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Preface

There is a long and established tradition of printed manuals on  Mathematical

 Analysis I. For lecturers in the faculties of sciences, engineering and architecture, it is therefore easy to select the most suitable ones, according to their own

mathematical taste and depending on the objectives of the classes to be offered. 

There is, on the contrary, general agreement as regards the lack of a similar

availability of textbooks on  Mathematical Analysis II. 

Whilst preparing the present book, we thought that we should allow for the

possibility of choosing between two levels of presentation. For this reason, the

contents are first discussed in an elementary way, and at a successive stage, they

are examined from several, more penetrating, angles. 

The agile organisation of the subject matter helps instructors to determine

effortlessly which parts to present during lectures and where to stop. 

In a course addressed to engineering or computer science students, for example, 

it may be appropriate to discuss multiple integrals from a more concrete point of

view, starting from normal domains in the plane and in space. For mathematics

and physics students, on the other hand, a more rigorous approach to Riemann’s or

Lebesgue’s theory might be more fitting. 

Another possibility is to leave the chapter on the Lebesgue integral for a third-

year class. Similarly, we are convinced that the theory of regular surfaces in space

should be enough for the majority of undergraduate degrees, while some lecturers

might think it useful to teach, in an elementary way,  k-dimensional manifolds and the generalisations of Stokes’s theorem and of the divergence theorem to R n. 

In the same line of thought, the various chapters’ appendices provide further

opportunities to go deeper into certain topics: among them, the Ascoli-Arzelà theo-

rem, the regularity of convex functions in R n, the Gamma function or  Lp  spaces, all topics that are paramount in modern mathematical analysis. Other instances include

the Weierstrass theorem on polynomial approximation of continuous functions or

Peano’s existence theorem (typically only existence, without uniqueness) for non-

linear ODEs and systems under general assumptions. 

v
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vi

Preface

The authors believe that any textbook can contribute to the success of a lecture

course only to a point, and the choices made by lecturers are decisive in this

respect. Nonetheless, they still hope that this book will be welcomed by students

and colleagues. 

Napoli, Italy

Nicola Fusco

Firenze, Italy

Paolo Marcellini

Napoli, Italy

Carlo Sbordone
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Sequences and Series of Functions

1

1.1

Sequences of Functions: Pointwise and Uniform

Convergence

Let  I  be a set of real numbers and  fk :  I

→ R a sequence of real functions

defined on  I . One says that  fk converges  to the function  f :  I → R  pointwise on I  whenever

lim  fk(x) =  f (x) , 

∀  x ∈  I . 

 k→+∞

In other words, if for any  ε >  0 and any  x ∈  I  there exists  νε,x ∈ N such that

| fk(x) −  f (x)|  < ε , 

∀  k > νε,x . 

In general, given  ε >  0, the number  νε,x  depends on the point  x; if, instead, this number is independent of  x, one speaks of  uniform convergence. 

Precisely, we say that  fk converges uniformly on I  to  f  if, for any  ε >  0 ,  there exists  νε ∈ N such that

| fk(x) −  f (x)|  < ε , 

∀  k > νε, ∀  x ∈  I . 

Equivalently,  fk converges uniformly on I  to  f  if, for any  ε >  0 ,  there exists  νε ∈ N

such that

sup {| fk(x) −  f (x)| :  x ∈  I }  < ε, 

∀  k > νε . 

Another way to express the same is saying that  fk converges uniformly on I  to  f  if the following condition on the limit of a numerical sequence holds

lim sup {| fk(x) −  f (x)| :  x ∈  I } = 0  . 

 k→+∞
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1

Sequences and Series of Functions

If a sequence of functions converges, pointwise or uniformly, on a set  I , then it converges pointwise or uniformly on every subset  I  ⊆  I , respectively. 

Uniform convergence on  I  implies pointwise convergence, as one deduces from

the inequality

| fk(x) −  f (x)| ≤ sup {| fk(x) −  f (x)| :  x ∈  I}  , for any  x ∈  I . The converse is in general false, as the following examples show. 

 Example 1  Let  a,  b  be two real numbers and  fk  the sequence (see Fig. 1.1) defined on the interval  I = [0 ,  1] by

 a  if 0  < x ≤ 1 /k

 fk(x) =  b  if 1 /k < x ≤ 1

or if  x = 0  . 

Given  x ∈  ( 0 ,  1], for any  k >  1 /x  we have 1 /k < x ≤ 1 and therefore  fk(x) =  b; hence the sequence  fk  converges to the function  f (x) =  b  pointwise. 

Moreover, since

sup {| fk(x) −  f (x)| :  x ∈ [0 ,  1]} = | a −  b|  , we have uniform convergence only when  a =  b. 

 y

 b

 a

 O

1/ k

1

 x

Fig. 1.1

 Example 2  The sequence of functions defined on  I = [0 ,  1] by fk(x) =  xk , 

(1.1)

(continued)
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 Example 2 (continued)

converges for every  x ∈  I  to the function

0 if  x ∈ [0 ,  1 )

 f (x) =

(1.2)

1

if

 x = 1  . 

Furthermore, 

sup {| fk(x) −  f (x)| :  x ∈ [0 ,  1]} = sup {| fk(x) −  f (x)| :  x ∈ [0 ,  1 )} =





= sup  xk :  x ∈ [0 ,  1 ) = 1  . 

Hence the sequence  fk  does not converge uniformly on the interval  I = [0 ,  1]. 

 Example 3  Vice versa, it is easy to check that the sequence  fk  defined in (1.1) converges uniformly on every interval of type [0 , b], with 0  < b <  1. 

In fact, on [0 , b] the pointwise limit  f (x)  is identically zero, so sup {| fk(x) −  f (x)| :  x ∈ [0 , b]} = sup  xk :  x ∈ [0 , b] =  bk, and the least upper bound tends to zero as  k → +∞. 

 Example 4  Consider the sequence of functions  fk (Fig. 1.2), defined on the real axis  I = R

by

 fk(x) =

 x 2

 , 

∀  k ∈ N  . 

 k +  x 2

√ √

Figure 1.2 highlights the fact that the set { fk(x) ≤ 1 / 2} = [−  k, k] increases as  k increases, and the union over all  k ∈ N coincides with R. For any  x ∈ R the pointwise limit vanishes

 f (x) = lim  fk(x) = 0  , 

 k→+∞

yet the convergence of  fk  to  f  is not uniform on R; in fact





 x 2

 x 2

sup {| fk(x) −  f (x)| :  x ∈ R} = sup

:  x ∈ R = lim

= 1 . 

 k +  x 2

 x→+∞  k +  x 2

(continued)
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Sequences and Series of Functions

 Example 4 (continued)

y

1/2

O

x

– k

k

Fig. 1.2  fk(x) =

 x 2

 k +  x 2

 Example 5  The sequence  fk  of the previous example converges uniformly to the function f ≡ 0 on every interval [ a, b], with  a,  b ∈ R,  a < b. In fact, since for any  k ∈ N the function  fk  is increasing for  x ≥ 0 and decreasing for  x ≤ 0, by setting  c = max{| a| , | b|}

we obtain





 x 2

sup {| fk(x) −  f (x)| :  x ∈ [ a, b]} = sup

:  x ∈ [ a, b] =

 k +  x 2





=

 a 2

 b 2

max

 , 

=  c 2

 k +  a 2  k +  b 2

 k +  c 2

and the latter quantity tends to zero as  k → +∞. 

1.2

First Theorems on Uniform Convergence

Let us start by describing the continuity property of the uniform limit of continuous functions. Suppose  fk :  I ⊆ R → R is a sequence of  continuous  functions on the subset  I  of R, and assume that  fk  converges  uniformly  on  I  to the function f :  I → R; we shall prove that  f  is continuous on  I . Observe that this result does not hold if we only assume that  fk  converges to  f  pointwise. This is what happens, for instance, in Example 2 of the previous section, where the discontinuous function (1.2) is the pointwise limit of the sequence of continuous functions (1.1). 

Theorem (Continuity of Limits)  Let fk :  I ⊆ R → R  be a sequence of continuous functions that converges uniformly on I to the function f . Then f is

 continuous. 

[image: Image 44]
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 Proof  Let us verify that  f  is continuous at  x 0, for any given  x 0 ∈  I . By the uniform convergence hypothesis, given  ε >  0, there exists  ν  such that

| fk(x) −  f (x)|  < ε , 

∀  k > ν , ∀  x ∈  I . 

Let us choose  k 0  > ν; then clearly for any  x ∈  I  we have

| f (x) −  f (x 0 )| ≤ | f (x) −  fk (x)| + | f (x) −  f (x (x

0

 k 0

 k 0

0 )| + | fk 0

0 ) −  f (x 0 )| ≤

 < ε + | fk (x) −  f (x

0

 k 0

0 )| +  ε . 

Because of the continuity of  fk  it is possible to find  δ >  0 such that 0

 x ∈  I, 

| x −  x 0|  < δ

⇒ | fk (x) −  f (x

0

 k 0

0 )|  < ε

and so for  x ∈  I , | x −  x 0|  < δ, we obtain

| f (x) −  f (x 0 )|  <  3 ε . 

More generally, we have the following result. 

Theorem (Interchange of Limits)  Let fk :  I ⊆ R → R  be a uniformly convergent sequence of functions on the set I . Suppose that the limit

lim  fk(x)

 x→ x 0

 exists for any k ∈ N . Then the two limits

lim  (  lim  fk(x)) , 

lim  (  lim  fk(x))

(1.3)

 k→+∞  x→ x 0

 x→ x 0  k→+∞

 exist and are equal. 

 Proof  Set  lk = lim x→ x f

0

 k (x)  and  f (x) = lim k→+∞  fk (x). Given  ε >  0, by uniform convergence there exists  ν ∈ N such that

| fk(x) −  f (x)|  < ε , 

∀  k > ν , ∀  x ∈  I . 

Therefore

| fk(x) −  fh(x)| ≤ | fk(x) −  f (x)| + | f (x) −  fh(x)|  <  2 ε

(1.4)

when  h, k > ν  and for any  x ∈  I . Taking the limit in (1.4) as  x →  x 0, we obtain

| lk −  lh| ≤ 2 ε, 

∀  h, k > ν . 

[image: Image 45]
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Then  lk  is a Cauchy sequence, hence convergent to a real number, say  l. In other words

lim  lk =  l . 

 k→+∞

This proves the existence of the first limit in (1.3). There remains to show that lim  f (x) =  l . 

(1.5)

 x→ x 0

For this we choose  k 0 such that

| fk (x) −  f (x)|  < ε , 

∀  x ∈  I

(1.6)

0

and such that

| lk −  l|  < ε . 

(1.7)

0

Corresponding to  k 0 we then pick  δ >  0 such that

 x ∈  I , 

0  < | x −  x 0|  < δ

⇒ | fk (x) −  l |  < ε . 

(1.8)

0

 k 0

From (1.6), (1.7), (1.8) we deduce

| f (x) −  l| ≤ | f (x) −  fk (x)| + | f (x) −  l | + | l −  l|  <  3 ε

0

 k 0

 k 0

 k 0

for any  x ∈  I  such that 0  < | x −  x 0|  < δ. Put otherwise, (1.5) holds. 

Notice that if we put

lim  fk(x) =  fk(x 0 ) , 

∀  k ∈ N  , 

 x→ x 0

in the previous theorem’s statement, that is if we assume the  fk  are all continuous at  x 0, by the equality of the limits in (1.3) we obtain

 f (x 0 ) = lim  fk(x 0 ) = lim  f (x) . 

 k→+∞

 x→ x 0

Therefore  f  is continuous at  x 0, which recovers the theorem on the continuity of the limit. 

Uniformly convergent sequences of real functions  fk :  I → R, just like sequences of real numbers, satisfy a property similar to Cauchy’s criterion. 

Uniform Cauchy Criterion  The sequence fk converges uniformly on the set I ⊆

R  to the function f :  I → R  if and only if, for any ε >  0 , there exists ν ∈ N  such that

| fk(x) −  fh(x)|  < ε , 

∀  h, k > ν , ∀  x ∈  I . 

(1.9)
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 Proof  If  fk  converges uniformly on  I  to  f , given  ε >  0 there exists  ν ∈ N such that

| fk(x) −  f (x)|  < ε , 

∀  k > ν , ∀  x ∈  I . 

Hence for  h, k > ν  and any  x ∈  I  we have

| fk(x) −  fh(x)| ≤ | fk(x) −  f (x)| + | f (x) −  fh(x)|  <  2 ε . 

Conversely, if Cauchy’s condition (1.9) holds, for any given  x ∈  I ,  fk(x)  is in particular a Cauchy sequence of real numbers, which therefore converges to a real

number that we may call  f (x). 

Let us check that the sequence  fk  converges uniformly to the function  f . Given ε >  0, let  ν ∈ N be the index for which the Cauchy condition (1.9) holds. Taking the limit as  h → +∞ in (1.9) we obtain the claim:

| fk(x) −  f (x)| ≤  ε , 

∀  k > ν , ∀  x ∈  I . 

1.3

Theorems on Interchanging Limits and Integrals or

Derivatives

Let  fk  be a sequence of integrable functions on a closed and bounded interval  I =

[ a, b], and suppose the  fk  converge to some function  f pointwise  on  I. We may ask whether  f  is integrable on [ a, b] and whether





 b

 b

lim

 fk(x) dx =

 f (x) dx . 

(1.10)

 k→+∞  a

 a

The answer is typically no, as the following examples clarifies. 

 Example 1  For  x ∈ [0 ,  1] define (see the graphs in Fig. 1.3) fk(x) =  k x e− kx 2  . 

For any given  x ∈ [0 ,  1] the numerical sequence  fk(x)  tends to zero, hence the sequence  fk converges on [0 ,  1] pointwise, and the pointwise limit is the function  f (x) = 0 for every x ∈ [0 ,  1]. Let us compute the integral

1



1

 fk(x) dx = 1 − e− kx 2

= 1  ( 1 −  e− k) , 

0

2

0

2

(continued)
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 Example 1 (continued)

from which





1

1

lim

 fk(x) dx = 1 =

 f (x) dx = 0  . 

 k→+∞ 0

2

0

Note that the sequence  fk  does  not  converge uniformly to  f  on the interval [0 ,  1]. In fact (the reader should do the computation)

sup {| fk(x) −  f (x)| :  x ∈ [0 ,  1]} = max { fk(x) :  x ∈ [0 ,  1]} =  fk(xk) where  xk  is the point in [0 ,  1] at which the first derivative  f  vanishes. As k

 k

 xk =

1

√

 , 

 fk(xk ) =

 , 

2 k

2 e

 fk(xk )  diverges to +∞ when  k → +∞. 

y

k = 20

1

k = 1

x

O

1

Fig. 1.3  fk(x)  for  k = 1 ,  2 ,  3 ,  5 ,  10 ,  20

If we drop the continuity of the functions  fk(x), we may consider a further example: Example 2  For  x ∈ [0 ,  1] define



 k

if

0  < x <  1 /k

 fk(x) = 0 if 1 /k ≤  x ≤ 1 or if  x = 0

(continued)
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 Example 2 (continued)

Then for any  x ∈ [0 ,  1],  fk(x)  converges to  f (x) = 0 (because given  x ∈  ( 0 ,  1], for any k ≥ 1 /x  we have 1 /k ≤  x ≤ 1 and then  fk(x) = 0). Furthermore, 1

1

 fk(x) dx = 1  , 

 f (x) dx = 0  . 

0

0

Also in this case the sequence  fk  does  not  converge uniformly to  f  on the interval [0 ,  1]. 

In fact

sup {| fk(x) −  f (x)| :  x ∈ [0 ,  1]} = max { fk(x) :  x ∈ [0 ,  1]} =  k , which diverges to +∞ as  k → +∞. 

Hence pointwise convergence alone is not enough to warrant formula (1.10) for interchanging limits and integration. The following result proves that the uniform

convergence of a sequence  fk  to  f  implies (1.10). 

Theorem (Interchange of Limits and Integrals)  If fk is a sequence of continuous functions that converges uniformly to f on [ a, b] , then





 b

 b

lim

 fk(x) dx =

 f (x) dx . 

 k→+∞  a

 a

 Proof  By the theorem on the continuity of limits,  f (x)  is a continuous function on the closed and bounded interval [ a, b], and thus it is integrable there. 

Moreover











 b

 b

 b











 f







 k (x) d x −

 f (x) dx = 

{ fk(x) −  f (x)} dx ≤

 a

 a

 a

 b

≤

| fk(x) dx −  f (x)|  dx ≤  (b −  a) · max | fk(x) −  f (x)|  , a

 a≤ x≤ b

so the claim follows when  k → +∞. 

We shall return to this important aspect in Chap. 9, where we shall discuss more general and complete results. Let us now study when limits can be interchanged

with derivatives. 

Let  fk  be a sequence of differentiable functions on an interval  I ⊆ R that converges on  I pointwise  to some function  f . We may ask whether  f , too, is differentiable on  I  and whether

lim  f  k(x) =  f  (x) , 

∀  x ∈  I . 

 k→+∞
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The answer is still negative, as shown by the following examples. 

 Example 3  For  x ∈  I = R ( I  could be an arbitrary interval of R with 0 in its interior) consider the sequence



 fk(x) =

 x 2 + 1  . 

 k

It is easy to see that the  fk  are continuous on  I , and so are their first derivatives. Moreover, 

√

the sequence  fk  converges uniformly on  I  to the function  f (x) =

 x 2 = | x|, which is not

differentiable at 0; in fact











 x 2 + 1

−  x 2

|





 k

 fk(x) −  f (x)| = 

−

= 

=

 x 2 + 1

 x 2

 k



√

 x 2 + 1 +

 x 2

 k

1

1



=

 k



 k

1

√

≤  =

 , 

1

 k

 x 2 + 1 +

 x 2

 k

 k



√

1

since

 x 2 + 1 +

 x 2 ≥

for any  x ∈  I  and any  k ∈ N. 

 k

 k

Let us now show that even if we assume that the limit  f (x)  is differentiable, Eq. (1.3) might not still hold. 

 Example 4  On  I = R (or any proper real interval  I ) define the sequence of functions fk(x) = 1 sin  kx , 

∀  k ∈ N  , ∀  x ∈ N  . 

 k

The sequence  fk  converges uniformly to  f (x) = 0 for any  x ∈  I . On the other hand, since f  (x) = cos  kx , 

∀  k ∈ N  , ∀  x ∈  I , 

 k

we have  f  ( 0 ) = 1 for any  k ∈ N and  f  ( 0 ) = 0. 

 k

Theorem (Interchange of Limits and Derivatives)  Let fk be a sequence of differentiable functions with continuous derivative on [ a, b] . Suppose there exists x 0 ∈

[ a, b]  such that the numerical sequence fk(x 0 ) converges on  R  and the sequence of derivatives f   converges uniformly on [ a, b] . Then f

 k

 k converges uniformly on [ a, b]

 to a differentiable function f with continuous derivative on [ a, b] , and furthermore lim  f  k(x) =  f  (x) . 

(1.11)

 k→+∞

[image: Image 93]
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 Proof  As  f  is continuous, by the fundamental theorem of calculus we may write k

 x

 fk(x) =  fk(x 0 ) +

 f  (t) dt , 

∀  k ∈ N  , ∀  x ∈ [ a, b]  . 

(1.12)

 k

 x 0

Moreover, calling  l ∈ R the limit of the numerical sequence  fk(x 0 ), and letting  g(x) denote the uniform limit of the sequence  f  (x)  on [ a, b], by the theorem on the k

continuity of limits the function  g  is continuous on [ a, b], and hence also integrable on that interval. As  k → +∞ in (1.12), we may interchange the limit and the integral, so that

 x

lim  fk(x) =  l +

 g(t) dt , 

∀  x ∈ [ a, b]  . 

 k→+∞

 x 0

Hence the sequence  fk(x)  converges on [ a, b] pointwise. If  f (x)  denotes the limit, we have

 x

 f (x) =  l +

 g(t) dt , 

∀  x ∈ [ a, b]  , 

(1.13)

 x 0

and from (1.12), (1.13) we deduce





 x



| f





 k (x) −  f (x)| ≤ | fk (x 0 ) −  l| + 

{ f  k(t) −  g(t)}  dt ≤

 x 0

≤ | fk(x 0 ) −  l| +  (b −  a) · sup{| f  k(t) −  g(t)| :  t ∈ [ a, b]}  . 

But  f  converges uniformly to  g  on [ a, b], so

 k

lim sup {| fk(x) −  f (x)| :  x ∈ [ a, b]} = 0  , 

 k→+∞

in other words  fk(x)  converges uniformly to  f (x)  on [ a, b]. Finally, from (1.13) we deduce, by the fundamental theorem of calculus, that  f  is differentiable and f  (x) =  g(x) , 

∀  x ∈ [ a, b]  . 

Therefore lim  f  =  g =  f  and (1.11) holds. 

 k

 k→+∞

The theorem on interchanging limits and derivatives is still valid under less

restrictive assumptions. Namely, it holds without assuming that the derivatives  f  k are continuous on [ a, b]. Before we prove the more general statement, let us start with two lemmas, the first of which has independent interest. 

Lemma 1  Let fk be a sequence of differentiable functions on a closed bounded interval [ a, b] . Suppose there exists x 0 ∈ [ a, b]  such that fk(x 0 ) converges, and that
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 the sequence of derivatives f   converges uniformly on [ a, b] . Then also f k

 k converges

 uniformly on [ a, b] . 

Notice (similar considerations hold for the other results in this section) that

Lemma 1 immediately implies a similar result for sequences of functions defined on intervals that are not necessarily closed, nor bounded:  assuming fk is a sequence of differentiable functions on some interval I (possibly not closed nor bounded) in R , if there exists x 0 ∈  I such that fk(x 0 ) converges, and provided the sequence of derivatives f   converges uniformly on every closed bounded interval contained in k

 I , then fk converges uniformly as well, on every interval [ a, b] ⊆  I . 

 Proof of Lemma 1  For any  x ∈ [ a, b] and  h, k ∈ N

| fk(x)− fh(x)| ≤ | fk(x 0 )− fh(x 0 )|+| (fk(x)− fh(x))− (fk(x 0 )− fh(x 0 ))|  . (1.14) Applying to the function  fk −  fh  the mean value theorem, there exists  x 1 between x 0 and  x  such that

| (fk(x) −  fh(x)) −  (fk(x 0 ) −  fh(x 0 ))| = | x −  x 0| · | f  k(x 1 ) −  f  h(x 1 )|  . (1.15) From (1.14), (1.15) we deduce that for any  x ∈ [ a, b]

| fk(x) −  fh(x)| ≤ | fk(x 0 ) −  fh(x 0 )| +  (b −  a) · | f  k(x 1 ) −  f  h(x 1 )|  . 

By the uniform Cauchy criterion, given  ε >  0 there exists  ν 1 ∈ N such that

| f  k(x) −  f  h(x)|  < ε , 

∀  h, k > ν 1  , ∀  x ∈ [ a, b]  . 

Moreover, Cauchy’s criterion on numerical sequences guarantees the existence of

 ν 2 ∈ N such that

| fk(x 0 ) −  fh(x 0 )|  < ε , 

∀  h, k > ν 2  . 

Then for any  h, k > ν = max{ ν 1 , ν 2} we have

| fk(x) −  fh(x)|  <  2 ε

∀  x ∈ [ a, b] , 

and the claim follows from the uniform Cauchy criterion. 

Lemma 2  Let fk be a sequence of differentiable functions on a closed bounded interval [ a, b] . Given x 0 ∈ [ a, b] , set

 gk(x) =  fk(x) −  fk(x 0 ) , 

∀  x ∈ [ a, b] − { x 0}  . 

 x −  x 0
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 If the sequence of derivatives f   converges uniformly on [ a, b] , then also the k

 sequence gk converges uniformly on [ a, b] − { x 0} . 

 Proof  For  h, k ∈  N  and  x ∈ [ a, b] − { x 0} we have gk(x) −  gh(x) =  (fk(x) −  fh(x)) −  (fk(x 0 ) −  fh(x 0 )) . 

 x −  x 0

The mean value theorem applied to  fk −  fh  ensures that for any  x ∈ [ a, b] − { x 0}

there exists a point  x 1, strictly lying between  x 0 and  x, such that gk(x) −  gh(x) =  f  (x

 (x

 k

1 ) −  f 

 h

1 ) . 

(1.16)

By the uniform convergence of  f  on [ a, b] it follows that for any  ε >  0 there exists k

 ν ∈ N such that

| f  k(x) −  f  h(x)|  < ε , 

∀  h, k > ν, ∀  x ∈ [ a, b]  . 

Then (1.16) implies

| gk(x) −  gh(x)|  < ε , 

∀  h, k > ν, ∀  x ∈ [ a, b] − { x 0}  . 

The conclusion now follows from the uniform Cauchy criterion. 

Theorem (Interchange of Limits and Derivatives—General Case)  Let fk be a

 sequence of differentiable functions on [ a, b] . Suppose there exists x 0 ∈ [ a, b]  such that fk(x 0 ) converges, and that f   converges uniformly on [ a, b] . Then f k

 k converges

 uniformly on [ a, b]  to a differentiable function f on [ a, b] , and f  (x) = lim  f  k(x) . 

(1.17)

 k→+∞

 Proof  By Lemma 1 the sequence  fk  converges uniformly on [ a, b]; let us call  f  the limit function. Given  x 0 ∈ [ a, b], put

 gk(x) =  fk(x) −  fk(x 0 ) , 

∀  x ∈ [ a, b] − { x 0}  , 

 x −  x 0

 g(x) =  f (x) −  f (x 0 ) , 

∀  x ∈ [ a, b] − { x 0}  . 

 x −  x 0

Lemma 2 guarantees that  gk(x)  converges uniformly to  g(x)  on [ a, b] − { x 0}. The theorem on interchanging limits implies

lim  f  k(x 0 ) = lim  (  lim  gk(x)) = lim  (  lim  gk(x)) = lim  g(x) =  f  (x 0 ) k→+∞

 k→+∞  x→ x 0

 x→ x 0  k→+∞

 x→ x 0

and thus we recover (1.17), because  x 0 is a generic point in [ a, b]. 
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1.4

Uniform Convergence and Monotonicity

In this section we shall discuss two classical results regarding uniform convergence

under a monotonicity hypothesis. The first theorem (by Dini) assumes monotonicity

in the parameter  k, the second one supposes monotonicity in the variable  x. 

Theorem 1 (Dini)  Let I = [ a, b]  be a closed and bounded interval and consider a sequence fk :  I → R  of continuous functions, monotone in k (for instance, increasing: fk(x) ≤  fk+1 (x) for any k ∈ N , x ∈  I ), and pointwise convergent on

[ a, b]  to some continuous function f . Then fk converges uniformly to f on [ a, b] . 

 Proof  Consider, for example, an increasing sequence  fk, that is to say  fk(x) ≤

 fk+1 (x) ≤  f (x)  for any  k ∈ N and any  x ∈  I = [ a, b]. 

Suppose, by contradiction, that  fk  does not converge uniformly to  f  on [ a, b]. 

This means there exists  ε 0  >  0 such that for any  ν ∈ N we can find  k > ν  and x ∈ [ a, b] for which

| fk(x) −  f (x)| =  f (x) −  fk(x) ≥  ε 0  . 

Hence for any  ν =  h ∈ N, there exist  kh → +∞ and  xh ∈ [ a, b] such that f (xh) −  fk (x

 h

 h) ≥  ε 0  . 

But the monotonicity of  fk  in  k  forces  fk ≥  f

 h

 i  when  kh ≥  i. So we obtain

 f (xh) −  fi(xh) ≥  ε 0  , 

∀  h ∈ N  , ∀  i ≤  kh . 

The sequence  xh, being bounded, admits a subsequence  xh  converging to a point j

 x 0 of the interval [ a, b]. Taking the limit as  j → +∞ in

 f (xh ) −  f

 ) ≥  ε

 , 

 j

 i (xhj

0  , 

∀  hj ∈ N  , ∀  i ≤  khj

due to the continuity of  f  and  fi  we have

 f (x 0 ) −  fi(x 0 ) ≥  ε 0

∀  i ∈ N  . 

Taking the limit when  i → +∞ we reach the contradiction 0 ≥  ε 0. 

The following theorem gives another criterion, again in terms of monotonicity, 

for the uniform convergence of a sequence that converges pointwise on a closed and

bounded interval  I  to some continuous function  f  on  I . 
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Theorem 2  Let fk : [ a, b] → R  be a sequence of increasing (or decreasing) functions in x ∈ [ a, b] , which converges pointwise to the continuous function f : [ a, b] → R . Then f is increasing (or respectively decreasing), and the convergence is uniform on [ a, b] . 

 Proof  Divide the interval [ a, b] in  h ∈ N parts (of the same length) using subdivision points

 a =  x 0  < x 1  < x 2  < . . . < xh =  b . 

Fix  ε >  0. By the uniform continuity of  f  on [ a, b] it is possible to choose  h large enough so that

| f (y) −  f (x)|  < ε , 

∀  x, y ∈ [ xi, xi+1]  , 

for any  i = 0 ,  1 , . . . , h − 1. The pointwise convergence of  fk  to  f  implies there exists  ν ∈ N such that

| fk(xi) −  f (xi)|  < ε , 

∀ i = 0 ,  1 , . . . , h ∀  k > ν . 

Let us consider the case where the  fk : [ a, b] → R are increasing functions. If x ∈ [ xi, xi+1] for some  i ∈ {0 ,  1 , . . . , h − 1}, since  xi ≤  x ≤  xi+1 we have fk(xi) ≤  fk(x) ≤  fk(xi+1 ) , 

∀  k ∈ N  . 

Therefore for  x ∈ [ xi, xi+1] with  i  given, using (1.2) first and then (1.2), (1.2), we deduce

 fk(x) −  f (x) =  fk(x) −  fk(xi+1 ) +  fk(xi+1 ) −  f (xi+1 ) +  f (xi+1 ) −  f (x) ≤

≤  (fk(xi+1 ) −  f (xi+1 )) +  (f (xi+1 ) −  f (x)) <  2 ε , for any  k > ν. Similarly

 fk(x) −  f (x) =  fk(x) −  fk(xi) +  fk(xi) −  f (xi) +  f (xi) −  f (x) ≥

≥  (fk(xi) −  f (xi)) +  (f (xi) −  f (x)) > −2 ε , for any  k > ν. By (1.2), (1.2),  fk  converges uniformly to  f  on [ a, b]. 

For a quick comparison here are the hypotheses and conclusions of Theorems 1

and 2. 

Theorem 1 (Dini)  Supposing

1.  I = [ a, b]  is a closed and bounded interval; 

2.  fk : [ a, b] → R  is a continuous function for any k ∈ N ; 3.  fk(x) ≤  fk+1 (x) for any k ∈ N  and any x ∈  I ; 
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4.  fk converges pointwise to a function f : [ a, b] → R ; 

5.  f is continuous on [ a, b] . 

 Then: fk converges uniformly to f on I . 

Theorem 2  Supposing

1.  I = [ a, b]  is a closed and bounded interval; 

2.  fk : [ a, b] → R  is an increasing function for any k ∈ N ; 3.  fk converges pointwise to a function f : [ a, b] → R ; 

4.  f is continuous on [ a, b] . 

 Then: fk converges uniformly to f on I (and f is increasing on [ a, b] ). 

If we consider the examples in Sect. 1.1, the sequence of Example 2,  fk =  xk for  x ∈ [0 ,  1], converges pointwise, but not uniformly, to the function  f  defined by f (x) = 0 when  x ∈ [0 ,  1 ),  f ( 1 ) = 1. The latter does not satisfy the continuity assumption required in Theorems 1 and 2. 

The same sequence of functions, restricted to the semi-open interval [0 ,  1 ), converges pointwise, but not uniformly, to the zero function. In this case it is the

first hypothesis in Theorems 1, 2 that does not hold over the corresponding interval. 

The same sequence, restricted to an interval like [0 , b], with 0  < b <  1 (as in Example 3, Sect. 1.1), fulfils all the assumptions of Theorems 1 and 2 (and the conclusion, too). 

The sequence of Example 1, Sect. 1.1, is not covered by Theorems 1 and 2. The functions are not continuous (assumption 2 in Theorem 1 does not hold), nor are they monotone in  x ∈ [0 ,  1] (assumption 2 in Theorem 2 is false). If restricted to the semi-open interval  ( 0 ,  1], the sequence is monotone in  x, but now the domain is no longer closed. 

Example 4, Sect. 1.1, considers the convergence of the sequence  fk  given by fk(x) =

 x 2

 , 

∀  k ∈ N  , 

 k +  x 2

on R, which is not a bounded interval. For this reason Theorems 1 and 2 do not apply (and in fact the sequence of Example 4 does not converge uniformly). 

Conversely, in Example 1, Sect. 1.1, we showed that this sequence converges uniformly on every interval [ a, b],  a, b ∈ R,  a < b. Uniform convergence may be deduced using Dini’s Theorem 1, since  fk  is decreasing in  k  and all other hypotheses hold. 
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Series of Functions

If  fk  is a sequence of real functions defined on the subset  I  of R, we indicate by  sk the  sequence of partial sums

 s 1 =  f 1

 s 2 =  f 1 +  f 2

 . . . . . . . . . . . . 

 sk =  f 1 +  f 2 +  . . . +  fk

 . . . . . . . . . . . . 

The sequence of functions  sk  is called  series ( of functions) with general term  fk, and we shall also use for it the expression

 f 1 +  f 2 +  . . . +  fk +  . . . 

(1.18)

If, for any  x ∈  I , the numerical series with general term  fk(x)

 f 1 (x) +  f 2 (x) +  . . . +  fk(x) +  . . . 

is convergent, i.e. if the sequence  sk(x)  converges (it has finite limit) for every  x ∈  I , one says that the series of functions (1.18)  converges pointwise on I . 

When the sequence of functions  sk  converges uniformly on  I , we say the series of functions (1.18)  converges uniformly on I . In either case, the limit of  sk  as  k → +∞

is called  sum  of the series of general term  fk, and we denote it by

∞

 fk . 

(1.19)

 k=1

At times, (1.19) also indicates the series of general term  fk, apart from its sum. 

Often, as in the case of numerical series, one uses distinct summation indices for a

series’ general term and (for example) the sequence of partial sums of a convergent

series:

 k



 sk =

 fi , 

∀  k ∈ N ; 

 i=1

 k



∞



 f = lim  sk = lim

 fi =

 fi . 

 k→+∞

 k→+∞  i=1

 i=1

In analogy to numerical series, (1.18) is said to  converge absolutely  on  I  if the series of general term | fk| converges pointwise on  I . 
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Cauchy’s criteria, both pointwise and uniform, for sequences immediately

generate the following criteria for series. It suffices to use the identity, valid for any  k, p ∈  N, 

 sk+ p(x) −  sk(x) =  fk+1 (x) +  . . . +  fk+ p(x) . 

Cauchy Criterion for Series  The series of general term fk converges pointwise on I if, for any ε >  0  and any x ∈  I , there exists νε,x ∈ N  such that

| fk+1 (x) +  . . . +  fk+ p(x)|  < ε , 

∀  k > νε,x , ∀  p ∈ N  . 

Uniform Cauchy Criterion for Series  The series of general term fk converges uniformly on I if, for any ε >  0 , there exists νε ∈ N  such that

| fk+1 (x) +  . . . +  fk+ p(x)|  < ε , 

∀  k > νε , ∀  p ∈ N  , ∀  x ∈  I . 

The series of functions (1.18) is called  totally convergent  on  I  if there exists a sequence of non-negative real numbers  Mk  such that

| fk(x)| ≤  Mk , 

∀  x ∈  I , ∀  k ∈ N

and if the numerical series

 M 1 +  M 2 +  . . . +  Mk +  . . . 

converges. If a series of functions converges pointwise, uniformly or totally on

some set  I , it converges pointwise, uniformly or totally on every subset  I  ⊆  I , respectively. 

The next proposition is simple, but important to establish the type of convergence

of a series of functions. 

Proposition  The total convergence of a series of functions implies its uniform convergence. In other words (the last implication is obvious):

 total convergence ⇒  uniform convergence ⇒  pointwise convergence. 

 Proof  Let  f 1 +  f 2 +  . . . +  fk +  . . .  be a totally convergent series of functions on the set  I ⊆ R, and suppose

 M 1 +  M 2 +  . . . +  Mk +  . . . 
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is a convergent numerical series with non-negative terms such that | fk(x)| ≤  Mk for any  x ∈  I  and any  k ∈ N. 

By Cauchy’s criterion for numerical series, for any  ε >  0 there exists  ν ∈ N such that

 Mk+1 +  . . . +  Mk+ p < ε , 

∀  k > ν , ∀  p ∈ N  . 

Hence for any  x ∈  I ,  k > ν  and  p ∈ N, 

| fk+1 (x) +  . . . +  fk+ p(x)| ≤ | fk+1 (x)| +  . . . + | fk+ p(x)| ≤

≤  Mk+1 +  . . . +  Mk+ p < ε . 

The series of general term  fk  then satisfies the uniform Cauchy criterion for series (1.5), and therefore it converges uniformly on  I . 

In practice, in order to check whether a series of functions converges totally it

may be convenient to choose the sequence  Mk  in the following optimal way

 Mk = sup{| fk(x)| :  x ∈  I }  , 

∀  k ∈ N  . 

 Example 1  Consider, for any  x ∈  I = R, the series of functions

∞

 fk ,  where  fk(x) =  x , ∀ k ∈ N . 

(1.20)

 x 4 + 3 k 4

 k=1

Given  k ∈ N, the derivative of  fk(x), 

 f  (x) = 3 (k 4 −  x 4 ) , 

∀  k ∈ N  , 

 k

 (x 4 + 3 k 4 ) 2

vanishes at  x = ± k. It is easy to see (Fig. 1.4) that the point  x =  k  is an absolute maximum point for  fk(x), while  x = − k  is an absolute minimum point. Furthermore Mk = sup{| fk(x)| :  x ∈ R} =  fk(x) = 1  , 

∀  k ∈ N

4 k 3

and the numerical series of general term 1 /k 3 converges (it is a generalised harmonic series). Therefore the series of functions (1.20) is totally convergent everywhere on R, and hence it converges on R uniformly and pointwise. 

(continued)
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 Example 1 (continued)

 y

1

4 k 3

–51/4 k

– k

 O

 k

51/4 k

 x

1

–4 k 3

Fig. 1.4  fk(x) =

 x

 x 4 +3 k 4

 Example 2  A very special series of functions

 f 1 +  f 2 +  . . . +  fk +  . . . 

is the one where every  fk  is constant on the set  I  considered. If so, the series’ uniform convergence is equivalent to the pointwise convergence, whereas the total convergence is equivalent to the absolute convergence of the numerical series. In this way we can immediately build a series of (constant) functions that converges uniformly but not totally: it suffices to choose  fk  constant on  I , equal to  (−1 )k/k, for any  k ∈ N. 

The next example describes a series of functions with constant sign that converges

uniformly but not totally on a set. 

 Example 3  For  x ∈  I = [1 , +∞ )  and for any  k ∈ N set 1 /k  if  k ≤  x < k +1

 fk(x) = 0

otherwise

The partial sum  sk  is



 k



1 / i

if

 i ≤  x < i + 1

 sk(x) =

 fi (x) =

 i = 1 ,  2 , . . . , k; 

0

if

 x ≥  k + 1

 i=1

and it converges as  k → +∞ to the function  f  defined by

 f (x) = 1  , 

if

 i ≤  x < i + 1

∀  i ∈ N  . 

 i

(continued)
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 Example 3 (continued)

The sequence  sk  converges uniformly to  f  on the interval  I = [1 , +∞ ), because sup {| sk(x) −  f (x)| :  x ∈  I } =

1

 , 

∀  k ∈ N  . 

 k + 1

However there is no convergent numerical series, say of general term  Mk, such that

| fk(x)| ≤  Mk , 

∀  x ∈  I , ∀  k ∈ N  , 

because  fk(k) = 1 /k, and therefore the series of general term  Mk ≥ 1 /k, cannot converge. 

The theorem on the continuity of limits (Sect. 1.2) implies the following: Theorem (Continuity of a Sum)  The sum of a uniformly convergent series of

 continuous functions is continuous. 

The results regarding the interchange of limits and integrals or derivatives

(Sect. 1.3) imply analogous results for series of functions. For this consider the series

∞

 fk . 

(1.21)

 k=1

Theorem (Integration of Series)  Let fk be a sequence of continuous functions on a closed bounded interval [ a, b] , and suppose that the series (1.21)  converges uniformly to f on [ a, b] . Then





 b

∞



 b

 f (x) dx =

 fk(x) dx . 

(1.22)

 a

 a

 k=1

Theorem (Differentiation of Series)  Let fk be a sequence of differentiable functions with continuous derivatives on [ a, b] . If the series (1.21)  converges on [ a, b]

 to f , then f is differentiable with continuous derivative on [ a, b] , and

∞



 f  (x) =

 f  k(x) , 

∀  x ∈ [ a, b]  , 

(1.23)

 k=1

 as long as the series of the derivatives converges uniformly on [ a, b] . 

We remark that the above result may be formulated in more generality, once we

use the (general version of the) theorem for interchanging limits and derivatives of

Sect. 1.3. 
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Sometimes formula (1.22) is expressed as follows





 b ∞



∞



 b

 fk(x) dx =

 fk(x) dx

 a

 a

 k=1

 k=1

and one says that the series can be integrated term by term. 

Analogously, formula (1.23) can be rewritten as





∞





∞



 fk(x)

=

 f  (x) dx , 

∀  x ∈ [ a, b]  , 

 k

 k=1

 k=1

and one says the series can be differentiated term by term. 

1.6

Power Series

Let  ak,  k = 0 ,  1 ,  2 , . . . ,  be a sequence of real numbers. The series of functions a 0 +  a 1 x +  a 2 x 2 +  . . . +  akxk +  . . . 

(1.24)

is called  power series  with coefficients  a 0 , a 1 , a 2 , . . . , ak, . . . . 

A power series satisfies one of the following:

(i) the series converges only at  x = 0; 

(ii) the series converges at any  x ∈ R; 

(iii) there exists a real number   >  0 such that the series converges for | x|  <  and does not converge for | x|  > . 

In particular, the convergence set of the power series (1.24), i.e. the set of points x ∈ R at which (1.24) converges, is an interval centred at the origin, namely: just

{0} in case (i), the whole R in case (ii), and an interval between − ,  in case (iii). 

To prove these claims let us begin with the following result. 

Theorem 1  If the power series (1.24 ) converges at some ξ = 0 , it converges totally on any closed, bounded interval contained in (−| ξ| , | ξ| ). 

 Proof  The convergence of the numerical series

 a 0 +  a 1 ξ +  a 2 ξ  2 +  . . . +  akξ k +  . . . 

implies that the sequence  akξ k  is infinitesimal as  k → +∞, and hence bounded. 

Put equivalently, there exists  M >  0 such that

| akξk| ≤  M , 

∀ k ∈ N  . 
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So let  η  be a point in the open interval  (−| ξ| , | ξ| ); we will show that (1.24) converges totally on [−| η| , | η|], from which – suitably choosing  η – the total convergence on any interval [ a, b] ⊂  (−| ξ| , | ξ| )  will follow, because

[ a, b] ⊆ [−| η| , | η|] ⊂  (−| ξ| , | ξ| ) . 

For any  x ∈ R such that | x| ≤ | η|, we have









|

 k

|

 k

|

 x|

 η|

 akxk| = | akξ k| ·

≤

|

 M ·

 , 

∀  k ∈ N  , 

 ξ |

| ξ|

and the numerical series of general term  Mk =  M ·  (| η| /| ξ| )k  is convergent, since it is a geometric series of ratio  (| η| /| ξ| ) <  1. Therefore the power series (1.24) converges totally on [−| η| , | η|]. 

One calls  convergence radius  of the power series (1.24) the supremum   ∈

[0 , +∞] of the set  X  of real numbers  x  at which it converges:





∞



  = sup  X , 

where

 X =  x ∈ R :

 akxk  converges

 . 

(1.25)

 k=0

The convergence radius    is zero if and only if (1.24) converges only at  x = 0, while   = +∞ if and only if the series converges at any  x ∈ R. These properties are proved as in the proof of Theorem 2, which treats the case 0  <  < +∞. 

Theorem 2  Let  0  <  < +∞ . The convergence radius of the power series (1.24 ) equals  if and only if the series converges for | x|  <  and does not converge for

| x|  > . 

 Proof  Let   ∈  ( 0 , +∞ )  be the convergence radius of (1.24), i.e.    is the least upper bound defined in (1.25). We will show that (1.24) converges at any  x  such that

| x|  < . Fix a point  x. By the supremum’s properties, there exists  ξ ∈  X ( ξ  is such that the numerical series of general term  akξ k  is convergent) for which | x|  < ξ ≤  . 

By Theorem 1 the series (1.24) converges at  x. 

Now we show that (1.24) does not converge at any  x  such that | x|  > . In fact, if by contradiction (1.24) converged at some  ξ  such that | ξ|  > , by Theorem 1

it would in particular converge at any point of the interval [ , | ξ| ), in contrast to  

being the supremum (property (1.25)). 

Conversely, suppose (1.24) converges for | x|  <  1 and does not converge when

| x|  >  1. We have to prove that   1 is the supremum defined in (1.25). Since the power series converges on | x|  <  1,  X  contains the interval  (−  1 ,  1 )  and therefore

  1 ≤  . But we cannot have   1  < , because otherwise the series would converge by Theorem 1 on the entire interval [  1 , ), contradicting the fact that the series does not converge for | x|  >  1. 
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When the convergence radius is non-zero and different from +∞, nothing can be said in general on the power series’ convergence at  x = −   or  x =  , as explained by the following examples. 

The (well-known geometric) series

1 +  x +  x 2 +  . . . +  xk +  . . . 

has convergence radius   = 1 (it converges at every point of  (−1 ,  1 )  and does not converge externally). At the endpoints of the convergence interval it does not converge, neither at x = −1 not at  x = 1. By contrast, the power series

1 +  x +  x 2 +  . . . +  xk +  . . . , 

22

 k 2

whose convergence radius is still 1, converges at both endpoints  x = −1 and  x = 1. Finally, the power series

1 +  x +  x 2 +  . . . +  xk +  . . . , 

2

 k

converges at  x = −1, but not at  x = 1 (the reader should deduce, from this fact only, that the convergence radius of (1.6) is 1). 

The next criterion is useful when we need to compute the convergence radius. 

Theorem 3 (Cauchy-Hadamard)  Given the power series

 a 0 +  a 1 x +  a 2 x 2 +  . . . +  akxk +  . . . , (1.26)

 if the limit



 l = lim

 k | ak|

(1.27)

 k→+∞

 exists, then the convergence radius of (1.26)  is

⎧

⎪

⎪

⎨+∞  if l = 0

  = ⎪1 /l if  0  < l < +∞  . 

⎪

⎩0

 if

 l = +∞

Observe more generally that the same conclusion holds if we replace the

existence of limit (1.27) with the condition that  l  is the  limit superior l = lim  k | ak|  . 

(1.28)

 k→+∞
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 Proof  For any  x = 0 we have



lim

 k | akxk| =  l · | x|  . 

 k→+∞

If  l = 0, then, the well-known root test for numerical series implies that series (1.26) converges absolutely at any  x = 0, so the convergence radius is +∞. When  l =

+∞, the root test tells that (1.26) does not converge absolutely for any  x = 0, and the convergence radius is   = 0. If 0  < l < +∞, the test guarantees that (1.26) converges absolutely for | x|  <  1 / l  and does not converge absolutely for | x|  >  1 / l. 

Hence by Theorem 2 the convergence radius is   = 1 / l. 

For example, using the Cauchy-Hadamard criterion we deduce that, for any  p ∈

R, the convergence radius of

1 +  x +  x 2 +  . . . +  xk +  . . . , 

2 p

 kp

equals   = 1. 

Proceeding in analogy to Theorem 3, but now applying the ratio test instead of the root test, we arrive at the following convergence criterion. 

Theorem 4 (d’Alembert)  Given the power series

 a 0 +  a 1 x +  a 2 x 2 +  . . . +  akxk +  . . . , where ak = 0  for all k ∈ N , if the limit





 a



 k+1

 l = lim 



 k→+∞

 ak

 exists then the convergence radius of (4 ) equals

⎧

⎪

⎪

⎨+∞  if l = 0

  = ⎪1 /l if  0  < l < +∞  . 

⎪

⎩0

 if

 l = +∞

Consider the power series

∞

 akxk =  a 0 + a 1 x + a 2 x 2 + ... +  akxk + ... ; (1.29)

 k=0
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the series obtained differentiating (1.29) term by term

∞

 k akxk−1 =  a 1 +2 a 2 x +3 a 3 x 2 + ... +  kakxk−1 +  ... 

(1.30)

 k=1

is called derivative series of the power series (1.29). 

Theorem 5 (Convergence Radius of the Derivative Series)  A power series has the same convergence radius as its derivative series. 

 Proof (First method): Indicate by    and   the convergence radii of (1.29) and (1.30) respectively. 

We will first show that if (1.29) converges at  x =  x 0, then (1.30) converges for

| x|  < | x 0| (whence   ≤  ). Suppose then that the numerical series

∞

 akxk 0

 k=0

converges. The general term  akxk  converges to zero, and so there exists  L >  0 such 0

that | akxk| ≤  L  for any  k ∈ N. The absolute convergence, for | x|  < | x 0

0|, of (1.30)

is a consequence of the comparison test and of the inequality





 k| a

|   k−1

 k−1

|

 k xk

 x

 x

 k a

0





 k xk−1| =

·

≤  kL ·

|

 , 

∀  k ∈ N  , 

 x





0|

 x 0

| x 0|  x 0

since the series on the right is convergent. Therefore   ≤  . 

Conversely, let us prove that if (1.30) converges at  x =  x 1 then (1.29) converges absolutely when | x|  < | x 1| (and then   ≥  ). Arguing as above, there exists  M >  0

such that | k akxk−1| ≤  M  for every  k ∈ N. The convergence on | x|  < | x 1

1| of (1.29)

follows from the inequality





 k

 k

|

 x

 x

 a





 k xk | = 1 | k ak xk−1| · | x 1| ·

≤  M| x 1| ·

 , 

∀  k ∈ N  , 

 k

1

 x 



1

 k

 x 1

because the right-most series converges. All in all,   =  . 

 Proof (Second method): This other argument is shorter than the previous one, but it requires Theorem 3 by Cauchy-Hadamard in its version (1.28), the one with the limit superior. 

Instead of the derivative series (1.30) let us consider

∞



∞



 k akxk =  a 1 x + 2 a 2 x 2 +  . . . +  kakxk +  . . . =  x ·

 k akxk−1  . 

 k=1

 k=1
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It has the same convergence radius as the derivative series, since it is obtained from the latter by multiplying by  x, which does not depend on  k. Let us then prove convergence on  x = 0. By Theorem 3 (Cauchy-Hadamard) it will suffice to show lim   k | a

 k

 k | =

lim

 k| ak|  , 

 k→+∞

 k→+∞

but this is straightforward from

√

lim

 k k = 1  . 

 k→+∞

Theorem 6 (Differentiation and Integration of Power Series)

 If the power

 series (1.29)  has non-zero convergence radius and

∞



 f (x) =

 akxk , 

∀ | x|  < , 

 with

  >  0 , 

(1.31)

 k=0

 denotes the sum, then

∞



 f  (x) =

 k akxk−1  , 

∀ | x|  <  . 

(1.32)

 k=1

 x

∞

 ak

 f (t) dt =

 xk+1  , 

∀ | x|  <  . 

(1.33)

0

 k + 1

 k=0

 Proof  Theorem 5, on the convergence radius of the derivative series, implies that (1.33) has the same convergence radius as (1.31), and in turn the latter has the same radius as (1.32). Hence the three series converge uniformly on every closed and bounded subinterval of  (− , ). By the theorems of differentiation and integration of general series the claim now follows. 

To close the section let us address the more general situation of power series

 centred at x 0 ∈ R (possibly non-zero), meaning power series of type

∞

 ak(x − x 0 )k . 

(1.34)

 k=0

The study of such series is reduced to the case where  x 0 = 0 once we define a new variable  y =  x −  x 0 (subsequently the variable returns to be called  x, as is customary). In particular, if   >  0 is the convergence radius of

∞

 akxk , 

 k=0
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centred at  x 0 = 0 and associated with (1.34), then the power series (1.34) centred at  x 0 ∈ R will converge absolutely on | x −  x 0|  <  and will not converge on

| x −  x 0|  > . 

1.7

Taylor Series

Let  f (x)  be a real function defined on an interval  (a, b)  in R and let  x 0 ∈  (a, b)  be a point. We seek to establish whether there exists a power series centred at  x 0 that converges on  (a, b)  to  f , which is usually phrased by saying that  f  can be  expanded in power series around x 0  on the interval (a, b). 

The first result in this direction goes as follows. 

Theorem 1  If the power series

∞

 ak(x −  x 0 )k

(1.35)

 k=0

 has convergence radius  >  0 , its sum f (x) is differentiable infinitely many times for | x −  x 0|  < , and for any m ∈ N  the mth derivative equals

∞



 f (m)(x) =

 k(k − 1 ) · · ·  (k −  m + 1 )ak(x −  x 0 )k− m . 

(1.36)

 k= m

 Furthermore, f admits a series expansion of the form

∞

 f (k)(x 0 )

 f (x) =

 k! 

 (x −  x 0 )k . 

(1.37)

 k=0

 Proof  Formula (1.36) arises by repeatedly applying Theorem 6 of the previous section (in particular, the theorem on differentiating power series). Putting  x =  x 0

in (1.36), all terms after the first vanish, and  f (m)(x 0 ) =  m!  am  for every  m ∈ N. 

Substituting  ak =  f (k)(x 0 )/k! in (1.35) gives (1.37). 

By Theorem 1 we know that if  f  can be expanded in power series around  x 0 on (a, b), then on some neighbourhood of  x 0 inside  (a, b), of the form | x −  x 0|  < , we necessarily have that

(i)  f  is differentiable infinitely many times when | x −  x 0|  < ; 
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(ii) the power series takes the form:

∞

 f (k)(x 0 )

 k! 

 (x −  x 0 )k =

 k=0

(1.38)

=  f (x 0 ) +  f  (x 0 )(x −  x 0 ) +  . . . +  f (k)(x 0 ) k! 

 (x −  x 0 )k +  . . . 

Assuming that condition (i) holds then, (1.38) is called  Taylor series  of  f , and the problem reduces to finding conditions under which

 f (x) =  f (x 0 ) +  f  (x 0 )(x −  x 0 ) +  . . . +  f (k)(x 0 ) k! 

 (x −  x 0 )k +  . . . 

(1.39)

for  x ∈  (a, b). The common way to express this is to say  f can be expanded in Taylor series  on  (a, b). 

This example shows that condition i) is not enough, on its own, to warrant (1.39), nor does the convergence of the Taylor series (1.38) on  (a, b), alone, imply that the sum should necessarily equal  f (x)  for any  x ∈  (a, b). The function  f  defined for  x ∈ R by

⎧

⎪

⎨ e−1 /x 2 if  x = 0

 f (x) = ⎪⎩0

if

 x = 0

is infinitely differentiable on R and

 f ( 0 ) = 0 , 

 f  ( 0 ) = 0 , 

 . . . , 

 f (k)( 0 ) = 0 , 

∀  k ∈ N  . 

Hence the Taylor series of  f , around  x 0 = 0, converges pointwise (and uniformly) to the zero function  g(x) = 0 rather than to  f (x). 

Theorem 1 (Criterion for Taylor Series Expansion)  If f admits derivatives of any order on (a, b) and there exist M, L ≥ 0  such that









 f (k)(x) ≤  MLk , 

∀  x ∈  (a, b)

(1.40)

 (in particular, if the derivatives of f are uniformly bounded on (a, b)), then for any x 0 ∈  (a, b) the function f admits a Taylor series expansion around x 0  on the interval (a, b). 
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 Proof  Let us examine the definition of  n th remainder  Rn(x)  in Taylor’s formula: n

 f (k)(x 0 )

 Rn(x) =  f (x) −

 k! 

 (x −  x 0 )k . 

 k=0

We have to prove that, as  n → +∞,  Rn(x)  tends to zero for any  x ∈  (a, b). The Lagrange formula for  Rn(x)  reads

 Rn(x) =  f (n+1 )(x 1 )

 (n + 1 )!  (x −  x 0 )n+1  , 

where  x 1 is a suitable value between  x 0 and  x. By assumption (1.40) we deduce

| Rn(x)| ≤  ML(n+1 ) | x −  x 0| n+1  . 

 (n + 1 )! 

Now the theorem’s proof reduces to showing that for any  x

 (L · | x −  x 0| )n+1

lim

= 0  , 

(1.41)

 n→+∞

 (n + 1 )! 

and this follows from the fact that the series

∞

 (L · | x −  x 0| )n+1

 (n + 1 )! 

 n=0

is convergent by the ratio test, since

 (L · | x −  x 0| )n+1

 L · | x −  x 0|

lim

·

 n! 

= lim

= 0  , 

 n→+∞

 (n + 1 )! 

 (L · | x −  x 0| )n

 n→+∞

 n + 1

and the general term in (1.41) goes to zero. 

In the special case where  x 0 = 0, the Taylor series (1.39) reads f ( 0 ) +  f  ( 0 )x +  f  ( 0 ) 2!  x 2 +  . . . +  f (k)( 0 )

 k! 

 xk +  . . . 

and is sometimes called  Maclaurin series  of  f . 

As an application of the previous Theorem 1 let us prove that the functions ex , 

sin  x , 

cos  x
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admit a Maclaurin series. For  y =  ex  we have

1 +  x +  x 2 +  x 3 +  . . . +  xk +  . . . 

2! 

3! 

 k! 

and since the derivatives of  ex  are uniformly bounded on every interval of type (− a, a), with  a >  0, the exponential function in base  e  can be expanded in Maclaurin series on  (− a, a), by virtue of Theorem 1. But  a  is arbitrary, so ex = 1 +  x +  x 2 +  x 3 +  . . . +  xk +  . . . 

∀  x ∈ R  . 

2! 

3! 

 k! 

Since

















 Dk  sin  x ≤ 1 , 

 Dk  cos  x ≤ 1 , 

∀  x ∈ R

for any  k ∈ N, in analogy to what we did for  ex  it can be shown that sin  x  and cos  x can be expanded on R to give the following series

sin  x =  x −  x 3 +  x 5 −  x 7 +  . . . 

∀  x ∈ R  . 

3! 

5! 

7! 

cos  x = 1 −  x 2 +  x 4 −  x 6 +  . . . 

∀  x ∈ R  . 

2! 

4! 

6! 

Figure 1.5 depicts the function sin  x  and its Taylor polynomials of orders 3 ,  5 and 7. 

Here is a further useful theorem for obtaining series expansions. 

y

5

1

–5

5

x

3

7

Fig. 1.5
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Theorem 2  Let f be a function with derivatives of any order on (a, b), and let x 0 ∈  (a, b). If

∞

 f (k)(x 0 )

 f  (x) =

 (k − 1 )!  (x −  x 0 )k−1  , 

∀  x ∈  (a, b) , 

(1.42)

 k=1

 i.e. if the derivative series of the Taylor series of f has sum f  , then f can be expanded in Taylor series around x 0  on the interval (a, b). 

 Proof  Take an arbitrary closed subinterval  I  of  (a, b), with  x 0 ∈  I . The derivative series (1.42), as any convergent power series, converges uniformly on  I . Interchanging the limit and the derivative we deduce that the Taylor series of  f , being convergent at  x 0, must converge on  I , for whichever  I ⊂  (a, b)  containing  x 0, and its sum is a function  g  such that  g(x 0 ) =  f (x 0 )  and  g (x) =  f  (x)  for any x ∈  (a, b). Integrating, it follows that  g(x) =  f (x)  for any  x ∈  (a, b). 

Now we shall apply Theorem 2 to expand in Maclaurin series the functions log  ( 1 +  x) , 

arctg  x . 

The Maclaurin series of  y = log  ( 1 +  x)  is

 x −  x 2 +  x 3 −  . . . +  (−1 )k−1  xk +  . . . 

2

3

 k

Its derivative series

1 −  x +  x 2 −  . . . +  (−1 )k−1 xk−1 +  . . . 

is the geometric series of ratio − x  and starting at 1, which converges (pointwise) on the interval  (−1 ,  1 ). The latter’s sum equals

1

= 1 −  x +  x 2 −  . . . +  (−1 )k−1 xk−1 +  . . . , 

∀  x ∈  (−1 ,  1 ) , 

1 +  x

which is exactly the derivative of  y = log  ( 1 +  x). By Theorem 2 therefore,  f (x) =

log  ( 1 +  x)  can be expanded in Maclaurin series on  (−1 ,  1 ), and log  ( 1 +  x) =  x −  x 2 +  x 3 −  . . . +  (−1 )k−1  xk +  . . . , 

∀  x ∈  (−1 ,  1 ) . (1.43)

2

3

 k

The Maclaurin series of  y = arctg  x  is

 x −  x 3 +  x 5 −  . . . +  (−1 )k−1  x 2 k−1 +  . . . 

3

5

2 k − 1
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The derivative series

1 −  x 2 +  x 4 −  . . . +  (−1 )k−1 x 2 (k−1 ) +  . . . 

is the geometric series of ratio − x 2 and first term 1, which converges on  (−1 ,  1 ). 

The sum is the function  y = 1 /( 1 +  x 2 ), which equals the derivative of  y = arctg  x. 

Again, Theorem 2 guarantees that  f (x) = arctg  x  admits Maclaurin series on (−1 ,  1 )  and

arctg  x =  x −  x 3 +  x 5 −  . . . +  (−1 )k−1  x 2 k−1 +  . . . , 

∀  x ∈  (−1 ,  1 ) . (1.44)

3

5

2 k − 1

As a matter of fact (1.44) holds on the entire closed interval [−1 ,  1], by  Abel’s theorem (whose proof can be found in Sect. 1.12 in the Appendix). When  x = 1, in particular, we recover the formula

∞

 π



=

 (−1 )k−1

1

 . 

(1.45)

4

2 k − 1

 k=1

Applying the aforementioned Abel theorem, it is immediate to verify that (1.43) holds at  x = 1, so

log 2 = 1 − 1 + 1 −  . . . +  (−1 )k−1 1 +  . . . 

2

3

 k

Consider now the  binomial series. Let us prove that for any  α ∈ R the function f (x) =  ( 1 +  x)α , 

 x ∈  (−1 ,  1 ) , 

admits Maclaurin series on  (−1 ,  1 ), and that

∞



 α

 ( 1 +  x)α =

 xk , 

 x ∈  (−1 ,  1 ) , 

(1.46)

 k

 k=0



 α

where the numbers

, called  binomial coefficients, are given by

 k

⎧



⎨

 α

1

for

 k = 0

=  α(α − 1 ) · · ·  (α −  k + 1 )

(1.47)

 k

⎩

for

 k ∈ N  . 

 k! 
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For  k ∈ N we have

 f (k)(x) =  α(α − 1 ) · · ·  (α −  k + 1 )( 1 +  x)α− k, and so at  x = 0

 f (k)( 0 ) =  α(α − 1 ) · · ·  (α −  k + 1 ) . 

Hence the Maclaurin series of  f  reads







 α

 α

 α

1 +

 x +

 x 2 +  . . . +

 xk +  . . . 

(1.48)

1

2

 k

If  α  is a positive integer, (1.48) reduces to a polynomial, i.e. the sum of  α + 1 term, α

since the binomial coefficients

vanish for  k > α. When  α /

∈ N we have

 k









 α





 xk+1





 k + 1









 α −  k 



= 

· | x|

 α



 k + 1



 xk

 k



and by the ratio test the convergence radius is 1. Calling  g(x), with  x ∈  (−1 ,  1 ), the sum of (1.48) and differentiating term by term we obtain

∞



 α

 g (x) =

 k

 xk−1  , 

∀  x ∈  (−1 ,  1 ) . 

 k

 k=1

Now multiplying by 1 +  x, 

∞



∞



 α



 α

 ( 1 +  x) ·  g (x) =

 k

 xk−1 +

 k

 xk =

 k

 k

 k=1

 k=1

∞







∞



=

 α

 α

 (k + 1 )

 xk +

 k

 xk =

(1.49)

 k + 1

 k

 k=0

 k=1

∞







=

 α

 α

 α +

 (k + 1 )

+

 xk . 

 k + 1

 k

 k=1
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Keeping in account that







 α

 α

 (k + 1 )

+  k

=  α ·  (α − 1 ) · · ·  (α −  k + 1 )(α −  k)+

 k + 1

 k

1 · 2 ·  . . . ·  (k − 1 ) ·  k

+  α ·  (α − 1 ) · · ·  (α −  k + 1 )k =

1 · 2 ·  . . . ·  (k − 1 ) ·  k



=  α ·  (α − 1 ) · · ·  (α −  k + 1 ) ·

 α

 α =

 α , 

1 · 2 ·  . . . ·  (k − 1 ) ·  k

 k

from (1.49) we infer

∞



∞  

 α

 α

 ( 1 +  x) ·  g (x) =  α +

 k

 α xk =  α

 xk =  α g(x) . 

 k

 k

 k=1

 k=0

Therefore

 d 



 g(x)( 1 +  x)− α =  g (x)( 1 +  x)− α −  g(x) α( 1 +  x)− α−1 =

 dx

=  α g(x)( 1 +  x)− α−1 −  g(x) α( 1 +  x)− α−1 = 0

and so the function  g(x)( 1 +  x)− α  is constant. But  g( 0 ) = 1 (recall  g(x)  is the sum of (1.48)), so we find

 g(x)( 1 +  x)− α =  g( 0 ) = 1

and eventually

 g(x) =  ( 1 +  x)α =  f (x) , 

∀  x ∈  (−1 ,  1 ) . 

Consider expansion (1.46) in the special case  α = −1 / 2. For any  k ∈ N, from (1.47) we then have





−1 / 2 =  (−1 )k  1 · 3 · 5 ·  ... ·  ( 2 k − 1 ) =

 k

2 k ·  k! 

=

1 · 3 · 5 ·  . . . ·  ( 2 k − 1 )

 ( 2 k − 1 )!! 

 (−1 )k

=  (−1 )k

2 · 4 · 6 ·  . . . · 2 k

 ( 2 k)!! 

 , 

where  n!! is the product of all odd numbers between 1 and  n  if  n  is odd, and the product of all even numbers from 2 to  n  if  n  is even. Hence

∞

1



√

= 1 +

 (−1 )k−1  ( 2 k − 1 )!! 

1 +  x

 ( 2 k)!! 

 xk , 

 x ∈  (−1 ,  1 ) . 

 k=1
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Actually, by Abel’s theorem (see section “Abel’s Theorem on Power Series” in

Appendix) such expansion also holds at  x = 1. 

Similarly, if we take  α = 1 / 2 in (1.46) we obtain the noteworthy expansion

√

∞



 ( 2 k − 3 )!! 

1 +  x = 1 +  x +

 (−1 )k

2

 ( 2 k)!! 

 xk , 

 x ∈  (−1 ,  1]  . 

(1.50)

 k=2

Finally, observe that replacing  x  with − x 2 in (1.50) and integrating term by term, we arrive at the remarkable expansion

∞

 ( 2 k − 1 )!!  x 2 k+1

arcsin  x =  x +

 , 

 x ∈  (−1 ,  1 ) , 

 ( 2 k)!! 

2 k + 1

 k=1

which converges at  x = ±1 as well, as is easy to see. 

1.8

Fourier Series

A function  f (x), defined at  x ∈ R, is called  periodic of period T (or  T - periodic), if f (x +  T ) =  f (x) , 

∀  x ∈ R  . 

If a function is  T -periodic, it is also periodic of period 2 T ,  3 T , . . . , kT , . . . 

Let  a, b  be real numbers and  k ∈ N. The function

 f (x) =  a  cos  kx +  b  sin  kx

(1.51)

is periodic of period 2 π . More precisely, since





cos  kx = cos (kx + 2 π) = cos  k x + 2 π

 , 

 k

and similarly for sin  kx, the function  f (x)  in (1.51) satisfies the relationship 2 π

 f (x) =  f x +

 , 

∀  x ∈ R  , 

 k

and is therefore 2 π/k-periodic. 

Of particular interest, also in view of the applications to Physics, are the linear

combinations of functions like (1.51), 

 n



 sn(x) =  a 0 +

 (ak  cos  kx +  bk  sin  kx) , 

∀  n ∈ N  , 

2

 k=1
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called  trigonometric polynomials. The real numbers  a 0 and  ak, bk, for  k = 1 ,  2 , . . . , n, are called  coefficients  of the trigonometric polynomial. Clearly, for any  n ∈ N, sn(x)  is 2 π -periodic. 

Suppose the sequence (of partial sums)  sn(x)  in (1.8) converges for any  x ∈ R. 

In other terms, given  a 0 ∈ R and  ak, bk, for  k ∈ N, suppose that the series

∞

 a



0 +

 (ak  cos  kx +  bk  sin  kx) , 

(1.52)

2

 k=1

called  trigonometric series  with coefficients  a 0 , ak, bk, is convergent for any  x ∈ R. 

Since  sn(x)  is periodic for any  n ∈ N, then also the sum  f (x)  will be a periodic function of period 2 π . 

Conversely, given a 2 π -periodic function  f (x)  we may ask whether it admits a trigonometric expansion, i.e. whether we can find coefficients  a 0 , ak, bk, for  k ∈ N, such that series (1.52) converges for every  x ∈ R with sum  f (x). 

Assume  f (x)  can be expanded in trigonometric series as in (1.52), i.e. 

∞



 f (x) =  a 0 +

 (ak  cos  kx +  bk  sin  kx) , 

∀  x ∈ R  , 

(1.53)

2

 k=1

and suppose that (1.52) is integrable term by term on an interval of width 2 π

(by the theorem of integration of series of Sect. 1.5, a sufficient condition for this is demanding that the series converges uniformly on the interval). Then we may

follow Fourier’s method to determine the coefficients  a 0 , ak, bk. To be precise, we consider (1.53), for example with  x ∈ [− π, π], and multiply both sides of (1.53) by cos  mx  or sin  mx, with  m ∈ N given, then integrate between − π  and  π. Thus we obtain





 π

 π

 f (x)  cos  mx dx =  a 0

cos  mx dx+

(1.54)

− π

2

− π

 n







 π

 π

+

 ak

cos  kx · cos  mx dx +  bk

sin  kx · cos  mx dx

; 

− π

− π

 k=1





 π

 π

 f (x)  sin  mx dx =  a 0

sin  mx dx+

(1.55)

− π

2

− π

 n







 π

 π

+

 ak

cos  kx · sin  mx dx +  bk

sin  kx · sin  mx dx

 . 

− π

− π

 k=1
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Noting that





 π

0

if

 m =  k

cos  kx · cos  mx dx =

(1.56)

− π

 π

if

 m =  k = 0  , 

 π

cos  kx · sin  mx dx = 0  , 

(1.57)

− π





 π

0

if

 m =  k

sin  kx · sin  mx dx =

(1.58)

− π

 π

if

 m =  k = 0  , 

from (1.54) we find the relation

 π

 am = 1

 f (x)  cos  mx dx , 

 m = 0 ,  1 ,  2 , . . . , 

(1.59)

 π

− π

(also for  m = 0, due to the factor 1 / 2 that multiplies  a 0 in (1.53)), while from (1.55) we obtain

 π

 bm = 1

 f (x)  sin  mx dx , 

 m = 1 ,  2 ,  3 , . . . . 

(1.60)

 π

− π

In any case, irrespective of the function  f (x), integrable between − π  and  π, the constants defined by (1.59) for  m = 0 ,  1 ,  2 , . . .  and by (1.60) for  m = 1 ,  2 , . . . , are called the  Fourier coefficients  of  f (x). Series (1.52), when the coefficients are the Fourier coefficients (1.59), (1.60) of  f (x), is the  Fourier series  of  f (x). 

Observe that if  f : [− π, π] → R is an  even  function, i.e.  f (x) =  f (− x)  for any x ∈ [− π, π], the Fourier series of  f  has all coefficients  bk  zero. And if  f  is  odd, i.e. 

 f (x) = − f (− x)  for any  x ∈ [− π, π], the Fourier series of  f  reduces to a series containing only sine functions. 

In this and the following section, given a 2 π -periodic, integrable function  f between − π  and  π, we shall examine the problem of expanding it in Fourier series, meaning when it might coincide with the sum of its Fourier series. 

To that end let us introduce some notation. Let  f (x)  be defined on R. If for  x ∈ R

the limit

lim  f (x +  h)

 h→0+

exists, we shall denote it by  f (x+ ). If

lim  f (x +  h)

 h→0−

exists, we call it  f (x− ). 

We shall also say  f : [ a, b] → R is  piecewise regular  on [ a, b] if there are finitely many points  xi,  i = 0 ,  1 , . . . , N, with  a =  x 0  < x 1  < . . . < xN =  b, such
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that  f  is differentiable with continuous derivative on every interval  (xi−1 , xi)  and the restriction of  f  to  (xi−1 , xi)  can be extended continuously to the closed interval

[ xi−1 , xi]. We say  f : R → R is  piecewise regular  on R when it is piecewise regular on every closed and bounded subinterval of R. 

The following fact, regarding the  pointwise convergence  of Fourier series, is proved in Sect. 1.9. 

Theorem (Pointwise Convergence of Fourier Series)  Let f be a  2 π -periodic, piecewise-regular function on  R . For any x ∈ R  the Fourier series of f converges to

1 [ f(x+ ) +  f(x− )] , 

(1.61)

2

 i.e. to the average of the right and the left limits of f at x. In particular, the Fourier series of f converges to f (x) at all points x where it is continuous. 

 Example 1  Let  f  be the 2 π -periodic function obtained by extending the function  x ∈

[− π, π] → | x| periodically over R (Fig. 1.6). 

As  f  is even, what we have said earlier ensures that  bk = 0 for every  k ∈ N, while an easy computation gives  a 0 =  π  and





 π

 π

 ak = 1

| x| cos  kx dx = 2

 x  cos  kx dx =

 π

− π

 π

0







 π

 π

= 2

1

 (−1 )k − 1

 x  sin  kx

− 1

sin  kx dx

= 2

 π

 k

0

 k  0

 π

 k 2

for  k = 1 ,  2 , . . . . 

Fig. 1.6

[image: Image 250]

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

[image: Image 255]

[image: Image 256]

[image: Image 257]

[image: Image 258]

[image: Image 259]

[image: Image 260]

[image: Image 261]

[image: Image 262]

40

1

Sequences and Series of Functions

The Fourier series of  f  is then

∞

 π



− 4

cos ( 2 k + 1 )x . 

(1.62)

2

 π

 ( 2 k + 1 ) 2

 k=0

By the theorem on pointwise convergence of Fourier series, the latter converges to  f (x)  for any  x ∈ R. As (1.62) is totally convergent, the Fourier series of  f  converges uniformly on R as well (also see Example 3 below). Putting  x = 0 in (1.62) produces the remarkable identity

∞

 π  2



=

1

 . 

(1.63)

8

 ( 2 k + 1 ) 2

 k=0

 Example 2  Let  f  be the 2 π -periodic function obtained by extending periodically the function

0 if − π < x ≤ 0

 g(x) = 1 if 0  < x ≤  π

to R. The Fourier coefficients of  f  are then

 a 0 = 1 , 

 ak = 0 , 

 bk = 1 −  (−1 )k , 

∀  k ∈ N  , 

 kπ

so the Fourier series of  f  is

∞

1



+ 2

sin ( 2 k + 1 )x . 

(1.64)

2

 π

2 k + 1

 k=0

By the theorem on Fourier pointwise convergence, this series converges to  f (x)  for any x ∈ R different from  kπ,  k ∈ Z. Note that for  x = 0 the Fourier series of  f  has sum 1 / 2, which is the average of the left and right limits of  f  at 0. 

Taking  x =  π/ 2 in (1.64) produces the following expression for  π:

∞

 (−1 )k

 π = 4

 , 

2 k + 1

 k=0

which coincides with the Taylor series of arctg  x  at  x = 1 (see (1.45)). 

Let us now establish sufficient conditions for the  uniform convergence  of a Fourier series. 
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Also the following result will be proved in the next section. 

Theorem (Uniform Convergence of Fourier Series)  Let f be a  2 π -periodic, piecewise-regular continuous function on  R . The Fourier series of f converges totally, hence uniformly, to f on  R . 

 Example 3  Consider again the function  f  of Example 1, i.e. the 2 π -periodic extension of x ∈ [− π, π] → | x| to R (see Fig. 1.6). 

We have already remarked that its Fourier series converges uniformly. The same

conclusion may be reached using the above uniform convergence theorem. 

We state, without proof, a useful generalisation of the theorem on uniform conver-

gence for Fourier series. 

Theorem  Let f be a  2 π -periodic, piecewise-regular function. The Fourier series of f converges uniformly to f on any interval [ a, b]  where f is continuous. 

 Example 4  Let  f  be the 2 π -periodic function

0 if − π < x ≤ 0

 f (x) =  x  if

0  < x ≤  π . 

Its Fourier coefficients are

 a 0 =  π , 

 ak =  (−1 )k − 1  , 

 bk =  (−1 )k+1  , 

2

 π k 2

 k

so the Fourier series of  f  is

∞

∞

 π





− 2

cos ( 2 k + 1 )x −

 (−1 )k  sin  kx . 

(1.65)

4

 π

 ( 2 k + 1 ) 2

 k

 k=0

 k=1

Since  f  is continuous at all points of R different from  π + 2 kπ, with  k ∈ Z, the previous theorem guarantees that (1.65) converges uniformly to  f  on every closed interval [ a, b] ⊂

 (− π, π). Figure 1.7 shows the graphs of the first Fourier polynomials of (1.65). 

(continued)
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 Example 4 (continued)

4.00

2.00

–4.00

–2.00

2.00

4.00

6.00

8.00

10.00

–2.00

Fig. 1.7

Series (1.65), for  x =  π, reduces to

∞

 π



+ 2

1

; 

4

 π

 ( 2 k + 1 ) 2

 k=0

by (1.63) this sum equals

 π = 1 [ f(π+ ) +  f(π− )] , 

2

2

in agreement with the theorem on pointwise convergence and with (1.61). 

We finish by pointing out that in certain cases, even if we do not know that the

Fourier series of a piecewise-regular function  f  converges uniformly (or even pointwise) to  f , we may still be able to integrate term by term. 

The proof of the following theorem is postponed to the next section. 

Theorem (Term-by-Term Integration of Fourier Series)  Let f be a piecewise-

 regular,  2 π -periodic function. Given x 0 , x ∈ [− π, π] , the following formula holds x

∞



 x

 f (t) dt =  a 0  (x −  x 0 ) +

 (ak  cos  kt +  bk  sin  kt) dt . 

(1.66)

 x

2

0

 x

 k=1

0

1.9

The Convergence of Fourier Series

This section is devoted to proving a number of results on the convergence of Fourier

series that were stated in the previous section. In particular we shall prove the

theorems on pointwise convergence, on uniform convergence and on term-by-term

integration of Fourier series. 
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Let us start by proving  Bessel’s inequality (1.68), which expresses an important property of a Fourier series’ coefficients. 

Bessel Inequality  Let f : [− π, π] → R  be a bounded integrable function. If sn denotes the nth partial sum of the Fourier series of f , we have









 n

1

 π

 π

 a 2



| f (x) −  s

0

 n(x)|2  dx = 1

 f  2 (x) dx −

+

 (a 2 +  b 2

 , (1.67)

 π

 k

 k )

− π

 π

− π

2

 k=1

 and moreover

∞



 a 2



 π

0 +

 (a 2 +  b 2

 f  2 (x) dx . 

(1.68)

2

 k

 k ) ≤ 1

 π

− π

 k=1

 Proof  First of all observe that (1.68) is a consequence of (1.67): as the left-hand side integral in (1.67) is non-negative, in fact, for any  n ∈ N we have n



 a 2



 π

0 +

 (a 2 +  b 2

 f  2 (x) dx , 

2

 k

 k ) ≤ 1

 π

− π

 k=1

and passing to the limit as  n → +∞ produces (1.68). 

To prove (1.67) let us note that





1

 π

 π

 f (x) sn(x) dx =  a 0

 f (x) dx+

 π − π

2 π − π

 n







 π

 π

+

 ak

 f (x)  cos  kx dx +  bk

 f (x)  sin  kx dx =

 π − π

 π − π

 k=1

 n

 a 2



= 0 +

 (a 2 +  b 2

2

 k

 k ) . 

(1.69)

 k=1

Similarly, using (1.56), (1.57) and (1.58), we obtain n

1

 π

 a 2



 s 2

0 +

 (a 2 +  b 2 ) . 

 π

 n (x) d x =

 k

 k

− π

2

 k=1
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From this relation and (1.69) we deduce



1

 π | f(x)− sn(x)|2  dx=

 π

− π







 π

 π

 π

= 1

 f  2 (x) dx − 2

 f (x)sn(x) dx + 1

 s 2

 π

 n (x) d x =

− π

 π

− π

 π

− π



 n

1

 π

 a 2



=

 f  2 (x) dx − 0 −

 (a 2 +  b 2

 π

 k

 k ) , 

− π

2

 k=1

and hence claim (1.67). 

From (1.68) we recover in particular

lim

 ak = lim  bk = 0  , 

 k→+∞

 k→+∞

so we can state the following

Corollary  If f : [− π, π]→ R  is a bounded integrable function, π

 π

lim

 f (x)  sin  kx dx = lim

 f (x)  cos  kx dx = 0  . 

(1.70)

 k→+∞

− π

 k→+∞

− π

In order to prove the theorem on the pointwise convergence of Fourier series we

start with a technical lemma. 

Lemma 1  For any n ∈ N  and any x ∈ R  we have





1

sin  (n + 1  )x

+

2

cos  x + cos 2 x +  . . . + cos  nx =

 . 

(1.71)

2

2 sin  x 2

 Furthermore, if f is  2 π -periodic and integrable on [− π, π]  and sn is the nth partial sum of its Fourier series, then





 π

sin

 n + 1  t

2

 sn(x) = 1

 f (x +  t)

 dt. 

(1.72)

 π

− π

2 sin  t 2

 Proof  Formula (1.71) arises by summing over  k  from 1 to  n  the two sides of the elementary identity









 x

sin

 k + 1  x − sin

 k − 1  x = 2 sin

cos  kx . 

2

2

2
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To prove (1.72) we note that (1.71) implies







 π

 n

1



 sn(x) = 1

 f (y)

+

 ( cos  ky  cos  kx + sin  ky  sin  kx) dy =

 π

− π

2

 k=1







 π

 n



= 1

1

 f (y)

+

cos  k(y −  x) dy =

 π

− π

2

 k=1







 π − x

 n



= 1

1

 f (x +  t)

+

cos  kt

 dt =

 π

− π− x

2

 k=1







sin

 n + 1  t

 π − x

= 1

2

 f (x +  t)

 dt . 

 π

−

 t

 π − x

2 sin 2

Then (1.72) follows from the above once we recall that a  T -periodic function  g satisfies





 a+ T

 T

 g(t) dt =

 g(t) dt

 a

0

for any  a ∈ R. 

 Proof of the Pointwise Convergence of Fourier Series  Fix  x ∈ R and  k ∈ N. 

Since (1.71) implies











sin

 k + 1  t



sin

 k + 1  t

1

 π

2

0

2

 dt = 1

 dt = 1  , 

 π

 t

 t

0

2 sin

 π

− π

2 sin

2

2

2

by (1.72) we then find

 sk(x) − 1 [ f (x+ ) +  f (x− )] =

2







 π

= 1

 f (x +  t) −  f (x+ )  sin

 k + 1  t

 dt+

 π

 t

0

2 sin

2

(1.73)

2







1

0

1

+

 f (x +  t) −  f (x− )  sin

 k +

 t

 dt . 

 π

−

 t

 π

2 sin

2

2
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Setting

⎧

⎪

⎪ f (x +  t) −  f (x+ )

⎪

⎪

0  < t ≤  π

⎪

⎪

 t

⎪

⎨

2 sin 2

 F (t) = ⎪0

 t = 0

 , 

(1.74)

⎪

⎪

⎪

⎪ f (x +  t) −  f (x− )

⎪

⎪

− π ≤  t <  0

⎩

 t

2 sin 2

since  f  is piecewise regular we deduce

lim  F (t) =  f + (x), 

lim  F (t) =  f − (x)

 t →0+

 t →0−

by de l’Hôpital’s rule, where  f + (x),  f − (x)  are the right and left derivatives of  f  at x. Then  F  is piecewise continuous on [− π, π], and hence integrable and bounded. 

Moreover, from (1.73) we have







 π

 sk(x) − 1 [ f (x+ ) +  f (x− )] = 1

 F (t)  sin

 k + 1  t

 dt =

2

 π

− π

2





 π

 π

= 1

 t

 t

 F (t)  cos

sin  kt dt + 1

 F (t)  sin

cos  kt dt . 

 π

− π

2

 π

− π

2

The claim then follows by taking the limit as  k → +∞ and applying the

relationships in (1.70). 

Due to the previous corollary, it is clear that the pointwise-convergence theorem

is still valid if we replace the piecewise regularity of  f  with the weaker assumption that for any  x ∈ R the function  F , defined by (1.74), is bounded and integrable on

[− π, π]. 

Let us now present a theorem on the uniform convergence of Fourier series. First, 

though, a lemma. 

Lemma 2  Let f be  2 π -periodic, continuous on  R  and piecewise regular. Then kak = − b  , 

 kb

 , 

∀  k ∈ N  , 

(1.75)

 k

 k =  a k

 where the Fourier coefficients a  and b  of the derivative f   are given by k

 k





 π

 π

 a = 1

 f  (x)  cos  kx dx , 

 b = 1

 f  (x)  sin  kx dx . 

 k

 π

 k

− π

 π

− π
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 Proof  As  f  is continuous and piecewise regular, integrating by parts we obtain π

 π

 kak =  k

 f (x)  cos  kx dx = 1 [ f (x)  sin  kx] π − 1

 f  (x)  sin  kx dx =

 π

− π

− π

 π

 π

− π



1

 π

= −

 f  (x)  sin  kx dx = − b

 π

 k . 

− π

The second relationship in (1.75) is similar. 

 Proof of the Uniform Convergence of Fourier Series  To prove the claim it suffices to show that

∞

 (| ak|+ | bk| ) < +∞ . 

(1.76)

 k=1

The elementary inequality 2 ab ≤  a 2 +  b 2, valid for any  a, b ∈ R, implies 1

1

2| ak| = 2 k| ak| ≤  k 2 a 2 +

; 

 k

 k

 k 2

the term 2| bk| can be bounded in a similar way. To attain (1.76) it is enough to check that

∞

 k 2 (a 2 +

 k

 b 2 k) < +∞  . 

 k=1

But the above follows from (1.75) by applying Bessel’s inequality to the Fourier coefficients of  f , which is bounded and integrable on [− π, π]. In fact, 

∞



∞





1

 π

 k 2 (a 2 +

[

[

 k

 b 2 k) =

 (a k) 2 +  (b k) 2] ≤

 f  (x)]2  dx < +∞  . 

 π

− π

 k=1

 k=1

We close the section with the proof of the theorem on term-by-term integration of

Fourier series. Call  F  the integral function defined on [− π, π] as

 x 



 F (x) =

 f (t) −  a 0

 dt , 

∀  x ∈ [− π, π]

− π

2

and extended to R periodically with period 2 π. 

This  F  is continuous on [− π, π]. It vanishes at the interval’s endpoints, since F (− π) = 0 and

 π

 F (π ) =

 f (t) dt −  πa 0 = 0

− π

by the definition of the Fourier coefficient  a 0 in (1.59). 
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Therefore  F  is continuous on the entire R. By the theorem on the uniform

convergence of Fourier series, the Fourier series of  F  converges to  F  uniformly. 

For  k ∈ N, denote by





 π

 π

 αk = 1

 F (x)  cos  kx dx , 

 βk = 1

 F (x)  sin  kx dx

 π

− π

 π

− π

the Fourier coefficients of  F . As  F  =  f , by Lemma 2 we have kαk =  bk , 

 kβk =  ak , 

∀  k ∈ N  . 

Then given  x 0 , x ∈ [− π, π], 

 x



 f (t) −  a 0

 dt =  F (x) −  F (x 0 ) =

 x

2

0

∞



=

[ αk( cos  kx − cos  kx 0 ) +  βk( sin  kx − sin  kx 0 )] =

 k=1

∞





=

− cos  kx − cos  kx 0

sin  kx − sin  kx 0

 bk

+  ak

=

 k

 k

 k=1

∞







 x

 x

=

 bk

sin  kt dt +  ak

cos  kt dt

 x

 x

 k=1

0

0

and (1.66) is proved. 

Appendix to Chap. 1

1.10

The Ascoli-Arzelà Theorem

Let  fk  be a sequence of continuous real functions on the closed and bounded

interval  I = [ a, b] of R (more generally, this section’s discussion holds if we assume I ⊆ R is a  compact subset  of R). 

We say that the functions  fk  are  uniformly bounded (on [ a, b]) if there exists M >  0 such that

| fk(x)| ≤  M , 

∀  k ∈ N  , 

∀  x ∈ [ a, b]  . 

We say that the functions  fk  are  equicontinuous (on [ a, b]) if, for any  ε >  0, there exists  δ >  0 such that

 x, y ∈ [ a, b] , 

| x −  y|  < δ

⇒ | fk(x) −  fk(y)|  < ε , 

∀  k ∈ N  . (1.77)

[image: Image 375]

1.10 The Ascoli-Arzelà Theorem

49

In particular, when the functions  fk  are  uniformly Lipschitz, i.e. there exists  L >  0

such that

| fk(x) −  fk(y)| ≤  L| x −  y|  , 

∀  k ∈ N ∀  x, y ∈ [ a, b]  , 

then they are equicontinuous on [ a, b] as well. 

Let us prove the remarkable  Ascoli-Arzelà theorem. 

Ascoli-Arzelà Theorem  Every sequence fk of uniformly bounded and equicontinuous functions on the closed and bounded interval [ a, b] ⊂ R  admits a uniformly convergent subsequence. 

 Proof  Call  X = [ a, b] ∩ Q the set of rational points of the interval [ a, b]. As  X  is countable, we may represent it by a sequence  xj , with  j ∈ N. Let us split the proof in two steps. 

Step 1 ( construction of a subsequence via Cantor’s diagonal method): by

assumption the numerical sequence  fk(x 1 )  is bounded on R, so there exists a subsequence  f ( 1 )  of  f

 (x

 k

 k  such that  f ( 1 )

 k

1 )  converges to some real number  y 1. 

As the sequence  f ( 1 )(x

of

 k

2 )  is bounded on R, there exists a subsequence  f ( 2 )

 k

 f ( 1 )  such that  f ( 2 )(x

 k

 k

2 )  converges to some real number  y 2. Iterating the process for

every  h = 1 ,  2 , . . . , we obtain a subsequence  f (h)  of  f (x

 k

 k  such that  f (h)

 k

 h)  converges

to some

 (h+1 )

 (h)

 yh ∈ R. Moreover, for any  h ∈ N,  f

is a subsequence of  f

. So we

 k

 k

have the following picture:

 f ( 1 )(x

 (x

 (x

 (x

1

1 ), f ( 1 )

2

1 ), f ( 1 )

3

1 ), . . . f ( 1 )

 k

1 ), . . . →  y 1

 ( 2 )

 ( 2 )

 ( 2 )

 ( 2 )

 f

 (x

 (x

 (x

 (x

1

2 ), f 2

2 ), f 3

2 ), . . . fk

2 ), . . . →  y 2

 ( 3 )

 ( 3 )

 ( 3 )

 ( 3 )

 f

 (x

 (x

 (x

 (x

1

3 ), f 2

3 ), f 3

3 ), . . . fk

3 ), . . . →  y 3

(1.78)

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . . . . . . . 

 f (h)(x

 (x

 (x

 (x

1

 h), f (h)

2

 h), f (h)

3

 h), . . . f (h)

 k

 h), . . . →  yh

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . . . . . . . 

Now consider the diagonal sequence

 (k)

 gk(x) =  f

 (x) , 

∀  k ∈ N  . 

 k

For every  j , the sequence  gk(xj ), with  k ≥  j , is extracted from the  j  th sequence in (1.78), so when  k → +∞ we have

 gk(xj ) →  yj , 

∀  j = 1 ,  2 ,  3 , . . . . 

(1.79)

Step 2 ( Cauchy sequence): given  ε >  0, pick  δ >  0 so that the equicontinuity condition (1.77) holds. Divide the bounded interval [ a, b] in a finite number of
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subintervals of the same length, say into  s ∈ N parts of length less than  δ (so it is enough that  s > (b −  a)/δ). In each of these parts we choose a point of X, say  xj , x , x , . . . , x . Then for any  x ∈ [ a, b] there exists  x , for some 1

 j 2

 j 3

 js

 jr

 r ∈ {1 ,  2 ,  3 , . . . , s}, such that

| x −  xj |  < δ . 

(1.80)

 r

By (1.79), for any  r = 1 ,  2 ,  3 , . . . , s  the sequence  gk(xj )  is convergent as  k →

 r

+∞, and hence it is a Cauchy sequence. Then there exists  ν ∈ N such that

| gk(xj ) −  g

 )|  < ε , 

(1.81)

 r

 h(xjr

for any  h, k > ν, and any  r = 1 ,  2 ,  3 , . . . , s. 

Let us use the equicontinuity (1.77) and, for any  x ∈ [ a, b], consider the point xj ∈  X  for which (1.80) holds. From (1.81) it follows that r

| gk(x) −  gh(x)| ≤ | gk(x) −  gk(xj )| + | g

 ) −  g

 )|+

 r

 k (xjr

 h(xjr

+ | gh(xj ) −  g

 r

 h(x)|  <  3 ε , 

for any  h, k > ν. Therefore  gk  is a Cauchy sequence for the uniform convergence. 

The uniform Cauchy criterion of Sect. 1.2 allows to conclude. 

1.11

The Weierstrass Approximation Theorem

A frequent problem in Mathematical Analysis is the approximation of a given

function  f (x)  by functions of a special kind. 

When  f (x)  is a continuous function on a closed and bounded interval [ a, b], a classical theorem due to Weierstrass provides an exhaustive answer: the approximating functions are polynomials, as long as we interpret the word approximation

in the sense of uniform convergence. 

Weierstrass Approximation Theorem  Any continuous function f (x) on [ a, b]  is a uniform limit of a sequence of polynomials. 

 Proof  The variable change  x →  (x −  a)/(b −  a)  maps polynomials to polynomials, and reduces us to consider the interval [0 ,  1]. 

We may also assume  f ( 0 ) =  f ( 1 ) = 0; in fact, once the theorem is proved in that case, setting

 g(x) =  f (x) −  f ( 0 ) −  x[ f ( 1 ) −  f ( 0 )]  , x ∈ [0 ,  1]  , 

we have  g( 0 ) =  g( 1 ) = 0, and the function  f (x) −  g(x)  is a polynomial. So if  g(x) is a uniform limit of polynomials, the same is true for  f (x). 
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So assume  f ( 0 ) =  f ( 1 ) = 0 and let us extend  f  to R, by defining it equal to 0

outside [0 ,  1], and thus obtaining a uniformly continuous function on R. Define the sequence of polynomials

 qk(x) =  ck( 1 −  x 2 )k , 

 k ∈ N  , 

where  ck, for any  k ∈ N, is a constant chosen so that





1

1

 qk(x) dx =  ck

 ( 1 −  x 2 )k dx = 1  . 

(1.82)

−1

−1

Using Bernoulli’s inequality  ( 1 −  x 2 )k ≥ 1 −  kx 2 (true for any  x  such that | x| ≤ 1

and any  k ∈ N), we have





√

1

1

1 / k

 ( 1 −  x 2 )k dx = 2

 ( 1 −  x 2 )k dx ≥ 2

 ( 1 −  x 2 )k dx ≥

−1

0

0

(1.83)

√

1 / k

≥

1

2

 ( 1 −  kx 2 ) dx =

4

√  > √  . 

0

3  k

 k

From (1.82), (1.83), then, 

√

 ck < 

 k , 

∀  k ∈ N  . 

Therefore, for any  δ ∈  ( 0 ,  1 )  and any  x  such that  δ ≤ | x| ≤ 1, 

√

0 ≤  qk(x) =  ck( 1 −  x 2 )k ≤

 k( 1 −  δ 2 )k , 

∀  k ∈ N  . 

(1.84)

Therefore the polynomial sequence  qk(x)  converges to zero uniformly when  δ ≤

| x| ≤ 1. Let us introduce another sequence

1

 pk(x) =

 f (x +  t)qk(t) dt

∀  k ∈ N  , x ∈ [0 ,  1]  . 

(1.85)

−1

Just like the sequence  qk, this too is made of polynomials, because a variable change in the integral gives

1

 pk(x) =

 f (t)qk(t −  x) dt . 

0

By (1.82) we also have





1

1

 f (x)qk(t) dt =  f (x)

 qk(t) dt =  f (x), 

∀  k ∈ N  , ∀  x ∈ [0 ,  1]  . 

−1

−1

(1.86)
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Given  ε >  0, choose  δ >  0 so that

|

 ε

 x −  y|  < δ

⇒

| f (x) −  f (y)|  < , 

(1.87)

2

and let

 M = max{| f (x)| : 0 ≤  x ≤ 1}  . 

We use (1.85), (1.86) first, then (1.87), (1.84), and finally (1.82) to obtain 1

| pk(x) −  f (x)| ≤

| f (x +  t) −  f (x)| qk(t) dt ≤

−1  −



 δ

 δ

≤ 2 M

 qk(t) dt +  ε

 qk(t) dt+

−1

2 − δ

1

√

+ 2 M

 qk(t) dt ≤ 4 M

 k( 1 −  δ 2 )k +  ε . 

 δ

2

The last quantity is less than  ε  when  k  is large enough. The claim now follows. 

1.12

Abel’s Theorem on Power Series

Consider a power series

 a 0 +  a 1 x +  a 2 x 2 +  . . . +  akxk +  . . . 

(1.88)

whose convergence radius    is a positive real number, and suppose the series also converges at  x =   (a similar reasoning holds at  x = − ).  Abel’s theorem  implies that the sum  f (x)  of (1.88) is continuous not just on  (− , ), but at  x =    as well. 

Hence the series’ sum at  x =    can be computed using the values of  f  in the limit x →  −. 

We shall discuss two versions of Abel’s theorem. They differ in the proof and in

the conclusion. The thesis of Theorem 2 regards the series’ uniform convergence, which implies the sum’s continuity of Theorem 1. 

To simplify the notation let us consider the case   = 1. 

This does not affect the result’s generality. In fact, if (1.88) converges at  x =  , the series of general term  bk =  akk  clearly converges. 

Since

∞

 bk ∈ R , 

 k=0
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Abel’s theorem for the case   = 1 talks about the properties of the power series

∞

 bkxk , 

−1  < x ≤ 1  , 

 k=0

i.e. 

∞

 akkxk , 

−1  < x ≤ 1  . 

 k=0

Putting  y =  x, we deduce similar properties for

∞

 akyk , 

−  < y ≤   . 

 k=0

∞



Theorem 1 (Abel)  Let

 ak be a convergent numerical series and set

 k=0

∞



 f (x) =

 akxk , 

−1  < x <  1  . 

 k=0

∞



 Then as x → 1−  the function f (x) converges to

 ak. 

 k=0

 Proof  Take the sequence  sn  of partial sums of the given numerical series n



 sn =

 ak , 

 n = 0 ,  1 ,  2 , . . . , 

 k=0

and define  sn  also for  n = −1 by  s−1 = 0. Given that  sn −  sn−1 =  an  for any n = 0 ,  1 ,  2 , . . . ,  if | x|  <  1 we have n



 n



 akxk =

 (sk −  sk−1 )xk =

 k=0

 k=0

 n−1



 n



=  snxn +

 skxk −  x ·

 sk−1 xk−1 =

 k=0

 k=0

 n−1



=  snxn +  ( 1 −  x) ·

 skxk , 

−1  < x <  1  . 

 k=0

[image: Image 394]

[image: Image 395]

[image: Image 396]

[image: Image 397]

54

1

Sequences and Series of Functions

In the limit as  n → +∞ we obtain

 n



∞



 f (x) = lim

 akxk =  ( 1 −  x) ·

 skxk . 

(1.89)

 n→+∞  k=0

 k=0

∞



Put  s = lim  sn =

 ak. Given  ε >  0, let  ν ∈ N be such that

 n→+∞

 k=0

|

 ε

 sn −  s|  < 

 , 

∀  n > ν. 

2

Using the geometric series’ sum in the form

∞



 ( 1 −  x) ·

 xk = 1  , 

∀  x ∈ R : −1  < x <  1  , 

 k=0

from (1.89) we obtain, for 0  < x <  1, 





∞





|





 f (x) −  s|= 

≤

 ( 1 −  x)·  (sk −  s)xk

 k=0

(1.90)

 ν



∞



 ν



≤  ( 1 −  x)· | sk − s| +  ( 1 −  x)·

| sk − s| ·  xk <( 1 −  x)· | sk − s|+  ε . 

2

 k=0

 k= ν+1

 k=0

 ν



Finally, since the finite sum  ( 1 −  x) ·

| sk −  s| tends to zero when  x → 1, there

 k=0

exists  δ >  0 such that

 ν



 ε

 ( 1 −  x) ·

| sk −  s|  < 

∀  x ∈  ( 1 −  δ,  1 ) . 

(1.91)

2

 k=0

From (1.90), (1.91) it follows that | f (x) −  s|  < ε  for 1 −  δ < x <  1. In other words, 

∞



lim  f (x) =  s =

 ak . 

 x→1−

 k=0

∞



Theorem 2 (Abel)  Let

 ak be a convergent numerical series. Then the power

 k=0

 series

∞

 akxk

(1.92)

 k=0
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 converges uniformly on the interval [0 ,  1] . Consequently, the sum f (x) of (1.92)  is a continuous function on [0 ,  1] . 

Since by assumption the power series (1.92) converges at  x = 1, by Theorem 1, Sect. 1.6, it must converge totally on every closed and bounded subinterval of (−1 ,  1 ). Hence we might equivalently conclude, in Theorem 2, that (1.92) converges uniformly on any closed and bounded subinterval of  (−1 ,  1]. 

∞



 Proof of Theorem 2  By the convergence of

 ak  and Cauchy’s criterion for

 k=0

numerical series, for any  ε >  0 there exists  ν ∈ N such that





 n+ p









 ak  < ε , 

∀  n > ν , 

∀  p = 0 ,  1 ,  2 , . . . . 

(1.93)

 k= n

We claim that the uniform Cauchy criterion for series (1.92) holds on [0 ,  1]. To that end, define

 b 0 =  an

 b 1 =  an +  an+1

 b 2 =  an +  an+1 +  an+2

 . . . 

 . . . 

 bp =  an +  an+1 +  an+2 +  . . . +  an+ p. 

By (1.93)

| bk|  < ε , 

∀  k = 0 ,  1 ,  2 , . . . , p . 

(1.94)

As

 an =  b 0 , an+1 =  b 1 −  b 0 , an+2 =  b 2 −  b 1 , . . . , an+ p =  bp −  bp−1  , moreover, we have

 n+ p

 akxk =  anxn + an+1 xn+1 + ... + an+ pxn+ p =

 k= n

=  b 0 xn +  (b 1 −  b 0 )xn+1 +  . . . +  (bp −  bp−1 )xn+ p =

=  b 0 (xn −  xn+1 ) +  b 1 (xn+1 −  xn+2 ) +  . . . +

+  bp−1 (xn+ p−1 −  xn+ p) +  bpxn+ p . 
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But 0 ≤  x ≤ 1, so  (xn −  xn+1 ) ≥ 0,  (xn+1 −  xn+2 ) ≥ 0, and so on. Hence from (1.94) we obtain





 n+ p







≤ |



 akxk  b 0| (xn −  xn+1 ) + | b 1| (xn+1 −  xn+2 ) +  . . . +

 k= n

+ | bp−1| (xn+ p−1 −  xn+ p) + | bp| xn+ p ≤

≤  ε[ (xn −  xn+1 ) +  (xn+1 −  xn+2 ) +  . . . +

+  (xn+ p−1 −  xn+ p) +  xn+ p] =  εxn . 

Again, 0 ≤  x ≤ 1 implies





 n+ p











 akxk  < ε , 

∀  n > ν , ∀  p = 0 ,  1 ,  2 , . . . 

 k= n

for any  x ∈ [0 ,  1]. Therefore the uniform Cauchy criterion ensures that (1.92) converges uniformly on [0 ,  1]. Consequently, by the theorem on the sum’s continuity (Sect. 1.5), the sum  f (x)  of (1.92) is a continuous function on [0 ,  1]. 

We finish with an application of Abel’s theorem to the computation of the limit of

the integral of a power series’ sum. In the following statement    is the convergence radius of given series. Note how, in principle, the theorem applies even if the

absolute value of    is less than the convergence radius. In such a case, though, the result is not new: it descends from the theorem on integration by series, due to

the uniform convergence on the interval. 



Theorem 3  Let

∞

 f (x) =

 k=0  ak xk. Then

 η

∞

 ak

lim

 f (x) dx =

 k+1  , 

(1.95)

 η→ − 0

 k + 1

 k=0

 provided the numerical series on the right is convergent. 

 Proof  We begin by proving the theorem for   = 1, i.e. 

 η

∞

 ak

lim

 f (x) dx =

 , 

(1.96)

 η→1− 0

 k + 1

 k=0

only assuming the right-hand-side numerical series in ((1.96)) is convergent. By Theorem 1 in Sect. 1.6 the power series

∞

 ak xk+1

 k + 1

 k=0
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converges for any | x|  <  1. By Theorem 5, Sect. 1.6, the derivative series

∞

 akxk

 k=1

is absolutely convergent for | x|  <  1, with uniform convergence on the interval [0 , η]

for any 0  < η <  1. 



Consider

∞

 f (x) =

 k=0  akxk  for any | x|  <  1, and fix 0  < η <  1. Integrating between 0 and  η  we have

 η

∞

 ak

 f (x) dx =

 ηk+1  . 

(1.97)

0

 k + 1

 k=0

We have assumed that the numerical series on the right in (1.96) is convergent, so Abel’s theorem implies

∞



∞

 a



 k

 ak

lim

 ηk+1 =

 , 

 η→1−

 k + 1

 k + 1

 k=0

 k=0

and by (1.97)

∞



∞



 a



 η

 k

=

 ak

lim

 ηk+1 = lim

 f (x) dx . 

(1.98)

 k + 1

 η→1−

 k + 1

 η→1−

0

 k=0

 k=0

Hence from (1.98) we deduce (1.96), i.e. the claim when   = 1. 

For the general case we set  bk =  akk+1, and in the integral we substitute  x =

  ·  t. This gives

∞



∞

 a



 k

 bk

 k+1 =

 , 

(1.99)

 k + 1

 k + 1

 k=0

 k=0





 η

 η ∞



lim

 f (x) dx = lim

 akxk dx =

(1.100)

 η→ − 0

 η→ − 0  k=0





 η ∞



 η ∞



= lim

 ak( ·  t)k  ·  dt = lim

 bktk dt . 

 η→1− 0

 η→1− 0

 k=0

 k=0

The equality of (1.99) and (1.100) follows from (1.96), once we replace  ak  with bk, under the hypothesis that the numerical series of (1.99) are convergent. This concludes the proof of (1.95). 
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2

2.1

Introduction

This chapter collects the main notions from  topology  regarding metric spaces and Banach spaces. Although this material might already be known in particular cases

(at least for the standard topology of R) we shall recall it in order to keep the text self-contained. Certain sections might be postponed for a subsequent study. 

The starting point is the observation that the notions of  convergent sequence  of real numbers and  continuous real function  of one real variable actually depend on certain features of the absolute value. More specifically, the crucial properties are the following:

| x −  y| = 0

if and only if

 x =  y , 

∀  x, y ∈ R; 

(2.1)

| x −  y| = | y −  x| , 

∀  x, y ∈ R; 

(2.2)

| x −  y| ≤ | x −  z| + | z −  y| , 

∀  x, y, z ∈ R . 

(2.3)

The quantity  d(x, y) = | x −  y| measures the  distance  between the numbers  x, y ∈

R. Throughout the chapter we shall see that once we axiomatise the idea of distance

of two points in a set  X, by introducing a function  d(x, y)  satisfying properties similar to (2.1), (2.2), and (2.3), many definitions and theorems of Mathematical Analysis become simpler and more natural. At the same time, in this way we shall

acquire the tools necessary for treating more general aspects. 

2.2

Metric Spaces

Let  X  be a set and  d :  X ×  X → [0 , +∞ )  a function that associates with each pair (x, y)  of points of  X  a real number  d(x, y) ≥ 0. One says that  d  is a  distance (or
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 metric) on  X, provided the following conditions are satisfied:

 d(x, y) = 0

if and only if

 x =  y , 

∀  x, y ∈  X; 

(2.4)

 d(x, y) =  d(y, x), 

∀  x, y ∈  X; 

(2.5)

 d(x, y) ≤  d(x, z) +  d(z, y), 

∀  x, y, z ∈  X. 

(2.6)

Condition (2.6) is called  triangle inequality. Given  x, y ∈  X, the number  d(x, y)  is called the  distance between x and y. 

If  d  is a distance on the set  X, we say  (X, d)  is a  metric space. More concisely, we shall say  X  is a  metric space  when no confusion arises. 

Let us see how to apply the properties that define a distance  d  to prove the following inequality, called  Lipschitz inequality of the distance:

| d(x, z) −  d(y, z)| ≤  d(x, y) , 

∀  x, y, z ∈  X . 

(2.7)

From the triangle inequality (2.6) we have

 d(x, z) ≤  d(x, y) +  d(y, z) , 

or equivalently, 

 d(x, z) −  d(y, z) ≤  d(x, y) . 

(2.8)

Using again the triangle inequality gives

 d(y, z) ≤  d(y, x) +  d(x, z) , 

and so

− d(y, x) ≤  d(x, z) −  d(y, z) . 

(2.9)

From (2.8), (2.9), and keeping in account property (2.5), namely that  d(x, y) =

 d(y, x), we eventually obtain

− d(x, y) ≤  d(x, z) −  d(y, z) ≤  d(x, y) , 

which is (2.7). 

For any  x 0 ∈  X  and any  r >  0, the  open ball  with centre  x 0 and radius  r  is the set

 Br (x 0 ) = { x ∈  X :  d(x, x 0 ) < r}  . 

A set  A ⊆  X  is called  open  if any one of its points is the centre of an open ball contained in  A. This means that for every  x 0 ∈  A  there exists  r >  0 such that
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 Br (x 0 ) ⊆  A. The empty set ∅ is assumed open. A set  C ⊆  X  is said to be  closed if its complement  A =  X −  C  is open. The collection of all open sets of a metric space  (X, d)  is called  topology induced by the metric d. 

With the next result we list a few properties of open sets. 

Proposition 1  In a metric space every open ball is an open set, every union of open sets is an open set, the intersection of two open sets is an open set. 

 Proof  Let us start by the first statement. To show that the open ball  Br (x 0 )  is open we must prove that for any  x ∈  Br (x 0 )  there exists  s >  0 such that  Bs(x) ⊂  Br (x 0 ). 

For that let  s =  r −  d(x, x 0 ), and then we have

 d(y, x) < s

⇒  d(y, x 0 ) ≤  d(y, x) +  d(x, x 0 ) < r . 

This implies  y ∈  Bs(x) ⇒  y ∈  Br (x 0 ). 

! 

Next, consider a family of open sets  (Ai)i∈ I  with  x ∈

 Ai. Then there exists

 i∈ I

 i ∈  I  such that  x ∈  Ai. As the  Ai  are open, there exists  r >  0 such that

" 

 Br (x) ⊆  Ai ⊆

 Ai . 

 i∈ I

! 

and so

 Ai  is an open set. 

 i∈ I

For the last claim consider two open sets  A 1,  A 2 and let  x ∈  A 1 ∩  A 2. Then there exist  r 1 , r 2  >  0 such that  Br (x) ⊆  A

 (x) ⊆  A

1

1 and  Br 2

2. Putting  r = min{ r 1 , r 2}, 

we have  Br (x) ⊆  A 1 ∩  A 2. 

From Proposition 1, using  De Morgan’s law

#

" 

 (X −  Ai) =  X −

 Ai , 

 i∈ I

 i∈ I

we immediately obtain the following

Proposition 2  In a metric space the intersection of closed sets is a closed set, and the union of two closed sets is a closed set. 

Let us consider some examples of metric spaces. 

 Example 1  Let  X  be a set and  d  the function

0 if  x =  y

 d(x, y) = 1 if  x =  y

for  x, y ∈  X. Immediately  d  is a metric, called  discrete metric, and any subset of  X  is open for this metric. 
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 Example 2  The function  d(x, y) = | x −  y| is a metric on the set R of real numbers, called Euclidean metric. It induces the usual topology on the real line, in which a set is open if and only if it is a union of open intervals. 

 Example 3 ( Euclidean Metric on R n)  Given  n ∈ N and points  x, y ∈ R n  of coordinates x =  (x 1 , x 2 , . . . , xn),  y =  (y 1 , y 2 , . . . , yn), put n



1 / 2

 dn(x, y) =

 (xi −  yi ) 2

 , 

(2.10)

 i=1

called  Euclidean distance, or  standard metric, of R n. In the subsequent sections we shall also use the symbol | x −  y| to denote the standard distance  dn(x, y), without further distinguishing the case  n = 1 from the general situation  n ≥ 1. 

It is straightforward to check that  dn  satisfies (2.4) and (2.5) in the definition of metric. 

Let us prove the triangle inequality (2.6):

 dn(x, y) ≤  dn(x, z) +  dn(z, y) . 

Setting  a =  x −  z,  b =  z −  y, or in coordinates ai =  xi −  zi , 

 bi =  zi −  yi , 

∀  i = 1 ,  2 , . . . , n , 

it will suffice to prove that

⎧





⎫2

 n



⎨  n



1 / 2

 n



1 / 2⎬

 (ai +  bi ) 2 ≤

+

⎩

 a 2

 b 2

 . 

 i

 i

⎭

 i=1

 i=1

 i=1

This is the same as (computing the squares on either side)









 n



 n



1 / 2

 n



1 / 2

 ai ·  bi ≤

 a 2

·

 b 2

 . 

(2.11)

 i

 i

 i=1

 i=1

 i=1

For this, observe that for any  t ∈ R













 n



 n



 n



 n



0 ≤

 (ai +  tbi) 2 =

 b 2

 t  2 + 2

 a

 t +

 a 2

=  αt 2 + 2 βt +  γ . 

 i

 i bi

 i

 i=1

 i=1

 i=1

 i=1

(continued)
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 Example 3 (continued)

Therefore (if  α  does not vanish, i.e. if the  bi  are not all zero, for otherwise (2.11) is obvious) choosing  t = − β/α  we obtain  γ −  β 2 /α ≥ 0. Hence n



2

 n



 n



 ai bi

≤

 a 2

·

 b 2

 , 

(2.12)

 i

 i

 i=1

 i=1

 i=1

which is equivalent to the  Cauchy-Schwarz inequality:













1 / 2

1 / 2

 n





 n



 n





≤

·



 ai bi 

 a 2

 b 2

 , 

(2.13)

 i

 i

 i=1

 i=1

 i=1

which clearly implies (2.11). 

Therefore the function  dn : R n × R n → R defined in (2.10) is a metric. The open balls centred at  x 0 are, for  n = 2, the familiar open discs of the plane (without the boundary circle); for  n = 3 they are solid open balls in space (without the spherical surface). 

Regarding  n-dimensional  Euclidean space ( R n, dn), let us introduce a few concepts that will be useful later. Given  a =  (a 1 , a 2 , . . . , an)  and  b =  (b 1 , b 2 , . . . ,bn)  in R n, the set

 (a, b) = { (x 1 , x 2 , . . . , xn) ∈ R n :  ai < xi < bi, ∀  i = 1 ,  2 , . . . , n}

will be called  open interval  in R n, of endpoints  a  and  b. The point  (a +  b)/ 2 is the centre  of the interval  (a, b). 

It is easy to verify that any open interval in R n  is contained in an open ball with the same centre, and every open ball in R n  is contained in some open interval of the same centre. 

 Example 4  Let  C 0 ([ a, b] )  denote the set of continuous functions on the interval [ a, b] on R. For  f, g ∈  C 0 ([ a, b] )  define

 d(f, g) = sup{| f (x) −  g(x)| :  x ∈ [ a, b]} . 

As (2.4) and (2.5) in the definition of metric are clearly valid, we shall just prove the triangle inequality (2.6):

 d(f, g) ≤  d(f, h) +  d(h, g) . 

(2.14)

For any  x ∈ [ a, b]

| f (x) −  g(x)| ≤ | f (x) −  h(x)| + | h(x) −  g(x)| ≤  d(f, h) +  d(h, g) . 

(continued)
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 Example 4 (continued)

Taking the supremum over  x ∈ [ a, b] we obtain (2.14). Figure 2.1 shows an open ball for f ∈  C 0 ([ a, b] ). 

y

f(x)+

f

g

f(x)-

a

b

x

Fig. 2.1  f, g ∈  C 0 ([ a, b] ) :  d(f, g) < ε

Let us briefly examine, in the section’s second part, some definitions and properties on a metric space  (X, d). 

A subset  I  of  X  is a  neighbourhood  of the point  x  if there exists an open set  A ⊆  I  such that  x ∈  A. A point  x  is called  internal  to  Y ⊆  X  if  Y  is a neighbourhood of  x. 

The (possibly empty) set of internal points of  Y  is called the  interior of Y , 

◦

◦

indicated by  Y . As a point  x  belongs to  Y  if and only if there is an open set  A contained in  Y  such that  x ∈  A, the  interior of Y  is the  union of all open sets contained in Y , and hence it is the largest open set contained in  Y . Therefore a  set

◦

 Y is open if and only if Y =  Y . 

A point  x  is  external  to  Y ⊆  X  if it is internal to the complement  X −  Y . 

A point  x  is a  limit point  of  Y  if for any neighbourhood  I  of  x  we have  I ∩  (Y −

{ x} ) = ∅, i.e. if every neighbourhood of  x  contains points of  Y  other than  x  itself. A point  x ∈  Y  is called  isolated  when it is not a limit point of  Y , in other words there exists a neighbourhood  I  of  x  such that  I ∩  Y = { x}. 

The union of  Y ⊆  X  with the set of its limit points is the  closure  of  Y , and is denoted by  Y . It is immediate to show that  a set is closed if and only if it contains its limit points; consequently a set  Y  is closed if and only if  Y =  Y . 

A point  x  is called a  boundary point  of  Y  if any neighbourhood of  x  contains both points of  Y  and points of the complement  X −  Y . The set  ∂Y  of boundary
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points of  Y  therefore consists of points common to the closures of  Y  and of  X −  Y :

 ∂Y =  Y ∩  X −  Y . 

Furthermore

 Y =  Y ∪  ∂Y , 

so  Y  is  closed  if and only if, as already said, it contains its limit points, in other words  if and only if it contains its boundary points. 

We shall call a set  Y  a  domain  if it is the closure of an open set. 

For instance, on R n  the closure  Br (x 0 )  of an open ball  Br (x 0 )  is a domain. Its boundary  ∂Br (x 0 ) =  Br (x 0 ) −  Br (x 0 )  is not a domain. 

We end the section with the definition of bounded sets. A subset  A  of the metric space  (X, d)  is  bounded  if it is contained in an open ball, i.e. there exist  x 0 ∈  X  and r >  0 such that

 A ⊆  Br (x 0 ) . 

(2.15)

Note that if (2.15) holds for some  x 0 ∈  X, then it holds for any other centre  x 1 ∈  X, as long as we replace  r  with  r 1 =  r +  d(x 0 , x 1 ); in fact, due to d(x, x 0 ) < r

⇒  d(x, x 1 ) ≤  d(x, x 0 ) +  d(x 0 , x 1 ) < r 1  , we have  Br (x 0 ) ⊂  Br (x

1

1 ). 

Moreover, the  diameter δ(A)  of a bounded set  A  is

 δ(A) = sup{ d(x, y) :  x ∈  A, y ∈  A}  . 

The diameter is increasing with respect to the inclusion of sets: if  A ⊆  B  then δ(A) ≤  δ(B). 

2.3

Sequences in a Metric Space: Continuous Functions

Let  (X, d)  be a metric space and  xk  a sequence of points of  X, i.e. a function from N to  X. We say that  xk tends, or  converges  to a point  x ∈  X  if, for any  ε >  0, there exists  ν ∈ N such that

 d(xk, x) < ε

∀  k > ν . 

This means  d(xk, x) → 0 as  k → +∞ (note that  d(xk, x), for  k ∈ N, is a sequence of real numbers, and so we can apply the well-known definition of limit of a real

sequence). 
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Just as in R, it can be proved more generally that in metric spaces  limits are

 unique, i.e.  a convergent sequence cannot have two distinct limits. 

In fact if we assume, by contradiction, that  x  and  y  are limits of the sequence  xk, with  x =  y, the triangle inequality forces

 d(x, y) ≤  d(x, xk) +  d(xk, y) . 

Taking the limit as  k → +∞ gives  d(x, y) = 0 and so  x =  y, which is absurd. 

As we do in R, we may characterise closed sets using sequences. It can be easily

proved in fact that  a subset C of the metric space (X, d) is closed if and only if the limit of every convergent sequence in C belongs to C. 

Let us go back to Example 3 of the previous section on  Euclidean n-space ( R n, dn), and consider a sequence  xk =  (xk,  1 , xk,  2 , . . . , xk,n) ∈ R n. The following result characterises the convergence of  xk  to  x =  (x 1 , x 2 , . . . , xn) ∈ R n  in terms of the convergence in R of the coordinates  xk,i  to  xi, for every  i = 1 ,  2 , . . . , n. Recall (Example 3, Sect. 2.2) that the  Euclidean distance dn  on R n  is defined by n



1 / 2

 dn(x, y) =

 (xi −  yi) 2

 . 

(2.16)

 i=1

Proposition 1  Let dn be the Euclidean distance on  R n, xk =  (xk,  1 , xk,  2 , . . . , xk,n) (k ∈ N ) a sequence in  R n, and let x =  (x 1 , x 2 , . . . , xn) be a point in  R n. Then dn(xk, x) → 0  , 

 as

 k → +∞  , 

if and only if, for any  i = 1 ,  2 , . . . , n, 

 xk,i →  xi , 

 as

 k → +∞  . 

 Proof  First observe that if  a 1 , a 2 , . . . , an  are non-negative real numbers, 

' 

(

(  n



 n



max{ a

)

1 , a 2 , . . . , an} ≤

 a 2 ≤

 a

 i

 i ≤  n · max{ a 1 , a 2 , . . . , an}  , 

(2.17)

 i=1

 i=1





 n



 n



2

where the second inequality is equivalent to

 a 2 ≤

 i

 ai

, which is easy to

 i=1

 i=1

prove. 

Recalling definition (2.16) for the Euclidean distance  dn, from (2.17) we find

| xk,i −  xi| ≤  dn(xk, x) ≤  n · max{| xk,j −  xj| : 1 ≤  j ≤  n}  , for any  i = 1 ,  2 , . . . , n, and the claim follows. 
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Inspired by (2.17) let us define the general notion of equivalent distances. Two distances  d 1 and  d 2 on a set  X  are  equivalent  if there exist positive constants  m, M

such that

 m d 2 (x, y) ≤  d 1 (x, y) ≤  M d 2 (x, y), 

∀  x, y ∈  X . 

(2.18)

Clearly the role of  d 1,  d 2 is symmetrical, so that

1  d 1 (x,y) ≤  d 2 (x,y) ≤ 1  d 1 (x,y), 

∀  x, y ∈  X . 

 M

 m

 If two metrics d 1,  d 2  on a set X are equivalent, a sequence xk converges to some point x ∈  X for the metric d 1  if and only if xk converges to x ∈  X for the metric d 2. 

This is because  d 1 (xk, x) → 0 as  k → +∞ if and only if  d 2 (xk, x) → 0 as k → +∞, a direct consequence of definition (2.18). 

Let us now pass to another important definition. Let  (X, dX),  (Y, dY )  be metric spaces. A function  f :  X →  Y  is said to be ( sequentially)  continuous  at  x 0 ∈  X  if, for any sequence  xk  in  X  that converges to  x 0, we have  f (xk) →  f (x 0 ). That is to say, 

 dX(xk, x 0 ) → 0

⇒

 dY (f (xk), f (x 0 )) → 0  . 

In analogy to the case of real functions of one real variable one can prove (see the

following Proposition 2) that  f  is  sequentially continuous  at  x 0 if and only if it is continuous  at  x 0, i.e. for any  ε >  0 there exists  δ >  0 such that x ∈  X :  dX(x, x 0 ) < δ

⇒

 dY (f (x), f (x 0 )) < ε . 

Moreover,  f  is called  continuous on X  when it is continuous at every point  x 0 ∈  X. 

Proposition 2  Let f :  X →  Y be a function from X to Y and x 0 ∈  X a point. The following conditions are equivalent:

 xk ∈  X ∀  k ∈ N , 

 dX(xk, x 0 ) → 0 ⇒  dY (f (xk), f (x 0 )) → 0 ; (2.19)

∀ ε >  0 ∃  δ >  0 :  x ∈  X, dX(x, x 0 ) < δ

⇒  dY (f (x), f (x 0 )) < ε. 

(2.20)

 Proof  Start with (2.19) ⇒ (2.20). By contradiction, if (2.20) did not hold, then

∃  ε 0  >  0 : ∀  δ >  0  , ∃  x ∈  X :  dX(x, x 0 ) < δ, dY (f (x), f (x 0 )) ≥  ε 0  . (2.21) Set  δ = 1 /k  with  k ∈ N and call  x =  xk  the value appearing in (2.21) depending on the choice of  δ = 1 /k:

1

∃  ε 0  >  0 : ∀  k ∈ N  , ∃  xk ∈  X :  dX(xk, x 0 ) < , dY (f (xk), f (x 0 )) ≥  ε 0  . 

 k
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Hence  xk  would converge to  x 0 in  X, but the sequence  f (xk)  does not converge to f (x 0 )  in  Y , i.e (2.19) does not hold. 

Now to (2.20) ⇒ (2.19). Given  ε >  0, let  δ >  0 be a real number for which (2.20) holds. As  dX(xk, x 0 ) → 0, there exists  ν ∈ N such that  dX(xk, x 0 ) < δ  for any k > ν. From (2.20), then, 

 dY (f (xk), f (x 0 )) < ε , 

∀  k > ν , 

i.e.  dY (f (xk), f (x 0 )) → 0 as  k → +∞. 

Proposition 3  Let (X, d) be a metric space and x 0  a given point in X. Then the function

 x ∈  X →  d(x, x 0 )

 is continuous from X to  R  (as usual,  R  has the Euclidean topology). 

 Proof  Applying the distance’s  Lipschitz inequality, i.e (2.7), for  x,  y ∈  A  we have

| d(y, x 0 ) −  d(x, x 0 )| ≤  d(x, y) . 

Then if  xk  is a sequence of points tending to  x, 

| d(xk, x 0 ) −  d(x, x 0 )| ≤  d(xk, x)

and therefore  d(xk, x 0 ) →  d(x, x 0 )  as  k → +∞. 

More generally we have the following

Proposition 4  Let (X, d) be a metric space and A a subset of X. For x ∈  X, the distance of x to A, defined as

 d(x, A) = inf  d(x, a) , 

 a∈ A

 satisfies the Lipschitz inequality

| d(y, A) −  d(x, A)| ≤  d(x, y) , 

(2.22)

 for any x, y ∈  X. In particular

 x ∈  X →  d(x, A)

 is a continuous function on X. 
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 Proof  Fix  x  in  X. For any  ε >  0 there exists  a ∈  A  such that  d(x, a) < d(x, A)+ ε. 

Hence for any  y ∈  X, 

 d(y, a) ≤  d(y, x) +  d(x, a) < d(y, x) +  d(x, A) +  ε . 

But clearly  d(y, A) ≤  d(y, a), so

 d(y, A) < d(y, x) +  d(x, A) +  ε , 

and by the arbitrariness of  ε, 

 d(y, A) ≤  d(y, x) +  d(x, A) , 

∀  x, y ∈  X . 

(2.23)

Interchanging  x  and  y, 

 d(x, A) ≤  d(x, y) +  d(y, A) , 

∀  x, y ∈  X . 

(2.24)

Now (2.23) and (2.24) imply the claim (2.22). 

As an application of Proposition 4 we shall prove a separation-type result for closed sets under a continuous function. 

Separation Theorem  Let A and B be non-empty closed and disjoint sets in a

 metric space (X, d). There exists a continuous function f :  X → [0 ,  1]  such that 0  if x ∈  A

 f (x) = 1  if x ∈  B . 

*

 Proof  Since  A

 B = ∅ we have

 d(x, A) +  d(x, B) >  0  , 

∀  x ∈  X , 

and therefore the function from  X  to [0 ,  1]

 d(x, A)

 d(x, A) +  d(x, B)

is continuous, it vanishes on  A  and it equals 1 on  B. 

2.4

Vector Spaces: Linear Maps

In this and the subsequent section we shall recall some results from Linear Algebra

which we assume are well known to the reader. For this reason statements will not

be proved. 
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Let  V  denote a  vector space, i.e. a set equipped with an operation, called  sum  and denoted by +, and an operation called  scalar multiplication, sometimes denoted by

·, so that the following axioms holds (with  x,  y ∈  V ,  λ, μ ∈ R): the sum is associative and commutative; 

(2.25)

 there exists a unique element in V , called neutral element  0 , 

 such that x + 0 =  x, for any x ∈  V ; 

 for any x ∈  V there exists a unique element, called opposite to x

 and written −  x, such that x +  (− x) = 0; 

 (λ +  μ)x =  λx +  μx, 

 (λμ)x =  λ(μx); 

 λ(x +  y) =  λx +  λy; 

0 ·  x = 0 , 

1 ·  x =  x . 

(2.26)

 Example 1 ( The Space R n)  If  x =  (x 1 , x 2 , . . . , xn)  and  y =  (y 1 , y 2 , . . . , yn)  denote two ordered  n-tuples of real numbers, i.e.  x, y  are elements of R n, we shall call  sum  of  x  and  y the element in R n

 x +  y =  (x 1 +  y 1 , x 2 +  y 2 , . . . , xn +  yn) . 

If  λ ∈ R,  x =  (x 1 , x 2 , . . . , xn) ∈ R n, the  product  of  λ  by  x  is the element in R n λ ·  x =  (λx 1 , λx 2 , . . . , λxn) . 

Properties (2.25)–(2.26) are easy as long as we take 0 =  ( 0 ,  0 , . . . ,  0 ), called  zero vector, as neutral element (by abuse of notation we have indicated with 0 both the real number zero and the neutral element of R n). 

We may then regard R n  as a  vector space, in which case its elements are called  vectors. 

In the next section we shall examine in detail some properties of this vector space. 

 Example 2 ( The Space R X  of Real Functions Defined on  X ⊆ R )  If  f  and  g  are real functions defined on the subset  X  of R, we call  sum  of  f  and  g  the function f +  g :  x ∈  X →  f (x) +  g(x) ∈ R  . 

(continued)
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 Example 2 (continued)

If  λ ∈ R and  f :  X → R, the  product λf  is the function λf :  x ∈  X →  λf (x) ∈ R  . 

Easily, (2.25)–(2.26) hold if the neutral element is the zero function. Thus R X  is a vector space. The special case  X = N produces the vector space of real sequences. In the next section we will study the important  subspaces  of R X  called  C 0 , C 1 , Ck. 

A  linear combination  of elements  x 1 , x 2 , . . . , xk  in a vector space  V  is a vector of the form

 λ 1 x 1 +  λ 2 x 2 +  . . . +  λkxk , 

where  λ 1 , λ 2 , . . . , λk  are real numbers called the linear combination’s  coefficients. 

The vectors  x 1 , x 2 , . . . , xk  are said to be  linearly dependent  when there exists a linear combination with coefficients  λ 1 , λ 2 , . . . , λk, not all zero, that equals the zero vector, i.e. 

 λ 1 x 1 +  λ 2 x 2 +  . . . +  λkxk = 0  . 

If  x 1 , x 2 , . . . , xk  are not linearly dependent we call them  linearly independent. 

In this case the only linear combination equal to 0 is the combination whose

coefficients  λ 1 , λ 2 , . . . , λk  all vanish. 

The vector space  V  is said to have  dimension n  if there exist linearly independent vectors { x 1 , x 2 , . . . , xn}, but it is impossible to find  n + 1 linearly independent vectors in  V . In case  V  reduces to the zero vector only we say it has dimension zero. 

When  V  has dimension  n  a set { x 1 , x 2 , . . . , xn} of linearly independent vectors is called a  basis  of  V . The next result characterises bases in vector spaces. 

Proposition  The vectors { x 1 , x 2 , . . . , xn}  form a basis for V if and only if any vector x of V can be written in a unique way as linear combination of x 1 , x 2 , . . . , xn: x =  λ 1 x 1 +  λ 2 x 2 +  . . . +  λnxn . 

If  V  and  W  are vector spaces, a map  L :  V →  W  is  linear  if L(λx +  μy) =  λL(x) +  μL(y) , 

(2.27)

for any  x,  y ∈  V  and  λ, μ ∈ R. 
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Note how from definition (2.27) it easily follows that the  range L(V )  of a linear map  L, 

 L(V ) = { y ∈  W :  y =  L(x),  with  x ∈  V }  , is a vector space contained in  W , i.e. a  vector subspace  of  W . Similarly, the  kernel N (L)  of  L, given by

 N (L) = { x ∈  V :  L(x) = 0}  , 

is a vector subspace of  V . 

In the special situation where  L  is a linear map from  V  to R (the target space  W

is R),  L  is called a  linear functional, or  linear form, on  V . 

2.5

The Vector Space R n and Its Dual

The definition of the vector space R n, well known to readers, was recalled in the previous section’s Example 1. Apart from the  sum of elements  of R n  and the  product of a real number and an element  of R n, it is important to introduce here the  standard scalar (or  inner)  product  of elements  x =  (x 1 , x 2 , . . . , xn)  and  y =  (y 1 , y 2 , . . . , yn) in R n. It is denoted by  (x, y)  and defined by

 n



 (x, y) =


 xi yi . 

 i=1

The scalar product satisfies the following properties (for  x, y, z ∈ R n  and  λ ∈ R): (x, y) =  (y, x) ; 

 (x +  y, z) =  (x, z) +  (y, z) ; 

 λ(x, y) =  (λx, y) ; 

 (x, x) ≥ 0 ; 

 (x, x) = 0

⇔

 x = 0  . 

We call  modulus, or ( Euclidean)  norm, of a vector  x ∈ R n  the quantity n



1 / 2

| x| =  (x, x) 1 / 2 =

 x 2

 . 

 i

 i=1

In this notation the  Cauchy-Schwarz inequality  in (2.13) reads

| (x, y)| ≤ | x| · | y|  , 

∀  x, y ∈ R n . 
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Due to the Cauchy-Schwarz inequality, the ratio  (x, y)/(| x| · | y| )  is a real number in [−1 ,  1]. Hence the following notion is well defined: if  x, y  are non-zero vectors in R n, the  angle  between them is the real number  α ∈ [0 , π] such that cos  α =  (x, y)

| x| · | y|  . 

The vectors

 e 1 =  ( 1 ,  0 , . . . ,  0 ) , 

 e 2 =  ( 0 ,  1 , . . . ,  0 ) , 

 . . . . . . . . . . . . . . . . . . 

 en =  ( 0 ,  0 , . . . ,  1 )

form a basis of R n. In fact if the vector  h  has components  (h 1 , h 2 , . . . , hn)  then h =  h 1 e 1 +  h 2 e 2 +  . . . hnen, 

(2.28)

and such a representation is  unique. The basis { e 1 , e 2 , . . . , en} is called  canonical basis  of R n. 

As already said in the previous section regarding a general vector space  V , a linear functional  on R n  is a linear map  L, i.e. 

 L(λx +  μy) =  λL(x) +  μL(y) , 

(2.29)

for any  x,  y ∈  V  and  λ, μ ∈ R. 

The collection of linear functionals from R n  to R is the  dual space  of R n, and is denoted by  ( R n)∗. 

Observe that  ( R n)∗, with the usual  sum of functions  and  product of a function by a real number, is a vector space of dimension  n. 

Indeed, let us show how to construct a basis in  ( R n)∗. For any  i = 1 ,  2 , . . . , n call  ei  the linear functional on R n  that associates with any vector  h ∈ R n  its  i th component

 ei (h) =  (h, ei) =  hi . 

(2.30)

If  L : R n → R is a generic linear functional, setting  ai =  L(ei)  for any  i =

1 ,  2 , . . . , n, by (2.28), (2.29), and (2.30) we have L(h) =  L(h 1 e 1 +  h 2 e 2 +  . . . +  hnen) =

(2.31)

=  h 1 a 1 +  h 2 a 2 +  . . . +  hnan =  a 1 e 1 (h) +  a 2 e 2 (h) +  . . . +  anen(h) , 
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for any  h ∈ R n. Hence

 L =  a 1 e 1 +  a 2 e 2 +  . . . +  anen , (2.32)

meaning that  L  is a linear combination of the functionals  e 1 , e 2 , . . . , en. Moreover, it is straightforward to check that (2.32) is a unique representation. By the previous section’s proposition, then, { e 1 , e 2 , . . . , en} is a basis of  ( R n)∗, called  canonical dual basis. 

The following identities express the relationship between the canonical bases of

R n  and its dual:

 ei (ej ) =  δij , 

∀  i, j = 1 ,  2 , . . . , n . 

The elements of the canonical dual basis of  ( R n)∗ are also written  dx 1 , dx 2 , . . . , dxn, so for any  i = 1 ,  2 , . . . , n  and  h ∈ R n, dxi(h) =  ei(h) =  hi . 

We associate with any  linear map L : R n → R m  the  m ×  n  matrix  A  whose columns are the vectors  L(e 1 ), L(e 2 ), . . . , L(en) ∈ R m, where { e 1 , e 2 , . . . , en} is the canonical basis of R n. Calling  aij ,  i = 1 ,  2 , . . . , m,  j = 1 ,  2 , . . . , n  the generic element of  A, we then have

 aij =  (εi, L(ej )) , 

(2.33)

where { ε 1 , ε 2 , . . . , εm} is the canonical basis of R m. From (2.33) we easily deduce the following result. 

Proposition 1  If L : R n → R m is a linear map and A its matrix, then L(h) =  A ·  h

(2.34)

 for any h ∈ R n, where A ·  h is the product of A by the column vector h:

⎛

⎞ ⎛

⎞

 a 11  a 12  . . . a 1 n

 h 1

⎜  a

⎟ ⎜  h ⎟

 A ·  h = ⎜ 21  a 22  . . . a 2 n ⎟ ⎜ 2 ⎟

⎝  . . . . . . . . . . . . ⎠ · ⎝  . . . ⎠ =

 am 1  am 2  . . . amn

 hn

⎛

⎞

 a 11 h 1 +  a 12 h 2 +  . . . +  a 1 nhn

⎜  a

⎟

 A ·  h = ⎜ 21 h 1 +  a 22 h 2 +  . . . +  a 2 nhn ⎟

⎝

 . . . . . . . . . . . . 

⎠  . 

 am 1 h 1 +  am 2 h 2 +  . . . +  amnhn
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We point out explicitly that, conversely, given an  m ×  n  matrix  A, (2.34) defines a linear map  L : R n → R m, whose associated matrix is precisely  A. We then conclude that (2.34) defines a  1-1 correspondence  between  the set of linear maps  from R n  to R m  and  the set of m ×  n matrices. 

If  L : R n → R is a linear functional, the matrix associated with  L  reduces to the row vector (or  covector)

 a =  (a 1 , a 2 , . . . , an) , 

where  ai =  L(ei),  i = 1 ,  2 , . . . , n. Then (2.31) implies, for any  h ∈ R n, L(h) =  (a, h) . 

(2.35)

From what we have observed above, we conclude that a map  L : R n → R is linear if and only if there exists a vector  a ∈ R n  satisfying (2.35). The representation is, moreover, unique. 

Let us recall the following. 

Proposition 2  Let L : R n → R m, M : R m → R k be linear maps, and A, B the associated matrices. The composite linear map M ◦  L : R n → R k is represented by the matrix C =  B ·  A, the product of A and B. 

We wrap up this Linear Algebra summary by recalling the definition and essential

properties of the  rank  of a matrix. If  A  is an  m ×  n  matrix, the rank  r(A)  is defined as the  largest size of non-zero minors  in  A. In particular, if  A  is a square  n ×  n matrix, its rank is  n  if and only if the determinant of  A  is different from zero. 

It is known that the rank also coincides with the maximum number of linearly

independent rows (and columns). More generally, one could prove the following

fact. 

Theorem 1  Let L : R n → R m be a linear map and A the m× n matrix representing it. Then the rank r(A) of A equals the dimension of the range L( R n) of L, while n −  r(A) is equal to the dimension of the kernel N(L) of L. 

In particular, for  L : R n → R n, i.e.  m =  n, if the determinant of the associated matrix  A  is non-zero, the previous theorem implies  L( R n) = R n, and the kernel of  L  reduces to the zero vector only. These facts immediately force the map  L  to be invertible, and the inverse  L−1 is still a linear map. Hence we may state the following theorem. 

Theorem 2  Let L : R n → R n be a linear map with associated n ×  n matrix A. L

 is invertible if and only if the determinant of A is non-zero. If so, the inverse map L−1 : R n → R n is linear and is represented by the inverse matrix A−1 . 
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The properties of  determinants  of square matrices are well known to the reader. We just recall the following important property. 

Theorem 3  Let A, B be n ×  n matrices. The determinant of the product of A and B equals the product of the determinants of A and B:

det  A ·  B = det  A · det  B . 

The reader should note that in the above formula the “· on the left denotes the

matrix product, whereas the one on the right is the product in R. 

2.6

Normed Vector Spaces

A  norm  on a vector space  V  is a function that assigns to every vector  x ∈  V  a real number  x ≥ 0 and satisfies the following conditions

 x = 0

if and only if  x = 0  , ∀  x ∈  V ; 

(2.36)

 λx = | λ| ·  x , 

∀  λ ∈ R  , ∀  x ∈  V ; 

(2.37)

 x +  y ≤  x +  y  , 

∀  x, y ∈  V. 

(2.38)

Relationship (2.38) is called  triangle inequality. When  ·  is a norm on  V , one says  V  is a  normed (vector) space. Sometimes, to remind us of the vector space on which we are operating, the notation  ·  V  is used for the norm of  V . 

The simplest instance of a normed vector space is the set of real numbers

equipped with the norm given by the absolute value. 

Any norm on a vector space  V  defines a special metric on  V . Precisely, if  ·  V  is a norm on the vector space  V , setting

 d(x, y) =  x −  y  , 

∀  x, y ∈  V , 

(2.39)

defines a distance on  V . 

Furthermore, the distance  d  of (2.39) enjoys the following properties: d(x +  z, y +  z) =  d(x, y) , 

∀  x, y, z ∈  V , 

( d  is  translation-invariant), and

 d(λx, λy) = | λ| ·  d(x, y) , 

∀  λ ∈ R  , ∀  x, y ∈  V . 
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As any normed vector space is in particular a metric space, we have the notion of

 convergent sequences. Precisely, a sequence  xk  has limit  x ∈  V  if and only if lim  xk −  x V = 0  . 

 k→+∞

The definition, given for metric spaces, of  equivalent distances  translates into the notion of  equivalent norms. Two norms  · 1 and  · 2 on  V  are  equivalent  when there exist positive constants  m, M  such that

 m x 2 ≤  x 1 ≤  M x 2  , 

∀  x ∈  V . 

(2.40)

If  two norms  · 1 ,  · 2  on V are equivalent, a sequence xk converges to x ∈  V

 in the norm  · 1  if and only if xk converges to x ∈  V in the norm  · 2. 

In fact  xk −  x 1 → 0 as  k → +∞ if and only if  xk −  x 2 → 0 as  k → +∞, because of definition (2.40). 

Example 4, Sect. 2.8, will discuss a space that carries two non-equivalent norms. 

If  W  is another normed vector space, with norm  ·  W , a function  f :  V →  W

from  V  to  W  is said to be  continuous  at a point  x 0 ∈  V  if xk −  x 0 V → 0 ⇒  f (xk) −  f (x 0 ) W → 0

as  k → +∞. Equivalently, for any sequence  xk  converging in  V  to  x 0, the corresponding sequence  f (xk)  converges to  f (x 0 )  in  W . 

The following functions are continuous on any normed vector space  V : the

 translation by a vector y ∈  V , i.e. the function

 x ∈  V →  x +  y ∈  V , 

and the  homothety by the factor λ ∈ R, i.e. 

 x ∈  V →  λx ∈  V . 

To see this it suffices to note that for any sequence  xk  in  V  we have (xk +  y) −  (x 0 +  y) =  xk −  x 0 , 

∀  k ∈ N ; 

 λxk −  λx 0 = | λ| ·  xk −  x 0 , 

∀  k ∈ N  . 

Two important instances of normed space are R n, dealt with extensively in the next section, and  C 0 ([ a, b] ). The latter is the set of continuous real functions on the closed and bounded interval [ a, b] endowed with the norm

 f  C 0 = sup {| f (x)| :  x ∈ [ a, b]}  . 

(2.41)
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Notice that by the continuity of  f  the supremum in (2.41) is indeed the maximum. 

This norm on  C 0 ([ a, b] )  is sometimes denoted by  f ∞. 

In Example 4, Sect. 2.2, we introduced the distance d(f, g) = sup {| f (x) −  g(x)| :  x ∈ [ a, b]}  . 

In agreement with (2.41), we have

 d(f, g) =  f −  g C 0 , 

∀  f, g ∈  C 0 ([ a, b] ) . 

(2.42)

Arguing as in Example 4, Sect. 2.2, it is easy to see that (2.42) defines a norm, called supremum norm (or  sup norm  for short). 

The convergence of a sequence  fk ∈  C 0 ([ a, b] ),  k ∈ N, under the supremum norm coincides with the uniform convergence of the sequence  fk (see Sect. 1.1 in Chap. 1). 

Further properties of  C 0 ([ a, b] ), and its subspaces  C 1 ([ a, b] )  and  Ck([ a, b] ), k ∈ N, will be addressed in the next sections. 

2.7

The Normed Vector Space R n

The  Euclidean norm  of an element  x =  (x 1 , x 2 , . . . , xn)  of R n, also called just  norm or  modulus  of  x, is defined by





 n



1 / 2

| x| =

 x 2 i

 . 

 i=1

We recall that, using the symbols for distances on metric spaces, in Sect. 2.2 the Euclidean norm | x| of  x  was written  dn(x,  0 ), which is the  Euclidean distance  of the point  x  to 0 in R n. 

More generally, for any  p ∈ [1 , +∞ )  we define the function  ·  p : R n → R

(which we shall prove is a norm on R n)





 n



1 /p

 x p =

| xi| p

 . 

 i=1

So we have, in particular,  x p = | x| when  p = 2. Now let us define, for  p = +∞, x∞ = max{| xi| ;  i = 1 ,  2 , . . . , n}  . 

(2.43)

Figure 2.2 shows the open balls in the plane centred at the origin with respect to some of the norms introduced. 

One reason for the symbol  · ∞ in (2.43) is given by the property stated in Proposition 1. 
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 || x || <1

 || x || <1

 ∞
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1

Fig. 2.2

Proposition 1  The following limit condition holds:

lim

 x p =  x∞  , 

∀  p ∈ R n . 

(2.44)

 p→+∞

 Proof  Given  x ∈ R n, we have

 x∞ = max{| xi| ;  i = 1 ,  2 , . . . , n} = | xi |  , 0

for some  i 0 ∈ {1 ,  2 , . . . , n}. For any  p ≥ 1, therefore, n



 x p∞ = | xi | p ≤

| x

| p =  n x p

0

 i | p ≤  n| xi 0

∞  , 

 i=1

and so





 n



1 /p

 x∞ ≤

| xi| p

=  x p ≤  n 1 /p x∞  . 

(2.45)

 i=1

As  p → +∞,  n 1 /p → 1 and (2.44) follows. 

Theorem  For any p ∈ [1 , +∞]  the function  ·  p : R n → R  is a norm on  R n. 

 Proof  Properties (2.36) and (2.37) are straightforward. For the triangle inequality (2.38) we examine the cases  p = 1,  p = +∞ and 1  < p < +∞ separately. 

If  p = 1, for any  x =  (x 1 , x 2 , . . . , xn)  and  y =  (y 1 , y 2 , . . . , yn)  in R n  we have n



 n



 x +  y 1 =

| xi +  yi| ≤

 (| xi| + | yi| ) =

 i=1

 i=1

(2.46)

 n



 n



=

| xi| +

| yi| =  x 1 +  y 1  . 

 i=1

 i=1
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When  p = +∞, for any  x =  (x 1 , x 2 , . . . , xn)  and  y =  (y 1 , y 2 , . . . , yn)  in R n x +  y∞ = max | xi +  yi| ≤ max  (| xi| + | yi| ) ≤

1≤ i≤ n

1≤ i≤ n

(2.47)

≤ max | xi| + max | yi| =  x∞ +  y∞  . 

1≤ i≤ n

1≤ i≤ n

The case 1  < p < ∞ is more complicated. Hence we shall divide the proof in three steps, all of independent interest, that go under the names of Young inequality, Hölder inequality and Minkowski inequality. 

Young’s Inequality  Fix p >  1  and let p  be the conjugated exponent, defined as 1 + 1

 . 

 p

 p = 1

 i.e. 

 p =

 p

 p − 1

 Then for any pair of non-negative real numbers a, b, 

 ab ≤  ap +  bp

 p

 p  , 

 with equality if and only if ap =  bp . 

 Proof  Fix  b >  0 (when  b = 0 the claim is trivial) and consider the function  f :

[0 , +∞ ) → [0 , +∞ )  defined by

 f (t) =  tp +  bp

 p

 p −  tb . 

We must prove  f (a) ≥ 0, or equivalently  f (t) ≥ 0 for any  t ≥ 0. 

The derivative of  f  is  f  (t) =  tp−1 −  b  for any  t ≥ 0. As  f  (t) <  0 if and only if  t < b 1 /(p−1 ), the function  f  reaches its minimum at  t =  b 1 /(p−1 ). Hence f (t) ≥  f (b 1 /(p−1 )) =  bp/(p−1 ) +  bp p

 p −  b 1 /(p−1 )+1 =





= 1 + 1

 bp = 0  , 

 p

 p − 1

with equality occurring only at the minimum point  t =  a =  b 1 /(p−1 ), i.e. for  ap =

 bp. 

Hölder’s Inequality  Fix p >  1  and let p =  p/(p − 1 ) be the conjugate exponent. 

 Then the scalar product of x =  (x 1 , x 2 , . . . ,xn), y =  (y 1 , y 2 , . . . ,yn) ∈ R n n



 (x, y) =

 xi yi

 i=1
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 satisfies the inequality

| (x, y)| ≤  x p ·  y p  . 

(2.48)

Since  p = 2 implies  p = 2, (2.48) coincides with the  Cauchy-Schwarz inequality

| (x, y)| ≤ | x| · | y|  , 

∀  x, y ∈ R n . 

Now, (2.48) holds for  p = 1, too. In such a case the convention is that  p = +∞, for in fact

 n



 n



| (x, y)| ≤

| xi yi| ≤ max | yi| ·

| xi| =  y∞ ·  x 1  . 

1≤ i≤ n

 i=1

 i=1

 Proof of Hölder’s Inequality  if  x  or  y  are zero the inequality is trivial. Suppose then  x = 0 and  y = 0. Set

| xi|

| yi|

 ai = 

 , 

 bi =

 , 

∀  i = 1 ,  2 , . . . , n , 

(2.49)

 x p

 y p

and use, for any  i = 1 ,  2 , . . . , n  Young’s inequality

| xi| p

| yi| p

 aibi ≤ 1

+ 1

 . 

 p  x pp

 p  y p

 p

Summing over  i = 1 ,  2 , . . . , n, 

 n



 x p

 y p

 p

 p

 ai bi ≤ 1

+ 1

= 1 + 1

 p  x p

 p  y p

 p

 p = 1  . 

(2.50)

 i=1

 p

 p

Recalling (2.49), from (2.50) we have

 n

| xiyi| ≤  x p ·  y p

 i=1

and hence (2.48) follows. 

Finally, Minkowski’s inequality will conclude the proof of the previous theorem, 

thus establishing that  ·  p : R n → R is a norm on R n  for any  p ∈ [1 , +∞]. 

Minkowski’s Inequality  For any p ∈[1 , +∞]  and x, y ∈ R n x +  y p ≤  x p +  y p . 

(2.51)
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 Proof  Minkowski’s inequality has already been proved for  p = 1 in (2.46) and p = +∞ in (2.47), so we only need to consider 1  < p < +∞. 

Let  x =  (x 1 , x 2 , . . . , xn)  and  y =  (y 1 , y 2 , . . . , yn). For any  i ∈ {1 ,  2 , . . . , n}

| xi +  yi| p = | xi +  yi| p−1 · | xi +  yi| ≤ | xi +  yi| p−1 ·  (| xi| + | yi| ) . 

By Hölder’s inequality it follows that

 n



 n



 n



| xi +  yi| p ≤

| xi +  yi| p−1 · | xi| +

| xi +  yi| p−1 · | yi|≤

 i=1

 i=1

 i=1









 n



1 /p

 n



1 /p

≤

| xi +  yi| (p−1 )· p ·  x p +

| xi +  yi| (p−1 )· p ·  y p, 

 i=1

 i=1

and since  (p − 1 ) ·  p =  p, 

 n



 x +  y pp =

| xi +  yi| p ≤  x +  y p/p

 p

 ( x p +  y p) . 

(2.52)

 i=1

Now observe that Minkowski’s inequality (2.51) is trivial when  x +  y p = 0. If this is not the case, we divide (2.52) by  x +  y p/p p

, and from  p −  p/p = 1 the

claim follows. 

Proposition 2  The norms  ·  p on  R n, for any  1 ≤  p ≤ +∞ , are all equivalent. 

We point out that we shall prove in Sect. 2.10 that any norm on R n  is equivalent to any other. 

 Proof  From (2.45)we have:

 x∞ ≤  x p ≤  n 1 /p x∞  , 

∀  x ∈ R n . 

Therefore, whatever  p ≥ 1 is, the norm  ·  p  is equivalent to  · ∞, and the claim is proved. 

 Example 1 (The Space lp)  We obtain a generalisation of the normed vector space R n  by looking at, for any  p ∈ [1 , +∞], the space  lp  of sequences  x =  (xi )i∈N such that





+∞



1 /p

 x p =

| xi| p

 < +∞  . 

(2.53)

 i=1

(continued)
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 Example 1 (continued)

We want to prove that (2.53) defines a norm on  lp, and we shall only show the triangle inequality. By Minkowski’s inequality, if  x =  (xi )i∈N ∈  lp  and  y =  (yi )i∈N ∈  lp, for any n ∈ N we have













 n



1 /p

 n



1 /p

 n



1 /p

| xi +  yi| p

≤

| xi| p

+

| yi| p

≤

 i=1

 i=1

 i=1









(2.54)

 n



1 /p

 n



1 /p

≤sup

| xi| p

+ sup

| yi| p

=  x p +  y p . 

 n∈N

 i=1

 n∈N

 i=1

Hence the sequence of partial sums on the right-hand side in (2.54) is bounded from above, and when  n → +∞ we recover the triangle inequality





 n



1 /p

 x +  y p = lim

| xi +  yi| p

≤  x p +  y p , 

∀  x, y ∈  lp . 

 n→+∞

 i=1

This implies  x +  y ∈  lp  and that the triangle inequality holds. Therefore  lp, for any  p ∈

[1 , +∞], is a normed vector space. 

2.8

Complete Metric Spaces: Banach Spaces

Let  (X, d)  be a metric space. A sequence  xk  is a  Cauchy sequence  in  X  if, for any ε >  0, there exists  ν ∈ N such that

 d(xk, xh) < ε , 

∀  h, k > ν . 

The metric space  (X, d)  is called  complete  if every Cauchy sequence converges. 

Since any Cauchy sequence of real numbers is convergent, the Euclidean space

R with the distance  d(x, y) = | x −  y| is complete. On the other hand the set Q of rationals, endowed with the same metric, is not complete, as is well known. 

Suppose  V  is a normed vector space with norm  · . If it is complete as a metric space for the distance

 d(x, y) =  x −  y V

induced by  · , we call it a  Banach space. 

Below we provide a few important examples of Banach spaces. 
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 Example 1  Let  C 0 ([ a, b] )  denote the  space of continuous functions  on the closed and bounded interval [ a, b] ⊂ R. We claim that  C 0 ([ a, b] )  is a Banach space for the  supremum norm

 f  C 0 = sup{| f (x)| :  x ∈ [ a, b]}

(2.55)

introduced in Sect. 2.2. Since the convergence, under norm (2.55), of a sequence  fk ∈

 C 0 ([ a, b] ),  k ∈ N, coincides with the uniform convergence of the  fk, the uniform Cauchy criterion (Sect. 1.2) ensures that  C 0 ([ a, b] )  is complete. 

