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Preface

 Partial differential equations (PDEs) have been developed and used in science and engineering for more than 200 years, yet they remain a very active area of research because of both their role in mathematics and their application to virtually all areas of science and engineering. This research has been spurred by the relatively recent development of computer solution methods for PDEs. These have extended PDE applications such that we can now quantify broad areas of physical, chemical, and biological phenomena. The current development of PDE

solution methods is an active area of research that has benefited greatly from advances in computer hardware and software, and the growing interest in addressing PDE models of increasing complexity. 

A large class of models now being actively studied are of a type and complexity such that their solutions are usually beyond traditional mathematical analysis. Consequently, numerical methods have to be employed. These numerical methods, some of which are still being developed, require testing and validation. This is often achieved by studying PDEs that have known exact analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly for systems described by nonlinear PDEs. Thus, the development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. 

This book surveys some of these new developments in analytical and numerical methods and is aimed at senior undergraduates, postgraduates, and professionals in the fields of engineering, mathematics, and the sciences. It relates these new developments through the exposition of a series of  traveling wave  solutions to complex PDE problems. The PDEs that have been selected are largely  named  in the sense that they are generally closely linked to their original contributors. These names usually reflect the fact that the PDEs are widely recognized and are of fundamental importance to the understanding of many application areas. Each chapter follows the general format:

. ThePDEanditsassociatedauxiliaryconditions(initialconditions(ICs)andboundary

conditions (BCs)) are stated. 

. Aseriesofroutinesisdiscussedwithdetailedexplanationsofthecodeandhowitrelatesto the PDE. They are written in Matlab but have been specifically programmed so that they can be easily converted to equivalent routines in other languages. The routines have the following common features:

– The numerical procedure is the method of lines (MOL) in which the boundary value (spatial) partial derivatives are replaced with algebraic approximations, in the present case finite differences (FDs), although other approximations such as finite elements (FEs), finite volumes (FVs), and spectral methods (SMs) could be used. The FD

approximations are implemented in a series of library routines; the details of how these routines were developed are given as an introduction to facilitate the development of new routines that may be required for particular PDE applications. 

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.xxxxx-x xi
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 Preface

– The resulting system of ordinary differential equations (ODEs) in an initial value variable, typically time in an application, is then integrated numerically using an initial value ODE integrator from the Matlab library. 

– The displayed numerical output also includes the analytical solution and the difference between the numerical and analytical solutions. The agreement between the two

solutions is displayed numerically and graphically as a way of demonstrating the validity of the numerical methods. 

. AnanalyticalsolutionforthePDEisstated,includingareferencetotheoriginalsourceof the solution, and in some cases, a verification (proof ) of the solution by substitution into the PDE and auxiliary conditions. 

. Additionally,inseveralchapters,theanalyticalsolutionisderivedbyrelativelynew techniques such as the tanh-, exp-, Riccati- or factorization-based methods. The derivation is either by direct application of the analytical method or through the use of the  computer algebra system (CAS), Maple. Where Maple is used, the associated code is included in the text along with a description of its main functional elements. This code usually demonstrates the use of our new Maple procedures, which implement various analytical methods that are described in the text. Graphical output from these Maple applications is provided, including a 2D animation (to facilitate insight into and understanding of the solution) and a plot in 3D perspective. Maple is also used in other chapters to confirm analytical solutions from the literature. Where appropriate, the code is provided in the  mws file format as well as the  mw  format so that it will also run in early versions of Maple. 

. Theformoftheanalyticalsolutionisconsidered,withparticularemphasisontraveling wave analysis by which the PDE (in an Eulerian or fixed frame) is converted to an ODE (in a Lagrangian or moving frame). An analytical solution to the ODE is then derived and the inverse coordinate transformation is applied to provide an analytical solution to the PDE. 

. AsecondapproachtoaPDEanalyticalsolution,themethodofresidualfunctions,isalso

used in some of the chapters to derive an analytical solution to a PDE that is closely related to the original PDE. 

. Thebasicapproachoftravelingwaveanalysis,wherebyaPDEistransformedtoan

associated ODE, is also reversed in two chapters. These start with ODEs that are then restated as PDEs that are first and second order in the initial value variable. The analytical solution to the initial ODE is then provided as an analytical solution to the PDE. 

. ThestructureofthePDEisusuallyrevisitedbrieflywithregardtoitsform,suchaswhether it is first or second order in the initial value variable, the order of the boundary value derivatives, the features of nonlinear terms, and the form of the BCs. In this way, the intention of the final summary is to suggest concepts and computational approaches that can be applied in new PDE applications. 

. Eachchapterconcludeswithadiscussionofthenumericalsolution,particularlyhowit

conforms to the initial statement of the PDE and its auxiliary conditions; also the numerical solution is evaluated with regard to the magnitude of the errors and how these errors might be reduced through additional computation. 

. InChapter2wediscussthelinearadvectionequation,oneofthesimplestPDEs,andshow

that solutions involving steep gradients or discontinuities can be difficult to achieve numerically. We then illustrate how flux limiters can be employed to improve the fidelity of the numerical solution. A short appendix to this chapter is also included, which briefly discusses some of the background to the ideas behind flux limiters. 

. Ageneralappendixdetailsthetanh-,exp-,Ricatti-,directintegration-,and

factorization-based methods. Maple implementation, by way of newly developed

procedures, is included for the tanh-, exp- and Ricatti-based analytical methods. As
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xiii

referred to above, these general features are then referenced for specific applications in appendices to individual chapters. 

In summary the major focus of this book is the numerical MOL solution of PDEs and the testing of numerical methods with analytical solutions, through a series of applications. The origin of the analytical solutions through traveling wave and residual function analysis provides a framework for the development of analytical solutions to nonlinear PDEs that are now widely reported in the literature. Also in selected chapters, procedures based on the tanh, exp, and Ricatti methods that have recently received major attention are used to illustrate the derivation of analytical solutions. References are provided where appropriate to additional information on the techniques and methods deployed. 

Our intention is to provide a set of software tools that implement numerical and analytical methods that can be applied to a broad spectrum of problems in PDEs. They are based on the concept of a traveling wave and the central feature of these methods is conversion of the system PDEs to ODEs. The discussion is limited to one-dimensional (1D) PDEs and complements our earlier book  A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, 2009. 

Finally all the code discussed in this book, along with a set of the MOL DSS library routines, is available for download from www.pdecomp.net. 

Graham W. Griffiths

Nayland, Suffolk, UK

William E. Schiesser

Bethlehem, PA, USA

June 1, 2010
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Introduction to Traveling

Wave Analysis

Most applications of partial differential equations (PDEs) in science and engineering require numerical solutions, since the equations are typically too complicated, both in number and form, to admit analytical solutions. However, numerical procedures (methods, algorithms) are available to compute numerical solutions to most problems. In this book, we introduce the method of lines (MOL), a general numerical procedure that can be applied to all the major classes of PDEs. 

In order to test MOL algorithms and software, which gives us some assurance, that the methods are correct, we utilize analytical (exact) solutions for comparison with the numerical solutions. In the subsequent discussion, we present two distinct methodologies with regard to the derivation of analytical solutions that have been widely used and reported extensively. They are (1) the  traveling wave  method and (2) the  residual function  method. 

The approach we have followed is, for each chapter, to illustrate the use of these methods through example applications. Thus, typically a MOL numerical solution is presented for an important PDE through a parallel discussion of the equations and Matlab routines. 

The particular focus of the application is emphasized, e.g., calculation of the PDE spatial derivatives, implementation of the boundary conditions, and extension of the application to other cases that require a numerical solution. In addition, an analytical solution is derived using either the associated traveling wave or residual function method. The traveling wave analytical solutions are derived with Maple procedures and scripts that are also presented. Through this approach, we hope to convey the essence of MOL and analytical analysis as applied to a series of applications that illustrate a spectrum of important concepts and details. 

We start with a brief introduction to the methods of traveling wave solutions and residual functions to provide analytical solutions that can be used to test the numerical MOL

procedures. 

Traveling Wave Solutions

We consider a general PDE

∂



! 

 u

∂ u ∂2 u ∂2 u ∂3 u

 u, 

, 

, 

, 

, . . . 

(1.1)

∂ =  f

 t

∂ x ∂ x 2 ∂ x∂ t ∂ x 2∂ t
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which can be analyzed through a change of variables  u( x,  t) =  U(ξ ), where ξ = ξ( x,  t) is a function to be specified. Then, eq. (1.1) can be written as

∂ u

 dU ∂ξ



 dU ∂ξ ∂   dU ∂ξ  ∂   dU ∂ξ  ∂  ∂   dU ∂ξ 



 U, 
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, 

, . . . 

∂ =

=  f

 t

 d ξ ∂ t

 d ξ ∂ x ∂ x

 d ξ ∂ x

∂ t d ξ ∂ x

∂ t ∂ x d ξ ∂ x
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 dU ∂ξ  dU  ∂2ξ 
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(1.2)

 d ξ ∂ x d ξ

∂ x 2

 d ξ 2

∂ x

 d ξ

∂ x∂ t

 d ξ 2

∂ x

∂ t

∂ξ

∂ξ

For the linear case ξ( x,  t) =  k( x −  ct), the partial derivatives in eq. (1.2) are ∂ = − kc, =

 t

∂ x

∂2ξ

∂2ξ

 k, ∂ =

= · · · = 0. This case (ξ( x,  t) =  k( x −  ct)) is generally termed a  traveling wave, x 2

∂ x∂ t

since it corresponds to a linear translation along the  x  axis with respect to  t;  k  and  c  are arbitrary constants generally termed the  wavenumber  and  wave velocity, respectively. For this case, eq. (1.2) reduces to
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 dU

 dU

 d 2 U

 d 3 U

(− kc)

 U,  k

,  k 2  d 2 U , − k 2 c

, − k 3 c

, . . . 

 d ξ =  f

 d ξ

 d ξ 2

 d ξ 2

 d ξ 3

or in  canonical form
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 dU

 dU d 2 U d 3 U

 U, 

, 

, 

, . . . 

(1.3)

 d ξ =  f

 d ξ  d ξ2  d ξ3

where the constants  c  and  k  are included in  f . Equation (1.3) is an  ordinary differential equation (ODE) in ξ (which illustrates a principal advantage of a traveling wave solution, i.e., a PDE is reduced to an ODE). If a solution to eq. (1.3),  U(ξ ), can be found, then the solution to eq. (1.1) follows as  u( x,  t) =  U(ξ ). The extension to other derivatives in eq. (1.1), 

∂3 u ∂3 u ∂4 u

such as

, 

, 

, . . . , follows in the same way as the preceding analysis. 

∂ x 3 ∂ x∂ t 2 ∂ x 4

The solution process for eq. (1.3) is often based on the auxiliary conditions that the dependent variable and its first, second, and higher spatial derivatives tend to zero as ξ → ∞, i.e., 

 dU(ξ → ±∞)

 d 2 U(ξ → ±∞)

 U(ξ → ±∞) = 0, 

= 0, . . . , etc. 

(1.4)

 d ξ

= 0, 

 d ξ 2

Consequently, constants of integration produced during the solution of eq. (1.3) are taken as zero. 

Analytical solutions of eq. (1.3) have typically been achieved using many approaches. 

We discuss in detail the following methods in the main Appendix and give examples throughout the various chapters:

.  Directintegrationmethod,seeappendix3of[6], whichappliesstandardcalculus techniques to transform the problem into one that can be integrated. 
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.  Factorizationmethod[1,5]whichfactorstheproblemODE(transformedPDE)into smaller problems that can be solved more easily. 

.  Expansionmethods basedontanh[4], exp[3], andRiccati[7]expansionsofelements of the ODE (transformed PDE). These techniques lead to systems of nonlinear

equations that can be solved analytically. 

All the above methods benefit from the use of a  computer algebra system (CAS), such as Maple, which facilitates algebraic operations, such as the solution of simultaneous nonlinear equations. 

The preceding discussion applies as well to PDEs that are second and higher order in  t. 

For analytical traveling wave solutions, we would use the expansion method as this generally presents no difficulty, and solutions fall out naturally. Numerical methods can also be extended naturally to higher-order PDEs in  t. For example, if eq. (1.1) was second order in t (rather than first order in  t) by the standard procedure of defining additional dependent

∂ u

variables, we set  u 1 =  u  and  u 2 =

, which transforms eq. (1.1) into two first-order PDEs. 

∂ t

Thus, we have

∂2



! 

 u

∂ u ∂2 u

 t,  u, 

, 

, . . . 

(1.5)

∂

=  f

 t 2

∂ x ∂ x 2

expressed as

∂ u 1

∂ =  u

 t

2

(1.6a)

∂



! 

 u 2

∂ u ∂2 u

 t,  u

1 , 

1 ,... , 

(1.6b)

∂ =  f

 t

1, ∂ x ∂ x 2

and the numerical procedures for first order (in  t) PDEs to be discussed subsequently can be applied to eqs. (1.6). This approach is applied in several of the following chapters to PDEs that are second order in  t. In general, a PDE that is  nth  order in  t  can be reduced to  n PDEs that are first order in  t. 

Equation (1.1) is a one-dimensional (1D) PDE in the sense that  x  corresponds to a single spatial direction or dimension. In principle, the numerical methods to be discussed can be applied to systems of PDEs in 1D, 2D, and 3D. We will consider only numerical solutions to 1D problems in this book. Examples of higher-dimensional MOL analysis are given in [6]. 

However, some 2D analytical solution examples using the tanh method are provided here. 

Equations (1.3) and (1.4) essentially constitute an  initial value problem  in the sense that boundary conditions for eq. (1.1) are not required other than through the conditions ξ → ±∞. Thus, we refer to eq. (1.1), subject to the initial condition u( x,  t = 0) =  f ( x)

(1.7)

 df ( x → ±∞)

with  f ( x → ±∞) = 0, 

= 0, . . . (higher-order derivatives in  x  are homoge-

 dx

neous) as a  Cauchy problem. Traveling wave solutions and the corresponding Cauchy
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(initial value) problems are illustrated by several of the problems that follow. Also, some of the subsequent problems are based on boundary conditions at finite values of  x  that follow from an analytical solution to eq. (1.1) (so that the initial conditions, boundary conditions, and PDE solution are consistent). 

To summarize the method of traveling waves, if a solution to the PDE is assumed to be a function of a linear combination of  x  and  t  such as ξ =  k( x −  ct), the PDE is transformed to an ODE which, hopefully, will be easier to solve than the original PDE. A number of methods have been developed for the solution of the ODE. The transformation from a PDE to an ODE can be considered as going from a fixed  Euler coordinate system  in  x  and  t to a moving  Lagrangian coordinate system  in ξ . This change to a moving coordinate system can often lead to a significant simplification as we have observed here. 

Residual Function Solutions

A second general approach to the solution of a PDE such as eq. (1.1) is to assume a solution, then determine an associated PDE that, in fact, is solved by the assumed solution. 

This procedure is best explained through an example. If we start with PDE (1.8) [2], (the quadratic Klein–Gordon equation), 

∂2 u

∂2 u

∂

+ α

+ β u + γ  u 2 = 0

(1.8)

 t 2

∂ x 2

we then assume a solution to eq. (1.8) such as

 ua( x,  t) =  x  cos  t, 

−1 ≤  x ≤ 1

(1.9)

for the particular values β = 0, γ = 1, and any α in eq. (1.8). At the end of this discussion, we give some guidelines for assuming the solution. 

If eq. (1.9) is substituted in eq. (1.8), as we might expect, eq. (1.9) will not satisfy eq. (1.8)

exactly. In other words, there will be a function remaining that is not part of the original PDE, in this case, eq. (1.8). We refer to this remaining part as the  residual function, denoted as  f ( x,  t). This process is summarized in the following table Term in eq. (1.8)

Term from eq. (1.9)

∂2 u

∂

− x  cos  t

 t 2

∂2 u

α

0

∂ x 2

(1.10)

β u

β x cos t

γ  u 2

γ  x 2 cos t 2

Sum of terms

Sum of terms

0

6= 0

“05-ch01-001-006-9780123846525” — 2010/12/9 — 12:58 — page 5 — #5

. 

 Chapter 1

Introduction to Traveling Wave Analysis

5

Note that the terms in the right column do not sum to zero (and in fact, they sum to

− x  cos  t +  x 2 cos2  t  for α = −1, β = 0, γ = 1). However, if we define a residual function as f ( x,  t) = − x  cos  t +  x 2 cos2  t, (1.11)

then eq. (1.9) is a solution of the PDE

∂2 u

∂2 u

∂

+ α

+ β u + γ  u 2 =  f ( x,  t). 

(1.12)

 t 2

∂ x 2

Equation (1.12), of course, is not the PDE we started with, eq. (1.8). However, eq. (1.12)

can be used as a test problem, since it has an analytical solution, eq. (1.9). Also, eq. (1.12) is similar to eq. (1.8) in the sense that the only difference between the two PDEs is the residual function  f ( x,  t) (which is also termed a  nonhomogeneous  or  inhomogeneous  term). Thus, 

eq. (1.12) includes the essential terms of eq. (1.8), namely, the same partial derivatives. 

Note that this procedure is general in the sense that no matter what we assume for an analytical solution, if it can be substituted into the PDE (i.e., the various partial derivatives exist and can be derived), an analytical solution will result by including the residual function in the original PDE to arrive at a related PDE (with the assumed solution as an analytical solution). In other words, this method can be generally applied to produce an analytical solution to a related PDE. 

Finally, some guidelines for selecting an analytical solution are as follows:

. Theassumedanalyticalsolutioncanbeofessentiallyanyformsolongasitcanbe

substituted in the original PDE. Of course, if we make exactly the right choice of an analytical solution, the assumed solution will satisfy the original PDE, but generally this is unlikely; that is, we in fact will not know the analytical solution to the original PDE. 

. Wecouldalsoaddalogicalextensionthattheclosertheassumedanalyticalsolutionis

to the true (but unknown) analytical solution of the initial PDE, the better will be the resulting test problem based on the modified PDE. 

. Iftheassumedsolutionis“smooth”inthesensethatitanditsderivativesarewell

behaved, the resulting modified PDE (with the residual function) will be relatively easy to solve numerically. For example, the functions of  x  and  t  in eq. (1.9) are smooth (well behaved), as well as all of their derivatives. 

. IfaPDEtestproblemisrequiredtohavespecifiedinitialconditions(ICs)and/or

boundary conditions (BCs) and if these are included in the assumed solution, the method of residual functions can still be applied (including the required ICs

and/or BCs). 

This completes the discussion of the methods of traveling waves and residual functions. 

We will consider a series of example PDE applications for which the analytical solutions could be derived by either of these two methods. 
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Linear Advection Equation

We begin our discussion of particular PDEs with one that might be considered the simplest PDE, the  linear advection equation, but which somewhat paradoxically, is one of the most difficult to solve numerically; this point will be illustrated in the subsequent discussion. 

The linear advection equation is

∂ u

∂ u

(2.1)

∂ = − c

 t

∂ x

with the initial condition (IC)

 u( x,  t = 0) =  f ( x)

(2.2)

The solution to eqns. (2.1) and (2.2) is u( x,  t) =  U(ξ ) =  f ( x −  ct); ξ =  x −  ct (2.3)

Note that the function of eq. (2.3) is a traveling wave solution since it has an independent variable ξ =  x −  ct (as discussed in Chapter 1). 

Equations (2.1) and (2.2) are an example of an  initial value problem, also termed a Cauchy problem. If  f ( x) has a finite discontinuity (usually at  x = 0), then this is termed a  Riemann problem. For example, if  f ( x) is the Heaviside unit step function, eq. (2.3) indicates this step function propagates left to right in  x  with increasing  t; this propagating discontinuity makes the numerical solution of even a simple PDE such as eq. (2.1) difficult computationally. This aspect will be discussed subsequently. 

To confirm that eq. (2.3) is a solution to eqns. (2.1) and (2.2), we substitute it as follows: dU ∂ξ

 dU ∂ξ

= − c

 d ξ ∂ t

 d ξ ∂ x

 dU

 dU

(− c) = − c

(1)

 d ξ

 d ξ

Thus, eq. (2.3) satisfies eq. (2.1). Equation (2.3) also satisfies IC (2.2), so it is a complete solution. 

Smooth Solutions

We now consider a specific example with a smooth solution and choose the IC function of

eq. (2.2) to be the Gaussian function

 f ( x) = e−λ x 2

(2.4)

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00002-9
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Linear advection equation;  t = 0, 2, 4

1.2

1

0.8

0.6

 t)

 u( x,  0.4

0.2

0

−0.2

−5

0

5

10

 x

FIGURE 2.1: Numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 [20]. 

Then, from eq. (2.3), the analytical (exact) solution to eq. (2.1) is u( x,  t) = e−λ( x− ct)2

(2.5)

The numerical and analytical solutions produced by the computer code that follows are in

Fig. 2.1. 

The close agreement between the numerical and analytical solutions is also apparent from the tabulated numerical output reproduced in Table 2.1. 

We can note the following points about this output:

.  t  variesthroughthevalues t =0,2,4. 

. Withineachofthesevaluesof t,  x variesthroughthevalues x=−5,−4.250,...,10. 

. Thenumericalsolution,u(it,i),changeswithanindexit=1,2,3(itispartofthe

computer code to follow) for the three values of  t (including  t = 0). This solution also changes with an index i=1,2,3,...,201 for 201 values of  x (i is part of the computer code; only every fifth value appears in the output). 

. Theanalyticalsolution(fromeq.(2.5)), u anal(it,i),isincloseagreementwiththe numerical solution. The difference between the two solutions is err(it,i). 

The computer code also produces a plot of the solution in 3D perspective. 

[image: Image 4]
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Linear advection equation
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FIGURE 2.2: Numerical solution to eq. (2.1),  u( x,  t), as a function of  x  and  t  using four-point FD approximations in dss004. 

The Matlab routines for the numerical method of lines (MOL) integration of eqns. (2.1)

and (2.2) that produced the output in Figs. 2.1 and 2.2, and the tabulated output in

Table 2.1 are considered next, starting with the main program, pde 1 main.m

%

% Linear advection equation

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

global c lambda

c=1; lambda=1; 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=4; 

tout=[t0:2:tf]'; 

nout=3; 

ncall=0; 

%
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% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

%

% Store analytical solution, errors in numerical solution

for it=1:nout

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:10:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u,'-',x,u_anal,'o')

axis([-5 10 -0.25 1.25]); 

xlabel('x')

ylabel('u(x,t)')

title('Linear advection equation; t = 0, 2, 4; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Linear advection equation'); 

LISTING 2.1: Main program pde 1 main.m. 

We can note the following points about this listing:

. Afterclearingpreviousfiles,some global parametersaredeclaredthatcanbeshared with other routines. 
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Table 2.1:

Tabular numerical and analytical

solutions

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−5.000

0.000000

0.000000

0.000000

0.00

−4.250

0.000000

0.000000

0.000000

0.00

−3.500

0.000005

0.000005

0.000000

0.00

−2.750

0.000520

0.000520

0.000000

0.00

−2.000

0.018316

0.018316

0.000000

0.00

−1.250

0.209611

0.209611

0.000000

0.00

−0.500

0.778801

0.778801

0.000000

0.00

0.250

0.939413

0.939413

0.000000

0.00

1.000

0.367879

0.367879

0.000000

0.00

1.750

0.046771

0.046771

0.000000

0.00

2.500

0.001930

0.001930

0.000000

0.00

3.250

0.000026

0.000026

0.000000

0.00

4.000

0.000000

0.000000

0.000000

0.00

4.750

0.000000

0.000000

0.000000

0.00

5.500

0.000000

0.000000

0.000000

0.00

6.250

0.000000

0.000000

0.000000

0.00

7.000

0.000000

0.000000

0.000000

0.00

7.750

0.000000

0.000000

0.000000

0.00

8.500

0.000000

0.000000

0.000000

0.00

9.250

0.000000

0.000000

0.000000

0.00

10.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

−5.000

0.000000

0.000000

0.000000

2.00

−4.250

0.000000

0.000000

0.000000

2.00

−3.500

0.000000

0.000000

0.000000

2.00

−2.750

0.000000

0.000000

0.000000

2.00

−2.000

0.000000

0.000000

0.000000

2.00

−1.250

0.000026

0.000026

0.000000

2.00

−0.500

0.001934

0.001930

0.000004

2.00

0.250

0.046756

0.046771

−0.000014

2.00

1.000

0.367881

0.367879

0.000002

2.00

1.750

0.939459

0.939413

0.000046

2.00

2.500

0.778736

0.778801

−0.000064

2.00

3.250

0.209640

0.209611

0.000028

2.00

4.000

0.018316

0.018316

0.000001

2.00

4.750

0.000518

0.000520

−0.000002

2.00

5.500

0.000005

0.000005

−0.000000

2.00

6.250

0.000000

0.000000

−0.000000

2.00

7.000

0.000000

0.000000

−0.000000

2.00

7.750

0.000000

0.000000

−0.000000

2.00

8.500

0.000000

0.000000

−0.000000

2.00

9.250

0.000000

0.000000

−0.000000

2.00

10.000

0.000000

0.000000

−0.000000

( Continued )
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Table 2.1:

( Continued)

t

x

u(it,i)

u anal(it,i)

err(it,i)

4.00

−5.000

0.000004

0.000000

0.000004

4.00

−4.250

0.000002

0.000000

0.000002

4.00

−3.500

0.000001

0.000000

0.000001

4.00

−2.750

0.000000

0.000000

0.000000

4.00

−2.000

0.000000

0.000000

0.000000

4.00

−1.250

0.000000

0.000000

0.000000

4.00

−0.500

0.000000

0.000000

0.000000

4.00

0.250

0.000001

0.000001

0.000000

4.00

1.000

0.000126

0.000123

0.000002

4.00

1.750

0.006336

0.006330

0.000006

4.00

2.500

0.105346

0.105399

−0.000053

4.00

3.250

0.569869

0.569783

0.000086

4.00

4.000

0.999978

1.000000

−0.000022

4.00

4.750

0.569725

0.569783

−0.000058

4.00

5.500

0.105447

0.105399

0.000047

4.00

6.250

0.006323

0.006330

−0.000007

4.00

7.000

0.000122

0.000123

−0.000002

4.00

7.750

0.000001

0.000001

−0.000000

4.00

8.500

0.000000

0.000000

−0.000000

4.00

9.250

0.000000

0.000000

−0.000000

4.00

10.000

0.000000

0.000000

−0.000000

%

% Linear advection equation

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

. Twomodelparameters,  c ineq.(2.1)andλineq.(2.4), areassignednumericalvalues. 

%

global c lambda

c=1; lambda=1; 

. TheICofeq.(2.2)issetnumericallythroughacalltofunctioninital 1(t0)(tobe discussed subsequently); this function basically uses the IC function of eq. (2.4). 

%

% Initial condition

t0=0.0; 
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u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=4; 

tout=[t0:2:tf]'; 

nout=3; 

ncall=0; 

The output sequence of  t (in eq. (2.1)) is then defined as  t = 0, 2, 4 (a total of three outputs as reflected in Table 2.1). 

. Thegridin x,definedininital 1(t0)for201points,isthebasisfor201ODEsin t (as programmed subsequently in function pde 1.m). These ODEs are integrated by a call to the nonstiff integrator ode45 or the stiff integrator ode15s as specified by mf. The error tolerances for the ODE integration are specified before the call to the ODE integrator. 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

For ode15s, the  sparse option  is specified which requires a function jpattern num 1 to determine the structure of the ODE Jacobian matrix (discussed subsequently). As a result of the ODE integration, the solution of the 201 ODEs is returned in array u at the values of  t = 0, 1, 2 in array t. 

. Theanalyticalsolutionofeq.(2.5)computedinfunctionua 1.m(discussed subsequently) is subtracted from the numerical solution to give the difference err. 

The two solutions (numerical and analytical) and their difference are then displayed through the fprintf statement, which produced the output in Table 2.1. 

%

% Store analytical solution, errors in numerical solution

for it=1:nout

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

%

% Display selected output
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for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:10:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

The number of calls to the ODE routine pde 1.m is displayed as a measure of the computational effort to produce the numerical solution. The value is rather modest (ncall = 399) indicating the computational efficiency of the ODE integrator ode15s. 

. TheplotsofFigs.2.1and2.2arethenproducedbycallstotheMatlabutilitiesplotand surf. 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u,'-',x,u_anal,'o')

axis([-5 10 -0.25 1.25]); 

xlabel('x')

ylabel('u(x,t)')

title('Linear advection equation; t = 0, 2, 4; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Linear advection equation'); 

. ThemainprogramofListing2.1producestwoadditionaloutputs.Thefirstisalistof the options selected for the sparse matrix version of ode15s. 

options =

AbsTol: 1.0000e-006

BDF: []

Events: []

InitialStep: []

Jacobian: []

JConstant: []

JPattern: [201x201 double]

Mass: []

MassConstant: []

MassSingular: []

MaxOrder: []

MaxStep: []

NormControl: []

OutputFcn: []

OutputSel: []

Refine: []

RelTol: 1.0000e-006

Stats: []
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In the present case, the error tolerances and the size of the ODE Jacobian matrix are indicated. In particular, the Jacobian matrix is 201 × 201 = 40,401 elements. Since this matrix has a size equal to the number of ODEs squared, it increases rapidly with the number of ODEs, which is an important reason for using a sparse matrix integrator that uses only the nonzero elements of the Jacobian matrix. 

. ThispointisillustratedbythemapoftheJacobianmatrixinFig.2.3, producedbythe call to ode15s. 

We can note the following points about this map:

. TheODEsarenumberedvertically,whereastheODE-dependentvariablesare

numbered horizontally. For example, an entry at  x = 101,  y = 100 indicates dependent variable 101 that appears in the RHS of ODE 100. 

. Thenonzeroelementsareclusteredaroundthemaindiagonal,thatis,theJacobian

matrix is  banded. In the present case, the band is five elements wide, and thus the Jacobian matrix is  pentadiagonal. This bandwidth of five results from the use of five-point finite differences (FDs) in the ODE routine pde 1.m is discussed subsequently. 

. Ofthe40,401elements,only808arenonzero,whichis2.0%ofthetotal.Inother

words, 98% of the elements are essentially zero (and using them in any calculations would simply waste computer time). 

In conclusion, the effectiveness (efficiency) of the sparse option of ode15s is clear. 

To conclude this discussion of the main program in Listing 2.1, the numerical solution is validated through the use of eq. (2.3). This example illustrates two features for most of the numerical solutions that follow:

. TheMatlabroutinescanbeconsideredastemplatesthatwillbemodifiedfor

particular PDE applications in the subsequent chapters. 

. Theanalyticalsolution(eq.(2.3))isusedtoevaluatetheerrorsinthenumerical solution. Of course, we attempt to achieve a numerical solution in which the errors are considered acceptable (small enough to be essentially negligible). 

We now go on to a discussion of the routines (functions) that were called during the execution of the main program. The ODE routine, pde 1.m, called by ode15s is listed next. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% advection equation

%

global xl xu x n ncall

%

global c lambda

%

% ux

ux=dss004(xl,xu,n,u); 

%
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% PDE

%

%

Procedural

%

for i=1:n

%

ut(i)=-c*ux(i); 

%

end

%

ut=ut'; 

%

%

Vectorized

ut=-c*ux'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 2.2: ODE function pde 1.m. 

We can note the following points about this listing:

. Thefunctionandsomeglobalparametersaredefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% advection equation

%

global xl xu x n ncall

%

global c lambda

The first set of global parameters is defined numerically by the call to inital 1.m in main program pde 1 main.m. The second set of parameters is defined mumerically in pde 1 main.m. Thus, all of these parameters are available (numerically) for use in pde 1.m. 

. Theinputargumentsofpde 1.maretheODE-independentvariable,t,andthevector

of ODE-dependent variables, u (of length n). u is the same vector displayed

horizontally in Fig. 2.3. 

. Theoutputargumentofpde 1.misthevectorofODEderivatives,ut,whichisthesame

vector displayed vertically in Fig. 2.3. The programming requirement in pde 1.m is to compute all n = 201 derivatives before exiting from the routine. Note that to satisfy ode15s which calls pde 1.m from the main program pde 1 main.m, a transpose must be included (to transpose ut from a row to a column vector). 

. 

∂ u

The first derivative

in eq. (2.1) is computed by a call to dss004 ([20]); u is an input

∂ x

to dss004 and the resulting derivative ux, a vector of length n, is the output. ux is computed by five-point FDs in dss004, which is the origin of the pentadiagonal system mapped in Fig. 2.3. 

%

% ux

ux=dss004(xl,xu,n,u); 
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FIGURE 2.3: Map of the ODE Jacobian matrix. 

. ThePDE, eq.(2.1), isthenprogrammedineitheroftwoways:

%

% PDE

%

%

Procedural

%

for i=1:n

%

ut(i)=-c*ux(i); 

%

end

%

ut=ut'; 

%

%

Vectorized

ut=-c*ux'; 

In the first approach (commented), a for loop is used to program eq. (2.1); this is termed  procedural  and is commonplace in other programming languages such as Fortran. The second is termed  vectorized  and uses the features specific to Matlab, which operates on vectors and matrices in much the same way as with scalars. In either case, the close resemblance of the programming to eq. (2.1) is clear, which is one of the advantages of the MOL (a second advantage is the use of ODE library integrators, such as ode15s and ode45). In both cases, a transpose is used to return the
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derivative ut as a column vector (required by ode45 and ode15s). Finally, the counter for the calls to pde 1.m is incremented each time pde 1.m is called. 

The routine that defines IC (2.4) is considered next. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% advection equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl=-5; 

xu=10; 

n=201; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 2.3: IC function inital 1.m. 

We can note the following points about inital 1.m:

. Thefunctionisdefinedandglobalparametersareincludedforusebyinital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% advection equation

%

global xl xu x n

. Thespatialdomainin x isdefinedas−5≤ x≤10with201points.Theintervalin x is determined by the characteristics of the solution. In this case, since the Gaussian pulse of eq. (2.4) initially ( t = 0) is centered at  x = 0 (see Fig. 2.1), it moves left to right in  x  at velocity  c = 1. Thus, at  t = 0, 2, 4, the Gaussian pulse is centered at  x = 0, 2, 4, respectively, and the interval −5 ≤  x ≤ 10 includes the moving pulse (it does not interact with the boundaries at  x = −5, 10). The selection of 201 points provides good resolution of the solution as indicated in Figs. 2.1 and 2.2, but the computer run times are quite acceptable. 

%

% Spatial domain and initial condition

xl=-5; 

xu=10; 

n=201; 

dx=(xu-xl)/(n-1); 

. TheIC, eq.(2.4), isthenimplementedbyacalltotheroutinethatcalculatesthe analytical solution to eq. (2.5) with  t = 0, i.e. ua 1.m (this routine is considered next). 
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%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

Note the for steps through the 201 values of  x  to define IC (2.4). 

Function ua 1.m for IC (2.4) follows. 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the linear advection

% equation for comparison with the numerical solution

global c lambda

%

% Analytical solution

uanal=exp(-(lambda*(x-c*t))ˆ2); 

LISTING 2.4: Function ua 1.m for IC (2.4). 

The last line of ua 1.m is a straightforward programming statement for eq. (2.4). 

Two other routines have been used, but they will not be listed and discussed here to conserve space. Briefly, 

. jpattern num 1.mcallspde 1.mtomaptheODEJacobianmatrix(asexpectedsince

pde 1.m has the programming for the ODEs). The two statements in jpattern num 1.m that call pde 1.m are

ytbase=pde_1(tbase,ybase); 

[Jac,fac]=numjac(@pde_1,tbase,ybase,ytbase,thresh,fac,vectorized); 

numjac is a Matlab utility that maps the ODE Jacobian matrix (and therefore produced

Fig. 2.3). 

. Theotherroutinethatwasusedisdss004tocomputeuxinpde 1.m.The“dss” 

denotes  Differentiation in Space Subroutine  and “004” indicates  fourth-order FDs (five-point FDs) that are used in dss004. A set of spatial differentiation routines, ranging from second to tenth order are used for MOL analysis in subsequent chapters . 

These routines form the DSS library ([20]) which is provided with the downloads for this book. 

There are two additional details we can consider concerning the preceding MOL

solution. 

. Equation(2.1)hasafirst-orderderivativein x,whichindicatesaBCin x isrequired. 

But in pde 1.m of Listing 2.2, a BC has not been specified. One possibility is to recognize that  u( x,  t) remains zero at the left boundary,  x =  xl, and therefore could be used as a BC  u( x =  xl,  t) = 0 which could be coded as u(1)=0 just before the call to dss004. When this is done, the solution does not change, since  u( x =  xl,  t) remains at its initial value  u( x =  xl,  t = 0) = 0 defined in inital 1.m. Thus, in this particular case, 
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the required BC has no effect. Of course, this will not always be the case (depending on the circumstances of the problem), and in fact, the use of a BC is illustrated in the subsequent discussion of eq. (2.1). 

. Fromeqns.(2.3)and(2.5), weseethatthesolutiondoesnotchangeshapeasitmoves along the  x  axis. In other words, the area under the traveling Gaussian pulse remains constant. Thus, an  invariant  or  integral constraint  can be stated mathematically as

∞

Z

 I =

 u( x,  t) dx = const

−∞

 I  could be computed numerically for the numerical solution (in Fig. 2.1) using a quadrature such as  Simpson’s rule. In other words, an invariant can be computed as a test of the numerical solution (it should remain constant). We do not carry out this calculation here, since we would expect (from Fig. 2.1) that  I  remains essentially constant, but the use of an integral constraint as a test of the numerical solutions for some PDE applications is discussed in subsequent chapters. 

This completes the discussion of the MOL solution of eqns. (2.1) and (2.2) for the Gaussian pulse IC of eq. (2.4). The agreement between the numerical solution and the analytical solution of eq. (2.5) in Fig. 2.1 and Table 2.1 indicates that the numerical solution is quite acceptable. 

Solutions with Sharp Gradients or Discontinuities

Unfortunately, it is not always the case that solutions are smooth, and we now consider a variant of the preceding problem that illustrates this point. Equations (2.1) and (2.2) will again be analyzed, but IC (2.4) will be changed to a  square pulse

0, 

 x < 0





 f ( x) = 1, 

0 ≤  x < 1

(2.6)



0, 

 x ≥ 1

Equation (2.3) indicates that this pulse should move left to right with velocity  c = 1. We now consider what the numerical solution actually looks like. To handle this second case of eq. (2.6), we will use the preceding routines with only the changes required to include

eq. (2.6). However, in order to keep the routines separated and organized, we will change the 1 designation in the routine names to 2, i.e., pde 1 main.m, pde 1.m, inital 1.m, and ua 1.m will become pde 2 main.m, pde 2.m, inital 2.m, and ua 2.m, respectively. In order to conserve space, we will indicate only the changes in the preceding code in going from IC (2.4) to IC (2.6). 

First, we note that eq. (2.3) is the analytical solution of eqns. (2.1) and (2.2) for  f ( x) of

eq. (2.6). We can then put this solution into the routine ua 2.m. 
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function uanal=ua_2a(x,t)

%

% Function uanal computes the exact solution of the linear advection

% equation for comparison with the numerical solution

global c

%

% Analytical solution

xi=x-c*t; 

if(xi<0)

uanal=0; 

elseif((xi>=0)&(xi<=1))

uanal=1; 

elseif(xi>1)

uanal=0; 

end

LISTING 2.5: Function ua 2.m for IC (2.6). 

The coding in ua 2.m follows from IC (2.6) except that the variable  x  is replaced by ξ =

 x −  ct (since eq. (2.3) indicates a traveling wave solution with independent variable  x −  ct). 

In other words, ua 2.m applies to all values of  t  and not just  t = 0 of IC (2.6). 

ua 2.m is now used to set IC (2.6) in inital 2.m. 

function u0=inital_2(t0)

%

% Function inital_2 sets the initial condition for the linear

% advection equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl=-10; 

xu= 10; 

n=201; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_2(x(i),0.0); 

end

LISTING 2.6: Function inital 2.m for IC (2.6). 

We can note the following points about inital 2.m:

. Theintervalin x hasbeenincreasedfrom−5≤ x≤10ininital 1.mofListing2.3

to −10 ≤  x ≤ 10

%

% Spatial domain and initial condition

xl=-10; 

xu= 10; 

n=201; 

The reason for this change is explained subsequently. 
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. Thecalltotheanalyticalsolution(at t =0)isactuallytoua 2whilethefunctionin

Listing 2.5 is defined as ua 2a. 

u0(i)=ua_2(x(i),0.0); 

Thus, it would seem that the call to ua 2 would not execute. To explain why this is not so, Matlab calls a function by its file name (and not by the name in the first-line definition). Thus, as long as ua 2a.m of Listing 2.5 is saved as file ua 2.m, the call to ua 2.m in inital 2.m of Listing 2.6 will execute correctly. 

This raises the question of why this apparent complexity has been introduced. The answer, at least for our purpose, is that we can save a series of analytical solutions as files, ua 2a.m, ua 2b.m,..., and to select any particular solution to be called by inital 2.m, we only have to create a file by the name used in the calling statement (ua 2.m). Thus, file ua 2a.m was also saved as file ua 2.m for this particular execution of the various routines. When ua 2b.m (a different analytical solution) is to be used later, it will also be saved as file ua 2.m. 

The main program pde 2 main.m is the same as main program pde 1 main.m in List-

ing 2.1 except that the calls to ua 1 and pde 1 have been changed to ua 2 and pde 2. Files pde 2.m and jpattern num 2.m are essentially the same as pde 1.m and jpattern num 1.m. 

Execution of pde 2 main.m gives three plots as pde 1 main.m discussed previously. One of these plots is discussed next (the other two plots are not included in the discussion at this point). 

We can note the following points about Fig. 2.4:

. Thenumericalsolutionishighlyoscillatoryanddistorted.Clearly,theMOLsolution

for IC (2.6) is completely unsatisfactory. 

. Anerrorwave(oscillationaround x=0)propagatesrighttoleft(fromtheleftfaceof the pulse). This error wave goes past  x = −5, and when this occurs and the left boundary is  x = −5, the distortions are even more severe. Thus, as mentioned previously, the left boundary was set at  x = −10; this only reduced the distortions in the numerical solution but obviously did not eliminate them. 

. Wecannotachievetheinstantaneouschangein f( x)from0to1at x=0andfrom 1 to 0 at  x = 1 defined by eq. (2.6) using ua 2.m and the grid in  x  with a finite number of points. Rather, the best resolution in  x  we can achieve for these changes is over the grid spacing (10 − (−10))/(201 − 1) = 0.1 for 201 points (since ua 2.m operates on this grid). 

In other words,  f ( x) of eq. (2.6) defines two discontinuities at  x = 0, 1 which cannot be represented exactly with computer arithmetic. 

We could do the plotting of the IC so that vertical lines are drawn at  x = 0, 1 and t = 0, and the subsequent analytical solution having the vertical lines is moved to the right at velocity  c = 1, but we did not add these details to the plotting (and therefore the plotting in pde 1 main and pde 2 main remains the same). 

In conclusion, the use of the five-point FDs in dss004 did not work for IC (2.6). We, therefore, now consider some alternatives that might lead to a better numerical solution. 
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1.4

1.2

1

0.8

0.6

 t)

 u( x,  0.4

0.2

0

−0.2

−0.4

−10

−5

0

5

10

 x

FIGURE 2.4: Numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004. 

To start, we consider another FD approximation in place of dss004. A FD for the derivative in  x  in eq. (2.1) can be constructed that uses just two values of the dependent variable. 

∂ u 

 u( i) −  u( i − 1)

∂

≈

+  O(1 x)

(2.7)

 x i

1 x

Note that the approximation of the  x  derivative at grid point  i  is based on  u( i) and u( i − 1), that is, at the point  i  and the point  i − 1  upstream  or  upwind  of  i  with respect to the direction of flow (left to right for  c > 0). Thus, the approximation of eq. (2.7) is termed a  two-point upwind FD approximation.  O(1 x), read as  of order  1 x, indicates this approximation is  first order in  1 x  or  of order one in  1 x (1 x  to the first power). 

Equation (2.7) can be built into pde 2.m very simply, i.e., the line that calls dss004 is replaced with

%

% ux

dx=(xu-xl)/(n-1); 

u(1)=0; 

for i=2:n

ux(i)=(u(i)-u(i-1))/dx; 

end

(note that the BC  u( x = −10,  t) = u(1)=0 has been applied before the for loop so that the for loop starts at i=2). 
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Linear advection equation;  t = 0, 2, 4
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FIGURE 2.5: Numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using a 2pu FD

approximation. 

If the preceding routines are executed with this change, the analytical and numerical solutions for  f ( x) of eq. (2.6) are plotted in Fig. 2.5. 

We can note the following points about these solutions:

. Thenumericalsolutionagaindoesnotmatchtheanalyticalsolution.Thus,the2puFD

approximation of eq. (2.7) does not produce an acceptable numerical solution. 

. ThenumericalsolutiondoesnothavetheoscillationsofFig.2.4, butitisexcessively smoothed. Figures 2.4 and 2.5 illustrated the two principal types of errors in numerical solutions,  numerical oscillation (Fig. 2.4) and  numerical diffusion (Fig. 2.5), which are generally observed when solving  strongly convective  or  strongly hyperbolic  PDEs such as eq. (2.1). 

. ThenumericaldistortionsofFigs.2.4and2.5areaconsequenceofanimportant theorem, the  Godunov barrier theorem [5] [6]. To explain, 

. Equations(2.1)and(2.6)areexampleofa Riemannproblem,thatisa Cauchy or initial value problem  with a discontinuous initial condition, in this case, eq. (2.6). 

. Equation(2.7)isa linearapproximation inthesensethat u appearstothefirst power or degree. 

. Similarly,thefive-pointFDapproximationsindss004arelinear,sincethe

dependent variable appears only to the first power. Also, these FD approximations are  O(1 x 4). 
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. Godunov’sbarriertheoremthenstatesthat Thm:Thereisnolinearapproximation

 to the Riemann problem, higher than first order, that is nonoscillatory. As an example, since the fourth-order FDs of dss004 are linear (and higher than first order), the numerical solution from these approximations oscillates (as in Fig. 2.4). 

. Also,theFDapproximationofeq.(2.7)isfirstorderandthereforedoesnotoscillate, but it also produces excessive numerical diffusion. 

. Inotherwords,ifwearetoproduceanumericalsolutionthatdoesnotoscillateusing

approximations of higher order than one (to achieve an acceptable accuracy in the numerical solution), the approximations cannot be linear (they must be  nonlinear). 

We now introduce a nonlinear numerical device, the so-called  flux limiter, that generally reduces the level of oscillation in the solution. For many problems, flux limiters will either totally eliminate oscillations or, at least reduce them to an acceptable level. Some background to flux limiters is included in the appendix to this chapter. 

To illustrate the idea, we repeat the solution of eqns. (2.1) and (2.6) with two representative  flux limiters, the  van Leer, and the  superbee  limiters - see Appendix at the end of this chapter for details on these plus 13 additional types. The van Leer and superbee limiters have been programmed in two routines, vanl1.m and super.m. To conserve space, we will not discuss these routines; they are discussed elsewhere ([26]) and are available with the downloads for this book. 

The calls to these routines are easily included in pde 1.m (in place of the call to dss004). 

%

% ux

u(1)=0; 

%

%

vanLeer, v1

ux=vanl1(xl,xu,n,u,c); 

%

%

superbee

%

ux=super(xl,xu,n,u,c); 

We can note the following points about this coding:

. Thetwolimitershaveafifthinputargument,c,thevelocityineq.(2.1). Thisargument is required, since the limiters require the direction of flow or wave propagation (as the sign of the fifth argument; the numerical value of the argument is not used). In other words, the limiters are not centered or symmetric with respect to the point where the derivative ux is computed. In applications, the direction of flow is often known (from the physical situation such as flow through a pipe or reactor). If the direction of flow is not known, or changes due to flow reversals (e.g., due to reflection off a boundary or wall), flux limiters are available, which are  centered  and therefore work with flow in either direction without having to specify the direction; we will not consider these centered limiters here. 
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. ThefunctionforthevanLeerlimiterhasthenamevanl1.The1wasadded,sincewe

also have available routines for two other limiters (in routines vanl2.m and vanl3.m) that are due to van Leer; we will not discuss these routines here. 

The plot of the numerical and analytical solutions for eq. (2.6) produced by vanl1

appears in Fig. 2.6. 

We can note the following points about these solutions:

. Althoughthenumericalsolutiondoesnotreproducetheanalyticalsolutionexactly,it

is a major improvement over the numerical solutions of Figs. 2.4 and 2.5, particularly the absence of unrealistic oscillations, which occur for all linear approximations above first order (according to Godunov’s theorem). However, there is a certain amount of dissipation or attenuation of the pulse from its initial shape. If the simulation is continued, eventually the dissipation will be considerable and the result will be totally unrealistic. 

. Inasense,theICfunctionofeq.(2.6)presentsanimpossibleproblem,sinceatthe

∂ u

points of discontinuity, 

is undefined (or infinite). Thus, at these points of

∂ x

discontinuity, we are asking the routine to calculate a derivative ux that is not defined. 

Viewed in this way, the fact that the numerical solution in Fig. 2.6 is as good as it is perhaps unexpected and surprising. 

Linear advection equation;  t = 0, 2, 4

1.2

1

0.8

0.6

 t)

 u( x,  0.4

0.2

0

−0.2

−10

−8

−6

−4

−2

0

2

4

6

8

10

 x

FIGURE 2.6: Numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using a van Leer flux limiter. 

“06-ch02-007-046-9780123846525” — 2010/12/9 — 13:03 — page 27 — #21

. 

 Chapter 2

Linear Advection Equation

27

As we might expect, since many flux limiters have been proposed, some will perform better than others. As an example, we consider also the  superbee  limiter for comparison with the van Leer limiter (and executed merely by activating the call to super in the preceding code and deactivating the call to vanl1). The plotted output follows in Fig. 2.7(A). 

We can note the following points about this solution:

. Thesuperbeelimiter(Fig.2.7(A))performsconsiderablybetterthanthevanLeer limiter (Fig. 2.6). After the initial slight smearing of discontinuities, the superbee limiter performs well, as the pulse then propagates without further distortion or dissipation for a long time. This is highlighted by plot of Fig. 2.7(B) when the later pulses have been superimposed on earlier ones — in fact, apart from a small amount of dissipation, they are almost indistinguishable. 

. However,thisimprovedperformancerequiresasomewhatgreatercalculationaleffort, 

ncall = 1349 for van Leer, ncall = 4033 for superbee. 

We mention briefly that the extended duration numerical solution shown in Fig. 2.7(B)

was obtained by using  periodic boundary conditions. This technique simply connects together the two ends of a 1D linear spatial domain by the addition of an additional cell, thus effectively transforming it into a  ring 1 see Fig. 2.7(C). The grid points 1 and  n, therefore, become neighbors, which results in the system having the same number of grid points as cells, i.e.,  n. A simple method of implementing periodic BCs is to add  ghost cells  at either end of the spatial domain [14]. Note: for a  finite volume scheme  cell, values are used but for a  finite difference scheme, grid point values are used. The number of ghost cells depends upon the size of the numerical stencil. For our application with  c > 0, we use a finite difference scheme based on a  four-point upwind stencil  consisting of grid points numbered i − 2,  i − 1,  i, and  i + 1. This requires a minimum of two ghost cells to be added at the start of the spatial domain and one at the end. Similarly, for our application with  c < 0, we use a finite difference scheme based on a four-point upwind stencil consisting of grid points numbered  i − 1,  i,  i + 1, and  i + 2. But now, we require a minimum of one ghost cell to be added at the start of the spatial domain and two at the end. For ease of programming, it is usual to add the same number of ghost cells to each end. Therefore, assuming that the spatial domain consists of grid points numbered from 1 to  n, which are populated with variables  u 1 to  un, respectively, we insert two ghost cells at each end and set the grid values as follows:

 u−1 =  un−1,  u 0 =  un

Cells inserted at the start of spatial domain

 un+1 =  u 1,  un+2 =  u 2

Cells inserted at the end of spatial domain

The limiter routines provided along with the downloads for this book include a flag periodic BC that can be set to 0 for nonperiodic BCs or 1 for periodic BCs. This facility can be used by the reader to explore the performance of flux limiters over extended time durations 1For a 2D  Cartesian coordinate  problem, periodic BCs effectively transform the spatial domain into a  torus. 
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Linear advection equation;  t = 0, 2, 4

1.2

1

0.8

0.6

 t)

 u( x,  0.4

0.2

0

−0.2

−10

−8

−6

−4

−2

0

2

4

6

8

10

 x

(B)

FIGURE 2.7: (A) Numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using the superbee flux limiter. (B) Extended duration (tf=24) numerical solution to eq. (2.1) (lines) with the analytical solution superimposed (circles) using the superbee flux limiter. (C) (a)  Linear spatial domain  with  n  grid points and  n − 1 cells. (b)  Periodic spatial domain  defined with the linear domain repeated indefinitely left and right. 

(c)  Equivalent periodic spatial domain  defined as a  ring  with  n  cells and  n  grid points. Image (C) is shown on the following page. 
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FIGURE 2.7:  (Continued)

where it would be impractical to plot the entire spatial domain. It will be clear, therefore, that long simulation times (where  c ×  t >  x max) result in the solution propagating around the spatial domain. Note: Periodic BCs can occur naturally in problems described in cylindrical coordinates. 

Generally, we observe that the computational effort can vary widely for different limiters without a major improvement in the accuracy of the numerical solution; thus, we have found superbee to be a good compromise between accuracy and computational efficiency. 

The reader could certainly come to a different conclusion when comparing the performance of the many limiters that have been proposed (and which can be coded through minor variations in vanl1.m or super.m). It should also be noted that for some applications the superbee limiter can result in unrealistic sharpening of the solution. 

We now consider a second IC function with a discontinuity, the  Heaviside (unit) step function, defined in eq. (2.8)

( 0,  x < 0

 f ( x) =

(2.8)

1, 

 x > 1

Equations (2.1) and (2.8) again define a Riemann problem (because of the discontinuous IC of eq. (2.8)). A step as defined in eq. (2.8) occurs more frequently in applications than the pulse of eq. (2.6). As eq. (2.3) indicates, the analytical solution is a unit step that propagates from left to right with velocity  c > 0. This type of solution is often termed a moving front, and an extensive literature is available for computing solutions to moving front problems. Here, we just repeat three methods we considered previously, five-point centered FDs (in dss004), 2pu, and the superbee flux limiter. 
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The analytical solution is easily programmed in ua 2.m

function uanal=ua_2b(x,t)

%

% Function uanal computes the exact solution of the linear advection

% equation for comparison with the numerical solution

global c

%

% Analytical solution

xi=x-c*t; 

if(xi<0)

uanal=0; 

elseif(xi>=0)

uanal=1; 

end

LISTING 2.7: Function ua 2.m for IC (2.8). 

Note again the use of the variable ξ =  x −  ct  so that we have a Lagrangian (moving coordinate) solution of eqns. (2.1) and (2.8) in function ua 2.m of Listing 2.7. All of the other preceding routines remained unchanged in using IC (2.8) rather than IC (2.6) (with ua 2b.m saved as file ua 2.m as explained previously). 

The plotted output from the five-point centered FDs in dss004 appears in Fig. 2.8(A). 

We note that the numerical solution is highly oscillatory with an error wave propagating right to left from the left face of the step (as in Fig. 2.4)). 

The plotted output with the 2pu approximation of the derivative in  x  in eq. (2.1)

appears in Fig. 2.8(B). Again, as in Fig. 2.5, the numerical solution is smooth but excessively damped. 

The plotted output with the superbee flux limiter appears in Fig. 2.9. Again, as in Fig. 2.6, the numerical solution is a substantial improvement over Figs. 2.8(A) and

2.8(B). The numerical solution is not a vertical line at the points of discontinuity as defined by eqns. (2.3) and (2.8), but there is no oscillation or  overshoot  as in Fig. 2.8(A)

and the smoothing (numerical diffusion) is minimal compared with Fig. 2.8(B). Also, we again should appreciate that we are asking for the calculation of a derivative in x  that is undefined at the points of discontinuity and viewed this way, the numerical solution of Fig. 2.9 is quite satisfactory. If the PDE problem has any smoothing, such as a second derivative in  x, so that a discontinuity does not occur, the differences between the numerical and analytical solutions will probably be imperceptible when plotted. In other words, the superbee flux limiter provides a high-quality numerical solution with no additional programming (in pde 1.m). 

To conclude the discussion of eqns. (2.1), (2.2), (2.6), and (2.8), because this strongly hyperbolic PDE propagates discontinuities, it requires special attention to compute a solution of reasonably good accuracy, i.e., the use of a nonlinear approximation for ux rather than a linear approximation. We can add some additional points:

. Generallyforphysicalsystems,truediscontinuitiesdonotoccur.Inotherwords,there is usually some smoothing from physical phenomena or processes, such as diffusion
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FIGURE 2.8: (A) Numerical solution to eqns. (2.1) and (2.8) (lines) with the analytical solution superimposed (circles) using five-point FDs in dss004 (B) Numerical solution to eqns. (2.1) and (2.8) (lines) with the analytical solution superimposed (circles) using 2pu FDs. 
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FIGURE 2.9: Numerical solution to eqns. (2.1) and (2.8) (lines) with the analytical solution superimposed (circles) using the superbee flux limiter. 

or the effect of viscosity in fluid flow, that precludes a discontinuity. Thus, test problems with discontinuities, such as eqns. (2.6) and (2.8), are generally not completely realistic physically, or in other words, are overly stringent in testing the applicability of numerical methods to physical problems. 

. WhenweusedtheFDapproximationsofdss044orthe2puapproximationofeq.(2.7), 

we might naturally think that they should produce an acceptable numerical solution, especially since the accuracy of these approximations improves with increasing numbers of grid points (smaller 1 x). However, if we ran some additional cases for larger numbers of grid points (than  n = 201), we would find the accuracy of the numerical solutions does not improve substantially (they still have excessive

numerical diffusion and oscillation). Also, we might reason that using higher-order FDs (using more grid points than the five in dss004) would give better numerical solutions; in fact, if we used higher-order FDs, we would find that the numerical solutions oscillate even more than in Figs. 2.4 and 2.8. Thus, we conclude that using more grid points (generally termed  h refinement) or higher-order approximations (generally termed  p refinement) will not necessarily produce numerical solutions of acceptable accuracy, especially for strongly hyperbolic problems. Fortunately, for less difficult PDE problems,  h  and  p  refinement are effective. 

. Somewhatironically,althougheq.(2.1)isperhapsthesimplestPDEwecanenvision,it also is one of the most difficult to solve numerically, depending on the properties of
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 f ( x) in eq. (2.2). PDEs that have a small amount of smoothing or diffusion, typically through a second derivative in  x, appear to be more complicated than eq. (2.1), but they are actually easier to integrate numerically than eq. (2.1). PDEs with first- and second-order derivatives in  x  are termed  hyperbolic–parabolic (or  convective–diffusive); we will consider some examples of these  mixed-type  PDEs subsequently. 

. Theresolutionofsteepmovingfronts,suchasthosefromICs(2.6)and(2.8)canbe achieved by numerical methods other than flux limiter schemes. They include

 weighted essentially non-oscillatory (WENO) [21],  level set [16], and  discontinuous Galerkin [8] methods. These recently developed schemes can be thought of as high-resolution extensions to the MOL approach. However, they are more advanced and are still the subject of ongoing research; as such, they will not be discussed further here. An additional possibility would be the  method of characteristics (MOC), which would give exactly the correct numerical solution to eqns. (2.1), (2.6), and (2.8). It has been used successfully for many years in application areas, such as  adsorption, chromatography [1, 17], and  water-hammer [22]. However, our experience has indicated that more accurate numerical methods such as MOC are difficult to

implement in a general-purpose format (they require an analysis for each particular PDE application, followed by some specialized coding), whereas the MOL approach is quite general and can be applied to a spectrum of PDE problems, both linear and nonlinear, with simultaneous PDEs. We demonstrate this generality in the subsequent applications. MOL and MOC have also been combined in the solution of the  Euler equations for fluid mechanics [2]. 

. Theaccurateresolutionofsteepmovingfrontsisdeterminedbythesmoothnessofthe

fronts (with discontinuities being the most difficult). Mathematically, the functions of

eqns. (2.6) and (2.8) are discontinuous in the solution ( u( x,  t) of eq. (2.1)). If these ICs are continuous in  u( x,  t = 0) but discontinuous in the first  x  derivative, the calculation of the numerical solution is much easier. To demonstrate this point, we consider a

∂ u( x,  t = 0)

 triangular pulse  IC that is continuous in  u( x,  t = 0) but discontinuous in

. 

∂ x

The triangular pulse is defined as



0, 

 x < 0









 x/2, 

0 ≤  x < 2

 f ( x) =

(2.9)

2 −  x/2, 

2 ≤  x < 4









0, 

 x ≥ 4

We can note the following points about this  f ( x) in eq. (2.2):

. Equation(2.3)indicatesthatthispulsemoveslefttorightwithvelocity c=1,whichis subsequently used to evaluate the numerical solution. 

. Thefunctionconsistsoffoursections:

. For x<0,thefunctionofeq.(2.9)iszero. 
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. For0≤ x<2,thefunctionincreaseslinearlyfrom f(0)=0to f(2)=1. 

. For2≤ x<4,thefunctiondecreaseslinearlyfrom f(2)=1to f(4)=0. 

. For x≥4,thefunctioniszero. 

Thus,  f ( x) is continuous in  x, but its first derivative is discontinuous at  x = 0, 2, 4. 

The first derivative undergoes its largest discontinuity at  x = 2 so that it provides the most stringent test of the numerical solution at  x = 2, as will be observed in the subsequent comparison of the analytical and numerical solutions. 

Since the triangular pulse of eq. (2.9) is a significant departure from the previous test problems, the associated Matlab files will be given the designation 3. For example, the main programs are numbered:

. pde 1 main.m-Gaussianpulseofeq.(2.4)

. pde 2 main.m-squarepulseofeq.(2.6)andstepofeq.(2.8)

. pde 3 main.m-triangularpulseofeq.(2.9)

Thus, for the triangular pulse of eq. (2.9), the Matlab routines are pde 3 main.m, pde 3.m, inital 3.m, and ua 3.m. 

The routine that implements IC (2.9) is as follows:

function uanal=ua_3(x,t)

%

% Function uanal computes the exact solution of the linear advection

% equation for comparison with the numerical solution

global c

%

% Analytical solution

xi=x-c*t; 

if(xi<0)

uanal=0; 

elseif((xi>=0)&(xi<=2))

uanal=(x-c*t)/2; 

elseif((xi>=1)&(xi<=4))

uanal=2-(x-c*t)/2; 

elseif(xi>1)

uanal=0; 

end

LISTING 2.8: Function ua 3.m for IC (2.9). 

The coding in Listing 2.8 is a straightforward implementation of eq. (2.9). ua 3.m is then called in pde 3 main.m, pde 3.m, and inital 3.m, dss004 is called in pde 3.m to give a five-point FD numerical solution to eqns. (2.1), (2.2), and (2.9). The plotted output is in

Fig. 2.10. 

The agreement between the numerical and analytical solutions is generally quite good. 

The only points of significant difference are at the peak where the two linear segments of the solutions are connected ( x = 2, 4, 6 corresponding to  t = 0, 2, 4 for  c = 1). The tabulated numerical output near these three points is listed in Table 2.2. 

As expected, the IC ( t = 0) values of the peak agree (since the numerical and analytical solutions always start from the same IC). At  t = 2, the numerical peak value is 0.970590, 
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Linear advection equation;  t = 0, 2, 4
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FIGURE 2.10: Numerical solution to eqns. (2.1) and (2.9) (lines) with the analytical solution superimposed (circles) using five-point FDs in dss004. 

whereas at  t = 4, it is 0.968542. Although the errors are significant, they do not represent a major distortion of the numerical solution (as indicated in Fig. 2.10). 

In an effort to improve these peak values, two other numerical solutions were

computed:

. Nine-point,eighth-orderFDsinroutinedss008wereusedinplaceofdss004.The

peak values are summarized in Table 2.3. Although the peak values improved marginally (closer to 1.000000), unexpectedly, an error wave developed near the left boundary  x = −10 as indicated in Fig. 2.11. 

. Thesuperbeefluxlimiterwascalledinpde 3.m.Thepeakvaluesaresummarizedin

Table 2.4. The peak values are actually less accurate than for dss004, and the number of calls to pde 3.m increased from ncall = 515 (dss004) to ncall = 3055 (super). 

Thus, both efforts to improve the peak values were unsuccessful. 

In summary, the smoothness of the triangular pulse IC of eq. (2.9) relative to the square pulse IC of eq. (2.8) provided a generally satisfactory numerical solution. This conclusion also indicates why the numerical solution for the Gaussian IC of eq. (2.4) was relatively easy to compute, since this function is continuous and has continuous derivatives of all orders. Also, the numerical solution for the triangular pulse of eq. (2.9) deteriorates as the pulse is narrowed (below the width of 4) as might be expected; presumably, this could be countered by adding more grid points (in all of the previous cases,  n = 201). 
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Table 2.2:

Abbreviated and tabular numerical and analytical

solutions for eqns. (2.1), (2.2), and (2.9) from dss004

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

1.000

0.500000

0.500000

0.000000

0.00

2.000

1.000000

1.000000

0.000000

0.00

3.000

0.500000

0.500000

0.000000

0.00

4.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

2.000

0.013343

0.000000

0.013343

2.00

3.000

0.495102

0.500000

−0.004898

2.00

4.000

0.970590

1.000000

−0.029410

2.00

5.000

0.503054

0.500000

0.003054

2.00

6.000

0.014590

0.000000

0.014590

t

x

u(it,i)

u anal(it,i)

err(it,i)

4.00

4.000

0.012795

0.000000

0.012795

4.00

5.000

0.493201

0.500000

−0.006799

4.00

6.000

0.968542

1.000000

−0.031458

4.00

7.000

0.502513

0.500000

0.002513

4.00

8.000

0.017230

0.000000

0.017230

ncall = 459

As a concluding point, we mention that the various traveling wave functions (Gaussian, square pulse, and triangular pulse) did not reach the boundaries in  x; thus, the boundary values remained at zero. If the traveling wave functions had reached either boundary in  x, the solution would have become more complicated and would be determined by what is assumed and computed at the boundaries; that is, the BC in  x  would have become more consequential. We will not consider this added complication (however, in physical applications, it can be important). Additional details concerning MOL analysis for traveling waves including boundary effects can be found in [19]. 

This rather extended discussion of eq. (2.1) was provided at this point to demonstrate that PDE applications are not necessarily straightforward to solve and each PDE problem  is usually a new problem  with no guarantee of success in advance for computing an acceptable numerical solution; to a minimum extent, some trial and error may be required to produce a numerical solution of acceptable accuracy. 

In subsequent chapters, we analyze a series of PDE applications for which the computation of acceptable numerical solutions was achieved (generally confirmed through comparisons with analytical solutions). We would not, however, wish to leave the impression that the programming and testing of the computer code led directly to an acceptable solution. Generally, we had to experiment to arrive at a workable numerical procedure, and we wish to convey to the reader that this is a normal part of this type of experimental investigation. 
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Table 2.3:

Abbreviated and tabular numerical and analytical

solutions for eqns. (2.1), (2.2), and (2.9) from dss008

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

1.000

0.500000

0.500000

0.000000

0.00

2.000

1.000000

1.000000

0.000000

0.00

3.000

0.500000

0.500000

0.000000

0.00

4.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

2.000

0.007239

0.000000

0.007239

2.00

3.000

0.497509

0.500000

−0.002491

2.00

4.000

0.983813

1.000000

−0.016187

2.00

5.000

0.501166

0.500000

0.001166

2.00

6.000

0.008799

0.000000

0.008799

t

x

u(it,i)

u anal(it,i)

err(it,i)

4.00

4.000

0.009567

0.000000

0.009567

4.00

5.000

0.505752

0.500000

0.005752

4.00

6.000

0.979748

1.000000

−0.020252

4.00

7.000

0.497179

0.500000

−0.002821

4.00

8.000

0.009959

0.000000

0.009959

ncall = 515

Appendix2

 Flux limiters  are used in numerical schemes to solve problems in science and engineering, particularly fluid dynamics, that are described by  partial differential equations (PDEs). Their main purpose is to avoid the spurious oscillations (wiggles) that would otherwise occur with high-order spatial discretization (as predicted by Godunov [5, 6]) due to shocks, discontinuities, or steep gradients in the solution domain. They can be used directly on  finite difference schemes  for simple applications, such as the 1D advection PDE

of eq. (2.1). However, for more complex systems involving conservation laws,  finite volume high-resolution schemes  are employed that are also designed to avoid entropy violations. 

A popular high-resolution scheme is the  MUSCL scheme—MUSCL stands for

 Monotone Upstream-centered Schemes for Conservation Laws 3. The term was introduced in a seminal paper by Bram van Leer [30]. In this paper, he constructed the first high-order,  total variation diminishing (TVD) scheme, where he obtained second-order spatial accuracy. The concept of TVD was introduced by Ami Harten [7] and relates to a 2This appendix is based on the Wikipedia article, http://en.wikipedia.org/wiki/Flux limiters, written by one of the authors. 

3A readable overview of the MUSCL scheme is available on-line at: http://en.wikipedia.org/wiki/

MUSCL scheme. 
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Linear advection equation;  t = 0, 2, 4
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FIGURE 2.11: Numerical solution to eqns. (2.1) and (2.9) (lines) with the analytical solution superimposed (circles) using nine-point FDs in dss008. 

 monotone  numerical scheme. A system is said to be  monotonicity preserving  if the following properties are maintained over time:

.  Nonewlocalextremaarecreated withinthesolutionspatialdomain, 

. Thevalueofa localminimumisnondecreasing,andthevalueofa localmaximumis nonincreasing. 

Use of flux limiters, together with an appropriate high-resolution scheme, make the solutions  total variation diminishing. 

Flux limiters are also referred to as  slope limiters  because they both have the same mathematical form and both have the effect of limiting the solution gradient near shocks or discontinuities. In general, the term  flux limiter  is used when the limiter acts on system fluxes, and  slope limiter  is used when the limiter acts on system  states. 

How They Work

The main idea behind the construction of flux limiter schemes is to limit the spatial derivatives to realistic values—for scientific and engineering problems, this usually means physically realizable values. They are used in high-resolution schemes for solving problems described by PDE’s and only come into operation when sharp wave fronts are present. For smoothly changing waves, the flux limiters do not operate and the spatial derivatives can
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Table 2.4:

Abbreviated and tabular numerical and analytical

solutions for eqns. (2.1), (2.2), and (2.9) from super.m. 

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

1.000

0.500000

0.500000

0.000000

0.00

2.000

1.000000

1.000000

0.000000

0.00

3.000

0.500000

0.500000

0.000000

0.00

4.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

2.000

0.012115

0.000000

0.012115

2.00

3.000

0.500211

0.500000

0.000211

2.00

4.000

0.950851

1.000000

−0.049149

2.00

5.000

0.498828

0.500000

−0.001172

2.00

6.000

0.002511

0.000000

0.002511

t

x

u(it,i)

u anal(it,i)

err(it,i)

4.00

4.000

0.012292

0.000000

0.012292

4.00

5.000

0.500114

0.500000

0.000114

4.00

6.000

0.943321

1.000000

−0.056679

4.00

7.000

0.493475

0.500000

−0.006525

4.00

8.000

0.002608

0.000000

0.002608

ncall=3055

be represented by higher-order approximations without introducing nonreal oscillations. 

Consider the 1D  semidiscrete scheme  below, 

 dui

1 h 





i

+

 F u

−  F u

= 0

 dt

1 x

 i+ 1

 i− 1

 i

2

2

where, for a  finite volume scheme,  F u



and  F u

represent edge fluxes for the

 i+ 1

 i

2

− 12

 ith  cell. Similarly, for a  finite difference scheme, they represent flux values on the grid at point  x =  x

and point  x

. If these fluxes can be represented by  low- and  high-

 i

=  x

+ 1

 i

2

− 12

resolution schemes, then a flux limiter can switch between these schemes depending upon the gradients close to the particular cell as follows:









high

 F u

 f  low

 i

=  f  low − φ ( r

−  f

+ 1

 i)

2

 i+ 1

 i

2

+ 12

 i+ 12









high

 F u



 f  low

 i

=  f  low − φ  r

−  f

− 1

 i−1

2

 i− 1

 i

2

− 12

 i− 12
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where,  f low = low-resolution flux,  f high = high-resolution flux, φ( r) = flux limiter function, and  r  represents the ratio of successive gradients on the solution mesh, i.e., u

 r

 i −  ui−1

 i =  ui+1 −  ui

The limiter function is constrained to be greater than or equal to zero, i.e.,  r ≥ 0. Therefore, when the limiter is equal to zero (sharp gradient, opposite slopes, or zero gradient), the flux is represented by a  low-resolution scheme. Similarly, when the limiter is equal to 1

(smooth solution), it is represented by a  high-resolution scheme. The various limiters listed below have differing switching characteristics and are selected to suit the particular problem and numerical solution scheme. No particular limiter has been found to work well for all problems, and a particular choice is usually made on a trial-and-error basis. 

Limiter Functions

The following are common forms of flux/slope limiter function, φ( r):

 CHARM∗ [33]

 r (3 r + 1)



, 

 r > 0, 

lim

φ

 r→∞ φ cm( r) = 3

 cm( r) =

( r + 2)2

0, 

 r ≤ 0

 HCUS∗ [31]

1.5 ( r

φ

+ | r|)

 hc( r) =

; 

φ

(

lim

 r

 hc( r) = 3

+ 2)

 r→∞

 HQUICK ∗ [13]

2 ( r

φ

+ | r|)

 hq( r) =

; 

φ

(

lim

 r

 hq( r) = 4

+ 3)

 r→∞

 Koren [11]

φ kn( r) = max[0,min(2 r,(1 + 2 r)/3,2)]; 

lim φ kn( r) = 2

 r→∞

 minmod# [18]

φ mm( r) = max[0,min(1,  r)]; 

lim φ mm( r) = 1

 r→∞

 monotonized central (MC)# [29]

φ mc( r) = max[0,min(2 r,0.5(1 +  r),2)]; 

lim φ mc( r) = 2

 r→∞
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 Osher [3]

φ os( r) = max[0,min( r,β)], (1 ≤ β ≤ 2); 

lim φ os( r) = β

 r→∞

 ospre# [31]

1.5  r 2

φ

+  r

 op( r) =

; 

lim φ op( r) = 1.5

 r 2 +  r + 1

 r→∞

 smart∗ [4]

φ sm( r) = max[0,min(2 r,(0.25 + 0.75 r),4)]; 

lim φ sm( r) = 4

 r→∞

 superbee# [18]

φ sb( r) = max[0,min(2 r,1),min( r,2)]; 

lim φ sb( r) = 2

 r→∞

 Sweby# [23]

φ sw( r) = max[0,min(β r,1),( r,β)], min(1 ≤ β ≤ 2); lim φ sw( r) = β

 r→∞

 UMIST [15]

φ um( r) = max[0,min(2 r,(0.25 + 0.75 r),(0.75 + 0.25 r),2)]; lim φ um( r) = 2

 r→∞

 van Albada 1# [27]

 r 2

φ

+  r

 va 1( r) =

; 

lim φ va 1( r) = 1

 r 2 + 1

 r→∞

 van Albada 2∗ Alternative form used on high spatial order schemes [10]

2 r

φ va 2( r) =

; 

lim φ va 2( r) = 0

 r 2 + 1

 r→∞
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 van Leer# [28]

 r

φ

+ | r|

 vl( r) =

; 

lim φ

1

 vl( r) = 2

+  r

 r→∞

∗ Limiter is  not second-order TVD! 

# Limiter is  symmetric  and exhibits the following symmetry property, 

φ ( r)

1 

= φ

 r

 r

This is a desirable property, as it ensures that the limiting actions for forward and backward gradients operate in the same way. 

Unless indicated to the contrary, the above limiter functions are second-order  total variation diminishing (TVD). This means that they are designed such that they pass through a certain region of the solution, known as the TVD region, in order to guarantee stability of the scheme. Second-order, TVD limiters satisfy at least the following criteria:

.  r ≤φ( r)≤2 r,(0≤ r ≤1), 

. 1≤φ( r)≤ r,(1≤ r ≤2), 

. 1≤φ( r)≤2,( r >2), 

. φ(1)=1. 

The admissible limiter region for second-order TVD schemes is shown in the  Sweby Dia-gram Fig. 2.12 [23] and plots showing limiter functions overlaid onto the TVD region are shown in Fig. 2.13. In this image, plots for the Osher and Sweby limiters have been generated using β = 1.5. 

For further information relating to the theory and application of  flux limiters, the reader is referred to [9] [12] [25] [24], and [32]. 

 φ ( r)

 φ = 2 r

 φ =  r

 φ = 2

2

1
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 r

1

2

3

FIGURE 2.12: Admissible limiter region for second-order TVD schemes [23]. 

[image: Image 5]

“06-ch02-007-046-9780123846525” — 2010/12/9 — 13:03 — page 43 — #37

. 

 Chapter 2

Linear Advection Equation

43

 φ ( r)

Second-order TVD region
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FIGURE 2.13: Limiter functions overlaid onto second-order TVD region. 
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PDEs that model diffusion, technically classified as  parabolic  PDEs, can admit traveling wave solutions as we demonstrate in the following analysis. The linear diffusion equation is

∂ u

∂2 u

(3.1)

∂ =  D

 t

∂ x 2

with the initial condition (IC)

 u ( x,  t = 0) =  f ( x)

(3.2)

For a traveling wave solution, we consider

 U(ξ ) =  u( k( x −  Dt)); ξ =  k( x −  Dt) (3.3)

Equation (3.3), when substituted into eq. (3.1) gives dU ∂ξ

 d   dU ∂ξ  ∂ξ

=  D

 d ξ ∂ t

 d ξ

 d ξ ∂ x ∂ x

 dU

 d 2 U

(− kD) =  D

 k 2

(3.4)

 d ξ

 d ξ 2

Equation (3.4) is a second-order ODE that can be integrated once to give (after cancellation of  D)

 dU

 k d ξ + U =  C 1

(3.5)

 dU

If we impose the conditions  U(ξ ) =  d ξ = 0,ξ → ∞, the integration constant is  C 1 = 0. 

A second integration gives

 U(ξ ) =  C e−ξ/ k

which satisfies the condition  U(ξ ) = 0, ξ → ∞ (with  k = 1). Thus, u( x,  t) =  C e−( x− Dt)

(3.6)

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00003-0
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For the IC for eq. (3.1) and eq. (3.2), we take u( x,  t = 0) =  f ( x) = e− x

(3.7)

so  C = 1 in eq. (3.6). 

Since eq. (3.1) is second order in  x, it requires two boundary conditions (BCs), which we take as

 u( x = 0,  t) = e Dt; 

(3.8)

 u( x → ∞) = 0

(3.9)

Equation (3.6) (with  C = 1) is the analytical solution that will be used to evaluate the numerical solution. 

Before proceeding to the Matlab routines, we confirm that eq. (3.6) is the analytical solution to eq. (3.1) with IC (3.7) and BCs (3.8) and (3.9). Substitution of eq. (3.6) into

eq. (3.1) gives (with  C = 1)

Terms in PDE eq. (3.1)

Terms from eq. (3.6)

∂ u

 D e−( x− Dt)

∂ t

∂2 u

(3.10)

− D ∂

− D e−( x− Dt)

 x 2

Sum of terms

Sum of terms

0

0

By inspection, eq. (3.6) satisfies IC (3.7) and BCs (3.8) and (3.9). Thus, we are assured that

eq. (3.6) is a valid test of the numerical solution. 

The Matlab routines closely resemble those of Chapter 2. Here, we list a few details pertaining to eqns. (3.1) and (3.6)–(3.9). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% diffusion equation

%

global xl xu x n ncall

%

global D

%

% uxx

nl=1; nu=1; 

u(1)=exp(D*t); 

u(n)=0; 

ux(1)=0; 

uxx=dss044(xl,xu,n,u,ux,nl,nu); 

%

% PDE

for i=1:n

ut(i)=D*uxx(i); 

end
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ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 3.1: Function pde 1.m for eq. (3.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% diffusion equation

%

global xl xu x n ncall

%

global D

. Thesecondderivativeineq.(3.1), uxx,isthencomputedusingthefunction dss044 with  Dirichlet BCs (3.8) and (3.9) specified (nl=1, nu=1) at grid points 1

corresponding to  x = 0 and n (= 51) corresponding to  x = ∞ (subsequently set in function inital 1.m). 

%

% uxx

nl=1; nu=1; 

u(1)=exp(D*t); 

u(n)=0; 

ux(1)=0; 

uxx=dss044(xl,xu,n,u,ux,nl,nu); 

Note that ux(1)=0 is used only to satisfy the calling requirements of dss044 (in Matlab, all input arguments must have a value); ux is not actually used in dss044 for Dirichlet BCs. 

. Equation(3.1)isthenprogrammed

%

% PDE

for i=1:n

ut(i)=D*uxx(i); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE
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integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC of eq. (3.7) is programmed in inital 1.m listed next. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% advection equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl= 0; 

xu=10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 3.2: Function inital 1.m for IC (3.7). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% advection equation

%

global xl xu x n

. Thegridin x isthendefinedovertheinterval0≤ x≤10for51points. 

%

% Spatial domain and initial condition

xl= 0; 

xu=10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define IC (3.7). 
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.  x=10effectivelydefinesaboundaryat x=∞.Thiscanbeinferredfromtheanalytical solution, eq. (3.6), since with  C =  D = 1, 

 u( x = 10,  t) = e−(10− Dt)

which for the present example is small for any value of  t  we consider ( t ≤ 4). In other words, we have essentially implemented BC (3.9). 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (3.6). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the linear diffusion

% equation for comparison with the numerical solution

%

global D

%

% Analytical solution

uanal=exp(-(x-D*t)); 

LISTING 3.3: Function ua 1.m for analytical solution (3.6). 

Linear diffusion equation;  t = 0, 1, … 4
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FIGURE 3.1: Numerical solution to eq. (3.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss044 [1]. 
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Linear diffusion equation
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FIGURE 3.2: 3D plot of the numerical solution to eq. (3.1). 

The main program, pde 1 main, is essentially the same as pde 1 main of Listing 2.1 and therefore it is not listed here. The problem parameter is set in the statements. 

global D

D=1; 

The main program produces the same three figures and tabulated output as in

Chapter 2, which are now reviewed. Also, the Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapter 2 and is therefore not reproduced here. 

Figure 3.1 indicates good agreement between the analytical and numerical solutions. 

Figure 3.2 is a 3D plot of the numerical solution. The map of the ODE Jacobian matrix, 

Fig. 3.3, reflects the banded structure of the ODEs produced by dss044. 

The tabular analytical and numerical solutions given in Table 3.1 also reflect the good agreement between these two solutions. The computational effort reflected in ncall =

150 is quite modest. 

In summary, the solution of eq. (3.1) subject to IC (3.2) or (3.7) and BCs (3.8) and (3.9) is straightforward. This is to be expected, since parabolic problems tend to produce smooth solutions; that is, the propagation of steep fronts as in the case of the linear advection eq. (2.1) is generally not a problem. 
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FIGURE 3.3: Jacobian matrix map of the MOL ODEs for  n = 51. 

However, because we have followed a numerical approach, extensions of the problem are straightforward. For example, if the problem included a second-order chemical reaction so that eq. (3.1) becomes

∂ u

∂2 u

∂ =  D

+  u 2

(3.11)

 t

∂ x 2

the preceding coding of pde 1 in Listing 3.1 would be simply changed to ut(i)=D*uxx(i)+u(i)ˆ2; 

Although the change in the coding is trivial, the comparison of the numerical and analytical solutions becomes much more difficult because the analytical solution is not readily available. In other words, although we generally discuss PDE problems in the subsequent chapters for which analytical solutions are available to evaluate the numerical solutions, 
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Table 3.1:

Tabular numerical and analytical solutions

t

x

u (it, i)

u anal (it, i)

err (it, i)

0.00

0.000

1.000000

1.000000

0.000000

0.00

1.000

0.367879

0.367879

0.000000

0.00

2.000

0.135335

0.135335

0.000000

0.00

3.000

0.049787

0.049787

0.000000

0.00

4.000

0.018316

0.018316

0.000000

0.00

5.000

0.006738

0.006738

0.000000

0.00

6.000

0.002479

0.002479

0.000000

0.00

7.000

0.000912

0.000912

0.000000

0.00

8.000

0.000335

0.000335

0.000000

0.00

9.000

0.000123

0.000123

0.000000

0.00

10.000

0.000045

0.000045

0.000000

t

x

u (it, i)

u anal (it, i)

err (it, i)

1.00

0.000

2.718282

2.718282

0.000000

1.00

1.000

1.000000

1.000000

-0.000000

1.00

2.000

0.367878

0.367879

-0.000001

1.00

3.000

0.135335

0.135335

-0.000001

1.00

4.000

0.049787

0.049787

-0.000000

1.00

5.000

0.018315

0.018316

-0.000000

1.00

6.000

0.006738

0.006738

-0.000000

1.00

7.000

0.002477

0.002479

-0.000002

1.00

8.000

0.000901

0.000912

-0.000010

1.00

9.000

0.000295

0.000335

-0.000040

1.00

10.000

0.000123

0.000123

0.000000

. 

