

JavaScript Brain Teasers

Exercise Your Mind

by Faraz K. Kelhini

Version: P1.0 (March 2024)

Copyright © 2024 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/fkjsbrain, the
book's homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Susannah Davidson (Executive Editor), Series editor: Miki Tebeka,
Margaret Eldridge (Development Editor), Karen Galle (Copy Editor), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/fkjsbrain
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Preface
About the Author
About You
About the Code

Part I. JavaScript Brain Teasers

Puz
zle
1. Your Code Deserves a Lift

Puz
zle
2. The Usurper

Puz
zle
3. The Mathemagician

Puz
zle
4. Mortal Koncatenation

Puz
zle
5. Offbeat Identifierz

Puz
zle
6. The Fun-ction

Puz
zle
7. How Long Is a Pirate Flag?

Puz
zle
8. What’s This?

Puz
zle
9. The Flat Earth Society

Puz
zle
10. Casting Spells with 1s and 0s

Puz
zle
11. Dating with Math

Puz
zle
12. What’s the Value of Math?

Puz
zle
13. Netherlands or Holland?

Puz
zle
14. The Permanent Closure

Puz
zle
15. Cracking the Color Code

Puz
zle
16. Waiting in Line

Puz
zle
17. Chasing Promises

Puz
zle
18. Oo Na Na Na

Puz
zle
19. Hexorcism

Puz
zle
20. The Arrayist

Puz
zle
21. The Chain Master

Puz
zle
22. The Shape Shifter

Puz
zle
23. Alphabet Aerobics

Puz
zle
24. Do You Trust Your Eyes?

Puz
zle
25. Truth or Fiction?

Puz
zle
26. On or Off?

Puz
zle
27. The Grocery List

Puz
zle
28. Negative Gravity

Part II. Crafting Puzzles

Puz
zle
29. Crafting Your Own JavaScript Puzzle

Copyright © 2024, The Pragmatic Bookshelf.

Early Praise for JavaScript Brain
Teasers

The challenging, varied puzzles keep you reading, and the succinct
explanations keep you learning. Loved every page of this surprisingly
eclectic book on JavaScript.

→ Lukas Mathis
Author of Designed for Use

A fun read about JavaScript’s features and functions that may not be
familiar to every user of the language. Both enjoyable and educational.

→ Marcus S. Zarra
iOS/OS X Developer

I’ve been writing JavaScript for over decade now, and I learned things
from this book. I like how the puzzles are not “gotcha” questions about
obscure edge cases that topics like this can fall into—each one has a
specific learning objective in mind.

→ Randall Koutnik
Author of Build Reactive Websites with RxJS

Acknowledgments

Thank you for embarking on this coding adventure with me. Writing a book
is never a solitary endeavor; it’s the culmination of the support, guidance,
and encouragement of many individuals.

I extend my appreciation to the team at The Pragmatic Programmers, whose
expertise transformed this vision into a reality. Special thanks to Margaret
Eldridge for your meticulous editing and keen eye for detail, ensuring the
quality and clarity of the content.

Many thanks are owed to the experts Michael Fazio, Andy Lester, and
Daniel Posey for their invaluable reviews of the book before it went to
print. Their expertise as developers provided crucial insights into code
quality.

I’d also like to express my appreciation to Randall Koutnik, Lukas Mathis,
and Marcus S. Zarra. They not only took the time to review my book and
highlight any errors I made but also offered kind words of encouragement
and praise.

Copyright © 2024, The Pragmatic Bookshelf.

Preface

JavaScript has historically been known for its quirks and idiosyncrasies.
These unusual characteristics often arise from its evolution as a language
and the need to maintain backward compatibility, among other factors. For
instance, a notable quirk in JavaScript is type coercion: JavaScript tries to
be forgiving with data types, which can lead to unexpected behavior when
different types are mixed.

It’s important for developers to be aware of these aspects of JavaScript in
order to write more robust and predictable code. Fortunately, the
ECMAScript standard, which defines JavaScript, is evolving to address
many of these issues and introducing more predictable behavior and
additional features to the language.

In this book, we invite you on a journey through a carefully curated
collection of intriguing JavaScript challenges, designed to unveil the
intricate nuances and peculiarities that define the language’s essence.
Whether you are an advanced beginner seeking growth or a seasoned
developer looking to sharpen your skills, there’s something for you within
these pages.

At the start of each chapter, I’ll toss a cool little JavaScript program your
way and challenge you to guess what it’s going to output. Don’t worry, I
won’t leave you hanging. After your best guess, feel free to run the code
and see the magic happen! Then, go ahead and check out the explanation to
level up your JavaScript skills.

About the Author
Faraz K. Kelhini is the author of Modern Asynchronous JavaScript and Text
Processing with JavaScript. With a profound understanding of the
JavaScript language and its intricate APIs, Faraz’s journey has been fueled
by a passion for championing innovative ideas that improve the coding
experience, all while crafting solutions that seamlessly harmonize creativity
and functionality.

About You
Before we embark on this exciting journey, it’s essential to note some
familiarity with JavaScript will greatly enhance your understanding of the
concepts discussed here. If you’re new to JavaScript and have never had the
opportunity to explore its wonders, I recommend taking some time to learn
the basics first—you’ll find it to be an enjoyable experience!

[1]

About the Code
The provided code examples are designed to be concise and intended to
demonstrate the core essence of each brain teaser. Feel free to execute these
examples in your browser’s console, but ensure that your browser is
updated to the latest version.

To access the sample code featured in the book, please visit the Pragmatic
Bookshelf website.[1] There, you can provide feedback, report any errors,
get up-to-date information, and join in the discussions on the book’s
dedicated forum page.

If you’re reading the book in PDF format, you can view or retrieve a
particular example by selecting the small gray box located above the code
segment.

Footnotes

https://www.pragprog.com/titles/fkjsbrain

Copyright © 2024, The Pragmatic Bookshelf.

https://www.pragprog.com/titles/fkjsbrain

Part 1
JavaScript Brain Teasers

Puzzle 1 Your Code Deserves a Lift

your_code_deserves_a_lift/your_code_deserves_a_lift.js

 let temp = 25;

 function displayTemperature() {

 console.log(̀Current temperature: ${temp} °C`);

 }

 function forecastTemperature() {

 console.log(̀Expected temperature: ${temp} °C`);

 var temp = 28;

 }

 displayTemperature();

 forecastTemperature();

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be:

 Current temperature: 25 °C

 Expected temperature: 25 °C

But this code will actually output:

 Current temperature: 25 °C

 Expected temperature: undefined °C

Discussion

http://media.pragprog.com/titles/fkjsbrain/code/your_code_deserves_a_lift/your_code_deserves_a_lift.js

In JavaScript, all declarations are subject to hoisting. This includes var, let,
const, function, function*, and class declarations. Hoisting involves the automatic
relocation of these declarations to the scope’s beginning. But, their
initialization is deferred until the execution flow hits the line where hoisting
occurred. This process occurs before the code is executed, and it helps
JavaScript handle references to variables and functions.

Consider the following code:

 // Create a variable

 var a = 10;

This code is processed by JavaScript in the following manner:

 var a;

 // Create a variable

 a = 10;

When you declare a variable using the var keyword, the declaration is moved
(or “hoisted”) to the top of the containing function or global scope. However,
the assignment (initialization) of the variable remains in its original place.
This means that you can reference a var before it’s declared in your code
without causing an error. However, the value will be undefined until you
actually assign a value to it.

This behavior can lead to unexpected outcomes when working with functions.
Any variable that is declared within a function will be hoisted to the top.
Consequently, if there exists a variable with an identical name in the global
scope, it will become concealed within the function. For example:

 var a = 10;

 function fn() {

 console.log(a); // → undefined

 var a = 20;

 console.log(a); // → 20

 }

 fn();

So, when looking at the first line of this function, you might think it’ll log 10
and 20. But JavaScript actually processes the code differently:

 var a = 10;

 function fn() {

 var a;

 console.log(a); // → undefined

 a = 20;

 console.log(a); // → 20

 }

 fn();

To make sure things go smoothly and we don’t run into any surprises, ES2015
came up with a solution: the let keyword for declaring variables. With let,
variables still get hoisted, but now they’re like reminders. They’ll give us a
heads-up if we try to use a variable that hasn’t been declared, preventing any
unexpected hiccups:

 function fn() {

 console.log(a); // → undefined

 console.log(b); // → ReferenceError: b is not defined

 var a = 20;

 let b = 20

 console.log(a);

 }

 fn();

So with var, when you try to get hold of a variable before it’s declared, you’ll
get undefined as a response. On the other hand, if you attempt the same thing
with let, you’ll get an error message. As with let, if you try to use a const or
class before declaring them, you’ll get a ReferenceError thrown your way.

Temporal dead zone (TDZ) is a term dubbed by the JavaScript community to
describe why it’s not possible to access let and const before they are declared.
let and const are both hoisted similarly to var and function declarations, but
there is a time span between entering the scope and being declared in which
they cannot be accessed. This period is the temporal dead zone.

Any attempt to access variables while they are in TDZ causes a ReferenceError.
Once execution reaches the declaration, the variable in TDZ is removed, and
they are allowed to be accessed. The TDZ exists to help us find bugs in our
code. Trying to access a variable before declaring it is rarely intentional.

The Lifespan of Variables
The lifespan of variables within a function spans the duration of
the function’s execution. Once a function concludes its execution,
all local variables within it are automatically cleared. In contrast,
global variables remain in memory until the program/webpage is
closed.

It’s important to remember that TDZ applies only to the code block in which
the variable is declared. Attempting to access a variable outside its scope does
not throw an error because the variable is not in TDZ:

 console.log(a); // → undefined

 {

 console.log(a); // → ReferenceError

 let a = 10;

 }

 var a = 20;

Function Hoisting
Similar to variables, function declarations are hoisted to the top of their
containing scope. But they are hoisted entirely, including both the name and

the function body. This means you can call a function declared using function
before the actual declaration in the code:

 fn1(); // → Hello!

 function fn1() {

 console.log("Hello!");

 }

Function expressions, on the other hand, are not hoisted in the same way. Only
the variable declaration is hoisted, and the function assignment occurs at the
point where the variable is declared:

 fn2(); // → TypeError: fn2 is not a function

 var fn2 = function () {

 console.log("Hello!");

 };

In this case, the variable fn2 is initially assigned undefined, so you can’t call it
as a function until the assignment is made.

So remember, it’s best to declare variables at the top of the scope they belong
to. That way, you’ll steer clear of any confusion down the road. Additionally,
try to get into the habit of using let and const instead of var because they help
prevent potential problems like variable hoisting and accidental variable
redeclaration.

Further Reading

JavaScript hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

The var statement
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/var

The let declaration

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/let

The const declaration
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/const

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const

Puzzle 2 The Usurper

the_usurper/the_usurper.js

 // Calculate the area of a rectangle

 function calculateArea(length, width) {

 return length * width;

 }

 // Calculate the area of a square

 function calculateArea(length) {

 return length * length;

 }

 console.log(calculateArea(4, 6));

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the first function, which accepts two arguments, to
be executed, but the second function is executed resulting in the following
output:

 16

Discussion
JavaScript doesn’t support function overloading like you might be used to in
other languages. Function overloading means having multiple functions with
the same name but different parameter lists, and the right function gets called
based on the arguments you provide.

http://media.pragprog.com/titles/fkjsbrain/code/the_usurper/the_usurper.js

In JavaScript, if you define multiple functions with the same name, the last
one you define will replace the previous functions. But, there’s a workaround.
You just need to be a little creative.

Instead of having separate functions, you can write a single function and then
check the types and number of arguments inside it. Based on what you find,
you can make your function behave differently. It’s a bit different from
traditional function overloading, but it gets the job done in JavaScript:

the_usurper/the_usurper_ex1.js

 function calculateArea(length, width) {

 if (width === undefined) {

 // Calculate area of a square

 return length * length;

 } else {

 // Calculate area of a rectangle

 return length * width;

 }

 }

 console.log(calculateArea(5)); // → 25 (Area of a square)

 console.log(calculateArea(4, 6)); // → 24 (Area of a rectangle)

In this example, we have a function that can calculate the area of both squares
and rectangles. Here’s how it works: if we call the function with just one
argument, the second argument will have a value of undefined. So, it squares
the length value and gives us the area we want.