 Example 2  Let  C 1 ([ a, b] )  denote the  space of continuous functions f with continuous derivative  on [ a, b], with norm

 f 

|

|

 C 1 =

sup

 f (x)| + sup

 f  (x)|  . 

(2.56)

 x∈[ a,b]

 x∈[ a,b]

We claim that  C 1 ([ a, b] )  is a Banach space. The proof that (2.56) defines a norm goes exactly as for  C 0 ([ a, b] ) (see also Example 4 in Sect. 2.2). Let us then show  C 1 ([ a, b] ) is complete. Take a Cauchy sequence  fk  in  C 1 ([ a, b] )  for the norm (2.56). Then both the sequence  fk  and the sequence of derivatives  f  are Cauchy for the sup norm of  C 0 ([ a, b] ). 

 k

As the latter space is complete, there exist continuous functions  f  and  g  on [ a, b] such that fk −  f 

−

 C 0 → 0  , 

 f   g

 k

 C 0 → 0  . 

But  fk →  f  and  f  →  g  uniformly on [ a, b] by interchanging the limit and the derivative k

(Sect. 1.3), so  f  =  g. Therefore  C 1 ([ a, b] ), with norm (2.56), is complete and hence a Banach space. 

 Example 3  In a similar way one can prove that  the space Ck([ a, b] ) of differentiable functions up to order k ∈ N  with continuous k th  derivative on [ a, b], equipped with norm k



 f  Ck =

sup{| f (i)(x)| :  x ∈ [ a, b]}  , 

 i=0

where  f ( 0 ) =  f , is a Banach space. 

 Example 4  Consider the space  C 1 ([ a, b] )  of continuous functions  f  with continuous derivative on [ a, b], and put on it the  supremum norm (2.55) that we have on  C 0 ([ a, b] ). 

Thus we obtain a normed vector space (because (2.55) is a norm) that is  not  complete. For (continued)
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 Example 4 (continued)

example, as shown in Example 3, Sect. 1.3, the sequence fk =

 x 2 + 1  , 

 k

converges uniformly on the interval [−1 ,  1] to  f (x) = | x|, which is continuous but not everywhere differentiable on the interval. Hence  fk  is a sequence in  C 1 ([−1 ,  1] ), actually a Cauchy sequence for the norm of  C 0 ([−1 ,  1] ), but it does not admit limit in  C 1 ([−1 ,  1] ). 

If there existed a function  g ∈  C 1 ([−1 ,  1] ), limit of  fk  for the norm of  C 0 ([−1 ,  1] ), we would have  fk(x) →  g(x)  for any  x ∈ [−1 ,  1], and therefore  g(x) = | x|, although the latter does not belong to  C 1 ([−1 ,  1] ). 

The above considerations also imply that the  C 0 and  C 1 norms  are not equivalent  on C 1 ([ a, b] ). For the  C 0 norm the space  C 1 ([ a, b] )  is not complete, whereas it is Banach for the natural norm (2.56). 

 Example 5  Given  f ∈  C 0 ([ a, b] )  put b

1 /p

 f  p =

| f (x)| p dx

 , 

(2.57)

 a

where  p ∈ [1 , +∞ )  is a given real number. In Sect. 9.9, Chap. 9, we will prove that (2.57)

defines a norm under more general hypotheses. Here we remark that  C 0 ([ a, b] ), with that norm, is not Banach. For instance, for any  k ∈ N let  fk  be the continuous function on

[−1 ,  1] defined by

⎧

⎪

⎪

⎨−1 if − 1 ≤  x ≤ −1 /k

 fk(x) = ⎪ kx  if − 1 /k ≤  x ≤ 1 /k . 

⎪

⎩1

if

1 /k ≤  x ≤ 1

When  h, k ∈ N,  h > k, the function  fk(x)− fh(x)  is zero outside [−1 /k,  1 /k]. As | fk(x)−

 fh(x)| ≤ 2 for every  x ∈ [−1 ,  1], 

1 /k

 fk −  fh pp =

| fk(x) −  fh(x)| p dx ≤ 2 p+1  , 

−1 /k

 k

hence  fk  is a Cauchy sequence in  C 0 ([−1 ,  1] ). 

If  fk  converged to some  f ∈  C 0 ([−1 ,  1] )  in norm (2.57), we would have 1 /k

0 = lim  fk − f  pp = lim

| fk(x) −  f (x)| p dx+

 k→+∞

 k→+∞

−1 /k

−





1 / k

1

+ lim

| − 1 −  f (x)| p dx +

|1 −  f (x)| p dx =

 k→+∞

−1

1 / k





0

1

=

| − 1 −  f (x)| p dx +

|1 −  f (x)| p dx , 

−1

0

(continued)
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 Example 5 (continued)

and therefore  f (x) = −1 for  x ∈ [−1 ,  0 ),  f (x) = 1 for  x ∈  ( 0 ,  1], in contrast to the continuity of  f . 

In Sect. 9.9 we will drop the continuity of  f  and so achieve a larger class of functions, called  Lp: this will be a Banach space under norm (2.57). 

The following Propositions 1 and 2 are useful in several situations. 

Proposition 1  If a Cauchy sequence xk in a metric space X admits a subsequence with limit x ∈  X, then the whole sequence converges to x. 

 Proof  given  ε >  0, let  ν ∈ N be such that

 d(xk, xh) < ε , 

∀  h, k > ν . 

Write  xk  for the subsequence of  x

 r

 k  that converges to  x ∈  X. Choose  r > ν  such that d(xk , x) < ε . 

 r

As  kr ≥  r, for any  r ∈ N, in particular we have  kr > ν  and so d(xk, x) ≤  d(xk, xk ) +  d(x , x) <  2 ε , 

∀  k > ν . 

 r

 kr

Proposition 2  Let (X, d) be a complete metric space and Y a closed subset in X. 

 Then the metric space (Y, d) is complete. 

 Proof  Let  xk  be a Cauchy sequence in  Y . As  X  is complete there exists  x ∈  X  such that  xk →  x. But  Y  being closed forces  x ∈  Y . 

2.9

Lipschitz Functions: The Contraction Theorem

Let  (X, dX)  and  (Y, dY )  be metric spaces and  f :  X →  Y  a function. One says that f  is  Lipschitz  if there exists a constant  L  such that

 dY (f (x), f (y)) ≤  L dX(x, y) , 

∀  x, y ∈  X . 

Clearly a Lipschitz function  f :  X →  Y  is continuous on  X. 

[image: Image 513]

[image: Image 514]

[image: Image 515]

2.9 Lipschitz Functions: The Contraction Theorem

87

When  (X, dX)  and  (Y, dY )  coincide (let  d  denote the common distance), a Lipschitz function  f :  X →  X with Lipschitz constant L <  1, i.e. such that d(f (x), f (y)) ≤  L d(x, y) , 

∀  x, y ∈  X , 

is often called a  contraction  on the metric space  (X, d). 

The next theorem, also known as  Banach-Caccioppoli fixed-point theorem, has

many applications in Analysis and will be invoked several times in the sequel. 

Contraction Theorem  Let (X, d) be a complete metric space and f :  X →  X a contraction. Then there exists a unique point x ∈  X such that f (x) =  x. 

A point  x ∈  X  such that  f (x) =  x  is called a  fixed point  of  f . The theorem then asserts that a contraction of  X  possesses a unique fixed point. 

 Proof  Pick an arbitrary point  x 0 ∈  X  and define recursively the sequence  xk  as follows:

 x 1 =  f (x 0 ) , 

 x 2 =  f (x 1 ) , 

 . . . 

 , xk+1 =  f (xk) , 

 . . . 

More compactly,  xk+1 =  f (xk)  for any  k = 0 ,  1 ,  2 , . . . 

Let us prove that  xk  is a Cauchy sequence. For that observe

 d(x 1 , x 2 ) =  d(f (x 0 ), f (x 1 )) ≤  Ld(x 0 , x 1 ) =  Ld(x 0 , f (x 0 )) , d(x 2 , x 3 ) =  d(f (x 1 ), f (x 2 )) ≤  Ld(x 1 , x 2 ) ≤  L 2 d(x 0 , f (x 0 )) , 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 d(xk, xk+1 ) =  d(f (xk−1 ), f (xk)) ≤  Ld(xk−1 , xk) ≤  Lkd(x 0 , f (x 0 )) , and so forth. Moreover, by the triangle inequality

 d(xk, xk+ p) ≤  d(xk, xk+1 ) +  d(xk+1 , xk+2 ) +  . . . +  d(xk+ p−1 , xk+ p) ≤

≤  (Lk +  Lk+1 +  . . . +  Lk+ p−1 ) d(x 0 , f (x 0 )) =

=  Lk −  Lk+ p d(x 0 , f (x 0 )) . 

1 −  L

As 0 ≤  L <  1 we then have

 d(xk, xk+ p) ≤  Lk d(x 0 , f (x 0 )) . 

∀  k, p , 

1 −  L
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Since  Lk → 0 as  k → +∞, the right side (independent of  p ∈ N) can be made smaller than any given quantity  ε >  0, as long as we choose  k  large enough. Hence xk  is a Cauchy sequence. 

As  (X, d)  is complete, there exists  x ∈  X  such that  xk →  x. Taking the limit of xk+1 =  f (xk) (valid for any  k = 0 ,  1 ,  2 , . . . ) as  k → +∞, by the continuity of  f we obtain

 x =  f (x) , 

showing that  x  is a fixed point. 

Regarding the uniqueness, suppose there is a point  y ∈  X  such that  f (y) =  y. 

Then

 d(x, y) =  d(f (x), f (y)) ≤  Ld(x, y) , 

which is absurd if  d(x, y) = 0, because  L <  1. Eventually  d(x, y) = 0, and so x =  y. 

Now we shall prove a useful theorem on the extension of Lipschitz functions

 f :  X → R. 

Mcshane Lemma (Extension of Lipschitz Functions)  Let (X, d) be a metric

 space and A a subset of X. Any Lipschitz function f :  A → R  with constant L can be extended to the entire space X to a Lipschitz function g :  X → R  with the same constant L. 

 Proof  Define

 g(x) = inf{ f (y) +  Ld(x, y) :  y ∈  A}  , 

∀  x ∈  X , 

(2.58)

and let us prove that

 g(x) =  f (x) , 

∀  x ∈  A , 

(2.59)

| g(x) −  g(y)| ≤  Ld(x, y) , 

∀  x, y ∈  X . 

(2.60)

To that end observe that from definition (2.58), taking  y =  x, we have  g(x) ≤  f (x) for any  x ∈  A. Furthermore, if  x, y ∈  A  then

 f (x) =  f (x) −  f (y) +  f (y) ≤  Ld(x, y) +  f (y) , and taking the infimum over all  y ∈  A  we attain the opposite inequality  f (x) ≤  g(x) for any  x ∈  A. This proves (2.59). 

On the other hand, if  x ∈  X  then definition (2.58) gives g(x) ≤  f (a) +  Ld(x, a) , 

∀  a ∈  A , 
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and for any  y ∈  X, 

 g(x) ≤  f (a) +  Ld(x, y) +  Ld(y, a) , 

∀  a ∈  A

using the triangle inequality. Now take the least upper bound over  a ∈  A  to obtain g(x) ≤  g(y) +  Ld(x, y) . 

This implies (2.60) since  x  and  y  may be interchanged. 

2.10

Compact Sets: Continuous Functions on Compact Sets

A subset  K  in a metric space  (X, d)  is  compact  if every sequence  xk  of points of  K

admits a subsequence that converges to a point  x ∈  K. 

If  K ⊆  X  is a compact set according to the above definition, it is usually called sequentially compact  in order to distinguish the above from the definition in the Appendix (see Sect. 2.12), which uses  open covers. At any rate, in Sect. 2.12 we shall prove that the metric structure of the space  X  guarantees that the two notions are equivalent. 

Proposition  If (X, d) is a metric space and K ⊆  X is compact, then K is closed. 

 Proof  Take a sequence  xk  of points in  K  with limit  x ∈  X. We claim  x ∈  K. As  K

is compact, there exists a subsequence  xk  converging to some  x

 h

0 ∈  K . Necessarily

 x =  x 0, and so  x ∈  K. 

In case  K =  X  is compact, we call  (X, d)  a  compact metric space. 

By relying on the Bolzano-Weierstrass theorem for R, the following result is easy

to prove. 

Characterisation of Compact Subsets of R n (Heine-Borel Theorem)  A subset

 K ⊂ R n is compact if and only if it is closed and bounded. 

 Proof  Suppose  K  is a closed and bounded subset, and let us take a sequence xk =  (xk,  1 , xk,  2 , . . . , xk,n)  in  K. The sequences  xk,i, for  i = 1 ,  2 , . . . , n, are bounded sequences of real numbers. The Bolzano-Weierstrass theorem tells that we

may extract from  xk  a subsequence whose first coordinate converges. From the latter we may extract a subsequence whose second coordinate converges, and so on. This

produces a strictly increasing sequence  kh  of natural numbers such that  xkh,i →  xi for any  i = 1 ,  2 , . . . , n. Therefore  xk →  x =  (x h

1 , x 2 , . . . , xn). But  K  is closed, so

 x ∈  K  and  K  is compact. 
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Vice versa, if  K  is compact it is closed by the previous proposition. If it were unbounded, there would exist a sequence  xk  in  K  such that

lim

| xk| = +∞  , 

 k→+∞

from which we could extract no convergent sequence, violating the compactness of

 K. 

 Continuous functions  defined on compact sets enjoy similar properties to those of continuous functions of one real variable defined on closed and bounded intervals. 

The reader will also note that the proofs of these properties in metric spaces are

natural generalisations of those for functions of one real variable. 

Weierstrass Theorem  Let K be a compact subset in the metric space (X, d). Any continuous function f :  K → R  admits maximum and minimum on K. 

 Proof  Set

 M = sup{ f (x) :  x ∈  K}  , 

and let us show that there exists a sequence  xk  in  K  such that

lim

 f (xk) =  M . 

(2.61)

 k→+∞

If  M = +∞, by the supremum’s properties, for any  k ∈  N  there exists  xk ∈ N such that  f (xk) > k, so  f (xk) →  M. If, instead,  M < +∞, for any  k ∈ N there exists xk ∈  K  such that

1

 M −

 < f (xk) ≤  M , 

 k

and again  f (xk) →  M. 

As  K  is compact, there is a subsequence  xk  of  x

→  x

 h

 k  such that  xkh

0 ∈  K . Since

 f  is continuous, 

lim

 f (xk ) =  f (x

 h

0 ) . 

 h→+∞

Then by (2.61)

 M = lim  f (xk) = lim  f (xk ) =  f (x

 h

0 ) . 

 k→+∞

 h→+∞

Therefore  M < +∞ and  f (x 0 ) =  M = max{ f (x) :  x ∈  K}. The reasoning is analogous for establishing the existence of a minimum point. 

The following is a consequence of the Weierstrass theorem. 

Equivalence of Norms on R n All norms on  R n are equivalent. 
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 Proof  It is enough to show that any norm  ·  on R n  is equivalent to the standard norm | · |. For any  x ∈ R n  we have

11

1

 n



1

 n



 n





1

1

 x = 1

≤

|

|

1

 xiei  11

 xi| ·  ei ≤ max{ ei :  i = 1 ,  2 , . . . , n}

 xi| ≤

 i=1

 i=1

 i=1

(2.62)

√

≤  n  max{ ei :  i = 1 ,  2 , . . . , n} | x| =  M| x|  . 

In particular, for  x, y ∈ R n  it follows that  x −  y ≤  M| x −  y|, so the function x →  x is continuous on R n  in the Euclidean metric. As the set  K = { x ∈ R n :

| x| = 1} is compact, there exists  m = min{ x :  x ∈  K}. This minimum  m  is certainly positive, because it is the value of the norm  ·  at some point  x = 0. If x ∈ R n − {0} then

11 11



 x

 x = | x| · 1

1

1

| x|1 ≥  m| x|  . 

From this inequality together with (2.62) the claim follows. 

Consider two metric spaces  (X, dX),  (Y, dY ), and a subset  K ⊆  X. A function f :  K →  Y  is  uniformly continuous  on  K  if, for any  ε >  0, there exists  δ >  0 such that

 x, x ∈  K :  dX(x, x ) < δ

⇒  dY (f (x), f (x )) < ε . 

For instance, a Lipschitz function  f :  K →  Y , and in particular a contraction, is uniformly continuous on  K. 

The next theorem provides us with a sufficient condition for a continuous

function to be  uniformly continuous. 

Theorem (Cantor)  Let K be a compact subset in the metric space (X, dX). Then a continuous function f :  K →  X is uniformly continuous on K. 

 Proof  Suppose by contradiction that  f  is not uniformly continuous on  K. Then there exist  ε 0  >  0 and also two sequences  xk, x in  K  such that k

 dY (f (xk), f (x k)) ≥  ε 0  , 

(2.63)

but at the same time

1

 xk, x ∈

 k

 K :  dX(xk, x k) < 

 , 

(2.64)

 k

for any  k ∈ N. The compactness of  K  forces the existence of a subsequence  xk  of h

 xk  and a point  x 0 ∈  K  such that  xk →  x

 h

0. 
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From (2.64) the corresponding subsequence  x converges to  x k

0, since

 h

1

 dX(x  , x

 , x ) +  d

 , x

+  d

 , x

 k

0 ) ≤  dX(x

 k

 X(xk

0 ) < 

 X(xk

0 ) . 

 h

 kh

 h

 h

 k

 h

 h

But  f  is continuous, so  f (xk ) →  f (x

 ) →  f (x

 h

0 ),  f (x k

0 ), i.e. 

 h

 dY (f (xk ), f (x

 ), f (x

 h

0 )) → 0  , 

 dY (f (x k

0 )) → 0  , 

 h

and then

 dY (f (xk ), f (x  )) → 0  , 

 h

 kh

contradicting (2.63). 

2.11

Connected Open Subsets of R n

An open subset  A ⊆ R n  is  connected  when there is no partition { A 1 , A 2} of  A  into non-empty open sets. Equivalently, an open set  A  is  connected  if and only if A 1 , A 2

open in

R n, 

 A 1 ∩  A 2 = ∅  , 

 A 1 ∪  A 2 =  A

imply that one of the two sets  A 1 and  A 2 is empty. 

A  segment [ x 1 , x 2] in R n  with endpoints  x 1 and  x 2 is the set of points  x(t)  in R n such that

 x(t) =  x 1 +  t (x 2 −  x 1 ) , 

∀  t ∈ [0 ,  1]  . 

Let  x 1 , x 2 , . . . , xk  be  k  points of R n ( k ≥ 2), with  xi =  xi+1 for any  i = 1 ,  2 , . . . , k−1. 

A  polygonal path  in R n  with vertices  x 1 , x 2 , . . . , xk  is the union of the line segments

[ xi, xi+1], for  i = 1 ,  2 , . . . , k − 1. The points  x 1,  xk  are the  path’s endpoints. 

Theorem on Connected Open Subsets of R n If A ⊆ R n is a connected open set, any pair of points of A are endpoints of a polygonal path entirely contained in A. 

 Proof  Pick  x 1 ∈  A  and call  A 1 the set of endpoints  x ∈  A  of polygonal paths starting at  x 1 and all contained in  A. We claim  A 1 =  A. 

The set  A 1 is open, because if  x ∈  A 1 then  x  belongs to the open set  A  and then there is an open ball  Iδ(x), centred at  x  with radius  δ, contained in  A. If  y ∈  Iδ(x), y =  x, the line segment [ x, y] is part of a radial segment in the ball  Iδ(x), and is clearly contained in  Iδ(x). Hence joining the previous path between  x 1 and  x  with the line segment [ x, y] produces a polygonal path from  x 1 to  y, still contained in  A. 

Therefore  y ∈  A 1 by definition, and then  Iδ(x) ⊆  A 1, making  A 1 open. 
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Now set  A 2 =  A −  A 1 and let us show that  A 2, too, is open. If  A 2 is empty there is nothing to prove. So suppose  x ∈  A 2. Then there exists an open ball  Iδ(x), of centre  x  and radius  δ, contained in  A. If  y ∈  Iδ(x),  y =  x, the line segment [ x, y] is contained in  Iδ(x). If  y  were in  A 1, i.e. if there existed a polygonal path in  A  joining x 1 and  y, attaching this path to [ y, x] would produce a polygonal path from  x 1 to x  contained in  A, resulting in  x ∈  A 1. This would contradict  x ∈  A 2 =  A −  A 1. 

Eventually then  y /

∈  A 1, so  y ∈  A 2 and therefore  Iδ(x) ⊆  A 2, showing  A 2 is open. 

We have found two open sets  A 1 , A 2, with  A 1 ∩  A 2 = ∅,  A 1 ∪  A 2 =  A. By assumption  A  is connected, and  A 1 is non-empty since  x 1 ∈  A 1, so necessarily A 2 =  A −  A 1 = ∅, i.e.  A 1 =  A. 

Let us point out explicitly that if  A  is an open subset in R n  such that any pair of points of  A  are endpoints of a path inside  A, we say  A  is  path connected. The theorem we have just proved may then be rephrased as follows:  any connected open

 set is path connected. Interestingly, the converse is true as well. 

More generally, we shall now define  connected domains  in R n. Recall that a domain D ⊆ R n  is the closure of an open set. We shall say  D  is a  connected domain if it is the closure of a connected open subset of R n. 

The following result extends to R n  the intermediate value theorem for functions of one real variable. 

Intermediate Value Theorem  Let A be a connected open set (or domain) in  R n, and f :  A → R  a continuous function on A. Then f assumes every value between the infimum and the supremum of f on A. 

 Proof  Fix  l ∈  ( inf  f,  sup  f ). There exist  x  and  y  internal to  A  such that  f (x) < A

 A

 l < f (y) (obvious if  A  is open, and an easy consequence of the continuity of  f  if A  is a domain). Hence there is a polygonal path, of vertices  x 1 =  x, x 2 , . . . , xk =

 y, completely contained in the interior of  A. As the restriction of  f  to every line segment [ xi, xi+1],  i = 1 ,  2 , . . . , k −1, is a continuous function of one real variable, namely

 t →  f (x(t)) =  f (xi +  t (xi−1 −  xi)) , 

∀  t ∈ [0 ,  1]  , 

the image of each interval [ xi, xi+1] is a closed interval in R. 

Furthermore, the images of two consecutive intervals [ xi−1 , xi], [ xi, xi+1]

overlap because the value  f (xi)  belongs to both. Therefore the images’ union is an interval. Iterating the process, the image of the polygonal path of vertices

 x 1 =  x, x 2 , . . . , xk =  y  is an interval, which contains  f (x),  f (y)  and hence it also contains  l. 
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Appendix to Chap. 2

2.12

Further Compactness Theorems: Generalised Weierstrass

Theorem

The main aim of the section is characterising compact sets in a metric space and

show a few interesting applications. First we need some definitions. 

Consider a metric space  (X, d)  and a subset  Y . A family  R  of subsets of  X  is a cover  of  Y  if  Y  is contained in the union of the elements of  R. 

If  R ⊆  R  is a subfamily of  R  that still covers  Y , we say  R is a  subcover  of  Y

extracted from  R. A cover  R  is called  open  when it consists of open subsets of  X, and  finite  if it is made of finitely many subsets. 

Finally, a subset  Y ⊂  X  is  totally bounded  if for any  r >  0 there exists a finite cover of  Y  consisting of open balls of radius  r

 Br (x 1 ), 

 Br (x 2 ), 

 . . . , Br (xN ) , 

with  x 1 , x 2 , . . . , xN ∈  Y . 

It is easy to see that  a totally bounded set is bounded. 

Theorem (Characterisation of Compact Sets)  Let (X, d) be a metric space and K a subset of X. The following three properties are equivalent:

(a)  K  is compact ; 

(b)  K  is totally bounded, and any Cauchy sequence in  K  converges to some point of  K; 

(c) every open cover of  K  admits a finite subcover . 

Condition (c) is often taken as the general definition of compactness. The above

theorem allows to conclude that for metric spaces this notion of compactness is

equivalent to that of Sect. 2.10, whereby  a set K in a metric space (X, d) is called compact if every sequence xk in K admits a subsequence that converges to a point

 of x ∈  K. 

 Proof (a) ⇒ (b). Let  xk  be a Cauchy sequence in  K. As  K  is compact, we can extract a subsequence with limit  x ∈  K, so by Proposition 1, Sect. 2.8,  xk  must converge to  x. This proves the second part of (b). 

By contradiction, suppose  K  is not totally bounded. Then there exists  r 0  >  0

such that  K  cannot be covered by finitely many open balls of radius  r 0 and centred in  K. In particular, given  x 1 ∈  K, the ball  Br (x

0

1 )  cannot contain  K  and so there

exists  x 2 ∈  K  such that  d(x 1 , x 2 ) ≥  r 0. As  Br (x (x

0

1 ), Br 0

2 )  cannot cover  K , there

exists  x 3 ∈  K  such that  d(x 1 , x 3 ) ≥  r 0 and  d(x 2 , x 3 ) ≥  r 0. Continuing in this way
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we build a sequence  xk  in  K  for which

 d(xh, xk) ≥  r 0  , 

∀  h, k ∈ N , h =  k . 

But then  xk  has no convergent subsequence, which cannot happen since  K  is compact. 

(b) ⇒ (c). Suppose by contradiction there is an open cover  R  of  K  without finite subcovers. We will show that it is possible to find a sequence  xk  in  K  such that, setting

 Bk =  B 2− k (xk) , 

we have

(i)  Bk ∩  Bk+1 = ∅ for any  k ∈ N; 

(ii) for any  k  there is no finite subfamily of  R  covering  Bk ∩  K. 

As  K  is totally bounded, it can be covered by a finite number of balls centred at points in it, all with radius 1 / 2. By the assumption on  R, at least one such neighbourhood, say  B 1 =  B 2−1  (x 1 ), with  x 1 ∈  K, is such that there is no finite subfamily of  R  covering  B 1 ∩  K. 

Next we consider a finite cover of  K  made of balls centred at points in  K, all with radius 1 / 4. By the choice of  B 1, at least one such neighbourhood  B 2 =  B 2−2  (x 2 ), with  x 2 ∈  K, will have a non-empty intersection with  B 1 ∩  K  and will be such that no finite subfamily of  R  covers  B 2 ∩  K. In particular  B 1 ∩  B 2 = ∅. In the same way we can find a neighbourhood  B 3 =  B 2−3  (x 3 )  with  x 3 ∈  K  and  B 2 ∩  B 3 = ∅, such that no finite subfamily of  R  covers  B 3 ∩  K. By iterating the construction we build a sequence  xk  of points of  K  verifying (i) and (ii). 

Note that  xk  is a Cauchy sequence: from (i), given  k ∈ N there exists  z ∈  Bk ∩

 Bk+1 and so

1

 d(xk, xk+1 ) ≤  d(xk, z) +  d(z, xk+1 ) ≤ 1 + 1

 < 

 . 

2 k

2 k+1

2 k−1

Fix a positive integer  k 0. If  h > k > k 0 then

 d(xk, xh) ≤  d(xk, xk+1 ) +  . . . +  d(xh−1 , xh) ≤

≤ 1 +

1

 . . . +

1

 < 

 . 

2 k−1

2 h−2

2 k 0−1

Hence  xk  is Cauchy, and by (b) it converges to some  x ∈  K. 

Let  A ∈  R  be an open set of the cover containing  x. There is a ball  Br (x)  around x  contained in  A. As  xk →  x, there exists an integer  k  such that  d(x, xk) < r/ 2 and
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2− k < r/ 2. Therefore

 Bk =  B 2− k (xk) ⊆  Br (x) ⊆  A

and, by (ii), we reach a contradiction. 

(c) ⇒ (a). Let us first show that  K  is closed. Given  x 0  /

∈  K, for any  x ∈  K  there

exists  Br (x)  around  x  such that

 x

 x 0  /

∈  Br (x) . 

(2.65)

 x

As  x  varies in  K, the neighbourhoods  Br (x)  generate an open cover of  K, so we x

may select a finite number of them whose union contains  K. Since, by (2.65), N

" 

 x 0  /

∈

 Bi =  C

 i=1

and  C  is closed, there exists a neighbourhood of  x 0 disjoint from  C, and hence disjoint from  K. Therefore  x 0 is external to  K. In conclusion, every point not in  K

is external to  K, meaning  K  is closed. 

To prove the compactness of  K  it suffices to show that any sequence  xk  in K  admits a convergent subsequence. Suppose by contradiction that  xk  has no convergent subsequence. Then for any  x ∈  K  there exists a ball around  x  containing only a finite number of terms  xk. But  K  can be covered by finitely many such neighbourhoods, so the sequence  xk  must be finite, which is absurd. 

This theorem, together with the Ascoli-Arzelà theorem of Sect. 1.10, Chap. 1, easily implies the next compactness criterion in  C 0 ([ a, b] ). 

Compactness Criterion in  C 0 ([ a, b] ) Let Y be a subset of the metric space C 0 ([ a, b] ). The following properties are equivalent:

(a)  every sequence fk in Y admits a convergent subsequence; 

(b)  Y consists of functions that are uniformly bounded, i.e. there exists M >  0  such that

| f (x)| ≤  M , 

∀  x ∈ [ a, b]  , ∀  f ∈  Y , 

(2.66)

 and equicontinuous: for any ε >  0  there exists δ >  0  such that

| f (x) −  f (y)|  < ε , 

∀  x, y ∈ [ a, b] : | x −  y|  < δ, ∀  f ∈  Y . 

(2.67)

Observe that (a) is equivalent to demanding that the closure  Y  is a compact subset of  C 0 ([ a, b] ). 
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 Proof  The implication (b) ⇒ (a) is precisely the Ascoli-Arzelà theorem, since the convergence in  C 0 ([ a, b] )  is the uniform convergence. 

(a) ⇒ (b). As noted above, (a) is the same as saying  Y  is compact. In particular Y  is bounded and hence  Y  is bounded, proving (2.66). 

Let us prove (2.67). As  Y  is totally bounded, given  ε >  0 there exist f 1 , f 2 , . . . , fN  in  Y  such that  Y  is contained in the union over  i ∈ {1 ,  2 , . . . , N}

of the balls  Bi =  Bε/ 4 (fi). 

Take  f ∈  Y . Then there exists  i ∈ {1 ,  2 , . . . , N} such that ε

 d(f, fi ) = sup{| f (x) −  fi(x)| :  x ∈ [ a, b]}  < 

 . 

4

Moreover, the  fi ,  i = 1 ,  2 , . . . , N, are uniformly continuous, so there exists  δ >  0

such that

|

 ε

 x −  y|  < δ

⇒ | fi(x) −  fi(y)|  < , 

∀  i = 1 ,  2 , . . . , N . 

2

Hence for  x, y ∈ [ a, b] and | x −  y|  < δ  we have

| f (x) −  f (y)| ≤ | f (x) −  fi(x)| + | fi(x) −  fi(y)| + | fi(y) −  f (y)|  < ε

 < 

+  ε +  ε =  ε

4

2

4

and (2.67) is proven. 

In Sect. 2.3 we defined the  continuity  of a function  f :  X →  Y  between metric spaces. We showed (see Proposition 2, Sect. 2.3) that the following are equivalent:

∀  xk sequence in X :  dX(xk, x 0 ) → 0 ⇒  dY (f (xk), f (x 0 )) → 0  , 

∀  ε >  0 ∃  δ >  0 :  x ∈  X , dX(x, x 0 ) < δ

⇒  dY (f (x), f (x 0 )) < ε . 

Either can be taken as definition of continuity of  f  at  x 0. As always, we say that  f is continuous on  X  if it is continuous at every point  x 0 ∈  X. 

Proposition (Characterisation of Continuity)  A function f

 between metric

 spaces (X, dX) and (Y, dY ) is continuous on X if and only if, for any open set

 A ⊆  Y , the set

 f −1 (A) = { x ∈  X :  f (x) ∈  A}

 is open in X. 


By the previous proposition  f :  X →  Y  is continuous on  X  if and only if the pre-image  f −1 (C)  of any closed set  C ⊆  Y  is closed in  X. 
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 Proof  Let  f  be continuous on  X  and  A  an open set in  Y . We claim  f −1 (A)  is open in  X. Take a generic point  x 0 ∈  f −1 (A)  and let us show there exists an open ball Iδ(x 0 )  around  x 0 contained in  f −1 (A). 

As  A  is open in  Y  and  f (x 0 ) ∈  A, there exists  ε >  0 such that dY (y, f (x 0 )) < ε

⇒  y ∈  A . 

(2.68)

By the continuity of  f  at  x 0, there exists  δ >  0 such that dX(x, x 0 ) < δ

⇒  dY (f (x), f (x 0 )) < ε . 

(2.69)

From (2.68) and (2.69) we have

 dX(x, x 0 ) < δ

⇒  f (x) ∈  A ⇒  x ∈  f −1 (A) . 

Hence the open ball  Iδ(x 0 ) = { x ∈  X :  dX(x, x 0 ) < δ} is contained in  f −1 (A), as required. 

Conversely, suppose  f −1 (A)  is open, for any open set  A ⊂  Y . Given  x 0 ∈  X  and ε >  0, put

 A = { y ∈  Y :  dY (y, f (x 0 )) < ε}  . 

This is open in  Y  so  f −1 (A)  is open in  X, and therefore there exists  δ >  0 such that dX(x, x 0 ) < δ

⇒  x ∈  f −1 (A) ⇒  f (x) ∈  A . 

By definition of  A  we obtain

 dX(x, x 0 ) < δ

⇒  dY (f (x), f (x 0 )) < ε . 

An important application of the above characterisation of metric compactness is a

generalisation of the Weierstrass theorem. 

Generalised Weierstrass Theorem  Let f be a continuous function between metric spaces (X, dX) and (Y, dY ). If K is compact in X, the image

 f (K) = { y ∈  Y : ∃  x ∈  X :  y =  f (x)}  . 

 is compact in Y . 
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 Proof  Let  R = { Ai} be an open cover of  f (K). Then { f −1 (Ai)} is a cover of  K, and by continuity the previous proposition (characterising continuity) implies that

{ f −1 (Ai)} is an open cover of  K. 

As  K  is compact in  X, there is a finite number of indices  i 1 , i 2 , . . . , iN  such that K ⊂  f −1 (Ai ) ∪  f −1 (A ) ∪  . . . ∪  f −1 (A ) ; 1

 i 2

 iN

and so

 f (K) ⊂  Ai ∪  A ∪  . . . ∪  A . 

1

 i 2

 iN

Therefore  K  is compact in  Y . 

We close the section by observing that the Weierstrass theorem of Sect. 2.10 is a corollary of the above. When  f  is real-valued, in fact (i.e.  Y = R), to say  f (K) is compact means  f (K)  is closed and bounded, and as such it has maximum and minimum due to the characterisation of compact subsets of R (Heine-Borel theorem, 

Sect. 2.10). 
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In this chapter we begin the systematic study of the properties of functions of several real variables. We shall consider functions  f : R n → R m, with  n, m ≥ 1, starting from the case  f : R n → R, i.e.  m = 1 ( scalar functions), and then pass in Sect. 3.14

to  m >  1 ( vector-valued functions). 

3.1

Round-up of Topology in R n

The topological properties of R n  which we briefly recall here have been already introduced and studied in Chap. 2, in relationship to general metric spaces. 

For any element  x =  (x 1 , x 2 , . . . , xn)  in R n  we write | x| for the  modulus (also called  norm  or  distance to the origin) of  x, defined as





 n



1 / 2

| x| =

 x 2

 . 

 i

 i=1

Let  x 0 be a given element of R n. The  open ball  around  x 0 of radius  δ >  0 is the non-empty subset of R n

 Iδ = { x ∈ R n : | x −  x 0|  < δ}

(3.1)

consisting of points whose distance to  x 0 is less than  δ. Sometimes it becomes important to denote explicitly that  x 0 is the ball’s centre, so we shall write  Iδ(x 0 )  to denote (3.1). 

Let  A  be a subset in R n. An element  x 0 of R n  is called  interior  to  A  if there exists an open ball around  x 0 contained in  A,  exterior  to  A  if there is an open ball around  x 0 contained in the complement of  A (i.e.  x 0 is interior to the complement of A), and finally  x 0 is a  boundary point  of  A  if every open ball centred at  x 0 contains points of both  A  and its complement (i.e.  x 0 is neither interior nor exterior to  A). 
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A

x0

Fig. 3.1

The point  x 0 is a  limit point  of  A ⊆ R n  if every open ball around  x 0 contains a point of  A  distinct from  x 0 (as in Fig. 3.1). 

Immediately, all interior points of a set  A  are limit points of  A, and no exterior point is a limit point of  A. Boundary points may or not be limit points: if a boundary point of  A  is not a limit point, it is called an  isolated point  of  A. 

A set  A ⊆ R n  is  open  if for any  x 0 ∈  A  there is an open ball around  x 0 contained in  A (every  x 0 is interior to  A). A set  C ⊆ R n  is  closed  if the complement  A =

R n −  C  is open. 

Obviously there are subsets of R n  that are neither open nor closed. The empty set ∅ and the entire R n  are the only subsets of R n  that are simultaneously open and closed. 

The  closure  of a set  A, written  A, is the subset of R n  arising from the union of A  and its limit points. The closure  A  is a closed set, and more precisely it coincides with the intersection of all closed sets containing  A. One can also prove that  A  is the union of  A  and its boundary points. 

A  domain  in R n  is the closure of an open (non-empty) set. Hence a domain is closed, and consists of the union of an open set and its boundary. 

For instance, a closed ball in R n  is a domain, whilst the union of a closed ball and an isolated point is not. 
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A set  A ⊆ R n  is  bounded  if it is contained in an open ball  IM ( 0 )  centred at the origin, i.e. there exists  M >  0 such that

| x|  < M , 

∀  x ∈  A . 

A set  K ⊂ R n  is  compact  if every sequence of elements of  K  admits a subsequence that converges to some element of  K. 

The Heine-Borel theorem, proved in Sect. 2.10, states that  a subset of  R n is compact if and only if it is closed and bounded. A further characterisation proved in Sect. 2.12 is that  K ⊂ R n is compact if and only if every collection of open sets whose union contains K possesses a finite subcollection whose union still

 contains K. 

An open set  A ⊆ R n  is  connected  if there do not exist two non-empty disjoint open sets whose union is  A. In formulas, there are no open sets  A 1 , A 2 ⊆ R n, such that

 A 1 = ∅ , 

 A 2 = ∅

 A 1 ∩  A 2 = ∅  , A 1 ∪  A 2 =  A . 

Equivalently, if we can find open sets  A 1 , A 2 ⊆ R n  such that A 1 ∩  A 2 = ∅  , 

 A 1 ∪  A 2 =  A , 

then one of  A 1 , A 2 must be empty. 

Finally, a  domain  is  connected  if it is the closure of a connected open set. 

3.2

Limits and Continuity

The definition of limit for functions of one real variable is easily extended to several variables. To do that we consider a subset  A  in R n  and a function  f :  A → R, so  f is a real function defined on  A ⊆ R n. Let  x 0 be a limit point of  A. 

We say  f (x)  tends to   ∈ R ∪ {±∞} as  x →  x 0, written lim  f (x) =   (or  f (x) →  

as  x →  x 0 ), 

 x→ x 0

if, for any neighbourhood  U ⊆ R of  , there exists a neighbourhood  Iδ(x 0 ) ⊆ R n of  x 0 such that

 f (x) ∈  U , 

∀  x ∈  Iδ(x 0 ) ∩  A − { x 0}  . 

As for the one-variable case, the definition can be rephrased  in terms of ε, δ. For example, if   ∈ R (i.e. the limit is finite),  f (x)  tends (or converges) to    as  x →  x 0
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if, for any given  ε >  0, there is a number  δ >  0 such that

| f (x) −  |  < ε , 

∀  x ∈  A − { x 0} : | x −  x 0|  < δ . 

(3.2)

The reader should reformulate the cases   = ±∞ in a similar fashion. 

For the sake of an example, consider the function  f  of two real variables  x, y f (x) =

 x 2



 . 

 x 2 +  y 2

Its domain of definition is the open set  A = R2 −{ ( 0 ,  0 )} of points different from the origin (the punctured plane). The point  ( 0 ,  0 )  is a limit point of  A. 

Let us show that

 x 2

lim



= 0  . 

 (x,y)→ ( 0 ,  0 )

 x 2 +  y 2

By the inequalities



0 ≤

 x 2



≤  x 2 +  y 2



=  x 2 +  y 2  , 

 x 2 +  y 2

 x 2 +  y 2

we deduce that, for any  ε >  0, 

0 ≤  f (x, y) < ε

(and so | f (x, y)|  < ε)



for any  (x, y) =  ( 0 ,  0 )  such that

 x 2 +  y 2  < ε. In other words (3.2) holds for  δ =  ε. 

Now we will show that

 x

lim



 does not exist. 

 (x,y)→ ( 0 ,  0 )

 x 2 +  y 2



Setting  g(x, y) =  x/ x 2 +  y 2, for any neighbourhood  Iδ  of  ( 0 ,  0 )  there both exist points ( 0 , y)  on the  y-axis where

 g( 0 , y) = 0  , 

and also points on the  x-axis where

1 if  x >  0

 g(x,  0 ) =  x =

|

(3.3)

 x|

−1 if  x <  0  . 

Therefore (and irrespective of the fact that the function in (3.3) assumes distinct values), the function  g(x, y)  does not admit limit   ∈ R ∪ {±∞} as  (x, y) →  ( 0 ,  0 ). 
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Let  f :  A → R be a function defined on  A ⊆ R n  and  x 0 ∈  A. If  x 0 is not isolated for  A (i.e. if  x 0 is a limit point of  A), the function is said  continuous  at  x 0 when lim  f (x) =  f (x 0 ) . 

 x→ x 0

Conventionally,  f  is continuous at every isolated point. We also say  f  is  continuous on the set A  if it is continuous at every point  x 0 ∈  A. 

In the rest of the section we will quickly recall a few important theorems on

continuous functions on R n, which generalise the similar results for real functions of one real variable. The latter were proved in Sects. 2.10 and 2.11 of Chap. 2. Let us begin with two results on continuous functions defined on a compact set. 

Weierstrass’ Theorem  A continuous real function on a compact set K in  R n assumes its minimum and maximum values on K. 

Cantor’s Theorem  A continuous real function on a compact set K ⊆ R n is uniformly continuous on K: i.e., for any ε >  0  there exists δ >  0  such that x 1 , x 2 ∈  K, | x 1 −  x 2|  < δ

⇒ | f (x 1 ) −  f (x 2 )|  < ε . 

At last, the following result on continuous functions on connected domains is

useful. 

Intermediate Value Theorem  A continuous real function on a bounded connected domain D in  R n assumes all values between its minimum and maximum values. 

3.3

Partial Derivatives

Let  A  be an open set in R n,  f :  A → R a function defined on  A,  x =

 (x 1 , x 2 , . . . , xn)  a point of  A  and  i ∈ {1 ,  2 , . . . , n} a given index. The  partial derivative  of  f  in the variable  xi  at the point  x  is the limit f (x 1 , . . . , xi +  h, . . . , xn) −  f (x 1 , . . . , xi, . . . , xn) lim

 , 

(3.4)

 h→0

 h

whenever such limit exists and is finite. The partial derivative is denoted by any one for the following symbols

 ∂f

 ∂

 , 

 f , 

 fx , 

 fx (x) , 

 Dif , 

 Di f (x) , 

 Dx f . 

 ∂x

 i

 i

 i

 i

 ∂xi
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So by definition the partial derivative of  f (x) =  f (x 1 , . . . , xi, . . . , xn)  in the variable  xi  is computed by considering the remaining variables

 x 1 , . . . , xi−1 , xi+1 , . . . , xn

fixed, and differentiating with respect to  xi  using the usual rules for real functions of  one  real variable. 

For example  f : R2 → R is a function in the two real variables  x,  y, defined by f (x, y) =  x 2 cos  y , 

and its partial derivatives  fx ,  fy  with respect to  x,  y, respectively, are fx = 2 x  cos  y , 

 fy = − x 2 sin  y . 

Consider instead  f : R2 → R defined by

 f (x, y) = sin (xy) . 

The partial derivatives are

 fx =  y  cos (xy) , 

 fy =  x  cos (xy) . 

Now take the function in  n  real variables  x =  (x 1 , x 2 , . . . , xn): n



 f (x) = | x|2 =

 x 2  . 

 i

 i=1

The partial derivative of  f  in  xi  reads

 fx = 2 x

 i

 i , 

∀  i ∈ {1 ,  2 , . . . , n}  , 

i.e.  fx = 2 x

= 2 x

1

1,  fx 2

2 etc. 

Finally, if  f : R n → R is given by

 f (x) = sin | x|2  , 

by the chain rule (in  one  real variable!) we obtain

 fx = 2 x

 i

 i  cos | x|2  , 

∀  i ∈ {1 ,  2 , . . . , n}  . 

If, at a point  x, all partial derivatives  fx ,  f ,  . . . , f exist, the function is said

1

 x 2

 xn

to  admit partial derivatives at x. When  f  admits partial derivatives at any  x  in the open set  A, we say it  admits partial derivatives on A. Warning: the reader
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should not confuse the existence of the derivatives with the notion of differentiability introduced in Sect. 3.5. 

As for one real variable, also functions in several real variables may be defined on an open set  A  and not admit partial derivatives at some point in  A. For instance, the function of two real variables defined on R2 by



 f (x, y) =

 x 2 +  y 2  , 

∀  (x, y) ∈ R2  , 

admits partial derivatives at any  (x, y) =  ( 0 ,  0 ), given by fx =

 x



 , 

 fy =

 y



 , 

 x 2 +  y 2

 x 2 +  y 2

but it  does not  admit partial derivatives at  ( 0 ,  0 ), because at that point the partial derivatives are not defined. In fact, the difference quotient with respect to  x  is

√

 f ( 0 +  h,  0 ) −  f ( 0 ,  0 )

|

=  h 2 =  h|  , 

 h

 h

 h

which does  not  admit limit as  h → 0. The singularity at  ( 0 ,  0 )  is highlighted in the graph of Fig. 3.2, a half cone with vertex at the origin. 

Fig. 3.2



z

 f (x, y) =

 x 2 +  y 2

y

x

Sometimes, to work with partial derivatives, it is useful to use a vector notation. 

Consider, for any index  i ∈ {1 ,  2 , . . . , n}, the vector

 ei =  ( 0 , . . . ,  0 ,  1 ,  0 , . . . ,  0 )

[image: Image 603]

[image: Image 604]

[image: Image 605]

108

3

Functions of Several Variables

whose components are all zero except for the  i th one that equals 1. The partial derivative  fx (x), at a point  x  in the open subset  A ⊆ R n, is the limit i

 f (x +  hei) −  f (x)

 fx (x) = lim

(3.5)

 i

 h→0

 h

(if such exists and is finite). Clearly this limit coincides with the limit in definition (3.4). 

According to what we have said, the partial derivatives of a function  f :  A → R

are well defined whenever the limit of the difference quotient exists and is finite at some  x  in an  open  set  A ⊆ R n. More generally, if  D  is not open, we may consider the partial derivative as limit of the difference quotient at a point  x interior  to  D ⊆

R n. We cannot,  in general, consider the difference quotient at boundary points, in analogy to what happens at the endpoints of an interval for functions of one variable, when one defines one-sided derivatives. For example, consider the  closed cone D  in R2 defined by (Fig. 3.3)





 D =  (x, y) ∈ R2 : 1 | x| ≤ | y| ≤ 2| x|  . 

2

At the origin the difference quotient cannot be defined, since we cannot compute the

values of a function  f  at  ( 0 ,  0 )  or  (h,  0 )  when  h = 0 in order to define the partial derivative  fx , nor can we compute the values of  f  at  ( 0 ,  0 )  or  ( 0 , k)  for  k = 0, to define  fy . 

Therefore on the boundary of  D  the difference quotient is not used, and one rather proceeds as follows. Suppose  D  is a  domain  in R n, i.e. the closure of an open set y

D

(0,k)

(h,0)

x

D

Fig. 3.3
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(like the one in Fig. 3.3). Assume that for  i ∈ {1 ,  2 , . . . , n} the partial derivative fx (x)  exists at any  x  interior to  D, and that the derivative  f is a continuous

 i

 xi

function on the interior of  D. At any point  x 0 of  D (either interior or boundary point) it makes sense to consider the limit

lim  fx (x) . 

(3.6)

 x→ x

 i

0

If  x 0 is  interior  to  D, by the continuity of  fx  the limit is equal to  f (x i

 xi

0 ). In

other words if limit (3.6) exists and is finite, we say it is, by definition, the partial derivative of  f  in  xi  at the boundary point  x 0. 

Thus the partial derivative  fx  at the boundary of a domain is defined as the i

 continuous extension  of  fx (x)  from the domain’s interior, under the assumption that i

such extension does exist. When, instead, at a boundary point  x 0 of  D  the limit does not exist, or it exists but is not finite, one says  f  does not admit partial derivative in xi  at  x 0. 

In case limit (3.6) exists at any  x 0 on the boundary of  D, the partial derivative fx (x)  is well defined as  continuous extension  from the interior to the entire domain i

 D, and it can be shown that this produces a continuous function on  D. 

3.4

Higher Derivatives. Schwarz’s Theorem

Let  f (x) =  f (x 1 , . . . , xi, . . . , xn)  be a function of  n  real variables that  admits partial derivatives  on an open set  A ⊆ R n:

 fx (x), f (x), . . . , f (x)

∀  x ∈  A . 

1

 x 2

 xn

Every partial derivative  fx (x),  i ∈ {1 ,  2 , . . . , n} is well defined on  A. If, for some i

 i ∈ {1 ,  2 , . . . , n},  fx (x)  itself admits partial derivatives, its partial derivatives i

 ∂ fx , 

∀  j = 1 ,  2 , . . . , n , 

(3.7)

 ∂x

 i

 j

are called  second (partial) derivatives  of  f , and are variously denoted by

 ∂ 2 f

 , fx

 , fx

 (x) , Dij f , Dij f (x) , Dx f . 

 ∂x

 i xj

 i xj

 i xj

 i ∂xj

All second derivatives of  f , if they exist, are obtained as in (3.7), as the indices  j =

1 ,  2 , . . . , n  and  i = 1 ,  2 , . . . , n  vary. Thus we have a  matrix  of second derivatives, called  Hessian matrix  and denoted by  D 2 f . The Hessian matrix is a square  n ×  n matrix, and its entries are the second derivatives  fx . In matrix notation

 i xj

 D 2 f =  (fx ) , 

or

 D 2 f (x) =  (f

 (x)) , 

 i xj

 xi xj
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or explicitly

⎛

⎞

 fx

 fx

 . . . fx

⎜ 1 x 1

1  x 2

1  xn

 f

 f

 . . . f

⎟

 D 2 f = ⎜  x

 x

 x

⎝ 2 x 1

2  x 2

2  xn ⎟

 . . . 

 . . . . . . . . . ⎠  . 

 fx

 f

 . . . f

 n x 1

 xnx 2

 xnxn

When all second derivatives  fx ,  i, j = 1 ,  2 , . . . , n, of  f  exist at some  x, then i xj

the Hessian matrix  D 2 f (x)  is defined at  x. If this is true for any  x  in an open set A ⊆ R n, one says that  f admits second partial derivatives on A. 

The diagonal elements  fx

,  f

,  . . . , f

in  D 2 f  are sometimes called  pure

1  x 1

 x 2 x 2

 xnxn

 second derivatives, to distinguish them from the other entries called  mixed second derivatives. 

In general the mixed derivative  fx

( i =  j ) is different from the derivative

 i xj

 fx

, obtained from the former by interchanging the order of the variables; an

 j xi

example will be discussed in the section’s second part. The following theorem (due

to Schwarz) establishes natural sufficient conditions for the mixed derivatives  fxixj and  fx

( i =  j ) to be equal:  if f

 (x) and f

 (x) are continuous functions, they

 j xi

 xi xj

 xj xi

 coincide. Going back to the matrix, by Schwarz’s theorem if the entries of  D 2 f (x) are continuous functions on some open set  A, then  D 2 f (x)  is a  symmetric  matrix for any  x ∈  A. 

Schwarz’s Theorem  Let A be an open set in  R n, x 0 ∈  A and f a real function that admits second partial derivatives on A. If fx

 and f

 , with i =  j , are continuous

 i xj

 xj xi

 functions at x 0 , then

 fx

 (x

 (x

 i xj

0 ) =  fxj xi

0 ) . 

 Proof  Suppose preliminarily  n = 2, i.e.  f  is a function of two real variables denoted by  (x, y). Pick  (x 0 , y 0 ) ∈  A ⊆ R2 and take  (x, y)  generic in  A, with x =  x 0 and  y =  y 0, as in Fig. 3.4. 

Evaluating  f  at the points in Fig. 3.4 we define the following two functions of one real variable

 F (x) =  f (x, y) −  f (x, y 0 )

(with  y  fixed) , 

 G(y) =  f (x, y) −  f (x 0 , y)

(with  x  fixed) . 

Applying the mean value theorem to  F (x)  on the interval between  x 0 and  x, there exists a point  x 1 such that

 F (x) −  F (x 0 ) =  F  (x 1 )(x −  x 0 ) = [ fx(x 1 , y) −  fx(x 1 , y 0 )] (x −  x 0 ) . 
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A

(x , y)

(x, y)

y

0

y0

(x , y )

(x, y )

0

0

0

x

x

0

Fig. 3.4

Now apply the mean value theorem to the function  fx (x 1 , y) (in the variable  y) on the interval between  y 0 , y, to obtain a point  y 1 in that interval such that F (x) −  F (x 0 ) = [ fx(x 1 , y) −  fx(x 1 , y 0 )] (x −  x 0 ) =

(3.8)

=  fxy(x 1 , y 1 )(x −  x 0 )(y −  y 0 ) . 

Proceeding similarly for  G(y), we find  y 2 (in the interval between  y 0 , y) and  x 2 (in the interval between  x 0 , x) such that

 G(y) −  G(y 0 ) =  G (y 2 )(y −  y 0 ) = [ fy(x, y 2 ) −  fy(x 0 , y 2 )] (y −  y 0 ) = (3.9)

=  fyx(x 2 , y 2 )(x −  x 0 )(y −  y 0 ) . 

A direct computation shows

 F (x) −  F (x 0 ) =  G(y) −  G(y 0 ) , 

(3.10)

because

 F (x) −  F (x 0 ) =  f (x, y) −  f (x, y 0 ) − [ f (x 0 , y) −  f (x 0 , y 0 )]  , G(y) −  G(y 0 ) =  f (x, y) −  f (x 0 , y) − [ f (x, y 0 ) −  f (x 0 , y 0 )]  . 

Comparing (3.8), (3.9) and (3.10) we arrive at the condition fxy (x 1 , y 1 )(x −  x 0 )(y −  y 0 ) =  fyx(x 2 , y 2 )(x −  x 0 )(y −  y 0 ) , 
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and since  x =  x 0 and  y =  y 0, 

 fxy (x 1 , y 1 ) =  fyx(x 2 , y 2 ) . 

The points  (x 1 , y 1 ),  (x 2 , y 2 )  lie inside the dashed rectangle of Fig. 3.4, so they satisfy (if  x > x 0 and  y > y 0)

 x 0  < x 1  , x 2  < x , 

 y 0  < y 1  , y 2  < y . 

In the limit as  (x, y) →  (x 0 , y 0 ), the points  (x 1 , y 1 ),  (x 2 , y 2 )  tend to  (x 0 , y 0 ). By the continuity, of  fxy  and  fyx  at  (x 0 , y 0 )  we obtain the claim fxy (x 0 , y 0 ) =  fyx(x 0 , y 0 ) . 

The general case  n ≥ 2 is immediate from  n = 2 if we consider the function g : R2 → R, in the variables  xi, xj ,  i =  j , defined by g(xi, xj ) =  f (x 1 , . . . , xi, . . . , xj , . . . , xn)

as  (xi, xj )  varies, where the other coordinates are kept fixed, as if they were parameters. It is also clear, to conclude, that it suffices to assume that the second derivatives  fx , f

are continuous only in the pair  (x

 i xj

 xj xi

 i , xj ). 

Let us remark that the mixed derivatives’ mere existence at a point does not guarantee that the order of differentiation can be interchanged. For instance, look at the function  f (x, y) of two variables

⎧

⎪

⎨0

if

 (x, y) =  ( 0 ,  0 )

 f (x, y) = ⎪ x 3 y −  xy 3

⎩

if

 (x, y) =  ( 0 ,  0 ) . 

 x 2 +  y 2

The reader can check that  f (x, y)  is continuous also at  (x, y) =  ( 0 ,  0 ); even more, the first derivatives  fx (x, y)  and  fy (x, y)  are continuous at  ( 0 ,  0 ). To compute the mixed derivatives at  ( 0 ,  0 )  we start by noting that

 fx (x, y) =  ( 3 x 2 y −  y 3 )(x 2 +  y 2 ) − 2 x(x 3 y −  xy 3 ) =  x 4 y + 4 x 2 y 3 −  y 5

 (x 2 +  y 2 ) 2

 (x 2 +  y 2 ) 2

for any  (x, y) =  ( 0 ,  0 ), whereas at  ( 0 ,  0 ): f (h,  0 ) −  f ( 0 ,  0 )

 fx ( 0 ,  0 ) = lim

= lim 0 = 0  . 

 h→0

 h

 h→0

(continued)
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Furthermore

 fx ( 0 , k) −  fx( 0 ,  0 )

− k 5

 fxy ( 0 ,  0 ) = lim

= lim

= −1  . 

 k→0

 k

 k→0

 k 5

When we interchange  x  and  y  the function  f  changes sign (i.e.  f (x, y) = − f (y, x)), so fyx ( 0 ,  0 ) = − fxy( 0 ,  0 ) = 1  . 

Hence at  ( 0 ,  0 )  we have  fyx =  fxy. By Schwarz’s theorem, the mixed derivatives are clearly both (by the aforementioned symmetry) discontinuous at  ( 0 ,  0 ). (The reader should check this fact). 

Schwarz’s theorem and the other considerations of this section extend seamlessly to

partial derivatives of order  k ∈ N. We write

 ∂kf

 , 

where

 k =  k 1 +  k 2 +  . . . +  kn , 

(3.11)

 ∂xk 1  ∂xk 2  . . . ∂xkn

1

2

 n

to denote the  k th partial derivative of  f =  f (x 1 , x 2 , . . . , xn),  k 1 times with respect to  x 1,  k 2 times in  x 2 and so on. This notation clearly does not emphasise the  order in which derivatives are computed. The symbol (3.11) is consistent in case the  k th derivative is continuous, because if so, the result does not depend on the order of

differentiation by Schwarz’s theorem. 

So for instance the  k th derivatives of a function of two variables  f (x, y), if continuous, are the following  k + 1 functions

 ∂kf

 ∂kf

 ∂kf

 ∂kf

 ∂kf

 , 

 , 

 , 

 . . . 

 , 

 , 

 . 

 ∂xk

 ∂xk−1 ∂y

 ∂xk−2 ∂y 2

 ∂x∂yk−1

 ∂yk

3.5

Gradient. Differentiability

Suppose  f =  f (x) =  f (x 1 , x 2 , . . . , xn) admits first partial derivatives  at a point  x in an open set  A ⊆ R n  on which  f  is defined. The  gradient  of  f  at  x  is by definition the vector  Df  whose components are the partial derivatives of  f . The gradient is denoted by

 Df (x) , ∇ f , ∇ f (x) ,  grad  f ,  grad  f (x) , 

and for given  x  it is the vector in R n  of components

 Df (x) =  (fx (x), f (x), . . . , f (x)) . 

1

 x 2

 xn
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Saying that a function  admits (first) partial derivatives  at  x ∈ R n  is the same as saying that  f has a gradient. A stronger condition is requiring that at  x ∈ R n  the function be  differentiable, in the following sense. 

Let  A  be an open set in R n. One says a function  f :  A → R is  differentiable  at x ∈  A  if it admits partial derivatives at  x (i.e., the gradient  Df (x)  is defined) and f (x +  h) −  f (x) −  (Df (x), h)

lim

= 0  . 

(3.12)

 h→0

| h|

Note that in (3.12),  h  is a variable in R n, | h| is its norm and  (Df (x), h)  is the inner product of  h  and the gradient of  f  at  x. 

A function  f  is said  differentiable  on  A  if it is differentiable at any  x ∈  A. Given x, the  linear  map defined on R n  by  h →  (Df (x), h)  is called the  differential  of  f at the point  x, and is denoted by  df (x). Therefore  df (x)  is the linear map (or  linear functional – the word  functional  is employed here to denote a linear map from R n to R) in the variable  h ∈ R n  defined by

 df (x)(h) =  (Df (x), h), 

∀  h ∈ R n . 

(3.13)

At first sight the following definition of differentiability might seem more

general:  f  is  differentiable  at  x  if there exists a  linear functional L : R n → R

such that

 f (x +  h) −  f (x) −  L(h)

lim

= 0  . 

(3.14)

 h→0

| h|

Recall that every linear functional on R n  is represented by an inner product (see Sect. 2.5), i.e. for any linear map  L  there exists a vector   ∈ R n  such that L(h) =  (, h)

∀  h ∈ R n . 

Then (3.14) may be rephrased as

 f (x +  h) −  f (x) −  (, h)

lim

= 0  . 

 h→0

| h|

If    has components   =  (i), for any  i ∈ {1 ,  2 , . . . , n} we set  h =  tei =

 ( 0 , . . . ,  0 , t,  0 , . . . ,  0 )  with  t ∈ R. Then f (x +  tei) −  f (x) −  ti

lim

= 0

 t →0

| t|

or equivalently, computing the limits  t → 0+,  t → 0− separately, 

 f (x +  tei) −  f (x) −  ti

lim

= 0  . 

 t →0

 t
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The immediate consequence is

 f (x +  tei) −  f (x)

lim

=  i , 

 t →0

 t

so  f  admits partial derivative at  x, which equals  fx =  

 i

 i . Repeating the argument

for any  i ∈ {1 ,  2 , . . . , n} we obtain  Df =  , and also (Df (x), h) =  (, h) =  L(h) , 

∀  h ∈ R n . 

All in all, definitions (3.12) and (3.14) are equivalent. 

A second remark: take (3.13) and drop the differential’s dependence on  x, so df (h) =  (Df, h) , 

∀  h ∈ R n . 

(3.15)

We remind that the symbol  dxi, for any  i ∈ {1 ,  2 , . . . , n}, denotes the linear functional  dxi : R n → R such that  dxi(h) =  hi  for any  h ∈ R n (see (2.5)). In this notation, (3.15) reads

 n



 df =

 fx dx

 i

 i , 

(3.16)

 i=1

which should be understood as an equality between the linear functional  df  and the linear combination of the linear functionals  dx 1 , dx 2 , . . . , dxn  on the right. 

Now, recall that a function  f (x)  is “little o" of  g(x)  as  x →  x 0, expressed by  f (x) =  o(g(x)), if  g(x)  is an infinitesimal function as  x →  x 0 and the ratio  f (x)/g(x)  tends to zero. Then a function  f (x), defined on an open set  A, is differentiable at  x ∈  A  if it admits partial derivatives at  x  and f (x +  h) =  f (x) +  (Df (x), h) +  o(| h| ) , as

 h → 0  . 

(3.17)

Especially in view of the application to physical sciences, it is useful to observe that, using (3.13), we may rephrase condition (3.17) as follows f =  f (x +  x) −  f (x) =  df (x)( x) +  o(| x| ) , as

 x → 0  . 

This means that when we pass from  x  to  x +  x, the increment of the function  f differs from the differential  df  by an infinitesimal quantity of order higher than the increment  x. In the notation of (3.16), the above formula is often expressed as n



 f   df =

 fx dx

 i

 i

 i=1

in the applications. 
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Geometrically speaking, the differentiability at a point is related to the existence

of the  tangent plane  to the function’s graph at the point. Namely, if  f  is differentiable at  x 0 ∈  A, putting  x =  x 0 and  h =  x −  x 0 in (2.8) gives f (x) =  f (x 0 ) +  (Df (x 0 ), x −  x 0 ) +  o(| x −  x 0| ) and the  linear  function defined on R n  by

 x ∈ R n →  f (x 0 ) +  (Df (x 0 ), x −  x 0 ) (3.18)

approximates  f (x)  at  x =  x 0 up to infinitesimals of order higher than the distance

| x −  x 0| to the contact point. The graph of the linear map (3.18) (to be accurate, this function is  affine) is the  tangent plane  to the graph of  f (x)  at  x 0, where  f  is differentiable. 

One of the reasons for considering differentiability is that the latter forces

continuity (generalising the similar condition for one real variable). If we suppose

that  f  is  differentiable at x ∈  A, then (3.17) immediately implies that  f is continuous at that point, because

| (Df (x), h)| ≤ | Df (x)| · | h| → 0

as

 h → 0

by the Cauchy-Schwarz inequality, and so

lim  f (x +  h) = lim [ f (x) +  (Df (x), h) +  o(| h| )] =  f (x) . 

 h→0

 h→0

Observe that while continuity, is a consequence of differentiability, it does not follow from, the existence of the first partial derivatives, as illustrated by this example: the function

⎧

⎨0

if

 (x, y) =  ( 0 ,  0 )

 f (x, y) = ⎩  xy

(3.19)

if

 (x, y) =  ( 0 ,  0 ) , 

 x 2 +  y 2

defined on R2 is not continuous at the origin  ( 0 ,  0 ): for instance, for  x =  y x 2

lim  f (x, x) = lim

= 1  , 

 x→0

 x→0  x 2 +  x 2

2

which differs from the value  f ( 0 ,  0 ) = 0 (more generally  f (x, mx) = 1 /( 1 +  m 2 )  is constant along the straight line  y =  mx  through the origin, hence  f (x, y)  cannot admit limit as  (x, y) →  ( 0 ,  0 ) ). On the other hand both partial derivatives exist at  ( 0 ,  0 ) (and at any other point in R2), because  f  is null along the axes, where  x = 0 or  y = 0, so fx ( 0 ,  0 ) = 0  , 

 fy ( 0 ,  0 ) = 0  . 

(continued)
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Obviously the function  f  in (3.19) is not differentiable at  ( 0 ,  0 ), since the limit as  (h, k) →

 ( 0 ,  0 )  of

 f (h, k)

√

=

 hk

 h 2 +  k 2

 (h 2 +  k 2 ) 3 / 2

does not exist. The non-differentiability of  f  at the origin can also be deduced from the fact that  f  is not continuous at that point. In Fig. 3.5 we have represented the graph of  f (x, y) defined in (3.19), as  (x, y)  varies in the square [−1 ,  1] × [−1 ,  1]. The picture clearly shows the singularity in the middle, at the axes’ crossing, and that the function is constant along the line  y =  x, for instance. 

Fig. 3.5 The function  f (x, y)  defined in (3.19)

The first derivatives’ continuity, is a sufficient condition for differentiability. We have in fact the following important result. 

Theorem (Differentiability Criterion)  Suppose f :  A → R  admits continuous partial derivatives fx , f , . . . , f

 at a point x ∈  A. Then f is differentiable at x. 

1

 x 2

 xn

 Proof  For simplicity we restrict to the case  n = 2 and examine a function of two variables  f =  f (x, y),  (x, y) ∈  A ⊆ R2. Consider the quantity f (x +  h, y +  k) −  f (x, y) = [ f (x +  h, y +  k) −  f (x, y +  k)]+

+ [ f (x, y +  k) −  f (x, y)]  . 
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Applying the mean value theorem twice, there exist points  x 1 (between  x  and  x +  h) and  y 1 (between  y  and  y +  k) such that

 f (x +  h, y +  k) −  f (x, y) =  fx(x 1 , y +  k) ·  h +  fy(x, y 1 ) ·  k . 

Using this, let us estimate the quotient appearing in definition (3.12): f (x +  h, y +  k) −  f (x, y) −  f



 x (x, y) ·  h −  fy (x, y) ·  k



√

≤

(3.20)

 h 2 +  k 2

|

|

≤|

 h|

 k|

 fx(x 1 , y +  k) − fx(x, y)| · √

+| fy(x, y 1 )− fy(x, y)| · √

≤

 h 2 + k 2

 h 2 + k 2

≤| fx(x 1 , y +  k) −  fx(x, y)| + | fy(x, y 1 ) −  fy(x, y)| . 

When  (h, k) →  ( 0 ,  0 ),  x 1 tends to  x  and  y 1 to  y, i.e.  (x 1 , y 1 ) →  (x, y). As the partial derivatives  fx , fy  are continuous at  (x, y), (3.20) implies f (x +  h, y +  k) −  f (x, y) −  fx(x, y) ·  h −  fy(x, y) ·  k lim

√

= 0  , 

 (h,k)→ ( 0 ,  0 )

 h 2 +  k 2

and so  f  is differentiable at  (x, y). 

A continuous function on an open set  A ⊆ R n  is said to be  of class C 0  on A, or simply a  C 0 function, written  f ∈  C 0 (A). If  f  admits continuous first partial derivatives on  A,  f  is said to be  of class C 1  on A, written  f ∈  C 1 (A). 

In general, if  f  admits continuous partial derivatives of order  k ∈ N on  A  we call it  of class Ck on A, written  f ∈  Ck(A). With this notation, the differentiability criterion, and the implication ‘differentiable ⇒ continuous’, now read:

 f ∈  C 1 (A)

⇒  f differentiable on A ⇒  f ∈  C 0 (A) . 

Similarly, applying the differentiability criterion to  k th order partial derivatives produces

 f ∈  Ck(A)

⇒  f ∈  Ck−1 (A) , 

∀  k ∈ N  . 

3.6

Composite Functions

Let  x 1 (t), x 2 (t), . . . , xn(t)  be  n  real functions defined on an interval  I ⊂ R. Call x :  I → R n  the map from  I  to R n  whose components are the  xi(t),  i = 1 ,  2 , . . . , n. 

Then  x(t)  is the vector in R n, dependent on the variable  t ∈  I , whose components
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are

 x(t) =  (x 1 (t), x 2 (t), . . . , xn(t)) , 

∀  t ∈  I . 

In the terminology of Chapter 6 we say the map  x :  I → R n  is a  curve  in R n. 

Let  A  be an open set in R n  that contains the range  x(I )  of the map  x :  I → R n, i.e. suppose  x(t) ∈  A  for any  t ∈  I . If  f :  A → R is a real function of  n  real variables defined on  A, the composite function

 F (t) =  f (x(t)) =  f ◦  x(t) , 

∀  t ∈  I

is well defined on  I . The composite function  F :  I → R is a real function of one real variable. The next result establishes when  F =  f ◦  x  is differentiable, and gives a formula for differentiating it. As usual, if  t ∈  I  is an endpoint of the interval  I , we consider the right derivative for the first endpoint or the left derivative for the second endpoint. 

Theorem (Chain Rule)  Suppose that the vector x(t) is differentiable at t ∈  I (i.e. the n component functions x 1 (t), x 2 (t), . . . , xn(t) admit derivatives at t ∈  I ) and that f is differentiable at the point x(t). Then the composite function F (t) =

 f (x(t)) is differentiable at t ∈  I , with derivative

 n



 F  (t) =  (Df (x(t)), x (t)) =

 fx (x(t)) ·  x (t) . 

(3.21)

 i

 i

 i=1

 Proof  Start from the differentiability hypothesis for  f , which we express as follows f (y) =  f (x) +  (Df (x), y −  x) +  o(| y −  x| ) , as

 y →  x . 

Put  x =  x(t)  and  y =  x(t +  h) (with  t, t +  h ∈  I ), to obtain f (x(t +  h)) =  f (x(t)) +  (Df (x(t)), x(t +  h) −  x(t)) +  o(| x(t +  h) −  x(t)| ) . 

Then the difference quotient of the composite  F (t) =  f (x(t))  reads F (t +  h) −  F (t) =  f(x(t +  h)) −  f(x(t)) =

 h

 h





=

 x(t +  h) −  x(t)

 Df (x(t)), 

+  o(| x(t +  h) −  x(t)| ) . 

 h

 h

(3.22)

Let us now compute separately the limits in the right-most side of (3.22) when h → 0. Given the similarity of the terms, we shall only compute the second one. 

Suppose | x(t + h)− x(t)| = 0 when  h = 0. If that is not the case we proceed exactly
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as in the proof of the chain rule in  one  real variable. We have





 o(| x(t +  h) −  x(t)| ) 

lim 

=

 h→0

 h

(3.23)

|

|

=

 o(| x(t +  h) −  x(t)| )|

 x(t +  h) −  x(t)|

lim

· lim

= 0  . 

 h→0

| x(t +  h) −  x(t)|

 h→0

| h|

The limit in (3.23) vanishes since it is the product of a quantity that tends to zero (by definition of “little o") and a quantity with finite limit:







|

 n

1 / 2

 x(t +  h) −  x(t)|

 x

2

 i (t +  h) −  xi (t )

lim

= lim

=

 h→0

| h|

 h→0

 h

 i=1





 n



1 / 2

=

 (x (t)) 2

= | x (t)|  . 

 i

 i=1

As  h → 0, from (3.22) and (3.23) we obtain F (t +  h) −  F (t)

lim

=  (Df (x(t)), x (t)) . 

 h→0

 h

Consider for example the function of two variables

 f (x, y) =  x 2 −  y 2  . 

Compose it with the function from R to R2 defined by

 x(t ) = − t 2  , 

 y(t ) =  t . 

(3.24)

This is a curve in the  xy-plane: precisely, since  x(t) = − (y(t)) 2, it is a parabola of equation x = − y 2. Using the composite  F (t) =  f (x(t), y(t))  we then find the space curve of equations

⎧

⎪

⎪

⎨ x =  x(t)

⎪ y =  y(t)

⎪

⎩ z =  F(t) =  f(x(t),y(t)). 

The image of the curve lies on the graph for the surface of equation  z =  f (x, y) (Fig. 3.6). 

To find the local maximum and minimum points of  f  lying on curve (3.24), we can first solve the equation  F  (t) = 0. By the chain rule

 F  (t ) =  fx ·  x +  fy ·  y = 2 x ·  x − 2 y ·  y =

(3.25)

= −2 t 2 ·  (−2 t) − 2 t · 1 = 2 t( 2 t 2 − 1 ) , (continued)
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y

x

Fig. 3.6

√

which vanishes at  t = 0 and  t = ± 2 / 2. At these points, the second derivative’s sign

√ 

2

 F  ( 0 ) = −2  <  0  , 

 F 

±

= 4  >  0

2

√

tells that  t = 0 is a local maximum point, while  t = ± 2 / 2 give two (absolute) minima. 

The reader can check the result obtained in (3.25) by differentiating  F (t) =

 f (x(t), y(t)) =  (− t 2 ) 2 −  t 2 directly. More generally, the reader can verify by direct inspection, using the differentiation rules in one variable, that, formula (3.21) holds, n



in the particular case in which  f (x) =  f (x 1 , x 2 , . . . , xn) =

 fi (xi)  is a sum of

 i=1

functions  fi, each depending on the variable  xi  only. 

As the partial derivative of a function of several variables is calculated with

respect to one of the real variables and considering the others as fixed parameters, 

there is a similar chain rule also when the components themselves depend upon

several real variables. Precisely, we have the following result, a direct consequence of the chain rule shown above. 

Chain Rule  Indicate by t =  (t 1 , t 2 , . . . , tk) a variable in  R k and let x 1 (t), x 2 (t), 

 . . . , xn(t) be n functions defined on an open set B ⊂ R k and admitting partial derivatives in tj , for some j ∈ {1 ,  2 , . . . , k} , at a point t ∈  B. 

 Let A be an open subset of  R n containing the range x(B) of the map x :  B → R n, and f :  A → R  a differentiable function at the point x(t). Then the composite
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 function F (t) =  f (x(t)) =  f ◦  x(t) is defined on B, it admits partial derivatives in tj at t, and the partial derivatives equal





 n

 ∂F

 ∂x

 ∂f

 (t) =  Df (x(t)), 

 (t)

=

 (x(t)) ·  ∂xi (t) . 

(3.26)

 ∂tj

 ∂tj

 ∂xi

 ∂tj

 i=1

 If, furthermore, f and x 1 (t), x 2 (t), . . . , xn(t) are C 1  functions, then the composite F =  f ◦  x is of class C 1  as well, and hence differentiable on A. 

Due to its importance, we stress once more that, from formula (3.26), if the functions  x :  B ⊆ R k → R n  and  f :  A ⊆ R n → R are  C 1 (we say  x :  B → R n is of class  C 1 if all its components  xi, 1 = 1 ,  2 , . . . , n, are of class  C 1), then the composite function  f ◦  x, too, is of class  C 1. In such a case, by the differentiability criterion  f ◦  x  is differentiable and the gradient  DF =  D(f ◦  x)  has components

 ∂F /∂tj ,  j ∈ {1 ,  2 , . . . , k}, expressed by formula (3.26). 

3.7

Directional Derivatives

We call a unit vector in R n  a  direction. 

Let  A  be an open set in R n  and  f :  A → R a function defined on  A. Fix  x ∈  A. 

Given a direction  λ  in R n (so  λ ∈ R n, | λ| = 1), the  directional derivative  of  f  along λ  at the point  x  is

 f (x +  hλ) −  f (x)

lim

 , 

 h→0

 h

provided such limit exists and is finite. The directional derivative is denoted by

 ∂f

 ∂f

 , 

 (x), 

 Dλ, 

 Dλf, 

 Dλf (x) . 

 ∂λ

 ∂λ

In particular, suppose  λ  is the direction of a coordinate axis, i.e. for some index i ∈ {1 ,  2 , . . . , n}

 λ =  ei =  ( 0 , . . . ,  0 ,  1 ,  0 , . . . ,  0 ) with all components zero except the  i th one, equal to 1. Then the directional derivative  ∂f/∂λ  coincides with the partial derivative  ∂f/∂xi =  fx (compare to i

formula (3.5)). 

The following criterion is useful for computing directional derivatives. 

Directional Derivative of a Differentiable Function  Let A be an open set in  R n and x ∈  A a point. If f is differentiable at x, it admits at x directional derivative
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 along any direction λ ∈ R n, and the latter equals

 n

 ∂f



 (x) =  (Df (x), λ) =

 fx (x) ·  λi . 

(3.27)

 ∂λ

 i

 i=1

 Proof  The directional derivative  ∂f/∂λ  is the derivative in  t, evaluated at  t = 0, of t →  f (x +  tλ). By the chain rule (previous section)





 n

 ∂f

 d



 (x) =

 f (x +  tλ)

=  (Df (x), λ) =

 fx (x) ·  λi . 

 ∂λ

 dt

 i

 t =0

 i=1

If a function admits all derivatives at some point but is  not  differentiable there, the representation formula (3.27) might not be valid. Consider for example the function of two variables

 f (x, y) =

 x 2 y

if

 (x, y) =  ( 0 ,  0 ), 

and

 f ( 0 ,  0 ) = 0  . 

(3.28)

 x 2 +  y 2

The directional derivative at  ( 0 ,  0 )  along  λ =  (λ 1 , λ 2 )  is the limit as  h → 0 of the ratio f ( 0 +  hλ) −  f ( 0 )

 λ 2 λ

=

1 2

 , 

(3.29)

 h

 λ 2 +  λ 2

1

2

so the directional derivative at  ( 0 ,  0 )  exists for any  λ =  (λ 1 , λ 2 )  and equals the value (3.29). 

At  ( 0 ,  0 ), in particular, the partial derivatives (the directional derivatives along  (λ 1 , λ 2 ) =

 ( 1 ,  0 )  and  (λ 1 , λ 2 ) =  ( 0 ,  1 )) are both zero. In this case formula (3.27), i.e. 

 ∂f =  fxλ 1 +  fyλ 2  , 

 ∂λ

does not hold, since the right-hand side is identically zero for any  λ =  (λ 1 , λ 2 ). The reader may check that (3.28) is not differentiable at  ( 0 ,  0 ). 

Let  f  be differentiable at some point  x  in an open set  A  in R n. Fix  x  and consider the directional derivative at  x  as the direction  λ ∈ R n  varies (| λ| = 1). Formula (3.27) expresses the directional derivative as the inner product of the gradient  Df and the direction  λ:

 ∂f =  (Df,λ). 

 ∂λ

By the Cauchy-Schwarz inequality in R n  we have



 ∂f 





 ∂λ  ≤ | Df | · | λ| = | Df |  , 
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with equality occurring if and only if the vectors  Df  and  λ  are parallel. Hence in general

−| Df | ≤  ∂f ≤ | Df |  . 

 ∂λ

Moreover, if  Df (x) = 0, 

 ∂f = | Df |

 ∂λ

if and only if  λ =  Df/| Df | ( λ  is the normalised gradient, and has  the same orientation  as  Df ). On the other hand

 ∂f = −| Df |

 ∂λ

if and only if  λ is the gradient’s direction but with opposite orientation ( λ =

− Df/| Df |). 

Therefore the gradient  Df , if non-zero, provides the oriented direction along which the directional derivative is largest, while − Df  defines the oriented direction along which the directional derivative is smallest. In a nutshell,  the gradient gives the direction of maximum increase (if non-zero). 

Fix distinct points  x 1 , x 2 in R n  and consider the function f (x) =  c| x −  x 1|2 · | x −  x 2|2  , (c >  0 ) . 

It clearly reaches a minimum at  x =  x 1 and at  x =  x 2. Let us check this by examining the gradient lines, i.e. the curves of steepest descent, in the special case  n = 2. To simplify notations let us fix the two points along one axis, with the origin as midpoint. Consider for instance the function of two variables

 f (x, y) = 1 [ (x − 1 ) 2 +  y 2] · [ (x + 1 ) 2 +  y 2]  . 

4

whose gradient  Df =  (fx, fy )  is

 fx =  x(x 2 +  y 2 − 1 ) , 


 fy =  y(x 2 +  y 2 + 1 ) . 

The partial derivative  fx  vanishes at  x = 0 ( y-axis) and for  x 2 +  y 2 = 1 (unit circle centred at the origin). The partial derivative  fy  vanishes only for  y = 0 ( x-axis). Hence the gradient is zero on the intersection of these sets, i.e. at the three points  (−1 ,  0 ),  ( 0 ,  0 ),  ( 1 ,  0 ). 

For example, on a neighbourhood of  ( 1 ,  0 )  the picture is that of Fig. 3.7: at  ( 1 ,  0 )  the gradient is zero, along the vertical line  x = 1 we have  fx ≥ 0

(continued)
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Fig. 3.7

y

x

and  fy  is positive for  y >  0 and negative for  y <  0. Along this line the gradient then grows larger as we move away from the point. Similarly, along the  x-axis the gradient vector is horizontal and becomes larger as we move away from  ( 1 ,  0 ). The point  ( 1 ,  0 )  is therefore a minimum point for the function, because on a neighbourhood the gradient points away in every direction. 

Near  (−1 ,  0 )  the situation is similar. On the other hand, around  ( 0 ,  0 )  the picture is that of Fig. 3.8: along the  y-axis the gradient is vertical and always points away from the origin. 

Along the  x-axis the gradient is horizontal and always points towards the origin. 

 y

-1

1

 x

Fig. 3.8

This means that the function  f (x,  0 ), in the variable  x  only, is largest at  x = 0 (the derivative  fx  is positive for  x <  0 and negative for  x >  0). Instead, the function  f ( 0 , y)  is smallest at  y = 0 ( fy  is negative before  y = 0 and positive afterwards). Therefore  ( 0 ,  0 )  is neither a maximum nor a minimum point for  f (x, y). 

In Fig. 3.9 we plotted the gradient of  f (x, y)  for other values  (x, y). Note in particular how the gradient is vertical along the unit circle. For reference, the gradient along  y =  x  is also shown. 

(continued)
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Fig. 3.9

Finally, Fig. 3.10 shows the gradient field of the function  f (x, y), while Fig. 3.11 is a plot of the level curves wrapping around the minimum points  (±1 ,  0 ). 

Fig. 3.10

(continued)
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Fig. 3.11

3.8

Functions with Vanishing Gradient on Connected Sets

Recall that an open set  A ⊆ R n  is  connected  if

 A 1 , A 2 open subsets of R n, 

 A 1 ∩  A 2 = ∅  , 

 A 1 ∪  A 2 =  A

force one of  A 1,  A 2 to be empty. 

The following result is about functions with null partial derivatives on a

connected subset of R n, and generalises the analogous simple fact in one variable, where a derivative is zero on some interval. 

Functions with Zero Gradient  If a function f has zero gradient at all points in a connected open set A ⊆ R n, then f is constant on A. 

 Proof  By assumption all partial derivatives are zero on  A, so the derivatives are continuous and  f  is differentiable on  A. Fix  x 0 ∈  A  and define the set A 1 = { x ∈  A :

 f (x) =  f (x 0 )}  . 

Clearly  A =  A 1 ∪  A 2, where

 A 2 = { x ∈  A :

 f (x) =  f (x 0 )}  . 

Being differentiable,  f  is continuous on  A, so the set  A 2 is open. Let us show  A 1 is open as well. Take  x 1 ∈  A 1 (so  f (x 1 ) =  f (x 0 )) and let  Iδ  be an open ball, centred at
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 x 1 with radius  δ, contained in  A. We claim that  Iδ ⊆  A 1, i.e.  f (x) =  f (x 0 ) =  f (x 1 ) for any  x ∈  Iδ. 

If  x =  x 1 there is nothing to prove. If  x =  x 1 and  x ∈  Iδ  the one-variable function  ϕ : [0 ,  1] → R defined by

 ϕ(t) =  f (x 1 +  t (x −  x 1 )) , 

∀  t ∈ [0 ,  1]  , 

assumes values  f (x 1 ) (at  t = 0) and  f (x) (at  t = 1). Its derivative, computed with the chain rule, is

 ϕ (t) =  (Df (x 1 +  t (x −  x 1 )), x −  x 1 ) = 0  , 

∀  t ∈ [0 ,  1]  . 

The function  ϕ : [0 ,  1] → R has zero derivative on [0 ,  1] and hence is constant. In particular,  ϕ( 0 ) =  ϕ( 1 ), i.e.  f (x) =  f (x 1 ). This shows  A 1 is open. 

So now  A =  A 1 ∪  A 2,  A 1 ∩  A 2 = ∅ with  A 1,  A 2 open in R n  and  A 1 = ∅. As  A is connected in R n, we have  A 2 = ∅ and so  A 1 =  A, i.e. 

 f (x) =  f (x 0 )

∀  x ∈  A . 

Let us apply the above theorem to prove the identity

 y

 x

arctg

+ arctg =  π , 

∀  x >  0 , ∀  y >  0  . 

(3.30)

 x

 y

2

The reader should check that the function of two variables

 y

 x

 f (x, y) = arctg

+ arctg  , 

 x

 y

has vanishing partial derivatives away from the axes. As  A = { (x, y) ∈ R2 :  x >  0 , y >  0}

is open and connected in R2, 

 f (x, y) =  constant

∀  (x, y) ∈  A . 

The value of the constant can be determined by evaluating  f (x, y)  at any point of  A, say (x, y) =  (t, t),  t >  0. Then  f (t, t) =  π/ 2, and (3.30) is proved. 

With the same technique the reader may prove the identity

 y

 x

arctg

+ arctg = −  π , 

∀  x >  0 , ∀  y <  0  . 

 x

 y

2

We now propose a second proof of the previous theorem. The argument is probably

simpler, but it shifts the crucial point to a result concerning open connected subsets of R n, which anyhow has independent interest. 
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Start by recalling that a  line segment [ x 1 , x 2] in R n  of endpoints  x 1 =  x 2 (also known as an  interval  in R n) is the set of points  x(t) ∈ R n  such that x(t) =  x 1 +  t (x 2 −  x 1 ) , 

∀  t ∈ [0 ,  1]  . 

Consider points  x 1 , x 2 , . . . , xk,  k (k ≥ 2 )  in R n, with  xi =  xi+1 for any  i =

1 ,  2 , . . . , k − 1. A  polygonal path  in R n  of vertices  x 1 , x 2 , . . . , xk  is the union of the line segments [ xi, xi+1],  i = 1 ,  2 , . . . , k − 1. The vertices  x 1 and  xk  are the path’s endpoints. 

In Sect. 2.11 we proved the following fact on connected open set in R n:  if A ⊆

R n is connected and open, any two points of A are the endpoints of a polygonal

 path entirely contained in A. 

Using this characterisation we can prove in a different way the result saying that

 if a function’s gradient vanishes at every point of a connected open subset of  R n, the function is constant on the subset. 

Suppose  f  is a function with zero gradient on an open, connected set  A ⊂ R n. 

We fix  x 1 ∈  A  and shall prove  f (x) =  f (x 1 )  for any  x ∈  A. If  x =  x 1 (otherwise there is nothing to prove), by the aforementioned result on connected open subsets

there exists a polygonal path from  x 1 to  x  contained in  A. Call  x 1 , x 2 , . . . , xk =  x the path’s vertices. It suffices to show that  f  is constant on each interval [ xi, xi+1], i = 1 ,  2 , . . . , k − 1, because at the intervals’ endpoints we have f (x 1 ) =  f (x 2 ), 

 f (x 2 ) =  f (x 3 ), 

 . . . 

 , f (xk−1 ) =  f (xk) , 

and so  f (x 1 ) =  f (xk), i.e.  f (x 1 ) =  f (x). So we may just prove that  f  is constant on every interval contained in  A. 

Let [ x 1 , x 2] be an interval in R n  contained in  A, and consider the one-variable function  ϕ : [0 ,  1] → R defined by

 ϕ(t) =  f (x 1 +  t (x −  x 1 )) , 

 t ∈ [0 ,  1]  . 

Using the chain rule, its derivative

 ϕ (t) =  (Df (x 1 +  t (x −  x 1 )), x −  x 1 ) , 

∀  t ∈ [0 ,  1]  , 

vanishes on [0 ,  1] because  Df = 0 on  A. Then  ϕ : [0 ,  1] → R is constant on [0 ,  1], i.e.  f  is constant on the line segment [ x 1 , x 2]. 

3.9

Homogeneous Functions

A set  A ⊆ R n  is called a  cone  in R n  if it satisfies x ∈  A

⇒  tx ∈  A , ∀  t >  0  . 
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For example, R n  itself is a cone, as is R n−{0}. A hyperplane through the origin is a cone. In R2 the first quadrant (either closed or open) is a cone, and so is the union of the first and third quadrants. Also R n  minus a ray emanating from the origin is a cone. 

Let  A  be a cone in R n  and  α  a real number. A function  f :  A ⊆ R n → R is said homogeneous of degree α  on  A  if

 f (tx) =  tαf (x)

∀  x ∈  A , ∀  t >  0  . 

(One might say  positively homogeneous  to emphasise that the scaling factor is positive). 

For example, the norm  f (x) = | x| is a homogeneous function of degree 1 on R n. More generally,  f (x) = | x| p,  p ∈ R, is homogeneous of degree  p  on R n (on R n − {0} if  p <  0). 

 n



If  A =  (aij )  is an  n ×  n  matrix, the associated quadratic form  f (x) =

 aij xi xj  is

 i,j =1

homogeneous of degree 2 on R n. The functions

 x

 f (x, y) =  x , 

 g(x, y) = sin

 , 

 h(x, y) =  ex/y , 

 y

 y

are homogeneous of degree zero on the cone  A = { (x, y) ∈ R2 :  y = 0}. The function xy

 f (x, y) =  x 3 y  cos  x 2 +  y 2

is homogeneous of degree 4 on R2 − { ( 0 ,  0 )}. 

The following theorem by Euler characterises homogeneous functions of degree  α. 

Euler’s Theorem for Homogeneous Functions  Let f :  A → R  be a differentiable function on an open cone A ⊆ R n. Then f is homogeneous of degree α on A if and only if the Euler identity

 (Df (x), x) =  αf (x) , 

∀  x ∈  A

(3.31)

 holds. 

 Proof  For given  x ∈  A, consider the function  F :  ( 0 , +∞ ) → R defined by F (t) =  f (tx) , 

∀  t >  0  . 

 tα

The function  f  is homogeneous of degree  α  in  x, i.e.  f (tx) =  tαf (x), if and only if F  is constant, equal to  f (x), for any  t ∈  ( 0 , +∞ ). This happens precisely when the derivative  F  (t)  is identically zero on  ( 0 , +∞ ). By assumption  f  is differentiable
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on  A, so by the chain rule





 n



 F  (t) = 1

 fx (tx) ·  xi ·  tα −  αtα−1 f (tx) =

 t 2 α

 i

 i=1





 n



= 1

 fx (tx) ·  xi ·  t −  αf (tx) . 

 tα+1

 i

 i=1

Hence  F  (t) = 0 for any  t ∈  ( 0 , +∞ )  if and only if n

 fx (tx) · x

 i

 i ·  t =  αf (t x) , 

∀  x ∈  A , ∀  t >  0  . 

(3.32)

 i=1

Since  x  belongs to  A  if and only if  tx ∈  A  for any given  t >  0, if we replace  x  with tx  identity (3.32) assumes the form

 n

 fx (x)x

 i

 i =  αf (x) , 

∀  x ∈  A , 

 i=1

which is just the, Euler identity (3.31). 

Here is a second feature of homogeneous, functions of degree  α. 

Homogeneity of the Gradient of a Homogeneous Function  Let f :  A → R  be a function having partial derivatives on an open cone A ⊆ R n. If f is homogeneous of degree α on A, for any i ∈ {1 ,  2 , . . . , n}  the partial derivative fx is homogeneous i

 of degree α − 1  on A. 

 Proof  By assumption

 f (tx) −  tαf (x) = 0  , 

∀  x ∈  A , ∀  t >  0  . 

Given  t >  0, then, the partial derivative in  xi  of the left-hand side is zero, namely fx (tx) ·  t −  tαf (x) = 0  , 

∀  x ∈  A , ∀  t >  0  . 

(3.33)

 i

 xi

(Note that, in this case, we did not use the chain rule in  n  variables, but in one; this is the reason for not demanding that  f  be differentiable). Dividing equation (3.33) by  t  shows that  fx  is homogeneous of degree  α − 1 on  A. 

 i

3.10

Functions Defined by Integrals

Occasionally it becomes necessary to establish whether an integral function admits

partial derivatives, or is differentiable (or simply, if it is continuous). The cases of
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present concern are functions   :  A → R defined on open sets  A ⊆ R n  by means of an integral expression of the type

 β(x)

 (x) =

 f (x, t) dt , 

 x ∈  A ⊆ R n , 

(3.34)

 α(x)

where  f :  A × R → R is a continuous function in  n + 1 real variables. Let us start with a result about continuity. 

Continuity of Integral Functions  Let f :  A × R → R  be a continuous function of n + 1  real variables and α, β two continuous functions on A. Then the integral function  :  A → R  in (3.34)  is continuous on A. 

 Proof  Consider first the function  F :  A × R2 → R, of  n + 2 real variables, defined by

 z

 F (x, y, z) =

 f (x, t) dt , 

 x ∈  A ⊆ R n , y ∈ R  , z ∈ R  , 

 y

and let us show it is continuous on  A × R × R. From this it will follow that, the   : A → R in (3.34), i.e.  (x) =  F (x, α(x), β(x)), is continuous on  A  as composite of continuous functions. 

Let  (x 0 , y 0 , z 0 )  be a given point of  A × R × R. Let  K × [ a, b] × [ a, b] be a compact set contained in  A × R × R and containing a neighbourhood of  (x 0 , y 0 , z 0 ). 

By the Weierstrass theorem there exists  M >  0 such that | f (x, t)| ≤  M  for any (x, t) ∈  K × [ a, b]. For any  (x, y, z) ∈  K × [ a, b] × [ a, b] we have

| F (x, y, z) −  F (x 0 , y 0 , z 0 )| ≤









 y 0

 z 0

 z



≤ 

| f (x, t)|  dt + 

| f (x, t) −  f (x





0 , t )|  dt  + 

| f (x, t)|  dt ≤

 y

 y 0

 z 0





 z 0



≤  M| y −  y





0| + 

| f (x, t) −  f (x 0 , t)|  dt +  M| z −  z 0|  . 

 y 0

Since  g(x, t) = | f (x, t) −  f (x 0 , t)| is continuous when  (x, y) ∈  K × [ a, b], by Cantor’s theorem it is uniformly continuous on that set. Hence if we fix  ε >  0, there exists  δ >  0 such that, for any pair  (x 1 , t 1 ),  (x 2 , t 2 ) ∈  K ×[ a, b] with distance less than  δ  from one another, we have | g(x 1 , t 1 ) −  g(x 2 , t 2 )|  < ε. In particular, for (x 1 , t 1 ) =  (x, t)  and  (x 2 , t 2 ) =  (x 0 , t 0 ), 

| g(x, t)| = | f (x, t) −  f (x 0 , t)|  < ε , 

| x −  x 0|  < δ , 
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since  g(x 2 , t 2 ) =  g(x 0 , t 0 ) = 0. If moreover | y− y 0|  < ε, | z− z 0|  < ε, we eventually obtain

| F (x, y, z) −  F (x 0 , y 0 , z 0 )| ≤  Mε +  ε| z 0 −  y 0| +  Mε ≤  ( 2 M +  b −  a)ε . 

Now suppose  f :  A × R → R is a continuous function of  n + 1 real variables, of class  C 1 in the variable  x ∈  A (in the sense that the partial derivatives  fx , i

 i = 1 ,  2 , . . . , n  are continuous on  A × R) and that  α, β :  A → R are of class C 1 (A). Then the following theorem holds. 

Differentiability of Integral Functions  Under the previous hypotheses, the integral function  :  A → R  is of class C 1 (A) (in particular, differentiable on A) and the components x of the gradient D are

 i



 ∂

 β(x)

=

 ∂β

 ∂α

 ∂f

 f (x, β(x))

−  f (x, α(x))

+

 (x, t) dt

(3.35)

 ∂xi

 ∂xi

 ∂xi

 α(x)

 ∂xi

 for any i ∈ {1 ,  2 , . . . , n} . 

 Proof  As before let  F :  A × R2 → R denote the function of  n + 2 real variables z

 F (x, y, z) =

 f (x, t) dt , 

 x ∈  A ⊆ R n , y ∈ R  , z ∈ R  . 

 y

Given  x ∈  A,  y ∈ R, the function

 z

 G(z) =

 f (x, t) dt

 y

is differentiable by the fundamental theorem of calculus, with derivative

 G (z) =  ∂F (x, y, z) =  f (x, z) . 

 ∂z

Fix  x ∈  A,  z ∈ R. For the same reason as above, since

 y

 F (x, y, z) = −

 f (x, t) dt , 

 z

the partial derivative in  y  exists and equals

 ∂F (x, y, z) = − f(x,y). 

 ∂y

Now let us prove that the partial derivative  fx , for given  i ∈ {1 ,  2 , . . . , n}, is i



 ∂F

 z

=

 ∂f (x, t) dt . 

(3.36)

 ∂xi

 y

 ∂xi
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To that end consider  x ∈  A. As  A  is open, there exists  δ >  0 such that  x+ hei ∈  A for any  h ∈ [− δ, δ], where  ei =  ( 0 , . . . ,  0 ,  1 ,  0 , . . . ,  0 )  has  i th component equal to 1 and the others null. Then



 F (x +  he

 z

 i , y, z) −  F (x, y, z) =

 f (x +  hei, t) −  f (x, t) dt . 

(3.37)

 h

 y

 h

By the mean value theorem (in one real variable) there exists  ϑ ∈  ( 0 ,  1 )  such that f (x +  hei, t) −  f (x, t) =  fx (x +  ϑhei,t). 

(3.38)

 h

 i

By assumption the derivative  fx  is continuous on  A × R. In particular it is i

continuous on the set (when  y < z, for instance)

{ (x, t) ∈ [ x −  δei , x +  δei] × [ y, z]}  , which is compact in R n+1. Therefore  fx  is uniformly continuous there, and for any i

 ε >  0 there exists  δ 1 ≤  δ  such that

| fx (x +  ϑhe

 (x, t)|  < ε

 i

 i , t ) −  fxi

for any  ϑ ∈  ( 0 ,  1 )  and  t ∈ [ y, z], provided | h| ≤  δ 1. 

The previous estimate together with (3.37), (3.38) imply z

 F (x +  he



 i , y, z) −  F (x, y, z)

 ∂f



−

 (x, t) dt

 h

≤

 y

 ∂xi

 z

≤

| fx (x +  ϑhe

 (x, t)| ≤  ε| z −  y|  , 

 i

 i , t ) −  fxi

 y

for any | h| ≤  δ 1, and then (3.36) follows. 

By the integral function’s continuity,  F  is then of class  C 1 (A × R2 ). 

Let us now go back to the integral function  , which may be represented via  F

as

 β(x)

 (x) =  F (x, α(x), β(x)) =

 f (x, t) dt , 

 x ∈  A ⊆ R n . 

 α(x)

Since, by assumption,  α(x)  and  β(x)  are of class  C 1 (A), the chain rule guarantees that    is  C 1 (A)  and that (3.35) holds. 
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3.11

Taylor Formula and Higher-Order Differentials

Let  A  be an open set in R n  and  f :  A → R a function of class  Ck(A)  for some k ∈ N. Consider points  x,  x +  h  in  A, with  h = 0, with the property that the segment

[ x, x +  h] is contained in  A. The points  x(t)  of the segment are of the form x(t) =  x +  th , 

∀  t ∈ [0 ,  1]  . 

Consider the composite function

 F (t) =  f (x(t)) =  f (x +  th)

for  t ∈ [0 ,  1]. Its first derivative is by definition the directional derivative of  f  along h, in case  h  is a direction, i.e. | h| = 1. In any case, since  f  is of class  C 1 (A)  and so differentiable on  A, by the chain rule the composite function  F  is differentiable on

[0 ,  1] with derivative

 n



 F  (t) =  (Df (x +  th), h) =

 fx (x +  th)h

 i

 i , 

(3.39)

 i=1

where  hi,  i = 1 ,  2 , . . . , n, are the components of  h. Applying the chain rule to (3.39) we see that  F  is differentiable and  (F  ) is n



 n

 ∂



 F  (t) =

 fx (x +  th)hi hj =

 ∂x

 i

 j

 j =1

 i=1

(3.40)

 n



=

 fx

 (x +  th)h

 i xj

 i hj . 

 i,j =1

More generally,  F : [0 ,  1] → R is differentiable  k  times and the derivative of order k  equals

 n



 F (k)(t) =  dkF (t) =

 fx x ...x (x +  th)hi hi . . . hi . 

(3.41)

 dtk

 i 1  i 2

 ik

1

2

 k

 i 1 ,i 2 ,...,ik=1

The  k th derivative  F (k)  is a homogeneous polynomial in the components of the vector  h, and the coefficients are the partial derivatives of  f  of order  k. 

Using the Taylor expansion with Lagrange remainder for one-variable functions, 

there exists a real number  ϑ ∈  ( 0 ,  1 )  such that

 F ( 1 ) =  F ( 0 ) +  F  ( 0 ) +  F  ( 0 ) +  . . . +  F (k−1 )( 0 ) +  F (k)(ϑ) 2

 (k − 1 )! 

 k! 

 . 

(3.42)
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Note that  ϑ ∈  ( 0 ,  1 )  depends on  x  and  h. Substituting (3.39), (3.40), (3.41) in (3.42) gives the  Taylor formula with Lagrange remainder for functions of n real variables. 

Let us make formula (3.42) explicit, distinguishing the cases  k = 1,  k = 2 and k >  2. 

In analogy to the case  n = 1, for one variable, when  k = 1 the Taylor formula with Lagrange remainder is equivalent to the mean value theorem. 

Mean Value Theorem  Let f be a function of class C 1 (A) and x, x +  h points in A ⊆ R n (h = 0 ) such that the segment [ x, x +  h]  is contained in A. There exists a real number ϑ ∈  ( 0 ,  1 ), depending on x and h, such that n



 f (x +  h) =  f (x) +

 fx (x +  ϑh)h

 i

 i =  f (x) +  (Df (x +  ϑh), h) . 

 i=1

 Proof  It suffices to write (3.42) with  k = 1 (which is the mean value theorem in one variable)

 F ( 1 ) =  F ( 0 ) +  F  (ϑ)

and represent the derivative  F  using (3.39). 

For  k = 2 we obtain:

Second-Order Taylor Formula with Lagrange Remainder  Let f be of class

 C 2 (A) and x, x +  h (h = 0 ) points in A ⊆ R n such that the segment [ x, x +  h]  is contained in A. There is a real number ϑ ∈  ( 0 ,  1 ), depending on x and h, such that n



 n



 f (x +  h) =  f (x) +

 fx (x)h

 f

 (x +  ϑh)h

 i

 i + 1

 x

 i hj =

2

 i xj

 i=1

 i,j =1

=  f (x) +  (Df (x), h) + 1  (D 2 f (x +  ϑh) ·  h, h) . 

2

As usual  Df  denotes the  gradient  and  D 2 f  the  Hessian matrix  of second partial derivatives of  f . Moreover,  (Df, h)  is the Euclidean inner product of the vectors Df  and  h, while  D 2 f ·  h  is the matrix product between the  n ×  n  matrix  D 2 f  and the  n × 1 matrix  h (a column vector). 

 Proof  From the second-order Taylor formula (3.42) for  F : [0 ,  1] → R, F ( 1 ) =  F ( 0 ) +  F  ( 0 ) + 1  F  (ϑ) 2
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and the expressions (3.39) and (3.40) for  F  and  F , we obtain n



 n



 f (x +  h) =  f (x) +

 fx (x)h

 f

 (x +  ϑh)h

 i

 i + 1

 x

 i hj

(3.43)

2

 i xj

 i=1

 i,j =1

 n



for a suitable  ϑ ∈  ( 0 ,  1 ). Clearly

 fx (x)h

 i

 i  equals the inner product  (Df (x), h). 

 i=1

1

There remains to examine the last summand in (3.43), which equals (D 2 f (x +

2

 ϑh) ·  h, h)  since

⎛

⎞ ⎛

⎞

 fx

 fx

 . . . fx

 h 1

⎜ 1 x 1

1  x 2

1  xn

 f

 f

 . . . f

⎟ ⎜  h ⎟

 D 2 f ·  h = ⎜  x

 x

 x

2

⎝ 2 x 1

2  x 2

2  xn ⎟ ⎜

⎟

 . . . 

 . . . . . . . . . ⎠ · ⎝  . . . ⎠ =

 fx

 f

 . . . f

 h

 n x 1

 xnx 2

 xnxn

 n

(3.44)

⎛

⎞

 fx

 h 1 +  fx

 h 2 +  . . . +  fx

 hn

⎜ 1 x 1

1  x 2

1  xn

⎟

= ⎜  fx h 1 +  fx h 2 +  . . . +  fx hn

⎝ 2 x 1

2  x 2

2  xn

⎟

 . . . . . . . . . . . . 

⎠

 fx

 h

 h

 h

 n x 1

1 +  fxnx 2 2 +  . . . +  fxnxn n

and the inner product of  D 2 f ·  h  and  h  is

 (fx

 h

 h

 h

1  x 1

1 +  fx 1 x 2 2 +  . . . +  fx 1 xn n) ·  h 1+

+  (fx h

 h

 h

2  x 1

1 +  fx 2 x 2 2 +  . . . +  fx 2 xn n) ·  h 2 +  . . . 

 . . . +  (fx

 h

 h

 h

 n x 1

1 +  fxnx 2 2 +  . . . +  fxnxn n) ·  hn =

(3.45)

⎛

⎞

 n



 n



 n



=

⎝

 f

⎠

 x

 h

 h

 f

 h

 i xj

 j

 i =

 xi xj i hj . 

 i=1

 j =1

 i,j =1

In the next section we shall use the version of Taylor’s formula of order two in  n variables that involves Peano’s remainder. 

Second-Order Taylor Formula with Peano Remainder  Let f be a C 2  function on the open set A in  R n. Take x, x +  h ∈  A with h = 0  such that the segment

[ x, x +  h]  is contained in A. Then

 f (x +  h) =  f (x) +  (Df (x), h) + 1  (D 2 f (x) ·  h, h) +  o(| h|2 ) . 

2

Before we prove it, let us see a useful property. 
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Lemma  For any m ×  n matrix A =  (aij ) and any vector h ∈ R n, the inequality

| A ·  h| ≤ | A| · | h|

(3.46)

 holds, where

' 

(

(  m

 n



| A| = )

 a 2  . 

 ij

 i=1  j =1

 denotes the matrix norm. 

 Proof  We have

⎛

⎞

 a 11 h 1 +  a 12 h 2 +  . . . +  a 1 nhn

⎜  a

⎟

 A ·  h = ⎜ 21 h 1 +  a 22 h 2 +  . . . +  a 2 nhn

⎝

⎟

 . . . 

⎠  , 

 am 1 h 1 +  am 2 h 2 +  . . . +  amnhn

and by the Cauchy-Schwarz inequality in R n (see (2.12))

' 

(

(  m



| A ·  h| = )

 (ai 1 h 1 +  ai 2 h 2 +  . . . +  ainhn) 2 ≤

 i=1

' 

(

⎛

⎞

' 

(

(

(  m



 n



(  m

 n



≤ )

⎝

 (a

⎠

)

 ij ) 2

| h|2 =

 a 2 · | h|  , 

 ij

 i=1

 j =1

 i=1  j =1

in other words (3.46). 

 Proof of the Second-Order Taylor Formula with Peano Remainder  Starting from the analogous formula with Lagrange remainder there remains to show

1  (D 2 f (x +  ϑh) ·  h,h) = 1 (D 2 f(x) ·  h,h) +  o(| h|2 ), 2

2

i.e. 

 (D 2 f (x +  ϑh) ·  h, h) −  (D 2 f (x) ·  h, h) lim

= 0  . 

(3.47)

 h→0

| h|2
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The Cauchy-Schwarz inequality and (3.46) imply





 (D 2 f (x+  ϑh) ·  h, h) −  (D 2 f (x) ·  h, h)





| h|2

=

|

=  ([ D 2 f (x +  ϑh) −  D 2 f (x)] ·  h, h)| ≤

| h|2

(3.48)

|[

≤  D 2 f (x +  ϑh) −  D 2 f (x)] ·  h| ≤

| h|

≤ | D 2 f (x +  ϑ, h) −  D 2 f (x)|  . 

As the second partial derivatives of  f  are continuous, when  h → 0 inequality (3.48) yields (3.47). 

To address the Taylor formula of order  k >  2 we introduce the  higher-order differentials  of a function  f :  A → R. Let  f  be of class  Ck(A)  and write  df  for the differential of  f  at  x  with increment  h:

 n



 df (x) =  (Df (x), h) =

 fx (x)h

 i

 i . 

(3.49)

 i=1

The differential  df , sometimes called  first-order differential  of  f , is a linear functional in the variable  h ∈ R n, i.e. a homogeneous polynomial of degree 1 in the components of  h. 

If  k ≥ 2, the partial derivatives  fx (x)  are of class  C 1 (A)  and so differentiable. 

 i

Fixing  h ∈ R n, the differential of  df (x)  in (3.49), written  d 2 f (x), is called  second-order differential  of  f  at  x ∈  A, and it equals





 n



 d 2 f (x) =  d(df (x)) =  d

 fx (x)h

=

 i

 i

 i=1





 n



 n



 n



=

 ∂

 fx (x)hi hj =

 fx

 (x)hihj . 

 ∂x

 i

 i xj

 j

 j =1

 i=1

 i,j =1

The second-order differential is a quadratic form in  h ∈ R n, i.e. a homogeneous polynomial of degree two in the components of  h. 

Analogously, if  k ≥ 3 the  third-order differential d 3 f (x)  of  f  is the differential of  d 2 f (x)  with  h  constant:

 n



 d 3 f (x) =

 fx

 (x)h h h . 

 i x

 x

 i

 i

 i

1

 i 2  i 3

1

2

3

 i 1 ,i 2 ,i 3=1

[image: Image 783]

[image: Image 784]

[image: Image 785]

[image: Image 786]

[image: Image 787]

140

3

Functions of Several Variables

Iterating the process, the  differential of order k  is

 n



 dkf (x) =

 fx

 (x)h h . . . h , 

(3.50)

 i x

 ...x

 i

 i

 i

1

 i 2

 ik

1

2

 k

 i 1 ,i 2 ,...,ik=1

a homogeneous polynomial of degree  k ∈ N in the components of  h ∈ R n. 

Comparing expression (3.50) with (3.41) and (3.42) gives back the Taylor formula for arbitrary  k. 

 kth Order Taylor Formula with Lagrange Remainder  Let f be a function of class Ck(A) with k ∈ N . Given x, x + h ∈  A ⊆ R n, h = 0 , such that [ x, x + h] ⊂  A, there exists a real number ϑ ∈  ( 0 ,  1 ), depending on x and h, for which f (x + h) =  f (x)+ df (x)+ 1  d 2 f (x)+ . . . +

1

2

 (k − 1 )!  dk−1 f (x)+ 1

 k!  dkf (x + ϑh) . 

3.12

Quadratic Forms. Definite, Semi-definite and Indefinite

Square Matrices

With the aim of formulating, in the next section, useful criteria for the study of  local maximum and minimum points  of a function of several variables, we shall introduce some definitions for square matrices  A =  (aij ),  i, j = 1 ,  2 , . . . , n. 

Associated with any  square matrix A =  (aij ),  i, j = 1 ,  2 , . . . , n, is the function F : R n → R defined by

 F (λ) =  (A ·  λ, λ), 

 λ ∈ R n , 

where:  λ  is the variable in R n,  A ·  λ  is the matrix product of the  n ×  n  matrix  A  by the  n × 1 column vector  λ, and  (A ·  λ, λ)  is the inner product of the column vectors A ·  λ  and  λ. It can be proved, as in the previous section (see (3.44) and (3.45)) that n



 F (λ) =  (A ·  λ, λ) =

 aij λiλj , 

∀  λ ∈ R n . 

 i,j =1

Hence  F (λ)  is a homogeneous quadratic polynomial in the components of  λ, i.e. 

 F (λ)  is a  quadratic form  in the variable  λ ∈ R n  called the  quadratic form associated with the matrix A =  (aij ). 

A square matrix  A =  (aij )  is said to be  positive definite  if the associated quadratic form is positive on R n − {0}, i.e. 

 n

 aijλiλj >  0 , ∀ λ ∈ R n, λ = 0 . 

 i,j =1

[image: Image 788]

[image: Image 789]

3.12 Quadratic Forms. Definite, Semi-definite and Indefinite Square Matrices

141

The matrix is  positive semi-definite  if the associated quadratic form is non-negative on R n:

 n

 aijλiλj ≥ 0 , ∀ λ ∈ R n. 

 i,j =1

 n



Similarly, if

 aij λi λj <  0 for any non-zero  λ ∈ R n, the matrix  A =  (aij )  is i,j =1

 n



 negative definite, and  negative semi-definite  when

 aij λi λj ≤ 0 for any  λ ∈ R n. 

 i,j =1

Finally,  A =  (aij )  is  indefinite  if none of the above hold, i.e. if the associated quadratic form changes sign on R n. Equivalently, there exist  λ, μ ∈ R n  such that n



 n



 aij λiλj >  0, 

 aij μiμj <  0. 

 i,j =1

 i,j =1

 Example 1  Consider the 2 × 2 matrices













1 0

1 2

1 2

 (aij ) =

 , 

 (bij ) =

 , 

 (cij ) =

 . 

0 2

0 0

2 4

The first is positive definite, since the associated quadratic form is

2

 aijλiλj =  a 11 λ 2 +

=

+

1

2 a 12 λ 1 λ 2 +  a 22 λ 22

 λ 21

2 λ 22  >  0  , 

 i,j =1

for any  λ ∈ R2,  λ = 0. The second one is indefinite, as the associated quadratic form 2

 bijλiλj =  b 11 λ 2 +

=

+

1

 b 12 λ 1 λ 2 +  b 21 λ 2 λ 1 +  b 22 λ 22

 λ 21

2 λ 1 λ 2

 i,j =1

is positive when  λ =  (λ 1 , λ 2 ) =  ( 1 ,  0 ), while it is negative for  λ =  (λ 1 , λ 2 ) =  ( 1 , −1 ). 

The third matrix is positive semi-definite, because the quadratic form

2

 cijλiλj =  λ 2 +

=

1

4 λ 1 λ 2 + 4 λ 22

 (λ 1 + 2 λ 2 ) 2

 i,j =1

is greater than or equal to zero for any  λ =  (λ 1 , λ 2 ) ∈ R2, but vanishes for  λ 1 = −2 λ 2. 

Note that the determinant of  cij  is zero, a typical property of (positive or negative) semi-definite matrices that are not definite. 

Now let us examine a property of  n ×  n (positive or negative) semi-definite matrices, and then we will look at the 2 × 2 case in more detail. Such properties

will be employed in the next section. We refer to Sect. 3.16 in the Appendix, on complementary material about quadratic forms, for more properties. 
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Characterisation of Definite Matrices  A matrix A =  (aij ), i, j = 1 ,  2 , . . . , n, is positive definite if and only if there exists a constant m >  0  such that n

 aijλiλj ≥  m| λ|2 , ∀ λ ∈ R n. 

(3.51)

 i,j =1

A matrix  A =  (aij )  is negative definite if and only if there exists a constant  m >  0

 n



such that

 aij λi λj ≤ − m| λ|2 for any  λ ∈ R n. 

 i,j =1

 n



 Proof  If (3.51) holds, evidently

 aij λi λj >  0 for any non-zero  λ ∈ R n. Hence

 i,j =1

 A =  (aij )  is positive definite. Vice versa, suppose  A =  (aij )  is positive definite. 

Consider the quadratic form  F  associated with  A

 n



 F (λ) =  (A ·  λ, λ) =

 aij λi λj , 

 i,j =1

as  λ ∈ R n  varies in

 K = { λ ∈ R n : | λ| = 1}  . 

The set  K  is compact in R n  and  F  is continuous (on R n), so by the Weierstrass theorem it assumes a minimum on  K. Let  λ 0 be a minimum point (| λ 0| = 1), so n

 aijλiλj ≥  F(λ 0 ), ∀ λ ∈ R n, | λ| = 1 . 

 i,j =1

By assumption  A =  (aij )  is positive definite, and since  λ 0 = 0, we have  F (λ 0 ) =

 (A ·  λ 0 , λ 0 ) >  0. Set  m =  F (λ 0 ), so n

 aijλiλj ≥  m, ∀ λ ∈ R n, | λ| = 1 . 

(3.52)

 i,j =1

Consider now a generic vector  λ ∈ R n − {0}. Call  μ =  λ/| λ|, so | μ| = 1 and from (3.52), 

 n



 n



 n

 λ



 i

 m ≤

 aij μiμj =

 aij

·  λj = 1 ·

|

 aij λi λj , 

 λ| | λ|

| λ|2

 i,j =1

 i,j =1

 i,j =1

whence (3.51) follows, for any  λ ∈ R n − {0}. Finally, when  λ = 0 the claim (3.51) is obvious. 
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The characterisation of negative definite matrices is similar. 

Let us now pass to 2 × 2 matrices. We shall suppose the matrices are  symmetric, just like the  Hessian matrix D 2 f =  (fx )  of second derivatives of a  C 2 function i xj

 f . Note that when studying definite, semi-definite or indefinite matrices  A =  (aij ) we can always reduce to the symmetric case, provided we replace  aij ( i =  j ) with the average  (aij + aij )/ 2, because this does not alter the nature of the quadratic form associated with  A. For details see Sect. 3.16 in the Appendix, about further material on quadratic forms. 

Characterisation of 2 × 2 Matrices  Let





 a

 A =

11  a 12

 a 12  a 22

 be a  2 × 2  symmetric matrix, and write as usual  det  A =  a 11 a 22 −  a 2  for its 12

 determinant. Then

det  A >  0

⇒  A is definite; 

det  A = 0

⇒  A is semi-definite; 

det  A <  0

⇒  A is indefinite. 

 In particular, when  det  A >  0 , A is positive definite if a 11  >  0 , and negative definite if a 11  <  0 . When  det  A = 0 , A is positive semi-definite if a 11 , a 22 ≥ 0 , while negative semi-definite if a 11 , a 22 ≤ 0 . 

 Proof  The quadratic form associated with  A  is

 F (λ 1 , λ 2 ) =  a 11 λ 2 +

1

2 a 12 λ 1 λ 2 +  a 22 λ 22  , 

∀  λ =  (λ 1 , λ 2 ) ∈ R2  . 

To begin with suppose  a 11 = 0. Consider  λ =  (λ 1 , λ 2 ) ∈ R2 with  λ 2 = 0, and set t =  λ 1 /λ 2. The polynomial

 ϕ(t) =  F (λ 1 , λ 2 ) =  a 11 t 2 + 2 a 12 t +  a 22

 λ 22

is quadratic in  t ∈ R, and its graph is a parabola with vertex at  t = − a 12 /a 11, where the derivative  ϕ (t)  vanishes. The minimum value (if  a 11  >  0) or maximum value ( a 11  <  0) of  ϕ  is





 a 2

det  A

 ϕ

− a 12 =  a

12

22 −

=

 . 

(3.53)

 a 11

 a 11

 a 11

Hence if det  A >  0 and  a 11  >  0, the convex parabola  ϕ(t)  assumes positive values for any  t ∈ R. Therefore  F (λ 1 , λ 2 ) >  0 for any  (λ 1 , λ 2 ) ∈ R2 with  λ 2 = 0. When
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 λ 2 = 0,  F (λ 1 ,  0 ) =  a 11 λ 2  >  0 for any  λ

1

1 = 0. This means  A  is positive definite. 

If det  A >  0 and  a 11  <  0 one can prove in a similar manner that  A  is negative definite. 

We wrap up the case det  A =  a 11 a 22 −  a 2  >  0 by noting that  a 12

11 = 0 is

automatic, for otherwise det  A = − a 2 ≤ 0. 

12

If det  A = 0 and  a 11  >  0 (det  A =  a 11 a 22− a 2 = 0 implies  a 12

22 ≥ 0) we proceed

as above to find  F (λ 1 , λ 2 ) ≥ 0, and  F (λ 1 , λ 2 ) = 0 for  λ 1 /λ 2 =  t = − a 12 /a 11. 

Hence  A  is positive semi-definite. If  a 11 = 0 and  a 22  >  0 we go about similarly, interchanging  λ 1 and  λ 2. Finally if  a 11 =  a 22 = 0, necessarily  a 2 =  a 12

11 ·  a 22 = 0

and so  F (λ 1 , λ 2 ) = 0 for any  (λ 1 , λ 2 ) ∈ R2. In any case  F  is positive semi-definite. 

The case det  A = 0,  a 11 ≤ 0,  a 22 ≤ 0 is analogous and gives a negative semi-definite quadratic form. 

At last, when det  A <  0 and  a 11 = 0, from (3.53) we deduce that if  a 11  >  0 then ϕ : R → [det  A/a 11 , +∞ ), while if  a 11  <  0 then  ϕ : R →  (−∞ ,  det  A/a 11]. In either case  ϕ  assumes both positive and negative values, so  F (λ 1 , λ 2 )  is indefinite. 

If  a 11 = 0 and  a 22 = 0 we just interchange  λ 1 , λ 2. If  a 11 =  a 22 = 0 then  a 12 = 0

and clearly  F (λ 1 , λ 2 ) = 2 a 12 λ 1 λ 2 is an indefinite quadratic form. 

3.13

Local Maxima and Minima

Let  f  be defined on a set  A ⊆ R n. A point  x 0 ∈  A  is a  local maximum point  of  f on  A  if there exists a ball  Iδ(x 0 ), centred at  x 0 with radius  δ, such that f (x 0 ) ≥  f (x)

∀  x ∈  Iδ(x 0 ) ∩  A . 

Similarly,  x 0 ∈  A  is a  local minimum point  of  f  on  A  if there exists a ball  Iδ(x 0 ), of centre  x 0 and radius  δ, for which

 f (x 0 ) ≤  f (x)

∀  x ∈  Iδ(x 0 ) ∩  A . 

The following criterion is useful when searching for local extrema in the interior of a differentiable function’s domain. 

First-Order Necessary Condition  If f :  A ⊆ R n → R  has partial derivatives at a local maximum or minimum point x 0  in the interior of A, then Df (x 0 ) = 0 . 

 Proof  To fix ideas suppose  x 0 is a local maximum point. Moreover  x 0 is interior to A  and  f  is differentiable at  x 0. 

Given an index  i ∈ {1 ,  2 , . . . , n}, as usual we write  ei  for the vector ei =  ( 0 , . . . ,  0 ,  1 ,  0 , . . . ,  0 ) whose components are all zero except the  i th one, equal to 1. 
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As  x 0 is an interior maximum point, the one-variable function  F (t) =  f (x 0+ tei) is defined on a neighbourhood of  t = 0, and has a local maximum at  t = 0. But  F

is differentiable and by definition its derivative  F  is the partial derivative  fx (x i

0 ). 

Hence  fx (x

 i

0 ) =  F  ( 0 ) = 0, as requested. 

According to the above condition, local extrema lying in the interior of the

domain of a function  f  admitting partial derivatives should be seeked among the points at which all partial derivatives  fx  vanish simultaneously. Such points are i

called  critical  or  stationary  for  f . Therefore  the gradient vanishes at a critical point. 

The function  f : R2 → R defined by  f (x, y) =  x 2 +  y 2 has gradient  Df =  ( 2 x,  2 y), which is zero at  (x, y) =  ( 0 ,  0 ). Clearly  ( 0 ,  0 )  is a minimum point for  f  on R2, since f (x, y) =  x 2 +  y 2 ≥ 0 =  f ( 0 ,  0 )  for any  (x, y) ∈ R2. The graph of  f  is shown in Fig. 3.12. 

Also  g : R2 → R,  g(x, y) =  x 2 −  y 2, has vanishing gradient  Dg =  ( 2 x, −2 y) at  (x, y) =  ( 0 ,  0 ). The latter is then a critical point. But it is neither a maximum nor a minimum point because, for instance, the sign of  g  along the axes is

 g(x,  0 ) >  0  , 

∀  x = 0  , 

 g( 0 , y) <  0

∀  y = 0  . 

Hence  g  assumes, on any neighbourhood  Iδ  of the origin, values both larger and smaller than  g( 0 ,  0 ) = 0. We say  ( 0 ,  0 )  is a  saddle point  of  g (see Fig. 3.13). 

Figures 3.14 and 3.15 show the level curves of  f (x, y)  and  g(x, y)  as  (x, y)  varies in the square [−1 ,  1] × [−1 ,  1]. In Fig. 3.14 the level curves are closed and surround the minimum point  ( 0 ,  0 )  of  f (x, y). In Fig. 3.15, on the contrary, level curves do not close around the saddle point  ( 0 ,  0 ). Note the curious fact that the computer produced Fig. 3.15

without plotting the line  y =  x, which is a level curve of  g(x, y). 

Another necessary condition (but of order two) is phrased in terms of the  Hessian matrix D 2 f =  (fx ), and uses the properties of definite, semi-definite and i xj

indefinite matrices introduced in the previous section. 

Second-Order Necessary Condition  If f :  A ⊆ R n → R  is a C 2  function on a neighbourhood of an interior local minimum (or maximum) point x 0 ∈  A, the Hessian matrix D 2 f (x 0 ) at x 0  is positive semi-definite (or negative semi-definite, respectively). 

 Proof  Let  x 0 ∈  A  be a local minimum point for  f, interior to  A. Let  λ  be a given vector in R n. The function

 F (t) =  f (x 0 +  tλ)

of the real variable  t  is defined on a neighbourhood of  t = 0, and has a local minimum at  t = 0. The second derivative  F , if it exists, satisfies  F  ( 0 ) ≥ 0. 

[image: Image 803]

[image: Image 804]

[image: Image 805]

146

3

Functions of Several Variables

Fig. 3.12  f (x, y) =  x 2 +  y 2

Fig. 3.13  g(x, y) =  x 2 −  y 2
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Fig. 3.14

Fig. 3.15

As  f ∈  C 2, the chain rule gives









 n

 d



 F  (t) =  d

 f (x 0 +  tλ) =  d

 fx (x 0 +  tλ)λi

=

 dt

 dt

 dt

 i

 i=1





 n



 n



 n



=

 ∂

 fx (x 0 +  tλ)λi λj =

 fx

 (x 0 +  tλ)λiλj

 ∂x

 i

 i xj

 j

 j =1

 i=1

 i,j =1

whence

 n



 F  ( 0 ) =

 fx

 (x

 i xj

0 )λi λj ≥ 0  , 

∀  λ ∈ R n . 

 i,j =1
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Therefore  D 2 f (x 0 )  is a positive semi-definite matrix. The case where  x 0 is an (interior) local maximum point is treated similarly. 

Remark The second-order condition implies in particular that  if f :  A ⊆ R n → R

 is a C 2  function on a neighbourhood of an interior local minimum (or maximum) x 0,  then

 fx (x

 (x

 i xi

0 ) ≥ 0

 (fxixi  0 ) ≤ 0 ) , 

 for any i = 1 ,  2 , . . . , n. In fact, since the Hessian matrix  D 2 f (x 0 )  at the minimum point  x 0 is positive semi-definite (if  x 0 is a maximum the argument is similar), then n

 fx (x

 i xj

0 )λi λj ≥ 0  , 

∀  λ ∈ R n . 

 i,j =1

Given  i ∈ {1 ,  2 , . . . , n} and taking  λ =  ei =  ( 0 , . . . ,  0 ,  1 ,  0 , . . . ,  0 ), we find fx

 (x

 i xj

0 ) ≥ 0. 

Now we shall present a sufficient condition for a critical point to be a local

extremum. We consider first the general  n  variable case, and then pass to functions in 2 variables. 

Sufficient Condition in  n Variables  Let f :  A ⊆ R n → R  be a C 2  function on a neighbourhood of an interior critical point x 0 . If the Hessian matrix D 2 f (x 0 ) is positive definite, x 0  is a local minimum point. If D 2 f (x 0 ) is negative definite, x 0  is a local maximum point. If D 2 f (x 0 ) is indefinite, x 0  is neither a local maximum nor a local minimum. 

 Proof  Consider first the case where the Hessian matrix  D 2 f (x 0 )  is positive definite. 

By the characterisation of definite matrices (see (3.51) in particular), there exists a constant  m >  0 such that

 n



 (D 2 f (x 0 ) ·  λ, λ) =

 fx

 (x

 i xj

0 )λi λj ≥  m| λ|2  , 

∀  λ ∈ R n . 

 i,j =1

By assumption  x 0 is critical for  f , so  Df (x 0 ) = 0. Using Taylor’s formula of order two with Peano remainder we find

 f (x 0 +  λ) −  f (x 0 ) =  (Df (x 0 ), λ) + 1  (D 2 f (x 0 ) ·  λ, λ) +  o(| λ|2 ) ≥

2





≥  m|

 m

 λ|2 +  o(| λ|2 ) = | λ|2

+  o(| λ|2 ) . 

2

2

| λ|2
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Since

 o(| λ|2 )

lim

= 0  , 

 λ→0

| λ|2

there exists  δ >  0 such that

| o(| λ|2 )|

 m

|

 < 

 , 

∀  λ ∈ R n − {0} , | λ|  < δ . 

 λ|2

4

Hence





 m

 f (x 0 +  λ) −  f (x 0 ) ≥ | λ|2

+  o(| λ|2 ) ≥

2

| λ|2





≥ |

 m

 λ|2

−  m =  m| λ|2  , 

∀  λ ∈ R n, | λ|  < δ . 

2

4

4

In the end,  x 0 is a minimum point for  f  on the ball  Iδ(x 0 )  around  x 0 with radius  δ. 

The proof for  D 2 f (x 0 )  negative definite is analogous. When instead  D 2 f (x 0 ) is indefinite, the second-order necessary condition shows that  x 0 cannot be a local minimum point for  f  in  A, otherwise  D 2 f (x 0 )  should be positive semi-definite; nor can it be a local maximum point, in which case  D 2 f (x 0 )  would be negative semi-definite. 

 The Case of Semi-definite Hessian Is Not Covered by the Sufficient Condition  If in fact the Hessian matrix  D 2 f (x 0 )  is positive definite at a critical point  x 0, then  x 0 is a local minimum point. If the Hessian is negative definite,  x 0 is a local maximum point. If the matrix is indefinite the point is none of the above. If the Hessian matrix at  x 0 is semi-definite we cannot say anything unless we study the function on a neighbourhood of  x 0 using other means. 

For example, the functions in three variables

 f (x, y, z) =  x 4 +  y 4 +  z 4  , 

 g(x, y, z) =  x 4 +  y 4 −  z 4  , 

have a critical point at the origin  ( 0 ,  0 ,  0 ), and in both cases the Hessian is zero at the point. 

Hence we have a critical point with semi-definite Hessian matrix. In the first case  ( 0 ,  0 ,  0 ) is clearly a local (absolute) minimum point in R3, since

 f (x, y, z) ≥ 0 =  f ( 0 ,  0 ,  0 ) , 

∀  (x, y, z) ∈ R3  . 

For  g  the origin is neither a maximum nor a minimum, because

 g(x, y,  0 ) =  x 4 +  y 4  >  0 =  g( 0 ,  0 ,  0 ) , 

∀  (x, y) =  ( 0 ,  0 ) , 

 g( 0 ,  0 , z) = − z 4  <  0 =  g( 0 ,  0 ,  0 ) , 

∀  z = 0  . 
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We wrap up this section with a sufficient condition in the two-dimensional case. 

For a  C 2 function  f  of two real variables we denote with  Hf (x, y)  the  Hessian determinant, i.e. the determinant of the Hessian matrix  D 2 f (x, y): f



 Hf (x, y) = det  D 2 f (x, y) =   xx(x, y) fxy(x, y)





 f

=  fxx ·  fyy −  (fxy) 2  . 

 yx (x, y) fyy (x, y)

Sufficient Condition in 2 Variables  Let f :  A ⊆ R2 → R  be a function of class C 2  on a neighbourhood of an interior point (x 0 , y 0 ) of A. If fx(x 0 ,y 0 ) =  fy(x 0 ,y 0 ) = 0

(3.54)

 Hf (x 0 , y 0 ) >  0 ; 

 fxx(x 0 , y 0 ) >  0

 then (x 0 , y 0 ) is local minimum point. If

 fx(x 0 ,y 0 ) =  fy(x 0 ,y 0 ) = 0

(3.55)

 Hf (x 0 , y 0 ) >  0 ; 

 fxx(x 0 , y 0 ) <  0

 then (x 0 , y 0 ) is a local maximum point for. Finally if

 fx(x 0 ,y 0 ) =  fy(x 0 ,y 0 ) = 0

(3.56)

 Hf (x 0 , y 0 ) <  0

 then (x 0 , y 0 ) is critical, but neither a maximum nor a minimum point. 

 Proof  Under (3.54), or (3.55) or (3.56), the point  (x 0 , y 0 )  is always critical for  f . 

Keeping in account the characterisation of 2×2 matrices, if the Hessian determinant

 Hf (x 0 , y 0 )  is positive the matrix  D 2 f (x 0 , y 0 )  is positive definite in case (3.54) (where  fxx (x 0 , y 0 ) >  0), and negative definite in case (3.55) (where  fxx (x 0 , y 0 ) < 0). In case (3.56), the determinant  Hf (x 0 , y 0 )  is negative and so the Hessian matrix D 2 f (x 0 , y 0 )  is indefinite. 

The conclusion follows directly from the general sufficient condition in  n

variables. 

3.14

Vector-Valued Functions

Let  n,  m  be natural numbers and  A  a subset of R n. A map associating with every point in  A  a unique point in R m  is  a function  from  A ⊆ R n  to R m. We write it as f :  A ⊆ R n → R m  and denote by

 (f 1 , f 2 , . . . , fm)
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its components. More explicitly, since the variable  x  has components  (x 1 , x 2 , . . . , xn), we shall use the notation

 (f 1 (x 1 , x 2 , . . . , xn), f 2 (x 1 , x 2 , . . . , xn), . . . , fm(x 1 , x 2 , . . . , xn)) or, more succinctly, 

 f =  (fα(x))α=1 ,  2 ,...,m

∀  x =  (xi)i=1 ,  2 ,...,n ∈  A . 

Evidently every component  fα(x),  α = 1 ,  2 , . . . , m, is a  scalar  function, defined on  A  with values in R, i.e.  fα :  A ⊆ R n → R, for any  α = 1 ,  2 , . . . , m. Therefore we can apply to  fα  all of the properties, e.g., about continuity, and differentiability, examined in previous sections. 

If  n =  m >  1, i.e. if  f :  A ⊆ R n → R n  with  n ≥ 2, we call  f =

 (f 1 , f 2 , . . . , fn)  a  vector field  on R n. The geometric interpretation is to associate with every point  x ∈  A ⊆ R n  the vector  f (x) =  (f 1 (x), f 2 (x), . . . , fn(x))  of R n. 

The physical sciences consider in particular vector fields  v :  A ⊆ R3 → R3 in space (or on R n), of components  (v 1 , v 2 , v 3 ). Explicitly, v(x, y, z) =  (v 1 (x, y, z), v 2 (x, y, z), v 3 (x, y, z)) , (3.57)

where  (x, y, z)  is a generic point in R3. Using the canonical basis  e 1 , e 2 , e 3 of R3, (3.57) reads

 v(x, y, z) =  v 1 (x, y, z)e 1 +  v 2 (x, y, z)e 2 +  v 3 (x, y, z)e 3  . 

In Physics a customary notation is

 v(x, y, z) =  v 1 (x, y, z)i +  v 2 (x, y, z)j +  v 3 (x, y, z)k  , where i, j, k are the canonical basis of R3, with components i =  ( 1 ,  0 ,  0 ), j =

 ( 0 ,  1 ,  0 ), k =  ( 0 ,  0 ,  1 ). 

A particularly relevant  continuous  vector field on R n, i.e. a continuous map  f : A ⊆ R n → R n, is given by the gradient  Dg :  A ⊆ R n → R n  of a function  g  of class  C 1 (A), i.e. setting  f =  Dg. Vector fields on R n  are studied in detail in Chap. 7

in relationship to differential 1-forms. If  f  is a vector field that equals the gradient f =  Dg  of some function  g ∈  C 1, we say the vector field is  conservative  and that g :  A ⊆ R n → R is a  potential  of  f . 

To highlight the differences, at times crucial, between the target space being R

or R m,  m >  1, we will say that  f  is a scalar function if  m = 1, i.e.  f : R n → R, while if  m >  1,  f : R n → R m  will be referred to as a  vector-valued function. 

For the sake of an example, let us consider a few differences between the scalar and vector-valued cases. For vector-valued functions the mean value theorem does not usually hold, nor does more generally the Taylor formula with Lagrange remainder. To see this let us (continued)
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consider the simplest  vector-valued  case, where  n = 1 and  m = 2. Consider the function f : R → R2, 

 f (t ) =  (r  cos  t, r  sin  t) , 

(3.58)

where  r  is a given positive parameter. In the language of Chapter 6,  f  is a  curve  in R2. Its image is the circle with centre  ( 0 ,  0 )  and radius  r  on the plane. 

As  f ( 0 ) =  f ( 2 π) =  (r,  0 ), we have  f ( 2 π) −  f ( 0 ) =  ( 0 ,  0 ). Yet the derivative  f  (t) does not vanish at any intermediate point in [0 ,  2 π]. On the contrary, the modulus of  f  (t)

| f  (t)| = | (− r  sin  t, r  cos  t)| =  r is constant  (= 0 ). Therefore there is no  ϑ ∈ [0 ,  2 π] such that  f ( 2 π) −  f ( 0 ) = 2 π ·  f  (ϑ). 

Another problem is related to extrema. It does not make sense to talk about local maxima or minima for a vector-valued function  f :  A ⊆ R n → R m, because R m, for  m >  1, is not an ordered set. It is, on the other hand, reasonable to speak of the local maxima or minima of the components  fα  of  f (albeit not so useful), just like it makes sense to consider the local extrema of the modulus | f | of  f . 

As for scalar functions, though, it makes sense to speak of  critical points  of a vector-valued function. For example the function  f : R → R2 defined in (3.58) has no critical points (although its modulus | f | is constant, equal to  r, on the entire R). 

Let  x 0 be a limit point of the set  A ⊆ R n,  f :  A → R m  a function and   ∈ R m  a given point. We say  f (x) tends (or converges) to  as x →  x 0, written lim  f (x) =   (or :  f (x) →   as x →  x 0 ) , x→ x 0

if, for any neighbourhood  Iε() ⊆ R m  of  , there exists a neighbourhood  Iδ(x 0 ) ⊆

R n  of  x 0 such that

 f (x) ∈  Iε() , 

∀  x ∈  Iδ(x 0 ) ∩  A − { x 0}  . 

In terms of inequalities,  f (x)  tends (or converges) to    as  x →  x 0 if, for any given ε >  0, there exists  δ >  0 such that

| f (x) −  |  < ε , 

∀  x ∈  A − { x 0} : | x −  x 0|  < δ . 

The definition of limit is completely analogous to the known case of scalar

functions. In the present vectorial case it is good to note that | f (x) −  | denotes a norm on R m, while | x −  x 0| is a norm on R n. 

Let   =  (α)α=1 ,  2 ,...,m. From the inequality

| fα(x) −  α| ≤ | f (x) −  |  , 

∀  α = 1 ,  2 , . . . , m , 
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we immediately have that if  f (x)  converges to    as  x →  x 0 then every component fα(x)  converges to  α  as  x →  x 0. The converse holds too. In fact, if | fα(x) −  α|  < ε

for any  x ∈  A − { x 0} such that | x −  x 0|  < δ  and for any  α = 1 ,  2 , . . . , m, then

' 

(

(  m



√

| f (x) −  | = )

 (fα(x) −  α) 2  < ε m

 α=1

as well. Hence  a necessary and sufficient condition  for  f =  (fα) :  A ⊆ R n → R m to tend to   =  (α) ∈ R m  as  x →  x 0 is that every component  fα,  α = 1 ,  2 , . . . , m, must tend to  α  as  x →  x 0. 

There is a notion of limit also when | x| → +∞, or for divergent functions

| f | → +∞. For example, if  x 0 is a limit point of  A ⊆ R n, we say | f (x)| → +∞

as  x →  x 0 if for any  M >  0 there exists  δ >  0 such that

| f (x)|  > M , 

∀  x ∈  A − { x 0} :

| x −  x 0|  < δ . 

We leave it to the reader to formulate the other cases. 

We have continuity at  x 0, as usual, whenever  f (x) →  f (x 0 )  as  x →  x 0, which is the same as the continuity at  x 0 of each component  fα  of  f . Hence a function f =  (fα) :  A → R m  is of class  C 0 on  A ⊆ R n, written f ∈  C 0 (A; R m) , 

if and only if each component  fα,  α = 1 ,  2 , . . . , m  is of class  C 0 (A). 

Let  A  be an  open  set in R n,  f :  A → R m  a function with components  fα, α = 1 ,  2 , . . . , m, and fix a point  x  in  A. The function  f admits partial derivatives at  x  if each component  fα  of  f  admits partial derivatives at  x, and  f  admits partial derivatives on  A  if it admits partial derivatives at any  x ∈  A. In these circumstances the  m ×  n matrix of partial derivatives

⎛

⎞

 ∂f 1  ∂f 1

 ∂f 1

⎜

 . . . 

⎜  ∂x 1  ∂x 2

 ∂xn ⎟

⎜

⎟

⎟





⎜

⎜

⎟

 ∂f 2  ∂f 2

 ∂f 2 ⎟

 ∂fα

⎜

 . . . 

⎟

 Df =

= ⎜  ∂x 1  ∂x 2

 ∂xn ⎟  . 

 ∂xi α=1 ,  2 ,...,m

⎜

⎟

 i=1 ,  2 ,...,n

⎜

⎜  . . . . . . . . . . . . ⎟

⎜

⎟

⎝

⎟

⎠

 ∂fm ∂fm

 ∂fm

 . . . 

 ∂x 1  ∂x 2

 ∂xn

is well defined. This is called the  Jacobian matrix  of the vector-valued function  f . 

It is also denoted with the symbol

 Df =  ∂(f 1 , f 2 , . . . , fm) , 

 ∂(x 1 , x 2 , . . . , xn)
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highlighting the components  fα  of  f ( α = 1 ,  2 , . . . , m) and the components  xi  of  x ( i = 1 ,  2 , . . . , n). Let  A  be an open set of R n. We say  f :  A → R m  is  differentiable at  x ∈  A  if it admits partial derivatives at  x (i.e. the Jacobian matrix exists) and f (x +  h) −  f (x) −  Df (x) ·  h

lim

= 0  . 

(3.59)

 h→0

| h|

Observe that  Df (x) ·  h  is the product of the  m ×  n  Jacobian matrix  Df (x)  and the vector  h, seen as an  n × 1 matrix. The product  Df (x) ·  h  is then an  m × 1 matrix, which is coherent with  f (x +  h) −  f (x), dimension-wise. 

In the  m = 1 (scalar) case,  Df (x) ·  h ∈ R, since the product

⎛

⎞





 h

⎜ 1 ⎟





 ∂f

 ∂f

 ∂f

⎜  h ⎟

 ∂f

 Df (x) ·  h =

 , 

 , . . . , 

·⎜ 2 ⎟ =

 h 1 +  ∂f h 2 +  . . . +  ∂f hn

 ∂x 1  ∂x 2

 ∂xn

⎝  . . . ⎠

 ∂x 1

 ∂x 2

 ∂xn

 hn

boils down to the inner product  (Df (x), h)  between the vectors  Df (x)  and  h, one recovers the usual differentiability definition for scalar functions. 

The function  f  is  differentiable on A  if it is differentiable at any  x ∈  A. Given  x, the linear  map R n → R m  defined by  h ∈ R n →  (Df (x), h) ∈ R m  is called the  differential of  f  at  x, and we denote it by  df (x). Hence  df (x) : R n → R m  is the linear map (or linear functional) in the variable  h ∈ R n  defined by

 df (x)(h) =  Df (x) ·  h , 

∀  h ∈ R n . 

(3.60)

Using the “little o" notation, a function  f (x)  defined on the open set  A  is differentiable at  x ∈  A  if it has partial derivatives at  x  and f (x +  h) =  f (x) +  Df (x) ·  h +  o(| h| ) , 

=  f (x) +  df (x)(h) +  o(| h| ) , 

as  h → 0. The differentiability of a vector-valued function is then reduced to the differentiability of its components. We have in fact the following result. 

Differentiability of Vector-Valued Functions  The vector-valued function f :  A →

R m, of components fα, α = 1 ,  2 , . . . , m, is differentiable at x in the open subset A ⊂

R n if and only if the scalar components fα :  A → R , for any α ∈ {1 ,  2 , . . . , m}

 are differentiable at x. Moreover, if f is differentiable on A, the differential df (x), evaluated at h ∈ R n, is the vector of  R m

 df (x)(h) =  (df 1 (x)(h), df 2 (x)(h), . . . , dfm(x)(h))

(3.61)

 of components dfα(x), α = 1 ,  2 , . . . , m. 
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 Proof  It is enough to observe that the limit in (3.59) reads, component-wise, 



 ∂fα

 f

 n

 α (x +  h) −  fα (x) −

 h

 i=1

 i

 ∂x

lim

 i

=

 h→0

| h|

=

 fα(x +  h) −  fα(x) −  (Dfα(x), h)

lim

= 0  , 

 h→0

| h|

for any  α = 1 ,  2 , . . . , m, recalling that the limits of vector-valued functions may be computed through the limits of their scalar components. 

Formula (3.61) follows from (3.60), which expresses the differential  df (x) ·  h =

 Df (x) ·  h  of the vector-valued function  f , because the product  Df (x) ·  h  between the m ×  n  Jacobian matrix and the column vector  h  equals the  m × 1 matrix of components n

 ∂fα hi =  (Dfα(x),h) =  dfα(x)(h), ∀ α = 1 ,  2 ,...,m. 

 ∂xi

 i=1

With the above theorem we may transfer to the vectorial case the main results about

differentiating scalar functions, in practice by applying them to the scalar components fα  of  f . In this way we find that  if f :  A → R m is differentiable at x ∈  A ⊆ R n,  then f is also continuous at x. 

We also have the differentiability criterion:  if f :  A → R m is defined on the open set A ⊆ R n and the Jacobian matrix Df is continuous at x ∈  A (i.e. all elements ∂fα/∂xi of Df are continuous at x)  then f is differentiable at x. 

If the Jacobian matrix  Df  is continuous on an open subset  A ⊂ R n, we say  f : A → R m  is of class  C 1 on  A  and write

 f ∈  C 1 (A; R m) . 

By the previous properties

 f ∈  C 1 (A; R m) ⇒  f

 is differentiable on

 A ⇒  f ∈  C 0 (A; R m) . 

Of particular significance is the formula for the Jacobian of the composite of vector-valued functions. Consider a vector-valued function  f :  A → R m, defined on an open set  A  in R n, and let  f =  f (x)  with  x ∈  A. Suppose  x =  g(t)  itself is a vector-valued function, with  g :  B → R n,  B  open in R k ( k ∈ N) with range  g(B) ⊆  A. Then the composite function F :  B → R m  is well defined, as

 F =  f ◦  g , 

also written  F (t) =  f (g(t)), for  t ∈ R k. The Jacobian of  F  is computed by the next theorem. 

Chain Rule for Vector-Valued Functions  Let g :  B ⊆ R k →  g(B) ⊆  A ⊆ R n and f :  A ⊆ R n → R m be C 1  functions. The composite F =  f ◦  g is of class C 1  (in
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 particular, differentiable) and its Jacobian DF equals the matrix product

 DF =  Df ·  Dg . 

(3.62)

 Proof  Consider the functions  f =  f (x),  x =  g(t)  and the composite  F (t) =  f ◦

 g(t) =  f (g(t)). Let  Fα(t) =  fα(g(t)),  α = 1 ,  2 , . . . , m, denote the components of  F . 

By the chain rule (3.26) for scalar functions, applied to the components  Fα(t), we have n

 ∂F



 α

 ∂fα ∂gi

 (t) =

 , 

(3.63)

 ∂tj

 ∂xi ∂tj

 i=1

for any  α = 1 ,  2 , . . . , m  and  j = 1 ,  2 , . . . , k. This is the same as (3.62) in terms of the components. In fact (3.62) says the Jacobian matrix  DF , of components





 ∂Fα

 DF =

 , 

 ∂tj

with  α = 1 ,  2 , . . . , m  and  j = 1 ,  2 , . . . , k, is the product of the  m ×  n  matrix  Df  of components  ∂fα/∂xi , times the  n ×  k  matrix  Dg  of components  ∂gi/∂tj . Furthermore, since  fα(x)  and  xi(t)  are  C 1 functions for any  α = 1 ,  2 , . . . , m  and  i = 1 ,  2 , . . . , n, from (3.63) we deduce that  Fα  is of class  C 1, whence  F =  (Fα)  is of class  C 1 too. 

Therefore  F  is differentiable. 

The above result gives a way to compute the Jacobian of a composite vector-

valued function; in the same way, the next result expresses the composite function’s

differential. 

Chain Rule for the Differential of a Composite Map  Let g :  B ⊆ R k →  g(B) ⊆

 A ⊆ R n and f :  A ⊆ R n → R m be C 1  functions. Then the differential dF of the composite F =  f ◦  g is the composition

 dF =  df ◦  dg . 

(3.64)

 Proof  In order to prove (3.64) we compute

 df ◦  dg =  df (dg) =  (dfα(dg)) , 

(3.65)

where  fα,  α = 1 ,  2 , . . . , m, are the components of  f . Recalling that the differential of a vector-valued function  g  has as components the differentials of the components  gi (see (3.61)), we set  dg =  (dgi),  i = 1 ,  2 , . . . , n, to obtain n

 ∂fα

 dfα(dg) =

 dgi . 

(3.66)

 ∂xi

 i=1
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Moreover, calling  h =  (hj ),  j = 1 ,  2 , . . . , k, the independent variable in  B ⊆ R k, we have

 k

 ∂gi

 dgi (h) =

 hj . 

(3.67)

 ∂tj

 j =1

From (3.66) and (3.67) we then find





 n

 k



 k

 n

 ∂f



 α ∂gi

 ∂fα ∂gi

 dfα(dg) =

 hj =

 hj

 ∂xi ∂tj

 ∂xi ∂tj

 i=1  j =1

 j =1

 i=1

and using the chain rule (3.63), 

 k

 ∂Fα

 dfα(dg) =

 hj =  dFα . 

(3.68)

 ∂tj

 j =1

Comparing (3.65) and (3.68) we end up with  dF =  (dFα) =  df ◦  dg, i.e. the claim. 

Now consider the case  m =  n. If  f :  A → R n  is defined on an open set  A ⊆ R n and differentiable at point  x 0 ∈  A, either one of the symbols

 ∂(f 1 , f 2 , . . . , fn)

 J (x 0 ) , 

 Jf (x 0 ) , 

det

 (x 0 )

 ∂(x 1 , x 2 , . . . , xn)

denotes the Jacobian determinant, i.e. the determinant of the  n ×  n  matrix  Df (x 0 ). 

Recalling that the determinant of a product is the product of the factors’ determi-

nants, from (3.62) we deduce the next result. 

Jacobian of Composite Functions  Let f :  A ⊆ R n → R n and g :  B ⊆ R n → R n be functions of class C 1  on open sets A, B, with g(B) ⊆  A. Setting F =  f ◦  g, we have JF (t) =  Jf (g(t)) ·  Jg(t) , 

(3.69)

As an application of formulas (3.62) and (3.69) we have Jacobian of Inverse Functions  Let f :  A ⊆ R n → R n be a C 1  function with C 1

 inverse f −1 :  B →  A. Then

 Df −1 (y) = [ Df (f −1 (y))]−1  , 

∀  y ∈  B ; 

(3.70)

 Jf −1  (y) =

1

 , 

∀  y ∈  B . 

(3.71)

 Jf (f −1 (y))
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Appendix to Chap. 3

3.15

Convex Functions

Given distinct points  x 1,  x 2 ∈ R n, the  (line) segment  with endpoints  x 1,  x 2 is the set of points in R n  of the form  tx 1 +  ( 1 −  t)x 2, where  t  is a real parameter in [0 ,  1]. One says  tx 1 +  ( 1 −  t)x 2,  t ∈ [0 ,  1], is  convex combination  of  x 1 and  x 2. 

A set  A ⊆ R n  is  convex  if the segment between any two points  x 1,  x 2 of  A  is contained in  A. In symbols

 x 1 , x 2 ∈  A

⇒

 tx 1 +  ( 1 −  t)x 2 ∈  A , 

∀  t ∈ [0 ,  1]  . 

Let  A  be a convex subset of R n. A function  f :  A → R is  convex  if f (tx 1 +  ( 1 −  t)x 2 ) ≤  tf (x 1 ) +  ( 1 −  t)f (x 2 ) , for any  x 1 , x 2 ∈  A  and  t ∈ [0 ,  1]. 

The definition extends to functions of  n  real variables the analogous notion for functions defined on a real interval. The special case of one-variable functions

is well-suited to construct examples of convex functions on intervals, which are

certainly well known to the reader. 

An example of convex function on R n, with  n ≥ 1, is the norm

 f (x) = | x|  , 

 x ∈ R n . 

By the triangle inequality, 

 f (t x 1 +  ( 1 −  t)x 2 ) = | tx 1 +  ( 1 −  t)x 2| ≤ | tx 1| + | ( 1 −  t)x 2| =  t| x 1| +  ( 1 −  t)| x 2| =

=  tf (x 1 ) +  ( 1 −  t)f (x 2 )

for any  x 1 , x 2 ∈  A  and any  t ∈ [0 ,  1]. Also  f (x) = | x|2 and  f (x) = | x| p,  p ≥ 1, are convex on R n. More generally, 

 f (x) =  g(| x| ) , 

 x ∈ R n , 

with  g : [0 , +∞ ) → R convex and increasing. In fact

 f (t x 1 +  ( 1 −  t)x 2 ) =  g (| tx 1 +  ( 1 −  t)x 2| ) ≤  g(t| x 1| +  ( 1 −  t)| x 2| ) ≤

≤  tg(| x 1| ) +  ( 1 −  t)g(| x 2| ) =  tf (x 1 ) +  ( 1 −  t)f (x 2 ) . 
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Fig. 3.16
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Fig. 3.17
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As in the one-dimensional case (Fig. 3.16), a convex function  f :  A → R of  n variables may be unbounded on the neighbourhood of a boundary point of the set

 A; it may also be discontinuous on the boundary of  A (Fig. 3.17). 

On the other hand, on the interior of  A f  is necessarily continuous. To prove that, we need to define locally bounded and locally Lipschitz functions. 

A function  f :  A → R, defined on a subset  A  of R n  with non-empty interior, is locally upper bounded (or  locally bounded from above) on  A  if for any interior point x 0 of  A, there exists a ball  Br (x 0 ), of centre  x 0 and radius  r >  0, contained in  A, and there exists a constant  M =  M(x 0 , r)  such that

 f (x) ≤  M , 

∀  x ∈  Br(x 0 ) . 

Similarly,  f :  A → R is  locally lower bounded (or  locally bounded from below) on A  if for any interior point  x 0 there exist a ball  Br (x 0 )  contained in  A  and a constant

[image: Image 880]

[image: Image 881]

[image: Image 882]

[image: Image 883]

160

3

Functions of Several Variables

 m =  m(x 0 , r)  such that

 f (x) ≥  m , 

∀  x ∈  Br(x 0 ) . 