. 

. 

. 

. 

. 

output for t=2, 3 removed

. 

. 

. 

. 

. 

. 

t

x

u (it, i)

u anal (it, i)

err (it, i)

4.00

0.000

54.598150

54.598150

0.000000

4.00

1.000

20.085485

20.085537

-0.000052

4.00

2.000

7.388982

7.389056

-0.000074

4.00

3.000

2.718233

2.718282

-0.000048

4.00

4.000

0.999971

1.000000

-0.000029

4.00

5.000

0.367853

0.367879

-0.000026

4.00

6.000

0.135287

0.135335

-0.000048

4.00

7.000

0.049664

0.049787

-0.000123

4.00

8.000

0.017981

0.018316

-0.000334

4.00

9.000

0.005827

0.006738

-0.000911

4.00

10.000

0.002479

0.002479

0.000000

ncall=150
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the intent is to demonstrate numerical procedures that can readily be extended to cases for which analytical solutions are not available. In fact, the possibility of solving numerically (at least in principle) a PDE problem of essentially any complexity is the principal reason for studying and using numerical methods. 

Reference
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A Linear Convection Diffusion

Reaction Equation

We considered previously in Chapter 2 a PDE with just a first-order (convective, hyperbolic) derivative in  x, and in Chapter 3 a PDE with just a second-order (diffusive, parabolic) derivative in  x. Now, we combine these two types of PDEs plus reaction to give a linear convection–diffusion-reaction (CDR) PDE. 

∂ u

∂ u

∂2 u

∂ = − c

+  D

−  rcu

(4.1)

 t

∂ x

∂ x 2

Equation (4.1) can also be classified as a  hyperbolic–parabolic (or  convective–diffusive) PDE. The IC is

 u( x,  t = 0) =  f ( x)

(4.2)

For a traveling wave solution to eqns. (4.1) and (4.2), we consider U(ξ ) =  u[ k( x −  x 0 −  ct)]; ξ =  k( x −  x 0 −  ct) (4.3)

where  k,  c, and  x 0 are the wavenumber, velocity, and initial displacement, respectively. 

Equation (4.3), when substituted into eq. (4.1), gives dU ∂ξ

 dU ∂ξ

 d   dU ∂ξ  ∂ξ

= − c

+  D

−  rcU

 d ξ ∂ t

 d ξ ∂ x

 d ξ

 d ξ ∂ x ∂ x

 dU

 dU

(− kc) = − ck

−  rcU

(4.4)

 d ξ

 d ξ +  Dk 2  d 2 U

 d ξ 2

Equation (4.4) is a second-order ODE

 Dk 2  d 2 U −  rcU = 0

(4.5)

 d ξ 2

Equation (4.5) can be integrated by assuming an exponential solution U(ξ ) =  C  exp( B ξ )

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00004-2
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Substitution in eq. (4.5) gives

 Dk 2 B 2 −  rc = 0

r

 rc

Thus,  B = ±

so that the solution to eq. (4.5) is

 Dk 2

r

 r





r



 c

 rc

 U(ξ ) =  C+ exp

ξ +  C

−

ξ

 Dk 2

− exp

 Dk 2

where  C+ and  C− are constants to be determined. 

 dU

If we impose the conditions  U(ξ ) =  d ξ = 0,ξ → ∞ and  C+ = 0. For the IC for eq. (4.1), 

we take



r

 r



 c

 u( x,  t = 0) = exp −

 k( x −  x 0)

(4.6)

 Dk 2

so  C− = 1, and the BCs are



r

 r



 c

 u( x = 0,  t) = exp −

 k(− x 0 −  ct)

(4.7)

 Dk 2

 u( x → ∞,  t) = 0

(4.8)

The solution to eq. (4.1) is therefore



r

 r



 c

 u( x,  t) = exp −

 k( x −  x 0 −  ct)

(4.9)

 Dk 2

To verify this solution, we have:

Terms in PDE eq. (4.1)

Terms from eq. (4.9)

∂ u

r

 r



r



 c

 r

(

 c k( x

∂

−

− kc) exp −

−  x

 t

0 −  ct)

 Dk 2

 Dk 2

∂ u

r

 r



r



 c

 rc

+ c

( k)

 k( x

∂

− c

exp −

−  x

 x

0 −  ct)

 Dk 2

 Dk 2

∂2 u

 r



r



(4.10)

 c

 rc

− D

( k 2)exp

 k( x

∂

− D

−

−  x 0 −  ct)

 x 2

 Dk 2

 Dk 2



r

 r



 c

+ rcu

 rc  exp −

 k( x −  x 0 −  ct)

 Dk 2

Sum of terms

Sum of terms

0

0

The IC, eq. (4.6), and BCs, eqns. (4.7) and (4.8), follow directly from eq. (4.9). 
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The Matlab routines closely resemble those of Chapter 3. Here, we list a few details pertaining to eqns. (4.1), (4.6), (4.7), (4.8), and (4.9). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% convection diffusion reaction equation

%

global xl xu x n ncall

%

global D rc k x0 c sr

%

% ux

u(1)=exp(-sr*k*(-x0-c*t)); 

u(n)=0; 

ux=dss004(xl,xu,n,u); 

%

% uxx

nl=1; nu=1; 

ux(1)=0; 

uxx=dss044(xl,xu,n,u,ux,nl,nu); 

%

% PDE

for i=1:n

ut(i)=-c*ux(i)+D*uxx(i)-rc*u(i); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 4.1: Function pde 1.m for eq. (4.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the linear

% convection diffusion reaction equation

%

global xl xu x n ncall

%

global D rc k x0 c sr

. Thefirstderivativeineq.(4.1), ux,iscomputedusingthefunctiondss004withBCs

(4.7) and (4.8) at grid point 1 corresponding to  x = 0 and n (= 51) corresponding to x = ∞ ( n  is set in function inital 1.m, discussed subsequently). 

%

% ux
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u(1)=exp(-sr*k*(-x0-c*t)); 

u(n)=0; 

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(4.1), uxx,iscomputedusingthefunctiondss044with Dirichlet BCs (4.7) and (4.8) specified (nl=1,nu=1) again at grid points 1 corresponding to  x = 0 and n (= 51) corresponding to  x = ∞, (subsequently set in function to inital 1.m). 

%

% uxx

nl=1; nu=1; 

ux(1)=0; 

uxx=dss044(xl,xu,n,u,ux,nl,nu); 

Note that ux(1)=0 is used only to satisfy the calling requirements of dss044 (in Matlab, all input arguments must have a value); ux is not actually used in dss044 for Dirichlet BCs. 

. Equation(4.1)isthenprogrammed:

%

% PDE

for i=1:n

ut(i)=-c*ux(i)+D*uxx(i)-rc*u(i); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC of eq. (4.6) is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% convection-diffusion reaction equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl= 0; 

xu=10; 

n=51; 
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dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 4.2: Function inital 1.m for IC (4.6). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the linear

% convection diffusion reaction equation

%

global xl xu x n

. Thegridin x isthendefinedovertheinterval0≤ x≤10for51points. 

%

% Spatial domain and initial condition

xl= 0; 

xu=10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define IC (4.6). 

.  x=10effectivelydefinesaboundaryat x=∞.Thiscanbeinferredfromtheanalytical r

 rc

solution, eq. (4.9) , since with

 k = 1,  x 0 = 0, 

 DK  2

 u( x = 10,  t) = e−(10− ct)

which for the present example is small for any value of  t  we consider ( t ≤ 3 and  c = 1). 

In other words, we have essentially implemented BC (4.8). 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (4.9). 

function uanal=ua_1(x,t)

%

“08-ch04-057-066-9780123846525” — 2010/12/10 — 13:23 — page 62 — #6

62

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

% Function uanal computes the exact solution of the linear convection

% diffusion reaction equation for comparison with the numerical solution

%

global D rc k x0 c sr

%

% Analytical solution

uanal=exp(-sr*k*(x-x0-c*t)); 

LISTING 4.3: Function ua 1.m for analytical solution eq. (4.6). 

The main program, pde 1 main, is essentially the same as pde 1 main of Listing 2.1 and therefore is not listed here. The problem parameters are set in the statements. 

global D rc k x0 c sr

D=1; rc=1; k=1; x0=0; c=1; 

sr=(rc/(D*kˆ2))ˆ0.5; 

The main program produces the same three figures and tabulated output as in Chapters 2 and 3, which are now reviewed. Also, the Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 2 and 3 and is therefore not reproduced here. 

Linear CDR equation

25

20

15

( x,  t) u

10

5

00

1
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4

5

6

7

8

9

10

 x

FIGURE 4.1: Numerical solution to eq. (4.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 and dss044 [1] for  t = 0, 1, 2, 3 (bottom to top). 
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Linear CDR equation
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FIGURE 4.2: 3D plot of the numerical solution to eq. (4.1). 

Figure 4.1 indicates good agreement between the analytical and numerical solutions. 

Figure 4.2 is a 3D plot of the numerical solution. The map of the ODE Jacobian matrix, 

Fig. 4.3, reflects the banded structure of the ODEs produced by dss044 and dss044. The tabular analytical and numerical solutions given in Table 4.1 also reflect the good agreement between these two solutions. The computational effort reflected in ncall = 140 is quite modest. 

In summary, the solution of eq. (4.1) subject to IC (4.6) and BCs (4.7) and (4.8) is straightforward. This is to be expected, since this hyperbolic–parabolic problem has a smooth solution due to the diffusive second derivative in  x; that is, the problem is strongly parabolic, so the propagation of a steep front such as in the case of the linear advection eq. (2.1) is not a problem. 

However, because we have followed a numerical approach, extensions of the problem are straightforward. For example, if the problem included a nonlinear convective term, 

∂ u

 u

and an (effective) 1.5-order chemical reaction so that eq. (4.1) becomes

∂ x

∂ u

∂ u

∂2 u

∂ = − u

+  D

−  rcu 1.5

(4.11)

 t

∂ x

∂ x 2
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Jacobian sparsity pattern – nonzeros 243 (9.343%)
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Dependent variables

FIGURE 4.3: Jacobian matrix map of the MOL ODEs for  n = 51. 

the preceding coding of pde 1 in Listing 4.1 would be simply changed to ut(i)=-u(i)*ux(i)+D*uxx(i)+u(i)ˆ(1.5); 

Although the change in the coding is trivial, the comparison of the numerical and analytical solutions becomes much more difficult because the analytical solution is not readily available. As we commented previously, although we generally discuss PDE problems in the subsequent chapters for which analytical solutions are available to evaluate the numerical solutions, the intent is to demonstrate numerical procedures that can readily be extended to cases for which analytical solutions are not available. In fact, the possibility of solving numerically (at least in principle) a PDE problem of essentially any complexity is the principal reason for studying and using numerical methods. 
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Table 4.1:

Tabular numerical and analytical solutions

t

x

u (it, i)

u anal (it, i)

err (it,i)

0.00

0.000

1.000000

1.000000

0.000000

0.00

1.000

0.367879

0.367879

0.000000

0.00

2.000

0.135335

0.135335

0.000000

0.00

3.000

0.049787

0.049787

0.000000

0.00

4.000

0.018316

0.018316

0.000000

0.00

5.000

0.006738

0.006738

0.000000

0.00

6.000

0.002479

0.002479

0.000000

0.00

7.000

0.000912

0.000912

0.000000

0.00

8.000

0.000335

0.000335

0.000000

0.00

9.000

0.000123

0.000123

0.000000

0.00

10.000

0.000045

0.000045

0.000000

. 

. 

. 

. 

. 

. 

output for t=1, 2 removed

. 

. 

. 

. 

. 

. 

t

x

u (it, i)

u anal (it, i)

err (it, i)

3.00

0.000

20.085537

20.085537

0.000000

3.00

1.000

7.388959

7.389056

−0.000098

3.00

2.000

2.718184

2.718282

−0.000098

3.00

3.000

0.999941

1.000000

−0.000059

3.00

4.000

0.367849

0.367879

−0.000030

3.00

5.000

0.135321

0.135335

−0.000014

3.00

6.000

0.049781

0.049787

−0.000007


3.00

7.000

0.018311

0.018316

−0.000005

3.00

8.000

0.006720

0.006738

−0.000018

3.00

9.000

0.002355

0.002479

−0.000124

3.00

10.000

0.000912

0.000912

0.000000

ncall=140

Reference

[1] W.E. Schiesser, G.W. Griffiths,  A Compendium of Partial Differential Equation Models, Cambridge University Press, UK, 2009. 
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Diffusion Equation with Nonlinear

Source Terms

The diffusion equation with nonlinear source terms we will consider is ([3], p3)

∂ u

∂2 u

∂ =  a

−  bu 3 −  cu 2

(5.1)

 t

∂ x 2

where  a,  b, and  c  are arbitrary. An analytical solution is ([3], p3) r

!−1





! 

!−1

 b

r  b

r 2 a

 u( x,  t) =  ct +

 x + 1

=

 x +

 ct + 1

(5.2)

2 a

2 a

 b

The second form of the analytical solution of eq. (5.2) indicates a  traveling wave solution r  b

r 2 a

with a  wavenumber  equal to

and a  wave velocity  equal to −

 c. 

2 a

 b

We study eq. (5.1) to investigate the use of (1)  Dirichlet, (2)  Neumann, (3)  third-type, (4)  nonlinear third-type, and (5)  analytical Neumann  boundary conditions (BCs), both for the linear case  b =  c = 0 for which eq. (5.1) reduces to the  one-dimensional diffusion equation  of Chapter 3 and for the nonlinear case  b  6= 0,  c  6= 0. 

For the linear case, eq. (5.2) reduces to the trivial solution  u( x,  t) = 1, so we look for another solution. Fortunately, since eq. (5.1) becomes the linear diffusion equation, finding an alternative to eq. (5.2) is quite straightforward. We will use the analytical solution

 u( x,  t) = sin(π x/ xu)e− a(π/ xu)2 t (5.3)

which provides the IC with  t = 0.  xu  is the value of  x  at the right boundary; the left boundary value of  x  will be denoted as  xl. That is, the interval in  x  is  xl ≤  x ≤  xu. 

To implement the 10 cases ((linear and nonlinear PDE)(5 BCs) = 10 cases), the Matlab routines still resemble those of previous chapters, but some branching is required for the 10 cases. 

Case 1: Linear PDE, Dirichlet BCs (ncase=1, nbc=1, a=0.1, b=c=0)

The ODE routine, pde 1.m, is considered first (with ncase, nbc set in the main program). 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the diffusion
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% equation with nonlinear source terms

%

global xl xu x n ncall ncase nbc

%

% Model parameters

global a b c

%

% Linear case

if(ncase==1)

%

%

ux

ux=dss004(xl,xu,n,u); 

%

%

Dirichlet BCs

if(nbc==1)

u(1)=0; u(n)=0; 

ux=dss004(xl,xu,n,u); 

end

%

%

Neumann BCs

if(nbc==2)

ux(1)=0; ux(n)=0; 

end

%

%

Third type BCs

if(nbc==3)

ux(1)=-(1/a)*(1-u(1)); ux(n)=(1/a)*(1-u(n)); 

end

%

%

Nonlinear Neumann BCs

if(nbc==4)

ux(1)=-(1/a)*(1-u(1)ˆ4); ux(n)=(1/a)*(1-u(n)ˆ4); 

end

%

%

Analytical Neumann BCs

if(nbc==5)

ux(1)=(pi/xu)*cos(pi*x(1)/xu)*exp(-a*(pi/xu)ˆ2*t); 

ux(n)=(pi/xu)*cos(pi*x(n)/xu)*exp(-a*(pi/xu)ˆ2*t); 

end

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

%

%

Dirichlet BCs

if(nbc==1)

u(1)=ua_1(x(1),t); u(n)=ua_1(x(n),t); 
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ux=dss004(xl,xu,n,u); 

end

%

%

Neumann BCs

if(nbc==2)

ux(1)=0; ux(n)=0; 

end

%

%

Third type BCs

if(nbc==3)

ux(1)=-(1/a)*(1-u(1)); ux(n)=(1/a)*(1-u(n)); 

end

%

%

Nonlinear Neumann BCs

if(nbc==4)

ux(1)=-(1/a)*(1-u(1)ˆ4); ux(n)=(1/a)*(1-u(n)ˆ4); 

end

%

%

Analytical Neumann BCs

if(nbc==5)

ux(1)=-1/(c*t+(b/(2*a))ˆ0.5*x(1)+1)ˆ2*(b/(2*a))ˆ0.5; 

ux(n)=-1/(c*t+(b/(2*a))ˆ0.5*x(n)+1)ˆ2*(b/(2*a))ˆ0.5; 

end

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 5.1: Function pde 1.m for eq. (5.1). 

Because of the branching for the 10 cases, we consider each case one at a time. 

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the diffusion

% equation with nonlinear source terms

%

global xl xu x n ncall ncase nbc

%
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% Model parameters

global a b c

. Sinceeq.(5.1)issecondorderin x,twoBCsarerequired.ToimplementtheseBCs,the routine starts with a call to dss004 to compute ux (first for the linear case,  b =  c = 0

with ncase=1 as defined numerically in the main program pde 1 main.m and received by pde 1.m as global variables). 

%

% Linear case

if(ncase==1)

%

%

ux

ux=dss004(xl,xu,n,u); 

. TheroutinethengoesintothefirstBCtype,nbc=1forDirichletBCs. 

%

%

Dirichlet BCs

if(nbc==1)

u(1)=0; u(n)=0; 

ux=dss004(xl,xu,n,u); 

end

Note that  u( x =  xl = 0,  t) =  u( x =  xu = 1,  t) = 0 are used as the BCs (as u at grid points 1,n). Then, dss004 is called again to use these boundary values. The zero BC values are generally termed  homogeneous. However, in principle, any values could be used, and they could even be functions of  t. Thus, this case illustrates an important advantage of the numerical approach to PDEs, namely the  ease with which BCs of essentially any form can be specified (as illustrated by the 10 cases). This contrasts with the analytical approach in which changes in the BCs generally require major changes in the corresponding analytical solutions; in the case of nonlinear BCs, analytical solutions may not even be available, but as we will observe, nonlinear BCs are easily implemented numerically (for nbc=4). 

. Thesecondderivativeineq.(5.1), uxx,iscomputedbyasecondcalltodss004(further down pde 1.m). 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

This completes the derivatives in  x  with the BCs for ncase=1, nbc=1 (the first of the 10 cases). We have used so-called  stagewise differentiation  in which uxx is computed by two successive calls to dss004. An alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

. Equation(5.1)isthenprogrammed(attheendofpde 1.m). 

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

“09-ch05-067-110-9780123846525” — 2010/12/9 — 13:38 — page 71 — #5

. 

 Chapter 5

Diffusion Equation with Nonlinear Source Terms

71

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Recall again that  b =  c = 0 (for ncase=1) so that the nonlinear terms sq and cu have no effect, and we have only the linear diffusion equation ut(i)=a*uxx(i). Since Dirichlet BCs are used (nbc=1), the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their prescribed

values). A transpose is included to meet the requirements of the ODE integrator ode15s. Finally, the counter for the number of calls to pde 1.m is incremented. 

This completes the coding for the first of the 10 cases (ncase=nbc=1) in pde 1.m. At this point, we complete the discussion of this first case, then return to the other nine cases. The IC from eq. (5.2) with  t = 0 is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the diffusion

% equation with nonlinear source terms

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b c

%

% Spatial domain and initial condition

xl=0; 

xu=1; 

n=26; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 5.2: Function inital 1.m for IC from eq. (5.2) or eq. (5.3) with  t = 0. 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the diffusion equation
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% with nonlinear source terms

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b c

. Thegridin x isthendefinedovertheinterval0≤ x≤1for26points. 

%

% Spatial domain and initial condition

xl=0; 

xu=1; 

n=26; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for t = 0) to define the IC from eq. (5.3) with  t = 0 for ncase=1 or the IC from eq. (5.2)

for ncase=2. inital 1.m serves both cases, ncase=1,2, since ncase is a global

variable that is passed to the routine for the analytical solutions, ua 1.m, for eqns. (5.2)

and (5.3). 

Function ua 1.m is a straightforward implementation of the analytical solutions, 

eqns. (5.2) and (5.3). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the diffusion equation

% with nonlinear source terms for comparison with the numerical solution

%

% Model parameters

global xl xu n ncall ncase nbc

global a b c

%

% Analytical solution

%

%

Linear case

if(ncase==1)

uanal=sin(pi*x/xu)*exp(-a*(pi/xu)ˆ2*t); 

end

%

%

Nonlinear case

if(ncase==2)

uanal=1/(c*t+(b/(2*a))ˆ0.5*x+1); 

end

LISTING 5.3: Function ua 1.m for analytical solution (5.2) and (5.3). 
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The main program, pde 1 main, is essentially the same as pde 1 main of previous chapters, but since it contains the coding for the 10 cases, it is listed here along with some discussion. 

%

% Diffusion equation with nonlinear source terms

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall ncase nbc

%

% Model parameters

global a b c

%

% Select case

%

% 1 - linear; 2 - nonlinear

ncase=1; 

%

% Linear case

if(ncase==1)

a=0.1; b=0; c=0; 

end

%

% Nonlinear case

if(ncase==2)

a=1; b=1; c=1; 

end

%

% Select BCs

%

% 1 - Dirichlet; 2 - Neumann; 3 - Third type; 4 - Nonlinear third type, 

% 5 - Analytical Neumann

nbc=1; 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=0.9; 

tout=[t0:0.3:tf]'; 

nout=4; 

ncall=0; 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration
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if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

%

% Store analytical solution, errors in numerical solution

if(nbc==1 | nbc==5)

for it=1:nout

u(it,1)=ua_1(x(1),t(it)); 

u(it,n)=ua_1(x(n),t(it)); 

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

end

if(nbc==2 | nbc==3 | nbc==4)

for it=1:nout

fprintf('\n

t

x

u(it,i)\n'); 

for i=1:n

fprintf('%6.2f%8.3f%15.6f\n',t(it),x(i),u(it,i)); 

end

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

%

Plot numerical and analytical solutions

figure(2)

if(nbc==1 | nbc==5)

plot(x,u,'-',x,u_anal,'o')

title('Diffusion equation with nonlinear source terms; 

t = 0, 0.3, 0.6, 0.9; solid - numerical; o - analytical')

elseif(nbc==2 | nbc==3 | nbc==4)

plot(x,u,'-')

title('Diffusion equation with nonlinear source terms; 

t = 0, 0.3, 0.6, 0.9; solid - numerical')

end

xlabel('x')

ylabel('u(x,t)')

figure(3)

surf(x,t,u)

az=50; el=40; 
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view(az,el)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Diffusion equation with nonlinear source terms'); 

LISTING 5.4: Main program pde 1 main.m for eq. (5.1). 

We can note the following points about pde 1 main.m:

. Previousfilesareclearedandtheproblemparametersaredeclaredasglobaland

defined numerically. 

%

% Diffusion equation with nonlinear source terms

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall ncase nbc

%

% Model parameters

global a b c

. Thecaseisselected,whichincludessettingthevaluesof a,  b,  c ineq.(5.1). 

%

% Select case

%

% 1 - linear; 2 - nonlinear

ncase=1; 

%

% Linear case

if(ncase==1)

a=0.1; b=0; c=0; 

end

%

% Nonlinear case

if(ncase==2)

a=1; b=1; c=1; 

end

. OneofthefiveBCsisthenselected. 

%

% Select BCs

%

% 1 - Dirichlet; 2 - Neumann; 3 - Third type; 4 - Nonlinear third type, 

% 5 - Analytical Neumann

nbc=1; 

Here, we specify nbc=1 corresponding to the homogeneous Dirichlet BCs used in

pde 1.m of Listing 5.1. 

. TheICfrominital 1.misset,andtheintervalin t  isdefinedas0≤ t ≤0.9withfour outputs at  t = 0, 0.3, 0.6, 0.9. 
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%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=0.9; 

tout=[t0:0.3:tf]'; 

nout=4; 

ncall=0; 

. TheODEintegrationisbyode45(formf=1,nonstiff)orbyode15s(formf=2,stiff).Note

that these integrators call pde 1.m as the first argument. 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

. Thesolutionisdisplayednumerically.Fornbc=1,5,analyticalsolutions(5.2)and(5.3)

can be used for comparison with the numerical solution, and the difference between the two solutions (err) can be included in the output. For nbc=2,3,4, an analytical solution is not readily available and therefore only the numerical solution is displayed. 

These same considerations (availability of an analytical solution) apply to the plotted output as well. 

%

% Store analytical solution, errors in numerical solution

if(nbc==1 | nbc==5)

for it=1:nout

u(it,1)=ua_1(x(1),t(it)); 

u(it,n)=ua_1(x(n),t(it)); 

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end
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end

end

if(nbc==2 | nbc==3 | nbc==4)

for it=1:nout

fprintf('\n

t

x

u(it,i)\n'); 

for i=1:n

fprintf('%6.2f%8.3f%15.6f\n',t(it),x(i),u(it,i)); 

end

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

The number of calls to pde 1.m, ncall, is displayed at the end to give an indication of the total computational effort required to compute the numerical solution. 

. Finally,thesolutionsaredisplayedgraphicallyin2D(byplot)and3D(bysurf). 

%

%

Plot numerical and analytical solutions

figure(2)

if(nbc==1 | nbc==5)

plot(x,u,'-',x,u_anal,'o')

title('Diffusion equation with nonlinear source terms; 

t = 0, 0.3, 0.6, 0.9; solid - numerical; o - analytical')

elseif(nbc==2 | nbc==3 | nbc==4)

plot(x,u,'-')

title('Diffusion equation with nonlinear source terms; 

t = 0, 0.3, 0.6, 0.9; solid - numerical')

end

xlabel('x')

ylabel('u(x,t)')

figure(3)

surf(x,t,u)

az=50; el=40; 

view(az,el)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Diffusion equation with nonlinear source terms'); 

The main program produces the same three figures and tabulated output as in previous chapters, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in previous chapters and is therefore not reproduced here. 

Figure 5.1 indicates good agreement between the analytical and numerical solutions. 

Figure 5.2 is the 3D plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 5.3, reflects the banded structure of the ODEs produced by dss004. In particular, since the number of grid points,  n = 26, is relatively small, the individual elements of the Jacobian matrix are distinct. Also, note that the bandwidth is 9 and not 5 as might be expected from the five-point FDs in dss004. This greater bandwidth is due to the repeated use of dss004 in pde 1.m to compute uxx from u by stagewise differentiation. This example illustrates one of the disadvantages of stagewise differentiation, that is, the increase in the bandwidth of the ODE Jacobian matrix through successive calls of the spatial differentiator such as dss004. 

The tabular analytical and numerical solutions given in Table 5.1 also reflect the good agreement between these two solutions. 

“09-ch05-067-110-9780123846525” — 2010/12/9 — 13:38 — page 78 — #12

78

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Diffusion equation with nonlinear source terms
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FIGURE 5.1: Numerical solution to eq. (5.1) (lines) with the analytical solution, eq. (5.3), superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 0.3, 0.6, 0.9 (top to bottom). 
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FIGURE 5.2: 3D plot of the numerical solution to eq. (5.1). 
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Jacobian sparsity pattern – nonzeros 198 (29.290%)

0

5

10

15

Semidiscrete equations

20

25

0

5

10

15

20

25

Dependent variables

FIGURE 5.3: Jacobian matrix map of the MOL ODEs for  n = 26. 

The computational effort reflected in ncall = 95 is quite modest. The agreement between the analytical and numerical solution of approximately six figures is due in part to the smoothness of the solution as reflected in Fig. 5.1, even when using only 26 grid points. Also, as a result of the homogeneous Dirichlet BCs, the solution has the limiting value  u( x,  t → ∞) = 0 (although the interval in  t  would have to be expanded beyond  t = 0.9

to demonstrate this limiting value, which is also apparent from eq. (5.3)). 

In summary, the solution of eq. (5.1) subject to the IC from eq. (5.3) (with  t = 0) and two homogeneous Dirichlet BCs (with  xl = 0,  xu = 1) is straightforward, particularly, since the solution is quite smooth. We now consider the other nine cases. 

Case 2: Linear PDE, Neumann BCs (ncase=1, nbc=2, a=0.1, b=c=0)

For ncase=1,nbc=2 (linear case, homogeneous Neumann BCs), the BCs are

∂ u( x =  xl,  t)

∂ u( x =  xu,  t)

∂

=

= 0

(5.4)

 x

∂ x

The relevant coding in pde 1.m of Listing 5.1 is
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Table 5.1:

Abbreviated tabular numerical and analytical solutions

for ncase=1,nbc=1

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

0.040

0.125333

0.125333

0.000000

0.00

0.080

0.248690

0.248690

0.000000

0.00

0.120

0.368125

0.368125

0.000000

0.00

0.160

0.481754

0.481754

0.000000

. 

. 

. 

. 

. 

. 

0.00

0.840

0.481754

0.481754

0.000000

0.00

0.880

0.368125

0.368125

0.000000

0.00

0.920

0.248690

0.248690

0.000000

0.00

0.960

0.125333

0.125333

0.000000

0.00

1.000

0.000000

0.000000

0.000000

. 

. 

. 

. 

. 

. 

Output for t=0.3, 0.6 removed

. 

. 

. 

. 

. 

. 

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.90

0.000

0.000000

0.000000

0.000000

0.90

0.040

0.051559

0.051558

0.000000

0.90

0.080

0.102304

0.102303

0.000000

0.90

0.120

0.151436

0.151435

0.000001

0.90

0.160

0.198180

0.198179

0.000001

0.90

0.200

0.241799

0.241797

0.000002

. 

. 

. 

. 

. 

. 

0.90

0.800

0.241799

0.241797

0.000002

0.90

0.840

0.198180

0.198179

0.000001

0.90

0.880

0.151436

0.151435

0.000001

0.90

0.920

0.102304

0.102303

0.000000

0.90

0.960

0.051559

0.051558

0.000000

0.90

1.000

0.000000

0.000000

0.000000

ncall=95

. 

. 

. 

%

% Linear case

if(ncase==1)
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%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Neumann BCs

if(nbc==2)

ux(1)=0; ux(n)=0; 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

LISTING 5.5: Programming from pde 1.m for eq. (5.1) with ncase=1, nbc=2. 

The coding for homogeneous Neumann BCs (nbc=2, eq. (5.4)) resets the boundary values of the first derivative, ux(1),ux(n). The plotted numerical solution is in Fig. 5.4. 

Diffusion equation with nonlinear source terms
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FIGURE 5.4: Numerical solution to eq. (5.1) using five-point FD approximations in dss004 for  t = 0, 0.3, 0.6, 0.9 for ncase=1,nbc=2. 
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Diffusion equation with nonlinear source terms
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FIGURE 5.5: 3D plot of the numerical solution to eq. (5.1). 

We can note, in particular, the zero slope (homogeneous Neumann BCs eq. (5.4)) at the boundaries. Also,  u( x,  t → ∞) approaches a constant value 2/π = 0.636620, as explained in Appendix 1 at the end of this chapter. 

Figure 5.5 is the 3D plot of the numerical solution. The limiting value  u( x,  t → ∞) =

2/π = 0.636620 is apparent. 

The map of the ODE Jacobian matrix is basically the same as in Fig. 5.3 and is therefore not reproduced here (since the PDE is the same and the numerical approximations are nearly the same with differences only at the boundaries for nbc=1,2). Also, an analytical solution is not presented for this case (that could be used to evaluate the numerical solution). However, another test of the numerical solution based on  conservation of mass (or energy)  is possible; this idea is explained in Appendix 1 at the end of this chapter. 

Case 3: Linear PDE, Third-Type BCs (ncase=1, nbc=3, a=0.1, b=c=0)

For ncase=1,nbc=3 (linear case, third-type BCs), the BCs are

∂ u( x =  xl,  t)

∂ u( x =  xu,  t)

∂

= − a(1 −  u( x =  x

=  a(1 −  u( x =  xu,  t))

(5.5)

 x

 l,  t)), 

∂ x

The relevant coding in pde 1.m of Listing 5.1 is
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. 

. 

. 

%

% Linear case

if(ncase==1)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Third type BCs

if(nbc==3)

ux(1)=-(1/a)*(1-u(1)); ux(n)=(1/a)*(1-u(n)); 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

LISTING 5.6: Programming from pde 1.m for eq. (5.1) with ncase=1, nbc=3. 

The coding for the third-type BCs (nbc=3) follows directly from eq. (5.5). The plotted numerical solution is in Fig. 5.6. 

Diffusion equation with nonlinear source terms

1

0.9

0.8

0.7

0.6

0.5

 u( x,   t)

0.4

0.3

0.2

0.1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

FIGURE 5.6: Numerical solution to eq. (5.1) using five-point FD approximations in dss004 for  t = 0, 0.3, 0.6, 0.9 for ncase=1,nbc=3. 
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1

0.8

1

0.6

 t)

0.8

 u( x,  0.4

0.6

0.2

0.4  t

0

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.9

 x

1

FIGURE 5.7: 3D plot of the numerical solution to eq. (5.1). 

We can note in particular that the limiting value  u( x,  t → ∞) = 1 follows from BCs (5.5); 

this would be more apparent numerically if the final value of  t  was increased from  t = 0.9

(the same interval in  t  was used in all 10 cases to minimize the coding). 

Figure 5.7 is the 3D plot of the numerical solution. 

The limiting value  u( x,  t → ∞) = 1 is apparent (particularly if  t  is extended beyond t = 0.9). 

The map of the ODE Jacobian matrix is basically the same as in Fig. 5.3 and is therefore not reproduced here (since the PDE is the same and the numerical approximations are nearly the same with differences only at the boundaries for nbc=1,3). Also, an analytical solution is not presented for this case (that could be used to evaluate the numerical solution). 

Case 4: Linear PDE, Nonlinear Third-Type BCs (ncase=1, nbc=4, a=0.1, 

b=c=0)

For ncase=1,nbc=4 (linear case, nonlinear third-type BCs), the BCs are

∂ u( x =  xl,  t)

∂ u( x =  xu,  t)

∂

= − a[1 −  u( x =  x

=  a[1 −  u( x =  xu,  t)4]

(5.6)

 x

 l,  t)4], 

∂ x
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Equation (5.6) may appear to be a trivial extension of eq. (5.5). However, the nonlinear terms  u( x =  xl,  t)4,  u( x =  xu,  t)4 are significant for the following reasons:

. Thefourthpowerhasanimportantapplicationinradiationheattransfer(accordingto

the  Stefan–Boltzmann law). 

. Althoughthesolutionforthenonlinearcase(nbc=4)isaminorextensionofthelinear

case (nbc=3) numerically (as discussed subsequently), analytically, the nonlinear case is much more difficult, and in fact, analytical solutions for the nonlinear case may not be available. In other words, this example illustrates a major advantage of numerical methods, that is, the accommodation of nonlinear BCs. 

. Toextendthisideafurther,nonlinearBCsofthegeneralform(forasecond-orderPDE)

 fb( u,  ux,  x,  t) = 0

(5.7)

can be accommodated numerically by using a root finder applied to  fb  to compute  ux at the boundary, followed by application of the method for nonlinear third-type BCs discussed next. 

The relevant coding in pde 1.m of Listing 5.1 is

. 

. 

. 

%

% Linear case

if(ncase==1)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Nonlinear Neumann BCs

if(nbc==4)

ux(1)=-(1/a)*(1-u(1)ˆ4); ux(n)=(1/a)*(1-u(n)ˆ4); 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

LISTING 5.7: Programming from pde 1.m for eq. (5.1) with ncase=1, nbc=4. 

The coding for the nonlinear third-type BCs (nbc=4) follows directly from eq. (5.6). The plotted numerical solution is in Fig. 5.8. 

We can note in particular that the limiting value  u( x,  t → ∞) = 1 follows from BCs (5.6); 

this would be more apparent numerically if the final value of  t  was increased from  t = 0.9
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FIGURE 5.8: Numerical solution to eq. (5.1) using five-point FD approximations in dss004 for  t = 0, 0.3, 0.6, 0.9 for ncase=1,nbc=4. 

(again, the same interval in  t  was used in all 10 cases to minimize the coding). Figure 5.9 is the 3D plot of the numerical solution. 

The limiting value  u( x,  t → ∞) = 1 is apparent (particularly if  t  is extended beyond t = 0.9). 

The map of the ODE Jacobian matrix is basically the same as in Fig. 5.3 and is therefore not reproduced here (since the PDE is the same and the numerical approximations are nearly the same with differences only at the boundaries for nbc=1,4). Also, an analytical solution is not presented for this case (that could be used to evaluate the numerical solution); this is primarily due to the unavailability of an analytical solution for this nonlinear case. 

Case 5: Linear PDE, Analytical Neumann BCs (ncase=1, nbc=5, a=0.1, 

b=c=0)

As a final linear case, we consider analytical Neumann BCs (ncase=1, nbc=5)

∂ u( x =  xl,  t)

∂ u( x =  xu,  t)

∂

=  f

=  f

 x

 b 1( t), 

∂ x

 b 2( t)

(5.8)

where the BC functions,  fb 1,  fb 2, are obtained by differentiating eq. (5.3) with  x =  xl,  xu. 

∂ u( x,  t)

∂

= (π/ xu) cos(π x/ xu)e− a(π/ xu)2 t

(5.9)

 x
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FIGURE 5.9: 3D plot of the numerical solution to eq. (5.1). 

The relevant coding in pde 1.m of Listing 5.1 is

. 

. 

. 

%

% Linear case

if(ncase==1)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Analytical Neumann BCs

if(nbc==5)

ux(1)=(pi/xu)*cos(pi*x(1)/xu)*exp(-a*(pi/xu)ˆ2*t); 

ux(n)=(pi/xu)*cos(pi*x(n)/xu)*exp(-a*(pi/xu)ˆ2*t); 

end

. 

. 

. 

%

%

uxx
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uxx=dss004(xl,xu,n,ux); 

end

LISTING 5.8: Programming from pde 1.m for eq. (5.1) with ncase=1, nbc=5. 

The coding for the analytical Neumann BCs (nbc=5) follows directly from eq. (5.8) with

∂ u( xl,  t)

∂ u( xu,  t)

= ux(1) and

= ux(n). The plotted numerical solution is in Fig. 5.10, 

∂ x

∂ x

which includes the numerical (lines) and analytical (circles) solutions; the latter, again

eq. (5.3), applies since Neumann BCs based on this solution were used (in eqns. (5.7)

and (5.8)). 

The agreement between the numerical and analytical solutions is quite satisfactory; a portion of the two solutions at  t = 0.9 is listed in Table 5.2. The computational effort reflected in ncall = 71 is modest. 

Figure 5.11 is the 3D plot of the numerical solution. Recall again that the numerical and plotted output from pde 1 main in Listing 5.4 (Figs. 5.10, 5.11, Table 5.2) is produced by the code for nbc=1,5. 

The map of the ODE Jacobian matrix is basically the same as in Fig. 5.3 and is therefore not reproduced here (since the PDE is the same and the numerical approximations are nearly the same with differences only at the boundaries for nbc=1,5). 

This completes the discussion of the five BC cases for the linear PDE ( b =  c = 0, ncase=1). We now essentially repeat the preceding discussion for the five BC cases

Diffusion equation with nonlinear source terms
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FIGURE 5.10: Numerical (lines) and analytical (circles) solutions to eq. (5.1) using five-point FD approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=1,nbc=5 (top to bottom). 
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Diffusion equation with nonlinear source terms
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FIGURE 5.11: 3D plot of the numerical solution to eq. (5.1). 

Table 5.2:

Abbreviated tabular numerical and analytical

solutions for ncase=1,nbc=5

t

x

u(it,i)

u anal(it,i)

err(it,i)

. 

. 

. 

. 

. 

. 

0.90

0.400

0.391239

0.391235

0.000003

0.90

0.440

0.404086

0.404083

0.000004

0.90

0.480

0.410561

0.410557

0.000004

0.90

0.520

0.410561

0.410557

0.000004

0.90

0.560

0.404086

0.404083

0.000004

0.90

0.600

0.391239

0.391235

0.000003

. 

. 

. 

. 

. 

. 

ncall=71

(nbc=1,2,3,4,5) for the nonlinear PDE ( b  6= 0,  c  6= 0, ncase=2). The purpose of this discussion is to demonstrate, at least in principle, that a nonlinear PDE numerical solution is as readily computed as for a linear PDE. Since the following discussion is basically a repetition of the previous discussion, we present only the details for the few differences. 
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Case 6: Nonlinear PDE, Dirichlet BCs (ncase=2, nbc=1, a=b=c=1)

For Dirichlet BCs (ncase=2, nbc=1), the relevant coding in pde 1.m of Listing 5.1 is

. 

. 

. 

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

%

%

Dirichlet BCs

if(nbc==1)

u(1)=ua_1(x(1),t); u(n)=ua_1(x(n),t); 

ux=dss004(xl,xu,n,u); 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

end

LISTING 5.9: Programming from pde 1.m for eq. (5.1) with ncase=2, nbc=1. 

ua 1.m can again be used for the Dirichlet BCs through the use of ncase as a global variable (refer to Listing 5.3). The programming of eq. (5.1) for the nonlinear case (ncase=2) is the same as for the linear case (ncase=1); only the values of  a,  b,  c (programmed in pde 1 main.m of Listing 5.4) are changed. 

inital 1.m and pde 1 main.m of Listings 5.2 and 5.4 remain the same for ncase=2, and the map of the Jacobian matrix does not change significantly from the preceding five linear cases. The plotted solutions follow. 

The agreement between the numerical and analytical solutions is to at least six figures; a portion of the two solutions at  t = 0.9 is listed in Table 5.3. The computational effort reflected in ncall=87 is quite modest. 
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Table 5.3:

Abbreviated tabular numerical and

analytical solutions for ncase=2,nbc=1

t

x

u(it,i)

u anal(it,i)

err(it,i)

. 

. 

. 

. 

. 

. 

0.90

0.400

0.458118

0.458118

0.000000

0.90

0.440

0.452258

0.452258

0.000000

0.90

0.480

0.446546

0.446546

0.000000

0.90

0.520

0.440976

0.440976

0.000000

0.90

0.560

0.435544

0.435544

0.000000

0.90

0.600

0.430244

0.430244

0.000000

. 

. 

. 

. 

. 

. 

ncall=87

Diffusion equation with nonlinear source terms
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FIGURE 5.12: Numerical (lines) and analytical (circles) solutions to eq. (5.1) using five-point FD approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=2,nbc=1 (top to bottom). 

Figure 5.13 is the 3D plot of the numerical solution. Recall again that the numerical and plotted output from pde 1 main in Listing 5.4 (Figs. 5.12, 5.13, Table 5.3) is produced by the code for ncase=2, nbc=1,5. 
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Diffusion equation with nonlinear source terms
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FIGURE 5.13: 3D plot of the numerical solution to eq. (5.1). 

Case 7: Nonlinear PDE, Neumann BCs (ncase=2, nbc=2, a=b=c=1)

For the Neumann BCs of eq. (5.4) (ncase=2, nbc=2), the relevant coding in pde 1.m of

Listing 5.1 is

. 

. 

. 

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Neumann BCs

if(nbc==2)

ux(1)=0; ux(n)=0; 

end

. 

. 

. 
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%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

end

LISTING 5.10: Programming from pde 1.m for eq. (5.1) with ncase=2, nbc=2. 

The programming of eq. (5.1) for the nonlinear case (ncase=2) is the same as for the linear case (ncase=1); only the values of  a,  b,  c (programmed in pde 1 main.m of Listing 5.4) are changed. 

inital 1.m and pde 1 main.m of Listings 5.2 and 5.4 remain the same for ncase=2, and the map of the Jacobian matrix does not change significantly from the preceding cases. 

The plotted solutions follow. 

A portion of the solution at  t = 0.9 is listed in Table 5.4. 

The computational effort reflected in ncall = 188 is modest, and the approach to a constant value  u( x,  t → ∞) = 0.3722 is clear. This value could also be confirmed by Table 5.4:

Abbreviated tabular numerical

and analytical solutions for ncase=2,nbc=2

t

x

u(it,i)

. 

. 

. 

0.90

0.400

0.372289

0.90

0.440

0.372288

0.90

0.480

0.372288

0.90

0.520

0.372287

0.90

0.560

0.372286

0.90

0.600

0.372286

. 

. 

. 

ncall=188
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Diffusion equation with nonlinear source terms
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FIGURE 5.14: Numerical solution to eq. (5.1) using five-point FD approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=2,nbc=2 (top to bottom). 

application of mass conservation as explained in Appendix 1 at the end of this chapter; note that it is different than the value 2/π = 0.636620 for the linear case. 

Figure 5.15 is the 3D plot of the numerical solution. Recall again that the numerical and plotted output from pde 1 main in Listing 5.4 (Figs. 5.14, 5.15, Table 5.4) is produced by the code for ncase=2, nbc=2,3,4. 

Case 8: Nonlinear PDE, Third-type BCs (ncase=2, nbc=3, a=b=c=1)

For the third-type BCs of eq. (5.5) (ncase=2, nbc=3), the relevant coding in pde 1.m of

Listing 5.1 is

. 

. 

. 

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Third type BCs

if(nbc==3)
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ux(1)=-(1/a)*(1-u(1)); ux(n)=(1/a)*(1-u(n)); 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

end

LISTING 5.11: Programming from pde 1.m for eq. (5.1) with ncase=2, nbc=3. 

Diffusion equation with nonlinear source terms
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FIGURE 5.15: 3D plot of the numerical solution to eq. (5.1). 
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Diffusion equation with nonlinear source terms
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FIGURE 5.16: Numerical solution to eq. (5.1) using five-point FD approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=2,nbc=3 (top to bottom). 

The programming of eq. (5.1) for the nonlinear case (ncase=2) is the same as for the linear case (ncase=1); only the values of  a,  b,  c (programmed in pde 1 main.m of Listing 5.4) are changed. 

inital 1.m and pde 1 main.m of Listings 5.2 and 5.4 remain the same for ncase=2, and the map of the Jacobian matrix does not change significantly from the preceding cases. The plotted solutions follow. A portion of the solution at  t = 0.9 is listed in Table 5.5. The computational effort reflected in ncall = 183 is modest. The approach to a solution invariant in  t,  u( x,  t → ∞), is not clear, but it could be studied further by extending the solution beyond  t = 0.9. Whatever the limiting solution might be, it will be the solution to eq. (5.1)

∂ u

for ∂ → 0. 

 t

This is an important point, since for this case, eq. (5.1) reduces to an ODE (with only a second derivative in  x). In other words, the preceding numerical solution to eq. (5.1)

(for large  t) is also a solution to a  two-point nonlinear boundary value ODE (BVODE). To emphasize this point, if we start with a BVODE, we could in principle compute a numerical

∂ u

solution by appending a derivative in an initial value variable, such as

in eq. (5.1), then

∂ t

integrate numerically in  t  until this derivative effectively vanishes; the resulting solution is then for the BVODE. 

Figure 5.17 is the 3D plot of the numerical solution. Recall again that the numerical and plotted output from pde 1 main in Listing 5.4 (Figs. 5.16, 5.17, Table 5.5) is produced by the code for ncase=2, nbc=2,3,4. 
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Table 5.5:

Abbreviated tabular

numerical and analytical solutions

for ncase=2,nbc=3

t

x

u(it,i)

. 

. 

. 

0.90

0.400

0.608456

0.90

0.440

0.606608

0.90

0.480

0.605685

0.90

0.520

0.605685

0.90

0.560

0.606608

0.90

0.600

0.608456

. 

. 

. 

ncall=183
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FIGURE 5.17: 3D plot of the numerical solution to eq. (5.1). 
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Case 9: Nonlinear PDE, Nonlinear Third-Type BCs (ncase=2, nbc=4, 

a=b=c=1)

For the nonlinear third-type BCs of eq. (5.6) (ncase=2, nbc=4), the relevant coding in pde 1.m of Listing 5.1 is

. 

. 

. 

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Nonlinear Neumann BCs

if(nbc==4)

ux(1)=-(1/a)*(1-u(1)ˆ4); ux(n)=(1/a)*(1-u(n)ˆ4); 

end

. 

. 

. 

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

end

LISTING 5.12: Programming from pde 1.m for eq. (5.1) with ncase=2, nbc=4. 

The programming of eq. (5.1) for the nonlinear case (ncase=2) is the same as for the linear case (ncase=1); only the values of  a,  b,  c (programmed in pde 1 main.m of Listing 5.4)

are changed. 
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Table 5.6:

Abbreviated tabular numerical

and analytical solutions for ncase=2,nbc=4

t

x

u(it,i)

. 

. 

. 

0.90

0.400

0.723781

0.90

0.440

0.720924

0.90

0.480

0.719499

0.90

0.520

0.719499

0.90

0.560

0.720924

0.90

0.600

0.723781

. 

. 

. 

ncall=228

inital 1.m and pde 1 main.m of Listings 5.2 and 5.4 remain the same for ncase=2, and the map of the Jacobian matrix does not change significantly from the preceding cases. 

The plotted solutions follow. 

A portion of the solution at  t = 0.9 is listed in Table 5.6. The computational effort reflected in ncall = 228 is modest. 

In contrast with nbc=3, the approach to a solution invariant in  t,  u( x,  t → ∞) is clear, since the curves for  t = 0.6 and  t = 0.9 are nearly the same; this could be confirmed by extending the solution beyond  t = 0.9. Whatever the limiting solution might be, it will be

∂ u

the solution to eq. (5.1) for ∂ → 0. Note also that the solutions of Table 5.5 (linear BCs) t

and Table 5.6 (nonlinear BCs) are substantially different, which reflects the difference in

eqns. (5.5) and (5.6); that is, the BCs have a significant effect in the two cases (even though they are similar). 

Again, as with nbc=3, this approach to a solution invariant in  t  is an important point, since for this case, eq. (5.1) reduces to an ODE (with only a second derivative in  x). In other words, the preceding numerical solution to eq. (5.1) (for large  t) is also a solution to a two-point nonlinear boundary value ODE (BVODE). There is also an important distinction from the preceding ncase=2, nbc=3 case, since now the ODE and the  boundary conditions are nonlinear. In other words, if we start with a BVODE that is nonlinear in both the ODE and its boundary conditions, we could in principle compute a numerical solution by

∂ u

appending a derivative in an initial value variable, such as

in eq. (5.1), then integrate

∂ t

numerically in  t  until this derivative effectively vanishes; the resulting solution is then for the nonlinear BVODE. 

Figure 5.19 is the 3D plot of the numerical solution. Recall again that the numerical and plotted output from pde 1 main in Listing 5.4 (Figs. 5.18, 5.19, Table 5.6) is produced by the code for ncase=2, nbc=2,3,4. 
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FIGURE 5.18: Numerical solution to eq. (5.1) using five-point FD approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=2,nbc=4 (top to bottom). 
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FIGURE 5.19: 3D plot of the numerical solution to eq. (5.1). 
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Case 10: Nonlinear PDE, Analytical Neumann BCs (ncase=2, nbc=5, 

a=b=c=1)

Finally, we conclude (with the tenth case) using the analytical Neumann BCs obtained by differentiation eq. (5.2) with respect to  x. 

∂



!−2

 u( x

r

r

,  t)

 b

r 2 a

 b

( x

 ct)

(5.10)

∂

= −

+

+ 1

 x

2 a

 b

2 a

For ncase=2, nbc=5, the relevant coding in pde 1.m of Listing 5.1 is

. 

. 

. 

%

% Nonlinear case

if(ncase==2)

%

%

ux

ux=dss004(xl,xu,n,u); 

. 

. 

. 

%

%

Analytical Neumann BCs

if(nbc==5)

ux(1)=-1/(c*t+(b/(2*a))ˆ0.5*x(1)+1)ˆ2*(b/(2*a))ˆ0.5; 

ux(n)=-1/(c*t+(b/(2*a))ˆ0.5*x(n)+1)ˆ2*(b/(2*a))ˆ0.5; 

end

%

%

uxx

uxx=dss004(xl,xu,n,ux); 

end

%

% PDE

for i=1:n

sq=u(i)ˆ2; 

cu=u(i)*sq; 

ut(i)=a*uxx(i)-b*cu-c*sq; 

end

if(nbc==1)

ut(1)=0; ut(n)=0; 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

end

LISTING 5.13: Programming from pde 1.m for eq. (5.1) with ncase=2, nbc=5. 
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Table 5.7:

Abbreviated tabular numerical and analytical

solutions for ncase=2,nbc=5

t

x

u(it,i)

u anal(it,i)

err(it,i)

. 

. 

. 

. 

. 

. 

0.90

0.400

0.458118

0.458118

0.000000

0.90

0.440

0.452258

0.452258

0.000000

0.90

0.480

0.446546

0.446546

0.000000

0.90

0.520

0.440976

0.440976

0.000000

0.90

0.560

0.435544

0.435544

0.000000

0.90

0.600

0.430244

0.430244

0.000000

. 

. 

. 

. 

. 

. 

ncall=84

The programming of eq. (5.1) for the nonlinear case (ncase=2) is the same as for the linear case (ncase=1); only the values of  a,  b,  c (programmed in pde 1 main.m of Listing 5.4)

are changed. 

inital 1.m and pde 1 main.m of Listings 5.2 and 5.4 remain the same for ncase=2, and the map of the Jacobian matrix does not change significantly from the preceding cases. 

The plotted solutions follow. 

A portion of the solution at  t = 0.9 is listed in Table 5.7. The computational effort reflected in ncall = 84 is quite modest, and the numerical and analytical solutions agree to at least six figures. Figure 5.21 is the 3D plot of the numerical solution. 

Recall again that the numerical and plotted output from pde 1 main in Listing 5.4

(Figs. 5.20, 5.21, Table 5.7) is produced by the code for ncase=2, nbc=1,5. 

In conclusion, we have considered 10 cases of the solution of eq. (5.1) as a linear PDE

( b =  c = 0) and a nonlinear PDE( b  6= 0,  c  6= 0)with linear and nonlinear BCs. The intent is to demonstrate the generality and flexibility of the numerical approach to PDE solutions. The obvious limitation to the preceding cases is that they are all 1D. We are developing analogous procedures for 2D and 3D PDEs, although these additional cases are also discussed to a limited extent in [5]. 

Appendix 1

In the previous chapters, we have evaluated numerical PDE solutions by comparison with analytical solutions. This is a valuable procedure, since agreement between numerical and analytical solutions gives some assurance that the numerical procedures are sound and
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Diffusion equation with nonlinear source terms

1

0.9

0.8

0.7

 t)

 u( x,  0.6

0.5

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

FIGURE 5.20: Numerical solution (lines) and analytical solution (circles) to eq. (5.1) using five-point FD

approximations in dss004  t = 0, 0.3, 0.6, 0.9 for ncase=2,nbc=5. 

Diffusion equation with nonlinear source terms
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FIGURE 5.21: 3D plot of the numerical solution to eq. (5.1). 
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can therefore be used in the solution of PDE systems for which an analytical solution is not available. 

A second widely used method for the validation of numerical methods is to apply a  conservation principle  such as  conservation of mass, momentum, or energy. Here, we demonstrate how the conservation of mass (or energy) can be applied to the numerical solution of eq. (5.1) for the linear case (ncase = 1) and homogeneous Neumann BCs (nbc=2). Physically, the BCs specify  zero flux  or  insulated boundaries  so that the initial mass or energy of the system should remain constant with increasing  t. 

For the linear case (ncase=1), the IC is eq. (5.3) (with  t = 0), and for  t → ∞, the solution approaches a constant value given by the  integral average of the IC. 

R  xu

 xu

 x

sin(π x/ xu) dx

cos(π x/ x

 l

 u)( xu/π )| x

= −

 l

 xu −  xl

 xu −  xl

( xu/π)[cos(π xl/ xu) − cos(π xu/ xu)]

( xu/π)[1 + cos(π xl/ xu)]

=

=

(5.11)

 xu −  xl

 xu −  xl

For  xu = 1,  xl = 0, eq. (5.11) becomes

R  xu

 x

sin(π x/ xu) dx

 l

= 2/π = 0.636620

(5.12)

 xu −  xl

We can then compare the numerical value (2/π = 0.636620) with the value that the numerical solution approaches for  t → ∞. To accomplish this, we replace the relatively short time interval 0 ≤  t ≤ 0.9 in pde 1 main.m with the expanded interval 0 ≤  t ≤ 2.7 (with the four output points  t = 0, 0.9, 1.8, 2.7);  t = 2.7 is large enough that the solution reaches a constant value as will be observed in the following numerical output. All of the other Matlab code remain unchanged. 

The output for ncase=1, nbc=2 is listed in Table 5.8. The agreement with the integral average value 2/π = 0.636620 at  t = 2.7 is apparent. Recall again that this agreement was accomplished with only  n = 26 points, which is due to the smoothness of the solution of

eq. (5.3). 

We can make three additional points about this application of the conservation of mass (energy):

. Thistestofconservationcouldnotbeappliedtothenonlinearcasencase=2

( b  6= 0,  c  6= 0 in eq. (5.1)). Physically, the two nonlinear terms − bu 3, − cu 2 can be considered as representing depletion of mass due to a third- and second-order

reaction, respectively. Thus, mass does not remain constant for  t > 0. 

. Equation(5.11)canbeconsideredastheapplicationofan integralconstraint  or invariant. However, to use this method, it is not necessary to evaluate the integral analytically as we have done for eq. (5.11). Rather, the integral can be evaluated numerically, for example, by using  Simpson’s rule. In other words, for a more complicated IC than eq. (5.3) (with  t = 0), numerical integration may be simpler than
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Table 5.8:

Abbreviated tabular numerical

and analytical solutions for 0≤t≤2.7

t

x

u(it,i)

0.00

0.000

0.000000

0.00

0.020

0.062791

0.00

0.040

0.125333

0.00

0.060

0.187381

0.00

0.080

0.248690

0.00

0.100

0.309017

. 

. 

. 

. 

. 

. 

0.00

0.460

0.992115

0.00

0.480

0.998027

0.00

0.500

1.000000

0.00

0.520

0.998027

0.00

0.540

0.992115

. 

. 

. 

. 

. 

. 

0.00

0.900

0.309017

0.00

0.920

0.248690

0.00

0.940

0.187381

0.00

0.960

0.125333

0.00

0.980

0.062791

0.00

1.000

0.000000

. 

. 

. 

. 

. 

. 

output for t=0.9, 1.8 removed

. 

. 

. 

. 

. 

. 

t

x

u(it,i)

2.70

0.000

0.636610

2.70

0.020

0.636610

2.70

0.040

0.636610

2.70

0.060

0.636611

2.70

0.080

0.636611

2.70

0.100

0.636612

. 

. 

. 

. 

. 

. 

2.70

0.460

0.636630

2.70

0.480

0.636630

2.70

0.500

0.636630

( Continued )
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Table 5.8:

( Continued)

t

x

u(it,i)

2.70

0.520

0.636630

2.70

0.540

0.636630

. 

. 

. 

. 

. 

. 

2.70

0.900

0.636612

2.70

0.920

0.636611

2.70

0.940

0.636611

2.70

0.960

0.636610

2.70

0.980

0.636610

2.70

1.000

0.636610

ncall=226

analytical integration. In fact, the use of numerical integration in applying an integral constraint is commonplace. 

. Witheithermethod(analyticalornumerical),theintegralconstraintcanbeappliedat

any  t > 0 (it does not apply at just  t → ∞). Although the shape of the solution will change with  t, its total mass or energy will remain the same and should therefore be independent (invariant) with respect to  t. In other words, a check that the integral does not change with  t  confirms the conservation principle for any  t > 0. 

Appendix 2

We conclude this chapter by solving the diffusion equation with nonlinear source terms using the  factorization method  as outlined in the main Appendix (after Chapter 19). We repeat the problem eq. (5.1) below for convenience, as we will be using different constant names in our analysis

∂ u

∂2 u

∂ − α

+ β u 3 + δ u 2 = 0, 

 u =  u( x,  t),  t > 0

(5.13)

 t

∂ x 2

If we assume a traveling wave solution of the form  u ( x,  t) =  U (ξ ), where ξ =  k ( x −  ct),  c =

velocity, and  k = wavenumber, eq. (5.13) reduces to the traveling wave ODE

 d 2 U

 dU

+  g

+  F( U) = 0

(5.14)

 dx 2

 dx

 c

−1

where  g =

and  F( U)

 U 2 (δ

α

=

+ β U). 

 k

α k 2
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We factor the polynomial function of eq. (5.14) (the third term) as F( U)

1

=  f

 U (δ + β U)

 U

1 f 2 = − α k 2

and choose

 a

1

 f 1 = −  U, 

 f

δ +  b β U, α 6= 0

(5.15)

 k

2 =  a α k

where we have also introduced the constant  a. 

From eqns. (A.41) and (5.15), we obtain the following ODE

 df 1

2α

1

 c

 U +  f

 U +

(δ + β U) = − g = −

(5.16)

 dU

1 +  f 2 = −  k

 a α k

α k

Collecting terms and equating the coefficients of  U  to zero (as the left-hand side of r β

eq. (5.16) is equal to a constant) gives  a = ±

. Also, as  g  is a constant and indepen-

2α

δ

dent of the value of  U, we find that  c = − on setting  U = 0. Now, adopting the grouping a

of Cornejo-Perez [2], i.e., eq. (A.40b), 

 d 2 U

 df



1

 dU

−

 U +  f 1 +  f 2

 d ξ 2

 dU

 d ξ +  f 1 f 2 U = 0

(5.17)

the corresponding factorization eq. (A.39), i.e.,  D −  f 2 ( U)  D −  f 1 ( U)  U = 0, becomes 1

h



 a

i

 D ±

(δ + β U)  D ∓ −  U U = 0

(5.18)

 a α k

 k

 d

where  D =

. Therefore, it follows that eq. (5.17) is compatible with the first-order ODE

 d ξ

 dU

1 r β  U 2 = 0

(5.19)

 d ξ ±  k

2α

Integrating eq. (5.18) either manually or using Maple yields



!−1

1 r β

 U = ±

ξ +  K

(5.20)

 k

2α

where  K  is an arbitrary constant of integration. We take the positive value of eq. (5.20) and set  K = 1; then, transforming back to  u( x,  t) leads to the final solution r β

!−1

 u( x,  t) =

( x −  ct) + 1

(5.21)

2α

“09-ch05-067-110-9780123846525” — 2010/12/9 — 13:38 — page 108 — #42

108

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

r β

From eq. (5.21), we deduce that the wavenumber  k =

. Also, from the above defini-

2α

r 2α

tions, we see that the wave velocity is given by  c = −δ

. This solution is the same as the

β

analytical solution of eq. (5.2) (but with different constant names) used in the numerical simulation discussed in the main body of this chapter. However, if we swap the equation for  f 1 with that for  f 2, and similarly the equation for  f 2 with that for  f 1, the same calculation procedure arrives at the following entirely different form of traveling wave solution δ 

δ



δ ( x −  ct) −1

 u ( x,  t) = −

1

(5.22)

β

−  K  β exp − √2αβ

where  K  is an arbitrary constant. The Maple script of Listing 5.14 will perform the above calculations. 

Readers are referred to the papers by Berkovich [1] and Cornejo-Perez and Rosu [2, 4]

for more information on this method and additional examples of its use. 

># Diffusion equation with nonlinear source terms. 

# Some calculations to confirm the results of a

# factorization solution. 

# Ref: Cornejo-Perez, O. and H. C. Rosu (2005). 

#

Nonlinear second order ODE: Factorizations and

#

particular solutions, Progress of Theoretical

#

Physics, vol 114, No 3, pp 533-538

restart; with(DEtools): with(PDEtools): with(plots):

alias(u=u(x,t)): alias(U=U(xi)):

>NumericEventHandler(division_by_zero = proc (operator, operands, defVal)

if operator = ln then return -infinity else return defVal end if end proc); 

division_by_zero = proc (operator, operands, defVal) defVal end proc; 

># Define PZ-1 equation

pde1:=diff(u,t)-alpha*diff(u,x,x)+beta*uˆ3+delta*uˆ2=0; 

># Convert PDE to ODE

tr1:={x=(xi/k+c*tau),t=tau,u=U}; 

ode1:=dchange(tr1,pde1,[xi,tau,U]); 

># Define F(U), g

F:=-(1/alpha/kˆ2)*Uˆ2*(delta+beta*U); 

g:=c/(alpha*k); 

># Factor F(U)/U - Note: 'a' introduced

f[1]:=-a*U/k; 

f[2]:=(delta+beta*U)/(alpha*k*a); 

># Check that factorization is correct

F_chk:=simplify(eval(f[1]*f[2]*U)); 

># Use the C-P grouping

alias(U=U):f[1]:=subs(U(xi)=U,f[1]):f[2]:=subs(U(xi)=U,f[2]):

eqn1:=diff(f[1],U)*U+f[1]+f[2]=-g; 

sol1:=simplify(subs(U=0,eqn1),size); 

c:=solve(sol1,c); 

># Collect terms in U

eqn2:=collect(simplify(lhs(eqn1)-rhs(eqn1),size),U,'recursive'); 

># Equate coeff of U to zero

eqn3:=coeff(eqn2,U)=0; 

sol2:=solve(eqn3,a); 
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a:=sol2[1]; 

># Fomulate 1st order ode from [D-f[1]]U=0

f[1]:=subs(U=U(xi),f[1]);ode2:=diff(U(xi),xi)-f[1]*U(xi); 

># Obtain solution to ode2

sol4:=dsolve(ode2); 

># Check solution U(xi) satisfies ode1

odeCHK:=simplify(eval(subs({U(xi)=rhs(sol4)},lhs(ode1))),symbolic); 

if odeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Obtain solution to pde1

sol5:=u=simplify(eval(subs({xi=k*(x-c*t)},rhs(sol4))),size); 

># Check solution u(x,t) satisfies pde1:

pdeCHK:=simplify(pdetest(sol5,pde1),symbolic); 

if pdeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Plot results


# ============

x0:=0; alpha:=1; beta:=1; delta:=1; _C1:=1; 

zz:=rhs(sol5); 

animate(zz,x=0..10,t=0..10,axes=framed, 

labels=["x","u"], 

thickness=3,frames=100,numpoints=300, 

title="Diffusion equation with nonlinear source terms", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

>plot3d(zz,x=0..10,t=0..10,axes='framed', 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[-34,67],grid=[100,100], 

style=patchnogrid,shading=Z, 

title="Diffusion equation with nonlinear source terms", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 5.14: Maple code to derive a solution to the diffusion equation with nonlinear source terms using the factorization method. 

Finally, additional Maple scripts are included with the downloads for this book which obtain other solutions to the diffusion equation with nonlinear terms using  tanh-,  exp-, and  Riccati-based methods. 
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Burgers–Huxley Equation

We now consider the  Burgers–Huxley equation, which has a spectrum of applications in nonlinear physics and physiology [5]

∂ u

∂ u

∂2 u

2  u 3(1

∂ +  u 2

−

=

−  u 2), 

 t > 0, 0 ≤  x ≤ 1

(6.1)

 t

∂ x

∂ x 2

3

with initial condition (IC)

1

1

1

1  2

 u( x, 0) =

+

tanh

 x

(6.2)

2

2

3

and BCs at  x = −15, 10 given by the analytical solution [3]

1

1

1

1

2

 u( x,  t) =

+

tanh

(3 x +  t)

(6.3)

2

2

9

The Matlab routines closely resemble those of Chapters 2–5. Here, we list a few details pertaining to eqns. (6.1), (6.2), and (6.3). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Burgers-Huxley

% equation

%

global xl xu x n ncall

%

% BCs at x = -15,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=-(u(i)ˆ2)*ux(i)+uxx(i)+(2/3)*u(i)ˆ3*(1-u(i)ˆ2); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 
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%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 6.1: Function pde 1.m for eq. (6.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Burgers-Huxley

% equation

%

global xl xu x n ncall

. Thefirstderivativeineq.(6.1), ux,iscomputedusingthefunctiondss004.Since

eq. (6.1) is second order in  x, the two required BCs are taken from eq. (6.2) with x = −15, 10 at grid points i=1,n, respectively (with n=51 subsequently set in function inital 1.m). 

%

% BCs at x = -15,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(6.1), uxx,iscomputedwithdss004bydifferentiatingux, so-called  stagewise differentiation. The alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

. Equation6.1isthenprogrammed. 

%

% PDE

for i=2:n-1

ut(i)=-(u(i)ˆ2)*ux(i)+uxx(i)+(2/3)*u(i)ˆ3*(1-u(i)ˆ2); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE
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integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC of eq. (6.2) is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Burgers-

% Huxley equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl=-15; 

xu= 10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 6.2: Function inital 1.m for IC from eq. (6.2). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Burgers-

% Huxley equation

%

global xl xu x n

. Thegridin x isthendefinedovertheinterval−15≤ x≤10for51points(thesegrid parameters were selected by trial and error to produce a numerical solution with acceptable accuracy). 

%

% Spatial domain and initial condition

xl=-15; 

xu= 10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (6.2). 
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Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (6.3). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Burgers-Huxley

% equation for comparison with the numerical solution

%

% Analytical solution

expp=exp( (1/3)*x+(1/9)*t); 

expm=exp(-(1/3)*x-(1/9)*t); 

uanal=((1/2)*(1+(expp-expm)/(expp+expm)))ˆ0.5; 

LISTING 6.3: Function ua 1.m for analytical solution (6.2). 

The main program, pde 1 main, is similar to pde 1 main Listing 2.1 and therefore is not listed here. The main program produces the same three figures and tabulated output as in Chapters 2–5 which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 2–4 and is therefore not reproduced here. 

Burgers–Huxley equation

1

0.9

0.8

0.7

0.6

0.5

( x,  t) u

0.4

0.3

0.2

0.1

0

−15

−10

−5

0

5

10

 x

FIGURE 6.1: Numerical solution to eq. (6.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 5, 10, 15 (right to left). 
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Burgers−Huxley equation

1

0.8

0.6

( x,  t) u  0.4

0.2

0

15

10

10

5

 t

0

5

−5

−10

 x

0 −15

FIGURE 6.2: 3D plot of the numerical solution to eq. (6.1). 

Figure 6.1 indicates good agreement between the analytical and numerical solutions. 

Also, the solution appears to be a traveling wave as specified by eq. (6.3) in the sense that the successive curves are displaced by a constant distance in  t. Note that the curves move right to left, since from eq. (6.2), the velocity is  c = −3/9 (the  Lagrangian  variable is ξ =

 k( x −  ct) = (1/3)( x + 3/9 t)). Figure 6.2 is a 3D plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 6.3, reflects the banded structure of the ODEs produced by dss004. In particular, since the number of grid points,  n = 51, is relatively small, the individual elements of the Jacobian matrix are distinct. Also, note that the bandwidth is 9 and not 5 as might be expected from the five-point FDs in dss004. This greater bandwidth is due to the repeated use of dss004 in pde 1.m to compute uxx from u by stagewise differentiation. This example illustrates a disadvantage of stagewise differentiation, that is, the increase in the bandwidth of the ODE Jacobian matrix through successive calls of the spatial differentiator such as dss004. 

The tabular analytical and numerical solutions also reflect the good agreement between these two solutions. The computational effort reflected in ncall = 129 is quite modest. 

As required, the analytical and numerical solutions agree for  t = 0 (since both solutions are from eq. (6.2)). For  t > 0, the agreement between the analytical and numerical solutions of approximately five figures is quite acceptable, even with only 51 grid points. 
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Jacobian sparsity pattern – nonzeros 423 (16.263%)
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35
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Dependent variables

FIGURE 6.3: Jacobian matrix map of the MOL ODEs for  n = 51. 

The numerical solution of Table 6.1 can be used to estimate the velocity of the traveling wave of Fig. 6.1. For example, we can determine the distance (in  x) between the two solution values  u( x,  t) = 0.5 for  t = 0 and  t = 5. For  u( x,  t = 0) = 0.5, the value of  x  can be estimated by linear interpolation within the solution values of Table 6.1 at  t = 0. 

 x = −2.0 + (−1.5 + 2.0)(0.5 − 0.456737)/(0.518596 − 0.456737) = −1.6503

Similarly, for  t = 5, linear interpolation to determine  x  for  u( x,  t = 5) = 0.5 gives x = −3.5 + (−3.0 + 3.5)(0.5 − 0.477017)/(0.539758 − 0.477017) = −3.3168

Thus, the estimated velocity (of the value  u( x,  t) = 0.5) is 1 x

−3.3168 − (−1.6503)

 c = 1 =

= −0.3333

 t

5 − 0

which compares with the analytical value of  c = −3/9 = −0.3333 (as discussed previously). 
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Table 6.1:

Tabular numerical and analytical solutions

t

x

u (it, i)

u anal (it, i)

err (it, i)

0.00

−15.000

0.006738

0.006738

0.000000

0.00

−14.500

0.007960

0.007960

0.000000

0.00

−14.000

0.009403

0.009403

0.000000

0.00

−13.500

0.011108

0.011108

0.000000

0.00

−13.000

0.013123

0.013123

0.000000

. 

. 

. 

. 

. 

. 

0.00

−2.500

0.398584

0.398584

0.000000

0.00

−2.000

0.456737

0.456737

0.000000

0.00

−1.500

0.518596

0.518596

0.000000

0.00

−1.000

0.582446

0.582446

0.000000

0.00

−0.500

0.646088

0.646088

0.000000

0.00

0.000

0.707107

0.707107

0.000000

. 

. 

. 

. 

. 

. 

0.00

8.000

0.997595

0.997595

0.000000

0.00

8.500

0.998275

0.998275

0.000000

0.00

9.000

0.998763

0.998763

0.000000

0.00

9.500

0.999113

0.999113

0.000000

0.00

10.000

0.999364

0.999364

0.000000

t

x

u (it, i)

u anal (it, i)

err (it, i)

5.00

−15.000

0.011743

0.011743

0.000000

5.00

−14.500

0.013872

0.013872

0.000000

5.00

−14.000

0.016387

0.016387

−0.000000

5.00

−13.500

0.019358

0.019358

0.000000

5.00

−13.000

0.022868

0.022867

0.000000

. 

. 

. 

. 

. 

. 

5.00

−4.000

0.417432

0.417475

−0.000043

5.00

−3.500

0.476965

0.477017

−0.000053

5.00

−3.000

0.539705

0.539758

−0.000053

5.00

−2.500

0.603761

0.603802

−0.000041

5.00

−2.000

0.666818

0.666837

−0.000019

. 

. 

. 

. 

. 

. 

5.00

8.000

0.999207

0.999206

0.000000

5.00

8.500

0.999431

0.999431

0.000000

5.00

9.000

0.999593

0.999592

0.000000

5.00

9.500

0.999708

0.999708

0.000000

5.00

10.000

0.999791

0.999791

0.000000

. 

. 

. 

. 

. 

. 

output for t=10, 15 removed

. 

. 

. 

. 

. 

. 

ncall=129
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In summary, the solution of eq. (6.1) subject to the IC from eq. (6.2) (with  t = 0) and two Dirichlet BCs from eq. (6.2) (with  x = −15, 10) is straightforward. Also, eq. (6.1) is nonlinear, yet the programming in pde 1.m (Listing 6.1) is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 

Appendix

We conclude this chapter with an analysis of the  generalized Burgers–Huxley  equation which has the following form [5]

∂ u

∂2 u

1

∂ + α u δ ∂ u −

= β u

−  u δ  u δ − γ  , 

 u =  u( x,  t),  t ≥ 0

(6.4)

 t

∂ x

∂ x 2

When α = 1, β = 2/3, δ = 2, and γ = 0, eq. (6.4) reduces to eq. (6.1). 

We will apply the  factorization method  to eq. (6.4), as outlined in the main Appendix, and start by applying the traveling wave transformation  u( x,  t) =  U(ξ ), ξ =  k( x −  ct). This converts the PDE to the following ODE. 

 d 2 U

 dU

+  g( U)

 d ξ 2

 d ξ +  F( U) = 0

(6.5)

1

β

where  g( U) =

 c − α U δ and  F( U) =

 U  1 −  U δ  U δ − γ . 

 k

 k 2

In order to proceed with this method, we factorize  F( U) as

 F( U)

β 

=  f

1 −  U δ  U δ − γ 

 U

1 f 2 =  k 2

and choose

√β

√



β 

 f 1 ( U) =  a

1 −  U δ , 

 f

 U δ − γ 

(6.6)

 k

2 ( U ) =  a−1  k

where we have also introduced the constant  a  to be determined later. 

From eqns. (A.41) and (6.6), we obtain the following ODE

√

√

√

 df 1

β

β 

β 

1 

 U +  f

 U δ +  a

1 −  U δ +  a−1

 U δ − γ  = − g ( U) = −

 c − α U δ (6.7)

 dU

1 +  f 2 = − a δ  k

 k

 k

 k

Rearranging and collecting terms, we have

hpβ 

hp

i

− a +  a−1 −  a δ − αi  U δ +

β  a − γ  a−1 +  c = 0

(6.8)
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Now, because  U  is a variable, for consistency, we are able to equate each of the terms within square brackets to zero, yielding

p

−α ± α2 + 4β (1 + δ)

 c

p

= − β  a − γ  a−1 , 

 a =

√

2 β (1 + δ)

We now adopt the grouping of Cornejo-Perez [2, 4], i.e., eq. (A.40b), from which it follows that

 d 2 U

1 p



+

β h a − γ  a−1 −  a(1 + δ) −  a−1 U δi  dU

 d ξ 2

 k

 d ξ +  f 1 f 2 U = 0

(6.9)

Thus, the corresponding factorization of eq. (6.5), i.e.,  D −  f 2 ( U)  D −  f 1 ( U)  U = 0 (see eq. (A.39) of main Appendix), becomes

√

√



β







β 

 D −  a−1

 U δ − γ 

 D −  a

1 −  U δ  U = 0

(6.10)

 k

 k

 d

where  D =

. Therefore, it follows that eq. (6.9) is compatible with the first-order ODE

 d ξ

√

 dU

β 1− U δ U = 0

(6.11)

 d ξ ∓  a k

Integrating eq. (6.11) yields a general solution of the form

√

 U

= 1 ±  K  exp −  a  βδ/ k ξ −1/δ

(

" 



p

! 

#)−1/δ

−α ± α2 + 4β (1 + δ)

(6.12)

= 1 ±  K  exp −

δξ

2 (1 + δ)  k

where  K  is an arbitrary constant. 

Using the same values for constants as in the numerical simulation, i.e., α = 1, β = 2/3, δ = 2, and γ = 0, we obtain





−1 ± 3  −1/2

 U = 1 ±  K  exp −

ξ

(6.13)

3 k

Finally, setting  K = +1 and applying the inverse transformation  U(ξ ) =  u( x,  t), ξ =

 k( x −  ct) yields the solutions





2

2 −1/2

1

1

1

1 1/2

 u 1( x,  t) = 1 + exp −

 x +  t

=

+

tanh

 x +  t

(6.14)

3

9

2

2

3

9





4

4 −1/2

1

1

2

2 1/2

 u 2( x,  t) = 1 + exp +

 x +  t

=

−

tanh

 x +  t

(6.15)

3

9

2

2

3

9
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Alternatively, setting  K = −1 yields the solutions





2

2 −1/2

1

1

1

1 1/2

 u 3( x,  t) = 1 − exp −

 x +  t

=

+

coth

 x +  t

(6.16)

3

9

2

2

3

9





4

4 −1/2

1

1

2

2 1/2

 u 4( x,  t) = 1 − exp +

 x +  t

=

−

coth

 x +  t

(6.17)

3

9

2

2

3

9

Solution  u 1 is the same solution, eq. (6.3), that is used in the main body of this chapter for the numerical simulation. By inspection, we see that for solutions  u 1 and  u 3, the wavenumber  k  is equal to 1/3 and for solutions  u 2 and  u 4, it is equal to 2/3. For all solutions, the wave velocity  c  is equal to −1/3. Note: solutions  u 3 and  u 4 have singularities at ( x = 0,  t = 0). A Maple script that derives these solutions is given in Listing 6.4. 

Additional solutions can be found by choosing different factorizations of eq. (6.5), for example, eq. (6.10) could be changed to

√

√



β







β 

 D −  a−1

1 −  U δ

 D −  a

 U δ − γ   U = 0

 k

 k

and the same procedure followed. This is left as an exercise for the reader. 

Readers are referred to the papers by Berkovich [1] and Cornejo-Perez and Rosu [2, 4]

for more information on this method and additional examples of its use. 

# Some calculations to confirm the results of a

# factorization solution to the Burgers-Huxley Equation

# Ref: Cornejo-Perez, O. and H. C. Rosu (2005). 

#

Nonlinear second order ODE: Factorizations and

#

particular solutions, Progress of Theoretical

#

Physics, vol 114, No 3, pp 533-538

>restart; with(DEtools): with(PDEtools): with(plots):

unprotect(gamma):

alias(u=u(x,t)): alias(U=U(xi)):

># Define PDE equation

pde1:=diff(u,t)+alpha*uˆdelta*diff(u,x)-diff(u,x,x)

-beta*u*(1-uˆdelta)*(uˆdelta-gamma)=0; 

># Convert PDE to ODE

tr1:={x=(xi/k+c*tau),t=tau,u=U}; 

ode1:=dchange(tr1,pde1,[xi,tau,U]); 

># Define F(U), g

F:=(beta/kˆ2)*U*(1-Uˆdelta)*(Uˆdelta-gamma); 

g:=(1/k)*(c-alpha*Uˆdelta); 

># Factor F(U)/U - Note: 'a' introduced

f[1]:=a*sqrt(beta)*(1-Uˆdelta)/k; 

f[2]:=(1/a)*sqrt(beta)*(Uˆdelta-gamma)/k; 

># Check that factorization is correct

F_chk:=simplify(eval(f[1]*f[2]*U)); 

># Use the C-P grouping

alias(U=U):f[1]:=subs(U(xi)=U,f[1]):f[2]:=subs(U(xi)=U,f[2]):

eqn1:=diff(f[1],U)*U+f[1]+f[2]=-subs(U(xi)=U,g); 

sol1:=simplify(subs(U=0,eqn1),size); 

c:=solve(sol1,c); 
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># Collect terms in U

eqn2:=collect(simplify(lhs(eqn1)-rhs(eqn1),size),U,'recursive'); 

># Equate coeff of U to zero

eqn3:=coeff(eqn2,Uˆdelta)=0; 

sol2:=solve(eqn3,a); 

a:=sol2[1]; 

># Fomulate 1st order ode from [D-f[1]]U=0

f[1]:=subs(U=U(xi),f[1]);ode2:=diff(U(xi),xi)-f[1]*U(xi); 

># Obtain solution to ode2

sol4:=dsolve(ode2); 

># Check solution U(xi) satisfies ode1

odeCHK:=simplify(eval(subs({U(xi)=rhs(sol4)},lhs(ode1))),symbolic); 

if odeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Obtain solution to pde1

sol5:=u=simplify(eval(subs({xi=k*(x+x0-c*t)},rhs(sol4))),size); 

># Check solution u(x,t) satisfies pde1:

pdeCHK:=simplify(pdetest(sol5,pde1),symbolic); 

if pdeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Plot results


# ============

x0:=0; _C1:=1;alpha:=1;beta:=2/3;delta:=2;gamma:=0; 

zz:=simplify(eval(rhs(sol5))); 

animate(zz,x=-20..10,t=0..30,axes=framed, 

thickness=3,frames=50,numpoints=100, 

title="Burgers-Huxley Equation"); 

>plot3d(zz,x=-20..10,t=0..30,axes='framed', 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

labelfont=[TIMES, ROMAN, 16], 

orientation=[-122,68],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,title="Burgers-Huxley Equation", 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 6.4: Maple code to derive a solution to the  Burgers–Huxley equation  using the  factorization method. 

Finally, additional Maple scripts are included with the downloads for this book that solve the Burgers–Huxley equation using  tanh-,  exp-, and  Riccati-based methods. 
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Burgers–Fisher Equation

We consider the  Burgers–Fisher equation, which has applications principally in biology [1]

∂ u

∂ u

∂2 u

∂ +  u 2

−

=  u(1 −  u 2), 

 t > 0

(7.1)

 t

∂ x

∂ x 2

with an initial condition (IC) and two boundary conditions (BCs) at  x = −10, 10 given by the analytical solution [1]

1

1 

1

10  2

 u( x,  t) =

1 − tanh

 x −

 t

(7.2)

2

3

9

The Matlab routines closely resemble those of Chapters 3–6. Here, we list a few details pertaining to eqns. (7.1) and (7.2). First, the ODE routine pde 1.m, is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Burgers-Fisher

% equation

%

global xl xu x n ncall

%

% BCs at x = -10,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=-(u(i)ˆ2)*ux(i)+uxx(i)+u(i)*(1-u(i)ˆ2); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 7.1: Function pde 1.m for eq. (7.1). 

