W s( 

 Ω∗

2

 ε ),  1  < s <  3 / 2 , then (19.20)  still holds and φ 2

+  ε 2∇ φ 2

+  ε 2 s φ 2

 L 2 ( 

 Ω∗

 ε )

 L 2 ( 

 Ω∗

 ε )

 W s ( 

 Ω∗

2

 ε )

=  φ 2

≤  C

 , 

(19.22)

 W s ( 

 Ω∗

3 Tε(φ) 2

 L

 (Y ∗ ))

2 ,ε

 ε )

2 (Ω ,W s

2

 where C 3  is independent on ε and φ. 

 Proof

(i) Let  s ∈  ( 0 ,  1 ). Then



|



 φ (x) −  φ(y)|2

 φ 2

=

 dx dy

 W s ( 

 Ω∗

2

 ε )



 Ω∗



| x −  y| n+2 s

 ε

 Ω∗

 ε





|

=

 φ (x) −  φ(y)|2  dx dy

| x −  y| n+2 s

 ξ

 ε(ξ 1+ Y ∗ ) ε(ξ 2+ Y ∗ )

1∈ Ξε ξ 2∈ Ξε





|



≥

 φ (x) −  φ(y)|2  dx dy =

 φ 2

| x −  y| n+2 s

 W s (εξ + εY ∗ )

2

 ξ ∈ Ξ

 ε(ξ + Y ∗ ) ε(ξ + Y ∗ )

 ε

 ξ ∈ Ξε



=

 εn−2 s  φ(εξ +  ε· ) 2

 W s (Y ∗ )

2

 ξ ∈ Ξε





=

1  ε−2 s φ(εξ +  ε· ) 2

 dx

| Y |

 W s (Y ∗ )

2

 ξ ∈ Ξ

 εξ + εY

 ε
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=

1  ε−2 s

 φ(ε[ x/ε] +  ε· ) 2

 dx

| Y |

 W s (Y ∗ )

2

 ξ ∈ Ξ

 εξ + εY

 ε



= 1  ε−2 s

 T

 dx . 

|

 ε (φ)(x, · ) 2

 Y |

 W s (Y ∗ )

 Ω

2

Since |Y| = 1, we obtain (19.15). 

Taking into account that  φ 2

=  T

by item (i) of

 L

 ε (φ) 2

 L

2 ( 

 Ω∗

 ε )

2 (Ω × Y ∗ )

Proposition 1, the definition  u 2

:=  u 2

+  u 2

, employed

 W s (Ω  )

 L

 W s (Ω  )

2

2 (Ω   )

2

with  Ω  = 

 Ω∗

 ε  and  Ω   =  Y ∗, implies (19.16). 

(ii) Equalities (19.17) and (19.18) for the case  s = 1 immediately follow from Proposition 1. 

(iii) Let now  s ∈  ( 1 ,  2 )  and  μ =  s − 1. Then by (19.1), item (i) of Proposition 1

and inequality (19.15) with  φ  replaced by ∇ φ  and  s  by  μ, we obtain Tε(φ) 2

= ∇ T

 L

 ε (φ) 2

 μ

2 (Ω ,W s (Y ∗ ))

2

 L 2 (Ω,W (Y ∗ ))

2

=  εTε(∇ φ) 2

 μ

≤  ε 2 με 2∇ φ 2  μ

=  ε 2 s φ 2

 , 

 L 2 (Ω,W (Y ∗ ))

 W ( 

 Ω∗

 W s ( 

 Ω∗

2

2

 ε )

2

 ε )

which implies inequality (19.15) also for  s ∈  ( 1 ,  2 ). 

Definition of the Sobolev–Slobodetskii space  Tε(φ) 2

for 1  < 

 L 2 (Ω,W s (Y ∗ ))

2

 s <  2 together with relations (19.18) and (19.15) implies (19.19). 

(iv) Let  s ∈  ( 0 ,  1 / 2 ). Then



|



 φ (x) −  φ(y)|2

 φ 2

=

 dx dy

 W s ( 

 Ω∗

2

 ε )



 Ω∗



| x −  y| n+2 s

 ε

 Ω∗

 ε





|

=

 φ (x) −  φ(y)|2  dx dy

| x −  y| n+2 s

 ξ

 ε(ξ 1+ Y ∗ ) ε(ξ 2+ Y ∗ )

1∈ Ξε ξ 2∈ Ξε

|

=

 φ (εξ 1 +  εq) −  φ(εξ 2 +  εt)|2  ε 2 ndq dt εn+2 s | ξ 1 +  q −  ξ 2 −  t| n+2 s ξ

 Y ∗

 Y ∗

1∈ Ξε ξ 2∈ Ξε

|

≤

 φ (εξ +  εq) −  φ(εξ +  εt)|2

 εn−2 s

 dq dt

| ξ +  q −  ξ −  t| n+2 s

 ξ ∈ Ξ

 Y ∗

 Y ∗

 ε





+

1

2 εn−2 s

| φ(εξ 1 +  εq)|2

 dt dq

| ξ 1 +  q −  ξ 2 −  t| n+2 s

 ξ

 Y ∗

 Y ∗

1∈ Ξε

 ξ 2∈ Ξε

 ξ 2= ξ 1





+

1

2 εn−2 s

| φ(εξ 2 +  εt)|2

 dq dt

| ξ 1 +  q −  ξ 2 −  t| n+2 s

 ξ

 Y ∗

 Y ∗

2∈ Ξε

 ξ 1∈ Ξε

 ξ 1= ξ 2
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=  εn−2 s

 φ(εξ +  ε· ) 2 Ws(Y∗ )

2

 ξ ∈ Ξε

⎡

⎤



⎢  

⎥

+

 dt

4 εn−2 s

| φ(εξ

⎢

⎥

1 +  εq)|2 ⎣

| ξ

⎦  dq

1 +  q −  ξ 2 −  t | n+2 s

 ξ

 Y ∗

 Y ∗

1∈ Ξε

 ξ 2∈ Ξε

 ξ 2= ξ 1



2

≤

1

 εn−2 s

 T

|

 ε (φ) 

 εY |

 L 2 (Ω,W s (Y ∗ ))

2



+ 4 Csεn−2 s

| φ(εξ 1 +  εq)|2 dist(ξ 1 +  q, ∂Yξ )−2 sdq. 

1

 ξ

 Y ∗

1∈ Ξε

Here, similar to the proof of Theorem 3.33 in [Mc00], we used the estimate dt

≤

 dτ

 Y ∗ | ξ 1 +  q −  ξ 2 −  t | n+2 s

R n\ Y

| ξ 1 +  q −  τ| n+2 s

 ξ

 ξ

2∈ Ξε

1

 ξ 2= ξ 1

≤  Csdist(ξ 1 +  q, ∂Yξ )−2 s, 

1

where  Cs  is a constant and  Yξ :=  ξ

1

1 +  Y . Applying now Lemma 3.32 from

[Mc00], we obtain



1

 φ 2

≤  ε−2 s

 T

 W s ( 

 Ω∗

 ε (φ) 2

 L 2 (Ω,W s (Y ∗ ))

2

 ε )

| Y |

2



+ 4 Csεn−2 s

 CY ∗ φ(εξ 1 +  ε· ) 2 Ws(Y∗ )

2

 ξ 1∈ Ξε

=

1

1

 ε−2 s

 T

+ 4 C

 T

|

 ε (φ) 2

 s CY ∗  ε−2 s

 ε (φ) 2

 Y |

 L 2 (Ω,W s (Y ∗ ))

 L 2 (Ω,W s (Y ∗ ))

2

| Y |

2

≤

1

 C 1 ε−2 s

 T

 , 

|

 ε (φ) 2

 Y |

 L 2 (Ω,W s (Y ∗ ))

2

where  CY ∗ and hence  C 1 do not depend on  ε. Since |Y| = 1, we obtain (19.20). 

Taking into account that  φ 2

=  T

by item (i) of

 L

 ε (φ) 2

 L

2 ( 

 Ω∗

 ε )

2 (Ω × Y ∗ )

Proposition 1, the definition  u 2

:=  u 2

+  u 2

, employed

 W s (Ω  )

 L

 W s (Ω  )

2

2 (Ω   )

2

with  Ω  = 

 Ω∗

 ε  and  Ω   =  Y ∗, implies (19.21). 

(v) Let now  s ∈  ( 1 ,  3 / 2 )  and, similar to the proof of item (iii),  μ =  s − 1. Then by

(19.1), item (i) of Proposition 1 and inequality (19.20) with  φ  replaced by ∇ φ


and  s  by  μ, we obtain
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 ε 2 s  φ 2

=  ε 2 μ+2∇ φ 2  μ

≤  C

 μ

 W s ( 

 Ω∗

 W ( 

 Ω∗

1 ε 2 Tε(∇ φ) 2

 L

 (Y ∗ ))

2

 ε )

2

 ε )

2 (Ω ,W 2

=  C 1∇ Tε(φ) 2

 μ

≤  C

 L

1 Tε(φ) 2

2 (Ω ,W

 (Y ∗ ))

 L

 (Y ∗ ))

2

2 (Ω ,W s

2

which implies inequality (19.20) also for  s ∈  ( 1 ,  3 / 2 ). 

Definition of the Sobolev–Slobodetskii space  Tε(φ) 2

for 1  < 

 L 2 (Ω,W s (Y ∗ ))

2

 s <  3 / 2 together with relations (19.18) and (19.20) imply (19.22). 

! 

19.5

Rescaling of the Trace Theorem in  W s2

For  u ∈  W s(Ω∗

2

 ε ),  s ∈  ( 1 / 2 ,  3 / 2 ), the trace operator (in the Gagliardo sense)  γ : s−1 / 2

 W s (Ω∗

 (∂Ω∗

2

 ε ) →  W 2

 ε ),  is continuous, see, e.g., [Mc00]. 

Now, we can rewrite the trace theorem using the scaling estimates from Theo-

rems 3 and 4. 

Theorem 5  Let u ∈  W s( 

 Ω∗

2

 ε ), s ∈  ( 1 / 2 ,  3 / 2 ), ε >  0 . 

 (i) If s ∈  ( 1 / 2 ,  1 ), then





 ε  γ

 u 2

+  ε 2 s−1 γ u 2

 ∂Tε

 L 2 (∂Tε)

 ∂Tε

 s−1 / 2

 W

 (∂T

2

 ε )





≤  C  u 2

+  ε 2 s u 2

 . 

(19.23)

 L 2 ( 

 Ω∗

 ε )

 W s ( 

 Ω∗

2

 ε )

 (ii) If s = 1 , then









 ε  γ

 u 2

+  ε γ u 2

≤  C  u 2

+  ε 2∇ u 2

 . 

 ∂Tε

 L 2 (∂Tε)

 ∂Tε

1 / 2

 W

 (∂T

 L 2 ( 

 Ω∗

 L 2 ( 

 Ω∗

2

 ε )

 ε )

 ε )

(19.24)

 (iii) If s ∈  ( 1 ,  3 / 2 ), then





 ε  γ

 u 2

+  ε 2 s−1 γ u 2

 ∂Tε

 L 2 (∂Tε)

 ∂Tε

 s−1 / 2

 W

 (∂T

2

 ε )





≤  C  u 2

+  ε 2∇ u 2

+  ε 2 s u 2

 . 

(19.25)

 L 2 ( 

 Ω∗

 ε )

 L 2 ( 

 Ω∗

 ε )

 W s ( 

 Ω∗

2

 ε )

 In all three cases the constant C is independent of u and ε and, using the -

 dependent norms, they can be written in the same form, 

 ε γ

 u 2

≤  C u 2

 , 

1 / 2  < s <  3 / 2 . 

 ∂Tε

 s−1 / 2

 W

 (∂T

 W s ( 

 Ω∗

2 ,ε

 ε )

2 ,ε

 ε )
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 Proof  If 1 / 2  < s <  3 / 2, then by the trace theorem in  Y ∗, there exists a constant  C

independent of  u  and  ε, such that

 γ T

+  γ T

 ∂T

 ε (u)(x, · ) 2

 L

 ε (u)(x, · ) 2

 s−1 / 2

2 (∂ T )

 ∂T

 W

 (∂T )

2





≤  C  Tε(u)(x, · ) 2

+  T

 . 

 L

 ε (u)(x, · ) 2

2 (Y ∗ )

 W s (Y ∗ )

2

Integrating in  x, we have

 γ T

≤  C T

 . 

(19.26)

 ∂T

 ε (u) 2

 s−1 / 2

 ε (u) 2

 L

 L

 (Y ∗ ))

2 (Ω ,W

 (∂T ))

2 (Ω ,W s

2

2

Let first 1 / 2  < s <  1. Employing inequality (19.16) in the right hand side of (19.26)

and, cf. (19.14), the relation

 γ T

=  T b

 u) 2

 ∂T

 ε (u) 2

 s−1 / 2

 s−1 / 2

 L

 ε (γ∂T

2 (Ω ,W

 (∂T ))

 L

 (∂T ))

2

2 (Ω ,W 2





=  ε  γ u 2

+  ε 2 s−1 γ u 2

 ∂Tε

 L 2 (∂Tε)

 ∂Tε

 s−1 / 2

 W

 (∂T

2

 ε )

in the left hand side, we arrive at (19.23). 

Similar reasoning with relations (19.18) and (19.19) instead of (19.16) leads to

(19.24) and (19.25), respectively. 

! 

Note that the inequality similar to (19.24), for  s = 1, was first given in

[GaEtAl14, Lem.3.1(iv)], and appears as an auxiliary result in [GrOr18]. 
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Chapter 20

Design and Performance of a Multiphase

Flow Manifold

Mobina Mohammadikharkeshi, Asad Molayari, Ramin Dabirian, 

Ram S. Mohan, and Ovadia Shoham

20.1

Nomenclature

 AP

Pipe cross-sectional area (m2)

 AG

Gas cross-sectional area (m2)

 C 0

Flow distribution coefficient (–)

 d

Diameter (m)

 g

Gravitational acceleration (m/s2)

 hL

Liquid level (m)

 HF  1

Liquid holdup in film region at the front of slug (–)

 HF  2

Liquid holdup in film region at the back of slug (–)

 HS

Liquid holdup in the slug body region (–)

 LBF M

Dissipation length in the main manifold (manifold length) (m)

 Ls

Slug body length (m)

 SI

Gas and liquid interface length (m)

 t

Time (s)

 vD

Drift velocity (m/s)

 vF  1

Liquid film velocity at the front of slug (m/s)

 vF  2

Liquid film velocity at the back of slug (m/s)

 vm

Mixture velocity (m/s)

 vT  1

Translational velocity at the front of slug (m/s)

 vT  2

Translational velocity at the back of slug (m/s)

 vSG

Superficial gas velocity (m/s)
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 vSL

Superficial liquid velocity (m/s)

 Δt

Dissipation time (s)

 θ

Inclination angle from horizontal (◦)

 ρG

Gas density (kg/m3)

 ρL

Liquid density (kg/m3)

20.2

Introduction

Multiphase flow manifolds are utilized in the Petroleum Industry to gather produc-

tion from various pipelines, promote separation and stratification, and redistribute the phases into downstream processing facilities for further separation, treatment

and transportation. The challenge for the multiphase manifold is to handle the

different flow conditions from various upstream pipelines and to ensure equal

splitting of the gas and the liquid in its outlets. Maldistribution of the flow from the manifold outlets, i.e., liquid carry-over or gas carry-under, may cause operational

problems in downstream separation facilities. Among the different flow patterns

occurring in the pipelines upstream of manifolds, slug flow is the most challenging

one due to the difficulty to dissipate it in the manifold. 

Parallel pipelines are used by the Petroleum Industry as a flow splitter, or they

can be combined to form manifolds [DaEtAl13, DaEtAl16]. Also, multiphase flow in parallel and looped pipelines increase the flow capacity and decrease the pressure drop in the system [AlEtAl10]. Numerous studies were published on multiphase flow in parallel lines, looped lines, as well as multiphase flow manifolds. Different geometries such as horizontal or vertical branches were investigated, with different upstream flow patterns, such as stratified (smooth and wavy) flow, slug flow, 

churn flow and annular flow [Co80, OsEtAl99, Bu03, TaEtAl03, ViPe04, PuEtAl06, 

PuEtAl10]. 

Slug flow has been widely studied for horizontal, vertical and inclined flow

[DuHu75, Sy87, VoSo89, TaBa90, ScKo90, ZhEtAl03a, Sh06, Go08]. Slug tracking and slug dissipation models in hilly terrain pipelines, downward inclined flow, 

helical pipes and flow into larger diameter pipe sections were published by

[Zh91, ZhEtAl94, TaBa98, TaBa00, Ra00, TaEtAl00, Di03, ZhEtAl00, ZhEtAl03b]. 

The difference between the slug dissipation models and steady-state slug flow

models is that in the former models the slug length is not considered constant but

rather it shrinks continuously until it disappears completely. 

No studies have been published on slug dissipation in multiphase manifold. 

This is the gap that present study attempts to fill. A special multiphase flow

manifold called the Balanced Feed Manifold (BFM) is utilized. In addition to the

main manifold, the BFM has a secondary liquid manifold, which aims at a better

separation of the gas and the liquid phases and an equal distribution of the phases

into downstream facilities. 
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20.3

Experimental Setup

Descriptions of the multiphase flow loop, the BFM test section, test matrix and the

acquired experimental results are presented in this section. 

 20.3.1

 Flow Loop

The experimental facility utilized is shown schematically in Fig. 20.1. As shown, water is stored in a water tank and is delivered to the loop by a centrifugal pump. 

The water flow rate is controlled by a liquid control valve and is measured by

a Coriolis mass flow meter. The gas phase, air, is supplied by a compressor and

the gas flow rate is measured and controlled by a Coriolis mass flow meter and

a gas control valve, respectively. The gas and liquid lines are combined upstream

of the BFM test section. Downstream of the test section, 2 Gas Liquid Cylindrical

Cyclones (GLCC©s) are installed, which are connected to the 2 outlets of the BFM. 

The GLCC©s are used to separate the gas and liquid and their respective flow

rates exiting from each BFM outlet are measured using single phase meters. After

measuring the gas and liquid flow rates, both lines are recombined and sent to the

water tank. The water recirculates to the loop and the air is vented to the atmosphere. 

All the inlet liquid and gas lines are 0.05 m ID and the GLCC© diameters are

0.074 m. 

Gas Mass

Flow Meter

Gas

Pressure

Control

Transducer

Inlet

Valve

Air Vessel

Gas line

Air

Compressor

BFM Test

Downstream GLCC

Section

Metering Sections

Water Tank

Inlet

Liquid Mass

Liquid

Liquid line

Flow Meter

Control

Water Pump

Valve

Fig. 20.1 Schematic of balanced feed manifold flow loop
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D= 0.05 m

L= 4.27 m

D= 0.074 m

L= 2.13 m

D= 0.05 m

D= 0.05 m

D= 0.05 m

D= 0.05 m

Fig. 20.2 Schematic of balanced feed manifold test section

 20.3.2

 BFM Test Section

A schematic of the test section is given in Fig. 20.2. As can be seen, the BFM

consists of a 0.074 m ID 4.27 m long main manifold (on the top), which is connected

to a secondary manifold that is 0.05 m ID and same length (at the bottom). Four

sections of 0.05 m ID connect the main manifold to the secondary manifold. The

BFM is fed by three inlet pipes 0.05 m ID and 2.13 m long, which are connected to

the main manifold. As mentioned, the BFM has two outlets, each of which consists

of a gas outlet from the top of the main manifold and a liquid outlet off the secondary liquid manifold. 

 20.3.3

 Data Acquisition System

The control valves, mass flow meters, pressure and temperature transducers are

monitored and controlled by a LabVIEW program. The experimental data are

recorded and stored in an Excel spreadsheet for future analysis. Also, video cameras are used to follow the slug along the main manifold and to measure the slug

dissipation length in the main manifold. 

[image: Image 141]
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Fig. 20.3 Balanced feed manifold inlet flow configurations, (a) slug flow in middle pipe, (b) slug flow in one side pipe, (c) slug flow in two adjacent pipes, and (d) slug flow in two side pipes

 20.3.4

 Test Matrix

A total of 16 data points are acquired to study the slug dissipation in the BFM. 

Figure 20.3 shows the four different inlet flow configurations in the 3 feeding pipes used to acquire the data. As can be seen, in some of the test runs only 1 inlet pipe operates under slug flow, which occurs either in the middle inlet pipe (Fig. 20.3a)

or in the side inlet pipe (Fig. 20.3b). For the other test runs, 2 inlet pipes are in slug flow, as shown in Fig. 20.3c and d. For both cases, the remaining inlet pipe(s) operates in stratified flow. Table 20.1 shows the BFM test matrix which presents the operating flow condition for different inlet flow configuration test runs. 

 20.3.5

 Experimental Results

The BFM experimental results are presented for the 4 inlet flow conditions in

Table 20.2. The results demonstrate that by increasing the mixture velocity, the experimental dissipation length increases. Also, as expected, when increasing the

number of the inlet pipes that operate in slug flow the slug dissipation length in the manifold increases. 
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Table 20.1 Balanced feed manifold test matrix

Configuration

Run# Property

Inlet pipe#1 Inlet pipe#2 Inlet pipe#3

Slug flow in middle pipe

1

 vSL (m/s)

0 .  06

0 .  43

0 .  06

 vSG (m/s)

1 .  52

2 .  44

1 .  52

Flow pattern Stratified

Slug

Stratified

2

 vSL (m/s)

0 .  06

0 .  49

0 .  06

 vSG (m/s)

1 .  52

2 .  9

1 .  52

Flow pattern Stratified

Slug

Stratified

3

 vSL (m/s)

0 .  06

0 .  46

0 .  06

 vSG (m/s)

1 .  52

3 .  35

1 .  52

Flow pattern Stratified

Slug

Stratified

4

 vSL (m/s)

0 .  06

0 .  52

0 .  06

 vSG (m/s)

1 .  52

3 .  66

1 .  52

Flow pattern Stratified

Slug

Stratified

Slug flow in one side pipe

5

 vSL (m/s)

0 .  43

0 .  06

0 .  06

 vSG (m/s)

2 .  44

1 .  52

1 .  52

Flow pattern Slug

Stratified

Stratified

6

 vSL (m/s)

0 .  49

0 .  06

0 .  06

 vSG (m/s)

2 .  9

1 .  52

1 .  52

Flow pattern Slug

Stratified

Stratified

7

 vSL (m/s)

0 .  46

0 .  06

0 .  06

 vSG (m/s)

3 .  35

1 .  52

1 .  52

Flow pattern Slug

Stratified

Stratified

8

 vSL (m/s)

0 .  52

0 .  06

0 .  06

 vSG (m/s)

3 .  66

1 .  52

1 .  52

Flow pattern Slug

Stratified

Stratified

Slug flow in two adjacent pipes 9

 vSL (m/s)

0 .  55

0 .  55

0 .  06

 vSG (m/s)

3 .  63

3 .  63

1 .  52

Flow pattern Slug

Slug

Stratified

10

 vSL (m/s)

0 .  58

0 .  58

0 .  06

 vSG (m/s)

3 .  84

3 .  84

1 .  52

Flow pattern Slug

Slug

Stratified

11

 vSL (m/s)

0 .  52

0 .  52

0 .  06

 vSG (m/s)

4 .  27

4 .  27

1 .  52

Flow pattern Slug

Slug

Stratified

12

 vSL (m/s)

0 .  61

0 .  61

0 .  06

 vSG (m/s)

4 .  7

4 .  7

1 .  52

Flow pattern Slug

Slug

Stratified

(continued)
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Table 20.1 (continued)

Configuration

Run#

Property

Inlet pipe#1

Inlet pipe#2

Inlet pipe#3

Slug flow in two side pipes

13

 vSL (m/s)

0 .  55

0 .  06

0 .  55

 vSG (m/s)

3 .  63

1 .  52

3 .  63

Flow pattern

Slug

Stratified

Slug

14

 vSL (m/s)

0 .  58

0 .  06

0 .  58

 vSG (m/s)

3 .  84

1 .  52

3 .  84

Flow pattern

Slug

Stratified

Slug

15

 vSL (m/s)

0 .  52

0 .  06

0 .  52

 vSG (m/s)

4 .  27

1 .  52

4 .  27

Flow pattern

Slug

Stratified

Slug

16

 vSL (m/s)

0 .  61

0 .  06

0 .  61

 vSG (m/s)

4 .  7

1 .  52

4 .  7

Flow pattern

Slug

Stratified

Slug

Table 20.2 Experimental slug dissipation length results

Configuration

Run#

Slug dissipation length (m)

Slug flow in middle pipe

1

0 .  76

2

0 .  88

3

0 .  94

4

1 .  13

Slug flow in one side pipe

5

0 .  79

6

0 .  88

7

0 .  97

8

1 .  11

Slug flow in two adjacent pipes

9

1 .  40

10

1 .  64

11

1 .  95

12

2 .  07

Slug flow in two side pipes

13

1 .  80

14

1 .  74

15

1 .  89

16

2 .  04

20.4

Modeling

Slug dissipation occurs due to liquid shedding from the back of the slug body, 

as well as liquid drainage and backward penetration of elongated bubble into the

slug body (bubble turning) that occur at the slug front. A slug dissipation model is developed based on tracking the passage of one slug body (“slug tracking”) after

entering the larger diameter section. In a normal and steady-state slug flow, the

translational velocities at the front and at the back of the slug body, as well as the
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liquid shedding and pickup at the back and at the front of the slug are equal, resulting in a constant slug body length. However, when the slug enters the main manifold, 

the translational velocities at the front and back of slug are not the same. Due to

the bubble turning phenomenon and liquid drainage from the slug body front, the

translational velocity at the slug front,  vT  1, is lower than the translational velocity at its back,  vT  2. As a result, as the slug body moves along the main manifold the slug length becomes shorter and shorter until it dissipates completely leading to stratified flow occurs. The model developed for the prediction of the main manifold length and

diameter, which are the two parameters needed for its design, is presented next. 

 20.4.1

 Main Manifold Diameter

The manifold diameter is determined based on [TaDu76] transition boundary from non-stratified to stratified, as follows: it is assumed that all the inlet gas and liquid flow axially in the manifold, whereby the minimum manifold diameter that satisfies

the transition to stratified flow under these conditions is reported as the manifold diameter. This diameter ensures that stratified flow will occur in the main manifold. 

The transition criterion is given by





! 

 (ρ

0 .  5

 L −  ρG)gAG  cos  θ

 vG ≤ 1 −  hL

 . 

(20.1)

 d

 ρGSI

Iterations are carried out varying the BFM diameter until (20.1) is satisfied. 

 20.4.2

 Main Manifold Length

The main manifold length is determined based on the slug dissipation length in man-

ifold. Since the main manifold consists of three Enlarged Impacting Tee-junction

(EIT) sections, the slug dissipation model developed by [MoEtAl18a, MoEtAl18b]

for EIT is extended for the BFM geometry. Thus, prediction of the slug dissipation

length in manifold and as a result the manifold length are determined. 

Following [MoEtAl18a, MoEtAl18b], a liquid mass balance is applied on the shrinking slug body in the main manifold in a coordinate system moving at  vT  2

results in

 dLS

 ρLAP HS

−  (vT  2 −  vF 2 ) ρLAP HF 2 +  (vT  2 −  vT  1 ) ρLAP HS

 dt

(20.2)

+  (vT  2 −  vF 1 ) ρLAP HF 1 = 0 . 
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Assuming that the film velocity and liquid holdup at the front and at the back of slug are the same, (20.2) reduces to

 dLS +  (vT  2 −  vT  1 ) dt = 0 . 

(20.3)

Integrating (20.3), the dissipation time interval, which is the time that takes for the slug body to dissipate completely, is

 Δt =

 LS

 . 

 (vT  2 −  vT  1 )

Finally, the dissipation length, which is the required manifold length, is given by

 (vT  2 +  vT  1 )

 LBF M =  Δt

 . 

2

In the above equations,  vT  2 is assumed to be a normal slug flow translational velocity, namely,  vT  2 =  C 0 vm +  vD [Ni62]. The translational velocity at the front of the slug is lower due to the penetration of bubble turning and liquid drainage, 

and is given by  vT  1 =  vm −  vD. The drift velocity is determined by [Be84], i.e., 

√

√

 vD = 0 .  54  gd  cos  θ + 0 .  35  gd  sin  θ. 

20.5

Comparison Study

The slug length in the BFM inlet feeding pipes is assumed to be 32 d  for fully developed flow. When the slug enters into the main manifold its length is adjusted

owing to the larger diameter manifold, which is found using a simple mass

balance over the slug body. Also, the mixture velocity in drift velocity equation

is the summation of the superficial gas and liquid velocities of all the inlet pipes. 

Figures 20.4, 20.5, 20.6, 20.7 provide comparisons between model predictions and acquired experimental data for the 4 different inlet flow configurations. These inlet flow configurations include slug flow in the middle pipe, slug flow in one side

pipe, slug flow in two adjacent pipes and slug flow in two side pipes. The model

predictions for all four cases are in good agreement with the experimental data, 

with an average absolute relative error of 7.5%. An overall evaluation between the

experimental data and model predictions is presented in Fig. 20.8, demonstrating discrepancies less than ±10% for most of the data. 

[image: Image 142]

[image: Image 143]
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Fig. 20.4 Comparison for slug flow in middle pipe

Fig. 20.5 Comparison for slug flow in one side pipe

[image: Image 144]

[image: Image 145]
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Fig. 20.6 Comparison for slug flow in two adjacent pipes

Fig. 20.7 Comparison for slug flow in two side pipes

[image: Image 146]
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Fig. 20.8 Overall comparison between model predictions and experimental data
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Chapter 21

On the Polarization Matrix

for a Perforated Strip

Sergey A. Nazarov, Rafael Orive-Illera, and María-Eugenia Pérez-Martínez

21.1

Introduction

Let  Π = { ξ =  (ξ 1 , ξ 2 ) :  ξ 1 ∈ R , ξ 2 ∈  ( 0 , H )} be a strip of width  H >  0 and let  ω

be a bounded domain in the plane R2, with a Lipschitz boundary  ∂ω. Let  R >  0 be such that

 ω ⊂  (− R, R) ×  ( 0 , H ). 

(21.1)

In the unbounded domain  Ξ =  Π \  ω (see Fig. 21.1), we consider the following boundary value problem:

− ΔW(ξ) = 0 , ξ ∈  Ξ =  Π \  ω, 

(21.2)

 ∂W

 W (ξ 1 , H ) =  W (ξ 1 ,  0 ), 

 (ξ 1 , H ) =  ∂W (ξ 1 ,  0 ), ξ 1 ∈ R . 

(21.3)

 ∂ξ 2

 ∂ξ 2

 W (ξ ) = 0 , ξ ∈  ∂ω. 

(21.4)
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Fig. 21.1 The unbounded

domain  Ξ  with the hole  ω

Problem (21.2)–(21.4), with the periodic conditions (21.3), is of interest since, for instance, it arises in homogenization processes in perforated media. We are led to

this  unit cell problem, also the so-called  local problem, in boundary homogenization problems to describe boundary layer phenomena. In particular, it has been obtained

when addressing the band-gap structure of a spectral problem for the Laplace

operator in an unbounded strip periodically perforated by a family of holes, which

are also periodically distributed along a line, the so-called  perforation string, cf. 

[NaEtAl18]. That is, a double periodicity occurs: periodicity  O( 1 )  in the  ξ 1-direction and  O(ε)  in the  ξ 2-direction,  ε  being a small parameter,  ε $ 1, while each hole is homothetic to  ω  of ratio  ε. It has been shown that the coefficients of the so-called  polarization matrix p(Ξ ) (cf. (21.6), (21.7)) play an important role in the asymptotic determination of the endpoints of the spectral bands, as  ε → 0. 

This matrix  p(Ξ )  is an integral characteristic of the “Dirichlet hole”  ω  in the strip Π  and is quite analogous to the classical polarization tensor in the exterior Dirichlet problem, see Appendix G in [PoSz51]. 

In particular, in [NaEtAl18], we proved the existence of holes  ω  such that the anti-diagonal of the polarization matrix does not vanish (cf. (21.17), (21.18)). This is an essential fact to determine the precise length of the above mentioned bands. 

In this paper, we investigate the dependence of the coefficients of the polarization matrix on the shape and the dimension of the hole which may provide a higher

precision in the detection of the band-gap structure of the spectrum when dealing

with a periodically perforated waveguide. To highlight the dependence of the

polarization matrix on the characteristics of the hole, in Sects. 21.3 and 21.4 we provide two examples. The results can be applied when the holes asymptotically

collapse on a horizontal crack (cf. Theorem 2) or on a point, respectively (cf. 

Theorem 3); however, a two-dimensional positive measure of the holes must be maintained. Section 21.2 describes some general properties of coefficients of the polarization matrix. 

It is worth recalling that, according to the general theory of elliptic problems in

domains with cylindrical outlets to infinity, cf., e.g., Ch. 5 in [NaPl94], problem

(21.2)–(21.4) has just two solutions with a polynomial growth as  ξ 1 → ±∞. We denote these solutions as  W ± (ξ )  by setting ±1 for the constants accompanying  ξ 1. 

In order to introduce the polarization matrix associated to the perforated strip  Ξ , we consider two cut-off functions  χ± ∈  C∞ ( R )  such that 1 ,  for ±  y >  2 R, 

 χ± (y) = 0 ,  for ±  y < R, 

where the subindex ± represents the support in ± ξ 1 ∈ [ R, ∞ ). 
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Theorem 1  There are two normalized solutions of (21.2) –(21.4)  in the form W ± (ξ ) = ± χ± (ξ 1 )ξ 1 +

 χτ (ξ 1 )pτ± + 

 W ± (ξ ), 

 ξ ∈  Ξ, 

(21.5)

 τ =±

 where the remainder 

 W ± (ξ ) gets the exponential decay rate O(e−| ξ 1|2 π/H ), and the coefficients pτ± ≡  pτ± (Ξ), with τ = ± , compose a  2 × 2  polarization matrix p

 p(Ξ ) =

++ (Ξ ) p+− (Ξ )

 , 

(21.6)

 p−+ (Ξ) p−− (Ξ)

 where the coefficients are defined as follows:



1

 H

 pτ± (Ξ) = lim

 (W τ (± T , ξ 2 ) −  τ δτ, ± T )dξ 2 . 

(21.7)

 T →∞  H

0

The proof of Theorem 1 can be found in [NaEtAl18]. Here we only emphasize that the existence of two linearly independent normalized solutions  W ± of (21.2)–

(21.4) with a linear polynomial behavior ± ξ 1+ p±±, as ± ξ 1 → ∞, is a consequence of the Kondratiev theory [Ko67] (cf. also Ch. 5 in [NaPl94] and Sect. 3 in [Na99]). 

Each solution has a polynomial growth in one direction and stabilizes towards a

constant  p∓± in the other direction. In addition, it lives in an exponential weighted Sobolev space which guaranties that, after subtracting the linear part, the remaining functions have a gradient in  (L 2 (Ξ )) 2. 

Also it should be noted that the above results hold in the case where  ω  is a vertical crack, cf. (21.16). 

21.2

Some General Properties of the Polarization Matrix

In this section we provide some properties of the coefficients of the polarization

matrix  p(Ξ ). Some of these properties have been proved in [NaEtAl18] and we recall them here for the sake of completeness. Also, for brevity, if no confusion

arises, we avoid writing  (Ξ )  in the coefficients of the matrix  p(Ξ ). 

Proposition 1  The matrix p(Ξ ) +  R  I  is symmetric and positive, where  I  stands for the  2 × 2  unit matrix and R given in (21.1) . 

Proposition 2  Let ω be such that its two-dimensional measure mes 2 (ω) >  0 . Then, the coefficients of the polarization matrix p(Ξ ) satisfy

 H ( 2 p+− −  p++ −  p−− ) > mes 2 (ω). 

(21.8)

The proof of Propositions 1 and 2 is in [NaEtAl18]. 
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An immediate consequence of Proposition 1 are the following results: p±± +  R ≥ 0 , 

(21.9)

 p++ +  p−− + 2 R≥2| p+−| . 

(21.10)

In addition, by (21.10), we get

2 p+− + 2 R ≥ − p++ −  p−− . 

Also, using this in (21.8), we obtain a lower bound

1

 p+−  > 

 (mes 2 (ω) − 2 RH ) , 

(21.11)

4 H

where the right-hand side is negative by the hypothesis (21.1). Obviously, (21.11)

reads

|

1

 p+−|  < 

 ( 2 RH −  mes 2 (ω)) ,  when  p+−  <  0 . 

4 H

Finally, let us note that by Proposition 1, the coefficients of the anti-diagonal of p  satisfy

 p+− =  p−+ . 

(21.12)

 21.2.1

 The Case of a Symmetric Hole

In this section, we consider a symmetric hole  ωs  with respect to the  ξ 1-axis, namely  ω  such that if  (ξ 1 , ξ 2 ) ∈  ω, then  (− ξ 1 , ξ 2 ) ∈  ω. Denoting by  Ξ s  the unbounded domain with this symmetric hole, we show that the matrix  p(Ξ s )

becomes symmetric with respect to the anti-diagonal, namely

 p++ (Ξs) =  p−− (Ξs). 

(21.13)

Indeed, this is due to the fact that each one of the two normalized solutions in (21.5)

is related with each other by symmetry. Note that, by (21.5),  W + (ξ )  has a linear polynomial growth  ξ 1 +  p++ as  ξ 1 → +∞, while it stabilizes towards the constant p−+ as  ξ 1 → −∞. Considering the function  W (ξ 1 , ξ 2 ) =  W + (− ξ 1 , ξ 2 ),  W (ξ) satisfies (21.2)–(21.4), it has a linear polynomial growth − ξ 1 +  p++ as  ξ 1 → −∞

and stabilizes towards the constant  p−+ as  ξ 1 → +∞. Therefore

 W − (ξ 1 , ξ 2 ) =  W + (− ξ 1 , ξ 2 ), (21.14)
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and this provides

 p−− (Ξs) =  p++ (Ξs), 

 p+− (Ξs) =  p−+ (Ξs). 

Consequently, (21.13) holds, while we observe that the symmetry with respect to the diagonal holds for any shape of the hole  ω, cf. (21.12). 

Moreover, in the symmetric case, the eigenvalues of the matrix  p  are

 λ 1 =  p++ (Ξs) +  p+− (Ξs), 

 λ 2 =  p++ (Ξs) −  p+− (Ξs), 

(21.15)

and by Proposition 2,  λ 2 = < − mes 2 (ωs)( 2 H )−1  <  0 ,  when  mes 2 (ωs) >  0. 

Proposition 3  Let ω be the crack

 ω = { ξ ∈ R2 :  ξ 1 = 0 , ξ 2 ∈  (h, H −  h)} , (21.16)

 where h < H / 2 . Then, 

 p+− =  p−+  >  0 . 

(21.17)

 In addition, p−− =  p++ =  p−+ =  p+− . 

Proposition 4  There are symmetric holes ωs , with a smooth boundary and

 mes 2 (ωs) >  0 , for which

 p+− =  p−+  >  0 . 

(21.18)

The proof of Propositions 3 and 4 has been performed in [NaEtAl18]. 

As a consequence of Proposition 3, when  ω  is a vertical crack, the inequality in Proposition 2 must be replaced by  H ( 2 p+− −  p++ −  p−− ) =  mes 2 (ω) = 0 .  Also, in this case  λ 2 = 0, cf. (21.15). 

21.3

The Case of a “Big” Rectangular Hole

Let us consider the specific geometry in Fig. 21.1 with hole  ω =  (− B, B) ×

 (h, H −  h)  with 2 h < H , see Fig. 21.2. Throughout this section, we denote by  Ξ 

the perforated strip. 

Theorem 2  Let us assume that h is a small parameter, h $ 1 . Then, the coefficients of the polarization matrix satisfy

 p++ (Ξ ) =  p−− (Ξ ) = − B +  O(h 2 ), p−+ (Ξ ) =  p+− (Ξ ) =  O(h 2 ). 

(21.19)

[image: Image 149]
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Fig. 21.2 The strips  Ξ  and  Ξ h  with the hole  ω

 Proof  We use (21.7) to show (21.19). It proves useful to introduce the domain Ξ h =  Π+ (B) ∪  Π− (B) ∪  Υ h(B), 

see Fig. 21.2, where

 Π± (B) = { ξ : ± ξ 1  > B, | ξ 2|  < H/ 2}

 Υ h(B) = { ξ ∈  Π : | ξ 1| ≤  B, | ξ 2|  < h} . 

Due to the symmetry of  ω, the functions in (21.5) satisfy (21.14). Furthermore, we consider the natural periodic extension of  W + to  Ξ h, 

 W+ (ξ

 W + (ξ

1 , ξ 2 ), 

 ξ 2 ∈ [0 , H/ 2] , 

1 , ξ 2 ) =

 W + (ξ 1 , H +  ξ 2 ), ξ 2 ∈ [− H/ 2 ,  0 ). 

Also, we assume that  ω is repeated by periodicity in the direction of the  ξ 2-axis. 

Thus,  W + satisfies

− ΔW+ (ξ) = 0 , ξ ∈  Ξh, 

with the periodicity condition on | ξ 1| ≥  B, 

 ∂W +

 W + (ξ 1 , H / 2 ) =  W + (ξ 1 , − H/ 2 ), (ξ 1 , H / 2 ) =  ∂W +  (ξ 1 , − H/ 2 ), 

 ∂ξ 2

 ∂ξ 2

(21.20)

and the Dirichlet boundary condition on  ∂ω ∩  ∂Ξh, namely on

 W + (ξ ) = 0 , ξ ∈ {| ξ 1| =  B,  and  h ≤ | ξ 2|  < H/ 2} , (21.21)

 W + (ξ ) = 0 , ξ ∈ { ξ 1 ∈ [− B, B] and | ξ 2| =  h} . 
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The composite function

 W+ (ξ

 W + (ξ

1 , ξ 2 ) −  ξ 1 +  B, ξ 1  > B, 

(21.22)

0

1 , ξ 2 ) =

 W + (ξ 1 , ξ 2 ), 

 ξ 1  < B, 

is harmonic in  Ξ h  with the exception of a line segment  γ h, namely

−  ΔW+ (ξ) = 0 , ξ ∈  Ξh \  γ h, 

 γ h = { ξ :  ξ

0

1 =  B, | ξ 2|  < h} . 

(21.23)

Also, it satisfies the periodicity and Dirichlet conditions (21.20)–(21.21). Moreover, 

(21.22) meets the following jump conditions:





 ∂W +

[ W+]

0

 (ξ

0

 B (ξ 2 ) = 0 , 

2 ) = −1 , 

| ξ 2|  < h, 

 ∂ξ 1

 B

where [ W ] B(ξ 2 ) =  W (B + 0 , ξ 2 ) −  W (B − 0 , ξ 2 ). Obviously, also  W + can be 0

extended by periodicity to a harmonic function in  Ξ . 

Since the behavior at infinity of  W + is given by (21.22) and the behavior of 0

 W + (cf. (21.5)–(21.7)),  W + stabilizes towards  p 0

++ +  B  when  ξ 1 → +∞, while

it stabilizes towards  p−+ when  ξ 1 → −∞. This also guarantees (cf. Theorem 1)

 W + ∈  H  1 (( 0 , R) ×  ( 0 , H ) ∩  Ξ h)  for any  R > B  and ∇ W + ∈  (L 2 (Ξ h)) 2. In 0

0

addition, it is simple to verify that  W + satisfies

0

 h

 (∇ W + , ∇ v)

 v(B, ξ

0

 Ξ h =

2 )d ξ 2 , 

∀ v ∈  H  1

0  (Ξ h), 

(21.24)

− h

where  H  1 (Ξ h)  denotes the space completion of  C∞

0

 c,per (Ξ h \  ∂ω )  with the norm

∇ v;  L 2 (Ξh). Here,  C∞

 c,per (Ξ h \  ∂ω )  is the space of the infinitely differentiable ξ 2-periodic functions, vanishing in the vicinity of  ∂ω (cf. (21.20)–(21.21)), with a compact support in  Ξ h. 

Let  B 2 h(B,  0 )  be the disk of radius 2 h  with the center at  (B,  0 ),  γ h ⊂  B 2 h(B,  0 ). 

Due to the Dirichlet conditions at  ∂Ξ h ∩  B 2 h(B,  0 ), the Poincare inequality after stretching the coordinates  ξ →  h−1 (ξ 1 −  B, ξ 2 )  gives

∇ v;  L 2 (B 2 h(B,  0 ) ∩  Ξh) 2 ≥  ch−2 v;  L 2 (B 2 h(B,  0 ) ∩  Ξh) 2

and, by the trace theorem, we get

 v;  L 2 (γ h) 2 ≤  ch∇ v;  L 2 (B 2 h(B,  0 ) ∩  Ξh) 2 +  c v;  L 2 (B 2 h(B,  0 ) ∩  Ξh) 2

≤  ch∇ v;  L 2 (Ξh) 2 . 

(21.25)
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The latter applied to  W + means that the functional on the right-hand side of (21.24)

0

has the norm  O(h)  and, therefore (21.24) implies

∇ W+;  L 2 (Ξh) ≤  ch. 

(21.26)

0

Considering (21.7) and the definition (21.22), we write H



 H



 p++ (Ξ ) = 1 lim

 (W + (T , ξ 2 ) −  T )dξ 2 = 1 lim

 (W + (T , ξ 2 ) −  B)dξ 2

 H

0

 T →∞

 H T →∞

0

0

and

 H



 H



 p−+ (Ξ ) = 1 lim

 W + (− T , ξ 2 )dξ 2 = 1 lim

 W + (− T , ξ 2 )dξ 2 , 

 H

0

 T →∞

 H T →∞

0

0

which by the periodicity of  W + transform into

0

 H / 2



 p++ (Ξ ) = 1 lim

 W + (T , ξ 2 )dξ 2 −  B

(21.27)

 H

0

 T →∞− H/ 2

and

 H / 2



 p−+ (Ξ ) = 1 lim

 W + (− T , ξ 2 )dξ 2 . 

(21.28)

 H

0

 T →∞− H/ 2

Now, considering (21.23) and the equation − Δξ 1 = 0 , ξ ∈  Π, we apply the Green formula and take limits as  T → ∞ to show the following equalities:

 h



 H / 2



 W + (± B, ξ

 W + (± T , ξ

0

2 )d ξ 2 = lim

0

2 )d ξ 2 , 

(21.29)

 T →∞

− h

− H/ 2

and

 h

 (∇ W + , ∇ W + )

 W + (B, ξ

0

0

 Ξ h =

0

2 )d ξ 2 . 

− h

[image: Image 150]
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Then, from (21.29) for + B  and + T , the second equality above, (21.26), and

(21.27) give the first formula in (21.19). Similarly, using (21.29) for − B  and − T , in (21.28), we write

 h

| p−+ (Ξ )|2 ≤ 2 hH−2

| W+ (− B, ξ

;  L 2 (Ξh) 2 ≤  ch 4  . 

0

2 )|2 dξ 2 ≤  ch 2∇ W +

0

− h

Indeed, we have applied the Cauchy–Schwarz inequality, the Poincaré inequality

in a ball of radius 2 h  centered in  (− B,  0 )  as in (21.25), and finally (21.26). 

Consequently, we get the second formula in (21.19), and the theorem is proved. 

21.4

The Case of a “Small” Symmetric Hole

In this section, we deal with the strip  Π = { ξ :  ξ 1 ∈ R , | ξ 2|  < H/ 2}. Note that this does not imply any restriction and we can transfer the periodicity conditions

on its lateral sides, in a similar way as has been performed in Sect. 21.3. Let  Ξ h  be Ξ h =  Π \  ωh, where  ωh  is the hole of diameter  O(h), ωh = { ξ :  ζ :=  h−1 ξ ∈  ω} , 

with  h < H  and  ω  a domain symmetric with respect to  ξ 1 (cf. Sect. 21.2.1 and Fig. 21.3),  ω ⊂  (−∞ , ∞ ) ×  (−1 / 2 ,  1 / 2 )  such that 0 ∈  ω. 

