
Elliptic Curve
ptography
~--� r Developers

Mike Rosing

- MANNING

MEAP Edition
Manning Early Access Program

Elliptic Curve Cryptography for Developers

Version 6

Copyright 2023 Manning Publications

For more information on this and other Manning titles go to
manning.com

https://www.manning.com/

welcome
Thank you for purchasing the MEAP of Elliptic Curve Cryptography for Developers.

Today’s blockchain applications utilize advanced protocols which include the pairing of points
over elliptic curves. To fully understand and appreciate why this mathematics is so useful is
exceptionally challenging. This book explains how to convert the mathematics of elliptic curves
over finite fields into code which you can use for your cryptographic applications.

The cryptographic protocols described in this book are used in state of the art blockchain
applications. Two specific applications are described in the last two chapters of the book. To get
to the point where you can understand those applications requires learning

• elliptic curves over finite fields

• arithmetic of point addition using elliptic curves

• polynomial arithmetic using polynomials as a modulus

• elliptic curves over field extensions

• how to find good elliptic curves which can be used for point pairings

• arithmetic of point addition using elliptic curves over field extensions

• computation of pairing points over field extension elliptic curves

Each chapter in the book teaches some aspect of this list. In each chapter you will learn some
math and be introduced to subroutines which can compute that math.

In the process of writing this book, I read many cryptographic papers. Usually over a dozen
times. So while I think I’m explaining things correctly, I would really appreciate your comments
on how to improve descriptions which seem confusing. I want people to write advanced
mathematical software with confidence, so your careful reading of Elliptic Curve Cryptography
for Developers will help make that happen.

My background includes 40+ years in embedded systems starting with assembler and ending
with VHDL. For most 16 and 32 bit processors I wrote code in C. The code in this book is aimed
at small embedded systems that require high security. C is not strongly typed so it is trivial to
convert integers into bytes and vice versa. This is exceptionally useful when converting a pass
phrase on an embedded system into a private key – the same pointer means two different things
depending on which subroutines are called.

For those who want to convert the code into Verilog or VHDL, the GNU Multi Precision library
are the core routines to replace. Using fixed width integers, and an appropriate choice of prime
field, very efficient and highly secure applications can be created in hardware. I would really like
to know about your experience with putting elliptic curve mathematics into an FPGA.

Please be sure to post any questions, comments, or suggestions you have about the book in
the liveBook discussion forum.

—Mike Rosing

https://livebook.manning.com/forum?product=rosing2&page=1

brief contents
 1 Pairings over elliptic curves in cryptography

PART 1: BASICS

 2 Description of finite field mathematics

 3 Explaining the core of elliptic curve mathematics

 4 Key exchange using elliptic curves

 5 Prime field elliptic curve digital signatures explained

 6 Finding good cryptographic elliptic curves

PART 2: INTERLUDE

 7 Description of finite field polynomial math

 8 Multiplication of polynomials explained

 9 Computing powers of polynomials

10 Description of polynomial division using Euclid’s algorithm

11 Creating irreducible polynomials

12 Taking square roots of polynomials

PART 3: PAIRINGS

13 Finite field extension curves described

14 Finding low embedding degree elliptic curves

15 General rules of elliptic curve pairing explained

16 Weil pairing defined

17 Tate pairing defined

18 Exploring BLS multi-signatures

19 Proving knowledge and keeping secrets, zero knowledge using pairings

1Pairings over elliptic curves
in cryptography

This chapter covers
Defining elliptic curve cryptography

Where ECC is used

Public key cryptography

Who this book is for

I first became interested in elliptic curve cryptography (ECC) in the mid 1990s. I was in-
volved with an activist organization working to legalize marijuana and we wanted to ensure
our member list was secure and that we could email each other with encrypted messages.
While I was aware of PGP (pretty good privacy), as a scientist at Argonne National Lab-
oratory I wanted something more state of the art. So I dug into the papers and went to a
few CHES (Cryptographic Hardware and Embedded Systems) conferences to learn how
to write my own code.
Today ECC is ubiquitous. For example, EMVCo (Europay, Mastercard, and Visa) sup-

port ECC in their cryptographic interface for credit card transactions. In addition to shar-
ing secret keys as in an SSL/TLS handshake it is also used for signing certificates to au-
thenticate web pages and HIPPA documents. A blockchain holds globally accessible infor-
mation shared among many peers. The blockchain has found use of elliptic curve pairings
to enable aggregate group signatures as well as zero knowledge proofs. The impetus for

blockchain may be cryptocurrency, but the technology has many more uses. Blockchain
ledgers are used in healthcare and supply chain environments.
ECC has been used for random number generation too. However, this takes a lot more

resources than linear feedback shift registers or hardware sources like zener diodes. So
there are a few places where ECC can be replaced by a better alternative.
Learning ECC math is still challenging to understand, especially for those who do not

have a Ph.D. in mathematics. The mathematics behind pairings at first glance appear ex-
ceptionally deep.Most developers find ways to not include pairings in their products. Once
the basics are understood, pairing based elliptic curve cryptography will also become ubiq-
uitous. The learning curve is not steep if you know the right path. This book follows a very
narrow path that is essential to follow from beginning to end. You will understand how to
compute elliptic curve pairings used in the last two chapters by following each chapter one
at a time.

1.1 What is elliptic curve cryptography?
First - there are no ellipses. Second - there are no curves. So why is it called an "elliptic
curve"? The primary reason is history. Performing integrals of the elliptical orbits of plan-
ets gave rise to formulas that were labeled elliptic curves. These formulas were then used
in other areas of mathematics and the label stuck.
The areas of mathematics used in public key cryptography involve number theory (the

properties of integers), combinatorics (the study of counting) and finite fields (sets with
finite objects and specific rules). The areas of mathematics where elliptic curves are used
is just about everything. This makes studying elliptic curve math very difficult because it
is hard to determine what you really need to know and what is just really interesting.
For example, elliptic curves have been used for factoring numbers and for solving Fer-

mat’s Last Theorem. In chapter 3 I explain how elliptic curves on the complex plane are
used to understand elliptic curves over finite fields. It’s all interesting, but not necessarily
applicable to cryptography.

1.2 Why use elliptic curve cryptography
Public key cryptography started with the RSA system, which uses exponentiation modulo
very large primes. Algorithms for breaking RSA are subexponential, so several thousand
bit primes are needed for standard security. The advantage of using elliptic curve mathe-
matics is the reduced size of the numbers involved for the same level of security. Larger
numbers require more memory, more processing time, more gates on an FPGA or more
processors in a GPU. That means the resources required (or the cost of the system) is
higher for other methods. That reduced cost is one of the main drivers for the use of
elliptic curve public key cryptography.
In the past decade, other properties of elliptic curves have allowed applications which

are not even possible with other methods. Aggregate digital signatures are a primary exam-
ple. And while zero knowledge proofs were first introduced with other mathematics, the
elliptic curve versions are much shorter to transmit.

Figure 1.1 Conceptual elliptic curve over finite field, points are scattered in a multidimensional, astro-
nomically large space

Figure 1.1 is a conceptual view of an elliptic curve over a finite field. All the points are
"on the curve". That means they all satisfy the elliptic curve equation. One point is colored
red, one is colored green. These points are mathematically related to each other using
algorithms described in this book.
Discovering the mathematical relationship is called breaking the algorithm or cracking

the code. For elliptic curves of high enough field size and dimension the cracking effort
would require tenmillion 4 GHz processors about one billion years to find the relationship.
In part 3 of this book I dive into the details of what high enough field size and dimension
means.

point on
curve

point on
field extension

curve

field extension
values

Figure 1.2 Schematic of elliptic curve pairing with one point on base curve, one point on field extension
curve, and result in field extension values

Figure 1.2 is an outline of elliptic curve pairings, which I cover in part 3 of the book. The
red area represents an elliptic curve on a field extension. Buried within that are points on
a base curve. A pairing of points on this curve results in a field extension value (technically,
an nth root of unity). Only elliptic curve mathematics gives rise to cryptographically secure
pairings. The relationship between pairing values and points on curves is more difficult to
crack than the relationship between points alone. This is a fundamental reason for using
elliptic curves in cryptography - it is very hard to break the algorithms.

1.3 Elliptic curves come to public key cryptography
The use of elliptic curves for cryptography is a very new development in the history of
keeping secrets. From ancient Rome to the present day secure messages are sent using a
secret key which both the sender and receiver know. Transmission of this secret key to
both parties was always a major problem. In the 1970s the idea of using one way trap door
functions which are easy to compute and essentially impossible to unravel introduced the
concept of public key cryptography.
The fundamental idea behind public key cryptography is the use of a private key held

by one person or organization and a public key transmitted openly by that person. Two
people can create a shared secret that no one else can determine so encrypted messages
can be exchanged. This is especially useful if they have never met.
Additional applications in the digital age have also been developed. A person can sign

a document with their private key and anyone can verify they signed it using the signer’s
public key. The combination of multiple signatures is also possible where many people or
computer servers sign the same document. Zero knowledge proofs allow transactions to
be anonymous and verifiable at the same time which also requires a private key to prove
existence and a public key to verify. In the following sections I will expand on these con-
cepts and the rest of the book will describe how to implement this in reality using elliptic
curve mathematics.

1.3.1 General description of Key exchange

To securely send messages over a public network we want to use a very strong method
of encryption. The National Institute of Standards and Technology (NIST) defined the
Advanced Encryption Standard (AES) with several levels of security depending on the
length of the secret key. A key exchange between two parties is performed using public
key cryptography so that a shared secret can be created using open networks.

Alice’s
private key

Bob’s
private key

Alice’s
public key

Bob’s
public key

Shared
secret key

Shared
secret key

Encrypted
message

Decrypted
message

message message

Open network

Figure 1.3 Creating secret key by exchanging public keys

Suppose Alice and Bob want to securely exchange messages. They each create a private
key which they hold secretly so no one else can know it. Using the private key, they each
create a public key, which they share with each other. In figure 1.3 we show how Alice
and Bob can send their public keys over an open network. Alice combines her private key
with Bob’s public key to create a single secret key for a system like AES used to encrypt
a message. The advantage of AES is that it is fast and can encrypt large amounts of data
easily. The disadvantage is that it requires a single secret key.
Bob uses Alice’s public key along with his private key to create the same shared secret

that Alice used to encrypt the message. What is seen on the public network are Alice’s
public key, Bob’s public key and the encrypted message.
The point of this system is that Alice and Bob don’t have to agree on what secret key to

use before they decide to communicate. As we’ll see later, in addition to creating a shared
secret, we can make the secret ephemeral so that even if someone were capable of breaking
the message key, they would not be able to break Alice’s or Bob’s public keys to discover
their private key.

1.3.2 Digital signature algorithms explained

To prove that she created a document and to ensure that no one else can modify it, Alice
can create a digital signature of the document. She uses her private key to sign the docu-
ment and anyone else can use her public key to verify that she signed it. If anyone changes
even one bit in the document the signature will not verify.

Alice’s
private key

Document

hash

Digital
Signature

Figure 1.4 Processes involved with creating a digital signature

Figure 1.4 shows how digital signatures are signed and figure 1.5 how they are verified.
Alice uses her private key along with a hash of the document to create a digital signature
that is posted along with the document in a public place.

Alice’s
public key

Document

hash

Digital
Signature

Same?

YES! or NO!

Figure 1.5 Process and data required to verify a digital signature

Anyone can then use Alice’s public key, the Document and the digital signature to verify
that Alice is indeed the person who created the document. Anyone else attempting to im-
personate Alice would need to know her private key. As figure 1.5 shows, a valid document
outputs positive result for the correct public key.

1.3.3 How multiple people can sign the same document

If a document requires several people to sign it, a simple digital signature of each person
signing the same document becomes complicated. Each person’s key has to be used to ver-
ify their signature. This increases the storage area required because every digital signature
needs to be attached to the document.
Figure 1.6 looks complicated, but there are really only three steps.
1 Aggregate all the public keys into one block.

2 Each person digitally signs the document plus the aggregated keys into their own
signature data.

3 Mathematically combine all the signatures into one final signature.
Figure 1.7 shows how the aggregated signature is verified. The hash of the public keys

can be recreated or saved with the document. That is a system level time versus space
argument, we will assume it as an input. An elliptic curve pairing operation is done using
the public keys, the document and the combined final signature to determine if everyone

public key
1

public key
2

public key
n

Hash of all
public keys

Hash of
Document

private key
1

private key
2

private key
n

s1 s2 sn

Aggregation of
all signatures

......

......

Figure 1.6 Aggregated digital signature signing combines multiple users public keys and individual
signatures to create a single signature

did in fact sign the same document. When the computations match each other (we’ll get
into the details in later chapters) the composite signature verifies.

Document

Hash

Hash of all
public keys Aggregation of

all signatures

Verify?

YES! or NO!

Figure 1.7 Aggregated digital signature verification process

The ability to verify an aggregated digital signature requires the use of elliptic curve
pairings. Parts 2 and 3 of this book build up the mathematical background required to
understand all the details of elliptic curve pairings.

1.3.4 Zero knowledge, or how to keep a secret and prove you have one

A digital certificate is used to verify data is authentic. An example is a web page that has
been certified as genuine by some trusted authority. It can also contain personal data which
someone may not wish to be exposed. The idea that we can prove an entity has some
private information but not expose that information is called a zero knowledge proof.
A huge surveillance state was envisioned if every digital certificate was traceable to every

issuer and owner. To eliminate this lack of privacy a way to verify that a prover actually
knows what they claim without giving away any information was developed. So the prover
knows what they want to keep private in the certificate and the verifier wants to check the

certificate is valid.
Todaywewant transactions on a blockchain to be anonymous as well as keeping amounts

of money transferred a secret. The original method of zero knowledge proof was interac-
tive with the prover and verifier sending messages back and forth. If the probability of be-
ing correct was 50%, after 20 tries the chances of the prover misleading the verifier would
be less than one in a million.
The fundamental problem with an interactive method is the communication between

prover and verifier. So the next step in solving the problemwas to introduce non-interactive
zero knowledge proofs. Figure 1.8 shows how a non-interactive proof is set up using pub-
lic data and a public common reference string. The public data is usually information

Data/
Information

Common
Reference
String

Witness
Proof of
Knowledge

Proof Generator

Figure 1.8 Requirements involved to create zero knowledge proof

contained on a blockchain. The common reference string refers to the elliptic curve pa-
rameters used to hide the data. The witness shown in figure 1.8 is private information,
which can be a combination of public keys and coin data and/or address key information.
The combined mathematical result is called a proof of knowledge.
The verification process uses the public information, the public common reference

string and the public proof of knowledge to verify that the information is correct. This is
shown diagrammatically in figure 1.9. If the data and proof are from the same blockchain,
the verification will be a YES result, otherwise one gets a NO result. The idea is to make
generation of the proof a time-consuming process (but not too long) and the verification
to be a very short time.We also want the proof to be small and not take up too much space
on the blockchain.

Data/
Information

Common
Reference
String

Proof of
Knowledge Proof Verification

Yes or No

Figure 1.9 Process of verifying a zero knowledge proof

The acronym developed for zero knowledge proofs is SNARK, which stands for Suc-
cinct Non-interactive ARgument of Knowledge. After reading manymathematical papers
on SNARK’s, I found Lewis Carroll’s "The Hunting of the Snark" (Carroll & Singh, 2010)
to make about as much sense. It was not a surprise to find a cryptographic article with the
same title (Bitansky et al., 2014) . These constructions use elliptic curve pairing operations
which allow the succinct part to happen.

1.4 Who this book is for
If you don’t have an advanced degree in mathematics and you want to understand enough
elliptic curve math to implement common algorithms, then this book is for you. If you
don’t have a good grasp of linear algebra and are not familiar with manipulation of poly-
nomials, then this book might be too much. The learning process will be step by step, but
the first step assumes you know how to manipulate equations with several variables.
This book will teach the basics of elliptic curves over finite fields to show how the math

applies to cryptography. The book will also teach the fundamentals of elliptic curve pairing
mathematics. Pairings on elliptic curves are a deep subject with many tangents that have
nothing to do with cryptography and much to do with mathematics. Some topics were
tried for cryptography, and have been rejected because the system was "broken" by careful
analysis.
By the time you finish this book you will be able to implement secure transfer of keys

using elliptic curves of your own design as well as create pairing based digital signature
schemes for use on blockchain systems. You will have confidence in your ability to test the
cryptographic underpinnings of your code.
So, let’s get started!

1.5 Summary
Finite fields are sets with specific rules and a finite number of objects. The mathemat-
ics of finite fields determines how we manipulate elliptic curves.

Elliptic curves over finite fields are good for cryptography because they use smaller
numbers for the same level of security than other public key methods.

Key exchange and digital signatures are straightforward using elliptic curve mathe-
matics through the use of simple formulas. This makes programming the mathemat-
ics easy.

Aggregation of many digital signatures using pairings over elliptic curves allows for
smaller storage on a blockchain than othermethods. This reduces the amount of data
transmitted between peers which decreases over all transaction time.

Zero knowledge proofs can certify knowledge of information without exposing that
information. Zero knowledge proofs use reduced amounts of data compared with
other methods when using elliptic curve pairing mathematics.

Chapter Bibliography
Bitansky, Nir, Canetti, Ran, Chiesa, Alessandro, Goldwasser, Shafi, Lin, Huijia, Rubinstein,
Aviad, & Tromer, Eran. 2014. The Hunting of the SNARK. Cryptology ePrint
Archive, Paper 2014/580. https://eprint.iacr.org/2014/580. 9

Carroll, L., & Singh, M. 2010. The Hunting of the Snark. Melville House. 9

https://eprint.iacr.org/2014/580

Part 1

Basics

The chapters in part 1 of the book cover finite field arithmetic, elliptic curve mathemat-
ics and cryptographic primitives. Finite fields based on prime numbers are the essence of
elliptic curve cryptography. They form the basis of everything else that follows.
Large integers consisting of 160 to more than 500 bits make up the finite fields used

in cryptography. Large integer libraries have been around for a long time and the one
I chose for this book is called the GNU Multiple Precision Arithmetic Library or GMP.
There are many routines not included within GMP which are required for elliptic curve
implementations. These are discussed in chapter 2. One of the major routines covered
includes taking square roots using a modulus. There are several routines which will be
mentioned that use only a few calls to theGMP library. These routines are used throughout
all the code in this book, so while they are simple, they are very important.
Chapter 3 dives into the elliptic curve mathematics. The idea of algebra on an elliptic

curve is described along with some abstract pictures. The ideas are important and hav-
ing some mental image can help you understand the mathematics. I discuss the idea of
embedding values onto a curve, then describe code to add and multiply points.
This part includes two chapters on applications of elliptic curves over finite fields. Chap-

ter 4 covers key exchange and chapter 5 covers digital signatures. There are dozens of key
exchange and signature algorithms to choose from. Each chapter only discusses two of the
most commonly used algorithms. Once you understand how one algorithm works with
elliptic curve cryptography, you will have no trouble implementing similar algorithms.
The last chapter in this part goes into the process of finding good curves. For the large

prime fields this book is interested in, this process is not that difficult to do using the math-
ematical tools which have been developed over the last few decades. I also have a short
discussion on how to avoid bad curves. For all the methods shown in this part, the odds of
finding a good curve are reasonably high if you search long enough (as in 24 hour computer
runs).

2Description of finite field
mathematics

This chapter covers
Fundamentals of finite fields

Subroutines for modular operations

Concept of quadratic residues

Computing square roots mod n

Fields are mathematical objects which obey specific rules. Finite fields have a fixed number
of objects. This chapter introduces finite fields over prime numbers and the code we will
need in rest of the book to manipulate these objects.
In this chapter I start at the bottom of finite field mathematics by using prime numbers

to define the core concept of a finite field. Every formula in this book depends on prime
numbers to create a finite field. I’ll first go over the rules of finite fields we need to know and
then introduce simple subroutines that exploit the GNUMultiple Precision Arithmetic Li-
brary (GMP library) to implement some of those rules. The library is exceptionally useful
for very large integers used in cryptographic protocols. You can learn about retrieving the
GMP library and its documentation from appendix A.
The general equation of an elliptic curve is given by

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Fortunately for us, we don’t need the general curve because we work over finite fields. The
ordinary equation used throughout this book has a1 = a2 = a3 = 0.
To find the y value from the equation of an elliptic curve we need to compute square

roots. After the simple code, I discuss a more complicated problem of taking square roots
modulo a prime. This involves finding quadratic residues to determine if a square root
even exists for a number. GMP has a library routine to help with that. Then I will discuss
the algorithm used to find square roots once we know it can be found.With that description
the code is straightforward to implement.

2.1 Basic mathematics of finite fields
In this section I dive into the fundamentals of finite fields over prime numbers.
A field is a very special term in mathematics. It describes objects which can be added,

multiplied and divided. Two special objects 0 and 1 are the identity elements for addition
and multiplication respectively. Identity just means a +0 = a for addition and b ∗1 = b for
multiplication.
The types of objects which make up fields include numbers, polynomials and polyno-

mials of polynomials! So a field is a mathematical abstraction which has very specific rules
that apply to all these things.
A finite field has a finite number of objects. The field of integers is infinite. We can

always add 1 and get the next number. Because objects in a field can multiply and add any
object to any other object to get yet another object in the field, a finite field must be cyclic.
Your first introduction to a finite field was learning how to tell time on a clock. As shown

in figure 2.1, adding 6 hours to 9 o’clock you get 3 o’clock. On a 24-hour clock you would
get 15 o’clock. We say that 15 is congruent to 3 modulo 12. So the size of the field deter-
mines what the results are. We say a 12-hour clock is modulo 12 and a 24-hour clock is
modulo 24. The term congruent will also show up in many places, and it means "equal to"
given the modulus.

0 1
2

3

4
56

11
10

9

8
7

12
13

14

15

16

17
18

23

22

21

20

19

Figure 2.1 Adding 6 + 9 modulo 12 and modulo 24

For cryptography, the size of the field is astronomical because a field size of 256 bits is
a number 2256 which is roughly the number of atoms in the observable universe.
The problem with a clock is that the number 12 has three factors: 2 ∗ 2 ∗ 3. We can

create sets of numbers that are even, or factors of 4, or factors of 3, or factors of 6. Each of
those sets maintains a cyclic relationship. So the set of numbers {2, 4, 6, 8, 10, 12} form
a cyclic group. But because it does not have the identity element, it is not technically a
field.
Figure 2.2 illustrates the idea of a prime field using 43 as the prime number. It is drawn

like a clock so when counting to 43 we return to 0. Since both 0 and 1 are in the set
of numbers, addition and multiplication are possible in this field. Computing an inverse
modulo a prime number is also possible. That is what makes a prime number base into a
field.

4
3
2
1
0

39
40
41
42

...

...

Figure 2.2 Finite field over prime numbers viewed as a clock (p = 43)

For cryptography, we want finite fields with really large prime numbers. For embedded
systems we want numbers that are easy to compute with. Later on I’ll give examples where
I choose primes like 43 × 2252 + 1. Because this set of numbers contains both 0 and 1 it
creates a finite field with 43 × 2252 + 1 numbers in it. A secret key will be one of those
numbers. If code is written properly - good luck to an adversary finding it!

2.1.1 Elliptic curves form groups of points over a finite field

In this section I cover how an elliptic curve over a finite field creates a new kind of finite
field.
The points on an elliptic curve over a finite field form cyclic sets. Sometimes these sets

are disjoint with two groups that do not overlap. I go over this type of curve in chapter 13
on field extensions. Sets of points in each cyclic group will have many subgroups which de-
pend on the number of factors making up the number of points on the curve. The different
possible combinations of factors create the number of groups which can be formed.
As an example, suppose the total number of points on the curve has three factors. The

rules about these sets of points create seven total groups of cyclic points. One group for
each combination of the factors. So factors a, b and c create group sizes a, b, c, a · b, a · c,
b · c and a · b · c. Many of the points will be in multiple groups.
Typically, if we pick a point at random it will be in the largest group. We can move that

point to a smaller subset group by multiplying by the other factors. For example, suppose
c is a really large prime with a = 2 and b = 5. If we multiply the random point by 10 the
result will be a point in group c. This is one of the finite field group rules we take advantage
of with elliptic curve mathematics. Many more details will be spelled out in chapter 3.

Exercise 1
Given an elliptic curve with 86 points, list the orders of all the groups on
this curve.

2.2 Basic subroutines for finite field arithmetic
In this section I describe subroutines which make the use of the GMP library easier for the
remainder of the book.
The fundamental, lowest level routines are placed in a file called modulo.c. The header

showing all the routines is given in listing 2.1. There are two groups of routines. The first
group requires a modulus as part of the API. The second group assumes a local static
variable has been set for the modulus.

Listing 2.1 Header: modulo.h

#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>

Basic include for all
GMP polynomial functions

void mod_add(mpz_t a, mpz_t b, mpz_t c, mpz_t n);
void mod_sub(mpz_t a, mpz_t b, mpz_t c, mpz_t n);
void mod_mul(mpz_t a, mpz_t b, mpz_t c, mpz_t n);
void mod_div(mpz_t a, mpz_t b, mpz_t c, mpz_t n);
void mod_neg(mpz_t a, mpz_t b, mpz_t n);

requires
modulus
on
input

void minit(mpz_t m);
void mget(mpz_t mod);

setup for
internal modulus

void mset(mpz_t prm);
void madd(mpz_t a, mpz_t b, mpz_t c);
void msub(mpz_t a, mpz_t b, mpz_t c);
void mmul(mpz_t a, mpz_t b, mpz_t c);
void mdiv(mpz_t a, mpz_t b, mpz_t c);
void minv(mpz_t a, mpz_t b);
void mneg(mpz_t a, mpz_t b);
int msqrt(mpz_t x, mpz_t a);
void mrand(mpz_t rand);
int msqr(mpz_t x);
void mpowi(mpz_t a, mpz_t b, long i);

requires
modulus
initialized

Since this header is included in all other files, the standard C includes are listed along
with GMP. As you can see, all the subroutines begin with m which means they belong to
the modulo group of routines.
The GMP library has many types of functions. I exclusively use the mpz_* functions,

which are for large integers. The type mpz_t is GMP’s integer type. The majority of argu-
ments used in listing 2.1 type mpz_t.
The built-in routines to GMP include integer functions for add, subtract, multiply and

divide. There are many versions with a lot of different combinations of arguments. Chap-

ter 5 of the GMP manual goes into this in detail. One of the GMP division routines is
mpz_mod(). I combine this with add, subtract, multiply and divide to get mod_*() rou-
tines. All my routines follow the same format as GMP. The output is listed first and the
input arguments to the function follow. This comes from thinking about the function as
a = b < op > c modulo n.
Let’s take a look at the modulo division routine in listing 2.2. This has a few more lines

than all the others because division by zero should never happen if your code is correct. If
it does happen we want to know about it so we can find the bug.

Listing 2.2 Modular division: mod_div()

void mod_div(mpz_t a, mpz_t b, mpz_t c, mpz_t n)
{

mpz_t rslt;

mpz_init(rslt);
if(!mpz_invert(rslt, c, n)) division by zero?
{

printf(''division by zero in div_mod!\n'');
mpz_clear(rslt);
exit(-1);

}
mpz_mul(rslt, b, rslt);
mpz_mod(a, rslt, n);
mpz_clear(rslt);

common to
all m* routines

}

Because the result could be one of the input arguments, we need to create a place for
the result to go so the inputs are not clobbered as we do computations (you can bet I
learned that the hard way.) The mpz_init() routine creates space for the variable. On
an embedded system or an FPGA you may want to use fixed field sizes and specialized
routines which take advantage of the modulus. These lowest level routines are the best
place to do this because all the number crunching gets down to this level sooner or later.
The next function called is mpz_invert(). The inversion of c modulo n uses Euclid’s

algorithm which we will get into later when we deal with polynomials. If c is zero, the
function prints an error and kills the program. Division by zero implies a serious problem
somewhere, and we need to find out why.
The last three lines of the code are similar in all the mod_* routines. A call to mod_<op>()

followed by a call to mpz_mod() and then clearing the temporary variable space. Another
efficiency step might be to set up the temporary space during initialization and just let it
be global to all the routines. This saves a lot of mpz_init() and mpz_clear() calls.
Most of the time the modulus used in all the routines is fixed at a single prime number.

Rather than have to list that with every call, we can store it as a static variable local to all
the modulo routines. As we get higher up the chain, we sometimes need to know what that
prime number is for different operations. So the routines minit() and mget() respectively
initialize and get the modulus for all the m*() functions. At the top of the modulo.c file I

put the globals:

static mpz_t modulus;
static gmp_randstate_t state;

In the middle of the modulo.c file are the initialization routines as shown in listing 2.3.