But, if we decide to pass two arguments, the function realizes that we’re
dealing with a rectangle. So, it multiplies the length and width values together
and we get the area of that rectangle.

This trick allows us to have a single function that does all the work. Now, it’s
worth mentioning that with the introduction of ECMAScript 2015 (ES6),
JavaScript got some new tricks up its sleeve. Default function parameters and
the rest parameter syntax can help us handle different numbers of arguments
with more flexibility.

http://media.pragprog.com/titles/fkjsbrain/code/the_usurper/the_usurper_ex1.js

It’s good to keep in mind that true function overloading based on parameter
types isn’t something JavaScript has built-in. But hey, we can still achieve
some pretty cool stuff with what JavaScript offers!

Further Reading

Function overloading
https://en.wikipedia.org/wiki/Function_overloading

Default parameters
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Default_parameters

Rest parameters
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/rest_parameters

https://en.wikipedia.org/wiki/Function_overloading
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

Puzzle 3 The Mathemagician

the_mathemagician/the_mathemagician.js

 const largeNumber = Math.pow(10, 16);

 const smallNumber = 1;

 console.log(largeNumber + smallNumber);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be 10000000000000001, but this code
will actually log:

 10000000000000000

Discussion
In JavaScript, the Math.pow() function can be used to raise a number to a
specified power. In this case, the code Math.pow(10, 16) calculates the result of
raising the number 10 to the power of 16, resulting in 10000000000000000. But
why does the sum of 10000000000000000 and 1 equal 10000000000000000?

JavaScript does have some limitations when it comes to representing very
large numbers accurately. The limitation is due to the way numbers are
stored and the precision of the data type used in JavaScript. The Number type
has a specific range where it works best. It can handle integers between
-9007199254740991 and 9007199254740991 perfectly without losing any precision.

http://media.pragprog.com/titles/fkjsbrain/code/the_mathemagician/the_mathemagician.js

But if you happen to use an integer outside of this range, there’s a chance that
it won’t be represented accurately. This issue is known as loss of precision
when dealing with large numbers in JavaScript. Here’s another example you
can try:

 console.log(9999999999999999); // → 10000000000000000

JavaScript has got you covered with a couple of handy constants that make it
easy to get the maximum and minimum safe integers. Just use the
Number.MAX_SAFE_INTEGER constant to get the largest safe integer and the
Number.MIN_SAFE_INTEGER constant to grab the smallest safe integer:

 console.log(Number.MIN_SAFE_INTEGER); // → -9007199254740991

 console.log(Number.MAX_SAFE_INTEGER); // → 9007199254740991

Previously, to handle very large numbers with precision, JavaScript
developers had to use external libraries like BigInt.js[2] or BigNumber.js.[3]

Fortunately, ECMAScript 2020 (the standardized specification for JavaScript)
came to the rescue with a fantastic solution called BigInt. Creating a BigInt is
easy: simply append the letter n to the end of an integer, like this:

 console.log(9999999999999999n); // → 9999999999999999n

Or, you can use the BigInt() constructor:

 BigInt("9999999999999999"); // → 9999999999999999n

So, to fix the code in this puzzle, we can write:

 const largeNumber = BigInt("10000000000000000");

 const smallNumber = BigInt("1");;

 console.log(largeNumber + smallNumber);

 // → 10000000000000001n

You might be curious about why we’re also converting the smallNumber to a
BigInt. To maintain the integrity of the data and avoid potential loss of
information, mixed operations between BigInts and Numbers are not

permitted. The reason behind this restriction is that the resulting value may not
be accurately representable by either BigInt or Number data types.

Let’s take a look at the following example to better understand this:

 10000000000000000n + 0.5;

 // → TypeError: Cannot mix BigInt and other types, use explicit conversions

Converting a Number with a fractional part to a BigInt may not yield an
accurate representation, just as converting a BigInt larger than 2^53 to a
Number may also result in loss of precision.

When performing arithmetic computations involving both BigInt and Number
values, you have to choose the domain in which the operation should take
place. Convert either of the operands by using the functions Number() or
BigInt():

 // convert the Number to a BigInt

 BigInt(5) + 5n; // → 10n

 // or convert the BigInt to a Number

 5 + Number(5n); // → 10

There are some subtle differences between a Number and a BigInt. You can
use all arithmetic operators on a BigInt except for the unary plus (+) operator:

 console.log(1n + 2n); // → 3n

 console.log(1n - 2n); // → -1n

 console.log(1n * 2n); // → 2n

 console.log(2n / 1n); // → 2n

 console.log(14n % 10n); // → 4n

 console.log(5n ** 3n); // → 125n

 let x = 1n;

 console.log(++x); // → 2n

 console.log(--x); // → 1n

 console.log(-x); // → -1n

 console.log(+x); // → TypeError: Cannot convert a BigInt value to a Number

The unary plus (+) operator is not supported for a reason. Some programs may
depend on the fact that the + operator always results in a Number or throws an
exception. By not supporting it, JavaScript ensures that your code remains
reliable and consistent.

When you use arithmetic operators with BigInt operands, you would expect
them to return a BigInt value. So, when it comes to the division (/) operator,
the result is automatically truncated to maintain consistency with this
expectation:

 console.log(12 / 5); // → 2.4

 console.log(12n / 5n); // → 2n

When it comes to comparing a BigInt with a regular number, remember that
they are not of the same type. This means you can’t use the strict equality
operator (===) directly to compare them:

 console.log(1n === 1); // → false

 console.log(typeof 1n); // → bigint

 console.log(typeof 1); // → number

However, you do have the option to use the equality operator (==), which
automatically converts the types of its operands (known as type coercion)
before comparing them:

 console.log(10n == 10); // → true

It’s worth mentioning that you should also avoid passing a BigInt as an
argument to built-in JavaScript functions and APIs that specifically require a
Number. Doing so will trigger a TypeError, as in this example:

 Math.min(5n, 10n, 15n); // → TypeError

So, you should use the Number data type when dealing with regular numeric
values that fall within the range of -9007199254740991 and 9007199254740991,
which is suitable for most everyday calculations.

On the other hand, you should opt for the BigInt data type when working with
exceptionally large integer values that exceed the safe limits of the Number
type, as BigInt allows for arbitrary precision arithmetic and can accurately
represent and manipulate integers of any size, albeit at a potential performance
cost.

Further Reading

The BigInt value
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/BigInt

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt

Puzzle 4 Mortal Koncatenation

mortal_koncatenation/mortal_koncatenation.js

 const femaleMKCharacters = [

 "Sonya Blade" ,

 "Sindel" ,

 "Cassie Cage" ,

 "Sheeva"

];

 const maleMKCharacters = [

 "Scorpion" ,

 "Sub-Zero" ,

 "Raiden" ,

 "Johnny Cage"

];

 const MKCharacters = femaleMKCharacters + maleMKCharacters;

 console.log(MKCharacters);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be a merged array, but this
code will actually output:

 Sonya Blade,Sindel,Cassie Cage,SheevaScorpion,Sub-Zero,Raiden,Johnny Cage

Discussion
This JavaScript code defines two arrays: femaleMKCharacters and
maleMKCharacters. The femaleMKCharacters array contains the names of female

http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation.js

characters from the Mortal Kombat video game series, whereas the
maleMKCharacters array contains the names of male characters from the same
game.

The puzzle then attempts to combine two arrays into one big array using the +
operator. But here’s the problem: when you use the + operator with arrays in
JavaScript, it doesn’t merge them as you might expect. Instead, it treats them
as strings and does string concatenation. So, the end result is that MKCharacters

becomes a single string that smashes the two arrays together as if they were
strings.

Fortunately, there are multiple ways to combine two arrays. Here are a few
common approaches:

1. concat(): A quick way to combine two arrays is by using concat(). This
method creates a new array that includes the elements from both arrays:

mortal_koncatenation/mortal_koncatenation_ex1.js

 const array1 = [1, 2, 3];

 const array2 = [4, 5, 6];

 const combinedArray = array1.concat(array2);

 console.log(combinedArray); // → [1, 2, 3, 4, 5, 6]

You can also use concat() when you have a variable number of arrays to
concatenate or if you need to concatenate arrays dynamically based on
certain conditions.

2. Spread Operator: The spread operator (...) is a newer feature introduced in
ECMAScript 2015 (ES6) that provides a concise way to combine arrays.
It unpacks the elements of each array and creates a new array with all the
elements:

mortal_koncatenation/mortal_koncatenation_ex2.js

 const array1 = [1, 2, 3];

 const array2 = [4, 5, 6];

http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation_ex2.js

 const combinedArray = [...array1, ...array2];

 console.log(combinedArray); // → [1, 2, 3, 4, 5, 6]

Compared to concat(), the spread operator is more readable, especially
when you only need to combine a couple of arrays.

3. push() or unshift(): You can also use array manipulation methods like push()
or unshift() to merge arrays:

mortal_koncatenation/mortal_koncatenation_ex3-1.js

 const array1 = [1, 2, 3];

 const array2 = [4, 5, 6];

 // Combining arrays using push()

 array1.push(...array2);

 console.log(array1); // → [1, 2, 3, 4, 5, 6]

mortal_koncatenation/mortal_koncatenation_ex3-2.js

 const array1 = [1, 2, 3];

 const array2 = [4, 5, 6];

 // Combining arrays using unshift()

 array1.unshift(...array2);

 console.log(array1); // → [4, 5, 6, 1, 2, 3]

The push() method appends the elements of the second array to the end of
the first array, while unshift() adds them to the beginning.

4. splice(): If you want to insert the elements of an array into another array at
a specific index, you can use the splice() method:

mortal_koncatenation/mortal_koncatenation_ex4.js

 const array1 = [1, 2, 3];

 const array2 = [4, 5, 6];

 // Assuming you want to add array2 to array1 at index 2

 const insertIndex = 2;

http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation_ex3-1.js
http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation_ex3-2.js
http://media.pragprog.com/titles/fkjsbrain/code/mortal_koncatenation/mortal_koncatenation_ex4.js

 // Using splice() to insert the elements of array2 into array1

 array1.splice(insertIndex, 0, ...array2);

 console.log(array1); // → [1, 2, 4, 5, 6, 3]

These are some of the common ways to combine two arrays in JavaScript.
Keep in mind that concat() and the spread operator do not alter the existing
arrays; instead, they return a new array. On the contrary, push(), unshift(), and
splice() modify the contents of the array they are applied to. Choose the method
that best suits your specific requirements and coding style.

Further Reading

A complete list of available array methods
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array#instance_met
hods

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#instance_methods

Puzzle 5 Offbeat Identifierz

offbeat_identifierz/offbeat_identifierz.js

 let シ = "\ u2663" ;

 console.log(シ);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 ♣

Discussion
You might be surprised that シ (which is a Japanese character called “shi”) is
a valid identifier in JavaScript and that "\u2663" converts to a single character.
But, in JavaScript, you can use a wide range of Unicode characters as
identifiers. Surprisingly, not many developers know about this cool feature.

And that’s not all! You can also make use of Unicode escape sequences to
rescue yourself from special characters that hold meaning in your code or to
display those tricky-to-type characters, including foreign language characters,
mathematical symbols, and even emojis.

Since ECMAScript 2015, you can use most Unicode characters as an
identifier in JavaScript. According to the ECMAScript specification,
JavaScript allows the use of Unicode characters in identifiers for variables,
functions, classes, and other language constructs.

http://media.pragprog.com/titles/fkjsbrain/code/offbeat_identifierz/offbeat_identifierz.js

Here’s a function with an identifier in the Persian language:

offbeat_identifierz/offbeat_identifierz_ex1.js

 function سلام() {
 return "Hello" ;

 }

 "Hello" → // ;() سلام

Avoid Copy-Pasting from PDF
If you want to try this code, don’t just copy-paste it from the PDF
because it might not grab all those fancy Unicode characters.
Instead, click on the small gray box located above the code
segment to retrieve the JavaScript file.

However, there are some restrictions on the characters that can be used:

The first character of an identifier must be a Unicode letter (category L),
an underscore (_), a dollar sign ($), or a Unicode escape sequence

Subsequent characters can be letters, digits, underscores, dollar signs, or
Unicode escape sequences (we’ll talk about Unicode escape sequences
shortly)

Reserved words and keywords cannot be used as identifiers (for a list of
reserved words, visit MDN)[4]

Using Unicode characters as an identifier can be quite convenient, but it’s
important to consider how it can potentially complicate the lives of your
fellow programmers. So, I recommend sticking to the tried-and-true ASCII for
the sake of everyone’s convenience.