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00007-8
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We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

%

% Function pde_1 computes the t derivative vector for the Burgers-Fisher

% equation

%

global xl xu x n ncall

. Thefirstderivativeineq.(7.1), ux,iscomputedusingthefunctiondss004.Since

eq. (7.1) is second order in  x, the two required BCs are taken from eq. (7.2) with x = −10, 10 at grid points i=1,n, respectively (with n=51 subsequently set in function inital 1.m). 

%

% BCs at x = -10,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(7.1), uxx,iscomputedwithdss004bydifferentiatingux, so-called  stagewise differentiation. The alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

ux=dss004(xl,xu,n,u); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

. Equation(7.1)isthenprogrammed. 

%

% PDE

for i=2:n-1

ut(i)=-(u(i)ˆ2)*ux(i)+uxx(i)+u(i)*(1-u(i)ˆ2); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC from eq. (7.2) with  t = 0 is programmed in inital 1.m. 
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function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Burgers-

% Fisher equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl=-10; 

xu= 10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 7.2: Function inital 1.m from (7.2) with  t = 0. 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Burgers-

% Fisher equation

%

global xl xu x n

. Thegridin x isthendefinedovertheinterval−10≤ x≤10for51points. 

%

% Spatial domain and initial condition

xl=-10; 

xu= 10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (7.2)

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (7.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Burgers-Fisher
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% equation for comparison with the numerical solution

%

% Analytical solution

expp=exp( (1/3)*x-(10/9)*t); 

expm=exp(-(1/3)*x+(10/9)*t); 

uanal=((1/2)*(1-(expp-expm)/(expp+expm)))ˆ0.5; 

LISTING 7.3: Function ua 1.m for analytical solution (7.2). 

The main program, pde 1 main, is essentially the same as pde 1 main of Listing 2.1 and therefore is not listed here. The main program produces the same three figures and tabulated output as in Chapters 2–6, which are now reviewed. Also, the Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 2–6 and is therefore not reproduced here. 

Figure 7.1 indicates good agreement between the analytical and numerical solutions. 

Also, the solution does not appear to be exactly a traveling wave as specified by eq. (7.2)

in the sense that the successive curves should be displaced by a constant distance in  t. 

However, this apparent discrepancy is due to the termination of the plot on the right at

Burgers–Fisher equation
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FIGURE 7.1: Numerical solution to eq. (7.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 1, 2, 3, 4 (left to right). 
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 x = 10 (if the plot was extended beyond  x = 10, the traveling wave characteristic, that is, displacement along the  x  axis without changing shape, would be apparent). Figure 7.2 is a 3D plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 7.3, reflects the banded structure of the ODEs produced by dss004. In particular, since the number of grid points,  n = 51, is relatively small, the individual elements of the Jacobian matrix are distinct. Also, note that the bandwidth is 9 and not 5 as might be expected from the five-point FDs in dss004. This greater bandwidth is due to the repeated use of dss004 in pde 1.m to compute uxx from u by stagewise differentiation. This example illustrates a disadvantage of stagewise differentiation, that is, the increase in the bandwidth of the ODE Jacobian matrix through successive calls of the spatial differentiator such as dss004. 

The tabular analytical and numerical solutions of Table 7.1 also reflect the good agreement between these two solutions (see Table 7.1). The computational effort reflected in ncall = 190 is quite modest. As required, the analytical and numerical solutions agree for t = 0 (since both solutions are from eq. (7.2) with  t = 0). For  t > 0, the agreement between the analytical and numerical solutions of approximately five figures is quite acceptable, even with only 51 grid points. 

In summary, the solution of eq. (7.1) subject to the IC and two BCs from eq. (7.2)

with  t = 0 for the IC and  x = −10, 10 for the BCs is straightforward, particularly since the

Burgers–Fisher equation
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FIGURE 7.2: 3D plot of the numerical solution to eq. (7.1). 
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Jacobian sparsity pattern – nonzeros 423 (16.263%)
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FIGURE 7.3: Jacobian matrix map of the MOL ODEs for  n = 51. 

solution is quite smooth. Also, eq. (7.1) is nonlinear, yet the programming in pde 1.m is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 

Appendix

We conclude this chapter by outlining an approach to solving the  generalized Burgers–

 Fisher  equation

∂

∂

∂2

 v ( x,  t)

 v ( x,  t)

 v ( x,  t)

∂

+  pv ( x,  t) s

−

−  qv ( x,  t) 1 −  v ( x,  t) s = 0

(7.3)

 t

∂ x

∂ x 2

On first sight, this appears to be a rather daunting equation for which we have to find an analytical traveling wave solution. In fact, the  tanh,  exp, and  Riccati  methods all fail on this equation in its current form. However, we shall show that by applying certain transformations, it will yield a rather simple solution. 
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Table 7.1:

Tabular numerical and analytical solutions

t

x

u (it, i)

u anal (it, i)

err (it, i)

0.00

−10.000

0.999364

0.999364

0.000000

0.00

−9.600

0.999170

0.999170

0.000000

0.00

−9.200

0.998917

0.998917

0.000000

0.00

−8.800

0.998587

0.998587

0.000000

0.00

−8.400

0.998156

0.998156

0.000000

0.00

−8.000

0.997595

0.997595

0.000000

. 

. 

. 

. 

. 

. 

0.00

8.000

0.069316

0.069316

0.000000

0.00

8.400

0.060698

0.060698

0.000000

0.00

8.800

0.053144

0.053144

0.000000

0.00

9.200

0.046526

0.046526

0.000000

0.00

9.600

0.040728

0.040728

0.000000

0.00

10.000

0.035651

0.035651

0.000000

t

x

u (it, i)

u anal (it, i)

err (it, i)

1.00

−10.000

0.999931

0.999931

0.000000

1.00

−9.600

0.999910

0.999910

0.000000

1.00

−9.200

0.999882

0.999882

0.000000

1.00

−8.800

0.999847

0.999847

0.000000

1.00

−8.400

0.999800

0.999800

0.000000

1.00

−8.000

0.999739

0.999739

0.000000

. 

. 

. 

. 

. 

. 

1.00

−2.800

0.991724

0.991725

−0.000001

1.00

−2.400

0.989236

0.989237

−0.000001

1.00

−2.000

0.986015

0.986016

−0.000001

1.00

−1.600

0.981857

0.981858

−0.000001

1.00

−1.200

0.976507

0.976508

−0.000001

1.00

−0.800

0.969652

0.969653

−0.000001

1.00

−0.400

0.960916

0.960916

−0.000000

1.00

0.000

0.949857

0.949857

0.000000

1.00

0.400

0.935977

0.935976

0.000001

1.00

0.800

0.918740

0.918737

0.000002

1.00

1.200

0.897604

0.897600

0.000003

1.00

1.600

0.872084

0.872080

0.000004

1.00

2.000

0.841824

0.841820

0.000004

1.00

2.400

0.806677

0.806675

0.000002

1.00

2.800

0.766788

0.766788

−0.000001

1.00

3.200

0.722636

0.722639

−0.000004

1.00

3.600

0.675029

0.675035

−0.000006

1.00

4.000

0.625038

0.625046

−0.000007

1.00

4.400

0.573886

0.573893

−0.000007

1.00

4.800

0.522808

0.522813

−0.000004

( Continued )
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Table 7.1:

( Continued )

t

x

u (it, i)

u anal (it, i)

err (it, i)

1.00

5.200

0.472929

0.472931

−0.000001

1.00

5.600

0.425177

0.425175

0.000002

1.00

6.000

0.380238

0.380234

0.000004

1.00

6.400

0.338553

0.338548

0.000005

1.00

6.800

0.300350

0.300345

0.000006

1.00

7.200

0.265679

0.265673

0.000005

1.00

7.600

0.234460

0.234455

0.000005

1.00

8.000

0.206526

0.206522

0.000004

1.00

8.400

0.181655

0.181651

0.000003

1.00

8.800

0.159596

0.159594

0.000002

1.00

9.200

0.140092

0.140091

0.000002

1.00

9.600

0.122887

0.122886

0.000001

1.00

10.000

0.107737

0.107737

0.000000

. 

. 

. 

. 

. 

. 

output for t = 2, 3, 4 removed

. 

. 

. 

. 

. 

. 

ncall=190

We start by introducing the following new variable

 v( x,  t) =  u( x,  t)1/ s

from which we obtain

 u 1/ s ∂

 p u 1/ s s u 1/ s ∂

 u 1/ s  ∂ 2

 u 1/ s ∂2

 u 1/ s  ∂ 2

 u +

 u −

 u

−

 u +

 u

−  qu 1/ s  h1 −  u 1/ s s i = 0

 su ∂ t

 su

∂ x

 s 2 u 2

∂ x

 su ∂ x 2

 su 2

∂ x

where, for brevity, we have written  u  for  u( x,  t). Eliminating the denominators by cross-multiplication, dividing by the common factor  u 1/ s, and collecting like terms yields the much simpler form

∂

∂2

∂ 2

∂

 su

 u

 u

 u

∂ −  su

+ ( s − 1)

+  psu 2

−  qs 2 u 2 (1 −  u) = 0

 t

∂ x 2

∂ x

∂ x

We are now able to apply the tanh method, which yields the following traveling wave solution, 

" 

#

1

1

 s − xp −  xps +  tp 2 +  tqs 2 +  tq + 2 tqs u =

+ tanh

2

2

2 (1 +  s)2

[image: Image 6]
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√

Then, by applying the inverse transformation  v =  u, we obtain

v

" 

#

1 u

 s

u

− xp −  xps +  tp 2 +  tqs 2 +  tq + 2 tqs v = t1 + tanh

(7.4)

2

2 (1 +  s)2

which is a solution to the generalized Burgers–Fisher equation (7.3). Using the Maple procedure pdetest(), we confirm that eq. (7.4) does indeed satisfy eq. (7.3). Finally, substituting the values  p = 1,  q = 1, and  s = 2 into eq. (7.4), we arrive at the solution given in

eq. (7.2), i.e., 

s

1

1 

10 

 v =

1 − tanh

 x −

 t

(7.5)

2

3

3

From eq. (7.5), we see that the wavenumber is equal to  k = 1/3 and the wave velocity is equal to  c = 10/3. 2D and 3D plots of this solution are given in Figs. 7.4 and 7.5. Figure 7.4

is the initial condition (at  t = 0), which then moves left to right when the animation (see
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FIGURE 7.4: 2D plot of the solution to Burgers–Fisher equation at  t = 0. 
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FIGURE 7.5: 3D plot of the solution to Burgers–Fisher equation. 
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Listing 7.4) is activated. Figure 7.5 is a 3D plot that demonstrates the movement of the solution through  x  and  t. 

A Maple script that performs the calculations for Figs. 7.3 and 7.4 is given in Listing 7.4. 

># Burgers-Fisher Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

># Set up alias

alias(u=u(x,t)): alias(v=v(x,t)):

># Define generalized B-F pde

pde0:=diff(v,t)+p*vˆs*diff(v,x)-diff(v,x,x)-q*v*(1-vˆs)=0; 

># Apply a transformation

tr0:={v=uˆ(1/s)}; 

pde1:=dchange(tr0,pde0,[u]); 

pde1 := numer(lhs(pde1))*denom(rhs(pde1)) = numer(rhs(pde1))*denom(lhs(pde1)); 

># Divide through by uˆ1/s

pde1:=simplify(pde1/(uˆ(1/s)),symbolic):

pde1:=collect(pde1,{diff(u,t),diff(u,x),diff(u,x,x)}); 

>read("tanhMethod.txt"); 

# Solve transformed equation

intFlg:=0: # No integration of U(xi) needed ! 

M:=1; # Set order of approximation

infoLevOut:=0; 

tanhMethod(M,pde1,intFlg,infoLevOut); 

># Test Solution (May take a long time!)

s:=2;p:=1;q:=1;x0:=0; 

soln:=v=sqrt(rhs(sol[4])); 

testSol:=pdetest(soln,pde0); 

if testSol=0 then

print("pdetest(): PASSED"); 

else

print("pdetest(): FAILED"); 

end if; 

># Set parameter values

#p:=1;q:=1;s:=2;x0:=0; 

># Animate the solution

zz:=rhs(soln); 

animate(zz,x=-10..60, t=0..10, axes=framed, 

title="Burgers-Fisher Equation", 

labels=["x","v"], 

thickness=3,frames=50,numpoints=100, 

title="Burgers-Fisher Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot of standard solution

plot3d(zz,x=-10..60,t=0..10,axes=framed, 

labels=["x","t","v(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[-45,53],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,title="Burgers-Fisher Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 7.4: Maple code used to confirm correctness of analytical solutions to the generalized Burgers–Fisher equation. 
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Additional Maple scripts that find traveling wave solutions to the Burgers–Fisher equation using  exp- and  Riccati-based methods are included with the downloads for this book. 

Reference

[1] A. Molabahrami, F. Khani,  The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. R. World Appl. 10 (2) (2009) 589–600. 
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The  Fisher–Kolmogorov equation, with applications in biology [3], is

∂ u

∂2 u

∂ =

+  u(1 −  uq), 

 q > 0

(8.1)

 t

∂ x 2

with the analytical solution

1

 u( x,  t) =

, 

ξ

(

=  x −  ct

(8.2)

1 +  aeb ξ ) s

where

2

 s =

(8.3)

 q

 q

 b =

(8.4)

[2( q + 2)]1/2

 q + 4

 c =

(8.5)

[2( q + 2)]1/2

We take

√

 a = 2 − 1

(8.6)

as suggested in [3], although  a  is arbitrary. 

The Matlab routines closely resemble those of Chapters 3 and 7. Here, we list a few details pertaining to eqns. (8.1)–(8.6). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Fisher-

% Kolmogorov equation

%

global xl xu x n ncall

%

% Model parameters

global a b c s q

%

% BCs at x = -5,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00008-X
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% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=uxx(i)+u(i)*(1-u(i)ˆq); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 8.1: Function pde 1.m for eq. (8.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Fisher-

% Kolmogorov equation

%

global xl xu x n ncall

%

% Model parameters

global a b c s q

. Thefirstderivativeineq.(8.1), ux,iscomputedusingthefunctiondss004.Since

eq. (8.1) is second order in  x, the two required BCs are taken from eq. (8.2) with x = −5, 10 at grid points i=1,n, respectively (with n=51 subsequently set in function inital 1.m). 

%

% BCs at x = -5,10

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(8.1), uxx,iscomputedwithdss004bydifferentiatingux, so-called  stagewise differentiation. The alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

. Equation(8.1)isthenprogrammed. 

%

% PDE

for i=2:n-1
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ut(i)=uxx(i)+u(i)*(1-u(i)ˆq); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC from eq. (8.2) is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Fisher-

% Kolmogorov equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b c s q

%

% Spatial domain and initial condition

xl=-5; 

xu=10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 8.2: Function inital 1.m for IC from eq. (8.2). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Fisher-

% Kolmogorov equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b c s q
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. Thegridin x isthendefinedovertheinterval−5≤ x≤10for51points(thesegrid parameters were selected by trial and error to produce a numerical solution with acceptable accuracy). 

%

% Spatial domain and initial condition

xl=-5; 

xu=10; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (8.2). 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (8.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Fisher-Kolmogorov

% equation for comparison with the numerical solution

%

% Model parameters

global a b c s q

%

% Analytical solution

z=x-c*t; 

uanal=1/(1+a*exp(b*z))ˆs; 

LISTING 8.3: Function ua 1.m for analytical solution (8.2). 

The main program, pde 1 main, is similar to pde 1 main of Listing 2.1 and therefore we list only a few selected parts of it. 

. 

. 

. 

%

% Model parameters

global a b c s q

%

q=1; 

a=2ˆ(1/2)-1; 

b=q/(2*(q+2))ˆ(1/2); 

c=(q+4)/(2*(q+2))ˆ(1/2); 

s=2/q; 

. 

. 

. 
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%

%

Display selected output

fprintf('\n q = %4.2f, 

a = %4.2f, 

b = %4.2f, 

c = %4.2f

s = 4.2f\n',q,a,b,c,s); 

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

. 

. 

. 

LISTING 8.4: A selected portion of main program pde 1 main.m. 

We can note the following points about this code:

. Theparameter q ineq.(8.1)isfirstdefined,andtheparameters a,  b,  c,  s of

eqns. (8.3)–(8.6) are then computed. In particular, the wave velocity  c  of eq. (8.2) is computed for subsequent use in analyzing the numerical solution (note the

 Lagrangian  or  traveling wave  or  moving  coordinate of eq. (8.2), ξ =  x −  ct). 

. Theseparametersarethendisplayed,andthenumericalandanalyticalsolutions

(u(it,i), u anal(it,i)) and their difference (err) are displayed at the output points ( t = 0, 0.5, 1, . . . , 5 or 11 values) through the for it=1:nout loop (with nout=11). 

. Theseconstantsandparametersarethenpassedasglobalvariables(notshown)so

that they can be used in pde 1.m of Listing 8.1 and ua 1.m of Listing 8.3. 

The main program produces the same three figures and tabulated output as in Chapters 3–7, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 3–7 and is therefore not reproduced here. 

Figure 8.1 indicates good agreement between the analytical and numerical solutions. 

Also, the solution does not appear to be exactly a traveling wave as specified by eq. (8.2)

in the sense that the successive curves should be displaced by a constant distance in  t. 

However, this apparent discrepancy is due to the termination of the plot on the right at x = 10 (if the plot was extended beyond  x = 10, the traveling wave characteristic, that is, displacement along the  x  axis without changing shape, would be apparent). Figure 8.2 is a 3D plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 8.3, reflects the banded structure of the ODEs produced by dss004. In particular, since the number of grid points,  n = 51, is relatively small, the individual elements of the Jacobian matrix are distinct. Also, note that the bandwidth is 9 and not 5 as might be expected from the five-point FDs in dss004. This greater bandwidth is due to the repeated use of dss004 in pde 1.m to compute uxx from u by stagewise differentiation. This example illustrates a disadvantage of stagewise differentiation, that is, the increase in the bandwidth of the ODE Jacobian matrix through successive calls of the spatial differentiator such as dss004. 
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Fisher–Kolmogorov equation

1
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0−5

0
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10

 x

FIGURE 8.1: Numerical solution to eq. (8.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 0.5, 1, . . . , 5 (left to right). 

The tabular analytical and numerical solutions also reflect the good agreement between these two solutions; see Table 8.1. The computational effort reflected in ncall =

150 is quite modest. As required, the analytical and numerical solutions agree for  t = 0

(since both solutions are from eq. (8.2) with  t = 0). For  t > 0, the agreement between the analytical and numerical solutions of approximately six figures is quite acceptable, even with only 51 grid points. In this case, the low number of grid points worked in our favor, but, of course, this is not always the case. 

The numerical solution of Table 8.1 can be used to estimate the velocity of the traveling wave of Fig. 8.1. For  u( x,  t = 0) = 0.5,  x = 0 (this follows from the values of  q  and  a  set in pde 1 main.m and used in ua 1.m with  x =  t = 0). By linear interpolation, the point on the x  axis where  u = 0.5 at time  t = 1 (from Table 8.1) is x = 1.9 + (2.2 − 1.9)(0.5 − 0.516824)/(0.480950 − 0.516824) = 2.0407

Thus, the estimated velocity is

1 x

2.0407 − 0

 c = 1 =

= 2.0407

 t

1 − 0
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Fisher–Kolmogorov equation
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FIGURE 8.2: 3D plot of the numerical solution to eq. (8.1). 

which compares with the computed value of  c = 2.04 (see the parameter values in

Table 8.1). 

In summary, the solution of eq. (8.1) subject to the IC from eq. (8.2) (with  t = 0) and two Dirichlet BCs from eq. (8.2) (with  x = −5, 10) is straightforward. Also, eq. (8.1) is nonlinear, yet the programming in pde 1.m (Listing 8.1) is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 

Appendix

We conclude this chapter by solving the  Fisher–Kolmogorov (F–K) equation using the factorization method [1, 4, 5], as outlined in the main Appendix. The F–K equation is a simplified version of the KPP equation, eq. (10.6), where for this problem, the KPP constants would become:  a = 1,  b = −1, δ = 1, and  m =  q + 1. We follow the general approach used in the appendix to Chapter 10, and we repeat the problem equation below for convenience

∂ u

∂2 u

∂ −

−  u  1 −  uq = 0

(8.1)

 t

∂ x 2

 u =  u( x,  t),  t > 0,  q > 0

(8.7)
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Jacobian sparsity pattern – nonzeros 423 (16.263%)
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FIGURE 8.3: Jacobian matrix map of the MOL ODEs for  n = 51. 

If we assume a traveling wave solution of the form  u ( x,  t) =  U (ξ ), where ξ =  k ( x −  ct),  c =

velocity, and  k = wavenumber, eq. (8.7) reduces to the traveling wave ODE

 d 2 U

 dU

+ γ

+  F( U) = 0

(8.8)

 dx 2

 dx

 c

1

where γ =

and  F( U) =

 U(1 −  Uq). 

 k

 k 2

We factor the polynomial function of eq. (8.8) (the third term) as F( U)

1

=  f

1 −  Uq/2 1 +  Uq/2

 U

1 f 2 =  k 2
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Table 8.1:

Tabular numerical and analytical solutions

q=1.00, 

a=0.41, 

b=0.41, 

c=2.04

s=2.00

t

x

u (it, i)

u anal (it, i)

err (it, i)

0.00

−5.000

0.900512

0.900512

0.000000

0.00

−4.700

0.888652

0.888652

0.000000

0.00

−4.400

0.875527

0.875527

0.000000

0.00

−4.100

0.861038

0.861038

0.000000

0.00

−3.800

0.845091

0.845091

0.000000

. 

. 

. 

. 

. 

. 

0.00

−0.500

0.558806

0.558806

0.000000

0.00

−0.200

0.523780

0.523780

0.000000

0.00

0.100

0.488015

0.488015

0.000000

0.00

0.400

0.451830

0.451830

0.000000

0.00

0.700

0.415572

0.415572

0.000000

0.00

1.000

0.379608

0.379608

0.000000

. 

. 

. 

. 

. 

. 

0.00

8.800

0.003883

0.003883

0.000000

0.00

9.100

0.003084

0.003084

0.000000

0.00

9.400

0.002445

0.002445

0.000000

0.00

9.700

0.001936

0.001936

0.000000

0.00

10.000

0.001531

0.001531

0.000000

t

x

u (it, i)

u anal (it, i)

err (it, i)

1.00

−5.000

0.954833

0.954833

0.000000

1.00

−4.700

0.949175

0.949175

−0.000000

1.00

−4.400

0.942839

0.942839

−0.000000

1.00

−4.100

0.935754

0.935754

−0.000000

1.00

−3.800

0.927842

0.927842

−0.000000

. 

. 

. 

. 

. 

. 

1.00

1.000

0.619243

0.619243

−0.000000

1.00

1.300

0.586240

0.586240

−0.000000

1.00

1.600

0.552017

0.552018

−0.000000

1.00

1.900

0.516824

0.516824

−0.000000

1.00

2.200

0.480950

0.480950

−0.000000

1.00

2.500

0.444722

0.444723

−0.000000

. 

. 

. 

. 

. 

. 

1.00

8.500

0.021720

0.021717

0.000003

1.00

8.800

0.017594

0.017591

0.000002

1.00

9.100

0.014202

0.014201

0.000002

( Continued )
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Table 8.1:

( Continued)

t

x

u (it, i)

u anal (it, i)

err (it, i)

1.00

9.400

0.011428

0.011427

0.000001

1.00

9.700

0.009170

0.009169

0.000001

1.00

10.000

0.007338

0.007338

0.000000

. 

. 

. 

. 

. 

. 

output for t = 2, 3, 4, 5 removed

. 

. 

. 

. 

. 

. 

ncall=150

and choose

α

1

 f 1 = 1 −  Uq/2 , 

 f

, 

α 6= 0

(8.9)

 k

2 = 1 +  U q/2 α k

where we have also introduced the constant α. 

From eqns. (A.41) and (8.9), we obtain the following ODE

 df 1

 q

α

α

 U +  f

 Uq/2

+ 1 −  Uq/2

 dU

1 +  f 2 = − 2

 k

 k

(8.10)

1

 c

+ 1 +  Uq/2 α = −γ = −

 k

 k

Collecting terms and equating the coefficients of  Uq/2 to zero (as the left-hand side of

eq. (8.10) is equal to a constant) gives α

 q

= ±

2

and  c =

+4

√

. Also, as γ is a con-

q



2  q+2

2( q+2)

α+α−1

stant and independent of the value of  U, on setting  U = 0, we find that γ = −

. 

 k

Therefore, adopting the grouping of Cornejo-Perez [2], i.e., eq. (A.40b), it follows that d 2 U

α + α−1  dU

∓

+  f 1 f 2 U = 0

(8.11)

 d ξ 2

 k

 d ξ 2

Thus, the corresponding factorization eq. (A.39), i.e.,  D −  f 2 ( U)  D −  f 1 ( U)  U = 0, becomes



1





h

α 

 D ±

1

 D

1

α

+  Uq/2

∓

−  Uq/2i  U = 0

(8.12)

 k

 k
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 d

where  D =

. Therefore, it follows that eq. (8.11) is compatible with the first-order ODE

 d ξ

 dU

α 1− Uq/2 U = 0

(8.13)

 d ξ ∓  k

Integrating eq. (8.13) either manually or using Maple yields 1

−2/ q

 U = 1 +  K  exp −

α q ξ

2 k

where  K  is an arbitrary constant of integration. Substituting back values for ξ ,  c, and α, we find that  k

 q

= √

, which leads to the final solution

2( q+2)

 U = 1 +  K  exp[ k( x −  ct)] −2/ q

(8.14)

where  k  and  c  are as defined above. 

If we let  K = ± ˆ

 K  exp[ kx 0], we arrive at the standard form of traveling wave solution n

o−2/ q

 U± = 1 ± ˆ

 K  exp[ k( x −  x 0 −  ct)]

(8.15)

The above solution with  x 0 = 0 is the same as the analytical solution, eqns. (8.2–8.5), used in the numerical simulation discussed in the main body of this chapter. The Maple code of

Listing 8.5 will perform the above calculations. 

># Some calculations to confirm the results of a

# factorization solution to the FisherKolmogorov Equation

# Ref: Rosu, H. C. and O. Cornejo-Perez (2008). 

#

Supersymmetric pairing of kinks for polynomial

#

nonlinearities, [arXiv:math-ph/0401040v3 24 Dec 2004|

#

|ArXiv: math-ph/0401040]

restart; with(DEtools): with(PDEtools):

alias(u=u(x,t)): alias(U=U(xi)):

># Define F-K equation

pde1:=diff(u,t)-diff(u,x,x)-u*(1-uˆq)=0; 

># Convert PDE to ODE

tr1:={x=(xi/k+c*tau),t=tau,u=U}; 

ode1:=dchange(tr1,pde1,[xi,tau,U]); 

># Define F(U), g

F:=U*(1-Uˆ(q))/(kˆ2); 

g:=c/k; 

># Factor F(U)/U - Note: alpha introduced

f[1]:=alpha*(1-Uˆ(q/2))/k; 

f[2]:=(1+Uˆ(q/2))/(alpha*k); 

># Check that factorization is correct

F_chk:=simplify(eval(f[1]*f[2]*U)); 

># Use the C-P grouping

alias(U=U):f[1]:=subs(U(xi)=U,f[1]):f[2]:=subs(U(xi)=U,f[2]):

eqn1:=diff(f[1],U)*U+f[1]+f[2]=-subs(U(xi)=U,g); 

sol1:=simplify(subs(U=0,eqn1),size); 
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c:=solve(sol1,c); 

># Collect terms in Uˆ(q/2))

eqn2:=collect(simplify(lhs(eqn1)-rhs(eqn1),size),U,'recursive'); 

># Equate coeff of U to zero

eqn3:=coeff(eqn2,Uˆ(q/2))=0; 

sol2:=solve(eqn3,alpha); 

alpha:=sol2[2]; 

># Fomulate 1st order ode from [D-f[1]]U=0

f[1]:=subs(U=U(xi),f[1]);ode2:=diff(U(xi),xi)-f[1]*U(xi); 

># Obtain solution to ode2

sol4:=dsolve(ode2); 

># Check solution U(xi) satisfies ode1

odeCHK:=simplify(eval(subs({U(xi)=rhs(sol4)},rhs(ode1))),symbolic):

if odeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Obtain solution to pde1

sol5:=u=simplify(expand(subs({xi=k*(x-c*t)},rhs(sol4))),size); 

># Check solution u satisfies pde1

pdeCHK:=simplify(pdetest(sol5,pde1),symbolic); 

if pdeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

LISTING 8.5: Maple code to derive a solution to the Fisher–Kolmogorov equation using the  factorization  method. 

Finally, additional Maple scripts that obtain different solutions to the FisherKolmogorov equation using  tanh-,  exp-, and  Riccati-based methods are included with the downloads for this book. 
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Fitzhugh–Nagumo Equation

One of the most widely studied biological systems with excitable behavior is neural communication by nerve cells via electrical signaling. The  Fitzhugh–Nagumo equation  is a simplification of the Hodgin–Huxley model [6] for the membrane potential of a nerve axon. 

The first version was developed by Fitzhugh [3] and consisted of a 2 × 2 (two equations in two unknowns) system of ODEs. 

Nagumo et al. [10] studied a related equation that added a diffusion term for the conduction process of action potentials along nerves. This system, where spatial diffusion in the transmembrane potential is allowed but without any applied external current, can be described by these equations [9]

∂ u

∂2 u

∂ =  D

+  f ( u) −  v, 

 f ( u) =  u ( u − 1) ( a −  u)

 t

∂ x 2

∂ v

∂ =  bu − γ  v

 t

Here,  u  is directly related to the membrane potential and  v  represents several variables associated with terms that contribute to the membrane current from sodium, potassium, and other ions. The diffusion constant  D  is associated with axial current in the axon. The parameters 0 <  a < 1,  b, and γ are all positive. 

It is analytically easier to see what is going on if we consider  b  and γ to be small so that b =  L, γ =  M, 0 <   1, and the preceding equations become

∂ u

∂2 u

∂ =  D

+  f ( u) −  v, 

 f ( u) =  u ( u − 1) ( a −  u)

 t

∂ x 2

∂ v

∂ =  ( Lu −  Mv)

 t

In the limit when  → 0, we have  v ' constant, and it turns out that this constant is equal to zero. Thus, under these conditions, the Fitzhugh–Nagumo system reduces to the nonlinear reaction–diffusion equation ([11], p4), 

∂ u

∂2 u

∂ =  D

−  u(1 −  u)( a −  u)

(9.1)

 t

∂ x 2

( a  and  D  are arbitrary, with 0 ≤  a ≤ 1 and  D > 0);  D  has a marked effect on the solution of

eq. (9.1), as we discuss later. 
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Equation (9.1) has the following analytical traveling wave solution ([11], p4) 1

 u ( x,  t) =

(9.2)



 x



1  

1 + exp √

+  a −

 t

2 D

2

Equation (9.2) is the analytical solution to the reduced Fitzhugh–Nagumo equation (9.1)

that we use to evaluate the numerical solution of eq. (9.1). For further details of the Fitzhugh–Nagumo system, the reader is referred to [4, 5, 9, 11]. 

The Matlab routines closely resemble those of Chapters 3–8. Here, we list a few details pertaining to eqns. (9.1) and (9.2). First, the ODE routine pde 1.m, is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Fitzhugh-Nagumo

% equation

%

global xl xu x n ncall

%

global a D

%

% BCs at x = 0,1

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=D*uxx(i)-u(i)*(1-u(i))*(a-u(i)); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 9.1: Function pde 1.m for eq. (9.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Fitzhugh-Nagumo

% equation

%
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global xl xu x n ncall

%

global a D

. Thefirstderivativeineq.(9.1), ux,iscomputedusingthefunctiondss004.Since

eq. (9.1) is second order in  x, the two required BCs are taken from eq. (9.2)

programmed in ua 1.m with  x = 0, 1 at grid points i=1,n, respectively (with n=26, subsequently set in function inital 1.m). 

%

% BCs at x = 0,1

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(9.1), uxx,iscomputedwithdss004bydifferentiatingux, so-called  stagewise differentiation. The alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=D*uxx(i)-u(i)*(1-u(i))*(a-u(i)); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Equation (9.1) is programmed in a for loop over the interior points i=2 to i=n-1. Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their prescribed

values). A transpose is included to meet the requirements of the ODE integrator ode15s. Finally, the counter for the number of calls to pde 1.m is incremented. 

The IC of eq. (9.2) (in ua 1.m with  t = 0) is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Fitzhugh-Nagumo

% equation

%

global xl xu x n

%
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% Spatial domain and initial condition

xl=-60; xu=20; n=101; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 9.2: Function inital 1.m for IC from eq. (9.2) with  t = 0. 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Fitzhugh-Nagumo

% equation

%

global xl xu x n

. Thegridin x isthendefinedovertheinterval−60≤ x≤20for101points. 

%

% Spatial domain and initial condition

xl=-60; xu=20; n=101; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (9.2). 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (9.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Fitzhugh-Nagumo

% equation for comparison with the numerical solution

%

global a D

%

% Analytical solution

uanal=1/(1+exp((1/2ˆ0.5)*x/Dˆ0.5+(a-1/2)*t)); 

LISTING 9.3: Function ua 1.m for analytical solution (9.2). 

The main program, pde 1 main, is similar to pde 1 main of Chapters 2–8. However, we consider some essential differences in detail. 
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%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a D

%

% Select ncase

%

%

Smooth solution

%

ncase=1; 

%

%

Moving front

%

ncase=2; 

ncase=1; 

if(ncase==1)a=1; D=1; 

end

if(ncase==2)a=1; D=0.1; end

%

% Independent variable for ODE integration

t0=0; 

tf=60; 

tout=[t0:2:tf]'; 

nout=31; 

ncall=0; 

%

% Initial condition

u0=inital_1(t0); 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

%

% Store analytical solution, errors in numerical solution

iplot=0; 

for it=1:nout

u(it,1)=ua_1(x(1),t(it)); 

u(it,n)=ua_1(x(n),t(it)); 

if((it-1)*(it-11)*(it-21)*(it-31)==0)
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iplot=iplot+1; 

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:n

tplot(iplot)=t(it); 

uplot(iplot,i)=u(it,i); 

u_anal(iplot,i)=ua_1(x(i),t(it)); 

err(iplot,i)=uplot(iplot,i)-u_anal(iplot,i); 

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

tplot(iplot),x(i),uplot(iplot,i),u_anal(iplot,i),err(iplot,i)); 

end

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,uplot,'-',x,u_anal,'o')

xlabel('x')

ylabel('u(x,t)')

title('Fitzhugh-Nagumo equation; t = 0, 20, 40, 60; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Fitzhugh-Nagumo equation'); 

view(47,20); axis tight

shading interp

colormap cool

LISTING 9.4: Main program pde 1 main. 

We can note the following points about Listing 9.4:

. Themodelparametersaredeclaredasglobal.Then,twocasesareprogrammed(for

−60 ≤  x ≤ 20,  n = 101 from inital 1.m). 

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a D

%

% Select ncase

%

%

Smooth solution

%

ncase=1; 

%

%

Moving front

%

ncase=2; 
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ncase=1; 

if(ncase==1)a=1; D=1; 

end

if(ncase==2)a=1; D=0.1; end

. Forthefirstcase,  D=1producesamoderatelysteepmovingfrontsolution(as

reflected in the subsequent output). For the second case,  D = 0.1 produces a considerably steeper moving front solution as might be expected since the diffusion term in eq. (9.1) is smaller. 

if(ncase==1)a=1; D=1; 

end

if(ncase==2)a=1; D=0.1; end

.  t  variesovertheinterval0≤ t ≤60withthesolutionfromODEintegratorode45and ode15s produced at intervals of 2. Thus, a total of 31 outputs (counting  t = 0) result for t = 0, 2, 4, . . . 60. 

%

% Independent variable for ODE integration

t0=0; 

tf=60; 

tout=[t0:2:tf]'; 

nout=31; 

ncall=0; 

%

% Initial condition

u0=inital_1(t0); 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

The IC from eq. (9.2) with  t = 0 is then defined by a call to function inital 1.m. The integration of the 101 ODEs by ode45 (nonstiff ) or ode15s (stiff ) follows after the IC is defined. 

. The31solutionvaluesfromtheODEintegrationprovideasmooth3Dplotfromsurf. 

However, they produce an excessive number of curves for the 2D plot from plot. 

Therefore, the solution for only  t = 0, 20, 40, 60 is stored in uplot for the 2D plot; the corresponding four analytical solutions are put in array u anal, and the difference between the numerical and analytical solutions is put in err. 
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%

% Store analytical solution, errors in numerical solution

iplot=0; 

for it=1:nout

u(it,1)=ua_1(x(1),t(it)); 

u(it,n)=ua_1(x(n),t(it)); 

if((it-1)*(it-11)*(it-21)*(it-31)==0)

iplot=iplot+1; 

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:n

tplot(iplot)=t(it); 

uplot(iplot,i)=u(it,i); 

u_anal(iplot,i)=ua_1(x(i),t(it)); 

err(iplot,i)=uplot(iplot,i)-u_anal(iplot,i); 

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

tplot(iplot),x(i),uplot(iplot,i),u_anal(iplot,i),err(iplot,i)); 

end

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

Note that the four output points from the total of 31 are selected by

if((it-1)*(it-11)*(it-21)*(it-31)==0)

The counter for the calls to pde 1.m, ncall, is displayed at the end ( t = 60) to give an indication of the total computational effort. 

. The2Dplot(withfoursolutioncurves)andthe3Dplot(with31solutioncurves)are

produced by calls to plot and surf, respectively. 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,uplot,'-',x,u_anal,'o')

xlabel('x')

ylabel('u(x,t)')

title('Fitzhugh-Nagumo equation; t = 0, 20, 40, 60; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Fitzhugh-Nagumo equation'); 

view(47,20); axis tight

shading interp

colormap cool

The appearance of the 3D plot is enhanced by calls to four Matlab routines (view, axis, shading, colormap). 

The main program produces the same three figures and tabulated output as in Chapters 2–8, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 2–8 and is therefore not reproduced here. 
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Fitzhugh–Nagumo equation;  t = 0, 20, 40, 60

1.4

1.2
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−20
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FIGURE 9.1: Numerical solution to eq. (9.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for ncase=1. 

Figure 9.1 indicates good agreement between the analytical and numerical solutions (the successive curves are right to left for  t = 0, 20, 40, 60). Also, the traveling wave characteristic of eq. (9.2) is clear (the solution is merely displaced along the  x  axis). The boundary points  x = −60, 20 are large enough that the traveling waves does not reach the boundaries for  t ≤ 60. As a cautionary note, if the wave did reach a boundary, some unexpected numerical effects might occur that would require additional analysis for an acceptable resolution of the solution ([12]). 

Figure 9.2 is a 3D plot of the numerical solution. The map of the ODE Jacobian matrix, 

Fig. 9.3, reflects the banded structure of the ODEs produced by dss004. Also, the bandwidth is 9 and not 5 as might be expected from the five-point FDs in dss004. This greater bandwidth is due to the repeated use of dss004 in pde 1.m to compute uxx from u by stagewise differentiation. 

The tabular analytical and numerical solutions given in Table 9.1 also reflect the good agreement between these two solutions. The solution near the end points  x = −60, 20 and around the front (from approximately  u = 0.01 to  u = 0.99) is retained in Table 9.1. The computational effort reflected in ncall = 536 is modest. 

The analytical and numerical solutions agree exactly at  t = 0 as expected (from the use of ua 1.m in inital 1.m). The agreement between the analytical and numerical solutions of approximately four figures (at  t = 60) is due in part to the smoothness of the solutions as analytical solution of eq. eq. (9.2) reflected in Fig. 9.1. This smoothness is perhaps unexpected considering the exponential in the analytical solution of eq. (9.2). 
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Table 9.1:

Portion of the numerical and analytical solutions for

ncase=1

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−60.0

1.000000

1.000000

0.000000

0.00

−59.2

1.000000

1.000000

0.000000

0.00

−58.4

1.000000

1.000000

0.000000

0.00

−57.6

1.000000

1.000000

0.000000

0.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

0.00

−6.4

0.989287

0.989287

0.000000

0.00

−5.6

0.981290

0.981290

0.000000

0.00

−4.8

0.967520

0.967520

0.000000

0.00

−4.0

0.944193

0.944193

0.000000

0.00

−3.2

0.905744

0.905744

0.000000

0.00

−2.4

0.845150

0.845150

0.000000

0.00

−1.6

0.756092

0.756092

0.000000

0.00

−0.8

0.637767

0.637767

0.000000

0.00

0.0

0.500000

0.500000

0.000000

0.00

0.8

0.362233

0.362233

0.000000

0.00

1.6

0.243908

0.243908

0.000000

0.00

2.4

0.154850

0.154850

0.000000

0.00

3.2

0.094256

0.094256

0.000000

0.00

4.0

0.055807

0.055807

0.000000

0.00

4.8

0.032480

0.032480

0.000000

0.00

5.6

0.018710

0.018710

0.000000

0.00

6.4

0.010713

0.010713

0.000000

. 

. 

. 

. 

. 

. 

0.00

16.8

0.000007

0.000007

0.000000

0.00

17.6

0.000004

0.000004

0.000000

0.00

18.4

0.000002

0.000002

0.000000

0.00

19.2

0.000001

0.000001

0.000000

0.00

20.0

0.000001

0.000001

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

20.00

−60.0

1.000000

1.000000

0.000000

20.00

−59.2

1.000000

1.000000

0.000000

20.00

−58.4

1.000000

1.000000

0.000000

20.00

−57.6

1.000000

1.000000

0.000000

20.00

−56.8

1.000000

1.000000

−0.000000

. 

. 

. 

. 

. 

. 

20.00

−20.0

0.984345

0.984360

−0.000014

20.00

−19.2

0.972730

0.972786

−0.000057
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Table 9.1:

( Continued )

20.00

−18.4

0.952968

0.953058

−0.000091

20.00

−17.6

0.920176

0.920201

−0.000025

20.00

−16.8

0.867859

0.867541

0.000317

20.00

−16.0

0.789200

0.788133

0.001067

20.00

−15.2

0.680686

0.678748

0.001938

20.00

−14.4

0.547600

0.545459

0.002142

20.00

−13.6

0.406753

0.405320

0.001434

20.00

−12.8

0.279836

0.279079

0.000756

20.00

−12.0

0.180804

0.180241

0.000564

20.00

−11.2

0.111505

0.111016

0.000489

20.00

−10.4

0.066618

0.066230

0.000388

20.00

−9.6

0.038988

0.038725

0.000263

20.00

−8.8

0.022527

0.022369

0.000158

20.00

−8.0

0.012916

0.012829

0.000087

. 

. 

. 

. 

. 

. 

20.00

16.8

0.000000

0.000000

−0.000000

20.00

17.6

0.000000

0.000000

−0.000000

20.00

18.4

0.000000

0.000000

−0.000000

20.00

19.2

0.000000

0.000000

−0.000000

20.00

20.0

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

40.00

−60.0

1.000000

1.000000

0.000000

40.00

−59.2

1.000000

1.000000

0.000000

40.00

−58.4

1.000000

1.000000

0.000000

40.00

−57.6

1.000000

1.000000

0.000000

40.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

40.00

−34.4

0.986987

0.986932

0.000055

40.00

−33.6

0.977279

0.977219

0.000060

40.00

−32.8

0.960662

0.960574

0.000089

40.00

−32.0

0.932825

0.932605

0.000220

40.00

−31.2

0.887747

0.887128

0.000619

40.00

−30.4

0.818447

0.816984

0.001463

40.00

−29.6

0.719760

0.717148

0.002611

40.00

−28.8

0.593474

0.590172

0.003302

40.00

−28.0

0.452776

0.449916

0.002860

40.00

−27.2

0.319111

0.317194

0.001917

40.00

−26.4

0.210123

0.208766

0.001357

40.00

−25.6

0.131366

0.130327

0.001038

40.00

−24.8

0.079197

0.078439

0.000758

40.00

−24.0

0.046621

0.046114

0.000508

( Continued )
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Table 9.1:

( Continued )

t

x

u(it,i)

u anal(it,i)

err(it,i)

40.00

−23.2

0.027032

0.026724

0.000309

40.00

−22.4

0.015532

0.015355

0.000177

. 

. 

. 

. 

. 

. 

40.00

16.8

0.000000

0.000000

−0.000000

40.00

17.6

0.000000

0.000000

−0.000000

40.00

18.4

0.000000

0.000000

−0.000000

40.00

19.2

0.000000

0.000000

−0.000000

40.00

20.0

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

60.00

−60.0

0.999996

0.999996

0.000000

60.00

−59.2

0.999993

0.999993

0.000000

60.00

−58.4

0.999988

0.999988

0.000001

60.00

−57.6

0.999979

0.999978

0.000001

60.00

−56.8

0.999963

0.999961

0.000002

. 

. 

. 

. 

. 

. 

60.00

−48.8

0.989190

0.989087

0.000103

60.00

−48.0

0.981087

0.980944

0.000143

60.00

−47.2

0.967147

0.966928

0.000219

60.00

−46.4

0.943602

0.943201

0.000402

60.00

−45.6

0.904979

0.904138

0.000841

60.00

−44.8

0.844429

0.842690

0.001738

60.00

−44.0

0.755718

0.752632

0.003086

60.00

−43.2

0.637691

0.633442

0.004249

60.00

−42.4

0.499598

0.495332

0.004266

60.00

−41.6

0.361191

0.357930

0.003261

60.00

−40.8

0.242814

0.240481

0.002333

60.00

−40.0

0.154152

0.152422

0.001730

60.00

−39.2

0.093908

0.092674

0.001234

60.00

−38.4

0.055656

0.054831

0.000825

60.00

−37.6

0.032407

0.031898

0.000509

60.00

−36.8

0.018667

0.018370

0.000297

60.00

−36.0

0.010683

0.010517

0.000166

. 

. 

. 

. 

. 

. 

60.00

16.8

0.000000

0.000000

0.000000

60.00

17.6

0.000000

0.000000

−0.000000

60.00

18.4

0.000000

0.000000

−0.000000

60.00

19.2

0.000000

0.000000

−0.000000

60.00

20.0

0.000000

0.000000

0.000000

ncall=536

[image: Image 7]
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Fitzhugh–Nagumo equation
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FIGURE 9.2: 3D plot of the numerical solution to eq. (9.1) for ncase=1. 

For Case 2,  D  is reduced to 0.1 so that the variation of the solution with  x  is more pronounced, as reflected in the following plotted and tabular solutions (Figs. 9.4, 9.5, 

Table 9.2). 

Figure 9.4 indicates good agreement between the analytical and numerical solutions (the successive curves are right to left for  t = 0, 20, 40, 60), even with the considerably steeper moving front (compare Figs. 9.1 and 9.4). Figure 9.5 is a 3D plot of the numerical solution, which also reflects the considerably steeper moving front (compare Figs. 9.2

and 9.5). 

The map of the ODE Jacobian matrix (not reproduced here) is the same as in Fig. 9.3

as expected, since the only change is in  D  from 1 to 0.1 (the ODE structure does not change). 

The tabular analytical and numerical solutions given in Table 9.2 also reflect the good agreement between these two solutions. The computational effort reflected in ncall =

727 is still modest, even though the error is rather large for certain points along the solution; for example, at  t = 60 (from Table 9.2). 

60.00

-13.6

0.736960

0.601214

0.135746

which is due to the relatively steep moving front as explained subsequently. 
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Jacobian sparsity pattern – nonzeros 873 (8.558%)
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FIGURE 9.3: Jacobian matrix map of the MOL ODEs for  n = 101 for ncase=1. 

We can note the following points about Fig. 9.4:

. Thesolutionischangingrapidly(isstronglyverticalatthemovingfront)sothatthe

occasional large errors do not distort the plot substantially. 

. However,themaximumerroralongthemovingfrontisincreasingwith t,asreflected in the three successive plots for  t = 20, 40, 60, which implies that the numerical solution might fail for  t > 60. 

. Thesharpfrontismarginallyresolvedwith n=101sothatfor D<0.1(steeperfront), more points in  x  might be required. In other words, the adequacy of a particular spatial grid is dependent on the particular PDE problem conditions (in this case, value of  D). 

. Thus,theselectionofthenumberofspatialpointsistypicallydeterminedbya

trial-and-error process. An alternative is to use an  adaptive grid, termed  adaptive mesh refinement, AMR, in which the number of points is adjusted by the numerical algorithm to adequately resolve the solution. Although AMR methods are well

developed [14], they are inherently more complicated than fixed grid methods (such as

[image: Image 8]
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Fitzhugh−Nagumo equation;  t = 0, 20, 40, 60
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FIGURE 9.4: Numerical solution to eq. (9.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for ncase=2. 

Fitzhugh–Nagumo equation
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FIGURE 9.5: 3D plot of the numerical solution to eq. (9.1) for ncase=2. 
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Table 9.2:

Abbreviated tabular numerical and analytical solutions for

ncase=2

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−60.0

1.000000

1.000000

0.000000

0.00

−59.2

1.000000

1.000000

0.000000

0.00

−58.4

1.000000

1.000000

0.000000

0.00

−57.6

1.000000

1.000000

0.000000

0.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

0.00

−2.4

0.995352

0.995352

0.000000

0.00

−1.6

0.972820

0.972820

0.000000

0.00

−0.8

0.856787

0.856787

0.000000

0.00

0.0

0.500000

0.500000

0.000000

0.00

0.8

0.143213

0.143213

0.000000

0.00

1.6

0.027180

0.027180

0.000000

0.00

2.4

0.004648

0.004648

0.000000

. 

. 

. 

. 

. 

. 

0.00

16.8

0.000000

0.000000

0.000000

0.00

17.6

0.000000

0.000000

0.000000

0.00

18.4

0.000000

0.000000

0.000000

0.00

19.2

0.000000

0.000000

0.000000

0.00

20.0

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

20.00

−60.0

1.000000

1.000000

0.000000

20.00

−59.2

1.000000

1.000000

0.000000

20.00

−58.4

1.000000

1.000000

0.000000

20.00

−57.6

1.000000

1.000000

0.000000

20.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

20.00

−7.2

1.000052

0.997761

0.002290

20.00

−6.4

0.981269

0.986755

−0.005487

20.00

−5.6

0.928172

0.925668

0.002504

20.00

−4.8

0.722641

0.675491

0.047150

20.00

−4.0

0.335632

0.258127

0.077505

20.00

−3.2

0.060646

0.054962

0.005684

20.00

−2.4

0.019506

0.009628

0.009878

. 

. 

. 

. 

. 

. 

20.00

16.8

0.000000

0.000000

0.000000

20.00

17.6

−0.000000

0.000000

−0.000000

20.00

18.4

0.000000

0.000000

0.000000

20.00

19.2

−0.000000

0.000000

−0.000000

20.00

20.0

0.000000

0.000000

0.000000
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Table 9.2:

( Continued )

t

x

u(it,i)

u anal(it,i)

err(it,i)

40.00

−60.0

1.000000

1.000000

0.000000

40.00

−59.2

1.000000

1.000000

0.000000

40.00

−58.4

1.000000

1.000000

0.000000

40.00

−57.6

1.000000

1.000000

0.000000

40.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

40.00

−11.2

0.990736

0.993593

−0.002857

40.00

−10.4

0.968699

0.962856

0.005843

40.00

−9.6

0.835951

0.812487

0.023463

40.00

−8.8

0.565642

0.420042

0.145600

40.00

−8.0

0.124694

0.107988

0.016706

40.00

−7.2

0.036314

0.019834

0.016479

40.00

−6.4

0.004377

0.003371

0.001006

. 

. 

. 

. 

. 

. 

40.00

16.8

0.000000

0.000000

0.000000

40.00

17.6

−0.000000

0.000000

−0.000000

40.00

18.4

0.000000

0.000000

0.000000

40.00

19.2

−0.000000

0.000000

−0.000000

40.00

20.0

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

60.00

−60.0

1.000000

1.000000

0.000000

60.00

−59.2

1.000000

1.000000

0.000000

60.00

−58.4

1.000000

1.000000

0.000000

60.00

−57.6

1.000000

1.000000

0.000000

60.00

−56.8

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

60.00

−16.0

0.995499

0.996912

−0.001413

60.00

−15.2

0.988144

0.981805

0.006339

60.00

−14.4

0.910405

0.900194

0.010212

60.00

−13.6

0.736960

0.601214

0.135746

60.00

−12.8

0.285822

0.201277

0.084545

60.00

−12.0

0.063044

0.040419

0.022625

60.00

−11.2

0.015916

0.006992

0.008924

. 

. 

. 

. 

. 

. 

60.00

16.8

0.000000

0.000000

0.000000

60.00

17.6

−0.000000

0.000000

−0.000000

60.00

18.4

0.000000

0.000000

0.000000

60.00

19.2

−0.000000

0.000000

−0.000000

60.00

20.0

0.000000

0.000000

0.000000

ncall=727
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the use of  n = 101 points in the present example), and they typically require tuning of the AMR algorithm parameters to arrive at an acceptable numerical solution; however, once an adaptive grid is operational, it typically will require fewer grid points than a fixed grid method, particularly in the resolution of steep moving fronts, and it can therefore result in a substantially reduced computational effort. 

 x



1 

We note in eq. (9.2) that  x  and  t  appear in a linear combination, √

+  a −

 t, 

2 D

2

so that eq. (9.2) represents a traveling wave solution. If we consider the  Lagrangian variable to be  k( x −  vt) where  k  and  v  are the  wavenumber  and  wave velocity, respec-1



1 

tively, then  k =

and  v

 a

. For Case 2, with  a

(

= −(2 D)0.5

−

= 1,  D = 0.1, and

2 D)0.5

2



1 

 v = −((2)(0.1))0.5 1 −

= −0.2236. 

2

The velocity can also be estimated from the numerical output of Table 9.2. For example, if we estimate (by linear interpolation) the value of  x  at which the numerical solution is 0.5 at  t = 60, then  x = −13.6 + (−12.8 − (−13.6))(0.5 − 0.736960)/(0.285822 − 0.736960) =

−13.1798. Thus, the velocity (for movement of the point  u( x,  t) = 0.5) is approximately 1 x

(using also the value  u( x = 0,  t = 0) = 0.5 from Table 9.2)  v ≈ 1 = (−13.1798−0)/(60−

 t

0) = −0.2197, which agrees to (0.2197 − 0.2236)/0.2236 × 100 = −1.74% with the value of

−0.2236 from eq. (9.2) (recall again the second calculation is based on the part of the solution that is changing most rapidly, and it therefore has the greatest error). 

In summary, the solution of eq. (9.1) subject to the IC from eq. (9.2) (with  t = 0) and two Dirichlet BCs from eq. (9.2) (with  x = −60, 20) is straightforward. Also, eq. (9.1) is nonlinear, yet the programming in pde 1.m is straightforward. Consequently, variations in the PDE

can easily be made for cases for which an analytical solution might not be available. 

This example also demonstrates the possible sensitivity of a PDE solution to embedded parameters (such as  D). 

Analytical solutions, for example, eq. (9.2), can be derived by procedures such as the  exp and  tanh  methods, particularly through the use of a  computer algebra system (CAS)  that also facilitates the verification of analytical solutions from the literature. This approach based on the CAS system Maple is demonstrated in the following Appendix. 

Appendix

We conclude this chapter by first returning to the coupled two PDE systems at the beginning of the chapter, and then an example illustrating how to obtain the analytical traveling wave solution to the single Fitzhugh–Nagumo equation used in the numerical simulation. 

The Coupled Fitzhugh–Nagumo Equations

The coupled diffusive Fitzhugh–Nagumo equations are classified as  reaction–diffusion equations  and are a simplified version of the more complex  Hodgkin–Huxley model  that
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describes the dynamics of the voltage  V ( x,  t) across a nerve cell [13]. They are derived from the Fitzhugh–Nagumo ordinary differential equations [7, 15]



! 

 dV

 V  3

 V −

−  R

 d τ = 10

3

 dR

 d τ = 0.08 (− R + 1.25 V + 1.5)

where  V  represents the neural excitation voltage and  R  represents a recovery variable. By setting the time derivatives to zero, the steady-state values for the state variables are found to be  V = −(3/2) and  R = −(3/8). However, as it is more usual to work in  normalized units, we choose to use the following form of transformed equations

 dv =  v( v −1)(µ− v)− r

 dt

 dr = ( v −γ r)

 dt

where µ represents  excitation threshold,  excitability, and γ a  model parameter. Again, by setting the time derivatives to zero, the steady-state values for the state variables are found to be  v = 0 and  r = 0. 

In order to model waves that travel along an excitable medium, we introduce the spatially distributed  Fitzhugh–Nagumo equations, where a diffusion term has been incor-porated into the above ODEs and which also include an external stimulus  I, i.e., 

∂ v

∂2 v

∂ =  D

+  v ( v − 1) ( a −  v) −  r +  I

(9.3a)

 t

∂ x 2

∂ r

∂ =  ( v − γ  r)

(9.3b)

 t

The stimulus  I  represents an external current applied to an  axon (or nerve fiber) and  D  represents electrical diffusivity of the axon. In mammals, this process is controlled chemically by, primarily, a combination of positively charged ions of  sodium (Na+) and potassium (K+) and, to a lesser extent by positively charged ions of  calcium (Ca2+) and negatively charged ions of  chloride (Cl−), which pass through ion channels in the surrounding insulating  myelin membrane  of the axon. If the stimulus reaches a certain threshold level, the result is an impulse that propagates at speeds up to 100 m/s, which is considerably slower than the speed of electricity flowing along a wire. This is because, within a wire, electrical charge is carried by electrons that are very much smaller than the ions, which are the charge carriers within an axon. On reaching a synapse, the impulses can trig-ger the associated neuron to fire, resulting in an infusion of positive ions into its axon and another propagating impulse, and so on. For a full description of the associated biophysical processes, refer to [2] and for electrical analogs refer to [8]. 

For our subsequent analysis, we take the parameter values to be [1]

 D = 0.03, 

 a = 0.139, 

γ = 2.54,  = 0.008,  I = 0.15
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Fitzhugh–Nagumo equations — Single pulse stimulation

A model of electrical activity in a neuron

1.2

Time = 286.43 (ms)
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−0.40
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Distance along axon

FIGURE 9.6: Solution resulting from a single-pulse stimulus applied at  x = 25 (normalized units). 

Equations (9.3a) and (9.3b) represent a nonlinear system for which an analytical solution is not available. However, we can easily calculate numerical solutions that demonstrates the general utility of the numerical approach. In this case, the solutions demonstrate rich dynamics with traveling pulses that propagate along the simulated axon. If the stimulation is applied as a single pulse, this results in two voltage spikes traveling in opposite directions that emanate from the point of stimulation (see Figs. 9.6 and 9.7). 

However, if the stimulation is applied continuously, a stream of voltage spikes is generated (known as  bursting or firing) that propagate in each direction away from the point of stimulation (see Figs. 9.8 and 9.9). 

The Maple code for producing the above figures will not be discussed here, but it is included in the downloads for this chapter. 

Analytical Solution of the Single Fitzhugh–Nagumo Equation

We can find the analytical solution to the single Fitzhugh–Nagumo equation, i.e., 

∂ u

∂2 u

∂ =  D

−  u (1 −  u) ( a −  u)

 t

∂ x 2

by application of the Maple procedures outlined in the main Appendix. Applying the tanhMethod() procedure as detailed in Listing 9.5

[image: Image 9]

[image: Image 10]
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Fitzhugh–Nagumo model — Neural excitation
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Fitzhugh–Nagumo model — Recovery variable
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FIGURE 9.7: 3D plot resulting from a single pulse stimulus applied at  x = 25. top: neural excitation, bottom: recovery variable (normalized units). 
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Fitzhugh–Nagumo equations — Continuous stimulation

A model of electrical activity in a neuron
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FIGURE 9.8: Solution resulting from a continuous stimulus applied at  x = 25 (normalized units). 

># Fitzhugh-Nagumo Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools):

with(plots): unprotect(D); 

>alias(u=u(x,t)):

>pde1:=diff(u,t)-D*diff(u,x,x)+u*(1-u)*(a-u)=0; 

>read("tanhMethod.txt"); 

>intFlg:=0: # No integration of U(xi) needed ! 

M:=1; # Set order of approximation

infoLevOut:=0; 

tanhMethod(M,pde1,intFlg,infoLevOut); 

># Plot Case 1:


# ===========

D:=1.0; a:=1;x0:=0;n:=4; 

animate(rhs(sol[n]),x=-10..50,t=0..60,axes=framed, 

title="Fitzhugh-Nagumo Equation",labels=["x","u"], thickness=3,frames=50,numpoints=100, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

plot3d(rhs(sol[n]),x=-10..50,t=0..60,axes='framed', 

title="Fitzhugh-Nagumo Equation", 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[116,51],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,labelfont=[TIMES, ROMAN, 16], 

axesfont=[TIMES, ROMAN, 16], titlefont=[TIMES, ROMAN, 16]); 

[image: Image 11]

[image: Image 12]
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Fitzhugh–Nagumo model — Neural excitation
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Fitzhugh–Nagumo model — Recovery variable
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FIGURE 9.9: 3D plots resulting from a continuous stimulus applied at  x = 25. top: neural excitation, bottom: recovery variable (normalized units). 
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># Plot Case 2:


# ===========

D:=0.1; a:=1; 

animate(rhs(sol[n]),x=-5..20,t=0..60,axes=framed, 

title="Fitzhugh-Nagumo Equation",labels=["x","u"], thickness=3,frames=50,numpoints=100, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

plot3d(rhs(sol[n]),x=-5..20,t=0..60,axes='framed', 

title="Fitzhugh-Nagumo Equation", 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[116,51],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,labelfont=[TIMES, ROMAN, 16], 

axesfont=[TIMES, ROMAN, 16], titlefont=[TIMES, ROMAN, 16]); 

LISTING 9.5: Maple code to find traveling wave solutions of the Fitzhugh–Nagumo equation using the  tanh method. Animations and 3D plots are also produced for cases 1 and 2. 

produces 15 traveling wave solutions from which we select the following as an example

√

√ √

√ √







1

1

2 2  x + 2  D  2 ta −  D  2 t

 u :=

−

tanh 

√



2

2

8  D

which simplifies to

1

1



 x

1



 u =

−

tanh

√

+

(2 a − 1) t

(9.4)

2

2

2 2 D

4

This demonstrates the traveling wave property of the solution, where the wavenumber is

√

1

2 D

given by  k = √

and the velocity by  c =

(2 a − 1). 

2 2 D

2

Alternatively, we can apply the expMethod() procedure as detailed in Listing 9.6, 

># Fitzhugh-Nagumo Equation

# Attempt at Exp solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):unprotect(D); 

>alias(u=u(x,t)):

>pde1:=diff(u,t)-D*diff(u,x,x)+u*(1-u)*(a-u)=0; 

>read("expMethod.txt"); 

>intFlg:=0: # No integration of U(xi) needed ! 

Mn:=1; Md:=1; # Set order of approximation

infoLevOut:=0; 

expMethod(Md,Mn,pde1,intFlg,infoLevOut); 

># Plot Case 1:


# ===========

n:=3; x0:=0; 

zz:=rhs(sol[n]); 

D:=1.0; a:=1; _b[-1]:=1; 

animate(zz,x=-55..10,t=0..60,axes=framed, 

title="Fitzhugh-Nagumo Equation",labels=["x","u"], 
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thickness=3,frames=50,numpoints=100, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

plot3d(zz,x=-55..10,t=0..60,axes='framed', 

title="Fitzhugh-Nagumo Equation", 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[-31,33],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,labelfont=[TIMES, ROMAN, 16], 

axesfont=[TIMES, ROMAN, 16], titlefont=[TIMES, ROMAN, 16]); 

># Plot Case 2:


# ===========

D:=0.1; a:=1; 

animate(zz,x=-20..10,t=0..60,axes=framed, 

title="Fitzhugh-Nagumo Equation",labels=["x","u"], thickness=3,frames=50,numpoints=100, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

plot3d(zz,x=-20..10,t=0..60,axes='framed', 

title="Fitzhugh-Nagumo Equation", 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[-31,33],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

shading=Z,labelfont=[TIMES, ROMAN, 16], 

axesfont=[TIMES, ROMAN, 16], titlefont=[TIMES, ROMAN, 16]); 

LISTING 9.6: Maple code to find traveling wave solutions of the Fitzhugh–Nagumo equation using the  exp  method. 

Animations and 3D plots are also produced for cases 1 and 2. 

which produces 33 traveling wave solutions, including three trivial solutions and the following solution as outputted from Maple

√ 

√ √

√ √

2 2  x −  d  2 t + 2  d  2 t α

−

√

 b

8  d

 u :=

−1 e

√ 

√ √

√ √

√ 

√ √

√ √

2 2  x −  d  2 t + 2  d  2 t α

2 2  x −  d  2 t + 2  d  2 t α

−

√

√

 b

8  d

8  d

−1 e

+  e

where  b−1 is an arbitrary constant. On letting  b−1 = 1, we obtain, after simplification, 1

 u =

(9.5)



 x



1  

1 + exp √

+ α −

 t

2 d

2

which is the traveling wave solution we used in the above numerical simulation (eq. (9.2)). 

Also, using the hyperbolic identity tanh(θ) = 1 − 2/(1 + exp(2θ)), we note that the  tanh  and exp  solutions of eqns. (9.4) and (9.5) are, in fact, equivalent. 

Finally, an additional Maple code that finds traveling wave solutions to the Fitzhugh–

Nagumo equation using the Riccati-based method is included with the downloads for this book. 
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Equation

The  Kolmogorov–Petrovskii–Piskunov (KPP) equation ([4], p7), eq. (10.1), also called the Fisher–KPP equation  or just the  KPP equation, is used in biological applications; for example, KPP is used to model tumor growth and invasion [3]. 

∂ u

∂2 u

∂ =  D

+  au +  bum

(10.1)

 t

∂ x 2

where  a,  b,  m(6= 1), and  D  are arbitrary. 

An analytical solution is ([4], p7)

h

 u( x,  t) = β + exp(λ t + µ x/ D 0.5)i2/(1− m) (10.2)

where

 a(1

λ

−  m)( m + 3)

=

, 

(10.3)

2( m + 1)

s

 a(1

µ

−  m)2

=

, 

(10.4)

2( m + 1)

r

 b

β = −

(10.5)

 a

We note that eq. (10.1) is similar to eq. (9.1), and it also clearly demonstrates a traveling wave solution as explained subsequently. 

The Matlab routines closely resemble those of Chapter 9. Here, we list a few details pertaining to eqns. (10.1)–(10.5). First, the ODE routine, pde 1.m, is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Kolmogorov-

% Petrovskii-Piskunov equation

%

global xl xu x n ncall

%

% Model parameters

global a b m D

%

% BCs

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00010-8
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u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% PDE

for i=2:n-1

ut(i)=D*uxx(i)+a*u(i)+b*u(i)ˆm; 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 10.1: Function pde 1.m for eq. (10.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Kolmogorov-

% Petrovskii-Piskunov equation

%

global xl xu x n ncall

%

% Model parameters

global a b m D

. Thefirstderivativeineq.(10.1), ux,iscomputedusingthefunctiondss004.Since

eq. (10.1) is second order in  x, the two required BCs are taken from eq. (10.2) with xl =  x(1) = −10,  xu =  x( n) = 10 at grid points i=1,n, respectively (with n=101, subsequently set in the main program pde 1 main.m), and passed as global variables. 

%

% BCs

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thesecondderivativeineq.(10.1), uxx,iscomputedwithdss004bydifferentiatingux, so-called  stagewise differentiation. The alternative would be to use dss044 to directly compute uxx from u, as discussed in Chapter 4. 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

“14-ch10-173-184-9780123846525” — 2010/12/13 — 18:06 — page 175 — #3

. 

 Chapter 10

Kolmogorov–Petrovskii–Piskunov Equation

175

. Equation(10.1)isthenprogrammed. 

%

% PDE

for i=2:n-1

ut(i)=D*uxx(i)+a*u(i)+b*u(i)ˆm; 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC of eq. (10.2) (with  t = 0) is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Kolmogorov-

% Petrovskii-Piskunov equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 10.2: Function inital 1.m for IC from eq. (10.2) with  t = 0. 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Kolmogorov-

% Petrovskii-Piskunov equation

%

% Parameters shared with other routines

global xl xu x n ncall

. Thegridin x isthendefinedovertheinterval xl=−10≤ x≤ xu=10for101points (these grid parameters were selected by trial and error to produce a numerical solution
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with acceptable accuracy, and they are defined numerically in the main program, pde 1 main.m, discussed subsequently). 

%

% Spatial domain and initial condition

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (10.2) (with  t = 0). 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (10.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Kolmogorov-

% Petrovskii-Piskunov equation for comparison with the numerical

% solution

%

% Model parameters

global a b m D lambda mu beta

%

% Analytical solution

uanal=(beta+exp(lambda*t+mu*x/Dˆ0.5))ˆ(2/(1-m)); 

LISTING 10.3: Function ua 1.m for analytical solution (10.2). 

The main program, pde 1 main, is similar to pde 1 main of Listing 2.1; therefore, we consider only a few specific lines of code pertaining to the parameters defined in

eqns. (10.3), (10.4), and (10.5). Note that the parameters  a,  b,  m,  D, λ, µ, and β are declared global so that they can be shared with other routines. 

. 

. 

. 

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b m D lambda mu beta

a=1; b=-1; m=2; D=0.1; xl=-10; xu=10; n=101; 

lambda=a*(1-m)*(m+3)/(2*(m+1)); 

mu=(a*(1-m)ˆ2/(2*(m+1)))ˆ0.5; 

beta=(-b/a)ˆ0.5; 

. 

. 

. 

LISTING 10.4: Selected lines from the main program pde 1 main.m for eqns. (10.3), (10.4), and (10.5). 
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FIGURE 10.1: Numerical solution to eq. (10.1) (lines) with the analytical solution superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 3, 6, 9 (left to right). 

The main program produces the same three figures and tabulated output as in Chapters 3–9, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 2 –9 and is therefore not reproduced here. 

Figure 10.1 indicates good agreement between the analytical and numerical solutions. 

Also, the solution appears to be a traveling wave as specified by eq. (10.2) in the sense that the successive curves are displaced by a constant distance in  t. Note that the curves move left to right, since from eq. (10.2), the  Lagrangian  variable is ξ = λ t + µ x/ D 0.5 = µ/ D 0.5( x +

( D 0.5/µ)λ t); in other words, the  wave velocity  is  c = −( D 0.5/µ)λ (which will be confirmed in the subsequent discussion of the numerical output; note that λ < 0). Figure 10.2 is a 3D

plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 10.3, reflects the banded structure of the ODEs produced by dss004. The number of grid points,  n = 101, is large enough that the individual elements of the Jacobian matrix are not distinct. 

The tabular analytical and numerical solutions given in Table 10.1 also reflect the good agreement between these two solutions. The computational effort reflected in ncall =

260 is quite modest. As required, the analytical and numerical solutions agree for  t = 0

(since both solutions are from eq. (10.2) with  t = 0). For  t > 0, the agreement between the

[image: Image 13]
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KPP equation
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FIGURE 10.2: 3D plot of the numerical solution to eq. (10.1). 

analytical and numerical solutions of approximately five figures is quite acceptable, even with only 101 grid points. 

The numerical solution of Table 10.1 can be used to estimate the velocity of the traveling wave of Fig. 10.1. For example, we can determine the distance (in  x) between the two solution values  u( x,  t) = 0.5 for  t = 0 and  t = 3. For  u( x,  t = 0) = 0.5, the value of  x  can be estimated by linear interpolation within the solution values of Table 10.1 at  t = 0. 

 x = −0.80 + (−0.60 + 0.80)(0.5 − 0.543844)/(0.468560 − 0.543844) = −0.6835

Similarly, for  t = 3, linear interpolation to determine  x  for  u( x,  t = 3) = 0.5 gives x = 1.20 + (1.40 − 1.20)(0.5 − 0.520241)/(0.444285 − 0.520241) = 1.2533

Thus, the estimated velocity (of the value  u( x,  t) = 0.5) is 1 x

1.2533 − (−0.6835)

 c = 1 =

= 0.6456

 t

3 − 0
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FIGURE 10.3: Jacobian matrix map of the MOL ODEs for  n = 101. 

which compares with the analytical value (with λ = −0.8333, µ = 0.4082,  D = 0.1)  c =

−( D 0.5/µ)λ = −(0.10.5/0.4082)(−0.8333) = 0.6455 (λ and µ were computed according to

eqns. (10.3) and (10.4), as programmed in Listing 10.4). 

In summary, the solution of eq. (10.1) subject to the IC from eq. (10.2) (with  t = 0) and two Dirichlet BCs from eq. (10.2) (with  xl = −10,  xu = 10) is straightforward. Also, eq. (10.1)

is nonlinear, yet the programming in pde 1.m (Listing 10.1) is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 

Appendix

We conclude this chapter by solving the KPP equation using the  factorization method  as outlined in the main Appendix. The equation is repeated below for convenience, as we use
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Table 10.1:

Tabular numerical and analytical solutions

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−10.000

0.999995

0.999995

0.000000

0.00

−9.800

0.999994

0.999994

0.000000

0.00

−9.600

0.999992

0.999992

0.000000

0.00

−9.400

0.999989

0.999989

0.000000

0.00

−9.200

0.999986

0.999986

0.000000

. 

. 

. 

. 

. 

. 

0.00

−1.000

0.615151

0.615151

0.000000

0.00

−0.800

0.543844

0.543844

0.000000

0.00

−0.600

0.468560

0.468560

0.000000

0.00

−0.400

0.392258

0.392258

0.000000

0.00

−0.200

0.318314

0.318314

0.000000

. 

. 

. 

. 

. 

. 

0.00

9.200

0.000000

0.000000

0.000000

0.00

9.400

0.000000

0.000000

0.000000

0.00

9.600

0.000000

0.000000

0.000000

0.00

9.800

0.000000

0.000000

0.000000

0.00

10.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

3.00

−10.000

1.000000

1.000000

0.000000

3.00

−9.800

0.999999

0.999999

0.000000

3.00

−9.600

0.999999

0.999999

0.000000

3.00

−9.400

0.999999

0.999999

0.000000

3.00

−9.200

0.999999

0.999999

0.000000

. 

. 

. 

. 

. 

. 

3.00

0.800

0.660375

0.660371

0.000004

3.00

1.000

0.593090

0.593089

0.000001

3.00

1.200

0.520238

0.520241

−0.000003

3.00

1.400

0.444278

0.444285

−0.000007

3.00

1.600

0.368354

0.368359

−0.000005

. 

. 

. 

. 

. 

. 

3.00

9.200

0.000000

0.000000

−0.000000

3.00

9.400

0.000000

0.000000

−0.000000

3.00

9.600

0.000000

0.000000

−0.000000

3.00

9.800

0.000000

0.000000

−0.000000

3.00

10.000

0.000000

0.000000

0.000000

. 

. 

. 

. 

. 

. 

output for t = 6, 9 removed

. 

. 

. 

. 

. 

. 

ncall=260
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slightly different notation than in eq. (10.1). 

∂ u

∂2 u

∂ − δ

−  au −  bum = 0

(10.6)

 t

∂ x 2

If we assume a traveling wave solution of the form  u ( x,  t) =  U (ξ ), where ξ =  k ( x −  ct),  c =

velocity, and  k = wavenumber, eq. (10.6) reduces to the traveling wave ODE

 d 2 U

 dU

+ γ

+  F( U) = 0

(10.7)

 dx 2

 dx

 c

1

where γ =

and  F( U) =

 aU +  bUm. 

 k δ

 k 2δ

We factor the polynomial function of eq. (10.7) (the third-hand term) as



! 

! 

 F( U)

 a

r

 b

r

 b

=  f

1 − −  U 1/2 m−1/2

1 + −  U 1/2 m−1/2

 U

1 f 2 = δ k 2

 a

 a

and choose

r



! 



! 

 a

r

 b

α

r  a

r

 b

1

 f 1 =

1

 U( m−1)/2

, 

 f

1

 U( m−1)/2

, 

α

δ

− −

+ −

6= 0

(10.8)

 a

 k

2 =

δ

 a

α k

where we have also introduced the constant α. 

From eqns. (A.41) and (10.8), we obtain the following ODE

 df 1

( m − 1)

α √

 U

p

p

+  f

− b/δ

 U( m−1)/2

+  a/δ 1 − − b/ aU( m−1)/2 α

 dU

1 +  f 2 = −

2

 k

 k

(10.9)

√

 c

p

+  a/δ 1 + − b/ aU( m−1)/2 1

α = −γ = −

 k

 k δ

Collecting terms and equating the coefficients of  U( m−1)/2 to zero (as the left-hand side of 2

√



 m + 3



eq. (10.9) is equal to a constant) gives α = ± √

and  c = −  a δ √

. Also, 

2( m + 1)

2( m + 1)

as γ is a constant and is independent of the value of  U, on setting  U = 0, we find that γ =

√ a/δ α +α−1

−

. Therefore, adopting the grouping of Cornejo-Perez [2], i.e., eq. (A.40b), k

it follows that

√

 d 2 U

 a/δ α + α−1  dU

∓

+  f 1 f 2 U = 0

(10.10)

 d ξ 2

 k

 d ξ 2

Thus, the corresponding factorization eq. (A.39), i.e.,  D −  f 2 ( U)  D −  f 1 ( U)  U = 0, becomes

" 



r

!# " 



r

!#

1 r  a

 b

α r  a

 b

 D ±

1

 U( m−1)/2

 D

1

 U( m−1)/2

 U

α

+ −

∓

− −

= 0

(10.11)

 k

δ

 a

 k

δ

 a
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 d

where  D =

. Therefore, it follows that eq. (10.10) is compatible with the first-order ODE

 d ξ



! 

 dU

α r  a

r

 b

1 − −  U( m−1)/2  U = 0

(10.12)

 d ξ ∓  k

δ

 a

Integrating eq. (10.12) either manually or using Maple yields r

√

!−2/( m−1)

 b



 a/δ



 U =

− +  K  exp −

α( m − 1)ξ

 a

2 k

where  K  is an arbitrary constant of integration. Substituting back values for ξ ,  c, and  an, 

√



 m − 1



we find that  k =  a/δ √

, which leads to the final solution

2( m + 1)

r

!−2/( m−1)

 b

 U =

− +  K  exp  k( x −  ct)

(10.13)

 a

where  k  and  c  are as defined above. 

If we let  K = ± exp  kx 

0 , we arrive at the standard form of traveling wave solution given

in eq. (10.2)

r

!−2/ m−1

 b

 U± =

− ± exp  k ( x −  x

(10.14)

 a

0 −  ct)

The above solution with  x 0 = 0 is the same as the analytical solution, eqns. (10.2)–(10.5), 

used in the numerical simulation discussed in the main body of this chapter. Maple code that performs the above calculations is included in Listing 10.5. 

Readers are referred to the papers by Berkovich [1], Cornejo-Perez, and Rosu [2, 5] for more information on this method and additional examples of its use. Additional solutions to eq. (10.6) are given by Polyanin and Zaitsev [4, chapter 1]. 

># Some calculations to confirm the results of a

# factorization solution to the KPP Equation

# Ref: Rosu, H. C. and O. Cornejo-Perez (2008). 

#

Supersymmetric pairing of kinks for polynomial

#

nonlinearities, [arXiv:math-ph/0401040v3 24 Dec 2004|

#

|ArXiv: math-ph/0401040]

restart; with(DEtools): with(PDEtools):

>alias(u=u(x,t)): alias(U=U(xi)):

># Define KPP equation

pde1:=diff(u,t)-d*diff(u,x,x)-a*u-b*uˆm=0; 

># Convert PDE to ODE

tr1:={x=(xi/k+c*tau),t=tau,u=U}; 

ode1:=dchange(tr1,pde1,[xi,tau,U]); 

># Define F(U), g
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F:=U*(a+b*Uˆ(m-1))/(d*kˆ2); 

g:=c/(d*k); 

># Factor F(U)/U - Note: alpha introduced

f[1]:=alpha*sqrt(a/(d))*(1-sqrt(-b/a)*Uˆ((m-1)/2))/k; 

f[2]:=sqrt(a/(d))/(alpha)*(1+sqrt(-b/a)*Uˆ((m-1)/2))/k; 

># Check that factorization is correct

F_chk:=simplify(eval(f[1]*f[2]*U)); 

># Use the C-P grouping

alias(U=U):f[1]:=subs(U(xi)=U,f[1]):f[2]:=subs(U(xi)=U,f[2]):

eqn1:=diff(f[1],U)*U+f[1]+f[2]=-subs(U(xi)=U,g); 

>sol1:=simplify(subs(U=0,eqn1),size); 

c:=solve(sol1,c); 

># Collect terms in Uˆ((m-1)/2))

eqn2:=collect(simplify(lhs(eqn1)-rhs(eqn1),size),U,'recursive'); 

># Equate coeff of U to zero

eqn3:=coeff(eqn2,Uˆ((m-1)/2))=0; 

>sol2:=solve(eqn3,alpha); 

alpha:=sol2[1]; 

># Fomulate 1st order ode from [D-f[1]]U=0

f[1]:=subs(U=U(xi),f[1]);ode2:=diff(U(xi),xi)-f[1]*U(xi); 

># Obtain solution to ode2

sol4:=dsolve(ode2); 

># Check solution U(xi) satisfies ode1

odeCHK:=simplify(eval(subs({U(xi)=rhs(sol4)},rhs(ode1))),symbolic):

if odeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

># Obtain solution to pde1

sol5:=u=simplify(eval(subs({xi=k*(x-c*t)},rhs(sol4))),size); 

># Check solution u satisfies pde1:

m:=3; # Need to assign a value to m

pdeCHK:=simplify(pdetest(sol5,pde1),symbolic); 

if pdeCHK = 0 then

print('solution PASSES'); 

else

print('solution FAILS!'); 

end if; 

LISTING 10.5: Maple code to derive a solution to the the  KPP equation  using the  factorization method. 

Finally, additional Maple codes that obtain different solutions to the KPP equation using  tanh-,  exp-, and  Riccati-based methods are included with the downloads for this book. 
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The  Kuramoto–Sivashinsky equation ([6], p593) is

∂ u

∂ u

∂2 u

∂3 u

∂4 u

(11.1)

∂ = − u

− α

− β

− γ

 t

∂ x

∂ x 2

∂ x 3

∂ x 4

r 11

with the analytical solution [6] for the parameter values β = 0, α = γ = 1,  k = ±

. 

19

15









1

15

 u( x,  t) =

 k  11 H 3 − 9 H + 2 ;  H = tanh

 kx −

 k 2 t . 

(11.2)

19

2

19

Two  Dirichlet  BCs are available by applying eq. (11.2) with  x = −10, 20. Two more BCs are available by differentiating eq. (11.2)

∂ u

15 

∂ H

∂ H 

 k  33 H 2

(11.3)

∂ =

− 9

 x

19

∂ x

∂ x

with

∂ H

1 

1

15



 k  1

 kx

 k 2 t

∂ =

− tanh2

−

 x

2

2

19

Equation (11.3) can then be applied as  Neumann  BCs at  x = −10, 20. 

The Matlab routines closely resemble those of Chapters 3–10. Here, we list a few details pertaining to eqns. (11.1)–(11.3). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Kuramoto-

% Sivashinsky equation

%

global xl xu x n ncall

%

% Model parameters

global alpha beta gamma k

%

% BCs at x = 0,1

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00011-X
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% BCs at x = 0,1

ux(1)=uax_1(x(1),t); 

ux(n)=uax_1(x(n),t); 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% uxxx

uxxx=dss004(xl,xu,n,uxx); 

%

% uxxxx

uxxxx=dss004(xl,xu,n,uxxx); 

%

% PDE

for i=2:n-1

ut(i)=-u(i)*ux(i)-alpha*uxx(i)-beta*uxxx(i)-gamma*uxxxx(i); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 11.1: Function pde 1.m for eq. (11.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Kuramoto-

% Sivashinsky equation

%

global xl xu x n ncall

%

% Model parameters

global alpha beta gamma k

. Thefirstderivativeineq.(11.1), ux,iscomputedusingthefunctiondss004. 

Equation (11.1) is fourth order in  x, and the four required BCs are taken from the analytical solution with  x = −10, 20 corresponding to the two grid points i=1,n with n=201 set in inital 1.m. Equations (11.2) are used to define two Dirichlet BCs at x = −10, 20 and eqs. (11.3) are used to define two Neumann BCs at  x = −10, 20. Both sets of BCs are programmed in ua 1.m (Dirichlet) and uax 1.m (Neumann) discussed subsequently. 

%

% BCs at x = 0,1

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 
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%

% BCs at x = 0,1

ux(1)=uax_1(x(1),t); 

ux(n)=uax_1(x(n),t); 

. Thesecond,third,andfourthderivativesineq.(11.1), uxx,uxxx,anduxxxx,are computed with successive calls to dss004, so-called  stagewise differentiation. 

%

% uxx

uxx=dss004(xl,xu,n,ux); 

%

% uxxx

uxxx=dss004(xl,xu,n,uxx); 

%

% uxxxx

uxxxx=dss004(xl,xu,n,uxxx); 

. Equation(11.1)isthenprogrammed. 