Listing 2.3 Modular initialization routines

void minit(mpz_t m)
{

mpz_init_set(modulus, m);
gmp_randinit_mt(state);

set modulus
and random state

}

void mget(mpz_t mod)
{

mpz_init_set(mod, modulus); return local modulus
}

You’ll notice there is no mclear() function. If your system needs to clear themodulus, it
should be obvious how to just call mpz_clear(modulus)with a void function. The example
code does not require this function, but real life might.
In addition to setting the local modulus value, the mpz random number generator is

initialized. This is used to pick random values for probabilistic algorithms like the square
root routine shown later.
There is a negate operation which simply performs a = −b mod n. The advantage of

this happens when b is larger than n (or could be) and we have the chance to reduce it in
size before using it in other operations.

2.3 Computing quadratic residues over a prime field
In this section I describe testing if a square root is possible to compute for a number in a
finite field.
Taking square roots of real numbers is easy. Newton’s method has worked for hundreds

of years. But taking square roots in a finite field is quite a bit different. The idea is simple:
x2 = a mod n, we know a, we want to find x. But some numbers will not have square roots
mod n. Numbers that have square roots are called quadratic residues. All the remaining
numbers are simply called nonresidues.
Number theory has been studied for a very long time. In 1640 Fermat wrote down

what is now called Fermat’s Little Theorem. It is one of the most fundamental properties
of number theory and was used as the first attempt at finding square roots mod n. We can
paraphrase the version I.3.2 in (Koblitz, 1994) : for any prime p and any integer a < p we
have

ap−1 � 1 mod p (2.1)

More than 100 years later, Legendre wrote down a symbol for quadratic residues. Today

we call this the Legendre symbol, which is defined in II.2.3 of (Koblitz, 1994) to be

(
a
p

)
=


0 if p divides a

1 if a is a quadratic residue mod p

−1 if a is a nonresidue mod p

A number which is a nonresidue mod p will not have a square root with respect to p.
As an example the square root of 2 mod 23 is 5 because 52 mod 23 = 2. The Legendre
symbol is (

2
23

)
= 1.

Similarly the Legendre symbol (
17
23

)
= −1

says there is no square root of 17 mod 23.
Fortunately for us, GMP has a Legendre symbol routine which we can use to check for

residue or nonresidue as the case may be. Using the local modulus variable, we have the
trivial routine shown in listing 2.4.

Listing 2.4 Legendre symbol

int msqr(mpz_t x)
{

return mpz_legendre(x, modulus); return Legendre symbol of input
}

2.4 Computing the square root mod n
In this section I go into the computation details of square roots over finite fields. The theory
introduced here will also be used in chapter 12.
After checking if a number is a quadratic residue, we can compute the square root. We

can use the last two bits of the modulus to determine how to take the square root. Since a
modulus is odd, the last bit is always 1. The second to last bit can be 0 or 1, which means
the modulus is congruent to 1 mod 4 or congruent to 3 mod 4 respectively.
If the modulus is congruent to 3 mod 4, we can use Fermat’s little theorem (2.1) to

power our way to the result. The formula is found in section 1.5 of (Cohen, 2000)

x = a (p+1)/4 mod p.

You can think about this as p +1 converts the last two bits from 1 to 0, and then the divide
by 4 results in an exact power. Since ap+1 � a2 mod n, when we divide by 4 we end up
with a1/2.
When the prime modulus p is congruent to 1 mod 4 life is a touch more complicated.

The following description comes from section 1.5.1 of (Cohen, 2000) , it is called "The
Algorithm of Tonelli and Shanks".

The first step is to determine how many zeros there are after we subtract 1 from the
prime. We know there are at least two zero bits because the prime is congruent to 1 mod
4. But there could be a lot more zero bits in the binary representation of p. As we scan
past the zero bits, eventually we get to a set bit. That becomes the least significant bit of a
number, which is labeled q.
Therefore, we take

p − 1 = 2e · q

where q is odd and e is at least 2.We then choose a number n at randomwhich is a quadratic
nonresidue. Since on average half the numbers modulo a prime p are in this group that
does not take very long.
The initialization process then proceeds with the following setup:

y ← nq mod p (2.2)

r ← e

x ← a (q−1)/2 mod p

b ← ax2 mod p

x ← ax mod p

Where a is the number we are attempting to find the square root of, x is going to be
our result and b will go to 1 when we finish.
The loop process is: find the smallest m such that b2

m
� 1 mod p. If m = r , output a

message that a is a nonresidue (which should not happen because we test for that to begin
with).
We then perform the following operations mod p:

t ← y2
r−m−1

y ← t2

r ← m

x ← xt

b ← by

and test to see if b � 1 mod p.

Exercise 2
Would taking square roots modulo 27213068317 use the power method
or Tonelli and Shanks method? HINT: convert to hex and look at last two
bits.

OK, now let’s turn all this math into code. Listing 2.5 shows the first thing I do is check
if we can take a square root. If not, just bail without doing anything else.

Listing 2.5 Square root mod n: entry

int msqrt(mpz_t x, mpz_t a)
{

mpz_t n, q, z, y, b, t, t1;
long e, i, r, cmp, m;

if(!msqr(a))
return 0; exit immediately if nonresidue

The second step is to check if this is an easy calculation. If the last two bits of the
modulus are set, we can use the direct power operation to compute the square root. This
uses the GMP mpz_tstbit() function as shown in listing 2.6.

Listing 2.6 Square root mod n: p � 3 mod 4

if(mpz_tstbit(modulus, 0) && mpz_tstbit(modulus, 1)) last 2 bits set?
{

mpz_init_set(q, modulus);
mpz_add_ui(q, q, 1);
mpz_divexact_ui(q, q, 4);
mpz_powm(x, a, q, modulus);

compute
a (q+1)/4

mpz_clear(q);
return 1;

}

If our modulus has bit 1 clear, we dive into the Tonelli and Shanks algorithm shown
in listing 2.7. After subtracting 1 from the modulus, I use the mpz_scan1() function to
count the number of zeros at the end of q. I then brute force divide by 2 for each clear bit
to get q to be odd.
The next section of code looks for a quadratic nonresidue by starting with the assump-

tion that the return value is 1. Once it finds a nonresidue, the value of i will be -1 and the
loop will exit.
The initialization code follows the math step by step as outlined above. There is no

mpow() routine that uses the modulus because the only call for it outside modulo.c has not
yet set the modulus when it is called. There is an mpowi() routine used outside modulo.c
to take advantage of the mpz_powm_ui() routine. This is shown in listing 2.8.

Listing 2.7 Square root mod n: Tonelli and Shanks

mpz_inits(n, q, y, b, t, t1, NULL);

mpz_sub_ui(q, modulus, 1); q = p − 1
e = mpz_scan1(q, 0);
i = e;

find number of
binary zeros

while(i)
{

mpz_divexact_ui(q, q, 2);

break down p − 1
into 2e*q

i--;

remove one
factor of
two at a time

}

i = 1; find a generator
while(i >= 0)
{

mrand(n);
i = msqr(n);

randomly
search
for
nonresidue

}

mpz_powm(y, n, q, modulus); y = nq

r = e;
mpz_sub_ui(q, q, 1);
mpz_divexact_ui(q, q, 2);
mpz_powm(x, a, q, modulus);

x = a (q−1)/2

mmul(b, x, x);

initialize
working
components

mmul(b, b, a);
b = ax2

mmul(x, x, a); x = ax
loop on algorithm

until finished or failure

cmp = mpz_cmp_ui(b, 1);
while(cmp) terminate when b==1
{

m = 1;
mpz_set(t1, b);
while(m < r)
{

mpowi(t1, t1, 2);
if(!mpz_cmp_ui(t1, 1))

break;
m++;

minimum m
such that
b2
m
� 1 mod p

}
if(r == m)
{

should never happen because
a is quadratic residue

mpz_clears(n, q, y, b, t, t1, NULL);
return 0;

}
i = r - m - 1;
mpz_set(t, y);
while(i)
{

mpowi(t, t, 2);
i--;

t = y2
r−m−1

}
mmul(y, t, t); y = t2

r = m;
mmul(x, x, t); x = xt
mmul(b, b, y); b = by
cmp = mpz_cmp_ui(b, 1);

is b == 1?}
mpz_clears(n, q, y, b, t, t1, NULL);

return 1;
}

The final block of code performs the loop section described before listing 2.5. The first
step is to find the minimal m such that b2

m
� 1 mod p. This means we square a temporary

variable t1 until it goes to 1. If r = m when we exit the loop, it means the input was a
non-residue. This should never happen because we check on entry to the subroutine. If it
does, there is a serious problem somewhere which must be debugged.
Once I have m, I set the value t to y and compute t = y2

r−m−1
using a squaring loop.

Then y is set to t2, x is set to x × t and b is set to b × y. Finally, the loop end test variable
cmp is evaluated to determine if the routine is finished. When b equals 1 the variable x
contains the square root of input a modulo the static prime modulus.
The final routine I want to show in the modulo.c file is the bi mod n routine in listing

2.8. This routine checks to see if the input power is negative. If it is, I first invert the input
and then raise that to a positive power. If the input power is zero, the return value is simply
1. Otherwise, it just computes the direct result with the modulus.

Listing 2.8 Small integer power mod n

void mpowi(mpz_t a, mpz_t b, long i)
{

if(i < 0)
{

minv(a, b);
mpz_powm_ui(a, a, -i, modulus);

negative power
is inverse
to positive power

}
else if(!i)

mpz_set_ui(a, 1); b0 = 1
else

mpz_powm_ui(a, b, i, modulus); a = bi mod n
}

2.5 Summary
A finite field allows addition, multiplication and inversion with every element to an-
other element in the field.

Elliptic curve groups are finite fields consisting of points. The order of each point is
some combination of the factors from the total number of points on the curve.

Subroutines to compute over prime fields include addition, subtraction, multiplica-
tion, inversion and division. These routines will be used throughout the book.

A quadratic residue is an element in a finite field which is a perfect square.

Computing square roots uses a power function for primes congruent to 3 mod 4 and
Tonelli-Shanks algorithm for primes congruent to 1 mod 4.

Chapter Bibliography
Cohen, Henri. 2000. A Course in Computational Algebraic Number Theory. Berlin, Heidel-
berg: Springer-Verlag. 8

Koblitz. 1994. A course in number theory and cryptography. 2 edn. Springer. 7, 8

2.6 Answers to exercises
1) 86 = 2 x 43 so all possible group sizes are 2, 43, and 86.

2) 27213068317 decimal = 65606781D in hexadecimal. Since D = 1101 in binary,
the last two bits are not both set. Therefore the Tonelli and Shanksmethod is required
to take square roots modulo 27213068317.

3Explaining the core of
elliptic curve mathematics

This chapter covers
Elliptic curve fundamentals

Algebra using elliptic curves

Code for adding and multiplying points

Embedding data on a curve

This chapter begins the journey into the mathematics of elliptic curves over finite fields. I’ll
start with elliptic curves over the real numbers, so we can visualize what the mathematics
does. Then we’ll see how elliptic curves on the complex plane map to elliptic curves over
finite fields with very crude graphics. Then we’ll dive into the detailed mathematics of how
we can perform addition using two points on an elliptic curve and finally expand that to
the concept of multiplication.

3.1 Elliptic curve algebra
In this section I describe elliptic curves in a more visual way. It is useful to keep this visu-
alization in mind when covering elliptic curves over finite fields because the formulas are
the same. The plots over finite fields are not as pretty so there are fewer of those.
To start off I want to show the standard plot of an elliptic curve in the (x , y) plane. The

equation y2 = x3 − 5x + 5 is pretty when plotted using real numbers. Figure 3.1 shows a

graph of this equation in blue.
What makes elliptic curves so useful is the ability to do algebraic manipulation of points

the same way we manipulate numbers. To add two points P andQ we draw a line through
them and find the place where the line intersects the elliptic curve. As seen in figure 3.1,
the result is actually taken as the point on the opposite side of the curve.

Figure 3.1 Elliptic Curve y2 = x3 − 5x + 5

Using the vertical line between R and −R for addition of those two points should give
us the identity for addition. That is R − R = 0. Clearly the point 0 is not on the graph.
The identity element 0 is called the point at infinity. It is not on the curve but is essential
for the points on an elliptic curve to be called a field. Different text books use different
symbols. I will stick with 0 because the point at infinity acts like zero: any point plus zero
is that point itself, any point minus itself is zero. The point at infinity is special and will be
treated as a special case in the code.

3.1.1 Point representation

In this section I show how finite field elliptic curve points are stored in the computer.
There are a few ways to represent points on an elliptic curve which changes the formu-

las for point addition. These representations can reduce computation time. Chapter 1 of
(Silverman, 2013) goes into these forms and chapter VI of (Blake et al., 1999) goes into
details of a representation I won’t cover here. In this book a simple set of two values (x , y)
will represent a point.
All the curves we are interested in are called ordinary. They are defined with the equa-

tion:
y2 = x3 + a4x + a6 (3.1)

In chapter 2 I gave the complete equation for an elliptic curve. For ordinary curves over
finite fields we only need a4 and a6, the other coefficients in the general curve are 0.

Looking at figure 3.1 we can see that for every x value on the curve, there are two y
values. Since a square root can have either a positive or negative result, that makes sense.
The same is true over a finite field. The negative of a point from equation 3.1 always
follows the rule:

−(x , y) = (x , −y)

For all the curves we are interested in, coefficient a6 is never zero. This is exceptionally
fortunate because y can never be 0. This gives us a way to represent 0 in the computer.
Undefined is not "mathematically" correct, but for our purposes it works really well:

0 = (0, 0)

that is, the point at infinity has x = 0 and y = 0 which is very easy to test for.

3.1.2 Elliptic curves over Finite fields

This section goes into some esoteric math connecting finite fields and the complex plane.
The idea is to show the depth and beauty of the mathematics. I also want to give a mental
picture which is useful with elliptic curves covered in part 3 (field extension curves).
One of the most fascinating aspects of elliptic curves is that we can map curves over

finite fields to curves over the complex plane. This is both really cool and very important
to keep in the back of your mind when we get into part 3 of the book.
In the process of doing a line integral over an elliptic curve on the complex plane, the

complex plane is wrapped into a torus (to understand why look at section VI.1 in (Sil-
verman, 2013)). Figure 3.2 is a very crude attempt to get the idea across without diving
into too much math. The elliptic curve function repeats along the drawn vectors. Since
the torus is a surface, there are two independent vectors that mark out a range where the
values do not repeat.

Figure 3.2 Elliptic curve over the complex plane

Figure 3.3 zooms in on the rectangle from figure 3.2. The points form a grid which
repeats over the torus. The distance between the points perfectly divides the two vectors,

so there are an integer number of points on the torus. This grid exactly maps to a finite
field.
The fundamental importance here are the two cyclic vectors. The red lines represent

one cyclic group and the green lines a second cyclic group. In the first part of this book we
will look at curves with just a single cycle. Part 3 of the book deals with curves composed
of two cyclic groups as this is what makes pairing of points possible.

Figure 3.3 Points on curve over complex plane

Since a finite field is cyclic, it repeats similarly. This ability to map finite field math to
complex plane math allows all the rules of calculus to be applied to the elliptic curves over
finite fields. The rules for point addition are thus the same for real, complex and finite
fields. We are interested in finite fields based on large primes, not fields based on powers
of 2 or 3. On very tiny processors with limited capabilities, finite fields over powers of 2
are exceptionally useful so check out reference (Rosing, 1999) for those details.

3.1.3 Point addition

In this section I cover the algebra of adding two points on an elliptic curve to get a third
point on the same curve.
The first step in adding points is finding the slope of the line between them. While we

can come up with formulas for different points, we also need a formula for adding the
same point to itself. That combination is a tangent to the curve as shown in figure 3.4.
Since the slope of a tangent is computed differently than the slope between two points

we normally have two different formulas. Unfortunately this allows a side channel attack
using power analysis which can help an adversary determine the secret key. To avoid this
problem I will use the formula at the end of section III.3 in (Silverman, 2013) to compute
the slope. This works for both tangents and different points equally. At best an attacker can
only learn the number of bits set (called Hamming weight in the literature) in the private
key.
Let P1 = (x1 , y1) and P2 = (x2 , y2). It is OK for P2 to equal P1. Both points are on the

Figure 3.4 Adding point to itself

curve 3.1, so they satisfy that equation. We take the slope 𝜆 between the two points to be

𝜆 =
x21 + x1x2 + x

2
2 + a4

y1 + y2
(3.2)

The resulting point R = P1 + P2 = (x3 , y3) is then found using the formulas

x3 = 𝜆 2 − x1 − x2 (3.3)

y3 = 𝜆 (x1 − x3) − y1 (3.4)

For the ordinary equation 3.1 the equations 3.2, 3.3 and 3.4 are the point addition for-
mulas over an elliptic curve.
There is a problem with this only when y1 + y2 = 0. This special case is rare and will be

discussed in detail with the code implementation later.

Exercise 1
Why is y1 + y2 = 0 a problem in equations 3.3 and 3.4?

3.1.4 Point multiplication

In this section I show how adding a point to itself multiple times is called multiplication.
The next step in the mathematics of using elliptic curves is multiplication. We do this

by adding a point to itself multiple times. For a point P and integer k we write

Q = kP = P + P + · · · + P︸ ︷︷ ︸
k

with P added to itself k times.
Rather than actually perform this operation, we use the double and add formula. There

are many ways to speed this up as shown in section IV.2 of reference (Blake et al., 1999) .
I paraphrase the method in figure 3.5.
The idea behind double and add is to expand k from most significant bit downward.

Multiplying by two for every bit position is similar to a shift left, and then if the next
bit is set we add in the original point. This is a simple walk down every bit position. A

Initialize
Q ← P
l = k − 1

Q ← 2Q

bit kl
?
= 1 Q ← Q + P

yes

l ← l − 1

no

l ?= 0
no

Return
Q = kP

yes

Figure 3.5 Double and Add Method

side channel attack looks at power consumption to tell the difference between the double
and the add routine. So while it is a touch slower, using formula 3.2 is more secure on
embedded systems.
The points on an elliptic curve over a finite field are finite in number. When a point

is added to itself enough times you get back to where you started. This gives us a cyclic
group to work with. Along the way you will also hit the point at infinity. The number of
times it takes to add a point to itself that gets to the point at infinity is called the order of
the point.
As described in section 2.1 the points on elliptic curves form cyclic groups based on the

combination of factors making up the number of points on the curve. We can determine
what the order of a point is bymultiplying each combination of those factors with the point
to see if we hit the point at infinity.
Using the example from section 2.1.1 we have two points belonging to a group with

factor a = 2 and five points with factor b = 5. All the points on the curve which have order
c are called the c-torsion subgroup. For security, we want c to be a very large prime. There
will also be points of order 2 · c and 10 · c, but they are not cryptographically useful because
their order is not a prime.

Exercise with answer
Show how the double and add method is similar to elementary school
multiplication in binary using values 7 times 5.

7 = 111b and 5 = 101b. Using k = 5, start with answer = 111b. Double
this to get 1110b. The second bit in 5 is clear, so no further addtion is
perfomed. Double again to get answer = 11100b. The last bit in 5 is set,
so add in 111b to the answer which gives 10011b = 35.

3.1.5 Embedding data on a curve

In this section I show how arbitrary data can be shifted to allow a value to become a point
on an elliptic curve.
Up to this point all descriptions have assumed we have (x , y) pairs which satisfy equa-

tion 3.1. To choose a random point on the curve we can start with a random x value. The
odds that value of x satisfies equation 3.1 is less than 50%. A look at figure 3.1 shows half
the plane has no points, so this is to be expected.
Elliptic curves over finite fields do not plot very well. What we see are individual points.

Figure 3.6 shows an example curve used throughout this book. It is the curve y2 = x3 +
23x − 1 mod 43. It is easy to see some places have gaps along the x axis. Those x values
do not satisfy the curve equation.

x

y

10 20 30 40

10

5

15

-10

-5

-15

Figure 3.6 All points on tiny elliptic curve y2 = x3 + 23x − 1 mod 43

Figure 3.7 shows the process for embedding arbitrary data onto an elliptic curve. After
computing the right-hand side of equation 3.1, the test in the diamond is the Legendre
symbol from chapter 2 referenced to the field prime. If the value of f (x) does not allow a
square root, x is incremented by 1. This repeats until a value for x is found that is on the
curve. The value of y is found from the square root of f (x). More details will be developed
with the code.

As an example, there is a gap on the right hand side of figure 3.6 between 25 and 30.
Suppose our random number generator picks an x value of 27. The routine computes

273 + 23 ∗ 27 − 1 mod 43 (= 7), then checks if
(
7
43

)
= 1. It does not, so the routine

computes 283 + 23 ∗ 28− 1 mod 43 (= 20), which also fails the Legendre symbol test and
the same happens for x = 29. When x = 30, the Legendre symbol test does equal 1 and
the y values turn out to be 4 and −4.

Input
x value

compute
f (x) = x3 + a4x + a6

(
f (x)
p

)
?
= 1 x ← x + 1no

y = ±
√
f (x)

yes

Return
(x , y)

Figure 3.7 Embedding data on curve

While not every x value can be on the curve, there will be a nearby x value that is.
As an aside, note that the plot of figure 3.6 could have used all positive values of y.

Instead of being mirrored around 0, it would be mirrored around 21. All negative values
−k can be replaced by adding the modulus p to get the equivalent value p + k. All the
routines in this book will return positive values when a modulus operation is the last step,
but might return a negative value when subtraction is the last step.

Exercise 2

Will all values of x such that
(
f (x)
p

)
=1 generate a point on an elliptic

curve?

3.2 Elliptic curve subroutines
In the following sections I show how finite field elliptic curve mathematics is implemented
in code.
Theory is great because it gives us understanding of what we need to do. Reality re-

quires a lot more detail. So to turn all that math into code I start with structures for curves
and points and ways to manipulate those structures. Then I dive into the details of point
addition and then use the point addition routine to cover point multiplication. Code for

embedding data on a curve will be described as well along with a few miscellaneous rou-
tines for creating random points and help with debugging.

3.2.1 Code to represent curves and points

In this section I define structures which are used in the rest of the book to help manipulate
points and curves.
Since both curves and points are used as objects, I start with a set of structures which

are defined in a header. The file is eliptic.h and it is obvious I can’t spell. The structures
are shown in listing 3.1.

Listing 3.1 Point and curve structures

typedef struct
{

mpz_t x;
mpz_t y;

point is (x , y) value

}POINT;

typedef struct
{

mpz_t a4;
mpz_t a6;

curve is a4, a6 coefficients

}CURVE;

Since these are large integers in theGMP library each component needs to be initialized.
For some subroutines we have temporary points, so these variables need to be cleared
(free() in malloc() terms). These routines are shown in listing 3.2.

Listing 3.2 Point and curve initialization

void point_init(POINT *P)
{

mpz_inits(P->x, P->y, NULL); initialize point structure
}

void point_clear(POINT *P)
{

mpz_clears(P->x, P->y, NULL); clear point structure
}

void curve_init(CURVE *E)
{

mpz_inits(E->a4, E->a6, NULL); initialize curve structure
}

void curve_clear(CURVE *E)
{

mpz_clears(E->a4, E->a6, NULL); clear curve structure
}

Two simple routines used on points are one: copy a point from variable A to variable
B, and two: test if a point is the point at infinity. These routines are shown in listing 3.3.

Listing 3.3 Point copy and test

void point_copy(POINT *R, POINT P)
{

mpz_set(R->x, P.x);
mpz_set(R->y, P.y);

copy both x and y values

}

int test_point(POINT P)
{

if(!mpz_cmp_ui(P.x, 0) && !mpz_cmp_ui(P.y, 0))
both x==0 and y==0
for point at infinity

return 1;
return 0;

}

3.2.2 Code for point addition

In this section I describe the code which implements point addition for prime field elliptic
curves.
Adding two points is a major subroutine using formulas 3.2, 3.3 and 3.4. Since any

point added to 0 is the point itself, I first check to see if any of the input points are the
point at infinity. This is shown in listing 3.4.

Listing 3.4 Point addition: test for 0

void elptic_sum(POINT *R, POINT P, POINT Q, CURVE E)
{

mpz_t lmbda, ltp, lbt, t1, t2, t3;
POINT rslt;

if(test_point(P))
{

point_copy(R, Q);
return;

}
if(test_point(Q))
{

point_copy(R, P);
return;

if
either
point
at
infinity
return
other
point

}

After we determine that the points are not 0 we compute the slope using formula 3.2.
This is shown in listing 3.5. As seen in figure 3.1 points R and −R have the same x value
and opposite y values. So if we add two y values we get 0 and the formula 3.2 would then
divide by 0.

Listing 3.5 Point addition: computing 𝜆

mpz_inits(t1, t2, t3, ltp, lbt, lmbda, NULL);
mmul(t1, P.x, P.x);
mmul(t2, P.x, Q.x);
mmul(t3, Q.x, Q.x);
madd(ltp, t1, t2);
madd(ltp, ltp, t3);
madd(ltp, ltp, E.a4);

top = x21 + x1x2 + x
2
2 + a4

madd(lbt, P.y, Q.y); bottom = y1 + y2

compute lambda
using general form

if(!mpz_cmp_ui(lbt, 0))
{ enter if y1 + y2==0

msub(lbt, Q.x, P.x); compute x2 − x1
if(!mpz_cmp_ui(lbt, 0))
{ enter if x2 − x1==0
mpz_set_ui(R->x, 0);
mpz_set_ui(R->y, 0);
mpz_clears(t1, t2, t3, ltp, lbt, lmbda, NULL);

x2==x1
results
in point
at infinity

return;
}
msub(ltp, Q.y, P.y);

}

special case
𝜆 =

y2 − y1
x2 − x1

mdiv(lmbda, ltp, lbt); either case 𝜆 =
top

bottom

If we draw a horizontal line through pointQ in figure 3.1 we would have three y values
that are the same. That means there are three matching values on the negative half of the
curve. While rare, it is possible that we have y value sums that cancel, but they are not at
the same x value. Under this condition we must compute the slope the old-fashioned way
using

𝜆 =
y2 − y1
x2 − x1

If x2 = x1 then this formula also goes to 0. The purpose of the two if() statements is to
check

y1
?
= −y2

x1
?
= x2.

The result is the point at infinity 0 if both conditions are true, otherwise we can compute
the third point.
Listing 3.6 is the calculation of formulas 3.3 and 3.4. This is straightforward use of

the modular subroutines shown in chapter 2. Because we don’t want to clobber old points
while computing the new one (again, learned the hard way!) the temporary point rslt is
used, so the final result can be copied back to the desired location.

Listing 3.6 Point addition: x3 and y3 calculation

point_init(&rslt);
mmul(t1, lmbda, lmbda);
madd(t2, P.x, Q.x);
msub(rslt.x, t1, t2);

x3 = 𝜆2 − (x1 + x2)

msub(t1, P.x, rslt.x);
mmul(t2, t1, lmbda);

finally compute
resulting point

msub(rslt.y, t2, P.y);

y3 = (x1 − x3)𝜆 − y1

point_copy(R, rslt); transfer result to output
mpz_clears(t1, t2, t3, ltp, lbt, lmbda, NULL);
point_clear(&rslt);

}

3.2.3 Code for point multiplication

Multiplying points by a large number is the core of elliptic curve cryptography. The code
to add two points is a bit complicated. But once we have that subroutine the jump to point
multiplication via figure 3.5 is easy. The point multiplication routine is shown in listing
3.7.

Listing 3.7 Point multiplication

void elptic_mul(POINT *Q, POINT P, mpz_t k, CURVE E)
{

int bit, j;
POINT R;

point_init(&R);
point_copy(&R, P);

save input point

j = mpz_sizeinbase(k, 2) - 2; bit position index
while(j >= 0)
{

elptic_sum(&R, R, R, E); double for each bit position
bit = mpz_tstbit(k, j);
if(bit)

elptic_sum(&R, R, P, E); add for each bit set
j--;

}
point_copy(Q, R); transfer result
point_clear(&R);

}

The GMP routines mpz_sizeinbase() and mpz_tstbit() are used to determine how
many bits we need to work with and if a bit is set or not. The sizeinbase routine is used
here to count bits. We subtract 2 from the return value because the starting offset is 1 and
we skip the most significant bit. Every time through the loop the result R is doubled, and
if the bit k j is set, the original point is added to the result.

3.3 Code for embedding data on a curve
In this section I describe the detailed method of converting arbitrary data into a point on
an elliptic curve.
Suppose I want to use elliptic curves to transmit a short message. The first step is to

convert the message into a point (x , y). Unfortunately, not all x values have a point on the
curve. We need to adjust the message to find some x′ which is close to the message we
want to send.
It turns out the odds of not finding an x′ close to x go as 1

22n−1
where n is the number

of bits modified at the end of the message. There is a 50% chance with one bit. With eight
bits, the odds of not finding an x′ on the curve are astronomically small (approximately
3 × 10−39), and most likely only five or six bits are needed.
The right-hand side of equation 3.1 is entirely a function of x. This makes a nice sub-

routine if we take
f (x) = x3 + a4x + a6

Listing 3.8 shows this calculation given an input value x and elliptic curve E.