Now, let’s go back to our puzzle, where we assigned \u2663 to a constant. The
visuals displayed on computers represent binary information comprising

http://media.pragprog.com/titles/fkjsbrain/code/offbeat_identifierz/offbeat_identifierz_ex1.js

sequences of ones and zeros. Character encoding steps in to make sense of
these binary bits and turn them into actual characters we understand.

To pull this off, each character gets linked to a special number, known as a
code point. So, for instance, take the black club suit character (♣)—it’s linked
to the code point U+2663. When a character gets tied to a specific code point,
it’s called an encoded character.

In JavaScript, you have the ability to directly use the code point of a character
by adding \u before the code point, as in this example:

 console.log(" \ u2663"); // → ♣

When you write a string like that, you’re generating what’s referred to as a
Unicode escape sequence. Unicode escape sequences are particularly useful
when you want to use escape characters with special meanings in your code or
display those hard-to-type characters, like foreign language characters,
mathematical symbols, or even emojis.

Further Reading

Valid JavaScript variable names in ES2015
https://mathiasbynens.be/notes/javascript-identifiers-es6

Information about the Unicode character シ (U+30B7)
https://compart.com/en/unicode/U+30B7

Identifier definition
https://developer.mozilla.org/en-US/docs/Glossary/Identifier

Unicode character properties
https://unicode.org/versions/Unicode15.0.0/ch04.pdf

https://mathiasbynens.be/notes/javascript-identifiers-es6
https://compart.com/en/unicode/U+30B7
https://developer.mozilla.org/en-US/docs/Glossary/Identifier
https://unicode.org/versions/Unicode15.0.0/ch04.pdf

Puzzle 6 The Fun-ction

the_fun-ction/the_fun-ction.js

 ! function () {

 const name = "john" ;

 const age = 20;

 }();

 const capitalizedName = name[0].toUpperCase() + name.slice(1);

 console.log(capitalizedName);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be the capitalized name “John”, but
this code will actually log:

 TypeError: Cannot read properties of undefined

Discussion
The problem in this code is that name has what we call function scope,
meaning it’s accessible only within that function. So, if you attempt to use the
value of name out of the function, you’ll encounter a reference error because
name is undefined in the outer scope.

The function in this puzzle is known as an immediately invoked function
expression (IIFE). It’s a handy design pattern that lets you execute a function
right after defining it. The best part is that it helps you create a separate scope
for your variables so you don’t mess up the global namespace.

http://media.pragprog.com/titles/fkjsbrain/code/the_fun-ction/the_fun-ction.js

When it comes to defining IIFEs, there’s actually more than one way to do it.
Let’s dive in and explore the various forms of syntax you can use for IIFEs:

1. Traditional Parentheses Enclosure:

 (function () {

 // function body

 })();

In this form, the IIFE is enclosed within parentheses. The magic happens
when we define the function inside those parentheses and then
immediately invoke it by adding another set of parentheses at the end.
You can also write this form with an arrow function, like this:

 (() => {

 // function body

 })();

This syntax is widely used and considered the standard way of writing
IIFEs.

2. Unary Operator Enclosure:

 ! function () {

 // function body

 }();

In this form, the IIFE is preceded by the Logical NOT (!) operator. We
define the function after the operator and go ahead and immediately
invoke it with (). Now, here’s the fun part: you can actually use other
unary operators like +, -, or ~ if you feel like it. The reason we use an
operator is to make sure that the function is treated like an expression.
It’s a shorthand way of saying, “Execute this function immediately.”

3. Grouping Operator Enclosure:

 (function () {

 // function body

 }());

This form is similar to the traditional parentheses enclosure, but the outer
set of parentheses is placed around the whole IIFE expression. We define
the function inside the parentheses, and the inner pair of parentheses ()
immediately invokes it.

4. Function Declaration Enclosure:

 (function namedIIFE() {

 // function body

 })();

In this form, the IIFE is a named function expression enclosed within
parentheses. Why do we give it a name, you ask? Well, it’s all about
making life easier when we’re checking stack traces or using some fancy
recursion inside the function. We define the function inside parentheses
and immediately invoke it with ().

So, we have these different forms of IIFE that give us some flexibility when it
comes to writing self-executing functions. It’s totally up to you—your own
personal preference and coding style—to choose which syntax floats your
boat. However, if you’re collaborating in a team, you might prefer using the
traditional parentheses enclosure since more developers are familiar with its
syntax.

Further Reading

IIFE definition
https://developer.mozilla.org/en-US/docs/Glossary/IIFE

Scope definition
https://developer.mozilla.org/en-US/docs/Glossary/Scope

https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Glossary/Scope

Puzzle 7 How Long Is a Pirate Flag?

pirate_flag/pirate_flag.js

 // Happy Flag Day!

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be 1, but this code will
actually output:

 4

Discussion
The length of emojis may not be what you expect. In JavaScript, some
characters and emojis are formed by multiple code units, which can lead to
unexpected results when using the length property. The Pirate Flag emoji is
called an Emoji ZWJ Sequence, and it’s made up of two separate emojis:

When a zero-width joiner (ZWJ) is placed between these emojis, they are
displayed as a connected sequence on platforms that support it. The ZWJ itself
is a non-printing character that enables this connected display. The length of

http://media.pragprog.com/titles/fkjsbrain/code/pirate_flag/pirate_flag.js

the Pirate Flag emoji is 4 because the length property counts the code unit of
each independent emoji as well as the ZWJ required to connect them.

In the realm of JavaScript, the sequence of code points \uD83C\uDFF4
represents the black flag emoji, while the solitary skull emoji is denoted by the
code point \u2620. When combined, including the ZWJ in between, their
collective length totals four characters.

Variation Selectors Extend Emoji/Character Length
Unicode variation selectors are used to indicate specific variations
or alternate representations of a character or emoji, typically for
purposes like skin tone modifications or presentation style
variations.

In many cases, a character can be represented without a variation
selector, and the default representation will be used. The Pirate
Flag emoji might include a variation selector, which would
increase the emoji’s length from 4 to 5 characters. For more
information on the variation selector, please see the “Further
Reading” section.

To tackle this issue, we have the Internationalization API. It provides a handy
method called Segmenter() that helps you segment strings properly, taking into
account the intended segmentation rules of various languages and scripts:

pirate_flag/pirate_flag_ex1.js

 // The correct way to calculate the length of emojis

The Intl.Segmenter() constructor is a handy tool that allows you to break down a
string based on a specific locale and granularity. In this case, we’re keeping it

http://media.pragprog.com/titles/fkjsbrain/code/pirate_flag/pirate_flag_ex1.js

simple by using the default settings, so you just call the method without any
arguments. Just remember that because Intl.Segmenter() is a constructor, you’ll
want to use it with the new keyword.

When you call Intl.Segmenter(), it gives you back an object that has a segment()

method. This method takes a string as its input and does exactly what it
sounds like—it divides the string into those segments that make sense to
humans. Because the result is an iterator, you can make life easier by using the
spread syntax, which is those three dots in a row (...). This syntax allows you
to quickly transform the iterator into an array and obtain its length.

If the code seems a bit confusing, we’ve got an alternative version for you to
use:

pirate_flag/pirate_flag_ex2.js

 function getLength(str) {

 // Create a an instance of segmenter

 const Segmenter = new Intl.Segmenter();

 // Segment the string

 const segment = Segmenter.segment(str);

 // Convert it into an array

 const arr = Array. from (segment);

 // Return the number of characters

 return arr.length;

 }

This version of the code performs the same operations as the first one.

The Internationalization API is really clever when it comes to counting ZWJ
emojis. It treats them as a single character, which makes things much easier
for us. Whenever you need to get the length of a string that may contain
emojis or Unicode characters, consider using the Intl.Segmenter() method.

Further Reading

http://media.pragprog.com/titles/fkjsbrain/code/pirate_flag/pirate_flag_ex2.js

The pirate flag emoji
http://www.unicode.org/L2/L2018/18059-pirate-flag.pdf

General variation sequences FAQ
http://unicode.org/faq/vs.xhtml

The Intl.Segmenter object
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter

The Internationalization API
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl

The zero-width joiner
https://en.wikipedia.org/wiki/Zero-width_joiner

http://www.unicode.org/L2/L2018/18059-pirate-flag.pdf
http://unicode.org/faq/vs.xhtml
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://en.wikipedia.org/wiki/Zero-width_joiner

Puzzle 8 What’s This?

whats_this/whats_this.js

 let key = 2049;

 (function () {

 "use strict" ;

 console.log(this .key);

 })();

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 TypeError: Cannot read properties of undefined

Discussion
The this keyword in JavaScript can be a bit tricky because its value depends on
where the code is running and how it’s being used. If you run the code outside
of any specific function or object, this refers to the global object. In a web
browser, the global object is usually window, and in Node.js, it’s global. So, if
you run console.log(this) in a web browser’s console, you’ll see the value of
window printed out.

But here’s the interesting part: the value of this can change depending on the
context. If you’re inside a function that is not part of an object, then this might
be different. In strict mode, it’ll be undefined, and in non-strict mode, it’ll be
the global object again:

http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this.js

whats_this/whats_this_ex1.js

 (function () {

 "use strict" ;

 console.log(this); // → undefined

 })();

 (function () {

 console.log(this); // → Window {...}

 })();

In this puzzle, we are attempting to read the key property of undefined inside an
immediately invoked function expression (IIFE). Remember, an IIFE is a
function that is executed immediately after its creation. Since undefined lacks
properties, the code generates an error.

Notice the "use strict" expression at the top of the function. This line tells the
JavaScript engine to enable strict mode in the function. Strict mode is a way to
opt into a stricter set of rules and behaviors enforced by the JavaScript engine,
which helps to catch common coding mistakes and “unsafe” actions,
ultimately leading to more robust and maintainable code.

Without "use strict", the function logs undefined instead of throwing an error:

whats_this/whats_this_ex2.js

 let key = 2049;

 (function () {

 console.log(this .key); // → undefined

 })();

Now, if we used this inside an object’s method, it would point to the object
itself. So, if you call a method of an object like object.method(), then this will be
the object of that method:

whats_this/whats_this_ex3.js

 const user = {

 firstName: "Mikasa" ,

http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex2.js
http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex3.js

 lastName: "Ackerman" ,

 getFullname() {

 return ̀ ${ this .firstName} ${ this .lastName} ̀ ;

 }

 };

 console.log(user.getFullname()); // → Mikasa Ackerman

If you use the new keyword to create objects using a constructor function, this

will refer to the newly created object:

whats_this/whats_this_ex4.js

 function Book(name, year) {

 this .name = name;

 this .year = year;

 this .getBookInfo = () => {

 return ̀ ${ this .name} (${ this .year})` ;

 }

 }

 const book1 = new Book("Death by Black Hole" , 2006);

 book1.getBookInfo(); // → Death by Black Hole (2006)

And finally, if you explicitly set the value of this using methods like call(),
apply(), or bind(), it will refer to the object you pass as the first argument:

whats_this/whats_this_ex5.js

 function describeMeal() {

 return ̀A ${ this .dish} usually has about ${ this .calories} calories.` ;

 }

 const meal = {

 dish: "salad" ,

 calories: "300" ,

 };

 console.log(describeMeal.call(meal));

 // → A salad usually has about 300 calories.

http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex4.js
http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex5.js

So, running console.log(this) will give you different outputs depending on where
the code is running and how it’s being used. Keep in mind that if you use this

to access the global object, it could make your code less portable. Every
JavaScript environment has its own object model and different ways to reach
the global object. In a web browser, you can access the global object using
window, self, this, or frames. It’s pretty flexible!

For example, window.alert(’Hello’) accesses the global object (window) and
invokes the alert method. Additionally, you can access the global object
directly without using the window prefix. For example, alert(’Hello’) would work
as well.

In Node.js, however, properties like window and self don’t exist, and you must
use global instead. In Web Workers, only self is available. These different ways
of referencing the global object have made it tough to write portable
JavaScript code that works in multiple environments.

