

Text Processing with
JavaScript

Regular Expressions, Tools, and Techniques for
Optimal Performance

by Faraz K. Kelhini

Version: P1.0 (December 2023)

Copyright © 2024 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats
If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/fkjavascript, the
book's homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Tammy Coron (Managing Editor), Margaret Eldridge (Development Editor),
Vanya Wryter (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/fkjavascript
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Preface
Who Is This Book For?
What You Should Know
What’s in This Book?
Online Resources

1. Part I: Text Processing with Built-in JavaScript Methods

Reci
pe 1.Determining If a Value Is a String with the typeof
Operator

Reci
pe 2.Checking a String for Specific Words with includes()

Reci
pe 3.Matching the Beginning or End of a String with
startsWith() and endsWith()

Reci
pe 4.Extracting Lists from Text with slice()

Reci
pe 5.Converting Color Names to Hexadecimal Values with the
Canvas Element

Reci
pe 6.Adding Transparency to Hex Colors

Reci
pe 7.Removing HTML Tags from Text with DOMParser()

Reci
pe 8.Converting HTML Markup to HTML Entities with
replaceAll()

Reci
pe 9.Intersecting HTML Tables with filter()

Reci
pe
10. Generating HTML Tables from an Array of Arrays

Reci
pe
11. Generating HTML Tables from an Array of Objects

Reci
pe
12. Displaying Tabular Data in Console with console.table()

Reci
pe
13. Formatting Dates with Intl.DateTimeFormat()

Reci
pe
14. Formatting Currencies with Intl.NumberFormat()

Reci
pe
15. Adding Thousand Separators to Numbers with
Intl.NumberFormat()

Reci
pe
16. Creating Language-Sensitive Lists with Intl.ListFormat()

Reci
pe
17. Determining Letter Case with charAt()

Reci
pe
18. Counting Unicode Characters with Intl.Segmenter()

Reci
pe
19. Counting Words in a String with Intl.Segmenter()

Reci
pe
20. Counting the Number of a Specific Word with split()

Reci
pe
21. Equalizing Incompatible Characters with normalize()

Reci
pe
22. Copying Text to Clipboard with the Clipboard API

2. Part II: Text Processing with Regular Expressions

Reci
pe
23. Creating Your First Regular Expression

Reci
pe
24. Asserting the Start or End of a String with ^ and $

Reci
pe
25. Looking For Whole Words Only with the Word Boundary
(\b)

Reci
pe
26. Matching One of Several Alternatives with the Vertical
Bar (|)

Reci
pe
27. Matching One of Several Characters with the Character
Class

Reci
pe
28. Matching a Range of Characters with Character Classes

Reci
pe
29. Repeating Part of a Regex with Quantifiers

Reci
pe
30. Treating Multiple Characters as a Single Unit with the
Capturing Group

Reci
pe
31. Extracting a Matched Value with the Capturing Group

Reci
pe
32. Excluding Groups from Result with the Non-capturing
Group

Reci
pe
33. Reading Groups with Ease Using Named Capturing
Groups

Reci
pe
34. Using Special Replacement Patterns

Reci
pe
35. Taking Away the Special Meaning of Replacement
Patterns

Reci
pe
36. Using a Function as the Replacement Pattern

Reci
pe
37. Escaping Metacharacters with the Backslash

Reci
pe
38. Creating Lazy Quantifiers with the Question Mark

Reci
pe
39. Global and Case-Insensitive Matching with the g and i
Flags

Reci
pe
40. Generating Indices for Matches with the d Flag

Reci
pe
41. Forcing ^ and $ to Match at the Start and End of a Line
with the m Flag

Reci
pe
42. Forcing . to Match Newline Characters with the s Flag

Reci
pe
43. Enabling Unicode Features with the u Flag

Reci
pe
44. Searching from a Specific Index with the y Flag

Reci
pe
45. Modifying an Existing Regex Literal

Reci
pe
46. Referencing a Matched String with the Backreference

Reci
pe
47. Testing a Pattern with the Positive Lookahead

Reci
pe
48. Testing a Pattern with the Negative Lookahead

Reci
pe
49. Testing a Pattern with the Positive Lookbehind

Reci
pe
50. Testing a Pattern with the Negative Lookbehind

Reci
pe
51. Matching Non-ASCII Numerals with the Unicode
Property Escape

Reci
pe
52. Matching Non-ASCII Words with the Unicode Property
Escape

Reci
pe
53. Matching Unicode Word Boundaries with the Unicode
Property Escape

3. Part III: Mastering Text Processing in JavaScript

Reci
pe
54. Validating Email Addresses

Reci
pe
55. Validating Password Strength

Reci
pe
56. Validating Social Security Numbers

Reci
pe
57. Validating ZIP Codes

Reci
pe
58. Validating Canadian Postal Codes

Reci
pe
59. Removing Duplicate Lines

Reci
pe
60. Removing Duplicate Lines Separated by Other Lines

Reci
pe
61. Removing Duplicate Spaces

Reci
pe
62. Removing Duplicate Whitespaces

Reci
pe
63. Replacing Duplicate Whitespaces with the Same Type

Reci
pe
64. Extracting Text Enclosed in Double Quotes

Reci
pe
65. Extracting Text Enclosed in Single Quotes

Reci
pe
66. Escaping a String for Use in a Regex

Reci
pe
67. Striping Invalid Characters from Filenames

Reci
pe
68. Matching Floating-Point Numbers

Reci
pe
69. Matching Formatted Numbers with Thousand Separators

Reci
pe
70. Matching Nearby Words

Reci
pe
71. Highlighting Sentences Containing a Specific Word

Reci
pe
72. Highlighting Text in Real Time

Reci
pe
73. Converting Plain Text into HTML-Ready Markup

Wrapping Up

May I Request a Favor from You?

A1. What Is Unicode?

A2. Implementing Regex in JavaScript
test()
exec()
match()
matchAll()
search()
replace()
replaceAll()
split()
Conclusion

A3. Testing Regex with Specialized Tools
RegexPal
RegExr
Regex101
RegexBuddy
Regex Vis

A4. Regular Expression Cheat Sheet
Character Classes
Quantifiers
Boundary Assertions
Lookaround Assertions
Groups and Backreferences
Flags

Unicode Property Escapes

Copyright © 2024, The Pragmatic Bookshelf.

Early Praise for Text Processing
with JavaScript

There’s nothing regular about working with regular expressions. Turn
the mundane yet tedious task of processing textual data into a
manageable and even a fun experience using the techniques and
recipes in this book.

→ Dr. Venkat Subramaniam
Award-winning author and founder of Agile Developer, Inc

While it would be easy for a book like Text Processing with JavaScript
to spend all of its time on regular expressions, here you’ll also find
ample discussion and useful examples of humble, often-overlooked,
and computationally less expensive string methods in JavaScript.
Whatever your text-processing task, this book will point you to the
right API for the job. And even readers who might not be doing heavy-
duty text processing will benefit from the coverage here of multi-byte
character sets and presentations of various non-Western-Latin
alphabets, including emoji, which is a tremendously useful resource in
its own right.

→ Karl Stolley
Web developer and author of Programming WebRTC

A wealth of JavaScript tips, tricks, and tools, Text Processing with
JavaScript is loaded with recipes ranging from password validation to
internationalization to simply working with formatted numbers. Faraz
shows you the built-in functions you can use to tackle your JS
problems, then expands to regular expressions for any complex
situations you may face.

→ Michael Fazio
Engineering Manager at Albert and author of Kotlin and Android
Development featuring Jetpack

A handful of domain-specific languages exist that richly reward the
software developers who master them. For DevOps engineers, the key
DSL is bash; for backend engineers, it’s SQL; and for frontend and
full-stack engineers, it’s regular expressions. Expertly wielding any of
these languages is a superpower. Text Processing with JavaScript
showcases how to harness the power of the JavaScript string type,
diving deeply into all its aspects. Even developers with years of
JavaScript experience will discover something new in its pages. With
detailed coverage of various native text processing APIs, meticulous
examples of regular expression techniques, and insightful code
explanations, this book deserves a place on every frontend developer’s
bookshelf.

→ Matt Frisbie
Author of Professional JavaScript for Web Developers

This book helps readers master text processing through its
comprehensive knowledge, abundant real-world examples, and
detailed explanations. I’d recommend it to anyone who wants to learn
and delve deeper into Text Processing with JavaScript.

→ Bowen
The creator of Regex Vis

Acknowledgments

Writing a programming book is a collaborative effort that would not have
been possible without the support and expertise of many individuals.

I extend my sincere appreciation to the team at The Pragmatic
Programmers, who believed in the potential of this book and provided
invaluable guidance and resources. Their editorial team and design
professionals have played a pivotal role in shaping the content of this work.
In particular, I would like to thank my editor, Margaret Eldridge, whose
meticulous attention to detail was instrumental in identifying and rectifying
gaps in my writing.

A big thanks to experts who reviewed the book prior to publication,
including Michael Fazio, Karl Stolley, Andy Lester, Trevor Burnham, and
Jason Montojo. These wonderful developers offered very helpful insight
into the code quality and ensured that this book met the highest standards of
accuracy and clarity.

Thank you, also, to Dr. Venkat Subramaniam, Matt Frisbie, and Bowen who
were kind enough to offer words of encouragement and praise for the book.

To my readers, thank you for choosing this book as your learning
companion. Your enthusiasm for learning and your curiosity motivate me to
continue exploring and sharing knowledge.

To everyone who contributed directly or indirectly to this project, thank you
all for being a part of this project. Your support and contributions have

made this endeavor truly rewarding.

Faraz K. Kelhini

Copyright © 2024, The Pragmatic Bookshelf.

Preface

Most popular programming languages support regular expressions, and
there’s a good reason for that: regular expressions are incredibly powerful at
text processing. With regular expressions, you can greatly reduce the time
and effort required for complex string parsing tasks that would otherwise
take dozens of lines of code.

But, as a JavaScript developer, you may not need to jump into writing
regular expression patterns whenever you need to process texts. JavaScript
already provides excellent built-in tools that meet many of your text
manipulation needs.

In this book, you’ll explore when and how to use each tool by working
through real-world scenarios. You’ll learn the mechanics of JavaScript’s
regex in detail via cookbook-style recipes for various text manipulation
tasks.

Make sure you actually type and execute the code examples as you follow
along in the book. Some examples may appear simple, but there’s a big
difference between reading the code and being able to write it on your own.

Who Is This Book For?
This book is geared toward the needs of both client- and server-side
programmers. Whether you’re a beginner or an advanced programmer, this
guide will save you a ton of time when dealing with textual data. We’ll
focus squarely on the practical aspects of text processing with JavaScript—
that is, what each technique is designed to accomplish and how to use it in
your program.

Readers who have experience with regular expressions will still benefit
from this book as it contains a wealth of detail on JavaScript’s regular
expression flavor as well as features recently introduced. By the end of this
book, you will be able to solve a great many complex validation,
modification, and search-and-replace problems rapidly and efficiently.

What You Should Know
To use this book, you should already know basic JavaScript, HTML, and
CSS syntax. Use of HTML and CSS will be infrequent and fairly basic, and
I’ll explain each JavaScript example in detail. So even if your knowledge is
rusty, you’ll understand how the code works.

To run the examples, you’ll need a JavaScript environment that supports the
newest version of the ECMAScript standard (ECMAScript is the official
standard that defines the specification of JavaScript). So, whether you’re
running the examples in your browser’s console or the Node.js
environment, make sure you have the latest software version installed.

Certain recipes use APIs that are only available in the browser environment,
such as fetch(). As a result, you can run those recipes only in a browser.
We’ll warn you about the lack of browser/environment support whenever
necessary.

What’s in This Book?
We’ve organized the book as a cookbook, so you can quickly jump to
different recipes. But if you read the book cover to cover, you’ll become a
master chef of text processing. There are three primary parts in this book:

Part 1 contains recipes that solve various text processing problems
with JavaScript’s built-in methods.

Part 2 covers JavaScript’s flavor of regex, provides an in-depth
discussion of the syntax, and gives various examples of using them.

Part 3 provides solutions to a wide range of retrieval and alteration
tasks. These recipes will give you the helping hand you need to
become a regular expression expert.

[1]

Online Resources
To download the example code used in the book, please visit the Pragmatic
Bookshelf website.[1] You can submit feedback and errata entries, get up-to-
date information, and join in the discussions on the book’s forum page. If
you’re reading the book in PDF format, you can view or download a
specific example by clicking on the little gray box above the code.

Footnotes

https://pragprog.com/titles/fkjavascript/text-processing-with-javascript/#resources

Copyright © 2024, The Pragmatic Bookshelf.

https://pragprog.com/titles/fkjavascript/text-processing-with-javascript/#resources

Chapter 1

Part I: Text Processing with Built-
in JavaScript Methods

Many regard regular expressions as the holy grail of text processing—a tool
that can simplify numerous programming tasks and provide a compact,
effective solution to various text processing problems. But should you
shoehorn regular expressions into situations where standard built-in
solutions already exist?

Of course not. Regular expressions can be tricky to get right, and it’s too
easy to end up with a pattern that accepts more input than intended. Code
collaboration may also become an issue, as the cryptic nature of regular
expressions may discourage your fellow programmers from reviewing or
debugging your code. After all, nobody wants to spend a week trying to
understand a twenty-line enigmatic string made of magical symbols.

In part one of the book, we’ll delve into a collection of tiny programs
demonstrating built-in string manipulation methods in JavaScript. You’ll
discover what problems each method is designed to solve, and in doing so,
you’ll learn in what situations they’re preferable to regular expressions.

Recipe 1
Determining If a Value Is a String with the typeof
Operator

Task
In Javascript, you will often need to validate that a value is a string. For
example, in the next recipe, we’ll build a function that searches for multiple
words in a string. Before you pass a value to the function, you’d want to check
if it’s a string. Any other data type, like a number or Boolean, would cause
your function to throw an error.

Throughout this book, you will see functions of this sort repeatedly, so it’s a
good place to start.

Solution

Use the typeof operator:

part_1/determining_valid_strings/typeof_ex1.js

 function isString(value) {

 return typeof value === "string" ;

 }

 isString(123); // → false

 isString("abc"); // → true

The typeof operator returns a string indicating a value’s type.

Discussion
In JavaScript, you can create a string literal with single or double quotes or the
backticks:

part_1/determining_valid_strings/typeof_ex2.js

 let str1 = "string" ;

 let str2 = 'string' ;

http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_valid_strings/typeof_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_valid_strings/typeof_ex2.js

 let str3 = ̀string` ;

So, a number enclosed in quotation marks or backticks is not a number
anymore but a string. You can also create a string with the String() constructor
if you call it without the new keyword:

part_1/determining_valid_strings/typeof_ex3.js

 String(123); // → "123"

In a string, each character occupies a position. Index 0 corresponds to the first
character, index 1 to the second character, and so on. So, to get the second
character in a string, you can type str[1]:

part_1/determining_valid_strings/typeof_ex4.js

 let str = "string" ;

 console.log(str[1]); // → t

Up next, we’ll begin our journey into the realm of JavaScript text processing
methods by building a function that checks whether a string contains a list of
words.

http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_valid_strings/typeof_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_valid_strings/typeof_ex4.js

Recipe 2
Checking a String for Specific Words with
includes()

Task
Suppose you’re building an online bakeshop and want to filter messages so
they can be routed to the correct baker. You need to check the strings in
incoming emails to account for different spellings of words like “doughnut”
versus “donut.” You can’t use the includes() method alone because it allows
you to look for only a single word.

Solution

Put the words you want to search for in an array. Then create a function that
accepts two arguments: a string to search and an array of words. Inside the
function, search for each word in the string and return true if at least one
search is successful:

part_1/checking_specific_words/includes_ex1.js

 const msg = "I'd like to order two donuts" ;

 const words = ["doughnut" , "donut"];

 function hasSomeWords(str, arr) {

 return arr.some(el => str.includes(el));

 }

 hasSomeWords(msg, words); // → true

The some() method returns true if at least one element in the array passes the
test implemented by the given function. In this case, that means includes() first
searches for “doughnut.” Since there’s no such a word in the string, the
method returns false. The second time includes() searches for “donut,” and this
time it returns true. So, the return value of some() will be true.

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_1/checking_specific_words/includes_ex1.js

ECMAScript added includes() to the language in ES2015 to enable developers
to easily determine whether a string contains another string. The second
argument of includes() is optional and lets you specify the position at which to
begin searching. For example:

part_1/checking_specific_words/includes_ex2.js

 const quote = "Sachertorte is a torte of Austrian origin." ;

 quote.includes("Sachertorte" , 15); // → false

This code starts the search at index 15. Because no word matches
“Sachertorte” from index 15 onwards, the return value is false.

Remember, includes() is case sensitive. If you search for “Sachertorte” in a
string containing “SacherTorte,” the result is false:

part_1/checking_specific_words/includes_ex3.js

 const quote = "I'd like to order a SacherTorte." ;

 const word = "Sachertorte" ;

 quote.includes(word); // → false

Some desserts could have internal capitalization because they are made up of
two words such as Dobostorta/DobosTorta, Leibnizkeks/LeibnizKeks, and
SacherTorte/Sachertorte. So, in most cases, you want to perform a case-
insensitive search by converting both the string and the keyword to lowercase,
like this:

part_1/checking_specific_words/includes_ex4.js

 const quote = "I'd like to order a SacherTorte." .toLowerCase();

 const word = "Sachertorte" .toLowerCase();

 quote.includes(word); // → true

But what if you want to check if a string contains multiple words
simultaneously? In that case, you should use the every() method. every() is

http://media.pragprog.com/titles/fkjavascript/code/part_1/checking_specific_words/includes_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/checking_specific_words/includes_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/checking_specific_words/includes_ex4.js

similar to some() in that it executes a function for each element of an array. But
it returns true only if every item in the array passes the test. Here’s an
example:

part_1/checking_specific_words/includes_ex5.js

 const msg = "1 sachertorte, 3 pretzels, and 2 donuts please." ;

 const wordsArr1 = ["sachertorte" , "donut"];

 const wordsArr2 = ["sachertorte" , "sourdough"];

 function hasEveryWord(str, arr) {

 return arr.every(el => str.includes(el));

 }

 hasEveryWord(msg, wordsArr1); // → true

 hasEveryWord(msg, wordsArr2); // → false

Here, “sachertorte” and “donut” pass the test because they both exist in the
string, but that’s not the case for “sachertorte” and “sourdough.”

Although includes() is designed to search for only a single word, with a little
effort, you can take advantage of it to search for more words. But be careful
when looking for words that also have a compound form.

If you search for “cake” in “I’d like to order two pancakes,” includes() returns
true. If you don’t want that to happen, you should use a regex token known as
a word boundary. See Recipe 25, Looking For Whole Words Only with the
Word Boundary (\b).

http://media.pragprog.com/titles/fkjavascript/code/part_1/checking_specific_words/includes_ex5.js

Recipe 3
Matching the Beginning or End of a String with
startsWith() and endsWith()

Task
Let’s assume you have a database of articles about pet care and your task is to
compile a list of questions that are answered in the articles. Suppose the
articles are formatted in the Markdown language and the questions are all in
level 2 heading tags (preceded with ##).

How would you write a code that distinguishes a heading from a normal
sentence? And what would you use if you wanted to filter those that are
questions? You need a solution that lets you check the characters at the
beginning and end of a string.

Solution

First, we’ll use the startsWith() method to determine if the string begins with
##:

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex1.js

 const str1 = "## Why is chocolate bad for your dog?" ;

 const str2 = "# 10 Amazing Dog Facts" ;

 const searchStr = "##" ;

 str1.startsWith(searchStr); // → true

 str2.startsWith(searchStr); // → false

Then we’ll use the endsWith() method to check if the string ends with a
question mark:

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex2.js

 const str1 = "## Why is chocolate bad for your dog?" ;

 const str2 = "## Best way to trim your dog's nails" ;

 const searchStr = "?" ;

http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex2.js

 str1.endsWith(searchStr); // → true

 str2.endsWith(searchStr); // → false

Now that we know startsWith() and endsWith() produce the result we want, let’s
create a function that performs both these operations at the same time:

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex3.js

 function startsWithEndsWith(str, start, end) {

 if ((str.startsWith(start) === true) && (str.endsWith(end) === true)) {

 return true ;

 } else {

 return false ;

 }

 }

We can also simplify the function by removing the if statement. The logical
AND (&&) operator returns true if both startsWith() and endsWith() return true, so
we can get the same result in a single statement:

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex4.js

 function startsWithEndsWith(str, start, end) {

 return str.startsWith(start) && str.endsWith(end);

 }

This code works fine for testing a string containing a single sentence, but we
want to extract level 2 Markdown headings from an article. So, we need a way
to pass each line of the article to our function. Divide the string at line breaks
by calling split("\n"), then loop over the resulting array with forEach() and pass
each line to startsWithEndsWith():

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex5.js

 const str =

 `## Why is chocolate bad for your dog?

 Some text ...

 ## Best way to trim your dog's nails

 More text ...

 ## Are there human foods that are safe for dogs?

 ...` ;

http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex5.js

 function startsWithEndsWith(str, start, end) {

 return str.startsWith(start) && str.endsWith(end);

 }

 str.split("\n").forEach(str => {

 if (startsWithEndsWith(str, "##" , "?")) {

 console.log(str);

 };

 });

 // logs:

 // → ## Why is chocolate bad for your dog?

 // → ## Are there human foods that are safe for dogs?

Success!

Browser Compatibility
Safari 15.4, released on March 15, 2022, joined the party a little
later than other leading browsers, as it incorporated at() after its
major competitors had already done so. For backward
compatibility with older browser versions, you need to use a
polyfill.[2] In the Node environment, you’ll need a minimum Node
version of 16.6.0.[3]

Discussion
In JavaScript, there are often multiple ways to complete a task. As a
programmer, you should usually strive to use the most efficient tool for the
job. But you should also take into account the reliability and readability of
your code, which are more important in most projects.

An alternative way to get the last character of a string is to use the at() method.
It’s compact and fast! But browser support isn’t quite there yet, so you might
find your code broken in older browsers.

With at(), you can retrieve a single character at a position in a string like this:

part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex6.js

 const str = "Do dogs dream?" ;

 str.at(-1); // → "?"

 str.at(-2); // → "m"

When calling at() with a negative number, the method counts back from the
end of the string. So, -1 gets you the last character, -2 gets you the second to
last character, and so on.

Calling at() on Arrays
You can also use at() with JavaScript arrays. Check out my article
on Medium to learn more.[4]

While startsWith() lets you check characters at a string’s beginning, endsWith()

lets you determine if a string ends with specific characters. If you want to get
the value of only a single character, then at() is a compact alternative you may
use, but be sure to check browser support.

http://media.pragprog.com/titles/fkjavascript/code/part_1/matching_with_startsWith_endsWith/startsWith_endsWith_ex6.js

Recipe 4 Extracting Lists from Text with slice()

Task
Suppose you run an online shop selling thousands of different clothes. You’re
tasked with making the products searchable by color. The problem is the
available colors for each product are listed as a sentence in the product
description. You need a way to find and extract those colors programmatically
to build a searchable database.

So if you have a product description like this:

 Feel confident in even the most unforeseen weather conditions with these

 waterproof trail-running shoes helping you stay dry. Available in four new

 colors: Velvet Brown, Black, Golden Moss, Medium Blue.

You want to extract the colors and store them in an array like this:

 ["Velvet Brown" , "Black" , "Golden Moss" , "Medium Blue"]

The list you want to extract may also come in different variations. It could
have a forward slash (/) between items rather than a comma. Or it could have
extra words such as “and,” “or,” “etc.” that you don’t want to end up in your
array.

In this recipe, we first build a function that extracts simple lists and then
enhance the function to handle more complex lists.

Solution

This recipe involves two steps: first, finding the sentence containing the list of
colors, and second, extracting each color and storing it in an array. You can
perform the first step using the indexOf() method. The list of colors comes after
a colon (:). Locate it with indexOf() and store the resulting index in a constant.
Next, locate the first period that follows the colon and store the index in
another constant:

 const str = ̀Feel confident in even the most unforeseen weather conditions

 with these waterproof trail-running shoes helping you stay dry. Available

 in four new colors: Velvet Brown, Black, Golden Moss, Medium Blue.` ;

 const start = str.indexOf(":");

 const end = str.indexOf("." , start);

Now, you have two indexes that mark the beginning and end of the list in the
string. Pass them to the slice() method to extract the list:

 const list = str.slice(start + 2, end);

 // "Velvet Brown, Black, Golden Moss, Medium Blue"

The arguments you pass to slice() specify the string’s start and end index to be
returned. To offset the colon and the space at the beginning of the string,
increase the start index by 2. The end index tells slice() to extract up to but not
including the character at that index, so there’s no need to subtract from it.

Now comes the second step, where you need to convert the comma-separated
list into an array. There are a couple of ways to do this in JavaScript. The long
approach is to look for commas in a loop and add each item to an array. The
more straightforward approach is to use the split() method. With split(), you can
define where each split in a string should occur and quickly get an array of
items:

 const colors = list.split(", ");

 console.log(colors);

 // → ["Velvet Brown", "Black", "Golden Moss", "Medium Blue"]

In this code, you’re telling split() to use a comma followed by a space as a
separator. The result is an array of colors with no extra space or commas to
worry about.

Here’s the final code put together in a function so you can reuse it:

part_1/extracting_lists/slice_ex1.js

 const str = ̀Feel confident in even the most unforeseen weather conditions

http://media.pragprog.com/titles/fkjavascript/code/part_1/extracting_lists/slice_ex1.js

 with these waterproof trail-running shoes helping you stay dry. Available

 in four new colors: Velvet Brown, Black, Golden Moss, Medium Blue.` ;

 function extractList(str) {

 const start = str.indexOf(":");

 const end = str.indexOf("." , start);

 const list = str.slice(start + 2, end);

 return list.split(", ");

 }

 extractList(str);

 // → ["Velvet Brown", "Black", "Golden Moss", "Medium Blue"]

Discussion
If the list you want to extract has extra words, such as “and,” “or,” “etc.,” or
uses a forward slash (/) rather than a comma, then you need a more advanced
function. You probably won’t find “etc.” in a list of available color options for
a product, but we have included it here so that you can remove it from other
types of lists, if needed.

Consider this example:

part_1/extracting_lists/slice_ex2.js

 function extractList(str) {

 const start = str.indexOf(":");

 const end = str.indexOf("." , start);

 const list = str.slice(start + 2, end);

 return list.split(", ");

 }

 extractList("Available in three colors: red, black, and blue.");

 // → ["red", "black", "and blue"]

 extractList("Available colors: Red/Black/Blue.");

 // → "Red/Black/Blue"

 extractList("Available colors: Red, Black, Blue, etc.");

 // → ["Red", "Black", "Blue", "etc"]

http://media.pragprog.com/titles/fkjavascript/code/part_1/extracting_lists/slice_ex2.js

This function isn’t equipped to handle such lists properly. Let’s revise it! You
first need to check whether the list has a comma or a forward slash:

 list.includes(",") ? list.split(", ") : list.split('/');

The includes() method checks if the list contains a comma. If so, it returns true,
and the ternary operator executes list.split(", "). If not, the operator executes
list.split("/").

Next, remove “etc” from the resulting array:

 arr.at(-1) === "etc" ? arr.pop() : null ;

at(-1) gets the last item in the array. If it has a value of “etc,” pop() removes it.
You could use a filter() here, but since “etc” is usually the last item in the array,
it’s more efficient to check only the last item’s value.

Browser Compatibility
Older browsers do not support the at() method. To ensure your
app can be accessed by users with older browsers, you should use
a polyfill.[5] In the Node environment, you’ll need a minimum
Node version of 16.6.0.[6]

To remove “and”/”or,” you can use map(), like this:

 return arr.map(word => {

 if (word.startsWith("and ")) {

 return word.slice(4);

 } else if (word.startsWith("or ")) {

 return word.slice(3);

 } else {

 return word;

 }

 });

When you call map(), it executes a function on every element in the array. Use
the startsWith() method to check if there’s an extra “and” or “or” at the

beginning of an item and remove it with slice().

Your revised function should look like this:

part_1/extracting_lists/slice_ex3.js

 function extractList(str) {

 const start = str.indexOf(":");

 const end = str.indexOf("." , start);

 const list = str.slice(start + 2, end);

 // Split the string by comma or forward slash

 const arr = list.includes(",") ? list.split(", ") : list.split("/");

 // Remove "etc"

 arr.at(-1) === "etc" ? arr.pop() : null ;

 // Remove and/or

 return arr.map(word => {

 if (word.startsWith("and ")) {

 return word.slice(4);

 } else if (word.startsWith("or ")) {

 return word.slice(3);

 } else {

 return word;

 }

 });

 }

 extractList("Available in three colors: red, black, and blue.");

 // → ["Red", "Black", "Blue"]

 extractList("Available colors: Red/Black/Blue.");

 // → ["Red", "Black", "Blue"]

 extractList("Available colors: Red, Black, Blue, etc.");

 // → ["Red", "Black", "Blue"]

You might be wondering why not use replaceAll() to remove any “and,” “or,”
“etc.” from the text before splitting it into an array. It’s because there could be
a color name containing these letters, such as “Macaroni and Cheese” (yes,
that’s a color name).

http://media.pragprog.com/titles/fkjavascript/code/part_1/extracting_lists/slice_ex3.js

Take advantage of the slice() method to extract a section of a string or an array.
The second argument is optional: omit it to get the rest of the string. Use split()

when you need to divide a string into an array of substrings, and finally, use
map() to weed out any unwanted part of the resulting array.

Recipe 5
Converting Color Names to Hexadecimal Values
with the Canvas Element

Task
Suppose you’re working on a drawing application that works with
hexadecimal (hex) color codes. You want to provide a field that lets users
enter a color name to be converted to its hex equivalence automatically.

You need a solution for converting colors into their hex representation.

Solution

Create a temporary HTML canvas element, obtain its 2D context, and use the
fillStyle property to convert the color:

part_1/converting_color_to_hex/color_to_hex_ex1.js

 function convertColorToHex(color) {

 const canvas = document.createElement("canvas");

 const ctx = canvas.getContext("2d");

 ctx.fillStyle = color;

 return ctx.fillStyle.toUpperCase();

 }

 convertColorToHex("Khaki"); // → "#F0E68C"

This function accepts a string containing a web color name and converts it into
its corresponding hex value.

Discussion
Hexadecimal notation is commonly used to specify colors in programs and
web development because it provides a compact and efficient way to represent
a wide range of colors.

In hex notation, colors are made of a combination of red, green, and blue
(RGB) values, each represented by a two-digit hex number (00 to FF), with

http://media.pragprog.com/titles/fkjavascript/code/part_1/converting_color_to_hex/color_to_hex_ex1.js

the first two digits representing the intensity of red, the next two digits
representing the intensity of green, and the last two digits representing the
intensity of blue. For example, the color white is represented by the hex code
#FFFFFF, which has maximum values for all three colors.

In this solution, we define a function that takes in a single parameter called
color, which should be a string representing a color. Inside the function, we
create a new HTML canvas element by using the document.createElement()

method. This method creates an HTML element based on the tag name
provided as the argument. In this case, we use the tag name “canvas” to create
a canvas element.

Next, we create a context object for the canvas using the getContext() method.
We specify that the context object should be for a two-dimensional canvas by
passing “2d” as an argument. We then set the fillStyle property of the context
object to the parameter that was passed to the function. This sets the color that
will be used to fill any shapes drawn on the canvas.

Now we can read the fillStyle property of the context object to get the hex
value of the color. When we call the function with the argument Khaki, it will
create a canvas element, set the fillStyle to Khaki, and return the hex value of the
color #F0E68C. Note that this function does not actually draw anything on the
canvas—it only creates the canvas element and sets the fillStyle.

Before returning the hex value from the function, we used the toUpperCase()

method to convert the hex letters to uppercase. In JavaScript and CSS, hex
colors can be written using either uppercase or lowercase letters. Both
uppercase and lowercase hex letters represent the same values.

But, it’s common practice to use uppercase letters for hex colors because it
can make the code easier to read and differentiate from other text in the code.
Ultimately, the choice between the two styles is a matter of personal
preference or style guide.

By converting color names to hex notation, we can specify a color in a way
that can be used across different software platforms and devices. A list of web
colors and their hex equivalent is available on Wikipedia.[7]

Recipe 6 Adding Transparency to Hex Colors

Task
Suppose you want to add a semi-transparent overlay to some elements of your
app. For example, you may have a prompt that asks the reader to log in before
proceeding, and you may want to include a semi-transparent white color
around the prompt to blur the remainder of the page.

If you use a normal hexadecimal color, the overlay will completely obscure
the content underneath it. If you use the CSS opacity, it will set the opacity of
the element as a whole, including its contents.

You need a solution that lets you add transparency to a hex color.

Solution

Write a function that accepts a hex value and a percentage as input parameters.
The function should convert the percentage into a hex value and then add it to
the original hex value:

part_1/adding_transparency_to_hex/adding_transparency_to_hex_ex1.js

 function addAlphaToHex(hex, percent) {

 const decimal = percent / 100;

 const rgb = Math.round(decimal * 255);

 const alpha = rgb.toString(16).toUpperCase();

 if (alpha.length === 1) {

 alpha = "0" + alpha;

 }

 return hex + alpha;

 }

 addAlphaToHex("#FFFFFF" , 70); // → "#FFFFFFB3"

http://media.pragprog.com/titles/fkjavascript/code/part_1/adding_transparency_to_hex/adding_transparency_to_hex_ex1.js

This function returns an eight-character hex value that includes the alpha
level. In this case, the return value is a white hex color (#FFFFFF) with 70
percent opacity (#FFFFFFB3).

Discussion
Previously, developers had to convert a hex color to either an RGBA or HSLA
color value to set opacity. This conversion was necessary because the alpha
channel in the RGBA or HSLA value could be used to determine the level of
opacity. However, with the introduction of CSS Color Module Level 4, the
problem has been solved by adding new four (#rgba) and eight (#rrggbbaa)
character hex notations that include the alpha level. So, developers no longer
need to convert the hex color to another format in order to set opacity.

The rr, gg, bb, and aa in the notation represent the hexadecimal values for the
red, green, blue, and alpha components respectively, ranging from 00 to FF.
The alpha value determines the opacity of the color, with 00 representing a
fully transparent color and FF representing a fully opaque color. For example,
the color #FF0000FF is a fully opaque red color, while the color #FF000000 is a
fully transparent red color.

Our function addAlphaToHex() takes two parameters: hex and percent. The
function’s purpose is to convert the percentage value to its corresponding hex
representation and append it as an alpha value to the given hex. Within the
function, we first calculate the decimal value of the percentage by dividing it
by 100. Then we multiply the resulting decimal by 255 and round the result
using Math.round() to obtain an RGB value.

Next, we convert the RGB value to a hexadecimal string using the toString()

method with a radix of 16 (that is, base 16). We then convert the string to
uppercase using the toUpperCase() method. After that, we check if the hex is
only one character long. If it is, we add a leading zero using the string
concatenation operator (+), so that it’s two characters long. Finally, we return
the original value parameter concatenated with the alpha hex value.

If you want to write your JavaScript code as compact as possible, you can use
the following version:

part_1/adding_transparency_to_hex/adding_transparency_to_hex_ex2.js

 function addAlphaToHex(hex, percent) {

 const alpha = Math.round(percent / 100 * 255).toString(16)

 .toUpperCase().padStart(2, "0");

 return hex + alpha;

 }

 addAlphaToHex("#FFFFFF" , 70); // → "#FFFFFFB3"

This version combines the rgb and alpha constants into one line and uses
padStart() to add a leading zero if necessary. The first parameter of padStart()

defines the length of the resulting string once the given string has been
padded, so padStart(2, "0") ensures the hex string is always two characters long.

If you want to view your colors in different formats, you can use the
Chrome/Edge DevTools. Open the DevTools panel and navigate to the styles
section to find the color you want to check. Then, click the box located to the
left of the color to directly adjust its values:

You can also hold the Shift key and click on the box to switch between
different format options, with the values automatically converted.

http://media.pragprog.com/titles/fkjavascript/code/part_1/adding_transparency_to_hex/adding_transparency_to_hex_ex2.js

Recipe 7
Removing HTML Tags from Text with
DOMParser()

Task
Imagine you’ve written a web scraper that collects news from the web. The
text you grab may contain unwanted HTML elements, like , ,
<a>, etc.

What’s worse, it may contain injected JavaScript code that automatically gets
executed once you put it on your website. What you need is a function that
safely removes all unwanted elements from the text.

Solution

Use the parseFromString() method from the DOMParser() interface to parse the
string. Once you parse the string, you can use the textContent property to get
the text free from any extra HTML tags:

part_1/removing_html_tags/DOMParser_ex1.js

 function stripHTML(html){

 const doc = new DOMParser().parseFromString(html, "text/html");

 return doc.body.textContent || "" ;

 }

 const rawText = 'Fed Signals Smaller Rises' ;

 stripHTML(rawText); // → "Fed Signals Smaller Rises"

The DOMParser interface lets you parse XML or HTML code from a string
into a DOM Document. In this case, you want to parse HTML, so you pass
text/html as the second argument. The result is an HTMLDocument whose text
you can extract with textContent.

DOMParser() in Node

http://media.pragprog.com/titles/fkjavascript/code/part_1/removing_html_tags/DOMParser_ex1.js

DOMParser() in Node
The DOMParser() interface is not available in the Node
environment.

Discussion
The textContent property is available on all text and element nodes. So why
parse HTML when you can create a temporary element on the page and get its
textContent? Consider this example:

part_1/removing_html_tags/DOMParser_ex2.js

 // Don't use this

 function stripHTML(html) {

 const tmp = document.createElement("DIV");

 tmp.innerHTML = html;

 return tmp.textContent || "" ;

 }

 const rawText = 'Fed Signals Smaller Rises' ;

 stripHTML(rawText); // → "Fed Signals Smaller Rises"

At first glance, this code seems like a more efficient solution because it
doesn’t involve parsing the string. But if the source contains malicious code,
you’ll leave your code wide open to attacks.

Try to strip the following text from HTML, and you’ll see that the JavaScript
code hidden in the onerror attribute gets executed:

part_1/removing_html_tags/DOMParser_ex3.js

 const rawText = "" ;

Although you’re inserting the text into a temporary tag, the browser still loads
the image, and the embedded JavaScript code gets a chance to rear its head.

http://media.pragprog.com/titles/fkjavascript/code/part_1/removing_html_tags/DOMParser_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/removing_html_tags/DOMParser_ex3.js

Remember to remove HTML tags from the text when scraping and using text
from external sources. A quick way to do that is to use the DOMParser
interface to parse the data and then extract text with textContent.

Recipe 8
Converting HTML Markup to HTML Entities with
replaceAll()

Task
Imagine you want to publish programming tutorials on your website that
contain HTML markup. But you encounter an issue where web browsers
interpret the HTML tags in your examples instead of displaying them. This
happens because browsers assume that you use the tags to structure your web
page.

You need to represent the markup in a way that prevents the browser from
interpreting it.

Solution

Use the replaceAll() method to replace the components of HTML tags with
entities:

part_1/converting_html_to_entities/entities_ex1.js

 function escapeHTML(str) {

 return str

 .replaceAll('&' , '&')

 .replaceAll('<' , '<')

 .replaceAll('>' , '>')

 .replaceAll('"' , '"')

 .replaceAll("'" , ''');

 }

 escapeHTML('foo');

 // → "foo"

replaceAll() lets you replace all occurrences of a pattern in a string. With each
call, it returns a new string so you can chain multiple replaceAll() methods to
replace several patterns in a single statement.

http://media.pragprog.com/titles/fkjavascript/code/part_1/converting_html_to_entities/entities_ex1.js

Discussion
By using HTML entities, we can display certain characters that would
otherwise be interpreted by web browsers as HTML code. The table below
shows the list of characters and their respective HTML entities:

Character Entity
& &

< <

> >

" "

’ '

Keep in mind that HTML entities are case sensitive, so & and & are
not the same entity.

There are two types of HTML entities: named entities and numeric entities.
Named entities are represented by a string of letters enclosed in an ampersand
(&) and a semicolon (;). Numeric entities, on the other hand, are represented
by an ampersand (&), followed by a pound sign (#), and either a decimal or
hexadecimal code, and end with a semicolon (;).