Listing 3.8 Embedding data: computing f (x)

void fofx(mpz_t f, mpz_t x, CURVE E)
{

mpz_t t1, t2;

mpz_inits(t1, t2, NULL);
mmul(t1, x, x);
mmul(t1, t1, x);

t1 = x3

mmul(t2, E.a4, x);
madd(f, t1, t2);
madd(f, f, E.a6);

f = x3 + a4x + a6

mpz_clears(t1, t2, NULL);
}

To determine if the value of x can be found on the curve, f (x) must have a square root
because y2 = f (x). If f (x) is not a quadratic residue, f (x) does not have a square root. As
described in section 3.1.5, we can increment x and look to find an x value that is on the
curve as shown in the algorithm of figure 3.7. Usually this takes 2 to 5 tries, but sometimes
it can take over 30. This is where the 5 or 6 bits of noise in x′ are useful. I typically use
the last byte in an x value as spare when embedding specific data on a curve.
Listing 3.9 shows a way to embed data on a curve. To allow addition by 1 modulo the

field prime I create the constant one as an mpz_t integer. I copy the input value to the
output x value of the point and then check if f (x) is a quadratic residue. If it is, the value
of x is used, if it is not a quadratic residue, then the point x value is incremented by 1 and
the testing continues until a quadratic residue is found.
Because the square root has a positive and negative value, both points are returned.

Since it is arbitrary, the first point is set to the smaller y value. With numbers modulo a
prime, we can always take a negative value and add the modulus to get a positive result

which is congruent to the original negative number. The GMP manual says the result of
mpz_mod() is always non-negative. For consistency sake, I chose to put the point with the
smaller y value first.

Listing 3.9 Embedding data: finding points

void elptic_embed(POINT *P1, POINT *P2, mpz_t x, CURVE E)
{

mpz_t f, one;
int done;

mpz_init(f);
mpz_init_set_ui(one, 1); mpz constant 1
mpz_set(P1->x, x);
done = 0;
while(!done)
{

fofx(f, P1->x, E);
if(msqr(f) > 0)

done = 1;

f (x) is quadratic residue

else
madd(P1->x, P1->x, one); increment x by 1

}
mpz_set(P2->x, P1->x);
msqrt(P1->y, f);
mneg(P2->y, P1->y);

two y values

done = mpz_cmp(P2->y, P1->y);
if(done < 0)

mpz_swap(P2->y, P1->y);
smaller y value first

mpz_clears(f, one, NULL);
}

3.4 Miscellaneous routines
This section includes two routines which are useful in the rest of the book but do not fit in
a mathematical description.
There are two more routines in the elliptic.c file. One creates random points and

the other prints points to the console for debugging. The random point routine is shown
in listing 3.10. This first finds a random value in the range of the modulus. It then checks
the last bit of this random number and embeds the smaller y value to the point if the bit
is clear and the larger y value if the bit is set.

Listing 3.10 Random point

void point_rand(POINT *P, CURVE E)
{

mpz_t r;
POINT mP;

mpz_init(r);
mrand(r); random value
point_init(&mP);
if(mpz_tstbit(r, 0))

elptic_embed(P, &mP, r, E); last bit set return smaller y
else

elptic_embed(&mP, P, r, E); last bit clear return larger y
mpz_clear(r);
point_clear(&mP);

}

When debugging it is very useful to know what intermediate values are. The point
printing routine shown in listing 3.11 requires a string to label the point and the point
itself.

Listing 3.11 Print a point

void point_printf(char *str, POINT P)
{

printf(''%s'', str);
gmp_printf(''(%Zd, %Zd)\n'', P.x, P.y);

}

The header file elliptic.h includes the structures in listing 3.1 as well as the func-
tion definitions described in this chapter. Listing 3.12 is a nice summary of all the code
presented in this chapter.

Listing 3.12 Header function definitions

void point_init(POINT *P);
void point_clear(POINT *P);
void curve_init(CURVE *E);
void curve_clear(CURVE *E);
void point_copy(POINT *R, POINT P);
int test_point(POINT P);
void fofx(mpz_t f, mpz_t x, CURVE E);
void elptic_sum(POINT *R, POINT P, POINT Q, CURVE E);
void elptic_embed(POINT *P1, POINT *P2, mpz_t x, CURVE E);
void point_printf(char *str, POINT P);
void elptic_mul(POINT *Q, POINT P, mpz_t k, CURVE E);
void point_rand(POINT *P, CURVE E);

3.5 Summary
The fundamental formula for ordinary elliptic curves is

y2 = x3 + a4x + a6.

The sum of two points on an elliptic curve is the negative point of the intersection

point to the curve of a line drawn between them.

The point at infinity is not on the curve. It is the identity element and for ordinary
curves can be represented as (0, 0) in code.

Elliptic curves over finite fields have a 1 to 1 mapping to curves over the complex
plane.

The point addition formula has a special form for use in secure applications. Using a
standard form can leak key information when side channel attacks are applied.

Point multiplication uses a double and add algorithm to rapidly compute extremely
large prime multipliers.

When the point mP is the point at infinity 0 then P is order m and is a member of
the m-torsion subgroup.

For coding, curves and points have simple structures which include (a4 , a6) and (x , y)
respectively.

The point addition routine must check for the point at infinity on input and output.

Point multiplication code uses the same addition routine for doubling and adding to
enhance security.

To embed data on a curve the x value is incremented until x3 + a4x + a6 is a quadratic
residue. When sending a message on a curve point the last six to eight bits should be
considered noise.

Random points are found by embedding random x values on the curve. This will be
useful for many routines described throughout the book.

Chapter Bibliography
Blake, I., Seroussi, G., & Smart, N. 1999. Elliptic Curves in Cryptography. London Mathe-
matical Society Lecture Note Series. Cambridge University Press. 15, 18

Rosing, M. 1999. Implementing Elliptic Curve Cryptography. Manning Pubs Co Series.
Manning. 17

Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York. 15, 16, 17
/

3.6 Answers to exercises
1) The variable 𝜆 is divided by y1 + y2. When y1 + y2 = 0, 𝜆 = ∞. Equations 3.3 and
3.4 are then useless.

2) Yes. In fact it will have two matching points for ±y.

4Key exchange using elliptic
curves

This chapter covers
Create a shared secret using private and public
keys.

The Diffie-Hellman key exchange using elliptic
curves.

Implementing the NIST Full ECC MQV algorithm.

In this chapter I describe two methods of secure key exchange. As described chapter 1, el-
liptic curve cryptography is used to create a secret key for an efficient encryption algorithm.
No one but the two parties exchanging public keys can compute the secret key.
Now that we have the basic elliptic curve mathematics routines for point addition and

multiplication, we can begin to look at algorithms which use these techniques to implement
public key cryptography. The private key is a large integer and the public key is a point.
Since the private key can be anything, a hash of a pass phrase which is never stored can
be really secure. At the system level this might be a problem if the phrase is forgotten, but
there is nothing to be done about that here.
All key exchange algorithms are based on the Diffie-Hellman process. The process in-

volves the sender’s public key and the receiver’s private key. For many peer-to-peer trans-
actions that do not happen very often this is sufficient. For common transactions between

two users (like an employee to their company) it might allow an attack on the shared secret.
To prevent this a more sophisticated method called the Menezes-Qu-Vanstone (MQV)
key exchange algorithm can be used.
The following sections will describe the Diffie-Hellman key exchange algorithm fol-

lowed by the MQV key exchange algorithm. The MQV algorithm uses ephemeral keys
which change every time two parties communicate in addition to the static public keys
used in the Diffie-Hellman key exchange algorithm.
The use case for one over the other depends on your environment. If two systems

communicate on a regular basis then choosing MQV makes sense. If two systems will
only rarely communicate (say a customer registering a product) then using Diffie-Hellman
makes sense.

4.1 Diffie-Hellman algorithm description
In this section I describe the simplest algorithm for key exchange using elliptic curves.
As pointed out in chapter 3, we can embed a message on a curve if the message size is

less than the modulus used to hold an x value. If our modulus is 256 bits, our message size
can be 250 bits or at most 31 bytes. This is not very useful for most communications.
If instead we use the x values to create a secret key for a symmetric encryption algorithm

such as Advanced Encryption Standard (NIST, 2001) (AES) our message can be as long
as we want. This is the idea behind public key cryptography: two people send their public
keys to each other and create a secret no one else can find. Figure 4.1 is a copy of figure 1.3
which shows how the Diffie-Hellman method works. Each person multiplies their private
key with the other person’s public key to create a shared secret. For a more in depth descrip-
tion of Diffie-Hellman key exchange look at https://livebook.manning.com/book/real-
world-cryptography/chapter-5/point-16981-1-224-1.

Alice’s
private key

Bob’s
private key

Alice’s
public key

Bob’s
public key

Shared
secret key

Shared
secret key

Encrypted
message

Decrypted
message

message message

Open network

Figure 4.1 Creating shared secret key by exchanging public keys

https://livebook.manning.com/book/real-world-cryptography/chapter-5/point-16981-1-224-1

4.1.1 Elliptic curve math

In this section the details of elliptic curve Diffie-Hellman key exchange are described.
We start a key exchange with a secure elliptic curve as described in chapter 3 – a curve

with a large prime factor in the cardinality. Since we are using ordinary curves over finite
fields it is possible to find curves which have a prime number of points as the finite number
of points on the curve. In most books and papers the number of points on the curve is
called the cardinality of the curve and is written mathematically as #E where the curve E
is the equation 3.1 repeated here

E : y2 = x3 + a4x + a6.

Most curves over finite fields have a cardinality with many factors, but as we will show in
chapter 6 it does not take too long with modern computers to find good secure curves
which have prime cardinality with no cofactors. An adversary has no choice but to hunt
over every point on the curve, there are no possible shortcuts.
For the rest of this book, capital variables will refer to points, and lower case variables

will refer to a field value. The point G has values (x , y) which satisfy the equation of the
curve that the point G is on. This saves a lot of writing. It means we operate at a higher
level of abstraction. So the multiplication of a point by a value to get a new point must
grind through all the equations of chapter 3.
Once we have a curve, we pick a base point G. The G stands for generator. Since we

are interested in curves with prime factor cardinality, every point on the curve can be a
generator because the order of every point is the same prime number. When we get into
field extension curves in chapter 13 prime factor cardinality is not possible, so we need
to find curves with a very large prime as one of the factors in the cardinality. We call the
remaining small factors a cofactor. For useful curves I assume the size of the cofactor fits
in a long which implies it is very small compared with the large prime factor.
For simple key exchange a secure curve over a finite field has prime order and once

chosen is a public parameter. We make the base point G public as well, so everyone can
use it. This public data is usually built into the program used for key exchange because it
is required to create new keys.
To prepare for a key exchange, each person creates a private key. This is usually a hash

of some pass phrase, but it can be any set of bits turned into an integer. We’ll call Alice’s
private key kA and Bob’s private key kB.
Alice creates a public key by computing

A = kAG

and Bob creates a public key
B = kBG

To communicate Alice and Bob send each other their public keys.
The security comes from the inability of using the knowledge of pointsG and A to find

the value of kA. This is called the elliptic curve discrete log problem (ECDLP). Since the

ability to solve this problem goes as the
√
#E we need twice as many bits in our prime

factor as the level of security we are attempting to reach. That is, 128-bit AES level of
security requires 256 bits of #E cardinality.
Once Alice and Bob have exchanged keys, they create a shared secret by multiplying

the received public key with their own private key. This gives

S = kAB = kBA = kAkBG (4.1)

They each use the x component of point S (or some chunk of bits from it) as the secret
key for a symmetric algorithm such as AES.

Exercise 4.1
Clare wants to securely message Alice and Bob. Can she create one
secret key between all three of them?

4.1.2 Hash function
In this section the important concept of hashing is described. This will be used in all ex-
ample programs including the routines in chapters 18 and 19.
A hash function is an algorithm that takes an arbitrary length of bytes and smooshes out

a fixed length of random looking bytes. A secure hash function changes half its output bits
if one single input bit changes. There are many secure hash functions available, so I chose
one whose core was approved by National Institute of Standards and Technology (NIST)
and has since been improved.
The chosen hash software is called KangarooTwelve and is available from

https://github.com/XKCP/K12/archive/refs/heads/master.zip or use Git to download
us-ing https://github.com/XKCP/K12.git. While there are many subroutines in this
package I only use one of them. If you want to know more details you can check out
the inven-tor’s home page: https://keccak.team/kangarootwelve.html. Once downloaded
the source is straightforward to build into a library. I’ve added instructions for this in
appendix A.
The routine has two input strings and one output string. The lengths of each are a

separate argument. While the internal core function is a fixed size, the routine I call creates
an extendable output. (NIST, 2016) defines an extendable output function as a function
on bit strings in which the output can be extended to any desired length.
The reason we want extendable output is described in a document written by the

In-ternet Engineering Task Force (IETF): "Hashing to Elliptic Curves". This can be
found at URL
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11.
That document describes how a problem occurs when we convert a hashed output down

to a prime value using a modulus n. Since the modulus is less than a full power of two, the
odds are high our hashed output modulo n will be in a small range. To avoid this problem
IETF advises we add the number of bits we require for security to the output length.

Listing 4.1 takes an arbitrary length input string and outputs a value modulo an input
prime which should be the order of the base point. This routine has a fixed "customize"

https://github.com/XKCP/K12
https://github.com/XKCP/K12/archive/refs/heads/master.zip
https://keccak.team/kangarootwelve.html
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11

string used in KangarooTwelve. The IETF standard requires a domain separation tag (dst)
which allows the use of the same hash function in different routines. By changing the dst
the same input string will output a unique result.

Listing 4.1 Hash to finite field

void hash(mpz_t hsh, unsigned char *dat, long len, mpz_t prm)
{

unsigned char *outp, *dst;
int m, k, b;

dst = (char*)malloc(24);
sprintf(dst, ''Hash_b pring&sig'');

setup domain separation tag

m = mpz_sizeinbase(prm, 2);
if(m < 208)

k = 80;
else if(m < 320)

k = 128;
else if(m < 448)

k = 192;
else

k = 256;

determine security level
add appropriate
extra bit length

b = m + k;
if(b & 7)

b = (b » 3) + 1; round to next byte
else

b »= 3;
outp = (unsigned char*)malloc(b + 2);
KangarooTwelve(dat, len, outp, b, dst, 16); generate hash of input

mpz_import(hsh, b, -1, 1, 0, 0, outp); convert bits to integer
mpz_mod(hsh, hsh, prm); force to be mod n
free(outp);
free(dst);

}

The output length is first computed in bits. If any of the last three bits are set the byte
count is one more than a division by eight. The hash is then converted to an integer using
the GMP mpz_import() function. The argument -1means little endian input, the next 1
signifies b is in bytes and the two zeros mean processor endianness output and no skipped
bytes respectively. Using mpz_mod() with p the result is then the correct size.

4.1.3 Key generation

In this section I show how an individual’s keys can be created. The advantage of elliptic
curve key exchange is that keys do not need to be stored, they can be computed every time
they are needed.
Once we have a hash function which converts a pass phrase to an integer mod p, gen-

erating the public key is easy. Assuming we use the random point function (listing 3.10)

to create the base point, a nice structure to hold the public parameters is shown in listing
4.2.

Listing 4.2 Base key structure

typedef struct
{

long cofactor; assume tiny cofactor
mpz_t order; order of base point
POINT Base; base point (x , y) value
CURVE E; curve (a4 , a6) coefficients

}BASE_SYSTEM;

Note that this includes a cofactor. For our example curves the cofactor will usually be 1,
but for generality sake it needs to be included. I call this structure the BASE_SYSTEM because
the curve and base point are field prime size. When we get to field extensions points and
curves will become polynomials with field prime coefficients.
Listing 4.3 shows that we don’t need to do much to create a public key from a pass

phrase. Tracking the private key is system dependent. The security of the entire system
rests on the private key staying secret. That is one advantage of going from a pass phrase
directly to a key, the private key never has to be placed in non-volatile storage.

Listing 4.3 Key generation

void gen_key(mpz_t sk, POINT *PK, unsigned char *phrase, BASE_SYSTEM bse)
{

long np;

np = 0;
while(phrase[np]) np++;

could have used
np = strlen(phrase)

hash(sk, phrase, np, bse.order);
private key modulo
base point order

elptic_mul(PK, bse.Base, sk, bse.E);
}

4.1.4 Computing shared keys

In this section I show the code for computing a secret shared key.
In this section I’m going to assume that both Alice and Bob have traded their public keys

over an open network. Once that has been done listing 4.4 shows how they both generate
the same shared secret key. The output is the shared secret and the inputs are their own
private key and the other person’s public key. The curve that the points are defined to be
on is also an input, so the multiplication can take place.

Listing 4.4 Diffie-Hellman shared key

void diffie_hellman(mpz_t keyshare, mpz_t my_key, POINT Their_key, CURVE E)
{

POINT Tmp;

point_init(&Tmp);
elptic_mul(&Tmp, Their_key, my_key, E);

compute (their public key)*
(my private key)

mpz_set(keyshare, Tmp.x);
point_clear(&Tmp);

}

Of course, they each have the other person’s public key and their own private key. As
shown in equation 4.1 they both compute the same shared secret.

4.2 MQV algorithm
In this section a more involved key exchange algorithm is described.
In 1995 Menezes, Qu, and Vanstone proposed a key agreement scheme that provided

perfect forward security (Menezes et al., 1995) . That means even if you figured out the
shared secret key for that message, you have no way of finding information about any other
message. Over the past 25 years the MQV algorithm has been studied and modified.
Today, NIST has a published a document on all the various ways to implement MQV.

You can find it here (NIST, 2018) . I will go over one of those methods called Full ECC
MQV.
What I really like about this method is the use of ephemeral public and private keys

in addition to static public and private keys. Ephemeral keys are generated once per key
agreement session. So while static public keys may be stored, the ephemeral keys must be
transmitted by both sides before a shared secret can be computed.

4.2.1 Elliptic curve math for MQV algorithm

This section goes into the details of the MQVmethod as described by NIST.
For notation I’ll use subscript e for ephemeral and subscript s for static. As with Diffie-

Helmann, the base point is G on the curve E. The order of the base point n and cofactor
of the curve r are known. Alice has a static private key ks,A and ephemeral private key ke,A.
Similarly, Bob has static and ephemeral private keys ks,B and ke,B respectively. The public
keys are

Ps,A = ks,AG

Pe,A = ke,AG

Ps,B = ks,BG

Pe,B = ke,BG .

Alice sends Bob her public keys and Bob sends Alice his public keys. The static keys
could have been transferred prior to initial contact and the ephemeral keys when contact is
initiated. This is system dependent. To prevent duplicating all the equations I’m going to
look at Alice’s side of the calculation in the following description. The A and B subscripts
swap for Bob’s side.
Once both sides have each other’s public keys Alice computes what NIST calls an im-

plicit signature with her own keys using the formula

sA = ke,A + av f (Pe,A.x)ks,A

where Pe,A.x is the x coordinate of the point Pe,A.
NIST defines the routine av f () as the associate value function. This chops an x value

in half and then sets a bit at the halfway point. Since the security of the system goes as
√
n

this sort of makes sense.

av f (x) = x mod 2⌈log2 (n)/2⌉ + 2⌈log2 (n)/2⌉

where the symbol ⌈ ⌉ means next largest integer (i.e. round up) and n is the order of the
base pointG.
Next each side computes a point using the other sides public keys. This formula is

UB = Pe,B + av f (Pe,B.x)Ps,B.

The shared secret is then computed as

z = (sAUB).x

and this value will be in the range {0 · · · p − 1}. The NIST standard also multiplies by the
cofactor of the curve. That seems like a security overkill to me since all the points are in
the prime order group. See section 5.7.2.3 of NIST (2018) for details.
To see how both sides get the same value let’s follow both sides through the above

description as in table 4.1. Alice’s column duplicates the above equations. Bob’s column
swaps the subscripts A and B because he has his private keys and Alice’s public keys. The
public keys are the private keys multiplied with the base point G. Expanding the middle
line using the public key formulas we see that the last line in each column shows the final
result is identical.

Table 4.1 MQV expanded calculation

Alice Bob

sA = ke,A + avf(Pe,A.x)ks,A sB = ke,B + avf(Pe,B .x)ks,B
UB = Pe,B + avf(Pe,B .x)Ps,B UA = Pe,A + avf(Pe,A.x)Ps,A

sAUB = (ke,A + avf(Pe,A.x)ks,A) (ke,B + avf(Pe,B .x)ks,B)G sBUA = (ke,B + avf(Pe,B .x)ks,B) (ke,A + avf(Pe,A.x)ks,A)G

Since all the points are related to the base point G the effective computation has both
sides computing the same result. The impossible task of finding the private key values from
the public information is what allows this to work.

Exercise 4.2
Assuming the static and ephemeral key points exist, how many point mul-
tiplications are required to compute the MQV algorithm for one person?

4.2.2 MQV code

In the following sections, the code to implement MQV is described.
Now it is time to turn all that math into code. I start with the generation of ephemeral

keys using pseudo random numbers. I’ll then describe the simple associate value function.
The full MQV code is shown after that. Converting the math into code is actually now
simple because we have the hard part of summing and multiplying points behind us.

EPHEMERAL KEYS
This section describes a routine to create a random ephemeral key for use with the MQV
algorithm.
In addition to the static key the MQV algorithm uses an ephemeral key. These are ran-

domly generated. A cryptographically secure random number generator should use hard-
ware. Radioactive decay or thermal junction noise on a diode are typical sources available.
To really dive deep check out https://csrc.nist.gov/projects/random-bit-generation. We’ll
just use the pseudo random generator from GMP as shown in listing 4.5.
The function takes the system parameters as input. The private and public keys are

output. The private key is just a random number. The public key is that random number
multiplied with the base point. While this function is cryptographically simple making it
secure in a system might be more challenging.

Listing 4.5 Ephemeral key generator

void mqv_ephem(mpz_t ephm, POINT *Eph, BASE_SYSTEM bse)
{

mrand(ephm); random number for ephemeral private key
elptic_mul(Eph, bse.Base, ephm, bse.E);

}

ASSOCIATE VALUE FUNCTION
This section describes the code which implements the NIST associate value function.
The implementation of the avf() is shown in listing 4.6. The computation of

x mod 2⌈log2 (n)/2⌉ is a simple mask of the lower half of the number of bits in the order of
the base point. Since the order is always prime, the ceiling function takes us to the next
integer after dividing by two.
The mask is created by brute force. Setting one bit at a time is slow, but obvious. Using

lower level routines this can be accomplished far more quickly. After the input value is
masked, the bit at the halfway point is set.

Listing 4.6 Associate value function

void avf(mpz_t z, mpz_t x, BASE_SYSTEM bse)
{

long f, i;
mpz_t mask;

https://csrc.nist.gov/projects/random-bit-generation

mpz_init(mask);
f = (mpz_sizeinbase(bse.order, 2) » 1) + 1; f =

n
2
+ 1

for(i=0; i<f; i++)
mpz_setbit(mask, i);

mask has f bits set

mpz_and(z, x, mask); apply mask to input
mpz_setbit(z, f); bit f is always set
mpz_clear(mask);

}

FULL ECC MQV
This section describes what NIST calls the full ECC MQV algorithm.
The NIST Full ECCMQV routine is shown in listing 4.7. There are basically two steps.

The first is to compute the value s with the local sides private data modulo the order of
the base point. The second is to compute the pointU using the far sides public key values.
The multiplication then acts like a Diffie-Hellman operation. The NIST requirement also
adds the curve cofactor. Here, I check to see if the cofactor is greater than 1 because there
is no point doing the multiply unless it is.

Listing 4.7 Full ECC MQV

void mqv_share(mpz_t keyshare, mpz_t my_key, POINT MY_KEY,
mpz_t my_ephm, POINT My_Ephm,
POINT Their_key, POINT Their_Ephm,
BASE_SYSTEM bse)

{
POINT U;
mpz_t s, z;

mpz_inits(s, z, NULL); compute s = k + R.x * sk
avf(z, My_Ephm.x, bse);
mod_mul(s, z, my_key, bse.order);
mod_add(s, s, my_ephm, bse.order);

s = ke + avf(Pe .x)ks

point_init(&U); compute U = R’ + R.x’ * P’
avf(z, Their_Ephm.x, bse);
elptic_mul(&U, Their_key, z, bse.E);
elptic_sum(&U, U, Their_Ephm, bse.E);

U = Pe + avf(Pe .x)Ps

elptic_mul(&U, U, s, bse.E); shared secret = sU
if(bse.cofactor > 1)

compute key share value = r*s*U
(x component)

{
mpz_set_ui(z, bse.cofactor);
elptic_mul(&U, U, z, bse.E);

cofactor > 1
requires multiply

}
mpz_set(keyshare, U.x);

return x component
for shared secretpoint_clear(&U);

mpz_clears(s, z, NULL);
}

Using the Full MQV algorithm requires more communication than Diffie-Hellman.

Both sides transmit their ephemeral public key to the other side in addition to their static
public key. The other versions all require some communication of ephemeral keys, so
even if you don’t use the Full version some initial transfer of data is required. That is one
reason this key sharing method is so useful - you create a new key every time you connect.
In terms of cryptographic security an outside attack is essentially impossible. Just make
sure your implementation deals with other problems such as unknown keyshare attack.

4.3 Example test code
In the following few sections, example code to show how Diffie-Hellman and MQV algo-
rithms can be used are presented.
To test the code we first require curves to work with. And the choice of curve depends

on the prime chosen for the finite field. In chapter 6 I will explain the choice of primes.
For now, I will use curve parameters found using methods which I’ll describe later. The
obvious missing component in these tests is the actual transmission of the key data over
the network.
In the following description I first list all the curves and base point parameters which

are input files to the test program. I wrote a trivial routine to skip text lines from the input
file, so I can easily convert numbers from a human-readable file. The test program uses
both the Diffie-Hellman routines and the MQV routines so the same private and public
keys are used for each case. The two sides of the transmission are called "my side" and
"their side". Private keys for my side are input phrases and private keys for their side are
fixed strings of random data.

4.3.1 Test curves

This section describes curves found using the method in chapter 6. It also describes an
example program which executes the key exchange subroutines.
Testing the above routines requires a curve and base point. One can use NIST approved

curves, or you can find your own as shown in chapter 6. If you find your own, you should
make sure they are not susceptible to various attacks. For these examples I found 4 curves
at different security levels and then checked that each subroutine worked at that level. The
subroutines didn’t work the first time!
Listings 4.8 through 4.11 show4 different files with curve and point parameters. Listing

4.8 is a 160 bit curve using field prime 43 · 2158 + 1.

Listing 4.8 Test curve: secure 160 bit

File: Curve_160_params.dat

prime
ac000000000000000000000000000000000000001
order
ac0000000000000000006543ba11adf8eb6345c77
cofactor
1
curve(a4 a6)

1
782e
basepoint(x y)
1680bbdc87647f3c382902d2f58d2754b39bca877
a08957b09764ae59da8fb3058efef9c428e497268

Listing 4.9 is a 256 bit curve using field prime 43 · 2252 + 1.

Listing 4.9 Test curve: secure 256 bit

File: Curve_256_params.dat

prime
2b001
order
2b0000000000000000000000000000002e7f521c85bba055a6e2161b956a47f69
cofactor
1
curve(a4 a6)
1
a87
basepoint(x y)
2310115d283e49377820195c8e67781b6f112a625b14b747fa4cc13d06eba0919
51277aeb91946f0cb83053a10f67c5a9ef00a4f0cf2466b3bedf4fdcd774b574

Listing 4.10 is a 384 bit curve using field prime 23 · 2381 + 1.

Listing 4.10 Test curve: secure 384 bit

File: Curve_384_params.dat

prime
2e000
0000000000000001
order
2e002275cc5f2f7fcc15352a2c993900a851b
3a75365a9ac54733
cofactor
1
curve(a4 a6)
1
310
basepoint(x y)
23c0d9fcfaa3dc18b1eff7e89bf7678636580d17dd84a873b14b9c0e1680bbdc87647f3c382902d2f
58d2754b39bca874
28d7205f1be0a725d2aa7c3386f2e0b0ea7c558ca19f9770cdc72f91a1cbc262687810d4c5bd53681
8ccfa49aae2ed0cc

Listing 4.11 is a 512 bit curve using field prime 113 · 2509 + 1.

Listing 4.11 Test curve: secure 512 bit

File: Curve_512_params.dat

prime
e2000
0001
order
e2007788830d091dc57e3
af7d7bbd15386ee9414602d88d1e6489cd056336922bbf4d
cofactor
1
curve(a4 a6)
1
41
basepoint(x y)
518f204fe6846aeb6f58174d57a3372363c0d9fcfaa3dc18b1eff7e89bf7678636580d17dd84a873b
14b9c0e1680bbdc87647f3c382902d2f58d2754b39bca875
c9fe7223aca476cde61f206be285898475f1dcbaefeda90057d3b8bae5146f3016ebf2139daa73f39
417193e8609a4229cd4c58389e4b9095fafcd68362b310fe

One of these files is read in at the top of the test routine as shown in listing 4.13. The
command line argument is one of 160, 256, 384 or 512. That parameter file is read in
and then parsed into the correct arguments. The parsing process includes skipping text
lines in the data file. The line skipping subroutine is shown in listing 4.12. The index is
maintained, so I track where each line is in the buffer.