Theorem 3  Let us assume that h is a small parameter, h $ 1 . Then, the coefficients of the polarization matrix satisfy

 p±± (Ξh) = −  H  ln  h +  O( 1 ). 

2 π

 Proof  By the symmetry it suffices to prove the result of Theorem 3 for  p+± (Ξh). 

We divide the proof into several steps. 

 First Step: The Green function for (21.2) –(21.4)  and the highlight of the main asymptotics for p+± (Ξh). 

Fig. 21.3 The strip with the

small hole  ωh
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We introduce the Green function  G(ξ, ξ  0 ), that is, the periodic in  ξ 2 ∈

 (− H/ 2 , H/ 2 )  solution of the equation

 Δξ G(ξ, ξ  0 ) =  δ(ξ −  ξ  0 ), 

 ξ, ξ  0 ∈  Π, 

 ξ  0 =  ξ, 

with  δ(ξ −  ξ  0 )  the Dirac delta at  ξ  0. For  ξ  0 = 0, this Green function satisfies G(ξ ) = 1 ln | ξ | +  G 0 + 

 G(ξ ), 



 G(ξ ) =  O(| ξ | ), 

| ξ| → 0 , 

2 π





(21.30)

 G(ξ ) = 1 | ξ 1| +  O e−2 π| ξ 1| /H , 

| ξ 1| → ∞ . 

2 H

Notice that this function can be constructed explicitly with the help of a

conformal mapping of a strip of width  π  onto the half-plane (cf., e.g., [La72] and

[NaPl94] for other domains). Also, notice that the absence of a constant term in the second equation (21.30) makes  G, as well as the constant  G 0, to be determined uniquely. 

We search for the function  W + (21.5) in the form

 W + (ξ ) =  H G(ξ ) + 1  ξ 1 +  Cω(h) +  Z(h−1 ξ )χ(ξ ) + · · ·  , (21.31)

2

where  Cω(h)  is a constant,  Z  is a boundary layer term, and  χ  is a smooth cut-off function  χ (ξ ), which satisfies

0 ,  for | ξ|  > H/ 3 , 

 χ (ξ ) =

1 ,  for | ξ |  < H/ 6 . 

Let us set  Cω(h)  and  Z  as follows. Changing to the stretched coordinates  ζ =  h−1 ξ , and computing the discrepancy in the Dirichlet condition on  ∂ωh, up to the order O( 1 ), yields the following problem for the boundary layer term:

 ΔZ(ζ) = 0 , ζ ∈ R2 \  ω, 

(21.32)

 Z(ζ ) = −  H  ln (h| ζ | ) −  H G

2 π

0 −  Cω(h), 

 ζ ∈  ∂ω. 

Considering the logarithmic capacity potential  P , cf. Chapter II in [La72], which is a harmonic function in R2 \  ω, vanishes on  ∂ω, and admits the representation P (ζ ) = 1 ln | ζ |− 1 ln  c log (ω) + 

 P , 



 P (ζ ) =  O(| ζ |−1 ), 

| ζ | → ∞ , 

2 π

2 π

(21.33)

where  c log (ω) >  0 is the logarithmic capacity of the set  ω  in the plane R2, yields the decaying solution of problem (21.32), 

 Z(ζ ) =  H 

 P (ζ ), 

(21.34)
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provided that

 Cω(h) = −  H  ln  h −  H  ln  c log (ω)− H G 0 . 

(21.35)

2 π

2 π

In this way, we have determined  Cω  and  Z (21.31), and we can write, cf. (21.7), 

 p+± (Ξh) =  Cω(h) + 

 p+± (Ξh), 

(21.36)

where the remainders 

 p+± (Ξh)  have to be computed from the coefficients of the

polarization matrix for the remainder function arising in the ellipsis in (21.31). In the next steps we obtain the estimate

|

 p+± (Ξh)| ≤  Ch( 1 + | ln  h| ) 2 , 

(21.37)

which in view of (21.35) allows us to rewrite the dominant part in (21.36) as p+± (Ξh) = −  H  ln  h +  O( 1 ), 

(21.38)

2 π

and this ends the proof of the theorem. 

 Second Step: The polarization matrix for the remainder of W +  in (21.31). 

In order to estimate the remainders 

 p+± (Ξh)  in (21.36), we use the following

decomposition for  W +:









1

 W + (ξ ) =  χh(ξ ) H G(ξ ) + 1  ξ 1 +  ( 1 −  χh(ξ ))H

ln | ξ | +  G 0

2

2 π

+ Cω(h) +  Z(h−1 ξ)χ(ξ) + 

 W + (ξ ), 

where  χ h  is a smooth cut-off function satisfying

1 ,  for | ξ|  >  2 R

 χ h(ξ ) =

0 h, 

0 ,  for | ξ |  < R 0 h, 

with |∇ pχh(ξ )| ≤  cph− p,  R 0  >  0 is a fixed real such that  ω ⊂ { ζ : | ζ |  < R 0}, and 

 W + (ξ )  is the solution of a problem that we set here below, cf. (21.39)–(21.40). 

Indeed, by the definition of  χ h  and  Z, for  ξ ∈  ∂ωh, we have 1

 W + (ξ ) =  H

ln | ξ | +  G 0 +  Cω(h) +  Z(h−1 ξ )χ(ξ ) + 

 W + (ξ ) = 

 W + (ξ )

2 π

and, hence, we have to impose the boundary condition



 W + (ξ ) = 0 , 

 ξ ∈  ∂ωh. 

(21.39)
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The remainder 

 W + is still  ξ 2-periodic in  Ξ h  and satisfies the Poisson equation

− Δ 

 W + (ξ ) = 

 F + (ξ ) := −[ Δ, χh(ξ )] Y (ξ ) − [ Δ, χ(ξ )] Z(h−1 ξ ), ξ ∈  Ξ h, 

(21.40)

where [ Δ, χh] Y = 2∇ χh · ∇ Y +  Y Δχh  is the commutator of the Laplacian and the cut-off function  χ h  and





 Y (ξ ) = 1  ξ 1 +  H G(ξ ) − 1 ln | ξ | −  G 0  . 

2

2 π

Next, under the basis of the following estimates for 

 W +:

∇ 

 W +;  L 2 (Ξ h) ≤  Ch( 1 + | ln  h| ), 

(21.41)

and



 W + (± T 0;  .);  L 2 (− H/ 2 , H/ 2 ) ≤  C( 1 + | ln  h| )h( 1 + | ln  h| ), (21.42)

for a fixed  T 0  > H / 3, the Fourier representation of 

 W + and application of the Green

formula (cf. (21.7) and (21.29)) give





 H

 H



1

 p+± (Ξh) = lim



 W + (± T , ξ



2 )d ξ 2 = 1

 W + (± T 0 , ξ 2 )dξ 2 . 

 T →∞  H

0

 H

0

Finally, applying the Cauchy–Schwarz inequality, (21.41) and (21.42) lead to the estimates (21.37) which allows us to assert (21.38). 

Thus, it remains to obtain (21.41) and (21.42), which is performed in the next step below. 

 Third Step: The estimates for 

 W +. 

In order to show (21.41), we need to prove some estimate for the right-hand side of the integral identity

 (∇ 

 W + , ∇ v)Ξh =  (

 F + , v)

 , v)

 Y

 Ξ h +  ( 

 F +

 Z

 Ξ h , 

∀ v ∈  H  1

0  (Ξ h), 

(21.43)

which defines a functional in  H  1 (Ξ h),  H  1 (Ξ h)  being the space completion of 0

0

 C∞

 c,per (Ξ h)  with the norm ∇  v;  L 2 (Ξ h), and the functions F + and 

 F + are defined

 Z

by



 F + (ξ ) = −[ Δ, χh(ξ )] Y (ξ )

and



 F + (ξ ) = −[ Δ, χ(ξ )] Z(h−1 ξ ), 

 Y

 Z
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respectively. Here and in what follows,  C∞

 c,per (Ξ h)  is the space of the infinitely

differentiable  ξ 2-periodic functions, vanishing on  ∂ωh (cf. (21.39)) and with compact support in  Ξ h. 

The estimates to be proved read







 ( 

 F + , v)

+  (

 F + , v)

≤  ch( 1 + | ln  h| )  v;  H  1

 Y

 Ξ h

 Z

 Ξ h

0  (Ξ h) , 

∀ v ∈  H  1

0  (Ξ h). 

(21.44)

Let us show (21.44). First, we observe that, because of the cut-off functions  χ h and  χ , the supports of 

 F + and 

 F + satisfy

 Y

 Z



 F + (ξ ) = 0 outside the annulus  ah = { ξ :  R

 Y

0 h ≤ | ξ | ≤ 2 R 0 h} , 



 F + (ξ ) = 0 outside the annulus  A = { ξ :  H ≤ | ξ | ≤  H } . 

 Z

6

3

In addition, 

|

 F + (ξ )| ≤  C  for  ξ ∈  ah, 

(21.45)

 Y

 h 



|

 F + (ξ )| ≤  C ( 1 +  h−1| ξ | )−2 +  ( 1 +  h−1| ξ | )−1 ≤  Ch  for  ξ ∈  A. (21.46) Z

Indeed, we get (21.45) thanks to

| Y (ξ)| ≤  C| ξ| , |∇ Y (ξ)| ≤  C, 

and we get (21.46) thanks to (cf. (21.33) and (21.34))

| Z(ζ )| ≤  C( 1 + | ζ | )−1 , |∇ ζ Z(ζ )| ≤  C( 1 + | ζ | )−2 . 

Second, we note that, since the Dirichlet condition is imposed on the small

contour  ∂ωh  only, it proves useful to use the Hardy inequality

 d



 d









 τ −2

 dV

2





ln

| V (τ)|2  dτ ≤ 4



 (τ )  τ dτ, 

∀ V ∈  C∞

 δ

 τ

 dτ



 c (δ, d ] , 

(21.47)

 δ

 δ

for any  d > δ (in particular,  V (δ) = 0) considering  δ =  hR 0 and  d =  H/ 3. 

Furthermore, the Poincare inequality in the coordinates  ζ  gives

∇ v;  L 2 (B 2 R 0 h \  ωh) 2 ≥  ch−2 v;  L 2 (B 2 R 0 h \  ωh) 2

(21.48)

due to the Dirichlet condition on  ∂ωh. 
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Then, we apply (21.47) to the product  V =  vχh  so that we have

∇ v;  L 2 (BH/ 3 \  ωh) 2 ≥  c τ−1 ( 1 + | ln  τ| + | ln  h| )−1 v;  L 2 (BH/ 3 \  ωh) 2 , (21.49)

which is due to



−1



 τ 

ln



≥  C( 1 + | ln  h| + | ln  τ| )−1 , 

 hR 

0

and (21.48). Hence, by (21.45), we obtain the estimate

⎛

⎞12









⎜

⎟

 ( 

 F + , v)

≤  c ⎝  τ 2 ( 1 + | ln  τ| + | ln  h| ) 2|

 F + (ξ )|2 dξ ⎠ ∇ v;  L 2 (Ξh)

 Y

 Ξ h

 Y

 ah



12

≤  c h 2 ( 1 + | ln  h| ) 2 1  mes 2 (ah)

 v;  H  1

 h 2

0  (Ξ h)

≤  ch( 1 + | ln  h| )  v;  H  1

0  (Ξ h) . 

Besides, from (21.49) and (21.46), we get





 ( 

 F + , v)

≤  ch( 1 + | ln  h| )  v;  H  1

 Z

 Ξ h

0  (Ξ h) . 

Consequently, we have proved (21.44). 

Now, from (21.44) we conclude that the norm of the functional on the right-hand side of (21.43) is  O(h( 1 + | ln  h| ))  and, therefore, the solution W + meets the

estimate (21.41). Furthermore, the above weighted estimates prove that, for each fixed  T 0  > H / 3, the estimate (21.42) holds true. Indeed, the factor  ( 1 + | ln  h| )  in the estimate above comes from the inequality



 W +;  L 2 ((− T 0 , T 0 ) ×  (− H/ 2 , H/ 2 ) \  ωh) 2



≤  C ∇ 

 W +;  L 2 ((− T 0 , T 0 ) ×  (− H/ 2 , H/ 2 ) \  ωh) 2



+ 

 W +;  L 2 (BH/ 3 \  ωh) 2  , 

and using (21.49) for the second term on the right-hand side in the above inequality. 

The other factor, namely  h( 1 + | ln  h| ), comes from (21.41). Therefore, the theorem is proved. 
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Chapter 22

Operator Perturbation Approach

for Fourth Order Elliptic Equations

with Variable Coefficients

Julia Orlik, Heiko Andrä, and Sarah Staub

22.1

Periodic Boundary Value Problem

Let  Y   ∈ R d  be a bounded domain with a heterogeneous structure, such that  Y   is a representative periodic cell of the structure. For the periodic functions  ϕ  on  Y   with a zero mean value  ϕ = 0 we introduce the Sobolev space

 H  2

 per[0] (Y   ) = { ϕ ∈  H  2

 per (Y   ) :  ϕ = 0} . 

Furthermore, we use the abstract index notation for tensors in R d . We introduce Latin indices  ij kl = 1 , . . . , d  and unit vectors  ei,  i = 1 , . . . , d. We consider the periodic boundary value problem (PBVP) to find  w ∈  H  2 per[0] (Y   )  from







 ∂ 2

 Cijkl(y) E 0  ij +  ∂ 2 w(y)

= 0 , ∀ y ∈  Y   . 

(22.1)

 ∂yk∂yl

 ∂yi∂yj

Here, the tensor  E 0 ∈ R d× d  denotes the given mean value of rotational deformations. 

The coefficients of the fourth-order tensor  C ∈  L∞ (Y   ,  R d× d× d× d )  are bounded and satisfy the symmetry conditions

 Cijkl =  Cklij , Cijkl =  Cjikl =  Cijlk, ∃ α >  0 :  αξ :  ξ ≤  ξ :  C(y) :  ξ ≤  α−1 ξ :  ξ

(22.2)

for any symmetric non-zero tensor  ξ ∈ R d× d  and  y ∈  Y  . 
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 Remark 1  In the two-dimensional case  Y   ⊂ R2, one important application is the bending of plates made of heterogeneous materials. According to [FrEtAl02], for thin three-dimensional plate-like structures, where the ratio between the thickness

and the representative lateral size tends to zero, the theoretical limits lead to

averaging in the thickness and then solving the plate bending equation with variable coefficients in 2D-domains. 

 22.1.1

 Problem in the Weak and Operator Form

For a scalar function  w  and a tensor-valued function  g  we introduce the following operators to shorten the notation:

 Dw(y) := ∇ ⊗ ∇ w(y) =

 ∂w (y)ek ⊗  el, 

(22.3)

 ∂yk∂yl

 D∗ g(y) := ∇ · ∇ ·  g(y) = div div  g(y) =  ∂ 2 gkl (y), Δ 2 =  D∗ D, 

(22.4)

 ∂yk∂yl

[ Aw] (y) :=  D∗ (C(y)Dw), 

(22.5)

where Einstein’s summation convention is used on the last line. So Eq. (22.1) can be written in the short form

 D∗ (C(y)(E 0 +  Dw(y))) = 0 , y ∈  Y   ,  or  Aw = − D∗ g, g :=  C(y) :  E 0 . 

(22.6)

The weak formulation of the problem (22.1) is given by

 C(Dw +  E 0 ) :  Dϕ = 0 , ∀ ϕ ∈  H 2 per[0] (Y  ). 

(22.7)

where  C =  C(y)

Now, we introduce the bilinear form



 c(w, v) :=

 Cijkl(y)[∇ ⊗ ∇ w] ij [∇ ⊗ ∇ v] kl(y)dy, 

∀ w, v ∈  H 2 per[0] (Y  ), 

 Y  

(22.8)

which is symmetric, because the tensor of coefficients is symmetric, continuous and

coercive. 

We also introduce an operator  L :  H  2 (Y   ) →  H −2 (Y   )  and the right-hand side functional



 Lw :=  c(w, · ), 

 ly(v) =

 D∗ :  gv(y)dy. 

(22.9)

 Y  

22
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Our problem (22.1) can be reformulated in the operator form: Find  u ∈  H  2 per[0] (Y   ) for  ly ∈  H −2 (Y   )  and  L ∈  L (H  2 per(Y   ), H −2 ), satisfying Lw =  ly. 

(22.10)

According to [Pa16], the norm in  H  2

 per[0] (Y   )  can be introduced in one of the

equivalent ways:

|| ϕ||2

= < |∇2 ϕ|2 + |∇ ϕ|2 + | ϕ|2  >, || ϕ||2

= < |∇2 ϕ|2  > 

 H  2

 H  2

 per[0] (Y )

 per[0] (Y )

(22.11)

The equivalence of the norms is ensured by the Poincare inequality

 < | ϕ|2  > ≤  CP < |∇ ϕ|2  > ∀ ϕ ∈  H  1 (Y   )  with  < ϕ > = 0 . 

For any periodic functions  w, v ∈  C 4 ( ¯

 Y   )  we have the second Green identity, 





7

8

7

8

 v Aw −  Av w dx =  T + w , γ + v

−  T + v , γ + w

 . 

 ∂Y  

 ∂Y  

 Y  

Take  v =  G, where  G  ≡  (L)−1 and  G(y, x)  is the Green’s function for the periodic problem  Av =  δ(x)  and the second expression gives  w. The first and second boundary integrals disappear, since the Green-function,  DG,  w  and  Dw satisfy periodic conditions. 



− w(x) +

 G(x, y) Aw(y) dy = 0 , 

 x ∈  Y   . 

 Y  

Replacing  Aw  by the right-hand side of Eq. (22.6)2, we obtain w(x) =  G   D∗ g (x) =

 G(x, y)D∗ g(y)dy. 

 Y  

Note that







 Dw(x) =  D G   D∗ g (x) =

 DxG(x, y) ·  D∗ yg(y) dy

 Y  



=

 Dy(DxG(x, y)) :  g(y) dy. 

 Y  

Lemma 1  Let C 0 ∈ R d× d× d× d be a constant symmetric tensor and w ∈  H  2 (Y   ) a scalar function, then D∗ (C 0 w) =  C 0 :  Dw. 
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 Proof  Here we use the following rule for a constant matrix  C 0 and a scalar  w: D∗ (C 0 w) =  wD∗ C 0 +  C 0 :  Dw + 2 ( div  C 0 ) · ∇ w; D∗ (C 0 :  Dw) =  D∗ D∗ (C 0 w) =  C 0 ::  (DDw) = − D∗ (g). 

(22.12)

 Remark 2  Note that a fundamental solution for an anisotropic plate exists and is known. For example, a periodic fundamental solution can be found in a series. 

Anyway, it is possible to write a Newton-type potential,  G, which will be inverse to the operator  C 0 ::  DD[·]. 

Let us check that  G  :  H −2 (Y   ) →  H  2 per[0] (Y   ), i.e., that  δ ∈  H −2 ( R2 ). 

Definition 1 We define the norm  u 2

for  u ∈  H s( R d )  as

 H s ( R d )



 u 2

=

 (| ξ |2 + 1 )s| ˜ u|2 dξ, 

(22.13)

 H s ( R d )

R d

where ˜ u  is the Fourier transform. 

This definition can also be found on [Mc00, p. 76]. 

Lemma 2  The Dirac function δ belongs to H s ( R d ) for any s < − d . 

2

 Proof  From the transformation formula for integrals it follows



∞



 ( 1 + | ξ |2 )s

 δ 2

=

 dξ ∼

1

 ρ 2 s ρn−1 dρ

 H s ( R d )

R d

 ( 2 π )d

 ( 2 π )n  1

−

=

1

 d


 < ∞ , 

if

 s < 

 . 

(22.14)

 ( 2 π )n( 2 s +  n)

2

Corollary 1  δ(x) ∈  H −2 ( R2 ). 

 Remark 3  Following the first Green’s Identity

7

8





 T + w , γ + v

=

 v Aw +  c(w, v) dy

 ∂Y  

 Y  

7

8

and accounting for the fact that  T + w , γ + v

vanishes because of the periodicity, 

 ∂Y  

we can conclude that  vAw = − Lwv. Because of Lemma 1,  G  ≡  (L)−1 exists for variable coefficients as well. We need to find a way to construct this Newton-type

potential. 

22
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 Potential Polarization Field

We refer to [EyMi99] and repeat the same approach applied to the second order elliptic PDE there to the higher order elliptic PDE with a symmetric coefficient

matrix. 

The idea is to modify the problem, given in the variational formulation to the

integral equation of the second kind, with the integral operator mapping in the same space. To solve the desired equations, we consider a related problem with a reference operator  L 0, corresponding to the constant reference tensor  C 0. 

 D∗ (C 0 :  E(y)) +  D∗ ((C(y) −  C 0 ) :  E(y)) = 0 . 

(22.15)

Denoting  C(y) −  C 0 =  δC(y)  yields

−  D∗ (C 0 :  (E(y) −  E 0 ) =  D∗ (δC(y) :  E(y)),  or (22.16)

 D∗ (C 0 :  Dw(y)) +  D∗ (δC(y) :  Dw(y)) = − D∗ (C 0 :  E 0 ). 

(22.17)

If the polarization tensor  P =  δC(y) :  E(y)  were known, 

 D∗[ C 0 :  Dw] = − D∗ P , 

(22.18)

the related problem could be solved using the periodic Green’s operator. 

Lemma 3  Problem (22.18)  has a periodic unique solution w ∈  H  2 per[0] (Y   ), which can be represented by (22.18)  through an integral operator Γ   :  L 2 (Y   ,  R d× d ) →

 L 2 (Y   ,  R d× d ) given by the formula

[ Γ   P ] (y) ≡ − DL−1 D∗ P (y), ∀ P ∈  L 2

0

 per (Y   ,  R d× d )

(22.19)



[ Γ   P ] (y) =

 Dy[ DxG(x, y)] :  P (y)dy, 

 Y  

 G(x, y) is the Green’s function for the periodic 4th-order problem

 C 0 ::  (DyDyG) =  δ(y −  x), 

 where δ(y −  x) is the Dirac delta distribution. 

Now we can rewrite (22.17) as the following

 E(y) −  E 0 = − Γ   P (E), 

or

 E(y) +  Γ   δC(y) :  E(y) =  E 0

(22.20)

and

 E(y) =  (I −  Γ  δC(y))−1 E 0 =:  R   E 0 . 

(22.21)
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with

 Γ   δC := − DL−1 D∗ δC, [ Γ δC] (x, y) :=  D

0

 y [ Dx G(x, y)] δC(y) ∈  L 1 (Y   ×  Y   ) (22.22)

 22.1.2

 Orthogonal Decomposition of the 4th-Order Differential

 Operator on Ker and Im

Our problem reduces to (22.18) and finding

 P ≡  (C(y) −  C 0 ) :  E(y) ∈  Vpot[0] (Y   ,  R d× d). 

 Remark 4  If  C 0 would be the effective coefficients (see (3.11) in [Pa16]), then

 < C(y) :  E(y) > =  C 0 : < E > . 

Following ideas from [GaMi98], [Pa16], [JiEtAl94], we decompose the  L 2-space into the solenoidal and potential in the sense of higher-order div n-free and curl n-

free, or higher-order potential tensor spaces:

 Vsol(Y   ,  R d× d ) = { P = { gsh} s,h ∈  L 2 (Y   ,  R d× d )  be symmetric, s. t.  D∗ P =

0 . }





 Vpot (Y   ,  R d× d ) =  DΓ, Γ ∈  H  2 per(Y   ) . 

According to (22.7), one has the orthogonality property:

 Vsol(Y   ,  R d× d ) =  Vpot (Y   ,  R d× d )⊥

= { P ∈  L 2 (Y   ,  R d× d) :  < P :  e > = 0 ∀ e ∈  Vpot(Y   ,  R d× d)} . 

Define another potential field



 V ∗

 P ∈  V

 pot [0] (Y   ,  R d× d )=

 sol (Y   ,  R d× d )  and  P  = 0 . ∃  Γ ∈  H  2

 per

 (Y   ,  R d× d× d× d ), 



 ij

s.t.  D∗ Γ =  P , Γ sh =  Γ sh

(sym) , 

 Γ sh = − Γ

(skew-sym)  . 

 ij

 j i

 ij

 sh

 Vsol[0] (Y   ,  R d× d) = { P ∈  L 2 (Y   ,  R d× d) :  D∗ P = 0 , 

 < P > = 0} . 

 Vsol(Y   ,  R d× d ) =  Vsol[0] (Y   ,  R d× d) ⊗ R d× d Vpot (Y   ,  R d× d ) =  Vpot[0] (Y   ,  R d× d) ⊗ R d× d Lemma 4  For g ∈  Vsol, [0] (Y   )  f, g ≡  Y   f :  g dy = 0 , ∀ f ∈  V ∗ pot(Y   ). 

 Proof  Let  Γ  be a solution of the periodic boundary value problems for the equations ij

 D∗ Γ

=  g

 sh

 sh,  D∗ g = 0. 

Then





 ij

 ij

 ij

 Γ

skew sym. 

 D∗

 sh

=

 ij Γ

 f

 Γ D

0 . 

 sh sh dy =

 sh

 ij fsh dy

 Y  

 Y  
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That is, the following Weyl’s decomposition (see [JiEtAl94]), known for the theory of second order elliptic operators, should be valid also for the higher-order operators:

 L 2 (Y   ) =  Vsol[0] (Y   ,  R d× d) ⊗  Vpot[0] (Y   ,  R d× d) ⊗ R d× d

=  Vpot[0] (Y   ,  R d× d) ⊗  Vsol(Y   ,  R d× d). 

We describe the way to construct a Newton potential. Let us take the Fourier

series expansion



√

 ij

 g

−1

 ij (y) =

 gn e 2 πn· y

 . 

0= n∈Z d

Then the condition  D∗ P = 0 means that

 ij

 gn ninj = 0 for all  n. 

(22.23)

We introduce the matrix  Γ sh = { Γ sh}

 ij

 i,j  with the Fourier series coefficients

 ij

 Γ sh =  (− g

 ij, n

 n ns nh +  gsh

 n ni nj )| n|−4 (−4 π  2 )−1 . 

The  n-th term of the Fourier series satisfies

√

√

 D∗[ Γ sh

−1] =  ∂ 2

−1

 n e 2 π n· y

 Γ sh e 2 πn· y

 ∂y

 ij,n

 i ∂yj

√

√

=

 ij

 e 2 πn· y −1| n|−4 (− g

−1

 n ns nhni nj +  gsh

 n ni nj ni nj ) =  e 2 π n· y

 gsh

 n . 

(22.24)

Here relation (22.23) and the identity  ninj ninj = | n|4 were taken into account. 

 22.1.3

 Periodic Fundamental Solution of the Biharmonic

 Equation

Assume now that the tensor  C 0 acts on a matrix  ξ  as  C 0 ξ =  λ 0 C 0 ( Tr  ξ )I , where Tr  ξ =  ξii  is the trace of the matrix  ξ ,  I  is the identity matrix, and  λ 0 is a scalar. 

Obviously,  C 0 ξ ·  ξ =  λ 0 ( Tr  ξ ) 2, and the matrix  ξ =  Dϕ  satisfies Tr  Dϕ =  Δϕ, C 0 Dϕ ·  Dϕ =  λ 0 ΔϕΔϕ. 

Let  E =  E 0 +  Dw  be the bending deformations of the plate, or the curvature. 

 En+1 (y) =  Γ   [ (I −  λ−1 C(y)) :  E

0

 n(y)] , 

 n = 0 ,  1 ,  2 ,  3 , . . . , 
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where



[ Γ   E] (x) =

 Dy(DxG(x, y)) :  E(y)dy, 

 Y  

 G(x, y)  is the Green’s function for the periodic biharmonic problem, i.e. for each fixed  x ∈  Y   the function  G(x, y)  satisfies the equation

 Δ 2 yG =  δ(y −  x), 

(22.25)

where  δ(y −  x)  denotes the Dirac measure. 

We redefine here  g = − λ−1 g. Let us denote by  (Δ 2 )−1 D∗ g  for  g ∈  (L 2 (Y   ))d× d 0

a solution of the periodic problem

 Δ 2 w = − D∗ g, 

 v ∈  H  2 per[0] (Y   ), 

(22.26)

which exists due to Lemma 1. 

We can construct a periodic fundamental solution in the following way. We take



√

the Fourier series expansion  G(y) =

−1 ,  where the Fourier

 n∈Z d cn(G)e 2 πn· y

coefficients



√

 c

−1

 n(G) =

 G(x)e 2 πn· y

 dy, n ∈ Z d . 

 Y  

The Fourier series for the Dirac sequence has coefficients  cn(δ) = 1:  δ(y) =



√−1

0=

 .  The  n-th term of the Fourier series satisfies

 n∈Z d e 2 πn· y

√

√

 Δ 2[ c

−1

−1

 n(G)e 2 π n· y

] ≡  D∗ D[ cn(G)e 2 πn· y

]

 d

 d





√



=

 ∂ 2

 ∂ 2

 c

−1

 n(G)e 2 π n· y

&  ei ⊗ &  ej

 ∂yi∂yj

 ∂yi∂yj

 i=1  j =1

√

= − e 2 πn· y −1 ( 2 π) 4 cn(G)(ninj ninj ). 

(22.27)

Here the identity  ninj ninj = | n|4 is taken into account. 

 cn(G) = − ( 2 π)−4| n|−4



√

 G(y) = − ( 2 π)−4

| n|−4 e 2 πn· y −1 . 

(22.28)

0= n∈Z d

 Remark 5  According to [Wi77] (see Appendix), if take  Y   such that it will contain many periodicity cells, it is possible to take the fundamental solution and do not

look for the periodic Green’s function. Since we require that the right-hand side of

22
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the equation has a zero mean-value over  Y  , the boundary values oscillate around zero and, according to the St. Veinant hypothesis, the corresponding boundary layer

decays exponentially. Its thickness is proportional to the period of the structure (or characteristic size of inclusions related to the distance between them) (see, e.g., 

[To65]). 

22.2

Neumann Series and Its Convergence Estimate

by Spectral Properties

Definition 2 Let  A  be a Banach-algebra with unit,  Γ ∈  A  and  σ (Γ   )  be the spectrum of  Γ  .  ρ(Γ  ) = sup{| λ| | λ ∈  σ (Γ   )} is the spectral radius of  Γ  . 

The class of kernels of integral operators on the compact set forms a Banach

algebra with product     without a unit. We can add the identity as a unit to our algebra  A . 

Definition 3 Let  Y   ⊂ R d  be a compact set, and  Γ   δC ∈  L (L 2 (Y   )). Then there exists a resolvent ˜

 R(λ)  of  Γ    in  L (L 2 (Y   ))), given by

∞



˜

 (Γ  δC)j

 R(λ) :=  (λI −  Γ   δC)−1 =

 , 

∀ λ ∈  C \  σ (Γ  δC). 

(22.29)

 λj+1

 j =0

In order for solution to (22.20) to exist, i.e., (22.29) the Neumann series to converge for  λ = 1, the spectral radius should be  ρ(Γ  δC) <  1. And this depends on the choice of the constant coefficient matrix  C 0. We postpone this question to the next section and discuss properties of the resolvent kernel now. 

We recall further properties of the resolvent and refer to [SaVa02, Corol. 5.5.1.]. 

Lemma 5  Let R  be an integral operator and R be its kernel and cn(R) (n ∈

Z d) its Fourier coefficients. If | cn(R)| ≤  c| n| α with some α ∈ R , then R  ∈

 L (Hλ, Hλ− α) for any λ ∈ R . Moreover, if c 1| n| α ≤ | cn(R)| ≤  c 2| n| α (n ∈ Z d) with some positive constants c 1  and c 2 , then R  builds an isomorphism between H λ

 and H λ− α for any λ ∈ R . 

Lemma 6  Let R be a resolvent kernel to G and cn(R) (n ∈ Z d ) its Fourier coefficients. | cn(R)| ≤  c| n|−4  and R ∈  L 1 (Y   , L (H −2 , H  2 )). That means, the resolvent kernel is weakly singular and has the same leading singularity as G (the fundamental solution of the 4th order PDE with constant coefficients). The last

 statement is true for the kernels’ pare ˜

 R and Γ also. 

 Proof  Owing to [Gretal90, Definition 9.3.1], the resolvent kernel  R  of kernel  G

satisfies the following equality:

 R +  G   R =  R +  R   G =  G. 

(22.30)
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In order to check that | cn(R)| ≤  c| n|−4, we again apply the Fourier series technique, replacing the Fourier transform for the periodic functions. According to

[SaVa02], the coefficients of the series, corresponding to a product of two functions correspond to the product of their coefficients. Then  (I +  cn(G))c(R) =  cn(G), equivalently (see [Gretal90, Th.2.8])  (I +  cn(G))(I −  c(R)) =  I . Recall that cn(G) = − ( 2 π)−4| n|−4 .  Hence, we can see by the developing in the series

∞



| c(R)| =

 (( 2 π )−4| n|−4 )l. 

 l=1

Furthermore, the expression (22.29) of the resolvent by the multiple multiplication of  G   maps into the same algebra and the same space. 

Theorem 1  If for Γ   δC defined by (22.22)  ρ(Γ  δC) <  1 , the unique solution of problem (22.17) , w ∈  H  2 per[0] (Y   ), exists and satisfies the estimate





∞



 j





 j 

 δC

 w

≤







 H  2 (Y   )

sup   DyDxG  





 E 0 L 2 (Y  ), 

 j ∈N

 L 1 (Y  × Y   )

 α(C 0 )

 j =0

 (L∞ (Y   ))d× d

(22.31)

 where G is the periodic fundamental solution of the  4 th-order PDE with constant coefficients C 0 . 

 Proof  This estimate is based on (22.11), estimate of the resolvent, given by the Neumann series (22.29) and the Lax-Milgram theorem. 

In recent works [Su18], [NiXu17], [NiEtAl18], also the leading term asymptotics for the resolvent were discussed. We note that our results and techniques can also

be generalized for high-order PDEs. 

22.3

Bounds on  C0 (x)

As we mentioned above, the Neumann series for problem (22.21) converges for λ = 1, if the spectral radius  ρ(Γ  δC) <  1. And this depends on the choice of the constant coefficient matrix  C 0. 

Let  λ  and  Eλ  be an eigenvalue and a corresponding eigenvector of

 λEλ = − Γ  ((C(x) −  C 0 ) :  Eλ), (λC 0 +  (C(x) −  C 0 )) :  Eλ = 0 , C  (x) :  Eλ = 0 , 
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where  C  (x) =  C(x) −  ( 1 −  λ)C 0. We need that for | λ| ≥ 1 the last problem has only trivial solution, i.e. 

 ξ :  C  :  ξ >  0 , 

or

 ξ :  C  :  ξ <  0 , 

∀ ξ ∈ R d× d

In order for  λ  to be a non-trivial eigenvalue,  C  cannot be either positive definite or negative definite. One must have, for the eigenvalues of the matrix

∃ x 1;  μ  i(x 1 ) <  0 ,  and ∃ x 2;  μ  i(x 2 ) >  0 , ∀ i = 1 , . . . , d. 

In other words:





/





/

min min 1 −  μi(x)

≤  λ ≤ max max 1 −  μi(x)

 . 

(22.32)

 i

 x

 μi 0

 i

 x

 μi 0

A sufficient condition for the scheme to converge is  ρ <  1, i.e., | λ|  <  1, hence μi 0  > μi(x)/ 2  >  0,  i = 1 , . . . d. Under this constraint, we look for  μi 0 giving bounds in (22.32) with opposite sign and equal absolute value. This is ensured by μi 0 = 1  ( min  μi(x) + max  μi(x)). 

(22.33)

2

 x

 x

With these parameters, the spectral radius of  Γ   δC  is bounded from above by



/

max x μi(x) − min x μi(x)

 ρ ≤ max

 . 

(22.34)

 i

max x μi(x) + min x μi(x)

Furthermore, owing to [MiEtAl01], for the high contrast coefficients, it is better to choose

; 

 μi 0 = − min (μi(x)) · max (μi(x)). 

(22.35)

 x

 x

 22.3.1

 Voigt-Reuss Bounds for the Effective Coefficients

Let  Lhom  be the effective operator with tensor  Chom, defined (see (3.6) in [Pa16])

by

 J 0 =  ChomE 0 = < C(x)E(x) > = < C(y)(Dw(y) +  E 0 ) >, (22.36)

where  J 0 = < J >  the mean value of the field  J . The approach to find the effective tensor for the fourth order PDE is presented in [Pa16]. The tensor  Chom  inherits the properties of symmetry and positive definiteness. 
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The following Voigt-Reuss estimates for the homogenized tensor are known, e.g. 

form[JiEtAl94] for the homogenization of the second-order elliptic operators, and were generalized in [Pa16] for higher order PDEs:

D

E−1

 C−1 (x)

≤  Chom ≤  C(x)  , 

(22.37)

called the Voigt-Reuss bracketing. Here  C−1 is the inverse tensor for  C  and  < ·  > is an averaging over the periodicity cell. The following examples can be found, e.g., in [JiEtAl94]

 Example 1

(i) For a laminate with two isotropic faces along the faces with conductivities  α  and β  the effective homogenized coefficient is the mean value of both and across the layers the harmonic mean. 

√

(ii) For the chess-board structure, assuming  C 1 =  αI ,  C 2 =  βI ,  Chom =

 αβI

and for a monocrystal  C 1 with eigenvalues  λ 1 , λ 2, and  C 2 =  RT C 1 R,  R  is an

√

orthogonal matrix. The homogenized tensor will be  Chom =

 λ 1 λ 2 I
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Chapter 23

Extension of the Fully Lagrangian

Approach for the Integration

of the Droplet Number Density

on Caustic Formations

Andreas Papoutsakis

23.1

Introduction

Caustic formations in dispersed two-phase flows appear as accumulation regions, 

and result to zones of high concentration of the dispersed phase. These for-

mations play a significant role in a great variety of engineering, environmental

and biological applications. Accordingly, the vortical structures of the in-cylinder carrier phase flow field during the fuel injection in internal combustion engines

induce accumulation regions of the spray droplets [Sa14] and affect the local stoichiometry of the mixture [Pa18]. Sea currents and weather systems result to the local accumulation of pollutants, plastic debris and aerosols [Kn12]. In biological systems the accumulation of nutrients plays a significant role in the

behaviour of microorganisms [Vo81] and affects the immigration of sea life and coral colonies [SeEtAl16]. The statistical identification of caustic formations with traditional Lagrangian approaches demands a computationally prohibitive number

of representative particles [HeYo05]. The Fully Lagrangian Approach (Osiptsov method) [Os84] overcomes this problem by incorporating the solution of the droplet number conservation equation in Lagrangian form along a single trajectory. 

FLA is based on the Lagrangian form of the continuity equation for the partic-

ulate phase, treated as a continuum, and incorporates a method for the calculation

of the components of the Jacobi matrix of the transformation from the Eulerian to

the Lagrangian coordinates along a single trajectory. This is essentially a method

of characteristics for the solution of the continuity equation on the Lagrangian

trajectories. This approach can deal with such complex cases as the regions of

intersecting droplet trajectories and caustics and presents unique characteristics
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in capturing the occurrence of the fine structure of the accumulation regions. In

[IjEtAl09], the efficiency of the FLA for the calculation of the droplet number density and its modelling capability in identifying the spatial structure of caustics was demonstrated. The introduction of the FLA into the study of turbulent flows

([MeRe11] and [PiEtAl05]) resulted in the identification and analysis of spatial structures of the dispersed phase distribution using the moments of concentration. 

In this paper the second order extension of the FLA which relates the point-wise

number density as defined in the standard FLA to a number density defined at a finite given length-scale is presented. The second order FLA addresses the singularities

of the standard FLA and demonstrates the integrability of the point-wise number

density of the standard FLA on caustics. Furthermore, with the approach presented

here the FLA number density can be related to a finite length scale inferred from

the LES filter width  Δ  needed for the introduction of the FLA to turbulent flows

[PaEtAl18]. 

In the next section the calculation of the number density, assuming a second

order structure of the dispersed continuum by the introduction of the Hessian of the Lagrangian transformation (i.e. the curvature of the deformed dispersed continuum)

is presented. In the third section a method for the calculation of the Hessian is

derived which is similar to the initial value problem used for the calculation of the Jacobian for the standard FLA. In the fourth section an approach for the calculation of the Hessian magnitude across a caustic formation for multiple dimensions is

presented. In the fifth section the method is implemented for the two-dimensional

problem of the dispersion of inertia droplets in an array of Taylor vortices. 

23.2

The Number Density in a Finite Volume

In Fig. 23.1 the temporal evolution of inertia droplets with Stokes number  St =

0 .  1 dispersing in a field of homogeneous and isotropic turbulence taken from

[PaEtAl16] is presented. It can be observed that the droplets accumulate creating caustic filaments. In the analysis presented in this work it is assumed that the caustic formations are characterised by this one-dimensional structure. Thus, one primary

direction perpendicular to the filament of accumulated droplets can be assumed. 

The one-dimensional distribution of droplets as a Stokesian droplet continuum

along the primary axis  x  is considered at time  t  which corresponds to an initial Lagrangian distribution at the location  x 0 at time  t = 0 which spans from  x 0 = 0

to  x 0 = 1, as shown in Fig. 23.2. This continuum disperses and deforms as shown by the solid curve in Fig. 23.2. Function  x(x 0 )  is uniquely defined along the  x 0 axis. 

The number density at any point  C  averaged over a finite length scale  Δ  is obtained by spatially averaging the number of droplets within this filtering volume of size  Δ

on the  x  axis. For each point of interest  C  the local Lagrangian coordinate system δ =  x 0 − xC  and the local Eulerian coordinate system   =  x − xC  for the distribution 0

[image: Image 153]
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Fig. 23.1 The evolution of a subset of individual inertia droplets with St=0 .  1 initially located within a spherical volume. The results of calculation were taken from [PaEtAl16] and correspond to the simulation of droplet dispersion in homogeneous and isotropic turbulence, for dimensionless times  t∗ = 0 ,  1 ,  1 .  5 and 2 .  0
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Fig. 23.2 Left: Schematic representation of the deformation of the dispersed continuum at the vicinity of a fold. The horizontal axis represents the initial Lagrangian coordinate  x 0. The vertical axis corresponds to the current Eulerian coordinate  x  at time  t. Straight dotted line: the distribution x(x 0 )  for  t = 0. Solid curve: the distribution  x(x 0 )  at time  t. Dashed curve: the approximation of the continuum distribution in the second order FLA. Axes  δ  and    correspond to the local coordinate system at  C. Middle: The position of the filtering interval  Δ = 2 R  around  C  when J  2  >  2 R H . Right: The position of the filtering interval  Δ = 2 R  around  C  when  J  2  <  2 RH . 

Straight dashed line: the approximation of the continuum distribution in the first order FLA of the deformed continuum are defined. The point-wise number density  nd  at a point

  0 in the local coordinate system is calculated as:







 δ() −  δ(− ) 

 ∂δ 

 n







 d ( 0 ) =  lim

=  

 , 

(23.1)

 →  0

2 

 ∂ =  0

where  ∂  is equal to the Jacobian  J  and  n

 ∂δ

 d = 1 /|J|. If  C  is located at a caustic

point, where  ∂  is zero, then the number density at  C  is infinitely large. It will be

 ∂δ

shown later in this section that the number density distribution can be integrable

over a finite volume, and a filtered number density ˆ nd  can be defined and predicted. 

Assuming that the number density  ∂δ  is integrable in the interval  

 ∂

0 ∈ [− R , R ], 
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Fig. 23.3 Left: Schematic representation of the formation of a caustic point as inertia droplets converge to the same point by the effect of the carrier phase flow-field. Middle: The equivalent deformation of the dispersed continuum  x(x 0 )  for the same scenario assuming the first order FLA structure  x =  J x 0. The linear approximation of the local continuum space results to an infinite number density where all droplets fall on the same point. Right: The equivalent deformation of the dispersed continuum  x(x 0 )  for the same scenario assuming a second order structure  x =  J x 0 +

1  H x 2. Accounting for the curvature of the local continuum space results to a finite large density 2

0

on the caustic

the spatially averaged or filtered number density ˆ nd  for an interval  Δ = 2 R  on the Eulerian space    can be estimated as:







 R





ˆ

 δ( =  R) −  δ( = − R)

 n





 d =

1

 nd d =

2 R



 , 

(23.2)

 

− R

2 R

 

 

where  nd  is evaluated from Eq. (23.1). 

For the first order FLA, a simple linear expression for the dispersed continuum

distribution   =  J δ  is assumed, shown in Fig. 23.3 (Middle). In this case, Eq. (23.2)

leads to the standard first order expression for the filtered number density ˆ nd = 1 /J . 

As shown in Fig. 23.2, in the vicinity of a fold the linear approximation for  (δ) cannot represent the topology of the fold. The second order Taylor approximation

for  (δ) (see Fig. 23.3) (Right) is introduced as:





 ∂ 2  

 (δ) =  ∂ 

 δ + 1



 δ 2 . 

(23.3)

 ∂δ 



 δ=0

2  ∂δ 2  δ=0

The first derivative  ∂ =  ∂x  in Expression (23.3) is equal to the Jacobian

 ∂δ

 ∂x 0

 J , while the second derivative  ∂ 2  =  ∂ 2 x  is equal to the Hessian  H  of the

 ∂δ 2

 ∂x 2

0

transformation from the Eulerian  x  to the Lagrangian coordinate  x 0 at the point

  = 0. Thus, the approximation of the transformation  (δ) (dashed parabola in Fig. 23.2 Left) can be presented as:

 (δ) =  J δ + 1  H δ 2 . 

(23.4)

2
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The orientation of the local coordinate system  δ = ± (x 0 −  xC)  and   = ± (x −

0

 xC )  can be chosen in order to ensure that both  H  and  J  are positive. The solution to (23.4) can be presented as:

√

− J +  J  2 + 2 H 

 δ() =

 , 

(23.5)

 H

where the root closest to the Taylor expansion reference point is chosen. Thus

Expression (23.2) for the filtered number density can be evaluated as:

√

√

− J +  J  2+2 HR − − J+  J 2−2 HR

ˆ n

 H

 H

 d =

=

2

< 

< 

 , 

2 R

 J  2 + 2 H R +

 J  2 − 2 H R

(23.6)

when  J  2  >  2 H R. For  J  2  <  2 H R, Solution (23.5) is defined only for   =  R

as for   = − R  the filtering interval extends outside the fold of the dispersed continuum. In this case the integral in Eq. (23.2) is evaluated only in the interval

[ min, R].  min  corresponds to the minimum limit of the droplet distribution that occurs at  δmin = − J /H . Thus, for the case when Jacobian  J  is small relative to the curvature of the fold, the number density inferred from Eq. (23.2) can be estimated as:

√

−

< 

 J +

 J  2+2 H R +  J

ˆ

 J  2 + 2 H R

 n

 H

 H

 d =

=

 , 

(23.7)

2 R

2 RH

when  J  2 − 2 H R <  0. As follows from Eq. (23.7), the number density for a caustic point  J = 0 becomes:

ˆ nd =

1

√

 . 

2 RH

Both Eqs. (23.5) and (23.6) reduce to the classical FLA expression  nd = 1 /J  for R → 0. Thus, even if the Jacobian is zero at  C  the number density is integrable in the vicinity of  C  if Hessian  H  is non-zero (Morse critical point). In the general case, the integral of the number density averaged within a volume with radius  R

can be calculated as:

⎧

⎪

⎪

2

⎪√

√

⎨

if  J  2 − 2 H R >  0

 J  2+2 H R +

 J  2−2 H R

ˆ nd = ⎪

(23.8)

⎪

⎪√

⎩  J 2+2 HR

if  J  2 − 2 H R

2 R

  <  0 . 

  H
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√

When  J  2 = 2 H R  then ˆ nd =

2 /J  for both the first and second branches of

Eq. (23.8). For  J  2  >>  2 H R, where the dispersed phase is diluted, the above expression simplifies to the classical FLA expression ˆ nd = 1 /J . 