Here’s the table above with the named entities converted to their
corresponding numeric entities:

Character Entity
& &

< <

> >

" "

’ '

You can use both named and numeric entities to display special characters in
HTML documents. But named entities are generally preferred over numeric
ones because they are more human-readable and easier to remember.

Besides displaying characters that have special meanings, HTML entities are
also useful to display characters that are difficult to type using a standard
keyboard, such as foreign language characters, mathematical symbols, or
emojis. By using HTML entities, we can ensure that these characters are
displayed correctly on web pages.

Recipe 9 Intersecting HTML Tables with filter()

Task
Let’s say you have a sports app that displays statistics and scores. You have
two objects and want to find properties that exist in both objects
simultaneously. Your first object contains a list of national teams that have
won the FIFA World Cup along with the total number of wins. Your second
object includes similar information about the UEFA European Football
Championship.

You want to create an HTML table that lists the intersection of the two
objects, that is, a table of teams that have won at least one cup in both
competitions.

Solution

The first step is to create an HTML table. You can delegate this task to
JavaScript, but let’s keep it simple by having an HTML structure in place and
using JavaScript to insert information into the table:

part_1/intersecting_tables/filter_ex1.xhtml

 <table id= "national_teams" >

 <thead>

 <tr>

 <th>Country</th>

 <th>UEFA Wins</th>

 <th>FIFA Wins</th>

 </tr>

 </thead>

 <tbody></tbody>

 </table>

Now create two objects: one for FIFA champions and one for UEFA
champions, like this:

part_1/intersecting_tables/filter_ex1.js

http://media.pragprog.com/titles/fkjavascript/code/part_1/intersecting_tables/filter_ex1.xhtml
http://media.pragprog.com/titles/fkjavascript/code/part_1/intersecting_tables/filter_ex1.js

 const FIFAChamps = {

 "Brazil" : 5,

 "Germany" : 4,

 "Italy" : 4,

 "Argentina" : 2,

 "France" : 2,

 "Uruguay" : 2,

 "Spain" : 1,

 "England" : 1

 };

 const UEFAChamps = {

 "Germany" : 3,

 "Spain" : 3,

 "Italy" : 2,

 "France" : 2,

 "Russia" : 1,

 "Czech Republic" : 1,

 "Portugal" : 1,

 "Netherlands" : 1,

 "Denmark" : 1,

 "Greece" : 1

 };

To perform an intersection, obtain the keys of the first object with Object.keys()
[8] and then check which keys are present in the second object with filter():[9]

part_1/intersecting_tables/filter_ex1.js

 function getIntersection(obj1, obj2) {

 return Object.keys(obj1).filter(key => {

 return key in obj2;

 });

 }

 // This constant will hold an array containing the keys of intersection

 const intersection = getIntersection(FIFAChamps, UEFAChamps);

 // Get a reference to the body of the table

 const tbody = document.querySelector("#national_teams tbody");

 intersection.forEach(elem => {

 const row = tbody.insertRow();

http://media.pragprog.com/titles/fkjavascript/code/part_1/intersecting_tables/filter_ex1.js

 const cell1 = row.insertCell(0);

 const cell2 = row.insertCell(1);

 const cell3 = row.insertCell(2);

 cell1.textContent = elem;

 cell2.textContent = UEFAChamps[elem];

 cell3.textContent = FIFAChamps[elem];

 });

Once you get the intersection of the two objects, loop over the properties, and
each time through the loop, insert the team, UEFA wins, and FIFA wins into
the first, second, and third cell, respectively. Here, we’re using JavaScript’s
built-in methods, including insertRow() and insertCell(), to create table rows and
cells, but you can use string literals too. Here’s the result after applying some
basic CSS styling:

The table lists only countries that exist in both objects simultaneously.

Discussion
The filter() method takes a function as an argument and executes it for each
element of an array—similar to forEach() and map(). The function you supply
should be a predicate (a function that returns true or false). filter() will add an
element to the resulting array only if the return value of your predicate is true.

When using the filter() method in JavaScript, it’s important to remember that it
skips over any missing elements in arrays. For example, if you have an array
with gaps such as [0, 1, , , 4, , 6], you can take advantage of filter() to get rid of
the missing elements like this:

 const sparseArr = [0, 1, , , 4, , 6];

 sparseArr.filter(() => true); // → [0, 1, 4, 6]

Here we use an arrow function that always returns true. Since filter() skips
gaps, the new array won’t be sparse.

If your array also has undefined and null elements, you can remove them with
filter() too:

 const sparseArr = [0, 1, , null , 4, undefined , 6];

 sparseArr.filter(x => x !== undefined && x !== null); // → [0, 1, 4, 6]

In this code, we use the strict inequality operator (!==) to return true only if the
element isn’t null or undefined.

When it comes to performance optimization, you should take into account the
size of your objects and the number of times you’d need to get their
intersection. If your first object has 1000 properties and your second object
has 50, your code will run faster if you get the keys of the object with fewer
properties and then apply a filter, not the other way around.

With this in mind, let’s rewrite our intersection function:

part_1/intersecting_tables/filter_ex2.js

1: function getIntersection(obj1, obj2) {

2: const k1 = Object.keys(obj1);

3: const k2 = Object.keys(obj2);

4: const [first, next] = k1.length > k2.length ? [k2, obj1] : [k1, obj2];

5: return first.filter(key => key in next);

6: }

Notice how we used a ternary operator on the right hand of the destructuring
assignment to compare the length of objects and assign the one with fewer
properties to first (line 4). Destructuring enables us to extract values and
assign them to variables using a syntax that is similar to array literals. On the
right side of the assignment is the data to be destructured. On the left side is
the variables that will receive the data.

http://media.pragprog.com/titles/fkjavascript/code/part_1/intersecting_tables/filter_ex2.js

Our function now works faster when dealing with large arrays. But,
remember, such micro-optimization is helpful only for performance-critical
applications. In most cases, you’d be okay with the original solution in this
recipe.

Recipe 10 Generating HTML Tables from an Array of Arrays

Task
Suppose your task is to generate reports or summaries of data that are stored
in an array of arrays. For instance, you may need to create a summary of
performance metrics for a company across multiple financial quarters from an
array like this:

 const data = [

 ["Quarter", "Revenue", "Eps"],

 ["Q1 FY22", 45962, 2.71],

 ["Q2 FY22", 44845, 2.71],

 ["Q3 FY22", 46151, 2.03],

 ["Q4 FY22", 46822, 2.11],

 ["Q1 FY23", 45215, 2.64]

];

Your objective is to convert the array into an HTML table so that you can
present the data in a structured and organized format.

Solution

Use the following function:

part_1/generating_html_table_v1/html_table_v1_ex1.js

 const data = [

 ["Quarter" , "Revenue" , "Eps"],

 ["Q1 FY22" , 45962, 2.71],

 ["Q2 FY22" , 44845, 2.71],

 ["Q3 FY22" , 46151, 2.03],

 ["Q4 FY22" , 46822, 2.11],

 ["Q1 FY23" , 45215, 2.64]

];

 function createTable(data) {

 const table = document.createElement("table");

 const thead = table.createTHead();

 const tbody = table.createTBody();

http://media.pragprog.com/titles/fkjavascript/code/part_1/generating_html_table_v1/html_table_v1_ex1.js

 const headerRow = thead.insertRow();

 // Create table head

 data[0].forEach(item => {

 const th = document.createElement("th");

 th.innerText = item;

 headerRow.appendChild(th);

 });

 // Create table body

 data.slice(1).forEach(rowData => {

 const row = tbody.insertRow();

 rowData.forEach(item => {

 const cell = row.insertCell();

 cell.innerText = item;

 });

 });

 document.body.appendChild(table);

 }

 createTable(data);

The createTable() function takes an array of arrays as its argument and creates
an HTML table with the data. Here’s the output after applying some basic
styling:

Discussion
We begin by creating an HTML table element using the createElement()

method. We then create three more elements: a thead element (to hold the

table header row), a tbody element (to hold the table body rows), and a row
element (to hold the thead data).

In this recipe, we assume that the column headers for the table are contained
in the first sub-array of the data array. So, we loop through each item in the
first sub-array, create a new th element using the createElement() method, set
the innerText property of the th element to the current item, and append the th

element to the previously created header row.

After creating the header row, we then loop through each sub-array of the data
array except the first one (in other words, all the rows of data except the
header row). We use the slice() method to set aside the first sub-array. For each
row, we create a new tr element within the tbody element and loop through
each item in the rowData, creating a new td element for each item, and setting
its innerText property to the current item.

Finally, we append the entire table element (including the header and body
rows) to the body of the HTML document using the appendChild() method.
Make sure to modify this line to append the data to the element you want.

If you have data in an array that you want to display in a tabular format on a
web page, converting it to an HTML table can make it easier for users to read
and understand.

Recipe 11
Generating HTML Tables from an Array of
Objects

Task
Suppose your task is to generate reports of data that are stored in an array of
objects like the following:

 const data = [

 {quarter: "Q1 FY22", revenue: 45962, netIncome: 20820, eps: 2.71},

 {quarter: "Q2 FY22", revenue: 44845, netIncome: 20610, eps: 2.71},

 {quarter: "Q3 FY22", revenue: 46151, netIncome: 16027, eps: 2.03},

 {quarter: "Q4 FY22", revenue: 46822, netIncome: 16244, eps: 2.11},

 {quarter: "Q1 FY23", revenue: 45215, netIncome: 20256, eps: 2.64}

];

In the previous recipe, you created a table using an array of arrays. But, for
this recipe, the data is stored in an array of objects. This means that you need
to use a slightly different approach to generate a table.

Solution

Use the following function:

part_1/generating_html_table_v2/html_table_v2_ex1.js

 const data = [

 {quarter: "Q1 FY22" , revenue: 45962, netIncome: 20820, eps: 2.71},

 {quarter: "Q2 FY22" , revenue: 44845, netIncome: 20610, eps: 2.71},

 {quarter: "Q3 FY22" , revenue: 46151, netIncome: 16027, eps: 2.03},

 {quarter: "Q4 FY22" , revenue: 46822, netIncome: 16244, eps: 2.11},

 {quarter: "Q1 FY23" , revenue: 45215, netIncome: 20256, eps: 2.64}

];

 const headers = [

 "Quarter" ,

 "Revenue (in millions of US dollars)" ,

 "Net Income (in millions of US dollars)" ,

 "Earnings per Share (EPS)"

];

http://media.pragprog.com/titles/fkjavascript/code/part_1/generating_html_table_v2/html_table_v2_ex1.js

 function createTable(data, headers) {

 const table = document.createElement("table");

 const thead = table.createTHead();

 const tbody = table.createTBody();

 const headerRow = thead.insertRow();

 // Create table head

 headers.forEach(header => {

 const th = document.createElement("th");

 th.innerText = header;

 headerRow.appendChild(th);

 });

 // Create table body

 data.forEach(data => {

 const row = tbody.insertRow();

 Object.values(data).forEach(value => {

 const cell = row.insertCell();

 cell.innerText = value;

 });

 });

 document.body.appendChild(table);

 }

 createTable(data, headers);

When we call this function with the data array as the argument, it generates an
HTML table displaying the company’s financial performance data. The output
will look like the table after applying some basic styling.

Discussion

This recipe is similar to the previous one except that the array items are
objects, with each object having properties such as revenue, netIncome, and eps.
In this recipe, we also define a separate array containing the column headers
for the table that we’ll be creating.

First, we create a table header (thead) and a table body (tbody) for the table.
We then create a header row (headerRow) within the header and populate it
with the headers from the headers array.

For each header in the array, we create a th element using the createElement()

method, set its content to the header string using the innerText property, and
append it to the header row using the appendChild() method.

After creating the header row, we loop through each object in the data array
and create a new row in the table body for each object. Within each row, we
loop through each property of the object and create a new cell in the row for
each property value.

Finally, we append the table element to the HTML body element. You should
modify this line to append the data to the element you want.

Recipe 12
Displaying Tabular Data in Console with
console.table()

Task
Suppose you have been performing additions and subtractions on an array, but
you are encountering some problems. You want to inspect the contents of the
array at a particular line in your script so you can pinpoint the problem.

You need a way to quickly print the array’s content to the console.

Solution

Use the console.table() method:

part_1/displaying_tabular_data/displaying_tabular_data_ex1.js

 const data = [

 {quarter: "Q1 FY22" , revenue: 45962, netIncome: 20820, eps: 2.71},

 {quarter: "Q2 FY22" , revenue: 44845, netIncome: 20610, eps: 2.71},

 {quarter: "Q3 FY22" , revenue: 46151, netIncome: 16027, eps: 2.03},

 {quarter: "Q4 FY22" , revenue: 46822, netIncome: 16244, eps: 2.11},

 {quarter: "Q1 FY23" , revenue: 45215, netIncome: 20256, eps: 2.64}

];

 console.table(data);

The console.table() method outputs an array in a readable format for human
interpretation on the console:

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_1/displaying_tabular_data/displaying_tabular_data_ex1.js

The console.table() method deserves more recognition from JavaScript
developers. While many developers use a for loop to log an array’s items to
the console, JavaScript already has the console.table() method that provides a
more straightforward approach to achieve the same result.

The table’s initial column will be designated as (index). If the data is in the
form of an array, its values will correspond to the array indices. On the other
hand, if the data is in the form of an object, its values will align with the
property names as shown in the table.

part_1/displaying_tabular_data/displaying_tabular_data_ex2.js

 const data = {

 "Q1 FY22" : {revenue: 45962, netIncome: 20820, eps: 2.71},

 "Q2 FY22" : {revenue: 44845, netIncome: 20610, eps: 2.71},

 "Q3 FY22" : {revenue: 46151, netIncome: 16027, eps: 2.03},

 "Q4 FY22" : {revenue: 46822, netIncome: 16244, eps: 2.11},

 "Q1 FY23" : {revenue: 45215, netIncome: 20256, eps: 2.64}

 };

 console.table(data);

Here, the quarter value is used as the table heading, and the object with
revenue, netIncome, and eps properties is used as the row value.

The console.table() method also takes one additional optional parameter that
lets you restrict the columns displayed. For example, if you want to only
display the the netIncome column, you can use this:

part_1/displaying_tabular_data/displaying_tabular_data_ex3.js

 const data = {

http://media.pragprog.com/titles/fkjavascript/code/part_1/displaying_tabular_data/displaying_tabular_data_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/displaying_tabular_data/displaying_tabular_data_ex3.js

 "Q1 FY22" : {revenue: 45962, netIncome: 20820, eps: 2.71},

 "Q2 FY22" : {revenue: 44845, netIncome: 20610, eps: 2.71},

 "Q3 FY22" : {revenue: 46151, netIncome: 16027, eps: 2.03},

 "Q4 FY22" : {revenue: 46822, netIncome: 16244, eps: 2.11},

 "Q1 FY23" : {revenue: 45215, netIncome: 20256, eps: 2.64}

 };

 console.table(data, "netIncome");

The console.table() method enables you to generate a clear and concise plaintext
representation of tabular data. The benefit of using console.table() becomes
particularly apparent when dealing with multidimensional arrays (that is,
arrays that comprise other arrays). Remember to take advantage of it when
debugging arrays and objects.

Recipe 13 Formatting Dates with Intl.DateTimeFormat()

Task
Suppose you work as a programmer for an online shop that delivers products
after two days from the date of purchase. Your task is to create a JavaScript
code that will notify the user about the exact day of the week when they can
expect to receive their ordered goods.

For instance, if a customer purchases a product on a Saturday, your code
should inform them that the delivery will take place on the following Monday.

Solution

This task involves three steps:

Getting the current date
Adding two days to the current date
Converting that date to the day of the week

We can perform the first two steps with a function like this:

 function addDaysToToday(days) {

 const d = new Date();

 d.setDate(d.getDate() + days);

 return d;

 }

 const dayAfterTomorrow = addDaysToToday(2);

 console.log(dayAfterTomorrow);

 // → Wed Apr 12 2023 11:41:09 GMT+0400

First, use the Date() constructor to get the current date. Next, retrieve the day
of the month for today by calling the getDate() method of the date object. Add
two to this value to get the day after tomorrow’s date. Then, use the setDate()

method to update the day of the month, and the date object will automatically
adjust the month and year if needed.

After performing the preceding steps, you’ll have a string that contains the
date after tomorrow, along with the timestamp and timezone. But you need
only the day and the month and don’t want to include the timestamp or
timezone. So, use the Intl.DateTimeFormat() constructor to format the date:

 function getFormattedDate(locale, date) {

 const formatter = new Intl.DateTimeFormat(locale, {dateStyle: "full" });

 return formatter.format(date);

 }

 const formattedDate = getFormattedDate("en-US" , dayAfterTomorrow)

 console.log(formattedDate);

 // → Wednesday, April 12, 2023

Intl.DateTimeFormat() accepts an object as its second argument that specifies
how the date should be formatted. In this case, you want to include the day of
the week in the date, so set the dateStyle to full.

Here’s how the final code should look like:

part_1/formatting_dates/adding_days_ex1.js

 function addDaysToToday(days) {

 const d = new Date();

 d.setDate(d.getDate() + days);

 return d;

 }

 function getFormattedDate(locale, date) {

 const formatter = new Intl.DateTimeFormat(locale, {dateStyle: "full" });

 return formatter.format(date);

 }

 const dayAfterTomorrow = addDaysToToday(2);

 const msg = "We'll deliver your purchase on " ;

 console.log(msg + getFormattedDate("en-US" , dayAfterTomorrow));

http://media.pragprog.com/titles/fkjavascript/code/part_1/formatting_dates/adding_days_ex1.js

 // → We'll deliver your purchase on Wednesday, April 12, 2023

This code generates a message containing the expected delivery date of a
purchase based on the current date and a specified locale.

Discussion
To ensure that the date format in your application is suitable for the country
where the products are being shipped, you should pass an appropriate BCP 47
language tag to Intl.DateTimeFormat().[10]

A language tag is composed of one or more subtags, which identify the
language, script, region, and other language-related information. For example,
“en-GB” is a language tag that represents British English, where “en”
indicates the language and “GB” indicates the region. The BCP-47 standard is
widely used in software development to ensure consistent language support
across different platforms.

In this solution, we’ve used the “en-US” language to indicate American
English. But, if you’re delivering a product to France, for example, you should
use the “fr-FR” tag to indicate the French language:

part_1/formatting_dates/adding_days_ex2.js

 function addDaysToToday(days) {

 const d = new Date();

 d.setDate(d.getDate() + days);

 return d;

 }

 function getFormattedDate(locale, date) {

 const formatter = new Intl.DateTimeFormat(locale, {dateStyle: "full" });

 return formatter.format(date);

 }

 const dayAfterTomorrow = addDaysToToday(2);

 const msg = "Nous livrerons votre achat " ;

 console.log(msg + getFormattedDate("fr-FR" , dayAfterTomorrow));

 // → Nous livrerons votre achat mercredi 12 avril 2023

http://media.pragprog.com/titles/fkjavascript/code/part_1/formatting_dates/adding_days_ex2.js

Converting a String to a Date Object
If you want to scrape a date from text and turn it into a Date

object, you can use the Date() constructor.[11]

Consider using the Intl.DateTimeFormat() constructor when working with date
and time. Intl.DateTimeFormat() lets you get date formatting for different
languages, set the style for date and time, define a numbering system for
languages such as Thai and Arabic, and more. For a complete list of available
options, visit MDN Web Docs.[12]

Recipe 14 Formatting Currencies with Intl.NumberFormat()

Task
Imagine you run an online shop that delivers products to various countries.
You want to display the prices of the items in the currency of the user’s
location. So, for example, if a visitor from Canada chooses to view a monitor
priced at $499 in U.S. dollars, you want to automatically 1) convert the price
from USD to CAD and 2) format the currency according to CAD.

Solution

First, you need to obtain the exchange rate between the U.S. dollar (USD) and
the Canadian dollar (CAD). Since the rate can vary constantly, you should use
an online API that gives you real-time data for the currencies you want to
convert. These services usually require a paid subscription.

In this recipe, we’ll use the free service available at exchangerate.host, which
updates the exchange rates only once a day. You can send a fetch request to
the API by specifying the currencies you want to convert as parameters.

Once the fetch is successful, read and parse the data using the json() method,
like this:

 async function getExchangeRate(from , to) {

 const api = ̀https://api.exchangerate.host/convert?from= ${ from } &to= ${to} ̀ ;

 let response = await fetch(api);

 response = await response.json();

 return response.info.rate;

 }

 const exchangeRate = getExchangeRate("USD" , "CAD");

Now that you have an exchange rate for your target currency, you need a way
to format it. Pass the ISO code of the currency you want to convert to the

Intl.NumberFormat() constructor as an option. This will return an object that has
a format() method which you can use to format any amount:

 function getFormattedCurrency(currency, amount) {

 return new Intl.NumberFormat("en-US" , {

 style: "currency" ,

 currency: currency,

 }).format(amount);

 }

 getFormattedCurrency("CAD" , exchangeRate * 499)

After some cleanup, your final code should look like this:

part_1/formatting_currencies/NumberFormat_ex1.js

 const USDprice = 499;

 async function getExchangeRate(from , to) {

 const api = ̀https://api.exchangerate.host/convert?from= ${ from } &to= ${to} ̀ ;

 let response = await fetch(api);

 response = await response.json();

 return response.info.rate;

 }

 function getFormattedCurrency(currency, amount) {

 return new Intl.NumberFormat("en-CA" , {

 style: "currency" ,

 currency: currency,

 }).format(amount);

 }

 getExchangeRate("USD" , "CAD").then(exchangeRate => {

 console.log(getFormattedCurrency("CAD" , exchangeRate * USDprice));

 });

 // Logs something like:

 // → CA$679.31

TypeError

http://media.pragprog.com/titles/fkjavascript/code/part_1/formatting_currencies/NumberFormat_ex1.js

TypeError
If you’re getting an error like “TypeError: Failed to fetch,” it’s
likely because you’re running the code in your browser’s console.
Unless you’re on https://exchangerate.host/, your browser’s
security mechanism will block the request. Try executing the code
in an HTML document or the Node environment (requires Node
v18).

Discussion
As with every other method in the Internationalization API, Intl.NumberFormat()

takes a BCP 47 language tag as its first argument.[13] Here, the language tag
tells the method what locale to use when formatting currencies, which is
useful when you want to offer your website in multiple languages.

For example, if you pass “ar” as a language tag, the resulting number will be
in the Arabic alphabet:

part_1/formatting_currencies/NumberFormat_ex2.js

 function getFormattedCurrency(currency, amount) {

 return new Intl.NumberFormat("ar" , {

 style: "currency" ,

 currency: currency,

 }).format(amount);

 }

You can further refine how the currency is displayed by setting options in the
second argument. A useful option is signDisplay which lets you set when to
display the sign for the number.

By default, the function displays a sign for negative numbers only (including
negative zero, which is a negative number that has been rounded to zero). If
you want to always display the sign, such as when indicating a change in
balance, you should use “always”:

http://media.pragprog.com/titles/fkjavascript/code/part_1/formatting_currencies/NumberFormat_ex2.js

part_1/formatting_currencies/NumberFormat_ex3.js

 function getFormattedCurrency(currency, amount) {

 return new Intl.NumberFormat("en" , {

 style: "currency" ,

 currency: currency,

 signDisplay: "always"

 }).format(amount);

 }

 getFormattedCurrency("USD" , 499); // → "+$499.00"

The Intl.NumberFormat() constructor makes it easy to deal with numbers in
JavaScript. Remember to take advantage of it whenever you need to format
currencies.

http://media.pragprog.com/titles/fkjavascript/code/part_1/formatting_currencies/NumberFormat_ex3.js

Recipe 15
Adding Thousand Separators to Numbers with
Intl.NumberFormat()

Task
Suppose you aim to add a thousands separator to numbers consisting of four
or more digits. Perhaps you are retrieving financial data from a database to use
in an article for a finance publication that is published in multiple languages.

Thousand separators are used in many different languages and countries to
make large numbers easier to read. However, the character used as the
thousand separator can vary across languages and cultures.

For example, let’s say you have the following string:

 1000000000

And you’d like to format it as:

 1,000,000,000

You need to write code to add thousand separators programmatically to the
number.

Solution

Use the Intl.NumberFormat() constructor:

part_1/adding_thousand_separators/adding_thousand_separators_ex1.js

 function addThousandSeparator(num, locale) {

 const numFormat = new Intl.NumberFormat(locale);

 return numFormat.format(num);

 }

 addThousandSeparator(1000000000, "en");

 // → "1,000,000,000"

http://media.pragprog.com/titles/fkjavascript/code/part_1/adding_thousand_separators/adding_thousand_separators_ex1.js

In this code, new Intl.NumberFormat() creates a NumberFormat object. Then, the
format() method is called on the object, passing the “en” argument to specify
the English language. The function returns a formatted string with thousand
separators added based on the locale.

Discussion
Including thousand separators in numerical values is an easy way to enhance
the clarity and visual appeal of your data. But, it’s crucial to verify the type of
the content before proceeding.

The comma (,) is commonly used as a thousand separator in English-speaking
countries and many other countries. For example, 10,000,000 represents ten
million. However, in many European countries, such as Germany, Greece, and
Italy, the period (.) is used as the thousand separator and the comma (,) is used
as the decimal separator. So, to represent ten million, they use 10.000.000.

In some countries, other symbols or characters are used as the thousand
separator. For example, the Indian numbering system uses a comma-like
symbol called a “separator” to separate groups of digits. While the Chinese
and Japanese numeral systems use different characters to represent thousands,
millions, and other large numbers.

Generally, numbers that are less than 1000 don’t need separators. Also,
numbers in scientific notation, postal codes, and phones do not require
separators for clarity. As a result, documents and data that consist of such
numbers may not be suitable for automatic comma inclusion.

The solution in this recipe can be adapted to add thousand separators to
numbers in various numeral systems. For instance, to include thousand
separators following the German language conventions, you can pass “de-DE”
(a BCP-47 language tag) to the NumberFormat() constructor, as shown below:

part_1/adding_thousand_separators/adding_thousand_separators_ex2.js

 function addThousandSeparator(num, locale) {

http://media.pragprog.com/titles/fkjavascript/code/part_1/adding_thousand_separators/adding_thousand_separators_ex2.js

 const numFormat = new Intl.NumberFormat(locale);

 return numFormat.format(num);

 }

 addThousandSeparator(1000000000, "de-DE");

 // → "1.000.000.000"

Remember, the thousand separator character is not universal and may differ
across countries and written languages. Also, the specific formatting
conventions may vary depending on the context, such as in scientific notation,
where commas are generally not used. To extract a number with thousand
separators from a string, see Recipe 69, Matching Formatted Numbers with
Thousand Separators.

Recipe 16
Creating Language-Sensitive Lists with
Intl.ListFormat()

Task
Let’s say you have a gaming app and want to display the top three players of
the week based on their scores. Because your app is available in multiple
languages, you need a function that can format the list automatically based on
the user’s language preference. It’s fairly common to have a series of items
like this stored in an array that you need to format as a sentence in different
languages.

Solution

Use the Intl.ListFormat() constructor:

part_1/creating_lists/ListFormat_ex1.js

1: const topPlayers = ["Kraken" , "Boss99" , "Ninja"];

- const msg = "Congratulations to this week's winners: " ;

-

- function getFormattedList(lang, arr) {

5: const formatter = new Intl.ListFormat(lang, {type: "conjunction" });

- return formatter.format(arr);

- }

-

- console.log(msg + getFormattedList("en" , topPlayers));

10:

- // logs:

- // → Congratulations to this week's winners: Kraken, Boss99, and Ninja

This function returns a formatted string representation of the array items based
on the specified language.

Browser Compatibility

http://media.pragprog.com/titles/fkjavascript/code/part_1/creating_lists/ListFormat_ex1.js

Browser Compatibility
Support for ListFormat was added in Safari 14.1 on macOS and
Safari 14.5 on iOS.[14] So, although all modern browsers support
ListFormat, users who haven’t updated their browsers for a while
won’t be able to run your app. For maximum compatibility, use
this API with a polyfill,[15] or on the server side (available since
Node version 13.0.0).

Discussion
The ECMAScript Internationalization API enables us to develop applications
that can adapt to different languages. To access this API, we use the Intl
namespace. In the example, we used the Intl.ListFormat() constructor of the API,
which provides a straightforward way to format lists in a way that is culturally
appropriate.

We begin by creating a function called getFormattedList() that takes two
arguments: lang and arr. lang is a BCP 47 language tag that represents the
language code of the locale to be used for formatting the list, and arr is an
array of items to be formatted.[16]

Inside the function, we create an instance of Intl.ListFormat, which takes two
arguments: lang and an options object. In this case, we want to format the list
for the English language, so we pass “en” as the language tag. The options
object specifies the type of conjunction to be used to join the items in the list.
We specify that the conjunction “and” should be used to join the items in the
list by setting {type: "conjunction"}.

Finally, we call the formatter.format(arr) method on the Intl.ListFormat object with
the arr argument passed in. This method returns a formatted string
representation of the array items based on the specified language and
conjunction type that we set earlier.

To format the list in a different language, we can simply pass the relevant
language tag to the function. For instance, if we want to format the list in
Spanish, we can call the function with the argument “es.”

Here is an example output of the function when the language argument is set
to “es”:

part_1/creating_lists/ListFormat_ex2.js

 const topPlayers = ["Kraken" , "Boss99" , "Ninja"];

 const msg = "Felicidades a los ganadores de esta semana: " ;

 function getFormattedList(lang, arr) {

 const formatter = new Intl.ListFormat(lang, {type: "conjunction" });

 return formatter.format(arr);

 }

 console.log(msg + getFormattedList("es" , topPlayers));

 // logs:

 // → Felicidades a los ganadores de esta semana: Kraken, Boss99 y Ninja

The Intl.ListFormat() constructor comes in handy even if we want to format lists
only in English because it eliminates possible grammatical errors. For
example, if we have only two items in an array, it won’t add a comma before
“and”:

part_1/creating_lists/ListFormat_ex3.js

 const topPlayers = ["Kraken" , "Boss99"];

 const msg = "Congratulations to this week's winners: " ;

 function getFormattedList(lang, arr) {

 const formatter = new Intl.ListFormat(lang, {type: "conjunction" });

 return formatter.format(arr);

 }

 console.log(msg + getFormattedList("en" , topPlayers));

 // logs:

 // → Congratulations to this week's winners: Kraken and Boss99

http://media.pragprog.com/titles/fkjavascript/code/part_1/creating_lists/ListFormat_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/creating_lists/ListFormat_ex3.js

The second argument of the ListFormat method is optional and lets us set
options such as the style and type of grouping. The default value of type is a
conjunction, but if we want to do an “or”-based grouping of the list items, we
can use disjunction.

For example, perhaps we want to ask players which honorary title they prefer:
Legendary, Mighty, or Bold. So then the app will append that title to their
name like “Faraz the Mighty”:

part_1/creating_lists/ListFormat_ex4.js

 const titles = ["Legendary" , "Mighty" , "Bold"];

 const formatter = new Intl.ListFormat("en" , {type: "disjunction" });

 console.log("Which honorary title do you prefer? " +

 formatter.format(titles));

 // logs:

 // → Which honorary title do you prefer? Legendary, Mighty, or Bold

There’s also an option that lets us group the list items as a unit:

part_1/creating_lists/ListFormat_ex5.js

 const titles = ["Legendary" , "Mighty" , "Bold"];

 const formatter = new Intl.ListFormat("en" , {type: "unit" });

 console.log(formatter.format(titles));

 // logs:

 // → Legendary, Mighty, Bold

This example sets the value of type as unit, so it formats the list with no “and”
or “or.”

Whenever you want to list a series of items in a sentence, consider using the
ListFormat constructor, as it properly takes care of punctuation in English or
other languages.

http://media.pragprog.com/titles/fkjavascript/code/part_1/creating_lists/ListFormat_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/creating_lists/ListFormat_ex5.js

Recipe 17 Determining Letter Case with charAt()

Task
Consider a scenario where you have a form that requests the user to enter their
nickname. Some users may prefer to enter their nickname in lowercase letters,
so your app shouldn’t automatically capitalize the nickname. But perhaps
some users are casual about typing and intend for their name to be capitalized.

In such cases, you want to notify the user that their nickname will be stored
and displayed exactly as entered. So, your app needs to be capable of
identifying the letter case of the first character of the nickname.

Solution

Use the strict inequality operator (!==) to compare the first character (index 0)
of the string to its lowercase version. If they are not equal, that means the
string starts with a capital letter:

part_1/determining_letter_case/charAt_ex1.js

 function isCapital(str) {

 return str.charAt(0) !== str.charAt(0).toLowerCase();

 }

 isCapital("Dave"); // → true

 isCapital("dave"); // → false

Success! You are now able to determine the letter case of the first character of
a word.

Discussion
The function in this recipe returns true if the first character of the input string
is in uppercase and false otherwise. To get the first letter of the input string, we
use the charAt() method. This method takes an index number as an argument

http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_letter_case/charAt_ex1.js

and returns the character at the given position in a string. For instance,
"Hello".charAt(1) returns the second character of “Hello” which is “e.”

You may be wondering why not use the strict equality operator (===) to
compare the character with its uppercase version.

To understand why, let’s rewrite the example with ===:

part_1/determining_letter_case/charAt_ex2.js

 // Don’t use this code

This version of the function will return true even if the input string starts with
a number, such as “1990Dave”. toUpperCase() has no effect on the characters in
the input string that do not have an uppercase version. So, in this example,
we’re comparing the equality of “1” with the same string “1” after converting
it to uppercase. As a result, the comparison returns true.

The function will also return true for languages like Hebrew and Arabic,
which don’t have uppercase and lowercase letters.

There’s a caveat when using charAt() with specific languages that have
supplementary characters, such as Chinese. To be able to represent these
characters, JavaScript has to allocate more “spaces” in a string, which causes
charAt() to fail:

part_1/determining_letter_case/charAt_ex3.js

http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_letter_case/charAt_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/determining_letter_case/charAt_ex3.js

 // Notice how the return value of charAt() isn’t

 // recognizable at index 0 and index 1

JavaScript uses UTF-16 code points to represent characters, and most
characters require one code point. For example, the character “F” is assigned a
code point of U+0046.

However, sometimes a character is made of more than one code point. In this
case, the Chinese character consists of two Unicode code points. The first one
has a value of U+d846, while the second one has a value of U+df10. You can
confirm that by preceding each code with a \u and putting both pairs in a
string like this:

Neither pair corresponds to a printable character on its own, so the charAt()

method cannot return a valid character at index 0 or index 1. The fourth
console.log() method attempts to get the character at index 2, but since there’s
no character at that position, it returns an empty string.

Use the charAt() method whenever you need to get a character at a specific
index, but be wary of languages with supplementary characters as they can
break your code. Fortunately, JavaScript has another method to help you
handle supplementary characters, which you’ll learn about in the next recipe.
To learn more about Unicode, see Appendix 1, What Is Unicode?.

Recipe 18
Counting Unicode Characters with
Intl.Segmenter()

Task
Let’s say you have an app that requires user registration and includes a text
input for the user’s bio. The bio may be in any language and include emojis.
You want to limit the length of the bio to precisely 120 characters. So, you
need to calculate the length of the string. Easy! Use the length() method to get
the number of characters:

This is probably not the result you expected. Strings in JavaScript are based
on UTF-16, which represents characters using one or two 16-bit integers.
Some characters, such as the Chinese character for kǒu cái (eloquence) and
the cat emoji, require two 16-bit units (surrogate pairs) to encode. The length()

method gives you the number of UTF-16 code units in a string, not the
number of characters.

Supplementary Characters
Characters that are made of a pair of 16-bit surrogate code units
are known as supplementary characters.

Solution

Use the Intl.Segmenter() constructor:

part_1/counting_characters/char_segmenter_ex2.js

 function getLength(str) {

 return [... new Intl.Segmenter().segment(str)].length;

 }

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_characters/char_segmenter_ex2.js

This function returns the number of Unicode segments in the input string. In
other words, it determines the length of the given string based on the number
of Unicode characters, rather than the number of code units.

Browser Compatibility
Segmenter() is a part of the Internationalization API. While most
browsers have supported the Internationalization API features for
years, Segmenter() is a relatively newer feature that remains
unsupported in Firefox (at the time of this writing).[17]

There are some Unicode-aware libraries like Graphemer that let
you split JavaScript strings into separate letters,[18] but their results
aren’t perfectly consistent with those from Segmenter. There’s no
perfect way to emulate the behavior of Segmenter() in browsers,
because doing so requires lots of language-specific rules.

Until browser support is more solid, you can run Intl.Segmenter()

on the server side (supported since Node 16).

Discussion
The Intl.Segmenter() constructor allows us to segment a string according to a
specified locale and granularity. In this case, we are using the default
implementation, so we call the method with no arguments. Because
Intl.Segmenter() is a constructor, we need to call it with the new keyword.

The returned object has a segment() method, which accepts a single-string
argument. The method segments the string, as its name suggests, meaning that
it splits the string into user-perceived character boundaries. Because the
returned value is an iterator, we can use the spread syntax (...) to expand the
object into its elements. The spread syntax consists of three dots in a row, and
lets us quickly create an array from the iterator.

Finally, we calculate the length of the array to get the number of Unicode
characters in the string. If you find the code to be too cryptic, you can use this
version instead:

part_1/counting_characters/char_segmenter_ex3.js

 function getLength(str) {

 // Create a an instance of segmenter

 const Segmenter = new Intl.Segmenter();

 // Segment the string

 const segment = Segmenter.segment(str);

 // Convert it into an array

 const arr = Array. from (segment);

 // Return the number of characters

 return arr.length;

 }

This version of the code does the exact same operations as the first. You’ll
probably come across code that uses other techniques to count the number of
characters in a string. One technique is to convert the string into an array of
characters and then count the number of elements in the array:

This trick works because strings since ES2015 have built-in iterators that are
Unicode-aware and automatically treat a supplementary character as a single
value. However, counting the number of characters in a string is not always as

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_characters/char_segmenter_ex3.js

simple. In some cases, this technique could give you an inaccurate result. For
example:

The family emoji above is known as an Emoji ZWJ Sequence that’s made of
three independent emojis:

These emojis are shown in their connected forms when a zero-width joiner
(ZWJ) is placed between them. ZWJ is a non-printing character that causes
characters or emojis to be shown in their connected forms on supported
platforms.

In the example above, the length of the emoji is 5 because we’re counting
every ZWJ too. The following code snippet should make this clearer:

The empty strings in the result represent ZWJ characters. Since ZWJs are non-
printable, they are displayed as empty strings.

Another issue is that some characters look the same but have different code
points, and thus are not equal. Consider the following code:

The character assigned to str1 may look exactly the same as the character
assigned to str2, but in reality, they’re different characters. The character in the

first string has a code point of U+00E9 (LATIN SMALL LETTER E WITH
ACUTE), while the second character consists of two separate code points,
including U+0065 (LATIN SMALL LETTER E) and U+0301 (COMBINING
ACUTE ACCENT):

 console.log("\u00E9"); // → é

 console.log("\u0065\u0301"); // → é

This explains why the length of the second string is two. Fortunately, the
Internationalization API is smart enough to count such characters as a single
character. Compare:

Recall from the previous recipe that charAt() cannot handle supplementary
characters. Let’s take advantage of Intl.Segmenter() to write a function that
remedies this shortcoming:

part_1/counting_characters/char_segmenter_ex4.js

 // charAt() alternative

This function is very similar to our first function in this recipe, except that it
uses [index]["segment"] rather than .length. The expression [index] gets us the
character wrapped in an object, and ["segment"] refers to the property of the
object that holds the character.

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_characters/char_segmenter_ex4.js

Use the Intl.Segmenter() constructor whenever you want to get the length of a
string that contains Unicode characters. But counting characters isn’t the only
thing that you can do with Intl.Segmenter(). In the next recipe, we’ll look at
using the API to count the number of words in a string.

Recipe 19 Counting Words in a String with Intl.Segmenter()

Task
Suppose you have a weblog that allows users to submit articles. You have a
requirement that each article should have a minimum word count of 500. You
want to create a function that gives feedback to users about their article’s word
count. To achieve this, your application needs to determine the number of
words in a given text string.