Listing 4.12 Key exchange text code: skip line subroutine

int skipln(char *bfr, int strt, int skp)
{

index start

number of lines to skipint i;

i = strt;
while(skp)
{

while(bfr[i] != '\n') i++;
i++;
skp--;

}
return i;

index points to
start of next line

}

The prime value is the field over which the curve is computed. The order value is
the order of the base point. All these curves have a cofactor of 1, so this is also the
cardinality of the curve. The equation of the curve (coefficients a4 and a6) as well as the
(x , y) coordinates of the base point are included. Once the values are converted and placed
into the BASE_SYSTEM structure the test is ready to begin.

Listing 4.13 Key exchange test code: input curve parameters

int main(int argc, char *argv[])

{
FILE *parm;
mpz_t prm, sk, sok;
long lvl;
BASE_SYSTEM base;
POINT Pk, Pok, Rk, Rok;
char filename[256], *bufr, *ptr;
int i, k;
mpz_t myshare, theirshare, myrand, theirrand;

if(argc < 2)
{

printf(''Use: ./base_test <level>\n'');
exit(-1);

verify input
level exists

}
lvl = atol(argv[1]);
sprintf(filename, ''Curve_%ld_params.dat'', lvl);
mpz_inits(prm, base.order, NULL);
parm = fopen(filename, ''r'');
if(!parm)
{

printf(''can't find file %s\n'', filename);
exit(-2);

get data file
else complain

}
bufr = (char*)malloc(1024*4);
i = 0;
while((!feof(parm)) && (i < 1024))
{

bufr[i] = fgetc(parm);
i++;

}
fclose(parm);

read in
whole file
to buffer

i = skipln(bufr, 0, 1);
gmp_sscanf(&bufr[i], ''%Zx'', prm);

convert text to big numbers

gmp_printf(''%Zd\n'', prm);
minit(prm);

field prime
initialized

i = skipln(bufr, i, 2);
gmp_sscanf(&bufr[i], ''%Zx'', base.order);
gmp_printf(''%Zd\n'', base.order);
i = skipln(bufr, i, 2);
sscanf(&bufr[i], ''%ld'', &base.cofactor);

base point
order and
cofactor initialized

i = skipln(bufr, i, 2);
curve_init(&base.E);
gmp_sscanf(&bufr[i], ''%Zx %Zx'', base.E.a4, base.E.a6);
gmp_printf(''E: %Zx %Zx\n'', base.E.a4, base.E.a6);

curve parameters
initialized

i = skipln(bufr, i, 3);
point_init(&base.Base);
gmp_sscanf(&bufr[i], ''%Zx %Zx'', base.Base.x, base.Base.y);
point_printf(''Base point: '', base.Base);

base point
initialized

The next step is common to both Diffie-Helmann andMQV. The private key is created
using a pass phrase. This code is shown in listing 4.14. I then create "the other side’s" keys
using random numbers.

Listing 4.14 Key exchange test code: secret key generation

printf(''Input pass phrase to generate secret key: '');
fflush(stdout);
i = 1024;
getline(&bufr, (size_t*)&i, stdin);

read in
key phrase

mpz_init(sk);
point_init(&Pk);
gen_key(sk, &Pk, bufr, base); convert phrase to public, private key
gmp_printf(''secret key: %Zx\n'', sk);
point_printf(''Public key: '', Pk);

mpz_init(sok);
point_init(&Pok);
sprintf(bufr,
''Secret Key Test For Other Side 157

random data for ”other side” key

164 218 149 124 108 253 26 40 '');

gen_key(sok, &Pok, bufr, base); convert random data to public, private key
point_printf(''Other side Public key: '', Pok);

The "o" in sok and Pok is for "other side".

4.3.2 Diffie-Hellman test routines

This section describes the test code to simulate Diffie-Hellman key exchange.
With the secret and public keys generated for each side, we can now call the Diffie-

Hellman routine to see that both sides get the same shared secret. The communications
can’t be done in this test, but we can ensure the math works.
Listing 4.15 shows how both sides calculate the same thing. "My side" uses the secret

key created from the pass phrase and the "other" sides public key. "Their side" uses their
randomly generated secret key and "my" public key. We then check to see if the results
match.

Listing 4.15 Key exchange test code: Diffie-Hellman

mpz_inits(myshare, theirshare, NULL);
diffie_hellman(myshare, sk, Pok, base.E);
diffie_hellman(theirshare, sok, Pk, base.E);

swap private and public keys
for each side

if(!mpz_cmp(myshare, theirshare))
printf(''Keys match.\n'');

else
printf(''Keys DON'T match!\n''); go find bugs!

gmp_printf(''my keyshare: %Zx\n'', myshare);
gmp_printf(''their keyshare: %Zx\n'', theirshare);

Here’s an example run with 256 bit security:

./base_test 256

...
Input pass phrase to generate secret key: this is another test
...
Keys match.
my keyshare: df6363311da84770ea7779d9d2bf3991fc41548347041af34dcbb71b6abe72cf
their keyshare: df6363311da84770ea7779d9d2bf3991fc41548347041af34dcbb71b6abe72cf

4.3.3 MQV test routine

This section shows a simulation of the MQV key exchange code.
Once we have static keys for a Diffie-Hellman type exchange, we can easily generate

ephemeral keys using a random number generator. This process is shown in listing 4.16.

Listing 4.16 Key exchange test code: MQV ephemeral keys

mpz_inits(myrand, theirrand, NULL);
point_init(&Rk);
point_init(&Rok);

initialize
ram space

mqv_ephem(myrand, &Rk, base);

generate random secret and public keys for MQV test

mqv_ephem(theirrand, &Rok, base);
create
random keys

The last part of the MQV test is to compute each side’s shared secret. This is shown in
listing 4.17. Each side only has to call the mqv_share() function once. But for this test we
want to see that both sides actually do get the same value, so the routine is called twice.

Listing 4.17 Key exchange test code: MQV full shared secret

mqv_share(myshare, sk, Pk, myrand, Rk, Pok, Rok, base); ”my” side key

Each side sends the
other the public key,
and then computes
the shared secret

mqv_share(theirshare, sok, Pok, theirrand, Rok, Pk, Rk, base); ”their” side key
if(!mpz_cmp(myshare, theirshare))

printf(''MQV Keys match.\n'');
else

printf(''MQV Keys DON'T match!\n''); go find bugs!
gmp_printf(''my keyshare: %Zx\n'', myshare);
gmp_printf(''their keyshare: %Zx\n'', theirshare);

The output from the same 256 bit test is shown here:

MQV Keys match.
my keyshare: 9a2b4135e9e39f0daf8aa49a37d22ee551c96a3e6bf0f2c7e6056782d7a8166c
their keyshare: 9a2b4135e9e39f0daf8aa49a37d22ee551c96a3e6bf0f2c7e6056782d7a8166c

4.4 Summary
In elliptic curve key exchange both sides compute the same point and use the x value
for the shared secret.

Diffie-Hellman uses one person’s private key and another person’s public key to cre-
ate a shared secret key. The secret key is used with a standard single key encryption
algorithm.

A hash function can be used to generate random bits from a text phrase. This creates
a private keywhich does not require storage. The public key, private key pair is always
the same for a given curve and base point.

TheMenezes-Qu-Vanstone (MQV) algorithm uses ephemeral private, public keys in
addition to the users static private, public key pairs to create perfect forward secrecy.

The NIST version of MQV includes an associate value function which outputs half
an x value.

MQV combines two private keys and two public keys which are multiplied to form a
shared secret point. The x value is then used as the shared secret key.

Once the ephemeral keys are created theymust be communicated between both sides.
The actual calculations are quick.

Chapter Bibliography
Menezes, Alfred, Qu, M., & SA, Vanstone. 1995. Some key agreement protocols pro-
viding implicit authentication. 2nd Workshop on Selected Areas in Cryptography (SAC ’95),
April, 22–32. 37

NIST. 2001 (Nov.). Federal Inf. Process. Stds. (NIST FIPS) - 197. https://www.nist.
gov/publications/advanced-encryption-standard-aes. 32

NIST. 2016. NIST Special Publication 800-185, SHA-3 Derived Functions.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-185.pdf. 34

NIST. 2018. NIST Special Publication 800-56A Revision 3. https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf. 37, 38

4.5 Answers to exercises
4.1) No. Clare’s public key is C = kCG which can only be used to create two secret
keys. One between Clare and Bob is kCB and the secret between Clare and Alice is
kCA.

4.2) Two. The value sA in an integer modulo a prime. The value UB has one point
multiplication. The secret is found using sAUB which is the second point multiplica-
tion.

https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

5Prime field elliptic curve
digital signatures explained

This chapter covers
Digital signature using private key

Verification using public key

Schnorr algorithm

NIST ECDSA algorithm

In this chapter I describe two algorithms used for digital signatures.
A digital signature creates proof of authorship using mathematics. A person’s private

key is used along with a hash of a document to create a signature. The public key can then
be used with the local hash of the same document to verify the signature. The connection
between a person and their keys can be checked with key exchange methods or certificates
in a database. Here we assume that a private key, public key pair only applies to one person,
and their signature can be verified or rejected depending on whether they actually digitally
signed a document or not.
Two methods of digital signature will be discussed in detail here.
Schnorr signature

NIST elliptic curve digital signature algorithm (ECDSA)
The Schnorr signature algorithm is short and concise. The ECDSA algorithm is a bit more

involved. The Schnorr algorithm hashes the combination of a document with a point and
verifies using that point. ECDSA goes through more math and outputs two values. Those
values are used along with public points to do the verification. Schnorr requires more
space to hold the data than ECDSA but takes a touch less time to compute. Each has a
place depending on circumstances.

5.1 Schnorr digital signature
In this section the Schnorr digital signature is explained.
The original version of the Schnorr digital signature scheme is over exponentials of

numbers modulo a prime. By modifying it for use on elliptic curves we can increase secu-
rity and decrease the size of the primes. Fewer resources required implies lower cost.

5.1.1 Schnorr elliptic curve math

This section describes the mathematics used to compute the Schnorr digital signature.
Figure 5.1 shows the similarity of the Schnorr algorithm to the key exchange algorithms

described in chapter 4. A (public key, private key) pair is generated over a secure curve.
We’ll take the private key to be sp and the curve to be the same as equation 3.1 reproduced
here

y2 = x3 + a4x + a6
with base point B which has prime order n. Then the public key is

Pp = spB.

create public key
from private key

Pp = spB

pick random
value k and

computeQ = kB

e = hash(Q with message M)

s = digital
signature using k, e
and private key sp

Figure 5.1 Schnorr signature steps

The generation of a signature begins by choosing a random value k in the range of
the order of the base point {1 · · · n − 1}. For security, it’s advisable to choose a new k for

each signature. Once a signature is created, the value of k can be forgotten. Low Ham-
ming weight (i.e. only a few bits set) for k is discouraged. For example, a value of k like
0x000A0008000050001 would be a poor choice as would 0xFFFF5FFFAFFFF7FFFE.
If the number of bits set is about half the number of bits in the field size it has maximal
security.
A new public point is computed using

Q = kB.

The document M is concatenated with the point Q and then hashed to a value which is
the order of the base point. We write this as

e = hash(Q .x | |Q .y | |M) mod n. (5.1)

The symbol | |means to place the bit strings in sequence. Because it is a hash the endianness
does not matter so long as everyone is consistent.
This value is combined with the random value k and the private key sp using

s = k − e · sp mod n.

The signature is then the pointQ and the value s.
To verify that the document M actually was signed by public key Pp the verifier has to

compute e as in formula 5.1 and then check that

Q ?
= sB + ePp . (5.2)

If it doesn’t match, the signature is rejected.
To see why this works, put the expanded value of s into 5.2. Multiply through with B

to get
kB − e · spB + ePp .

Since Pp = spB the last two terms cancel and the result matches.

Exercise 5.1
In equation 5.2, how many times does the random value k appear?
Hint: twice in equation 5.1.

5.1.2 Schnorr sign subroutine

The Schnorr digital signature subroutine is described in this section.
Since digital signatures use multiple components, it makes sense to create a structure to

hold both of them. Listing 5.1 shows the structure I used for Schnorr signatures.

Listing 5.1 Schnorr structure

typedef struct

{
POINT Q;
mpz_t s;

}SCHNORR;

The tricky part of the Schnorr routine is converting the x and y components into bytes.
Leaving NULL bytes can lead to problems if different machines have different word sizes.
Listing 5.2 shows how I solve this using the mpz_sizeinbase() with size 16 which counts
nibbles. Dividing that by two gives the correct number of bytes for each component. In a
way it is kind of silly because I then multiply by two again to create space for each compo-
nent. But this way it is clear what is going on. The extra two bytes in the malloc call are
to prevent accidents from happening.

Listing 5.2 Schnorr sign

void schnorr_sign(SCHNORR *sig, mpz_t sk, POINT Pk,
unsigned char *msg, long len, BASE_SYSTEM base)

{
mpz_t k, e, tmp;
unsigned char *cat;
int xsz, i;

mpz_inits(e, k, tmp, NULL);
mrand(k);
elptic_mul(&sig->Q, base.Base, k, base.E);

random number
point for signature

xsz = (mpz_sizeinbase(sig->Q.x, 16) + 1)/2; get number bytes
cat = (unsigned char*)malloc(len + 2*xsz + 2);
mpz_export(cat, NULL, -1, 1, 0, 0, sig->Q.x);
mpz_export(&cat[xsz], NULL, -1, 1, 0, 0, sig->Q.y);

convert
x and y
to strings

for(i=0; i<len; i++)
cat[2*xsz + i] = msg[i];

add document
to string buffer

hash(e, cat, len+2*xsz, base.order);
mod_mul(tmp, sk, e, base.order);
mod_sub(sig->s, k, tmp, base.order);

s = k + e · sk mod n

mpz_clears(e, k, tmp, NULL);
}

The function mpz_export() is used to convert a large integer into a string of bytes. The
first argument is the buffer where the bytes are placed. The second argument is the output
number of words, which we don’t need, so this is simply NULL. The next two arguments
are order and size. order = -1 means little endian, size = 1 means use byte size values.
The next two zeros are not used because we are using bytes for output (these values deal
with multibyte results). The last argument is the large integer input in GMP format.
Note the message is placed after the x and y components in the cat buffer. Once ev-

erything is in place the hash() function is called and the s component of signature is
computed.

5.1.3 Schnorr verify subroutine

The Schnorr digital verification subroutine is described in this section.
A digital signature is usually attached to a digital document as part of the same file. The

file header explains where the different parts of a document reside within the file. A way to
find the public key for the signer should also be in the file. If the public key is attached to
the file then you would still have to verify that the public key was real and not faked. This
is where security becomes an independent issue from cryptography, and it is important to
get right in real world applications.
In listing 5.3 we are going to assume the document and signature data are already sep-

arated. In addition, we are going to assume that the public key of the signer has been
acquired securely.
The verify routine is similar to the sign routine because the hash of the point Q with

the message is the same process. Listing 5.3 shows the verify subroutine.

Listing 5.3 Schnorr verify

int schnorr_verify(SCHNORR sig, POINT Pk, unsigned char *msg,
long len, BASE_SYSTEM base)

{
mpz_t e;
unsigned char *cat;
int xsz, i;
POINT U, V, Qck;

mpz_init(e);
xsz = (mpz_sizeinbase(sig.Q.x, 16) + 1)/2; get number bytes
cat = (unsigned char*)malloc(len + 2*xsz + 2);
mpz_export(cat, NULL, -1, 1, 0, 0, sig.Q.x);
mpz_export(&cat[xsz], NULL, -1, 1, 0, 0, sig.Q.y);

convert
x and y
to strings

for(i=0; i<len; i++)
cat[2*xsz + i] = msg[i];

add document
to string buffer

hash(e, cat, len+2*xsz, base.order);
point_init(&U);

compute hashpoint_init(&V);
point_init(&Qck);
elptic_mul(&U, base.Base, sig.s, base.E);
elptic_mul(&V, Pk, e, base.E);

Q′ = sB + ePk

elptic_sum(&Qck, U, V, base.E);
verify computed Q matches
signature Q

if((!mpz_cmp(sig.Q.x, Qck.x)) && (!mpz_cmp(sig.Q.y, Qck.y)))
i = 1;

else
i = 0;

mpz_clear(e);

save verify
result so we
can clear
variables

point_clear(&U);
point_clear(&V);

point_clear(&Qck);
return i;

}

The computation of e is clearly the same as the signature routine. Then I use three
points to build the check. The first point is

U = sB

the second point is
V = ePk

and the check point is their sum
Qck =U +V .

If both the x and y components match between the check point Qck and input signature
pointQ, the signature is verified.

5.1.4 Schnorr test example

A simulated example of how to use the Schnorr digital signature and verify routines are
described in this section.
I added the Schnorr test code to the file with key exchange testing from chapter 4. To

perform this test I searched my drive for a text file that was reasonably small. I copied
it over to my working directory as sign_test.txt. Listing 5.4 shows how I read in the
sample.

Listing 5.4 Test message input

parm = fopen(''sign_test.txt'', ''r'');

now create a test
for a digital signature

if(!parm)
{

printf(''sign_test.txt not found??\n'');
exit(-7);

always check
for errors

}
k=0;
while((!feof(parm)) && (k < 4*1024))
{

bufr[k] = fgetc(parm);
k++;

}
k -= 2;

read document
into RAM

Using the same public and private keys generated during the test shown in listing 4.14
and the curve parameters from listings 4.8 through 4.11, the Schnorr algorithm test is
very simple as seen in listing 5.5.

Listing 5.5 Schnorr test

snr_init(&snr);
schnorr_sign(&snr, sk, Pk, bufr, k, base); Schnorr sign document

if(schnorr_verify(snr, Pk, bufr, k, base)) verify signature
printf(''Schnorr message verifies!\n'');

else
printf(''Schnorr message does not match original signed.\n''); go look for bugs!

When runwith any of the curves the output every time is Schnorr message verifies!

The trick to signatures is making sure the message is the same every time. Even one bit
wrong will cause the verify to fail. Packaging the message is a system level problem.

5.2 NIST ECDSA
In this section the NIST ECDSA algorithm is explained.
Another digital signature form is the standard fromNIST. It is simply called the elliptic

curve digital signature algorithm (ECDSA). It is similar to Schnorr in that a hash of the
message is used. I’ll follow the draft standard (NIST, 2019) which has a ton of details not
included here. Figure 5.2 shows the steps involved in computing the signature.

compute hash
of document (e)

pick random
value k and

compute R = kB

convert R.x modulo
field prime (c)

compute digital
signature using k, e, c
and private key (d)

Figure 5.2 ECDSA signature steps

The first step in computing the signature is to compute the hash of the message and
convert that to a value modulo the order of the base point n. This is the hash function
described in listing 4.1 so we take

e = hash(M) mod n. (5.3)

The second step is to pick a random number k (mod n) and compute the point

R = kB.

The x component is the size of the field prime, so we convert it to the order of the base
point using

c = R.x mod n. (5.4)

Assuming the signers private key is sp and their public key is Pp = spB we finally compute

d = k−1 (e + c · sp) mod n. (5.5)

The signature is then the pair of values (c , d).
To verify the signature, the hash of the document is done the same as in equation 5.3

to find the value e′. Then we compute

h = d−1 mod n (5.6)

h1 = e′h mod n (5.7)

h2 = ch mod n (5.8)

From these values we find the point

R′ = h1B + h2Pp (5.9)

and then check that
R′.x ?

= c.

So let’s see how this works. Expanding h we have

h =
k

(e + c · sp)
.

The first term in R′ is
h1B = e′ · hB =

e′ · kB
(e + c · sp)

.

The second term is

h2Pp = c · hPp =
c · k · spB
(e + c · sp)

Adding these together we have

R′ = k
e′ + c · sp
e + c · sp

B.

So as long as the message has not been altered, e′ = e, the fraction divides out, and we end
up with R′ = R which implies R′.x = c.

Exercise 5.2
Equations 5.3 through 5.8 are all modulo n. Is n the field prime or the
largest prime in the elliptic curve cardinality?

5.2.1 ECDSA sign subroutine

This section describes the code which implements ECDSA signatures.
Like the Schnorr signature, a structure for the ECDSA signature is very useful. The

structure is shown in listing 5.6 where the c value is from equation 5.4 and the d value is
from equation 5.5.

Listing 5.6 ECDSA structure

typedef struct
{

mpz_t c;
mpz_t d;

}ECDSA;

Listing 5.7 shows the signing subroutine. The inputs are private and public keys, the
message and its length and system parameters (BASE_SYSTEM structure shown in listing
4.2).

Listing 5.7 ECDSA signing subroutine

void ecdsa_sign(ECDSA *sig, mpz_t sk, POINT Pk,
unsigned char *msg, long len, BASE_SYSTEM base)

{
mpz_t k, e, tmp;
POINT R;

mpz_inits(e, k, tmp, NULL);
hash(e, msg, len, base.order);

e = hash
of document

mrand(k);
point_init(&R);
elptic_mul(&R, base.Base, k, base.E);

random value
and matching point

mpz_mod(sig->c, R.x, base.order); c = R.x mod n
mod_mul(tmp, sk, sig->c, base.order);
mod_add(tmp, tmp, e, base.order);
mod_div(sig->d, tmp, k, base.order);

d =
e + skc
k

point_clear(&R);
mpz_clears(e, k, tmp, NULL);

}

Since the modulo arithmetic is done on the order of the base point, the mod_*() rou-
tines are used instead of the m*() routines. Because the mod_div() routine computes the
inverse for us, there is no need to compute it separately. I just divide by k mod n.

5.2.2 ECDSA verify subroutine

The ECDSA verify routine is described in this section.
The verification routine for ECDSA is a straightforward calculation of equations 5.8

through 5.9. Like Schnorr, this routine evaluates two points and then sums them to get
the final point used to check the signature.

Listing 5.8 ECDSA verify subroutine

int ecdsa_verify(ECDSA sig, POINT Pk, unsigned char *msg, long len,
BASE_SYSTEM base)

{
mpz_t h, h1, h2, e;
POINT R, S, T;
int rtn;

mpz_inits(h, h1, h2, e, NULL);
hash(e, msg, len, base.order);

e = hash
of message

mpz_invert(h, sig.d, base.order); h =
1
d

mod_mul(h1, e, h, base.order); h1 = eh
mod_mul(h2, sig.c, h, base.order); h2 = ch
point_init(&T);
elptic_mul(&T, Pk, h2, base.E);
point_init(&S);
elptic_mul(&S, base.Base, h1, base.E);
point_init(&R);
elptic_sum(&R, T, S, base.E);

R = h1B + h2Pk

mpz_mod(h, R.x, base.order); convert R.x mod n
if(!mpz_cmp(h, sig.c))

rtn = 1;
else

rtn = 0;

save verify
result so we
can clear
variables

point_clear(&R);
point_clear(&S);
point_clear(&T);
mpz_clears(h, h1, h2, e, NULL);
return rtn;

}

As with the Schnorr algorithm, the message must not change at all between signing and
verifying. The main difference between ECDSA and Schnorr is that the latter uses a full
point for comparison. With ECDSA, we must reduce the field element from a point to
the order of the curve. The advantage of ECDSA is the size of the signature is two mpz_t
elements, with Schnorr signature taking up three.

5.2.3 ECDSA example code

This section shows a simulated ECDSA sign and verify test routine.
The test of the subroutines uses the same key generation as the previous tests as well as

using the same message text in the Schnorr example. Listings 4.8 through 4.11 have the
base system data which is selected as shown in listing 4.13. Listing 5.9 shows how to call
the signing subroutine using these same arguments.

Listing 5.9 ECDSA signing example

sig_init(&sig);

ecdsa_sign(&sig, sk, Pk, bufr, k, base); sign message with private key

Similarly, the verification is really simple as shown in listing 5.10.

Listing 5.10 ECDSA verify example

if(ecdsa_verify(sig, Pk, bufr, k, base)) verify signature with message and public key
printf(''message verifies!\n'');

else
printf(''message does not match original signed.\n''); go look for bugs!

Running this test with every one of the example curves and some arbitrary pass phrase
with the same test file used in the Schnorr example gives the same output message verifies!

5.3 Summary
Schnorr digital signature combines a random value times a base point (calledQ)with
a document and computes the hash of the combination.

With the Schnorr digital signature, the signer’s private key is combined with the hash
value and random value to create the other part of the signature.

Verification of Schnorr uses the signer’s public key with the signature to check for a
match. Since this requires a hash of the point Q and document, even one bit differ-
ence will fail.

NIST created a draft standard for the elliptic curve digital signature algorithm (ECDSA)
in 2019 (NIST, 2019) . ECDSA uses the hash of a message, a random value and the
signer’s private key to create one value of the signature. The x component of the
random value times the base point is the second value.

To verify with ECDSA several calculations are combined with the hash of the docu-
ment and the signature. These values are multiplied with the base point and signer’s
public key whose sum is then compared with a signature value. A match verifies and
one bit error will fail.

Chapter Bibliography
NIST. 2019 (Oct.). Federal Inf. Process. Stds. (NIST FIPS) - 186-5(draft). https://doi.
org/10.6028/NIST.FIPS.186-5-draft. 55, 59

5.4 Answers to exercises
5.1) Six times! The values Q .x and Q .y in 5.1 each count for one k appearance. s
contains one direct value of k plus two from e. So there are 5 appearances of k on the
left of equation 5.2 and one on the right for a total of six.

5.2) The value n is the largest prime in the elliptic curve cardinality. This is chosen
as the order of the base point to maximize security.

https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft

6Finding good cryptographic
elliptic curves

This chapter covers
Using PARI/gp command line

PARI library programming

A program to find the number of points on an
elliptic curve

What constitutes a good curve

In this chapter I show how to find good cryptographic curves using mathematicians soft-
ware tools. The ability to find and use many different cryptographically secure curves in-
creases security by forcing attackers to work hard to find breaks on every possible curve.
The resulting curves are good for the applications shown in chapters 4 and 5.
Up to this point we have assumed we know the cardinality of a curve (see section 4.1.1).

Unfortunately the mathematics of computing the number of points on an elliptic curve
over finite fields is really deep. For those who want to dig into the details I suggest starting
with chapter 7 in (Blake et al., 1999) . For this chapter I am just going to use the mathe-
matician’s tool PARI/gp which has the point counting algorithms built in. In addition, the
calculations are done as efficiently as the authors of PARI/gp know how.
Appendix A describes how to get hold of PARI/gp. Remember that if you are a Python

advocate you can get SageMath which has PARI as just one of the options you can use.

PARI/gp has a great deal of mathematical tools. We only care about a small, but very
important subset of those tools related to elliptic curve mathematics. I will describe the
important mathematics and then explain how PARI/gp allows us to compute elliptic curve
cardinalities.

6.1 PARI/gp for elliptic curves
In this section I describe the mathematicians tool PARI/gp. It is very useful for checking
elliptic curve code.
Before getting into programming details I am going to introduce interactive use of the

PARI/gp tool. The startup and how to set up elliptic curves over finite fields is described
first. This is exceptionally useful for debugging code. Mistakes in computations can be
found byduplicating programming steps using copy and paste entries from print_point()

subroutines into PARI/gp.
The programming side of PARI using libpari will also be explained. This is what I use

to find good curves. The method I used to eliminate poor curves will be explained and
then the actual code to accomplish the task of finding good curves follows.

6.1.1 Starting PARI/gp

In this section I cover the start up of PARI/gp.
The program gp is a mathematics calculator with elliptic curve functions including find-

ing the cardinality of curves and the order of points. When we first start gp we get output
that looks like this:

$ gp
Reading GPRC: /home/drmike/.gprc
GPRC Done.

...

PARI/GP is free software, covered by the GNU General Public License, and comes
WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type ?18 for how to get moral (and possibly technical) support.

PARIsizemax = 10000003072, primelimit = 500000
?

The line about "moral (and possibly technical) support" is very real. I have asked many
stupid questions on the PARI mailing list and gotten a lot of very helpful answers. The ?
is the gp prompt.
The file .gprc is used to set up the PARI environment which is different from the

default. In this case the file is simply:

PARIsizemax = 10000000000
read ''PARI/funcs.gp'';

The first line sets the heap to 10 GB, which on a 64 GB machine is reasonable. The

second line reads in a predefined function that I find useful. That file is simply

numbits(x)={floor(log(x)/log(2))+1}

which tells me how many bits are in a value x. When looking at a 50-digit number it
is nicer to let PARI tell you how many bits it has.