%

% PDE

for i=2:n-1

ut(i)=-u(i)*ux(i)-alpha*uxx(i)-beta*uxxx(i)-gamma*uxxxx(i); 

end

ut(1)=0; 

ut(n)=0; 

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC from eq. (11.2) with  t = 0 is programmed in inital 1.m (the IC is programmed in ua 1.m with  t = 0). 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Kuramoto-

% Sivashinsky equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

xl=-10; 

xu= 20; 

n=201; 

dx=(xu-xl)/(n-1); 

%
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% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 11.2: Function inital 1.m for the IC from eq. (11.2) with  t = 0. 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Kuramoto-

% Sivashinsky equation

%

% Parameters shared with other routines

global xl xu x n ncall

. Thegridin x isthendefinedovertheinterval−10≤ x≤20for201points. 

%

% Spatial domain and initial condition

xl=-10; 

xu= 20; 

n=201; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (11.2) with  t = 0. 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (11.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the Kuramoto-

% Sivashinsky equation for comparison with the numerical solution

%

% Model parameters

global alpha beta gamma k

%

% Analytical solution

H=tanh(0.5*k*x-(15/19)*kˆ2*t); 

uanal=(15/19)*k*(11*Hˆ3-9*H+2); 

LISTING 11.3: Function ua 1.m for analytical solution (11.2). 

As noted previously, eq. (11.1) is fourth order in  x  and therefore requires four BCs. Two Dirichlet BCs are available by applying eq. (11.2) at  x = −10, 20. Two more (Neumann) BCs
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are available by differentiating eq. (11.2) with respect to  x (to give eq. (11.3)). This derivative is programmed in uax 1. 

function uax=uax_1(x,t)

%

% Function uax computes the derivative (in x) of the exact solution

% of the Kuramoto-Sivashinsky equation

%

global alpha beta gamma k

%

% Analytical solution

arg=0.5*k*x-(15/19)*kˆ2*t; 

H=tanh(arg); 

Hx=(1-tanh(arg)ˆ2)*0.5*k; 

uax=(15/19)*k*(33*Hˆ2*Hx-9*Hx); 

LISTING 11.4: Function uax 1.m for the analytical derivative (11.3). 

Function uax 1.m is a straightforward implementation of the analytical derivative, 

eq. (11.3). 

The main program, pde 1 main, is essentially the same as pde 1 main of Listing 2.1. 

A selected part of this routine follows. 

. 

. 

. 

%

% Model parameters

global alpha beta gamma k

alpha=1; beta=0; gamma=1; k=(11/19)ˆ0.5; 

%

% Independent variable for ODE integration

t0=0.0; 

tf=10; 

tout=[t0:2:tf]'; 

nout=6; 

ncall=0; 

%

% Initial condition

u0=inital_1(t0); 

. 

. 

. 

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:5:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)
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plot(x,u,'-',x,u_anal,'o')

xlabel('x')

ylabel('u(x,t)')

title('Kuramoto-Sivashinsky equation; solid - numerical; o - analytical')

figure(3)

surf(x,t,u)

shading 'interp', axis 'tight' 

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Kuramoto-Sivashinsky equation'); 

LISTING 11.5: Portion of main program pde 1 main. 

This code consists essentially of two parts. 

. Theproblemparametersaredefinednumericallyandthescalein t  isdefinedas 0 ≤  t ≤ 10 with output displayed at  t = 0, 2, 4, . . . , 10. 

. Thesolutionisplottedin2D(byacalltoplot)and3D(byacalltosurf). 

This main program produces the same three figures and tabulated output as

Chapters 3–10, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in Chapters 3–10 and is therefore not reproduced here. 

Kuramoto–Sivashinsky equation

3.5

3
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1.5

( x,  t) u  1

0.5
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15

20

 x

FIGURE 11.1: Numerical solution to eq. (11.1) (lines) with the analytical solution (eq. (11.2)) superimposed (circles) using five-point FD approximations in dss004 for  t = 0, 2, 4, . . . 10 (left to right). 

[image: Image 14]
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Kuramoto–Sivashinsky equation
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FIGURE 11.2: 3D plot of the numerical solution to eq. (11.1). 

Figure 11.1 indicates good agreement between the analytical and numerical solutions. 

Figure 11.2 is the 3D plot of the numerical solution. The map of the ODE Jacobian matrix, 

Fig. 11.3, reflects the banded structure of the ODEs produced by dss004. 

The tabular analytical and numerical solutions indicate good agreement as displayed in Table 11.1. The computational effort reflected in ncall = 564 is modest. 

1

15

We note in eq. (11.2) that  x  and  t  appear as the linear combination, kx −

 k 2 t

2

19

so that the analytical solution represents a  traveling wave  as reflected in Fig. 11.1. If we consider the  Lagrangian  variable to be  k( x −  vt) where  k  and  v  are the  wavenumber  and wave velocity, respectively, then  k  and  v  follow immediately from the linear combination 1

15

 kx −

 k 2 t. This point was discussed in earlier chapters in which the wave velocity from 2

19

the analytical solution was compared with the wave velocity from the numerical solution (see, for example, Chapter 10, for an example of this comparison). 

In summary, the solution of eq. (11.1) subject to the IC from eq. (11.2) (with  t = 0), two Dirichlet BCs from eq. (11.2) (with  x = −10, 20), and two Neumann BCs from eq. (11.3)

(with  x = −10, 20) is straightforward. Also, eq. (11.1) is nonlinear, yet the programming in pde 1.m is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 
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Jacobian sparsity pattern – nonzeros 3313 (8.200%)
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FIGURE 11.3: Jacobian matrix map of the MOL ODEs for  n = 201. 

Appendix

The  Kuramoto–Sivashinsky  equation describes one of the simplest nonlinear systems that exhibit  turbulence. It has been used to study various reaction-diffusion problems and, in particular, it is used to model the  thermal mechanism of flame propagation  or  combustion waves. Both Gregory Sivashinsky, whilst studying  laminar flame fronts [7], and Yoshiki Kuramoto, whilst studying  diffusion-induced chaos [4], discovered independently the equation now known as the  Kuramoto–Sivashinsky  equation, which is usually presented in a normalized form. This equation models the time evolution of flame-front velocity which is determined by a balance between the quantity of heat released by the combustion reaction and the heat required to preheat the incoming reactants. The

eq. (11.1) with constants α = 1, β = 0, γ = 1 reduces to the form 1 

 ut = −

 u 2 −  uxx −  uxxxx, 

2

 x
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Table 11.1:

Tabular numerical and analytical solutions

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−10.000

0.014276

0.014276

0.000000

0.00

−9.250

0.025224

0.025224

0.000000

0.00

−8.500

0.044520

0.044520

0.000000

0.00

−7.750

0.078424

0.078424

0.000000

0.00

−7.000

0.137674

0.137674

0.000000

. 

. 

. 

. 

. 

. 

0.00

17.000

2.402728

2.402728

0.000000

0.00

17.750

2.402758

2.402758

0.000000

0.00

18.500

2.402775

2.402775

0.000000

0.00

19.250

2.402785

2.402785

0.000000

0.00

20.000

2.402791

2.402791

0.000000

. 

. 

. 

. 

. 

. 

Output for t = 2,4,6,8 removed

. 

. 

. 

. 

. 

. 

t

x

u(it,i)

u anal(it,i)

err(it,i)

10.00

−10.000

0.000002

0.000002

0.000000

10.00

−9.250

−0.000003

0.000003

−0.000006

10.00

−8.500

−0.000018

0.000005

−0.000023

10.00

−7.750

−0.000036

0.000008

−0.000045

10.00

−7.000

−0.000048

0.000015

−0.000063

. 

. 

. 

. 

. 

. 

10.00

17.000

1.805714

1.805901

−0.000187

10.00

17.750

2.052825

2.053003

−0.000178

10.00

18.500

2.200865

2.200996

−0.000131

10.00

19.250

2.287359

2.287410

−0.000050

10.00

20.000

2.337154

2.337154

0.000000

ncall=564

which can be simulated using periodic boundary conditions,  x ∈ [0,  L], to give rich examples of chaotic behavior. The results at later times are extremely sensitive to small changes in initial conditions, and the transition from a smooth solution to chaos makes modeling in the time domain very difficult for extended simulated time periods. However, transforming the problem into the Fourier domain greatly reduces the stiffness of the problem and enables good results to be obtained with little computing effort. For example, see Fig. 11.4. 

[image: Image 15]

“15-ch11-185-196-9780123846525” — 2010/12/10 — 18:36 — page 194 — #10

194

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Kuramoto–Sivashinsky equation
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FIGURE 11.4: Time evolution for the  Kuramoto–Sivashinsky  equation with initial condition  u( x, 0) =

cos( x/16) (1 + sin( x/16)) and  x ∈ [0, 32π]. This image was generated from Matlab code described in the paper by Kassam and Trefethen [3]. 

The Matlab code, kursiv.m, used to generate Fig. 11.4 is based on  spectral methods and uses the  exponential time differencing  scheme ETDRK4 described in detail by Cox and Matthews [2]. A copy of this code is included with the downloads for this book. 

The solution of PDEs by spectral methods is currently an active area of research and can provide outstanding results for some problems. A good general introduction to these methods is given in Trefethen’s monograph [9]. This topic will not be considered further here, and for additional information relating to applications and theory of the Kuramoto–

Sivashinsky equation, readers are referred to [1, 3, 5, 8]. 

The Kuramoto–Sivashinsky equation also admits traveling wave solutions, and these can be found using any one of the  tanh,  exp, and  Riccati  methods described in the main Appendix. We choose the tanh method and the Maple code listed in Listing 11.6 finds 11

solutions, one of which corresponds to the original solution given in eq. (11.2). 

># Kuramoto-Sivashinsky Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):unprotect(gamma); 

>alias(u=u(x,t)):
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>pde1:=diff(u,t)+u*diff(u,x)+alpha*diff(u,x,x)

+beta*diff(u,x,x,x)+gamma*diff(u,x,x,x,x)=0; 

># set parameter values

beta:=0; alpha:=1;gamma:=1; 

>read("tanhMethod.txt"); 

>intFlg:=1: # No integration of U(xi) needed ! 

M:=3; # Set order of approximation

infoLevOut:=0; 

tanhMethod(M,pde1,intFlg,infoLevOut); 

># Animate solution

zz:=rhs(sol[8]);x0:=0; 

animate(zz,x=-10..35, t=0..20, 

numpoints=100,frames=50, axes=framed,labels=["x","u"], 

thickness=3,title="Kuramoto-Sivashinsky Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot of solution

plot3d(zz,x=-10..35,t=0..20, 

axes=framed, grid=[100,100],thickness=0, 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

style=patchnogrid,labels=["x","t","u(x,t)"], 

orientation=[-116,46],title="Kuramoto-Sivashinsky Equation", 

shading=Z, lightmodel=none, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 11.6: Maple code to solve eq. (11.1) using the  tanh  method. 

It is as equally straightforward to find traveling wave solutions by application of either of the Maple procedures expMethod() or riccatiMethod() described in the main Appendix. The  exp  method finds eight solutions, and the  Riccati  method finds 11 × 6 solutions (recall that each solution of the Riccati equation yields six separate traveling wave solutions). They both find solutions that match the original solution of eq. (11.2). 

In order to save space, listings of the Maple code implementations of the exp and Riccati methods will not be included here, but they are available in the downloadable software for this book. 
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Kawahara Equation

The Kawahara equation ([8], p632) is

∂ u

∂ u

∂3 u

∂5 u

(12.1)

∂ +  u

+  a

=  b

 t

∂ x

∂ x 3

∂ x 5

An analytical solution is ([8], p632)

105 a 2

1

r

 a

 u( x,  t) =

+ 2 C 1; 

 z =  kx − (18 bk 5 +  C 1 k) t +  C 2; k =

; 

 ab > 0

(12.2)

169 b  cosh4  z

2

13 b

where  C 1,  C 2 are arbitrary constants. We study this equation to investigate the use of a fifth-order derivative, which is computed using finite differences (FDs) as explained subsequently. This chapter is also an introduction to Chapter 18 pertaining to a PDE

fourth-order in  x  and second-order in  t. 

The Matlab routines closely resemble those of previous chapters. Here, we list a few details pertaining to eqns. (12.1) and (12.2). First, the ODE routine pde 1.m is function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the fifth-

% order Kawahara equation

%

global xl xu x n ncall

%

% Model parameters

global a b k C1 C2

%

% BCs

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% uxxx

uxxx=u3x9p(xl,xu,n,u); 

%

% uxxxxx

uxxxxx=u5x11p(xl,xu,n,u); 

%

% PDE

%

For loop

for i=1:n

ut(i)=-u(i)*ux(i)-a*uxxx(i)+b*uxxxxx(i); 

end
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ut=ut'; 

%

% BCs

ut(1)=0; 

ut(n)=0; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 12.1: Function pde 1.m for eq. (12.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the fifth-

% order Kawahara equation

%

global xl xu x n ncall

%

% Model parameters

global a b k C1 C2

. Sinceeq.(12.1)isfifth-orderin x,itgenerallyrequiresfiveBCs.However,sincethe solution and its derivatives are essentially zero at the boundaries in  x, we will specify only the dependent variable at the boundaries, i.e., Dirichlet BCs. In fact, we will consider a small variation in pde 1.m in which no BCs are programmed, and we will find that the numerical solution is still accurate. This second case will be discussed later. For the first case, we use Dirichlet BCs from eq. (12.1). 

%

% BCs

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

where ua 1.m is the code for eq. (12.2). x(1) and x(n) correspond to  x = −30, 30 and n = 101 as subsequently defined in inital 1.m and passed as global variables to pde 1.m

. Thefirstderivative,ux,isthencomputedbydss004. 

%

% ux

ux=dss004(xl,xu,n,u); 

. Thethirdderivativeineq.(12.1), uxxx,iscomputedbyroutineu3x9p.Thenotation signifies 3x = third derivative, 9p = nine points used in the FD approximation for uxxx. 

The origin of u3x9p is discussed later. 

%

% uxxx

uxxx=u3x9p(xl,xu,n,u); 
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. Similarly,thefifthderivativeineq.(12.1), uxxxxx,iscomputedbyroutineu5x11p.The notation signifies 5x = fifth derivative, 11p = 11 points used in the FD approximation for uxxxxx. The origin of u5x11p is discussed later. 

. Equation(12.1)isthenprogrammed. 

%

% PDE

%

For loop

for i=1:n

ut(i)=-u(i)*ux(i)-a*uxxx(i)+b*uxxxxx(i); 

end

ut=ut'; 

%

% BCs

ut(1)=0; 

ut(n)=0; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Since Dirichlet BCs are used, the derivatives in  t  are set to zero at the boundaries (so that the ODE integrator does not move the boundary values away from their

prescribed values). A transpose is included to meet the requirements of the ODE

integrator ode15s. Finally, the counter for the number of calls to pde 1.m is

incremented. 

The IC from eq. (12.2) with  t = 0 is programmed in inital 1.m. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the fifth-order

% Kawahara equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b k C1 C2

%

% Spatial domain and initial condition

xl=-30; 

xu= 30; 

n=101; 

dx=(xu-xl)/(n-1); 

%

% Spatial grid

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 12.2: Function inital 1.m for IC from eq. (12.2) with  t = 0. 
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We can note the following points about inital 1.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the fifth-order

% Kawahara equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b k C1 C2

. Thegridin x isthendefinedovertheinterval−30≤ x≤30for101points. 

%

% Spatial domain and initial condition

xl=-30; 

xu= 30; 

n=101; 

dx=(xu-xl)/(n-1); 

%

% Spatial grid

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

As the grid in  x  is defined in the for loop, function ua 1 (listed next) is called (for  t = 0) to define the IC from eq. (12.2) with  t = 0. 

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (12.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the fifth-order

% Kawahara equation for comparison with the numerical solution. 

%

global a b k C1 C2

%

% Analytical solution

z=0.5*k*x-(18*b*kˆ5+C1*k)*t+C2; 

uanal=105*aˆ2/(169*b*cosh(z)ˆ4)+2*C1; 

LISTING 12.3: Function ua 1.m for analytical solution (12.2). 

The main program, pde 1 main, is essentially the same as pde 1 main of previous chapters and therefore is not listed here. The parameters of eq. (12.1) are set in pde 1 main and then passed as global variables to the other routines where they are required. 

%

% Model parameters (C3, C5 are the FD coefficients)
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global a b k C1 C2 C3 C5

%

a=1; b=1; C1=1; C2=0; k=(a/(13*b))ˆ0.5; 

We now consider function u3x9p.m, which has a nine-point, centered FD approximation for a third derivative. 

function uxxx=u3x9p(xl,xu,n,u)

%

% Function u3x9p computes the derivative uxxx based on nine points

global ncall C3

%

% For the first call to u3x9p (ncall = 0), compute the FD weighting

% coefficients

%

if(ncall==0)

%

%

Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

%

%

Compute FD approximation for up to and including the mth

%

derivative

m=3; 

%

%

Number of grid points

ng=9; 

nd=ng; 

%

%

Compute weighting coefficients for finite differences

%

over ip points

for ip=1:ng

%

%

Weighting coefficients in array C3

C3(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

%

% Display coefficients for derivatives of orders 0, 1, 2, 3

% for i=1:m+1

%

% Display coefficients for derivative of order 3

i=m+1; 

fprintf('\n\n Numerical Derivative Order: %d',i-1); 

fprintf('\n=============================\n'); 

%

%

Coefficients in u3x9p.m with m = 3, ng = 9

%

C3(:,:,i)*8

C3(5,:,i)*8

% end

%

% Calculation of FD weights complete

end

%
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% uxxx

% Spatial increment

dx=(xu-xl)/(n-1); 

rdx3=1.0/dxˆ3; 

for i=1:n

%

%

At the left end, uxxx = 0

if(i<5)uxxx(i)=0.0; 

%

%

At the right end, uxxx = 0

elseif(i>(n-4))uxxx(i)=0.0; 

%

%

Interior points

else

uxxx(i)=rdx3*... 

(C3(5,1,4)*u(i-4)... 

+C3(5,2,4)*u(i-3)... 

+C3(5,3,4)*u(i-2)... 

+C3(5,4,4)*u(i-1)... 

+C3(5,5,4)*u(i

)... 

+C3(5,6,4)*u(i+1)... 

+C3(5,7,4)*u(i+2)... 

+C3(5,8,4)*u(i+3)... 

+C3(5,9,4)*u(i+4)); 

end

end

LISTING 12.4: Function u3x9p.m for the third derivative uxxx in eq. (12.1). 

We can note the following points about u3x9p.m:

. Thefunctionandsomeglobalparametersarefirstdefined. 

function uxxx=u3x9p(xl,xu,n,u)

%

% Function u3x9p computes the derivative uxxx based on nine points

global ncall C3

. Forthefirstcalltou3x9p.m(withncall=0setinthemainprogram),auniformgridin x of nine equally spaced points is defined. 

%

% For the first call to u3x9p (ncall = 0), compute the FD weighting

% coefficients

%

if(ncall==0)

%

%

Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

The definition of the grid  x  is for the purpose of calculating the FD weighting coefficients only; it is not the grid used in the method of lines (MOL) solution of
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eq. (12.1), which can have any grid spacing (and not necessarily integer spacing as used in x(i)). 

. TheweightingcoefficientsintheFDapproximationarethencomputed.First,the

order of the derivative to be approximated is specified, m=3. Then, the number of grid points in the FD approximation is specified (ng=9). Finally, the weighting coefficients are computed by function weights and placed in array C3. The details of weights will be considered subsequently. 

%

%

Compute FD approximation for up to and including the mth

%

derivative

m=3; 

%

%

Number of grid points

ng=9; 

nd=ng; 

%

%

Compute weighting coefficients for finite differences

%

over ip points

for ip=1:ng

%

%

Weighting coefficients in array C3

C3(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

The for loop steps through the  ng = 9 grid points for which weighting coefficients are computed (at each of the grid points, ip=1,2,...,ng). 

. Anoptionaldisplayofthecoefficientsisincluded(justforourinformation). 

%

% Display coefficients for derivatives of orders 0, 1, 2, 3

% for i=1:m+1

%

% Display coefficients for derivative of order 3

i=m+1; 

fprintf('\n\n Numerical Derivative Order: %d',i-1); 

fprintf('\n=============================\n'); 

%

%

Coefficients in u3x9p.m with m = 3, ng = 9

%

C3(:,:,i)*8

C3(5,:,i)*8

% end

%

% Calculation of FD weights complete

end

We can note the following details about this code:

. weightscomputestheFDweightingcofficientsforthederivativesuptoand

including third order. It also computes the weights for the function to be

differentiated, which are, for example, 0,0,0,0,1,0,0,0,0 at grid point 5. In other words, the fifth coefficient is 1 for the function at the fifth point and 0 elsewhere. 
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Thus, there are four sets of weighting coefficients for the function and its first three derivatives, and the third subscript of C3 is  i = 1, 2, 3, 4. Note that the for loop is commented, and thus only i=m+1=4 corresponding to the third derivative is

displayed. 

. ThefirstandsecondsubscriptsofC3eachrangeover1–9sothat,forexample, 

C3(irow,jcol,4) corresponds to row  irow  for the FD approximation at grid point irow, and column jcol specifies the nine weighting coefficients at grid point irow. 

As noted above, the third index 4 specifies the weighting coefficients for the third derivative. In other words, C3(irow,jcol,4) includes a np x np = 9 x 9 array of FD weighting coefficients for the third derivative; irow=1 corresponds to grid point 1 in the basic grid of nine points, and irow=9 corresponds to grid point 9 in the basic grid of nine points. 

. Thus,usingC3(5,:,i)*8displaysthenineFDweightingcoefficients(using:)at

grid point 5 for the third derivative (since i=4). The multiplication by 8 merely rescales the coefficients to values that are more typical of those reported in the literature. The final end completes the if for the first call to u3x9p.m

(if(ncall==0), so that the weighting coefficients are calculated only once, and then used repeatedly as u3x9p is called). 

. TheFDapproximationofthethirdderivative,uxxx,isthencomputed.First,thegrid

spacing, dx, is computed. Then, the for loop steps through all of the grid points (n=101

set in inital 1.m). 

%

% uxxx

% Spatial increment

dx=(xu-xl)/(n-1); 

rdx3=1.0/dxˆ3; 

for i=1:n

%

%

At the left end, uxxx = 0

if(i<5)uxxx(i)=0.0; 

%

%

At the right end, uxxx = 0

elseif(i>(n-4))uxxx(i)=0.0; 

%

%

Interior points

else

uxxx(i)=rdx3*... 

(C3(5,1,4)*u(i-4)... 

+C3(5,2,4)*u(i-3)... 

+C3(5,3,4)*u(i-2)... 

+C3(5,4,4)*u(i-1)... 

+C3(5,5,4)*u(i

)... 

+C3(5,6,4)*u(i+1)... 

+C3(5,7,4)*u(i+2)... 

+C3(5,8,4)*u(i+3)... 

+C3(5,9,4)*u(i+4)); 

end

end
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We can note the following details about this code:

. Forthefirstfourgridpoints(i<5inthetotalofn=101),thethirdderivativeissetto zero. This does not mean that, in general, the third derivative will be zero or that the weighting coefficients are not set for grid points i=1,2,3,4. Rather, experience has indicated that in the MOL solution of PDEs, numerical distortions can occur at the boundaries (this is discussed later). To minimize any such effects, we set uxxx to zero at the left boundary, which is acceptable if the solution and its derivatives remain at zero at the left boundary (as they do in the case of eq. (12.2)). 

. Similarly,forthelastfourgridpoints(i>(n-4)inthetotalofn=101),thethird

derivative is set to zero. Again, experience has indicated that in the MOL solution of PDEs, numerical distortions can occur at the boundaries. To minimize such effects, we set uxxx to zero at the right boundary, which is acceptable if the solution and its derivatives remain at zero at the left boundary (as they do in the case of eq. (12.2)). 

. Fortheintermediatepointsi = 5toi = n-4,thethirdderivativeiscomputedbya

central FD for the middle grid point (first subscript = 5), using nine weighting coefficients (second subscript = 1–9), for the third deriviative (third subscript = 4). 

. Thetwoendstatementsconcludetheifstatementandtheforloopini. 

The function weights is an implementation of the algorithm by Fornberg [3] for the calculation of weighting coefficients for FD approximations. This remarkable algorithm computes weighting coefficients for FD approximations:

. Ofderivativesofanyorder,e.g.,thirdorderasinu3x9p.m. 

. Basedonanynumberofgridpoints,e.g.,nineasinu3x9p.m.Asthenumberofgrid

points is increased, the order of the FD approximation also increases. One small disadvantage in using more grid points within the MOL integration of PDE is the increase in the ODE Jacobian bandwidth. This is a small price, however, for the improved accuracy of the FD approximation, as the number of grid points is increased. 

In fact, for a given accuracy of the approximation, fewer total grid points are often required as the number of grid points in the approximation is increased. For example, n = 101 could possibly be reduced to achieve a specified accuracy in the numerical MOL PDE solution, as more points are used in the FD approximation. The additional computational effort in using a higher-order FD approximation is generally more than offset by the reduced number of total grid points to achieve a prescribed accuracy. 

. Attheboundaryandnear-boundarypoints.Thisisaccomplishedbyusing

noncentered approximations. 

. Witharbitraryselectionofthegridpoints,thealgorithmcomputesweighting

coefficients for FD approximations of nonuniform grids. This approach is often used in order to concentrate grid points where they are most needed, e.g., where the function to be differentiated varies most rapidly. 

. Soefficientlythatthealgorithmcanbeusedtocomputenewweightingcoefficientsfor

FD approximations during the course of the calculation, such as in the adaptive grid solution of PDEs. 
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The Fornberg algorithm is the centerpiece of much of the reported FD PDE solutions. 

A listing of function weights.m follows without any further explanation. The details of the algorithm can be found in the publications by Fornberg [3]. 

function [c]=weights(z,x,n,nd,m)

%

%

Input Parameters

%

%

z

location where approximations are to be

%

accurate

%

%

n

one less than total number of grid points

%

%

x(1:n+1)

grid point locations

%

%

m

highest derivative for which weights are

%

sought

%

Output Parameter

%

%

c(1:n+1,0:m) weights at grid locations x(1:n+1) for

%

derivatives of order 0:m, found in

%

c(1:n+1,1:m+1)

%

c1 = 1.0; 

c4 = x(1)-z; 

for k=0:m

for j=0:n

c(j+1,k+1) = 0.0; 

end

end

c(1,1) = 1.0; 

for i=1:n

mn = min(i,m); 

c2 = 1.0; 

c5 = c4; 

c4 = x(i+1)-z; 

for j=0:i-1

c3 = x(i+1)-x(j+1); 

c2 = c2*c3; 

if (j==i-1)

for k=mn:-1:1

c(i+1,k+1) = c1*(k*c(i,k)-c5*c(i,k+1))/c2; 

end

c(i+1,1) = -c1*c5*c(i,1)/c2; 

end

for k=mn:-1:1

c(j+1,k+1) = (c4*c(j+1,k+1)-k*c(j+1,k))/c3; 

end

c(j+1,1) = c4*c(j+1,1)/c3; 

end

c1 = c2; 

end

LISTING 12.5: Function weights.m for the FD approximation of derivatives. 
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Function u5x11p.m called in pde 1.m is very similar to u3x9p.m in Listing 12.4. The only essential differences are the use of 5 and 11 in place of 3 and 9, respectively. The calculation of the fifth derivative uxxxxx (third subscript 6 in C5) in u5x11p.m at grid point 6 (first subscript 6 in C5) is

uxxxxx(i)=rdx5*... 

(C5(6,1,6)*u(i-5)... 

+C5(6,2,6)*u(i-4)... 

+C5(6,3,6)*u(i-3)... 

+C5(6,4,6)*u(i-2)... 

+C5(6,5,6)*u(i-1)... 

+C5(6,6,6)*u(i

)... 

+C5(6,7,6)*u(i+1)... 

+C5(6,8,6)*u(i+2)... 

+C5(6,9,6)*u(i+3)... 

+C5(6,10,6)*u(i+4)... 

+C5(6,11,6)*u(i+5)); 

Again, the fifth derivative at grid points  i = 1, 2, 3, 4, 5 and  i =  n − 4,  n − 3,  n − 2,  n − 1,  n  is zeroed to minimize unrealistic effects at the boundaries. 

The main program produces the same three figures and tabulated output as in previous chapters, which are now reviewed. The Jacobian matrix routine jpattern num 1.m is the same as jpattern num 1.m in previous chapters and is therefore not reproduced here. 

Figure 12.1 indicates good agreement between the analytical and numerical solutions. 

The resolution of the traveling pulses can be increased by decreasing the interval in  x  from

−30 ≤  x ≤ 30 to, for example, −10 ≤  x ≤ 20 by inserting a statement like axis([-10 20 2

2.7]); after plot. This does not affect the numerical solution, but only the plotting of the numerical and analytical solutions. Figure 12.2 is a 3D plot of the numerical solution. 

The map of the ODE Jacobian matrix, Fig. 12.3, reflects the banded structure of the ODEs produced by u3x9p and 5x11p. 

The tabular analytical and numerical solutions given in Table 12.1 also reflect the good agreement between these two solutions. The computational effort reflected in ncall =

166 is quite modest. 

We can note the following points about this output (Table 12.1):

. Theweightingcoefficientsforthecenterpoints,  i=5fora9-pointFDapproximation and  i = 6 for an 11-point FD approximation, are zero. In general, this will be the case for a centered approximation of odd-order derivatives (such as 5th, 11th). 

. Theweightingcoefficientsareantisymmetric(ofoppositesign)aroundthecenter

points. This will also be true for centered FD approximations of odd-order derivatives. 

. Thecoefficientssumtozero(thereadermightverifythis).Thisisrequiredinorderto

differentiate a constant function to zero. 

. TheFDapproximationsareexactnotonlyforazeroth-orderpolynomial(constant

function); they are exact for higher-order polynomials as well. Specifically, the nine-point approximation is exact for a polynomial up to and including eighth order (it will differentiate an eighth-order polynomial exactly). Also, the 11-point
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Fifth-order Kawahara equation;  t = 0, 1, 2, 3
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FIGURE 12.1: Numerical solution to eq. (12.1) (lines) with the analytical solution, eq. (12.2), superimposed (circles) using 9- and 11-point approximations in u3x9p.m and u5x11p.m. 

approximation is exact for polynomials up to and including tenth order. These order conditions can be studied numerically using the programs listed in Appendix 1 at the end of this chapter. 

. Theagreementbetweentheanalyticalandnumericalsolutionofapproximatelyfour

figures is acceptable for most applications. In particular, the peak value of the solution of eq. (12.1) (where the solution changes most rapidly in  x) is accurately preserved as demonstrated in Fig. 12.1 and the following selected numerical output from Table 12.1. 

We can note, however, from Table 12.1 that the maximum error in the numerical solution does not occur at the maximum point in the solution. For example, at  t = 3, we have from Table 12.1, 

3.00

6.600

2.621197

2.621265

-0.000069

3.00

7.200

2.613723

2.613835

-0.000113

3.00

7.800

2.589914

2.590046

-0.000132

For these three points, the maximum error is -0.000132, which is approximately twice the error at the maximum of the solution (at x=6.600). However, generally, the error is acceptable (as reflected in Fig. 12.1), and it could be reduced by increasing the number

[image: Image 16]
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Fifth-order Kawahara equation
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FIGURE 12.2: 3D plot of the numerical solution to eq. (12.1). 

of grid points (e.g., n=301 demonstrates substantially smaller errors in the numerical solution). 

We also mentioned previously that BCs are not required for eq. (12.1) since the solution and its derivatives at the boundaries remain essentially at zero. In other words, the IC from

eq. (12.2) at ( t = 0) sets the boundary values of the solution and its derivatives zero, and for subsequent values of  t, the boundary values remain zero. To demonstrate this point (no BCs required), the Dirichlet BCs in pde 1.m can be commented (deactivated) and the execution of pde 1 main.m can be repeated. Abbreviated output analogous to that in Table 12.1

is listed below in Table 12.3. 

To compare the output with and without BCs, a portion of the output for  t = 3 from

Tables 12.1 and 12.3 is listed in Table 12.4. We observe that the two outputs are essentially identical indicating that BCs are not required for eq. (12.1) for the particular solution of

eq. (12.2). 

Of course, this is not a general conclusion for eq. (12.1); BCs would be required if the solution and its derivatives depart from zero near the boundaries. For this case (of significant boundary effects), we can add the following comments:

. ThederivativesattheboundarypointswouldhavetobecalculatedusingtheFD

weighting coefficients available from weights. For example, in the case of u3x9p.m, the
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Jacobian sparsity pattern-nonzeros 946 (9.274%)
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FIGURE 12.3: Jacobian matrix map of the MOL ODEs for  n = 101. 

third derivative uxxx would be calculated at points i=1,2,3,4,n-3,n-2,n-1,n rather than set to zero as in Listing 12.4. 

. Evenwiththederivativecalculatedatallthegridpoints,unexpectedboundaryeffects

might be observed, which require additional refinement of the MOL algorithm and programming in the ODE derivative routine (pde 1.m). We will not go into the details of what may be required but rather refer to where boundary effects in MOL analysis are discussed in detail [9, 11]. 

In summary, the solution of eq. (12.1) subject to the IC from eq. (12.2) (with  t = 0) and without or with two Dirichlet BCs from eq. (12.2) (with  x = −30, 30) is straightforward. Also, 

eq. (12.1) is nonlinear, yet the programming in pde 1.m is straightforward. Consequently, variations in the PDE can easily be made for cases for which an analytical solution might not be available. 

We should also point out that the development of an MOL code for a new PDE problem is not necessarily straightforward. Specifically, 
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Table 12.1:

Abbreviated tabular numerical and analytical solutions

for  n = 101

Numerical Derivative Order: 3 (from u3x9p.m)


=============================

ans =

−0.2333

2.4000

−11.2667

16.2667

−0.0000

−16.2667

11.2667

−2.4000

0.2333

Numerical Derivative Order: 5 (from u5x11p.m)


=============================

ans =

−0.3611

4.2222

−21.7500

52.0000

−53.8333

−0.0000

53.8333

−52.0000

21.7500

−4.2222

0.3611

a = 1.000

b = 1.000

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−30.000

2.000001

2.000001

0.000000

0.00

−29.400

2.000001

2.000001

0.000000

0.00

−28.800

2.000001

2.000001

0.000000

0.00

−28.200

2.000002

2.000002

0.000000

0.00

−27.600

2.000002

2.000002

0.000000

0.00

−27.000

2.000003

2.000003

0.000000

. 

. 

. 

. 

. 

. 

0.00

−1.200

2.587976

2.587976

0.000000

0.00

−0.600

2.612768

2.612768

0.000000

0.00

0.000

2.621302

2.621302

0.000000

0.00

0.600

2.612768

2.612768

0.000000

0.00

1.200

2.587976

2.587976

0.000000

. 

. 

. 

. 

. 

. 

0.00

27.000

2.000003

2.000003

0.000000

0.00

27.600

2.000002

2.000002

0.000000

0.00

28.200

2.000002

2.000002

0.000000

0.00

28.800

2.000001

2.000001

0.000000

0.00

29.400

2.000001

2.000001

0.000000

0.00

30.000

2.000001

2.000001

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

1.00

−30.000

2.000001

2.000000

0.000000

1.00

−29.400

2.000001

2.000000

0.000000

1.00

−28.800

2.000000

2.000000

0.000000

1.00

−28.200

2.000001

2.000000

0.000000

1.00

−27.600

2.000001

2.000001

0.000000

1.00

−27.000

2.000001

2.000001

−0.000000

. 

. 

. 

. 

. 

. 

( Continued )
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Table 12.1:

( Continued)

t

x

u(it,i)

u anal(it,i)

err(it,i)

1.00

1.200

2.597367

2.597334

0.000033

1.00

1.800

2.617241

2.617241

0.000000

1.00

2.400

2.620436

2.620467

−0.000031

1.00

3.000

2.606650

2.606705

−0.000055

1.00

3.600

2.577185

2.577252

−0.000067

. 

. 

. 

. 

. 

. 

1.00

27.000

2.000011

2.000011

0.000000

1.00

27.600

2.000007

2.000008

−0.000000

1.00

28.200

2.000005

2.000005

−0.000000

1.00

28.800

2.000004

2.000004

−0.000000

1.00

29.400

2.000003

2.000003

−0.000000

1.00

30.000

2.000001

2.000002

−0.000001

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

−30.000

2.000001

2.000000

0.000001

2.00

−29.400

2.000001

2.000000

0.000001

2.00

−28.800

2.000001

2.000000

0.000001

2.00

−28.200

2.000001

2.000000

0.000001

2.00

−27.600

2.000000

2.000000

−0.000000

2.00

−27.000

2.000001

2.000000

0.000000

. 

. 

. 

. 

. 

. 

2.00

3.000

2.574920

2.574849

0.000071

2.00

3.600

2.605264

2.605243

0.000021

2.00

4.200

2.620053

2.620082

−0.000029

2.00

4.800

2.617898

2.617970

−0.000072

2.00

5.400

2.599010

2.599108

−0.000099

2.00

6.000

2.565150

2.565257

−0.000108

. 

. 

. 

. 

. 

. 

2.00

27.000

2.000038

2.000036

0.000002

2.00

27.600

2.000025

2.000026

−0.000001

2.00

28.200

2.000017

2.000019

−0.000001

2.00

28.800

2.000012

2.000013

−0.000001

2.00

29.400

2.000008

2.000010

−0.000001

2.00

30.000

2.000001

2.000007

−0.000006

t

x

u(it,i)

u anal(it,i)

err(it,i)

3.00

−30.000

2.000001

2.000000

0.000001

3.00

−29.400

2.000006

2.000000

0.000006

3.00

−28.800

2.000003

2.000000

0.000003
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Table 12.1:

( Continued)

3.00

−28.200

2.000003

2.000000

0.000003

3.00

−27.600

2.000000

2.000000

0.000000

3.00

−27.000

2.000004

2.000000

0.000004

. 

. 

. 

. 

. 

. 

3.00

5.400

2.585907

2.585846

0.000061

3.00

6.000

2.611622

2.611632

−0.000010

3.00

6.600

2.621197

2.621265

−0.000069

3.00

7.200

2.613723

2.613835

−0.000113

3.00

7.800

2.589914

2.590046

−0.000132

. 

. 

. 

. 

. 

. 

3.00

27.000

2.000124

2.000122

0.000002

3.00

27.600

2.000081

2.000088

−0.000007

3.00

28.200

2.000055

2.000063

−0.000008

3.00

28.800

2.000039

2.000045

−0.000006

3.00

29.400

2.000028

2.000032

−0.000005

3.00

30.000

2.000001

2.000023

−0.000023

ncall = 166

Table 12.2:

Peak values of the solution of eq. (12.1)

(from Table 12.1)

peak value

peak value

t

x

(numerical)

(analytical)

error

0.00

0.000

2.621302

2.621302

0.000000

1.00

2.400

2.620436

2.620467

−0.000031

2.00

4.200

2.620053

2.620082

−0.000029

3.00

6.600

2.621197

2.621265

−0.000069

. ItisquitenaturalindevelopingaMOLcodetoincludeallofthePDEderivatives,and

associated ICs and BCs. Typically, there can be a series of such terms of varying complexity. However, initial execution of the code might not proceed as expected. The question then is what caused the failed execution. Unfortunately, in most cases, this is not obvious, even after reviewing the code to correct any programming errors. 

. Toprogresspastthisunsatisfactoryresult,wesuggestan incrementalapproach to code development. For example, in the case of eq. (12.1), we might start with  a =  b = 0

in which case, we have just the  nonlinear advection equation. This PDE has been
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Table 12.3:

Abbreviated tabular numerical and analytical

solutions for  n = 101, no BCs

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−30.000

2.000001

2.000001

0.000000

0.00

−29.400

2.000001

2.000001

0.000000

0.00

−28.800

2.000001

2.000001

0.000000

0.00

−28.200

2.000002

2.000002

0.000000

0.00

−27.600

2.000002

2.000002

0.000000

0.00

−27.000

2.000003

2.000003

0.000000

. 

. 

. 

. 

. 

. 

0.00

−1.200

2.587976

2.587976

0.000000

0.00

−0.600

2.612768

2.612768

0.000000

0.00

0.000

2.621302

2.621302

0.000000

0.00

0.600

2.612768

2.612768

0.000000

0.00

1.200

2.587976

2.587976

0.000000

. 

. 

. 

. 

. 

. 

0.00

27.000

2.000003

2.000003

0.000000

0.00

27.600

2.000002

2.000002

0.000000

0.00

28.200

2.000002

2.000002

0.000000

0.00

28.800

2.000001

2.000001

0.000000

0.00

29.400

2.000001

2.000001

0.000000

0.00

30.000

2.000001

2.000001

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

1.00

−30.000

2.000001

2.000000

0.000000

1.00

−29.400

2.000001

2.000000

0.000001

1.00

−28.800

2.000001

2.000000

0.000000

1.00

−28.200

2.000001

2.000000

0.000000

1.00

−27.600

2.000001

2.000001

0.000000

1.00

−27.000

2.000001

2.000001

−0.000000

. 

. 

. 

. 

. 

. 

1.00

1.200

2.597367

2.597334

0.000033

1.00

1.800

2.617241

2.617241

0.000000

1.00

2.400

2.620436

2.620467

−0.000031

1.00

3.000

2.606650

2.606705

−0.000055

1.00

3.600

2.577185

2.577252

−0.000067

. 

. 

. 

. 

. 

. 

1.00

27.000

2.000011

2.000011

0.000001

1.00

27.600

2.000008

2.000008

0.000000

1.00

28.200

2.000005

2.000005

−0.000000
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Table 12.3:

( Continued)

1.00

28.800

2.000003

2.000004

−0.000000

1.00

29.400

2.000003

2.000003

−0.000000

1.00

30.000

2.000001

2.000002

−0.000001

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

−30.000

2.000001

2.000000

0.000001

2.00

−29.400

2.000001

2.000000

0.000001

2.00

−28.800

2.000001

2.000000

0.000001

2.00

−28.200

2.000001

2.000000

0.000001

2.00

−27.600

2.000000

2.000000

0.000000

. 

. 

. 

. 

. 

. 

2.00

3.000

2.574920

2.574849

0.000071

2.00

3.600

2.605264

2.605243

0.000021

2.00

4.200

2.620053

2.620082

−0.000029

2.00

4.800

2.617898

2.617970

−0.000072

2.00

5.400

2.599010

2.599108

−0.000099

2.00

6.000

2.565150

2.565257

−0.000107

. 

. 

. 

. 

. 

. 

2.00

27.000

2.000039

2.000036

0.000003

2.00

27.600

2.000029

2.000026

0.000003

2.00

28.200

2.000021

2.000019

0.000002

2.00

28.800

2.000013

2.000013

−0.000000

2.00

29.400

2.000009

2.000010

−0.000000

2.00

30.000

2.000001

2.000007

−0.000006

t

x

u(it,i)

u anal(it,i)

err(it,i)

3.00

−30.000

2.000001

2.000000

0.000001

3.00

−29.400

2.000007

2.000000

0.000007

3.00

−28.800

2.000004

2.000000

0.000004

3.00

−28.200

2.000003

2.000000

0.000003

3.00

−27.600

2.000001

2.000000

0.000001

3.00

−27.000

2.000004

2.000000

0.000004

. 

. 

. 

. 

. 

. 

3.00

5.400

2.585907

2.585846

0.000061

3.00

6.000

2.611622

2.611632

−0.000009

3.00

6.600

2.621197

2.621265

−0.000069

3.00

7.200

2.613722

2.613835

−0.000113

3.00

7.800

2.589914

2.590046

−0.000133

. 

. 

. 

. 

. 

. 

( Continued )
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Table 12.3:

( Continued)

t

x

u(it,i)

u anal(it,i)

err(it,i)

3.00

27.000

2.000130

2.000122

0.000008

3.00

27.600

2.000097

2.000088

0.000009

3.00

28.200

2.000070

2.000063

0.000007

3.00

28.800

2.000045

2.000045

0.000000

3.00

29.400

2.000034

2.000032

0.000002

3.00

30.000

2.000001

2.000023

−0.000023

ncall = 162

Table 12.4:

Comparison of the tabular output for  n = 101, with and

without BCs in pde 1.m

With two Dirichlet BCs in pde 1 (from Table 12.2)

3.00

5.400

2.585907

2.585846

0.000061

3.00

6.000

2.611622

2.611632

−0.000010

3.00

6.600

2.621197

2.621265

−0.000069

3.00

7.200

2.613723

2.613835

−0.000113

3.00

7.800

2.589914

2.590046

−0.000132

Without BCs in pde 1.m (from Table 12.3)

3.00

5.400

2.585907

2.585846

0.000061

3.00

6.000

2.611622

2.611632

−0.000009

3.00

6.600

2.621197

2.621265

−0.000069

3.00

7.200

2.613722

2.613835

−0.000113

3.00

7.800

2.589914

2.590046

−0.000133

thoroughly studied (as discussed in Chapter 2), and we know that solutions can be computed. Of course, the solutions are not what we require (they are not for eq. (12.1)), 

but this is a start. 

. Then,asolutionmightbeattemptedwith“small”(nonzero) a and b=0.Inother words, this will be a small departure from the case of the nonlinear advection equation. If this is successful, then  a  might be increased (incrementally) to its final (desired) value. 

. Ifsuccessincomputinganumericalsolutioncontinues,then b mightbechangedtoa

“small” (nonzero) value and increased (assuming continuing success) to its desired value. 

. Atsomepointalongthisincrementaldevelopment,thecodemightfail,butatleast,we

will know the latest change that produced the failure and therefore have some

indication of the source of the problem (such as the last change that was made). 
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. Inthecaseofeq.(12.1), experiencehasindicatedthattheinclusionofhigher-order spatial derivatives often increases the likelihood of a computational failure and therefore including the higher-order derivative incrementally (by increasing  b) can reveal a sensitivity that must then somehow be remedied. 

A way to view this incremental approach is to consider it as a form of  continuation  in which the solution to the initial problem such as the nonlinear advection equation is continued (or extended) to the solution of interest (for eq. (12.1)) by small parameter changes (slowly increasing  a  and  b). Experience has demonstrated that this form of continuation can often proceed from a starting problem to the final problem of interest (rather than attempting the final problem at the beginning). This idea can also be applied to systems of PDEs, e.g., start with one PDE with a known solution (and use constant solutions for the other PDEs), then add a second PDE, etc. 

The preceding discussion of an incremental approach is general but admittedly also rather vague. The chance of success of this approach is clearly going to depend on the problem, but it is offered as a way to gain some insight into why a prototype MOL code fails and to suggest what alternative approaches might lead to a successful code development. 

Clearly, this process is not necessarily straightforward with a priori assurance of success. 

Appendix 1

In the preceding discussion, we briefly considered the application of u3x9p.m and u5x11p.m to the differentiation of polynomials. Here, we illustrate this process by differentiation of some polynomials. For this purpose, the following main program computes a third derivative of polynomials of various orders, starting with second-, third-, and fourth-order polynomials. 

clear all

clc

%

% Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

%

% Compute FD approximation for up to and including the mth

% derivative

m=3; 

%

% Number of grid points

ng=9; 

nd=ng; 

%

% Compute weighting coefficients for finite differences

% over ip points

for ip=1:ng

%
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%

Weighting coefficients in array C3

C3(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

% size(C3)

%

% Display coefficients for derivative of order 3

% i=m+1; 

% fprintf('\n\n Numerical Derivative Order: %d',i-1); 

% fprintf('\n=============================\n'); 

%

% Coefficients with m = 3, ng = 9

% C3(:,:,4)

%

% Grid in x

xu=1; xl=0; dx=(xu-xl)/(ng-1); rdx3=1.0/dxˆ3; 

% xu=2; xl=0; dx=(xu-xl)/(ng-1); rdx3=1.0/dxˆ3; 

%

% Second order polynomial

a=ones(1,3); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:3

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p2(i)=term; 

end

%

% Differentiate second order polynomial

fprintf('\n Third derivative of second order polynomial\n'); 

fprintf(' irow

x(irow)

p2(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p2(icol); 

end

uxxxe=0; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p2(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

%

% Third order polynomial

a=ones(1,4); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:4

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p3(i)=term; 

end

%

% Differentiate third order polynomial
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fprintf('\n Third derivative of third order polynomial\n'); 

fprintf(' irow

x(irow)

p3(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p3(icol); 

end

uxxxe=3*2*1; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p3(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

%

% Fourth order polynomial

a=ones(1,5); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:5

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p4(i)=term; 

end

%

% Differentiate fourth order polynomial

fprintf('\n Third derivative of fourth order polynomial\n'); 

fprintf(' irow

x(irow)

p4(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p4(icol); 

end

uxxxe=3*2*1+4*3*2*x(irow); 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p4(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

LISTING 12.6: Main program u3x poly.m for the third-order derivative of polynomials of varying order. 

We can note the following points about u3x poly.m:

. Afterclearingfiles,auniformgridofninepointsisdefined. 

clear all

clc

%

% Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

. Theinputparameterstoroutineweightsaredefinednumerically. 

%

% Compute FD approximation for up to and including the mth
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% derivative

m=3; 

%

% Number of grid points

ng=9; 

nd=ng; 

. TheFDweightingcoefficientsarecomputedbyweights.Notethattheoutput

statements for C3 are deactivated (commented) to conserve space in the output. If they are activated (uncommented), they will display the 9 × 9 array of FD coefficients. 

%

% Compute weighting coefficients for finite differences

% over ip points

for ip=1:ng

%

%

Weighting coefficients in array C3

C3(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

% size(C3)

%

% Display coefficients for derivative of order 3

% i=m+1; 

% fprintf('\n\n Numerical Derivative Order: %d',i-1); 

% fprintf('\n=============================\n'); 

%

% Coefficients with m = 3, ng = 9

% C3(:,:,4)

. Asecond-orderpolynomial,  p 2( x), 

 p 2( x) =  a 0 +  a 1 x +  a 2 x 2

(12.3)

is defined (p2(i)). Note that Matlab does not permit a zero subscript for use in the first polynomial coefficient,  a 0. Also, the three polynomial coefficients are set to one with the Matlab ones utility, but the conclusions to follow apply to any second-order polynomial. 

%

% Grid in x

xu=1; xl=0; dx=(xu-xl)/(ng-1); rdx3=1.0/dxˆ3; 

% xu=2; xl=0; dx=(xu-xl)/(ng-1); rdx3=1.0/dxˆ3; 

%

% Second order polynomial

a=ones(1,3); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:3

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p2(i)=term; 

end
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. Thesecond-orderpolynomialisthendifferentiatedbymultiplicationbythematrixof

FD weighting coefficients, C3 (to produce the third-order derivative uxxx). 

%

% Differentiate second order polynomial

fprintf('\n Third derivative of second order polynomial\n'); 

fprintf(' irow

x(irow)

p2(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p2(icol); 

end

uxxxe=0; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p2(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

The exact third-order derivative, uxxxe, is also set (the third-order derivative of a second-order polynomial is zero). The exact and numerical third derivatives are then displayed for comparison. The output follows. 

Third derivative of second order polynomial

irow

x(irow)

p2(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

0.00000

0.00000

2

0.125

1.14063

0.00000

0.00000

3

0.250

1.31250

0.00000

0.00000

4

0.375

1.51563

0.00000

0.00000

5

0.500

1.75000

-0.00000

0.00000

6

0.625

2.01563

-0.00000

0.00000

7

0.750

2.31250

0.00000

0.00000

8

0.875

2.64063

-0.00000

0.00000

9

1.000

3.00000

-0.00000

0.00000

The exact and numerical third-order derivatives are in agreement. 

. Thethirdderivativeofathird-orderpolynomial,p3(i),isthenprogrammedinthe

same way as for a second-order polynomial. 

%

% Third order polynomial

a=ones(1,4); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:4

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p3(i)=term; 

end

%

% Differentiate third order polynomial

fprintf('\n Third derivative of third order polynomial\n'); 

fprintf(' irow

x(irow)

p3(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 
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for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p3(icol); 

end

uxxxe=3*2*1; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p3(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

The output from this code is

Third derivative of third order polynomial

irow

x(irow)

p3(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

6.00000

6.00000

2

0.125

1.14258

6.00000

6.00000

3

0.250

1.32813

6.00000

6.00000

4

0.375

1.56836

6.00000

6.00000

5

0.500

1.87500

6.00000

6.00000

6

0.625

2.25977

6.00000

6.00000

7

0.750

2.73438

6.00000

6.00000

8

0.875

3.31055

6.00000

6.00000

9

1.000

4.00000

6.00000

6.00000

As expected, the numerical and exact derivatives agree (the third derivative of a third-order polynomial is (3)(2)(1) a 3 and in this case,  a 3 = 1). 

. Thethirdderivativeofafourth-orderpolynomial,p4(i),isthenprogrammedinthe

same way as for the second- and third-order polynomials. 

%

% Fourth order polynomial

a=ones(1,5); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:5

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p4(i)=term; 

end

%

% Differentiate fourth order polynomial

fprintf('\n Third derivative of fourth order polynomial\n'); 

fprintf(' irow

x(irow)

p4(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p4(icol); 

end

uxxxe=3*2*1+4*3*2*x(irow); 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p4(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 
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The output from this code is

Third derivative of fourth order polynomial

irow

x(irow)

p4(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

6.00000

6.00000

2

0.125

1.14282

9.00000

9.00000

3

0.250

1.33203

12.00000

12.00000

4

0.375

1.58813

15.00000

15.00000

5

0.500

1.93750

18.00000

18.00000

6

0.625

2.41235

21.00000

21.00000

7

0.750

3.05078

24.00000

24.00000

8

0.875

3.89673

27.00000

27.00000

9

1.000

5.00000

30.00000

30.00000

The numerical and exact derivatives agree (the third derivative of a fourth-order polynomial is a linear function in  x, that is, (3)(2)(1) a 3+ (4)(3)(2) a 4 x  and in this case, a 4 = 1,  a 4 = 1). 

The preceding results imply that the numerical third derivative is exact for polynomials up to fourth order. In fact, it is exact for polynomials up to eighth order. This is demonstrated by the following extensions to the preceding code. The third derivative of a seventh-order polynomial, p7(i), is computed as

%

% Seventh order polynomial

a=ones(1,8); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:8

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p7(i)=term; 

end

%

% Differentiate seventh order polynomial

fprintf('\n Third order derivative of seventh order polynomial\n'); 

fprintf(' irow

x(irow)

p7(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p7(icol); 

end

uxxxe=3*2*1+4*3*2*x(irow)

+5*4*3*x(irow)ˆ2 ... 

+6*5*4*x(irow)ˆ3+7*6*5*x(irow)ˆ4; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p7(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 
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The output from this code is

Third order derivative of seventh order polynomial

irow

x(irow)

p7(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

6.00000

6.00000

2

0.125

1.14286

10.22314

10.22314

3

0.250

1.33331

18.44531

18.44531

4

0.375

1.59937

33.91846

33.91846

5

0.500

1.99219

61.12500

61.12500

6

0.625

2.60458

105.77783

105.77783

7

0.750

3.59955

174.82031

174.82031

8

0.875

5.25113

276.42627

276.42627

9

1.000

8.00000

420.00000

420.00000

so that the numerical and exact derivatives agree. 

The third derivative of an eighth-order polynomial, p8(i), is computed as

%

% Eighth order polynomial

a=ones(1,9); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:9

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p8(i)=term; 

end

%

% Differentiate eighth order polynomial

fprintf('\n Third order derivative of eighth order polynomial\n'); 

fprintf(' irow

x(irow)

p8(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p8(icol); 

end

uxxxe=3*2*1+4*3*2*x(irow)

+5*4*3*x(irow)ˆ2 ... 

+6*5*4*x(irow)ˆ3+7*6*5*x(irow)ˆ4 ... 

+8*7*6*x(irow)ˆ5; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p8(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

The output from this code is

Third order derivative of eighth order polynomial

irow

x(irow)

p8(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

6.00000

6.00000

2

0.125

1.14286

10.23340

10.23340

3

0.250

1.33333

18.77344

18.77344

4

0.375

1.59977

36.41016

36.41016

5

0.500

1.99609

71.62500

71.62500
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6

0.625

2.62786

137.82129

137.82129

7

0.750

3.69966

254.55469

254.55469

8

0.875

5.59474

448.76367

448.76367

9

1.000

9.00000

756.00000

756.00000

so that the numerical and exact derivatives agree. 

Finally, the third derivative of a ninth-order polynomial, p9(i), is computed as

%

% Ninth order polynomial

a=ones(1,10); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:10

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p9(i)=term; 

end

%

% Differentiate ninth order polynomial

fprintf('\n Third order derivative of ninth order polynomial\n'); 

fprintf(' irow

x(irow)

p9(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p9(icol); 

end

uxxxe=3*2*1+4*3*2*x(irow)

+5*4*3*x(irow)ˆ2 ... 

+6*5*4*x(irow)ˆ3+7*6*5*x(irow)ˆ4 ... 

+8*7*6*x(irow)ˆ5+9*8*7*x(irow)ˆ6; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p9(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

The output from this code is

Third order derivative of ninth order polynomial

irow

x(irow)

p9(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

3.29636

6.00000

2

0.125

1.14286

10.23679

10.23532

3

0.250

1.33333

18.92679

18.89648

4

0.375

1.59991

37.79013

37.81174

5

0.500

1.99805

79.51877

79.50000

6

0.625

2.64241

167.84042

167.86203

7

0.750

3.77475

344.28616

344.25586

8

0.875

5.89540

674.95798

674.95651

9

1.000

10.00000

1257.29636

1260.00000

so that the numerical and exact derivatives do not agree. The preceding results imply that the third-order FD differentiation is exact for polynomials up to and including eighth order. 
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Before we go on to consider some additional cases, we first consider the operation of the nested for loops that perform the numerical differentiation through the use of C3. For example, the third-order differentiation of a third-order polynomial was programmed as

%


% Differentiate third order polynomial

fprintf('\n Third derivative of third order polynomial\n'); 

fprintf(' irow

x(irow)

p3(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*p3(icol); 

end

uxxxe=3*2*1; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p3(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

Basically, the inner for loop on icol produces one row from a matrix multiplication between the vector p3(icol) and the matrix C3(irow,icol,4). The outer for loop on irow then produces the nine rows (ng=9) of the matrix–vector product. In other words, the two nested for loops produce the following matrix equation (for nine points). 



 d 3 p



3( x 0)



 dx 3











 C 3(1, 1, 4) p 3( x 0) +  C 3(1, 2, 4) p 3( x 1)

· · ·

+  C 3(1, 9, 4) p 3( x 8)















 d 3 p 3( x 1) 















 dx 3



 C 3(2, 1, 4) p 3( x 0) +  C 3(2, 2, 4) p 3( x 1)

· · ·

+  C 3(2, 9, 4) p 3( x 8) 











.. 





. . 





. 

 = 

. 



(12.4)











 d 3 p









3( x 7) 

 C 3(8, 1, 4) p 3( x 0) +  C 3(8, 2, 4) p 3( x 1)

· · ·

+  C 3(8, 9, 4) p 3( x 8) 











 dx 3



















 C





3(9, 1, 4) p 3( x 0) +  C 3(9, 2, 4) p 3( x 1)

· · ·

+  C 3(9, 9, 4) p 3( x 8)



 d 3 p 3( x 8) 

 dx 3

Note that the use of the third index as 4 in C3(irow,jcol,4) corresponds to the third derivative, since the index 1 corresponds to the function  p 3( x), and the indices 2, 3, and 4

correspond to the first-, second-, and third-order derivatives, respectively, as explained previously. 

Also, we can easily look at the FD weighting coefficients (by activating the line C3(:,:,4) in the preceding code). The result is the 9 × 9 matrix, which is listed below. 

-10.0125

58.1667 -152.9417

239.1000 -242.8333

163.0333

-70.1250

17.5667

-1.9542

-1.9542

7.5750

-12.1833

11.2083

-7.1250

3.3917

-1.1167

0.2250

-0.0208

-0.0208

-1.7667

6.8250

-10.4333

8.5833

-4.5000

1.6417

-0.3667

0.0375

0.0375

-0.3583

-0.4167

3.6750

-5.7083

3.8583

-1.3500

0.2917

-0.0292

-0.0292

0.3000

-1.4083

2.0333

-0.0000

-2.0333

1.4083

-0.3000

0.0292
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0.0292

-0.2917

1.3500

-3.8583

5.7083

-3.6750

0.4167

0.3583

-0.0375

-0.0375

0.3667

-1.6417

4.5000

-8.5833

10.4333

-6.8250

1.7667

0.0208

0.0208

-0.2250

1.1167

-3.3917

7.1250

-11.2083

12.1833

-7.5750

1.9542

1.9542

-17.5667

70.1250 -163.0333

242.8333 -239.1000

152.9417

-58.1667

10.0125

The fifth row is used in function u3xp9.m of Listing 12.4 through the code uxxx(i)=rdx3*... 

(C3(5,1,4)*u(i-4)... 

+C3(5,2,4)*u(i-3)... 

+C3(5,3,4)*u(i-2)... 

+C3(5,4,4)*u(i-1)... 

+C3(5,5,4)*u(i

)... 

+C3(5,6,4)*u(i+1)... 

+C3(5,7,4)*u(i+2)... 

+C3(5,8,4)*u(i+3)... 

+C3(5,9,4)*u(i+4)); 

so that, for example, C3(5,1,4) = -0.0292, C3(5,5,4) = 0, C3(5,9,4) = 0.0292. 

The first to fourth rows and sixth to ninth are not used in u3x9p.m, as explained previously (the derivative uxxx is set to zero). 

The above 9 × 9 matrix used in the matrix–vector multiplication to produce the ninepoint FD approximations is an example of a  differentiation matrix. The elements of a differentiation matrix can be selected to produce FD approximations of varying orders for derivatives of varying orders, including approximations for boundary conditions [4, 10]. 

The FD approximations over nine points are actually eighth-order correct, so they will compute the numerical eighth-order derivative of an eighth-order polynomial exactly (and we demonstrated previously that they compute a third-order derivative of an eighth-order polynomial exactly). We can demonstrate this conclusion (the FDs are eighth-order correct) by executing the preceding code for the eighth-order derivative of a seventh-, eighth-, and ninth-order polynomial. This requires an easy modification of the preceding code. 

clear all

clc

%

% Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

%

% Compute FD approximation for up to and including the mth

% derivative

m=8; 

%

% Number of grid points

ng=9; 

nd=ng; 

%

% Compute weighting coefficients for finite differences

% over ip points
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for ip=1:ng

%

%

Weighting coefficients in array C8

C8(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

% size(C8)

%

% Display coefficients for derivative of order 8

% i=m+1; 

% fprintf('\n\n Numerical Derivative Order: %d',i-1); 

% fprintf('\n=============================\n'); 

%

% Coefficients with m = 8, ng = 9

% C8(:,:,9)

%

% Grid in x

xu=1; xl=0; dx=(xu-xl)/(ng-1); rdx8=1.0/dxˆ8; 

%

% Seventh order polynomial

a=ones(1,8); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:8

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p7(i)=term; 

end

%

% Differentiate seventh order polynomial

fprintf('\n Eighth order derivative of seventh order polynomial\n'); 

fprintf(' irow

x(irow)

p7(irow)

u8x(irow)

u8xe(irow)'); 

for irow=1:ng

u8x=0; 

for icol=1:ng

u8x=u8x+rdx8*C8(irow,icol,9)*p7(icol); 

end

u8xe=0; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p7(irow),u8x,u8xe); 

end

fprintf('\n\n'); 

%

% Eighth order polynomial

a=ones(1,9); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:9

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p8(i)=term; 

end

%
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% Differentiate eighth order polynomial

fprintf('\n Eighth order derivative of eighth order polynomial\n'); 

fprintf(' irow

x(irow)

p3(irow)

u8x(irow)

u8xe(irow)'); 

for irow=1:ng

u8x=0; 

for icol=1:ng

u8x=u8x+rdx8*C8(irow,icol,9)*p8(icol); 

end

u8xe=8*7*6*5*4*3*2*1; 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p8(irow),u8x,u8xe); 

end

fprintf('\n\n'); 

%

% Ninth order polynomial

a=ones(1,10); 

for i=1:ng

x(i)=(i-1)*dx; 

term=0; 

for ip=1:10

term=term+a(ip)*x(i)ˆ(ip-1); 

end

p9(i)=term; 

end

%

% Differentiate ninth order polynomial

fprintf('\n Eighth order derivative of ninth order polynomial\n'); 

fprintf(' irow

x(irow)

p9(irow)

u8x(irow)

u8xe(irow)'); 

for irow=1:ng

u8x=0; 

for icol=1:ng

u8x=u8x+rdx8*C8(irow,icol,9)*p9(icol); 

end

u8xe=8*7*6*5*4*3*2*1+9*8*7*6*5*4*3*2*x(irow); 

fprintf('\n %4d%11.3f%15.5f%16.5f%14.5f',... 

irow,x(irow),p9(irow),u8x,u8xe); 

end

fprintf('\n\n'); 

The numerical output from this code is

Eighth order derivative of seventh order polynomial

irow

x(irow)

p7(irow)

u8x(irow)

u8xe(irow)

1

0.000

1.00000

0.00000

0.00000

2

0.125

1.14286

0.00000

0.00000

3

0.250

1.33331

0.00000

0.00000

4

0.375

1.59937

0.00000

0.00000

5

0.500

1.99219

0.00000

0.00000

6

0.625

2.60458

0.00000

0.00000

7

0.750

3.59955

0.00000

0.00000

8

0.875

5.25113

0.00000

0.00000

9

1.000

8.00000

0.00000

0.00000

“16-ch12-197-238-9780123846525” — 2010/12/10 — 17:23 — page 230 — #34

230

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Eighth order derivative of eighth order polynomial

irow

x(irow)

p3(irow)

u8x(irow)

u8xe(irow)

1

0.000

1.00000

40320.00000

40320.00000

2

0.125

1.14286

40320.00000

40320.00000

3

0.250

1.33333

40320.00000

40320.00000

4

0.375

1.59977

40320.00000

40320.00000

5

0.500

1.99609

40320.00000

40320.00000

6

0.625

2.62786

40320.00000

40320.00000

7

0.750

3.69966

40320.00000

40320.00000

8

0.875

5.59474

40320.00000

40320.00000

9

1.000

9.00000

40320.00000

40320.00000

Eighth order derivative of ninth order polynomial

irow

x(irow)

p9(irow)

u8x(irow)

u8xe(irow)

1

0.000

1.00000

221760.00000

40320.00000

2

0.125

1.14286

221760.00000

85680.00000

3

0.250

1.33333

221760.00000

131040.00000

4

0.375

1.59991

221760.00000

176400.00000

5

0.500

1.99805

221760.00000

221760.00000

6

0.625

2.64241

221760.00000

267120.00000

7

0.750

3.77475

221760.00000

312480.00000

8

0.875

5.89540

221760.00000

357840.00000

9

1.000

10.00000

221760.00000

403200.00000

This output implies the nine-point, eighth-order FD differentiation is eighth-order correct, i.e., exact for polynomials up to and including eighth order. 

We could perform a similar analysis for the fifth-order FD differentiation in u5x11p.m and would come to the conclusion that the 11-point, fifth-order differentiation is tenth order correct, i.e., exact for polynomials up to and including tenth order, and also, the 11-point, tenth-order FD differentiation is tenth-order correct. 

Finally, the discussion to this point has been entirely about the order (accuracy) of FD

differentiation applied to polynomials. However, PDEs in general do not have polynomials as solutions (consider eq. (12.2)). We, therefore, end the discussion with a brief consideration of the accuracy of FD differentiation when applied to nonpolynomial functions. For example, if we consider the function

 f ( x) = e x

(12.5)

The nine-point, FD third derivative of this function is programmed as follows. 

clear all

clc

%

% Default points, equally spaced grid

for i=1:9

x(i)=i-1; 

end

%

% Compute FD approximation for up to and including the mth
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% derivative

m=3; 

%

% Number of grid points

ng=9; 

nd=ng; 

%

% Compute weighting coefficients for finite differences

% over ip points

for ip=1:ng

%

%

Weighting coefficients in array C3

C3(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

% size(C3)

%

% Display coefficients for derivative of order 3

% i=m+1; 

% fprintf('\n\n Numerical Derivative Order: %d',i-1); 

% fprintf('\n=============================\n'); 

%

% Coefficients with m = 3, ng = 9

% C3(:,:,4)

%

% Grid in x

xu=1; xl=0; dx=(xu-xl)/(ng-1); rdx3=1.0/dxˆ3; 

%

% Exponential

for i=1:ng

x(i)=(i-1)*dx; 

expx(i)=exp(x(i)); 

end

%

% Differentiate exponential

fprintf('\n Exponential\n'); 

fprintf(' irow

x(irow)

exp(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*expx(icol); 

end

uxxxe=expx(irow); 

fprintf('\n %4d%11.3f%16.5f%16.5f%14.5f',... 

irow,x(irow),expx(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

LISTING 12.7: Main program u3x exp.m for the third-order derivative of an exponential. 

We can note the following details about this code:

. ThefirstpartuptothecalltoweightstocomputetheFDcoefficientsisthesameasin

u3x poly.m in Listing 12.6. 
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. Thetestfunctionofeq.(12.5)isprogrammedanddifferentiatedas

%

% Exponential

for i=1:ng

x(i)=(i-1)*dx; 

expx(i)=exp(x(i)); 

end

%

% Differentiate exponential

fprintf('\n Exponential\n'); 

fprintf(' irow

x(irow)

exp(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*expx(icol); 

end

uxxxe=expx(irow); 

fprintf('\n %4d%11.3f%16.5f%16.5f%14.5f',... 

irow,x(irow),expx(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

The output from this code is

Exponential

irow

x(irow)

exp(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

0.99999

1.00000

2

0.125

1.13315

1.13315

1.13315

3

0.250

1.28403

1.28403

1.28403

4

0.375

1.45499

1.45499

1.45499

5

0.500

1.64872

1.64872

1.64872

6

0.625

1.86825

1.86825

1.86825

7

0.750

2.11700

2.11700

2.11700

8

0.875

2.39888

2.39888

2.39888

9

1.000

2.71828

2.71827

2.71828

. TheseresultscouldleadustotheconclusionthattheFDdifferentiationisexactfor

exponential functions. This is not correct, however. One way to explore this point is to consider the exponential function to be a polynomial of infinite order through its Taylor series

e x = 1 +  x/1! +  x 2/2! + · · ·

(12.6)

Since the preceding discussion indicated that FD differentiation is exact only up to a given polynomial of finite order, we could conclude that FD differentiation of the exponential function is not exact. This is a correct conclusion, even though the previous numerical output suggests otherwise. Rather, the numerical output is

explained by realizing the exponential function of eq. (12.5) has a small enough variation in  x  that the FD differentiation appears to be exact, but if more figures were displayed, differences between the numerical (FD) and exact derivatives would be
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observed (note the difference in the numerical and exact derivatives for

x(irow)=1.000). 

. Toexplorethispossibleexplanation,weconsidertheexponentialfunction

 f ( x) = e ax

(12.7)

then select a to give the exponential function a greater variation in  x. For this purpose, we take a=5 in the following code (at the end of the u3x exp.m in Listing 12.7)

%

% Exponential

a=5; 

for i=1:ng

x(i)=(i-1)*dx; 

expx(i)=exp(a*x(i)); 

end

%

% Differentiate exponential

fprintf('\n Exponential\n'); 

fprintf(' irow

x(irow)

exp(irow)

uxxx(irow)

uxxxe(irow)'); 

for irow=1:ng

uxxx=0; 

for icol=1:ng

uxxx=uxxx+rdx3*C3(irow,icol,4)*expx(icol); 

end

uxxxe=aˆ3*expx(irow); 

fprintf('\n %4d%11.3f%16.5f%16.5f%14.5f',... 

irow,x(irow),expx(irow),uxxx,uxxxe); 

end

fprintf('\n\n'); 

Now the exact derivative, uxxxe=a3*expx(irow), also has a larger variation in  x  than for a=1. 

The output from this code is

Exponential

irow

x(irow)

exp(irow)

uxxx(irow)

uxxxe(irow)

1

0.000

1.00000

-25.43268

125.00000

2

0.125

1.86825

233.03952

233.53074

3

0.250

3.49034

438.36612

436.29287

4

0.375

6.52082

813.59196

815.10239

5

0.500

12.18249

1524.17727

1522.81175

6

0.625

22.75990

2843.35065

2844.98689

7

0.750

42.52108

5317.46213

5315.13525

8

0.875

79.43984

9931.33615

9929.97994

9

1.000

148.41316

18273.62459

18551.64489

Clearly, the numerical and exact derivatives do not agree. This result provides an example indicating that FD differentiation is generally not exact. The fact that it is exact for polynomials of limited order is to be expected when we realize that the FD

approximations are based on polynomials. In the case of the routine weights, a Lagrange interpolation polynomial was used by Fornberg [3]. This suggests that an
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increase in the number of points on which the FD approximation is based will increase the order of the approximation (since a higher-order polynomial will be the basis for the FD approximation). 

In summary, the intent of this discussion in Appendix 1 is to elaborate on the FD

third-derivative approximations in u3xp9.m and the FD fifth-derivative approximations

∂3 u

∂5 u

in u5x11p.m used to calculate the third and fifth derivatives, 

and

in eq. (12.1). 

∂ x 3

∂ x 5

Specifically, we have considered the accuracy of the approximations in these two routines in terms of their order, which is relative to polynomials, e.g., the nine-point, third derivative FDs in u3xp9.m are eighth-order correct; that is, they differentiate eighth-order polynomials exactly. 

However, approximations for derivatives do not have to be based on polynomials, and other approaches to derivative approximations such as spectral methods have been extensively developed and used. Thus, we have presented only one approach based on FDs, and our intent within this context is to demonstrate how approximations of various orders (again, relative to polynomials) for derivatives of various orders can be implemented within the MOL format. Typically, some trial and error is required in the development of a PDE solution, and we have presented one possible approach. 

Appendix 2

The Kawahara equation, which we repeat below for convenience, 

∂ u

∂ u

∂3 u

∂5 u

∂ +  u

+  a

−  b

= 0

(12.1, 12.8)

 t

∂ x

∂ x 3

∂ x 5

was derived in order to obtain higher-order dispersive equations as corrections to the KdV equation [7]. It describes propagation of signals in electric transmission lines [1], 

long waves under ice cover in liquids of finite depth [5], and water waves with surface tension [13]. 

One of the things we notice about eq. (12.8) is that it contains only odd derivatives. 

Usually, waves propagating in a system described by linear PDEs consisting entirely of odd derivatives, with at least one being a third or higher derivative, exhibit  dispersion. Systems described by PDEs with both odd and even (with appropriate signs)- order derivatives generally, but not always, exhibit both dispersion and  dissipation. The degree of dispersion or dissipation is usually determined by the medium in which the wave propagates. Consequently, a medium can be characterized as being dispersive or dissipative. We will illustrate these concepts by example and show how they relate to the Kawahara equation. 

Let us first consider a linearized form of the  Korteweg-de Vries (KdV) equation

∂ u

∂ u

∂3 u

∂ +

+

= 0

(12.9)

 t

∂ x

∂ x 3
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and assume that it has a pure harmonic solution  u ( x,  t) =  A  exp  i  kx − ω t, where  A represents amplitude, ω represents  frequency, and  k  represents  wavenumber (number of wave lengths  λ, in 2π, i.e.,  k = 2π/λ). On substituting this solution into eq. (12.9), we obtain ω( k) =  k −  k 3

which is known as the  dispersion relation; this defines the relationship between frequency and wavenumber. A situation where waves of different frequencies move at different speeds without a change in amplitude is called  dispersion. Generally, this results in higher-frequency components traveling at slower speeds than the lower-frequency components. 

The effect of dispersion, therefore, is that solutions involving  sharp gradient,  discontinuity, or  shock  effects usually exhibit a changing profile over time. 

Thus, our solution becomes  u ( x,  t) =  A  exp  ik  x − 1 −  k 2  t . But, from our discussion on traveling waves, we know that traveling waves are defined by  u ( x,  t) =  u  kx −  ct, where c  represents the speed of propagation. Thus, we have  cp = ω/ k, which is known as the  phase velocity  and implies for eq. (12.9) that  cp = 1 −  k 2. Therefore, we observe that the speed of propagation of a single harmonic wave varies according to the wavenumber  k. In other words, waves of different frequencies propagate at different phase velocities in a dispersive medium. 

For  wave packets  consisting of a group of harmonic waves, the associated  group velocity is given by the derivative of the real part of ω with respect to  k, i.e.,  cg =  d< (ω) / dk. For this example,  cg = 1 − 3 k 2, which means that a wave packet or the  wave envelope  will move at a velocity different from the individual harmonic phase velocities from which it is com-posed. It is assumed that the packet is confined to a finite region of the spatial domain and that it may contain a superposition of many harmonic waves, but with wavenumbers clustered around  k [12]. For a nondispersive wave, all frequency components travel at the same speed and therefore we have  cg =  cp. Wave  energy  and  information signals  propagate at group velocity. 

If we include an even spatial derivative in eq. (12.9), say second, we have

∂ u

∂ u

∂2 u

∂3 u

∂ +

+

+

= 0

(12.10)

 t

∂ x

∂ x 2

∂ x 3

Then, its dispersion relation becomes

ω( k) =  k −  k 3 −  ik 2

and the harmonic solution is therefore

n h

i

o

 u ( x,  t) =  A  exp  i kx − ( k −  k 3) t −  k 2 t n h

io

=  A  exp  i kx − ( k −  k 3) t

exp(− k 2 t)

(12.11)

The term exp i  kx −  k −  k 3  t  in eq. (12.11) is a dispersive term and means that the frequency depends upon wavenumber. However, the term exp − k 2 t means that for real
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 k  6= 0, the solution  u  decays exponentially over time, i.e.,  u( x,  t) → 0 as  t → ∞. This latter phenomenon, where waves are  damped, is called  dissipation. Generally, higher-frequency components of a wave are damped more than lower-frequency components. The effect of dissipation, therefore, is that  sharp gradients,  discontinuities, or  shocks  in the solution tend to be smoothed over time. Note: odd derivatives in a PDE with real coefficients contribute to the real part of the dispersion relation ω( k), whereas even derivatives contribute to the imaginary part of ω( k). 

Let us now consider a  perturbed  or  small signal  form of the Kawahara equation, say u ( x,  t) =  U 0 + ˆ u ( x,  t), where ˆ u  is a small perturbation on a nominal steady-state solution U 0. Substituting this solution into eq. (12.8) leads to

∂ ˆ u

∂ ˆ u

∂3 ˆ u

∂5 ˆ u

∂ +  U

+  a

−  b

= 0

(12.12)

 t

0 ∂ x

∂ x 3

∂ x 5

Without loss of generality, we set  U 0 = 0 and, following the same approach as used above, we obtain

ω = − ak 3 −  bk 5

↓



h



i

ˆ u =  A  exp  ik x −  ak 2 +  bk 4  t

 cp = − k 2  a +  bk 2

 cg = − k 2 3 a + 5 bk 2

This means that for small amplitude waves and real  k,  a, and  b, the small signal Kawahara equation is purely dispersive, i.e., there is no dissipation. But from the above discussion, we note that if  cp =  cg, then the system will also be nondispersive. This will be true only if r − a

 k = ±

(12.13)

2 b

and would imply  ab < 0 for real  k. 

Now, from the traveling wave solution to the nonlinear form, i.e., eq. (12.2) and the associated Fig. (12.2), we see that in addition to exhibiting zero dispersion, it also exhibits zero dissipation. This is one of the remarkable characteristics of nonlinear partial differential equations that admit soliton solutions, such as the Kawahara equation. 

Solitons are the result of nonlinear terms in the PDE canceling the nonlinear dispersive effects of the medium in which the traveling waves propagate. See also Chapter 18 for some additional discussion on solitons. 

A Maple code that derives ω,  cp, and  cg  for the Kawahara equation is given in List-

ing 12.8. It can be modified easily to derive dispersion relations for other PDEs. For a more in-depth discussion relating to dispersion and dissipation, readers are referred to [2, 6, 12]. 
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> # Find dispersion relation for Kawahara equation

restart; 

> # Set up alias for u and v

alias(u=u(x,t)):alias(v=v(x,t)):

> # Define Kawahara equation

pde1:=diff(v,t)+v*diff(v,x)+alpha*diff(v,x,x,x)

-beta*diff(v,x,x,x,x,x)=0; 

> # Derive small signal version of pde1

pde2:=expand(subs(v=(U[0]+u),pde1)); 

# set diff(u,x)*u=0, second order magnitude

nops(lhs(pde2)); # number of operands

pde3:=subsop(3=0, lhs(pde2))=0; # set 3rd operand to zero

> # without loss of generality set U[0]=0

pde4:=subs(U[0]=0,lhs(pde3)); 

> eqn1:=simplify(eval(subs(u=A*exp(I*(k*x-omega*t)),pde4)),size); 

# dispersion relation

> eqn2:=isolate(eqn1,omega);assign(eqn2); 

> # phase velocity

c_p:=simplify(omega/k); 

> # group velocity (wave packet)

c_g:=diff(omega,k); 

> # Solve for k (to be non-dispersive)

solve({c_p=c_g},k); 

LISTING 12.8: Maple code to derive the dispersion relation for the Kawahara equation. 

Traveling wave solutions are obtained by straightforward application of any of the Maple procedures tanhMethod, expMethod(), or riccatiMethod() described in the main Appendix. The  tanh  method finds 15 solutions, the  exp  method finds 12 solutions, and the  Riccati  method finds 15 × 6 solutions. They all find solutions that match the original solution of eq. (12.2). 

The Maple code implementations of the  tanh,  exp, and  Riccati  methods are not detailed here, but they are included with the downloadable software for this book. 
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Regularized Long-Wave Equation

To illustrate the numerical integration of a PDE with a mixed partial derivative, we consider the following 1D  regularized long-wave equation (RLW) ([5], p998):

∂



! 

 u

∂ u

∂ u

∂

∂2

∂ +

+ ε u

− µ

= 0

(13.1)

 t

∂ x

∂ x

∂ t ∂ x 2

Equation (13.1) is first order in  t  and second order in  x (through the mixed partial). It therefore requires one  initial condition (IC) and two  boundary conditions (BCs). The initial condition is taken as

 u( x,  t = 0) =  g( x)

(13.2)

and the two BCs as

 u( x =  xl,  t) =  f 1( t)

(13.3)

 u( x =  xu,  t) =  f 2( t)

(13.4)

An analytical solution to eqns. (13.1)–(13.4) is ([5], p1002) ua( x,  t) = 3 d sech2  k( x −  xo − ν t) (13.5)

s

1

ε d

where ν = 1 + ε d,  k =

. From eq. (13.5), we have the IC and BCs

2

µν

 g( x) = 3 d sech2  k( x −  xo)

(13.6)

 f 1( t) = 3 d sech2  k( xl −  xo − ν t) (13.7)

 f 2( t) = 3 d sech2  k( xu −  xo − ν t) (13.8)

The method of lines (MOL) solution is computed for  d = 0.1,  xo = 0, ε = µ = 1 ([5], p1002). 

∂ u

∂ u

The MOL approximation of eq. (13.1) in  t (with ∂ =  ut, =  ux) is based on the t

∂ x

following finite difference (FD) approximation for the second derivative in  x:

∂2 u

 u( i + 1) − 2 u( i) +  u( i − 1)

∂

≈

+  O(1 x 2)

(13.9)

 x 2

1 x 2
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where i is a grid index in  x,  i = 0, 1, 2, . . . ,  n,  n + 1 corresponding to  i = 0 at  x =  xl  and  i =

 x

 n

 u −  xl

+ 1 at  x =  xu, with grid spacing 1 x =

(so that the interior grid points correspond

 n + 1

to  x =  i 1 x,  i = 1, 2, . . . ,  n). Application of eq. (13.9) to eq. (13.1) gives 2

1 

1

−

 u

 u

1 −

 t (1 x,  t)

 t (21 x,  t)

 x 2

µ

1 x 2

1



2

1 

1

 u

 u

 u

1

 t (1 x,  t)

−

−

 t (21 x,  t)

 t (31 x,  t)

 x 2

1 x 2

µ

1 x 2

. . 

. 

. 

. 

. . 

. . 

1



2

1 

1

 u

 u

 u

1

 t (( n − 2)1 x,  t)

−

−

 t (( n − 1)1 x,  t)

 t ( n 1 x,  t)

 x 2

1 x 2

µ

1 x 2

1



2

1 

 u

 u

1

 t (( n − 1)1 x,  t)

−

−

 t ( n 1 x)

 x 2

1 x 2

µ

1

ε



1

=

 u

 uu

 u

µ  x + µ

 x

−

 t,  a( x =  xl,  t)

 x

1

=1 x

 x 2

1

ε



=

 u

 uu

µ  x + µ

 x

 x=21 x

... 