One crude solution to this problem is to split the text string by spaces and
count the resulting segments. However, this approach may not work correctly
in cases where there are multiple consecutive spaces between words, or when
the article is written in a language that doesn’t use spaces to separate words,
such as Korean or Japanese.

You need a solution that can accurately count the number of words in a text,
regardless of the language used.

Solution

Call the Intl.Segmenter() constructor with the granularity option set to word:

part_1/counting_words/word_segmenter_ex1.js

 const str = "White, red, and blue." ;

 function countWords(str, lang) {

 const segments = [... new Intl.Segmenter(lang, {granularity: "word" })

 .segment(str)];

 return segments.filter(item => item.isWordLike === true).length;

 }

 countWords(str, "en"); // → 4

Success! The countWords() function counts the number of words in str based on
a specified language (lang).

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_words/word_segmenter_ex1.js

Browser Compatibility
At the time of this writing, Firefox has not implemented
Intl.Segmenter() yet.[19] Until browser support is more solid, you
can run Intl.Segmenter() on the server side with Node 16 or higher.

Discussion
In the previous recipe, we used the default implementation of Intl.Segmenter(),
which splits a string at grapheme cluster (user-perceived character)
boundaries. This time, we’re setting the granularity to word so that the split
occurs at word boundaries.

The first argument of Intl.Segmenter() determines the locale, which must be a
BCP 47 language tag.[20] In this case, we want to split English words, so we
pass “en.” Once we get the segments of the string, we should filter those that
aren’t words. Fortunately, the API makes it easy for us by providing the
isWordLike property. The filter effectively removes any non-word segments
(such as punctuation or numbers).

Finally, we return the length of the filtered segments array, which represents
the total number of word segments in the original string. Now, if we want to
count the words in another language, all we need to do is pass the
corresponding language tag to the countWords() function. For instance, the
following example counts the words in Japanese:

part_1/counting_words/word_segmenter_ex2.js

 const str = "アジア・東アジアの中でも東方にあります" ;

 function countWords(str, lang) {

 const segments = [... new Intl.Segmenter(lang, {granularity: "word" })

 .segment(str)];

 return segments.filter(item => item.isWordLike === true).length;

 }

 countWords(str, "jp"); // → 8

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_words/word_segmenter_ex2.js

Even though the Japanese language has no whitespace between words, the
function is able to distinguish word boundaries.

If you search online for a JavaScript solution to count words, you’ll surely
come across codes like this:

 return str.split(" ").length;

This code returns an array of words split by a single space character and
counts its length. But if your string has double spaces or trailing spaces, the
result would be wrong:

 const str = "White, red, and blue. " ;

 str.split(" ").length; // → 5

Of course, you can fix this problem by filtering the array like this:

 const str = "White, red, and blue. " ;

 function countWords(str) {

 return str

 .split(" ")

 .filter(a => { return a != "" })

 .length;

 }

 countWords(str); // → 4

But this solution would work only for languages that use spaces between
words. The beauty of using Intl.Segmenter() is its ability to detect word
boundaries in different languages.

Recipe 20
Counting the Number of a Specific Word with
split()

Task
Suppose you want to add search functionality to your application that provides
information on how many times a word has appeared in a text. You can use
the includes() method to determine whether the word exists within the string.
But it doesn’t tell you the frequency of the word’s appearance.

You want to create a function that counts the number of a specified word (in
this case, “cougar”) and returns the total number it finds.

Solution

Divide the string into an array of substrings with the split() method, count the
number of items in the array by reading its length property, and return the
result:

part_1/counting_a_specific_word/split_ex1.js

 const str = ̀Cougar is an adaptable, generalist species, occurring in most

 American habitat types. Secretive and largely solitary by nature, the cougar

 is properly considered both nocturnal and crepuscular. Primary food sources

 are ungulates, particularly deer, but cougars also hunt smaller prey such as

 rodents.` ;

 function countWord(str, word, caseSensitivity) {

 if (caseSensitivity) {

 return str.split(word).length - 1;

 } else {

 return str.toLowerCase().split(word).length - 1;

 }

 }

 console.log(countWord(str, "cougar" , true)); // → 2

 console.log(countWord(str, "cougar" , false)); // → 3

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_a_specific_word/split_ex1.js

The countWord() function returns the total number of occurrences of the word in
the str string.

Discussion
The countWord() function accepts three arguments:

str: A string containing the text to search for a word

word: A string representing the word to count in the text

caseSensitivity: A Boolean value indicating whether the search should be
case insensitive

Inside the function, we check the value of caseSensitivity. If it has a value of
false, we first convert the string to lowercase with the toLowerCase() method.
Then we split the str input string at each occurrence of word and return the
number of resulting substrings, which is equal to the number of times word

appears in str.

Notice the subtraction at the end of the statement. If we pass a string having
one instance of “cougar” to split(), it returns an array with two items. The
subtraction is necessary to offset one item and get the correct count:

part_1/counting_a_specific_word/split_ex2.js

 const str = "The word cougar is borrowed from the Portuguese çuçuarana." ;

 const word = "cougar" ;

 str.split(word);

 // → ["The word ", " is borrowed from the Portuguese çuçuarana."]

split() is one of those versatile JavaScript tools that come in handy in so many
different situations. In this recipe, we incorporated split() in a function to count
the number of occurrences of a specific word. But as you’ve seen in recipes
like Recipe 3, Matching the Beginning or End of a String with startsWith()

http://media.pragprog.com/titles/fkjavascript/code/part_1/counting_a_specific_word/split_ex2.js

and endsWith() and Recipe 4, Extracting Lists from Text with slice(), you can
take advantage of split() to solve other text-processing problems as well.

Recipe 21
Equalizing Incompatible Characters with
normalize()

Task
Imagine having a cooking application, and you want to add a feature to sort
recipes based on the cooking method. The code you developed performs well
in sorting recipes for methods like steaming and grilling. However, when it
comes to sautéing, the code fails to recognize certain recipes.

After investigating the problem, you realize that the code sometimes fails to
match the word “sautéing” even though the characters appear to be the same:

part_1/equalizing_characters/normalize_ex1.js

 // Notice the length of the strings

“é” in method has a code point of U+00E9, while “é” in keyword consists of
two code points: U+0065 and U+0301. As a result, the strict equality operator
(===) considers them unequal.

The difference in the number of code points isn’t the only reason why your
code may fail. Certain characters have the same length but are encoded using
two different code points, which can also cause issues with your code.

For instance, the character “Å” can be encoded either as U+212B
ANGSTROM SIGN or as U+00C5 LATIN CAPITAL LETTER A WITH
RING ABOVE. These two characters aren’t equal in JavaScript unless you
normalize them.

http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex1.js

Solution
Use the normalize() method to convert the strings to a normalized form before
comparing them:

part_1/equalizing_characters/normalize_ex2.js

 // Solution

This function enables us to determine if two strings are equal, taking into
account any differences in their Unicode representation.

Discussion
Characters that can be represented more than one way make text processing
more difficult. Fortunately, the Unicode standard provides a text normalization
procedure that converts strings into forms that can be compared directly for
identity.

Inside the areEqual() function, we use the normalize() method to convert both
strings to a normalized form using the Normalization Form Canonical
Composition (NFC) algorithm. This algorithm ensures that any Unicode
characters with multiple code points are represented in their composed form.

We can pass three other arguments to normalize() which we’ll look at shortly.
The form to use depends on your program requirements, but NFC is usually a
better choice for general text because it’s more compatible with characters
converted from legacy encodings.

Unless you’re one of those poor souls who have to support IE11, you don’t
need a polyfill here. Happily, all modern browsers support normalize().[21] After

http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex2.js

the normalization, we use the === operator to compare the two strings and
return true if they are equal.

We can normalize a string either based on canonical equivalence or based on
compatibility. The argument we pass to normalize() determines the form of
Unicode normalization:

Normalization Form D (NFD): Canonical Decomposition

Normalization Form C (NFC): Canonical Decomposition, followed by
Canonical Composition

Normalization Form KD (NFKD): Compatibility Decomposition

Normalization Form KC (NFKC): Compatibility Decomposition,
followed by Canonical Composition

Two characters are canonically equivalent when they have different code
points but are rendered in the same way, just like “é” in our example. When
we say NFC performs canonical composition, that means it merges the code
points of the character into a single code point, so “é” consisting of U+0065
and U+0301 becomes “é” made of U+00E9. Canonical decomposition is the
opposite process.

Now, if two characters have different appearances and code points but have
the same meaning, they are classified as compatibly equivalent. Take a look at
the following table for the two forms of equivalent sequences:

When we normalize a string, we’re telling the program to select one of these
equivalent encodings so that the characters are either all composed or all
decomposed. Notice how the arrow on some cells points only to the right.
That means we can convert a character to its compatibility decomposition
form but not the reverse. So, we should be careful when using this type of
conversion: if we lose access to the source text, the original form of characters
is lost forever because there’s no function to revert your text back to its
composed form.

Consider the following code:

part_1/equalizing_characters/normalize_ex3.js

 const str1 = "\u00E9" ; // é

 const str2 = "\u0065\u0301" ; // é

 console.log(str1 === str2); // → false

 // normalize str1

 const str1norm = str1.normalize("NFD"); // \u0065\u0301

http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex3.js

 console.log(str1norm === str2); // → true

In this code, we’re replacing any canonical composition in str1 with its
decomposed forms. If we pass NFC to normalize(), the method does the
opposite:

part_1/equalizing_characters/normalize_ex4.js

 const str1 = "\u00E9" ; // é

 const str2 = "\u0065\u0301" ; // é

 // normalize str2

 const str2norm = str2.normalize("NFC"); // \u00E9

 console.log(str2norm === str1); // → true

The Default Parameter
If you pass no argument to normalize(), it will use NFC.

There are two forms of compatibility normalization: NFKD and NFKC.
Conversion to NFKD works just like NFD. It replaces canonical composites in
the string with their decomposed forms. Additionally, it replaces any
compatibility composites with their decomposition form.

If the glyph is just a compatible composition of another glyph, then
normalizing it with NFD or NFC won’t change it. On the other hand, both NFKD

and NFKC will replace the glyph with its compatible decomposition form:

part_1/equalizing_characters/normalize_ex6.js

 const str1 = "⑥" ; // \u2465

 console.log(str1.normalize("NFD")); // → ⑥ (\u2465)

 console.log(str1.normalize("NFC")); // → ⑥ (\u2465)

 console.log(str1.normalize("NFKD")); // → 6 (\u0036)

 console.log(str1.normalize("NFKC")); // → 6 (\u0036)

http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex6.js

 const str2 = "⁶" ; // \u2076

 console.log(str2.normalize("NFD")); // → ⁶ (\u2076)

 console.log(str2.normalize("NFC")); // → ⁶ (\u2076)

 console.log(str2.normalize("NFKD")); // → 6 (\u0036)

 console.log(str2.normalize("NFKC")); // → 6 (\u0036)

In this code, conversion to NFD or NFC does not affect str1 and str2 because the
strings are compatible compositions, not canonical compositions.
Interestingly, conversion to both NFKD and NFKC produces the same result
because NFKC uses compatibility decomposition as the basis for canonical
composition. In this case, the character has no canonical composition form, so
it’s just converted to compatibility decomposition.

The difference between NFKC and NFKD becomes more apparent when a glyph
is a canonical composition of glyphs that are compatible with another glyph.
Consider the following code:

part_1/equalizing_characters/normalize_ex7.js

 const str = "ẛ" ; // \u1E9B

 console.log(str.normalize("NFD")); // → ẛ (\u017F\u0307)

 console.log(str.normalize("NFC")); // → ẛ (\u1E9B)

 console.log(str.normalize("NFKD")); // → ṡ (\u0073\u0307)

 console.log(str.normalize("NFKC")); // → ṡ (\u1E61)

As we said, NFKC uses compatibility decomposition as the basis for canonical
composition. The compatibility decomposition of \u1E9B is \u0073\u0307, and
the canonical composition of \u0073\u0307 is \u1E61.

Remember, perform text normalization before storing or processing texts to
avoid possible pitfalls. But be careful when using normalization forms KD
and KC as they discard formatting distinctions that may be essential to the
semantics of the text. Therefore, you shouldn’t blindly apply them to arbitrary
text. NFC is usually a better choice for general text.

http://media.pragprog.com/titles/fkjavascript/code/part_1/equalizing_characters/normalize_ex7.js

Recipe 22 Copying Text to Clipboard with the Clipboard API

Task
Suppose you have a cooking website that provides recipes for different meals,
and you want to provide readers with the option of copying the ingredients of
the recipes to their clipboard so that they can create a shopping list. To achieve
this, you need to create a button that, when clicked, copies the list of
ingredients to the clipboard.

Solution

First, set up your HTML elements. You need a button that triggers a
JavaScript code. Remember, your program should not attempt to read or write
the user’s clipboard without permission. So, creating a button that clearly
states it copies data to the clipboard is the first step:

part_1/copying_to_clipboard/clipboard_ex1.xhtml

 <!doctype html>

 <html lang= "en-us" >

 <head>

 <meta charset= "utf-8" >

 <meta name= "viewport" content= "width=device-width, initial-scale=1" >

 <script src= "clipboard_ex1.js" defer></script>

 </head>

 <body>

 <ul id= "ingredients" >

 1 cup olive oil

 4 garlic cloves

 1 tablespoon ground cumin

 1 tablespoon chili powder

 2 cans beans

 1 can crushed tomatoes

 <button id= "copyBtn" type= "button" >Copy Ingredients to Cliboard</button>

 </body>

http://media.pragprog.com/titles/fkjavascript/code/part_1/copying_to_clipboard/clipboard_ex1.xhtml

 </html>

Next, locate the button using getElementById() or querySelector(), and add an
event listener to it. As soon as the button is clicked, you want to grab the
ingredients list and extract its text:

part_1/copying_to_clipboard/clipboard_ex1.js

 document.querySelector("#copyBtn").addEventListener("click" , () => {

 // Select the list elements

 const nodeList = document.querySelectorAll("#ingredients li");

 // Create a variable that will hold the text to be sent to clipboard

 let textList = "" ;

 // Append the text of each li element to textList

 nodeList.forEach(li => {

 textList += ̀* ${li.textContent} \n` ;

 });

 // Append the current URL to textList

 textList += "View recipe at " + window.location.href;

 writeToClipboard(textList);

 });

Now, define the function responsible for writing the list to the clipboard:

part_1/copying_to_clipboard/clipboard_ex1.js

 function writeToClipboard(text){

 navigator.clipboard.writeText(text).then(() => {

 console.log("Copying to clipboard was successful!");

 }, (err) => {

 console.error("Unable to copy text: " , err);

 });

 }

The main part of the function is the writeText() property of the Clipboard
interface. This property returns a promise, so you need to use a then() to
handle its result (alternatively, you can use await).

http://media.pragprog.com/titles/fkjavascript/code/part_1/copying_to_clipboard/clipboard_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_1/copying_to_clipboard/clipboard_ex1.js

If your code successfully writes the string to the clipboard, you’ll get a
fulfilled promise, and the code logs a message to the console. If not, you’ll get
an error.

Discussion
Besides readText() and writeText(), the clipboard API provides two other
methods for reading and writing non-text data, such as images, to the user
clipboard: read() and write(). While readText() and writeText() work on all
browsers, the support for read() and write() is spotty. So be sure to check
browser support before you use them in your projects.[22]

When working with the Clipboard API, you might get an error like this:

 DOMException: Clipboard write was blocked due to lack of user activation.

This error is from the Firefox console and indicates you’re attempting to write
to the clipboard programmatically, but there hasn’t been any user interaction
with the page, such as clicking on a button. Errors like this are essential for
keeping developers’ access to the clipboard in check.

Other important factors to consider when using the clipboard API are as
follows:

You may write text to the clipboard without permission, but to read from
it, you always need to get user permission (the browser usually pops up a
permission dialogue automatically)

You can access the clipboard only if the page is the active browser tab

The Clipboard API is available only in secure contexts (HTTPS)

Previously, the only way to access the clipboard was through the Web API
document.execCommand() method. But because this method is synchronous and
blocks the browser when reading/writing large data, browser vendors have
deprecated it in favor of the clipboard API.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Use the Clipboard interface to provide a smoother experience for your users
when they need to copy code snippets, activation keys, tokens, verification
codes, etc., but always be explicit about when and what you store in their
clipboard.

Wrapping Up
Anything you want to do with text, JavaScript is up to the job. In the first part
of this book, you learned how to handle entangled text using JavaScript’s
built-in methods. This involved sifting through the data and extracting the
relevant information, formatting different data types, handling Unicode
characters, and more.

In the second part, you will focus on JavaScript’s implementation of regular
expressions. You will explore the syntax in detail and examine several
examples to understand their application.

Footnotes

https://github.com/tc39/proposal-relative-indexing-method#polyfill

https://mzl.la/3FKyJMr

https://medium.com/pragmatic-programmers/at-method-in-javascript-54544ec93ccc

https://github.com/tc39/proposal-relative-indexing-method#polyfill

https://mzl.la/3FKyJMr

https://en.wikipedia.org/wiki/Web_colors

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/Date

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/DateTimeFormat

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

https://github.com/tc39/proposal-relative-indexing-method#polyfill
https://mzl.la/3FKyJMr
https://medium.com/pragmatic-programmers/at-method-in-javascript-54544ec93ccc
https://github.com/tc39/proposal-relative-indexing-method#polyfill
https://mzl.la/3FKyJMr
https://en.wikipedia.org/wiki/Web_colors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/DateTimeFormat
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

https://caniuse.com/mdn-javascript_builtins_intl_listformat_format

https://github.com/wessberg/intl-list-format

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

https://caniuse.com/mdn-javascript_builtins_intl_segmenter_segment

https://github.com/flmnt/graphemer

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter#browser_compatibility

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

https://caniuse.com/mdn-javascript_builtins_string_normalize

https://caniuse.com/?search=Clipboard

Copyright © 2024, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_intl_listformat_format
https://github.com/wessberg/intl-list-format
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://caniuse.com/mdn-javascript_builtins_intl_segmenter_segment
https://github.com/flmnt/graphemer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter#browser_compatibility
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://caniuse.com/mdn-javascript_builtins_string_normalize
https://caniuse.com/?search=Clipboard

Chapter 2

Part II: Text Processing with
Regular Expressions

JavaScript’s built-in string methods are excellent for basic text manipulation
tasks. But they may not suffice when you need more advanced
functionality, such as validating user inputs. This is where regular
expressions (commonly abbreviated as regex) become an essential tool in
your JavaScript programming toolkit. Regular expressions provide
sophisticated pattern-matching capabilities that you can use for complex
text validation.

There are several popular implementations of regular expressions, each
with its own unique matching algorithm. The behavior of a particular
implementation is referred to as its flavor. Regex flavors have distinct
syntax and feature sets and varying degrees of compatibility with each
other.

In Part II, you’ll master JavaScript’s regex flavor by working through
different recipes. If you’re new to writing regex in JavaScript, read through
the introductory section to familiarize yourself with implementing the
patterns in your code; otherwise, you can jump straight into recipes.

Additionally, you’ll want to test your patterns with a modern tool, which we
talk about in Appendix 3. So, if you don’t yet have a tool in place, take a
moment to read through Appendix 3, Testing Regex with Specialized Tools,

and then select and set up a regex tool. You’ll be glad to have the tool,
especially when building complicated regular expressions, to help you
avoid errors.

Recipe 23 Creating Your First Regular Expression

Before using the recipes in Parts 2 and 3, you need to know how to implement
regular expressions in your code. In JavaScript, you have two options for
creating regular expressions: you can either use the RegExp() constructor or use
the regex literal. When using the literal form, you’ll need to enclose the
pattern in a pair of forward slash (/) characters, like this:

part_2/first_regex/first_regex_ex1.js

 const re = /Hello/ ;

This regex pattern is made up of five characters that tell the regex engine to
find a direct match for “Hello” in a string. A pattern can be as simple as a
single literal character such as “i.” If there are multiple occurrences of “i” in a
string, it matches the first one.

For example, in the string “If opportunity doesn’t knock, build a door,” the
regex matches the “i” in “opportunity,” not “build.” It also doesn’t match the
“I” in “If” because that word uses a capital letter. As you will learn later in this
part, you can use flags to configure your regular expression to continue
searching after the first match or ignore the letter case.

Let’s look at another example:

part_2/first_regex/first_regex_ex2.js

 const re = /123/ ;

 const str1 = "123" ;

 const str2 = "321" ;

 console.log(re.test(str1)); // → true

 console.log(re.test(str2)); // → false

When running this code, the regex engine tries to find “1,” immediately
followed by a “2,” and immediately followed by a “3.” This pattern exists

http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex2.js

within the first string, so test() returns true, but although the second string
contains the same characters, they’re not counted as a match because they’re
not in the correct order.

JavaScript provides several methods to determine whether a pattern exists in a
string. The test() method is the simplest one. It returns true if a match exists in
the given string or false if otherwise.

We can get the same result with the RegExp() constructor:

part_2/first_regex/first_regex_ex3.js

 const re = new RegExp("123");

 const str1 = "123" ;

 const str2 = "321" ;

 console.log(re.test(str1)); // → true

 console.log(re.test(str2)); // → false

Unlike the literal form, the RegExp() constructor allows us to construct a
pattern dynamically. For example, we can use it to build a pattern out of the
items of an array:

part_2/first_regex/first_regex_ex4.js

 const str = "Debuggers don't remove bugs. They show them in slow motion." ;

 const arr = ["bug" , "flea" , "mite" , "midge"];

 const re = new RegExp(arr.join("|"));

 console.log(re.test(str)); // → true

A pipe symbol in a regex pattern works like the logical OR (||) operator in
JavaScript. It matches either everything to the left of the symbol or everything
to the right. In this case, we have four items in the array, and we’re joining
them with a pipe, so it’s like writing the literal form /bug|flea|mite|midge/. The
main difference is that RegExp() lets us build the pattern dynamically.

When to Use a Constructor

http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex4.js

When to Use a Constructor
Keep in mind that the literal form is always faster than the
constructor form. So, use a constructor only when you need to
build a pattern dynamically.

Another difference between the two forms is that when using the RegExp
constructor, it’s necessary to use escape characters for backslashes and quotes.
Compare:

part_2/first_regex/first_regex_ex5.js

 // A RegExp pattern

 const re1 = new RegExp("\"\\d");

 // The literal version of the above pattern

 const re2 = /"\d/ ;

 console.log(re1.test('"3')); // → true

 console.log(re2.test('"3')); // → true

To match a quote character in a regex pattern that is already enclosed in
quotes, we need to use an escape character to indicate that the quote character
is part of the string, rather than a delimiter for the string. An alternative way to
write the same pattern would be to use single quotes for the pattern string: new

RegExp(’"\\d’).

\d is a metacharacter in regex that matches a digit. If we don’t escape \d,
RegExp() will match a backslash followed by a “d” literally:

part_2/first_regex/first_regex_ex6.js

 const re1 = new RegExp("\d");

 console.log(re1.test("\d")); // → true

 console.log(re1.test("3")); // → false

In literal notation, where the pattern is enclosed in forward slashes, we must
use a backslash to escape any forward slashes that appear within the pattern.

http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex5.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex6.js

This is necessary because a forward slash marks the end of the pattern in
literal notation, and without escaping, it would be interpreted as such.
Compare:

part_2/first_regex/first_regex_ex7.js

 // A RegExp pattern

 const re1 = new RegExp("/");

 // The literal version of the above pattern

 const re2 = /\// ;

 console.log(re1.test("/")); // → true

 console.log(re2.test("/")); // → true

Case Sensitivity
By default, regular expressions are case sensitive. The pattern
/abc/ does not match Abc, unless you use a special flag called
ignoreCase to instruct the engine to ignore any differences in
letter case. You’ll learn about flags later in this part.

But finding a direct match is not the biggest strength of regular expressions.
JavaScript already has the indexOf() method that can do that job just fine.
Regular expressions are designed to find more complex patterns, such as
/\b(\w+)\s+\1\b/gi, which finds duplicate words.

Now that you understand how to implement regex in JavaScript, you’re
prepared to work on the recipes in Parts 2 and 3.

http://media.pragprog.com/titles/fkjavascript/code/part_2/first_regex/first_regex_ex7.js

Recipe 24 Asserting the Start or End of a String with ^ and $

Task
Suppose you have an input field in your app that allows customers to enter
their order number and track their package. You want to ensure the user input
is a number before searching it in your database. If you are a bit familiar with
regex, you know that to match a digit with regex, you can use \d. And to
match one or more digits, you can put a plus sign right after it like this:

part_2/caret_and_dollar/cnd_ex1.js

 const input = "8751409" ;

 function verifyDigits(input) {

 const re = /\d+/ ;

 return re.test(input);

 }

 verifyDigits(input); // → true

This regex matches “8751409” as you intended. But it also matches a string
like “123abc” or “abc123abc”:

part_2/caret_and_dollar/cnd_ex2.js

 const input = "abc123abc" ;

 function verifyDigits(input) {

 const re = /\d+/ ;

 return re.test(input);

 }

 verifyDigits(input); // → true

So what happened here? Your pattern tells the regex engine to match one or
more digits, but it doesn’t tell it where. So, it successfully matches the digits
in the middle of the string and returns true even though there are other non-
matching characters in the string.

http://media.pragprog.com/titles/fkjavascript/code/part_2/caret_and_dollar/cnd_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/caret_and_dollar/cnd_ex2.js

What you need is a way to specify the beginning and end of the string in your
regex so it won’t match other characters.

Solution
Place a caret (^) at the beginning and a dollar symbol ($) at the end of the
pattern, like this:

part_2/caret_and_dollar/cnd_ex3.js

 const digits = "8757409" ;

 const digits_and_letters = "875abc" ;

 function verifyDigits(input) {

 const re = /^\d+$/ ;

 return re.test(input);

 }

 console.log(verifyDigits(digits)); // → true

 console.log(verifyDigits(digits_and_letters)); // → false

The regex now matches the exact phrase you’re looking for! The caret (^)
asserts the position at the start of the string, and a dollar symbol ($) asserts the
position at the end of the string.

Discussion

Don’t confuse ^ and $ with startsWith() and endsWith(). ^ and $ are known as
zero-width assertions, which means they don’t match actual characters, but
rather positions in the text. So, the caret symbol in /^Hello$/ doesn’t match “H”
in the input. Instead, it asserts that no other character comes before the literal
characters “Hello.”

Similarly, the dollar symbol doesn’t match any character, it just ensures that
the position is the end of the string. If you want to match specific characters at
the beginning or end of a string, you should use JavaScript’s startsWith() and
endsWith() methods (see Recipe 3, Matching the Beginning or End of a String
with startsWith() and endsWith()).

http://media.pragprog.com/titles/fkjavascript/code/part_2/caret_and_dollar/cnd_ex3.js

The Multiline Flag Changes the Rules
If you use a multiline flag, $ also matches the point before a line
break character, and ^ also matches the point after a line break
character. We’ll cover the multiline flag in Recipe 41, Forcing ^
and $ to Match at the Start and End of a Line with the m Flag.

Use ^ and $ to assert a position at the beginning or end of a string, but be
careful when using the multiline flag as it changes how these symbols work.

Regex also comes with a syntax for matching whole words only: \b. This
syntax, along with ^ and $, are known as boundaries. The next recipe tells you
all about the word boundary (\b).

Recipe 25
Looking For Whole Words Only with the Word
Boundary (\b)

Task
Say you want to look for the word “green” in a document. You try using the
includes() method, but it matches other words containing “green” too, such as
“greenhouse” and “evergreen”:

part_2/word_boundary/word_boundary_ex1.js

 const str1 = "We must reduce the emissions of greenhouse gases." ;

 const str2 = "An evergreen plant has leaves for the whole year." ;

 str1.includes("green"); // → true

 str2.includes("green"); // → true

Adding a space around “green” doesn’t quite cut it because the word might be
followed by a comma, appear before/after a newline character, or come at the
beginning/end of a sentence, and so on:

part_2/word_boundary/word_boundary_ex2.js

 const str = "Blend together yellow and blue paint to make green." ;

 str.includes(" green "); // → false

You need a solution that matches “green” only if it’s a separate word.

Solution

Place a \b before and after “green” in the regex pattern to exclude other words:

part_2/word_boundary/word_boundary_ex3.js

 const re = /\bgreen\b/ ;

 const str1 = "We must reduce the emissions of greenhouse gases." ;

 const str2 = "An evergreen plant has leaves for the whole year." ;

 const str3 = "Blend together yellow and blue paint to make green." ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex3.js

 re.test(str1); // → false

 re.test(str2); // → false

 re.test(str3); // → true

Success! You matched “green” only when it was a separate word and not part
of another word. You also were able to find “green” in spite of having
punctuation around the word. Let’s see how \b works to find whole words.

Discussion
The metacharacter \b matches at a position known as the word boundary.
Simply put, this metacharacter allows you to look for “whole words” only. A
position qualifies as a word boundary only if a word character is not followed
or preceded by another word character.

Therefore, \b matches before the first character or after the last character of a
word. Word characters include a-z, A-Z, 0-9, and underscore. So things like
spaces (green beans), quotation marks ("green"), commas (green,), and
periods (green.) are seen as word boundaries.

What Is a Metacharacter?
When certain characters are used in regular expressions, they give
special meaning to the search syntax. These characters are known
as metacharacters (or special characters) and allow you to
perform a more advanced matching than just searching for a piece
of text. Metacharacters can represent ideas such as locations,
quantity, or types of characters.

It’s pretty common to need to match only whole words (like black, but not
blacksmith) and \b is well-suited to that use, but there’s more to word
boundaries than you might imagine. Let’s dig a bit deeper into using \b.

\bgreen\b would not match “green” in “_green” or “green4,” because both
underscores and digits are word characters, and there is no boundary between

a word character and another word character:

part_2/word_boundary/word_boundary_ex4.js

 const re = /\bgreen\b/ ;

 re.test("_green"); // → false

 re.test("green4"); // → false

Hyphens, however, do qualify as word breaks. So, green-eyed would be a
match in our example. We humans may see green-eyed as a single word, but
regex doesn’t:

part_2/word_boundary/word_boundary_ex5.js

 const re = /\bgreen\b/ ;

 re.test("green-eyed"); // → true

Same thing with the apostrophe: /\bcan\b/ matches “I can’t do it” even though
“can’t” is a contraction and a word in the English sense:

part_2/word_boundary/word_boundary_ex6.js

 const re = /\bcan\b/ ;

 re.test("I can't do it"); // → true

Accented characters are also considered word breaks (for a workaround, see
Recipe 53, Matching Unicode Word Boundaries with the Unicode Property
Escape):

part_2/word_boundary/word_boundary_ex7.js

 const re = /\bFianc\b/ ;

 re.test("Fiancée"); // → true

 re.test("Fiancee"); // → false

You don’t have to put a pair of \b around words. You can use a single \b to
match only one boundary:

http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex5.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex6.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex7.js

part_2/word_boundary/word_boundary_ex8.js

 const re1 = /\bgreen/ ;

 const re2 = /green\b/ ;

 re1.test("evergreen"); // → false

 re1.test("greenhouse"); // → true

 re2.test("evergreen"); // → true

 re2.test("greenhouse"); // → false

Notice that when you place \b at the start of the search string (/\bgreen/) it
finds only words that start with “green” and when placed at the end (/green\b/)
only words that end with “green.”

Using \B for Non-word Boundaries
\B matches any position that \b does not (any non-word boundary) and so we
say that \B is the negated form of \b. In regex, it’s a normal convention:
lowercase and uppercase versions of the same letter being the
opposite/negated forms of each other.

\B matches a position where a character is followed or preceded by the same
type of character, such as between two space characters or two letters. Here is
an example:

part_2/word_boundary/word_boundary_ex9.js

 const re = /green\B/ ;

 re.test("greenhouse"); // → true

 re.test("green bay"); // → false

In “greenhouse,” “green” is followed by the same type of character: a word
character. So, the test returns true. In “green bay,” however, “green” is
followed by a space (a different type), and so the result is false.

\b with the RegExp Constructor

http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex8.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex9.js

\b with the RegExp Constructor
When using the RegExp constructor, you must escape the \b
metacharacter with a backslash because you’re writing the pattern
in a normal string, not a slash-enclosed literal.

The code tag should not be here.

Using Intl.Segmenter() Instead

Remember Intl.Segmenter() from Recipe 19, Counting Words in a String with
Intl.Segmenter()? If you’re looking for a pure JavaScript solution, you can
achieve the same result with Intl.Segmenter():

part_2/word_boundary/word_boundary_ex10.js

 function includesWord(str, word) {

 let s = [... new Intl.Segmenter("en" , {granularity: "word" }).segment(str)];

 return s.some(value => {

 return value.segment === word;

 });

 }

 includesWord("Her flashing green eyes." , "green");

 // → true

 includesWord("We must reduce the emissions of greenhouse gases." , "green");

 // → false

 includesWord("The green-eyed monster" , "green");

 // → true

 includesWord("I can't do it" , "can");

 // → false

When you set the granularity to word, Intl.Segmenter() splits the string at word
boundaries. You can then check the items of the resulting array for the word
you are looking for with some(), which returns true if at least one element in
the array matches the word. One difference between this approach and our

http://media.pragprog.com/titles/fkjavascript/code/part_2/word_boundary/word_boundary_ex10.js

regex solution is how it handles the apostrophe: \b treats an apostrophe as a
word break while Intl.Segmenter() does not.

Another difference is that the Intl.Segmenter() approach is slower than regex,
especially if you’re testing a large block of text. So, unless you want to avoid
matching words that have an apostrophe, you should stick with regex.

Use the word boundary (\b) when looking for “whole words” in a string, but
be wary of accented characters, hyphens, and apostrophes since they qualify
as word breaks. And use the negated version of the word boundary (non-word
boundary \B) to match a position that \b does not.

Recipe 26
Matching One of Several Alternatives with the
Vertical Bar (|)

Task
Imagine you want to match specific variations of the word “week,” including
“weekend” and “weekly,” but not “weekday.” You want the match to be at
word boundaries, so other words like “Newsweek” wouldn’t count as a match.
What you need is a way to define alternative patterns in the regex.

Solution

Use a vertical bar (|) to form an alternation. The vertical bar character will tell
the regex engine to match any one of a series of patterns:

part_2/vertical_bar/vertical_bar_ex1.js

 const re = /\bweek\b|\bweekend\b|\bweekly\b/ ;

 re.test("How much do you earn per week?"); // → true

 re.test("Employees are paid weekly."); // → true

 re.test("The office is closed on the weekend."); // → true

 re.test("Your story could be featured on Newsweek!"); // → false

The regex engine matches everything left of the vertical bar or everything
right. The pattern in this example has three alternatives, each enclosed in a
pair of word boundaries. So, it will only match “week,” “weekend,” or
“weekly.”

Discussion
If you want to add other symbols to the pattern but don’t want them to be a
part of the alternation, you can use parentheses. Using parentheses will limit
the scope of the alternation.

Remember, a vertical bar matches either everything to the left or everything to
the right. So, if you wanted to match “this week” or “this weekend,” you could

http://media.pragprog.com/titles/fkjavascript/code/part_2/vertical_bar/vertical_bar_ex1.js

write /\bthis (week|weekend)\b/:

part_2/vertical_bar/vertical_bar_ex2.js

 const re = /\bthis (week|weekend)\b/ ;

 re.test("Are you free this weekend?"); // → true

 re.test("Are you free this week?"); // → true

 re.test("weekend"); // → false

This pattern tells the regex engine to find a word boundary, then “this”
followed by a space, then either “week” or “weekend,” and then another word
boundary.

You could also use parentheses to rewrite the solution in this recipe in a more
compact form:

part_2/vertical_bar/vertical_bar_ex3.js

 const re = /\b(week|weekend|weekly)\b/ ;

 re.test("How much do you earn per week?"); // → true

 re.test("Employees are paid weekly."); // → true

 re.test("The office is closed on the weekend."); // → true

 re.test("Your story could be featured on Newsweek!"); // → false

The outcome is identical, but the pattern is more readable. Since all three
alternatives in this example begin with the same word, we can further fine-
tune the regular expression engine by rephrasing the regex as follows:

part_2/vertical_bar/vertical_bar_ex4.js

 const re = /\bweek(end|ly|)\b/ ;

 re.test("How much do you earn per week?"); // → true

 re.test("Employees are paid weekly."); // → true

 re.test("The office is closed on the weekend."); // → true

 re.test("Your story could be featured on Newsweek!"); // → false

The options in parentheses tell the regex engine to match “end,” “ly,” or
nothing. The empty option at the end of the parentheses is necessary to be able

http://media.pragprog.com/titles/fkjavascript/code/part_2/vertical_bar/vertical_bar_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/vertical_bar/vertical_bar_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/vertical_bar/vertical_bar_ex4.js

to match “week.” Alternatively, you could use a quantifier to make the pattern
in the parentheses optional, like this: /\bweek(end|ly)?\b/, which is more
conventional (see Recipe 29, Repeating Part of a Regex with Quantifiers).

Regex engines typically match words in a list from left to right. Therefore,
arranging words with the highest probability of appearing in the text at the
beginning of the list might slightly enhance the engine’s performance.

Remember, take advantage of alternation when you want to match one of a
choice of regular expressions, and add parentheses to limit the scope of the
alternation.

Recipe 27
Matching One of Several Characters with the
Character Class

Task
Suppose you want to find a word in a document even if it is misspelled. For
example, the word “license” is one of the most misspelled words in English.
You want to write a pattern that matches “license,” “licence,” “lisence,” or
“lisense” in a document.

Solution

Use a character class:

part_2/character_class/character_class_ex1.js

 const re = /li[sc]en[sc]e/ ;

 re.test("A driver's license"); // → true

 re.test("A driver's lisense"); // → true

 re.test("A driver's licence"); // → true

 re.test("A shopping list"); // → false

A character class matches only one out of the specified characters. In this
code, the specified characters are “s” and “c,” so the regex matches “license,”
“licence,” “lisense,” or “lisence,” but not “liscense.” Keep in mind that a
character class matches only one character.

Discussion
Certain characters change the behavior of the character class. If you place a
caret (^) after the opening square bracket, it negates the entire character class.
That means the character class will match any character that isn’t one of the
specified characters.

So, /[^license]/ would match any character that isn’t “l,” “i,” “c,” “n,” “s,”
and “e”:

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class/character_class_ex1.js

part_2/character_class/character_class_ex2.js

 const re = /[^license]/ ;

 re.test("lie"); // → false

 re.test("list"); // → true

This pattern matches “t” in “list,” so test() returns true. You might have noticed
that the caret (^) is the same as the one that matches the beginning of a string
(Recipe 24, Asserting the Start or End of a String with ^ and $). Although the
character is the same, its meaning is entirely different.

It’s just like the English word “arm” can mean different things depending on
what context it is used in (sometimes a part of the body, sometimes to provide
a weapon).

Also, keep in mind that caret has a special meaning only when used right after
the opening bracket of the character class. So, /[a^bc]/ wouldn’t negate the
character class because “^” would be treated as a literal character.

As with a regular class, a negated class must match a character to be
successful. For example, the pattern /Number[^5]/ matches “Number6” but not
“Number” because the class expects a character:

part_2/character_class/character_class_ex3.js

 const re = /Number[^5]/ ;

 re.test("Number6"); // → true

 re.test("Number"); // → false

Use a character class to match a character out of several characters, such as
when you want to consider misspelled words or spelling differences in
American and British English.

Use a negated character class to list characters you don’t want to appear in a
string. An exciting aspect of the character class is its ability to match a range
of characters, which you’ll learn about in the next recipe.

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class/character_class_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class/character_class_ex3.js

Recipe 28
Matching a Range of Characters with Character
Classes

Task
Suppose you’re tasked with searching scanned documents and filtering
applicants aged between 20 and 40. The info you need to extract is preceded
with “age:”. So, your regex pattern should match the word “age,” followed by
a colon, followed by a space, and followed by a range of numbers between 20
and 40.