6.1.2 PARI/gp elliptic curves over finite fields

In this section I describe how PARI/gp works with finite field elliptic curves.
PARI/gp has a function for creating elliptic curves using just a4 and a6. The function is

ellinit() whose first argument is a single vector input [a4 , a6]. The brackets [] are not
optional because they tell gp that items contained within are components of a vector.
The second argument to ellinit() is the field. For the moment this will be a prime

number which is the finite field we are using. This will be something more complicated
when we dive into field extensions.
The manual says "The precise layout of the ell structure is left undefined and should

never be used directly." They do define the first thirteen values as the common elliptic
curve parameters

a1 , a2 , a3 , a4 , a6 , b2 , b4 , b6 , b8 , c4 , c6 , Δ, j

which you can find described (in the same order) in section III.1 of reference (Silverman,
2013) . If the output we see is [] (referred to as "null") it means there is no curve which
can be constructed with the given inputs.
Since we are working with finite fields there are several automatic values which PARI

has access to when an ell structure is created. These are
.no the number of points on the curve

.cyc the cyclic structure of the curve

.gen the generators of the curve

.group the first three items as a vector [.no, .cyc, .gen]
As a simple example let’s look at a curve over the field p = 1187. I pick a4 = 1 and

a6 = 17. gp gives the result

? E=ellinit([1, 17], 1187)
%1 = [Mod(0, 1187), Mod(0, 1187), Mod(0, 1187), Mod(1, 1187), Mod(17, 1187), Mod(0,
1187), Mod(2, 1187), Mod(68, 1187), Mod(1186, 1187), Mod(1139, 1187), Mod(743, 1187),
Mod(910, 1187), Mod(95, 1187), Vecsmall([3]), [1187, [109, 236, [6, 0, 0, 0]]],
[0, 0, 0, 0]]

I then request the entire group information

? E.group
%2 = [1148, [1148], [[Mod(702, 1187), Mod(1007, 1187)]]]

This tells me that there are 1148 points on the curve, it is a simple cyclic curve and a
point which can generate all other points on the curve is (702, 1007). The form Mod(702,

1187) means "702 modulo 1187" which is how PARI tracks a finite field number.

Exercise 6.1
How many points are on the curve y2 = x3 + x + 97 mod
95289871302753755165078396311?

6.1.3 LibPARI with elliptic curves

In this section I show how to use PARI library subroutines with C programming.
While it is possible to write scripts in PARI/gp I find it easier to link directly with the

PARI library, which is called libpari. The code initialization process is a touch different
from the interactive command line program.
To initialize libpari we first specify the stack size and number of primes to precompute.

In my code examples I use
pari_init(1024*1024*1024, 5*1024*512);

which gives 1 GB of stack and 2.5 million primes.
Libpari uses the type GEN which is a pointer to a set of longs. Internally it knows what

each GEN object is. If you give a routine the wrong kind of object libpari will bail with an
error. The debugging process is to first find the place where the error occurred and then
attempt to figure out which argument was wrong.

6.2 General ordinary curves
In this section I describe an algorithm to find the number of points on an elliptic curve to
determine if it is cryptographically useful.
The general equation for an ordinary elliptic curve over a large prime field is

E : y2 = x3 + a4x + a6 mod p (6.1)

Choosing a4 and a6 at random will give us a random curve. Many curves are isomorphic
which means they have the same number of points. For cryptographic purposes we want
the same points for each user, but we don’t really care which curve we pick so long as the
cardinality of the curve is a large prime.
The relationship between the field p and the cardinality #E is given by Hasse’s Theo-

rem:
#E = p + 1 − t (6.2)

where the value of t is limited to
|t | ≤ 2

√
p (6.3)

(See chapter V in (Silverman, 2013) .) This is an important relationship between cardinal-
ity and the field prime. If we can find a negative t which is odd the cardinality might be a
prime which would be larger than the field. Since t has half as many bits as p that means
the cardinality is still the same bit size as p. The variable t is called the trace of Frobenius.
Figure 6.1 shows the generic algorithm for seeking good curves. PARI is used to com-

pute the cardinality. Then powers of 2 are removed one at a time until an odd number is

num = 3 · 5 · 7 · 11

pick a4=1

initialize
a6

last bit
f clear?

last bit
f clear?

stop

f = #E

increment
pw2

pw2 = 0

f = f/2

accept or
reject curve

increment
a6

done?

yesno

yes

no

no

yes

Figure 6.1 General curve finding algorithm

found. The algorithm for accept or reject is shown in figure 6.2. An accepted curve is out-
put, a rejected curve is ignored. Either way, the next curve is investigated by incrementing
the a6 value.
My first requirement was to find curves with very small cofactors. So I created a number

with the factors 3 · 5 · 7 · 11 and used the gcdii() function to test if any of those primes
were present in the cardinality.
If #E has too many primes I want to ignore the curve. Figure 6.2 shows a flow chart of

the logic. If the cardinality only has powers of two, which I track with variable pw2, and
a remaining prime, then I output it. If the cardinality is not prime and there are no small
factors after removing 2pw2, the number can be ignored because the factors are not good
enough for a secure curve.
Small factors are then removed one power at a time. The array pw[] holds each set of

removed factors. As long as the array length is less than four, and we find a prime then
all factors are output. Otherwise, the number is ignored because it does not have a large
enough prime factor to use.
To create the elliptic curve parameters in listings 4.8 through 4.11, I modified one

program into four separate versions, so I could run them simultaneously on one desktop.
The smaller primes gave a lot more results to choose from after an over night run.
The primes used for the base field were taken from reference (Riesel, 2013) . I used the

table Primes of the Form: h · 2n + 1 and looked for field sizes as close to 160, 256, 384

tmp = gcd(f, num)

tmp = 1? is f prime?
output
2pw2 · f

ignorepw[0] = tmp
k = 1

f /= tmp

tmp = gcd(f, num)

tmp = 1? is f prime? output all
factors found

ignorepw[k] = tmp
k += 1
f /= tmp

k >= 4?

yes

no

yes yes

yes yes

no no

no no

Figure 6.2 Accept or reject curve

and 512 with as small an h as I could get. Table 6.1 shows the values chosen. The average
density of good curves is about the same for every field prime. If you find a prime that
is more useful for faster base field operations most likely you will find just as many good
curves as these choices provided.

Table 6.1 Primes for base field

field size prime number

160: 43 · 2158 + 1

256: 43 · 2252 + 1
384 23 · 2381 + 1
512 113 · 2509 + 1

Exercise 6.2
In the curve of excercise 1, what is the value t from equation 6.2?

6.2.1 Variables and initialization

In this section the initial code to find good curves is presented.
Listing 6.1 shows the start of the program used to find 160 bit curves. The constant z

is the first entry from table 6.1.

The ellinit() library function in libpari requires a vector with five values. For general
elliptic curves this makes sense. For ordinary curves over large prime finite fields only two
values are required.

Listing 6.1 Finding curves: initialize

int main()
{

GEN y, E, f, z, a1, a3, a2, ell5, num, tmp;
int k, pw2, pw[4];
unsigned long a4coef, a6coef;
PARI_sp av;

PARI_init(1024*1024*1024, 5*1024*512); initialize PARI and finite field
z = gp_read_str(''0xac000000000000000000000000000000000000001'');
y = ffgen(z, -1); create FFELT GEN object

hex value 43 · 2158 + 1a1 = gen_0;
a3 = gen_0;
a2 = gen_0;

constant 0
for unused
values

ell5 = zerovec(5);
gel(ell5, 1) = a1;
gel(ell5, 2) = a2;
gel(ell5, 3) = a3;

initialize
array to
integer values

a4coef = 1;
a6coef = 0x01;

inside loop
variables

num = muluu(3, 5);
num = mului(7, num);
num = mului(11, num);

gcd constant
num =
3 · 5 · 7 · 11

The three variables a1, a2, a3 are assigned the constant value zero in GEN format. The
other PARI constants available are 1 (gen_1) and 2 (gen_2). The ell5 variable is set up
to be a length five vector whose first three values are all zero. The names of the variables
are there simply to remind me what those index positions stand for in the general elliptic
curve equation.
Originally I had changed the a4coef as part of the sweep of curves. But this was point-

less because the curves were isomorphic to all the others found with a4 = 1. The last part
of the initialize is to create the constant with the four small primes 3 · 5 · 7 · 11.

6.2.2 Main loop

In this section code for deciding to keep or reject a curve is described.
The search for good curves requires calling the ellinit() function and then getting

the cardinality of the curve. I then want to find the factors of the cardinality to determine
if there is a very large prime. The first factor to eliminate are powers of two. Using the
bittst() function it is very simple to determine how many factors of two are in the car-
dinality. This is shown in listing 6.2.
The variable avmarks the PARI stack. Every new variable in a loop increases the stack

use. To remove temporary stack variables the routine gerepileall() is called at the bot-
tom of the loop. If you don’t do this the stack will overflow and an attempted overnight
run will only last an hour. More details can be found in the "User’s Guide to PARI Library"
(see appendix A).

Listing 6.2 Finding curves: top of main loop

while(a6coef < 0xfffff) arbitrary limit, reduce for larger primes
{

printf(''%0lx %0lx'', a4coef, a6coef);
fflush(stdout);

monitor
progress

av = avma; mark top of PARI stack
gel(ell5, 4) = stoi(a4coef);
gel(ell5, 5) = stoi(a6coef);
E = ellinit(ell5, y, 0);

convert integers
to GEN
and create curve

f = ellcard(E, NULL); compute cardinality of curve
k = bittest(f, 0);
pw2 = 0;
while(!k)
{
pw2++;
f = gdivexact(f, gen_2);
k = bittest(f, 0);

track and
remove all
powers of 2

}

The stoi() function converts a long to a PARI GEN. The variable y is already specified
as a finite field using a prime as shown in listing 6.1. The result from ellcard() is a PARI
integer. The loop on k removes the powers of two if the last bit is a 0 in the cardinality
value f.
The first seven lines of Listing 6.3 shows how the gcd is used to test for only powers of

two. If the gcd(f , num) is 1 and f is a prime then only powers of two can be factors of #E.
The section of code following the else clause then goes into removing the small factors
to determine if the cardinality is acceptable or not.

Listing 6.3 Finding curves: small prime check

tmp = gcdii(f, num);
if(isint1(tmp))

if gcd(f, num)==1
then no small factors

{
if(isprime(f)) if f is prime

PARI_printf('' 2^%d * %Ps\n'', pw2, f); save powers of 2 and prime
else

printf(''\n''); otherwise ignore this curve
}
else gcd(f, num) != 1
{
pw[0] = itos(tmp); save first group small factors

k = 1;
f = gdivexact(f, tmp); remove first group small factors
while((k < 4) && !isint1(tmp))
{

limit num3 max powers

tmp = gcdii(f, num);
if(isint1(tmp))

if gcd(f, num)==1
then no small factors

{
if(isprime(f)) if f is prime
{

printf('' 2^%d * %d '', pw2, pw[0]); powers of 2 and first group
k--;
while(k)
{

printf(''* %d '', pw[k]);
k--;

output
remaining
group
powers

}
PARI_printf(''* %Ps\n'', f); large prime factor

}
else

printf(''\n''); otherwise ignore this curve
}
else gcd(f, num) != 1
{

pw[k] = itos(tmp);
f = gdivexact(f, tmp);
k++;

save next group
and remove
from cardinality

}
}
if(k >= 4)

printf(''\n''); hit limit so ignore curve
}
gerepileall(av, 1, &ell5); reduce stack size
a6coef++; go to next curve

}
printf(''all done\n'');

The variable pw[] counts the powers of each factor discovered from the gcdii() func-
tion. Suppose f has cofactor 32 ·53. When I take the gcd only one power of 3 and 5 will be
common. The variable pw[] is four deep because more powers than four mean I should
ignore this curve.
The line f = gdivexact(f, tmp); removes one set of small primes from the cardinal-

ity. When the gcdii() function goes to 1 there are no more small primes. At that point I
can call the function isprime() to determine if the leftover value is a prime. If not, I can
ignore this curve.
At the 160 bit level an overnight run on a 4 GHz processor found over 1000 curves

with a large prime. Of those over 100 were prime cardinality. At the 512 bit level only
eight worthwhile curves were found with three having prime cardinality. Table 6.2 lists
the cardinality of the largest prime found for each program in hexadecimal notation. All

the parameters of each curve are in listings 4.8 through 4.11.

Table 6.2 Cardinality of best curves

160 0xac0000000000000000006543ba11adf8eb6345c77

256 0x2b0000000000000000000000000000002e7f521c85bba055a6e2161b956a47f69

384 0x2e002275cc5f2f7fcc15352a2c9939

00a851b3a75365a9ac54733

512 0xe2007788830d

091dc57e3af7d7bbd15386ee9414602d88d1e6489cd056336922bbf4d

6.3 Bad curves
In this section the difference between good and bad cryptographic curves is described.
What a "good curve" is for cryptography will be a really "bad curve" for factoring large

numbers. For cryptography, we require a large prime field for our points to float in. If
there are many factors in the cardinality of the curve there are many combinations of
groups each point can belong to. So the first aspect of a "good curve" for cryptography is
that the cardinality have a large prime and small cofactor.
In chapter 13 I will get into the details on field extensions. Afield extension takes a prime

order field p to some power k, so the size of the field is pk. TheMOVattack on elliptic curve
key sharing uses a field extension to map an elliptic curve to a small extension field which
can be manipulated more easily. The attack changes an elliptic curve discrete log problem
into an exponential discrete log problem. The former is exponential in the size of the key,
the latter is subexponential. For descriptions of this and other methods of solving for the
private key from the public key and base point see chapter 5 in (Blake et al., 1999) .
So even if we have a large prime in the cardinality, having a low field extension would

turn it into a "bad curve". Finding the actual value of the field extension is challenging, but
all we really care about is that it should be large.
The average field extension on random curves is approximately

√
p. Since

√
p has more

than 80 bits for even the smallest security level, that’s classified as "big" for a field extension.
All the curves found using the above program (listings 6.1 through 6.3) were found to have
an extension greater than 256. They are immune to the MOV attack.
Other attacks on elliptic curves require a small cofactor. Since the curves chosen here

have a cofactor of 1 those attacks can not be performed. Every point on the curve has the
same order. While this means there are no shortcuts for computation, there are no hand
holds for an adversary to attack with.
There are other parameters involved than just the curve. The application environment

also is a factor. Is speed really important? If so, then the field prime chosen might create a
side channel attack vector. The security of your system depends on thinking about issues
other than just cryptography. So it might take a few overnight runs with many different

field primes to find the best curve for your situation. Since you only have to do it once, the
time is well worth the effort.

Exercise 6.3
The cardinality of the curve in excercise 1 is 97 bits, so it has a possible
security level of 46 bits. Is this a good or bad cryptographic curve?

6.4 Summary
Ordinary elliptic curves over finite fields are defined by equation

E : y2 = x3 + a4x + a6 mod p

and a6 ≠ 0.

The cardinality of an elliptic curve is

#E = p + 1 − t

where |t | < 2√p and t is called the trace of Frobenius.
PARI/gp is both a math calculator and library with an API for computing cardinality
and factors of elliptic curves.

For this book specific primes are chosen for several security levels. The form is h ·
2n + 1.
libpari requires specific initialization. Requesting gigabytes helps with very large primes.

Finding good curves for cryptography demands a small cofactor and one large prime
for cardinality. For ordinary curves demanding cofactor of 1 is possible and highly
recommended for best security.

Bad curves for cryptography have too low an embedding degree or too many small
cofactors. For random ordinary curves both conditions are avoidable with careful
searching.

Chapter Bibliography
Blake, I., Seroussi, G., & Smart, N. 1999. Elliptic Curves in Cryptography. London Mathe-
matical Society Lecture Note Series. Cambridge University Press. 61, 70

Riesel, H. 2013. Prime Numbers and Computer Methods for Factorization. Progress in Math-
ematics. Birkhäuser Boston. 65

Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York. 63, 64

6.5 Answers to exercises
6.1) Using PARI/gp with F=ellinit([1, 97], 95289871302753755165078396311),
type F.group to find

%2 = [95289871302753280117785972887, [95289871302753280117785972887]...

The cardinality of the curve is thus 95289871302753280117785972887.

6.2) Rewriting equation 6.2 as t = p + 1 − #E, PARI/gp gives
? 95289871302753755165078396311 + 1 - 95289871302753280117785972887
%10 = 475047292423425

6.3) This is a bad curve. Using the command factor(95289871302753280117785972887)
PARI/gp returns:

[61 1]

[5151169 1]

[9364883051 1]

[32382378793 1]

7Description of finite field
polynomial math

This chapter covers
Essence of field extension is a polynomial

Routines to create polynomials

Addition routine for polynomials

A debugging routine for polynomials

In this chapter I show a simple structure for polynomials and how to add them together.
The code developed here is used through the rest of the book.
Understanding how pairings work on elliptic curves requires the use of field extensions.

These are just polynomials with finite field coefficients. But they have all the properties of a
finite field because there is a fixed number of elements and they can be added, multiplied,
and inverted. The following six chapters are short, so they cover just one aspect of an
operation over a field extension. The code to execute the mathematics takes up more text
than the mathematical description. Hopefully it can be easily absorbed so that the code
and math associated with elliptic curve pairing operations will then make more sense.
In this chapter I will cover a polynomial structure which ismuch simpler than those used

in most mathematics packages. Typical use will be a fixed sized polynomial, so a general
construction is not necessary. A few utility subroutines will be described along with the

addition and subtraction routines.

7.1 Field extension
In this section the general description of a field extension over a finite field is described.
This concept is essential for the rest of the book.
A field extension means we extend a finite field by taking the prime defining the field to

a power. So a field of p elements can become an extension of degree k when we have pk

elements. As an example suppose p = 1187 and k = 3. The base field has 1187 elements
and the field extension has 11873 = 1672446203 elements.

4
3
2
1
0

1183
1184
1185
1186

...

...

*x1

4
3
2
1
0

1183
1184
1185
1186

...

...

*x2

4
3
2
1
0

1183
1184
1185
1186

...

...

*x0

Figure 7.1 Finite field extension over prime numbers viewed as a clock (p = 1187, k = 3)

Figure 7.1 expands figure 2.2 to show the idea behind a field extension. For a general
field extension, any value is allowed for the leading coefficient (modulo the field prime.)
The polynomial from figure 7.1 is x2 − 2x + 4 mod 1187. Counting backwards from 0
gives negative values, but we can always change them to be positive by adding p (in this
case 1187).
To keep track of each element in the extension field we want an indexing method. To

do that we choose an arbitrary symbol like t or x and construct a polynomial of powers of
that variable. The general form looks like

ak−1x
k−1 + · · · + a1x + a0 (7.1)

In this form each coefficient is taken modulo p. In our numerical example each coefficient
{a0, a1, a2} has 1187 possible values, so the total number of indexes is 11873.
We add two polynomials in a field extension by summing the coefficients of matching

powers. Because the coefficients are modulo the field prime each coefficient stays in the
range of the prime and there is no mixing between powers of the variable. The general
form looks like

ak−1x
k−1 · · · + a1x + a0

+ bk−1x
k−1 · · · + b1x + b0

ck−1xk−1 · · · + c1x + c0
Subtraction is identical. In fact, since everything is modulo a prime we end up with positive
results in software.

This introduction ismissing a lot of important details. I will save these details for chapter
8, so we can concentrate on how to use polynomials in code.

Exercise 7.1
What is the sum of 37x3 + 96x2 + 7x + 3 mod 127 and 14x2 + 83x + 124
mod 127?

7.2 Polynomial setup
In this section polynomial support code is described. It is used in every subroutine through
the rest of the book.
To use polynomials I create a simple structure as shown in listing 7.1. The value MAXDEGREE

sets the maximum power of field extension I plan on dealing with. Because the structure
is simple all polynomials have space for the same number of coefficients even if they are
not used. For small embedded systems this is not efficient. The complexity involved with
that efficiency would confuse the purpose of explaining how things work. A web search on
"efficient representation of polynomials" will give ideas on sparse vectors and linked lists.

Listing 7.1 Polynomial structure

#define MAXDEGREE 32

typedef struct
{

unsigned long deg;
mpz_t coef[MAXDEGREE];

}POLY;

Because structure 7.1 is used in many places it is placed in a header file poly.h. All the
routines in the file poly.c are also listed as prototypes in the header file. These routines
include initialization, clearing, addition, subtraction and a few utilities which will be ex-
plained here. The header also includes prototypes for the routines which will be described
in chapters 8 through 12.
The first routine in file poly.c initializes a structure. This is shown in listing 7.2. The

index into the coefficient array matches the power of the variable for the polynomial. So
*.coef[4] is the coefficient to x4.

Listing 7.2 Polynomial initialization

void poly_init(POLY *p)
{

int i;

for(i=0; i<MAXDEGREE; i++)
mpz_init(p->coef[i]);

create space for
every coefficient

p->deg = 0; constant term only
}

Creating a polynomial as a variable in a subroutine requires removing it before return-
ing to avoid memory leaks. Listing 7.3 shows the simple routine that accomplishes this. I
used the same syntax as GMP to be both consistent and lazy.

Listing 7.3 Polynomial clearing

void poly_clear(POLY *p)
{

int i;

for(i=0; i<MAXDEGREE; i++)
mpz_clear(p->coef[i]);

remove every
coefficient created

}

7.3 Polynomial addition
In this section I describe how two polynomials are added.
Adding two polynomials is simple. But even simple things get complicated when they

are not quite the same. If we have two polynomials of different degree the larger one will
have coefficients which are copied to the result. So the code in listing 7.4 first checks to
see which input is larger. If they are equal it picks the first input to define the degree.

Listing 7.4 Polynomial add

void poly_add(POLY *c, POLY a, POLY b)
{

int i, dc;
POLY rslt;

poly_init(&rslt);
if(a.deg > b.deg)
{

rslt.deg = a.deg;
for(dc=a.deg; dc>b.deg; dc--)

a bigger than b
copy over higher
a coefficients

mpz_set(rslt.coef[dc], a.coef[dc]);
}
else if(b.deg > a.deg)
{

rslt.deg = b.deg;
for(dc=b.deg; dc>a.deg; dc--)

b bigger than a
copy over higher
b coefficients

mpz_set(rslt.coef[dc], b.coef[dc]);
}
else
{

dc = a.deg;
rslt.deg = a.deg;

same size
use a to define result

}
while(dc >= 0)
{

madd(rslt.coef[dc], a.coef[dc], b.coef[dc]);
dc--;

add common
powers

}
i = rslt.deg;
while((i > 0) && (!mpz_cmp_ui(rslt.coef[i], 0)))
{

rslt.deg--;
i--;

remove
leading zeros

}
for(i=0; i<=rslt.deg; i++)

mpz_set(c->coef[i], rslt.coef[i]);
c->deg = rslt.deg;

copy result
to designated
storage

poly_clear(&rslt);
}

All the coefficients with common powers are then summed modulo the field prime. If
higher degree coefficients go to zero in this process, the degree of the resulting polynomial
must be reduced. When I first tested this routine that check was not included, and I found
some interesting bugs down the line. This is labeled "remove leading zeros" in listing 7.4.
The final step is to transfer the internal result to the specified place. At least I figured

that one out ahead of time!
Once we have addition we can do subtraction by negation of the second argument and

calling addition. This is shown in listing 7.5.

Listing 7.5 Polynomial subtract

void poly_sub(POLY *c, POLY a, POLY b)
{

int i;
POLY bneg;

poly_init(&bneg);
bneg.deg = b.deg;
for(i=0; i<=b.deg; i++)
{

mpz_init_set(bneg.coef[i], b.coef[i]);
mneg(bneg.coef[i], bneg.coef[i]);

negate each
coefficient
one at a time

}
poly_add(c, a, bneg); then add to get result
poly_clear(&bneg);

}

7.4 Polynomial utilities
In this section useful low level common routines are shown. They are used in many sub-
routines in the rest of the book.
There are several simple routines that are useful for manipulating polynomials. These

include copying, comparing, printing and creating random polynomials. Duplication of a

polynomial is common for routines that will manipulate inputs. The comparison routine
can only check for equality. The concept of greater or lesser does not make sense when we
are working modulo prime numbers in a cyclic field. Printing polynomials to the console
is very useful for debugging as well as preserving work. Random polynomials are used for
digital signatures and the square root algorithm.
The utility for copying polynomials is shown in listing 7.6. The assumption is that the

place being copied to has already been initialized.

Listing 7.6 Polynomial copy

void poly_copy(POLY *a, POLY b)
{

int i;

a->deg = b.deg; first copy degree
for(i=0; i<=b.deg; i++)

mpz_set(a->coef[i], b.coef[i]);
then each coefficient
one at a time

}

Comparing two polynomials is only useful to test if they are equal. The idea of "greater
than" does not make a lot of sense because there are no negative numbers when we finish
with the coefficients. The compare utility in listing 7.7 returns 1 if the inputs are equal and
0 if not.

Listing 7.7 Polynomial compare

int poly_cmp(POLY a, POLY b)
{

int i;

if(a.deg != b.deg) different degree then not equal
return 0;

for(i=a.deg; i>=0; i- -)
if(mpz_cmp(a.coef[i], b.coef[i]))

if any coefficient different
then not equal

return 0;
return 1;

}

The third utility is useful for debugging. I modified this routine several times to ei-
ther make it look pretty or be useful. This particular form is very useful for copying into
PARI/gp. I found that comparing my calculation to PARI uncovered many problems. By
writing out each coefficient using the Mod() form along with the power of x it corresponds
with, I can use the result directly as input to gp.
Listing 7.8 shows the core print routine. For debugging multiple items this is useful.

Listing 7.8 Polynomial print routine

void poly_print(POLY a)

{
int i;
mpz_t prm;

mget(prm); modulus for PARI
for(i=a.deg; i>0; i--)
{

if(mpz_cmp_ui(a.coef[i], 0))
don’t print if
coefficient is zero

gmp_printf(''Mod(%Zd, %Zd)*x^%d + '', a.coef[i], prm, i);
}
gmp_printf(''Mod(%Zd, %Zd) '', a.coef[0], prm); don’t print x0

printf(''\n'');
mpz_clear(prm);

}

Listing 7.9 adds a string input, so I can label the output and remind myself what I was
trying to look at.

Listing 7.9 Polynomial print with string

void poly_printf(char *string, POLY a)
{

printf(''%s'', string);
poly_print(a);
printf(''\n''); add blank line for visibility

}

A final utility routine is the generation of random polynomials. This assumes an irre-
ducible polynomial has been set, so the maximum degree is known, then it just creates
random values for each coefficient. Listing 7.10 shows how easy this is to do.

Listing 7.10 Polynomial random value

void poly_rand(POLY *rnd)
{

int i;

rnd->deg = irrd.deg - 1; max degree possible
for(i=0; i<irrd.deg; i++)

mrand(rnd->coef[i]);
all coefficients
are random

}

7.5 Summary
A degree k extension of a finite field p has pk elements.

Polynomial structure includes integer degree and a fixed number of coefficients.

Adding two polynomials of different degree results with the highest degree in output.

Care must be taken with output degree if highest coefficient goes to zero.

Randompolynomials will be one degree less than the irreducible polynomial defining
the field.

7.6 Answer to exercise
7.1) Modulo 127 we find:
37x3 + 96x2 + 7x + 3

14x2 + 83x + 124

37x3 + 110x2 + 90x

8Multiplication of
polynomials explained

This chapter covers
Irreducible polynomials

How irreducible polynomials act like primes

Multiplying two polynomials modulo an irreducible
polynomial

In this chapter we’ll learn what irreducible polynomials are and how they depend on the
underlying prime number modulus. The fundamental takeaway for this chapter is the
multiplication table derived from an irreducible polynomial which defines an extension
field. This table will allow us to compute extension field algorithms efficiently. The code
for this chapter is the core of all the routines in the rest of the book.
As I said in chapter 7 I left out some details about finite field extensions. The first

detail is that the arbitrary symbol x or t is not actually arbitrary. It is the solution to an
irreducible polynomial equation. In this chapter we dive into the detail of what makes a
polynomial irreducible and how that is used like a prime number to create finite fields
over polynomials. The coefficients are reduced modulo a field prime as shown in chapter
7, but the multiplication of two polynomials requires a modulus which is a polynomial.
I will sometimes use the term prime polynomial instead of irreducible polynomial. The
difference in terminology comes from the use of the polynomial as a modulus, where it is

like a prime versus its use as a factor where it is irreducible.