(13.10)

1

ε



=

 u

 uu

µ  x + µ

 x

 x=( n−1)1 x

1

ε



1

=

 u

 uu

 u

µ  x + µ

 x

−

 t,  a( x =  xu,  t)

 x

1

= n 1 x

 x 2

or in matrix format





2

1 

1



− 1 − µ

1



 x 2

 x 2











 u





 t (1 x,  t)










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1
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

 t (21 x,  t)


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
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
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
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

. . 

. . 

. . 
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















1

2

1

1





 ut(( n − 2)1 x,  t) 


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


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
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
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

1

ε

1



 u

 uu

 u

µ  x + µ
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 l,  t)


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(13.11)
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We can then solve eq. (13.11) for the vector of derivatives in  t
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(13.12)
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
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


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ε
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 u

 uu

 u

µ  x + µ

 x

−

 t,  a( x =  xu,  t)

 x

1

= n 1 x

 x 2

1

ε



The RHS terms of eq. (13.12) with  u  and  ux  such as u

 uu

can be accom-

µ  x + µ

 x

 x=1 x

modated by the usual MOL analysis with application of a library differentiator, e.g., dss004, 
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1

to compute  ux. The terms involving the analytical solution  ua( x,  t) such as −

 u

1

 t,  a( x =

 x 2

 xl,  t) require differentiation of the analytical solution with respect to  t. However, this may essentially be avoided if the initial condition pulse of eq. (13.6) does not approach the boundaries so that the required derivative  ut,  a  can be taken as zero. 

Equation (13.1) has three invariants representing conservation of mass, momentum, and energy, which can be used to check the numerical solution ([5], p1002)

∞

Z

 c 1 =

 u( x,  t)  dx

(13.13a)

−∞

∞ " 

Z

∂ u( x,  t) 2#

 c 2 =

 u 2( x,  t) + µ

 dx

(13.13b)

∂ x

−∞

∞

Z

h

 c 3 =

 u 3( x,  t) + 3 u 2( x,  t)i  dx (13.13c)

−∞

Equations (13.12) is implemented in the following Matlab routines. The ODE routine pde 1.m follows first. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector of the RLW PDE

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

%

% BCs

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

%

% ux

ux=dss004(xl,xu,n,u); 

%

% PDE

for i=1:n

urhs(i)=(1/mu)*(ux(i)+eps*u(i)*ux(i)); 

end

% urhs=(1/mu)*(ux'+eps*u'.*ux'); 

ut=cm\urhs'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 13.1: Function pde 1.m for eq. (13.12). 
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We can note the following points about pde 1.m:

. Thefunctionandglobalvariablesaredefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector of the RLW PDE

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

. TwoDirichletBCsaredefinedusingtheanalyticalsolutionineqns.(13.3),(13.4), 

(13.7), and (13.8) at  x =  xl,  xu (i=1,n). 

%

% BCs

u(1)=ua_1(x(1),t); 

u(n)=ua_1(x(n),t); 

. uxintheRHSofeq.(13.12)iscomputedbydss004. 

%

% ux

ux=dss004(xl,xu,n,u); 

. TheODEsofeq.(13.12)areprogrammedintwoways. 

%

% PDE

for i=1:n

urhs(i)=(1/mu)*(ux(i)+eps*u(i)*ux(i)); 

end

% urhs=(1/mu)*(ux'+eps*u'.*ux'); 

ut=cm\urhs'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

In the first approach, the programming of the RHS terms of eq. (13.12) is explicit over the grid i=1,...n in a for loop. In the second approach, the vector operations of Matlab are used (deactivated as a comment, where ’ is a transpose). In both cases, the RHS vector urhs and the coefficient matrix cm (set in the main program discussed subsequently) are used with the Matlab inverse matrix operator \ to compute the derivatives in  t, ut, which are also transposed to meet the requirements of the ODE

integrator ode45. Finally, the counter for the calls to pde 1.m is incremented before the return from this routine. 

The initial condition function inital 1.m implements eqns. (13.2) and (13.6). 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the RLW PDE with
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% a mixed partial derivative

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

%

d=0.1; xo=0; eps=1; mu=1; 

nu=1+eps*d; 

k=0.5*(eps*d/(mu*nu))ˆ0.5; 

%

% IC over the spatial grid

xl=-50; 

xu= 50; 

n=199; 

dx=(xu-xl)/(n+1); 

for i=1:n

%

%

Uniform grid

x(i)=xl+i*dx; 

%

%

Initial condition

u0(i)=ua_1(0,x(i)); 

end

LISTING 13.2: Function inital 1.m for IC from eqns. (13.2) and (13.6). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalvariablesaredefined,andtheproblemparametersare

given numerical values. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the RLW PDE with

% a mixed partial derivative

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

%

d=0.1; xo=0; eps=1; mu=1; 

nu=1+eps*d; 

k=0.5*(eps*d/(mu*nu))ˆ0.5; 

. Theparametersforthespatialgridaredefined. 

%

% IC over the spatial grid

xl=-50; 

xu= 50; 

n=199; 

dx=(xu-xl)/(n+1); 
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We can note the following points about these parameters:

– 199 grid points are used, and dx is computed by dividing by n+1 (rather than n-1 as in previous cases) since the end points of the grid for the 199-ODE system are at xl+dx and xu-dx (and not at xl, xu as in previous cases). This variation from the usual procedure follows from eq. (13.12), where  u( x =  xl,  t) and  u( x =  xu,  t) are set by the analytical solution of eq. (13.5) and therefore ODEs at the end points are not actually required to compute the solution at the end points. 

– The values xl=-50, xu=50 were selected so that they are effectively at infinity, and therefore the boundary values of the solution remain at their initial values (from

eq. (13.6)) as we shall observe in the numerical and plotted output; however, this condition is not required and BCs from eqns. (13.7) and (13.8) could be used at essentially finite values of  x. 

. Thegridin x andtheassociatedIC(fromfunctionua 1.mat t =0)aresetinaforloop. 

for i=1:n

%

%

Uniform grid

x(i)=xl+i*dx; 

%

%

Initial condition

u0(i)=ua_1(0,x(i)); 

end

Function ua 1.m is a straightforward implementation of the analytical solution, 

eq. (13.5). 

function uanal=ua_1(t,x)

%

% Function ua_1 computes the analytical solution to the RLW PDE with

% a mixed partial derivative

%

% Model parameters

global eps mu cm d k xo nu

%

% Analytical solution

uanal=3*d*sech(k*(x-xo-nu*t))ˆ2; 

LISTING 13.3: Function ua 1.m for analytical solution (13.5). 

The routine for calculating the integrals of eqns. (13.13) by Simpson’s rule, simp, is function uint=simp(xl,xu,n,u)

%

% Function simp computes three integral invariants by Simpson's

% rule

%

% Parameter in the integrand of the second integral

global mu

%

% Step through the three integrals (invariants)

for int=1:3

h=(xu-xl)/(n+1); 
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%

%

Conservation of mass

if(int==1)

uint(1)=u(1)-u(n); 

for i=3:2:n

uint(1)=uint(1)+4.0*u(i-1)+2.0*u(i); 

end

uint(1)=h/3.0*uint(1); 

end

%

%

Conservation of momentum

if(int==2)

ux=dss004(xl,xu,n,u); 

uint(2)=u(1)ˆ2+mu*ux(1)ˆ2-(u(n)ˆ2+mu*ux(n)ˆ2); 

for i=3:2:n

uint(2)=uint(2)+4.0*(u(i-1)ˆ2+mu*ux(i-1)ˆ2)... 

+2.0*(u(i

)ˆ2+mu*ux(i

)ˆ2); 

end

uint(2)=h/3.0*uint(2); 

end

%

%

Energy conservation

if(int==3)

uint(3)=u(1)ˆ3+3*u(1)ˆ2-(u(n)ˆ3+3*u(n)ˆ2); 

for i=3:2:n

uint(3)=uint(3)+4.0*(u(i-1)ˆ3+3*u(i-1)ˆ2)... 

+2.0*(u(i

)ˆ3+3*u(i

)ˆ2); 

end

uint(3)=h/3.0*uint(3); 

end

%

% Next integral

end

LISTING 13.4: Numerical quadrature routine simp applied to eqns. (13.13). 

simp has three parts corresponding to the integrals c1,c2,c3 of eqns. (13.13). 

1. The coding for c1 is

function uint=simp(xl,xu,n,u)

%

% Function simp computes three integral invariants by Simpson's

% rule

%

% Parameter in the integrand of the second integral

global mu

%

% Step through the three integrals (invariants)

for int=1:3

h=(xu-xl)/(n+1); 

%

%

Conservation of mass

if(int==1)

uint(1)=u(1)-u(n); 
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for i=3:2:n

uint(1)=uint(1)+4.0*u(i-1)+2.0*u(i); 

end

uint(1)=h/3.0*uint(1); 

end

After defining the function, the integration interval h=(xu-xl)/(n+1) is computed, where xl=-50, xu=50 are the lower and upper limits of the integral (set in inital 1) and n=199. The for loop for  c 1 is an implementation of the weighted sum for Simpson’s rule applied to the function  u( x,  t) (the integrand in eq. (13.13a)). 

∞

" 

 n

#

Z

 h

−2

X

 u( x,  t) dx ≈

 u



1 +

4 u

+  u( n)

(13.14)

3

 i + 2 ui+1

−∞

 i=2

2. Similarly, the coding for  c 2 of eq. (13.13b) is

%

%

Conservation of momentum

if(int==2)

ux=dss004(xl,xu,n,u); 

uint(2)=u(1)ˆ2+mu*ux(1)ˆ2-(u(n)ˆ2+mu*ux(n)ˆ2); 

for i=3:2:n

uint(2)=uint(2)+4.0*(u(i-1)ˆ2+mu*ux(i-1)ˆ2)... 

+2.0*(u(i

)ˆ2+mu*ux(i

)ˆ2); 

end

uint(2)=h/3.0*uint(2); 

end

which reflects the difference in the integrands of  c 1 and  c 2 of eqns. (13.13a) and

∂ u

(13.13b). Also, the derivative in  c 2, 

, is computed by dss004. 

∂ x

3. Finally, the coding for  c 3 of eq. (13.13c) is

%

%

Energy conservation

if(int==3)

uint(3)=u(1)ˆ3+3*u(1)ˆ2-(u(n)ˆ3+3*u(n)ˆ2); 

for i=3:2:n

uint(3)=uint(3)+4.0*(u(i-1)ˆ3+3*u(i-1)ˆ2)... 

+2.0*(u(i

)ˆ3+3*u(i

)ˆ2); 

end

uint(3)=h/3.0*uint(3); 

end

%

% Next integral

end

The main program, pde 1 main.m, is structured in the same way as previous main programs. 

%

% Clear previous files

clear all
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clc

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Coefficient matrix

%

for i=1:n

%

% Row 1

if(i==1)

for j=1:n

if(j==1)cm(1,1)=(-2/dxˆ2-1/mu); 

elseif(j==2)cm(1,2)=1/dxˆ2; 

else cm(1,j)=0; 

end

end

%

% Row n

elseif(i==n)

for j=1:n

if(j==n)cm(n,n)=(-2/dxˆ2-1/mu); 

elseif(j==n-1)cm(n,n-1)=1/dxˆ2; 

else cm(n,j)=0; 

end

end

else

for j=1:n

if(i==j)cm(i,j)=(-2/dxˆ2-1/mu); 

elseif(abs(i-j)==1)cm(i,j)=1/dxˆ2; 

else cm(i,j)=0; 

end

end

end

%

% Next i

end

%

% Independent variable for ODE integration

tf=18; 

tout=[t0:6:tf]'; 

nout=4; 

ncall=0; 

%

% ODE integration

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%
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% Explicit (nonstiff) integration

[t,u]=ode45(@pde_1,tout,u0,options); 

%

% Analytical solution and difference between the numerical and

% analytical solutions at selected points

for it=1:nout

fprintf('\n\n

t

x

u(x,t)

u(x,t)

err\n')

fprintf(' 

num

anal

\n')

for i=1:n

u_anal(it,i)=ua_1(t(it),x(i)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

for i=1:5:n

fprintf('%6.2f%8.3f%12.6f%12.6f%12.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

%

%

Calculate and display three invariants

ui=u(it,:); 

uint=simp(xl,xu,n,ui); 

fprintf('\n Invariants at t = %5.2f',t(it)); 

fprintf('\n

I1 = %10.4f

Mass conservation' 

,uint(1)); 

fprintf('\n

I2 = %10.4f

Momentum conservation',uint(2)); 

fprintf('\n

I3 = %10.4f

Energy invariant\n\n' ,uint(3)); 

end

fprintf('\n

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

xplot(1)=xl; 

xplot(n+2)=xu; 

for i=1:n

xplot(i+1)=x(i); 

end

for it=1:nout

uplot(it,1)=ua_1(t(it),x(1)); 

uplot(it,2:n+1)=u(it,1:n); 

uplot(it,n+2)=ua_1(t(it),x(n)); 

uaplot(it,1)=ua_1(t(it),x(1)); 

uaplot(it,2:n+1)=u_anal(it,1:n); 

uaplot(it,n+2)=ua_1(t(it),x(n)); 

end

figure(1)

plot(xplot,uplot,'o',xplot,uaplot,'-')

xlabel('x')

ylabel('u(x,t)')

title('RLW equation; t = 0, 6, 12, 18; o - numerical; 

solid - analytical')

figure(2)

surf(uplot)

shading 'interp', axis 'tight' 

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('RLW equation'); 

LISTING 13.5: Main program pde 1 main.m. 
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We can note the following points about this main program:

. Afterpreviousfilesarecleared,someglobalvariablesaredefined. 

%

% Clear previous files

clear all

clc

%

global xl xu x dx n ncall

%

% Model parameters

global eps mu cm d k xo nu

. Theinitialconditionofeqns.(13.2)and(13.6)arethensetbyinital 1.m. 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

. BeforetheODEintegration(byode45),thecoefficientmatrixofeq.(3.12)isdefinedcm. 

This coding follows directly from eq. (3.12) and illustrates that the first and 199th equations (i=1,n) are special cases; all of the intervening equations (i=2,...,198) have the same structure and programming. j is the column index used in each of the three for loops. 

%

% Coefficient matrix

%

for i=1:n

%

% Row 1

if(i==1)

for j=1:n

if(j==1)cm(1,1)=(-2/dxˆ2-1/mu); 

elseif(j==2)cm(1,2)=1/dxˆ2; 

else cm(1,j)=0; 

end

end

%

% Row n

elseif(i==n)

for j=1:n

if(j==n)cm(n,n)=(-2/dxˆ2-1/mu); 

elseif(j==n-1)cm(n,n-1)=1/dxˆ2; 

else cm(n,j)=0; 

end

end

else

for j=1:n

if(i==j)cm(i,j)=(-2/dxˆ2-1/mu); 

elseif(abs(i-j)==1)cm(i,j)=1/dxˆ2; 

else cm(i,j)=0; 
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end

end

end

%

% Next i

end

. Thetimescaleisdefined

%

% Independent variable for ODE integration

tf=18; 

tout=[t0:6:tf]'; 

nout=4; 

ncall=0; 

that is,  t = 0, 6, 12, 18 with four output points. 

. Theintegrationofthe199ODEsisaccomplishedbyrkf45. 

%

% ODE integration

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

[t,u]=ode45(@pde_1,tout,u0,options); 

The nonstiff integrator, rkf45, performed the ODE integration very efficiently (as demonstrated in the subsequent output). If the execution required a long computer run time (large value of ncall), the selection of a stiff integrator such as ode15s would be reasonable. However, this example illustrates two ideas:

1. An MOL solution of a PDE does not necessarily lead to stiff ODEs (a common misconception). 

2. A nonstiff integrator should be considered first since it, if it performs satisfactorily, will require fewer calculations than a stiff integrator. In other words, the enhanced stability of a stiff integrator has a cost, namely, more calculations for each step along the solution than for a nonstiff integrator. 

. AftertheODEintegrationbyode45,theanalyticalsolution, eq.(13.5), isevaluatedby function ua 1 for comparison with the numerical solution (in array u(it,i)), and selected values of the two solutions and their difference (err(it,i)) are displayed numerically. 

%

% Analytical solution and difference between the numerical and

% analytical solutions at selected points

for it=1:nout

fprintf('\n\n

t

x

u(x,t)

u(x,t)

err\n')

fprintf(' 

num

anal

\n')

for i=1:n

u_anal(it,i)=ua_1(t(it),x(i)); 
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err(it,i)=u(it,i)-u_anal(it,i); 

end

for i=1:5:n

fprintf('%6.2f%8.3f%12.6f%12.6f%12.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

%

%

Calculate and display three invariants

ui=u(it,:); 

uint=simp(xl,xu,n,ui); 

fprintf('\n Invariants at t = %5.2f',t(it)); 

fprintf('\n

I1 = %10.4f

Mass conservation' 

,uint(1)); 

fprintf('\n

I2 = %10.4f

Momentum conservation',uint(2)); 

fprintf('\n

I3 = %10.4f

Energy invariant\n\n' ,uint(3)); 

end

fprintf('\n

ncall = %4d\n\n',ncall); 

Also, the three invariants of eqns. (13.13) are evaluated by simp.m of Listing 13.4 and are displayed at each of the four output points in  t. Finally, the counter for calls to pde 1.m is displayed as a measure of the overall computational effort. 

. Arraysforplottingaresetupbyincludingtheendpointvaluesat x= xl  and x= xu (the grid for plotting is expanded from 199 to 201 points); the analytical solution is included by using ua 1.m. 

%

% Plot numerical and analytical solutions

xplot(1)=xl; 

xplot(n+2)=xu; 

for i=1:n

xplot(i+1)=x(i); 

end

for it=1:nout

uplot(it,1)=ua_1(t(it),x(1)); 

uplot(it,2:n+1)=u(it,1:n); 

uplot(it,n+2)=ua_1(t(it),x(n)); 

uaplot(it,1)=ua_1(t(it),x(1)); 

uaplot(it,2:n+1)=u_anal(it,1:n); 

uaplot(it,n+2)=ua_1(t(it),x(n)); 

end

. 2Dand3Dplotsareproducedbyusingplotandsurf. 

figure(1)

plot(xplot,uplot,'o',xplot,uaplot,'-')

xlabel('x')

ylabel('u(x,t)')

title('RLW equation; t = 0, 6, 12, 18; o - numerical; 

solid - analytical')

figure(2)

surf(xplot,t,uplot)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('RLW equation'); 
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RLW equation;  t = 0, 6, 12, 18
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FIGURE 13.1: Numerical solution to eq. (13.1) (lines) with the analytical solution, eq. (13.5), superimposed (circles). 

The output from the preceding code appears in Figs. 13.1 and 13.2, and Table 13.1. 

Figure 13.1 indicates good agreement between the analytical and numerical solutions. 

Note, in particular, that the  sech  pulse of eq. (13.5) does not reach the boundaries at x = −50, 50 so that BCs (13.3), (13.4), (13.7), and (13.8) do not have an effect, but this may not be the case depending on the boundary values of  x  and the elapsed time  t. Figure 13.2

is a 3D plot of the numerical solution. 

The tabular analytical and numerical solutions given in Table 13.1 also reflect the good agreement between these two solutions. The three invariants remained constant throughout the solution. Also, the computational effort of rkf45 reflected in ncall = 145 is quite modest. 

In summary, the numerical solution of a PDE with a mixed partial derivative such as eq. (13.1) is straightforward if the mixed partial derivative includes differentiation with respect to an initial value variable, such as  t  in the preceding example. PDEs with mixed partial derivatives that have only boundary value independent variables such as

∂2 u  in Cartesian coordinates, in principle, can also be accommodated within the MOL

∂ x∂ y

framework. This class of problems is addressed in a forthcoming publication. 

[image: Image 17]
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RLW equation
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FIGURE 13.2: 3D plot of the numerical solution to eq. (13.1). 

Appendix

We conclude this chapter by including a little background information for the  regularized long-wave equation (RLWE) and outlining some traveling wave solutions that can be obtained using the procedures detailed in the main Appendix. By experimenting with different values for the order of approximations,  M (see eqn. (A.8) in the main Appendix), it becomes immediately apparent that there are many nontrivial traveling wave solutions to the RLWE. Higher values of  M  tend to produce more complex traveling wave solutions, which can reveal interesting behavior when examined by means of an animation. 

Brief Background Information

To describe water waves rigorously, in a mathematical and physical sense, requires that the Navier–Stokes equations  be solved with free boundary condition(s). This poses very difficult problems from both a theoretical and a numerical standpoint. Therefore, it is useful to construct simpler mathematical models that are able to capture the essential details of water waves under a variety of operating conditions. To this end, the regularized long-wave equation (RLW) or  Benjamin–Bona–Mahony equation (BBM) [1] was derived as a model to describe gravity water waves. It is an alternative model to the well-known  Korteweg–de
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Table 13.1:

Abbreviated tabular numerical and analytical

solutions for  n = 199

u(x,t)

u(x,t)

t

x

num

anal

err

0.00

−49.500

0.000000

0.000000

0.000000

0.00

−47.000

0.000001

0.000001

0.000000

0.00

−44.500

0.000002

0.000002

0.000000

0.00

−42.000

0.000004

0.000004

0.000000

0.00

−39.500

0.000008

0.000008

0.000000

0.00

−37.000

0.000017

0.000017

0.000000

0.00

−34.500

0.000036

0.000036

0.000000

0.00

−32.000

0.000077

0.000077

0.000000

0.00

−29.500

0.000165

0.000165

0.000000

0.00

−27.000

0.000349

0.000349

0.000000

0.00

−24.500

0.000742

0.000742

0.000000

0.00

−22.000

0.001575

0.001575

0.000000

0.00

−19.500

0.003337

0.003337

0.000000

0.00

−17.000

0.007047

0.007047

0.000000

0.00

−14.500

0.014777

0.014777

0.000000

0.00

−12.000

0.030538

0.030538

0.000000

0.00

−9.500

0.061241

0.061241

0.000000

0.00

−7.000

0.115672

0.115672

0.000000

0.00

−4.500

0.195401

0.195401

0.000000

0.00

−2.000

0.274299

0.274299

0.000000

0.00

0.500

0.298302

0.298302

0.000000

0.00

3.000

0.246128

0.246128

0.000000

0.00

5.500

0.161271

0.161271

0.000000

0.00

8.000

0.090587

0.090587

0.000000

0.00

10.500

0.046599

0.046599

0.000000

0.00

13.000

0.022900

0.022900

0.000000

0.00

15.500

0.011002

0.011002

0.000000

0.00

18.000

0.005228

0.005228

0.000000

0.00

20.500

0.002472

0.002472

0.000000

0.00

23.000

0.001166

0.001166

0.000000

0.00

25.500

0.000549

0.000549

0.000000

0.00

28.000

0.000259

0.000259

0.000000

0.00

30.500

0.000122

0.000122

0.000000

0.00

33.000

0.000057

0.000057

0.000000

0.00

35.500

0.000027

0.000027

0.000000

0.00

38.000

0.000013

0.000013

0.000000

0.00

40.500

0.000006

0.000006

0.000000

0.00

43.000

0.000003

0.000003

0.000000

0.00

45.500

0.000001

0.000001

0.000000

0.00

48.000

0.000001

0.000001

0.000000

Invariants at t = 0.00

I1 = 3.9799

Mass conservation

I2 = 0.8102

Momentum conservation

I3 = 2.5790

Energy invariant

( Continued )
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Table 13.1:

( Continued)

u(x,t)

u(x,t)

t

x

num

anal

err

. 

. 

. 

Solution for t = 6, 12 deleted

. 

. 

. 

u(x,t)

u(x,t)

t

x

num

anal

err

18.00

−49.500

0.000000

0.000000

0.000000

18.00

−47.000

0.000000

0.000000

0.000000

18.00

−44.500

0.000000

0.000000

0.000000

18.00

−42.000

−0.000000

0.000000

−0.000000

18.00

−39.500

−0.000000

0.000000

−0.000000

18.00

−37.000

−0.000000

0.000000

−0.000000

18.00

−34.500

0.000000

0.000000

−0.000000

18.00

−32.000

0.000000

0.000000

−0.000000

18.00

−29.500

0.000000

0.000000

0.000000

18.00

−27.000

0.000001

0.000001

0.000000

18.00

−24.500

0.000002

0.000002

0.000000

18.00

−22.000

0.000004

0.000004

0.000000

18.00

−19.500

0.000009

0.000009

0.000001

18.00

−17.000

0.000019

0.000018

0.000001

18.00

−14.500

0.000041

0.000039

0.000002

18.00

−12.000

0.000087

0.000082

0.000005

18.00

−9.500

0.000185

0.000175

0.000011

18.00

−7.000

0.000393

0.000371

0.000022

18.00

−4.500

0.000836

0.000788

0.000048

18.00

−2.000

0.001779

0.001673

0.000106

18.00

0.500

0.003746

0.003543

0.000203

18.00

3.000

0.007895

0.007479

0.000416

18.00

5.500

0.016634

0.015671

0.000963

18.00

8.000

0.034332

0.032331

0.002001

18.00

10.500

0.068203

0.064613

0.003590

18.00

13.000

0.126790

0.121227

0.005562

18.00

15.500

0.209005

0.202362

0.006642

18.00

18.000

0.283111

0.278950

0.004161

18.00

20.500

0.294737

0.296684

−0.001947

18.00

23.000

0.233341

0.239741

−0.006400

18.00

25.500

0.148335

0.154717

−0.006381

18.00

28.000

0.081826

0.086113

−0.004287
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Table 13.1:

( Continued)

18.00

30.500

0.041696

0.044081

−0.002385

18.00

33.000

0.020397

0.021609

−0.001211

18.00

35.500

0.009780

0.010369

−0.000590

18.00

38.000

0.004644

0.004925

−0.000281

18.00

40.500

0.002195

0.002328

−0.000133

18.00

43.000

0.001035

0.001098

−0.000063

18.00

45.500

0.000488

0.000517

−0.000030

18.00

48.000

0.000251

0.000243

0.000008

Invariants at t = 18.00

I1 = 3.9799

Mass conservation

I2 = 0.8102

Momentum conservation

I3 = 2.5790

Energy invariant

ncall = 145

 Vries equation (KdV) and describes some of the more exotic dynamic behavior of water waves and, in particular, the solitary wave phenomena [4]. 

In the following dimensionless form, the RLW equation represents a unidirectional propagation model, 

∂



! 

 u

∂ u

∂ u

∂

∂2 u

∂ +

+  u

−

= 0

(13.15)

 t

∂ x

∂ x

∂ t ∂ x 2

This is eq. (13.1) with  = 1 and µ = 1. However, when it is required to analyze bidirectional waves with wave interactions, the following system of coupled equations can be used [2]. 

∂η

∂



! 

 u

∂

∂3 u

∂

∂2η

( u η)

∂ +

+

+ α

− β

= 0

(13.16a)

 t

∂ x

∂ x

∂ x 3

∂ t ∂ x 2

∂



! 

 u

∂η

∂ u

∂3η

∂

∂2 u

∂ +

+  u

+ γ

− δ

= 0

(13.16b)

 t

∂ x

∂ x

∂ x 3

∂ t ∂ x 2

The dimensionless variables η ( x,  t),  u ( x,  t), and  x  are scaled by the length scale  h 0, and the time scale by p h 0/ g, where  h 0 represents the undisturbed water depth and  g  represents gravitational acceleration. The nondimensionless wave height above the equilibrium water level is represented by η, and the dimensionless horizontal surface wave velocity at a height θ h 0 (where 0 ≤ θ ≤ 1) above the bottom of the channel is represented by  u ( x,  t). 

For a physical system, the parameters α, β, γ , and δ represent  dispersion constants  and are subject to the following constraints:

1 

1 

1

α + β =

θ2 −

and

γ + δ =

1 − θ2 ≥ 0

2

3

2
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It has been shown[3] that a physically relevant system based on eqns. (13.16a) and (13.16b)

is linearly well posed and will generally give rise to smooth solutions if the constants α, β, γ , and δ satisfy the following conditions:

β ≥ 0, δ ≥ 0, α ≤ 0 γ ≤ 0 or β ≥ 0, δ ≥ 0, α = γ > 0

It has also been shown that the above systems are able to model the main characteristics of flow in an  ideal fluid. Further, when damping due to viscosity effects is comparable with the effects of nonlinearity and/or dispersion, as is likely to occur in laboratory-scale experiments or in the field, the model and its numerical results should correspond well with experimental results. For more details, the reader is referred to [2–4] and the references therein. 

Analytical Traveling Wave Solutions for Single RLW Equation

We will now outine some additional traveling wave solutions to eq. (13.1) that can be obtained by using Maple tanhMethod(), expMethod(), and riccatiMethod() procedures detailed in the main Appendix. In order to save space, the application codes will not be included here, but they are included in the downloadable Maple software available for this book. 

 Solution Using tanh Method

Application of the Maple procedure tanhMethod() enables us to derive three trivial solutions and the following two nontrivial traveling wave solutions

" 



!#

12µ k 2

 k  4 x µ k 2 −  x +  t

 u = 

−1 + tanh2

4µ k 2 − 1

4µ k 2 − 1



! 

−12µ k 2

 k  4 x µ k 2 −  x +  t

=

sech2

(13.17)

4µ k 2 − 1

4µ k 2 − 1

and

" 



!#

−4µ k 2

 k  4 x µ k 2 +  x −  t

 u = 

−1 + 3tanh2

4µ k 2 + 1

4µ k 2 + 1

" 



!#

−4µ k 2

 k  4 x µ k 2 +  x −  t

=

2

(13.18)



− 3sech2

4µ k 2 + 1

4µ k 2 + 1

Equation (13.18) is the same solution as eq. (13.5) used in the main body of this chapter for 4µ k 2

the numerical simulation, where  d =

. 

(1 − 4µ k 2)
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 Solution Using exp Method

Application of the Maple procedure expMethod() enables us to derive two trivial solutions and three nontrivial traveling wave solutions, including the following:

" 



! 

96 k 2µ b

2 k  4 x µ k 2 −  x +  t

 u ( x,  t)

0

= −

 b 2



−

+ 4 b 0

4µ k 2 − 1

0 exp

4µ k 2 − 1



!#−1

2 k  4 x µ k 2 −  x +  t

+4 exp

(13.19)

4µ k 2 − 1

where  b 0 denotes an arbitrary constant. The other two traveling wave solutions will not be detailed here as they are more complex and can be obtained by simply running the downloadable Maple code. 

 Solution Using Riccati Method

Application of the Maple procedure riccatiMethod() enables us to derive 18 trivial solutions and 12 nontrivial traveling wave solutions, some of which are duplicates. One is the same as the solution, eq. (13.5), used in the main body of this chapter for the numerical simulation. These solutions will not be detailed here as they can be obtained by simply running the downloadable Maple code. 

Analytical Traveling Wave Solution for Coupled RLW Equations

One set of values for constants α, β, γ , and δ in eqns. (13.16a) and (13.16b) that satisfies the above constraints for surface waves (where θ ≈ 0, i.e., applicable to very small amplitude waves) is: α = −1/3, β = 1/6, γ = −1/3, and δ = 5/6. 

Application of the Maple procedure tanhMethod2() enables us to derive two trivial solutions and 10 nontrivial traveling wave solutions, including the following, where for simplicity, we have set the wavenumber equal to unity, i.e.,  k = 1, 

√

√



√

! 

699

401

9

401

11

401

η

− 35

+

−

=

−

tanh2  x +

 t

(13.20a)

96

8

20

√



√

! 

11 + 9 401

11 − 401

 u = −

+ tanh2  x +

 t

(13.20b)

120

20

A plot of this solution is given in Fig. 13.3 which shows the initial condition (at  t = 0) for an animation, which then moves left to right when activated. 

The Maple code that derives the solution, eqns. (13.20a) and (13.20b), is not included here but is available with the downloads for this book. 

“17-ch13-239-260-9780123846525” — 2010/12/13 — 14:57 — page 260 — #22

260

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

1

0.5

( x)

0

 η

( x),  u −0.5

−1

−1.5

−10

0

10

20

30

40

50

 x

FIGURE 13.3: Plot of traveling wave solution, eqns. (13.20a and b), at  t = 0 for  coupled regularized long-wave equations, eqns. (13.16a and b). The top wave η represents wave height, and the bottom wave  u  represents wave velocity. 
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Chapter 1 includes a discussion of how a PDE can be reduced to an ODE through a change of variable, basically going from an  Eulerian coordinate system  to a  Lagrangian coordinate system  by assuming a  traveling wave solution. Here, we demonstrate how this procedure can be reversed. To illustrate the method, we start with an ODE, which is a special case of the Bernoulli equation [1, 2]

 dU

θ0  d ξ + bU(1− U) = 0

(14.1)

and we impose the auxiliary conditions  U(ξ = −∞) = 1,  U(ξ = ∞) = 0. 

An analytical solution to eq. (14.1) that satisfies the auxiliary conditions is 1

 U(ξ ) =

(14.2)

(1 + e b ξ/θ0)

We can verify this solution by direct substitution. 

 dU

θ0  d ξ

−θ0(1 + e b ξ/θ0 )−2(e b ξ/θ0 )( b/θ0)

+ bU

 b(1 + e b ξ/θ0 )−1 =  b(1 + e b ξ/θ0 )−2(1 + e b ξ/θ0 ) (14.3)

− bU 2

− b(1 + e b ξ/θ0 )−2

0

0

If  U(ξ ) in eq. (14.1) is considered a Lagrangian (traveling wave) solution (with ξ =  x −

 ct), it can be related to a Eulerian (fixed frame) variable  u  through dU ∂ξ

 dU

∂ u

=

(− c) =

 d ξ ∂ t

 d ξ

∂ t

 dU

∂ u

 d ξ = −(1/ c) ∂ t

(14.4)

 dU ∂ξ

∂ u

=

 d ξ ∂ x

∂ x

 dU

∂ u

 d ξ = ∂ x

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00014-5

261

Copyright © 2012 Elsevier Inc. All rights reserved. 

“18-ch14-261-274-9780123846525” — 2010/12/9 — 20:40 — page 262 — #2

262

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

If the second and fourth equations are added, 

 dU

∂ u

∂ u

2

− (1/ c)

(14.5)

 d ξ = ∂ x

∂ t

 dU

Then, 

of eq. (14.5) can be substituted into eq. (14.1) to obtain an equivalent PDE

 d ξ

θ 



0

∂ u

∂ u

− (1/ c)

+  bu(1 −  u) = 0

(14.6)

2

∂ x

∂ t

The solution to eq. (14.6) is, from eq. (14.2), 

1

 u( x,  t) =

(14.7)

(1 + e b( x− ct)/θ0)

which satisfies the conditions  u( x −  ct = −∞) = 1,  u( x −  ct = ∞) = 0. In particular, as  x approaches the limiting values ±∞ for finite  t,  u( x,  t) approaches the limiting values 1, 0. 

To verify eq. (14.7) as the solution to eq. (14.6), we have θ0 ∂ u

θ0

−

(1 + e b( x− ct)/θ0)−2(e b( x− ct)/θ0)( b/θ0) 2 ∂ x

2

θ ∂ u

θ

(

0

0

−1/ c)

(1/ c) (1 + e b( x− ct)/θ0)−2(e b( x− ct)/θ0)(− bc/θ0) 2 ∂ t

2

(14.8)

+ bu

 b(1 + e b( x− ct)/θ0 )−1 =  b(1 + e b( x− ct)/θ0 )−2(1 + e b( x− ct)/θ0 )

− bu 2

− b(1 + e b( x− ct)/θ0 )−2

0

0

In summary, we have illustrated a procedure for going from an ODE (eq. (14.1)) to a PDE

(eq. (14.6)) that can be generalized to other examples. Also, we can directly extend the ODE

solution (e.g., eq. (14.2)) to a solution to the PDE (eq. (14.7)). This procedure is useful for generating exact PDE solutions that can be used to test numerical procedures such as the method of lines (MOL), particularly, if an analytical solution to the ODE is readily available as a starting point to derive a PDE solution. 

Specifically, eq. (14.7) is the starting point for the calculation of a numerical PDE/MOL

solution using the following Matlab routines. We consider first the ODE routine pde 1.m. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the extended

% Bernoulli equation

%

global xl xu x n ncall

%
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global th0 c b

%

% ux

ux=dss004(xl,xu,n,u); 

%

% PDE

for i=1:n

ut(i)=c*ux(i)+(2*b*c/th0)*u(i)*(1-u(i)); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 14.1: ODE routine pde 1.m for eq. (14.1). 

We can note the following points about pde 1.m:

. Thefunctionandsomeglobalvariablesaredefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the extended

% Bernoulli equation

%

global xl xu x n ncall

%

global th0 c b

. 

∂ u

The derivative

in eq. (14.6) is computed by dss004. 

∂ x

%

% ux

ux=dss004(xl,xu,n,u); 

. ThePDE, eq.(14.6), isprogrammedasasetofODEderivativesin t,ut. 

%

% PDE

for i=1:n

ut(i)=c*ux(i)+(2*b*c/th0)*u(i)*(1-u(i)); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

Here, we have elected not to use BCs since the solution from the exp of IC (14.7)

does not depart from the initial values  u( x = −∞,  t = 0) = 1,  u( x = ∞,  t = 0) = 0; in other words, the boundary values do not have an effect on the solution for  t > 0. If this was not the case, we could program BCs at this point by using eq. (14.7) at the boundary values of  x (the reader might try this to extend the numerical solution to finite boundary values for  x). Also, only one BC is required since eq. (14.6) is first order in  x. 
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ut is transposed to meet the requirement of the ODE integrator, ode15s, used in the main program. Also, the counter for the calls to pde 1.m is incremented at the end of pde 1.m. 

The IC function is listed next. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the extended

% Bernoulli equation

%

global xl xu x n

%

% Spatial domain and initial condition

xl=-10; 

xu= 15; 

n=101; 

dx=(xu-xl)/(n-1); 

%

% IC from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u0(i)=ua_1(x(i),0.0); 

end

LISTING 14.2: IC routine inital 1.m from eq. (14.7) with  t = 0. 

We can note the following details about inital 1.m:

. Afterdefinitionofthefunctionandsomeglobalvariables,the x domainisdefinedas

−10 ≤  x ≤ 15 with 101 points. This range in  x  is large enough that the boundaries at x = −10, 15 are effectively at ±∞. 

. TheIC, eq.(14.7)with t =0,isdefinednumericallybyua 1(discussedsubsequently). 

Function ua 1.m below is a straightforward implementation of eq. (14.7). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the extended

% Bernoulli equation for comparison with the numerical solution

global th0 c b

%

% Analytical solution

uanal=1/(1+exp(b*(x-c*t)/th0)); 

LISTING 14.3: Analytical solution, eq. (14.7), for eq. (14.6). 

The main program pde 1 main.m is similar to previous main programs. However, we list it here so the details are clear, particularly, since this is the last example of a PDE

application first order in  t. 

%

% Clear previous files

clear all

clc
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%

% Parameters shared with other routines

global xl xu x n ncall

%

global th0 c b

th0=1; c=1; b=1; 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=4; 

tout=[t0:2:tf]'; 

nout=3; 

ncall=0; 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

%

% Store analytical solution, errors in numerical solution

for it=1:nout

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

%

%

Display selected output

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:10:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

%

Plot numerical and analytical solutions

figure(2)
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plot(x,u,'-',x,u_anal,'o')

xlabel('x')

ylabel('u(x,t)')

title('Extended Bernoulli equation; t = 0, 2, 4; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

shading 'interp', axis 'tight' 

view(21,24); 

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Extended Bernoulli equation'); 

LISTING 14.4: Main program pde 1 main.m for eq. (14.6). 

We can note the following details about pde 1 main.m:

. Afterpreviousfilesarecleared,someglobalvariablesaredefined. 

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

global th0 c b

th0=1; c=1; b=1; 

. TheIC, eq.(14.7)with t =0,issetbyinital 1.m,andthe t  scaleisdefinedas0≤ t ≤4

with outputs at  t = 0, 2, 4. 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=4; 

tout=[t0:2:tf]'; 

nout=3; 

ncall=0; 

. The101ODEsareintegratedbythesparsematrixoptionofode15s(mf=2). 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%
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% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

%

pause

options=odeset(options,'JPattern',S)

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

. Theanalyticalsolutionofeq.(14.7)iscomputed(u anal),andthedifferencebetween the analytical solutions is put into an array err for subsequent plotting. 

%

% Store analytical solution, errors in numerical solution

for it=1:nout

for i=1:n

u_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u(it,i)-u_anal(it,i); 

end

end

%

%

Display selected output

for it=1:nout

fprintf('\n

t

x

u(it,i)

u_anal(it,i)

err(it,i)\n'); 

for i=1:10:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u(it,i),u_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

Selected numerical output is then displayed. 

. A2Dplotwiththenumericalandanalyticalsolutionsisproducedbyplot,anda3D

plot of the numerical solution is produced by surf. 

%

%

Plot numerical and analytical solutions

figure(2)

plot(x,u,'-',x,u_anal,'o')

xlabel('x')

ylabel('u(x,t)')

title('Extended Bernoulli equation; t = 0, 2, 4; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u(x,t)'); 

title('Extended Bernoulli equation'); 

jpattern num 1.m for the sparse matrix integration of the 101 ODEs called by the ODE

integrator, ode15s, is similar to earlier versions of this routine and therefore is not listed here. Also, the ODE Jacobian map is not reproduced since it has the expected banded structure for a single PDE first order in  t. 
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Table 14.1:

Selected numerical output from the main program

pde 1 main.m of Listing 14.4

t

x

u(it,i)

u anal(it,i)

err(it,i)

0.00

−10.000

0.999955

0.999955

0.000000

0.00

−7.500

0.999447

0.999447

0.000000

0.00

−5.000

0.993307

0.993307

0.000000

0.00

−2.500

0.924142

0.924142

0.000000

0.00

0.000

0.500000

0.500000

0.000000

0.00

2.500

0.075858

0.075858

0.000000

0.00

5.000

0.006693

0.006693

0.000000

0.00

7.500

0.000553

0.000553

0.000000

0.00

10.000

0.000045

0.000045

0.000000

0.00

12.500

0.000004

0.000004

0.000000

0.00

15.000

0.000000

0.000000

0.000000

t

x

u(it,i)

u anal(it,i)

err(it,i)

2.00

−10.000

0.999994

0.999994

0.000000

2.00

−7.500

0.999925

0.999925

0.000000

2.00

−5.000

0.999089

0.999089

0.000000

2.00

−2.500

0.989013

0.989013

−0.000001

2.00

0.000

0.880796

0.880797

−0.000001

2.00

2.500

0.377544

0.377541

0.000003

2.00

5.000

0.047437

0.047426

0.000011

2.00

7.500

0.004071

0.004070

0.000001

2.00

10.000

0.000335

0.000335

0.000000

2.00

12.500

0.000028

0.000028

0.000000

2.00

15.000

0.000014

0.000002

0.000012

t

x

u(it,i)

u anal(it,i)

err(it,i)

4.00

−10.000

0.999999

0.999999

0.000000

4.00

−7.500

0.999990

0.999990

0.000000

4.00

−5.000

0.999877

0.999877

0.000000

4.00

−2.500

0.998499

0.998499

0.000000

4.00

0.000

0.982014

0.982014

−0.000000

4.00

2.500

0.817600

0.817574

0.000026

4.00

5.000

0.268998

0.268941

0.000057

4.00

7.500

0.029328

0.029312

0.000015

4.00

10.000

0.002474

0.002473

0.000001

4.00

12.500

0.000427

0.000203

0.000224

4.00

15.000

0.010740

0.000017

0.010724

ncall = 186

A portion of the numerical output is listed in Table 14.1. 

We can note the following points about this output:

. Generally,theagreementbetweenthenumericalandanalyticalsolutionsistofour

figures or better. 
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. Theexceptionisat t =4neartherightboundaryat x=15. 

4.00

12.500

0.000427

0.000203

0.000224

4.00

15.000

0.010740

0.000017

0.010724

This output suggests that as the solution travels from left to right, it comes close enough to the right boundary that a boundary effect appears to be developing

numerically (note the increase in the difference between the numerical and

analytical solutions). Thus, if the numerical solution is computed for  t > 4, the right boundary might be extended beyond  x = 15, or a boundary condition might be imposed using eq. (14.7) in pde 1.m. 

. Thecomputationaleffortisquitemodest,withncall = 186. 

The plotted output follows. Figure 14.1 demonstrates that the solution is a traveling wave, which follows from eq. (14.7) and the argument  x −  ct. The traveling wave solution of

eq. (14.6) is also clear in Fig. 14.2. 

Another way to elucidate the traveling wave solution of eq. (14.7) is to consider the argument  x −  ct. With  c = 1 (set in pde 1 main.m), the numerical solution of Fig. 14.1

should be moving left to right with unit velocity. This is confirmed in the following output (given in Table 14.2) produced by displaying the solution at  x =  t  rather than every 10th value as in Table 14.1. 

Extended Bernoulli equation;  t = 0, 2, 4; lines – numerical; o – analytical

1

0.9
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FIGURE 14.1: 2D plot comparing the numerical and analytical solutions of eq. (14.6). 
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Extended Bernoulli equation
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FIGURE 14.2: 3D plot of the numerical solution of eq. (14.6). 

Note, in particular, the values of the numerical solution  u( x = 0,  t = 0) = 0.500000, u( x = 2,  t = 2) = 0.500004,  u( x = 4,  t = 4) = 0.500065. In other words, as  t  increases by 2, x  also increases by 2 for the solution value ≈ 0.5 corresponding to  c = 1. Also, there is an increase in the departure from 0.5 due to accumulating numerical error with increasing  t, i.e., 0.000004 and 0.000065 for  t = 2 and 4, respectively. If this accumulating error became excessive, it could be reduced by using more grid points ( n > 101), generally termed  h refinement, or a higher-order approximation of the derivative in  x  in eq. (14.1)

(higher-order than in dss004) could be used, generally termed  p refinement. 

Also, this accumulating error may originate in the integration with respect to  t  by the ODE routine ode15s in which case the error tolerances for this integrator could be tightened (they are set in pde 1 main.m as abstol,reltol in Listing 14.4). This discussion illustrates an important conclusion:  the total error in a numerical solution is determined by both the spatial (in x) and the temporal (in t) errors. In other words,  it is essential to balance the spatial and the temporal errors  to achieve a numerical solution of acceptable accuracy. 

In summary, we have observed the following:

. TheconversionofanODE(eq.(14.1))intoanassociatedPDE(eq.(14.6)). 

. ThederivationofanexactsolutiontothePDE(eq.(14.7))fromtheanalyticalsolution of the ODE (eq. (14.2)). 

. ThestraightforwardMOLsolutionofthePDEforanessentiallyinfinitedomainin x. 

“18-ch14-261-274-9780123846525” — 2010/12/9 — 20:40 — page 271 — #11

. 

 Chapter 14

Extended Bernoulli Equation

271

Table 14.2:

Selected numerical output from the main program

pde 1 main.m of Listing 14.4

t

x

u(it,i)

u anal(it,i)

err(it,i)

. 

. 

. 

. 

. 

. 

0.00

−0.250

0.562177

0.562177

0.000000

0.00

0.000

0.500000

0.500000

0.000000

0.00

0.250

0.437823

0.437823

0.000000

. 

. 

. 


. 

. 

. 

2.00

1.750

0.562182

0.562177

0.000005

2.00

2.000

0.500004

0.500000

0.000004

2.00

2.250

0.437827

0.437823

0.000003

. 

. 

. 

. 

. 

. 

4.00

3.750

0.562240

0.562177

0.000063

4.00

4.000

0.500065

0.500000

0.000065

4.00

4.250

0.437887

0.437823

0.000064

. 

. 

. 

. 

. 

. 

Appendix

At the beginning of this chapter, it was demonstrated that the partial differential equation (renumbered here from (14.6) to (14.9) to facilitate the subsequent discussion) θ 



0

∂ u

1 ∂ u

−

+  bu (1 −  u) = 0, 

 u =  u( x,  t),  t > 0

(14.6, 14.9)

2

∂ x

 c ∂ t

can be derived from the original ordinary differential equation (14.1). In this appendix, by application of the  tanh method, we provide simple confirmation that the traveling wave solution of this equation is the same as the original solution given in eq. (14.7). 

We begin by using the transformation  u( x,  t) =  U(ξ ) where ξ =  k( x −  ct), which reduces the PDE of eq. (14.9) to the ODE

 dU

θ0  d ξ + bU(1− U) = 0

(14.1, 14.10)
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as expected. Application of the tanh method using the Maple script shown in Listing 14.5

results in the traveling wave solution

1

1

1  b ( x +  x



 u

0 −  ct)

=

−

tanh

(14.11)

2

2

2

θ0

1 

 X 

which, using the relationship

1 − tanh

= (1 + exp  X )−1 and setting  x 0 = 0, reduces

2

2

to the original solution used for the numerical simulation in the main body of this chapter, i.e., 

1

 u =

(14.7, 14.12)

1 + e b( x− ct)/θ 

0

This solution can also be found using the  exp  and/or the  Riccati  methods, but the Maple listings are not included here in order to save space. However, the associated files are included with the downloads provided for this book. 

># Extended Bernoulli Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)):

># Define problem PDE

pde1:=(theta[0]/2)*(diff(u,x)-(1/c)*diff(u,t))+b*u*(1-u)=0; 

>read("tanhMethod.txt"); 

>intFlg:=0: # integration of U(xi) not needed! 

M:=1; 

# Set order of approximation

infoLevOut:=0; # Minimum level of output

tanhMethod(M,pde1,intFlg,infoLevOut); 

># Choose solution 4

zz:=rhs(sol[4]); 

># NOTE: Following transformation

x0:=0; 

u2:=simplify(convert(zz, exp)); 

># Plot results


# ============

theta[0]:=1; c:=1; b:=1; 

# Create animation

animate(zz,x=-10..30,t=0..20, 

numpoints=100,frames=50, axes=framed,labels=["x","u"], 

thickness=3,title="Extended Bernoulli Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Create 3D plot

plot3d(zz,x=-10..30,t=0..20,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[-72,59],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 
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labelfont=[TIMES, ROMAN, 16], 

shading=Z,title="Extended Bernoulli Equation", 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 14.5: Maple code to obtain the traveling wave solution for eq. (14.9). 
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To this point, we have considered PDEs first order in the initial value variable generally designated as  t. We now consider a series of PDEs second order in the initial value variable. 

PDEs of this form are quite common in applications and therefore an approach to their numerical solution is of practical importance. 

To start, the  hyperbolic Liouville equation ([3], p213) with an exponential nonlinearity is

∂2 u

∂2 u

∂

=  a 2

+  b eβ u

(15.1)

 t 2

∂ x 2

where  a,  b, and β are arbitrary. 

An analytical solution is ([3], p213)

" 

#

1

2( a 2 A 2 −  B 2)

 ua( x,  t) =

(15.2)

β ln  b β cosh2( Ax +  Bt +  C)

where  A,  B, and  C  are arbitrary constants. Note that eq. (15.2) is a traveling wave solution through the combination  Ax +  Bt +  C. 

One initial condition (IC) for eq. (15.1) is eq. (15.2) with  t = 0. Since eq. (15.1) is second order in  t, it requires two ICs. A second IC is available by differentiating eq. (15.2) with respect to  t, 

∂

" 

# " 

#

 ua( x,  t)

1

 b β cosh2( Ax +  Bt +  C)

2( a 2 A 2

(

−  B 2)

∂

=

−2)

sinh( Ax +  Bt +  C)( B)

(15.3)

 t

β

2( a 2 A 2 −  B 2)

 b β cosh3( Ax +  Bt +  C)

and setting  t = 0. 

BCs for eq. (15.1) are taken as

 u( x =  xl,  t) =  ua( x =  xl,  t); (15.4a)

 u( x =  xu,  t) =  ua( x =  xu,  t) (15.4b)

Equations (15.1)–(15.4) constitute the problem programmed in the following Matlab routines. 

Equation (15.1) is programmed in function pde 1.m listed first. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the hyperbolic
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% Liouville equation

equation

%

global xl xu x n ncall

%

% Model parameters

global a b beta A B C nu

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = 0,1

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% PDE

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=a*u1xx(i)+b*exp(beta*u1(i)); 

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 15.1: Function pde 1.m for eq. (15.1). 

We can note the following details about pde 1.m:

. Thefunctionandsomeglobalvariablesarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the hyperbolic

% Liouville equation

%

global xl xu x n ncall

%

% Model parameters

global a b beta A B C nu
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. The1DODE-dependentvariablevectoroflength2 n,u,istransferredtotwo1Darrays, each of length  n, u1,u2, to facilitate the numerical solution of eq. (15.1). 

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

This use of two 1D arrays is a standard procedure for accommodating a PDE second order in  t  such as eq. (15.1). The net effect is to write the second-order PDE in  t  as two first-order PDEs in  t. In the case of eq. (15.1), this gives

∂ u 1

∂ =  u

 t

2

(15.5a)

∂ u 2

∂2 u 1

∂ =  a 2

+  b eβ u 1

(15.5b)

 t

∂ x 2

This procedure of working with two first-order PDEs in  t  permits the use of library integrators for first-order ODEs such as ode45 and ode15s. Also, the procedure is quite general in the sense that it can usually be applied to any second-order PDE of interest. 

. TheBCs(15.4)areprogrammedas

%

% BCs at x = 0,1

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

Note that BCs (15.4) are designated as  Dirichlet  through nl=1, nu=1. Also, the first derivative in  x, u1x(1)=0, is not actually used with the Dirichlet BCs but is included only to satisfy the Matlab requirement that all of the input (RHS) arguments of a function, such as u1x in dss044, must be defined numerically. The second derivative from dss044, u1xx, can then be used in the programming of eq. (15.1) (or eq. (15.5b)). 

. Equations(15.5a,5b)arethenprogrammedinaforloop. 

%

% PDE

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=a*u1xx(i)+b*exp(beta*u1(i)); 

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

Note also that the derivatives in  t  of the ODEs at the boundaries (i=1,n) are zeroed to ensure that the boundary values remain at the values prescribed by eqns. (15.4a,4b). 
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. Thetwoderivativevectors,u1t,u2t,arethenreturnedtoasinglederivativevectorut

to be returned from pde 1.m with a transpose included to meet the requirement of ode15s. Also, the counter for pde 1.m is incremented. 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

In summary, pde 1.m receives the dependent variable vector u as an input (along with the independent variable t) and returns the derivative vector ut. 

The IC function, inital 1.m, defines initial values for u1 and u2 in eqns. (15.5a,5b). 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the hyperbolic

% Liouville equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

xl=-1; 

xu= 1; 

n=51; 

dx=(xu-xl)/(n-1); 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u1(i)= ua_1(x(i),t0); 

u2(i)=uat_1(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

LISTING 15.2: IC function inital 1.m from eqns. (15.2) and (15.3) with  t = 0. 

inital 1.m defines a grid in  x  of 51 points for −1 ≤  x ≤ 1. In the for loop, the initial values of u1 for eq. (15.5a) are provided by the function ua 1.m (which has the programming for eq. (15.2)); the initial values of u2 for eq. (15.5b) are provided by the function uat 1.m (which has the programming for eq. (15.3)). All 2 n  initial condition values are returned from inital 1.m through the vector u0 to the main program pde 1 main.m discussed subsequently. 

Function ua 1.m is a straightforward implementation of eq. (15.2). 
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function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the hyperbolic Liouville

% equation for comparison with the numerical solution

%

% Model parameters

global a b beta A B C nc

%

% Analytical solution

xi=A*x+B*t+C; 

uanal=(1/beta)*log(nc/(b*beta*cosh(xi)ˆ2)); 

LISTING 15.3: Function ua 1.m for the analytical solution of eq. (15.2). 

Function uat 1.m is a straightforward implementation of eq. (15.3). 

function uanal=uat_1(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the hyperbolic Liouville equation

%

% Model parameters

global a b beta A B C nc

%

% Analytical solution derivative

xi=A*x+B*t+C; 

uanal=(1/beta)*(b*beta*cosh(xi)ˆ2/nc)*(-2*nc/(b*beta*cosh(xi)ˆ3))... 

*sinh(xi)*B; 

LISTING 15.4: Function uat 1.m for the analytical solution of eq. (15.3). 

The main program pde 1 main.m is listed next. 

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b beta A B C nc

%

% Model parameters

a=1; b=1; beta=1; 

A=2; B=-1; C=0; nc=2*(aˆ2*Aˆ2-Bˆ2); 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=0.9; 

tout=[t0:0.3:tf]'; 
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nout=4; 

ncall=0; 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 

options=odeset(options,'JPattern',S); 

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

%

% One vector to two vectors

for it=1:nout

for i=1:n

u1(it,i)=u(it,i); 

u2(it,i)=u(it,i+n); 

end

end

%

% Store analytical solution, errors in numerical solution

for it=1:nout

u1(it,1)=ua_1(x(1),t(it)); 

u1(it,n)=ua_1(x(n),t(it)); 

for i=1:n

u1_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u1(it,i)-u1_anal(it,i); 

end

end

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 

for i=1:1:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

xlabel('x')

ylabel('u1(x,t)')

title('hyperbolic Liouville equation; t = 0, 0.3, 0.6, 0.9; 

solid - num; o - anal')
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figure(3)

surf(x,t,u1)

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('hyperbolic Liouville equation'); 

LISTING 15.5: Main program for the solution of eq. (15.1) (eqns. (15.5a,5b)). 

We can note the following details about pde 1 main.m:

. Previousfilesarecleared,andtheproblemparametersaredefinedasglobaland

numerically. 

%

% Clear previous files

clear all

clc

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Model parameters

global a b beta A B C nc

%

% Model parameters

a=1; b=1; beta=1; 

A=2; B=-1; C=0; nc=2*(aˆ2*Aˆ2-Bˆ2); 

. TheICsforeqns.(15.5)aresetnumericallybyinital 1.m,andtheintervalin t  is defined as 0 ≤  t ≤ 0.9 with displayed values at  t = 0, 0.3, 0.6, 0.9. 

%

% Initial condition

t0=0.0; 

u0=inital_1(t0); 

%

% Independent variable for ODE integration

tf=0.9; 

tout=[t0:0.3:tf]'; 

nout=4; 

ncall=0; 

. TheODEintegrationisbyode15s(mf=2). 

%

% ODE integration

mf=2; 

reltol=1.0e-06; abstol=1.0e-06; 

options=odeset('RelTol',reltol,'AbsTol',abstol); 

%

% Explicit (nonstiff) integration

if(mf==1)[t,u]=ode45(@pde_1,tout,u0,options); end

%

% Implicit (sparse stiff) integration

if(mf==2)

S=jpattern_num_1; 
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options=odeset(options,'JPattern',S); 

[t,u]=ode15s(@pde_1,tout,u0,options); 

end

. Thesolutionvectorfromode15s,u,isplacedintwoarrays,u1,u2,correspondingto

eq. (15.5) to facilitate displaying the solution. 

%

% One vector to two vectors

for it=1:nout

for i=1:n

u1(it,i)=u(it,i); 

u2(it,i)=u(it,i+n); 

end

end

. Thenumericalsolutionattheboundaries(i=1,n)issetbytheanalyticalsolutionfrom

ua 1.m. Then, the analytical solution is put in array u1 anal and the difference between the numerical and analytical solutions is put in array err. 

%

% Store analytical solution, errors in numerical solution

for it=1:nout

u1(it,1)=ua_1(x(1),t(it)); 

u1(it,n)=ua_1(x(n),t(it)); 

for i=1:n

u1_anal(it,i)=ua_1(x(i),t(it)); 

err(it,i)=u1(it,i)-u1_anal(it,i); 

end

end

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 

for i=1:1:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

Numerical output is displayed by two nested for loops (in  t  and  x), and finally, the counter for the number of calls to pde 1.m is displayed as an indication of the computational effort required to produce the numerical solution. 

. A2Dplotwiththenumericalandanalyticalsolutionsisproducedbyplots,anda3D

plot of the numerical solution is produced by surf. 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

xlabel('x')

ylabel('u1(x,t)')
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title('hyperbolic Liouville equation; t = 0, 0.3, 0.6, 0.9; 

solid - num; o - anal')

figure(3)

surf(x,t,u1)

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('hyperbolic Liouville equation'); 

jpattern num 1.m for the sparse matrix integration of the ODEs is not listed here. 

Rather just the statements for the 2 n = 2(51) ODEs and the use of pde 1.m are listed. 

%

% Sparsity pattern of the Jacobian matrix based on a

% numerical evaluation

%

% Set independent, dependent variables for the calculation

% of the sparsity pattern

tbase=0; 

for i=1:n

ybase(i)=0.5; 

ybase(i+n)=0.5; 

end

ybase=ybase'; 

%

% Compute the corresponding derivative vector

ytbase=pde_1(tbase,ybase); 

fac=[]; 

thresh=1e-16; 

vectorized='on'; 

[Jac,fac]=numjac(@pde_1,tbase,ybase,ytbase,thresh,fac,vectorized); 

LISTING 15.6: Statements in jpattern num 1.m for 2 n  ODEs and the use of pde 1.m. 

The ODE Jacobian map from jpattern num 1.m indicates two bands for PDEs (15.5a, 

15.5b) in Figure 15.1. 

A portion of the numerical output from pde 1 main.m is listed in Table 15.1. 

We can note the following points about this output:

. Generally,theagreementbetweenthenumericalandanalyticalsolutionsistofive

figures or better. 

. Thecomputationaleffortisquitemodest,withncall = 183. 

The plotted solutions follow. Figure 15.2 demonstrates that the boundary values at x = −1, 1 vary with  t  according to eqns. (15.2) and (15.4) and as programmed in pde 1.m. 

Also, the traveling wave solution produced by eq. (15.2) with the argument  Ax +  Bt is clear, although the estimation of the wave velocity  B/ A (from  A( x +  B/ At)) using the numerical solution (as in Chapter 12) would require greater resolution in  x  in the numerical solution, for example, to identify the maximum of the solution at  t = 0, 0.3, 0.6, 0.9. 

Figure 15.3 is produced by the call to surf in the main program of Listing 15.5. 

In summary, we have discussed the numerical solution of a PDE second order in  t

(eq. (15.1)) by restating the PDE as two PDEs first order in  t (eq. (15.5)). Generally, the reformulation of an  nth-order PDE as  n  PDEs first order in an initial value independent variable

“19-ch15-275-292-9780123846525” — 2010/12/9 — 19:36 — page 284 — #10

284

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Jacobian sparsity pattern – nonzeros 292 (2.807%)
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FIGURE 15.1: ODE Jacobian map from jpattern num 1.m indicating two bands for eqns. (15.5). 

( t) is straightforward and permits the use of an integrator such as ode15s for first-order ODEs. We have also applied this idea of reformulating a higher-order PDE in a boundary value variable as a system of lower-order PDEs in the boundary value variable, but we will not discuss this type of problem here. 

Appendix

We conclude this chapter by analyzing the  hyperbolic Liouville  equation [1, 2] using two methods. The first method is very straightforward and leads to a variable separable solution. We start by applying the traveling wave transformation  u( x,  t) =  U(ξ )/β, where ξ =

 k( x −  ct),  k  represents wavenumber, and  c  represents wave velocity (Note the division of  U(ξ ) by β, which facilitates the calculation). We then have an equation that can be split into separate terms, one a function of  U  and the other of ξ , that can be integrated
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Table 15.1:

Selected numerical output from the main program

pde 1 main.m of Listing 15.5

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−1.000

−0.858246

−0.858246

0.000000

0.00

−0.960

−0.704478

−0.704478

0.000000

0.00

−0.920

−0.551766

−0.551766

0.000000

0.00

−0.880

−0.400286

−0.400286

0.000000

0.00

−0.840

−0.250237

−0.250237

0.000000

0.00

−0.800

−0.101853

−0.101853

0.000000

. 

. 

. 

. 

. 

. 

0.00

−0.200

1.635852

1.635852

0.000000

0.00

−0.160

1.691061

1.691061

0.000000

0.00

−0.120

1.734704

1.734704

0.000000

0.00

−0.080

1.766268

1.766268

0.000000

0.00

−0.040

1.785366

1.785366

0.000000

0.00

0.000

1.791759

1.791759

0.000000

0.00

0.040

1.785366

1.785366

0.000000

0.00

0.080

1.766268

1.766268

0.000000

0.00

0.120

1.734704

1.734704

0.000000

0.00

0.160

1.691061

1.691061

0.000000

0.00

0.200

1.635852

1.635852

0.000000

. 

. 

. 

. 

. 

. 

0.00

0.800

−0.101853

−0.101853

0.000000

0.00

0.840

−0.250237

−0.250237

0.000000

0.00

0.880

−0.400286

−0.400286

0.000000

0.00

0.920

−0.551766

−0.551766

0.000000

0.00

0.960

−0.704478

−0.704478

0.000000

0.00

1.000

−0.858246

−0.858246

0.000000

. 

. 

. 

. 

. 

. 

output for t = 0.3, 0.6 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.90

−1.000

−2.627992

−2.627992

0.000000

0.90

−0.960

−2.469039

−2.469039

0.000000

0.90

−0.920

−2.310268

−2.310267

−0.000001

0.90

−0.880

−2.151709

−2.151708

−0.000002

0.90

−0.840

−1.993398

−1.993397

−0.000001

0.90

−0.800

−1.835378

−1.835377

−0.000001

( Continued )
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Table 15.1:

( Continued )

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

. 

. 

. 

. 

. 

. 

0.90

0.200

1.551529

1.551530

−0.000001

0.90

0.240

1.620313

1.620314

−0.000001

0.90

0.280

1.678320

1.678320

−0.000000

0.90

0.320

1.724907

1.724908

−0.000000

0.90

0.360

1.759533

1.759533

0.000000

0.90

0.400

1.781777

1.781776

0.000001

0.90

0.440

1.791360

1.791359

0.000000

0.90

0.480

1.788161

1.788162

−0.000000

0.90

0.520

1.772224

1.772223

0.000001

0.90

0.560

1.743746

1.743745

0.000001

0.90

0.600

1.703077

1.703078

−0.000001

. 

. 

. 

. 

. 

. 

0.90

0.800

1.337217

1.337219

−0.000002

0.90

0.840

1.236587

1.236588

−0.000001

0.90

0.880

1.128607

1.128608

−0.000001

0.90

0.920

1.014029

1.014030

−0.000001

0.90

0.960

0.893568

0.893568

−0.000000

0.90

1.000

0.767887

0.767887

0.000000

ncall = 183

directly. A solution for  u  is obtained by the inverse transformation  U(ξ ) = β u( x,  t). Thus, the calculation sequence is

∂2 u

∂2 u

∂

−  a 2

=  b eβ u

(15.1, 15.6)

 t 2

∂ x 2

⇓ transformation

 d 2 U

 b βe U

=

(15.7)

 d ξ 2

 c 2 k 2 −  a 2 k 2

⇓ integration

 b βξ 2

e− U =

(15.8)

2  c 2 k 2 −  a 2 k 2

⇓ inverse transformation



! 

1

2  c 2 −  a 2

 u =

. 

(15.9)

β ln  b β ( x +  x 0 −  ct)2
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Hyperbolic Liouville equation; lines – numerical; o – analytical

2

1.5

1

0.5

0

( x,  t) −0.5

 u  1

−1

−1.5

−2

−2.5

−3−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

FIGURE 15.2: 2D plot comparing the numerical and analytical solutions of eq. (15.1) (eqns. (15.5a,5b)) moving left to right in  x  for  t = 0, 0.3, 0.6, 0.9. 

However, although eq. (15.9) is a valid  rational  solution to eq. (5.6), it is not the solution we seek, i.e., the solution used in the main body of this chapter as the basis for the numerical solution, eq. (15.2) (Note this solution becomes singular when  x +  x 0 −  ct = 0). The Maple code that generates the solution of eq. (15.9) is given in Listing 15.7. 

># Hyperbolic Liouville Equation

restart; 

with(PDEtools): with(PolynomialTools):

>alias(v=v(x,t)):alias(u=u(x,t)):

>pde1:=diff(u,t,t)-aˆ2*diff(u,x,x)-b*exp(beta*u)=0; 

># Assume a travelling wave solution of the form

# u=U(xi)/beta, xi=k*(x-c*t); 

tr1:={x=(xi/k+c*tau),t=tau,u=U(xi)/beta}; 

ode1:=dchange(tr1,pde1,[xi,tau,U(xi)]); 

>ode2:=collect(ode1,{diff(U(xi),xi)ˆ2,diff(U(xi),xi,xi)}); 

># Separate variables and integrate

eqn1:=int(exp(-U),U,U)-b*beta/(cˆ2*kˆ2-aˆ2*kˆ2)*int(1,xi,xi)=0; 

># Isolate U

eqn2:=isolate(eqn1,U); 

># Inverse transformation xi=k*(x-c*t), U(xi)=u*beta

pdeSol1:=isolate(subs({U=u*beta,xi=k*(x+x0-c*t)},eqn2),u); 
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2

1

0

( x,  t) u  1 −1

−2

−31

0.8

1

0.6

0.5

0.4

0

 t

0.2

−0.5

 x

0

−1

FIGURE 15.3: 3D plot of the numerical solution of eq. (15.1) (eqns. (15.5a,5b)). 

># Check solution

pdeCHK:=pdetest(pdeSol1,pde1); # '0' if true

if pdeCHK <> 0 then

print("Solution: does not pass pdetest() !"); 

else

print("Solution: passes pdetest() !"); 

end if; 

LISTING 15.7: Maple code used to derive the solution of eq. (15.9). 

For the second method, which is slightly more involved, we apply the transformation u = ln( u)/β

(15.10)

to eq. (15.1), which yields

∂2

! 

 u

∂2 u

∂ u  2

∂ u  2

 u ∂ − a 2

−

+  a 2

−  bu 3 = 0

(15.11)

 t 2

∂ x 2

∂ t

∂ x

While this is a more complex expression than eq. (5.6), the exponential term has been eliminated, which greatly simplifies the solution process. We now apply the  Riccati method to this modified equation, which generates six trivial solutions and the following six
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nontrivial solutions:

 k 2  a 2 −  c 2 



 u 1 =

1 − tanh2  k( x +  x 0 −  ct)/2

(15.12)

2 b β

− k 2  a 2 −  c 2 



 u 2 =

1 + tan2  k( x +  x 0 −  ct)/2

(15.13)

2 b β

2 k 2  a 2 −  c 2 



 u 3 =

1 − tanh2  k( x +  x

(15.14)

 b β

0 −  ct)

−2 k 2  a 2 −  c 2 



 u 4 =

1 + tan2  k( x +  x

(15.15)

 b β

0 −  ct)

8 k 2  a 2 −  c 2 



 u 5 =

1 − tanh2 2 k( x +  x

(15.16)

 b β

0 −  ct)

−8 k 2  a 2 −  c 2 



 u 6 =

1 + tan2 2 k( x +  x

(15.17)

 b β

0 −  ct)

We choose solution  u 3, which we convert from  tanh  form to  cosh  form to give 2 k 2  a 2 −  c 2

 u 3 =

(15.18)

 b β cosh2  k (− x −  x 0 +  ct)

The final solution is obtained by applying the inverse transformation,  u = ln( u 3) /β, i.e., 



! 

1

2 k 2  a 2 −  c 2

 u =

(15.19)

β ln  b β cosh2  k(− x −  x 0 +  ct)

On letting  k = − A,  c =  B/ k, and  x 0 =  C/ k, we arrive at eq. (15.2), the solution used in the main body of this chapter as the basis for the numerical simulation. If we use the parameter values  a = 1,  b = 1,  c = 1/2,  k = −2,  x 0 = 0, and β = 1, this solution takes the form of a triangular-shaped traveling wave with a curved apex—see Figs. 15.4 and 15.5. Note: while at large scale the traveling wave appears to be a  peakon, on closer inspection, see Fig. 15.6, 

we see that this is not the case as the spatial derivative does not have a (finite) discontinuity at the peak—unlike the solution for the  sine-Gordon  equation discussed in Chapter 16. 

Setting  t = 0 and  x = 0, we see that the peak value is given by  u = ln(6) = 1.79. In addition, on plotting the spatial derivative, we observe that the slopes on either side of zero appear to rapidly take on constant values—see Fig. 15.6. 

We can check if this is the case by taking the limit of  du/ dx  as | x| → ∞, which gives the traveling wave slopes, i.e., 

 du 

lim







−4 sinh(2 x)



=

= ∓4

(15.20)

 dx  x=±∞

 x → ±∞

cosh(2 x)

which confirms our visual impression. The Maple code that generates this solution and the associated plots is given in Listing 15.8. 

[image: Image 19]
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FIGURE 15.4: The initial condition (at  t = 0) for a 2D animation of the solution to the hyperbolic Liouville equation, which then moves left to right when activated. 
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FIGURE 15.5: 3D plot of solution to hyperbolic Liouville equation. 

># Hyperbolic Liouville Equation

# Attempt at Riccati solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)):alias(v=v(x,t)):

># Define pde

pde0:=diff(v,t,t)-alphaˆ2*diff(v,x,x)-b*exp(beta*v)=0; 

># Apply a transformation

tr0:={v=ln(u)/beta}; 

pde1:=simplify(dchange(tr0,pde0,[u]),symbolic); 

>pde1 := numer(lhs(pde1))*denom(rhs(pde1)) = numer(rhs(pde1))*denom(lhs(pde1)); 

>read("riccatiMethod.txt"); 

>intFlg:=0: # integration not needed! 
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 x  0

d u/d −1
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−1

0
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 x

FIGURE 15.6: Plot illustrating how  du/ dx → ±4 as  x → ∓∞. 

M:=2; # Set order of approximation

infoLevOut:=0; 

riccatiMethod(M,pde1,intFlg,infoLevOut); 

># Apply the inverse transform v=ln(u)

sol1:=v=ln(rhs(soln[2,3]))/beta; 

># Test that the solution solves the original pde

testSol:=simplify(pdetest(sol1,pde0),symbolic); 

if testSol<> 0 then

print("Solution: does not pass pdetest() !"); 

else

print("Solution passes pdetest()"); 

end if; 

># Standard solution constants

zz:=rhs(sol1); 

a:=1; b:=1; beta:=1; A:=2; B:=-1; C:=0; 

alpha:=a;k:=A;c:=-B/k;x0:=C/k; 

># Create animation

animate(zz,x=-2..2, t=0..1, 

numpoints=100,frames=50, axes=framed,labels=["x","u"], 

thickness=3,title="Hyperbolic Liouville Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot

plot3d(zz,x=-2..2, t=0..1,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[64,48],grid=[100,100], 

style=patchnogrid,axesfont=[TIMES, ROMAN, 16], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

labelfont=[TIMES, ROMAN, 16], 

shading=Z,title="Hyperbolic Liouville Equation", 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 15.8: Maple code used to derive the solution of eq. (15.19) and Figs. 15.4–15.6. 

Finally, we mention that eq. (5.6) is also referred to in the literature as the  modified Liouville  equation and that it can be converted, using the transformation  u( x,  t) =  U (ξ, η), 
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where  x =  a (ξ − η),  t = (ξ + η), to the equivalent alternative form

∂2 U (ξ,η)

∂ξ∂η

=  b eβ U(ξ,η)

(15.21)

known simply as the  Liouville  equation. 
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Sine-Gordon Equation

The sine-Gordon equation ([1], p227) is

∂2 u

∂2 u

∂

=  a 2

+  b  sin(λ u)

(16.1)

 t 2

∂ x 2

Since the sine-Gordon equation is second order in  t, its solution closely parallels that of the hyperbolic Liouville equation of Chapter 15. 

An analytical solution is ([1], p227)

(

" 

#)

4

 b λ( kx + µ t + θ

 u

0

 a( x,  t) =

tan−1

(16.2)

λ

exp

p b λ(µ2 −  ak 2)

if  b λ(µ2 −  ak 2) > 0 and where  k, µ, and θ0 are arbitrary. Note that eq. (16.2) defines a traveling wave solution through the combination  kx + µ t + θ0. 

One IC for eq. (16.1) is eq. (16.2) with  t = 0. Since eq. (16.1) is second order in  t, it requires two ICs. A second IC is available by differentiating eq. (16.2) with respect to  t. 

Here, we use

 d 



1

tan−1  x =

 dx

1 +  x 2

∂

" 

#

 ua( x,  t)

4

1

 b λ( kx + µ t + θ0) ( b λµ)

∂

=

exp

 t

λ

" 

#2

p

 b λ( kx + µ t + θ

 b λ(µ2 −  ak 2)

0)

1 + exp

p b λ(µ2 −  ak 2)

" 

#

 b λ  kx + µ t + θ 

0

Dividing numerator and denominator by exp

gives

p b λ(µ2 −  ak 2)

∂ ua( x,  t)

4

1

( b λµ)

∂

=

 t

λ

" 

#−1

" 

#

 b λ  kx + µ t + θ 



0

 b λ  kx + µ t + θ0

exp

+ exp

p b λ(µ2

p

−  ak 2)

 b λ(µ2 −  ak 2)

which simplifies to

∂ ua( x,  t)

1

∂

= 2 b µ

 t

" 

#

 b λ  kx + µ t + θ 

0

cosh

p b λ(µ2 −  ak 2)
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or





∂ u



 a( x,  t)

 b λ  kx + µ t + θ0

(16.3)

∂

= 2 b µ sech

 t

 q



 b λ µ2 −  ak 2

The required IC then comes from eq. (16.3) with  t = 0

BCs for eq. (16.1) are taken as

 u( x =  xl,  t) =  ua( x =  xl,  t);  u( x =  xu,  t) =  ua( x =  xu,  t) (16.4a, 4b)

Equations (16.1)–(16.4) constitute the problem programmed in the following Matlab routines. 

Equation (16.1) is programmed in function pde 1.m listed first. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the sine-

% Gordon equation

%

global xl xu x n ncall

%

% Model parameters

global a b lambda k mu the0 den

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = 0,30

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% PDE

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=a*u1xx(i)+b*sin(lambda*u(i)); 

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 
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end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 16.1: Function pde 1.m for eq. (16.1). 

We can note the following details about pde 1.m:

. Thefunctionandsomeglobalvariablesarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the sine-

% Gordon equation

%

global xl xu x n ncall

%

% Model parameters

global a b lambda k mu the0 den

. The1DODEdependentvariablevectoroflength2 n,u,istransferredtotwo1Darrays, each of length  n, u1,u2, to facilitate the numerical solution of eq. (16.1). 

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

Again, as for the case of the hyperbolic-Liouville equation of Chapter 15, the use of two 1D arrays is a standard procedure for accommodating a PDE second order in  t  such as

eq. (16.1). In the case of eq. (16.1), this gives

∂ u 1

∂ =  u 2

(16.5a)

 t

∂ u 2

∂ u 1

∂ =  a 2

+  b  sin(λ u 1)

(16.5b)

 t

∂ x 2

As indicated in Chapter 15, this procedure of working with two first-order PDEs in  t permits the use of library integrators for first-order ODEs such as ode45 and ode15s. 

Also, the procedure is quite general in the sense that it can usually be applied to any second-order PDE of interest. 

. TheBCs(16.4)areprogrammedas

%

% BCs at x = 0,30

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx
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nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

Note that BCs (16.4) are designated as  Dirichlet  through nl=1, nu=1. Also, the first derivative in  x, u1x(1)=0, is not actually used with the Dirichlet BCs but is included only to satisfy the Matlab requirement that all of the input (RHS) arguments of a function, such as u1x in dss044, must be defined numerically. The second derivative from dss044, u1xx, can then be used in the programming of eq. (16.1) (or eqs. (16.5). 

. Equations(16.5)arethenprogrammedinaforloop. 

%

% PDE

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=a*u1xx(i)+b*sin(lambda*u(i)); 

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

Note also that the derivatives in  t  of the ODEs at the boundaries (i=1,n) are zeroed to ensure the boundary values remain at the values prescribed by eq. (16.4). 

. Thetwoderivativevectors,u1t,u2t,arethenreturnedtoasingle-derivativevectorut

to be returned from pde 1.m, with a transpose included to meet the requirement of ode15s. Also, the counter for pde 1.m is incremented. 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

In summary, pde 1.m receives the dependent variable vector u as an input (along with the independent variable t) and returns the derivative vector ut. 

The IC function inital 1.m defines initial values for u1 and u2 in eqs. (16.5). 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the sine-

% Gordon equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

xl=0; 

xu=30; 
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n=121; 

dx=(xu-xl)/(n-1); 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u1(i)= ua_1(x(i),t0); 

u2(i)=uat_1(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

LISTING 16.2: IC function inital 1.m for eqns. (16.2) and (16.3) with  t = 0. 

inital 1.m defines a grid in  x  of 121 points for 0 ≤  x ≤ 30. In the for loop, the initial values of u1 for eq. (16.5a) are provided by the function ua 1.m (which has the programming for eq. (16.2)); the initial values of u2 for eq. (16.5b) are provided by the function uat 1.m (which has the programming for eq. (16.3)). All 2 n  initial condition values are returned from inital 1.m through the vector u0 to the main program pde 1 main.m discussed subsequently. 

Function ua 1.m is a straightforward implementation of eq. (16.2). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the sine-Gordon

% equation for comparison with the numerical solution

%

% Model parameters

global a b lambda k mu the0 den

%

% Analytical solution

xi=k*x+mu*t+the0; 

uanal=(4/lambda)*atan(exp(b*lambda*xi/den)); 

LISTING 16.3: Function ua 1.m for the analytical solution of eq. (16.2). 

Function ua1 1.m is a straightforward implementation of eq. (16.3). 

function uanal=uat_1(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the sine-Gordon equation

%

% Model parameters

global a b lambda k mu the0 den

%

% Analytical solution derivative

xi=k*x+mu*t+the0; 

uanal=2*b*mu/cosh(b*lambda*xi/den); 

LISTING 16.4: Function uat 1.m for the analytical solution of eq. (16.3). 
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The main program pde 1 main is essentially the same as pde 1 main of Chapter 15 (for PDEs second order in  t) and therefore is not listed here. A few details are as follows. 

. Theparametersineqns.(16.1)and(16.2)aredefinednumerically. 

%

% Model parameters

a=1; b=0.1; lambda=1; k=4; mu=-5; the0=0; 

den=sqrt(b*lambda*(muˆ2-a*kˆ2)); 

In particular,  k = 4, µ = −5, and θ0 = 0;  k  was selected to obtain a significant variation in the solution with  x. 

. Thedifferencebetweenthenumericalsolutionofeq.(16.1)( u 1 ofeqs.(16.5))andthe analytical solution of eq. (16.2) is computed as err(it,i) and displayed numerically in the output. The numerical and analytical solutions are then superimposed in a 2D

plot from Matlab routine plot, and a 3D plot of the numerical solution is produced by surf. 

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 

for i=1:5:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

xlabel('x')

ylabel('u1(x,t)')

title('sine-Gordon equation; t = 0, 3, 6, 9; solid - numerical; 

o - analytical')

figure(3)

surf(u1)

shading 'interp', axis 'tight' 

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('sine-Gordon equation'); 

jpattern num 1.m for the sparse matrix integration of the ODEs is not listed here since it is the same as for Chapter 15. The ODE Jacobian map from jpattern num 1.m indicates two bands for PDEs (16.5), as indicated in Fig. 16.1. A portion of the numerical output from pde 1 main.m is listed in Table 16.1. 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,butthedifference between the two solutions increases with increasing  t. The error in the numerical
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Jacobian sparsity pattern – nonzeros 712 (1.216%)
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FIGURE 16.1: ODE Jacobian map from jpattern num 1.m indicating two bands for eq. (16.5). 

solution could be reduced by using more grid points ( n > 121), but this results in a greater computational effort (note in inital 1.m the values  n = 51, 201 as comments indicating some experimentation with the number of grid points to investigate the accuracy of the numerical solution). 

. Forthepresentconditions,thecomputationaleffortisstillmodest,withncall = 530. 

. SincethedifferencebetweenthehyperbolicLiouvilleequationofChapter15andthe

sine-Gordon equation of this chapter is rather small, mainly in the nonlinear terms, b eβ u  from eq. (15.1) and  b  sin(λ u) from eq. (16.1) a comparison of the accuracy and computational effort of the solutions in Chapters 15 and 16 (better accuracy and less computational effort in Chapter 15) suggests that the numerical solution of nonlinear PDEs can be very sensitive to the details of the equations. Even for a given PDE, changes in the problem parameters can have unexpectedly large effects in the

accuracy and required computational effort. Our experience has indicated that this
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Table 16.1:

Selected numerical output from the main program

pde 1 main.m

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

0.000

3.141593

3.141593

0.000000

0.00

1.250

4.150022

4.150022

0.000000

0.00

2.500

4.941803

4.941803

0.000000

0.00

3.750

5.471548

5.471548

0.000000

0.00

5.000

5.799721

5.799721

0.000000

0.00

6.250

5.996866

5.996866

0.000000

0.00

7.500

6.113969

6.113969

0.000000

0.00

8.750

6.183251

6.183251

0.000000

0.00

10.000

6.224181

6.224181

0.000000

0.00

11.250

6.248351

6.248351

0.000000

0.00

12.500

6.262621

6.262621

0.000000

0.00

13.750

6.271045

6.271045

0.000000

0.00

15.000

6.276018

6.276018

0.000000

0.00

16.250

6.278954

6.278954

0.000000

0.00

17.500

6.280688

6.280688

0.000000

0.00

18.750

6.281711

6.281711

0.000000

0.00

20.000

6.282315

6.282315

0.000000

0.00

21.250

6.282671

6.282671

0.000000

0.00

22.500

6.282882

6.282882

0.000000

0.00

23.750

6.283006

6.283006

0.000000

0.00

25.000

6.283080

6.283080

0.000000

0.00

26.250

6.283123

6.283123

0.000000

0.00

27.500

6.283148

6.283148

0.000000

0.00

28.750

6.283164

6.283164

0.000000

0.00

30.000

6.283172

6.283172

0.000000

. 