With what you’ve learned so far, you could use vertical bars in a pair of
parentheses to specify the possible matches, like this:

part_2/character_class_range/range_ex1.js

 /Age: (2(0|1|2|3|4|5|6|7|8|9)|3(0|1|2|3|4|5|6|7|8|9)|40)/

But what would you do if you wanted to look for a larger range of numbers?
You need a better way of defining the range of characters in regex.

Solution

Use a character class and place a hyphen between the range of numbers you’re
looking for:

part_2/character_class_range/range_ex2_v1.js

 const re = /Age: (2[0-9]|3[0-9]|40)/ ;

 re.test("Name: John | Age: 23"); // → true

 re.test("Name: Ana | Age: 54"); // → false

When a hyphen appears within a character class, it’s treated as a
metacharacter. But there’s an exception: if it’s the first or last character in the
class, it can’t possibly define a range, so it loses its special meaning and is
considered a normal character.

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex2_v1.js

You can even further shrink the pattern like this:

part_2/character_class_range/range_ex2_v2.js

 const re = /Age: ([23][0-9]|40)/ ;

 re.test("Name: John | Age: 23"); // → true

 re.test("Name: Ana | Age: 54"); // → false

Here, [23] matches 2 or 3, and [0-9] matches a single digit in the range of 0 to 9.
Together, they match a number between 20 to 39. The vertical bar at the end
tells the engine to either match 20-39 or 40.

Discussion
If your regex involves only verifying a range of digits, you can achieve the
same result with JavaScript’s built-in methods. Consider the following
example:

part_2/character_class_range/range_pure_js.js

 const str1 = "Name: John | Age: 23" ;

 const str2 = "Name: Ana | Age: 54" ;

 function verifyAge(str) {

 const index = str.indexOf("Age: ");

 const endIndex = index + 5;

 const age = str.slice(endIndex, endIndex + 2);

 if (age >= 20 && age <= 40) {

 return true ;

 } else {

 return false ;

 }

 }

 console.log(verifyAge(str1)); // → true

 console.log(verifyAge(str2)); // → false

This code performs the following steps:

It finds the index of Age: in the input string

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex2_v2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_pure_js.js

It adds the length of the substring Age: to the index to get the position of
the digits

It extracts the digits using the slice() method

It then checks if the extracted age is within a valid range using the less
than or equal (<=) and greater than or equal (>=) operators

Letting JavaScript determine whether a digit is in the range is often less error-
prone. A common mistake among regex learners is to define double-digit
ranges with a single-character class. The pattern [12-24] doesn’t match a
number between 12 and 24. Instead, it matches a “1,” “2,” or “4” (equivalent
to [124]).

Here’s how the regex engine interprets [12-24]:

1 matches the character “1”
2-2 matches a single character in the range between “2” and “2”
4 matches the character “4”

To define a pattern that matches a double-digit range, we’ll need to use two
character classes and a vertical bar:

part_2/character_class_range/range_ex3_v1.js

 const re = /1[2-9]|2[0-4]/ ;

 re.test("10"); // → false

 re.test("15"); // → true

 re.test("24"); // → true

 re.test("25"); // → false

 re.test("015"); // → true

 re.test("240"); // → true

Is there anything missing in this pattern? Yes, a pair of word boundaries (\b).
Without word boundaries, the pattern would also match “015” and “150.” So,
to match a double-digit range between 12 and 24, our pattern should look like
this:

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex3_v1.js

part_2/character_class_range/range_ex3_v2.js

 const re = /\b1[2-9]|2[0-4]\b/ ;

 re.test("10"); // → false

 re.test("15"); // → true

 re.test("24"); // → true

 re.test("25"); // → false

 re.test("015"); // → false

 re.test("240"); // → false

The range we define with a hyphen isn’t limited to digits. We can define a
range of alphabets, too. For example, [a-z] matches any lowercase letter, and
[A-Z] matches any uppercase letter:

part_2/character_class_range/range_ex4_v1.js

 const re = /Group [A-Z]/ ;

 re.test("Group B"); // → true

 re.test("Group 2"); // → false

We can even list multiple ranges, like this:

part_2/character_class_range/range_ex4_v2.js

 const re = /Group [A-Z0-9]/ ;

 re.test("Group B"); // → true

 re.test("Group 2"); // → true

The order in which we specify the ranges doesn’t matter. So, [A-Z0-9] is the
same as [0-9A-Z]. To list the range of characters we don’t want to be included,
we can apply a caret (^). If we use /Group [^A-C]/, the class matches “Group”
followed by a space followed by a character that’s not “A,” “B,” or “C”:

part_2/character_class_range/range_ex5.js

 const re = /Group [^A-C]/ ;

 re.test("Group A"); // → false

 re.test("Group B"); // → false

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex3_v2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex4_v1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex4_v2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex5.js

 re.test("Group C"); // → false

 re.test("Group D"); // → true

 re.test("Group 5"); // → true

Using Predefined Ranges
Matching a range of characters is one of the most common tasks in regular
expressions. For this reason, regex flavors offer special characters as
shorthands for matching character ranges. Most shorthands comprise a
backslash and a character like \d, which matches a digit character. The full
stop (.) is an exception. It’s the only shorthand character class that isn’t
preceded by a backslash.

Keep the following list of shorthand character classes bookmarked—they are
bound to come in handy.

Digit Character (\d)
\d matches any ASCII digit character, which is equivalent to [0-9]. For
example:

part_2/character_class_range/range_ex6.js

 const re = /\d/ ;

 re.test("5"); // → true

 re.test("a"); // → false

Word Character (\w)

\w matches any ASCII word characters, which is the same as [A-Za-z0-9_]. Keep
in mind that the underscore is a word character in regex:

part_2/character_class_range/range_ex7.js

 const re = /\w/ ;

 re.test("5"); // → true

 re.test("a"); // → true

 re.test("_"); // → true

 re.test("*"); // → false

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex6.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex7.js

Space Character (\s)
\s matches any Unicode whitespace character. For instance:

part_2/character_class_range/range_ex8.js

 const re = /\s/ ;

 re.test("5"); // → false

 re.test(" "); // → true

As you’ll see later in this book, an interesting use of \s is to remove duplicate
whitespaces from a string (see Recipe 62, Removing Duplicate Whitespaces).

Non-Digit Character (\D)

\D matches any character that isn’t a digit, which is the same as [^\d] or [^0-9]:

part_2/character_class_range/range_ex9.js

 const re = /\D/ ;

 re.test("5"); // → false

 re.test("a"); // → true

 re.test(" "); // → true

Negated Shorthands
\D, \W, and \S are the negated forms of \d, \w, and \s respectively.
That means they match the opposite of what normal shorthand
character classes match.

Non-Word Character (\W)
\W matches any character that isn’t a word character. Short for [^\w] and [^A-Za-

z0-9_]:

part_2/character_class_range/range_ex10.js

 const re = /\W/ ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex8.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex9.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex10.js

 re.test("5"); // → false

 re.test("a"); // → false

 re.test(" "); // → true

 re.test("*"); // → true

Non-Space Character (\S)
\S matches any character other than whitespace. Short for [^\s]:

part_2/character_class_range/range_ex11.js

 const re = /\S/ ;

 re.test("5"); // → true

 re.test("a"); // → true

 re.test(" "); // → false

 re.test("*"); // → true

Where Can You Use Shorthands?
Shorthands may appear both inside and outside square brackets.
For instance, while \s\d matches a whitespace character followed
by a digit character, [\s\d] matches either a single whitespace
character or a single digit character.

Single Character (.)

A full stop (.) matches any single character except for a line break. For
example:

part_2/character_class_range/range_ex12.js

 const re = /./ ;

 re.test("5"); // → true

 re.test(" "); // → true

 re.test("*"); // → true

 re.test("abc"); // → true

Notice the last test that returns true for “abc.” Here, the full stop matches “a”
in “abc,” not the entire string. To match three consecutive characters, you can

http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex11.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/character_class_range/range_ex12.js

use the regex /.../. Alternatively, you can use /.{3}/, which takes advantage of a
quantifier to specify the number of tokens to match. You’ll learn about
quantifiers in Recipe 29, Repeating Part of a Regex with Quantifiers.

Be careful when matching characters that span multiple lines. A full stop
won’t match a line break character unless you use a special flag (see Recipe
42, Forcing . to Match Newline Characters with the s Flag).

You can use a character class to define a range of characters to match. The
range can be specified using a hyphen (-), and it’s not limited to numbers. To
match a character that is not in a specific range, use the caret (^) immediately
after the opening bracket. To specify ranges using a more compact syntax, you
can take advantage of predefined character classes.

Recipe 29 Repeating Part of a Regex with Quantifiers

Task
Suppose you want to add an option to your program that allows users to log in
with a PIN code. The main benefit of using a PIN instead of a password is
faster login. I tend to put my computer to sleep when I’m away, even for a
short time. Conveniently, my OS lets me log in quickly with only a PIN code.

Say you want to implement a similar feature for your application. You need to
write a regex pattern that 1) validates the input is digits and 2) ensures the
number of digits is between 4 and 6 characters.

Solution

Place a pair of curly brackets after the \d character class to specify how many
times the digits should occur:

part_2/quantifiers/quantifiers_ex1.js

 const re = /^\d{4,6}$/ ;

 re.test("107"); // → false

 re.test("1077"); // → true

 re.test("107781"); // → true

 re.test("1077815"); // → false

The pattern {n,m} lets us match the preceding item at least n times and at most
m times (n and m must be positive integers).

The regex in this code begins with a caret (^) and ends with a dollar symbol
($). We don’t want to match anything other than a 4-6 digit input, so we
delimit the pattern with ^ and $ (for further explanation of how caret and
dollar work, see Recipe 24, Asserting the Start or End of a String with ^ and $
).

http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex1.js

Without $, this pattern would match a string like “107781pass”:

part_2/quantifiers/quantifiers_ex2.js

 / \ d{4,6} /.test("107781pass"); / / → true

Discussion
We can match a token or group repeatedly using a quantifier. {4} is a quantifier
that tells the regex engine to match its preceding item precisely four times. So,
the pattern [0-5]{4} is equivalent to [0-5][0-5][0-5][0-5], but is easier to read and
write.

If we use a quantifier to repeat a character class, the entire character class will
be repeated, not just the character it matches. For example, the pattern [car]{3}

matches three consecutive characters made of “c,” “a,” and “r”:

part_2/quantifiers/quantifiers_ex3.js

 const re = /[car]{3}/ ;

 re.test("car"); // → true

 re.test("arc"); // → true

 re.test("carbon"); // → true (matches the first three characters)

To repeat the same character matched by a character class, we can use a
backreference (discussed later in Recipe 46, Referencing a Matched String
with the Backreference).

A character class is the only place in regex where quantifiers don’t have a
special meaning. For example, /[c{3}]/ matches a single character that’s a “c,”
“{“, “3”, or “}”. To take away the special meaning of a quantifier outside a
character class, we must escape it with a backslash. For instance:

part_2/quantifiers/quantifiers_ex4.js

 const re = /\{7\}/ ;

 re.test("{7}"); // → true

http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex4.js

 re.test("7"); // → false

 re.test("abc"); // → false

In this pattern, \{ matches the character { literally. Without a backslash, { would
indicate the beginning of a quantifier.

Although curly brackets are a common type of quantifier used in regex, there
are other quantifiers available as well. The following section provides
information about these additional quantifiers.

Types of Quantifiers

Quantifiers specify the number of occurrences of a character, group, or
character class to match. There are six forms of quantifiers in regex: zero or
more (*), one or more (+), zero or one (?), exactly n times {n}, at least n times
{n,}, and from n to m times {n,m}. Let’s look at each and how you might use
them.

Zero or More (*)
An asterisk matches zero or more sequences of the preceding item. Let’s say
we want to match all verb forms of the word “play,” including “played,”
“plays,” and “playing.” By using a quantifier after the character class (\w), we
can tell regex to match “play” and any character that might come after it as
long as it’s a word character:

part_2/quantifiers/quantifiers_ex5.js

 const re = /\bplay\w*\b/ ;

 re.test("He plays for Cleveland"); // → true

 re.test("France is playing England tomorrow."); // → true

 re.test("Evans played very well."); // → true

 re.test("Let's play a different game"); // → true

Note that this pattern also matches words like “playful” and “playground.” To
limit the match to a set of specific words, we can use a vertical bar (see Recipe
26, Matching One of Several Alternatives with the Vertical Bar (|)).

http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex5.js

One or More (+)
A plus sign matches one or more sequences of the preceding item. For
example, the regular expression /Go+al/ attempts to match the letter G followed
by one or more instances of the letter o, followed by the letters a and l:

part_2/quantifiers/quantifiers_ex6.js

 const re = /Go+al!/ ;

 re.test("Gooooooooal!"); // → true

 re.test("Goal!"); // → true

 re.test("Gal!"); // → false (expects at least one instance of o)

Zero or One (?)

A question mark matches zero or one occurrence of the preceding item. For
example, if we wanted to match the word “apple” or its plural form, “apples,”
we’d write \apples?\. This pattern tells the regex engine to match the word
“apple” followed by zero or one instance of the letter “s”:

part_2/quantifiers/quantifiers_ex7.js

 const re = /apples?/ ;

 re.test("An apple a day keeps the doctor away"); // → true

 re.test("Peel and core the apples"); // → true

Exactly n Times {n}
Specifies how often the preceding item can be repeated. n must be a positive
integer. For example, we can use /\b\w{3}\b/ to match any three-letter word in a
string:

part_2/quantifiers/quantifiers_ex8.js

 const re = /\b\w{3}\b/ ;

 re.test("A car accident."); // → true

 re.test("A driver's license"); // → false

From n to m Times {n,m}

http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex6.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex7.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex8.js

Matches the preceding item at least n times and at most m times. n and m must
be positive integers. We have already seen this pattern in action. But, let’s take
a look at another example to better understand how it works:

part_2/quantifiers/quantifiers_ex10.js

 const re = /\bim{1,2}\w*?/ ;

 re.test("immaculate"); // → true

 re.test("impact"); // → true

 re.test("insane"); // → false

Here, the pattern attempts to match a word boundary, followed by the letter
“i,” followed by one or two instances of the letter “m.” As a result, it matches
any word that begins with “im” or “imm.”

At Least n Times {n,}
{n,} is similar to {n,m} in that it matches the preceding item at least n times, but
it doesn’t have a second parameter. For example, the regular expression /\d{2,}/

matches two or more digits:

part_2/quantifiers/quantifiers_ex9.js

 const re = /\d{2,}/ ;

 re.test("1"); // → false

 re.test("12"); // → true

 re.test("123"); // → true

Similar Quantifiers
The pattern {1,} is equivalent to the quantifier +, {0,} is equivalent
to *, and {0,1} is equivalent to ?.

Use quantifiers to specify the numbers of characters or expressions to match.
Different types of quantifiers let you precisely set how many times the
preceding item should be matched.

http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex10.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/quantifiers/quantifiers_ex9.js

Recipe 30
Treating Multiple Characters as a Single Unit with
the Capturing Group

Task
Suppose you want to search an archive of documents and retrieve those that
mention a date in August. The only clue you have is that the date comes in
four different styles. For example: “August 16,” “August 16th,” “Aug 16,” or
“Aug 16th.”

To match such a date with regex, you need a way to make “ust” in “August”
and “th” in “16th” optional.

Solution

To make certain letters optional, group them by enclosing them in parentheses
and place a question mark after the group:

part_2/capturing_group_p1/capturing_group_p1_ex1.js

 const re = /\bAug(ust)?\s\d{1,2}(st|nd|rd|th)?\b/ ;

 // Grouping allows matching many alternatives

 re.test("Aug 16"); // → true

 re.test("August 16"); // → true

 re.test("Aug 16th"); // → true

 re.test("August 16th"); // → true

This regex matches dates in the format of “Aug 1st,” “August 15th,” “Aug
22nd,” “August 31st,” etc. Please note that if the date contains typographical
errors such as “August 16nd” or “Aug 1rd,” the pattern will still match them.

Discussion
Let’s start by examining the pattern step by step:

 /\bAug(ust)?\s\d{1,2}(st|nd|rd|th)?\b/

http://media.pragprog.com/titles/fkjavascript/code/part_2/capturing_group_p1/capturing_group_p1_ex1.js

 ● \b asserts a word boundary
 ● Aug matches the characters Aug literally
 ● (ust)? 1st capturing group
 ○ ust matches the characters ust literally
 ○ ? matches the previous token zero or one time
 ● \s matches any whitespace character
 ● \d matches a digit
 ○ {1,2} matches the previous token 1 or 2 times
 ● (st|nd|rd|th)?
 ○ 1st alternative st: matches the characters st literally
 ○ 2nd alternative nd: matches the characters nd literally
 ○ 3rd alternative rd: matches the characters rd literally
 ○ 4th alternative th: matches the characters th literally
 ○ ? matches the previous token zero or one time
 ● \b asserts a word boundary

The regex begins with a word boundary (\b), which allows us to match the
beginning of a word. Then we use Aug(ust)? to match the string “Aug”
followed by an optional “ust,” which tells the regex to match both “Aug” and
“August” formats of the month. After that, we use \s to match a whitespace
character (space, tab, etc.) after the month.

For the day of the month, we use \d{1,2} to match one or two digits. The curly
braces with the range 1,2 ensure that only one or two digits are matched. Next,
we use (st|nd|rd|th)? to match the suffix for the day of the month, including
“st,” “nd,” “rd,” or “th.” Of all metacharacters, the vertical bar has the lowest
precedence: it matches either everything to the left or everything to the right
of the vertical bar. In this case, we need to limit the reach of alternation by
wrapping the characters in a pair of parentheses.

Then we use a question mark to make the suffix optional. Finally, we end the
regex with a word boundary (\b) to match the end of a word.

Don’t Use the Capturing Group in a Character Class

Don’t Use the Capturing Group in a Character Class
It’s not possible to use the capturing group in a character class
because parentheses inside a character class are treated as literal
characters. For example, [x(y)] matches a single character out of x,
(, y, and).

Sometimes it’s useful to group a part of the regular expression and treat it as a
single unit. You can do this by encapsulating the characters in parentheses.
Grouping enables you to use quantifiers on the entire group, limit alternation
to only a part of the pattern, or extract a matched value for further processing
(which is the topic of our next recipe).

Recipe 31
Extracting a Matched Value with the Capturing
Group

Task
Suppose you need to search for a file with a .pdf extension and extract only the
filename without the extension. Typically, regular expressions return the entire
matched string, but you want a solution that enables you to identify and
extract a specific part of the matched string for further processing.

Solution

Place a pair of parentheses around the specific part of the pattern that you
want to extract:

part_2/capturing_group_p2/capturing_group_p2_ex1.js

 const re = /\b(\w+)\.pdf\b/ ;

 const str = "Please download data_p2x53.pdf" ;

 const result = str.match(re);

 if (result) {

 console.log(result[1])

 } else {

 console.error("No match found.");

 }

 // Logs:

 // → data_p2x53

You can now access the filename by referencing the second item of the
resulting array.

Discussion
In this example, we used the match() method instead of test(). Unlike test(),
which gives a yes/no as an answer (a Boolean value) indicating whether or not

http://media.pragprog.com/titles/fkjavascript/code/part_2/capturing_group_p2/capturing_group_p2_ex1.js

a match is found, match() provides more detailed information in the form of an
array. We can access the substring captured by the capturing group in the
regex using the second element of the resulting array (result[1]). Since
JavaScript arrays are zero-indexed, the second element is available at index 1.

Pay attention to the type of value that match() is called on. Unlike test(), which
is a property of the RegEx object, match() is a property of the String object and
so must be called on a string.

Now, let’s examine the regex:

 /\b(\w+)\.pdf\b/

 ● \b asserts the position at a word boundary
 ● (\w+) 1st capturing group
 ○ \w matches any word character
 ○ + matches the previous token one or more times
 ● \. matches the period character . literally
 ● pdf matches the characters pdf literally
 ● \b asserts a word boundary

The regex pattern starts with a word boundary (\b), which means the match
must occur at the beginning of a word. Next, we use (\w+) to match one or
more word characters. The parentheses around \w+ signal that this group
should be captured and made available for further use.

After that, we use .pdf to match the literal characters “.pdf,” and once again
use \b to match a word boundary, ensuring the “.pdf” is at the end of a word.
Putting it all together, this regex matches any word that ends with “.pdf”
characters.

Parentheses are a versatile tool in regex. They not only let us group tokens and
apply quantifiers to them but also enable us to extract matched values for
further processing. But the meaning of parentheses can change if we place
special characters right after the opening bracket. The next recipe explains
more.

Recipe 32
Excluding Groups from Result with the Non-
capturing Group

Task
Let’s say you need to keep track of a particular golf player’s ranking based on
information scraped from the player’s profile on a sports blog. The ranking
information is in a string with an ordinal indicator such as “3rd” or “4th.” You
only care about the number, not its suffix, and want to use a capturing group to
extract it for additional processing.

If you use /(\d{1,2})(st|nd|rd|th)/, the second parentheses will capture the suffix,
too, which is redundant. You need a way to tell the regex engine not to capture
those letters.

Solution

Add a question mark (?) and a colon (:) right after the opening parentheses to
create a non-capturing group:

part_2/non_capturing_group/non_capturing_ex1.js

 const re = /(\d{1,3})(?:st|nd|rd|th)/ ;

 const str = "Tiger Woods sits 16th in the latest World Golf Ranking." ;

 const match = str.match(re);

 if (match) {

 console.log("Player Rank: " + match[1]); // → Player Rank: 16

 }

Your regex is now able to match the ordinal number “16th,” and you can
access the number in the second item of the resulting array.

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_2/non_capturing_group/non_capturing_ex1.js

The pattern in this recipe matches an ordinal number but remembers only the
first capturing group: the digits. The second group is non-capturing because
there’s a question mark and a colon right after the opening parentheses.

So, unlike the capturing group, it doesn’t capture anything from the substring
it matches. Here, “16th” is the string we want to match, “16” is the substring
we want to capture, and “th” is the substring we want to exclude.

Let’s take a closer look at the pattern:

 /(\d{1,3})(?:st|nd|rd|th)/

 ● (\d{1,3}) 1st capturing group
 ○ \d matches a digit (equivalent to [0-9])
 ○ {1,3} matches the previous token between 1 to 3 times
 ● (?:st|nd|rd|th) non-capturing group
 ○ 1st Alternative: st matches the characters st literally
 ○ 2nd Alternative: nd matches the characters nd literally
 ○ 3rd Alternative: rd matches the characters rd literally
 ○ 4th Alternative: th matches the characters th literally

The match() method returns a wealth of information about the result. In this
case, we’re interested in only the second item of the array, which is the
ranking number without the ordinal indicator, so we use str.match(re)[1].

A non-capturing group may have a quantifier like a regular group. In the
following example, the final question mark makes the group optional, so the
pattern matches non-ordinal numbers as well:

part_2/non_capturing_group/non_capturing_ex2.js

 const re = /(\d{1,3})(?:st|nd|rd|th)?/ ;

 const str = "Tiger Woods sits 16 in the latest World Golf Ranking." ;

 const match = str.match(re);

 if (match) {

 console.log("Player Rank: " + match[1]); // → Player Rank: 16

 }

http://media.pragprog.com/titles/fkjavascript/code/part_2/non_capturing_group/non_capturing_ex2.js

The question mark at the end of this regex is not related to the one in the
group. It simply tells the regular expression engine to match zero or one
occurrence of the group.

Remember, to avoid capturing a matched substring, use a non-capturing group
instead of a regular one. Your code may also benefit from using non-capturing
groups when adding more groupings to an existing pattern. This way, you
won’t have to make major changes when revising a pattern. There’s also a
minor performance improvement in some engines because JavaScript doesn’t
have to add the group to the result.

Recipe 33
Reading Groups with Ease Using Named
Capturing Groups

Task
Suppose you need to find the exact time when an error occurred by searching
through a log file. You know that the time is in the format of hours, minutes,
seconds, and AM/PM indicator (HH:MM:SS XM). To extract each time
segment, you create a pattern that can recognize and capture each segment
separately. However, as the number of groups in the pattern increases, the
already cryptic regex syntax becomes even harder to read. Consider this
example:

part_2/named_capturing_group/ncg_ex1.js

 const re = /(\d{2}):(\d{2}):(\d{2})\s(\w{2})/ ;

 const match = "09:30:00 AM" .match(re);

 console.log(match[1]);

 console.log(match[2]);

 console.log(match[3]);

 console.log(match[4]);

Which one of these matches represents minutes? And which one represents
seconds? Using a more expressive syntax to group the segments can greatly
reduce the chances of encountering issues in your code.

Solution

Use named capturing groups:

part_2/named_capturing_group/ncg_ex2.js

 const re = /(?<hour>\d{2}):(?<min>\d{2}):(?<sec>\d{2})\s(?<period>\w{2})/ ;

 const match = "09:30:00 AM" .match(re);

 console.log(match.groups.hour); // → 09

 console.log(match.groups.min); // → 30

http://media.pragprog.com/titles/fkjavascript/code/part_2/named_capturing_group/ncg_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/named_capturing_group/ncg_ex2.js

 console.log(match.groups.sec); // → 00

 console.log(match.groups.period); // → AM

A named capturing group uses a more extended syntax in the form of (?
<name>...). So, patterns with multiple capturing groups can be read and edited
with less difficulty.

Discussion
Named capturing groups is a syntax introduced in ES2018. A valid capturing
group name must be an alphanumeric sequence starting with a letter. To avoid
name collision with existing property names, JavaScript assigns all named
groups to a separate object called groups.

If a pattern has an optional named capturing group that does not participate in
the match, it will still create a property for that group on the groups object.
Let’s make the last capturing group in our code optional by placing a question
mark after it to see what happens:

part_2/named_capturing_group/ncg_ex3.js

 const re = /(?<hour>\d{2}):(?<min>\d{2}):(?<sec>\d{2})\s?(?<period>\w{2})?/ ;

 // A timestamp without AM/PM

 const str = "09:30:00" ;

 const match = str.match(re);

 console.log(match.groups);

 // → {hour: "09", min: "30", sec: "00", period: undefined}

In this example, period doesn’t participate in the match, but it’s still included in
the groups object. Even if there is no named group in the regex, the groups

object will be available in the result:

part_2/named_capturing_group/ncg_ex4.js

 const re = /\w+/ ;

 const match = "abc" .match(re);

http://media.pragprog.com/titles/fkjavascript/code/part_2/named_capturing_group/ncg_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/named_capturing_group/ncg_ex4.js

 console.log("groups" in match); // → true

It’s also possible to use numbered references to access named groups. Of
course, employing numbered references would defeat the purpose of our
recipe (reading the value of groups with ease). However, you may find
numbered references useful when you want to improve the readability of the
regex part of your code only:

part_2/named_capturing_group/ncg_ex5.js

 const re = /(?<hour>\d{2}):(?<minute>\d{2}):(?<second>\d{2})/ ;

 const match = "09:30:00" .match(re);

 console.log(match[0]); // → 09:30:00

 console.log(match[1]); // → 09

 console.log(match[2]); // → 30

 console.log(match[3]); // → 00

Take advantage of the named capturing group syntax when writing patterns
with multiple capturing groups to easily edit the pattern and read the result.

http://media.pragprog.com/titles/fkjavascript/code/part_2/named_capturing_group/ncg_ex5.js

Recipe 34 Using Special Replacement Patterns

Task
Imagine you have a private group web page where members agreed to share
their contact information with other members. You don’t want to impose any
restrictions on the phone number format the website accepts other than it
should consist of ten digits. So, a user might enter 123-456-7890, 123 456
7890, or (123)4567890.

But you want to transform the digits into a formatted phone number so they
will display consistently, like (123) 456-7890, throughout the website. To
achieve this, you first need to remove any existing formatting from the
number and then format it the way you want.

Solution

Remove all formatting by replacing non-digit characters with an empty string:

part_2/replacement_patterns/replacement_ex1_p1.js

 const phoneNum = "123-456-7890" ;

 const re = /\D/g ;

 phoneNum.replace(re, ""); // → "1234567890"

To format the number, use capturing groups to match different sections of the
phone number, and refer to each section with a replacement pattern:

part_2/replacement_patterns/replacement_ex1_p2.js

 const phoneNum = "1234567890" ;

 const re = /(\d{3})(\d{3})(\d{4})/ ;

 phoneNum.replace(re, "($1) $2-$3"); // → "(123) 456-7890"

Your final code should look like this:

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex1_p1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex1_p2.js

part_2/replacement_patterns/replacement_ex1_final.js

 const phoneNum = "123-456-7890" ;

 function formatPhoneNumber(num) {

 // Remove non-digits

 num = num.replace(/\D/g , "");

 // Format the number

 num = num.replace(/(\d{3})(\d{3})(\d{4})/ ,

 "($1) $2-$3");

 return num;

 }

 formatPhoneNumber(phoneNum); // → "(123) 456-7890"

Success: you now have a nicely formatted phone number to display despite a
variety of formats entered by users.

Discussion
In this recipe, we use the replace() method to execute the regex patterns.
replace() takes a regex as its first argument, attempts to find a match in the
given string, and replaces it with its second argument. The first regex consists
of only one metacharacter: \D, which matches any non-digit character. When
we use it with the global flag (g), we get a string with all non-digit characters
removed.

The second regex formats the number. When we use capturing groups, input
strings that match are stored in memory and available to be recalled later. In
this case, we’re recalling the first, second, and third capturing groups by using
special replacement patterns in the form of $1, $2, and $3, respectively.

A special replacement pattern starts with a dollar sign and has a special
meaning when used in the second argument of the replace() method. The result
is a formatted phone number ready to be displayed to the end user.

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex1_final.js

Exploring Other Special Replacement Characters
Besides $n, other special characters exist that allow reusing the portions of the
matched text. These characters are the only special constructs accepted in a
replacement string, so metacharacters like \w aren’t valid. Similarly, special
replacement characters only work in the replacement string and have no
special meaning in a regex pattern.

$<Name>

Includes a named capturing group. Here’s an example of what the solution in
this recipe would look like if we wrote it with named capturing groups:

part_2/replacement_patterns/replacement_ex3.js

 const phoneNum = "123-456-7890" ;

 function formatPhoneNumber(num) {

 // Remove non-digits

 num = num.replace(/\D/g , "");

 // Format the number

 num = num.replace(/(?<area>\d{3})(?<exchange>\d{3})(?<line>\d{4})/ ,

 "($<area>) $<exchange>-$<line>");

 return num;

 }

 formatPhoneNumber(phoneNum); // → "(123) 456-7890"

For further explanation of named capturing groups, see Recipe 33, Reading
Groups with Ease Using Named Capturing Groups.

$n
Includes the nth captured group, where n is a positive integer. You’ve already
seen this special character in action, but we’re including it here for
comparison:

part_2/replacement_patterns/replacement_ex7.js

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex7.js

 const str = "cold & hot" ;

 const re = /(cold)\s&\s(hot)/ ;

 str.replace(re, "$2 & $1"); // → "hot & cold"

Available Only in Regex
$n and $<Name> constructs have a special meaning only if the
pattern is a regex. In a string, they’re treated as literals.

$&
Includes a copy of the matched substring. For example:

part_2/replacement_patterns/replacement_ex4.js

 const str = "FAT is a computer file system architecture" ;

 const re = /FAT/ ;

 str.replace(re, "$& (File Allocation Table)");

 // → "FAT (File Allocation Table) is a computer file system architecture"

$’

A dollar sign followed by an apostrophe includes the portion of the input that
comes after the matched substring. For instance:

part_2/replacement_patterns/replacement_ex5.js

 const str = "#3" ;

 const re = /#/ ;

 str.replace(re, "#$'"); // → "#33"

$‘
A dollar sign followed by a backtick includes the portion of the input that
comes before the matched substring:

part_2/replacement_patterns/replacement_ex6.js

 const str = "1000 liter" ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex5.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex6.js

 const re = /liter/ ;

 str.replace(re, "liter = $`kg"); // → "1000 Liter = 1000 kg"

Sometimes the difference between an apostrophe and a backtick can be hard to
see. A way to remember the difference is that the backtick points backward
and so gives you the string that comes before the match.

$$
Includes a dollar sign ($):

part_2/replacement_patterns/replacement_ex8.js

 const str = "€700" ;

 const re = /€/ ;

 str.replace(re, "$$"); // → "$700"

We’ll talk about this pattern in more detail in Recipe 35, Taking Away the
Special Meaning of Replacement Patterns.

Ordering
You may use special replacement characters more than once and
in any order.

Take advantage of special replacement characters inside a replacement string
to reference different parts of the matched substring. One thing to remember
about replace() is that it does not modify the original string. Instead, it creates a
new string, performs the replacement operation, and returns the edited copy.

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_patterns/replacement_ex8.js

Recipe 35
Taking Away the Special Meaning of
Replacement Patterns

Task
Suppose your task is to add the pricing for different services to a website’s
blog. More specifically, you need to add the fee for tire replacement at a car
service center. In your first attempt, you come up with a solution like this:

part_2/neutralizing_replacement/nrp_ex1.js

 const str = "In our shops, tire change takes about 15 minutes." ;

 const re = /\b(tire change)\b/ ;

 str.replace(re, "$1 (which cost $10 for each tire)");

 // → "In our shops, tire change (which cost tire change0 for each tire)

 // takes about 15 minutes."

This regex attempts to find the phrase “tire change” in a string and add the
cost in parentheses. It uses a special replacement pattern in the form of $1, but
because the regex treats $10 as a special replacement pattern, the result is
unusable.

You need a solution to take away the special meaning of $1 in $10, which has a
corresponding capturing group in the pattern, and use the characters literally.

Solution

Escape the dollar sign with another dollar sign:

part_2/neutralizing_replacement/nrp_ex2.js

 const str = "In our shops, tire change takes about 15 minutes." ;

 const re = /\b(tire change)\b/ ;

 str.replace(re, "$1 (which cost $$10 for each tire)");

 // → "In our shops, tire change (which cost $10 for each tire) takes

 // about 15 minutes."

http://media.pragprog.com/titles/fkjavascript/code/part_2/neutralizing_replacement/nrp_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/neutralizing_replacement/nrp_ex2.js

Successful outcome! The dollar sign neutralizes the special meaning of $1, so
the regex engine recognizes it as literal characters.

Discussion
In this recipe, the regex has a single capturing group. But, what happens if you
try to refer to a group that doesn’t actually exist? If you type $2 in the
replacement text, it won’t correspond to anything. For example:

part_2/neutralizing_replacement/nrp_ex3.js

 const str = "In our shops, tire change takes about 15 minutes." ;

 const re = /\b(tire change)\b/ ;

 str.replace(re, "$1 (which cost $20 for each tire)");

 // → "In our shops, tire change (which cost $20 for each tire) takes

 // about 15 minutes."

If you use a two-digit reference in the replacement string, the outcome will
depend on the number of capturing groups in the pattern. If you have ten
capturing groups and use $10, it refers to the tenth capturing group. If you
have fewer capturing groups, $10 only uses the first digit that refers to the first
capturing group and uses 0 as a literal replacement string. This is what
happened in the first example in this recipe: “$1” in “cost $10” referenced
“tire change” and “0” was treated as a literal character.

The takeaway from this recipe is to use $ to neutralize the special meaning of
a replacement pattern.

http://media.pragprog.com/titles/fkjavascript/code/part_2/neutralizing_replacement/nrp_ex3.js

Recipe 36 Using a Function as the Replacement Pattern

Task
Suppose your task is to improve an online real-estate marketplace that lists
property specifications in square feet. You need to write a code that finds
square feet values and provides a square meter version in parentheses so that
international buyers can easily understand them.

Solution

Start with creating a function that converts a square feet value to a square
meter (m2):

 function convertToM2(sqft) {

 // remove non-digit characters

 sqft = sqft.replace(/\D/g, "");

 // convert sqft to m2

 const m2 = sqft * 0.0929;

 // round to two decimal places and return it

 return m2.toFixed(2);

 }

Now, you need a function that receives a string as input and scans it for digits
followed by units such as “sqft,” “sq. ft,” or “sq ft.” Once a match is found,
you want to call the convertToM2() function to convert the value into square
meters, and then append the converted result to the original matched value.

That’s where using a function as the replacement argument comes in:

 function appendM2ToSqft(str) {

 return str.replace(/\d+,?\d+\s(sqft|sq\.?\sft)/ig, (match) => {

 return `${match} (${convertToM2(match)} m2)`;

 });

 }

Here’s how the final code looks like:

part_2/replacement_fn/replacement_fn_ex1.js

 const str = "3 Beds, 2.5 baths, 1,850 Sq. Ft" ;

 // Convert sqft to m2

 function convertToM2(sqft) {

 // Remove non-digit characters

 sqft = sqft.replace(/\D/g , "");

 // Convert sqft to m2

 const m2 = sqft * 0.0929;

 // Round to two decimal places and return it

 return m2.toFixed(2);

 }

 // Match sqft in the string, have it converted to m2,

 // wrap parentheses around the result, and append it to sqft

 function appendM2ToSqft(str) {

 return str.replace(/\d+,?\d+\s(sqft|sq\.?\sft)/ig , (match) => {

 return ̀ ${match} (${convertToM2(match)} m2)` ;

 });

 }

 appendM2ToSqft(str);

 // → "3 Beds, 2.5 baths, 1,850 Sq. Ft (171.86 m2)"

Using this code, you can list the size of a property in both square feet and
square meters.

Discussion
Let’s start with examining the regex pattern:

 /\d+,?\d+\s(sqft|sq\.?\sft)/ig

 ● \d matches a digit
 ○ + matches the previous token between one and unlimited times
 ● , matches the character "," literally
 ○ ? matches the previous token zero or one time

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_fn/replacement_fn_ex1.js

 ● \d matches a digit
 ○ + matches the previous token between one and unlimited times
 ● \s matches any whitespace character
 ● (sqft|sq.? ft) 1st capturing group
 ○ sqft 1st alternative
 ○ sqft matches the characters "sqft" literally
 ○ sq\.?\sft 2nd alternative
 ○ sq matches the characters "sq" literally
 ○ \. matches a period literally
 ○ ? matches the previous token zero or one time
 ○ \s matches any whitespace character
 ○ ft matches the characters "ft" literally
 ● Flags
 ○ i enables case-insensitive matching
 ○ g enables global matching, which indicates we want to look for all
 matches, rather than stopping after the first match

The replace() method accepts either a string or a function as the replacement
argument. If you use a function, it gets executed for every match, and its
output becomes the replacement text.

The replacement function has the following syntax:

part_2/replacement_fn/replacement_fn_ex2.js

 function replacer(match, p1, p2, /* …, */ pN, offset, string, groups) {

 return replacement;

 }

The first parameter contains the matched string (similar to $&). If there are
capturing groups, they will be available next to the first parameter (p1, p2, /* …,

*/ pN).

The next parameter provides the offset of the matched string. So, if you had
“Hello” as a string and “ll” as a search pattern, the offset would be 3. There’s
also a string parameter containing the entire supplied string.

Finally, the groups parameter will be available if you have at least one named
capturing group in the pattern. In this recipe, we’re only using the first
parameter, so we leave out other parameters.

http://media.pragprog.com/titles/fkjavascript/code/part_2/replacement_fn/replacement_fn_ex2.js

Inside the replacer function, we use a template literal to get the value of match

and pass it to the convertToM2() function. convertToM2() first strips the string of
non-digit characters by replacing them with an empty string. Then it performs
the conversion and returns the result. The outcome is a string containing a
square meter value in parentheses that’s appended to the original matched
string.

Take advantage of a replacement function when you need to perform
calculations or process the matched value in the replacement string.

Recipe 37 Escaping Metacharacters with the Backslash

Task
Suppose you have an array of quotations that uses square brackets to include
words within a quote that are not part of the original quote:

 const quotes = [

 "The children [Hansel and Gretel] found a house made of candy.",

 "Fortune favors the bold.",

 "They [France] are playing against England tomorrow.",

 "Everything you’ve ever wanted is on the other side of fear.",

 // ...

]

You want to find those instances containing square brackets so that you can
add them to a new collection for search purposes:

 const quotesWithMod = [

 "The children [Hansel and Gretel] found a house made of candy.",

 "They [France] are playing against England tomorrow.",

]

Since a bracket has a special meaning in regex, you need a way to escape the
bracket character to match the actual bracket.