8.1 Defining irreducible polynomials
In this section I define what an irreducible polynomial is. Irreducible polynomials are
fundamental to field extensions. They are also called prime polynomials because they act
like prime numbers in a finite field. The concept is important for the rest of the book.
A reducible polynomial hasmultiple polynomial factors. In this section I want to explain

what is meant by an irreducible polynomial. With a simple example using different prime
numbers we’ll see that the same equation can have different properties. The magic of field
extensions is then shown by setting the irreducible polynomial equal to zero.
A general polynomial can have several factors. An irreducible polynomial has no re-

duction with smaller factors. A simple example of a factorable (or reducible) polynomial
is

x2 − 1 = (x + 1) (x − 1)

The polynomial x2−1 has two factors. This formula is true no matter what the field prime
is. Now let’s take a look at a polynomial which has different factors with different field
primes. The formula

x2 + 13x + 1 mod 1187

has no factors modulo 1187. But the same formula

x2 + 13x + 1 mod 43

factors into
(x + 25)(x + 31) mod 43

The formula x2+13x+1 mod 1187 is irreducible but the same formulamodulo 43 is re-
ducible. So the choice of field prime also determines the choice of irreducible polynomial
for creating a field extension.
In chapter 11, I describe finding good irreducible polynomials for efficient program-

ming. For now, I will just assume we have an irreducible polynomial we can use with our
chosen field prime, so we can proceed with using it as a modulus.
The usefulness of an irreducible polynomial comes from setting it equal to zero. In the

above example we have
x2 + 13x + 1 = 0 mod 1187

so
x2 = −13x − 1.

Multiplying both sides by x we have

x3 = −13x2 − x.

Replacing x2 with −13x + 1 gives

x3 = −13(−13x − 1) − x = −170x − 13 = 1017x + 1174.

where the last step replaces a negative number with its positive modulo equivalent by
adding the prime 1187. So no matter what power we raise x to we end up with a · x + b
with a and b in the range {0..1186}. The total number of field elements will be 11872.
Technically, x is a root of the irreducible polynomial. But since it is over a prime field

there is no integer value which satisfies the equation. The equation itself is the answer we
want. The equation acts exactly like a prime number.

Exercise 8.1
b = x3 + x + 5 mod 131 is irreducble. What is x5 mod b?

8.2 Irreducible polynomial as modulus
In this section I show how an irreducible polynomial becomes a modulus for all other
polynomials.
The general multiplication of polynomials will result in a highest power that is the sum

of the highest powers of the factors. For an extension field of degree k, we only need k − 1
coefficients to create all pk combinations as shown in chapter 7. In this section I show how
we can use an irreducible polynomial as a modulus to maintain the pk field size.
Assume we have a general irreducible polynomial we can write as

tn + an−1tn−1 + an−2tn−2 + · · · + a1t + a0 (8.1)

This is called a monic polynomial because the leading coefficient is 1. To use this as a
modulus we would normally divide formula 8.1 into another polynomial to determine
the remainder. The quotient would be thrown away similar to how we find the remainder
of a number modulo a prime.
There are easier ways to find a modular result especially for multiplication. Setting

equation 8.1 to zero gives

tn = −an−1tn−1 − an−2tn−2 − · · · − a1t − a0 (8.2)

Taking the quotient of all powers of t less than n with the irreducible polynomial will not
change the remainder. But once we hit n and get larger we can use equation 8.2 to reduce
the result back to a sum of powers less than n. If all our polynomials are reduced by the
irreducible polynomial they will all have maximum degree n −1. Multiplying two polyno-
mials that are already modulo a prime polynomial results in polynomial with maximum
degree of 2n − 2 before reduction.
To see this take two polynomials y1 = aktk + · · · + a0 times y2 = bktk + · · · + b0. The

largest possible term is akbkt2k. All the other terms will be of lower power in t. The process
of multiplication only requires using a lookup table for all powers of t from 0 to 2n − 2.
I am going to follow the brute force method described in section 3.1.2 of reference

(Cohen, 2000) . Take the first arbitrary polynomial as

a =
r∑
i=0

ai ti (8.3)

and the second arbitrary polynomial as

b =
s∑
j=0

b j t j . (8.4)

The multiplication of 8.3 with 8.4 then gives

c =
r+s∑
k=0

ckt
k (8.5)

where each coefficient ck is given by

ck =
k∑
i=0

aibk−i . (8.6)

The trick with formula 8.6 is to take ai = 0 when i > r and b j = 0 when j > s.

ar tr + · · · + a0
bsts + · · · + b0

cr+str+s + · · · + c0
× tn−1 · · · t0

c0 → 1
c1 → 1

...
cr+s → wn−1 w0

Σ

dn−1 d0

−an−1 · · · −a0cn →

...

...

...

Figure 8.1 Multiplication modulo a prime polynomial. Polynomial a times polynomial b gives polynomial
c - each coefficient of c is multiplied with the corresponding row in the expansion matrix, then summed to
find the result modulo the prime polynomial.

The computation of equation 8.5 results in powers of t up to tr+s. But we want to reduce
this modulo our irreducible polynomial. The process is diagrammed in figure 8.1.We first
compute each coefficient ck with equation 8.6. This is schematically drawn at the top of
figure 8.1. Those values then multiply the corresponding row k of a precomputed table of
powers tk depicted as the red box. All the columns are then summed with the result to find
c modulo the irreducible polynomial (shown as dk in figure 8.1).

8.3 Building the matrix
In this section I show how the irreducible polynomial is used to construct a matrix of coeffi-
cients that helps withmultiplication. The subroutines based on these ideas are fundamental
to the rest of the book.
Figure 8.1 shows the general idea of our lookup table. In this section I show how we

compute each row, one at a time using the previous row along with the nth row to find the
full matrix.
The powers of t table is a matrix with each row being a power of t and each column a

coefficient in the range of the field prime. Starting with row t0 = 1 and multiplying each
row by t, I create a matrix as shown in table 8.1.
The first column lists the power of t. At row n, I have equation 8.2. Row n + 1 shows

the algebra of multiplying equation 8.2 by t which results in

tn+1 = −an−1tn − an−2tn−1 · · · − a1t2 − a0t

Substitution of 8.2 in the first term gives the results in the table.

Table 8.1 Powers of t expanded modulo irreducible polynomial

coefficient index

power n − 1 n − 2 · · · 1 0

0 0 0 · · · 0 1

1 0 0 · · · 1 0
...

...
... · · ·

...
...

n −an−1 −an−2 · · · −a1 −a0
n + 1 a2n−1 − an−2 an−1an−2 − an−3 · · · an−1a1 − a0 an−1a0
...

...
... · · ·

...
...

2n − 2 cn−1 cn−2 · · · c1 c0

Each subsequent row is then the same process. Multiplying the previous row by t shifts
all the coefficients over and the highest power coefficient is multiplied with row n. Then
the two results are added together.

Exercise 8.2
Create the multiplication table for x4 + x2 + 19 mod 131

8.4 Multiplication code
In this section I describe the subroutines used to allow multiplication modulo a prime
polynomial.

As described in section 8.2 there are two main steps to perform a multiply. Since we
usually pick an irreducible polynomial as a fixed parameter the matrix of coefficients only
has to be computed once. Once created, the table is used every time we multiply two
polynomials modulo that prime polynomial. In this section I show the code for creating
the table of coefficients and then the routine that uses the table to complete a multiply.

8.4.1 Creating the multiplication table

This section shows how the multiplication table is created.
The file poly.c contains the global variables table and poly_degree as shown here:

static mpz_t *table = NULL;
two-dimensional array

static long poly_degree;

The indexing into the array table will be row = power of t with variable i and column
= coefficient index with variable j. I called the routine poly_mulprep because it prepares
the multiplication table.
Listing 8.1 shows the initialization portion of the routine. The input is an irreducible

polynomial. There is no check here that the input is a prime polynomial (remember that
prime and irreducible mean the same thing for our situation with polynomials). I will show
how to do that in later chapters. The input polynomial can be anything, so I will force it
to be monic (meaning the leading coefficient is 1) using a normalization routine. I will
explain normalization in the miscellaneous section later.

Listing 8.1 Multiply table initialization

void poly_mulprep(POLY f)
{

int i, j, tst;
mpz_t tmp;
POLY fnrml;

poly_init(&fnrml);
poly_copy(&fnrml, f);
poly_degree = f.deg;
if(table)

free(table);
multiple calls
require clear before reuse

table = (mpz_t*)malloc(sizeof(mpz_t)*poly_degree*poly_degree*2);
for(i=0; i<2*poly_degree; i++) 2n rows

2n2 coefficientsfor(j=0; j<poly_degree; j++) n columns
mpz_init(table[poly_degree*i + j]);

coefficient automatically zero
mpz_init(tmp);

I first check to see if the table was previously used and free() it if so. It is then set up
to be a 2D array of mpz_t values of size 2n2. Clearly this is too big according to table 8.1
but not by too much.
The next step is easy, just filling in the first n rows of the matrix. Listing 8.2 shows that

operation. Note that each diagonal element has a coefficient set to 1 with the same row and

column index.

Listing 8.2 Multiply table low powers of t

/* set lowest degree terms to x^j */

for(i=0; i<poly_degree; i++)
mpz_set_ui(table[poly_degree*i + i], 1); diagonal coefficent = 1

The last step of initial setup is to copy equation 8.2 to row n. This is shown in listing
8.3. If the input polynomial is monic the poly_normal() routine does nothing.

Listing 8.3 Multiply table row n

poly_normal(&fnrml); force monic
for(j=0; j<poly_degree; j++)
{

mpz_neg(tmp, fnrml.coef[j]);
mpz_set(table[poly_degree*poly_degree + j], tmp);

negative of each
coefficient in nth row

}

The meat of the preparation is filling in the bottom half of the table. The entry at row
n (=poly_degree) is used along with the previous table entry. The outer loop does each
row and the inner loop does each column of the matrix as shown in listing 8.4.

Listing 8.4 Multiply table bottom half

for(i=poly_degree+1; i<2*poly_degree; i++) start at row n+1
{

for(j=1; j<poly_degree; j++)

add xn entry to
rotated coefficients

{

nth row
this column

highest coefficient
previous row

mmul(tmp, table[poly_degree*poly_degree + j], table[i*poly_degree - 1]);
madd(table[i*poly_degree + j], table[(i-1)*poly_degree + j - 1], tmp);

}
mmul(tmp, table[poly_degree*poly_degree], table[i*poly_degree - 1]);
mpz_set(table[i*poly_degree], tmp);

t0 coefficient
special case

}
mpz_clear(tmp);
poly_clear(&fnrml);

As seen in table 8.1 the last column of each row does not have the final term of all
previous columns. That is why the j = 0 term is done separately.

8.4.2 Polynomial multiply

This section shows how the multiplication table is used to compute the product of two
polynomials modulo an irreducible polynomial.
Once the table has been created computing the multiplication of two polynomials mod-

ulo the prime polynomial is a matter of bookkeeping. An easy way to ensure the rule of
equation 8.6 is to create a list of coefficients with twice the maximum possible length and
zero out the coefficients beyond the size of the polynomial. Since initialization does this
automatically I just create coefficient vector arrays which are sized to be the sum of each
input degree. The initialization is shown in listing 8.5.

Listing 8.5 Multiply initialization

void poly_mul(POLY *rslt, POLY a, POLY b)
{

int i, j, m, n;
mpz_t coef[2*MAXDEGREE], acf[2*MAXDEGREE], bcf[2*MAXDEGREE];

space for maximum
possible degree

mpz_t tmp;
initialize space

m = a.deg;
n = b.deg;
for(i=0; i<=n+m; i++)

mpz_inits(coef[i], acf[i], bcf[i], NULL);

actual space
for maximum degree

for(i=0; i<=m; i++)
mpz_set(acf[i], a.coef[i]);

for(i=0; i<=n; i++)
mpz_set(bcf[i], b.coef[i]);

copy over
coefficients
for each
polynomial

mpz_init(tmp);

The next step is to compute the coefficients of equation 8.6. This is shown in listing 8.6.
The inner loop only goes from 0 to i, so we don’t hit negative indexing. A lot of multiplies
are zeros, so this is a point where more code can optimize fewer operations.

Listing 8.6 Multiply initial coefficients

for(i=0; i<=n+m; i++) for each possible coefficient
{

for(j=0; j<=i; j++)
{
mmul(tmp, acf[j], bcf[i - j]);
madd(coef[i], coef[i], tmp);

compute
equation 8.6

}
}

Once all the double length coefficients are computed I use the lookup table to reduce
them down to the size of n − 1. If the sum of the degrees of the two input polynomials is
less than the degree of the prime polynomial the result is simply transferred to the output.
Otherwise, the result degree is set to n − 1 and each result coefficient less than n is copied
to the matching output coefficient. The higher level coefficients are multiplied times the
row in the mulprep table of each power above n, and this is added to the output. The code
is shown in listing 8.7.

Listing 8.7 Multiply table reduction

if(n+m < poly_degree)
{

rslt->deg = n+m;
for(i=0; i<=n+m; i++)

mpz_set(rslt->coef[i], coef[i]);

final degree
less than
prime polynomial

}

combine upper powers
with lower using table

else
{

rslt->deg = poly_degree - 1; maximum possible degree
for(i=0; i<poly_degree; i++)

mpz_set(rslt->coef[i], coef[i]);
lower coefficients
do not change

for(i=poly_degree; i<=n+m; i++) for each degree n and above
{

for(j=0; j<poly_degree; j++) for each coefficient
{

mmul(tmp, coef[i], table[i*poly_degree + j]);
madd(rslt->coef[j], rslt->coef[j], tmp);

multiply row by coefficient
and add to result

}
}

}

The final step is to check that none of the highest level coefficients went to zero. If they
do, the degree of the polynomial result must be reduced. This chunk of code was discov-
ered the hard way when really weird bugs showed up having high degree polynomials with
zero coefficients. The code is shown in listing 8.8.

Listing 8.8 Multiply check maximum degree

while((mpz_cmp_ui(rslt->coef[rslt->deg], 0) <= 0) && (rslt->deg > 0))
rslt->deg--; most significant

coefficient is zero?

and degree is still positive

for(i=0; i<=n+m; i++)
mpz_clears(coef[i], acf[i], bcf[i], NULL);

mpz_clear(tmp); clean up stack
}

8.5 Miscellaneous multiply routines
This section describes routines that are rarely used in the rest of the book. The normaliza-
tion routine is used in chapter 12. The debug routine is presented as an example of how
to find problems in coding.
While the use of a monic polynomial to set up the irreducible polynomial means nor-

malization is not required, the ability to normalize polynomials will come in handy later.
I also want to include a debug routine which I found exceptionally useful. The multiply
table has a specific form which is easy to check when printed out. By using small numbers
I can verify using a hand calculator or PARI/gp that the code is behaving properly.

The normalization routine is shown in listing 8.9. The variable tst compares the in-
dexed coefficient to 1. A result less than zero implies the indexed coefficient is zero, so the
next coefficient is checked. When tst == 0 the indexed coefficient is 1 which implies the
polynomial is already monic. When tst > 0 these two tests fail and the inverse of the
indexed coefficient is computed, and the loop is terminated.

Listing 8.9 Normalization routine

void poly_normal(POLY *a)
{

int i, tst;
mpz_t c;

mpz_init(c);
for(i=a->deg; i>=0; i--)
{

tst = mpz_cmp_ui(a->coef[i], 1); is leading coefficient == 1?
if(tst < 0)
continue; assumes coefficient must be zero

if(!tst) leading coefficient = 1 nothing to do
return;

minv(c, a->coef[i]);
break;

inverse leading coefficient
use on all other coefficients

}
if(i < 0) return; all zeros!
while(i >= 0)
{

mmul(a->coef[i], a->coef[i], c); inverse times all coefficients
i--;

}
}

The inverse of the leading coefficient is then multiplied by all the coefficients. This
forces the leading coefficient to 1 (this is not efficient, obviously) and adjusts all the other
coefficients accordingly.
The final routine is a simple printing function to look at the table as it was generated.

Since the table is not in polynomial format but just a matrix of coefficients all with the
same degree, this is a special routine. Listing 8.10 shows the listing. Once debugged it was
commented out using #if.

Listing 8.10 Debug table routine

#ifdef DEBUG
void poly_debug(int n)
{

int i, j;

for(i=0; i<2*n; i++)
{

for(j=n-1; j>=0; j--)
gmp_printf(''%Zd '', table[i*n + j]);

each row has
all coefficients

printf(''\n'');
}

}
#endif

Included in the repository is a program called test_mod.c which includes a degree 4
polynomial. The initialization of the polynomial is shown in listing 8.11.

Listing 8.11 Test of polynomial routines

C.deg = 4;
mpz_set_ui(C.coef[4], 1);
mpz_set_ui(C.coef[3], 2);
mpz_set_ui(C.coef[2], 1);
mpz_set_ui(C.coef[1], 3);

irreducible polynomial is
x4 + 2x3 + x2 + 3x + 5
mod 7

mpz_set_ui(C.coef[0], 5);
poly_mulprep(C);

The debug routine outputs the table shown in listing 8.12. This is actually the same
data marked off in the box of figure 8.1 and the columns to the right of "power" in table
8.1.

Listing 8.12 Mulprep debug output

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

-2 -1 -3 -5 t4 row
3 6 1 3
0 5 1 6
5 1 6 0

As you can see the first four lines are the 1’s on the diagonal, then we have the negative
of each coefficient on the t4 row followed by the shifted and added rows for the last three
row entries. The middle row is negative because the modulus was not applied. In the last
3 rows, all calculations are done modulo 7, so they are always positive.

8.6 Summary
An irreducible polynomial over a finite field is defined as a polynomial having no
other polynomial factors.

The variable defining an irreducible polynomial is a root of the polynomial when set
equal to zero.

A matrix of coefficients with k columns and 2k rows allows the multiplication of any

two polynomials modulo an irreducible polynomial. This lookup table is only com-
puted once for an irreducible polynomial.

A degree n polynomial multiplied by a degree m polynomial has intermediate result
of degree n + m. The degrees higher than k are reduced by multiplying the coeffi-
cient at that power by all the coefficients in the corresponding row of the matrix and
summed to the final result which has at most k coefficients.

A monic polynomial has a leading coefficient of 1. All irreducible polynomials used
for field extensions are monic.

Normalization of a polynomial inverts the leading coefficient and multiplies that with
all coefficients leaving a monic polynomial.

The term prime polynomial means the same as the term irreducible polynomial be-
cause working with a polynomial as a modulus is the same concept as working with
a prime number as a modulus for integers.

Chapter Bibliography
Cohen, Henri. 2000. A Course in Computational Algebraic Number Theory. Berlin, Heidel-
berg: Springer-Verlag. 86

8.7 Answers to exercises
8.1) x3 = −x − 5 so x4 = −x2 − 5x and x5 = −x3 − 5x2. Putting x3 back in we get
x5 = −5x2 + x + 5 = 126x2 + x + 5.
8.2) The first four rows are simple: 1→x→x2→x3. Row 5 is x4 = −x2 − 19 and row
6 is just a left shift x5 = −x3 − 19x. The last row requires the use of row 5 because
x6 = −x4 − 19x2. This becomes x6 = x2 + 19 − 19x2 = −18x2 + 19. So the full table
of coefficients is

3 2 1 0
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
4 0 -1 0 -19
5 -1 0 -19 0
6 0 -18 0 19

9Computing powers of
polynomials

This chapter covers
Exponentiation by expansion of an integer

A square and multiply algorithm to compute
powers of polynomials

Examples for arbitrary powers of polynomials

Examples for field prime powers of polynomials

In this chapter we use the code from chapters 7 and 8 to compute exponentials of poly-
nomials modulo a prime polynomial. These routines are important for computing elliptic
curve point pairings that underlie the routines shown in chapters 18 and 19.
Now that we know how to multiply polynomials modulo a prime polynomial, we can

compute powers of polynomials. We need this ability to find irreducible polynomials and
to find pairing friendly curves. In chapter 8 we found that powers of a variable modulo the
irreducible polynomial is limited to one less than the degree of the irreducible polynomial.
Similar to howwe used the double and addmethod to computemultiplication of a point on
an elliptic curve, we are going to use the square and multiply method to compute powers
of a polynomial modulo a prime polynomial. This is exponentially faster than the method
used in chapter 8.
The next interesting step after computing a general power is to take xp modulo the

irreducible polynomial where p is the field prime. This will eventually connect back to the
field extension when we compute xp

j
.

9.1 Using square and multiply to rapidly compute powers
In this section I present an algorithm to rapidly compute high powers of polynomials
modulo a prime polynomial.
Generating large powers of x using the method of chapter 8 going one power at a time

is exceptionally time-consuming. Especially if the power is a 160 bit number. We can
more easily get there by expanding the exponent in powers of two. Each power of two is a
squaring operation. We write this as

xk = xk0+2(k1+2(k2+···+2k j)))

where k j is the most significant bit of k and k0 is the least significant bit.
Figure 9.1 shows the full xk power algorithm. The inputs are polynomial x and power

k. The result is r = xk modulo the irreducible polynomial.

input polynomial x
power k

b = number bits in k
r = x

r ← r2

is b j set?

output r

b − −

r ← xr

b = 0?

no

yes

no

yes

square & multiply
subroutine

Figure 9.1 Polynomial square and multiply algorithm which will be used in chapter 12 to compute
square roots

The most significant bit is always set, so we start with x1 = xk j and then square to get
x2k j . Multiplying by xk j−1 gives x2k j+k j−1 . If bit k j−1 is 0, then that is simply multiplying by
1 which means we skip that step.
Proceeding this way through the entire integer k requires j squarings and Hamming

weight multiplies (minus 1). Even if the variable x is a polynomial in t the same process

applies. Each step is done modulo the irreducible polynomial using the multiply routine
from chapter 8.
In chapter 13 and beyond I will use a tiny example to illustrate some of the elliptic

curve pairing properties. The irreducible polynomial in that example is x2 + x +3mod 43.
Let’s see what the square and multiply routine gives when we take x5 modulo x2 + x + 3.
The exponent is 5 which in binary is 101. Themost significant bit always being set (= 1),

we start with x. We then square this to get x2. Now we have to replace x2 with −x−3. The
bit in the exponent is clear (= 0), so we do not multiply by x this round.
−x − 3 squared is the same as (x + 3)2 = x2 + 6x + 9 = −x − 3 + 6x + 9 = 5x + 6. The last

bit is set, so we multiply by x to get 5x2 + 6x = 5(−x − 3) + 6x = x − 15 = x + 28. Thus, we
have x5 modulo x2 + x + 3 is x + 28 (whose coefficients are modulo 43). The lookup table
makes this process far more efficient, especially when we get to very large coefficients.

Exercise 9.1
Using the irreducible polynomial c = x4 + x2 + 19 mod 131 and the table
found from exercise 8.2, find x17 mod c. Hint: be careful when squaring.

9.2 Polynomial powers code for general exponents
In this section I implement the code for computing powers of polynomials.
As shown in figure 9.1, there is a single stage square and multiply subroutine within

dotted lines. This will be useful in a later routine for field prime exponents. In this section
I explain how to compute powers of polynomials modulo an irreducible polynomial with
an arbitrary exponent.
I break up the power routine into two simple subroutines
single stage square and multiply, and

general polynomial power function.
Shown in listing 9.1 is the inner squaring routine. This takes an input called flag which
is the next bit in the integer power. If the flag is clear the output is simply x2. If the flag is
set the input a is used to compute ax2 for the result.

Listing 9.1 Square and multiply

void poly_sqm(POLY *x2, POLY x, POLY a, int flag)
{

POLY tmp;

poly_init(&tmp);
poly_mul(&tmp, x, x); compute x2

if(flag)
poly_mul(x2, tmp, a); output is ax2 with flag set

else
poly_copy(x2, tmp); output is x2 with flag clear

poly_clear(&tmp);

}

The routine poly_mul() assumes the irreducible polynomial table has already been ini-
tialized. So the operations in listing 9.1 are automatically done modulo the chosen prime
polynomial.
The next routine implements the full exponentiation process. The input polynomial g

is taken to the power k. Listing 9.2 shows how the variable bitcnt acquires the number
of bits in the exponent. As with the double and add routine this is decremented by two for
the same reason: the most significant bit is already taken care of and the base of counting
is 1.

Listing 9.2 Polynomial exponentiation

void poly_pow(POLY *h, POLY g, mpz_t k)
{

int bitcnt, bit;
POLY a;

poly_init(&a);
poly_copy(&a, g); start with g1

bitcnt = mpz_sizeinbase(k, 2) - 2; number of bits left to do
while(bitcnt >= 0)
{

bit = mpz_tstbit(k, bitcnt);
poly_sqm(&a, a, g, bit);
bitcnt--;

square at this position
and multiply if
bit set

}
poly_copy(h, a); allow operation in place
poly_clear(&a);

}

For each bit in the field prime the routine calls the square and multiply routine with the
result and initial input, overwriting the result. The end of the loop happens when bitcount
== 0 and the last bit determines if there is a final multiply or not.

9.3 Explicit polynomial example
In this section I give an example of what to expect from powers of polynomials modulo a
prime polynomial.
The whole point of cryptographic security is to work with very large numbers. However,

to see what is going on it is a lot easier to work with very small numbers. The number 43
is a nice small prime and the irreducible polynomial x2 + x + 3 mod 43 has 432 = 1849
elements. In this section I use this irreducible polynomial to examine what happens when
values are taken to a power modulo x2 + x + 3. This tiny example is used in many places
throughout the book.
Listing 9.3 shows a simple test program to exercise routine poly_pow(). The random

number selection is always the same because the state of the program is the same every

time, but for this it doesn’t matter.

Listing 9.3 Example program for poly_pow()

#include ''poly.h''

#define PRIME 43

int main(int argc, char *argv[])
{

POLY r, tst, pow;
mpz_t n, pk2;
int ck;

if(argc < 2)
{

when I forget how to use program

printf(''Use: ./poly_exp_test <exponent>\n'');
exit(-1);

}
mpz_init_set_ui(n, PRIME);
minit(n); setup field prime
mpz_init_set_str(pk2, argv[1], 10);
gmp_printf(''pk2= %Zd\n'', pk2);
poly_init(&r);
r.deg = 2;
mpz_set_ui(r.coef[0], 3);
mpz_set_ui(r.coef[1], 1);
mpz_set_ui(r.coef[2], 1);

irreducible
polynomial
x2 + x + 3

poly_mulprep(r); setup polynomial multiply table
poly_printf(''r = '', r);
poly_init(&tst);
poly_init(&pow);
tst.deg = 1;
mrand(tst.coef[1]);
mrand(tst.coef[0]);

random
coefficients

poly_pow(&pow, tst, pk2);
poly_printf(''taking '', tst);
printf(''to power %s\n'', argv[1]);
poly_printf(''gives '', pow);

use PARI/gp
to check code

}

Given the input power 25 the output is

pk2= 25
r = Mod(1, 43)*x^2 + Mod(1, 43)*x^1 + Mod(3, 43)

taking Mod(11, 43)*x^1 + Mod(3, 43)

to power 25
gives Mod(3, 43)*x^1 + Mod(26, 43)

Now let’s see what happens when the input power is 1848:

pk2= 1848
r = Mod(1, 43)*x^2 + Mod(1, 43)*x^1 + Mod(3, 43)

taking Mod(11, 43)*x^1 + Mod(3, 43)

to power 1848
gives Mod(1, 43)

The result is 1! This is exactly what we expect from Fermat’s Little Theorem ap
2−1 = 1.

In this case the total number of elements is 432 = 1849 so p2 − 1 = 1848. In a field
extension we operate with powers of the field prime.

9.4 Powers of field prime
In this section I give a routine to compute polynomials to powers of the field prime. This
is used in chapter 11 to find irreducible polynomials.
Taking a polynomial to powers of the field prime means we have multiple levels of

exponents. The formula is

xp
j
= x

j︷ ︸︸ ︷
p · p · · · p .

This is a very useful function all by itself which is shown in listing 9.4. The only difference
between the general form in listing 9.2 and the special form in listing 9.4 is no exponent
for input because the field prime is the exponent.

Listing 9.4 Polynomial to field prime power

void poly_xp(POLY *xp, POLY x)
{

int i, bitcnt, bit;
mpz_t prm;

mget(prm);
power is field prime

bitcnt = mpz_sizeinbase(prm, 2) - 2; number of bits left to do
poly_copy(xp, x); start with x1

while(bitcnt >= 0)
{

bit = mpz_tstbit(prm, bitcnt);
poly_sqm(xp, *xp, x, bit);
bitcnt--;

square and
multiply each
bit position

}
mpz_clear(prm);

}

By sending the previous output back into the routine again we obtain a way to compute

(xpm)p = xpm+1 .

This will be useful in later routines where we are looking for irreducible polynomials.
There is one more useful routine shown in listing 9.5. This takes a polynomial to the

power of (p −1)/2. This is a miscellaneous routine that will be useful when hunting down

elliptic curves for pairings. Since the field prime is always odd, p − 1 is always even so the
call to mpz_divexact() always works.

Listing 9.5 Polynomial to half field prime power

void gpow_p2(POLY *h, POLY g)
{

mpz_t prm;

mget(prm);
mpz_sub_ui(prm, prm, 1);
mpz_divexact_ui(prm, prm, 2);

compute
(p − 1)/2

poly_pow(h, g, prm);

return g (p−1)/2
mpz_clear(prm);

}

9.5 Summary
The square and multiply algorithm computes powers of x modulo a prime polyno-
mial. The variable x can also be a polynomial and the same algorithm applies. The
square and multiply algorithm is exponentially faster than a straightforward multipli-
cation algorithm.