. 

. 

. 

. 

. 

output for t = 3, 6 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

0.000

0.034834

0.034834

0.000000

9.00

1.250

0.058084

0.059004

-0.000920

9.00

2.500

0.099238

0.099935

-0.000697

9.00

3.750

0.171749

0.169216

0.002533

9.00

5.000

0.291398

0.286319

0.005079

9.00

6.250

0.494642

0.483465

0.011177

9.00

7.500

0.840301

0.811637

0.028664

9.00

8.750

1.400928

1.341382

0.059546

9.00

10.000

2.194166

2.133163

0.061002
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Table 16.1:

( Continued)

9.00

11.250

3.198719

3.141593

0.057126

9.00

12.500

4.196678

4.150022

0.046656

9.00

13.750

4.974121

4.941803

0.032318

9.00

15.000

5.491899

5.471548

0.020351

9.00

16.250

5.812024

5.799721

0.012303

9.00

17.500

6.004191

5.996866

0.007325

9.00

18.750

6.118307

6.113969

0.004337

9.00

20.000

6.185814

6.183251

0.002563

9.00

21.250

6.225695

6.224181

0.001514

9.00

22.500

6.249244

6.248351

0.000893

9.00

23.750

6.263146

6.262621

0.000526

9.00

25.000

6.271353

6.271045

0.000308

9.00

26.250

6.276195

6.276018

0.000177

9.00

27.500

6.279050

6.278954

0.000096

9.00

28.750

6.280730

6.280688

0.000042

9.00

30.000

6.281711

6.281711

0.000000

ncall = 530

unexpected sensitivity generally precludes any statement a priori about the expected accuracy or required computation of a solution to a PDE system. In other words, each PDE problem should be treated as “new” and experimental. 

The plotted solutions follow in figs 16.2 and 16.3. Figure 16.2 demonstrates that the boundary values at  x = 0, 30 vary with  t  according to eqns. (16.2) and (16.4) and as programmed in pde 1.m. Also, the traveling wave solution produced by eq. (16.2) with the argument  kx + µ t + θ0 is clear. 

In summary, we have again discussed the numerical solution of a PDE second order in  t (eq. (16.1)) by restating the PDE as two PDEs first order in  t (eq. (16.5)). As noted in Chapter 15, the reformulation of an  nth-order PDE as  n  PDEs first order in an initial value independent variable ( t) is straightforward and permits the use of an integrator such as ode15s for first-order ODEs. 

Appendix

The  sine-Gordon  equation is so-called as a result of a wordplay on the similar  Klein–Gordon equation. It occurs in the study of geometrical surfaces of constant Gaussian curvature, quantum mechanics field theory, and other areas of physics and engineering. It has been found to be particularly useful in applications that give rise to solitons, for example, in the study of fiber optics. 
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Sine-Gordon equation; lines – numerical; o – analytical

7

6

5

4

 t)

( x,  u  1 3

2

1

00

5

10

15

20

25

30

 x

FIGURE 16.2: 2D plot comparing the numerical and analytical solutions of eq. (16.1) (eqs. (16.5); top to bottom for t = 0, 3, 6, 9). 

There are two common forms used in studies of relativity. The first form is defined in laboratory coordinates 1 by

∂2 u

∂2 u

∂

− α2

= β sin ( u)

(16.6)

 t 2

∂ x 2

This is a simplified form of eq. (16.1), where we have set λ = 1. 

Following Drazon and Johnson [2], eq. (16.6) can be transformed to an alternative form by changing the variables, 

 x = α(η − ξ ), 

 t = η + ξ

(16.7)

After some algebraic manipulation, we arrive at the second form in  light-cone coordinates 2

∂2 u

∂ξ∂η = β sin( u)

(16.8)

1 Laboratory coordinates  apply where the observer is located within an inertial laboratory. 

2A  light cone  is formed by all past and future events that can be connected by light rays. 
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Sine-Gordon equation
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FIGURE 16.3: 3D plot of the numerical solution of eq. (16.1) (eqs. (16.5)). 

We now seek an analytical solution (adapted from [3]) and start by introducing the following new variables

∂ u

 w =

(16.9)

∂ξ

 z = β cos ( u) − 1

(16.10)

from which we note that

∂2 w

∂

∂ u

∂ u

[β

[β

∂ξ∂η −  w −  wz = ∂ξ

sin ( u)] − ∂ξ − ∂ξ cos( u)−1] = 0

(16.11)

∂ w  2

2 z +  z 2 +

∂η

− β2 + 1 = 2 [β cos ( u) − 1] + [β cos ( u) − 1]2

+ β2 sin2 ( u) − β2 + 1 = 0

(16.12)

1 ∂2 w

On rearranging eq. (16.11), we obtain  z =  w ∂ξ∂η −1, which we use to eliminate  z  from

eq. (16.12) and obtain the following new equation in  w, 

∂2 !2

 w

∂ w  2  w 2

∂ξ∂η

+

∂η

− β2 w 2 = 0

(16.13)

“20-ch16-293-308-9780123846525” — 2010/12/10 — 18:51 — page 304 — #12

304

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

We now make a further transformation by letting  v =  w 2, which gives



! 

∂ v  2  ∂ v  2

∂ v   ∂ v 

∂2 v v

∂η

∂ξ

− 4 ∂η

∂ξ

∂η∂ξ

∂2 !2

 v

∂ v  2

+ 4

 v 2

 v 3

∂η∂ξ

+ 4 ∂η

− 16β2 v 4 = 0. 

(16.14)

Now, while this equation may seem more complex than the above equations, it does readily yield the following traveling wave solution by application of the tanh method, 

" 

ξ

!#



! 

 k 2 + βη

ξ k 2 + βη

 v = 4 k 2 1 − tanh2

= 4 k 2sech

, 

(16.15)

 k

 k

where  k  is an arbitrary constant. We continue with the tanh form as it leads to a more compact final solution. 

√

By applying the inverse transformation  w =  v, we obtain

v

u

ξ

! 

u

 k 2 + βη

 w = 2 k t1 − tanh2

(16.16)

 k

1 ∂2 w

and, again using  z =  w ∂ξ∂η −1 from eq. (16.11), we obtain ξ

! 

 k 2 + βη

 z = 2β tanh2

− β − 1

(16.17)

 k

Applying the inverse transformation

 u = arccos [( z + 1) /β] , 

(16.18)

we obtain

" 

ξ

! 

#

 k 2 + βη

 u = arccos 2 tanh2

− 1

(16.19)

 k

This is a traveling wave solution to the sine-Gordon equation in  light cone coordinates, i.e., to eq. (16.8). 

Finally, we use the inverse transformation ξ = (− x/α +  t) /2, η = ( x/α +  t) /2 to obtain the desired result, i.e., 

" 

(

! 

#

− x/α +  t)  k 2 + β ( x/α +  t)

 u = arccos 2 tanh2

− 1 . 

(16.20)

2 k

Equation (16.20) is a soliton traveling wave solution to the sine-Gordon eq. (16.6) in  laboratory coordinates—see Fig. 16.4 where we have used the following parameter values: α = 1, 

[image: Image 20]
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FIGURE 16.4: 3D plot of solution to sine-Gordon equation. Note, the wave peak value is  u max = π. 
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FIGURE 16.5: Plot illustrating the discontinuous first derivative at the peak of the  peakon  solution to the sine-Gordon equation. 

β = 1, and  k = 2. However, it is not the familiar  kink, or  hump-type soliton, it is a  peakon. 

A peakon (peaked soliton) is a special type of soliton which has a discontinuity in the first derivative at its peak—see Fig. 16.5. Peakons with a negative peak are sometimes referred to as  antipeakons. It is, of course, not the only solution as there are an infinity of traveling wave solutions to this famous equation. 

A Maple code that performs the above calculations and generates animated and 3D

plots is given in Listing 16.5. 

># Sine-Gordon Equation

# Attempt at Malfliet's tanh solution

# See: Solitons: An Introduction, Drazin and Johnson, p110-112

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)): alias(v=v(x,t)):

alias(w=w(x,t)): alias(z=z(x,t)):

># Sine-Gordon equation in laboratory coordinates
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pde:=diff(v,t,t)-alphaˆ2*diff(v,x,x)-beta*sin(v)=0; 

># Apply a transformation to convert to 'light cone' co-ordinates

tr0:={v=W(xi,eta),x=alpha*(-xi+eta),t=(xi+eta)}; 

pde0:=simplify(dchange(tr0,pde,[W(xi,eta),xi,eta]),symbolic); 

># Revert back to original variables

tr1:={W(xi,eta)=v,xi=x,eta=t}; 

pde0:=simplify(dchange(tr1,pde0,[v,x,t]),symbolic); 

># Now apply a change of variables:

z:=beta*cos(v)-1; w:=diff(v,x); unassign('w','z'); 

># From w, z and pde0 we obtain

eqn1:=simplify(diff(w,x,t)-w-w*z=0); 

eqn2:=2*z+zˆ2+diff(w,t)ˆ2-betaˆ2+1=0; 

># solve for z using eqn1

solZ:=solve(eqn1,z); 

># Apply solZ and cross multiply eqn2

# to eliminate denominators

z:=solZ; 

pde1:=numer(lhs(eqn2))*denom(rhs(eqn2))=0; 

># Apply a transformation to facilitate use of tanh method

tr3:={w=uˆ(1/2)}; 

pde1:=simplify(dchange(tr3,pde1,[u]),symbolic); 

>read("tanhMethod.txt"); 

># Calculate solution for transformed problem

intFlag:=0: # No integration of U(xi) needed! 

M:=2; # Set order of approximation

infoLevOut:=0; 

tanhMethod(M,pde1,intFlag,infoLevOut); 

># Apply inverse transformation: w=sqrt(u)

w:=simplify(rhs(sol[3])ˆ(1/2),symbolic); 

># Calculate z

z:=simplify(diff(w,x,t)/w-1,symbolic); 

># Apply the inverse transform to obtain

# solution in 'light cone' co-ordinates

sol1:=v=arccos((z+1)/beta); 

># Test solution in 'light cone' co-ordinates

simplify(pdetest(sol1,pde0),symbolic); 

># Animate the final solution

# NOTE: u(max)=3.142 (pi)

sol1a:=subs({beta=1,k=2,x0=0},rhs(sol1)); 

animate(sol1a,x=-5..25, t=0..80, 

numpoints=300,frames=50, axes=framed, 

labels=["x","u"],thickness=3, 

title="Sine-Gordon Equation\n Light cone Co-ordinates", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Transform solution back to original co-ordinates

sol2:=v=subs({x=(t-x/alpha)/2,t=(t+x/alpha)/2},rhs(sol1)); 

># Test final solution in original pde

simplify(subs(sol2,pde),symbolic); 

># Animate the final solution

# NOTE: u(max)=3.142 (pi)

sol2a:=subs({alpha=1,beta=1,k=2,x0=0},rhs(sol2)); 

animate(sol2a,x=-5..25, t=0..30, 

numpoints=300,frames=50, axes=framed, 
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labels=["x","u"],thickness=3, 

title="Sine-Gordon Equation\n Laboratory Co-ordinates", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot

plot3d(sol2a,x=-5..25, t=0..30,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[-114,52],grid=[100,100], 

style=patchnogrid,shading=Z, 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

title="Sine-Gordon Equation\n Laboratory Co-ordinates", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Now show that the solution is actually a 'Peakon', 

# a peaked soliton, which is a solitary wave with

# discontinuous first derivative

diffSol2:=diff(rhs(sol2),x); 

diffSol2:=subs({alpha=1,beta=1,k=2,x0=0,t=0},diffSol2); 

plot(diffSol2,x=-10..10, axes=framed, 

numpoints=200,labels=["x","du/dx"],thickness=3, 

title="Sine-Gordon Equation - First Derivative

Laboratory Co-ordinates", 

labeldirections=[HORIZONTAL,VERTICAL], 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 16.5: Maple listing to derive traveling wave solutions to the sine-Gordon equation using the tanhMethod() procedure. 

Traveling  wave  solutions can also be found to the sine-Gordon equation using the exp  and/or the  Riccati  methods, but the Maple listings are not included here in order to save space. However, the associated files are included with the downloads provided for this book. 
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Mth-Order Klein–Gordon Equation

We start with a PDE which we term the  mth-order Klein–Gordon equation. 

∂2 u

∂2 u

∂

+ α

+ β u + γ  um =  f ( x,  t)

(17.1)

 t 2

∂ x 2

Equation (17.1) is a generalization of the  quadratic Klein–Gordon  equation with  m = 2 and the  cubic Klein–Gordon equation  with  m = 3 ([3]). We will consider the method of lines (MOL) numerical solution of eq. (17.1) for three cases:

Case 1: Linear PDE (α = − c 2, β = γ =  f ( x,  t) = 0) For Case 1, α = − c 2, β = γ =  f ( x,  t) = 0, and eq. (17.1) reduces to the  linear wave equation

∂2 u

∂2 u

(17.2)

∂

=  c 2

 t 2

∂ x 2

In the subsequent programming, we consider the analytical solution

1

 ua( x,  t) = sin( x) cos( ct) =

[sin( x +  ct) + sin( x −  ct)] ,  t ≥ 0

(17.3)

2

Note that eq. (17.3) is a superposition of two traveling waves moving left and right with velocity  c. Equation (17.3) is therefore a special case of the  d’Alembert solution  to the wave equation [2]. The verification of this solution follows directly from substitution in

eq. (17.2)

Term in eq. (17.2)

Term from eq. (17.3)

∂2 u

∂

− c 2 sin( x) cos( ct)

 t 2

∂2 u

− c 2

 c 2 sin( x) cos( ct)

∂ x 2

Sum of terms

Sum of terms

0

0

For the ICs of eq. (17.2), we use eq. (17.3) at  t = 0

∂ u( x,  t = 0)

 u( x,  t = 0) = sin( x), 

∂

= 0

(17.4a,4b)

 t
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and the Dirichlet BCs, 

 u( x =  xl,  t) =  fb 1( t),  u( x =  xu,  t) =  fb 2( t) (17.5a,5b)

where  xl,  xu  and  fb 1,  fb 2 (two BC functions) are specified for three cases. 

In Case 1, we consider two subcases: (1) Case 1.1 - basic scale in  x  defined as 0 ≤  x ≤ 2π

and (2) Case 1.2 - expanded scale in  x  defined as −3π ≤  x ≤ 4π. Case 1.1 illustrates the oscillatory properties of eq. (17.3) in  x  and  t (the first form of this solution, sin( x) cos( ct)). 

Case 1.2 illustrates the traveling wave properties of eq. (17.3) in  x  and  t (the second form of this solution, 1 [sin( x

2

+  ct) + sin( x −  ct)]). In the Matlab routines that follow, Case 1.1 is selected by using ncase=11, and Case 1.2 is selected by using ncase=12. The details of these two subcases will be apparent from the Matlab code and the associated numerical and plotted output. 

The ODE routine for eqns. (17.1)–(17.5) is as follows. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Klein-

% Gordon equation

%

global xl xu x n ncall ncase

%

% Model parameters

global c c2 m r a b g

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs

if(ncase==11)

u1(1)=ua_11(x(1),t); 

u1(n)=ua_11(x(n),t); 

end

if(ncase==12)

u1(1)=ua_12(x(1),t); 

u1(n)=ua_12(x(n),t); 

end

if(ncase==2)

u1(1)=ua_2(x(1),t); 

u1(n)=ua_2(x(n),t); 

end

if(ncase==3)

u1(1)=ua_3(x(1),t); 

u1(n)=ua_3(x(n),t); 

end

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 
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u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% PDE

if(ncase==11)|(ncase==12)

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=c2*u1xx(i); 

end

end

if(ncase==2)|(ncase==3)

for i=2:n-1

u1t(i)=u2(i); 

if(ncase==2)f=f_2(x(i),t);end

if(ncase==3)f=0;end

u2t(i)=-a*u1xx(i)-b*u1(i)-g*u1(i)ˆm+f; 

end

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 17.1: Function pde 1.m for eq. (17.1) (ncase=11,12,2,3). 

We can note the following details about pde 1.m:

. Thefunctionandsomeglobalvariablesarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Klein-

% Gordon equation

%

global xl xu x n ncall ncase

%

% Model parameters

global c c2 m r a b g

. Sinceeq.(17.1)andthespecialcase, eq.(17.2), aresecondorderin t,the1DODE

dependent variable vector of length 2 n, u, is transferred to two 1D arrays each of length n, u1,u2 to facilitate the numerical solution of eqns. (17.1) and (17.2). 

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end
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Again, as for the case of the hyperbolic Liouville equation of Chapter 15 and the sine-Gordon equation of Chapter 16, the use of two 1D arrays is a standard procedure for accommodating a PDE second order in  t  such as eqns. (17.1) and (17.2). In the case of eq. (17.1), this gives

∂ u 1

∂ =  u 2

(17.6a)

 t

∂ u 2

∂2 u 1

∂ = −α

− β u 1 − γ  um

 t

∂ x 2

1 +  f ( x,  t)

(17.6b)

As indicated in Chapters 15 and 16, this procedure of working with two first-order PDEs in  t  permits the use of library integrators for first-order ODEs such as ode45 and ode15s. Also, the procedure is quite general that it can usually be applied to any second-order PDE of interest. 

. FoursetsofBCsareprogrammedforncase=11,12,2,3(ncaseissetinthemain

program discussed subsequently). 

%

% BCs

if(ncase==11)

u1(1)=ua_11(x(1),t); 

u1(n)=ua_11(x(n),t); 

end

if(ncase==12)

u1(1)=ua_12(x(1),t); 

u1(n)=ua_12(x(n),t); 

end

if(ncase==2)

u1(1)=ua_2(x(1),t); 

u1(n)=ua_2(x(n),t); 

end

if(ncase==3)

u1(1)=ua_3(x(1),t); 

u1(n)=ua_3(x(n),t); 

end

Each of these cases will be considered, one at a time. To start, we consider ncase=11. 

Also, the analytical solutions in functions ua 11.m,ua 12.m,ua 2.m,ua 3.m (discussed subsequently) are used to set the BCs. 

. Inallofthecases,  Dirichletboundaryconditions(eqns.(17.5a,5b))arespecifiedsince the corresponding analytical solutions are used to define the BCs. 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

Note that the Dirichlet BCs are designated through nl=1, nu=1. Also, the first derivative in  x, u1x(1)=0, is not actually used with the Dirichlet BCs but is included
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only to satisfy the Matlab requirement that all of the input (RHS) arguments of a function, such as u1x in dss044, must be defined numerically. The second derivative from dss044, u1xx, can then be used in the programming of eqns. (17.1) (or eqns. 

(17.5a,5b)) and (17.2). 

. Equations(17.1)and(17.2)arethenprogrammedinaforloop.Thecodeisselected according to ncase=11,12 (for eq. (17.2)) or ncase=2,3 (for eq. (17.1)). 

%

% PDE

if(ncase==11)|(ncase==12)

for i=2:n-1

u1t(i)=u2(i); 

u2t(i)=c2*u1xx(i); 

end

end

if(ncase==2)|(ncase==3)

for i=2:n-1

u1t(i)=u2(i); 

if(ncase==2)f=f_2(x(i),t);end

if(ncase==3)f=0;end

u2t(i)=-a*u1xx(i)-b*u1(i)-g*u1(i)ˆm+f; 

end

end

u1t(1)=0; u1t(n)=0; 

u2t(1)=0; u2t(n)=0; 

Note also that the derivatives in  t  of the ODEs at the boundaries (i=1,n) are zeroed to ensure the boundary values remain at the values prescribed by the analytical

solutions. Specifically, the coding of eqns. (17.6a,6b) is u1t(i)=u2(i); 

u2t(i)=c2*u1xx(i); 

where  c 2= c2 ( c  is set in the main program and passed to pde 1.m as a global variable). 

. Thetwoderivativevectors,u1t,u2t,arethenreturnedtoasinglederivativevectorut

to be returned from pde 1.m with a transpose included to meet the requirement of ode15s. Also, the counter for pde 1.m is incremented. 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

In summary, pde 1.m receives the dependent variable vector u as an input (along with the independent variable t) and returns the derivative vector ut. 
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We now consider the other routines for ncase=11. After looking at the output for this case, we continue the discussion for ncase=12,2,3. The IC function, inital 1.m, defines initial values for u1 and u2 in eqns. (17.6a,6b). 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Klein-

% Gordon equation

%

% Parameters shared with other routines

global xl xu x n ncall ncase

%

% Spatial domain and initial condition

if(ncase==11)

xl=0; 

xu=2*pi; 

n=101; 

end

if(ncase==12)

xl=-3*pi; 

xu= 4*pi; 

n=151; 

end

if(ncase==2)

xl=0; 

xu=1; 

n=51; 

end

if(ncase==3)

xl=0; 

xu=1; 

n=51; 

end

dx=(xu-xl)/(n-1); 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

if(ncase==11)

u1(i)= ua_11(x(i),t0); 

u2(i)=uat_11(x(i),t0); 

end

if(ncase==12)

u1(i)= ua_12(x(i),t0); 

u2(i)=uat_12(x(i),t0); 

end

if(ncase==2)

u1(i)= ua_2(x(i),t0); 

u2(i)=uat_2(x(i),t0); 

end

if(ncase==3)

u1(i)= ua_3(x(i),t0); 

u2(i)=uat_3(x(i),t0); 

end
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u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

LISTING 17.2: IC function inital 1.m for eqns. (17.1) and (17.2) with  t = 0 (for ncase=11,12,2,3). 

We can note the following points about inital 1.m:

. Thefunctionandsomeglobalvariablesaredefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Klein-

% Gordon equation

%

% Parameters shared with other routines

global xl xu x n ncall ncase

. Consideringfirstncase=11,inital 1.mdefinesagridin x of101pointsfor0≤ x≤2π. 

%

% Spatial domain and initial condition

if(ncase==11)

xl=0; 

xu=2*pi; 

n=101; 

end

. Intheforloop,theinitialvaluesofu1foreq.(17.6a)areprovidedbythefunction ua 11.m (which has the programming for the first form of the solution in eq. (17.3), 

sin( x) cos( ct)); the initial values of u2 for eq. (17.6b) are provided by the function uat 11.m (which has the programming for the derivative of eq. (17.3)). 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

if(ncase==11)

u1(i)= ua_11(x(i),t0); 

u2(i)=uat_11(x(i),t0); 

end

. All2 n initialconditionvaluesarereturnedfrominital 1.mthroughthevectoru0to the main program pde 1 main.m discussed subsequently. 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

Function ua 11.m is a straightforward implementation of the first form of the solution of eq. (17.3), sin( x) cos( ct). 

function uanal=ua_11(x,t)

%

% Function uanal computes the exact solution of the Klein-Gordon
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% equation for comparison with the numerical solution

%

% Model parameters

global c

%

% Analytical solution

uanal=sin(x)*cos(c*t); 

LISTING 17.3: Function ua 11.m for the analytical solution of eq. (17.3). 

Function uat 11.m is a straightforward implementation of the derivative (in  t) of the first form of the solution of eq. (17.3), sin( x) cos( ct). 

function uanal=uat_11(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the Klein-Gordon equation

%

% Model parameters

global c

%

% Analytical solution derivative

uanal=-c*sin(x)*sin(c*t); 

LISTING 17.4: Function uat 11.m for the derivative of the analytical solution of eq. (17.3). 

Main program pde 1 main.m accommodates the cases ncase=11,12,3,4 for

eqns. (17.1) and (17.2). This main program closely parallels pde 1 main.m of Chapter 15

and therefore only a few features are discussed here. 

. Theparametersaresetforncase=11,12,3,4. 

%

% Model parameters

global c c2 m r a b g B K

%

% Select case

ncase=11; 

% ncase=12; 

% ncase=2; 

% ncase=3; 

%

% Model parameters

if(ncase==11)|(ncase==12)c=1;c2=cˆ2;end

if(ncase==2)m=2;r=3;a=-1;b=0;g=1;end

if(ncase==3)m=3;a=-2.5;b=1;g=1.5;c=0.5; 

B=(b/g)ˆ0.5;K=(-b/(2*(a+cˆ2)))ˆ0.5;end

. Therangein t  variesforncase=11,12,3,4. 

%

% Independent variable for ODE integration

if(ncase==11)

tf=pi; tout=[t0:pi/3:tf]'; nout=4; ncall=0; 

end

if(ncase==12)
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tf=2*pi; tout=[t0:pi:tf]'; nout=3; ncall=0; 

end

if(ncase==2)

tf=1; tout=[t0:0.25:tf]'; nout=5; ncall=0; 

end

if(ncase==3)

tf=4; tout=[t0:1:tf]'; nout=5; ncall=0; 

end

. Thedifferenceinthenumericalandanalyticalsolutionsiscomputedaserr(it,i)

and displayed. These solutions are then plotted in 2D by plot and the numerical solution is plotted in 3D by surf. 

%

% Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 

for i=1:5:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

% Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

xlabel('x')

ylabel('u1(x,t)')

if(ncase==11)

title('Klein-Gordon equation; ncase = 11; solid - numerical; 

o - analytical')

elseif(ncase==12)

title('Klein-Gordon equation; ncase = 12; solid - numerical; 

o - analytical')

elseif(ncase==2)

title('Klein-Gordon equation; ncase = 2; solid - numerical; 

o - analytical')

elseif(ncase==3)

title('Klein-Gordon equation; ncase = 3; solid - numerical; 

o - analytical')

end

figure(3)

surf(x,t,u1)

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('Klein-Gordon equation'); 

jpattern num 1.m for the sparse matrix integration of the ODEs is not listed here since it is the same as for Chapters 15 and 16. The ODE Jacobian map from jpattern num 1.m indicates two bands for PDEs (17.6) as expected, and the map is therefore not included in the discussion of the output that follows. 

A portion of the numerical output from pde 1 main.m is listed in Table 17.1. 
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Table 17.1:

Selected numerical output from the main program

pde 1 main.m for ncase=11

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

0.314

0.309017

0.309017

0.000000

0.00

0.628

0.587785

0.587785

0.000000

0.00

0.942

0.809017

0.809017

0.000000

0.00

1.257

0.951057

0.951057

0.000000

0.00

1.571

1.000000

1.000000

0.000000

0.00

1.885

0.951057

0.951057

0.000000

0.00

2.199

0.809017

0.809017

0.000000

0.00

2.513

0.587785

0.587785

0.000000

0.00

2.827

0.309017

0.309017

0.000000

0.00

3.142

−0.000000

−0.000000

0.000000

0.00

3.456

−0.309017

−0.309017

0.000000

0.00

3.770

−0.587785

−0.587785

0.000000

0.00

4.084

−0.809017

−0.809017

0.000000

0.00

4.398

−0.951057

−0.951057

0.000000

0.00

4.712

−1.000000

−1.000000

0.000000

0.00

5.027

−0.951057

−0.951057

0.000000

0.00

5.341

−0.809017

−0.809017

0.000000

0.00

5.655

−0.587785

−0.587785

0.000000

0.00

5.969

−0.309017

−0.309017

0.000000

0.00

6.283

0.000000

0.000000

0.000000

. 

. 

. 

. 

. 

. 

output for t = 1.05, 2.09 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

3.14

0.000

0.000000

0.000000

0.000000

3.14

0.314

−0.309016

−0.309017

0.000001

3.14

0.628

−0.587783

−0.587785

0.000002

3.14

0.942

−0.809014

−0.809017

0.000003

3.14

1.257

−0.951055

−0.951057

0.000002

3.14

1.571

−0.999997

−1.000000

0.000003

3.14

1.885

−0.951054

−0.951057

0.000002

3.14

2.199

−0.809015

−0.809017

0.000002

3.14

2.513

−0.587784

−0.587785

0.000001

3.14

2.827

−0.309016

−0.309017

0.000001

3.14

3.142

−0.000000

0.000000

−0.000000

3.14

3.456

0.309016

0.309017

−0.000001

3.14

3.770

0.587784

0.587785

−0.000001
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Table 17.1:

( Continued)

3.14

4.084

0.809015

0.809017

−0.000002

3.14

4.398

0.951054

0.951057

−0.000002

3.14

4.712

0.999997

1.000000

−0.000003

3.14

5.027

0.951055

0.951057

−0.000002

3.14

5.341

0.809014

0.809017

−0.000003

3.14

5.655

0.587783

0.587785

−0.000002

3.14

5.969

0.309016

0.309017

−0.000001

3.14

6.283

−0.000000

−0.000000

0.000000

ncall=341

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected(sincebothsolutions are produced by ua 11.m with  t = 0), and the difference between the two solutions at t = 3.14 is better than five figures. 

. Thecomputationaleffortismodest,withncall = 341.Theplottedsolutionsfollow. 

Figures 17.1 and 17.2 demonstrate that the solution is simply a standing sin wave in  x from eq. (17.3) (starting from  t = 0) according to sin( x) cos( ct). 

The preceding discussion was for ncase=11, that is, the linear wave equation (17.2)

over the domain 0 ≤  x ≤ 2π. We now consider ncase=12, which is again for eq. (17.2), but with the  x  domain extended to −3π ≤  x ≤ 4π in order to demonstrate the traveling wave solution of eq. (17.3), 1 [sin( x

2

+  ct) + sin( x −  ct)]. This solution indicates the IC ( t = 0) is sin( x), which then separates into two sine functions, 1 sin( x

2

+  ct) traveling right to left with

velocity  c  and 1 sin( x

2

−  ct) traveling left to right with velocity  c ( c > 0). 

Also, initially, only the positive portion of sin( x) is used (0 ≤  x ≤ π) in order to simplify the plotted output; the negative portion of the sin( x) could easily be included through a minor modification of ua 12.m and uat 12.m to 0 ≤  x ≤ 2π. 

Here we reproduce only the code for ncase=12 indicated in Listings 17.1 and 17.2. The BCs for ncase=12 in pde 1.m are provided by ua 12.m (refer to Listing 17.1 for the complete listing of pde 1.m). 

if(ncase==12)

u1(1)=ua_12(x(1),t); 

u1(n)=ua_12(x(n),t); 

end

The programming of eq. (17.2) in pde 1.m is the same for ncase=11,12 (since the PDE is the same). 

%

% PDE

if(ncase==11)|(ncase==12)

for i=2:n-1
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Klein–Gordon equation; ncase = 11; lines – numerical; o – analytical
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FIGURE 17.1: 2D plot comparing the numerical and analytical solutions of eq. (17.2) (for  t = 0, π/3, 2π/3, 3π/3). 

u1t(i)=u2(i); 

u2t(i)=c2*u1xx(i); 

end

end

In inital 1.m for ncase=12, we use −3π ≤  x ≤ 4π on 151 points (refer to Listing 17.2

for the complete listing of inital 1.m). 

if(ncase==12)

xl=-3*pi; 

xu= 4*pi; 

n=151; 

end

The increase in the number of grid points ( n = 101 for ncase=11 to  n = 151 for ncase=12) was determined by trial and error to gain an improved spatial resolution of the numerical solution. 

ua 12.m and uat 12.m are then used to set the ICs (with t0=0 from pde 1 main.m). 

if(ncase==12)

u1(i)= ua_12(x(i),t0); 
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Klein–Gordon equation
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FIGURE 17.2: 3D plot of the numerical solution of eq. (17.2). 

u2(i)=uat_12(x(i),t0); 

end

Function ua 12.m is a straightforward implementation of the second form of the solution of eq. (17.3), 1 [sin( x

2

+  ct) + sin( x −  ct)]. 

function uanal=ua_12(x,t)

%

% Function uanal computes the exact solution of the Klein-Gordon

% equation for comparison with the numerical solution

%

% Model parameters

global c

%

% Analytical solution

if((x-c*t>0)&(x-c*t)<=pi)

sin1=sin(x-c*t); 

else

sin1=0; 

end

if((x+c*t>0)&(x+c*t)<=pi)

sin2=sin(x+c*t); 

else
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sin2=0; 

end

uanal=0.5*(sin1+sin2); 

LISTING 17.5: Function ua 12.m for the analytical solution of eq. (17.3). 

Note that here we use only the positive portion of the sin( x) function, e.g., 0 ≤  x ≤ π for t = 0; this restriction is imposed only to simplify the plotted solution. 

Function ua 12.m is a straightforward implementation of the derivative (in  t) of the second form of the solution of eq. (17.3), 1 [sin( x

2

+  ct) + sin( x −  ct)]. 

function uanal=uat_12(x,t)

%

% Function uanal computes the derivative of the exact solution of the

% Klein-Gordon equation

%

% Model parameters

global c

%

% Analytical solution

if((x-c*t>0)&(x-c*t)<=pi)

cos1=-c*cos(x-c*t); 

else

cos1=0; 

end

if((x+c*t>0)&(x+c*t)<=pi)

cos2=c*cos(x+c*t); 

else

cos2=0; 

end

uanal=0.5*(cos1+cos2); 

LISTING 17.6: Function uat 12.m for the derivative of the analytical solution of eq. (17.3). 

The additional coding in the main program pde 1 main.m follows. The velocity  c  in

eq. (17.2) is the same for ncase=11,12. 

%

% Model parameters

if(ncase==11)|(ncase==12)c=1;c2=cˆ2;end

 t  is defined over the interval 0 ≤  t ≤ 2π for three outputs in the numerical and plotted output at  t = 0, π, 2π. 

if(ncase==12)

tf=2*pi; tout=[t0:pi:tf]'; nout=3; ncall=0; 

end

The analytical solution is included in the output by using ua 12.m (for a comparison of the numerical and analytical solutions). 

if(ncase==12)

u1(it,1)=ua_12(x(1),t(it)); 
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u1(it,n)=ua_12(x(n),t(it)); 

for i=1:n

u1_anal(it,i)=ua_12(x(i),t(it)); 

err(it,i)=u1(it,i)-u1_anal(it,i); 

end

end

The plot of the numerical and analytical solutions includes a label for the ncase=12. 

elseif(ncase==12)

title('Klein-Gordon equation; ncase = 12; solid - numerical; o - analytical')

A portion of the numerical output from pde 1 main.m is listed in Table 17.2. 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 6.28 is about three figures. 

. Thecomputationaleffortismodest,withncall = 840. 

The plotted solutions follow in Figs. 17.3 and 17.4. Figure 17.3 demonstrates that the solution for the IC ( t = 0) is sin( x), which then separates into two sine functions, 1 sin( x 2

+

 ct) traveling right to left with velocity  c  and 1 sin( x

2

−  ct) traveling left to right with velocity  c. 

To summarize, we assumed eq. (17.3) as a solution to eq. (17.2), then demonstrated that it satisfies eq. (17.2) by direct substitution. We also developed two ICs from eq. (17.3)

by setting  t = 0 and two BCs from eq. (17.3) by setting  xl = 0,  xu = 2π (ncase=11) or  xl =

−3π,  xu = 4π with  ua( x,  t = 0) = 0,  x < 0,  x > π (ncase=12). 

To extend this procedure, we could assume a solution to the PDE that will in general not be correct (it was correct in the case of eq. (17.3), which satisfies eq. (17.2), but this was possible mainly because eq. (17.2) is quite straightforward, i.e, it is linear with constant coefficients and  f ( x,  t) = 0). If we substitute the assumed solution into the PDE, a  residual function  will result that can then be included in the PDE to make the assumed solution exact. Also, the required ICs and BCs can then be obtained from the assumed solution. 

The advantage of this approach as we shall demonstrate with the next case (ncase=2) is that it can in principle be  applied to any PDE (linear and nonlinear)  to obtain an analytical solution to a related PDE; this  method of residual functions  can also be  applied to systems of PDEs. 

Case 2: Nonlinear PDE (ncase=2,  m = 2,  r = 3, α = −1, β = 0, γ = 1, f ( x,  t) 6= 0)

We now consider ncase=2 for eq. (17.1) with  m = 2,  r = 3, α = −1, β = 0, γ = 1 (which is nonlinear for  m  6= 1). To apply the method of assumed solutions or residual functions, we start with an assumed solution to eq. (17.1)

 ua( x,  t) =  xntn, 0 ≤  x ≤ 1;  t ≥ 0

(17.7)
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Table 17.2:

Selected numerical output from the main program

pde 1 main.m for ncase=12

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−9.425

0.000000

0.000000

0.000000

0.00

−8.692

0.000000

0.000000

0.000000

0.00

−7.959

0.000000

0.000000

0.000000

0.00

−7.226

0.000000

0.000000

0.000000

0.00

−6.493

0.000000

0.000000

0.000000

0.00

−5.760

0.000000

0.000000

0.000000

0.00

−5.027

0.000000

0.000000

0.000000

0.00

−4.294

0.000000

0.000000

0.000000

0.00

−3.560

0.000000

0.000000

0.000000

0.00

−2.827

0.000000

0.000000

0.000000

0.00

−2.094

0.000000

0.000000

0.000000

0.00

−1.361

0.000000

0.000000

0.000000

0.00

−0.628

0.000000

0.000000

0.000000

0.00

0.105

0.104528

0.104528

0.000000

0.00

0.838

0.743145

0.743145

0.000000

0.00

1.571

1.000000

1.000000

0.000000

0.00

2.304

0.743145

0.743145

0.000000

0.00

3.037

0.104528

0.104528

0.000000

0.00

3.770

0.000000

0.000000

0.000000

0.00

4.503

0.000000

0.000000

0.000000

0.00

5.236

0.000000

0.000000

0.000000

0.00

5.969

0.000000

0.000000

0.000000

0.00

6.702

0.000000

0.000000

0.000000

0.00

7.435

0.000000

0.000000

0.000000

0.00

8.168

0.000000

0.000000

0.000000

0.00

8.901

0.000000

0.000000

0.000000

0.00

9.634

0.000000

0.000000

0.000000

0.00

10.367

0.000000

0.000000

0.000000

0.00

11.100

0.000000

0.000000

0.000000

0.00

11.833

0.000000

0.000000

0.000000

0.00

12.566

0.000000

0.000000

0.000000

. 

. 

. 

. 

. 

. 

output for t = 3.14 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

6.28

−9.425

0.000000

0.000000

0.000000

6.28

−8.692

0.000000

0.000000

0.000000

6.28

−7.959

0.000000

0.000000

0.000000

6.28

−7.226

0.000017

0.000000

0.000017

6.28

−6.493

−0.000793

0.000000

−0.000793
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Table 17.2:

( Continued)

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

6.28

−5.760

0.258354

0.250000

0.008354

6.28

−5.027

0.474751

0.475528

−0.000777

6.28

−4.294

0.458250

0.456773

0.001477

6.28

−3.560

0.200618

0.203368

−0.002750

6.28

−2.827

−0.009532

0.000000

−0.009532

6.28

−2.094

0.001694

0.000000

0.001694

6.28

−1.361

−0.000967

0.000000

−0.000967

6.28

−0.628

0.002879

0.000000

0.002879

6.28

0.105

0.000210

0.000000

0.000210

6.28

0.838

0.000868

0.000000

0.000868

6.28

1.571

0.002498

0.000000

0.002498

6.28

2.304

0.000868

0.000000

0.000868

6.28

3.037

0.000210

0.000000

0.000210

6.28

3.770

0.002879

0.000000

0.002879

6.28

4.503

−0.000967

0.000000

−0.000967

6.28

5.236

0.001694

0.000000

0.001694

6.28

5.969

−0.009532

0.000000

−0.009532

6.28

6.702

0.200618

0.203368

−0.002750

6.28

7.435

0.458250

0.456773

0.001477

6.28

8.168

0.474751

0.475528

−0.000777

6.28

8.901

0.258354

0.250000

0.008354

6.28

9.634

−0.000793

0.000000

−0.000793

6.28

10.367

0.000017

0.000000

0.000017

6.28

11.100

0.000000

0.000000

0.000000

6.28

11.833

0.000000

0.000000

0.000000

6.28

12.566

0.000000

0.000000

0.000000

ncall = 840

The choice of eq. (17.7) is motivated primarily by the ease of computing analytically the partial derivatives in eq. (17.1). Note that this choice is  not  motivated by a physical application although this may be a possibility. In other words, here we assume a solution for ease of use in deriving an analytical solution. Also, we take  n > 2 so that the secondorder partial derivatives in eq. (17.1) evaluated according to eq. (17.7) are not constant (or zero) and therefore provides a relatively rigorous test of the numerical calculation of these second-order derivatives. 

Substitution of eq. (17.7) in eq. (17.1) gives Term in eq. (17.1)

Term from eq. (17.7)

∂2 u

 n( n

∂

− 1) xntn−2

 t 2

∂2 u

+α ∂

+α n( n − 1) xn−2 tn

 x 2

+β u

+β xntn
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Klein–Gordon equation; ncase = 12; lines – numerical; o – analytical
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FIGURE 17.3: 2D plot comparing the numerical and analytical solutions of eq. (17.2) (eq. (17.3) for  t = 0, π, 2π). 

+γ  um

+γ  xnmtnm

=  f ( x,  t)

=  n( n − 1) xntn−2

+α n( n − 1) xn−2 tn

+β xntn + γ  xnmtnm

Thus, the residual function (also termed an  inhomogeneous function  or  nonhomogeneous function), defined for eq. (17.1) so that eq. (17.7) is an exact solution, becomes f ( x,  t) =  n( n − 1) xntn−2 + α n( n − 1) xn−2 tn + β xntn + γ  xnmtnm (17.8)

We now consider an MOL solution to eqns. (17.1) and (17.8), with ICs and BCs provided by eq. (17.7). Again, we reproduce only the code for ncase=2 indicated in Listings 17.1 and

17.2. The BCs for ncase=2 in pde 1.m are provided by ua 2.m (refer to Listing 17.1 for the complete listing of pde 1.m). 

if(ncase==2)

u1(1)=ua_2(x(1),t); 

u1(n)=ua_2(x(n),t); 

end

[image: Image 21]
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Klein–Gordon equation
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FIGURE 17.4: 3D plot of the numerical solution of eq. (17.2). 

The programming of eq. (17.1) in pde 1.m is

if(ncase==2)|(ncase==3)

for i=2:n-1

u1t(i)=u2(i); 

if(ncase==2)f=f_2(x(i),t);end

if(ncase==3)f=0;end

u2t(i)=-a*u1xx(i)-b*u1(i)-g*u1(i)ˆm+f; 

end

end

Since eq. (17.1) is also integrated for ncase=3, the coding for ncase=2 and ncase=3 is the same (and follows directly from eq. (17.1)). 

Function f 2.m for the residual function of eq. (17.8) called in pde 1.m (for ncase=2) is straightforward (note that  n  in eq. (17.7) is programmed as r since n is the number of grid points). 

function rhs=f_2(x,t)

%

% Function rhs computes the inhomogenenous RHS function of

% the mth order Klein-Gordon equation

%

% Model parameters
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global c c2 m r a b g

%

% Residual function

rhs=r*(r-1)*xˆr*tˆ(r-2)... 

+a*r*(r-1)*xˆ(r-2)*tˆr... 

+b*xˆr*tˆr+g*xˆ(r*m)*tˆ(r*m); 

LISTING 17.7: Function f 2.m for the residual function of eq. (17.8). 

In inital 1.m for ncase=2, we use 0 ≤  x ≤ 1 on 51 points (refer to Listing 17.2 for the complete listing of inital 1.m). 

if(ncase==2)

xl=0; 

xu=1; 

n=51; 

end

Because the solution to eq. (17.1) for ncase=2 is relatively smooth, only  n = 51 grid points were required to achieve a numerical solution of acceptable accuracy. ua 2.m and uat 2.m are then used to set the ICs (with t0=0 from pde 1 main.m). 

if(ncase==2)

u1(i)= ua_2(x(i),t0); 

u2(i)=uat_2(x(i),t0); 

end

ua 2.m is a straightforward implementation of eq. (17.7). 

function uanal=ua_2(x,t)

%

% Function uanal computes the exact solution of the mth order

% Klein-Gordon equation for comparison with the numerical solution

%

% Model parameters


global c c2 m r

%

% Analytical solution

uanal=xˆr*tˆr; 

LISTING 17.8: Function ua 2.m for the analytical solution of eq. (17.7). 

Function uat 2.m is a straightforward implementation of the derivative of the solution (in  t) of eq. (17.7). 

function uanal=uat_2(x,t)

%

% Function uanal computes the derivative of the exact solution of the

% mth order Klein-Gordon equation

%

% Model parameters

global c c2 m r

%

% Derivative of the analytical solution

uanal=xˆr*r*tˆ(r-1); 

LISTING 17.9: Function uat 2.m for the derivative of the analytical solution of eq. (17.7). 
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The additional coding in the main program pde 1 main.m follows. 

%

% Model parameters

if(ncase==2)m=2;r=3;a=-1;b=0;g=1;end

 t  is defined over the interval 0 ≤  t ≤ 1 for five outputs in the numerical and plotted output at  t = 0, 0.25, 0.5, 0.75, 1. 

if(ncase==2)

tf=1; tout=[t0:0.25:tf]'; nout=5; ncall=0; 

end

The analytical solution is included in the output by using ua 2.m (for a comparison of the numerical and analytical solutions). 

if(ncase==2)

u1(it,1)=ua_2(x(1),t(it)); 

u1(it,n)=ua_2(x(n),t(it)); 

for i=1:n

u1_anal(it,i)=ua_2(x(i),t(it)); 

err(it,i)=u1(it,i)-u1_anal(it,i); 

end

end

The plot of the numerical and analytical solutions includes a label for ncase=2. 

elseif(ncase==2)

title('Klein-Gordon equation; ncase = 2; solid - numerical; o - analytical')

A portion of the numerical output from pde 1 main.m is listed in Table 17.3. 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 1 is about five figures. 

. Thecomputationaleffortismodest,withncall = 285. 

The plotted solutions follow in Figs. 17.5 and 17.6. Figure (17.5) indicates the close agreement between the numerical and analytical solutions of Table 17.3, which is due in part to the smooth assumed solution of eq. (17.7). The use of an assumed solution (such as

eq. (17.7)) demonstrates that if a residual function, such as  f ( x,  t) in eq. (17.1), is included in the PDE, then the derivation of an exact solution based on the assumed solution is straightforward, even for nonlinear PDEs (such as eq. (17.1) with  m  6= 1). 

Case 3: Nonlinear PDE (ncase=3,  m = 3, α = −2.5, β = 1, γ = 1.5,  c = 0.5, f ( x,  t) = 0)

Finally, we proceed to ncase=3 with  m = 3, α = −2.5, β = 1, γ = 1.5,  c = 0.5, using an analytical solution to eq. (17.1) with  f ( x,  t) = 0 ([1]). This is an example of the  cubic Klein–Gordon
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Table 17.3:

Selected numerical output from the main program

pde 1 main.m for ncase=2

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

0.100

0.000000

0.000000

0.000000

0.00

0.200

0.000000

0.000000

0.000000

0.00

0.300

0.000000

0.000000

0.000000

0.00

0.400

0.000000

0.000000

0.000000

0.00

0.500

0.000000

0.000000

0.000000

0.00

0.600

0.000000

0.000000

0.000000

0.00

0.700

0.000000

0.000000

0.000000

0.00

0.800

0.000000

0.000000

0.000000

0.00

0.900

0.000000

0.000000

0.000000

0.00

1.000

0.000000

0.000000

0.000000

. 

. 

. 

. 

. 

. 

output for t=0.25, 0.5, 0.75 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

1.00

0.000

0.000000

0.000000

0.000000

1.00

0.100

0.000999

0.001000

−0.000001

1.00

0.200

0.008000

0.008000

−0.000000

1.00

0.300

0.027000

0.027000

0.000000

1.00

0.400

0.063998

0.064000

−0.000002

1.00

0.500

0.125000

0.125000

−0.000000

1.00

0.600

0.216000

0.216000

0.000000

1.00

0.700

0.342999

0.343000

−0.000001

1.00

0.800

0.512000

0.512000

−0.000000

1.00

0.900

0.729000

0.729000

0.000000

1.00

1.000

1.000000

1.000000

0.000000

ncall = 285

 equation (with  m = 3 in eq. (17.1)). 

∂2 u

∂2 u

∂

+ α

+ β u + γ  u 3 =  f ( x,  t)

(17.9)

 t 2

∂ x 2

An analytical solution ([1]) is

 ua( x,  t) =  B  tan[ K ( x +  ct)], 0 ≤  x ≤ 1

(17.10)

q

q

for the particular values α

β

= −2.5, β = 1, γ = 1.5,  c = 0.5 with  B =

−β

γ ,  K =

2(α+ c 2)
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Klein–Gordon equation; ncase = 2; lines – numerical; o – analytical
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FIGURE 17.5: 2D plot comparing the numerical and analytical solutions of eq. (17.1) for  t = 0, 0.25, 0.5, 0.75, 1

(bottom to top). 

We now consider an MOL solution to eq. (17.9) with ICs and BCs provided by eq. (17.10). 

Again, we reproduce only the code for ncase=3 indicated in Listings 17.1 and 17.2. The BCs for ncase=3 in pde 1.m are provided by ua 3.m (refer to Listing 17.1 for the complete listing of pde 1.m). 

if(ncase==3)

u1(1)=ua_3(x(1),t); 

u1(n)=ua_3(x(n),t); 

end

The programming of eq. (17.9) in pde 1.m is

if(ncase==2)|(ncase==3)

for i=2:n-1

u1t(i)=u2(i); 

if(ncase==2)f=f_2(x(i),t);end

if(ncase==3)f=0;end

u2t(i)=-a*u1xx(i)-b*u1(i)-g*u1(i)ˆm+f; 

end

end

“21-ch17-309-338-9780123846525” — 2010/12/10 — 18:55 — page 332 — #24

332

TRAVELING WAVE ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Klein–Gordon equation

1

0.8

0.6

 t)

( x,  u  1 0.4

0.2

0

1

0.8

1

0.6

0.8

0.6

0.4

 t

0.4

0.2

 x

0.2

0

0

FIGURE 17.6: 3D plot of the numerical solution of eq. (17.1). 

Since eq. (17.1) is also integrated for ncase=3, the coding for ncase=2 (  f ( x,  t) from

eq. (17.8)) and ncase=3 (  f ( x,  t) = 0) is the same (and follows directly from eqns. (17.1) and

(17.9)). 

In inital 1.m for ncase=3, we use 0 ≤  x ≤ 1 on 51 points (refer to Listing 17.2 for the complete listing of inital 1.m). 

if(ncase==3)

xl=0; 

xu=1; 

n=51; 

end

Because the solution, eq. (17.10), for ncase=3 is relatively smooth, only  n = 51 grid points were required to achieve a numerical solution of acceptable accuracy. ua 3.m and uat 3.m are then used to set the ICs (with t0=0 from pde 1 main.m). 

if(ncase==3)

u1(i)= ua_3(x(i),t0); 

u2(i)=uat_3(x(i),t0); 

end

ua 3.m is a straightforward implementation of eq. (17.10). 
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function uanal=ua_3(x,t)

%

% Function uanal computes the exact solution of the cubic

% Klein-Gordon equation for comparison with the numerical solution

%

% Model parameters

global a b g B K c

%

% Analytical solution

uanal=B*tan(K*(x+c*t)); 

LISTING 17.10: Function ua 2.m for the analytical solution of eq. (17.10). 

Function uat 3.m is a straightforward implementation of the derivative of the solution (in  t) of eq. (17.10). 

function uanal=uat_3(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the cubic Klein-Gordon equation

%

% Model parameters

global c c2 m r a b g B K

%

% Analytical solution derivative

uanal=B*sec(K*(x+c*t))ˆ2*(K*c); 

LISTING 17.11: Function uat 3.m for the derivative of the analytical solution of eq. (17.10). 

The additional coding in the main program pde 1 main.m follows. 

%

% Model parameters

if(ncase==3)m=3;a=-2.5;b=1;g=1.5;c=0.5; 

B=(b/g)ˆ0.5;K=(-b/(2*(a+cˆ2)))ˆ0.5;end

 t  is defined over the interval 0 ≤  t ≤ 4 for five outputs in the numerical and plotted output at  t = 0, 1, 2, 3, 4. 

if(ncase==3)

tf=4; tout=[t0:1:tf]'; nout=5; ncall=0; 

end

The analytical solution, eq. (17.10), is included in the output by using ua 3.m (for a comparison of the numerical and analytical solutions). 

if(ncase==3)

u1(it,1)=ua_3(x(1),t(it)); 

u1(it,n)=ua_3(x(n),t(it)); 

for i=1:n

u1_anal(it,i)=ua_3(x(i),t(it)); 

err(it,i)=u1(it,i)-u1_anal(it,i); 

end

end

The plot of the numerical and analytical solutions includes a label for ncase=3. 
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elseif(ncase==3)

title('Klein-Gordon equation; ncase = 3; solid - numerical; o - analytical')

end

A portion of the numerical output from pde 1 main.m is listed in Table 17.4. 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 4 is about five figures. 

Table 17.4:

Selected numerical output from the main program

pde 1 main.m for ncase=3

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

0.000

0.000000

0.000000

0.000000

0.00

0.100

0.038519

0.038519

0.000000

0.00

0.200

0.077209

0.077209

0.000000

0.00

0.300

0.116246

0.116246

0.000000

0.00

0.400

0.155811

0.155811

0.000000

0.00

0.500

0.196095

0.196095

0.000000

0.00

0.600

0.237302

0.237302

0.000000

0.00

0.700

0.279655

0.279655

0.000000

0.00

0.800

0.323399

0.323399

0.000000

0.00

0.900

0.368809

0.368809

0.000000

0.00

1.000

0.416196

0.416196

0.000000

. 

. 

. 

. 

. 

. 

output for t = 1, 2, 3 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

4.00

0.000

1.124594

1.124594

0.000000

4.00

0.100

1.243940

1.243940

−0.000000

4.00

0.200

1.381770

1.381769

0.000000

4.00

0.300

1.543516

1.543515

0.000001

4.00

0.400

1.736934

1.736935

−0.000002

4.00

0.500

1.973506

1.973508

−0.000002

4.00

0.600

2.270974

2.270974

−0.000000

4.00

0.700

2.658292

2.658293

−0.000001

4.00

0.800

3.186174

3.186178

−0.000004

4.00

0.900

3.952267

3.952272

−0.000005

4.00

1.000

5.171787

5.171787

0.000000

ncall = 1581
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. Thecomputationaleffortisabovepreviousvalues(butstillmodest),with

ncall = 1581. 

. The variation in ncall from 285 (ncase = 2) to 1581 (ncase = 3) indicates that the computational effort can vary substantially, even within apparently minor

variations in the same problem; thus, for ncase = 2,3, the PDE is the same

(eq. (17.1)), and only  m  changed (from  m = 2 to  m = 3), and the ICs and BCs were different. Generally, the expected computational effort for a particular PDE is essentially unpredictable. 

The plotted solutions follow in Figs. 17.7 and 17.8. Figure (17.7) indicates the close agreement between the numerical and analytical solutions of Table 17.3, which is due in part to the smooth solution of eq. (17.10). 

In summary, we have again discussed the numerical solution of a PDE second order in  t (eq. (17.1)) by restating the PDE as two PDEs first order in  t (eq. (17.6)). As noted in Chapters 15 and 16, the reformulation of an  n th-order PDE as  n  PDEs first order in an initial value independent variable ( t) is straightforward and permits the use of an integrator such as ode15s for first-order ODEs. 

Klein–Gordon equation; ncase = 3; lines – numerical; o – analytical

6

5

4

 t)

( x, 3

 u  1

2

1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

FIGURE 17.7: 2D plot comparing the numerical and analytical solutions of eq. (17.9) for  t = 0, 1, 2, 3, 4 (bottom to top). 
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Klein–Gordon equation
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FIGURE 17.8: 3D plot of the numerical solution of eq. (17.9). 

Appendix

We conclude this chapter with a traveling wave analysis of eq. (17.1). The conditions for Case 1  reduce the problem to that of a  linear wave, the solution of which is well known, and therefore will not be detailed here. The conditions for  Case 2  are such that (intentionally) we do not know how to obtain an analytical solution. Thus, we are left with  Case 3

conditions, which reduce the problem to

∂2 u

∂2 u

∂

+ α

+ β u + γ  u 3 = 0

(17.11)

 t 2

∂ x 2

where we have set  f ( x) = 0 and  m = 3, but have not set values for α, β, or γ . 

By inspection, we see that application of the transformation  u( x,  t) =  U(ξ ), where ξ =

 k( x −  ct), reduces the PDE of eq. (17.11) to the ODE

 c 2 k 2 + α k 2  d 2  U + β U + γ  U 3 = 0

(17.12)

 d ξ 2
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which can, in principle, be solved by the separation of variables method. However, if we separate the variables and integrate twice, i.e., 

Z Z

− dUdU

1

Z Z

 d ξ  d ξ , 

(17.13)

β

=

 U + γ  U 3

 c 2 k 2 + α k 2

we obtain

 U  ln β + γ  U 2

γ  U  1

 U  ln( U)

ξ2

√

√

+  K  ξ , 

(17.14)

2β

+ arctan

βγ

βγ −

β

= 2  c 2 k 2 −α k 2

where  K  is an arbitrary constant. While eq. (17.14) can be simplified slightly, it cannot be readily solved for  U, so we abandon this analytical approach. However, use of the built-in Maple function dsolve finds the solution

 q



s

−2β

 c 2 + α (γ + 2β)ξ

 U(ξ) =  C 2

JacobiSN 

√

+  C 1

−γ − 2β + γ  C 22

2  c 2 + α  k

s

#

−2β

 C 2γ

, √

, 

−γ − 2β + γ  C 22

− (γ + 2β) γ

where  C 1 and  C 2 are arbitrary constants, and JacobiSN represents the elliptic function sn( z,  m), with 0 <  m < 1 being the elliptic modulus. We will not discuss this solution here, but more details can be found from the Maple help system and, also, some additional discussion on this form of solution can be found in [4]. Instead, we will obtain a traveling wave solution using our Maple procedure tanhMethod. 

After setting up the problem in Maple, we call tanhMethod and set the information level variable infoLevOut equal to 2 in order to provide some additional information at certain steps in the calculation. The  tanh method  is successful and finds seven solutions, three of which are trivial. We choose the following solution

√ √

! 

2 β ( x +  x

1

 u

0 −  ct)

=  i pβ tanh

√ , 

(17.15)

p

2 α +  c 2

γ

which on conversion to the  tan  function and rearranging becomes

s β

s

β

! 

 u =

 i

( x

. 

(17.16)

γ tan

+  x 0 −  ct)

2 α +  c 2

If we bring  i  under the square-root sign, set  x 0 = 0 and define  c = − c, eq. (17.16) matches the Case 3 solution, eq. (17.10). 

The Maple code that derives solution eq. (17.16) and generates an animation and 3D

plot is included under Listing 17.12. 
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> # Klein-Gordon Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools): with(plots):

> alias(u=u(x,t)):unprotect(gamma); 

> pde1:=diff(u,t,t)+alpha*diff(u,x,x)+beta*u+gamma*uˆm=f(x,t); 

> pde1:=subs({m=3,f(x,t)=0},pde1); 

> read("tanhMethod.txt"); 

intFlag:=0: # No integration of U(xi) needed ! 

M:=2; # Set order of approximation

infoLevOut:=2; 

tanhMethod(M,pde1,intFlag, infoLevOut); 

> zz:=convert(rhs(sol[7]),tan); 

> x0:=0;alpha:=-2.5;beta:=1;gamma:=1.5;c:=-0.5; 

> animate(zz,x=0..1, t=0..4,axes=framed, 

thickness=3,frames=50,numpoints=100, 

axesfont=[TIMES, ROMAN, 16],titlefont=[TIMES, ROMAN, 16], 

labelfont=[TIMES, ROMAN, 16], 

title="Klein-Gordon Equation"); 

> plot3d(zz,x=0..1,t=0..4,axes='framed', 

labels=["x","t","u(x,t)"], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

orientation=[-132,77],grid=[100,100], style=patchnogrid, 

axesfont=[TIMES, ROMAN, 16],titlefont=[TIMES, ROMAN, 16], 

labelfont=[TIMES, ROMAN, 16], 

shading=Z,title="Klein-Gordon Equation")

LISTING 17.12: Maple code used to generate analytical solutions to the the Klein–Gordon equation (Case 3), an animation and 3D plot. 

Application of the Maple riccatiMethod procedure finds 7 × 6 traveling wave solutions (recall that the Riccati method finds 6 different forms for each solution), including

eqns. (17.10 and 17.16). However, the code is not included here, but it is included with the downloads for this book. 
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Several variants of the  Boussinesq equation  have been reported and discussed in the literature. Here we consider the particular equation [3, 6]

∂2 u

∂2 u

∂4 u

∂2  u 2

(18.1)

∂

=

−

−

 t 2

∂ x 2

∂ x 4

∂ x 2

with the reported analytical solution [8]

" p

#

1 −  c 2

 ua( x,  t) = (3/2)(1 −  c 2)sech2

( x −  ct)

2

" p

#

1 −  c 2

= (3/2)(1 −  c 2)cosh−2

( x −  ct)

(18.2)

2

where  c  is an arbitrary constant. We note that eq. (18.2) is a traveling wave solution from the argument  x −  ct. 

An initial condition (IC) follows directly from eq. (18.2) with  t = 0. Since eq. (18.1) is second order in  t, we require a second IC, which follows from the derivative (in  t) of

eq. (18.2). 

∂

" p

#

" p

#

 ua( x,  t)

1 −  c 2

1

(

−  c 2

 x

cosh−3

( x

(18.3)

∂

= (3/2) c(1 −  c 2)3/2 sinh

−  ct)

−  ct)

 t

2

2

Equation (18.1) is fourth order in  x, and the four required boundary conditions (BCs) are taken as

 u( x =  xl,  t) =  u( x =  xu,  t) = 0

(18.4a,4b)

∂2 u( x =  xl,  t)

∂2 u( x =  xu,  t)

∂

=

= 0

(18.4c,4d)

 x 2

∂ x 2

Equations (18.1) to (18.4) constitute the problem of interest and a method of lines (MOL) numerical solution is produced with the following Matlab routines. 

The ODE routine for eqs. (18.1)–(18.4) is as follows. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Boussinesq

% equation

%
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global xl xu x n ncall

%

% Model parameters

global c ncase

%

if(ncase==1)ut=pde_1a(t,u);end

if(ncase==2)ut=pde_1b(t,u);end

if(ncase==3)ut=pde_1c(t,u);end

if(ncase==4)ut=pde_1d(t,u);end

LISTING 18.1: Function pde 1.m for eq. (18.1) (ncase=1,2,3,4). 

We can note the following details about pde 1.m:

. Thefunctionandsomeglobalvariablesarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

. Sincefourcaseswillbeconsideredinthesubsequentdiscussion,thesecasesare

programmed as a series of self-contained routines. This arrangement is offered as a way to investigate various mathematical and MOL formulations in a separated and clearly defined format (rather than, for example, including all of the cases in pde 1.m as in Listing 17.1). 

%

if(ncase==1)ut=pde_1a(t,u);end

if(ncase==2)ut=pde_1b(t,u);end

if(ncase==3)ut=pde_1c(t,u);end

if(ncase==4)ut=pde_1d(t,u);end

Then we can discuss the individual cases by examining the four routines pde 1a.m (for ncase=1) to pde 1d.m (for ncase=4). To select a particular case, ncase is set to one of the values 1,2,3,4 in the main program, pde 1 main.m, discussed subsequently and passed as a global variable. 

Each of the four cases will be considered, one at a time. To start, we consider pde 1a.m for ncase=1. 

∂4 u

Case 1: Direct Calculation of

via u4x11p

∂ x 4

function ut=pde_1a(t,u)

%

% Function pde_1a computes the t derivative vector for the Boussinesq

% equation

%
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global xl xu x n ncall

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% BCs at x = -15,25 (not required by u4x11p)

% u1xx(1)=0; 

% u1xx(n)=0; 

%

% u1xxxx

u1xxxx=u4x11p(xl,xu,n,u1); 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 

u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1a

ncall=ncall+1; 

LISTING 18.1a: Function pde 1a.m for eq. (18.1) (ncase=1). 

We can note the following details about pde 1a.m:

. Thefunctionandsomeglobalvariablesaredefined. 

function ut=pde_1a(t,u)

%

% Function pde_1a computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall
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. Asintheprecedingchapters(e.g.,16and17)forPDEssecondorderin t,thesolution vector u is placed in two arrays u1,u2. 

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

u1,u2 are dependent variables first order in  t, so a library ODE integrator such as ode45 or ode15s can be used to move the equations through  t. 

. 

∂2 u

BCs (18.4a) and (18.4b) are programmed and the second derivative is computed

∂ x 2

with dss044 (with  Dirichlet  BCs designated by nl=1,nu=1). u1x(1)=0 is not actually used in the calculations in dss044 but rather is programmed to meet the Matlab requirement that input arguments to functions must be given a value. 

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

. ∂4 u  iscomputedbyu4x11p.m(theoriginofthisroutineisdiscussedinChapter12and

∂ x 4

in further detail next). 

%

% BCs at x = -15,25 (not required by u4x11p)

% u1xx(1)=0; 

% u1xx(n)=0; 

%

% u1xxxx

u1xxxx=u4x11p(xl,xu,n,u1); 

BCs (18.4c) and (18.4d) are not used (note the comments) since they are not required by u4x11p.m. 

. 

∂2

The nonlinear term

 u 2 in eq. (18.1) is computed by first squaring the solution

∂ x 2

( u 2 = u1s), then taking its second derivative with dss044 (note that u1 is the RHS

dependent variable  u  of eq. (18.1)). 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 
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u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

∂2

The nonlinear term of eq. (18.1), 

 u 2, is placed in array u1sxx. 

∂ x 2

. Equation(18.1)isprogrammedastwofirst-orderPDEsin t. 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

. Thetwoderivativevectors,u1t,u2tareplacedinasinglederivativevectoruttobe

returned from pde 1a.m and integrated by ode45 or ode15s in the main program

pde 1 main.m; a transpose is required by these integrators (so that ut is a column vector). 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1a

ncall=ncall+1; 

The number of calls to pde 1a.m is incremented for display at the end of the solution in the main program pde 1 main.m (note that ncall is a global variable). 

In summary, pde 1a.m receives the dependent variable vector u as an input (along with the independent variable t) and returns the derivative vector ut. 

∂4 u

u4x11p.m for the calculation of

based on an 11-point FD approximation follows. 

∂ x 4

function uxxxx=u4x11p(xl,xu,n,u)

%

% Function u4x11p computes the derivative uxxxx based on 11 points

global ncall CC

%

% For the first call to u4x11p (ncall = 0), compute the FD weighting

% coefficients

%

if(ncall==0)

%

%

Default points, equally spaced grid

for i=1:11

x(i)=i-1; 

end

%
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%

Compute FD approximation for up to and including the mth

%

derivative

m=4; 

%

%

Number of grid points

ng=11; 

nd=ng; 

%

%

Compute weighting coefficients for finite differences

%

over ip points

for ip=1:ng

%

%

Weighting coefficients in array CC

CC(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

%

% Display coefficients for derivatives of orders 0, 1, 2, 3, 4

% for i=1:m+1

%

% Display coefficients for derivative of order 4

i=m+1; 

fprintf('\n\n Numerical Derivative Order: %d',i-1); 

fprintf('\n=============================\n'); 

%

%

Coefficients in u5x11p.m with m = 4, ng = 11

%

CC(:,:,i)*8

CC(6,:,i)*8

% end

%

% Calculation of FD weights complete

end

%

% uxxx

% Spatial increment

dx=(xu-xl)/(n-1); 

rdx4=1.0/dxˆ4; 

for i=1:n

%

%

At the left end, uxxxx = 0

if(i<6)uxxxx(i)=0.0; 

%

%

At the right end, uxxxx = 0

elseif(i>(n-5))uxxxx(i)=0.0; 

%

%

Interior points

else

uxxxx(i)=rdx4*... 

(CC(6,1,5)*u(i-5)... 

+CC(6,2,5)*u(i-4)... 

+CC(6,3,5)*u(i-3)... 

+CC(6,4,5)*u(i-2)... 

+CC(6,5,5)*u(i-1)... 

+CC(6,6,5)*u(i

)... 

+CC(6,7,5)*u(i+1)... 
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+CC(6,8,5)*u(i+2)... 

+CC(6,9,5)*u(i+3)... 

+CC(6,10,5)*u(i+4)... 

+CC(6,11,5)*u(i+5)); 

end

end

∂4 u

LISTING 18.2: Function u4x11p.m for

in eq. (18.1). 

∂ x 4

The origin of routines for the calculation of higher order derivatives in  x  based on function weights.m is discussed in some detail in Chapter 12. Here we note just a few details

∂4 u

specific to the calculation of

on 11-points. 

∂ x 4

. Afterthefunctionisdefined,the11-pointFDcomputationalgridisdefinedduringthe

first call to u4x11p. 

function uxxxx=u4x11p(xl,xu,n,u)

. 

. 

. 

%

% For the first call to u4x11p (ncall = 0), compute the FD weighting

% coefficients

%

if(ncall==0)

%

%

Default points, equally spaced grid

for i=1:11

x(i)=i-1; 

end

%

%

Compute FD approximation for up to and including the mth

%

derivative

m=4; 

A fourth-order derivative is then specified. 

. Thefinitedifference(FD)weightingcoefficientsarecomputedbyweightsoverthe

11-point grid (ng=11). 

for ip=1:ng

%

%

Weighting coefficients in array CC

CC(ip,:,:)=weights(x(ip),x,ng-1,nd-1,m); 

end

. Thefourthderivative,uxxxx,iscomputedover n gridpoints( n isaninputparameter to u4x11p). 

%

% uxxx

% Spatial increment

dx=(xu-xl)/(n-1); 

rdx4=1.0/dxˆ4; 
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for i=1:n

%

%

At the left end, uxxxx = 0

if(i<6)uxxxx(i)=0.0; 

%

%

At the right end, uxxxx = 0

elseif(i>(n-5))uxxxx(i)=0.0; 

%

%

Interior points

else

uxxxx(i)=rdx4*... 

(CC(6,1,5)*u(i-5)... 

+CC(6,2,5)*u(i-4)... 

+CC(6,3,5)*u(i-3)... 

+CC(6,4,5)*u(i-2)... 

+CC(6,5,5)*u(i-1)... 

+CC(6,6,5)*u(i

)... 

+CC(6,7,5)*u(i+1)... 

+CC(6,8,5)*u(i+2)... 

+CC(6,9,5)*u(i+3)... 

+CC(6,10,5)*u(i+4)... 

+CC(6,11,5)*u(i+5)); 

end

Note that for the grid points i=1,2,3,4,5 and i=n-4,n-3,n-2,n-1,n, uxxxx is set to zero. This was done to minimize any spurious end effects at x=xl,xu, but this also means u4x11p can be used only when the solution satisfies this condition. Generally, this requires that the solution at the end points does not move away from its IC values for  t > 0, and the derivatives in  x  of the solution are effectively zero. These conditions are satisfied by the solution of eq. (18.2) as will be observed in the computed output. 

We now consider the other routines for the case ncase=1. After looking at the output for this case, we continue the discussion for ncase=2,3,4. The IC function inital 1.m uses one of four initial condition routines, inital 1a.m, inital 1b.m, inital 1c.m, and inital 1d.m for ncase = 1,2,3, and 4, respectively. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the Boussinesq

% equation

%

% Parameters shared with other routines

global ncase

%

if(ncase==1)u0=inital_1a(t0);end

if(ncase==2)u0=inital_1b(t0);end

if(ncase==3)u0=inital_1c(t0);end

if(ncase==4)u0=inital_1d(t0);end

LISTING 18.3a: IC function inital 1.m from eq. (18.2) with  t = 0 (for ncase=1,2,3,4). 

For ncase=1, function inital 1a.m is used. 
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function u0=inital_1a(t0)

%

% Function inital_1a sets the initial condition for the Boussinesq

% equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

xl=-15; 

xu= 25; 

n=101; 

dx=(xu-xl)/(n-1); 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u1(i)= ua_1a(x(i),t0); 

u2(i)=uat_1a(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

LISTING 18.3b: IC function inital 1a.m from eq. (18.2) with  t = 0 (for ncase=1). 

We can note the following details about inital 1a.m:

. Thefunctionandsomeglobalvariablesaredefined. 

function u0=inital_1a(t0)

%

% Function inital_1a sets the initial condition for the Boussinesq

% equation

%

% Parameters shared with other routines

global xl xu x n ncall

. Agridin x of101pointsisdefinedfor−15≤ x≤25. 

%

% Spatial domain and initial condition

xl=-15; 

xu= 25; 

n=101; 

dx=(xu-xl)/(n-1); 

. Intheforloop,theinitialvaluesofu1foreq.(18.1)areprovidedbythefunction ua 1a.m (which has the programming of eq. (18.2) with  t = 0); the initial values of u2

are provided by the function uat 1a.m (which has the programming for the derivative of eq. (18.2) with respect to  t, eq. (18.3)). 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 
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u1(i)= ua_1a(x(i),t0); 

u2(i)=uat_1a(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

All 2 n  initial condition values are returned from inital 1a.m through the vector u0 to the main program pde 1 main.m discussed subsequently. 

Three other IC functions inital 1b.m, inital 1c.m, and inital 1d.m called by inital 1.m in Listing 18.3a are the same as inital 1a.m in Listing 18.3b and are therefore not listed in the subsequent discussion. The repetition of these IC routines is done in order to make the coding for each case (ncase=1,2,3,4) self-contained as explained previously. 

Of course, if the ICs change from case to case, this can easily be included in the four IC

routines. 

Function ua 1a.m is a straightforward implementation of eq. (18.2). 

function uanal=ua_1a(x,t)

%

% Function uanal computes the exact solution of the Boussinesq equation

% for comparison with the numerical solution

%

% Model parameters

global c

%

% Analytical solution

xi=(1-cˆ2)ˆ(0.5)/2*(x-c*t); 

uanal=(3/2)*(1-cˆ2)*(cosh(xi))ˆ(-2); 

LISTING 18.4a: Function ua 1a.m for the analytical solution of eq. (18.2). 

Function uat 1a.m is a straightforward implementation of the derivative (in  t) of

eq. (18.3). 

function uanal=uat_1a(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the Boussinesq equation

%

% Model parameters

global c

%

% Analytical solution derivative

xi=(1-cˆ2)ˆ(0.5)/2*(x-c*t); 

uanal=(3/2)*c*(1-cˆ2)ˆ(3/2)*sinh(xi)*(cosh(xi))ˆ(-3); 

LISTING 18.4b: Function uat 1a.m for the derivative of the analytical solution, eq. (18.3). 

Again, three other IC functions ua 1b.m, ua 1c.m, and ua 1d.m called by inital 1b.m, inital 1c.m, and inital 1d.m, respectively, are identical to ua 1.m in Listing 18.4a, and three functions uat 1b.m, uat 1c.m, and uat 1d.m called by inital 1b.m, inital 1c.m, and inital 1d.m, respectively, are identical to uat 1a.m in Listing 18.4b. The repetition of
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these IC routines is also done in order to make the coding for each case (ncase=1,2,3,4) self-contained as explained previously. If the analytical solution changes from case to case, this can easily be included in the four analytical solution routines and the four derivative routines. 

Main program pde 1 main.m accommodates the cases ncase=1,2,3,4 for eqs. (18.1)–

(18.4). This main program closely parallels pde 1 main.m of Chapter 15 and therefore only a few features are discussed here. 

. Theparametersaresetforncase=1,2,3,4. 

%

% Model parameters

global c ncase

%

% Select case

% ncase=1; 

% ncase=2; 

% ncase=3; 

ncase=4; 

%

% Model parameters

if(ncase==1)c=0.9;end

if(ncase==2)c=0.9;end

if(ncase==3)c=0.9;end

if(ncase==4)c=0.9;end

. Therangein t  isthesameforncase=1,2,3,4,buttherangecouldeasilybechanged from case to case. 

%

% Independent variable for ODE integration

if(ncase==1)

tf=9;tout=[t0:3:tf]';nout=4;ncall=0; 

end

if(ncase==2)

tf=9;tout=[t0:3:tf]';nout=4;ncall=0; 

end

if(ncase==3)

tf=9;tout=[t0:3:tf]';nout=4;ncall=0; 

end

if(ncase==4)

tf=9;tout=[t0:3:tf]';nout=4;ncall=0; 

end

. Thedifferenceinthenumericalandanalyticalsolutionsiscomputedaserr(it,i)

and displayed. These solutions are then plotted in 2D by plot, and the numerical solution is plotted in 3D by surf. 

%

%

Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 
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for i=1:5:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

%

Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

xlabel('x')

ylabel('u1(x,t)')

if(ncase==1)

title('Boussinesq equation; ncase = 1, t = 0, 3, 6, 9; 

solid - num; o - anal')

end

if(ncase==2)

title('Boussinesq equation; ncase = 2, t = 0, 3, 6, 9; 

solid - num; o - anal')

end

if(ncase==3)

title('Boussinesq equation; ncase = 3, t = 0, 3, 6, 9; 

solid - num; o - anal')

end

if(ncase==4)

title('Boussinesq equation; ncase = 4, t = 0, 3, 6, 9; 

solid - num; o - anal')

end

figure(3)

surf(x,t,u1)

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('Boussinesq equation'); 

jpattern num 1.m for the sparse matrix integration of the ODEs is not listed here since it is the same as for Chapters 15–17. The ODE Jacobian map from jpattern num 1.m indicates two bands for PDE (18.1) as expected, and the map is therefore not included in the discussion of the output that follows. 

A portion of the numerical output from pde 1 main.m is listed in Table 18.1a for ncase=1. 

We can note the following points about this output:

. TheFDweightingcoefficientsproducedbyweights.maredisplayedfirst(thesecan

easily be suppressed by a small change in u4x11p.m). Also, these are the coefficients only for the  center point  in the spatial grid, i.e., grid point 6 in the total of 11 points (recall that uxxxx is set to zero in u4x11p.m for  i = 1, 2, 3, 4, 5 and  i = 7, 8, 9, 10, 11 in the basic grid; also, the center coefficients are used throughout the grid with more than 11 points, such as  n = 101 in the preceding example for ncase=1, except at these 10

end values that are zeroed). 

. AnotherwaytovisualizetheFDweightingcoefficientsistonotethatthecoefficients

are symmetric about the  n = 6 value 101.9333, which is to be expected for a FD

approximation of a derivative of even order (in this case, fourth order). 
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Table 18.1a:

Selected numerical output from the main program pde 1 main.m

for ncase=1

Numerical Derivative Order: 4


=============================

ans =

Columns 1 through 9

−0.0434

0.6672

−5.1524

27.7397

−74.1778

101.9333

−74.1778

27.7397

−5.1524

Columns 10 through 11

0.6672

−0.0434

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−15.000

0.001645

0.001645

0.000000

0.00

−13.000

0.003917

0.003917

0.000000

0.00

−11.000

0.009277

0.009277

0.000000

0.00

−9.000

0.021685

0.021685

0.000000

0.00

−7.000

0.049162

0.049162

0.000000

0.00

−5.000

0.104066

0.104066

0.000000

0.00

−3.000

0.191019

0.191019

0.000000

0.00

−1.000

0.271880

0.271880

0.000000

0.00

1.000

0.271880

0.271880

0.000000

0.00

3.000

0.191019

0.191019

0.000000

0.00

5.000

0.104066

0.104066

0.000000

0.00

7.000

0.049162

0.049162

0.000000

0.00

9.000

0.021685

0.021685

0.000000

0.00

11.000

0.009277

0.009277

0.000000

0.00

13.000

0.003917

0.003917

0.000000

0.00

15.000

0.001645

0.001645

0.000000

0.00

17.000

0.000689

0.000689

0.000000

0.00

19.000

0.000288

0.000288

0.000000

0.00

21.000

0.000121

0.000121

0.000000

0.00

23.000

0.000050

0.000050

0.000000

0.00

25.000

0.000021

0.000021

0.000000

. 

. 

. 

. 

. 

. 

output for t = 3, 6 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

−15.000

0.000048

0.000048

0.000000

9.00

−13.000

−0.000249

0.000115

−0.000365

9.00

−11.000

0.000565

0.000276

0.000289

9.00

−9.000

−0.000019

0.000660

−0.000678

9.00

−7.000

0.001035

0.001575

−0.000540

( Continued )
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Table 18.1a:

( Continued)

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

−5.000

0.003283

0.003751

−0.000468

9.00

−3.000

0.008324

0.008887

−0.000563

9.00

−1.000

0.022112

0.020794

0.001318

9.00

1.000

0.046565

0.047247

−0.000682

9.00

3.000

0.100279

0.100497

−0.000218

9.00

5.000

0.187166

0.186238

0.000928

9.00

7.000

0.267848

0.269227

−0.001379

9.00

9.000

0.275694

0.274310

0.001384

9.00

11.000

0.194903

0.195798

−0.000895

9.00

13.000

0.108027

0.107725

0.000302

9.00

15.000

0.051283

0.051146

0.000136

9.00

17.000

0.022371

0.022612

−0.000240

9.00

19.000

0.009739

0.009683

0.000056

9.00

21.000

0.004000

0.004090

−0.000090

9.00

23.000

0.001454

0.001718

−0.000264

9.00

25.000

0.000720

0.000720

0.000000

ncall = 963

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 9 is about three figures. 

. Thecomputationaleffortismodest,withncall = 963. 

The plotted solutions follow in Figs. 18.1a and 18.2a. Note plots are organized as follows: Letter

Case

designation

2D plot

3D plot

1

a

Figure 18.1a

Figure 18.2a

2

b

Figure 18.1b

Figure 18.2b

3

c

none

none

4

d

Figure 18.1d

Figure 18.2d

Figure 18.1a demonstrates that the solution is a traveling wave in  x  from eq. (18.2)

(starting from  t = 0) from the argument of  x −  ct  in eq. (18.2). 

We can note the following details about Fig. 18.1a:

. TheagreementofthenumericalandanalyticalsolutionsasreflectedinTable18.1ais evident. 

. Thenumericalandanalyticalsolutionsagreeexactlyattheboundaries

 x =  xl = −15,  x =  xu = 25, which results from setting the two solutions equal at the boundaries in the main program, pde 1 main.m. This is done because although the Dirichlet  BCs in pde 1.m set the boundary values equal to the analytical solution
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Boussinesq equation; ncase = 1, lines – numerical; o – analytical

0.3

0.25

0.2

0.15

 t)

( x,  u  1 0.1

0.05

0

−0.05

−15

−10

−5

0

5

10

15

20

25

 x

FIGURE 18.1a: 2D plot comparing the numerical and analytical solutions of eq. (18.1) for  t = 0, 3, 6, 9 (left to right). 

(by using ua 1a.m), these boundary values are not returned to the main program (from ode15s), which is a characteristic of the Matlab ODE integrators. In other words, if a dependent variable is set in the ODE routine (e.g., a boundary value), this value is not returned by ode15s; rather an ODE dependent variable can only be computed from its associated ODE programmed in the ODE routine. 

. Theslopeofthesolutionattheboundaries x= xl,  x= xu  issmall(effectivelyzero) because the nonzero portion of the solution traveling left to right at velocity  c = 0.9

does not reach the right boundary at  t = 9 ( ct = (0.9)(9) = 8.1 units in  x  while the right boundary is at  xu = 25). This is taken as justification for setting uxxxx=0 in u4x11p.m of

Listing 18.2 as discussed previously; in other words, the derivatives in  x  of the solution at  xu = 25, including the fourth derivative, remain essentially at zero for  t ≤ 9. 

The preceding discussion was for ncase=1, that is, eq. (18.1) with  c = 0.9 in eq. (18.2)

and for BCs (18.4), with the MOL calculations in pde 1a.m of Listing 18.1a. We now consider the other three cases ncase=2,3,4, which basically reflect variations in the MOL

coding in the ODE routine to illustrate alternate approaches, not all of which are successful (we report the negative results as well as the positive to provide some experience with approaches that seem reasonable, but do not actually work). 

[image: Image 22]
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FIGURE 18.2a: 3D plot of the numerical solution of eq. (18.1). 

∂4 u

∂2 u

Case 2: Calculation of

via two-stage Differentiation of

∂ x 4

∂ x 2

We start with the case ncase=2 in pde 1b.m. 

function ut=pde_1b(t,u)

%

% Function pde_1b computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1xx
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nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% BCs at x = -15,25 (used by dss044)

u1xx(1)=0; 

u1xx(n)=0; 

%

% u1xxxx

u1xxx(1)=0; 

u1xxxx=dss044(xl,xu,n,u1xx,u1xxx,nl,nu); 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 

u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1b

ncall=ncall+1; 

LISTING 18.1b: Function pde 1b.m for eq. (18.1) (ncase=2). 