Solution

Precede the brackets with a backslash (\) to match for the actual bracket:

part_2/backslash/backslash_ex1.js

1: const quotes = [

- "The children [Hansel and Gretel] found a house made of candy." ,

- "Fortune favors the bold." ,

- "They [France] are playing against England tomorrow." ,

5: "Everything you’ve ever wanted is on the other side of fear." ,

- // ...

-]

-

http://media.pragprog.com/titles/fkjavascript/code/part_2/backslash/backslash_ex1.js

- const quotesWithMod = [];

10:

const re = /\[\w+(?:\s\w+)*\]/ ;

-

- quotes.forEach(quote => {

- if (re.test(quote)) {

- quotesWithMod.push(quote);

15:

 }

- });

-

- console.log(quotesWithMod);

-

20:

// log:

- // [

- // "The children [Hansel and Gretel] found a house made of candy.",

- // "They [France] are playing against England tomorrow."

- //]

You now have a separate array containing quotes with words that are not part
of the original quote.

Discussion
The regex in our example matches any text enclosed in square brackets, which
could contain one or more words separated by spaces. Pay attention to the
backslash character preceding [and]. Without a backslash, these brackets
would be treated as a character class. \w and \s are different: the backslash
before them is a part of the expression and creates a shorthand character class
(see Recipe 28, Matching a Range of Characters with Character Classes).

When a backslash is followed by certain characters, it has a special meaning
in the regular expression. For example, \n will represent a line feed, and \s will
match a whitespace character. But we can also use a backslash to escape
metacharacters. When we want to take away the special meaning of a
metacharacter and use it as a literal character, we need to precede it with a

backslash. For instance, to match a backslash followed by the letter “s,” we
write \\s.

Let’s look at the regex pattern step by step:

 /\[\w+(?:\s\w+)*\]/

 ● \[matches the character "[" literally
 ● \w matches a word character (ASCII letter, digit, or underscore)
 ○ + matches the previous token between one and unlimited times
 ● (?:\s\w+)* non-capturing group
 ○ (?: indicates the start of a non-capturing group
 ○ \s matches a whitespace character
 ○ \w matches a single word character (ASCII letter, digit, or underscore)
 ○ + matches the previous token between one and unlimited times
 ○) closes the non-capturing group
 ○ * matches the previous token between zero and unlimited times
 ● \] matches the character "]" literally

In line 12, we try to loop through each quote in the quotes array using the
forEach() method. Inside the loop, we call the test() method on the regex to
check whether the current quote contains a word enclosed in square brackets.
If the test returns true, we add the current quote to the quotesWithMod array
using the push() method.

In the end, the quotesWithMod array will contain all the quotes from the quotes

array that include a word enclosed in square brackets.

Escaping a Normal Character

Escaping a Normal Character
If you attempt to escape a character that is not a metacharacter,
the character will be treated as a literal character and nothing will
happen to it. In other words, escaping a non-metacharacter will
not have any effect on the character’s interpretation by the engine.
Here’s an example:

The code tag should not be here.

But there is one exception to this rule: if you set the u flag, the
engine will enforce stricter rules about the unnecessary use of
backslashes and throw an error. For more on the u flag see Recipe
43, Enabling Unicode Features with the u Flag.

Remember, you can use a backslash when you want to take away the special
meaning of a metacharacter and use it as a literal character in a regex pattern.

Recipe 38 Creating Lazy Quantifiers with the Question Mark

Task
Suppose your task is to write a script that reduces the size of HTML files by
removing all comments. The syntax for an HTML comment is <!-- Comment -->.
So, to accomplish this task, you might assume that you just need to remove
the opening and closing brackets of the comment syntax and any characters
that exist between them:

part_2/lazy_quantifiers/lazy_ex1.js

 const re = /<!--.*-->/ ;

 const str = "HTML comment: <!-- I'm a comment -->" ;

 str.replace(re, ""); // → "HTML comment: "

Here, the full stop (.) matches any character (except for a line break), and the
quantifier * tells the engine to do this zero or more times. This pattern works
for a single-line comment. What about comments that span multiple lines?

Since the full stop (.) doesn’t match line break characters, the regex will fail.
A common workaround is to use a character class, like [\d\D], in place of a full
stop. \d matches any digit character, and \D matches everything else.
Combined, they let you match any character:

part_2/lazy_quantifiers/lazy_ex2.js

 const re = /<!--[\d\D]*-->/ ;

 const str = ̀HTML comment: <!--

 I'm a comment

 -->` ;

 str.replace(re, ""); // → "HTML comment: "

But your code should be able to remove all comments, not just one. So, add a
g flag at the end of the regex:

http://media.pragprog.com/titles/fkjavascript/code/part_2/lazy_quantifiers/lazy_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/lazy_quantifiers/lazy_ex2.js

part_2/lazy_quantifiers/lazy_ex3.js

 const re = /<!--[\d\D]*-->/g ;

 const str = ̀HTML comment: <!-- I'm a comment -->

 Another comment: <!--

 I'm a comment

 -->` ;

 str.replace(re, ""); // → "HTML comment: "

The g flag tells the regular expression engine to search the entire string for all
matches of the pattern, instead of stopping at the first match.

Now you have another problem! The pattern matches the opening bracket of
the first comment and everything that comes after it till the closing bracket of
the last comment. The reason is that quantifiers—in this case *—are greedy!
They try to match as many occurrences of the preceding token as possible,
which isn’t what you want to get this task done.

You need a way to change how a quantifier behaves.

Solution
Make the * quantifier lazy by placing a question mark after it:

part_2/lazy_quantifiers/lazy_ex4.js

 const re = /<!--[\d\D]*?-->/g ;

 const str = ̀HTML comment: <!-- I'm a comment -->

 Another comment: <!--

 I'm a comment

 -->` ;

 str.replace(re, "");

 // → "HTML comment:

 // Another comment: "

Your regex is now able to match each comment precisely.

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_2/lazy_quantifiers/lazy_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/lazy_quantifiers/lazy_ex4.js

As you learned in Recipe 29, Repeating Part of a Regex with Quantifiers, the
+ quantifier allows you to match the preceding token one or more times. So,
the pattern \w+ matches one or more word characters in a string.

But in a string like “str,” should \w+ match “s” or “str”? How does the regex
engine decide between matching “one” or “more” characters? Quantifiers are
greedy by default, matching the previous token as many times as possible. A
question mark forces the quantifier to take the opposite approach (non-greedy)
and match as few times as possible. Compare:

part_2/lazy_quantifiers/lazy_ex5.js

 const str = "str" ;

 str.match(/\w+?/)[0]; // → "s"

 str.match(/\w+/)[0]; // → "str"

The pattern [\d\D]*? in this recipe matches zero or more occurrences of any
character (including digits and non-digits) while trying to match as few
characters as possible. The result is matching the first occurrence of --> rather
than the last.

Nicknames for Laziness
A lazy quantifier is also known as non-greedy or reluctant.

Possessive Quantifiers
JavaScript doesn’t support possessive quantifiers. A possessive
quantifier is similar to a greedy one but offers better performance
in certain situations.

http://media.pragprog.com/titles/fkjavascript/code/part_2/lazy_quantifiers/lazy_ex5.js

Keep in mind that using a question mark immediately after a quantifier,
including *, +, ?, or {}, makes the quantifier lazy.

Recipe 39
Global and Case-Insensitive Matching with the g
and i Flags

Task
Suppose your task is creating a U.S. version of an existing company website.
You need to search the content of web pages, find instances of the word
“tyre,” including its plural form “tyres,” and replace each with its American
spelling “tire.” The search must ignore the letter case, so it matches “Tyre” at
the beginning of sentences as well.

Another requirement is to find all possible matches in the string. So, rather
than stopping the search as soon as a match is found, the engine must continue
looking for more matches in the rest of the string. Doing all these manually
takes a lot of time. Fortunately, regex flags are here to save the day.

One More Time?
You have already seen the i and g flags in action in the previous
recipes. This recipe looks at them one more time to solidify your
understanding of them.

Solution
Place i and g at the end of the pattern:

part_2/flag_global_insensitive/gi_ex1.js

 const str = ̀Tyre pressure is expressed as pounds per square inch

 (PSI). Proper tyre pressure is necessary for optimal handling.

 It's important to inspect your tyres every month for wear.` ;

 const re = /\b(t)yre(s)?\b/gi ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_global_insensitive/gi_ex1.js

 str.replace(re, "$1ire$2");

 // → "Tire pressure is expressed as pounds per square inch (PSI).

 // Proper tire pressure is necessary for optimal handling. It's important

 // to inspect your tires every month for wear."

Mission accomplished! All instances of “tyre” in the string are replaced with
“tire.”

Discussion
In regex literals, it’s possible to specify options by adding single-letter flags,
also known as modifiers, following the forward slash that terminates the
pattern. Normally, the replace() method replaces only the first occurrence of the
specified pattern in a string. But here, we’re using the global search flag (g),
which instructs the engine to continue searching for other pattern occurrences.

The i flag complements the g flag by asking the engine to perform the match
in a case-insensitive manner. Here’s how each token in this regex works:

 /\b(t)yre(s)?\b/gi

 ● \b asserts the position at a word boundary
 ● (t) 1st capturing group
 ○ t matches the character "t" literally
 ● yre matches the characters "yre" literally
 ● (s)? 2nd capturing group
 ○ s matches the character "s" literally
 ○ ? matches the previous token between zero or one time (greedy)
 ● \b asserts the position at a word boundary
 ● Flags
 ○ g global match
 ○ i case-insensitive match

Pay attention to the special characters $1 and $2 in the second argument of
replace(). These characters have special meanings when used in the
replacement string. The pattern $n includes the value matched by the nth
captured group.

Here, $1 refers to the character matched by the first capturing group, and $2

refers to the character matched by the second capturing group. So, if the
pattern matches the word “Tyre” with a capital “T,” that specific word will be
replaced with “Tire.”

Similarly, if the pattern matches the optional “s” in the word “tyres,” that word
will be replaced with “tires.” To learn more about special replacement
patterns, see Recipe 34, Using Special Replacement Patterns.

JavaScript’s regular expression flavor supports seven optional flags, including
d, g, i, m, s, u, and y. Similar to g, these flags are placed after the closing
delimiter in the literal form, or passed as the second argument to the RegExp()

constructor. We’ll look at each of these flags in the recipes that follow.

Recipe 40 Generating Indices for Matches with the d Flag

Task
Suppose you’re building a tool that helps detect errors and potential problems
in JavaScript code. You need your tool to be able to detect the use of reserved
words in variables and functions and warn the user.

Ideally, you want to program your tool to pinpoint the exact part of the code
where the reserved word is misused rather than outputting just a line number.
So, if the code has a variable assignment with a reserved word like this:

 let default = 7;

You want to indicate the error like this:

 let default = 7;

 ↑ ------ Invalid variable name

To achieve this task, you need a regex that provides the start and end indices
of the match.

Solution

Send the supplied code one line at a time to a function that looks for an invalid
variable/function name. Use the d flag to obtain the start and end indices of the
name:

part_2/flag_indices/indices_ex1.js

 // The js code you want to check.

 // In production, you'll likely use the FileReader API

 // or a textarea to grab the code.

 const code = ̀

 let a = 123;

 let b = 456;

 let default = 7;

 ` ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_indices/indices_ex1.js

 // A short list of js reserved words.

 // A full list is available here:

 // https://mzl.la/3XG92DO

 const reserved = ["class" , "default" , "this" , "case" , "if"];

 // Build a regex pattern with the reserved words

 const re = new RegExp(̀(?:var|let|const|function)\\s+(${reserved.join("|")})` ,

 "d");

 // Find and display the location of the reserved word

 function locateReservedWord(line) {

 const match = line.match(re);

 // If no match is found, return

 if (match === null) { return ;}

 // Assign the start and end indices using the destructuring assignment.

 // indices[0] holds the indices of the matched string.

 // indices[1] holds the indices of the first capturing group.

 const [start, end] = match.indices[1];

 // Build the error message

 const error =

 " " .repeat(start) + // Add spaces before the arrow

 "↑" +
 "-" .repeat(end - start - 1) +

 " Invalid name (reserved word)" ;

 console.log(line);

 console.log(error);

 }

 // Split the code into separate lines,

 // then send each line to locateReservedWord()

 code.split(/\n|\r|\r\n/).forEach(line => {

 locateReservedWord(line);

 });

 // Logs:

 // → let default = 7;

 // → ↑------ Invalid name (reserved word)

Your code can now indicate the exact position of a reserved word in a variable
or function name.

Browser Compatibility
Despite being a newcomer to the regex family, the d Flag is
supported by all modern browsers.[23] In the Node environment,
you’ll need a minimum version of 16.0.0 (Released 2021-04-20).
To support older browsers, you can use a polyfill available in the
regexp-match-indices package on NPM.[24]

Discussion
The hasIndices flag (d) indicates that the matching result should provide
additional information about the start and end positions of each matched
substring. The information will be stored in a property named indices. Consider
this example:

part_2/flag_indices/indices_ex2.js

 const str = "word1 word2" ;

 const re = /word/ dg;

 console.log(re.exec(str).indices[0]); // → [0, 4]

 console.log(re.exec(str).indices[0]); // → [6, 10]

When we set the d flag in a regex, an indices property will be available in the
result of exec(), match(), and matchAll(). Here, we’re using the exec() method,
which is similar to match() except that it provides indices in the global mode too
(see Appendix 2, Implementing Regex in JavaScript).

The regex in this recipe requires using the RegExp() constructor because we’re
constructing the pattern dynamically with an array of reserved words. Any
backslash in RegExp() must be escaped with another backslash. So, we write
the shorthand character class to match whitespaces in the form of \\s rather

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_indices/indices_ex2.js

than \s. Remember, if your dynamically created list contains a backslash, you
must escape it too.

Also, pay attention to the second parameter of RegExp(). The RegExp()

constructor uses a different approach to set the flags: it takes an optional
second parameter containing the letters of the flags to set. Here, we want to set
the hasIndices flag, so we pass d. As with the first argument, the second
argument must be a string. Do not wrap it in slashes.

Let’s analyze the regex in more detail:

 (?:var|let|const|function)\\s+(${reserved.join("|")})

 ● (?:var|let|const|function) non-capturing group
 ○ 1st alternative: matches the characters "var" literally
 ○ 2nd alternative: matches the characters "let" literally
 ○ 3rd alternative: matches the characters "const" literally
 ○ 4th alternative: matches the characters "function" literally
 ● \\s matches any whitespace character
 ○ + matches the previous token between one and unlimited times
 ● (${reserved.join("|")}) 1st Capturing Group
 ○ ${reserved.join("|")} retrieves the array of reserved words and joins its
 items with a vertical bar, resulting in class|default|this|case|if

 ● Flags
 ○ d provides information about the start and end indices

Take advantage of the hasIndices flag to obtain information about the start and
end positions of matches. Remember, when using the RegExp() constructor, you
can’t append flags to the regex pattern the way you typically do with regex
literals. Instead, you should pass a string containing the flags as the second
argument of the constructor.

Recipe 41
Forcing ^ and $ to Match at the Start and End of a
Line with the m Flag

Task
Imagine you have a database of movie subtitles and want to provide a search
mechanism that returns complete lines containing a specific word. You have
already seen how to assert the start and end of a string in Recipe 24, Asserting
the Start or End of a String with ^ and $.

But this time, you want to assert the start and end of a line. So, if the search
word is “McClaren” and the subtitle file contains these lines:

 ...

 491

 00:39:21,396 --> 00:39:23,481

 Soon as you can, get that plane ready.

 492

 00:39:23,565 --> 00:39:27,485

 Dr. McClaren could lose his leg

 without proper medical attention.

 ...

You want to retrieve only the line containing “McClaren”:

 Dr. McClaren could lose his leg

Solution

To retrieve a complete line, place a caret (^) at the beginning and a dollar
symbol ($) at the end of your regex pattern. Then enable the multiline mode
by setting the m flag:

part_2/flag_multiline/multiline_ex1.js

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_multiline/multiline_ex1.js

 const re = /^.*\bMcClaren\b.*$/m ;

 const str = ̀

 491

 00:39:21,396 --> 00:39:23,481

 Soon as you can, get that plane ready.

 492

 00:39:23,565 --> 00:39:27,485

 Dr. McClaren could lose his leg

 without proper medical attention.

 ` ;

 str.match(re)[0];

 // → "Dr. McClaren could lose his leg"

With the m flag, your regex is able to match the line of text containing the
word “McClaren.”

Reading the File from a Server
Ideally, you’ll want to read a subtitle from your server, and a
useful tool for that job is the fetch() method.[25]

Discussion
The multiline flag allows the regex engine to process a string consisting of
multiple lines. By default, caret (^) and dollar ($) assert the beginning and end
of a string, but in multiline mode, they match the beginning and end of a line
(delimited by non-printable characters like \n and \r). Compare:

part_2/flag_multiline/multiline_ex2.js

 const str = ̀

 Anderson

 Miller

 McClaren

 ` ;

 const re1 = /^McClaren$/ ;

 const re2 = /^McClaren$/m ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_multiline/multiline_ex2.js

 re1.test(str); // → false

 re2.test(str); // → true

In this string, there’s a non-printable newline character at the end of each
word, which indicates the end of a line of text and the start of a new one. You
can confirm that by searching for the escape sequence (\n) in the string:

part_2/flag_multiline/multiline_ex3.js

 const str = ̀

 Anderson

 Miller

 McClaren

 ` ;

 const re = /Anderson\n/ ;

 re.test(str); // → true

What Is a Non-printable Character?
A non-printable character (also known as a control character)
doesn’t represent a written symbol. Instead, it tells certain
applications, such as web browsers, how a document is supposed
to look. Non-printable characters are designed to indicate
formatting actions such as horizontal tab, line feed, carriage
return, etc.

Let’s dig a bit deeper into the regex pattern:

 /^.*\bMcClaren\b.*$/m;

 ● ^ asserts the position at the start of a line
 ● . matches any character
 ○ * matches the previous token between zero and unlimited times
 ● \b asserts the position at a word boundary
 ● McClaren matches the characters "McClaren" literally
 ● \b asserts the position at a word boundary
 ● . matches any character

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_multiline/multiline_ex3.js

 ○ * matches the previous token between zero and unlimited times
 ● $ asserts the position at the end of a line
 ● Flags
 ○ m enables multiline mode

The most important thing to remember from this recipe is to use the multiline
flag (m) when you want to change the default behavior of the caret (^) and the
dollar symbol ($) to match the beginning and end of a line.

Recipe 42
Forcing . to Match Newline Characters with the s
Flag

Task
Suppose you want to write a script that removes all comments from JavaScript
files to reduce their file size. Removing single-line comments is easy: just find
a line that starts with double forward slashes and delete the entire line.

But removing block comments with the /* */ syntax that may span multiple
lines is a bit trickier. You might expect a pattern like /\/*.**\// to work
because it finds a /* followed by any character until it reaches */.

But, the full stop token in this pattern won’t match line break characters, so
the regex could fail:

part_2/flag_dotall/dotall_ex1.js

 const re = /\/*.*?*\// ;

 const comment = ̀/* this

 is a multiline

 comment */` ;

 re.test(comment); // → false

An old workaround is to use two opposite shorthand character classes, such as
[\w\W]. Since all characters are either word characters or non-word characters,
the character class will match any character, including \r and \n:

Fortunately, ES2018 introduced the dotAll mode that fixes this problem more
elegantly.

Solution

Append the s flag to the end of your pattern like this:

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_dotall/dotall_ex1.js

part_2/flag_dotall/dotall_ex2.js

 const re = /\/*.*?*\// s;

 const comment = ̀/* this

 is a multiline

 comment */` ;

 re.test(comment); // → true

Your regex now can match block comments that span multiple lines of text.
Now, let’s take advantage of this feature to build a function that takes a string
and removes all JavaScript comments from it:

part_2/flag_dotall/dotall_ex3.js

 // Remove js comments

 function removeComments(str) {

 // Match block comments (/*...*/)

 const re1 = /\/*.*?*\// sg;

 // Match single line comments (//...)

 const re2 = /\/\/\s.+/g ;

 // Remove comments

 let code = str.replace(re1, "");

 code = code.replace(re2, "");

 return code;

 }

 const jsCode =

 `// a variable

 let abc = 123;

 /* another

 variable */

 let def = 456;` ;

 console.log(removeComments(jsCode));

 //

 // let abc = 123;

 //

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_dotall/dotall_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_dotall/dotall_ex3.js

 // let def = 456;

Note that in some cases, this solution might not be able to remove JavaScript
comments accurately. For example, double forward slashes (//) enclosed in a
string is not a comment anymore, but regex doesn’t see them that way and
removes them. Or */ in the middle of a block comment doesn’t end the
comment in the eye of the JavaScript interpreter, but that’s not the case with
regex. To strip comments from JavaScript more accurately, you can take
advantage of an AST parser, such as acorn.[26]

Discussion
The beauty of using a flag to change how the full stop works is that it lets us
activate the mode on a per-regex basis. This way, existing regular expression
patterns that rely on the old behavior of the full stop won’t be affected.

In this recipe, we created a function that removes both single-line and block
JavaScript comments from a given string. To avoid overcomplicating the
regex, we used two different patterns to match each type of comment
separately. After finding all matches, we replaced them with an empty string,
and returned the modified string.

The first pattern matches a multiline comment that starts with /* and ends with
*/. Since forward slashes are also used to delimit regular expressions in
JavaScript, we need to escape it with a backslash to match a literal forward
slash. Similarly, we need to escape the asterisk with a backslash to match a
literal asterisk:

 /\/*.*?*\//sg

 ● \/ matches the character / literally
 ● * matches the character * literally
 ● . matches any character
 ○ *? matches the previous token between zero and unlimited times, as few
 times as possible (lazy)

 ● * matches the character * literally
 ● \/ matches the character / literally
 ● Flags

 ○ s: enables matching newline characters
 ○ g: enables searching for all matches

We use .*? to match any sequence of characters, including line breaks, but as
few as possible. The ? makes the * lazy. This is important because we want to
match only the content of the comment and not any subsequent comments.

Next, we use *\/ to match a literal asterisk followed by a forward slash. The s
flag at the end of the pattern enables the “dot all” mode. Without this flag, the
. wouldn’t match line breaks, and the regex wouldn’t match multiline
comments.

The second regex matches any sequence of characters that begins with two
forward slashes (“//”) followed by a whitespace character, and then followed
by one or more of any character except a newline character. We need to escape
each forward slash by adding a backslash before it:

 /\/\/\s.+/g

 ● \/ matches the character / literally
 ● \/ matches the character / literally
 ● \s matches any whitespace character
 ● . matches any character
 ○ + matches the previous token between one and unlimited times, as many
 times as possible (greedy)

 ● Flags
 ○ g: enables searching for all matches

We use “.+” to match everything until the end of the line. It’s not necessary to
add any extra expression to make the matching stop at the end of the line. Just
be sure that the s flag is not set for this regex.

The full stop is perhaps the most commonly used metacharacter in the regular
expression. By default, it matches any single character except for line-break
characters. But more often than not, we want to match line breaks, too. The
dotAll mode offers a simple remedy to this problem that can be activated by
the s flag.

Recipe 43 Enabling Unicode Features with the u Flag

Task
Suppose you have an online forum and want to limit the characters in user
posts to words, numbers, underscores, hyphens, and emoticons. You can
impose the first four rules with a character class like [-\w]+. Recall from Recipe
27, Matching One of Several Characters with the Character Class that \w is
equivalent to [a-zA-Z0-9_], so you just need to add the hyphen and emoticons.

Matching emoticons is a bit more complicated. In Unicode, emoticons are a
block of code points containing 80 Unicode emojis. But adding all these code
points to your character class would be a real chore.

You need a solution that enables you to define a range of emojis in the
character class, just as you’d define a range of characters.

Solution

List the first and last emojis of the emoticons Unicode block in a character
class and place a hyphen between them to define a range.[27] Then, append the
u flag to the pattern to enable matching emoji ranges:

part_2/flag_unicode/unicode_ex1.js

 // Match words, numbers, underscores, hyphens, and emoticons

Your pattern is now able to match a range of emojis successfully!

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_unicode/unicode_ex1.js

Although the regex in this recipe contains two hyphens, each serves a different
purpose. The first hyphen matches a hyphen literally because it is located at
the beginning of the character class and cannot possibly define a range. The
second hyphen, however, is placed between two emojis, which tells the regex
engine to match a range:

Without the u flag, this code would throw a SyntaxError:

part_2/flag_unicode/unicode_ex2.js

 // Same pattern with no unicode flag

Another use of the Unicode flag is to tell the engine to treat a pattern as a
sequence of Unicode code points, making it possible to interpret surrogate
pairs as whole characters rather than two separate characters. For instance:

part_2/flag_unicode/unicode_ex3.js

 const str = "\ud846" ;

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_unicode/unicode_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_unicode/unicode_ex3.js

The Chinese character in this example consists of two code points:
\ud846\udf10. Without setting the u flag, the regex engine incorrectly interprets
the first pair as a match. For more details about Unicode, see Appendix 1,
What Is Unicode?.

An important thing to remember about the u flag is that it’s more strict about
the unnecessary use of the backslash. If you escape a character that has no
special meaning in regex, and the Unicode mode is on, you’ll get an error:

part_2/flag_unicode/unicode_ex4.js

 const str = "cab" ;

 /\c/ .test(str);

 // → false

 /\c/ u.test(str);

 // → SyntaxError: Invalid regular expression: /\c/: Invalid Unicode escape

The second regex in this code attempts to escape “c,” which is not a reserved
character. The outcome is a SyntaxError.

Unicode Property Escapes
An extremely useful feature of the Unicode flag is to enable
Unicode property escapes, which you’ll learn about in Recipe 51,
Matching Non-ASCII Numerals with the Unicode Property
Escape.

Nitty-Gritty Details
There are more nitty-gritty details about the u flag that could be
useful to know if you are working with non-BPM characters.
Check out Mathias Bynens’ extensive article on Unicode-aware
regular expressions to learn more.[28]

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_unicode/unicode_ex4.js

The Unicode flag enables various ES2015 Unicode features. You can use it to
define a range of astral (non-BMP) symbols such as emojis, interpret
surrogate pairs as whole characters, interpret Unicode property escapes, and
more.

Recipe 44 Searching from a Specific Index with the y Flag

Task
Let’s say your task is to take the transcript of a conference and organize it in a
way that can be read like an article. Suppose the transcript is like this:

 <p>2:05 pm: We also improved durability, which is another essential aspect

 of our products.</p>

 <p>2:10 pm: It has our most crack resistant front crystal, thanks to a

 stronger and more robust geometry.</p>

 <p>2:15 pm: It’s also our first product to have IP6X certification, so you

 don’t have to worry about wearing it in dusty environments.</p>

And you want to remove the timestamps and extra <p></p> tags, and join the
sentences like this:

 <p>We also improved durability, which is another essential aspect of our

 products. It has our most crack resistant front crystal, thanks to a stronger

 and more robust geometry. It’s also our first product to have IP6X

 certification, so you don’t have to worry about wearing it in dusty

 environments.</p>

The data you want to extract has a fixed structure: a string in a pair of HTML
tags and a timestamp that’s always eight characters long. So, you just need to
retrieve the characters from index 9 onwards.

Solution

Use the sticky flag (y) to match the target string only from the index you
specify with the lastIndex property:

part_2/flag_sticky/sticky_ex1.js

 const re = /.+/ ys;

 re.lastIndex = 9;

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_sticky/sticky_ex1.js

 const str = ̀2:05 pm: We also improved durability, which is another essential

 aspect of our products.` ;

 console.log(str.match(re)[0]);

 // → We also improved durability, which is another essential aspect of our

 // products.

Now that you know your regex works, use it to extract text from an actual
HTML document:

part_2/flag_sticky/sticky.xhtml

 <!doctype html>

 <html lang= "en-us" >

 <head>

 <meta charset= "utf-8" >

 <meta name= "viewport" content= "width=device-width, initial-scale=1" >

 <script src= "sticky_ex2.js" defer></script>

 </head>

 <body>

 <p>2:05 pm: We also improved durability, which is another essential aspect

 of our products.</p>

 <p>2:10 pm: It has our most crack resistant front crystal, thanks to a

 stronger and more robust geometry.</p>

 <p>2:15 pm: It’s also our first product to have IP6X certification, so you

 don’t have to worry about wearing it in dusty environments.</p>

 </body>

 </html>

Call the querySelectorAll() method to retrieve all paragraph elements, and pass
each to a function that applies the regex, like this:

part_2/flag_sticky/sticky_ex2.js

 let result = "" ;

 // Extract info from each element and append it to result

 function extractData(str) {

 const re = /.+/ ys;

 re.lastIndex = 9;

 const match = str.match(re);

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_sticky/sticky.xhtml
http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_sticky/sticky_ex2.js

 if (match) {

 result = result + match[0] + " " ;

 } else {

 throw new Error("No match found.");

 }

 }

 // Execute extractData() for the content of each <p> element

 document.querySelectorAll("p").forEach(el => {

 extractData(el.textContent);

 });

 // Remove newline characters from the resulting string,

 // remove whitespace from both ends of the string,

 // and enclose it in a pair of <p> tags.

 console.log(̀<p> ${result.trim().replaceAll("\n" , "")} </p>`);

You now have contiguous sentences that can be read like a story.

Discussion
The sticky flag performs a search only at the position indicated by the lastIndex

property. Consider this code:

part_2/flag_sticky/sticky_ex3.js

1: const str = "crack resistant" ;

- const re = /resistant/ y;

-

- re.lastIndex = 0;

5: console.log(str.match(re));

- // → null (no match at index 0)

-

- re.lastIndex = 2;

- console.log(str.match(re));

10:

// → null (no match at index 2)

-

- re.lastIndex = 6;

- console.log(str.match(re));

- // → ["resistant", index: 6, input: "crack resistant", groups: undefined]

15:

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_sticky/sticky_ex3.js

- console.log(re.lastIndex);

- // → 15

A sticky search won’t match characters from any index other than the one
indicated by the lastIndex property. Also, notice how the flag updates the
lastIndex property when the operation is successful (Line 16).

The Order of Flags
JavaScript flags can be specified in any order or combination. The
regex /abc/img behaves in the same way as /abc/mgi.

The sticky flag is useful when the string we want to match has a fixed
structure. In this recipe, we knew ahead of time about the structure of the
input string: a timestamp followed by a sentence. So we simplified the pattern
by telling the engine to search only at the position where the data we want is
located. Without the sticky flag, the pattern could become unnecessarily more
complicated.

Recipe 45 Modifying an Existing Regex Literal

Task
Suppose you want to take your teammate’s regular expression literal and
modify it for use in another part of the code. You don’t want to alter the
original regex because it has passed all tests for the job it was intended for.

You need a solution that enables you to modify a copy of an existing regex
literal.

Solution

Use the source and flags properties to retrieve the original regex parts. And
construct a new RegExp object with those parts:

part_2/modifying_regex/modifying_regex_ex1.js

 // Pattern to match a filename with .png extension

 const origRegex = /\b(\w+)\.png\b/ ;

 // Pattern to match a filename with .png or .PNG extension

 const newRegex = new RegExp(origRegex.source, origRegex.flags + "i");

Hooray! You have successfully added the i flag to the regex pattern.

Discussion
JavaScript provides the flags property for reading all flags used in a regex:

part_2/modifying_regex/modifying_regex_ex2.js

 const re1 = /\b(\w+)\.png\b/ig u;

 const re2 = /\b(\w+)\.png\b/ ;

 console.log(re1.flags); // → giu

 console.log(re2.flags); // → ""

http://media.pragprog.com/titles/fkjavascript/code/part_2/modifying_regex/modifying_regex_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/modifying_regex/modifying_regex_ex2.js

Notice how the order of flags changes when reading them. The flags property
always ignores the order of the original pattern and lists them in a fixed order:
“gimuy.” If the pattern has no flags, the return value will be an empty string.

Similarly, the source property gets us the pattern enclosed between the forward
slashes:

part_2/modifying_regex/modifying_regex_ex3.js

 const re = /\b(\w+)\.png\b/ig u;

 console.log(re.source); // → \b(\w+)\.png\b

We can also check if a specific flag is applied to a regex. For example, to see
if the global flag g is set, we can read the global property:

part_2/modifying_regex/modifying_regex_ex4.js

 const re1 = /\b(\w+)\.png\b/ig ;

 const re2 = /\b(\w+)\.png\b/ u;

 console.log(re1.global); // → true

 console.log(re2.global); // → false

The following table lists all supported flags along with their corresponding
properties. Note that all these properties are read-only:

Flag Corresponding Property
d hasIndices
g global
i ignoreCase
m multiline
s dotAll
u unicode
y sticky

http://media.pragprog.com/titles/fkjavascript/code/part_2/modifying_regex/modifying_regex_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/modifying_regex/modifying_regex_ex4.js

Use the flags property to retrieve the flags of a regex object. And use the source

property to retrieve the source text of a regex object. Remember, the returned
value by source is without the two forward slashes on the sides or flags. These
properties are mainly helpful when you want to construct a new pattern from
an existing one.

Recipe 46
Referencing a Matched String with the
Backreference

Task
Suppose your task is to inspect documents for duplicate words, such as “the
the book,” which is a common typographical mistake with texts subject to
heavy editing. The task involves looking for repeated words despite
capitalization differences like “This this.” It also requires finding instances
with varying amounts of whitespace between the words, including tabs and
newlines.

You need to come up with a solution that will find all duplicate words and
automatically fix them.

Solution

Capture the word with a capturing group, and use a backreference to match
the same text matched by the capturing group:

part_2/backreference/backreference_ex1.js

 function dupWordRemover(str) {

 const re = /\b([-'\w]+)\s+\1\b/ig ;

 return str.replace(re, "$1");

 }

 const str = "No no man has a a good enough memory to be a successful liar." ;

 dupWordRemover(str)

 // → "No man has a good enough memory to be a successful liar."

Problem solved! Your text is now free of most duplicate words.

The Importance of Evaluating Repeated Words Before Elimination

http://media.pragprog.com/titles/fkjavascript/code/part_2/backreference/backreference_ex1.js

The Importance of Evaluating Repeated Words Before Elimination
Keep in mind that the usage of repeated words is not always a
mistake and eliminating them without evaluation can be risky. For
instance, “had had” is the past perfect form of “have,” and
sometimes words like “ha ha” and other structures can produce
intentionally repeated words. So, it makes sense to check out each
match before getting rid of them.

Also note that this recipe only detects duplicated words consisting
of ASCII word characters. If you want to include accented letters
and letters from different writing systems, you should use the
Unicode Letter category (see Recipe 53, Matching Unicode Word
Boundaries with the Unicode Property Escape).

Discussion
When there’s a capturing group in a pattern, the content inside the parentheses
is bookmarked. A backreference provides a convenient way to reuse this
content in the form of \1, \2, and so forth, where \1 refers to the first captured
group, \2 refers to the second captured group, and so on.

This approach is not the same as just repeating a token or group with a
quantifier. To illustrate this, let’s compare two simple regular expressions:
\d{2} and (\d)\1. The first one uses a quantifier to match any two digits, while
the second one uses a capturing group and backreference to match the same
digit twice.

Now, let’s take a look at the regex step by step:

 /\b([-'\w]+)\s+\1\b/ig

 ● \b asserts the position at a word boundary
 ● ([-'\w]+) 1st capturing group
 ○ [-'\w] matches a single character present in the list below
 ○ - matches a - character literally
 ○ ' matches a ' character literally

 ○ \w matches any word character
 ○ + matches the previous token one or more times
 ● \s matches any whitespace character
 ○ + matches the previous token one or more times
 ● \1 matches the same text matched by the 1st capturing group
 ● \b asserts the position at a word boundary
 ● Flags
 ○ i: enables case-insensitive matching
 ○ g: enables global, which returns all matches

The regex in this recipe starts by matching a word boundary (\b). This ensures
that we are only matching whole words. Then, we use a capturing group
([-’\w]+) to match one or more occurrences of any combination of letters, digits,
underscores, hyphens, and apostrophes. It’s important to match hyphens and
apostrophes because we want to be able to detect repeated words such as
“check-in check-in” and “can’t can’t.”

After capturing the first word, we use \s+ to match one or more whitespace
characters (such as spaces and tabs) between the first and second occurrence
of the captured group. Next, we use the backreference \1 to ensure that the
second occurrence is the same as the first. The regex ends with another word
boundary (\b).

To execute the regex, we use the replace() method. replace() takes the regex as
its first argument, attempts to find a match in the given string, and replaces it
with its second argument. In this case, the replacement value is $1, which is a
special replacement pattern for referring to the first capturing group. The
result is that the matched substring, which is “No no,” gets replaced with
“No.” For more on special replacement patterns, see Recipe 34, Using Special
Replacement Patterns.

We can use a backreference with a named capturing group, too—either with a
regular numbered backreference or the \k<name> syntax. Let’s look at an
example:

part_2/backreference/backreference_ex2.js

http://media.pragprog.com/titles/fkjavascript/code/part_2/backreference/backreference_ex2.js

 function dupWordRemover(str) {

 const re = /\b(?<dup>[-'\w]+)\s+\k<dup>\b/ig ;

 return str.replace(re, "$1");

 }

 const str = "No no man has a a good enough memory to be a successful liar." ;

 dupWordRemover(str)

 // → "No man has a good enough memory to be a successful liar."

This code achieves the same result as the solution in this recipe, except that it
uses a named capturing group (?<dup>[-’\w]+) and references the group with
\k<dup>. For more on named capturing groups, see Recipe 33, Reading Groups
with Ease Using Named Capturing Groups.

One difference between JavaScript’s regular expression flavor and other
flavors is the way it handles backreference. Unlike most flavors, JavaScript
doesn’t distinguish between a backreference to a capturing group that matched
nothing, and a backreference to a capturing group that didn’t participate in the
match.

Let me clarify with a simple example: the regex /(-?)cat\1/ matches the string
“cat,” “-cat,” or “-cat-.” In JavaScript, this pattern is equivalent to /(-)?cat\1/.
But that’s different from most other regex flavors.

Here’s how the regex engine in JavaScript processes /(-?)cat\1/ when applied to
the string “cat.” First, the regex engine attempts to match a hyphen (-) literally,
and it successfully matches nothing (recall that ? is a metacharacter that
matches zero or one occurrence of the preceding character).

The next character in the string is the letter c, and the engine successfully
matches it. The engine also matches the next two characters: a and t. Finally,
\1 successfully matches the same zero occurrences of - in the capturing group.

Now let’s look at the second pattern: /(-)?cat\1/. Here, the engine cannot match
-, but since there is a question mark after the capturing group, it becomes

optional, and the engine proceeds to match the literal characters. The regex \1

refers to the capturing group that failed to match anything, resulting in a
backreference that also fails to match.

There’s no question mark after the backreference to make it optional, so the
overall match fails in most flavors. But JavaScript is different. In JavaScript, a
backreference to a capturing group that did not participate in the match
successfully matches nothing, causing the overall match to succeed.

On one hand, it can be advantageous because you don’t need to worry about
whether a particular capturing group participated in the match or not. On the
other hand, this lack of distinction can cause your pattern to fail in other regex
flavors.

Reusing a Backreference
A backreference can be reused more than once. For example,
(ha)\1\1 matches hahaha.

Forward References
JavaScript doesn’t support forward references. A forward
reference lets you reference a group that appears later in the
regex.

Take advantage of a backreference to refer to the exact text matched by a
capturing group. You can reuse the content in the form of \1, \2, and so on,
when using a normal capturing group. If you are using a named capturing
group, you can also use the \k<name> syntax.

Recipe 47 Testing a Pattern with the Positive Lookahead

Task
Suppose your task is to fix a mistake in several documents that inaccurately
list a company’s revenue in dollars, instead of euros. You need to find all
instances of “$90.3 million” and replace “$” with “€.”

So, what you need is a regex pattern that finds “$90.3 million” in a sentence
such as this:

 "The Company posted a September quarter record revenue of $90.3 million,

 up 8 percent year over year."

But you want to match and replace only the currency sign, not the entire
string. You need a way to exclude “90.3 million” from the match result.