Exponentiation uses the square and multiply routine for every bit in a power. Every
bit forces a squaring operation, only set bits force a multiply operation.

Fermat’s Little Theorem applies to field extensions. For prime polynomial f of de-
gree k

xp
k−1 � 1 mod f .

This is used to find square roots and irreducible polynomials.

Computing xp
i
is an important subroutine for finding irreducible polynomials.

9.6 Answer to exercise
9.1) 17 in binary is 10001. Starting with x1 we square to get x2. The second bit
(from the left) is clear, so we just square again to get x4 = −x2 − 19. The third bit
is also clear so there is no multiply by x. Now life gets interesting because we square
again to get x8 = x4 + 38x2 + 99. Substitution for x4 leaves 37x2 + 80. We square
again to find x16 = 59x4 + 25x2 + 112. Multiplying x4 by 59 amounts to subtraction
of 59x2 + 73 from 25x2 + 112. The result is −34x2 + 39. The last bit is set so we
multiply by x to get the final result: x17 = −34x3 + 39x = 97x3 + 39x mod 131.

10Description of polynomial
division using Euclid’s

algorithm

This chapter covers
Quotient and remainder from Euclid’s algorithm

Greatest common divisor of polynomials

Inversion modulo an irreducible polynomial

In this chapter I cover polynomial division which is required to compute the point addition
algorithm for points on a field extension elliptic curve.
To compute elliptic curve formulas over finite fields consisting of polynomials, we started

in chapters 7 through 9 working with polynomials performing addition andmultiplication.
In this chapter we are going to dive into division so we can compute slopes of lines in an
extension field.Working with an irreducible polynomial is similar to working with a prime
number in terms of fields. Inversion modulo an irreducible polynomial is similar to inver-
sion modulo a prime number. In this chapter I’ll cover Euclid’s division algorithm applied
to polynomials. Using that algorithm I’ll then look at the greatest common divisor function.
The greatest common divisor (gcd) of polynomials will be used to help us find irreducible
polynomials in chapter 11.
The last algorithm of this chapter covers inversion modulo a prime polynomial. Inver-

sion is really the extended Euclidean algorithm, but we don’t need the quotient portion. I
then show that division of two polynomials modulo an irreducible polynomial is inversion
followed by multiplication.

10.1 Euclid’s algorithm and gcd
In this section I describe Euclid’s algorithm applied to polynomials. This implementation
of Euclid’s algorithm gives a quotient and remainder for a general division application. To
find slopes on an elliptic curve over an extension field requires an inverse modulo an irre-
ducible polynomial. In computing inverses modulo a prime polynomial the denominator
is an irreducible polynomial, so there will always be a remainder. For the greatest common
divisor (gcd) function, only the remainder will be useful. The gcd function will be used to
find irreducible polynomials. I give an example of Euclid’s division algorithm using very
simple polynomials so each step can be seen.
The basic idea behind division using Euclid’s algorithm is to find the quotient q and

remainder r from the division of a/b. I’m going to use the method 3.1.1 in reference (Co-
hen, 2000) . In the following description lc() means leading coefficient and deg () means
degree of.

input polynomial a, b

set rem = a
quot = 0

s =
lead coef(rem)
lead coef(b)

is deg(rem)
< deg(b)?

return
a/b =rem

index = deg(rem) - deg(b)

index coef(quot) ← s

rem← rem - s · b · xindex

no

yes

Figure 10.1 Polynomial Euclid’s algorithm which is the guts of inversion in elliptic curve pairing algo-
rithms

Figure 10.1 describes Euclid’s algorithm for polynomials. The remainder is set to the
numerator (a) and the degree of the remainder is compared with the degree of the de-
nominator (b). If the remainder is lower degree than b the routine is done because the
remainder is what is left after division. The process then goes one coefficient at a time
which is similar to how division of polynomials is done by hand. After computing the di-

vision of the leading coefficients the correct index position of the quotient is set and the
remainder is reduced by s times the denominator b.
In more mathematical detail we start by initializing the remainder and quotient:

r ←− a, q ←− 0 (10.1)

Then loop while deg (r) >= deg (b)

s ←− lc(r)
lc(b)

q [deg (r) − deg (b)] ←− s
r ←− r − s · b · xdeg (r)−deg (b)

(10.2)

Line 10.1 initializes the remainder to the numerator and the quotient to zero. The first
two lines in 10.2 compute the leading coefficient of the quotient for the leading degree in
the quotient result. The last line in 10.2 reduces the degree of r. This loop continues until
the degree of r is less than the degree of b.
The second line in 10.2 places the value of s in the variable q at index deg(r) - deg(b).

This makes sense because the leading coefficient of r is at index deg(r) and the leading
coefficient of b is at index deg(b) so the result of their division must be at the difference of
the degrees.
As a concrete example of Euclid’s algorithm, let’s look at input polynomials

a = x3 + 2x2 + 3x + 1

and
b = 5x3 + x + 6

with all coefficients modulo 7. Initialize

r = a = x3 + 2x2 + 3x + 1

and
q = 0

Then we have the value of s is
s =

1
5
mod 7 = 3

(because 5 × 3 = 15 = 1 mod 7). Since the deg (r) = deg (b) The value of q is

q = s = 3

We then compute

r ← r − s · b = x3 + 2x2 + 3x + 1 − 3(5x3 + x + 6) = 2x2 + 4

At this point the algorithm halts because the degree of r is less than the degree of b.
This example of

x3 + 2x2 + 3x + 1
5x3 + x + 6

= 3 + 2x2 + 4
5x3 + x + 6

is from the program test_mod.c used to test the subroutines.

Exercise 10.1
Find quotent and remainder from 13x7+14x3+19x+6

x5−x2+17 mod 43.

The greatest common divisor (gcd) is useful for finding factors of polynomials. Using
Euclid’s division algorithm finding the gcd between two polynomials is very easy. I modi-
fied the routine 3.2.1 of (Cohen, 2000) to include the following initialization.

if a = 0 return b (10.3)

if b = 0 return a

aw ←− highest degree polynomial (a, b)
bw ←− smallest degree polynomial (a, b)

If one of the arguments is zero, the greatest common divisor of both arguments is the
other argument. If both arguments are zero, the routine returns zero by definition. The
reason for this is that everything divides zero. That is

0
b
= 0.

My first reaction to this was a headache. But really it’s "obvious" because 0 is smaller than
every possible number and any number not 0 can divide 0, so the greatest divisor is the
non-zero number.
The main loop of the gcd routine is then

while deg (bw) > 0
r ←− aw/bw
aw ←− bw
bw ←− r

(10.4)

The first line in 10.4 is the remainder from Euclidean division. The assumption is
that aw has larger degree than bw otherwise the remainder degree is negative which would
terminate the loop on the first step. The following two steps keep the reduction process
going.

Exercise 10.2
What is the GCD of (x +14)(x2 +22x +8) mod 23 and (x +4) (x +19)(x2 +
22x + 8) mod 23?

10.2 Inversion and division
In this section I describe Euclid’s extended algorithm applied to polynomials. These algo-
rithms are used to compute point addition on field extension elliptic curves.

As shown in chapter 3, the formulas for adding points over an elliptic curve requires
inversion modulo a field prime. The same formula applies to extension fields. There are
more complex algorithms involved with pairings of points on extension field elliptic curves
which also use inversion and division of polynomials modulo a prime polynomial.
Inversion modulo an irreducible polynomial uses the same steps as the extended Eu-

clidean algorithm. In this section I go over these steps and then use a very simple example
to show how each step appears for a real computation. Elliptic curve algorithms use divi-
sion, so I also describe how a division subroutine is created from the inversion routine.
Inversion of polynomials is done with respect to a given irreducible polynomial. To

compute a polynomial inverse I use most of the extended Euclidean algorithm described
in section 3.2 of reference (von zur Gathen & Gerhard, 1999) . The initialization step is

v ←− irrd
u ←− b
r ←− 0
w ←− 0
q ←− 0
t ←− 0

y0 ←− lc(b)

(10.5)

where irrd is the irreducible polynomial of the field, y0 means coefficient of t0 in polyno-
mial y (the constant coefficient) and lc(b) means leading coefficient of input polynomial
b.
We then perform the loop

(q , r) = v/u
𝜌 = 1/lc(r)

r ←− normal(r)
t ←− 𝜌(w − qy)

w ←− y
y ←− t
v ←− u
u ←− r

until r = 1

(10.6)

This loop uses both the quotient and remainder from Euclid’s algorithm. The third line
uses the poly_normal() routine from chapter 8. At the termination of the loop we will
have r = 1. At that point the variable t is the inverse. The reason this works is that the
extended Euclidean algorithm maintains t · b = r. On each step t is increased and r is
decreased until r = 1 which is the gcd(irrd , b). Then we have

t · b = 1 mod irrd.

Thus t is the inverse of b modulo the irreducible polynomial.
When doing general polynomial equations modulo an irreducible polynomial the for-

mula will include division. This is easy to write as a formula, but not so easy to execute
directly. A simple subroutine is all it takes to convert

a
b
= a · 1

b
(10.7)

It just makes life easier to have division modulo a prime polynomial as a single call.
For an example I will use the irreducible polynomial

x2 + x + 3 mod 43

to find the inverse of
x + 17

Following the initialization step in 10.5 we have

v = x2 + x + 3
u = x + 17

r = w = q = t = 0

y = 1

The steps in 10.6 give us
compute quotient q and remainder r from

(q , r) = v/u = x − 16, 17

compute 𝜌 from 𝜌 = 1/lc(r)
𝜌 = 1/17 = 38

compute r from
r = normal(17) = 1

compute t = 𝜌(w − qv)

t = 38(0 − (x − 16)1) = −38x + 6

transfer w, y, v, and u

w = 1

y = −38x + 6
v = x + 17
u = 1

Since r = 1 the loop ends with t as our answer. Adding 43 to the leading coefficient in
t to make it positive, we find

1
x + 17 = 5x + 6 mod x2 + x + 3

10.3 Euclid’s algorithm code
In this section the subroutine to compute Euclid’s algorithm for polynomials is described.
Euclid’s algorithm is a low-level division routine required to create a polynomial inver-

sion routine. There are a few subroutines where we require both the quotient and remain-
der of a division. The subroutine to accomplish this is shown in listing 10.1.

Listing 10.1 Polynomial Euclid algorithm

void poly_euclid(POLY *q, POLY *r, POLY a, POLY b)
{

int i, j;
mpz_t s;
POLY tmp;
int k;

poly_copy(r, a);
q->deg = 0;
mpz_set_ui(q->coef[0], 0);

r = a
q = 0

if(b.deg > a.deg) return; if b > a then all done

mpz_init(s);
poly_init(&tmp);
q->deg = a.deg - b.deg;

quotient
degree

while((r->deg >= b.deg) && r->deg)

degree of r
> b and not zero

{
j = r->deg - b.deg; index of coefficient

perform division of
each coefficient

mdiv(s, r->coef[r->deg], b.coef[b.deg]); s =
lc (r)
lc (b)

mpz_set(q->coef[j], s);
for(i=0; i<=b.deg; i++)

mmul(tmp.coef[i + j], s, b.coef[i]);

compute
s · b

tmp.deg = r->deg;
poly_sub(r, *r, tmp); reduce r by s · b

}
mpz_clear(s);
poly_clear(&tmp);

}

The initialization assumes q may have a previous value, so I force q to zero. If the
degree of a is less than the degree of b then the remainder is a as it should be. The degree
of the quotient is the difference in degrees of numerator and denominator. The loop then
executes the formulas described in equation 10.2. When the degree of r is less than the
degree of b the loop terminates. The extra check for degree of r not being zero comes
from an edge case when b is a degree zero polynomial (a constant).

10.4 Gcd code
The code to compute the greatest common divisor between two polynomials is shown in
this section..

The gcd algorithm uses the remainder from Euclidean division to find the common
factors between two polynomials. When there are no common factors, we have found an
irreducible polynomial. The initial checks take up more lines of code than the main loop.
Listing 10.2 shows how equations 10.3 are implemented. The subscript w was used to
indicate "working" so the working value of aw is always the larger degree polynomial.

Listing 10.2 Gcd initialization

void poly_gcd(POLY *d, POLY a, POLY b)
{

POLY aw, bw, q, r;

poly_init(&aw); set aw = 0
if(poly_cmp(a, aw))
{

poly_copy(d, b);
poly_clear(&aw);

input a = 0
output d = b

return;
}
poly_init(&bw); set bw = 0
if(poly_cmp(b, bw))
{

poly_copy(d, a);
poly_clear(&aw);
poly_clear(&bw);

input b = 0
output d = a

return;
}
if(a.deg >= b.deg)
{

poly_copy(&aw, a);
poly_copy(&bw, b);

a > b
good order

}
else
{

poly_copy(&aw, b);
poly_copy(&bw, a);

b > a
swap order

}

After initializing the quotient and remainder variables the main loop and termination
of the gcd routine is shown in listing 10.3.

Listing 10.3 Gcd main loop

poly_init(&q);
poly_init(&r);
while(bw.deg > 0)

loop until
bw == 0

{
poly_euclid(&q, &r, aw, bw);

quotient and remainder
from aw /bw

poly_copy(&aw, bw); aw = bw

poly_copy(&bw, r); bw = r
}
if(!mpz_cmp_ui(bw.coef[0], 0))

poly_copy(d, aw);
if bw == 0
aw holds result

else
poly_copy(d, bw);

otherwise
bw is result

poly_clear(&r);
poly_clear(&q);
poly_clear(&bw);
poly_clear(&aw);

}

The loop continues until the degree of bw goes to zero. At that point the value of bw co-
efficient to t0 is checked to see if it is zero. If it is, then all of aw is the gcd result. Otherwise,
the result is bw which will be 1 if there are no common factors, or it could be a constant
value.

10.5 Inversion modulo a prime polynomial
In this section the code which computes the inverse of a polynomial is described.
To compute the slope between two points on a field extension curve we need a denomi-

nator of the sum of the y values of the two points (equation 3.2). As with a field prime, we
first compute the inverse modulo the prime polynomial.
The inversion routine uses both the quotient and remainder from Euclid’s algorithm.

The initialization follows equations 10.5 and the main loop follows equations 10.6. The
variable t is the answer we seek and all the other variables keep track of previous quotients
and remainders to allow the reduction process to proceed.
Listing 10.4 shows the initialization process for inversion. Every variable in equation

group 10.5 is created and automatically set to zero. The nonzero variables are each set
to their initial condition. Note that the value of one is a polynomial of degree 0 with the
coefficient of t0 set to 1.

Listing 10.4 Inversion initialization

void poly_invert(POLY *a, POLY b)
{

mpz_t rho;
POLY r, u, q, one, t, w, tmp, y, v;
int done, i;

mpz_init(rho); 𝜌 = 0
poly_init(&v);
poly_copy(&v, irrd);

v = irrd

poly_init(&r); r = 0
poly_init(&u);
poly_copy(&u, b);
poly_normal(&u);

u = b

poly_init(&w); w = 0

poly_init(&q); q = 0
poly_init(&one);
mpz_set_ui(one.coef[0], 1);

one = 1 · t0

poly_init(&t); t = 0
poly_init(&y);
minv(y.coef[0], b.coef[b.deg]);

y =
1

lc (b) · t
0

In listing 10.5 the variable done is used to check if the remainder goes to 1. The inverse
of the leading coefficient of r is kept as a separate value in rho and then r is normalized
using routine 8.9. To compute the 4th line in equation 10.6 the variable tmp holds q · y, so
it can be subtracted from w. Every coefficient in t is then multiplied by rho. The rest of the
loop is copying new values to old ones and then checking to see if the loop is finished.

Listing 10.5 Inversion main loop

poly_init(&tmp);
done = 0;
while(!done)

finished when
r == 1

{
poly_euclid(&q, &r, v, u);

quotient and remainder
from v /u

minv(rho, r.coef[r.deg]); 𝜌 = 1/lc (r)
poly_normal(&r); r *= 𝜌

poly_mul(&tmp, q, y);
poly_sub(&t, w, tmp);

t = w - q · y

for(i=0; i<=t.deg; i++)
mmul(t.coef[i], t.coef[i], rho); t *= 𝜌

poly_copy(&w, y);
poly_copy(&y, t);
poly_copy(&v, u);
poly_copy(&u, r);

w = y
y = t
v = u
u = r

done = poly_cmp(r, one); is r == 1?
}
poly_copy(a, t); output t as result
mpz_clear(rho);
poly_clear(&r);
poly_clear(&u);
poly_clear(&q);
poly_clear(&one);
poly_clear(&t);
poly_clear(&w);
poly_clear(&tmp);

clean up stack

poly_clear(&y);
poly_clear(&v);

}

There are a lot of variables in this routine, so the end is simply saving the final result to
the expected output location and clearing out all the variables to prevent memory leaks.

10.6 Division modulo a prime polynomial
In this section inversion code is extended to act as division of two polynomials.
The last routine in this chapter is very simple. The division routine is shown in listing

10.6. The variable q holds the inverse of input c. The input b is multiplied by q and we
are done. This is exactly the same process as the mod_div() and mdiv() routines from
chapter 2. The main difference here is the lack of check for division by zero. Eventually
mod_div() will be called in poly_euclid() and that error will be exposed. The program
will halt and the long process of debugging will begin.

Listing 10.6 Division modulo irreducible polynomial

void poly_div(POLY *a, POLY b, POLY c)
{

POLY q;
int i;

poly_init(&q);
poly_invert(&q, c);
poly_mul(a, b, q);

a =
1
c
· b

poly_clear(&q);
}

10.7 Summary
Euclid’s division algorithm applies to polynomials over a finite field as well as to inte-
gers.

The greatest common divisor (gcd) function between two polynomials returns the
other argument if one input is zero.

The gcd of two polynomials uses the remainder from Euclidean division.

The gcd code is used to find irreducible polynomials.

Inversion modulo a prime polynomial uses the Extended Euclidean algorithm to
solve the equation

A · t � 1 mod f .

The polynomial t = 1/A.
Division of polynomials is interpreted as inversion then multiplication.

All the routines in this chapter are essential for computing pairing algorithms in part
3.

Chapter Bibliography
Cohen, Henri. 2000. A Course in Computational Algebraic Number Theory. Berlin, Heidel-
berg: Springer-Verlag. 106, 108

von zur Gathen, Joachim, & Gerhard, Jürgen. 1999. Modern Computer Algebra. 1 edn.
Cambridge University Press. 109

10.8 Answers to exercises
10.1) Initialize with rem = 13x7 + 14x3 + 19x + 6 and quot = 0.
Then s = 13, index = 2 and quot = 13x2

s · b · x2 = 13x7 − 13x4 + 6. Subtracting from rem gives
rem = 13x4 + 14x3 + 19x
Final result is quotient = 13x2 and remainder = 13x4 + 14x3 + 19x mod 43
10.2) x2 + 22x + 8. When multiplied out it would be gcd(x3 + 13x2 + 4x + 12, x4 +
22x3 + 2x2 + 16x + 11). This becomes tedious without a computer.

11Creating irreducible
polynomials

This chapter covers
Finding irreducible polynomials

Code for finding irreducible polynomials

Computing pairings of points on elliptic curves over field extensions requires an irreducible
polynomial. The irreducible polynomial defines the specific values of the field extension.
In this chapter, the details of how to create an irreducible polynomial are described.
In chapter 8 I defined an irreducible polynomial over a finite field as a polynomial with

coefficients taken modulo a prime number which has no other factors. A field extension
of degree k will have a defining irreducible polynomial of degree k. There are a great
many irreducible polynomials one can choose to define a field extension. The simplest
polynomial with the highest probability of existence is the trinomial for any field prime.
I first describe the theory for finding irreducible trinomials and then explain the code for
finding irreducible trinomials.

11.1 Basic theory of irreducible polynomials
In this section I cover the theory behind construction of irreducible polynomials. It’s ac-
tually more like discovering because the process involves trial and error. I discuss a few
theorems that we can take advantage of and then explain an algorithm which will find

irreducible polynomials we can use.
I have found reference (Lidl & Niederreiter, 1997) to be very useful for understand-

ing finite fields over polynomials and finite field extensions. Reference (von zur Gathen &
Gerhard, 1999) is very useful for algorithms associated with field extensions and polyno-
mials. Both of these books prove the statement that the product of all monic irreducible
polynomials whose degrees divide n is xq

n − x. That is a very powerful thing to know.
Theorem 3.84 in (Lidl &Niederreiter, 1997) says: for a prime n, the trinomial xn+x+a

will be irreducible under certain conditions. Rather than compute those conditions I’ll use
Ben-Or’s algorithm explained in section 14.9 of (von zur Gathen & Gerhard, 1999) to
test for irreducible polynomials.
For purposes of security I am going to choose prime field extensions for values of n.

Alternatives for efficiency using small factors for n are described as towers in reference
(Koblitz & Menezes, 2005) . An example would be n = 15 where you can have a polyno-
mial of 3 terms be coefficients for a polynomial with 5 terms:

(s52t2 + s51t + s50)x5 + (s42t2 + s41t + s40)x4 + · · · (11.1)

choose random
monic polynomial
f = xn + · · · + a0

i = 1

gi ←− gcd(xq
i − x , f)

gi ≠ 1?

i++

i > n/2?

return f

no

yes

yes

no

Figure 11.1 Ben-Or’s algorithm for finding irreducible polynomials using trial and error

Over a finite field q = pn Ben-Or’s algorithm is shown in figure 11.1. This uses the above
statement that all monic irreducible polynomials whose degree divides i are contained in

xq
i − x. We search for polynomials of degree 1 through n/2 which could be factors in a

chosen polynomial.
As an example of how the algorithm works, take the irreducible polynomial from chap-

ter 8: f = x2 + 13x + 1 mod 1187. We first set i = 1 and compute the gcd(x1187 − x , f).
Pari/gp gives the constant 849, which can be normalized to 1. Since n = 2 we are actually
done. But to double-check, I used PARI/gp to find gcd(x11872 − x , f). The result was f ,
which is to be expected since x2 + 13x + 1 must be one of the factors of x11872 − x by the
theorems mentioned at the start of this section.
Ben Or’s algorithm starts by choosing a random polynomial. The idea here is that ir-

reducible polynomials are uniformly distributed over all possible coefficients. The power
index is initialized with i = 1. The main step is to check if there are any common factors
between polynomial f and xq

i − x. If there are, then f has factors so it can not be irre-
ducible. We only need to search i up to n/2 because any factor larger was found by its
smaller companion.
By combining the theorem for prime degree with Ben-Or’s algorithm the random

choice can be replaced with a counter on the coefficient to the constant term (x0) of poly-
nomial f .
According to Theorem 3.86 in (Lidl & Niederreiter, 1997) the density of irreducible

polynomials goes as q/n where q = pn is a field extension and n is the degree of the irre-
ducible polynomial we seek. For our case, p is over 160 bits and n is four to six bits. We
expect to find an irreducible polynomial very quickly!

Exercise 11.1
Find the first irreducible trinomial for x7 + x+b mod 29. Hint: use PARI/gp
to factor

Mod(1, 29)*x^7 + Mod(1, 29)*x + Mod(b, 29)

11.2 Code for finding irreducible polynomials
In this section I describe one way to deal with using and finding irreducible polynomials. I
first introduce storage and methods for setting and retrieving values. Then I dive into the
execution of Ben Or’s algorithm to find an irreducible trinomial.
Because a field extension requires a fixed irreducible polynomial as a reference, I create

two variables as globals in the poly.c file. The variable irrd has been seen before. The
variable ptok is q = pk in Ben-Or’s algorithm. The variables are shown in listing 11.1.

Listing 11.1 Irreducible static variables

static POLY irrd;
irreducible basis polynomial
(degree k)

static mpz_t ptok; pk

Listing 11.2 shows how the irreducible polynomial is set into the variables in listing
11.1. The input polynomial i is placed into the static variable irrd. The degree of poly-

nomial i is used to compute q = pk.

Listing 11.2 Irreducible set function

void poly_irrd_set(POLY i)
{

poly_init(&irrd);
poly_copy(&irrd, i);

polynomial irrd
initialized

mget(ptok); get p
mpz_pow_ui(ptok, ptok, i.deg); save field size pk

}

Listing 11.3 shows two simple routines that return either the irreducible polynomial or
the value of q.

Listing 11.3 Irreducible get functions

void poly_irrd_get(POLY *i)
{

poly_copy(i, irrd); return irreducible polynomial
}

void poly_q_get(mpz_t pk)
{

mpz_init(pk);
mpz_set(pk, ptok); copy extension field cardinality

}

Listing 11.4 shows the start of the routine which finds an irreducible polynomial of a
specified degree. If the requested degree is larger than the maximum sized polynomials
allowed, the routine returns 0 which means it did not find an irreducible polynomial. The
calling program should trap the error at that point because none of the mathematics will
work without one.

Listing 11.4 Irreducible polynomial startup

int poly_irreducible(POLY *f, long n)
{

POLY q, r, x, xp[MAXDEGREE/2], xpm1;
mpz_t j, prime;
long i, mlimt, done;

if(n > MAXDEGREE)
return 0;

safety check
change MAXDEGREE to fix

Listing 11.5 shows the variable initialization. The polynomial r is the trial polynomial.
If this passes Ben-Or’s test it is returned as the result. It starts out as xn + x + 2. The array
of polynomials xp[] hold the powers of xp

i
modulo r. The variable xpm1 holds xp

i − x for
each i through the loop.

Listing 11.5 Irreducible polynomial variable initialization

poly_init(&r);
r.deg = n;
mpz_set_ui(r.coef[n], 1);
mpz_set_ui(r.coef[1], 1);

test polynomial
r = xn + x

poly_init(&x);
x.deg = 1;
mpz_set_ui(x.coef[1], 1);

variable x
is 1 · x1

poly_init(&q); gcd result
poly_init(&xpm1); xp

m − x
mlimt = n/2;
for(i=0; i<mlimt; i++)

poly_init(&xp[i]);

space for
xp
m

for all m < n/2
mget(prime);
mpz_init_set_ui(j, 2); start at a0 = 2

Listing 11.6 is the main rejection loop. For initial testing the value of prime is small, so
I check that the variable j, which is the coefficient of x0, does not exceed the prime value.
For large primes this would take the age of the universe, so it is pointless.

Listing 11.6 Irreducible polynomial rejection loop

done = 0;
while((mpz_cmp(j, prime) < 0) && !done) for small primes, check j < p
{

mpz_set(r.coef[0], j); convert counter to coefficient
mpz_add_ui(j, j, 1); increment counter
poly_mulprep(r); create multiplication table
i = 0;
q.deg = 0;
while((i<mlimt) && !q.deg)

keep going while
gcd result is 1

{
if(!i)

poly_xp(&xp[0], x);
else

poly_xp(&xp[i], xp[i-1]);

index i
is 1 less than
exponent power

poly_sub(&xpm1, xp[i], x);
poly_gcd(&q, xpm1, r);

q = gcd(xp
i − x, r)

i++;
}
if(q.deg) has factors so not irreducible

continue;

Once the polynomial r is set, it is used to create the multiplication matrix described in
chapter 8. The variable i is used as an index for the array of powers of x modulo r. But as
we see in Ben-Or’s algorithm the first power is 1. So the index is off by 1 for each power
which means xp[i] = xp

i+1
.

The inner while loop checks for q.deg being zero. If it is not, then r has a factor in xp
i+1

so it can not be irreducible. If the inner loop bails out with q.deg > 0 the next j value will
be tested.
If i is incremented to mlimit and q.deg has remained zero for every test then we have

found an irreducible polynomial. Listing 11.7 shows the end of the routine.

Listing 11.7 Irreducible polynomial finish

if we get this far
it is irreducible

done = 1;
poly_copy(f, r);

finished with loop
and output result

}
poly_clear(&r);
poly_clear(&x);
poly_clear(&q);
for(i=0; i<mlimt; i++)

poly_clear(&xp[i]);
poly_clear(&xpm1);
mpz_clears(j, prime, NULL);

clean up stack

if(done)
return 1;

return 0; will never be executed!
}

Themain task is cleaning up all the variables. The expectation is that donewill always be
set and the last line of code will never be executed. While reference (Lidl & Niederreiter,
1997) omits the proof, theorem 3.86 of that text ensures us that trinomials used in the
above routine will be irreducible with high probability.

11.3 Summary
Trinomials are the simplest polynomials with high probability of being irreducible
over a finite field. Trinomials reduce the amount of work required in computing poly-
nomial products and remainders.

A k degree polynomial f is irreducible when

gcd(xpi − x , f) = 1

for all 1 ≤ i ≤ k/2.

We can find irreducible trinomials incrementing the constant term a0 until one passes
Ben Or’s algorithm. Mathematicians have proven the density of irreducible polyno-
mials is high, so this is guaranteed to work in only a few steps.