Fortunately, ECMAScript fixed this issue in ES2020 by introducing a standard
property called globalThis that’s available in all environments:

whats_this/whats_this_ex6.js

 // Browser environment

 console.log(globalThis); // → Window {...}

 // Node.js environment

 console.log(globalThis); // → <ref *1> Object [global] {...}

 // Web worker environment

 console.log(globalThis); // → DedicatedWorkerGlobalScope {...}

By using globalThis, your code will work effortlessly in both window and non-
window contexts without the need for extra checks.

When you’re unsure about the environment in which your code will be
utilized or if you want to ensure its compatibility across different
environments, the globalThis property becomes incredibly useful. Keep in mind

http://media.pragprog.com/titles/fkjsbrain/code/whats_this/whats_this_ex6.js

that older browsers may require a polyfill. A polyfill is a piece of code that
provides modern JavaScript features to older web browsers that lack native
support for those features.

On the other hand, if you’re confident about the specific environment in which
your code will be used, you can rely on existing methods to reference the
global object of that environment. This way, you can avoid the hassle of
including a polyfill.

Further Reading

What is globalThis, and why should you start using it?
https://blog.logrocket.com/what-is-globalthis-why-use-it/

The globalThis global property
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/globalThis

https://blog.logrocket.com/what-is-globalthis-why-use-it/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis

Puzzle 9 The Flat Earth Society

the_flat_earth_society/the_flat_earth_society.js

 const nestedArray = ["apple" , ["blueberry" , "blackberry"],

 ["tangerine" , "orange"], "grape"];

 const newArr = [].concat.apply([], nestedArray);

 console.log(newArr);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 ['apple', 'blueberry', 'blackberry', 'tangerine', 'orange', 'grape']

Discussion
This JavaScript code is all about flattening an array of arrays. First, we have
an array called nestedArray. It contains four elements: two strings and two sub-
arrays. The second line of code does the magic of flattening the array. Here’s
how it works:

1. [] creates an empty array. This will be the initial value for the concat()

method.

2. concat() is a built-in JavaScript array method used to merge two or more
arrays together. It takes one or more arrays as arguments and returns a
new array containing the elements of all the input arrays combined.

http://media.pragprog.com/titles/fkjsbrain/code/the_flat_earth_society/the_flat_earth_society.js

3. apply() is a method that allows you to call a function with a given this

value and an array (or an array-like object) as arguments. In this case,
we’re using it to apply the concat method to the empty array [] while
passing the elements of nestedArray as arguments.

So, when you run [].concat.apply([], nestedArray), it essentially takes all the
elements from nestedArray and concatenates them into a single, flat array. This
is a common technique for flattening nested arrays in JavaScript.

But this doesn’t seem like the most elegant solution, does it?

Fortunately, since ES2019, there’s this handy method called flat() that allows
you to quickly flatten a nested array by collapsing all sub-arrays into a single-
dimensional array.

Here’s how you can use the flat() method:

the_flat_earth_society/the_flat_earth_society_ex1.js

 const nestedArray = ["apple" , ["blueberry" , "blackberry"],

 ["tangerine" , "orange"], "grape"];

 const flattenedArray = nestedArray.flat();

 console.log(flattenedArray);

 // → ["apple", "blueberry", "blackberry", "tangerine", "orange", "grape"]

flat() magically goes through all the levels of nesting and creates a single-
dimensional array. But wait, there’s more! You can also provide an optional
parameter called depth to control how many levels of nesting it will flatten.

By default, depth is set to 1, meaning it flattens just one level, but you can
specify a different depth if you want to go deeper. If you set the depth to
Infinity, it will flatten all levels, no matter how deep they go:

the_flat_earth_society/the_flat_earth_society_ex2.js

 const deeplyNestedArray = ["a" , ["b" , ["c" , ["d" , ["e"]]]]];

 const flattenedArray = deeplyNestedArray.flat(Infinity);

http://media.pragprog.com/titles/fkjsbrain/code/the_flat_earth_society/the_flat_earth_society_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/the_flat_earth_society/the_flat_earth_society_ex2.js

 console.log(flattenedArray);

 // → ["a", "b", "c", "d", "e"]

Just remember that when you use flat(), it creates a brand new array and leaves
the original array untouched. If you don’t need the original array anymore,
you can directly assign the flattened array to the same variable.

Further Reading

Google’s v8 blog
https://v8.dev/features/array-flat-flatmap

The flat() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/flat

The apply() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

https://v8.dev/features/array-flat-flatmap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/flat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

Puzzle 10 Casting Spells with 1s and 0s

casting_spells/casting_spells.js

 const x = ~~(7.9);

 console.log(x);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 7

Discussion
The tilde (~) symbol in JavaScript is known as the bitwise NOT operator. It
takes the binary representation of a number and flips all the bits, resulting in a
new number. Now, the thing is, bitwise operators in JavaScript work with
integers, not floating-point numbers.

So, when you have the expression ~~(7.9), JavaScript automatically converts
the floating-point number 7.9 into an integer. In this case, it truncates the
decimal part and turns it into the integer 7. Now, let’s see what happens when
we apply a single bitwise NOT operator: ~(7.9). In binary, 7 is represented as
00000111. The NOT operator flips each bit, so we get 11111000, resulting in 248.

But wait, in this puzzle, we have two bitwise NOT operators. So, the next step
for JavaScript is to convert 248 into its binary representation and flip bits. It

http://media.pragprog.com/titles/fkjsbrain/code/casting_spells/casting_spells.js

flips each and every bit of the binary representation. So, 11111000 becomes
00000111 again.

Finally, JavaScript interprets this flipped binary number as an integer, and we
get the result: 7. So, that’s why the result of the code ~~(7.9) in JavaScript is 7.
It’s a clever trick to chop off the decimal part of a number. Using this
technique, you can shave off a few bytes in your code when converting
numbers to integers. Just remember, though, that it’s considered a hacky way
because it’ll behave unexpectedly if you’re working with numbers beyond the
range of 32-bit signed integers.

For example:

 console.log(~~2147500000.5); // → -2147467296

So, the double tilde trick works well if your number is within a moderate
range and not too large or too small. But, if you happen to be working with a
number that’s outside the range of -2147483648 to 2147483647, you’d be
better off sticking with the trusty built-in functions like Math.floor(), Math.ceil(),
or Math.round().

Remember to Add Comments to Your Code
If you find yourself using a coding technique that’s a bit out of the
ordinary, it’s a great idea to sprinkle in some helpful code
comments. Thinking about the future, it’s always nice to make
things easy for your future self or any fellow developers who
might work with your code.

Further Reading

The bitwise NOT (~) operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Bitwise_NOT

Binary to decimal converter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_NOT

https://www.rapidtables.com/convert/number/binary-to-decimal.xhtml

https://www.rapidtables.com/convert/number/binary-to-decimal.xhtml

Puzzle 11 Dating with Math

dating_with_math/dating_with_math.js

 const date = new Date;

 const x = date % 100;

 console.log(x);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output a number between 0 and 99.

Discussion
In JavaScript, the Date object represents a specific point in time. When you
create a new instance of the Date object using the new keyword, it initializes
with the current date and time.

Now, what this code does is take that current date and time and divide it by
100. This approach works because when you perform integer math on a new
Date object, it is converted into a number like 1687530684418—which is the
number of milliseconds that have elapsed since 00:00:00 UTC on 1 January
1970 (Unix epoch). This timestamp is commonly used in programming
languages to represent and manipulate dates and times.

But we’re not interested in the actual division result. We just want to know the
remainder, like when you divide numbers and get a leftover bit. That’s where

http://media.pragprog.com/titles/fkjsbrain/code/dating_with_math/dating_with_math.js

the % symbol, called the modulo operator, comes in. When used with a
numeric expression, such as x % y, it divides x by y and returns the remainder.

The result will be an integer between 0 and 99 (inclusive). This technique can
be useful in scenarios where you need to obtain a number between 0 and a
specific number. For example, you might use it to get a number between 0 and
7 by using % 7:

 new Date % 7

The output will vary each time you run the code since it depends on the
current date and time when the code is executed.

Keep in mind that it would be technically inaccurate to say that Date % n

returns a random number. When called rapidly, it can yield identical or
sequential numbers, which doesn’t align with the typical understanding of
“random numbers” in programming. For example:

 for (let i = 0; i < 10; i++) {

 console.log(new Date % 7);

 }

 // → 5

 // → 5

 // → 5

 // → 5

 // → 6

 // → 6

 // → 6

 // → 6

 // → 6

 // → 6

This inaccuracy happens because we’re trying to generate a number using the
current date. A more reliable approach is to use the Math.random() method:

 for (let i = 0; i < 10; i++) {

 console.log(Math.floor(Math.random() * 8));

 }

 // → 4

 // → 6

 // → 0

 // → 6

 // → 2

 // → 1

 // → 3

 // → 5

 // → 0

 // → 2

This code generates ten random integers between 0 and 7. Here’s how it
works: Math.random() produces a random floating-point number between 0
(inclusive) and 1 (exclusive). We use it here as the basis for generating a
random integer.

We take the random value and multiply it by 8. This step scales the random
value to a range between 0 (inclusive) and 8 (exclusive). So, now we have a
random floating-point number between 0 and 7.9999… (inclusive of 0 but not
including 8).

Finally, we use the Math.floor() method to round down the random floating-
point number to the nearest integer. This effectively removes the decimal part
and leaves us with a random integer between 0 and 7 (inclusive). The range
includes 0 because Math.floor(0) is still 0, and it includes 7 because
Math.floor(7.9999...) rounds down to 7.

So, remember, while you can use new Date % n as a concise approach to obtain
a number between zero and a specific value, it’s not truly random and may
produce identical or sequential numbers when called rapidly.

Further Reading

The Date object
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Date

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

Puzzle 12 What’s the Value of Math?

whats_the_value_of_math/whats_the_value_of_math.js

 const r = {valueOf:Math.random},

 a = [r*11|0,r*11|0,r*11|0];

 console.log(a);

Guess the Output
Try to guess what the output is before moving to the next page.

This code generates an array with three random numbers, for instance:

 [10, 5, 7]

Discussion
JavaScript has a handy property called valueOf that automatically gets called
when an object needs to be converted to a primitive value. By assigning
Math.random to the valueOf property of an object, we can create a custom object
that acts like a random number generator.

Usually, you achieve this task like this:

 const a = [

 Math.random() * 11 | 0,

 Math.random() * 11 | 0,

 Math.random() * 11 | 0

];

The built-in Math.random function generates random floating-point numbers
between 0 (inclusive) and 1 (exclusive). First, we take a random decimal value

http://media.pragprog.com/titles/fkjsbrain/code/whats_the_value_of_math/whats_the_value_of_math.js

generated by Math.random and multiply it by 11. This gives us a random
number between 0 and 11, such as 7.599000342813731.

To make things even more interesting, we use the bitwise OR operator (|) on
the result. This operator works its magic by removing the decimal part and
converting the number into an integer. For example, if we had
7.599000342813731, using | 0 would give us 7. We repeat this process three times
to get three random integers between 0 and 10 (inclusive). These random
integers are then stored as elements in the array.

We could also assign Math.random to a variable or constant, which comes in
handy when we need to call the function multiple times:

 const r = Math.random,

 a = [

 r() * 11 | 0,

 r() * 11 | 0,

 r() * 11 | 0,

];

This brain teaser takes advantage of a nifty way to make the code even
shorter! By assigning Math.random to the valueOf property of the object r, we’re
creating a custom object that acts like a random number generator. Whenever
JavaScript wants to convert r to a primitive value, it will call the valueOf

function, resulting in a random number thanks to the Math.random assignment.

So, the interesting thing to remember from this puzzle is that you can take
advantage of the valueOf property to make your own custom object that works
like a shortcut for JavaScript methods and functions.

Further Reading

The valueOf() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Object/valueOf

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/valueOf

The Math.random() static method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

The bitwise OR (|) operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Bitwise_OR

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_OR

Puzzle 13 Netherlands or Holland?

netherlands_or_holland/netherlands_or_holland.js

 const country = {

 name: "Netherlands"

 };

 const name = Symbol("name");

 country[name] = "Holland" ;

 console.log(country["name"]);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be Holland, but this code will
actually output Netherlands.