Solution

Use a positive lookahead denoted by (?= ...) to match the part of the string that
you don’t want to include in the result:

part_2/positive_lookahead/positive_lookahead_ex1.js

 const str = ̀The Company posted a September quarter record revenue

 of $90.3 million, up 8 percent year over year.` ;

 const re = /\$(?=90\.3\smillion)/ig ;

 // Replace only $ with €

 str.replace(re, "€");

 // → "The Company posted a September quarter record revenue \n

 // of €90.3 million, up 8 percent year over year."

With the (?= ...) syntax, you require a pattern to appear after the regex match
without including it in the match.

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_2/positive_lookahead/positive_lookahead_ex1.js

Lookaheads are non-capturing groups that allow us to match a pattern based
on the substring that follows the pattern. For a positive lookahead match to be
successful, it must match a pattern followed by the pattern in subexpression.

Notice the output of match() in the following code, which is only “$.”

part_2/positive_lookahead/positive_lookahead_ex2.js

 const str = "$90.3 million" ;

 const re = /\$(?=90\.3\smillion)/ ;

 str.match(re)[0]; // → "$"

When using a lookahead, the subexpression is not included in the result. It
also can’t be referenced with a backreference.

There’s a workaround, though. If you place capturing parentheses around the
expression in the lookahead like (?=(regex)), you can capture the match in
lookarounds, too. Wrapping the entire lookahead in parentheses won’t work
because when the capturing group wants to store the match, the lookahead will
already have discarded it.

Don’t confuse capturing and matching. The positive lookahead assertion (?= ...)

and the non-capturing group (?: ...) serve different purposes. While both don’t
capture the substring they match, the non-capturing group includes the
substring in the overall match, while the positive lookahead assertion does not.

For example, if we rewrite the solution in this recipe to substitute a non-
capturing group for the lookahead assertion, the entire match gets replaced:

part_2/positive_lookahead/positive_lookahead_ex3.js

 const str = ̀The Company posted a September quarter record revenue

 of $90.3 million, up 8 percent year over year.` ;

 const re = /\$(?:90\.3\smillion)/ig ;

 str.replace(re, "€");

 // → "The Company posted a September quarter record revenue \n

http://media.pragprog.com/titles/fkjavascript/code/part_2/positive_lookahead/positive_lookahead_ex2.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/positive_lookahead/positive_lookahead_ex3.js

 // of €, up 8 percent year over year."

For more on non-capturing groups, see Recipe 31, Extracting a Matched Value
with the Capturing Group.

Now, let’s dig a bit deeper into the regex pattern:

 /\$(?=90\.3\smillion)/ig

 ● \$ matches the character "$" literally
 ● (?=90.3\smillion) positive lookahead
 ○ 90 matches the characters "90" literally
 ○ \. matches the character "." literally
 ○ 3 matches the character "3" literally
 ○ \s matches any whitespace character
 ○ million matches the characters "million" literally
 Flags

 ● i case-insensitive match
 ● g global match

Use a lookahead to inspect whether it’s possible to match a specific string
without actually matching it. You have two types of lookaheads at your
disposal: positive lookahead and negative lookahead. The positive lookahead
is denoted by the (?= ...) syntax, and it ensures that a pattern is followed by
another pattern. On the other hand, negative lookahead, which we will focus
on in the next recipe, is denoted by (?! ...), and it guarantees that a pattern is not
followed by another pattern.

Recipe 48 Testing a Pattern with the Negative Lookahead

Task
Suppose you want to match any two-digit number except 41, 66, and 77
because these are retired jersey numbers, so you want to make sure they don’t
get reassigned to a new player.

You could use several character classes matching a range between 00 to 40, 42
to 65, 67 to 76, and 78 to 99. But you’d end up with a very long and
complicated pattern. Fortunately, there’s a more compact way to get the same
result with lookahead assertions.

Solution

Use a negative lookahead assertion denoted by (?! ...):

part_2/negative_lookahead/negative_lookahead_ex1.js

 const re = /#(?!41|66|77)\d{2}/

 re.test("#00"); // → true

 re.test("#39"); // → true

 re.test("#41"); // → false

 re.test("#66"); // → false

 re.test("#77"); // → false

 re.test("#98"); // → true

A negative lookahead matches a pattern not followed by another pattern. In
this code, the negative lookahead ensures that the string following “#” isn’t
“41,” “66,” or “77.”

Discussion
Negative lookahead is a type of non-capturing group denoted by the syntax (?!

...), where the … represents the pattern that should not be present immediately
after the current position in the string.

http://media.pragprog.com/titles/fkjavascript/code/part_2/negative_lookahead/negative_lookahead_ex1.js

Let’s examine how the engine interprets the regex /#(?!(41|66|77))\d{2}/ when
applied to the string “#39”:

 #39

 |

 # matches a hash sign literally.

 #39

 |

 (?!41|66|77) successfully matches a string that isn't 41, 66, or 77.

 The pointer remains at #.

 #39

 |

 \d matches a digit.

 #39

 |

 \d matches a digit.

Lookaheads let you check whether you can match a specific string without
actually matching it. Use a negative lookahead when you want to ensure a
pattern does not follow another pattern.

Recipe 49 Testing a Pattern with the Positive Lookbehind

Task
Suppose your task is to extract questions from a standardized test and store
them in a database. The info you’re looking for always comes after a
numbering system like “Question #5:”, but you want to extract the question
text without its numbering.

The sticky flag wouldn’t be effective in this case because the length of
characters in the numbering system varies between questions. For instance,
one question may begin with “Question #9,” while another question may start
with “Question #10” (for more on the sticky flag, see Recipe 44, Searching
from a Specific Index with the y Flag).

You need a solution that allows you to match questions preceded by a
“Question #n” without including the numbering in the result.

Solution

Enclose the pattern in a positive lookbehind assertion denoted by (?<= ...):

part_2/positive_lookbehind/positive_lookbehind_ex1.js

 const re = /(?<=Question\s#\d{1,3}:\s).+?\./ig s;

 const str = ̀

 Question #9: The Peloponnesian Wars were fought between __________.

 Question #10: A ziggurat is __________.

 ` ;

 const questions = str.match(re);

 console.log(questions);

 // → [

 // "The Peloponnesian Wars were fought between __________.",

 // "A ziggurat is __________."

 //]

http://media.pragprog.com/titles/fkjavascript/code/part_2/positive_lookbehind/positive_lookbehind_ex1.js

Success! The matched items don’t include the numbering system.

Browser Compatibility
Although lookbehind assertions are supported by the latest
version of modern browsers,[29] chances are not all of your users
have updated their browsers. To ensure maximum compatibility,
you can use lookbehind assertions on the server side, where
they’ve been supported since Node 10.3.

Discussion
Before ES2018, JavaScript only supported lookahead assertions in regular
expressions. But, with the introduction of ES2018, lookbehinds were added to
enhance JavaScript capabilities. Similar to lookaheads, lookbehinds also come
in two versions: positive and negative.

In this recipe, .+\. matches one or more characters until it reaches a full stop.
But before that, there’s a positive lookbehind that ensures the pattern is
preceded by the word “Question” followed by a whitespace, a #, 1 to 3 digits,
a :, and another whitespace.

Let’s examine the regex pattern step by step:

 /(?<=Question\s#\d{1,3}:\s).+\./igs

 ● (?<=Question\s#\d:\s) positive lookbehind
 ○ Question matches the characters "Question" literally
 ○ \s matches any whitespace character
 ○ # matches the character "#" literally
 ○ \d matches a digit
 ○ {1,3} matches the previous token between 1 and 3 times
 ○ : matches the character ":" literally
 ○ \s matches any whitespace character
 ● . matches any character
 ○ +? matches the previous token between one and unlimited times (lazy)
 ● \. matches the character "." literally
 ● Flags
 ○ i performs a case-insensitive match

 ○ g finds all matches
 ○ s dot matches newline characters

What’s a Lookaround?
The lookahead and lookbehind assertions are collectively called
lookarounds.

Multiple Lookarounds
Several lookarounds of any sort (negative or positive) may appear
in succession to create a more complex pattern.

The important thing to remember about lookarounds is that although they
check if a match is possible, they don’t actually consume the characters in the
string. Lookbehinds are similar to lookaheads except that they work
backward. They instruct the regex to briefly move backward in the string to
see if their subexpression can match.

Recipe 50 Testing a Pattern with the Negative Lookbehind

Task
Suppose you’re searching hospital records for a patient named Smith, but
most of the data you get from search results is about Dr. Smith. You need a
regex that matches “Smith” but excludes “Dr. Smith.”

Solution

Use a negative lookbehind assertion denoted by (?<! ...):

part_2/negative_lookbehind/negative_lookbehind_ex1.js

 const re = /(?<!Dr\.\s)Smith/ ;

 console.log(re.test("Dr. Smith")); // → false

 console.log(re.test("Mr. Smith")); // → true

 console.log(re.test("John Smith")); // → true

Your regex now finds all records containing “Smith” except for “Dr. Smith.”

Discussion
The negative version of lookbehind asserts that the pattern within the
lookbehind does not precede a pattern. In this case, we’re using it to ensure
that the word “Smith” isn’t preceded by an uppercase D, a lowercase r, a
period (.), and a whitespace character (\s). You must use a backslash to escape
the period; otherwise, the regex engine will interpret it as a metacharacter.

Not Just at the Beginning
Lookbehinds can be used anywhere in the regex, not just at the
beginning.

http://media.pragprog.com/titles/fkjavascript/code/part_2/negative_lookbehind/negative_lookbehind_ex1.js

In addition to lookarounds, regular expressions provide several types of
groups that are constructed using a pair of parentheses, with the opening
parenthesis immediately followed by a question mark. For easier comparison,
we’ve summarized the syntax for these groups in the following table. Keep
this table bookmarked—it’s sure to come in handy:

Metacharacter Meaning
(...) Capturing group

Metacharacter Meaning
(?: ...) Non-capturing group
(?= ...) Positive lookahead
(?! ...) Negative lookahead
(?<= ...) Positive lookbehind
(?<! ...) Negative lookbehind

The takeaway from this recipe is to use a negative lookbehind when you want
to match a pattern not preceded by a specific pattern.

Recipe 51
Matching Non-ASCII Numerals with the Unicode
Property Escape

Task
Let’s say you want to match a number in a language that has a different
numeral system, such as Persian or Vietnamese. Remember Recipe 29,
Repeating Part of a Regex with Quantifiers, where you validated a PIN code
with regex?

This time you want to allow users to use numerals in their own language to
create a PIN. But, the problem is that the character class for matching digits
(\d) matches only ASCII digits:

part_2/unicode_property_escapes_p1/upe_p1_ex1.js

 const re = /^\d{4,6}$/ ;

Even setting the Unicode flag won’t help:

part_2/unicode_property_escapes_p1/upe_p1_ex2.js

 const re = /^\d{4,6}$/ u;

You need a solution that lets you verify digits in any language.

Solution

http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p1/upe_p1_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p1/upe_p1_ex2.js

Use a Unicode property escape in the form of \p{Number}:

part_2/unicode_property_escapes_p1/upe_p1_ex3.js

 const re = /^\p{Number}{4,6}$/ u;

Success! You’ve matched digits in three different languages.

Discussion
Symbols in the Unicode standard have various properties and property values.
With Unicode property escapes, regex can match characters based on their
Unicode properties.

In this recipe, we’re using \p{Number} to match every symbol in the Number
category, including Roman numerals and numbers classified as compatibly
equivalent:

part_2/unicode_property_escapes_p1/upe_p1_ex4.js

 const re = /^\p{Number}{4,6}$/ u;

If you want to exclude non-decimal numbers, you can use \p{Decimal_Number}

instead:

part_2/unicode_property_escapes_p1/upe_p1_ex5.js

 const re = /\p{Decimal_Number}/ u;

http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p1/upe_p1_ex3.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p1/upe_p1_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p1/upe_p1_ex5.js

Remember, it’s possible to use Unicode property escapes only when the u flag
is set. If no u flag is present, then the pattern \p is a redundant escape sequence
for the letter p. This is by design so that existing patterns that might use \p{ ... }

wouldn’t break with the introduction of the Unicode property escapes into the
language.

Negated Unicode Property Escapes
Unicode property escapes also have a negated version denoted by
\P{ ... }, which lets you match the opposite of what they normally
match. For example, if you wanted to match a string that doesn’t
have a number, you’d write:

/^\P{Number}+$/u

In this recipe, we used \p{Number} to match symbols in the Number category,
but you can also match other types of symbols. The next recipe shows you
how to take advantage of Unicode property escapes to match a word character.

Recipe 52
Matching Non-ASCII Words with the Unicode
Property Escape

Task
Let’s assume you want to search for a file with a specific extension and extract
the filename. This task is similar to Recipe 31, Extracting a Matched Value
with the Capturing Group, where you matched a file with a .pdf extension.

Now you want to match a filename that has non-ASCII characters. It’s not
uncommon for people to save files in their own language, but your current
script is unable to match non-ASCII letters:

part_2/unicode_property_escapes_p2/upe_p2_ex1.js

 const re = /\b(\w+)\.pdf\b/ ;

You need a solution that allows you to match non-ASCII words.

Solution
Use a combination of Unicode property escapes to match Unicode word
characters in the same way \w matches ASCII word characters:

part_2/unicode_property_escapes_p2/upe_p2_ex2.js

 const re = /([\p{Alpha}\p{Pc}\p{Mark}\p{Nd}\p{Join_Control}]+)\.pdf\b/ u;

http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p2/upe_p2_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p2/upe_p2_ex2.js

Now you can match a filename in any language!

Discussion
The \w character class matches any alphanumeric character from the basic
Latin alphabet, including the underscore. To match a similar range of
characters but in Unicode, we need to use multiple property escapes:

\p{Alpha} is short for Alphabetic and matches any character with the
Alphabetic property

\p{Pc} is an abbreviation for Connector_Punctuation, which matches a
connecting punctuation mark, like an underscore

\p{Mark} matches a combining mark

\p{Nd} is an abbreviation for Decimal_Number and matches a decimal
digit

\p{Join_Control} matches format control characters that have functions for
control of cursive joining and ligation

In the Unicode Standard, each character is assigned a set of properties and
property values. The Unicode property escape enables us to match a character
based on a particular property. For example, the letter “A” has an Alphabetic

property with a value of Yes, which means we can match it with \p{Alpha} or
\p{Alphabetic}.

To see the properties of a particular character, visit the Unicode character
database and enter the character in the search bar.[30] For a list of supported
property escapes, refer to the Unicode specification.[31]

Recipe 53
Matching Unicode Word Boundaries with the
Unicode Property Escape

Task
Suppose you want to search a document for the Portuguese word “vã,” which
means “go,” without matching other words that contain “vã,” such as “vão.”
To achieve this, you try using word boundaries to isolate the word “vã” from
other words containing similar characters:

part_2/unicode_property_escapes_p3/upe_p3_ex1.js

 const re = /\bvã\b/ ;

 "vão" .match(re);

 // → ["vã", index: 0, input: "vão bem", groups: undefined]

 "vã bem" .match(re);

 // → null

But, your regex is matching the opposite of your intended result. The problem
is that the word boundary (\b) considers accented characters such as “ã” as
non-word characters. You need an alternative solution that doesn’t share the
same limitation.

Solution

Use a combination of Unicode property escapes to match word boundaries in
Unicode characters:

part_2/unicode_property_escapes_p3/upe_p3_ex2.js

 let re = /(?<=[^\p{L}\p{M}\p{Nd}\p{Pc}]|^)vã(?=[^\p{L}\p{M}\p{Nd}\p{Pc}]|$)/ u;

 "vão" .match(re);

 // → null

 "vã bem" .match(re);

http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p3/upe_p3_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_2/unicode_property_escapes_p3/upe_p3_ex2.js

 // → ["vã", index: 0, input: 'vã bem', groups: undefined]

Successful outcome! The regex is now able to correctly match the word
boundary in Portuguese and other languages.

Discussion
When dealing with non-English text in JavaScript, one drawback is that the
word boundary in the regex engine identifies only characters present in the
ASCII table. As a result, \b fails to match a “complete word” when performing
a search in text containing accented characters or words written in non-Latin
scripts.

In this recipe, the issue arises because the character “ã” is classified as a non-
word character, resulting in the detection of a word boundary between the
letters “ã” and “o.” Conversely, “ã” followed by a space character creates a
continuous string of non-word characters, and therefore, no word boundary is
detected.

To resolve this problem, we can use a set of Unicode property escapes in a
lookaround:

\p{L} Letter category: matches any type of letter regardless of the
language

\p{M} Mark category: matches a combining character, which is meant to
be joined with another character such as accents, umlauts, enclosing
boxes, and so on

\p{Nd} Decimal digit number: matches any digit between 0 and 9 in any
script, excluding ideographic scripts

\p{Pc} Connector punctuation: matches a punctuation character, such as an
underscore

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Dealing with non-English text in JavaScript requires special attention to
ensure accurate searching and matching of words. Using the standard word
boundary can lead to incomplete matches for accented or non-Latin script
words. Fortunately, by using Unicode property escapes, we can address this
issue and achieve more reliable searches for non-English text.

Wrapping Up
Text processing is an essential part of any modern application. Whether you’re
working on a content-heavy website or building a sophisticated data analysis
tool, using regular expressions can significantly enhance your development
capabilities.

In this part of the book, you discovered how to use regex in JavaScript and
take advantage of various regex methods. You learned about the building
blocks of regex, such as character classes, quantifiers, and metacharacters, and
how to combine them to form more complex patterns.

Up next, you’ll bolster your understanding of regex by solving a wide range of
text manipulation problems that require using the tokens discussed in this part.
Regex may seem daunting at first, but with practice and patience, mastering
this tool can significantly enhance your text-processing capabilities.

Footnotes

https://mzl.la/3u78Y6w

https://www.npmjs.com/package/regexp-match-indices

https://developer.mozilla.org/en-US/docs/Web/API/fetch

https://github.com/acornjs/acorn

https://en.wikipedia.org/wiki/Emoticons_(Unicode_block)

https://mathiasbynens.be/notes/es6-unicode-regex

https://caniuse.com/?search=lookbehind

https://util.unicode.org/UnicodeJsps/character.jsp?a=A&B1=Show

https://mzl.la/3u78Y6w
https://www.npmjs.com/package/regexp-match-indices
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://github.com/acornjs/acorn
https://en.wikipedia.org/wiki/Emoticons_(Unicode_block)
https://mathiasbynens.be/notes/es6-unicode-regex
https://caniuse.com/?search=lookbehind
https://util.unicode.org/UnicodeJsps/character.jsp?a=A&B1=Show

[31] https://unicode.org/reports/tr18/

Copyright © 2024, The Pragmatic Bookshelf.

https://unicode.org/reports/tr18/

Chapter 3

Part III: Mastering Text Processing
in JavaScript

Welcome to the final part of the book! In this part, get ready to tackle some
engaging text-processing challenges. You’ll have the opportunity to apply
the syntax and techniques you’ve learned in the previous sections to handle
a wide range of retrieval and alteration tasks. For example, you’ll:

Extract specific information from large datasets
Clean and format data for easier analysis
Automate repetitive tasks that would otherwise be time-consuming

Working through these recipes will strengthen your problem-solving
abilities in the JavaScript language. As you become more proficient, you’ll
be able to apply your newfound knowledge in more effective ways. Solving
thorny text-processing challenges will become second nature, and you’ll be
able to breeze through such tasks. So let’s get started!

Recipe 54 Validating Email Addresses

Task
Suppose you have a form on your website or app that asks the user for an
email address. Whether it’s for sending newsletters, regular communication,
password recovery, or any other purpose, ensuring that you have the correct
email address is crucial before proceeding—to minimize the number of emails
returned as undeliverable.

What you need is a mechanism to check that the entered text conforms to a
valid email address format.

Solution

If your form is on a website, you can start by setting up the built-in HTML5
form features. First, ensure that your input element has a type attribute with a
value of “email”:

part_3/validating_email/email_ex1.xhtml

 <form>

 <label for= "Email" >Email:</label>

 <input type= "email" id= "Email" >

 <input type= "submit" >

 </form>

Email inputs usually catch the most obvious errors that the user makes when
typing their email. To enforce mandatory input, the easiest validation tool is
the required attribute. To implement it, include the attribute right before the
closing input tag:

part_3/validating_email/email_ex2.xhtml

 <form>

 <label for= "Email" >Email:</label>

 <input type= "email" id= "Email" required>

 <input type= "submit" >

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_email/email_ex1.xhtml
http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_email/email_ex2.xhtml

 </form>

On the server-side, verify that the input has an at sign (@) that’s preceded and
followed by non-whitespace characters:

part_3/validating_email/email_ex2.js

 function isValidEmail(str) {

 const re = /^\S+@\S+$/ ;

 return re.test(str);

 }

 isValidEmail("faraz@"); // → false

 isValidEmail("@abcd"); // → false

 isValidEmail("faraz@somewhere.com"); // → true

This pattern performs a check similar to the HTML mechanism for validating
emails.

Discussion
Designing web forms has always been challenging for programmers.
Although coding the form itself is straightforward, verifying that every input
has a logical and acceptable value poses a greater difficulty, and
communicating any issues to the user can be a headache. Client-side form
validation helps users identify and correct errors in their form submissions
more quickly.

But, it’s important to understand that relying solely on client-side validation
may not provide comprehensive security. To ensure maximum security, your
applications must perform security checks on form data on both the server-
side and client-side. And regex is often the preferred tool for programmers to
perform that task.

In most cases, the regex patterns you come across on the internet are
excessively limiting for email address verification. Some developers
recommend checking the input to conform to the RFC 5322 standard. RFC

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_email/email_ex2.js

5322 defines the structure and syntax of email messages, which includes the
email addresses.[32]

To do that, you’ll need a regex like this:

 const re = /(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+

)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x

 0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9

 -]*[a-z0-9])?|\[(?:(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9]))\.){3}(

 ?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9])|[a-z0-9-]*[a-z0-9]:(?:[\x01

 -\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\

])/;

This regex is equally intimidating to developers who are unfamiliar with
regular expressions and those who are proficient in them! But even validating
an email address according to the RFC standard doesn’t provide any
information about the existence of the address at the given domain or the true
ownership of the address.

According to RFC 5322, qwerty@qwerty.qwerty is a valid email address.
However, it’s not considered valid if the definition of a valid email address
specifies that it must accept email. This is because there is no top-level
domain called qwerty.[33]

Previously, it was logical to restrict the top-level domain to two-letter pairings
for country codes and to perform a complete enumeration of generic top-level
domains, like com|net|org|mil|edu. But as new top-level domains are added
frequently, such patterns that were once valid quickly become outdated.

Basically, you can’t be sure if david@somewhere.com can actually get emails
unless you send one and see if it goes through. Even in this scenario, it’s
uncertain whether the absence of a reply indicates that the domain
somewhere.com is discreetly getting rid of emails sent to non-existent mail
addresses, or if David himself deleted them, or if his spam filter intercepted
them.

A reliable email validation tool will do more than just check the syntax of the
email address or ping a mail server. This process involves sending a message
to the email address entered, which includes a confirmation token.
Confirmation tokens are the only way to verify that the email address entered
is correct.

That’s why the majority of mailing lists rely on this mechanism to authenticate
sign-ups. Because anyone can enter ceo@microsoft.com, which could be
technically valid, yet it’s improbable that the person at the receiving end is the
actual CEO.

Because you need to send a confirmation email to verify whether an address
exists or not, you have the option to choose a less strict regular expression. It
may be better to let some invalid addresses pass through than to
inconvenience people by blocking valid ones. Even though the solution in this
recipe allows characters like %#$ that aren’t typically found in email
addresses, it’s efficient and uncomplicated. Additionally, it will not prevent a
legitimate email address from being accepted.

If you want to add complexity to your regex, my suggestion would be to
notify the user that there could be an issue with the email address rather than
making it forbidden.

Recipe 55 Validating Password Strength

Task
Suppose your task is to check whether the passwords entered by users when
signing up for a user account on your website are resistant to guessing or
brute-force attacks. Usually, companies establish a password policy that
outlines the criteria for creating and using passwords, which set requirements
such as:

Having a minimum length of 8 characters or more
Containing both uppercase and lowercase letters
Containing one or more numerical digits
Containing special characters like @, #, $, etc
Forbidding words listed in the password blocklist
Forbidding words related to the user’s personal information
Forbidding the use of the company name or its abbreviation
Forbidding passwords that match the date of birth, license plate number,
phone number, or other frequently used numbers

The specific guidelines for usage can vary significantly depending on the
business and system. So, this recipe provides a variety of regexes that you can
use as building blocks to create customized validation rules according to your
needs.

For matching non-English characters/digits, use the Unicode variants
represented by \p{…} along with the u flag.

Solution

Containing at least one ASCII uppercase letter (recall that (?= ...) is a positive
lookahead):

 (?=.*[A-Z])

Containing at least one Unicode uppercase letter:

 (?=.*\p{Uppercase})

\p{...} Requires a Flag
Don’t forget to use the u flag when matching Unicode characters.

Containing at least one ASCII lowercase letter:

 (?=.*[a-z])

Containing at least one Unicode lowercase letter:

 (?=.*\p{Lowercase})

Containing at least one Unicode alphabet:

 (?=.*\p{Alphabetic})

Containing at least one digit:

 (?=.*\d)

Containing at least one Unicode digit:

 (?=.*\p{Number})

Containing ASCII printable characters only:

 (?=.*[-~])

What Are ASCII Printable Characters?
ASCII printable characters consist of 95 characters that you can
find on your QWERTY keyboard.[34] (?=.*[-~]) would match all
ASCII printable characters from the space to the tilde, excluding
the Delete character.

Containing one or more ASCII punctuations or spaces:

 (?=.*[!"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~])

Containing anything other than ASCII letters and numbers:

 (?=.*[^A-Za-z0-9])

Requiring a length of at least 8 characters:

 (?=.{8,})

Requiring a length of at least 8 characters and a maximum of 32 characters:

 (?=.{8,32})

Containing two or more digits/letters:

 (?=(.*[a-z]){2,}) // at least 2 lowercase ASCII letters

 (?=(.*[A-Z]){2,}) // at least 2 uppercase ASCII letters

 (?=(.*[0-9]){2,}) // at least 2 ASCII digits

You can also use this technique to require multiple punctuations, Unicode
characters, and so on.

Example: minimum eight characters, one ASCII letter, and one special
character:

part_3/validating_passwords/pass_ex1.js

 let re = /^(?=.*[A-Za-z])(?=.*[!"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~]).{8,}$/ ;

 re.test("abcdefgh"); // → false

 re.test("A7#cdefgh"); // → true

Example: minimum eight characters, two Unicode digits, and two
Unicode alphabets:

part_3/validating_passwords/pass_ex2.js

 let re = /^(?=(.*\p{Alphabetic}){2,})(?=(.*\p{Number}){2,}).{8,}$/ u;

 re.test("a7bcdefgh"); // → false

 re.test("a77bcdefg"); // → true

Example: forbidding words listed in a password blocklist:

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_passwords/pass_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_passwords/pass_ex2.js

While you can use regex to accomplish this task, JavaScript already offers a
built-in method that streamlines the process:

part_3/validating_passwords/pass_ex3.js

 let blocklist = ["asdasd" , "qwerty" , "password" , "abc123" , "qwerty123" ,

 "iloveyou" , "football" , "princess" , "superman" , "computer"];

 let pass = "superman" ;

 blocklist.includes(pass); // → true

Allowing Multiline Passwords
To ensure that your regex works correctly for complicated
passwords containing line breaks, use the s flag (see Recipe 42,
Forcing . to Match Newline Characters with the s Flag).

Discussion
Users tend to select uncomplicated or commonly used passwords that are easy
to recall. Surprisingly, some people are still using “123456” and “password”
as their password, which means they are easy to hack. As a result, it’s often
necessary to safeguard users from choosing easy-to-guess passwords by
implementing minimum password complexity requirements.

We structured each validation rule of this recipe into its own lookahead group.
Without lookahead, you’d need to use multiple regex patterns or iterate over
the string multiple times to check for all the required conditions, which can be
less efficient and harder to maintain.

Lookaheads allow you to check for the conditions without actually advancing
the position of the regex engine in the string, so each test runs from the start of
the string. Once a lookahead succeeds, the regex engine then moves on to test
the next lookahead from the same position. If a lookahead fails to find a
match, the entire match fails as a result.

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_passwords/pass_ex3.js

To search for a pattern, each lookahead has a “.*”, which means that the
character type being sought can appear anywhere in the string, not just at the
beginning. With the technique illustrated here, you can include multiple
password tests in a single regex.

Remember, it’s important to validate form input with both client-side and
server-side scripts. Client-side validation can provide immediate feedback to
the user and can prevent errors from being submitted to the server. But, this
type of validation can be bypassed or manipulated by users, either
intentionally or unintentionally, and so cannot be relied upon as the only form
of validation.

Recipe 56 Validating Social Security Numbers

Task
Suppose you have a loan application form (or maybe a background check
form) and want to perform a check to ensure that the Social Security number
(SSN) provided by users conforms to the standard format of an SSN.

The SSN is a nine-digit number that is divided into three parts separated by
hyphens: AAA-GG-SSSS. The first set of three digits is called the area
number, as it was once assigned based on geographical region. But it cannot
be 000, 666, or between 900 and 999.

The group number, which consists of digits four and five, ranges from 01 to
99. The last four digits are known as serial numbers and are assigned from
0001 to 9999. You need a solution that adheres to all these rules and lets you
quickly identify invalid SSNs.

Solution

Use the following function:

part_3/validating_ssn/ssn_ex1.js

 function isValidSSN(ssn) {

 const re = /^(?!666|000)[0-8]\d{2}-(?!00)\d{2}-(?!0000)\d{4}$/ ;

 return re.test(ssn);

 }

 isValidSSN("123-45-6789"); // → true

 isValidSSN("123-456-789"); // → false

 isValidSSN("123-00-6789"); // → false

 isValidSSN("666-45-6789"); // → false

This function ensures that the format of the SSN is correct and that it contains
the correct number of digits, thus minimizing data entry errors.

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_ssn/ssn_ex1.js

Discussion
The regex in this recipe matches a valid SSN that has the format XXX-XX-
XXXX, where the first three digits are not 666 or 000, the fourth and fifth
digits are not 00, and the last four digits are not 0000.

(?!000|666) at the beginning of the pattern is a negative lookahead assertion that
prevents matching SSNs that start with 666 or 000, which are invalid SSNs.
The pattern matches any two- or four-digit number in its second and third sets
of digits. But, it incorporates a negative lookahead beforehand to avoid
matching zeros.

Here is the regex pattern with explanations for each segment:

 /^(?!666|000)[0-8]\d{2}-(?!00)\d{2}-(?!0000)\d{4}$/

 ● ^ asserts the position at start of the string
 ● (?!666|000) negative lookahead: assert that the regex below does not match.
 ○ 1st Alternative
 ○ 666 matches the characters 666 literally
 ○ 2nd Alternative
 ○ 000 matches the characters 000 literally
 ● [0-8] matches a single character in the range between 0 and 8
 ● \d matches a digit
 ○ {2} matches the previous token exactly 2 times
 ● - matches a hyphen character
 ● (?!00) negative lookahead: asserts that the regex doesn't match 00
 ● \d matches a digit
 ○ {2} matches the previous token exactly 2 times
 ● - matches a hyphen character
 ● (?!0000) negative lookahead: asserts that the regex doesn't match 0000
 ● \d matches a digit
 ○ {4} matches the previous token exactly 4 times
 ● $ asserts the position at the end of the string

After confirming that the provided value adheres to the standard format of the
Social Security number, you might consider employing a more strict approach,
which involves verifying with the Social Security Administration that the
number corresponds to an existing individual.[35]

Keep in mind the significance of validating Social Security numbers to avoid
administrative errors during the processing of important documents such as
official records.

Recipe 57 Validating ZIP Codes

Task
Suppose you run an online shop that is dedicated to delivering packages to
customers as quickly as possible. So, you want to ensure the ZIP codes (postal
codes used in the United States) entered by users conform to a standard format
to prevent errors in mail delivery. The basic format of a ZIP code consists of
five digits. But, there’s an extended ZIP+4 code which features the five digits
of the ZIP code, followed by a hyphen and four digits that define a more
precise location.

You aim to create a regular expression capable of matching input formats such
as 12345, 12345-6789, and 12345 6789, while excluding 1234, 123456,
123456789, or 1234-56789.

Solution

Use the following function:

part_3/validating_zipcode/zipcode_ex1.js

 function isValidZipCode(zipcode) {

 const re = /^\d{5}(?:[-\s]\d{4})?$/ ;

 return re.test(zipcode);

 }

 isValidZipCode("12345-6789"); // → true

 isValidZipCode("12345 6789"); // → true

 isValidZipCode("12345"); // → true

 isValidZipCode("123456789"); // → false

 isValidZipCode("1234-56789"); // → false

 isValidZipCode("123456"); // → false

 isValidZipCode("1234"); // → false

With this code, you can verify that a given ZIP code conforms to the standard
format used by the United States Postal Service (USPS).

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_zipcode/zipcode_ex1.js

Discussion
The function in this recipe takes a ZIP code as input and returns true if it’s a
valid US ZIP code (5 digits or 5 digits followed by a space/hyphen and 4
digits) and false otherwise. A detailed explanation of the regex is as follows:

 /^\d{5}(?:[-\s]\d{4})?$/

 ● ^ asserts the position at start of the string
 ● \d matches a digit
 ○ {5} matches the previous token exactly 5 times
 ● (?:[-\s]\d{4}) non-capturing group
 ○ [-\s] matches a single character in the list
 ○ - matches the character - literally
 ○ \s matches any whitespace character
 ○ \d matches a digit
 ○ {4} matches the previous token exactly 4 times
 ● ? matches the previous token 0 or 1 time
 ● $ asserts the position at the end of the string

This regex assumes that the provided string consists solely of a ZIP code. But,
if you intend to locate ZIP codes within a larger document or input string, you
should substitute ^ and $ with the word boundary like this: /\b\d{5}(?:[-\s]\d{4})?

\b/.

Checking the validity of ZIP codes in forms is crucial because it helps to
avoid errors in address data, ensuring that goods or services are delivered to
the correct recipient and preventing unnecessary delays or expenses.

Recipe 58 Validating Canadian Postal Codes

Task
Let’s suppose you have a specialized shop catering to your Canadian
customers, and you want to ensure that the postal code entered by users is a
valid Canadian postal code.

In Canada, a postal code is a combination of six characters that includes both
letters and digits. The format of the code follows A1A 1A1, where the letter A
represents any letter of the alphabet and the number 1 represents any digit.
The third and fourth characters are separated by a single space.

For example, the postal code for the CN Tower in Toronto is M5V 1J2. You
want to create a regex matching the format of that postal code, but not invalid
patterns like A1A 1A1A, 111 111, A1A1A1, A1A-A1A, or 12A 1B1.

Solution

Use the following function:

part_3/validating_ca_postal/ca_postal_ex1.js

 function isValidPostalCode(postalCode) {

 const re = /^(?!.*[DFIOQU])[A-VXY][0-9][A-Z]\s[0-9][A-Z][0-9]$/ ;

 return re.test(postalCode);

 }

 isValidPostalCode("A1A 1A1A"); // → false

 isValidPostalCode("111 111"); // → false

 isValidPostalCode("A1A1A1"); // → false

 isValidPostalCode("A1A-A1A"); // → false

 isValidPostalCode("12A 1B1"); // → false

 isValidPostalCode("M5V 1J2"); // → true

This code enables you to confirm whether a provided input conforms to the
Canadian postal code format.

http://media.pragprog.com/titles/fkjavascript/code/part_3/validating_ca_postal/ca_postal_ex1.js

Discussion
The regex in this recipe begins with a negative lookahead that prohibits the
occurrence of D, F, I, O, Q, or U at any position within the string. Because of
their resemblance to other characters, the letters D, F, I, O, Q, and U are
excluded from Canadian postal codes. This is because D, I, and O can be
confused with 0, 1, and 0 respectively, while F, Q, and U can be mistaken for
E, 0, and V.

The pattern .* at the beginning of the negative lookahead tells the regex engine
that the character type being sought can appear anywhere in the string, not just
at the beginning.

Canadian postal codes cannot start with the letters W or Z. To ensure that the
first character of the string is not W or Z, we use the character class [A-VXY].
This tells the regex engine that the character must be any letter from A to V or
X or Y, but not W or Z.

With the exception of the two aforementioned cases, Canadian postal codes
follow a straightforward pattern of six alternating alphanumeric characters,
with the option of a single space in the middle.

Let’s dig a bit deeper into the pattern:

 /^(?!.*[DFIOQU])[A-VXY][0-9][A-Z]\s[0-9][A-Z][0-9]$/

 ● ^ asserts the position at start of the string
 ● (?!.*[DFIOQU]) negative lookahead: asserts the regex below doesn't match
 ○ . matches any character (except for line terminators)
 ○ * matches the previous token between zero and unlimited times, as many
 times as possible

 ○ [DFIOQU] matches a single character in the list DFIOQU
 ● [A-VXY] matches a single character present in the list below
 ○ A-V matches a single character in the range between A and V
 ○ XY matches a single character in the list XY
 ● [0-9] matches a single character in the range between 0 and 9
 ● [A-Z] matches a single character in the range between A and Z
 ● \s matches any whitespace character
 ● [0-9] matches a single character in the range between 0 and 9

 ● [A-Z] matches a single character in the range between A and Z
 ● [0-9] matches a single character in the range between 0 and 9
 ● $ asserts the position at the end of the string

To locate a Canadian postal code in a string, substitute ^ and $ with word
boundaries (\b): /\b(?!.*[DFIOQU])[A-VXY][0-9][A-Z]\s[0-9][A-Z][0-9]\b/.

By validating postal codes, you can avoid errors in address data, resulting in
more efficient and reliable delivery of goods or services to the intended
recipient.

Recipe 59 Removing Duplicate Lines

Task
Suppose you need to display team rankings on a website, but your data was
imported from another source and there were errors during the import process.
So now, your new document has consecutive duplicate lines.

For instance, let’s say your imported data consists of the lines below:

 Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #2 Philadelphia 76ers 48-22

 #3 Memphis Grizzlies 43-27

 #4 Boston Celtics 49-23

 #4 Boston Celtics 49-23

 #4 Boston Celtics 49-23

Before you display the rankings, you need to remove the duplicates so that it
gets displayed like this:

 Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #3 Memphis Grizzlies 43-27

 #4 Boston Celtics 49-23

You need a regex that can detect two identical lines and remove one of them.

Solution

Use the following function:

part_3/removing_dup_lines_v1/dup_lines_v1_ex1.js

 function removeDuplicateLines(str) {

 const re = /^(.*)(?:\r?\n\1)+$/mg ;

 return str.replace(re, "$1");

 }

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_lines_v1/dup_lines_v1_ex1.js

 const str =

 `Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #2 Philadelphia 76ers 48-22

 #3 Memphis Grizzlies 43-27

 #4 Boston Celtics 49-23

 #4 Boston Celtics 49-23

 #4 Boston Celtics 49-23` ;

 const result = removeDuplicateLines(str);

 console.log(result);

 // Team Power Rankings

 // #1 Cleveland Cavaliers 45-28

 // #2 Philadelphia 76ers 48-22

 // #3 Memphis Grizzlies 43-27

 // #4 Boston Celtics 49-23

This will output the string with any duplicate lines removed.

Discussion
To match the beginning of a line using regex, we use the symbol ^ at the start.
Typically, ^ only matches the start of the string, so it’s important to enable the
multiline flag (m) to ensure that ^ and $ match at line breaks. Also make sure
you don’t use the dotAll flag (s) that allows the dot to match line breaks
because that would lead to the regex matching the whole string.

We use a pair of parentheses containing .* to match the complete content of a
line, including empty lines. Since the parentheses are a capturing group, we
can later refer to the matched value with a backreference.

Within a non-capturing group (?: ...), we have used the pattern \r?\n\1 to identify
line separators found in Unix and Unix-like systems (\n) or Windows/DOS
(\r\n) text files. Next, we attempt to match the line that was previously
matched with the backreference \1.

If the line at that position does not match, the matching process fails and the
regex engine proceeds to the next match attempt. Conversely, if a match is
found, we use the + quantifier to repeat the group, which consists of a line
break and backreference, to match any subsequent identical lines.