We can note the following details about pde 1b.m:

. Theinitialcodingisthesameasinpde 1a.mofListing18.1atodefinethefunctionand some global variables and to place the single dependent variable vector u of length 2 n in two vectors u1,u2 of length  n. 

function ut=pde_1b(t,u)

%

% Function pde_1b computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end
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. 

∂2 u

Dirichlet BCs (18.4a) and (18.4b) are set, and the second derivative is computed

∂ x 2

by dss044. 

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

. 

∂4 u

BCs (18.4c) and (18.4d) are set, and the fourth derivative is computed by a second

∂ x 4

application of dss044 to the second derivative, so-called  stagewise differentiaion. 

%

% BCs at x = -15,25 (used by dss044)

u1xx(1)=0; 

u1xx(n)=0; 

%

% u1xxxx

u1xxx(1)=0; 

u1xxxx=dss044(xl,xu,n,u1xx,u1xxx,nl,nu); 

Note that BCs (18.4c) and (18.4d) are Dirichlet for the fourth derivative (nl=nu=1 in using dss044 the second time). 

. Theremainderofpde 1bisthesameaspde 1a. 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1b

The other routines for ncase=2 are the same as for ncase=1, that is, inital 1b.m, ua 1b.m, and uat 1b.m, are the same as inital 1a.m, ua 1a.m, and uat 1a.m, respectively; this arrangement of a complete set of subordinate routines for each case provides for maximum flexibility and clarity. Finally, the coding in the main program pde 1 main.m for ncase=2 directly parallels that for ncase=1 and therefore it will not be discussed. 

A portion of the numerical output from pde 1 main.m is listed in Table 18.1b for ncase=2. 
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Table 18.1b:

Selected numerical output from the main program

pde 1 main.m for ncase=2

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−15.000

0.001645

0.001645

0.000000

0.00

−13.000

0.003917

0.003917

0.000000

0.00

−11.000

0.009277

0.009277

0.000000

0.00

−9.000

0.021685

0.021685

0.000000

0.00

−7.000

0.049162

0.049162

0.000000

0.00

−5.000

0.104066

0.104066

0.000000

0.00

−3.000

0.191019

0.191019

0.000000

0.00

−1.000

0.271880

0.271880

0.000000

0.00

1.000

0.271880

0.271880

0.000000

0.00

3.000

0.191019

0.191019

0.000000

0.00

5.000

0.104066

0.104066

0.000000

0.00

7.000

0.049162

0.049162

0.000000

0.00

9.000

0.021685

0.021685

0.000000

0.00

11.000

0.009277

0.009277

0.000000

0.00

13.000

0.003917

0.003917

0.000000

0.00

15.000

0.001645

0.001645

0.000000

0.00

17.000

0.000689

0.000689

0.000000

0.00

19.000

0.000288

0.000288

0.000000

0.00

21.000

0.000121

0.000121

0.000000

0.00

23.000

0.000050

0.000050

0.000000

0.00

25.000

0.000021

0.000021

0.000000

. 

. 

. 

. 

. 

. 

output for t = 3, 6 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

−15.000

0.000048

0.000048

0.000000

9.00

−13.000

0.000015

0.000115

−0.000101

9.00

−11.000

0.000079

0.000276

−0.000197

9.00

−9.000

0.000298

0.000660

−0.000361

9.00

−7.000

0.001043

0.001575

−0.000532

9.00

−5.000

0.003215

0.003751

−0.000536

9.00

−3.000

0.008681

0.008887

−0.000207

9.00

−1.000

0.021082

0.020794

0.000288

9.00

1.000

0.047473

0.047247

0.000225

9.00

3.000

0.100097

0.100497

−0.000400

9.00

5.000

0.186493

0.186238

0.000255

9.00

7.000

0.269387

0.269227

0.000160

9.00

9.000

0.274227

0.274310

−0.000083

9.00

11.000

0.195772

0.195798

−0.000026

( Continued )
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Table 18.1b:

( Continued)

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

13.000

0.107275

0.107725

−0.000450

9.00

15.000

0.051484

0.051146

0.000338

9.00

17.000

0.022524

0.022612

−0.000087

9.00

19.000

0.009621

0.009683

−0.000062

9.00

21.000

0.004207

0.004090

0.000117

9.00

23.000

0.001272

0.001718

−0.000445

9.00

25.000

0.000720

0.000720

0.000000

ncall = 1004

Boussinesq equation; ncase = 2, lines – numerical; o – analytical
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FIGURE 18.1b: 2D plot comparing the numerical and analytical solutions of eq. (18.1) for  t = 0, 3, 6, 9 (left to right). 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 9 is about three figures. 

. Thecomputationaleffortismodest,withncall = 1004. 

The plotted solutions are included in Figs. 18.1b and 18.2b. Figure 18.1b again demonstrates that the solution is a traveling wave in  x  from eq. (18.2) (starting from  t = 0) from the argument of  x −  ct  in eq. (18.2); this plot is very similar to Fig. 18.1a. 

[image: Image 23]
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Boussinesq equation
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FIGURE 18.2b: 3D plot of the numerical solution of eq. (18.1). 

We can note the following details about Fig. 18.1b:

. TheagreementofthenumericalandanalyticalsolutionsasreflectedinTable18.1bis evident. 

. ThediscussionofFig.18.1aappliesalsotoFig.18.1b. Inparticular,theslopeofthe solution at the end points  x =  xl = −15,  x =  xu = 25 is essentially zero. 

This plot is very similar to Fig. 18.2a. 

∂4 u

∂ u

Case 3: Calculation of

via Four-Stage Differentiation of

∂ x 4

∂ x

As a third approach to a numerical solution (ncase=3), we now use four successive (stagewise) derivative calculations to arrive at the fourth derivative in eq. (18.1) using the first derivative routine dss004. All of the preceding routines remain unchanged, except the ODE derivative routine, which is pde 1c.m listed below. 

function ut=pde_1c(t,u)

%

% Function pde_1c computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall
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%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1x

u1x=dss004(xl,xu,n,u1); 

%

% u1xx

u1xx=dss004(xl,xu,n,u1x); 

%

% BCs at x = -15,25

u1xx(1)=0; 

u1xx(n)=0; 

%

% u1xxx

u1xxx=dss004(xl,xu,n,u1xx); 

%

% u1xxxx

u1xxxx=dss004(xl,xu,n,u1xxx); 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 

u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1c

ncall=ncall+1; 

LISTING 18.1c: Function pde 1c.m for eq. (18.1) (ncase=3). 
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We can note the following details about pde 1c.m:

. Theinitialcodingisthesameasinpde 1a.mofListing18.1atodefinethefunctionand some global variables and to place the single dependent variable vector u of length 2 n in two vectors u1,u2 of length  n. 

function ut=pde_1c(t,u)

%

% Function pde_1c computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

. 

∂2 u

Dirichlet BCs (18.4a), (18.4b) are set and the second derivative is computed by

∂ x 2

using dss004 twice. 

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1x

u1x=dss004(xl,xu,n,u1); 

%

% u1xx

u1xx=dss004(xl,xu,n,u1x); 

. 

∂4 u

BCs (18.4c) and (18.4d) are set and the fourth derivative is computed by two

∂ x 4

additional applications of dss004 differentiation. 

%

% BCs at x = -15,25

u1xx(1)=0; 

u1xx(n)=0; 

%

% u1xxx

u1xxx=dss004(xl,xu,n,u1xx); 

%

% u1xxxx

u1xxxx=dss004(xl,xu,n,u1xxx); 
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Note that BCs (18.4c) and (18.4d) reset the boundary values of the second derivative, uxx(1) and uxx(n), before dss004 is applied a third time to compute the third

derivative, uxxx. 

. Theremainderofpde 1cisthesameaspde 1aandpde 1b.m. 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1c

ncall=ncall+1; 

The other routines for ncase=3 are the same as for ncase=1,2; for example, inital 1c.m, ua 1c.m, and uat 1c.m, are the same as inital 1a.m, ua 1a.m, and uat 1a.m, respectively; as mentioned previously, this arrangement of a complete set of subordinate routines for each case provides for maximum flexibility and clarity. Finally, the coding in the main program pde 1 main.m for ncase=3 directly parallels that for ncase=1,2 and therefore will not be discussed. 

When the routines for ncase=3 (with the designation “c”) were executed, the numerical integration in  t  using ode15s failed when  t  was between 6 and 9 (an error message was reported by ode15s that the error tolerances specified in the main program, pde 1 main.m could not be satisfied when the integration step  t  was reduced to the minimum allow-able value). When the routines were executed with a final time 6, the numerical solution developed an oscillation (that apparently grew in magnitude to cause an integration failure for  t > 6). 

Various attempts to overcome the integration error, such as reducing the error tolerances for ode15s, failed in the same way. Thus we concluded that although the use of stagewise differentiation four times to arrive at the fourth derivative of eq. (18.1)

seems logical (at least mathematically), in fact, it failed. This example illustrates some generalizations we have experienced in the analysis of PDE systems:

. Numericalmethods(algorithms)thatseemlogicalmayinfactnotworkforreasons

that are not apparent. In the present case, we cannot offer an explanation for why the four-stage differentiation failed. 

. Someexperimentationwithvariousnumericalapproachesmayberequiredbeforea

successful method is developed. In other words, at least within the MOL context, a successful outcome cannot be assured in advance; rather each new problem must be approached numerically as an experiment that may fail, in which case an alternative approach must be developed. In other words, the MOL is not a mechanical procedure that is guaranteed in advance to produce a numerical solution to a new problem. 
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On the other hand, our experience has indicated that MOL analysis can be applied successfully to a broad spectrum of PDE problems. 

. Theuseofestablishedqualityroutines,suchasode15s,increasesthechancesofa

successful outcome. This conclusion follows from the careful coding and testing of library routines by experts who anticipate and try to circumvent algorithm limitations and computational difficulties that might not occur to a less experienced analyst. 

. PDEswithhigherderivatives,suchaseq.(18.1)withthefourth-orderderivativein x, are increasingly challenging as the order is increased, at least within the MOL

framework based on finite differences. 

Case 4: Preceding Problem with Second Derivative BCs Replaced by (First

Derivative) Neumann BCs

To conclude this discussion, we consider one more case (ncase=4) for eq. (18.1) with the homogeneous second derivative BCs of eqs. (18.4c) and (18.4d) replaced with the homogeneous  Neumann  BCs

∂ u( x =  xl,  t)

∂ u( x =  xu,  t)

∂

=

= 0

(18.4e,4f)

 x

∂ x

The intention in using this modified problem is essentially to demonstrate another application of MOL analysis and, specifically, to demonstrate the ease in programming this modification as an indication of the flexibility of the MOL approach. All of the preceding routines remain unchanged except the ODE derivative routine, which is pde 1d.m listed next (only the ODE routine for ncase=4 is different than the preceding routines for ncase=1,2,3). 

function ut=pde_1d(t,u)

%

% Function pde_1d computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1x

u1x=dss004(xl,xu,n,u1); 
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%

% BCs at x = -15,25

u1x(1)=0; 

u1x(n)=0; 

%

% u1xx

nl=2; 

nu=2; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% u1xxxx

u1xxxx=uxxx7c(xl,xu,n,u1x); 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 

u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1d

ncall=ncall+1; 

LISTING 18.1d: Function pde 1d.m for eq. (18.1) (ncase=4). 

We can note the following details about pde 1d.m:

. Theinitialcodingisthesameasinpde 1a.mofListing18.1atodefinethefunctionand some global variables and to place the single dependent variable vector u of length 2 n in two vectors u1,u2 of length  n. 

function ut=pde_1d(t,u)

%

% Function pde_1d computes the t derivative vector for the Boussinesq

% equation

%

global xl xu x n ncall

%

% Model parameters

global c ncase

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end
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. 

∂ u

Dirichlet BCs (18.4a) and (18.4b) are set, and the first derivative is computed by

∂ x

∂2 u

dss004.  Neumann  BCs (18.4e) and (18.4f ) are then set, and the second derivative ∂ x 2

is computed by dss044. For the latter, note the specification of  Neumann  BCs (nl=nu=2 for BCs (18.4e) and (18.4f ). 

%

% BCs at x = -15,25

u1(1)=0; 

u1(n)=0; 

%

% u1x

u1x=dss004(xl,xu,n,u1); 

%

% BCs at x = -15,25

u1x(1)=0; 

u1x(n)=0; 

%

% u1xx

nl=2; 

nu=2; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

. 

∂4 u

The fourth derivative in eq. (18.1), 

, is then computed by taking the third derivative

∂ x 4

∂ u

of

with uxxx7c; this routine for a third derivative based on seven-point centered

∂ x

finite differences was used previously in the MOL analysis of the third-order

Korteweg-de Vries (KdV) equation [7], and it is listed subsequently. 

%

% u1xxxx

u1xxxx=uxxx7c(xl,xu,n,u1x); 

. Theremainderofpde 1disthesameaspde 1a,pde 1b.m,andpde 1c.m. 

%

% (u1ˆ2)xx

u1s=u1.ˆ2; 

nl=1; nu=1; 

u1sx(1)=0; 

u1sxx=dss044(xl,xu,n,u1s,u1sx,nl,nu); 

%

% PDE

u1t=u2; 

u2t=u1xx-u1xxxx-u1sxx; 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%
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% Increment calls to pde_1d

ncall=ncall+1; 

Function uxxx7c.m is listed below. 

function uxxx=uxxx7c(xl,xu,n,u)

%

% Function uxxx7c computes the derivative uxxx

%

% Spatial increment

dx=(xu-xl)/(n-1); 

r8dx3=1.0/(8.0*(dxˆ3)); 

%

% uxxx

for i=1:n

%

%

At the left end, uxxx = 0

if(i<4)uxxx(i)=0.0; 

%

%

At the right end, uxxx = 0

elseif(i>(n-3))uxxx(i)=0.0; 

%

%

Interior points

else

uxxx(i)=r8dx3*... 

(

1.0*u(i-3)... 

-8.0*u(i-2)... 

+13.0*u(i-1)... 

+0.0*u(i

)... 

-13.0*u(i+1)... 

+8.0*u(i+2)... 

-1.0*u(i+3)); 

end

end

LISTING 18.5: uxxx7c for the calculation of the third derivative uxxx. 

uxxx7c is structured in the same way as u4x11p.m of Listing 18.2. Note in particular that the weighting coefficients are  antisymmetric (opposite in sign) around the center term +0.0*u(i ) since the third derivative is odd order (for even-order derivatives, the weighting coefficient are symmetric). 

The other routines for ncase=4 are the same as for ncase=1,2,3; for example, inital 1d.m, ua 1d.m, and uat 1d.m are the same as inital 1a.m, ua 1a.m, and uat 1a.m, respectively; as mentioned previously, this arrangement of a complete set of subordinate routines for each case provides for maximum flexibility and clarity. Finally, the coding in the main program pde 1 main.m for ncase=4 directly parallels that for ncase=1,2,3 and therefore will not be discussed here. 

Execution of the routines for ncase=4 (with the designation “d”) produced the following numerical and plotted output in Table 18.1d, and Figs. 18.1d and 18.2d. 
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Table 18.1d:

Selected numerical output from the main program

pde 1 main.m for ncase=4

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−15.000

0.001645

0.001645

0.000000

0.00

−13.000

0.003917

0.003917

0.000000

0.00

−11.000

0.009277

0.009277

0.000000

0.00

−9.000

0.021685

0.021685

0.000000

0.00

−7.000

0.049162

0.049162

0.000000

0.00

−5.000

0.104066

0.104066

0.000000

0.00

−3.000

0.191019

0.191019

0.000000

0.00

−1.000

0.271880

0.271880

0.000000

0.00

1.000

0.271880

0.271880

0.000000

0.00

3.000

0.191019

0.191019

0.000000

0.00

5.000

0.104066

0.104066

0.000000

0.00

7.000

0.049162

0.049162

0.000000

0.00

9.000

0.021685

0.021685

0.000000

0.00

11.000

0.009277

0.009277

0.000000

0.00

13.000

0.003917

0.003917

0.000000

0.00

15.000

0.001645

0.001645

0.000000

0.00

17.000

0.000689

0.000689

0.000000

0.00

19.000

0.000288

0.000288

0.000000

0.00

21.000

0.000121

0.000121

0.000000

0.00

23.000

0.000050

0.000050

0.000000

0.00

25.000

0.000021

0.000021

0.000000

. 

. 

. 

. 

. 

. 

output for t = 3, 6 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

−15.000

0.000048

0.000048

0.000000

9.00

−13.000

0.000161

0.000115

0.000046

9.00

−11.000

0.000069

0.000276

−0.000207

9.00

−9.000

0.000718

0.000660

0.000058

9.00

−7.000

0.000915

0.001575

−0.000660

9.00

−5.000

0.003697

0.003751

−0.000053

9.00

−3.000

0.008551

0.008887

−0.000336

9.00

−1.000

0.021796

0.020794

0.001002

9.00

1.000

0.046933

0.047247

−0.000314

9.00

3.000

0.100035

0.100497

−0.000462

9.00

5.000

0.186944

0.186238

0.000706

9.00

7.000

0.268486

0.269227

−0.000742

9.00

9.000

0.275063

0.274310

0.000753

9.00

11.000

0.195041

0.195798

−0.000756

( Continued )
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Table 18.1d:

( Continued)

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

9.00

13.000

0.108345

0.107725

0.000620

9.00

15.000

0.050767

0.051146

−0.000379

9.00

17.000

0.022820

0.022612

0.000209

9.00

19.000

0.009687

0.009683

0.000004

9.00

21.000

0.004091

0.004090

0.000001

9.00

23.000

0.001762

0.001718

0.000044

9.00

25.000

0.000720

0.000720

0.000000

ncall = 554

Boussinesq equation; ncase = 4, lines – numerical; o – analytical

0.3

0.25

0.2

0.15

 t)

( x,  u  1 0.1

0.05

0

−0.05

−15

−10

−5

0

5

10

15

20

25

 x

FIGURE 18.1d: 2D plot comparing the numerical and analytical solutions of eq. (18.1) for  t = 0, 3, 6, 9 (left to right). 

We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 9 is about four figures. 

. Thecomputationaleffortismodest,withncall = 554. 

The plotted solutions are included in Figs. 18.1d and 18.2d. Figure 18.1d again demonstrates that the solution is a traveling wave in  x  from eq. (18.2) (starting from  t = 0) from the argument of  x −  ct  in eq. (18.2); this plot is very similar to Figs. 18.1a and 18.1b. 

[image: Image 24]
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Boussinesq equation

0.25

0.2

 t) 0.15

( x,  u  1 0.1

0.05

0

8

25

6

20

15

4

10

 t

5

0

2

−5

−

 x

10

0

−15

FIGURE 18.2d: 3D plot of the numerical solution of eq. (18.1). 

We can note the following details about Fig. 18.1d:

. TheagreementofthenumericalandanalyticalsolutionsasreflectedinTable18.1dis evident. 

. ThediscussionofFigs.18.1aand18.1bappliesalsotoFig.18.1d. Inparticular,the slope of the solution at the end points  x =  xl = −15,  x =  xu = 25 is essentially zero. This plot is very similar to Figs. 18.2a and 18.2b. 

This last case ncase=4 illustrates an alternative MOL solution of eq. (18.1) based on BCs

(18.4e) and (18.4f ) rather than (18.4c) and (18.4d), and more generally it demonstrates the flexibility of the numerical approach when a set of library routines is used (e.g., ods15s, dss004, dss044, u4x11p.m uxxx7c.m) for both linear and nonlinear PDEs. 

In summary, we have again discussed the numerical solution of a PDE second order in t (eq. (18.1)) by restating the PDE as two PDEs first order in  t (for dependent variables u1

and u2). As noted in Chapters 15–17, the reformulation of an  nth  order PDE as  n  PDEs first order in an initial value independent variable ( t) is straightforward and permits the use of an integrator such as ode15s for first-order ODEs. 

We have also considered four alternative approaches to a higher–order derivative, in this case, the fourth-order derivative of eq. (18.1). We observed in ncase=3 that an MOL

formulation that seems logical (at least mathematically) may, in fact, not execute and therefore some experimentation with alternate formulations may be required to arrive at a workable MOL code. 
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Appendix

We conclude this chapter by first providing some background to the  Boussinesq equation based on de Jager’s essay  On the Origin of the Korteweg–de Vries Equation [5] and then deriving traveling wave solutions using  direct integration  and the  Riccati-based  method. 

One of the many equations used to describe the propagation of surface long waves on water is the Boussinesq equation, which was first published by J. Boussinesq 1 in a series of papers [2–4] during the years 1871–1872. It assumes shallow water conditions and is generally considered to be the first model to describe nonlinear, dispersive wave propagation. 

Shallow water models usually make the following assumptions  h/ H  1 and  h λ2/ H 3  1

where  h  represents  wave amplitude,  H  represents  still water depth, and λ represents  wave-length. The standard 1D form of shallow water wave equation is derived by truncating a Taylor series approximation of wave height after the first derivative to give the  classical wave equation

∂2 h

∂2 h

∂

=  gH

 t 2

∂ x 2

where  x,  t, and  g  represent distance, time, and gravitational acceleration, respectively. The term  gH =  c 2 represents the square of wave velocity. In order to obtain a more accurate model for  c, Boussinesq retained the second-order term in the Taylor expansion to obtain his well-known equation

∂2



! 

 h

∂2 h

∂2

3 h 2

 H 2 ∂2 h

(18.5)

∂

=  gH

+  gH

+

 t 2

∂ x 2

∂ x 2 2 H

3 ∂ x 2

One of the advantages over the related Korteweg–de Vries equation for representing waves is that the Boussinesq equation admits solutions with waves traveling in opposite directions. 

After assuming a traveling wave solution with  h( x,  t) =  h(ξ ) and ξ =  x −  ct , followed by some analysis, we arrive at the Boussinesq improved expression for wave velocity



! 

3

1  H 3 ∂2 h

 c

p

p

=

 gH +  gH

 h +

4

6  h ∂ξ2

Now, Boussinesq was also interested in solitary wave solutions and observed that for



! 

3

1  H 3 ∂2 h

a wave shape to remain constant over time, the term

 h +

in the above

4

6  h ∂ξ 2

1 Joseph Valentin Boussinesq  was born in 1842 in Southern France and died in 1929 in Paris. In 1873 he was appointed as Professor of Differential and Integral Calculus at the Faculty of Science in Lille. He taught there until 1886 when he was appointed as Professor of Physical and Experimental Mechanics at the Sorbonne. He remained in this post for 10 years and then held the prestigious chair in Mathematical Physics and Theory of Probabilities at the same institution until he retired in 1918. 
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equation must be constant. Therefore, we have

1

 c

p

p

=

 gH +

 gHh 1

2

where the constant factor of a half has been taken outside the brackets, and  h 1 =



! 

3

1  H 3 ∂2 h

 h +

is an unknown constant to be determined. We also have

2

3  h ∂ξ 2

∂2 h

3 h

2 h

∂ξ =

2

1 − 3 h

2 H 3

∂ h

which on multiplying by

and integrating leads to the solution

∂ξ

r

!2

3 h

 h

1

=  h 1sech

ξ

4 H 3

The variable  h 1 represent the wave amplitude, and further analysis leads to the relation-



! 

 c 2 −  gH

ship  h 1 =

. Also, from the above discussion, we have ξ =  x −  ct; therefore, the g

final solution becomes

2

v





! 



! 

 c 2

u

−  gH

u

3

 c 2 −  gH

 h =

sech t

( x −  ct)

(18.6)

 g





4 H 3

 g

The Maple code given in Listing 18.6 demonstrates that eq. (18.6) is actually a solution to the original Boussinesq eq. (18.5). 

># Test of solution to original Boussinesq equation

restart; with(PDEtools):

>alias(h=h(x,t)):

># Define the Boussinesq PDE

pde1:=diff(h,t,t)-g*H*diff(h,x,x)-g*H*diff((3*hˆ2/(2*H)+(Hˆ2/3)

*diff(h,x,x)),x,x)=0; 

># Define sech solution

Sol:=h=(cˆ2/g-H)*sech(sqrt((cˆ2/g-H)*3/(4*Hˆ3))*(x-c*t))ˆ2; 

># Use PDE test function to confirm solution is correct

testSol:=pdetest(Sol,pde1); # = 0 if correct! 

if testSol<> 0 then

print("Solution: does not pass pdetest() !"); 

else

print("Solution passes pdetest()"); 

end if; 

LISTING 18.6: Maple code used to verify analytical solutions to the original Boussinesq equation. 
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Analytical Solution Using the Direct Integration Method

The Boussinesq equation in its canonical form is written as

∂2

∂2

∂2

∂4

 u ( x,  t)

 u ( x,  t)

 u ( x,  t)2

 u ( x,  t)

∂

−

+

+

= 0

(18.7)

 t 2

∂ x 2

∂ x 2

∂ x 4

We seek a closed-form  single soliton  solution to eq. (18.7) using  direct integration  as follows. Assume a traveling wave solution of the form  u( x,  t) =  f (ξ ), where ξ =  k ( x −  ct), c  represents  wave speed, and  k  represents  wavenumber. Then on substituting  f (ξ ) into

eq. (18.7), the PDE is transformed into the following ODE. 



2

 d 2 f (ξ )

 df (ξ )

 d 2 f (ξ )

 k 2  c 2 − 1

+ 2 k 2

+ 2 k 2 f (ξ )

+  k 4  d 4 f (ξ ) = 0

 d ξ 2

 d ξ

 d ξ 2

 d ξ 4

Now we integrate again with respect to ξ to obtain

 df (ξ ) 2



3 k 4

+ 3 k 2  c 2 − 1  f  2 (ξ ) + 2 k 2 f (ξ )3 = 0

 d ξ

This leads to the following integral

Z

Z

3 k

 d ξ =

 df (ξ)

 f (ξ) p9 − 9 c 2 − 6 f (ξ)

which we integrate to obtain

v 





u

2

u

 f (ξ)

u



ξ

−2 k

3

= √

arctan t

− 1

 c 2 − 1



1 −  c 2







↓

3









1 p

 f (ξ) =

1 −  c 2 1 + tan2

 c 2 − 1ξ

2

2 k

Recall that tan2 ( X) = − tanh2 ( iX) and sec2 ( X) = sech2 ( iX). Therefore, on back substituting  f (ξ ) =  u ( x,  t) and ξ =  k ( x −  ct), we obtain the required traveling wave solutions 3







1 p

 u ( x,  t) =

1 −  c 2 sech2

1 −  c 2 ( x −  ct) +  x 0 , 

 c < 1

(18.8)

2

2

3







1 p

 u ( x,  t) =

1 −  c 2 sec2

 c 2 − 1 ( x −  ct) +  x 0 , 

 c > 1

(18.9)

2

2

where  x 0 is an arbitrary constant. 

The derivation of eqs. (18.8) and (18.9) can easily be performed in Maple. However, the code is not listed here but is included with the downloads for the book. 
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Analytical Solution Using the Riccati-Based Method

We now apply the Maple routine riccatiMethod() (see Listing 18.7) and obtain a number of traveling wave solutions, one of which is

1







h



3

 k

 u ( x,  t) =

1 −  k 2 +  c 2i +  k 2 1 − tanh2

( x −  ct)

2

2

2

√

On letting the wavenumber  k = 1 −  c 2, we obtain the same solutions as given by

eqs. (18.8) and (18.9) derived using direct integration. 

A Maple code that performs the calculations for Figs. 18.3 and 18.4 is given in List-

ing 18.7. 

># Boussinesq Equation

# Attempt at Riccati equation based solution method

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)):

># Define pde

pde1:=diff(u,t,t)-diff(u,x,x)+beta*diff(uˆ2,x,x)+alpha*diff(u,x,x,x,x)=0; 

>read("riccatiMethod.txt"); 

>intFlg:=0: # integration of U(xi) needed! 

M:=2; # Set order of approximation

infoLevOut:=0; 

riccatiMethod(M,pde1,intFlg,infoLevOut); 

># Set constants

zz:=rhs(soln[3,3]); 

alpha:=1; beta:= 1; 

k:=sqrt(1-cˆ2);c:=0.9;x0:=0; 

># Animate solution

animate(zz,x=-10..30, t=0..20, 

numpoints=300,frames=50, axes=framed, 

labels=["x","u"],thickness=3, 

title="Boussinesq Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot

plot3d(zz,x=-10..30, t=0..20,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[-107,40],grid=[100,100], 

style=patchnogrid,shading=Z, 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

title="Boussinesq Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 18.7: Maple code used to derive an analytical solution to the Boussinesq equation using the riccatiMethod() procedure. 

2D and 3D plots of this solution for  c = 0.9 are given in Figs. 18.3 and 18.4. Figure 18.3

is the initial condition (at  t = 0), which then moves left to right when the animation (see

Listing 18.7) is activated. Figure 18.4 is a 3D plot that demonstrates the movement of the solution through  x  and  t. 

[image: Image 25]
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FIGURE 18.3: 2D plot of the solution to Boussinesq equation at  t = 0. 
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FIGURE 18.4: 3D plot of the solution to Boussinesq equation. 

Traveling wave solutions can also be found using the tanhMethod and expMethod Maple procedures. The codes are not listed here but are included with the downloads for the book. 
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Modified Wave Equation

In Chapter 14, we considered the conversion of an ODE to a PDE using the concept of a traveling wave equation. The result was a PDE first order in  t. We now consider the same procedure that leads to a PDE second order in  t, which we term the  modified wave equation. We start with the following ODE that can be considered a  Lagrangian (traveling wave) form of a PDE in an  Eulerian (fixed) coordinate system. 

 d 2 U +2 U −2 U 3 = 0

(19.1)

 d ξ 2

An analytical solution of eq. (19.1) is [1]

 U(ξ ) = tanh(ξ )

(19.2)

which satisfies the BCs

 U(ξ = −∞) = −1; 

 U(ξ = ∞) = 1

(19.3a,3b)

The significance of BCs (19.3) is discussed subsequently. 

 d 2 U

To extend this solution to a PDE, we first consider the second derivative

with

 d ξ 2

 d 2 U

ξ =  x −  ct. Therefore, the second derivative

is (from the addition of the final two

 d ξ 2

equations in Table 19.1)



! 

 d 2 U

1 ∂2 u

1 ∂2 u

=

+

(19.4)

 d ξ 2

2

∂ x 2

 c 2 ∂ t 2

The PDE corresponding to eq. (19.1) is, therefore, from eq. (19.4)



! 

1 ∂2 u

1 ∂2 u

+

+ 2 u − 2 u 3 = 0

(19.5)

2

∂ x 2

 c 2 ∂ t 2

We term eq. (19.5) the  modified wave equation (since it bears a resemblance to the classical, second-order, linear wave equation). 

The solution to eq. (19.5) is from eq. (19.2)

 u( x,  t) = tanh( x −  ct)

(19.6)

Traveling Wave Analysis of Partial Differential Equations. DOI: 10.1016/B978-0-12-384652-5.00019-4
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Table 19.1:

Derivatives for the Lagrangian variable ξ

and Eulerian variables  x,  t

∂2 u

∂ (∂ u/∂ x)

∂   dU/ d ξ(∂ξ/∂ x)

 d   dU/ d ξ  (∂ξ/∂ x) (∂ξ/∂ x)

∂

=

=

=

 x 2

∂ x

∂ x

 d ξ

 d 2 U

 d 2 U

=

(∂ξ/∂ x)2 =

(1)2

 d ξ 2

 d ξ 2

∂2 u

∂ (∂ u/∂ t)

∂   dU/ d ξ(∂ξ/∂ t)

 d   dU/ d ξ  (∂ξ/∂ t) (∂ξ/∂ t)

∂

=

=

=

 t 2

∂ t

∂ t

 d ξ

 d 2 U

 d 2 U

=

(∂ξ/∂ t)2 =

(− c)2

 d ξ 2

 d ξ 2

Table 19.2:

Verification of eq. (19.6) as the solution to

eq. (19.5)

PDE, eq. (19.5)

Solution, eq. (19.6)

∂ u

(first)

sech2( x

∂

−  ct)(1)

 x

1 ∂2 u

(second)

sech( x −  ct)[ −sech( x −  ct)tanh( x −  ct)](1) 2 ∂ x 2

∂ u

(first)

sech2( x

∂

−  ct)(− c)

 t

1 ∂2 u

1

(second)

sech( x −  ct)[ −sech( x −  ct)tanh( x −  ct)](− c)2

2 c 2 ∂ t 2

 c 2

+2 u

+2tanh( x −  ct)

−2 u 3

−2tanh3( x −  ct)

= −2[1 − sech2( x −  ct)]tanh( x −  ct)

Sum of terms

Sum of terms

0

0

To verify this solution, we substitute eq. (19.6) into eq. (19.5) (see Table 19.2)

We now consider the MOL solution of eq. (19.5) with the analytical solution (19.6) used to evaluate the numerical solution. The ODE routine, pde 1.m, is listed first. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the modified

% wave equation

%

global xl xu x n ncall

%

% Model parameters

global c cs

%

% One vector to two vectors
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for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end

%

% BCs at x = xl,xu

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

%

% PDE

for i=1:n

u1t(i)=u2(i); 

u2t(i)=-cs*u1xx(i)-4*cs*(u1(i)-u1(i)ˆ3); 

end

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

LISTING 19.1: Function pde 1.m for eq. (19.5). 

We can note the following details about pde 1.m:

. Thefunctionandsomeglobalvariablesarefirstdefined. 

function ut=pde_1(t,u)

%

% Function pde_1 computes the t derivative vector for the modified

% wave equation

%

global xl xu x n ncall

%

% Model parameters

global c cs

. Asintheprecedingchapters(i.e.,15–18)forPDEssecondorderin t,thesolution vector u is placed in two arrays u1,u2. 

%

% One vector to two vectors

for i=1:n

u1(i)=u(i); 

u2(i)=u(i+n); 

end
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u1,u2 are dependent variables first order in  t, so a library ODE integrator such as ode45 or ode15s can be used to move the equations through  t. 

. 

∂2 u

BCs (19.3a) and (19.3b) are programmed and the second derivative is computed

∂ x 2

with dss044 (with  Dirichlet  BCs designated by nl=1,nu=1). u1x(1)=0 is not actually used in the calculations in dss044 but rather is programmed to meet the Matlab requirement that input arguments to functions must be given a value. 

%

% BCs at x = xl,xu

u1(1)=ua_1(x(1),t); 

u1(n)=ua_1(x(n),t); 

%

% u1xx

nl=1; nu=1; 

u1x(1)=0; 

u1xx=dss044(xl,xu,n,u1,u1x,nl,nu); 

The values of xl=x(1),xu=x(n) are set in IC routine inital 1.m (discussed

subsequently) to −8,8 which are effectively  x = ±∞ for the solution of eq. (19.5) (this will be demonstrated in the numerical and plotted solutions); note that array x is a global variable and is therefore available from inital 1.m. The function ua 1.m has the analytical solution, eq. (19.6). Since the boundary values at  x =  xl,  x =  xu  are defined, Dirichlet  BCs are specified with nl=nu=1. 

. Equation(19.5)isprogrammedastwofirst-orderPDEsin t. 

%

% PDE

for i=1:n

u1t(i)=u2(i); 

u2t(i)=-cs*u1xx(i)-4*cs*(u1(i)-u1(i)ˆ3); 

end

. Thetwoderivativevectorsu1t,u2tareplacedinasinglederivativevectoruttobe

returned from pde 1.m and integrated by ode45 or ode15s in the main program

pde 1 main.m; a transpose is required by these integrators (so that ut is a column vector). 

%

% Two vectors to one vector

for i=1:n

ut(i)

=u1t(i); 

ut(i+n)=u2t(i); 

end

ut=ut'; 

%

% Increment calls to pde_1

ncall=ncall+1; 

The number of calls to pde 1.m is incremented for display at the end of the solution in the main program pde 1 main.m (note that ncall is a global variable). 
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In summary, pde 1.m receives the dependent variable vector u as an input (along with the independent variable t) and returns the derivative vector ut. 

The IC routine inital 1.m is listed next. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the modified

% wave equation

%

% Parameters shared with other routines

global xl xu x n ncall

%

% Spatial domain and initial condition

xl=-8; xu= 8; n=101; 

dx=(xu-xl)/(n-1); 

%

% ICs from analytical solution

for i=1:n

x(i)=xl+(i-1)*dx; 

u1(i)= ua_1(x(i),t0); 

u2(i)=uat_1(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

LISTING 19.2: IC function inital 1.m from eq. (19.6) with  t = 0. 

We can note the following details about inital 1a.m:

. Thefunctionandsomeglobalvariablesaredefined. 

function u0=inital_1(t0)

%

% Function inital_1 sets the initial condition for the modified

% wave equation

%

% Parameters shared with other routines

global xl xu x n ncall

. Agridin x of101pointsisdefinedfor−8≤ x≤8. 

%

% Spatial domain and initial condition

xl=-8; 

xu= 8; 

n=101; 

dx=(xu-xl)/(n-1); 

. Intheforloop,theinitialvaluesofu1foreq.(19.5)areprovidedbythefunction ua 1.m (which has the programming of eq. (19.6) with  t = 0); the initial values of u2 are provided by the function uat 1.m (which has the programming for the derivative of

eq. (19.6) with respect to  t). 

%

% ICs from analytical solution
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for i=1:n

x(i)=xl+(i-1)*dx; 

u1(i)= ua_1(x(i),t0); 

u2(i)=uat_1(x(i),t0); 

u0(i)

=u1(i); 

u0(i+n)=u2(i); 

end

All 2 n  initial condition values are returned from inital 1.m through the vector u0 to the main program pde 1 main.m discussed subsequently. 

Function ua 1.m is a straightforward implementation of eq. (19.6). 

function uanal=ua_1(x,t)

%

% Function uanal computes the exact solution of the modified

% wave equation for comparison with the numerical solution

%

% Model parameters

global c cs

%

% Analytical solution

uanal=tanh(x-c*t); 

LISTING 19.3a: Function ua 1.m for the analytical solution of eq. (19.6). 

Function uat 1.m is a straightforward implementation of the derivative (in  t) of

eq. (19.6). 

function uanal=uat_1(x,t)

%

% Function uanal computes the time derivative of the exact solution

% of the modified wave equation

%

% Model parameters

global c cs

%

% Analytical solution derivative

uanal=(-c)*sech(x-c*t)ˆ2; 

LISTING 19.3b: Function uat 1.m for the derivative of the analytical solution of eq. (19.6). 

Main program pde 1 main.m closely parallels pde 1 main.m of Chapter 15 and therefore only a few features are discussed here. 

. Theproblemparametersareset. 

%

% Model parameters

global c cs

%

% Model parameters

c=1; cs=cˆ2; 
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. Thedifferenceinthenumericalandanalyticalsolutionsiscomputedaserr(it,i)

and displayed. These solutions are then plotted in 2D by plot, and the numerical solution is plotted in 3D by surf. 

%

%

Display selected output

for it=1:nout

fprintf('\n

t

x

u1(it,i)

u1_anal(it,i)

err(it,i)\n'); 

for i=1:5:n

fprintf('%6.2f%8.3f%15.6f%15.6f%15.6f\n',... 

t(it),x(i),u1(it,i),u1_anal(it,i),err(it,i)); 

end

end

fprintf(' 

ncall = %4d\n\n',ncall); 

%

%

Plot numerical and analytical solutions

figure(2)

plot(x,u1,'-',x,u1_anal,'o')

axis([-4 4 -1 1]); 

xlabel('x')

ylabel('u1(x,t)')

title('Modified wave equation; t = 0, 0.5 1; solid - numerical; 

o - analytical')

figure(3)

surf(x,t,u1)

shading 'interp', axis 'tight' 

xlabel('x'); ylabel('t'); zlabel('u1(x,t)'); 

title('Modified wave equation'); 

jpattern num 1.m for the sparse matrix integration of the ODEs is not listed here since it is the same as for Chapters 15–18. The ODE Jacobian map from jpattern num 1.m indicates two bands for PDEs (19.5) as expected, and the map is therefore not included in the discussion of the output that follows. 

A portion of the numerical output from pde 1 main.m is listed in Table 19.3. We can note the following points about this output:

. Thenumericalandanalyticalsolutionsagreeat t =0asexpected,andtheagreement between the two solutions at  t = 1 is about four figures. 

. Thenumericalandanalyticalsolutionsagreeexactlyattheboundaries

 x =  xl = −8,  x =  xu = 8, which results from setting the two solutions equal at the boundaries in the main program, pde 1 main.m. This is done because although the Dirichlet  BCs in pde 1.m set the boundary values equal to the analytical solution (by using ua 1.m), these boundary values are not returned to the main program (from ode15s), which is a characteristic of the Matlab ODE integrators. In other words, if a dependent variable is set in the ODE routine (e.g., a boundary value), this value is not returned by ode15s; rather, an ODE dependent variable can only be computed from its associated ODE programmed in the ODE routine. 

. Thecomputationaleffortismodest,withncall = 267. 
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Table 19.3:

Selected numerical output from the main program

pde 1 main.m

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

0.00

−8.000

−1.000000

−1.000000

0.000000

0.00

−7.200

−0.999999

−0.999999

0.000000

0.00

−6.400

−0.999994

−0.999994

0.000000

0.00

−5.600

−0.999973

−0.999973

0.000000

0.00

−4.800

−0.999865

−0.999865

0.000000

0.00

−4.000

−0.999329

−0.999329

0.000000

0.00

−3.200

−0.996682

−0.996682

0.000000

0.00

−2.400

−0.983675

−0.983675

0.000000

0.00

−1.600

−0.921669

−0.921669

0.000000

0.00

−0.800

−0.664037

−0.664037

0.000000

0.00

0.000

0.000000

0.000000


0.000000

0.00

0.800

0.664037

0.664037

0.000000

0.00

1.600

0.921669

0.921669

0.000000

0.00

2.400

0.983675

0.983675

0.000000

0.00

3.200

0.996682

0.996682

0.000000

0.00

4.000

0.999329

0.999329

0.000000

0.00

4.800

0.999865

0.999865

0.000000

0.00

5.600

0.999973

0.999973

0.000000

0.00

6.400

0.999994

0.999994

0.000000

0.00

7.200

0.999999

0.999999

0.000000

0.00

8.000

1.000000

1.000000

0.000000

. 

. 

. 

. 

. 

. 

output for t = 0.5 removed

. 

. 

. 

. 

. 

. 

t

x

u1(it,i)

u1 anal(it,i)

err(it,i)

1.00

−8.000

−1.000000

−1.000000

0.000000

1.00

−7.200

−1.000000

−1.000000

−0.000000

1.00

−6.400

−0.999999

−0.999999

0.000000

1.00

−5.600

−0.999996

−0.999996

0.000000

1.00

−4.800

−0.999982

−0.999982

0.000000

1.00

−4.000

−0.999909

−0.999909

0.000000

1.00

−3.200

−0.999550

−0.999550

0.000001

1.00

−2.400

−0.997772

−0.997775

0.000003

1.00

−1.600

−0.989019

−0.989027

0.000008

1.00

−0.800

−0.946983

−0.946806

−0.000177

1.00

0.000

−0.760778

−0.761594

0.000816

1.00

0.800

−0.197325

−0.197375

0.000050

1.00

1.600

0.537071

0.537050

0.000022

1.00

2.400

0.885348

0.885352

−0.000004
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Table 19.3:

( Continued)

1.00

3.200

0.975741

0.975743

−0.000002

1.00

4.000

0.995054

0.995055

−0.000000

1.00

4.800

0.998999

0.999000

−0.000000

1.00

5.600

0.999798

0.999798

−0.000000

1.00

6.400

0.999959

0.999959

−0.000000

1.00

7.200

0.999992

0.999992

0.000000

1.00

8.000

0.999998

0.999998

0.000000

ncall = 267

Modified wave equation; lines – numerical; o – analytical

1

0.8

0.6

0.4

0.2

 t)

( x, 

0

 u  1

−0.2

−0.4

−0.6

−0.8

−1−4

−3

−2

−1

0

1

2

3

4

 x

FIGURE 19.1: 2D plot comparing the numerical and analytical solutions of eq. (19.5) for  t = 0, 0.5, 1 (left to right). 

The plotted solutions follow in Figs. 19.1 and 19.2. Figure 19.1 demonstrates that the solution is a traveling wave in  x  from eq. (19.6) (starting from  t = 0) from the argument of x −  ct  in eq. (19.6). 

We can note the following details about Fig. 19.1:

. TheagreementofthenumericalandanalyticalsolutionsasreflectedinTable19.1is evident. 

. Theslopeofthesolutionattheboundaries x= xl,  x= xu  issmall(effectivelyzero) because the nonzero portion of the solution traveling left to right at velocity  c = 1 does

[image: Image 26]
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Modified wave equation
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FIGURE 19.2: 3D plot of the numerical solution of eq. (19.5). 

not reach the right boundary at  t = 1 ( ct = (1)(1) = 1 units in  x, whereas the right boundary is at  xu = 8). This is taken as justification for assuming that −8 ≤  x ≤ 8 is essentially −∞ ≤  x ≤ ∞ if  t ≤ 1. 

We can summarize the procedure for using traveling wave analysis (using ξ =  x −  ct) to produce a PDE from an ODE (with independent variable ξ ):

. WecanstartwithasolutiontotheODE( U(ξ)),whichshouldhavethefollowing

properties:

– It has finite limiting values as BCs at ξ = ±∞ such as the tanh function of eq. (19.2). 

– It can be differentiated so that the solution can be (a) verified as a solution to the ODE as illustrated in Table 19.2 or (b) used to construct an associated ODE (such as

eq. (19.1)), possibly including a residual function as illustrated in Chapter 17. 

. OncetheODEanditssolutionhavebeenformulated,achangeofvariablethrough

ξ =  x −  ct  and substitution for the ODE derivatives gives an associated PDE as was done in the preceding example through the equations of Table 19.1. 

The requirement for an assumed solution with finite values for BCs at ξ = ±∞ provides for the possible use of a variety of functions, such as, for example, tanh m(ξ ) and sech m(ξ ). 

However, functions such as sin(ξ ) and cos(ξ ) are precluded since they are undefined at ξ = ±∞. By requiring these boundary values, the resulting PDE test problem will be valid for 0 ≤  t ≤ ∞ and −∞ ≤  x ≤ ∞ corresponding to ξ = ±∞; in other words,  t  and  x  are
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unbounded in the use of the PDE and its exact solution. Also, the numerical solution of the PDE can be viewed in the Lagrangian sense (as a function of ξ ) or the Eulerian sense (as a function of  x  and  t); the latter case can be used to evaluate numerical methods for PDEs (such as the MOL). 

In summary, the traveling wave analysis provides a way for developing PDEs and associated exact solutions that can be used as test problems for PDE numerical methods. 

However, the PDEs that result from this approach will not necessarily have a physical interpretation (although this possibility is not ruled out, as new PDE applications are developed). 

Also, the method can be applied to nonlinear PDEs, such as eq. (19.5), as well as linear PDEs. Once a numerical method has been tested with an exact solution, the PDE can easily be modified to investigate the (numerical) solution of other PDEs (although the exact solution will not apply) by relatively straightforward changes in the MOL ODE routine (such as pde 1.m of Listing 19.1). For example, the coding for eq. (19.5) could be extended to include nonlinear terms such as  um  and  f ( u) by including these terms in the MOL routine. 

Thus, we have the opportunity for almost unlimited numerical investigations of linear and nonlinear PDEs, and associated numerical methods, through this approach of developing a PDE test problem starting with an ODE. 

Appendix

We conclude this chapter by illustrating that a traveling wave solution to the  modified wave equation, which corresponds to the original solution given in eq. (19.6), can be found using the  tanh,  exp, and  Riccati  methods. The Maple code to use the Riccati method to obtain a solution is shown in Listing 19.4 and the major computational steps are as follows:

1. Specify the PDE equation, i.e., eq. (19.5), which was derived from the original ODE

eq. (19.1). 

2. Set the order of approximation to  M = 1. 

3. Read file riccatiMethod.txt which contains Maple procedure riccatiMethod(), that will be used to obtain traveling wave solutions. 

4. Set integration flag to zero (no integration needed) and call riccatiMethod(), which generates 7 × 6 = 42 traveling wave solutions: 18 trivial and 24 nontrivial. Of the 24

nontrivial solutions, most are duplicates. All solutions are verified as satisfying

eq. (19.5) by application of the Maple function pdetest(), which is called within the procedure riccatiMethod(). 

5. Check each of the derived solutions against the standard traveling wave solution of

eq. (19.6). This step utilizes the very useful Maple function testeq() to perform the comparison. An exact match is found! 

6. Display animation and 3D plot of the solution. 

># Modified Wave Equation

# Attempt at Riccati equation based solution method
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restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)):

>pde1:=(diff(u,t,t)/cˆ2+diff(u,x,x))/2+2*u-2*uˆ3=0; 

>read("riccatiMethod.txt"); 

>intFlg:=0: # integration of U(xi) not needed! 

M:=1;# Set order of approximation

infoLevOut:=0; 

riccatiMethod(M,pde1,intFlg,infoLevOut); 

># Check for standard solution match

u1:=tanh(x+x0-c*t): testFlag:=0:

for i from 1 to N do

for j from 1 to 6 do

u2:=rhs(soln[i,j]); 

del:= testeq(u1=u2):

if del=true then

ii:=i; jj:=j; 

testFlg:=1; 

print("soln:",ii,jj," ... MATCH FOUND!"); 

break; 

end if; 

end do; 

if testFlg=1 then

break; 

end if; 

end do; 

if testFlg=0 then

print("NO MATCH FOUND!"); 

end if; 

>#Set solution for display

if testFlg=1 then

zz:=rhs(soln[ii,jj]); 

else

zz:=u1; 

end if; 

c:=1; x0:=0; 

># Animate solution

animate(zz,x=-5..25, t=0..20, 

numpoints=300,frames=50, axes=framed, 

labels=["x","u"],thickness=3, 

title="Modified Wave Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot

plot3d(zz,x=-5..25, t=0..20,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[122,42],grid=[100,100], 

style=patchnogrid,shading=Z, 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

title="Modified Wave Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING 19.4: Maple code to derive traveling wave solutions to the  modified wave equation  by implementation of the  Riccati method. 
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It is equally straightforward to find traveling wave solutions by application of either the Maple procedure tanhMethod() or expMethod() described in the main Appendix. These two methods each find solutions that match the original solution eq. (19.6). The tanh method finds the exact solution

 u = tanh ( x −  ct)

(19.7)

and the exp method finds the solution

e− x+ ct − e x− ct

 u = −

(19.8)

e− x+ ct + e x− ct

which, of course, transforms exactly to the original solution, eq. (19.6). 

In order to save space, listings of the Maple code implementations of the tanh and exp methods will not be included here, but they are available in the downloadable software. 

Reference

[1] C.R. Wylie, L.C. Barrett,  Advanced Engineering Mathematics, Sixth edition, McGraw-Hill, New York, 1995, p. 46. 
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Analytical Solution Methods for

Traveling Wave Problems

A.1 Introduction

In this appendix, we discuss some analytical methods for deriving traveling wave solutions to PDEs. These include three fairly new developments, namely  tanh-,  exp-, and  Riccati-

based methods. In addition, we outline the  factorization  method and illustrate how solutions may be obtained by direct integration. All the methods are intuitively easy to understand and straightforward to apply. They all benefit greatly from being implemented in a  computer algebra system (CAS) such as Maple. 

The methods are first described in detail and then illustrated by an example. In addition, the tanh-, exp-, and Riccati-based sections also include a computer implementation based on procedures programmed for Maple. Although these procedures solve many problems and demonstrate the way the methods work, they should be viewed as educational/research tools. They will not be able to solve all problems. 

We mention that the tanh-, exp-, and Riccati-based procedures are not intended to rival the Maple built-in procedure  TWSolutions—see Section A.9. 

A.2 Tanh Method

We will first discuss the method applied to a problem defined in terms of a single equation having one spatial dimension  x, plus the time dimension  t. Subsequently, it will be shown that the arguments extend naturally to coupled equations and also to problems defined in terms of two or more spatial dimensions, plus time. 

Consider the following evolutionary equation for which we wish to find traveling wave solutions

ψ ( u,  ut,  ux,  utt,  uxx,  utx,...) = 0

(A.1)

The tanh method is simple to implement. We start by introducing the transformation u ( x,  t) →  U (ξ) , 

ξ =  k ( x −  ct)

(A.2)
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where  U  has yet to be defined and, typically,  k > 0 represents  wavenumber  and  c represents  wave velocity. Partial differentiation operations with respect to  t  and  x  are, therefore, transformed to the following equivalent ordinary differentiation operations

∂

 d

(A.3a)

∂ → − kc

 t

 d ξ

∂

 d

(A.3b)

∂ →  k

 x

 d ξ

Thus, partial differential equation (A.1) is transformed to the following ordinary differential equation



! 

 dU

 dU

9  U, − kc

,  k

,  k 2 c 2  d 2 U ,  k 2  d 2 U , − k 2 c 3  d 3 U , + k 3  d 3 U · · · = 0

 d ξ

 d ξ

 d ξ 2

 d ξ 2

 d ξ 3

 d ξ 3

or in  canonical form



! 

 dU d 2 U d 3 U

9  U, 

, 

, 

... = 0

(A.4)

 d ξ

 d ξ 2  d ξ 3

where  c  and  k  are subsumed into 9. 

We now apply  Malfliet’s tanh method [13] and introduce the new function Y = tanh (ξ)

(A.5)

from which we note that

 dY

 d ξ = sech2 (ξ ) = 1 − tanh2 (ξ ) = 1 −  Y  2

(A.6)

It therefore follows from the chain rule for differentiation that, for a given function  F ( Y ), we have

 dF ( Y )

 dF ( Y )  dY

 dF ( Y ) 1− Y 2

 d ξ

=

 dY

 d ξ =

 dY

Thus, by repeating this process, we are able to define a set of  differential operators L,  L 2, L 3, . . ., etc. with respect to ξ , as follows

 d

1 −  Y  2  d

 d ξ =  L =

 dY

 d 2

 d   d 

=

=  L 2

 d ξ 2

 d ξ

 d ξ









= 1 −  Y  2  d

1 −  Y  2  d

 dY

 dY



 d



= −2 1 −  Y  2  Y

+ 1 −  Y  22  d 2

(A.7)

 dY

 dY  2
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! 

 d 3

 d

 d 2

=

=  L 3

 d ξ 3

 d ξ

 d ξ 2













= 1 −  Y  2  d

1 −  Y  2  d

1 −  Y  2  d

 dY

 dY

 dY





 d



 d 2



= 1 −  Y  2 6  Y  2 − 2

− 6 1 −  Y  22  Y

+ 1 −  Y  23  d 3

 dY

 dY  2

 dY  3

etc. 

It is readily seen that there is a simple discernible pattern for higher-order differentials. 

Thus we have found a set of algebraic functions to represent various orders of derivatives. Consequently, we are now able to convert the ODE of equation (A.4) to an equivalent algebraic equation, as follows. 

We start by setting  U =  F( Y ) and introduce the following ansatz (informed guess) M

X

 F ( Y ) =

 aiY i

(A.8)

 i=0

where coefficients  ai  are real constants to be determined, and  M  is a positive integer found by balancing (equating) the largest exponent of  Y  in the highest order linear term with the largest exponent of  Y  in the highest order nonlinear term. The idea of balancing is explained in more detail in the following example. Malfleit originally specified the tanh method summation from 0 to  M, as above. However the  extended tanh method [28, 29]

defines the summation from − M  to  M. 

Substituting eqns. (A.7) and (A.8) into the ordinary differential eq. (A.4) gives a polynomial in  Y  for which we have to solve for the unknown parameters. The associated coefficient for each power of  Y  in the polynomial is represented by an expression consisting of parameters  ai,  k, and  c. Now, for the problem to be consistent for all values of Y , the coefficient expressions must each equate to zero. We therefore use the method of Lagrange (undetermined) multipliers  to solve the resulting set of equations for the required unknowns  ai,  k, and  c. The final solution then becomes the polynomial, whose coefficients are now known, where tanh  k ( x −  ct) has been substituted for  Y . 

For anything other than trivial or simple problems, the process of solving for the unknown coefficients is a tedious process and usually requires the use of a computer algebra system if the solution is to be found in a reasonable time. In fact, for many problems, it is totally impractical to attempt a manual solution. For additional information, the reader is referred to [13–15]. 

A.2.1 Example - KdV Equation

We will apply the above solution method to the canonical form of the KdV equation, i.e., 

∂ u

∂ u

∂3 u

∂ + 6 u

+

= 0

(A.9)

 t

∂ x

∂ x 3
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for which we have the well-known traveling wave single soliton solution, 

 u = 2 k 2sech  k ( x −  ct) , 

 c = 4 k 2

(A.10)

This is a problem with historical significance because it admits  solitary wave 1 solutions. 

Solitary waves first came to the attention of the scientific world when, in 1844, John Scott-Russell reported observing their physical occurrence on the Union Canal near Edinburgh

[24]. Then in 1895, Korteweg and de Vries published a paper that explained these rare events and detailed the first mathematical equation to exhibit solitary wave behavior [10]. 

This equation now bears their name. Research into this phenomenon waned until 1965

when it was proven that the KdV equation also admitted  soliton  solutions. A soliton is a solitary wave with the additional property that other solitons can pass through it without changing its shape. The only difference after they emerge from a collision is that each exhibits a small phase shift (displacement or translation in time). This breakthrough was reported in the seminal paper by Kruskal and Zabusky [31], which detailed the results of their numerical solutions and heralded in an era of intense research into this interesting phenomenon. It was also in this paper that the term  soliton  was first coined. A very readable overview relating to the subject of solitons is available at  Scholarpedia, the online encyclopedia [19]. 

The following five steps summarize the preceding method when applied to solve the KdV equation:

1.  Apply the traveling wave transformation. 

Apply the transformation of eq. (A.2) to eq. (A.9) to obtain dU (ξ)

 dU (ξ)

− kc

= 0

(A.11)

 d ξ

+ 6 kU (ξ )

 d ξ

+  k 3  dU 3 (ξ )

 d ξ 3

which can be integrated once directly with respect to  U (ξ ) to give

− kcU (ξ ) + 3 kU (ξ )2 +  k 3  dU 2 (ξ ) = 0

(A.12)

 d ξ 2

Note: For this method, we set the constant of integration to zero. 

2.  Apply the tanh approximation. 

Substitute  U =  F ( Y ) into eq. (A.12), and using eq. (A.7), we obtain

− kcF ( Y ) + 3 kF ( Y )2 +  k 3 1 −  Y  2

" 

#

 dF ( Y )

 d 2 F ( Y )

(A.13)

× −2 Y

+ 1 −  Y  2

= 0

 dY

 dY  2

1The term  solitary wave  was first coined by Scottish engineer John Scott-Russell (1808-82). 

“24-app-391-440-9780123846525” — 2010/12/14 — 12:46 — page 395 — #5

. 

 Appendix A

Analytical Solution Methods for Traveling Wave Problems

395

We can now substitute into eq. (A.13) the summation of eq. (A.8) to give, after division by  k, 





− c  P M

P M

 i=0  aiY i + 3

 i=0  aiY i 2 +  k 2 1 −  Y  2 ×

−2 Y ×  a

(A.14)

1 + 2 a 2 Y + 3 a 3 Y  2 + · · · +  MaM Y M−1 +

1 −  Y  2 × 2 a 2 + 6 a 3 Y + · · · +  M ( M − 1)  aM Y M−2 = 0

3.  Determine the polynomial approximation order,  M. 

For eq. (A.14), we have to balance the largest exponent of  Y  in the highest order nonlinear term with the largest exponent of  Y  in the highest order linear term. The largest exponent of  Y  in the highest order nonlinear term occurs in the second term and is equal to 2 M. The largest exponent of  Y  in the highest order linear term occurs in the highest derivative term, the third term, and is equal to 4 + ( M − 2). Therefore on balancing these exponents, we have

2 M = 4 + ( M − 2) →  M = 2

(A.15)

4.  Equate coefficients to zero and solve for unknown parameters. 

On rearranging, eq. (A.14) results in the following polynomial in  Y : 3 ka 2

 Y  4

 Y  3

2 + 6 k 3 a 2

+ 2 k 3 a 1 + 6 ka 1 a 2

+ − kca



2 + 3 ka 2

 Y  2

(A.16)

1 + 6 ka 0 a 2 − 8 k 3 a 2

+ − kca



1 + 6 ka 0 a 1 − 2 k 3 a 1  Y −  kca 0 + 3 ka 2

0 + 2 k 3 a 2 = 0

We now have a fourth degree polynomial in  Y , which is identically equal to zero, and for this to be true, it follows that the coefficients for each power of  Y  must also be identically equal to zero. Equating the coefficients to zero results in five simultaneous equations, i.e., 

 Y  0: −  kca 0 + 3 ka 20 + 2 k 3 a 2

= 0

 Y  1: −  kca 1 + 6 ka 0 a 1 − 2 k 3 a 1

= 0

 Y  2: −  kca 2 + 3 ka 2

(A.17)

1 + 6 ka 0 a 2 − 8 k 3 a 2 = 0

 Y  3: 2 k 3 a 1 + 6 ka 1 a 2

= 0

 Y  4: 3 ka 22 + 6 k 3 a 2

= 0. 
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which we solve using Maple. The following five parameter solution sets are produced by Maple:

 a 0 =  a 0,  a 1 =  a 1,  a 2 =  a 2,  k = 0,  c =  c

: trivial solution

 a 0 = 0,  a 1 = 0,  a 2 = 0,  c =  c,  k =  k

: trivial solution

 a 0 =  a 0,  a 1 = 0,  a 2 = 0,  c = 3 a 0,  k =  k

: trivial solution

(A.18)

 a 0 = 2 k 2,  a 1 = 0,  a 2 = −2 k 2,  c = 4 k 2,  k =  k

: real solution

 a 0 = (2/3) k 2,  a 1 = 0,  a 2 = −2 k 2,  c = −4 k 2,  k =  k

: real solution

5.  Make back substitutions to obtain final solutions. 

The final results are therefore found by substituting the parameter solution sets (A.18)

into eq. (A.17) and then setting  Y = tanh  k [ x −  ct] in eq. (A.16), which yields the following five solutions to eq. (A.9):

 u 1 =  a 0

 u 2 = 0

 u 3 =  a 0

(A.19)

o

 u 4 = 2 k 2 n1 − tanh2  k x − 4 k 2 t = 2 k 2sech2  k x − 4 k 2 t 2

o

 u 5 =  k 2 n1 − 3 tanh2  k x + 4 k 2 t

3

Where constants  a 0 or  k  appear in the above solutions, they may take arbitrary values. 

Note that  u 4 is the same solution as given in eq. (A.10). 

Aside:

For most problems, the above procedure is best performed using a computer algebra system such as Maple. However, as it happens for this particular problem, we note that  F( Y ) should be proportional to 1 −  Y  2 because each term of eq. (A.11) includes a derivative -

refer to eqns. (A.7). Therefore, we can take a short cut and set F ( Y ) = α 1 −  Y  2

On dividing equation (A.11) through by α 1 −  Y  2, we obtain



! 

 d  1 −  Y  2



− c + 3α 1 −  Y  2 +  k 2 −2 Y

+ 1 −  Y  2  d 2 1 −  Y  2

= 0

 dY

 dY  2
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which reduces to



− c + 3α 1 −  Y  2 +  k 2 h4 Y  2 − 2 1 −  Y  2i = 0

Thus on equating coefficients of  Y  0 and  Y  2 to zero, we obtain two equations with three unknowns, i.e., 

3α − 2 k 2 −  c = 0

6 k 2 − 3α = 0

and choose  k  to be a free parameter. The remaining parameters are found to be α = 2 k 2 and  c = 4 k 2

Recalling from eqns. (A.5) and (A.6) that  Y = tanh (ξ ) = tanh  k ( x −  ct) and that  u( x,  t) =

 U (ξ) =  F( Y ), we can now write the final solution as



io



i

 u ( x,  t) = 2 k 2 n1 + tanh2 h k x − 4 k 2 t

= 2 k 2sech2 h k x − 4 k 2 t

(A.20)

which is eq. (A.10). However, using Maple, we also found the additional nontrivial solution 2

n

o

 u =  k 2 1 − 3 tanh2  k x + 4 k 2 t . 

3

It must be stressed that although the tanh method can be used successfully on many problems to find traveling wave solutions, it is not guaranteed to find all traveling wave solutions and may fail altogether to find solutions to some problems. 

A.2.2 A Maple tanh Method Procedure

We now illustrate the use of a computer algebra system to solve problems that require the use of the tanh method. This greatly reduces the effort required and, in many cases, is the only practical way of arriving at a solution using this type of approach. 

The Maple procedure below generates a solution automatically, and we will demonstrate its use by an application example. However we must stress that this procedure will not solve all problems and is only provided to show what can be done with Maple using a fairly short section of code. 

tanhMethod:=proc(M,pde,intFlag,infoLev)

local F, FF, F1, F2, F3, F4, 

ode1, str, tr1, tr2, 

i, j, vars, testFlag; 

global _a, k, c, sol, testSol, N, F5; 

unprotect(_a); 

# Assume a travelling wave solution of the form

# U(xi), xi=k*(x-c*t); 

tr1:={x=(xi/k+c*tau),t=tau,u=U(xi)}; 

ode1:=dchange(tr1,pde,[xi,tau,U(xi)]); 

print('ode1=', ode1); 
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if intFlag > 0 then

for i from 1 to intFlag do

ode1:=int(lhs(ode1),xi)=0; 

end do; 

print('After integration, ode1= ', ode1); 

end if; 

tr2:={xi=arctanh(Y),U(xi)=F(Y)}; 

F1:=dchange(tr2,ode1,[Y,F(Y)]); 

#print('F1=',F1); 

F(Y):=add( _a[i]*Yî, i=0..M ); 

print('F(Y) = ', F(Y)); 

F2:=eval(F1); 

#print('F2=',F2); 

F3:=collect(expand(F2),{Y}):

#print('F3=',F3); 

# This line included incase there are quotient terms

F3 := numer(lhs(F3))*denom(rhs(F3)) =

numer(rhs(F3))*denom(lhs(F3)):

#print('F3=',F3); 

# Get coeff's of Yˆm terms

F4:=CoefficientList(lhs(F3),Y):

F4:=convert(F4,set):

#print('F4=',F4); 

# Define variables to be solved for

vars:={seq(_a[r],r=0..M),'k','c'}; 

if infoLev>0 then print('Unknowns =', vars) end if; 

if infoLev>1 then print('Coefficient List =',F4) end if; 

# Note: Polynomial coefficients for each power of Y must = 0

F5:=[solve(F4,vars)]:

# This line needed to eliminate 'RootOf' terms

# from the solve() answer

F5:=map(allvalues,F5); 

#print('F5=',F5); 

N:=nops(F5): # No of solution sets found by solve()

print(' Number of solution sets found = ', N); 

if infoLev>1 then print(F5) end if; 

for i from 1 to N do

assign(F5[i]): FF[i]:=F(Y):

# print(FF[i]); 

sol[i]:=u=eval(simplify(subs(Y=tanh(k*(x+x0-c*t)),FF[i]),symbolic)); 

str:=sprintf("Solution %2d:\n===========", i): printf(str); 

print(sol[i]); 

# Unassign F(Y) coefficients

for j from 0 to M do

#print(j); 

unassign('_a[j]'); 

end do; 

unassign('k','c'); 

end do; 

# Test Solutions!! 

testFlag:=0; 

if infoLev > 0 then

print("About to run pdetest!"); 

end if; 
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for i from 1 to N do

if infoLev > 0 then

print("About to run pdetest() on solution: ", i); 

end if; 

testSol[i]:=timelimit(20,pdetest(sol[i],pde) ); # '0' if true

if testSol[i] <> 0 then

str:=sprintf(" Solution: %2d does not pass pdetest() !", i):print(str); testFlag:=1; 

end if; 

end do; 

# Final check to see if all solutions found solve 'pde' 

if testFlag = 0 then

print("All solutions pass pdetest() !"); 

end if; 

end proc:

LISTING A.1: Maple procedure tanhMethod(). 

This procedure is saved in the separate file tanhMethod.txt so that it can be reused with any application. Note, because this procedure is general for use with any PDE, we now use a[i] rather than simply a[i] so that there is minimum likelihood of a name conflict with constants in the PDE. Also, tanhMethod introduces the arbitrary constant  x 0 into the solution - refer to Section A.7 for an explanation. 

We will now use procedure tanhMethod() to solve the Korteweg-de Vries (KdV)

equation (A.9), in which we present code fragments followed by the associated Maple output. 

.  InitializeMapleandloadrequiredpackages:PDEtools,PolynomialToolsandplots. 

> # KdV Equation

# Attempt at Malfliet's tanh solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

.  Defineanaliasforu( x,  t) tosimplifywritingcodeandthendefinetheKdVproblemPDE. 

> alias(u=u(x,t)):

pde1:=diff(u,t)+6*u*diff(u,x)+diff(u,x,x,x)=0; 

∂

∂ 

∂3

 pde 1 :=

 u

 u

 u

∂

+ 6 u

+

= 0

 t

∂ x

∂ x 3

.  Readintheprocedure tanhMethod sothatitcanbecalledasrequired. 

> read("tanhMethod.txt"); 

.  Calltheprocedure  tanhMethod witharguments M,pde1,intFlg,  and infoLevOut. 

Note the use of  ai  rather than  ai, as mentioned above. The first three solutions found are trivial, but the fourth and fifth are valid nontrivial solutions. All the solutions found satisfy the original PDE, eq. (A.9). 

> intFlg:=1: # one integration of U(xi) needed! 

infoLevOut:=2: # set output information to level 2
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M := 2: # Set order of approximation

tanhMethod(M,pde1,intFlg); 

 F( Y ) :=  a 0 +  a 1 Y +  a 2 Y  2



! 

 d

 d



 d 3

od e 1 =, − ck

 U(ξ ) + 6 U(ξ ) k

 U(ξ ) +  k 3

 U(ξ ) = 0

 d ξ

 d ξ

 d ξ 3



! 

 d 2

 After integration, od e 1 =, − ckU(ξ ) + 3 kU(ξ )2 +  k 3

 U(ξ ) = 0

 d ξ 2

Unknowns =, { c,  k,  a 0,  a 1,  a 2}

Coefficient list =, 

h  k(3  a 22 + 6 k 2  a 2),  k(2 k 2  a 1 + 6  a 1  a 2),  k(− c a 0 + 3  a 20 + 2 k 2  a 2), k(− c a 1 + 6  a 0  a 1 − 2 k 2  a 1),  k(− c a 2 + 3  a 21 + 6  a 0  a 2 − 8 k 2  a 2) i

”  Number of solution sets found = 5” 



 a 0 =  a 0,  a 1 =  a 1,  a 2 =  a 2,  k = 0,  c =  c a 0 = 0,  a 1 = 0,  a 2 = 0,  k =  k,  c =  c a



0 =  a 0,  a 1 = 0,  a 2 = 0,  k =  k,  c = 3 a 0

 a 0 = 2 k 2,  a 1 = 0,  a 2 = −2 k 2,  c = 4 k 2,  k =  k 2



 a 0 =  k 2,  a 1 = 0,  a 2 = −2 k 2,  c = −4 k 2,  k =  k 3

Solution 1:


=======

 u =  a 0

Solution 2:


=======

 u = 0

Solution 3:


=======

 u =  a 0

Solution 4:


=======

2  k 22 cosh  k x +  x 0 + 4 k 2 t 2 − 3 

 u = − 3

cosh  k x +  x 0 + 4 k 2 t 2
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Solution 5:


=======

2 k 2

 u = cosh k − x− x 0+4 k 2 t 2

”About to run pdetest!” 

”About to run pdetest() on solution: ”, 1

”About to run pdetest() on solution: ”, 2

”About to run pdetest() on solution: ”, 3

”About to run pdetest() on solution: ”, 4

”About to run pdetest() on solution: ”, 5

”All solutions pass pdetest() !”! 

.  CheckthattheknownstandardsolutionpassestheMapleprocedure pdetest() and print an error message if it does not. 

> # Check derived solutions for match with 'standard' solution

x0:=0: # Set arbitrary constant to zero! 

sol1:=u=2*kˆ2*sech(k*(x-4*kˆ2*t))ˆ2: # standard solution

s1:=rhs(sol1): testFlg:=1:

for i from 1 to N do

s2:=rhs(sol[i]); 

del:=simplify(s1-s2, symbolic); 

if del=0 then

str:=sprintf(' sol[\%d] matches 'standard' solution ',i):

print('str'); 

print(sol[i]); testFlg:=0; 

break; 

end if:

end do:

if testFlg = 1 then print('No match to standard solution!') end if; 

”sol[5] matches ’standard’ solution” 

2 k 2

 u = cosh k − x+4 k 2 t 2

.  Setthewavenumberto0.5(givesawavespeedof1),andplotthesolutionasan

 animation and as a 3D surface. 

># Plot results


# ============

k:=0.5: # Set value for wave number

# Animate solution

animate(rhs(sol[i]),x=-10..50,t=0..40, 

numpoints=300,frames=50, axes=framed, 

labels=["x","u"],thickness=3, 

title="KdV Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

># Generate a 3D surface plot

[image: Image 27]
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FIGURE A.1: Plot of the derived solution  u ( x,  t) =

,  k = 0.5,  t = 0. 

cosh  k − x + 4 k 2 t 2
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 t
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FIGURE A.2: 3D surface of derived solution for  x = −10 . . . 50 and  t = 0 . . . 40. 

plot3d(rhs(sol[i]),x=-10..50,t=0..40,axes='framed', 

labels=["x","t","u(x,t)"], 

orientation=[-145,43],grid=[100,100], 

style=patchnogrid,shading=Z, 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

title="KdV Equation", 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

Plotted output from the preceding code is shown above as Figs. A.1 and A.2. 

Finally, when using the tanhMethod procedure, care must be taken when selecting variable names in the main body of the application code. It is advisable to avoid using any of the variable names specified as  local  or  global  in the procedure, except as shown in this example. Otherwise, unexpected behavior may result. If in doubt, try to follow the example given here or the additional download examples. 
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A.2.3 Extension to Coupled Equations

Application of the tanh method to two or more coupled equations is a natural extension to the one-dimension case. However, we will restrict our discussion here to a system with two coupled PDEs in one spatial dimension (plus time). Problems with more than two coupled equations follow in a straightforward manner. 

Consider the following two coupled evolutionary equations for which we wish to find traveling wave solutions

ψ ( u,  v,  ut,  vt,  ux,  vx,  utt,  vtt,  uxx,  vxx,  utx,  vtx,...) = 0

φ ( u,  v,  ut,  vt,  ux,  vx,  utt,  vtt,  uxx,  vxx,  utx,  vtx,...) = 0

The tanh method is simple to implement, and we start by introducing the transformations u ( x,  t) →  U (ξ) , 

 v ( x,  t) →  V (ξ) , 

ξ =  k ( x −  ct)

where  U  and  V  have yet to be defined and, typically,  k > 0 represents  wavenumber  and c  represents  wave velocity. Partial differentiation operations with respect to  t  and  x  are, therefore, transformed to the following equivalent ordinary differentiation operations

∂

 d

∂

 d

, 

∂ → − kc

→  k

 t

 d ξ

∂ x

 d ξ

Thus the above partial differential equations are transformed to the following ordinary differential equations



! 

 dU dV d 2 U d 2 V

9  U,  V , 

, 

, 

, 

, . . . = 0

 d ξ

 d ξ

 d ξ 2  d ξ 2



! 

 dU dV d 2 U d 2 V

8  U,  V , 

, 

, 

, 

, . . . = 0

 d ξ

 d ξ

 d ξ 2  d ξ 2

We are now able to convert these ODE equations to equivalent algebraic equations by setting  U =  F( Y ) and  V =  G( Y ) (recall that  Y = tanh(ξ )) then introducing the following ansatz

 M 1

 M 2

X

X

 F ( Y ) =

 aiY i,  G ( Y ) =

 biY i

 i=0

 i=0

where coefficients  ai  and  bi  are real constants to be determined.  M 1 is a positive integer (associated with PDE [1]) to be found by balancing (equating) the largest exponent of  Y  in the highest order linear term with the largest exponent of  Y  in the highest order nonlinear term. Similarly,  M 2 is a positive integer (associated with PDE2) to be found by balancing (equating) the largest exponent of  Y  in the highest order linear term with the largest exponent of  Y  in the highest order nonlinear term. Note, again we use underscores, i.e., a[i]

and b[i], to avoid name conflicts with constants used in the PDEs. 
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The tanh method for coupled equations then follows the same calculation sequence as for the single equation case, as detailed at the beginning of Section A.2. A Maple procedure that performs this calculation and generates a solution automatically for problems with two coupled equations is included in Listing A.2. It will not solve all problems! 

tanhMethod2:=proc(M1,M2,pde1,pde2,intFlg1,intFlg2,infoLev)

local F, FF, G, GG, F11, F12, F21, F22,F31, F32, F41, F42, 

eqns, ode1, ode2, str, tr1, tr2, 

i, j, vars, testFlag; 

global _a, _b, p, q, k, c, sol1,sol2, testSol1,testSol2, N, F5; 

unprotect(_a,_b); 

# Assume a travelling wave solutions of the form

# U(xi), xi=k*(x-c*t);V(xi), xi=k*(x-c*t); 

tr1:={x=(xi/k+c*tau),t=tau,u=U(xi),v=V(xi)}; 

ode1:=dchange(tr1,pde1,[xi,tau,U(xi),V(xi)]); 

ode2:=dchange(tr1,pde2,[xi,tau,U(xi),V(xi)]); 

print('ode1=', ode1); print('ode2= ', ode2); 

if intFlg1 = 1 then

ode1:=int(lhs(ode1),xi)=0; 

print('After integration, ode1= ', ode1); 

end if; 

if intFlg2 = 1 then

ode2:=int(lhs(ode2),xi)=0; 

print('After integration, ode2= ', ode2); 

end if; 

tr2:={xi=arctanh(Y),U(xi)=F(Y),V(xi)=G(Y)}; 

F11:=dchange(tr2,ode1,[Y,F(Y),G(Y)]); F12:=dchange(tr2,ode2,[Y,F(Y),G(Y)]); 

#print(F11); print(F12); 

F(Y):=add( _a[i]*Yî, i=0..M1 ); 

G(Y):=add( _b[i]*Yî, i=0..M2 ); 

print('F(Y) = ', F(Y)); print('G(Y) = ', G(Y)); 

F21:=eval(F11); F22:=eval(F12); 

#print('F21=',F21); print('F22=',F22); 

F31:=collect(expand(F21),{Y}): F32:=collect(expand(F22),{Y}):

#print('F31=',F31); print('F32=',F32); 

# These lines included incase there are quotient terms

F31 := numer(lhs(F31))*denom(rhs(F31)) =

numer(rhs(F31))*denom(lhs(F31)):

F32 := numer(lhs(F32))*denom(rhs(F32)) =

numer(rhs(F32))*denom(lhs(F32)):

#print('F31=',F31); print('F32=',F32); 

# Get coeff's of Yˆm terms

F41:=CoefficientList(lhs(F31),Y): F42:=CoefficientList(lhs(F32),Y):

F41:=convert(F41,set): F42:=convert(F42,set):

eqns:=F41 union F42; #print(eqns); 

# Define variables to be solved for

vars:={seq(_a[r],r=0..M1),seq(_b[r],r=0..M2),'k','c'}; 

if infoLev>0 then print('Unknowns =', vars) end if; 

if infoLev>1 then print('Coefficient List for U =',F41) end if; 

if infoLev>1 then print('Coefficient List for V =',F42) end if; 

# Note: Polynomial coefficients for each power of Y must = 0

F5:=[solve(eqns,vars)]:

# This line needed to eliminate 'RootOf' terms

# from the solve() answer
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F5:=map(allvalues,F5); 

N:=nops(F5): # No of solutions found by solve()

print(' Number of solutions found = ', N); 

if infoLev>1 then print(F5) end if; 

#print(F5); 

for i from 1 to N do

assign(F5[i]):

FF[i]:=eval(F(Y)): GG[i]:=eval(G(Y)):

#print('FF',i,'= ', _a[0]); print('GG',i,'= ', GG[i]); 

#sol1[i]:=u=simplify(subs(Y=tanh(k*(x-c*t)),FF[i]),symbolic); 

#sol2[i]:=v=simplify(subs(Y=tanh(k*(x-c*t)),GG[i],symbolic); 

sol1[i]:=u=subs(Y=tanh(k*(x-c*t)),FF[i]); 

sol2[i]:=v=subs(Y=tanh(k*(x-c*t)),GG[i]); 

str:=sprintf('Solution %2d:\n===========', i): printf(str); 

print(sol1[i]); print(sol2[i]); 

# Unassign F(Y) coefficients

for j from 0 to M1 do

unassign('_a[j]'):

end do; 

for j from 0 to M2 do

unassign('_b[j]'):

end do; 

unassign('k','c'):

end do; 

# Test Solutions!! 

testFlag:=0; 

if infoLev > 0 then

print("About to run solution tests!"); 

end if; 

for i from 1 to N do

if infoLev > 0 then

print("About to test solution: ", i); 

end if; 

testSol1[i]:=timelimit(20, subs({u=rhs(sol1[i]),v=rhs(sol2[i])},lhs(pde1)) ); 

# '0' if true

testSol2[i]:=timelimit(20, subs({u=rhs(sol1[i]),v=rhs(sol2[i])},lhs(pde2)) ); 

# '0' if true

#print('TS1=', testSol1[i]); print( 'TS2=', testSol2[i]); 

if simplify(testSol1[i]) <> 0 or simplify(testSol2[i]) <> 0 then

str:=sprintf(' Solution: %d does not pass test() !', i): print(str); 

testFlag:=1; 

end if; 

end do; 

# Final check to see if all solutions found solve 'pde' 

if testFlag = 0 then

print('All solutions pass test() !'); 

end if; 

end proc:

LISTING A.2: Maple procedure tanhMethod2. 

The procedure tanhMethod2 is applied in a similar way to the tanhMethod procedure, which is used for solving single equations. For example, when applied to the coupled KdV
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FIGURE A.3: Plot of the solution to the coupled KdV equations for  a = 1,  b = 1,  b 1 = 1, and  k = 1. 
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∂
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∂ x
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tanhMethod2 finds the solution

" (

#2

2 + 4 a)  xk 2 − 8 ak 4 +  b 2 b  t

4 (1 + 4 a)  k 4 +  b 2

 u = −2 k 2 tanh

1

1 b

(

+

2 + 4 a)  k

(6 + 12 a) k 2

" (

#

2 + 4 a)  xk 2 − 8 ak 4 +  b 2 b  t

 v =  b

1

1 tanh

(2 + 4 a) k

where  u  describes a  hump soliton  and  v  describes a  kink soliton, both of which propagate left to right in unison. A plot of the output at  t = 0 is given in Fig. A.3. 

The Maple code that derives this solution and generates an animation is detailed in

Listing A.3. 

># Modified KdV Equation

# Attempt at Malfliet's tanh solution

# Ref: W. Hereman (?). "SOLITARY WAVE SOLUTIONS OF COUPLED

#

NONLINEAR EVOLUTION EQUATIONS USING MACSYMA", 

#

Report, Department of Mathematical and Computer

#

Sciences Colorado School of Mines

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,t)): alias(v=v(x,t)):

# Coupled KdV equations

>pde1:=diff(u,t)-a*(6*u*diff(u,x)+diff(u,x,x,x))

-2*b*v*diff(v,x)=0; 

pde2:=diff(v,t)+3*u*diff(v,x)+diff(v,x,x,x)=0; 

>read("tanhMethod2.txt"); 

>intFlag1:=0: intFlag2=0: # No integration of U(xi) or V(xi) needed ! 

M1:=2: M2:=1: # Set order of approximation

infoLevOut:=0; 
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tanhMethod2(M1,M2,pde1,pde2,intFlag1,intFlag2,infoLevOut); 

>n:=2; # select solution 2

uSol:= sol1[n]; 

vSol:= sol2[n]; 

># Plot animation

a:=1;b:=1;_b[1]:=1; k:=1; 

animate({rhs(uSol),rhs(vSol)},x=-5..20,t=0..10, 

axes=framed,thickness=3,frames=50, 

numpoints=300,title="Coupled KdV Equations", 

labels=["x","u"],thickness=3, 

labelfont=[TIMES, ROMAN, 16],axesfont=[TIMES, ROMAN, 16], 

titlefont=[TIMES, ROMAN, 16]); 

LISTING A.3: Maple code that derives the solution to the above coupled KdV equations. 

A.2.4 Extension to higher spatial dimensions

The extension of the tanh method to more than two spatial dimensions is straightforward. 