Discussion
This puzzle is about a fascinating JavaScript feature called Symbol. Symbols
let us define hidden or private properties within objects. Since symbols are
unique, they’re unlikely to cause conflicts with other properties. They won’t
show up in for...in loops or Object.keys(), making them suitable for creating
properties that are not intended to be accessed by external code.

In this code, we have an object representing a country. The country we’re
talking about here is the Netherlands, and we store that information in a
property called name. Now, things get a bit interesting. We add a symbol to the

http://media.pragprog.com/titles/fkjsbrain/code/netherlands_or_holland/netherlands_or_holland.js

object. We create the symbol using the Symbol() function and call it name. It’s
like giving our symbol a special label.

Next, we add a new piece of information to our country object. Using the
symbol name as the key, we set a value of Holland. Think of it as adding a
hidden note to our country object. We use square brackets to access the
property with the symbol key, like country[name].

Now, if we print country[name] to the console, it will show us the value
associated with the symbol key name, which is Holland. On the other hand, if
we print country["name"] to the console, it will show us the value associated
with the regular string key name. We initially set this value to Netherlands, so
when we print it, we see Netherlands in the console.

Symbols are useful when we want to create properties that are not easily
accessible or visible from the outside. They provide a way to add hidden or
private information to objects. Since symbols are unique, we don’t have to
worry about accidentally overlapping or conflicting with other property
names.

Further Reading

Detailed overview of symbols
https://exploringjs.com/es6/ch_symbols.xhtml

The symbol object
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

https://exploringjs.com/es6/ch_symbols.xhtml
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

Puzzle 14 The Permanent Closure

the_permanent_closure/the_permanent_closure.js

 function createCounterArray() {

 const counterArray = [];

 for (var i = 0; i < 5; i++) {

 counterArray.push(() => {

 console.log(̀Counter: ${i} ̀);

 });

 }

 return counterArray;

 }

 const counters = createCounterArray();

 counters.forEach(counter => counter());

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be:

 Counter: 0

 Counter: 1

 Counter: 2

 Counter: 3

 Counter: 4

But this code will output:

 Counter: 5

 Counter: 5

 Counter: 5

 Counter: 5

 Counter: 5

http://media.pragprog.com/titles/fkjsbrain/code/the_permanent_closure/the_permanent_closure.js

Discussion
In this puzzle, the intention is to create an array of closure functions, each
printing the current value of the variable i. However, when you run this code,
you’ll get an unexpected result. Instead of printing the values 0, 1, 2, 3, and 4,
the code will print the value 5 five times.

This result is because var has function-level scope, not block-level scope. The
variable i declared in the for loop is shared across all the closure functions. By
the time the functions are called, the for loop has already finished executing,
and the final value of i is 5.

A straightforward approach to fix this issue is to use the let keyword instead of
var to declare the variable i. Using let will create a new block-scoped variable
for each iteration of the loop:

the_permanent_closure/the_permanent_closure_ex1.js

 function createCounterArray() {

 const counterArray = [];

 for (let i = 0; i < 5; i++) {

 counterArray.push(() => {

 console.log(̀Counter: ${i} ̀);

 });

 }

 return counterArray;

 }

 const counters = createCounterArray();

 counters.forEach(counter => counter());

With this change, each function in the closureArray will capture its own separate
value of i, and you’ll see the expected output:

 Counter: 0

 Counter: 1

http://media.pragprog.com/titles/fkjsbrain/code/the_permanent_closure/the_permanent_closure_ex1.js

 Counter: 2

 Counter: 3

 Counter: 4

Another way to fix this problem is to use an immediately invoked function
expression (IIFE) to create a new scope for each iteration of the loop:

the_permanent_closure/the_permanent_closure_ex2.js

 function createCounterArray() {

 const counterArray = [];

 for (var i = 0; i < 5; i++) {

 ((i) => {

 counterArray.push(() => {

 console.log(̀Counter: ${i} ̀);

 });

 })(i);

 }

 return counterArray;

 }

 const counters = createCounterArray();

 counters.forEach(counter => counter());

In this version, we introduce the IIFE ((i) => { ... })(i) to create a new scope for
each iteration of the loop. This ensures that each closure function captures its
own copy of i with the correct value. Now, when you run the code, it will print
the values 0, 1, 2, 3, and 4 as expected.

JavaScript closures are useful because they enable the creation of self-
contained and encapsulated functions that can maintain their own local state,
even after the parent function that created them has finished executing. But as
we’ve discovered from this puzzle, it’s important to be cautious when making
them, or else we might end up with surprising outcomes!

Further Reading

Immediately invoked function expressions
https://developer.mozilla.org/en-US/docs/Glossary/IIFE

http://media.pragprog.com/titles/fkjsbrain/code/the_permanent_closure/the_permanent_closure_ex2.js
https://developer.mozilla.org/en-US/docs/Glossary/IIFE

The let declaration
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/let

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Puzzle 15 Cracking the Color Code

cracking_the_color_code/cracking_the_color_code.js

 const canvas = document.createElement("canvas");

 const ctx = canvas.getContext("2d");

 ctx.fillStyle = "yellow" ;

 console.log(ctx.fillStyle);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be yellow, but this code will
actually output:

 #ffff00

Discussion
What happens here is that we create a temporary HTML canvas, and then we
get its 2D context. After that, we set a color for the fillStyle property. Now,
here’s the unexpected part: when we log ctx.fillStyle using console.log(), instead
of showing the color we assigned, it actually converts it to its hexadecimal
(hex) representation automatically. Here’s what each line of the code does:

1. const canvas = document.createElement("canvas"): This line creates a new
canvas element, just like preparing a blank piece of paper. It’s like
saying, “Hey, let’s make a fresh canvas to draw on!”

http://media.pragprog.com/titles/fkjsbrain/code/cracking_the_color_code/cracking_the_color_code.js

2. const ctx = canvas.getContext("2d"): This line sets up a “context” for drawing
on the canvas. Think of it as getting your brushes, paints, and palette
ready. We’re using a technique called “2D” drawing, which means we’ll
be working with two-dimensional shapes like lines and curves.

3. ctx.fillStyle = "yellow": This line is like choosing the color you want to use.
Here, we’re picking “yellow” as our color. So, any shapes we draw will
be filled with yellow.

4. console.log(ctx.fillStyle): This line prints out the current fill color we’ve
chosen in the console. It’s like checking your palette to see which color
you’re using before you start painting. But, instead of printing “yellow”,
JavaScript implicitly converts it to the corresponding hex representation
of the color. So, the actual output is #ffff00.

Hexadecimal notation offers a concise and effective method for denoting a
diverse spectrum of colors. By converting color names to hex notation, we can
specify a color in a way that can be used across different software platforms
and devices.

Further Reading

The getContext() method
https://developer.mozilla.org/en-
US/docs/Web/API/HTMLCanvasElement/getContext

The fillStyle property
https://developer.mozilla.org/en-
US/docs/Web/API/CanvasRenderingContext2D/fillStyle

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/getContext
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/fillStyle

Puzzle 16 Waiting in Line

waiting_in_line/waiting_in_line.js

 console.log("Start");

 setTimeout(() => {

 console.log("Timeout");

 }, 0);

 Promise.resolve().then(() => {

 console.log("Promise");

 });

 console.log("End");

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be:

 Start

 Timeout

 Promise

 End

But the code will output:

 Start

 End

 Promise

 Timeout

Discussion

http://media.pragprog.com/titles/fkjsbrain/code/waiting_in_line/waiting_in_line.js

Here, we have a mixture of synchronous and asynchronous operations and use
console.log() to output different messages at various points in the code. Since
the setTimeout() is set to 0 milliseconds, you might expect the messages to
appear in the order of “Start”, “Timeout”, “Promise”, and “End”. But, the
actual output is different because of the event loop and how JavaScript
handles asynchronous tasks.

The event loop is an important part of JavaScript that ensures code execution
happens in a non-blocking way. It takes care of tasks like managing
asynchronous operations, timers, and callbacks.

In this puzzle, we have two asynchronous tasks: a setTimeout and a Promise.
The setTimeout() function allows us to schedule a callback function to run after
a specific delay. However, even though we set the delay to 0, the callback
function isn’t immediately executed. Instead, it’s added to the event queue,
waiting for the event loop to finish executing the current synchronous code
before it gets its turn.

After that, we have a Promise.resolve() statement. Promises are a way to handle
asynchronous operations in JavaScript. Here, we create a promise using
Promise.resolve(), which immediately resolves the promise with a value of
undefined. We then attach a .then() method to the promise, which allows us to
specify a function to execute once the promise is resolved. In this example, the
function logs the message “Promise” to the console.

Unlike setTimeout(), the Promise.resolve().then code is scheduled to run in the
next microtask checkpoint, which happens before the event queue is
processed. Now, when both the setTimeout() and the Promise are present in the
code, the following sequence of events occurs:

1. The synchronous code is executed.
2. The setTimeout callback is placed in the event queue.
3. The Promise callback is executed immediately.
4. The event loop picks up the setTimeout callback from the event queue and

executes it.

It’s important to note that even though the delay in the setTimeout() function is
set to 0 milliseconds, the actual delay can vary depending on the workload of
the JavaScript engine and other factors. This behavior might seem unexpected
if you’re not familiar with JavaScript’s event loop and asynchronous
execution.

Further Reading

Introducing asynchronous JavaScript
https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Asynchronous/Introducing

The Promise.resolve() static method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

The setTimeout() method
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout

Puzzle 17 Chasing Promises

chasing_promises/chasing_promises.js

 console.log("Application started");

 async function fetchDataFromAPI() {

 console.log("Fetching data from API...");

 await processAPIData();

 console.log("Data fetched successfully");

 }

 async function processAPIData() {

 console.log("Processing API data...");

 }

 fetchDataFromAPI();

 console.log("Application ended");

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be:

 Application started

 Application ended

 Fetching data from API...

 Processing API data...

 Data fetched successfully

But this code will actually output:

 Application started

 Fetching data from API...

 Processing API data...

 Application ended

http://media.pragprog.com/titles/fkjsbrain/code/chasing_promises/chasing_promises.js

 Data fetched successfully

Discussion
The await keyword allows you to write asynchronous code in a more linear
fashion, making it easier to understand the flow of execution, even when
dealing with operations that take time to complete.

First, we have the synchronous console.log("Application started") that simply logs
the string “Application started” to the console. Then we have async function

fetchDataFromAPI() { ... }, which declares an asynchronous function.
Asynchronous functions can use the await keyword to pause their execution
while waiting for a promise to resolve.

Inside the function, await processAPIData() uses the await keyword to pause the
execution of the fetchDataFromAPI function until the processAPIData function
completes its execution. In this case, since processAPIData is an asynchronous
function, it returns a promise, and await ensures that the program will wait for
that promise to be resolved before proceeding.

To summarize the sequence of events:

The code starts by logging “Application started”.

The fetchDataFromAPI function is called, which logs “Fetching data from
API…”, and awaits the completion of the processAPIData function.

Inside the processAPIData function, “Processing API data…” is logged.

The script then logs “Application ended”, as it is now allowed to
continue to execute outside the fetchDataFromAPI function.

Finally, “Data fetched successfully” is logged.

So, the await keyword is helpful when you have tasks that take time, like
talking to a server, and you want to make sure they happen in a smooth
sequence. Here, the code waits for fetchDataFromAPI() and processAPIData() to
finish their tasks before moving on. As a result, things happen in a different
order.

Further Reading

Modern Asynchronous JavaScript
https://pragprog.com/titles/fkajs/modern-asynchronous-javascript/

The Promise object
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise

The await operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/await

https://pragprog.com/titles/fkajs/modern-asynchronous-javascript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

Puzzle 18 Oo Na Na Na

oo_na_na_na/oo_na_na_na.js

 let price = 10;

 let tax;

 const sum = price + tax;

 console.log(sum);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected the output to be 10, but this code will actually log:

 NaN

Discussion
In this puzzle, the statement const tax; declares a constant variable without
assigning any value to it. So, the variable holds a default value of undefined.
When trying to add undefined to the value of price, the operation yields NaN

(Not-a-Number).

NaN is a special value in JavaScript that represents the result of an invalid or
undefined mathematical operation. You may encounter NaN when doing math
operations that don’t produce a meaningful numeric value, like trying to
divide zero by zero or taking the square root of a negative number.