Finally,  f :  A → R is  locally bounded  on  A  if it is locally bounded on  A  both from below and from above. 

A function  f :  A → R, defined on  A ⊂ R n  with non-empty interior, is  locally Lipschitz  on  A  if, for any interior point  x 0 of  A, there exist a ball  Br (x 0 ) ⊂  A  and a constant  L =  L(x 0 , r)  such that

| f (x 1 ) −  f (x 2 )| ≤  L| x 1 −  x 2|  , 

∀  x 1 , x 2 ∈  Br(x 0 ) . 

(3.72)

An immediate consequence of definition (3.72) is that every locally Lipschitz function is continuous at any interior point of  A. 

In the sequel we shall always consider functions on sets  A ⊆ R n  with non-empty interior. For these the following theorem holds. 

Local Lipschitz Continuity of Convex Functions  Every convex function f :  A ⊆

R n → R  is locally Lipschitz on A. 

The proof is divided in several steps,: first we will establish local upper

boundedness, then continuity on the interior of  A, which implies local boundedness, and finally we will prove that the function is locally Lipschitz. 

Let us begin from the following relationship, called  discrete Jensen inequality, to distinguish it from the  integral Jensen inequality  discussed at the end of Chap. 8 on multiple integration. 

(Discrete) Jensen Inequality  Let f :  A → R  be a convex function on the convex set A ⊂ R n. If x 1 , x 2 , . . . , xk are k points in A, k ≥ 2 , and t 1 , t 2 , . . . , tk are non-negative real numbers, then

 k

 tixi

 i=1

∈  A , 

(3.73)

 k

 ti

 i=1

⎛

⎞

 k



 k



⎜

 ti xi

 ti f (xi)

⎜

⎟

 i=1

⎟

 i=1

 f ⎜

≤

⎝

⎟

 . 

(3.74)

 k



⎠

 k



 ti

 ti

 i=1

 i=1

[image: Image 884]

[image: Image 885]

[image: Image 886]

[image: Image 887]

[image: Image 888]

[image: Image 889]

[image: Image 890]

[image: Image 891]

[image: Image 892]

[image: Image 893]

[image: Image 894]

[image: Image 895]

[image: Image 896]

[image: Image 897]

[image: Image 898]

[image: Image 899]

[image: Image 900]

[image: Image 901]

[image: Image 902]

3.15 Convex Functions

161

 Proof  We use induction on  k ≥ 2. When  k = 2 condition (3.73) reads t 1 x 1 +  t 2 x 2 =  t 1  x 1 +  t 2  x 2 ∈  A t 1 +  t 2

 t 1 +  t 2

 t 1 +  t 2

and (3.74) is





 t 1 x 1 +  t 2 x 2

 f

≤

 t 1

 f (x 1 ) +

 t 2

 f (x 2 ). 

 t 1 +  t 2

 t 1 +  t 2

 t 1 +  t 2

Now we recast the above relationships in the form of convexity inequalities

 tx 1 +  ( 1 −  t)x 2 ∈  A , 

 f (tx 1 +  ( 1 −  t)x 2 ) ≤  tf (x 1 ) +  ( 1 −  t)f (x 2 ) , by setting

 t =

 t 1

 , 

1 −  t = 1 −

 t 1

=

 t 2

 . 

 t 1 +  t 2

 t 1 +  t 2

 t 1 +  t 2

Suppose (3.73) and (3.74) hold for some  k ≥ 2 and let us prove k+1

 tixi

 i=1

∈  A , 

(3.75)

 k+1

 ti

 i=1

⎛

⎞

 k+1



 k+1



⎜

 ti xi

 ti f (xi)

⎜

⎟

 i=1

⎟

 i=1

 f ⎜

≤

⎝

⎟

 . 

(3.76)

 k+1



⎠

 k+1



 ti

 ti

 i=1

 i=1

Put

 k

 ti

 i=1

 t =

 , 

from which

1 −  t =  tk+1  . 

 k+1



 k+1



 ti

 ti

 i=1

 i=1

Then

 k+1



 k



 k



 ti xi

 tixi

 ti xi

 i=1

=  i=1

+  tk+1 xk+1 =  i=1

 t

+  ( 1 −  t)xk+1 =  tx +  ( 1 −  t)xk+1  , 

 k+1



 k+1



 k+1



 k



 ti

 ti

 ti

 ti

 i=1

 i=1

 i=1

 i=1
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where we have set

 k

 tixi

 i=1

 x =

 k

 ti

 i=1

and observing that  x ∈  A  by the inductive hypothesis (3.73). As  A  is convex, we have  tx +  ( 1 −  t)xk+1 ∈  A  and (3.75) holds. Furthermore, the convexity of  f  and the inductive hypothesis (3.74) give

⎛

⎞

 k+1



⎜

 t

⎜

 i xi ⎟

 i=1

⎟

 f ⎜

⎟ =

⎝

 f (tx +  ( 1 −  t)xk+1 ) ≤  tf (x) +  ( 1 −  t)f (xk+1 ) =

 k+1



⎠

 ti

 i=1

⎛

⎞

 k



 k



⎜

 ti xi ⎟

 ti f (xi)

=

⎜ i=1

⎟

 i=1

 tf ⎜

+

+

⎝

⎟  ( 1 −  t)f (xk+1 ) ≤  t

 ( 1 −  t)f (xk+1 ) =

 k



⎠

 k



 ti

 ti

 i=1

 i=1

 k

 tif(xi)

=  i=1

+  tk+1  f (xk+1 ) , 

 k+1



 k+1



 ti

 ti

 i=1

 i=1

i.e. (3.76). 

Local Upper Boundedness of Convex Functions  Every convex function f :  A ⊆

R n → R  is locally bounded from above on A. 

 Proof  For any point  x 0 in the interior of the convex set  A ⊆ R n  consider an  n-

dimensional cube  Q  of centre  x 0 ( x 0 is the intersection of the cube’s diagonals) whose closure is contained in  A. We shall prove  f  is upper bounded on  Q. This will imply,  f is bounded from above on every ball  B(r, x 0 )  contained in  Q. 

Write  xi,  i = 1 ,  2 , . . . ,  2 n, for the vertices of  Q. The first thing we prove is the geometrically intuitive property that any point in the cube’s interior is a convex combination of the vertices. That is, for any interior  x  there are non-negative reals t 1 , t 2 , . . . , t 2 n  such that

2 n



2 n



 ti = 1  , 

 x =

 tixi . 

(3.77)

 i=1

 i=1
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Fig. 3.18

v1

v3

x

y2

y1

v4

v2

Actually we can prove that, more precisely, any  x  interior to  Q  is a convex combination of at most  n + 1 vertices of  Q. This means some the numbers  t 1 , t 2 , . . . , t 2 n  are zero. 

The proof is by recurrence on  n. The reader can start by understanding the case n = 3 using Fig. 3.18. We denote the chosen vertices of  Q  by  vi,  i = 1 ,  2 , . . . , n + 1. 

In particular,  v 1 is any one vertex of  Q, say  v 1 =  x 1. Consider the straight line through  v 1 and  x, by assumption distinct from  v 1 (being interior to  Q). This line meets the face opposite to  v 1 at some point  y 1, as in Fig. 3.18. The points  v 1,  x  and y 1 are collinear by construction, so  x  is a convex combination of  v 1 and  y 1, i.e. there exists  t 1 ∈  ( 0 ,  1 )  such that

 x =  t 1 v 1 +  ( 1 −  t 1 )y 1  . 

(3.78)

Let  v 2 be the vertex opposite to  v 1. If  y 1 =  v 2 the proof ends and in (3.77) it suffices to choose  t 2 = 1 −  t 1. Otherwise, consider the line through  v 2 and  y 1, which intersects the cube’s boundary (an edge if  n = 3, as in Fig. 3.18) at some  y 2. The point  y 1 is a convex combination of  v 2 and  y 2, so there is  s ∈  ( 0 ,  1 )  such that y 1 =  sv 2 +  ( 1 −  s)y 2  . 

Combining the above with (3.78) gives

 x =  t 1 v 1 +  ( 1 −  t 1 )[ sv 2 +  ( 1 −  s)y 2]  , whence, setting  t 2 =  ( 1 −  t 1 )s, 

 ( 1 −  t 1 )( 1 −  s) =  ( 1 −  t 1 ) −  ( 1 −  t 1 )s = 1 −  t 1 −  t 2  , 
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and then

 x =  t 1 v 1 +  t 2 v 2 +  ( 1 −  t 1 −  t 2 )y 2  . 

Iterating the construction  n−1 times we find  yn−1 on an edge, which is then a convex combination of the vertices  vn  and  vn+1. The process stops after  n  steps, giving n



 x =  t 1 v 1 +  t 2 v 2 +  . . . +  tnvn + 1 −

 ti vn . 

 i=1

 n



 n+1



So if we set  tn+1 = 1−

 ti , we obtain (3.77). Because of (3.77), and since ti =

 i=1

 i=1

1, Jensen’s inequality implies





 n+1



 n+1



 n+1



 f (x) =  f

 ti xi

≤

 tif (xi) ≤  M

 ti =  M , 

 i

 i

 i

where  M = max i{ f (xi)}. This proves  f  is bounded on  Q. 

Continuity of Convex Functions  Every convex function f :  A ⊆ R n → R  is continuous on the interior of A. Precisely, for any interior point x 0  of A, there exists a ball B(r, x 0 ), with centre x 0 , radius r >  0  and closure contained in A, for which the estimate

| f (x) −  f (x 0 )| ≤  M −  f (x 0 ) | x −  x 0|  , ∀  x ∈  Br(x 0 ) , (3.79)

 r

 holds with M = sup{ f (x) :  x ∈  Br (x 0 )} . 

 Proof  Observe that the local upper boundedness of convex functions implies that the upper bound  M  is finite if  Br (x 0 )  has closure contained in  A. It is clear that estimate (3.79) forces  f  to be continuous at  x 0, so we may just prove (3.79). 

First let us show (3.79) for  x 0 = 0. Assume  x 0 = 0 is interior to  A  and let  Br ( 0 )  be a ball of centre 0, radius  r >  0, with closure contained in  A  and for which sup{ f (x) :  x ∈  Br ( 0 )} =  M < +∞  . 

We claim

| f (x) −  f ( 0 )| ≤  M −  f ( 0 ) | x|  , 

∀  x ∈  Br( 0 ) . 

(3.80)

 r

Condition (3.80) is obvious if  x = 0. If  x = 0, call  x 1,  x 2 the two intersections of the boundary of  Br ( 0 )  with the line through  x, x 0 = 0, as in Fig. 3.19. 
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Fig. 3.19
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Let  x 1 be the point with the direction  x/| x| of  x, and  x 2 the antipodal point. As

| x 1| = | x 2| =  r, 

 x

 x

 x 1 =  r | x|  , 

 x 2 = − r | x|  . 

(3.81)

It is easy to write  x  as convex combination of  x 1 and 0: in fact if x =  tx 1 +  ( 1 −  t) 0 =  tx 1  , 

 x

 tr

| x|

we have  x =  tx 1 =  tr

and so

= 1, i.e.  t =

. Therefore

| x|

| x|

 r





| x|

| x|

 x =

 x 1 + 1 −

0

 r

 r

and by convexity





| x|

| x|

 f (x) ≤

 f (x 1 ) + 1 −

 f ( 0 ), 

 r

 r

so

| x|

 f (x) −  f ( 0 ) ≤

[ f (x 1 ) −  f ( 0 )] ≤  M −  f ( 0 )| x| , (3.82)

 r

 r

which proves one part of (3.80). Referring to Fig. 3.19, write  x 0 = 0 as convex combination of  x 2 and  x. Recalling the expression for  x 2 in (3.81) we obtain 0 =  tx 2 +  ( 1 −  t)x = −  tr + 1 −  t x

| x|
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so −  tr + 1 −  t = 0, i.e.  t = | x|

| x|

 r +| x| . Therefore

| x|

0 =  r + | x| x 2 +  r

 r + | x|  x, 

and by convexity

| x|

 f ( 0 ) ≤  r + | x| f(x 2 ) +  r

 r + | x|  f (x), 

so

 (r + | x| )f ( 0 ) ≤ | x| f (x 2 ) +  rf (x), r[ f ( 0 ) −  f (x)] ≤ | x|[ f (x 2 ) −  f ( 0 )] , 

| x|

 f ( 0 ) −  f (x) ≤

[ f (x 2 ) −  f ( 0 )] ≤  M −  f ( 0 )| x| . 

(3.83)

 r

 r

Now (3.82) and (3.83) yield (3.80). Finally, if  x 0 is a generic interior point, apply (3.80) to  g(x) =  f (x +  x 0 ), observing that  g(x)  is defined on a neighbourhood of x = 0. This gives

| g(x) −  g( 0 )| ≤  M −  g( 0 )| x|  , 

∀  x ∈  Br( 0 ), 

 r

i.e. 





 f (x +  x



0 ) −  f (x 0 ) ≤  M −  f (x 0 ) | x|  , 

∀  x ∈  Br( 0 ) , 

 r

leading to (3.79) by a change of notation (replacing  x −  x 0 with  x). 

From the continuity we have just discussed one proves the theorem mentioned

earlier:

Local Lipschitz Continuity of Convex Functions  Every convex function f :  A ⊆

R n → R  is locally Lipschitz on A. Precisely, let x 0  be interior to A and Br (x 0

0 ) a

 ball with centre x 0 , radius r 0  and whose closure Br (x

0

0 ) consists of interior points of

 A. Then for any ball Br (x 0 ) centred at x 0  with radius r < r 0 , the estimate f (x) −  f (y) ≤  M −  m | x −  y| , 

∀  x, y ∈  Br(x 0 ) , 

(3.84)

 r 0 −  r

2

3

2

3

 holds with M = max  f (x) :  x ∈  Br (x

 , m = min  f (x) :  x ∈  B (x

 . 

0

0 )

 r 0

0 )

 Proof  We shall refer to Fig. 3.20. Consider a ball  Br (x (x

0

0 )  whose closure  Br 0

0 )  is

made of interior points of  A  and let  Br (x 0 )  be a concentric neighbourhood of radius r < r 0. As  f  is continuous, it assumes maximum and minimum on  Br (x 0

0 ). For any
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Fig. 3.20
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0

 x ∈  Br (x 0 ), the ball  Br

 (x

0− r (x )  of centre  x  and radius  r 0 −  r  is contained in  Br 0

0 ) (see

Fig. 3.20). By continuity at  x (Eq. (3.79)), for any  x ∈  Br (x 0 )  and any  y ∈  Br 0− r (x) we have







 f (y) −  f (x) ≤  M −  f (x) | y −  x| ≤  M −  m  y −  x| . 

(3.85)

 r 0 −  r

 r 0 −  r

This proves (3.84) for a generic  x  in  Br (x 0 )  but with  y ∈  Br 0− r (x). Let us now address the case in the Lipschitz theorem, with  x,  y ∈  Br(x 0 ). Divide the line segment [ x, y] in  k  parts of equal length | x −  y| /k  as in Fig. 3.21, using points xj ,  j = 0 ,  1 , . . . , k

 x 0 =  x, 

 x 1 , 

 x 2 , . . . , xk =  y

defined as

 xj =  x +  j (y −  x), 

 j = 0 ,  1 , . . . , k . 

 k
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| x −  y|

Choose  k ∈ N large, i.e.  k > 

, so that

 r 0 −  r











1







 x











 j +1 −  xj =   (y −  x)

 x −  y < r 0 −  r , 

∀  j = 0 ,  1 , . . . , k − 1  . 

 k

= 1 k

Thus  xj+1 ∈  Br 0− r(xj )  and we may apply (3.85) with  x =  xj ∈  Br (x 0 )  and  y =

 xj+1 ∈  Br 0− r (xj ):









| x −  y|

 f (x







 j +1 ) −  f (xj ) ≤  M −  m xj +1 −  xj =  M −  m ·

 . 

 r 0 −  r

 r 0 −  r

 k

Adding the above relations for all  j = 0 ,  1 , . . . , k − 1 produces k−1





 k−1















 f (x) −  f (y) = 

[ f (x







 j +1 ) −  f (xj )] ≤

 f (xj+1 ) −  f (xj ) ≤





 j =0

 j =0

|

 k−1







≤  M −  m ·  x −  y| ·

1 =  M −  m  x −  y  . 

 r 0 −  r

 k

 r 0 −  r

 j =0

The following criterion has independent theoretical interest, besides being useful

to establish whether a given function  f :  A → R is convex on some open set  A  in R n. 

Convexity Criterion for Differentiable Functions  Let A be an open and convex set in  R n and f :  A → R  a differentiable function on A. Then f is convex on A if and only if

 f (x) ≥  f (x 0 ) +  (Df (x 0 ), x −  x 0 ) , 

∀  x, x 0 ∈  A , 

(3.86)

 or if and only if

 (Df (y) −  Df (x), y −  x) ≥ 0  , 

∀  x, y ∈  A . 

(3.87)

Condition (3.86) is interpreted geometrically by saying that the graph of  f  lies above the tangent plane, in correspondence to any point  x ∈  A  and for any tangent point  x 0 ∈  A. In view of (3.87) we say that the Jacobian  Df :  A ⊆ R n → R n  of a convex function is a  monotone operator  on R n, thus extending the monotonicity, well known for  n = 1, of the derivatives of convex functions in one real variable. 

 Proof  If  f  is convex, by definition

 f (tx +  ( 1 −  t)x 0 ) ≤  tf (x) +  ( 1 −  t)f (x 0 )
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for any  x,  x 0 ∈  A  and  t ∈ [0 ,  1]. We rewrite this as f (x 0 +  t (x −  x 0 )) ≤  f (x 0 ) +  t f (x) −  f (x 0 ) , whence

 f (x 0 +  t (x −  x 0 )) −  f (x 0 ) ≤  f(x) −  f(x 0 ). 

 t

The limit as  t → 0+ of the left-hand side is the derivative of  ϕ(t) =  f (x 0 +  t (x −  x 0 )) at  t = 0. By the chain rule, when  t → 0+ we have

 (Df (x 0 ), x −  x 0 ) ≤  f (x) −  f (x 0 ) . 

Conversely, if (3.86) holds, given  x, x 0 ∈  A  we consider the convex combination  x 0 +

 t (x −  x 0 ).  Then (3.86) implies the two inequalities f (x) ≥  f (x 0 +  t (x −  x 0 )) +  (Df (x 0 +  t (x −  x 0 )), ( 1 −  t) (x −  x 0 )) (3.88) f (x 0 ) ≥  f (x 0 +  t (x −  x 0 )) +  (Df (x 0 +  t (x −  x 0 )), − t (x −  x 0 )) . 

(3.89)

Multiplying (3.88) by  t  and (3.89) by  ( 1 −  t), then adding, gives the convexity of  f : tf (x) +  ( 1 −  t)f (x 0 ) ≥  f (x 0 +  t (x −  x 0 )) =  f (tx +  ( 1 −  t)x 0 ) . 

We claim that from (3.86) we can obtain (3.87). Consider, besides f (x) ≥  f (x 0 ) +  (Df (x 0 ), x −  x 0 ) , 

∀  x, x 0 ∈  A

(this is (3.86)), also the relationship coming from (3.86) when we interchange  x  and x 0:

 f (x 0 ) ≥  f (x) +  (Df (x), x 0 −  x) , 

∀  x, x 0 ∈  A. 

Adding the two we find

0 ≥  (Df (x 0 ) −  Df (x), x −  x 0 ) , 

∀  x, x 0 ∈  A, 

i.e. (3.87). Vice versa, start from (3.87) and apply the mean value theorem to  ϕ :

[0 ,  1] → R, 

 ϕ(t) =  f (x 0 +  t (x −  x 0 )) . 
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There exists  ϑ ∈  ( 0 ,  1 )  such that  ϕ( 1 ) −  ϕ( 0 ) =  ϕ (ϑ) ,  i.e. 

 f (x) −  f (x 0 ) =  (Df (x 0 +  ϑ (x −  x 0 )), x −  x 0 ) . 

By (3.87)

 (Df (x 0 +  ϑ (x −  x 0 )) −  Df (x 0 ), ϑ (x −  x 0 )) =

=  ϑ (Df (x 0 +  ϑ (x −  x 0 )) −  Df (x 0 ), x −  x 0 ) ≥ 0  , whence (3.86)

 f (x) −  f (x 0 ) =  (Df (x 0 +  ϑ (x −  x 0 )), x −  x 0 ) ≥  (Df (x 0 ), x −  x 0 ) . 

Finally, let us discuss a convexity criterion relying on the properties of the

Hessian matrix  D 2 f  of the second derivatives of  f . 

Convexity Criterion for  C 2 Functions  Let A be an open convex set of  R n and f : A → R  a function of class C 2 (A). Then f is convex on A if and only if the Hessian matrix D 2 f (x) is positive semi-definite for any x ∈  A. 

 Proof  Suppose  D 2 f (x)  is positive semi-definite for any  x ∈  A.  Given  x, x 0 ∈  A, Taylor’s formula of order two with Lagrange remainder ensures that there is a real

number  ϑ ∈  ( 0 ,  1 )  such that





 f (x) =  f (x 0 )+ (Df (x 0 ), x − x 0 ) + 1  D 2 f (x 0+  ϑ(x − x 0 )) ·  (x −  x 0 ), x − x 0

2

As the Hessian matrix is positive semi-definite at every point in the convex set  A ⊂ R n, and since

 x 0 +  ϑ(x −  x 0 ) =  ϑx +  ( 1 −  ϑ) x 0

is a convex combination of  x, x 0 ∈  A, and hence belongs to  A,  it follows that f (x) −  f (x 0 ) −  (Df (x 0 ), x −  x 0 ) =





= 1  D 2 f (x 0 +  ϑ (x −  x 0 )) ·  (x −  x 0 ), x −  x 0 ≥ 0  . 

2

By the convexity criterion (3.86)  f  is convex on  A. 

Conversely, let us suppose  f  is convex on  A.  As  A  is open, for any  x 0 ∈  A  and any λ ∈ R n  the function  ϕ : [0 ,  1] → R given by

 ϕ(t) =  f (x 0 +  t λ)
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is defined on an entire neighbourhood of  t = 0 ,  say  t ∈  (− δ, δ)  with  δ >  0 .  For such  t, since

 x 0 = 1  (x 0 +  t λ) + 1  (x 0 −  t λ) , 

2

2

the convexity of  f  implies

 f (x 0 ) ≤ 1  f (x 0 +  tλ) + 1  f (x 0 −  t λ) 2

2

and so, equivalently, 

 f (x 0 +  tλ) +  f (x 0 −  t λ) − 2  f (x 0 ) ≥ 0 , t 2

for any  t ∈  (− δ, δ), t = 0 .  We can calculate the limit as  t → 0 of the above left-hand side applying twice de l’Hôpital’s rule and the chain rule. This gives

 f (x 0 +  t λ) +  f (x 0 −  tλ) − 2  f (x 0 )

0 ≤ lim

=

 t → 0

 t 2

=

 (Df (x 0 +  t λ), λ) −  (Df (x 0 −  t λ), λ)

lim

=

 t→0

2  t







=

1

lim

 D 2 f (x 0 +  t λ) ·  λ, λ +  D 2 f (x 0 −  t λ) ·  λ, λ

=

 t → 0 2





=  D 2 f (x 0 ) ·  λ, λ . 

In the final limit we have used the assumption  f ∈  C 2 (A).  Therefore  D 2 f (x 0 )  is positive semi-definite. 

Remark When  n = 2 ,  using the characterisation of semi-definite 2 × 2 matrices of Sect. 3.12, we can make the convexity criterion for  C 2 functions  f :  A ⊆ R2 → R

more precise. For that let us denote by  Hf (x, y) = det  D 2 f (x, y)  the Hessian determinant









 f



4

52

 Hf (x, y) =   xx(x, y)

 fxy (x, y) =





 fxx ·  fyy −  fxy

 . 

 f



 yx (x, y)

 fyy (x, y)

Then the function  f =  f (x, y)  is convex on the open set  A ⊂ R2 if and only if 4

52

 Hf (x, y) =  fxx ·  fyy −  fxy

≥ 0

∀  (x, y) ∈  A. 

 fxx(x, y) ≥ 0  fyy(x, y) ≥ 0  , 
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Fig. 3.22  f (x, y) =  x 2

 y

 Example 1  The function of two real variables

 f (x, y) =  x 2

 y

is convex on the open set  A = { (x, y) ∈ R2 :  y >  0} .  In fact we can apply the convexity criterion of  C 2 functions. The Hessian matrix is





2

− 2  x

 y

 D 2 f (x, y) =

 y 2

− 2  x  2  x 2

 y 2

 y 3

and its determinant  Hf (x, y) = det  D 2 f (x, y)  is identically zero. Since  fxx(x, y) >  0 and fyy (x, y) ≥ 0 for any  (x, y) ∈  A,  the function is convex on  A.  The graph of  f (x, y),  when (x, y)  is in the square [−1 ,  1] × [0 ,  2] ,  is shown in Fig. 3.22. 

 Example 2  Generalising the previous example, verify that the function of two real variables f (x, y) =  xp ·  yq

with  p, q ∈ R ,  is convex on the open convex subset of R2

 A = { (x, y) ∈ R2 :  x >  0 , y >  0 }

if and only if

 p (p − 1 ) ≥ 0 , 

 q (q − 1 ) ≥ 0 , 

 pq( 1 −  p −  q) ≥ 0  . 
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3.16

Complements on Quadratic Forms

We continue the study of  quadratic forms  on R n  started in Sect. 3.12. 

Given a  square n ×  n matrix A =  (aij ), i, j = 1 ,  2 , . . . , n,  consider the homogeneous polynomial  F (λ)  of degree two in the components of  λ ∈ R n  with coefficients  aij  defined by

 n



 F (λ) =  (A ·  λ, λ) =

 aij λiλj , 

 λ ∈ R n, 

(3.90)

 i,j =1

( A ·  λ  is the matrix product of  A  by the column vector  λ). We call  F (λ)  the  quadratic form associated with the matrix A =  (aij ). 

In expression (3.90) we may rewrite the  ij  terms with  i =  j  in the form aij +  aji

 aij +  aji

 aij λiλj +  ajiλj λi =  (aij +  aji) λiλj =

 λiλj +

 λj λi . 

2

2

Replacing  aij  with  (aij + aji)/ 2 (the quadratic form does not change), we can always suppose the matrix  A =  (aij )  is  symmetric, i.e. 

 aij =  aji

∀  i, j = 1 ,  2 , . . . , n. 

An  eigenvalue  of the symmetric matrix  A  is by definition a number (in general a complex number)  α  such that the linear system

 A x =  αx

(3.91)

admits at least one non-zero solution  x, called an  eigenvector  of  A  associated with the eigenvalue  α. 

System (3.91) may be recast in the equivalent form

 (A −  αI ) x = 0  , 

(3.92)

where  I  is the identity matrix. By Cramer’s rule, (3.91) or equivalently (3.92) has a non-zero solution  x  if and only if the determinant of the coefficient matrix is zero: a



11 −  α

 a 12

 . . . 

 a 1 n







 a



det  (A −  αI ) =  21

 a 22 −  α . . . 

 a 2 n

=





0

(3.93)

 . . . 

 . . . 

 . . . 

 . . . 







 a



 n 1

 an 2

 . . . ann −  α
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Expanding the determinant shows that the left-hand side of (3.93) is a polynomial of degree  n  in  α,  called the  characteristic polynomial  of  A,  with the following form det  (A −  αI ) =  (−1 )nαn +  (−1 )n−1 (a 11 +  a 22 +  . . . +  ann)αn−1 +  . . . + det  A . 

(3.94)

The eigenvalues  α  of  A  are exactly the roots of the characteristic polynomial (3.94) of  A,  i.e. the (complex) solutions to equation (3.93). 

By the fundamental theorem of algebra the characteristic polynomial (3.94) admits  n  roots, real or complex, with multiplicity. Given the characteristic polynomial’s special structure, and since  A  is symmetric, it can be proved that its roots, i.e. the eigenvalues of  A,  are all real. 

Theorem 1  The characteristic polynomial’s roots, i.e. the eigenvalues of the symmetric matrix A, are all real. 

 Proof  Let  α  be an eigenvalue of  A  and  x ( x = 0 )  a corresponding eigenvector, i.e.  α  is a root ( α ∈ C in general) of (3.93) and  x  is a complex solution ( x ∈ C n, a vector with  n complex components) of system (3.91). Take the inner product of either side of (3.91) with  x, the complex conjugate of  x (whose components are the complex conjugates of the components of  x):

 (A x, x) =  α (x, x) . 

Set  x =  xk +  i yk ,  where  i  is the imaginary unit ( i 2 = −1 ). On the right-hand side we have

 n



 n



 (x, x) =

 (xk +  i yk) (xk −  i yk) =

 (x 2 +

 k

 y 2 k) = | x|2  . 

 k=1

 k=1

On the left, due to the symmetry of  A, 

 n



 (A x, x) =

 ahk(xh +  i yh) (xk −  i yk) =

 h,k=1

 n



=

 ahk (xhxk +  i (yhxk −  ykxh) +  yhyk) =

 h,k=1

 n



=

 akh (xkxh −  i(ykxh −  yhxk) +  ykyh) =  (A x, x) , 

 h,k=1
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i.e.  (A x, x)  coincides with its conjugate  (A x, x) .  Hence  (A x, x)  is a real number and so is

 α =  (A x, x) . 

| x|2

By Theorem 1 the  n  eigenvalues of a symmetric matrix  A =  (aij ), counted with multiplicity, are real. We denote them by  α 1 , α 2 , . . . , αn  in increasing order. Call  m the smallest among the  αi , i = 1 ,  2 , . . . , n,  and  M  the largest one. Then m =  α 1 ≤  α 2 ≤  . . . ≤  αn =  M . 

Theorem 2  If m, M are the smallest and largest eigenvalues of a symmetric matrix A, then

 m | λ|2 ≤  (A ·  λ, λ) ≤  M | λ|2  , 

∀  λ ∈ R n. 

(3.95)

 Proof  Consider the quadratic form

 n



 F (λ) =  (A ·  λ, λ) =

 aij λiλj , 

 i,j =1

for  λ  in the compact set  K = { λ ∈ R n : | λ| = 1} ⊂ R n. By the Weierstrass theorem the continuous function  F  assumes maximum and minimum on  K. In other words there exist  λ 1 , λ 2 ,  with | λ 1| = | λ 2| = 1 ,  such that n



 F (λ 1 ) ≤

 aij λiλj ≤  F (λ 2 ) , 

∀  λ ∈ R n, | λ| = 1 . 

(3.96)

 i,j =1

Set  m 1 =  F (λ 1 ) , m 2 =  F (λ 2 ) .  For any  λ ∈ R n − {0} ,  define  μ =  λ/ | λ|  .  As | μ| = 1 , from (3.96) we have

 n



 n



 n

 λ



 i

 λj

 m 1 ≤

 aij μiμj =

 aij

·

= 1 ·

|

 aij λiλj ≤  m 2  . 

 λ| | λ|

| λ|2

 i,j =1

 i,j =1

 i,j =1

Now set

 n



 G(λ) = 1

·

 a

|

 ij λi λj , 

 λ|2

 i,j =1

giving | λ 1| = | λ 2| = 1,  G(λ 1 ) =  m 1 , G(λ 2 ) =  m 2 and m 1 ≤  G(λ) ≤  m 2  , 

∀  λ ∈ R n − {0} . 

(3.97)
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Hence  λ 1 is a minimum point (local and absolute) for  G  on { λ ∈ R n :  λ = 0}  ,  whilst λ 2 is a maximum point. If at these points the gradient of  G  exists, it must vanish. Now, 





 ∂G = 1 ·  ∂ (A ·  λ,λ) · | λ|2 −  (A ·  λ,λ) ·  ∂ | λ|2  . 

 ∂λi

| λ|4

 ∂λi

 ∂λi

Clearly





 ∂ | λ|2 =  ∂ λ 2 +  λ 2 +  ... +  λ 2 = 2 λi

 ∂λ

1

2

 n

 i

 ∂λi

and

 ∂  4

5

4

 A ·  λ, λ =  ∂

 a 11 λ 2 + 2 a 12 λ 1 λ 2 +  . . . + 2  a 1 i λ 1 λi +  . . . + 2  a 2 i λ 2 λi +  . . . 

 ∂λ

1

 i

 ∂λi

5

+  . . . +  aiiλ 2 +

=

 i

 . . . +  annλ 2 n

4

5

 n



= 2  a 1 iλ 1 +  a 2 iλ 2 +  . . . +  aniλn = 2

 ajiλj . 

 j =1

Therefore

⎡

⎤

 n

 ∂G



= 2 ⎣

 a

⎦

 j i λj −  (A ·  λ, λ) λi

; 

 ∂λi

| λ|2

| λ|2

 j =1

 DG = 2 [ A ·  λ −  G(λ)λ]  . 

| λ|2

When  λ =  λ 1 and  λ =  λ 2 the gradient  DG  is zero, i.e. 

 A ·  λ −  G(λ)λ = 0  , 

for  λ =  λ 1 and  λ =  λ 2  . 

As  λ 1 and  λ 2 are non-zero vectors, necessarily  G(λ 1 ) =  m 1 and  G(λ 2 ) =  m 2 are eigenvalues of  A, with respective eigenvectors  λ 1  , λ 2. 

We claim  m 1 is the smallest eigenvalue of  A  and  m 2 is the largest. If  α  is another eigenvalue of  A  with (non-zero) eigenvector  λ 0, then  Aλ 0 =  α λ 0  ,  so  (A λ 0 , λ 0 ) =

 α | λ 0|2. From (3.97)

 m 1 ≤  G(λ 0 ) =  (A λ 0 , λ 0 ) =  α ≤  m

|

2  . 

 λ 0|2

In the theorem’s notation we then have  α 1 =  m =  m 1 , αn =  M =  m 2, and (3.97) implies

 m | λ|2 ≤  (A ·  λ, λ) ≤  M | λ|2  , 

∀  λ ∈ R n − {0}  . 

As the relationship is trivial when  λ = 0 ,  the theorem is proved. 
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Theorem 3  A symmetric matrix A =  (aij ) is positive definite (negative definite) if and only if all eigenvalues are positive (negative). The matrix A is positive semi-definite (negative semi-definite) if and only if the eigenvalues are non-negative (non-positive). 

 At last, A is indefinite if and only if there are eigenvalues of opposite sign. 

 Proof  Suppose the eigenvalues of  A  are positive. Then clearly the smallest one is positive too, and (3.95) implies  (A ·  λ, λ) >  0 for any  λ ∈ R n − {0}. Hence  A  is positive definite. Similarly, if  m ≥ 0 then  (A ·  λ, λ) ≥ 0 for any  λ ∈ R n.  The cases M <  0 and  M ≤ 0 are treated similarly. 

If instead there exist two eigenvalues of opposite sign  α 1  <  0  < α 2 ,  calling  λ 1 , λ 2

the corresponding (non-zero) eigenvectors, we find  Aλ 1 =  α 1 λ 1  , Aλ 2 =  α 2 λ 2, and so (Aλ 1 , λ 1 ) =  α 1| λ 1| 2  <  0 , (A λ 2 , λ 2 ) =  α 2 | λ 2|2  >  0  . 

Hence the associated quadratic form  (A ·  λ, λ)  assumes both signs and  A  is indefinite. 

The converse is immediate using (3.95) and (some of the steps in the proof of) Theorem 2. In fact

 m ≤  (A ·  λ, λ) ≤  M , 

∀  λ ∈ R n − {0} , 

| λ|2

where  m, M  are the minimum and maximum eigenvalues of  A. These, moreover, are values attained by  G(λ) =  (A ·  λ, λ)/ | λ|2 at certain (non-zero) values of  λ. 

Note that from Theorems 2 and 3 we can deduce the characterisation of positive definite (symmetric) matrices from Sect. 3.12, whereby  a symmetric matrix A =  (aij ) is positive definite if and only if there exists a constant m >  0  such that (A ·  λ, λ) ≥  m | λ|2  , 

∀  λ ∈ R n. 

We state without proof a characterisation for definite  n ×  n  symmetric matrices A =  (aij ). Consider the  n submatrices A 1 , A 2 , . . . , An  constructed starting from the top left corner of  A  and enlarging along the main diagonal, as follows:





⎛

⎞

 a 11  a 12  a 13

 a

⎜

⎟

 A

11  a 12

1 =  (a 11 ) , 

 A 2 =

 , 

 A 3 = ⎝ a 21  a 22  a 23⎠  , . . . , 

 a 21  a 22

 a 31  a 32  a 33

⎛

⎞

 a

⎜ 11

 a 12

 . . . a 1 ,n−1

⎜

⎟

 a

⎟

 . . . , A

21

 a 22

 . . . a 2 ,n−1

 n−1 = ⎜

⎝

⎟

 . . . 

 . . . 

 . . . 

 . . . 

⎠  , 

 An =  A . 

 an−1 ,  1  an−1 ,  2  . . . an−1 ,n−1
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Theorem 4  A symmetric matrix A =  (aij ) is positive definite if and only if det  Ak >  0  , 

∀  k = 1 ,  2 , . . . , n , 

 and negative definite if and only if

det  A 1 = a 11  <  0  , 

det  A 2  >  0  , 

det  A 3  <  0 , . . . , (−1 )n  det  An =  (−1 )n  det  A >  0  . 

We end the section by studying the convexity of quadratic forms. 

Characterisation of Convex Quadratic Forms  Let A =  (aij ) be a symmetric matrix. 

 The associated quadratic form F (λ) =  (A ·  λ, λ) is convex for λ ∈ R n if and only if A is positive semi-definite. 

 Proof (First Method)  Easily, the function  F  is of class  C 2 ( R n). Let us compute the Hessian matrix  D 2 F , starting from the gradient  DF :

 ∂ F (λ) =  ∂ (A ·  λ,λ) =

 ∂λi

 ∂λi 

=  ∂

 a 11 λ 2 + 2 a 12 λ 1 λ 2 +  . . . + 2 a 1 iλ 1 λi +  . . . 

 ∂λ

1

 i



 . . . + 2  a 2 iλ 2 λi +  . . . +  aiiλ  2 +

=

 i

 . . . +  annλ 2 n

 n



= 2  (a 1 iλ 1 +  a 2 iλ 2 +  . . . +  aniλn) = 2

 ajiλj , 

 j =1

so

 n

 ∂ 2



 F (λ) =

 ∂ 2

 (A ·  λ, λ) =  ∂  2

 ajiλj = 2 aji . 

 ∂λi∂λj

 ∂λi∂λj

 ∂λj j=1

As  A  is symmetric, we have  aji =  aij  for any  i, j = 1 ,  2 , . . . , n  and the Hessian matrix D 2 F,  constant on R n,  is equal to 2 A, the matrix obtained doubling all the entries of  A. 

Hence for the associated quadratic forms:

 (D 2 F ·  λ, λ) = 2  (A ·  λ, λ) , 
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and  D 2 F  is positive semi-definite if and only if  A  is positive semi-definite. By the convexity criterion for  C 2 functions (see previous section),  F  is convex on R n  if and only if  A  is positive semi-definite. 

 Proof (Second Method)  This argument is directly based on the definition of convexity and the  Cauchy-Schwarz inequality of quadratic forms. We state immediately the inequality and justify it at the end of the present proof. If the matrix  A  is positive semi-definite, for any  λ, μ ∈ R n

| (A ·  λ, μ)| ≤  (A ·  λ, λ) 1 / 2 ·  (A ·  μ, μ) 1 / 2  . 

(3.98)

Suppose  A  is positive semi-definite and let us show that the quadratic form  F (λ) =

 (A ·  λ, λ)  is convex on R n.  For any  λ, μ ∈ R n  and any  t ∈ [0 ,  1]

 F (tλ +  ( 1 −  t)μ) =

=  (A ·  (tλ +  ( 1 −  t)μ), tλ +  ( 1 −  t)μ) =

=  t 2  (A ·  λ, λ)+ t( 1 −  t) (A ·  λ, μ)+ t( 1 −  t) (A ·  μ, λ)+ ( 1 −  t) 2  (A ·  μ, μ) . 

By the symmetry of  A  we have  (A ·  λ, μ) =  (A ·  μ, λ) . Furthermore, using the Cauchy-Schwarz inequality (3.98), 

 F (tλ +  ( 1 −  t)μ) =

=  t 2  (A ·  λ, λ) + 2 t( 1 −  t) (A ·  λ, μ) +  ( 1 −  t) 2  (A ·  μ, μ) ≤

≤  t 2  (A ·  λ, λ) +

+ 2 t( 1 −  t) (A ·  λ, λ) 1 / 2 ·  (A ·  μ, μ) 1 / 2 +  ( 1 −  t) 2  (A ·  μ, μ) =



2

=  t (A ·  λ, λ) 1 / 2 +  ( 1 −  t) (A ·  μ, μ) 1 / 2  , and so

 (A ·  (tλ +  ( 1 −  t)μ), tλ +  ( 1 −  t)μ) 1 / 2 ≤  t (A ·  λ, λ) 1 / 2 +  ( 1 −  t) (A ·  μ, μ) 1 / 2  , 
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i.e.  λ ∈ R n →  G(λ) =  (A ·  λ, λ) 1 / 2 is convex. But then  F (λ) = [ G(λ)]2 is convex on R n  as well. In fact, by the monotonicity and convexity of  s →  s 2 when  s ≥ 0 ,  we have F (tλ +  ( 1 −  t)μ) = [ G(tλ +  ( 1 −  t)μ)]2 ≤ [ tG(λ) +  ( 1 −  t)G(μ)]2 ≤

≤  t [ G(λ)]2 +  ( 1 −  t) [ G(μ)]2 =  tF (λ) +  ( 1 −  t)F (μ) . 

Vice versa, if  F (λ) =  (A ·  λ, λ)  is convex on R n,  as 0 ∈ R n  is a convex combination of  λ  and − λ, 

0 = 1  λ + 1  (− λ) , 

2

2

we see  A  is positive semi-definite, because  (A ·  (− λ), (− λ)) =  (A ·  λ, λ) ,  and (A ·  λ, λ) = 1  (A ·  λ, λ) + 1  (A ·  (− λ), (− λ)) ≥

2

2









≥

1

1

 A ·

 λ + 1  (− λ) , λ + 1  (− λ) =  (A · 0 ,  0 ) = 0  . 

2

2

2

2

In the above proof we have used the following:

Cauchy-Schwarz Inequality for Quadratic Forms  Let A be a positive semi-definite symmetric matrix. Then for any λ, μ ∈ R n

| (A ·  λ, μ)| ≤  (A ·  λ, λ) 1 / 2 ·  (A ·  μ, μ) 1 / 2  . 

(3.99)

 Proof  For any  λ, μ ∈ R n, the symmetry of  A  gives  (A ·  λ, μ) =  (A ·  μ, λ) .  Hence for any  λ, μ ∈ R n  and  t ∈ R

 (A ·  (tλ +  μ), tλ +  μ) =  t 2  (A ·  λ, λ) +  t (A ·  λμ) +  t (A ·  μ, λ) +  (A ·  μ, μ) =

=  t 2  (A ·  λ, λ) + 2 t (A ·  λ, μ) +  (A ·  μ, μ) . 

The quadratic polynomial  t 2  (A ·  λ, λ) + 2 t (A ·  λ, μ) +  (A ·  μ, μ)  is non-negative for any  t ∈ R because  A  is positive semi-definite. Hence its discriminant    is less than or equal to zero:





  = 4 [ (A ·  λ, μ)]2 −  (A ·  λ, λ) ·  (A ·  μ, μ) ≤ 0  , which is claim (3.99). 
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3.17

The Maximum Principle for Harmonic Functions

Let    be an open subset of R n. A  C 2 function  u :   → R is said to be  harmonic  on

   if it solves the linear, second-order partial differential equation

 ∂ 2 u +  ∂ 2 u +  ... +  ∂ 2 u = 0 , x ∈   . 

 ∂x 2

 ∂x 2

 ∂x 2

1

2

 n

The above PDE is called  Laplace equation  and is written more compactly as  u =

0 ,  i.e. 

 n

 ∂ 2 u

 u =

= 0  , 

 x ∈   . 

 ∂x 2

 i=1

 i

In dimension one,  n = 1 ,  where   =  (a, b)  is a real open interval, a harmonic function u :  (a, b) → R satisfies  u = 0 for any  x ∈  (a, b).  Integrating twice it is straightforward to see that any function of that type is affine on  (a, b),  i.e. of the form  u(x) =  m x +  q  with m, q ∈ R . 

If  n ≥ 2 ,  there exist many harmonic maps besides affine functions

 n



 u(x) =  q +

 mi xi , 

 x =  (xi ) ∈   , 

 i=1

 mi , q ∈ R .  For instance, when  n = 2 ,  the following are all harmonic on their domains of definition (the reader should check this):



 u(x, y) =  x 2 −  y 2  , 

 u(x, y) = log  x 2 +  y 2  , 

 x

 u(x, y) =  ex  cos  y , 

 u(x, y) = arctg

 . 

 y

For  n ≥ 3, the function

 u(x) = | x|2− n , 

 x ∈   = R n − {0}

is harmonic. The function  u(x, y) =  x 3 −3 xy 2 is harmonic on R2; its graph, when  (x, y)  is in the square [−1 ,  1] × [−1 ,  1] ,  is plotted in Fig. 3.23. The gradient is zero only at  (x, y) =

 ( 0 ,  0 ),  but this is not a maximum nor a minimum point of  u (the reader should check this analytically). This is a general feature: no harmonic function has local extrema on the interior of its domain of definition. The maximum principle, discussed below, is based on this fact. 

The reader should observe the level curves of  u(x, y) =  x 3 − 3 xy 2 in Fig. 3.24. They are not closed (because the function does not have interior local extrema) and therefore the curves all reach the boundary. 

(continued)
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Fig. 3.23 Graph of

 u(x, y) =  x 3 − 3 xy 2

Fig. 3.24 Level curves of

 u(x, y) =  x 3 − 3 xy 2
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Let    be an open  bounded  subset of R n  and  u  a function defined on    and continuous there, i.e.  u ∈  C 0 (). Denote by  m, M  the minimum and maximum of  u  on the boundary  ∂  of   (these exist by the Weierstrass theorem, since  ∂  is compact in R n):

 m = min { u(x) :  x ∈  ∂}  , 

 M = max { u(x) :  x ∈  ∂}  . 

(3.100)

If  u ∈  C 2 ()  is harmonic on  , moreover, the maximum and minimum of  u on the entire   are equal to  M, m  respectively. We have in fact:

Maximum Principle  Let  be an open bounded set in  R n and u ∈  C 0 () ∩  C 2 () a harmonic function on . Call m, M the minimum and maximum of u on the boundary

 ∂, as in (3.100) . Then

 m ≤  u(x) ≤  M, 

∀  x ∈   . 

(3.101)

A consequence of the maximum principle is that a harmonic function  u  cannot

have an absolute maximum or minimum point that is  interior  and

 strict. For

instance, for maxima, there is no  x 0 ∈    such that  u(x 0 ) > u(x)  for any  x ∈  −{ x 0}. 

For example,  u(x) = constant satisfies the maximum principle’s assumptions

(and the conclusion!), and every point in an open and bounded subset   ⊂ R n  is a maximum and a minimum point for  u  interior to  , but not strict. 

The hypothesis that the open set    is  bounded  is essential. For example, for  n = 2 the function  u(x, y) =  ex  cos  y  is harmonic on the unbounded set π

  =  (x, y) ∈ R2 : −  π < y < 

2

2

2

3

and vanishes along the boundary  ∂ =  (x, y) ∈ R2 : | y| =  π/ 2  .  Therefore the numbers m, M  in (3.100) are both zero and (3.101) does not hold on  . The reader can verify that, on the other hand, estimate (3.101) holds on the bounded set   ∩ { (x, y) ∈ R2 : | x|  < r}, whichever  r >  0 is chosen. 

 Proof of the Maximum Principle  For any  ε >  0 define

 vε(x) =  u(x) +  ε | x|2  , 

∀  x ∈   . 
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The function  vε  is of class  C 0 () ∩  C 2 (), and for any  x ∈  

 vε(x) =  u(x) +  ε | x|2 =

 n







=

 ∂ 2

 ε

 x 2 +

+

=

1

 x 22

 . . . +  x 2 n

2 nε >  0  . 

 ∂x 2

 i=1

 i

The second-order necessary conditions for local extrema guarantee that  vε  cannot have local maxima in  ,  because if  x 0 were one such then

 n

 ∂ 2 vε

 vε(x 0 ) =

 (x 0 ) ≤ 0  . 

 ∂x 2

 i=1

 i

Hence the absolute maximum of  vε  on  , which exists by the Weierstrass theorem, is reached on the boundary  ∂, and





 vε(x) ≤ max { vε(x) :  x ∈  ∂} = max  u(x) +  ε | x|2 :  x ∈  ∂

∀  x ∈ . 

As    is bounded, there exists  R >  0 such that | x| ≤  R  for any  x ∈  ,  and even for any x ∈  . Then, for such  x, 





 vε(x) ≤ max  u(x) +  ε | x|2 :  x ∈  ∂ ≤





≤ max  u(x) +  εR 2 :  x ∈  ∂ =  M +  εR 2  , i.e. 

 u(x) +  ε | x|2 ≤  M +  εR 2  , 

∀  x ∈   . 

Taking the limit as  ε → 0 gives  u(x) ≤  M  for any  x ∈   . 

The other inequality is proved similarly, considering the local minima of  wε(x) =

 u(x) −  ε | x|2  . 

Many applications often require to solve the following differential problem, called

 Dirichlet problem. Consider an open bounded set   ⊆ R n  and two functions  f, g :

  → R that are continuous on  . The problem asks to determine a function  u ∈

 C 0 () ∩  C 2 ()  that solves the differential equation

 u(x) =  f (x) , 

 x ∈   , 

(3.102)

and satisfies

 u(x) =  g(x) , 

∀  x ∈  ∂

(3.103)
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on the boundary of  . It can be proved that, under suitable hypotheses on  f  and  ∂, such a solution  u  exists. Here we just prove that the Dirichlet problem (3.102) and (3.103) has one solution at most. 

Solution’s Uniqueness for Dirichlet Problems  The Dirichlet problem (3.102)  and (3.103)  admits one solution at most. 

 Proof  Suppose  u 1 , u 2 are of class  C 0 () ∩  C 2 ()  and satisfy the differential equation (3.102) and the boundary condition (3.103). The difference  u =  u 1 −  u 2 solves the Laplace equation

 u(x) =  u 1 (x) −  u 2 (x) =  f (x) −  f (x) = 0  , x ∈  

and the boundary condition

 u(x) =  u 1 (x) −  u 2 (x) =  g(x) −  g(x) = 0  , 

∀  x ∈  ∂ . 

By the maximum principle

 m ≤  u(x) ≤  M, 

∀  x ∈   , 

where  m = min { u(x) :  x ∈  ∂} = 0  , M = max { u(x) :  x ∈  ∂} = 0  .  Therefore u = 0 on  , meaning  u 1 =  u 2 on  . 
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Ordinary Differential Equations

4

4.1

Introduction: The Initial Value Problem

Let [ a, b] be a real interval and  g(x)  a continuous function on [ a, b]. The problem of finding a  primitive  of  g(x)  on [ a, b], i.e. a function  y(x)  such that y (x) =  g(x) , 

∀  x ∈ [ a, b]  , 

(4.1)

is solved by the  fundamental theorem of calculus. Namely any primitive of  g, i.e. a solution to Eq. (4.1), has the form

 x

 y(x) =  y 0 +

 g(t) dt , 

∀  x ∈ [ a, b]  , 

(4.2)

 x 0

where  x 0 is a given point in [ a, b] and  y 0 is an arbitrary real number. 

Equation (4.1) is a very special example of  differential equation. The solution y(x)  represented in (4.2) satisfies not only Eq. (4.1), but also the  initial condition x 0

 y(x 0 ) =  y 0 +

 g(t) dt =  y 0  . 

 x 0

One says  y(x)  in (4.2) solves the  initial value problem, or  Cauchy problem, y (x) =  g(x)

 y(x 0 ) =  y 0 . 

We also say the differential equation (4.1) is of  order one, because the highest derivative that appears is the first derivative. 
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Another example of differential equation of order one is

 y (x) =  λ y(x) , 

∀  x ∈ R  , 

(4.3)

where  λ  is a given real parameter. A solution to (4.3) is a function  y =  y(x), differentiable on R, such that  y (x) =  λy(x), for any  x ∈ R. 

Immediately, a solution to Eq. (4.3) is the function

 y(x) =  ceλx , 

∀  x ∈ R  , 

(4.4)

where  c  is an arbitrary constant in R. In fact, differentiating (4.4) gives  y (x) =

 cλeλx =  λy(x). 

An interesting problem is establishing whether all possible solutions of (4.3) are of the form (4.4), as the parameter  c  varies. 

The answer is yes: suppose  y(x)  solves (4.3) and put

 z(x) =  y(x) ·  e− λx , 

∀  x ∈ R  . 

Since, by assumption,  y (x) −  λy(x) = 0, we have

 z (x) =  y (x) ·  e− λx +  y(x) ·  (− λ) ·  e− λx =

=  e− λx ·  (y (x) −  λy(x)) = 0  , 

∀  x ∈ R  . 

Hence  z(x) =  c = constant on R and  y(x) ·  e− λx =  c, i.e. formula (4.4) holds. 

The  Cauchy problem  associated with the differential equation (4.3) is y (x) =  λy(x)

(4.5)

 y(x 0 ) =  y 0  . 

with given  x 0,  y 0 in R. As every solution to the differential equation is of the form (4.4),  y(x) =  ceλx, to solve the initial value problem (4.5) we need to find, if possible, the constant  c  so to satisfy the  initial condition y(x 0 ) =  y 0. We have y(x 0 ) =  ceλx 0 =  y 0  , 

whence  c =  y 0 e− λx 0. Therefore the Cauchy problem (4.5) is solvable, and the unique solution is

 y(x) =  y 0 eλ(x− x 0 ) . 

An example of  second-order  differential equation is

 y (x) =  λy (x) , 

∀  x ∈ R  , 

(4.6)

where  λ  is a given parameter in R. 
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The substitution  z(x) =  y (x)  transforms (4.6) into z (x) =  λz(x) , 

which was solved earlier and has as solutions

 z(x) =  ceλx , 

∀  x ∈ R  . 

As  y (x) =  z(x) =  ceλx, the solutions  y(x)  to the second-order equation (4.6) are, if  λ = 0, 



 y(x) =

 ceλx dx =  c 1 +  c eλx =  c 1 +  c 2 eλx , 

 λ

where  c 1 , c 2 are real constants (in particular, we have set  c 2 =  c/λ,  λ = 0; as  c  is an arbitrary constant, so is  c 2). When  λ = 0, instead, 



 y(x) =

 c dx =  c 1 +  cx , 

(4.7)

with  c 1 , c  arbitrary constants. The  initial conditions  to be imposed in order to uniquely determine the function  y(x)  among all possible solutions to the second-order equation (4.6) are

 y(x 0 ) =  y 0  , 

 y (x 0 ) =  y 0  , 

(4.8)

where  y 0,  y are given real numbers. In the case at hand, if  λ = 0 we obtain 0

 y(x 0 ) =  c 1 +  c 2 eλx 0 =  y 0  , 

 y (x 0 ) =  c 2 λeλx 0 =  y 0  , 

and solving for  c 1,  c 2 we can write the solution  y(x)  as

 y

 y(x) =  y

0

0 +

 (eλ(x− x 0 ) − 1 ) . 

 λ

If  λ = 0, starting from (4.7) we find the solution

 y(x) =  y 0 +  y 0 (x −  x 0 ) . 

(4.9)

To verify the result just found, the reader should note that, for  λ = 0, the second-order equation (4.6) reduces to  y (x) = 0 for any  x ∈ R. The latter is satisfied precisely by the functions whose graph is a straight line. Imposing conditions (4.8) determines a unique line, expressed analytically by (4.9). 
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Summarising the computations of example (4.6), we have proved that the following  initial value problem

⎧

⎪

⎪

⎨ y (x) =  λy (x)

⎪ y(x

⎪

0 ) =  y 0

⎩ y (x 0 ) =  y  , 

0

admits one, and only one, solution, whatever the values of the real parameters  λ,  x 0, y 0,  y are. 

0

Another differential equation of second order, relevant for the applications, is the

 equation of harmonic motion

 y +  ω 2 y = 0  , 

(4.10)

where  ω ∈ R,  ω = 0 (note that for  ω = 0 the differential equation (4.10) coincides with (4.6) with  λ = 0, treated earlier). A family of solutions is y(x) =  c 1 cos  ωx +  c 2 sin  ωx , 

(4.11)

with  c 1,  c 2 constants in R (the reader should check this). 

Let us show that every solution to Eq. (4.10) is of the form (4.11). For this we consider a generic solution  y(x)  to (4.10). Define  z 1 (x),  z 2 (x)  to be solutions of the linear system in 2 equations and 2 unknowns

⎧

⎪

⎨ y(x) =  z 1 (x)  cos  ωx +  z 2 (x)  sin  ωx

⎪

(4.12)

⎩ y (x) = − z 1 (x)  sin  ωx +  z 2 (x)  cos  ωx . 

 ω

The coefficients’ determinant is non-zero, since





cos  ωx  sin  ωx 





− sin  ωx  cos  ωx  = 1  , 

∀  x ∈ R  , 

hence system (4.12) admits unique solutions for any  x ∈ R, and  z 1 (x),  z 2 (x) are well defined (moreover, computing the values explicitly, one sees they are

differentiable on R). Differentiating the first equation in (4.12) and using the second one we find

 y =  (z 1cos  ωx +  z 2 sin  ωx) +  ω(− z 1 sin  ωx +  z 2cos  ωx) =

=  (z 1cos  ωx +  z 2 sin  ωx) +  y  , 

so

 z 1cos  ωx +  z 2 sin  ωx = 0  . 

(4.13)
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Differentiating the second equation of (4.12) and using the first, y =  (− z

 ω

1 sin  ωx +  z 2cos  ωx) +  ω(− z 1cos  ωx −  z 2 sin  ωx) =

=  (− z 1 sin  ωx +  z 2cos  ωx) −  ωy , 

so from  y +  ω 2 y = 0 it follows

− z 1 sin  ωx +  z 2cos  ωx = 0  . 

(4.14)

By (4.13) and (4.14), the derivatives  z ,  z solve the 2 × 2 homogeneous linear 1

2

system

 z cos ωx + z sin ωx = 0

1

2

− z sin  ωx +  z cos  ωx = 0  . 

1

2

As the coefficients’ determinant is identically 1, there is a unique solution, given by the pair  ( 0 ,  0 ), i.e. 

 z 1 (x) =  z 2 (x) = 0  , 

∀  x ∈ R  . 

Therefore  z 1 (x) = constant =  c 1,  z 2 (x) = constant =  c 2, and (4.11) holds. 

So all solutions to the equation of  harmonic motion (4.10) are represented by formula (4.11). Consequently, whichever the values of the real parameters  ω = 0, y 0,  y , the  initial value problem

0

⎧

⎪

⎪

⎨ y (x) +  ω 2 y(x) = 0

⎪ y( 0 ) =  y

⎪

0

⎩ y ( 0 ) =  y  , 

0

(just for simplicity we chose  x 0 = 0 as initial point) admits a unique solution, given by

 y

 y(x) =  y

0

0 cos  ωx +

sin  ωx . 

 ω

The latter arises from (4.11) by choosing the constants  c 1,  c 2 in order to satisfy the initial conditions  y( 0 ) =  y 0 and  y ( 0 ) =  y . 

0

Given  n ∈ N, the simplest  differential equation of order n  is

 y(n)(x) =  g(x) , 

∀  x ∈ [ a, b]  , 

(4.15)

where  g : [ a, b] → R is a given continuous function. For  n = 1 we recover the problem of finding the primitives of  g(x), as of (4.1). 
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A solution to (4.15) is a function  y(x)  defined on [ a, b], differentiable  n  times on that interval and whose  n th derivative is equal to  g  on [ a, b]. We immediately see that any such solution has  continuous n th derivative on [ a, b], since the latter coincides with  g(x). Therefore we can use Taylor’s formula of order  n  with integral remainder: given  x 0 ∈ [ a, b], for any  x ∈ [ a, b] we have y(x) =  y(x 0 ) +  y (x 0 )(x −  x 0 ) +  y (x 0 ) (x −  x 0 ) 2 +  . . . +

2



(4.16)

 x

+  y(n−1 )(x 0 )

 (x −  t)n−1

 (n − 1 )!  (x −  x 0 )n−1 +  x

 (n − 1 )!  y(n)(t) dt . 

0

Due to  y(n)(x) =  g(x), for any  x ∈ [ a, b], we substitute this value in the integral of (4.16), and it is easy to verify that the function

 y

 y(x) =  y

0

0 +  y 0 (x −  x 0 ) +

 (x −  x 0 ) 2 +  . . . +

2

(4.17)

 (n−1 )



 y

 x

+ 0

 (x −  t)n−1

 (n − 1 )!  (x −  x 0 )n−1 +  x

 (n − 1 )!  g(t) dt , 

0

solves the  initial value problem  of order  n

⎧

⎪

⎪

⎪

⎪ y(n) =  g(x)

⎪

⎪

⎪

⎨ y(x 0 ) =  y 0

⎪ y (x

⎪

0 ) =  y 0

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . 

⎪

⎩ y(n−1 )(x 0 ) =  y(n−1 )

0

for equation (4.15), where  y 0,  y ,  . . . ,  y(n−1 )  are  n  given real numbers. Notice that 0

0

formula (4.17) generalises to  n ≥ 1 expression (4.2), corresponding to  n = 1. 

The differential equations considered thus far, of order one, two,  n ∈ N, have a common feature: they are  linear  differential equations, because the relationship between the derivatives of the unknown function  y(x)  is linear. An example of initial value problem for a non-linear equation of order one is

 y =  y 2

(4.18)

 y( 0 ) = 1  . 

Let us show (without thinking about uniqueness, for the time being) that

 y(x) =

1

(4.19)

1 −  x
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solves the initial value problem (4.18):  y( 0 ) = 1 and y (x) =

1

=  y 2  . 

 ( 1 −  x) 2

We discover a novel phenomenon compared to the earlier linear equations. Before, 

in fact, all equations and associated initial value problems could be solved on the

interval of definition ([ a, b] or R) of the problem’s data (we will show this is the case for all  linear  differential equations). In case (4.18), on the contrary, equation y (x) = [ y(x)]2 is a priori defined for any  x ∈ R, while the solution (4.19) is defined on a proper subset, the interval  (−∞ ,  1 ): this is a neighbourhood of  x 0 = 0, at which the initial condition  y( 0 ) = 1 is given. 

The reader will have noticed that the function  y(x)  in (4.19) is also defined on  ( 1 , +∞ ), which does not contain the initial point  x 0 = 0. Since  y(x)  is not differentiable everywhere on  (−∞ , +∞ ), it cannot be a global solution of the differential equation. Hence the interval  ( 1 , +∞ )  cannot be considered, i.e., the function  y(x)  in (4.19) is solution of the initial value problem (4.18) on the interval (−∞ ,  1 ). 

The previous discussion also says that, in general, we can consider at least two

ways of solving an initial value problem: (1)  globally, by which we determine a solution  on the entire interval, which is given beforehand, where the equation is defined; (2)  locally, whereby a solution is defined  on a neighbourhood of the point x 0 in the interval of concern. 

The most general differential equation of order  n  is

 F (x, y, y , y , . . . , y(n)) = 0  , 

(4.20)

where  F  is a real function in  n + 2 real variables defined on an open subset of R n+2. 

This is referred to as an  ordinary differential equation (ODE), to distinguish it from a  partial differential equation (PDE), which, as the name says, involves the partial derivatives of the unknown function. For example the  Laplace equation

 n

 ∂ 2 u

 u =

= 0  , 

 x ∈   , 

 ∂x 2

 i=1

 i

seen in Sect. 3.17, is a linear PDE of order two. The unknown  u :   ⊆ R n → R is a function in several real variables. 

The possibility of solving (4.20) for the highest-order derivative  y(n)  is a different problem from that of actually solving the equation, and will be addressed in

Chapter 11, on  implicit functions. In the sequel we shall consider differential equations of order  n ∈ N that are in so-called  normal  form

 y(n) =  f (x, y, y , y , . . . , y(n−1 )) , 

(4.21)

where  f  is a function of  n + 1 variables defined on an open set in R n+1. 
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For example, the first-order  differential  equation  (y ) 2 +1 = 0 has no real solutions because the  algebraic  equation  t 2 + 1 = 0 cannot be solved for  t ∈ R. 

The first-order ODE  (y ) 2 +  x 3 = 0, instead, is equivalent to the pair of  normal differential equations

 y =  (− x) 3 / 2 = | x|3 / 2  , 

 x ∈  (−∞ ,  0]  , 

 y = − (− x) 3 / 2 = −| x|3 / 2  , 

 x ∈  (−∞ ,  0]  , 

or more succinctly, 

 y (x) = ±| x|3 / 2  , 

 x ∈  (−∞ ,  0]  . 

Fix a point

 (n−1 )

 (x 0 , y 0 , y  , y , . . . , y

 )  in R n+1. Given a function  f  in  n + 1

0

0

0

variables defined on a neighbourhood of the point, we may consider the  Cauchy

 problem

⎧

⎪

⎪

⎪

⎪ y(n) =  f (x, y, y , y , . . . , y(n−1 ))

⎪

⎪

⎪

⎨ y(x 0 ) =  y 0

⎪ y (x

⎪

0 ) =  y 0

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎩

 (n−1 )

 y(n−1 )(x 0 ) =  y

 , 

0

relative to the normal ODE (4.21) of order  n (in general non-linear). 

In even more generality we can consider a Cauchy problem relative to a  system

of ODEs in normal form. The unknown is now a  vector-valued function

 y(x) =  (y 1 (x), y 2 (x), . . . , yk(x)) , 

for a given  k  in N. The system of differential equations can be written as

⎧

⎪

⎪

⎪ y(n 1 ) =  f

 , y(n 2−1 ), . . . , y(nk−1 ))

⎪

1 (x, y 1 , y 2 , . . . , yk , . . . , y(n 1−1 )

 k

⎨ 1

1

2

 y(n 2 ) =  f

 , y(n 2−1 ), . . . , y(nk−1 ))

2

2 (x, y 1 , y 2 , . . . , yk , . . . , y(n 1−1 )

1

2

 k

⎪

(4.22)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ y(nk) =  f

 , y(n 2−1 ), . . . , y(nk−1 )) . 

 k

 k (x, y 1 , y 2 , . . . , yk , . . . , y(n 1−1 )

1

2

 k

The system is said to have order  n 1 in the unknown  y 1, order  n 2 in the unknown  y 2

etc. For short, the ODE system (4.22) is of order  n = max{ n 1 , n 2 , . . . , nk}. 

A  differential equation of order n  in normal form

 y(n)(x) =  f (x, y, y , y , . . . , y(n−1 )) , 

(4.23)
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like (4.21), can always be recast as a  system of ODEs  in normal form of  order one, by substituting

 y =  y 1 , 

 y =  y 2 , 

 y =  y 3 , . . . , 

 y(n−1 ) =  yn ; 

Thus Eq. (4.23) becomes equivalent to the ODE system

⎧

⎪

⎪

⎪ =

⎪ y

 y 2

⎪ 1

⎪

⎪

⎨ y =  y

2

3

⎪ . . . . . . . . . . . . . . . 

⎪

⎪

⎪

⎪

⎪ y

=  y

⎪

 n

⎩  n−1

 y =

 n

 f (x, y 1 , y 2 , . . . , yn). 

Clearly, a substitution of this sort will turn  an ODE system of order larger than  1, like (4.22),  into a first-order system. 

Hence a generic system of normal ODEs, of arbitrary order, can be equivalently

expressed as a system of order-one normal ODEs of the type

⎧

⎪

⎪

⎪ y =  f

⎪ 1

1 (x, y 1 , y 2 , . . . , yn)

⎨ y =  f

2

2 (x, y 1 , y 2 , . . . , yn)

⎪

(4.24)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ y =

 n

 fn(x, y 1 , y 2 , . . . , yn). 

The  vector-valued function y(x) =  (y 1 (x), y 2 (x), . . . , yn(x))  is the system’s unknown. Introducing the vector-valued function  f =  (f 1 , f 2 , . . . , fn), system (4.24) can be written as

 y =  f (x, y) . 

(4.25)

The reader should bear in mind that in (4.25),  x  belongs in R while  y  and  f  are vector-valued functions. If, for instance, system (4.25) is defined for any  x  and  y, then  y : R → R n  and  f : R × R n → R n. 

Fix  x 0 ∈ R and  y 0 ∈ R n  so that the point  (x 0 , y 0 ) ∈ R × R n  falls in the domain of  f . The corresponding  initial value problem  is written

 y =  f(x,y)

(4.26)

 y(x 0 ) =  y 0  . 

In the next section we shall discuss sufficient conditions for the  local solvability, i.e. 

on neighbourhoods of  x 0, of the initial value problem (4.26). Then, in Sect. 4.4, we shall consider certain assumptions on  f  meant to ensure the existence of a  global solution  on some interval given a priori. 
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4.2

Cauchy’s Local Existence and Uniqueness Theorem

Here we will prove  Cauchy’s theorem  on the local existence and uniqueness of solutions to first-order ODE systems in normal form of the type

 y =  f (x, y) . 

Fix  x 0 ∈ R and  y 0 ∈ R n  and suppose the function  f  is defined on a neighbourhood I ×  J = { (x, y) ∈ R × R n : | x −  x 0| ≤  a , | y −  y 0| ≤  b}

(4.27)

of the point  (x 0 , y 0 ) ∈ R × R n ( a, b >  0). 

As usual, | x − x 0| is the  absolute value  of  x − x 0 ∈ R whereas | y − y 0| is the  norm (or  modulus) of the vector  y −  y 0 ∈ R n. Moreover the function  f  is R n-valued, i.e. 

 f :  I ×  J → R n. 

Assume furthermore that

 f (x, y)

is  continuous  on

 I ×  J

(4.28)

and  Lipschitz  in the variable  y  uniformly in  x ∈  I , meaning there is a constant L >  0 such that

| f (x, y 1 ) −  f (x, y 2 )| ≤  L| y 1 −  y 2|  , 

∀  x ∈  I , y 1 , y 2 ∈  J . 

(4.29)

Cauchy Theorem (Local Existence and Uniqueness)  Under hypotheses (4.28) and (4.29) , there exist a real number δ >  0  and a unique differentiable function y =  y(x), y : [ x 0 −  δ, x 0 +  δ] → R n, which solves the initial value problem y =  f(x,y)

(4.30)

 y(x 0 ) =  y 0

 on [ x 0 −  δ, x 0 +  δ] . 

If  f (x, y)  verifies the hypotheses of Cauchy’s theorem ( f  continuous and Lipschitz in  y) only when  x  belongs in a right neighbourhood [ x 0 , x 0 +  a] of  x 0, the same proof shows that there exist a number  δ >  0 and a unique function  y =  y(x), y : [ x 0 , x 0+ δ] → R n, defined and differentiable on [ x 0 , x 0+ δ], that solves (4.30) on the right neighbourhood. Clearly a similar statement holds for left neighbourhoods. 

Moreover, analogous considerations can be made for the ensuing existence results. 

The number  δ >  0 in Cauchy’s statement can be estimated explicitly. Below we offer two arguments: the first, of  functional nature (it uses the fixed-point theorem
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in  metric spaces, in particular  spaces of functions), provides the following estimate: 1

 δ <  min  a;  b ; 

 , 

 M

 L

with  a, b  coming from (4.27),  L  given in (4.29) and M = max{| f (x, y)| :  (x, y) ∈  I ×  J }  . 

(4.31)

Observe that such  M  must exist (finite) by the Weierstrass theorem. 

The second argument, given below, relies on  real analysis (it depends on

properties of definite integrals and the uniform convergence of series and sequences

of functions) and estimates  δ  more accurately:





 δ = min  a;  b

 . 

 M

Anyway, Cauchy’s theorem ensures the local existence and uniqueness of a solution

to the initial value problem (4.30), i.e. of a solution defined on a neighbourhood

[ x 0− δ, x 0+ δ] of  x 0 which is typically smaller than the initial interval [ x 0− a, x 0+ a]. 

As already mentioned, we will prove the result in two ways. It may be instructive

for the reader to read both, in order to spot the different methods, analyse the varying level of abstraction and understand the similarities. At a successive reading the two arguments usually become more similar than what might seem at first. 

In both proofs of Cauchy’s theorem, given below, the first step consists in

formulating the initial value problem (4.30) in an equivalent  integral form. The quantities  x 0,  y 0 and  δ  have the same meaning as before. 

Initial Value Problem in Integral Form  Fix δ >  0 . The following statements are equivalent:

(i)  there exists a differentiable function y =  y(x) on [ x 0 −  δ, x 0 +  δ] , for which y (x) =  f (x, y(x)) for any x ∈ [ x 0 −  δ, x 0 +  δ] , and such that y(x 0 ) =  y 0 ; (ii)  there exists a continuous function y =  y(x) on [ x 0 −  δ, x 0 +  δ] , such that x

 y(x) =  y 0 +

 f (t, y(t)) dt , 

∀  x ∈ [ x 0 −  δ, x 0 +  δ]  . 

 x 0

 Proof (i) ⇒ (ii). By hypothesis there is a function  y =  y(x),  y : [ x 0 −  δ, x 0 +  δ] →

R n, differentiable on the interval [ x 0 −  δ, x 0 +  δ] and such that y (x) =  f (x, y(x))

(4.32)
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for any  x  in the interval. If  x ∈ [ x 0 −  δ, x 0 +  δ], integrating component-wise both sides of (4.32) between  x 0 and  x, we obtain





 x

 x

 y(x) −  y(x 0 ) =

 y (t) dt =

 f (t, y(t)) dt , 

 x 0

 x 0

and (ii) follows since  y(x 0 ) =  y 0 by assumption. 

(ii) ⇒ (i). Now  y(x)  is continuous and such that

 x

 y(x) =  y 0 +

 f (t, y(t)) dt , 

∀  x ∈ [ x 0 −  δ, x 0 +  δ]  . 

(4.33)

 x 0

Putting  x =  x 0 in (4.33) gives  y(x 0 ) =  y 0. By the fundamental theorem of calculus (applied to each component of the vector-valued function  y =  y(x),  y : [ x 0− δ, x 0+

 δ] → R n),  y(x)  is differentiable with derivative

 y (x) =  f (x, y(x)) , 

∀  x ∈ [ x 0 −  δ, x 0 +  δ]  . 

Hence (i) holds. 

It will be useful, in the proof of Cauchy’s theorem (but also elsewhere, e.g. in

Sect. 6.3, to establish the formula for the length of a regular curve in R n), to know the following result, that compares the integral of the modulus with the modulus of

the integral. It is a generalisation to  n >  1 of a property of scalar functions that the reader will certainly know. 

Lemma  Let g : [ a, b] → R n be a continuous function. Then







 b

 b







 g(t) dt ≤

| g(t)|  dt . 

(4.34)

 a

 a

If  g  has components  (g 1 , g 2 , . . . , gn), the left-hand-side integral denotes the vector with components











 b

 b

 b

 b

 g(t) dt =

 g 1 (t) dt, 

 g 2 (t) dt, . . . , 

 gn(t) dt , 

(4.35)

 a

 a

 a

 a

while as customary | g(t)| is the Euclidean norm (or modulus) of  g(t):



| g(t)| =  g 2 (t) +  g 2 (t) +  . . . +  g 2

1

2

 n (t ) . 

 Proof of the Lemma  Call  v  the vector in (4.35): b

 v =  (v 1 , v 2 , . . . , vn) =

 g(t)dt . 

(4.36)

 a
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The modulus squared | v|2 is the inner product of  v  with itself (as for any vector in R n), so

| v|2 =  (v, v) =  v 1 ·  v 1 +  v 2 ·  v 2 +  . . . +  vn ·  vn =







 b

 b

 b

=  v 1

 g 1 (t)dt +  v 2

 g 2 (t) +  . . . +  vn

 gn(t)dt . 

 a

 a

 a

But  v  is independent of  t ∈ [ a, b], i.e. each component  vi  is constant in  t, so b

| v|2 =

{ v 1 g 1 (t) +  v 2 g 2 (t) +  . . . +  vngn(t)} dt ≤

 a



(4.37)

 b

≤

| v 1 g 1 (t) +  v 2 g 2 (t) +  . . . +  vngn(t)| dt . 

 a

The  Cauchy-Schwarz inequality (2.13) here reads













 n





 n



1 / 2

 n



1 / 2

|





 (v, g(t))| = 

≤

·

= |



 vigi (t)

 v 2 i

 g 2 i(t)

 v| · | g(t)|  . (4.38)

 t =1

 t =1

 t =1

From (4.37) and (4.38) we then have





 b

 b

| v|2 ≤

| v| · | g(t)| dt = | v| ·

| g(t)| dt . 

 a

 a

When | v| = 0, dividing by | v| yields

 b

| v| ≤

| g(t)| dt , 

 a

 b

:

which is (4.34) once we recall the meaning of  v =

 g(t)dt  defined in (4.36). When

 a





| v| = 0,  b:  g(t)dt = 0: the left-hand side of (4.34) is zero, and the relation is a

trivially true. 

 Proof of Cauchy’s Theorem ( First Method) We shall prove the integral form (ii). 

Consider a real number  δ >  0 satisfying constraints (4.2). More precisely, suppose δ >  0 satisfies the inequalities





1

 δ ≤ min  a;  b

 , 

 δ < 

 , 

(4.39)

 M

 L

where  a  and  b  are as in (4.27),  M  is the maximum of | f | defined in (4.31), and  L  is the Lipschitz constant in (4.29). 
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Let  Iδ = [ x 0 −  δ, x 0 +  δ] be the closed neighbourhood of  x 0 of half-width  δ. 

Consider the metric space  C 0 (Iδ)  of continuous functions  y :  Iδ → R n  on  Iδ  with the supremum norm. Then take the set  B ⊂  C 0 (Iδ)  of continuous functions on  Iδ

such that

sup{| y(x) −  y 0| :

 x ∈  Iδ} ≤  b . 

In other words, 

 B = { y ∈  C 0 (Iδ) :  y −  y 0 C 0 ≤  b}

is a closed ball in  C 0 (Iδ), with centre  y 0 and radius  b. 

By Proposition 1 in Sect. 2.8 the set  B, being closed in the complete metric space C 0 (Iδ), is a complete metric space as well. 

Define  F :  B →  B  by

 F (y) =  z , 

(4.40)

where  z  is the vector-valued function

 x

 z(x) =  y 0 +

 f (t, y(t)) dt , 

 x ∈  Iδ . 

(4.41)

 x 0

We claim  F  is a map from  B  to  B, i.e. that for  y ∈  B  the above function  z  belongs to the ball  B ⊂  C 0 (Iδ). In fact,  z ∈  C 0 (Iδ). Moreover, by (4.34), x



 x



| z(x) −  y









0| = 

 f (t, y(t)) dt ≤ 

| f (t, y(t))|  dt  , 

 x 0

 x 0

for any  x ∈  Iδ. 

By assumption | y(t) −  y 0| ≤  b  for any  t ∈  Iδ, so  (t, y(t)) ∈  I ×  J  and then

| f (t, y(t))| ≤  M. Hence, given that  Mδ ≤  b, 





 x



| z(x) −  y





0| ≤ 

| f (t, y(t))|  dt ≤  M| x −  x 0| ≤  Mδ ≤  b . 

 x 0

Therefore, as said,  F  maps the metric space  B  to itself. Now we will show  F  is a contraction on  B. By (4.34) we have





 x



| F (y





1 ) −  F (y 2 )| = 

{ f (t, y 1 (t)) −  f (t, y 2 (t))}  dt ≤

 x 0





 x



≤  | f(t,y



1 (t )) −  f (t , y 2 (t ))|  dt   . 

 x 0
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Using the Lipschitz hypothesis (4.29) of  f  with respect to  y  we obtain x



| F (y





1 )(x) −  F (y 2 )(x)| ≤ 

| f (t, y 1 (t)) −  f (t, y 2 (t))|  dt ≤

 x 0





 x



≤   L| y



1 (t ) −  y 2 (t )|  dt  ≤  Lδ y 1 −  y 2 C 0  , x 0

and taking the supremum over  x ∈  Iδ, 

 F (y 1 ) −  F (y 2 ) C 0 ≤  Lδ y 1 −  y 2 C 0  . 

Hence  F :  B →  B  is a Lipschitz map. But by (4.39) the Lipschitz constant  Lδ  is less than 1, so  F  is a contraction on  B. 

By the fixed-point theorem (Sect. 2.9) there exists exactly one function  y ∈  B

such that  y =  F (y). Recalling definition (4.40), (4.41) of  F , we then have x

 y(x) =  y 0 +

 f (t, y(t)) dt , 

∀  x ∈ [ x 0 −  δ, x 0 +  δ]  , 

 x 0

in other words (ii). 

 Proof of Cauchy’s Theorem ( Second Method) We will use the notation introduced at the beginning, in particular the numbers  a, b (the half-length of the interval  I and the radius of the ball  J ),  M (the maximum of | f (x, y)| when  (x, y) ∈  I ×  J  as in (4.31)) and  L (the Lipschitz constant of (4.29)). Consider the positive real number δ = min  a;  b

 . 

 M

Call  Iδ  the interval [ x 0 −  δ, x 0 +  δ] and define the sequence  yk :  Iδ → R n,  k =

0 ,  1 ,  2 , . . . , recursively:

⎧

⎪

⎨ y 0 (x) =  y 0

 x

⎪

(4.42)

⎩ yk+1 (x) =  y 0 +

 f (t, yk(t)) dt . 

 x 0

First, we need to show the sequence  yk  is well defined. This means, more precisely, that the integrand  f (t, yk(t))  is well defined, that is, 

 yk(t) ∈  J = { y ∈ R n : | y −  y 0| ≤  b}  , 

∀  t ∈  Iδ . 

(4.43)

We shall prove (4.43) by induction on  k = 0 ,  1 ,  2 , . . . . When  k = 0 evidently y 0 ∈  J . Now suppose  yk(t) ∈  J  for any  t ∈  Iδ, so  (t, yk(t)) ∈  Iδ ×  J  for any  t ∈  Iδ. 

Hence

| f (t, yk(t))| ≤  M , 

∀  t ∈  Iδ . 
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By (4.34), furthermore, for  x ∈  Iδ  we have









 x



 x



| y









 k+1 (x) −  y 0| = 

 f (t, yk(t)) dt ≤ 

| f (t, yk(t))|  dt ≤

 x 0

 x 0

≤  M| x −  x 0| ≤  Mδ ≤  b , 

because  δ ≤  b/M  by definition of  δ. Hence  yk+1 (t) ∈  J  for any  t ∈  Iδ, and (4.42) is well defined. 

Let us go back to the (well-defined) sequence  yk  in (4.42) and proceed recursively, by proving the following estimates. For any  x ∈  Iδ





 x



| y





1 (x) −  y 0| = 

 f (t, yk(t)) dt ≤  M| x −  x 0|  , 

(4.44)

 x 0

since  f (t, yk(t)) ≤  M  for any  t ∈  Iδ. The Lipschitz assumption in  y  tells, from (4.44), that





 x



| y





2 (x) −  y 1 (x)| = 

{ f (t, y 1 (t)) −  f (t, y 0 )}  dt ≤

 x 0









 x



 x



≤  | f(t,y







1 (t )) −  f (t , y 0 )|  dt  ≤ 

 L| y 1 (t) −  y 0|  dt ≤

 x 0

 x 0





 x



≤  ML  | t −  x



0|  dt  =  ML | x −  x 0|2  . 

 x

2

0

(4.45)

Again the Lipschitz condition in  y  applied to (4.45) gives x



| y





3 (x) −  y 2 (x)| = 

{ f (t, y 2 (t)) −  f (t, y 1 (t))}  dt ≤

 x 0





 x



≤  | f(t,y



2 (t )) −  f (t , y 1 (t ))|  dt  ≤

 x 0





 x



≤  L| y



2 (t ) −  y 1 (t )|  dt  ≤

 x 0





 x



≤  ML 2 

| t −  x



0|2  dt

| x −  x 0|3  . 

2



=  ML 2

 x

3! 

0

Iterating (or by induction) we arrive at the estimate

| yk+1 (x) −  yk(x)| ≤  MLk | x −  x 0| k+1  , 

∀  x ∈  Iδ . 

(4.46)

 (k + 1 )! 
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Relation (4.46) implies that the sequence  yk(x)  converges uniformly on the interval Iδ. In fact, by

 yk+1 =  y 0 +  (y 1 −  y 0 ) +  (y 2 −  y 1 ) +  . . . +  (yk+1 −  yk) , the function  yk+1 is the  (k + 1 ) st partial sum of the series

∞



 y 0 +

 (yk+1 (x) −  yk(x)) , 

(4.47)

 k=0

which converges on  Iδ  totally, by estimate (4.46). In fact the generic term of the series in (4.47) is bounded from above as follows

|

 (Lδ)k+1

 yk+1 (x) −  yk(x)| ≤  MLk | x −  x 0| k+1 ≤  M

 (k + 1 )! 

 L (k + 1 )! 

for  k = 0 ,  1 ,  2 , . . .  and any  x ∈  Iδ. The corresponding numerical series is the convergent exponential series

∞

 M   (Lδ)k+1 =  M (eLδ − 1 ). 

 L

 (k + 1 )! 

 L

 k=0

In this way we have proved that the sequence  yk(x)  converges uniformly on  Iδ. 

Let  y(x)  be the limit, and let us take the limit in (4.42) as  k → +∞. Since  f  is Lipschitz in  y, the composite function  f (t, yk(t))  converges uniformly to  f (t, y(t)) on  Iδ. Therefore we can interchange the limit and the integral to obtain

 x

 y(x) =  y 0 +

 f (t, y(t)) dt , 

∀  x ∈  Iδ, 

 x 0

which means that  y(x)  solves the Cauchy problem in the integral form (ii). 

That this solution is unique follows again by the integral form (ii). Indeed, 

suppose  z(x)  solves the initial value problem on some interval  Iδ = [ x 1

0 −  δ 1 , x 0 +

 δ 1]. By the integral characterisation  z(x)  satisfies the equation

 x

 z(x) =  y 0 +

 f (t, z(t)) dt , 

∀  x ∈  Iδ .  1

 x 0

We claim that on the interval  Iδ ,  z(x)  coincides with the earlier solution  y(x), where 2

 δ 2 = min{ δ;  δ 1}. In fact, by the same method used for the sequence  yk(x), we find x



| z(x) −  y





0| = 

 f (t, z(t)) dt ≤  M| x −  x 0|  , 

(4.48)

 x 0
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for any  x ∈  Iδ . Recalling the definition of  y

2

1 (x)  in (4.42), as  f  is Lipschitz in

 y, (4.48) gives





 x



| z(x) −  y





1 (x)| = 

{ f (t, z(t)) −  f (t, y 0 )}  dt ≤

 x 0









 x



 x



≤  | f (t,z(t)) −  f(t,y







0 )|  dt  ≤ 

 L| z(t) −  y 0|  dt ≤

 x 0

 x 0





 x



≤  ML  | t −  x



0|  dt  =  ML | x −  x 0|2  , 

 x

2

0

and iterating (by induction), 

| z(x) −  yk(x)| ≤  MLk | x −  x 0| k+1  , 

∀  x ∈  Iδ . 

 (k + 1 )! 

2

Since the right-hand side tends to zero as  k → +∞, the function  z(x)  is equal to y(x) = lim  yk(x)  for any  x ∈  Iδ , as required. 

2

 k→+∞

The two proofs of Cauchy’s theorem (the ‘functional’ one that uses the fixed-

point theorem for metric spaces, and the second one of real-analytical flavour) are

based on the  method of successive approximation  of (4.42). In the functional-like proof, the method of successive approximation is part of the proof of the fixed-point theorem. That means that the initial value problem’s solution is  constructed  using successive approximations. 

Let us exemplify the method by solving the following initial value problem

⎧

⎪

⎪

⎪ y =  z

⎪

⎨ z = − y

⎪

(4.49)

⎪

⎪

⎪ y( 0 ) = 0

⎩ z( 0 ) = 1

in the unknowns  (y(x), z(x)), with  (y, z) : R → R2. The vector-valued function associated with the initial value problem (4.49) is

 f =  (f 1 , f 2 ) =  (z, − y) . 

Consider a neighbourhood  Iδ = [− δ, + δ] of the point  x 0 = 0 and let us define the sequence (yk (x), zk (x)), where  (yk , zk) :  Iδ → R2,  k = 0 ,  1 ,  2 , . . . , starting from the initial datum (y 0 (x), z 0 (x)) =  ( 0 ,  1 ) , 

(continued)
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and then recursively

⎧





⎪

 x

 x

⎪

⎨ yk+1 (x) =  y 0 +

 f 1 (yk(t), zk (t)) dt =  y 0 +

 zk(t) dt

0

0

⎪





⎪

 x

 x

⎩ zk+1 (x) =  z 0 +

 f 2 (yk (t), zk(t)) dt =  z 0 −

 yk (t) dt . 

0

0

We then obtain

⎧



⎪

 x

⎪

⎨ y 1 (x) = 0 +

1  dt =  x

0

⎪



⎪

 x

⎩ z 1 (x) = 1 −

0  dt = 1  , 

0

⎧



⎪

 x

⎪

⎨ y 2 (x) = 0 +

1  dt =  x

0

⎪



⎪

 x

⎩ z 2 (x) = 1 −

 t dt = 1 −  x 2  , 

0

2

⎧





⎪

⎪

 x

⎪

⎨ y 3 (x) = 0 +

1 −  t 2

 dt =  x −  x 3

0

2

3! 

⎪



⎪

 x

⎪

⎩ z 3 (x) = 1 −

 t dt = 1 −  x 2  , 

0

2

⎧





⎪

⎪

 x

⎪

⎨ y 4 (x) = 0 +

1 −  t 2

 dt =  x −  x 3

0

2

3! 

⎪





⎪

 x

⎪

⎩ z 4 (x) = 1 −

 t −  t 3

 dt = 1 −  x 2 +  x 4

0

3! 

2

4!  . 

The pairs  (yk(x), zk(x)), for  k = 0 ,  1 ,  2 , . . . , form a sequence of  successive approximations of the solution  (y(x), z(x)), in the sense that  (yk(x), zk(x))  converges uniformly on  Iδ (in this particular example, whichever  δ  we pick) to the solution  (y(x), z(x)). In the limit as k → +∞

⎧

⎪

⎪

⎪

⎨ y(x) = lim  yk(x) =  x −  x 3 +  x 5 −  x 7 +  . . . 

 k→+∞

3! 

5! 

7! 

⎪

⎪

⎪

⎩ z(x) = lim  zk(x) = 1 −  x 2 +  x 4 −  x 6 +  . . . 

 k→+∞

2! 

4! 

6! 

so  y(x) = sin  x,  z(x) = cos  x. Checking that these two functions solve the initial value problem (4.49) is immediate. 
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Using the method described above, the reader should show that the initial value problem

⎧

⎪

⎪

⎪ y =  z

⎪

⎨ z =  y

⎪

⎪

⎪

⎪ y( 0 ) = 0

⎩ z( 0 ) = 1

is solved by  y(x) =  (ex −  e− x )/ 2 = sinh  x,  z(x) =  (ex +  e− x)/ 2 = cosh  x. 

4.3

First Consequences of Cauchy’s Theorem

It may be complicated to verify directly the Cauchy theorem’s hypotheses, espe-

cially the Lipschitz property of  f (x, y)  in  y. The following Corollary 1 gives us an easy way to do just that. 

As in the previous section, given  x 0 ∈ R and  y 0 ∈ R n, consider a function f (x, y)  defined on a neighbourhood  I ×  J  of  (x 0 , y 0 ) ∈ R × R n, of the form I ×  J = { (x, y) ∈ R × R n : | x −  x 0| ≤  a , | y −  y 0| ≤  b}  , with  a, b >  0. 

Corollary 1  Let f =  f (x, y), with x ∈ R , y ∈ R n, be a function defined on I ×  J

 with values in  R n. Suppose f (x, y) and its partial derivatives

 ∂f (x, y) , 

 i = 1 ,  2 , . . . , n , 

 ∂yi

 are continuous on I ×  J . Then there exist a positive number δ and a unique function y : [ x 0 −  δ, x 0 +  δ] → R n solving the initial value problem y =  f(x,y)

(4.50)

 y(x 0 ) =  y 0  . 

 on [ x 0 −  δ, x 0 +  δ] . 

 Proof  We aim to show that under the given hypotheses  f (x, y)  is Lipschitz in  y ∈

 J , uniformly in  x ∈  I . Then it suffices to invoke Cauchy’s local existence and uniqueness theorem. 
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Call  (fα)α=1 ,...,n  the components of  f :  I ×  J → R n. As the partial derivatives

 ∂fα/∂yi,  i, α = 1 ,  2 , . . . , n, are continuous, so is n



1 / 2

 ∂f

2

 α

 (x, y) ∈  I ×  J

→

 (x, y)

 , 

 α = 1 ,  2 , . . . , n , (4.51)

 ∂yi

 i=1

on  I ×  J . By the Weierstrass theorem the function in (4.51) has a maximum on I ×  J , say  Lα. 

The function in (4.51) is just the norm of the gradient of  fα(x, y)  with respect to y, viewing  x ∈  I  as a fixed parameter. Let  Dyfα(x, y)  be the gradient of  fα  in  y, so n



2 1 / 2

|

 ∂fα

 Dy fα(x, y)| =

 (x, y)

≤  Lα , 

∀  (x, y) ∈  I ×  J . (4.52)

 ∂yi

 i=1

Next we apply to  y ∈  J →  fα(x, y) ∈ R the mean value theorem (Sect. 3.11): given  x ∈  I ,  y 1 , y 2 ∈  J , there is a real number  ϑα  between 0 and 1, such that fα(x, y 1 ) −  fα(x, y 2 ) =  (Dyfα(x, y 2 +  ϑα(y 1 −  y 2 )), y 1 −  y 2 ) (on the right, as usual,  (· , · )  is the inner product in R n). The point (x, y 2 +  ϑα(y 1 −  y 2 )) =  ϑα(x, y 1 ) +  ( 1 −  ϑα)(x, y 2 ) is a convex combination of  (x, y 1 )  and  (x, y 2 )  in  I ×  J , so it belongs to  I ×  J  as well. The Cauchy-Schwarz inequality and (4.52) give

 n



| f (x, y 1 ) −  f (x, y 2 )| ≤

| fα(x, y 1 ) −  fα(x, y 2 )| =

 α=1

 n



=

| Dyfα(x, y 2 +  ϑα(y 1 −  y 2 ))| · | y 1 −  y 2| ≤

 α=1

 n



≤

 Lα · | y 1 −  y 2| =  L · | y 1 −  y 2|  , α=1

 n



for any  x ∈  I ,  y 1 , y 2 ∈  J , where  L =

 Lα, as required. 

 α=1

Next we will show that the solution  y(x)  to (4.50) is actually more regular than just differentiable on  Iδ. 
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Regularity Theorem  In the Cauchy theorem’s notations, if f =  f (x, y) is of class Ck(I ×  J ) for some k ∈ {0 ,  1 ,  2 , . . . } , the solution to the initial value problem is a Ck+1  function y :  Iδ → R n. Therefore if f is C∞  also the solution y is C∞ . 

 Proof  We use induction, starting from  k = 0. If  f  is  C 0 (I ×  J ), the initial value problem’s solution  y(x)  is differentiable and solves the ODE

 y (x) =  f (x, y(x)) , 

∀  x ∈  Iδ. 

The derivative  y (x)  then equals a continuous function, hence is continuous on  Iδ. 

Therefore  y  is  C 1. 

Suppose now that the statement is true for some  k ∈{0 ,  1 ,  2 , . . . } and let us prove that  f ∈  Ck+1 (I ×  J )  implies  y  is  Ck+2. 

By induction, since in particular  f ∈  Ck(I ×  J ), the solution  y  is of class Ck+1. But  f (x, y(x))  is the composite of  f , of class  Ck+1, and  y, of class  Ck+1, so y (x) =  f (x, y(x))  is  Ck+1 on  Iδ, i.e.  y  is  Ck+2. 

Cauchy’s local existence and uniqueness theorem for first-order systems also has

an effect on systems of arbitrarily high order. As we explained in the introduction

to this chapter,  an ODE system of any order can be reduced to an ODE system of

 order one. In the sequel, for simplicity, we shall only consider ordinary differential equations, in normal form and of order  n. 

Fix a point  (x 0 , y 0 , y  , y , . . . , yn−1 )  in R×R n  and numbers  a, b ∈ R. As before 0

0

0

we let  I  be the interval [ x 0 −  a, x 0 +  a] ⊂ R. Call  Y 0 the point in R n  of coordinates (y 0 , y  , y , . . . , yn−1 )  and  J = { Y ∈ R n : | Y −  Y

0

0

0

0| ≤  b} the ball centred at

 Y 0 ∈ R n. 

Corollary 2  Let f =  f (x, Y ), with x ∈  I ⊂ R , Y ∈  J ⊂ R n, be a real function that is continuous on I ×  J and Lipschitz in Y ∈  J , uniformly in x ∈  I . There exist a positive number δ ≤  a and a unique function y : [ x 0 −  δ, x 0 +  δ] → R , differentiable n times on [ x 0 −  δ, x 0 +  δ] , that solves on that interval the Cauchy problem

⎧

⎪

⎪

⎪

⎪ y(n) =  f (x, y, y , y , . . . , y(n−1 ))

⎪

⎪

⎪

⎨ y(x 0 ) =  y 0

⎪ y (x

(4.53)

⎪

0 ) =  y 0

⎪

⎪

⎪

⎪ . . . . . . . . . . . . 

⎪

⎩ y(n−1 )(x 0 ) =  y(n−1 ) . 

0

 Proof  Denoting

 y =  y 1  , 

 y =  y 2  , 

 y =  y 3  , 

 . . . , 

 y(n−1 ) =  yn , 
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Eq. (4.53) is equivalent to the first-order system

⎧

⎪

⎪

⎪ =

⎪ y

 y 2

⎪ 1

⎪

⎪

⎨ y =  y

2

3

⎪ . . . . . . . . . . . . 

⎪

⎪

⎪

⎪

⎪ y

=  y

⎪

 n

⎩  n−1

 y =

 n

 f (x, y 1 , y 2 , . . . , yn) , 

which we may write as

 y =  F (x, y) , 

with  y =  y(x)  vector-valued of components  (y 1 (x), y 2 (x), . . . , yn(x))  and  F (x, y) vector-valued of components

 F (x, y) =  (y 2 , y 3 , . . . , f (x, y 1 , y 2 , . . . , yn)) . 

Clearly  F (x, y)  is continuous on  I ×  J  and Lipschitz in  y ∈  J , uniformly in  x ∈  I . 

The claim is then a direct consequence of Cauchy’s theorem. 

Combining Corollaries 2 and 1 we obtain an existence and uniqueness result for ODEs in normal form, under the hypothesis that  f =  f (x, Y )  admits continuous partial derivatives in  Y . For brevity we shall not state this explicitly, also in view of the fact that it is easily deducible from Corollaries 1 and 2. 

Cauchy’s theorem extends to functions  f (x, y)  that are not Lipschitz in  y, but continuous in the pair of variables  (x, y). As regards existence, we refer to Peano’s theorem, proved in the Appendix (Sect. 4.9)). That said, the uniqueness stated in Cauchy’s theorem may not hold if  f (x, y)  is not Lipschitz in  y. 

For example, consider the following initial value problem of order one



√

 y = 2 | y|

(4.54)

 y( 0 ) = 0

√

where  y : R → R. The function  f (y) = 2 | y| (constant in  x) is continuous on R but not Lipschitz. 

The initial value problem (4.54) has infinitely many solutions defined on R. The reader may check that the following two are solutions

 y(x) = 0  , 

∀  x ∈ R ; 

 x 2 if  x ≥ 0

 y(x) =  x| x| = − x 2 if  x <  0 . 
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Note in particular that  y(x) =  x| x| is differentiable also at  x = 0, at which point the derivative is  y ( 0 ) = 0. 

Among other solutions to (4.54), we have those of the form

0

if

 x < k

 y(x) =

(4.55)

 (x −  k) 2

if

 x ≥  k . 

for any given  k ≥ 0. As before, the function  y(x)  in (4.55) is differentiable at  x =  k, too, and it satisfies the differential equation at this point. The reader should now construct other solutions (the full answer is given in Sect. 4.9). 

4.4

The Global Existence and Uniqueness Theorem: Extension

of Solutions

Some applications require that we establish the existence of the solution to a

Cauchy problem  on a given interval. The ‘local’ Cauchy theorem gave us sufficient conditions for the  local resolution, by providing a solution  on a neighbourhood Iδ  of the initial point  x 0. Here, instead, we shall give sufficient conditions for the  global resolution, by establishing the existence of a solution  on the entire interval, fixed in advance, on which the ODE is defined. In the proof of the main result we will show that the solution to the initial value problem, which  a priori  is defined on just a neighbourhood of the initial point  x 0, can actually be  extended  to the whole interval. 

The assumptions we make on  f =  f (x, y) (more restrictive than the Cauchy theorem’s ones) are the following: given two real numbers  α, β ( α < β), the function  f  is defined on the set

[ α, β] × R n = { (x, y) ∈ R × R n :  x ∈ [ α, β]}  . 

Suppose

 f (x, y)

is  continuous  on

[ α, β] × R n

(4.56)

and  locally Lipschitz  in  y ∈ R n, uniformly in  x ∈ [ α, β], in the sense that for any M, there is a constant  L >  0 (typically dependent on  M) such that


| f (x, y 1 ) −  f (x, y 2 )| ≤  L| y 1 −  y 2|  , (4.57)

for any  x ∈ [ α, β],  y 1 , y 2 ∈ R n, with | y 1|, | y 2| ≤  M. Suppose finally that there are two constants  L 1,  L 2 such that

| f (x, y)| ≤  L 1 +  L 2| y|  , 

(4.58)

for any  x ∈ [ α, β],  y ∈ R n. 
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Notice that (4.58) is in particular satisfied when  f  is  bounded  on [ α, β] × R n (taking  L 2 = 0), or when  f (x,  0 )  is bounded and  f (x, y)  is  globally Lipschitz  on

[ α, β] × R n (not just  locally), meaning that (4.57) holds with  L  independent of  M. 

In the latter case, in fact, putting  y 1 =  y  and  y 2 = 0 in (4.57) we obtain

| f (x, y)| ≤ | f (x,  0 )| +  L| y| ≤  L 1 +  L| y|  , where  L 1 = sup {| f (x,  0 )| :  x ∈ [ α, β]}. 

Hence there are two remarkable cases in which the above hypotheses holds:

 f (x, y)  globally Lipschitz on [ α, β]× R n, or  f (x, y)  bounded and locally Lipschitz on [ α, β] × R n, for instance when  f  is bounded and  C 1. 

Global Existence and Uniqueness Theorem  If f satisfies (4.56) , (4.57)  and (4.58) , then for any x 0 ∈ [ α, β] , y 0 ∈ R n there exists a unique function y =  y(x), y : [ α, β] → R n, that solves on the entire interval [ α, β]  the initial value problem y =  f(x,y)

(4.59)

 y(x 0 ) =  y 0  . 

 Example 1  The technique for solving the following initial value problem (relative to a separable ODE) will be explained in the next section. Here we shall just verify that the solution to

 y = 1+ y 2

 y( 0 ) = 0

is  y(x) = tg  x. In fact,  y( 0 ) = 0,  y = 1 / cos2  x  and 1 +  y 2 = 1 + sen2  x =

1

=  y  . 

cos2  x

cos2  x

It is clear that the solution is not defined on R but only on the neighbourhood  (− π/ 2 , π/ 2 ) of  x = 0. The conclusion of the global existence and uniqueness theorem does not hold. 

More precisely, the theorem is not applicable on an arbitrary interval [ α, β] fixed in advance. 

The reason is that the function  f (y) = 1 +  y 2 (constant in  x) does not satisfy (4.58). 

 Example 2  In contrast to the previous example, the initial value problem

⎧

⎪

⎨ y = 1 +  x 2

⎪

1 +  y 2

⎩ y( 1 ) = 1 , 

(continued)
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 Example 2 (continued)

satisfies all the hypotheses of the global existence and uniqueness theorem. In particular (4.58) holds, since  f (x, y) =  ( 1 +  x 2 )/( 1 +  y 2 )  is bounded as  x  varies in a bounded interval [ α, β] and  y ∈ R. 

It is easy to see  y(x) =  x  is a solution defined on the entire R. 

 Proof of the Global Existence and Uniqueness Theorem  Consider  α ≤  x 0  < β

and let us show the initial value problem (4.59) admits a (unique) solution to the right of  x 0, on the interval [ x 0 , β]. A similar argument applies to the case [ α, x 0], α =  x 0. 

Cauchy’s local existence and uniqueness theorem warrants that there exist a

number  δ 0  >  0 and a (unique) solution  y :  Iδ → R n  to (4.59). In particular  y(x) 0

solves the initial value problem on [ x 0 , x 0 +  δ 0]. 

Define  (x 1 , y 1 ) ∈ [ x 0 , β] × R n  by  x 1 =  x 0 +  δ 0 and  y 1 =  y(x 1 ). Let us solve the new initial value problem

 y =  f(x,y)

(4.60)

 y(x 1 ) =  y 1  . 

By Cauchy’s theorem there exist  δ 1  >  0 and  z :  Iδ → R n, with  I = [ x 1

 δ 1

1 −  δ 1 , x 1 +

 δ 1], solving (4.60). As  y(x 1 ) =  y 1, also  y(x)  solves (4.60) on [ x 1 −  δ 1 , x 1] ⊆

[ x 0 , x 1]. By uniqueness,  z(x)  coincides with  y(x)  to the left of  x 1, and is therefore a right-sided extension of  y(x). Changing notation we may call this function  y(x)  and consider it a solution to the Cauchy problem (both (4.59) and (4.60)) on the larger interval

[ x 0 , x 1 +  δ 1] = [ x 0 , x 0 +  δ 0 +  δ 1]  . 

Now we repeat the argument starting from the initial datum  (x 2 , y 2 ) ∈ [ x 0 , β] × R n, with  x 2 =  x 1 +  δ 1 and  y 2 =  y(x 2 ). We extend the solution  y(x)  to an interval of type

[ x 0 , x 2 +  δ 2] = [ x 0 , x 0 +  δ 0 +  δ 1 +  δ 2]  , with  δ 2  >  0. Iterating, we end up extending the solution to

[ x 0 , x 0 +  δ 0 +  δ 1 +  . . . +  δk]  . 

We claim that after finitely many iterations (i.e. for  k  finite), we will have xk+1 =  x 0 +  δ 0 +  δ 1 +  . . . +  δk ≥  β, (4.61)

so that  y(x)  solves the initial value problem on the entire interval [ x 0 , β]. 
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Assumption (4.58) is the main difference between the local and global versions of Cauchy’s theorem, and is employed at this point to prove (4.61). For this let us return to Cauchy’s statement, applied repeatedly with initial values  (xk, yk),  k =

0 ,  1 ,  2 , . . . , and with  ak =  β −  xk  and  bk >  0 chosen at a later stage. Cauchy’s theorem gives for  δk  the following estimate









 δk = min  ak;  bk

= min  β −  xk;  bk , 

 Mk

 Mk

where

 Mk = max{| f (x, y)| :  x ∈ [ xk, β] , | y −  yk| ≤  bk}  . 

From (4.58) we deduce

| f (x, y)| ≤  L 1 +  L 2| y| ≤  L 1 +  L 2 (| yk| +  bk) , for any  x ∈ [ α, β], | y −  yk| ≤  bk. Put  bk =  L 1 +  L 2| yk|, so Mk

1

=

max{| f (x, y)| :  x ∈ [ xk, β] , | y −  yk| ≤  bk} ≤

 bk

 bk

(4.62)

≤ 1  (L 1 +  L 2| yk| +  L 2 bk) = 1 +  L 2  . 

 bk

Now, suppose by contradiction  xk < β  for any  k ∈ N. Then we could not have δk =  bk , 

∀  k ∈ N  , 

 Mk

because in that case (4.62) would imply  δk ≥ 1 /( 1 +  L 2 )  for any  k, hence  xk →

+∞. Therefore there is an integer  k  such that  δk =  β − xk, and  xk+1 =  xk + δk =  β. 

Having proved that there exists  k ∈ N such that  xk ≥  β, the function  y(x)  solves problem (4.59) on the entire interval [ x 0 , β]. 

In the proof of the global existence and uniqueness we have shown that the

solution to the ODE

 y =  f (x, y) , 

(4.63)

defined  locally  on a neighbourhood of the initial point, is actually  extendable  to the entire given interval. In case the hypotheses of the global theorem are not satisfied the following considerations might be of use. 

Let  y =  y(x)  be a solution to (4.63) on some interval  (a, b) (hereafter the endpoints are allowed to be infinite). We say that a function  y 1 (x)  is an  extension of  y(x)  if  y 1 (x)  solves the same ODE (4.63) on an interval  (a 1 , b 1 ) ⊇  (a, b)  and y 1 (x) =  y(x)  for any  x ∈  (a, b). 
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An extension  y 1 (x)  of  y(x)  to  (a 1 , b 1 )  is called  maximal  when any extension  y 2

of  y  to an interval  (a 2 , b 2 )  implies that  (a 1 , b 1 )  contains  (a 2 , b 2 ). 

Existence of the Maximal Extension  If f =  f (x, y) satisfies (4.28) , (4.29)  in Cauchy’s theorem, every solution y =  y(x) to the ODE (4.63)  has a maximal extension. 

 Proof  We divide the argument in two steps. 

 Step one: consider two solutions  y 1,  y 2 of (4.63), respectively defined on  (a 1 , b 1 ), (a 2 , b 2 ), that coincide at some point  x 0 ∈  I =  (a 1 , b 1 ) ∩  (a 2 , b 2 ). We claim  y 1 (x) =

 y 2 (x)  for any  x ∈  I . 

We restrict to points  x ∈  I  such that  x ≥  x 0, since the other case is similar. Set x = inf{ x ∈  I :  x ≥  x 0 , y 1 (x) =  y 2 (x)}  . 

(4.64)

Then  y 1 (x) =  y 2 (x). In fact, if  x =  x 0, by assumption  y 1 (x 0 ) =  y 2 (x 0 ). If x > x 0, assuming  y 1 (x) =  y 2 (x)  would give  y 1 (x) =  y 2 (x)  for any  x  in some neighbourhood of  x (by the continuity of  y 1,  y 2). But  x  is the infimum. 

Hence  y 1,  y 2 solve on  I  the same ODE, and they satisfy  y 1 (x) =  y 2 (x). 

Cauchy’s theorem with initial point  x  implies that  y 1 (x)  and  y 2 (x)  coincide on a neighbourhood of  x, violating the definition of  x  in (4.64). Therefore the set in (4.64) is empty, and  y 1 (x) =  y 2 (x)  for any  x ∈  I . 

 Second step: let  (a, b)  be the open interval where  y(x)  solves (4.63). Consider the set  P  of all solutions of (4.63) that extend  y. Saying  y 1 ∈  P  means that  y 1

solves (4.63) on some interval  (a 1 , b 1 ) ⊇  (a, b), and that  y 1 coincides with  y  on (a, b). 

To define the maximal extension of  y, start by introducing the endpoints of the maximal interval  (am, bm):

 am = inf { a 1 : ∃  y 1 ∈  P solution to (4.63)  on (a 1 , b 1 )} , (4.65)

 bm = sup { b 1 : ∃  y 1 ∈  P solution to (4.63)  on (a 1 , b 1 )} . 

(4.66)

As  y ∈  P, we have  am ≤  a < b ≤  bm, so  (am, bm)  is not empty. By definitions (4.65), (4.66) we infer that, for any  x ∈  (am, bm), there is a solution y 1 ∈  P  to (4.63) on  (a 1 , b 1 ), where  x ∈  (a 1 , b 1 ). Now define  ym  at  x  by ym(x) =  y 1 (x) . 

(4.67)

This does not depend on the particular solution  y 1 chosen: if  y 2 were another solution to (4.63) on some  (a 2 , b 2 ), with  x ∈  (a 2 , b 2 ), by step one we would have y 1 (x) =  y 2 (x)  because  x ∈  (a 1 , b 1 ) ∩  (a 2 , b 2 ). Therefore  ym(x)  in (4.67) is well defined. 
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In particular  ym(x) =  y(x)  for any  x ∈  (a, b), and so  ym  is an extension of  y. 

Furthermore,  ym  is a maximal extension, because by definitions (4.65) and (4.66), we have  (am, bm) ⊇  (a 1 , b 1 )  for any  y 1 ∈  P  defined on  (a 1 , b 1 ). 

Finally, let us show  ym  solves (4.63) on  (am, bm). Fix  x ∈  (am, bm), and in definition (4.67) take  y 1 ∈  P  solution to (4.63) on  (a 1 , b 1 ) ⊆  (am, bm), with  x ∈

 (a 1 , b 1 ). Since  ym(x) =  y 1 (x)  for any  x ∈  (a 1 , b 1 ), on this interval  y m(x) =  y  (x), 1

and so  ym  solves (4.63) on  (am, bm). 

Consider an open subset  A  in R × R n  and let  f =  f (x, y)  be a function defined on  A  that satisfies the conditions ensuring the local existence of a solution to the initial value problem

 y =  f(x,y)

 y(x 0 ) =  y 0

for any point  (x 0 , y 0 ) ∈  A. For example,  f  might be  of class C 1, in which case Corollary 1 in Sect. 4.3 applies. More simply, it suffices to take  f continuous  on  A, due to Peano’s theorem (see the Appendix, Sect. 4.9). 

Below we state, without proof, a result on extending solutions to maximal

intervals only under a continuity assumption. 

Extension Theorem  Let f :  A ⊆ R × R n be continuous and y :  (a, b) → R n a solution to the ODE (4.63) . There exists a maximal solution ym of (4.63) , defined on a maximal interval (am, bm) ⊇  (a, b) with am, bm ∈ R ∪ {±∞} , that extends y(x), i.e. such that ym(x) =  y(x) for any x ∈  (a, b). 

 Moreover, if x →  b−

 m, then ym(x) “tends” to the boundary of A, meaning that

 for any compact set K ⊂  A, there exists δ >  0  such that (x, ym(x)) /

∈  K if x ∈

 (bm −  δ, bm). The behaviour is analogous for x →  a+

 m . 

Let us emphasise that the extension theorem does not claim that the maximal

solution  ym(x)  converges to a point on the boundary of  A  as  x  tends to one endpoint of the maximal interval. It says that  (x, ym(x)) /

∈  K  for any compact subset  K ⊂  A, 

when  x  is sufficiently close to the interval’s endpoint. 

For example, the real function

 y(x) =  e cos 1 x

(4.68)

has derivative

1

1

 y (x) =  e cos 1 x · 1 sin

=  y(x) · 1 sin  . 

 x 2

 x

 x 2

 x

(continued)
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Hence  y =  y(x)  solves the ODE  y =  f (x, y)  where

1

 f (x, y) =  y · 1 sin

 . 

 x 2

 x

The function  f  is continuous in  x  and locally Lipschitz in  y, for instance on  A = { (x, y) ∈

R2 :  x >  0}. Now,  y =  y(x)  in (4.68) solves  y =  f (x, y), it tends to  ∂A  as  x → 0+ in the sense of the theorem, but does not admit limit as  x → 0+. 

If we seek a globally Lipschitz example in  y, on the same set  A = { (x, y) ∈ R2 :  x > 0}, we may consider the function (constant in  y)

1

 f (x) = 1 sin

 . 

 x 2

 x

Now  y(x) = cos  ( 1 /x)  solves  y =  f (x). 

4.5

Solving First-Order ODEs in Normal Form

In this section and the next we shall examine ODEs of type

 y =  f (x, y) , 

(4.69)

where  f (x, y)  is a real-valued function. Earlier we saw under which conditions on f  equation (4.69) admits a solution satisfying the initial condition  y(x 0 ) =  y 0 on the neighbourhood of a point  x 0. 

Hence under the Cauchy theorem’s assumptions, given  x 0 we determine a

solution to (4.69) for any real number  y 0 (in some interval where  f  is defined and satisfies the conditions). We then say that the set of solutions depends on a

real parameter (called  y 0 above, but typically denoted with  c, for  constant). Such a solution set is called  general integral. 

Each element in this family of functions, obtained fixing the parameter  c, is a particular solution  of the differential equation (4.69). Conversely, a solution might not be a particular integral, and these further solutions are called  singular integrals. 

We shall examine, especially in the next section, differential equations admitting

singular integrals. Here we will consider special examples of functions  f (x, y)  for which we are able to compute (more or less explicitly) the general integral of the

corresponding equation (4.69). 

If the differential equation is given in the form

 y =  f (x) ·  g(y) , 

(4.70)
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with  f (x)  and  g(y)  continuous, the equation is called  separable (this refers to the fact that the variables are separable, as explained below). Supposing  g(y) = 0 for any  y, dividing (4.70) by  g(y)  and integrating in  x  we obtain y (x) dx =  f(x)dx . 

 g(y(x))

This is an expression of the form

 G(y(x)) =  F (x) +  c

where  F  is a primitive of  f  and  G  a primitive of 1 /g. 

When  G  is invertible, we obtain a family of explicit solutions represented by y =  y(x, c) =  G−1 (F (x) +  c). 

Under the variable change  y =  y(x)  in the left-hand side the integral reduces (4.70) to





 dy =  f (x)dx . 

 g(y)

 Example 1  Determine the general integral of the ODE

 y =  x ·  y 3  . 

(4.71)

Separating the variables and integrating, we obtain





 dy =  x dx , 

 y 3

whence

− 1 =  x 2 +  c . 

2 y 2

2

If we denote by  c  the arbitrary constant −2 c, we then have

 y = ±

1

√

 . 

(4.72)

 c −  x 2

Note that (4.71), apart from the solutions in (4.72) plotted in Fig. 4.1, also admits the singular integral  y ≡ 0. 

(continued)
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 Example 1 (continued)

y

c = 2

c = 1

1

x

–  2

2

–1

c = 1

c = 2

Fig. 4.1  y =  y(x, c)  given in (4.72)

Equations of type

 y =  g(ax +  by) , 

(4.73)

with  a, b  non-zero, are immediately reducible to the separable case. For this put z =  z(x) =  ax +  by, so  z =  a +  by and then (4.73) becomes z =  a +  bg(z) , 

which is a separable equation, and can be solved with the above method. 

The differential equation



 y

 y =  g

 , 

(4.74)

 x
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called  homogeneous, is solved using the substitution  z =  y . This turns (4.74) into x

 xz +  z =  g(z) , 

which is separable. 

 Example 2  Determine the solutions of the homogeneous ODE

 y =

2 xy

 . 

(4.75)

 x 2 +  y 2

Dividing numerator and denominator by  x 2 we obtain

 y

2

 y =

 x

 , 

 y  2

1 +  x

and putting  z =  y  we easily obtain the separable equation

 x

 xz =  z −  z 3  , 

1 +  z 2

whose solution is the general integral

 z

=  cx . 

 z 2 − 1

Recalling that  z =  y , we then obtain

 x

 y

=  c. 

 y 2 −  x 2

Again, let  c  replace the constant 1 /c, so the general integral of (4.75) reads y 2 −  x 2 =  cy , 

representing a family of hyperbolas. Also note that  y ≡ 0 is a particular integral of (4.75). 

All equations of the form





 ax +  by +  c

 y =  g

 , 

(4.76)

 a x +  b y +  c

with  a, b, a , b not all zero, are reducible to homogeneous equations. 

Call  r  and  r the straight lines of equations  ax+ by+ c = 0 and  a x+ b y+ c = 0. 

If  r  and  r are parallel, i.e.  a =  ka  and  b =  kb  for some real number  k, then (4.76)
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reduces to an equation of type (4.73), solved with the substitution  z =  ax +  by. If r  and  r are not parallel, so that the coefficients  a, a and  b, b are not proportional, the lines meet at a point  (x 0 , y 0 ). Put

 ξ =  x −  x 0  , 

 η =  y −  y 0  , 

so  ax 0 +  by 0 +  c = 0 implies  ax +  by +  c =  aξ +  bη, and similarly  a x +  b y +  c =

 a ξ +  b η. Since we also have

 dη =  dy , 

 dξ

 dx

Eq. (4.76) now reads









 aξ +  bη

 a +  b ηξ

 η =  g

=  g

 , 

 a ξ +  b η

 a +  b  ηξ

which is homogeneous. 

 Example 3  Consider

 y =

2 x − 6  . 

(4.77)

 y −  x + 2

The lines 2 x − 6 = 0,  y −  x + 2 = 0 meet at  ( 3 ,  1 ). We put  ξ =  x − 3,  η =  y − 1 so that (4.77) transforms into

 η =

2 ξ

=

2

 . 

 η −  ξ

 (η/ξ ) − 1

The substitution  z =  z(ξ ) =  η/ξ  gives the separable equation ξ z = −  z 2 −  z − 2  . 

 z − 1

An easy computation then furnishes the general integral

 (z + 1 ) 2 ·  (z − 2 ) =  c . 

 ξ  3

Recalling that  z =  η/ξ  and  ξ =  x − 3,  η =  y − 1, we find the general integral of (4.77)

 (y +  x − 4 ) 2 ·  (y − 2 x + 5 ) =  c . 

We close the section considering a case that can be handled with differential forms. 

The reader might come back here after studying the topic in Chap. 7. 
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If the differential equation is presented as

 y = −  a(x, y) , 

(4.78)

 b(x, y)

or equivalently

 ω =  a(x, y)dx +  b(x, y)dy = 0  , 

(4.79)

the solutions to (4.78) arise from examining the differential form  ω. In fact, if the form is exact (see Sect. 7.3, Chap. 7) and if  F (x, y)  denotes a primitive of  ω, the solutions of (4.79) are precisely those satisfying the implicit equation F (x, y) =  c . 

(4.80)

 Example 4  Given

 y =  e 2 x −  xy 2  , 

 x 2 y

observe that the differential form

 ω =  (xy 2 −  e 2 x )dx +  x 2 y dy , 

(4.81)

is exact, since it is defined on the entire plane and

 ∂ (xy 2 −  e 2 x) = 2 xy =  ∂ (x 2 y)

 ∂y

 ∂x

(see Theorem 2, Sect. 7.4). 

Easily, a primitive of the form (4.81) is

 F (x, y) = 1  (x 2 y 2 −  e 2 x ) . 

2

It follows from (4.80) that the general integral of the given ODE is given by the expression x 2 y 2 −  e 2 x =  c. 

4.6

Solving First-Order ODEs Not in Normal Form

Consider the differential equation, not in normal form, 

 y =  xy +  g(y ) , 

(4.82)
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where  g  is differentiable. It is called  Clairaut equation. If  y(x)  is a solution of (4.82) admitting second derivative, by differentiating (4.82) in  x  we find y (x +  g (y )) = 0  , 

and so either

 y = 0

(4.83)

or

 x +  g (y ) = 0  . 

(4.84)

For (4.83) we have  y =  c, and because of (4.82), necessarily y =  xc +  g(c) . 

(4.85)

Another solution to (4.82) comes from (4.84). Set  y =  t, so (4.84) and (4.82) give parametric equations

 x = − g (t)

(4.86)

 y = − tg (t) +  g(t) . 

The solution to (4.86) is called a  singular integral  of the Clairaut equation. It can be proved that this curve is the  envelope  of the family of lines (4.85), i.e. at any point it is tangent to one line in the family. 

 Example 1  Consider the Clairaut equation

 y =  xy − 1  (y ) 3  . 

3

From (4.85) we obtain solutions

 y =  cx − 1  c 3  , 

(4.87)

3

while (4.86) produces the singular integral

⎧

⎨ x =  t 2

⎩

(4.88)

 y = 2  t 3  , 

3

the curve obtained as union of the graphs of the two functions of equations  y =

± ( 2 / 3 ) x 3 / 2. The reader should check that the latter envelops the family of lines (4.87). 

Put otherwise, (4.87) is the  equation of all tangent lines  to the curve (4.88) (see Fig. 4.2). 

(continued)
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 Example 1 (continued)

Fig. 4.2

y

x

Consider now the non-normal equation

 x =  g(y ) , 

(4.89)

where  g  is differentiable. Let us take  y as independent variable and put  t =  y. 

From (4.89) we have

 dy =  dy dx =  tg (t), 

 dt

 dx dt

and integrating by parts



 y(t) =

 tg (t) dt =  tg(t) −  G(t) +  c , 

with  G  a primitive of  g. From this relation and (4.89) we determine the general integral

 x =  g(t)

(4.90)

 y =  tg(t) −  G(t) +  c . 
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 Example 2  To solve

 x =

1

 , 

(4.91)

1 +  (y ) 2

we can certainly use (4.90), where

 g(t ) =

1

 , 

 G(t ) = arctg  t . 

1 +  t 2

Then

⎧

⎪

⎪

⎨ x =

1

1 +  t 2

⎪

⎪

⎩ y =

 t

− arctg  t +  c . 

1 +  t 2

√

Solving for the parameter  t  in terms of  x, we obtain  t = ±  ( 1 −  x)/x, and the general integral of (4.91) is explicitly given by







1 − x

 y = ±

 x −  x 2 − arctg

+  c . 

 x

The reasoning employed for tackling

 y =  g(y ) . 

(4.92)

is similar. Putting  y =  t, by (4.92) we have

 dx =  dx dy =  g (t) . 

 dt

 dy dt

 t

Then the general integral of (4.92) is, in parametric form, 

⎧



⎨

 g (t)

 x =

 dt

⎩

 t

(4.93)

 y =  g(t) . 

4.7

Solving Higher-Order Equations

Consider a differential equation of second order where  y  does not appear:

 F (x, y , y ) = 0  . 

(4.94)
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The substitution  z(x) =  y (x)  clearly turns (4.94) into the first-order equation F (x, z, z ) = 0

(4.95)

in the unknown  z. If  z =  z(x, c)  is the general integral of (4.95), the general integral of (4.94) is then

 x

 y(x) =  c 1 +

 z(t, c) dt . 

 x 0

In the same way, an equation of order  n ≥ 2

 F (x, y(k), y(k+1 ), . . . , y(n)) = 0  , 

(4.96)

where the variables  y, y , . . . , y(k−1 ) ( 1 ≤  k < n)  do not appear explicitly, can be transformed into an equation of order  n −  k

 F (x, z, z , . . . , z(n− k)) = 0

(4.97)

by the substitution  z(x) =  y(k)(x). If  z =  z(x, c 1 , c 2 , . . . , cn− k)  is the general integral of (4.97), the solutions to (4.96) arise from solving the ODE of order  k y(k) =  z(x, c 1 , c 2 , . . . , cn− k) . 

The latter may be solved for instance as we did for (4.15) in the introduction to this chapter (Sect. 4.1). 

Now consider a second-order equation that does not explicitly depend on  x

 F (y, y , y ) = 0  . 

(4.98)

We may think of  y  as an independent variable, and putting  z(y) =  y we find dy

 y =  dy =  dz

=  z z . 

 dx

 dy dx

Thus (4.98) becomes of order one:

 F (y, z, z z) = 0  . 

If  z =  z(y) =  z(y, c)  is a general integral of the latter equation, the solutions of (4.98) are obtained by solving the separable equation

 y =  z(y) . 
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 Example 1  Let us solve the initial value problem

⎧

⎪

⎨

 y

= 1

 ( 1 +  (y ) 2 ) 3 / 2

 y 2

⎪

(4.99)

⎩ y( 0 ) = 1 , y ( 0 ) = 0 . 

Put  z(y) =  y, so  y =  z z  and the ODE in (4.99) reads z z

= 1  , 

 ( 1 +  z 2 ) 3 / 2

 y 2

which is separable. The latter’s general integral is

1

√

= 1 +  c . 

(4.100)

1 +  z 2

 y

The Cauchy conditions  y( 0 ) = 1,  y ( 0 ) = 0 imply  z( 1 ) = 0, imposing which on (4.100)

produces  c = 0. 

Therefore, recalling that  z =  y, if  y  solves the given initial value problem,  y  also solves 1 + (y ) 2 =  y

(4.101)

 y( 0 ) = 1  . 

The ODE in (4.101) is of the type  y =  g(y ). Using (4.93) from the previous section, the general integral, in parametric form, is

⎧



⎪



⎨

1

 x =

√

 dt = log  (t +

1 +  t 2 ) +  c

1 +  t 2

⎪

⎩

√

 y =

1 +  t 2  . 

Solving the first equation for the parameter  t  gives  t = sinh (x −  c). Substituting in the second equation produces  y = cosh (x −  c). Imposing the initial condition  y( 0 ) = 1 finally gives the solution to (4.99):

 y = cosh  x . 

4.8

Qualitative Study of Solutions

In this section we will show how, sometimes, one can infer properties of solutions, in particular those allowing to plot graphs, starting only from the analytical expression of the given ODE, and without solving the equation explicitly – which by the way

may not be solvable in closed form. These methods are referred to as the  qualitative study of the solutions. 

Let us consider some examples. 
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 Example 1  The initial value problem

⎧

⎨ y = 1 −  x

 y

⎩

(4.102)

 y( 1 ) = 1  . 

admits a solution  y(x)  defined on a neighbourhood of  x 0 = 1, because the function f (x, y) = 1 /y −  x  is  C 1 on a neighbourhood of the point  (x 0 , y 0 ) =  ( 1 ,  1 ), to be precise on the open set  A = { (x, y) ∈ R2 :  y >  0}. 

The sign of the derivative  y speaks about the monotonicity of  y(x). In fact, from  y =

1 /y − x  we have  y ≤ 0 whenever 1 /y − x ≤ 0, i.e. on  A, restricted to  y >  0 when  y >  1 /x. 

In the  xy-plane the region in question lies above the hyperbola  y = 1 /x, see Fig. 4.3. 

Since the point corresponding to the initial datum  (x 0 , y 0 ) =  ( 1 ,  1 )  lies on the hyperbola, for  x 0 = 1 we have  y (x 0 ) = 0. The solution’s graph, with horizontal tangent at x 0 = 1, crosses the hyperbola. Restricting to a neighbourhood of  x 0, we then have  y (x) >  0

for  x < x 0 and  y (x) <  0 for  x > x 0. Therefore  x 0 is a maximum point of  y(x). 

On a right neighbourhood of  x 0 the function  y(x)  is strictly decreasing. We may ask whether the graph of  y(x)  intersects the hyperbola in Fig. 4.3, and the answer is no. If that happened at some point  x 1, the solution at  x 1 would be strictly decreasing, in contrast to the fact that  y (x) ≥ 0 on a right neighbourhood of  x 1 (corresponding to points on the graph below the hyperbola). 

So for  x > x 0 the solution’s graph stays above the hyperbola  y = 1 /x,  y >  0. In particular, it stays inside  A = { (x, y) ∈ R2 :  y >  0}, the domain of definition of  f (x, y) =

1 /y −  x. The solution is therefore decreasing and defined for any  x > x 0. 

Let    be the limit of  y(x)  as  x → +∞, which exists due to the monotonicity of  y(x). 

By general principles 0 ≤   < y( 1 ) = 1. We claim that, actually,   = 0. By contradiction, if 0  <  <  1, the ODE  y (x) =  f (x, y(x))  says 1

lim

 y (x) = lim  f (x, y(x)) = lim

−  x = −∞  , 

 x→+∞

 x→+∞

 x→+∞  y(x)

and integrating  y (x)  we would also have  y(x) → −∞. 

Hence   = 0. Since  y(x) → 0 when  x → +∞, the solution has the  x-axis as horizontal asymptote. 

Differentiating the ODE in (4.102) we obtain

 y = − 1  y − 1  . 

 y 2

In particular, for  x < x 0 = 1 (and  y >  0) we have  y  <  0 (since  y  >  0) so  y(x)  is concave. Moreover, as  y(x)  is strictly increasing and concave for  x <  1, it must tend to zero as  x  approaches a certain finite value  a. 

Therefore the solution is defined on the interval  (a, +∞ ), and using the differential equation again we find

lim  y(x) = 0  , 

lim  y (x) = +∞  , 

 x→ a+

 x→ a+

(continued)
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 Example 1 (continued)

showing that  y(x)  approaches the  x-axis as  x →  a+, and in the limit the tangent line is vertical. The solution’s graph, based on the information gathered, is represented in Fig. 4.4. 

Fig. 4.3

y

y > 0

y < 0

1

y = 1x

1

x

Fig. 4.4

y

1

a

1

x

In the following two examples it is possible to solve the ODE using the methods

seen in Sect. 4.5. The equation of Example 2 is separable and in Example 3 it is homogeneous. However, in both cases the solution is implicit, and it is not an easy

task to deduce qualitative properties from the analytical expressions. 

 Example 2  Let us study the initial value problem

 y =  y 6 − y 3 −2

(4.103)

 y( 0 ) = 1  . 

(continued)
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 Example 2 (continued)

The solution  y(x), which exists by Cauchy’s theorem, is strictly decreasing on a neighbourhood of the initial point  x 0 = 0. In fact the derivative  y =  y 6 −  y 3 − 2 is negative inside the interval between the roots of the right-hand-side polynomial, i.e. for −1  < y <  21 / 3, and the initial value  y( 0 ) = 1 satisfies that. 

The constant functions  y ≡ −1 and  y ≡ 21 / 3 solve the ODE. By Cauchy’s uniqueness, no other solution can, for any  x =  x 1, take the values  y(x 1 ) = −1 or  y(x 1 ) = 21 / 3, because otherwise we would have two distinct solutions of the same equation, with the same initial value at  x 1. 

Hence the graph of  y(x)  cannot intersect the horizontal lines  y = −1 and  y = 21 / 3. 

Being continuous,  y(x)  satisfies the bounds −1  < y(x) <  21 / 3 for any  x  in its domain. 

In the strip −1  < y <  21 / 3 the function  f (x, y) =  y 6 −  y 3 − 2 (constant in  x) is bounded and Lipschitz in  y, so the global existence and uniqueness theorem says  y(x)  is defined for any  x ∈ R. 

Call    the limit of  y(x)  as  x → +∞ (   exists since  y(x)  is monotone, and similarly for x → −∞). Then necessarily −1 ≤   <  21 / 3. Now we shall prove that   = −1. 

As  y(x)  has finite limit when  x → +∞, also  y (x)  admits limit as  x → +∞. Moreover, by de L’Hôpital’s rule this limit must be zero:





 

 y(x)

0 =

=

=

+∞

lim

lim

 y (x) . 

(4.104)

 x→+∞

 x

 x→+∞

Recall that de L’Hôpital’s rule applies not only to the indeterminate forms 0 / 0 and ∞ /∞, but also when only the denominator diverges, as in (4.104). Furthermore, one of the assumptions of de L’Hôpital’s theorem is the existence of the limit of  y (x)  on the right. This follows from the ODE  y (x) =  f (x, y(x)), because  y(x)  has finite limit when  x → +∞, lim

 y (x) = lim  f (x, y(x)) =

 x→+∞

 x→+∞

(4.105)

= lim [ y(x)]6 − [ y(x)]3 − 2 =   6 −   3 − 2  . 

 x→+∞

Hence  y (x)  admits limit when  x → +∞, and by (4.104) the limit is 0. 

Here is a second method, that does not rely on de L’Hôpital’s theorem, for proving that lim

 y (x) = 0. Using  y (x) =  f (x, y(x)), the derivative  y (x)  admits limit as  x → +∞

 x→+∞

as in (4.105):

lim

 y (x) =   6 −   3 − 2 . 

 x→+∞

This quantity is a number   ≤ 0 because −1 ≤   <  21 / 3. If   were negative, we would have  y(x) → −∞ as  x → +∞, against the boundedness of  y(x). Therefore

  = lim  y (x) = 0. 

 x→+∞

From (4.105) it follows that   6 −   3 − 2 = 0, so   = −1 or   = 21 / 3. The latter possibility must be discarded since  y(x)  is decreasing, with −1  < y(x) <  21 / 3 for any x ∈ R. All in all,  y(x) → −1 as  x → +∞ (and similarly,  y(x) → 21 / 3 when  x → −∞). 

(continued)
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 Example 2 (continued)

Differentiating in  x  the ODE in (4.103) allows to establish the sign of the second derivative. In fact

 y =  d (y 6 −  y 3 − 2 ) = 3 y 2 ( 2 y 3 − 1 ) ·  y  , dx

and  y (x) <  0 for any  x ∈ R implies  y  >  0 when  y <  2−1 / 3,  y = 0. So, the solution  y(x) is convex when  y  is less than 2−1 / 3 and concave otherwise. At  y = 2−1 / 3 the function  y(x) has an inflection. 

Figure 4.5 represents the solution’s graph based on the above features. 

y

21/3

1

2–1/3

x

–1

Fig. 4.5

 Example 3  Let us study the solutions of

 y =  y +  x . 

(4.106)

 y −  x

The first derivative’s sign is determined by the sign of

 f (x, y) =  y +  x

 y −  x

(continued)
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 Example 3 (continued)

and is represented in Fig. 4.6. Along the line  y =  x (where the ODE’s right-hand side is not well defined) the first derivative diverges to infinity, whilst along  y = − x  the first derivative vanishes. Moreover,  ( 0 ,  0 )  is a singular point for the ODE. 

The sign of the second derivative can be found by differentiating the equation. Easy

calculations produce

 y −  xy

 y = 2

 , 

 (y −  x) 2

and keeping in account  y =  (y +  x)/(y −  x), we have

 y 2 − 2 xy −  x 2

 y = 2

 . 

(4.107)

 (y −  x) 3

Then  y = 0 when the numerator of (4.107) vanishes, i.e. along the straight lines  y/x =

√

1 ±

2. 

√

By direct inspection the two linear functions  y =  ( 1 ±

2 )x  solve (4.106). The graph

of any other solution, by Cauchy’s uniqueness, cannot meet these lines. 

The qualitative graph of the general integral of (4.106) is shown in Fig. 4.7. 

 y

 y = 0

 y →∞

 y >  0

 y >  0

 y <  0

 y <  0

 x

 y <  0

 y <  0

 y >  0

 y >  0

Fig. 4.6

(continued)
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 Example 3 (continued)

 y

 y → 0

 y = 0

 y →∞

 x

 y → 0

Fig. 4.7

Appendix to Chap. 4

4.9

Peano’s Theorem

 Peano’s theorem, which will be proved in this section, is a result on local existence for Cauchy problems relative to systems of order one in normal form

 y =  f (x, y) . 

The theorem holds under the sole assumption that the function  f  is continuous. 

Precisely, given  x 0 ∈ R and  y 0 ∈ R n,  a, b >  0, suppose  f  is  continuous  on a set I ×  J ⊂ R × R n  of the form

 I ×  J = { (x, y) ∈ R × R n :  x 0 ≤  x ≤  x 0 +  a, | y −  y 0| ≤  b}  . 

We could consider a left neighbourhood  x 0 −  a ≤  x ≤  x 0 of the point  x 0, instead of a right neighbourhood, and the conclusion of Peano’s theorem would be valid there. 

Recall that | y −  y 0| is the  norm (or  modulus) in R n  of the vector  y −  y 0. 
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Peano’s Local Existence Theorem  Assuming f is continuous, there exist a real number δ >  0  and a function y =  y(x), y : [ x 0 , x 0 +  δ] → R n, defined and differentiable on [ x 0 , x 0 +  δ] , that solves on that interval the initial value problem y =  f(x,y)

(4.108)

 y(x 0 ) =  y 0  . 

Under the hypotheses of Peano’s theorem there is no uniqueness. For example, as observed in Sect. 4.3, the following initial value problem of order one



√

 y = 2 | y|

 y( 0 ) = 0  , 

with  y : R → R, admits infinitely many solutions on R. One family of solutions, depending on two real parameters  h, k,  h ≤ 0 ≤  k, is

⎧

⎪

⎪

⎨− (x −  h) 2  if x ≤  h

 y(x) = ⎪0

 if

 h < x < k

⎪

⎩ (x −  k) 2

 if

 x ≥  k . 

 Proof of Peano’s Theorem  As in the Cauchy theorem, let  M  be the maximum M = max{| f (x, y)| :  (x, y) ∈  I ×  J }

and  δ >  0 the number





 δ = min  a;  b

 . 

 M

Call  Iδ  the interval [ x 0 , x 0 +  δ] and let us define a sequence of functions  yk :  Iδ →

R n,  k ∈ N. We begin with setting  yk(x) ≡  y 0 when  x < x 0. Such extension of  yk outside  Iδ  will come in handy later (for  i = 1). 

Now we define the element  yk  in the sequence. For this we divide  Iδ  in  k  closed subintervals of the same length













 x 0 , x 0 +  δ , 

 x 0 +  δ , x 0 + 2 δ , . . . , x 0 +  (k − 1 )δ , x 0 +  δ ; k

 k

 k

 k

and then define  yk(x)  on each piece recursively, first for  x < x 0 (as we did above), then on [ x 0 , x 0 +  δ/k], and so forth. 
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Precisely, on the generic interval





 Ik,i =  x 0 +  (i − 1 )δ , x 0 +  iδ , 

 i = 1 ,  2 , . . . , k , 

 k

 k

we define  yk(x)  by the formula

 x

 yk(x) =  y 0 +

 f (t, yk(t −  δ/k)) dt . 

(4.109)

 x 0

Hence  yk  is given on  Ik,i  using the values that  yk  assumes on the preceding interval Ik,i−1. Consider  Ik,  0 (the symbol should be clear) and recall  yk  is constant and equal to  y 0 on such interval. 

We claim the sequence  yk  is well defined. In other words, the integrand

 f (t, yk(t −  δ/k))  is well defined, or equivalently, 

 yk(x) ∈  J = { y ∈ R n : | y −  y 0| ≤  b}

∀  x ∈  Ik,i−1

(4.110)

where  t −  δ/k  is a generic point in  Ik,i−1. We shall prove (4.110) by induction on i = 1 ,  2 , . . . , k. When  i = 1 recall that  yk(x) ≡  y 0 for  x < x 0. Hence  yk ≡  y 0 ∈  J

for any  x ∈  Ik,  0. For generic  i, suppose  yk(x) ∈  J  for any  x ∈  Ik,i−1. For these points  x  we then have  (x, yk(x)) ∈  I ×  J , and so

| f (x, yk(x)| ≤  M, 

∀  x ∈  Ik,i−1  . 

(4.111)

For any  x ∈  Ik,i, from definition (4.109)





 x



| y





 k (x) −  y 0| = 

 f (t, yk(t −  δ/k)) dt ≤

 x 0





 x



≤  | f(t,y



 k (t −  δ/ k)|  dt  ≤  M| x −  x 0| ≤  Mδ ≤  b x 0

since  δ ≤  b/M. Therefore  yk(x) ∈  J  for any  x ∈  Ik,i  and (4.109) is well defined. 

Now, it is a good idea to think of expression (4.109) as a global definition on the interval [ x 0 , x 0 +  δ] (more precisely, on [ x 0 − 1 /k, x 0 +  δ], after setting  yk(x) ≡  y 0

when  x < x 0):

 x

 yk(x) =  y 0 +

 f (t, yk(t −  δ/k)) dt , 

∀  x ∈ [ x 0 , x 0 +  δ]  . 

(4.112)

 x 0

From (4.110) we have

| yk(x) −  y 0| ≤  b, 

∀  x ∈ [ x 0 , x 0 +  δ]  . 

(4.113)
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Moreover, (4.111) implies that if  x 1 , x 2 ∈ [ x 0 , x 0 +  δ] then x 2



| y





 k (x 2 ) −  yk(x 1 )| = 

 f (t, yk(t −  δ/k)) dt ≤

 x 1





(4.114)

 x 2



≤ 

| f (t, y



 k (t −  δ/ k))|  dt  ≤  M| x 2 −  x 1|  . 

 x 1

We shall retain the definitions and results of Sect. 1.10 regarding the Ascoli-Arzelà theorem. By (4.113), (4.114) the functions  yk(x)  are uniformly bounded and equicontinuous on the compact interval [ x 0 , x 0 +  δ]. The Ascoli-Arzelà theorem then guarantees the existence of a subsequence  yk (x)  of  y

 h

 k (x)  that converges uniformly

on [ x 0 , x 0 +  δ] to a continuous function  y(x). 

The uniform convergence then implies  yk (x −  δ/k

 h

 h)  converges, as  h → +∞, to

 y(x). Since  f  is uniformly continuous on  I ×  J , the composite map  f (x, yk (x −

 h

 δ/kh))  converges uniformly to  f (x, y(x))  on [ x 0 , x 0 +  δ]. 

Next, consider the integral relation (4.112) for the indices  kh. As the convergence is uniform, we may take the limit inside the integral in (4.112) as  h → +∞, to obtain

 x

 y(x) =  y 0 +

 f (t, y(t)) dt , 

∀  x ∈ [ x 0 , x 0 +  δ]  . 

 x 0

By the integral form of Sect. 4.2, the function  y(x)  is a solution to the initial value problem (4.108). 
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5.1

General Properties

Consider the ODE of order  n  in normal form

 y(n) +  an−1 (x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y =  g(x) , (5.1)

where the functions  a 0 (x), a 1 (x), . . . , an−1 (x), called  coefficients  of the equation, and  g(x)  are continuous on the interval [ a, b] ⊂ R. The function  g(x)  will be referred to as the  right-hand side  of Eq. (5.1). 

Equation (5.1) is a  linear differential equation, because the map  L  that associates with any function  u(x)  of class  Cn([ a, b] )  the function L(u) =  u(n) +  an−1 u(n−1 ) +  . . . +  a 1 (x)u +  a 0 (x)u , is linear, i.e. it satisfies

 L(αu +  βv) =  αL(u) +  βL(v) , 

(5.2)

for any pair  u, v  of  Cn([ a, b] )-functions and any  α, β ∈ R. 

From that, a few properties of the  solutions (also known as  integrals) to (51.1) follow. For example, if  u  and  v  are solutions

 L(u) =  g , 

 L(v) =  g , 

then the difference  ω =  u −  v  is a solution of the  homogeneous equation L(ω) = 0  . 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Under the given hypotheses, we may apply to (5.1) the theorem on global existence and uniqueness for the associated  Cauchy problem (see Sect. 4.4), which takes the form

Existence and Uniqueness Theorem  If the coefficients and the right-hand side of (5.1)  are continuous functions on [ a, b] , then for any x 0 ∈ [ a, b]  and any (n−1 )

 (y 0 , y  , . . . , y

 ) ∈ R n there exists a unique solution to equation (5.1) , defined 0

0

 on [ a, b]  and satisfying the initial conditions

⎧

⎪

⎪

⎪ y(x

⎪

0 ) =  y 0

⎨ y (x 0 ) =  y 0

⎪

⎪

⎪

⎪ . . . . . . . . . 

⎩

 (n−1 )

 y(n−1 )(x 0 ) =  y

 . 

0

In fact, Eq. (5.1) can be put in normal form

 y(n) =  f (x, y, y , y , . . . , y(n−1 )) , 

(see Sect. 4.1) provided we choose

 f (x, y, y , y , . . . , y(n−1 )) =  g(x) − [ a(n−1 )(x)y(n−1 ) +  . . . + a 1 (x)y +  a 0 (x)y]  , which is continuous on [ a, b]× R n  and Lipschitz in all variables except possibly the first one. 

Let us begin by studying the homogeneous equation

 L(y) =  y(n) +  a(n−1 )(x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y = 0  . 

(5.3)

Proposition 1  For any k ∈ N , if y 1 , y 2 , . . . , yk are solutions (integrals) of (5.3) , any linear combination

 c 1 y 1 +  c 2 y 2 +  . . . +  ckyk

 of them with real coefficients c 1 , c 2 , . . . , ck is a solution (an integral) of the same equation. 

 Proof  This is a simple consequence of linearity, i.e. (5.2). 
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Proposition 2  For any x 0 ∈ [ a, b]  the zero function u is the only particular integral of (5.3)  that satisfies the initial conditions

 u(x 0 ) = 0  , 

 u (x 0 ) = 0  , 

 . . . 

 , u(n−1 )(x 0 ) = 0  . 

(5.4)

 Proof  Consequence of the existence and uniqueness theorem (in particular, of the uniqueness), since the zero function solves the ODE (5.3) with initial conditions (5.4). 

The  general integral  of a linear ODE of order  n  is the set of all solutions to the equation. For determining such  general integral  it is useful to recall some concepts. 

Let  u 1 , u 2 , . . . , uk  be real functions defined on an interval  I . We shall say u 1 , u 2 , . . . , uk  are  linearly dependent  if there are  k  real numbers  c 1 , c 2 , . . . , ck, not all zero, such that

 c 1 u 1 (x) +  c 2 u 2 (x) +  . . . +  ckuk(x) = 0  , 

∀  x ∈  I . 

(5.5)

The  u 1 , u 2 , . . . , uk  are said  linearly independent  if they are not linearly dependent, i.e. if the only linear combination  c 1 u 1 +  c 2 u 2 +  . . . +  ckuk  fulfilling (5.5) is the one where  c 1 =  c 2 =  . . . =  ck = 0. 

Now let  y 1 , y 2 , . . . , yn  be  n  particular integrals on [ a, b] of the homogeneous ODE (5.3). In order to decide whether they are linearly independent or not we introduce the  Wronskian determinant  of  y 1 , y 2 , . . . , yn. This is the function  W (x) defined for  x ∈ [ a, b] by the determinant





 y



1 (x)

 y 2 (x)

 . . . 

 yn(x)









 y  (x)

 y  (x)

 . . . 

 y



1

2

 n(x)

 W (x) = 

 . 







 . . . 

 . . . 

 . . . 

 . . . 







 y(n−1 )(x) y(n−1 )(x) . . . y(n−1 )

1

2

 n

 (x)

Wronskian Theorem  If y 1 , y 2 , . . . , yn are particular integrals of the homogeneous equation (5.3) , then

(i)  there is a point x 0 ∈ [ a, b]  such that W (x 0 ) = 0  if and only if y 1 , y 2 , . . . , yn are linearly dependent; 

(ii)  there is a point x 1 ∈ [ a, b]  such that W (x 1 ) = 0  if and only if y 1 , y 2 , . . . , yn are linearly independent. 
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 Proof  Let us prove (i) first. Suppose  W (x 0 ) = 0, so the linear system in the unknowns  ξ 1 , ξ 2 , . . . , ξn

⎧

⎪

⎪

⎪ y

⎪ 1 (x 0 )ξ 1 +  y 2 (x 0 )ξ 2 +  . . . +  yn(x 0 )ξn = 0

⎪

⎪

⎨ y  (x

 (x

1

0 )ξ 1 +  y 2

0 )ξ 2 +  . . . +  y n(x 0 )ξn = 0

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩ y(n−1 )(x

 (x

1

0 )ξ 1 +  y(n−1 )

2

0 )ξ 2 +  . . . +  y(n−1 )

 n

 (x 0 )ξn = 0

has a solution  (c 1 , c 2 , . . . , cn)  different from  ( 0 ,  0 , . . . ,  0 ). Hence the function u(x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x)  is a particular integral of (5.3), that vanishes at  x 0 together with its  n − 1 derivatives. By Proposition 2,  u(x) = 0 for any  x ∈ [ a, b], and then the integrals  y 1 , y 2 , . . . , yn  are linearly dependent. 

Conversely, let  c 1 , c 2 , . . . , cn  be  n  real numbers, not all zero, such that c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) = 0  , 

∀  x ∈ [ a, b]  . 

(5.6)

Differentiating, for any  x ∈ [ a, b] we obtain  n − 1 equations

⎧

⎪

⎪

⎪ c

 (x) +  c

 (x) +  . . . +  c

⎪ 1 y 1

2 y 2

 ny n(x) = 0

⎪

⎪

⎨ c 1 y (x) +  c (x) +  . . . +  c

1

2 y

2

 ny

 n (x) = 0

⎪

(5.7)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩

 (n−1 )

 (n−1 )

 (n−1 )

 c 1 y

 (x) +  c

 (x) +  . . . +  c

1

2 y 2

 nyn

 (x) = 0 . 

Therefore the linear system of  n  Eqs. (5.6) and (5.7), for any  x ∈ [ a, b], has a solution  (c 1 , c 2 , . . . , cn)  different from the trivial solution  ( 0 ,  0 , . . . ,  0 ). Hence the determinant  W (x)  is zero for any  x ∈ [ a, b]. 

To prove (ii) suppose  W (x 1 ) = 0. The functions  y 1 , y 2 , . . . , yn  must be linearly independent, otherwise what we have seen above would imply  W (x) = 0 for any

 x ∈ [ a, b]. Vice versa, if  y 1 , y 2 , . . . , yn  are linearly independent, by i) we have W (x) = 0 for any  x ∈ [ a, b]. 

From the above result we deduce the following proposition

Proposition 3  If y 1 , y 2 , . . . , yn are particular integrals of the homogeneous equation (5.3) , their Wronskian W (x) is either identically zero (if the particular integrals are dependent), or different from zero for any x ∈ [ a, b]  (if the particular integrals are independent). 
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The determinant’s properties allow to prove the following result

Proposition 4  The Wronskian of n particular integrals of (5.3)  is a particular integral of the linear homogeneous equation of order one

 y = − an−1 (x)y . 

 Proof  Recall that the derivative of a square matrix’ determinant equals the sum of the determinants obtained differentiating each single row. From this, the Wronskian

derivative  W  (x)  is the sum of  n  determinants, of which the first  n − 1 are zero because they have two identical rows, and the last one is





 y



1 (x)

 y 2 (x)

 . . . 

 yn(x)









 y  (x)

 y  (x)

 . . . 

 y



1

2

 n(x)











 . . . 

 . . . 

 . . . 

 . . . 

 . 

(5.8)









 y(n−2 )(x)

 y(n−2 )(x)

 . . . 

 y(n−2 )

1

2

 n

 (x)





 y(n)(x)

 y(n)(x)

 . . . 

 y(n)

1

2

 n (x)

As, for any  i = 1 ,  2 , . . . , n, 





 (n)

 (n−1 )

 y

= −  a

 (x) +  . . . +  a

 , 

 i

 n−1 (x)yi

0 (x)yi (x)

(5.8) is the sum of  n  determinants: one is − an−1 (x) ·  W (x), while the others vanish because they have two proportional rows. All in all we obtain

 W  (x) = − an−1 (x)W (x) , 

∀  x ∈ [ a, b]  . 

5.2

General Integral of Linear ODEs

Let us begin with the case of a homogeneous equation of order  n

 y(n) +  an−1 (x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y = 0  , (5.9)

with continuous coefficients on the interval [ a, b] ⊂ R. We observed in the

previous section that if  y 1 , y 2 , . . . , yn  are  n  particular integrals of (5.9), any linear combination  y 0 (x)  with real coefficients

 y 0 (x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) (5.10)

is still a particular integral of (5.9)
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The aim of this section is proving that:

(a) a homogeneous equation of order  n  always admits  n  linearly independent integrals  y 1 , y 2 , . . . , yn; 

(b) if  y 1 , y 2 , . . . , yn  are  n  linearly independent integrals, any other particular integral  y 0 (x)  of (5.9) can be written as in (5.10). 

In other words, the solution set to (5.9), i.e. the  general integral, is a vector subspace of  Cn([ a, b] ), of which the  n  solutions  y 1 , y 2 , . . . , yn  are a basis. 

Theorem (Existence of  n Linearly Independent Integrals)  The homogeneous ODE (5.9) , with continuous coefficients on [ a, b] , always admits n linearly independent integrals. 

 Proof  Pick  x 0 in [ a, b] and let  I  denote the  n ×  n  identity matrix

⎛

⎞

1

0  . . .  0

⎜

⎜

⎟

0

1  . . .  0 ⎟

 I = ⎜

⎜

⎟  . 

⎝

⎟

 . . . . . . . . . . . . ⎠

0

0  . . .  1

By the existence and uniqueness theorem, for any  k = 1 ,  2 , . . . , n, there is a particular integral of (5.9) satisfying the initial conditions

⎧

⎪

⎪

⎪ y

⎪  k(x 0 ) =  δ 1 k

⎪

⎪

⎨ y  (x

 k

0 ) =  δ 2 k

⎪

⎪

⎪

⎪ . . . . . . . . . 

⎪

⎪

⎩  (n−1 )

 y

 (x

 k

0 ) =  δnk

where  δhk = 1 if  h =  k  and  δhk = 0 if  h =  k. Then the Wronskian of  y 1 , y 2 , . . . , yn satisfies

 W (x 0 ) = det  I = 1  . 

By the Wronskian theorem,  W (x) = 0 for any  x, so  y 1 , y 2 , . . . , yn  are linearly independent. 

Theorem (General Integral of Homogeneous Equations)  Let y 1 , y 2 , . . . , yn be n linearly independent particular integrals of (5.9) . The general integral of (5.9)  is given by linear combinations

 c 1 y 1 +  c 2 y 2 +  . . . +  cnyn , 

 (c 1 , c 2 , . . . , cn) ∈ R n . 
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 Proof  We must show that for any particular solution  y(x)  of (5.9) there is a unique n-tuple  (c 1 , c 2 , . . . , cn)  of real numbers such that y(x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) , for any  x ∈ [ a, b]. For that, fix  x 0 in [ a, b] and set y(x 0 ) =  y 0  , y (x 0 ) =  y 0  , . . . , y(n−1 )(x 0 ) =  y(n−1 ) . 