23.3

The Calculation of the Hessian in the Second Order

FLA for Multiple Dimensions

In this section a method for the calculation of the Hessian matrix along a trajectory is presented. This method is similar to the approach used in the classical FLA for the calculation of the Jacobian and is not bound to the one-dimensional assumption for

the structure of the dispersed phase. An initial value problem for the time derivative of the Hessian, represented by the auxiliary variable  ψijk, can be formulated by differentiating the equivalent expression for  ωij  over the Lagrangian coordinate x 0. The Hessian matrix of the transformation from the Lagrangian to the Eulerian k

coordinates of the dispersed continuum is defined as  Hijk =  ∂ 2 xi . 

 ∂xj xk

In the classical FLA, the Jacobian  Jij =  ∂xi  is calculated by introducing the

 ∂xj

auxiliary variable  ωij  which is the time derivative of the Jacobian:

(

)

 ∂Jij

 ∂xi

 ωij =

=  ∂

=  ∂Vi . 

(23.9)

 ∂t

 ∂t

 ∂x 0

 ∂x 0

 j

 j

As shown in [PaEtAl18] the calculation of the Jacobian can be extended for non-Stokesian droplets. Here, however, the Stokesian case is considered. In this case the droplet acceleration  ∂Vi =  f

 ∂t

 i (Si ),  Si =  Ui −  Vi  is governed by the Stokes law fi = 1  S

 τ

 i  for the drag force  fi . Following [Os84] the initial value problem for  ωij d

is obtained as:





(

)





 ∂ωij =  ∂ ∂Vi = 1  ∂xm ∂Ui −  ∂Vi = 1  ∂Ui Jmj −  ωij , 

 ∂t

 ∂x 0

 ∂t

 τ

 ∂x 0  ∂x

 ∂x

 τ

 ∂x

 j

 d

 j

 m

 j

 d

 m

(23.10)

where addition is assumed among the terms of index  m. Equation (23.10) is integrated using the initial condition  ωij =  ∂Vi 

stemming from Eq. (23.9). 

 ∂xj t=0

For the derivation of an expression of the Hessian  Hijk, a similar approach is followed by introducing the auxiliary variable  ψijk, defined as the time derivative of the Hessian:

 ∂Hijk

 ψijk =

 . 

 ∂t
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A simple way to calculate the Hessian time rate is to obtain the spatial derivative of the rate of the Jacobian  ωij  over the Lagrangian coordinate  x 0 as: k

(

)





 ∂ψijk

 ∂ω

 ∂ω

=  ∂

 ij

=  ∂

 ij

 . 

 ∂t

 ∂t

 ∂x 0

 ∂x 0

 ∂t

 k

 k

The time derivative of  ψ  can be presented using the expression of the rate of the Jacobian in Eq. (23.10) as:







 ∂ψijk =  ∂

1

 ∂Ui Jmj −  ωij

 . 

 ∂t

 ∂x 0

 τ

 ∂x

 k

 d

 m

Using the chain rule as in (23.10), an expression for the time rate of the Hessian is obtained:





 ∂ψijk = 1

 ∂Ui

 ∂ 2 Ui

 H k

+  Jmj Jnk

−  ψijk , 

 ∂t

 τ

 mj

 d

 ∂xm

 ∂xm∂xn

where addition is assumed among the terms with indices  m  and  n. For  t = 0

the Lagrangian derivative coincides with the Eulerian derivative thus the initial

condition for  ψijk(t = 0 )  is expressed as:

 ψijk(t = 0 ) =  ∂ 2 Vi . 

 ∂xj ∂xk

Assuming that at  t = 0 the dispersed continuum is not deformed,  H (t = 0 ) = 0 is used as the initial value for  Hijk. The initial value problem for the calculation of the Hessian and the Jacobian under the second order FLA concept is finally described

by the non-linear first order differential system summarised by the following initial value problem:

⎡

⎤

⎡

⎤

 ω

 J

 ij





 ij

⎢

1

 ∂U

⎥

 ∂ ⎢

 i

⎢  ω ⎥

⎢

 J

⎥

 ij ⎥

⎢

 τ

 mj −  ωij

 d

 ∂xm

⎥  , 

 ∂t ⎣ H

⎦ = ⎢

⎥

 ij k

⎣

 ψijk



⎦

 ψ

 ∂ψijk

 ∂U

 ∂ 2 U

 ij k

= 1  H k

 i +  J

 i

−  ψ

 ∂t

 τ

 mj Jnk

 ij k

 d

 mj ∂xm

 ∂xm∂xn

with initial conditions:

⎡

⎤

⎡

⎤

 J

1

 ij

⎢

⎢  ∂Vi ⎥

⎢  ω ⎥

 ij

⎢  ∂xj ⎥

⎣

⎥

= ⎢

⎥

 H

⎦

 ij k

⎣ 0 ⎦

(23.11)

 ψ

 ∂ 2 V

 ij k

 i

 t =0

 ∂xjk

304

A. Papoutsakis

For the results of the second order FLA presented in the fifth section, the differential system (23.11) is numerically integrated over time using a fourth order Runge-Kutta method. 

23.4

Calculation of the Hessian Magnitude  H Across

the Caustic Formation

In this section the calculation of the Hessian magnitude  H  is presented as a function of the entries of the Hessian matrices  Hi. For the calculation of the Hessian magnitude  H  along the primary direction of a caustic filament the angle  θ  between the local coordinate systems  (η, ζ )  and  (η 0 , ζ 0 ) (attached to the fold) in relation to the global coordinate systems  (x, y)  and  (x 0 , y 0 )  is assumed. The relations between the two systems are expressed by the transformations:

 η =  x  cos (θ) −  y  sin (θ) , ζ =  x  cos (θ) +  y  sin (θ) η 0 =  x 0 cos (θ) −  y 0 sin (θ) , ζ 0 =  x 0 cos (θ) +  y 0 sin (θ) . 

(23.12)

The above relations describe the rotation of the coordinate system  x, y  to

the local coordinate system  η, ζ , which is used in Eq. (23.1). Taking the second derivative of the relation (23.4), the Hessian  H  is obtained as the second derivative (curvature) of the dispersed continuum distribution  H =  ∂ 2 η . In order to calculate

 ∂η 20

 H  in terms of the entries of the global Hessian matrix  Hijk  one can start from the first derivative  ∂η  which can be written as:

 ∂η 0

 ∂η =  ∂η ∂x 0 +  ∂η ∂y 0  . 

 ∂η 0

 ∂x 0  ∂η 0

 ∂y 0  ∂η 0

Using the transformation Eq. (23.12) for the expression of  η  and  ζ  in terms of  x  and  y  and taking into account that the partial derivatives of the Lagrangian coordinates can be deducted from (23.12) (e.g.  ∂x 0 =  cos(θ)  and  ∂y 0 = − sin(θ))

 ∂η 0

 ∂η 0

the following expression for the first derivative is obtained:

 ∂η =  ∂x  cos (θ) 2 −  ∂y  sin (θ) cos (θ) +  ∂x  sin (θ) cos (θ) −  ∂y  sin (θ) 2  . 

 ∂η 0

 ∂x 0

 ∂x 0

 ∂y 0

 ∂y 0

(23.13)





The second derivative  H =  ∂

 ∂η

is obtained by differentiating (23.13) over

 ∂η 0

 ∂η 0

 η 0 using the partial derivatives of the Lagrangian coordinates deducted from (23.12)
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(e.g.  ∂x 0 =  cos(θ)  and  ∂y 0 = − sin(θ)), and also the following evaluations of the

 ∂η 0

 ∂η 0

chain rule:





 ∂

 ∂x

=  ∂ 2 x ∂x 0 +  ∂ 2 x ∂y 0

 ∂η 0

 ∂x 0

 ∂x 0 ∂x 0  ∂η 0

 ∂y 0 ∂x 0  ∂η 0





 ∂

 ∂y

=  ∂ 2 y ∂x 0 +  ∂ 2 y ∂y 0

 ∂η 0

 ∂x 0

 ∂x 0 ∂x 0  ∂η 0

 ∂y 0 ∂x 0  ∂η 0





 ∂

 ∂x

=  ∂ 2 x ∂x 0 +  ∂ 2 x ∂y 0

 ∂η 0

 ∂y 0

 ∂x 0 ∂y 0  ∂η 0

 ∂y 0 ∂y 0  ∂η 0





 ∂

 ∂y

=  ∂ 2 y ∂x 0 +  ∂ 2 y ∂y 0

 ∂η 0

 ∂y 0

 ∂x 0 ∂y 0  ∂η 0

 ∂y 0 ∂y 0  ∂η 0

Thus, the second derivative  H =  ∂ 2 η  is obtained from (23.12) as:

 ∂η 20

 ∂ 2 η =  ∂ 2 x  cos (θ) 3 −  ∂ 2 x  cos (θ) 2 sin (θ) (23.14)

 ∂η 2

 ∂x

 ∂y

0

0 ∂x 0

0 ∂y 0

−  ∂ 2 y  cos (θ)  sin (θ) 2 +  ∂ 2 y  sin (θ) 3 , 

 ∂x 0 ∂x 0

 ∂y 0 ∂y 0

In the final derivation for the expression of  H  shown in Eq. (23.14) the symmetry of the sub-matrices  Hi (i.e.  H 112 =  H 121 and  H 212 =  H 221) was taken into account which results to the elimination of the non-diagonal terms during the derivation. 

The value of the magnitude of the Hessian  H  across a direction  η  at an angle  θ  in relation to  x, in terms of the entries of the Hessian matrices  Hijk, becomes: H =  H 111 cos (θ) 3 −  H 122 cos (θ) 2 sin (θ) −  H 211 cos (θ)  sin (θ) 2 +  H 222 sin (θ) 3

(23.15)

In the analysis presented in here and in the implementation presented in the next

section, a NR method is used for finding the maximum absolute value of  H  within the interval [0 :  π] as dictated by Eq. (23.15), which reveals the primary direction of the fold. This maximum value for  H  is used for the evaluation of the number density for a finite length-scale  R  using the model Eq. (23.8). 

23.5

Droplets in a Periodic Two-Dimensional Array of Taylor

Vortices

In this section the calculation number density  nd  using the second order extension of the FLA for a set of different length scales  Δ = 2 R  is demonstrated. For the dimensionless distance  x, normalised by  L, the droplets are initially distributed

[image: Image 154]
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Fig. 23.4 Left: Distribution of droplets at  t∗ = 0 .  4. Solid red line: Trajectory of the reference droplet from  t∗ = 0 to  t∗ = 1. Red circles: Position of the reference droplet at  Δt∗ = 0 .  1

intervals, the size of the red circles corresponds to the length-scale  R = 0 .  01. Solid black line: The trajectory of a neighbouring droplet, initially close to the reference droplet. Right: The same instance represented as a deformed dispersed continuum. The surface is coloured by the number density value ˆ nd  as predicted by the second order FLA using  R = 0 .  001. The red areas correspond to high number density and appear at the vicinity of the folds of the surface

within a square of unity size in the interval [−1 , −1 : 1 ,  1]. A periodic two-dimensional array of Taylor vortices is assumed to represent the flow field of the

carrier phase:

 ux = −5 sin ( 4 πx)  cos ( 4 πy), uy = 5 sin ( 4 πx)  sin ( 4 πy) . 

The problem is modelled using a standard Lagrangian approach with 400 × 400

individual droplets dispersing under the influence of the carrier phase for Stokes

droplets. The Stokes number for this case is assumed equal to St= 0 .  5. The number density for each FLA droplet is calculated using  nd = 1 /J for the first order FLA and Eq. (23.8) for the second order FLA. The Jacobian and the Hessian are calculated using the fourth order Runge-Kutta method for the integration of (23.11), 

as described in the previous section. In Fig. 23.4 (Left) the distribution of the droplets at  t∗ = 0 .  4 is shown. In the same figure the trajectory of a reference droplet located at  x 0 =  y 0 =  L/ 32 from  t∗ = 0 to  t∗ = 1 is shown. In Fig. 23.4 (Right) the same instance is presented as a deformed surface of the dispersed continuum. 

Caustics are located at the edges of the surface where  ∂ = 0, from our analysis

 ∂δ

 ∂ 2   is not necessarily zero, thus the number density at these points shown with red

 ∂δ 2

colour is finite. The colour map of this figure corresponds to the number density

inferred from the second order FLA for a length-scale  R = 0 .  001. This value is finite and reaches a converged finite maximum values ˆ nd ≈ 4 for this specific length scale at this instance. 

Figure 23.5 shows the comparison of the number densities for the reference droplet of the simulation  x 0 =  y 0 =  L/ 32 calculated using both the standard FLA
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Fig. 23.5 Number density ˆ nd  along the reference droplet trajectory assuming a length-scales  R =

0 .  0001 ,  0 .  001 and 0 .  01. Solid black curve: standard FLA. Thin solid red curve: result inferred from the second order FLA with  R = 0 .  0001. Solid red curve: result inferred from the second order FLA with  R = 0 .  001. Thick red curve: result inferred from the second order FLA with  R = 0 .  01

and the second order FLA for different length scales  R, using the model Eq. (23.8). 

The Hessian arrays and the magnitude  H  are calculated as described in the sections three and four for this two-dimensional problem. As it can be inferred from the

Fig. 23.5 the droplet goes through two caustic points at  t∗ ≈ 0 .  4 (identified also by the red filament at  y = −0 .  25 in Fig. 23.4 (Right)) and a second one at  t∗ ≈ 0 .  8. As it is expected the first order FLA identifies the caustic as a singularity point. For the second order FLA the larger the length-scale on which the number density is defined

the more diffused the caustic formation appears. Thus, with the second order FLA

not only the occurrence of the caustic is identified by a single Lagrangian particle but also the intensity of the caustic is calculated. 

23.6

Conclusion

In this paper the second order extension of the FLA which relates the point-wise

number density as defined in the standard FLA to a number density defined at a finite given length-scale was presented. The second order FLA addresses the singularities

of the standard FLA and demonstrates the integrability of the point-wise number

density of the standard FLA on caustics. The FLA accounts for the history of the

droplet trajectories by integrating an initial value problem, in the second order FLA the second derivative of the carrier phase flow field is also accounted for, which

enters in the calculation of the Hessian, thus, affecting the number density (intensity) of the caustic formations. Furthermore, with the approach presented here the FLA

number density can be related to a finite length scale inferred from the LES filter

width  Δ  needed for the introduction of the FLA to turbulent flows. 
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Chapter 24

The Nodal  LT SN Solution

in a Rectangular Domain: A New Method

to Determine the Outgoing Angular Flux

at the Boundary

Aline R. Parigi, Cynthia F. Segatto, and Bardo E. J. Bodmann

24.1

Introduction

A variety of solutions may be found in the literature, that solve  SN  nodal problems for neutron transport in rectangular domains (for instance, see [HaEtAl02, 

SeEtAl99b] and the references therein). This procedure results in a set of coupled one-dimensional  SN  problems with unknown terms representing the outgoing

angular flux at the respective boundary. To the best of our knowledge, there are no

reports based either on theoretical reasoning or experimental evidence, which allow

to estimate these fluxes. It is noteworthy that only ad hoc hypothesis is encountered. 

Hence, in this work we present an approach to determine these angular fluxes

approximating the rectangular domain by a set of one-dimensional problems with

known solution at the boundary, which allows to estimate the outgoing fluxes for the two-dimensional problem as, for instance, by constant or exponential expressions, 

where the latter is used in the present work. 
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24.2

The  LT SN Transport Equations in 2D

We consider a neutron transport problem in a rectangular domain  (x, y) ∈ [0 , a] ×

[0 , b] for discrete ordinates and isotropic scattering represented by the following equation

 M

 ∂Ψ



 m

 ∂Ψm

 μm

 (x, y) +  ηm

 (x, y) +  σt Ψm(x, y) =  Qm(x, y) +  σs

 ωnΨm(x, y)

 ∂x

 ∂y

4  n=1

(24.1)

and associated boundary conditions, 

 Ψm( 0 , y, Ωm(μm, ηm)) =  Ψm( 0 , y, Ωm(− μm, ηm)), 

 μm >  0

 Ψm(x,  0 , Ωm(μm, ηm)) =  Ψm(x,  0 , Ωm(μm, − ηm)), 

 ηm >  0

 Ψm(a, y, Ωm(μm, ηm)) = 0 , 

 μm <  0

 Ψm(x, b, Ωm(μm, ηm)) = 0 , 

 ηm <  0  . 

Here,  m = 1 , . . . , M , with  M =  N(N+2 ) , where  Ω

2

2

 m =  (μm, ηm)  represents a

discrete direction and  ωm  is the weight associated with direction  m. Further,  N

is the order of ordinates,  M  is the total number of discrete directions according to the level-symmetric quadrature scheme of reference [LeEtAl93],  σs  and  σt  are the macroscopic total and scattering cross sections and  Q(x, y)  is an isotropic neutron source term. The nodal method consists in the transverse integration of the

2D transport equation, which results in a set of one-dimensional problems. Thus, 

integrating Eq. (24.1) in  x  yields the one-dimensional  SN  equation in  y, d ˜

 Ψx

 η

 m

˜

 m

 (y) +  μm [ Ψm(a, y) −  Ψm( 0 , y)] +  σt Ψx (y) =  Qxm(y) dy

 a

 m

 M



+ σs

 ω ˜

 nΨx (y), 

(24.2)

4

 n

 n=1

where





 a

 a

˜ Ψx (y) ≡ 1

 Ψ

 Q

 m

 m(x, y)d x, 

 Qxm(y) ≡ 1

 m(x, y)d x, 

 a  0

 a  0

and by an analogue procedure one obtains the one-dimensional  SN  equation in  x. 

 d  ˆ

 Ψy

 μ

 m

ˆ

 m

 (x) +  ηm [ Ψm(x, b) −  Ψm(x,  0 )] +  σt Ψy (x) =  Qym(x) dx

 b

 m

 M



+ σs

 ω  ˆ

 nΨy (x)

(24.3)

4

 n

 n=1
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where





 b

 b

ˆ Ψy (x) ≡ 1

 Ψ

 Q

 m

 m(x, y)dy, 

 Qym(x) ≡ 1

 m(x, y)dy

 b  0

 b  0

Equations (24.2) and (24.3) are the average fluxes for each direction  m  in  x  and  y, respectively, and may be cast in matrix form. 

 d ˜

 Ψ x (y) − A ˜

 y Ψ x (y) =  Qx (y)N−11 − 1 MN−1[ Ψ (a, y) −  Ψ ( 0 , y)]

(24.4)

 dy

 a

 d  ˆ

 Ψ y (x) − A ˆ

 x Ψ y (x) =  Qy (x)M−11 − 1 NM−1[ Ψ (x, b) −  Ψ (x,  0 )]

(24.5)

 dx

 b

where

⎧

⎧

⎪

⎨ − σt +  σsωj ,  if  i =  j

⎪ − σt +  σsωj ,  if  i =  j

 μ

⎨

 i

4 μi

 ηi

4 ηi

A x(i, j ) = ⎪

A y(i, j ) =

⎩

 σ

⎪

 s ωj

⎩

 σ

 , 

if

 i =  j

 s ωj , 

if

 i =  j

4 μi

4 ηi

M and N are diagonal matrices of order  M  with components  μm  and  ηm, respectively, where  m = 1 , . . . , M  and 1 is a vector of order  M  containing components all equal to 1. The solution obtained, for (24.4) and (24.5), by the  LT SN  method for

˜ Ψ x  and ˆ Ψ y  is given below. 

˜ Ψ x(y) = Y eE∗ (y)Y−1 ˜ Ψ x( 0 ) (24.6)



! 

+Y eE yY−1    Qx(y)N−11 − 1 MN−1  (Ψ (a, y) −  Ψ ( 0 , y)) a

ˆ Ψ y(x) = X eD∗ (x)X−1 ˆ Ψ y( 0 ) (24.7)



! 

+X eD xX−1    Qy(x)M−11 − 1 M−1N  (Ψ (x, b) −  Ψ (x,  0 )) b

Here, D = diag{ d 1 , d 2 , . . . , dM } with  M  eigenvalues of A x,  (D∗ (x))i =  dix  for di <  0 and  di(x −  a)  for  di >  0. In analogy E = diag{ e 1 , e 2 , . . . , eM }, with  M

eigenvalues of A y, E∗ (y) =  eiy  for  ei <  0 and  ei(y −  b)  for  ei >  0. Further, X is the matrix of eigenvectors of A x, Y the matrix of eigenvectors of A y  and “ ” 

signifies the convolution operation. 

For the outgoing flux hypothesis we follow reference [HaEtAl02]. 

 Ψ (x,  0 ) =  e−sign (M )λxV3

 Ψ ( 0 , y) =  e−sign (N )λyV4

 Ψ (x, b) =  e−sign (M )λxV5

 Ψ (a, y) =  e−sign (N )λyV6

[image: Image 156]
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Here  λ =  σa, V3, V4, V5, V6 are vectors of order  M  to be determined and sign (μ) = 1 for  μ >  0 and −1 for  μ <  0 denotes the usual signal function. 

Finally, to determine the two-dimensional  LT SN  solution one solves a compatible homogeneous linear system of 4 M  equations obtained from the evaluation of the nodal  LT SN  solution, (24.6), (24.7) together with the definition of the angular fluxes at the boundary. 

24.3

Numerical Results for Case 1

The solution derived in the previous section is applied to two cases. The rectangular domain is specified by [0 , a] × [0 , b] with  a =  b = 1 cm, with a neutron source strength  Q(x, y) = 1 cm−3 s−1 active in a subdomain 0 ≤  x ≤  as = 0 .  52 cm and 0 ≤  y ≤  bs = 0 .  52 cm, using  σt = 1 .  0 cm−1 and for  σs  we consider three scenarios σs = 0 .  5 cm−1,  σs = 0 .  1 cm−1 and  σs = 0 .  05 cm−1. In case 1 the boundary conditions are reflective at  x = 0 and  y = 0 and vacuum for  x =  a  and  y =  b as shown in Fig. 24.1 (left). The results for the mean scalar flux are presented in Table 24.1. 

A second case was considered with different boundary conditions in comparison

with case 1, namely reflective at  x = 0,  y = 0,  y =  b  and vacuum for  x =  a, as shown in Fig. 24.1 (right). The results for the mean scalar flux for case 2 are presented in Table 24.3. 

Fig. 24.1 Domains of Case 1 (left) and Case 2 (right)
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Table 24.1 Scalar flux

ˆ

 LT SN  2D-DiagExp

 Φy (x)  for case 1

 σs

 N

 x = 0 .  5 cm

 x = 0 .  7 cm

 x = 0 .  98 cm

0 .  5

2

0 .  295

0 .  201

0 .  115

4

0 .  312

0 .  196

0 .  097

6

0 .  313

0 .  187

0 .  090

8

0 .  313

0 .  180

0 .  087

12

0 .  313

0 .  174

0 .  086

16

0 .  314

0 .  172

0 .  085

0 .  1

2

0 .  211

0 .  141

0 .  077

4

0 .  219

0 .  128

0 .  061

6

0 .  219

0 .  120

0 .  057

8

0 .  219

0 .  115

0 .  055

12

0 .  220

0 .  110

0 .  054

16

0 .  220

0 .  110

0 .  054

0 .  05

2

0 .  204

0 .  135

0 .  074

4

0 .  211

0 .  122

0 .  059

6

0 .  211

0 .  114

0 .  054

8

0 .  211

0 .  110

0 .  052

12

0 .  212

0 .  105

0 .  051

16

0 .  213

0 .  103

0 .  051

Table 24.2

ˆ Ψy(x)  for  σs = 0 .  5 by  LT SN  2D-DiagExp, case 1

 x = 0

 x = 0 .  1

 x = 0 .  2

 x = 0 .  3

0.569687129496

0.614877062408

0.650497164397

0.677591017408

0.310024200332

0.313021061165

0.317230044072

0.321781441371

0.310024200332

0.256110804576

0.195104433932

0.126354488012

0.569687129496

0.514347269906

0.449053881649

0.372482572288

 x = 0 .  4

 x = 0 .  5

 x = 0 .  6

 x = 0 .  7

0.696994419105

0.709360623569

0.648008169440

0.576738717673

0.325911725868

0.328938387865

0.263065398601

0.191165442668

0.049137821924

−0. 037345405124

−0. 056811139696

−0. 052907616350

0.283102173626

0.179144856658

0.135736103675

0.107842098996

 x = 0 .  8

 x = 0 .  9

 x = 1 .  0

0.513027275830

0.456101737373

0.405263777723

0.129940220322

0.077974843231

0.034037604579

−0. 042714125904

−0. 057913528976

0.000000000000

0.076727625178

0.041225485705

0.000000000000

It is noteworthy that some of the numerical values for the angular flux close to the boundary are negative as shown in Tables 24.2 and 24.4 (bold values), which from a physical point of view is absurd. This artefact is due to the adopted hypothesis for the outgoing flux at the boundary. 

314

A. R. Parigi et al. 

Table 24.3 Scalar flux, ˆ

 Φy (x)  and ˜

 Φx (y), for case 2

 LT SN  2D-DiagExp

 x =  y = 0 .  5 cm

 x =  y = 0 .  7 cm

 x =  y = 0 .  98 cm

 σs

 N

ˆ

 Φy (x)

˜

 Φx (y)

ˆ

 Φy (x)

˜

 Φx (y)

ˆ

 Φy (x)

˜

 Φx (y)

0.5

2

0.359

0.348

0.272

0.282

0.176

0.248

4

0.389

0.373

0.270

0.277

0.157

0.225

6

0.392

0.378

0.263

0.269

0.149

0.214

8

0.394

0.379

0.258

0.264

0.146

0.210

12

0.394

0.380

0.253

0.260

0.144

0.210

16

0.395

0.380

0.251

0.258

0.144

0.210

0.1

2

0.243

0.232

0.174

0.178

0.110

0.150

4

0.256

0.246

0.164

0.165

0.090

0.125

6

0.257

0.248

0.156

0.158

0.084

0.117

8

0.258

0.249

0.152

0.153

0.081

0.113

12

0.258

0.250

0.148

0.150

0.080

0.112

16

0.259

0.250

0.145

0.148

0.080

0.113

0.05

2

0.233

0.223

0.166

0.169

0.103

0.142

4

0.245

0.236

0.155

0.156

0.084

0.117

6

0.246

0.237

0.148

0.149

0.079

0.109

8

0.247

0.238

0.144

0.145

0.077

0.106

12

0.248

0.239

0.139

0.141

0.076

0.105

16

0.248

0.240

0.137

0.139

0.076

0.106

Table 24.4

ˆ Ψy(x)  for  σs = 0 .  5 by  LT SN  2D-DiagExp, case 2

 x = 0

 x = 0 .  1

 x = 0 .  2

 x = 0 .  3

0.583353595524

0.627691490813

0.663445012458

0.691326493333

0.583353595524

0.528886229007

0.463780627122

0.386791134657

0.355096375283

0.301882944669

0.240545854240

0.170431747042

0.355096375283

0.401294613751

0.440292302752

0.472499779737

 x = 0 .  4

 x = 0 .  5

 x = 0 .  6

 x = 0 .  7

0.711912150378

0.725653095690

0.665711461591

0.595768620264

0.296457947689

0.191079212411

0.145843042519

0.115777075700

0.090791113663

0.000773012280

−0. 023415999111

−0. 025530284952

0.498243289270

0.517767525785

0.464064646591

0.400676519550

 x = 0 .  8

 x = 0 .  9

 x = 0 .  98

 x = 1 .  0

0.533207506962

0.477185668675

0.436568184330

0.426950824604

0.082208722172

0.044037201476

0.009343605563

0.000000000000

−0. 022786789395

−0. 014547683054

−0. 003459832538

0.000000000000

0.344872032671

0.295715934688

0.260618633477

0.252380864452

[image: Image 157]
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24.4

An Alternative to Determine the Unknown Angular

Fluxes at the Boundaries

Due to the shortcoming of the method outlined in the previous section a new

approach was developed. It is noteworthy that the problem of negative angular fluxes does not appear in the one-dimensional problem. This is basically a consequence

of having only two boundary points at the extreme of the domain, whereas the

two-dimensional problem is characterized by a closed line boundary. The question

that arises is whether it is possible to construct a solution for the two-dimensional problem starting from the solution of the one-dimensional problem with known

angular fluxes at the endpoints, which opens pathways to avoid the otherwise

non-physical behaviour of the fluxes close to the boundaries. To this end, the two-

dimensional domain is covered with a finite set of sufficiently narrow sub-domains

so that to an approximation each strip may be considered a one-dimensional

problem. A sketch of this procedure is given in Fig. 24.2 for the horizontal version of one-dimensional problems  rk ∈ [0 , b] with  k = 1 , . . . , J  and continuous  x ∈ [0 , a]

and the analogue for the vertical implementation ( rk ∈ [0 , a],  k = 1 , . . . , J  and continuous  y ∈ [0 , b]). Thus, along each line the heterogeneous one-dimensional transport problem was considered, with the domain divided in two regions that are

distinguished by the presence or absence of a source term. Each one-dimensional

problem is represented by the following equation, 

 N

 dφ i



 k

 γ

 n

 i

 i

 i

 n

 (x) +  σt φk

 φk

 (x) , 

(24.8)

 dx

 n(x) =  σs

2

 n(x)ωn +  qk

 n=1

Fig. 24.2 Construction of the

 y

2 DLT SN  solution by the

solution of the 1 D  problem

(here is shown a horizontal

1

version)

 rk 0.52

 r 4 r 3 r 2


 r 1

0

0.52

1

 x
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subject to boundary the conditions

 N

 φ 1

}

 k ( 0 , γn) =  φ 1

 k ( 0 , − γn)

 γn >  0 with  n = {1 , .., 

 , 

2

 φ 1 k(ls, γn) =  φ 2 k(ls, γn)  with  n = {1 , .., N }  ,  where  Ls =  as  or  Ls =  bs , N

 φ 2

+

 k (L, γn) = 0  , 

 γn <  0 with  n = {

1 , . . . , N } and  L =  a  or  L =  b , 

2

where  φi  represents the angular flux in region  i,  γ

 k

 n  and  ωn  for  n = 1 , . . . , N  are

 n

the directions and weights,  N  is the quadrature order. The source terms in region 1

are



1

∀ x ∈ [0 ,  0 .  52] for  y

 q 1

 k ≤ 0 .  52

 k (x) =

 , 

 e− β(yk−0 .  52 ) ∀ x ∈ [0 ,  0 .  52] for  yk >  0 .  52

and for region 2 is  q 2 (x) = 0 for  x ∈  ( 0 .  52 ,  1]. 

 k

For the one-dimensional neutron transport problem in the region originally

without neutron source ( yk ∈  (bs, b], we consider a weak source of the type  q(x) 1 =

 k

 e− β(yk− bs), where  β  is a constant to be determined in a way to maintain this source term  q(x) 1 close to zero. This modification has to be introduced into the method k

in order to avoid an otherwise trivial solution for sub-domains without source term

contributions. Moreover, this scheme preserves the condition of a reflective contour for the one-dimensional problem, where the structure of the solution is known. 

Upon application of the  LT SN  method [SeEtAl99b], one obtains the solution for (24.8). 

 φ 1 (x) =  B 1 (x)ξ  1 +  H  1 (x)  for  x ∈ [0 , Ls]

 φ 2 (x) =  B 2 (x)ξ  2

for  x ∈ [ Ls, L]

where

X e D x

for D  <  0

 Bi (x) =

for  i = 1 ,  2  . 

X e D (x− Li)  for D  >  0

' 

X  x e D (x− ζ )q 1 (ζ ) dζ  X−1

for D  <  0

 H  1 (x) =

0



X  Ls e D (x− ζ )q 1 (ζ ) dζ  X−1 for D  >  0

 x

Here X and D are the eigenvector and eigenvalue matrices of the one-dimensional

problem. 

To estimate the two-dimensional angular fluxes at the boundaries through the

one-dimensional angular fluxes we use the  LT SN  method associated with the so-called dummy-nodes inclusion technique (DNI) [ChEtAl00]. In order to interpolate the directions of the two-dimensional problem using the one-dimensional directions, 
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we include the cosine of the directions  Ω  in the quadrature scheme associating a zero weight for each contribution pointing into the domain. Details of the scheme

are shown next. 

•  γi = cos ( 

 Ωi), −→  wi = 0

for

 i = 1 , M 4

•  γ

=  λ

=  ω

 i+  M

 i −→  wi+  M

 i

for

 i = 1 , N

4

4

•  λ

+ 1 , M

 i+  M + N = cos ( 

 Ωi), −→  wi+ M + N = 0 for  i =  M 4

2

2

4

In order for the nodal  LT SN  solution to be completely determined, it is sufficient to solve a compatible homogeneous linear system of  M  equations obtained from the evaluation of the nodal  LT SN  solution in the contours and the definition of the angular fluxes at the boundary from the one-dimensional  LT SN  solution. 

24.5

Numerical Results for Case 2

In this section we present the numerical results obtained from the new methodology

presented in the previous section considering problem 1, described in Sect. 24.3. The results are presented in Tables 24.5, 24.6 and 24.7. We emphasize that the results obtained by the new methodology proposed are comparable to those presented in the

Table 24.5 Scalar flux, ˆ

 Φy (x), for  x = 0 .  5 cm, problem 1

 LT SN  2D

 LT SN  2D-DiagExp

 LT SN  1D

 σs

 N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16

0 .  5

0.304

0.326

0.295

0.280

0.320

0.337

0.312

0.319

0.320

0.336

0.313

0.325

0.320

0.335

0.313

0.328

0.320

0.335

0.313

0.330

0.321

0.335

0.314

0.330

0 .  1

0.219

0.236

0.211

0.211

0.226

0.236

0.219

0.229

0.226

0.235

0.219

0.231

0.225

0.234

0.219

0.232

0.226

0.234

0.220

0.233

0.227

0.234

0.220

0.234

0 .  05 0.212

0.228

0.204

0.204

0.218

0.228

0.211

0.220

0.217

0.226

0.211

0.223

0.217

0.226

0.211

0.224

0.218

0.226

0.212

0.225

0.218

0.226

0.213

0.225
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Table 24.6 Scalar flux, ˆ

 Φy (x), for  x = 0 .  7, problem 1

 LT SN  2D

 LT SN  2D-DiagExp

 LT SN  1D

 σs

 N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16

0.5

0.210

0.225

0.201

0.211

0.199

0.207

0.196

0.221

0.190

0.196

0.187

0.218

0.184

0.189

0.180

0.214

0.178

0.182

0.174

0.211

0.175

0.179

0.172

0.209

0.1

0.144

0.156

0.141

0.151

0.130

0.135

0.128

0.146

0.122

0.126

0.120

0.140

0.117

0.120

0.115

0.137

0.112

0.115

0.110

0.133

0.110

0.112

0.110

0.131

0.05 0.138

0.150

0.135

0.145

0.124

0.129

0.122

0.139

0.116

0.120

0.114

0.134

0.112

0.114

0.110

0.130

0.107

0.109

0.105

0.126

0.105

0.107

0.103

0.124

Table 24.7 Scalar flux, ˆ

 Φy (x), for  x = 0 .  98, problem 1

 LT SN  2D

 LT SN  2D-DiagExp

 LT SN  1D

 σs

 N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16  N = 2 ,  4 ,  6 ,  8 ,  12 ,  16

0.5

0.112

0.107

0.115

0.137

0.092

0.084

0.097

0.128

0.085

0.076

0.090

0.123

0.082

0.072

0.087

0.121

0.081

0.070

0.086

0.119

0.080

0.070

0.085

0.118

0.1

0.072

0.066

0.077

0.094

0.055

0.048

0.061

0.080

0.050

0.043

0.057

0.075

0.048

0.040

0.055

0.073

0.047

0.040

0.054

0.072

0.047

0.040

0.054

0.071

0.05 0.069

0.062

0.074

0.090

0.052

0.045

0.059

0.076

0.047

0.040

0.054

0.071

0.045

0.038

0.052

0.069

0.045

0.037

0.051

0.068

0.045

0.037

0.051

0.067
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Table 24.8

ˆ Ψy( 0 .  5 ), for  σs = 0 .  5, by  LT SN  2D-  LT SN  1D, problem 1

 x = 0

 x = 0 .  1

 x = 0 .  2

 x = 0 .  3

0.149896183201

0.165049980315

0.177235384763

0.186365596207

0.588051865155

0.645823493082

0.693849007552

0.733119502107

0.588051865155

0.519345631960

0.438291404659

0.343218196198

0.149896183201

0.131867235935

0.111073872692

0.087657456232

 x = 0 .  4

 x = 0 .  5

 x = 0 .  6

 x = 0 .  7

0.192350838296

0.195090186284

0.161580039899

0.150540269463

0.764451671578

0.788506901878

0.720126426291

0.625456295802

0.232158681506

0.102803426912

0.050185885741

0.035875650064

0.061805744652

0.033771935078

0.042944426436

0.033739679842

 x = 0 .  8

 x = 0 .  9

 x = 1 .  0

0.141999980870

0.132019916756

0.122727165227

0.541694841578

0.469431542035

0.406028716183

0.023946972290

0.010782946491

0.000000000000

0.021645425005

0.012706342622

0.000000000000

literature, in addition, no negative angular fluxes were found through this approach. 

Results for the mean angular flux, with  N = 2 are shown in Table 24.8. 

24.6

Conclusion

The present work is the first approach to determine the outgoing angular fluxes

at the boundaries for the  SN  approximation of the neutron transport problem in a rectangular domain from the known solutions of the one-dimensional problem. Note

that the undetermined fluxes at the boundary of the two-dimensional problem is an

inherent feature of the  SN  nodal problem. Besides the fact that the results obtained are comparable to the one in the literature, one may affirm that by the new technique the commonly observed negative values for the angular fluxes near the boundaries

are mitigated. Further, the presented procedure allows to construct an approximate

solution in semi-analytical representation for the nodal  SN  equations in a rectangular domain. In future work we continue the outlined reasoning and develop corrections

to the obtained solution together with error estimates. 
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Chapter 25

Image Processing for UAV Autonomous

Navigation Applying Self-configuring

Neural Network

Gerson da Penha Neto, Haroldo F. de Campos Velho, Elcio H. Shiguemori, 

and José Renato G. Braga

25.1

Introduction

Application and development of Unmanned Aerial Vehicles (UAV) or  drone

have had a rapid growth for various purposes [VaVa14], such as monitoring in agriculture and livestock [BiEtAl17], search for missing persons and rescue operations [GoRe15], land mapping [JaEtAl17], and environmental and forest fire monitoring [DaEtAl17]. 

There is an expectation for a continuous increasing of the UAV in the future, 

mainly due to lower cost for operation and manufacturing when compared to

traditional aircraft driven by a pilot [FiEtAl17]. 

The flight control of  drones  can be performed remotely or autonomously. There are different strategies for the UAV autonomous navigation, [CoDo09, SiEtAl15, 

BrEtAl15, BrEtAl16]. The positioning estimation can be done by using inertial sensor and General Navigation Satellite Systems (GNSS) signal [Gr15]. The use of the GNSS signal can present some difficulties due to natural [CoDo08] or not natural [FaEtAl18] interference. One approach to solve the mentioned troubles is to apply a computer vision system combining with the inertial (INS) sensor to estimate

the position of the UAV [CoDo09, BrEtAl16]. 

A computer vision process can be done by image edge extraction from geo-

referenced satellite [DaEtAl17] and caught by the UAV. A correlation between the segmented images is computed to estimate the UAV position [SiEtAl15]. The vision-based architecture developed by [CoDo09] is composed of a Kalman filter G. da Penha Neto · H. F. de Campos Velho () · J. R. G. Braga
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Fig. 25.1 Sensor fusion architecture

(KF), combining the INS signal and the UAV positioning by image processing

mentioned before. 

The application of a KF has a relative high computational effort. A supervised

artificial network (ANN) can be trained to emulate the Kalman filter for reducing the computational effort with similar operation performance. The new system replacing

KF by ANN is shown in Fig. 25.1. The use of ANN requires the adjustment of several parameters [Ha07, AnEtAl13]. The process of obtaining an adequate ANN

architecture to solve a specific problem is a complex task. Such task usually requires a help from an expert on neural network and a prior knowledge about the problem

to determine the ANN topology to produce good results [SaEtAl12a, SaEtAl12b]. 

There are proposals in the literature for obtaining an adequate ANN architec-

ture [BeVo07, LoEtAl12]. An automatic strategy to identify the best topology for the neural network is obtained by minimizing a functional by a new meta-heuristic

called Multi-Particle Collision Algorithm (MPCA) [SaEtAl16]. 

Our results show similar accuracy between the ANN and the Kalman filter, with

better processing performance to the neural network. 

25.2

Applied Model

A fixed coordinate system is used on the body of the aircraft to model the UAV

movement. The orientation of the coordinate axes of the body is fixed in:

• The  x  axis points from the middle of the aircraft to its nose. 

• The  y  axis points to the right of the  x  axis, facing the direction of the pilot, perpendicular to the  x  axis. 

• The  z  axis points down from the aircraft, perpendicular to the  xy  plane. 

[image: Image 160]
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Fig. 25.2 Coordinate system

for the body of a UAV

Figure 25.2 describes the coordinate system applied to the body of the UAV. 

Navigation is done by moving along these axes from origin. The rotations for

aircraft movement are defined by the Euler angles  (Φ, Θ, Ψ ).  Φ (Roll) represents the ability to roll on the  x  axis,  Θ (Pitch) represents the ability to roll on the  y axis, and  Ψ (Yaw) represents the ability to roll on the  z  axis. The non-inertial speed coordinate system is placed on the aircraft at the initial position. The orientation of the coordinate system is defined in relation to the aircraft speed  v—it is similar to the orientation of body coordinates. 

In addition to the UAV body and velocity coordinates, the trajectory modeling

requires positioning and orientation of the aircraft in relation to the rotation of

the Earth. The navigation coordinates are defined in relation to the center and

surface of the Earth. For this case, geocentric and geodetic latitudes, the descending-northeaster system, and the Earth-centered inertial system are used. 

 25.2.1

 Platform Used

The framework proposed by [CoDo09] was tested in real flight by the group of the Department of Computer Science and Information Science of Linköping

University, Sweden. A stand-alone helicopter shown in Fig. 25.3—the commercial model Yamaha Rmax. The total length of the helicopter is 3.6 m, with capacity to

load up to 96 kg. 

The developed positioning system was capable of flying fully automatic from

takeoff to landing. Sensors used in the helicopter were three accelerometers and

three gyroscopes along the three axes of the aircraft body, providing the acceleration and angular rate, a barometric altitude sensor, and a monocular video camera. 

[image: Image 161]
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Fig. 25.3 UAV helicopter

Yamaha Rmax

 25.2.2

 Kalman Filter Applied to Autonomous Navigation

In [CoDo09], the first part of the proposed architecture (subsystem 1) is represented by a KF to estimate the UAV: position, velocity, and altitude; the second part is

represented by a Bayesian filter called point-mass filter (PMF). 

The implemented KF [Ma02] is a component of the navigation system. It is used to combine the UAV estimated position from image processing with data from an

inertial sensor. The KF uses a dynamic model to find the linear error in space. The

model is derived from a perturbation analysis of the motion equations [MiEtAl02]. 

The equation below represents the system model:

⎡

⎤

⎡

⎤ ⎡

⎤ ⎡

⎤

 δ∗&  rn

 Frr Frv  0−

 δ&  rn

0

0
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⎦ ⎣
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⎦

 vr Fvv

 A

 δ &  vn +  Rn

0

&  u
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and the estimation model equation is given by:
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where  δ&  rn  represent latitude, longitude and altitude errors;  δ &  vn  denotes the errors of north, east, and descending velocity; & 

 u  is the accelerometers and gyroscopes

noises; &    represents the noise measurements; & 

 ωn  is the rotation rate;  a

 in

 n, ae, ad  are

the north, east, and vertical accelerations; the vectors  Fxx  are the matrix entries of the dynamical system. 

Estimation from subsystem 2—(latitude, longitude)—is used to update the UAV

position by the KF. The updating of the altitude measurement is done using the

barometer information. For calculating the altitude in the WGS84 reference system, 

an absolute reference value is necessary for  h 0, the initial altitude. For example, if h 0 taken in the take-off position, the barometric altitude variation  δhbaro  related to h 0 can be obtained from a pressure sensor, and the altitude of the UAV can finally be calculated. This technique works if the ambient static pressure remains constant. 

The system presented in Eqs. (25.1) and (25.2) is fully observable. The matrix entries  Fxx  and & 

 ωn  have small values, because they depend on the Earth rotation rate

 in

and the navigation rotation rate relative to the curvature of the Earth. These elements are influential in high-speed flight conditions. Such conditions are not representative for the standard flight to small UAVs. 

25.3

Neural Network Applied to Autonomous Navigation

Artificial neural network (ANN) is a key branch from the artificial intelligence. 

Many problems are solved by using ANN. Two classes of neural networks are

described as  supervised  and  unsupervised. For the supervised NN, a training set ( target) is used to identify the connections weights—the  learning phase. The unsupervised NN has no target or training set: the connections weights are updated

during the ANN application. 

Here, the supervised multi-layer perceptron (MLP) neural network is trained

to emulate the Kalman filter. This ANN has an input layer, one or more hidden

layers (processing units), and one output layer [Ha07]. Each neuron is fed by a weighted combination from the inputs plus a bias, being this combination the

element for the non-linear activation function, representing the neuron output. The

back-propagation algorithm to identify the connection weights is employed here

during the learning phase [Ha07]. 

Some parameters need to be determined to find the MLP-NN architecture:

number of hidden layers, number of neurons for each layer, the type of activation

function, and the learning rate and momentum to the back-propagation algorithm. 

Due to the strong link between the ANN architecture definition and the quality of

the obtained solution, the search for the optimal architecture becomes one important issue. Therefore, the ANN topology is an important topic in the context of the

autonomous navigation. 
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 25.3.1

 MPCA Metaheuristic for ANN Optimal Architecture

Empirical approach is the most widely used method to design the ANN architecture. 

But, this strategy is a time-consuming process, requiring an expertise on ANN and

on the problem to be addressed, with a degree of uncertainty [Ha07]. However, there is no guarantee that an optimal architecture for the neural network will be

determined. 

There are approaches to find the ANN architecture by using statistical algorithms, 

constructive and evolutionary approaches [BeVo07, LoEtAl12]. 

In our scheme, the optimal topology for the ANN is formulated as a solution

of an optimization problem. The metaheuristic called Multiple Particle Collision

Algorithm (MPCA) is employed as optimizer [AnEtAl13, SaEtAl16]. The MPCA is an extension derived from the standard Particle Collision Algorithm (PCA) [Sa05]. 

The MPCA is a stochastic optimization algorithm emulating the neutron traveling

inside of a nuclear reactor, where two phenomena take place: scattering and

absorption. 

The cost function  φ  to be minimized is a combination of two factors: a metric for the neural network complexity, and the quadratic difference between the desired

values and the ANN output:







 ρ 1 Et +  ρ 2 Eg

 φ =  θ 1 ex 2 +  θ 2 y + 1

(25.4)

 ρ 1 +  ρ 2

where  x  is the number of neurons,  y  corresponds to the number of epochs up to the convergence during the training phase for each MPCA algorithm iteration,  θ 1

and  θ 2 are adjustment parameters to calculate the complexity quantification of the neural network;  ρ 1 and  ρ 2 taking into account the balance between training  (Et ) and generalization  (Eg)  errors. 

25.4

Experiment Results

The methodology proposed by [CoDo09] to the UAV autonomous navigation is capable of flying fully automatic from takeoff to landing—see in Fig. 25.4 the red line. The set of sensors during the tests are: three accelerometers and three

gyroscopes, providing the acceleration and angular rate of the helicopter, along the three axes of the body; a barometric altitude sensor; and a monocular video camera. 

The video camera sensor is a standard CCD. The capture rate of the camera

is 25 Hz, and the images resolution are reduced to half from the original image

in order to have a smaller computational effort. During the experiment, the video

camera was facing down and fixed to the body of the helicopter. For each sensor, the reading of the data is stored in a matrix composed of two columns. The first column

is the instant of time in seconds and the second column is the value measured by

[image: Image 162]
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Fig. 25.4 Orthorectified aerial image

Table 25.1 Available

Sensor

Acquisition rate

Resolution

features of sensors used in the

Accelerometers

66 Hz

1 mG

autonomous navigation

algorithm

Gyroscopes

200 Hz

0.1 deg/s

Barometer

40 Hz

0.1 m

Camera

25 Hz

384 × 288 pixels

the sensor. Table 25.1 presents a summary of the characteristics of the sensors. The ANN merges information from the inertial sensors with data from subsystem 2 and

provides the estimation of the UAV position. 