Here are some JavaScript operations that would result in NaN:

http://media.pragprog.com/titles/fkjsbrain/code/oo_na_na_na/oo_na_na_na.js

1. When dividing a zero by zero

 0 / 0; // → NaN

2. Attempting to convert a non-numeric string to a number

 Number("hello"); // → NaN

3. Parsing an invalid floating-point notation

 parseFloat("abc"); // → NaN

4. Performing a mathematical operation involving NaN

 NaN + 5; // → NaN

5. Using an undefined variable in a math operation

 let x;

 x + 10; // → NaN

6. Taking the square root of a negative number

 Math.sqrt(-9); // → NaN

7. Performing certain mathematical operations with Infinity

 Infinity - Infinity ; // → NaN

These operations all result in NaN because they involve operations that don’t
produce meaningful numeric results according to JavaScript’s specifications.

Now, here’s the tricky part. You can’t use the strict equality operator to check
if the result of an operation is NaN:

oo_na_na_na/oo_na_na_na_ex1.js

 let price = 10;

 let tax;

 const sum = price + tax;

http://media.pragprog.com/titles/fkjsbrain/code/oo_na_na_na/oo_na_na_na_ex1.js

 if (sum === NaN) {

 // This won't be excecuted

 console.error("tax or price is undefined");

 }

The if statement in this code won’t be executed even though sum has a value of
NaN. When you compare NaN with NaN using the code NaN === NaN, you might
expect it to be true, right? I mean, NaN is NaN, so they should be equal. But
that’s not how JavaScript sees it. In JavaScript, NaN is considered to be
“unordered” or “not equal to” anything, including NaN itself.

This is a deliberate design choice in JavaScript and the IEEE 754 standard.
The rationale behind this behavior is that NaN represents an undefined or
indeterminate value, so it cannot be compared with any other value, including
another NaN.

To check if something is NaN in JavaScript, you can use the isNaN() function.
For example, isNaN(NaN) would give you true because, well, it is indeed not a
number:

oo_na_na_na/oo_na_na_na_ex2.js

 let price = 10;

 let tax;

 const sum = price + tax;

 if (isNaN(sum)) {

 console.error("tax or price is undefined");

 }

 // → tax or price is undefined

Remember, NaN is a strange beast in JavaScript that doesn’t play by the usual
rules. It’s not equal to anything, not even itself!

Further Reading

http://media.pragprog.com/titles/fkjsbrain/code/oo_na_na_na/oo_na_na_na_ex2.js

The NaN global property
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/NaN

Overview of the NaN data type
https://en.wikipedia.org/wiki/NaN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://en.wikipedia.org/wiki/NaN

Puzzle 19 Hexorcism

hexorcism/Hexorcism.js

 const hex = "0x1E" ;

 console.log(hex - 0);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have anticipated that the output would be NaN since “0x1E” is a
string, but this code will actually output:

 30

Discussion
This JavaScript code outputs 30 because of the way JavaScript handles
arithmetic operations and type conversions. The "0x" part is a prefix used in
JavaScript to indicate that a number is in hexadecimal format. Hexadecimal
numbers use a base-16 system instead of the usual base-10 (decimal) system
we’re more familiar with.

So, "0x" is just a way of saying that we’re dealing with a hexadecimal number.
When you use the - 0 operation, JavaScript tries to convert the string "0x1E"

into a number. JavaScript is clever when it comes to math with strings and
numbers. If it can, it will convert a string into a number before performing a
mathematical operation.

http://media.pragprog.com/titles/fkjsbrain/code/hexorcism/Hexorcism.js

In this case, JavaScript recognizes that the "0x" at the beginning is a sign that
the following characters "1E" represent a hexadecimal number. After
recognizing that "0x1E" is a hexadecimal number, JavaScript converts it to its
decimal equivalent, which is 30. Then, it performs the subtraction operation 30

- 0, resulting in the final value of 30.

JavaScript offers several ways to convert a hexadecimal number into its
decimal equivalent. One commonly used method is by using parseInt(). So, if
you’re looking for a more explicit approach, you can give parseInt() a try. For
example, let’s say we have a hexadecimal number: B2F. To convert it to
decimal, you can use the following code:

hexorcism/Hexorcism_ex1.js

 const hexNumber = "B2F" ;

 const decimalNumber = parseInt(hexNumber, 16);

 console.log(decimalNumber); // → 2863

In this method, we pass 16 as the second argument to parseInt(), indicating that
the input is in base 16 (hexadecimal). Another option is to utilize the Number()

constructor. Here’s how you can do it:

hexorcism/Hexorcism_ex2.js

 const hexNumber = "B2F" ;

 const decimalNumber = Number(̀0x ${hexNumber} ̀);

 console.log(decimalNumber); // → 2863

In this approach, we use the Number() constructor and prefix the hexadecimal
number with "0x". This prefix indicates to the constructor that it’s dealing with
a hexadecimal number and performs the conversion accordingly.

In general, if you’re dealing specifically with converting hexadecimal strings
to decimal integers, using parseInt() with the specified base (16) is a more
explicit choice. Also, remember that JavaScript has limitations when dealing

http://media.pragprog.com/titles/fkjsbrain/code/hexorcism/Hexorcism_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/hexorcism/Hexorcism_ex2.js

with very large or very small numbers due to the precision of the data type
used in JavaScript (see Puzzle 3, The Mathemagician). For example:

hexorcism/Hexorcism_ex3.js

 const hexNumber = "2386F26FC0FFFF" ; // equivalent to 9999999999999999

 const decimalNumber = parseInt(hexNumber, 16);

 console.log(decimalNumber); // → 10000000000000000

The hexadecimal value in this code is equivalent to 9999999999999999, but
JavaScript is unable to accurately represent this value. As a result, it displays
10000000000000000 when printed to the console. In such cases, you’ll need to
use additional libraries or techniques to handle arbitrary precision arithmetic.

Converting Binary and Octal
If you ever need to convert a binary number or an octal number in
JavaScript, you can take advantage of the trick you learned in this
teaser. Just remember to add either 0b for binary or 0o for octal in
front of the number, and you’ll get the decimal equivalent. Let me
show you an example:

The code tag should not be here.

In this code snippet, we’re converting the binary value 0111 to its
decimal representation, which is 7.

Further Reading

Overview of the hexadecimal numeral system
https://en.wikipedia.org/wiki/Hexadecimal

The parseInt() function
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

http://media.pragprog.com/titles/fkjsbrain/code/hexorcism/Hexorcism_ex3.js
https://en.wikipedia.org/wiki/Hexadecimal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

The Number() constructor
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Number/Number

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/Number

Puzzle 20 The Arrayist

the_arrayist/the_arrayist.js

 const f = (n) => [...Array(n)].map((_, i) => i + 1);

 console.log(f(20));

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Discussion
This puzzle reveals a super concise method to generate an array of numbers
from 1 to n using the powerful combination of arrow functions, the spread
operator, and the map() method.

To start, we have a function called f that uses arrow function syntax. It takes a
parameter n. The Array(n) part creates an empty array with a length equal to n.
Then, we use the spread operator (...) to spread the elements of this array into a
new one. Essentially, we end up with an array containing undefined elements
from 0 to n-1.

Next, we use the map() method on the array we just created. The map() method
is fantastic for transforming elements in an array. In this case, we transform
each element using an arrow function (_, i) => i + 1. The arrow function takes

http://media.pragprog.com/titles/fkjsbrain/code/the_arrayist/the_arrayist.js

two parameters: _ and i. We use the underscore as a convention to show that
it’s not going to be used in the function. The i represents the index of the
current element in the array.

Now, the arrow function does something simple: it returns i + 1. By doing this,
we add 1 to each element’s index in the array. Since array indices start from 0,
adding 1 gives us the numbers from 1 to n.

Lastly, the transformed array is returned as the output of the function. So,
when you call the f function with a number like 5, it generates an array [1, 2, 3,

4, 5] and gives it back to you.

This code is an elegant way to generate number sequences using functional
programming concepts in JavaScript. It takes advantage of some JavaScript
shorthand syntax to achieve brevity.

Further Reading

The Array() constructor
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/Array

The spread (…) syntax
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

The map() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Puzzle 21 The Chain Master

the_chain_master/the_chain_master.js

 const titles = null ;

 let x = 0;

 titles?.[++x].toUpperCase();

 console.log(x);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 0

Discussion
In this puzzle, we attempt to increment x by 1 through optional chaining, but
since titles is null, the increment operation is not executed. So, it prints the
value of x (which is still 0) to the console.

Let’s dig a bit deeper. The ?. is called the optional chaining operator. It allows
us to access properties or call methods on an object only if the object is not
null or undefined. Since titles is null, the code after ?. will not be executed.

Inside the square brackets, we have ++x. This is a pre-increment operator,
which means it increments the value of x by 1 before the expression is

http://media.pragprog.com/titles/fkjsbrain/code/the_chain_master/the_chain_master.js

evaluated. However, this line is essentially skipped due to titles being null. So x
remains 0 and is not changed.

The optional chaining operator (?.) was added to ECMAScript 2020 to help
developers prevent errors that could occur when trying to access properties or
call methods on non-existent or nullish values. Before the optional chaining
operator was introduced, developers had to write longer and more complex
code to perform this check, which often involved using conditional statements
or ternary operators.

For example:

the_chain_master/the_chain_master_ex1.js

 // Check if response has a data object

 // and data has a user property

 const response = {

 //…

 };

 // using the conditional statement

 if (response && response.data) {

 const user = response.data.user;

 }

 // using the ternary operator

 const user =

 (response ?

 (response.data ?

 response.data.user :

 undefined) :

 undefined);

The optional chaining operator simplifies this process by allowing developers
to directly access properties or call methods on an object without worrying
about potential null or undefined values:

the_chain_master/the_chain_master_ex2.js

http://media.pragprog.com/titles/fkjsbrain/code/the_chain_master/the_chain_master_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/the_chain_master/the_chain_master_ex2.js

 const response = {};

 const city = response?.data?.user?.city;

 console.log(city); // → undefined

This code tries to grab a property that’s nested inside response, but it doesn’t
actually exist. Now, instead of freaking out and throwing an error, JavaScript
just gives you an undefined value. The syntax is not only shorter but also easier
to read.

Technically speaking, when you use response?.data, it’s basically the same as
response == null ? undefined : response.data. That little ?. thing is just a handy way
to make it faster. And here’s something to keep in mind: you can’t use the
optional chaining on the left side of an assignment:

the_chain_master/the_chain_master_ex3.js

 const response = {};

 response?.data = "abc" ;

 // → SyntaxError: Invalid left-hand side in assignment

So, the optional chaining operator streamlines the process of accessing nested
properties and methods within objects. This operator short-circuits the
evaluation if any intermediary property is null or undefined, preventing runtime
errors and allowing for cleaner, more reliable code that gracefully handles
missing or incomplete data structures.

Further Reading

Error-free property chaining with ES2020 optional chaining operator
https://blog.logrocket.com/error-free-property-chaining-with-es2020-
optional-chaining-operator/

The optional chaining (?.) operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

http://media.pragprog.com/titles/fkjsbrain/code/the_chain_master/the_chain_master_ex3.js
https://blog.logrocket.com/error-free-property-chaining-with-es2020-optional-chaining-operator/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

Puzzle 22 The Shape Shifter

the_shape_shifter/the_shape_shifter.js

 const a = "f" <{};

 const b = "F" <{};

 console.log(a);

 console.log(b);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 false

 true

Discussion
In JavaScript, when you use the < operator to compare values, it performs a
process called type coercion to convert the values into a common type before
making the comparison.

In this code snippet, we have a string "F" on the left side and an empty object {}

on the right side. JavaScript does its magic and tries to convert these values
into a common type. In this case, since there’s a string "F" involved, the
common type chosen is a string.

When JavaScript tries to convert the empty object {} into a string, it uses the
object’s default toString() method, which returns a string representation of

http://media.pragprog.com/titles/fkjsbrain/code/the_shape_shifter/the_shape_shifter.js

the object. In this case, the empty object {} is converted into the string "[object

Object]". So now we have the comparison "F" < "[object Object]".

When you compare strings using the < operator, it performs a lexicographic
comparison. That means JavaScript examines the character codes (Unicode
values) of the corresponding characters from left to right. In Unicode, the
character code for "[" (opening square bracket) is greater than the character
code for "F" (uppercase letter F).