0

Consider the  n ×  n  linear system in the unknowns  ξ 1 , ξ 2 , . . . , ξn

⎧

⎪

⎪

⎪ y

⎪ 1 (x 0 )ξ 1 +  y 2 (x 0 )ξ 2 +  . . . +  yn(x 0 )ξn =  y 0

⎪

⎪

⎨ y  (x

 (x

1

0 )ξ 1 +  y 2

0 )ξ 2 +  . . . +  y n(x 0 )ξn =  y 0

⎪

(5.11)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩  (n−1 )

 (n−1 )

 (n−1 )

 (n−1 )

 y

 (x

 (x

 . 

1

0 )ξ 1 +  y 2

0 )ξ 2 +  . . . +  yn

 (x 0 )ξn =  y 0

As the Wronskian of  y 1 , y 2 , . . . , yn  is non-zero at  x 0, system (5.11) has a unique solution  (c 1 , c 2 , . . . , cn). The function

 c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) is an integral of (5.9), which assumes at  x 0 the same initial values of the solution y(x). By uniqueness we have

 y(x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) , 

∀  x ∈ [ a, b]  , 

and the claim follows. 

Remark If we call  V  the set of solutions of the homogeneous equation (5.9), we have in practice proved that  V  is a  vector space of dimension n, because there are n  linearly independent elements of  V  that generate any other element as a linear combination. 

Let us now pass to  non-homogeneous  linear equations

 y(n) +  an−1 (x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y =  g(x) , (5.12)

where the coefficients and the right-hand side are continuous on [ a, b]. The

homogeneous equation with the same coefficients

 y(n) +  an−1 (x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y = 0  , is the  homogeneous equation associated  with (5.12). 
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We begin observing that if  v  is a particular integral of (5.12) and  u  is an integral of the associated homogeneous equation, then  u +  v  is another particular integral of (5.12). 

We set out to prove that  to solve a non-homogeneous linear ODE it suffices to

 know one particular integral and the general integral of the associated homoge-

 neous equation. Namely, the following result holds. 

Theorem (General Integral of Non-homogeneous Linear Equations)  Let v 0  be a particular integral of (5.12)  and suppose y 1 , y 2 , . . . , yn are n linearly independent integrals of the associated homogeneous equation. Then the general integral

 of (5.12)  is

 c 1 y 1 +  c 2 y 2 +  . . . +  cnyn +  v 0  , (c 1 , c 2 , . . . , cn) ∈ R n . 

 Proof  We have to show that for any particular solution  y(x)  to (5.12), there is a unique vector  (c 1 , c 2 , . . . , cn)  of real numbers such that y(x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) +  v 0 (x) , 

∀  x ∈ [ a, b] . (5.13)

Let  x 0 be a point di [ a, b] and set

 (n−1 )

 y(x 0 ) =  y 0  , y (x 0 ) =  y 0  , . . . , y(n−1 )(x 0 ) =  y

 . 

0

The linear system in the unknowns  ξ 1 , ξ 2 , . . . , ξn

⎧

⎪

⎪

⎪ y

⎪ 1 (x 0 )ξ 1 +  y 2 (x 0 )ξ 2 +  . . . +  yn(x 0 )ξn =  y 0 −  v 0 (x 0 )

⎪

⎪

⎪

⎨ y  (x

 (x

−  v  (x

1

0 )ξ 1 +  y 2

0 )ξ 2 +  . . . +  y n(x 0 )ξn =  y 0

0

0 )

⎪

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩ y(n−1 )(x

 (x

−  v(n−1 )(x

1

0 )ξ 1 +  y(n−1 )

2

0 )ξ 2 +  . . . +  y(n−1 )

 n

 (x 0 )ξn =  y(n−1 )

0

0

0 )

has a unique solution  (c 1 , c 2 , . . . , cn), since its determinant equals the value at  x 0

of the Wronskian of  y 1 , y 2 , . . . , yn, which is non-zero by the linear independence of  y 1,  y 2, . . . ,  yn. 

The function

 c 1 y 1 (x) +  c 2 y 2 (x) +  . . . +  cnyn(x) +  v 0 (x) is an integral of (5.12), which assumes at  x 0 the same value as the solution  y(x). By the uniqueness theorem, then, (5.13) holds. 
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Now we find the general integral of the first-order linear equation

 y +  a 0 (x)y =  g(x) , 

(5.14)

where  a 0 (x)  is continuous on the interval [ a, b]. We fix  x 0 ∈ [ a, b] and denote by u(x)  the integral of the associated homogeneous ODE, which at  x 0 equals 1, i.e. the solution to the Cauchy problem

 u + a 0 (x)u = 0

 u(x 0 ) = 1  . 

By Proposition 2 in the previous section,  u(x) = 0 for any  x ∈ [ a, b] (since if  u(x) were zero somewhere in [ a, b] it would have to vanish everywhere on [ a, b] ). The ODE is separable, so  separating  to the left-hand side the unknown variable  u  gives u (x) = − a 0 (x), 

∀  x ∈ [ a, b] . 

 u(x)

Integrating both sides, for any  x ∈ [ a, b] we have





 x u (t)

 u(x)

 x

 dt = log

= −

 a 0 (t) dt

 x

 u(t)

 u(x

0

0 )

 x 0

and since  u(x 0 ) = 1, 

:

−  x a

 u(x) =  e x  0 (t) dt

0

 . 

(5.15)

Hence the homogeneous equation’s general integral is

:

−  x a

 ce

 x

0 (t ) d t

0

 , 

 c ∈ R  . 

By the theorem on non-homogeneous linear ODEs, the general integral of (5.14) is the function

:

−  x a

 ce

 x

0  (t ) d t

0

+  y 0 (x)

 c ∈ R  , 

(5.16)

where  y 0 is a particular integral of (5.14). 

To determine  y 0 we shall use  Lagrange’s method of variation of parameters. If u(x)  is a (non-zero) particular integral of the associated homogeneous equation, we seek  y 0 (x)  of the form

 y 0 (x) =  ϕ(x)u(x) , 

where  ϕ(x)  is to be determined. We impose that  y 0 (x)  solves the complete Eq. (5.14). Then  y =  ϕ u +  ϕu, and demanding that  y +  a 0

0

0 (x)y 0 =  g(x)  be
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satisfied, we deduce

 ϕ u +  ϕu +  a 0 (x)ϕu =  g(x) . 

(5.17)

By assumption  ϕu +  a 0 (x) ϕu =  ϕ(u +  a 0 (x) u) =  ϕ · 0 = 0, so from (5.17) we obtain  ϕ u =  g(x)  i.e.  ϕ =  g(x)/u. If we choose, for example,  ϕ(x)  so that ϕ(x 0 ) = 0, we find

 x g(t)

 ϕ(x) =

 dt , 

 x

 u(t)

0

whence

 x g(t)

 y 0 (x) =  ϕ(x)u(x) =  u(x)

 dt

 x

 u(t)

0

is the integral of (5.14) that vanishes at  x 0. 

Remembering (5.15) and (5.16), eventually the general integral of (5.14) is

:





 x

:

−  x

 t

 a

 a

 e

 x

0 (t ) d t

0  (s ) d s

0

 g(t) e x 0

 dt +  c

 c ∈ R  . 

 x 0

 Example 1  Let us solve an ODE of type

 y =  y +  h(x)  sin  x , 

tg  x

where  h(x)  is continuous on  ( 0 , π ). The associated homogeneous equation y =  y

tg  x

is linear and separable, and admits the general integral  y =  c  sin  x. We seek a particular solution of the full equation of the form  y 0 =  ϕ(x)  sin  x. Then ϕ (x)  sin  x =  h(x)  sin  x , 

and so

 x

 y 0 (x) = sin  x

 h(t ) dt , 

 x 0

where  x 0 is an (arbitrary) given point in  ( 0 , π). The general integral therefore reads x

 c ∈ R → sin  x c +

 h(t ) dt

 . 

 x 0
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5.3

The Method of Variation of Parameters

The previous section should stress the importance of finding a particular integral

for a linear equation of order  n, once we know  n  linearly independent integrals  y 1, y 2, . . . ,  yn  for the associated homogeneous equation. This is enough to obtain the general solution of the ODE. 

In this section we shall describe a technique, due to Lagrange, that allows to

determine a particular integral starting from  n  linearly independent integrals  y 1,  y 2, 

. . . ,  yn. We begin by looking at a linear equation of  second order

 y +  a 1 (x) y +  a 0 (x)y =  g(x) , 

(5.18)

where  g(x)  is continuous on [ a, b]. Let  y 1 (x), y 2 (x)  be two solutions on [ a, b] of the associated homogeneous equation, i.e. 

 y +

+

 i

 a 1 (x)y i

 a 0 (x) yi = 0  , 

 i = 1 ,  2

(5.19)

on [ a, b]. Suppose  y 1 (x), y 2 (x)  are linearly independent. We look for a solution to (5.18) of the form

 y =  ϕ 1 (x)y 1 +  ϕ 2 (x)y 2  , 

(5.20)

imposing on  ϕ 1 (x), ϕ 2 (x)  the condition that  y =  y(x) may be differentiated as if ϕi(x) were constants, i.e. 

 y =  ϕ 1 (x)y +

1

 ϕ 2 (x)y 2  . 

(5.21)

This is the same as demanding

 ϕ 1 (x)y 1 +  ϕ 2 (x)y 2 = 0  . 

(5.22)

Differentiating (5.21) in  x  produces

 y =  ϕ 1 (x)y +

+

+

1

 ϕ 2 (x)y 2

 ϕ 1 (x)y 1

 ϕ 2 (x)y 2  . 

Hence the function  y  given by (5.20) solves Eq. (5.18) if and only if 4

5

4

5

 ϕ 1  y +

+

+

+

+

+

1

 a 1 (x) y 1

 a 0 (x) y 1

 ϕ 2  y 2

 a 1 (x) y 2

 a 0 (x) y 2

+  ϕ

+

=

1 (x) y 1

 ϕ 2 (x) y 2

 g(x) . 

By (5.19), this happens precisely when

 ϕ

+

=

1 (x)y 1

 ϕ 2 (x)y 2

 g(x) . 

(5.23)
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The system made of (5.22) and (5.23)

⎧

⎨ ϕ  (x)y

 (x)y

1

1 +  ϕ 2

2 = 0

⎩

(5.24)

 ϕ  (x) y +  ϕ  (x)y =  g(x)

1

1

2

2

in the unknowns  ϕ  (x), ϕ  (x), has a unique solution because its determinant is the 1

2

Wronskian  W (x)  of  y 1,  y 2, and the latter is non-zero by the Wronskian theorem (Sect. 5.1). By Cramer’s rule the solutions then are





0  y



2 (x)





 g(x) y  (x)

 ϕ

2

1 (x) =

 , 

 W (x)





 y



1 (x)

0





 y  (x) g(x)

 ϕ

1

2 (x) =

 . 

 W (x)

Let us now discuss the above method in general, for ODEs of any order. 

Method of Variation of Parameters (Lagrange)  Let y 1 , y 2 , . . . , yn, for x ∈

[ a, b] , be n linearly independent integrals of the homogeneous equation associated with the ODE

 y(n) +  an−1 (x)y(n−1 ) +  . . . +  a 1 (x)y +  a 0 (x)y =  g(x) . 

(5.25)

 Suppose the derivatives of the n-tuple (ϕ 1 , ϕ 2 , . . . , ϕn) solve on [ a, b]  the linear system in the unknowns ξ 1 , ξ 2 , . . . , ξn:

⎧

⎪

⎪

⎪ y

⎪ 1 (x)ξ 1 +  y 2 (x)ξ 2 +  . . . +  yn(x)ξn = 0

⎪

⎪

⎪

⎨ y  (x)ξ

 (x)ξ

1

1 +  y 2

2 +  . . . +  y 

 n(x)ξn = 0

⎪

 . 

(5.26)

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩ y(n−1 )(x)ξ

 (x)ξ

1

1 +  y(n−1 )

2

2 +  . . . +  y(n−1 )

 n

 (x)ξn =  g(x)

 Then the linear combination

 n



 v(x) =

 yi(x)ϕi(x) , 

 x ∈ [ a, b]  , 

 i=1

 is a particular integral of the linear ODE (5.25) . 
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 Proof  The linear system (5.26) has (only) one solution because the coefficient matrix’ determinant, i.e. the Wronskian  W (x)  of the solutions  yi ,  i = 1 ,  2 , . . . , n, is non-zero by the Wronskian theorem (Sect. 5.1). Let  ψi =  ψi(x),  i = 1 ,  2 , . . . , n, be the solution. Then  (ϕ 1 , ϕ 2 , . . . , ϕn)  arises from integrating  (ψ 1 , ψ 2 , . . . , ψn): x

 ϕi(x) =

 ψi (t) dt , 

∀  i = 1 ,  2 , . . . , n

 x 0

for a given  x 0 ∈ [ a, b]. 

The derivatives  ξi =  ϕ of  ϕ

 i

 i (x),  i = 1 ,  2 , . . . , n, satisfy system (5.26) by assumption. Therefore for any  x ∈ [ a, b], 

 n



 v (x) =

 y i(x)ϕi(x) , 

 i=1

 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 n



 v(n−1 )(x) =

 y(n−1 )(x)ϕ

 i

 i (x) , 

 i=1

 n

 (n)

 v(n)(x) =

 y

 (x) ϕ

 i

 i (x) +  g(x) . 

 i=1

As  yi, for any  i ∈ {1 ,  2 , . . . , n}, solves the associated homogeneous equation, the claim follows:

 v(n) +  an−1 (x)v(n−1 ) +  . . . +  a 1 (x)v +  a 0 (x)v =

 n



=  g(x) +

 y(n) +  a

+  . . . +

 i

 n−1 (x)y(n−1 )

 i

 i=1



+  a 1 (x)y +

 i

 a 0 (x)yi ϕi(x) =  g(x) , 

∀  x ∈ [ a, b] . 

 Example 1  Let us apply the method to the non-homogeneous linear ODE

 y +  y =

1

(5.27)

sin  x

of order two. The associated homogeneous equation has two linearly independent integrals y 1 (x) = cos  x , 

 y 2 (x) = sin  x , 

so we look for a particular solution of (5.27) of the form

 y =  ϕ 1 (x)  cos  x +  ϕ 2 (x)  sin  x , (continued)
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 Example 1 (continued)

so that the derivatives  ϕ  (x)  and  ϕ  (x)  of the unknown  ϕ

1

2

1 , ϕ 2 satisfy

 ϕ (x) cos x + ϕ (x) sin x = 0

1

2

− ϕ  (x)  sin  x +  ϕ  (x)  cos  x = 1 /  sin  x . 

1

2

Using Cramer’s rule, 

 ϕ 1 (x) = −1  , 

 ϕ 2 (x) = cos  x , 

sin  x

and integrating,  ϕ 1 (x) = − x,  ϕ 2 (x) = log |sin  x|. Hence y(x) = − x  cos  x + sin  x  log |sin  x|

is a particular integral of (5.27). 

5.4

Bernoulli Equations

A Bernoulli equation is an ODE of order one of type

 y =  a(x)y +  b(x)yα , 

(5.28)

with  a(x), b(x)  continuous on [ a, b] ⊂ R and  α  a real number different from 0 and 1. 

This (non-linear) ODE is in normal form  y =  f (x, y). The function

 f (x, y) =  a(x)y +  b(x)yα , 

is continuous for  (x, y) ∈ [ a, b] ×  ( 0 , +∞ ), but not globally Lipschitz in  y. 

Nevertheless, restricting  f (x, y)  to any compact set [ a, b] × [ c, d] (with  c >  0 ), the function is continuous and Lipschitz in  y. By Cauchy’s existence and uniqueness theorem (Sect. 4.4), for any  (x 0 , y 0 ) ∈ [ a, b] × [ c, d] there is a unique integral curve of (5.28), defined on a suitable neighbourhood of  x 0, passing through  (x 0 , y 0 ). 

Let us show that a Bernoulli equation can be transformed into another linear ODE

by changing the unknown function. We divide (5.28) by  yα (thus, for  α >  0, we are neglecting the zero solution). We have

 y =  a(x)y 1− α +  b(x). 

(5.29)

 yα

Setting  z(x) = [ y(x)]1− α  we obtain

 y

 z (x) =  d [ y(x)]1− α =  ( 1 −  α)

 dx

 yα
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so (5.29) turns into the linear equation in  z(x)

 z =  ( 1 −  α) a(x) z +  ( 1 −  α) b(x) , 

which is solved in the way shown earlier. Once we have  z(x), we will compute

 y =  z 1 /( 1− α), solution to (5.28). 

 Example 1  Let us find two solutions, if possible defined on the entire  ( 0 , +∞ ), of the Bernoulli equation

 x y = − y 2 log  x − 2 y . 

(5.30)

Divide (5.30) by  xy 2, 

 y = − 2 − log x

(5.31)

 y 2

 xy

 x

and set  z(x) = 1 /y. In this way (5.31) becomes

 z = 2 z + log  x . 

(5.32)

 x

 x

This is linear and of order one. The general integral of the homogeneous equation associated with (5.32) is  z =  cx 2. If we want a particular solution of (5.31) of type  ϕ(x)x 2, we find for  ϕ  the constraint

 ϕ (x)x 2 = log  x , 

 x

and so

log x

 ϕ(x) =

 dx = − log  x − 1 +  c . 

 x 3

2 x 2

4 x 2

Eventually the general integral of (5.31) is

 z(x) =  cx 2 − log  x − 1  , 

(5.33)

2

4

so the general integral of (5.30) is



−1

 y(x) =  cx 2 − log  x − 1

 . 

(5.34)

2

4

In order for  y =  y(x) =  y(x, c)  to be defined on  ( 0 , +∞ )  it is necessary and sufficient that the  z(x)  in (5.33) is positive for any  x >  0. As  z(x) → +∞ when  x → 0+, we need z(x) =  cx 2 − log  x − 1  >  0  , 

∀ x >  0 . 

(5.35)

2

4

(continued)
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 Example 1 (continued)

The necessary condition for having (5.35) is that the constant  c  be positive. If that is the

√

√

case,  z(x)  has a minimum for  x >  0 at  x 0 = 1 /( 2  c ), with minimum value log ( 2  c)/ 2. 

Therefore the solutions to the Bernoulli ODE (5.30) that are defined on the whole  ( 0 , +∞ ) are the functions in (5.34) for which  c >  1 / 4. 

5.5

Homogeneous Equations with Constant Coefficients

Consider the linear homogeneous equation of order  n

 L(y) =  y(n) +  an−1 y(n−1 ) +  . . . +  a 1 y +  a 0 y = 0  , (5.36)

with  constant coefficients a 0 , a 1 , . . . , an−1 ∈ R. We set out to show that to determine  n  linearly independent integrals of (5.36) it suffices to know the roots of the algebraic equation of degree  n

 p(λ) =  λn +  an−1 λn−1 +  . . . +  a 1 λ +  a 0 = 0  , (5.37)

called  characteristic equation  of (5.36) ( p(λ)  is the  characteristic polynomial  of the linear ODE (5.36)). 

Here we should introduce the notion of  complex solution u 1 (x) +  iu 2 (x)  to equation (5.36). If  u 1 (x),  u 2 (x)  are real-valued functions defined on the interval I  of R, the  derivative  in  x  of the complex-valued function  u(x) =  u 1 (x) +  iu 2 (x) is the function  u (x) =  u  (x) +  iu  (x). We shall say  u(x) =  u 1

2

1 (x) +  iu 2 (x)  is a

 particular integral  of (5.36) if, for any  x ∈  I , the differential identity L(u) =  u(n) +  an−1 u(n−1 ) +  . . . +  a 1 u +  a 0 u = 0

holds over C. When  u(x) =  u 1 (x) +  iu 2 (x)  is a complex solution to (5.36), the functions  u 1 (x), u 2 (x)  are real solutions of (5.36). In fact  L(u) =  L(u 1 ) +  iL(u 2 ), so if  u  is a complex solution then  L(u 1 ) +  iL(u 2 )  is the complex number zero, i.e. 

 L(u 1 ) =  L(u 2 ) = 0. 

We recall that for any complex number  z =  α +  iβ, the complex number  ez  is defined as

 ez =  eα+ iβ =  eα ( cos  β +  i  sin  β) . 

It is easy to verify that, given  z ∈ C, the function  f (x) =  exz  is differentiable in x ∈ R, and

 f  (x) =  z ·  exz . 
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Finally, since for any  x ∈ R

 eix = cos  x +  i  sin  x , 

 e− ix = cos  x −  i  sin  x , 

we have the  Euler formulas

sin  x =  eix −  e− ix , 

cos  x =  eix +  e− ix , 

∀  x ∈ R . 

2

2

Proposition 1  For any real (or complex) number λ, the function

 x ∈ R →  eλx

 is a real (or complex) solution of (5.36)  if and only if λ is a root of the characteristic equation (5.37) . 

 Proof  It is enough to note

 L(eλx ) =  eλx p(λ) , 

with  L(y)  and  p(λ)  as in (5.36) and (5.37). 

Proposition 2  If λ 1 , λ 2 , . . . , λn are n distinct roots of the characteristic equation (5.37) , the n integrals

 eλ 1 x , 

 eλ 2 x , . . . , eλnx , 

 x ∈ R , 

 are linearly independent. 

 Proof  By contradiction, suppose there exist  n  constants, not all zero,  c 1 , c 2 , . . . , cn such that

 c 1 eλ 1 x +  c 2 eλ 2 x +  . . . +  cneλnx = 0  , (5.38)

for any  x ∈ R. Multiplying (5.38) by  e− λnx  and differentiating in  x  gives c 1 (λ 1 −  λn)e(λ 1− λn)x +  c 2 (λ 2 −  λn)e(λ 2− λn)x+

(5.39)

+  . . . +  cn−1 (λn−1 −  λn)e(λn−1− λn)x = 0  , 

∀  x ∈ R . 
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Multiplying (5.39) by  e− (λn−1− λn)x  and differentiating, we find c 1 (λ 1 −  λn)(λ 1 −  λn−1 ) e(λ 1− λn−1 ) x +  c 2 (λ 2 −  λn)(λ 2 −  λn−1 ) e(λ 2− λn−1 )x+

+  . . . +  cn−2 (λn−2 −  λn)(λn−2 −  λn−1 ) e(λn−2− λn−1 ) x = 0 , 

∀  x ∈ R . 

Proceeding in the same way, we obtain the relation

 c 1 (λ 1 −  λn)(λ 1 −  λn−1 ) ·  . . . ·  (λ 1 −  λ 2 )e(λ 1− λ 2 )x = 0  , 

∀  x ∈ R , 

which forces  c 1 = 0, since the roots  λi  are distinct. Similarly one sees that  c 2 =

 c 3 =  . . . =  cn = 0, which is absurd. 

By the above proposition, the general integral of a homogeneous linear ODE of

order  n  with constant coefficients, whose characteristic equation has distinct roots λ 1,  λ 2, . . . ,  λn, is then

 y =  c 1  eλ 1 x +  c 2 eλ 2 x +  . . . +  cn eλnx . 

As regards multiple characteristic roots, the following proposition holds. 

Proposition 3  For any real (or complex) root λ of multiplicity r ∈ N  of the characteristic equation, the function

 u(x) =  xkeλx , 

 x ∈ R , 

 k = 0 ,  1 , . . . , r − 1  is a real (complex) solution to (5.36) . 

 Proof  The Leibniz formula applied  m  times gives





 m



 m

 D(m) xkeλx

=

 λm− heλx D(h)xk =

 h

 h=0

 m



=

 m

 eλx

 λm− hD(h)xk

 h

 h=0
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5.5 Homogeneous Equations with Constant Coefficients

255

and so

 L(u) =  u(n) +  an−1 u(n−1 ) +  . . . +  a 1 u +  a 0 u =

 n



 n−1





=

 n

 n − 1

 eλx

 λn− hD(h)xk +  an−1

 λn− h−1  D(h)xk+

 h

 h

 h=0

 h=0

1





(5.40)

+

1

 . . . +  a 1

 λ 1− h D(h)xk +  a 0 xk =

 h

 h=0











=

 k

 k

 eλx p(k)(λ)+

 xp(k−1 )(λ)+  . . . +

 xk−1 p (λ)+ xkp(λ) . 

 k − 1

1

But  λ  is a characteristic root of multiplicity  r, so

 p(λ) =  p (λ) =  . . . =  p(r−1 )(λ) . 

Then, as 0 ≤  k ≤  r − 1, the last term in (5.40) is zero, and the claim follows. 

The next proposition is a straightforward consequence of the above one. 

Proposition 4  Let λ =  α +  iβ be a complex root of multiplicity r ∈ N  for the characteristic equation. The real functions

 x ∈ R →  xk eαx  cos  βx , 

 x ∈ R →  xkeαx  sin  βx , 

 for any k = 0 ,  1 , . . . , r−1 , are particular integrals of the homogeneous ODE (5.36) . 

 Proof  By Proposition 3 the complex function

 x ∈ R →  xkeλx , 

for any  k = 0 ,  1 , . . . , r − 1, is a complex solution to (5.36). Since xkeλx =  xkeαx( cos  βx +  i  sin  βx) , 

we have

0 =  L(xkeλx) =  L(xkeαx  cos  βx) +  iL(xk eαx  sin  βx) , and so  L(xkeαx  cos  βx) +  iL(xkeαx  sin  βx)  is the complex number zero, i.e. 

 L(xkeαx  cos  βx) =  L(xk eαx  sin  βx) = 0  . 
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We are now in a position to generalise Proposition 2 to the case of multiple characteristic roots. 

General Integral of Homogeneous Equations with Constant Coefficients  If the characteristic equation (5.37)  of ODE (5.36)  admits p distinct roots λ 1 , λ 2 , . . . , λp of multiplicities r 1 , r 2 , . . . , rp, the general integral of (5.36)  is y(x) =  c 1 ,  1 +  c 1 ,  2 x +  . . . +  c 1 ,r xr 1−1  eλ 1 x+

1





+  . . . +  cp,  1 +  cp,  2 x +  . . . +  cp,r xrp−1  eλpx . 

 p

 Proof  From  r 1 +  r 2 +  . . . +  rp =  n, we have then  n  integrals eλ 1 x , x eλ 1 x , . . . , xr 1−1  eλ 1 x , 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(5.41)

 eλpx , x eλpx , . . . , xrp−1  eλpx . 

The claim is proven once we show they are linearly independent over R. Suppose

by contradiction that they are not. Then there exist  p  polynomials  P 1 (x), P 2 (x), . . . , Pp(x), with deg  Pk(x) ≤  rk − 1 for any  k = 1 ,  2 , . . . , p, at least one of which is not zero, so that

 P 1 (x)eλ 1 x +  P 2 (x)eλ 2 x +  . . . +  Pp(x) eλpx = 0  , 

∀  x ∈ R . 

(5.42)

Assume, to fix ideas,  P 1 (x)  is not the zero polynomial, and call  k ( 0 ≤  k ≤  rp)  the degree of  Pp(x). Multiply (5.42) by  e− λpx  and then differentiate  k + 1 times. In this way we arrive at a relation like

 Q 1 (x)e(λ 1− λp)x +  Q 2 (x) e(λ 2− λp)x +  . . . +  Qp−1 (x)e(λp−1− λp)x = 0  , for any  x ∈ R, where the polynomial  Q 1 (x)  has the same degree of  P 1 (x). 

Repeating the argument, as was done in Proposition 2, we obtain a relation of type Z(x)e(λ 1− λ 2 )x = 0  , 

(5.43)

with  Z(x)  a polynomial of the same degree as  P 1 (x). Using (5.43),  Z(x)  must be identically zero, violating the assumption that  P 1 (x)  is not the zero polynomial. 

Therefore  P 1 (x) = 0 for any  x ∈ R, and the same can be shown for the other  Pk(x), for any  k = 2 , . . . , p. The claim then follows. 

The  n  integrals (5.41) in general might contain imaginary terms. If we want to keep with real solutions, we will show next that from (5.41) we can determine  n real, linearly independent integrals. 
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The characteristic equation has real coefficients, so if it possesses a complex root

 λ =  α +  iβ  with multiplicity  r, it will also have the complex-conjugate number λ =  α −  iβ  as root, with the same multiplicity  r. It can be shown (see Proposition 4) that equation (5.36) admits the 2 r  real integrals

 xkeαx  cos  βx , 

 xkeαx  sin  βx , 

for  k ∈ {0 ,  1 , . . . , r − 1}, and these may take the place of the 2 r  complex integrals coming from the roots  λ, λ  of (5.37). The new solution set is still made of  n  linearly independent integrals. 

5.6

Equations with Constant Coefficients and Special

Right-Hand Side

Let us consider the non-homogeneous equation with constant coefficients

 y(n) +  an−1 y(n−1 ) +  . . . +  a 1 y +  a 0 y =  g(x) . 

(5.44)

For certain choices of the right-hand side  g(x), to find a particular integral it is not necessary to know  n  independent integrals of the homogeneous equation. Start with Proposition 1  If a 0 = 0  and g(x) is a polynomial of degree k, there is a polynomial of degree k that is a particular integral of (5.44) . 

 Proof  Assume

 g(x) =  b 0 +  b 1 x +  b 2 x 2 +  . . . +  bkxk . 

By the principle of identity of polynomials, the polynomial

 p(x) =  c 0 +  c 1 x +  c 2 x 2 +  . . . +  ckxk is an integral of (5.44) if and only if the monomial coefficients of equal degree are the same in  g(x)  and in

 L(p) =  p(n) +  an−1 p(n−1 ) +  . . . +  a 1 p +  a 0 p . 
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That is, 

 cka 0 =  bk , 

 ck−1 a 0 +  kcka 1 =  bk−1  , 

 ck−2 a 0 +  (k − 1 ) ck−1 a 1 +  k(k − 1 ) cka 2 =  bk−2  , 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 c 0 a 0 +  c 1 a 1 + 2  c 2 a 2 +  . . . +  (k − 1 )!  ck−1 ak−1 +  k!  ckak =  b 0  , where it is understood that  an = 1 and  ah = 0 for  h > n. These relationships determine the coefficients of  p(x)  uniquely. Note that the previous proof also provides us with a simple method to find the polynomial solution. 

Similar arguments allow to prove

Proposition 2  Suppose the coefficients of (5.44)  satisfy a 0 =  a 1 =  . . . =  am−1 = 0  , 

 am = 0  , 

 ( 0  < m < n)

 and the right-hand side g(x) is a polynomial of degree k. Then there is a polynomial of degree m +  k of type





 xm cm +  cm+1 x +  cm+2 x 2 +  . . . +  cm+ kxk , that is a particular integral of (5.44) . 

More generally, the following result holds. 

Proposition 3  Suppose the right-hand side g(x) is of the form

 g(x) =  eλx pk(x) , 

 where λ is a real or complex number and pk(x) a polynomial of degree k. Then

 there is a polynomial p(x) such that the function

 eλx p(x)

 is an integral of (5.44) . Furthermore, p(x) has degree k if λ is not a root of the characteristic equation, while it is a polynomial of degree m +  k of type xm cm +  cm+1 x +  cm+2 x 2 +  . . . +  cm+ kxk if λ is root of multiplicity m of the characteristic equation. 
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 Proof  Write





 g(x) =  eλx b 0 +  b 1 x +  b 2 x 2 +  . . . +  bkxk (5.45)

and let  p(x)  be a polynomial. Consider the function  v(x) =  eλxp(x).  By the Leibniz rule, for any  i = 1 ,  2 , . . . , n





 i



 i



 i

 i

 v(i) =  D(i) eλxp(x) =

 λi− h eλx p(h)(x) =  eλx

 λi− hp(h)(x) , 

 h

 h

 h=0

 h=0

and so

 L(v) =  v(n) +  an−1 v(n−1 ) +  . . . +  a 1 v +  a 0 v =

 n



 n−1





=

 n

 n − 1

 eλx

 λn− hp(h)(x) +  an−1

 λn− h−1 p(h)(x)+

 h

 h

 h=0

 h=0

1





+

1

 . . . +  a 1

 λ 1− hp(h)(x) +  a 0 p(x) =

 h

 h=0



=

 n

 eλx

 p(n)(x) +  . . . +

 n















+

 i +1

 n−1

 n

 ai +

 ai+1 λ+  . . . +

 an−1 λn− i−1 +

 λn− i p(i)(x))+

 i

 i

 i













+

2

 n−1

 n

 . . . +  a 1 +

 a 2 λ+ . . . +

 an−1 λn−2 +

 λn−1  p (x)+

1

1

1







+  a 0+ a 1 λ+ . . . + an−1 λn−1+ λn p(x) . 

For  i = 0 ,  1 , . . . , n − 1 let











 i + 1

 n − 1

 n

 αi =  ai +

 ai+1 λ +  . . . +

 an−1 λn− i−1 +

 λn− i , 

(5.46)

 i

 i

 i

so that

 L(v) =  v(n) +  an−1 v(n−1 ) +  . . . +  a 1 v +  a 0 v =






=  eλx p(n) +  αn−1 p(n−1 ) +  . . . +  α 1 p +  α 0 p . 
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Hence, keeping in account the expression of  g(x)  in (5.45), the function  v(x) =

 eλxp(x)  solves the equation if and only if  p(x)  solves the linear equation p(n) +  αn−1 p(n−1 ) +  . . . +  α 1 p +  α 0 p =  b 0 +  b 1 x +  b 2 x 2 +  . . . +  bkxk. 

Note that if  λ  is not a characteristic root of (5.44), the coefficient  α 0 in (5.46) is non-zero. On the other hand, if  λ  is a root of multiplicity  m ( 0  < m < n), α 0 =  α 1 =  . . . =  αm−1 = 0  , 

 αm = 0  . 

Now the claim follows from Propositions 1 and 2. 

Finally, suppose  g(x)  has the form

 g(x) =  eλx (p 1 (x)  cos  μx +  p 2 (x)  sin  μx) , (5.47)

for some polynomials  p 1 (x), p 2 (x), a complex number  λ  and  μ ∈ R. One can then prove the following result. 

Proposition 4  If g(x) has the form (5.47) , there exist two real polynomials q 1 (x), q 2 (x) such that

 v(x) =  eλx (q 1 (x)  cos  μx +  q 2 (x)  sin  μx) is a particular solution of (5.44) . Let moreover k be the degree of p 1 (x) +  p 2 (x). 

 Then the polynomial q 1 (x) +  q 2 (x) has degree k if λ ±  iμ is not a characteristic root, and it has degree m +  k if λ ±  iμ is a root of multiplicity m. 

5.7

Linear Euler Equations

We call  Euler equation  a linear ODE of the type

 xny(n) +  an−1 xn−1 y(n−1 ) +  . . . +  a 1 x y +  a 0 y =  g(x) , (5.48)

where  a 0 , a 1 , . . . , an−1 ∈ R. When considered on the intervals  ( 0 , +∞ )  or (−∞ ,  0 ), the equation reduces to an equation with constant coefficients using the substitution  x =  et . 
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Supposing first  x >  0, we perform the variable change  x =  et , i.e.  t = log  x. Set z(t) =  y(et), so that  y(x) =  z( log  x), and then dy =  dz  1 ; 

 dx

 dt x



 d 2 y =  d 2 z  1 −  dz  1 =  d 2 z −  dz  1 ; dx 2

 dt 2  x 2

 dt x 2

 dt 2

 dt

 x 2













 d 3 y

−

=  d 3 z −  d 2 z

1 +  d 2 z −  dz

2 =  d 3 z −  d 2 z

 dz

1

3

+ 2

; 

 dx 3

 dt 3

 d 2 t

 x 3

 dt 2

 dt

 x 3

 dt 3

 d 2 t

 dt

 x 3

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The equation now has constant coefficients:

 z(n) +  bn−1 z(n−1 ) +  . . . +  b 1 z +  b 0 z =  g(et ) . 

(5.49)

If  x <  0, we use the substitution  x = − et, so (5.48) still becomes an ODE of type (5.49). 

In the special case  g = 0, the (homogeneous) ODE (5.49) has as solution  z(t) =

 eαt , if  α  solves the corresponding characteristic equation. For  x >  0 we therefore find

 y(x) =  z( log  x) =  eα  log  x =  xα. 

The fact that (5.48) for  x >  0 admits particular integrals like  y =  xα  may be deduced also by substituting  y =  xα  in (5.48) directly, with  α  to be determined. 

For example, for the second-order homogeneous Euler equation

 x 2 y +  a 1 x y +  a 0 y = 0  , 

if we set  y =  xα  then

 y =  α xα−1

 y =  α(α − 1 )xα−2  , 

and substituting in (5.48) we obtain

 α(α − 1 )xα +  a 1 αxα +  a 0 xα = 0  , 

∀ x >  0 . 

In particular, for  x = 1 , 

 α(α − 1 ) +  a 1 α +  a 0 = 0  , 

from which we find the (real or complex) values of  α. 
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 Example 1  Consider, for  x >  0, the Euler ODE of order two

 x 2 y +  xy −  y = 2 − log2  x . 

(5.50)

log3  x

Let us first find the general integral of the associated homogeneous equation

 x 2 y +  xy −  y = 0  , 

(5.51)

by seeking solutions  y(x) =  xα. As  y =  αxα−1,  y =  α(α − 1 )xα−2, (5.51) yields α(α − 1 )xα +  αxα −  xα = 0  , 

∀ x >  0 , 

and then  α(α − 1 ) +  α − 1 =  α 2 − 1 = 0, i.e.  α = ±1. So the general integral of the homogeneous equation (5.51) is

 c 1  x +  c 2  , 

 x >  0 . 

(5.52)

 x

Just for completeness, we recover the same with the substitution  x =  et . Putting  z(t) =

 y(et )  gives  y(x) =  z( log  x)  and then





 dy =  dz  1

 d 2 y

1

1

 d 2 z

1

 , 

=  d 2 z

−  dz

=

−  dz

 . 

 dx

 dt x

 dx 2

 dt  2  x 2

 dt x 2

 dt  2

 dt

 x 2

Then (5.50) becomes

 z −  z = 2 −  t 2  , 

(5.53)

 t  3

and the associated homogeneous equation  z −  z = 0 has general integral z =  c 1 et +  c 2  e− t . 

(5.54)

Recalling that  x =  et , we find once again the solution (5.52), exactly as with the method that used  y(x) =  xα. 

To find a particular solution of (5.50) we will vary the parameters. Consider (5.53), and keeping (5.54) into account, a particular solution will have the form y =  ϕ 1 (t)et +  ϕ 2 (t)e− t , 

(5.55)

where (see (5.24))

⎧

⎨ ϕ  (t)et +  ϕ  (t)e− t = 0

1

2

⎩ ϕ (t)et −  ϕ (t)e− t =  ( 2 −  t 2 )/t 3  . 

1

2

(continued)
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 Example 1 (continued)

Hence

2 −  t 2

 t  2 − 2

 ϕ 1 (t) = 1

 e− t , 

 ϕ

 et , 

2

 t  3

2 (t ) = 1

2

 t  3

integrating which gives









−1

1

 ϕ 1 (t) = 1

+ 1  e− t , 

 ϕ 2 (t) = 1

+ 1  et . 

2

 t  2

 t

2

 t  2

 t

From (5.54) and (5.55) and the above relations it follows that the general integral of (5.53)

is

 z =  c 1 et +  c 2 e− t + 1  . 

 t

In conclusion, the general solution of (5.50) is

 y =  c 1 x +  c 2 +

1

 , 

 x >  0 . 

 x

log  x

Appendix to Chap. 5

5.8

Boundary Value Problems

Apart from  initial value problems (or  Cauchy problems) one can pose other types of problems for ODEs of order  n, especially in view of the applications. 

For example, given a second-order linear equation

 y +  a 1 (x)y +  a 0 (x)y =  g(x)

(5.56)

with continuous coefficients  a 0 (x),  a 1 (x)  and continuous right-hand side  g(x)  on

[ a, b], a  boundary value problem  consists in finding a solution that fulfils the boundary conditions ( A, B ∈ R )

 y(a) =  A , 

 y(b) =  B . 

(5.57)

The  homogeneous problem associated with the boundary value problem (5.56) and (5.57) is the problem relative to the associated homogeneous equation y +  a 1 (x)y +  a 0 (x)y = 0  , 

(5.58)
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together with the  homogeneous  boundary conditions

 y(a) = 0  , 

 y(b) = 0  . 

(5.59)

The general integral of Eq. (5.56) is

 y(x) =  c 1 y 1 (x) +  c 2 y 2 (x) +  v(x) , (5.60)

where  y 1 (x), y 2 (x)  is a system of linearly independent integrals for the homogeneous equation (5.58), and  v(x)  is a particular integral of (5.56). 

To find the constants  c 1 , c 2 so that the  y  in (5.60) meets the initial conditions in (5.57), we impose  y(a) =  A,  y(b) =  B, leading to the linear system in the unknowns  c 1 , c 2

⎧

⎨ y 1 (a)c 1 +  y 2 (a)c 2 =  A −  v(a)

⎩

(5.61)

 y 1 (b)c 1 +  y 2 (b)c 2 =  B −  v(b) . 

If the coefficients’ determinant





 y



1 (a)

 y 2 (a)

  = 



 y



(5.62)

1 (b)

 y 2 (b)

is different from zero, the linear system can be solved uniquely, and there is one

pair of real numbers  c 1 , c 2 for which  y(x)  in (5.60) satisfies the initial conditions y(a) =  A,  y(b) =  B. 

So if   = 0, the starting boundary value problem (5.56) and (5.57) admits one, and only one, solution. 

The associated homogeneous problem (5.58) and (5.59) certainly admits the solution  y(x) ≡ 0. This will be the only solution if the determinant    in (5.62) is non-zero (since, as we said, irrespective of  g(x)  and the initial values  A, B, the boundary value problem has exactly one solution if   = 0 ). 

But when   = 0, the homogeneous problem (5.58) and (5.59) will have non-zero solutions as well, called  eigensolutions (or  eigenfunctions). In fact, the general integral of (5.58) is the set of

 y(x) =  c 1 y 1 (x) +  c 2 y 2 (x) , 

as  c 1 , c 2 vary in R. Such functions  y(x)  satisfy the boundary conditions  y(a) = 0, y(b) = 0 if and only if the constants  c 1 , c 2 solve the linear system

⎧

⎨ y 1 (a)c 1 +  y 2 (a)c 2 = 0

⎩

(5.63)

 y 1 (b)c 1 +  y 2 (b)c 2 = 0  . 

[image: Image 1478]

[image: Image 1479]

[image: Image 1480]

[image: Image 1481]

[image: Image 1482]

5.8 Boundary Value Problems

265

Since the coefficients’ matrix has determinant    equal to zero, the homogeneous system (5.63) has infinitely many solutions  c 1 , c 2. 

For the same reason, if   = 0 the boundary value problem (5.56) and (5.57) will have either infinitely many solutions or none, depending on whether the right-hand side term  g(x)  and the constants  A, B  verify the Rouché-Capelli theorem for system (5.61). 

For example, given   >  0 consider the homogeneous boundary value problem

⎧

⎨ y +  λy = 0

⎩

(5.64)

 y( 0 ) =  y() = 0  . 

where  λ  is a real parameter. The values of  λ  for which there are  eigensolutions, i.e.  non-zero solutions to (5.64), are called  eigenvalues. 

From the above general discussion, the eigenvalues are the solutions of









 y 1 ( 0 , λ) y 2 ( 0 , λ)

 (λ) = 

= 0  , 

(5.65)





 y



1  (, λ) y 2 (, λ)

where  y 1 (x, λ),  y 2 (x, λ), are linearly independent solutions of the ODE in (5.64). 

Let us first show the eigenvalues are positive real numbers. Let  λ  be an eigenvalue with eigenfunction  y =  y(x, λ). Multiplying the ODE in (5.64) by  y  and integrating from 0 to  

we obtain





 

 

 yy  dx +  λ

 y 2  dx = 0  . 

0

0

Integrating by parts the first term, and keeping into account the boundary conditions we find





 

 

−

 (y ) 2  dx +  λ

 y 2  dx = 0  . 

0

0

But  y  is an eigenfunction, so it cannot vanish identically on [0 , ]. Being continuous on that interval, if  x 0 ∈ [0 , ] is such that  y(x 0 ) = 0, then  y(x)  cannot vanish near  x 0, and so the integral of [ y(x)]2 over [0 , ] is strictly positive. Hence

 

 (y ) 2  dx

 λ = 0

 >  0  . 

 

 y 2  dx

0

Relatively to real numbers  λ >  0, the general integral of the equation in (5.64) is

√

√

 y(x) =  c 1 cos  λx +  c 2 sin  λx , 

(5.66)

(continued)
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and the determinant  (λ)  in (5.65) equals









1

0



√

 (λ) = 

√

√  = sin  λ . 





cos

 λ

sin

 λ

√

Therefore the eigenvalues are the positive solutions of sin

 λ = 0, i.e. 

 λk =  k 2 π 2  , 

 k ∈ N . 

  2

Solving system (5.63) we find the eigensolutions

 kπ

 yk (x) =  c 2 sin

 x , 

 k ∈ N . 

 

Let us now pass to the non-homogeneous boundary value problem

⎧

⎨ y +  λy =  g(x)

⎩

(5.67)

 y( 0 ) =  y() = 0  , 

and let us find a necessary condition on  g(x)  so that it admits a solution, when  λ  is an eigenvalue. Call  yk  an eigenfunction with eigenvalue  λ =  λk, multiply the ODE in (5.67)

by  yk  and integrate between 0 and  :







 

 

 

 y yk dx +  λk

 yyk dx =

 g(x)yk dx . 

0

0

0

Integrating by parts, and remembering that  y  and  yk  satisfy the initial conditions, gives





 

4

5

 

 y y +

 k

 λkyk dx =

 g(x)yk dx . 

0

0

Since  y +  λ

 k

 k yk = 0, we deduce that, necessarily, 

 

 g(x)yk dx = 0  . 

0

It could actually be proved that the above is also a sufficient condition, but we will stop here for the sake of brevity. 

The boundary conditions (5.57), which prescribe the solution’s value at the endpoints of the interval [ a, b], are not the only conditions appearing in the applications. 

Sometimes the problem assigns the value of the solution at one endpoint, and the
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value of the first derivative at the other. More generally, one could consider boundary conditions of type

⎧

⎨ α 1 y(a) +  β 1 y(b) +  γ 1 y (a) +  δ 1 y (b) =  A

⎩ α 2 y(a) +  β 2 y(b) +  γ 2 y (a) +  δ 2 y (b) =  B . 

For special values of the constants, these incorporate the initial value conditions

in (5.57). 

Consider for instance the homogeneous problem

⎧

⎪

⎪

⎪ y +  λy = 0

⎪

⎨

⎪ y( 0 ) =  y(π)

(5.68)

⎪

⎪

⎪

⎩ y ( 0 ) =  y (π), 

for  λ >  0, where the boundary conditions are  periodic. 

The general integral of the homogeneous equation is (5.66). Imposing the periodicity conditions in (5.68) produces the homogeneous system

⎧

√

√

⎨ ( 1 − cos  λπ)c 1 −  ( sin  λπ)c 2 = 0

⎩

√

√

(5.69)

 ( sin

 λπ )c 1 +  ( 1 − cos  λπ)c 2 = 0  , 

√

√

whose determinant is  (λ) = 2 ( 1 − cos  λπ), vanishing for

 λ = 2 k,  k ∈ N. Hence the

problem’s  eigenvalues, i.e. the values of  λ  for which (5.67) has  non-zero  solutions, are the numbers

 λk = 4 k 2  , 

 k ∈ N . 

If  λ =  λk  for some  k ∈ N, system (5.69) is true for any  c 1 , c 2. The corresponding linearly independent and 2 π -periodic eigenfunctions are

 y 1 ,k(x) = cos 2 kx , 

 y 2 ,k(x) = sin 2 kx , 

as well as their linear combinations

 c 1 y 1 ,k(x) +  c 2 y 2 ,k(x) =  c 1 cos 2 kx +  c 2 sin 2 kx . 
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5.9

Linear Systems

A system of  n  differential equations of the form

⎧

⎪

⎪

⎪ y =  a

⎪ 1

11 (x)y 1 +  a 12 (x)y 2 +  . . . +  a 1 n(x)yn +  g 1 (x)

⎪

⎪

⎪

⎨ y =  a

2

21 (x)y 1 +  a 22 (x)y 2 +  . . . +  a 2 n(x)yn +  g 2 (x)

⎪

(5.70)

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎪

⎪

⎩ y =

 n

 an 1 (x)y 1 +  an 2 (x)y 2 +  . . . +  ann(x)yn +  gn(x) is a  linear ODE system of order one. The functions  aij (x)  are the system’s coefficients  while the  gi (x)  are the  right-hand-side terms. A solution is an  n-tuple of differentiable functions on some interval [ a, b] ⊂ R that simultaneously satisfy the  n  equations for any  x ∈ [ a, b]. 

System (5.70) may be written more concisely as

 n



 y =

 i

 aij (x)yj +  gi(x) , 

 i = 1 ,  2 , . . . , n, 

 j =1





or, using the square matrix  A(x) =  aij (x)  and column vectors

⎛

⎞

⎛

⎞

 y 1 (x)

 g 1 (x)

⎜

⎜ y

⎟

⎜

⎟

2 (x)⎟

⎜ g 2 (x)⎟

 Y (x) = ⎜

⎝  . ⎟

⎜

⎟

 . 

 . 

 . 

⎠  , 

 G(x) = ⎝  .. ⎠

 yn(x)

 gn(x)

as

 Y  (x) =  A(x)Y (x) +  G(x) . 

(5.71)

If the coefficients and right-hand sides are continuous, we can apply to (5.70) the global existence and uniqueness theorem for  Cauchy problems (see Sect. 4.4), which now is recast as in the following result. 

Existence and Uniqueness Theorem  If the coefficients aij (x) and the right-hand sides gi (x) of system (5.70)  are continuous functions on [ a, b] , then for any x 0 ∈

[ a, b]  and any (y 0 , y 0 , . . . , y 0

1

2

 n ) ∈ R n there exists a unique solution to (5.70)  that satisfies the initial conditions

 y 1 (x 0 ) =  y 01 , 

 y 2 (x 0 ) =  y 02 , 

 . . . , 

 yn(x 0 ) =  y 0 n . 
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Consider first the  homogeneous  linear system

 Y  (x) =  A(x)Y (x)

(5.72)

and let

⎛

⎞

⎛

⎞

⎛

⎞

 y 11 (x)

 y 12 (x)

 y 1 n(x)

⎜

⎜ y

⎟

⎜

⎟

⎜

⎟

21 (x)⎟

⎜ y 22 (x)⎟

⎜ y 2 n(x)⎟

 Y 1 (x) = ⎜

⎟

⎜

⎟

⎜

⎟

⎝  .. 

 . 

 . 

 . 

⎠  , Y 2 (x) = ⎝  .. ⎠  , . . . , Yn(x) = ⎝  .. ⎠  , yn 1 (x)

 yn 2 (x)

 ynn(x)

denote  n  solutions. The function





 y



11 (x) y 12 (x) . . . y 1 n(x)









 y 21 (x) y 22 (x) . . . y 2 n(x)

 V (x) = 







 . . . 

 . . . 

 . . . 

 . . . 





 yn 1 (x) yn 2 (x) . . . ynn(x)

is called  determinant  of these  n  solutions. As in the case of the Wronskian determinant (Sect. 5.1), it can be proved that





 n



 V  (x) =

 aii(x) V (x) , 

∀  x ∈ [ a, b] , 

 i=1

so  V (x)  solves a linear ODE of order one. Eventually

:

 n



 x

 a

 x

 ii (t ) d t

 V (x) =  V (x

0

0 ) ·  e

 i=1

 , 

with  x 0 ∈ [ a, b]. We then deduce the following result. 

Proposition 1  Assume Y 1 (x), Y 2 (x), . . . , Yn(x) are solutions to the homogeneous system (5.72) . A necessary and sufficient condition for the vector-valued functions Y 1 , Y 2 , . . . , Yn to be linearly independent is that their values at an arbitrary point x 0 ∈ [ a, b]  be linearly independent. 

To find  n  linearly independent integrals one goes about in the same way as for homogeneous linear equations of order  n, considering the solutions of the Cauchy problems at  x 0 with initial values

⎛ ⎞

⎛ ⎞

⎛ ⎞

1

0

0

⎜

⎜0⎟

⎜1⎟

⎜0⎟

⎜ ⎟

⎟

⎜

⎜ ⎟

⎟

⎜ ⎟

⎝ . 

⎜ ⎟

 . 

 . 

 . 

 . ⎠  , 

⎝ .. ⎠  , . . . , ⎝ .. ⎠  . 

0

0

1

The general integral of system (5.72) descends from the following proposition. 
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Proposition 2  If Y 1 (x), Y 2 (x), . . . , Yn(x) are n linearly independent solutions of system (5.72) , every other solution arises as linear combination of the Yi. 

 Proof  The system’s linearity ensures that any linear combination

 n

 ciYi(x)

 i=1

will solve. If  Y (x)  is a solution, imposing

 n

 ciYi(x 0 ) =  Y(x 0 )

 i=1

for a given  x 0 in [ a, b], we obtain a linear system in the unknowns  c 1 , c 2 , . . . , cn , which has a unique solution since the coefficients’ determinant is  V (x 0 ) = 0. 

Therefore

 n

 ciYi(x) =  Y(x), ∀ x ∈ [ a,b] . 

 i=1

 Example 1  As in Sect. 4.2 (see (4.49)) we consider the system

⎧

⎨ y =  y

1

2

⎩

 . 

 y = − y

2

1

Choosing at  x 0 = 0 initial value  y 1 (x 0 ) =  y 0 = 0,  y

= 1, we find the solution

1

2  (x 0 ) =  y 0

2





⎛

⎞

 y 11 (x)

sin  x

 Y

⎝

⎠

1 (x) =

=

 . 

 y 21 (x)

cos  x

If we choose at  x 0 = 0 initial value  y 1 (x 0 ) = 1,  y 2 (x 0 ) = 0, then





⎛

⎞

 y 12 (x)

cos  x

 Y

⎝

⎠

2 (x) =

=

 . 

 y 22 (x)

− sin  x

The general integral is then

⎧

⎨ y 1 =  c 1 sin  x +  c 2 cos  x

⎩ y 2 =  c 1 cos x −  c 2 sin x . 

Let us pass to the general case for the full system (5.70), which we may write as (5.71). Observe first that if  Y (x)  is an integral of the associated homogeneous
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system (5.72) and  Z(x)  is an integral of (5.71), the sum Y (x) =  Y (x) +  Z(x)

is still a solution of the full system. 

Proposition 3  If Z(x) is a solution of (5.71)  and Y 1 (x), Y 2 (x), . . . , Yn(x) are n linearly independent integrals of the associated homogeneous system (5.72) , every solution of the full system has the form

 n



 Y (x) =

 ciYi (x) +  Z(x) . 

 i=1

 Proof  It is enough to apply Proposition 2 to  Y (x) −  Z(x), noting that (Y (x) −  Z(x)) =  Y  (x) −  Z (x) =

=  (A(x)Y (x) +  G(x)) −  (A(x)Z(x) +  G(x)) =  A(x) (Y (x) −  Z(x)) . 

Then  Y (x) −  Z(x)  is an integral of the homogeneous system. 

Now we will prove that from  n  linearly independent integrals of the homogeneous system, it is possible to compute a particular integral

⎛

⎞

 y 1 (x)

⎜

⎜

⎟

⎜ y

⎟

2 (x)

⎜

⎟

⎜  . ⎟

⎟  , 

⎝  .. ⎠

 yn(x)

of the full system. To fix ideas, we seek the integral of (5.70) that satisfies the initial conditions

 y 1 (x 0 ) =  y 2 (x 0 ) =  . . . =  yn(x 0 ) = 0  . 

(5.73)

As the determinant  V (x)  is always non-zero, there are  n  continuous functions ϕ 1 (x) , 

 ϕ 2 (x) , 

 . . . , 

 ϕn(x)
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with continuous first derivatives on [ a, b], such that

⎧

⎪

⎪

⎪ y

⎪ 11 (x)ϕ 1 (x) +  y 12 (x)ϕ 2 (x) +  . . . +  y 1 n(x)ϕn(x) =  y 1 (x)

⎨ y 21 (x)ϕ 1 (x) +  y 22 (x)ϕ 2 (x) +  ... +  y 2 n(x)ϕn(x) =  y 2 (x)

⎪

(5.74)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ yn 1 (x)ϕ 1 (x) +  yn 2 (x)ϕ 2 (x) +  ... +  ynn(x)ϕn(x) =  yn(x). 

Substituting  yk(x),  k = 1 ,  2 , . . . , n, in (5.70) and using the fact that

⎛

⎞

 y 1 k(x)

⎜

⎜ y

⎟

2 k(x)⎟

 Yk(x) = ⎜

⎟

⎝  ... ⎠

 ynk(x)

solves (5.70) for any  k, we deduce

⎧

⎪

⎪

⎪ y

 (x) +  y

 (x) +  . . . +  y

⎪ 11 (x)ϕ 1

12 (x)ϕ 2

1 n(x)ϕ n(x) =  g 1 (x)

⎨ y 21 (x)ϕ (x) +  y

 (x) +  . . . +  y

1

22 (x)ϕ 2

2 n(x)ϕ n(x) =  g 2 (x)

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ yn 1 (x)ϕ (x) +  y

 (x) +  . . . +  y

1

 n 2 (x)ϕ 2

 nn(x)ϕ n(x) =  gn(x) . 

By Cramer’s rule, we have

 n



 ϕ k(x) =

1

 gi(x)Vik(x) , 

 k = 1 ,  2 , . . . , n, 

 V (x) i=1

where  Vik(x)  is the cofactor of  yik(x)  in  V (x). Now set  x =  x 0 in (5.74). 

Recalling (5.73), we have

 ϕ 1 (x 0 ) =  ϕ 2 (x 0 ) =  . . . =  ϕn(x 0 ) = 0  . 

So now

 x n



 Vik(t)

 ϕk(x) =

 gi (t)

 dt , 

 k = 1 ,  2 , . . . , n, 

 x

 V (t)

0

 i=1

and therefore

 x n



 Vik(t)

 yh(x) =

 gi (t)yhk(x)

 dt , 

 h = 1 ,  2 , . . . , n. 

 x

 V (t)

0

 i,k=1

Note the analogy with the method of variation of parameters introduced in Sect. 5.3. 
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Curves and Integrals Along Curves

6

6.1

Regular Curves

Consider a point particle moving in three-dimensional space in the time interval

[ t 0 , t 1] .  In a given frame system, for any  t ∈ [ t 0 , t 1] we let { x(t), y(t), z(t)} denote the particle’s coordinates at time  t.  The function  ϕ : [ t 0 , t 1] → R3 ,  of scalar components  x(t), y(t), z(t) ,  is a  curve  describing the motion under examination. 

Writing  ϕ  in vector notation we have

 ϕ(t) =  x(t) e 1 +  y(t) e 2 +  z(t) e 3  , 

where  e 1 , e 2 , e 3 are the unit vectors of the given frame. 

Suppose  ϕ(t)  can be differentiated twice. In Physics the vectors

 ϕ (t) =  x (t) e 1 +  y (t) e 2 +  z (t) e 3  , ϕ (t) =  x (t) e 1 +  y (t) e 2 +  z (t) e 3  , are respectively called  velocity  and  acceleration  of the point particle at time  t,  and are pivotal in the motion’s description. 

Figure 6.1 represents the path of a particle whose motion has velocity of constant modulus, and shows the velocity and acceleration vectors at two points. We will

show in this chapter that the velocity vector is  tangent  to the particle’s trajectory, while the acceleration is  orthogonal (if, as in the picture, the velocity’s modulus is constant). 
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(t)

(t )

(t)

1

(t)

(t)

(t )

0

Fig. 6.1

In general, a  curve  is a continuous map  ϕ :  I → R n,  where  I  is a real interval. The relations

⎧

⎪

⎪

⎪ x

⎪ 1 =  ϕ 1 (t)

⎨ x 2 =  ϕ 2 (t)

⎪

 t ∈  I , 

⎪

⎪

⎪ . . . . . . . . . . . . 

⎩ xn =  ϕn(t)

expressing the components of  ϕ,  are the curve’s  parametric equations  in the parameter  t.  Using the familiar notation for vectors in R n,  we may write more compactly  ϕ(t) =  (ϕi(t)) i=1 ,...,n .  The  image ϕ(I)  of  ϕ  is called the  support  of the curve, and should not be confused with the curve itself, which is a function. 

 Example 1  The curves  ϕ : [0 ,  2  π] → R2 , ψ : [0 ,  4  π] → R2 ,  of parametric equations ϕ 1 (t) = cos  t

∀

 ψ 1 (t) = cos  t

 t ∈ [0 ,  2  π]  , 

∀  t ∈ [0 ,  4  π]  , (6.1)

 ϕ 2 (t) = sin  t , 

 ψ 2 (t) = sin  t , 

have the same support (the unit  circle  centred at the origin), but are distinct curves. 

 Example 2  The curve  ϕ : R → R3 of parametric equations

 ϕ(t ) =  (a  cos  t, a  sin  t, b t) , 

∀  t ∈ R , 

(6.2)

with  a >  0 , b = 0 ,  is a  circular helix (see Fig. 6.2). The number 2 πb  measures how much a point moving along the curve goes up (or down, if  b <  0 )  after a complete turn around the cylinder, and is called  pitch  of the helix. 

(continued)
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 Example 2 (continued)

Fig. 6.2
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A curve  ϕ :  I → R n  is called  simple  if for any pair of distinct points  t 1 , t 2 in  I , of which at least one is  internal  to  I,  we have  ϕ(t 1 ) =  ϕ(t 2 ).  A curve  ϕ :  I → R n, defined on a closed and bounded interval  I = [ a, b] ,  is  closed  if  ϕ(a) =  ϕ(b). 

 Example 3  The circle  ϕ =  (ϕ 1 , ϕ 2 )  defined in (6.1) is a simple closed curve. The circle ψ =  (ψ 1 , ψ 2 )  defined in (6.1) is closed but not simple. The helix defined by (6.2) is simple but not closed. 

The curve ( strophoid) in R2 of parametric equations





 ϕ(t ) =  t 3 −  t, t 2 − 1  , 

∀  t ∈ R , 

whose support is plotted in Fig. 6.3, is not simple, because  ϕ( 1 ) =  ϕ(−1 ) =  ( 0 ,  0 ).  Its restriction to  I = [−1 ,  1] ,  instead, i.e. the curve  ψ ( strophoid noose) defined by ψ (t ) =  t 3 −  t, t 2 − 1  , 

∀  t ∈ [−1 ,  1] , 

is simple and closed. 

(continued)
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 Example 3 (continued)

Fig. 6.3

It will turn out to be convenient to impose a few regularity assumptions on the curves we shall work with. 

Let  I  be a closed and bounded interval [ a, b] .  A curve  ϕ :  I → R n  is said regular  if the map  ϕ  is  C 1 on  I = [ a, b] and for any  t ∈  (a, b)  the vector  ϕ (t)  is non-zero, i.e. the derivatives  ϕ  (t), . . . , ϕ

1

 n(t )  do not vanish simultaneously. 

Given distinct time instants  t 0 , t 1 ∈ [ a, b], consider the straight line in R n  passing through  ϕ(t 0 )  and  ϕ(t 1 ) .  It has parametric equation ϕi(t 1 ) −  ϕi(t 0 )

 xi =  xi(t) =  ϕi(t 0 ) +  (t −  t 0 )

 , 

∀  i = 1 ,  2 , . . . , n . 

 t 1 −  t 0

If  ϕ  is a regular curve, the limit of the above expression, as  t 1 →  t 0 , gives the line of equations

 xi =  xi(t) =  ϕi(t 0 ) +  (t −  t 0 )ϕ  i(t 0 ), 

∀  i = 1 ,  2 , . . . , n , 

(see Fig. 6.4), called the  tangent line  to the curve  ϕ  at the point  ϕ(t 0 ).  The vector 4

5

 ϕ (t 0 )  of coordinates  ϕ  (t

is the  tangent vector  to  ϕ  at  ϕ(t

 i

0 ) i=1 ,...,n

0 ),  while

 T (t 0 ) =  ϕ (t 0 )

| ϕ (t 0 )|

(6.3)

is the  unit tangent vector. The regularity condition  ϕ (t 0 ) = 0 for any  t 0 ∈  (a, b) guarantees the existence of a unique unit tangent vector to the curve at  ϕ(t 0 ). Hence the curve has no cusps or sharp corners. 
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 Example 4  The curve in R2 of parametric equations





 ϕ(t ) =  t 3 , t 2  , 

∀  t ∈ [−1 ,  1] , 

(6.4)

is not regular, since  ϕ ( 0 ) =  ( 0 ,  0 ).  To represent (6.4) on the  xy-plane it is useful to observe that we can solve for  t  the first equation in

 x =  ϕ 1 (t) =  t 3 , 

 y =  ϕ 2 (t) =  t 2 , 

∀  t ∈ [−1 ,  1] , 

to obtain  t =  x  1 / 3. Substituting in the other relation gives y =  x  2 / 3 , 

∀  x ∈ [−1 ,  1] . 

Hence the function’s graph (Fig. 6.5) has a cusp at  x = 0 . 

The same curve (6.4) may be viewed as union of two regular curves  ϕ+ (with support in the first quadrant) and  ϕ− (supported in the second quadrant) of parametric equations ϕ+ (t) =  t 3 , t 2  , 

∀  t ∈ [0 ,  1];  ϕ− (t) =  t 3 , t 2  , ∀  t ∈ [−1 ,  0] . 

These two curves, that meet at the origin, are regular. For this reason we say that the curve ϕ  in (6.4) is  piecewise regular. 

(continued)
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 Example 4 (continued)

Fig. 6.5

y
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When  f : [ a, b] → R is a  C 1 function in one variable, the  plane curve  of parametric equations  ϕ(t) =  (t, f (t))  has as support the graph of  f  and is regular. In this case y =  f (x)  is the  Cartesian equation  of the curve. Note that the tangent line to the curve at  ϕ(t 0 )  coincides with the usual tangent to the graph of  f  at  (t 0 , f (t 0 )). 

It is sometimes convenient to express a curve’s  equation  in a suitable coordinate system. For example, if the equation of a  plane curve  in  polar coordinates  is

  =  (ϑ) , 

 ϑ 0 ≤  ϑ ≤  ϑ 1  , 

called  polar equation, its equations in Cartesian coordinates read

 x =  (ϑ)  cos  ϑ , 

 y =  (ϑ)  sin  ϑ , 

 ϑ 0 ≤  ϑ ≤  ϑ 1  , 

(6.5)

so  ϑ ∈ [ ϑ 0 , ϑ 1] is the parameter and the plane curve is the map  ϕ : R → R2 defined by  ϕ(ϑ) =  ((ϑ)  cos  ϑ, (ϑ)  sin  ϑ). Furthermore, when  (ϑ)  is a  C 1 function, it is easy to see that the curve is regular if and only if









2

2

 (ϑ)

+   (ϑ) >  0 , 

∀  ϑ ∈  (ϑ 0 , ϑ 1 ). 

(6.6)

 Example 5  The curve ( cardioid) in R2 ,  of polar equation

  =  a ( 1 + cos  ϑ) , 

0 ≤  ϑ ≤ 2  π , 

with  a >  0 ,  is not regular since  (π ) =   (π) = 0 .  The point corresponding to  ϑ =  π  in

(6.5) is the origin. There, the cardioid has a cusp (Fig. 6.6). 

(continued)

[image: Image 1545]

[image: Image 1546]

[image: Image 1547]

[image: Image 1548]

6.2 Oriented Curves

279

 Example 5 (continued)

Note however that the representation

  =  a ( 1 + cos  ϑ) , 

− π ≤  ϑ ≤  π , 

(6.7)

defines a curve, still called  cardioid, with the same support of Fig. 6.6, but now the map ϕ : [− π, π] → R2 , ϕ(ϑ) =  ((ϑ)  cos  ϑ, (ϑ)  sin  ϑ), is regular, because for  ϑ ∈  (− π, π) the regularity condition (6.6) holds. 

Fig. 6.6

6.2

Oriented Curves

Consider the parametric curves  ϕ, ψ  in R2

 ϕ(t) =  ( cos  t,  sin  t) , 

∀  t ∈ [0 ,  2 π]; 

 ψ(s) =  ( cos 2 s,  sin 2 s) , 

∀  s ∈ [0 , π] . 

Both (simple, closed and regular) have as support the  unit circle  centred at the origin. 

Exactly as for the curve  ϕ(t),  a point moving on the plane under the law of motion ψ(s)  travels around the unit circle counter-clockwise once. The modulus of the velocity  ψ (s) of the point, therefore, is twice that of a point moving under  ϕ(t). 

Moreover, considering the map  g :  t ∈ [0 ,  2 π] →  s ∈ [0 , π] , s =  g(t) =  t/ 2 ,  we have

 ϕ(t) =  ψ ◦  g(t) =  ψ(g(t)). 

Conversely, if  g−1 :  s ∈ [0 , π] →  t ∈ [0 ,  2 π] is the map  t =  g−1 (s) = 2 s ,  then ψ(s) =  ϕ ◦  g−1 (s) =  ϕ(g−1 (s)) . 
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By an invertible transformation of the parameter, therefore, we can pass from the

parametric representation of  ϕ  to the parametric representation of  ψ. 

In general, two curves  ϕ :  I → R n, ψ :  J → R n  are  equivalent  if there is a reparametrisation, i.e. a  C 1 map  g :  I →  J  with  g (t) = 0 for any  t ∈  I (hence invertible), such that

 ϕ(t) =  ψ ◦  g(t). 

If so, the inverse map  g−1 :  J →  I  of  g  will be of class  C 1 , (g−1 ) (s) = 0 for any s ∈  J  and

 ψ(s) =  ϕ ◦  g−1 (s). 

If  ϕ  and  ψ  are  equivalent  in the above sense we will write ϕ ∼  ψ . 

The map  g  allowing to pass from the parametric representation of  ϕ  to that of  ψ  is a  diffeomorphism. 

Easily, ∼ is an  equivalence relation. It induces a decomposition of the family of regular curves into mutually disjoint equivalence classes. In the sequel we shall

use the word  curve  to indicate both an equivalence class  γ = [ ϕ]  ,  and an arbitrary parametric representation of  ϕ(t). The context should clarify which sense is correct, unless we make it explicit. 

For instance, the curves  ϕ =  (ϕ 1 , ϕ 2 )  and  ψ =  (ψ 1 , ψ 2 )  in R2 of parametric equations ϕ 1 (t) = cos  t

 ψ 1 (s) = sin 2  s

 π

5  π

 t ∈ [0 ,  2 π]  , 

 s ∈

 , 

 , (6.8)

 ϕ

4

4

2 (t ) = sin  t , 

 ψ 2 (s) = cos 2  s , 





are equivalent. Namely,  ψ(s) =  ϕ ◦  g−1 (s),  where  g−1 :  π ,  5 π → [0 ,  2 π] is the map 4

4

 g−1 (s) =  ( 5 π/ 2 ) − 2  s.  That is,  g−1 is the (decreasing)  linear  map that sends  s = 5 π/ 4 to g−1 (s) = 0 and  s =  π/ 4 to  g−1 (s) = 2 π. 

To any curve  ϕ :  I → R n  we can assign an  orientation, induced by the chosen parametric representation. We say a point  P 1 =  ϕ(t 1 ) precedes P 2 =  ϕ(t 2 ) in the chosen orientation  if  t 1  < t 2 (see Fig. 6.7). 

We can then define another (sharper) equivalence relation for regular curves, 

◦

which we will denote by ∼. 

◦

We will say the regular curves  ϕ :  I → R n, ψ :  J → R n are ∼- equivalent  if ϕ ∼  ψ  and  ϕ  and  ψ  have the same orientation. 

◦

It is easy to see that  ϕ :  I → R n, ψ :  J → R n  are ∼-equivalent if and only if the reparametrisation  s =  g(t),  with  g :  I →  J , always has positive derivative. 
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Fig. 6.7

P  =  (t )

2

2

P  =  (t )

1

1

For example the curves  ϕ =  (ϕ 1 , ϕ 2 )  and  ψ =  (ψ 1 , ψ 2 )  defined in (6.8) are not

◦

∼-equivalent. 

The equivalence class  γ  for ∼ therefore breaks into two equivalence classes for

◦

∼, called  oriented curves. Once we have chosen one orientation, arbitrarily, called positive orientation, the two equivalence classes are indicated by  γ +,  γ − . 

6.3

The Length of a Curve

Consider a continuous curve  ϕ : [ a, b] → R n  defined over a closed and bounded interval [ a, b] .  Any  partition

 a =  t 0  < t 1  < . . . < tN =  b

of [ a, b] determines a polygonal path P of vertices  ϕ(a), ϕ(t 1 ), . . . , ϕ(tN−1 ), ϕ(b), and conversely. 

The  length  of this path is

 N



 ( P ) =

| ϕ(ti) −  ϕ(ti−1 )|  . 

 i=1

Intuitively, this number is an approximation from below of the “length” of the curve

 ϕ.  The smaller the lengths of the segments, the better the approximation (Fig. 6.8). 

Hence the following definition is natural. The  length of the continuous curve

 ϕ : [ a, b] → R n  is the number

 L(ϕ) = sup  ( P ), 

(6.9)

as P varies among all polygonal paths with vertices on the curve’s support. If the

supremum is finite, the curve  ϕ  is said to be  rectifiable. 

We start by showing that all  C 1[ a, b] curves are rectifiable. 

Rectifiability of  C 1 Curves  A C 1  curve ϕ : [ a, b] → R n is rectifiable, and its length L(ϕ) is the integral

 b 



 L(ϕ) =

 ϕ (t)  dt. 

(6.10)

 a
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Fig. 6.8
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 Proof  Let us first prove that

 b 



 ( P ) ≤

 ϕ (t)  dt, 

(6.11)

 a

for any polygonal path P on the curve  ϕ  determined by a partition  a =  t 0  < t 1  < 

 . . . < tN =  b  of [ a, b] .  The lemma of Sect. 4.2 (whereby the integral of the norm bounds the norm of the integral) and the fundamental theorem of calculus on the

components of  ϕ  tell us that

 N



 N





 ti



 ( P ) =

| ϕ(t





 i ) −  ϕ(ti−1 )| =



 ϕ (t)dt ≤

 t

 i=1

 i=1

 i−1

 N





 ti 



 b 



≤

 ϕ (t)  dt =

 ϕ (t)  dt. 

 i−1

 a

 i=1

Hence (6.11) implies

 b 



 L(ϕ) = sup  ( P ) ≤

 ϕ (t)  dt. 

(6.12)

P

 a

Conversely, as  ϕ is uniformly continuous on [ a, b] ,  given  ε >  0 there is  δ >  0 such that





 s, t ∈ [ a, b] , 

| t −  s|  < δ

⇒  ϕ (t) −  ϕ (s)  < ε . 

(6.13)

Consider a partition  a =  t 0  < t 1  < . . . < tN =  b  of [ a, b] by intervals of length less than  δ, and let P be the induced polygonal path. Fix the interval [ ti−1 , ti] and
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for any  s ∈ [ ti−1 , ti] compute

 ti

 ϕ(ti) −  ϕ(ti−1 ) =

 ϕ (t)dt =

 ti−1

 ti  2

3

=

 ϕ (t) −  ϕ (s) dt +  ϕ (s) (ti −  ti−1 ) . 

 ti−1

Taking norms and remembering the uniform continuity in (6.13), 





 ϕ (s)  (ti −  ti−1 ) ≤



 ti  2

3 

≤ | ϕ(t





 i ) −  ϕ(ti−1 )| + 

 ϕ (t) −  ϕ (s) dt ≤

 ti−1

≤ | ϕ(ti) −  ϕ(ti−1 )| +  ε (ti −  ti−1 ) . 

Then





| ϕ(ti) −  ϕ(ti−1 )|

 ϕ (s) ≤

+  ε, 

 ti −  ti−1

and integrating over  s ∈ [ ti−1 , ti]  , 

 ti  

 ϕ (s)  ds ≤ | ϕ(ti) −  ϕ(ti−1 )| +  ε (ti −  ti−1 ) . 

 ti−1

Finally, summing for  i = 1 ,  2 , . . . , N, 

 b  

 ϕ (s)  ds ≤  ( P ) +  ε (b −  a) ≤  L(ϕ) +  ε (b −  a) . 

(6.14)

 a

Letting  ε  go to zero, from (6.14) and (6.12) we obtain claim (6.10). 

 Example 1  Let  y =  f (x) ( f : [ a, b] → R )  be a  C 1 function and  ϕ : [ a, b] → R2 the curve of components  (t, f (t)),  i.e. of parametric equations

 x =  t

∀  t ∈ [ a, b] . 

 y =  f (t) , 

The support of  ϕ  is the graph of  f.  Clearly  ϕ  is a regular curve, and its length, by formula

(6.10), is



 b

 L(ϕ) =

1 +  (f  (x))  2 dx . 

 a
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 Example 2  If a plane curve  ϕ : [ ϑ 0 , ϑ 1] → R2 has polar equation   =  (ϑ), ϑ 0 ≤  ϑ ≤

 ϑ 1 ,  with  (ϑ)  of class  C 1 ,  the length of  ϕ  equals b

 L(ϕ) =

 ( (ϑ ))  2 +  ((ϑ))  2 dϑ. 

 a

 Example 3  Consider the continuous function  f : [0 ,  1] → R, not of class  C 1 ,  defined by

⎧

⎨0

if

 x = 0

 f (x) = ⎩

 π

 x  sin

if

0  < x ≤ 1  . 

2  x

We claim that  ϕ(t) =  (t, f (t))  is not rectifiable. Call P N , for any positive integer  N,  the polygonal path induced by the partition of [0 ,  1]

0 =  tN < tN−1 =

1

 < . . . < ti =

1

 < . . . < t 0 = 1  , 

2 N − 1

2 i + 1

so  tN = 0 and  ti = 1 /( 2 i + 1 ),  i = 0 ,  1 ,  2 , . . . , N − 1 .  Its vertices are  ( 0 ,  0 )  and the points ( 1 /( 2 i + 1 ) , (−1 )i /( 2 i + 1 )).  Then

√

 N−1



 N−1



 N−1

4 + 16  i 2

1

 ( P N ) > 

| ϕ(ti) −  ϕ(ti−1 )| =

 > 

4  i 2 − 1

 i

 i=1

 i=1

 i=1

and so

lim

 ( P N ) = +∞ . 

 N → +∞

Unless  ϕ : [ a, b] → R n  is one-to-one, (6.10) will not give the measure of the support of  ϕ.  For example, the two curves  ϕ(t) =  ( cos  t,  sin  t), for  t ∈ [0 ,  2 π], and ψ(t) =  ( cos 2 t,  sin 2 t), for  t ∈ [0 ,  3 π/ 2], have lengths  L(ϕ) = 2 π, L(ψ) = 3 π

despite having the same support. 

On the other hand the length of a regular curve  γ  is an intrinsic quantity, that does not depend on the particular parametric representation we have chosen. Let

 ϕ : [ a, b] → R n, ψ : [ α, β] → R n  be arbitrary parametric representations of  γ , and suppose  g : [ a, b] → [ α, β] is a  diffeomorphism  such that  ϕ(t) =  ψ(g(t)). 

Denoting by  t =  g−1 (s)  the inverse map of  s =  g(t),  we then have b 

 b





 dψ





 ϕ (t)  dt =

 (g(t)) ·  g (t) dt =

 a

 a

 ds

 g(b) 





=







 ψ (s) ·  g (g−1 (s)) ·  dg−1 (s) ds. 

 g(a)

 ds
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But  g (g−1 (s)) ·  dg−1 (s)  is identically equal to 1 or −1 ,  depending on whether ds

 g(t)  is strictly increasing or decreasing. In either case





 b 

 β









 ϕ (t)  dt =

 ψ (s)  ds. 

 a

 α

From the definition of length of a curve  ϕ : [ a, b] → R n  we deduce that if  ϕ 1 and ϕ 2 are restrictions of  ϕ  to the intervals [ a, c] and [ c, b] ,  then L(ϕ) =  L(ϕ 1 ) +  L(ϕ 2 ). 

In general, (6.10) is still valid for piecewise-regular curves. We shall say a curve ϕ : [ a, b] → R n  is  piecewise regular  if there is a partition { a =  a 0  < a 1  < 

 . . . < aN =  b} of [ a, b] such that the curve  ϕi =  ϕ|[ ai−1 ,ai] is regular, for any i = 1 ,  2 , . . . , N. 

Now it is easy to show that the length of a piecewise-regular curve  ϕ : [ a, b] →

R n  equals

 N



 N





 bi 



 b 



 L(ϕ) =

 L(ϕ









 i ) =

 ϕ i(t) dt =

 ϕ (t) dt. 

 a

 a

 i=1

 i=1

 i−1

Hence, as already said, (6.10) holds for piecewise-regular curves. In particular, for polygonal paths P we have  L( P ) =  ( P ). 

Among all possible parametrisations of a regular curve, the one defined by the

 arclength  is especially relevant from a geometric point of view. To fix ideas, think of a rectifiable curve with support   ⊂ R n  and fix on it a point  P 0 and an orientation, as in Fig. 6.9. Associate with any point  P  of    the length  s(P )  of the arc joining  P 0

and  P  if  P  follows  P 0, or minus that length if  P  precedes  P 0 .  Thus we set up a 1-1

correspondence between the points of    and the points of some interval [ a, b], in such a way that if  s(P 1 ) =  s 1 and  s(P 2 ) =  s 2  ,  the length of the arc joining  P 1 and P 2 is exactly | s 2 −  s 1|  . 

P0

P

P  

 

s(P )< 0

s(P )> 0

Fig. 6.9
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Fix a parametrisation  ϕ : [ a, b] → R n  of the regular curve  γ  and a point  t 0 ∈ [ a, b] . 

The function

 t 



 s(t) =

 ϕ (τ)  dτ, 

∀  t ∈ [ a, b]

 t 0

 ds

is strictly increasing, differentiable, and such that

 >  0 for any  t. Hence  s =

 dt

 s(t)  is a reparametrisation  s : [ a, b] → [ s(a), s(b)] .  The parameter  s  is called arclength. In this way if  t =  t (s)  is the inverse of  s =  s(t)  and  γ (s) =  ϕ(t (s)),  for any value of the parameter  s  we have

 γ  (s) =  dϕ (t (s)) ·  dt (s) =  ϕ (t (s))

 dt

 ds

| ϕ (t(s))|  , 

and therefore





 γ  (s) = 1 , 

∀  s ∈ [ s(a), s(b)]  . 

(6.15)

We deduce that  γ  (s)  is the  unit tangent vector  to the curve at the generic point of arclength  s. From (6.15) it follows that if  s  is an arclength parameter, to any subinterval [ s 1 , s 2] ⊆ [ s(a), s(b)] there corresponds an arc with length  s 2 −  s 1 . 

6.4

The Integral of a Function Along a Curve

Let  γ  be a regular curve and  ϕ : [ a, b] → R n  a parametrisation. If  f  is a real function of  n  real variables, defined on the curve’s support   =  ϕ ([ a, b] ), and if  f is continuous on this support, it makes sense to consider the integral

 b





 f (ϕ(t))  ϕ (t)  dt

 a

in the real variable  t. When  ψ : [ α, β] → R n  is another parametrisation of  γ ,  one can prove





 b





 β





 f (ϕ(t))  ϕ (t)  dt =

 f (ψ(s))  ψ (s)  ds. 

(6.16)

 a

 α

In fact, if  g : [ a, b] → [ α, β] is a reparametrisation of equation  s =  g(t),  and t =  g−1 (s)  is the inverse map, 

 b





 f (ϕ(t))  ϕ (t)  dt =

 a







 g(b)







=

 dϕ

 f ϕ(g−1 (s)) · 

 (g−1 (s)) ·  dg−1 (s) ds. 

 g(a)

 dt

 ds
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As  ϕ(t) =  ψ(g(t)),  or  ψ(s) =  ϕ(g−1 (s)),  we have ψ (s) =  dϕ(g−1 (s)) =  dϕ (g−1 (s)) ·  dg−1 (s) ds

 dt

 ds

and so





 b





 g(b)





 f (ϕ(t))  ϕ (t)  dt = ±

 f (ϕ(s)) ·  ψ (s)  ds, 

(6.17)

 a

 g(a)

 dg−1

where we choose the + sign if

 >  0, and the − sign otherwise (recall  g  and

 ds

 dg−1

 g−1 are strictly monotone). Using (6.17) we obtain (6.16), since having

 >  0

 ds

 dg−1

for any  s  forces  g(a) =  α  and  g(b) =  β,  while

 <  0 for any  s  implies

 ds

 g(a) =  β  and  g(b) =  α. 

We may then define the following notion. If  γ  is a regular curve in R n  with parametrisation  ϕ : [ a, b] → R n (also known as a  path), and  f :   → R is a continuous function on the curve’s support   ⊂ R n, the integral

 b





 f (ϕ(t))  ϕ (t)  dt

 a

does not depend on the chosen parametrisation nor on the orientation induced on

 γ .  This quantity is called  integral of f along the curve γ , and one customarily indicates it by



 f ds. 

(6.18)

 γ

Observe that if  γ : [0 , L] → R n  is an arclength parametrisation of  γ (the parameter is the arclength  s), since  γ  (s) is equal to 1 the integral (6.18) is L

 f (γ (s)) ds. 

0

The integral can be obtained in a more intrinsic way using a similar argument to the

one employed for the integral of a continuous function on a segment [ a, b] . 

In fact, suppose  P =  γ ( 0 ), Q=  γ (L)  are the endpoints of the curve  γ  and let  P 0 =

 P , P 1 , . . . , PN =  Q  be  N + 1 points on the support    of  γ (see Fig. 6.10) chosen so that  Pi−1 precedes  Pi  in the orientation given by the parameter  s. Then every  Pi defines an arclength value  s(Pi ) =  si, and  si−1  < si  for any  i = 1 ,  2 , . . . , N. On
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Fig. 6.10

P2

P   2

P = Q

P

N

1

P   1

P = P0

each arc  γi  between  Pi−1 and  Pi  let us pick a point  P  with arclength  s  .  If  L(γ

 i

 i

 i )

is the length of  γi ,  the sum

 N

 f(P i)L(γi)

(6.19)

 i=1

equals

 N

 f(γ(s ))(s

 i

 i −  si−1 ) . 

(6.20)

 i=1

As the function  f (γ (s))  is continuous on [0 , L] , (6.20) converges to L

 f (γ (s)) ds, 

0

as max{ si −  si−1 : 1 ≤  i ≤  N} → 0  .  We therefore conclude that the sums (6.19) converge to the integral



 f ds, 

 γ

as max{ si −  si−1 : 1 ≤  i ≤  N} goes to zero. 

As for the integrals of continuous functions of one real variable, if  γ  is a plane curve with support    and  f :   → [0 , +∞ )  is a continuous function, we may think

:

of

 f ds  as a measure of the area of the surface between    and the graph of  f  over γ

  (see Fig. 6.11). 

By the definition of integral along a curve, if  γ  is a regular curve with support  

and  f, g :   → R are continuous, 







 (αf +  βg) ds =  α

 ds +  β

 g ds, 

∀  α, β ∈ R ; 

(6.21)

 γ

 γ

 γ
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Fig. 6.11

z

y

x





 f ds ≤

 g ds, 

if

 f ≤  g

on

  ; 

 γ

 γ











 f ds ≤

| f |  ds ≤ max | f | ·  L(γ ). 

(6.22)

 γ

 γ

 

Moreover, if  γ : [ a, b] → R n  is the union of regular curves  γ 1 : [ a, c] → R n, γ 2 : [ c, b] → R n, a < c < b,  then







 f ds =

 f ds +

 f ds. 

(6.23)

 γ

 γ 1

 γ 2

This decomposition, in analogy to what was observed about a regular curve’s length, 

allows us to extend the notion of integral along a curve to piecewise-regular curves

 γ  in the obvious way. 

Now we introduce what is commonly known as the  centroid  of a curve. Suppose

 γ : [ a, b] → R n  is a piecewise-regular simple curve with support    and length L(γ ). The point  x 0 ∈ R n  of coordinates



1

 x 0 i =

 xi ds, 

∀  i = 1 ,  2 , . . . , n, 

 L(γ )

 γ

where  xi , i = 1 ,  2 , . . . , n,  are the coordinates of the generic point  x ∈ R n,  is the centroid  of the set  . 
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6.5

The Curvature of a Plane Curve

Consider a regular curve  γ : [ a, b] → R2 parametrised by arclength  s.  We wish to define the notion of  curvature, a scalar quantity describing (up to sign) the geometric features of the curve, irrespective of possible reparametrisations or

coordinate changes. 

Let us recall the  formula for differentiating the inner product in  R n.  Suppose that u(t),  v(t) :  I → R n  are differentiable functions on an interval  I ⊆ R ,  of respective components  (ui(t)) , (vi(t)) .  Then

 n

 d



 (u(t), v(t)) =  d

 ui (t) vi (t) =

 dt

 dt i=1

 n



 n



(6.24)

=

 u  (t) v

 u

 (t) =

 i

 i (t ) +

 i (t ) v i

 i=1

 i=1

4

5 4

5

=  u (t), v(t) +  u(t), v (t) . 

Note in particular the following property of vector-valued functions of constant

norm, a consequence of (6.24):  if w(t) :  I → R n is differentiable on the interval I ⊆ R  and | w(t)| = 1  for any t ∈  I, the vector w(t) is orthogonal to w (t) at any point t ∈  I :

4

5

 w (t), w(t) = 0  , 

∀  t ∈  I . 

(6.25)

The proof is an application of formula (6.24):

4

5

1  d

1  d

 w (t), w(t) =

 (w(t), w(t)) =

| w(t)|2 = 0  , 

∀  t ∈  I . 

2  dt

2  dt

Going back to the curve  γ :  I = [ a, b] → R2 ,  in this section we will assume  γ (s) is of class  C 2 .  As in (6.3), we call  T (s)  the  unit tangent vector  to  γ  at the point γ (s), i.e. the vector-valued function

 T (s) =  γ  (s) =

|

 γ  (s) , 

 s ∈  I , 

 γ  (s)|





 d

since  γ  (s) is identically 1 .  Consider now the derivative

 T (s) =  T  (s). As  T (s)

 ds

has length 1, from (6.25) we have

4

5

4

5

 T  (s), T (s) =  γ  (s), γ  (s) = 0  , 

∀  s ∈  I , 

(6.26)

and so the vector  γ  (s)  is orthogonal to the unit tangent vector  γ  (s), for any  s ∈  I . 
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We call  unit normal  to the curve the unit vector  N (s)  obtained rotating the unit tangent vector  T (s)  by  π/ 2 in the same way as  e 2 rotates over to  e 1. Since (6.26) implies

4

5

 T  (s), T (s) = 0  , 

∀  s ∈  I , 

the vector  T  (s),  orthogonal to  T (s),  is parallel to the unit normal  N (s).  Therefore there exists a real number  k(s)  such that

 T  (s) = − k(s) N(s) , 

∀  s ∈  I , 

(6.27)

called the  curvature  of the plane curve  γ  at  γ (s).  As it stands, the curvature can be positive or negative (see Fig. 6.12). 

Warning: sometimes the curvature is defined by the formula  T  (s) =  k(s) N(s), where  N (s)  is the opposite to the unit normal we have defined. The two curvature definitions clearly coincide, for  N (s) = − N(s). 

The circle centred on the negative normal semi-axis (that of − N(s))  if  k(s) >  0 , or on the positive semi-axis if  k(s) <  0 ,  passing through  γ (s)  and with radius 1 / | k(s)|  ,  is the  osculating circle  to the curve  γ  at  γ (s).  The reciprocal 1 / | k(s)|

of the curvature’s absolute value | k(s)| is called  curvature radius. 

It is easy to show that the osculating circle to the curve at  γ (s)  has, at that point, the same tangent line and same normal axis as the curve  γ (Fig. 6.13). 

Fig. 6.12

k <0

T

N

k >0

T

N

e2

e1

Fig. 6.13

T
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Now we will prove that a  plane curve  of equations  ϕ(t) =  (x(t), y(t))  has  curvature k(t) =  x (t) y (t) −  x (t) y (t)





(6.28)

3 / 2

 (x (t)) 2 +  (y (t)) 2

at the point  ϕ(t). 

Suppose  γ (s) =  (x(s), y(s))  is the parametric equation of the curve, with arclength  s. Equation (6.27) reads

4

5

4

5

 x (s), y (s) = − k(s) y (s), − x (s) , 

(6.29)

from which, in particular, supposing for instance  x (s) = 0 , 

 k(s) =  y (s) . 

(6.30)

 x (s)

Consider a diffeomorphism  t =  t (s), t :  J →  I  such that  γ (s) =  ϕ(t (s))  and dt/ds >  0 just to fix ideas. Then

 dt

 γ  (s) =  ϕ (t (s))

 , 

 ds



and since  γ  = 1 , 

 dt = 1

 ds

| ϕ|  , 

 x (s) =  x (t)

| ϕ|  , 

 y (s) =  y (t)

| ϕ|  . 

Differentiating the last equation and recalling that









4

5

4

5

2

2 1 / 2

 ϕ =

 x (t)

+  y (t)

(6.31)

we obtain





 y (t)

 dt

 y (s) =  d

=

 dt

| ϕ|

 ds



4

5

 y (t) x (t) x (t) +  y (t) y (t)

=  y (t) −

· 1

| ϕ|

| ϕ|3

| ϕ|  . 
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From this relation and (6.31) we then infer



4

5

 y (t)

 y (t) x (t) x (t) +  y (t) y (t)

−

 y (s)

| ϕ|

| ϕ|3

=

=

 x (s)

 x (t)



4

5

 y (t)  ϕ 2 −  y (t) x (t) x (t) +  y (t)y (t)

=

=

 x (t) | ϕ|3

4

52

 y (t) x (t)

−  y (t) x (t)x (t)

=

=  y (t) x (t) −  y (t)x (t) . 

 x (t) | ϕ|3

| ϕ|3

Eventually, (6.28) follows from the above together with (6.30). 

The outcome is the same in case  dt/ds <  0, or if  x (s) = 0 .  In the latter case, instead of (6.30) we have, by (6.29), 

 k(s) = −  x (s) , 

 y (s)

with computations similar to the previous ones. 

 Example 1  A straight line clearly has zero curvature at every point. Suppose  γ  is an  ellipse of equations  ϕ(t) =  (x(t), y(t)) =  (a  cos  t, b  sin  t) , a, b ∈ R , t ∈  I ⊆ R, and let us determine its curvature at  ϕ(t).  As

 x (t ) = − a  sin  t, 

 x (t ) = − a  cos  t, 

 y (t ) =  b  cos  t, 

 y (t ) = − b  sin  t, 

from (6.28) an easy computation produces

 k(t ) =

 a b





 , 

∀  t ∈  I . 

(6.32)

3 / 2

 a 2 sin2  t +  b 2 cos2  t

If  a > b,  the reader can show that the curvature (6.32) of the ellipse is largest at the vertices (± a,  0 )  and smallest at the vertices  ( 0 , ± b).  If  a =  b  the ellipse is a circle of radius  a, which, as is to be expected, has constant curvature 1 /a. 

In particular, if the curve  γ  is the graph of a function  f :  I → R of class  C 2 ,  with the parametrisation  ϕ(t) =  (t, f (t)) , t ∈  I,  from (6.28) we obtain the following expression for the  curvature  of  γ

 k(t) =

 f  (t)



 , 

∀  t ∈  I. 

3 / 2

1 +  (f  (t))  2
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6.6

The Cross Product in R3

The notion of  cross product  of two vectors in R3, which we introduce here, will be used in particular in the next two sections. 

Let  u =  (u 1 , u 2 , u 3 ), v =  (v 1 , v 2 , v 3 )  be vectors in R3 .  The  cross product  of  u and  v,  written  u ∧  v,  is the vector of R3













 u



 u



 u



 u ∧  v =  2  v 2

3  v 3

1  v 1













 u

 e 1 + 

 e 2 + 

 e 3  , 

(6.33)

3  v 3

 u 1  v 1

 u 2  v 2

where  e 1  , e 2  , e 3 are the elements of the canonical basis of R3 ( e 1 =  ( 1 ,  0 ,  0 )  etc.). 

The components of  u ∧  v  are the 2 × 2 minors of the matrix with columns  u  and  v

⎛

⎞

 u 1  v 1

⎝ u

⎠

2  v 2

 , 

(6.34)

 u 3  v 3

taken with alternating signs + , − , + .  Operationally, (6.33) is computable as the formal expansion, along the first column, of the 3 × 3 determinant





 e















1  u 1  v 1





 u











2  v 2

 u 1  v 1

 u 1  v 1

 e

=  e 











1

2  u 2  v 2

 u

−  e 2 

+  e 3 

 . 

3  v 3

 u 3  v 3

 u 2  v 2

 e 3  u 3  v 3

Below we list the cross product’s main properties. Let  (u 1 , u 2 , u 3 ), (v 1 , v 2 , v 3 ) and  (w 1 , w 2 , w 3 )  be the components of  u, v, w ∈ R3 . 

Proposition 1  For any u, v, w ∈ R3  and λ, μ ∈ R , 

 u ∧  v = − v ∧  u ; 

(6.35)

 (λu +  μw) ∧  v =  λ(u ∧  v) +  μ(w ∧  v) ; (6.36)

 u ∧  v = 0  if and only if u and v are linearly dependent; (6.37) u



1  v 1  w 1

 (u ∧  v, w) =  u

; 

(6.38)

2  v 2  w 2

 u 3  v 3  w 3

 (u ∧  v, u) = 0 , 

 (u ∧  v, v) = 0  . 

(6.39)

 Proof  Equation (6.35) follows from the fact that interchanging the two columns in (6.34) changes the sign of all minors. The linearity property (6.36) is straightforward from definition (6.33). Now, (6.37) arises by recalling that  u  and  v  are linearly independent if and only if matrix (6.34) has rank 2. 
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Fig. 6.14

u  ∧  v

u

v

Expanding along the last column the determinant in (6.38), by the definitions of cross product and inner product we have





 u















1  v 1  w 1





 u











2  v 2

 u 1  v 1

 u 1  v 1

 u

=  w 











1

2  v 2  w 2

 u

−  w 2 

+  w 3 

=

3  v 3

 u 3  v 3

 u 2  v 2

 u 3  v 3  w 3

=  (w, u ∧  v) =  (u ∧  v, w) . 

At last, (6.39) is immediate from (6.38). 

From (6.39) we also obtain the following result. See Fig. 6.14. 

Proposition 2  If two vectors u, v are linearly independent, their cross product u∧ v is orthogonal to the plane spanned by u, v. In particular the vectors u, v, u∧ v, form a basis of  R3 . 

Note how each canonical basis element of R3 is the cross product of the other two:

 e 1 =  e 2 ∧  e 3  , 

 e 2 =  e 3 ∧  e 1  , 

 e 3 =  e 1 ∧  e 2  . 

(6.40)

Fix linearly independent vectors { u, v, w} in R3 in a given order. We say that they are a  positively oriented basis, or that they define the  positive orientation  on R3, if the determinant





 u



1  v 1  w 1





 u



(6.41)

2  v 2  w 2

 u 3  v 3  w 3

is positive. If, on the contrary, (6.41) is negative, { u, v, w} define the  negative orientation  on R3 . 

For example the ordered basis { e 1 , e 2 , e 3} is positively oriented, while { e 2 , e 1 , e 3}

is negatively oriented. 
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Choosing, in (6.38),  w =  u ∧  v,  gives

Proposition 3  If u, v ∈ R3  are linearly independent, the ordered triple { u, v, u ∧  v}

 is a positively oriented basis. 

 Example 1  The vectors { ( 1 ,  2 ,  3 ), ( 0 ,  1 ,  1 ), (−1 ,  1 ,  1 )} endow R3 with the positive orientation, because









1

0 −1







=

2 1 1

1  . 





3

1

1

The next result is meant to characterise geometrically the cross product. 

Proposition 4  For any u, v, w ∈ R3 , 

 (u ∧  v) ∧  w =  (u, w)v −  (v, w) u . 

(6.42)

 For any u, v, x, y ∈ R3 , 





 (u, x)

 (v, x)

 (u ∧  v , x ∧  y) = 



 (u, y)

 (v, y)  . 

(6.43)

 Proof  In case  u, v, w  coincide with one among  e 1 , e 2 , e 3 in the canonical basis, by (6.39) and (6.40) it is easy to verify (6.42). In other words, (6.42) is proved by assessing it on the canonical basis. The general case follows by the linearity of the cross product and the inner product, because the expressions in (6.42) are linear in u,  v  and  w.  Formula (6.43) is proved along the same lines. 

Choosing  x =  u, y =  v  in (6.43) yields





|

 (u, u)

 (v, u)

 u ∧  v|2 =  (u ∧  v , u ∧  v) = 



 (u, v)

 (v, v) =

= | u|2 | v|2 −  (u, v) 2 = | u|2 | v|2  ( 1 − cos2  α) = | u|2 | v|2 sin2  α , where  α  is the  angle  between the vectors  u, v.  From this relation and Propositions 2 and 3 one obtains

Proposition 5  If u, v ∈ R3  are linearly independent, their cross product u ∧  v is orthogonal to the plane spanned by u and v, it has norm | u| · | v| sin  α and is oriented so that { u, v, u ∧  v}  is a positively oriented basis. 

From (6.42) we finally deduce a result generalising (6.40), which we shall use later. 
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Proposition 6  If u, v ∈ R3  are orthogonal unit vectors, | u| = | v| = 1  and (u, v) =

0 , then

 (u ∧  v) ∧  u =  v, 

 (u ∧  v) ∧  v = − u . 

(6.44)

6.7

Biregular Curves in R3: Curvature

In this section, and in the next,  γ : [ a, b] → R3 will indicate a regular curve in R3

parametrised by arclength  s.  We want to introduce two characteristic quantities of a curve, the  curvature  and the  torsion. They not only describe the curve’s geometric features, irrespective of coordinate changes or reparametrisations. As we will see, 

they completely determine the curve itself up to rigid motions. 

First of all we remind the  differentiation rules  for the  inner product  and the cross product  in R3 .  Suppose  u(t), v(t) :  I → R3 are differentiable functions on the interval  I,  of respective components  (ui (t)), (vi (t)) .  For the  inner product we showed in (6.24) that

 d

4

5 4

5

 (u(t), v(t)) =  u (t), v(t) +  u(t), v (t) . 

 dt

We recall in particular that  if w(t) :  I → R3  is differentiable on the interval I ⊆ R

 and | w(t)| = 1  for any t ∈  I, the vector w(t) is at any t ∈  I orthogonal to the vector w (t):

4

5

 w (t), w(t) = 0  , 

∀  t ∈  I . 

(6.45)

The  derivative of the cross product  equals

 d u(t) ∧  v(t) =  u (t) ∧  v(t) +  u(t) ∧  v (t). 

(6.46)

 dt

Differentiating for instance the first component of  u(t) ∧  v(t) (see the definition of the  cross product  in the previous section) gives





 d  u



2 (t ) v 2 (t )

 (u 2 (t)v 3 (t) −  u 3 (t)v 2 (t)) =

 dt  u

=  d

3 (t ) v 3 (t )

 dt

4

5 4

5

=  u

+

2 (t )v 3 (t ) −  u 3 (t )v 2 (t )

 u 2 (t)v 3 (t) −  u 3 (t)v 2 (t) , 

which is exactly the first component of  u (t) ∧  v(t) +  u(t) ∧  v (t).  Similarly, the other components of  d(u ∧  v)/dt  and  u ∧  v +  u ∧  v coincide. 

Returning to the curve  γ : [ a, b] → R3 ,  in this section we shall assume that the function  γ (s)  is  C 2 .  We shall take a regular curve  γ :  I = [ a, b] → R3 of class C 2 (I )  parametrised by arclength  s. 
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If  T (s)  is the  unit tangent vector  to  γ  at  s ∈  I,  since  γ  (s) is identically equal to 1 we have

 T (s) =  γ  (s) =

|

 γ  (s) , 

 s ∈  I . 

(6.47)

 γ  (s)|

 d

Consider now the derivative

 T (s) =  T  (s)  of the unit tangent vector  T (s).  As

 ds

 T (s)  is a unit vector, (6.45) implies

4

5

4

5

 T  (s), T (s) =  γ  (s), γ  (s) = 0  , 

∀  s ∈  I , 

and so  γ  (s)  is orthogonal to the unit tangent vector  γ  (s)  for any  s ∈  I . When γ  (s)  is non-zero everywhere on  I,  we say  γ  is  biregular. 

 d

The  norm  of

 T (s)  is called the  curvature k(s) (if  k(s)  is positive everywhere ds

on  I, γ  is  biregular). The curvature





 d







 k(s) = 

 T (s)

 γ  (s)

 ds

=

is a scalar quantity and has a major geometric meaning. It measures the variation of

the tangent, i.e. how fast the curve bends away at points near  γ (s)  from the tangent line at  γ (s). Hence the curvature is large when the curve, nearby  γ (s), deviates a lot from being a straight line (see Fig. 6.15). 

When the space curve is actually contained in a plane, the definition of curvature

for curves in R3 does not coincide with the one for plane curves. In space, in fact, it is not possible to define a sign for the curvature (since the normal to a plane curve, with given unit tangent vector, is determined up to sign, whereas in space it is not). 

Nonetheless, the two notions of curvature agree up to sign. 

If  γ  is biregular, the unit vector

 N (s) =  γ  (s) =  γ  (s)


|

 s ∈  I , 

(6.48)

 γ  (s)|

 k(s)

Fig. 6.15

 (s)

 (s)

 (s)

 (s)
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called  unit normal  at  γ (s),  is defined at every point. Since  T (s) =  γ  (s),  we have T  (s) =  k(s) N(s) , 

∀  s ∈  I

(6.49)

(recall that the curvature  k(s)  is a number), i.e.  the vector N (s) is everywhere proportional to the derivative  T  (s)  of the unit tangent vector  T (s), and by (6.45), it is  orthogonal to the unit tangent vector T (s). 

The plane through  γ (s)  spanned by the unit tangent and normal vectors is called osculating plane. The circle on the osculating plane with centre on the positive normal semi-axis (the one of  N (s)),  passing through  γ (s)  and with radius 1 /k(s)  is the  osculating circle  to  γ  at  γ (s).  The reciprocal 1 /k(s)  of the curvature  k(s)  is the curvature radius. 

Given a regular curve  γ  in space and any parametrisation  ϕ :  I = [ a, b] → R3 , the curvature  k(t)  at  γ (t)  is





 ϕ (t) ∧  ϕ (t)

 k(t) =

 , 

 t ∈  I . 

(6.50)

| ϕ (t)|3

In fact, suppose  γ :  J → R3 is an arclength parametrisation of  γ , and  t =  t (s), t :  J →  I,  is a reparametrisation (a diffeomorphism) with the arclength  s =  s(t) as inverse. Defining  ϕ(t) =  γ (s(t)),  we have



 ds





 ds 

 ϕ (t) =  γ  (s(t))

 , 

and so

 ϕ (t) =  

 dt

 dt   , 



 ds  2

 d 2 s

 ϕ (t) =  γ  (s(t))

+  γ  (s(t))

 . 

 dt

 dt 2

As  γ  ∧  γ  = 0 ,  from the above and (6.47), (6.48) it follows ds  3

 ϕ (t) ∧  ϕ (t) =

 γ  ∧  γ  =

 dt





= ±  ϕ (t) 3  k(s(t)) [ T (s) ∧  N(s)]

and so (6.50). 

Suppose  γ  is a  cylindrical helix  of equations  ϕ(t) =  (a  cos  t, a  sin  t, b t) ,  with  a >  0 , b ∈ R , t ∈  I ⊆ R .  Let us compute its curvature at  ϕ(t).  Since ϕ (t ) =  (− a  sin  t, a  cos  t, b) , 

 ϕ (t ) =  (− a  cos  t, − a  sin  t,  0 ) (6.51)





 ϕ (t ) ∧  ϕ (t) =  ab  sin  t, − ab  cos  t, a 2

(6.52)

(continued)
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√





√

we have  ϕ (t) =

 a 2 +  b 2 ,  ϕ ∧  ϕ =  a

 a 2 +  b 2 .  Using formula (6.50), 





 ϕ (t ) ∧  ϕ (t)

 k(t ) =

=

 a

 , 

∀  t ∈  I . 

| ϕ (t)|3

 a 2 +  b 2

The curvature of this helix is therefore constant. If  b = 0 the helix collapses to a circle of radius  a,  whose curvature is 1 /a,  as we saw in Sect. 6.5 for plane curves. 

Appendix to Chap. 6

6.8

Curves in R3: Torsion, Frenet Frame

Let  γ :  I = [ a, b] → R3 be a biregular curve (the definition of  biregular curve  is in the previous section) of class  C 3 and let  s  be the arclength. We wish to define the concept of  torsion. For that, retaining the previous section’s notations for the unit tangent vector  T (s)  and unit normal  N (s),  we define the  unit binormal vector B(s) B(s) =  T (s) ∧  N(s) . 

(6.53)

By definition  B(s)  is normal to both  T (s)  and  N (s),  making it orthogonal to the osculating plane at  γ (s).  If we differentiate  B(s),  the quantity  B (s) is a scalar function measuring the binormal’s variation, i.e. how far away the curve is from the





osculating plane in the proximity of  γ (s). The larger  B (s) is, the more the curve deviates from being a plane curve. Differentiating (6.53) and recalling (6.46) for the derivative of the cross product, we find

 B (s) =  T  (s) ∧  N(s) +  T (s) ∧  N (s) =  T (s) ∧  N (s) , since the first summand is zero because  T  (s)  is parallel to  N (s). Hence  B ,  apart from being orthogonal to  B,  is also orthogonal to  T , and hence parallel to the unit normal  N.  Therefore there is, for any  s ∈  I,  a real number  τ (s)  such that B (s) =  τ (s) N(s) , 

(6.54)

called  torsion. 

Note that if the curve lies entirely on a plane,  B(s)  is always orthogonal to that plane, so the torsion is everywhere zero. Conversely, if  τ (s)  is identically null, then B (s) = 0 for any  s ∈  I  and hence  B(s)  is a  constant  unit vector  B 0  .  By (6.53) then, 

 d

4

5

 (γ (s), B 0 ) =  γ  (s), B 0 =  (T (s), T (s) ∧  N(s)) = 0  . 

 ds
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Then there is a real number  d 0 such that

 (γ (s), B 0 ) =  d 0  , 

∀ s ∈  I. 

In other words, the curve  γ  lies on the plane orthogonal to  B 0, of equation  a 0 x +

 b 0 y +  c 0 z =  d 0  ,  where  (a 0 , b 0 , c 0 )  are the coordinates of  B 0  . 

If  γ  is given in terms of an arbitrary parametric representation  ϕ(t),  arguing as we did to prove (6.50) we can show that

4

5

−  ϕ (t) ∧  ϕ (t) , ϕ (t)

 τ (t) =

 . 

| ϕ (t) ∧  ϕ (t)|2

With this formula we can compute the  torsion of the cylindrical helix  of equations  ϕ(t) =

 (a  cos  t , a  sin  t , b t ) ,  with  a >  0 , b ∈ R and  t ∈  I.  From (6.51) and (6.52) ϕ (t ) =  (− a  cos  t, − a  sin  t,  0 ) , ϕ (t) =  (a  sin  t, − a  cos  t,  0 ) , ϕ (t ) ∧  ϕ (t) =  ab  sin  t, − ab  cos  t, a 2  , and so

4

5

−  ϕ (t) ∧  ϕ (t) , ϕ (t)

− b

 τ (t ) =

=

∀  t ∈  I. 

| ϕ (t) ∧  ϕ (t)|2

 a 2 +  b 2

 The torsion of the cylindrical helix is therefore constant. As expected,  τ = 0 if and only if b = 0 ,  i.e. if the curve is a circle. Furthermore,  τ >  0 when  b <  0, and conversely. 

At last, at any point on the curve  γ (s)  we can define a frame system with origin γ (s)  and axes given by  T (s), N (s), B(s) (Fig. 6.16). This is called  Frenet frame. 

If the three unit vectors defining the axes of the Frenet frame are known at each

point, formulas (6.49) and (6.54) allow to find the curvature and torsion of the curve. 

For completeness, let us compute the derivative of  N (s). As (6.53) and (6.44) imply B(s) ∧  T (s) =  (T (s) ∧  N(s)) ∧  T (s) =  N(s) , by (6.49) and (6.54) we find

 N  (s) =  d B(s) ∧  T (s) =  B (s) ∧  T (s) +  B(s) ∧  T  (s) =

 dt

=  τ(s)N ∧  T +  k(s)B ∧  N = − τ(s)B(s) −  k(s)T (s). 

[image: Image 1672]

[image: Image 1673]

[image: Image 1674]

302

6

Curves and Integrals Along Cw

Fig. 6.16

B

T

N

The relationships expressing  T  (s), N  (s)  and  B (s)  in terms of the Frenet frame at γ (s)  form a  system of differential equations  known as  Frenet formulas:

⎧

⎪

⎪

⎨ T  =  k N

⎪ N = − k T −  τ B

(6.55)

⎪

⎩ B =  τ N . 

The coordinate planes of the Frenet frame, apart from the osculating plane (contain-

ing  T  and  N ),  are the  normal plane (the one containing  N  and  B)  and the  rectifying plane (containing  T  and  B). 

We stress that knowing curvature and torsion allows to recover a space curve

completely. There is in fact the following result, whose proof we omit for the sake

of brevity. 

Theorem  Given two C 1  functions k :  I → R , τ :  I → R  on an interval I ⊆ R , with k(s) >  0  for any s ∈  I, there exists a regular curve γ =  γ (s), s ∈  I, of class C 3 , for which s is the arclength function, k(s) the curvature and τ (s) the torsion. Furthermore γ (s) is unique up to rigid motions. That is, for any other curve γ (s) with curvature k(s) and torsion τ (s), there exist an orthogonal transformation L : R3 → R3  with positive determinant and a vector ξ ∈ R3 , such that γ (s) =  L (γ (s)) +  ξ. 

The result is in practice a  theorem of existence and uniqueness  for the ODE system (6.55). In case of a plane curve the system reduces to the ODE (recall that in two dimensions the curvature has a sign)

 T  (s) = − k(s) N(s). 

(6.56)
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If the continuous function  k(s)  is given, (6.56) can be easily integrated. Given  s 0 ∈

 I,  set

 s

 ϑ(s) =

 k(r)dr, 

∀  s ∈  I. 

(6.57)

 s 0

The curve  γ :  I → R2 of equations







 s

 s

 γ (s) =

cos  ϑ(r)dr , 

sin  ϑ(r)dr

 s ∈  I, 

 s 0

 s 0

is regular, of class  C 2 .  Moreover, 

 γ  (s) =  ( cos  ϑ(s) ,  sin  ϑ(s)) =  T (s), 

(6.58)

so the parameter  s  is the arclength. From (6.57) and (6.58) we obtain T  (s) =  k(s) (− sin  ϑ(s) ,  cos  ϑ(s)) = − k(s)N(s), s ∈  I, 

so, by (6.27),  k(s)  is precisely the curvature of  γ  at  γ (s). 
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7

7.1

Vector Fields. Work. Conservative Fields

Let  A ⊆ R3 be a connected open set. In Mechanics a  force field, or  vector field, defined on  A  is a map  F :  x ∈  A →  (F 1 (x), F 2 (x), F 3 (x)) ∈ R3 that associates with any point  x  in  A  a vector  F (x)  representing the  force  acting on a point particle at  x ∈  A. If  h ∈ R3 is a vector of sufficiently small norm | h|, the  work  needed to displace a particle along the line segment between  x  and  x +  h  is approximately the inner product  (F (x), h)  between the force acting on the particle at  x  and the displacement  h. 

In general, if  γ  is a piecewise-regular curve whose support    is contained in  A and  P 0,  P 1 are the curve’s endpoints, the  work W  spent to move a particle along the curve from position  P 0 to position  P 1 is



 W =

 (F (x), T (x)) ds , 

(7.1)

 γ

where  T (x)  is the curve’s unit tangent vector, and the curve is oriented from  P 0 to P 1. Clearly if the particle moves along the curve in the opposite direction, from  P 1

to  P 0, the unit tangent vector at any point  x  will be − T (x), and so by (7.1) the work in this case will equal



−  (F (x), T (x)) ds . 

 γ

Consider for example the  vector field F  generated by a point particle of mass  M  at the origin of the given frame system, and suppose it acts on a particle of mass  m. It

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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is known that the vector field  F : R3 − {0} → R3 is





 x y z

 F (x, y, z) = −  GmM

 , 

 , 

(7.2)

 r 2

 r

 r r



where  G  is the gravitational constant and  r =

 x 2 +  y 2 +  z 2 the distance of the

particle of mass  m  from the origin. 

Let  γ : [ a, b] → R3 be a piecewise-regular curve and  r 1 = | γ (a)|,  r 2 = | γ (b)|

the distances of the curve’s endpoints to the origin (see Fig. 7.1). 

If  γ (t) =  (x(t), y(t), z(t))  are the curve’s parametric equations, the work  W  to displace the particle along  γ  from  γ (a)  to  γ (b)  is, by (7.1), b

 x (t)

 y (t)

 z (t)





 W =

 F (γ (t)), 

 γ  (t)  dt , 

 a

| γ  (t)| , | γ  (t)| , | γ  (t)|

where the vector field  F  is defined by (7.2). Computing explicitly the integrand’s inner product gives

 b x(t)x (t) +  y(t)y (t) +  z(t)z (t)

 W = − GmM

4

5

 dt =

3 / 2

 a

 x 2 (t) +  y 2 (t) +  z 2 (t)







 b



−1 / 2

= −

 d

 GmM

−  x 2 (t) +  y 2 (t) +  z 2 (t)

 dt =

 a

 dt









1

1

1

1

=  GmM

−

=

−

|

 GmM

 . 

 γ (b)|

| γ (a)|

 r 2

 r 1

z

(b)

(a)

y

x

Fig. 7.1
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For the vector field (7.2), therefore, the work  W  needed to displace the particle along  γ  from  γ (a)  to  γ (b)  does not depend on the particular curve  γ  along which the particle moves, but only on the initial and final positions. 

This property does not hold for any vector field. 

Consider for example the vector field

 F (x, y, z) =  (xy, y,  0 )

and the circles  γ 1 , γ 2, in Fig. 7.2, of equations γ 1 (t) =  ( cos  t,  sin  t,  0 ), 

 t ∈ [0 ,  2 π]  , 

 γ 2 (t) =  ( 2 + cos  t,  sin  t,  0 ) , 

 t ∈ [− π, π] . 

The work needed for a particle to travel around  γ 1 once starting from  P 0 =  ( 1 ,  0 ,  0 )  is 2 π

 W 1 =

 (( cos  t  sin  t ,  sin  t ,  0 ), (− sin  t,  cos  t,  0 )) dt = 0  , 0

while the work to go around  γ 2 once, from the same initial point  P 0 is π

 W 2 =

 (( 2 sin  t + cos  t  sin  t,  sin  t,  0 ), (− sin  t,  cos  t,  0 )) dt = −2 π . 

− π

Hence  W 1 =  W 2. 

y

P0

2

x

2

1

Fig. 7.2

One says a vector field  F :  A → R3 is  conservative  if the work required to displace a particle from a point  P 0 ∈  A  to a point  P 1 ∈  A  does not depend on the curve  γ  of motion, but only depends on the curve’s endpoints  P 0 , P 1 and on the orientation. 
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7.2

Differential 1-Forms. Line Integrals

We know from Linear Algebra (also see Sect. 2.5, Chap. 2) that a generic element  L

in the dual space  ( R n)∗ of R n, i.e. a generic linear functional on R n, can always be represented in the form

 n



 n



 L =

 aiei =

 aidxi , 

(7.3)

 i=1

 i=1

where  a 1 , a 2 , . . . , an  are real numbers and  ei =  dxi,  i = 1 ,  2 , . . . , n, are the functionals mapping  h ∈ R n  to its  i th component  hi , i.e.  ei(h) =  dxi(h) =  hi, for any  h ∈ R n. Hence the functional  L : R n → R, for any  h ∈ R n, equals n



 n



 n



 L(h) =

 ai ei(h) =

 ai dxi(h) =

 ai hi . 

 i=1

 i=1

 i=1

Recall the functionals { e 1 , e 2 , . . . , en} = { dx 1 , dx 2 , . . . , dxn} form a basis of ( R n)∗, so (7.3) is a unique representation. 

Consider now an open subset  A  in R n. We call  differential  1 -form (or  differential one-form, often shortened to 1 -form) a map  ω :  A →  ( R n)∗ sending an element x ∈  A  to the linear functional on R n

 n



 ω(x) =

 ai(x) dxi . 

 i=1

If  h  is an arbitrary vector in R n, for any  x  in  A  the value that the functional  ω(x) assumes at  h  is

 n



 n



 ω(x)(h) =

 ai(x) dxi(h) =

 ai(x)hi . 

 i=1

 i=1

The functions  a 1 (x), a 2 (x), . . . , an(x)  are the  coefficients  of the differential form  ω. 

A differential form is of class  Ck ,  k ≥ 0, when its coefficients are  Ck  functions. 

A generic 1-form  ω :  A →  ( R2 )∗, where  A  is an open set in the plane, is therefore representable as

 ω(x, y) =  a(x, y) dx +  b(x, y) dy . 

Similarly, if  A  is an open set in R3, one typically writes

 ω(x, y, z) =  a(x, y, z) dx +  b(x, y, z) dy +  c(x, y, z) dz for a generic 1-form defined on  A ⊆ R3. We may think of associating with any such 1-form the vector field  F :  A ⊆ R3 → R3

 F (x, y, z) =  (a(x, y, z), b(x, y, z), c(x, y, z)) , 
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whose components are the coefficients of  ω, in the same order. 

Observe that if  f :  A → R, with  A  open in R n, is a  differentiable function  on  A (see Chap. 3), the differential

 n



 n

 ∂f



 df =

 (x) dxi =

 fx (x) dxi

 ∂x

 i

 i

 i=1

 i=1

is a 1-form whose coefficients are the partial derivatives  fx (x), f (x), . . . ,  f (x) 1

 x 2

 xn

of  f . We must stress that  not every differential form arises as the differential of some function f . 

For instance, the differential form

 ω(x, y) = 3 x 2  dx −  xy dy

(7.4)

does not coincide with the differential of any function  f : R2 → R2. If, in fact, there existed a differentiable function  f  such that  df =  ω = 3 x 2  dx −  xy dy, then necessarily

 ∂f =

 ∂f

3 x 2 , 

= − xy . 

(7.5)

 ∂x

 ∂y

But integrating the first relation in  x ∈ R gives  f (x, y) =  x 3 + ϕ(y), for some differentiable function  ϕ (as  f  is differentiable by assumption). Then the partial derivative of  f  in  y would be  fy (x, y) =  ϕ (y), i.e. constant in  x, which clashes with the fact that we should have  fy (x, y) = − xy, from (7.5). 

Let  A  be an open set in R n. Fix a continuous 1-form  ω :  A →  ( R n)∗ and a piecewise-regular curve  γ : [ a, b] →  A ⊂ R n  of equations  xi =  xi(t), i = 1 ,  2 , . . . , n. We call  line integral of the differential form along γ , written ω , 

 γ

the integral



 n

 b

 ω(x) (T (x)) ds =

 ai(x 1 (t), x 2 (t), . . . , xn(t))x (t) dt , 

(7.6)

 i

 γ

 a

 i=1

where  T (x)  is the unit tangent vector to  γ  at  x. 

If − γ  denotes the curve equivalent to  γ  but with the opposite orientation, the unit tangent vector at any point on − γ  is opposite the unit tangent vector to  γ  at the same point. Hence from (7.6)





 ω = −

 ω . 

(7.7)

− γ

 γ
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Suppose now that we break  γ  into piecewise-regular curves  γr : [ tr−1 , tr ] →  A, with  a =  t 0  < t 1  < . . . < tN =  b,  γr(t) =  γ (t)  in [ tr−1 , tr ], for any  r = 1 ,  2 , . . . , N . Applying (6.23) we obtain









 ω =

 ω +

 ω +  . . . +

 ω . 

(7.8)

 γ

 γ 1

 γ 2

 γN

Analogously, from (6.21) we deduce that if  ω  and  ζ  are continuous 1-forms on an open set  A ⊆ R n  and  α, β  are real numbers, 







 (αω +  βζ ) =  α

 ω +  β

 ζ , 

(7.9)

 γ

 γ

 γ

where  (αω +  βζ )(x) =  αω(x) +  βζ(x)  for any  x  in  A. At last, (6.22) also implies ω ≤  L(γ )  max  a 2 (x) +  a 2 (x) +  . . . +  a 2

1

2

 n(x) , 

 γ

 γ

where  L(γ )  is the length of  γ . 

Consider the three-dimensional case and let

 ω(x, y, z) =  a(x, y, z) dx +  b(x, y, z) dy +  c(x, y, z) dz be a continuous differential form defined on an open set  A ⊆ R3. Take a piecewise-regular curve  γ (t) =  (x(t), y(t), z(t)),  t ∈ [ a, b], with support in  A. From (7.6), n = 3, we have





 ω =  ω(x)(T (x)) ds =

 γ

 γ

 b 2

3

=

 a(x(t ), y(t ), z(t ))x (t ) +  b(x(t), y(t), z(t))y (t) +  c(x(t), y(t), z(t))z (t) dt . 

 a

(7.10)

This line integral coincides with the  work



 W =

 (F, T ) ds

 γ

of the  vector field

 F (x, y, z) =  (a(x, y, z), b(x, y, z), c(x, y, z))

required to displace a particle from  γ (a)  to  γ (b)  along the curve. 
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For instance, for  n = 2, let us compute



 y dx −  xy dy , 

 γ

where  ω =  y dx −  xy dy  and  γ  is the unit semi-circle centred at the origin contained in the upper half-plane and oriented clockwise. 

Let  ψ  be the curve of equations  x = cos  t,  y = sin  t,  t ∈ [0 , π]. It is equivalent to  γ  but oppositely oriented. By (7.7), (7.9) we obtain y dx −  xy dy = −

 y dx −  xy dy =

− y dx +  xy dy . 

 γ

 ψ

 ψ

The last line integral, from (7.10) when  z = 0, equals

 π  2

3

− y(t)x (t) +  x(t)y(t)y (t) dt =

0

 π 



=

sin2  t + sin  t  cos2  t dt = 3 π + 4  . 

0

6

7.3

Exact 1-Forms

A 1-form  ω  on an open subset  A  in R n  is said to be  exact on A  when there is a differentiable function  f :  A ⊆ R n → R, called a  primitive  of  ω, such that ω =  df . 

(7.11)

Equivalently, a differentiable function  f  on an open set  A ⊆ R n  is a  primitive  of a differential form  ω  of coefficients  a 1 (x), a 2 (x), . . . , an(x), i.e. 

 n



 ω(x) =

 ai(x) dxi , 

∀  x ∈  A, 

 i=1

whenever

 ∂f (x) =  ai(x) , 

∀ i = 1 ,  2 , . . . , n. 

 ∂xi

This amounts to

 n

 ∂f

 ω =  df =

 (x) dxi , 

∀  x ∈  A. 

 ∂xi

 i=1
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If  f  is a primitive of a differential form  ω, i.e.  f  verifies (7.11), then also  f +

 c, where  c  is any real constant, is a primitive of  ω. Conversely, supposing  A  is a connected open set, if two primitives  f, g  of  ω  satisfy

 df =  dg , 

then  d(f −  g) = 0, and so the gradient  D(f −  g)  is null on  A (since  f −  g  has zero partial derivatives). Therefore (see Sect. 3.8)

 f (x) −  g(x) = constant , 

∀  x ∈  A. 

Eventually,  if A is a connected open set in  R n and f is a primitive on A of the differential form ω, then any primitive of ω arises by adding to f a constant. 

Consider  n = 1. Let  A  be a real open interval and  a :  A ⊆ R → R a given function. Let us look at the differential form  ω =  a dx  defined by

 ω(x)(h) =  a(x)h

for any  x ∈  A  and  h ∈ R. It is evident that finding a primitive for  ω  is the same as finding a primitive of the function  a(x).  The notion of primitive of a  1 -form thus generalises to  R n the notion of primitive of a function of one real variable. 

As we saw for the form (7.4), it is not always the case that a 1-form is exact. So it would be useful to have necessary and sufficient conditions for that to happen. Let

us start proving an interesting property of exact differential forms. 

Theorem 4  Let ω be an exact differential form that is continuous on the open set A ⊂ R n, and let x 0 , x be points in A. If γ is a piecewise-regular curve in A, joining the two points and oriented from x 0  to x, then



 ω =  f (x) −  f (x 0 ) , 

(7.12)

 γ

 where f is an arbitrary primitive of ω. 

 Proof  Suppose  f :  A → R is a primitive of  ω  and  xi =  xi(t),  t ∈ [ a, b],  i = 1, 2, 

. . . ,  n, are the parametric equations of  γ . By (7.6) we have b n

 ∂f

 ω =

 df =

 (x 1 (t), x 2 (t), . . . , xn(t))x i(t) dt =

 γ

 γ

 a

 ∂xi

 i=1

 b





=

 d f (x 1 (t),x 2 (t),. . . ,xn(t)) dt =

 a

 dt

=  f (x 1 (b), x 2 (b), . . . , xn(b)) −  f (x 1 (a), x 2 (a), . . . , xn(a)) =

=  f (x) −  f (x 0 ) . 
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This theorem shows that if  ω  is exact, its line integral along any curve  γ  does not depend upon the curve, but only on the endpoints and obviously on its orientation. 

We want to prove that this property characterises exact forms. 

Theorem 5 (Characterisation of Exact Forms)  Let A ⊆ R n be a connected open set, ω a continuous  1 -form on A and γ , γ 1 , γ 2  piecewise-regular curves contained in A. The following properties are equivalent:

(i)  ω is exact on A; 

:

(ii)

 ω = 0  for any closed curve γ contained in A; 

 γ

:

:

(iii)  if γ 1 , γ 2  have the same endpoints and same orientation, 

 ω =

 ω. 

 γ 1

 γ 2

 Proof

 ( i ) ⇒  ( ii ): This is immediate from (7.12), since if  γ  is closed, the integration endpoints  x 0 and  x 1 coincide. 

 ( ii ) ⇒  ( iii ): If  γ 1 , γ 2 have the same endpoints  x 0 , x 1 and the same orientation, say from  x 0 to  x 1, then the curve  γ 1 −  γ 2, obtained by moving along  γ 1 from  x 0 to x 1 and then along  γ 2 backwards from  x 1 to  x 0, is piecewise regular and closed. By assumption, and using (7.7), (7.8), we obtain 0 =

 ω =

 ω +

 ω =

 ω −

 ω , 

 γ 1− γ 2

 γ 1

− γ 2

 γ 1

 γ 2

:

:

and so

 ω =

 ω. 

 γ 1

 γ 2

 ( iii ) ⇒  ( i ): fix  x 0 in  A  and define f (x) =

 ω , 

(7.13)

 γ

for any  x  in  A, where  γ  is an arbitrary piecewise-regular curve contained in  A joining  x 0 and  x  and oriented from  x 0 to  x. As  A  is connected, and therefore path connected (see Sect. 2.11), there is always one such  γ . The function  f  is then well defined, since the line integral in (7.13) does not depend on  γ  by assumption (the endpoints and orientation being given). We claim  f  is differentiable on  A  and df =  ω , 

i.e.  f  is a  primitive  of the given differential form  ω. 

Let  x ∈  A, and take  h ∈ R,  h = 0, such that  x +  he 1 ∈  A. Consider f (x +  he 1 ) −  f (x) =

 ω −

 ω , 

 γ 1

 γ

where  γ  is a curve from  x 0 to  x  and  γ 1 is the curve obtained attaching to  γ  the line segment  ϕ  from  x  to  x +  he 1 (see Fig. 7.3). 
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x0

A

x

x + he1

Fig. 7.3

By (7.7), (7.8) we have



 f (x +  he 1 ) −  f (x) =

 ω . 

(7.14)

 ϕ

In the following we shall consider  h >  0. If  h <  0 it suffices to replace [0 , h] by

[ h,  0]. Using the parametrisation

 x 1 (t) =  x 1 +  t, 

 x 2 (t) =  x 2 , . . . , 

 xn(t) =  xn, 

 t ∈ [0 , h] , 

of the segment  ϕ  from  x  to  x +  he 1, and dividing (7.14) by  h, we find f (x +  he

 h

1 ) −  f (x) = 1

 a 1 (x 1 +  t, x 2 , . . . , xn) dt . 

 h

 h  0

Now take the limit as  h  goes to zero. By the fundamental theorem of calculus (which holds since  a 1 is continuous) we have

 ∂f (x) =  a 1 (x). 

 ∂x 1

Similarly, one can prove the other partial derivatives exist too, and  ∂f/∂xi =  ai  for any  i = 2 , . . . , n. The function  f  is then  C 1, hence differentiable, and is a primitive of  ω. 

It follows from this result that if  ω  is exact and of class  Ck,  k = 0 ,  1 ,  2 , . . . , on the connected open set  A ⊆ R n, its primitive (7.13) (and so any other primitive) is of class  Ck+1 (A). 
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Consider for example the exact form





 ω =  d x 2 y +  y 3

= 2 xy dx +  (x 2 +  y 2 ) dy , 

3

defined on the whole plane. We want to show (7.13) does indeed give us a primitive of  ω. 

Set



 f (x, y) =

 ω , 

 γ

where  γ  is the line segment from  ( 0 ,  0 )  to  (x, y). As  γ  may be parametrised as  (tx, ty), t ∈ [0 ,  1], we find that

1 



 f (x, y) =

2 t 2 x 2 y +  t 2 (x 2 +  y 2 )y dt =

0



 t=1

= 2  t 3 x 2 y + 1  t 3 (x 2 +  y 2 )y

=  x 2 y +  y 3

3

3

3

 t =0

is a primitive of  ω. 

Let  F (x) =  (F 1 (x), F 2 (x), F 3 (x))  be a vector field defined on the connected open set  A ⊆ R3. We remarked that the work needed to displace a point particle along a curve  γ  under the action of  F  is the integral along  γ  of the differential form ω =  F 1  dx +  F 2  dy +  F 3  dz. The above theorem then implies that  the vector field F

 is conservative if and only if ω is exact. In this situation a primitive  f  of  ω  is called a  potential  of the vector field  F . 

7.4

Exact 1-Forms on the Plane. Simply Connected Open Sets

in R2

Let  ω =  a(x, y) dx +  b(x, y) dy  be an  exact  differential form of class  C 1 defined on an open subset  A  of the plane, let and  f :  A ⊆ R2 → R be a primitive function. 

By definition of primitive, 

 ∂f =

 ∂f

 a(x, y) , 

=  b(x, y) , 

∀  (x, y) ∈  A. 

(7.15)

 ∂x

 ∂y

As the coefficients  a, b  of  ω  are of class  C 1 (A), therefore, differentiating the first relation in (7.15) with respect to  y  and the second one with respect to  x, the Schwarz theorem forces

 ∂a =  ∂ 2 f =  ∂ 2 f =  ∂b , 

∀  (x, y) ∈  A. 

 ∂y

 ∂x∂y

 ∂y∂x

 ∂x
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Hence if the differential form  a dx +  b dy  is exact and its coefficients are  C 1, the following happens:

 ∂a =  ∂b , 

∀  (x, y) ∈  A. 

(7.16)

 ∂y

 ∂x

A differential form  ω =  a dx +  b dy  of class  C 1 on some open set  A ⊂ R2 is said to be  closed on A  if its coefficients  a, b  satisfy (7.16). If so, the previous discussion proves that  an exact form is closed. 

It is rather natural to ask whether (7.16) is sufficient to ensure the form is exact. Consider for example

− y

 ω =

 dx +

 x

 dy, 

(7.17)

 x 2 +  y 2

 x 2 +  y 2

defined on the open set R2 − { ( 0 ,  0 )}, and whose coefficients meet (7.16) (the reader should check this, and also the upcoming formula (7.18)). Hence the form  ω is closed  on R2 −

{ ( 0 ,  0 )}. If  γ  is the counter-clockwise unit circle centred at the origin, we obtain ω = 2 π . 

(7.18)

 γ

Then  ω is not exact  on R2 − { ( 0 ,  0 )}, because its line integral along the closed curve  γ  is different from zero. 

On the other hand, if we take the open subset





 A =  (x, y) ∈ R2 :  x >  0

and restrict  ω  to  A (abusing the notation, we shall still call this by  ω), the function y

 f (x, y) = arctg  x

is clearly a primitive of  ω  on  A (the reader should compute the partial derivatives). 

Therefore  ω is exact  on  A. 

In order to conclude that a given form is exact, it is not enough to have (7.16). 

With other words, it is not enough for the form to be closed on the open set, but we

need to take into account the  geometry  of the open set where the differential form is defined. 

Let us start by examining a simple situation. Call  R  an open  rectangle  in the plane, i.e.  R =  (a, b)× (c, d), where the intervals  (a, b),  (c, d)  might be unbounded. 

In particular  R  may be the whole plane R2. 
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Fig. 7.4

Theorem 1 (Differential Forms on a Rectangle in R2)  If a  1 -form ω =  a dx +

 b dy of class C 1  on an open rectangle R ⊆ R2  is closed (it satisfies (7.16) ), then it is exact on R. 

 Proof  Let us construct a primitive  f  of the given form. Fix  (x 0 , y 0 )  in  R  and define f (x, y) =

 ω

 γ

for any  (x, y) ∈  R, where  γ  is the polygonal path formed by the segment  γ 1 from (x 0 , y 0 )  to  (x, y 0 )  and the segment  γ 2 from  (x, y 0 )  to  (x, y), as in Fig. 7.4. Then x

 y

 f (x, y) =

 ω +

 ω =

 a(t, y 0 ) dt +

 b(x, t) dt . 

(7.19)

 γ 1

 γ 2

 x 0

 y 0

We can differentiate inside the integral (see Sect. 3.10) and obtain



 ∂f

 y

=

 ∂b

 a(x, y 0 ) +

 (x, t) dt ; 

(7.20)

 ∂x

 y

 ∂x

0

 ∂f =  b(x,y). 

(7.21)

 ∂y

As the form is closed ((7.16) holds), from (7.20) we find



 ∂f

 y





=

 ∂a

 t = y

 a(x, y 0 ) +

 (x, t)dt =  a(x, y 0 ) +  a(x, t)

=  a(x, y) . 

 ∂x

 t = y 0

 y

 ∂y

0

This, together with (7.21), implies

 df =  ω . 
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A

B

Fig. 7.5  A  is simply connected, whereas  B  is not

Under the hypotheses of Theorem 1, formula (7.19) is a useful tool to compute primitives explicitly. 

In view of the next crucial definition we recall (also see Sect. 3.1) that a  domain D ⊆ R n  is the closure of an open set. Hence a domain is a closed set, and the union of an open set and its boundary. 

A connected open set  A  in the plane is said to be  simply connected  when every piecewise-regular, simple closed curve  γ  in  A  is the boundary of a bounded domain D  entirely contained in  A (see Fig. 7.5). 

The open set  A = R2 −{ ( 0 ,  0 )}, on which we considered the form  ω  in (7.17), is not simply connected. An open rectangle  R ⊆ R2, as of Theorem 1, is a simply connected set. 

Theorem 2 (Differential Forms on a Simply Connected Open Set in R2)  A  1 -

 form ω =  a dx +  b dy defined on a simply connected open set A, of class C 1  and closed (i.e. (7.16) ), is exact on A. 

For the proof see Sect. 8.3, Chap. 8. 

In the previous example we looked at the differential form  ω  defined by (7.17) on the open set  A = R2 − { ( 0 ,  0 )}. The example shows how the above theorem does not hold if we drop the simply connectedness of  A. Nevertheless, in certain special cases this condition turns out to be superfluous. The next result describes one such

case. 

Let us recall (see also Sect. 3.9) a set  A ⊆ R2 is a  cone  if x ∈  A

⇒  tx ∈  A , 

∀  t >  0  . 

So let  A  be a cone in R2 and  α  a real number. A function  f :  A → R is homogeneous of degree α  on  A  if

 f (t x) =  tαf (x), 

∀  x ∈  A, ∀  t >  0 . 
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Theorem 3 (Differential Forms in R2 with Homogeneous Coefficients)  Let A be an open cone in the plane and ω =  a dx +  b dy a  1 -form whose coefficients are homogeneous of degree α = −1  and C 1 . If the form is closed then it is exact on A. 

 Moreover, 

 f (x, y) =  xa(x, y) +  yb(x, y)

(7.22)

 α + 1

 is a primitive of ω. 

 Proof  With  f  given by (7.22) we have





 ∂f

1

=

 ∂a

 ∂b

 a(x, y) +  x

 (x, y) +  y

 (x, y) . 

 ∂x

 α + 1

 ∂x

 ∂x

As the form is closed, i.e.  ∂b/∂x =  ∂a/∂y, 





 ∂f = 1

 ∂a

 ∂a

 a(x, y) +  x

 (x, y) +  y

 (x, y) . 

(7.23)

 ∂x

 α + 1

 ∂x

 ∂y

By Euler’s theorem on homogeneous functions (Sect. 3.9)

 ∂a

 ∂a

 x

 (x, y) +  y

 (x, y) =  αa(x, y) , 

∀  (x, y) ∈  A, 

(7.24)

 ∂x

 ∂y

and then (7.23), (7.24) imply

 ∂f =  a(x,y), 

∀  (x, y) ∈  A. 

 ∂x

One can prove similarly that  ∂f/∂y =  b(x, y)  for any  (x, y) ∈  A, resulting in df =  ω. 

The above theorem does not hold for 1-forms whose coefficients are ( C 1 and) homogeneous of degree  α = −1. For example, the form  ω  in (7.17) has homogeneous coefficients of degree  α = −1, it is closed on the open cone  A = R2 − { ( 0 ,  0 )}, but it is not exact on  A. 

On the contrary, on the open cone  A = R2 − { ( 0 ,  0 )} the differential form ω =

 x

4

5  dx +

 y

4

5  dy

2

2

 x 2 +  y 2

 x 2 +  y 2

is closed (the reader should check (7.16)) and the coefficients are homogeneous of degree

−3. By (7.22) a primitive of this  ω  is

−1

 f (x, y) = 4

5  . 

2  x 2 +  y 2
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7.5

One-Forms in Space. Irrotational Vector Fields

Let  ω =  a dx +  b dy +  c dz  be a  C 1 differential form on the open set  A  in R3 and f  a primitive. We proceed as in the previous section: by definition of primitive

 ∂f =

 ∂f

 ∂f

 a , 

=  b , 

=  c , 

∀  (x, y, z) ∈  A. 

 ∂x

 ∂y

 ∂z

Schwarz’s theorem gives

 ∂a =  ∂ 2 f =  ∂ 2 f =  ∂b , 

∀  (x, y, z) ∈  A

 ∂y

 ∂x∂y

 ∂y∂x

 ∂x

and similarly for the pairs  x, z  and  y, z. In this way we obtain

 ∂c =  ∂b

 ∂a

 ∂b

 , 

=  ∂c , 

=  ∂a , 

(7.25)

 ∂y

 ∂z

 ∂z

 ∂x

 ∂x

 ∂y

generalising the condition  ∂b/∂x =  ∂a/∂y  for the plane. 

A differential form  ω =  a dx +  b dy +  c dz, of class  C 1 on an open set  A  in R3, is said to be  closed  if its coefficients  a, b, c  verify (7.25). We have then shown that under the above assumptions  any exact form is closed. 

The form 2 xyz dx +  x 2 z dy +  x 2 yz dz  is not exact on R3 since it is not closed. Letting a = 2 xyz,  c =  x 2 yz, we have

 ∂a =  ∂c . 

 ∂z

 ∂x

Let now  F =  (F 1 , F 2 , F 3 )  be a vector field. It is  conservative  if and only if  F 1  dx +

 F 2  dy +  F 3  dz  is an exact form. Now Eqs. (7.25) read

 ∂F 3 −  ∂F 2 =

 ∂F 1

 ∂F 2

0  , 

−  ∂F 3 = 0  , 

−  ∂F 1 = 0  . 

(7.26)

 ∂y

 ∂z

 ∂z

 ∂x

 ∂x

 ∂y

If  F  is a vector field, the vector field whose components are the left-hand sides in (7.26) is called the  curl  of  F , indicated by curl  F :





 ∂F 3

 ∂F 1

 ∂F 2

curl  F =

−  ∂F 2  , 

−  ∂F 3  , 

−  ∂F 1  . 

 ∂y

 ∂z

 ∂z

 ∂x

 ∂x

 ∂y
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The curl of  F  may be thought of as the vector field obtained expanding along the first column the  formal determinant







 ∂



 e



1

 F 1



 ∂x









 ∂



 e



2

 F 2  , 





 ∂y







 ∂







 e 3

 F 3

 ∂z

where  e 1 , e 2 , e 3 is the canonical basis of R3. Then (7.26) becomes curl  F = 0  . 

In Physics a vector field whose curl vanishes is said to be  curl-free  or  irrotational. 

There is a suitable notion of  simple connectedness  also for three-dimensional open sets, with which one proves a result similar to the plane one; we will do

this in the chapter’s Appendix. Here we shall limit ourselves to considering special

situations, that generalise the previous sections’ results for the plane. 

Theorems 1 and 3 of the previous section immediately extend to forms in R3, with the same proof. We remind that a rectangle in R3 is the Cartesian product of

three real intervals. 

Theorem 1 (Differential Forms on a Rectangle in R3)  A C 1  form ω =  a dx +

 b dy +  c dz that is closed (i.e. fulfilling (7.25) ) on an open rectangle R, is exact on R. 

Theorem 2 (Differential Forms on R3 with Homogeneous Coefficients)  Let A be an open cone in space, and ω =  a dx +  b dy +  c dz a  1 -form with coefficients of class C 1  and homogeneous of degree α = −1 . If the form is closed then it is exact on A. Moreover, 

 f (x, y, z) =  x a(x, y, z) +  y b(x, y, z) +  z c(x, y, z)

 α + 1

 is a primitive of ω. 

Let us now define a further class of open sets in R3, that allows to use differential forms without involving the concept of simple connectedness (as we said, the latter

will be examined in the chapter’s Appendix, i.e. in the next section). 

An open subset  A ⊆ R3 is  star-shaped  if there is a point  x 0 ∈  A  such that, for any  x ∈  A, the line segment between  x 0 and  x  is contained in  A. 

An open convex set is patently star-shaped, because we may choose as  x 0 any

point of  A. As Fig. 7.6 shows, though, a star-shaped open set might not be convex. 

The next result extends Theorem 1 on forms over rectangles in R3, which are

clearly star-shaped. 
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Fig. 7.6
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Theorem 3 (Differential Forms on Star-Shaped Open Sets in R3)  If A is star-shaped and open, and ω a closed differential form on A, then ω is exact on A. 

 Proof  Assume for simplicity that the origin belongs to  A, and that for any given point  (x, y, z) ∈  A  the segment  γ  of equations

 x(t) =  tx, 

 y(t) =  ty, 

 z(t) =  tz, 

 t ∈ [0 ,  1] , 

is contained in  A (this is always possible up to translating suitably). Put





 f (x, y, z) =

 ω =

 a dx +  b dy +  c dz

(7.27)

 γ

 γ

and let us show this function is a primitive. Computing the line integral we have

1 2

3

 f (x, y, z) =

 a(tx, ty, tz)x +  b(tx, ty, tz)y +  c(tx, ty, tz)z dt. 

0

Now differentiate inside the integral (see Sect. 3.10), 



 ∂f

1

 (x, y, z) =

 a(tx, ty, tz) +  ∂a (tx, ty, tz)tx+

 ∂x

0

 ∂x



+  ∂b (tx, ty, tz)ty +  ∂c (tx, ty, tz)tz dt . 

 ∂x

 ∂x
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At this point we use the fact  ω  is closed on  A. By (7.25)



 ∂f

1

 (x, y, z) =

 a(tx, ty, tz) +  ∂a (tx, ty, tz)tx+

 ∂x

0

 ∂x



+  ∂a (tx, ty, tz)ty +  ∂a (tx, ty, tz)tz dt =

 ∂y

 ∂z

1 4

5





=

 d

 t =1

 ta(tx, ty, tz) dt =  ta(tx, ty, tz)

=  a(x, y, z) . 

 t =0

0

 dt

 ∂f

 ∂f

Similarly one can prove

=  b  and

=  c, whence the claim follows. 

 ∂y

 ∂z

Note that (7.27) gives us an explicit formula for the primitive  f  for a star-shaped open set. It is also evident that the definition of star-shaped set, and the above

theorem as well, extend in the obvious manner to open sets in R n. 

Appendix to Chap. 7

7.6

Simply Connected Open Sets in R n and Exact 1-Forms

 n



Let  ω(x) =

 ai(x) dxi  be an exact differential form of class  C 1 (A)  on some i=1

open set  A  in R n. Applying to the primitive of  ω  the Schwarz theorem, as we did earlier for  n = 2 ,  3, it is easy to see that

 ∂ai (x) =  ∂aj (x), 

∀  i, j = 1 ,  2 , . . . , n, 

 ∂xj

 ∂xi

for any  x ∈  A. This property of  ω, which generalises (7.25) to arbitrary dimensions, is phrased by saying the 1-form  ω  is  closed. 

Now we introduce the concept of  homotopy  of curves of class  C 2, with the purpose of extending to R n  the notion of a simply connected open set given in two dimensions. 

Let  A  be an open set in R n  and  ϕ 0,  ϕ 1 : [ a, b] →  A  two closed curves of class  C 2. We say they are  homotopic in A  if there exists a  C 2 map (the  homotopy)

  : [0 ,  1] × [ a, b] →  A  such that

 ( 0 , t) =  ϕ 0 (t) , 

∀  t ∈ [ a, b] , 

 ( 1 , t) =  ϕ 1 (t) , 

∀  t ∈ [ a, b] , 

 (s, a) =  (s, b) , 

∀  s ∈ [0 ,  1] . 

[image: Image 1815]
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Let us emphasise that the map  ϕs(t) =  (s, t)  is for any  s ∈  ( 0 ,  1 )  a closed  C 2

curve contained in  A (see Fig. 7.7). 

 If A is convex, the closed curves ϕ 0  , ϕ 1 : [ a, b] →  A are always homotopic in A, for it suffices to take as homotopy the convex combination

 (s, t) =  sϕ 1 (t) +  ( 1 −  s)ϕ 0 (t) , 

∀  s ∈ [0 ,  1] , t ∈ [ a, b] . 

Furthermore, even if  ϕ 0 , ϕ 1 are regular, the above definition does not require that ϕs(t) =  (s, t)  are regular curves for 0  < s <  1. 

An open set  A  in R n  is called  simply connected  if any closed curve  ϕ : [ a, b] →

 A  of class  C 2 is homotopic to a point. 

It can be proved that in the plane this definition coincides with the one of

Sect. 7.4. Observe, though, that while an annulus in the plane is not simply connected, a spherical shell in dimension  n ≥ 3 is. 

Theorem (Differential Forms on Simply Connected Sets in R n)  If A ⊆ R n is a simply connected open set and ω is a closed form of class C 1 (A), then ω is exact on A. 

The proof is postponed to Sect. 12.9. 
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8

In this chapter we present the theory of integration for functions of  n  real variables. 

We start in Sects. 8.1–8.4, with the simpler case  n = 2, namely  double integrals of continuous functions over  normal domains. Section 8.5 addresses  triple integrals ( n = 3). Finally, from Sect. 8.6 we study the general case ( n ≥ 2) of  multiple integrals, and discuss the general theory of Riemann integration. 

If the subject is being approached for the first time, it may be enough to

concentrate on the cases  n = 2 ,  3, dealt with in Sects. 8.1–8.5. Sections from 8.6

onwards are directed at readers wishing to deepen the study of Riemann integration

in more generality. 

8.1

Double Integrals on Normal Domains

Let  α =  α(x)  and  β =  β(x)  be two continuous functions on a closed bounded interval [ a, b] ⊂ R,  a < b, such that

 α(x) ≤  β(x) , 

∀  x ∈ [ a, b] . 

The subset in R2 (Fig. 8.1)

2

3

 D =  (x, y) ∈ [ a, b] × R :  α(x) ≤  y ≤  β(x) is called a  normal domain with respect to the variable x (or simply  with respect to x). 

The formula expressing the area of  D  is known from the theory of integration of one real variable. The  area, or  measure,  m(D)  of the set  D  equals b

 m(D) =

 (β(x) −  α(x)) dx . 

(8.1)

 a
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Analogously, if  γ =  γ (y)  and  δ =  δ(y)  are continuous functions on the closed bounded interval [ c, d] such that

 γ (y) ≤  δ(y) , 

∀  y ∈ [ c, d] , 

the subset in R2 (Fig. 8.2)

2

3

 E =  (x, y) ∈ R × [ c, d] :  γ (y) ≤  x ≤  δ(y) is a  normal domain with respect to y, and its  area, or  measure,  m(E)  is d

 m(E) =

 (δ(y) −  γ (y)) dy . 

(8.2)

 c

Note that the word  domain (closure of an open set) for the sets  D, E ⊂ R2 is justified only when  α(x), β(x) (or  γ (y), δ(y)) do not coincide on some subset of

[ a, b] (respectively [ c, d] )  with non-empty interior. We shall nonetheless use the
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term  normal domain  without distinguishing whether the inequality between  α(x) and  β(x) (or  γ (y), δ(y)) is strict or not, since this fact will not make any difference in the theory. 

Observe moreover that if  D  is a normal domain with respect to both axes  x  and y, formulas (8.1) and (8.2) for the domain’s measure yield the same result (see Sect. 8.8). 

Let  D  be a normal domain, say with respect to  x. A  partition  of  D  in normal domains is a finite collection { D 1 , D 2 , . . . , Dh} of normal domains with respect to x, all contained in  D, whose pairwise intersections have empty interiors and whose union is  D. 

Lemma 1  Let D be a normal domain with respect to, say, x. For any δ >  0  there exists a partition of D in normal domains with respect to x, such that the diameter of every subdomain is less than δ. 

 Proof  Observe first that the construction of the partition, as stated, is not unique. We may for example consider a partition obtained by slicing  D  with lines parallel to the axes. The construction described below has the advantage of being more symmetric

in terms of the subdomains. 

So let us divide  D  in subsets  Dij . We consider a subdivision of the interval [ a, b]

given by  k + 1 points

 a =  x 0  < x 1  < x 2  < · · ·  < xk =  b . 

For our purposes it suffices to choose the  xi, i = 0 ,  1 , . . . , k, to be equidistant: xi =  a +  i (b −  a), 

∀ i = 0 ,  1  . . . , k . 

 k

Moreover, consider  k + 1 continuous functions on [ a, b], say  ϕj =  ϕj (x), j =

0 ,  1 , . . . , k, such that

 α(x) =  ϕ 0 (x) ≤  ϕ 1 (x) ≤  ϕ 2 (x), . . . , ϕk(x) =  β(x)

∀ x ∈ [ a, b]  . 

Here, as well, we may pick equidistant functions  ϕj (x):

 ϕj (x) =  α(x) +  j (β(x) −  α(x)), 

∀ j = 0 ,  1 , . . . , k , 

(8.3)

 k

as in Fig. 8.3. 

Consider the domain





 Dij =  (x, y) ∈ R2 :  xi−1 ≤  x ≤  xi, ϕj−1 (x) ≤  y ≤  ϕj (x) (8.4)
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Fig. 8.3

for any  i, j ∈ {1 ,  2 , . . . , k}. This is normal with respect to  x. We want to show that for any  δ >  0 it is possible to choose  k ∈ N so that the diameter of  Dij , for any i, j ∈ {1 ,  2 , . . . , k}, is less than  δ. For that we remind that  α  and  β  are continuous on [ a, b] and hence uniformly continuous. Given  δ >  0, therefore, there is  k 0 ∈ N

such that for  k > k 0

| α(x ) −  α(x )| ≤  δ , 

| β(x ) −  β(x )|≤  δ

∀ x , x ∈[ a, b] such that | x −  x| ≤  b −  a . 

2

2

 k

(8.5)

But for any  i = 1 ,  2 , . . . , k

 xi −  xi−1 = 1  (b −  a) , 

 k

so from this, (8.3) and (8.5) we deduce that when  k > k 0, 







|





 ϕj (x ) −  ϕj (x )| =  1 −  j (α(x ) −  α(x )) +  j (β(x ) −  β(x )) ≤

 k

 k





≤ 1 −  j | α(x ) −  α(x )| +  j | β(x ) −  β(x )| ≤  δ

 k

 k

2
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for any  j = 0 ,  1 , . . . , k  and any  x , x ∈ [ xi−1 , xi]. Call  m  and  M  respectively the minimum of  α(x)  and the maximum of  β(x)  on [ a, b], for  j = 1 ,  2 , . . . , k  and x , x ∈ [ xi−1 , xi],  i = 1 ,  2 , . . . , k. The previous inequality and (8.3) say that

| ϕj (x ) −  ϕj−1 (x )| ≤ | ϕj(x ) −  ϕj (x )| + | ϕj (x ) −  ϕj−1 (x )| ≤  δ + 1 (M −  m) . 