The sensor data and image were recorded during the flight. Subsystem 2, based

on computer vision, the UAV initial position, before the takeoff, is provided by

the inertial sensor and GPS (Global Positioning System) signal. After initialization, the GPS signal is no longer used for position estimation. The UAV positioning is

computed by subsystem 2. Indeed, the goal is to do the navigation without using

GPS. The data are processed at 50 Hz rate, meaning, every 50 Hz the network is

activated with a sample coming from the inertial sensors and the processing result

from subsystem 2. 

For computing the optimal ANN architecture by the MPCA algorithm, a total

of 16,249 patterns were used. The data set was split into three subsets: 70% to

be used during the training phase, 20% for generalization, and 10% for validation. 

This amount is a result of the information from each sensor. The input vector has

12 entries. Table 25.2 presents a summary of the architecture found by the MPCA. 

The ANN architecture contains 32 neurons in the hidden layer, and the activation

[image: Image 163]
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Table 25.2 ANN

Parameter

Value computed

architecture to emulate KF

Neurons in the input layer

32

Number of hidden layers

1

Neurons in the hidden layer

16

Neurons in the output layer

2

Learning rate

0.7

Rate of momentum

0.52

Activation Function

Sigmoid

58.495

58.49495

58.4949

GPS(RTK)

Kalman Filter

Latitude

ANN

58.49485

58.4948

58.494750

500

1000

1500

2000

2500

3000

3500

Fig. 25.5 Comparison latitudes estimated by GPS (RTK), KF and ANN

function Sigmoid presented the best performance. The mean square error obtained

from the network training was 8 .  62 × 10−5. 

Figures 25.5 and 25.6 present the comparison of the estimation of latitudes together with their respective errors. Figures 25.7 and 25.8 present the comparison of the estimation of latitudes together with their respective errors. The errors

presented in Figs. 25.6 and 25.8 are the difference between the GPS and the KF

or ANN positioning. 

The experimental results of this work confirm the validity of the proposed

approach. The fusion of sensors based on computer vision can guarantee navigation, 

when the GPS signal is not available. 

A next step to be evaluated is the implementation of ANN in FPGA [SaEtAl16]. 

The goal is to improve system performance by using dedicated hardware. 

[image: Image 164]
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Fig. 25.6 Error in estimation of latitude
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Fig. 25.7 Comparison latitudes estimated by GPS (RTK), KF and ANN
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Fig. 25.8 Error in the estimation of the longitude

25.5

Final Remarks

The multi-layer perceptron artificial neural network was trained to emulate a

Kalman filter for data fusion employed to estimate the UAV position. The difference

between UAV positioning by GPS and by image processing was less than 2 × 10−5

using KF or MLP-NN. 

The optimal architecture for the MLP-NN was found by employing the MPCA

optimizer. Providing an efficient neural network to substitute the KLF with reduction of the computational effort, implying a lower energy demand, for the designed UAV

positioning system. 
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Chapter 26

Towards the Super-Massive Black Hole

Seeds

Eduardo S. Pereira, Pedro A. Santos, and Haroldo F. de Campos Velho

26.1

Introduction

In science, there are different problems to be solved. One of them is the evolution

of the Universe. This paper discusses a little piece of the cited problem, which is the evolution of the black holes. 

From nowadays, observations show super-massive black holes with mass about

109M3 are ubiquitous in galaxy centers. However, the origin of this kind of object is not completely understood yet. A possibility rely in the fact the super-massive black holes (SMBH) seeds had their origin in the death of the Population III stars, during the called Dark Cosmological Ages – at redshift in the interval  z = [10 ,  20]. In order to verify this hypothesis, the first step is to try to reconstruct the SMBH mass function at high redshift. The next step is to do a comparison between the computed

distribution with the reminiscent of the first stars. 

An inverse problem methodology is applied to identify the initial distribution

of the SMBH seeds. The regularized inverse backward solution is obtained by

minimizing a functional with square difference between the forward problem and

observations, associated with the Tikhonov zeroth order regularization operator. The forward problem is the mass conservation law, representing the time variation of the black hole mass distribution  nbh  in balance with the gradient of the function given by the product between the  nbh  and the average of the mass accretion rate ˙

 mbh. The

time integration of the forward problem is performed by the Lax-Wendroff method. 

The formulation of the forward problem is described in terms of mass accretion

instead of space coordinate. 
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A hybrid optimization method, combining a genetic algorithm with quasi-

Newton approaches, is applied to compute the inverse solution. Synthetic observa-

tions are used to evaluate the inverse technique. Good inverse solutions are obtained even considering high level of noise in the data. 

26.2

The Forward Problem: Conservation Law

to the Ancient Black Holes

To determine the super-massive black hole (SMBH) seeds, a conservation law is

assumed for the numerical mass density function of these objects,  nbh(mbh, t). This function represents the number of black holes per unit of comoving volume and per

unit of solar mass at look-back time  t. 

The SMBH mass function (BHMF) must obey the following conservation law

[YuTr02, SmBl92]:

 ∂nbh +  ∂ ˙ mbh nbh =  S(mbh,t)

(26.1)

 ∂t

 ∂mbh

where  S(t, mbh)  represents the source that accounts for black hole mergers and, according to [YuTr02], [SmBl92] and [Li12], it is considered  S(t, mbh) = 0. The accretion is the dominating process of growth of SMBH, as stressed by [Li12], 

[ShEtAl10] and [ShEtAl9], with respect to the merges among this objects. This fact is assumed to justify the consideration of the source term to be null. 

The  ˙

 mbh is the mean accretion rate weighted by the fraction of active SMBH

[RaFa09] and [Li12]:

˙ mbh ≡  δ(mbh, z) ˙ mbh . 

(26.2)

The  δ(mbh, z)  is the duty cycle of quasar, that takes into account the activity lifetime of quasars. On the other hand, the mean accretion rate can be written as [PeMi14]:

˙

1

 m

¯

 bh = 1

 Lb(z, mbh), 

(26.3)

 c 2  f

where ¯

 Lb(z, mbh)  is the mean bolometric luminosity of quasars (MBLQ) for objects

with central SMBHs of mass  mbh  at a given redshift  z,  c  is the speed of light,  f =

¯ η/( 1 − ¯ η), and ¯ η  is the mean radiative efficiency, assumed as 0 .  1. 

The MBLQ can be fitted by a parametric function—see [PeMi14]:











 α

¯

 mbh

 τ∗

 Lb(z, mbh) = ¯

 L∗

− tu(z)

 b

exp

 , 

(26.4)

 m∗

 t

 τ

 bh

 u(z)

∗
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here ¯

 L∗,  m∗ , and  τ

 b

 bh

∗ are free parameters, being  tu(z)  the look-back time. Observe

that  m∗ represents a typical SMBH mass, in cosmic scale,  τ

represent, 

 bh

∗ and ¯

 L∗ b

respectively, a lifetime scale and the dominant bolometric luminosity of Activity

Galaxy Nuclei (AGN). 

The relation between the cosmic time and the redshift, for Cold Dark Matter

(CDM) plus cosmological constant ( Λ), called  Λ CDM model, is given by [PeMi10]:



 dt 

 u





< 

 . 

(26.5)

 dz  =

9 .  787 h−1Gyr

 ( 1 +  z) ΩΛ +  Ωm( 1 +  z) 3

In the above equation, the Hubble’s factor is defined as:  H 0 / h ≡ 100  km s−1, being H 0 the Hubble’s constant; the parameters  (Ωb, Ωm, ΩΛ)  are density parameters for barionic matter, dark matter, and dark energy, respectively; and “Gyr” represents

 giga years. The numerical values for there parameters are:  h = 0 .  73,  Ωb = 0 .  04, Ωm = 0 .  24,  ΩΛ = 0 .  76. The duty cycle of quasar can be computed from  tu  by

∞

integrating the above expression:  tu =

 g(z) dz, where the function  g(z)  is the

 z

right hand side of equation (26.5). 

26.3

Mathematical Framework for the Inverse Solution

Before discussing the mathematical framework necessary to treat the problem, 

the inverse problem can be illustrated with a simple example. Consider  p(x)  a polynomial of degree  n. The forward problem is to find the roots  x 1 , x 2 , . . . , xn  of this polynomial:  p(xk) = 0. An inverse problem can be expressed as: knowing the set of roots, find the polynomial. This example introduces some interesting aspects

of the inverse problems: sometimes the forward and the inverse problem can be

changed. The inverse problem exampled here is a polynomial regression, which in

other contexts can be seen as the forward problem. This example has a very simple

A

inverse solution  p(x) =  c

 n

 k=1 (x −  xk ). However this is not the case for the

majority of inverse problems. 

One of the best ways to understand the nature of the inverse problem is attributed

to the Oleg Alifanov:  The solution of an inverse problem consists to determine

 unknown causes from the observed effects. So, the forward problem can be

understood as the evaluation of the effects considering the causes. The mathematical equations describing the forward model have the role of the evaluation. The  causes will be a set of parameters or functions containing material properties of the system (parameters from the constitutive equations), source or sink terms, the initial and/or boundary conditions. In the case of ambiguity, the forward problem will be the one

which was studied at first. 

Hadamard had studied differential equations, and he has defined three conditions

to characterize a  well-posed problem: (1) existence of the solution, (2) the solution
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must be unique, (3) solution continuously depends on the input data [Ha52]. 

Inverse problems are generally ill-posed, because one cannot guarantee existence, 

uniqueness, and/or continuous dependence of the data. 

Some techniques have been developed to deal with these badly posed problems. 

The truncated singular value decomposition (TSVD) is a technique to deal with

such problem, where the smaller singular values are dropped. But, the TSVD is

appropriate to linear problems. In addition, for large system, TSVD can be very

expansive. Tikhonov has provided an alternative formulation with the regularization

approach [Ti77]. The regularized inverse solution is obtained by minimizing the functional:

arg min



 u∈ U

 A(u) −  f δ 2 +  αΩ(u)

(26.6)

where  U  is the normed space of the possible solutions,  A  is a linear or nonlinear mapping from the normed space  U  to the normed space  F ,  f δ  is the observed data with  δ  level of noise,  α  is the regularization parameter, and  Ω  is the regularization operator. If the observations have second statistical moment defined, the parameter

 α  can be determined by the Morozov’s discrepancy criterion [Mo84], finding the root of the following relation:

 A(u) −  f δ ≈  Nσ 2

(26.7)

where  N  is the number of parameters to be estimated, and  σ  2 is the uncertainty in the measurements. The generalized Morosov’s discrepancy approach can be applied

[ShEtAl04] if the statistics for the measurements has not its moments defined. 

The forward problem can be given by a partial differential equation with initial

and boundary conditions. Our inverse problem is to identify an unknown initial

condition. 

 26.3.1

 Regularization

There are different regularization operators. A general expression for the Tikhonov

regularization is given by [Ti77]

 P



 Ω(u) =

 μk u(k) 2

(26.8)

 k=0

where  u(k)  denote the  k-th derivative (or difference) and  μk >  0. Generally, it is not used combinations of several terms with derivative of different orders, instead just one. In this case, the expression becomes

 Ω(u) =  u(k)

(26.9)
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and the technique is called Tikhonov regularization of order  k. The zero order regularization looks for a function  u ≈ 0, implying in a reduction of oscillations in the inverse solution  u. In the case of regularization of order 1, token  u( 1 ) ≈ 0, so  u  is approximately constant. Basically, the regularization acts in the amplitude of u, and the regularization parameter  α  has an important rule to compute the inverse solution. If the parameter  α → 0 spurious oscillations will be present in the inverse solution, and if  α → ∞ the solution  u  goes to zero. 

 26.3.2

 Optimization

There are many methods to solve optimization problems presented in the literature. 

They can be split into two major groups: deterministic methods and stochastic

methods. Examples of deterministic method are gradient descent, Newton method, 

quasi-Newton, conjugate gradient, and many others. Some stochastic methods are

simulated annealing, genetic algorithms, ant colony optimization, swarm particle

optimization, and others. 

Some authors have proposed hybrid methods, combining the strategy of global

search of the stochastic methods with the local search of the deterministic methods. 

That is the adopted strategy here, applying a genetic algorithm with the linear

Newton-CG method. 

Genetic Algorithm

A genetic algorithm (GA) is an optimization method inspired by the process of

natural selection, belonging to the class of evolutionary algorithms [BaEtal00]. This metaheuristic is conceived using the modern version of evolution theory. In the

context of optimization, the objective function evaluates the fitness of a population. 

The population individual is a candidate solution for the problem, and belongs

to a set of possible solutions. Using the elitism procedure, individuals with the

best fitness will be able to generate the new individuals. The new generation has

distinctions introduced by mutations. 

In the classical version of the algorithm, there are three fundamental operators:

selection, crossover, and mutation. The Python package DEAP was used, based

on evolutionary computation framework for rapid prototyping [FoEtal12]. This framework has some basic elements, a toolbox, where the operators act on the

individuals to be selected: population, algorithms, and operators. 

The algorithm eaSimple— Algorithm 1—was adopted, where population is a list of individuals. The toolbox contains the evolution operators cxpb, the probability of crossover, mutpb, the probability of mutation, and varAnd [FoEtal12], the smaller part of the algorithm. The varAnd works firstly duplicating the parental population, applying the probability of crossover selecting two individuals, and two offsprings

generated will take the place of the parents. Finally, a mutation operator is applied to every individual with a probability. New individuals can be generated by only

crossover, only mutation, and by crossover and mutation. 
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Algorithm 1 eaSimple

1: evaluate(population)

4 Calculate the fitness of every individual of the population

2: for g in number of generations do

3:

population ← select(population)

4:

offspring ← varAnd(population, toolbox, cxpb, mutpb)

5:

evaluate(offspring)

6:

population ← offspring

The Tournament selection was employed, selecting the best individual in a

random list in the population; mutation was performed by a Gaussian random

choice; and a Blend crossover, which makes a linear combination of the parents, 

using a random number in the interval [0 ,  1]. 

Linear Newton Conjugate Gradient (CG) Method

The traditional Newton method has the iteration procedure given by

 xk+1 =  xk + [∇2 fk]−1∇ fk

(26.10)

where  fk =  f (xk). Computationally, the inverse of the Hessian matrix [∇2 f (xk)]−1

is not explicitly calculated, instead the linear system is solved:

[∇2 fk]  pk = −∇ fk

(26.11)

where  pk ≡  xk+1 − xk  is the basic Newton’s method step. Most rules for terminating the iterative solver for (26.10) are based on the residual, given by [CoBo80] (see Chapter 4.6):

 rk = [∇2 fk]  pk + ∇ fk , 

(26.12)

where  pk  is the inexact Newton step. The idea of Linear Newton-CG method is to solve Eq. (26.11) using the conjugate gradient method [NoWr06] to find  pk, then the conjugate gradient method stops when

 rk ≤  ηk ∇ fk

(26.13)

where the sequence { ηk} k=1 ,  2 ,... , with 0  < ηk <  1 ∀ k, is called the forcing sequence. 

The choice of  ηk  changes the convergence of the method. There exists two theorems implying the local convergence [NoWr06]:

Theorem 1  Suppose that ∇2 f (x) exists and is continuous in a neighborhood of a minimizer x∗ , with ∇2 f (x∗ ) is positive definite. Consider the iteration xk+1 =

 xk +  pk where pk satisfies (26.13) , and assume that ηk ≤  η for some constant η ∈ [0 ,  1 ). Then, if the start point x 0  is sufficiently near x∗ , the sequence { xk}

 converges to x∗  and satisfies

∇2 f (x∗ )(xk+1 −  x∗ ) ≤ ˆ η∇2 f (x∗ )(xk −  x∗ ) , (26.14)

 for some constant  ˆ η with η <  ˆ η <  1 . 
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Algorithm 2 Linear search Newton-CG

1: Given initial point  x 0

2: for k = 0, 1, 2, . . . do

√

3:

Define tolerance  εk = min ( 0 .  5 , ∇ fk ) ∇ fk 4:

 z 0 ← 0

5:

 r 0 ← ∇ fk

6:

 d 0 ← − r 0

7:

for j=0, 1, 2, . . . do

8:

if  (dj , Bkdj ) ≤ 0 then

9:

return  pk = −∇ fk

10:

else

11:

return  pk = − zj

12:

 αj =  rj  2 /(d,Bkdj )

13:

 zj+1 =  zj +  αj dj

14:

 rj+1 =  rj +  αj Bkdj

15:

if  rj + 1  < εk then

16:

return  pk =  zj+1

17:

 βj+1 =  rj+12 / rj  2

18:

 dj+1 = − rj+1 +  βj d

1

 j

19:

 xk+1 =  xk +  αkpk

Theorem 2  Suppose that the conditions of the Theorem 1  hold, and assume that the iterates { xk}  generated by the inexact Newton method converge to x∗ . Then the rate of convergence is superlinear if ηk → 0 . If addition, ∇2 f (x) is Lipschitz continuous for x near x∗  and if ηk =  O(∇ fk ), then the convergence is quadratic. 

√

So the choice min{0 .  5 , ∇ fk} [NoWr06] gives a superlinear convergence. 

Some variables are defined to the algorithm description. In the conjugate gradient

iteration,  dj  will represent the search directions,  zj  will be the variable that in the conjugate gradient loop will converge to  pk, the solution of equation (26.10), which is the  k-th Newton step in the outside loop, and the  (a, b)  denotes the intern product, 

√

which also induces the norm of the space as  a =

 (a, a). The iteration follows up

to reach a small value  ε. The algorithm is applied to solve the linear system (26.11). 

There are two stop conditions for Algorithm 2: for the inner loop and for the conjugate gradient step. First  αj =  rj  2 /(dj , Bk dj )—with:  Bk ≡ ∇2 fk, if the Hessian is not positive definite, where the conjugate gradient method cannot

be applied. However the return condition implemented will yet generate descent

direction, and the whole algorithm works. Second,  rj+1  < εk, the standard stopping condition for conjugate gradient method. The algorithm was implemented

with the Python language, using the scipy package, module  Optimize, where the objective function, including the forward model and regularization operator, is

called as a function to be minimized. 
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26.4

Identifying Black Hole Initial Distribution

As already mentioned, the inverse problem is expressed as an optimization problem. 

The objective function to be minimizing is given by—see also (26.6):

 N







 J (nbh) =

 A (nbh)j −  f δ 2 +

 j

2

 α  Ω( 1 )(nbh)j  22

(26.15)

 j =1

where  N  is the number of observations,  · 2 is the  L 2 norm,  f δ  represents the observation with  δ  level of noise, and the first order Tikhonov regularization was employed—see above. The parameter  α  was determined by numerical experimentation. 

The forward problem is solved by central finite difference, where the time

variable is replaced by the redshift, denoted by  z [Ma96]. The discretization parameters for the forward model were  Δm = 0 .  1,  Δz = −0 .  1, with the z 0 = 20 (initial time). The discretization parameters were selected to represent the observations ( Δm) and numerical stability ( Δz). The numerical values for the free parameters in Eq. (26.4) are given in Table 26.1. 

The inverse methodology was evaluated with synthetic observations:





Exp

 f δ ≡  n

= 1 +  σ 2  μ n Mod

(26.16)

 bh

 bh

being  n Mod the result obtained by integration of the forward model from  z =  z bh

0 up

to  z = 0, the level of the noise is denoted by  σ  2, and  μ  is a random number with Gaussian distribution with zero mean. 

Some numerical experiments were carried out, with noiseless data, and obser-

vations with 10% of noise. For the noise data, the regularization parameter  α  was 70 .  0. The genetic algorithm was executed with a population of 1000 elements and 200 generations. Figure 26.1 shows inverse solution (blue curve) and the true answer (green curve), using only GA for solving the optimization problem (Fig. 26.1a), and using the hybrid method (GA + quasi-Newton)—see Fig. 26.1b. 

The inversion with noisy data is shown in Fig. 26.2. Clearly, the GA alone was not able to find an acceptable solution—Fig. 26.2a (blue curve). However, applying the hybrid optimizer, combining the GA metaheuristic and quasi-Newton

scheme, a good inverse backward distribution to the ancient Black Hole seeds can

be computed—blue curve in Fig. 26.2b. 

Table 26.1 Numerical

Parameter

Value

values for free parameters in

 L∗

Eq. (26.4)

 m

1 .  0

 m∗

2 .  90 × 1011

 bh

 α∗

2 .  71 × 10−1

 η

0 .  5

 τ∗

4 .  81 × 109

26

Towards the Super-Massive Black Holes Seeds

341

(a)

(b)

Fig. 26.1 Black Hole initial distribution (noiseless observation): (a) only GA, (b) GA + quasi-Newton

(a)

(b)

Fig. 26.2 Black Hole initial distribution (noisy observation): (a) only GA, (b) GA + quasi-Newton

26.5

Final Remarks

A procedure to identify the distribution for a large redshift to the super-massive

black hole seeds was presented and tested with synthetic observation. A perfect

inversion was obtained with noiseless data. However, the GA metaheuristic alone

was not able to calculate the inversion with noisy observation. Only the hybrid

optimization approach can compute a good inverse solution. 

The inverse problem worked here is a hard one. Other inverse approaches can be

employed to identify the Black Hole initial distribution [ChEtAl03], including the use of other regularization operators, such as higher order Tikhonov regularization

[Ti77] and entropic regularization [CaEtAl97, RaEtAl99]. 
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Chapter 27

Decomposition of Solutions of the Wave

Equation into Poincaré Wavelets

Maria V. Perel and Evgeny A. Gorodnitskiy

27.1

Introduction

Derivation of formulas that decompose solutions of the wave equation in terms of

local ones with known properties is justified by its applications. Fourier analysis

yields the decomposition of solutions into plane waves if the medium is homoge-

neous. If the medium is nonhomogeneous, asymptotic formulas are known [Po07]

for decomposition of solutions into Gaussian beams, which are particular solutions

that are local in the sense of Gauss near rays. These formulas are valid in a medium with a smooth inhomogeneity, and are applied in problems of seismics [PoEtAl10]

or various problems of wave propagation and diffraction, see [LeHe17], [ShEtAl04]

and the references therein. An exact decomposition of solutions in the homogeneous

medium in terms of very special ones, which decrease in a power law, was given

in [Ka94] by the techniques from the continuous wavelet analysis (CWA). After the obtaining of a particle-like exact solution in a homogeneous medium [KiPe99], 

[KiPe00], the question arose whether any solution can be decomposed into such solutions. Decompositions in terms of these particle-like solutions, called Gaussian wave packets, were found by means of techniques from CWA, see [AnEtAl94], in

[PeSi03], [PeSi06], [PeSi07], [PeSi09] and [PeEtAl11]. A particle-like solution is just an example of elementary local solution. It turned out that such formulas can

be used for solutions of a wider class. The CWA enables us to decompose a given

function in terms of wavelets, which are obtained from a single function called a

mother wavelet by means of some group of transformations. In the papers mentioned

above, the similarity group was used. In [Pe09], [PeGo12], [GoPe11], we found and studied decompositions of solutions constructed by the affine Poincaré CWA; that
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is, by a CWA based on the affine Poincaré group. This chapter contains a brief

review of the main results of [Pe09], [PeGo12], [GoPe11], [GoPe17], and of papers concerning decompositions in an inhomogeneous medium and their applications

[GoEtAl16], where asymptotic elementary solutions named quasiphotons [BaUl81], 

[Ka84], [Ba07] were applied. 

27.2

Statement of the Problem

Below, we show an integral representation of solutions of the boundary value

problem for the wave equation in the half plane

 Δu(t, x, z) − 1  utt (t, x, z) = 0 , 

 c 2

(27.1)

 u(x, z, t ) | z=0 =  f (t, x). 

The solution of this problem is not unique. An additional condition similar to

causality will be given later. 

A specific feature of the problem is the multiscale structure of the boundary

data  f (t, x). An example of boundary data for problems of seismics is shown in Fig. 27.1. The lighter the color, the larger the value of the function. 

Our aim is to give an integral representation of the solution that is convenient

for boundary data processing. The mathematical tool for obtaining the necessary

formulas is the affine Poincaré continuous wavelet analysis (CWA). The outline

of the chapter is as follows. We decompose the boundary data into a specially

chosen affine Poincaré wavelets. Each wavelet is the boundary datum for some local

solution. The reconstruction formula for wavelets yields the integral representation of solutions in terms of elementary local solutions with known properties. 

Fig. 27.1 Marmousi model [Ver94] seismograms as boundary value function  f (t, x).  See details in [GoEtAl16]
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27.3

Affine Poincaré CWA

We list here the results from the affine Poincaré CWA, see [AnEtAl94], which constitute the basis of the constructions of the present paper. 

First, we determine the space of functions, which will be decomposed in affine

Poincaré wavelets. The space L2 ( R2 )  can be decomposed as a direct sum of four subspaces  Dj  as follows:

F

F

F

L2 ( R2 ) =  D 1

 D 2

 D 3

 D 4 . 

(27.2)

This means that any function  f (t, x) ∈ L2 ( R2 )  can be expanded as a sum: 4



 f (t, x) =

 fj (t, x), 

(27.3)

 j =1

where  fj (t, x) ∈  Dj  and is defined by means of the support of its Fourier transform f

ˆ

 j (t , x) =

 dω dkx fj (ω, kx)  exp  (i (− ωt +  kxx)). 

 Dj

The domain of integration is determined by the inequalities

 D 1 : | ω|  > c| kx| , 

 ω >  0 , 

 D 2 : | ω|  > c| kx| , 

 ω <  0 , 

(27.4)

 D 3 : | ω|  < c| kx| , 

 kx >  0 , 

 D 4 : | ω|  < c| kx| , 

 kx <  0 . 

(27.5)

The affine Poincaré CWA is developed for each of the spaces  Dj ,  j = 1 ,  2 ,  3 ,  4 .  We give here results for  D 1 .  For other spaces all the formulas are obtained analogously. 

Secondly, we determine a pair of mother wavelets. Let us choose two functions

 ζ, ψ ∈  D 1, which fulfill an additional condition:



ˆ ζ(ω, kx)  ˆ ψ(ω, kx)

0  < Cζψ ≡

 dkxdω

 < ∞

(27.6)

 ω 2 /c 2 −  k 2 x

 D 1

named the admissibility condition. Such functions form a pair of mother wavelets. 

These functions can coincide if the condition (27.6) is met. 

Thirdly, we select a group of transformation, with which families of wavelets

are constructed. We apply the affine Poincaré group. It comprises shifts by  xs, ts : x →  x +  xs, t →  t +  ts, scaling by a scale  a :  x →  ax,  z →  az, t →  at  and the
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Lorentz transform with the rapidity  φ :









 ct

→

 ct

cosh  φ  sinh  φ

 Λφ

 , 

 Λφ =

 . 

(27.7)

 x

 x

sinh  φ  cosh  φ

Families of wavelets obtained from  ζ (t, x)  and  ψ(t, x)  read





 ct  

 ct

 ζφa(t, x) = 1  ζ(t  , x  ), 

 ψφa(t, x) = 1  ψ(t  , x  ), 

= 1  Λ− φ

 . 

 a

 a

 x 

 a

 x

The affine Poincaré wavelet transform is determined as an integral



 F (φ, a, ts, xs) =

 dt dxf (t, x)ζφa(t −  ts, x −  xs). 

(27.8)

R2

If the affine Poincaré wavelet transform is known, the function  f (t, x)  can be reconstructed by the formula



∞





 da

 f (t, x) = 1

 dφ

 dtsdxsF (φ, a, ts, xs)ψφa(t −  ts, x −  xs), 

 Cζψ

 a 3

R

0

R2

(27.9)

see [AnEtAl94]. 

27.4

Wavelet Analysis for Solutions in Homogeneous

Medium

We present here an integral representation of solutions of the problem (27.1) in terms of elementary solutions. At the beginning we give an additional condition, which is

analogous to the radiation condition. We define the space, to which the solution

should belong. Let  f (t, x) ∈  D 1, i.e., supp ˆ

 f (ω, kx) ⊂  D 1,  D 1 = { (ω, kx) :  ω > 

 c| kx|}. 

Define spaces of solutions  H + and  H − by their Fourier expansions as follows: 1

1

 u+ ∈  H +,  u− ∈  H − if

1

1



 u+ (t, x, z) =

1

 dωdkx ei(− ωt+ kxx+ kzz)  ˆ

 f (ω, kx), 

 ( 2 π ) 2

 D 1



 u− (t, x, z) =

1

 dωdkx ei(− ωt+ kxx− kzz)  ˆ

 f (ω, kx), 

 ( 2 π ) 2

 D 1 ; 

 kz =

 ω 2 /c 2 −  k 2 x. 
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Functions  u± (t, x, z)  satisfy the wave equation in the sense of distributions, see details in [GoPe17]. The Fourier expansion of solutions from the space  H +

1

contains the plane waves with a positive phase speed, i.e., such plane waves

propagate away from the boundary  z = 0. The space  H − consists of the plane 1

waves moving from the infinity to the boundary  z = 0. 

If  f (t, x) ∈  D 1, there is a unique solution, which satisfies (27.1) and belongs to the class  H + . 

1

The second step is to define the mother solution and a family of solutions. Let

choose a solution  Ψ (t, x, z) ∈  H +. It is a mother solution. Then  ψ(t, x) =

1

 Ψ (t, x,  0 ) ∈  D 1 and can be regarded as a mother wavelet. 

A family of solutions parameterized by the rapidity  φ  and the scale  a  is constructed as follows:











 t    x   z

 ct  

 c(t −  ts)

 Ψφa(t −  ts, x −  xs, z) = 1  Ψ

 , 

 , 

 , 

=  Λ− φ

 . 

 a

 a

 a

 a

 x 

 x −  xs

(27.10)

It is important that such transformations as shifts, scaling in all the coordinates and time, and the Lorentz transformations map solutions to another ones. 

The traces of these solutions on the boundary can be regarded as wavelets from

the family obtained by transformations of the affine Poincaré group applied to the

mother wavelet, i.e., 

 Ψφa(t −  ts, x −  xs,  0 ) =  ψφa(t −  ts, x −  xs). 

(27.11)

We assume that the continuous affine Poincaré transform of the function  f (t, x) is calculated by means of (27.8) with a mother wavelet  ζ (t, x). The mother wavelets ψ(t, x)  and  ζ (t, x)  should satisfy the admissibility condition (27.6). 

The reconstruction formula for the boundary data  f (t, x)  is given by (27.9). 

The solution  u(t, x, z) ∈  H + can be decomposed in terms of elementary ones 1

 Ψ (t, x, x) ∈  H + as follows:

1



∞





 da

 u(t, x, z) = 1

 dφ

 dtsdxsF (φ, a, ts, xs)Ψφa(t −  ts, x −  xs, z). 

 Cζψ

 a 3

R

0

R2

(27.12)

The condition (27.11) and the reconstruction formula (27.9) yield the fulfillment of the boundary condition (27.1). The formula (27.12) is the main result for decomposition of solutions in homogeneous medium. This formula is an integral

superposition of solutions. Therefore we expect that an integral is a solution also. 

To justify the formula (27.12), we proved the following theorem in [GoPe17]. 
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Theorem 1  Let u(t, x, z) ∈  H + . 

1

 Let wavelets ζ, ψ ∈  D 1  be a pair of admissibility wavelets, and Ψ (t, x, z) ∈  H +

1

 is the solution corresponding to ψ(t, x) ∈  D 1 . 

 Then

 1. ˜ u(t, x, z) ∈  H + , where

1

 A 2



 Φ 2





˜

 da

 u(t, x, z) = 1

 dφ

 dtsdxsF (φ, a, ts, xs)Ψφa(t −  ts, x, xs, z), 

 Cψζ

 a 3

 A 1

 Φ 1

 where  0  < A 1  < A 2  < ∞ , −∞  < Φ 1  < Φ 2  < ∞ ,  0  < c 2 t 2 +

 s

 x 2 s < ρ < ∞ , 

 2. 

lim

 u(t, x, z) − ˜ u(t, x, z) = 0 . 

 A 1→0 , A 2→∞

 Φ 1→−∞ , Φ 2→∞

 ρ→∞

We give now an example of an exact solution of the wave equation, which may be

taken as a mother solution. It is a solution named the Gaussian Wave Packet, which

was found in [KiPe99], [KiPe00] and studied from the point of view of continuous wavelet analysis in [PeSi07]. It is determined by an explicit formula

" 2 exp (− ps)

< 

 Ψ (t, x, z) =

√

 , 

 s =

1 −  iθ/γ , 

 π

 z +  ct −  iε

 θ =  z −  ct +

 x 2

 , 

 z +  ct −  iε

where  ε,  γ , and  p  are positive parameters, and satisfies the wave equation Ψtt −  c 2 (Ψxx +  Ψzz) = 0 . 

(27.13)

It is shown in [KiPe00] that for large  p  and moderate  t  it has a maximum in the point running with a speed  c  along a straight line. Near the maximum it has a Gaussian asymptotics



! 

 p

 Ψ (t, x, z) ∼ exp  i

 (z −  ct) −  (z −  ct) 2 −  x 2  , 

(27.14)

2 γ

2 σ  2

 z

2 σ  2

 x

 σ  2 = 4 γ  2

=  γ ε

 z

 , σ  2

 . 

 p

 x

2 p

If  z = 0, it is the Morlet wavelet in the 2D space. 
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The Fourier transform of this solution is found in [PeSi07]. The solution belongs to the  H + class. 

1

27.5

Decomposition of Solutions for an Inhomogeneous

Medium

We suggest an integral formula for the solution decomposition in an inhomogeneous

medium



∞





 da

 u(t, x, z) = 1

 dφ

 dtsdxsF (φ, a, ts, xs)Ψφa(t −  ts, x, xs, z). 

 Cζψ

 a 3

R

0

R2

(27.15)

Decomposition formulas in cases of homogeneous and inhomogeneous media differ

in the construction of a family of solutions. For an inhomogeneous medium, 

these solutions are determined as solutions of the wave equation (27.13) with the boundary condition

 Ψφa(t −  ts, x, xs,  0 ) =  ψφa(t −  ts, x −  xs). 

Such solution in the general case cannot be described by a formula like (27.10) and should be found numerically. A condition similar to radiation condition is not found here for a wide class of the mother solutions  Ψ (t, x, z). For particular case such as an asymptotic solution like (27.14), we can determine the direction of propagation of the maximum of the solution. This maximum should move away from the boundary

 z = 0. A strict statement of the problem for  Ψ  and the proof of convergence of fourfold integrals in (27.15) will be done in our further paper. 

The calculation of the fourfold integrals is a separate problem. We show in

[GoEtAl16] that these integrals can be effectively calculated in applied problem of seismics. The solution of the problem of the depth migration is reduced in particular to the problem (27.1), where  f (t, x)  is a seismograms, i.e., an acoustic field on the boundary of the Earth dependent on time  t  and the coordinate on the Earth  x for some sources, see details in [GoEtAl16]. The boundary data for the Marmousi model [Ver94] is shown in Fig. 27.1. 

The excitation coefficient  F (φ, a, ts, xs)  of elementary solutions can be a sparse function of  φ, a, ts, xs. Particularly, in case of the function  f (t, x)  shown in Fig. 27.1 most of the wavelet coefficients are smaller than the 5% of the maxima, see Fig. 27.2. In the figure the sparsity map is shown: the white color corresponds to the coefficients less then 5%. The sign at the top means the shift  xs  in meters, the numbers along vertical sides are time shift  ts  counts from 0 to 3 s, the numbers
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Fig. 27.2 Sparsity of the wavelet coefficients in case of the function  f (t, x)  shown in Fig. 27.1. 

The number nz is a number of points taken into account from more than 90000 points. See discussion in the text

along horizontal sides counts the rapidity  φ.  The rapidity  φ  rules the direction  θ  of the propagation of the solution via the relation

tan  θ = sinh  φ, 

see [GoEtAl16]. 

27.6

Conclusions

We have obtained an integral representation of solutions of the wave equation in

the half plane based on the wavelet decomposition of the boundary data. In a

homogeneous medium, we present and study accurately this representation. In an

inhomogeneous medium, we give a formal result, apply it to a problem of seismics

and show its effectiveness. The advantage is that the coefficients of elementary

solutions in obtained decomposition have a meaning of the wavelet transform of

the boundary data. The wavelet transform is often applied to data processing and

can be a sparse function. Therefore our results contain built-in filtering ability and selectivity for valuable, or the most interesting, portions of the boundary data. 
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Chapter 28

The Method of Fundamental Solutions

for Computing Interior Transmission

Eigenvalues of Inhomogeneous Media

Lukas Pieronek and Andreas Kleefeld

28.1

Introduction

The interior transmission eigenvalue problem (ITEP) arises in the study of inverse

scattering as a precursor to justify the feasibility of quantitative reconstruction

methods, see [CaHa12]. The corresponding eigenvalues (ITEs) are associated with certain critical wave numbers which allow for incident test waves with arbitrary

small scattering responses that would hardly be detected in experiments. One can

prove in a mathematically rigorous way, see [KiGr08], that this loss of information due to the scatterer’s practical invisibility indeed complicates its recovery process on the basis of sampling methods, for example. 

While it has been known for quite a long time that ITEs fortunately only

form an at most discrete set, their accurate computation for a given scatterer is

still rather challenging since the underlying ITEP is both non-elliptic and non-

self-adjoint. In this paper, we will present a relatively easy algorithm for the

efficient approximation of ITEs using a robust version of the method of fundamental

solutions (MFS). Having thus been positively tested for perfectly homogeneous and

possibly anisotropic scatterers so far, see [KlPi18a] and [KlPi18b], we will now analyze and reinvestigate the numerical merits of the method in the generalized

context of inhomogeneous media that decompose into several homogeneities stuck

in a surrounding bulk. For competitive alternative methods in this context, see the

solution of the direct problem in [GiPa13], for example. 
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28.2

The ITEP and the Modified MFS

Let  D ⊂ R2 be a bounded and simply connected domain with smooth boundary

representing the contour of some scatterer. According to our modeling assumptions, 

there exist an upper component number 1 ≤  Nc ∈ N and a disjoint decomposition Nc D

 Nc D

 i=1

 i

⊂  D ⊂  D =

 i=1

 i  of homogeneous composites such that the

 Di  are each open, connected and fulfill for  i 1 =  i 2 either  ∂Di ∩  ∂D

= ∅

1

 i 1

or  ∂Di ∩  ∂D  being a smooth and non-intersecting closed contour. Besides, we 1

 i 1

assume the existence of some bulk which will be emphasized by  D 1 and which

distinguishes from the other components through its surrounding property  ∂D ⊂

 ∂D 1 unlike  ∂D ∩  ∂Di = ∅ for 2 ≤  i ≤  Nc, cf. Fig. 28.1. As such,  D  may be considered as an inner pollution of the original material  D 1 by the components Di  for  i >  2. These different material parameters will be reflected via piecewise-constant functions on  D  with jumps only across  ∂Di  and encompass the index of refraction  n ∈  L∞ (D,  R >  0 ), as a local measure for the propagation speed of the penetrable wave under consideration, and the diffusivity tensor  A ∈  L∞ (D,  R2×2

 sym )

to reflect the material’s anisotropic structure, if necessary (otherwise set  A =  I , where  I  denotes the identity matrix in R2). Depending on whether  A =  I  on  D  or not, there are also mathematical constraints for  n  and the eigenvalues of  A  that we will specify later. When focusing on the analysis of each homogeneous component, 

we also write  fi :=  f| D  for any function  f  on  D. 

 i

In contrast to inverse problems, we assume all these material data to be known

a priori and want to compute ITEs on that basis in the following. An ITE is a wave

number  k >  0 for which the ITEP

div (A∇ w) +  k 2 nw = 0 in  D , 

 Δv +  k 2 v = 0 in  D , 

(28.1)

 w =  v  on  ∂D , 

 ∂ν w =  ∂

 A

 ν v

on  ∂D , 

Fig. 28.1 Exemplary

 G 4,1

scatterer  D  with bulk  D 1 that

contains three inner

 D

components  D

4

2 , D 3 , D 4. For

 D 1

demonstration purposes, 

 G 4,2

some admissible source

boundary  Γ 4 =  Γ 4 ,  1 ∪  Γ 4 ,  2

for  D 4 is added as dotted

contours in the component’s

 D 3

outside and inside, 

 D 2

respectively
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where  νA  denotes the (co-)normal derivative, can be solved appropriately in a non-trivial way. The penultimate condition refers to the regularity assumptions of

admissible eigenfunctions being  (v, w) ∈  L 2 (D)  with  (v −  w) ∈  H  2 (D)  for the 0

isotropic case and  (v, w) ∈  H  1 (D)  otherwise. The origin for such a differentiation is that the usual Fredholm setting approved for eigenvalue investigations can at most be guaranteed then. 

Having settled a proper abstract framework for such a non-linear eigenvalue

problem, approximations of ITEs can be obtained as a by-product of finite dimen-

sional approximation of the corresponding eigenfunctions. The standard MFS

achieves this for homogeneous media by looking for superposed trial functions

that are translations of certain fundamental solutions from the governing PDE. This

ansatz is somewhat converse to finite element methods as each solution candidate

automatically fulfills the interior conditions of (28.1) exactly, but not necessarily the prescribed boundary conditions along  ∂D, cf. [GiPa13]. However, since we actually work with scatterers that are piecewise-homogeneous, we want to apply this method

at least locally for each composite and properly supported trial functions. This

then requires additional control of function transitions across adjacent components

 Dj  and  Di  according to our globally imposed regularity assumptions of exact eigenfunctions. Fortunately, these extra costs only affect the approximation of  w since  v  always obeys a pure Helmholtz equation with constant wave number so that its trial functions can still be defined throughout  D. These observations finally make us consider the following MFS-based approximation spaces of order  m. For v, we set

 Vm := span{ φv

}

1  , . . . , φv

 m , 

where

 φv

|

 r (x) := i  H ( 1 )(k| x −  sv ) , 

4 0

 r

 H ( 1 )  is the first Hankel function of order zero,  x ∈  D  is the actual argument whereas 0

{ sv, . . . , sv } are the so-called source points for  v  which have to lie on some closed 1

 m

exterior contour  Γ v  disjoint to  D. For  w, we need to take into account the refined treatment of the domain and define an artificial boundary for each composite in

its individual exterior. Since the  Di  are in general multiply-connected, each of the Ne(i)  enclaves  Ei,j  of R2\ D

 i

 i  is labeled by  ji , always starting with the unbounded

component by convention. Then we endow each of them with their own closed

contour  Γ w

 E

and wish to choose  Γ w

=  Γ v. We may thus drop the

 i,j

 i,j

 i

 i

1 ,j 1

superscripts  w  or  v  from now and abbreviate the union over  ji  for all assigned source contours  Γi,j  of  D

 i

 i  by  Γi . We can finally set up the approximation space

 Wm  as the span of







√







− 1



 φw



2

1

 i,j

 H ( 1 )

 nik

 x −  sw

 , 

 i ,r (x ) :=

i

1

0

 Ai

 i,ji ,r 

 Di

4 det  A  2 i
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where  sw

are now the source points for  w  on  Γ w  with 1 ≤  r ≤  m. Thus the i,ji ,r

 i,ji

dimension of  Wm  is actually a multiple of  m  depending on the number of composites N  and of their actual voids. 

The optimal MFS solution pair  (vm, wm) ∈  Vm ×  Wm  then tries to fulfill both the boundary conditions of the ITEP (28.1) and the transitional regularity criteria for global eigenfunctions best in the sense of a minimal collocation error. Therefore we select representative points { xi

∩  ∂D

1 ,i 2 ,  1 , . . . , xi 1 ,i 2 ,m} along the interface of  ∂Di 1

 i 2

where 0 ≤  i 1  < i 2 ≤  Nc  and  D 0 := R2\ D  is introduced for simplicity. We implicitly omit the definition of those  xi 1 ,i 2 , ∈  D  whose pair  (i 1 , i 2 )  would be associated with an empty intersection. The same convention will affect all the  x 0 ,i 2

with  i 2  >  1 due to the separating bulk. Again, the total number of collocation points is a multiple of  m, but this time depending on the cumulated number of boundaries of all the  Di. 

Instead of performing the collocation procedure now in a straightforward way

that would result in a numerically ill-conditioned problem, we follow the stabiliza-

tion improvement from Betcke and Trefethen, see [BeTr05], that also gives rise to call our corresponding MFS update the  modified MFS  henceforth. For that we pick m-independent auxiliary points { a

 Nc

1 , . . . , aN } from

 D

 a

 i=1

 i  which will later ensure

that our approximations of eigenfunctions are sufficiently large in the interior. Thus the utterly critical zero function will never be detected as a theoretically admissible (with respect to (28.1)), but practically undesirable solution candidate. 

Let us structure this amount of introduced data in matrix form to see more easily

how they emerge in the modified MFS collocation procedure. If  (i 1 , i 2 )  is a feasible pair such that  ∂Di ∩  ∂D

= ∅, we define  W

∈ C2 m× m  parametrized by

1

 i 2

 i 1 ,i 2 ,i,ji

1 ≤  i ≤  Nc  and 0 ≤  i 1  < i 2 ≤  Nc  for the varyingly supported trial functions of  Wm via

 (Wi

 )

1 ,i 2 ,i,ji ,r :=  φw

 i,ji ,r (xi 1 ,i 2 ,) , 

 (Wi

 )

1 ,i 2 ,i,ji m+ ,r :=  ∂ν φw

 i,ji ,r (xi 1 ,i 2 ,) , 

whereas for  Vm  it suffices to consider  V ∈ C2 m× m  given by (V ),r :=  φvr(x 0 ,  1 ,) , 

 (V )m+ ,r :=  ∂νφvr(x 0 ,  1 ,) . 

Here, 1 ≤  , r ≤  m  and  ν  is a unit normal vector along  ∂Di ∩  ∂D = ∅ pointing 1

 i 2

in the same direction for both components  Di  and  D . The evaluations of trial 1

 i 2

functions at interior points are summarized in an analogical fashion to matrices in

C Na× m  and read

 ( 

 Wi,j )

 i ,r :=  φw

 i,ji ,r (a)
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as well as

 (

 V ),r :=  φvr(a) , 

respectively. In the anisotropic case, 

 Wi,j  and 

 V  may even be extended to matrices

in C3 Na× m  by attaching corresponding partial derivative evaluations of  φw i,ji ,r

and  φvr, respectively, for being more consistent with the norms introduced in the abstract setting later. Through this matrix reformulation, the  m-independent indices  i 1 , i 2 , i, ji  for the different scattering composites are separated from the  m-

dependent point discretizations labeled by  , r. Since their matrices are implicitly parametrized by the wave number  k, we finally define the block-type system  T (k)  by

⎛

⎞

 V

 W

⎜

0 ,  1 ,  1 ,  1

 . . . 

 W 0 ,  1 ,  1 ,Ne( 1 )

0

 . . . . . . 

0

⎜

⎟

⎜ 0

 W 1 ,  2 ,  1 ,  1

 . . . 

 W 1 ,  2 ,  1 ,N

⎟

 e ( 1 )

 W 1 ,  2 ,  2 ,  1

 . . . . . . 

 W 1 ,  2 ,Nc,Ne(Nc)

⎜

⎟

 . 

 . 

 . 

 . 

 . 

⎜  . 

 . 

 . 

 . 

 . 

⎟

⎜  . 

 . 

 . 

 . 

 . 

⎟

⎟

 T (k) := ⎜

⎜  . 

⎟

 . 

 .. 

 .. 

 .. 

 .. 

 . 

⎜  . 

 . 

 . 

 . 

 . 

⎟

⎜

⎟

⎜

⎟

0  W

⎜

 N

⎟

 c −1 ,Nc ,  1 ,  1  . . . WNc −1 ,Nc ,  1 ,Ne ( 1 ) WNc −1 ,Nc ,  2 ,  1  . . . . . . WNc −1 ,Nc ,Nc ,Ne (Nc )

⎝

⎟

 V

0

 . . . 