Therefore, "F" is considered to be less than "[object Object]", and the expression
"F" < "[object Object]" evaluates to true. On the other hand, the character "f" has a
higher Unicode value than the character "[", so "f" is considered to be more
than "[object Object]", and the comparison evaluates to false.

You can also transform this technique into a reusable function:

the_shape_shifter/the_shape_shifter_ex1.js

 const isUpperCase = x => x < {};

 isUpperCase("F"); // → true

 isUpperCase("f"); // → false

Now, I want to mention that this code snippet is controversial and may not
output correct results for non-letter characters. For example:

the_shape_shifter/the_shape_shifter_ex2.js

 const isUpperCase = x => x < {};

 isUpperCase("5"); // → true

It’s more of a demonstration to explore the fascinating quirks of JavaScript’s
type coercion system. To accurately verify that a string has only uppercase
letters, you can use the following function:

the_shape_shifter/the_shape_shifter_ex3.js

http://media.pragprog.com/titles/fkjsbrain/code/the_shape_shifter/the_shape_shifter_ex1.js
http://media.pragprog.com/titles/fkjsbrain/code/the_shape_shifter/the_shape_shifter_ex2.js
http://media.pragprog.com/titles/fkjsbrain/code/the_shape_shifter/the_shape_shifter_ex3.js

 function isUpperCase(str) {

 return str === str.toUpperCase() &&

 str !== str.toLowerCase();

 }

 console.log(isUpperCase("7")); // → false

 console.log(isUpperCase("@")); // → false

 console.log(isUpperCase("F")); // → true

This function checks if a given string contains only uppercase letters by
comparing it to its uppercase and lowercase versions. It returns false only if the
input string contains a non-alphabetic character or a lowercase character.

So, remember, JavaScript’s type coercion can be a powerful feature, but it can
also lead to unexpected behavior if not used carefully. To play it safe, it’s
usually better to stick with explicit methods and functions for string
operations.

This way, your code becomes easier to read, you’ll know what to expect, and
you’ll dodge bugs caused by sneaky type conversions. If you choose to use
type coercion, make sure you fully understand the potential risks.

Further Reading

The toString() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Object/toString

The toUpperCase() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase

The toLowerCase() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/toLowerCase

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/toString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toLowerCase

Puzzle 23 Alphabet Aerobics

alphabet_aerobics/alphabet_aerobics.js

 for (i=9,a= '' ;++i<36;)a+=i.toString(36)

 console.log(a);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 abcdefghijklmnopqrstuvwxyz

Discussion
This JavaScript code is a clever way to create a string containing the English
alphabet. It generates a string with lowercase letters by converting each
number from 9 to 35 into a character and adding it to a growing string.

Let’s start with the for loop:

 for (i=9,a= '' ;++i<36;)

This line sets up a loop that starts at 9 and goes up to 35:

1. i=9 sets the starting point for the loop.

2. a=” initializes the variable a as an empty string. This variable will be used
to store the generated characters.

http://media.pragprog.com/titles/fkjsbrain/code/alphabet_aerobics/alphabet_aerobics.js

3. ++i<36 tells the loop to iterate as long as i is less than 36.

Inside the loop, this line does the real work:

 a+=i.toString(36)

The toString() method can be called on a number to convert it into a string.
This method takes an optional argument that specifies the base in which the
number should be represented. If you don’t provide an argument, it defaults to
base 10 (decimal). In this case, we pass 36 to specify that the number should
be converted into its string representation in base 36. For example:

 let i = 10;

 console.log(i.toString(36)); // → a

 i = 11;

 console.log(i.toString(36)); // → b

So, the code builds a string by appending the base-36 representation of each
number to the a variable. It keeps doing this in each iteration of the loop,
gradually building up a string with all the characters. Once the loop is done,
the code will have created a string that contains all the lowercase letters from
a to z.

What Is Base 36?
Base 36 is a numeral system that uses 36 distinct symbols to
represent numbers: the digits 0-9 and the letters A-Z (or a-z,
depending on convention). Base 36 allows you to represent large
numbers with fewer characters compared to base 10 (decimal) or
base 16 (hexadecimal). For example, it can be helpful in
generating compact URLs or unique keys or encoding data for
storage or transmission.

So, the takeaway from this puzzle is that you don’t have to type in each and
every character you want to create. Instead, you can make use of the built-in
JavaScript methods to automatically generate them through programming.

Further Reading

Overview of the base36 encoding scheme
https://en.wikipedia.org/wiki/Base36

The toString() method of Number
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Number/toString

https://en.wikipedia.org/wiki/Base36
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toString

Puzzle 24 Do You Trust Your Eyes?

do_you_trust_your_eyes/do_you_trust_your_eyes.js

 // Two strings containing similar characters

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 false

Discussion
Some characters may seem identical to our eyes, but the JavaScript engine has
its own special way of looking at things. The reason this code outputs false is
because the two words “Château” and “Château” are not exactly the same
when it comes to how they’re written, even though they look pretty similar.

In the first word, “Château,” the letter “â” is represented by a single character,
U+00E2 (LATIN SMALL LETTER A WITH CIRCUMFLEX). This character
is encoded as a single code point.

But in the second word, “Château,” things get a bit trickier. The letter “â” is
actually made up of two characters. First, you have the regular letter “a,” and

http://media.pragprog.com/titles/fkjsbrain/code/do_you_trust_your_eyes/do_you_trust_your_eyes.js

then there’s this sneaky little combining character called a “circumflex accent”
that adds the hat-like thing on top of the “a”.

In other words, the letter consists of U+0061 (LATIN SMALL LETTER A)
combined with U+0302 (COMBINING CIRCUMFLEX ACCENT).

Now, even though these two words might look the same when you see them
written down, JavaScript is pretty strict when it comes to comparing strings. It
looks at the actual characters being used, and since the first word has a
different character sequence than the second word, JavaScript considers them
as not being equal. So that’s why the code outputs false.

But worry not! You can put the strings in a standardized format so that they
can be compared accurately by doing something called normalization. In
JavaScript, you can achieve this using the normalize() method available on
string objects. Here’s an example of how you can normalize the strings and
perform the comparison:

do_you_trust_your_eyes/do_you_trust_your_eyes_ex1.js

 // Normalizing strings before comparison

The normalize() method makes sure that when comparing strings, they’re
always consistent, even when there are differences in how characters are
made. You can pick a particular normalization form, and in our case, we go
with NFC.

There are three other options we can give to normalize(), including NFD,
NFKC, and NFKD. The choice of form depends on what your program needs,
but usually, NFC is a safer bet for regular text because it works better with
characters converted from older encodings.

http://media.pragprog.com/titles/fkjsbrain/code/do_you_trust_your_eyes/do_you_trust_your_eyes_ex1.js

Further Reading

Text Processing with JavaScript
https://pragprog.com/titles/fkjavascript/text-processing-with-javascript/

JavaScript has a Unicode problem by Mathias Bynens
https://mathiasbynens.be/notes/javascript-unicode

The normalize() method
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/normalize

https://pragprog.com/titles/fkjavascript/text-processing-with-javascript/
https://mathiasbynens.be/notes/javascript-unicode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/normalize

Puzzle 25 Truth or Fiction?

truth_or_fiction/truth_or_fiction.js

 const arr = [1, 8, NaN , 15, ""];

 const newArr = arr.filter(function (item) {

 return !!item

 });

 console.log(newArr);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 [1, 8, 15]

Discussion
The code !! in JavaScript can be used as a quick way of converting a value into
either true or false in a sneaky way. First, the ! symbol is the logical NOT
operator. It negates the value that follows it. For example, !true would result in
false, and !false would result in true.

Now, if we apply the ! operator twice, it’s like saying “not not.” It might sound
weird, but it’s actually a clever trick. The first ! flips the value, and the second
! flips it back to what it originally was.

http://media.pragprog.com/titles/fkjsbrain/code/truth_or_fiction/truth_or_fiction.js

The number 1 is considered a “truthy” value. So when we apply the ! operator
once, it turns into false because we’re saying “not 1.” But when we apply the !
operator again, it flips it back to true because we’re saying “not not 1.”

So, it’s a shorthand way of saying, “I want the boolean version of the number
1, please!” When you want to convert any value, whether it’s a number, a
string, or something else, into a true or false value. You just stick !! in front of
it, and you get the boolean version. For example, !!0 would evaluate to false,
!!NaN would evaluate to false, and !!"hello" would evaluate to true.

What Are Truthy and Falsy Values?
Truthy values are those that are considered true when evaluated as
a boolean, whereas falsy values are deemed false. Here are the
values considered falsy in JavaScript:

0 - The number zero
0n - The BigInt zero
"" - An empty string
null - Represents the absence of any object value
undefined - Represents an undefined value
NaN - Stands for "Not a Number" and represents an invalid or
unrepresentable value

All other values, including non-empty strings, non-zero numbers,
arrays, objects, and functions, are considered truthy.

The purpose of the function in this puzzle is to filter out the falsy values (NaN
and an empty string) from the original array arr, creating a new array newArr
that only contains the truthy values (numbers).

Inside the callback function, we used the expression !!item as a way to convert
a value to its corresponding boolean representation. It essentially performs
two boolean conversions, converting any truthy value to true and any falsy
value to false.

The filter function uses the return value of the callback function to decide
whether to include an element in the newArr. If the return value is true, the
element is included; if it’s false, the element is excluded.

Now, we can further shrink this code by using the arrow function:

truth_or_fiction/truth_or_fiction_ex1.js

 const arr = [1, 8, NaN , 15, ""];

 const newArr = arr.filter(i => i);

 console.log(newArr);

 // → [1, 8, 15]

In this version of the code, we’re using the arrow function to just return the
value from the array itself. Since NaN and the empty string are falsy, they
undergo automatic conversion to false, leading to their elimination from the
array.

So remember, you can use double exclamation marks (!!) as a shortcut for the
Boolean() function. And when you’re working on filtering out falsy values, the
arrow function can be handy in making your code shorter.

Further Reading

The logical NOT (!) operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Logical_NOT

Arrow function expressions
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

http://media.pragprog.com/titles/fkjsbrain/code/truth_or_fiction/truth_or_fiction_ex1.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_NOT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Puzzle 26 On or Off?

on_or_off/on_or_off.js

 let response = "on" ,

 state = {on: 1, off: 0}[response]

 console.log(state);

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 1

Discussion
Suppose you have a light switch that can be turned on or off. You receive a
response from a user indicating the current state of the switch:

 let userResponse = "on" ;

When you’re faced with the need to make decisions or run different blocks of
code depending on specific conditions, the trusty if...else statement comes in
handy:

 let response = "on" ;

 let state;

 if (response === "on"){

 state = 1;

 } else if (response === "off"){

 state = 0;

http://media.pragprog.com/titles/fkjsbrain/code/on_or_off/on_or_off.js

 }

But the syntax can sometimes get a bit wordy. Some developers make the
code shorter by using the ternary operator:

 let response = "on" ;

 let state = (response === "on") ? 1 : (response === "off") ? 0 : undefined ;

In this teaser, we’re using an extra nifty trick to make the code even more
compact! We use an object to map the response to corresponding state values:
"on" maps to 1 and "off" maps to 0.

Here’s what’s happening: in JavaScript, when using square brackets to access
an object property, the value inside the brackets is treated as a key. So, {on:1,

off:0}[response] is essentially accessing the value of the property whose key
matches the value of the response. Since the response is "on", the expression
evaluates to {on:1, off:0}["on"], which returns the value 1. It’s like a hack to
squeeze out some extra brevity.

Further Reading

The Object type
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

Puzzle 27 The Grocery List

the_grocery_list/the_grocery_list.js

 const groceryList = [];

 groceryList[0] = "Bread" ;

 groceryList[1] = "Milk" ;

 groceryList.user = "John" ;

 console.log(groceryList.length);

Guess the Output
Try to guess what the output is before moving to the next page.

You might have expected that the output would be 3, but this code will
actually output 2.

Discussion
In this puzzle, the array initially starts as an empty array, like an empty bucket.
Then, we start filling up the array. We put the string "Bread" in the first position
of the array using groceryList[0] = "Bread". So now, the bucket has one thing in it:
the "Bread".