2

 k

(8.6)

Now choose  (x , y ), (x , y ) ∈  Dij . Without loss of generality we may assume y ≥  y. Then (8.6) implies





2

|

 b −  a

 (x , y ) −  (x , y )| =  (x −  x ) 2 +  (y −  y ) 2 ≤

+  (ϕj (x ) −  ϕj−1 (x )) 2 ≤

 k









2

2

≤

 b −  a

+  δ + 1  (M −  m) ≤  δ , 

 k

2

 k

as long as we choose  k > k 0 large enough. Hence

diam  Dij ≤  δ . 

Additivity of the Measure  Let D be a normal domain (for example) with respect to x and { D 1 , D 2 , . . . , Dh}  a partition of D into normal domains with respect to x. 

 Then

 h



 m(D) =

 m (Di ) . 

(8.7)

 i=1

Recall that, by definition, the pairwise intersections of the partitioning sets

 h

! 

 D 1 , D 2 , . . . , Dh  do not have interior points. As  D =

 Di, we may recast (8.7) as

 i=1





 h

" 

 h



 m

 Di

=

 m (Di) . 

 i=1

 i=1

Then we say that the measure  m  on  D  is  finitely additive. 

 Proof  Readers should convince themselves of the validity of formula (8.7) when the partition consists of two sets  D 1 , D 2 obtained from  D  by dividing the base interval

[ a, b] using a point  c, or dividing [ α(x), β(x)] with an intermediate function  γ (x). 

More generally, we can say the following. 
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330

8

Multiple Integrals

We retain the previous lemma’s notations and limit ourselves to the case in which

the partition is  P = { Dij :  i, j ∈ {1 ,  2 , . . . , k}}, where the normal domains in  x  are defined, as in (8.4), by





 Dij =  (x, y) ∈ R2 :  xi−1 ≤  x ≤  xi, ϕj−1 (x) ≤  y ≤  ϕj (x) . 

As a matter of fact one can prove that it is always possible to reduce to this situation by successive subdivisions of the given partition. Now, we need to prove that

⎛

⎞

 k

" 

 k



4

5

 m(D) =  m ⎝

 D ⎠

 ij

=

 m Dij . 

(8.8)

 i,j =1

 i,j =1

The measure  m(Dij )  is

 xi  4

5

 m(Dij ) =

 ϕj (x) −  ϕj−1 (x) dx , 

 xi−1

so the integral’s additivity implies

 k



 k

 xi  4

5

 m(Dij ) =

 ϕj (x) −  ϕj−1 (x) dx =

 x

 i,j =1

 i,j =1

 i−1





 k

 k





 x

 k

 i  4

5

 b 4

5

=

 ϕj (x) −  ϕj−1 (x) dx =

 ϕj (x)− ϕj−1 (x) dx =

 j =1

 i=1  xi−1

 j =1  a





 b

 k

4

5

 b

=

 ϕj (x) −  ϕj−1 (x) dx =

 (β(x) −  α(x)) dx =  m(D) , 

 a

 a

 j =1

i.e. (8.8). 

Let  D  be a normal domain in R2, for example with respect to  x. Suppose  f :  D ⊂

R2 → R is a  bounded  function on  D. For any partition  P = { D 1 , D 2 , . . . , Dh} of D  in normal domains with respect to  x  define the  integral sums s(P ),  S(P ): h



 s(P ) =

 m(Di)  inf { f (x) :  x ∈  Di}; 

 i=1

 h



 S(P ) =

 m(Di)  sup { f (x) :  x ∈  Di} . 

 i=1

They are respectively called  lower (integral) sum  and  upper (integral) sum  relative to the partition  P . 
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Using

inf { f (x) :  x ∈  Di} = inf  f (Di) , 

sup { f (x) :  x ∈  Di} = sup  f (Di) , 

the lower and upper sums read

 h



 h



 s(P ) =

 m(Di )  inf  f (Di ) ; 

 S(P ) =

 m(Di)  sup  f (Di ) . 

 i=1

 i=1

Let  D 1,  D 2 be domains in R2 that are normal with respect to the same variable, say x:

 D 1 = { (x, y) ∈ [ a 1 , b 1] × R :  α 1 (x) ≤  y ≤  β 1 (x)}  , D 2 = { (x, y) ∈ [ a 2 , b 2] × R :  α 2 (x) ≤  y ≤  β 2 (x)}  , as in Fig. 8.4. Is it straightforward to see that the  intersection D 1 ∩  D 2, when non-empty, is still a normal domain in  x  of the form

 D 1 ∩  D 2 = { (x, y) ∈ [ a 3 , b 3] × R :  α 3 (x) ≤  y ≤  β 3 (x)}

(possibly with empty interior), where

 a 3 = max { a 1;  a 2}  , 

 b 3 = min { b 1;  b 2}  , 

 α 3 (x) = max { α 1 (x);  α 2 (x)}  , 

 β 3 (x) = min { β 1 (x);  β 2 (x)}  . 

If  P 1 = { D 1 , D 2 , . . . , Dh} and  P 2 = { E 1 , E 2 , . . . , Ek} are partitions of  D, the partition  P 12  generated  by  P 1 , P 2 consists of the intersections of the elements of  P 1

with the elements of  P 2:

 P 12 = { D 1 ∩  E 1 , . . . , D 1 ∩  Ek , D 2 ∩  E 1 , . . . , Dh ∩  E 1 , . . . , Dh ∩  Ek} , Fig. 8.4

(x)
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y
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or

 P 12 = { Di ∩  Ej :

 i ∈ {1 ,  2 , . . . , h} , j ∈ {1 ,  2 , . . . , k}}

for short. Note that some of the intersections might be empty, or have empty interior, and hence have measure zero. 

Lemma 2  Let P 1 = { D 1 , D 2 , . . . , Dh}  and P 2 = { E 1 , E 2 , . . . , Ek}  be partitions of the normal domain D with respect to x made by normal domains with respect

 to x. The lower and upper sums relative to the partition P 12  generated by P 1 , P 2

 satisfy

 s(P 1 ) ≤  s(P 12 ) ≤  S(P 12 ) ≤  S(P 2 ) . 

(8.9)

 Proof  First of all, the partition  P 12 generated by  P 1 , P 2 consists of normal domains with respect to  x. For  i = 1 ,  2 , . . . , h  and  j = 1 ,  2 , . . . , k  set Dij =  Di ∩  Ej , 

so

 h

" 

 k

" 

 Dij =  Ej , 

 Dij =  Di . 

 i=1

 j =1

By the additivity of the measure  m, 

⎛

⎞

 h



 h



 k

" 

 s(P

⎝

⎠

1 ) =

 m(Di)  inf  f (Di ) =

 m

 Dij

inf  f (Di ) =

 i=1

 i=1

 j =1

⎛

⎞

(8.10)

 h



 k



 h

 k



=

⎝

 m(D

⎠

 ij )

inf  f (Di) ≤

 m(Dij )  inf  f (Dij ) =  s(P 12 ) , 

 i=1

 j =1

 i=1  j =1

where we used the inequalities inf  f (Di ) ≤ inf  f (Dij ), valid for any  i = 1 ,  2 , . . . , h and any  j = 1 ,  2 , . . . , k (a consequence of  f (Dij ) ⊆  f (Di)). Similarly, k



 k



 h

" 

 S(P 2 ) =

 m(Ej )  sup  f (Ej ) =

 m

 Dij

sup  f (Ej ) =

 j =1

 j =1

 i=1





 k



 h



 h

 k



=

 m(Dij )  sup  f (Ej ) ≥

 m(Dij )  sup  f (Dij ) =  s(P 12 ) . 

 j =1

 i=1

 i=1  j =1

(8.11)
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Since  s(P 12 ) ≤  S(P 12 ), now (8.9) follows from (8.10) and (8.11). 

By Lemma 2, as we let the partitions  P 1 ,  P 2 of the normal domain (with respect to  x)  D  vary, the collections of all lower and upper sums

{ s(P 1 )} , 

{ S(P 2 )}

are  separated  sets. In other words  s(P 1 ) ≤  S(P 2 )  for any pair of partitions  P 1 , P 2

made of normal domains with respect to  x. 

If the above sets are additionally  contiguous, meaning

sup { s(P 1 )} = inf { S(P 2 )} , 

 P

 P

1

2

we say  f  is  integrable  on  D. The (unique) separating element is called  (double) integral  of  f =  f (x, y)  over the set  D ⊂ R2, and is denoted by f (x, y) dx dy . 

 D

If  f =  f (x, y)  is integrable in the above sense,  f  is then Riemann integrable (see Sect. 8.7). Moreover, one can prove that the converse holds, too, i.e. a Riemann integrable function is integrable in the aforementioned sense. Hence if  D  is a normal domain with respect to both variables, the previous definition of integral does not

depend on the choice of axis used for partitioning. 

If the function  f =  f (x, y)  is non-negative as  (x, y)  varies in  D, the double integral of  f  over  D  represents the  volume  of the solid body in R3 bounded by  D

on the  xy-plane, by the graph of  f (which is the support of a surface in R3 inside

{ (x, y, z) ∈ R3 :  z ≥ 0}) and by the vertical segments rising from the boundary of  D. 

With the next result we prove the integrability of continuous functions over

normal domains. 

Integrability of Continuous Functions  Let D be a normal domain in  R2  and f : D ⊂ R2 → R  a continuous function. Then f is integrable on D. 

 Proof  A normal domain  D  is compact in R2. By Cantor’s theorem  f  is then uniformly continuous on  D, so given  ε >  0, there is  δ >  0 such that (x, y), (x , y ) ∈  D, 

 (x −  x ) 2 +  (y −  y ) 2  < δ

(8.12)

forces





 f (x, y) −  f (x , y )  < ε . 

(8.13)
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Let  D  be normal with respect to  x. By Lemma 1 there is a partition  P = { D 1, D 2, . . . ,  Dh} of  D  into normal domains with respect to  x  of diameter less than  δ. 

For any  i = 1 ,  2 , . . . , h, call  (xi, yi),  (x , y )  the maximum and minimum points i

 i

(respectively) of  f (x, y)  on the compact set  Di (which exist by the Weierstrass theorem). Due to (8.12) and (8.13), 

max  f (Di ) − min  f (Di) =  f (xi, yi) −  f (x i, y i) < ε . 

Hence the measure’s additivity forces

 h



 S(P ) −  s(P ) =

 m(Di)[max  f (Di ) − min  f (Di)]  < 

 i=1

 h



 < ε

 m(Di) =  εm(D), 

 i=1

making { s(P )}, { S(P )} contiguous. 

An analogous argument proves the following theorem for the integral of contin-

uous functions. 

Theorem (Representing Integrals as Limits)  Let f be a continuous function on a normal domain D ⊂ R2 . For any partition P = { D 1 , D 2 , . . . , Dh}  of D denote by (x 1 , y 1 ), (x 2 , y 2 ), . . . , (xh , yh), h points in D such that (xi, yi) ∈  Di for any i = 1 ,  2 , . . . , h. The integral of f on D is the limit

 h





lim

 m(Di)f (xi, yi) =

 f (x, y) dx dy , 

diam  P →0

 D

 i=1

 in the sense that for any ε >  0  there is δ >  0  such that







 h











 f (x, y) dx dy −

 m(Di)f (xi, yi)  < ε

 D

 i=1

 for every partition P = { D 1 , D 2 , . . . , Dh}  of D into normal domains Di, i =

1 ,  2 , . . . , h whose largest diameter (called diameter  diam  P of the partition P ) is less than δ. 

 Proof  Let  D  be a normal domain, say with respect to  x. As  D  is compact in R2, by Cantor’s theorem the function  f  is uniformly continuous on  D. So, given  ε >  0, there exists  δ >  0 such that if



 (x, y), (x , y ) ∈  D, 

 (x −  x ) 2 +  (y −  y ) 2  < δ , 

(8.14)
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then





 f (x, y) −  f (x , y )  < ε . 

(8.15)

Let  P = { D 1 , D 2 , . . . , Dh} be a partition of  D  into normal domains in  x  with diameter less than  δ. Pick  (xi, yi) ∈  Di  for any  i = 1 ,  2 , . . . , h. Indicate by (x , y )  the minimum point of  f (x, y)  on the compact set  D

 i

 i

 i , which exists by the

Weierstrass theorem (we could have chosen maximum points as well). By (8.14) and (8.15)

 f (xi, yi) − min  f (Di) =  f (xi, yi) −  f (x i, y i) < ε . 

Since the measure is additive, 

 h



 h



 m(Di)f (xi, yi) −  s(P ) =

 m(Di)[ f (xi, yi) − min  f (Di)]  < 

 i=1

 i=1

(8.16)

 h



 < ε

 m(Di) =  εm(D) . 

 i=1

Finally, from the previous theorem we know  f  is integrable on  D, and since the diameter of the partition  P  is less than  δ, we have



 f (x, y) dx dy −  s(P ) ≤  S(P ) −  s(P ) < εm(D) . 

(8.17)

 D

Now from (8.16) and (8.17) we obtain the desired conclusion h







≤



 f (x, y) dx dy −

 m(Di ) f (xi , yi)

 D

 i=1











 h





≤ 







 f (x, y) dx dy −  s(P ) +  s(P) −

 m(Di)f (xi, yi)  <  2 εm(D) . 

 D

 i=1

8.2

Reduction Formulas for Double Integrals

We shall discuss in this section a few very useful formulas for calculating double

integrals of continuous functions over normal domains. 
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Reduction Formulas  Let [ a, b]  be a closed bounded interval and D the normal domain with respect to x defined by

 D = { (x, y) ∈ [ a, b] × R :  α(x) ≤  y ≤  β(x)}  , where α(x) ≤  β(x) are continuous on [ a, b] . Then







 b

 β(x)

 f (x, y)dx dy =

 dx

 f (x, y) dy

(8.18)

 D

 a

 α(x)

 for any continuous function f :  D ⊂ R2 → R . If E is a normal domain with respect to y defined by

 E = { (x, y) ∈ R × [ c, d] :  γ (y) ≤  x ≤  δ(y)}

 with γ (y) ≤  δ(y) continuous on [ c, d] , and f :  E ⊂ R2 → R  is a continuous function on E, then







 d

 δ(y)

 f (x, y) dx dy =

 dy

 f (x, y) dx . 

(8.19)

 E

 c

 γ (y)

 Proof  Let us prove (8.18). First, the function

 β(x)

 x ∈ [ a, b] →

 f (x, y) dy

 α(x)

is continuous, due to the continuity of integral functions (Sect. 3.10). Therefore it is integrable on [ a, b]. As in the proof of Lemma 1 in the previous section (see Fig. 8.3

as well), we divide  D  into subsets  Dij  by taking a subdivision of [ a, b] made by k + 1 points  xi  such that

 a =  x 0  < x 1  < x 2  < . . . < xk =  b , and  k + 1 continuous functions on [ a, b],  ϕj =  ϕj (x),  j = 0 ,  1 , . . . , k, such that α(x) =  ϕ 0 (x) ≤  ϕ 1 (x) ≤  ϕ 2 (x) ≤  . . . ≤  ϕk(x) =  β(x), 

∀  x ∈ [ a, b] . 

For any  i, j = 1 ,  2 , . . . , k  consider the normal domain with respect to  x Dij =  (x, y) ∈ R2 :  xi−1 ≤  x ≤  xi, ϕj−1 (x) ≤  y ≤  ϕj (x) . 

As in the aforementioned Lemma 1, we can choose the  xi  and the functions  ϕj (x) so that the maximum diameter of the  Dij  tends to zero as  k → +∞. 

The additivity of the integral in  dx  tells that









 b

 β(x)

 k

 xi

 β(x)

 dx

 f (x, y) dy =

 dx

 f (x, y) dy . 

(8.20)

 a

 α(x)

 x

 α(x)

 i=1

 i−1
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The additivity of the integral in  dy, moreover, gives





 β(x)

 k

 ϕj(x)

 f (x, y) dy =

 f (x, y) dy . 

(8.21)

 α(x)

 ϕ

 j =1

 j −1 (x )

From (8.20) and (8.21) we then have









 b

 β(x)

 k



 xi

 ϕj (x)

 dx

 f (x, y) dy =

 dx

 f (x, y) dy . 

(8.22)

 a

 α(x)

 x

 ϕ

 i,j =1

 i−1

 j −1 (x )

Now let  mij , Mij  be the minimum and maximum of  f  on the compact set  Dij ⊂ R2. 

For  x ∈ [ xi−1 , xi] we have

4

5

 ϕj(x)

4

5

 mij ϕj (x) −  ϕj−1 (x) ≤

 f (x, y) dy ≤  Mij ϕj (x) −  ϕj−1 (x) , 

 ϕj−1 (x)

whence







 xi  4

5

 xi

 ϕj (x)

 mij

 ϕj (x) −  ϕj−1 (x) dx ≤

 dx

 f (x, y) dy ≤

 xi−1

 xi−1

 ϕj−1 (x)

 xi  4

5

≤  Mij

 ϕj (x) −  ϕj−1 (x) dx . 

 xi−1

Consider the measure of  Dij , 

 xi  4

5

 m(Dij ) =

 ϕj (x) −  ϕj−1 (x) dx . 

 xi−1

Summing over  i, j = 1 ,  2 , . . . , k, 

 k



 k





 x

 k

 i

 ϕj (x)



 mij m(Dij ) ≤

 dx

 f (x, y) dy ≤

 Mij m(Dij )

 x

 ϕ

 i,j =1

 i,j =1

 i−1

 j −1  (x )

 i,j =1

and keeping (8.22) in account, 

 k







 b

 β(x)

 k



 mij m(Dij ) ≤

 dx

 f (x, y) dy ≤

 Mij m(Dij ) . 

(8.23)

 a

 α(x)

 i,j =1

 i,j =1

The two sums in (8.23) are integral sums of  f (lower and upper, respectively), so we obtain

 k





 k



 mij m(Dij ) ≤

 f (x, y) dx dy ≤

 Mij m(Dij ) . 

(8.24)

 D

 i,j =1

 i,j =1
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Then by (8.23) and (8.24) we have











 b

 β(x)



 k

4

5



≤



 f (x, y)dx dy −

 dx

 f (x, y) dy

 Mij −  mij m(Dij ) . 

 D

 a

 α(x)

 i,j =1

(8.25)

Now,  f  is uniformly continuous on the compact set  D, so for any  ε >  0 there exists δ >  0 such that the oscillation of  f  is less than  ε  on any subset of  D  of diameter less than  δ. Choosing the  Dij ,  i, j = 1 ,  2 , . . . , k, to have diameter smaller than  δ, we obtain

 Mij −  mij < ε , 

∀  i, j ∈ {1 ,  2 , . . . , k} . 

(8.26)

Then (8.25) and (8.26) force











 b

 β(x)



 k









 f (x, y)dx dy −

 dx

 f (x, y) dy  < ε

 m(Dij ) =  ε m(D) , 

 D

 a

 α(x)

 i,j =1

and hence the claim, since  ε  is arbitrary. 

Sometimes the integration domain is normal with respect to both coordinates, so

(8.18) and (8.19) hold simultaneously. In this case  the order of integration can be interchanged:









 b

 β(x)

 d

 δ(y)

 dx

 f (x, y) dy =

 dy

 f (x, y) dx . 

(8.27)

 a

 α(x)

 c

 γ (y)

Let us emphasise two special cases of (8.27). In the first instance  D  is an interval [ a, b] ×

[ c, d] in R2, where  α(x) ≡  c,  β(x) ≡  d,  γ (y) ≡  a,  δ(y) ≡  b  and b

 d

 d

 b

 f (x, y) dx dy =

 dx

 f (x, y) dy =

 dy

 f (x, y) dx . 

[ a,b]×[ c,d]

 a

 c

 c

 a

In the second case





 D =  (x, y) ∈ [ a, b] × [ a, b] ⊂ R2 :  y ≤  x is a triangle, represented in Fig. 8.5. This time we choose  α(x) ≡  a,  β(x) =  x,  γ (y) =  y, δ(y) ≡  b, and











 b

 x

 b

 b

 f (x, y) dx dy =

 dx

 f (x, y) dy =

 dy

 f (x, y) dx . 

(8.28)

 D

 a

 a

 a

 y

We shall refer to formula (8.28) as  Dirichlet’s formula  for interchanging integrals. 

(continued)
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Fig. 8.5
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x

As application of the reduction formulas let us calculate the volume of a solid body. Using coordinates  x, y, z, consider the set  S ⊂ R3 bounded by the paraboloid  z =  x 2 +  y 2, the cylinder  x 2 +  y 2 = 9 and contained in the  first octant x ≥ 0,  y ≥ 0,  z ≥ 0, see Fig. 8.6. 

Let us determine the volume  m 3 (S)  of  S. If  D  denotes the quarter of the disc  x 2+ y 2 ≤ 9

in the first quadrant of the  xy-plane, we may regard  D  as a normal domain with respect to y (the reader should note the symmetry in the first two coordinates), and represent it as (see Fig. 8.7)







 D =  (x, y) ∈ R2 : 0 ≤  y ≤ 3 ,  0 ≤  x ≤

9 −  y 2  . 

z

(0,0,9)

Paraboloid  z = x2 + y2

Cylinder x2 + y2 = 9

(0,3,0)

S

D

y

(3,0,0)

x

Fig. 8.6

(continued)
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The reduction formulas tell





 m 3 (S) =

 x 2 +  y 2  dx dy =

 D



√





3

9− y 2 



3







3 / 2

=

1

 dy

 x 2 +  y 2  dx =

9 −  y 2

+  y 2 9 −  y 2  dy . 

0

0

0

3

Fig. 8.7

y

x =  9 – y2

3

D

3

x

The substitution  y = 3 sin  ϑ  produces

 π/ 2 



 m 3 (S) =

9 cos3  ϑ + 27 sin2  ϑ  cos  ϑ · 3 cos  ϑ dϑ =

0 



 π/ 2



 π/ 2





=27

cos4  ϑ +3 sin2  ϑ · cos2  ϑ dϑ = 27

cos2  ϑ  1 + 2 sin2  ϑ dϑ =

0

0







 π/ 2

=

1 + cos 2 ϑ


27

+ 1 − cos 4 ϑ dϑ = 81  π . 

0

2

4

8

If  D  is a normal domain in the plane, the point  (x 0 , y 0 )  defined by x 0 =

1

 x dx dy , 

 y 0 =

1

 y dx dy

(8.29)

 m(D)

 D

 m(D)

 D

is called  centroid  of  D. The centroid might not belong to  D (think of an annulus, for instance), but the reader can easily show that  (x 0  , y 0 ) ∈  D  when  D  is convex. 

The next result will be proved in a more general form in Sect. 9.8, Chap. 9. 
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First Guldinus Theorem  Let S be the solid generated by the rotation by angle α

 of a normal domain D about an axis r not intersecting D. The volume of S is the

 product of the area of D times the length of the circular arc traced out by the rotation of the centroid. 

For example, suppose  D  makes one complete turn around the  x-axis. The centroid  (x 0  , y 0 ) of  D  travels along a circle of radius  y 0, so by (8.29) and the Guldinus theorem the volume of  S  is



2 π

 y dx dy . 

(8.30)

 D

Let  D  be the trapezoid determined by a non-negative continuous function  f  over [ a, b]. If  S

is the solid of revolution about the  x-axis generated by  D (Fig. 8.8), from (8.30) we deduce that the volume of  S  equals







 b

 f (x)

 b

2 π

 dx

 y dy =  π

 f  2 (x) dx . 

(8.31)

 a

0

 a

Fig. 8.8

y

y =f(x)

a

b

x

Using that, we can in particular find the volume of the ball  S  in R3 with centre 0 and radius r >  0. We may view  S  as generated by the revolution around the  x-axis of the trapezoid over [− r, r] of the function



 f (x) =

 r 2 −  x 2  , 

 x ∈ [− r, r] . 

Applying formula (8.31) we obtain  the volume of the ball

 r  4

5

 m 3 (S) =  π

 r 2 −  x 2  dx = 4  π r 3  . 

− r

3

In closing, let us remark that the concepts of measure of a normal domain  D  and integral of a function  f (x, y)  over  D  can be extended in a natural way to domains
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that are decomposable in a finite number of normal domains  D 1 , D 2 , . . . , DN  with pairwise-disjoint interiors. In this case one calls



 N



 f (x, y)dx dy =

 f (x, y) dx dy

 D

 D

 i=1

 i

the  double integral of f over D, and one proves that it does not depend on the chosen decomposition. 

8.3

Gauss-Green Formulas. The Divergence Theorem. Stokes’s

Formula

Let  D  be the normal domain with respect to  x

 D = { (x, y) ∈ [ a, b] × R :  α(x) ≤  y ≤  β(x)} . 

We say that  D  is a  regular normal domain  when  α(x), β(x)  are  C 1 functions on

[ a, b] and  α(x) < β(x)  for any  x ∈  (a, b). 

A  regular domain D  is by definition the union of finitely many regular normal domains (with respect to  x  or  y) D 1 , D 2 , . . . , DN  with pairwise-disjoint interiors. 

In the following, to ease the presentation, when dealing with a regular domain

 D  we shall always assume that  its boundary ∂D is the union of a finite number of piece wise regular curves. In this way  ∂D  admits a unit tangent vector  T  at all points except for a finite number at most. In correspondence with the latter the unit normal N  to  ∂D  is well defined. About this fact, recall that (see Sect. 6.5) if  γ  is a plane curve with unit tangent vector  T  at some point, the unit normal  N  is defined so that the basis  (N, T )  is oriented as the canonical basis (see Fig. 8.9). 

That said, our convention is to endow the boundary of  D  with the orientation for which the above unit normal  N points to the outer region of ∂D  at each point. Such Fig. 8.9

y

normal line

T

N

1

tangent line

2

D

N

T

x
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orientation is called  positive orientation  of the boundary of  D, and we shall use the symbol + ∂D. 

Figure 8.9 shows a domain  D  whose boundary is the union of two curves  γ 1 , γ 2 . 

The positive orientation of  ∂D  makes the outer curve  γ 1 counter-clockwise and the inner curve  γ 2 clockwise. 

Let  D  be a regular domain and consider a  parametrisation

 x =  x(t)

 t ∈ [ a, b] , 

(8.32)

 y =  y(t), 

of a portion  γ  of the boundary  ∂D. This induces an orientation on  γ . Changing parameter with  s = − t  gives parametric equations

 x =  x(− s)

 s ∈ [− b, − a] , 

 y =  y(− s), 

for the same curve  γ , but now oriented in the opposite direction. We shall assume that the parametric equations (8.32) induce on  γ  the orientation of + ∂D. 

If so, as we saw in Chap. 6, the  unit tangent vector T  is T (t) =  γ  (t)

| γ  (t)|  , 

where  γ : [ a, b] → R2 has components  γ (t) =  (x(t), y(t)). Equivalently, in coordinates, the unit tangent vector  T  is

⎛

⎞

 y (t)

 T (t) = ⎝

 x (t)



 , 

⎠

 (x (t)) 2 +  (y (t)) 2

 (x (t)) 2 +  (y (t)) 2

for any  t ∈ [ a, b] such that  x(t), y(t)  are differentiable with continuous derivatives, 4

5

4

5

2

2

and  x (t)

+  y (t) = 0. 

The  unit normal  corresponding to  T (the  outward  unit normal) is

⎛

⎞

− x (t)

 N (t) = ⎝

 y (t)



 , 

⎠  . 

(8.33)

 (x (t)) 2 +  (y (t)) 2

 (x (t)) 2 +  (y (t)) 2

For example, let  D  be the closed unit disc centred at the origin of R2. Its  counter-clockwise boundary can be represented by

 x = cos t

 t ∈ [0 ,  2 π] , 

 y = sin  t, 

(continued)
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so by (8.33) the unit normal

 N (t ) =  ( cos  t,  sin  t)

 points outside  the disc  D. 

Having recalled the above concepts and notations, we are ready for the  Gauss-

 Green theorem, whereby a double integral over a regular domain is transformed into a line integral along the domain’s boundary. 

Gauss-Green Formulas  Let D ⊂ R2  be a regular domain and f =  f (x, y) a function of class C 1 (D). Then





 ∂f dx dy =

 f dy ; 

(8.34)

 D ∂x

+ ∂D





 ∂f dx dy = −

 f dx . 

(8.35)

 D ∂y

+ ∂D

 Proof  We shall only prove (8.34), since (8.35) is completely similar. For simplicity we also suppose  f  is  C 1 on an open set  A  containing  D, which enables us to differentiate integral functions also along the boundary of  D. 

Let us begin with the case where  D  is normal with respect to  y:

 D = { (x, y) ∈ R × [ c, d] :  γ (y) ≤  x ≤  δ(y)}  . 

By the reduction formulas (previous section)









 ∂f

 d

 δ(y) ∂f

 d

 dx dy =

 dy

 dx =

{ f (δ(y), y) −  f (γ (y), y)}  dy . (8.36)

 D ∂x

 c

 γ (y) ∂x

 c

Let  γ 1,  γ 2,  γ 3,  γ 4 be the curves bounding  D (Fig. 8.10). The claim follows from formula (8.36) by observing







 d

 f dy =

 f dy +

 f dy =

{ f (δ(y), y) −  f (γ (y), y)}  dy . 

+ ∂D

 γ 3

 γ 1

 c

If  D  is normal with respect to  x  instead, 

 D = { (x, y) ∈ [ a, b] × R :  α(x) ≤  y ≤  β(x)}  , with  α, β  of class  C 1 ([ a, b] ), we introduce the integral function x

 y

 F (x, y) =

 f dy =

 f (t, α(t))α (t) dt +

 f (x, t) dt , 

 γx,y

 a

 α(x)

where, for any  x, y ∈  D,  γx,y  is the curve of Fig. 8.11. 
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Fig. 8.10
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By the formulas of Sect. 3.10, the partial derivatives of  F  are





 ∂F

 y

 y

=

 ∂f

 ∂f

 f (x, α(x))α (x) +

 (x, t)dt − f (x, α(x))α (x) =

 (x, t) dt; (8.37)

 ∂x

 α(x) ∂x

 α(x) ∂x

 ∂F =  f(x,y). 

(8.38)

 ∂y

But the differential form  Fx dx +  Fy dy  is exact, so its line integral along the boundary of  D  is zero (see Theorem 5, Sect. 7.3). Hence



 ∂F dx +  ∂F dy = 0  . 

(8.39)

+ ∂D ∂x

 ∂y

If  γ 1,  γ 2,  γ 3,  γ 4 are the curves in Fig. 8.12, from (8.37) we deduce









 ∂F

 ∂F

 b

 β(x) ∂f

 dx =

 dx = −

 dx

 (x, t) dt . 

+ ∂D ∂x

 γ

 ∂x

 ∂x

3

 a

 α(x)
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Fig. 8.12
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Then, using (8.38) and (8.39) we obtain







 b

 β(x) ∂f

 dx

 (x, t) dt =

 f (x, y) dy . 

 a

 α(x)

 ∂x

+ ∂D

Therefore (8.34) follows from the reduction formulas, since







 ∂f

 b

 β(x) ∂f

 dx dy =

 dx

 (x, t) dt . 

 D ∂x

 a

 α(x)

 ∂x

Finally, let  D  be a  regular  domain, i.e. the union of finitely many regular normal domains (with respect to  x  or  y) D 1 , D 2 , . . . , DN , whose pairwise intersections have empty interiors (see Fig. 8.13; note that each  Di , besides normal, is also regular). 

D

D

2

1

D3

D7

Fig. 8.13
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Evidently the double integral in the Gauss-Green formula (8.34) is the sum of the corresponding double integrals over the  Di , and therefore



 N 

 N 

 ∂f



 ∂f



 dx dy =

 dx dy =

 f dy . 

(8.40)

 D ∂x

 D ∂x

+ ∂D

 i=1

 i

 i=1

 i

Now, the boundary arcs of adjacent domains appear twice in the right-hand sum of

(8.40) but with opposite orientation. Hence they cancel each other out, and N





 f dy =

 f dy , 

+ ∂D

+ ∂D

 i=1

 i

returns (8.34), because of (8.40). 

In Chap. 12 we will prove a suitable generalisation of the Gauss-Green theorem for domains in R n (while the three-dimensional case is addressed in Chap. 10). 

The Gauss-Green formulas imply the divergence theorem. 

Divergence Theorem  Let D be a regular domain in the plane and F =  (F 1 , F 2 ) a map from D to  R2  of class C 1 (D). Then





div  F dx dy =

 (F, N ) ds , 

 D

 ∂D

 where

div  F =  ∂F 1 +  ∂F 2

 ∂x

 ∂y

 is the divergence of the vector F (x, y) =  (F 1 (x, y), F 2 (x, y)), (F, N) is the inner product of F and the outward unit normal N to ∂D, and s is the arclength parameter of the boundary of D. 

 Proof  We use the Gauss-Green formulas, to be precise: (8.34) with  F 1 replacing  f , and (8.35) with  F 2 in place of  f . Adding the two relations produces







 ∂F 1 +  ∂F 2  dx dy =

− F 2  dx +  F 1  dy . 

(8.41)

 D

 ∂x

 ∂y

+ ∂D
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If the boundary of  D  is a piecewise-regular curve of parametric equations  x =  x(t), y =  y(t),  t ∈ [ a, b], and the induced orientation is that of + ∂D, the outward unit normal  N  is (8.33). Then by definition of line integral







 b



 F 1 y

 (F, N ) ds =



−

 F 2 x



 (x ) 2 +  (y ) 2  dt =

 ∂D

 a

 (x ) 2 +  (y ) 2

 (x ) 2 +  (y ) 2





(8.42)

 b  4

=

 F 1 y −  F 2 x 5  dt =

 F 1  dy −  F 2  dx . 

 a

+ ∂D

Comparing (8.41) with (8.42) proves the claim when  ∂D  is a piecewise-regular curve. If  ∂D  is a finite union of piecewise-regular curves (e.g., in an annulus) we argue as in the final part of the proof of the Gauss-Green formulas: we divide  D  in regular normal domains without common interior points. 

The divergence theorem can be formulated as follows. 

Stokes’s Formula  Let F :  D → R2  be a C 1  map on the regular domain D ⊂ R2 . 

 Then







 ∂F 2

 F 1  dx +  F 2  dy =

−  ∂F 1  dx dy . 

(8.43)

+ ∂D

 D

 ∂x

 ∂y

 Proof  It suffices to apply (8.41) to the vector-valued function  D → R2 of components  (F 2 , − F 1 ). 

As a corollary to the Stokes formula we shall prove a result on differential forms, 

which was stated in Chap. 7 (Theorem 2 in Sect. 7.4). 

Theorem (Differential Forms on Simply Connected Open Sets in R2 ) Let ω =

 a dx +  b dy be a  1 -form of class C 1  defined on a simply connected open set A. If the form is closed, i.e. 

 ∂b =  ∂a , 

 ∂x

 ∂y

 then it is exact on A. 

 Proof  We must show that for any curve  γ , piecewise regular, closed and contained in  A, 



 ω = 0  , 

(8.44)

 γ

and then apply Theorem 2 (characterising exact forms) from Sect. 7.3. For simplicity we shall prove (8.44) when  γ  is additionally a simple curve. 
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Given  γ , let  D  be the bounded domain with boundary  γ (the existence of such a  D, albeit intuitively evident, can be proved rigorously; the result is known as  Jordan’s curve theorem). Moreover, it is not restrictive to assume  γ  oriented counter-clockwise. Then







 ω =  ((a(x, y), b(x, y)), T (x, y))ds =

 ((b(x, y), − a(x, y)), N(x, y))ds , 

 γ

 γ

 ∂D

where  T (x, y)  and  N (x, y)  are the unit tangent and normal vectors of  γ , hence of the boundary  ∂D. The unit normal  N  points outside of  D. The divergence theorem tells







 ∂b

 ω =

−  ∂a dx dy , 

 γ

 D

 ∂x

 ∂y

and the double integral is zero since the form is closed. Hence (8.44) is proved, and the assertion with it. 

Let us now present a few applications of the Gauss-Green formulas. 

Theorem (Integration by Parts)  If f and g are C 1  functions on the regular domain D ⊂ R2 , then







 ∂g

 ∂f

 f

 dx dy =

 f g dy −

 g dx dy ; 

 D

 ∂x

+ ∂D

 D ∂x







 ∂g

 ∂f

 f

 dx dy = −

 f g dy −

 g dx dy . 

 D

 ∂y

+ ∂D

 D ∂y

 Proof  It is enough to apply the Gauss-Green formulas (8.34) and (8.35) with  fg  in place of  f . 

If  D  is a regular domain in R2, its area  m(D)  is the double integral over  D  of the constant function 1:



 m(D) =

 dx dy . 

 D

The next theorem gives a formula for the area  m(D)  of a regular domain  D ⊂ R2 . 

The expression is particularly useful when  D  is defined by some parametrisation of the boundary. 

Area Formulas  If D is a regular domain in  R2  then





 m(D) =

 x dy = −

 y dx . 

(8.45)

+ ∂D

+ ∂D
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 For any pair α, β ∈ R  such that α +  β = 0 , moreover, we have m(D) =

1

 αx dy −  βy dx ; 

(8.46)

 α +  β + ∂D

 in particular



 m(D) = 1

 x dy −  y dx . 

(8.47)

2 + ∂D

 Proof  To obtain (8.45) we just apply (8.34) to  f (x, y) =  x  and (8.35) to  f (x, y) =

 y. Formula (8.46) is a linear combination of (8.45). Formula (8.47) is a consequence of (8.46) when  α =  β = 1. 

Let us apply the previous formulas to calculate the area of a  sector  in the plane in polar coordinates. Precisely, let [ α, β] be a subinterval of [0 ,  2 π] and   =  (ϑ)  a positive continuous function on [ α, β]. The set  D  of points  (, ϑ)  in polar coordinates satisfying α ≤  ϑ ≤  β, 

0 ≤   ≤  (ϑ) , 

is called a  sector (Fig. 8.14). 

Fig. 8.14

y

P

Q

A

x

Call  Q  and  P  the points of polar coordinates  ((α), α)  and  ((β), β)  respectively. The arc  P Q  of the boundary of  D  has parametric equations

 x =  (ϑ) cos  ϑ

 ϑ ∈ [ α, β] . 

 y =  (ϑ)  sin  ϑ , 

As  ϑ  goes from  α  to  β, the arc is oriented counter-clockwise, corresponding to the positive orientation. If    is piecewise  C 1, we obtain

4

5

4

5

 x dy −  y dx =    cos  ϑ  sin  ϑ +    cos  ϑ −    sin  ϑ  cos  ϑ −    sin  ϑ =





=   2 cos2  ϑ + sin2  ϑ =   2

(continued)
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along the curve   =  (ϑ), while along the line segments  OQ  and  OP  we have  x dy −

 y dx = 0. Then from (8.47)



 β

 m(D) = 1

 x dy −  y dx = 1

  2 (ϑ ) dϑ . 

2 + ∂D

2  α

8.4

Variable Change in Double Integrals

To calculate integrals in one variable the  substitution method  is often useful for simplifying the integrand’s expression. There exist practical changes of the variables also for double integrals, which turn out to be helpful especially to “simplify” the integration domain. 

Let  T  be a  regular domain  in the plane with coordinates  u, v. Given two functions x =  x(u,v)

 (u, v) ∈  T , 

 y =  y(u, v) , 

of class  C 1 (T ), we denote by    the map

  :  (u, v) ∈  T →  (x(u, v), y(u, v))

and let  D =  (T )  be the image of  . Indicate by

 ∂(x, y)

det  ∂(u, v)

the  Jacobian determinant  of   (see Sect. 3.14), i.e. the determinant of the Jacobian matrix of  :





 ∂x ∂x 

 ∂(x, y)

 ∂u ∂v 

 ∂y

 ∂y

det

= 

=  ∂x

−  ∂x

 . 

 ∂(u, v)

 ∂y ∂y   ∂u ∂v ∂v ∂u

 ∂u ∂v

Variable Change in Double Integrals  Let T , D be regular domains in  R2 . Suppose  :  T →  D is an invertible C 1 map with non-zero Jacobian determinant on T . 

 Then for any continuous function f :  D =  (T ) → R









 ∂(x, y) 

 f (x, y) dx dy =

 f (x(u, v), y(u, v)) det

 dudv . (8.48)

 (T )

 T

 ∂(u, v)

The above hypotheses are equivalent to the following set of conditions:

(i)   :  T → R2 is a  C 1 map on the regular domain  T ; 
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(ii) the Jacobian determinant of    is non-zero on  T ; 

(iii) the map    induces a 1-1 correspondence between the boundary of  T  and the boundary of  D =  (T ). 

Under the above hypotheses, in fact, not only  T , but also  D  is a domain (see Proposition 2, Sect. 11.3). Moreover,    is invertible (compare with the global inverse function theorem of Sect. 11.3). Finally, it can be proved that  D  is regular too. 

Put  f (x, y) ≡ 1 in (8.48), so to obtain the formula for the  area of the image (T )





 ∂(x, y) 

 m((T )) =

det

 dudv . 

(8.49)

 T

 ∂(u, v)

The Jacobian determinant has then the geometric meaning of the  area element  of the image under  . If  (u 0 , v 0 ) ∈  T , in fact, (8.49) implies







 ∂(x, y)



 m((Ir ))

det

 (u



0 , v 0 )

 , 

 ∂(u, v)

= lim

 r→0

 m(Ir )

where  Ir  is the circle with centre  (u 0 , v 0 )  and radius  r. 

 Proof of the Variable Change in Double Integrals  To simplify the proof we shall assume some extra regularity on  f  and  . More precisely, we suppose  f ∈  C 1 ( R2 ) and that    is  C 2. Letting  F =  F (x, y)  be a primitive of  f (x, y)  in  x, i.e. 

 ∂F =  f , 

 ∂x

it is straightforward to see that  F  is  C 1 ( R2 ). 

By Proposition 1 in Sect. 11.3 the boundary  ∂D  is in 1-1 correspondence with

 ∂T . Suppose finally that  ∂T  is a piecewise-regular curve parametrised by u =  u(t)

 t ∈ [ a, b] . 

 v =  v(t) , 

Then the composite parametric equations of  ∂D  are

 x =  x(u(t),v(t))

 t ∈ [ a, b] . 

(8.50)

 y =  y(u(t), v(t)) , 

By the Gauss-Green theorem







 ∂F

 f (x, y) dx dy =

 dx dy =

 F dy =

 D

 D ∂x

+ ∂D









(8.51)

 b

 b

= ±

 dy

 ∂y du

 dv

 F

 dt = ±

 F

+  ∂y

 dt , 

 a

 dt

 a

 ∂u dt

 ∂v dt
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where we choose the + or − sign depending on whether the orientation of  ∂D  given by (8.50) coincides with + ∂D  or not. We postpone the discussion of the choice of sign to the end of the proof. 

By definition of line integral, from (8.51) we obtain





 ∂y

 ∂y

 f (x, y) dx dy = ±

 F

 du +  F

 dv . 

(8.52)

 D

+ ∂T

 ∂u

 ∂v

Furthermore, 





 ∂(x, y)

 ∂x ∂y

 ∂y

 f (x(u, v), y(u, v))  det

=  ∂F

−  ∂x

=

 ∂(u, v)

 ∂x

 ∂u ∂v

 ∂v ∂u









=  ∂F ∂x ∂y −  ∂x ∂y +  ∂F ∂y ∂y −  ∂y ∂y =

 ∂x

 ∂u ∂v

 ∂v ∂u

 ∂y

 ∂u ∂v

 ∂v ∂u









=  ∂F ∂x +  ∂F ∂y ∂y −  ∂F ∂x +  ∂F ∂y ∂y =

 ∂x ∂u

 ∂y ∂u

 ∂v

 ∂x ∂v

 ∂y ∂v

 ∂u









=  ∂F ∂y −  ∂F ∂y =  ∂

 ∂y

 ∂y

 F

−  ∂ F

 . 

 ∂u ∂v

 ∂v ∂u

 ∂u

 ∂v

 ∂v

 ∂u

In the last equality above we have used the identity

 ∂ 2 y =  ∂ 2 y , 

 ∂v ∂u

 ∂u ∂v

warranted by    being  C 2. Now, applying again the Gauss-Green theorem, 



 ∂(x, y)

 f (x(u, v), y(u, v))  det

 du dv =

 T

 ∂(u, v)













(8.53)

=

 ∂

 ∂y

 ∂y

 ∂y

 ∂y

 F

−  ∂ F

 du dv =

 F

 du +  F

 dv . 

 T

 ∂u

 ∂v

 ∂v

 ∂u

+ ∂T

 ∂u

 ∂v

At last, comparing (8.52) and (8.53) we find, for a suitable choice of sign, 





 ∂(x, y)

 f (x, y) dx dy = ±

 f (x(u, v), y(u, v))  det

 du dv . 

(8.54)

 (T )

 T

 ∂(u, v)

In order to understand the right-hand side of (8.48) recall that the Jacobian determinant is by assumption continuous on  T  and never zero, so it will be

everywhere either positive or negative. 

But  the choice of sign is independent of f (it only depends on the orientation of the curve in (8.50)), so we may take  f (x, y) ≡ 1. Then (8.54) reads



 ∂(x, y)

 m(D) = ±

det

 du dv . 

(8.55)

 T

 ∂(u, v)
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On the left we have a positive quantity, so if the determinant is positive in (8.55), hence in (8.54), we must choose the + sign. Conversely, if the determinant is negative we must choose the − sign. In any case (8.54) becomes









 ∂(x, y) 

 f (x, y) dx dy =

 f (x(u, v), y(u, v)) det

 dudv . 

 (T )

 T

 ∂(u, v)

The variable-change formula (8.48) holds under more general assumptions than the given ones. These assumptions cover, as a special case, the important variable

change from Cartesian to polar coordinates. To this end let us introduce the

following hypotheses:

(j) the functions  x =  x(u, v)  and  y =  y(u, v)  are of class  C 1 (T ), where  T  is a finite union of normal domains in the  uv-plane, and the image  D =  (T ) of   :  (u, v) ∈  T →  (x(u, v), y(u, v))  is a union of normal domains in the xy-plane; 

(jj) there exists a sequence  Tk ⊆  T  of regular domains such that the restriction of

   to  Tk  satisfies the formula of variable change; 

(jjj) putting  Dk =  (Tk), we have

lim  m(Dk) =  m(D) , 

lim  m(Tk) =  m(T ) . 

 k→+∞

 k→+∞

Theorem  Under assumptions (j) , (jj) , (jjj) , the variable-change formula (8.48) holds for any continuous function f :  D → R . 

 Proof  This is a direct application of the previous result governing variable changes in double integrals. Putting

 M = max {| f (x, y)| :  (x, y) ∈  D}

we have













 f (x, y) dx dy −

 f (x, y) dx dy ≤  M ·  m(D −  Dk) , 

 D

 Dk

so (jjj) implies





lim

 f (x, y) dx dy =

 f (x, y) dx dy . 

(8.56)

 k→+∞

 Dk

 D
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Similarly one proves







 ∂(x, y) 

lim

 f (x(u, v), y(u, v)) det

 dudv =

 k→+∞

 T

 ∂(u, v)

 k





(8.57)





=

 ∂(x, y)

 f (x(u, v), y(u, v)) det

 dudv . 

 T

 ∂(u, v)

As the double integrals in (8.56), (8.57), over  Dk  and  Tk  respectively, are equal, the claim follows, i.e. the corresponding double integrals on  D  and  T  coincide. 

Notice that ( j), ( jj), ( jjj) do not exclude the possibility that the Jacobian of  

might vanish on a set “of measure zero”, for example a regular curve contained in

 T , or that    might not be bijective. Let us check what we have claimed in the next important example. 

Consider the circle  D  with centre the origin  O  and radius  r >  0 in the  xy-plane. Define the polar coordinates , ϑ, where  O  is called  pole (or  centre) and the  x-axis is the  polar axis. 

The formulas for changing coordinates are

 x =   cos  ϑ

  ∈ [0 , r] , ϑ ∈ [0 ,  2 π] . 

 y =    sin  ϑ , 

The map   :  (, ϑ) →  (x, y)  is not a bijection between

 T = { (, ϑ) ∈ R2 : 0 ≤   ≤  r,  0 ≤  ϑ ≤ 2 π}

and the image  D =  (T ), since  O =  ( 0 ,  0 ) ∈  D  corresponds to every point  (, ϑ) =

 ( 0 , ϑ )  of  T  when  ϑ ∈ [0 ,  2 π]. Furthermore, the Jacobian determinant





 ∂(x, y)

cos  ϑ

−   sin  ϑ 

det

= 

=  

 ∂(, ϑ )

sin  ϑ

   cos  ϑ 

vanishes along the edge   = 0 of  T . However, as shown in Fig. 8.15, setting 1

 Tk =

 , r × 0 ,  2 π − 1  , 

 k

 k

 Dk =  (Tk)

for any  k ∈ N, we have







 m(Tk ) =  r − 1

2 π − 1  , 

 k

 k





 m(Dk ) =  πr 2 −  π −  π

 r 2 − 1

 . 

 k 2

2 k

 k 2

Hence

lim  m(Tk) = 2 πr =  m(T ), 

lim  m(Dk) =  πr 2 =  m(D) , 

 k→+∞

 k→+∞

(continued)

[image: Image 2029]

[image: Image 2030]

[image: Image 2031]

[image: Image 2032]

356

8

Multiple Integrals

so ( jjj) holds. It is not hard to show that also ( j), ( jj) are valid. By the previous theorem we obtain the  formula for passing from Cartesian to polar coordinates





 f (x, y) dx dy =

 f (  cos  ϑ,  sin  ϑ )  d dϑ . 

 D

 T

y

2

2 –  1k

Tk

Dk

1

r

O

x

k

Fig. 8.15

Using the reduction formulas, 







2 π

 r

 f (x, y) dx dy =

 dϑ

 f (  cos  ϑ,  sin  ϑ )  d =

 D

0

0





 r

2 π

=

  d

 f (  cos  ϑ,  sin  ϑ ) dϑ . 

0

0

More generally, one can prove that if  T  is the set in the plane

 T = { (, ϑ) ∈ R2 :  α ≤  ϑ ≤  β, 

 ϕ(ϑ ) ≤   ≤  ψ(ϑ)}  , 

and  D =  (T )  is as before, then







 β

 ψ (ϑ )

 f (x, y) dx dy =

 dϑ

 f (  cos  ϑ,  sin  ϑ )  d . 

 D

 α

 ϕ(ϑ )

8.5

Triple Integrals

We want to explain now an easy way to define the (triple) integral of functions

 f =  f (x, y, z)  of three real variables over a  normal domain in  R3. In the rest of the section we will present the main properties (reduction formulas and variable

change) without proof, due to the similarities with double integrals. 
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Fig. 8.16

Let  D  be a normal domain with respect to the  xy-plane and  α =  α(x, y), β =

 β(x, y)  two continuous functions on  D, such that

 α(x, y) ≤  β(x, y) , 

∀  (x, y) ∈  D. 

The set in R3 (see Fig. 8.16)

 E = { (x, y, z) ∈  D × R :  α(x, y) ≤  z ≤  β(x, y)}

(8.58)

is called a  normal domain with respect to the xy- plane. 

The  volume  of  E ⊂ R3, or  measure  of  E, written  m(E), is given by the double integral



 m(E) =

 (β(x, y) −  α(x, y)) dx dy . 

 D

Normal domains with respect to the  yz-plane or the  xz-plane are defined similarly. 

We shall use the generic term  normal domain in  R3 when there is no need to specify the variables of reference. 

We shall also say  E  is a regular normal domain if  D  is a regular normal domain in the plane and the functions  α, β  are  C 1 on  D. 

Let  E  be a normal domain in R3, for example with respect to the  xy-plane. 

Let  f :  E ⊂ R3 → R be a  bounded  function on  E. For any partition  P =

[image: Image 2034]

358

8

Multiple Integrals

{ E 1 , E 2 , . . . , Eh} of  E  in normal domains with respect to the  xy-plane define the integral sums s(P ),  S(P ):

 h



 s(P ) =

 m(Ei)  inf { f (x) :  x ∈  Ei} ; 

 i=1

 h



 S(P ) =

 m(Ei)  sup { f (x) :  x ∈  Ei}  . 

 i=1

They are respectively called  lower (integral) sum  and  upper (integral) sum  relative to the partition  P . 

Exactly as in two dimensions, the numerical sets

{ s(P 1 )} , 

{ S(P 2 )} , 

as the partitions  P 1,  P 2 of the normal domain  E (with respect to the  xy-plane) vary, are  separated. That is,  s(P 1 ) ≤  S(P 2 )  for any partitions  P 1 , P 2 made of normal domains with respect to the  xy-plane. If these sets are  contiguous  as well, i.e. 

sup { s(P 1 )} = inf { S(P 2 )}  , 

 P

 P

1

2

the function  f  is said to be  integrable  on  E, and the separating element is the  triple integral  of  f (x, y, z)  over  E ⊂ R3, written



 f (x, y, z) dx dy dz . 

 E

As for functions of two variables, also continuous functions in three variables are

integrable on normal domains of R3 .  Namely, 

Integrability of Continuous Functions  Let E be a normal domain in  R3  and f : E ⊂ R3 → R  a continuous function. Then f is integrable on E. 

Continuous functions satisfy the  reduction formulas. For example, if  f (x, y, z)  is continuous on a domain  E  of R3, normal with respect to the  xy-plane, as in (8.58), then we have a reduction formula (of the triple integral to a double integral)





 β(x,y)

 f (x, y, z) dx dy dz =

 dx dy

 f (x, y, z) dz . 

 E

 D

 α(x,y)

Suppose  D ⊂ R2 itself is normal with respect to  x:





 D =  (x, y) ∈ R2 :  a ≤  x ≤  b, g(x) ≤  y ≤  h(x) , 
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with  g, h  continuous on [ a, b] .  Then the double integral over  D  reduces to two integrals in one variable, resulting in









 b

 h(x)

 β(x,y)

 f (x, y, z) dx dy dz =

 dx

 dy

 f (x, y, z) dz . 

 E

 a

 g(x)

 α(x,y)

We shall just mention the  variable change  for triple integrals, and consider only two particular significant cases. As for two dimensions, a domain  E  in space is called regular  if it can be split into a finite union of regular normal domains whose pairwise intersections have empty interiors. 

Let  T , E  be regular domains in R3. Suppose

 x =  x(u, v, w) , 

 y =  y(u, v, w) , 

 z =  z(u, v, w)

(8.59)

are of class  C 1 (T ), and that the map   :  (u, v, w) ∈  T →  (x, y, z) ∈  (T ) =  E

defined by (8.59) is invertible with non-zero Jacobian determinant

 ∂(x, y, z)

det

 . 

 ∂(u, v, w)

Then



 f (x, y, z) dx dy dz =

 (T )







(8.60)

=

 ∂(x, y, z)

 f (x(u, v, w), y(u, v, w), z(u, v, w)) det

 dudv dw . 

 T

 ∂(u, v, w)

Let us discuss two special cases. First, for the  spherical coordinates  defined by the transformation

⎧

⎪

⎪

⎨ x =    sin  ϕ  cos  ϑ

⎪ y =    sin  ϕ  sin  ϑ

(8.61)

⎪

⎩ z =    cos ϕ

the Jacobian determinant is easily

 ∂(x, y, z)

det

=   2 sin  ϕ . 

 ∂(, ϕ, ϑ)
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Consider the solid  E  in Fig. 8.17, image under (8.61) of the domain T = { (, ϑ, ϕ) :   1 ≤   ≤   2  , ϑ 1 ≤  ϑ ≤  ϑ 2  , ϕ 1 ≤  ϕ ≤  ϕ 2}  . 

If  f =  f (x, y, z)  is the continuous function

 f (x, y, z) =

1

 x 2 +  y 2 +  z 2

for  (x, y, z) =  ( 0 ,  0 ,  0 ), by formula (8.60) f (x, y, z) dx dy dz =

 E



=

 f (  sin  ϕ  cos  ϑ,  sin  ϕ  sin  ϑ,  cos  ϕ)  2 sin  ϕ d dϑ dϕ . 

 T

z

2

1

1

2

O

1

y

x

2

x

Fig. 8.17

After the substitution, the reduction formulas yield





 f (x, y, z) dx dy dz =

sin  ϕ d dϑ dϕ =

 E

 T







  2

 ϑ 2

 ϕ 2

=

 d

 dϑ

sin  ϕ dϕ =  ( 2 −   1 )(ϑ 2 −  ϑ 1 )( cos  ϕ 1 − cos  ϕ 2 ) . 

  1

 ϑ 1

 ϕ 1
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Let us finally introduce  cylindrical coordinates, defined by the transformation

⎧

⎪

⎪

⎨ x =    cos  ϑ

⎪ y =    sin  ϑ

(8.62)

⎪

⎩ z =  z , 

whose Jacobian determinant equals

 ∂(x, y, z)

det

=   . 

 ∂(, ϑ, z)

Let  E  be the image under (8.62) of the solid domain

 T = { (, ϑ, z) :   1 ≤   ≤   2 , ϑ 1 ≤  ϑ ≤  ϑ 2 , z 1 ≤  z ≤  z 2}

in  ϑz-space. For any continuous function  f :  E → R, 





 f (x, y, z) dx dy dz =

 f (  cos  ϑ,  sin  ϑ, z)  d dϑ dz . 

(8.63)

 E

 T

If  E  is bounded by the cylinder  x 2 +  y 2 =  x  and the cone  x 2 +  y 2 =  z 2, to compute 1 / 2

 x 2 +  y 2

 dx dy dz

 D

we pass to cylindrical coordinates. In this system the cylinder has equation   =

cos  ϑ  and the cone   = | z|. The corresponding solid  E  is the image under (8.62) of the region





 T =  (, ϑ, z) : 0 ≤   ≤ cos  ϑ, −  π ≤  ϑ ≤  π , −  ≤  z ≤   . 

2

2

From (8.63) we then obtain







1 / 2

 x 2 +  y 2

 dx dy dz =

  ·   d dϑ dz =

 E

 T











 π/ 2

cos  ϑ

 

 π/ 2

cos  ϑ

=

 dϑ

 d

  2  dz = 2

 dϑ

  3  d =

− π/ 2

0

− 

− π/ 2

0



1

 π/ 2

3

=

cos4  ϑ dϑ =

 π . 

2 − π/ 2

16
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8.6

Peano-Jordan Measurable Subsets of R n

Starting from this section we begin the systematic study of  multiple integrals  in general, and present the theory of  Riemann integration. We set off by introducing the  Peano-Jordan measure. 

Let  I = [ a 1 , b 1 )×[ a 2 , b 2 )× . . . ×[ an, bn) (with  ai ≤  bi  for any  i ∈ {1 ,  2 , . . . , n}) be a  (right) semi-open interval  in R n. We call ( elementary)  measure  of  I  the positive number

 m(I ) =  (b 1 −  a 1 ) ·  (b 2 −  a 2 ) ·  . . . ·  (bn −  an) when  I  is non-empty. By convention,  m(∅ ) = 0. In the sequel, when it will be necessary to emphasise the dependence of the measure  m  on the dimension  n, we shall also write  mn(I ). 

We call  (right) semi-open pluri-interval  a finite union  P  of semi-open intervals as above. The ( elementary)  measure  of such  P  is the non-negative number h



 m(P ) =

 m(Ir ) , 

(8.64)

 r=1

where { I 1 , I 2 , . . . , Ih} is a partition of  P  made of semi-open intervals. 

Although for brevity we shall not do it, it can be proved that if { J 1 , J 2 , . . . , Jk}

is another partition of  P  into semi-open intervals, then

 h



 k



 m(Ir ) =

 m(Jr ) ; 

 r=1

 r=1

the measure of  P  therefore is well defined, as it does not depend on the partition chosen for representing  P . 

If P is the set of  semi-open pluri-intervals  in R n, formula (8.64) defines a function

 m : P → [0 , +∞ )

that is  finitely additive  on P, i.e. 

 P ∩  P  = ∅

⇒  m(P ∪  P  ) =  m(P ) +  m(P  ) , 

(8.65)

for any pluri-intervals  P , P  of R n. 

Let, in fact, { I 1 , I 2 , . . . , Ih} be a partition of  P  and { J 1 , J 2 , . . . , Jk} a partition of P , both made of semi-open intervals. Then by definition

 h



 k



 m(P ) =

 m(Ir ) ; 

 m(P  ) =

 m(Jr ) . 

(8.66)

 r=1

 r=1
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Since { I 1 , I 2 , . . . , Ih, J 1 , J 2 , . . . , Jk} is a partition of the pluri-interval  P ∪  P , still by definition we have

 h



 k



 m(P ∪  P  ) =

 m(Ir ) +

 m(Jr ) . 

(8.67)

 r=1

 r=1

Now (8.65) follows from comparing (8.66) and (8.67). 

Let us state two consequences of the finite additivity (8.65) of the measure  m: for any  P , P  ∈ P, 

 m(P −  P  ) =  m(P ) −  m(P ∩  P  ) ; (8.68)

 m(P ∪  P  ) =  m(P ) +  m(P  ) −  m(P ∩  P  ) . 

(8.69)

Formula (8.68) is proved observing that  P =  (P −  P  ) ∪  (P ∩  P  )  and  P −  P  and P ∩  P  are disjoint elements in P, so

 m(P ) =  m(P −  P  ) +  m(P ∩  P  ) . 

For (8.69) we start from  P ∪  P  =  P  ∪  (P −  P  ), then use finite additivity and (8.68) to obtain

 m(P ∪  P  ) =  m(P  ) +  m(P −  P  ) =  m(P  ) +  m(P ) −  m(P ∩  P  ) . 

In the special case where  P  is contained in  P , (8.68) becomes m(P −  P  ) =  m(P ) −  m(P  ) . 

It follows that the measure  m  is  increasing, in the sense that

 P  ⊆  P

⇒  m(P  ) ≤  m(P ) . 

Also notice that (8.69) implies that  m  is  subadditive, i.e. 

 m(P ∪  P  ) ≤  m(P ) +  m(P  )

for any  P , P  ∈ P . Let now  X  be a  bounded  subset of R n. The  inner Peano-Jordan measure m(X)  and the  outer Peano-Jordan measure m(X)  of  X  are the quantities m(X) = sup{ m(P ) :  P ∈ P  , P ⊆  X}  , 

(8.70)

 m(X) = inf{ m(P ) :  P ∈ P  , P ⊇  X}  , 

(8.71)
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respectively. In general, 

 m(X) ≤  m(X) . 

The set  X ⊂ R n  is said to be  Peano-Jordan measurable  whenever m(X) =  m(X) ; 

then, the common value is denoted by  m(X)  and called  Peano-Jordan measure of X. Let M denote the collection of  bounded and Peano-Jordan measurable  subsets of R n. 

If  P  is a semi-open pluri-interval, its Peano-Jordan measure coincides with

◦

(8.64). It is easy to prove that the closure  P  and the interior  P  of  P  are measurable, and

◦

 m(P ) =  m(P ) =  m(P ) . 

If  X  is a bounded and measurable set, i.e.  X ∈ M, its measure  m(X)  is clearly the separating element of two collections of elementary measures: the measures of

pluri-intervals contained in  X  and the measures of pluri-intervals containing  X. In other words,  X is measurable if and only if, for any ε >  0,  there exist two semi-open pluri-intervals P  , P   such that

 P  ⊆  X ⊆  P 

and

 m(P  ) −  m(P  ) < ε . 

(8.72)

 Example 1  A Set that is not Peano-Jordan Measurable. Consider the subset  X = [0 ,  1]∩ Q

in R. The only pluri-interval  P  contained in  X  is the empty set, while any pluri-interval  P 

containing  X  must contain [0 ,  1 )  and hence it must have measure  m(P  ) ≥ 1. Therefore  X

is  not measurable. 

In Chap. 9 the reader will see that  X  is Lebesgue measurable (with measure zero). 

According to Lebesgue’s theory all open and closed subsets of R n  are measurable, in contrast to the Peano-Jordan theory. For example, the  generalised Cantor set Ks , described in Example 4, Sect. 9.4, is a compact set that, for  s >  3, is not Peano-Jordan measurable. 

The reader can check that the Cantor set ( Ks  when  s = 3) is Peano-Jordan measurable and its measure is zero. 

The following Propositions 1 and 2 are rather useful. 

Proposition 1  A bounded subset X ⊂ R n is measurable if and only if, for any ε >  0 , there exist two measurable sets X , X  such that X ⊆  X ⊆  X

 and

 m(X ) −  m(X ) < ε . 

(8.73)
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 Proof  If  X  is bounded and measurable, we have already remarked that an immediate consequence of the definition of measurable set is the existence of two semi-open pluri-intervals  P  , P  satisfying (8.72). That is, (8.73) holds for  X =  P  and X =  P . 

Conversely, if (8.73) is true, given  ε >  0 there are  P   , P  ∈ P such that P  ⊆  X , X ⊆  P  , 

 m(X ) −  m(P  ) < ε, m(P  ) −  m(X ) < ε . 

Then

 P  ⊆  X ⊆  P 

and

 m(P  ) −  m(P  ) <  3 ε, 

and  X  is measurable. 

Proposition 2  The Peano-Jordan measure m is finitely additive on  M : X ∪ Y is measurable

 X, Y ∈ M , X ∩  Y = ∅

⇒

(8.74)

 m(X ∪  Y ) =  m(X) +  m(Y ) . 

 Proof  Given  ε >  0, let  P   , P   , P   , P  be semi-open pluri-intervals such that X

 X

 Y

 Y

 P  ⊆  X ⊆  P   , m(P  ) −  m(P   ) < ε ; X

 X

 X

 X

(8.75)

 P  ⊆  Y ⊆  P   , m(P  ) −  m(P   ) < ε . 

 Y

 Y

 Y

 Y

Now,  X ∩  Y = ∅ implies  P  ∩  P  = ∅. Finite additivity on P (see (8.65)) forces X

 Y

 m(P 

∪

 X ) +  m(P 

 Y ) =  m(P 

 X

 P  Y ) . 

(8.76)

Since  P  ∪  P  ⊆  X ∪  Y ⊆  P  ∪  P , by subadditivity and (8.75), (8.76), we then X

 Y

 X

 Y

have

4

5

 m(P  ∪

∪

 X

 P 

 Y ) −  m(P 

 X

 P  Y ) ≤  m(P  X) +  m(P  Y) −  m(P  X) +  m(P  Y ) <  2 ε , making  X ∪  Y  measurable. By definitions (8.70) and (8.71) it follows that m(P  ∪  P   ) ≤  m(X ∪  Y ) ≤  m(P  ∪  P  ) . 

 X

 Y

 X

 Y

The above relationships imply

 m(P  X) +  m(P  Y ) ≤  m(X ∪  Y ) ≤  m(P  X) +  m(P  Y) . 

(8.77)
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Furthermore, as  P  ⊆  X ⊆  P , we have  m(P   ) ≤  m(X) ≤  m(P  ), and similarly X

 X

 X

 X

 m(P   ) ≤  m(Y ) ≤  m(P  ). Adding these, we deduce Y

 Y

 m(P  X) +  m(P  Y ) ≤  m(X) +  m(Y ) ≤  m(P  X) +  m(P  Y) . 

(8.78)

From (8.77), (8.78), and using (8.75) again, m(X ∪  Y ) − [ m(X) +  m(Y )] ≤  m(P 

 X ) +  m(P 

 Y ) −  m(P 

 X ) +  m(P 

 Y )

 <  2 ε. 

But  ε  is arbitrary, so (8.74) follows. 

Proposition 3  For any bounded measurable sets X, Y , the sets X ∪  Y , X ∩  Y and X −  Y are measurable and

 m(X −  Y ) =  m(X) −  m(X ∩  Y ) ; 

(8.79)

 m(X ∪  Y ) =  m(X) +  m(Y ) −  m(X ∩  Y ) . 

(8.80)

 Moreover, the measure m is increasing:

 Y ⊆  X

⇒  m(Y ) ≤  m(X) . 

(8.81)

 Proof  Given  ε >  0, take semi-open pluri-intervals  P   , P   , P   , P  such that X

 X

 Y

 Y

 P  ⊆  X ⊆  P   , m(P  ) −  m(P   ) < ε ; X

 X

 X

 X

 P  ⊆  Y ⊆  P   , m(P  ) −  m(P   ) < ε . 

 Y

 Y

 Y

 Y

Then  P  −  P  ⊆  X −  Y ⊆  P  −  P  . But

 X

 Y

 X

 Y

4

5

 m(P  −

−

−

−

≤

 X

 P  Y ) −  m(P  X

 P 

 Y ) =  m (P 

 X

 P  Y ) −  (P  X

 P 

 Y )

4

5

≤  m (P  −

−

≤

−

−

 X

 P  X) ∪  (P  Y

 P  Y )

 m(P 

 X

 P  X) +  m(P  Y

 P  Y ) <  2 ε , 

so  X −  Y  is measurable. The measurability of  X ∩  Y  and  X ∪  Y  follows from the above together with Proposition 2, since

 X ∩  Y =  X −  (X −  Y ) , 

 X ∪  Y =  X ∪  (Y −  X) . 

Formulas (8.79), (8.80) and (8.81) descend from Proposition 2 by arguing as in the pluri-interval case. 

Theorem  A bounded subset X of  R n is measurable if and only if its boundary ∂X

 is measurable and has zero measure. 
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 Proof  If  X  is measurable, given  ε >  0 there are  P , Q ∈ P such that P ⊆  X ⊆  Q  and  m(Q) −  m(P ) < ε . 

Then

◦

◦

 ∂X =  X −  X ⊆  Q −  P , 

(8.82)

because the boundary  ∂X  is contained in  Q (which contains  X) and is disjoint from

◦

◦

 P (which is contained in  X). ◦

◦

Recall that the sets  Q  and  P  are measurable, and  m(Q) =  m(Q),  m(P ) =  m(P ). 

◦

As  P ⊂  Q, by finite additivity

◦

◦

 m(Q) =  m(P ) +  m(Q −  P ) , 

and so

◦

◦

 m(Q −  P ) =  m(Q) −  m(P ) =  m(Q) −  m(P ) < ε . 

Then (8.82) gives  m(∂X) = 0. 

Conversely, suppose  m(∂X) = 0. Given  ε >  0, there exists then a semi-open pluri-interval  P  containing  ∂X  and such that  m(P ) < ε. 

Let  I  be a semi-open interval containing  X, and { X 1 , X 2 , . . . , Xh} a partition of I −  P  made of semi-open intervals. Let  P  be the union (possibly empty) of the intervals  Xi  that are disjoint from  I −  X, i.e. such that  Xi ∩  (I −  X) = ∅. Then P  ⊆  X. The set  P  =  P ∪  P  is a semi-open pluri-interval containing  X. In other words  P  ⊆  X ⊆  P , and so

 m(P  ) −  m(P  ) < ε , 

making  X  measurable. 

Up to this moment it was not necessary to indicate the explicit dependence of  m

on the dimension  n  of R n. We need to do so when, as in the next proposition, the measure  mn+ h  on R n+ h  of a Cartesian product  X ×  Y ( X ⊆ R n  and  Y ⊆ R h)  is put in relationship with the measures  mn(X)  on R n  and  mh(Y )  on R h. 

Proposition 4  Let X be a measurable set in  R n and Y a measurable set in  R h. The Cartesian product X ×  Y is measurable on  R n+ h = R n × R h, and mn+ h(X ×  Y ) =  mn(X) ·  mh(Y ) . 

(8.83)
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 Proof  By assumption  X  and  Y  are bounded in R n  and R h  respectively, so there exist two intervals (of finite measure)  I ⊇  X  in R n  and  J ⊇  Y  in R h. 

Given  ε >  0, let  P  , P  ⊆  I  be semi-open pluri-intervals such that ε

 P  ⊆  X ⊆  P 

and

 mn(P  ) −  mn(P  ) < 

 . 

 mh(J )

Similarly, let  Q , Q ⊆  J  be semi-open pluri-intervals such that ε

 Q ⊆  Y ⊆  Q

and

 mh(Q ) −  mh(Q ) < 

 . 

 mn(I )

Clearly  P  ×  Q ⊆  X ×  Y ⊆  P  ×  Q, and

 mn+ h(P  ×  Q ) −  mn+ h(P  ×  Q ) =

=  mn+ h(P  ×  Q ) −  mn(P  ) ·  mh(Q ) +  mn(P  ) ·  mh(Q ) −  mn+ h(P  ×  Q ) =









=  mn(P  ) mh(Q ) −  mh(Q ) +  mh(Q ) mn(P  ) −  mn(P  ) <  2 ε . 

Hence  X ×  Y ⊂ R n × R h  is measurable. The proof of (8.83) follows from the previous inequalities, observing that it holds for pluri-intervals. 

Measurability can be defined for  unbounded sets  as well. An unbounded subset X  in R n  is  measurable  if  X ∩  Y ∈ M for any  Y ∈ M. In such a case the measure of X (possibly infinite) is defined by

 m(X) = sup{ m(Y ) :  Y ∈ M , Y ⊆  X}  . 

Proposition 5  If X is a measurable set and Ik is an increasing sequence of open intervals in  R n whose union is  R n, then

 m(X) = lim  m(X ∩  Ik) . 

 k→+∞

 Proof  Immediately  m(X) ≥ lim  m(X∩ Ik). For the opposite inequality, consider k→+∞

 λ < m(X). There exists a subset  Y  of  X, bounded and measurable ( Y ∈ M ), such that

 m(Y ) > λ . 

(8.84)

Since the union of the  Ik  is R n, there exists  ν  such that

 Ik ⊇  Y , 

∀  k ≥  ν, 
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whence  X ∩  Ik ⊇  X ∩  Y =  Y , for any  k ≥  ν, and therefore m(X ∩  Ik) ≥  m(Y ) , 

∀  k ≥  ν. 

From (8.84) we deduce

lim  m(X ∩  Ik) > λ , 

 k→+∞

and the conclusion follows when  λ →  m(X). 

8.7

The Riemann Integral in R n

Let  X  be a Peano-Jordan measurable and bounded subset of R n, and  f :  X → R

a bounded function. For any partition  P = { X 1 , X 2 , . . . , Xh} of  X  made of measurable sets, we put

 h



 s(P ) =

 m(Xi )  inf { f (x) :  x ∈  Xi}

 i=1

 h



 S(P ) =

 m(Xi )  sup { f (x) :  x ∈  Xi}  , 

 i=1

called  lower Riemann sum  and  upper Riemann sum  relative to the partition  P . 

As we said for two dimensions, we may write more compactly

inf { f (x) :  x ∈  Xi} = inf  f (Xi) ; 

sup { f (x) :  x ∈  Xi} = sup  f (Xi) . 

Thus the lower and upper Riemann sums read

 h



 h



 s(P ) =

 m(Xi)  inf  f (Xi) ; 

 S(P ) =

 m(Xi)  sup  f (Xi) . 

 i=1

 i=1

If  P 1 = { X 1 , X 2 , . . . , Xh} and  P 2 = { Y 1 , Y 2 , . . . , Yk} are partitions of  X, the partition  P 12 generated by  P 1 , P 2 consists of the intersections of the elements of P 1 and  P 2:

 P 12 = { X 1 ∩  Y 1 , . . . , X 1 ∩  Yk , X 2 ∩  Y 1 , . . . , Xh ∩  Y 1 , . . . , Xh ∩  Yk} , or

 P 12 = { Xi ∩  Yj :  i ∈ {1 ,  2 , . . . , h} , j ∈ {1 ,  2 , . . . , k}}  . 
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Lemma  Let P 1 = { X 1 , X 2 , . . . , Xh}  and P 2 = { Y 1 , Y 2 , . . . , Yk}  be partitions of the set X made of measurable subsets. Then the lower and upper sums of the partition

 P 12  generated by P 1 , P 2  satisfy

 s(P 1 ) ≤  s(P 12 ) ≤  S(P 12 ) ≤  S(P 2 ) . 

(8.85)

 Proof  For  i = 1 ,  2 , . . . , h  and  j = 1 ,  2 , . . . , k  we put Xij =  Xi ∩  Yj , 

so

 h

" 

 k

" 

 Xij =  Yj , 

 Xij =  Xi . 

 i=1

 j =1

By the additivity of  m

⎛

⎞

 h



 h



 k

" 

 s(P

⎝

⎠

1 ) =

 m(Xi)  inf  f (Xi ) =

 m

 Xij

inf  f (Xi) =

 i=1

 i=1

 j =1

⎛

⎞

(8.86)

 h



 k



 h

 k



=

⎝

 m(X

⎠

 ij )

inf  f (Xi ) ≤

 m(Xij )  inf  f (Xij ) =  s(P 12 ) . 

 i=1

 j =1

 i=1  j =1

In (8.86) we exploited the inequalities inf  f (Xi ) ≤ inf  f (Xij ), valid for any  i =

1 ,  2 , . . . , h  and  j = 1 ,  2 , . . . , k, which follow from the inclusions  f (Xij ) ⊆  f (Xi). 

Similarly, 





 k



 k



 h

" 

 S(P 2 ) =

 m(Yj )  sup  f (Yj ) =

 m

 Xij

sup  f (Yi ) =

 j =1

 j =1

 i=1





(8.87)

 k



 h



 h

 k



=

 m(Xij )  sup  f (Yj ) ≥

 m(Xij )  sup  f (Xij ) =  S(P 12 ) . 

 j =1

 i=1

 i=1  j =1

As, clearly,  s(P 12 ) ≤  S(P 12 ), our claim (8.85) now follows from (8.86) and (8.87). 

The above lemma implies that the sets

{ s(P 1 )} , 

{ S(P 2 )} , 
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respectively containing the lower and upper sums as  P 1 ,  P 2 vary among all partitions, are  separated, i.e.  s(P 1 ) ≤  S(P 2 )  for any  P 1 , P 2. If these sets are also contiguous:

sup { s(P 1 )} = inf { S(P 2 )}  , 

(8.88)

 P

 P

1

2

we say  f  is  Riemann integrable  on  X, and the (only) separating element is the definite integral  of  f  over  X. The symbols for it are



 f (x) dm , 

(8.89)

 X

or





 f (x) dx , 

 f (x 1 , x 2 , . . . , xn) dx 1 dx 2  . . . dxn . 

(8.90)

 X

 X

If  f =  f (x, y)  is a function of two real variables, as in the first part of the chapter, we also use the  double integral



 f (x, y) dx dy , 

 X

while for  f =  f (x, y, z)  of three variables we may use the  triple integral f (x, y, z) dx dy dz . 

 X

In general, we shall say that the integrals in (8.89) or (8.90) are  multiple integrals  if the dimension  n  is larger than 1. 

Integrability Criterion  Let f be a bounded function on the bounded and measurable set X ⊂ R n. Then f is integrable on X if and only if, for any ε >  0 , there exists a partition P = { X 1 , X 2 , . . . , Xh}  of X, made of measurable sets, such that S(P ) −  s(P ) < ε , 

(8.91)

 i.e. 

 h







 m(Xi)  sup  f (Xi) − inf  f (Xi) < ε . 

 i=1

 Proof  Suppose  f  is integrable on  X  and denote by  I ∈ R the definite integral’s value. By definition (8.88), for any  ε >  0, there exist two partitions  P 1 , P 2 such that S(P 2 ) < I +  ε , 

 s(P 1 ) > I −  ε , 

2

2
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and subtracting, 

 S(P 2 ) −  s(P 1 ) < ε . 

Now let  P =  P 12 be the partition generated by  P 1 and  P 2, the one consisting of the intersections of sets in  P 1 and  P 2. By the previous lemma

 S(P ) −  s(P ) ≤  S(P 2 ) −  s(P 1 ) < ε , 

and so we have (8.91). Conversely, if (8.91) holds it is clear that (8.88) is valid too, i.e.  f  is integrable on  X. 

If we consider the trivial partition of  X  made by  X  only, by the definition of integral if  f  is integrable on  X  then



 m(X)  inf  f (X) ≤

 f (x) dx ≤  m(X)  sup  f (X) . 

(8.92)

 X

If  f  is a  constant function  on  X, i.e.  f (x) =  c  for any  x ∈  X  for some  c ∈ R, then f  is integrable on  X, and inf  f (X) = sup  f (X) =  c. Hence f (x) dx =  c ·  m(X) , 

 X

and in particular





 dx =

1  dx =  m(X) . 

 X

 X

Let  f  be a bounded integrable function on  X. The  integral function F  of  f  is F (Y ) =

 f (x) dx , 

 Y

as  Y  varies among measurable subsets of  X. By (8.92) the  integral function is absolutely continuous, i.e. for any  ε >  0 there is  δ >  0 such that Y ⊆  X , 

 m(Y ) < δ

⇒

 f(x)dx  < ε . 

(8.93)

 Y

To prove (8.93) observe first of all that the integral function  F  is well defined, since for any measurable subset  Y ⊂  X,  f  is integrable on  Y . Since, by assumption,  f  is bounded on  X, there exists a constant  M >  0 such that | f (x)| ≤  M  for any  x ∈  X. 

Then (8.92) implies









 f (x) dx ≤  M m(Y ) ≤  M ε , 

 Y
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for any  Y ⊆  X  such that  m(Y ) < ε. 

Just like for definite integrals in one variable, also the Riemann integral obeys a

 linearity property







{ a f (x) +  b g(x)}  dx =  a

 f (x) dx +  b

 g(x) dx , 

 X

 X

 X

and a  monotonicity propriety





 f (x) ≤  g(x), ∀  x ∈  X

⇒

 f (x) dx ≤

 g(x) dx , 

 X

 X

for any Riemann integrable functions  f, g  on  X  and any  a, b ∈ R. 

As for functions of one real variable, the integral has a remarkable geometric

meaning. Consider a  non-negative  function  f  defined on a bounded and measurable subset  X ⊂ R n. To simplify the explanations we shall use the term  cylindroid  over X  to refer to the set  Cf  in R n+1 given by

 Cf = { (x, y) ∈  X × R :

0 ≤  y ≤  f (x)}  . 

Figures 8.18 and 8.19 represent two instances, for  n = 1 and  n = 2. In particular, for  n = 1 (Fig. 8.18) a cylindroid is a  trapezoid, as is well known. 

The next proposition is a special case of formula (8.99), which will be proved in the following section. 

Fig. 8.18

y

y =f(x)

X

x
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Fig. 8.19

y

y =f(x ,x )

1

2

x2

X

x1

Proposition  If f :  X → [0 , +∞ ) is integrable on a bounded and measurable set X, then Cf ⊂ R n+1  is measurable, with measure



 mn+1 (Cf ) =

 f (x) dx . 

(8.94)

 X

 Example 1 (A Bounded Function that is not Riemann Integrable)  Consider the  Dirichlet function

0 if  x ∈ [0 ,  1] ∩Q

1

if  x ∈ [0 ,  1] − Q , 

and let us show that it is not Riemann integrable on [0 ,  1]. 

First, note that if  X ⊂ [0 ,  1] − Q is measurable, then  m(X) = 0. By contradiction, if m(X) >  0, then  X  would have to contain one open interval and therefore infinitely many rational numbers. Similarly, if  X ⊂ [0 ,  1]∩Q is measurable, for the same reason  m(X) = 0. 

Given a partition  P = { X 1 , X 2 , . . . , Xh} of [0 ,  1] made of measurable sets, we always have

 h



 s(P ) =

 m(Xi )  inf  f (Xi ) = 0  . 

 i=1

In fact if  Xi  contains no rationals, by the above argument  m(Xi ) = 0. If  Xi ∩ Q = ∅

instead, then inf  f (Xi ) = 0. In either case the product  m(Xi )  inf  f (Xi )  is zero. 

We claim

 h



 S(P ) =

 m(Xi )  sup  f (Xi ) = 1  . 

(8.95)

 i=1

(continued)
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 Example 1 (continued)

Indicate with  X  , X  , . . . , X , 1 ≤  k ≤  h, the partition’s elements containing irrational 1

2

 k

points. By the previous part, the remaining partition elements have measure zero, so

 k

 m(X i) = 1 . 

 i=1

But sup  f (X  ) = 1 for any  i ∈ {1 ,  2 , . . . , k}, and (8.95) follows. 

 i

In Sect. 9.6 we will prove that, on the contrary, the Dirichlet function is Lebesgue integrable. 

The following theorem on the Riemann integrability of continuous functions on

compact sets is very relevant in the theory of integration. 

Integrability of Continuous Functions  Let X be a compact measurable subset of R n and f :  X → R  a continuous function on X. Then f is integrable on X. 

 Proof  If the measure  m(X)  of  X  is null the function  f  is measurable, since the upper sums are zero and the integral of  f  on  X  is zero too. Suppose then  m(X) >  0. 

As  f  is uniformly continuous on  X, Cantor’s theorem ensures that given  ε >  0

there exists  δ >  0 such that

 ε

 x, y ∈  X, | x −  y|  < δ

⇒ | f (x) −  f (y)|  < 

 . 

(8.96)

 m(X)

Let us show that there is a finite partition made of measurable sets with diameter less than  δ. By assumption  X  is bounded, so there is a semi-open interval  I  containing X. We decompose  I (for example using hyperplanes parallel to the coordinate hyperplanes) into a finite number of semi-open intervals  Ii ,  i = 1 ,  2 , . . . , h, of diameter less than  δ. 

The sets  Xi =  X ∩  Ii  are measurable, pairwise disjoint, of diameter less than  δ, and their union is  X. Put

 i = inf  f (Xi) , 

 Li = sup  f (Xi) , 

so from (8.96)

 ε

 Li −  i < 

 . 

∀  i = 1 ,  2 , . . . , h. 

 m(X)
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Hence

 h







 m(Xi)  sup  f (Xi ) − inf  f (Xi) =

 i=1

 h



 h



=

 ε

 m(Xi)[ Li −  i]  < 

 m(Xi) =

 m(X)

 i=1

 i=1

=

 ε

 m(X) =  ε . 

 m(X)

The claim follows from the previous section’s integrability criterion. 

Reasoning as in the above theorem (the two-dimensional case was proved in full

detail in Sect. 8.3) we obtain the following result. 

Integral of a Continuous Function as Limit  Let X be compact and measurable in  R n and f :  X → R  continuous on X. For any partition P = { X 1 , X 2 , . . . , Xh}

 of X choose h points x 1 , x 2 , . . . , xh ∈  X such that xi ∈  Xi for any i = 1 ,  2 , . . . , h. 

 Then the integral of f on X is given by the limit

 h





lim

 m(Xi )f (xi) =

 f (x) dx . 

diam  P →0

 X

 i=1

 This means that for any ε >  0  there exists δ >  0  such that h











 f (x)dx −

 m(Xi) f (xi)  < ε

 X

 i=1

 irrespective of the partition P into sets Xi , i = 1 ,  2 , . . . , h, whose maximum diameter (called diameter of P ) is less than δ. 

More generally, we have the following theorem on the integrability of functions

that are bounded but may not be continuous on the entire set  X. Here is the

statement, without proof. 

A function  f :  X → R is said to be  almost everywhere (a.e.) Peano-Jordan continuous  if it is continuous on  X− Y  for some set  Y  of zero Peano-Jordan measure. 

Integrability of Almost Everywhere Continuous Functions  Let X be compact

 and measurable in  R n and f :  X → R  bounded and a.e. Peano-Jordan continuous on X. Then f is integrable on X. 

In Sect. 9.6 we will prove the  Vitali-Lebesgue criterion, a complete characterisation of bounded, Riemann integrable functions. 

We close the section with a mean value theorem for integrals of continuous

functions on connected sets. 

[image: Image 2097]

[image: Image 2098]

[image: Image 2099]

[image: Image 2100]

[image: Image 2101]

8.8 Properties of Riemann Integrals

377

Theorem (Integral Mean Value)  Let X be a bounded, connected and measurable domain of  R n, and f :  X → R  a continuous function on X. There exists a point x 0 ∈  X such that



 f (x)dx =  f (x 0 ) ·  m(X) . 

 X

 Proof  If  m(X) = 0 the result holds for any  x 0 in  X. Then consider  m(X) >  0. By (8.92)



inf  f (X) ≤

1

 f (x) dx ≤ sup  f (X) . 

(8.97)

 m(X) X

As  X  is compact, the Weierstrass theorem guarantees there are two points in  X,  x 1

and  x 2, such that

 f (x 1 ) = inf  f (X) , 

 f (x 2 ) = sup  f (X) . 

Hence (8.97) is equivalent to



1

 f (x 1 ) ≤

 f (x) dx ≤  f (x 2 ) . 

 m(X) X

But  X  is connected, so the continuous function  f  assumes every value between f (x 1 )  and  f (x 2 ) (see the existence of intermediate values, Sect. 2.11). Therefore there is a point  x 0 ∈  X  such that 

1

 f (x) dx =  f (x 0 ) . 

 m(X) X

8.8

Properties of Riemann Integrals

This section aims at establishing  reduction formulas, using which the integration of a bounded function over a measurable bounded set in R n+1 can be reduced to an (iterated) integral of functions of one variable. 

We shall need some definitions, that generalise the analogous definitions in two

and three dimensions for normal  domains  seen in the first part of the chapter. 

Let  α =  α(x)  and  β =  β(x)  be continuous functions on a closed, bounded and measurable set  X  of R n, and such that

 α(x) ≤  β(x) , 

∀  x ∈  X. 

The subset of R n+1

 D = { (x, y) ∈  X × R :  α(x) ≤  y ≤  β(x)}

(8.98)

[image: Image 2102]
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will be called  normal set (with respect to the first n coordinates) over X. Analogous notions exist for any collection of  n  coordinates. 

Measurability of Normal Sets  Let X ⊂ R n be closed, bounded and measurable, and D the normal set over X defined in (8.98) . Then D is measurable and its measure is



 mn+1 (D) =

{ β(x) −  α(x)}  dx . 

(8.99)

 X

 Proof  First we consider the case  α(x) ≡ 0. Let  P = { X 1 , X 2 , . . . , Xh} be a partition of  X  into measurable sets. Correspondingly, 

 Ai =  Xi × [0 ,  inf  β(Xi)) , 

 Bi =  Xi × [0 ,  sup  β(Xi)]  , 

are measurable in R n+1 with measure

 mn+1 (Ai) =  mn(Xi) · inf  β(Xi) , 

 mn+1 (Bi) =  mn(Xi) · sup  β(Xi) . 

Moreover, the sets

 h

" 

 h

" 

A =

 Ai , 

B =

 Bi , 

 i=1

 i=1

are measurable in R n+1 and

 h



 h



 mn+1 ( A ) =

 mn(Xi) · inf  β(Xi) , 

 mn+1 ( B ) =

 mn(Xi ) · sup  β(Xi) , 

 i=1

 i=1

A ⊆  D ⊆ B  . 

Now, as  β  is integrable on  X, given  ε >  0 there exists a partition  P =

{ X 1 , X 2 , . . . , Xh} of  X  made of measurable sets such that h



 h



 S(P ) −  s(P ) =

 mn(Xi ) · sup  β(Xi) −

 mn(Xi ) · inf  β(Xi) < ε . 

 i=1

 i=1

Then

 mn+1 ( B ) −  mn+1 ( A ) < ε , 

and so  D  is measurable. Its measure is the separating element of the collections

{ mn+1 ( B )} and { mn+1 ( A )}, i.e., its measure is (8.99). 

The proof for a generic  α(x)  descends from the above argument by using

the following lemma. The given normal set, in fact, can be represented (modulo

translations) as difference of two cylindroids, one of which does not include the

defining graph. 
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Lemma  If X is measurable and bounded in  R n and f is a bounded integrable function on X, the graph

 Gf = { (x, y) ∈  X × R :  y =  f (x)}

 has zero Peano-Jordan measure. 

 Proof  Without loss of generality we may assume  f  is non-negative. By the first part of the previous proof, the cylindroid  Cf  of  f  over  X  is measurable. Moreover, the graph  Gf  is contained in the boundary of  Cf . By the theorem of Sect. 8.6 the boundary of a measurable set has measure zero, and the claim is proved. 

Before we get to the  reduction theorems  we shall prove two results about

the continuous dependence of multiple integrals, similar to those for one-variable

integrals seen in Sect. 3.10. 

Let  X ⊆ R n,  Y ⊆ R h  be compact and measurable, and  f :  X ×  Y → R a continuous function. Fix  x  in  X, and consider the function

 f (x, · ) :  y ∈  Y →  f (x, y)

(8.100)

of the variable  y. As (8.100) is continuous for any  x ∈  X  and hence integrable on the compact set  Y , 



 F (x) =

 f (x, y) dy

(8.101)

 Y

is well defined on  X. If the above function is continuous on  X, we say that the integral in (8.101) depends continuously on the parameter  x. The next two lemmas, about the continuity of integrals with respect to some parameters, generalise the

similar properties in one variable seen in Chap. 3 (Sect. 3.10), as already said. 

Lemma 1 (Continuous Dependence)  If X ⊆ R n and Y ⊆ R h are compact and measurable, the integral F (x) in (8.101)  depends continuously on the parameter x ∈  X. 

 Proof  By Cantor’s theorem  f =  f (x, y)  is uniformly continuous on  X ×  Y . Fix ε >  0, so there exists  δ >  0 such that, for any pair  (x 1 , y 1 ),  (x 2 , y 2 )  in  X ×  Y  with distance



 d R n×R h((x 1 , y 1 ), (x 2 , y 2 )) = | x 1 −  x 2| 2 + | y 1 −  y 2|2  < δ

in R n × R h, it follows that

|

 ε

 f (x 1 , y 1 ) −  f (x 2 , y 2 )|  < 

 . 

 mh(Y )
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Now, for any  y ∈  Y  the distance between  (x 1 , y)  and  (x 2 , y)  equals | x 1 −  x 2| . Then for any  x 1 , x 2 ∈  X  with | x 1 −  x 2|  < δ  we have f (x



1 , y) dy −

 f (x 2 , y) dy ≤

| f (x 1 , y) −  f (x 2 , y)|  dy ≤

 ε


·  mh(Y ) =  ε . 

 Y

 Y

 Y

 mh(Y )

Lemma 2 (Continuous Dependence)  Let X ⊂ R n and [ c, d] ⊂ R  be compact intervals, and f :  X × [ c, d] → R  a continuous function. Then t

 G(x, s, t) =

 f (x, y) dy

 s

 is continuous on X × [ c, d] × [ c, d] . 

 Proof  Let  M >  0 be such that | f (x, y)| ≤  M  for any  x ∈  X  and any  y ∈ [ c, d]. 

Given  (x 0 , s 0 , t 0 ) ∈  X × [ c, d] × [ c, d], for any  (x, s, t)  in the same set

| G(x, s, t) −  G(x 0 , s 0 , t 0 )| ≤









 s 0

 t 0

 t



≤ 

| f (x, y)|  dy + 

| f (x, y) −  f (x





0 , y)|  dy + 

| f (x, y)|  dy ≤

 s

 s 0

 t 0





 t 0



≤  M| s −  s





0| + 

| f (x, y) −  f (x 0 , y)|  dy +  M| t −  t 0| . 

 s 0

(8.102)

As | f (x, y) −  f (x 0 , y)| is continuous at  (x, y), by Lemma 1 also d

 D(x) =

| f (x, y) −  f (x 0 , y)|  dy

 c

is continuous at  x ∈  X. But  D(x 0 ) = 0, so given  ε >  0 there exists an open ball I ⊂ R n  centred at  x 0 such that

| D(x) −  D(x 0 )| = | D(x)|  < ε , 

∀  x ∈  I ∩  X. 

Hence, for any  x ∈  I ∩  X, 







 t

 d

0





| f (x, y) −  f (x



0 , y)|  dy ≤

| f (x, y) −  f (x 0 , y)|  dy = | D(x)|  < ε . 

 s 0

 c

(8.103)
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Call  J  and  K  two open intervals in R, with respective centres  s 0 , t 0 and length 2 ε. 

From (8.102), (8.103), for any  (x, s, t) ∈  X × [ c, d] × [ c, d] such that  (x, s, t) ∈

 I ×  J ×  K, we have

| G(x, s, t) −  G(x 0 , s 0 , t 0 )| ≤  Mε +  ε +  Mε =  ( 2 M + 1 )ε , i.e.  G  is continuous at  (x 0 , s 0 , t 0 ). 

The next theorem provides a useful  reduction formula  for the integral over

a normal set. The proof was given in Sect. 8.2 for continuous functions of two variables on normal domains, and for brevity we shall not prove the obvious

generalisation. 

Reduction Theorem for Multiple Integrals  Let X be a compact and measurable subset of  R n and D the normal set over X defined by

 D = { (x, y) ∈  X × R :  α(x) ≤  y ≤  β(x)}  , where α(x) ≤  β(x) are continuous on X. Then for any continuous function f : D → R







 β(x)

 f (x, y)dmn+1 =

 f (x, y) dy

 dmn . 

(8.104)

 D

 X

 α(x)

We warn the reader that formula (8.104) is often presented in the more expressive form





 β(x)

 f (x, y) dx dy =

 dx

 f (x, y) dy . 

 D

 X

 α(x)

A similar formula to (8.104) holds when  D  is a normal set of the type D = { (x, y) ∈ R ×  Y :  γ (y) ≤  x ≤  δ(y)}  . 

Then





 δ(y)

 f (x, y) dmn+1 =

 dy

 f (x, y) dx . 

 D

 Y

 γ (y)

In the same spirit of the reduction theorems we shall provide a formula for computing the measure of subsets in R n. 

(continued)
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Let  S  be a subset of R n+1. Given  t ∈ R and  i ∈ {1 ,  2 , . . . , n, n + 1}, the set 2

3

 St =  (x

 i

1  , x 2 , . . . , xn) ∈ R n :  (x 1  , . . . , xi−1 , t , xi+1 , . . . , xn) ∈  S

is the  i th  cross-section of S at t. The  i th  projection πi :  S → R is the function πi (x) =  xi , 

∀  x ∈  S. 

Proposition  Let S ⊂ R n+1  be bounded and measurable set whose cross-sections St ⊂ R n i

 are measurable, for any t ∈ R . Then



 mn+1 (S) =

 mn(St ) dt , 

 i

 Ii

 where Ii is an arbitrary interval containing the ith projection πi (S) of S. 

We briefly mention how to change variables in multiple integrals. The following formula generalises the analogous two- and three-dimensional ones. 

Suppose  T  is a bounded measurable domain of R n  and   :  T →  D  a transformation of

◦

class  C 1 (T )  with non-zero Jacobian determinant det  J  on  T . If  D  is a measurable domain and    is injective, then





 f (x) dx =

 f ((u))|det  J(u)|  du . 

 T

 D

for any continuous function  f :  D → R. 

8.9

Summable Functions

We would like to extend the notion of integral to  real functions that are not

 necessarily bounded, and defined on  measurable sets that may not be bounded. 

Throughout this section  X  will be a measurable domain in R n  and  f  a  generically continuous  function on  X, meaning continuous on  X  except for finitely many points at most. 

Start from a non-negative function  f :  X → [0 , +∞ ). Denote by L (f )  the collection of bounded measurable subsets of  X  on each of which  f  is bounded and integrable. Then we may define the map



 F :  Y ∈ L (f ) →

 f (x) dx . 

(8.105)

 Y

[image: Image 2114]
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If  X  is bounded and  f  is bounded on  X, the map  F  in (8.105) is the  integral function of  f . As  f  is non-negative on  X, 







 f (x) dx = sup

 f (x) dx :  Y ∈ L (f ) . 

(8.106)

 X

 Y

More generally, suppose now  X  is a measurable set, but possibly unbounded. Let  f be a non-negative function which may or not be bounded on  X. We shall say that  f is  summable (or  integrable in generalised sense) over  X  if





sup

 f (x) dx :  Y ∈ L (f ) < +∞  . 

 Y

If so,  the integral of f over X  is, by definition, the above least upper bound. This integral, also referred to as  improper integral, is denoted by the usual symbol, and hence equals the real number in (8.106). 

Let now  f :  X → [0 , +∞ )  be a generically continuous function, and suppose Yk  is an increasing sequence of sets in L (f )  such that





∞

" 

 m X −

 Yk

= 0  . 

(8.107)

 k=1

Characterisation of Non-Negative Summable Functions  A function f is sum-

 mable over X if and only if



lim

 f (x) dx =   < +∞  , 

(8.108)

 k→+∞  Yk

 and in that case



  =

 f (x) dx . 

(8.109)

 X

 Proof  The limit in (8.108) exists since  Yk  is increasing and  f ≥ 0. So it suffices to show that the limit of the integrals over  Yk  equals the integral in (8.109) if  f  is summable over  X, while it equals +∞ if  f  is not summable over  X. 

Suppose  f  is summable. For any  ε >  0 there exists  Y ⊆  X, measurable and bounded, such that





 f (x) dx > 

 f (x) dx −  ε . 

 Y

 X

The restriction of  f  to  Y  has absolutely continuous integral function, so there exists δ >  0 such that



 Z ⊆  Y, m(Z) < δ

⇒

 f (x) dx < ε . 

 Z

[image: Image 2115]
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On the other hand (8.107) implies

lim  m(Y −  Yk) = 0  , 

 k→+∞

so taking  ν  such that  m(Y −  Yk) < δ  for any  k ≥  ν, we have f (x) dx < ε , 

∀  k ≥  ν. 

(8.110)

 Y − Yk

The above relations give











 f (x) dx −

 f (x) dx < 

 f (x) dx −

 f (x) dx +  ε =

 f (x) dx +  ε <  2 ε , 

 X

 Yk

 Y

 Y ∩ Yk

 Y − Yk

for any  k ≥  ν, i.e. the claim. 

If  f  is not summable over  X, for any  M >  0 there exists  Y ⊆  X, measurable and bounded, such that



 f (x) dx > M . 

 Y

Given  ε ≤ 1, pick  ν  so that (8.110) holds, and then f (x) dx ≥

 f (x) dx −

 f (x) dx > M −  ε ≥  M − 1  , 

 Yk

 Y

 Y − Yk

for any  k ≥  ν. In the end



lim

 f (x) dx = +∞  . 

 k→+∞  Yk

By virtue of the above theorem we can extend the Riemann integral’s monotonic-

ity and linearity to non-negative summable functions. In particular, we can prove the following facts. 

Proposition 1  Let f, g be generically continuous non-negative functions such that g(x) ≤  f (x) for any x ∈  X. If f is summable over X then so is g, and g(x) dx ≤

 f (x) dx . 

 X

 X

Proposition 2  If f and g are generically continuous, non-negative and summable over X, and a, b ∈ R , 







{ a f (x) +  b g(x)}  dx =  a

 f (x) dx +  b

 g(x) dx . 

 X

 X

 X
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Let us pass to the  summability of functions of arbitrary sign. If  X  is a measurable domain of R n  and  f :  X → R is generically continuous, we say  f  is  summable over  X  if | f | is summable over  X. Define functions  f + and  f − by f + (x) = max {0 , f (x)}  , 

 f − (x) = − min {0 , f (x)}  . 

Then

 f =  f + −  f − , 

| f | =  f + +  f − , 

and the summability of | f | implies the summability of  f + and  f −, by Proposition 1. 

Hence if  f  is summable over  X, and we call  integral of f over X  the real number f (x) dx =

 f +  dx −

 f −  dx . 

 X

 X

 X

Directly out of the characterisation of non-negative summable functions we have

the following theorem. 

Integral of a Summable Function  If f is summable over X and Yk is an increasing sequence of bounded and measurable sets in X, on each of which f is bounded

 and such that





∞

" 

 m X −

 Yk

= 0  , 

 k=1

 then





lim

 f (x) dx =

 f (x) dx . 

 k→+∞  Yk

 X

Now we present a number of summability and non-summability criteria. To this

end we start with a few remarkable examples of summable functions on bounded

and unbounded set. 

Using results from Sect. 3.1 we establish the summability properties of a function of two real variables like

 f (x, y) =

1



 α , 

(8.111)

 (x −  x 0 ) 2 +  (y −  y 0 ) 2

where  (x 0 , y 0 )  is a given point in the plane and  α  is a positive number. 
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The following two propositions generalise to  n ∈ N real variables (see

Propositions 5 and 6), so we shall emphasise  n = 2 in the statements. The general case holds by removing the constraint  n = 2. 

Proposition 3 deals with unbounded functions on bounded sets, while Proposition

4 treats bounded functions on unbounded sets. 

Proposition 3  Let Ir be a ball of centre (x 0  , y 0 ) and radius r >  0 , and let f (x, y) be the function defined in (8.111) . Then

⎧



⎨2 πr 2− α if α < n = 2

 f (x, y) dx dy =

2 −  α

⎩

(8.112)

 Ir

+∞

 if α ≥  n = 2  . 

 Proof  Under the change of variables  u =  x −  x 0,  v =  y −  y 0 , whose Jacobian determinant is identically equal to 1, the integral does not change, while the point

 (x 0 , y 0 )  in the  xy-plane is mapped to  ( 0 ,  0 )  in the  uv-plane. Hence we can assume (x 0 , y 0 ) =  ( 0 ,  0 )  with no loss of generality. 

For an integer  k >  1 /r  let  Dk  be the annulus bounded by the circles of centre ( 0 ,  0 )  and radii 1 /k  and  r. Let us compute f (x, y) dx dy . 

(8.113)

 Dk

In polar coordinates  , ϑ  the annulus  Dk  is defined by





 Dk =  (, ϑ) ∈ R2 : 1 ≤   ≤  r,  0 ≤  ϑ ≤ 2 π . 

 k

Hence the integral in (8.113) is

⎧











⎪

2− α

2 π

 r

⎨ 2 π

1

1

 r 2− α −

if  α = 2

 f (x, y) dx dy =

 dϑ

  d =

2 −  α

 k

⎪

 D

 α

 k

0

1 /k

⎩2 π  log  rk

if  α = 2  . 

In the limit when  k → +∞ we obtain (8.112). 

Proposition 4  Let Ir be a ball of centre (x 0  , y 0 ) and radius r >  0 , and f (x, y) the function in (8.111) . Then

⎧



⎨2 πr 2− α if α > n = 2

 f (x, y) dx dy =

 α − 2

(8.114)

R n−

⎩

 Ir

+∞

 if α ≤  n = 2  . 

 Proof  As before we may just consider  (x 0 , y 0 ) =  ( 0 ,  0 ). For any  k ∈ N let  Dk  be the annulus bounded by the circles centred at  ( 0 ,  0 )  with radii  r  and  r +  k.  Let us
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calculate the integral of  f (x, y)  on  Dk. Proceeding as in Proposition 3, 

⎧











2 π

 r+ k

⎨ 2 π

1

 (r +  k) 2− α −  r 2− α

if  α = 2

 f (x, y) dx dy =

 dϑ

  d =

2 −  α 



⎩

 D

 α

 k

0

 r

2 π  log 1 +  kr

if  α = 2  . 

When  k → +∞ we obtain (8.114). 

As was mentioned, we may prove the following Propositions 5 and 6, valid for functions of  n ∈ N real variables. 

Proposition 5  Let x 0  be a point of  R n and α a positive number. Then the function defined on  R n − { x 0}  by

 f (x) =

1

|

(8.115)

 x −  x 0| α

 is summable over any bounded measurable neighbourhood I of x 0  if and only if α

 is less than n. 

Proposition 6  Let x 0  be a point of  R n and α a positive number. Then the function f (x) defined on  R n − { x 0}  by (8.115) , for any bounded measurable neighbourhood I of x 0 , is summable over  R n −  I if and only if α is larger than n. 

The comparison criteria imply the following facts. 

Proposition 7  Let x 0  be a point of  R n, I a neighbourhood of x 0  and f a continuous function on I − { x 0} . If there exist α ∈  ( 0 , n) and M >  0  such that

| f (x)| ≤

 M

|

 , 

∀ x ∈  I − { x 0} , 

(8.116)

 x −  x 0| α

 then f is summable over I . Conversely, if

| f (x)| ≥

 M

|

 , 

∀ x ∈  I − { x 0}

 x −  x 0| α

 for some α ≥  n, M >  0 , then f is not summable over I . 

Note that (8.116) holds near  x 0 when, for example

lim | f (x)| · | x −  x 0| α =   < +∞

(8.117)

 x→ x 0

for some  α < n, and so  f  is summable over  I  if that happens. Furthermore, (8.117) holds on a neighbourhood  I  of  x 0 if, for example, 

lim | f (x)| · | x −  x 0|  α = +∞

 x→ x 0
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for some  α ≥  n. In this case  f  is not summable. 

Analogous properties hold on the complement of any neighbourhood of  x 0 , but for brevity we leave their formulation to the reader. 

Appendix to Chap. 8

8.10

Jensen’s Inequality

This section is devoted to the  integral Jensen inequality, namely the continuous version of the  discrete Jensen inequality  proved for convex functions of several variables in Sect. 3.15, Appendix to Chap. 3. 

We start by defining the integral of a vector-valued function  ϕ :  X ⊆ R n → R m, of components

 (ϕ 1 , ϕ 2 , . . . , ϕm) , 

defined on a measurable and bounded subset  X ⊂ R n. If the components  ϕk,  k =

1 ,  2 , . . . , m, are integrable on  X, we say that  ϕ  is  integrable  on  X.  By definition, the integral  of  ϕ  on  X  is the point in R m  of components ϕ 1  dx, 

 ϕ 2  dx, . . . , 

 ϕm dx , 

 X

 X

 X

as usual denoted by



 ϕ(x) dx . 

 X

(Integral) Jensen Inequality  Let X be a compact and measurable set in  R n and ϕ :  X ⊆ R n →  A ⊆ R m a continuous function on X. Suppose K is a closed convex set in  R m such that ϕ(X) ⊆  K, and f :  K ⊆ R m → R  is a convex function on K. 

 Then



1

 ϕ(x) dx ∈  K , 

 m(X) X









1

 f

 ϕ(x) dx

≤

1

 f (ϕ(x)) dx . 

 m(X) X

 m(X) X

 Proof  Consider a partition  P = { X 1 , X 2 , . . . , Xh} of  X  made of measurable sets, and let  x 1,  x 2, . . . ,  xh  be  h  points of  X  such that  xi ∈  Xi  for any  i = 1 ,  2 , . . . , h. The
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integral of a continuous function can be computed as a suitable limit (see Sect. 8.1), so the integral of  ϕ  on  X  is

 h





lim

 m(Xi) ϕ(xi) =

 ϕ(x) dx , 

diam{ Xi }→0

 X

 i=1

when the diameter of  P = { Xi} tends to zero. By assumption  ϕ(xi) ∈  K  for any i = 1 ,  2 , . . . , h, so the discrete Jensen inequality gives h



 h



 m(Xi)ϕ(xi)

 m(Xi)ϕ(xi)

 i=1

=  i=1

∈  K , 

 m(X)

 h

 m(Xi)

 i=1

and then

⎛

⎞

⎛

⎞

 h



 h



⎜

⎜

 m(Xi )ϕ(xi) ⎟

⎜

 m(Xi)ϕ(xi) ⎟

⎜

⎟

⎜

⎟

 i=1

⎟

⎜  i=1

⎟

 f ⎜

=

≤

⎜

⎟

 f ⎜

⎟

⎝

 m(X)

⎟

⎠

⎜

⎝

 h



⎟

⎠

 m(Xi)

 i=1

 h



 h



 m(Xi)f (ϕ(xi))

 m(Xi) f (ϕ(xi))

≤  i=1

=  i=1

 . 

 h



 m(X)

 m(Xi )

 i=1

Since  K  is closed, the conclusion follows from the limit as the diameter of  P = { Xi}

tends to zero. 

8.11

The Gamma Function. The Measure of the Unit Ball in R n

For any  t >  0 define

+∞

 (t) =

 xt−1 e− x dx . 

(8.118)

0

The function   :  ( 0 , +∞ ) →  ( 0 , +∞ )  thus defined is called  Gamma function. Note that for any  t >  0, the improper integral defining  (t)  is finite. 

The above function has interesting applications in Mathematical Analysis. Here

we shall illustrate a few properties of    and show how the use of this function allows to compute the measure of the unit ball  B = { x ∈ R n : | x| ≤ 1} in R n. 
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The    function generalises the well-known concept of  factorial  of a positive integer. For any  t >  0, in fact, 

+∞





+∞

 x→+∞

 (t + 1 ) =

 xt e− x dx = − xt e− x

+  t

 xt−1 e− x dx

 x=0

0

0

and so

 (t + 1 ) =  t(t) , 

∀  t >  0 . 

(8.119)

Since

+∞

 ( 1 ) =

 e− x dx = 1  , 

(8.120)

0

from (8.119) and (8.120) we deduce that

 (k + 1 ) =  k!  , 

∀  k = 0 ,  1 ,  2 , . . . 

Using    we may obtain a formula to compute integrals of the type

1

 Iα =

 ( 1 −  x 2 )α dx , 

 α > −1 . 

(8.121)

−1

For that, let us prove the following. 

Proposition 1  Given s, t >  0 , set

 π/ 2

 B(s, t) = 2

 ( cos  ϑ) 2 s−1 ( sin  ϑ) 2 t−1  dϑ . 

(8.122)

0

 Then

 B(s, t) =  (s)(t) . 

(8.123)

 (s +  t)

The function in (8.122) is also known as  Beta function. 

 Proof  Given  t >  0, the change of variable  x =  u 2 / 2 in (8.118) produces

+∞

 (t) = 21− t

 u 2 t−1 e− u 2 / 2  du . 

(8.124)

0

[image: Image 2148]

[image: Image 2149]

[image: Image 2150]

8.11 The Gamma Function. The Measure of the Unit Ball in R n

391

For  s, t >  0, then, we find

+∞

+∞

 (s)(t) = 22− s− t

 u 2 s−1 e− u 2 / 2  du ·

 v 2 t−1 e− v 2 / 2  dv =

0

0



(8.125)

= 22− s− t

 u 2 s−1 v 2 t−1 e− (u 2+ v 2 )/ 2  du dv , X

where  X = { (u, v) ∈ R2 :  u >  0 , v >  0} is the first quadrant of R2. Passing to polar coordinates in the last integral, 

+∞

 π/ 2

 (s)(t) = 22− s− t

  2 (s+ t)−1 e−  2 / 2  d ·

 ( cos  ϑ) 2 s−1 ( sin  ϑ) 2 t−1  dϑ , 

0

0

so (8.124), (8.125) and definition (8.122) give π/ 2

 (s)(t) = 2 (s +  t)

 ( cos  ϑ) 2 s−1 ( sin  ϑ) 2 t−1  dϑ =  (s +  t)B(s, t) , 0

which is precisely (8.123). 

The above easily implies

Proposition 2  For any α > −1  the integral Iα in (8.121)  equals 1

 Iα =

 ( 1 −  x 2 )α dx =  ( 1 / 2 )(α + 1 ) . 

−1

 (α + 3 / 2 )

 Proof  The change of variable  x = sin  ϑ  in (8.121) gives π/ 2

 Iα = 2

 ( cos  ϑ) 2 α+1  dϑ =  B(α + 1 ,  1 / 2 ) (8.126)

0

by definition (8.122). The claim follows now from this and (8.123). 

Also note that if we choose  s =  t = 1 / 2 in (8.123), and recalling that  ( 1 ) = 1, we deduce in particular

 π/ 2

 (( 1 / 2 )) 2 =  B( 1 / 2 ,  1 / 2 ) = 2

 dϑ =  π , 

0

and hence

√

 ( 1 / 2 ) =

 π . 

(8.127)
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Now let us prove the following

Formula for the Measure of the Unit Ball in R n For any n ∈ N  denote by ωn the measure mn(B) of the unit ball B = { x ∈ R n : | x| ≤ 1}  in  R n. Then ωn =  mn(B) =

 π n/ 2

 , 

 n = 1 ,  2 ,  3 , . . . 

(8.128)

 (n/ 2 )(n/ 2 )

The reader should notice that, due to (8.127), (8.120) and (8.119), 

√

√

 ( 1 / 2 ) =

 π , 

 ( 1 ) = 1  , 

 ( 3 / 2 ) = 1  π , 

2

and for  n = 1 ,  2 ,  3 formula (8.128) returns, as expected, the well-known values ω 1 = 2  , 

 ω 2 =  π , 

 ω 3 = 4  π . 

3

Observe moreover that (8.128) and (8.119) imply ωn+2

2

=  nπ

 (n/ 2 )

=

 π

 , 

 ωn

 n + 2  (n/ 2 + 1 )

 n + 2

so for even indices we have

 ω 2 k =  π ω 2 k−2 =  . . . =  πk−1

 k

 k!  ω 2 =  πk

 k!  , 

(8.129)

whilst for odd indices

 ω 2 k+1 =

2 π

 ω 2 k−1 =  . . . =

2 kπ k

 ω 1 = 2 k+1 πk

2 k + 1

 ( 2 k + 1 )( 2 k − 1 ) · · · 3

 ( 2 k + 1 )!!  , 

(8.130)

where  ( 2 k + 1 )!! =  ( 2 k + 1 ) ·  ( 2 k − 1 ) · · · 3 · 1. 

In particular

lim  ωn = 0  . 

 n→+∞

This fact is surprising, since the measure of the unit hypercube  Q = [−1 ,  1] n, in which  B  is inscribed, equals 2 n, and so it diverges as the dimension increases! 

 Proof of (8.128) We argue by induction on the dimension. We have already seen the formula for  n = 1. When  n ≥ 1, the reduction formulas of Sect. 8.8 imply 1

 ωn+1 =  mn+1 (B) =

 mn(Bt ) dt , 

(8.131)

−1
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where  Bt = { x ∈ R n :  (x, t) ∈  B} = { x ∈ R n : | x|2 ≤ 1 −  t 2}. For any  t ∈  (−1 ,  1 ), 

√

therefore,  Bt  is a ball of radius  r =

1 −  t 2, so

 mn(Bt ) =  ωn ( 1 −  t 2 )n/ 2 =

 π n/ 2

 ( 1 −  t 2 )n/ 2  . 

(8.132)

 (n/ 2 )(n/ 2 )

By (8.131), (8.132) and (8.126) we then have 1

1

 ωn+1 =

 mn(Bt ) dt =

 π n/ 2

 ( 1 −  t 2 )n/ 2  dt =

−1

 (n/ 2 )(n/ 2 ) −1

=

 π n/ 2

 ( 1 / 2 )(n/ 2 + 1 ) . 

 (n/ 2 )(n/ 2 )

 (n/ 2 + 3 / 2 )

But



















 n

 n

 n

 n + 1

 n + 1

 

+ 1 =  n 

 , 

 

+ 3 =  

+ 1 =  n + 1 

 , 

2

2

2

2

2

2

2

2

so we obtain

 n+1

2

 ωn+1 =

 π 



 n + 1   n + 1

2

2

and then the claim. 

Example 10 in Sect. 9.8 will furnish an alternative proof for (8.129) and (8.130). 
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9.1

Introduction

In the previous chapter we introduced the theory of the Peano-Jordan measure and

a definition of integral that essentially goes back to Riemann (1854). The years

following this first definition witnessed many attempts to generalise that notion. 

The theory put forward by Lebesgue at the beginning of the last century (1902)

is perhaps the most sophisticated one, but without doubt the most flexible and

satisfying one as well. First of all, while the Peano-Jordan measure of a subset

 E ⊂ R n  is defined by an approximation process involving pluri-intervals, the Lebesgue measure is built using a double approximation. The first step consists in

defining the measure of an arbitrary open set  A  by approximating it from within using pluri-intervals, and the measure of a compact set  K  by approximating it with pluri-intervals but from outside. Next, one defines the measure of an arbitrary

set  E  by approximating it with bigger open sets and smaller compact sets. The consequence is that all open sets and all compact sets in R n  are “measurable”, which is not true in the Peano-Jordan theory. 

Moreover, the Lebesgue measure enjoys the remarkable property of being

 countably additive (Theorem 1, Sect. 9.4). This, too, is false for the Peano-Jordan measure. 

Particularly relevant in Lebesgue’s theory are the sets of zero measure, precisely

because countable additivity guarantees that the union of a sequence of zero-

measure sets  Ek  has zero measure. Furthermore (see Sect. 9.4) any measurable set with finite measure coincides, up to zero-measure sets, with a countable union of

compact sets and with a countable intersection of open sets. 

Enlarging the family of measurable sets (any Peano-Jordan measurable set is

Lebesgue measurable) enables us to integrate many more functions than what we

can do in Riemann’s theory. The definition of integral suggested by Lebesgue, 

though, has the disadvantage of not providing a concrete procedure for computing
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integrals explicitly. On the other hand, Fubini’s theorem allows to reduce a multiple integral to integrals in one variable. 

But the Lebesgue theory’s true strength is encapsulated by the theorems ensuring

when limits and integrals can be interchanged, which are way more general than

what the Riemann integral allows for. These results alone justify the use of

Lebesgue’s theory to address the most complex and delicate issues of  Mathematical Analysis. 

9.2

Pluri-Intervals. Open Sets. Compact Sets

In the sequel we shall call

 I = [ a 1 , b 1] × [ a 2 , b 2] ×  . . . × [ an, bn]

(9.1)

a  closed interval  of R n, and a  closed pluri-interval P  will be a finite union of closed intervals. The measure  m(I )  of  I  is defined as

 n

; 

 m(I ) =

 (bi −  ai) , 

(9.2)

 i=1

so it equals the product of the lengths of the factors [ ai, bi],  i = 1 ,  2 , . . . , n. 

If  I  is the interval in (9.1), setting

 n

; 

 Iδ =

[ ai −  δ, bi +  δ]  , 

with  δ >  0 , 

 i=1

we have

◦

 I ⊂  I δ, 

lim  m(Iδ) =  m(I ) . 

 δ→0+

That is to say: given an interval  I , for any  ε >  0 there is an interval  J  such that

◦

 I ⊂  J , 

 m(J ) < m(I ) +  ε . 

(9.3)

◦

Similarly, if  I  is non-empty, for any  ε >  0 there is an interval  J  such that

◦

 J  ⊂  I , 

 m(J  ) > m(I ) −  ε . 

(9.4)

For any  i = 1 ,  2 , . . . , n, fix real numbers

 ai,  0  < ai,  1  < . . . < ai,N . 

 i

[image: Image 2190]
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Fig. 9.1

a2,5

a2,3

a2,1

a

a

a

a

1,1

1,2

1,4

1,7

Given  i  and  j , consider the hyperplanes

2

3

 Hij =  x ∈ R n :  xi =  ai,j . 

Their union G is called a  grid. A grid determines  N 1 ×  N 2 ×  . . . ×  Nn  distinct closed intervals, with endpoints lying on the hyperplanes:

 n

; 

 J =

[ ai,s

]  , 

(9.5)

 i −1  , ai,si

 i=1

where  si ∈ {1 ,  2 , . . . , Ni} for any  i = 1 ,  2 , . . . , n. 

We say that a pluri-interval  P  is  determined by the grid  G when it is a union of intervals of type (9.5) (see Fig. 9.1). 

 N

! 

So if  P =

 Jk, with  J 1 , J 2 , . . . , JN  distinct intervals determined by G, we let k=1

the measure of  P  be the quantity

 N



 m(P ) =

 m(Jk) . 

(9.6)

 k=1

This sum does not depend on the particular grid G chosen to represent  P .  It is straightforward to see that by adding to G any other hyperplane, possibly generating

a different representation for  P , the sum in (9.6) remains unchanged. By induction then, if G is any grid containing G, the quantity in (9.6) stays the same. 

If, furthermore,  P  can be expressed as union of intervals coming from two grids G1 ,  G2 ,  the measures of  P  using G1 and G2 coincide, since both are equal to the measure of  P  coming from the grid G1 ∪ G2. 

If  P 1 and  P 2 are pluri-intervals determined by G1 and G2, we have

◦

◦

 P  1 ∩  P  2 = ∅

⇒  m(P 1 ∪  P 2 ) =  m(P 1 ) +  m(P 2 ) . 

(9.7)
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This follows from the definition, because if  P 1 , P 2 do not have common interior points they are determined by distinct intervals of G1 ∪ G2. 

Similarly, writing arbitrary pluri-intervals  P 1 and  P 2 as unions of intervals of G1 ∪ G2, by (9.6) we deduce

 m(P 1 ∪  P 2 ) ≤  m(P 1 ) +  m(P 2 ) . 

(9.8)

Now we define the measure of open and compact subsets in R n. If  A ⊆ R n  is open  we define its measure to be

 m(A) = sup { m(P ) :  P ⊂  A, P  is a pluri-interval}  . 

(9.9)

◦

Note that if  P  is a pluri-interval, the measure of its interior  P , according to (9.9), coincides with the measure of  P  from (9.6):

◦

 m(P ) =  m(P ) . 

(9.10)

◦

 N

! 

The inequality  m(P ) ≤  m(P )  is clear. Vice versa, suppose  P =

 Ik, with

 k=1

 I 1 , I 2 , . . . , IN  distinct intervals determined by G. Given  ε >  0, by (9.4) there are intervals  J 1 , J 2 , . . . , JN  such that

◦

 Jk ⊂  I k, 

 m(Jk) > m(Ik) −  ε , 

∀  k = 1 ,  2 , . . . , N. 

 N

 N

! 

◦

Put  Q =

 Jk, so  Q ⊂  P  and

 k=1

 N



 m(Q) =

 m(Jk) > m(P ) −  ε . 

 k=1

◦

From this it follows that  m(P ) > m(P ) −  ε, whence (9.10). 

Definition (9.9) says that  m  is  monotone  on open sets, so A ⊆  B

⇒  m(A) ≤  m(B)

for any open sets  A,  B. If  K ⊂ R n  is  compact  we define its measure by



◦



 m(K) = inf  m(P ) :  P ⊃  K, P  is a pluri-interval  . 

(9.11)

The reasoning leading to (9.10) also shows that, using (9.3), if  P  is a pluri-interval then (9.11) gives as measure of  P  exactly the number in (9.6). 
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Evidently  m  is  monotone  on compact sets as well, i.e. 

 H ⊆  K

⇒  m(H ) ≤  m(K)

(9.12)

for any compact sets  K, H . 

The measure is  invariant under translations  on open sets and compact sets alike. 

For instance, if  A  is open and  x 0 ∈ R n, 

 m(x 0 +  A) =  m(A) , 

(9.13)

where  x 0 +  A = { x ∈ R n :  x =  x 0 +  z, z ∈  A}. Property (9.13) holds for intervals, hence for pluri-intervals. A similar observation goes for  homotheties: for any  λ >  0

and any open (or compact) set  A ⊆ R n  we have

 m(λA) =  λn m(A) , 

(9.14)

where  λ A = { x ∈ R n :  x =  λz, z ∈  A}. 

Before we move on to arbitrary subsets, let us establish a few properties of  m, namely:  subadditivity  on open sets and  superadditivity  on compact sets. To do that we start with a lemma. 

Lemma 1  Take open sets A, B in  R n and K ⊂  A ∪  B compact. There exists r >  0

 such that, if x ∈  K, the ball Br (x) is entirely contained in one of the open sets. 

 Proof  By Proposition 4, Sect. 2.3, the function f (x) =  d(x,  R n −  A) +  d(x,  R n −  B) , x ∈ R n, 

is continuous. As  K  is contained in  A ∪  B,  f (x)  is never zero on  K, so M = min{ f (x) :  x ∈  K}

must be positive. Given  r ∈  ( 0 , M/ 2 ), taking  x ∈  K  implies  f (x) >  2 r  and hence either  d(x,  R n −  A) > r  or  d(x,  R n −  B) > r. In the former case  Br (x) ⊆  A, in the latter  Br (x) ⊆  B. 

Finite Subadditivity on Open Sets  Let A, A 1 , A 2  be open sets in  R n with A ⊆

 A 1 ∪  A 2 . Then

 m(A) ≤  m(A 1 ) +  m(A 2 ) . 

(9.15)

 Proof  Let  P ⊂  A  be a pluri-interval. By Lemma 1 there is  r >  0 such that, if  x ∈  P , N

! 

 Br (x)  is contained in one of  A 1,  A 2 at least. Choose a grid G such that  P =

 Ik, 

 k=1

[image: Image 2194]
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where  I 1,  I 2 , . . . , IN  are determined by G. Possibly adding to G a finite number of hyperplanes we may assume that all intervals determined by G have diameter

smaller than  r. Now put

" 

" 

 P 1 =

{ Ik :  Ik ⊂  A 1} , 

 P 2 =

{ Ik :  Ik ⊂  A 2} , 

so  P 1 ∪  P 2 =  P , and by (9.8), 

 m(P ) ≤  m(P 1 ) +  m(P 2 ) ≤  m(A 1 ) +  m(A 2 ) . 

As  P  is arbitrary, the claim follows. 

Countable Subadditivity on Open Sets  Let A, A 1 , A 2 , . . . , Ak, . . . be open sets

∞

! 

 in  R n, with A =

 Ak. Then

 k=1

+∞



 m(A) ≤

 m(Ak) . 

 k=1

 Proof  A pluri-interval  P ⊂  A  is compact, so by the characterisation of compact N

! 

sets of Sect. 2.12 there is an integer  N  such that  P ⊂

 Ak. Then (9.15) implies

 k=1





 N

" 

 N



+∞



 m(P ) ≤  m

 Ak

≤

 m(Ak) ≤

 m(Ak)

 k=1

 k=1

 k=1

and hence the assertion. 

Finite Superadditivity on Compact Sets  Let H , K be compact in  R n, with H ∩

 K = ∅ . Then

 m(H ) +  m(K) ≤  m(H ∪  K) . 

(9.16)

 Proof  Set  M =  M(H, K) = min{ d(x, K) :  x ∈  H }. As  H  is compact and disjoint from  K,  we have  M >  0. 

◦

Let  P  be a pluri-interval such that  P ⊃  K ∪  H . As in the proof of subadditivity N

! 

on open sets, we may suppose  P =

 Ik, with distinct intervals  I 1 , I 2 , . . . , IN

 k=1

determined by a suitable grid G and of diameter less than  M. Each interval then intersects one compact set at most. Letting

" 

" 

 P 1 =

{ Ik :  Ik ∩  H = ∅} , 

 P 2 =

{ Ik :  Ik ∩  K = ∅} , 

[image: Image 2195]
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◦

◦

we have  H ⊆  P 1,  K ⊆  P 2 and  P  1 ∩  P  2 = ∅. By (9.7) and (9.12) then, m(H ) +  m(K) ≤  m(P 1 ) +  m(P 2 ) =  m(P 1 ∪  P 2 ) ≤  m(P ) and hence (9.16). 

In conclusion observe that

 K ⊂  A

⇒  m(K) ≤  m(A)

(9.17)

if  K  is compact and  A  open. This follows directly from definitions (9.9), (9.11) and the following fact. 

Lemma 2  If K is compact and A open, K ⊂  A, there exists a pluri-interval P

◦

 such that K ⊂  P ⊂  P ⊂  A. 

◦

 Proof  For any  x ∈  K  there is a closed interval  Ix ⊂  A  with  x ∈  I x. By compactness, N

! ◦

we can find a finite number of such intervals, say  I 1 , I 2 , . . . , IN , so that  K ⊂

 I k. 

 k=1

 N

! 

Now choose  P =

 Ik. 

 k=1

9.3

Bounded Measurable Sets

From the measure of compact and open sets we can construct the  outer measure me

and the  inner measure mi  of any bounded subset  E  in R n:

 me(E) = inf { m(A) :  A ⊇  E, A  is open} ; 

(9.18)

 mi(E) = sup { m(K) :  K ⊆  E, K  is compact}  . 

Note that  mi  and  me  are monotone, i.e. if  E ⊆  F  and  F  is bounded mi(E) ≤  mi(F ), 

 me(E) ≤  me(F ) . 

By (9.17), moreover, 

 mi (E) ≤  me(E)
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for any bounded  E. A bounded subset  E  in R n  is called  measurable  if the inner and outer measures coincide. Their common value, written

 m(E) =  mi(E) =  me(E) , 

is the ( Lebesgue)  measure  of  E. 

In other terms,  E  is measurable if and only if, for any  ε >  0, there exist a compact set  K ⊆  E  and an open set  A ⊇  E  such that

 m(A) −  m(K) < ε . 

(9.19)

Immediately, if  A  is open and bounded,  A  is measurable. In fact, by (9.9), for any  ε >  0 there is a closed pluri-interval such that  m(A) −  m(P ) < ε. Since m(P ) ≤  mi(A) ≤  me(A) =  m(A), the Lebesgue measure of  A  coincides with (9.9). 

Similarly, any compact set  K  is measurable, and its Lebesgue measure coincides with (9.11). 

If  E  is bounded and we write  m(E),  m(E)  for the outer and inner Peano-Jordan measures, then

 m(E) ≤  mi(E) ≤  me(E) ≤  m(E) . 

So, if  E  is Peano-Jordan measurable then it is Lebesgue measurable as well. The converse (see Example 1, next section) is typically false. 

We pass to the additivity of  m  on bounded measurable sets, starting from a

lemma. 

Lemma  Let E, F be bounded. Then

 me(E ∪  F ) ≤  me(E) +  me(F ) . 

(9.20)

 If, further, E ∩  F = ∅ , then

 mi(E) +  mi(F ) ≤  mi(E ∪  F ) . 

(9.21)

 Proof  Given  ε >  0, consider open sets  A, B  such that  A ⊇  E,  B ⊇  F  and m(A) < me(E) +  ε , 

 m(B) < me(F ) +  ε . 

As  E ∪  F ⊆  A ∪  B, by subadditivity on open sets

 me(E ∪  F ) ≤  m(A ∪  B) ≤  m(A) +  m(B) < me(E) +  me(F ) + 2 ε, whence (9.20). Property (9.21) is proved in a similar way, using superadditivity on compact sets. 
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Properties (9.20) and (9.21) immediately imply finite additivity on measurable sets. 

Finite Additivity on Measurable Sets  Let E, F be measurable, bounded and

 disjoint. Then E ∪  F is measurable and

 m(E ∪  F ) =  m(E) +  m(F ) . 

(9.22)

Proposition  If E, F are bounded and measurable, also E ∪  F , E −  F and E ∩  F

 are measurable. 

 Proof  We claim  E −  F  is measurable. Given  ε >  0 there exist open sets  A, B  and compact sets  H, K  such that  H ⊆  E ⊆  A,  K ⊆  F ⊆  B, and m(A) −  m(H ) < ε , 

 m(B) −  m(K) < ε . 

We can always assume  A  and  B  bounded, possibly intersecting them with open intervals containing  E  and  F . Note that  H −  B ⊆  E −  F ⊆  A −  K. By the additivity on bounded measurable sets

 m(A −  K) −  m(H −  B) =  m ((A −  K) −  (H −  B)) ≤

≤  m((A −  H ) ∪  (B −  K)) , 

so from (9.15) and (9.22) we have

 m(A −  K) −  m(H −  B) ≤  m(A −  H ) +  m(B −  K) =

=  m(A) −  m(H ) +  m(B) −  m(K) <  2 ε . 

By (9.19),  E −  F  is then measurable. 

Now as  E ∩  F =  E −  (E −  F )  it follows that  E ∩  F  is measurable, while E ∪  F =  E ∪  (F −  E)  is measurable by finite additivity. 

Let us now consider countably many measurable sets. 

Countable Additivity on Measurable Sets  Let Ek be a collection of pairwise-

∞

! 

 disjoint bounded measurable sets such that E =

 Ek is bounded. Then E is

 k=1

 measurable and

+∞



 m(E) =

 m(Ek) . 

 k=1

[image: Image 2203]
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 Proof  Repeatedly applying (9.22) gives

 N

 m(Ek) =  m(E 1 ∪ E 2 ∪ ... ∪ EN) =

 k=1

=  mi(E 1 ∪  E 2 ∪  . . . ∪  EN) ≤  mi(E) , 

∀  N ∈ N , 

so as  N → +∞, 

+∞

 m(Ek) ≤  mi(E). 

(9.23)

 k=1

Conversely, given  ε >  0, for any  k ∈ N let  Ak ⊇  Ek  be an open set such that m(Ak) < m(Ek) +  ε/ 2 k. By countable subadditivity on open sets, 





∞

" 

+∞



+∞



 me(E) ≤  m

 Ak

≤

 m(Ak) ≤

 m(Ek) +  ε , 

 k=1

 k=1

 k=1

implying, as  ε  is arbitrary, 

+∞



 me(E) ≤

 m(Ek) . 

(9.24)

 k=1

The claim follows from (9.23) and (9.24). 

∞

! 

Corollary  If Ek is a collection of measurable sets such that E =

 Ek is bounded, 

 k=1

 then E is measurable. 

 Proof  Put

 k−1

" 

 F 1 =  E 1 , 

 F 2 =  E 2 −  E 1 , . . . , Fk =  Ek −

 Ei . 

 i=1

The  Fk  are measurable, pairwise disjoint and

∞

" 

 E =

 Fk . 

 k=1

[image: Image 2204]
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9.4

Unbounded Measurable Sets

Consider an  unbounded  subset  E  in R n. Call

 Br =  Br ( 0 ) = { x ∈ R n : | x|  < r}

the ball at the origin with radius  r >  0. We say  E  is  measurable  if, for any  r >  0, E ∩  Br  is measurable, and in this case we define the measure of  E  as m(E) = lim  m(E ∩  Br ) . 

(9.25)

 r→+∞

The limit in (9.25) exists since the function  r →  m(E ∩ Br )  is increasing. Moreover, it coincides with the measure of  E  when  E  is bounded and measurable. 

We observed earlier that an open bounded set  A  is measurable and its Lebesgue measure coincides with (9.9). The same happens if  A  is unbounded. For any  r >  0, in fact,  A ∩  Br  is open, bounded and hence measurable. Therefore  A  is measurable in the above sense. Setting

 λ = sup{ m(P ) :  P ⊂  A, P  is a pluri-interval}  , 

for any  r >  0

 m(A ∩  Br ) = sup{ m(P ) :  P ⊂  A ∩  Br , P  is a pluri-interval}  , and hence

lim  m(A ∩  Br ) ≤  λ . 

(9.26)

 r→+∞

Conversely, if  P ⊂  A  is a pluri-interval, there is  r 0  >  0 such that  P ⊂  A ∩  Br  for any  r > r 0. Therefore

 m(P ) ≤ lim  m(A ∩  Br ) , 

 r→+∞

and then

 λ ≤ lim  m(A ∩  Br ) . 

(9.27)

 r→+∞

By (9.26) and (9.27) we obtain

 λ = lim  m(A ∩  Br ) , 

 r→+∞

showing that the Lebesgue measure of  A  coincides with (9.9) in this case, too. 

The next result summarises the main properties of measurable sets. 

[image: Image 2205]

406

9

The Lebesgue Integral

Theorem 1  If E is a measurable subset of  R n, its complement  R n −  E is

∞

*

∞

! 

 measurable. If Ek is a family of measurable sets, both

 Ek and

 Ek are

 k=1

 k=1

 measurable. Moreover





+∞

" 

+∞



 m

 Ek

≤

 m(Ek) , 

(9.28)

 k=1

 k=1

 and if the Ek are pairwise disjoint, 





+∞

" 

+∞



 m

 Ek

=

 m(Ek) . 

(9.29)

 k=1

 k=1

 Proof  If  E  is measurable, for any  r >  0

 ( R n −  E) ∩  Br =  Br −  (Br ∩  E)

so the previous section’s proposition says that  ( R n −  E) ∩  Br  is measurable. Hence R n −  E  is measurable. 

If  Ek  is a collection of measurable sets, for any  r >  0





∞

" 

∞

" 

 Ek

∩  Br =

 (Ek ∩  Br ), 

 k=1

 k=1

∞

! 

making the above measurable by the previous section’s corollary. Hence

 Ek  is

 k=1

measurable. Finally, 

∞

#

∞

" 

 Ek = R n −

 ( R n −  Ek)

 k=1

 k=1

is measurable by what was said above. 

Let us prove (9.28). Setting

∞

" 

 k−1

" 

 E =

 Ek , 

 F 1 =  E 1  , 

 F 2 =  E 2 −  E 1 , . . . , Fk =  Ek −

 Ei, . . . , 

 k=1

 i=1

∞

! 

the  Fk  are measurable, pairwise disjoint and  E =

 Fk. For any  r >  0 then, by

 k=1

the countable additivity on bounded measurable sets (previous section), 

+∞



+∞



+∞



 m(E ∩  Br ) =

 m(Fk ∩  Br ) ≤

 m(Ek ∩  Br ) ≤

 m(Ek) , 

 k=1

 k=1

 k=1
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and hence (9.28) when computing the limit as  r → +∞. If the  Ek  are pairwise disjoint, given  N , by finite additivity on bounded measurable sets we have





 N



 N

" 

 m(Ek ∩  Br ) =  m

 (Ek ∩  Br ) ≤  m(E) , 

 k=1

 k=1

for any  r >  0. As  r → +∞ we find

 N

 m(Ek) ≤  m(E), 

 k=1

and since  N  is arbitrary, 

+∞

 m(Ek) ≤  m(E). 

 k=1

Then (9.29) follows from the above inequality and (9.28). 

Remarks (On Sets of Zero Measure) It will become clearer in the sequel, when

we introduce the concept of integral, that  zero-measure sets  play a central role in Lebesgue’s theory. For the time being observe that if  E ⊂ R n  is measurable with zero measure, any subset  F  of  E  is measurable and has measure zero. We express this property by saying that the Lebesgue measure is  complete. 

If  E  is measurable and  E 0 has measure zero, moreover, also  E ∪  E 0 and  E −  E 0

are measurable and

 m(E ∪  E 0 ) =  m(E −  E 0 ) =  m(E) . 

That is,  adding to E or subtracting from E a zero-measure set produces a

 measurable set with the same measure as E. For this reason, if we are interested in a certain measure-related property on the points of  E,  it will be irrelevant that the property holds at every point on  E  rather than just on  E −  E 0  ,  where  E 0 has measure zero. One says that a certain property holds  almost everywhere  on  E, or  for almost every x ∈  E,  if it holds on  E −  E 0 ,  where  m(E 0 ) = 0 .  It is customary to abbreviate this by “a.e. ”. 

We end these observations on zero-measure sets by noting that





+∞

" 

 m(Ek) = 0 , 

∀  k ∈ N ⇒  m

 Ek

= 0  , 

 k=1

i.e. the union of a sequence of zero-measure sets has measure zero. 
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 Example 1  It is immediate to see that if  x ∈ R n  then  m({ x} ) = 0, i.e. singletons have measure zero. From what we said above, the measure of  E = { x 1 , x 2 , . . . , xk, . . . } is zero. 

Then also

 F = { q ∈ [0 ,  1] n :  q =  (q 1 , q 2 , . . . , qn) ∈ Q}  , has  m(F ) = 0. Note that this set is not Peano-Jordan measurable, since its outer measure is 1 whereas the inner measure is 0 (see the example in Sect. 8.6). 

 Example 2  Let  xk  be the collection of rational numbers in [0 ,  1]. Given  ε ∈  ( 0 ,  1 / 2 ), define

∞

" 



 A =  ( 0 ,  1 ) ∩

 xk −

 ε

 , xk +

 ε

 . 

2 k+1

2 k+1

 k=1

Now,  A  is open and its measure is bounded:

+∞

 ε

 m(A) ≤

=  ε . 

2 k

 k=1

Put  K = [0 ,  1]− A, i.e.  K =  ∂A  is the boundary of  A. As  m(K) = 1− m(A) ≥ 1− ε >  1 / 2, the boundary’s measure is larger than the measure of  A. 

Based on this example the reader may construct an open set whose Lebesgue measure

is less than a given positive number  ε  and whose boundary has infinite measure. 

In Lebesgue’s theory is it quite easy to work with monotone sequences of sets. A

sequence  Ek  of subsets of R n  is called  increasing  if

 Ek ⊆  Ek+1  , 

∀  k ∈ N , 

and  decreasing  when

 Ek ⊇  Ek+1  , 

∀  k ∈ N . 

Theorem 2 (Monotone Sequences of Measurable Sets)  If Ek is an increasing

 sequence of measurable sets, 





∞

" 

 m

 Ek

= lim  m(Ek) . 

(9.30)

 k →+∞

 k=1
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 If Ek is a decreasing sequence of measurable sets and m(E 1 ) < +∞ , then





∞

#

 m

 Ek

= lim  m(Ek) . 

(9.31)

 k→+∞

 k=1

∞

! 

 Proof  Let us prove (9.30). Define  E =

 Ek, so

 k=1

lim  m(Ek) ≤  m(E)

(9.32)

 k→+∞

(the limit exists by monotonicity). If

lim  m(Ek) = +∞ , 

 k→+∞

inequality (9.32) implies (9.30). Otherwise, in particular,  m(Ek) < +∞ for any k ∈ N. Define

 F 1 =  E 1  , 

 F 2 =  E 2 −  E 1 , . . . , Fk =  Ek −  Ek−1 , . . . . 

∞

! 

These are measurable, pairwise disjoint and  E =

 Fk, so

 k=1

+∞



 k



 m(E) =

 m(Fk) = lim

 m(Fi ) =

 k→+∞

 k=1

 i=1

= lim  m(F 1 ∪  F 2 ∪  . . . ∪  Fk) = lim  m(Ek) , 

 k→+∞

 k→+∞

proving (9.30). As for (9.31), observe that if  Ek  is decreasing,  E 1 −  Ek  is an increasing sequence. Hence













∞

#

∞

#

∞

" 

 m(E 1 ) −  m

 Ek

=  m E 1 −

 Ek

=  m

 (E 1 −  Ek) =

 k=1

 k=1

 k=1

= lim  m(E 1 −  Ek) =  m(E 1 ) − lim  m(Ek) , 

 k→+∞

 k →+∞

and (9.31) follows from  m(E 1 ) < +∞. 

 Example 3  Formula (9.31) might not hold if  m(E 1 ) = +∞. In fact, taking  Ek = [ k, +∞ )





∞

*

∞

*

for any  k = 1 ,  2 , . . . , we have

 Ek = ∅, so  m

 Ek

= 0 while  m(Ek) = +∞ for

 k=1

 k=1

any  k ∈ N. 
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 Example 4 (Generalised Cantor Set)  Fix a real number  s ≥ 3 and define C 1 = [0 ,  1] −  I , 

where  I  is the open interval with midpoint 1 / 2 and length 1 /s: 1

1

 I =

− 1  , + 1 ; 

2

2 s  2

2 s

 C 1 is then the union of two closed intervals (Fig. 9.2). Now let  C 2 be the set obtained removing from each interval a concentric open interval of length 1 /s 2 (see Fig. 9.2). 

Iterating for any  k ∈ N, call  Ck+1 the set remaining after we remove from each of the 2 k closed intervals in  Ck  a concentric open interval of length 1 /sk+1. In this way we generate a decreasing sequence  Ck  of measurable sets. 

Let us find the measure of  Ck.  For any  k

 m(Ck+1 ) =  m(Ck) − 2 k =  m(Ck−1 ) − 2 k−1 − 2 k =

 sk+1

 sk

 sk+1

(9.33)

 k



=

2 i

 . . . =  m(C 1 ) − 2 − 22 −  . . . − 2 k = 1 −

 . 

 s 2

 s 3

 sk+1

 si+1

 i=0

For any  s ≥ 3 define

∞

#

 Ks =

 Ck . 

 k=1

 K 3 is called  Cantor set, while  Ks  is the  generalised Cantor set  for  s >  3. For any  s ≥ 3, Ks  is compact with empty interior. By (9.31) and (9.33), 

∞



∞

2 k

2 k

 m(Ks ) = 1 −

= 1 − 1

= 1 − 1 ·

1

=  s − 3  . 

 sk+1

 s

 sk

 s

1 − 2 /s

 s − 2

 k=0

 k=0

In particular, the Lebesgue measure of the Cantor set is zero, while  m(Ks ) >  0 for any s >  3. Therefore for any  s >  3 the generalised Cantor set  Ks  is compact with empty interior, but it has positive measure. 

Fig. 9.2 Constructing the

0

1

Cantor set

0

1/3

2/3

1

0

9

/

1

9

/

2

1/3
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9
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7
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The next result will show that unbounded measurable sets may also be approxi-

mated, in a measure-theoretical sense, by open and compact sets. 

Theorem 3  If E is measurable, 

 m(E) = inf{ m(A) :  A ⊇  E, A open}  , 

(9.34)

 m(E) = sup{ m(K) :  K ⊆  E, K compact}  . 

(9.35)

 Proof  Property (9.34) is obvious if  m(E) = +∞. Otherwise, for any  k  consider Ek =  E ∩  (Bk −  Bk−1 ),  with  B 0 = ∅. Given  ε >  0, by (9.18) we know that for any

∞

! 

 k  there is an open set  Ak ⊇  Ek  such that  m(Ak) < m(Ek)+ ε/ 2 k. Set  A =

 Ak, so

 k=1

+∞



+∞



 m(A) ≤

 m(Ak) < 

 m(Ek) +  ε =  m(E) +  ε , 

 k=1

 k=1

and now (9.34) follows. To prove (9.35) define  Fk =  E ∩  Bk  and pick compact sets Kk  contained in  Fk  such that  m(Kk) > m(Fk) − 1 /k. Then lim  m(Kk) = lim  m(Fk) =  m(E) , 

 k→+∞

 k→+∞

proving (9.35). 

 Example 5  The theorem just proved implies that if  E  is any measurable subset of R n,  there exists a family of open sets  A such that  A ⊇  E  for any  k  and  m(E) = lim  m(A  ). For k

 k

 k

 k→+∞

 k

*

any  k, let  Ak =

 A . This is open and

 i

 i=1

 Ak ⊇  Ak+1 ⊇  E, 

∀  k ∈ N , 

lim  m(Ak) =  m(E) . 

 k→+∞

In the same way we can construct an increasing sequence of compact subsets  Kk  such that Kk ⊆  E  for any  k  and  m(E) = lim  m(Kk). If, in particular,  E  has finite measure then k→+∞









∞

" 

∞

#

∞

" 

∞

#

 m

 Kk

=  m(E) =  m

 Ak , 

 Kk ⊆  E ⊆

 Ak . 

 k=1

 k=1

 k=1

 k=1

Hence  E  coincides, up to a zero-measure set, with an increasing union of compact sets and with a decreasing intersection of open sets. 
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 Example 6  Theorem 3 and (9.13) easily imply that the set  x 0 +  E = { x ∈ R n :  x =

 x 0 +  z, z ∈  E}, obtained displacing a measurable set  E, is measurable, and m(x 0 +  E) =  m(E) . 

The above relation says that the Lebesgue measure is  translation-invariant. Similarly, from

(9.14) we immediately see that for any  λ >  0,  λE = { x ∈ R n :  x =  λz, z ∈  E} is measurable and

 m(λE) =  λn ·  m(E) . 

(9.36)

 Example 7 (A Non-Measurable Set)  Consider on R the relation

 x ∼  y

if and only if

 x −  y

is rational . 

This is manifestly an equivalence relation, and for any  x ∈ R there is a real number  y ∈

 ( 0 ,  1 )  such that  x ∼  y.  So let  E ⊂  ( 0 ,  1 )  be a set containing exactly one point in each equivalence class of ∼  .  The existence of such a set is warranted by the axiom of choice. 

We claim that

 r, s ∈ Q , r =  s

⇒  (r +  E) ∩  (s +  E) = ∅  . 

If there existed  x ∈  (r + E)∩ (s + E), then  x =  r + y,  x =  s + z  with  y, z ∈  E. Hence  y ∼  z and  y −  z =  s −  r = 0, so  E  would contain two distinct elements of the same equivalence class, against the definition of  E.  Furthermore, for any  x ∈  ( 0 ,  1 )  there is  r ∈  (−1 ,  1 ) ∩ Q

such that

 x ∈  r +  E . 

(9.37)

In fact if  x ∈  ( 0 ,  1 ), there is  y ∈  E  such that  x −  y =  r ∈ Q, and since  E ⊂  ( 0 ,  1 ), then r ∈  (−1 ,  1 ). 

! 

Let us show  E  is not measurable. If it were, calling  α =  m(E)  and  F =

{ r +  E :  r ∈

 (−1 ,  1 ) ∩ Q}, we would have  F ⊂  (−1 ,  2 )  and hence  m(F ) ≤ 3. But  F  is a disjoint union of translates of  E, and since  m(F )  cannot be +∞, necessarily  m(F ) = 0, whence  α =

 m(E) = 0. On the other hand (9.37) implies  F ⊇  ( 0 ,  1 ), so  m(F ) ≥ 1. The contradiction forces  E  to be non-measurable. 

9.5

Measurable Functions

In the sequel we shall consider functions with values in the extended real line R =

R ∪ {−∞ , +∞}. The usual operations of sum and product between real numbers
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extend to R if we adopt the following conventions

 (+∞ ) +  (+∞ ) = +∞ , 

 (+∞ ) +  x =  x +  (+∞ ) = +∞ , 

∀  x ∈ R , 

+∞ if  x >  0

 (+∞ ) ·  x =  x ·  (+∞ ) =

∀  x ∈ R − {0} . 

−∞ if  x <  0 , 

Similar conventions hold for −∞. Note however that the symbols  (+∞ ) −  (+∞ ), (+∞ ) · 0, 0 ·  (+∞ )  are not defined. 

We say that  f : R n → R is  measurable  if for any real number  t  the set Lt = { x ∈ R n :  f (x) > t}

is measurable. 

 Example 1  Let  χE  denote the  characteristic function  of a subset  E ⊆ R n: 1 if  x ∈  E

 χE (x) = 0 if  x /∈  E. 

Since for any  t ∈ R the set { x ∈ R n :  χE(x) > t} can only be ∅,  E  or R n, we immediately deduce that  χE  is measurable if and only if  E  is a measurable set. 

If  f : R n → R is  a continuous function, then  f is measurable as well. In fact for any  t ∈ R the set  Lt =  f −1 ((t, +∞ ))  is open (see the characterisation of continuity in Sect. 2.12) and hence measurable. 

Proposition 1  Given f : R n → R , the following are equivalent: (i) Lt = { x ∈ R n :  f (x) > t}  is measurable for any t ∈ R ; (ii) L = {

 t

 x ∈ R n :  f (x) ≥  t}  is measurable for any t ∈ R ; (iii) St = { x ∈ R n :  f (x) < t}  is measurable for any t ∈ R ; (iv) S = {

 t

 x ∈ R n :  f (x) ≤  t}  is measurable for any t ∈ R . 

 Proof (i) ⇒ (ii). It is enough to notice that

∞

#

 L =

 t

 Lt−1  . 

 k

 k=1

(ii) ⇒ (iii). This follows from the identity  St = R n −  L t . 
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(iii) ⇒ (iv). Just observe that

∞

#

 S =

 t

 St+1  . 

 k

 k=1

(iv) ⇒ (i) . Follows from  Lt = R n −  S t. 

 Example 2  If  f : R n → R is measurable and  (a, b)  is an open bounded real interval, by Proposition 1 the set

 f −1 ((a, b)) =  La ∩  Sb

is measurable. If  g : R → R is continuous, the composite  g ◦  f  is measurable. In fact for any  t ∈ R

{ x ∈ R n :  g(f (x)) > t} =  f −1 ({ y ∈ R :  g(y) > t} ) . 

Since { y ∈ R :  g(y) > t} is open, there is a sequence of open intervals  (ak, bk)  such that

∞

" 

{ y ∈ R :  g(y) > t} =

 (ak , bk) . 

 k=1

Hence

∞

" 

{ x ∈ R n :  g(f (x)) > t} =

 f −1 (ak, bk )

 k=1

and the set on the left is measurable. 

Let us briefly recall the notions of  limit inferior  and  limit superior  of a sequence  ak  of (extended) real numbers (also known as  lower limit  and  upper limit respectively). Define

 bk = inf  ai , 

∀  k ∈ N . 

 i≥ k

The sequence  bk  is increasing so it admits a limit. By definition, the  limit inferior of ak  is the limit as  k → +∞ of  bk, written

lim inf  a



 k , 

lim  ak . 

 k→+∞

 k→+∞

Therefore

lim inf  ak = lim

inf  ai = sup inf  ai . 

 k→+∞

 k→+∞  i≥ k

 k∈N  i≥ k
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The  limit superior, denoted by

lim sup  a



 k , 

lim  ak , 

 k→+∞

 k→+∞

is defined in a similar fashion by

lim sup  ak = lim

sup  ai = inf sup  ai . 

 k→+∞

 k→+∞  i≥ k

 k∈N  i≥ k

Easily the sequence  ak  admits limit as  k → +∞ if and only if the limit inferior and the limit superior of  ak  coincide; if so, 

lim  ak = lim inf  ak = lim sup  ak . 

 k→+∞

 k→+∞

 k→+∞

 Example 3  A function  f : R n → R is called  lower semi-continuous  if, for any  t ∈ R, the set  Lt = { x ∈ R n :  f (x) > t} is open. The argument used in the proposition of Sect. 2.12

shows that  f  is lower semi-continuous if and only if, for any  x 0 and any sequence  xk  tending to  x 0  , 

lim inf  f (xk) ≥  f (x 0 ) . 

 k→+∞

Similarly,  f  is  upper semi-continuous  if, for any  t ∈ R, the set  St = { x ∈ R n :  f (x) < t}

is open. Equivalently, for any  x 0 and any sequence  xk  tending to  x 0, lim sup  f (xk) ≤  f (x 0 ) . 

 k→+∞

A lower (or upper) semi-continuous function is therefore measurable. 

We leave it to the reader to verify that the characteristic function  χA  of an open set A ⊆ R n  is lower semi-continuous, while if  C ⊆ R n  is closed then  χC  is upper semi-continuous. 

The class of measurable functions is closed under addition, multiplication, 

supremum and infimum. 