 . . . 

 . . . 

 . . . . . . 

0

⎠

0



 W



1 ,  1

 . . . 



 W 1 ,N

 W

 e ( 1 )

2 ,  1

 . . . . . . 



 WNc,Ne(Nc)

Recall that the majority of the  W  matrices are zero since not all components  Di  and 1

 Di  will be adjacent, i.e.  W

= 0 ∈ C m× m  if  i ∈ { i

2

 i 1 ,i 2 ,i,ji

1 , i 2}. This might motivate

to treat  T  in parallel from a programming perspective, especially because the last technical thing left to do is performing a  QR  factorization of  T (k) =  QT (k)RT (k). 

Extracting its unitary part, we may write





 Q(k)

 QT (k) =



 . 

 Q(k)

Similar as above, 

 Q(k)  corresponds to the lower 2 Na  scalar rows whereas  Q(k)

comprises the remaining upper part of  QT (k). Such a decomposition of  QT (k)  and thus of  T (k)  will implicitly help us later to distinguish numerically between real and spurious eigenvalue approximations in an effective way. 

Now we have everything together to formulate our approximate ITEP based on

the modified MFS in a very compact form: Find those  k  for which  k →  Q(k)  is almost singular. For this purpose, the smallest singular value  σ 1 (k)  of  Q(k)  will serve as a convenient measure for the degeneracy of  Q(k)  whenever its magnitude is close to zero. Corresponding wave numbers will be called approximate ITEs

and will be denoted by  km  to relate its dimensional origin to the underlying eigenfunction approximation. In the next section we will discuss our derived

approach from a more abstract perspective and show its feasibility in practice. 
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28.3

Approximation Analysis

The major difference for the application of the modified MFS between purely and

piecewise homogeneous media is apparently the additional treatment of interior

composite transitions for  w. So far we take them numerically into account by pointwise collocation, but it seems more natural to formulate precise assumptions

with respect to their original Sobolev spaces. Therefore we focus on  Nc >  1 in the sequel and assume first that  A =  I , i.e. the scatterer is entirely isotropic. 

Then the corresponding ITEP eigenfunctions are only in  L 2 (D), in particular the w-dependent PDE has to be fulfilled in a distributional sense and reads



 (Δψ +  k 2 nψ)w  d x = 0

 D

for any  ψ ∈  C∞

 c (D). If we now approximate  w  by some proper  wm ∈  Wm, the integral above does not vanish any more for all test functions in general. However, 



choosing  ψ ∈  C∞

 c (D\

 D

 i= i

 i ) ⊂  C∞

1 ,i 2

 c (D), where 1 ≤  i 1

 < i 2 ≤  Nc

are some adjacent component indices, the following reformulation shows that the

resulting deviations are completely due to certain integral misfits over  ∂Di ∩  ∂D . 

1

 i 2

This is because the trial functions in  Wm, although they solve the corresponding interior ITEP condition pointwise almost everywhere, are a priori discontinuous

along composite transitions:



 (Δψ +  k 2 nψ)wm  d x

 D





=

 (Δψ +  k 2 ni ψ)w

d x +

 (Δψ +  k 2 n ψ)w

d x

1

 m,i 1

 i 2

 m,i 2

 Di

 D

1

 i 2



=

 ∂νψ(wm,i −  w

 ) −  ψ∂

−  w

 )  d s

1

 m,i 2

 ν (wm,i 1

 m,i 2

 ∂Di ∩ ∂D

1

 i 2





+

 (Δwm,i +  k 2 n w

 ) ψ  d x +

 (Δw

+  k 2 n w

 ) ψ  d x

1

 i 1

 m,i 1

 m,i 2

 i 2

 m,i 2

 D













 i

 D

1

 i

=

2

0

=0



=

 ∂νψ(wm,i −  w

 ) −  ψ∂

−  w

 )  d s . 

(28.2)

1

 m,i 2

 ν (wm,i 1

 m,i 2

 ∂Di ∩ ∂D

1

 i 2

Conversely, we hope to recover some exact eigenfunction  w  with  w, Δw ∈  L 2 (D) in the limit  m → ∞, so we expect  (wm,i −  w

 )  to be evanescent at least with

1

 m,i 2

respect to  H − 12  (∂Di ∩  ∂D )  and likewise  ∂

−  w

 )  should be controlled

1

 i 2

 ν (wm,i 1

 m,i 2

as  H − 32  (∂Di ∩  ∂D )-traces. However, for technical reasons that will become clear 1

 i 2

3

later, we assume the convergence to hold more strongly in  H  2  (∂Di ∩  ∂D )  and 1

 i 2

1

 H  2  (∂Di ∩  ∂D ), respectively. In the anisotropic case, however, we can stay with 1

 i 2

1

the natural approximation assumptions  (wm,i −  w

 ) → 0 in  H  2  (∂D)  and

1

 m,i 2

 (∂ν

 w

−  ∂

 w

 ) → 0 in  H − 12  (∂D)  that originate from  w ∈  H  1 (D). 

 A

 m,i

 ν

 m,i

 i

1

 A

2

1

 i 2
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In order to finally adapt the prescribed boundary conditions on  ∂D  of the

eigenfunctions from (28.1) in our approximation procedure, the explicit regularity conditions on  (v −  w)  need to be taken into account. Accordingly, the isotropic case 3

asserts  (v −  w) ∈  H  2 (D)  which suggests imposing  (v 2  (∂ D)

0

 m −  wm) → 0 in  H

1

as well as  ∂ν(vm −  wm) → 0 in  H  2  (∂D)  by continuity of the corresponding trace 1

operators. In the anisotropic case we similarly arrive at  (vm −  wm) → 0 in  H  2  (∂D) and  (∂νvm −  ∂ν w

 A

 m) → 0 in  H − 12  (∂ D). 

Altogether, these preliminaries are to show that the analysis of the ITEP based

on the modified MFS (embedded into the abstract setting) is conceptually the

same for undiluted and piecewise homogeneous media. Therefore we expect most

of the results from [KlPi18a] and [KlPi18b] to be extendable to our specially inhomogeneous setting such as the following theorem. It can be considered as the

justification for the applicability of the modified MFS to ITE approximations. 

Theorem 1  Consider a sequence { (vm, wm, km)} m∈N ⊂  Vm ×  Wm × R >  0  for either A =  I with restriction n >  1  or n <  1  throughout D ,  0  < A < I or I < A (where the matrix order is understood with respect to positive definiteness) which fulfills the following properties, respectively:

 In the isotropic case, we assume

 1. eigenvalue convergence: km →  k = 0  , 





 2. uniform interior bounds: C−1  < 

 vm 2

+  w

 < C for some

 L 2 (D)

 m 2

 L 2 (D)

 C >  1  and for all m large enough, 





 3. vanishing boundary data:  vm −  wm 3

+  ∂ν(vm −  wm) 1

→ 0

 H  2  (∂D)

 H  2  (∂D)





 and  wm,i −  w



+  ∂

−  w

 )

→ 0

1

 m,i 2

3

 ν (wm,i 1

 m,i 2

1

 H  2  (∂Di ∩ ∂D )

 H  2  (∂D ∩ ∂D )

1

 i 2

 i 1

 i 2

 for adjacent components Di , D ⊂  D, 

1

 i 2

 whereas in the anisotropic case, the corresponding assumptions read

 1  . eigenvalue convergence: km →  k = 0  , 





 2  . uniform interior bounds: C−1  < 

 vm 2

+  w

 < C for some

 H  2 (D)

 m 2

 H  2 (D)

 C >  1  and for all m large enough, 





 3  . vanishing boundary data:  vm− wm 1

+ ∂νvm− ∂ν w

→ 0

 A

 m − 1

 H  2  (∂D)

 H

2  (∂D)

 and





 wm,i − w



+ ∂

 w

− ∂

 w



→ 0

1

 m,i 2

1

 νA

 m,i 1

 νA

 m,i 2

− 1

 H  2  (∂D

 i

 i

 i ∩ ∂D

 )

1

2

 H

2  (∂D ∩ ∂D )

1

 i 2

 i 1

 i 2

 for adjacent components Di , D ⊂  D. 

1

 i 2

 In either case, the limit k of the approximate eigenvalues km is an ITE. 

 Proof  Since our proof to be presented works structurally similar for the anisotropic case based on the corresponding techniques from the homogeneous scenario, see

[KlPi18b], but much easier due to more consistent control assumptions of  (vm, wm) throughout  D, see condition 3 , we only focus on the isotropic case in the following. 

360

L. Pieronek and A. Kleefeld

We aim to construct an eigenfunction candidate  (v, w)  and show that it fulfills the required properties for  k  being a real ITE. We take the weak  L 2 (D)-limit of our approximate pairs  (vm, wm)  which exists (actually only for a subsequence which we will, however, not explicitly restate in the sequel) by weak compactness and the

uniform bounds provided in assumption 2. The fact that  v  is then a distributional solution of the Helmholtz equation on  D  is quite trivial because it can be shown exactly as in the homogeneous case. The corresponding result for  w  relies on an additional treatment of (28.2) which is then also straightforward by condition 3. So far, we therefore know that  (v, w) ∈  L 2 (D) ×  L 2 (D)  fulfills the interior conditions of (28.1) and we want to prove next that  u :=  (v −  w) ∈  H  2 (D), i.e.  u  has zero 0

boundary data and is twice weakly differentiable in the interior (the latter criterion would be redundant for the anisotropic demonstration). 

We modify the piecewise smooth but generally discontinuous difference func-

tions  um :=  (vm −  wm) ∈  L 2 (D)  to 

 um ∈  H  2 (D)  that will be uniformly bounded

with respect to  m. As potential jumps of  um  go back to those of  wm  across  ∂Di  for i >  1, we want to fill these discontinuity gaps by adding certain lifting functions θm,i ∈  H  2 (Di)  to  um. More precisely, we set for  i >  1

 Δ 2 θm,i = 0 in  Di , 

 θm,i =  (wm,i∗ −  wm,i) 1 ∂D

on  ∂D

 i ∩ ∂Ei,  1

 i , 

 ∂νθm,i =  ∂ν(wm,i∗ −  wm,i) 1 ∂D

on  ∂D

 i ∩ ∂Ei,  1

 i , 

where 1 ≤  i∗ ≤  Nc  is determined uniquely by  Di∗ ⊂  ∂Ei,  1 and  ∂Di ∩  ∂Di∗ = ∅. 

Then we extend  θm,i  by zero in  D\ Di. Standard a priori estimates ensure that our lifting functions can be bounded within their support  Di  by

 θm,i H 2 (Di)





≤  C  wm,i −  wm,i∗ 3

+  ∂ν(wm,i −  wm,i∗ ) 1

 H  2  (∂Di ∩ ∂Di∗  )

 H  2  (∂Di ∩ ∂Di∗  )

and globally they cumulate by definition to

 Nc





 um :=  um +

 θm,i ∈  H  2 (D) . 

 i=2

Therefore, 

 um  solves

 Nc



 Δ

 um = − km(vm −  nwm) +

 Δθm,i

in  Di , 

 i=2



 um =  vm −  wm

on  ∂Di , 

 ∂ν

 um =  ∂ν(vm −  wm)  on  ∂Di , 
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and is bounded by







 um

≤



+ 

+ 

 H  2 (D)

 C

 Δ

 um L 2 (D)

 vm −  wm 3

 ∂ν(vm −  wm) 1

 . 

 H  2  (∂D)

 H  2  (∂D)

In particular, the 

 um  converge both weakly in  H  2 (D)  and strongly in  L 2 (D). Since θm,i → 0, the strong  L 2 (D)-limit of  um  and 

 um  coincide which then implies that

 u ∈  H  2 (D). The fact that even  u ∈  H  2 (D)  finally follows by assumption 3 and 0

3

1

the continuity of the trace operators from  H  2 (D)  to  H  2  (∂D)  and to  H  2  (∂D), respectively. 

It remains to prove that  u = 0. We will contrarily assume that  u = 0 which would then imply  um → 0 in  L 2 (D)  according to our previous derivations. Expanding the  L 2 (D)-norm in its scalar product representation, we may conclude, including assumption 2







1

lim inf Re

 vmwm  d x = lim inf

 vm 2

+  wm 2

−  vm −  wm 2

 m→∞

 L 2 (D)

 L 2 (D)

 L 2 (D)

 D

 m→∞ 2





=

1

lim inf

 vm 2

+  wm 2

≥ 1  >  0  . 

 m→∞ 2

 L 2 (D)

 L 2 (D)

2 C

Determined by keeping positive signs above, we multiply the latter inequality either with  ( 1 −  ni)  or with  (ni − 1 ), assuming the latter without loss of generality. Since min1≤ i≤ N (n

 c

 i − 1 ) >  0 and  km →  k >  0, we thus obtain



0  <  lim inf Re

 k 2

 m→∞

 m(n − 1 )vmwm  d x

 D



= lim inf Re

 wmΔvm −  vmΔwm  d x

 m→∞

 D

 N



 c



= lim inf

Re

 wmΔvm −  vmΔwm  d x

 m→∞  i=1

 Di





= lim inf

Re

 wm∂νvm −  vm∂νwm  d s

 m→∞

∩

0≤ i

 ∂Di

 ∂Di

1 <i 2≤ Nc

1

2





= lim inf

Re

 wm∂νvm −  vm∂νvm +  vm∂νvm −  vm∂νwm  d s

 m→∞

∩

0≤ i

 ∂Di

 ∂Di

1 <i 2≤ Nc

1

2





= lim inf

Re

 (wm −  vm)∂νvm +  vm∂ν(vm −  wm)  d s

 m→∞

∩

0≤ i

 ∂Di

 ∂Di

1 <i 2≤ Nc

1

2
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≤ lim inf

 vm −  wm 3

 vm

 m→∞

− 3

 H  2  (∂Di ∩ ∂Di )

 H

2  (∂Di ∩ ∂Di )

0≤ i

1

2

1

2

1 <i 2≤ Nc



+  ∂νvm



− 1

 ∂ν(vm −  wm) 1

 H

2  (∂Di ∩ ∂D )

 H  2  (∂D ∩ ∂D )

1

 i 2

 i 1

 i 2

= 0  . 

(28.3)

The last equality follows by assumption 3 and by some uniform upper bound on

the negative dual norms as inherited from our interior control of  vm, cf. assumption 2. Obviously, (28.3) gives a contradiction and manifests that  u = 0 which thus completes the proof. 

 Remark  The proof above indicates why our initial modeling assumptions for  D

restrict to material components  Di  facing never more than one another at each transitional point. Otherwise, the traces of different  wm  parts might be incompatible in any crossing point which would then lock the possibility to find sufficiently

regular lifting functions in its vicinity. 

28.4

Numerical Examples

In this section we use the modified MFS to compute the first four real ITEs for

the unit disc  D  varied in two different inner configurations. One of the two, let us say  D◦◦, will have separated disc-shaped components, while for the other we choose a corresponding concentric composition and denote it by  D, cf. Fig. 28.2. 

More concretely, we analyzed three-components-scatterers whose set representation

decomposes into

 A

 D

ITE 1

ITE 2

ITE 3

ITE 4

=  D  3.3472649097009 3.5339744459219 3.8215531039714 4.0276794096285

 I D  2.9695607637622 3.8151728473562 4.2620616635742 4.3612725527356

=  D

1.143183893

1.64497010

2.443821

3.273054

 I D

1.2372795

1.569690

2.261430

3.1939135

Fig. 28.2 Visualization of the scatterers  D (left) and  D◦◦ (right) and listing of their first four real ITEs both for the isotropic (=  I ) and anisotropic case (=  I ) with common index of refraction given by  n 1 = 4 , n 2 = 3 , n 2 = 2
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 D◦◦ :=

:=

2

 B 0 .  4  ( 0 .  5 ,  0 ) , 

 D◦◦

3

 B 0 .  3  (−0 .  5 ,  0 ) , 





 D◦◦ :=

\

∪

1

 B 1  ( 0 ,  0 ) (D◦◦

2

 D◦◦

3  )

and













 D :=  B

 ( 0 ,  0 ) , 

 D :=  B

 ( 0 ,  0 ) , 

 D :=  B ( 0 ,  0 ) \ (D ∪  D ) , 

2

0 .  4

3

0 .  3

1

1

2

3

respectively. Here,  Br (c)  denotes the disc of radius  r  centered at  c ∈ R2. We equipped  D and  D◦◦ each with some identical sample of refractive indices for both the isotropic and anisotropic case which read  n 1 = 4 , n 2 = 3 , n 3 = 2 and set additionally for  A =  I







2 0

3 0

2 0

 A 1 =

 , 

 A 2 =

 , 

 A 3 =

 . 

0 4

0 2

0 3

Having thus fixed our material parameters, there is now much freedom in

choosing the computational points for the modified MFS procedure. First of all, 

we associated source boundaries  Γ  and  Γ ◦◦ to the components of  D and  D◦◦, i

 i

 i

 i

respectively, by scaling the underlying circles with respect to their individual center by some factor  S = 1 .  5  >  1 for the outer part of the source boundary, cf.  Γ  and i,  1

 Γ ◦◦, and similarly by  s = 0 .  5  <  1 for the remaining ones, if required. Therefore i,  1

we arrive at













 Γ ◦◦ :=

:=

:=

1 ,  1

 ∂BS ( 0 ,  0 ) , 

 Γ ◦◦

1 ,  2

 ∂B 0 .  4 s ( 0 .  5 ,  0 ) , 

 Γ ◦◦

1 ,  3

 ∂B 0 .  3 s (−0 .  5 ,  0 ) , 





 Γ ◦◦ :=

2 ,  1

 ∂B 0 .  4 S ( 0 .  5 ,  0 ) , 





 Γ ◦◦ :=

3 ,  1

 ∂B 0 .  3 S (−0 .  5 ,  0 ) , 

for  D◦◦ and









 Γ  :=  ∂B ( 0 ,  0 ) , 

 Γ  :=  ∂B

 ( 0 ,  0 ) , 

1 ,  1

 S

1 ,  2

0 .  4 s









 Γ  :=  ∂B

 ( 0 ,  0 ) , 

 Γ  :=  ∂B

 ( 0 ,  0 ) , 

2 ,  1

0 .  4 S

2 ,  2

0 .  3 s





 Γ  :=  ∂B

 ( 0 ,  0 ) , 

3 ,  1

0 .  3 S

for  D. Since the location of interior points turns out not to contribute significantly to the output, we placed them also on a circle with identical center as  D and 3

 D, respectively, but half its radius. Conveniently, all the computational points 3

introduced in the second section of this paper could thus be distributed equidistantly on their corresponding circles. 

In the process of our numerical experiments, we fixed  Na = 10 and varied  m  to improve the accuracy of our approximate ITEs. Minimizing the first singular value, 

the optimal results from Fig. 28.2 were achieved for 60 ≤  m ≤ 100 and thus at
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most 500 collocation points were needed altogether. Exceeding this regime leads

more and more to the emergence of ill-conditioning effects and thus to unreliable

results. However, approaching the admissible threshold for  m  from below, the cut-off mantissa of our ITEs approximations tend to converge with increasing  m, so we believe all the listed digits to be correct (modulo round-off-errors). Note that due to the rotational-invariant structure of  D at least in the case  A =  I  all ITEs can easily be computed analytically using a Fourier Bessel ansatz, cf. [KlPi18a] with a correspondingly extended matrix system for the component transitions of  v  and  w. 

The first four of them were found to be 3.347264909700945, 3.533974445921942, 

3.821553103971393, 4.027679409628525 and thus confirm that the approximations

obtained by the modified MFS are indeed correct up to machine precision here. 

Generally, our current observations are mostly consistent with those made for

purely homogeneous scatterers, see the references [KlPi18a] and [KlPi18b]. In particular, the computational results from the isotropic case are still significantly better than for  I =  A  which goes back to the more advanced body of trial functions for  w. Novelties affect the irregular behavior of the smallest singular value function whose minimal dips were sometimes extremely steep and thus hard

to detect (such as the largest eigenvalue given above that was recomputed with the

Fourier Bessel ansatz). As an explanation for that, the optimal number of collocation points necessary for the transitional boundaries to preserve a comparable quality of eigenvalue approximations turned out to be surprisingly large. While the undiluted

isotropic disc required only around  m = 20 collocation points altogether to recover ITEs almost up to machine precision, our latest experiments necessitate almost

about its fivefold per boundary component (500 in total) and thus seem to scale

quadratically. 

28.5

Conclusion

In this paper, the recovery of interior transmission eigenvalues for inhomogeneous

media in two dimensions was investigated on the basis of the method of fundamental

solutions. Although best suited for homogeneous scatterers to benefit most from

the lower dimensional boundary description, our numerical examples show that

highly accurate results can still be obtained for scatterers which consist of a

moderate number of homogeneous components. Conversely, the more complex the

inner structure of  D  is, including anisotropic behavior, the more collocation points are generally needed and in correlation with that the less precise the eigenvalue

approximation becomes. Our theoretical studies additionally show that our method

will, under appropriate assumptions of the output, never detect spurious eigenvalues in the limiting process and thus proves its practical reliability. 
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Chapter 29

Tensor Product Approach to Quantum

Control

Diego Quiñones-Valles, Sergey Dolgov, and Dmitry Savostyanov

29.1

Introduction

Quantum control plays a central part in both established technologies such as

nuclear magnetic resonance (NMR) and emerging technologies such as quantum

computing [GlEtAl15]. The ‘hardware’ of a quantum computer is a quantum system (e.g. a spin system), which we manipulate with time-dependent fields (e.g. laser

pulses). Our goal is to design a pulse sequence that steers the system from an

initial state | ψ 0 to a desired state | ψT  during time  T —a ‘firmware’, so to say. 

The main challenge for numerical methods is the notoriously known  curse of

 dimensionality—the dimension of the state space growing exponentially with the number of particles  d.  Even for the simplest spin- 1 systems, the wavefunction | ψ  , 2

the density matrix  ρ,  and the Hamiltonian ˆ

 H  require at least  O( 2 d )  storage. To find

the optimal trajectory we need to compute  ρ(t)  in 100s to 1000s points of time. 

This leads to gigabyte-scale storage for  d " 20 spins and becomes unfeasible for d  30 . 

The main approaches used currently are the sparse format for ˆ

 H , | ψ’s,  ρ’s

(only large entries are stored, zeroes and small elements are discarded), and

dimensionality reduction—the equations of system dynamics are projected into a

subspace of low-lying eigenstates [WóEtAl05] or its heuristically chosen equivalent [KuEtAl07, CaEtAl11]. 
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Tensor product algorithms are a novel approach to high-dimensional problems. 

Based on the idea of separation of variables, they approximate high-dimensional

data with a tensor product of low-dimensional factors. For example, when inter-

action of particles is a superposition of a few near-neighbour interactions, the

corresponding quantum state is a superposition of a few unentangled states, i.e. 

it has a low Schmidt rank. The corresponding tensor format also has a low rank, 

providing good compression and low storage costs. By maintaining the compressed

format for all operations we can compute the system’s trajectory and optimise it

without any uncontrollable truncations or heuristic assumptions. Model examples

of such systems include Ising and Heisenberg spin chains [Sc11], more realistic applications include quantum wires [BiEtAl17] and backbones of simple protein molecules [SaEtAl14]. 

In quantum physics a tensor product format was first proposed in the 1970s as

the renormalisation group formalism [Wi75], followed in the 1990s by MPS/MPO

[FaEtAl92, KlEtAl93] and DMRG [Wh92] algorithms for finding the ground state of a quantum spin chain. Similar formats were applied in statistics and can be

traced back to works of Hitchcock in the 1930s [Hi27b, Hi27a] and Tucker in the 1960s [Tu66]. Tensor formats in three dimensions were rigorously studied in the numerical linear algebra community as a generalisation of the low-rank

decomposition of matrices [OsEtAl08, FlEtAl08, GoEtAl09, Sa10]. Generalisa-tions to higher dimensions eventually led to re-discovery of the MPS/DMRG

framework under the name of the tensor train (TT) format [OsTy09, Os11]. 

In the last decade the TT format and the more general Hierarchical Tucker

format [Gr10] have been successfully applied to a variety of problems, such as finding several low-lying states of a quantum system [DoEtAl14], performing superfast Fourier transform [DoEtAl12], solving high-dimensional linear systems [DoSa15] and first-order differential equations [Do18]. First applications of tensor product methods to optimal control problems are considered in [DoEtAl16, 

BeEtAl16]. 

The recently proposed tAMEn algorithm [Do18] allows to compute evolution of a quantum system under a given (time-dependent) Hamiltonian with high accuracy. 

Although the trajectory lies in extremely high-dimensional state space, tAMEn

keeps the computation costs feasible by performing all calculations in the TT format and adapting the TT ranks to meet the required accuracy. In this paper we employ

the tAMEn algorithm as a building block to develop a version of a classical GRAPE

algorithm [KhEtAl-5] and use it to control a spin chain with  d = 41 spins. This shows that tensor product algorithms can be used to design control sequences

for quantum computers with 50 to 100 qubits, which can be expected within a

decade [Go16]. 
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29.2

Optimal Quantum Control

 29.2.1

 Dynamic Optimisation Problem

The dynamics of a quantum system with Hamiltonian ˆ

 H  is described by Liouville–

von Neumann equation in superoperator form

˙

ˆ

 ρ = − iH (t)ρ + ˆ

 Rρ, 

where  ρ  is the quantum density matrix stretched into a vector form (referred to later as quantum state), and

ˆ

 H (t ) =  I ⊗ ˆ

 H (t ) − ˆ

 H (t ) ⊗  I. 

Traditionally ˆ

 H (t )  is split into a constant drift and a time-dependent control term:

 K



ˆ

 H (t ) = ˆ

 H 0 +

 ck(t)  ˆ

 Hk. 

 k=1

Control operators ˆ

 Hk  are usually defined by model or instrument used; we manipu-

late the system by changing control pulse functions  ck(t).  Now choosing a suitable ˆ

basis set { ϕn(t)} N

and dropping the relaxation part  R  for simplicity, we obtain an

 n=1

ODE for system dynamics:

(

)

 K

 N



˙

ˆ

ˆ

 ρ = − i

ˆ

 H 0 +

 cn,kHkϕn(t) ρ, 

 ρ( 0 ) =  ρ 0 . 

(29.1)

 k=1  n=1

Our goal is to choose control parameters  c = [ cn,k] to maximise  fidelity (or  overlap) F (c) = 6  ρT |  ρ(T )  . 

(29.2)

 29.2.2

 First-Order Optimisation Framework

Classical optimisation methods require a gradient of  F  w.r.t.  cn,k  which reads G



H

 ∂F



= 6

 ∂ρ(T )

 ρ 

 T

 . 

(29.3)

 ∂c



 n,k

 ∂cn,k
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To find the gradient, we differentiate (29.1) w.r.t. control parameters and obtain





 ∂

 ∂ρ = −

ˆ

 ∂ρ

 i ϕ

ˆ

 n(t )Hk ρ + ˆ

 H (t )

 . 

 ∂cn,k ∂t

 ∂cn,k

Changing the order of derivatives in the left-hand side, we obtain a system of

coupled ODEs for the density matrix and its gradient:















! 

 ∂

 ∂ρ

ˆ

ˆ

 ∂ρ

 ∂ρ

 ∂c

 H (t ) ϕn(t)Hk

0

 n,k

= − i

 ∂cn,k

 , 

 ∂cn,k

=

 . 

(29.4)

 ∂t

 ρ

ˆ

0

 H (t )

 ρ

 ρ

 ρ 0

 t =0

To justify the initial condition for the gradient, write a first-order approximation for ρ(δt )  with an infinitesimal time  δt:

(

)

 K

 N

ˆ



ˆ

 ρ(δt ) =  ρ

ˆ

0 −  iδt

 H 0 +

 cn,kHkϕn(t) ρ 0 +  O(δt 2 )

 k=1  n=1

and differentiate it w.r.t.  cn,k  to see  ∂ρ (δt) =  O(δt) → 0 . 

 ∂cn,k

The system (29.4) can be integrated on [0 , T ] using a suitable method (e.g. 

Runge–Kutta scheme [Ru1895]) for all  k, n  to produce both the fidelity (29.2) and its gradient (29.3). 

 29.2.3

 GRAPE Algorithm

A classical gradient ascend pulse engineering (GRAPE) method [KhEtAl-5] is a simple version of the approach described above. Control pulses  ck(t)  are assumed piecewise-constant on intervals  (tn−1 , tn] between the nodes of the grid { tn} N  with n=0

 t 0 = 0 and  tN =  T .  We will use a uniform grid  tk =  τ k  with step-size  τ =  T /N. 

The basis functions  ϕn(t)  can be taken as Heaviside functions

'1 ,  if  tn−1  < t ≤  tn, 

 θn(t) = 0 ,  otherwise , 

thus making  cn,k  the amplitude of control pulse  ck(t)  on  (tn−1 , tn] .  The time-locality of basis functions  θn(t)  allows us to compute (29.3) more efficiently. Note that θn(t) = 0 for  t ≤  tn−1 hence ODE (29.4) for the gradient component simplifies to the homogeneous ODE

 ∂

 ∂ρ

= − ˆ  ∂ρ

 ∂ρ

 i  ˆ

 H

for

 t ∈  ( 0 , tn−1] , 

s.t. 

 ( 0 ) = 0 , 

(29.5)

 ∂t ∂cn,k

 ∂cn,k

 ∂cn,k
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which of course gives

 ∂ρ (t

 ∂c

 n−1 ) = 0 .  Therefore, to compute (29.3) we can n,k

propagate the state  ρ(t)  on  ( 0 , tn−1] and start solving the coupled system (29.4) only from  tn−1 .  When we reach  tn  and compute  ∂ρ (t

 ∂c

 n),  we can note that  θn(t ) = 0 for

 n,k

ˆ

 t > tn  hence (29.5) holds on  t ∈  (tn, T ] as well. Since  H (t)  is piecewise-constant, 





! 

 N





 ∂ρ

 T

ˆ

 ∂ρ

@

ˆ

 ∂ρ

 (T ) = exp − i

ˆ

 H (s) d  s

 (t

ˆ

 n) =

exp − iτ H (tm)

 (tn), 

 ∂cn,k

 t

 ∂c

 ∂c

 n

 n,k

 n,k

 m= n+1 





 Qm

and plugging this in (29.3) gives

I



J

I



J

 N

 N



 ∂F

@

@

= 6



 ∂ρ

 ∂ρ

 ρT 

 Qm

 (tn) = 6

 Q†



 (tn) . 

 ∂c

 mρT

 n,k



 ∂cn,k

 ∂cn,k

 m= n+1

 m= n+1

(29.6)

The state

 N

@

 λ(tn) =

 Q† mρT

 m= n+1

is the solution of ODE with the boundary condition at the right end, colloquially

referred to as ‘back-propagation’:

 ∂λ = − ˆ

 iH (t )λ

for

 t ∈ [ tn, T ), 

s.t. 

 λ(T ) =  ρT . 

(29.7)

 ∂t

Hence the coupled system (29.4) needs to be solved only on [ tn−1 , tn] to produce the  n-th components of the gradient. By pre-computing all  λ(tn)  for  n = 1 , . . . , N, we can implement the GRAPE iteration with complexity scaling linearly in  N. 

1. For  n =  N, . . . ,  1 ,  propagate (29.7) backward: λ(tn) −→  λ(tn−1 )



! 





 ∂ρ

0

 (tn)

2. For  n = 1 , . . . , N,  propagate (29.4) forward:

−→  ∂cn,k

 ρ(tn−1 )

 ρ(tn)

3. Compute (29.6) and update the control amplitudes:

 cn,k −→  cn,k −   ∂F . 

 ∂cn,k

Here    is the step size for the gradient ascend. It should be carefully selected, since a too small value will make the algorithm converging very slowly while a very

big one will make the algorithm divergent. In our implementation the step size is

chosen adaptively: it is increased each time the step is successful (i.e. results in better fidelity) and decreased each time we have an overstep (i.e. fidelity decreases and the step has to be rejected). Note that line-search strategies for this optimisation problem are rather pointless, because the gradient (29.6) and the fidelity function (29.2) are computed simultaneously from (29.4), and have therefore the same complexity. 
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In the classic GRAPE algorithm, the propagators  Qm  in (29.6) are calculated as matrix exponentials [MoVa03] and applied to the states; in more advanced versions of the algorithm, the action of matrix exponentials on the states is computed on-fly maintaining the sparse format for  λ’s and  ρ’s [Si98]. 

Instead of computing propagators, we use the tAMEn algorithm to solve

the first-order ODEs (29.4) and (29.7) with Hamiltonians and states represented in the TT format. The next section focuses on mathematical details of this

approach. 

29.3

Tensor Train Format and the tAMEn Algorithm

Introducing individual state indices for each site, we can treat  ρ  as a multi-index (high-dimensional) array which is referred to as  tensor  in numerical linear algebra: ρ = [ ρ(i 1 , . . . , id ;  j 1 , . . . , jd )] . 

We should admit that our use of the term  tensor  does not imply proper differentiation of upper and lower indices or  Einstein summation convention [Ei1916]. We use the Tensor Train (TT) decomposition [Os11] to separate  pairs  of  ik, jk, belonging to different sites, by a product approximation of the form

 r 0 ,...,rd



 ρ(i 1 , . . . , id ;  j 1 , . . . , jd ) ≈

 ρ( 1 )

 α

 (i 1 , j 1 ) · · ·  ρ(d)

 (id , jd ). 

(29.8)

0 ,α 1

 αd−1 ,αd

 α 0 ,...,αd =1

Here,  ρ(k),  k = 1 , . . . , d,  are called  TT blocks, and the summation ranges  r 1 , . . . , rd are called  TT ranks. The grouping of  ik  and  jk  is such that unentangled (e.g. 

pure) states are represented by (29.8) exactly with elementary TT ranks  r 0 =

· · · =  rd = 1. The TT representation is equivalent to matrix product states (MPS) [FaEtAl92, KlEtAl93] with open boundary conditions  r 0 =  rd = 1. 

Entangled states require  rk >  1 for at least one intermediate  k = 1 , . . . , d − 1 . 

However, we aim at representing states with  weak  correlations, so that  r 1 , . . . , rd−1

can be kept bounded by a moderate constant  rk ≤  r $ 2 d .  This yields an  O(dr 2 ) storage cost of the TT format,  linear  in the system size. For example, ground states of non-critical one-dimensional spin chains admit such bounded TT ranks due to the

area law [EiEtAl10]. 

We use a linear piecewise Chebyshëv scheme [Do18] to discretise ODEs (29.1), 

(29.4) and (29.7) in time. Recall that we solve ODEs on time intervals  t ∈  (tn−1 , tn], ˆ

where control pulses  ck(t)  and hence  H (t)  are constant and only  ρ(t)  depends on time. Without loss of generality we can assume that  t ∈  ( 0 , τ ] and drop the time index  n  for the rest of this section. We choose a basis of Lagrange polynomials { Lm(t)} M

centred at Chebyshëv nodes { τ

and represent the

 m=1

 m} M

 m=1

state as
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 M



 ρ(t ) ≈

 ρ(τm)Lm(t), 

 t ∈  ( 0 , τ ] , 

0  < τ 1  < τ 2  < · · ·  < τM =  τ. 

 m=1

Since the length of the interval  τ  is usually quite small to provide better resolution of control pulses, the basis size  M  can be very moderate. We collect the nodal values  ρ(τm)  into a vector  ρ = [ ρ(τm)] M

of length 4 d M,  which we aim

 m=1

to find. The time derivative operator is discretised as a  differentiation matrix S = [ L   (τ

in accordance with the spectral approximation theory [Tr00]. 

 

 m)] M

 m, =1

Applying this discretisation scheme to ODE (29.1) we obtain the following linear system

ˆ

 (S ⊗  I +  I ⊗  iH





 )ρ =  (S  1 M) ⊗  ρ( 0 ) . 

(29.9)







 A

 f

Here  ρ  is the unknown vector of  ρ(τm)’s, 1 M  is the vector of size  M  full of 1’s, and  I  denotes identity matrices of appropriate size. Note that the Kronecker products are implicitly realised by the TT representation (29.10). Therefore, we never actually compute them in (29.9), but just collect the corresponding factors into TT blocks. The same applies to the states. In particular, we consider unentangled

states  ρ 0 and  ρT ,  and construct their TT blocks explicitly. Simple mixed states can be made by concatenation of TT blocks instead of a direct summation of a

large number of density matrices [SaEtAl14]. The TT ranks can be truncated down to optimal values for a desired accuracy using the singular value decomposition

(SVD) [Os11]. 

Algebraic equations (29.9) can be solved in the TT approximation by an alternating iteration, such as the Alternating Minimal Energy (AMEn) algorithm

[DoSa15], which is an enhanced version of Alternating Least Squares (ALS)

[HoEtAl12]. We expand the TT representation (29.8) by an extra block which carries the time index  m  and write:



 ρ(i 1 , . . . , id ;  j 1 , . . . , jd , m) =

 ρ( 1 )

 α

 (i 1 , j 1 ) · · ·  ρ(d)

 (id , jd )ρ(d+1 ) (m), 

0 ,α 1

 αd−1 ,αd

 αd ,αd+1

 α



 ρ =

 ρ( 1 )

⊗ · · · ⊗

⊗

 α

 ρ(d)

 ρ(d+1 ) . 

0 ,α 1

 αd−1 ,αd

 αd ,αd+1

 α

(29.10)

Now the last block  ρ(d+1 ) = [ ρ(d+1 )

 α

 (m)] carries degrees of freedom in time, the

 d ,αd+1

rightmost TT rank is  rd+1 = 1 ,  and  rd  can now be larger than 1 . 

The basic ALS algorithm would solve (29.9) by sweeping over TT blocks, i.e. 

representing  ρ  by (29.10) and reducing the equation to only one block  ρ(k)  in each step. This can be written using a  frame  matrix
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⎛

⎞

⎛

⎞





 P=

⎝

⎠

⎝

⎠

 k =

 ρ( 1 )

⊗ · · · ⊗

⊗

⊗ · · · ⊗

 α

 ρ(k−1 )

 I ⊗

 ρ(k+1 )

 ρ(d+1 )

 , 

0 ,α 1

 αk−2

 αk+1

 αd ,αd+1

 α 0 ...αk−2

 αk+1 ...αd+1

which is of size 4 d M ×4 rk−1 rk  for  k ≤  d,  and of size 4 dM × rk−1 Mrk  for  k =  d +1 . 

The frame matrix realises a linear map from the elements of a single TT block into

the elements of the whole vector given (29.10), that is  ρ =  P= kρ(k),  assuming that elements of  ρ(k)  are stretched in a vector. The ALS method solves the reduced Galerkin systems  (P †

=  AP

 f  subsequently for  k = 1 , · · ·  , d +1 .  This k

= k)ρ(k) =  P †

= k

system can be assembled efficiently [HoEtAl12] due to the TT formats of  P= k,  A and  f  and solved using standard methods. 

The AMEn method [DoSa15] improves the convergence of ALS by expanding ρ(k) (and hence all  P= q  for  q > k) with a TT approximation of the  residual f − Aρ, where  ρ  is formed by (29.10) with an updated block  ρ(k)  plugged in. This also allows to adapt the TT ranks to ensure a desired accuracy of the TT approximation. 

The tAMEn (time-dependent AMEn) algorithm [Do18] utilises the special meaning of the last TT block, carrying the time variable  m,  in order to preserve conservation laws (e.g. the Frobenius norm), and to estimate the time discretisation error. 

For the interval lengths  τ  chosen in our numerical experiments, we have found that  M = 8 Chebyshëv nodes in each interval are sufficient to resolve the time derivative with the relative accuracy of 10−5 or better. In each step the tAMEn

algorithm produces a set of TT blocks  ρ( 1 ), . . . , ρ(d+1 ),  comprising the discrete-time solution  ρ  on the interval  ( 0 , τ ] .  After  ρ  is obtained, we compute  ρ(τ )  in the TT format by taking the slice of the last TT block  ρ(d+1 )(M)  and hence removing the time index  m  from consideration. Since  t =  τ  represents the end point of the interval  (tn−1 , tn] the obtained state represents  ρ(tn)  and can be used now as an initial state in the next GRAPE step over the time interval  (tn, tn+1] . 

ˆ

The tAMEn algorithm is agnostic to a particular form of  H (the only assump-

tion is that it must admit a TT decomposition), and can be applied to any

tensor-structured differential equation ˙ x =  Ax  such as the auxiliary matrix formalism (29.4) and the back-propagation (29.7). 

29.4

Numerical Experiments

We consider a Heisenberg chain of spin- 1 particles, for which a Hamiltonian is a

2

simple sum of nearest neighbour interactions

 d−1



ˆ

 H =

 Jx  ˆ σ (k)  ˆ

+

ˆ

+

ˆ

 x

 σ (k+1 )

 x

 Jy  ˆ σ (k)

 y

 σ (k+1 )

 y

 Jz  ˆ σ (k)

 z

 σ (k+1 )

 z

 , 

(29.11)

 k=1
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where the Pauli matrices ˆ σ (k)

{ x,y,z} [Sl18] act only on spin in position  k  of the chain, ˆ σ (k)

{

⊗ I ⊗  . . . ⊗  I. 

 x,y,z} =  I ⊗ · · · ⊗  I ⊗ ˆ

 σ{ x,y,z}



 k-th place

When  Jx =  Jy =  Jz,  this system is called the XXX Heisenberg model, when Jx =  Jy =  Jz  it is called the XXZ model, and for  Jx =  Jy =  Jz  it is called the XYZ model. It is commonly mentioned that linear Heisenberg chains can be

diagonalised exactly using the Bethe ansatz [Be31], however the eigenstates can only be written via roots of a system of algebraic equations of degree  d [Sl18], that are not computable in closed form neither using analytic methods nor numerically

with reasonable accuracy for  d  20 .  For simpler XX models ( Jx =  Jy, Jz =

0) eigenvectors are available in closed form and can be used for dimensionality

reduction, allowing chains with  d " 200 spins to be controlled [WóEtAl05]. We could not find examples of optimal control pulse computed numerically for XXX, 

XXZ and XYZ Heisenberg models with the number of spins  d  20 .  We decided therefore to test our tensor product approach for XXX and XXZ Heisenberg spin- 12

chains with  d = 11 , d = 21 and  d = 41 . 

The initial and target states are taken as

 ψ 0 = |↑↓↓ · · · ↓↓  , 

 ψT = |↓↓ · · · ↓↓↑  , 

so the task is to move the |↑ state from the first to the last position in the chain. The control operator  Hc(t) =  c(t)  ˆ σ ( 1 )

 z

is the magnetic field acting on the first spin only. 

In theory, Heisenberg chains are fully controllable [WaEtAl16], which means the fidelity (29.2) can be made infinitely close to 1 as  T → ∞ .  In practice, however, the available time  T  for the pulse is limited, and the final state  ρ(T )  will not be fully focused, leaving some  infidelity  1 − |  ρT |  ρ(T ) |  >  0 .  We optimise the pulse sequence to reduce the infidelity as much as possible. 

The results are shown in Fig. 29.1. Computing a short high-fidelity pulse for large spin system appears to be a challenging task. Using four cores on a Xeon

E5-2650 CPU and 10 GB of memory, we reduced infidelity to 10−3 for  d = 21 and to 10−2 for  d = 41 within a few days of computation. This seems fast compared to high-fidelity calculations reported in [SpEtAl18], where infidelity 10−4 was reached after weeks/month of optimisation for a system with  d = 4 qubits with 4 levels each. 

The efficiency of the method depends primarily on reasonable choice of the pulse

length  T ,  which is usually of the order of the inverse of the natural frequency of the system [KhEtAl01]. The time  T  typically should increase with the number of spins in the chain due to the finite rate of the information exchange among them. We see

in our experiments that larger intervals  T  are required to reduce infidelity for larger chains; also, XXZ chains demand larger  T  than XXX chains. We keep resolution τ = 10−2 for the control pulse constant for all experiments, which is the main reason why computational time per iteration grows with  T .  The TT ranks grow only

[image: Image 172]
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Fig. 29.1 Pulse sequence optimisation for the Heisenberg XXX and XXZ spin chains given by (29.11) with  Jx =  Jy =  Jz = 2 π  and  Jx =  Jy = 2 π, Jz = 2 .  2 π,  respectively. Left: convergence of the GRAPE algorithm with TT compression of all states and tAMEn algorithm for time evolution. Right: the optimised pulse sequences for XXX and XXZ chains. Top, middle, bottom row: chains with  d = 11 , d = 21 and  d = 41 spins, respectively mildly with  d  and remain moderate  rk  30 for  d = 41 .  This resulted in about 70 · 103 unknowns in the TT decomposition of each  ρ(tk)  for  d = 21 and 140 · 103

unknowns for  d = 41. For comparison, a single diagonal of  ρ(tk)  has 221 ≈ 2 · 106

entries for  d = 21 and 241 = 2 · 1012 entries for  d = 41 . 
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29.5

Conclusions and Future Work

Tensor product algorithms open new possibilities to control long spin wires and

multi-qubit gates in quantum computers. We explored a proof-of-concept example, 

in which we considered a simple XXX or XXZ Heisenberg chain, optimised control

pulse using a classical GRAPE method [KhEtAl-5], while representing all states in the TT format [Os11] and propagating them using the tAMEn algorithm [Do18]. 

This combination of relatively simple algorithms allowed us to reach fidelity of 99%

for a chain of  d = 41 spins using a single workstation for calculations. We used only controllable approximation techniques and avoided any heuristic or random

truncations of the state space. Our algorithm is deterministic and flexible, i.e. can be applied to any linear or quasi-linear quantum system, for which we can expect the

states to have moderate entanglement (as measured by Schmidt ranks). 

We have not yet reached the fidelity of ∼ 99 .  99% required for topological error correction [SpEtAl18], mostly because of slow first-order convergence of GRAPE, but we hope to make it possible using a second-order optimisation algorithm, such as Newton–Raphson [GoKu16] or a quasi-Newton, e.g. BFGS [FoEtAl11, EiEtAl11]. 

We have not imposed any constraints on pulse shape, which resulted in a few

outbreaks seen in Fig. 29.1, but implementation of the box constraints | c(t)|  < C  is a straightforward step which we postpone for future work. 
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Chapter 30

Epidemic Genetic Algorithm for Solving

Inverse Problems: Parallel Algorithms

Sabrina B. M. Sambatti, Haroldo F. de Campos Velho, and

Leonardo D. Chiwiacowsky

30.1

Introduction

Genetic Algorithms (GA) are methods of optimization based on the evolutionary

concepts proposed by Charles Darwin and Alfred Russel Wallace. Darwin and

Wallace collected evidence from travels on the South America. Darwin was the

invited naturalist during the Beagle’s trip for mapping the South America coast, and Wallace was a naturalist who had lived in the Amazon region about 4 years. Both

have concluded about natural selection process after reading the Thomas Mathus’s

book:  An Essay on the Principle of Population, where it is argued that the human population grows faster than food production. 

The Darwin-Wallace’s theory is the main guideline, but there were many troubles

with the evolution theory. For example, it was not clear how the speciation

works, and how little changes appear in new generations. A central name for

the evolutionary synthesis is Ernst Mayr. He achieved the  modern synthesis  that integrated Mendel’s theory of heredity with Darwin-Wallace’s theory of evolution

and natural selection. The evolutionary theory is under development yet. The

punctuated equilibrium and endosymbiotic proposal are two examples of new ideas

in the field—see [Da96]. 
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The GA strategies are outlined from the modern version of the evolution theory

( great synthesis). In the optimization context, the objective function works as the environment (acting as the evolutionary pressure). Only the most apt individuals in

the population will be selected to be parents for the new generation (our  natural selection). For the evolution works, many features have important role to produce

an appropriate answer to the environment conditions: the time must be long enough, 

and the variability in the population, for example. Results from variations on these parameters are investigated here, for verifying if our implementation can emulate

some characteristics of the biological evolutionary theory. 