Below is the breakdown of the regex pattern:

 /^(.*)(?:\r?\n\1)+$/mg;

 ● ^ asserts the start of a line
 ● (.*) 1st capturing group
 ○ . matches any character except for line terminators
 ○ * matches the previous token zero or more times
 ● (?:\r?\n\1) non-capturing group
 ○ \r matches a carriage return
 ○ ? matches the previous token zero or one time
 ○ \n matches a line-feed (newline) character
 ○ \1 matches the same text matched by the 1st capturing group
 ● + matches the previous token one or more times
 ● $ asserts the end of a line
 ● Flags
 ○ m: enables multiline, allowing ^ and $ to match line start and end
 ○ g: enables global matching, which returns all matches

Because we are performing a search and replace operation, the complete
match, which includes the original line and any line breaks, is eliminated from
the string. To restore the initial line, we use the special replacement pattern $1

in the second argument of replace().

Removing duplicate lines with this technique is fast, but it won’t remove
duplicate lines that are separated by other lines. The next recipe shows you
how to do that with JavaScript’s built-in methods.

Recipe 60
Removing Duplicate Lines Separated by Other
Lines

Task
Suppose you want to eliminate duplicated lines that are not adjacent to each
other like in the previous recipe. For instance, let’s say you have text like this:

 Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #1 Cleveland Cavaliers 45-28

 #3 Memphis Grizzlies 43-27

 #2 Philadelphia 76ers 48-22

 #4 Boston Celtics 49-23

And you need to write a code that outputs:

 Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #3 Memphis Grizzlies 43-27

 #4 Boston Celtics 49-23

Your code should have the capability to remove duplicate entries, even if they
are interspersed with other lines.

Solution

Convert the string to an array, then pass the array to the Set constructor to
remove duplicates, and finally convert the resulting Set to a string:

part_3/removing_dup_lines_v2/removing_dup_lines_v2_ex1.js

 function removeDuplicateLines(str) {

 const arr = str.split(/\r?\n/);

 const set = [... new Set(arr)];

 const newStr = set .join("\n");

 return newStr;

 }

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_lines_v2/removing_dup_lines_v2_ex1.js

 const str =

 `Team Power Rankings

 #1 Cleveland Cavaliers 45-28

 #2 Philadelphia 76ers 48-22

 #1 Cleveland Cavaliers 45-28

 #3 Memphis Grizzlies 43-27

 #2 Philadelphia 76ers 48-22

 #4 Boston Celtics 49-23` ;

 const result = removeDuplicateLines(str);

 console.log(result);

 // Team Power Rankings

 // #1 Cleveland Cavaliers 45-28

 // #2 Philadelphia 76ers 48-22

 // #3 Memphis Grizzlies 43-27

 // #4 Boston Celtics 49-23

The result is a string with all duplicate lines eliminated.

Discussion
First, we use split(/\r?\n/) to split the string at line breaks and create an array.
This way, we can identify any duplicate elements in the array and eliminate
them. We can achieve this by iterating over the array items, or more
conveniently, by utilizing the Set constructor.

So we pass the array to Set(): it automatically eliminates duplicate items and
returns a Set object containing unique values. Afterward, we apply the spread
(...) syntax within an array to transform the Set back into an array again.
Finally, we use join("\n") to concatenate all of the elements in the array with
each element separated with a line break character.

It’s possible to use this approach to remove duplicate lines that appear next to
each other as well; however, the regex solution explained in the previous
recipe would be much faster. On the other hand, the non-regex approach
described in this recipe is faster than regex for removing duplicates that are
separated by other lines.

Recipe 61 Removing Duplicate Spaces

Task
Suppose you have a website with a blog section that allows guest posts. As a
reviewer, you have noticed a common mistake in the submitted posts: double
spaces between words. To address this issue, you want to create a function that
automatically identifies and corrects this error by replacing double spaces with
a single space.

A quick and dirty way to convert double spaces to a single space is to use the
replaceAll() method like this:

part_3/removing_dup_spaces/removing_dup_spaces_ex1.js

 const str = "A day without sunshine is like, you know, night." ;

 str.replaceAll(" " , " ");

 // → "A day without sunshine is like, you know, night."

The first argument you pass to replaceAll() is the pattern to be replaced by the
second argument. While replaceAll() is effective at converting double spaces to
single spaces, it fails in cases where there are more than two spaces between
words:

part_3/removing_dup_spaces/removing_dup_spaces_ex2.js

 const str = "A day without sunshine is like, you know, night." ;

 str.replaceAll(" " , " ");

 // → "A day without sunshine is like, you know, night."

You need a solution that can replace repeated spaces, not just double spaces.

Solution

Split the input string by space, store the resulting substrings in an array,
remove any empty array items, and then combine the remaining elements

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_spaces/removing_dup_spaces_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_spaces/removing_dup_spaces_ex2.js

using a single space:

part_3/removing_dup_spaces/removing_dup_spaces_ex3.js

 function replaceRepeatedSpaces(str) {

 return str.split(" ").filter(i=>i).join(" ");

 }

 const str = "A day without sunshine is like, you know, night." ;

 replaceRepeatedSpaces(str);

 // → "A day without sunshine is like, you know, night."

This code takes a string and removes any instances of consecutive spaces, then
returns the modified string with a single space character between each word.

Discussion
In this function, we take a string and split it into an array of individual words
using the split(" ") method. We then use the filter(i => i) method to remove any
empty or falsy values from the resulting array. The filter() method creates a
new array containing all the elements of the original array that pass a certain
condition defined by a callback function.

Remember that the callback function needs to return either true or false. In
this case, we’re using the arrow function to just return the value from the array
itself. Since an empty string is falsy, it is implicitly converted to false and gets
removed from the array.

What Are Truthy and Falsy Values?

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_spaces/removing_dup_spaces_ex3.js

What Are Truthy and Falsy Values?
Truthy values are those that are considered true when evaluated as
a Boolean, while falsy values are considered false. Here are the
values considered falsy in JavaScript:

0 - The number zero
0n - The BigInt zero
"" - An empty string
null - Represents the absence of any value
undefined - Represents an undefined value
NaN - Stands for "Not a Number" and represents an invalid
or unrepresentable value

All other values, including non-empty strings, non-zero numbers,
arrays, objects, and functions, are considered truthy.

After filtering, we are left with an array of words that we can join together
using a single space. If you need to process a large amount of text, using regex
can be slightly faster than using JavaScript’s methods. However, for most
other cases, the performance difference is minimal.

Here’s an example of how to implement the solution using regex:

part_3/removing_dup_spaces/removing_dup_spaces_ex4.js

 function replaceRepeatedSpaces(str) {

 return str.replace(/ +/g , " ");

 }

 const str = "A day without sunshine is like, you know, night." ;

 replaceRepeatedSpaces(str);

 // → "A day without sunshine is like, you know, night."

It’s important to keep in mind that this recipe replaces only space characters
and not all whitespace characters. A space character is what you get when you
press the spacebar on your keyboard, while a whitespace character can

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_spaces/removing_dup_spaces_ex4.js

represent a space, tab, new line, form feed, carriage return, or other similar
characters. So, although a space character is a type of whitespace character,
there are various other types of whitespace characters.

When it comes to replacing whitespace characters, using regex can be a better
option because it’s more concise. You’ll learn more about whitespace
characters in the next recipe.

Recipe 62 Removing Duplicate Whitespaces

Task
Suppose you discover that the guest posts on your blog site contain not just
extra space characters, but also other whitespace characters, like tabs. So, this
time, you want to replace all whitespace characters, including space, tab (\t),
line feed (\n), carriage return (\r), vertical tab (\v), form feed (\f), and others.

For instance, consider the following string, where the space between “My”
and “life” is made up of two tab characters. You can confirm the presence of a
tab character by searching for \t in the string:

part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex1.js

 const str = " My life needs editing." ;

 /My\t\t/ .test(str); // → true

You need a solution that allows you to find repeated tabs or other whitespace
characters and replace them with a single space.

Solution

Use a \s character class to match a whitespace character, then use a \s again to
match any extra whitespaces that come after the first one:

part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex2.js

 const str = " My life needs editing." ;

 function removeExtraWhitespaces(str) {

 const re = /\s\s+/g ;

 return str.replace(re, " ");

 }

 removeExtraWhitespaces(str);

 // → " My life needs editing."

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex2.js

This function’s purpose is to replace all instances of repeated whitespace
characters (two or more) with a single space character. Notice the single
whitespace at the beginning of the output. To ensure that the function also
removes any additional leading/trailing whitespaces, you should apply trim()

before returning the output string:

part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex3.js

 const str = " My life needs editing." ;

 function removeExtraWhitespaces(str) {

 const re = /\s\s+/g ;

 str = str.replace(re, " ");

 str = str.trim();

 return str;

 }

 removeExtraWhitespaces(str);

 // → "My life needs editing."

Mission accomplished!

Discussion
In JavaScript, “space” and “whitespace” are not the same thing. A space
character is what you get when you press the spacebar on your keyboard. But
a whitespace character is a broader term that includes any character that
represents a blank area in text. It’s important to understand the difference
between these two types of characters because they can have different effects
on your code.

The solution in this recipe replaces any type of whitespace character, so if a
line feed (\n) comes after a tab (\t), they both get replaced by a space. If your
intention is to replace only a specific type of whitespace character, then the
following alternate recipe may be more suitable for your needs.

The Negated Form of \s

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_whitespaces/removing_dup_whitespaces_ex3.js

The Negated Form of \s
Remember, when using \S with a capital letter, it functions as the
negation or opposite of \s with a small letter. \S enables you to
match any character that is not a whitespace.

Recipe 63
Replacing Duplicate Whitespaces with the Same
Type

Task
Imagine that your whitespace removal script is effective for paragraphs and
headings, but you come across posts that have redundant tabs before certain
list items, like this:

 My list:

 1. Item one

 2. Item two

 3. Item three

If you implement the solution in the preceding recipe, the repeated tab
characters will be replaced with a single space character, resulting in an
inconsistent appearance of the items in the list:

 My list:

 1. Item one

 2. Item two

 3. Item three

You need a solution that replaces repeated whitespaces with the same type of
whitespace.

Solution

Capture the repeated whitespace with a capturing group and reference it with
$1:

part_3/removing_dup_whitespaces_same_type/removing_dup_whitespaces_ex1.js

 const str =

 `My list:

 1. Item one

 2. Item two

 3. Item three` ;

http://media.pragprog.com/titles/fkjavascript/code/part_3/removing_dup_whitespaces_same_type/removing_dup_whitespaces_ex1.js

 function removeExtraWhitespaces(str) {

 const re = /(\s)\1+/g ;

 return str.replace(re, "$1");

 }

 removeExtraWhitespaces(str);

 //"My list:

 // 1. Item one

 // 2. Item two

 // 3. Item three"

This function replaces duplicate whitespaces with a single whitespace of the
same type.

Discussion
In this recipe, str holds a list of items where each item is indented with a tab
character (\t). The first item, however, has an extra tab character that we want
to remove. Inside the function, we use (\s)\1+ to match any whitespace
character followed by one or more occurrences of the same whitespace
character.

Because we want to replace all these tab characters with a single tab character,
we use a backreference to match the same character that was matched by the
capturing group (\s).

Then, we use the special replacement pattern $1 to replace the matched
characters with the same type of whitespace. The g flag at the end of the
regular expression indicates global matching, meaning it will search for all
occurrences of the pattern in the input string.

Recipe 64 Extracting Text Enclosed in Double Quotes

Task
Suppose you have a movie review website, and you want to incorporate a
mini-game widget into your page. The game prompts readers to guess the
name of a celebrity based on a given nickname.

Your data source consists of a string that contains a list of celebrity names
along with their corresponding nicknames, all enclosed in double quotation
marks, like this:

 1. Dwayne Johnson, also known as "The Rock"

 2. Scarlett Johansson, also known as "Scarjo"

 3. Bradley Cooper, also known as "Coop"

 4. Jennifer Lawrence, also known as "Nitro"

 5. Hugh Jackman, also known as "Sticks"

 6. Tom Hardy, also known as "Weasel"

Your initial task is to extract the quoted texts from the string, so you can build
an array of nicknames:

 ["The Rock", "Scarjo", "Coop", "Nitro", "Sticks", "Weasel"]

What you need is a way to detect a pair of quotation marks and extract the text
within them.

Solution

Add double quotes to the beginning and end of a regex pattern, and use a
negated character class to match characters that are not double quotes:

part_3/extracting_text_in_double_quotes/double_quoted_text_ex1.js

 const str =

 `1. Dwayne Johnson, also known as "The Rock"

 2. Scarlett Johansson, also known as "Scarjo"

 3. Bradley Cooper, also known as "Coop"

 4. Jennifer Lawrence, also known as "Nitro"

http://media.pragprog.com/titles/fkjavascript/code/part_3/extracting_text_in_double_quotes/double_quoted_text_ex1.js

 5. Hugh Jackman, also known as "Sticks"

 6. Tom Hardy, also known as "Weasel"` ;

 function extractQuotes(str) {

 const re = /"([^"]*)"/g ;

 const quotes = [...str.matchAll(re)].map(value => value[1]);

 return quotes;

 }

 extractQuotes(str);

 // → ["The Rock", "Scarjo", "Coop", "Nitro", "Sticks", "Weasel"]

This function returns an array of quoted text without including the quotes in
the result.

Discussion
Double quotes don’t have a special meaning in regular expressions, so we just
add them to the pattern. Next, we use [^"] to match any character that’s not
double quotes, and append a * to repeat the class zero or more times. The
pattern ends in a " to match the closing double quotes.

To retrieve the capturing groups of all matches, we use the matchAll() method.
Because matchAll() returns an iterator, we can use the spread syntax (…) to
unpack the object and generate an array from the outcome. This way we can
use array methods on it.

Since we have a capturing group in the regex pattern, each match result
contains an array with two elements: the entire matched substring and the
content inside the quotes. By using value[1], we access the second element of
the array, which corresponds to the content inside the quotes. Then we store
them in the quotes array.

Matching a string enclosed in single quotes can be slightly more challenging
as the text within the quotes may contain an apostrophe, such as in ‘I can’t.’
The next recipe provides a solution for extracting text enclosed in single
quotes.

Recipe 65 Extracting Text Enclosed in Single Quotes

Task
Suppose the data source for your mini-game widget lists the nicknames in
single quotes rather than double quotes. Extracting the text within single
quotes can be more challenging compared to double quotes because the
nickname itself could contain an apostrophe.

For example:

 Michael Eugene Archer, also known as 'D'Angelo'

You need a solution that can accurately identify a pair of single quotation
marks while distinguishing them from an apostrophe.

Solution

Take advantage of lookarounds:

part_3/extracting_text_in_single_quotes/single_quoted_text_ex1.js

 const str =

 `1. Michael Eugene Archer, also known as 'D'Angelo'

 2. Scarlett Johansson, also known as 'Scarjo'

 3. Bradley Cooper, also known as 'Coop'

 4. Jennifer Lawrence, also known as 'Nitro'

 5. Hugh Jackman, also known as 'Sticks'

 6. Tom Hardy, also known as 'Weasel'` ;

 function extractQuotes(str) {

 const re = /(?<!\w)'(.+?)'(?!\w)/g ;

 const quotes = [...str.matchAll(re)].map(value => value[1]);

 return quotes;

 }

 extractQuotes(str);

 // → ["D'Angelo", "Scarjo", "Coop", "Nitro", "Sticks", "Weasel"]

http://media.pragprog.com/titles/fkjavascript/code/part_3/extracting_text_in_single_quotes/single_quoted_text_ex1.js

This solution allows you to capture single quoted strings that are not part of
larger words or surrounded by other word characters.

Discussion
Let’s examine the regex step by step:

 /(?<!\w)'(.+?)'(?!\w)/

 ● (?<!\w) negative lookbehind: asserts that the regex inside does not match
 ○ \w matches any word character
 ● ' matches the character ' literally
 ● (.+?) 1st capturing group
 ○ . matches any character (except for line terminators)
 ○ +? matches the previous token between one and unlimited times, as few
 times as possible (lazy)

 ● ' matches the character ' literally
 ● (?!\w) negative lookahead: asserts that the regex inside does not match
 ○ \w matches any word character

The regex begins with a negative lookbehind to match an opening single quote
that isn’t preceded by a word character (a letter, a digit, or underscore). As a
result, it won’t match words like “What’s.” Next, (.+?) matches any character
one or more times. The question mark makes the match non-greedy, which
means the quantifier tries to match its preceding item as few times as possible
(see Recipe 38, Creating Lazy Quantifiers with the Question Mark). Without
the question mark, the pattern would match the last closing quotation mark in
the string.

Finally, ’(?!\w) matches a single quote that’s not followed by a word character
—thanks to the negative lookahead.

Recipe 66 Escaping a String for Use in a Regex

Task
Imagine a scenario where you’re designing a search feature for an online
bookstore. Within the app’s search functionality, there is a field where users
can enter a partial title or author’s name to find the specific book they are
looking for.

Your code involves using the user-provided string as a component of a regex
to search a database. In order to safeguard your app from potential attacks,
you should implement a function that escapes all regex metacharacters in the
user-provided string before using it as a component of your search pattern.

Escaping ensures that the special characters within the string are properly
handled and do not inadvertently affect the behavior of the regular expression.

Solution

To ensure that characters with special meanings within a pattern are treated as
ordinary characters without any special interpretation, you can create a
function that adds a backslash before those characters:

part_3/escaping_metacharacters/escaping_ex1.js

 function escapeRegex(str) {

 const re = /[-\\^$*+?.()|[\]{}]/g ;

 return str.replace(re, "\\$&");

 }

 const str = "These should be escaped: - \\ ^ $ * + ? . () | [] { }" ;

 const escaped = escapeRegex(str);

 console.log(escaped);

 // → "These should be escaped: \- \\ \^ \$ * \+ \? \. \(\) \| \[\] \{ \}"

The string is now safe to use as part of your regex.

http://media.pragprog.com/titles/fkjavascript/code/part_3/escaping_metacharacters/escaping_ex1.js

Discussion
The regex for this recipe encapsulates all the regex metacharacters in a
character class. The square brackets [] denote a character class, which means
any character within the class will be matched. Then, the replace() method
replaces all occurrences of the metacharacters with their escaped versions.

The $& in the replacement string represents the matched substring itself.
Notice the double backslash preceding it: since the backslash is used as the
escape character, you cannot use it directly if you want to add a literal
backslash to a string. Instead, you need to type two backslashes in a row. This
is because the first backslash acts as an escape character for the second
backslash, telling JavaScript to treat the second backslash as a literal character
instead of an escape sequence.

Here’s the reasoning behind escaping each of those characters in the character
class:

- The hyphen symbol defines a range of characters in a character class. To
prevent accidental creation of ranges while incorporating text within a
character class, it’s necessary to escape it
\ The backslash can be used to make certain literal characters special. For
example, \n creates a newline character (rather than a backslash followed
by the letter n)
^ The caret symbol matches the start of a line/string. It can also create a
negated character class
$ The dollar symbol matches the end of a line/string
* The * quantifier matches its preceding item zero or more times
+ The + quantifier matches its preceding item one or more times
? The ? quantifier matches its preceding item zero or one time
. The dot symbol matches any character
| The vertical bar matches any of two or more options
() Parentheses are used for capturing, grouping, and other constructs
[] Square brackets create a character class
{} Curly brackets create a quantifier

When using the pattern in this recipe, make sure to use the g flag to replace all
matches, rather than only the first.

It’s important to be careful when using user-provided input in your regex.
Failing to do so could render your program vulnerable to a type of attack
called ReDos (regular expression denial of service). An attacker could
potentially exploit your program by providing an extremely intricate regex
that requires a significant amount of time to process.

When evaluating user input in a browser, a ReDoS attack will typically cause
the browser to hang. But, when the input is being evaluated on a server, the
consequences can be more severe and potentially lead to a denial-of-service
attack. In such an attack, the attacker floods the server with a barrage of
highly processing-intensive requests, effectively preventing the server from
servicing legitimate requests.

In this case, protecting your program from ReDoS isn’t too difficult: escape
all metacharacters that could alter the pattern of the expression. This can be
done by placing a backslash before the metacharacter, which tells the regex
engine to treat it as a literal character.

Escaping Metacharacters in Other Languages
There exist built-in functions in several programming languages
that automatically escape regex metacharacters. For example,
Java has Pattern.quote(str) and Python provides e.escape(str). If
you’re using the Lodash library, you might as well take advantage
of its_.escapeRegExp() method to escape metacharacters.

Recipe 67 Striping Invalid Characters from Filenames

Task
Suppose you operate a file hosting service. To ensure a smooth download
process, you should avoid certain characters in the filenames of the files being
provided for download. In iOS and macOS, the filename cannot contain a
colon (:), while Android and Windows OS have stricter restrictions and do not
allow the use of <, >, :, ", /, \, |, ?, and * in filenames.

The reason is that the OS uses these characters for enclosing paths in quotes,
marking off drives and directories, indicating wildcards and command line
redirection, etc. Moreover, there are certain words that Windows uses as
reserved names for internal purposes, and as a result, they cannot be used as
filenames.

These reserved names are as follows:

 LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9,

 COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9,

 CON, PRN, AUX, NUL

When attempting to download a file with invalid characters in its name,
Windows will automatically replace those characters with an underscore,
without any warning to the user. To avoid such issues, you may want to create
a script that can detect problematic characters in a filename and notify the user
to resolve them before proceeding with the download.

Solution

To improve readability and maintainability, it’s easier to test each list of
characters and words separately, rather than merging them and using a single
regex. Create a function that accepts a filename as an input, tests each regex
against it, and returns true if the tests pass:

part_3/striping_invalid_characters/striping_ex1.js

http://media.pragprog.com/titles/fkjavascript/code/part_3/striping_invalid_characters/striping_ex1.js

 let reservedNames =

 `LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9,

 COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9,

 CON, PRN, AUX, NUL` ;

 // Create an array from the reservedNames string

 reservedNames = reservedNames.split(/,\s/);

 function isValidFilename(name) {

 const re1 = new RegExp(̀^(${reservedNames.join("|")})$` , "i");

 const re2 = /[<>:"/\\|?*]/ ;

 return !(re1.test(name) || re2.test(name));

 }

 isValidFilename("COM1"); // → false

 isValidFilename("com1"); // → false

 isValidFilename("com1_"); // → true

 isValidFilename("@com1"); // → true

 isValidFilename("]-:"); // → false

 isValidFilename("<myfile>"); // → false

Success!

Discussion
To start with, prepare an array containing the invalid characters/names. If
you’re like me and don’t feel like creating the array by typing, you can use the
split() method to separate the reserved names and store them in the array. The
result will be as follows:

 let reservedNames =

 `LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9,

 COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9,

 CON, PRN, AUX, NUL`;

 reservedNames.split(/,\s/);

 // → ["LPT1", "LPT2", "LPT3", "LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9",

 // "COM1", "COM2", "COM3", "COM4", "COM5", "COM6", "COM7", "COM8", "COM9",

 // "CON", "PRN", "AUX", "NUL"]

Inside the isValidFilename() function, we use the RegExp constructor to join the
items of the resulting array with a pipe symbol to form alternations like this:
LPT1|LPT2|LPT3...

If you want to avoid creating the pattern dynamically, you don’t have to type
each name separately. Instead, take advantage of a character class to define a
range:

 /^(LPT[1-9]|COM[1-9]|CON|PRN|AUX|NUL)$/i

A filename with these words is invalid only if it doesn’t contain additional
characters. For example, “LPT1” is an invalid filename, but not “LPT1z” or
“ALPT1.” The caret symbol (^) at the start of the pattern asserts the beginning
of the string and ensures that no other characters precede the desired string
match. Similarly, the dollar symbol ($) asserts the end of the string.

The second pattern, which lists reserved characters, consists of only nine
characters. So, it’s sufficient to include them in a character class using square
brackets []. A character class matches any single character that appears
between the brackets, so we can check if any of those characters exist in the
given string.

Inside character classes, the backslash is considered a metacharacter and,
therefore, requires escaping with another backslash. But, all other characters
are treated as literal characters.

Filenames may contain characters that are not allowed by the operating system
or filesystem. By using a regex pattern, we can detect those characters and
provide a problem-free download process.

Recipe 68 Matching Floating-Point Numbers

Task
Suppose you aim to write a regex to match floating-point values because you
want to extract stock prices from a string. Or perhaps you want to retrieve
other values that have a floating-point representation, such as interest rates,
sensor readings, temperatures, or coordinates (latitude and longitude).

You want to be able to specify whether the presence of the sign, integer, and
fraction components is mandatory or optional. The regex to use depends on
the optional components of the floating-point number. Therefore, this recipe
offers different patterns as potential solutions.

Solution

Matching a floating-point value that has a sign, integer, and fraction
components:

 [+-]\d+\.\d+

Matching a floating-point value that may have an optional sign, but must have
integer and fraction components:

 [+-]?\d+\.\d+

Matching a floating-point value with optional sign and integer but mandatory
fraction:

 [+-]?\d*\.\d+

Example:
Let’s extract the first floating-point number that appears in a string. The value
may have an optional sign, but must have integer and fraction components:

part_3/matching_floating_points/fp_ex1.js

http://media.pragprog.com/titles/fkjavascript/code/part_3/matching_floating_points/fp_ex1.js

 function extractFloatingPoint(str) {

 const re = /[+-]?\d+\.\d+/ ;

 return str.match(re)[0];

 }

 extractFloatingPoint("It's -4.19 today.");

 // → "-4.19"

Mission accomplished!

Discussion

In the first pattern, we use square brackets to create a character class that
matches either a plus sign (+) or a minus sign (-), followed by one or more
digits (\d+), followed by a literal period (.), followed by one or more digits
again (\d+). This matches a floating point numbering a question mark after the
character class. Similarly, replacing the plus sign with an asterisk in the
integer digits repetition allows for zero or more digits instead of one or more.

In the example, we’re verifying if a floating-point number exists within a
larger body of text. But, if you want to verify whether the entire input is a
floating-point number, you should use the ^ and $ boundaries.

Recipe 69
Matching Formatted Numbers with Thousand
Separators

Task

Suppose you are developing a price comparison app to assist users in
comparing product or service prices across various online retailers. Since
prices often include thousand separators, you find yourself in need of a regex
pattern that can accurately detect numbers with thousand separators.

So, if a website lists the product like this:

 Great deal! $7,499 %20 Price drop

Your regex should be able to extract 7,499.

Solution
To extract numbers with thousand separators, you can use this function:

part_3/matching_thousand_separators/matching_thousand_separators_ex1.js

 function extractNumbers(str) {

 const re = /\d{1,3}(?:,\d{3})*(?:\.\d+)?/g ;

 return str.match(re)[0];

 }

 extractNumbers("Great deal! $7,499 %20 Price drop");

 // → "7,499"

The regex pattern in this code matches numbers that use the comma as the
thousand separator and the dot as the decimal separator. Matching the fraction
part is optional, but if the fraction is not present, then the decimal point should
not be included.

Discussion

http://media.pragprog.com/titles/fkjavascript/code/part_3/matching_thousand_separators/matching_thousand_separators_ex1.js

Numbers with a large number of digits are often separated into groups using a
delimiter like a comma or a period—to make them easier to read. Typically,
English-speaking countries use commas as the delimiter, such as 20,000,
while European countries use periods or spaces, like 20.000 or 20 000.

The pattern in this recipe starts by matching a sequence of 1 to 3 digits,
succeeded by a group that matches zero or more occurrences of a comma
followed by three digits. The combination of these two patterns matches any
number with one or more groups of three digits separated by commas. To
allow the fraction part to be optional, we just add a question mark after the
group.

Let’s examine the regex pattern step by step:

 /\d{1,3}(?:,\d{3})*(?:\.\d+)?/

 ● \d matches a digit
 ○ {1,3} matches the previous token between 1 and 3 times

 ● (?:,\d{3}) non-capturing group
 ○ , matches the comma character literally
 ○ \d matches a digit
 ○ {3} matches the previous token exactly 3 times
 ● * matches the previous token zero or more times
 ● (?:\.\d+)? non-capturing group
 ○ \. matches the period character literally
 ○ \d matches a digit
 ○ + matches the previous token one or more times
 ● ? matches the previous token zero or one time

Here are some examples of numbers that would match this pattern:

 1

 100

 1,000

 10,000

 100,000

 1,000,000

 1,000,000.00 (decimal point after the thousands separator)

And here are some examples of numbers that would not correctly match:

 1.000.000 (decimal point instead of comma)

 1,00 (incorrect grouping of digits)

 10,0 (incorrect grouping of digits)

To match numbers that use periods instead of commas as thousand separators,
we need to slightly adjust the pattern. Replace the comma in the second group
with a period and the period in the third group with a comma:

part_3/matching_thousand_separators/matching_thousand_separators_ex2.js

 function extractNumbers(str) {

 const re = /\d{1,3}(?:\.\d{3})*(?:,\d+)?/g ;

 return str.match(re)[0];

 }

 extractNumbers("For sale €1.499.000 3 beds 4 baths");

 // → "1.499.000"

This function allows us to match the thousand separators used in countries
such as Germany, Greece, and Italy. If you want to add thousand separators to
numbers, you can take advantage of the intl.numberformat() constructor
discussed in Recipe 15, Adding Thousand Separators to Numbers with
Intl.NumberFormat().

http://media.pragprog.com/titles/fkjavascript/code/part_3/matching_thousand_separators/matching_thousand_separators_ex2.js

Recipe 70 Matching Nearby Words

Task
Suppose you want to search for the term “client-side” in a tutorial database
because you’ve been asked to assess whether client-side issues are sufficiently
covered for new hires. If you write a regex that matches only the exact word,
it would be unable to retrieve results for instances that contain the words
“client” and “side” without being adjacent to each other. For example,
tutorials with phrases such as “client- and server-side” or “client and server
side” would not be included in the search results.

But if you specify a proximity search for the words, where they appear within
a certain number of characters of each other, it will help you to find more
relevant results. So, what you need is to create a pattern that can locate words,
as long as they appear within a specific distance of each other.

Solution

To find words near each other, use the following function:

part_3/proximity_search/proximity_search_ex1.js

 function findNearbyWords(text, word1, word2, maxDistance) {

 const regex = new RegExp(̀ ${word1} .{0, ${maxDistance} } ${word2} ̀ , "gi");

 const matches = text.match(regex);

 return matches;

 }

 const text = "Both client- and server-side scripts must validate form data." ;

 const word1 = "client" ;

 const word2 = "side" ;

 const maxDistance = 20;

 findNearbyWords(text, word1, word2, maxDistance);

 // → ["client- and server-side"]

http://media.pragprog.com/titles/fkjavascript/code/part_3/proximity_search/proximity_search_ex1.js

This function performs a proximity search for “client” and “side” within 20
characters of each other and retrieves the part of the string that contains them.

Discussion
We construct the pattern by using a template literal that contains the word1 and
word2 variables, as well as the maxDistance variable as a quantifier
{0,${maxDistance}} to match between word1 and word2. Note that ${word1},
${maxDistance}, and ${word2} are JavaScript placeholders for performing
substitutions, and they are entirely distinct from the regex syntax. Let’s take a
closer look:

 ${word1}.{0,${maxDistance}}${word2}

 ● ${word1} gets replaced with "client"
 ● . matches any character that is not a line break character
 ○ {0,${maxDistance}} gets replaced with {0,20}, so it matches the previous
 token between 0 to 20 times

 ● ${word2} gets replaced with "side"

Additionally, we add the g and i flags to the regex to make it global and case-
insensitive. Then, we call the match() method on the text with the regex object
as an argument. The output will be an array of matches that contain word1 and
word2 within maxDistance characters of each other.

Proximity search techniques can be especially useful when searching for
complex or technical information. By specifying that we want to see results
where certain words or phrases appear near each other, we can find the text
we’re looking for more accurately.

Recipe 71
Highlighting Sentences Containing a Specific
Word

Task
Suppose you aim to add a search feature to your program that highlights all
sentences in a text containing a specific word. For example, you are
comparing a translated book to the original text, which uses a word with
multiple meanings. You need to see not only the word, but the context in
which it is used to help check that the proper translation was used.

While finding the word using regex is relatively straightforward, identifying
the sentence in which it appears is a bit more challenging. To highlight the
sentence containing the specified word found in a text, you should write a
pattern capable of differentiating between one sentence and another.

Solution

Start with writing the JavaScript component, which comprises two primary
functions: highlight() and unhighlight(). The highlight() function retrieves the
search value entered in an HTML input and applies a regex that identifies the
sentence encompassing the search term. By encasing the matched sentence
with <mark></mark> tags, you can accomplish your objective:

part_3/highlighting_sentences/highlight_ex1.js

1: const el = document.querySelector("#string");

-

- function highlight() {

-

5: // Get the value of #input

- const keyword = document.querySelector("#input").value;

-

- // If the input is empty don't execute the rest of the function

- if (keyword === "") {

10:
 return ;

http://media.pragprog.com/titles/fkjavascript/code/part_3/highlighting_sentences/highlight_ex1.js

- }

-

- // Remove any existing highlights from the text

- unhighlight();

15:

- // Construct a regular expression

- const re = new RegExp(̀([^.!?]*\\b ${keyword} \\b[^.!?]*.?)` , "gi");

-

- // Wrap each sentence in a pair of <mark></mark> tags

20:

 el.innerHTML = el.innerHTML.replace(re, "<mark>$1</mark>");

- }

-

- function unhighlight() {

-

25:

 // Construct a regex that matches <mark> and </mark> tags

- const re = /<\/?mark>/g ;

-

- // Remove tags by replacing each tag with an empty string

- el.innerHTML = el.innerHTML.replace(re, "");

30:

}

-

- document.querySelector("#highlight").addEventListener("click" , highlight);

- document.querySelector("#unhighlight").addEventListener("click" , unhighlight);

Now, create two HTML buttons: one to initiate highlighting and another to
reverse the effect. You also need an input field to type in a search keyword:

 <button id= "highlight" >Highlight All< /button>

 <button id= "unhighlight" >Unhighlight< /button>

 <input id= "input" type= "text" value= "crocodiles" >

The input element has a default value of “crocodiles.” If you don’t want any
text to appear in the input when the page loads, you can remove the value
property. To keep things simple, let’s limit the text we want to search to a few
sentences:

part_3/highlighting_sentences/highlight_ex1.xhtml

 <!doctype html>

 <html lang= "en-us" >

 <head>

 <meta charset= "utf-8" >

 <meta name= "viewport" content= "width=device-width, initial-scale=1" >

 <script src= "highlight_ex1.js" defer></script>

 </head>

 <body>

 <p id= "string" >

 Crocodiles are like giant lizards with a serious attitude problem. They're

 like the grumpy old men of the animal kingdom, constantly scowling and

 grunting like they've got a bad case of indigestion. But despite their

 intimidating demeanor, crocodiles do have a soft side. Just try playing

 them some smooth jazz or offering them a plate of freshly baked cookies

 —they'll be putty in your hands. All in all, crocodiles are just

 misunderstood creatures in need of a little love and a good chiropractor.

 </p>

 <button id= "highlight" >Highlight All</button>

 <button id= "unhighlight" >Unhighlight</button>

 <input id= "input" type= "text" value= "crocodiles" >

 </body>

 </html>

Fantastic! The code now highlights every sentence in the text that includes a
particular term.

Discussion
In the JavaScript code, we define two functions and two event listeners. The
first function, highlight(), is executed when the user clicks the “highlight”
button. Inside the function, we first retrieve the user’s input value and store it
in a variable called keyword. If the input is empty, we terminate the function
without doing anything. If the input is not empty, we call unhighlight() to
remove any existing highlights in the HTML element.

Next, we create a regex pattern that matches any sentence containing the
keyword. We use the negated character class [^.!?] to match a single character

http://media.pragprog.com/titles/fkjavascript/code/part_3/highlighting_sentences/highlight_ex1.xhtml

that is not a dot, exclamation point, or question mark. This allows us to
differentiate between one sentence and another. If you want the pattern to
identify sentences that end with other punctuation marks, such as a colon, you
can include them in the character class.

Notice Line 17, where we create an instance of the RegExp object instead of a
regular expression literal. This is essential because we want to dynamically
insert the text from the HTML input into the regex pattern. We also need to
use backticks to delimit the pattern instead of double or single quotes. Without
backticks, the ${keyword} placeholder wouldn’t function as intended.

Pay attention to the presence of the backslash before the word boundary (\b).
Because we’re using the word boundary in a RegExp object, it’s necessary to
escape it with a backslash.

The following is how the regex engine perceives the pattern:

 ([^.!?]*\\b${keyword}\\b[^.!?]*.?)

 ● ([^.!?]*\\b${keyword}\\b[^.!?]*.?) 1st capturing group
 ○ [^.!?] matches any character that isn't ., !, or ?
 ○ * matches zero or more sequences of the preceding item
 ○ \\b asserts a word boundary
 ○ ${keyword} inserts the value of the keyword constant into the pattern
 ○ \\b asserts a word boundary
 ○ [^.!?] matches any character that isn't ., !, or ?
 ○ * matches zero or more sequences of the preceding item
 ○ . matches any character that's not a line break character
 ○ ? matches zero or one occurrence of the preceding item
 ● Flags
 ○ g tells the regex engine to match all occurrences rather than stopping
 after the first match

 ○ i makes the search case-insensitive

At the end of the function, we use the replace() method to replace all matches
of the pattern with the matched string surrounded by <mark></mark>. There are
various ways in HTML to denote text that holds significance. In this case, we

have opted for the <mark> element, which instructs the web browser to
emphasize the enclosed text by highlighting it in yellow.

The second function, unhighlight(), is called when the user clicks the
“unhighlight” button. It simply creates a regex pattern that matches any <mark>

or </mark> tags in the HTML, and then removes those tags using the replace()

method. The last two lines of code add the respective event listeners to the
“highlight” and “unhighlight” buttons. When each button is clicked, the
corresponding function is executed.

Being cautious while using the input submitted by the user in your regex is
crucial. If you don’t verify the input, your program could become vulnerable
to a potential attack known as ReDoS. To learn about safeguarding your
application from such attacks, see Recipe 66, Escaping a String for Use in a
Regex.

Recipe 72 Highlighting Text in Real Time

Task
Suppose you want to add a search functionality to your application that
behaves similarly to Google Chrome’s “find in page” tool. With this feature,
as the user types their search query into the search field, Chrome highlights
the corresponding text on the page in real time. This enables users to quickly
locate the information they are searching for without having to manually scan
the entire page.

Solution

Define an HTML page with an input element and a div element containing
some text. The input element should have an ID of “search-input,” and the div
element should have an ID of “search-results”:

part_3/highlighting_in_realtime/highlighting_in_realtime_ex1.xhtml

 <!DOCTYPE html>

 <html>

 <head>

 <script src= "highlighting_in_realtime_ex1.js" defer></script>

 </head>

 <body>

 <input type= "text" id= "search-input" placeholder= "Search..." >

 <div id= "search-results" >Snakes are quite the characters. Have you seen

 their fashion sense? It's all stripes and scales, like they're trying to

 be both a zebra and a dragon at the same time. But don't let their smooth

 moves fool you—snakes can be quite hiss-terical when they want to be.

 </div>

 </body>

 </html>

Now, create the JavaScript code that takes the input and highlights the text:

part_3/highlighting_in_realtime/highlighting_in_realtime_ex1.js

 const searchInput = document.querySelector("#search-input");

http://media.pragprog.com/titles/fkjavascript/code/part_3/highlighting_in_realtime/highlighting_in_realtime_ex1.xhtml
http://media.pragprog.com/titles/fkjavascript/code/part_3/highlighting_in_realtime/highlighting_in_realtime_ex1.js

 const searchResults = document.querySelector("#search-results");

 const content = searchResults.innerHTML;

 function highlightText() {

 const searchText = searchInput.value.trim().toLowerCase();

 if (searchText.length > 0) {

 const searchRegex = new RegExp(searchText, "gi");

 const highlightedText = content.replace(searchRegex, "<mark>$&</mark>");

 searchResults.innerHTML = highlightedText;

 } else {

 searchResults.innerHTML = content;

 }

 }

 searchInput.addEventListener("input" , highlightText);

This code creates a live search functionality that highlights all occurrences of
the search term in the “search-results” div element as the user types in the
input field.