Theorem

 (i) If f is measurable and c ∈ R , then f +  c and c ·  f are measurable; (ii) if f, g are measurable, f +  g, f ·  g and f/g (if g(x) = 0  for any x) are measurable; 

 (iii) if fk is a sequence of measurable functions, the functions

 S(x) = sup  fk(x) , 

 s(x) = inf  fk(x) , 

 x ∈ R n, 

 k

 k

 are measurable; 
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 (iv) if fk is a sequence of measurable functions, so are

 f (x) = lim inf  fk(x) , 

 g(x) = lim sup  fk(x) , 

 x ∈ R n. 

 k→+∞

 k→+∞

 Proof  Property (i) follows directly from the definition. For (ii), for any  t ∈ R we have

" 

{ x :  f (x) +  g(x) > t} =

{ x :  f (x) > qk} ∩ { x :  g(x) > t −  qk}  . 

 qk∈Q

Hence if  f  and  g  are measurable, the sum  f +  g  is measurable. 

We claim that  h 2 (x)  is measurable when  h(x)  is. For this, 

√

√

{ x :  h 2 (x) > t} = { x :  h(x) > t} ∪ { x :  h(x) < −  t}  , for any  t ≥ 0, while if  t <  0, { x :  h 2 (x) > t} = R n. So if  f, g  are measurable, as f ·  g = 1  (f +  g) 2 −  (f −  g) 2  , 4

also  f ·  g  is measurable. The proof for the quotient  f/g  reduces to the measurability of 1 /g,  which is left to the reader. 

To show (iii) observe that

∞

" 

{ x :  S(x) > t} =

{ x :  fk(x) > t}  , 

∀  t ∈ R . 

 k=1

The measurability of  s(x)  goes like the measurability of  S(x), or alternatively using s(x) = − sup  (− fk(x)) , 

 x ∈ R n. 

 k

Finally, (iv) follows from the definitions of limsup and liminf

lim inf  fk(x) = sup inf  fh(x) , 

 x ∈ R n; 

 k→+∞

 k

 h≥ k

lim sup  fk(x) = inf sup  fh(x) , 

 x ∈ R n. 

 k→+∞

 k

 h≥ k

This theorem implies that for  f, g  measurable, the set

{ x ∈ R n :  f (x) =  g(x)} =  (f −  g)−1 ( R − {0} )
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is measurable. Furthermore, under the same hypothesis

 f ∨  g = max{ f, g} , 

 f ∧  g = min{ f, g} , 

(9.38)

are measurable. In particular

 f + =  f ∨ 0 , 

 f − = − f ∧ 0 , 

| f | =  f + +  f −

(9.39)

are measurable functions. 

Also note that if  f  is measurable and  g : R n → R is any function such that g(x) =  f (x) , 

for almost every  x ∈ R n, 

then  g  is measurable. Therefore, modifying the values of a measurable function  f on a zero-measure set still gives a measurable function. 

Another consequence of the theorem is this: if  fk  is a sequence of measurable functions such that lim  fk(x)  exist for almost every  x ∈ R n, then any  f  such that k→+∞

 f (x) = lim  fk(x) , 

for a.e.  x ∈ R n

 k→+∞

is measurable. In the sequel we shall encounter functions defined on subsets of R n. 

If  E  is a measurable subset of R n, we say  f :  E → R is  measurable on E  if the set

{ x ∈  E :  f (x) > t}

is measurable for any  t ∈ R. When  f  is measurable on  E, the extension  f  obtained by setting  f  equal to zero outside of  E, 

 f(x)  if  x ∈  E

 f (x) =

(9.40)

0

if  x /

∈  E, 

is measurable, as is clear using the definition. Conversely, if  f : R n → R is measurable, its restriction to a measurable set  E  is measurable on  E. Evidently all the properties of measurable functions on R n  hold for measurable functions on  E. 

In the sequel we shall often speak of a “measurable function” without necessarily

saying whether it is defined on R n  or on some measurable subset. 

Now we introduce a special subclass of measurable functions. We say a

measurable function  s : R n → [0 , +∞ )  is  simple  if its range consists of finitely many distinct values  c 1 , c 2 , . . . , cN . For every  i = 1 ,  2 , . . . , N  the set Ei = { x ∈ R n :  s(x) =  ci}
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is measurable. Furthermore,  E 1 , E 2 , . . . , EN  are pairwise disjoint and N



 s(x) =

 ci χE (x) , 

∀  x ∈ R n. 

 i

 i=1

The next result shows how non-negative measurable functions can be characterised

as pointwise limits of sequences of simple functions. 

Proposition 2  If f : R n → [0 , +∞]  is a measurable function, there is an increasing sequence sk of simple functions such that

 f (x) = lim  sk(x) , 

∀  x ∈ R n. 

(9.41)

 k→+∞

 Proof  Fix  k ∈ N and put

 Ek =  f −1 ([ k, +∞] ) , 





 Ek,i =  f −1 [ (i − 1 )/ 2 k, i/ 2 k) , 

 i = 1 ,  2 , . . . , k 2 k. 

By Proposition 1 these sets are measurable, so

 k 2 k

 i − 1

 sk(x) =  k χE (x) +

 χ

 (x)

 k

 E

2 k

 k,i

 i=1

is simple and  sk(x) ≤  f (x)  for any  x ∈ R n. 

Pick  x ∈  Ek,i,  i = 1 ,  2 , . . . , k 2 k. Since i − 1  i

2 i − 2 2 i − 1

2 i − 1

2 i

 , 

=

 , 

∪

 , 

 , 

2 k

2 k

2 k+1

2 k+1

2 k+1

2 k+1

i.e. 

 Ek,i =  Ek+1 ,  2 i−1 ∪  Ek+1 ,  2 i , 

we have

⎧

⎨2 i − 2 if  x ∈  Ek+1 ,  2 i−1

 s

2 k+1

 k+1 (x) = ⎩2 i − 1 if  x ∈  Ek+1 ,  2 i−1 . 

2 k+1

Therefore

 sk(x) ≤  sk+1 (x) , 

∀  x ∈  Ek,i . 
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A similar inequality holds if  x ∈  Ek.  Then the sequence  sk  is increasing. Now, (9.41) is obvious if  f (x) = +∞, because  sk(x) =  k  for any  k ∈ N. Instead if f (x) < k 0, for any  k > k 0

1

0 ≤  f (x) −  sk(x) < 

 . 

(9.42)

2 k

Note that if  f  is bounded, (9.42) implies that the sequence  sk  converges to  f uniformly. Clearly if  sk  is an increasing sequence of simple functions, the function f (x) = lim  sk(x) , 

∀  x ∈ R n

 k→+∞

is measurable. Then Proposition 2 completely characterises non-negative measurable functions as pointwise limits of increasing sequences of simple functions. 

9.6

The Lebesgue Integral. Interchanging Limits and Integrals

Consider the simple function  s : R n → [0 , +∞ ), 

 N



 s(x) =

 ci χE (x) , 

∀  x ∈ R n, 

 i

 i=1

where  c 1 , c 2 , . . . , cN  are distinct range values of  s(x)  and Ei = { x ∈ R n :  s(x) =  ci}  , 

∀  i = 1 ,  2 , . . . , N. 

If  E  is a measurable subset of R n, we call  Lebesgue integral of s(x) on E  the extended real number



 N



 s(x) dx =

 ci m(Ei ∩  E) , 

(9.43)

 E

 i=1

where the product  ci m(Ei ∩  E)  is equal to zero if  ci = 0, irrespective of the value m(Ei ∩  E). 

Suppose  f : R n → [0 , +∞] is measurable. The  Lebesgue integral of f on E  is the quantity







 f (x) dx = sup

 s(x) dx :  s  is simple and 0 ≤  s ≤  f  on R n . (9.44) E

 E

If the integral of  f  on  E  is finite, then  f  is  summable on E. 
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The integral of  f  on  E  is indicated by





 f dm , 

 f dx 1  dx 2  . . . dxn , 

 E

 E

or, when  n = 2 ,  3, by





 f dx dy

 f dx dy dz

 E

 E

respectively. 

Note that if  f  is simple, definition (9.44) recovers the integral defined by (9.43). 

The next proposition is an immediate consequence of the definition of integral, 

and its easy proof is left to the reader. 

Proposition 1  If f, g : R n → [0 , +∞]  are measurable, E, F are measurable subsets in  R n and c >  0 , then





 f dx =

 χE ·  f dx ; 

(9.45)

 E

R n





 f (x) ≤  g(x) , 

∀  x ∈  E

⇒

 f dx ≤

 g dx ; 

(9.46)

 E

 E





 F ⊆  E

⇒

 f dx ≤

 f dx ; 

 F

 E





 c ·  f dx =  c

 f dx ; 

 E

 E



 f (x) = 0  , ∀  x ∈  E

⇒

 f dx = 0 ; 

(9.47)

 E



 m(E) = 0

⇒

 f dx = 0  . 

 E

If  g, h : R n → [0 , +∞] are measurable and  g(x) =  h(x)  for any  x ∈  E, with  E

measurable, (9.45) implies





 g dx =

 h dx . 

(9.48)

 E

 E

If  f :  E → [0 , +∞] is measurable on the measurable set  E, we define the integral of  f  on  E  by



 f dx , 

 E
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where  f  is the trivial extension of  f  to R n (see (9.40)). By (9.48), f dx =

 g dx , 

 E

 E

irrespective of the measurable extension  g  of  f  to R n. The common value will be denoted by



 f dx . 

 E

Proposition 2  Let s be a simple function, E a measurable set, Ek a sequence of

∞

! 

 pairwise-disjoint measurable sets such that E =

 Ek. Then

 k=1



+∞



 s dx =

 s dx . 

(9.49)

 E

 E

 k=1

 k

 N



 Proof  Suppose  s =

 ci χF , where  c

 i

1 , c 2 , . . . , cN  are the values of  s  and

 i=1

 Fi = { x ∈ R n :  s(x) =  ci}  , 

∀  i = 1 ,  2 , . . . , N. 

Definition (9.43) and the Lebesgue measure’s additivity imply



 N



 s(x) dx =

 ci m(Fi ∩  E) =

 E

 i=1

 N

∞



∞

 N



∞



=

 ci m(Fi ∩  Ek) =

 ci m(Fi ∩  Ek) =

 s dx . 

 E

 i=1  k=1

 k=1  i=1

 k=1

 k

This proves (9.49). 

Proposition 3  Let s, t be simple functions and E a measurable set. Then







 (s +  t) dx =

 s dx +

 t dx . 

 E

 E

 E

 Proof  Put

 N



 M



 s =

 ci χF , 

 t =

 d

 , 

 i


 j χGj

 i=1

 j =1
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where  c 1 , c 2 , . . . , cN  are the values of  s  and  d 1 , d 2 , . . . , dM  are the values of  t. For any  i = 1 ,  2 , . . . , N,  j = 1 ,  2 , . . . , M, set Fi = { x ∈ R n :  s(x) =  ci}  , 

 Gj = { x ∈ R n :  t (x) =  dj }  . 

 N

! 

 M

! 

As

 Fi =

 Gj = R n, (9.49) implies

 i=1

 j =1



 N

 M



 (s +  t) dx =

 (s +  t) dx =

 E

 E∩ F

 i=1  j =1

 i ∩ Gj

 N

 M



=

 (ci +  dj )m(E ∩  Fi ∩  Gj ) =

 i=1  j =1

 N



 M







=

 ci m(E ∩  Fi) +

 dj m(E ∩  Gj ) =

 s dx +

 t dx . 

 E

 E

 i=1

 j =1

One good feature of the Lebesgue integral is to make it extremely easy to prove

theorems on limits of integrals under very general hypotheses. 

Beppo Levi’s Monotone Convergence Theorem  Let fk be an increasing sequence of non-negative measurable functions on  R n and

 f (x) = lim  fk(x) , 

∀  x ∈ R n. 

 k→+∞

 Then





 f dx = lim

 fk dx . 

(9.50)

R n

 k→+∞ R n

Let us point out that, due to property (9.45) in Proposition 1, both the Beppo Levi theorem and the following Fatou lemma still hold for functions defined on a

measurable set  E  instead of R n, and if the integrals are taken over  E. 

 Proof  By property (9.46), Proposition 1, as  k → +∞ the numerical sequence in the right-hand side of (9.50) admits limit, and





lim

 fk dx ≤

 f dx . 

(9.51)

 k→+∞ R n

R n
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Let  s  be a simple function, with  s ≤  f . Given  α ∈ R, 0  < α <  1, we define  E 0 = ∅

and

 Ek = { x :  fk(x) ≥  α s(x)}  , 

∀  k ∈ N . 

∞

! 

Then  Ek ⊆  Ek+1 for any  k ∈ N and

 Ek = R n, and so

 k=1







 k



 fk dx ≥

 fk dx ≥  α

 s dx =  α

 s dx , 

R n

 Ek

 Ek

 E

 i=1

 i − Ei−1

for any  k ∈ N. Since the sets  Ei −  Ei−1 are pairwise disjoint, by Proposition 2



∞





lim

 fk dx ≥  α

 s dx =  α

 s dx . 

 k→+∞ R n

 E

R n

 i=1

 i − Ei−1

As  α → 1− we have





lim

 fk dx ≥

 s dx

 k→+∞ R n

R n

and since  s  is arbitrary, 





lim

 fk dx ≥

 f dx . 

(9.52)

 k→+∞ R n

R n

The claim now follows from (9.51), (9.52). 

Fatou Lemma  Let fk be a sequence of non-negative measurable functions, and set f (x) = lim inf  fk(x) , 

∀  x ∈ R n. 

 k→+∞

 Then





 f dx ≤ lim inf

 fk dx . 

(9.53)

R n

 k→+∞ R n

As we said above, the Beppo Levi theorem and the Fatou lemma still hold when

the integrals are taken over measurable sets  E ⊆ R n, instead of R n. 

Obviously the Fatou lemma conclusion (9.53) reads (without mentioning  f ) lim inf  fk(x) dx ≤ lim inf

 fk(x) dx . 

R n k→+∞

 k→+∞ R n
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 Proof  For any  k = 1 ,  2 , . . .  consider

 gk(x) = inf  fi(x) , 

∀  x ∈ R n. 

 i≥ k

The sequence  gk  is increasing and

lim  gk(x) = lim inf  fk(x) =  f (x) , 

∀  x ∈ R n. 

 k→+∞

 k→+∞

By the Beppo Levi theorem





 f dx = lim

 gk dx . 

R n

 k→+∞ R n

As  gk ≤  fk  for any  k = 1 ,  2 , . . . , the above now implies our claim: f dx = lim

 gk dx ≤ lim inf

 fk dx . 

R n

 k→+∞ R n

 k→+∞ R n

 Example 1  In (9.53) there is no equality, in general. The sequence fk(x) =  k ·  χ( 0 ,  1 /k)(x) , 

∀  k ∈ N , ∀  x ∈ R

converges to  f (x) = 0 for any  x ∈ R, while





 f dx = 0  <  lim

 fk dx = 1  . 

R

 k→+∞ R

Theorem 1  If f, g : R n → [0 , +∞]  are measurable functions and E is a measurable set, 







 (f +  g) dx =

 f dx +

 g dx . 

(9.54)

 E

 E

 E

 Moreover, if fk is a sequence of non-negative measurable functions on  R n, 

∞



∞



 fk dx =

 fk dx . 

(9.55)

 E

 E

 k=1

 k=1

 Proof  By Proposition 2, Sect. 9.5, there exist two increasing sequences  sk, tk  of simple functions satisfying  sk(x) →  f (x)  and  tk(x) →  g(x)  for any  x ∈ R n. 
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Beppo Levi’s theorem and Proposition 3 imply





 (f +  g) dx = lim

 (sk +  tk) dx =

 E

 k→+∞  E









= lim

 sk dx + lim

 tk dx =

 f dx +

 g dx . 

 k→+∞  E

 k →+∞  E

 E

 E

Now (9.55) follows from (9.54) and Beppo Levi’s theorem, because

∞





 k



 k



∞



 fk dx =

lim

 fi dx = lim

 fi dx =

 fk dx . 

 E

 E k→+∞

 k→+∞

 E

 E

 k=1

 i=1

 i=1

 k=1

Corollary 1  If f is non-negative and measurable, Ek is a sequence of measurable

∞

! 

 sets and E =

 Ek, then:

 k=1

 (i) if the Ek are pairwise disjoint



∞



 f dx =

 f dx ; 

(9.56)

 E

 E

 k=1

 k

 (ii) if Ek is an increasing sequence





 f dx = lim

 f dx ; 

(9.57)

 E

 k→+∞  Ek

 (iii) if Ek is a decreasing sequence and



∞

#

 f dx < +∞  , 

 F =

 Ek , 

 E 1

 k=1

 then





 f dx = lim

 f dx . 

(9.58)

 F

 k→+∞  Ek

 Proof  Claims (i), (ii) come from (9.55) and Beppo Levi’s theorem on  fk =  f ·  χEk respectively. 

Property (iii) is a consequence of (ii) applied to the increasing sequence  E 1 −  Ek. 

For this we use the Lebesgue integral’s additivity with respect to the integration
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domain, established in (i):







 f dx =

 f dx −

 f dx , 

∀  k ∈ N , 

 E 1− Ek

 E 1

 Ek

and similarly for  E 1 −  F . 

Using a similar argument the reader can easily prove the following

Corollary 2  If fk is a decreasing sequence of non-negative measurable functions and



 f 1  dx < +∞  , 

 E

 with E ⊂ R n measurable, then





 f dx = lim

 fk dx

 E

 k→+∞  E

 where

 f (x) = lim  fk(x) , 

∀  x ∈  E. 

 k→+∞

Remark (On the Role of Zero-Measure Sets) We point out that if  f : R n →

[0 , +∞] is measurable,  E  is measurable and  E 0 has measure zero, by (9.56) we have







 f dx =

 f dx =

 f dx . 

 E∪ E 0

 E− E 0

 E

In other words,  the integral of f does not change if we add or remove from the

 integration domain E a zero-measure set. For this reason all the results proved in this section, and the previous one, hold when we replace the expression “for any  x” 

with “for almost every  x” in the statements. This is manifest, for instance, regarding (9.46) and (9.47) in Proposition 1. 

Suppose now  fk  is a sequence of measurable functions such that for any  k fk(x) ≤  fk+1 (x) , 

for a.e.  x ∈  E, 

where  E  is a given measurable set. Let

 Zk = { x ∈  E :  fk(x) > fk+1 (x)}
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for any  k ∈ N. By definition  m(Zk) = 0, and

∞

" 

 Z =

 Zk

 k=1

has measure zero. As the sequence is monotone on the set  E, the limit of  fk(x) exists as  k → +∞ for any  x ∈  E −  Z. Call this limit  f (x), and extend  f  outside of  E −  Z  in an arbitrary way. Clearly we still have





 f dx = lim

 fk dx . 

 E

 k→+∞  E

Similar considerations apply to the Fatou lemma and Corollary 2. 

 Example 2 [Comparison with the Riemann Integral] Consider a continuous function  f :

[0 ,  1] → [0 , +∞ ). For any  k ∈ N we take

2 k



 s



 k =

 mi,k χ

 , 

 i−1  , i

 i=1

2 k

2 k

where





 mi,k = min  f (x) :  i − 1 ≤  x ≤  i

 . 

2 k

2 k

The sequence  sk  is increasing and converges (uniformly) to  f  on [0 ,  1]. By Beppo Levi’s theorem

1

2 k

 mi,k

 f dx = lim

 . 

(9.59)

0

 k→+∞

2 k

 i=1

By definition, the right-hand side of (9.59) is precisely the Riemann integral of  f . Hence for continuous functions on [0 ,  1] the two notions of integral coincide. In the same way the reader may show that  if f :  K → [0 , +∞ ) is continuous on a Peano-Jordan measurable compact set K,  the Riemann integral and the Lebesgue integral of f on K coincide. 

 Example 3  Let  x 0 ∈ R n  and  α >  0. We claim that dx

 B

| x −  x

1  (x 0 )

0| α

(continued)
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 Example 3 (continued)

is finite if and only if  α < n. For this consider the annulus

 Ek =  B 2− k (x 0 ) −  B 2− k−1 (x 0 ) for any  k = 0 ,  1 ,  2 , . . . . If  ωn  denotes the measure of the unit ball in R n,  from (9.36) we obtain





1

 m(Ek) =  ωn

−

1

 . 

(9.60)

2 kn

2 (k+1 )n

If  α ≥  n, 

1

|

 >  2 kn , 

∀  x ∈  Ek

 x −  x 0| α

for any  k = 0 ,  1 ,  2 , . . . , so

∞

1



|

 > 

2 kn χE (x) , 

∀  x ∈  B 1 (x 0 ) − { x 0} . 

 x −  x

 k

0 | α

 k=0

By (9.60) and (9.55), then, 





∞

 dx



≥

2 knχE dx =

 k

 B

| x −  x

1  (x 0 )

0| α

 B 1 (x 0 ) k=0

∞





∞



=

2 kn m(Ek) =  ωn  1 − 1

1 = +∞  . 

2 n

 k=0

 k=0

If 0  < α < n, instead, arguing as above

∞

1



|

 < 

2 (k+1 ) α χE (x) , 

∀  x ∈  B 1 (x 0 ) − { x 0} . 

 x −  x

 k

0| α

 k=0

and so





∞

 dx



≤

2 (k+1 ) α χE dx =

 k

 B

| x −  x

1  (x 0 )

0| α

 B 1 (x 0 ) k=0

∞





∞



=

1

2 (k+1 ) α m(Ek) = 2 α ωn  1 − 1

 < +∞  . 

2 n

2 (n− α)k

 k=0

 k=0

(continued)
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 Example 3 (continued)

Similarly one proves that



 dx

R n− B

| x −  x

1  (x 0 )

0| α

is finite if and only if  α > n. To see this it suffices to consider annuli Fk =  B 2 k+1  (x 0 ) −  B 2 k (x 0 ) , k = 0 ,  1 ,  2 , . . . , 

and argue as above. 

 Example 4  Let us compute the limit

 k 

 k

lim

1 +  x

 e−2 x dx . 

 k→+∞ 0

 k

Define, for any  k ∈ N, 



 k

 fk(x) = 1 +  x

 e−2 x χ[0 ,k] (x) . 

 k

This is an increasing sequence that converges for any  x ∈ R to

 f (x) =  e− x χ[0 , +∞ )(x) . 

Beppo Levi’s theorem forces





 k 

 k

+∞

lim

1 +  x

 e−2 x dx =

 e− x dx = 1  . 

 k→+∞ 0

 k

0

 Example 5  Let  f :  E → [0 , +∞] be a measurable function on the measurable set  E. 

Suppose



 f dx < +∞

 E

and let us show

 f (x) < +∞  , 

for a.e.  x ∈  E. 

(continued)
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 Example 5 (continued)

Put

 E∞ = { x ∈  E :  f (x) = +∞}  , 

 Ek = { x ∈  E :  f (x) ≥  k}  , 

∀  k ∈ N , 

so that





 k m(Ek ) ≤

 f dx ≤

 f dx . 

(9.61)

 Ek

 E

∞

*

Since  Ek ⊇  Ek+1 for any  k ∈ N, and because  E∞ =

 Ek, from (9.61) and (9.31) we

 k=1

deduce



1

 m(E∞ ) = lim  m(Ek) ≤ lim

 f dx = 0  . 

 k→+∞

 k→+∞  k

 E

 Example 6  Let us compute

1 log x dx. 

0

 x 2 − 1

Recall first the sum of the geometric series, 

+∞

1



=

 x 2 k , 

∀  x ∈ [0 ,  1 ). 

1 −  x 2

 k=0

By (9.55), then, 







1

+∞

+∞

log  x

1



1

 dx =

− log  x

 x 2 k dx =

− x 2 k  log  x dx . 

(9.62)

0

 x 2 − 1

0

0

 k=0

 k=0

Since for any  k = 0 ,  1 ,  2 , . . . 

1 − x 2 k  log xdx = 1  , 

0

 ( 2 k + 1 ) 2

(9.62) and (1.63) imply

1

+∞

log  x



1

 dx =

=  π 2  . 

0

 x 2 − 1

 ( 2 k + 1 ) 2

8

 k=0
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 Example 7  It is well known that the  Dirichlet function

0 if  x ∈ [0 ,  1] ∩Q

 f (x) = 1 if  x ∈ [0 ,  1] − Q

(see the example in Sect. 8.7) is a bounded function that is not Riemann integrable. The reader should think about why, in Lebesgue’s theory, computing the integral of  f  is effortless. As  f  coincides almost everywhere with the constant function 1, it is measurable, and so

1

 f dx = 1  . 

0

The Dirichlet function is discontinuous everywhere on its domain. The next theorem, which we shall not prove, gives a criterion for the  Riemann  integrability of a function in terms of its discontinuity set. 

Vitali-Lebesgue Criterion on Riemann Integrability  Let X be a Peano-Jordan measurable bounded subset of  R n, and f :  X → R  a bounded function. Then f is Riemann integrable on X if and only if the discontinuity set has zero Lebesgue measure. 

Let us now define the Lebesgue integral of functions with arbitrary sign. First we

recall the notations (compare with (9.38) and (9.39)) f + = max{ f,  0} , 

 f − = − min{ f,  0} , 

whence

 f =  f + −  f − , 

| f | =  f + +  f −  . 

As for non-negative functions it is convenient to consider functions with values in

the extended reals. So let  f :  E → R = R ∪ {−∞ , +∞} be a function defined on a measurable set  E ⊆ R n  and measurable on it. We say  f  is  summable  on  E  if



| f |  dx < +∞  . 

 E

In this case the  integral  of  f  on  E  is







 f dx =

 f +  dx −

 f −  dx . 

 E

 E

 E

The above right-hand side is well defined and finite, since 0 ≤  f −,  f + ≤ | f |. 
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Theorem 2  Let f, g be summable functions on E and c ∈ R  a constant. Then f + g and cf are summable on E, and





 cf dx =  c

 f dx ; 

(9.63)

 E

 E







 (f +  g) dx =

 f dx +

 g dx . 

(9.64)

 E

 E

 E

 Proof  Claim (9.63) is obvious. To prove (9.64) note that | f +  g| ≤ | f |+| g| implies







| f +  g|  dx ≤

| f |  dx +

| g|  dx , 

 E

 E

 E

so  f +  g  is summable on  E. Furthermore, 

 (f +  g)+ −  (f +  g)− =  f +  g =  f + −  f − +  g+ −  g− , implying

 (f +  g)+ +  f − +  g− =  (f +  g)− +  f + +  g+  . 

As the integral is additive on non-negative functions, 







 (f +  g)+ dx +

 f −  dx +

 g−  dx =

 E

 E

 E







=

 (f +  g)−  dx +

 f +  dx +

 g+  dx . 

 E

 E

 E

All integrals being finite, (9.64) is proved. 

Corollary 3  If f is summable on E













 f dx ≤

| f |  dx . 

 E

 E

 Proof  Just compute





















 f dx ≤   f +  dx −

 f −  dx ≤

 E

 E

 E







≤

 f +  dx +

 f −  dx =

| f |  dx . 

 E

 E

 E
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Observe explicitly that while (9.55) is not true in general for summable functions of any sign, Corollary 1 holds if  f  is summable, as is easy to see by applying Corollary 1 to  f + and  f − separately. 

 Example 8 (Absolute Continuity of Integrals)  Let  E  be a measurable set and  f  a summable function on  E. We want to prove that, for any  ε >  0, we can find a number  δ >  0 such that F ⊆  E, m(F ) < δ

⇒

| f |  dx < ε . 

(9.65)

 F

If not, there would exist  ε 0  >  0 and, for any  k ∈ N, a measurable subset  Fk ⊆  E  such that 1

 m(Fk) < 

 , 

| f |  dx ≥  ε 0  . 

2 k

 Fk

∞

! 

Take  Ek =

 Fi , so

 i= k



 Ek ⊇  Ek+1  , 

| f |  dx ≥  ε 0  , 

∀  k ∈ N . 

(9.66)

 Ek

Since





∞

#

∞

1

1

 m

 Ek

= lim  m(Ek) ≤ lim

= lim

= 0  , 

 k→+∞

 k→+∞

2 i

 k→+∞ 2 k−1

 k=1

 i= k

by Corollary 1 we would have



lim

| f |  dx = 0  , 

 k→+∞  Ek

contradicting (9.66). 

Also for summable functions the limit of an integral equals the integral of the

limit under very general assumptions. 

Lebesgue’s Dominated Convergence Theorem  Let

 fk

 be

 a

 sequence

 of

 summable functions over the measurable set E. Suppose that the limit

 f (x) = lim  fk(x)

 exists for a.e. x ∈  E. 

 k→+∞

 If there is a summable function g on E such that

| fk(x)| ≤  g(x) , 

∀  k ∈ N  and a.e. x ∈  E, 
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 then



lim

| fk −  f |  dx = 0  . 

(9.67)

 k →+∞  E

Since















 f



 k dx −

 f dx ≤

| fk −  f |  dx , 

∀  k ∈ N , 

 E

 E

 E

from (9.67) we deduce in particular





lim

 fk dx =

 f dx . 

 k→+∞  E

 E

 Proof  As | fk(x)− f (x)| ≤ 2 g(x)  a.e. on  E, and lim | fk(x)− f (x)| = 0 a.e. on  E, k→+∞

the Fatou lemma implies









2 g dx ≤ lim inf

{2 g − | fk −  f |}  dx =

2 g dx − lim sup

| fk −  f |  dx

 E

 k→+∞  E

 E

 k→+∞  E

and therefore



lim sup

| fk −  f |  dx ≤ 0 , 

 k→+∞

 E

proving the claim. 

 Example 9  Consider on  ( 0 ,  1 )  the sequence

√

 fk(x) =

 k(kx)− k ek− 1 x . 

Immediately,  fk(x) → 0 for any  x ∈  ( 0 ,  1 ), but the sequence does not converge uniformly because



1

√

 fk

=  k → +∞  . 

 k

We claim that

1

lim

 fk dx = 0  . 

(9.68)

 k→+∞ 0

(continued)
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 Example 9 (continued)

For this we seek a summable function bounding the sequence from above. Consider for any

√

 k  the function  gk(x) =

 xfk(x), and note  xk = 2 /( 2 k − 1 )  is a maximum point. For any x ∈  ( 0 ,  1 ), then, 



√





2 k

2 k

− k

√

 xfk(x) ≤  gk(xk) =

 e 1 / 2 ≤

 e

2 k − 1 2 k − 1

hence for any  k ∈ N and any  x ∈  ( 0 ,  1 )

 e

0 ≤  fk(x) ≤

 . 

 x

Now (9.68) follows from the dominated convergence theorem. 

 Example 10  The sequences

 fk(x) =

 k

 , 

 gk(x) =

 k

 , 

1 +  k +  k 2 x 2

 k 2 +  x 2

both converge to zero a.e. on R. More precisely,  fk(x)  converges to zero for any  x ∈ R−{0}

and does not converge uniformly, whereas  gk(x)  converges to zero uniformly on R. Yet, lim

 fk dx = 0  , 

lim

 gk dx =  π . 

 k→+∞ R

 k→+∞ R

This should not surprise us. The first sequence, although it tends to zero only pointwise, is dominated by the function 1 /( 1 +  x 2 ), which is summable on R. The second sequence, albeit uniformly convergent to zero, is not uniformly bounded by any summable function on R. 

 Example 11  Let  fk  be a sequence of summable functions, on a measurable set  E, such that

+∞

| fk| dx < +∞ . 

 E

 k=1

We want to show that the series of general term  fk(x)  converges absolutely to some function f (x)  for almost every  x ∈  E, that  f  is summable on  E  and that



+∞



 f dx =

 fk dx . 

(9.69)

 E

 E

 k=1

(continued)
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 Example 11 (continued)

Define

+∞



 g(x) =

| fk(x)|  , 

∀  x ∈  E, 

 k=1

so Beppo Levi’s theorem implies



+∞



 g dx =

| fk|  dx < +∞  . 

 E

 E

 k=1

Hence  g  is summable on  E, and from Example 5,  g(x) < +∞ for a.e.  x ∈  E. This proves that for a.e.  x ∈  E  the series of general term  fk(x)  converges absolutely. Moreover, for any k ∈ N, 





 k





 k





≤

|



 fi(x)

 fi(x)| ≤  g(x) , 

∀  x ∈  E, 

 i=1

 i=1

and now (9.69) follows from the dominated convergence theorem. 

Sometimes it is convenient to use the notion of integral also for non-summable

functions of arbitrary sign. Suppose then  f :  E → R is measurable, and defined on the measurable set  E. We shall say  f  is  integrable  if at least one of the integrals f + dx , 

 f −  dx

 E

 E

is finite. The integral of  f  on  E  will then be







 f dx =

 f +  dx −

 f −  dx , 

 E

 E

 E

which is a well-defined element of the extended real line. 

Proposition 4  Let f be a measurable function on E. If



 f dx = 0

 F

 for any measurable subset F ⊂  E, then f (x) = 0  for a.e. x ∈  E. 

 Proof  For any  k ∈ N set  Ek = { x ∈  E :  f (x) >  1 /k}. Then 1  m(Ek) ≤

 f dx = 0 , 

 k

 Ek
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and since

∞

" 

{ x ∈  E :  f (x) >  0} =

 Ek , 

 k=1

we have  m({ x ∈  E :  f (x) >  0} ) = 0, i.e.  f (x) ≤ 0 for almost every  x ∈  E. 

Similarly one proves that  f (x) ≥ 0 for almost every  x ∈  E, whence the claim. 

9.7

Measure and Integration on Product Spaces

The main result of this section is the Fubini theorem, which will enable us to

calculate integrals on R n  by suitable iterations of  n  one-dimensional integrals. 

Among the consequences we obtain a cascade of useful formulas for areas, volumes

and other applications of physical flavour. 

We shall work in Euclidean spaces of different dimensions, so we shall often

write  mh, instead of just  m, for the Lebesgue measure on R h. The subscript will be dropped when no ambiguity arises. 

Lemma  For any open set A ⊆ R n it is possible to find an increasing sequence of closed pluri-intervals Pk such that

∞

"  Pk =  A. 

(9.70)

 k=1

 For any compact set K ⊂ R n there exists a decreasing sequence of closed pluri-intervals P   such that

 k

∞

# ◦ P  =  K . 

(9.71)

 k

 k=1

 Proof  For any  k ∈ N we denote by Q k  the family of closed  n-dimensional cubes of the form

 n

; 



 ai , ai + 1

 , 

2 k

 i=1

where, for any  i = 1 ,  2 , . . . , n, 

 ai =  zi , 

 zi ∈ Z . 

2 k

[image: Image 2365]
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The following properties are straightforward:

(i) any  Q ∈ Q k  decomposes as a union of 2 n  cubes in the family Q k+1; (ii) given  x 0 ∈ R n, for any  r >  0 there exist an integer  k  and a cube  Q ∈ Q k  such that  x 0 ∈  Q ⊂  Br (x 0 ). 

Given an open set  A ⊆ R n, for any  k ∈ N we call  Qk  the union of all cubes of Q k  contained in  A. From (i) and (ii) we have

∞

" 

 Qk ⊆  Qk+1  , 

∀  k ∈ N , 

 Qk =  A . 

 k=1

Then (9.70) follows from taking, for every  k, 

 Pk =  Qk ∩ [− k, k]  n . 

Given a compact set  K, choose  N >  0 so that  K ⊂  (− N, N)n, and consider an increasing sequence  Pk  of closed pluri-intervals such that

∞

"  Pk =  (− N,N)n − K . 

 k=1

We obtain (9.71) by putting

◦

 P  = [−

 k

 N, N ] n −  P k

for any  k. 

Measure of Cartesian Products  Let E ⊆ R n, F ⊆ R h be measurable sets. Then E ×  F ⊆ R n × R h is measurable and

 mn+ h(E ×  F ) =  mn(E) ·  mh(F ) , 

(9.72)

 as long as the left-hand-side product is well defined. 

 Proof  Formula (9.72) is a direct consequence of definition (9.2) when  E  and  F  are closed intervals. By the additivity of the Lebesgue measure, it also holds when  E, F

are closed pluri-intervals. 

If  E  and  F  are both open, by the previous lemma we can find increasing sequences  Pk  and  Qk  of closed pluri-intervals such that

∞

" 

∞

" 

 E =

 Pk , 

 F =

 Qk . 

 k=1

 k=1
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From (9.30) we have

 mn+ h(E ×  F ) = lim  mn+ h(Pk ×  Qk) = lim  mn(Pk) ·  mh(Qk) =  mn(E) ·  mh(F ) . 

 k→+∞

 k→+∞

Similarly, using the previous lemma and (9.31), one proves (9.72) if  E  and  F  are both compact. 

Suppose now  E, F  are measurable and bounded. If they have positive measure, 

given 0  < ε <  min{ mn(E), mh(F )} there exist, by (9.19), open sets  A, B  and compact sets  K, H  such that  K ⊆  E ⊆  A, H ⊆  F ⊆  B, with mn(A) −  mn(K) < ε , 

 mh(B) −  mh(H ) < ε. 

Using the outer and inner measures  me, mi  of R n × R h, we have me(E ×  F ) ≤  mn+ h(A ×  B) =  mn(A) ·  mh(B) ≤  (mn(E) +  ε) ·  (mh(F ) +  ε) , (9.73)

and similarly

 mi(E ×  F ) ≥  (mn(E) −  ε) ·  (mh(F ) −  ε) . 

(9.74)

As  ε  is arbitrary, (9.73) and (9.74) imply that  E ×  F  is measurable and that (9.72) holds. The claim follows in the same way if either  mn(E) = 0 or  mh(F ) = 0. 

Finally if  E, or  F , is unbounded then

∞

" 4

5 



 E ×  F =

 E ∩ [− k, k]  n ×  F ∩ [− k, k]  h

 k=1

is measurable. From (9.30) we have





 mn+ h(E ×  F ) = lim  mn+ h E ×  F ∩ [− k, k]  n+ h =

 k→+∞

4

5





= lim  mn E ∩ [− k, k]  n ·  mh F ∩ [− k, k]  h =  mn(E) ·  mh(F ) . 

 k→+∞

Note that by (9.72),  mn(E) = 0 clearly implies  mn+ h(E × R h) = 0. Since the Lebesgue measure is complete (see Sect. 9.4),  E × F  is measurable and has measure zero on R n × R h  irrespective of what  F ⊆ R h  is (even if it is not measurable). 

As consequence of the above theorem we recover the well-known geometric

interpretation of the Riemann integral of a non-negative function of one real

variable. 
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Theorem 1  Let f :  E → R  be a measurable function on the measurable set E ⊂

R n. Then the set

G = { (x, t) ∈  E × R :  t < f (x)}

 is measurable on  R n+1 . Moreover, if f is non-negative, the sets

R = { (x, t) ∈  E × R : 0  < t < f (x)}  , 

< 

R = { (x, t) ∈  E × R : 0  < t ≤  f (x)}  , 

 are measurable and



 mn+1 ( R ) =  mn+1 (< 

R ) =

 f dx . 

(9.75)

 E

 Proof  For any  t ∈ R, define  Lt = { x ∈  E :  f (x) > t}, so

" 

G =

[ Lr ×  (−∞ , r)]  . 

 r∈Q

Evidently,  Lr × (−∞ , r) ⊂ G for any  r. Conversely, if  (x, t) ∈ G, there is  r ∈ Q such that  t < r < f (x)  and so  (x, t) ∈  Lr ×  (−∞ , r). Since, for any  r,  Lr  is measurable on R n, the measurability of G on R n+1 descends from the previous theorem. 

Suppose now  E  is measurable on R n  and let

 N



 s =

 ci χEi

 i=1

be a simple function with values  c 1 , c 2 , . . . , cN . Take

 Ei = { x ∈ R n :  s(x) =  ci}  , 

∀  i = 1 ,  2 , . . . , N. 

Assuming  c 1 = 0 and  ci >  0 for  i = 2 ,  3 , . . . , N,  we have N

" 

{ (x, t) ∈  E × R : 0  < t < s(x)} =

 (E ∩  Ei) ×  ( 0 , ci)

 i=2

and so

 N





 mn+1 ({ (x, t) ∈  E × R : 0  < t < s(x)} ) =

 ci mn(E ∩  Ei) =

 s dx . (9.76)

 E

 i=2
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Pick a non-negative measurable function  f  defined on  E. Indicating by  f  the extension of  f  that is zero outside of  E, by Proposition 2, Sect. 9.5, there is an increasing sequence of simple functions  sk  that converges to  f  on R n  pointwise. 

Hence

∞

" 

R =

R k , 

 k=1

where R k = { (x, t) ∈  E × R : 0  < t < sk(x)}. But R k  is an increasing sequence, so (9.30) and the Beppo Levi theorem imply, using (9.76), mn+1 ( R ) = lim  mn+1 ( R k) = lim

 sk dx =

 f dx . 

 k→+∞

 k→+∞  E

 E

Now, for any  α >  1

R ⊂ < 

R ⊂ { (x, t) ∈  E × R : 0  < t < αf (x)}  , 

so (9.75) gives





 f dx ≤  mn+1 (< 

R ) ≤  α

 f dx . 

 E

 E

Letting  α  tend to 1 produces (9.75). 

We now pass to the proof of Fubini’s theorem. To simplify the presentation we

have split the classical statement in two: the first part is about cross-sections of

measurable sets in R n × R h, while the second is the proper Fubini theorem. 

In the rest of the section we shall indicate by  (x, y),  x ∈ R n,  y ∈ R h  a generic point in R n × R h. If  E  is any subset of R n × R h  and  x ∈ R n, the  cross-section of E

 at x  is the set  Ex  defined by





 Ex =  y ∈ R h :  (x, y) ∈  E

see Fig. 9.3. Similarly, the cross-section of  E  at  y ∈ R h  is 2

3

 Ey =  x ∈ R n :  (x, y) ∈  E . 

This definition of  cross-section  generalises that of Sect. 8.8. 

Cross-Sections of Measurable Sets  Let E be a measurable subset in  R n × R h. 

 Then Ex is a measurable subset of  R h for almost every x ∈ R n. Moreover the function x ∈ R n →  mh(Ex) is measurable on  R n, and



 mh(Ex) dx =  mn+ h(E) . 

(9.77)

R n

[image: Image 2370]

442

9

The Lebesgue Integral

Fig. 9.3

h

E

E

x

E

E

x

x

In essence, the theorem says that to compute the measure of  E  we may go about as follows: first we find the “h-dimensional” measure of all cross-sections at  x  and then we “add”, i.e. integrate with respect to  x, the measures thus obtained. The aforementioned theorem clearly holds if we interchange the roles of  x  and  y.  So we can say that, almost everywhere on R h, the cross-section  Ey  is measurable, the function  y ∈ R h →  mn(Ey)  is measurable, and that



 mn(Ey) dy =  mn+ h(E) . 

R h

Finally, notice that the theorem is obvious if  E  is a closed interval or, by additivity, a pluri-interval. More generally, the theorem is self-evident if  E  is the Cartesian product of a measurable set in R n  and a measurable set in R h. 

 Proof  We have split the argument in four steps. 

 Step One: E  is open. Take an increasing sequence  Pk  of closed pluri-intervals with union  E. For any  x ∈ R n  the set  Ex  is open in R h  and hence measurable. Moreover Pk,x  is an increasing sequence of closed pluri-intervals such that

∞

" 

 Ex =

 Pk,x . 

 k=1

Then

 mh(Ex ) = lim  mh(Pk,x) , 

∀  x ∈ R n. 

 k→+∞

[image: Image 2371]
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By the previous remarks the map  x →  mh(Ex), being the pointwise limit of measurable functions, is measurable. By the Beppo Levi theorem, furthermore, 





 mh(Ex ) dx = lim

 mh(Pk,x) dx = lim  mn+ h(Pk) =  mn+ h(E) , 

R n

 k→+∞ R n

 k→+∞

since, as was said before, (9.77) is true if  E  is a pluri-interval. 

 Step Two: E  has measure zero. By Example 5 in Sect. 9.4 there is a decreasing sequence of open sets  Ak  containing  E  and such that  mn+ h(Ak) → 0 as  k → +∞. 

By Step One the function

 f (x) = lim  mh(Ak,x) , 

∀  x ∈ R n, 

(9.78)

 k→+∞

is measurable as pointwise limit of a decreasing sequence of measurable functions. 

The Fatou lemma implies





 f dx ≤ lim inf

 mh(Ak,x) dx = lim  mn+ h(Ak) = 0  . 

R n

 k→+∞ R n

 k→+∞

Proposition 4 in the previous section allows to conclude that  f (x) = 0 for almost every  x ∈ R n. Since  Ex ⊆  Ak,x  for any  x ∈ R n  and any  k ∈ N, from (9.78) we deduce that  Ex  is measurable for almost every  x ∈ R n, and its measure is zero. This proves the claim in this case. 

 Step Three: E  has finite measure. By Example 5, Sect. 9.4, there is a decreasing sequence of open sets  Ak  such that

 mn+ h(A 1 ) < +∞  , 

lim  mn+ h(Ak) =  mn+ h(E) , 

 k→+∞

and

∞

#

 E =

 Ak −  E 0  , 

with

 mn+ h(E 0 ) = 0  . 

 k=1

As

∞

#

 Ex =

 Ak,x −  E 0 ,x , 

∀  x ∈ R n, 

 k=1

Steps One and Two say that  Ex  is measurable for almost every  x ∈ R n. Moreover, since



 mh(A 1 ,x) dx =  mn+ h(A 1 ) < +∞  , 

(9.79)

R n

[image: Image 2372]
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we have  mh(A 1 ,x) < +∞ and  mh(E 0 ,x) = 0 for almost every  x ∈ R n. Now (9.31) implies

 mh(Ex) = lim  mh(Ak,x)

 k→+∞

for almost every  x ∈ R n. The function  x →  mh(Ex)  is, for almost every  x ∈ R n, the limit of a decreasing sequence of measurable functions, hence measurable. Then

(9.79) and the previous section’s Corollary 2 force mh(Ex) dx = lim

 mh(Ak,x) dx = lim  mn+ h(Ak) =  mn+ h(E) . 

R n

 k→+∞ R n

 k→+∞

 Step Four: E  is measurable with infinite measure. Set





 Ek =  E ∩  z ∈ R n+ h : | z|  < k , 

∀  k ∈ N , 

so that

∞

" 

 Ex =

 Ek,x , 

∀  x ∈ R n

 k=1

and, by Step Three,  Ex  is the union of an increasing sequence of measurable sets for almost every  x ∈ R n. Therefore  Ex  is measurable for almost every  x, and mh(Ex) = lim  mh(Ek,x) . 

 k→+∞

This shows that the function  x ∈ R n →  mh(Ex)  is measurable. Now (9.77) follows from the above relation and Step Three, by applying the Beppo Levi theorem. 

Next we use measurable cross-sections together with Theorem 1 to show the following characterisation of measurable functions. 

Theorem 2  Let E ⊆ R n be measurable. A function f :  E → R  is measurable if and only if the set

G = { (x, t) ∈  E × R :  t < f (x)}

 is measurable on  R n+1 . 

 Proof  By Theorem 1 it suffices to show that  f  is measurable on  E  if G is measurable on R n+1. So given  t ∈ R, since the cross-section

G s = { x ∈  E :  (x, s) ∈ G} = { x ∈  E :  s < f (x)}
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is measurable for almost every  s ∈ R, there is an increasing sequence  tk, tending to t, such that G t  is measurable for any  k. This makes

 k

∞

" 

{ x ∈  E :  f (x) > t} =

G tk

 k=1

measurable, and in turn  f  is measurable on  E. 

Corollary  Let E ⊆ R n be a Peano-Jordan measurable and bounded set, and f : E → R  a Riemann integrable, bounded function. Then f is (Lebesgue) integrable, and the Riemann integral of f coincides with the Lebesgue integral. 

 Proof  First of all note that, in the light of the remark made in Sect. 9.3,  E  is (Lebesgue) measurable. To prove the claim it is enough to assume  f ≥ 0, and

in the general case to consider  f + and  f − . 

By the proposition of Sect. 8.7 and the lemma in Sect. 8.8 the set R = { (x, t) ∈  E × R : 0  < t < f (x)}

is Peano-Jordan measurable, hence also Lebesgue measurable. Theorem 2 then implies that  f  is measurable. The last part is a consequence of (9.75) and (8.94). 

Let us now present a few concrete applications of the measurability of cross-

sections. In these examples, and the following ones as well, we will use for subsets

in the plane the term “area” to mean the two-dimensional Lebesgue measure (and for

subsets in space, “volume” will refer to the three-dimensional Lebesgue measure). 

 Example 1  A subset  E  of the plane is called  normal with respect to x  when E =  (x, y) ∈ R2 :  a ≤  x ≤  b, α(x) ≤  y ≤  β(x) , for some measurable functions  α, β : [ a, b] → R (see Fig. 9.4). 

By Theorem 1  E  is measurable. Since, for any  x ∈ R n, 

[ α(x),β(x)] if  a ≤  x ≤  b

 Ex =

 , 

∅

otherwise

the result on the measurability of cross-sections says that the area of  E  equals b

 b

 m 1 (Ex ) dx =

[ β(x) −  α(x)]  dx . 

 a

 a

(continued)
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 Example 1 (continued)

Similarly,  F ⊂ R2 is normal with respect to  y  if





 F =  (x, y) ∈ R2 :  c ≤  y ≤  d, γ (y) ≤  x ≤  δ(y) , with  γ , δ : [ c, d] → R measurable (see Fig. 9.5). Also  F  is measurable and its area is the integral

 d

[ δ(y) −  γ (y)]  dy . 

 c

Fig. 9.4

y  

= (x)

E

E

x

y = (x)

a

x

b

Fig. 9.5

d

F

x  

= (y)

y

x  

= (y)

c

Fy

 Example 2  A subset  E  in space is  normal with respect to the xy-plane if E =  (x, y, z) ∈ R3 :  (x, y) ∈  D, α(x, y) ≤  z ≤  β(x, y) , (continued)
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z

z

E

E(x, y)

x

x

(

y

x, y)

y

Ez

Fig. 9.6

 Example 2 (continued)

where  D  is a measurable subset of the plane and  α, β :  D → R are measurable functions. 

The set  E  is measurable, and since

 β(x,y) − α(x,y)  if  (x,y) ∈  D

 m 1 (E(x,y)) = 0

otherwise  , 

the volume of  E  is the integral



[ β(x, y) −  α(x, y)]  dx dy . 

 D

Normal sets with respect to the  xz- or  yz-planes are defined in analogy to the above. 

There are two strategies to calculate the measure of a subset in R3. Either we

decompose the subset into “wires” (one-dimensional cross-sections) and then inte-

grate the various lengths—as was done in the previous example, or we decompose

it into “slices” (two-dimensional cross-sections) and add the resulting areas (see

Fig. 9.6). The second method is useful when computing the volumes of certain solids of revolutions. 

 Example 3  Let  f  be a non-negative measurable function on [ a, b], and consider the set (see Fig. 9.7)





 E =  (x, y, z) ∈ R3 :  a ≤  x ≤  b, y 2 +  z 2 ≤ [ f (x)] 2

obtained by a complete rotation about the  x-axis of





R =  (x, z) ∈ R2 :  a ≤  x ≤  b,  0 ≤  z ≤  f (x) . 

(continued)

[image: Image 2387]

[image: Image 2388]

[image: Image 2389]

[image: Image 2390]

[image: Image 2391]

448

9

The Lebesgue Integral

 Example 3 (continued)

Fig. 9.7

z

z  

= f(x)

x

y

By (9.77) the volume of  E  equals

 b

 m 2 (Ex ) dx . 

 a

Since





 Ex =  (y, z) ∈ R2 :  y 2 +  z 2 ≤ [ f (x)] 2  , 

∀  x ∈ [ a, b] , 

the area of  Ex  is  π[ f (x)]2. Then the volume of  E  is given by the formula b

 π

[ f (x)]2  dx . 

(9.80)

 a

The above formula is a special case of a theorem by Guldinus (next section). The reader should try to show, as exercise, that if  E  is obtained by rotating R by an angle  α, 0  < α < 2 π , the volume equals



 α

 b

[ f (x)]2  dx . 

(9.81)

2  a

For example, let us calculate the volume of the ellipsoid





 E =  (x, y, z) :  x 2 + 2 (y 2 +  z 2 ) ≤ 4  . 

As





 E =  (x, y, z) : −2 ≤  x ≤ 2 , y 2 +  z 2 ≤ 4 −  x 2  , 2

(continued)
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 Example 3 (continued)

by (9.80) the volume of  E  is

2 4 −  x 2

 π

 dx = 16 π . 

−2

2

3

Now we are ready for Fubini’s theorem. 

Fubini’s Theorem  Let f : R n × R h → R  be a summable function. Then the function y ∈ R h →  f (x, y) is summable for almost every x ∈ R n. Moreover, the integral function



 x ∈ R n →

 f (x, y) dy

(9.82)

R h

 is summable and







 f (x, y) dx dy =

 f (x, y) dy dx . 

(9.83)

R n+ h

R n

R h

There is an analogous statement where the variables  x, y  are interchanged, so besides (9.83) we also have







 f (x, y) dx dy =

 f (x, y) dx dy . 

R n+ h

R h

R n

 Proof  Let

 N



 s =

 ci χEi

 i=1

be a simple function, with values  c 1 , c 2 , . . . , cN , and where Ei =  (x, y) ∈ R n × R h :  s(x, y) =  ci , 

∀  i = 1 ,  2 , . . . , N. 

Since, for any  x ∈ R n, 

 y ∈ R h →  s(x, y)

(9.84)

[image: Image 2397]
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coincides with

 N



 y ∈ R h →

 ciχE (y) , 

 i,x

 i=1

by the measurability of cross-sections we deduce that the function in (9.84) is measurable for almost every  x ∈ R n. Moreover, 



 x ∈ R n →

 s(x, y) dy

R h

coincides almost everywhere on R n  with the function

 N



 x ∈ R n →

 cimh(Ei,x ) , 

 i=1

and as such it is measurable. From (9.77) we then have





 N



 dx

 s(x, y) dy =

 ci

 mh(Ei,x ) dx =

R n

R h

R n

 i=1

 N





=

 cimn+ h(Ei) =

 s(x, y) dx dy . 

R n+ h

 i=1

If  f  is a non-negative measurable function, we take an increasing sequence  sk  of simple functions tending to  f (x, y)  for almost every  (x, y) ∈ R n × R h. Since for almost every  x ∈ R n  the functions  y →  sk(x, y)  are measurable for any  k ∈ N, also y →  f (x, y)  is measurable for almost every  x ∈ R n. Beppo Levi’s theorem then tells that





 f (x, y) dy = lim

 sk(x, y) dy , 

for a.e.  x ∈ R n. 

R h

 k→+∞ R h

This shows that



 x ∈ R n →

 f (x, y) dy

R h

is measurable on R n. Finally, since the sequence of functions



 x ∈ R n →

 sk(x, y) dy

R h
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is increasing, applying the Beppo Levi theorem gives









 dx

 f (x, y) dy = lim

 dx

 sk(x, y) dy =

R n

R h

 k→+∞ R n

R h





= lim

 sk(x, y) dx dy =

 f (x, y) dx dy . 

 k→+∞ R n+ h

R n+ h

If  f  is also summable, the above implies that the function in (9.82) is summable on R n. Therefore (see Example 5, previous section)



 f (x, y) dy < +∞  , 

for a.e.  x ∈ R n; 

R h

i.e.  y ∈ R h →  f (x, y)  is summable for almost every  x ∈ R n. 

The case in which  f  is an arbitrary summable function follows by applying to f + and  f − what was proved for non-negative functions. 

Let us point out that Fubini’s theorem is valid if we take  f  only integrable, and we replace “summable” with “integrable” in the conclusion. 

 Example 4  Let  E = { (x, y) ∈ R2 :  a ≤  x ≤  b, α(x) ≤  y ≤  β(x)} be a normal set with respect to  x. If  f  is integrable on  E,  let  f  be the extension of  f  equal to zero outside of  E. 

Then  f  is integrable on the whole plane, and (9.83) implies f (x, y) dx dy =

 f (x, y) dx dy =

 E

R2









(9.85)

 b

 β(x)

=

 dx

 f (x, y) dy =

 dx

 f (x, y) dy . 

R

R

 a

 α(x)

Similarly, if  F = { (x, y) ∈ R2 :  c ≤  y ≤  d, γ (y) ≤  x ≤  δ(y)} is normal with respect to y  and  f  is integrable on  F , we have







 d

 δ(y)

 f (x, y) dx dy =

 dy

 f (x, y) dx . 

(9.86)

 F

 c

 γ (y)

 Example 5  Let  C  be the unit semi-circle with centre  ( 0 ,  1 )  contained in the first quadrant, as in Fig. 9.8. Let us compute



 xy dx dy . 

 C

(continued)
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 Example 5 (continued)

Fig. 9.8 Semi-circle    of

equation  x 2 +  y 2 − 2 y = 0

2

1

C

1



As  C = { (x, y) ∈ R2 : 0 ≤  y ≤ 2 ,  0 ≤  x ≤

2 y −  y 2 }, this set is normal with

respect to  y. Hence (9.86) implies





√

2

2 y− y 2

 xy dx dy =

 dy

 xy dx =

 C

0

0



√



2

2 y− y 2

2

=

 x 2

 y

 dy = 1

 y( 2 y −  y 2 ) dy = 2  . 

0

2

0

2 0

3

Note that  C  is normal with respect to  x  as well, because









 C =  (x, y) ∈ R2 : 0 ≤  x ≤ 1 ,  1 −

1 −  x 2 ≤  y ≤ 1 + 1 −  x 2  . 

Using (9.85) we obtain

√







√





1

1+

1− x 2

1

1+

1− x 2

 y 2

 xy dx dy =

 dx

√

 xy dy =

 x

√

 dx =

 C

0

1−

1− x 2

0

2

1−

1− x 2







1





1

= 2

 x

1 −  x 2  dx = − 2  ( 1 −  x 2 ) 3

= 2  . 

0

3

0

3

 Example 6  Let us compute the double integral



 dx dy

 , 

 E x(x 2 +  y 2  )

(continued)
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 Example 6 (continued)

where  E = { (x, y) :  x ≥ 1 ,  0 ≤  y ≤  x 2}. If  Ek  is an increasing sequence of measurable sets whose union is  E, by (9.57)





 dx dy

=

 dx dy

lim

 . 

(9.87)

 E x(x 2 +  y 2 )

 k→+∞

 E

 x(x 2 +  y 2 )

 k

Define  Ek = { (x, y) : 1 ≤  x ≤  k,  0 ≤  y ≤  x 2}, so  Ek  is normal with respect to  x  and dx dy

 k

 x 2

 k

 x 2

=

 dy

1

 y

 dx

=

arctg

 dx =

 E

 x(x 2 +  y 2 )

 x(x 2 +  y 2 )

 x 2

 x  0

 k

1

0

1

 k

=

arctg  x dx . 

1

 x 2

From (9.87) the given integral equals







 dx dy

 k  arctg  x

+∞ arctg  x

= lim

 dx =

 dx =

 E x(x 2 + y 2 )

 k→+∞ 1

 x 2

1

 x 2



+∞  +∞

+∞



= − arctg  x

+

 dx

=  π +

1 −  x

 dx =

 x

1

1

 x( 1 +  x 2 )

4

1

 x

1 +  x 2



+∞

=  π +

 x

log √

=  π + 1 log 2  . 

4

1 +  x 2 1

4

2

 Example 7  If  E = { (x, y, z) ∈ R3 :  (x, y) ∈  D, α(x, y) ≤  z ≤  β(x, y)} is normal with respect to the  xy-plane and  f  is integrable on  E, 





 β(x,y)

 f dx dy dz =

 dx dy

 f dz . 

(9.88)

 E

 D

 α(x,y)

If  D  is furthermore normal, say with respect to  x, 





 D =  (x, y) ∈ R2 :  a ≤  x ≤  b, r(x) ≤  y ≤  s(x) , then (9.88) becomes









 b

 s(x)

 β(x,y)

 f dx dy dz =

 dx

 dy

 f (x, y, z) dz . 

(9.89)

 E

 a

 r(x)

 α(x,y)

[image: Image 2450]

[image: Image 2451]

[image: Image 2452]

[image: Image 2453]

[image: Image 2454]

[image: Image 2455]

[image: Image 2456]

[image: Image 2457]

[image: Image 2458]

[image: Image 2459]

[image: Image 2460]

[image: Image 2461]

[image: Image 2462]

[image: Image 2463]

[image: Image 2464]

454

9

The Lebesgue Integral

 Example 8  Let us compute the triple integral



 xz dx dy dz , 

(9.90)

 E

where  E = { (x, y, z) ∈ R3 :  x ≥ 0 , z ≥ 0 ,  0 ≤  y ≤ 2 −  x 2 −  z 2}. The set  E, drawn in Fig. 9.9, is normal with respect to the  xy-plane. 



More precisely,  E = { (x, y, z) ∈ R3 :  (x, y) ∈  D,  0 ≤  z ≤

2 −  x 2 −  y}, where

√

 D = { (x, y) ∈ R2 : 0 ≤  x ≤

2 ,  0 ≤  y ≤ 2 −  x 2} is normal with respect to  x. From

(9.89), 



√



√

2

2− x 2

2− x 2− y

 xz dx dy dz =

 dx

 dy

 xz dz =

 E

0

0

0

√



2

2− x 2

= 1

 dx

 x( 2 −  x 2 −  y)dy =

2 0

0

√ 



√

2

2− x 2

2

= 1

 x ( 2− x 2 )y −  y 2

 dx = 1

 x( 2− x 2 ) 2  dx = 1  . 

2 0

2

0

4 0

3

Clearly  E  can be viewed as a normal set with respect to the  xz- or  yz-planes, and the reader may calculate (9.90) using this point of view. 

 z

 E

( x,  y,  2 -  x 2 -  y 2)  

 y

( x,  y)

 D

 x

Fig. 9.9
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 Example 9  Let us compute the multiple integral



 xy dx dy dz dw

 E

on the domain  E = { (x, y, z, w) ∈ R4 :  x ≥ 0 , y ≥ 0 , x 2 +  y 2 +  z 2 +  w 2 ≤ 1} in R4. 

Define





 D =  (x, y) ∈ R2 :  x ≥ 0 , y ≥ 0 , x 2 +  y 2 ≤ 1  , so that the cross-section of  E  at  (x, y)  is

{ (z,w) ∈ R2 :  z 2 + w 2 ≤ 1− x 2 − y 2} if  (x,y) ∈  D

 E(x,y) = ∅

otherwise . 



Then, if  (x, y) ∈  D, the set  E(x,y)  is the disc centred at the origin with radius 1 −  x 2 −  y 2. 

By Fubini’s theorem our integral equals







 xy dx dy dz dw =

 xy dx dy

 dz dw =

 E

 D

 E(x,y)



4

5







=

 xy m 2  E(x,y) dx dy =  π

 xy  1 −  x 2 −  y 2  dx dy . 

 D

 D

√

As  D = { (x, y) ∈ R2 : 0 ≤  x ≤ 1 ,  0 ≤  y ≤

1 −  x 2 }, the last integral is



√



1

1− x 2

1

 π

 x dx

 y( 1 −  x 2 −  y 2 ) dy =  π

 x( 1 −  x 2 ) 2  dx =  π . 

0

0

4

0

24

 Example 10  Fix   >  0 .  An  n- simplex  with edge    is a set of type 2

3

 En =  x ∈ R n :  x 1 +  x 2 +  . . . +  xn ≤  , xi ≥ 0 ∀  i = 1 ,  2 , . . . , n . 

When  n = 1,  E 1 is the interval [0 , ], while  E 2 is a right triangle whose legs have length  , E 3 is a tetrahedron etc. We claim that

 mn(En) =  n

 n!  . 

(9.91)

(continued)
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 Example 10 (continued)

We shall use induction on  n  and the Fubini theorem. For  n = 1 formula (9.91) is obvious. 

Assuming (9.91) true for  n ∈ N, consider





 En+1 =  (x, t)∈R n+1 :  x 1+ x 2 +  . . . + xn +  t ≤  , t ≥ 0 , xi ≥ 0 ∀  i = 1 ,  2 , . . . , n , and observe that for  t ∈ R,  En+1 ,t = ∅ if  t /

∈ [0 , ], while

2

3

 En+1 ,t =  x ∈ R n :  x 1 +  x 2 +  . . . +  xn ≤   −  t, xi ≥ 0 ∀  i = 1 ,  2 , . . . , n , if  t ∈ [0 , ], i.e.  En+1 ,t  is an  n-simplex with edge   −  t. By induction, the measurability of cross-sections implies





 

  ( −  t)n

 mn+1 (En+1 ) =

 mn(En+1 ,t ) dt =

0

0

 n! 

 dt =

 n+1

 (n + 1 )!  , 

proving (9.91). 

If  E  is a measurable set in R n, with positive and bounded measure, the  centroid of  E  is the point  x 0 ≡  (x 0 ,i) ∈ R n  where



 x 0 ,i =

1

 xi dx , 

∀  i = 1 ,  2 , . . . , n. 

(9.92)

 m(E) E

When  n = 2 ,  3 this is precisely the physical  centre of mass, or  barycentre, of a uniform distribution of mass  on  E. 

 Example 11  Let us compute the centroid of the semi-disc

 C = { (x, y) ∈ R2 :  x 2 +  y 2 ≤ 1 , y >  0}  . 

Letting  (x 0 , y 0 )  be the centroid, by symmetry reasons  x 0 = 0. The second coordinate is y 0 =

1

 y dx dy . 

 m 2 (C)

 C

But  m 2 (C) =  π/ 2, so



√



1

1− x 2

1

 y 0 = 2

 dx

 y dy = 1

 ( 1 −  x 2 ) dx = 4  . 

 π

−1

0

 π

−1

3 π

[image: Image 2485]

[image: Image 2486]

[image: Image 2487]

[image: Image 2488]

[image: Image 2489]

[image: Image 2490]

[image: Image 2491]

[image: Image 2492]

9.8 Changing Variables in Multiple Integrals

457

In Physics the  moment of inertia  of a solid body  E ⊂ R3, about a given axis  r, is the scalar quantity



[ d(x, r)]2  dm 3  , 

 E

where  d(x, r)  is the distance of the generic point  x ∈ R3 to the axis  r. 

 Example 12  Let us compute the moment of inertia about the  z-axis of the cone C =  (x, y, z) ∈ R3 :  x 2 +  y 2 ≤ 1 , 

 x 2 +  y 2 ≤  z ≤ 1  . 



Since the distance of a point  (x, y, z) ∈ R3 from the reference axis is

 x 2 +  y 2, we must

calculate the triple integral





1

 (x 2 +  y 2 ) dx dy dz =

 dx dy √

 (x 2 +  y 2 ) dz =

 C

 D

 x 2 + y 2









(9.93)

=

 (x 2 +  y 2 )  1 −

 x 2 +  y 2  dx dy , 

 D

where  D = { (x, y) :  x 2 +  y 2 ≤ 1}. As  D  is normal, for the last integral in (9.93) we may apply Fubini’s theorem. This computation is rather lengthy, so in the next section we will show how polar coordinates can simplify the calculation. 

9.8

Changing Variables in Multiple Integrals

Let  A  and  B  be open sets in R n. A map   :  A →  B  is a  diffeomorphism  if (i)    is invertible; 

(ii)    and the inverse  −1 :  B →  A  are of class  C 1. 

In Chap. 3 we have seen that if  x 0 ∈  A  and  y 0 =  (x 0 ), the Jacobian matrix D−1 (y 0 )  is the the inverse of the Jacobian matrix of    at  x 0 (see (3.70)): D−1 (y 0 ) = [ D(x 0 )]−1  . 

Moreover, if  J,  J−1 denote the Jacobian determinants of    and  −1, then (see (3.71))

 J−1  (y 0 ) =

1

 . 

 J(x 0 )
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Fig. 9.10

y

(x, y)

x

In this section we will prove the two following remarkable results, and show the

main applications to integral calculus. 

Change of Measure Under Diffeomorphisms  Let  :  A →  B be a diffeomorphism between open sets A, B in  R n. If E ⊆  A is measurable then (E) is measurable, and



 m((E)) =

| J|  dx . 

(9.94)

 E

In more generality, 


Change of Variables in Multiple Integrals  Let  :  A →  B be a diffeomorphism. 

 If f :  B → R  is an integrable function, then f ◦   is integrable on A and f (y) dy =

 f ((x))| J(x)|  dx . 

(9.95)

 B

 A

Notice how (9.95) reduces to (9.94) if  f  is chosen to be the characteristic function of  (E). As a matter of fact the above results are equivalent, and they can be proved simultaneously. Before doing that—the proof is long and technical—we will

describe a number of examples and consequences of formulas (9.94) and (9.95). 

We start from a very important case of change of variables, and introduce  polar

 coordinates. Consider a point  (x, y) ∈ R2 other than the origin. Its polar coordinates (, ϑ)  are defined by   =

 x 2 +  y 2 being the distance from the origin, and  ϑ ∈

[0 ,  2 π)  the angle between the positive  x-axis and the line from  ( 0 ,  0 )  to  (x, y) (see Fig. 9.10). 

Hence

 x =   cos ϑ

 y =    sin  ϑ . 

The above relations define a map   :  S → R2, where  S  is the strip  S = { (, ϑ) :

  ≥ 0 ,  0 ≤  ϑ <  2 π}. It is of class  C 1, surjective, but not injective. To obtain a
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diffeomorphism we must restrict    to the open set





 A =  (, ϑ) ∈ R2 :   >  0 ,  0  < ϑ <  2 π . 

In this way we obtain a diffeomorphism from  A  to the open set  B = R2 − E 0, where E 0 = { (x, y) :  x ≥ 0 , y = 0}. The Jacobian matrix of    is cos  ϑ −   sin  ϑ

sin  ϑ

   cos  ϑ

and so  J(, ϑ) =    for any  (, ϑ). 

If  E  is a measurable subset in R2 and  f  is integrable on  E, we can apply (9.95) to  f ·  χE− E , obtaining

0





 f (x, y) dx dy =

 f (  cos  ϑ,  sin  ϑ) d dϑ . (9.96)

 E− E 0

 −1 (E− E 0 )

But  m 2 (E 0 ) = 0,  −1 (E 0 ) = { (, ϑ) :   ≥ 0 , ϑ = 0}, and then  m 2 (−1 (E 0 )) =

0. Hence (9.96) gives





 f (x, y) dx dy =

 f (  cos  ϑ,  sin  ϑ) d dϑ , 

(9.97)

 E

 −1 (E)

for any  E ⊆ R2 measurable and any  f  integrable on  E. 

 Example 1  Using polar coordinates we compute the integral in (9.93) (x 2 +  y 2 )  1 −

 x 2 +  y 2  dx dy , 

 D

where  D = { (x, y) :  x 2 +  y 2 ≤ 1}. As  −1 (D) = { (, ϑ) : 0 ≤   ≤ 1 ,  0 ≤  ϑ ≤ 2 π}, by (9.97) the integral equals







2 π

1

1

 dϑ

  3 ( 1 −  ) d = 2 π

 ( 3 −   4 ) d =  π . 

0

0

0

10

 Example 2  Let us compute



 x 2 +  y 2  dx dy , 

(9.98)

 C

(continued)
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 Example 2 (continued)

where  C  is the disc of centre  ( 1 ,  0 )  and radius 1: C =  (x, y) ∈ R2 :  x 2 +  y 2 − 2 x ≤ 0  . 

In polar coordinates the inequality  x 2 +  y 2 − 2 x ≤ 0 reads   2 − 2   cos  ϑ ≤ 0. Hence

 −1 (C)  is normal with respect to   (see Fig. 9.11), 





 −1 (C) =  (, ϑ) : 0 ≤   ≤ 2 cos  ϑ, −  π ≤  ϑ ≤  π . 

2

2

Fig. 9.11

= 2 cos

1

Then from (9.97) the integral in (9.98) equals π/ 2

2 cos  ϑ

 π/ 2

 dϑ

  2  d = 8

cos3  ϑ dϑ = 32  . 

− π/ 2

0

3 − π/ 2

9

 Example 3 (Area of a Sector)  Fix  ϑ 1 , ϑ 2 ∈ [0 ,  2 π]. Consider two measurable functions

  1 ,  2 : [ ϑ 1 , ϑ 2] → [0 , +∞ )  such that   1 (ϑ) ≤   2 (ϑ)  for any  ϑ ∈ [ ϑ 1 , ϑ 2]. The set  S  of points in the plane whose polar coordinates  (, ϑ)  satisfy

 ϑ 1 ≤  ϑ ≤  ϑ 2  , 

  1 (ϑ) ≤   ≤   2 (ϑ) , 

is called a  sector (see Fig. 9.12). 

From (9.94) the area of  S  is







 ϑ





2

  2 (ϑ)

 ϑ 2

 m 2 (S) =

 dϑ

  d = 1

  22 (ϑ) −   21 (ϑ) dϑ . 

(9.99)

 ϑ

2

1

  1 (ϑ)

 ϑ 1

(continued)
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 Example 3 (continued)

For example, the area of the region enclosed by the  cardioid, of polar equation   =  a( 1 +

cos  ϑ)  with  a  positive and  ϑ ∈ [0 ,  2 π] (Fig. 6.6), is 1

2 π

 a 2 ( 1 + cos  ϑ) 2  dϑ = 3 πa 2  , 

2 0

2

by (9.99). 

Fig. 9.12

=  ( )

2

=  ( )

2

1

1

The next two examples show how the appropriate change of variables is often

suggested by the shape of the sets we are working with. 

 Example 4  Let  E  be the set in the plane bounded by the parabolas  y = 2 x 2,  y =  x 2 and the hyperbolas  xy = 1 and  xy = 2, as in Fig. 9.13. Let us compute the area of  E  using the following change of variables

 s =  xy

(9.100)

 t =  y/x 2 . 

In this way  E  becomes the square  Q = { (s, t) : 1 ≤  s ≤ 2 ,  1 ≤  t ≤ 2}. Hence  E =  (Q), where    is the inverse transformation of (9.100)



√

 x = 3  s/t

√

 y = 3  s 2 ·  t . 

The Jacobian matrix of    is





1  s−2 / 3  t−1 / 3

− 1  s 1 / 3  t−4 / 3

3

3

2  s−1 / 3  t 1 / 3

1  s 2 / 3  t−2 / 3

3

3

(continued)
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 Example 4 (continued)

and so the Jacobian determinant of    equals 1 /( 3 t). Now (9.94) gives the area of  E: 2

2 1

 ds

 dt = 1 log 2  . 

1

1

3 t

3

Fig. 9.13

y

y = 2x2

y = x2

E

xy

xy

= 1

= 2

x

 Example 5  Let us compute

 x dxdy, 

 E y 2

where  E  is the region in the plane between the straight lines  y =  x,  y = 2 x,  x +  y = 1 and x + 2 y = 1, as in Fig. 9.14. 

The change of variables

 s =  y/x

(9.101)

 t =  y/( 1 −  x)

transforms  E  in the rectangle  R = { (s, t) : 1 ≤  s ≤ 2 ,  1 / 2 ≤  t ≤ 1}. 

Calling    the inverse transformation of (9.101), 

 x =  t/(s + t)

 y =  st/(s +  t)

we have  E =  (R)  and the Jacobian matrix of    is

⎛ −

⎞

 t

 s

⎜

⎝  (s +  t) 2  (s +  t) 2 ⎟

⎠  . 

 t  2

 s 2

 (s +  t) 2  (s +  t) 2

(continued)
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 Example 5 (continued)

Fig. 9.14

y

y = 2x

x +   = 1

y = x

x + 2  = 1

x

The Jacobian determinant is then

− st

 J =

 , 

 (s +  t) 3

and from (9.95) the given integral equals







 x

2

1

 dt

 dx dy =

 ds

=

 E y 2

1

1 / 2  s(s +  t ) 2







2

=

1

2

− 1

 ds =

1

 s

1 + 2 s

1 +  s





2

=

1 − 4 + 1

27

 ds = log

 . 

1

 s

1 + 2 s

1 +  s

25

Now we consider two systems of space coordinates of frequent use: cylindrical

coordinates and spherical coordinates. The cylindrical coordinates  (r, ϑ, z)  are related to the Cartesian ones by the relationships

⎧

⎪

⎪

⎨ x =  r  cos  ϑ

⎪ y =  r  sin  ϑ

(9.102)

⎪

⎩ z =  z , 

where  (r, ϑ)  are the polar coordinates of the Cartesian point  (x, y)  on the plane. The Jacobian matrix of  , defined in (9.102), is

⎛

⎞

cos  ϑ − r  sin  ϑ  0

⎝sin  ϑ

 r  cos  ϑ  0⎠

0

0

1
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and so the Jacobian determinant of    equals  r. 

 Example 6  Let us compute the volume of







 E =  (x, y, z) ∈ R3 :  x 2 +  y 2 ≤  z ≤

3 − 2 (x 2 +  y 2 ) . 

In cylindrical coordinates  E =  (S), where







 S =  (r, ϑ, z) ∈ R3 : 0 ≤  ϑ ≤ 2 π,  0 ≤  r ≤ 1 , r 2 ≤  z ≤

3 − 2 r 2  , 

so (9.94) gives for the volume of  E





√







2 π

1

3−2 r 2

1 



√

 dϑ

 dr

 r dz = 2 π

 r

3 − 2 r 2 −  r 2  dr =  π

3 − 5  . 

0

0

 r 2

0

6

Using cylindrical coordinates we may prove

Guldinus Theorem on the Volume of a Solid of Revolution  The volume of the

 solid obtained rotating around some axis a region D in the plane equals the product of the area of D times the length of the circular arc described by its centroid. 

 Proof  Suitably choosing the frame system we can always suppose that  D  lies on the  xz-plane and the axis of revolution is the  z-axis (see Fig. 9.15). 

Call  α ∈  ( 0 ,  2 π] the angle of rotation, so that the solid  E  arising from the  α-

rotation of  D  is described, in cylindrical coordinates, by 0 ≤  ϑ ≤  α,  (r, z) ∈  D. Its volume is then

Fig. 9.15

z

D

y

x
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 α

 m 3 (E) =

 dϑ

 r dr dz =  α

 r dr dz =

0

 D

 D



(9.103)

=  m 2 (D) ·  α ·

1

 x dx dz =  m 2 (D) ·  α ·  x 0  , 

 m 2 (D)

 D

where  x 0 is the first coordinate of the centroid of  D (see (9.92)). The claim follows from (9.103), since  α ·  x 0 is the length of the arc described by the centroid during the rotation. 

If  D  is the trapezoid defined by  a ≤  x ≤  b, 0 ≤  z ≤  f (x), the volume obtained rotating  D  about the  x-axis by  α  equals, by the Guldinus theorem, b

 f (x)

 b

 α

 z dx dz =  α

 dx

 z dz =  α

[ f (x)]2  dx . 

 D

 a

0

2  a

We thus recover in a different manner formula (9.81), seen in Example 3 of the previous section. 

 Example 7  Let us compute the volume of the solid  E  obtained by a complete revolution about the  y-axis of the set  D = { (x, y) ∈ R2 :  (x 2 +  y 2 ) 2 ≤  x 2 y, x ≥ 0}. The Guldinus theorem implies that the volume of  E  is



 m 3 (E) = 2 π

 x dx dy . 

 D

In polar coordinates  D  is given by

0 ≤  ϑ ≤  π , 

0 ≤   ≤ cos2  ϑ  sin  ϑ . 

2

Hence







 π/ 2

cos2  ϑ  sin  ϑ

 π/ 2

 m 3 (E) = 2 π

 dϑ

  2 cos  ϑ d = 2 π

cos7  ϑ  sin3  ϑ dϑ =  π . 

0

0

3

0

60

We introduce the  spherical coordinates  in space by setting

⎧

⎪

⎪

⎨ x =    sin  ϕ  cos  ϑ

⎪ y =    sin  ϕ  sin  ϑ

(9.104)

⎪

⎩ z =    cos ϕ , 

[image: Image 2562]
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Fig. 9.16

P

(x, y, z)

P 

(x, y, 0)



for any  P ≡  (x, y, z) ∈ R3. Referring to Fig. 9.16,   =

 x 2 +  y 2 +  z 2 is the

distance of  P  to the origin,  ϕ  is the angle between the  z-axis and the segment OP , and  ϑ  is the angle between the  x-axis and the segment  OP , where  P  is the projection of  P  on the  xy-plane. 

Now, (9.104) defines a diffeomorphism   :  A →  B, where A =  (, ϕ, ϑ) ∈ R3 :   >  0 ,  0  < ϕ < π,  0  < ϑ <  2 π , B = R3 −  E 0  , 

 E 0 =  (x, y, z) ∈ R3 :  x ≥ 0 , y = 0  . 

The Jacobian matrix of    is

⎛

⎞

sin  ϕ  cos  ϑ

   cos  ϕ  cos  ϑ

−   sin  ϕ  sin  ϑ

⎝sin  ϕ  sin  ϑ

   cos  ϕ  sin  ϑ

   sin  ϕ  cos  ϑ ⎠

cos  ϕ

−   sin  ϕ

0

so the Jacobian determinant equals  J =   2 sin  ϕ. Since  m 3 (E 0 ) = 0, similar considerations to those made for polar coordinates lead to show that if  E ⊆ R3 is a measurable set and  f  an integrable function on  E, 



 f dx dy dz =

 E



(9.105)

=

 f (  sin  ϕ  cos  ϑ,  sin  ϕ  sin  ϑ,  cos  ϕ) ·   2 sin  ϕ d dϕ dϑ . 

 −1 (E)
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 Example 8  We calculate the volume of the region  E  contained in the sphere (x, y, z) ∈ R3 :  x 2 +  y 2 +  z 2 ≤ 2 z

(9.106)

and lying outside of the paraboloid





 (x, y, z) ∈ R3 :  z ≥ 2 (x 2 +  y 2 ) . 

(9.107)

In spherical coordinates, the sphere (9.106) becomes





 (, ϕ, ϑ ) : 0 ≤  ϑ <  2 π,  0 ≤  ϕ ≤  π , ≤ 2 cos  ϕ

2

and the paraboloid (9.107) is





 (, ϕ, ϑ ) : 0 ≤  ϑ ≤ 2 π,  0 ≤  ϕ ≤  π , ≤ cos  ϕ

 . 

2

2 sin2  ϕ

Hence the set  E  outside of the paraboloid turns into





 π

cos  ϕ

 (, ϕ, ϑ ) : 0 ≤  ϑ <  2 π, 

≤  ϕ ≤  π , 

≤   ≤ 2 cos  ϕ . 

6

2

2 sin2  ϕ

By (9.105) we have







2 π

 π/ 2

2 cos  ϕ

 m 3 (E) =

 dϑ

 dϕ

  2 sin  ϕ d =

0

 π/ 6

cos  ϕ

2 sin2  ϕ







 π/ 2

= 2 π

8 cos3  ϕ  sin  ϕ − cos3  ϕ  sin  ϕ dϕ =

3

 π/ 6

8 sin6  ϕ







 π/ 2

= 2 π

8 cos3  ϕ  sin  ϕ − cos  ϕ + cos  ϕ

 dϕ =

3

 π/ 6

8 sin5  ϕ

8 sin3  ϕ



 ϕ= π/ 2

= 2 π −2 cos4  ϕ +

1

−

1

= 9 π . 

3

32 sin4  ϕ

16 sin2  ϕ

16

 ϕ= π/ 6

 Example 9  Let  x 1 , x 2 , . . . , xn ∈ R n  be  n  linearly independent vectors, and  P  the parallelepiped generated by them:





 n



 P =  x ∈ R n :  x =

 ti xi ,  0 ≤  ti ≤ 1 , ∀  i = 1 ,  2 , . . . , n . 

 i=1

(continued)
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 Example 9 (continued)

Calling  L

: R n → R n  the linear transformation mapping the canonical basis

{ e 1 , e 2 , . . . , en} to the vectors { x 1 , x 2 , . . . , xn}: L(ei ) =  xi , 

∀  i = 1 ,  2 , . . . , n, 

we have  P =  L([0 ,  1] n). Then from (9.94) m(P ) = |det  L|  , 

where  L  also denotes the matrix of the above linear map, i.e. the matrix having x 1 , x 2 , . . . , xn  as column vectors. 

 Example 10  Let us compute the measure of the  n-dimensional unit ball using Fubini’s theorem. The reader should compare this with the method adopted in the Appendix to

Chap. 8 (Sect. 8.11). 

Let  B = { x ∈ R n : | x| ≤ 1} be the unit ball in R n, with  n ≥ 3. For any  x ∈ R n  define x =  (x 1 , x 2 ),  x =  (x 3 , x 4 , . . . , xn). For any  x ∈ R2 the cross-section of  B  at  x is Bx =  x ∈ R n−2 :  x 2 +

+

≤

+

3

 x 24

 . . . +  x 2 n

1 −  x 21

 x 22

when  x 2 +  x 2 ≤ 1, otherwise  B

+  x 2 ≤ 1 ),  B

1

2

 x = ∅. In the former case ( x 2

1

2

 x is then the



ball in R n−2 with centre at the origin and radius

1 −  x 2 −  x 2. If  ω

1

2

 n  denotes the measure

of the unit ball in R n, (9.77) implies



 ωn =

 mn−2 (Bx  ) dx =

{ x 2+ x 2≤1}

1

2





 n−2

=

2

 ωn−2

1 −  x 2 −

1

 x 22

 dx 1  dx 2  . 

{ x 2+ x 2≤1}

1

2

Using polar coordinates the last integral is

1 

 n−2

2

 ωn = 2 πωn−2

   1 −   2

 d = 2 π ωn−2  . 

0

 n

When  n = 2 k, the above formula tells

 ω 2 k =  π ω 2 k−2 =  . . . =  πk−1

 k

 k!  ω 2 =  πk

 k!  . 

(continued)
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 Example 10 (continued)

When  n = 2 k + 1, 

 ω 2 k+1 =

2 π

 ω 2 k−1 =  . . . =

2 k π k

 ω 1 = 2 k+1 πk

2 k + 1

 ( 2 k + 1 )( 2 k − 1 ) · · · 3

 ( 2 k + 1 )!!  , 

where  ( 2 k + 1 )!! =  ( 2 k + 1 ) ·  ( 2 k − 1 ) · · · 3 · 1. 

Let us now pass to proving the theorems stated at the beginning. We have split

the proof in a series of lemmas. The first two address the case where    is a linear map, and for this we introduce certain special linear transformations. 

If  L : R n → R n  is a linear map, we shall also call  L  the square matrix (aij )i,j=1 ,  2 ,...,n  representing it. We say  L  is an  elementary transformation  if it satisfies one of the following requirements:

(i) there exist  h, k ∈ {1 ,  2 , . . . , n},  h =  k, such that, setting  y =  Lx,  x ∈ R n, we have  yh =  xk,  yk =  xh  and  yi =  xi  for any  i =  h, k. Hence the map L  interchanges the  h th and  k th coordinates of  x, while leaving the other ones fixed. In this case the matrix  L  has determinant −1, and its entries are

 aij =  δij

if  i =  h, k, 

 ahj =  δkj , 

 akj =  δhj , 

∀  j = 1 ,  2 , . . . , n; 

(ii) there exist  h, k ∈ {1 ,  2 , . . . , n},  h =  k, and a real number  c = 0, such that if y =  Lx,  x ∈ R n, then  yi =  xi  for any  i =  h, while  yh =  xh +  cxk. Here the matrix  L  has determinant 1 and elements

 aij =  δij , 

if  i =  h, ∀  j = 1 ,  2 , . . . , n, 

 ahk =  c , 

 ahj =  δhj , 

if  j =  k; 

(iii)  L  is a non-singular diagonal matrix, so

 aij =  ci δij , 

∀  i, j = 1 ,  2 , . . . , n, 

 n

=

where  ci = 0 for any  i = 1 ,  2 , . . . , n, and hence det  L =

 ci. 

 i=1

Lemma 1  If L is an invertible linear map of  R n, there exists a finite number of elementary transformations M 1 , M 2 , . . . , Mm such that

 L =  M 1 ◦  M 2 ◦  . . . ◦  Mm . 
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 Proof  Let  v 1 , v 2 , . . . , vn  be the column vectors of the matrix representing  L, and a 1 , a 2 , . . . , an  the row vectors. If  M  is an elementary transformation of type (i), it is easy to see that the matrix  M ◦  L  arises from  L  by interchanging the  h th row with the  k th one and leaving the others as they are, while  L ◦  M  is obtained interchanging the  h th column with the  k th one, and leaving the rest untouched. 

Similarly, it is easy to see that if  M  is of type (ii), then  M ◦ L  has the same rows as L  except for the  h th one, which equals  ah +  cak, while  L ◦  M  has the same columns as  L  except for the  k th one, which is  vk +  cvh. 

Clearly, then, we can always find finitely many elementary transformations  N 1, N 2,. . . ,  Ns ,  Ns+1,. . . ,  Nm  of type (i) or (ii) so that N 1 ◦  N 2 ◦  . . . ◦  Ns ◦  L ◦  Ns+1 ◦  . . . ◦  Nm =  D , where  D  is diagonal of type (iii). This immediately implies the claim, since the inverse of map of type (i) is of type (i), and the same holds for type (ii). 

Lemma 2  If L is a linear map and K ⊂ R n a compact set, 

 m(L(K)) = |det  L|  m(K) . 

(9.108)

If  F : R n → R n  is an affine transformation, i.e. 

 F (x) =  y 0 +  L(x) , 

∀  x ∈ R n, 

with  L  linear, since the Lebesgue measure is translation-invariant, by (9.108) we have

 m(F (K)) = |det  L|  m(K)

(9.109)

for any compact subset  K ⊂ R n. 

 Proof  The claim is obvious when det  L = 0, because in that case  L( R n)  is a subspace of dimension  n − 1 at most, so its  n-dimensional measure is easily zero. 

Suppose then det  L = 0. We start by showing that for an elementary transformation  L  and a closed interval  I , 

 m(L(I )) = |det  L|  m(I ) . 

(9.110)

This is obvious if  L  is of type (i). In that case we immediately have  m(L(I )) =  m(I ) and det  L = −1. If  L  is of type (iii), setting

 n

; 

 I =

[ ai, bi]  , 

(9.111)

 i=1
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L

b

b

2

2

I

P

a

a

2

2

a

b

a  + ca

b  + ca

1

1

1

2

1

2

Fig. 9.17

 L(I )  is the Cartesian product of real intervals of length

| c 1| (b 1 −  a 1 ), | c 2| (b 2 −  a 2 ), . . . , | cn| (bn −  an) . 

Hence

 N

; 

 m(L(I )) =  m(I ) ·

| ci| =  m(I)|det  L|  , 

 i=1

and (9.108) is proved. Finally, if  L  is of type (ii), to fix ideas suppose  h = 1,  k = 2. 

If  I  is the interval given by (9.111), one can see that

 n

; 

 L(I ) =  P ×

[ ai, bi]  , 

 i=3

where  P  is the parallelogram in Fig. 9.17, defined by





 P =  (y 1 , y 2 ) ∈ R2 :  a 1 +  cy 2 ≤  y 1 ≤  b 1 +  cy 2  , a 2 ≤  y 2 ≤  b 2  . 

From Fubini’s theorem we obtain

 n

; 

 m(L(I )) =  m 2 (P ) ·

 (bi −  ai) , 

 i=3

as since the area of  P  equals  m 2 (P ) =  (b 1− a 1 )(b 2− a 2 ), we have  m(L(I )) =  m(I ). 

As det  L = 1, (9.110) is again proved. The same reasoning gives (9.110) also when I  is open. 

By additivity we can also conclude that (9.108) holds when  L  is an elementary

◦

transformation and  K  a closed pluri-interval. If  P  is an open pluri-interval, since

[image: Image 2600]

[image: Image 2601]

[image: Image 2602]

[image: Image 2603]

472

9

The Lebesgue Integral

◦

 P =  I − Q  for some open interval  I  and some closed pluri-interval  Q, we still have

◦

◦

 m(L(P )) = |det  L|  m(P ) . 

(9.112)

If  K  is compact, by the lemma of Sect. 9.7 there is a decreasing sequence of

◦

open pluri-intervals  P k, whose intersection is  K, satisfying (9.112). Now (9.108) follows from (9.112). 

At last, suppose  L, M  are elementary transformations and  K  is compact. As L(K)  is compact, from what was proved we obtain

 m((M ◦  L)(K)) = |det  M| m(L(K)) =

= |det  M| · |det  L| m(K) = |det (M ◦  L)| m(K) , since det (M ◦  L) = det  M · det  L. Claim (9.108) for an invertible  L  now follows from what we proved above and Lemma 1. 

In the sequel, if  x 0 ∈ R n  and  r >  0, we shall denote by  Qr (x 0 )  the closed n-dimensional cube with edge 2 r  and centre  x 0:

 n

; 

 Qr (x 0 ) =

[ x 0 ,i −  r, x 0 ,i +  r]  . 

 i=1

Lemma 3  Let A be open in  R n, :  A →  B a diffeomorphism and U an open bounded set such that U ⊂  A. For any σ >  0  there is r 0  >  0  such that, if x 0 ∈  U

 and  0  < r < r 0 , 

4

5

 (Qr (x 0 )) ⊆  F Qr( 1+ σ)(x 0 ) , 

(9.113)

 where F is the affine transformation

 F (x) =  (x 0 ) +  D(x 0 )(x −  x 0 ) , 

∀  x ∈ R n. 

(9.114)

 Proof  Let  d  be a positive number smaller than the distance of the closure of  U

from the boundary of  A, i.e. such that 0  < d <  dist (U , ∂A) (and  d >  0 arbitrary if A = R n). Putting

2

3

 K =  x ∈ R n : dist  (x, U ) ≤  d , 

by the continuity of the distance function  K  is compact, and furthermore  K ⊂  A. 

Hence the generalised Weierstrass theorem (Sect. 2.12) ensures that  (K) ⊂  B  is compact, and there is a constant  c 0 such that









 D(−1 )i(y) ≤  c 0  , 

∀  y ∈  (K), ∀  i = 1 ,  2 , . . . , n, 

(9.115)
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√

where  (−1 )i  is the  i th component of  −1. Moreover, let  r 0 ∈  ( 0 , d/ n )  be such that





√





 x , x ∈  K,  x −  x ≤  r





0

 n

⇒  Di(x ) −  Di(x ) ≤

 σ

 , 

 c 0  n 3 / 2

(9.116)

for any  i = 1 ,  2 , . . . , n. Given  x 0 ∈  U , call  F  the affine transformation defined by (9.114). Since  L =  D(x 0 )  is invertible and  L−1 =  D−1 (y 0 )  where  y 0 =  (x 0 ), by (9.115) it follows











4

5





 x −

= 

≤ 



 i

 x

 i

 D(−1 )i(y 0 ) L(x −  x )

 c 0  L(x −  x )

(9.117)

for any  x , x ∈ R n  and any  i = 1 ,  2 , . . . , n. To prove (9.113) consider  y ∈

 (Qr (x 0 )), with 0  < r < r 0. Set  x =  −1 (y),  x =  F −1 (y), so clearly (x) =  F (x). Then (9.117) implies

| xi −  xi| ≤  c 0 | L(x −  x)| =  c 0| F (x) −  F (x)| =

 n



(9.118)

=  c 0| F (x) −  (x)| ≤  c 0

| Fi(x) −  i(x)|  , 

 i=1

where  Fi ,  i , are the  i th components of  F  and  . By the mean value theorem, for any  i ∈ {1 ,  2 , . . . , n}, there is a point  ξi  on the line segment between  x  and  x 0 such that

 Fi(x) −  i (x) =  i(x 0 ) −  i (x) +  (Di(x 0 ), x −  x 0 ) =  (Di(x 0 ) −  Di (ξi), x −  x 0 ) . 

√

Since | ξi −  x 0| ≤ | x −  x 0| ≤  r n < d,  ξi ∈  K, by (9.116) we have

| Fi(x) −  i(x)| ≤

 σ

| x −  x 0| ≤  σr . 

 c 0 n 3 / 2

 c 0 n

Hence we obtain from (9.118)

| xi −  xi| ≤  σr, 

∀  i = 1 ,  2 , . . . , n, 

implying  x ∈  Qr( 1+ σ)(x 0 )  and finally  y ∈  F (Qr( 1+ σ)(x 0 )). 

Lemma 4  Let  :  A →  B be a diffeomorphism and E ⊆  A a measurable set. 

 Then (E) is measurable and



 m((E)) ≤

| J|  dx . 

(9.119)

 E
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 Proof  Let us first prove (9.119) when  I ⊂  A  is a closed interval n

; 

 I =

[ ai , bi]  , 

 i=1

with rational vertices  (a 1 , a 2 , . . . , an),  (b 1 , b 2 , . . . , bn). Clearly  I  can be written as union of a finite number  N  of closed cubes, all with edges of the same length, and with pairwise-disjoint interiors. Finally, let  U  be an open bounded set containing  I and such that  U ⊂  A. 

Given  σ >  0, choose  r 0 as in Lemma 3. Then there is  r ∈ [0 , r 0 )  such that N

" 

 I =

 Qr (xi) , 

(9.120)

 i=1

◦

◦

where  Qr (xi) ∩  Qr (xj ) = ∅ if  i =  j . Moreover, it is possible to choose  r  so that, if





√

 x , x ∈  I  and  x −  x ≤  r n, then





 J



 (x ) −  J(x ) < σ . 

(9.121)

For any  x ∈ R n  and any  i = 1 ,  2 , . . . , N  we set  Fi(x) =  (xi) +  (D(xi), x −  xi). 

By (9.120), (9.113) and (9.109) we obtain N



 m((I )) ≤

 m((Qr (xi))) ≤

 i=1

 N

4

5

 N



≤

 m Fi(Qr( 1+ σ)(xi)) = 2 n( 1 +  σ )nrn

| J(xi)|

 i=1

 i=1

and so, from (9.121), 

 N



 m((I )) ≤ 2 n( 1 +  σ )nrn

| J(xi)| =

 i=1

 N



=  ( 1 +  σ)n

| J(xi)|  dx ≤

 Q

 i=1

 r (xi )

 N





≤  ( 1 +  σ)n

| J(xi) −  J(x)|  dx +  ( 1 +  σ)n

| J(x)|  dx ≤

 Q

 I

 i=1

 r (xi )



≤  σ( 1 +  σ)nm(I) +  ( 1 +  σ)n

| J(x)|  dx . 

 I

(9.122)
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Now (9.119) is a consequence of (9.122) as  σ  tends to zero. 

Next, if  I ⊂  A  is any closed interval, letting  Ik  be a decreasing sequence of closed intervals contained in  A, with rational vertices, and whose intersection is  I , we have





 m((I )) = lim  m((Ik)) ≤ lim

| J|  dx =

| J|  dx . 

 k→+∞

 k→+∞  Ik

 I

We conclude that (9.119) holds for any closed interval  I , and hence any closed pluri-interval  P . 

If  U ⊂  A  is open, letting  Pk  be an increasing sequence of closed pluri-intervals with union  U , from what we have just proved





 m ((U )) = lim  m((Pk)) ≤ lim

| J|  dx =

| J|  dx . 

 k→+∞

 k→+∞  Pk

 U

Hence (9.119) holds for  E  open. 

Now fix an open bounded set  U , with  U ⊂  A, and let us show (9.119) holds for any measurable set  E ⊆  U . If  E  has zero measure, taking a decreasing sequence of open sets  Vk  such that  E ⊆  Vk ⊆  U  for any  k ∈ N and  m(Vk) → 0 as  k → +∞, by (9.58) we have



 me((E)) ≤ lim  m((Vk)) ≤ lim

| J|  dx = 0  . 

 k→+∞

 k→+∞  Vk

This proves  m((E)) = 0, and so  (E)  is measurable. If  E ⊆  U  is measurable, from Example 5, Sect. 9.4, there is a decreasing sequence  Vk  of open sets contained in  U  such that

∞

#

 m(E) = lim  m(Vk) , 

 E =

 Vk −  E 0  , 

 k→+∞

 k=1

with  E 0 ⊂  U  of measure zero. From this, 

∞

#

 (E) =

 (Vk) −  (E 0 )

 k=1

is measurable and (9.119) holds. 

At last, if  E ⊆  A  is any measurable subset, the claim follows by the observation that, setting  Ek =  E ∩  Uk  with

 Uk = { x ∈  A : | x|  < k,  dist (x, ∂A) >  1 /k}  , 
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∞

! 

we have  Uk ⊂  A  for any  k,  Uk ⊆  Uk+1 and  A =

 Uk. Since, for any  k ∈ N, 

 k=1

∞

! 

 (Ek)  is measurable, also  (E) =

 (Ek)  is measurable. Furthermore, from

 k=1

what was proved above





 m((Ek)) ≤

| J|  dx ≤

| J|  dx , 

 Ek

 E

and then, since  (Ek) ≤  (Ek+1 )  for any  k ∈ N, (9.119) follows by taking the limit as  k → +∞. 

Now we pass to the proof of (9.95). As already said, this relationship implies (9.94) and therefore the theorem on the change of measure under diffeomorphisms: by Lemma 4, we know  (E)  is measurable for any measurable set  E ⊆  A. 

We begin by showing that if  f :  B → [0 , +∞] is measurable, then  f ((x))  is measurable on  A  and





 f (y) dy ≤

 f ((x))| J(x)|  dx . 

(9.123)

 B

 A

This is true if

 N



 f (y) =

 ciχF (y)

 i

 i=1

is a simple function. In fact by Lemma 4 (applied to  −1 ),  Ei =  −1 (Fi)  is measurable for any  i = 1 ,  2 , . . . , N. Hence

 N



 f ((x)) =

 ciχE (x)

 i

 i=1

is measurable as well. By (9.119) we obtain



 N



 N



 f (y) dy =

 ci m(Fi ) =

 cim((Ei )) ≤

 B

 i=1

 i=1

 N





≤

 ci

| J(x)|  dx =

 f ((x))| J(x)|  dx . 

 E

 A

 i=1

 i

The general case follows by an approximation process, considering an increasing

sequence of simple functions  sk  that tends to  f  pointwise on  B. Thus (9.123) is
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proved for any diffeomorphism   :  A →  B  and any measurable and non-negative function  f  on  B. 

To prove the equality, given a measurable function  f :  B → [0 , +∞], we apply (9.123) to the diffeomorphism  −1 and the function  g :  A → [0 , +∞] , g(x) =

 f ((x))| J|, which is measurable. By (9.123), therefore, f ((x))| J(x)|  dx ≤

 A











≤





 f (−1 (y))  J(−1 (y)) · | J−1  (y)|  dy =

 f (y) dy . 

 B

 B

So we have (9.95) for a non-negative measurable function. The general case follows considering the positive and negative parts of  f . 

Appendix to Chap. 9

9.9

 Lp Spaces

Let  E  be a measurable subset of R n, of positive measure. If  p ≥ 1 is a real number, one indicates by  Lp(E)  the family of measurable functions  f  on  E  such that | f | p is summable:







 Lp(E) =  f :  E → R measurable:

| f | p dx < +∞  . 

(9.124)

 E

Notice that  L 1 (E)  is exactly the set of summable functions on  E, so with the usual operations of sum of functions and product of a function by a scalar, it is a vector

space. 

Also  Lp(E), for  p >  1, is a vector space. In fact if  f ∈  Lp(E)  and  c ∈ R, obviously  cf ∈  Lp(E). If  f, g ∈  Lp(E), the inequality 4

5

| f (x) +  g(x)| p ≤ 2 p−1 | f (x)| p + | g(x)| p , for a.e.  x ∈  E, (9.125)

forces  f +  g ∈  Lp(E). 

We show (9.125) by proving that if  a, b ≥ 0,  p ≥ 1, then 4

5

 (a +  b)p ≤ 2 p−1  ap +  bp . 

(9.126)

The function  ϕ(t) = 2 p−1 ( 1 +  tp) −  ( 1 +  t)p  has absolute minimum for  t ≥ 0 at t 0 = 1, with minimum value  ϕ(t 0 ) = 0. Hence  ϕ(t) ≥ 0 for any  t ≥ 0, and so 4

5

 ( 1 +  t)p ≤ 2 p−1 1 +  tp , 

∀  t ≥ 0 . 

(9.127)
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Now (9.126) follows from (9.127) with  t =  b/a. 

If  f  is a measurable function on  E, we say that  f  is  essentially bounded  on  E

when

 m({ x ∈  E : | f (x)|  > M} ) = 0

for some constant  M >  0. That is, | f (x)| ≤  M  almost everywhere on  E. 

Consider, for any  t ≥ 0, the set  Et = { x ∈  E : | f (x)|  > t}. If  f  is essentially bounded on  E, the quantity

ess sup |

 E f | = inf { t >  0 :  m(Et ) = 0}

(9.128)

is called  essential supremum  of | f | on  E. 

Writing  λ  for the essential supremum, let  tk  be a strictly decreasing numerical sequence converging to  λ. Since

∞

" 

 m(Et ) = 0  , 

∀  k ∈ N  , 

and

 E

 E , 

 k

 λ =

 tk

 k=1

we also have  m(Eλ) = 0. Therefore the essential supremum of | f | is the smallest real number  λ ≥ 0 such that | f (x)| ≤  λ  almost everywhere on  E. 

If  f  is not essentially bounded one sets ess sup | f | = +∞. 

 E

Now define





 L∞ (E) =  f :  E → R , f  measurable, ess sup |

 E f |  < +∞

 . 

(9.129)

Also  L∞ (E)  is a vector space, and we leave to the reader the easy proof. 

If  f  is a measurable function on  E, we indicate by  f  Lp(E), or simply  f  Lp or  f  p, the quantity



1 /p

 f 

=

|

 Lp(E)

 f | p dx

 , 

(9.130)

 E

in case  p ∈ [1 , +∞ ), while for  p = +∞

 f 

=

|

 L∞ (E)

ess sup E f |  . 

(9.131)

These quantities do not define a norm on  Lp(E), because if  f  is zero almost everywhere on  E, then  f 

=

 Lp(E)

0 even when  f  is not the zero function. To

overcome this problem one introduces, on the set of measurable functions on  E, the equivalence relation

 f ∼  g

⇔  f (x) =  g(x) , 

for a.e.  x ∈  E. 
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In the sequel we shall identify a measurable function  f  with  the equivalence class it determines. In this way the space  Lp(E)  is now more precisely  the quotient set (with respect to the relation ∼) of the space in (9.124) (or (9.129) if  p = +∞). Two elements  f, g  in  Lp(E)  will then be equal whenever the functions  f  and  g  coincide almost everywhere on  E. 

Under that identification, if  f ∈  Lp(E)  then

 f 

=

 Lp(E)

0

⇔

 f = 0  . 

(9.132)

If  c ∈ R and  f ∈  Lp(E), it is immediate to see that

 cf 

= |

 Lp(E)

 c| ·  f   Lp(E) . 

(9.133)

Let us prove the  triangle inequality: if  f, g ∈  Lp(E)

 f +  g

≤ 

+ 

 Lp(E)

 f   Lp(E)

 g Lp(E) . 

(9.134)

Formula (9.134) is straightforward when  p + ∞ or  p = 1. For 1  < p < +∞, (9.134) is called  Minkowski inequality. To prove it we need another remarkable inequality, for which we introduce some definitions. 

When  p ∈ [1 , +∞], we say  p ∈ [1 , +∞] is  the conjugate exponent  of  p  if 1 + 1

 p

 p = 1  , 

where, if  p = +∞, we set 1 /p = 0 i.e.  p = 1, and similarly for  p. 

Hölder’s Inequality  If f , g are measurable on E and p, p ∈ [1 , +∞]  are conjugate exponents, then



| f ·  g|  dx ≤  f 

· 

 Lp(E)

 g  Lp (E) . 

(9.135)

 E

 Proof  Formula (9.135) is immediate in case  p = 1,  p = +∞, or  p = +∞, p = 1. Suppose then 1  < p, p  < +∞. 

Again, (9.135) is obvious if the right-hand side equals +∞. If not, by Young’s inequality (Sect. 2.7)

 ab ≤  ap +  bp

 p

 p

∀  a, b ≥ 0 , 
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we have

| f (x) ·  g(x)|

|

|

≤ 1  f (x)| p + 1  g(x)| p



for a.e.  x ∈  E. 

 f  · 

 p

 g p

 p  f  pp

 p  g p

 p

Integrating the above inequality over  E  gives



1

|



 f (x) ·  g(x)|  dx ≤

 f  · 

 p

 g p  E





≤

1

| f (x)| p dx +

1

| g(x)| p  dx = 1 + 1

 p f  pp E

 p g p

 p

 p = 1  , 

 p

 E

and hence (9.135). 

Now let us prove Minkowski’s inequality (9.134) for  p ∈  ( 1 , +∞ ). As  p =

 p/(p − 1 ), from (9.135) we obtain







| f +  g| p dx ≤ | f +  g| p−1| f |  dx +

| f +  g| p−1 | g|  dx ≤

(9.136)

 E

 E

 E



 p−1



 p−1

 p

 p

≤ f 

|

+ 

|

 p

 f +  g| p dx

 g p

 f +  g| p dx

 , 

 E

 E

and then (9.134) follows by dividing both sides of (9.136) by p−1 p

| f +  g| p dx

 . 

 E

 Example 1  If the set  E  has finite measure and  p ∈ [1 , +∞], putting  g = 1 in Hölder’s inequality (9.135) gives



 p−1

| f (x)|  dx ≤  f 

· {

 p

 Lp (E)

 m(E)}

 , 

(9.137)

 E

where  (p − 1 )/p = 1 if  p = +∞. In particular,  m(E) < +∞ implies  Lp(E) ⊆  L 1 (E). 

More generally, if  m(E) < +∞ and 1 ≤  r < s ≤ +∞

 f 

≤ 

· {

− 1 s

 Lr (E)

 f  Ls(E)

 m(E)} 1 r

 . 

(9.138)

This follows from (9.137) if we write | f | r  in place of  f , and  p =  s/r. 

(continued)
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 Example 1 (continued)

In conclusion, if  m(E) < +∞, 

1 ≤  r < s ≤ +∞

⇒  Ls(E) ⊆  Lr(E) . 

(9.139)

 Example 2  If  E =  ( 0 ,  1 ) ⊂ R and  f (x) = | x|− α  with 0  < α <  1, then  f ∈  Lp(E)  if and only if 1 ≤  p <  1 /α. This example shows that, in general, if  m(E) < +∞ and  r < s, then Lr (E) =  Ls(E) (but as we showed above,  Ls(E) ⊂  Lr (E)). As a matter of fact one can prove that this is always the case, for every measurable set  E ⊆ R n  with 0  < m(E) < +∞. 

In general, if  m(E) < +∞, we also have

"  Ls(E)   Lr(E). 

 s>r

For instance

 f (x) =

1

 , 

 x|log  x|2

is summable on  ( 0 ,  1 ), i.e.  f ∈  L 1 (( 0 ,  1 )), but  f /

∈  Lp(( 0 ,  1 ))  for any  p >  1. 

 Example 3  If  m(E) = +∞, (9.139) is not true. For example the function  f (x) = 1 /x  is in  Lp(( 1 , +∞ ))  for any  p >  1, but not in  L 1 (( 1 , +∞ )). 

We have nonetheless the following  interpolation  result:

Proposition 1  If  1 ≤  s < r < t ≤ +∞ , then

 f 

≤ 

· 

 Lr (E)

 f  ϑ

 f  1− ϑ , 

(9.140)

 Ls (E)

 Lt (E)

 for any measurable function f on E, where ϑ ∈  ( 0 ,  1 ) is such that 1 =  ϑ + 1 −  ϑ . 

(9.141)

 r

 s

 t

By (9.140) it follows in particular

 Ls (E) ∩  Lt (E) ⊆  Lr (E) . 

As a matter of fact also this inclusion is strict. 
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 Proof  From (9.141)

1

+

1

= 1 ; 

 s/(rϑ)

 t/(r( 1 −  ϑ))

so  s/(rϑ)  and  t/(r( 1 −  ϑ))  are conjugate exponents. Hölder’s inequality (9.135) implies





 f  r =

|

|

 r

 f | r dx =

 f | rϑ | f | r( 1− ϑ) dx ≤

 E

 E



 rϑ 

 r( 1− ϑ)

 s

 t

≤

| f | s dx

·

| f | t dx

=  f  rϑ · 

 s

 f  r( 1− ϑ)

 t

 . 

 E

 E

Then (9.140) follows by taking the  r th root of the first and last side in the above inequality. 

 Example 4  If  E  is has finite measure and  f  is a measurable function on  E, then  f  Lp(E) admits limit as  p → +∞, and

lim  f 

= 

 Lp (E)

 f  L∞ (E) . 

(9.142)

 p→+∞

From (9.138), in fact, 

lim sup  f 

≤ 

·

 Lp (E)

 f  L∞ (E)

lim

 (m(E)) 1 /p =  f  L∞ (E) . 

(9.143)

 p→+∞

 p→+∞

If  f  does not vanish almost everywhere (otherwise (9.142) is obvious), given a positive number  t  smaller than  f  L∞ (E), by definition (9.128) of essential supremum we have m(Et ) >  0. As | f (x)|  > t  for almost every  x ∈  Et , moreover, 1 /p

 f 

≥

|

≥

 Lp (E)

 f | p dx

 t (m(Et )) 1 /p . 

 Et

Taking the limit inferior as  p → +∞ gives

lim inf  f 

≥

 Lp (E)

 t , 

∀ t <  f   L∞ (E). 

 p→+∞

Then letting  t  tend to  f  L∞ (E)  we obtain

lim inf  f 

≥ 

 Lp (E)

 f   L∞ (E) . 

 p→+∞

This, together with (9.143), gives the conclusion (9.142). 
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Let  E  be a measurable set. A sequence of functions  fk converges almost

 everywhere on E  to a function  f  if, as  k → +∞,  fk(x) →  f (x)  for almost every x ∈  E. If 1 ≤  p < +∞, a sequence  fk  in  Lp(E) converges in Lp norm  to  f  if and only if



lim  fk −  f  p

= lim

| f

 Lp(E)

 k −  f | p dx = 0  . 

 k→+∞

 k→+∞  E

The study of conditions equivalent to the convergence in  Lp  norm goes beyond the purposes of this textbook. Let us just mention that Lebesgue’s dominated

convergence theorem immediately implies

Proposition 2  Let fk be a sequence in Lp(E) that converges almost everywhere on E to f . If, for some p ∈ [1 , +∞ ), there is a function g ∈  Lp(E) such that

| fk(x)| ≤  g(x) , 

∀  k ∈ N  and for a.e. x ∈  E, 

 then fk converges to f in Lp(E). 

If  fk  is a sequence in  L∞ (E), to say that  fk  converges to  f  in  L∞ (E)  is equivalent to saying, by definition of norm, that for any  k ∈ N there exist zero-measure sets  Ek ⊂  E  such that

lim sup {| fk(x) −  f (x)| :  x ∈  E −  Ek} = 0  . 

 k→+∞





∞

! 

Since  m

 Ek

= 0, we have proved the following result. 

 k=1

Proposition 3  A sequence fk in L∞ (E) converges to f ∈  L∞ (E) if and only if there is a zero-measure set E 0 ⊂  E such that fk converges to f uniformly on E −  E 0 . 

The next result establishes one of the most important properties of the spaces

 Lp(E). 

Theorem  For any p ∈ [1 , +∞] , Lp(E) is a Banach space for the norm defined in (9.130) , (9.131) . 

We have already seen, in Example 5, Sect. 2.8, that a sequence  fk  of continuous functions, that is Cauchy for the  Lp  norm, may not converge to a continuous

function. In other words  C 0 is not complete for the  Lp  norm. The previous theorem, however, guarantees that the sequence  fk  admits limit in  Lp(E). 
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 Proof  We have already proved (see (9.132), (9.133) and (9.134)) the properties f 

=

 Lp(E)

0

⇔  f = 0 ; 

 cf 

= |

 Lp(E)

 c| ·  f   Lp(E) , 

∀  c ∈ R , ∀  f ∈  Lp(E); 

 f +  g

≤ 

+ 

 Lp(E)

 f  Lp(E)

 g Lp(E) , 

∀  f, g ∈  Lp(E)

for the norm defined in (9.130) and (9.131). These properties make  Lp(E), for any p ∈ [1 , +∞], a normed space. There remains to prove completeness. 

If  p = +∞, by Proposition 3 completeness reduces to the uniform Cauchy criterion seen in Sect. 1.2. So let 1 ≤  p < +∞ .  Consider a Cauchy sequence  fk  in Lp(E). By Proposition 1, Sect. 2.8, to show that  fk  converges in  Lp(E)  it suffices to find a convergent subsequence. 

Let then  kr  be a strictly increasing sequence of positive integers such that 1

 fh −  fk Lp(E) < 

 , 

∀  h, k ≥  kr . 

(9.144)

2 r+ r/p

Define

∞







 g(x) =

2 rp f

 p

 k (x) −  f

 (x)

 , 

∀  x ∈  E. 

(9.145)

 r

 kr+1

 r=1

Since by (9.144)

∞







∞





1

 g

=



 p

=

 L 1 (E)

2 rp

 fk (x) −  f

 (x)

 dx < 

1 , 

 r

 kr+1

 E

2 r

 r=1

 r=1

the function  g  is summable on  E, so  g(x) < +∞ for almost every  x ∈  E. From (9.145) we obtain





 f



 k (x) −  f

 (x) ≤ 1  g(x) 1 /p < +∞

∀  r ∈ N ,  for a.e.  x ∈  E. 

 r

 kr+1

2 r

Then, for any  r ∈ N and any  s > r, 



 s− r−1











 f







 k (x) −  f (x) ≤

 f

 (x) −  f

 (x) ≤

 s

 kr

 kr+ i

 kr+ i+1

 i=0

(9.146)

 s− r−1



1

1

≤

 g(x) 1 /p ≤

 g(x) 1 /p

for a.e.  x ∈  E. 

2 r+ i

2 r−1

 i=0
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By the (pointwise) Cauchy criterion the sequence  fk  converges pointwise, for r

almost every  x ∈  E, to some function  f (x). From (9.146), letting  s  tend to +∞, f (x) −  f

 p

 k (x)

≤

1

 g(x) , 

∀  r ∈ N ,  for a.e.  x ∈  E. 

 r

2 (r−1 )p

Integrating over  E  gives  f ∈  Lp(E). Moreover, as  r → +∞, we see that  fkr converges to  f  in  Lp(E). The claim is then proved. 

We finish by observing that the above proof allows to deduce in particular the

following

Corollary  If fk converges to f in Lp(E) for some p ∈ [1 , +∞] , there exists a subsequence fk that converges to f almost everywhere on E. 

 r

9.10

Differentiability of Monotone Functions

When studying Lebesgue’s indefinite integral

 x

 F :  x ∈ [ a, b] →

 f (t) dt

(9.147)

 a

as a function of the endpoint  x  of integration, one observes that if  f  is summable and non-negative then  F  is increasing. If  f  is summable but has arbitrary sign, it is the difference of two non-negative summable functions (see (9.39)) f (t) =  f + (t) −  f − (t)

and (9.147) is the difference of two increasing functions  F 1 (x)  and  F 2 (x) x

 x

 F 1 (x) =

 f + (t) dt

 F 2 (x) =

 f − (t) dt . 

 a

 a

Therefore the study of Lebesgue’s indefinite integral (9.147) reduces to the study of the difference of two increasing functions, which is not monotone in general. 

We recall notions and notations regarding  monotone real functions  defined on a closed interval [ a, b] in R. If  F  is increasing on [ a, b] and  x 0 ∈ [ a, b), by  F (x+ ) 0

we denote the right limit

lim  F (x), 

 x→ x+

0
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and similarly for  x 0 ∈  (a, b] we set

 F (x− ) = lim  F (x) . 

0

 x→ x−

0

When  x 0 ∈  (a, b)  we call the non-negative number  F (x 0 ) −  F (x− )  the  left jump  of 0

 F  at  x, and the non-negative number  F (x+ ) −  F (x 0

0 )  the  right jump. The  jump of

 F  at  x 0 is

 F (x+ ) −  F (x− ) . 

0

0

The next lemma contains an upper bound for the  sum of all jumps  of an increasing function. 

Lemma 1  Let F be increasing on [ a, b]  and x 1 , x 2 , . . . , xk points in (a, b). Then k



[ F (a+ ) −  F (a)] +

[ F (x+ ) −  F (x− )] + [ F (b) −  F (b− )] ≤  F (b) −  F (a) . 

 j

 j

 j =1

(9.148)

 Proof  Supposing

 a =  x 0  < x 1  < x 2  < . . . < xk < xk+1 =  b we pick points  y 0 , y 1 , . . . , yk  such that

 xj < yj < xj+1

 j = 0 ,  1 ,  2 , . . . , k . 

Then

 F (x+ ) −  F (x− ) ≤  F (y

 j

 j

 j ) −  F (yj −1 )

 F (a+ ) −  F (a) ≤  F (y 0 ) −  F (a)

 F (b) −  F (b− ) ≤  F (b) −  F (yk)

and adding the inequalities gives (9.148). 

Corollary 1  If F (x) is increasing on [ a, b] , for any ε >  0  there exist at most finitely many discontinuity points at which the jump of F is bigger than ε. 
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 Proof  If the points  x 1 , x 2 , . . . , xk  internal to [ a, b] are discontinuities for  F  with jump larger than  ε, then

 kε < F (b) −  F (a) , 

and so  k  cannot be arbitrarily large. 

Proposition 1  The discontinuity set of a monotone function F is at most countable. 

 Proof  Let  D  be the discontinuity set of  F , and  Dk,  k ∈ N, the subset of points where the jump is bigger than or equal to 1 /k. Evidently

 D = ∪  Dk

 k∈N

and so  D  is at most countable, by Corollary 1. 

If  (xj )  is the sequence of elements of  D, by (9.148) it follows (as  k → ∞) that

∞



 F (a+ ) −  F (a) +

[ F (x+ ) −  F (x− )] +  F (b) −  F (b− ) ≤  F (b) −  F (a) . 

 j

 j

 j =1

(9.149)

Let now  F : [ a, b] → R be an increasing function. Define the jump function  S(x) of  F (x)  by:

⎧

⎪

⎪

⎪

⎨0

for

 x =  a



 S(x) =

 F (a+ ) −  F (a) +

[ F (x+ ) −  F (x− )]+

⎪

 k

 k

 . 

(9.150)

⎪

⎪

 x

⎩

 k <x

+[ F (x) −  F (x− )]

for

 a < x ≤  b

This is an increasing function. 

Proposition 2  The difference

 (x) =  F (x) −  S(x)

 is increasing and continuous. 

 Proof  Take  a ≤  x < y ≤  b  and apply (9.149) to the interval [ x, y]. Then S(y) −  S(x) ≤  F (y) −  F (x)

(9.151)
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so  (x) ≤  (y), and    is increasing. Taking the limit in (9.151) as  y →  x+ gives S(x+ ) −  S(x) ≤  F (x+ ) −  F (x) . 

(9.152)

By definition of  S(x), on the other hand, for  y > x

 F (x+ ) −  F (x) ≤  S(y) −  S(x) . 

When  y →  x+

 F (x+ ) −  F (x) ≤  S(x+ ) −  S(x) . 

(9.153)

From (9.152), (9.153) we deduce

 F (x+ ) −  F (x) =  S(x+ ) −  S(x) , 

i.e. 

 (x+ ) =  (x) . 

With a similar argument one proves

 (x− ) =  (x), 

so    is continuous. 

Covering Theorems

Let  X  be a subset of R and  F  a family of closed non-degenerate intervals. 

Definition 1 The family  F  is a Vitali covering of  X  if, for any  x ∈  X  and any ε >  0, there exists  I ∈  F  such that

 x ∈  I

and

 m(I ) < ε . 

(9.154)

In other words every point in  X  is contained in some closed interval of  F  whose measure is arbitrarily small. 

Now we state a classical covering theorem, whose proof we omit. 

Theorem 1 (Vitali Coverings)  Let X ⊂ R  be a measurable set and F a Vitali covering of X. There exist a finite or countable subfamily F ⊂  F made of pairwise-disjoint intervals such that



" 

 m X \

 I

= 0  . 

 I ∈ F 

[image: Image 2680]

9.10 Differentiability of Monotone Functions

489

G(x)

a = a

b a
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1

1 2

2 3

3

4

4

x

Fig. 9.18 The points on the thicker parts of the graph of  G  are those whose  x-coordinate lies in A  and are not hit by the rising sun’s light

 Remark 1  If in Theorem 1 we assume that  X  has finite measure, and we call (Ij )j∈N the (possibly empty) intervals of  F, by (9.154) we have k

" 

lim  m X \

 Ij

= 0 . 

 k→+∞

 j =1

Hence we conclude that for any  ε >  0 there is a finite set { I 1 , . . . , Ik} ⊂  F  of pairwise-disjoint closed intervals such that



 k

" 

 m X \

 Ij

 < ε . 

 j =1

The following result is a version of the ‘Rising Sun Lemma’, originally due to F. 

Riesz. The statement is depicted in Fig. 9.18. 

Lemma 2 (Riesz)  Let G : [ a, b] → R  be a continuous function and define A = { x ∈  (a, b) : ∃  y > x :  G(y) > G(x)}  . 

 Then A is the union of a finite, or at most countable, number of pairwise-disjoint open intervals (aj , bj ) such that

 G(aj ) ≤  G(bj ) . 

(9.155)

 Similarly, setting

 B = { x ∈  (a, b) : ∃  y < x :  G(y) > G(x)}  , 
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 B is a finite or at most countable union of pairwise-disjoint, open intervals (αj , βj ) such that

 G(αj ) ≥  G(βj ) . 

(9.156)

 Proof  We will just prove the first part, as the second assertion is completely similar. 

First of all, the continuity of  G  implies that  A  is open. Hence  A  is a union, at most countable, of pairwise-disjoint intervals  (aj , bj ). In particular, for any  j  the endpoints  aj , bj  cannot belong to  A. 

To prove (9.155) we argue by contradiction, supposing that for some  j  the opposite inequality

 G(aj ) > G(bj )

(9.157)

holds. By (9.157) there is  x 0 ∈  (aj , bj )  such that  G(x 0 ) > G(bj ). Let  y  be the largest  x ∈  (aj , bj )  for which  G(x) =  G(x 0 ). This maximum exists due to (9.157), the continuity of  G  and the fact that  y ≥  x 0. Since  y  belongs to  A, there exists z ∈  (y, b)  such that  G(z) > G(y). Moreover  z  cannot lie in  (aj , bj ), because otherwise, due to  G(z) > G(y) > G(bj ), the intermediate value theorem would give us  x ∈  (z, bj )  with  G(x) =  G(y) =  G(x 0 ), against the definition of  y. 

So we have found a point  z ∈  (bj , b)  such that  G(z) > G(y) > G(bj ). Then  bj , too, belongs in  A. But this is absurd since, as observed above,  bj ∈  A. Therefore (9.155) holds for any  j . 

Among the most important results in the theory of monotone functions is

Theorem 2 (Lebesgue)  An increasing function F : [ a, b] → R  is differentiable almost everywhere on (a, b), and its derivative F   is measurable on (a, b). 

We shall prove the theorem under the additional assumption that  F  is continuous. 

The proof of this particular case is pretty much as the general one, but without the

technical complications of the latter. 

Let us begin with a few definitions and a preliminary lemma. If  x 0 ∈  (a, b), we denote by  D+ F (x 0 )  the upper right derivative of  F  at  x 0, defined by F (x) −  F (x 0 )

 D+ F (x 0 ) = lim sup

 . 

(9.158)

 x −  x

 x→ x+

0

0

The lower right derivative  D+ F (x 0 )  is defined substituting in (9.158) the limit superior lim sup with lim inf. In the obvious way one also defines the upper left

 x→ x+

 x→ x+

0

0

derivative  D− F (x 0 )  and the lower left derivative  D− F (x 0 ). 
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 Remark 2  By the definitions just given it follows that if  F  is continuous on [ a, b]

(and not necessarily monotone) all of its upper and lower derivatives are measurable

functions. For example, 





 F (q) −  F (x)

 D+ F (x) = lim sup

:  x < q < x + 1 , q ∈ Q ∩  (a, b) . 

 k→+∞

 q −  x

 k

(9.159)

Observe that if  q ∈ Q ∩  (a, b)  the function

 G

5

5

 k,q (x) =  F (q ) −  F (x) χ 4

 (q) =  F (q) −  F (x) χ 4

 (x) , 

 q −  x

 x,x+ 1

 q− 1  ,q

 k

 q −  x

 k

for any  x ∈  (a, b), is measurable as product of two measurable functions. By (9.159) we have

 D+ F (x) = lim

sup

 Gk,q (x)

 k→+∞  q∈Q∩ (a,b)

so  D+ F  is measurable, being the limit of sequences of suprema of measurable functions. 

Also note that if  F  is increasing, all right and left derivatives, both upper and lower, are non-negative. 

Lemma 3  Let F : [ a, b] → R  be an increasing continuous function. Given real numbers p and q with  0  < p < q, set

 Ep,q = { x ∈  (a, b) :  D− F (x) < p, D+ F (x) > q}  . 

(9.160)

 For any interval (α, β) ⊂  (a, b), 

4

5

 m Ep,q ∩  (α, β) ≤  p (β −  α) . 

(9.161)

 q

 Proof  Pick  x 0 ∈  (α, β)  such that  D− F (x 0 ) < p. Then there exists  y ∈  (a, x 0 )  such that

 F (y) −  F (x 0 ) < p

 y −  x 0

and so

 F (y) −  py > F (x 0 ) −  px 0  . 
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The above says that  G(y) > G(x 0 )  for some  y < x 0, where we have set  G(y) =

 F (y) −  py. Applying Lemma 2 to  G, there are finitely many, or countably many at most, pairwise-disjoint intervals  (aj , bj ) ⊂  (α, β), with  j ∈  J ⊂ N, such that

" 

{ x ∈  (α, β) :  D− F (x) < p} ⊂

 (aj , bj ) . 

(9.162)

 j ∈ J

Moreover (9.156) implies that for any  j ∈  J

 F (aj ) −  p aj ≥  F (bj ) −  p bj . 

(9.163)

Similarly, using (9.155), one proves that for any  j ∈  J  there exists a finite or at most countable number of pairwise-disjoint intervals  (aj,h, bj,h) ⊂  (aj , bj ), with h ∈  Jj ⊂ N, such that

" 

{ x ∈  (aj, bj ) :  D+ F (x) > q} ⊂

 (aj,h, bj,h), 

(9.164)

 h∈ Jj

 F (aj,h) −  q aj,h ≤  F (bj,h) −  q bj,h

∀ h ∈  Jj

(9.165)

for any  j . Hence, from inclusions (9.162), (9.164) and inequalities (9.163) and (9.165), we conclude

4

5





 m Ep,q ∩  (α, β) ≤

 (bj,h −  aj,h) ≤ 1

 (F (bj,h) −  F (aj,h)) ≤

 q

 j ∈ J h∈ Jj

 j ∈ J h∈ Jj





≤ 1

 (F (bj ) −  F (aj )) ≤  p

 (bj −  aj ) ≤  p (β −  α)

 q

 q

 q

 j ∈ J

 j ∈ J

because  F  is increasing. This gives (9.161). 

 Proof of Theorem 2  As already mentioned we shall assume  F  continuous. We claim that

 D+ F (x) < ∞

for a.e.  x ∈  (a, b) . 

(9.166)

Exactly as in Lemma 3 (see (9.164) and (9.165)) one proves that for any  q >  0 there exists a finite or at most countable number of pairwise-disjoint intervals  (aj , bj ) ⊂

 (a, b),  j ∈  J ⊂ N, such that

" 

{ x ∈  (a, b) :  D+ F (x) > q} ⊂

 (aj , bj ), 

 j ∈ J

 F (aj ) −  q aj ≤  F (bj ) −  q bj

∀ j ∈  J . 
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Hence

4

5 

 m { x ∈  (a, b) :  D+ F (x) > q} ≤

 (bj −  aj ) ≤

 j ∈ J



≤ 1

 (F (bj ) −  F (aj )) ≤

 q j∈ J

≤ 1  (F (b) −  F (a)) , 

 q

and letting  q  go to +∞ we find

4

5

 m { x ∈  (a, b) :  D+ F (x) = +∞} = 0

whence (9.166). Now we prove

 D− F (x) ≥  D+ F (x)

for a.e.  x ∈  (a, b) . 

(9.167)

As  D− F ≥ 0, we have

" 

{ x ∈  (a, b) :  D− F (x) < D+ F (x)} =

 Ep,q , 

 q,p∈Q ,  0 <p<q

where  Ep,q  is defined as in (9.160). To achieve (9.167) it suffices to prove that for any 0  < p < q

 m(Ep,q) = 0  . 

(9.168)

Given  ε >  0, let  A  be an open set such that  Ep,q ⊂  A ⊂  (a, b)  and m(A) < m(Ep,q) +  ε . 

(9.169)

Such an open set always exists by the definition of a bounded set’s Lebesgue

measure. Let now  (αj , βj )  be a finite or countable collection of pairwise-disjoint intervals with union  A. Applying Lemma 3 to these intervals, from (9.169) we have 4

5

 p

 m(Ep,q) ≤

 m Ep,q ∩  (αj , βj ) ≤

 (βj −  αj ) =

 q

 j

 j

=  p m(A) ≤  p (m(Ep,q) +  ε) . 

 q

 q

Letting  ε  tend to zero in this inequality, and recalling 0  < p < q, produces (9.168) immediately, and therefore (9.167). 
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To finish the proof set  F ∗ (x) = − F (− x)  for any  x ∈ [− b, − a]. Then  F ∗ is continuous and increasing, so applying (9.167) to  F ∗ gives D− F ∗ (x) ≥  D+ F ∗ (x)

for a.e.  x ∈  (− b, − a) . 

But this relation is the same as saying

 D+ F (x) ≥  D− F (x)

for a.e.  x ∈  (a, b) . 

From the above inequality, together with (9.166), (9.167) and the fact  F  is increasing, we deduce that

0 ≤  D+ F (x) ≤  D− F (x) ≤  D− F (x) ≤  D+ F (x) ≤  D+ F (x) < +∞

for almost every  x ∈  (a, b). Therefore  F  is differentiable almost everywhere on (a, b). The measurability of  F  follows from the fact that  F  =  D+ F  almost everywhere on  (a, b), and this is, as noticed above, measurable. 

We wrap up this survey on monotone functions with the following remarkable

result. 

Theorem 3  Let F : [ a, b] → R  be increasing. Then

 b

 F  (x) dx ≤  F (b) −  F (a), 

(9.170)

 a

 so F   is summable. 

 Proof  Let us extend  F  to [ a, b + 1] by mapping the interval [ b, b + 1] to the value F (b). The extension, which we still call  F , is measurable since increasing. Let  Fk be the function on [ a, b]:





 F x + 1 −  F (x)

 F

 k

 k (x) =

 . 

1

 k

Then

lim  Fk(x) =  F  (x)

(9.171)

 k→∞

almost everywhere on [ a, b]. As  F  is increasing and hence  F  (x) ≥ 0 a.e. on [ a, b], we consider the integral of  F  on [ a, b]. By (9.171), the Fatou lemma (Sect. 9.6) implies











 b

 b

 b

 F  (x) dx ≤ sup

 Fk(x) dx = sup  k

 F

 x + 1 −  F (x) dx . 

 a

 k

 a

 k

 a

 k
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Since the function  x →  F x + 1 is summable, 

 k











 b

 b+1 /k

 a+1 /k

 F

 x + 1 −  F (x) dx =

 F (x) dx −

 F (x) dx . 

 a

 k

 b

 a

On the other hand  F (x) =  F (b)  when  b ≤  x ≤  b + 1 , and  F (a) ≤  F (x)  for k

 a ≤  x ≤ 1 , so

 k







 b

 F

 x + 1 −  F (x) dx ≤ 1 [ F (b) −  F (a)]  . 

 a

 k

 k

Now (9.170) follows from the above inequalities. 

 Remark 3  The fundamental formula of integral calculus

 b

 F  (t) dt =  F (b) −  F (a), 

 a

where  F  is continuous with Riemann integrable derivative  F , is not valid in the more general setting of monotone functions  F : these typically only satisfy inequality (9.170). 

Example 2, Sect. 9.12, defines an increasing continuous function  F : [0 ,  1] →

[0 ,  1], with almost everywhere null derivative and such that  F ( 0 ) = 0 and  F ( 1 ) = 1, for which inequality (9.170) is strict. 

9.11

Functions with Bounded Variation

In the previous section we stressed the importance of the class of functions  F  that can be written as  difference of increasing functions. The aim of this section is to describe this class precisely, by means of functions with  bounded variation. 

Let  F : [ a, b] → R be any function. Consider a subdivision    of the interval

[ a, b] by points

 x 0 =  a < x 1  < . . . < xk =  b . 

(9.172)

We define

 k



 vF () =

| F (xj ) −  F (xj−1 )|

 j =1
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and call  total variation  of  F  on [ a, b] the supremum

 VF [ a, b] = sup  vF ()

 

over all possible subdivisions  . 

Definition 1 (Functions with Bounded Variation) A function  F : [ a, b] → R is said to have bounded variation if

 VF [ a, b]  < ∞  . 

Proposition 1  Every monotone function F has bounded variation, and

 VF [ a, b] = | F (b) −  F (a)|  . 

(9.173)

 Proof  If  F  is increasing and    is given by the points (9.172), k



 vF () =

[ F (xj) −  F (xj−1 )] =  F (b) −  F (a)

 j =1

so

 VF [ a, b] =  F (b) −  F (a) . 

If  F  is decreasing then

 VF [ a, b] = −[ F (b) −  F (a)]

whence (9.173) again follows. 

Proposition 2  If F : [ a, b] → R  is Lipschitz, i.e. there exists L >  0  such that

| F (x 1 ) −  F (x 2 )| ≤  L| x 1 −  x 2|

 for all x 1 , x 2 ∈ [ a, b] , then F has bounded variation and VF [ a, b] ≤  L(b −  a) . 

(9.174)

 Proof  It is enough to note that given  xj  as in (9.172), 

| F (xj ) −  F (xj−1 )| ≤  L(xj −  xj−1 )

for any  j = 1 ,  2 , . . . , k. Summing over  j  gives (9.174). 
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Proposition 3  If F has bounded variation then it is bounded. 

 Proof  Given  x ∈  (a, b), using the subdivision    of [ a, b] determined by  a, x, b shows that

| F (x) −  F (a)| + | F (b) −  F (x)| ≤  VF [ a, b] , and so

| F (x)| ≤ | F (a)| +  VF [ a, b]  . 

 Example 1  Here is a function defined and continuous on [0 ,  2 /π], hence bounded, whose variation is not bounded:

1

 F (x) =  x  sin

 x = 0

 x

and  F ( 0 ) = 0. 

For  k ∈ N











1

1



 F

−  F



 (k + 1 / 2 )π

 (k + 1 + 1 / 2 )π  =

=

1

+

1

1

 > 

 (k + 1 / 2 )π

 (k + 3 / 2 )π

 (k + 1 )π

so, for any  n ∈ N, 

 n−1



 n

1

1

 VF [0 ,  2 /π]  > 

= 1

 . 

 (k + 1 )π

 π

 k

 k=0

 k=1

Therefore  F  does not have bounded variation. 

The following is easy to prove:

Proposition 4  Sums, differences and products of two functions with bounded variation on [ a, b]  have bounded variation on [ a, b] . 

 Proof  We will only prove that the product

 P (x) =  F (x)G(x)
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has bounded variation if  F (x)  and  G(x)  both have bounded variation. Let A = sup | F (x)|  , 


 B = sup | G(x)|  , 

 x∈[ a,b]

 x∈[ a,b]

so

 P (xj+1 ) −  P (xj ) ≤ | F (xj+1 )G(xj+1 ) −  F (xj )G(xj+1 )|+

+ | F (xj)G(xj+1 ) −  F (xj)G(xj)| ≤

≤  B| F (xj+1 ) −  F (xj)| +  A| G(xj+1 ) −  G(xj)| . 

Evidently then

 VP [ a, b] ≤  BVF [ a, b] +  AVG[ a, b]

and  P  has bounded variation. 

Proposition 5  If F : [ a, b] → R  has bounded variation, for any c ∈  (a, b) VF [ a, b] =  VF [ a, c] +  VF [ c, b]  . 

 Proof  Let    be a subdivision of [ a, b] as in (9.172), and let  h ∈ {1 , . . . , k} be such that  xh−1  < c ≤  xh. Then

 k





| F (xj) −  F (xj−1 )| =

| F (xj ) −  F (xj−1 )| + | F (xh) −  F (xh−1 )| ≤

 j =1

 j = h



≤

| F (xj ) −  F (xj−1 )| + | F (c) −  F (xh−1 )| + | F (xh) −  F (c)| =

 j = h





=

| F (xj ) −  F (xj−1 )| + | F (c) −  F (xh−1 )| +

 j <h−1







+ | F (xh) −  F (c)| +

| F (xj) −  F (xj−1 )| ≤

 j >h

≤  VF [ a, c] +  VF [ c, b]  , 

and since    is arbitrary, 

 VF [ a, b] ≤  VF [ a, c] +  VF [ c, b]  . 

(9.175)
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For the opposite inequality, given  ε >  0 choose  x 0 =  a < x 1  < · · ·  < xk =  c  to divide [ a, c] and  y 0 =  c < y 1  < · · ·  < yh =  b  to divide [ c, b], in such a way that k



 h



 VF [ a, c]  < 

| F (xi) −  F (xi−1 )| +  ε, VF [ c, b]  < 

| F (yj) −  F (yj−1 )| +  ε . 

 i=1

 j =1

Adding these inequalities gives

 k



 VF [ a, c] +  VF [ c, b]  < 

| F (xi) −  F (xi−1 )|+

 i=1

 h



+

| F (yj ) −  F (yj−1 )| + 2 ε ≤  VF [ a, b] + 2 ε , j =1

and as  ε  goes a zero, we find the opposite inequality to (9.175), whence the assertion. 

Proposition 6  If F : [ a, b] → R  has bounded variation, the function V :  x ∈ [ a, b] →  VF [ a, x]

 is increasing. 

 Proof  Take  x 1  < x 2, so by Proposition 5

 VF [ a, x 2] =  VF [ a, x 1] +  VF [ x 1 , x 2] ≥  VF [ a, x 1]

since  VF [ x 1 , x 2] ≥ 0  . 

 Remark 1  Proposition 5 easily implies that if the points  cj  with a =  c 0  < c 1  < . . . < cr < cr+1 =  b determine a subdivision of [ a, b] and on each interval [ cj , cj+1] a function  F :

[ a, b] → R has bounded variation, the same  F  has bounded variation on [ a, b]. 

Let  BV [ a, b] be the set of functions with bounded variation on [ a, b]. One shows that the sum and product of functions  F, G  in  BV [ a, b] belongs in  BV [ a, b]. For α ∈ R, moreover, 

 VαF [ a, b] = | α| VF [ a, b]
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and

 VF + G[ a, b] ≤  VF [ a, b] +  VG[ a, b]  . 

One of the main results on functions with bounded variation is

Theorem 1 (Jordan)  F ∈  BV [ a, b]  if and only if F can be written as difference of two increasing functions. 

 Proof  For  x ∈ [ a, b] define

 V (x) =  VF [ a, x]

and  V (a) = 0. Proposition 5 tells that  V  is increasing. Then W (x) =  V (x) −  F (x)

(9.176)

is increasing too, because by Proposition 5 if  x < y  then W (y) =  V (y) −  F (y) =  V (x) +  VF [ x, y] −  F (y) and so

 W (y) −  W (x) =  VF [ x, y] − [ F (y) −  F (x)]  . 

On the other hand, by definition we have

 F (y) −  F (x) ≤  VF [ x, y]

and so  W (y)− W (x) ≥ 0. Hence  F (x), by (9.176), is the difference of the increasing functions  V  and  W :

 F (x) =  V (x) −  W (x) . 

Due to Theorem 1, functions with bounded variation inherit several of the properties enjoyed by increasing functions (Propositions 1 and 2, Theorem 2 in Sect. 9.10). 

Corollary 1  The discontinuity set of a function with bounded variation is at most countable. 

Corollary 2  A function with bounded variation on [ a, b]  is almost everywhere differentiable, and its derivative F   is summable over [ a, b] . 
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What is more, let us define the jump function of a function with bounded

variation  F  according to (9.150). Then Proposition 2, Sect. 9.10, implies Proposition 7  A function F with bounded variation is the sum of its jump function and a continuous function with bounded variation. 

Theorem 2  A function F ∈  BV [ a, b]  is continuous at x 0  if and only if the function V :  x ∈ [ a, b] →  VF [ a, x]

(9.177)

 is continuous at x 0 . 

 Proof  Take  x 0  < b  and let us prove  V  is right continuous at  x 0. Given  ε >  0 pick δ >  0 such that

| F (x) −  F (x 0 )|  < ε

(9.178)

for every  x ∈  (a, b] satisfying 0  < x −  x 0  < δ. Let    be a subdivision of [ x 0 , b] by points

 x 0  < x 1  < . . . < xk =  b, 

so that

 k



 vF () =

| F (xi) −  F (xi−1 )|  > VF [ x 0 , b] −  ε . 

 i=1

We may assume  x 1 −  x 0  < δ  because the sum in  vF ()  increases when we add new subdivision points. Therefore

 k



 VF [ x 0 , b]  < ε + | F (x 1 ) −  F (x 0 )| +

| F (xi) −  F (xi−1 )| ≤ 2 ε +  VF [ x 1 , b]

 i=2

and so

 VF [ x 0 , x 1]  <  2 ε, 

i.e. 

 V (x+ ) −  V (x

0

0 ) ≤  V (x 1 ) −  V (x 0 ) <  2 ε . 
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This implies

 V (x+ ) =  V (x

0

0 ), 

in other words the claim. 

As for the left continuity at  x 0  > a, given  ε >  0 choose  δ >  0 such that (9.178) holds for  x ∈ [ a, b)  with 0  < x 0 −  x < δ. Let    be the subdivision of [ a, x 0] given by points

 a =  xn < xn−1  < · · ·  < x 1  < x 0 , so that

 n



 VF [ a, x 0]  < 

| F (xi) −  F (xi−1 )| +  ε . 

 i=1

As before, we may suppose  x 0 −  x 1  < δ  without loss of generality. Then n



 VF [ a, x 0]  < 

| F (xi) −  F (xi−1 )| + | F (x 1 ) −  F (x 0 )| +  ε < VF [ a, x 1] + 2 ε . 

 i=2

Letting  x 1 tend to  x 0 we find

 V (x 0 ) ≤  V (x− ) + 2 ε , 

0

so now for  ε → 0 we obtain

 V (x 0 ) ≤  V (x− ) ≤  V (x

0

0 ), 

whence the assertion follows. 

Conversely, if  V  is continuous at  x 0, the continuity of  F  at  x 0 follows by observing that

| F (x) −  F (x 0 )| ≤  VF [ x 0 , x] =  V (x) −  V (x 0 ) (9.179)

if  x > x 0, and similarly, if  x < x 0, 

| F (x 0 ) −  F (x)| ≤  V (x 0 ) −  V (x) . 

Corollary 3  A continuous function with bounded variation can be written as difference of two continuous, increasing functions. 
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We conclude our review of the elementary properties of functions with bounded

variation with the following

Proposition 8  If F ∈  BV [ a, b]  then

| F  (x)| ≤  V  (x)

 for a.e. x ∈  (a, b) , 

(9.180)

 where V is total variation function defined in (9.177) . 

 Proof  Pick  x 0 ∈  (a, b)  where both  F  and  V  are differentiable. If  x > x 0, immediately





 F (x) −  F (x 

0 )





 , 

 x −  x

≤  V (x) −  V (x 0 )

0

 x −  x 0

see (9.179). Then (9.180) follows from the above inequality in the limit as  x →  x+. 

0

One of the reasons why continuous functions with bounded variation  f

:

[ a, b] → R are relevant is that they are precisely the functions whose graph

 Gf = { (x, y) ∈ [ a, b] × R :

 y =  f (x)}

is a  rectifiable  simple curve in the plane (see Chap 6). This term denotes a curve whose finite length  l(Gf )  satisfies

 l(Gf ) = sup  l(P) , 

 P

where  P  ranges over all possible polygonal paths inscribed in the parametric curve Gf  of equation

 ϕ(t) =  (ϕ 1 (t), ϕ 2 (t)) =  (t, f (t))

for

 t ∈ [ a, b]  . 

Namely, we have the remarkable result:

Theorem 3 (Jordan)  A simple (open or closed) curve  ⊂ R2  is rectifiable if and only if the coordinates (ϕ 1 , ϕ 2 ) of any parametrisation ϕ :  I = [ a, b] →   have bounded variation. 

 Precisely, for j = 1 ,  2

 Vϕ (I ) ≤  L(ϕ) ≤  V (I ) +  V (I ) , 

(9.181)

 j

 ϕ 1

 ϕ 2

 where L(ϕ) is the curve’s length, defined as in (6.9) . 
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 Proof  Consider a subdivision of [ a, b]

 a =  t 0  < t 1  < t 2  < . . . < tn =  b , and call  P  the polygonal path determined by the points  ϕ(a), ϕ(t 1 ), . . . , ϕ(b). 

Evidently

 n−1



1 / 2

 l(P) =

| ϕ 1 (ti) −  ϕ 1 (ti+1 )|2 + | ϕ 2 (ti) −  ϕ 2 (ti+1 )|2

≤

 i=1

 n−1



≤

[| ϕ 1 (ti) −  ϕ 1 (ti+1 )| + | ϕ 2 (ti) −  ϕ 2 (ti+1 )|] =

(9.182)

 i=1

 n−1



 n−1



=

| ϕ 1 (ti) −  ϕ 1 (ti+1 )| +

| ϕ 2 (ti) −  ϕ 2 (ti+1 )| ≤

 i=1

 i=1

≤  Vϕ [ a, b] +  V [ a, b]  . 

1

 ϕ 2

The second inequality in (9.181) now follows from (9.182) due to  P  being arbitrary. 

To prove the first inequality in (9.181) it suffices to recall the obvious relationship 1 / 2

| ϕj (ti) −  ϕj (ti+1 )| ≤ | ϕ 1 (ti) −  ϕ 1 (ti+1 )|2 + | ϕ 2 (ti) −  ϕ 2 (ti+1 )|2

 , 

which implies for  j = 1 ,  2

 n−1

| ϕj(ti) − ϕj(ti+1 )| ≤  l(P) ≤  L(ϕ). 

 i=1

9.12

Absolutely Continuous Functions

A function  F : [ a, b] → R is absolutely continuous if ∀  ε >  0, ∃  δ >  0 such that k

| F(bj)−  F(aj)|  < ε

 j =1

for any family of pairwise-disjoint open intervals  (aj , bj ) ⊂ [ a, b],  j = 1 , . . . , k such that

 k

 (bj − aj) < δ. 

(9.183)

 j =1
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Evidently a function that is absolutely continuous on [ a, b] is necessarily (uniformly) continuous on [ a, b], since we can take  k = 1. We claim that in the definition we can replace the variation | F (bj ) −  F (aj )| with the oscillation osc F [ aj , bj ] =  Mj −  mj . 

Above, 

 Mj = max  F =  F (βj )

[ aj ,bj]

and

 mj = min  F =  F (αj ), 

(9.184)

[ aj,bj]

where  αj , βj ∈ [ aj , bj ] are minimum and maximum points of  F , respectively, on

[ aj, bj ]. 

It is enough to note that the sum of the lengths of the intervals  (αj , βj )  does not exceed the sum of the lengths of the [ aj , bj ], so

| F(βj) − F(αj)|  < ε. 

(9.185)

 j =1

Therefore if  F  is absolutely continuous on [ a, b], for any  ε >  0, ∃  δ >  0 such that, for any (finite or countable) subdivision of [ a, b] by pairwise-disjoint intervals (aj , bj )  satisfying

 (bj −  aj) < δ, 

 j

we have

 (Mj −  mj) < ε. 

 j

Evidently a Lipschitz function  F  is also absolutely continuous on [ a, b]: Lip[ a, b] ⊂  AC[ a, b]

where  AC[ a, b] indicates the set of absolutely continuous functions on [ a, b]. It is easy to see that sums and products of absolutely continuous functions are absolutely

continuous. 
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The following proposition proves the inclusion

 AC[ a, b] ⊂  BV [ a, b] , 

where  BV [ a, b] is the set of functions with bounded variation. 

Proposition 1  An absolutely continuous function F : [ a, b] → R  has bounded variation. 

 Proof  Take  F ∈  AC[ a, b] and let  δ >  0 be such that k

| F(bj)−  F(aj)|  <  1 . 

 j =1

for any finite set of pairwise-disjoint intervals  (aj , bj ) ⊂ [ a, b] satisfying (9.183). 

Choose points

 α =  c 0  < c 1  < . . . < ch =  b

in [ a, b] such that

 cj+1 −  cj < δ

 j = 0 ,  1 , . . . , h − 1  . 

Then for any subdivision of [ cj , cj+1] the sum of the variations of  F  will be less than 1. Hence

 VF [ cj , cj+1] ≤ 1

and so

 VF [ a, b] ≤  h, 

implying  F ∈  BV [ a, b]. 

Using Proposition 1 we find, as consequence of Corollary 2, Sect. 9.11, the following result. 

Corollary 1  If F is absolutely continuous on [ a, b] , its derivative exists almost everywhere and is summable on [ a, b] . 

Now we discuss an example of function  F  that is continuous on [ a, b], differentiable on  (a, b), but whose derivative is not summable. Naturally  F  is not absolutely continuous on [ a, b], nor with bounded variation. 
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 Example 1  For  x ∈ [0 ,  1] define

 F (x) =  x 2 cos  (π/x 2 )

for

 x = 0

and  F ( 0 ) = 0. Then  F  (x)  is finite at any point in [ a, b] but not summable. If 0  < α < β < 1,  F  (x)  is bounded on [ α, β] and

 β

 π

 π

 F  (t ) dt =  β 2 cos

−  α 2 cos

 α

 β 2

 α 2

√

√

In particular, if  αk =

2 /( 4 k + 1 ),  βk = 1 /  2 k, 

 βk

 F  (t ) dt = 1

 α

2 k

 k

and so



∞

1

! 

| F  (t)|  dt ≥

= +∞  . 

[ α

2 k

 k ,βk ]

 k=1

 k∈N

Proceeding in the study of the  properties of the total variation function

 V :  x ∈ [ a, b] →  VF [ a, x] , 

(9.186)

we will see in the next section that for  F ∈  BV [ a, b]

 b | F (t)| dt ≤  VF[ a,b] , 

 a

while for  F ∈  AC[ a, b], and only these, 

 b | F (t)| dt =  VF[ a,b] . 

 a

We have proved that if  F ∈  BV [ a, b] the function  V  in (9.186) is increasing (Proposition 6, Sect. 9.11) and continuous at  x 0 ∈ [ a, b] if and only if  F  is continuous at  x 0 (Theorem 2, Sect. 9.11). Furthermore, still for  F ∈  BV [ a, b] we have  V  differentiable almost everywhere and (see the previous section “Functions with Bounded Variation”, Proposition 8)

| F  (x)| ≤  V  (x). 
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The next result is noteworthy. 

Proposition 2  Let F : [ a, b] → R  be a function. Then the function V in (9.186)  is absolutely continuous on [ a, b]  if and only if F ∈  AC[ a, b] . 

 Proof  We will only prove that  F ∈  AC[ a, b] implies  V ∈  AC[ a, b]. The converse is immediate once we note that for any interval [ α, β] ⊂ [ a, b]

| F (β) −  F (α)| ≤  V (β) −  V (α) . 

Given  ε >  0, choose  δ >  0 so that

 n



 n



 (bj −  aj ) < δ

⇒

| F (bj ) −  F (aj)|  < ε, 

 j =1

 j =1

in agreement with the definition of absolute continuity of  F . 

Consider the sum

 n

| V(bj) − V(aj)| . 

(9.187)

 j =1

It represents the supremum of the sums

 n

 mk

| F(xk,j)− F(xk,j−1 )|

(9.188)

 k=1  j =1

over all finite subdivisions

 a 1 =  x 1 ,  0  < x 1 ,  1  . . . < x 1 ,m =  b 1

1

 a 2 =  x 2 ,  0  < x 2 ,  1  . . . < x 2 ,m =  b 2

2

·

·

·

·

·

 an =  xn,  0  < xn,  1  . . . < xn,m =  b

 n

 n

of the intervals  (a 1 , b 1 ), . . . , (an, bn). Since the sum of the lengths of the (xk,j−1 , xk,j ), over which we sum in (9.188), is less than  δ, all these sums are less than or equal to  ε. Therefore (9.187), being the least upper bound, does not exceed  ε. 

Proposition 3  If F is absolutely continuous, there exist two absolutely continuous and increasing functions F 1 , F 2  such that

 F =  F 1 −  F 2  . 
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 Proof  Recalling the Jordan theorem (Theorem 1, Sect. 9.11) whereby F 1 =  V

 F 2 =  V −  F, 

the claim now follows from Proposition 2. 

Very important for  AC  functions is the following result. 

Theorem 1  If F is absolutely continuous on [ a, b]  and its derivative satisfies F  (x) = 0

 a.e. on (a, b), 

 then F is constant. 

 Proof  To prove the theorem it is enough to show that  F (a) =  F (b), because we can then apply that to any subinterval [ a , b] ⊂ [ a, b]. 