The application of the GA on optimization problems is an iterative process, 

where successive evaluations on the objective function are required. However, this

method can escape local minimum, and, in addition, one of the main genetic algo-

rithm aspects is its parallelization capacity. The parallel genetic algorithms (PGA) is made up of the distribution of the tasks of a sequential GA by different processors, providing a much better performance than the sequential GA. Depending on the

parallel strategy adopted, the PGA is effectively a new algorithm, with a chance of

avoiding the premature convergence which could exist in the sequential GAs. 

Different strategies are investigated for the parallel implementation of a genetic

algorithm (GA). The PGA is employed to solve the inverse heat conduction problem

of determining the initial temperature from the noisy measurements at a given time. 

The parallel code is generated using calls to the message passing communication

library MPI (Message Passing Interface). 

In the parallel code, each processor executes the GA in its own population

and migration of best-fitness individuals occurs periodically among processors. An

epidemic operator purges each population whenever there is no fitness improvement. 

Different migration strategies are tested, as the island model (individuals may

migrate to all the other processors), the stepping-stone model (migration may occur

only between consecutive processors of a logical ring in an alternate manner). 

Performance results, quality of the solutions, and convergence are discussed, 

comparing the different migration strategies. 

30.2

Inverse Problem

The direct problem consists of a transient heat conduction problem in a slab with

adiabatic boundary condition, and initial condition  T (x, t = 0 ) =  f (x). The mathematical formulation of the problem is given by:

 ∂ 2 (x, t ) =  ∂T (x,t) , 

 x ∈  ( 0 ,  1 ) , 

 t >  0  , 

(30.1)

 ∂x 2

 ∂t

 ∂T (x, t ) = 0 , 

 x = 0  , 

 x = 1 , 


 t >  0  , 

(30.2)

 ∂x

 T (x, t ) =  f (x) , 

 x ∈ [0 ,  1]  , 

 t = 0  , 

(30.3)
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where  T (x, t)  denotes temperature at a given point and time,  x  and  t  the spatial and time variables. These variables are treated as nondimensional quantities. The

solution of the direct problem for  x ∈  ( 0 ,  1 )  and  t >  0 for a given initial condition f (x)  is given by

∞





 X(β

1

 m, x)

 T (x, t ) =

 e− β 2 mt

 X(βm, x  )f (x  )dx 

(30.4)

 N (βm)

 m=0

0

where  X(βm, x)  are the eigenfunctions associated with the problem,  βm  and N (βm)  are, respectively, the corresponding eigenvalues and  norms [Ozi80]. The function  f (x)  is assumed to be bounded satisfying Dirichlet’s conditions in the interval [0 ,  1]. In this transient conduction problem, the goal is to estimate the unknown initial temperature distribution  f (x), from the knowledge of the measured temperature  Ti  at the time  t =  τ >  0, for a finite number ( Nx) of different locations in the domain. This inverse problem is formulated as an optimization problem, as

follows. The present inverse problem admits an analytical solution, obtained from

the orthogonality property of  X(βm, x). For a given temperature profile at time  τ , the initial condition can be expressed as [MuEtAll99, MuEtAll00]—with  x ∈  ( 0 ,  1 ):

∞





 X(β

1

 m, x)

 f (x) =

 eβ 2 mτ

 X(βm, x  ) T (x  , τ ) dx   . 

(30.5)

 N (βm)

 m=0

0

However, this  solution  does not produce a smooth solution, nor is it close to the true solution when some noise is presented in the experimental data  T (x, τ )—see Fig. 30.1. Since measurement errors are permanent features in the experimental data, Eq. (30.5) is not useful. 

For determining the initial condition, a regularized solution is obtained by

choosing the function  f (x)  that minimizes the following functional:

 Nsol



 J (f (x), ξ ) =  T  Mod (f ) −  T  Exp2

+

2

 ξ

 f  2

 k

 , 

(30.6)

 k=1

where  T  Exp =  T  Exp (xi, τ )  is the experimental data  (t =  τ >  0 )  and  T  Mod is the temperature obtained using the candidate solution  f (x)  at time  t =  τ  using Eq. (30.4), and  .  2 is the norm 2. The last term is the zeroth-order Tikhonov regularization term [Tik77], weighted by  ξ , the regularization parameter. Each candidate solution  f (x)  is sampled by a set of  Nx  discrete points:  fk, with  k =

1 ,  2 , . . . , Nx. In the GA approach, each individual is a particular instance  fk  and its fitness is given by this functional. 
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Fig. 30.1 Exact initial temperature profile and solution obtained using analytical solution Eq. (30.5)

30.3

Parallel Genetic Algorithm with Epidemic Operator

In a GA-based optimizer, an initial population is generated, composed by a group of

random individuals, each one associated with a possible solution. Every individual

is evaluated, being assigned a score or fitness, according to the numerical value of the objective function. In every new generation, a new population of individuals

is generated from the former one, by means of combining  parents  individuals using selection, crossing-over and mutation operators. Some schemes preserve best-fitness

individuals from one generation to another (elitism) [Ca95]. It is expected that, after many generations, the population will evolve and better-fitted individuals will appear. An epidemic genetic operator [Me03, ChCa03] is also used in this work. 

If the fitness does not improve after some number of generations, the population is

renewed, preserving only best-fitness individuals. 
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Tournament Selection [Mic96]

This operator uses a random number  rand  from the interval [0,1) with uniform distribution.  bigger  is the best fitness individual and  smaller  is the worst fitness individual:

bigger:=rand; smaller:=rand; val:=0.75; 

if (rand  <  val) then

position:=bigger; 

else

position:=smaller; 

endif

Geometrical Crossover [Mic96]

The crossover operator breeds only one offspring from two parents. From the

parents  xi  and  yi, the offspring is represented by:

 μ

1− μ

 zi =  x y

 , 

(30.7)

 i

 i

where  μ  is a number between [0, 1]. A typical value is  μ = 1 / 2, where the same weight is given to both parents. 

Non-uniform Mutation [Mic96]

The mutation operator is defined as:

 x

 x  =

 i + ( (t , lsup −  xi )  if a random binary digit is 0 , 

 i

(30.8)

 xi − ( (t, xi −  linf )  if a random binary digit is 1 , 

and





( (t, y) ≡  y  1 − rand ( 1− t/T )b , 

where  rand  is a random number from the interval [0,1) with uniform distribution, T  is the maximal generation number,  t  is the generation number, and  b  is a system parameter determining the degree of non-uniformity. 

Epidemical Strategy [Me03, ChCa03]

This innovative operator is activated when a specific number of generations is

reached without improvement of the best individual. Then, all the individuals are

 affected by a plague, and only those that have the best fit (e.g., first 2% with the best fit in the population)  survive. The remaining individuals  die  and are substituted by new individuals with new genetic variability, such as immigrants arriving, in order to evolve the population. Two parameters need to be chosen: one determines when the

strategy will be activated, i.e. the number of generations without improvement of the best individual fit, while the other parameter determines the amount of individuals

that will survive the  plague. 
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 30.3.1

 Parallel Strategies for Epidemic-GA

An important feature of GAs is their suitability for parallelization. Nowadays GAs

have been widely employed, but parallel implementations are recent. According

to [Ca95], GA parallelization techniques are divided into: (a) Global Parallelization: in this approach all genetic operators and the evaluation of all individuals are

explicitly parallelized; (b) Coarse Grained: such approach requires a division of

population into some number of demes (subpopulations) that are separated one

from another (”geographic isolation”). The individuals compete only within a deme. 

This approach introduces an additional operator called  migration  that is used to send some individuals from one deme to another; (c) Fine Grained: such approach

requires a large number of processors because the population is divided into a large number of small demes, and each one evolves separately, but subject to migration. 

Many GA researchers believe that a PGA, with its multiple distributed sub-

populations and local rules and interactions, is a more realistic model for the

evolution of species in nature than a single large population [Le94]. This work follows the coarse grained approach and implements some migration strategies

(PGA-Epidemic): island model and stepping-stone. 

In the island model, best-fitness individuals may migrate to all other processors. 

Island-1 denotes the sending of each processor best solution to a master processor

that selects and broadcasts “the best-of-the-bests” to all others. Island-2 denotes

multiple broadcasts in which each processor sends its particular best solution to all others. Figure 30.2 outlines the two versions of the island PGA-Epidemic. 

In the stepping-stone (SS) model, a logical ring of processors is defined and

communication occurs in steps as each processor sends its best individual to the left and right-side neighbour (SS-1 model). After a finite number of steps, all processors have the best global solution. In the proposed implementation using a logical ring is (a)

(b)

Fig. 30.2 PGA-Epidemic models: (a) island-1, (b) island-2
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(a)

(b)

Fig. 30.3 Epidemic-PGA models: (a) stepping-stone-1, (b) stepping-stone-2

also defined and migration is also restricted to neighbour: one-directional migration (SS-2 model). The sketch for SS-models is shown in Fig. 30.3. 

The algorithm for Epidemic-PGA is presented below in a pseudo-language. 

Algorithm – Epidemic-PGA

Random initialization  Pop(t)

Population distribution in  p-processors

for  processor=1 to  p do

Evaluation  Pop(t)

while stopping criterion is not satisfy

 t ←  t + 1

Selection  Pop(t)  from  Pop(t − 1 )

Apply crossover on  Pop(t)

Apply mutation on  Pop(t)

Evaluated  Pop(t)

end while

If epidemic then

Apply epidemic

end if

If migration then

Apply migration

end if

end for
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30.4

Numerical Results

A PGA is used to solve the inverse backward heat conduction problem for a one-

dimensional slab. The chosen test case assumed the following initial temperature

profile, given by the triangular test function

2 x,  0 ≤  x ≤ 0 .  5

 f (x) =

2 ( 1 −  x), 

0 .  5 ≤  x ≤ 1; 

Experimental data, corresponding to the measured temperatures at a time  τ >  0, are obtained from the forward model by adding a Gaussian noise with 5% of level. 

It is adopted  τ = 0 .  01 and an experimental data grid of 101 points ( Nx). 

Many parameters must be to set up for the PAG-Epidemic: (a) population size:

336 and 1008 individuals; (b) geometrical crossover operator  μ = 1 / 2; (c) non-uniform mutation operator  b = 5; (d) mutation probability 5%; (e) epidemic

operator (the best five individuals are kept); and (f) maximal generation number:

10,000 and 50,000. The action of the epidemic operator can be realized from

Fig. 30.4, where a smoother inverse solution is obtained when the epidemic operator is applied. Due to the randomness of the GA, several solutions were computed and

only one  average  answer is shown in the graphical representation. 

In order to check if our implementation of the GA could reproduce some features

of the biological evolution, some preliminary tests are carried out. Firstly, time

is a crucial parameter for the evolution, i.e., a minimum time period is necessary

to produce a  good  evolutionary answer for a given condition. Secondly, a greater variability can also be important to obtain a good answer. Indeed, looking at

Fig. 30.5 it is easy to recognize that a very bad answer is obtained starting with 336 individuals in the population at 10,000 generations. However, the GA-epidemic

inverse solution for the same population considering 50,000 generations produces

good estimation. In addition, dealing with a bigger population (that means, a greater variability) a good estimation is also obtained. 

One remarkable feature in the evolutionary process is the phenomenon of the

stasis (the evolution is stopped). Two factors can determine this process: intense

genic flux, and/or the conditions do not change (environment and mutagenic

factors). This process can be observed during the searching of the inverse solution

with GA. Figure 30.6 shows the inverse solution by epidemic-PGA with 336

individuals for 10,000 generations (we already saw that under these conditions was

not possible to obtain a good inverse solution—see Fig. 30.5). Using one or two processors, it is not possible to obtain an acceptable inverse solution, but considering four processors (or more), good solutions are obtained. This means that partial

isolation of the sub-populations, with occasional migration, is a mechanism that

can break the stasis process. The new genetic operator epidemic is employed, and

it is not possible to predict when the operator will be activated. Table 30.1 shows many times this operator is used in the parallel implementation. 
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Fig. 30.4 Inverse solution: (a) epidemic operator non-activated; (b) epidemic operator activated
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Fig. 30.5 Inverse solution with GA-Epidemic: 336 individuals with 10,000 generations (bad inverse solution: “∗” 10-G 336); 336 individuals with 50,000 generations (“+” 50-G 336); 1008

individuals with 10,000 generations (“◦” 10-G 1008)

Table 30.1 Average number

Processors

Island-1

Island-2

SStone-1

SStone-2

of epidemic operator used

1

1 .  4

1 .  0

1 .  5

3 .  8

2

10 .  5

0 .  0

0 .  0

1 .  0

4

9 .  7

11 .  1

10 .  9

9 .  2

6

10 .  6

13 .  2

13 .  5

10 .  6

8

18 .  4

22 .  6

17 .  8

20 .  5

From the previous considerations, performance results for the epidemic-PGA

are obtained running 50,000 generations, and a population with 1008 individuals. 

Inversions obtained with island and stepping-stone models ranging to one up to

eight processors are all similar to those in Fig. 30.6. Usually, the performance of parallel implementation can be roughly evaluated by the  speed-up Sp =  T 1 /Tp, being  T 1 the sequential time and  Tp  the parallel time for  p-processors. Another definition is the  efficiency Ep =  Sp/p. All parallel strategies present good speedup—see Fig. 30.7a, having island-2 and stepping-stone-2 the best performance, similar behaviour is noted for the efficiency (Fig. 30.7b). The stepping-stone-1 has the lowest efficiency for two processors, due to the migration time spent as shown

in Table 30.2. 
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Fig. 30.6 Inverse solution with Epidemic-GA: (a) one and two processors; (b) four and eight processors
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Fig. 30.7 Population with 1008-individuals: (a) speed-up (1008 individuals), (b) efficiency (1008

individuals)
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Table 30.2 Performance for

Proc. 

Migration (s)

Total time (s)

Speed-up

Effic. 

the PGA-epidemic

1

0 .  003

2829 .  104

1 .  000

1 .  000

stepping-stone-1

2

66 .  355

1515 .  014

1 .  866

0 .  933

4

12 .  844

742 .  013

3 .  817

0 .  952

6

8 .  812

494 .  003

5 .  714

0 .  953

8

14 .  268

377 .  692

7 .  489

0 .  935

30.5

Conclusion

The inverse problem of estimating the unknown initial condition of heat conduction

transfer in a one-dimensional slab was solved using a parallel genetic algorithm

that uses a new evolutionary operator called  epidemic. The PGA was implemented using some migration topologies, two versions of island model, and two stepping-stone models. Different from the global parallel strategy—where only the fitness

evaluation is parallelized, the PGA with migration consists in a new algorithm—see

Fig. 30.6. 

The Epidemic-PGA performance is good, with speed-ups close to the linear. 

However, a study of the algorithm complexity for the strategies employed deserves

to be investigated in a future work. Any way, one goal is to provide a stochastic

optimization tool for the National Institute for Space Research (Brazil), which is

a rich source for application of the inverse problem methodology in space science

(such as image reconstruction in astronomy and astrophysics, determining the maps

of the cosmic radiation background in microwaves), space technology (damage

detection in aerospace structures, and inverse design for satellite thermal analysis), and space applications (atmospheric temperature retrieval from satellite data, and

multispectral estimation of the optical properties for natural waters). Indeed, 

the epidemic-GA is being used for damage detection in a hybrid optimization

procedure, combining epidemic-GA with conjugate gradient [ChCa03, ChEtAl08, 

ChEtAl04a, ChEtAl04b]. 

The island-2 strategy was applied to the inverse problem of stiffness estimation

of a mass-spring system [Ca06], which is an inverse problem in vibration. The mathematical model in vibrations deals with hyperbolic equations (the mass-spring

system is a prototype of partial hyperbolic differential equations). The speedup

of the island-2 strategy was very similar in the two types of inverse problems:

heat transfer and mechanical vibration, a close linear performance curve (ideal

parallelism). 
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Chapter 31

A Chemical Kinetics Extension

to the Advection-Diffusion Equation

by  NOx and  SO2

Juliana Schramm and Bardo E. J. Bodmann

31.1

Introduction

Pollution emission and dispersion goes hand in hand with technological progress

and its consequences of an expansive productive sector. Also research in the field of air quality has evolved considerably, so that it is possible to simulate and evaluate scenarios of emission of certain substances and their impact on the environment. 

Studies of this kind are useful, on the one hand, to analyse existing situations and, on the other hand, stimulate the elaboration of new strategies followed by further

technological advances. 

The present contribution reports on progress in pollution dispersion simulation

with emphasis on the role of chemical reactions, more specifically the influence

of reaction kinetics on the concentration distributions and their time evolution. 

Chemical reactions of pollutants after their release from power or industrial

plants represent either a sink or a source term, where the first one lowers the

concentration of a specific substance when the original molecules are transformed

into other harmless substances. However, there also exists the possibility that the

transformation by a chemical reaction gives rise to new substances, which might

present an attack on health. One example is the production of ozone triggered by the presence of nitrogen oxides. In order to gain insight into the relevance or importance of chemical reactions in the dispersion process we consider in this study the time

dependence of some chemical compositions in the atmosphere. 

To this end, in this work the chemical kinetics of nitrogen oxides ( N Ox) and sulphur dioxide ( SO 2) are considered as an extension to the advection-diffusion equation and validated using experimental data from the Hanford experiment, for
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a stable planetary boundary layer, and from the Prairie Grass experiment, for an

unstable boundary layer. One of the frequently used simulators by environmental

agencies is the CALPUFF program, which we use as a complementary comparison

to the aforementioned validation by observational data. 

31.2

Tropospheric Chemistry

In the further we consider only substances in the emission of exhaust fumes, 

that arise typically in electric power production. Thus, reaction rates are added

to the advection-diffusion equation, once dominant emitted substances and their

associated reactions in the troposphere are identified. More specifically, in the

further we consider nitrogen oxides ( N Ox) and sulphur dioxide ( SO 2) as a first step to extend the advection-diffusion model. One of the characteristics of the chemistry of  N Ox  compounds is that they undergo photolysis and therefore the reactions for these species are divided according to the possible reactions during daylight and

corresponding transformations during night. In the presence of sunlight, the nitrogen oxides  N O  and  N O 2 follow the photochemical cycle shown below. 

 N O 2 +  hν →  NO +  O

 O +  O 2 +  M →  O 3 +  M

 N O +  O 3 →  NO 2 +  O 2

 OH +  NO 2 +  M →  H NO 3 +  M

Here  hν  is the photon energy with  h  Planck’s constant and frequency  ν  and  M  is the molecule that provides collision energy so that the reaction can occur. In this cycle the reaction rate of  N O 2 is given by

 d[ NO 2] = − jNO [ NO 2] +  kO

 dt

2

3+ N O [ O 3][ N O ] −  kOH + N O 2+ M [ OH ][ N O 2][ M ]  , and the NO reaction rate is

 d[ NO] =  jNO [ NO 2] −  kO

 dt

2

3+ N O [ O 3][ N O ]  , 

where  k  is a chemical reaction rate coefficient,  j  is the reaction rate coefficient when photolysis occurs and [ X] represents the concentration of the species  X  in units of
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moles. Summing up the contributions and writing the total reaction balance as a

pseudo-second-order reaction rate yields

 d[ NOx] = − k(T,z)ps,OH+ NO [ OH][ NO 2]  , dt

2

where  k(T , z)ps  is the pseudo-second-order rate coefficient. 

During night, the presence of  N O  leads to reactions with ozone so that almost all  N Ox  is converted to  NO 2. The  NOx  night reactions are N O 2 +  O 3 →  NO 3 +  O 2

 N O 2 +  NO 3 +  M ↔  N 2 O 5 +  M

 N 2 O 5 +  H 2 O(s) → 2 H NO 3 (s)

and the final reaction rate for  N Ox  is

 d[ NOx] = − kNO

[ NO 2][ O 3]

 dt

2+ O 3





− k(T , z)ps,NO

[ NO

[ N

2+ N O 3

2][ N O 3] −

1

2 O 5]

 Keq

where  Keq  is an equilibrium constant. 

The homogeneous gas phase reactions of  SO 2 are

 SO 2 +  OH +  M →  H OSO 2 +  M , 

 H OSO 2 +  O 2 →  H O 2 +  SO 3

and

 SO 3 +  H 2 O +  M →  H 2 SO 4 +  M . 

From the reactions above the final reaction rate is derived, 

 d[ SO 2] = − kps,SO

 dt

2+ OH (T , z)[ SO 2][ OH ]  . 

Note that the considerations made above represent only kinetic effects (time

evolution) that are independent on the spatial coordinate. In the next section these reactions are inserted into a space-time model, i.e. the advection-diffusion equation. 
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31.3

The Extended Advection-Diffusion Equation

The advection-diffusion equation, which contains as presented in the previous

section the effects of the chemical kinetics in the source term ¯

 S, is given below. 













 ∂ ¯ c + ¯  ∂ ¯ c

 ∂ ¯ c

 ∂ ¯ c

 ∂ ¯ c

 ∂ ¯ c

 ∂ ¯ c

 u

+ ¯ v

+ ¯ w

=  ∂ Kx

+  ∂ Ky

+  ∂ Kz

+ ¯ S

 ∂t

 ∂x

 ∂y

 ∂z

 ∂x

 ∂x

 ∂y

 ∂y

 ∂z

 ∂z

The source term is considered as composed by a point source contribution and the

transformations by chemical reactions. 



 ∂c

 S =  SF +

 ∂t

 CR

Considering the instantaneous point source with strength  SF ,  Kx  and  Ky  are turbulent diffusion constants and  Kz  is considered locally constant but varies slowly with increasing height. The problem to be solved is then



 ∂ ¯ c + ¯  ∂ ¯ c

 ∂ ¯ c

 ∂ ¯ c

 ∂ 2 ¯ c

 ∂ 2 ¯ c

 ∂ 2 ¯ c

 ∂ ¯ c

 u

+ ¯ v

+ ¯ w

=  Kx

+  Ky

+  Kz

+

 , 

 ∂t

 ∂x

 ∂y

 ∂z

 ∂x 2

 ∂y 2

 ∂z 2

 ∂t

 CR

where we tacitly absorbed the contribution of a locally fixed source in the initial

condition. The solution of this equation is subject to the following initial condition, 

¯ c(x, y, z,  0 ) =  Qδ(x −  x 0 )δ(y −  y 0 )δ(z −  Hs) where  x 0 and  y 0 are the location of the fixed point source and  Hs  is its height. 

Let ¯ c(x, y, z, t) = ¯

 cx(x, t) ¯

 cy(y, t) ¯

 cz(z, t), then the problem may be decoupled

into equations of 1 ⊕ 1 space-time dimensions. 





 ∂ ¯

 cx + ¯  ∂ ¯ cx

 ∂ 2 ¯

 cx

 ∂ ¯

 cx

 u

=  Kx

+

(31.1)

 ∂t

 ∂x

 ∂x 2

 ∂t

 CR





 ∂ ¯

 cy

 ∂ ¯

 c

 ∂ 2 ¯

 c

 ∂ ¯

 c

+ ¯  y

 y

 y

 v

=  Ky

+

 ∂t

 ∂y

 ∂y 2

 ∂t

 CR





 ∂ ¯

 cz + ¯  ∂ ¯ cz

 ∂ 2 ¯

 cz

 ∂ ¯

 cz

 w

=  Kz

+

 ∂t

 ∂z

 ∂z 2

 ∂t

 CR
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Each problem is now subject to the corresponding decoupled initial condition. 

¯ cx(x,  0 ) =  Q 1 / 3 δ(x −  x 0 )

(31.2)

¯ cy(y,  0 ) =  Q 1 / 3 δ(y −  y 0 )

¯ cz(z,  0 ) =  Q 1 / 3 δ(z −  Hs)

Due to different chemical reactions of each considered species, it is necessary

to solve the Fourier transform separately for  N Ox  and  SO 2. The  NOx  daylight reaction rate in mass basis is then given by





 d ¯ cNOx,day

= − λNO

 , 

 dt

 x ,d ay ¯

 cNOx

 CR

where

 k(T , s)ps,OH+ NO MNO

 λ

2

 x

 N O

 c

 x ,d ay =

 OH

 MOH MNO 2

and  cX  is the concentration of the species  X  in units of (g/m3) and  MX  is the molar mass of species  X  in units of (g/mol). 

Assuming that the chemical reactions occur in an isotropic fashion, 1/3 may be

attributed to each direction  x,  y  and  z, thus





 d ¯ cx,NO

 λ

 x ,d ay

= −  NOx,day ¯ cx,NO , 

 dt

 x

 CR

3





 d ¯ cyNO

 λ

 x ,d ay

= −  NOx,day ¯ cy,NO , 

 dt

 x

 CR

3





 d ¯ cz,NO

 λ

 x ,d ay

= −  NOx,day ¯ cz,NO , 

 dt

 x

 CR

3

and the Fourier transform for ¯

 cx(x, t)  is given by

∞

 C(α, t ) =

1

√

¯ cx(x, t)e− iαxdx . 

2 π −∞

Upon application of the Fourier transform in (31.1) with respect to the spatial coordinate

 ∂CNO

 λ

 x +

 N O

 iα ¯ uC

 x ,d ay

 N O

= − α 2 KxCNO −

 CNO , 

 ∂t

 x

 x

3

 x
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with initial condition (31.2) for the  N Ox  daylight reactions CNO (α,  0 ) =  Q 1 / 3

√

 e− iαx 0

 x

2 π

one obtains the solution





 C

 α 2 Kx + iα ¯ u+  λNOx ,day t

 N O (α, t ) =  D

3

 , 

 x

1 e−

where  D 1 is an integration constant. Consequently, the solution of the transformed problem is





 C

 α 2 Kx t+ iα(x 0+ ¯ ut)+  λNOx ,day t

 N O (α, t ) =  Q 1 / 3

√

 e−

3

 . 

(31.3)

 x

2 π

The inverse transform of (31.3) is given by

∞ 



¯ c

 α 2 Kx t− iα(x− x 0− ¯ ut)+  λNOx ,day t

 x,N O

 e−

3

 dα . 

 x ,d ay (x , t ) =  Q 1 / 3

2 π

−∞

Completing the square of the exponent

 λNO

 α 2 K

 x ,d ay

 x t −  iα(x −  x 0 − ¯

 ut ) +

 t =

3



/2

 λNO

 α(K

 x ,d ay

 x t ) 1 / 2 −  i(x −  x 0 − ¯

 ut )

+  (x −  x 0 − ¯ ut) 2 +

 t

2 (Kxt) 1 / 2

4 Kxt

3

and substituting  η =  α(Kxt) 1 / 2 −  i(x −  x 0 − ¯ ut)/ 2 (Kxt) 1 / 2 then

−  (x− x 0−¯ ut) 2  λNOx,day 

4 K

 t

∞

 x t

3

¯

 e

 cx,NO

 e− η 2  dη , 

 x ,d ay (x , t ) =  Q 1 / 3 e  2 π(Kxt) 1 / 2

−∞

√

where the integral is known to be

 π . Thus





 λ

¯

 N O

 c

 x ,d ay

 x,N O

exp

−  (x −  x 0 − ¯ ut) 2 −

 t

 x ,d ay (x , t ) =

 Q 1 / 3

2 (π Kxt) 1 / 2

4 Kxt

3
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and the same procedure is used to solve for ¯ cy,NOy,day(y, t)  and ¯ cz,NOx,day(z, t). 

The final solution for  N Ox  during day light is then



¯ cNO

exp

−  (x −  x 0 − ¯ ut) 2

 x ,d ay (x , y , z, t ) =

 Q

; 

64 π  3 K

4 Kxt

 x Ky Kzt  3



−  (y −  y 0 − ¯ vt) 2 −  (z −  Hs − ¯ wt) 2 −  λNO

 . 

4 K

 x ,d ay t

 y t

4 Kzt

The analogue steps are used to solve  N Ox  during night and  SO 2, where the latter has no contributions due to photo-chemical reactions. The solutions for these species are

¯ cNOx,night(x, y, z, t)

=

 Q

; 

64 π  3 KxKyKzt 3



× exp −  (x −  x 0 − ¯ ut) 2 −  (y −  y 0 − ¯ vt) 2

4 Kxt

4 Kyt



− (z −  Hs − ¯ wt) 2 −  λ 1 ,NO

4 K

 x ,night t +  λ 2 ,N Ox ,night t

 zt

with

 kNO

 λ

2+ O 3

1 ,N O

 c

 x ,night = 2

 O

 M

3

 O 3

 k(T , z)ps,NO

 kNO

 λ

2+ N O 3

2+ O 3

2 ,N O

 c

 x ,night =

 O

 M

3

 O K

3

 eq kN 2 O 5+ H 2 O(s)

and for  SO 2



¯ cSO (x, y, z, t) =

 Q

; 

 exp

−  (x −  x 0 − ¯ ut) 2

2

64 π  3 K

4 Kxt

 x Ky Kzt  3



−  (y −  y 0 − ¯ vt) 2 −  (z −  Hs − ¯ wt) 2 −  λSO t 4 K

2

 y t

4 Kzt

with

 k(T , z)ps,SO

 λ

2+ OH

 SO =

 c

2

 OH

 MOH
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Assuming that a continuous emission is a superposition of instantaneous emis-

sions during a small time interval  dτ , then

 t

¯ C(x, y, z, t) =

¯ c(x, y, z, t −  τ)dτ . 

0

Using a period of 6 .  26 h/day with sunlight (based on data from INMET - National Institute of Meteorology, Brazil) then photolysis occurs in that period of time, so

that the final solution for a mean concentration of  N Ox  and  SO 2 from a continuous source is





 t

¯

1

 CNO (x, y, z, t) =

 Q

; 

< 

exp

−  (x −  x 0 − ¯ u(t −  τ)) 2

 x

64 π  3 K

0

 (t −  τ ) 3

4 Kx(t −  τ )

 x Ky Kz

− (y −  y 0 − ¯ v(t −  τ)) 2 −  (z −  Hs − ¯ w(t −  τ)) 2

4 Ky(t −  τ )

4 Kz(t −  τ )

!/

−0 .  26 λNOx,day(t −  τ) + 0 .  74 (− λ 1 ,NOx,night(t −  τ) +  λ 2 ,NOx,night(t −  τ)) and





 t

¯

1

 CSO (x, y, z, t) =

 Q

; 

< 

exp

−  (x −  x 0 − ¯ u(t −  τ)) 2

2

64

4 K

 π  3 K

0

 (t −  τ ) 3

 x (t −  τ )

 x Ky Kz

!/

−  (y −  y 0 − ¯ v(t −  τ)) 2 −  (z −  Hs − ¯ w(t −  τ)) 2 −  λSO (t −  τ)

 . 

4 K

2

 y (t −  τ )

4 Kz(t −  τ )

31.4

Model Validation and Effects Due to Chemical

Reactions

The dispersion mechanism by advection-diffusion was validated using the Hanford

experiment with a stable boundary layer. In this experiment a tracer substance ( SF 6) was released during 30 min from a tower of two meter height. The measurements

were conducted in five distances between 100 and 3200 m, where in this work the

100 m distance was not considered. For more details about the experiment, see

reference [DoHo85]. The eddy diffusivities used in this work are given in reference

[DeEtAl96], for a stable planetary boundary layer. 

The contribution of the extension by chemical reactions was evaluated by the

Prairie Grass experiment, where the boundary layer was unstable. From a total of

61 experiments, only 20 were used in this work, those that were under unstable

boundary layer conditions. In this experiment a  SO 2 tracer was released from a position 46 cm above ground and during 10 min. Samples were taken in five

[image: Image 175]
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distances between 50 and 800 m, for more details, see [Ba58]. In this case, the vertical eddy diffusivity from reference [DeEtAl97] was employed. 

The wind speed at height  z  used in the current simulations follows a logarithmic profile. 







! 

 z +  z 0

 z

 z 0

 u(z) =  u∗ ln

−  ψm

+  ψm

 , z ≤  zB

 κ

 z 0

 L

 L

 u(z) =  u(zB), z > zB

Here  zB = max ( 0 .  1 zi; | L| ),  z 0 is the roughness length and  ψm  is the stability function, with  ψm = 4 .  7 (z/L)  for stable conditions and for unstable conditions ψm  is given by [BaBa75] as shown below. 



1 

1  ! 



1

1 +  ( 1 − 15 z )

2

2

1 +  ( 1 − 15 z )  4

4

 ψ

 L

 L

 m = − ln

+ 2 arctan 1 − 15 z

−  π

2

2

 L

2

In order to calculate the effects of the chemical reactions it is necessary to

obtain the reaction constants ( λ). Both the chemical kinetics coefficients and photochemical data were taken from reference [BuEtAl15]. The temperature was 295 K

and the atmospheric pressure was 1 atm. Further, the maximum natural tropospheric

ozone concentration according to [Ja99] was 10 × 10−6 mol of  O 3 per mol of air. Using these data the reaction constants used in this work are  λNOx,day =

9 .  701 × 10−6 s−1,  λ 1 ,NOx,night = 0 .  015 s−1,  λ 2 ,NOx,night = 4 .  858 × 10−22 s−1

and  λSO = 1 .  189 × 10−6 s−1. 

2

Although there were no measurements of  N Ox  and  SO 2 in the Hanford experiment and only  SO 2 measurements, the findings of these projects were used to show the effects of chemical reactions in the results, comparing the results for

pure advection-diffusion simulation to the ones where the chemical reactions were

“switched on” in the simulations. The results are shown in Fig. 31.1, where observed Fig. 31.1 Scatter plot for observed ( Co) and predicted ( Cp) concentration for the Hanford (left) and for the Prairie Grass experiment (right). The attribute “Normal” indicates dispersion by pure advection-diffusion, whereas  N Ox  and  SO 2 are the cases where chemical reactions were taken into account
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versus simulated concentrations are shown for the Hanford experiment (left) and

the Prairie Grass experiment (right). Here the attribute “Normal” indicates that only advection-diffusion is active without any chemical reactions and  N Ox  and  SO 2 are the results for dispersion considering also chemical reactions, as introduced in the previous section. 

In both figures the concentrations in “Normal” and  SO 2 simulation mode show coincidence so that the “Normal” dots are hidden behind the  SO 2 ones. This is different for the mean concentration of  N Ox  taking into account the chemical reactions, where a reduction of 87 .  87% under Hanford conditions and 41 .  08% under Prairie Grass experiment conditions occurs. Considering the chemical reactions of

 SO 2 the mean concentration reduction was 0 .  06% in the Hanford case and 0 .  008%

in Prairie Grass case. These findings allow to conclude that for the  SO 2 dispersion the simulation by only advection-diffusion is sufficient, the inclusion of chemical

reactions does not alter significantly the results for short time intervals. 

An additional comparison was made using the results from simulations by the

CALPUFF program, where the micrometeorological conditions were handled by

the CALMET/CALPUFF implementation [Sc16]. Again, runs with pure advection-diffusion and considering also chemical reactions were performed and compared. As

a domain of the simulation we considered the environment around a thermoelectric

power station close to the city of Linhares (Espirito Santo state) in the southeast

of Brazil. This location was chosen since the terrain is considerably flat and

thus provides almost laboratory like conditions. For the CALPUFF simulations a

grid cell 15 km × 15 km was chosen with a 1 km resolution and the duration of

the simulation was set to 90 h. The average values of the wind speed  u,  v,  w, the friction velocities  u∗,  w∗, the Obukhov length  L  and the planetary boundary layer height  zi  were taken from CALPUFF, and since  L >  0 the turbulent diffusion parameterization from [DeEtAl96] for stable conditions was used. Again, a significant concentration reduction was observed for  N Ox, with 93 .  04% using CALPUFF and 99 .  99% using the proposed model, whereas for  SO 2 the reduction was 1 .  31% and 1 .  85% for the CALPUFF and for the proposed model, respectively. 

In order to show the chemical reaction effects on the dispersion process, Fig. 31.2

shows the concentration isolines obtained by the proposed model for a purely

advection-diffusion process and for the simulation including chemical reactions

(Fig. 31.3). The  x  and  y  axes are the geographical coordinates in units of km. 

31.5

Conclusion

In the present contribution we discussed the influence of some chemical reactions, 

here for  N Ox  and  SO 2 on the dispersion process that was implemented by the advection-diffusion equation together with the equations that represent the reaction kinetics of the chemical process. A general comment is in order here, the dispersion process in nature follows a stochastic process, whereas the advection-diffusion

model calculates only mean values, so that one does not expect a perfect alignment

[image: Image 176]
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Fig. 31.2 Concentration isolines (in units of µg/m3) for  NOx  without (above) and with chemical reactions (below)

between observed and simulated concentrations but observes a distribution of points

around the bi-sector. For cases where the mean value is sufficient to characterize

the dispersion observed and simulated concentrations should coincide provided the

advection-diffusion equation is an appropriate model. 

In our analysis of simulations and experiments, despite the fact that the Han-

ford and Prairie Grass experiments are only short duration observations (30 and

10 min, respectively) the chemical reactions contributed to a reduction in the mean

concentration values, which was significant for  N Ox, where the reduction was two orders in magnitude and spurious for  SO 2. This tendency was also confirmed by the simulations using the CALPUFF program, where the concentration reduction (in %)

was fairly close to the findings of the present model. However, there is a difference in both simulations, CALPUFF uses constant reaction rates, which in our model

have an explicit temperature dependence, this feature is especially important, since the vertical temperature profile is not a constant, so that the reaction rates vary also with height. 

[image: Image 177]
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Fig. 31.3 Concentration isolines (in units of µg/m3) for  SO 2 without (above) and with chemical reactions (below)

Our results clearly show that the chemical reactions have to be considered in

pollution dispersion models in the atmospheric boundary layer since they have

contributions to changes also in the time dependence of pollutant concentrations. 

The authors of this work are completely aware of the fact that so far the experimental validation is not complete due to the fact that only one experiment made use of

one of the chemical compositions of interest, namely,  SO 2. Nevertheless, in the close future we will continue our analysis and include from the theoretical point

of view more substances such as  CO  and  CO 2 and from the experimental part using measurements of all these compounds around the thermoelectric power station

LORM close to the city Linhares in the Espirito Santo state in Brazil. 
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Chapter 32

On the Development of an Alternative

Proposition of Cross Wavelet Analysis

for Transient Discrimination Problems

Adalberto Schuck Jr. and Bardo E. J. Bodmann

32.1

Introduction

The wavelet transform in both continuous (CWT) and discrete (DWT) form is a

well-established tool in many application fields for one dimensional (1-D) signals

and for two or higher dimensional signals [Da92, AnEtAl04]. Its capability of describing the behavior of 1-D signals both in time and frequency/scale domains

with time resolution intrinsically adjusted by the scales used makes this a superior tool to analyze nonstationary processes. 

Extending the use of CWT, Rioul and Flandrin [RiFl92] defined the  Wavelet Scalogram  to estimate the wavelet spectrum of such processes. Hudgins et al. 

[HuEtAl93] introduced the definitions of  Wavelet Power Spectrum  and  Wavelet Cross Spectrum  to analyze climatological data. These definitions do not include the time varying aspect, since they are integrated over the time variable. Liu

[Li94] proposed later the definitions of  Wavelet Spectrum,  Cross Wavelet Spectrum (here named Wavelet Cross Spectrum, WCS) and  Wavelet Coherence (WCO) to

study the behavior of ocean wind waves. These definitions included time and

scale as independent variables and they constitute the so-called Cross Wavelet

Analysis (CWA), being the most used ones in the subsequent works. Torrence and

Compo [ToCo98] presented some applications of  Wavelet Power Spectrum (WPS), Cross Wavelet Spectrum, and  Cross Wavelet Power, and were the first establishing their confidence levels. Furthermore, they pointed out that Liu’s definition for the Wavelet Coherence estimator can be identically unitary at all times and scales and
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recommended some sort of smoothing in time or scale dimension to circumvent

this problem. Maraun and Kurths [MaKu04] pointed out other drawbacks with the CWA and improved the significance tests presented in [ToCo98] by means of Monte Carlo simulations. These significance tests were further developed in a

posterior work [MaEtAl07]. Thereafter, the CWA definitions have been largely used to analyze geophysical data [GrEtAl04, Nt10], electroencephalographic (EEG) and other biomedical signals [LaEtAl02, HeEtAl05, KlEtAl06] as well as in transient detection [Pl07] among others. Today, these definitions make part of the Wavelet Toolbox of Matlab R

>R2012a. 

Recalling that the definitions of CWA are obtained by point-by-point multipli-

cation of the CWT of the time series, then, if transients appear at different times

for different realizations of processes, the estimators of WPS and WCS will be

inconclusive, with as many local maxima as the total number of transients in the

time series. Therefore they cannot be properly used for detection of these non-

synchronized transients. This issue is exemplified in Sect. 32.3. Furthermore, the estimator of WCO has the inherent pitfall of being identically unitary as mentioned

in [ToCo98, MaKu04]. 

In [ScEtAl13], the authors presented alternative definitions for WPS, WCS, and WCO to detect multi-channel synchronized transients in noise and estimate the

delay (or lag) of the target transients present in two processes. The preliminary

assessment of the technique was made by a very simple signal test. Therefore, the

objective of this work is to present and discuss in a deeper way those alternative

definitions for WPS, WCS, and WCO that solve the aforementioned issues and

improve the assessment of the technique with alternative signals. 

32.2

Developments

 32.2.1

 Classic Definitions

The auto-correlation functions of stationary processes  x  and  y  and the cross-correlation function of the same stationary processes are respectively [BePi00]

 Rxx(τ ) =  E { x(t +  τ )x(t)}  , 

(32.1)

 Ryy(τ ) =  E { y(t +  τ )y(t)}

(32.2)

 Rxy(τ ) =  E { x(t +  τ )y(t)}

(32.3)

where  τ  is the lag or time interval between samples of time series and the

“overline” indicates the complex conjugate of the function. The Fourier transform

of (32.1), (32.2), and (32.3) are the auto and cross spectral density functions, respectively. These functions are the traditional way to analyze and describe the

behavior of stationary stochastic processes in time or frequency domain. Also
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the estimation errors of them are well established. But, as said before, they were

developed for stationary processes. Thus, it seems that the definitions of CWA

derived from CWT revealed to be a more appropriate tool to analyze non-stationary

stochastic processes. 

Let  x(t)  be a square integrable time series from a stochastic process  x, the CWT

of  x(t)  is given by [Da92, AnEtAl04]

∞





 t −  b

 Wx(b, a) = 1

√

 x(t ) ψ

d t

(32.4)

 a −∞

 a

where  ψ(t)  is the mother wavelet function used, the “overline” indicates the complex conjugate of the function,  a ∈ R , a >  0 is the scale variable and  b ∈ R is the time translation variable. The  Wx(b, a)  can be performed also in the frequency domain, 

√  ∞

 Wx(b, a) =

 a

 X(ω)Ψ (aω)ejωb  d ω , 

(32.5)

−∞

where  X(ω)  and  Ψ (ω)  are the Fourier transforms of  x(t)  and  ψ(t), respectively. 

The  Wy(b, a)  is obtained upon substituting  x(t)  by  y(t)  in (32.4). The usual mother wavelet used for CWA is the Morlet wavelet, described by [AnEtAl04, 

ToCo98, MaKu04]

 ψMor (t) =  π−1 / 4 e− t 2 / 2  ejω 0 t , (32.6)

where  t  and  ω 0 are dimensionless. 

Its Fourier transform is given by

 ΨMor (ω) =  π−1 / 4 e− (ω− ω 0 ) 2 / 2  . 

(32.7)



This wavelet is not admissible (admissibility means R | Ψ (ω)| /| ω| d ω < ∞ ) but for practical purposes, for  ω 0  >  5 .  5 it can be considered [AnEtAl04]. The Morlet wavelet is usually chosen for CWA because being a complex function, it provides

complex functions for its CWTs, as in Fourier analysis. Also, its scale  a  is easily related with the Fourier frequency  f [ToCo98] by

; 

1 /f = 4 πa/(ω 0 +

2 +  ω 2 ) . 

(32.8)

0

The scalogram of the CWT is defined as [RiFl92]

| W(b, a)|2 =  W(b, a)W(b, a)

(32.9)
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and describes the energy distribution of the signal at a certain time  t  with a scale  a. 

Further, the Wavelet Power Spectrum (WPS) of a process  x  is defined by [ToCo98, 

GrEtAl04, MaKu04]

B

C

 W P Sx(b, a) =  E Wx(b, a)W x(b, a) , 

(32.10)

where  E {·} denotes the expectation value operator and the overline indicates the complex conjugate. The same definition can be applied to process  y (named W P Sy(b, a)), substituting  x  by  y  in (32.10). Notice that WPS can be interpreted as the expectation value of scalograms. The Wavelet Cross Spectrum (WCS) is an

extension of expression (32.10) and is defined by

B

C

 W CSxy(b, a) =  E Wx(b, a)W y(b, a) . 

(32.11)

Finally, the Wavelet Coherence (WCO) is defined by

| WCSxy(b, a)|2

 W COxy(b, a) =

 . 

(32.12)

| WP Sx(b, a)|| WP Sy(b, a)|

These definitions can appear in a slightly different form according to several

authors, for instance, in [HuEtAl93, LaEtAl02, KlEtAl06] the complex conjugate is applied to the first element of the expression. Also, in [HuEtAl93, Nt10], an integration over  b  is performed on expressions (32.10) and (32.11), resulting in functions depending only on scale, instead of scale and time. However, they

essentially express the same ideas. If there are  N  realizations of processes, (32.11)

can be estimated by

 N



 k

 W ˜

 CSxy(b, a) = 1

 W k

 N

 x (b, a)W y (b, a) , 

(32.13)

 k=1

where  W k

 x (b, a)  and  W k

 y (b, a)  are the CWT of realizations  xk [ n] and  yk [ n], respectively.  W ˜

 P S

 N

 x (b, a)

=

1

| Wk

 W P S

 N

 k=1

 x (b, a)|2

and

˜  y(b, a) =



1

 N

| Wk

 N

 k=1

 y (b, a)|2 are performed in a similar way. If there is only one realization

of each process, expression (32.11) could be estimated either by a local averaging along a time direction (smoothing), assuming the process to be stationary over a

certain time interval, or in scale direction, assuming that neighboring scales have

similar power [MaKu04]. 

With respect to expression (32.12), it was mentioned that if no smoothing is performed in time or scale domain over both numerator and denominator estimators, 

then  W ˜

 CSxy(b, a)  will result in a trivial unitary response because numerator and

denominator of (32.12) will be equal [ToCo98, MaKu04, MaEtAl07]. This was one of the reasons to suggest a smoothing separately for numerator and denominator in

order to solve this flaw. 
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 32.2.2

 Alternative Definitions for Cross Wavelet Spectrum

 and Wavelet Coherence

When analyzing stationary processes, correlation functions perform a time transla-

tion of one sequence in the time domain and the spectral density functions perform

a point by point multiplication in the frequency domain [BePi00]. However, even though the CWT has both time and frequency domain representation, WPS and

WCS are obtained just by a point by point multiplication of the CWT of  x  and  y. 

This fact, together with the averaging process defined in (32.13) for transient events to occur at different times in  x  and  y  series, renders the WCS inconclusive, with as many local maxima at the respective positions of each event. Therefore, if there

is some fixed delay between event appearance in an  x  and  y  process, it will be hardly estimated by (32.13), contrarily to the traditional correlation analysis. This scenario gets worse if noise is present in the realizations, which will be exemplified in the next section. Moreover, the estimation of WCO can result in a trivial unitary response. For these issues and since CWT has both scale (or related frequency)

and time as independent variables, it seems more appropriate if definitions for

WPS, WCS, and WCO had some sort of correlation or convolution operation in the

time domain along with multiplication in the scale domain. With this idea in mind

and drawing an analogy with the Wiener-Khintchine relations [Nt10], we propose different definitions for WPS and WCS by:

 W P Sx(b, a) =  E {| CW T { Rxx(t)} |}  , 

(32.14)

B

B

C C

 W P Sy(b, a) =  E | CW T Ryy(t) |  , 

(32.15)

B

B

CC

 W CSxy(b, a) =  E CW T Rxy(t)

 , 

(32.16)

where  Rxx(τ ),  Ryy(τ ), and  Rxy(τ )  are the auto-correlation functions of stationary processes  x  and  y  and the cross-correlation function of stationary processes as defined in (32.1), (32.2), and (32.3), respectively. Now the variable  b  of CWT is related with the  lag τ  between samples of time series and for a fixed scale  a, W P Sx(b, a),  W P Sy(b, a), and  W CSxy(b, a)  can be seen as the auto-correlation of the signals  x  and  y  and cross-correlation filtered by a scaled mother wavelet  ψ. 