Next, we put the string "Milk" in the second position of the array with
groceryList[1] = "Milk". Now, the bucket has two things: the "Bread" and "Milk".
But here’s the tricky part: we also try to be sneaky and add a property to the
array called "user", and we give it the value "John". It’s like sticking a little note
on the bucket.

http://media.pragprog.com/titles/fkjsbrain/code/the_grocery_list/the_grocery_list.js

When we ask the array how many things it has inside using groceryList.length, it
ignores the sneaky little note. It counts only the actual elements inside the
array, not the extra properties. Since we have two actual elements, the strings
"Bread" and "Milk", the length of the array is 2.

You can also add properties to an array using the bracket notation, just like
you would with a regular object:

 const groceryList = [];

 groceryList[0] = "Bread" ;

 groceryList[1] = "Milk" ;

 groceryList["user"] = "John" ;

 console.log(groceryList.length); // → 2

Here, because "user" is a string, it gets included as a property within the array.

So, properties are like extra information we can attach to an array or any other
object, but they are not considered part of the array’s length or elements. They
are simply properties of the underlying object that happens to be an array. You
also won’t be able to iterate over these properties using array iteration
methods like forEach() or map().

Further Reading

The Array object
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Puzzle 28 Negative Gravity

negative_gravity/negative_gravity.js

 console.log(7 - - 5)

 console.log(7 - -5)

 console.log(7- -5)

 console.log(7--5)

Guess the Output
Try to guess what the output is before moving to the next page.

This code will output:

 12

 12

 12

 SyntaxError: invalid increment/decrement operand

Discussion
The minus sign (-) is usually used for subtraction, but here we have two minus
signs next to each other. So, the - is applied twice to the second operand,
effectively negating the value twice. Since negating a negative number results
in a positive number, the expression 7 - - 5 is effectively interpreted as 7 - (-5),
which simplifies to 7 + 5. Consequently, the expression evaluates to the number
12.

The expression on the second line, 7 - -5, is similar to the first one. It correctly
subtracts the value -5 from 7. The result is 12. 7- -5 also correctly subtracts the
value -5 from 7. Just like the previous two expressions, the result is 12.

http://media.pragprog.com/titles/fkjsbrain/code/negative_gravity/negative_gravity.js

[2]

[3]

[4]

The fourth expression, 7--5, is different. There are two consecutive minus signs
without any space in between. In JavaScript, -- is treated as the decrement
operator, which is used to decrease a variable’s value by 1. Since there are no
variables here, this expression will result in a syntax error because it’s not a
valid operation.

So, similar to mathematical operations in the real world, subtracting a negative
number from another number is equivalent to adding the positive value of that
number. But, there is a caveat when there’s no space between the first minus
sign and the second one, in which case the expression is interpreted as the
decrement operator.

Further Reading

The decrement operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Decrement

The subtraction operator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Subtraction

Footnotes

https://github.com/TimothyMeadows/bigintjs

https://mikemcl.github.io/bignumber.js/

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Lexical_grammar#reserved_words

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Decrement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Subtraction
https://github.com/TimothyMeadows/bigintjs
https://mikemcl.github.io/bignumber.js/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#reserved_words

Part 2
Crafting Puzzles

Puzzle 29 Crafting Your Own JavaScript Puzzle

JavaScript is a fascinating language known for its quirks and unique
behaviors. Writing puzzles is a fantastic way to better understand these
quirks, unleash your creativity, and have fun!

I invite you to join in on the adventure and craft your very own puzzles to
share with the JavaScript community. You can post them on programming
forums, social media, or even the DevTalk page of the book![5] If you’re
wondering how to create the best JavaScript brain teasers, here are some tips
to get you started:

Set a Clear Goal: Start by defining what you want your puzzle to
achieve. Is it about conquering asynchronous concepts, understanding
scope, mastering functions, or diving into more advanced concepts?
Make sure your puzzle lines up with the specific topic you want your
fellow learners to grasp.

Create an Engaging Scenario: Create a scenario or problem context for
the puzzle. This could be a real-world problem or a fictional situation.
The story or situation you come up with should be intriguing and
directly related to your learning goal.

Formulate the Challenge: Your puzzle should be a clever test of the
targeted programming concept. Strive for that sweet spot—a challenge
that’s thought-provoking without causing hair-pulling frustration.

Try It Out Yourself: Be sure to solve your own puzzle using your
proposed solution. Test it with different inputs and edge cases to
identify any issues.

Pack in the Learning: Add explanations of the core concepts, sprinkle
in code snippets with helpful comments, and provide links to resources
that eager learners can dig into.

[5]

Share and Gather Feedback: Once your puzzle is polished and
gleaming, share it with us! Embrace the feedback from fellow coders to
fine-tune your creation and make it even better.

Designing a JavaScript brain teaser can be a great way to engage with the
coding community and encourage learning. It’s all about igniting curiosity.
Remember, your puzzles should be both challenging and rewarding, paving
the way for others to upskill and enjoy the journey.

May I Request a Favor from You?
Thank you for taking the time to read this book! May I request a favor?
Could you spare a minute to write a brief comment about this book on
Amazon or Goodreads? Your feedback is incredibly valuable, not just to me
as an author but to potential readers as well. I make it a point to read all
reviews and greatly appreciate sincere feedback. To me, the true reward for
my efforts is the knowledge that I’m making a positive impact on the
JavaScript community.

Thanks again, and I really look forward to reading your feedback!

Footnotes

https://devtalk.com/books/javascript-brain-teasers

https://devtalk.com/books/javascript-brain-teasers

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering you
this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not
propose a writing idea to us? After all, many of our best authors started off as
our readers, just like you. With up to a 50% royalty, world-class editorial
services, and a name you trust, there’s nothing to lose. Visit
https://pragprog.com/become-an-author/ today to learn more and to get
started.

Thank you for your continued support. We hope to hear from you again soon!

The Pragmatic Bookshelf

https://pragprog.com/
https://pragprog.com/become-an-author/

Text Processing with JavaScript
You might think of regular expressions as the
holy grail of text processing, but are you sure you
aren’t just shoehorning them in where standard
built-in solutions already exist and would work
better? JavaScript itself provides programmers
with excellent methods for text manipulation, and
knowing how and when to use them will help
you write more efficient and performant code.

From extracting data from APIs to calculating word counts and
everything in between, discover how to pick the right tool for the job and
make the absolute most of it every single time.

Faraz K. Kelhini

(240 pages) ISBN: 9798888650332 $51.95

Modern Asynchronous JavaScript
JavaScript today must interact with data-
intensive APIs and networks. The solution is a
program that can work asynchronously instead of
finishing tasks in order. In modern JavaScript,
instead of callbacks you’ll use promises to
improve your application’s performance and
responsiveness. JavaScript features introduced in

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/fkjavascript
http://pragmaticprogrammer.com/titles/fkajs

ES2020, ES2021, and ESNext like Promise.allSettled(), Promise.any(),
and top-level await help you develop small, fast, low-profile applications.
With the AbortController API, cancel a pending async request before it
has completed. Modern Asynchronous JavaScript gives you an arsenal of
tools to build programs that always respond to user requests, recover
quickly from difficult conditions, and deliver maximum performance.

Faraz K. Kelhini

(77 pages) ISBN: 9781680509045 $14.99

Rust Brain Teasers
The Rust programming language is consistent
and does its best to avoid surprising the
programmer. Like all languages, though, Rust
still has its quirks. But these quirks present a
teaching opportunity. In this book, you’ll work
through a series of brain teasers that will
challenge your understanding of Rust. By
understanding the gaps in your knowledge, you

can become better at what you do and avoid mistakes. Many of the
teasers in this book come from the author’s own experience creating
software. Others derive from commonly asked questions in the Rust
community. Regardless of their origin, these brain teasers are fun, and
let’s face it: who doesn’t love a good puzzle, right?

Herbert Wolverson

(138 pages) ISBN: 9781680509175 $18.95

http://pragmaticprogrammer.com/titles/hwrustbrain

Pandas Brain Teasers
This book contains 25 short programs that will
challenge your understanding of Pandas. Like
any big project, the Pandas developers had to
make some design decisions that at times seem
surprising. This book uses those quirks as a
teaching opportunity. By understanding the gaps
in your knowledge, you’ll become better at what
you do. Some of the teasers are from the author’s

experience shipping bugs to production, and some from others doing the
same. Teasers and puzzles are fun, and learning how to solve them can
teach you to avoid programming mistakes and maybe even impress your
colleagues and future employers.

Miki Tebeka

(110 pages) ISBN: 9781680509014 $18.95

Numerical Brain Teasers
Challenge your brain with math! Using nothing
more than basic arithmetic and logic, you’ll be
thrilled as answers slot into place. Whether
purely for fun or to test your knowledge, you’ll
sharpen your problem-solving skills and flex
your mental muscles. All you need is logical
thought, a little patience, and a clear mind. There
are no gotchas here. These puzzles are the perfect

introduction to or refresher for math concepts you may have only just
learned or long since forgotten. Get ready to have more fun with numbers
than you’ve ever had before.

http://pragmaticprogrammer.com/titles/d-pandas
http://pragmaticprogrammer.com/titles/esbrain

Erica Sadun

(186 pages) ISBN: 9781680509748 $18.95

Go Brain Teasers
This book contains 25 short programs that will
challenge your understanding of Go. Like any
big project, the Go developers had to make some
design decisions that at times seem surprising.
This book uses those quirks as a teaching
opportunity. By understanding the gaps in your
knowledge, you’ll become better at what you do.
Some of the teasers are from the author’s

experience shipping bugs to production, and some from others doing the
same. Teasers and puzzles are fun, and learning how to solve them can
teach you to avoid programming mistakes and maybe even impress your
colleagues and future employers.

Miki Tebeka

(110 pages) ISBN: 9781680508994 $18.95

Hands-on Rust
Rust is an exciting new programming language
combining the power of C with memory safety,
fearless concurrency, and productivity boosters—
and what better way to learn than by making
games. Each chapter in this book presents hands-
on, practical projects ranging from “Hello,
World” to building a full dungeon crawler game.

http://pragmaticprogrammer.com/titles/d-gobrain
http://pragmaticprogrammer.com/titles/hwrust

With this book, you’ll learn game development skills applicable to other
engines, including Unity and Unreal.

Herbert Wolverson

(342 pages) ISBN: 9781680508161 $47.95

Programming WebAssembly with Rust
WebAssembly fulfills the long-awaited promise
of web technologies: fast code, type-safe at
compile time, execution in the browser, on
embedded devices, or anywhere else. Rust
delivers the power of C in a language that strictly
enforces type safety. Combine both languages
and you can write for the web like never before!
Learn how to integrate with JavaScript, run code

on platforms other than the browser, and take a step into IoT. Discover
the easy way to build cross-platform applications without sacrificing
power, and change the way you write code for the web.

Kevin Hoffman

(238 pages) ISBN: 9781680506365 $45.95

http://pragmaticprogrammer.com/titles/khrust

	Acknowledgments
	Preface
	About the Author
	About You
	About the Code

	Part I. JavaScript Brain Teasers
	Puzzle 1. Your Code Deserves a Lift
	Puzzle 2. The Usurper
	Puzzle 3. The Mathemagician
	Puzzle 4. Mortal Koncatenation
	Puzzle 5. Offbeat Identifierz
	Puzzle 6. The Fun-ction
	Puzzle 7. How Long Is a Pirate Flag?
	Puzzle 8. What’s This?
	Puzzle 9. The Flat Earth Society
	Puzzle 10. Casting Spells with 1s and 0s
	Puzzle 11. Dating with Math
	Puzzle 12. What’s the Value of Math?
	Puzzle 13. Netherlands or Holland?
	Puzzle 14. The Permanent Closure
	Puzzle 15. Cracking the Color Code
	Puzzle 16. Waiting in Line
	Puzzle 17. Chasing Promises
	Puzzle 18. Oo Na Na Na
	Puzzle 19. Hexorcism
	Puzzle 20. The Arrayist
	Puzzle 21. The Chain Master
	Puzzle 22. The Shape Shifter
	Puzzle 23. Alphabet Aerobics
	Puzzle 24. Do You Trust Your Eyes?
	Puzzle 25. Truth or Fiction?
	Puzzle 26. On or Off?
	Puzzle 27. The Grocery List
	Puzzle 28. Negative Gravity

	Part II. Crafting Puzzles
	Puzzle 29. Crafting Your Own JavaScript Puzzle