Defining

 X = { x ∈  (a, b) :  F  (x) = 0} , 

we are supposing  m(X) =  b −  a. Given  ε >  0, since F (x +  h) −  F (x)

lim

= 0

 h→0

 h

for  x ∈  X, we know that for any  η >  0 there exists  Ix =  (ax, bx) ⊂  (a, b), with x ∈  Ix, such that

| F (bx) −  F (ax)| ≤  ε(bx −  ax)

and

 (bx −  ax) < η . 

As  x ∈  X  varies, the family of intervals  (ax, bx)  is a Vitali covering of  X (Definition

1, Sect. 9.10). Hence by Remark 1, Sect. 9.10, for any  δ >  0 there is a finite disjoint subfamily of intervals  Ij =  (aj , bj ) , 1  < j ≤  n, such that n

 m(Ij) ≥  m(X) − δ =  b − a − δ. 

(9.189)

 j =1

[image: Image 2751]
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For  j = 1 , . . . , n

| F (bj ) −  F (aj)| ≤  ε(bj −  aj )

and adding we obtain

 n

| F(bj)− F(aj)| ≤  ε(b − a). 

 j =1

Consider the set

 n

" 

[ a, b] \

 Ij

 j =1

consisting in the union

 r

" [ αk,βk]

 k=1

of total length ≤  δ, due to (9.189). By the absolute continuity of  F , if we choose  δ

suitably depending on  ε, we have

 r

| F(βk) − F(αk)| ≤  ε. 

 k=1

Therefore

 n



 r



| F (b) −  F (a)| ≤

| F (bi) −  F (ai)| +

| F (βk) −  F (αk)| ≤  ε(b −  a) +  ε . 

 i=1

 k=1

But  ε  is arbitrary, so  F (b) −  F (a) = 0. 

The following definition, due to N. N. Lusin, is of great interest. 

Definition (Lusin’s (N) Property)  A continuous function F : [ a, b] ⊂ R → R

 satisfies Lusin’s (N ) property if every zero-measure set N 0  has image F (N 0 ) of measure zero. 

In this respect, the following result holds. 
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Theorem 2 (Banach)  A continuous function F with bounded variation is abso-

 lutely continuous if and only if it satisfies the (N) property:

 m(N 0 ) = 0

⇒  m(F (N 0 )) = 0  . 

(9.190)

 Proof  For simplicity we shall only prove that any  F ∈  AC[ a, b] satisfies the (N) property. Take  N 0 ⊂  (a, b)  with  m(N 0 ) = 0. Given  ε >  0, pick  δ >  0 so that for any subdivision by pairwise-disjoint intervals  (aj , bj )  such that

 (bj − aj) < δ

 j

we have

 (Mj − mj) < ε

 j

with  mj  and  Mj  as in (9.184) and (9.185). 

As  m(N 0 ) = 0 there is an open set  A  such that

 N 0 ⊂  A ⊂  (a, b) , 

 m(A) < δ . 

Evidently  A  is a union of intervals  (aj , bj )  whose lengths add up to less than  δ. This implies

" 4

5

 F (N 0 ) ⊂  F (A) ⊆

 F [ aj , bj ]

 j

and the outer measure of  F (N 0 )  can be bounded as follows



4 4

55

 me(F (N 0 )) ≤

 me F [ aj , bj ]  . 

 j

4

5

Recalling that  F [ aj , bj ] = [ mj , Mj ], we then have



 me(F (N 0 )) ≤

 (Mj −  mj ) ≤  ε . 

 j

But  ε  is arbitrary, so (9.190) follows. 

Another sufficient condition warranting Lusin’s property is given in the following

proposition. 

Proposition 4  Let F : [ a, b] → R  be continuous and differentiable at every point in (a, b). Then F has the (N) property. 
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 Proof  Suppose  m(N 0 ) = 0. For  j, k ∈ N let  Nj,k  be the set of points  x ∈  N 0 such that, for any interval  I  containing  x  and of length less than 1 /k, we have m(F (I )) ≤  j m(I ) . 

Since  F  is differentiable everywhere on  (a, b), 

∞

" 

 N 0 =

 Nj,k

 j,k=1

so it will suffice to show

 m(F (Nj,k)) = 0

(9.191)

to prove the claim. Given  ε >  0,  Nj,k  is contained in the union of at most countably many intervals of length less than 1 /k  such that the lengths’ sum does not exceed ε/j . Therefore

 m(F (Nj,k)) ≤  ε

and, as  ε  is arbitrary, (9.191) follows. Therefore

 m(F (N 0 )) = 0  . 

 Example 2 (The Cantor Function)  Recall that the  Cantor set, here indicated by  K (but called  K 3 in Sect. 9.4), is a subset of the interval [0 ,  1] with the following properties: (i)  K  is closed, it has empty interior and is perfect, i.e. any point is a limit point; (ii)  K  has the cardinality of the continuum; 

(iii)  m(K) = 0  . 

The Cantor set, and the Cantor function

 C : [0 ,  1] → [0 ,  1]

defined below, are important because they provide counter-intuitive examples of subsets of real numbers and functions of one real variable. 

The Cantor function has the following properties:

(j)  C  is continuous, increasing on [0 ,  1],  C( 0 ) = 0,  C( 1 ) = 1; (jj)  C  is constant on each interval “contiguous" to the Cantor set  K; (continued)
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 Example 2 (continued)

(jjj)  C  is not constant on any interval containing points of  K; 

(jv) its derivative is zero on [0 ,  1] \  K, hence  C (x) = 0 almost everywhere; (v)  C  is not differentiable on an uncountable set of measure zero. 

Furthermore  C  has bounded variation and it is Riemann integrable (as continuous) but not absolutely continuous. 

We recall that the Cantor set  K  is constructed by removing from [0 ,  1] the (open) middle third  ( 1 / 3 ,  2 / 3 ), then removing from each intervals in the union [0 ,  1 / 3] ∪ [2 / 3 ,  1] the (open) middle thirds  ( 1 / 9 ,  2 / 9 )  and  ( 7 / 9 ,  8 / 9 ), and so on. 

What remains in [0 ,  1] after removing all these open intervals is the Cantor set  K. 

In other terms, if  Ck  is the closed union of the 2 k  closed intervals (each of length 3− k) remaining after the  k th deletion, we have a decreasing sequence of sets  (Ck)k∈N, and we can express the Cantor set as





#

# " 

 k



 k

 a



 i

 ai

 K =

 Ck =

2

 ,  2

+ 1  . 

3 i

3 i

3 k

 k∈N

 k∈N  ai ∈{0 ,  1}

 i=1

 i=1

The set  Ak = [0 ,  1] \  Ck  is the union of 2 k − 1 intervals  I k (ordered from left to right) j

removed after  k  deletions in the construction of  K. Let

 ck : [0 ,  1] → [0 ,  1]

be the continuous function satisfying the following requirements:  ck( 0 ) = 0,  ck( 1 ) = 1, ck (x) =  j

on

 I k

2 k

 j

for  j = 1 ,  2 , . . . ,  2 k − 1, so that  c  is constant on the deleted intervals  ( 1 / 3 ,  2 / 3 ),  ( 1 / 9 ,  2 / 9 ) and  ( 7 / 9 ,  8 / 9 ), . . . , and  ck  is linear on each interval of  Ck. In Fig. 9.19 we have plotted the graph of  c 2 (x). 

 j

Each  ck  is increasing, and  ck+1 =  ck  on  I ( j = 1 ,  2 , . . . ,  2 k − 1). Moreover k

|

1

 ck (x) −  ck+1 (x)|  < 

 . 

2 k



Consequently the series

 (ck −  ck+1 )  is uniformly convergent on [0 ,  1], so  (ck)  converges k

uniformly on [0 ,  1] to some function

 C : [0 ,  1] → [0 ,  1]

that is increasing, continuous, with  C( 0 ) = 0 and  C( 1 ) = 1, and constant on every open interval deleted from  K. 

Note that  C(x)  is constant on each interval in [0 ,  1] \  K, so C (x) = 0

a.e. on

[0 ,  1]  . 

(continued)
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 Example 2 (continued)

Fig. 9.19
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9.13

The Indefinite Integral in Lebesgue’s Theory

Let  f : [ a, b] → R be a summable function. The function

 x

 G(x) =  c +

 f (t) dt

 (c ∈ R )

(9.192)

 a

is the Lebesgue indefinite integral of  f . 

Using the absolute continuity of the Lebesgue (definite) integral (see (9.65)), we prove

Theorem 1 (Absolute Continuity of the Indefinite Integral)  If f is summable on

[ a, b] , the indefinite integral G(x) is an absolutely continuous function. 

 Proof  Given  ε >  0 (Example 8, Sect. 9.6), there is  δ >  0 such that m(E) < δ

⇒

| f (t)|  dt < ε

 E

for any measurable set  E ⊂ [ a, b]. If  (aj , bj )  is a collection of pairwise-disjoint open intervals contained in [ a, b] such that

 (bj − aj) < δ

 j

we will have

 k

 bj | f(t)| dt < ε. 

 a

 j =1

 j
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As

 bj

 G(bj ) −  G(aj ) =

 f (t) dt

 aj

it follows that

 k

| G(bj) − G(aj)|  < ε, 

 j =1

making  G(x)  absolutely continuous. 

Therefore an indefinite integral is an absolutely continuous function. One of

the main results proved here is the converse, namely:  every absolutely continuous function is an indefinite integral (Theorem 3). 

The previous theorem and Corollary 1 in Sect. 9.12 imply that the derivative  G

of (9.192) is summable. This derivative is actually described by the following result. 

Theorem 2 (Fundamental Theorem of Calculus)  If f is summable on [ a, b]  and we define

 x

 G(x) =

 f (t) dt, 

 a

 then G is differentiable and

 G (x) =  f (x)

 a.e. on

[ a, b]  . 

(9.193)

 Proof  We claim that

 G (x) ≤  f (x)

a.e. 

Given two rational numbers  r < s, let  Xr,s  be the set of points  x ∈  (a, b)  at which G  is differentiable and such that

 f (x) < r < s < G (x) . 

Clearly  Xr,s  is measurable, since  f  and  G are. Let us show

 m(Xr,s) = 0  . 
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The set of rational pairs  (r, s)  is countable, so

 m(X) = 0

where

 X = { x ∈ [ a, b] :  f (x) < G (x)}

because clearly

" 

 X =

 Xr,s

 (r,s)

with  r, s ∈ Q and  r < s. 

Fix  ε >  0 and take  δ >  0 so that





 m(Y ) < δ

⇒   f(t) dt  < ε . 

(9.194)

 Y

Let  A ⊂ [ a, b] be an open subset such that

 Xr,s ⊂  A , 

 m(A) < m(Xr,s) +  δ . 

(9.195)

If  x ∈  Xr,s, when  ξ  is close enough to  x,  ξ > x, we have G(ξ ) −  G(x) > s

 ξ −  x

i.e. 

 G(ξ ) −  sξ > G(x) −  sx . 

From this, applying the Rising Sun Lemma (Lemma 2, Sect. 9.10) to  y →  G(y) −

 sy, there exists a disjoint, at most countable collection of intervals  (aj , bj ),  j ∈  J ⊂

N, such that

 Xr,s ⊂  B ⊂  A

 G(bj ) −  sbj ≥  G(aj ) −  saj

! 

where  B =

 (aj , bj ). In other words, 

 j ∈ J

 bj

 f (t) dt =  G(bj ) −  G(aj ) ≥  s(bj −  aj ) . 

 aj
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Adding over  j , 



 f (t) dt ≥  s m(B) . 

(9.196)

 B

On the other hand, by (9.194) and (9.195) we obtain f (t) dt =

 f (t) dt +

 f (t) dt ≤

(9.197)

 B

 Xr,s

 B\ Xr,s

 r m(Xr,s) +  ε ≤  r m(B) +  ε . 

From (9.196) and (9.197) we deduce

 r m(B) +  ε ≥  s m(B)

and so

 m(B) ≤

 ε

 . 

 s −  r

Hence  Xr,s  is contained in an open set of arbitrarily small measure, i.e.  m(Xr,s) = 0. 

Eventually

 G (x) ≤  f (x)

a.e. 

(9.198)

Replacing  f  with − f  one can similarly prove

− f (x) ≥ − G (x)

(9.199)

and so

 f (x) ≤  G (x) . 

Now (9.198) and (9.199) yield (9.193). 

Theorem 3  An absolutely continuous function F is an indefinite integral of its derivative, i.e. 

 x

 F (x) =  F (a) +

 F  (t) dt . 

 a

 Proof  We know from Corollary 1, Sect. 9.12, that  F  is differentiable a.e. and  F  is summable. Define

 x

 G(x) =  F (a) +

 F  (t) dt. 

 a
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Note  G, too, is absolutely continuous by Theorem 2, and

 G (x) =  F  (x)

a.e. 

By Theorem 1, Sect. 9.12, we deduce that

 G(x) −  F (x) = constant, 

and since  G(a) −  F (a) = 0, 

 G(x) =  F (x)

a.e. 

The following theorem is useful. It asserts that  the total variation of an absolutely continuous function is the integral of the derivative’s absolute value. 

Theorem 4  Let f be summable on [ a, b] . If

 x

 F (x) =

 f (t) dt

 a

 then

 b

 VF [ a, b] =

| f (t)|  dt . 

(9.200)

 a

 Proof  Let us begin by showing that the left-hand side is less than or equal to the right-hand side. Let  x 0 =  a < x 1  < x 2  < . . . < xk =  b  be a subdivision of [ a, b], so





 k



 k

 x



 j

|





 F (xj ) −  F (xj−1 )| =



≤



 f (t) dt

 x

 j =1

 j =1

 j −1

 k





 xj

 b

≤

| f (t)|  dt =

| f (t)|  dt

 x

 a

 j =1

 j −1

and then

 b

 VF [ a, b] ≤

| f (t)|  dt . 

(9.201)

 a
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For the opposite inequality fix  ε >  0. By the integral’s absolute continuity properties, see Example 8 in Sect. 9.6, there exists  δ >  0 such that m(E) < δ

⇒

| f (t)|  dt < ε

(9.202)

 E

for any measurable set  E ⊂ [ a, b]. Define, for any integer  h, 1 



1



 E+ =  x ∈  (a, b) : 0  < f (x) ≤

 , 

 E− =  x ∈  (a, b) : −

≤  f (x) <  0

 h

 h

 h

 h

(9.203)

and observe

∞

#

∞

#

 E+ = ∅ , 

 E− = ∅  . 

 h

 h

 h=1

 h=1

Hence there is  h  such that

 m(E+ ) < δ, 

 m(E− ) < δ . 

(9.204)

 h

 h

Finally let









1

 A+ =  x ∈  (a, b) :  f (x) > 

 , 

 A− =  x ∈  (a, b) :  f (x) < − 1  . 

 h

 h

 h

 h

The sets  A+ , A− are open, so we can find for each one a finite number of pairwise-h

 h

disjoint intervals  (ai, bi) ⊂  A+,  i = 1 , . . . , n, and  (α

,  j = 1 , . . . , m, 

 h

 j , βj ) ⊂  A−

 h

such that



 n

" 





 m

" 



 m A+ \

 (a

 < δ, 

 m A− \

 (α

 < δ

(9.205)

 h

 i , bi )

 h

 j , βj )

 i=1

 j =1

Now, (9.202), (9.203) and (9.204)–(9.205) easily imply b | f(t)| dt= | f(t)| dt + | f(t)| dt + | f(t)| dt + | f(t)| dt ≤

 a

 E+

 E−

 A+

 A−

 h

 h

 h

 h

 n





 b

 m

 i

 βj

≤2 ε +

 f (t) dt +  ε +

 (− f (t)) dt +  ε =

 a

 α

 i=1

 i

 j =1

 j

 n



 m



=4 ε +

 (F (bi)− F (ai))+

 (F (αj )− F (βj )) ≤  VF [ a, b]+4 ε. 

 i=1

 j =1

As  ε  goes a zero, we recover the opposite inequality to (9.201), whence the claim. 
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In the sequel we shall assume that, beside having bounded variation,  F  is also continuous  on [ a, b]:

 F ∈  BV [ a, b] ∩  C 0[ a, b]  . 

(9.206)

We have the following result, saying that such an  F  decomposes as a sum of an absolutely continuous function and a  singular  function (i.e. a function with zero derivative almost everywhere). 

Theorem 5  Let F satisfy assumption (9.206) . Then there exist G ∈  AC[ a, b]  and R singular such that

 F (x) =  G(x) +  R(x), 

(9.207)

 and the decomposition is unique up to constants. 

 Proof  As  F  is well defined and summable, we set

 x

 G(x) =  F (a) +

 F  (t) dt

(9.208)

 a

 R(x) =  F (x) −  G(x), 

thus obtaining decomposition (9.207) where:  G  is absolutely continuous (Theorem 1), while  R  has bounded variation, is continuous and satisfies R (x) = 0

a.e. 

Let us prove the  uniqueness  of the representation. If there were another sum F (x) =  G 1 (x) +  R 1 (x)

we would have

 G(x) −  G 1 (x) =  R 1 (x) −  R(x)

and so

 D(G −  G 1 )(x) = 0

a.e. 

But  G −  G 1 is absolutely continuous, so constant. Hence there is  c ∈ R such that G(x) =  G 1 (x) +  c

[image: Image 2778]
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implying

 R(x) =  R 1 (x) −  c . 

If  F  is increasing, both  G  and  R  must be increasing. That is because  F  ≥ 0, so G(x)  defined in (9.208) is increasing, and by Theorem 4, Sect. 9.10, y

 F  (t) dt ≤  F (y) −  F (x)

 x

for  x < y. Consequently

 G(y) −  G(x) ≤  F (y) −  F (x)

and so

 R(x) ≤  R(y) . 

Theorem 5 easily gives us the characterisation of absolutely continuous functions (Theorem 3) that are further assumed  increasing. 

Proposition 1  A continuous, increasing function F is absolutely continuous if and only if

 b

 F  (x) dx =  F (b) −  F (a) . 

(9.209)

 a

 Proof  By Theorem 3 is suffices to show that (9.209) implies  F ∈  AC[ a, b]. 

By contradiction, suppose  F  is not absolutely continuous, and take  G, R  as in Theorem 5. Then

 F (b) −  F (a) =  G(b) −  G(a) +  R(b) −  R(a) i.e. 

 b

 F (b) −  F (a) =

 f  (t) dt +  R(b) −  R(a) . 

 a

But  R  is increasing and non-constant, so  R(a) < R(b), which makes (9.209) impossible. 

In Sect. 9.11 we saw (Proposition 7) that every function  F  with bounded variation can be expressed as a sum of its jump function  S  and a  continuous  function with

[image: Image 2779]

522

9

The Lebesgue Integral

 bounded variation. In the light of Theorem 5 we can now say that  any function F

 with bounded variation may be written as

 F (x) =  Fa(x) +  Fc(x) +  Fs(x)

 (Lebesgue decomposition)

(9.210)

with  Fa =  G,  Fc =  R,  Fs =  S  such that: (i)  Fa  is  absolutely continuous; 

(ii)  Fc  is  continuous and singular:  F  c(x) = 0 a.e. (sometimes  Fc  is called the

“Cantor part" of  F ); 

(iii)  Fs  is the  jump function . 

Furthermore, the summands are uniquely determined up to an additive constant. 

Differentiating (9.210) gives

 F  (x) =  (Fa) (x) , 

a.e. 

since  (Fc) and  (Fs) vanish almost everywhere. Consequently, integrating the derivative of a function  F ∈  BV [ a, b] does not give the function itself, but only its absolutely continuous part. 

We close this section with another theorem characterising absolutely continuous

functions. 

Theorem 6  Let F be a function on [ a, b]  with bounded variation. Then b | F (x)| dx ≤  VF[ a,b] . 

(9.211)

 a

 Moreover F is absolutely continuous on [ a, b]  if and only if there is equality in (9.211) . 

 Proof  If  F  has bounded variation, putting  V (x) =  VF [ a, x] for  x ∈ [ a, b], from Proposition 8, Sect. 9.11, we have





 b

 b

| F  (x)|  dx ≤

 V  (x) dx ≤  V (b) −  V (a) =  VF [ a, b]

 a

 a

and so (9.211) follows. 

If  F  is absolutely continuous we take

 x

 G(x) =

 F  (t) dt

 a

[image: Image 2780]
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for any  x ∈ [ a, b], so  VF [ a, x] =  VG[ a, x] and by (9.200) b

 VF [ a, b] =  VG[ a, b] =

| F  (x)|  dx . 

 a

Conversely, if in (9.211) we have equality, applying (9.211) to the intervals [ a, x]

and [ x, b], for any  x ∈ [ a, b], we find

 x | F (t)| dt ≤  VF[ a,x]=  VF[ a,b]− VF[ x,b]≤

 a







 b

 b

 x

≤

| F  (t)|  dt −

| F  (t)|  dt =

| F  (t)|  dt . 

 a

 x

 a

Therefore

 x

 V (x) =

| F  (t)|  dt

∀ x ∈ [ a, b]  . 

 a

Then  V  is absolutely continuous, and by Proposition 2 in Sect. 9.12 also  F  is absolutely continuous. 
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10.1

Regular Surfaces

We recall that a  domain  in R n  is the closure of an open set and, by definition, a connected domain  in R n  is the closure of a connected open set. 

Let  D  be a connected domain in the plane. We call  parametrised regular surface (see Fig. 10.1) a map  ϕ :  D → R3 of class  C 1 on  D  that satisfies the two conditions:

◦

(i) the restriction of  ϕ  to  D  is invertible; 

◦

(ii) for any  (u, v)  in  D  the Jacobian matrix

⎛

⎞

 ∂ϕ 1

 ∂ϕ

 (u, v)

1  (u, v)

⎜  ∂u

 ∂v

⎜

⎟

⎟

 Dϕ(u, v) =  ∂(ϕ 1 , ϕ 2 , ϕ 3 ) = ⎜  ∂ϕ 2

 ∂ϕ

 (u, v)

2  (u, v)⎟

 ∂(u, v)

⎜

⎟

⎝  ∂u

 ∂v

⎠

 ∂ϕ 3

 ∂ϕ

 (u, v)

3  (u, v)

 ∂u

 ∂v

has  rank  2. 

Once we introduce the vectors





 ∂ϕ 1

 ∂ϕ 2

 ∂ϕ 3

 ϕu (u, v) =  ∂ϕ (u, v) =

 (u, v) , 

 (u, v) , 

 (u, v) , 

 ∂u

 ∂u

 ∂u

 ∂u





 ∂ϕ 1

 ∂ϕ 2

 ∂ϕ 3

 ϕv (u, v) =  ∂ϕ (u, v) =

 (u, v) , 

 (u, v) , 

 (u, v) , 

 ∂v

 ∂v

 ∂v

 ∂v

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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z

S = (D)

v

D

y

x

u

Fig. 10.1

condition (ii) is equivalent to demanding that  ϕu(u, v),  ϕv(u, v)  are linearly inde-

◦

pendent for any  (u, v) ∈  D  or, using the  cross product  of  ϕu(u, v)  and  ϕv(u, v) (see Sect. 6.6), that

 ∂ϕ

◦

 (u, v) ∧  ∂ϕ (u, v) = 0

∀  (u, v) ∈  D. 

(10.1)

 ∂u

 ∂v

As we will see, this condition ensures the existence, at each point  ϕ(u, v) ∈ R3 with

◦

 (u, v) ∈  D, of a unique tangent plane to the surface’s  support S, i.e. the image  ϕ(D) of  ϕ. 

A parametrised surface, just as a regular curve, is determined by the map  ϕ  and not by its support  S, even though the word “surface” is customarily used to denote the set  S, in which case the convention is that the map  ϕ  is given, albeit not explicitly. 

The equations

⎧

⎪

⎪

⎨ x =  ϕ 1 (u, v)

⎪ y =  ϕ

 (u, v) ∈  D, 

⎪

2 (u, v)

⎩ z =  ϕ 3 (u,v), 

are called  parametric equations  of the surface. 

 Example 1  Let  D  be a connected domain in the plane and  f :  D → R a  C 1 function on D. The map  ϕ :  D → R3, of parametric equations

⎧

⎪

⎪

⎨ x =  u

⎪ y =  v

 (u, v) ∈  D, 

⎪

⎩ z =  f(u,v), 

(continued)
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 Example 1 (continued)

is a regular surface. Since  ϕ(u, v) =  (u, v, f (u, v)), in fact,  ϕ  is invertible on  D  and the vectors









 ∂f

 ∂f

 ϕu = 1  ,  0  , 

 , 

 ϕv = 0  ,  1  , 

 , 

 ∂u

 ∂v

are linearly independent, i.e. the Jacobian matrix

⎛

⎞

1

0

⎜

⎟

 Dϕ(u, v) =  ∂(x, y, z) = ⎝ 0

1 ⎠

 ∂(u, v)

 ∂f ∂f

 ∂u ∂v

has rank 2 (irrespective of  f ). We call a surface whose support is the graph of a function  f as above a  Cartesian surface. 

 Example 2  Consider the disc  D = { (u, v) ∈ R2 :  u 2 +  v 2 ≤  r 2}. The image of the map ϕ(u, v) =  u, v, r 2 −  (u 2 +  v 2 ) ,  (u, v) ∈  D, is the closed  hemisphere  of centre the origin and radius  r  contained in  H = { (x, y, z) ∈ R3 :  z ≥ 0}. It is not a regular surface since  ϕ  is not  C 1 on  D. 

 Example 3  Let  r >  0,  D = { (u, v) ∈ R2 :  u 2 +  v 2 ≤  r 2} and  k = 0. The map  ϕ :  D →



√



R3,  ϕ(u, v) =  u, v, k u 2 +  v 2 , with  (u, v) ∈  D, is not a regular surface because  ϕ  is not differentiable at  ( 0 ,  0 ). The image  S  coincides with the lateral surface of a  half-cone, with vertex at the origin. If  k >  0 then  S  is contained in  H = { (x, y, z) ∈ R3 :  z ≥ 0}, and if  k <  0 it is contained in the opposite half-space. 

In either case the map  ψ : [0 , r] × [0 ,  2 π] → R3 defined by

⎧

⎪

⎪

⎨ x =  u  cos  v

⎪ y =  u  sin  v

 (u, v) ∈  D, 

(10.2)

⎪

⎩ z =  k u, 

is a parametrised regular surface, whose support coincides with that of  ϕ. Putting  T =

◦

[0 , r] × [0 ,  2 π], if  (u 1 , v 1 )  and  (u 2 , v 2 )  are distinct points in  T  and  u 1 =  u 2, immediately ψ (u 1 , v 1 ) =  ψ(u 2 , v 2 ); while if  u 1 =  u 2 and  v 1 =  v 2, since  v 1  , v 2 ∈  ( 0 ,  2 π)  we have ( cos  v 1 ,  sin  v 1 ) =  ( cos  v 2 ,  sin  v 2 )  and so  ψ(u 1 , v 1 ) =  ψ(u 2 , v 2 ). The map  ψ  is therefore

◦

invertible on  T . Moreover

 ψu =  ( cos  v,  sin  v, k), 

 ψv =  (− u  sin  v, u  cos  v,  0 ), 

 ψu ∧  ψv =  (− k u  cos  v, − k u  sin  v, u), (continued)
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 Example 3 (continued)

√

◦

so | ψu ∧  ψv| =  u  1 +  k 2  >  0 on  T  and (10.1) holds too. 

We emphasise that  ψ  is not injective on all of  T , since it maps the points on the edge

{0} × [0 ,  2 π] ⊂ R2 to the origin in R3, and the edges [0 , r] × {0} and [0 , r] × {2 π} to the same segment on the cone (Fig. 10.2). 

 z

 v

2

 S 

 y

 O

 r

 u

 x

Fig. 10.2

The previous example highlights that, in analogy to what happened for curves, a

surface’s regularity depends in an essential way on the parametrisation, rather than

on the support  S (cf. Example 5, Sect. 6.1). 

 Example 4  Let  r >  0 and  D = [− r, r] × [0 ,  2 π]. The surface  ϕ :  D → R3 parametrised by (10.2) is not regular. The support  S, for  k = 0, is the lateral surface of the  double cone in Fig. 10.3, while for  k = 0 it is a  disc  in the  Oxy  plane counted “twice”. 

(continued)
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 Example 4 (continued)

Fig. 10.3

z

S

O

y

x

◦

In either case  ϕ  is not 1-1 on  D: the segment {0} × [0 ,  2 π] is mapped by  ϕ  to the origin. 

Furthermore, the vector  ϕu ∧  ϕv  is null at every point of that segment. 

 Example 5  Let  D = [0 , π] × [− π, π],  r >  0 and  ϕ :  D → R3 the surface parametrised by

⎧

⎪

⎪

⎨ x =  r  sin  ψ  cos  ϑ

⎪ y =  r  sin  ψ  sin  ϑ

 (ψ, ϑ ) ∈  D. 

⎪

⎩ z =  r  cos ψ , 

The image of  ϕ  is the sphere  S ⊆ R3 with centre at the origin and radius  r. We claim that ϕ  is a regular surface. 

Condition (i) is proved using an argument similar to the one employed for Example 3. 

Since

 ϕψ (ψ, ϑ) =  r( cos  ψ  cos  ϑ,  cos  ψ  sin  ϑ, − sin  ψ ), ϕϑ (ψ, ϑ) =  r(− sin  ψ  sin  ϑ,  sin  ψ  cos  ϑ,  0 ), ϕψ ∧  ϕϑ (ψ, ϑ) =  r 2 sin2  ψ  cos  ϑ,  sin2  ψ  sin  ϑ,  sin  ψ  cos  ψ , the quantity





 ϕ



 ψ ∧  ϕϑ (ψ, ϑ ) =  r  2 sin  ψ

(10.3)

(continued)
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 Example 5 (continued)

◦

is never zero on  D. 

The parameters  ψ  and  ϑ  have an interesting geometric interpretation. If  P 0 =  (x 0,  y 0, z 0 )  is a point on  S  different from the sphere’s  poles ( 0 ,  0 , ± r), there exist a unique  ψ 0 ∈

 ( 0 , π )  and a unique  ϑ 0 ∈  (− π, π] such that  P 0 =  ϕ(ψ 0 , ϑ 0 ). Precisely,  ψ 0 = arccos (z/r), ϑ 0 = Arg  ((x 0 , y 0 )); in fact if  O  is the origin,  ψ 0 measures the angle formed by the segment OP 0 and the positive  z-axis, while  ϑ 0 measures the angle between the segment  OQ 0 and the positive  x-axis, where  Q 0 is the projection of  P 0 onto the  Oxy  plane (Fig. 10.4). 

The angles  ϑ 0 and  ψ 0 are called  longitude  and  colatitude  of  P 0 respectively. The angle π/ 2 −  ψ 0 is the  latitude  of  P 0. At  ( 0 ,  0 , r)  and  ( 0 ,  0 , − r)  the latitude equals  π/ 2 and

− π/ 2 respectively, while the longitude is undefined. Finally, note that under  ϕ, the segment

{0} × [− π, π] is mapped to the “north pole”  ( 0 ,  0 , r)  and the segment { π} × [− π, π] to the

“south pole”  ( 0 ,  0 , − r), while the segments [0 , π] × { π} and [0 , π] × {− π} are mapped to the curve    on  S  consisting of points of the form  (x,  0 , z)  with  x ≤ 0. 

z

P0

Q

y

0

0

x

Fig. 10.4

 Example 6  Consider the  cylindrical helix  of equations

 γ (u) =  (r  cos  u, r  sin  u, k u), 

 u ∈ [ a, b] , 

where  r >  0 and  k = 0. From every point on the helix let us draw a horizontal segment to the  z-axis. This creates a regular surface called  helicoid, see Fig. 10.5. 

The helicoid has parametric equations

 ϕ(u, v) =  (v  cos  u, v  sin  u, k u), 

 (u, v) ∈ [ a, b] × [0 , r] . 

(continued)
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 Example 6 (continued)

√

Condition (i) is straightforward, and | ϕu ∧  ϕv (u, v)| =

 v 2 +  k 2  >  0 for any  (u, v). 

Fig. 10.5

The next example provides another useful parametrisation of the sphere. 

 Example 7 ( Stereographic Projection) Let  S  be the sphere of radius  r >  0, of equation x 2 +  y 2 +  (z −  r) 2 =  r 2. For any point  P ≡  (x, y, z) ∈  S  other than the “north pole” 

 N ≡  ( 0 ,  0 ,  2 r)  consider the intersection  Q(P )  between the line through  P  and  N  and the Oxy  plane, as in Fig. 10.6. 

z

N

P

Q(P)

O

y

x

Fig. 10.6

(continued)
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 Example 7 (continued)

This line has parametric equation  r(t) =  (tx, ty,  2 r +  t (z − 2 r)). Choosing  t  so that 2 r +

 t (z − 2 r) = 0 gives the coordinates of  Q(P )  on  Oxy: 2 rx

2 ry

 Q(P ) =

 , 

 . 

2 r −  z  2 r −  z

Setting

 u = 2 rx , 

 v = 2 ry , 

2 r −  z

2 r −  z

and using the sphere’s equation  x 2 +  y 2 +  (z −  r) 2 =  r 2, we recover the coordinates of  P

in terms of the coordinates  (u, v)  of  Q(P ):

⎧

⎪

⎪

⎪ x =

4 r 2 u

⎪

⎪

⎪

 u 2 +  v 2 + 4 r 2

⎨

⎪ y =

4 r 2 v

(10.4)

⎪

⎪

 u 2 +  v 2 + 4 r 2

⎪

⎪

⎪

⎩ z = 2 r(u 2 +  v 2 )

 u 2 +  v 2 + 4 r 2

If we let  (u, v)  vary in a connected domain  D  of the plane, (10.4) are the parametric equations of a regular surface whose support is a closed portion  S of  S − { N}. 

Given a parametrised regular surface  ϕ :  D → R3 and an internal point  (u 0 , v 0 ) ∈

 D, one can prove that the restriction of  ϕ  to some neighbourhood  I  of the point is a homeomorphism of  I  onto  ϕ(I ), where the latter inherits the standard topology of R3. For this reason in  Differential Geometry  one prefers the following definition for regular surfaces:  a subset S of  R3,  equipped with the induced topology of  R3,  is a regular surface if for any point P 0 ∈  S there exist a neighbourhood U of P 0,  an open set A in the plane and a C 1  map g :  A →  U such that (j)  g is a homeomorphism between A and U ∩  S; 

(jj)  the Jacobian matrix Dg has rank  2  on A. 

It is easy to convince ourselves that the above definition  is not equivalent  to ours. 

The definition just given has the advantage of being more natural, since it starts from the geometric object  S  rather than from a map from R2 to R3; but it has the evident limitation of being technically less tractable. These considerations, together with a clear idea of the present book’s goals, led us to prefer the notion of regular surface given at the beginning of the section. Note, however, that if  ϕ  is a parametrised regular surface, every point  (u 0 , v 0 )  internal to  D  does have a neighbourhood  I  such that  ϕ(I )  is a regular surface in the second sense (see Proposition 2, Sect. 12.1). 
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10.2

Local Coordinates and Change of Parameters

Let  ϕ :  D ⊂ R2 → R3 be a regular surface. A transformation   :  T →  D, where  T  is a connected domain in the plane, is called a  reparametrisation  when it is invertible, of class  C 1, with  C 1 inverse, and its Jacobian determinant  J  is non-zero

◦

on  T . 

Easily, the map  ψ :  T → R3 given by

 ψ(s, t) =  ϕ((s, t)) , 

 (s, t) ∈  T , 

◦

is a parametrised regular surface. In fact  ψ  is clearly invertible on  T  and

 ∂ψ =  ∂ϕ ∂ 1 +  ∂ϕ ∂ 2  , 

 ∂s

 ∂u ∂s

 ∂v ∂s

 ∂ψ =  ∂ϕ ∂ 1 +  ∂ϕ ∂ 2  , 

 ∂t

 ∂u ∂t

 ∂v

 ∂t

so







 ∂ψ

 ∂ϕ

 ∂ 1  ∂ 2

 ∂ 2

 (s, t) ∧  ∂ψ (s, t) =

 ((s, t)) ∧  ∂ϕ ((s, t))

−  ∂ 1

 , 

 ∂s

 ∂t

 ∂u

 ∂v

 ∂s

 ∂t

 ∂t

 ∂s

i.e. 





 ∂ψ ∧  ∂ψ =

 ∂ϕ

 J ·

∧  ∂ϕ . 

(10.5)

 ∂s

 ∂t

 ∂u

 ∂v

◦

 ∂ψ

◦

Since  J = 0 on  T , it follows that

∧  ∂ψ = 0 on  T , so the regularity

 ∂s

 ∂t

condition (10.1) holds. 

It is quite natural, as we did for curves, to give the following definition. We say

that two regular surfaces  ϕ :  D → R3 and  ψ :  T → R3 are  equivalent  if there is a reparametrisation   :  T →  D  such that  ψ =  ϕ ◦  , or equivalently  ϕ =  ψ ◦  −1. 

The symbol ∼ will denote the above relation, clearly an equivalence relation. In

the sequel we shall say  regular surface  to mean both a given parametrisation  ϕ  or the equivalence relation it determines. 

Consider now a regular surface  ϕ :  D → R3, with support  S, and a point  P 0 =

◦

 ϕ(u 0 , v 0 )  of  S  where  (u 0 , v 0 ) ∈  D. The straight lines  v =  v 0,  u =  u 0 are mapped by  ϕ  to the curves

 u →  ϕ(u, v 0 ) , 

 v →  ϕ(u 0 , v) , 

(10.6)

which lie on  S  and pass through  P 0 (Fig. 10.7). 
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Fig. 10.7

These curves are regular, because formula (10.1) implies in particular that the vectors  ϕu(u, v 0 )  and  ϕv(u 0 , v)  are never zero when  (u, v 0 )  and  (u 0 , v)  belong to

◦

 D. 

The curves defined in (10.6) are called  coordinate lines of the surface, while the variables  u  and  v  are usually called  local coordinates  of the surface. In general the coordinates lines on  S  are not orthogonal and depend upon the particular parametrisation chosen for the surface. 

 Example 1  Let  γ : [ a, b] → R2 be a regular simple curve of equations  γ (u) =

 (x(u), y(u)). Given  D = [ a, b] × [ c, d], the map  ϕ(u, v) =  (x(u), y(u), v),  (u, v) ∈  D, is a regular surface. In fact  ϕ  is invertible on  (a, b) × [ c, d] and 4

5

 ϕu ∧  ϕv =  y (u), − x (u),  0

(10.7)

◦

is not zero on  D, by virtue of the regularity of  γ . The support  S  of  ϕ  is called  cylindrical surface (Fig. 10.8). 

We call a coordinate line  u →  ϕ(u, v 0 )  on the cylindrical surface  S  a  generating curve, while  v →  ϕ(u 0 , v)  is a  directrix (line). Note that any two such are orthogonal, since 4

5

 (ϕu , ϕv) =  (x , y ,  0 ), ( 0 ,  0 ,  1 ) = 0  . 

(continued)
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 Example 1 (continued)

Fig. 10.8

(u , v)
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0

 Example 2  Let  γ  be a plane curve and  r  a straight line lying on the same plane. The  surface of revolution generated by the curve γ  is the geometric locus of the trajectories described by the points of  γ  during an  α-rotation about the axis  r. 

Let us fix a Cartesian frame  Oxyz  on R3 so that the  Oxz  plane coincides with the plane containing the curve and the  z-axis becomes the axis of rotation. Suppose  γ  is a regular simple curve parametrised by

 x =  x(t)

 t ∈ [ a, b]  , 

 z =  z(t) , 

with  x(t) = 0 for any  t ∈  (a, b). The surface of revolution  ϕ, of parametric equations

⎧

⎪

⎪

⎨ x =  x(t)  cos  ϑ

⎪ y =  x(t)  sin  ϑ

 (t , ϑ ) ∈  D, 

⎪

⎩ z =  z(t), 

with  D = [ a, b]×[ α 1 , α 2], 0  < α 2 − α 1 ≤ 2 π, is a regular surface. The regularity condition (i) is immediate, while to see (ii) we note that

4

5

 ϕt ∧  ϕϑ = − x(t)z (t)  cos  ϑ, − x(t)z (t)  sin  ϑ, x(t)x (t) (10.8)

and so



◦

| ϕt ∧  ϕϑ | = | x(t)| [ x (t)]2 + [ z (t)]2  >  0  , 

∀  (t, ϑ) ∈  D, 

(10.9)

(continued)
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 Example 2 (continued)

due to the regularity of  γ  and the fact that  x(t) = 0 for any  t ∈  (a, b). 

The coordinate lines  t →  ϕ(t, ϑ 0 ),  ϑ →  ϕ(t 0 , ϑ)  are called  meridians  and  parallels, respectively, of the given surface of revolution. Meridians and parallels arise by intersecting S  with planes through the  z-axis and planes perpendicular to the  z-axis respectively. Hence they are always orthogonal (see Fig. 10.9), as is easily confirmed by the inner product 4

5

 (ϕt , ϕϑ ) =  (x (t)  cos  ϑ, x (t)  sin  ϑ, z (t)), (− x(t)  sin  ϑ, x(t)  cos  ϑ,  0 ) = 0  . 

Fig. 10.9

z

S

parallel

meridian

y

x

The sphere is clearly a particular surface of revolution obtained rotating a semi-circle around its diameter. If we rotate from − π  to  π  the semi-circle  γ  of equations  x(t) = sin  t, z(t ) = cos  t, with  t ∈ [0 , π], we obtain precisely the parametrisation of Example 5 in the previous section. 

 Example 3  If  z =  f (x),  x ∈ [ a, b] with  a ≥ 0, is a  C 1 function, the surface generated by a complete turn of the graph of  f  around the  z-axis has parametric equations ϕ(u, v) =  (u  cos  v, u  sin  v, f (u))

 (u, v) ∈ [ a, b] × [0 ,  2 π] . 

For example, for  f (x) =  hx,  h = 0,  x ∈ [ a, b] with  a = 0, we obtain a  right circular cone  with vertex at the origin. Taking  x ∈ [ a, b] with  a >  0 generates a  truncated cone (Fig. 10.10). 

Choosing  f (x) =  hx 2,  h = 0,  x ∈ [0 , b], produces a  paraboloid of revolution (a special type of  elliptic paraboloid), as in Fig. 10.11. 

(continued)

[image: Image 2879]

[image: Image 2880]

[image: Image 2881]

[image: Image 2882]

10.2 Local Coordinates and Change of Parameters

537

 Example 3 (continued)
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Fig. 10.11

(continued)

[image: Image 2883]

[image: Image 2884]

[image: Image 2885]

[image: Image 2886]

538

10

Surfaces and Surface Integrals

 Example 4 (continued)

Fig. 10.12

 Example 4  Another example of surface of revolution is the  torus, which can be defined by the complete rotation of a circle  γ  around an external coplanar axis. If  γ  is the circle on the  Oxz  plane of radius  r  and centre  (R,  0 ,  0 ), with  R > r, the parametric equations of the torus, plotted in Fig. 10.12, are

 ϕ(t , ϑ ) =  ((R +  r  cos  t)  cos  ϑ, (R +  r  cos  t)  sin  ϑ, r  sin  t) , as  (t, ϑ)  varies in the square [0 ,  2 π] × [0 ,  2 π] . 

Let us remark that the condition  r < R  is saying that  γ  never intersects the axis of rotation. 

This constraint guarantees the regularity condition (ii) for the Jacobian matrix, because (the reader should check this)

| ϕt ∧  ϕϑ| =  r | R +  r  cos  t|  , 

(10.10)

and since  r < R  and |cos  t| ≤ 1 it follows that  R +  r  cos  t ≥  R −  r >  0. Hence the right-hand side of (10.10) is never zero, making the torus a regular surface. 

Examples 1 and 2 showed that cylindrical surfaces and surfaces of revolution admit explicit parametrisations in which the coordinate lines are orthogonal. This property is actually true (at least locally) for any regular surface. Indeed the following result holds, which we just state. 
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◦

Proposition  If ϕ :  D ⊂ R2 → R3  is a regular surface and (u 0 , v 0 ) ∈  D, there exists a neighbourhood of (u 0 , v 0 ) on which the surface can be reparametrised so that the new coordinate lines become orthogonal. 

10.3

The Tangent Plane and the Unit Normal

Consider a regular surface of equations

 ϕ(u, v) =  (x(u, v), y(u, v), z(u, v)) , 

 (u, v) ∈  D. 

◦

Set  S =  ϕ(D)  and consider a point  P 0 on  S  of local coordinates  (u 0 , v 0 ) ∈  D. Let

◦

◦

 γ : [ a, b] →  D  be a regular curve contained in  D  and passing through  (u 0 , v 0 ), and t 0 ∈ [ a, b] a number such that  (u 0 , v 0 ) =  γ (t 0 ). It is easy to see that  ϕ  transforms γ  into a regular curve < 

 γ  contained in  S  and passing through  P 0 (see Fig. 10.13). In fact if  γ  has equations  γ (t) =  (u(t), v(t)), the equations of < γ  read

⎧

⎪

⎪

⎨ x =  x(u(t), v(t))

< 

 γ (t) = ⎪ y =  y(u(t),v(t))

 t ∈ [ a, b] . 

(10.11)

⎪

⎩ z =  z(u(t),v(t)), 

The regularity of  γ  forces < 

 γ  to be  C 1 on [ a, b]. Moreover, 

4

< 

 γ  (t) =  xu u +  xv v , yu u +  yv v , zu u +  zv v 5 =  ϕu u +  ϕvv  . 

(10.12)

For any  t ∈  (a, b), < 

 γ  is then a linear combination of the linearly independent vectors

 ϕu =  ϕu(u(t), v(t))  and  ϕv =  ϕv(u(t), v(t)), with non zero coefficients  u =  u (t) z

S

v

P0

D

(u , v )

0

0

y

x

u

Fig. 10.13
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and  v =  v (t). Therefore the vector < 

 γ  is non-zero for any  t ∈  (a, b), and < 

 γ  is

regular. 

One can actually prove that any regular curve contained in  S  and passing through

◦

 P 0 is (locally) the image, under  ϕ, of a regular curve  γ  contained in  D  and passing through  (u 0 , v 0 ). Then Eq. (10.11) is, locally, the equation of a generic regular curve on  S  through the point  P 0. 

Since

< 

 γ (t 0 ) =  (x(u 0 , v 0 ), y(u 0 , v 0 ), z(u 0 , v 0 )) =  P 0  , from (10.11) and (10.12) we obtain in particular

< 

 γ  (t 0 ) =  ϕu(u 0 , v 0 ) u (t 0 ) +  ϕv(u 0 , v 0 ) v (t 0 ) , i.e. < 

 γ  (t 0 )  is a linear combination of  ϕu(u 0 , v 0 )  and  ϕv(u 0 , v 0 ). It then becomes evident that the tangent lines at  P 0 to a generic regular curve on  S  through  P 0 all lie on the plane determined by  ϕu(u 0 , v 0 )  and  ϕv(u 0 , v 0 ). 

This plane is called the  tangent plane  to the surface at  P 0. Since the cross product of two vectors is orthogonal to the plane they span, the surface’s tangent plane at  P 0

is orthogonal to the vector  ϕu(u 0 , v 0 ) ∧  ϕv(u 0 , v 0 ), and hence orthogonal to the unit vector

 ν(P 0 ) =  ϕu(u 0 , v 0 ) ∧  ϕv(u 0 , v 0 )

| ϕu(u 0 , v 0 ) ∧  ϕv(u 0 , v 0 )|  . 

The latter is called the  surface unit normal  at  P 0 (Fig. 10.14). 

v

P0

u

Fig. 10.14
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Write  A =  A(u, v),  B =  B(u, v),  C =  C(u, v)  for the components of  ϕu ∧  ϕv:

 ∂(y, z)

 ∂(z, x)

 ∂(x, y)

 A(u, v) = det

 , 

 B(u, v) = det

 , 

 C(u, v) = det

 . 

 ∂(u, v)

 ∂(u, v)

 ∂(u, v)

(10.13)

Then the equation of the tangent plane to  S  at  P 0 is

 A 0 (x −  x 0 ) +  B 0  (y −  y 0 ) +  C 0 (z −  z 0 ) = 0  , (10.14)

where  A 0 =  A(u 0 , v 0 ),  B 0 =  B(u 0 , v 0 ),  C 0 =  C(u 0 , v 0 ), and  (x 0 , y 0 , z 0 )  are the coordinates of  P 0. 

If  ψ :  T → R3 is another parametrisation of the regular surface, obtained by the map   :  T →  D, from (10.5) we deduce

 ψs ∧  ψt =  J ·  ϕu ∧  ϕv

| ψs ∧  ψt|

| J| | ϕu ∧  ϕv| . 

When changing parametrisations, therefore, the normal vector’s orientation may

change, but its direction will not. The tangent plane does not change either, 

obviously. 

 Example 1  Consider the Cartesian surface  S  given by the graph of  f :  D → R, and a point

◦

 (x 0  , y 0  , f (x 0  , y 0 )) ∈  S  with  (x 0  , y 0 ) ∈  D. We have seen that  S  is regular if we represent it by

⎧

⎪

⎪

⎨ x =  u

⎪ y =  v

 (u, v) ∈  D. 

⎪

⎩ z =  f(u,v), 

The unit normal to  S  at  P 0 is

4

5

 ν(P 0 ) =

1



− fx(x 0  , y 0 ) , − fy(x 0  , y 0 ) ,  1  . 

1 + | Df (x 0  , y 0 )|2

Then by (10.13), (10.14) the tangent plane to  S  at  P 0 has equation

− fx(x 0  , y 0 ) (x −  x 0 ) −  fy(x 0  , y 0 ) (y −  y 0 ) +  z −  f (x 0  , y 0 ) = 0  , exactly the expression seen in Sect. 3.5 on functions of several variables. 
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 Example 2  Let  S  be the cylindrical surface of equations

 ϕ(u, v) =  (x(u), y(u), v)

and  γ  the generating curve (see Example 1, Sect. 10.2). By (10.7) the normal to  S  at the point  P 0 of coordinates  (x(u 0 ), y(u 0 ), v 0 )  is 4

5

 ν(P 0 ) =

1



 y (u 0 ), − x (u 0 ),  0  , 

[ x (u 0 )]2 + [ y (u 0 )]2

which coincides with the normal to the curve parallel to  γ  and passing through  P 0. 

 Example 3  Let  S  be the surface generated by rotating  γ (t) =  (x(t), z(t)), with  x(t) >  0, around the  z-axis. By (10.8) the normal line to  S  at some point  P 0 on the generating curve γ  coincides with the normal to  γ  at  P 0. The normal to  S  at any other point on the parallel traced by  P 0 is obtained simply by rotating the normal at  P 0 around the axis. 

 Example 4  Let  γ :  I ⊂ R → R3 be a biregular simple curve of class  C 3, parametrised by arclength  s. Recall (Sect. 6.7) that  γ  is said  biregular  when the curvature  k(s)  is everywhere strictly positive. If [ a, b] is a closed interval internal to  I , there is  r >  0 such that  r <  1 /k(s) for any  s ∈ [ a, b]. With this choice of  r  it is easy to show that the equations ϕ(s, t ) =  γ (s) +  r (N(s)  cos  t +  B(s)  sin  t) , s ∈ [ a, b] , t ∈ [0 ,  2 π] , 

where  N (s)  and  B(s)  are the normal and binormal to  γ  at  γ (s)  respectively, define a regular surface. It is called  tubular surface  of radius  r (Fig. 10.15). 

N

B

Fig. 10.15

(continued)
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 Example 4 (continued)

Using the Frenet formulas (6.55) we compute the normal  ν(s, t)  at an arbitrary point of the surface. For any  s ∈ [ a, b] and  t ∈ [0 ,  2 π]

4

5

 ϕs (s, t) =  γ  (s) +  r N (s)  cos  t +  B (s)  sin  t =

=  ( 1 −  rk  cos  t) T (s) +  rτN(s)  sin  t −  rτB(s)  cos  t , where  k =  k(s)  and  τ =  τ (s)  are the curvature and torsion of  γ  at  γ (s). Moreover ϕt (s, t) =  r (− N(s)  sin  t +  B(s)  cos  t) , so

 ϕs ∧  ϕt =  r( 1 −  rk  cos  t)T ∧  (− N  sin  t +  B  cos  t) =

= − r( 1 −  rk  cos  t)(N  cos  t +  B  sin  t) . 

The surface normal at  ϕ(s, t)  is then

 ν(s, t ) = −  (N(s)  cos  t +  B(s)  sin  t) . 

10.4

The Area of a Surface

Starting from this section until the end of the chapter we shall assume  D  is a regular domain (see the definition in Sect. 8.3). 

Let  ϕ :  D ⊂ R2 → R3 be a regular surface with support  S. For any point  (u, v)  in

◦

 D  and any vector  (λ, μ)  of R2 consider the  quadratic form  in  (λ, μ) E = E (u, v)(λ, μ) = | ϕu(u, v)λ +  ϕv(u, v)μ|2 =

= | ϕu(u, v)|2  λ 2 + 2  (ϕu(u, v), ϕv(u, v)) λμ + | ϕv(u, v)|2  μ 2 =

(10.15)

=  E(u, v) λ 2 + 2  F (u, v) λμ +  G(u, v) μ 2  , 

where

 E(u, v) = | ϕu(u, v)|2  , 

 F (u, v) =  (ϕu(u, v), ϕv(u, v)) , 

 G(u, v) = | ϕv(u, v)|2  . 

By definition (10.15), E is a non-negative quadratic form. Since  ϕ  is regular, the vectors  ϕu(u, v), ϕv(u, v)  are linearly independent and hence E (u, v)(λ, μ) >  0 for any  (λ, μ) = 0, meaning E is positive definite. 

[image: Image 2911]
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The quadratic form E defined by (10.15) is called the  first fundamental form  of the surface. The 2 × 2 matrix associated with E is









A =  E(u, v) F (u, v) =

| ϕu|2  (ϕu, ϕv) . 

 F (u, v) G(u, v)

 (ϕu, ϕv) | ϕv|2

The determinant of A

det A =  EG −  F  2 = | ϕu|2 · | ϕv|2 −  (ϕu, ϕv) 2

is non-negative by the Cauchy-Schwarz inequality. More precisely, since the surface

◦

is regular the determinant of A is positive on  D, because  ϕu(u, v), ϕv(u, v)  are linearly independent. This is another reason (cf. Sect. 3.12) to say that the quadratic

◦

form E is positive definite on  D. The identity

 EG −  F  2 = | ϕu|2 · | ϕv|2 −  (ϕu, ϕv) 2 = | ϕu ∧  ϕv|2

holds, because any two vectors  a =  (a 1 , a 2 , a 3 ),  b =  (b 1 , b 2 , b 3 )  in R3 satisfy

| a ∧  b|2 = | a|2 · | b|2 −  (a, b) 2  . 

(10.16)

This relation is a consequence of Proposition 4, Sect. 6.6. Here is a direct poof of (10.16). Since

 a ∧  b =  (a 2 b 3 −  a 3 b 2 , a 3 b 1 −  a 1 b 3 , a 1 b 2 −  a 2 b 1 ) , we have

| a ∧  b|2 = (a 2 b 3 −  a 3 b 2 ) 2 +  (a 3 b 1 −  a 1 b 3 ) 2 +  (a 1 b 2 −  a 2 b 1 ) 2 =

(10.17)

= a 2

+

+

+

1  (b 2

2

 b 23 ) +  a 22 (b 21

 b 23 ) +  a 23 (b 21

 b 22 ) − 2 (a 1 a 2 b 1 b 2 +  a 2 a 3 b 2 b 3 +  a 1 a 3 b 1 b 3 ). 

But

 (a, b) 2 =  a 2

+

+

+

1  b 2

1

 a 22 b 22

 a 23 b 23

2  (a 1 a 2 b 1 b 2 +  a 2 a 3 b 2 b 3 +  a 1 a 3 b 1 b 3 ) , so (10.17) implies

| a ∧  b|2 =  a 2

+

+

+

1  (b 2

2

 b 23 ) +  a 22  (b 21

 b 23 ) +  a 23  (b 21

 b 22 )+

+  a 2 +

+

−

1  b 2

1

 a 22 b 22

 a 23 b 23

 (a, b) 2 =

=  (a 2 +

+

+

+

1

 a 22

 a 23 ) ·  (b 21

 b 22

 b 23 ) −  (a, b) 2 = | a|2 · | b|2 −  (a, b) 2  . 
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◦

If  γ (t) =  (u(t), v(t)),  t ∈ [ a, b], is a regular curve contained in  D  and < γ =  ϕ ◦  γ  is

the image on the surface  S, by (10.12) the length of < γ  is





 b 

 b 





< 

 γ  (t)  dt =

 E(u ) 2 + 2 F u v +  G(v ) 2  dt . 

 a

 a

Consider, in particular, a point moving along  γ  from  γ (t)  to  γ (t +  t),  t >  0. It describes an arc of approximate length









 γ  (t) t =  t (u (t)) 2 +  (v (t)) 2  . 

The image of the point describes on < 

 γ  an arc of length approximatively equal to



 t

 E(u ) 2 + 2 F u v +  G(v ) 2  . 

The ratio of these quantities is precisely

E (u(t),v(t))(T(t)), 

where  T (t)  is the unit tangent vector to  γ  at  (u(t), v(t)). Given a unit vector  (h, k) on the plane, we can then interpret





E (u, v) (h, k) =  E h 2 + 2 F hk +  G k 2

as the measure of the variation of the  distance (or  metric) on the surface when a

◦

point on  S, image of a point in  D, moves from  (u, v)  along the direction  (h, k). 

Similarly, consider the rectangle  R  determined by points  (u, v),  (u+ u, v+ v)

◦

of  D  and its image < 

 R  on  S. We may think that a good approximation of the “area” 

of < 

 R  is the area of the parallelogram    with a vertex at  ϕ(u, v)  and edges parallel and congruent to the vectors  ξ =  ϕu(u, v)u  and  η =  ϕv(u, v) v (Fig. 10.16). 

The area of  R  is | u| · | v|, while the area of    equals



| ξ ∧  η| = | u| · | v|  EG −  F  2  . 



Hence we may interpret

 E(u, v)G(u, v) −  F  2 (u, v)  as a measure of how much a

◦

region on  S  around the point  P , image of  (u, v) ∈  D, get distorted. 

Based on these considerations it is natural to define the  area A(ϕ) of the regular surface ϕ  as the number





 A(ϕ) =

| ϕu ∧  ϕv|  du dv =

 EG −  F  2  du dv . 

(10.18)

 D

 D

Note that the above quantity is independent of the parametrisation. If   :  T →  D  is a reparametrisation and we define  ψ :  T → R2,  ψ(s, t) =  ϕ((s, t)), from (10.5)
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(u, v)

R

R

(u, v)

Fig. 10.16

and the formula for changing variables in double integrals we obtain





| ψs ∧  ψt|  ds dt =

| (ϕu ∧  ϕv) ((s, t))| · | J|  ds dt =

 T

 T









=

|





 ϕu ∧  ϕv| ·  J −1 (u, v)  · | J−1  (u, v)|  du dv =

 D



=

| ϕu ∧  ϕv|  du dv . 

 D

In the particular case where the surface has equations  ϕ(x, y) =  (x, y, f (x, y)), with  f :  D → R of class  C 1, since  ϕx =  ( 1 ,  0 , fx),  ϕy =  ( 0 ,  1 , fy)  we obtain ϕx ∧  ϕy =  (− fx, − fy,  1 ). Hence (10.18) reads A(ϕ) =

1 +  (fx) 2 +  (fy) 2  dx dy =

1 + | Df |2  dx dy. 

(10.19)

 D

 D

Here is another explanation for (10.18). Suppose  ϕ  is parametrised by  ϕ(x, y) =

 (x, y, f (x, y))  with  f :  D → R of class  C 1. Consider a decomposition of  D  in normal domains { D 1 , D 2 , . . . , DN } without common interior points, and let ϕi =  ϕ|  , 

 i = 1 ,  2 , . . . , N, 

 Di

be the corresponding Cartesian surfaces. Fix for every  i = 1 ,  2 , . . . , N  a point

◦

 (xi , yi) ∈  Di, with image  Pi =  (xi , yi , f (xi , yi))  on the surface  ϕi, and let  i  be the part of the tangent plane to  S  at  Pi  that projects onto  Di. It is easy to convince ourselves that the area of  i  is related to the area of  Di  by

 A(Di) =  A(i)  cos  ωi , 

(10.20)
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where  ωi  is the angle between the normal to the plane containing  i  and the  z-axis. 

As the unit normal to  S  at  Pi  is

1



 (− fx(xi , yi), − fy(xi , yi),  1 ) , 

1 + | Df (xi , yi)|2

we find

cos  ωi =

1



 . 

(10.21)

1 + | Df (xi , yi)|2

Consider the sum  σ  of all the areas of these parts of tangent planes  i . By (10.20) and (10.21)

 N



 σ =

1 + | Df (xi , yi)|2 A(Di) . 

 i=1

The natural thing is to define the area of  ϕ  as the limit of these sums as the maximum diameter  δ  of the  Di  goes to zero. In this way



 A(ϕ) = lim  σ =

1 + | Df |2  dx dy . 

 δ→0+

 D

The above coincides with (10.19). 

One could also explain (10.18) by showing (see Sect. 12.1) that if  ϕ :  D → R3 is

◦

a regular surface and  P 0 =  ϕ(u 0  , v 0 ), with  (u 0  , v 0 ) ∈  D, we can reparametrise  ϕ  on

::

a neighbourhood of  P 0 to become Cartesian, also recalling that

| ϕ

 D

 u ∧  ϕv |  du dv

is independent of the parametrisation, as we have already remarked. 

 Example 1  Using the parametrisation of the sphere introduced in Example 5, Sect. 10.1, 

we compute the area of the  sphere  of radius  r. By (10.3)







 π

 π

 π

 A(ϕ) =

 dψ

 r 2 sin  ψ dϑ = 2 πr 2

sin  ψ dψ = 4 πr 2  . 

0

− π

0

 Example 2  Let us find the area of the  torus  generated by the rotation of a circle of radius r  around an axis at distance  a > r  from the circle’s centre. With the parametrisation of Example 4, Sect. 10.2

 ϕ(t , ϑ ) =  ((a +  r  cos  t)  cos  ϑ, (a +  r  cos  t)  sin  ϑ, r  sin  t) (continued)
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 Example 2 (continued)

where  (t, ϑ) ∈ [0 ,  2 π] × [0 ,  2 π], we obtain

| (ϕt ∧  ϕϑ) (t, ϑ)| =  r(a +  r  cos  t)

by (10.10). Hence





2 π

2 π

 A(ϕ) =

 dt

 r(a +  r  cos  t) dϑ = 4 π 2 ar . 

0

0

 Example 3  Let  ϕ  be the graph of the function  f (x, y) =  x 3 − 3 xy 2, where  (x, y) ∈  D =

{ (x, y) ∈ R2 :  x 2 +  y 2 ≤ 1} (see Fig. 10.17, or the computer-generated Fig. 3.23). Then A(ϕ) =

1 +  ( 3 x 2 − 3 y 2 ) 2 + 36 x 2 y 2  dx dy =

 D



=

1 + 9 (x 2 +  y 2 ) 2  dx dy =

 D 1 

√

= 2 π

   1 + 9  2  d = 2 π ( 10 10 − 1 ) . 

0

27

Fig. 10.17

z

y

x

(continued)
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 Example 4 (continued)

Fig. 10.18  A(ϕ) =  h L(γ )

h

 Example 4  Let  ϕ  be the cylindrical surface of equations  ϕ(u, v) =  (x(u), y(u), v), with u ∈ [ a, b],  v ∈ [0 , h], generated by the plane curve  γ . By (10.7) h

 b 

 A(ϕ) =

 dv

 (x (u)) 2 +  (y (u)) 2  du =  h L(γ ) . 

0

 a

That is to say,  the area of ϕ equals h times the length L(γ ) of the generating curve γ

(Fig. 10.18). 

Consider now the surface of revolution generated by rotating a regular curve  γ , of equations  γ (u) =  (x(u), z(u)),  u ∈ [ a, b],  x(u) >  0 for any  u ∈  (a, b), by α ∈  ( 0 ,  2 π]. From (10.9) the area  A(ϕ)  of the regular surface  ϕ  thus obtained is α

 b



 A(ϕ) =

 dv

 x(u) (x (u)) 2 +  (z (u)) 2  du =  α

 x ds =

0

 a

 γ

(10.22)

=  α ·   ·  xB , 

where    is the length of the rotating curve  γ , while



1

 xB =

 x ds

  γ

is the first coordinate of the centroid  B  of  γ (see Sect. 6.4), which in this case coincides with the distance of  B  to the axis. Then (10.22) can be formulated as follows. 

Guldinus Theorem for Surfaces of Revolution  The area of the surface generated by rotating a regular curve γ by an angle α equals the length the curve times the length of circular arc travelled by the centroid. 
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 Example 5  The Guldinus theorem immediately gives us the area of the torus  ϕ, already computed in Example 2. The length of the rotating curve  γ  is 2 π r, while its centroid, i.e. 

the centre of the circle  γ , has distance to the axis equal to  a, so it describes a circle of length 2 π a. Therefore

 A(ϕ) = 2 πr · 2 πa = 4 π 2 ar . 

The area formula generalises to piecewise-regular surface. We say that  ϕ  is a  piecewise-regular surface  when  ϕ :  D → R3 is continuous and  D  decomposes into regular domains { D 1 , D 2 , . . . , DN }, with pairwise-disjoint interiors, so that ϕi =  ϕ| Di

( ϕi  is the restriction of  ϕ  to  Di ) is a regular surface for any  i = 1 ,  2 , . . . , N. If  ϕ  is a piecewise-regular surface one defines

 N



 A(ϕ) =

| ϕu ∧  ϕv|  du dv . 

 D

 i=1

 i

This definition can be shown to be independent of the specific parametrisation and

also of the chosen decomposition of  D. 

10.5

Orientable Surfaces: Surfaces with Boundary

Let  ϕ :  D → R3 be a regular surface with support  S. In Sect. 10.3 we defined the normal to  S  at any point of  S 0, the image under  ϕ  of the interior points of the domain  D. We say that  ϕ  is an  orientable surface  if the unit normal vector field can be extended from  S 0 to  S  so that the resulting map

 ν :  P ∈  S →  ν(P ) ∈ R3

is continuous on  S. 

If  ψ :  T → R3 is a parametrisation of the orientable surface  ϕ  obtained by the reparametrisation   :  T →  D, we have seen that

 ψs ∧  ψt =  J ·  ϕu ∧  ϕv

| ψs ∧  ψt|

| J| | ϕu ∧  ϕv|  . 

That is, when changing parametrisation the normal vector field either stays the same

or changes sign. Then we can define the following: the surfaces  ϕ, ψ  are called

◦

◦

 equivalent under the relation ∼ if the Jacobian determinant of    is positive on  T . 
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◦

Evidently ∼ is an equivalence relation on the set of orientable surfaces, and is

stronger than the relation ∼ introduced in Sect. 10.2. Given an orientable surface  ϕ, 

◦

the ∼-equivalence class [ ϕ] consists of two equivalence classes under ∼, each of which is called an  orientation of the surface. 

 Example 1  The Cartesian surface  ϕ  of equations  ϕ(x, y) =  (x, y, f (x, y)), with  f : D → R, is clearly orientable. The two possible orientations correspond to the unit normal pointing upwards, i.e.  (ν, e 3 ) >  0 at every point on  S, or downwards, i.e.  (ν, e 3 ) <  0 (see Fig. 10.19). 

Fig. 10.19

 Example 2  The sphere is an orientable surface. For example, if  S = { (x, y, z) ∈ R3 : x 2 +  y 2 +  z 2 =  r 2}, the two orientations correspond to the unit normal field being x

 y

 z

 P ≡  (x, y, z) ∈  S →  ν(P ) = 

 , 

 , 

 x 2 +  y 2 +  z 2

 x 2 +  y 2 +  z 2

 x 2 +  y 2 +  z 2

or the opposite, as in Fig. 10.20. 

(continued)
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 Example 2 (continued)

Fig. 10.20

In general, consider a surface  ϕ  generated by the rotation, around a coplanar axis, of a simple and regular plane curve  γ . If  γ  does not meet the axis, the surface is orientable, as is immediate from (10.8). 

 Example 3  A remarkable non-orientable surface is the  Möbius strip S. We can parametrise it by  ϕ : [0 ,  2 π] × [−1 ,  1] → R3, 











 u

 u

 u

 ϕ(u, v) =

2 −  v  sin

sin  u,  2 −  v  sin

cos  u, v  cos

 . 

2

2

2

The surface  S  can be constructed taking the segment  AB  in the  yz-plane defined by  y = 2

and | z| ≤ 1 and the circle  γ  in the  xy-plane with centre the origin and radius 2. Let the midpoint  C  of  AB  move along  γ  so that when it has travelled an angle  u  around the  z-axis, the segment  AB  gets tilted by an angle  u/ 2. In this way, when  C  has gone around the  z-axis once, the segment  AB  returns to its initial vertical position but upside down (the endpoints are interchanged, see Fig. 10.21 and the computer-generated Fig. 10.22). 

(continued)
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 Example 3 (continued)

B

A

B

A

z

u

A

A

2

C

A

u


4

y

C

B

C

B

x

B

Fig. 10.21

Fig. 10.22

(continued)
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 Example 3 (continued)

Let us find the unit normal to  S  at  ϕ(u,  0 ), with  u ∈  ( 0 ,  2 π), corresponding to the points on the circle  γ  reached by  C  during the rotation. Since

 ϕu(u,  0 ) = 2 ( cos  u, − sin  u,  0 ) , 





 u

 u

 u

 ϕv(u,  0 ) = − sin  u  sin  , − cos  u  sin  ,  cos

 , 

2

2

2





 u

 u

 u

 ϕu(u,  0 ) ∧  ϕv(u,  0 ) = −2 sin  u  cos  ,  cos  u  cos  ,  sin

 , 

2

2

2

the unit normal to  S  at  ϕ(u,  0 )  is





 u

 u

 u

 N (u,  0 ) = − sin  u  cos  ,  cos  u  cos  ,  sin

 . 

2

2

2

Note however

lim  N (u,  0 ) = − e 2  , 

lim  N (u,  0 ) =  e 2  , 

 u→0+

 u→2 π−

so after a complete revolution around the  z-axis the unit normal at  C  has changed orientation. The same happens to every other point on  AB. It is then evident that the unit normal vector field cannot be extended continuously to the entire surface, which makes  S

non-orientable. 

Given a connected and regular domain  D  on the plane, a  regular surface with boundary  is a map  ϕ :  D → R3, restriction to  D  of a  C 1 map on an open set A ⊃  D, satisfying the following conditions:

(i)  ϕ  is one-to-one on  D; 

(ii) the Jacobian matrix  Dϕ(u, v)  has rank 2 for any  (u, v) ∈  D. 

A regular surface with boundary is clearly regular. It is also always orientable. The image of the boundary  ∂D  of  D  is a regular curve on the surface’s support  S, called boundary ∂S of the surface. 

We saw that the parametrisation  ϕ  determines an orientation of the surface; now we will show that it also induces an orientation on its boundary  ∂S. 

Let  γ : [ a, b] → R2 be a piecewise-regular curve with support  ∂D. If its positive orientation coincides with the positive orientation of the boundary of  D, we say that the curve  ϕ ◦  γ : [ a, b] → R3  induces the (positive) orientation on the boundary

 ∂S  of the surface. In the sequel we shall denote this orientation with  ∂+ S. 

In a similar way one defines the boundary’s positive orientation in case the

boundary of  D  is a finite union of piecewise-regular curves (Fig. 10.23). 
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 Example 4  Consider a  C 1 function  f :  D → R over a regular domain  D  in the plane. 

The Cartesian surface  ϕ(x, y) =  (x, y, f (x, y)), for  (x, y) ∈  D, is a regular surface with boundary. Figure 10.23 shows the orientation of the surface and the boundary’s positive orientation given by the parametrisation  ϕ. 

z

S

y

x

D

Fig. 10.23

 Example 5  Consider the cylindrical surface of equations  ϕ(u, v) =  (x(u),  y(u), v), with (u, v) ∈ [ a, b] × [ c, d], generated by the regular, open, simple curve  γ (u) =  (x(u), y(u)), u ∈ [ a, b]. Figure 10.24 shows the orientation of  γ , and the orientations of the cylindrical surface and its boundary induced by the parametrisation  ϕ (cf. the analytical expression of the surface’s normal, computed in Example 2, Sect. 10.3). 

(continued)
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 Example 5 (continued)

Fig. 10.24
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10.6

Surface Integrals

Let  ϕ :  D → R3 be a regular surface defined on the connected regular domain D, and call  S =  ϕ(D)  the support. Given a continuous function  f :  S → R, the quantity





 f dσ =

 f (ϕ(u, v)) · | ϕu(u, v) ∧  ϕv(u, v)|  du dv

(10.23)

 S

 D

is the  (surface) integral  of  f over S. Let us point out that this notion can be introduced in a similar way to how we defined integrals along curves in Sect. 6.4, 

which the readers can pursue by themselves in this situation. We also emphasise

that surface integrals satisfy, apart from the properties of linearity, monotonicity

and additivity that are common to all types of integrals seen so far, the following

relationships:



 dσ =  A(ϕ) ; 

 S











 f dσ ≤

| f |  dσ ≤ max | f | ·  A(ϕ) . 

 S

 S

 S
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Definition (10.23) does not depend on the particular parametrisation  ϕ  of the surface. If   :  T →  D  is a change of variables and  ψ =  ϕ ◦   :  T → R3 the resulting parametrisation of  S, by (10.5) and the formula of change of variables in double integrals we have



 f (ψ(s, t)) · | (ψs ∧  ψt ) (s, t)|  ds dt =

 T



=

 f (ψ(s, t)) · | (ϕu ∧  ϕv)((s, t))| · | J(s, t)|  ds dt =

 T









=





 f (ϕ(u, v)) · | (ϕu ∧  ϕv)(u, v)| ·  J −1 (u, v)  · | J−1 (u, v)|  du dv =

 D



=

 f (ϕ(u, v)) · | (ϕu ∧  ϕv) (u, v)|  du dv. 

 D

Before we pass to some applications of surface integrals, with interest especially in Physics, observe that (10.23) generalises in the obvious manner to piecewise-regular surfaces. 

Let   :  S → [0 , +∞ )  be the  density  of a distribution of mass on the surface  S. The total mass  m  is then



 m =

  dσ , 

 S

while the distribution’s  centre of mass C  has coordinates







1

1

1

 xC =

 x  dσ , 

 yC =

 y dσ , 

 zC =

 z  dσ . (10.24)

 m S

 m S

 m S

In case of a uniform mass distribution, i.e. when    is constant, formulas (10.24) give the coordinates of the surface’s  centroid B







 xB =

1

 x dσ , 

 yB =

1

 y dσ , 

 zB =

1

 z dσ . 

area  (S) S

area  (S) S

area  (S) S

The  moment of inertia  of the given distribution about a certain axis  r  is the quantity M r =

  d 2  dσ , 

 S

where  d =  d(x, y, z)  is the distance of the point  (x, y, z)  from  r. 
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 Example 1  Consider a uniform mass distribution, with density   = 1, on the lateral surface S  of the cone with vertex at the origin and based on the circle { (x, y, z) ∈ R3 :  x 2 +  y 2 ≤

1 , z = 1}. Let us calculate the moment of inertia about the  x-axis. Since   = 1 and  d 2 =

 y 2 +  z 2, we must compute



M x =

 (y 2 +  z 2 ) dσ . 

(10.25)

 S

Now,  S  can be parametrised by (see Example 3, Sect. 10.1) the map  ϕ : [0 ,  1] × [0 ,  2 π] →

R3, 

 ϕ(u, v) =  (u  cos  v, u  sin  v, u) . 

√

As | (ϕu ∧  ϕv) (u, v)| =

2  u, from (10.23) and (10.25) it follows that 1

2 π 

√

M x =

 du

 u 2 sin2  v +  u 2

2 u dv =

0

0

√

√ 



1

2 π 



=

2 π

2

 u 3  du ·

sin2  v + 1  dv = 3

 . 

0

0

4

Let  ϕ :  D → R3 be an orientable regular surface of equations  ϕ(u, v) =  (x(u, v), y(u, v),  z(u, v)), and let  ν(u, v)  be the unit normal at the point  ϕ(u, v). If  F :  S →

R3 is a continuous vector field defined on the support  S  of  ϕ, we call  flux of the vector field F across S  the integral



 (F, ν) dσ . 

(10.26)

 S

As

 ν =  (ϕu ∧  ϕv) (u, v)

| (ϕu ∧  ϕv)(u, v)|  , 

and recalling that the components of  (ϕu ∧  ϕv)(u, v)  are

 ∂(y, z)

 ∂(z, x)

 ∂(x, y)

det

 , 

det

 , 

det

 , 

 ∂(u, v)

 ∂(u, v)

 ∂(u, v)

we find that the surface integral (10.26) equals the double integral



 ∂(y, z)

 ∂(z, x)

 F 1 (ϕ(u, v))  det

+  F 2 (ϕ(u, v))  det

+

 D

 ∂(u, v)

 ∂(u, v)



(10.27)

+

 ∂(x, y)

 F 3 (ϕ(u, v))  det

 du dv . 

 ∂(u, v)
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Notice that changing the orientation of  S  will reverse the unit normal  ν  and hence (10.26) changes sign. If  S  is the boundary of a domain  T  in space, one speaks of  ingoing flux  or  outgoing flux  depending on whether the normal vector field to  S

points outside (outer normal) or inside (inner normal) of the domain  T . 

 Example 2  Consider the curve  γ  in the  Oxy  plane of polar equation

  = sin  ϑ  cos  ϑ , 

0 ≤  ϑ ≤  π . 

2

Let  C  be the right cylinder of height  h = 2 over the plane domain enclosed by  γ , contained in the half-space  H = { (x, y, z) ∈ R3 :  z ≥ 0}, as in Fig. 10.25. 

Fig. 10.25

z
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 Example 3  Let us find the ingoing flux of the vector field  F =  ( x 2 +  y 2 ,  0 , z 2 )  across the cylinder’s lateral surface  S. The latter can be parametrised by

⎧

⎪

⎪

⎨ x = sin  u  cos2  u





 π

 ϕ(u, v) = ⎪ y = sin2  u  cos  u

 (u, v) ∈ 0 , 

× [0 ,  2]  . 

⎪

⎩

2

 z =  v , 

The components of  ϕu ∧  ϕv  are then

 ∂(y, z)

det

= 2 sin  u  cos2  u − sin3  u , 

 ∂(u, v)

 ∂(z, x)

det

= − cos3  u + 2 sin2  u  cos  u , 

(10.28)

 ∂(u, v)

 ∂(x, y)

det

= 0  . 

 ∂(u, v)

(continued)
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 Example 3 (continued)

At the points of  S  of local coordinates  (π/ 4 , v)  we have





√ √



 π

2

2

 (ϕu ∧  ϕv)

 , v =

 , 

 ,  0  , 

4

4

4

so there the normal





√ √



 π

2

2

 ν

 , v =

 , 

 ,  0

4

2

2

points outwards. The ingoing flux across  S  is then



−  (F, ν) dσ

 S

which, by (10.27) and (10.28), equals





 π/ 2

2

−

 ∂(y, z)

 du

sin  u  cos  u  det

 dv =

0

0

 ∂(u, v)

 π/ 2

= −2

sin  u  cos  u( 2 sin  u  cos2  u − sin3  u) du = − 2  . 

0

15

10.7

Stokes’s Formula and the Divergence Theorem

Recall (see Sect. 7.5) that the  curl  of a  vector field F =  (F 1 , F 2 , F 3 )  is the vector field of components





 ∂F 3

 ∂F 1

 ∂F 2

curl  F =

−  ∂F 2  , 

−  ∂F 3  , 

−  ∂F 1  . 

 ∂y

 ∂z

 ∂z

 ∂x

 ∂x

 ∂y

Stokes’s Formula  Let D be a regular domain and ϕ :  D → R3  a regular surface with C 2  boundary. Suppose that F :  A → R3  is a C 1  vector field on an open set A ⊆ R3  containing the surface’s support S. Then





 ( curl  F, ν) dσ =

 (F, T ) ds , 

(10.29)

 S

 ∂+ S

 where ν is the normal vector field to S and T is the tangent vector field to the

 boundary ∂+ S equipped with the induced orientation of S. 

Relation (10.29), which as we have already said is called  Stokes’s formula, formalises the fact that the line integral of  F  along the boundary of  S (the right-hand-side integral) equals the  flux  of the field’s curl across the surface (the left-hand-side integral). 
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 Example 1  Let  ϕ  be the surface of equations

⎧

⎪

⎪

⎨ x =  u −  v

⎪ y =  u

⎪

⎩ z =  u 2 +  v 2  , 

where  (u, v) ∈  D = { u 2 +  v 2 ≤ 1} (the reader should check that this surface is a portion of a paraboloid). Using the Stokes formula we compute



 x 2 z dx +  y dy +  yz dz . 

(10.30)

 ∂+ S

Calling  F  the vector field of components  (x 2 z, y, yz), the integral in (10.30) is equal to (F , T ) ds . 

 ∂+ S

Since curl  F =  (z, x 2 ,  0 ), by (10.29) the required integral equals



 ∂(y, z)

 ∂(z, x)

 (u 2 +  v 2 )  det

+  (u −  v) 2 det

 du dv , 

(10.31)

 D

 ∂(u, v)

 ∂(u, v)

and because

 ∂(y, z)

 ∂(z, x)

det

= 2 v , 

det

= −2 (u +  v) , 

 ∂(u, v)

 ∂(u, v)

(10.31) reduces to





2

 (u 2 +  v 2 )v −  (u −  v) 2 (u +  v) du dv = 2

 u(v 2 −  u 2 + 2 uv) du dv = 0  . 

 D

 D

 Proof of Stokes’s Formula. For simplicity we shall prove (10.29) when the boundary  ∂D  is the support of a regular curve  γ : [ a, b] → R2 of equations γ (t) =  (u(t), v(t)). We leave it to the reader to verify that the formula still holds if

 ∂D  is a finite union of piecewise-regular curves. 

Suppose the orientation induced on  ∂D  by the parametrisation  γ  coincides with the positive orientation of  ∂D. If  X(x, y, z),  Y (x, y, z),  Z(x, y, z)  are the components of the vector field  F , formula (10.29) becomes ω =

 ∂+ S



(10.32)

=

 ∂(y, z)

 ∂(z, x)

 ∂(x, y)

 (Zy − Yz)  det

+ (Xz− Zx)  det

+ (Yx − Xy)  det

 dudv , 

 D

 ∂(u, v)

 ∂(u, v)

 ∂(u, v)
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where  ω =  X dx +  Y dy +  Z dz  and  (x(u, v), y(u, v), z(u, v))  is a parametrisation of the surface. Since the oriented curve  ∂+ S  has equations  x =  x(u(t), v(t)),  y =

 y(u(t), v(t)),  z =  z(u(t), v(t)),  t ∈ [ a, b], we have b  2

 ω =

 (X xu +  Y yu +  Z zu) u +  (X xv +  Y yv +  Z zv) v 3  dt =

 ∂+ S

 a



=

 (X xu +  Y yu +  Z zu) du +  (X xv +  Y yv +  Z zv) dv . 

+ ∂D

Applying to the last integral the Stokes formula for the plane (see Sect. 8.3) we deduce







 ∂

 ω =

 (X xv +  Y yv +  Z zv) −  ∂ (X xu +  Y yu +  Z zu) dudv =

 ∂+ S

 D

 ∂u

 ∂v





(10.33)

=

 ∂X

 ∂X

 xv +  ∂Y yv +  ∂Z zv −

 xu +  ∂Y yu +  ∂Z zu

 dudv . 

 D

 ∂u

 ∂u

 ∂u

 ∂v

 ∂v

 ∂v

Notice that

 ∂X xv −  ∂Xxu =

 ∂u

 ∂v

4

5

4

5

=  Xx xu +  Xy yu +  Xz zu xv −  Xx xv +  Xy yv +  Xz zv xu =

= − Xy (xu yv −  xv yu) +  Xz (zu xv −  zv xu) , 

and similarly

 ∂Y yv −  ∂Y yu =  Yx(xu yv −  xv yu) −  Yz(yu zv −  yv zu)

 ∂u

 ∂v

 ∂Z zv −  ∂Zzu = − Zx(zu xv −  zv xu) +  Zy(yu zv −  yv zu). 

 ∂u

 ∂v

By (10.33), the above relations give



4

5

 ω =

 Zy −  Yz (yu zv −  yv zu)+

 ∂+ S

 D

4

5



+  (Xz −  Zx)(zu xv −  zv xu) +  Yx −  Xy (xu yv −  xv yu) dudv , and (10.32) is proved. 

Let us remark that the  C 2 hypothesis is not needed to state Stokes’s formula. It is only used in the proof, to be precise for writing (10.33). As a matter of fact formula (10.29) is valid when  ϕ  is only of class  C 1 . 

Now let us discuss another key result. Recall that  regular domains  were defined in Sect. 8.5. 
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Divergence Theorem  Let T be a regular domain in  R3 . If F :  T → R3  is a C 1

 vector field, then





div  F dx dy dz =

 (F, νe) dσ , 

(10.34)

 T

 S

 where νe is the outer normal of S and the function

div  F =  ∂X +  ∂Y +  ∂Z

 ∂x

 ∂y

 ∂z

 is called the divergence of F =  (X, Y, Z). 

Formula (10.34) expresses the fact that the integral over  T  of the  divergence  of  F

equals the outgoing  flux. 

 Example 2  Let  T = { (x, y, z) ∈ R3 :  x 2 +  y 2 ≤  z 2 , x 2 +  y 2 +  z 2 ≤ 2 y, z ≥ 0} (see Figs. 10.26 and 10.27). We shall find the outgoing flux of the vector field  F =  ( 0 , yz, x). 

The set  T  is the intersection between the cone with vertex the origin with generating lines forming an angle  π/ 2, and the unit hemisphere with centre  ( 0 ,  1 ,  0 )  in the upper half-space H = { (x, y, z) ∈ R3 :  z ≥ 0}. 

z

D

y

1

x

Fig. 10.26

(continued)
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 Example 2 (continued)

 z

 x

 D

1

 y

Fig. 10.27

The projection of  T  on  Oxy  is the disc  D = { (x, y) ∈ R2 :  x 2 +  y 2 −  y ≤ 0}, so  T  may be viewed as the normal domain defined by





 x 2 +  y 2 ≤  z ≤

2 y −  x 2 −  y 2  , 

 (x, y) ∈  D

(see Fig. 10.26). As div  F =  z, by (10.34) we have (F, νe) dσ =

 z dx dy dz =

 ∂T

 T



√



2 y− x 2 − y 2





=

 dx dy √

 z dz =

 y −  x 2 −  y 2  dx dy . 

 D

 x 2 + y 2

 D

The last integral can be computed in polar coordinates, so that









 π

sin  ϑ 



 π

 (F, νe) dσ =

 dϑ

  2 sin  ϑ −   3  d = 1

sin4  ϑ dϑ =  π . 

 ∂T

0

0

12 0

32
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 Proof of the Divergence Theorem  We shall prove (10.34) in the simplest case, where the domain  T  is regular and normal with respect to all three coordinate planes. 

Call  X(x, y, z), Y (x, y, z), Z(x, y, z)  the components of the vector field  F . Then







 ∂X

div  F dx dy dz =

+  ∂Y +  ∂Z dx dy dz . 

(10.35)

 T

 T

 ∂x

 ∂y

 ∂z

As  T  is normal with respect to the  xy-plane, there exist a regular domain  D  in the plane and two functions  f 1 , f 2 :  D → R, of class  C 1 (D), such that (see Fig. 10.28) T = { (x, y, z) :  (x, y) ∈  D, f 1 (x, y) ≤  z ≤  f 2 (x, y)}  . 

By the reduction formulas for triple integrals (seen in Sect. 8.5)







 ∂Z

 f 2 (x,y) ∂Z

 dx dy dz =

 dx dy

 dz =

 T ∂z

 D

 f

 ∂z

1  (x ,y )



=

{ Z(x, y, f 2 (x, y)) −  Z(x, y, f 1 (x, y))}  dx dy . 

 D

(10.36)

Now let us compute







 (F, νe) dσ =

 (F, νe) dσ =

{ X (e 1 , νe) +  Y (e 2 , νe) +  Z (e 3 , νe)}  dσ . 

 S

 ∂T

 ∂T

(10.37)

Fig. 10.28

z

S2

T
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S1

y

D

x
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Let us focus on the last summand



 Z(e 3 , νe) dσ , 

 ∂T

where  νe  is the outer normal of  ∂T , and  ∂T  is the union of the graphs  S 1 , S 2 of f 1 , f 2 and the cylindrical surface





 SC =  (x, y, z) ∈ R3 :  (x, y) ∈  ∂D, f 1 (x, y) ≤  z ≤  f 2 (x, y) . 

As the normal to  SC  is orthogonal to  e 3, we have







 Z(e 3 , νe) dσ =

 Z(e 3 , νe) dσ +

 Z(e 3 , νe) dσ . 

 ∂T

 S 1

 S 2

At every point of  S 1 the outer unit normal is





 ∂f 1

 ∂f 1

 νe| =

1



 , 

 , −1  , 

 S 1

 ∂x

 ∂y

1 + | Df 1|2

while on  S 2 the outer unit normal is given by





 νe| =

1



− ∂f 2  , − ∂f 2  ,  1  . 

 S 2

 ∂x

 ∂y

1 + | Df 2|2

Recalling the definition of surface integral, we then have







 Z(e 3 , νe) dσ =−

 Z(x, y, f 1 (x, y)) dx dy +

 Z(x, y, f 2 (x, y)) dx dy . 

 ∂T

 D

 D

Therefore (10.36) implies





 ∂Z dx dy dz =

 Z(e 3 , νe) dσ . 

 T ∂z

 ∂T

In a similar manner one proves that





 ∂Y dx dy dz =

 Y (e 2 , νe) dσ , 

 T ∂y

 ∂T





 ∂X dx dy dz =

 X(e 1 , νe) dσ . 

 T ∂x

 ∂T

Comparing the last equalities with (10.35) and (10.37) proves the claim. 
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11.1

The Implicit Function Theorem for Equations

Let  F (x, y)  be a function of two real variables  x, y.  When we consider the equation F (x, y) = 0

(11.1)

and we fix a value of  x, there could be either  no  value of  y  solving the equation, or  exactly one y, or even  several  values of  y  satisfying (11.1). It is then of interest to establish under which conditions Eq. (11.1) allows to associate with  x  a  unique value of  y, i.e. when  y  can be expressed  as a function of x, at least for some values of the variables. Said more precisely, we shall determine conditions for the existence of an interval  I ⊆ R and of a unique function  f :  I → R such that F (x, f (x)) = 0  , 

∀  x ∈  I. 

(11.2)

After presenting a few examples of the possible scenarios we will show that under

certain assumptions, if the point  (x 0 , y 0 )  is such that

 F (x 0 , y 0 ) = 0  , 

then there exist an open interval  I  containing  x 0 and a unique function  f :  I → R

that satisfies (11.2) and  f (x 0 ) =  y 0. 

In this way the zero set

 Z = { (x, y) :  F (x, y) = 0}

of the function  F , restricted to a neighbourhood of  (x 0 , y 0 ), will be a  Cartesian graph  over the interval  I , as in Fig. 11.1. The function  f :  I → R is defined implicitly on  I  by Eq. (11.1), and therefore it is called an  implicit function. 
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 y

 y +

 F( x,  y) = 0

0

 y 0

 y –

0

 x –

 x

 x +

0

0

0

 x

Fig. 11.1

 Example 1  Consider  F (x, y) =  y 5 −  x, with  (x, y) ∈ R2. If  I = R, clearly the only function implicitly defined by (11.1), i.e. such that

 F (x, f (x)) = 0  , 

∀  x ∈ R , 

√

is  f (x) = 5  x. 

 Example 2  Take  F (x, y) =  x 2 +  y 2 − 1 with  x, y ∈ R. Consider the interval  I = [−1 ,  1]

and let  f 1,  f 2 be two functions defined on  I  by





 f 1 (x) =

1 −  x 2  , 

 f 2 (x) = − 1 −  x 2  . 

Evidently  f 1 =  f 2 and

 F (x, f 1 (x)) = 0  , 

 F (x, f 2 (x)) = 0  , 

∀  x ∈  I. 

So here we have two distinct implicit functions defined on  I  by the same equation F (x, y) = 0. 
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 Example 3  Now consider  F (x, y) =  x 4 +  y 4 + 1 for  x, y ∈ R. As  F (x, y) = 0 for any (x, y) ∈ R2, for any real interval  I  there is no function  f :  I → R such that  F (x, f (x)) =

0 when  x ∈  I . 

 Example 4  Suppose  F (x, y) =  x 3 +  y 3 +  x 2 y − 3 y 2 .  Equation (11.1) implicitly defines

√

√

a unique function  f  defined on  I =  (−∞ , − 3]. In fact, if  x ≤ − 3 the function  y ∈

R →  F (x, y)  is strictly increasing (the reader should show this) and moreover lim  F (x, y) = ±∞  . 

 y→±∞

√

Hence, for any  x ≤ − 3 there is a unique value  y  depending on  x, i.e.  y =  f (x), such that F (x, f (x)) = 0. 

Similarly one proves that, in this situation, (11.1) implicitly defines a unique function  f

√

on [ 3  , +∞ ). Notice that the equation  F ( 0 , y) = 0 has, instead, two solutions  y = 0 and

√

 y = 3, while  F ( 1 , y) = 0 has three solutions:  y = 1,  y = 1 ±

2. 

The following theorem prescribes conditions under which  F (x, y) = 0 expresses  y in terms of  x  for certain values of the variables  x, y. 

Implicit Function Theorem  Let F (x, y) be a continuous function with continuous partial derivative Fy on an open set A ⊆ R2 . Suppose there is a point (x 0 , y 0 ) in A where

 F (x 0 , y 0 ) = 0  and Fy(x 0 , y 0 ) = 0  , (11.3)

 Then there exist positive numbers δ, σ such that the equation

 F (x, y) = 0

 implicitly defines a unique function

 f :  (x 0 −  δ, x 0 +  δ) →  (y 0 −  σ, y 0 +  σ ) , i.e. a function such that

 F (x, f (x)) = 0  , 

∀  x ∈  (x 0 −  δ, x 0 +  δ). 

 Furthermore, f is continuous and f (x 0 ) =  y 0 . 

Figure 11.2 shows the geometric meaning of the implicit function theorem. In practice, the theorem says that there exists an open rectangle

 R =  (x 0 −  δ, x 0 +  δ) ×  (y 0 −  σ, y 0 +  σ )

[image: Image 3122]
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Fig. 11.2

 y

 F( x,  y) = 0

 y 0

 y =  f( x)

 x 0

 x

whose intersection with the zero set  Z = { (x, y) ∈  A :  F (x, y) = 0} is the graph of a certain continuous function  y =  f (x). Naturally the “vertical” line  x =  x 0 may cross the zero set at more than one point. 

 Proof  To fix ideas, suppose  Fy (x 0 , y 0 ) >  0. Referring to Fig. 11.3, by the continuity of  Fy (x, y)  there is a positive number  σ  such that

 Fy (x, y) >  0  , 

for any point  (x, y) ∈  A  satisfying

| x −  x 0| ≤  σ , 

| y −  y 0| ≤  σ . 

Then the function  F (x 0 , y), of the sole variable  y, is strictly increasing on

[ y 0 −  σ, y 0 +  σ]. As  F (x 0 , y 0 ) = 0, necessarily F (x 0 , y 0 −  σ ) <  0  , 

 F (x 0 , y 0 +  σ ) >  0  . 

Since the sign of continuous maps is locally constant, for the two functions

 F (x, y 0 −  σ )  and  F (x, y 0 +  σ ), of the sole variable  x, there exists  δ >  0 (smaller than or equal to  σ ) such that

 F (x, y 0 −  σ ) <  0  , 

 F (x, y 0 +  σ ) >  0  , 

(11.4)

for any  x ∈  (x 0 −  δ, x 0 +  δ). Therefore for any  x  in such interval, the function y →  F (x, y)
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 F >  0

 F >  0

 F ( x,  y)  >  0

 y

 F ( x,  y)= 0

 F ( x,  y)= 0  

 y 0

 F ( x ,  y )= 0

0 0

 F ( x,  y)  >  0

 y

 F <  0

 F <  0

Fig. 11.3

is strictly increasing if  y ∈ [ y 0 −  σ, y 0 +  σ ]. By (11.4) it assumes opposite signs at the endpoints of [ y 0 −  σ, y 0 +  σ ], so the intermediate value theorem tells that there is a unique  y ∈  (y 0 −  σ, y 0 +  σ )  such that  F (x, y) = 0, for any  x ∈  (x 0 −  δ, x 0 +  δ). 

This proves the existence of a unique implicit function  y =  f (x),  defined on  (x 0 −

 δ, x 0 + δ)  and with range contained in  (y 0 − σ, y 0 + σ ). By construction  f (x 0 ) =  y 0. 

Now let us show that  f  is continuous on  (x 0 −  δ, x 0 +  δ). To simplify notations call  I, J  the open intervals

 I =  (x 0 −  δ, x 0 +  δ) , 

 J =  (y 0 −  σ, y 0 +  σ ) , 

and fix  x ∈  I . We shall prove that for any  ε >  0, 

| f (x) −  f (x)|  < ε

(11.5)

whenever  x ∈  I  is close enough to  x. As  f (x)  is internal to  J , we may choose  ε  so that [ f (x) −  ε, f (x) +  ε] ⊂  J . 

Recalling that  F (x, f (x)) = 0 and that the function  y →  F (x, y)  is strictly increasing when  y ∈ [ f (x) −  ε, f (x) +  ε], we have

 F (x, f (x) −  ε) <  0  < F (x, f (x) +  ε) . 
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Arguing as above we prove the existence of a positive number  δ 1 for which

 F (x, f (x) −  ε) <  0  < F (x, f (x) +  ε) , 

for any  x ∈  I  such that | x −  x|  < δ 1. But  F (x, f (x)) = 0, and for any  x ∈  I  the function  y →  F (x, y)  is strictly increasing. Hence

 f (x) −  ε < f (x) < f (x) +  ε, 

and therefore (11.5) follows. 

Suppose we replace, in the implicit function theorem, the hypotheses  Fy

continuous and  Fy (x 0 , y 0 ) = 0 with  Fx  continuous and  Fx(x 0 , y 0 ) = 0. Then the implicit equation  F (x, y) = 0 defines a function  x =  g(y)  on a neighbourhood of y 0. Now the zero set  Z = { (x, y) ∈  A :  F (x, y) = 0} is, on a neighbourhood of (x 0 , y 0 ), a graph over some interval of the  y-axis. 

 Example 5  For any  (x, y) ∈ R2 let  F (x, y) =  x 2+ y 2−1. Pick a point  (x 0 , y 0 )  on the circle

   of equation  x 2+ y 2 = 1. If  x 0 ∈  (−1 ,  1 )  then  y 0 = 0 and so  Fy(x 0 , y 0 ) = 2 y 0 = 0. Hence the implicit function theorem says that there is a rectangular neighbourhood  R  of  (x 0 , y 0 ) such that   ∩  R  is the graph of a continuous function  f (x), defined on  x ∈  (x 0 −  δ, x 0 +  δ) for a suitable  δ >  0. 

Instead, if  x 0 = 1, so  y 0 = 0 and  Fy( 1 ,  0 ) = 0, the implicit function theorem cannot be applied. Nonetheless we have  Fx ( 1 ,  0 ) = 2 = 0, so by the theorem    coincides, on some rectangular neighbourhood  R of  ( 1 ,  0 ), with the graph of a continuous function  g(y) defined on a neighbourhood of  y 0 = 0 (Fig. 11.4). 

 R ( x ,   y )

0

0

 R

1

Fig. 11.4
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 Example 6  Consider  F (x, y) =  x 2 −  y 2. At the origin F ( 0 ,  0 ) =  Fx( 0 ,  0 ) =  Fy( 0 ,  0 ) = 0  . 

Taking  ( 0 ,  0 ), the implicit function theorem’s assumptions are not satisfied. Nor is the conclusion, in this case, because there is no neighbourhood of the origin where the equation implicitly defines a unique function in either  x  or  y. 

Let us go back to the statement of the implicit function theorem and suppose  f  is the continuous function from  (x 0 −  δ, x 0 +  δ)  to  (y 0 −  σ, y 0 +  σ )  defined implicitly by (11.1). Assume  F  is of class  C 1 on  A. If  f  is differentiable, differentiating with respect to  x  the relation

 F (x, f (x)) = 0  , 

∀  x ∈  (x 0 −  δ, x 0 +  δ), 

we obtain

 Fx (x, f (x)) +  Fy(x, f (x)) f  (x) = 0  , 

and in case  Fy = 0, 

 f  (x) = −  Fx(x, f (x)) , 

∀  x ∈  (x 0 −  δ, x 0 +  δ) . 

(11.6)

 Fy(x, f (x))

The next result shows that the above formula is actually true if  F  is of class  C 1

on  A. 

Derivatives of Implicit Functions  Assuming, in the implicit function theorem, that F is additionally C 1  on the open set A, then the implicit function f is of class C 1

 on (x 0 −  δ, x 0 +  δ), and the derivative f   is given by (11.6) . Moreover, if F is Ck on A for some k ∈ N , the implicit function f is Ck on (x 0 −  δ, x 0 +  δ). 

 Proof  Let us go back to the proof of the implicit function theorem. In particular Fy (x, y) = 0  , 

∀  (x, y) ∈  R, 

(11.7)

where  R  is the rectangle

 R =  (x 0 −  δ, x 0 +  δ) ×  (y 0 −  σ, y 0 +  σ ) . 

Fix  x  and  h = 0 so that  x  and  x +  h  belong to  (x 0 −  δ, x 0 +  δ). By definition of  f and the mean value theorem, 

0 =  F (x +  h, f (x +  h)) −  F (x, f (x)) =

=  Fx(ξ, η)h +  Fy(ξ, η)[ f (x +  h) −  f (x)]  , 
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where  (ξ, η)  is an internal point of the segment between  (x, f (x))  and  (x + h, f (x +

 h)), and hence belongs to  R. From this relation and (11.7) we obtain f (x +  h) −  f (x) = − Fx(ξ,η) . 

(11.8)

 h

 Fy (ξ, η)

But  f  is continuous, so

lim  (ξ, η) =  (x, f (x)) , 

 h→0

and taking the limit in (11.8) as  h  tends to zero gives (11.6), because  F  is  C 1. 

If  F  is  Ck  for some  k >  1, one argues by induction. Suppose the statement is true for  k − 1. If  F  is  Ck, it is also  Ck−1, and by induction  f  is  Ck−1. Hence the right-hand side of (11.6) is a  Ck−1 function, and therefore  f  ∈  Ck−1, i.e.  f  is of class  Ck. 

 Remark 1  Let  F  be  C 1 on the open set  A ⊆ R2 and consider Z = { (x, y) ∈  A :  F (x, y) = 0}  . 

If  (x 0 , y 0 )  is a point in  Z  at which the gradient of  F  does not vanish, on a neighbourhood of  (x 0 , y 0 )  the zero set  Z  coincides with the support of a regular simple curve  , whose tangent line at the point has equation

 Fx(x 0 , y 0 )(x −  x 0 ) +  Fy(x 0 , y 0 ) (y −  y 0 ) = 0  . 

(11.9)

In fact, suppose for instance  Fy (x 0 , y 0 ) = 0. By the implicit function theorem  Z  is, around  (x 0 , y 0 ), the graph of a  C 1 function  f (x)  such that  f (x 0 ) =  y 0, and whose derivative at  x 0 is

 f  (x 0 ) = −  Fx(x 0 , y 0 )

 Fy(x 0 , y 0 )

by (11.6). But the tangent line to the graph of  f  has equation y =  y 0 +  f  (x 0 )(x −  x 0 ) =  y 0 −  Fx(x 0 , y 0 ) (x −  x 0 ) Fy (x 0 , y 0 )

and (11.9) follows. The latter can also be proved assuming  Fx (x 0 , y 0 ) = 0. In that case  Z  is, around  (x 0 , y 0 ), the graph of a  C 1 function  g(y)  for which g (y 0 ) = −  Fy(x 0 , y 0 ) , 

 Fx(x 0 , y 0 )

so the tangent to the graph of  g  at  y 0 is

 x =  x 0 +  g (y 0 )(y −  y 0 ) =  x 0 −  Fy(x 0 , y 0 ) (y −  y 0 ) , Fx (x 0 , y 0 )

whence we find (11.9) again. 
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A zero point  (x 0 , y 0 ) ∈  Z  is called  regular  if  DF (x 0 , y 0 ) = 0, while we say it is singular  in case  DF (x 0 , y 0 ) = 0. 

On a neighbourhood of a regular point  Z  is the graph of a function. From

Example 6 is its evident that on the neighbourhood of a singular point,  Z  might not be a simple curve. The chapter’s Appendix (see Sect. 11.5) contains a more thorough discussion on singular points. 

Suppose now that  F (x, y)  satisfies at  (x 0 , y 0 )  the implicit function theorem’s assumptions (11.3):  F (x 0 , y 0 ) = 0 and  Fy(x 0 , y 0 ) = 0 ,  and that  f (x)  is defined implicitly by  F (x, y) = 0 on a neighbourhood  I  of  x 0  ,  i.e. 

 F (x, f (x)) = 0  , 

∀  x ∈  I. 

Assume  F ∈  C 2 (A).  Differentiating

 f  (x) = −  Fx(x, f (x)) , 

∀  x ∈  I, 

 Fy(x, f (x))

gives

 f  (x) = −  (Fxx +  Fxy ·  f  ) Fy −  (Fyx +  Fyy ·  f  ) Fx , 

∀  x ∈  I, 

 (Fy ) 2

and replacing  f  with the right-hand side of (11.6), 

 f  (x) = −  Fxx(Fy) 2 − 2  FxyFxFy +  Fyy(Fx) 2  , 

∀  x ∈  I, 

(11.10)

 (Fy ) 3

where the partial derivatives are evaluated at  (x, f (x)). 

Recall that  x 0 is a local maximum (or minimum) point of  f  if  f  (x 0 ) = 0 ,  i.e. 

 Fx (x 0 , y 0 ) = 0 ,  and  f  (x 0 ) <  0 (respectively,  f  (x 0 ) >  0). Then if  (x 0 , y 0 )  solves the system

 F(x,y) = 0

(11.11)

 Fx (x, y) = 0 , 

and if

 Fxx (x 0 , y 0 ) >  0  , 

 ( respectively  <  0 ), 

 Fy (x 0 , y 0 )

then  x 0 is a  local maximum (respectively,  local minimum) point of  f. 

In fact, if  Fx (x 0 , y 0 ) = 0 ,  from (11.10) we obtain f  (x 0 ) = −  Fxx(x 0 , y 0 ) . 

(11.12)

 Fy (x 0 , y 0 )
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 Example 7  In Example 4 we showed that

 F (x, y) =  x 3 +  y 3 +  x 2 y − 3 y 2 = 0

√

√

implicitly defines a unique function  f :  (−∞ , − 3 ] → R .  Moreover, when  x ≤ − 3  , we have  Fy (x, y) >  0 for any  y ∈ R .  Let us find the local extrema of  f  by solving system (11.11), which at present reads

 x 3 + y 3 + x 2 y −3 y 2 = 0

(11.13)

3 x 2 + 2 xy = 0  . 

The second equation is solved by  x = 0 and  x = −2 y/ 3 .  The first value must be discarded

√

because  f  is defined for  x ≤ − 3  ,  while substituting the other solution in the first equation of (11.13) gives  x 0 = −54 / 31 , y 0 =  f (x 0 ) = 81 / 31 ,  and so  f  (x 0 ) = 0 .  But  Fxx =

6 x + 2 y,  so (11.12) implies

 f  (x 0 ) = −  Fxx(x 0 , y 0 ) =

162 / 31

 >  0  . 

 Fy (x 0 , y 0 )

 Fy (x 0 , y 0 )

Hence  x 0 is a local minimum point of  f (x).  Figure 11.5 highlights the local minimum point (x 0 , y 0 ), where  x 0  −2 and 2  < y 0  <  3 .  It is possible to prove that the curve has a cusp at the origin, which the computer picture only roughly represents. 

Fig. 11.5
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 Example 8  Let  a  be a given positive number. We seek the local extrema of the function y =  f (x)  defined implicitly by

 F (x, y) =  x 4 +  y 4 +  a (x 2 −  y 2 ) , 

(continued)
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 Example 8 (continued)

ignoring the singular points. For that, consider the system

 F(x,y) =  x 4 + y 4 + a(x 2 − y 2 ) = 0

(11.14)

 Fx (x, y) = 2 x ( 2 x 2 +  a) = 0  . 

It admits only one solution  ( 0 ,  0 )  at which  Fy (x, y) = 2 y ( 2 y 2 −  a)  vanishes, so this is a

√

singular point. The other solutions of (11.14) are  ( 0 , ±  a ).  The expression Fxx(x, y) = 6 x 2 +  a

 Fy(x, y)

 y ( 2 y 2 −  a)

√

√

is positive at  (x, y) =  ( 0 , a )  and negative at  (x, y) =  ( 0 , −  a ).  Hence the implicit

√

function  y =  f 1 (x)  that has value  y =

 a  at  x = 0 has a maximum at  x = 0. The implicit

√

function  y =  f 2 (x),  which evaluated at  x = 0 gives  y = −  a , has a minimum at  x = 0 . 

Figure 11.6 shows the zero set  Z  of  F. 

Fig. 11.6
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Implicit Function Theorem in Several Variables  Let x =  (x 1 , x 2 , . . . , xn) ∈ R n, y ∈ R  and suppose F (x, y) =  F (x 1 , x 2 , . . . , xn, y) is a continuous function with continuous partial derivative Fy on the open set A ⊆ R n+1 . If at the point (x 0 , y 0 ) =  (x 01 , x 02 , . . . , x 0 n, y 0 ) of A F (x 0 , y 0 ) = 0  , 

 Fy (x 0 , y 0 ) = 0  , 
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 then there exist δ, σ >  0  and a unique function f :  Iδ(x 0 ) →  (y 0 −  σ, y 0 +  σ ), where Iδ(x 0 ) is the ball of centre x 0  and radius δ, such that

 F (x, f (x)) = 0  , 

∀  x ∈  Iδ(x 0 ). 

(11.15)

 Moreover, f is continuous and f (x 0 ) =  y 0 . If F is of class C 1  so is f , and

 ∂f

 (x, f (x))

 (x) = −  Fxi

∀  i = 1 ,  2 , . . . , n

(11.16)

 ∂xi

 Fy(x, f (x))

 for any x ∈  Iδ(x 0 ). Finally, if F is of class Ck(A) for some k ∈ N , then f ∈

 Ck(Iδ(x 0 )) . 

The proof of the implicit function theorem in several variables goes as the two-

variable case seen earlier: the argument relies on the monotonicity of  F (x, y)  in y ∈ R and the continuity of  F (x, y)  in  x ∈ R n. 

Below we will give another proof of the existence of the implicit function  f

satisfying (11.15), based on the  method of successive approximation. Notice the proof’s similarity with the one for systems in the following section. 

For  (x, y) ∈  A  put

 G(x, y) =  y −  y 0 −  F (x, y) , 

 Fy (x 0 , y 0 )

and observe how (11.15) is equivalent to

 f (x) =  y 0 +  G(x, f (x)) , 

∀  x ∈  Iδ(x 0 ), 

(11.17)

which is what we set out to prove. Since  A  is open,  Gy(x, y)  is continuous on  A, and

 Gy(x 0 , y 0 ) = 0  , 

we can find  δ >  0 and  σ >  0 such that  (x, y) ∈  A  when | x −  x 0| ≤  δ  and | y −  y 0| ≤

 σ .  For such points  (x, y),  moreover, 





1

 G



 y (x, y) ≤

 . 

(11.18)

2

But  G(x 0 , y 0 ) = 0 ,  so we can choose  δ  so that

| G(x, y 0 )| ≤  σ , 

∀  x : | x −  x 0| ≤  δ

(11.19)

2

without loss of generality. 
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To define a sequence  fk  of  successive approximations  of the solution  f (x) to (11.17), set

 f 1 (x) =  y 0 +  G(x, y 0 ) , 

∀  x : | x −  x 0| ≤  δ. 

We have  f 1 (x 0 ) =  y 0 .  Since, by (11.19), 

| f 1 (x) −  y 0| ≤  σ < σ , 

| x −  x 0| ≤  δ, 

(11.20)

2

the point  (x, f 1 (x))  belongs to  A  if | x −  x 0| ≤  δ.  Hence f 2 (x) =  y 0 +  G(x, f 1 (x)) , 

∀  x : | x −  x 0| ≤  δ

is well defined. Now  f 1 (x 0 ) =  y 0  ,  so  f 2 (x 0 ) =  y 0 .  By (11.19)

| f 2 (x) −  y 0| = | G(x, f 1 (x))| ≤ | G(x, y 0 )| + | G(x, f 1 (x)) −  G(x, y 0 )| ≤

≤  σ + | G(x, f 1 (x)) −  G(x, y 0 )|  . 

2

The mean value theorem implies that there exists  ξ  between  y 0 and  f 1 (x)  so that G(x, f 1 (x)) −  G(x, y 0 ) =  Gy(x, ξ ) ·  (f 1 (x) −  y 0 ) for any  x  such that | x −  x 0| ≤  δ. Then (11.18), (11.20) force

| f 2 (x) −  y 0| ≤  σ + | G(x, f 1 (x)) −  G(x, y 0 )| ≤

2





≤  σ + 

 σ

 G



 y (x, ξ ) · | f 1 (x) −  y 0|  < 

+ 1 ·  σ =  σ . 

2

2

2

So if | x −  x 0| ≤  δ,  the point  (x, f 2 (x))  belongs to  A  and f 3 (x) =  y 0 +  G(x, f 2 (x)) , 

∀  x : | x −  x 0| ≤  δ

is well defined. Similarly, 

| f 3 (x) −  y 0|  < σ , 

| x −  x 0| ≤  δ , 

and  f 3 (x 0 ) =  y 0  . 

In this way we construct a recursive sequence of continuous functions  fk(x), 

such that  f 0 =  y 0 and

 fk+1 (x) =  y 0 +  G(x, fk(x)) , 

∀  x : | x −  x 0| ≤  δ, 

(11.21)
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satisfying

| fk(x) −  y 0|  < σ , 

| x −  x 0| ≤  δ; 

(11.22)

 fk(x 0 ) =  y 0

(11.23)

for  k = 0 ,  1 ,  2 , . . . . Once we prove that the sequence  fk(x)  converges uniformly on | x −  x 0| ≤  δ  to, say, a continuous function  f (x), by taking the limit in (11.21) and (11.23) as  k → +∞ we will obtain the claim

 f (x) =  y 0 +  G(x, f (x)) , 

∀  x : | x −  x 0| ≤  δ, 

 f (x 0 ) =  y 0

due to the continuity of  G. 

So there remains to show that the sequence  fk(x)  converges uniformly on

| x −  x 0| ≤  δ .  For this, note

| fk+1 (x) −  fk(x)| = | G(x, fk(x)) −  G(x, fk−1 (x))|  , for any  k ∈ N and for any  x  such that | x −  x 0| ≤  δ .  By the mean value theorem, for those  k  and  x  there exists  ξ  between  fk−1 (x)  and  fk(x)  such that G(x, fk(x)) −  G(x, fk−1 (x)) =  Gy(x, ξ) ·  (fk(x) −  fk−1 (x)) , so (11.18) implies





| f





 k+1 (x) −  fk (x)| =  Gy (x, ξ ) · | fk (x) −  fk−1 (x)| ≤

(11.24)

≤ 1 | fk(x) −  fk−1 (x)|  , 

∀  k ∈ N , ∀  x : | x −  x 0| ≤  δ. 

2

From (11.24) induction gives

|

 σ

 fk+1 (x) −  fk(x)|  < 

 , 

(11.25)

2 k

for any  k = 0 ,  1 ,  2 , . . .  and any  x  such that | x −  x 0| ≤  δ .  In fact, when  k = 0

inequality (11.25) is nothing but (11.22). Moreover, assuming (11.25) for a given  k and using (11.24) we obtain

|

1

 fk+2 (x) −  fk+1 (x)| ≤ 1 | fk+1 (x) −  fk(x)|  < 

·  σ =  σ , 

2

2

2 k

2 k+1

i.e. (11.25) with  k + 1 replacing  k. 

Because of this, the series of functions

∞



 y 0 +

 (fk+1 (x) −  fk(x))

 k=0
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(whose  k th partial sum is  fk+1 (x)) converges totally when | x −  x 0| ≤  δ .  Therefore the sequence of functions  fk(x)  converges uniformly on that set. 

What is more, the limit  f (x)  of  fk(x)  as  k

→ +∞ is continuous. 

By (11.22), (11.23) this limit satisfies  f (x 0 ) =  y 0 and the inequality

| f (x) −  y 0| ≤  σ , 

∀  x : | x −  x 0| ≤  δ. 

This implies the existence of the implicit function  f :  Iδ (x

1

0 ) →  (y 0 −  σ, y 0 +  σ ), 

with  δ 1 such that  Iδ (x

1

0 ) ⊆  f −1 (y 0 −  σ, y 0 +  σ ). 

 Example 9  Consider  F (x, y, z) =  ez −  x 2 −  y 2 −  z 2 .  As F ( 1 ,  0 ,  0 ) = 0  , 

 Fz( 1 ,  0 ,  0 ) = 1 = 0  , 

by the previous theorem the equation  F (x, y, z) = 0 implicitly defines a unique function f (x, y)  for which  f ( 1 ,  0 ) = 0 .  By (11.16) we also have fx ( 1 ,  0 ) = 2  , 

 fy ( 1 ,  0 ) = 0  . 

Since  Fx ( 1 ,  0 ,  0 ) = −2 = 0 ,  equation  F (x, y, z) = 0 defines on a neighbourhood of  ( 0 ,  0 ) a unique function  x =  g(y, z)  for which  g( 0 ,  0 ) = 1 .  By the implicit function theorem the partial derivatives of  g  are

 gy( 0 ,  0 ) = −  Fy( 1 ,  0 ,  0 ) = 0  , gz( 0 ,  0 ) = −  Fz( 1 ,  0 ,  0 ) = 1  . 

 Fx ( 1 ,  0 ,  0 )

 Fx( 1 ,  0 ,  0 )

2

Note that  g  can be made explicit:



 g(y, z) =

 ez −  y 2 −  z 2

on a neighbourhood of  ( 0 ,  0 ).  At last, observe that  Fy ( 0 ,  0 ,  0 ) = 0 and that  F (x, y, z) = 0

does not determine, on any neighbourhood of  ( 1 ,  0 ), a unique function  y =  h(x, z)  for which  h( 1 ,  0 ) = 0. 

 Remark 2  Let  F (x, y, z)  be  C 1 on an open set  A  in R3 and call  Z  the zero set: Z = { (x, y, z) ∈  A :  F (x, y, z) = 0}  . 

If  (x 0 , y 0 , z 0 )  belongs to  Z  and  DF (x 0 , y 0 , z 0 ) = 0 ,  the argument of Remark allows to show easily that on a neighbourhood of  (x 0 , y 0 , z 0 )  the set  Z  is a regular surface whose tangent plane at the point has equation

 Fx (x 0 , y 0 , z 0 ) (x −  x 0 ) +  Fy(x 0 , y 0 , z 0 ) (y −  y 0 ) +  Fz(x 0 , y 0 , z 0 ) (z −  z 0 ) = 0  . 
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11.2

The Implicit Function Theorem for Systems

Consider a system of two equations in four unknowns  x, y, u, v

 F(x,y,u,v) = 0

(11.26)

 G(x, y, u, v) = 0

and suppose that the first equation defines  u  implicitly, as a function of  x, y, v.  Let us write this function as

 u =  h(x, y, v)

(11.27)

and substitute it in the second equation. This gives an equation in  x, y, v

 H (x, y, v) =  G(x, y, h(x, y, v), v) = 0  . 

If the above defines  v  implicitly in terms of  x  and  y :

 v =  g(x, y) , 

(11.28)

we can substitute this  v  in (11.27) and obtain a function of  x, y  of the form u =  f (x, y) =  h(x, y, g(x, y)) . 

(11.29)

All in all we have, at least formally, solved system (11.26) for  u, v  in terms of  x, y, using (11.28), (11.29). In view of these relations, system (11.26) becomes F(x,y,f(x,y),g(x,y)) = 0

(11.30)

 G(x, y, f (x, y), g(x, y)) = 0  . 

In analogy to the case of equations, we will say that the functions  u =  f (x, y)  and v =  g(x, y)  are  defined implicitly by system (11.26). 

Suppose now that we are allowed to differentiate in  x  the equations of (11.30), to obtain

 Fx + Fufx + Fvgx = 0

 Gx +  Gufx +  Gvgx = 0  , 

a linear system in the unknowns  fx  and  gx .  If the coefficients’ determinant  FuGv −

 FvGu  is non-zero, Cramer’s rule gives









 F







 x

 Fv

 Fu Fx









 G







 x

 Gv

 Gu Gx

 fx = − 

 , 

 gx = − 

 . 

(11.31)

 F







 u

 Fv

 Fu Fv









 G







 u Gv

 Gu Gv
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The expressions of  fy , gy  can be found in a similar way. 

Above we did not really care about the passages that led to (11.30) and (11.31); we only worked formally, in analogy to the implicit function theorem for equations. 

Now we shall discuss a result that clarifies the hypotheses under which the previous

manipulations are allowed. It will be a important extension of the implicit function

theorem to systems of equations of the type

⎧

⎪

⎪

⎪ F

⎪ 1 (x 1 , x 2 , . . . , xn, y 1 , y 2 , . . . , yh) = 0

⎨ F 2 (x 1 ,x 2 ,...,xn,y 1 ,y 2 ,...,yh) = 0

⎪

(11.32)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ Fh(x 1 ,x 2 ,...,xn,y 1 ,y 2 ,...,yh) = 0 . 

To simplify the notation let us put

 x =  (x 1 , x 2 , . . . , xn) , 

 y =  (y 1 , y 2 , . . . , yh) , 

and call  (x, y)  the point in R n+ h

 (x, y) =  (x 1 , x 2 , . . . , xn, y 1 , y 2 , . . . , yh) . 

If  A  is open in R n+ h,  we let  F =  F (x, y)  be the map, from  A  to R h, whose components  F 1 (x, y), F 2 (x, y), . . . , Fh(x, y)  are defined for  (x, y) ∈  A  and real-valued. Thus system (11.32) becomes

 F (x, y) = 0  , 

where 0 is as usual the null vector in R h. 

Implicit Function Theorem for Systems  Let A be an open set in  R n+ h, F =

 F (x, y) a C 1  map from A to  R h and (x 0 , y 0 ) a point in A such that





 ∂(F 1 , F 2 , . . . , Fh)

 F (x 0 , y 0 ) = 0  , 

and

det

 (x 0 , y 0 ) = 0  . 

(11.33)

 ∂(y 1 , y 2 , . . . , yh)

 Then there exist a ball I around x 0  , a ball J around y 0  and a unique function f :  I ⊂ R n →  J ⊂ R h such that f (x 0 ) =  y 0  and F (x, f (x)) = 0  , 

∀  x ∈  I. 
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 Moreover, f is of class C 1  and the Jacobian matrix of f =  (f 1 , f 2 , . . . , fh) at x is

 ∂(f 1 , f 2 , . . . , fh) (x) =

 ∂(x 1 , x 2 , . . . , xn)



−

(11.34)

1

= −  ∂(F 1 , F 2 , . . . , Fh) (x, f (x))

◦  ∂(F 1 , F 2 , . . . , Fh) (x, f (x))

 ∂(y 1 , y 2 , . . . , yh)

 ∂(x 1 , x 2 , . . . , xn)

 for any x ∈  I . 

 Remark 3  Let  F =  (F 1 (x, y, z), F 2 (x, y, z))  be a  C 1 function on an open set  A ⊆

R3 .  Let  P 0 ≡  (x 0 , y 0 , z 0 )  be a point of  A  where  F (P 0 ) = 0 and the Jacobian determinants

 ∂(F 1 , F 2 )

 J 1 = det

 (P 0 ) , 

 ∂(y, z)

 ∂(F 1 , F 2 )

 J 2 = det

 (P 0 ) , 

(11.35)

 ∂(z, x)

 ∂(F 1 , F 2 )

 J 3 = det

 (P 0 ) , 

 ∂(x, y)

are not simultaneously all zero. Then the zero set

 Z = { (x, y, z) ∈  A :  F (x, y, z) = 0}

coincides, on a neighbourhood of  P 0, with a  regular simple curve , whose tangent line at  P 0 is parallel to the vector of components  J 1  , J 2  , J 3  . 

To fix ideas, suppose  J 1 = 0 .  By the implicit function theorem for systems, stated above, around  P 0 the set  Z  is the graph of a  C 1 function  f (x)  defined on a neighbourhood  (x 0 −  δ, x 0 +  δ)  of  x 0 and with values in R2 .  Hence  Z  coincides with the support of the regular curve    of parametric equations  (x, f 1 (x), f 2 (x)), with  x ∈  (x 0 −  δ, x 0 +  δ) =  I.  Since, for any  x ∈  I , F 1 (x,f 1 (x),f 2 (x)) = 0

∀  x ∈  I, 

 F 2 (x, f 1 (x), f 2 (x)) = 0  , 

differentiating in  x  gives the linear system

⎧

⎪

⎪ ∂F 1

⎨

+  ∂F 1  f  +  ∂F 1  f  = 0

 ∂x

 ∂y

1

 ∂z

2

⎪

⎪

⎩ ∂F 2 +  ∂F 2  f  +  ∂F 2  f  = 0

 ∂x

 ∂y

1

 ∂z

2
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in  f  , f . Once solved, the system will give, for  x =  x

1

2

0 , 

 f  1 (x 0 ) =  J 2  , 

 f 

 J

2 (x 0 ) =  J 3

1

 J 1

also recalling that  f 1 (x 0 ) =  y 0  , f 2 (x 0 ) =  z 0 . On a neighbourhood of  P 0  ,  therefore, the curve  , defined implicitly by  F (x, y, z) = 0 ,  has unit tangent vector parallel to  (J 1  , J 2  , J 3 ).  The reader should show that the condition by which the vector (J 1  , J 2  , J 3 )  is non-zero is saying that    is locally the intersection of the two regular surfaces of equations  F 1 (x, y, z) = 0 and  F 2 (x, y, z) = 0 ,  and that the corresponding tangent planes along    are distinct. 

 Example 1  Let us show that on a neighbourhood of  ( 0 ,  1 ,  1 )  the equations F 1 (x,y,z) =  x 2 + y 2 + z 2 −2 = 0

(11.36)

 F 2 (x, y, z) =  x 2 +  y 2 −  z 2 − 2 x = 0 , implicitly define a regular simple curve  .  Let us compute the determinants  J 1,  J 2,  J 3

defined in (11.35):

























2

2 

2

0

0

2

 J 1 = 











2 −2  , 

 J 2 = −2 −2  , 

 J 3 = −2 2  , 

so  J 1 = −8 , J 2 = −4 , J 3 = 4 .  The above observations tell that on a neighbourhood of  ( 0 ,  1 ,  1 )  Eqs. (11.36) define a regular curve  , whose tangent at the point is parallel to (−2 , −1 ,  1 ).  Note that this curve is the intersection of the sphere of equation  F 1 = 0 with the cone of equation  F 2 = 0 . 

 Proof of the Implicit Function Theorem for Systems  Let  M  and  N  denote the Jacobian matrices

 M =  ∂(F 1 , F 2 , . . . , Fh) (x 0 , y 0 ) , 

 N =  ∂(F 1 , F 2 , . . . , Fh) (x 0 , y 0 ) . 

 ∂(x 1 , x 2 , . . . , xn)

 ∂(y 1 , y 2 , . . . , yh)

In the rest of the proof we will use the fact that  N  is an invertible square matrix. As F  is differentiable at  (x 0 , y 0 )  and  F (x 0 , y 0 ) = 0 ,  by the definition of differential we have

 F (x, y) =  M (x −  x 0 ) +  N (y −  y 0 ) +  ω(x, y) , (11.37)

for any  (x, y) ∈  A, where  ω(x, y)  is a  C 1 function from  A  to R h  satisfying ω(x, y)

lim



= 0  . 

 (x,y)→ (x 0 ,y 0 )

| x −  x 0|2 + | y −  y 0|2
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Recall that we are making use of the notation







1 / 2

 n



1 / 2

 h



| x| =

 x 2

 , 

| y| =

 y 2

 , 

 i

 i

 i=1

 i=1

to indicate the usual norms on the respective Euclidean spaces. Due to assump-

tion (11.33) the matrix  N  is invertible. Applying to (11.37) the inverse  N −1 gives y −  y 0 =  N−1 (N (y −  y 0 )) =

(11.38)

=  N−1 (F (x, y)) −  N−1 (M (x −  x 0 )) −  N−1 (ω(x, y)) . 

The map  L : R n → R h,  defined by

 L x = − N−1 (M x) , 

∀  x ∈ R n, 

is linear. Moreover the map  G :  A ⊆ R n × R h → R h, G(x, y) = − N−1 (ω(x, y)) , 

∀  (x, y) ∈  A ⊆ R n × R h, 

is of class  C 1 (A),  and satisfies

 G(x, y)

lim



= 0  . 

(11.39)

 (x,y) →  (x 0 ,y 0 )

| x −  x 0|2 + | y −  y 0|2

Since  N −1 : R h → R h  is invertible, we have  N−1 z = 0 if and only if  z = 0 .  With the above notations, then, from (11.38) we deduce that

 F (x, y) = 0

⇔  y =  y 0 +  L (x −  x 0 ) +  G(x, y) . 

Hence the existence of a unique implicitly defined function  f :  I ⊆ R n →  J ⊆

R h  is granted once we show that there exist a neighbourhood  I  of  x 0 in R n  and a neighbourhood  J  of  y 0 in R h  such that the map

 y →  y 0 +  L (x −  x 0 ) +  G(x, y)

 y ∈  J, 

admits a  unique fixed point  in  J , for any  x ∈  I . 

For that we use Banach’s fixed-point theorem, proved in Sect. 2.9. For any   >  0

define

2

3





 I  =  x ∈ R n : | x −  x 0| ≤   , 

 J  =  y ∈ R h : | y −  y 0| ≤   . 
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As  G(x 0 , y 0 ) = 0 , (11.39) implies  DG(x 0 , y 0 ) = 0 .  But  G  is of class  C 1 ,  so there is a positive number   0 such that

| DG(x, y)| ≤ 1√  , 

∀  (x, y) ∈  I ×  J . 

0

  0

2

 h

As  G  has  h  components, 

| G(x 1 , y 1 ) −  G(x 2 , y 2 )| ≤ 1 [| x 1 −  x 2| + | y 1 −  y 2|]  , (11.40)

2

for any  x 1  , x 2 ∈  I   and for any  y

 .  Choose  

0

1  , y 2 ∈  J  0

1 so that

  0

0  <  1  <  1 + 2| L|  , 

where | L| is the norm of  L.  If  x ∈  I  ,  since  G(x 1

0 , y 0 ) = 0 , 

| (y 0+ L(x− x 0 )+ G(x, y)) −  y 0|≤ | L(x −  x 0 )| + | G(x, y)| ≤

≤ | L| · | x −  x 0|+ 1 [| x −  x 0|+| y− y 0|]≤

2





≤ | L| + 1   1 + 1   0  <  0

2

2

for any  y ∈  J  . Therefore  y →  y

into itself

0

0 +  L (x −  x 0 ) +  G(x, y)  maps  J  0

(actually, into its interior  J ).  Moreover, for  x ∈  I

and  y

 , (11.40)

0

  1

1  , y 2 ∈  J  0

implies

| (y 0+  L(x− x 0 ) +  G(x, y 1 )) −  (y 0 +  L(x −  x 0 ) +  G(x, y 2 ))|≤ 1 | y 1 −  y 2|  . 

2

Hence, for any  x ∈  I  ,  the map  y →  y

1

0 +  L (x −  x 0 ) +  G(x, y)  is a contraction, 

with constant 1 / 2 ,  on the metric space  J  ⊆ R h  with the usual Euclidean metric. 

0

Then this map from  J   to  J

has, for any  x ∈  I ,  a unique fixed point in  J ,  say

0

  0

  1

  0

 f (x).  By construction,  f (x 0 ) =  y 0  . 

We claim that  f :  x ∈  I  →  f (x) ∈  J

is Lipschitz. For  x

, 

1

  0

1  , x 2 ∈  I  1

from (11.40) we deduce

| f (x 1 ) −  f (x 2 )| =

= | (y 0+  L(x 1−  x 0 )+ G(x 1 , f (x 1 ))) −  (y 0 +  L(x 2−  x 0 )+ G(x 2 , f (x 2 )))|≤

≤ | L| · | x 1 −  x 2| + | G(x 1 , f (x 1 ))− G(x 2 , f (x 2 ))| ≤

≤ | L| · | x 1 −  x 2| + 1 [| x 1 −  x 2| + | f (x 1 ) −  f (x 2 )|]  , 2

[image: Image 3264]

[image: Image 3265]

[image: Image 3266]

[image: Image 3267]

[image: Image 3268]

[image: Image 3269]

[image: Image 3270]

[image: Image 3271]

[image: Image 3272]

[image: Image 3273]

[image: Image 3274]

588

11

Implicit Functions

whence

| f (x 1 ) −  f (x 2 )| ≤  ( 2 | L| + 1 ) · | x 1 −  x 2|  . 

(11.41)

Then the function





 ∂(F 1 , F 2 , . . . , Fh)

 x ∈  I  → det

 (x, f (x))

1

 ∂(y 1 , y 2 , . . . , yh)

is continuous. But as





 ∂(F 1 , F 2 , . . . , Fh)

det

 (x 0 , y 0 ) = 0  , 

 ∂(y 1 , y 2 , . . . , yh)

there is   2 ∈  ( 0 ,  1] such that





 ∂(F 1 , F 2 , . . . , Fh)

det

 (x, f (x))

= 0  , 

∀  x ∈  I . 

(11.42)

 ∂(y

2

1 , y 2 , . . . , yh)

Let us now show that  f (x)  is differentiable for any  x ∈  I . Take  x  and  x

 .  For

2

1 in  I 2

any  i = 1 ,  2 , . . . , h  there is a point  Pi  internal to the segment between  (x, f (x)) and  (x 1  , f (x 1 ))  for which

 Fi (x 1  , f (x 1 )) −  Fi(x, f (x)) =

=  (DxFi(Pi), x 1 −  x) +  (DyFi(Pi), f (x 1 ) −  f (x)) , where  Dx Fi  is the gradient of  Fi  in the variable  x ∈ R n,  while  DyFi  is the gradient of  Fi  in  y ∈ R h.  Hence





 ∂(F 1 , F 2 , . . . , Fh)

0 =

 (x, f (x))

 (x 1 −  x) +

 ∂(x 1 , x 2 , . . . , xn)





(11.43)

+  ∂(F 1 , F 2 , . . . , Fh) (x, f (x)) (f (x 1 ) −  f (x))+

 ∂(y 1 , y 2 , . . . , yh)

+  R (x 1 −  x) +  S (f (x 1 ) −  f (x)), 

where the matrices  R, S  have coefficients

 Rij =  ∂Fi (Pi) −  ∂Fi (x, f (x)) , 

 i = 1 ,  2 , . . . , h, j = 1 ,  2 , . . . , n, 

 ∂xj

 ∂xj

 Sij =  ∂Fi (Pi) −  ∂Fi (x, f (x)) , 

 i = 1 ,  2 , . . . , h, j = 1 ,  2 , . . . , h. 

 ∂yj

 ∂yj
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Now, from (11.43) we have





 f (x 1 )− f (x) =−  N−1 ◦

 x

 Mx (x 1 −  x)− N−1

 x

[ R(x 1 − x) + S(f (x 1 ) −  f (x))]  , 

where

 Mx =  ∂(F 1 , F 2 , . . . , Fh) (x, f (x))

 ∂(x 1 , x 2 , . . . , xn)

and  Nx  is the matrix

 Nx =  ∂(F 1 , F 2 , . . . , Fh) (x, f (x))

 ∂(y 1 , y 2 , . . . , yh)

(invertible, by (11.42)). To prove (11.34) there remains to observe that, due to the continuity of  f, 

lim | R| = 0  , 

lim | S| = 0  , 

 x 1→ x

 x 1→ x

so (11.41) implies





 N −1



lim

 x

[ R (x 1 −  x) +  S (f (x 1 ) −  f (x))] ≤

 x 1→ x

| x 1 −  x|





≤ 



 N −1

 x

lim [| R| + | S|  ( 2 | L| + 1 )] = 0  . 

 x 1→ x

We end the section with an observation. In the implicit function theorem for systems, if  F  is chosen of class  Ck  on  A,  then also  f  is of class  Ck.  The proof follows from the above theorem using an easy induction argument on  k. 

11.3

Local and Global Invertibility

One consequence of the implicit function theorem is the  inverse function theorem in one real variable: if  A  is a open subset of R and  f :  A → R is a  C 1 function such that

 f (x 0 ) =  y 0  , 

 f  (x 0 ) = 0  , 

there is a neighbourhood  I  of  y 0 on which the inverse function  f −1 is well defined. 

Moreover,  f −1 has on  I  continuous derivative





 f −1

 (y) =

1

 , 

with

 y =  f (x). 

 f   (x)
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The proof is straightforward if we apply the implicit function theorem to

 F (x, y) =  f (x) −  y , 

since  F (x 0 , y 0 ) = 0 , Fx(x 0 , y 0 ) = 0 . 

The goal of this section is to prove a similar statement for functions  f :  A ⊆

R n → R n,  as a consequence of the implicit function theorem for systems. 

Let  f =  (f 1 , f 2 , . . . , fn) :  A ⊆ R n → R n  be a function defined on the open set  A  in R n,  of class  C 1 (A).  We say that  f  is  locally invertible around x 0 ∈  A if there exists a neighbourhood  I ⊆  A  of  x 0 such that the restriction of  f  to  I  is invertible as a function from  I  to  f (I ). 

If the above restriction is of class  C 1 together with its inverse, then  f  is called a local diffeomorphism around x 0 . 

Local Invertibility Theorem  Let A be an open set in  R n, x 0 ∈  A a point and f =  (f 1 , f 2 , . . . , fn) :  A → R n a function of class C 1 (A). Suppose the Jacobian determinant is non-zero at x 0 :

 ∂(f 1 , f 2 , . . . , fn)

det

 (x 0 ) = 0  . 

(11.44)

 ∂(x 1 , x 2 , . . . , xn)

 Then there exist open neighbourhoods I of x 0  and J of f (x 0 ) such that f :  I →  J is invertible, and the inverse f −1 :  J →  I is of class C 1 . For any y ∈  J, furthermore, 



−

 ∂((f −1 )

1

1 , (f −1 ) 2 , . . . , (f −1 )n)

 ∂(f 1 , f 2 , . . . , fn)

 (y) =

 (f −1 (y))

 . 

 ∂(y 1 , y 2 , . . . , yn)

 ∂(x 1 , x 2 , . . . , xn)

(11.45)

 Proof  Let us show that there is a ball  I 1 around  x 0 on which  f  is one-to-one (hence invertible). If not, in fact, for any  k ∈ N there exist  x  , x ∈  B

=  x

 k

 k

1 / k (x 0 ),  with  x k

 k

and  f (x  ) =  f (x ).  By the mean value theorem applied to the components of  f,  for k

 k

4

5

any  i = 1 ,  2 , . . . , n  there is a point  xi ∈  B

 Df

 ), x −  x = 0 . 



 k

1 / k(x 0 )  such that

 i (xik

 k

 k

4

5

Setting  v





 k =

 x −  x  / x −  x  ,  there is a subsequence  v  converging to some k

 k

 k

 k

 kr

vector  v 0 with | v 0| = 1 .  As  xi →  x

 k

0  ,  in the limit  (Dfi (x 0 ), v 0 ) = 0 for any

 r

 i = 1 ,  2 , . . . , n.  But this is absurd, since  Df (x 0 )  is an  n ×  n  matrix with non-zero determinant. 

Now let us prove that, for a suitable open neighbourhood  I  of  x 0  ,  the image  f (I ) is open and on that set  f −1 is of class  C 1 (here we shall use the implicit function theorem). For  x ∈  A  and  y ∈ R n  set

 F (x, y) =  f (x) −  y , 

and also  y 0 =  f (x 0 ).  Since, by (11.44), 





 ∂(F 1 , F 2 , . . . , Fn)

 ∂(f 1 , f 2 , . . . , fn)

det

 (x 0 , y 0 ) = det

 (x 0 ) = 0  , 

 ∂(x 1 , x 2 , . . . , xn)

 ∂(x 1 , x 2 , . . . , xn)
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the assumptions (11.33) of the implicit function theorem for systems hold, provided we interchange  x  and  y.  Therefore there exist two open neighbourhoods  J  of  y 0 and I 2 of  x 0, and a unique function  g(y),  with  g :  J →  I 2 of class  C 1 ,  such that F (g(y), y) =  f (g(y)) −  y = 0  , 

∀  y ∈  J. 

We may assume  I 2 ⊆  I 1  ,  by possibly replacing  I 2 with  I 1 ∩  I 2 and  J  with  g−1 (I 1 ∩

 I 2 ). Since  f  is injective (so invertible) on  I 1  , g  is the inverse of  f  restricted to I =  g(J ) =  f −1 (J ).  The set  I  is open due to the continuity of  f.  There remains to prove formula (11.45). From (11.34) and the definition of  F  we have

 ∂(g 1 , g 2 , . . . , gn) (y) =

 ∂(y 1 , y 2 , . . . , yn)



−

(11.46)

1

= −  ∂(f 1 , f 2 , . . . , fn) (g(y))

◦  ∂(F 1 , F 2 , . . . , Fn) (g(y), y) . 

 ∂(x 1 , x 2 , . . . , xn)

 ∂(y 1 , y 2 , . . . , yn)

Since



 ∂Fi = 0

if

 i =  j

 ∂yj

−1 if  i =  j , 

it follows that

⎛

⎞

1

0  . . .  0

 ∂(F

⎜

⎟

1 , F 2 , . . . , Fn) = − ⎜ 0 1  . . .  0 ⎟

 ∂(y

⎝

⎠  . 

(11.47)

1 , y 2 , . . . , yn)

 . . . . . . . . . . . . 

0

0  . . .  1

Finally, claim (11.45) follows from (11.46) and (11.47). 

Observe that under the above hypotheses we can only say that there exists a

neighbourhood  J  of  y 0 =  f (x 0 ),  every point of which is the image of a unique point of  A  that belongs to a suitable neighbourhood  I  of  x 0 .  This does not exclude the possibility that  y 0 and other points of  J  are themselves images of points of  A not in  I. 

 Example 1  Let  A ⊂ R2 be the open annulus bounded by the circles centred at the origin with radii 1 and 3:

 A = { (x, y) ∈ R2 : 1  < x 2 +  y 2  <  9}  , (continued)
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 Example 1 (continued)

and consider  f :  (x, y) ∈  A →  (u, v) ∈ R2 defined by





 f (x, y) =  (u(x, y), v(x, y)) =  x 2 −  y 2 ,  2 xy . 

The Jacobian of  f









2 x

−2 y

 Jf = 

=





4  (x 2 +  y 2 )

2 y

2 x

is non-zero for every  (x, y) ∈  A.  By the local invertibility theorem  f  is locally invertible on  A.  Yet it is not invertible globally on  A, because

 f ( 2 ,  0 ) =  f (−2 ,  0 ) =  ( 4 ,  0 ) for instance. 

A natural problem emerges, namely that of assigning conditions on the function  f

for it to be globally invertible on a domain  D ⊆ R n.  One first result in this direction is contained in the following proposition. 

Proposition 1  Let D be a domain in  R n and f :  D → R n a C 1  function on the

◦

 interior D of D. Suppose

◦

 Jf (x) = 0  , 

∀  x ∈  D. 

 Then f maps the interior of D into the interior of T =  f (D). 

 Proof  Let  x 0 be an interior point of  D  and  y 0 =  f (x 0 ).  By the local invertibility theorem there exist an open neighbourhood  I  of  x 0 in  D  and an open neighbourhood J  of  y 0 such that  f  induces a 1–1 correspondence between  I  and  J.  But  J  is an open subset of  T =  f (D),  so it must be contained in the interior of  T .  This proves the claim. Note that whilst an interior point of  D  cannot be mapped to a boundary point of  T =  f (D),  it may happen that a boundary point of  D  is transformed into an interior point of  T . 

For example, consider the function





 f (x, y) =  (u(x, y), v(x, y)) =  x 2 −  y 2 ,  2 xy . 

(continued)
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defined on the semi-disc

 D = { (x, y) ∈ R2 :  x 2 +  y 2 ≤ 1 , y ≥ 0}  , introduced in the previous example. Here





 T =  f (D) =  (u, v) ∈ R2 :  u 2 +  v 2 ≤ 1  . 

In particular, the points of  D  with first coordinate  x ∈  (−1 ,  1 )  and second coordinate  y = 0, which belong to the boundary  ∂D, are mapped to points with first coordinate  u ∈ [0 ,  1 )  and second coordinate  v = 0 ,  which are internal to the domain  T . 

Vice versa, in agreement with Proposition 1, the points  (u, v)  on the boundary of  T , those satisfying  u 2 +  v 2 = 1 ,  are images of points  (x, y) ∈  D  such that  x 2 +  y 2 = 1 ,  which lie on  ∂D. 

Suppose that  f  is of class  C 1 (D)  and satisfies

◦

 Jf (x) = 0  , 

∀  x ∈  D. 

(11.48)

If  f  is invertible on  D  with  C 1 inverse on  T =  f (D),  the inverse  f −1 :  T →  D, too, has non-zero Jacobian determinant on the interior of  T ,  and it maps the interior of  T  into the interior of  D. 

For  f :  D →  T  to be globally invertible, therefore,  it is necessary that f maps boundary points of D to boundary points of T =  f (D).  This condition is, in some sense, also sufficient, which will become clear after the following remarkable

theorem, where we shall suppose the domain  D  is bounded and connected. 

Global Invertibility Theorem  Let f :  A → R n be a C 1  function on the open set A ⊆ R n, and assume D ⊂  A is a connected bounded domain such that

 Jf (x) = 0  , 

∀  x ∈  D. 

(11.49)

 If f induces a 1–1 correspondence between the boundary of D and the boundary of

 the image T =  f (D), then T is a connected bounded domain, and f is (globally) invertible over D. 

To prove this fact we shall first discuss a proposition about  C 1 maps

 f =  (f 1 , f 2 , . . . , fn) :  D ⊆ R n → R n defined on bounded domains  D  and satisfying (11.48). 
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Proposition 2  If D is a bounded domain of  R n and f is a C 1  function satisfying (11.48) , then also T =  f (D) is a bounded domain. 

 Proof  The generalised Weierstrass theorem (see Sect. 2.12) implies that  T =  f (D) is a closed and bounded subset in R n. To show it is a domain we start by considering y ∈  ∂T  and  x ∈  D  such that  y =  f (x).  Since every neighbourhood of  x  contains interior points of  D, by Proposition 1 in any neighbourhood of  y  there will be interior points of  T . 

 Proof of the Global Invertibility Theorem  Setting

 Y = { y ∈  T =  f (D) : ∃  x 1 , x 2 , x 1 =  x 2 :  f (x 1 ) =  f (x 2 ) =  y}  , we claim that

 Y ⊆  ∂T , 

(11.50)

i.e. the set of images  y ∈  T  of distinct points is contained in the boundary of  T . 

From that, since  f  induces a 1–1 correspondence between  ∂D  and  ∂T , it follows that  Y = ∅ ,  so  f  is invertible on  D. 

We begin by showing that  Y  is closed. Let  y 0 be a limit point of  Y , so  y 0 is also a limit point for  T ⊇  Y.  As  T  is a domain, hence a closed set,  y 0 ∈  T .  Then there exists  x 0 ∈  D  such that  y 0 =  f (x 0 ).  By assumption (11.49)  f  is invertible on a neighbourhood of  x 0 (even if this point is on the boundary  ∂D), so there are open neighbourhoods  I 0 of  x 0 and  J 0 of  y 0 such that

∀  y ∈  J 0  , 

∃ !  x ∈  I 0 :  y =  f (x) . 

Since  y 0 is a limit point of  Y, J 0 contains a sequence  yk  with limit  y 0 such that every yk  is image of at least two points of  D, so image of at least one point of  D −  I 0  . 

For any  k ∈ N ,  take  xk ∈  D −  I 0 such that  f (xk) =  yk .  As  D −  I 0 is compact, there is a subsequence  xk  that converges to some  x ∈  D −  I r

0  .  By the continuity of

 f,  therefore,  f (xk ) →  f (x) =  y

 r

0 as  r → +∞, and so  y 0 ∈  Y.  This shows that  Y

is closed. 

Let us prove that there are no boundary points of  Y  internal to  T ,  i.e. 

◦

◦

 Y ∩  T ⊆  Y . 

(11.51)

◦

Let  y 1 ∈  Y ∩  T , so there exist  x 1  , x 2 ∈  D, x 1 =  x 2 such that  y 1 =  f (x 1 ) =

◦

 f (x 2 ).  By hypothesis  f  defines a bijection between  ∂D  and  ∂T , so  y 1 ∈  T  implies

◦

 x 1  , x 2 ∈  D. 

[image: Image 3308]

[image: Image 3309]

[image: Image 3310]

[image: Image 3311]

11.3 Local and Global Invertibility

595

As  f  is locally invertible, there are three balls  I 1 , I 2 , J,  around  x 1 , x 2 , y 1

respectively, such that

∀  y ∈  J , 

∃ !  x ∈  I 1  , 

∃ !  x ∈  I 2 :

 y =  f (x ) =  f (x ) . 

We may assume that the radii of  I 1 and  I 2 are so small that  I 1 and  I 2 are contained in  D  and disjoint. Then every point in the neighbourhood  J  of  y 1 is the image of at

◦

least two points of  D,  i.e.  y 1 ∈  Y . 

◦

Let us prove  T  is connected, making  T  a connected domain. Suppose by

◦

contradiction that  T  is not connected. Then there exist non-empty disjoint open

◦

sets  A 1  , B 1 such that  A 1 ∪  B 1 =  T . Define

◦

◦

 A 2 =  f −1 (A 1 ) ∩  D , 

 B 2 =  f −1 (B 1 ) ∩  D , 

which are both open because  f  is continuous (see the Characterization of continuity

◦

in Sect. 2.12). If one of them were empty, say  A 2, the points of  A 1 ⊆  T  would not

◦

be image of anything in  D, so they would have to arise from boundary points of  D. 

This would violate the 1-1-correspondence between  ∂D  and  ∂T . Moreover  A 2 , B 2

◦

are disjoint sets whose union is  D, against the hypothesis that  D  is a connected

◦

domain, i.e.  D  is connected and open. 

To prove (11.50), we suppose that, by contradiction, there exists  y ∈  Y  internal to  T . In this case

◦

 T ⊂  Y . 

(11.52)

◦

In fact, if an interior point  y 1 of  T  did not belong to  Y,  since  T  is connected the

◦

points  y  and  y 1 could be joined by a polygonal path  P  contained in  T (see the Theorem on connected open subsets of R n  in Sect. 2.11). In addition, 

◦

 ∂Y ∩  T ⊇  ∂Y ∩  P = ∅  , 

◦

◦

in contrast with (11.51),  Y ∩  T ⊆  Y . Hence (11.52) is proved. 

Recall that we are arguing by contradiction and supposing the existence of  y ∈  Y

interior to  T .  As  Y  is closed, from (11.52) all boundary points of  T (which are limits of interior points since, by Proposition 2,  T  is a domain) would have to belong to  Y, i.e. 

 ∂T ⊂  Y . 
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But this is absurd, because every boundary point of  T  is image of only one point of D.  Therefore there is no  y ∈  Y  that is interior to  T ,  i.e. (11.50) holds,  Y ⊆  ∂T . 

11.4

Constrained Maxima and Minima. Lagrange Multipliers

Let  f (x, y)  and  F (x, y)  be functions admitting continuous partial derivatives on an open set  A  of R2 ,  with









 ∂F

2

 ∂F

2

 (x, y)

+

 (x, y)

 >  0  , 

∀  (x, y) ∈  A ⊆ R2 . 

 ∂x

 ∂y

Supposing that the zero set of  F

 Z = { (x, y) ∈  A :  F (x, y) = 0}

(11.53)

is non-empty, we wish to describe a method for finding the possible maxima and

minima of  f  belonging in the set  Z. 

This is an instance of a  constrained problem, because the variables of  f  are not independent, but rather related by the condition  F (x, y) = 0 ,  which is also known as a  constraint. 

One first example is when  Z  is the support of a regular simple curve  γ : [ a, b] →

 A,  of parametric equations

 x =  x(t)

 t ∈ [ a, b] . 

(11.54)

 y =  y(t) , 

The problem of finding the possible extremum points of  f  in  Z  is reduced to the determination of the extrema of the one-variable function

 H (t) =  f (x(t), y(t)) , 

 t ∈ [ a, b] . 

Suppose  t 0 ∈  (a, b)  is a local maximum (or minimum) point for  H (t).  Then H  (t 0 ) = 0, and setting  (x 0 , y 0 ) =  (x(t 0 ), y(t 0 ))  we will have fx (x 0 , y 0 ) x (t 0 ) +  fy(x 0 , y 0 ) y (t 0 ) = 0  . 

In the notations of Chaps. 3 and 6 the above relation can be written in terms of the inner product of the gradient vector  Df =  (fx, fy)  and  γ  =  (x , y ), 4

5

 Df (x 0 , y 0 ), γ  (t 0 ) = 0  . 
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Geometrically this relation implies that at a local maximum (or minimum) point

 (x 0 , y 0 ) =  (x(t 0 ), y(t 0 ))  of  f (x, y),  with  t 0 ∈  (a, b),  the gradient of  f  must be orthogonal to the curve  γ . 

 Example 1  Let us find the maximum for  x, y >  0 of the function

 f (x, y) =  xy , 

constrained by  x 2 +  y 2 = 1 . 

Define  F (x, y) =  x 2 +  y 2 − 1 ,  so the zero set of  F  is the unit circle, parametrised as x = cos  t

 t ∈ [0 ,  2 π] . 

 y = sin  t , 

The problem then reduces to finding the maximum of

 H (t ) = sin  t  cos  t = 1 sin 2  t , 

 t ∈ [0 ,  2 π] . 

2

It is immediate to see that  t =  π/ 4 and  t =  ( 5 π)/ 4 are absolute maximum points, and t =  ( 3 π)/ 4 , ( 7 π)/ 4 are the absolute minimum points. Hence the maximum of  f (x, y), 

√

√

constrained by the condition  F (x, y) = 0 ,  is attained for  (x, y) = ± (  2  / 2 ,  2  / 2 ). 

Figure 11.7 shows the unit circle and a few level curves of the function, i.e. the hyperbolas of equation  xy =  k.  Observe that the level curve passing through  P ≡

√

√

 (  2  / 2 , 

2  / 2 ), i.e. the hyperbola of equation  xy = 1 / 2 ,  is tangent to the unit circle at P . 

In agreement with what was observed above, the gradient of  f  and the gradient of  F, both normal to the unit circle and to the hyperbola at  P , are parallel vectors. 

Fig. 11.7

y

 √

 √

2

2

P = P

, 

2

2

xy = 12

P

1

x
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In general we should not expect that the set  Z,  defined by (11.53), will be the support of a simple curve like (11.54): in other words the constraint equation  F (x, y) = 0

will not be solvable, globally, with respect to one variable in terms of the other. This will happen, though, near a regular point of  Z (see Remark , Sect. 11.1). 

If  (x 0 , y 0 )  is a regular point of  Z  then

 Fx (x 0 , y 0 ) = 0  , 

or

 Fy (x 0 , y 0 ) = 0  , 

so equation  F (x, y) = 0 defines locally an implicit function  x =  g(y),  or an implicit function  y =  h(x),  with the condition  x 0 =  g(y 0 )  or, respectively, y 0 =  h(x 0 ).  In this way the points of  Z  contained in a suitable neighbourhood of (x 0 , y 0 )  form the graph of  g (on a neighbourhood of  y 0) or of  h (on a neighbourhood of  x 0), respectively. 

Suppose, to fix ideas, that  Fy (x 0 , y 0 ) = 0 ,  that the implicit function is  y =  h(x), and that  x 0 is a local extremum point of

 x →  f (x, h(x)) . 

Then at  x 0 the first derivative vanishes

 fx +  fy h = 0  . 

(11.55)

From (11.6) we obtain the expression of the derivative  h in terms of  F

 h = −  Fx , 

 Fy

and substituting in (11.55), 

 fx −  fy ·  Fx = 0  . 

 Fy

If at  x 0 we also have  fy = 0 ,  then at  x 0 we can define λ 0 =  Fx =  fx . 