Taking into account that since  Rxx( 0 ) ≥ | Rxx(τ )| the maximum value of WPS will be at  b = 0 , but for WCS, this maximum value can occur at a

different time position. So, in a quite similar way as in correlation analysis, one

can normalize (32.16) in order to obtain a new WCO by:

| WCSxy(b, a)|2

 W COxy(b, a) =

 . 

(32.17)

| WP Sx( 0 , a)|| WP Sy( 0 , a)|
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For  K  time series  xk[ n] and  yk[ n], (32.14), (32.15), and (32.16) can be estimated by:

 K







 W ˜ P S

ˆ

 x (b, a) = 1

| CWT Rk [ m] |  , 

(32.18)

 K

 xx

 k=1

 K







 W ˜ P S

ˆ

 y (b, a) = 1

| CWT Rk [ m] |  , 

(32.19)

 K

 yy

 k=1

 K







 W ˜ CS

ˆ

 xy (b, a) = 1

| CWT Rk [ m] |  , 

(32.20)

 K

 xy

 k=1

where

 N − m



ˆ Rk [

 xx m] =

1

 xk[ n +  m] xk[ n]  ,  0 ≤  m ≤  N − 1

(32.21)

 N −  m n=1

 N − m



ˆ Rk [

 yy m] =

1

 y[ n +  m] y[ n]  ,  0 ≤  m ≤  N − 1

(32.22)

 N −  m n=1

 N − m



ˆ Rk [

 xy m] =

1

 xk[ n +  m] yk[ n]  ,  0 ≤  m ≤  N − 1

(32.23)

 N −  m n=1

are the unbiased auto-correlation and cross-correlation estimators [BePi00]. 

32.3

Signal Composition and Transient Analysis

Let us assume that one wants to find a single transient event  s(t)  added to a zero mean, unitary variance gaussian noise  n(t)  in realizations of  x(t) =  s(t) +  G 0 nx(t), where  G 0 is adjusted to give some desired signal-to-noise ratio (SNR) and  y(t) =

 s(t −  τ ) +  G 0 ny(t). The noise sequences  nx(t)  and  ny(t)  will be independent. 

Furthermore, for each realization the event can appear only once and at any moment

within some time interval in the  x  process. Then the problem here is to detect  s(t)  in both processes and estimate the delay  τ  between the processes. Although the noise used here is stationary, this model can also work in nonstationary signals which

can be considered stationary in a time interval, as in EEG event related potential

(ERP) analysis [LaEtAl02, HeEtAl05]. The transient chosen to be detected here is a modulated Gaussian pulse  s(t) =  e− t 2 cos 6 t, synthesized using Matlab with a sample rate of 25 samples/s. This is shown in Fig. 32.1. The noise added in the realizations were also generated with Matlab  randn  command, with 2048 sample
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Fig. 32.1 Modulated Gaussian pulse  s(t) =  e− t 2 cos 6 t, sampled at a rate of 25 samples/s points. The delay between events in  x  and  y  realizations was set to 500 samples. 

Three realizations of these signals were generated as shown in Fig. 32.2, for  SN R =

5 dB, by means of averaging. 

Then the CWT of those realizations were calculated using the Matlab  cwt

function with Complex Morlet mother wavelet. The Scalograms of these CWTs

are shown in Fig. 32.3. Notice the events were well detected as local maxima at approximately the same scales but in different positions for each realization, as

expected. Then, using the estimator of WCS given by (32.13) for these realizations, the obtained result is shown in Fig. 32.4. 

To make things more challenging, two additional pulses with Gaussian shape

 s 1 (t) =  e− t 2 cos  t  and  s 2 (t) =  e− t 2 cos 12 t  were created and these two pulses were added in each of the former realizations at random positions, creating six

new realizations, as shown in Fig. 32.5. Notice that the target transient still keeps the same delay between the realizations  x  and  y, but the other transients do not. 

Because of the different frequencies, the new transients will appear also in different scales at the plane time-scale. The scalograms of these CWTs are shown in Fig. 32.6

and the estimator of WCS for these new realizations is shown in Fig. 32.7. 

Although the events are still detected, one cannot define the delay between tran-

sients in  x  and  y  processes. Also, the more realizations one has, the more local maxima will appear in this estimator. Thus for a good transient detection with traditional CWA techniques, the events should occur always at same time for each realization

and this feature makes this technique inappropriate for an analysis of nonsynchro-

nized transients or if one wants to estimate the delay between two processes. 
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Fig. 32.2 Three realizations of processes  x (a), (c), and (e) and  y (b), (d), and (f) for  SN R = 5 dB

and delay of 500 samples between events in  x  and  y  processes

Now using the new definitions in the detection problem proposed in this work, 

the correlation estimators of (32.1), (32.2), and (32.3), given by K



˜ R

ˆ

 xx [ m] = 1

 Rk [ m]  , 

(32.24)

 K

 xx

 k=1

 K



˜ R

ˆ

 yy [ m] = 1

 Rk [ m]  , 

(32.25)

 K

 yy

 k=1

 K



˜ R

ˆ

 xy [ m] = 1

 Rk [ m]

(32.26)

 K

 xy

 k=1

where ˆ

 Rk [

[

[

 xx m] , ˆ

 Rkyy m], and ˆ

 Rkxy m] of these signals were determined by Matlab

 xcorr  function, were calculated. Then, the CWT of ˜

 Rxx[ m] , ˜

 Ryy[ m], and ˜

 Rxy[ m]

of the three first realizations (the ones without other pulses randomly added) were

calculated, providing the new definitions of WPS and WCS. The result of WCS (the
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Fig. 32.3 Scalograms of the three realizations of processes  x  and  y  for  SN R = 5 dB and delay of 500 samples between events in  x  and  y  realizations

|Estimator WCS| =|W*x(b,a).Wy(b,a)|
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Fig. 32.4 WCS estimator for the three realizations from processes  x  and  y, for  SN R = 5 dB and delay of 500 samples between events in  x  and  y  processes
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Fig. 32.5 Three realizations of processes  x (a), (c), and (e) and  y (b), (d), and (f) for  SN R = 5 dB

and delay of 500 samples between events in  x  and  y  processes and some spikes randomly added point of our interest here) is Fig. 32.8. The same procedure was repeated for the last three realizations (the ones with other pulses randomly added) and the WCS

obtained is shown in Fig. 32.9. 

32.4

Discussion and Conclusions

Comparing the results obtained with the traditional definition of WCS (Figs. 32.4

and 32.7) and the one proposed here (Figs. 32.8 and 32.10) for the detection problem proposed, one can see that the latter provides a significant information

about the frequency/scale location of the transients and the delay time between

transients in processes  x  and  y. With the increase of realizations the traditional WCS estimator suffers a degradation which is not found in the new WCS estimation, 

which is perturbed only by a reduction in the SNR. The new estimators of WCO are

normalized versions of WCS and the results are still significant in contrast to the

traditional version which can be identically unity if no smoothing is applied. Also, 
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Fig. 32.6 Scalograms of the three realizations of processes  x  and  y  for  SN R = 5 dB and delay of 500 samples between events in  x  and  y  realizations with some spikes randomly added the new technique was found more robust to the presence of other noncorrelated

spikes and transients in the realizations (Fig. 32.11). 

Concluding, these new definitions proposed in the present contribution work

better in a nonsynchronized transient event detection in noise as compared to the

traditional definitions. Furthermore the new definitions may be seen as filtered

versions of auto and cross-correlation of the signals, all estimator errors and

confidence tests developed for correlation functions or spectral density functions

[BePi00] can be applied to these new definitions. These ideas will be the focus of future works, where further theoretical considerations as well as experimental issues will be addressed. Finally, by means of CWT-2D use [AnEtAl04], the presented idea can easily be extended to nonstationary processes, where the definitions of

correlation functions have two time axes as independent variables. This is also

subject of future research. 
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Fig. 32.7 WCS estimator for the three realizations from processes  x  and  y, for  SN R = 5 dB and delay of 500 samples between events in  x  and  y  processes with some spikes randomly added
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Fig. 32.8 New estimator of  W CSxy (b, a), for the three realizations from processes  x  and  y, for SN R = 5 dB and delay of 500 samples between events in  x  and  y  processes
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Fig. 32.9 New estimator of  W COxy , for the three realizations from processes  x  and  y, for  SNR =

5 dB and delay of 500 samples between events in  x  and  y  processes with some spikes randomly added
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Fig. 32.10 New estimator of  W CSxy (b, a), for the three realizations from processes  x  and  y, for SN R = 5 dB and delay of 500 samples between events in  x  and  y  processes with some spikes randomly added
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Chapter 33

A Simple Non-linear Transfer Function

for a Wiener-Hammerstein Model

to Simulate Guitar Distortion and

Overdrive Effects

Adalberto Schuck Jr., Luiz F. Ferreira, Ronaldo Husemann, 

and Bardo E. J. Bodmann

33.1

Introduction

In music, the holy grail for guitarists, bassist and keyboard players is the signal

response by valve (or tube) amplifiers. This preference is justified by the kind of

distorted sound they can provide at high volumes, which many musicians appreciate

and use to define their sonic identity. This is due to the particular way valves

distort the sound when they are overdriven, a clearly particular non-linear behaviour. 

3

More precisely, the input–output signals are related by  I (t) =  K(vin(t))  2 . In the beginning of effect pedal developments and in order to reproduce the same kind

of distortion caused by overdriven valves, many electronic devices based on diode

limiters were designed, the so-called effects of Fuzz, Distortion and Overdrive. 

More recently, a new philosophy emerged, namely valve amplifiers are modulated

using digital signal processing techniques. One of the frequently used models is

the Wiener-Hammerstein cell [Og07], an extension of the Volterra-Wiener theory for modeling non-linear systems (NLS) [Sj12, RoEtAl14, ScEtAl14, MoEtAl15, 

EiZo16, EiEtAl17]. This model and its relation to the real signal amplification is sketched in Fig. 33.1. 

For the Static Non-Linear Transfer function (NLTF) block, usually a sigmoid like

function is used, such as the hyperbolic tangent ( tanh) or arc hyperbolic sine ( arc A. Schuck Jr. · L. F. Ferreira · R. Husemann

Electrical Engineering Department (DELET), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil

e-mail: rhusemann@inf.ufrgs.br

B. E. J. Bodmann ()

Mechanical Engineering Department (DEMEC), Federal University of Rio Grande do Sul

(UFRGS), Porto Alegre, RS, Brazil

e-mail: bardo.bodmann@ufrgs.br

© Springer Nature Switzerland AG 2019

425

C. Constanda, P. Harris (eds.),  Integral Methods in Science and Engineering, 

https://doi.org/10.1007/978-3-030-16077-7_33

[image: Image 188]

426

A. Schuck Jr. et al. 

Fig. 33.1 The Wiener-Hammerstein Cell and the modeling diagram
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Fig. 33.2 Typical non-linear transfer functions: (a) hyperbolic tangent function and (b) arc hyperbolic sine function

 sinh) functions (shown in Fig. 33.2). Also composite or piecewise functions were proposed by [Pa09, Ye08, MoEtAl15, EiZo16] to describe this block. 

All these techniques have their advantages, but also have their drawbacks, like

computational complexity among others. Especially, the determination of all the

parameters of the entire system with compliance to a high fidelity criterion mainly

with composite non-linear transfer functions is a tedious task for commonly used

 brute force  adaptive algorithms. Hence, the objectives of this work are lined out in the sequel. 

1. Development of a non-linear transfer function, 

• that is adequate to describe hard or soft, symmetrical or asymmetrical clipping

limiters; 

[image: Image 189]

33

A Simple Non-linear Transfer Function for a Wiener-Hammerstein Model

427

• that is as simple as possible, i.e., with as few parameters as possible, which

are to be determined by some algorithm (in this work a non-linear least square

algorithm); 

• that is consistent with the physics behind the circuits used to implement these

limiters. 

2. Identification and evaluation of the non-linear transfer function parameter set by means of non-linear parametric inference with real data. 

33.2

The Development of the NLTF

The idea behind the current NLTF developments is that analogical distortion, 

overdrive and fuzz pedal effects are based on semiconductor devices (diodes and

LEDs) that limit the audio signal and depending on the specific choice of the

electrical components they produce soft or hard clipping. Figure 33.3 shows an example for a semiconductor limiter circuit. 

Considering a generic semiconductor limiter circuit, the Shockley equation for

semiconductor PN junctions and the Kirchhoff laws for circuits are the starting

point to develop an expression that describes the non-linear behaviour of the limiter circuit. Then, in order to open up for some degrees of freedom that allow to take

influence on the shape of the NLTF some of the parameters are generalised and the

equation that characterises the transfer function obtained is a generic mathematical expression for which the parameters shall be determined. Our choice so far is a nonlinear least squares algorithm, but other parametric inference methods may be used, 

which might even improve convergence of parameter estimation. 

Fig. 33.3 An example for a semiconductor limiter circuit, where the “secret” of the limiter effect is marked in red
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Fig. 33.4 Generic limiter

circuit with diodes to define

the NLTF parameterisation

The generic limiter circuit with diodes shown in Fig. 33.4 is used to define the non-linear response of the input signal and defines the parametrised form of the

aforementioned generic expression to be calibrated by parametric inference. 

The principal features of this circuit that define some of its characteristics are

different electric resistances  Rs 1 and  Rs 2 that constrain the asymptotic behaviour of the non-linear transfer function curve at its limits. Further, the number of diodes in either polarisation direction in general can be different, which allows to model

symmetric as well as asymmetric limiters. 

The standard Kirchhoff equations for this circuits are

 iin =  i 1 −  i 2  , 

(33.1)

and

 M



 Vout =  Rs 1 i 1 +

 VD

(33.2)

1 k

 k=1

(

)

 N



= −  Rs 2 i 2 +

 VD

 . 

(33.3)

2 k

 k=1

The Shockley equation is a well-established equation for PN junctions (one

diode) in the literature [MiHa72]. 







/

 Vd

 id =  Is  exp

− 1  , 

(33.4)

 ηVt
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Here  Id  and  Vd  are the current and voltage over the diode,  Is  is its reverse current,  η

is a phenomenological constant depending on the semiconductor used and typically

in the range of [1  . . .  2], and  Vt =  kT  with  k  the Boltzmann constant,  T  the q

temperature and  q  is the electron charge.  Vt  is approximately 26 mV at 25 ◦C. The voltage across the diode  Vd  is then





 id

 Vd =  ηVt  ln

+ 1  . 

(33.5)

 Is

Due to the functionality of diodes if  iin >  0, only the diodes  D 1 k  conduct and if  iin <  0 only the diodes  D 2 k  contribute to the current. In view of constructing a composed non-linear transfer function, Eq. (33.1) can be decomposed. 

 i

 i

1 if  iin >  0

 in =

−

 . 

(33.6)

 i 2 if  iin <  0

Considering that all diodes have equal physical properties and upon substituting

Eqs. (33.6) and (33.5) in Eqs. (33.2) and (33.3) yields the voltage of the output signal as a function of the input current. 

⎧





⎨

 MηV

 iin

 T  ln

+ 1 +  R

 I

 s 1 iin  if  iin ≥ 0

 s

 Vout =





⎩

 . 

(33.7)

− NηV

− iin

 T  ln

+ 1 +  R

 I

 s 2 iin  if  iin <  0

 s

Here  iin =  Vin− Vout . 

 Rin

Finally, obtaining the generalisation by treating the  constants Is,  MηVT  and N ηVT ,  Rs 1 and  Rs 2 as independent coefficients (parameters) to be determined from parametric inference the generic parameterisation for the NLTF reads

⎧





⎨

 A  ln  iin + 1 +  C i

 B

 in

if  iin ≥ 0

 Vout =









⎩

 , 

(33.8)

−  D  ln − iin + 1 −  F i

if  i

 E

 in

 in <  0

where  A,  B,  C  and  D,  E,  F  are the parameters to be estimated from the non-linear least square fit (33.8) of the experimental data set. From the decomposition it is evident that the positive part ( iin >  0) of the non-linear transfer function is modeled in a different way than the negative part ( iin <  0), i.e. allows for asymmetric transfer functions. 
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33.3

Model Validation

In order to validate the proposed model, six different limiters were built (see

Fig. 33.5), its response recorded and the best fit for the transfer function determined. 

The following components were analysed:

• (1) An asymmetrical limiter with 1N4148 silicon signal diodes; 

• (2) a symmetrical limiter with 1N35 germanium diodes; 

• (3) a symmetrical limiter with 3mm red LEDs. 

• (4) an asymmetrical limiter, composed by two MOSFET transistors and in one

branch with 1N4148 silicon signal diodes. 

In addition two active circuits with operational amplifiers (OpAmp) were tested

because those are used by the most popular commercial overdrive pedals, and whose

principles are different from the Shockley equation because they use Operational

Amplifiers (OpAmp) as active gain element and the diodes in the negative feedback. 

In the following we present two configurations. 

• (1) Symmetrical limiter with OpAmp and 1N4148 diodes; 

• (2) Asymmetrical limiter with OpAmp and 1N4148 diodes. 

The related circuits are shown in Fig. 33.6. 

Fig. 33.5 Four different limiters: (1) asymmetrical limiter with 1N4148 silicon signal diodes; (2) symmetrical limiter with 1N35 germanium diodes; (3) symmetrical limiter with 3 mm red LEDs, asymmetrical limiter with two MOSFET transistors and in one branch with 1N4148 silicon signal diodes; (4) asymmetrical limiter with 2N7000 MOSFETs and 1N4148 diodes
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Fig. 33.6 Two active limiters: (1) Symmetrical limiter with OpAmp and 1N4148 diodes; (2) asymmetrical limiter with OpAmp and 1N4148 diodes

The signal  Vin  used as input for the circuits without OpAmps was a sine wave of 10 Hz and 10 Vpp  generated by a BK Precision Function Generator. For the circuits with OpAmp the voltage was changed to 5 Vpp  once the circuits have a voltage gain of 2. The resistor  Rin  was chosen to obtain  iin ≈ 10  mApp. About 10 s of  Vin  and Vout  voltage signals were acquired with an Agilent Infinium 54833D MSO Digital Oscilloscope, with a sample rate of 100 kS/s. 

For the non-linear least square fit algorithm (NLLSA) we chose the

’LevembergMarquardt’ method [Ma63] from the Matlab library using the options ’Robust’’LAR’ (the Least Absolute Residual method). The fit

procedure was applied separately to the positive and negative part of the signals and consequently these were also analysed separately by the aforementioned algorithm. 

Besides the coefficients (the parameters), the Root Mean Squared error (standard

error, RMSE) between the data and the fitted curve was computed. 

33.4

Results

In the following we present the results for the six models specified in the previous section. Figure 33.7 shows the obtained results for the best fit curve ( Vout  versus  iin) for an asymmetric Silicon limiter, a symmetric Germanium limiter, a symmetric Red

LED limiter, an asymmetric MOSFETs plus 1N4148 limiter, a symmetric OpAmp

limiter and an asymmetrical OpAmp limiter, respectively. The obtained coefficients

by the non-linear fit together with the root mean square errors (RMSE) of the

positive and the negative branch of the signal are shown in Table 33.1. 
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Fig. 33.7  Vout  vs  iin  and best fit curve for (1) Asymmetric Silicon limiter, (2) Symmetric Germanium limiter, (3) Symmetric Red LED limiter, (4) Asymmetric MOSFETs plus 1N4148

limiter, (5) Symmetric OpAmp limiter and (6) Asymmetrical OpAmp limiter

33

A Simple Non-linear Transfer Function for a Wiener-Hammerstein Model

433

05

05

−

−

ckt.6

0.1541

0.0002953

0.06554

0.06554

0.0002684

0.2893

6.5908e

4.5356e

E

05

05

05−

14

−

−

−

ckt.5

0.05309

3.547e

0.9967

0.1028

0.000722

3.69e

3.8811e

3.7588e

04

04

06

14

09

−

−

−

−

−

ckt.4

0.166

4.27e

1874

0.08164

1.419e

2.428e

8.7134e

2.4383e

04

04

08

14

08

14

−

−

−

−

−

−

ckt.3

0.1336

1.861e

2.617e

0.1387

2.541e

2.564e

7.0538e

8.5925e

05

05

05

05

−

−

−

−

 e

 e

 e

 e

 .  0573

 .  116

 .  36

 .  08274

 .  449

 .  72

 .  6879

 .  8320

0

1

0

2

3

3

ckt.2

75

67

errors

RMSE

04

04

08

08

14

−

−

and

−

−

−

ckt.1

0.06116

9.567e

0.9863

0.1268

8.338e

2.337e

1.6689e

3.6735e

ficients

coef

Calculated

RMSE

)

and

−

33.1

fs. 

bleaT Coef A B C D E F RMSE(+) RMSE(

434

A. Schuck Jr. et al. 

33.5

Discussion

Although a non-linear transfer function model was proposed and applied to six lim-

iter circuits the RMSE standard errors were in the range of [3 .  69 e−05  . . .  8 .  59 e−04]

(e.g. from 0.003% to 0.08%). Strictly speaking, the motivation of the parameterisa-

tion using the Shockley equation is not justifiable from the physical point of view, due to the fact that in the case of a LED diode, it does not have a PN transition, and in the case of the two active circuits with operational amplifiers the diodes control the amplification behaviour through the feedback loop and thus are not directly

related to the output voltage. Nevertheless, all non-linear transfer functions for the six circuits show a fairly good agreement between the experimental findings and its

parameterised representation. 

Application of the Marquardt-Levenberg algorithm showed a very sensitive

parameter dependence on the data. Thus in order to improve convergence it was

necessary to provide reasonable  starting points  for the algorithm, which were obtained from the devices’ data sheets for the constants of the Shockley equation. 

Although visually the Red LED circuit got the poorest fit, the RMSE is acceptably

low 7.0538e−04 and 8.5925e−04 for the positive and negative branches of the

signal, which indicates that the model can also be used for this circuit. As a matter of fact the LED diode has a different construction material (gallium arsenide), whereas diodes are based on germanium or silicium diodes [Sz06], which probably explains why the Shockley equation did work less for the LED in comparison with the other

diodes. Since the LED among the considered circuits may be recognised as a  very

 hard clipping limiter circuit  one may reason that the proposed non-linear transfer function here does only work in limited cases for diodes with different physical

principles, such as LED and Schottky diodes. Although active circuits based on

operational amplifiers are different as compared to the passive limiter versions, as shown above also for these cases the proposed transfer function parameterisation

worked surprisingly well and thus may be used as an operational model. 

33.6

Conclusions

In the present work we proposed a “semi-universal” non-linear transfer function

to model semiconductor limiter circuits and simulate its response. The parameter-

isation was based on Kirchhoff’s laws together with the Shockley equation for the

semiconductors with PN transition. Although three of the circuits may not be related physically to the Shockley equation the derived parameterisation reproduces in all

cases with a fairly good fidelity the transfer function. For effect pedal simulations they provide an efficient starting point since from the computational point of view

function calls in general work faster than iterative or schemes that use interpolation techniques. 
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Without further justification of the employed method the coefficients for each

model were determined using parametric inference based on the Levenberg-

Marquardt algorithm, where the initialisation of the algorithm was provided from

an a priori knowledge of the reverse current  Is, the  η  parameter of the diodes from the diode datasheets. The goodness-of-fit measured by the RMSE was in the range

of [3 .  69 e−05  . . .  8 .  59 e−04] (e.g. from 0.003% to 0.08%), where the poorest fit obtained (but still good enough to be used) was for the red LED circuit. Evidently, 

more efficient inference methods may be used, however we leave this issue for a

future investigation. 

Note that existing Fuzz, Distortion or Overdrive models used in digital effect

pedals in general use numerical algorithms and thus need more computational

power to make them work satisfactory in usage. The present proposal resulted in

an analytical representation of the non-linear transfer function which can generate

directly from a discretised input signal the corresponding output signal according

to a desired response of a chosen limiter model. Concluding the authors consider

the presented findings as a step into a direction, where analogue effects such as the typical characteristic response of valve amplification may be simulated by a digital implementation of analytical non-linear transfer functions in devices which make

use of CPUs. 
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Chapter 34

Existence of Nonlinear Problems:

An Applicative and Computational

Approach

Aditya Singh, Mudasir Younis, and Deepak Singh

34.1

Introduction

In recent times, many results introduced, related to metric fixed point theory

endowed with a partial order. An initiated result in this track was provided by

Ran and Reurings [RaEtAl04], where they presented a fixed point result, which can be considered as a junction of two fixed point theorems: Banach contraction

principle and Knaster-Tarski fixed point theorem. Moreover, the result achieved in

[RaEtAl04] was extended and generalized by many researchers, some of which are in [Ag08], [Al10], [La09]. 

Recently, Wardowski [Wa12] introduced the notion of  F -contraction. This kind of contractions generalizes the Banach contraction. Newly, Piri and Kumam [Pi14]

enhanced the results of Wardowski [Wa12] by initiating the idea of an  F -Suzuki contraction and obtained some interesting fixed point results. 

In this article, we introduce the concept of  (F, ψ)-rational type contraction in the setup of metric space and examine the existence of fixed points for such type

of contraction. Some examples and applications are given to illustrate the realized

improvement. 
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34.2

Preliminaries

Throughout the article, we denote by R the set of all real numbers, by R+ the set of all positive real numbers and by N the set of all positive integers. 

Definition 1 Let  X  be a nonempty set and let ? be a binary relation on  X. We say that ? is a partial order on  X  if the following conditions are satisfied:

(i) For every  x ∈  X, we have  x ?  x. 

(ii) For every  x, y, z ∈  X, we have  x ?  y, y ?  x @⇒

 x =  y. 

(iii) For every  x, y, z ∈  X, we have  x ?  y, y ?  z @⇒

 x ?  z. 

Definition 2 ([Jl16]) Let  (X, d)  be a metric space and ? be a partial order on  X. 

we say that the partial order ? is  d-regular if the following condition is satisfied: For every sequences { an} , { bn} ⊂  X, we have

lim  d(an, a) = lim  d(bn, b) = 0 , 

 an ?  bn,  for all  n

@⇒  a ?  b, 

 n→∞

 n→∞

where  (a, b) ∈  X ×  X. 

Definition 3 ([Wa12, Pi14, Se13]) Let us denote by  ΔF  the set of all functions F : R+ → R satisfying the following conditions:

( Δ(F  1 )). 

 F  is strictly increasing, that is, for  α, β ∈ R+ such that  α < β  implies F (α) < F (β); 

( Δ(F  2 )). 

There is a sequence { αn}∞

of positive real numbers such that

 n=1

lim  F (αn) = −∞; 

 n→∞

( Δ(F  3 )). 

 F  is continuous on  ( 0 , ∞ ). 

Take  Ψ = { ψ : [0 , ∞ ) → [0 , ∞ ) :  ψ  is upper semi continuous and non-decreasing with  ψ(t) < t  for each  t >  0}. 

34.3

Fixed Point Problem Under Constraint Inequality

for  (F, ψ)-Rational Type Contraction

In this section, the following problem has been discussed: Find  x ∈  X  such that x =  Tx, 

(34.1)

 Ax =  Bx. 

where  T , A, B :  X →  X  are given operators and  (X, d)  is a metric space with a partial order ?. Now, we introduce the following definition:

Definition 4 Let  (X, d)  be a complete metric space including a partial order ?. 

Let  T , A, B :  X →  X  are given operators. We say that  T  is  (F, ψ)-rational type
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contraction on a metric space  X, if there exist  F ∈  ΔF ,  τ >  0 and  ψ ∈  Ψ  such that for all  x, y ∈  X  with  T x =  T y, we have









 Ax ?  Bx, By ?  Ay @⇒  F d(T x, T y) ≤  F ψ M(x, y)

−  τ

(34.2)

where





 d(y, T y)[1 +  d(x, T x)]  d(y, T x)[1 +  d(x, T y)]

 M(x, y) = max  d(x, y), 

 , 

 , 

1 +  d(x, y)

1 +  d(x, y)

(34.3)

Our main result runs as follows. 

Theorem 1  Let (X, d) be a complete metric space including a partial orders ?  . 

 Let T , A, B :  X →  X are given operators. Assume that the following assumptions are true, for the problem (34.1):

 1. ?  is d-regular; 

 2. T , A, B are continuous; 

 3. there exists x 0 ∈  X such that Ax 0 ?  Bx 0 ; 

 4. for all x ∈  X, we have Ax ?  Bx @⇒  BT x ?  AT x; 5. for all x ∈  X, we have Bx ?  Ax @⇒  AT x ?  BT x; 6. if there exist F ∈  ΔF , τ >  0  and ψ ∈  Ψ such that for all x, y ∈  X with T x =  T y, we have









 Ax ?  Bx, By ?  Ay @⇒  F d(T x, T y) ≤  F ψ M(x, y)

−  τ

(34.4)

 where M(x, y) is defined as in (34.3). 

 Then

 (i) The sequence { xn}  converges to some u ∈  X such that Au =  Bu. 

 (ii) The point u ∈  X is a solution of the problem (34.1). 

 Proof  To prove (i), it follows immediately from assumption (3) that there exists a point  x 0 ∈  X  such that  Ax 0 ?  Bx 0. We construct a sequence { xn} in the following way:

 xn+1 =  T xn  for all  n ∈ N ∪ {0} . 

From assumption (4), we have  Ax 0 ?  Bx 0 @⇒  BT x 0 ?  AT x 0 =  Bx 1 ? 

 Ax 1. 

From assumption (5), we have

 Bx 1 ?  Ax 1 @⇒  AT x 1 ?  BT x 1 =  Ax 2 ?  Bx 2 . 
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By repeating the process, we derive

 Ax 2 n ?  Bx 2 n  and  Bx 2 n+1 ?  Ax 2 n+1 , n ∈ N ∪ {0} . 

(34.5)

If there exists  n ∈ N ∪ {0} such that  xn

, then  x

is the desired solution of

0+1 =  xn 0

 n 0

the problem (34.1), which completes the proof. 

Consequently, from now on, suppose that  xn+1 =  xn  for all  n ∈ N ∪ {0}. In view of assumption (6), it establishes that













 F d(xn, xn+1 ) =  F d(T xn−1 , T xn) ≤  F ψ M(xn−1 , xn)

−  τ

(34.6)

where

 M(xn−1 , xn)





=

 d(xn, xn+1 )[1 +  d(xn−1 , xn)]  d(xn, xn)[1 +  d(xn−1 , xn+1 )]

max  d(xn−1 , xn), 

 , 

1 +  d(xn−1 , xn)

1 +  d(xn−1 , xn)





= max  d(xn−1 , xn), d(xn, xn+1 ) . 

If for some  n,  M(xn−1 , xn) =  d(xn, xn+1 ), then by using the definition of function ψ, inequality (34.6), turns into the following









 F d(xn, xn+1 ) ≤  F ψ d(xn, xn+1 )

−  τ

This implies









 F d(xn, xn+1 ) < F d(xn, xn+1 ) , 

which leads to a contradiction. Accordingly we deduce that  M(xn−1 , xn) =

 d(xn−1 , xn), for any  n. Therefore for any  n, by repeating the same technique as mentioned above, we speculate that









 F d(xn, xn+1 ) ≤  F ψ d(xn−1 , xn)

−  τ





(34.7)

 < F d(xn−1 , xn)

Since  F  is strictly increasing, this follows

 d(xn, xn+1 ) < d(xn−1 , xn). 
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It shows that { d(xn, xn+1 )} is a decreasing sequence of positive real numbers. 

Taking (34.7) into account, we acquire









 F d(xn, xn+1 ) ≤  F ψ d(xn−1 , xn)

−  τ. 

In view of the fact that  ψ(t) < t, for all  t >  0









 F d(xn, xn+1 ) < F d(xn−1 , xn) −  τ. 

for  n ∈ N . 

(34.8)

Note that, by the repeated use of (34.8), it establishes that









 F d(xn, xn+1 ) < F d(xn−1 , xn) −  τ





 < F d(xn−2 , xn−1 ) − 2 τ

 . . . 



 < F d(x 0 , x 1 ) −  nτ. 

which implies that









 F d(xn, xn+1 ) < F d(x 0 , x 1 ) −  nτ. 

Since  F ∈  ΔF , letting the limit as  n → ∞, then the above inequality turns into lim  F d(xn, xn+1 ) = −∞ ⇐⇒ lim  d(xn, xn+1 ) = 0 . 

(34.9)

 n→∞

 n→∞

Next, we prove that { xn} is a Cauchy sequence in  (X, d). We argue it by contradiction. Assume that { xn} is not a Cauchy sequence. In this case, there exist   >  0

and two sub-sequences { xn(k)} and { xm(k)} of { xn} such that for all positive integer k  with  n(k) > m(k) > k, we have

 d(xm(k), xn(k)) ≥  . 

(34.10)

which gives

 d(xm(k), xn(k)−1 ) < . 

Now, inequality (34.10) turns into

  ≤  d(xm(k), xn(k)−1 ) +  d(xn(k)−1 , xn(k))

≤   +  d(xn(k)−1 , xn(k)). 
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By taking the limit as  k → ∞ in above inequality and using (34.9), we obtain lim  d(xm(k), xn(k)) =  . 

(34.11)

 k→∞

Further, from (34.11), it is easy to see that

lim  d(xm(k)−1 , xn(k)−1 ) =  . 

(34.12)

 k→∞

and

lim  d(xn(k)−1 , xm(k)) =  . 

(34.13)

 k→∞

Sequentially, from (34.9), there exists a natural number  K ∈ N such that for all k ≥  K, we have

 

 

 d(xm(k), xm(k)+1 ) < 

 and d(xn(k), xn(k)+1 ) < . 

(34.14)

4

4

Next, we will show that

 d(T xm(k), T xn(k)) =  d(xm(k)+1 , xn(k)+1 ) >  0 , (34.15)

for all  k ≥  K, reasoning by contradiction. Assume that there exists  r ≥  K, such that d(xm(r)+1 , xn(r)+1 ) = 0 . 

(34.16)

On account of (34.10), (34.14) and (34.16), we arrive at

  ≤  d(xm(r), xn(r)) ≤  d(xm(r), xn(r)+1 ) +  d(xn(r)+1 , xn(r))

≤  d(xm(r), xm(r)+1 ) +  d(xm(r)+1 , xn(r)+1 ) +  d(xn(r)+1 , xn(r))

 

  < 

+ 0 +   =   , 

4

4

2

which is impossible, which means that (34.15) is proved. From (34.2), we have F d(xm(k)+1 , xn(k)+1 ) =  F d(T xm(k), T xn(k))





(34.17)

≤  F ψ M(xm(k), xn(k))

−  τ
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in which



 d(xn(k), xn(k)+1 )[1 +  d(xm(k), xm(k)+1 )]

 M(xm(k), xn(k)) = max  d(xm(k), xn(k)), 

 , 

1 +  d(xm(k), xn(k))



 d(xn(k), xm(k)+1 )[1 +  d(xm(k), xn(k)+1 )]

1 +  d(xm(k), xn(k))

Letting  k → ∞ and using (34.9), (34.11), (34.12) and (34.13) then the above inequality deduces to

lim  M(xm(k), xn(k)) =  . 

(34.18)

 k→∞

Making the limit as  k → ∞ in (34.17) and using (34.11), (34.18) and upper semi-continuity of  ψ, we get

 F () ≤  F (ψ()) −  τ

 < F () −  τ, 

which is impossible, since  τ >  0. Through contradiction, we conclude that { xn} is a Cauchy sequence in a complete metric space  X. Completeness of  X  assures that there exists  u ∈  X  such that

lim  xn =  u. 

(34.19)

 n→∞

Consequently, from (34.5), we get

 Ax 2 n ?  Bx 2 n

 n ∈ N ∪ {0} . 

Due to continuity of  A  and  B, from (34.19), we obtain that lim  d(Ax 2 n, Au) = lim  d(Bx 2 n, Bu) = 0 . 

 n→∞

 n→∞

As ? is  d-regular, we get

 Au ?  Bu. 

By repeating the same technique as mentioned above, one can get

 Bu ?  Au. 
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The proof of  (i)  is completed. Moreover, by (34.19) the continuity of  T  asserts that d(T u, u) = lim  d(T xn, xn) = lim  (xn+1 , xn) = 0 @⇒  T u =  u. 

 n→∞

 n→∞

Hence, we conclude that  u ∈  X  is a solution of the problem (34.1). 

This completes the proof. 

34.4

Some Consequences

In this section, some consequences of Theorem 1 are presented. 

 34.4.1

 Common Fixed Point Problem Under One Constraint

 Equality for (F, ψ)-Rational Type Contraction

Here, the following problem has been considered: Find  x ∈  X  such that x =  Tx, 

(34.20)

 x =  Bx. 

where  T , B :  X →  X  are given operators and  (X, d)  is a metric space with a partial order ?. 

Note that problem (34.1) reduces to problem (34.20) by taking  A =  IX. So, if we take  A =  IX  in Corollary 1, then we get the following corollary. 

Corollary 1  Let (X, d) be a complete metric space including a partial orders ?  . 

 Let T , B :  X →  X are given operators. Assume that the following assumptions are true, for the problem (34.20):

 1. ?  is d-regular; 

 2. T , B are continuous; 

 3. there exists x 0 ∈  X such that x 0 ?  Bx 0 ; 

 4. for all x ∈  X, we have x ?  Bx @⇒  BT x ?  T x; 

 5. for all x ∈  X, we have Bx ?  x @⇒  T x ?  BT x; 

 6. if there exist F ∈  ΔF , τ >  0  and ψ ∈  Ψ such that for all x, y ∈  X with T x =  T y, we have









 x ?  Bx, By ?  y @⇒  F d(T x, T y) ≤  F ψ M(x, y)

−  τ

(34.21)

 where M(x, y) is defined as in (34.3). 
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 Then

 (i) The sequence { xn}  converges to some u ∈  X such that u =  Bu. 

 (ii) The point u ∈  X is a solution of the problem (34.20). 

The following example validates our result, obtained in Corollary 1. 

 Example 1  Let  X = { ( 0 ,  0 ), ( 1 ,  0 ), ( 3 ,  0 ), ( 5 ,  1 )} be a subset of R2 with the order

? defined as

 (x 1 , y 1 ) ?  (x 2 , y 2 ) ⇐⇒  x 1 ≤  x 2 , y 1 ≤  y 2 , (x 1 , y 1 ), (x 2 , y 2 ) ∈  X. 

Let  d :  X ×  X → [0 , ∞ )  be given by:

 d(x, y) = max{| x 1 −  x 2| , | y 1 −  y 2|} , f or x =  (x 1 , y 1 ), y =  (x 2 , y 2 ) ∈  X. 

Let  T , B :  X →  X  be defined as follows:

 (x, y)

 T (x, y)

 B(x, y)

(0,0)

(1,0)

(3,0)

(1,0)

(1,0)

(1,0)

(3,0)

(0,0)

(1,0)

(5,1)

(0,0)

(0,0)

Take  ψ : [0 , ∞ ) → [0 , ∞ )  by  ψ(t) = 122 t  and  F (t) = log  t. All the conditions 123

of Corollary 1 are satisfied and  u =  ( 1 ,  0 )  is a common fixed point of the mappings T  and  B. 

By using  B =  T  in Corollary 1, we get the following one: Corollary 2  Let (X, d) be a complete metric space including a partial orders ?  . 

 Let T :  X →  X be a given operators. Assume that the following assumptions are true:

 1. ?  is d-regular; 

 2. T is continuous; 

 3. there exists x 0 ∈  X such that x 0 ?  T x 0 ; 

 4. for all x ∈  X, we have x ?  T x @⇒  T  2 x ?  T x; 5. for all x ∈  X, we have T x ?  x @⇒  T x ?  T  2 x; 6. if there exist F ∈  ΔF , τ >  0  and ψ ∈  Ψ such that for all x, y ∈  X with T x =  T y, we have









 x ?  T x, T y ?  y @⇒  F d(T x, T y) ≤  F ψ M(x, y)

−  τ

(34.22)

 where M(x, y) is defined as in (34.3). 

 Then, the sequence { xn}  converges to a fixed point of T . 
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34.5

Application to Integral Equation

Consider the following integral equation:

 Ω

 u(t ) =  p(t) +

 λ(t, s)f (s, u(s))ds. 

(34.23)

0

Consider the space  X =  C([0 , Ω] ,  R )  of continuous functions defined on [0 , Ω]. 

Obviously, the space with the metric given by

 d(u, v) = sup | u(t) −  v(t)| , 

 u, v ∈  C([0 , Ω] ,  R )

 t ∈[0 ,Ω]

is a complete metric space. Consider on  X =  C([0 , Ω] ,  R )  the natural partial order relation, that is, 

 u, v ∈  C([0 , Ω] ,  R ), u ≤  v ⇐⇒  u(t) ≤  v(t), t ∈ [0 , Ω] . 

Theorem 2  Consider the problem (34.23)  and assume that the following conditions are satisfied:

 (i) f : [0 , Ω] × R → R  is continuous; 

 (ii) p : [0 , Ω] → R  is continuous; 

 (iii) λ : [0 , Ω] × R → [0 , ∞ ) is continuous; 

 (iv) ψ ∈  Ψ such that for all u, v ∈ R , u ≤  v, 

 f (s, u) −  f (s, v) ≥ 0  and | f (s, u) −  f (s, v)| ≤  e− τ ψ(| v −  u| ); (v) assume that

 Ω

sup

 λ(t, s)ds ≤ 1; 

 t ∈[0 ,Ω] 0

 (vi) there exists a x 0 (t) ∈  X with (X =  C([0 , Ω] ,  R )) such that Ω

 x 0 (t) ≤  p(t) +

 λ(t, s)f (s, x 0 (s))ds. 

0

 Then the integral equation (34.23)  has a solution in X with (X

=

 C([0 , Ω] ,  R )). 

 Proof  Consider the mapping  T :  X →  X  defined by

 Ω

 T u(t ) =  p(t) +

 λ(t, s)f (s, u(s))ds, 

0
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for all  u ∈  X  and  t ∈ [0 , Ω]. We prove that all the conditions of Corollary 2

are satisfied. Clearly, ? is  d-regular and by the condition (iv) of Theorem 2, for x(t ) ∈  X  with  x(t) ≤  T x(t), t ∈ [0 , Ω], we have Ω

 Ω

 T x(t ) −  T  2 x(t) =

 λ(t, s)f (s, x(s))ds −

 λ(t, s)f (s, T x(s))ds

0

0

 Ω

=

 λ(t, s)(f (s, x(s)) −  f (s, T x(s)))ds ≥ 0 . 

0

which yields that  T x(t) ≥  T  2 x(t), for all  x(t) ∈  X. Similarly, one can show that for all  x(t) ∈  X, with  T x(t) ≤  x @⇒  T x(t) ≤  T  2 x(t). 

Now, for  u, v ∈  X  with  u ≤  v, we obtain





 Ω

 Ω

 T u(t ) −  T v(t) =

 λ(t, s)f (s, u(s))ds −

 λ(t, s)f (s, v(s))ds

0

0

 Ω

=

 λ(t, s)(f (s, u(s)) −  f (s, v(s)))ds

0

 Ω

≤  e− τ

 λ(t, s)ψ(| v(s) −  u(s)| )ds

0

As  ψ  is nondecreasing function, we have





 ψ(| v(s) −  u(s)| ) ≤  ψ

sup | u(s) −  v(s)|

 s∈[0 ,Ω]





=  ψ d(u, v) . 

Hence, from the above inequality, we arrive at





 Ω

sup | T u(t) −  T v(t)| ≤  e− τ ψ d(u, v)

sup

 λ(t, s)ds

 t ∈[0 ,Ω]

 t ∈[0 ,Ω] 0









 d T u, T v ≤  ψ d(u, v) e− τ









 d T u, T v ≤  ψ M(u, v) e− τ . 

in which





 d(v, T v)[1 +  d(u, T u)]  d(v, T u)[1 +  d(u, T v)]

 M(u, v) = max  d(u, v), 

 , 

1 +  d(u, v)

1 +  d(u, v)

448

A. Singh et al. 

Consequently, by passing to logarithms, one can obtain









log  d T u, T v ≤ log  ψ d(u, v) −  τ. 

This turns up to









 F d T u, T v

≤  F ψ d(u, v)

−  τ. 

This shows that the contractive condition in Corollary 2 is satisfied. 

From condition  (vi)  of Theorem 2, we have  x 0 ≤  T x 0. 

As a result of Theorem 1,  T  has a fixed point in  X, that is, the integral equation has a solution. 

The following example illustrates Theorem 2. 

 Example 2  Consider the following integral equation in  X =  C([0 ,  1] ,  R ). 

1  s 2

1

 u(t ) =  t 2 + 1 + 1

 ds; 

 t ∈ [0 ,  1] . 

(34.24)

 t  3 + 0 .  1

3 0  (t + 1 ) ( 1 +  u(s))

Observe that this equation is a special case of (34.23), in which p(t ) =  t 2+1 ; 

 t  3+0 .  1

 λ(t, s) =  s 2 ; 

 (t +1 )

 f (s, t ) =

1

. 

3 ( 1+ t)

Indeed, the functions  p, λ  and  f  are continuous. Thus the assumptions  (i)–(iii) are satisfied. Further, for all  u, v ∈ R with  u ≤  v, we get

0 ≤ | f (s, u) −  f (s, v)| ≤ |

1

−

1

| ≤ 1| v −  u|

3 ( 1 +  u)

3 ( 1 +  v)

3

≤  e−0 .  1 2 (| v −  u| )

3

≤  e− τ ψ(| v −  u| )

for  τ = 0 .  1 and  ψ(t) = 2 t . Hence, condition  (iv)  of Theorem 2 is fulfilled. For 3

condition  (v), we have





1

1

 s 2

1

sup

 λ(t, s)ds = sup

 ds = sup

≤ 1 . 

 t ∈[0 ,  1] 0

 t ∈[0 ,  1] 0

 (t + 1 )

 t ∈[0 ,  1] 3 (t + 1 )
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Thus, condition  (v)  is proved. Consider  x 0 (t) = 1, then we arrive at 1

1

 s 2

 p(t ) +

 λ(t, s)f (s, x 0 (s))ds =  t 2 + 1 +

 f (s,  1 )ds

0

 t  3 + 0 .  1

0

 (t + 1 )

1

=  t 2 + 1 + 1

 s 2

 ds =  t 2 + 1 +

1

 t  3 + 0 .  1

6 0  (t + 1 )

 t  3 + 0 .  1

18 (t + 1 )

 >  1

=  x 0 (t), 

for all,  t ∈ [0 ,  1]. This shows that all the conditions of Theorem 2 are satisfied. 

Hence, the integral equation (34.24) has a solution in  X =  C([0 ,  1] ,  R ). Further, the approximate solution of the integral equation (34.24) is

 u(t ) = 1 .  02733  t 3 +  t 2 +  t + 1 .  002733  . 

(34.25)

 (t  3 + 0 .  1 )(t + 1 )

For the justification of the approximate solution, from (34.24) with (34.25), we arrive at

 u(t ) =  t 2 + 1

 t  3 + 0 .  1

1

+

1

 s 2 (s + 1 )(s 3 + 0 .  1 ) ds

;  t ∈ [0 ,  1] . 

3 (t + 1 )  0  s 4 + 2 .  02733  s 3 +  s 2 + 1 .  1 s + 1 .  102733

(34.26)

From Fig. 34.1a and b, one can easily deduce that the plot of approximate solution with purple surface almost coincides with the value of  u(t)  with dark blue surface (see Fig. 34.1b). Hence, Fig. 34.1a and b confirms the validity of the approximate solution. 