Discussion
The JavaScript code starts by creating references to the input, div, and the
content of the div element. We add an event listener to the input element using
the addEventListener() method. The event listener listens for changes to the
input value and triggers the highlightText() function when the input changes.

Inside highlightText(), we retrieve the value entered into the searchInput element,
remove any leading or trailing whitespace characters, convert the remaining
string value to lowercase, and store the result in the searchText variable.

Next, we check if the length of searchText is greater than zero. If so, we create
a regex object using the given input. We also pass the g and i flags as the
second parameter to indicate that the regex should match all occurrences
globally and be case-insensitive.

Using the replace() method on the content variable, we replace all occurrences
of the search text with the same text wrapped in an HTML <mark> tag. Finally,
we update the innerHTML property of the searchResults element to display the
highlighted text.

If the length of searchText is zero, we set the innerHTML property to the original
content variable, which displays the text as it was initially. This step is
essential because if the user deletes the entire search term, the text shouldn’t
have highlights anymore.

Users are increasingly expecting interactive and dynamic interfaces that
respond to their actions in real time. One such feature that has become popular
is real-time text highlighting. Take advantage of it to make it easier for your
users to find the information they need.

Protecting Your App from ReDoS Attacks
Be careful when reusing the text provided by the user in your
regex pattern. If you fail to sanitize the text properly, your app
may become vulnerable to ReDoS attacks. To learn more, see
Recipe 66, Escaping a String for Use in a Regex.

Recipe 73 Converting Plain Text into HTML-Ready Markup

Task
Imagine you intend to display the text entered by users on a web page. A
frustrating aspect of web programming is the lack of compatibility between
HTML and plain text, despite their frequent interchangeable use. While
people may enter information in plain text format in the text areas of forms,
it’s likely that you’d want to display the same information in HTML format.
To illustrate, consider this example, where a user has entered a question on a
forum page:

 Hey guys,

 I need your help with something urgent. My cat, Mr. Whiskers, has been acting

 super weird lately. He won't stop meowing, he keeps knocking down my plants,

 and to top it off, he's been stealing my socks.

 Do you know of any good cat therapists that you can recommend?

 Thanks

If you don’t include
 or <p> tags to indicate line breaks in the markup, the
resulting appearance when loaded into a web browser will be like this:

 Hey guys, I need your help with something urgent. My cat, Mr. Whiskers,

 has been acting super weird lately. He won't stop meowing, he keeps knocking

 down my plants, and to top it off, he's been stealing my socks. Do you know

 of any good cat therapists that you can recommend? Thanks

What you need is a solution that adds relevant HTML tags to paragraphs.

Solution

Search for newline characters in the supplied text and replace them with
HTML tags:

part_3/converting_text_to_html/text_to_html_ex1.js

http://media.pragprog.com/titles/fkjavascript/code/part_3/converting_text_to_html/text_to_html_ex1.js

1: function convertTextToHTML(str) {

-

- // Replace newline characters with

- str = str.replace(/\r\n|\n/g , "
");

5:

- // Replace two consecutive
 with </p><p>

- str = str.replace(/
\s*
/g , "</p><p>");

-

- // Enclose the entire string in <p></p>

10:

 str = ̀<p> ${str} </p>` ;

- return str;

- }

-

- const str =

15:

`Hey guys,

-

- I need your help with something urgent. My cat, Mr. Whiskers, has been acting

- super weird lately. He won't stop meowing, he keeps knocking down my plants,

- and to top it off, he's been stealing my socks.

20:

- Do you know of any good cat therapists that you can recommend?

-

- Thanks

- ` ;

25:

- convertTextToHTML(str);

- // → <p>Hey guys, </p><p>I need your help with something urgent. My cat, Mr.

- // Whiskers, has been acting
super weird lately. He won't stop meowing,

- // he keeps knocking down my plants,
and to top it off, he's been

30:

// stealing my socks. </p><p>Do you know of any good cat therapists that you

- // can recommend?</p><p>Thanks
</p>"

Now, with the HTML tags added, the text will be displayed properly in the
browser.

Discussion
Reusing the text provided by the user without sanitizing it is unwise because it
leaves the system vulnerable to XSS attacks. But, for this recipe, let’s
overlook this concern and assume that the input is safe to use (if you want to
learn how to protect against XSS attacks, check out the link in the footnote.[36])

We first use the regex /\r\n|\n/g to find newline characters that are used in
Microsoft Windows/DOS (\r\n) or Unix and Unix-like systems (\n). And we
replace them with
.

In order to format paragraphs in HTML, it’s necessary to enclose them within
<p></p> tags. One way to achieve this is to identify any instance of two
consecutive line breaks and replace them with </p><p> (Line 7).

Finally, we wrap the complete string with <p></p> tags and then return the
resulting string. Before using this function to convert text to HTML, you may
want to replace &, <, >, ", and ’ characters with HTML entities to prevent
browsers from interpreting HTML tags entered by users (see Recipe 8,
Converting HTML Markup to HTML Entities with replaceAll()).

Wrapping Up
When working with regex, it’s not uncommon to encounter situations where
your pattern fails to work as expected. Tracking down and fixing errors in
regex can be a systematic process. Let’s quickly go over some strategies to
assist you in troubleshooting and resolving issues when your pattern isn’t
working as intended:

Understand the regex flavor: the regex pattern you come across on the
internet may be tailored to a particular regex engine. Before
incorporating it into your code, ensure that it works with the JavaScript
regex flavor, or use a tool for conversion.

Break it down: if your pattern is complex, try breaking it down into
smaller parts and testing each part separately. This allows you to
isolate the problematic section and identify where the issue lies.

Be aware of special characters and escaping: ensure that special
characters are properly escaped if needed. Special characters such as
dot (.), asterisk (*), plus (+), question mark (?), brackets ([]), and
others have special meanings and require escaping with a backslash to
match them literally.

Verify the placement of capturing groups: when using capturing
groups, check if they are correctly defined and capture the intended
content. Incorrect grouping can lead to unexpected results or failed
matches.

Test data: evaluate the data you are applying the regex pattern to.
Verify that it matches the format and content you expect.

Use regex testing tools: a good regex tool allows you to test your regex
pattern in real time, provides detailed error messages, highlights issues

with the pattern, and gives explanations for failed matches. For a
selection of tools, see Appendix 3, Testing Regex with Specialized
Tools.

When making a decision on whether to use a regex or an alternative
solution, two main factors come into play: performance and maintainability.
Regular expressions can be computationally expensive, especially when
dealing with large inputs or complex patterns. If performance is a critical
factor for your task, and regex is causing performance issues, you might
need to consider alternative solutions, such as string manipulation functions
or specialized parsing libraries.

To identify if a regex is causing performance problems for your app,
measure the execution time of your code. You can use built-in timing
functions or performance profiling tools. Compare the execution time with
and without the regex to see if there is a significant difference.

If you have identified that the regex is the culprit, consider optimizing it
before searching for an alternative solution. Look for opportunities to
simplify or refactor the regex pattern. For example, try to eliminate
unnecessary capturing groups and use more specific expressions whenever
possible.

Another consideration is whether your code will be maintained by others.
Regular expressions can become convoluted and hard to understand,
particularly for complex patterns. So, opting for a more explicit solution
might be preferable. It’s essential to weigh the trade-offs and choose the
most appropriate solution based on the specific requirements of your
project.

Text processing is a fundamental aspect of modern computing and plays an
essential role in many applications such as natural language processing,
machine learning, information retrieval, and data analysis. In this book, we

have explored both traditional and state-of-the-art approaches to text
processing in JavaScript.

As technology continues to advance, the demand for effective text-
processing techniques will only grow. I hope this book has provided you
with the foundational knowledge and practical skills needed to meet this
demand.

[32]

[33]

[34]

[35]

[36]

May I Request a Favor from You?
Thank you for taking the time to read this book. May I request a favor?
Could you spare a minute to write a brief comment about this book on
Amazon or Goodreads? Your feedback is incredibly valuable, not just to me
as an author, but to potential readers as well. I make it a point to read all
reviews and greatly appreciate sincere feedback. To me, the true reward for
my efforts is the knowledge that I’m making a positive impact on the
JavaScript community.

Thanks again, and I really look forward to reading your feedback!

Footnotes

https://www.rfc-editor.org/rfc/rfc5322

https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

https://www.ascii-code.com/

https://www.ssa.gov/employer/ssnv.htm

https://www.acunetix.com/websitesecurity/cross-site-
scripting/#:~:text=In%20a%20Cross%2Dsite%20Scripting,vulnerable%20to%20Cross%2Dsite
%20scripting.

Copyright © 2024, The Pragmatic Bookshelf.

https://www.rfc-editor.org/rfc/rfc5322
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
https://www.ascii-code.com/
https://www.ssa.gov/employer/ssnv.htm
https://www.acunetix.com/websitesecurity/cross-site-scripting/#:~:text=In%20a%20Cross%2Dsite%20Scripting,vulnerable%20to%20Cross%2Dsite%20scripting.

Appendix 1

What Is Unicode?

Throughout this book, you’ll encounter the word “Unicode” in several recipes.
So, what exactly is Unicode?

Unicode is a character encoding system that provides a consistent way of
encoding, processing, and displaying written texts. Put simply, an encoding
system assigns numbers to characters, which can then be translated into binary
language used by computers.

Unicode is implemented in all modern operation systems and programming
languages. And it plays an increasingly important role in the JavaScript
language. Prior to the invention of Unicode, there were hundreds of different
character encoding systems, most of which were severely limited in size and
scope and incompatible with one another.

The most widely used character encoding system besides Unicode is ASCII.
American Standard Code for Information Interchange (ASCII) was published
in 1963 as a standard for electronic communication. ASCII is based on a
seven-bit byte, with each byte representing a character, capable of encoding
128 characters, including lowercase letters a-z, uppercase letters A-Z, digits 0-
9, and punctuation symbols.

In addition, 33 non-printing control signals are set aside for Teletype
machines, most of which are now obsolete. Because ASCII is an American
standard designed for transmitting English characters, it cannot represent
characters from other languages. As computers became more prevalent in

other parts of the world, other encoding systems were invented to represent
characters in other languages.

Over time, the need to support new languages led to the creation of hundreds
of conflicting ways to encode characters. These encoding systems were not
only inconsistent but also incomplete: two encodings could encode the same
character using different codes, and they were only able to encode a small
number of characters.

Unicode aims to solve this problem by unifying all existing character
encoding systems and replacing them with a universal character encoding
standard supporting every character in every writing system and language in
the world. By providing a standard to encode multilingual text, Unicode
creates the foundation for developing global software.

Prior to the introduction of the Unicode standard, most programs supported a
small set of encodings. They were designed primarily for larger markets due
to the cost and complexity of developing specific versions of programs for
smaller markets. Furthermore, converting text between different programs
posed a risk of corruption. Unicode’s ability to easily exchange text data
internationally enables programs to function anywhere in the world.

To achieve this, Unicode uses more bits to encode each character, allowing
more space for encoding. At this time, the most recent version of the Unicode
standard, Unicode 15.0, contains a collection of 149,186 characters from
many modern and historic scripts.

In addition to including modern and classical forms of many languages from
around the world, the standard contains important symbol sets, including
punctuation marks, mathematics symbols, currency symbols, technical
symbols, emojis, dingbats, and geometric shapes.

With a capacity of over one million characters, Unicode is more than enough
for encoding text expressed in most writing systems. But, capacity limitation
in fonts means no one font set supports all Unicode characters. So even

though Unicode provides a way to display the characters, they still won’t
display right if they are not part of the font being used.

The reason behind this is that a font can only have 16 bits of glyph identifiers,
which corresponds to 65,536 glyphs (note that a glyph is different from a
character[37]). As a result, it has been technically impossible to represent all
+149,186 characters of Unicode with a single font.

Characters in Unicode are represented in three encoding forms:

8-bit form (UTF-8)
16-bit form (UTF-16)
32-bit form (UTF-32)

UTF is the abbreviation for Unicode Transformation Format, and the number
following it indicates the number of bits used to encode each character. The 8-
bit form of Unicode is the most common character encoding on the web. It
was designed not only to represent standard Unicode characters but also to be
backward compatible with ASCII. The ASCII characters are the first 128 code
points in Unicode (UTF-8).

Therefore, an ASCII text is also considered a Unicode text. In fact, Unicode is
a superset of all characters in common use today because it includes
characters from various international standards, as well as important industry
character sets. UTF-16 represents characters using one or two 16-bit integers.
Most of the characters in major languages can be represented using one 16-bit
code unit.

These characters, known as Basic Multilingual Plane (BMP), are encoded in
the first 65,536 code points and require 2 bytes per character. Any character
beyond BMP is called a supplementary character and cannot be represented in
just 16 bits. Supplementary characters need a pair of 16-bit surrogate code
units and are encoded in 4 bytes. Unicode allocates 2,048 code points as
surrogate code points for the UTF-16 form.

For UTF-8, 1 byte is used to represent characters in ASCII, 3 bytes for the rest
of the BMP, and 4 bytes for supplementary characters. UTF-32 is a fixed-
width encoding using 4 bytes for all characters — unlike UTF-8 and UTF-16,
which represent each code point by a variable number of code values.

Unicode code points are usually represented in hexadecimal notation and
prefixed with U+. The range between U+0000 and U+FFFF represents code
points in BMP. For supplementary characters, five or six hex digits are used to
represent code points, and the range is between U+10000 and U+10FFFF.

The characters you see on computers are actually binary data consisting of a
series of ones and zeros. A character encoding interprets those binary data into
real characters. In order to accomplish this, the encoding associates each
character with a number which is called a code point. For example, the
character “F” is assigned a code point of U+0046.

A character that’s assigned to a specific code point is called an encoded
character. In JavaScript, you can use the code point of a character directly by
preceding the code point with \u, as in this example:

 console.log("\u0046"); // → F

A character encoding has two components: an encoder and a decoder. When
you input text, the encoder translates the characters into a sequence of numeric
values (bytes) that represents those characters. To display the characters, the
decoder translates the sequence of bytes back into characters.

Since ES2015, you can use most Unicode characters as an identifier. For
example:

appendix/unicode/unicode_ex1.js

 // An identifier in the Persian language

 let سلام = "hi" ;

 console.log(سلام); // → hi

 // An identifier in the Japanese language

 let こんにちは = "Hello" ;

http://media.pragprog.com/titles/fkjavascript/code/appendix/unicode/unicode_ex1.js

[37]

[38]

 console.log(こんにちは); // → Hello

The goal of Unicode is to enable everybody in the world to use their language
on computers. Therefore, it’s no wonder Unicode is the most used character
set encoding in the world.

If you are interested in reading more about Unicode, check out unicode.org.[38]

Footnotes

https://help.fontlab.com/fontlab/7/manual/About-Glyphs/

https://home.unicode.org/

Copyright © 2024, The Pragmatic Bookshelf.

https://help.fontlab.com/fontlab/7/manual/About-Glyphs/
https://home.unicode.org/

Appendix 2

Implementing Regex in JavaScript

There are several ways to implement regular expressions in JavaScript. In
this book, we’ve mostly worked with test(), match(), and replace(). But
JavaSript also provides methods such as exec(), search(), matchAll(),
replaceAll(), and split() that you should be aware of.

While some of these methods belong to the RegExp object, others are
properties of the String object. Knowing the difference between these tools
and when to use each enables you to write programs that are more compact
and more efficient.

test()
The test() method returns a Boolean indicating whether or not a pattern exists
in the given string. For example, the following pattern checks if the string
contains the substring “day”:

appendix/methods/methods_ex8.js

 const str = "12 days" ;

 const re = /day/ ;

 console.log(re.test(str)); // → true

Some regular expression methods such as test() and exec() use the value of
lastIndex as the starting position to begin searching the string. If the match
succeeds, test() returns true and updates the lastIndex property of the regular
expression object. Here’s an example:

appendix/methods/methods_ex9.js

1: const str = "10, 20, 30" ;

- const re = /\d\d/g ; // Match two consecutive digits

-

- console.log(re.test(str)); // → true

5: console.log(re.lastIndex); // → 2

-

- console.log(re.test(str)); // → true

- console.log(re.lastIndex); // → 6

-

10:

// lastIndex is writable

- // so you can set it manually

- re.lastIndex = 11;

- console.log(re.test(str)); // → false

- console.log(re.lastIndex); // → 0

Notice Line 13 where test() returns false when it cannot find a match at index
11. When this happens, the method resets lastIndex to 0. Keep in mind that the

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex8.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex9.js

global flag (g) must be set for this to work.

exec()
The exec() method executes a search on a string. If it finds a match, it returns
an array containing the search result. If not, it returns null. Here is an example:

appendix/methods/methods_ex1.js

 const str = "About 100ft" ;

 const re = /(\d+)ft/ ;

 console.log(re.exec(str));

 // → ["100ft", "100", index: 6, input: "About 100ft", groups: undefined]

The resulting array contains the matched string as the first item. If there are
any capturing groups within the match, they are listed from index 1. The array
also comes with three properties:

index provides the index of the match
input gets you the original string
groups lists named capturing groups (if there are any)

If you use a global flag, exec() will use the value of lastIndex as the starting
position to begin searching the string. With each call to exec(), the lastIndex

property gets changed to reflect the position that follows the last character in
the match. Let’s look at an example:

appendix/methods/methods_ex2.js

 const str = "8, 9, 10, 11" ;

 const re = /\d\d/g ;

 console.log(re.lastIndex);

 // → 0

 console.log(re.exec(str));

 // → ["10", index: 6, input: "8, 9, 10, 11", groups: undefined]

 console.log(re.lastIndex);

 // → 8

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex1.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex2.js

 console.log(re.exec(str));

 // → ["11", index: 10, input: "8, 9, 10, 11", groups: undefined]

 console.log(re.lastIndex);

 // → 12

 console.log(re.exec(str));

 // → null

 console.log(re.lastIndex);

 // → 0

In this code, we call exec() multiple times to find successive matches in the
same string. When the method cannot find more matches, it returns null and
resets the value of lastIndex to 0.

We can also manually modify the value of lastIndex to change the starting
position of exec(). For example, let’s say we have a numbered list like this:

 1. 123

 2. 4355

 3. 764989

And we want to write a regex to retrieve the value of each item. With lastIndex,
we can perform the search only at the position where the data we want is
located and greatly simplify the regex pattern:

appendix/methods/methods_ex3.js

 const str =

 `1. 123

 2. 4355

 3. 764989` ;

 const re = /\d+/g ;

 // Split the string into lines

 const arr = str.split("\n");

 // Loop over the lines and apply regex

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex3.js

 arr.forEach(line => {

 re.lastIndex = 2;

 console.log(re.exec(line)[0]);

 });

 // → 123

 // → 4355

 // → 764989

Two Separate Families
test() and exec() are properties of the RegEx object, so you should
call them as a method of a regular expression. Conversely, match(),
matchAll(), replace(), replaceAll(), split(), and search() are properties of
the String object, and you should call them on a string.

match()
The match() method returns an array similar to exec(). You may have already
noticed the similarity between these two methods. Consider this example:

appendix/methods/methods_ex4.js

 const str = "About 100ft" ;

 const re = /(\d+)ft/ ;

 console.log(str.match(re));

 // → ["100ft", "100", index: 6, input: "About 100ft", groups: undefined]

 console.log(re.exec(str));

 // → ["100ft", "100", index: 6, input: "About 100ft", groups: undefined]

exec() and match() return the same result. The output differs only when you set
the global flag (g):

appendix/methods/methods_ex5.js

 const str = "9ft, 10ft, 11ft" ;

 const re = /(\d\d)ft/g ;

 console.log(str.match(re));

 // → ["10ft", "11ft"]

 console.log(re.exec(str));

 // → ["10ft", "10", index: 5, input: "9ft, 10ft, 11ft", groups: undefined]

With the global flag, match() returns an array containing the matched
substrings only and won’t include capturing groups, indices, and other
properties.

Keep in mind that, by default, match() ignores the value you set for lastIndex. To
be able to specify the starting position of a search, you have to use the sticky
flag (see Recipe 44, Searching from a Specific Index with the y Flag).

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex4.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex5.js

matchAll()
The matchAll() method is similar to match() except when you set the global flag
(g), which causes the method to provide additional information about the
matches such as capturing groups and index positions:

appendix/methods/methods_ex6.js

 const str = "9ft, 10ft, 11ft" ;

 const re = /(\d\d)ft/g ;

 console.log(str.match(re));

 // → ["10ft", "11ft"]

 console.log(...str.matchAll(re));

 // → ["10ft", "10", index: 5, input: "9ft, 10ft, 11ft", groups: undefined]

 // → ["11ft", "11", index: 11, input: "9ft, 10ft, 11ft", groups: undefined]

 console.log(re.exec(str));

 // → ["10ft", "10", index: 5, input: "9ft, 10ft, 11ft", groups: undefined]

matchAll() is a relatively new addition to ECMAScript compared to other
methods covered in this appendix. Edge 79 (Released 2020-01-15) was the
last browser to implement matchAll().[39] If you need to support older browsers,
you can use a polyfill.[40] Previously, developers had to call exec() in a loop to
get a similar result, which wasn’t very efficient. Here’s an example in case you
encounter it on the internet:

appendix/methods/methods_ex7.js

 const str = "9ft, 10ft, 11ft" ;

 const re = /(\d\d)ft/g ;

 let matches;

 while ((matches = re.exec(str)) !== null) {

 console.log(matches);

 }

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex6.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex7.js

 // Logs:

 // → ["10ft", "10", index: 5, input: "9ft, 10ft, 11ft", groups: undefined]

 // → ["11ft", "11", index: 11, input: "9ft, 10ft, 11ft", groups: undefined]

search()
The search() method executes a search on a string and returns an integer
indicating the index of the first match. If no match is found, the return value
will be -1:

appendix/methods/methods_ex10.js

 const str = "Eat well, stay fit, die anyway." ;

 // Using a string as the pattern

 console.log(str.search("fit")); // → 15

 // Using a regular expression as the pattern

 console.log(str.search(/fit/)); // → 15

Unlike exec() or test(), the search() method does not support the global flag and
ignores the lastIndex property. This means it always executes a search from the
beginning of the string and returns the index of the first match.

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex10.js

replace()
The replace() method replaces matches with the given string. The pattern may
be a string or a regex:

appendix/methods/methods_ex11.js

 const str = "fish and chips" ;

 // Using a string as the argument

 console.log(str.replace("and" , "&")); // → fish & chips

 // Using a regex as the argument

 console.log(str.replace(/and/ , "&")); // → fish & chips

If the global flag is set, the method replaces every match it finds in the string:

appendix/methods/methods_ex12.js

 const str = "$5, $10, $20" ;

 const re = /\$/g ;

 console.log(str.replace(re, "€")); // → €5, €10, €20

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex11.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex12.js

replaceAll()
The replaceAll() method outputs the same result as replace() when the global flag
is set. Compare:

appendix/methods/methods_ex13.js

 const str = "$5, $10, $20" ;

 const re = /\$/g ;

 console.log(str.replace(re, "€")); // → €5, €10, €20

 console.log(str.replaceAll(re, "€")); // → €5, €10, €20

As a result, calling replaceAll() doesn’t seem to yield much benefit over calling
replace(). The main difference between the two methods is how replaceAll()

handles replacement when the pattern is a string, as opposed to a regex:

appendix/methods/methods_ex14.js

 const str = "$5, $10, $20" ;

 const searchStr = "$" ;

 console.log(str.replace(searchStr, "€")); // → €5, $10, $20

 console.log(str.replaceAll(searchStr, "€")); // → €5, €10, €20

While replaceAll() replaces all instances of a substring, replace() stops searching
as soon as it replaces the first substring. Keep in mind that replaceAll() always
expects the global flags to be present in a regex pattern; otherwise, it throws
an error:

appendix/methods/methods_ex15.js

 const str = "$5, $10, $20" ;

 const re = /\$/ ;

 str.replaceAll(re, "€");

 // → TypeError: String.prototype.replaceAll called with a non-global RegExp

 // argument

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex13.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex14.js
http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex15.js

Special Replacement PatternsSpecial Replacement Patterns
The second parameter of replace() and replaceAll() supports a set of
special patterns that let you reference different parts of the
matched substring. See Recipe 34, Using Special Replacement
Patterns.

split()
The split() method splits a string into substrings and returns them as an array.
The first argument, which can be either a string or a regex, specifies the
position at which the split should occur. The second argument limits the
number of elements returned in the array. Here’s an example:

appendix/methods/methods_ex16.js

 const str = "a b c" ;

 console.log(str.split(" ")); // → ["a", "b", "c"]

 console.log(str.split(/\s/ , 2)); // → ["a", "b"]

Indices
If you set the d flag in a regex, you’ll have access to the indices

property in the result of exec(), match(), and matchAll(). For more on
indices, see Recipe 40, Generating Indices for Matches with the d
Flag.

http://media.pragprog.com/titles/fkjavascript/code/appendix/methods/methods_ex16.js

[39]

[40]

Conclusion
In summary, use…

test() when you want to check whether a pattern exists in a string

search() when you want to get the index of a match

match() or exec() when you want to get all information about a match

exec() when you want to use lastIndex as the starting position to begin
searching

match() with the global flag when you want to obtain all matches but
don’t care about other properties

matchAll() when you want to obtain all information about all matches

replace() when you want to replace one or all instances of a string/regex
pattern

replaceAll() when you want to replace all instances of a string/regex
pattern

split() when you want to split a string into an array of substrings

Footnotes

https://caniuse.com/mdn-javascript_builtins_string_matchall

https://www.npmjs.com/package/string.prototype.matchall

Copyright © 2024, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_string_matchall
https://www.npmjs.com/package/string.prototype.matchall

Appendix 3

Testing Regex with Specialized
Tools

Deciphering complex regular expression patterns can be difficult even for
experienced developers. As a result, many regular expression tools (both
free and commercial) have emerged with varying feature sets that make
building regex patterns easier.

While it’s perfectly possible to experiment with regular expressions in a
programming environment, you’d be missing useful helpers such as syntax
checking, debugging, and other feedback.

A good tool provides an interface to test a pattern on sample strings, makes
it easier to understand complex regular expressions written by other
developers, and allows you to convert regular expressions between flavors.

When building complicated regular expressions, using a specialized tool
like the ones described below will make your code less prone to errors.

RegexPal
RegexPal is a simple web-based regular expression tester written entirely in
JavaScript.

To test a regular expression using RegexPal, open regexpal.com in your
browser and type a pattern in the box at the top. In the bottom box, enter the
target text you want to match.

You will see that RegexPal automatically highlights the portion of the text
that matches your regex. The program also indicates any syntax errors in
your pattern. A nice feature of RegexPal is the ability to provide
information as you type without the need to click on a button to see the
result, making it very convenient to use.

https://regexpal.com

https://regexpal.com/

RegExr
RegExr is a feature-packed tool to build regular expressions with real-time
updates as you type.

RegExr’s Explain tool gives you a detailed breakdown of your regex. You
can mouse over the regex tokens to see a description of what each of them
does. An interesting feature of RegExr is the ability to save a regular
expression to a short link, allowing you to share patterns with others easily.

Other features include syntax highlighting, contextual help, cheat sheets,
references, searchable community patterns, and more. RegExr supports
JavaScript and PHP/PCRE flavors.

https://regexr.com

https://regexr.com/

Regex101
Regex101 is a popular web-based regular expression tester that supports
multiple flavors, including JavaScript, Python, PCRE, Java, .NET(C#) and
Golang.

Regex101 provides a debugger with a real-time explanation that shows
every step the engine takes. It can detect errors, highlight the syntax, show
the capturing groups, allow substitutions, and provide a detailed explanation
of each token.

Similar to RegExr, Regex101 has the ability to permanently save a regular
expression to a short link and share your pattern with others.

https://regex101.com

https://regex101.com/

RegexBuddy
RegexBuddy is a powerful tool for the Windows operating system that
provides an interface for creating, testing, and debugging regular
expressions.

RegexBuddy offers regex analysis to quickly understand a pattern and
automatically highlights the syntax as you edit. A helpful feature of
RegexBuddy is the ability to compare a regex between multiple flavors to
ensure it works as intended across platforms and programming languages.

It also incorporates a tool for converting regular expressions between
flavors. Additionally, RegexBuddy comes with a library of patterns to solve
various text-matching problems quickly. For example, there are ready-to-
use patterns for matching dates, domain names, national IDs of different
countries, etc.

RegexBuddy supports all of the popular regex flavors, including JavaScript.

https://www.regexbuddy.com

https://www.regexbuddy.com/

Regex Vis
Regex Vis is a diagramming application that lets you create a concise visual
representation of regex structures:

Railroad diagrams can be a helpful aid in comprehending complex regex
patterns. Type your pattern into the provided box, and the app will generate
a corresponding diagram immediately. For example, if you enter the regex
/\bAug(ust)?\s\d{1,2}(st|nd|rd|th)?\b/ from Recipe 30, Regex Vis will create the
following diagram:

https://regex-vis.com/

Copyright © 2024, The Pragmatic Bookshelf.

https://regex-vis.com/

Appendix 4

Regular Expression Cheat Sheet

Regular expressions can be complex and difficult to remember. That’s
where a cheat sheet comes in handy. This quick reference guide provides a
summary of the regex syntax in JavaScript and its meanings, making it easy
to find and use the right pattern for your needs.

Character Classes
Syntax Description
. Matches any character except newline.
\w Matches any word character (letter, digit, or underscore).
\W Matches any non-word character.
\d Matches any digit character.
\D Matches any non-digit character.
\s Matches any whitespace character.
\S Matches any non-whitespace character.
[abc] Matches any of the characters inside the brackets.
[^abc] Matches any character not inside the brackets.
[a-z] Matches any character between a and z (inclusive).

Quantifiers
Syntax Description
x* Matches zero or more occurrences of the preceding character.
x+ Matches one or more occurrences of the preceding character.
x? Matches zero or one occurrence of the preceding character.
x{n} Matches exactly n occurrences of the preceding character.
x{n,} Matches at least n occurrences of the preceding character.
x{n,m} Matches between n and m occurrences of the preceding

character (inclusive).
x*? x+?
x??
x{n}?
x{n,}?
x{n,m}?

Lazy quantifier: matches the shortest possible sequence of
characters in a string that satisfies a given pattern.

Boundary Assertions
Syntax Description
^ Matches the beginning of a string.
$ Matches the end of a string.
\b Matches a word boundary.
\B Matches a non-word boundary.

Lookaround Assertions
Syntax Lookaround Type Description
x(?=y) Positive Lookahead Matches "x" only if followed by "y."
x(?!y) Negative Lookahead Matches "x" only if not followed by

"y."
(?
<=y)x

Positive Lookbehind Matches "x" only if preceded by "y."

(?<!y)x Negative
Lookbehind

Matches "x" only if not preceded by
"y."

Groups and Backreferences
Syntax Group Type Description
(x) Capturing Group Captures the matched substring and

assigns it a group number.
(?
<Name>x)

Named Capturing
Group

Captures the matched substring by
name and assigns it a group
number.

(?:x) Non-Capturing
Group

Matches "x" but does not capture it
as a group.

\n Backreference Matches the same text as the nth
captured group.

k<Name> Backreference to a
Named Capturing
Group

Matches the same text as the nth
named captured group.

Flags
Syntax Flag Type Description
g global Finds all matches, not just the first one.
i ignoreCase Matches upper and lowercase characters.
s dotAll Allows the dot (.) to match newlines.
u unicode Enables various Unicode features.
y sticky Matches only at the current position in the target

string.
d hasIndices Enables the result of a match to contain the start

and end indices of the substrings.
m multiline Matches the beginning or end of each line in a

string, not just the beginning or end of the string
itself.

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering you
this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not
propose a writing idea to us? After all, many of our best authors started off as
our readers, just like you. With up to a 50% royalty, world-class editorial
services, and a name you trust, there’s nothing to lose. Visit
https://pragprog.com/become-an-author/ today to learn more and to get
started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

Unicode Property Escapes
Syntax Type Description
\p{UnicodePropertyValue} Positive

Unicode
Property
Escape

Matches characters based on
their Unicode properties.

\P{UnicodePropertyValue} Negative
Unicode
Property
Escape

Matches any character that
does not have the specified
Unicode property value.

Copyright © 2024, The Pragmatic Bookshelf.

https://pragprog.com/
https://pragprog.com/become-an-author/

A Common-Sense Guide to Data Structures and Algorithms
in Python, Volume 1

If you thought data structures and algorithms
were all just theory, you’re missing out on what
they can do for your Python code. Learn to use
Big O notation to make your code run faster by
orders of magnitude. Choose from data structures
such as hash tables, trees, and graphs to increase
your code’s efficiency exponentially. With simple
language and clear diagrams, this book makes

this complex topic accessible, no matter your background. Every chapter
features practice exercises to give you the hands-on information you need
to master data structures and algorithms for your day-to-day work.

Jay Wengrow

(502 pages) ISBN: 9798888650356 $57.95

Text Processing with Ruby
Whatever you want to do with text, Ruby is up to the job. No matter what
the source – web pages, databases, the contents of files – learn how to
acquire the text and get it into your program. Explore techniques to
process that text and then output the transformed or extracted text. Cut
even the most complex text-based tasks down to size and learn how to
master regular expressions, scrape information from Web pages, develop

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/jwpython

reusable utilities to process text in pipelines, and
more.

Rob Miller

(272 pages) ISBN: 9781680500707 $36

Designing Data Governance from the Ground Up
Businesses own more data than ever before, but
it’s of no value if you don’t know how to use it.
Data governance manages the people, processes,
and strategy needed for deploying data projects
to production. But doing it well is far from easy:
Less than one fourth of business leaders say their
organizations are data driven. In Designing Data
Governance from the Ground Up, you’ll build a

cross-functional strategy to create roadmaps and stewardship for data-
focused projects, embed data governance into your engineering practice,
and put processes in place to monitor data after deployment.

Lauren Maffeo

(100 pages) ISBN: 9781680509809 $29.95

From Objects to Functions

Build applications quicker and with less effort using functional
programming and Kotlin. Learn by building a complete application, from
gathering requirements to delivering a microservice architecture
following functional programming principles. Learn how to implement

http://pragmaticprogrammer.com/titles/rmtpruby
http://pragmaticprogrammer.com/titles/lmmlops

CQRS and EventSourcing in a functional way to
map the domain into code better and to keep the
cost of change low for the whole application life
cycle. If you’re curious about functional
programming or you are struggling with how to
put it into practice, this guide will help you
increase your productivity composing small
functions together instead of creating fat objects.

Uberto Barbini

(468 pages) ISBN: 9781680508451 $47.95

http://pragmaticprogrammer.com/titles/uboop

	Acknowledgments
	Preface
	Who Is This Book For?
	What You Should Know
	What’s in This Book?
	Online Resources

	1. Part I: Text Processing with Built-in JavaScript Methods
	Recipe 1. Determining If a Value Is a String with the typeof Operator
	Recipe 2. Checking a String for Specific Words with includes()
	Recipe 3. Matching the Beginning or End of a String with startsWith() and endsWith()
	Recipe 4. Extracting Lists from Text with slice()
	Recipe 5. Converting Color Names to Hexadecimal Values with the Canvas Element
	Recipe 6. Adding Transparency to Hex Colors
	Recipe 7. Removing HTML Tags from Text with DOMParser()
	Recipe 8. Converting HTML Markup to HTML Entities with replaceAll()
	Recipe 9. Intersecting HTML Tables with filter()
	Recipe 10. Generating HTML Tables from an Array of Arrays
	Recipe 11. Generating HTML Tables from an Array of Objects
	Recipe 12. Displaying Tabular Data in Console with console.table()
	Recipe 13. Formatting Dates with Intl.DateTimeFormat()
	Recipe 14. Formatting Currencies with Intl.NumberFormat()
	Recipe 15. Adding Thousand Separators to Numbers with Intl.NumberFormat()
	Recipe 16. Creating Language-Sensitive Lists with Intl.ListFormat()
	Recipe 17. Determining Letter Case with charAt()
	Recipe 18. Counting Unicode Characters with Intl.Segmenter()
	Recipe 19. Counting Words in a String with Intl.Segmenter()
	Recipe 20. Counting the Number of a Specific Word with split()
	Recipe 21. Equalizing Incompatible Characters with normalize()
	Recipe 22. Copying Text to Clipboard with the Clipboard API

	2. Part II: Text Processing with Regular Expressions
	Recipe 23. Creating Your First Regular Expression
	Recipe 24. Asserting the Start or End of a String with ^ and $
	Recipe 25. Looking For Whole Words Only with the Word Boundary (\b)
	Recipe 26. Matching One of Several Alternatives with the Vertical Bar (|)
	Recipe 27. Matching One of Several Characters with the Character Class
	Recipe 28. Matching a Range of Characters with Character Classes
	Recipe 29. Repeating Part of a Regex with Quantifiers
	Recipe 30. Treating Multiple Characters as a Single Unit with the Capturing Group
	Recipe 31. Extracting a Matched Value with the Capturing Group
	Recipe 32. Excluding Groups from Result with the Non-capturing Group
	Recipe 33. Reading Groups with Ease Using Named Capturing Groups
	Recipe 34. Using Special Replacement Patterns
	Recipe 35. Taking Away the Special Meaning of Replacement Patterns
	Recipe 36. Using a Function as the Replacement Pattern
	Recipe 37. Escaping Metacharacters with the Backslash
	Recipe 38. Creating Lazy Quantifiers with the Question Mark
	Recipe 39. Global and Case-Insensitive Matching with the g and i Flags
	Recipe 40. Generating Indices for Matches with the d Flag
	Recipe 41. Forcing ^ and $ to Match at the Start and End of a Line with the m Flag
	Recipe 42. Forcing . to Match Newline Characters with the s Flag
	Recipe 43. Enabling Unicode Features with the u Flag
	Recipe 44. Searching from a Specific Index with the y Flag
	Recipe 45. Modifying an Existing Regex Literal
	Recipe 46. Referencing a Matched String with the Backreference
	Recipe 47. Testing a Pattern with the Positive Lookahead
	Recipe 48. Testing a Pattern with the Negative Lookahead
	Recipe 49. Testing a Pattern with the Positive Lookbehind
	Recipe 50. Testing a Pattern with the Negative Lookbehind
	Recipe 51. Matching Non-ASCII Numerals with the Unicode Property Escape
	Recipe 52. Matching Non-ASCII Words with the Unicode Property Escape
	Recipe 53. Matching Unicode Word Boundaries with the Unicode Property Escape

	3. Part III: Mastering Text Processing in JavaScript
	Recipe 54. Validating Email Addresses
	Recipe 55. Validating Password Strength
	Recipe 56. Validating Social Security Numbers
	Recipe 57. Validating ZIP Codes
	Recipe 58. Validating Canadian Postal Codes
	Recipe 59. Removing Duplicate Lines
	Recipe 60. Removing Duplicate Lines Separated by Other Lines
	Recipe 61. Removing Duplicate Spaces
	Recipe 62. Removing Duplicate Whitespaces
	Recipe 63. Replacing Duplicate Whitespaces with the Same Type
	Recipe 64. Extracting Text Enclosed in Double Quotes
	Recipe 65. Extracting Text Enclosed in Single Quotes
	Recipe 66. Escaping a String for Use in a Regex
	Recipe 67. Striping Invalid Characters from Filenames
	Recipe 68. Matching Floating-Point Numbers
	Recipe 69. Matching Formatted Numbers with Thousand Separators
	Recipe 70. Matching Nearby Words
	Recipe 71. Highlighting Sentences Containing a Specific Word
	Recipe 72. Highlighting Text in Real Time
	Recipe 73. Converting Plain Text into HTML-Ready Markup
	Wrapping Up
	May I Request a Favor from You?

	A1. What Is Unicode?
	A2. Implementing Regex in JavaScript
	test()
	exec()
	match()
	matchAll()
	search()
	replace()
	replaceAll()
	split()
	Conclusion

	A3. Testing Regex with Specialized Tools
	RegexPal
	RegExr
	Regex101
	RegexBuddy
	Regex Vis

	A4. Regular Expression Cheat Sheet
	Character Classes
	Quantifiers
	Boundary Assertions
	Lookaround Assertions
	Groups and Backreferences
	Flags
	Unicode Property Escapes