We will illustrate this by introducing the traveling wave transformation

 u ( x 1,  x 2,  x 3,  t) →  U (ξ) , ξ =  k 1 x 1 +  k 2 x 2 +  k 3 x 3 − ω t, where typically,  k 1,  k 2,  k 3 > 0 represents  wavenumbers  for the  x 1,  x 2, and  x 3 co-ordinates, respectively, and ω represents  wave frequency. The wave phase and group velocities are given by

ω

 cp = |k|

 d ω

 d ω

 d ω

 d ω

c g =

=

ˆx

ˆx

ˆx

 d

1 +

2 +

3

k

 dk 1

 dk 2

 dk 3

q

where |k| =  k 2

is the absolute value of k, and

1 +  k 2

2 +  k 2

3

ˆx1, ˆx2, and ˆx3 are the unit vectors

associated with x1, x2, and x3. Therefore as the velocity of a traveling wave is equal to its group velocity (also discussed in the Appendix to Chapter 12—Kawahara equation), we have c = cg. For a more detailed discussion refer to [25], p. 236–241. 

Partial differentiation operations with respect to  t,  x 1,  x 2, and  x 3 are transformed to the following equivalent ordinary differentiation operations

∂

 d

∂

 d

∂

 d

∂

 d

, 

, 

, 

∂ → −ω

→  k

→  k

→  k

 t

 d ξ

∂ x

1

2

3

1

 d ξ

∂ x 2

 d ξ

∂ x 3

 d ξ

Problems with higher-order derivatives are handled similarly by a natural extension to the above. 

The tanh method for higher spatial dimensions then follows the same calculation sequence as for the one spatial dimension case, as detailed at the beginning of Section A.2. 

A Maple procedure that performs this calculation and generates a solution automatically for problems with two spatial dimensions is included in Listing A.4. Note, we use  k  and  l
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rather than  k 1 and  k 2 to represent wavenumbers. Also, again, this routine will not solve all problems! 

tanhMethod3:=proc(M,pde,intFlag,infoLev)

local F, FF, F1, F2, F3, F4, 

ode1, str, tr1, tr2, 

i, j, vars, testFlag; 

global A, k, l, omega, sol, testSol, N, F5; 

unprotect(_a); 

# Assume a travelling wave solution of the form

# U(xi), xi=k*x+l*y-omega*t); 

tr1:={x=(xi-l*nu+omega*tau)/k,y=nu,t=tau,u=U(xi)}; 

ode1:=dchange(tr1,pde1,[xi,nu,tau,U(xi)]); 

print('ode1=', ode1); 

if intFlag > 0 then

for i from 1 to intFlag do

ode1:=eval(int(lhs(ode1),xi))=0; 

end do; 

print('After integration, ode1= ', ode1); 

end if; 

tr2:={xi=arctanh(Y),U(xi)=F(Y)}; 

F1:=dchange(tr2,ode1,[Y,F(Y)]); 

#print('F1=',F1); 

F(Y):=add( _a[i]*Yî, i=0..M ); 

print('F(Y) = ',F(Y)); 

F2:=eval(F1); 

#print('F2=',F2); 

F3:=collect(expand(F2),{Y}):

#print('F3=',F3); 

# This line included incase there are quotient terms

F3 := numer(lhs(F3))*denom(rhs(F3)) =

numer(rhs(F3))*denom(lhs(F3)):

# Get coeff's of Yˆm terms

F4:=CoefficientList(lhs(F3),Y):

#print('F4=',F4); 

F4:=convert(F4,set):

#print('F4=',F4); 

# Define variables to be solved for

vars:={seq(_a[r],r=0..M),'k','l','omega'}; 

if infoLev>0 then print('Unknowns =', vars) end if; 

if infoLev>1 then print('Coefficient List =',F4) end if; 

# Note: Polynomial coefficients for each power of Y must = 0

F5:=[solve(F4,vars)]:

# This line needed to eliminate 'RootOf' terms

# from the solve() answer

F5:=map(allvalues,F5); 

N:=nops(F5): # No of solutions found by solve()

print(' Number of solutions found = ', N); 

if infoLev>1 then print(F5) end if; 

for i from 1 to N do

assign(F5[i]): FF[i]:=F(Y):

#print(F(i)); 

sol[i]:=u=eval(simplify(subs(Y=tanh(k*(x+x0)+l*(y+y0)-omega*t), 
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FF[i]),symbolic)); 

str:=sprintf('Solution %2d:\n===========', i): printf(str); 

print(sol[i]); #print(F5[i]); 

#Unassign F(Y) coefficients

for j from 0 to M do

#print(j); 

unassign('_a[j]'); 

end do; 

unassign('k','l','omega'); 

end do; 

# Test Solutions!! 

testFlag:=0; 

if infoLev > 0 then

print("About to run pdetest!"); 

end if; 

for i from 1 to N do

if infoLev > 0 then

print("About to run pdetest() on solution: ", i); 

end if; 

testSol[i]:=timelimit(20,pdetest(sol[i],pde) ); # '0' if true

#testSol[i]:=pdetest(sol[i],pde); # '0' if true

if testSol[i] <> 0 then

str:=sprintf(' Solution: %d does not pass pdetest() !', i): print(str); 

testFlag:=1; 

end if; 

end do; 

# Final check to see if all solutions found solve 'pde' 

if testFlag = 0 then

print('All solutions pass pdetest() !'); 

end if; 

end proc:

LISTING A.4: Maple procedure tanhMethod3. 

The procedure tanhMethod3 is used in a similar way to the tanhMethod procedure, which solves equations having one spatial dimension. For example, when applied to the Boussinesq equation

∂2 u

∂2 u

∂2  u 2

∂4 u

∂

−

−

+

= 0, 

 u =  u x,  y,  t

 t 2

∂ x 2

∂ y 2

∂ x 4

it finds the solution

4 k 4 + ω2 −  k 2

 k 2

 u =

− 6

cosh2  k ( x +  x



0) +  l y +  y 0 − ω t

2 l 2

 l 2

where  u  describes a  two-dimensional hump soliton  or a  line soliton. Plotted output follows as Fig. A.4. 

The Maple code that derives this solution is detailed in Listing A.5. 

># Boussinesq equation - 2D

# Attempt at Malfliet's tanh solution

[image: Image 28]
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FIGURE A.4: Plot of the derived solution for the two-dimensional Boussinesq equation, with  x 0 = 0,  y 0 = 10,  k = 0.9, l = 0.5, and ω = −4, at  t = 0. 

# Ref: Tascan, F., & Bekir, A. (2009). Analytic

#

solutions of the (2+1)-dimensional nonlinear

#

evolution equations using the sine?cosine

#

method. Applied Mathematics and Computation, 

#

215(8), 3134-3139. doi: 10.1016/j.amc.2009.09.027. 

restart; with(PDEtools): with(PolynomialTools):

with(plots):

>alias(u=u(x,y,t)): alias(v=v(x,y,t)):

># Set up PDE

pde1:=diff(u,t,t)-diff(u,x,x)-diff(uˆ2,y,y)+

diff(u,x,x,x,x)=0; 

>read("tanhMethod3.txt"); 

># Calculate solution

intFlag:=1: # Integration of U(xi) needed! 

M:=2; # Set order of approximation

infoLevOut:=2; 

tanhMethod3(M,pde1,intFlag,infoLevOut); 

>soln:=simplify(convert(sol[2],sech),size); 

zz1:=rhs(soln); 

># Set constants

const:={x0=0, y0=10,k=0.9,l=0.5,omega=-4}; 

zz:=subs(const,zz1); 

># Generate 3D animation

animate(plot3d,[zz,x=-10..10,y=-20..0],t=0..6, 

axes=framed,numpoints=300*300,style=patchnogrid, 

shading=Z,frames=40,orientation=[120,215], 

labeldirections=[HORIZONTAL,HORIZONTAL,VERTICAL], 

title="Boussinesq Equation - 2D", 

labelfont=[TIMES, ROMAN, 16],labels=["x","y","u(x,t)"], axesfont=[TIMES, ROMAN, 16], titlefont=[TIMES, ROMAN, 16]); 

LISTING A.5: Maple code that derives the solution to the above two-dimensional Boussinesq equation. 
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A.2.5 Coth Method

The  coth method  is effectively the same as the tanh method except that coth is used in lieu of tanh. Recall that if  Y = coth (ξ ), then

 dY

 d ξ = 1 − coth2 (ξ ) = 1 −  Y  2

It therefore follows from the chain rule for differentiation that, for a given function  F ( Y ), we have

 dF ( Y )

 dF ( Y )  dY

 dF ( Y ) 1− Y 2

 d ξ

=

 dY

 d ξ =

 dY

which is the same result we obtained for  Y = tanh (ξ ) in the tanh method. 

A.3 Exp Method

The  exp method  is very straightforward to implement and is similar to the tanh method described previously. However instead of using a transformation based on the tanh function to find algebraic functions to represent derivatives, we use a transformation based on the  exponential function. We start by applying the transformation  U(ξ ) =  u( x,  t), ξ =

 k( x −  ct), as for the tanh method. However, instead of assuming a  polynomial  solution in tanh, this method assumes that traveling wave solutions can be expressed in the following rational  form [7]

P N  2

 U (ξ)

 n

=

=− N 1  an  exp ( n ξ )

(A.21)

P M  2

 m=− M 1  bm  exp ( m ξ )

where  N 1,  N 2,  M 1, and  M 2 are positive integers to be determined, and  an  and  bm  are unknown constants. Note: Without loss of generality, we can select any constant from  an, bm  to be unity, and we choose  bM 2 = 1 (the same as dividing both the numerator and denominator by a suitable number). 

We now proceed by substituting eq. (A.21) into eq. (A.4). The unknowns  N 1 and  M 1

are determined by balancing the  largest linear term of lowest order  with the  largest nonlinear term of lowest order. Similarly the unknowns  N 2 and  M 2 are determined by balancing the  largest linear term of highest order  with the  largest nonlinear term of highest order. 

Depending upon the particular problem, the method does not appear to be overly sensitive to values chosen for  N 1,  N 2,  M 1, and  M 2. With  N 1,  N 2,  M 1, and  M 2 known, we then crossmultiply to eliminate the denominators and collect like terms to obtain an algebraic equation still consisting of exponential terms, i.e., 

 Cr  exp (− r ξ) +  Cr−1 exp[−( r − 1)ξ] + ··· C 0 +  C 1 exp(ξ) + ··· Cs  exp( s ξ) = 0, (A.22)
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where  r  and  s  represent combinations of  N 1,  N 2,  M 1, and  M 2 and are known.  C− r ...  Cs represent expressions consisting of combinations of the known values for  N 1,  N 2,  M 1, and M 2, along with  a− N 1,...,  aN 2, and  b− M 1,...,  bM 2, which are unknown. On letting exp(ξ) =

 Y , we obtain a polynomial of the following form

 C− rY − r +  C−( r−1) Y −( r−1) + ··· +  C−1 Y −1 +  C 0 +  C 1 Y  1 + ··· +  Cs−1 Y s−1 +  CsY s = 0. 

(A.23)

Similarly to the tanh method, for eq. (A.23) to be consistent for all values of  Y , the coefficient expressions  C− r ...  Cs  must each equate to zero. We therefore use the method of Lagrange (undetermined) multipliers  to solve the resulting set of equations for the required unknowns,  a− N 1,...,  aN 2, and  b− M 1,...,  bM 2. Again for anything other than trivial or simple problems, this is a tedious process that requires the use of a computer algebra system if the solution is to be found in a reasonable time. The final traveling wave solution to the problem is found by substituting  Y = exp (ξ ) and ξ =  k( x −  ct) back into eq. (A.23). For additional information, the reader is referred to [7]. 

A.3.1 Example - KdV Equation

We will apply the above solution method to the KdV eq. (A.9) (with the analytical solution

eq. (A.10) to confirm the analysis). 

1.  Apply the traveling wave transformation. 

Apply the transformation of eq. (A.3) to eq. (A.9) as with the tanh method to obtain

eq. (A.4), when we obtain eqns. (A.11) and (A.12). 

2.  Apply the exponential approximation. 

Substitute eq. (A.21) into eq. (A.23) and determine values for  N 1,  N 2,  M 1, and  M 2. We now let exp (ξ ) =  Y  and balance the largest exponent of  Y  in the highest order nonlinear term with the largest exponent of  Y  in the highest order linear term. The largest exponent of  Y  in the highest nonlinear term (the second term) is 2 ( N 2 −  M 2), and the largest exponent of  Y  in the highest order linear term (the second derivative term) is  N 2 −  M 2. Therefore on balancing these exponents, we have 2 ( N 2 −  M 2) = ( N 2 −  M 2) →  N 2 =  M 2

Now balance the largest exponent of  Y  in the lowest order nonlinear term with the largest exponent of  Y  in the lowest order linear term. The largest exponent of  Y  in the lowest order nonlinear term (the second term) is 2 (− N 1 +  M 1), and the largest exponent of  Y  in the lowest order linear term (the first term) is − N 1 +  M 1. Therefore on balancing these exponents, we have

2 (− N 1 +  M 1) = (− N 1 +  M 1) →  N 1 =  M 1

The summation maximum and minimum index values are not determined uniquely, 

so we choose  N 1 =  M 1 =  N 2 =  M 2 = 1. 
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3.  Equate coefficients to zero and solve for unknown parameters. 

After the substitution and on rearranging, eq. (A.23) results in a sixth-order polynomial in  Y , which in turn results in seven simultaneous equations (as each coefficient  C  in

equation (A.23) must be equal to zero), i.e., 

0 = 3 ka 21 −  kca 1

0 = 6 ka 0 a 1 −  k 3 a 1 b 0 − 2 kca 1 b 0 + 3 ka 2 b 1 0 +  k 3 a 0 −  kca 0

0 = −2 kca 1 b−1 − 4 k 3 a 1 b−1 −  k 3 a 0 b 0 + 3 ka 2 b 1 −1 + 6 ka−1 a 1

+6 ka 0 a 1 b 0 − 2 kca 0 b 0 +  k 3 a 1 b 20 −  kca 1 b 20 + 3 ka 20 −  kca−1 + 4 k 3 a−1

0 = 6 ka−1 a 1 b 0 − 6 k 3 a 0 b−1 − 2 kca 0 b−1 + 3 k 3 a−1 b 0 + 3 k 3 a 1 b−1 b 0

−2 kca 1 b−1 b 0 −  kca 0 b 2

 b

0 + 6 ka 0 a 1 b−1 + 6 ka−1 a 0 + 3 ka 2

0 0 − 2 kca−1 b 0

(A.24)

0 =  k 3 a−1 b 20 − 4 k 3 a−1 b−1 + 6 ka−1 a 1 a−1 − 2 kca 0 b−1 b 0 + 4 k 3 a 1 b 2−1

− kca−1 b 2

 b

0 + 3 ka 2

0 −1 − 2 kca−1 b−1 + 3 ka 2

−1 −  kca 1 b 2

−1

+6 ka−1 a 0 b 0 −  k 3 a 0 b−1 b 0

0 = − kca 0 b 2

 b

−1 + 6 ka−1 a 0 b−1 − 2 kca−1 b−1 b 0 + 3 ka 2

−1 0

− k 3 a−1 b−1 b 0 +  k 3 a 0 b 2−1

0 = − kca−1 b 2

 b

−1 + 3 ka 2

−1 −1

Solving these equations using Maple yields the following solutions:

 a−1 =  a−1,  a 0 =  a 0,  a 1 =  a 1,  b−1 =  b−1,  b 0 =  b 0,  k = 0,  c =  c

: trivial

 a−1 = 0,  a 0 = 0,  a 1 = 0,  b−1 =  b−1,  b 0 =  b 0,  k =  k,  c =  c

: trivial

1

 a−1 = 0,  a 0 =  b 0 k 2,  a 1 = 0,  b−1 =  b 2,  b 0 =  b 0,  k =  k,  c =  k 2

: nontrivial

4 0

 a−1 = 0,  a 0 =  a 1 b 0,  a 1 =  a 1,  b−1 = 0,  b 0 =  b 0,  k =  k,  c = 3 a 1

: trivial

(A.25)

 a

 a

0

−1 =  b−1 a 1,  a 0 =  a 0,  a 1 =  a 1,  b−1 =  b−1,  b 0 =

,  k =  k,  c = 3 a

 a

1

: trivial

1

3  a 2

1

9  a 2

3  a

 a

0

0

0

−1 = −

,  a 0 =  a 0,  a 1 = −  k 2,  b

,  b 0 =

. 

: nontrivial

16  k 2

3

−1 = 16  k 4

2  k 2

 k =  k,  c = − k 2

Recall that  b 1 was previously set to 1. 

4.  Make back substitutions to obtain final solutions. 

The final results are therefore found by substituting the parameter solution sets (A.25)

into eq. (A.23) and then setting  Y = exp  k ( x −  ct) in eq. (A.21), which yields the
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following six solutions:

 a

 u

−1 +  a 0 +  a 1

1 =  b−1 +  b 0 + 1

 u 2 = 0

4 b

 u

0 k 2

3 =  b 2 exp

0

− k x −  k 2 t + 4 b 0 + 4 exp  k x −  k 2 t (A.26)

 u 4 =  a 1

 u 5 =  a 1

1 9 a 2 exp− k x +  k 2 t − 48 k 2 a 0 + 16 k 4 exp k x +  k 2 t   k 2

 u

0

6 = − 3 9 a 2 exp

0

− k x +  k 2 t + 24 k 2 a 0 + 16 k 4 exp k x +  k 2 t Where constants  a−1,  a 0,  a 1,  b−1,  b 0, or  k  appear in the above solutions, they may take arbitrary values. 

We can point out here that Maple may present solutions in a different order than in

eqs. (A.26). Also, for difficult problems, Maple may not find all the possible solutions; consequently, it occasionally produces different solutions at different times. For more details on some of the difficulties and possible solutions related to the Maple procedure solve(), refer to [8], Chapter 16. 

One of the drawbacks with the exp method is that the solutions, at first glance, can appear rather complex. Whilst on further inspection, using hyperbolic relationships such as

2

1 − exp 2 k ( x +  ct)

tanh  k ( x +  ct) = 1 −

= −

1 + exp 2 k ( x +  ct)

1 + exp 2 k ( x +  ct)

we see that they often reduce to simpler forms. This has been highlighted by Kudryashov

[11] who illustrates the situation by providing examples of problems for which authors have inadvertently claimed new traveling wave solutions that turned out to be well-known solutions in a different form. Some additional discussion on this subject is given by Parks [16]. 

A.3.2 A Maple exp Method Procedure

We now present a Maple procedure, expMethod, that generates a solution automatically and then illustrate its use by an application example. However, as for the tanh method, we must stress that this procedure will not solve all problems and is only provided to show what can be done with Maple using a fairly short piece of code. 

expMethod:=proc(Md,Mn,pde,intFlag, infoLev)

local F, FF, F1, F2, F3, F4, F4_Cs, 

ode1, str, tr1, tr2, 

i, j, vars, testFlag; 

global _a, _b, k, c, sol, testSol, N, Fn, Fd, F5; 

unprotect(_a,_b); 
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# Assume a travelling wave solution of the form

# U(xi), xi=k*(x-c*t); 

tr1:={x=(xi/k+c*tau),t=tau,u=U(xi)}; 

ode1:=dchange(tr1,pde,[xi,tau,U(xi)]); 

print('ode1=', ode1); 

if intFlag > 0 then

for i from 1 to intFlag do

ode1:=int(lhs(ode1),xi)=0; 

end do; 

print('After integration, ode1= ', ode1); 

end if; 

tr2:={xi=Y,U(xi)=F(Y)}; 

F1:=dchange(tr2,ode1,[Y,F(Y)]); 

#print('F1=',F1); 

Fn:=add( _a[i]*exp(i*Y), i=-Mn..Mn ):

Fd:=add( _b[i]*exp(i*Y), i=-Md..Md ):_b[Md]:=1; 

F(Y):=Fn/Fd; 

print('F(Y) =,',F(Y)); 

F2:=simplify(eval(F1)):

#print('F2=',F2); 

# To eliminate exp terms

F3:=subs(Y=ln(Delta),F2): F3:=simplify(F3):

#print('F3=',F3); 

# This line included incase there are quotient terms

F3 := numer(lhs(F3))*denom(rhs(F3)) =

numer(rhs(F3))*denom(lhs(F3)):

F3:=collect(expand(F3),Delta):F3:=sort(%,Delta):

#print('F3=',F3); 

# Get coeff's of Delta - same as coeff's of exp terms

F4:=CoefficientList(lhs(F3),Delta): F4_Cs:=convert(F4,set):

# Define variables to be solved for

vars:={seq(_a[r],r=-Mn..Mn),seq(_b[r],r=-Md..Md-1),'k','c'}; 

if infoLev>0 then print('Unknowns =', vars) end if; 

if infoLev>1 then print('Coefficient List =',F4) end if; 

# Note: Polynomial coefficients for each power of Delta must = 0

F5:=[solve(F4_Cs,vars)]:

# This line needed to eliminate 'RootOf' terms

# from the solve() answer

F5:=map(allvalues,F5); 

N:=nops(F5): # No of solutions found by solve()

str:=sprintf(' Number of solution sets found = %d ', N): print(str); 

if infoLev>1 then print(F5) end if; 

for i from 1 to N do

# print(F5[i]); 

assign(F5[i]): FF[i]:=F(Y):

sol[i]:=u=eval(simplify(subs(Y=k*(x+x0-c*t),FF[i]),symbolic)); 

str:=sprintf('Solution %2d:\n===========', i): printf(str); 

print(sol[i]); 

# Unassign A coefficients

for j from -Mn to Mn do

unassign('_a[j]'):

end do; 

for j from -Md to Md-1 do

unassign('_b[j]'):
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end do; 

unassign('k','c'):

end do; 

# Test Solutions!! 

testFlag:=0; 

for i from 1 to N do

testSol[i]:=pdetest(sol[i],pde); # '0' if true

if testSol[i] <> 0 then

str:=sprintf(' Solution: %d does not pass pdetest() !', i): print(str); 

testFlag:=1; 

end if; 

end do; 

# Final check to see if all solutions found solve 'pde' 

if testFlag = 0 then

print('All solutions pass pdetest() !'); 

end if; 

end proc:

LISTING A.6: Maple procedure expMethod(). 

This procedure is saved in the separate file expMethod.txt so that it can be reused with any application. Note, because this procedure is general for use with any PDE, we now use a[i] and b[i] rather than simply a[i] and b[i] so that there is minimum likelihood of a name conflict with constants in the PDE. Also, expMethod introduces the arbitrary constant x0 into the solution—refer to Section A.7 for an explanation. In addition, because the algorithm appears to be insensitive as to whether the upper and lower summation indices are the same or different, we choose to make them the same. Thus, the numerator indices vary from -Mn to +Mn and, similarly, the denominator indices vary from -Md to +Md. It is a simple matter to modify the code to accommodate different upper and lower indices if this is found to be necessary. Also, a number of deactivated (commented) print statements are included; by removing the comment symbol #, they can be used for debugging or to output additional information as the calculations proceed. 

We will now use procedure expMethod() to solve the Korteweg-de Vries (KdV) eq. (A.9), 

where we present code segments followed by the associated Maple output. 

.  InitializeMapleandloadrequiredpackages: PDEtools, PolynomialTools, plots. 

We also have unprotected a and b—see above comments. 

># KdV Equation

# Attempt at exp method solution

restart; with(PDEtools): with(PolynomialTools):

with(plots): unprotect(_a,_b):

.  Defineanaliasforu( x,  t) tosimplifywritingcodeandthendefinetheKdVproblemPDE. 

>alias(u=u(x,t)):

pde1:=diff(u,t)+6*u*diff(u,x)+diff(u,x,x,x)=0; 

∂

∂ 

∂3

pde1 :=

 u

 u

 u

∂

+ 6 u

+

= 0

 t

∂ x

∂ x 3
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.  Readintheprocedure expMethod sothatitcanbecalledasrequired. 

> read("expMethod.txt"); 

.  Calltheprocedure expMethod witharguments Md,Mn,pde1,intFlg,  and infoLevOut. 

Note the use of  ai  and  bi  rather than  ai  and  bi, as mentioned above. Seven solutions are found including two nontrivial and five trivial solutions. All solutions found satisfy the original PDE, eq. (A.9). 

>intFlg:=1: # Integration of U(xi) needed ! 

Mn:=1; Md:=1; # Set order of approximation

infoLevOut:=0; 

expMethod(Md,Mn,pde1,intFlg,infoLevOut); 

 a

 F( Y ) :=

−1 e− Y +  a 0 +  a 1 eY

 b−1 e− Y +  b 0 +  eY



! 

 d



 d



 d 3

ode1 =, − ck

 U(ξ ) + 6 U(ξ ) kd

 U(ξ ) +  k 3

 U(ξ ) = 0

 d ξ

 d ξ

 d ξ 3



! 

 d 2

After integration, ode1 =, − ckU(ξ ) + 3 kU(ξ )2 +  k 3

 U(ξ ) = 0

 d ξ 2

 ”Number of solution sets found = 7 ” 

Solution 1:


=======

 a

 u =

−1 +  a 0 +  a 1

 b−1 +  b 0 + 1

Solution 2:


=======

 u = 0

Solution 3:


=======

1

 u =  c

3

Solution 4:


=======

4 k 2  b

 u

0

=  b 2e k(− x− x 0+ k 2 t)


0

+ 4  b 0 + e− k(− x− x 0+ k 2 t)
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Solution 5:


=======

 u =  a 1

Solution 6:


=======

 a

 u

1

= −  b 1

Solution 7:


=======

1  k 2   b 2 e− k( x+ x 0+ k 2 t) 0

− 8  b 0 + 4e k( x+ x 0+ k 2 t)

 u = − 3

 b 2 e− k( x+ x 0+ k 2 t)

0

+ 4  b 0 + 4e k( x+ x 0+ k 2 t)

This concludes our discussion of the exp method. Additional Maple statements could of course be added to print out additional information and to plot results, as we have done for the tanh method above. Note, expMethod also introduces the arbitrary constant  x 0 into the solution—refer to Section A.7 for an explanation. 

Finally, when using the expMethod procedure, care must be taken when selecting variable names in the main body of the application code. It is advisable to avoid using any of the variable names specified as local or global in the procedure, except as shown in this example. Otherwise, unexpected behavior may result. If in doubt, try to follow the example given here or the additional download examples. 

A.4 Riccati Equation Method

A.4.1 Introduction

Consider a differential equation of the form

 dy

 d ξ =  f y, ξ 

(A.27)

The function  f  can be extended as a polynomial in  y  with ξ held constant to give f y, ξ  =  r 0(ξ) +  r 1(ξ)  y +  r 2(ξ)  y 2 + · · ·

(A.28)

Riccati2 [20] investigated such systems where the approximation was truncated after the second-order term in  y  to give

 dy

 d ξ =  r 0(ξ ) +  r 1(ξ )  y +  r 2(ξ )  y 2

(A.29)

2Italian mathematician,  Count Jacopo Francesco Riccati (1676–1754). 
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and derived solutions for certain special cases which he published in a paper in 1724. For arbitrary  r 0,  r 1, and  r 2, the Riccati equation cannot be solved by quadrature. However, a characteristic of the Riccati equation is that if a particular solution is known, then this enables us to find another solution. For example, if a solution  y 0(ξ ) is known, then 1

 y (ξ) =  y 0(ξ) +

(A.30)

ψ (ξ)

when substituted directly into eq. (A.28) gives

 d ψ (ξ)

 d ξ

= −  r 1 (ξ ) + 2 r 2(ξ )  y 0(ξ ) ψ(ξ ) −  r 2(ξ ) (A.31)

which can be solved as it is a first-order linear differential equation with respect to ψ (ξ). When we solve for ψ, a new solution for  y  is obtained by back substitution. More information relating to the Riccati equation is given in [5, 27]. 

A.4.2 ODE Example

 dy

Consider the Riccati equation  d ξ = −2− y + y 2 for which a known solution is  y 0 = 2, then 1

on substituting  y = 2 +

into this equation, we obtain after some algebraic manipulation

ψ

 d ψ

 d ξ = −(3ψ + 1)

⇓

1

ψ =  K  exp(−3ξ) − 3

where  K  is a constant of integration. After back substitution, we obtain a new solution for y, i.e., 

1

 y = 2 +

1

 K  exp (−3ξ) − 3

A simple Maple code that solves this example by two methods is given below. Method 1 substitutes eq. (A.30) directly into eq. (A.29) and solves the resulting ODE for ψ, althogh Method 2 substitutes the known solution  y 0 = 2 into eq. (A.31) and solves the resulting ODE for ψ. Both methods yield the same answer, as expected. 

># Riccati solution - Method 1

restart; 

alias(y=y(xi),psi=psi(xi)); 

> # Define ODE

ode1:=diff(y,xi)=-2-y+yˆ2; 

> # Define Riccati solution
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f:=2+1/psi; 

> # Substitute Riccati solution

ode2:=simplify(subs(y=f,ode1)); 

> # Simplify ODE

ode3 := lhs(ode2)*denom(rhs(ode2))

= rhs(ode2)*denom(lhs(ode2)); 

> # Solve for psi

sol1:=dsolve(ode3);assign(sol1); 

> # Find y by back substitution

y:=f; 

> # Riccati solution - Method 2

restart; 

> alias(y=y(xi),psi=psi(xi)); 

> # Formulate problem

ode1:=diff(psi,xi)=-(-1+2*(1)*y0)*psi-1; 

> # Substitute value for y0

ode2:=subs(y0=2,ode1); 

> # Solve for psi

sol1:=dsolve(ode2);assign(sol1); 

> # Apply Riccati solution

y:=y0+1/psi; 

LISTING A.7: Two ODE applications of the Ricatti method. 

A.4.3 Application to the Solution of PDEs

We can now use the above idea to help us solve PDEs. We consider again ideas used in the tanh and exp methods. The evolutionary equation for which we wish to find traveling wave solutions is eq. (A.9). The  Riccati method  is very straightforward to implement and is similar to the tanh and exp methods described above. We start by applying the transformation of eq. (A.2), where  U  has yet to be defined and, typically,  k > 0 represents  wavenumber  and c  represents  wave velocity. Partial differentiation operations with respect to  t  and  x  are, therefore, transformed to the equivalent ordinary differentiation operations of eq. (A.4). 

Thus, partial differential eq. (A.9) is transformed to ordinary differential eq. (A.11). 

We start by setting  U =  F( Y ) and using eq. (A.8) where coefficients  ai  are real constants to be determined and  M  is a positive integer found by balancing (equating) the largest exponent of the highest order linear term with the largest exponent of the highest order nonlinear term. 

Here the  Riccati method  deviates from the tanh and exp methods. Instead of using a transformation based on standard transcendental mathematical functions, such as tanh or exp, to find algebraic representations for derivatives, we use the  Riccati differential equation. We now apply the  Riccati method [28] and define  r 0 (ξ) =  A,  r 1 (ξ) =  B, and  r 2 (ξ) =  C

of eq. (A.29), where  A,  B, and  C  are constants. The Riccati eq. (A.29) therefore becomes dY

 d ξ =  A +  BY +  CY  2

(A.32)

This Riccati equation has the specific solutions detailed in Table A.1 for  B = 0 [26]:

Other solutions to eq. (A.32) can be derived for different values of A and C. 
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Table A.1:

Standard known solutions to the Riccati

eq. (A.32) where  B = 0

A

C

Y

1

1

ξ 

ξ 

−

 Y = tanh

, coth

2

2

2

2

1

1

ξ 

ξ 

 Y = tan

, − cot

, tan (ξ) ± sec(ξ)

2

2

2

2

1

−1

 Y = tanh (ξ), coth (ξ)

1

1

 Y = tan (ξ), − cot (ξ)

1

1

1

−4

 Y =

tanh (2ξ ), 

coth (2ξ )

2

2

1

1

1

4

 Y =

tan (2ξ ), − cot (2ξ )

2

2

From eq. (A.32), we can now proceed to derive algebraic equations for various orders of derivatives of  y  with respect to ξ using the chain rule for differentiation as follows: dY

 d ξ =  A +  CY  2

 d 2 Y

 dY

= 2 CY

 d ξ 2

 d ξ = 2 CY A +  CY  2

 d 3 Y

 dY

 dY

(A.33)

= 2 C

 A +  CY  2 + 4 C 2 Y  2

 d ξ 3

 d ξ

 d ξ

= 2 C A +  CY  22 + 4 C 2 Y  2  A +  CY  2

etc. 

It is readily seen that there is a simple discernible pattern for higher-order derivatives. Thus, we have found a set of algebraic functions to represent derivatives of various orders. Consequently, after making the substitution  U =  F ( Y ) = P M

 i=0  aiY i, we are now

able to convert the ODE of eq. (A.4), to an equivalent algebraic equation by substituting the algebraic relationships of eq. (A.33). This, like the tanh and exp methods, yields a polynomial in  Y  for which we have to solve for the unknown parameters. The associated coefficient for each power of  Y  in the polynomial is represented by an expression consisting of parameters  A,  C  and  ai,  k  and  c. Now, for the problem to be consistent for all values of  Y , the coefficient expressions must each equate to zero. We therefore use the method of Lagrange (undetermined) multipliers  to solve the resulting set of equations for the required unknowns  ai,  k, and  c. 

We now have a solution in the form of a polynomial in  Y  with coefficients where  ai, k, and  c  are either known or are arbitrary constants. The final solution(s) are obtained by choosing values from Table A.1 for  A  and  C  and substituting the appropriate relationship for  Y . 
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For anything other than trivial or simple problems, the process of solving for the unknown coefficients is tedious and usually requires the use of a computer algebra system if the solution is to be found in a reasonable time. In fact, for many problems, it is totally impractical to attempt a manual solution. 

For additional information, the reader is referred to [28]. 

A.4.4 Example—KdV Equation

We will apply the above solution method to the canonical form of the KdV, eq. (A.9), with analytical solution eq. (A.10). 

1.  Apply the traveling wave transformation. 

Apply the transformation of eq. (A.2) to obtain eq. (A.9), which can be integrated once directly with respect to  U (ξ ) to give eq. (A.12). 

Note: For this method, we set the constant of integration to zero. 

2.  Determine the polynomial approximation order,  M. 

We now have to balance the largest exponent of  Y  in the highest order nonlinear term with the largest exponent of  Y  in the highest order linear term. When calculating the value of  M  by balancing exponents, we substitute eq. (A.8) into the problem PDE and then substitute for the derivatives using eq. (A.33). We will illustrate this process by analyzing both eq. (A.11) and eq. (A.12). 

First consider eq. (A.11), i.e., no integration of eq. (A.11). The highest order nonlinear term is the second term. After substitution of the summation into the dY

second term, the largest exponent of  Y  will occur in the expression  Y M−1 Y M

and, 

 d ξ

after substitution for the first derivative, this expression becomes  Y M−1 Y M Y  2. Thus, the largest exponent of  Y  in the second term will be equal to

( M − 1) +  M + 2 = 2 M + 1. The highest order linear term is the third term. After substitution of the summation into the third term, the largest exponent of  Y , again d 3 Y

 d 2 Y dY

neglecting coefficients, will occur in one of the expressions  Y M−1

,  Y M−2

 d ξ 3

 d ξ 2  d ξ

 dY  3

or  Y M−3

and, after substitution for derivatives, we see on expansion that these

 d ξ

expressions become  Y M−1 Y  4,  Y M−2 Y  3 Y  2, and  Y M−3  Y  23, respectively. Thus, the largest exponent of  Y  in the third term will be equal to ( M − 1) + 4 =  M + 3, ( M − 2) + 3 + 2 =  M + 3, or ( M − 3) + 2 × 3 =  M + 3. Each of these alternatives gives the same result, which we would predict from compatibility considerations. Therefore, on balancing these exponents, we have

2 M + 1 =  M + 3 →  M = 2

Now consider eq. (A.12), i.e., after integration of eq. (A.11). The highest order nonlinear term is the second term. After substitution of the summation into the second term, the largest exponent in  Y  will occur in the expression  Y M Y M . Thus, the
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largest exponent of  Y  in the second term will be equal to 2 M. The highest order linear term is the third term. After substitution of the summation into the third term, dY  2

the largest exponent of  Y  will occur in either the expression  Y M−2

or the

 d ξ



! 

 d 2 Y

expression  Y M−1

and, after substitution for derivatives, we see on expansion

 d ξ 2

that these expressions become  Y M−2 Y  4 and  Y M−1 Y  3, respectively. Thus, the largest exponent of  Y  in the third term will be equal to either ( M − 2) + 4 =  M + 2 or ( M − 1) + 3 =  M + 2. Again, each of these alternatives gives the same result, which we would predict from compatibility considerations. Therefore, on balancing these exponents, we have

2 M =  M + 2 →  M = 2

As to be expected, we obtain  M = 2 from both approaches. It should be stressed that it is easy to make a mistake in calculating  M  and so use of a symbolic algebra package such as Maple is recommended. However, the Maple procedure

riccatiMethod(), described below, is sufficiently fast that obtaining  M  by trial and error is a practical alternative. 

3.  Apply the approximating polynomial in Y . 

Substitute  U =  F ( Y ) = P M

 i=0  aiY i  into eq. (A.12) (we choose to use the original equation) and then use eq. (A.33) to substitute for the derivatives. Using a value of M = 2 and after dividing through by  k, we obtain the following fifth-degree polynomial

 c 0 +  c 1 Y +  c 2 Y  2 +  c 3 Y  3 c 4 Y  4 +  c 5 Y  5 = 0

(A.34)

where

 c 0 = − ca 1 A + 2 k 2 a 1 CA 2 + 6 a 0 a 1 A c 1 = −2 ca 2 A + 16 k 2 a 2 CA 2 + 12 a 0 a 2 A + 6 a 2 A 1

 c 2 = +8 k 2 a 1 C 2 A + 6 a 0 a 1 C + 18 a 1 a 2 A −  ca 1 C

(A.35)

 c 3 = −2 ca 2 C + 12 a 0 a 2 C + 12 a 2 A C

2

+ 6 a 21 + 40 k 2 a 2 C 2 A

 c 4 = +18 a 1 a 2 C + 6 k 2 a 1 C 3

 c 5 = +12 a 2 C

2

+ 24 k 2 a 2 C 3

4.  Solve for unknown parameters. 

For a consistent solution, each of the above coefficient expressions must equate to zero, which results in six simultaneous equations that we solve using Maple. Maple finds the following three parameter solution sets

 a 0 =  a 0,  a 1 =  a 1,  a 2 =  a 2,  k = 0,  c =  c

: trivial

 a 0 =  a 0,  a 1 = 0,  a 2 = 0,  c =  c,  k =  k

: trivial

(A.36)

 a 0 =  a 0,  a 1 = 0,  a 2 = −2 k 2 C 2,  c = 8 k 2 CA + 6 a 0,  k =  k

: nontrivial
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5.  Make back substitutions to obtain final solutions. 

The final results are, therefore, found by substituting the parameter solution sets

(A.36) into eq. (A.34) and then using values for  A  and  C  from Table A.1 together with the appropriate function for  Y . This then, ignoring trivial solutions, yields the following six solutions to eq. (A.9):

1

1

2

 u



1 =  a 0 −

 k 2 tanh

 k x + 2 tk 2 − 6 ta 0

2

2

1

1

2

 u



2 =  a 0 −

 k 2 tan

 k x − 2 tk 2 − 6 ta 0

2

2

 u

2

3 =  a 0 − 2 k 2 tanh  k x + 8 tk 2 − 6 ta 0

(A.37)

 u

2

4 =  a 0 − 2 k 2 tan  k x − 8 tk 2 − 6 ta 0

 u

2

5 =  a 0 − 8 k 2 tanh 2 k x + 32 tk 2 − 6 ta 0

 u

2

6 =  a 0 − 8 k 2 tan 2 k x − 32 tk 2 − 6 ta 0

Where constants  a 0 or  k  appear in the above solutions, they may take arbitrary values. 

We note the following points regarding the above solutions:

. Ifweset a 0 =2 k 2 intheequationfor u 3 above,weobtaintheknownsolution, 

eq. (A.10), for this example. 

. Foreachparametersolutionset,wehaveonlyincludedthefirstoftheappropriate

solutions given in Table A.1. Additional solutions can be obtained by using the alternative solutions shown. This is left as an exercise for the reader. 

A.4.5 A Maple Riccati Method Procedure

We will now present a Maple procedure that generates a solution automatically and then illustrate its use by an application example. However, as for the tanh and exp methods, we must stress that this procedure will not solve all problems and is only provided to show what can be done with Maple using a fairly short piece of code. 

riccatiMethod:=proc(M,pde,intFlag,infoLev)

local A, C, F, FF, F1, F2, F3, F4, ZZ, 

d1, d2, d3, d4, d5, d6, d7, eqns, n, 

ode1, ode2, str, 

psi, tr1, tr2, 

i, j, vars, testFlag; 

global _a, k, c, xi, 

sol, soln, testSol, N, F5; 

unprotect(_a); 

# Assume a travelling wave solution of the form

# U(zeta), zeta=k*(x-c*t); 

# Apply travelling wave transformation

tr1:={x=(xi/k+c*tau),t=tau,u=U(xi)}; 
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ode1:=dchange(tr1,pde,[xi,tau,U(xi)]); 

if intFlag > 0 then

for i from 1 to intFlag do

ode1:=int(lhs(ode1),xi)=0; 

end do; 

print('After integration, ode1= ', ode1); 

end if; 

# Substitute in polynomial approximation

F(Y):=add( _a[i]*Yî, i=0..M ); 

print('F(Y) =', F(Y)); 

ZZ:=subs(Y=U(xi),F(Y)); 

ode2:=expand(subs(U(xi)=ZZ,ode1)); 

#print('ode2=',ode2); 

# Use Riccati Eqn: Y'=A+B*Y+C*Yˆ2, where B=0

# This gives certain solutions to Riccati eqn

# Define derivatives of Y wrt xi

d1:=A + C*U(xi)ˆ2; 

d2:=diff(d1,xi):

d2:=subs(diff(U(xi),xi)=d1,d2); 

d3:=diff(d2,xi):

d3:=subs(diff(U(xi),xi)=d1,d3); 

d4:=diff(d3,xi):

d4:=subs(diff(U(xi),xi)=d1,d4); 

d5:=diff(d4,xi):

d5:=subs(diff(U(xi),xi)=d1,d5); 

d6:=diff(d5,xi):

d6:=subs(diff(U(xi),xi)=d1,d6); 

d7:=diff(d6,xi):

d7:=subs(diff(U(xi),xi)=d1,d7); 

#print(d1,d2,d3,d4,d5,d6,d7); 

# Substitute d1,..., d7 for derivatives in ode2

F1:=eval(subs({diff(U(xi),xi)=d1, 

diff(U(xi),xi,xi)=d2, 

diff(U(xi),xi,xi,xi)=d3, 

diff(U(xi),xi,xi,xi,xi)=d4, 

diff(U(xi),xi,xi,xi,xi,xi)=d5, 

diff(U(xi),xi,xi,xi,xi,xi,xi)=d6, 

diff(U(xi),xi,xi,xi,xi,xi,xi,xi)=d7},ode2)); 

#print('F1=',F1); 

F2:=subs(U(xi)=Y,F1); 

F2:=collect(expand(F2),{Y}):

#print('F2=',F2); 

# This line included in case there are quotient terms

F2 := numer(lhs(F2))*denom(rhs(F2)) =

numer(rhs(F2))*denom(lhs(F2)):

#print('F2=',F2); 

# Make list of coefficient of the powers of Y

# and convert to a set

F3:=CoefficientList(lhs(F2),Y):

F3:=convert(F3,set):

# Define variables to be solved for

vars:={seq(_a[r],r=0..M),'c','k'}; 

if infoLev>0 then print('Unknowns =', vars) end if; 

if infoLev>1 then print('Coefficient List =',F3) end if; 
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# Solve for unknowns

F4:=[solve(F3,vars)]:

# This line needed to eliminate 'RootOf' terms

# from the solve() answer

F5:=map(allvalues,F4); 

N:=nops(F5): # No of solutions found by solve()

str:=sprintf(" Number of solution sets found = %d ", N):

print(str); 

if infoLev>1 then print(F5) end if; 

# Print out solutions found

for i from 1 to N do

#print(F5[i]); 

assign(F5[i]): FF[i]:=eval(F(Y)):

sol[i]:=u=simplify(FF[i],symbolic):

#print(sol[i]); 

for j from 0 to M do

unassign('_a[j]'):

end do; 

unassign('c','k'):

end do:

# Define the Riccati equation solutions

psi[1]:=tanh(xi/2); 

eqns[1]:=[A=1/2,C=-1/2]; 

psi[2]:=tan(xi/2); 

eqns[2]:=[A=1/2,C= 1/2]; 

psi[3]:=tanh(xi); 

eqns[3]:=[A=1

,C=-1]; 

psi[4]:=tan(xi); 

eqns[4]:=[A=1

,C= 1]; 

psi[5]:=tanh(2*xi)/2;eqns[5]:=[A=1

,C=-4]; 

psi[6]:=tan(2*xi)/2; eqns[6]:=[A=1

,C= 4]; 

xi:=k*(x+x0-c*t); 

# Check solutions

for i from 1 to N do

for n from 1 to 6 do

assign(F5[i]):

assign(convert(eqns[n],listlist)); 

#print(rhs(sol[i])); 

soln[i,n]:=u=eval(subs(Y=psi[n],rhs(sol[i]))):

str:=sprintf('Solution %2d,%d:\n=============', i,n): printf(str); 

print(soln[i,n]); 

for j from 0 to M do

unassign('_a[j]'):

end do; 

unassign('c','k'):

unassign('A','C'); 

end do:

end do:

# Test Solutions!! 

testFlag:=0; 

for i from 1 to N do

for n from 1 to 6 do

testSol:=pdetest(soln[i,n],pde); 

if testSol<>0 then

str:=sprintf(' Solution: %d,%d does not pass pdetest() !', i,n): print(str); 

testFlag:=1; 

end if; 

end do:
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end do:

# Final check to see if all solutions found solve 'pde' 

if testFlag = 0 then

print('All solutions pass pdetest() !'); 

end if; 

# Unassign xi so that this proceedure can be reused

unassign('xi'); 

end proc:

LISTING A.8: Maple procedure ricattiMethod(). 

This procedure is saved in the separate file riccatiMethod.txt so that it can be reused with any application. Note, because this procedure is general for use with any PDE, we now use a[i] rather than simply a[i] so that there is minimum likelihood of a name conflict with constants in the PDE. Also, expMethod introduces the arbitrary constant x0

into the solution—refer to section A.7 for an explanation. In addition, a number of deactivated (commented) print statements are included. By removing the comment symbol #, they can be used for debugging or to output additional information as the calculations proceed. 

We will now use procedure riccatiMethod() to solve the Korteweg-de Vries (KdV)

eq. (A.9), where we present code fragments followed by the associated Maple output. 

.  InitializeMapleandloadrequiredpackages: PDEtools, PolynomialTools,andplots. 

> # The KdV Equation

# Attempt at Riccati based solution

restart; with(PDEtools): with(PolynomialTools):

with(plots):

.  Defineanaliasfor u( x,  t) tosimplifywritingcodeandthendefinetheKdVPDE. 

> alias(u=u(x,t)):alias(Y=Y(xi)):

pde1:=diff(u,t)+6*u*diff(u,x)+diff(u,x,x,x)=0; 

∂

∂

∂3

pde1 :=

 u

 u

 u

∂

+ 6 u

+

= 0

 t

∂ x

∂ x 3

.  Readintheprocedure riccatiMethod sothatitcanbecalledasrequired. 

> read("riccatiMethod.txt"); 

.  Calltheprocedure  riccatiMethod witharguments M,pde1,intFlg,  and infoLevOut. 

Note the use of  ai  rather than  ai, as mentioned above. This method finds 5 × 6

solutions. The first 3 × 6 solutions found are trivial, but the last 2 × 6 are valid nontrivial solutions. To save space, only a reduced number of solutions are included below. Recall that each solution found is expanded to take on the known solutions to the Riccati equation as detailed in Table A.1. 

>intFlg:=1: # integration of U(xi) used! 

M:=2; # Set order of approximation

infoLevOut:=0; # minimum output

riccatiMethod(M,pde1,intFlg,infoLevOut); 
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 F( Y ) :=  a 0 +  a 1 Y +  a 2 Y  2



! 

 d



 d



 d 3

ode1 =, − ck

 U(ξ ) + 6 U(ξ ) kd

 U(ξ ) +  k 3

 U(ξ ) = 0. 

 d ξ

 d ξ

 d ξ 3



! 

 d 2

After integration, ode1 =, − ckU(ξ ) + 3 kU(ξ )2 +  k 3

 U(ξ ) = 0

 d ξ 2

”  Number of solution sets found = 5” 

Solution 1,1:


========

 u =  a 0

Solution 1,2:


========

 u =  a 0

... 

Solution 2,1:


========

 u = 0

... 

Solution 4,1:


========

1

1

1

2





 u =  k 2 −  k 2 tanh

 k x +  x 0 +  k 2 t

6

2

2

... 

Solution 5,3:


========

h



i2

 u = 2 k 2 − 2 k 2 tanh  k x +  x 0 − 4 k 2 t

... 

Solution 5,6:


========

h



i2

 u = −8 k 2 − 8 k 2 tanh 2 k x +  x 0 + 16 k 2 t

. 
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We note that Solution 5,3 is equivalent to the standard solution obtained above using the tanhMethod procedure, i.e., 

2 k 2

 u = cosh k − x+4 k 2 t 2

This concludes our discussion of the Riccati method. Additional Maple statements could of course be added to print out additional information and to plot results, as we have done for the tanh method above. 

Finally, when using the riccatiMethod procedure, care must be taken when selecting variable names in the main body of the application code. It is advisable to avoid using any of the variable names specified as  local  or  global  in the procedure, except as shown in this example. Otherwise, unexpected behavior may result. If in doubt, try to follow the example given here or the additional download examples. 

A.5 Direct Integration

We illustrate this method by application to the KdV eq. (A.9). A closed form  single soliton solution to the KdV equation can be found using direct integration as follows [22]. 

Assume a traveling wave solution of the form

 u( x,  t) =  U[ k( x −  ct)] =  U(ξ ). 

Then, on substituting into eq. (A.9), the PDE is transformed into the following ODE

 dU(ξ )

 dU(ξ )

− ck

= 0

 d ξ

+ 6 kU

 d ξ

+  k 3  d 3 U(ξ )

 d ξ 3

 dU(ξ )

Now integrate with respect to ξ and multiply by

to obtain

 d ξ



! 

 dU(ξ )

 d 2 U(ξ )

 dU(ξ )

− ckU(ξ )

=  A

 d ξ

+ 3 kU(ξ )2  dU(ξ )

 d ξ

+  k 3  dU(ξ )

 d ξ

 d ξ 2

 d ξ

Now integrate with respect to ξ once more to obtain

1

1

 dU(ξ ) 2

−  ckU(ξ )2 +  kU(ξ )3 +  k 3

=  AU(ξ ) +  B

2

2

 d ξ

where  A  and  B  are arbitrary constants of integration, which we set to zero. We justify this on the assumption that we are modeling a physical system having properties such that dU

 d 2 U

 U, 

, and

→ 0 as ξ → ±∞. After rearranging and evaluating the resulting integral, 

 d ξ

 d ξ 2
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we find

√

 c



 c



 U (ξ) = sech2

ξ + ξ0

2

2 k

where ξ0 is an arbitrary constant of integration - this time not set to zero. On applying the inverse transformation ξ =  k( x −  ct), we arrive at the final solution U(ξ ) =  u( x,  t) = 2 k 2sech2  k ( x +  x 0 −  ct)

√ c

where  k =

represents  wavenumber, and we have set the arbitrary constant ξ0 equal to 2

 kx 0. The effect of the new arbitrary constant,  x 0, is to shift the solution unchanged to the right or left along the  x-axis, according to the sign of  x 0. We observe from this solution that the wave travels to the right with a speed that is equal to twice the peak amplitude. Hence, the taller a wave, the faster it travels. 

A Maple code that performs the above direct integration calculation for the KdV

equation is included with the downloads for this book. 

A.6 Factorization

A.6.1 Factoring

The idea of  factoring  is to convert an equation into factors of lower degree. If an ODE can be factored into two or more simple terms, then each factor may be solved independently and each solution is a solution to the original equation. For example, the nonlinear ODE

 dy   dy



+  y =  x x +  y, 

 y =  y ( x)

 dx

 dx

can be factored into

 dy

 dy



+  y +  x

−  x = 0

 dx

 dx

Equating each of the factors to zero and solving separately yields the following solutions to the original ODE

 A e− x



+ 1 −  x

 y( x) =

1

 B

 x 2



+ 2

where  A  and  B  are arbitrary constants. Note: The complete solution to the original differential equation may switch from one solution branch to another [32]. 
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A.6.2 Factoring Operators

A more general approach is to employ  factoring operators, which are used to reduce an ODE or PDE problem to a lower-order problem that can be solved more easily. Here, we concentrate on factoring ODE problems. 

For our purposes, this approach is useful for obtaining traveling wave solutions to certain types of PDE. This is achieved by first applying the transformation  u( x,  t) =  U (ξ ), ξ =  k ( x −  ct), in order to convert the PDE to an ODE of the form L0 [ U (ξ)] = 0, where L0 is a  differential operator  operating on  U (ξ), and then L0 is factored into two separate operators, i.e., L0 = L2L1 and the ODE becomes

L0 [ U] = L2L1 [ U] = L2 [L1 [ U]] = 0

The above statement should be interpreted as operator L0[ U] being equivalent to operator L1 operating on  U  followed by L2 operating on the result L1[ U] (it should be noted that there may be a number of distinct factorizations). The solution is then derived in two steps: L1 = 0 →  f (ξ ) followed by L2 =  f (ξ) →  U. For example, consider the nonlinear ODE

L0 [ U] =  U 2ξξ − 2 U ξ  U ξξ + 2 UU ξ −  U 2 = 0

=  U

2

ξξ −  U ξ

−  U ξ −  U 2 = 0

This equation can be factored as L0 = L2[U] L1 [ U] = L2 [L1 [ U]], where [32]

L1 [ U] =  U 2ξ −  U 2 = 0, →  f (ξ)

L2 [ U] =  U ξ −  U =  f (ξ), →  U

Using the integrating factor method, we first solve L1 [ U] = 0 to obtain  f (ξ ) =  C e±ξ, where C  is an arbitrary constant, then we solve L2 [ U] =  C e±ξ to obtain the following two solutions, i.e., 

(( A +  C ξ)eξ

 U(ξ ) =  C e−ξ + B eξ

where  A  and  B  are arbitrary constants. 

Care must be taken when using differential operators because in general they will not commute,3 i.e., L1L2 is not usually the same as L2L1. Also, implicit in this operation is the property that coefficients are differentiable the requisite number of times, although this should not be a problem for our purposes. We observe from the above that the reduced problems L1 [ U] = 0 and L2 [ U] = 0 are  compatible  with L0 [ U] = 0. Thus, if we can solve the reduced problems, then these solutions will also be solutions to the original problem. 

3Operators L1 and L2 will generally only commute if they are both linear. 
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ASIDE: The same solutions are obtained if we factor the above ODE to obtain

L0 [ U] =  U ξξ −  U  U ξξ − 2 U ξ +  U = 0

when the bracketed term on the right yields  U = ( A +  Cx)eξ, and the bracketed term on the left yields  U =  C e−ξ +  B eξ . 

The operator L0 is said to be reducible if there exists  factoring operators  L1 and L2 of lower order such that L0 = L2L1; in this case, we say that L1 is a right factor and L2 is a left factor of L0. If an operator is not  reducible, then it is termed  irreducible. 

For linear systems, we can define a differential operator L to be a function of  D =  d/ dx, D 2 =  d 2/ dx 2, etc. so that an ODE such as  yx −  y =  f ( x) becomes L[ y] = [ D − 1] y =  f ( x). By simple extension, more complex ODEs can be defined in a similar manner. For example, the second-order ODE  yxx + 2 yx − 3 =  f ( x) becomes L[ y] = [ D 2 + 2 D − 3] y =  f ( x), which can be factored into L[ y] = [ D − 1][ D + 3] y =  f ( x). Similarly, higher-order ODEs can be factored in a similar way. If  f ( x) can be moved to the left-hand side of the equation and brought into the factoring scheme, then each factor can be set equal to zero and solved. 

Each solution will then be compatible with the problem equation and will, therefore, be a solution to the original ODE. A computer algorithm for automatic factorization has been developed by Schwartz [23]. 

For additional discussion relating to factoring, factoring operators, and general factorization methods, readers are referred to [12, 32]. 

A.6.3 Factorization Method for ODEs with Polynomial Nonlinearity

This method seeks solutions for certain types of PDEs with a  polynomial nonlinearity  by rescaling to eliminate coefficients and assuming a traveling wave solution of the form u( x,  t) =  U(ξ), where ξ =  k( x −  ct),  c = velocity, and  k = wavenumber. The resulting ODE is then factorized and each factor is solved independently [4]. For example, for a PDE of the form

∂2 u

∂ u

∂

=

+  F( u)

 t 2

∂ x

the traveling wave ODE becomes

 d 2 U

 dU

+ γ

 d ξ 2

 d ξ + ˆ F ( U) = 0

(A.38)

 c

1

where γ =

and ˆ

 F ( U) =

 F ( U). On factorization, we obtain an equation of the form

 k

 k 2

 D −  f 2 ( U) D −  f 1 ( U) U = 0

(A.39)

 d

where we define  D =

. Care must be taken here as the terms in square brackets are  dif-

 d ξ

 ferential operators  which, may not commute, i.e., the order of evaluation is important. This
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leads to the equation

 d 2 U

 df 1  dU

 dU

 dU

−

 U −  f 1

 d ξ 2

 dU d ξ

 d ξ −  f 2  d ξ +  f 1 f 2 U = 0

for which there are two possible groupings of terms. The first due to Berkovich [3] is d 2 U

 dU



 df



1  dU

−  f



1 +  f 2

 f 1 f 2 −

 U = 0

(A.40a)

 d ξ 2

 d ξ +

 dU d ξ

and the second due to Cornejo-Perez and Rosu [4] is

 d 2 U

 df



1

 dU

−

 U +  f 1 +  f 2

 d ξ 2

 dU

 d ξ +  f 1 f 2 U = 0

(A.40b)

Cornejo-Perez and Rosu recommend the latter grouping as being more convenient. From

eq. (A.40b), we have

 df 1  U + f 1 + f 2 = −γ

(A.41)

 dU

ˆ F( U)

 f 1 f 2 =

(A.42)

 U

Evaluating eq. (A.41) enables us to determine values for certain unknown coefficients. 

Also, it follows that the first-order ODE  D −  f 1( U)  U = 0 from eq. (A.39) is compatible with

eq. (A.38). On solving this ODE, we obtain  U  and hence  u. These steps are illustrated in the following example. 

Example: Generalized Fisher Equation

The generalized Fisher equation is

∂ u

∂2 u

∂ −

−  u  1 −  un = 0

(A.43)

 t

∂ x 2

which, on applying the transformation  u( x,  t) =  U(ξ ), ξ =  k ( x −  ct), reduces to the traveling wave ODE

 d 2 U

 dU

+ γ

+ ˆ F ( U) = 0

(A.44)

 d ξ 2

 d ξ 2

 c

1

where γ =

and ˆ

 F( U) =

 U  1 −  Un. We factor the polynomial function as

 k

 k 2

ˆ F ( U)

1

1

 f 1 f 2 =

=

1 −  Un =

1 −  Un/2 1 +  Un/2

 U

 k 2

 k 2
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and choose

 an

1

 f 1 =

1 −  Un/2, 

 f

1 +  Un/2, 

 a  6= 0

(A.45)

 k

2 =  ank

where we have introduced constant  an (to be determined). From eqns. (A.41) and (A.45), 

we obtain

 df 1

 an n

 an

1

 U +  f

 Un/2 +

1 −  Un/2 +

1 +  Un/2 = −γ

 dU

1 +  f 2 = −  k  2

 k

 ank

Equating the coefficients of  Un/2 to zero (as the ODE is equal to a constant) gives  an =

2

( n + 4)

( n + 4)

± √

, γ = − √

, and  c = − √

. Also, as γ is a constant and independent

2 n + 4

2 n + 4 k

2 n + 4

of the value of  U, on setting  U = 0, we find that  f



1 +  f 2 = ∓  an +  a−1

 n

 k = −γ , from which

it follows that the original equation is equal to





 d 2 U

 an +  a−1

 n

 dU

∓

+  f 1 f 2 U = 0

(A.46)

 d ξ 2

 k

 d ξ 2

Thus, the corresponding factorization  D −  f 2 ( U)  D −  f 1 ( U)  U = 0 becomes h

i h

i

 D ±  a−1

 n

 Un/2 + 1/ k D ∓  an Un/2 − 1/ k U = 0

(A.47)

Therefore, it follows that eq. (A.46) is compatible with the first-order ODE

 D ∓  an Un/2 − 1/ k U = 0, i.e., 

 dU

 an Un/2 −1 U = 0

(A.48)

 d ξ ∓  k

Integrating eq. (A.48) with γ > 0, either manually or using, Maple yields a

−2/ n

 nn ξ

 U = 1 +  K  exp

2 k

where  K  is an arbitrary constant of integration. Substituting back values for ξ ,  c, and  an, n

we find that  k = √

, which yields the solution

(2 n + 4)

 U = 1 +  K  exp  k( x −  ct) −2/ n

where  k  and  c  are known. 
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If we let  K = ± exp − kx 

0 , we arrive at the standard form of traveling wave solution

 U±

> = 1 ± exp  k ( x +  x 0 −  ct) −2/ n

↓

1

1

1

2/ n

 U+

> =

−

tanh

 k ( x +  x 0 −  ct)

(A.49)

2

2

2

1

1

1

2/ n

 U−

> =

−

coth

 k ( x +  x 0 −  ct)

2

2

2

For γ < 0, the solution becomes

 U±

< = 1 ± exp − k ( x +  x 0 −  ct) −2/ n

↓

1

1



1

2/ n

 U+

< =

+

tanh −  k ( x +  x 0 −  ct)

(A.50)

2

2

2

1

1



1

2/ n

 U−

< =

+

coth −  k ( x +  x 0 −  ct)

2

2

2

A Maple code that performs the above factorization calculation for the generalized Fisher equation is included with the downloads for this book. 

Readers are referred to the papers by Berkovich [3] and Cornejo-Perez and Rosu [4, 21]

for more information on this method and additional examples of its use. Additional solutions to eq. (A.43) are given by Polyanin and Zaitsev [17, Chapter 1]. 

A.7 Additional Solutions by Addition of Arbitrary

Constants

All the methods described above derive traveling wave solutions by making the transformation  u( x,  t) →  U(ξ ), ξ =  k( x −  ct). This effectively transforms the problem from a PDE

with dependent variable  u( x,  t) into an ODE with dependent variable  U(ξ ). The ODE is then solved to find  U(ξ ) and, finally,  u( x,  t) is obtained by applying the inverse transformation  U(ξ ) →  u( x,  t). If the transformation results in an ODE that is autonomous (does not include the independent variable ξ explicitly), with solution  W (ξ ), it will also admit solutions of the form  W (ξ + ξ0) →  w( k( x +  x 0 −  ct)), where ξ0 =  kx 0 is an arbitrary constant. Thus, the number of solutions obtained can be expanded by choosing various values for ξ0. The effect of ξ0 is to shift the solution unchanged to the right or left along the  x-axis, according to the sign of ξ0. A positive sign will result in a shift to the left, although a negative sign will result in a shift to the right. 

A.8 Other Methods

Although we do not employ these methods here directly, we mention for the interested reader that similar methods to the tanh, exp, and Riccati methods exist based on additional hyperbolic, trigonometrical, elliptic, etc. functions, see survey paper by Baldwin, et al. [2]. 
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In addition to the methods described above, there is a wide range of additional analytical methods that can be employed to find PDE solutions. These include the  inverse scattering method,  Bäcklund transformation,  Hirota bilinear forms,  differential constraints method,  Lie group method,  pseudo-spectral method, and others. Interested readers are referred to discussions in [1, 9, 17, 18, 30]. An overview of linear and nonlinear waves is given in [6]. 

A.9 Maple Built-In Procedure TWSolutions

Maple has a built-in procedure,  TWSolutions, for obtaining traveling wave solutions to PDE problems. However, as mentioned above, the  tanh-,  exp-, and  riccati-  based procedures presented here are not intended to rival this excellent procedure. Rather, they are intended primarily as educational aids for learning the techniques involved. They can also be used as research tools for readers to explore and develop the methods further. For example, it would be a simple matter to modify our procedures to include other mathematical functions or to combine them into a single procedure and to output all the results. 

The procedure TWSolutions is generally a more powerful and versatile facility offer-ing additional features, which are described fully in the Maple help system. For example, the Maple help system lists the possible mathematical functions available for TWSolutions as: exp, ln, the trigonometric functions sin, cos, tan, csc, sec, cot, the hyperbolic versions of them, JacobiSN, JacobiCN, JacobiDN, JacobiNS, JacobiNC, JacobiND, and the corresponding InverseJacobi functions and the WeierstrassP function. It also handles systems of equations with the same procedure call and has various options that provide useful insights into traveling wave problems. Nevertheless, the procedures outlined in this book find the same traveling wave solutions to many problems and to some where TWSolutions appears to fail. Consider the following  KdV-Burgers equation  example given in the Maple help:

∂ u

∂ u

∂2 u

∂3 u

∂ +  u

−  p

+  q

= 0

(A.51)

 t

∂ x

∂ x 2

∂ x 3

where TWSolutions gives the following two nontrivial solutions:

3  p 3 − 250  C 3  q 2

6



 px



 u 1 ( x,  t) = 1/25

−

 p 2 tanh

 C 1 + 1/10

+  C 3  t q−1

 qp

25

 q

3





 px

2

−

 p 2 tanh

 C 1 + 1/10

+  C 3  t

 q−1

25

 q

and

3  p 3 + 250  C 3  q 2

6



 px



 u 2 ( x,  t) = 1/25

−

 p 2 tanh −  C 1 + 1/10

−  C 3  t q−1

 qp

25

 q

3





 px

2

−

 p 2 tanh −  C 1 + 1/10

−  C 3  t

 q−1

25

 q
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which are the same except for opposite signs for  C 1 and  C 3. Alternatively, if we use our procedure tanhMethod, described above, we obtain the following (repeated) nontrivial solution:



! 

6

1  p  25  xq + 25  x 0  q + 3  tp 2 − 25  tq a 0

 u 1( x,  t) =  a 0 −

 p 2 tanh

 q−1

25

250

 q 2

" 



!#2

3

1  p  25  xq + 25  x 0  q + 3  tp 2 − 25  tq a 0

−

 p 2 tanh

 q−1

25

250

 q 2

It is seen that this solution is equivalent to those obtained using TWSolutions if we define 3 p 3 ± 250 q 2  C

 a

3

0 =

25 pq

10 q C

 x 0

1

= ±

 p

Many other similar examples could be given where the same solutions are found by our procedures and TWSolutions. But, of course, there are differences. If we repeat with intFlg:=1 (one integration of the ODE), then tanhMethod finds seven solutions, three trivial, and four nontrivial. Also, for the same example, the expMethod procedure finds 20 exp solutions (2 trivial and 18 nontrivial), whereas TWSolutions appears not to find any exp solutions. On the other hand, TWSolutions finds solutions based on other mathematical functions, such as JacobiSN, that cannot be found using our procedures. However, we must stress that these results are provided by way of example only; they are not intended as a comprehensive comparison. 

Maple codes for the above examples are not listed here in order to save space, but they are included with the downloads for this book. Where appropriate, the code is provided in the  mws  file format as well as the  mw  format so that it will also run in early versions of Maple—it has been tested in versions 8 and 13. 
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Boundary effects, 269

Adaptive grid, 160

Boussinesq equation, 339

Adaptive mesh refinement (AMR), 160

analytical solution, 339, 352–353, 358–359, 

Advection equation, xii, 7

368–369, 371–374

analytical solution, 8, 11–12

direct integration, 372

routine, 19, 30, 34

Maple, 371, 373

discontinuity, 20, 22, 26, 29

Riccati method, 373

flux limiter solution, 25–26

routines, 348

initial condition routine, 18, 20

boundary conditions, 339

linear, 7

Dirichlet, 342, 356, 361

main program, 9–10

Neumann, 363

ODE routine, 15–16

initial conditions, 339

numerical solution, 11–12, 23–24, 33–38

routines, 346–348

Analytical solution  see also

Jacobian matrix, 350

specific PDEs

main program, 349

discontinuity, 20

Maple procedure, 409

Maple,  see  specific PDEs

numerical solution, 351–354, 357–359, 

PDE, 1

367–369

routine, 19

ODE routine, 339, 353, 359, 363

smoothness, 5, 7, 20, 35

vectorized, 343, 359, 360, 363

verification, 4, 48, 58, 261–262, 309

origin, 370

Antipeakon, 305

second order in t, 339

Arbitrary constants method, 435

first order system in t, 342

stagewise differentiation, 354, 356, 359, 362

B

failure, 362

Backlund transformation, 436

weights (for FDs), 350, 366

Benjamin–Bona–Mahony (BBM) equation, 254

uxxx7c (for third derivative), 365

Bernoulli equation

u4x11p (for fourth derivative), 340, 342–346, 

 see  Extended Bernoulli equation

350–353

Boundary conditions, 1, 5

wavenumber, 372

Dirichlet, 49, 60, 67, 70–71

general, 85

wave speed, 372

homogeneous, 70

Burgers–Fisher equation, 123

infinite domain, 19, 245, 263, 353, 380

analytical solution, 123, 125–130

insulated, 104

Maple, 132

Neumann, 67

Tanh method, 130

analytical, 86, 101

boundary conditions, 123

nonlinear, 67, 84, 98

generalized form, 128

periodic, 27

Jacobian matrix, 128

Robin

ODE routine, 123

 see  boundary conditions, third type

initial condition routine, 125

third type, 67, 82, 84, 94, 98

numerical solution, 126–127

zero flux, 104

stagewise differentiation, 127
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Burgers–Huxley equation, 111

main program, 52

analytical solution, 111, 114, 117

nonlinear

factorization, 118

 see  nonlinear diffusion equation

Maple, 120–121

numerical solution, 54

boundary conditions, 112

ODE routine, 48

generalized form, 118

Diffusion induced chaos, 192

initial condition, 111

Direct integration method, 2, 372, 429

routine, 113

general concepts, 429

Jacobian matrix, 116

Dirichlet boundary condition, 49

numerical solution, 114–117

Discontinuity, 20, 235–236

ODE routine, 111

Dispersion, 234, 236, 257

wave velocity, 116, 120

Dissipation, 234, 236

dss library, 19

C

dss004, 16, 19, 25, 69, 78, 111, 123, 136, 149, 

Cauchy problem, 3, 7

174, 186, 197, 243, 263

Change of variable PDE, 2

dss044, 49, 51, 59, 62, 277, 294, 296, 311–313, 

Characteristics, 33

341–342, 365, 379

Chromatography, 33

dss008, 37, 38

Computer algebra system (CAS), xii, 3, 391

Conservation laws, 37

E

Convection–diffusion–reaction equation, 57

Euler equations, 33

analytical solution, 58, 61–65

Eulerian coordinate, xii, 4, 261, 377

routine, 61

exp method, 3, 195, 389, 391, 411

verification, 58

applied to KdV, 412

boundary conditions, 58

details of implementation, 412, 416

initial condition, 57

general concepts, 411

routine, 60

Maple procedure, 414

Jacobian matrix, 64

Expansion methods, 3

nonlinear extension, 63

Exponential time differencing, 194

numerical solution, 62–65

Extended Bernoulli equation, 261–262, 272

ODE routine, 59

analytical solution (ODE), 261

Conservation principle, 104, 242

verification, 261

Constraint, 20

analytical solution (PDE), 262, 268–269, 272

Coth method, 411

Maple, 272

 see also  tanh method

routine, 264

Cubic Klein–Gordon equation,  see

verification, 262

Klein–Gordon equation, cubic

boundary conditions, 264

initial condition routine, 264

D

Jacobian matrix, 267

d’Alembert solution, 309

main program, 264

Diffusion equation, 47, 67

numerical solution, 268–269

analytical solution, 48, 54

ODE routine, 262

verification, 48

routine, 51

F

boundary conditions, 48

Factorization method, 3, 106, 118, 141–145, 

extension with reaction, 53

179, 391, 430

initial conditions, 48

algorithm, 432

routine, 50

applied to generalized Fisher equation, 433

Jacobian matrix, 52–53

differential operator, 431
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factoring operators, 431–432

Flame propagation, 192

commutative, 431–432

Fisher–KPP equation,  see  KPP

general concepts, 430

Flux limiter, 25, 37–38

FD (finite difference), 15

Fornberg algorithm, 205

 see also, dss004, dss008, dss044

Fortran, 17

order, 19, 23–25, 35

Fourier domain analysis, 193

first derivative, 16, 19, 24

four–point upwind, 27

G

second derivative, 16

Gaussian function, 7, 18

two–point upwind, 23

Generalized Fisher equation, 433

u3x9p (for third derivative), 197–198, 201

factorization solution, 433

exponential differentiation, 230–234

Global variables, 10

polynomial differentiation, 217–230

naming, 402, 429

u5x11p (for fifth derivative), 197–199

Godunov barrier theorem, 24, 26

polynomial differentiation, 230

Group velocity, 407

Finite difference,  see  FD

Finite volume, 27, 37

H

Fisher–Kolmogorov equation, 135

Heaviside function, 7, 29

analytical solution, 135, 138, 140–144

Hirota bilinear forms, 436

factorization, 141–145

Hodgkin–Huxley equation, 147, 164

Maple, 145–146

h refinement, 32, 270

boundary conditions, 136, 138

Hump soliton, 406

initial condition routine, 137

Hyperbolic Liouville equation, 275

Jacobian matrix, 142

analytical solution, 275, 285–287, 290

main program, 138–139

routines, 279

numerical solution, 140–144

Riccati method, 288

ODE routine, 135

transformations, 286, 288, 290

stagewise differentiation, 136

boundary conditions, 275

wave velocity, 140–141

continuity, 289

Fitzhugh–Nagumo equations, 147

initial conditions, 275, 290

analytical solution, 148, 155–163, 166–169

routine, 278

moving front, 160

Jacobian matrix, 283–284

routine, 150

main program, 279

boundary conditions, 149–150

Maple

dependent variables, 157, 165

rational solution, 286–287

excitation threshold, excitability, 165

transformation, 287, 290

initial condition routine, 149

numerical solution, 285–288

Jacobian matrix, 154, 160

ODE routine, 275, 283

main program, 150

second order in t, 275

Maple

first order system in t, 277–279

exp method, 170

wavenumber, 284

tanh method, 166

wave velocity, 284

numerical solution, 155–163

Hyperbolic PDE, 33

moving front, 160

Hyperbolic–parabolic PDE, 57

ODE routine, 148

ODE version, 165

I

stagewise differentiation, 149

Inhomogeneous PDE, 5

wavenumber, 164

Initial condition, 5

wave velocity, 164

Gaussian pulse, 18
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Initial condition ( continued)

cubic, 309, 329–330

square pulse, 20

inhomogeneous, 326–328

Triangular pulse, 33–34, 36

initial condition routine, 314

Initial condition routine, 18

Jacobian matrix, 317

Initial value problem, 3

linear wave equation, 309

Integral constraint, 20, 104–106, 242

main program, 316

Invariant, 20, 104–106, 242

Mth-order, 309

Inverse matrix operator, 243

nonhomogeneous, 311, 326–328

Inverse scattering method, 436

numerical solution, 318–321, 324–327, 

330–336

J

ODE routine, 310

Jacobian matrix, 13, 

quadratic, 309

 see also  specific PDEs

second order in t, 309–313, 316

banded, 15

first order system in t, 310–313, 316

map, 15, 17

Kolmogorov–Petrovskii–Piskunov equation, 

pentadiagonal, 15–16

 see  KPP

routine, 19

Korteweg–de Vries (KdV) equation, 234, 254, 

size, 15

370, 393–394, 412, 422

sparse, 15

Maple solution, 406, 414

analytical solution, 394–397

K

KPP, 173

Kawahara equation, 197

analytical solution, 173, 177–180

analytical solution, 197, 207–213

factorization, 179

routine, 200

Maple, 182

boundary conditions, 198, 200

routine, 176

Fornberg algorithm, 205

boundary conditions, 174

initial condition, 199

initial condition, 175

routine, 199

routine, 175

Jacobian matrix, 207, 210

Jacobian matrix, 179

main program, 200

main program, 176

Maple, 237

numerical solution, 177–180

numerical solution, 207–213

ODE routine, 173

ODE routine, 197

stagewise differentiation, 174

small signal version, 236

wave velocity, 177–179

weights (for FDs), 201–207

Kuramoto-Sivashinsky equation, 185, 192

u3x9p (for third derivative), 197–198, 201

analytical solution, 185, 190–194

u5x11p (for fifth derivative), 197–199

Maple, 194–195

KdV–Burgers equation, 436

routine, 188

solution by TWSolutions, 436

boundary conditions, 185, 188

Klein–Gordon equation, 4, 309

Dirichlet, 185

analytical solution, 309, 319, 320, 323, 331, 

Neumann, 185, 189

333–335

exponential time differencing

Maple, 338

fourier domain analysis, 193

residual function, 323, 325–328

initial condition routine, 187

routine, 315–316, 321–322, 328

Jacobian matrix, 192

tanh method, 337

main program, 189

two forms, 310, 321, 322

numerical solution, 190–194

verification, 309, 325–326

ODE routine, 185

boundary conditions, 310

spectral methods, 194
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stagewise differentiation, 187

Lagrangian coordinate, 377

wavenumber, 191

linear wave equation, 377

wave velocity, 191

main program, 382

numerical solution, 384–386

L

ODE routine, 378

Lagrange multipliers, 

second order in t, 377, 379

 see  traveling wave methods

first order system in t, 379

Lagrangian coordinate, xii, 4, 139, 261, 377

MOL (method of lines), xi, xiii, 1

Lagrangian variable, 115, 164, 177, 191

ODE routine, 13

Level set method, 33

 see also  specific PDEs

Laboratory coordinates, 302, 304

programming, 213–217

Lie group methods, 436

stiffness, 251

Light-cone coordinates, 302, 304

Moving coordinate,  see  Lagrangian coordinate

Limiter functions, 40–43

Moving front, 153, 160

Line soliton, 409

Mth-order Klein–Gordon equation,  see

Klein–Gordon equation, mth-order

M

MUSCL scheme, 37

Malfliet’s tanh method,  see  tanh method

Maple, xii, 1

N

exp method procedure, 414

Navier–Stokes equations, 254

details of use, 416

Nonhomegenous PDE, 5

plotting, 401

Nonlinear diffusion equation, 67

solution check, 401

analytical solution, 67, 78, 80, 86–92, 101–103

tanh method procedure, 397

Maple, 108–109

details of use, 399

routine, 72

 see also  specific PDEs, TWSolutions

boundary conditions, 67

Matlab, 1

Dirichlet, 67, 90

 see also  specific PDEs

nonlinear, 68, 84

inverse matrix operator, 243

Neumann, 67, 69, 79, 87, 92

vectorized, 17, 243, 341

analytical, 86, 101

Method of characteristics, 33

third type, 67, 69, 82, 84, 94, 98

Method of lines,  see  MOL

initial condition, 71

Mixed partial derivative, 239, 244, 245, 253

routine, 71

FD approximation, 239–241

Jacobian matrix, 79

Mixed-type PDE, 33, 239, 292, 302

linear form, 67

Modified wave equation, 377

main program, 73

analytical solution (ODE), 377

numerical solution, 78, 80, 83–103

analytical solution (PDE), 377, 384–385

ODE routine, 67

exp method, 389

source terms, 67, 81, 83–84, 86, 88

Maple, 387

wavenumber, 67

Riccati method, 387

wave velocity, 67

routine, 382

Nonlinear reaction-diffusion equation, 147, 

tanh method, 389

164

verification, 378

Numerical diffusion, 24, 32

Boundary conditions, 380–381, 383, 386

Numerical oscillation, 24, 32

Eulerian coordinate, 377

Numerical solution

Initial condition, 381

ODE, 13

routine, 381

computational efficiency, 14

Jacobian matrix, 383

PDE, 1
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 Index

O

Q

ode15s

Quadratic Klein–Gordon equation,  see

sparse option, 13, 74, 76, 151, 265–266, 280

Klein–Gordon equation, quadratic

 see also  specific PDE, main program

ode45, 13, 151, 251, 265, 280

R

Ordinary differential equation,  see  ODE

Regularized long-wave equation,  see  RLW

ODE, 2

Residual function method, 1, 4, 323, 326

Jacobian matrix, 13

Riccati method, 3, 195, 288, 373, 388, 391

 see also  specific PDEs

applied to

MOL routine, 9

KdV, 422, 427

 see also  specific PDE, ODE routine

ODE, 419

stiffness, 13

details of implementation, 422, 427

two-point boundary value, 96, 99

equation, 420–421

derivatives, 421

known solutions, 421

P

general concepts, 418

Parabolic PDE, 33

Maple procedure, 419, 424

Partial differential equation,  see  PDE

Riemann problem, 7, 25, 29

PDE (partial differential equation), xi, 1

RLW (regularized long-wave equation), 239

analytical solution, 1

analytical solution, 239, 253–257

auxiliary conditions, 2

exp method, 259

boundary conditions, 1

Riccati method, 259

change of variable, 2

routine, 245

general form, 1

tanh method, 258

higher-dimensional, 3

boundary conditions, 239

hyperbolic, 33

conservation principles, 242

initial conditions, 5

initial conditions, 239

mixed type, 33, 239, 292, 302

routine, 243

multi-dimensional, 3

integral constraints, 242, 252

numerical solution, 1

invariants, 242, 252

parabolic, 33, 47

main program, 247

residual function method, 1

mixed partial derivative, 239, 253

second order in t, 3, 275, 293

numerical solution, 253–257

first order system in t, 277–279, 295

FD matrix approximation, 239–241, 250

smooth solutions, 7, 24, 31–32

ODE routine, 242

spatial derivatives, 1

traveling wave solution, 1

S

Peakon, 305

Semidiscrete approximation, 39

Peak soliton, 406

Shock, 235–236

Periodic boundary condition, 27

Simpson’s rule, 20, 104, 245, 252

ghost cell, 27

Sine–Gordon equation, 293

Phase velocity, 235

analytical solution, 293, 301–305

p refinement, 32, 270

Routine, 298

Procedual programming, 17

antipeakon, 305

Procedure,  see also  Maple

boundary conditions, 294–296

coupled PDEs, 404

initial conditions, 293–294, 297

solution check, 401

routine, 296–297

Pseudo spectral method, 436

Jacobian matrix, 298–299

Pulse, 20, 33, 36

laboratory coordinates, 302, 304
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light-cone coordinates, 302, 304

Temporal error, 270

main program, 298

balanced with spatial error, 270

Maple

Total variation diminishing,  see  TVD

tanh method, 305

Traveling wave methods, 1–3

mixed partial derivative, 302

differential operators, 392–393, 407

numerical solution, 300–303

general concepts, 392, 403, 407

ODE routine, 294

Lagrange multipliers, 391, 412, 421

peakon, 305

TVD, 37–38, 42

second order in t, 293

TWSolutions, 391

first order system in t, 295

applied to KdV–Burgers equation, 436

solution sensitivity, 299

details of implementation, 437

Solitary wave, 394

general features, 436

Soliton, 372, 394

hump, 406, 409

U

peak, 406

Upwind approximation

Source terms, 67

four-point, 27

Spatial derivatives, 1

two-point, 23

dss library, 19

uxxx7c (for third derivative), 365

FD approximation, 16

u3x9p (for third derivative), 197–198, 201

linear approximation, 24

exponential differentiation, 230–234

nonlinear approximation, 25

polynomial differentiation, 217–230

Spatial domain, 18

u4x11p (for fourth derivative), 340, 342–346, 

 see also  Boundary conditions, infinite

350–353

domain

u5x11p (for fifth derivative), 197–199

Spatial error, 270

polynomial differentiation, 230

balanced with temporal error, 270

Spectral methods, 194, 436

V

Stagewise differentiation, 112, 115, 124, 136, 

van Leer flux limiter, 25, 27, 42

149, 174, 187, 354, 356, 359

routine, 25

failure, 359–363

numerical solution, 25

Stefan–Boltzmann law, 85

Stiffness, 13, 251

W

Superbee flux limiter, 25, 27, 41

Water hammer, 33

numerical solution, 28, 30–32, 38–40

Wave number, 2, 67, 164, 191, 235, 284, 372, 

routine, 25

392, 407, 420, 430, 432

Wave envelope, 235

T

Wave equation, 309

tanh method, 3, 130, 258, 304, 337, 389, 391

Wave frequency, 407

applied to

Wave packet, 235

Boussinesq eqns., 409

Wave speed, 372

KdV, 399, 405

Wave velocity, 2, 67, 116, 140–141, 164, 

simultaneous (coupled) PDEs, 403

177–179, 191, 284, 392, 420, 432

details of implementation, 394

Weighted essentially non-oscillatory,  see

extended form, 393

WENO

in higher dimensions, 407

weights (for FDs), 201–207

Maple procedure, 397, 404, 408–410

WENO, 33
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