Fig. 34.1 (a) Approximate solution of (34.24) and (b) plot of inequality (34.26)

[image: Image 196]

450

A. Singh et al. 

Fig. 34.2 Plot of error

function

The error between the approximate solution and the value of  u(t)  is given in Fig. 34.2. 
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Chapter 35

Solving Existence Problems via  F -Reich

Contraction

Mudasir Younis, Deepak Singh, and Anil Goyal

35.1

Introduction and Basic Facts

Czerwik [Cz93] introduced  b-metric spaces and established Banach contraction principle [Ba22] in these spaces. The notation of rectangular metric spaces were proposed by Branciari [Br00] in a different setting. Afterwards, in 2015, George et al. [GeEtAl15] launched rectangular  b-metric spaces (in short  RbMS) which are not necessarily Hausdorff and claimed these spaces to be generalization of other

spaces. Acknowledging the concept of George et al. [GeEtAl15], many authors paid attention towards these spaces and published many research articles. For a further

synthesis on this space, we refer the reader to [Mi17], [DiEtAl15], [Ka15] and the related references therein. 

On the other side, Reich [Re71] generalized Banach fixed point theorem for single valued as well as multivalued mappings. Since then Reich type mappings

have been the center of intensive research for many authors. In recent investigations, Wardowski [War12] described a new contraction, where the author proves fixed point results in a very general setting in the so-called  F -contraction. Later on Secelean et al. [Sec13], Piri and Kumam [Pir14] refined the result of Wardowski

[War12] by launching some weaker conditions on the self mapping regarding a complete metric space and over the mapping  F (for more details on  F -contraction see, e.g., [SiEtAl17], [SiEtAl18], [Na17], [NaEtAl17] and the related references M. Younis · A. Goyal
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therein). Secelean [Sec13] established Lemma 1 by utilizing an equivalent but a more simple condition  (F   )  instead of condition  (F

2

2 ). 

In the rest of the analysis, we denote the set of all functions satisfying  (F  1 )  of





[War12],  (F  3  )  of [Sec13] and  (F  3  )  of [Pir14] by  Ξ . 

In this paper, by extending  F -contraction to Reich type mappings, we inau-

gurate  F -Reach contraction in the context of  RbMS. Some nontrivial illustrative examples embellish the established results along with the computer simulation. 

Materiality of the presented results is governed by the application part. Package

of  F -contraction and Reich type mappings in the framework of  RbMS  makes our results novel and newfangled, since  RbMS  generalizes the concepts of  b-metric space, rectangular metric space. Hence our results revamp and generalize some of

the existing state-of-the-art in the literature which is also discussed in the later part of the article. 

For the rest of the hypothesis, R, N and R+ denote the set of all positive real

numbers, natural numbers and the set of all real non-negative numbers, respectively. 

We now enunciate some primary concepts and notations which are productive

for the succeeding part of the paper. 

Definition 1 [GeEtAl15] A rectangular  b-metric on a nonempty set  Y  is a mapping rb :  Y ×  Y → [0 , ∞ )  with  s ≥ 1 satisfying the following conditions: (rbM 1 ) br (u, v) = 0 ⇐⇒  u =  v  for all  u, v ∈  Y ; (rbM 2 ) br (u, v) =  rb(v, u)  for all  u, v ∈  Y ; (rbM 3 ) br (u, v) ≤  s [ br (u, a) +  br (a, b) +  br (b, v)] for all  u, v ∈  Y  and all distinct points  a, b ∈  Y \{ u,v}. 

The pair  (Y, br )  is called rectangular  b-metric  (RbMS)  space with coefficient  s on  Y . 

The following lemma will be productive for establishing our main results. 

Lemma 1 ([Sec13])  Let F : R+ → R  be an increasing map and qn be a sequence of positive real numbers. Then the following assertions hold:

 (a) if  lim  F (qn) = −∞  then  lim  qn = 0 ; 

 n→∞

 n→∞

 (b) if inf F = −∞  and  lim  qn = 0 ; then  lim  F (qn) = −∞ . 

 n→∞

 n→∞

For other terminology and notations like completeness, continuity and topology

along with the noteworthy remarks in the associated spaces, see [GeEtAl15]. 
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35.2

 F -Reich Contraction

Now, we introduce our main definition as follows:

Definition 2 Let  (Y, br , s)  be a  RbMS. A mapping  J :  Y →  Y  is said to be an F -Reich contraction (in short  F - RC) on a  RbMS  if ∃  ℘ >  0 and  F ∈  Ξ  such that









 ℘ +  F br (J u, J v) ≤  F κbr (u, v) +  ζ br (u, J u) +  ξ br (v, J v) , (35.1)

∀ u, v ∈  Y , where  κ, ζ, ξ  are nonnegative constants with  κ +  ζ +  ξ <  1 and  κ <  1. 

 s

 Example 1  Let  (Y, br , s)  be a  RbMS. Define a mapping  F : R+ → R by  F (q) =

 q + ln  q, then  F ∈  Ξ  and each mapping  J :  Y →  Y  satisfying (35.1) is  F - RC  such that

 e− ℘ ≥  br (J u, J v)ebr(J u,J v)−{ κbr(u,v)+ ζbr(u,J u)+ ξbr(v,J v)}

 κbr (u, v) +  ζ br (u, J u) +  ξ br (v, J v)

for all  u, v ∈  Y  and  J u =  J v. 

 Example 2  Let  (Y, br , s)  be a  RbMS  and consider  F (q) = − (q)− 12 ∀  q >  0 then F ∈  Ξ  and each mapping  J :  Y →  Y  satisfying (35.1) is  F - RC  such that br (J u, J v) ≤

 κbr (u, v) +  ζ br (u, J u) +  ξ br (v, J v)



√

2

1 +  ℘ κbr (u, v) +  ζ br (u, J u) +  ξ br (v, J v)

for all  u, v ∈  Y  and  J u =  J v. 

Our main result runs as follows. 

Theorem 1  Let (Y, br , s) be a complete RbMS and J :  Y →  Y be an F -RC . 

 Then J admits a unique fixed point in Y. 

 Proof  Let  y 0 ∈  Y  and define a Picard sequence { ym} with initial point  y 0, that is, ym =  J my 0 =  Jym−1. If  ym =  ym+1, for some  m ∈ N, then  ym  is the desired fixed point of  J  and we are through in this case. So suppose that  ym =  ym+1∀ n ∈ N. 

Utilizing contractive condition (35.1), for  u =  ym−1 and  v =  ym, we have









 ℘ +  F br (ym, ym+1 ) =  ℘ +  F br (Jym−1 , Jym)





≤  F κbr(ym−1 , ym) +  ζbr(ym−1 , Jym−1 ) +  ξbr(ym, Jym)





≤  F κbr(ym−1 , ym) +  ζbr(ym−1 , ym) +  ξbr(ym, ym+1 )





=  F (κ +  ζ )br(ym−1 , ym) +  ξbr(ym, ym+1 )
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Since  ℘ >  0 and  F  is strictly increasing, we deduce





 κ +  ζ

 br (ym, ym+1 ) < 

 br (ym−1 , ym)

1 −  ξ

By hypothesis,  κ +  ζ +  ξ <  1, it follows that









 F br (ym, ym+1 ) ≤  F br (ym−1 , ym) −  ℘

Continuing this process, we obtain









 F br (ym, ym+1 ) ≤  F br(ym−1 , ym) −  ℘





=  F br(Jym−2 , Jym−1 ) −  ℘





≤  F br(ym−2 , ym−1 ) − 2 ℘





=  F br(Jym−3 , Jym−3 ) − 2 ℘





≤  F br(ym−3 , ym−3 ) − 3 ℘

 ... 





≤  F br(y 0 , y 1 ) −  m℘, 





and so lim  F br (Jym−1 , Jym) = −∞, which along with Lemma 1 and  F   gives m→∞

2

lim  br (ym, ym+1 ) = 0 . 

(35.2)

 m→∞

Furthermore, taking  u =  ym−1 and  v =  ym+1 in (35.1), and using rectangular inequality, we have









 ℘ +  F br (ym,ym+2 ) =  ℘ +  F br (Jym−1 , Jym+1 )





≤  F κbr(ym−1 , ym+1 ) +  ζbr(ym−1 , Jym−1 ) +  ξbr(ym+1 , Jym+1 )





=  F κbr(ym−1 , ym+1 ) +  ζbr(ym−1 , ym) +  ξbr(ym+1 , ym+2 )



≤  F sκ br(ym−1 , ym+2 ) +  sκ br(ym+2 , ym) +  sκ br(ym, ym+1 )



+  ζ br(ym−1 , ym) +  ξbr(ym+1 , ym+2 )
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≤  F s 2 κ br(ym−1 , ym) +  s 2 κ br(ym, ym+1 ) +  s 2 κ br(ym+1 , ym+2 )

+  sκ br(ym+2 , ym) +  sκ br(ym, ym+1 ) +  ζbr(ym−1 , ym)



+  ξbr(ym+1 , ym+2 )

Again, since  ℘ >  0 and  F  is increasing, we acquire

 ( 1 −  sκ)br (ym, ym+2 ) < (s 2 κ +  ζ )br(ym−1 , ym) +  (s 2 κ +  sκ)br(ym, ym+1 )

+  (s 2 κ +  ξ)br(ym+1 , ym+2 ), 

(35.3)

Also  κ <  1 , passing limit  m → ∞ and utilizing (35.2), inequality (35.3) gives s

rise to

lim  br (ym, ym+2 ) = 0

(35.4)

 n→∞

Now, we claim that { ym} is a Cauchy sequence in  Y . Assume to the contrary that ∃

 δ >  0 and sequences { yn } and { y } of natural numbers, where  m j

 mj

 j  is the smallest

index such that

 mj > nj > j

 br (yn , y

 ) ≥  δ, 

 b

 , y

 j

 mj

 r (ynj

 mj −1 ) < δ, ∀ m ∈ N . 

(35.5)

Hence, we have

 δ ≤  br (yn , y ) ≤  s[ b

 , y

 ) +  b

 , y

 ) +  b

 , y

 )]

 j

 mj

 r (ynj

 nj+1

 r (ynj+1

 mj+1

 r (ymj+1

 mj

Thanks to (35.2) and (35.4), we get

 δ ≤ limsup  br(yn ,ym )

(35.6)

 s

 j +1

 j +1

 m→∞

Again

 br (yn , y

 ) ≤  s[ b

 , y

 ) +  b

 , y

 ) +  b

 , y

 )]

 j

 mj

 r (ynj

 mj−1

 r (ymj−1

 mj+1

 r (ymj+1

 mj

By virtue of (35.2), (35.4), and (35.5), we obtain lim sup  br (yn , y

 ) ≤  sδ. 

(35.7)

 j

 mj

 m→∞
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Taking  u =  yn  and  v =  y

in( 35.1), it follows that

 j

 mj









 F br (yn

=  F b

 , J y

 )

 j +1 , ymj +1 )

 r (J ynj

 mj





≤  F κbr(yn , y ) +  ζ b

 , y

 , y

 j

 mj

 r (ynj

 nj +1 ) +  ξ br (ymj

 mj +1 )

−  ℘, 

Making use of  (F   ), (35.6), and (35.7), the above inequality reduces to 2

 δ

 F ( ) < F (sδκ), 

 s

which is a contradiction in view of hypothesis. 

Hence it follows that { ym} is a Cauchy sequence in  (Y, br ). By completeness of (Y, br ) ∃  y∗ ∈  Y  such that

lim  ym =  y∗

(35.8)

 m→∞

For the existence of fixed point, we assume that  y∗ =  Jy∗









 F br (y∗ , Jy∗ ) ≤  F s[ br (y∗ , ym) +  br (ym, ym+1 ) +  br(ym+1 , Jy∗ )]





=  F s[ br(y∗ , ym) +  br(ym, ym+1 ) +  br(Jym, Jy∗ )]



≤  F s[ br(y∗ , ym) +  br(ym, ym+1 ) +  κbr(ym, y∗ )



+  ζ br(ym, ym+1 ) +  ξbr(y∗ , Jy∗ ) −  ℘]

Since  F  is continuous, passing limit  m → ∞; and on account of  (F 1 ), (35.2), 

and (35.8), we get

 br (y∗ , Jy∗ ) < ξ br (y∗ , Jy∗ ), 

which is absurd, since  κ +  ζ +  ξ <  1. Hence we must have  Jy∗ =  y∗, which guarantees that  y∗ is the fixed point of  J . 

For the uniqueness, suppose  y  be another fixed point of  J , then










 F br (y∗ , y) =  F br (Jy∗ , Jy)





≤  F κbr(y∗ , y) +  ζ br(y∗ , Jy) +  ξbr(y, Jy) −  ℘





=  F κbr(y∗ , y) −  ℘ , 
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which amounts to say that  br (y∗ , y) < κbr (y∗ , y), which is a contradiction in view of hypothesis. Hence  br (y∗ , y) = 0 and consequently,  J  admits a unique fixed point. 

To make Theorem 1 explicit, we expound the following example. 

 Example 3  Let  Y = [0 ,  2] and consider a rectangular  b-metric  br :  Y × Y → [0 , ∞ ) defined by

 br (u, v) =  (u −  v) 2 ; 

∀  u, v ∈  Y. 

Then  (Y, br )  is a complete  RbMS  with  s = 3. Let the mapping  J :  Y →  Y  be defined by

 J y =  e log ( 5+ y 2 ) + sin ( 1 +  y)

< 

; ∀  y ∈  Y. 

4 +  y 2

In order to check the validation of inequality (35.1) with  F (q) = − 1  , ℘ = 12 and q

13

 κ = 1  , ζ = 3  , ξ = 4 . Clearly  F ∈  Ξ  and  κ +  ζ +  ξ <  1 with  κ <  1 . 

5

5

25

 s

Now, consider the left-hand side of the inequality (35.1), we have





 ℘ +  F br (J u, J v) = 12 −

1



 , 

13

2

 e log ( 5+ u 2 )+sin ( 1+ u)

√

−  e log ( 5+ v 2 )+sin ( 1+ v)

√

4+ u 2

4+ v 2

Calculating various terms appearing in the inequality (35.1), right-hand side comes out to be





 F κbr (u, v) +  ζ br (u, J u) +  ξ br (v, J v)

= −

1









2

2

0 .  2 (u −  v) 2 + 0 .  6  u −  e log ( 5+ u 2 )+sin ( 1+ u)

√

+ 0 .  16  v −  e log ( 5+ v 2 )+sin ( 1+ v)

√

4+ u 2

4+ v 2

Figure 35.1 exemplifies that the surface representing the left-hand side of the inequality (35.1) is dominated by the surface representing the right-hand side, thereby authenticating the validity of inequality (35.1). This proves that all the assertions of Theorem 1 are verified. Hence  J  is an  F - RC  and has a unique fixed point  u = 1 .  2784 in Y. 

 Remark 1  Since every metric space is  RbMS  but the converse is not necessarily true. Thus Theorem 1 is a real generalization of Reich contraction [Re71] in the context of  RbMS  in the sense of  F -contraction. 

[image: Image 198]
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Fig. 35.1 Validation of  F -Reich contraction

Taking  κ = 0 in Theorem 1, we obtain the  F -contraction version of Kannan type result [Ka68] in the framework of  RbMS  as follows:

Corollary 1  Let (Y, br , s) be a RbMS and J :  Y →  Y be such that ∃  ℘ >  0  and F ∈  Ξ with









 ℘ +  F br (J u, J v) ≤  F ζ br (u, J u) +  ξ br (v, J v) , 

∀ u, v ∈  Y , where ζ, ξ are nonnegative constants and ζ +  ξ <  1 . Then J admits a unique fixed point. 

Taking  ζ =  ξ = 0 in Theorem 1, we obtain the  F -contraction version of Banach contraction principle [Ba22] in the framework of  RbMS  as follows: Corollary 2  Let (Y, br , s) be a RbMS and J :  Y →  Y be such that ∃  ℘ >  0  and F ∈  Ξ with









 ℘ +  F br (J u, J v) ≤  F κbr (u, v) , 

∀ u, v ∈  Y , where  0  < κ <  1 . Then J admits a unique fixed point. 

 Remark 2  In view of the established results in this article, we extend and generalize some pioneer results given in Cosentino and Vetro [Cos14], Vetro [Ve16] and

[MiEtAl18] in the context of  RbMS. 

35.3

Applications

This section is devoted to signify the materiality of the obtained results. 
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 35.3.1

 Application to Concentration of a Diffusing Substance

Consider a diffusing substance placed in an absorbing medium between parallel

walls such that  β 1 , β 2 are the stipulated concentrations at walls . Moreover, let  Ω(r) be the given source density and  Γ (r)  be the known absorption coefficient. Then the concentration  χ (r)  of the substance under the aforementioned hypothesis governs the following boundary value problem

−    χ +  Γ(r)χ =  Ω(r) ;  r ∈ [0 ,  1] =  I

(35.9)

 χ ( 0 ) =  β 1 , χ( 0 ) =  β 2 , 

Problem (35.9) is equivalent to the succeeding integral equation 1

 χ (r) =  β 1 +  (β 2 −  β 1 )r +

 Θ(r, τ ) (Ω(τ ) −  Γ (τ )χ(τ )) , 

 r ∈ [0 ,  1] , 

0

(35.10)

where  Θ(r, τ ) : [0 ,  1] × R → R is the Green’s function which is continuous and is given by

 r( 1 −  τ)  0 ≤  r ≤  τ ≤ 1 , 

 Υ (r, τ ) =

(35.11)

 τ ( 1 −  r)

0 ≤  τ ≤  r ≤ 1 . 

Suppose that  C(I,  R ) =  Y  is the space of all real valued continuous functions defined on  I  and let  Y  be endowed with the rectangular  b-metric  br  defined by br (χ , χ ∗ ) =  (χ −  χ∗ ) 2 , 

where  χ = sup{| χ(r)| :  r ∈  I }. Obviously  (Y, br )  is a complete  RbMS  with s = 2. 

Let the operator  J :  Y →  Y  be defined by

1

 J χ (r) =  χ(r) =  β 1 +  (β 2 −  β 1 )r +

 Θ(r, τ ) (Ω(τ ) −  Γ (τ )χ(τ )) . 

0

Then  χ ∗ is a unique solution of (35.10) ⇐⇒ it is a fixed point of  J . Subsequent Theorem is furnished for the assertion of the existence of fixed point of  J

Theorem 2  Consider the problem (35.10)  and suppose that there exists ℘ >  0  such that for all τ ∈  I , the following assertion holds:









0 ≤  Γ (τ )χ(τ ) −  Γ (τ )χ∗ (τ ) ≤

1

√

 χ ∗ (τ ) −  χ(τ ) , 

 e℘

 Then the integral equation (35.10)  has a unique solution in Y . 
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 Proof  Clearly for  χ ∈  Y  and  r ∈  I  the mapping  J :  Y →  Y  is well defined. 





 J χ (r) −  J χ∗ (r)

1

=   Θ(r, τ) (Ω(τ) −  Γ (τ)χ(τ)) dτ −  h(r)

0 



1





−

 Θ(r, τ ) Ω(τ ) −  Γ (τ )χ∗ (τ ) dτ 

0

1







≤

 Θ(r, τ )  (Ω(τ ) −  Γ (τ )χ(τ )) −  Ω(τ ) −  Γ (τ )χ∗ (τ )   dτ

0

1





=

 Θ(r, τ )  Γ (τ )χ (τ ) −  Γ (τ )χ∗ (τ )  dτ

0

1





≤ 1

√

 Θ(r, τ )  χ (τ ) −  χ∗ (τ )  dτ

 e℘

0



; 

1

= 1

√

 Θ(r, τ ) (χ (τ ) −  χ∗ (τ )) 2 dτ

 e℘

0

1

; 



≤ 1

√

 Θ(r, τ )  (χ (τ ) −  χ∗ (τ )) 2 dτ

 e℘

0

; 



1

≤ 1

√

 (χ −  χ∗ ) 2 sup

 Θ(r, τ )dτ. 

 e℘

 r∈[0 ,  1] 0





Since 1

1

 Θ(r, τ )dτ =  r− r 2 and so sup

 Θ(r, τ )dτ = 1 . 

0

2

 r∈[0 ,  1] 0

8

Hence for all  χ , χ ∗ ∈  Y , we obtain

 br (χ , χ ∗ )

 br (J χ , J χ∗ ) ≤  e− ℘

 . 

64

Passing logarithm on both sides, we acquire









 br (χ , χ ∗ )

 ℘ + log  br (J χ, J χ∗ ) ≤ log

 . 

64

Taking 1 =  κ, and noting that  F ∈  Ξ  with  F (q) =  log(q), for every  q >  0, it 64

follows that







 ℘ +  F br (J χ, J χ∗ ≤  F κbr (χ, χ∗ )





≤  F κbr(χ, χ∗ ) +  ζ br(χ, J χ) +  ξbr(χ∗ , J χ∗ ) , where  κ, ζ, ξ  are nonnegative constants with  κ +  ζ +  ξ <  1 and  κ <  1 = 1 . 

 s

2
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Hence all the hypotheses of Theorem 1 are contented. We conclude that  J  has a unique fixed point  χ  in  Y , which guarantees that the integral equation (35.10) has a unique solution and consequently the boundary value problem (35.9) has a unique solution. 

 35.3.2

 Application to Integral Equation

As a consequence of our results, we furnish an existence theorem for the unique

solution of the following integral equation

1

 z(r) =  h(r) +

F (r, t, z(t))dt ;  r ∈ [0 ,  1] =  I, 

(35.12)

0

where  h :  I → R and F :  I  2 × R → R are continuous functions. 

Suppose  C(I,  R ) =  Y  is the space of all real valued continuous functions defined on  I  and the rectangular  b-metric  br  be defined as in the Sect. 35.3.1. 

Consider the operator  J :  Y →  Y  defined by

1

 J z(r) =  h(r) +

F (r, t, z(t))dt. 

0

Then  z∗ is a unique solution of (35.12) ⇐⇒ it is a fixed point of  J . 

Theorem 3  Consider the problem (35.12)  and suppose that ∃ 1  < a <  2  and

 ℘ >  0  such that for every t ∈  I and for all r ∈  I , following assertion holds: 0 ≤ F (r, t, z(t)) − F (r, t, z∗ (t)) ≤  Λ(r, t) z∗ (t) −  z(t) , and

1

sup

 Λ(r, t )dt ≤

1

√

0≤ r≤1 0

 a(e℘ )

 Then the integral equation (35.12)  has a unique solution in Y . 

 Proof  In order to prove the theorem, it amounts to show that the operator  J :  Y →

 Y  is an  F - RC. 











1

1









 J z(r) −  J z∗ (r) =  h(r) +

F (r, t, z(t))dt −  h(r) −

F (r, t, z∗ (t))dt

0

0







1

1



=  F (r, t, z(t))dt −

F (r, t, z∗ (t))dt

0

0

462

M. Younis et al. 

1 



≤

F (r, t, z(t)) − F (r, t, z∗ (t))  dt

0

1





≤

 Λ(r, t )  z(t ) −  z∗ (t)  dt

0

1

< 

=

 Λ(r, t ) (z(t ) −  z∗ (t)) 2 dt

0

1

; 



≤

 Λ(r, t )  (z(t ) −  z∗ (t)) 2 dt

0

; 



≤

1

√

 (z −  z∗ ) 2

 a(e℘ )

Equivalently, for all  z, z∗ ∈  Y , we have

 br (J z, J z∗ ) ≤  e− ℘ br (z, z∗ ). 

 a

Passing logarithm on both sides, we acquire









1

 ℘ + log  br (J z, J z∗ ) ≤ log

 br (z, z∗ ) . 

 a

Since 1  < a <  2, taking 1 =  κ, and noting that  F ∈  Ξ  with  F (q) =  log(q), for a

every  q >  0, it follows that







 ℘ +  F br (J z, J z∗ ≤  F κbr (z, z∗ )





≤  F κbr(z, z∗ ) +  ζ br(z, J z) +  ξbr(z∗ , J z∗ ) , where  κ, ζ, ξ  are nonnegative constants with  κ +  ζ +  ξ <  1 and  κ <  1 = 1 . 

 s

2

Hence all the hypotheses of Theorem 1 are contented. We conclude that  J

has a unique fixed point  z  in  Y , which is the desired unique solution of integral equation (35.12). 

Open Problems

• Establish analogous results of Edelstein, Meir Keelar, Hardy-Roger type contrac-

tions in the underlying space in the sense of  F -contraction with applications. 

• Can the results manifested in this article or their variants be applied to establish the existence of solution of the following Bessel function of first kind of order  m u 2 v +  uv +  (λ 2 u −  m 2  )v = 0

 u

for some non-negative constant  λ? 
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Chapter 36

On the Convergence of Dynamic

Iterations in Terms of Model Parameters

Barbara Zubik-Kowal

36.1

Introduction

The goal of the paper is to investigate the convergence of the dynamic iterations

{ x(k)(t)}∞

 k=0, which satisfy the system

˙ x(k)(t) =  Ax(k)(t) +  Bx(k−1 )(t) +  g(t)

(36.1)

constructed for

˙ x(t) =  Mx(t) +  g(t), 

(36.2)

so that lim  x(k)(t) =  x(t), where the split matrix  M =  A +  B  is given and  g(t) k→∞

is a given vector function, and to address the question of how to optimally reorder

the equations in (36.2) so that the convergence of the resulting modified iterations

{ y(k)(t)}∞

 k=0 is faster than the convergence of the original iterations { x(k)(t )}∞

 k=0. 

The sequence { y(k)(t)}∞

 k=0 satisfies the condition lim  y(k)(t ) =  y(t ) =  σ (x(t )), k→∞

where  σ  is a corresponding permutation on the components  xi(t)  of the solution x(t ), and the iterates  y(k)(t)  are determined via

˙ y(k)(t) = ˜

 Ay(k)(t ) + ˜

 By(k−1 )(t ) + ˜ g(t). 

(36.3)

That is, the iterates  y(k)(t)  are determined similarly to how the iterates  x(k)(t)  are determined from (36.1), except that (36.3) is applied to the alternative system that consists of the following reordered equations, 
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˙ y(t) = ˜

 My(t ) + ˜ g(t), 

where the matrix ˜

 M = ˜

 A + ˜

 B  is generated from  M  by reordering its rows

and the vector function ˜ g(t)  is generated from the original  g(t)  by reordering its components, respectively. 

For example, consider the following dynamic iteration scheme, also known as

Gauss-Seidel waveform relaxation, 

⎧

⎪

⎨ ˙ x(k)(t) = − x(k)(t) + 102 x(k−1 )(t) + 102 x(k−1 )(t) +  g 1

1

2

3

1 (t )

⎪ ˙ x(k)(t) = 10−2 x(k)(t) − 102 x(k)(t) + 102 x(k−1 )(t) +  g (36.4)

⎩ 2

1

2

3

2 (t )

˙ x(k)(t) = 10−2 x(k)(t) + 10−2 x(k)(t) − 102 x(k)(t) +  g 3

1

2

3

3 (t )

constructed for the system

⎧

⎨ ˙ x 1 (t) = − x 1 (t) + 102 x 2 (t) + 102 x 3 (t) +  g 1 (t)

⎩ ˙ x 2 (t) = 10−2 x 1 (t) − 102 x 2 (t) + 102 x 3 (t) +  g 2 (t) (36.5)

˙ x 3 (t) = 10−2 x 1 (t) + 10−2 x 2 (t) − 102 x 3 (t) +  g 3 (t). 

and note that by exchanging the first and the third equations in (36.5), we get

⎧

⎨ ˙ y 3 (t) = 10−2 y 1 (t) + 10−2 y 2 (t) − 102 y 3 (t) +  g 3 (t)

⎩ ˙ y 2 (t) = 10−2 y 1 (t) − 102 y 2 (t) + 102 y 3 (t) +  g 2 (t) (36.6)

˙ y 1 (t) = − y 1 (t) + 102 y 2 (t) + 102 y 3 (t) +  g 1 (t) and the following alternative Gauss-Seidel waveform relaxation scheme

⎧

⎪

⎨ ˙ y(k)(t) = 10−2 y(k−1 )(t) + 10−2 y(k−1 )(t) − 102 y(k)(t) +  g 3

1

2

3

3 (t )

⎪ ˙ y(k)(t) = 10−2 y(k−1 )(t) − 102 y(k)(t) + 102 y(k)(t) +  g (36.7)

⎩ 2

1

2

3

2 (t )

˙ y(k)(t) = − y(k)(t) + 102 y(k)(t) + 102 y(k)(t) +  g 1

1

2

3

1 (t ). 

Note that Gauss-Seidel waveform relaxation reflects the fact that the present iterates x(k)(t )  and  x(k)(t)  are not used in the first equation of (36.4) and since the left-hand 2

3

side of this equation involves the derivative ˙ x(k)(t)  from the present iterate, only 1

 x(k)(t )  is used in this equation. Similarly, the present iterates  y(k)(t)  and  y(k)(t)  are 1

1

2

not used in the first equation of (36.7). In place of  x(k)(t)  and  x(k)(t)  the previous 2

3

iterates  x(k−1 )(t)  and  x(k−1 )(t)  are used in the first equation of (36.4) and, similarly, 2

3

the previous iterates  y(k−1 )(t)  and  y(k−1 )(t)  are used in the first equation of (36.7)

1

2

in place of the present iterates  y(k)(t)  and  y(k)(t). 

1

2

Gauss-Seidel waveform relaxation also reflects the fact that the present iterate

 x(k)(t )  is replaced by  x(k−1 )(t)  in the second equation of (36.4) and, similarly, 3

3
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 y(k)(t )  is replaced by  y(k−1 )(t)  in the second equation of (36.7). Moreover, only 1

1

present iterates are used in the third equations of both (36.4) and (36.7). In summary, schemes (36.4) and (36.7) are obtained for the same system of ordinary differential equations and the difference between them is that Gauss-Seidel waveform relaxation

is applied to its equations differently, resulting in different schemes that have

different rates of convergence. 

Although the scheme (36.7) has been created for (36.6) similarly (by applying Gauss-Seidel waveform relaxation) to the way in which the scheme (36.4) has been created for (36.5), it is illustrated in Sect. 36.3 that scheme (36.7) is 50% faster than scheme (36.4). This example demonstrates that we can accelerate convergence of the same method by a simple reordering of the equations in a given system. 

It also demonstrates that the coefficients given in the system play a decisive role

in the construction of the iterative processes. In the next section, we analyze the

convergence of the successive iterates in terms of the given coefficients and address the question of how to construct dynamic iterations in order to speed up their

convergence. 

Dynamic iteration schemes, also known as waveform relaxation techniques, 

were introduced as numerical schemes by Lelarasmee, Ruehli, and Sangiovanni-

Vincentelli [LeEtAl82] for electrical system simulation. They were then developed by many authors for solving systems of ordinary differential equations, see, for

example, [Bu95] and [MiNe96] and the references therein. They were also proposed for solving delay differential equations, see, e.g., [Bj94] and [Bj95] and more general functional differential equations, see, e.g., [ZuVa99], [Zu00], [Zu04]. 

However, the comparison of different rates of convergence of the different sequences of dynamic iterations obtained by a reordering of the differential equations in a given system was not considered in these papers. The influence of the order of differential equations in a given system on the rates of convergence of the resulting dynamic

iteration schemes was investigated in [Zu17]. However, the results provided in

[Zu17] are obtained for 2-dimensional iterates. In the present paper, we provide results for 3-dimensional iterates. 

36.2

Convergence Analysis

−1



In what follows, we use the convention that the sum

denotes zero. Let  M =

 j =0

3

 aij

, let  L  be the lower triangular matrix created from  M, let  D  be the diagonal i,j =1

matrix created from  M, and let  U  be the upper triangular matrix created from  M. We investigate the error propagated by the iterates  x(k)(t), which satisfy scheme (36.1)

with  A =  L +  D  and  B =  U . 
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For completeness, system (36.2) is supplemented by the initial condition  x( 0 ) =

 x 0. The initial value  x 0 is used for the initial conditions  x(k)( 0 ) =  x 0,  k = 0 ,  1 ,  2 , . . . 

for (36.1). 

To provide an error analysis for alternative schemes (like, for example, (36.4)

and (36.7)) constructed for a given differential system by reordering its equations, we use the following theorem. 

Theorem 1  Let

 k−1



∞



 k−1− j j

 t k

 ω(k) =

 a

 , 

 Ω

 ω(k), 

 ml

 mm

 all

 ml (t ) =

 k!  ml

 j =0

 k=1

 k−2



∞

 tk

 γ (k) =  a 31 ω(k) +  a

 ak−2− i ω(i+1 ), 

 Γ (t ) =

 γ (k), 

13

21 a 32

11

23

 k! 

 i=0

 k=1

 for m, l = 1 ,  2 ,  3 , k = 1 ,  2 , . . . , and t ≥ 0 . 

 Then, the components of the error e(k)(t) =  x(k)(t) −  x(t) are given by the formulas

 t

 e(k+1 )(t ) =

 L(k)(s)ea 11 (t− s)ds, 

1

1

0





 t

 e(k+1 )(t ) =

 a

 (s) +  ea 22 (t− s)L(k)(s) ds, 

(36.8)

2

21 Ω 12 (t −  s)L(k)

1

2

0





 t

 e(k+1 )(t ) =

 Γ (t −  s)L(k)(s) +  a

 (s) ds, 

3

1

32 Ω 23 (t −  s)L(k)

2

0

 where

 L(k)(t ) =  a

 (t ) +  a

 (t ), 

1

12 ek

2

13 ek

3

 L(k)(t ) =  a

 (t ), 

2

23 ek

3

 for k = 0 ,  1 , . . . and t ≥ 0 . 

 Proof  Subtracting (36.2) from (36.1), we get the following relation for the error

˙ e(k)(t) =  Ae(k)(t) +  Be(k−1 )(t), 

which implies the recurrence relation

 t





 e(k+1 )(t ) =

exp  (t −  s)(L +  D) U ek(s)ds. 

(36.9)

0
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Since

 ω( 1 ) = 1 , 

 ω( 1 ) = 1 , 

 ω( 1 ) = 1

12

23

13

and

−1



 γ ( 1 ) =  a 31 ω( 1 ) +  a

 a−1− i ω(i+1 ) =  a

13

21 a 32

11

23

31 , 

 i=0

we get

⎡

⎤

⎡

⎤

 a 11 0

0

 a

⎢ 11

0

0

⎥

 L +  D = ⎣  a

⎦

21  a 22 0

= ⎣  a 21 ω( 1 ) a

⎦  . 

12

22

0

 a 31  a 32  a 33

 γ ( 1 )

 a 32 ω( 1 ) a

23

33

We now suppose that

⎡

⎤

⎡

⎤

 k





 a

 ak

0

0

 k

11 0

0

⎢ 11

⎥

 L +  D

= ⎣  a

⎦

21  a 22 0

= ⎣  a 21 ω(k) ak

0

⎦  , 

12

22

 a 31  a 32  a 33

 γ (k)

 a 32 ω(k) ak

23

33

for a certain  k = 1 ,  2 , . . . . Then, 

⎡

⎤ ⎡

⎤ k





 a

 a

 k+1

11 0

0

11 0

0

 L +  D

= ⎣  a

⎦ ⎣

⎦

21  a 22 0

 a 21  a 22 0

 a 31  a 32  a 33

 a 31  a 32  a 33

⎡

⎤ ⎡

⎤

 a 11 0

0

 ak

0

0

11

= ⎣

⎢

⎥

 a

⎦

21  a 22 0

⎣  a 21 ω(k) ak

0

⎦

12

22

 a 31  a 32  a 33

 γ (k)

 a 32 ω(k) ak

23

33

⎡

⎤

 ak+1

0

0

⎢ 11

⎥

= ⎢

⎣  a

⎥

21 ak +  a

 ak+1

0

11

22 a 21 ω(k)

12

22

⎦  . 

 a 31 ak +  a

+  a

+  a

 ak+1

11

32 a 21 ω(k)

12

33 γ (k) a 32 ak

22

33 a 32 ω(k)

23

33

Note that

 ω(k) =  ω(k), 

 ω(k) =  ω(k), 

 ω(k) =  ω(k), 

12

21

23

32

13

31
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and

 k−1



 a 21 ak +  a

=  a

 ak−1− i ai +  a

11

22 a 21 ω(k)

12

21 a 22

22

11

21 ak

11

 i=0

 k−1



=  a 21

 ai ak− i +  a

 a 0

11 22

21 ak

11 22

 i=0

 k



=  a 21

 ai ak− i =  a

11 22

21 ω(k+1 )

12

 i=0

for all  k = 1 ,  2 , . . . . Similarly, we conclude that

 a 32 ak +  a

=  a

 . 

22

32 a 33 ω(k)

23

32 ω(k+1 )

23

Observe that

 k−2



 k−2



 i

 i− j j

 (a 11 −  a 33 )

 ak−2− i ω(i+1 ) =  (a

 ak−2− i

 a

 a

11

23

11 −  a 33 )

11

22

33

 i=0

 i=0

 j =0

(36.10)

 k−2

 i





=

 i− j j

 i− j j +1

 ak−1− i a

 a

−  ak−2− ia

 a

 . 

11

22

33

11

22

33

 i=0  j =0

Since the right-hand side of (36.10) is equal to

1





 j

 j +1

1− j

 ak−1 −  ak−2 a

 ak−2 a

−  ak−3 a

 a

+  . . . 

11

11

33 +

11

33

11

33

22

 j =0

 k−2





+

 j

 j +1

 k−2− j

 a 11 a

−  a

 a

 , 

33

33

22

 j =0

we conclude further that

 k−2









 (a 11 −  a 33 )

 ak−2− i ω(i+1 ) =  ak−1 −  ak−2 a

+  ak−2 −  ak−3 a

 a

11

23

11

11

33

11

11

33

22

 i=0











+  ak−2 a

 a 2

+  ak−3 −  ak−4 a

 a 2 +  ak−3 a

 a 2

 a

11

33 −  ak−3

11

33

11

11

33

22

11

33 −  ak−4

11

33

22





 k−4



 k−3



+

 j

 k−4− j

 j

 k−3− j

 ak−3 a 2 −  ak−4 a 3

+ · · · +

 a 3  a a

−

 a 2

 a

11

33

11

33

11 33 22

11 a 33 22

 j =0

 j =1

 k−3



 k−2



 k−2



 k−1



+

 j

 k−3− j

 j

 k−2− j

 j

 k−2− j

 j

 k−1− j

 a 2

−

+

−

11 a

 a

 a

 a

 a

 a

 a a

 , 

33 22

11 a 33 22

11 a 33 22

33 22

 j =0

 j =1

 j =0

 j =1
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and, by reducing components, we obtain

 k−2



 (i+1 )

 (a 11 −  a 33 )

 ak−2− i ω

=  ak−1 +  ak−2 a

 a 2 +  ak−4 a 3 + · · · +

11

23

11

11

22 +  ak−3

11

22

11

22

 i=0

 k−1



 k−1



 k−1



+

 j

 k−1− j

 j

 k−1− j

 j

 k−1− j

 a 3  ak−4 +  a 2

+  a

−

 a a

=

 a a

−

 a a

11 22

11 ak−3

22

11 ak−2

22

33 22

11 22

33 22

 j =1

 j =1

 j =1

 k−1





 k−1





=

 j

 j

 k−1− j

 k−1− j

 k−1− j

 j

 a

−  a

 a

=

 a

−  a

 a

11

33

22

11

33

22

 j =1

 j =1







=

 k−1

 k−1− j

 k−1− j

 j

 a

−  a

 a . 

 j =0

11

33

22

On the other hand, we get

 k−1



 k−1



 k−1− j j

 k−1− j j

 ω(k) −  ω(k) =

 a

 a

−

 a

 a . 

12

23

11

22

33

22

 j =0

 j =0

Therefore, 

 k−2



 k−2



 ω(k) +  a

 ak−2− i ω(i+1 ) =  ω(k) +  a

 ak−2− i ω(i+1 ). 

(36.11)

12

33

11

23

23

11

11

23

 i=0

 i=0

We now apply (36.11) to prove that

 a 31 ak +  a

+  a

11

32 a 21 ω(k)

12

33 γ (k) =  γ (k+1 ). 

Therefore, exp ((t −  s)(L +  D))  equals to

⎡ ∞

⎤

 ak (t −  s)k

⎢

11

0

0

⎢

⎥

⎢

 k! 

⎥

⎢  k=0

⎥

⎢

∞



∞

⎥

 (t −  s)k

 ak (t −  s)k

⎢

22

⎥

⎢  a 21

 ω(k)

0

⎥

12

⎢

 k! 

 k! 

⎥

⎢

 k=1

 k=0

⎥

⎢ ∞

∞

∞

⎥

⎣   (t −  s)k

 (t −  s)k

 ak (t −  s)k ⎥⎦

 γ (k)

 a

33

32

 ω(k)

 k! 

 k! 

23

 k! 

 k=1

 k=1

 k=0

⎡

⎤

 ea 11 (t− s)

0

0

⎢

⎥

= ⎢  a 21 Ω 12 (t −  s) ea 22 (t− s)

0

⎣

⎥

⎦

 Γ (t −  s)

 a 32 Ω 23 (t −  s) ea 33 (t− s)
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and

⎡

⎤



0  a





⎢

12 ea 11 (t− s)

 a 13 ea 11 (t− s)

⎢

⎥

0  a

⎥

exp  (t −  s) L +  D

 U = ⎢

12 a 21 Ω 12 (t −  s) a 23 ea 22 (t− s) +  a 13 a 21 Ω 12 (t −  s)

⎣

⎥

⎦  . 

0  a 12 Γ (t −  s)

 a 23 a 32 Ω 23 (t −  s) +  a 13 Γ (t −  s) The result (36.8) follows from this and from (36.9). 

Since

 ω(k) =  ω(k), 

13

31



 γ (k) =  a

 k−2

31 ω(k) +  a

 ak−2− i ω(i+1 ), 

13

21 a 32

 i=0

11

23



=  a

 k−2

31 ω(k) +  a

 ak−2− i ω(i+1 ), 

31

21 a 32

 i=0

33

21

for  k = 1 ,  2 , . . . , we have that  ω(k),  ω(k)  and  γ (k)  are symmetric with respect to 13

31

 a 11 and  a 33. Therefore,  Γ  is symmetric with respect to  a 11 and  a 33 and the proof is finished. 

In the next section, we provide results of numerical experiments and illustrate

that reordering equations of a given system leads to faster convergence. 

36.3

Numerical Examples

We now consider systems (36.5) and (36.6) and their corresponding iterative schemes (36.4) and (36.7), respectively. Note that (36.6) is obtained from system (36.5) through a reordering of its equations. We apply BDF3 with the step size h = 10−2 to integrate (36.4) and (36.7) with respect to  t, which results in numerical approximations  x(k)  and  y(k)  to  x

 i,n

 i,n

 i (tn)  and  yi (tn), respectively. Here,  tn =  nh, 

 n = 0 ,  1 , . . . . 

The approximations  x(k)  computed over the interval [0 ,  10] from (36.4) and 1 ,n

compared to the exact solution  x 1 (tn) (solid lines) are presented in Fig. 36.1a

for  k = 1 ,  2 and in Fig. 36.1c for  k = 3 ,  4. The first two iterations of (36.4)

result in numerical solutions with high amplitudes (dashed and dash-dotted lines in

Fig. 36.1a) that are far from the exact solution, which as a result manifests errors of about 102. The third and fourth iterates (dashed and dash-dotted lines in Fig. 36.1c)

are closer to the exact solution but their errors are still of order 10. The curve

obtained from the fifth iterate  x( 5 )  covers the curve of the exact solution  x 1 ,n

1 (tn)

and the curve obtained from the first iterate  y( 1 )  computed from scheme (36.7) also 1 ,n

covers the curve of the exact solution. This illustrates that (36.7) is faster than (36.4). 

The function

< 

 r(t ) =

 (x 1 (t)) 2 +  (x 2 (t)) 2 +  (x 3 (t)) 2

(solid lines) and the approximations
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Fig. 36.1 Numerical and exact solutions

; 

 r(k)(t ) =

 (x(k)(t )) 2 +  (x(k)(t)) 2 +  (x(k)(t)) 2

1

2

3

(dashed and dash-dotted lines) obtained from (36.4) are presented in Fig. 36.1b for k = 1 ,  2 and Fig. 36.1d for  k = 3 ,  4. Three and four iterations of (36.4) result in approximations that are closer to the exact solution than those obtained after the

first two iterations of (36.4), illustrating convergence of the scheme. Moreover, the curves obtained after five or more iterations of (36.4) cover the curve of the exact solution. On the other hand, all curves obtained after the first and higher iterations of (36.7) cover the curve of the exact solution, again confirming that scheme (36.7)

is faster than (36.4). 

The numerical errors

 E(k) = | x

|

(36.12)

 i

 i (tn) −  x(k)

 i,n
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Fig. 36.2 The numerical errors (36.12) and (36.14) of the schemes (36.4) (a), (b) and the numerical errors (36.13) and (36.15) of the scheme (36.7) (c), (d) of the approximations  x(k)  computed from (36.4) are presented in Fig. 36.2a and the i,n

errors

 E(k) = | y

|

(36.13)

 i

 i (tn) −  y(k)

 i,n

of the approximations  y(k)  computed from (36.7) are presented in Fig. 36.2c on i,n

a logarithmic scale. Both errors (36.12) and (36.13) are presented for  k = 30 as functions of time  tn  over the interval [0 ,  5]. 

The errors resulting from both numerical schemes (36.4) and (36.7) are also presented as functions of the iteration  k  at the fixed point  tn = 5 in Fig. 36.2b, d. 

Figure 36.2b presents the maximum errors

˜ E(k) = max{| x

|}

(36.14)

 i

 i (tn) −  x(k)

 n

 i,n
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of the numerical scheme (36.4) while Fig. 36.2d presents the errors

˜ E(k) = max{| y

|}

(36.15)

 i

 i (tn) −  y(k)

 n

 i,n

of (36.7). 

Figure 36.2 demonstrates convergence of both schemes, (36.4) and (36.7). 

However, it can be observed in Fig. 36.2b, d that scheme (36.7) is faster than (36.4). 

Figure 36.2a, c shows that the errors resulting from both schemes, (36.4) and (36.7), 

are well below the accuracy of 10−11, which is in agreement with the fact that

the approximations were computed by using BDF3 with the step size  h = 10−4. 

This accuracy is also observed in Fig. 36.2b, d. However, Figure 36.2b, d illustrates that scheme (36.4) converges in 14 iterations while scheme (36.7) converges in 7

iterations. We conclude that scheme (36.7) is twice as fast as scheme (36.7). 

This numerical illustration is confirmed by Theorem 1. Since in the first equation of (36.4), the previous iterates  x(k−1 )  and  x(k−1 )  are multiplied by the coefficient 2

3

102, while in the first equation of (36.7) the previous iterates  y(k−1 )  and  y(k−1 )  are 1

2

multiplied by the smaller coefficient 10−2, and in the second equation of (36.4)

the previous iterate  x(k−1 )  is multiplied by the coefficient 102 while in the second 3

equation of (36.7) the previous iterate  y(k−1 )  is multiplied by the smaller coefficient 1

10−2, scheme (36.7) demonstrates faster convergence than scheme (36.4). As seen in the proof of Theorem 1, the coefficients 102 and 10−2 are carried over and multiplied by the errors of the numerical schemes. 

36.4

Concluding Remarks and Future Work

We have addressed the question of whether or not reordering the equations in a

given system of linear ordinary differential equations written in terms of a matrix

 M  of coefficients influences the rate of convergence of dynamic iterations based on the same splitting method applied to  M  and ˜

 M, where ˜

 M  is a matrix obtained by

reordering the rows of  M. We have derived formulas for the errors of the dynamic iterations and concluded that the coefficients of the given matrix  M  influence the convergence of the dynamic iterations, which leads to the conclusion that if the

alternative matrix ˜

 M  is generated in line with the formulas for the errors, then the

iterations derived from ˜

 M  converge faster than the iterations derived from  M. Based

on the derived formulas for the errors, we have concluded that the parameters of

given systems should be taken into account in the generation of dynamic iterations

in order to obtain faster convergence. This theoretical result confirms numerical

examples, illustrating that iterative schemes generated according to the derived

formulas can speed up the convergence of the resulting iterations by 50%. 
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Future work will address the question of how the differential equations should

be ordered in higher dimensional systems so that the convergence of the applied

iterative schemes is fastest. 
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