 Fy

 fy

Overall, we can write the following system in  x 0  , y 0  , λ 0  , 

⎧

⎪

⎪

⎨ fx −  λ 0  Fx = 0

⎪ f

(11.56)

⎪  y −  λ 0  Fy = 0

⎩ F = 0  . 

In other terms, the extremum points of  f (x, y),  under the constraint  F (x, y) = 0 , are  critical points (i.e. points at which the gradient vanishes; see Sect. 3.13), of the function of three variables  x, y, λ

 H (x, y, λ) =  f (x, y) −  λ F (x, y) . 
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The variable  λ  is called  Lagrange multiplier, and the  Lagrange method  is the procedure just described, consisting in solving system (11.56) to find the possible extrema of  f (x, y)  constrained by  F (x, y) = 0 . 

 Example 2  Consider the quadratic form in two real variables

 f (x, y) =  ax 2 + 2 bxy +  cy 2  , 

and let us determine the minimum and maximum of  f  constrained by

 F (x, y) =  x 2 +  y 2 − 1 = 0  . 

(11.57)

We have already discussed this problem in Sect. 3.13, Chap. 3. Now we address it (with slightly different notations) in order to apply Lagrange’s method. 

Write the system of equations

⎧

⎪

4

5

⎨  ∂

 ∂

 f (x, y) −  λ

 x 2 +  y 2 − 1 = 0

 ∂x

 ∂x

⎪

4

5

 , 

⎩  ∂

 ∂

 f (x, y) −  λ

 x 2 +  y 2 − 1 = 0

 ∂y

 ∂y

which reduces to

 (a − λ)x + by = 0  . 

(11.58)

 b x +  (c −  λ) y = 0

For  x, y  to satisfy (11.58) and (11.57) – the latter implying that  x, y  cannot vanish simultaneously – the homogeneous system (11.58) must have determinant zero, i.e.  λ  must solve









 a −  λ

 b  =





 λ 2 −  (a +  c) λ +  ac −  b 2 = 0  . 

(11.59)

 b

 c −  λ

If  λ  is a root of the above polynomial, multiplying the first equation in (11.58) by  x,  the second equation by  y  and adding, we obtain

 ax 2 + 2 bxy +  cy 2 =  λ (x 2 +  y 2 ) =  λ . 

We conclude that the minimum and maximum of  f  will be the smallest and respectively largest solution to (11.59). As the equation is quadratic in  λ,  it can be solved explicitly because   =  (a −  c) 2 + 4 b 2 ≥ 0 .  Letting  λ 1 ≤  λ 2 denote the roots of (11.59), for any (x, y) ∈ R2 such that  x 2 +  y 2 = 1 we have

 λ 1 ≤  ax 2 + 2 bxy +  cy 2 ≤  λ 2  . 

(11.60)

There will be equality above for particular choices of  (x, y)  on the unit circle. 

(continued)
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 Example 2 (continued)

Finally, if  (x, y)  is an arbitrary point of R2 other than the origin, we can apply inequalities (11.60) to  (x/ x 2 +  y 2  , y/ x 2 +  y 2  )  to obtain λ 1  (x 2 +  y 2 ) ≤  ax 2 + 2 bxy +  cy 2 ≤  λ 2  (x 2 +  y 2 ) , 

∀  (x, y) ∈ R2 . 

Lagrange’s method can be applied to more general situations. Given  n, h ∈ N ,  take f  together with functions  F 1  , F 2  , . . . , Fh  in  n +  h  variables (x 1 , x 2 , . . . , xn, y 1 , y 2 , . . . , yh) =  (x, y) ∈ R n × R h defined and  C 1 on the open set  A  of R n+ h. Let  Z 0 be the set of points  (x, y) ∈  A satisfying

⎧

⎪

⎪

⎪ F

⎪ 1 (x 1 , x 2 , . . . , xn, y 1 , y 2 , . . . , yh) = 0

⎨ F 2 (x 1 ,x 2 ,...,xn,y 1 ,y 2 ,...,yh) = 0

⎪

(11.61)

⎪

⎪

⎪ . . . . . . . . . . . . . . . . . . . . . . . . 

⎩ Fh(x 1 ,x 2 ,...,xn,y 1 ,y 2 ,...,yh) = 0 , 

and such that the Jacobian matrix of the  Fi , i = 1 ,  2  . . . , h, 

 ∂(F 1 , F 2 , . . . , Fh)

 (x, y)

(11.62)

 ∂(x 1 , x 2 , . . . , xn, y 1 , y 2 , . . . , yh)

has rank  h. 

We say that  f  has a  constrained local maximum (with constraint given by (11.61)) at  (x 0 , y 0 )  in  Z 0 if there exists a neighbourhood  I 0 of the point such that f (x, y) ≤  f (x 0 , y 0 )

(11.63)

for any  (x, y) ∈  Z 0 ∩  I 0.  Constrained local minima  are defined similarly. 

Under the above hypotheses the following result holds. 

Theorem (Lagrange Multipliers)  Suppose (x 0 , y 0 ) ∈  Z 0  is a constrained local maximum (or minimum) point of f, with constraint given by system (11.61) , and assume that the Jacobian matrix of the Fi , i = 1 ,  2  . . . , h, in (11.62)  has rank h. 

 Then there exist h constants λ 1  , λ 2  , . . . , λh such that the function f (x, y) −  λ 1  F 1 (x, y) −  λ 2  F 2 (x, y) −  . . . −  λh Fh(x, y) has zero derivatives at (x 0 , y 0 ). 
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The proof, seen at the beginning of the chapter in the two-dimensional case, is

based on concepts and results that will be discussed in the following chapter. 

 Proof  Suppose  (x 0 , y 0 )  is a local maximum point constrained by (11.61), and  I 0 ⊆

 A  is a neighbourhood of the point on which (11.63) holds. By the assumption made on  Z 0  ,  in particular since the Jacobian matrix of the  Fi , i = 1 ,  2  . . . , h,  in (11.62) has rank  h, Z 0 ∩  I 0 is an  n-dimensional manifold. 

Let  T  be a tangent vector to this manifold at  (x 0 , y 0 ).  Then there exists a regular curve  γ (t) : [− δ, δ] →  Z 0 ∩  I 0 such that

 γ ( 0 ) =  (x 0 , y 0 ) , 

 γ  ( 0 ) =  T ∈ R n+ h . 

Since the composite function  f (γ (t))  has a local maximum at  t = 0 ,  by the chain rule

 d f (γ (t))| =  (Df (x 0 ,y 0 ),T ) = 0  . 

 dt

 t =0

Hence the gradient of  f  at  (x 0 , y 0 )  is normal to the manifold  Z 0 ∩ I 0 at the point. But the vectors  DF 1 (x 0 , y 0 ), DF 2 (x 0 , y 0 ), . . . , DFh(x 0 , y 0 )  form a basis of the normal vector space of  Z 0 ∩  I 0 at  (x 0 , y 0 ) (see the corollary in Sect. 12.2), so Df (x 0 , y 0 ) =  λ 1  DF 1 (x 0 , y 0 ) +  λ 2  DF 2 (x 0 , y 0 ) +  . . . +  λh DFh(x 0 , y 0 ) for suitable constants  λ 1  , λ 2  , . . . , λh. The claim then follows. 

 Example 3  Fix  n ≥ 2 and  p >  0 .  We shall determine the minimum of the function  f defined, for  xi >  0 , i = 1 ,  2 , . . . , n,  by

 f (x 1 , x 2 , . . . , xn) =  x 1 +  x 2 +  . . . +  xn , under the constraint that the variables’ product is constant:

 x 1 ·  x 2 ·  . . . ·  xn =  p . 

(11.64)

Define  F (x 1 , x 2 , . . . , xn) =  x 1 ·  x 2 ·  . . . ·  xn −  p,  so we have a minimum problem for  f on the set  A = { (x 1 , x 2 , . . . , xn) ∈ R n :  xi >  0 , i = 1 ,  2 , . . . , n}, with the only constraint F (x 1 , x 2 , . . . , xn) = 0  .  Using Lagrange’s method, we first write the  n  equations

 ∂

 ∂

 (x 1 +  x 2 +  . . . +  xn) −  λ

 (x 1 ·  x 2 ·  . . . ·  xn −  p) = 0  , 

 ∂xi

 ∂xi

(continued)
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 Example 3 (continued)

for  i = 1 ,  2 , . . . , n. These form a system of  n  equations in  n + 1 unknowns (one unknown is the multiplier  λ)

⎧

⎪

⎪

⎪ x

⎪ 2 ·  x 3 ·  . . . ·  xn = 1 /λ

⎨ x 1 ·  x 3 ·  ... ·  xn = 1 /λ

⎪

⎪

⎪

⎪ . . . . . . . . . . . . . . . 

⎩ x 1 ·  x 2 ·  ... ·  xn−1 = 1 /λ, 

giving ∞1 solutions

 x 1 =  x 2 =  . . . =  xn . 

(11.65)

From (11.64), (11.65) then, 

√

 x 1 =  x 2 =  . . . =  xn =  n p , 

(11.66)

√

so the minimum of  f , of which we shall prove the existence, will be  n ·  n p. 

We claim that the minimum point of  f  belongs to the set

 A 0 = { (x 1 , x 2 , . . . , xn) ∈ R n :  x 1 ·  x 2 ·  . . . ·  xn =  p, xi >  0 , ∀  i = 1 ,  2 , . . . , n}  . 

In fact, (11.66) implies

√ √

√

√

inf  f (A 0 ) ≤  f ( n p, n p, . . . , n p) =  n ·  n p . 

(11.67)

As  f =  x 1 +  x 2 +  . . . +  xn  is a sum of positive terms, to compute the greatest lower bound

√

it suffices, by (11.67), to assume that every summand  xi  is less than or equal to  n ·  n p .  Set

√

 K 0 = { (x 1 , x 2 , . . . , xn) ∈  A 0 : 0  < xi ≤  n ·  n p} ,  so that inf  f (A 0 ) = inf  f (K 0 ).  As  K 0

is compact (due to the constraint defining  A 0 ; the reader should prove this), there must be a minimum. 

Having shown in (11.66) that  f  has a unique constrained critical point, the latter is necessarily the minimum point. Hence

√ √

√

 f (x 1 , x 2 , . . . , xn) ≥ min  f =  f ( n p, n p, . . . , n p) =

√

√

=  n ·  n p =  n ·  n x 1 ·  x 2 ·  . . . ·  xn , whenever  x 1 ·  x 2 ·  . . . ·  xn =  p.  More explicitly, 

√

 n ·  n x 1 ·  x 2 ·  . . . ·  xn ≤  x 1 +  x 2 +  . . . +  xn . 

(11.68)

Since either side in the above relationship is homogeneous (of degree 1), inequality (11.68)

holds for any  (x 1 , x 2 , . . . , xn) ∈ R n,  where  xi >  0 , i = 1 ,  2 , . . . , n.  To see this just multiply  x =  (x 1 , x 2 , . . . , xn) ∈ R n  by a factor  k >  0 so that  kx  respects the constraint (11.64), then insert  kx  in (11.68) and, using the homogeneity, divide both sides by  k.  Observe, further, that if some components  xi , i ∈ {1 ,  2 , . . . , n} ,  are zero, then (11.68)

is trivial. 

(continued)

[image: Image 3362]

[image: Image 3363]

[image: Image 3364]

[image: Image 3365]

[image: Image 3366]

[image: Image 3367]

11.4 Constrained Maxima and Minima. Lagrange Multipliers

603

 Example 3 (continued)

Finally, note that there will be equality in (11.68) if and only if the coordinates x 1 , x 2 , . . . , xn  are all equal. We may recast (11.68) in the more telling form

√ nx 1 ·  x 2 ·  ... ·  xn ≤  x 1 +  x 2 +  ... +  xn , xi ≥ 0 ∀  i = 1 ,  2 , . . . , n, (11.69)

 n

where the left-hand side is the  geometric mean  of the given  n  positive numbers (or, in general, non-negative numbers), while the right-hand side is their  arithmetic mean. Hence, the geometric mean of n positive numbers never exceeds the arithmetic mean. 

 Example 4  As in the previous example, one can more generally prove that given  n  positive numbers  a 1 , a 2 , . . . , an,  the function

 n



 f (x 1 , x 2 , . . . , xn) =

 ai xi , 

 i=1

defined for  xi >  0 , i = 1 ,  2 , . . . , n,  reaches its minimum under the constraint xa 1 ·  xa 2 ·  . . . ·  xan =  p , 

1

2

 n

(where  p >  0 is a given real number) when

1

 x

 a

1 =  x 2 =  . . . =  xn =  p  1+ a 2+ ... + an . 

 n



When, in particular, 

 ai = 1 ,  then

 i=1

 f (x 1 , x 2 , . . . , xn) ≥ min  f =  f (p, p, . . . , p) n



=

 ai p =  p =  xa 1 ·  xa 2 ·  . . . ·  xan

1

2

 n , 

 i=1

whenever  xa 1 ·  xa 2 ·  . . . ·  xan

1

2

 n

=  p.  Said more explicitly, 

 xa 1 ·  xa 2 ·  . . . ·  xan ≤  a

1

2

 n

1  x 1 +  a 2  x 2 +  . . . +  an xn . 

(11.70)

 n



Here both sides are homogeneous (of degree 1), so under the hypothesis that

 ai = 1 , 

 i=1

inequality (11.70) holds for any  (x 1 , x 2 , . . . , xn) ∈ R n,  when  xi >  0 , i = 1 ,  2 , . . . , n. 

Again, there is equality in (11.70) if (and only if)  x 1 , x 2 , . . . , xn  are all equal. 

(continued)
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 Example 4 (continued)

If we take

 a 1 =  a 2 =  . . . =  an = 1  , 

 n

then (11.70) recovers the geometric-arithmetic mean inequality (11.69). 

 Example 5  As before, suppose  n ≥ 2 and consider the  n ×  n  matrix

⎛

⎞

 x

⎜ 11  x 12  . . . x 1 n

⎜

⎟

 x

⎟

 A(x) = ⎜ 21  x 22  . . . x 2 n⎟

⎝ . . . . . . . . . . . . ⎠  . 

 xn 1  xn 2  . . . xnn

It is a function of the  n 2 variables  xij , i, j = 1 ,  2 , . . . , n.  Let us find the maximum and minimum of the determinant of  A(x) (as usual denoted by the symbol det  A(x)),  over the closed and bounded subset of R n 2 given by the system of equations

⎧

⎪

⎪

⎪ x 2 +  x 2 +  . . . +  x 2 =  b 2

⎨ 11

12

1 n

1

 x 2 +  x 2 +  . . . +  x 2 =  b 2

⎪ 21

22

2 n

2

(11.71)

⎪

⎪

⎩ . . . . . . . . . . . . . . . . . . . . . . . . 

 x 2 +  x 2 +  . . . +  x 2 =  b 2

 n 1

 n 2

 nn

 n , 

where  bi , i = 1 ,  2 , . . . , n,  are  n  given positive numbers. Applying the Lagrange method we write the  n 2 equations

 ∂( det  A(x)) =

 ∂

 λ 1

 (x 2 +  x 2 +  . . . +  x 2 −  b 2

 ∂x

11

12

1 n

1  )+

 ij

 ∂xij

+

 ∂

 λ 2

 (x 2 +  x 2 +  . . . +  x 2 −  b 2

 ∂x

21

22

2 n

2  ) +  . . . +

 ij

+

 ∂

 λn

 (x 2 +  x 2 +  . . . +  x 2 −  b 2

 ∂x

 n 1

 n 2

 nn

 n ) , 

 ij

for  i, j = 1 ,  2 , . . . , n.  The derivative on the left is the cofactor  Aij  of  xij  in  A,  whereas the derivatives on the right are all zero except for the  ij  th one, which is 2 xij . Hence we reduce to

 Aij = 2 λi xij , 

∀  i, j = 1 ,  2 , . . . , n. 

(11.72)

Recalling that the sum of the products of the elements on one row by the cofactors of a different row is always zero, from (11.72) we infer

(continued)
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 Example 5 (continued)

 n



 n



0 =

 Aij xhj = 2 λi

 xij xhj , 

∀  i =  h . 

(11.73)

 j =1

 j =1

We claim that at an extremum point the Lagrange multipliers  λi  are all non-zero. In fact if for a maximum point we had  λi = 0 ,  then (11.72) would force  Aij = 0 for any  j =

1 ,  2 , . . . , n,  hence det  A(x) = 0 .  This cannot be because the maximum of  x → det  A(x), constrained by (11.71), is positive (for instance, if  xij =  bi δij ,  then det  A(x) =  b 1 ·  b 2 ·

 . . . ·  bn >  0 ).  Eventually, from (11.73) we have n

 xij xhj = 0 , ∀ i =  h

(11.74)

 j =1

at an extremum point. Now consider the matrix  C =  A ·  AT , with elements  (cij ). 

From (11.74) we deduce that at an extremum



 n



0

if  i =  h

 cih =

 xij xhj =   n

 x 2 =  b 2

if  i =  h

 j =1

 j =1

 ij

 i

and so

 ( det  A(x))  2 = det  C =  b 2 ·

·

1

 b 22  . . . ·  b 2 n . 

Therefore the maximum and minimum of det  A(x)  are ± b 1 ·  b 2 ·  . . . ·  bn . 

So now

|det  A(x)| ≤  b 1 ·  b 2 ·  . . . ·  bn , 

and using the geometric-arithmetic mean inequality (11.69), we obtain n

|det  A(x)|2 ≤  b 2 ·

·

≤ 1

+

+

1

 b 22  . . . ·  b 2 n

 b 2

 b 2

 . . . +  b 2

 . 

(11.75)

 nn

1

2

 n

By definition of matrix norm, then, 

 n





 n



 b 2 +

+

=

+

+

=

= |

1

 b 22

 . . . +  b 2 n

 x 2

 x 2

 . . . +  x 2

 x 2

 A(x)|2

 i 1

 i 2

 in

 ij

 i=1

 i,j =1

and finally (11.75) gives

|det  A(x)| ≤  n− n/ 2 | A(x)| n , 

(11.76)

known as  Hadamard’s inequality. The reader should prove (11.76) in two dimensions ( i, j = 1 ,  2) using the elementary inequality  ab ≤  (a 2 +  b 2 )/ 2 . 
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Appendix to Chap. 11

11.5

Singular Points of a Plane Curve

Let  F :  A ⊆ R2 → R be a  C 1 function on the open set  A ⊂ R2 .  Call    the set of points  (x, y) ∈ R2 defined by

 F (x, y) = 0  . 

(11.77)

Assuming that the partial derivatives  Fx , Fy  do not vanish simultaneously at any point of  ,  by the implicit function theorem the intersection between    and a suitable neighbourhood of any of its points  (x 0 , y 0 )  is the graph of a  C 1 function in one of the variables  x, y. Therefore    is  locally a regular curve, of which Eq. (11.77) is an implicit representation. 

We have already shown that the straight line of equation

 Fx (x 0 , y 0 ) (x −  x 0 ) +  Fy(x 0 , y 0 ) (y −  y 0 ) = 0

(11.78)

is the tangent to    at  (x 0 , y 0 ).  Using the gradient vector  DF =  (Fx , Fy),  if  P ≡

 (x, y)  is a generic point on the tangent line distinct from  P 0 ≡  (x 0 , y 0 ),  we may write (11.78) in the vectorial form

 (DF (P 0 ), P −  P 0 ) = 0  , 

which shows that the gradient vector  DF (P 0 )  at  P 0 is orthogonal to the tangent line to    at  P 0 .  The line through  P 0 and parallel to  DF (P 0 ) =  (Fx(P 0 ) , Fy(P 0 ))  is the normal line  to    through  P 0  ,  and has equation

 Fy (x 0 , y 0 ) (x −  x 0 ) −  Fx(x 0 , y 0 ) (y −  y 0 ) = 0  . 

We denote by  s  the subset of    where both partial derivatives of  F  vanish. Let us suppose  s  is non-empty and that its interior is empty (for instance,  s  could be a finite number of points). Then    is still called a  curve with implicit equation (11.77), the points in   −  s  are said  regular, while those in  s  are  singular points. 

We further assume that on a neighbourhood of  P 0 ≡  (x 0 , y 0 ),  the function  F  has continuous first and second derivatives. One calls  P 0 ≡  (x 0 , y 0 )  a  double point  of  

if at  P 0 both  Fx , Fy  vanish but there is at least one non-zero second derivative. 

One says that  P 0 ≡  (x 0 , y 0 )  is an  isolated singular point  if  H (x 0 , y 0 ) >  0, where H  is the  Hessian (determinant)





 F



 H (x, y) =   xx Fxy





 F

=  Fxx Fyy −  F  2 xy , 

 xy

 Fyy
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In such a case  P 0 is a proper local extremum (maximum or minimum), and there is a neighbourhood of  P 0 where  F  is always positive or always negative. On this neighbourhood, therefore, there are no other points of  . 

 Example 1  Let  a  be a positive parameter and consider the function

 F (x, y) =  y 2 +  ax 2 −  x 3  . 

The origin belongs to the zero set    of  F,  because  F ( 0 ,  0 ) = 0 .  We have

 ∂F =

 ∂F

2 ax − 3 x 2  , 

= 2 y , 

 ∂x

 ∂y

so the origin is a singular point. The Hessian is

 H ( 0 ,  0 ) = 4 a >  0  , 

showing that  ( 0 ,  0 )  is an isolated singular point of  F.  As F (x, y) = 0

⇔  y 2 =  x 2  (x −  a) , 

(11.79)

we have  y 2 =  x 2  (x −  a) ≥ 0 when  x ≥  a  or  x = 0 .  Hence the points of    have first coordinate zero or not less than  a.  Figure 11.8 represents the set  . 

Fig. 11.8

y

a

x

If  H (x 0 , y 0 ) <  0 ,  the point  P 0 ≡  (x 0 , y 0 )  is neither a maximum nor a minimum for  F.  As  F (x 0 , y 0 ) = 0 ,  on any neighbourhood of  P 0 the function  F  is both positive and negative, and the associated quadratic form

F (x, y) =  Fxx(P 0 ) (x −  x 0 ) 2 + 2  Fxy(P 0 ) (x −  x 0 ) (y −  y 0 )+

+  Fyy(P 0 ) (y −  y 0 ) 2
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is indefinite. If  Fyy (P 0 ) = 0 ,  the equation

F (x, y) = 0

(11.80)

represents the two lines through  P 0 of equation

 y −  y 0 =  a (x −  x 0 ) , 

 y −  y 0 =  b (x −  x 0 ) , 

where  a, b  are the solutions of (11.80) regarded as a quadratic equation in the unknown  (y −  y 0 )/(x −  x 0 ). 

If  Fyy (P 0 ) = 0 ,  Eq. (11.80) represents the two lines x =  x 0  , 

 y −  y 0 = −  Fxx(P 0 ) (x −  x 0 ) . 

2  Fxy(P 0 )

In the case under exam, where  H (x 0 , y 0 ) <  0 , P 0 is called a  node, and the distinct tangent lines through it are called  nodal tangents. 

 Example 2  Consider

 F (x, y) =  y 2 +  ax 2 −  x 3

from Example 1, but now with  a <  0 .  By (11.79) we have F (x, y) = 0

⇔  y = ± f (x) , 

where



√

− x x −  a  if  a ≤  x ≤ 0

 f (x) =

√

 x

 x −  a

if  x ≥ 0  . 

Hence  H ( 0 ,  0 ) = 4 a <  0 .  The origin is singular, actually a node. To find the nodal tangents we consider Eq. (11.80) and set  m =  y/x, giving

 Fyy m 2 + 2  Fxy m +  Fxx = 0  . 

(11.81)

This reduces to  m 2 +  a = 0 , and since  a <  0 ,  there are two branches of    passing through the singular point, with distinct tangent lines:

√

√

 y =

− a x , 

 y = − − a x . 

(continued)

[image: Image 3393]

[image: Image 3394]

[image: Image 3395]

[image: Image 3396]

11.5 Singular Points of a Plane Curve

609

 Example 2 (continued)

   is the support of the curve in Fig. 11.9. 

Fig. 11.9

At last, if  H (x 0 , y 0 ) = 0 ,  then  F (x, y)  may have a proper local extremum at  P 0, in which case  P 0 would be an isolated singular point. Otherwise    has one tangent at P 0  ,  into which the two lines in (11.80) merge. One possibility is that    is a regular curve with a  cusp  at  P 0  . 

 Example 3  Let us study the singular points of the curve    of equation F (x, y) =  y 2 −  x 3 +  x 4 = 0  . 

The partial derivatives of  F  are

 Fx =  x 2  ( 4 x − 3 ) , 

 Fy = 2 y . 

They both vanish at  ( 0 ,  0 )  and  ( 3 / 4 ,  0 ),  but  F ( 3 / 4 ,  0 ) = 0 so the only singular point is the origin. The second partial derivatives are

 Fxx = 6 x ( 2 x − 1 ) , 

 Fxy = 0  , 

 Fyy = 2  , 

and

 H (x, y) = 12  x ( 2 x − 1 ) . 

At the origin  H ( 0 ,  0 ) = 0 ,  so we have a cusp with tangent given by (11.81), i.e. 2  m 2 = 0 . 

Hence the  x-axis is tangent to the curve at the origin. 

(continued)
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 Example 3 (continued)

√

The curve’s intersections with a generic line  x =  a  occur for  y = ± a a ( 1 −  a)  and are real when 0 ≤  a ≤ 1 .  Hence the curve with support  ,  represented in Fig. 11.10, has first coordinates in [0 ,  1] . 

Fig. 11.10
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In this chapter we shall study  k-dimensional submanifolds of  R n  and  differential k-forms. These topics are not usually covered by a standard  Mathematical Analysis II  course, but are discussed in advanced  Geometry  lectures, with different language and symbols. 

Nevertheless many results, regarding the integration over curves and surfaces

in R n  especially, are used in higher-level  Analysis  lectures. Examples include the divergence theorem  and the formula for  integrating by parts  functions in  n  variables, proved in Sect. 12.4,  Stokes’s formula  of Sect. 12.8, or the properties of  closed  and exact differential forms  on R n  of Sect. 12.9. 

Broadly speaking, students should use this chapter essentially as reference, to

look up certain concepts and results, or for future study. 

12.1

 k-Dimensional Manifolds in R n

Let  M  be a subset of R n, with  n ≥ 2 and  k ∈ N so that 1 ≤  k < n. We call  M

a  k-dimensional submanifold of  R n  when, for any  x 0 ∈  M, we can find an open neighbourhood  A  of  x 0 and a  C 1 map  F :  A ⊆ R n → R n− k  such that (i) the Jacobian matrix  DF (x)  ha maximal rank for any  x ∈  A; (ii)  M ∩  A = { x ∈  A :  F (x) = 0}. 

We shall often shorten the name to  k-manifold. 

Since the Jacobian matrix  DF (x)  has  n −  k  rows and  n  columns, condition (i) is equivalent to requiring that the rank is  n −  k. Moreover, if  DF (x 0 )  has rank  n −  k  at x 0 ∈  M, by the continuity of the first derivatives  DF (x)  has rank  n −  k  also near  x 0. 

In the end (i) is the same as saying that the Jacobian matrix  DF (x)  has rank  n −  k  at x 0. With (ii) we demand that on a suitable open neighbourhood  A  of  x 0 the function F :  A → R n− k  vanishes only on the manifold  M. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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If, for any  x 0 ∈  M, we can find  F  of class  Cr , with  r = 2 ,  3 , . . . , ∞, one says that  the manifold M is of class Cr . 

The reader should be aware that the notions of  regular surface  in R3, according to the definition of Chap. 10, and  two-dimensional submanifold  of R3 are different (see also the remark at the end of the section). 

 Example 1  Consider an example with  n = 2 and  k = 1. Referring to Fig. 12.1, set M = { (x, y) ∈ R2 :  x 2 −  y 2 = 1} ∪ { (x, y) ∈ R2 :  y =  x} . 

 M  is a one-dimensional manifold, because it consists of the straight line  r  of equation y =  x, and the hyperbola  γ  of equation  x 2 −  y 2 = 1. Consider a point  (x 0  , y 0 ) ∈  M  on the line and a ball  A  around it that does not meet  γ . Setting  F (x, y) =  x −  y, conditions (i) and (ii) hold. But if we take  (x 0  , y 0 ) ∈  M  on the hyperbola  γ , and  A  is a ball around it that does not intersect  r, then (i) and (ii) are true for the function  F (x, y) =  x 2 −  y 2 − 1. 

Fig. 12.1

(x

)
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0

A

A

(x

)

0

0

 Example 2  Consider a case with  n = 3 and  k = 2. Referring to Fig. 12.2, define M = { (x, y, z) ∈ R3 : 2 x 2 +  y 2 + 8 z 2 − 8 xz = 4}  . 

Fig. 12.2

z

M

y

x

(continued)
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 Example 2 (continued)

 M  is a two-dimensional manifold, because for every point  (x 0 , y 0 , z 0 ) ∈  M  the function F (x, y, z) = 2 x 2 +  y 2 + 8 z 2 − 8 xz − 4 satisfies the requirements. In particular, for (x 0 , y 0 , z 0 ) ∈  M, 

 DF (x 0 , y 0 , z 0 ) =  ( 4 x 0 − 8 z 0  ,  2 y 0  ,  16 z 0 − 8 x 0 ) is a non-zero vector (3 × 1 matrix), so  DF (x, y, z)  does not vanish on a suitable open neighbourhood  A  of the point. 

 Example 3  Now take  n ≥ 2 generic in N and  k =  n − 1. Let Sn−1 = { x ∈ R n : | x| = 1}

be the unit sphere in R n. For  x 0 ∈  Sn−1, the gradient of  F (x) = | x|2 − 1 is  DF (x) = 2 x, which is non-zero on an open neighbourhood  A  of  x 0 ∈  Sn−1. Therefore  Sn−1 is an  (n−1 )-

manifold. 

 Example 4  Let  A  be an open subset in R n  and  F :  A → R n− k  a map defined on  A. If F ∈  C 1 (A), the set

 M = { x ∈  A :  F (x) = 0 and

rank  DF (x) =  n −  k}  , 

where 1 ≤  k < n, is a  k-manifold. Given  x 0 ∈  M  in fact,  DF (x 0 )  has rank  n −  k by definition of  M. The derivatives’ continuity implies that  DF (x)  has rank  n −  k  on a neighbourhood of  x 0. There, conditions (i), (ii) hold. 

In the special case where  F :  A ⊆ R n → R, so  k =  n − 1 and M = { x ∈  A :  F (x) = 0  , 

 DF (x) = 0}  , 

 M  is an  (n − 1 )-submanifold of R n, as in Examples 2 and 3. 

 Example 5  Choose  n = 3 , k = 1 and define

 M = { (x, y, z) ∈ R3 :  y 2 − 2 z = 0} ∩ { (x, y, z) ∈ R3 :  x 2 +  y 2 − 6 z = 1}  . 

We claim that  M  is a one-dimensional manifold. Based on the previous example it is enough to show that  M  consists of the zeroes of  F : R3 → R2, 

 F (x, y, z) =  (y 2 − 2 z, x 2 +  y 2 − 6 z − 1 ) , (continued)
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 Example 5 (continued)

and that the Jacobian matrix  DF  of  F  has rank 2 everywhere on  M. First, 0

2 y

−2

 DF (x, y, z) =

 , 

2 x

2 y

−6

and the minor









0 −2





2 x −6

is zero if and only if  x = 0, while the minor









2 y −2





2 y −6

vanishes if and only if  y = 0. As there is no point  (x 0 , y 0 , z 0 ) ∈  M  for which  x 0 =  y 0 =

0, at least one of the previous minors is non-zero and so rank  DF (x 0 , y 0 , z 0 ) = 2. The reader should also prove that the two sets intersecting in  M  are 2-dimensional manifolds (Fig. 12.3). 

Fig. 12.3

z
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x

 Example 6  Take  n = 4 , k = 2 and define

 M = { (x, y, z, w) ∈ R4 :  x 2 +  z 2 = 1  , y 2 +  w 2 = 1}  . 

(continued)
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 Example 6 (continued)

 M  is a two-dimensional manifold in R4. The map  F : R4 → R2

 F (x, y, z, w) =  (x 2 +  z 2 − 1 , y 2 +  w 2 − 1 ) has Jacobian matrix





2 x

0

2 z

0

 DF (x, y, z, w) =

 , 

0

2 y

0

2 w

whose rank is 2 at every point of  M. 

 Example 7  Let  f :  U → R n− k  be a  C 1 map defined on an open set  U  in R k. The  graph of f  is

2

3

 M =  x =  (x , x ) ∈ R n :  x ∈  U, x =  f (x ) , where  x =  (x 1 , x 2 , . . . , xk),  x =  (xk+1 , xk+2 , . . . , xn).  M  is a  k-manifold, since  M =

{ x ∈  U × R n− k :  F (x) = 0}, where  F :  U × R n− k → R n− k  has components Fi (x) =  xk+ i −  fi(x 1 , x 2 , . . . , xk) , i = 1 ,  2 , . . . , n −  k. 

The Jacobian matrix  DF (x)  has constant rank  n −  k, since

 ∂(F 1 , F 2 , . . . , Fn− k)

det

= 1  , 

on  U × R n− k. 

 ∂(xk+1 , xk+2 , . . . , xn)

An alternative definition of manifold is provided by the following result, itself a

consequence of the implicit function theorem for systems (Sect. 11.2) and of what was remarked in the previous example. 

Theorem  A subset M ⊆ R n is a k-dimensional submanifold if and only if, for any x 0 ∈  M, there is an open neighbourhood A of x 0  such that M ∩  A is the graph of a C 1  map f :  U → R n− k defined on an open subset U ⊆ R k. 

 Proof  Let  M  be a  k-manifold and  x 0 a point on it. By definition there exist an open neighbourhood  A of  x 0 and a function  F :  A → R n− k  of class  C 1 such that 2

3

 M ∩  A =  x ∈  A :  F (x) = 0  , 

where rank  DF (x) =  n −  k  on  A. Without loss of generality we may assume

 ∂(F 1 , F 2 , . . . , Fn− k)

det

 (x 0 ) = 0  , 

 ∂(xk+1 , xk+2 , . . . , xn)
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for example. The implicit function theorem (Sect. 11.2) ensures that there exist an open neighbourhood  A  of  x 0, with  A ⊆  A, an open neighbourhood  U  of the point (x 01 , x 02 , . . . , x 0 k) ∈ R k  and a  C 1 map  f :  U → R n− k  such that 2

3

 M ∩  A = { x ∈  A :  F (x) = 0} =  x ∈ R n :  x ∈  U, x =  f (x ) , where  x =  (x , x ) ∈ R n,  x =  (x 1 , x 2 , . . . , xk) ∈ R k,  x =  (xk+1 , xk+2 , . . . , xn)

∈ R n− k. 

Given  x 0 ∈  M, conversely, let us suppose that for some open neighbourhood  A of  x 0 the intersection  M ∩  A is the graph of a  C 1 function  f :  U → R n− k, with U ⊆ R k  open. We may assume that, without any loss of generality,  f  is a function of the variables  (x 1 , x 2 , . . . , xk). Then

2

3

 M ∩  A =  x ∈ R n :  x ∈  U, x =  f (x ) . 

Set  A =  U × R n− k ∩  A and consider the map  F :  A → R n− k  of components Fi (x) =  xk+1 −  fi(x 1 , x 2 , . . . , xk),  i = 1 ,  2 , . . . , n −  k. Then M ∩  A = { x ∈  A :  F (x) = 0}  , 

proving the claim. 

 Example 8 M = { (x, y) ∈ R2 :  y 2 −  x 2 = 0} is the union of the straight lines of equation y =  x  and  y = − x, so the origin is a point of  M. However, on any neighbourhood of the origin  M  is neither the graph of a function in  x  nor in  y. By the above theorem  M  is not a one-dimensional manifold. 

The following proposition is a straightforward consequence of the previous theorem. 

Proposition 1  Let M be a k-manifold in  R n. For any x 0 ∈  M there exist an open subset U ⊆ R k, an open neighbourhood A of x 0  and a map ϕ :  U → R n, of class C 1  and injective, such that

 ( j ) ϕ(U ) =  M ∩  A; 

 ( jj )  rank  Dϕ =  k on U. 

The map  ϕ, whose existence is granted by Proposition 1, is called a  local parametrisation of the manifold M. 

 Proof  Fix  x 0 ∈  M. By the previous theorem there exist an open neighbourhood  A of  x 0 and a map  f :  U → R n− k, of class  C 1 on the open set  U ⊂ R k, such that
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 M ∩  A  is the graph of  f . Suppose, for simplicity, that  f  depends on the variables (x 1 , x 2 , . . . , xk). Then

2

3

 M ∩  A =  x =  (x , x ) ∈ R n :  x ∈  U, x =  f (x ) , where  x =  (x 1 , x 2 , . . . , xk) ∈ R k,  x =  (xk+1 , xk+2 , . . . , xn) ∈ R n− k. For any x ∈  U  we set

4

5

 ϕ(x ) =  x 1 , x 2 , . . . , xk, f 1 (x ), f 2 (x ), . . . , fn− k(x ) , so  ϕ  is clearly 1-1, the image equals  ϕ(U ) =  M ∩  A, and condition (jj) holds, because

 ∂(ϕ 1 , ϕ 2 , . . . , ϕk)

det

 (x ) = 1

 ∂(x 1 , x 2 , . . . , xk)

for any  x ∈  U . 

All in all, we may regard a manifold  M  as being, locally, either the zero set of a suitable function, or the image of an open subset of R k  under some parametrisation, or the graph of a map defined on an open subset of R k. In the sequel, when studying the properties of manifolds, we shall use the point of view that is most convenient

to treat the situation at hand. 

 Example 9  Suppose that  ϕ :  U → R n  is a  C 1 map on the open set  U ⊆ R k, of class  C 1, injective and satisfying (jj). Even so,  ϕ(U )  will  not be a k-manifold  in general. 

3 

 π

For example, consider the curve  ϕ : 0 , 

→ R2 of equations

2





3 π

 ϕ(t ) =  ( cos  t,  cos  t  sin  t) , 

 t ∈ 0 , 

 , 

2

whose support  M =  ϕ(( 0 , ( 3 π)/ 2 ))  is drawn in Fig. 12.4. As  ϕ (t) = 0 for any  t,  ϕ  verifies (jj). But  M  is not a 1-manifold, because around the origin  M  is not the graph of a function in  x  or in  y. 

Fig. 12.4

M

[image: Image 3431]

[image: Image 3432]

618

12

Manifolds in R n  and  k-Forms

To assess the concepts explained in this section the reader should compare the above

example with the following result. 

Proposition 2  Let ϕ :  U → R n be a C 1  injective map on the open set U ⊆ R k that satisfies ( jj ). Any point y 0 ∈  U admits an open neighbourhood V ⊆  U such that ϕ(V ) is a k-manifold in  R n. 

 Proof  Fix  y 0 ∈  U . Without loss of generality we may assume

 ∂(ϕ 1 , ϕ 2 , . . . , ϕk)

det

 (y 0 ) = 0  . 

(12.1)

 ∂(y 1 , y 2 , . . . , yk)

Define   :  U → R k  by   =   ◦  ϕ, where   : R n → R k  is the projection on the first  k  coordinates:

 (x) =  x =  (x 1 , x 2 , . . . , xk) , 

∀  x ∈ R n. 

By (12.1) the Jacobian of    is non-zero at  y 0 . The local invertibility theorem (Sect. 11.3) guarantees that there exist an open neighbourhood  V  of  y 0 and an open set  W  in R k  such that  (V ) =  W , the restriction of    to  V  is invertible and the inverse   :  W →  V  is also  C 1 (Fig. 12.5). 

Define  f :  W → R n− k  by

4

5

 fi (x ) =  ϕk+ i (x )

for any  i = 1 ,  2 , . . . , n −  k  and  x ∈  W . Clearly  f  is of class  C 1 on  W , and  ϕ(V )  is by definition the graph

2

3

 x =  (x , x ) ∈ R n :  x ∈  W, x =  f (x ) , where  x =  (xk+1 , xk+2 , . . . , xn). 

U

V

y0

W

Fig. 12.5
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 Remark 1  It is clear from Example 9 that if  ϕ :  I → R n  is a regular curve,  ϕ(I ) need not be a one-dimensional manifold, not even if  ϕ  is simple (for example, the simple, closed, regular curve in (6.7) is not a manifold). Proposition 2 nonetheless

◦

implies that if  ϕ  is regular and simple, for any  t 0 ∈  I  there is an open neighbourhood

◦

 J ⊆  I  of  t 0 such that  ϕ(J )  is a one-dimensional manifold. 

Similar considerations apply to surfaces in space. If  ϕ :  D → R3 is a regular surface,  ϕ(D)  might not be a two-dimensional manifold (for example, the surface

◦

in (10.2) is not). Yet, by Proposition 2, any  (u 0 , v 0 ) ∈  D  has an open neighbourhood

◦

 U ⊆  D  such that  ϕ(U )  is a manifold. 

12.2

The Tangent Space and the Normal Space of a Manifold

Let  M  be a  k-dimensional manifold in R n  and  x 0 a point of  M. A vector  h ∈ R n is  tangent  to the manifold at  x 0 if, for some  δ >  0, there is a regular curve  γ :

[− δ, δ] →  M  such that

 γ ( 0 ) =  x 0

and

 γ  ( 0 ) =  h . 

The collection of all tangent vectors to  M  at  x 0 is the  tangent space  to the manifold at  x 0. We shall use the symbol  TM (x 0 ). 

This definition generalises in a natural way that of tangent plane to a regular

surface  S  seen in Sect. 10.3. In both cases we consider the set of tangent vectors at x 0 to all possible regular curves through  x 0 contained in  M, or  S. 

Now suppose  F :  A → R n− k  is a  C 1 map, defined on the open neighbourhood A  of  x 0 and satisfying conditions (i) and (ii) of Sect. 12.1. Using  F  we can describe the tangent space  TM (x 0 )  explicitly. 

Theorem  TM (x 0 ) is the kernel of the linear map DF (x 0 ) : R n → R n− k, i.e. 

2

3

 TM (x 0 ) =  h ∈ R n :  DF (x 0 ) ·  h = 0  . 

 Hence TM (x 0 ) is a vector subspace of  R n of dimension k. 

 Proof  Take  h ∈  TM (x 0 )  and a regular curve  γ : [− δ, δ] →  M  such that  γ ( 0 ) =  x 0 , γ  ( 0 ) =  h. Then for any  t ∈ [− δ, δ], F (γ (t)) = 0  , 

so



 DF (x 0 ) ·  h =  d F (γ (t))

= 0  . 

 dt

 t =0
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Hence  h  belongs in the kernel of the linear map  DF (x 0 ). 

Now suppose  DF (x 0 ) ·  h = 0. As the matrix  DF (x 0 )  has rank  n −  k, it will have n −  k  linearly independent columns, and without loss of generality we may assume these to be

 ∂F

 ∂F

 ∂F

 (x 0 ) , 

 (x 0 ) , . . . , 

 (x 0 ) . 

 ∂xk+1

 ∂xk+2

 ∂xn

Consider the map   :  A ⊆ R n → R n  of components

⎧

⎪

⎪

⎪ y

⎪ 1 =  x 1

⎪

⎪

⎪

⎪ . . . . . . . . . 

⎪

⎨ yk =  xk

⎪

(12.2)

⎪

⎪

⎪ yk+1 =  F 1 (x)

⎪

⎪

⎪

⎪

⎪ . . . . . . . . . 

⎩ yn =  Fn− k(x). 

The Jacobian matrix

⎛

⎞

1

0

 . . . 

0

0

 . . . 

0

⎜

⎜

⎟

0

1

 . . . 

0

0

 . . . 

0

⎜

⎟

⎜

⎟

⎜

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

⎟

⎜

⎟

0

0

 . . . 

1

0

 . . . 

0

⎟

 D(x 0 ) = ⎜

⎜

⎟

⎜  ∂F 1

 ∂F

 ∂F

 (x

1  (x

1  (x

⎟

⎜  ∂x

0 )

 . . . 

 . . . 

0 )

 . . . 

 . . . 

0 )

⎟

1

 ∂xk

 ∂xn

⎜

⎟

⎝

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

⎟

⎠

 ∂Fn− k

 ∂F

 ∂F

 (x

 n− k (x

 n− k , (x

 ∂x

0 ) . . . 

 . . . 

0 ) . . . 

 . . . 

0 )

1

 ∂xk

 ∂xn

has determinant

 ∂(F 1 , F 2 , . . . , Fn− k)

 J(x 0 ) = det

 (x 0 )

 ∂(xk+1 , xk+2 , . . . , xn)

different from zero. Then there exist an open set  A ⊆  A  containing  x 0 and an open neighbourhood  U  of  y 0 =  (x 0 ) ∈ R n, such that  (A ) =  U ,    restricted to  A is invertible and the inverse   :  U →  A is of class  C 1. Moreover, the Jacobian matrix  D(y 0 )  equals the inverse of  D(x 0 ). 

Let  h ∈ R n  be the vector whose first  k  components are equal to those of  h  and the remaining ones all zero:

 h =  (h 1  , h 2  , . . . , hk ,  0 ,  0 , . . . ,  0 ) . 

There exists  δ >  0 such that  y 0 +  t h ∈  U  for any  t ∈ [− δ, δ]. The curve  γ (t) =

 (y 0 +  t h), with  t ∈ [− δ, δ], is regular with support contained in  M. In fact  γ (t) ∈

 A, so  γ (t) ∈  A  for any  t ∈ [− δ, δ]. Moreover  F (γ (t)) = 0 by definition (12.2) and
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because of the choice of  h (the vector  y 0 +  t h  has the last  n −  k  components zero). 

Furthermore

 γ ( 0 ) =  x 0

and

 γ  ( 0 ) =  D(y 0 ) ·  h . 

As

 D(x 0 ) ·  h =  (h 1  , . . . , hk , DF 1 ·  h, . . . , DFn− k ·  h) =  h , and  D(y 0 ) = [ D(x 0 )]−1, we obtain  γ  ( 0 ) =  h. In conclusion,  h ∈  TM (x 0 ). 

 Example 1  Consider  M = { (x, y, z) ∈ R3 :  F (x, y, z) = 0} where F (x, y, z) = 2 x 2 +  y 2 + 8 z 2 − 8 xz − 4  . 

This manifold was considered in Example 2, Sect. 12.1 and is represented in Fig. 12.2. The point  ( 2 ,  2 ,  1 )  lies on  M. As  DF ( 2 ,  2 ,  1 ) =  ( 0 ,  4 ,  0 ), a vector  h ∈ R3 is tangent to  M  at the given point if and only if the inner product  (( 0 ,  4 ,  0 ), h)  vanishes. Hence the tangent space to  M  at  ( 2 ,  2 ,  1 )  is the subspace consisting of the vectors of the  Oxz-plane. 

 Example 2  Let  M = { (x, y, z) ∈ R3 :  F (x, y, z) = 0} be defined by  F : R3 → R2, F (x, y, z) =  (y 2 − 2 z, x 2 +  y 2 − 6 z − 1 ) . 

This is the one-dimensional manifold considered in Example 5, Sect. 12.1, see Fig. 12.3. 

We have





0 2 y −2

 DF (x, y, z) =

 . 

2 x  2 y −6

The point  ( 3 ,  2 ,  2 )  belongs to  M. A vector  h ∈ R3 is tangent to  M  at  ( 3 ,  2 ,  2 )  if and only if



⎛ ⎞

 h 1

0 4 −2

⎜ ⎟

 DF ( 3 ,  2 ,  2 ) ·  h =

· ⎝ h 2⎠ = 0  , 

6 4 −6

 h 3

i.e. for

2 h 2 − h 3 = 0

(12.3)

3 h 1 + 2 h 2 − 3 h 3 = 0  . 

Putting  h 1 = 4 t, from (12.3) we obtain  h 2 = 3 t  and  h 3 = 6 t. Hence  TM ( 3 ,  2 ,  2 )  is the linear space spanned by the vector  ( 4 ,  3 ,  6 ). 
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 Example 3  Consider the manifold of Example 6, Sect. 12.1, i.e. 

 M = { (x, y, z, w) ∈ R4 :  F (x, y, z, w) = 0}  , 

where  F : R4 → R2 is defined by

 F (x, y, z, w) =  (x 2 +  z 2 − 1 , y 2 +  w 2 − 1 ) and has Jacobian matrix





2 x  0 2 z  0

 DF (x, y, z, w) =

 . 

0 2 y  0 2 w

Let us find the tangent space to  M  at  ( 0 ,  1 , −1 ,  0 ). A vector  h ∈ R4 belongs to the tangent space at  ( 0 ,  1 , −1 ,  0 )  if and only if

⎛ ⎞





 h

⎜ 1⎟





0

0 −2

0

⎜ h ⎟

−2 h

 DF ( 0 ,  1 , −1 ,  0 ) ·  h =

· ⎜ 2⎟ =

3

= 0  . 

0

2

0

0

⎝ h 3⎠

2 h 2

 h 4

We conclude that  TM ( 0 ,  1 , −1 ,  0 ) = { h ∈ R4 :  h 2 =  h 3 = 0}. 

In the previous section (Proposition 1) we have shown how a  k-manifold can always be expressed, around any of its points, by means of a local parametrisation. 

Then it becomes useful to be able to describe the tangent space in terms of this

parametrisation. 

Proposition  Let M be a k-manifold, x 0 ∈  M a point and ϕ :  U → R n a local parametrisation of M around x 0 , where U ⊂ R k is open. Call y 0  the point of U

 such that ϕ(y 0 ) =  x 0 . Then the vector space TM (x 0 ) is generated by the k column vectors

 ∂ϕ

 ∂ϕ

 ∂ϕ

 (y 0 ) , 

 (y 0 ) , 

 . . . , 

 (y 0 ) . 

(12.4)

 ∂y 1

 ∂y 2

 ∂yk

 Proof  By condition (jj) in the previous section, the vectors (12.4) are linearly independent and so they span a subspace of dimension  k. Then it will suffice to prove that

 ∂ϕ (y 0 ) ∈  TM(x 0 ), 

∀  i = 1 ,  2 , . . . , k. 

 ∂yi

Fix  i ∈ {1 ,  2 , . . . , k}, and let  δ >  0 be such that  y 0 +  tei ∈  U  for any  t ∈ [− δ, δ]. 

The regular curve  γ (t) =  ϕ(y 0 +  tei),  t ∈ [− δ, δ], is contained in  M, and γ ( 0 ) =  x 0  , 

 γ  ( 0 ) =  ∂ϕ (y 0 ) ∈  TM (x 0 ) . 

 ∂yi
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 Remark 1  Let  γ : [ a, b] → R n  be a regular simple curve. In the previous section we observed that if  t 0 ∈  (a, b)  there is an open interval  I ⊆  (a, b), with  t 0 ∈  I , such that  γ (I )  is a one-dimensional manifold. The above proposition then says that the tangent space to  γ  at  γ (t 0 )  is the vector space spanned by the tangent vector  γ  (t 0 ) at  γ (t 0 ). 

◦

Similarly, if  ϕ :  D ⊆ R2 → R3 is a regular surface and  (u 0 , v 0 ) ∈  D, there

◦

is an open neighbourhood  V ⊆  D  of  (u 0 , v 0 )  such that  ϕ(V )  is a two-dimensional manifold  M. Again, the previous proposition guarantees that the tangent plane to  ϕ

at  P 0 =  ϕ(u 0 , v 0 )  is the affine subspace  P 0 +  TM (P 0 ). 

 Example 4  Consider a  C 1 function  f :  U → R on the open set  U ⊆ R n−1 and its graph M. Define  ϕ(x ) =  (x , f (x )), with  x =  (x 1 , x 2 , . . . , xn−1 ) ∈  U , so  ϕ  is a parametrisation of the entire manifold  M. By the previous proposition, if  x 0 =  (x  , f (x  ))  is a point on  M, 0

0

the space  TM (x 0 )  is generated by the vectors

 ei +  ∂f (x

 ∂x

0 ) en , 

 i = 1 ,  2 , . . . , n − 1 . 

 i

More generally, if  f :  U → R n− k  is of class  C 1 on the open set  U ⊆ R k  and  M  is its graph, define  ϕ(x ) =  (x , f (x ))  for any  x =  (x 1 , x 2 , . . . , xk) ∈  U . The tangent space to M  at  (x  , f (x  ))  is spanned by the vectors

0

0

 n− k

 ∂fj

 ei +

 (x

 ∂x

0  )ek+ j , 

 i = 1 ,  2 , . . . , k. 

 i

 j =1

Given a  k-manifold  M  and  x 0 ∈  M, we call  normal space to M at x 0 the vector space orthogonal to the tangent space  TM (x 0 ), i.e. 

2

3

 T ⊥

 M (x 0 ) =

 k ∈ R n :  (h, k) = 0

∀  h ∈  TM(x 0 ) . 

As dim  TM (x 0 ) =  k, the normal space  T ⊥ (x

 M

0 )  has dimension  n −  k. 

 Remark 2  Returning to Remark 1, it is clear that if  ϕ :  D → R3 is a regular surface

◦

and  P 0 =  ϕ(u 0 , v 0 ), with  (u 0 , v 0 ) ∈  D, the subspace generated by the normal  ν(P 0 ) to the surface at  P 0 is the normal space at  P 0 to  M =  ϕ(V ), where  V  is a suitable neighbourhood of  (u 0 , v 0 ). 

Let  x 0 ∈  M  be a point,  A  an open neighbourhood of  x 0 and  F :  A → R n− k  a map of class  C 1 satisfying (i) and (ii) from the previous section. 

Corollary  The normal space T ⊥ (x

 M

0 ) is generated by the vectors DFi (x 0 ), i =

1 ,  2 , . . . , n −  k. 
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 Proof  Because of (ii), the vectors  DFi (x 0 ),  i = 1 ,  2 , . . . , n −  k, are linearly independent, so they span an  (n −  k)-dimensional subspace. Hence it suffices to verify that  DFi (x 0 ) ∈  T ⊥ (x

 M

0 ). But this is obvious, since by the previous theorem

 DFi (x 0 ) ·  h = 0 when  h ∈  TM (x 0 ). 

 Example 5  Let  F :  A ⊆ R n → R be a  C 1 function on the open set  A  and  M  the  (n − 1 )-

dimensional manifold

 M = { x ∈  A :  F (x) = 0  , DF (x) = 0}  . 

If  x 0 ∈  M,  T ⊥ (x

 M

0  )  is the 1-dimensional space generated by the vector  DF (x 0 ). 

 Example 6  Consider  f :  U ⊆ R n−1 → R of class  C 1 on an open set  U . As we saw in Example 7, Sect. 12.1, the graph of  f  is the manifold M = { x ∈  U × R :  F (x) = 0}  , 

where  F (x) =  xn −  f (x ),  x =  (x 1 , x 2 , . . . , xn−1 ). By the previous example, if  x 0 =

 (x  , f (x  ))  is a point of  M, the normal space to  M  at  x 0

0

0 is generated by the vector





 DF (x 0 ) = −  ∂f (x

 (x

 (x

 . 

 ∂x

0 ) , −  ∂f

0 ) , . . . , −

 ∂f

0 ),  1

1

 ∂x 2

 ∂xn−1

 Example 7  By what we said in Example 5, the normal space at  P 0 =  ( 2 ,  2 ,  1 )  to the manifold  M  considered in Example 1 is generated by  DF (P 0 ) =  ( 0 ,  4 ,  0 ). 

12.3

Measure and Integration on  k-Submanifolds in R n

In this section we shall briefly present some aspects regarding the theory of measure and integration on  k-dimensional manifolds. Let us begin with an easy situation. 

Let  L : R k → R n, 1 ≤  k ≤  n, be a linear map. The symbol  L  will also denote the  n ×  k  matrix

4

5

 (ij )i=1 ,  2 ,...,n , 

where

 ij =  Lej , ei , 

 j =1 ,  2 ,...,k

that represents the map with respect to the canonical bases of R k  and R n. If  L  is injective,  L( R k)  is a  k-dimensional subspace of R n. We intend to give a reasonable definition of  k-dimensional measure for certain subsets of  L( R k). 
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Fig. 12.6

We recall that in the particular case  k =  n, we saw in Sect. 9.8 that if  C ⊂ R n  is Lebesgue measurable then so is  L(C), and

 mn(L(C)) = |det  L| ·  mn(C) , 

(12.5)

where  mn  denotes the  n-dimensional measure on R n. 

Now we examine the case 1 ≤  k < n  and suppose  L  is an  orthogonal transformation O : R k → R n, i.e. such that

 (Ox, Oy) =  (x, y) , 

∀  x, y ∈ R k. 

(12.6)

From (12.6) we have, for  x, y ∈ R k, 

| Ox −  Oy| =  (Ox −  Oy, Ox −  Oy) 1 / 2 =  (x −  y, x −  y) 1 / 2 = | x −  y|  , i.e.  O  preserves distances, which we express by saying that  O  is an  isometry  of R k (see Fig. 12.6). 

If  C ⊂ R k  is a measurable subset of R k, the symbol  H k(O(C))  will indicate the  k-dimensional measure  of the image  O(C) ⊂  O( R k) ⊂ R n  of  C, by definition equal to

 H k(O(C)) =  mk(C) . 

(12.7)

All in all, we are assuming that  O  does not change the measure of the set  C. 

If  L : R k → R n, 1 ≤  k < n  is a linear map, the result in Linear Algebra known as the  polar decomposition theorem  asserts that there exist an orthogonal map  O : R k → R n  and a symmetric endomorphism  S : R k → R k  such that L =  O ◦  S , 

(12.8)
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called  polar decomposition. Keeping (12.5) and (12.7) in account, it is natural to define the  k-dimensional measure of  L(C), for a measurable set  C ⊂ R k, as the quantity

 H k(L(C)) = |det  S| ·  mk(C) . 

(12.9)

As the polar decomposition of a matrix is not unique, we should check that the

above definition does not depend on the choice of decomposition. 

Proposition 1  Given L : R k → R n,  1 ≤  k < n, if a symmetric matrix S : R k →

R k satisfies (12.8) , then

|det  S|2 = det (LT ◦  L) , 

(12.10)

 where LT : R n → R k is the transpose of L. Moreover, for any linear map N : R k → R k, 





|det  N|2 · det (LT ◦  L) = det  (L ◦  N)T ◦  (L ◦  N) (12.11)

 Proof  Let  OT  be the transpose of the orthogonal map  O  appearing in (12.8). By definition of transpose and (12.6) it is immediate to see that

 OT (Ox) =  x

(12.12)

for any  x ∈ R k, . For any  i = 1 ,  2 , . . . , n,  j = 1 ,  2 , . . . , k, define  Oij =  (Oej , ei). 

By definition of transpose,  (OT ei , ej ) =  Oij , so











 n





 n







 OT (Oej ), eh =  OT

 Oij ei , eh

=

 Oij OT ei , eh =

 i=1

 i=1

 n



4

5

=

 Oij Oih =  Oej , Oeh =  δjh , 

∀  j, h = 1 ,  2 , . . . , k. 

 i=1

Hence  OT (Oej ) =  ej  for any  j = 1 ,  2 , . . . , k, and (12.12) follows. 

By (12.12), 

 LT ◦  L =  ST ◦  OT ◦  O ◦  S =  ST ◦  S , and since det  S = det  ST , we obtain (12.10). Now, (12.11) is consequence of the determinant of a product being the product of the determinants and that

 (L ◦  N)T ◦  (L ◦  N) =  NT ◦  LT ◦  L ◦  N . 
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In the sequel, if  L : R k → R n, 1 ≤  k ≤  n, is a linear map we shall define



> 

 JL =

det (LT ◦  L) . 

When  k =  n, > 

 JL  is the absolute value |det  L| of the Jacobian determinant of  L. 

The next proposition, whose proof we omit for the sake of brevity, is sometimes

known as  Cauchy-Binet formula, and is useful to calculate > 

 JL. 

Proposition 2  The quantity > 

 J  2  is equal to the sum of the squares of all k × k minors

 L

 of L. 

Now we pass to  k-dimensional manifolds  M, and start by supposing that we can represent  M  using only one parametrisation  ϕ. That is to say, there is one map ϕ :  U → R n, of class  C 1 on the open set  U  in R k  and injective, such that (j)  ϕ(U ) =  M; 

(jj)  Dϕ  has rank  k  on  U . 

A subset  B ⊆  M  is said to be  k- measurable  when  ϕ−1 (B)  is measurable. The  k-dimensional measure  of  B  is



 H k(B) =

> 

 Jϕ dy , 

(12.13)

 ϕ−1 (B)

where, for any  y ∈  U , 



> 

4

5

 Jϕ(y) =

det  Dϕ(y)T ◦  Dϕ(y) . 

Definition (12.13) is justified by the observation that if  y 0 ∈  U  and  R ⊆  U  is a measurable set containing  y 0 and of small diameter, then  H k(ϕ(R))  is roughly equal to > 

 Jϕ(y 0 ) mk(R). The latter, due to (12.9) and (12.10), is the  k-dimensional measure of the image of  R  in the tangent space at  ϕ(y 0 ) (compare with the considerations made in Sect. 10.4 regarding regular surfaces). 

Note that (12.13) does not depend on the parametrisation  ϕ. In fact if  ψ :  V ⊆

R k → R n  is another parametrisation of  M, one can prove that the transformation

  :  U →  V ,   =  ψ−1 ◦  ϕ, is invertible, of class  C 1 on  U  and with  C 1 inverse on V . By (12.11), and the formula for changing variables in multiple integrals, 







> 

4

5

 Jϕ(y) dy =

det  (Dψ ◦  D)T ◦  (Dψ ◦  D) dy =

 ϕ−1 (B)

 ϕ−1  (B)





4

5

=

| J(y)| det  Dψ((y))T ◦  Dψ((y)) dy =

 ϕ−1  (B)



=

> 

 Jψ (z) dz . 

 ψ−1 (B)
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 Example 1  Let  ϕ : [ a, b] → R n  be a  C 1 curve such that  ϕ((a, b))  is a one-dimensional manifold  M. In this case

> 





 J





 ϕ (t ) =  ϕ (t ) , 

 b 



 H  1 (M) =

 ϕ (t)  dt . 

 a

Hence the manifold’s one-dimensional measure coincides with the length of  ϕ. 

 Example 2  Let  ϕ :  D → R3 be a regular surface of equations

 ϕ(u, v) =  (x(u, v), y(u, v), z(u, v)) , 

 (u, v) ∈  D, 

◦

such that  M =  ϕ(D)  is a two-dimensional manifold. By Proposition 2













2

2

2

> 



 ∂(x, y) 



 ∂(x, z) 



 ∂(y, z) 

 J  2



+ 

+ 



 ϕ (u, v) = det

 , 

 ∂(u, v) 

det  ∂(u, v)

det  ∂(u, v)

so (12.13) implies that  H  2 (M)  is the area of the regular surface  ϕ. 

 Example 3  Let  f :  U ⊆ R k → R n− k  be a  C 1 function on the open set  U  and  M  the graph of  f . A parametrisation of  M  is  ϕ(x ) =  (x , f (x )), with  x =  (x 1 , x 2 , . . . , xk) ∈  U . 

Hence

⎛

⎞

1

0

 . . . 

0

0

⎜

⎜

⎟

⎜ 0

1

 . . . 

0

0

⎟

⎜

⎟

⎜  . . . 

 . . . 

 . . . 

 . . . 

 . . . ⎟

⎜

⎟

⎜ 0

0

 . . . 

0

1

⎟

⎟

 Dϕ = ⎜

⎜

⎟  . 

⎜  ∂f 1

 ∂f 1

 ∂f

 ∂f

⎟

 . . . 

1

1

⎜  ∂x

 ∂x

 ∂x

 ∂x

⎟

⎜

1

2

 k−1

 k

⎟

⎜  . . . 

 . . . 

 . . . 

 . . . 

 . . . ⎟

⎝

⎟

⎠

 ∂fn− k ∂fn− k

 ∂f

 ∂f

 . . . 

 n− k

 n− k

 ∂x 1

 ∂x 2

 ∂xk−1

 ∂xk

Let us compute > 

 J  2

 ϕ  using Proposition 2. We must add the squares of all minors of order  k  in Dϕ. It can be proved that

min{ k,n− k}



> 





 J  2



2

 ϕ (x ) = 1 +

 Xr (Df (x )) , 

(12.14)

 r=1

(continued)
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 Example 3 (continued)

where  Xr (Df (x ))  is the vector made by the minors of order  r  in  Df (x ), for any  r = 1, 2, 

. . . ,min{ k, n −  k}. 

If, for example,  f :  U ⊂ R n−1 → R, from (12.13) and (12.14) we obtain H n−1 (M) =

1 + | Df (x )|2  dx  . 

(12.15)

 U

For  f :  U ⊂ R2 → R2,  f (x, y) =  (u(x, y), v(x, y)), we have

? 





 ∂(u, v)  2

 H  2 (M) =

1 + | Du|2 + | Dv|2 + det

 dx dy . 

 U

 ∂(x, y)

Always assuming that the manifold  M  is described by one parametrisation  ϕ, if  f :  M → R

is a continuous function and  B ⊆  M  is a  k-measurable bounded set, we define the  surface integral  of  f  over  B  as





 f dH k =

 f (ϕ(y)) > 

 Jϕ(y) dy . 

(12.16)

 B

 ϕ−1  (B)

It can be shown that also this definition is independent of the parametrisation. 

For the manifold  M  in Example 1, (12.16) reduces to the definition of integral along a curve, already seen in Sect. 6.4. If  M  is the manifold of Example 2, we recover the surface integral seen in Sect. 10.6. 

 Example 4  Consider  M = { (x, y, z, w) ∈ R4 :  x 2 +  y 2 = 1  , z 2 +  w 2 = 1  , x, z >  0}. 

 M  is a two-dimensional manifold and a parametrisation  ϕ  is







 π

 π

 ϕ(u, v) =  ( cos  u,  sin  u,  cos  v,  sin  v) , (u, v) ∈ −  π , 

× −  π , 

 . 

2

2

2

2

Let us compute



 (x 2 +  z 2 ) dH  2  . 

(12.17)

 M

As

⎛

⎞

− sin  u

0

⎜





⎜

⎟

cos  u

0

⎟

1 0

 Dϕ = ⎜

⎝

⎟

 , 

0

− sin  v⎠  , 

 (Dϕ)T ◦  Dϕ = 0 1

0

cos  v

we have > 

 Jϕ = 1, and (12.17) becomes the integral





 π/ 2

 π/ 2

 ( cos2  u + cos2  v) du dv =  π 2  . 

− π/ 2 − π/ 2
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Lemma (Partition of Unity)  Let M be a compact k-manifold. It is possible to find finitely many local parametrisations ϕi :  Ui →  M and continuous functions ηi : M → [0 ,  1] , i = 1 ,  2 , . . . , N, such that

 N

"  ϕi(Ui) =  M , 

 i=1

 ηi (x) = 0  , 

 if x ∈  M −  ϕi(Ui), 

 N

 ηi(x) = 1 , ∀ x ∈  M. 

 i=1

The functions  ηi , for  i = 1 ,  2 , . . . , N, form a  partition of unity  subordinated to the open sets  ϕi(Ui )  of  M. 

 Proof  Proposition 1, Sect. 12.1, implies that for any  x ∈  M  there exist an open ball  Br (x)  of radius  r

 x

 x >  0, and a local parametrisation  ϕx :  Ux →  M  such that ϕx(Ux) =  M ∩ Br (x). As  M  is compact, we can extract from { B

 x

 rx / 2 (x)} x∈ M  a finite

covering. 

Hence, there is a finite number of open balls  Br (x

 i

 i ),  xi ∈  M ,  i = 1 ,  2 , . . . , N , 

and corresponding parametrisations  ϕi :  Ui →  M  such that

 N

" 

 ϕi(Ui) =  M ∩  Br (x

 B

 i

 i ) , 

 M ⊂

 ri / 2 (xi ) , 

 i=1

where, for any  i = 1 ,  2 , . . . , N,  Bri/ 2 (xi)  is the open ball with centre  xi  and radius ri/ 2. Applying the separation theorem of Sect. 2.3 to the metric space  M ⊆ R n with the induced metric, for any  i = 1 ,  2 , . . . , N  we can find a continuous function σi :  M → [0 ,  1] such that  σi(x) = 1 if  x ∈  M ∩  Bri/ 2 (xi)  and  σi(x) = 0 if x ∈  M −  B( 2 ri)/ 3 (xi). Define, for any  x ∈  M, N



 σ (x) =

 σi(x) , 

 i=1

so  σ (x) ≥ 1 on  M, and the functions

 ηi (x) =  σi(x) , 

 i = 1 ,  2 , . . . , N, 

 σ (x)

give the required partition of unity. 

This lemma allows to extend the concepts of  k-measurable set and surface

integral to  compact manifolds M. If we choose the  ϕi  and the functions  ηi  as in
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the lemma, we will say that  B ⊆  M  is measurable if  ϕ−1 (B)  is measurable in R k i

for any  i = 1 ,  2 , . . . , N. We will call  k-dimensional measure of  B  the quantity N



 H k(B) =

 ηi(x) dH k , 

 B∩ ϕ

 i=1

 i (Ui )

where the integrals on the right are defined by (12.16). 

Finally, if  f :  M → R is continuous, we define



 N



 f dH k =

 f (x) ηi(x) dH k . 

 B

 B∩ ϕ

 i=1

 i (Ui )

One can prove that these definitions do not depend on the parametrisations  ϕi, nor on the specific partition of unity  ηi ,  i = 1 ,  2 , . . . , N. At any rate it is evident, in case  B  in contained in one of the open sets  ϕi(Ui), that we recover the quantities defined in (12.13) and (12.16). 

Let  F :  A → R be a  C 1 function on the open set  A  in R n. For  t ∈ R the set Mt = { x ∈  A :  F (x) =  t}

is typically not a manifold, unless  DF (x) = 0 for any  x ∈  Mt . But it can be proved (this fact is known as  Sard’s theorem) that for almost every  t (in the sense of the Lebesgue measure)

 Mt ∩ { x ∈  A :  DF (x) = 0} = ∅  . 

Therefore  Mt  is an  (n − 1 )-dimensional manifold for almost every  t. 

The following result holds. 

Co-area Formula  Let F :  A → R  be a function of class C 1 (A) with DF = 0  and f :  A → R  a continuous and summable function on A. Then



+∞ 

 f

 f dx =

 dt

 A

−∞

{ x∈ A:  F (x)= t} | DF |  dH n−1  . 

(12.18)

If  F :  A → R is the projection onto one of the coordinate axes, (12.18) is an application of Fubini’s theorem. Suppose for example  F (x) =  xn  for any  x ∈  A. 

Then  Mt = { x ∈  A :  xn =  t} is the cross-section  At  of  A  over  xn =  t, for any t ∈ R. Since | DF | = 1, formula (12.18) reads



+∞ 

 f dx =

 dt

 f (x 1 , x 2 , . . . , t) dx 1  dx 2  . . . dxn−1  . 

 A

−∞

 At
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 Example 5  Fix  r >  0 and  Br = { x ∈ R n : | x|  < r}. Let us apply (12.18) with  F (x) = | x|. 

In this case, for  ε < t < r, 

 Mt =  ∂Bt = { x ∈ R n : | x| =  t}

and if  f :  Br → R is continuous and summable then







 r

 f dx =

 dt

 f dH n−1  . 

 Br − Bε

 ε

 ∂Bt

By letting  ε  go to zero we obtain







 r

 f dx =

 dt

 f dH n−1  . 

(12.19)

 Br

0

 ∂Bt

Let us use this formula with  f ≡ 1 to find the measure of the sphere  Sn−1 =  ∂B 1. Denoting by  ωn  the unit ball’s Lebesgue measure, from (12.19) we obtain 1

1

 ωn =

 dx =

 dt

 dH n−1 =

 H n−1 (∂Bt ) dt . 

 B 1

0

 ∂Bt

0

On the other hand it is geometrically evident (consider the homothety mapping the ball of radius  t  to the unit ball) that

 H n−1 (∂Bt ) =  tn−1 H n−1 (∂B 1 ) . 

The last two equalities imply

 H n−1 (Sn−1 ) =  n ωn . 

12.4

The Divergence Theorem

In this section we wish to generalise the divergence theorem, which we have already

discussed in the plane and in space (Sects. 8.3 and 10.7 respectively), to the case of regular domains in R n, with  n  arbitrary. 

First, let us provide the notion of a regular domain in R n. A closed and bounded subset  D ⊂ R n  is a  regular domain  if for any  x 0 ∈  ∂D  there exist an open neighbourhood  A  of  x 0 and a  C 1 function  F :  A → R such that  DF (x) = 0

on  A  and

 ∂D ∩  A = { x ∈  A :  F (x) = 0}  , 

(12.20)

◦

 D ∩  A = { x ∈  A :  F (x) <  0}  . 

(12.21)
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The boundary  ∂D  of a regular domain is then an  (n − 1 )-dimensional manifold, and by (12.21),  D  locally lies on one side of its boundary. 

The definitions of  regular domain  in the plane and in space, given in Chap. 8, do not coincide with the one given above. For instance a square is a regular domain

according to the definition of Sect. 8.3, but not according to the one considered in this section, because its boundary is not a  C 1 manifold. 

From what we saw in Sect. 12.2, the normal space to  ∂D  at a point  x 0 ∈  ∂D  is generated by the gradient vector  DF (x 0 ). We call  outer unit normal of D at x 0 the unit vector

 ν(x 0 ) =  DF (x 0 )

| DF (x 0 )|  . 

The word “outer” is explained as follows. If  t >  0 is sufficiently small, the point x 0+ t ν(x 0 )  does not belongs to  D. In fact if  t >  0 is small enough then  x 0+ t ν(x 0 ) ∈

 A, and since



 d



 F (x 0 +  t ν(x 0 ))

=  (DF (x 0 ), ν(x 0 )) = | DF (x 0 )|  >  0  , dt

 t =0

we have  F (x 0 +  tν(x 0 )) >  0 because  F (x 0 ) = 0. Hence by (12.20), (12.21) we have  x 0 +  tν(x 0 ) /

∈  D (see Fig. 12.7). 

Recall that if  w

:  D → R n  is a  C 1 map of components  w(x) =

 (w 1 (x), w 2 (x), . . . , wn(x)), the  divergence  of  w  is the function div  w :  D → R, n

 ∂wi

div  w(x) =

 , 

 x ∈  D. 

 ∂xi

 i=1

Divergence Theorem  Let D ⊂ R n be a regular domain. If w :  D → R n is a C 1

 map, the following formula holds





div  w(x) dx =

 (w(x), ν(x)) dH n−1  . 

(12.22)

 D

 ∂D

Before we prove the theorem let us pause for a moment and consider some of the

consequences of (12.22). 

Fig. 12.7

x0

A

D
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Let  f, g :  D → R be  C 1 functions. Fix an index  i ∈ {1 ,  2 , . . . , n} and let  w : D → R n  be the map of components  (w 1 , w 2 , . . . , wn), where  wi(x) =  f (x) ·  g(x) and  wj = 0 for  j =  i. From (12.22) we obtain







 ∂f

 ∂g

 g dx = −

 f

 dx +

 f gνi dH n−1  , 

(12.23)

 D ∂xi

 D

 ∂xi

 ∂D

where  νi  is the  i th component of the outer normal. Formula (12.23) is the  integration by parts  for functions of  n  variables. 

Moreover, if  f :  D → R is of class  C 2, applying (12.22) to the vector-valued function  w(x) =  Df (x)  gives





 ∂f

 f dx =

 dH n−1  , 

 D

 ∂D ∂ν

where

 n

 ∂ 2 f

 f = div  Df =

 , 

 ∂x 2

 i=1

 i

is the  Laplacian  of  f (cf. Sect. 3.17) and

 ∂f (x) =  (Df (x),ν(x))

 ∂ν

is the directional derivative of  f  along the outer normal. 

◦

 Remark 1  When  w :  D → R n  is null outside a compact set  K ⊂  D, formula (12.22) is easy to prove and holds without any regularity assumption on the domain  D. In fact the right-hand side of (12.22) vanishes, while calling < w  the

extension of  w  to R n  that is zero outside  D, for the left-hand side we have n





 n

 ∂w



 i

 ∂ < 

 wi

div  w(x) dx =

 dx =

 dx =

 D

 D

 ∂xi

R n

 ∂xi

 i=1

 i=1

 n



+∞

=

 ∂ < 

 wi

 dx 1  . . . dxi−1  dxi+1  . . . dxn

 dxi = 0  . 

R n−1

−∞  ∂xi

 i=1

The proof of the divergence theorem will go through a series of preliminary

lemmas. 

Lemma 1  Let f :  U →  ( 0 , +∞ ) be of class C 1  on a bounded open set U ⊂ R n−1

 and call C the open cylinder C = { x =  (x , xn) :  x ∈  U,  0  < xn < f (x )} . 

 Suppose u :  C → R  is a C 1  function on C, with u(x ,  0 ) = 0  for any x ∈  U . Then





 ∂u dx =

 uνn dH n−1  , 

 C ∂xn

 M
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 where νn is the nth component of the normal ν to the graph M of f pointing outside of C. 

 Proof  By Fubini’s theorem (Sect. 9.7)









 ∂u

 f (x ) ∂u

 dx =

 dx

 dxn =

 u(x , f (x )) dx  . 

(12.24)

 C ∂xn

 U

0

 ∂xn

 U

From Example 6, Sect. 12.2, the normal to  M  at  (x , f (x )), pointing outside of  C, is





 ν(x , f (x )) =

1



−  ∂f (x ) , −  ∂f (x ) , . . . , −  ∂f (x ),  1  . 

 ∂x

 ∂x

 ∂x

1 + | Df (x )|2

1

2

 n

Recalling that  M =  ϕ(U ), where  ϕ  is the parametrisation  ϕ(x ) =  (x , f (x )), and that



> 

 Jϕ(x , f (x )) =

1 + | Df (x )|2

on  M (see Example 3, Sect. 12.3), from (12.16) we obtain uνn dH n−1 =

 u(x , f (x )) dx  . 

(12.25)

 M

 U

Then (12.24) and (12.25) imply the claim. 

Lemma 2  Given x 0 ∈  ∂D, there is an open neighbourhood A  of x 0  such that (12.22)  holds for any C 1  map w : R n → R n that vanishes on the complement of a compact subset of A . 

 Proof  Fix  x 0 =  (x 01 , x 02 , . . . , x 0 n) ∈  ∂D. We initially suppose x 0 i >  0  , 

 νi (x 0 ) >  0  , 

∀  i = 1 ,  2 , . . . , n. 

(12.26)

In particular  νn(x 0 ) >  0, i.e.  DnF (x 0 ) >  0 where  F :  A → R is the function for which (12.20), (12.21) hold. Referring to Fig. 12.8, the implicit function theorem in several variables (Sect. 11.1) implies that there exist an open set  An ⊆  A  with x 0 ∈  An, an open set  Un ⊆ R n−1 and a function  f :  Un → R such that

 ∂D ∩  An = { x ∈  An :  x ∈  Un , xn =  f (x )}  . 

Moreover  An  can be fixed so that  xn >  0 and  DnF (x) >  0 for any  x ∈  An. 
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Fig. 12.8

 D

 A

 An

 xn

 Cn

 n–1

 Un

Let  Cn  be the cylinder

2

3

 Cn =  x =  (x , xn) :  x ∈  Un ,  0  < xn < f (x ) . 

If  x ∈  An ∩  Cn, since  F (x , f (x )) = 0 and  ∂Fn/∂xn(x , t) >  0 for any  xn < t < 

◦

◦

 f (x ), we have  F (x) <  0 and so  x ∈  An ∩  D. Similarly, if  x ∈  An ∩  D, due to F (x) <  0 and  F (x , f (x )) = 0, as  DnF >  0 on  An  it follows that  xn < f (x ), i.e. 

 x ∈  Cn. In conclusion (see Fig. 12.8)

◦

 An ∩  Cn =  An ∩  D . 

(12.27)

If  w  is zero outside a compact set contained in  An , from (12.27) and Lemma 1 we deduce







 ∂wn

 ∂wn

 ∂wn

 dx =

 dx =

 dx =

 D ∂xn

 A

 ∂x

 ∂x

 n ∩ D

 n

 An∩ Cn

 n







(12.28)

=

 ∂wn dx =

 wn νnH n−1 =

 wnνn H n−1  . 

 C

 ∂x

 n

 n

 ∂Cn∩ ∂D

 ∂D

Similarly one proves that, for any  i = 1 ,  2 , . . . , n − 1, there is an open set  Ai ⊆  A, with  x 0 ∈  Ai, such that





 ∂wi dx =

 wiνi H n−1

 D ∂xi

 ∂D

if  w  is zero outside a compact set contained in  Ai. By this and (12.28) the claim follows, if we assume (12.26) and take  A =  A 1 ∩  A 2 ∩  . . . ∩  An. 

The general case is proved by considering a suitable affine map  (x) =  Ox +  a, x ∈ R n, where  a ∈ R n  and  O : R n → R n  is orthogonal. Setting  T =  (D)  and y 0 =  (x 0 ), it is easy to see that  T  is a regular domain and the outer normal  ν(y 0 ) of  T  at  y 0 is  O(ν(x 0 )), where  ν(x 0 )  is the outer normal of  D  at  x 0 . Since we can
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always choose  a ∈ R n  and  O : R n → R n  so that y 0 i >  0  , 

 νi (y 0 ) >  0  , 

∀  i = 1 ,  2 , . . . , n, 

the general case reduces to the case in which (12.26) holds. 

Lemma 3  There is a finite number of open sets Ai, i = 1 ,  2 , . . . , N, such that N

" 

 D ⊂

 Ai

 i=1

 and (12.22)  holds whenever w : R n → R n is a C 1  function that vanishes outside a compact set contained in one of the Ai. Moreover, for any i = 1 ,  2 , . . . , N, there is a C 1  function ηi : R n → [0 ,  1] , null outside a compact set contained in Ai, such that

 N

 ηi(x) = 1 , ∀ x ∈  D. 

(12.29)

 i=1

In this case too (see the lemma in the previous section) the functions  ηi,  i =

1 ,  2 , . . . , N , form a  partition of unity  subordinated to the open covering { Ai} of  D. 

 Proof  Note that if  ζ : R → [0 ,  1] is a  C 1 function such that  ζ(t) = 1 for  t ≤ 1 / 2

and  ζ (t) = 0 for  t ≥ 2 / 3, then





| x −  x 0|

 x →  ζ

 r

is of class  C 1 on R n, it equals 1 on the ball  Br/ 2 (x 0 )  of centre  x 0 and radius  r/ 2, and it vanishes outside the ball  B( 2 r)/ 3 (x 0 ). 

Fix  x ∈  D. If  x ∈  ∂D  we consider a ball of centre  x  and radius  rx >  0 such that (12.22) holds if  w  is zero outside a compact set contained in  Br (x). This ball x

◦

◦

exists due to Lemma 2. If, instead,  x ∈  D, fix a ball  Br (x) ⊆  D. By Remark , we x

still have (12.22) if  w  is zero outside a compact set contained in  Br (x). 

 x

As  D  is compact, there is a finite number of points  xi ∈  Di,  i = 1 ,  2 , . . . , N, such that, 

 N

" 

 D ⊂

 Bri/ 2 (xi)

 i=1

where  ri =  rx . The open sets  A

 (x

 i

 i =  Bri

 i )  satisfy the requirements. At last, for any

 i = 1 ,  2 , . . . , N  and any  x ∈ R n, set





|

 N

 x −  x



0|

 σi(x) =  ζ

 , 

 σ (x) =

 σi (x) . 

 ri

 i=1
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Immediately, the functions

 ηi(x) =  σi(x)

 σ (x)

satisfy the desired properties and also (12.29). 

 Proof (of the Divergence Theorem)  The previous three lemmas easily imply the divergence theorem, at least when  w(x)  is defined everywhere in R n. If so, in fact, for  i = 1 ,  2 , . . . , N  let  Ai  and  ηi : R n → [0 ,  1] be as in Lemma 3. By (12.29), N



div  w dx =

div (wηi ) dx . 

(12.30)

 D

 D

 i=1

As the functions  w ηi  are zero outside a compact set contained in  Ai, for any  i =

1 ,  2 , . . . , N , we have





div (w ηi) dx =

 ηi(w, ν) dH n−1  . 

(12.31)

 D

 ∂D

 N



Since

 ηi(x) = 1 for any  x ∈  ∂D, from (12.30), (12.31) the claim follows. 

 i=1

The general case is a consequence of the following proposition, whose proof we

omit for the sake of brevity. 

Proposition  Suppose D ⊂ R n is a regular domain and w :  D → R n a C 1  map. 

 There exists an extension < 

 w of w to  R n, i.e. a map < 

 w : R n → R n of class C 1  such

 that

< 

 w(x) =  w(x) , 

∀  x ∈  D. 

12.5

Alternating Forms

In this section we shall present the fundamental results regarding the theory of

alternating multilinear forms. Fix positive integers  n, k  and consider the Cartesian product  ( R n)k. A map

 ω :  (h 1 , h 2 , . . . , hk) ∈  ( R n)k →  ω(h 1 , h 2 , . . . , hk) ∈ R
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is called an  alternating form of degree k (or a  k- covector) if  ω  is linear in each variable  h 1 , h 2 , . . . , hk, and  alternating:

 ω(hσ ( 1 ), hσ( 2 ), . . . , hσ(k)) = sign (σ ) ω(h 1 , h 2 , . . . , hk) , for any permutation  σ : {1 ,  2 , . . . , k} → {1 ,  2 , . . . , k}, where sign (σ )  is 1 or −1

depending on whether  σ  is the product of an even or odd number of transpositions. 

 Example 1  For  n =  k  the map

 ω :  (h 1 , h 2 , . . . , hn) ∈ R n × R n ×  . . . × R n → det (ei , hj )ij , where { e 1 , e 2 , . . . , en} is the canonical basis of R n, is an alternating form of degree  n. This is immediate since  ω  maps the  n- tuple (h 1 , h 2 , . . . , hn)  to the determinant of the matrix whose columns are the vectors  h 1 , h 2 , . . . , hn. 

In general, given arbitrary  n  and  k, and letting  λ =  (λ 1 , λ 2 , . . . , λk)  be a  k-dimensional vector of integers between 1 and  n, the map

 eλ :  (h 1 , h 2 , . . . , hk) ∈  ( R n)k → det (eλ , h i

 j )ij , 

(12.32)

associating with the  k-tuple  (h 1 , h 2 , . . . , hk)  the  k ×  k  determinant whose columns are the λi -th components of the vectors  hj , is an alternating form of degree  k. 

Proposition 1  Let n, k be positive integers and λ, λ  two k-tuples of integers lying between  1  and n. Then:

(a)  if λ  is obtained from λ via r transpositions, then

 eλ(h 1 , h 2 , . . . , hk) =  (−1 )r eλ (h 1 , h 2 , . . . , hk) for any (h 1 , h 2 , . . . ,hk)∈  ( R n)k; 

(b)  if λ has two equal components, eλ is identically zero; 

(c)  if k > n, the map eλ is identically zero. 

 Proof  To show (a) it suffices to apply,  r  times, the property whereby a determinant changes sign if we interchange two rows. For (b), if a square matrix has two equal

rows its determinant vanishes. As for (c), just note that for  k > n  the vector  λ

necessarily has two equal components. 

In the sequel we will denote with  λ, μ, ν  a generic  k-tuple of  integers  between 1

and  n, and we will call its components  indices  of the  k-tuple. 

By the above proposition it is evident that when considering the map  eλ  it will be convenient to assume that the indices of  λ  are distinct (otherwise  eλ  is the zero map). 
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Actually, up to a sign change in  eλ  we may suppose that the indices are ordered increasingly. 

Define then for any 1 ≤  k ≤  n ( λi  integer for all  i) n,k = { λ =  (λ 1 , λ 2 , . . . , λk) : 1 ≤  λ 1  < λ 2  < . . . < λk ≤  n}  . 

When  n, k ≥ 1 we shall write  k( R n)  for the set of alternating forms on  ( R n)k. 

 k( R n)  can be endowed with the structure of a real vector space by defining the sum of  k-covectors  ω, η  and the multiplication by a scalar  t ∈ R as follows (ω +  η)(h 1 , h 2 , . . . , hk) =  ω(h 1 , h 2 , . . . , hk) +  η(h 1 , h 2 , . . . , hk) , (tω)(h 1 , h 2 , . . . , hk) =  tω(h 1 , h 2 , . . . , hk) . 

Note that for  k = 1,   1 ( R n)  coincides with the dual  ( R n)∗ of R n, the space of linear maps on R n (see Sect. 2.5) (sometimes referred to as  covectors). 

Theorem 1  For  1 ≤  k ≤  n the set

2

3

 eλ :  λ ∈  n,k

 is a basis of k( R n), called canonical basis. Hence given ω ∈  k( R n), for any λ ∈  n,k there is a real number ωλ such that



 ω =

 ωλ eλ , 

(12.33)

 λ∈ n,k

 and the representation is unique. 

We skip the proof of Theorem 1, since it is based on elementary Linear Algebra. 

We shall point out some consequences, instead. 



 n

When 1 ≤  k ≤  n  the cardinality of the set  n,k  is

, so this is the dimension

 k

of the space  k( R n). 

Let us also point out that (12.33) says that every alternating form of degree  k  can be written uniquely as a linear combination of suitable  k ×  k  determinants, to be precise those defined by (12.32) with  λ ∈  n,k. 

Finally, for  n =  k,  n( R n)  is a one-dimensional vector space, whose elements are multiples of the alternating form of degree  n

 e( 1 ,  2 ,...,n)(h 1 , h 2 , . . . , hn) = det (ei , hj )ij (in the sequel the symbol  e 12 ...n  will denote  e( 1 ,  2 ,...,n)). Any alternating form of degree  n  is therefore a multiple of the determinant. 

By Proposition 1, (c) we have the following easy consequence:
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Proposition 2  For  1 ≤  n < k, k( R n) consists of the zero functional only. 

A simple way to construct alternating forms is using the wedge product. Let

 eλ, eμ  be elements of the canonical basis of  k( R n),  l( R n)  respectively. The wedge product  of  eλ  and  eμ  is the alternating form of degree  k +  l eλ ∧  eμ =  eν ∈  k+ l( R n) , 

(12.34)

where  ν  is the  (k +  l)-tuple obtained by appending the indices of  μ  to the vector  λ, as follows:  ν =  (λ 1,  λ 2 , . . . ,  λk, μ 1 , μ 2 , . . . , μl). 

By property (a) in Proposition 1 it is clear that

 eλ ∧  eμ =  (−1 )k l eμ ∧  eλ . 

(12.35)

In general, for





 ω =

 ωλeλ ∈  k( R n) , 

 η =

 ημeμ ∈  l( R n)

 λ∈ n,k

 μ∈ n,l

one defines



 ω ∧  η =

 ωλ ημ eλ ∧  eμ ∈  k+ l( R n) . 

(12.36)


 λ∈ n,k

 μ∈ n,l

Proposition 3  For any ω, ω ∈  k( R n), η ∈  l( R n), ζ ∈  m( R n) and any real number t, 

 (ω +  ω) ∧  η =  ω ∧  η +  ω ∧  η , 

 (t ω) ∧  η =  t (ω ∧  η) , 

 ω ∧  η =  (−1 )klη ∧  ω , 

(12.37)

 (ω ∧  η) ∧  ζ =  ω ∧  (η ∧  ζ ) . 

The above properties are easy to check when  ω, ω, η, ζ  are canonical basis

elements, using Proposition 1 and (12.35). The general case follows from definition (12.36). 

In particular, if  eλ, with  λ =  (λ 1 , λ 2 , . . . , λk), is defined by (12.32), then eλ =  eλ 1 ∧  eλ 2 ∧  . . . ∧  eλk , 

(12.38)

where  eλi ∈  ( R n)∗ , i = 1 ,  2 , . . . , k, is the functional mapping any  h ∈ R n  to its λi -th component. 

It is customary to denote the map  eλi  by  dxλ , and similarly the element  eλ

 i

defined by (12.38) will be written  dxλ. In these notations we can recast (12.38)
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as

 dxλ =  dxλ ∧  dx ∧  . . . ∧  dx . 

1

 λ 2

 λk

 Example 2  When  n =  k = 2, as observed earlier the space   2 ( R2 )  consists of multiples of the bilinear form

 dx ∧  dy : R2 × R2 → R  , 





 h

 k

which maps pairs  (h, k) ∈ R2 × R2, with  h =

1

,  k =

1

, to

 h 2

 k 2





 h

 (dx ∧  dy) (h, k) = det

1  k 1

 . 

 h 2  k 2

 Example 3  When  n = 3,  k = 2, a basis of   2 ( R3 )  is given by the bilinear forms  dx ∧  dy, dy ∧  dz,  dz ∧  dx, which map pairs  h, k ∈ R3 to h

 (dx ∧  dy) (h, k) = det

1  k 1

 , 

 h 2  k 2





 h

 (dy ∧  dz) (h, k) = det

2  k 2

 , 

 h 3  k 3





 h

 (dz ∧  dx) (h, k) = det

3  k 3

 h 1  k 1

respectively. 

 Example 4  For  n =  k, the space  n( R n)  is spanned by the alternating form of degree  n mapping the vector  (h 1 , h 2 , . . . , hn) ∈ R n  to

 (dx 1 ∧  dx 2 ∧  . . . ∧  dxk) (h 1 , h 2 , . . . , hn) = det (ei , hj )ij . 
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 Example 5  Let us compute the wedge product of

 ω =  e 1 + 3 e 2 −  e 4 ∈   1 ( R4 ) , 

 η = 2 e 14 −  e 23 ∈   2 ( R4 ). 

Using the wedge product’s properties stated in Proposition 3, 

 ω ∧  η =  (e 1 + 3 e 2 −  e 4 ) ∧  ( 2 e 14 −  e 23 ) =

= 2 e 1 ∧  e 14−  e 1 ∧  e 23 + 6 e 2 ∧  e 14 − 3 e 2 ∧  e 23− 2 e 4 ∧  e 14 +  e 4 ∧  e 23 . 

By Proposition 1 and (12.34) we have

 e 1 ∧  e 14 =  e 114 = 0 , 

 e 1 ∧  e 23 =  e 123 , 

 e 2 ∧  e 14 =  e 214 = − e 124 , 

 e 2 ∧  e 23 =  e 223 = 0 , 

 e 4 ∧  e 14 =  e 414 = 0 , 

 e 4 ∧  e 23 =  e 423 =  e 234 , 

so we conclude that

 ω ∧  η = − e 123 − 6  e 124 +  e 234  . 

 Example 6  Consider the bilinear forms  ω =  e 12 +  e 35,  η =  e 25 +  e 34,  ζ =  e 46 +  e 56 in

  2 ( R6 ). Their wedge product is

 ω ∧  η ∧  ζ =  (e 12 +  e 35 ) ∧  (e 25 +  e 34 ) ∧  (e 46 +  e 56 ) =  e 1234 ∧  (e 46 +  e 56 ) =  e 123456  . 

 Example 7  Let us calculate the wedge product of

 ω =  dx + 2  dz ∈   1 ( R3 ) , 

 η =  dx ∧  dy + 2  dy ∧  dz ∈   2 ( R3 ) . 

We have

 ω ∧  η =  (dx + 2  dz) ∧  (dx ∧  dy + 2  dy ∧  dz) =

= 2  dx ∧  dy ∧  dz + 2  dz ∧  dx ∧  dy = 4  dx ∧  dy ∧  dz . 

We remark that the vector space  k( R n)  has an  inner product, defined by (ω, η) =

 ωλ ηλ , 

 λ∈ n,k
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for  ω, η ∈  k( R n). As a result, it also inherits a norm that maps  ω ∈  k( R n)  to the real number

? 

| ω| =  (ω, ω) 1 / 2 =

 ω 2  . 

(12.39)

 λ

 λ∈ n,k

The same procedure employed to define the space  k( R n)  of alternating  k-forms on R n  can be used to define  k- vectors  on R n, whose space we denote by  ∗ ( R n). We k

shall say that the map



 α :  (a 1 , a 2 , . . . , ak) ∈  ( R n)∗ k → R

is a  k- vector  if  α  is linear in each variable  a 1 , a 2 , . . . , ak  and alternating: α(aσ ( 1 ), aσ( 2 ), . . . , aσ(k)) = sign (σ )α(a 1 , a 2 , . . . , ak) for any permutation  σ : {1 ,  2 , . . . , k} → {1 ,  2 , . . . , k}. 

For any  k-tuple of integers  λ =  (λ 1 , λ 2 , . . . , λk), with 1 ≤  λi ≤  n, we define the k-vector  eλ  as follows: when evaluated on elements  a 1 , a 2 , . . . , ak ∈  ( R n)∗, it equals the determinant of the matrix whose  i th row has entries given by the components λ 1 , λ 2 , . . . , λk  of  ai, for all  i = 1 ,  2 , . . . , k. That is, eλ :  (a 1 , a 2 , . . . , ak) ∈  ( R n)∗ k → det (ai, eλj )ij . 

The definition is, in some sense, dual to (12.32). Given column vectors h 1 , h 2 , . . . , hk, the  k-covector  eλ  computes the minor with rows  λ 1 , λ 2 , . . . , λk in the matrix whose columns are  h 1 , h 2 , . . . , hk. The  k-vector  eλ, on the other hand, given row vectors (or covectors)  a 1 , a 2 , . . . , ak, computes the minor with columns λ 1 , λ 2 , . . . , λk  in the matrix with rows  a 1 , a 2 , . . . , ak. 

As for  k-covectors, it can be proved that the set

2

3

 eλ ∈  ∗ k( R n) :  λ ∈  n,k

is a basis of the vector space  ∗ ( R n), 1 ≤  k ≤  n. 

 k

Given  n, k ≥ 1, the map



 (ω, α) ∈  k( R n) ×  ∗ k( R n) → "  ω, α# =

 ωλ αλ , 

 λ∈ n,k

where  ωλ  and  αλ  are the components of  ω  and  α  in the canonical bases  eλ  and  eλ, is called  duality, or  pairing, of the two spaces. When  k = 1 the pairing n



"  a, h# =

 aihi , 

 i=1
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where  a ∈  ( R n)∗ and  h ∈ R n, can be viewed as the matrix product of the row vector a  and the column vector  h. 

The wedge product can be defined for  k-vectors exactly as for  k-covectors. We leave it to the reader to extend (12.35), (12.36) and Proposition 3 to  k-vectors. In the same way  k-vectors also come equipped with a norm (see (12.39)). 

We finish with the following simple but useful result. 

Theorem 2  Fix  1 ≤  k ≤  n. For any vectors h 1 , h 2 , . . . , hk of  R n, h 1 ∧  h 2 ∧  . . . ∧  hk =

 αλeλ , 

 λ∈ n,k

 where

 αλ =  eλ(h 1 , h 2 , . . . , hk) = det (eλ , h

 i

 j )ij . 

(12.40)

 Consequently | h 1 ∧  h 2 ∧  . . . ∧  hk|2  equals the sum of the squares of the k× k minors of the matrix with columns h 1 , h 2 , . . . , hk. 

 Proof  Let us compute









 n



 n



 h 1 ∧  h 2 ∧  . . . ∧  hk =

 (ei, h 1 ) ei

∧  . . . ∧

 (ei, hk) ei . 

 i=1

 i=1

Given  λ =  (λ 1 , λ 2 , . . . , λk) ∈  n,k, the wedge product’s properties immediately imply that the  λ th component  αλ  of  h 1 ∧  h 2 ∧  . . . ∧  hk  is n

; 

 αλ =

sign (σ )

 (eσ (λj), hj ) , 

(12.41)

 σ

 j =1

where  σ  is an arbitrary permutation of the indices  λ 1 , λ 2 , . . . , λk  in  λ. Now (12.41) gives (12.40), by definition of determinant. The last claim follows from the definition of norm of a  k-vector. 

12.6

Differential  k-Forms

Let  A ⊆ R n  be an open subset and  k ≥ 1. A  differential form of degree k, or  k- form, is a map  ω :  A →  k( R n)  sending  x ∈  A  to the alternating form of degree  k ω(x) =

 ωλ(x) dxλ . 

(12.42)

 λ∈ n,k
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The functions  ωλ(x)  are called coefficients of  ω, and the latter is said of class  Cr , r = 0 ,  1 , . . . , ∞, when its coefficients are of class  Cr (A). 

For  k = 1 definition (12.42) recovers differential 1-forms, introduced in Sect. 7.2. 

In general, for  k ≥ 1, for any  x ∈  A  and any  k-tuple  (h 1 , h 2 , . . . , hk)  of vectors in R n, 



 ω(x)(h 1 , h 2 , . . . , hk) =

 ωλ(x)  det (eλ , h

 i

 j )ij . 

 λ∈ n,k

The operations of sum, multiplication by a scalar and wedge product defined in the

previous section for general alternating forms extend naturally to differential forms. 

For the reader’s benefit we summarise below the general expression of a  k-form ω  for special values of the degree. When  k = 1, differential forms of degree 1 are precisely the 1-forms

 ω =  a 1 (x) dx 1 +  a 2 (x)dx 2 +  . . . +  an(x)dxn ; 2-forms are bilinear forms of type



 ω =

 aij (x) dxi ∧  dxj ; 

1≤ i<j ≤ n

 (n − 1 )-forms are of type

 n



 ω =

 ai(x) d> 

 xi , 

 i=1

where  d> 

 xi =  dx 1 ∧  . . . ∧  dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn , for any  i = 1 ,  2 , . . . , n. Finally, n-forms are

 ω =  a(x) dx 1 ∧  dx 2 ∧  dx 3 ∧  . . . ∧  dxn . 

When  k > n, differential  k-forms are zero. At times we shall speak of a function a :  A ⊆ R n → R as a 0-form. 

 Example 1  Let  A  be an open subset of R3. The generic differential 2-form on  A  is ω =  L(x, y, z) dy ∧  dz +  M(x, y, z) dz ∧  dx +  N(x, y, z) dx ∧  dy , where  L, M, N  are real functions defined on  A. 

Let  ω :  A ⊂ R n →  k( R n)  be a  k-form of class  C 1



 ω(x) =

 ωλ(x) dxλ . 

 λ∈ n,k
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The  exterior derivative dω  is the  (k + 1 )-form



 dω(x) =

 dωλ ∧  dxλ . 

(12.43)

 λ∈ n,k

To calculate  dω, in other words, we have to compute the differential (a differential 1-form) of the coefficients  ωλ, take the wedge product with the canonical basis element  dxλ , thus obtaining a  (k + 1 )-form, and then add over  λ. 

Clearly the exterior derivative of the constant form  dxλ  is zero, while if  g :  A →

R is a  C 1 function and  λ ∈  n,k, by (12.43) we have d(g dxλ) =  dg ∧  dxλ . 

(12.44)

If  a  is a function of class  C 1 (A), its exterior derivative as a 0-form is the usual differential of  a. 

 Example 2  Let  ω :  A ⊂ R2 →   1 ( R2 )  be the 1-form ω(x, y) =  a(x, y)dx +  b(x, y)dy

with  C 1 (A)  coefficients. Then

 dω(x) =  da ∧  dx +  db ∧  dy =









=  ∂a

 ∂b

 dx +  ∂a dy ∧  dx +

 dx +  ∂b dy ∧  dy =

 ∂x

 ∂y

 ∂x

 ∂y





=  ∂a

 ∂b

 dy ∧  dx +  ∂b dx ∧  dy =

−  ∂a dx ∧  dy . 

 ∂y

 ∂x

 ∂x

 ∂y

 Example 3  Let us calculate the exterior derivative of the 2-form in R3

 ω =  xy dy ∧  dz +  xy 2  dz ∧  dx +  z dx ∧  dy . 

We have

 dω =  d(xy) ∧  dy ∧  dz +  d(xy 2 ) ∧  dz ∧  dx +  dz ∧  dx ∧  dy =

=  (y dx +  x dy) ∧  dy ∧  dz

+  (y 2  dx + 2 xy dy) ∧  dz ∧  dx +  dz ∧  dx ∧  dy =

=  (y + 2 xy + 1 ) dx ∧  dy ∧  dz . 
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 Example 4  Let  ω :  A ⊂ R n →  n( R n)  be the  n-form ω(x) =  f (x) dx 1 ∧  dx 2 ∧  . . . ∧  dxn , 

with  f ∈  C 1 (A). Since  dω  is an  (n + 1 )-form, its differential vanishes identically:  dω = 0. 

Proposition 1  For any ω, ω :  A →  k( R n) and η :  A →  l( R n) of class C 1  on the open set A in  R n, 

 d(ω +  ω) =  dω +  dω , 

(12.45)

 d(ω ∧  η) =  dω ∧  η +  (−1 )kω ∧  dη , (12.46)

 If ω is of class C 2 , 

 d(dω) = 0  . 

(12.47)

 Proof  Property (12.45) is obvious. To prove (12.46), suppose  g :  A → R is  C 1 and take  λ ∈  n,k,  μ ∈  n,l. Then

 d(g dxλ ∧  dxμ) =  dg ∧  dxλ ∧  dxμ , 

(12.48)

since either  dxλ ∧  dxμ  is zero (and the previous relation is trivial) or it coincides, up to a sign, with one of the  dxν  in the canonical basis of  k+ l( R n). In the latter case (12.48) follows from (12.44). So by (12.37), d(ω ∧  η) =

 d(ωλ ημ dxλ ∧  dxμ) =

 λ∈ n,k

 μ∈ n,l





=

 ημ dωλ ∧  dxλ ∧  dxμ +

 ωλ dημ ∧  dxλ ∧  dxμ =

 λ,μ

 λ,μ



=  dω ∧  η + (−1 )k

 ωλ dxλ ∧  dημ ∧  dxμ =  dω ∧  η + (−1 )k ω ∧  dη. 

 λ,μ

At last, to prove (12.47) we consider a function  g :  A → R of class  C 2. By Schwarz’s theorem (Sect. 3.4)





 n



 n

 ∂g

 ∂ 2 g

 d(dg) =  d

 dxi

=

 dxj ∧  dxi =

 ∂xi

 ∂xi∂xj

 i=1

 i,j =1





=

 ∂ 2 g

−  ∂ 2 g

 dxi ∧  dxj = 0  . 

 ∂xj ∂xi

 ∂xi∂xj

1≤ i<j ≤ n
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In the general case, using (12.46) and  d(dxλ) = 0, we have

⎛

⎞





 d(dω) =  d ⎝

 dω

⎠

 λ ∧  dxλ

=

 d(dωλ) ∧  dxλ = 0  . 

 λ∈ n,k

 λ∈ n,k

Let  f :  U → R n  be a map defined on the open set  U ⊆ R m  and of class C 1 (U ). Consider the element  dxλ =  dxλ ∧  dx ∧  . . . ∧  dx  of the canonical basis 1

 λ 2

 λk

of  k( R n). The  pull-back  of the constant  k-form  dxλ  by  f  is the  k-form  (dxλ)# : U →  k( R m), 



 ∂(fλ , fλ , . . . , fλ )

 (dx

1

2

 k

 λ)# =

det

 dyμ ∧  dyμ ∧  . . . ∧  dyμ . 

(12.49)

 ∂(y

1

2

 k

 μ , yμ , . . . , yμ )

 μ∈ 

1

2

 k

 m,k

In general, if  ω :  A ⊂ R n →  k( R n)  is a  k-form and  f (U ) ⊆  A, the form’s pull-back  by  f  is defined by



4

5#

 ω# (y) =

 ωλ(f (y)) dxλ ∧  dx ∧  . . . ∧  dx

=

1

 λ 2

 λk

 λ∈ n,k



(12.50)

=

 ∂(fλ , fλ , . . . , fλ )

 ω

1

2

 k

 λ(f (y))  det

 dyμ ∧  dyμ ∧  . . . ∧  dyμ . 

 ∂(y

1

2

 k

 μ , yμ , . . . , yμ )

 λ∈ 

1

2

 k

 n,k

 .μ∈ m,k

Clearly  ω# :  U →  k( R m). 

The  pull-back  of a 0-form  a :  A → R is the 0-form defined by  a# (y) =  a(f (y)) on  U . 

 Example 5  Let  ω :  A ⊂ R n →   1 ( R n)  be the one-form n



 ω(x) =

 ωi (x) dxi

 i=1

defined on the open set  A, and suppose  f :  (a, b) → R n  a  C 1 function with  f ((a, b)) ⊆  A. 

Then





 n



 dfi

 ω# (t ) =

 ωi (f (t))

 dt . 

(12.51)

 dt

 i=1
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 Example 6  Let  ω :  A ⊂ R3 →   2 ( R3 )  be the two-form ω =  L dy ∧  dz +  M dz ∧  dx +  N dx ∧  dy , and  f :  U ⊂ R2 → R3 a  C 1 function on the open set  U  such that  f (U ) ⊆  A. From

(12.49) we have



 ∂(f 2 , f 3 )

 ω# (s, t ) =  L(f (s, t))  det

+

 ∂(s, t )



+

 ∂(f 3 , f 1 )

 ∂(f 1 , f 2 )

 M(f (s, t ))  det

+  N(f (s, t))  det

 ds ∧  dt. 

 ∂(s, t )

 ∂(s, t )

(12.52)

 Example 7  Let   :  U ⊂ R n → R n  be a  C 1 map on the open set  U . The  pull-back  of the n-form  dx( 1 ,  2 ,...,n) =  dx 1 ∧  dx 2 ∧  . . . ∧  dxn (we shall also write  dx 12 ...n)  is (dx 1 ∧  dx 2 ∧  . . . ∧  dxn)# =  J(y) dy 1 ∧  dy 2 ∧  . . . ∧  dyn . 

We conclude the section observing that the  pull-back  operation satisfies the following properties, whose proof we skip for brevity. 

Proposition 2  Given differential forms ω, ω :  A →  k( R n), η :  A →  l( R n) and a C 1  map f :  U ⊆ R m →  A, the pull-back by f satisfies: (ω +  ω)# =  ω# +  ω#  , 

 (ω ∧  η)# =  ω# ∧  η#  . 

 Moreover, if ω is of class C 1  and f is of class C 2  then

 dω# =  (dω)#  . 

(12.53)

The  pull-back, in other words, commutes with the sum, with the wedge product

and with the exterior derivative of forms. 

12.7

Orientable Manifolds. Integration of  k-Forms on

Manifolds

In the present section we will discuss the notion of  orientation of a k-dimensional manifold M. As we shall see, the notion is based on the possibility of choosing an
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orientation on every tangent space  TM (x). It is then necessary to analyse first how to endow vector subspaces in R n  with an orientation. 

Theorem 1  Fix  1 ≤  k ≤  n. The vectors h 1 , h 2 , . . . , hk ∈ R n are linearly independent if and only if

 h 1 ∧  h 2 ∧  . . . ∧  hk = 0  . 

(12.54)

 Moreover, the two sets { h 1 , h 2 , . . . , hk}  and { h  , h  , . . . , h }  generate the same 1

2

 k

 subspace V in  R n if and only if

 h 1 ∧  h 2 ∧  . . . ∧  hk =  c (h ∧

∧

1

 h 2

 . . . ∧  h k)

 for some constant c = 0 . 

We shall not prove this fact, which only involves elementary properties of

determinants by the way. But we remark that it gives a simple criterion to decide

whether a given set of vectors is linearly independent, and if two sets span the same subspace. 

 Example 1  Given  h 1 =  ( 1 ,  2 , −1 ),  h 2 =  ( 1 , −1 ,  1 ),  h 3 =  ( 1 , −4 ,  2 )  in R3, h 1 ∧  h 2 ∧  h 3 =  (e 1 + 2 e 2 −  e 3 ) ∧  (e 1 −  e 2 +  e 3 ) ∧  (e 1 − 4 e 2 + 2 e 3 ) = (12.55)

=  (−3 e 12 + 2  e 13 +  e 23 ) ∧  (e 1 − 4 e 2 + 2 e 3 ) = 3 e 123  , so by (12.54)  h 1,  h 2,  h 3 are linearly independent. 

 Example 2  The vectors  h 1 =  ( 1 , −1 ,  0 ),  h 2 =  (−1 ,  0 ,  1 ),  k 1 =  ( 1 ,  1 , −2 ),  h 2 =

 ( 1 ,  2 , −3 )  in R3 satisfy

 h 1 ∧  h 2 =  (e 1 −  e 2 ) ∧  (− e 1 +  e 3 ) = − e 12 +  e 13 −  e 23  , (12.56)

 k 1 ∧  k 2 =  (e 1 +  e 2 − 2  e 3 ) ∧  (e 1 + 2  e 2 − 3  e 3 ) =  e 12 −  e 13 +  e 23  , (12.57)

and so  k 1∧ k 2 = − h 1∧ h 2. Hence { h 1 , h 2} and { k 1 , k 2} generate the same subspace  V ⊂ R3. 

Let  V  be a vector subspace of dimension  k  contained in R n  and { h 1 , h 2 , . . . , hk} a basis. We shall refer to the unit  k-vector

 α =  h 1 ∧  h 2 ∧  . . . ∧  hk

| h 1 ∧  h 2 ∧  . . . ∧  hk|
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as the  orientation of V induced by the basis { h 1 , h 2 , . . . , hk}. By Theorem 1, if

{ h  , h  , . . . , h } is another basis of  V  inducing the orientation  β, then  β =  α  or 1

2

 k

 β = − α. 

Because of the wedge product’s properties, the orientation induced by

{ h 1 , h 2 , . . . , hk} depends on the order of the basis elements. 

 Example 3  The orientation induced by the canonical basis { e 1 , e 2 , . . . , en} of R n  is  e 1 ∧

 e 2 ∧  . . . ∧  en =  e 12 ...n. On the other hand, the basis { e 2 , e 1 , . . . , en} induces − e 12 ...n. We shall say that the orientation on R n  induced by the canonical basis is  positive, while the opposite orientation is  negative. 

 Example 4  The vectors { h 1 , h 2 , h 3} of Example 1 form a basis of R3. By (12.55) this basis induces the positive orientation on R3. 

 Example 5  Let  V  be the subspace of R3 generated by the set { h 1 , h 2} from Example 2. 

Due to (12.56), (12.57) the induced orientation on  V  is α = 1

√  (− e 12 +  e 13 −  e 23 ) , 

3

while the orientation induced by { k 1 , k 2}, also in Example 2, is − α. 

A  k-manifold  M  in R n  is called  orientable  if there exists a continuous map α :  M →  ∗ k( R n)

such that, for any  x ∈  M,  α(x)  is an orientation on the tangent space  TM (x). 

Equivalently, the manifold  M  is orientable if we can equip every tangent space with an orientation that varies with continuity from point to point. 

Let us examine a few special instances. 

Let  M ⊂ R n  be a  k-manifold and  ϕ :  U ⊂ R k → R n  a parametrisation of  M

such that  ϕ(U ) =  M. If  ϕ(y), for  y ∈  U , is the generic point of  M, the tangent space to  M  at  ϕ(y)  is spanned by { ϕy (y), ϕ (y), . . . , ϕ (y)}. The induced orientation is 1

 y 2

 yk

 ϕy (y) ∧  ϕy (y) ∧  . . . ∧  ϕy (y)

 α(y) =

1

2

 k





 ϕ

 . 

(12.58)

 y (y) ∧  ϕ

 (y) ∧  . . . ∧  ϕ (y)

1

 y 2

 yk

and is called  orientation induced on M  by the parametrisation  ϕ. In such a case, clearly, (12.58) is a continuous map and  M  is orientable. 
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Moreover, by Proposition 2, Sect. 12.3 and Theorem 2, Sect. 12.5, we have ϕ



 y (y) ∧  ϕ

 (y) ∧  . . . ∧  ϕ (y) = > 

 J

1

 y 2

 yk

 ϕ (y) , 

so the orientation induced by  ϕ  is





 α(y) =

1

> 

 ϕy (y) ∧  ϕy (y) ∧  . . . ∧  ϕy (y) . 

(12.59)

 J

1

2

 k

 ϕ (y)

Proposition 1  Let V ⊂ R n be the subspace spanned by linearly independent vectors h 1 , h 2 , . . . , hn−1 , and

 n



 α =

 αi > 

 ei

 i=1

 the orientation they induce on V , where > 

 ei =  e 1 ∧  . . . ∧  ei−1 ∧  ei+1 ∧  . . . ∧  en. Then n



 h = ∗ α =

 αi(−1 )i−1 ei

(12.60)

 i=1

 does not belong to V . Moreover, { h, h 1 , h 2 , . . . , hn−1}  is a basis of  R n inducing the positive orientation. 

 Proof  Note that

 h ∧  h 1 ∧  h 2 ∧  . . . ∧  hn−1 =

|

 h ∧  α =

 h 1 ∧  h 2 ∧  . . . ∧  hn−1|







 n



 n



 n



=

 (−1 )i−1 αiei ∧

 αi> 

 ei

=

 (−1 )i−1 α 2 iei ∧ > 

 ei =

 i=1

 i=1

 i=1





 n



=

 α 2  e

 i

1 ,  2 ,...,n =  e 1 ,  2 ,...,n . 

 i=1

The claim follows from Theorem 1 and the definition of positive orientation of R n. 

The vector  h  defined by (12.60) is called  Hodge dual  of the  (n − 1 )-vector  α. 

Observe that  h  has norm 1, just like  α. 

Let  D  be a regular domain in R n. We say

 α :  ∂D →  n−1 ( R n)

is a  positive orientation  of the boundary  ∂D  if

∗ α(x) =  ν(x) , 

∀  x ∈  ∂D, 

(12.61)
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where  ν(x)  is the outer normal of  D  at the point  x. 

This notion is well defined, because the boundary  ∂D  of a regular domain  D  is an orientable manifold. It is in fact possible to prove, more generally, that any compact submanifold  M  of R n  is orientable. 

 Example 6  Let  γ : [ a, b] → R n  be a regular simple curve such that  M =  γ ((a, b))  is a one-dimensional manifold in R n (recall that a regular simple curve may not be a manifold, globally – see the remark at the end of Sect. 12.1). By (12.58), the orientation induced on M  by the parametrisation  γ  at the point  γ (t ) ∈  M  is α(t ) =  γ  (t)

| γ  (t)|  , 

so it coincides with the unit tangent vector  T (t)  of the curve  γ . 

◦

 Example 7  Let  ϕ :  D ⊂ R2 → R3 be a regular surface such that  M =  ϕ(D)  is a two-dimensional manifold in R3. The orientation induced on  M  by  ϕ  at a point  ϕ(s, t) ∈  M  is the 2-vector

 α(s, t ) =  ϕs(s, t) ∧  ϕt (s, t)

| ϕs(s, t) ∧  ϕt(s, t)|  . 

(12.62)

If  ϕ  has equations  ϕ(s, t) =  (x(s, t), y(s, t), z(s, t)), then ϕs ∧  ϕt =  (xs e 1 +  yse 2 +  zse 3 ) ∧  (xt e 1 +  yt e 2 +  zt e 3 ) =

=  (xsyt −  xt ys)e 12 +  (xszt −  xtzs)e 13 +  (yszt −  ytzs)e 23  . 

Therefore by (12.60)

∗ α(s, t) =  ν(s, t) =  ϕs(s, t) ∧  ϕt(s, t)

| ϕs(s, t) ∧  ϕt(s, t)|  , 

(12.63)

where  ν(s, t)  is the normal to the surface  M  determined by the parametrisation  ϕ. 

The reader should note that in (12.62) the symbol ∧ denotes the  wedge product  of vectors, while in (12.63) the same symbol is the  cross product. 

The previous two examples establish the equivalence, in the cases examined, 

between the notion of orientation given in this section and the analogous concepts

for curves and surfaces in R3 (Chaps. 6 and 10). In particular, the reader can easily show that the notion of positive orientation of the boundary  ∂D  of a regular domain of R n  reduces, in the plane and in space, to the notions already seen in Chaps. 8

and 10. For an example of non-orientable manifold see the discussion on the  Möbius strip  in Sect. 10.5. 
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In the sequel we shall refer to an open subset  A ⊆ R n  as an  n-manifold. At every point  x ∈  A  the tangent space to  A  is R n, and the  positive orientation  of  A  is the positive orientation of R n, i.e.  e 12 ...n . 

Let  M ⊂ R n  be an orientable  k-manifold, 1 ≤  k ≤  n, and  α :  M →  ∗ ( R n)  its k

orientation. Suppose  B ⊂  M  is a bounded measurable subset and  ω :  A →  k( R n) is a continuous and bounded  k-form on  B ⊆  A.  The integral of ω over the set B, with orientation  α, is







 ω =

"  ω(x), α(x)#  dH k =

 ωλ(x)αλ(x) dH k . 

(12.64)

 B

 B

 B

 λ∈ n,k

Let us denote by − B  the set  B  oriented by − α. Then obviously ω = −

 ω . 

− B

 B

Moreover, since  α  is a unit  k-vector, 









 ω ≤ sup | ω| ·  Hk(B) . 

 B

 B

 Example 8  Suppose  A ⊂ R n  is an open bounded set and  ω =  f dx 1 ∧  dx 2 ∧  . . . ∧  dxk  is a continuous and bounded  n-form on  A. If we choose on  A  the positive orientation, by (12.64)

we have





 ω =

 f (x) dx . 

(12.65)

 A

 A

Proposition 2 provides a useful formula for computing the integral (12.64). 

Proposition 2  Let M ⊂ R n be a k-manifold,  1 ≤  k < n, ϕ :  U ⊂ R k →  M

 a local parametrisation and B ⊆  ϕ(U ) a bounded measurable subset of M, with orientation induced by ϕ. Then





 ω =

 ω#  , 

(12.66)

 B

 ϕ−1 (B)

 where ω#  is the pull-back by ϕ, and ϕ−1 (B) ⊂ R k has the positive orientation of R k. 
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 Proof  Suppose  ω(x) =

 ωλ(x) dxλ, so by (12.50) and (12.65) we obtain λ∈ n,k







 ∂(ϕλ , ϕλ , . . . , ϕλ )

 ω# =

 ω

1

2

 k

 λ(ϕ(y)) det

 dy 1∧ dy 2∧ . . . ∧  dyk =

 ϕ−1 (B)

 ϕ−1 (B)

 ∂(y 1 , y 2 , . . . , yk)

 λ∈ n,k





=

 ∂(ϕλ , ϕλ , . . . , ϕλ )

 ω

1

2

 k

 λ(ϕ(y))  det

 dy. 

 ϕ−1 (B)

 ∂(y 1 , y 2 , . . . , yk)

 λ∈ n,k

(12.67)

Now, (12.59) and (12.64) imply





 ω =

"  ω(x), ϕy ∧  ϕ ∧  . . . ∧  ϕ # 1  dH k . 

1

 y 2

 yk > 

 B

 B

 Jϕ(y)

By Theorem 2, Sect. 12.5, 



 ∂(ϕλ , ϕλ , . . . , ϕλ )

 ϕ

1

2

 k

 y ∧  ϕ

∧  . . . ∧  ϕ =

det

 e

1

 y 2

 yk

 λ , 

 ∂(y 1 , y 2 , . . . , yk)

 λ∈ n,k

so this and (12.16) give





 ∂(ϕλ , ϕλ , . . . , ϕλ )

1

 ω =

 ω

1

2

 k

 λ  det

> 

 dH k =

 B

 B

 ∂(y 1 , y 2 , . . . , yk) J

 λ∈ 

 ϕ (y)

 n,k





(12.68)

=

 ∂(ϕλ , ϕλ , . . . , ϕλ )

 ω

1

2

 k

 λ(y)  det

 dy . 

 ϕ−1 (B)

 ∂(y 1 , y 2 , . . . , yk)

 λ∈ n,k

Equalities (12.67) and (12.68) allow to conclude. 

 Example 9  Let  M  be the one-manifold considered in Example 6, with orientation induced by the parametrisation  γ . If  ω :  M →   1 ( R n)  is a 1-form on  M, from (12.66) and (12.51)

we have



 b n



 dγi

 ω =

 ωi (γ (t))

 (t ) dt , 

 M

 a

 dt

 i=1

recovering the definition of integral of a one-form seen in Chap. 7. 
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 Example 10  Let  M  be the two-dimensional manifold considered in Example 7, with orientation induced by the parametrisation  ϕ. If

 ω =  L(x, y, z) dy ∧  dz +  M(x, y, z) dz ∧  dx +  N(x, y, z) dx ∧  dy is a continuous and bounded 2-form on  M, by (12.66) and (12.52) it follows that







 ∂(ϕ 2 , ϕ 3 )

 ∂(ϕ 3 , ϕ 1 )

 ∂(ϕ 1 , ϕ 2 )

 ω =

 L  det

+  M  det

+  N  det

 ds dt . 

 M

 D

 ∂(s, t )

 ∂(s, t )

 ∂(s, t )

Therefore the integral of  ω  over  M  coincides with the flux of the vector field  (L, M, N ) across the regular surface  M, in the direction of the normal determined by  ϕ. 

 Example 11  Let  M = { (x, y, z, w) :  x 2 +  y 2 = 1 , z 2 +  w 2 = 1 , x, z >  0} be the two-dimensional submanifold of R4 considered in Example 4, Sect. 12.3. We have seen that the map







 π

 π

 ϕ(u, v) =  ( cos  u,  sin  u,  cos  v,  sin  v) , (u, v) ∈ −  π , 

× −  π , 

 , 

2

2

2

2

is a parametrisation of the entire manifold  M  and > 

 Jϕ = 1. Let us calculate



 xy dx ∧  dy +  xz dy ∧  dw , 

 M

where  M  is oriented by  ϕ. In view of (12.66) and (12.49) the given integral is π/ 2

 π/ 2

 ∂( cos  u,  sin  u)

cos  u  sin  u  det

+

− π/ 2 − π/ 2

 ∂(u, v)



+

 ∂( sin  u,  sin  v)

cos  u  cos  v  det

 du dv =

 ∂(u, v)





 π/ 2

 π/ 2

=

cos2  u  cos2  v du dv =  π 2  . 

− π/ 2 − π/ 2

4

 Example 12  Let  f :  U ⊂ R n−1 → R be a  C 1 function on the open set  U , and let  M  denote the graph of  f  oriented coherently with the orientation induced by the parametrisation ϕ(x ) =  (x , f (x )) , 

 x ∈  U. 

 n



The  (n − 1 )-form  ω =

 ωi (x) d> 

 xi , where

 i=1

(continued)
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 Example 12 (continued)

 d> 

 xi =  dx 1 ∧  . . . ∧  dxi−1 ∧  dxi+1 ∧  . . . ∧  dxn , i = 1 ,  2 , . . . , n, 

(12.69)

is continuous and bounded on  M. The orientation induced by  ϕ  on  M  at  (x , f (x ))  is (e 1 +  fx (x )en) ∧  . . . ∧  (en−1 +  fx

 (x )en)

 α(x ) =

1

 n−1





 (e

=

1 +  fx (x  )e

 (x )e

1

 n ) ∧  . . . ∧  (en−1 +  fxn−1

 n )





 n−1



=

1



 e 12 ...n−1 +

 (−1 )n− i−1  ∂f (x )> 

 ei , 

 ∂x

1 + | Df (x )|2

 i

1=1

where

>  ei =  e 1 ∧  . . . ∧  ei−1 ∧  ei+1 ∧  . . . ∧  en , i = 1 ,  2 , . . . , n − 1 . 

(12.70)

Then from (12.64) and (12.15) we have







 n−1



 ∂f

 ω =

 (−1 )n− i−1 ωi (x , f (x ))

 (x ) +  ωn(x , f (x )) dx  . 

 M

 U

 ∂xi

1=1

To close the section we prove the following result, which rephrases the divergence

theorem for  (n − 1 )-forms. 

Theorem 2  Let D ⊂ R n be a regular domain and + ∂D its positively oriented boundary. If ω :  D →  n−1 ( R n) is an (n − 1 )-form of class C 1 , ω =

 dω . 

+ ∂D

 D

 n



 Proof  Write  ω(x) =

 ωi (x) d> 

 xi, with  d> 

 xi  as in (12.69). Call  α(x)  the positive

 i=1

 n



orientation of the boundary  ∂D  of  D. Then  α(x) =

 αi (x)> 

 ei, where > 

 ei  is defined

 i=1

by (12.70). Using (12.61), (12.60) and (12.64) we obtain n





 n



 ω =

 ωi (x)αi(x) dH n−1 =

 (−1 )i−1 ωi(x)νi(x) dH n−1 , 

+ ∂D

 ∂D  1=1

 ∂D  1=1

where  νi(x)  is the  i th component of the outer normal of  D  at  x. The divergence theorem (Sect. 12.4) tells that



 n



 ∂ωi

 ω =

 (−1 )i−1

 dx . 

(12.71)

+ ∂D

 ∂xi

1=1

 D
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On the other hand

 n



 n

 ∂ωi

 dω =

 dωi ∧  d> 

 xi =

 dxi ∧  d> 

 xi =

 ∂xi

 i=1

 i=1

 n



=

 (−1 )i−1  ∂ωi dx 1 ∧  dx 2 ∧  . . . ∧  dxn , 

 ∂xi

1=1

and so



 n



 ∂ωi

 dω =

 (−1 )i−1

 dx . 

(12.72)

 D

 ∂xi

1=1

 D

The assertion follows from (12.71) and (12.72). 

12.8

Manifolds with Boundary. Stokes’s Formula

In this section we will extend to  k-manifolds the notion of boundary and Stokes’s formula, discussed in Chaps. 10 and 8. 

We shall say that  M ⊂ R n  is a regular  k-manifold with boundary, for 1 ≤  k < n, if there exist a  k-manifold  M 0 and a local parametrisation  ϕ :  U ⊂ R k →  M 0 such that

◦

 M ⊂  M 0  , 

 M =  ϕ(D) , 

(12.73)

where  D ⊂  U  is a regular domain of R k (see Fig. 12.9). 

The set  ϕ(∂D)  will be called  boundary of the manifold  and denoted by  ∂M. It is possible to show that this definition of boundary is independent of the manifold  M 0

and of the parametrisation  ϕ; moreover,  ∂M  is a manifold of dimension  k − 1. 

Observe that the regular manifold with boundary  M, being contained in  ϕ(U ), where  ϕ  is a local parametrisation of  M 0, is clearly orientable. Given an orientation α(x)  on  M, we wish to show how one can define an orientation on the boundary

 ∂M  that is coherent with the given orientation. 

M

U

0

M

D

Fig. 12.9
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Without loss of generality we may always assume that the orientation induced by

the parametrisation  ϕ  on  M  coincides with  α(x). In fact, if that were not the case,  ϕ

would induce on  M  the opposite orientation, and then the parametrisation

< 

 ϕ(y) =  (− y 1 , y 2 , . . . , yk) , 

defined on the open set < 

 U = { y ∈ R k :  (− y 1 , y 2 , . . . , yk) ∈  U }, would induce on M  the desired orientation  α(x). 

Let us then fix a point  x 0 ∈  ∂M  and set  y 0 =  ϕ−1 (x 0 ) ∈  ∂D. As  ∂D  is a  (k − 1 )-

manifold, we can always find an open neighbourhood  U 0 of  y 0 with  U 0 ⊆  U , an open set  W ⊂ R k−1 and an injective  C 1 map  ψ :  W →  ∂D  such that  Dψ  has rank  k − 1 on  W  and  ψ(W ) =  ∂D ∩  U 0. Such  ψ  is then a local parametrisation of

 ∂D, and with the same argument used above, one proves that  ψ  can be chosen so to induce on  ∂D ∩  U 0 the positive orientation of the boundary of  D. 

It is easy to see that  ϕ ◦  ψ :  W →  ∂M  is a local parametrisation of  ∂M. Namely, ϕ ◦ ψ  is 1-1, of class  C 1 and the rank of  D(ϕ ◦ ψ)  is  k −1. Moreover, it can be proved that there exists an open neighbourhood  A 0 of  x 0 such that  (ϕ ◦  ψ)(W ) =  ∂M ∩  A 0. 

The portion of boundary  ∂M  is said to be  coherently oriented (with  M) when its orientation coincides with the orientation induced by the local parametrisation

 ϕ ◦  ψ. Repeating these considerations for every point of  ∂M, one defines an orientation on the entire manifold  ∂M, called  orientation induced  by the orientation of  M  or  orientation coherent  with  M (see Fig. 12.10, and compare to Fig. 10.23

in Sect. 10.5). Note how this definition agrees with the positive orientation of the boundary of a regular surface. 

Fig. 12.10 The boundary

 ∂M  of the manifold  M  is

oriented coherently with  M

M

We state, without proof, a useful result from Linear Algebra. 

Proposition 1  Let L : R m → R n be a linear map and (ij )ij , i = 1 ,  2 , . . . , n, j = 1 ,  2 , . . . , m, its matrix in the canonical bases. Given vectors h 1 , h 2 , . . . , hk in R m, with  1 ≤  k ≤ min{ n, m} , define

 α =  h 1 ∧  h 2 ∧  . . . ∧  hk ∈  ∗ k( R m), β =  L(h 1 ) ∧  L(h 2 ) ∧  . . . ∧  L(hk) ∈  ∗ k( R n), 
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 and Lλ,μ = det (λ

 ), r, s = 1 ,  2 , . . . , k, where λ ∈  

 r ,μs

 n,k , μ ∈  m,k . Then



 βλ =

 Lλ,μαμ , 

∀  λ ∈  n,k. 

(12.74)

 μ∈ m,k

What this says is the following: in the matrix with columns  L(h 1 ), L(h 2 ), . . . , L(hk), the minor formed by the rows  λ 1 , λ 2 , . . . , λk  is a linear combination, with coefficients  Lλ,μ, of the minors  αμ  formed by the rows  μ 1 , μ 2 , . . . , μk  in the matrix with columns  h 1 , h 2 , . . . , hk. 

Proposition 2  Let M be a manifold with boundary, D ⊂  U ⊆ R k a regular domain and ϕ :  U → R n a map satisfying (12.73) . If M is oriented by ϕ, and

 ∂M is coherently oriented, then any continuous (k − 1 )-form ω :  ∂M →  k−1 ( R n) satisfies





 ω =

 ω#  , 

(12.75)

 ∂M

+ ∂D

 where ω#  is the pull-back by ϕ. 

 Proof  As  ∂M  is compact, the reasoning used for the lemma on partitions of unity, Sect. 12.3, easily shows that there are finitely many maps  ψi :  Wi ⊂ R k−1 →  ∂D

and continuous functions  ηi :  ∂M → [0 ,  1],  i = 1 ,  2 , . . . , N, such that each  ψi  is a local parametrisation of  ∂D, and

 N

" 

 N

" 

 ψi (Wi ) =  ∂D

and so

 (ϕ ◦  ψi) (Wi) =  ∂M , 

 i=1

 i=1

 ηi(x) = 0

if  x ∈  ∂M −  (ϕ ◦  ψi)(Wi) , 

 i = 1 ,  2 , . . . , N, 

(12.76)

 N

 ηi(x) = 1 , 

∀  x ∈  ∂M. 

(12.77)

 i=1

The considerations made at the beginning of the section show that it is not restrictive to suppose that the  ψi  induce on  ∂D ∩  ψi(Wi)  the positive orientation. Hence the ϕ ◦  ψi  induce on  ∂M ∩  (ϕ ◦  ψi) (Wi)  the orientation coherent with the orientation induced by  ϕ  on  M. 

Call  ηi ω,  i = 1 ,  2 , . . . , N, the  (k − 1 )-form (ηi ω)(x) =

 ηi(x)ωλ(x) dxλ , 

 x ∈  ∂M. 

 λ∈ n,k−1
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By (12.76), (12.77) and (12.66) we have N



 ω =

 ηiω =

 ∂M

 (ϕ◦ ψ

 i=1

 i )(Wi )

 N





 ∂(ϕ

◦  ψ

◦  ψ

◦  ψ

=

 λ

 i , ϕλ

 i , . . . , ϕλ

 i )

 (η

1

2

 k−1

 i ωλ)(ϕ ◦  ψi )  det

 dz =

 W

 ∂(z 1 , z 2 , . . . , zk−1 )

 i=1

 i λ∈ n,k−1

 N



















=

 ∂ψi

 ∂ψi

 ∂ψi

 ηi ωλ (Dϕ)

∧ (Dϕ)

∧  . . . ∧ (Dϕ)

 dz . 

 W

 ∂z 1

 ∂z 2

 ∂zk−1

 i=1

 i λ∈ 

 λ

 n,k−1

Applying (12.74) to  L =  (Dϕ)(ψi (z)), we then find ω =

 ∂ M

 N



 ∂(ϕ , ϕ , . . . , ϕ

 )

 ∂(ψ

 , ψ

 , . . . , ψ

 )

=

 λ

 λ

 λ

 i,μ

 i,μ

 i,μ

 η

1

2

 k−1

1

2

 k−1

 i ωλ  det

det

 dz =

 W

 ∂(yμ , yμ , . . . , yμ

 )

 ∂(z 1 , z 2 , . . . , zk−1 )

 i=1  λ∈ 

 i

1

2

 k−1

 n,k−1

(12.78)

 μ∈ k,k−1

 N



 ∂(ϕ , ϕ , . . . , ϕ

 )

=

 λ

 λ

 λ

 η

1

2

 k−1

 i ωλ  det

 dyμ ∧  dy

∧  . . . ∧  dy

 . 

1

 μ 2

 μk−1

 ψ

 ∂(yμ , yμ , . . . , yμ

 )

 i=1  λ∈ 

 i (Wi )

1

2

 k−1

 n,k−1

 μ∈ k,k−1

By (12.49) on the other hand, since  ηi (ϕ(y)) = 0 if  y ∈  ∂D −  ψi(Wi),  i =

 N



1 ,  2 , . . . , N  and

 ηi (ϕ(y)) = 1 for any  y ∈  ∂D, we have

 i=1



 N



 N



 ω# =

 (ηi ◦  ϕ)ω# =

 (ηi ω)# =

(12.79)

+ ∂D

 ψ

 ψ

 i=1

 i (Wi )

 i=1

 i (Wi )

 N



 ∂(ϕ , ϕ , . . . , ϕ

 )

=

 λ

 λ

 λ

 η

1

2

 k−1

 i ωλ  det

 dyμ ∧

1

 ψ

 ∂(yμ , yμ , . . . , yμ

 )

 i=1  λ∈ 

 i (Wi )

1

2

 k−1

 n,k−1

 μ∈ k,k−1

∧  dyμ ∧  . . . ∧  dy

 . 

2

 μk−1

At this point (12.75) follows by comparing (12.78) and (12.79). 
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At last we prove the following

Stokes’s Formula in R n Let M be a regular manifold with coherently oriented boundary ∂M. If ω :  A →  k−1 ( R n) is a (k − 1 )-form of class C 1  on an open subset A of  R n containing M, 





 ω =

 dω . 

 ∂M

 M

 Proof  Consider a parametrisation  ϕ :  U ⊂ R k → R n  and a regular domain  D

satisfying (12.73). Assume the orientation induced by  ϕ  on  M  is the given one on M. By Proposition 2





 ω =

 ω#  , 

(12.80)

 ∂M

+ ∂D

At the same time (12.53) implies







 dω =

 (dω)# =

 dω#  . 

(12.81)

 M

 D

 D

Theorem 2 in the previous section tells that





 ω# =

 dω#  , 

+ ∂D

 D

so keeping (12.80) and (12.81) into account, the claim follows. 

Appendix to Chap. 12

12.9

Exact and Closed Differential Forms

Consider a differential form of class  C 1 over the open set  A ⊆ R n n



 ω =

 ai(x) dxi . 

 i=1

Recall that  ω  is called  closed  when

 ∂ai

 ∂aj

 (x) =

 (x) , 

∀  i, j = 1 ,  2 , . . . , n, 

 ∂xj

 ∂xi

for any  x ∈  A, and  exact  if

 df (x) =  ω(x) , 

∀  x ∈  A
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Fig. 12.11

t

b

a

O

1

s

for some function  f :  A → R. In Sect. 7.6 we saw that every exact form is closed. 

Here we set out to provide conditions for the converse. 

An open set  A  of R n  is called  simply connected  if every closed curve  ϕ :

[ a, b] →  A  of class  C 2 is  homotopic  to a point (see Sect. 7.6). 

Theorem 1  If A ⊆ R n is a simply connected open set and ω is a closed  1 -form of class C 1  on A, then ω is exact on A. 

 Proof  Due to the characterisation of exact forms of Sect. 7.3 it suffices to show that ω = 0

(12.82)

 γ

for any piecewise-regular, closed curve  γ  contained in  A. We shall only prove (12.82) in case  γ  is of class  C 2 (the general case can be then obtained by approximation). Fix a closed  C 2 curve  γ : [ a, b] →  A. As  A  is simply connected,  γ  is homotopic to a point  x 0 ∈  A, meaning that there exists a map f : [0 ,  1] × [ a, b] →  A, of class  C 2, such that f ( 0 , t) =  γ (t) , 

∀  t ∈ [ a, b] , 

(12.83)

 f ( 1 , t) =  x 0  , 

∀  t ∈ [ a, b] , 

(12.84)

 f (s, a) =  f (s, b) , 

∀  s ∈ [0 ,  1] . 

(12.85)

Let  R  be the rectangle [0 ,  1] × [ a, b] and  γ 1,  γ 2,  γ 3,  γ 4, the four edges of  R  oriented as in Fig. 12.11. 

Let  ω# be the one-form on  R  defined by

 n







 ∂fi

 ω# (s, t) =

 ai(f (s, t))

 ds +  ∂fi dt , 

 (s, t) ∈  R, 

 ∂s

 ∂t

 i=1
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where  f 1 , f 2 , . . . , fn  are the components of  f ( ω# is the  pull-back  of  ω  by  f , as defined in Sect. 12.6). By (12.85) we have



1  n



 ∂fi

 ω# =

 ai(f (s, a))

 (s, a) ds =

 γ

 ∂s

1

0

 i=1

(12.86)





1

 n



=

 ∂fi

 ai(f (s, b))

 (s, b) ds = −

 ω#

0

 ∂s

 γ

 i=1

3

and from (12.84), 



 b n



 ∂fi

 ω# =

 ai(f ( 1 , t))

 ( 1 , t) dt = 0  . 

(12.87)

 γ

 ∂t

2

 a

 i=1

At the same time (12.83) implies





 ω# = −

 ω . 

(12.88)

 γ 4

 γ

The Stokes theorem on the plane (see (8.43)) tells that

⎧

⎫





⎛

⎞

⎨ 



 n

 n

⎬

 ∂



 ∂f



 i

 ∂fj

 ω# =

 a

⎝

⎠

 i (f (s, t ))

−  ∂

 aj (f (s, t))

+

⎩

⎭ ds dt , 

 ∂R

 R ∂s

 ∂t

 ∂t

 ∂s

 i=1

 j =1

where + ∂R  is the boundary of  R  with the positive orientation. 

Since  ω  is closed, the integrand in the right-hand side is zero, as the following relations show:





 n

 n

 n

 ∂



 ∂f





 i

 ∂ai ∂fj ∂fi

 ∂ 2 fi

 ai(f (s, t))

=

−

 ai

 , 

 ∂s

 ∂t

 ∂xj ∂s ∂t

 ∂t∂s

 i=1

 i,j =1

 i=1

⎛

⎞

 n

 n

 n

 ∂







⎝

 ∂fj

 ∂aj ∂fi ∂fj

 ∂ 2 fj

 a

⎠

 j (f (s, t ))

=

−

 aj

 . 

 ∂t

 ∂s

 ∂xi ∂t ∂s

 ∂s∂t

 j =1

 i,j =1

 j =1

Hence we obtain



 ω# = 0

+ ∂R

and by (12.86), (12.87) and (12.88) we reach the conclusion (12.82). 

The notions of closed and exact differential form introduced in Chap. 7 for 1-forms extend in a natural way to any degree  k. 

[image: Image 3709]

[image: Image 3710]

[image: Image 3711]

[image: Image 3712]

[image: Image 3713]

[image: Image 3714]

666

12

Manifolds in R n  and  k-Forms

Let  ω :  A ⊆ R n →  k( R n),  n, k ≥ 1, be a differential form. We call it  exact on A  if there is a  (k − 1 )-form  η, differentiable on  A, such that dη =  ω

( dη  is the exterior derivative of  η  introduced in Sect. 12.6. The differential form  η  is called a primitive of  ω.)

Note how this definition generalises the one given for one-forms in Sect. 7.3, as we have agreed to call 0 -form  any function  f :  A → R and to define its exterior derivative as the usual differential. 

 Example 1  The two-form

 ω =  x dx ∧  dy +  z dz ∧  dx

is exact on R3. In fact  ω =  dη (for the definition of exterior derivative  dη  see Sect. 12.6), 

where

 η = − xy dx −  xz dz . 

 Example 2  If  ω =  f (x) dx 1 ∧  dx 2 ∧  . . . ∧  dxn : R n →  n( R n)  is an  n-form of class  C 1, then it is exact on R n. In fact, defining

 x 1

 g(x) =

 f (t , x 2 , . . . , xn) dt

0

we have  dη =  ω, where  η  is the  (n − 1 )-form

 η(x) =  g(x) dx 2 ∧  dx 3 ∧  . . . ∧  dxn , 

 x ∈ R n. 

 Example 3  Consider the 1-form

 ω(x, y) =  a(x, y)dx +  b(x, y)dy , 

with  C 1 coefficients on an open set  A ⊆ R2. We have seen in Example 2, Sect. 12.6, that the exterior derivative is





 ∂b

 dω(x) =

−  ∂a dx ∧  dy . 

 ∂x

 ∂y

(continued)
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 Example 3 (continued)

That  ω  is exact on  A  means that  ω  is the differential of a 0-form, i.e. of a function  f ∈

 C 2 (A). In that case

 ω =  df =  ∂f dx +  ∂f dy , 

 ∂x

 ∂y

and so





 ∂ 2 f

 dω =

−  ∂ 2 f

 dx ∧  dy = 0  . 

 ∂y∂x

 ∂x∂y

In other terms  d(df ) = 0 on  A. This property holds in general, and is expressed by saying that  an exact form is closed, according to the following definition. 

Let  ω :  A →  k( R n),  k ≥ 1, be a  k-form of class  C 1 on the open set  A  of R n. Then ω  is said to be  closed on A  if

 dω = 0

on  A. If  ω  is exact on  A  and one of its primitives  η  is a  k-form of class  C 2 (A), then ω  is closed on  A. That is because (12.47) implies dω =  d(dη) = 0  . 

An  n-form  ω  of class  C 1 ( R n)  is always closed on R n, since  dω  is an  (n + 1 )-form and hence identically zero. Example 2 above shows that  ω  is exact as well. 

 Example 4  The 3-form in R4

 ω =  w dx ∧  dy ∧  dz +  (x 2 w −  y) dx ∧  dz ∧  dw , is closed on R4, since

 dω =  dw ∧  dx ∧  dy ∧  dz +  ( 2 xw dx +  x 2  dw −  dy) ∧  dx ∧  dz ∧  dw =

=  dw ∧  dx ∧  dy ∧  dz −  dy ∧  dx ∧  dz ∧  dw = 0  . 

We conclude by mentioning that the theorem proved in Sect. 7.5 can be generalised to arbitrary  k-forms. We will just state the following result. 

Theorem 2  Any closed k-form ω defined on a star-shaped open subset A ⊂ R n is exact on A. 
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Equivalent norms, 77

– – of differentiable function, 122

Euler

– partial

– equation, 260

– – along axis, 124

– formulas, 253

– – of function at a point, 105

– theorem on homogeneous functions, 130

Determinant

Expansion

– Hessian, 150, 606

– in Taylor series, 29

– Jacobian, 351

Diameter

– of partition, 376

F

Diffeomorphism, 280, 457

Fatou

Differentiability

– lemma, 423

– of integral function, 133

Field

Differential

– conservative, 307

– of function, 154

Force, 305

– of higher order, 115

Form

Differential equation

– differential - of class  C 1, 663

– Bernoulli, 250

– differential - of degree  k, 645
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Formula

– with bounded variation, 495

– co-area, 631

– with zero gradient, 127

– for area, 349

Functions

– Gauss-Green, 344

– linearly

– integration by parts, 349

– – dependent, 71

– interchange of integration

– – independent, 71

– – Dirichlet, 338

– reduction, 358

– Stokes, 348, 560, 659, 663

G

– Taylor, 135

Gamma function, 389

– – of order 2 with Lagrange remainder, 136

Gauss-Green

– – of order 2 with Peano remainder, 137

– formula, 344

– – of order  k  with Lagrange remainder, 140

– theorem, 344

– – with Lagrange remainder, 135

General integral

– – with Peano remainder, 137

– of ODE, 239

Formulas

Gradient

– Euler, 253

– of function, 113

Fourier

Grid, 397

– series, 36

Guldinus

Frenet frame, 302

– theorem, 341

Fubini

– theorem on surface of revolution, 549

– theorem, 449

– theorem on volume of solid of revolution, 

Function

464

–  , 390

– absolutely continuous, 504

– admitting partial derivatives, 106, 153

H

– almost everywhere Peano-Jordan continuous, 

Harmonic functions, 181

376

Heine-Borel

– composite, 118

– theorem, 89

– continuous, 65, 90, 105

Hölder

– – on compact set, 89

– inequality, 80

– defined by integral, 131

Homotopy, 323

– differentiable, 114, 168, 309

– differentiable at a point, 144

– Dirichlet, 374

I

– equicontinuous, 48

Increment

– finitely additive, 362

– of function, 115

– homogeneous, 129

Inequality

– – of degree  α, 130

– Bessel, 43

– implicitly defined

– Cauchy-Schwarz, 73

– – by equation, 567

– Cauchy-Schwarz for quadratic forms, 180

– – by system, 582

– Hölder, 80

– integral, 372

– integral Jensen, 388

– Lebesgue integrable, 375, 431

– Jensen, 160, 388

– linear, 71, 74, 114

– Minkowski, 81

– Lipschitz, 86, 160

– triangle, 76

– locally invertible, 590

– Young, 80

– measurable, 412

Initial value problem

– non-negative, 373

– integral form, 197

– primitive of differential form, 187

Integrability

– Riemann integrable, 333, 373

– almost everywhere continuous function, 

– summable, 382, 383, 385

376

– uniformly bounded, 48

– of continuous function, 333, 375

– vector-valued, 150

– Riemann, 333

[image: Image 3725]

672

Index

Integrability criterion

– interchange with an integral, 9

– Vitali-Lebesgue, 431

– of a sequence, 4, 418

Integral

Lipschitz

– along curve, 286

– function, 86, 160

– double, 325

– general, 216

– improper, 389

M

– indefinite, 485

Map,  see  function

– – Lebesgue, 514

Matrix

– – of non-negative summable function, 

– Jacobian, 153

485

– square

– particular

– – indefinite, 141

– – of differential equation, 216

– – positive definite, 140

– singular, 216

– – positive semi-definite, 141

– surface, 556

Maximum

– triple, 356

– absolute, 597

Integration

– constrained, 596

– by parts, 634

– local, 144, 575

– by substitution, 351

Maximum principle, 183

– term by term, 22

McShane

Interchange

– lemma, 88

– of differentiation order, 112

Measurability

– of integration order, 338

– of cylindroid, 373

Interval

– of normal set, 378

– closed, 396

Measure

– of convergence, 24

– elementary

– semi-open, 362

– – on set of semi-open pluri-intervals, 

364

– invariant under translations, 399

J

– Peano-Jordan, 364

Jensen

– zero, 407

– discrete inequality, 160

– zero Lebesgue, 364

– integral inequality, 388

Method

Jordan

– of successive approximation, 578

– curve theorem, 349

– variation of parameters, 248

Metric spaces, 59

Minimum

L

– absolute, 597

Lagrange

– constrained, 596

– multiplier, 600

– local, 144, 575

Lagrange method, 599

Minkowski

Lebesgue

– inequality, 81

– dominated convergence theorem, 433

Modulus, 78

– indefinite integral, 514

Monotone function, 485

– integrable function, 375

Lebesgue measure, 395

Lemma

N

– Fatou, 423

Norm, 78

– McShane, 88

Length

– of curve, 281

O

– of polygonal path, 281

Orientable manifold, 650

Limit, 103

Orientable surface, 550

– interchange with a derivative, 9

Orientation, 280
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P

Series

Parametric equation

– Fourier, 36

– of curve, 276, 277

– of functions, 17

Particular solution

– – absolutely convergent, 17

– of differential equation, 216

– – binomial, 33

Peano

– – pointwise and uniform convergence, 17

– theorem, 233

– – Taylor, 28

Peano-Jordan

– power, 22

– almost everywhere continuous function, 

– – centred at a point, 27

376

– Taylor, 28

– measurable set, 362

Set

– measure, 364

– Cantor, 410

Pluri-interval

– compact, 89

– semi-open, 362

– connected, 127

Point

– measurable

– initial

– – bounded, 401

– – of initial value problem, 193

– – unbounded, 405

– interior, 150

– normal with respect to the first coordinates, 

Pointwise convergence

378

– of series, 42

– open

Positive orientation of domain’s boundary, 

– – connected, 92

554

– – star-shaped, 321

Problem

– path connected, 93

– Cauchy

– Peano-Jordan measurable -, 362

– – of differential equation, 192

– zero Lebesgue measure, 439

– – of system, 188

Solution

Property

– complex

– additivity, 334

– – to ODE, 252

– to initial value problem, 226

Space

Q

– Banach, 83

Quadratic form, 140

– dual, 72

– metric, 59

– – complete, 83

R

– normal to manifold, 619

Reduction formula, 336

– normed, 76, 78

Riemann

– tangent to manifold, 619

– integrability, 371

– vector, 69

– integrable function, 373

Stokes

– formula, 348, 560, 659, 663

Strophoid, 275

S

Subadditivity, 399

Schwarz

Substitution method, 351

– theorem, 109, 110

Sum

Separating element, 333, 358, 378

– lower, 358

Sequence

– partial - of series of functions, 43

– (uniform) convergence, 1

– upper, 358

– convergent, 77

Summability, 385

– in metric space, 65

Superadditivity, 399

– of equicontinuous functions, 48

Surface

– of functions

– parametrised regular, 525

– – convergence, 2

System

– – uniform convergence, 1

– of differential equations, 268

– of uniformly bounded functions, 48

– of order one, 195
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T

– Fubini, 449

Tangent

– fundamental - of calculus, 133, 515

– to regular curve, 286

– Gauss-Green, 344

Tangent plane, 116

– general integral of homogeneous equation, 

Taylor

242

– formula of order 2 with Peano remainder, 

– general integral of non-homogeneous linear

137

ODE, 244

– formula, 135

– global existence and uniqueness, 211

– formula of order 2 with Lagrange remainder, 

– global invertibility, 593

136

– Guldinus, 341

– formula of order  k  with Lagrange remainder, 

– – on surface of revolution, 549

140

– – on volume of solid of revolution, 464

– formula with Lagrange remainder, 135

– Heine-Borel, 89

– formula with Peano remainder, 137

– implicit function

Theorem

– – for system, 583

– Abel, 52, 53

– – in several variables, 577

– Ascoli-Arzelà, 48

– integral mean value, 377

– Banach-Caccioppoli fixed-point, 87

– integral of summable function, 385

– Beppo Levi’s monotone convergence, 422

– integration of series, 21

– Cantor, 91, 105

– interchange of limits, 5

– Cauchy, 196

– interchange of limits and derivatives, 9, 10, 

– – local, 196

13

– Cauchy-Hadamard, 24

– interchange of limits and integrals, 9

– chain rule, 119, 121

– intermediate value, 93, 105

– chain rule for differential of composite

– Jacobian of composite function, 157

function, 156

– Jordan curve, 349

– chain rule for vector-valued functions, 156

– Lagrange multipliers, 600

– characterisation

– Lebesgue’s dominated convergence, 433

– – of non-negative summable function, 383

– local invertibility, 590

– characterisation of compact sets, 94

– mean value, 136

– characterisation of exact form, 313

– – integral, 376

– continuity of limits, 4

– measure of Cartesian product, 438

– continuity of the sum of a series, 21

– monotone sequence of measurable sets, 

– contraction, 86

409

– convergence of derivative series, 26

– open connected subsets in R n, 92

– convergence radius of series, 24

– Peano, 233

– cross-section of measurable set, 441

– pointwise convergence, 45

– d’Alembert, 25

– pointwise convergence of Fourier series, 

– derivative of implicit function, 573

39

– differentiability

– rectifiable curve, 281

– – vector-valued function, 154

– reduction

– differentiability criterion, 117

– – of multiple integral, 381

– differentiation, 21

– Schwarz, 109, 110

– differentiation and integration of power

– separation, 69

series, 27

– term-by-term integration of Fourier series, 

– differentiation of series, 21

42

– Dini, 14, 569

– uniform convergence of Fourier series, 41

– divergence, 347, 563, 633

– uniqueness of the Dirichlet problem’s

– Euler

solution, 185

– – homogeneous functions, 130

– Weierstrass, 90, 105

– existence and uniqueness, 238

– – generalised, 98

– existence and uniqueness of initial value

– Weierstrass approximation, 50

problems, 210

– Wronskian, 239

– extension, 215

Total variation of function, 496
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U

W

Unit normal, 291

Weierstrass

Unit tangent vector, 298

– approximation theorem, 50

– generalised theorem, 98

– theorem, 90, 105

V

Work, 305

Vector field, 305

Wronskian of  k  integrals of ODE, 240

– irrotational, 321

Vector space R n, 72

Vitali-Lebesgue

Y

– criterion on Riemann integrability, 431

Young

– inequality, 80
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