Chapter Bibliography
Koblitz, Neal, & Menezes, Alfred. 2005. Pairing-Based Cryptography at High Security
Levels. Pages 13–36 of: Smart, Nigel P. (ed), Cryptography and Coding. Berlin, Heidel-
berg: Springer Berlin Heidelberg. 118

Lidl, Rudolf, & Niederreiter, Harald. 1997. Finite Fields. 2 edn. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press. 118, 119, 122

von zur Gathen, Joachim, & Gerhard, Jürgen. 1999. Modern Computer Algebra. 1 edn.
Cambridge University Press. 118

11.4 Answer to exercise
11.1) b = 7 is the first irreducible trinomial. PARI/gp gives

factor(Mod(1,29)*x^7+Mod(1,29)*x+Mod(7,29))
%29 =
[Mod(1, 29)*x^7 + Mod(1, 29)*x + Mod(7, 29) 1]

12Taking square roots of
polynomials

This chapter covers
Polynomial pseudo-division

Resultant function of two polynomials

Quadratic residue for a polynomial

Square root of a polynomial modulo a prime
polynomial

In this chapter we dive into the details of computing square roots modulo a prime poly-
nomial so we can find solutions to the elliptic curve equation. At the end of chapter 2 I
showed how to compute square roots over a prime number field. The same process is used
over a field created by an irreducible polynomial.
The equation of an elliptic curve has the form y2 = f (x). The example given in chapter

3 is y2 = x3 − 5x + 5, where f (x) = x3 − 5x + 5. To find the y coordinate requires taking
a square root. When the field we are using is an extension of a prime field the coordinates
are polynomials.
Computing square roots modulo an irreducible polynomial is similar to computing

square roots modulo a prime number. The main difference is that we are looking for two
identical polynomial factors. This is similar to factoring a polynomial.
In the article by (Doliskani & Schost, 2011) , there are descriptions of algorithms for

exceptionally high polynomial degrees. They show that the algorithm of Tonelli-Shanks
is perfectly adequate for our purposes since our embedding degrees are small. This is
fortunate because we already know how to perform the Tonelli-Shanks algorithm with
prime numbers.
The methods proposed in reference (Doliskani & Schost, 2011) include using a func-

tion called a resultant of two polynomials. A resultant of two polynomials is zero if they
have a common factor. We will use the resultant of a polynomial with the irreducible poly-
nomial of the field extension to determine if a polynomial is a quadratic residue. As we saw
in chapter 2, knowing if something is a quadratic residue tells us we can in fact compute a
square root. To compute a resultant I will follow algorithm 3.3.7 in (Cohen, 2000) .
The computation of the resultant uses in turn an algorithm called pseudo-division. So

in the following description of how to compute a square root, I describe how the resultant
computes a quadratic residue, and how pseudo-division helps compute the resultant.
After the theory is described, routines to compute pseudo-division, resultant, quadratic

residue and the square root itself will be listed.

12.1 Mathematics for square root modulo a prime polynomial
In this section I cover the algorithms used to find a square root over a field extension so
we can ensure a point is on an elliptic curve.
Factoring polynomials is a complicated process. Factoring polynomials modulo an ir-

reducible polynomial over a prime field can get fairly deep. Fortunately we don’t need
most of that machinery to search for a square root. From the formula for an elliptic curve
(y2 = x3 + a4x + a6) we only need the square root of a polynomial modulo the prime poly-
nomial to find the y coordinate. Similar to how a square root was done in chapter 2modulo
a prime number we first want to know if we can even take a square root by determining if
the polynomial is a quadratic residue.
Figure 12.1 shows the same algorithm as described in chapter 2 with primes replaced

by polynomials. Instead of checking the last two bits of field prime p, we check the last two
bits of pk. If both are not set we perform the Tonelli-Shanks algorithm.
The most significant change is the blue box in figure 12.1 which requires finding a

polynomial quadratic nonresidue. Solving this problem took a round about path which
involved learning about factoring high degree polynomials.

input a

is pk � 3 mod 4?

q =
pk + 1
4

return
√
a = aq

pk − 1 = 2eq

find polynomial y
quadratic nonresidue

y ← yq

b ← aq

x ← a (q+1)/2

b = 1?return
√
a = x

find smallest m
b2

m
= 1 mod irrd

t ← y2
r−m−1

y ← t2

x ← xt
b ← by

no

yes

yes

no

Figure 12.1 Polynomial square root algorithm for finding y value of point on elliptic curve

Reference (Doliskani & Schost, 2011) is a general factorization process for finite field
elements modulo an irreducible polynomial f . In section 3.2 the authors first state that
testing if an element a has a t-th root is the same as testing if a (q−1)/t = 1 where q = pn.
They then go on to say "In the particular case when t divides p−1, we can actually do better:
we have a (q−1)/t = res(f , a) (p−1)/t , where res(·, ·) is the resultant function." For us what that
means is finding out if a polynomial a is a quadratic residue or not requires checking

res(f , a) (p−1)/2 ?
= 1.

If the result is 1 we can take a square root, otherwise we cannot. Figure 12.2 lays out the
quadratic residue algorithm as it will be written in code.
A resultant of two polynomials is a single value modulo the field prime. Section 3.3.2

of (Cohen, 2000) describes a couple of equivalent definitions. One is a determinant of the
coefficients of both polynomials f and a. Another is the product of the difference in every
root of both polynomials. The resultant algorithm 3.3.7 in (Cohen, 2000) uses neither of
those definitions. (Cohen, 2000) proves his algorithm gives the correct answer and that
algorithm is what I use.

input x

res = resultant(x, irrd)

q ← p − 1
2

res← resq

res = 1? return nonresidue

return residue

no

yes

Figure 12.2 Polynomial quadratic residue algorithm to determine if polynomial has square root or not

The resultant algorithm is shown in figure 12.3. If either input polynomial is zero, the
resultant is zero. The next thing we see in the algorithm of computing the resultant is
a ← cont(A) which is the content of a polynomial. The content of a polynomial is found
by taking the gcd of all the coefficients. For monic polynomials this is always 1.
As an example look at

a = 4x4 + 24x3 + 12x2 + 4x + 32.

The cont(a) = 4. The first step in finding a resultant is removing the content of each
polynomial by dividing each coefficient by the common factor.
Along with removing the content of each polynomial, the result variables are initialized.

The higher degree polynomial is forced to be A. If both polynomials have odd degree the
sign variable s is set to −1.
The main loop starts by setting 𝛿 to the power that would come from dividing A/B. If

both polynomials have odd degree the sign of s is toggled. The quotient and remainder
from pseudo-division are then computed. The reduction step modifies A, B, g and h. The
loop terminates when deg(B) goes to zero.
A degree zero Bmeans it is a constant so the lc(B) in the last step is the only coefficient

of B. The final output is the product of sign, initial content values and variable h.
It is pretty amazing this algorithm computes the determinant of a matrix created by the

coefficients of two polynomials. It definitely works to determine quadratic residues.

input polynomials
A, B

A or B
=0?

return 0

a ← cont(A), b ← cont(B), A← A/a, B← B/b
g ← 1, h← 1, s ← 1, t ← adeg(A)bdeg(B)

yes

no

deg(A)<
deg(B)?

swap A, B

deg(A) and
deg(B) odd? s ← −1

yes

no yes

𝛿 ← deg(A)− deg(B)
no

deg(A) and
deg(B) odd? s ← −s

yes

pseudo-divide(A, B)
lc(B)𝛿+1A = BQ + Rno

A← B, B← R/(gh𝛿), g ← lc(A) , h← h1−𝛿 g𝛿

deg(B)>0?

h← h1−deg(A) lc(B)deg(A)
no

return s · t · h

yes

Figure 12.3 Resultant algorithm

An important step within the resultant algorithm is pseudo-division. This works with
the leading coefficients (symbolized by lc(·)) of the divisor polynomial. Given two poly-
nomials A and B with lc(B) = d then

ddeg(A)−deg(B)+1A = BQ + R

where Q is the quotient and R the remainder with deg(R) < deg(B).

d ←− lc(B)
R ←− A
Q ←− 0

e ←− deg(A) − deg(B) + 1

deg(R) < deg(B)?
q ←− de
Q ←− qQ
R ←− qR

S ←− lc(R)xdeg(R)−deg(B)
Q ←− d ·Q + S
R ←− d · R − S · B

e ←− e − 1

return
Q, R

yes

no

Figure 12.4 Pseudo-divide algorithm

Figure 12.4 shows the pseudo-division algorithm taken from (Cohen, 2000) algorithm
3.1.2. The first step initializes the quotient Q and remainder R as well as the starting
exponent e and leading coefficient d. The reason the second step checks if the algorithm
is done is in case deg(A) < deg(B), at which point there is nothing more to do.
The compute step puts the leading coefficient of R into the coefficient of temporary

variable S which would be the leading coefficient of a division of R/B. The variable S is
then used to modifyQ and R and the exponent is decremented.
There is a lot of similarity between the algorithm in figure 12.4 and equation 10.2.

There is no actual division computation so calling this pseudo-division makes sense.

Exercise 12.1
In the computation of polynomial square roots, the resultant has a similar
task to what function in the calculation of square roots modulo a prime
number?

12.2 Code for square roots modulo a prime polynomial
In this section, the code for computing square roots of polynomials is described. We need
these routines to find random points on field extension curves. Those points are needed
to compute the pairing calculations of chapters 18 and 19.
There are five subroutines involved with computing a square rootmodulo an irreducible

polynomial. These routines are
content of polynomial,

pseudo-division of polynomials,

resultant of two polynomials,

quadratic residue of a polynomial,

computing the square root of a polynomial.
The simplest are content and checking if a polynomial is a quadratic residue. The more
complicated routines are pseudo-division, resultant and taking the square root. The order
of calling is content, pseudo-division, resultant, residue check, and finally square root. The
following sections are in order of requirement.

12.2.1 Content routine

Computing the content of a polynomial finds the greatest common divisor of all the coeffi-
cients. If the gcd between any two coefficients is 1, there is no reason to check the remaining
coefficients. So I start with the leading coefficient hoping the polynomial is monic, and the
routine can exit early. This is shown in listing 12.1.

Listing 12.1 Content of polynomial

void poly_cont(mpz_t cont, POLY A)
{

int i;
mpz_t rslt;

mpz_init_set(rslt, A.coef[A.deg]); set result to lc (A)
for(i=A.deg-1; i>=0; i--)
{

from leading coefficient
down to lowest

mpz_gcd(rslt, rslt, A.coef[i]);
if(!mpz_cmp_ui(rslt, 1))
break;

when gcd of result
with coefficient
== 1 then done

}
mpz_set(cont, rslt); copy result to return value
mpz_clear(rslt);

}

The comparison mpz_cmp(rslt, 1) will give 0 when the variable rslt is 1. If there is
a common factor, rslt will contain it on every mpz_gcd() call. So the returned value is
the common factor which defines the content.

12.2.2 Pseudo-division routine

The pseudo-division routine has three phases. The initialization is easy, the main loop is
messy, and the cleanup is the last phase. Listing 12.2 shows the initialization phase.

Listing 12.2 Pseudo-division initialize

void poly_pseudo_div(POLY *Q, POLY *R, POLY A, POLY B)
{

long e, i, k;
mpz_t d;
POLY S, T;

poly_init(&S);
poly_init(&T);
poly_copy(R, A);

set S = 0
T = 0 and
R = A

Q->deg = 0;
mpz_set_ui(Q->coef[0], 0); set Q = 0

e = A.deg - B.deg + 1;
mpz_init_set(d, B.coef[B.deg]);

set e to degree difference
and d to lc (B)

The return values are quotient Q and remainder R. As with the division routine I as-
sume variable Q might be something random, and so I force it to zero. Variables e and d

are set according to the first block in figure 12.4.
The main loop is shown in listing 12.3. The loop continues while the deg(R) ≥ deg(B).

The variable T holds S · B which is really just a shift of B by the deg(S) multiplied by the
leading coefficient of R. Since only one coefficient of S is set, that coefficient is cleared at
the end of the loop.

Listing 12.3 Pseudo-division main loop

while(R->deg >= B.deg) while remainder greater than divisor
{

S.deg = R->deg - B.deg; degree of S if division happened
mpz_set(S.coef[S.deg], R->coef[R->deg]); lc (S) = lc (R)
for(i=0; i<=Q->deg; i++)

mmul(Q->coef[i], Q->coef[i], d);
scaleQ
by d

poly_add(Q, *Q, S); Q ← Q + S
for(i=0; i<=R->deg; i++)

mmul(R->coef[i], R->coef[i], d);
scale R
by d

k = S.deg;
for(i=0; i<=B.deg; i++)

mmul(T.coef[i + k], B.coef[i], S.coef[k]);
T.deg = B.deg + k;

T = B · S

poly_sub(R, *R, T); reduce R byT
e--;
mpz_set_ui(S.coef[k], 0);

decrement exponent
clear S to 0

}

The change of variable from S.deg to kwas simply tomake themultiply indexing easier
to read.
When the loop finishes we have a remainder which is smaller than the denominator.

Listing 12.4 shows the cleanup phase.

Listing 12.4 Pseudo-division clean up

if(e >= 1) only changeQ and R for e > 0
{

mpowi(d, d, e); d ← de

for(i=0; i<=Q->deg; i++)
mmul(Q->coef[i], Q->coef[i], d);

scaleQ
by d

for(i=0; i<=R->deg; i++)
mmul(R->coef[i], R->coef[i], d);

scale R
by d

}
mpz_clear(d);
poly_clear(&S);
poly_clear(&T);

clean
up
stack

}

If variable e is zero then de = 1 and there is no change to the quotient or remainder.
Otherwise, the value of de is multiplied with every coefficient of both quotient and re-
mainder. The internal variables are cleared out to prevent memory leaks and the routine
is done.

12.2.3 Resultant subroutine

In this section I describe the code which computes the resultant of two polynomials.
The resultant subroutine breaks up into four phases. The description in figure 12.3 has

a main loop which I’ll show as one phase. The first phase determines if either input is zero,
then the routine just returns zero. This is shown in listing 12.5.

Listing 12.5 Resultant zero check

void poly_resltnt(mpz_t rsltnt, POLY A, POLY B)
{

POLY Aa, Bb, Q, R;
mpz_t g, h, ta, tb, a, b;
long dlta, s, i;

if(!A.deg && !A.coef[0])
if either A or B is zero
resultant is zero

{
mpz_set_ui(rsltnt, 0);
return;

}
if(!B.deg && !B.coef[0])

both degree
and coefficient
must be zero
to exit

{
mpz_set_ui(rsltnt, 0);
return;

}

The initialization portion uses variables ta and tb to hold the value of cont(A)deg(B)
and cont(B)deg(A) respectively. The variables Aa and Bb hold A/cont(A) and B/cont(B).
The remaining variables are the same as in figure 12.3.

Listing 12.6 Resultant initialization

mpz_inits(g, h, ta, tb, a, b, NULL); initialize local variables
poly_cont(a, A);
poly_cont(b, B);

get content
of input polynomials

poly_init(&Aa);
if(mpz_cmp_ui(a, 1)) content != 1
{

Aa.deg = A.deg;
for(i=0; i<=A.deg; i++)

mdiv(Aa.coef[i], A.coef[i], a);

Aa← A/a

mpowi(ta, a, B.deg); ta← adeg(B)

}
else
{

poly_copy(&Aa, A);
mpz_set_ui(ta, 1);

if content == 1
just copy A to Aa

}
poly_init(&Bb);
if(mpz_cmp_ui(b, 1)) content != 1
{

Bb.deg = B.deg;
for(i=0; i<=B.deg; i++)

mdiv(Bb.coef[i], B.coef[i], b);

Bb← B/b

mpowi(tb, b, A.deg); tb← bdeg(A)

}
else
{

poly_copy(&Bb, B);
mpz_set_ui(tb, 1);

if content == 1
just copy B to Bb

}
mpz_set_ui(g, 1);
mpz_set_ui(h, 1);
poly_init(&Q);
s = 1;

initialize
g, h and s

if(A.deg < B.deg) make A larger than B
{

poly_copy(&Q, Aa);
poly_copy(&Aa, Bb);
poly_copy(&Bb, Q);

swap A, B
to ensure
A > B

}
poly_init(&R);

The main loop from figure 12.3 is shown in listing 12.7. The loop continues as long as
deg(B) is not zero.

Listing 12.7 Resultant main loop

while(Bb.deg > 0) terminate when B turns into constant
{

dlta = Aa.deg - Bb.deg; dlta is degree after division
if((Aa.deg & 1) && (Bb.deg & 1))

s = -s;
both polynomials odd
change sign

poly_pseudo_div(&Q, &R, Aa, Bb); quotient and remainder from pseudo-division

poly_copy(&Aa, Bb);
mpowi(a, h, dlta);
mmul(b, a, g);
Bb.deg = R.deg;
for(i=0; i<=R.deg; i++)

mdiv(Bb.coef[i], R.coef[i], b);

A←B
B← R/(gh𝛿)

mpz_set(g, Aa.coef[Aa.deg]); save new h, g values
i = 1 - dlta;
mpowi(a, h, i);
mpowi(b, g, dlta);
mmul(h, a, b);

g← lc (A)
h← h1−𝛿 g𝛿

}

On exit from the main loop the last line in figure 12.3 becomes listing 12.8. This is a
straightforward computation.

Listing 12.8 Resultant final output

i = 1 - Aa.deg;
mpowi(a, h, i);
mpowi(b, Bb.coef[0], Aa.deg);
mmul(h, a, b);

h← h1−deg(A) lc (B)deg(A)

mmul(rsltnt, h, ta);
mmul(rsltnt, rsltnt, tb);
if(s < 0)

finished
compute final resultant

mneg(rsltnt, rsltnt);

output = s · h · t

poly_clear(&Aa);
poly_clear(&Bb);
poly_clear(&Q);
poly_clear(&R);

clean up stack

mpz_clears(g, h, ta, tb, a, b, NULL);
}

Rather than create the variable t as in the algorithm I just left ta and tb as separate
values. The final value is always a positive number modulo the field prime.

12.2.4 Quadratic residue

In this section I give the code which determines if a polynomial has a square root or not.
Now that we have the resultant function we can find out if a polynomial is a quadratic

residue. If so we can take a square root. Listing 12.9 shows how to compute a polynomial
quadratic residue.

Listing 12.9 Quadratic residue routine

int poly_sqr(POLY x)
{

mpz_t res, p, q;

int k;

mpz_inits(res, q, NULL);
poly_resltnt(res, x, irrd);

compute resultant
between input
and prime polynomial

mget(p);
mpz_sub_ui(q, p, 1);
mpz_div_ui(q, q, 2); (p − 1)/2
mpz_powm(res, res, q, p); res(x , f) (p−1)/2
k = mpz_cmp_ui(res, 1);

k is 0
if res
is 1

mpz_clears(res, p, q, NULL);
if(!k)

return 1;
return 0;

}

The trick here is that we have to save the result, so we can clear temporary variables off
the stack and internal heap of GMP. The compare function returns zero on exact match
and ±1 otherwise. If res(x , f) (p−1)/2 equals 1 the polynomial x is a quadratic residue.

12.2.5 Polynomial square root routine

In this section the code to implement square roots of a polynomial is described. This is
used to find points on field extension elliptic curves.
The assumption Imake for the square root routine is that the check for quadratic residue

happens first. This is normally the case for embedding because checking for square root
takes less effort than computing the square root and finding out there isn’t one.
As with square roots modulo a prime if the value of pk � 3 mod 4 then we can power

our way to a square root. This is shown in listing 12.10.

Listing 12.10 Polynomial square root pk = 3 mod 4

void poly_sqrt(POLY *sqt, POLY a)
{

long r, i, ck, m, m2;
mpz_t pk, q;
POLY x, b, y, one, bpw, t;

poly_q_get(pk);
mpz_init(q);

see if pk = 3 mod 4

if(mpz_tstbit(pk, 0) && mpz_tstbit(pk, 1))

last two bits
set in pk

use easy method

{
poly_init(&y);
mpz_add_ui(q, pk, 1);
mpz_divexact_ui(q, q, 4);

q =
pk + 1
4

poly_pow(&y, a, q);
poly_copy(sqt, y);

allow in place
square root = aq

poly_clear(&y);
mpz_clears(q, pk, NULL);
return;

}

As with the description of Tonelli-Shanks in chapter 2 there is an initialization section
as shown in listing 12.11. The main difference is that most of the variables are now poly-
nomials instead of numbers. The coefficients of the polynomials are modulo the same field
prime.

Listing 12.11 Polynomial square root initialize

pk = 1 mod 4
so do Tonelli-Shanks

mpz_sub_ui(q, pk, 1);
r = 0;
while(!mpz_tstbit(q, 0))
{

mpz_divexact_ui(q, q, 2);
r++;

find pk − 1
= 2rq

}
poly_init(&y);
ck = 1;
while(ck)
{

poly_rand(&y);
ck = poly_sqr(y);

choose random
non-residue polynomial

}
poly_pow(&y, y, q); y← yq

poly_init(&b);
poly_pow(&b, a, q); b = aq

poly_init(&x);
mpz_add_ui(pk, q, 1);
mpz_divexact_ui(pk, pk, 2);
poly_pow(&x, a, pk);

x=a (q+1)/2

poly_init(&one);
one.deg = 0;
mpz_set_ui(one.coef[0], 1);

polynomial constant one

poly_init(&bpw);
poly_init(&t);

The initialization is slightly different here than in the field prime code. The formula in
equations 2.2 have a value for x and b. Multiplying b out we have

b = ax2 = a(a (q−1)/2)2 = aq .

The final value for x is then

x = a(a (q−1)/2) = a (q+1)/2.

While the code looks different it is actually doing the same job.
The main loop is also similar, but instead of checking if a value is 1 I check if a poly-

nomial is 1. While technically it is the same thing the structures being worked with are
different. Listing 12.12 shows this main loop.

Listing 12.12 Polynomial square root main loop

while(!poly_cmp(b, one)) done when b equals 1
{

m = 0;
while(!poly_cmp(bpw, one))
{

m++;
m2 = 1 « m;
mpz_set_ui(pk, m2);
poly_pow(&bpw, b, pk);

find smallest m
such that b2

m

equals 1
modulo prime polynomial

if(m == r)
{

printf(''square root failed\n'');
return; should never happen

}
}
mpz_set_ui(bpw.coef[0], 0); clear test polynomial
i = r - m - 1;
m2 = 1 « i;
mpz_set_ui(pk, m2);
poly_pow(&t, y, pk);

t = y2
r−m−1

poly_mul(&y, t, t);
y← t2

r = m;
poly_mul(&x, x, t);
poly_mul(&b, b, y);

x← x t
b← b y

}

The test for m == r should never succeed if the polynomial is a quadratic residue.
When the loop is finished the value for the square root is copied to the desired result

storage location and all variables are cleaned out from the stack. This is shown in listing
12.13.

Listing 12.13 Polynomial square root clean up

poly_copy(sqt, x); copy result to output
poly_clear(&x);
poly_clear(&b);
poly_clear(&y);
poly_clear(&one);
poly_clear(&bpw);
poly_clear(&t);
mpz_clears(pk, q, NULL);

clean up stack

}

With the code complete for taking a square root of a polynomial modulo an irreducible
polynomial we can now embed random polynomial x values on an elliptic curve defined
over the same irreducible polynomial. Visualizing an x and y axis which are finite field
polynomials of dimension k with an elliptic curve running through the space is challenging.

The best we can do is revisit the curve from chapter 3 and pretend we know what is going
on because the equations are the same.

Figure 12.5 Elliptic Curve y2 = x3 − 5x + 5

As pointed out in chapter 3, finite field elliptic curves have a one to one correspondence
with curves over the complex plane. The symmetry we see in figure 12.5 applies to elliptic
curves over field extensions. Using images like figure 12.5 we can see how picking some
random x polynomial would give rise to two points on an elliptic curve.

12.3 Summary
The resultant of two polynomials is a single value modulo the field prime of the
coefficients. The resultant is used to determine if a polynomial has square root.

A polynomial Amodulo a prime polynomial f has a square root when

resultant(A, f) (p−1)/2 = 1.

The polynomial A is called a quadratic residue when this is true. When true, we have
a point on a field extension elliptic curve.

The content of a polynomial is the gcd of all its coefficients. Removing the content
of a polynomial is an essential step in computing a square root.

The resultant is computed using pseudo-division and a reduction step. The resultant
is used to determine if a polynomial has a square root.

A polynomial A mod f which is a quadratic residue over an extension field that is
congruent to 3 mod 4 has a square root computed using

A(p
k+1)/4.

Otherwise the Tonelli-Shanks algorithm is used. This is the same process used in
chapter 2 and has the same purpose: to find a point on an elliptic curve.

Chapter Bibliography
Cohen, Henri. 2000. A Course in Computational Algebraic Number Theory. Berlin, Heidel-
berg: Springer-Verlag. 125, 126, 129

Doliskani, Javad, & Schost, Éric. 2011. Taking roots over high extensions of finite fields.
Math. Comput., 83, 435–446.

12.4 Answer to exercise
12.1) The resultant is similar to the Legendre symbol. Both functions determine if
it is possible to compute a square root.

13Finite field extension
curves described

This chapter covers
Cardinality of field extension curves

Structures for polynomial points and curves

Embedding polynomial points on curves

Addition and multiplication of field extension
points

Tiny example showing points on field extension
curve

In this chapter curves over finite field extensions are described. These curves are required
to compute pairings.
The cryptographic protocols enabled by pairings of points over elliptic curves have a lot

of advantages. To compute pairings of points over elliptic curves, we need to use extension
fields. But before we can compute pairings, we first need a point addition algorithm over
a field extension of an elliptic curve.
Elliptic curve subroutines using polynomials are the subject for this chapter. I’ll first

cover some of the rules required to create a field extension and then assume we already
have found a useful curve. In chapter 14 I’ll go into how that actually happens. As with
chapter 3 I will cover routines that manipulate point and curve structures, embed polyno-

mials on a curve, create random points, add points and multiply points. While most places
replace an m* routine with a poly* routine there are a few differences because polynomials
are more complicated than numbers.
To help visualize the ideas here and in the next few chapters I will use a very tiny curve as

an illustration. This curve was definitely cherry-picked to contain as many useful examples
as possible.

13.1 Field extension properties
Recall from chapter 2 that a finite field has elements that can be added, multiplied and
inverted. In this section I will expand that same concept using irreducible polynomials in
place of prime numbers. This is another reason irreducible polynomial is synonymous
with prime polynomial.
In chapter 8 I showed how irreducible polynomials act as a modulus for polynomial

multiplication and in chapter 10 how irreducible polynomials act as the modulus for in-
version. Since we also have addition, it seems pretty clear that an irreducible polynomial
creates a finite field. In this section we are going to make use of an irreducible polynomial
to create an extension field of a precise size. With the polynomial routines of part 2 as a
base, creating elliptic curve routines similar to chapter 3 is then easy.
Theorem 1.87 of reference (Lidl & Niederreiter, 1997) states that an irreducible poly-

nomial f creates a field extension with the root of f as the defining element. Setting
f (t) = 0 defines those roots. We did that in chapter 8 to create the polynomial multiplica-
tion table. Everything we did in part 2 allows us to do mathematics over a field extension.

field p extension field pk

p

p

p

p

k dimensional
space

Figure 13.1 Expanding a prime base field p to an extension field pk . Extension fields are required to
compute pairings.

Figure 13.1 is a conceptual illustration of a field extension. A prime field p is extended
to a k dimensional vector space. Each dimension acts like the prime field p, but there are
k of these fields. A polynomial is used to keep track of where we are in each dimension.
An elliptic curve can be defined over any finite field. However, we can not just pick any

irreducible polynomial for a field extension of degree k. Extending a curve from a number
field p to a field extension pk has special rules.

Suppose we have a specific elliptic curve over a prime finite field p with cardinality #E
as in equation 6.2 (#E = p + 1 − t). Let’s assume there is a large prime r as a factor of #E.
For pairings to work the extension field pk must also have a factor of r in the extension
curve cardinality (#Ek). The smallest value of k for which there is a factor of r in #Ek is
called the embedding degree.
From reference (Freeman et al., 2006) the rule is written as

pk � 1 mod r . (13.1)

Equation 6.2 is true for extension curves but is rewritten as

#Ek = p
k + 1 − tk . (13.2)

Homework problem 5.13 in reference (Silverman, 2013) gives a recurrence relation for
tk. Starting with t0 = 2 and t1 = p + 1 − #E (equation 6.2) there is the formula

tn+2 = t1tn+1 − ptn (13.3)

which takes the prime p and trace of Frobenius of the curve t1 to find the cardinality of the
field extension #Ek.
According to (Freeman et al., 2006) the average embedding degree for arbitrary curves

over a prime field p with points of order r is on the order of r. For a prime r with 160 bits
that means the number of coefficients is around 2160 and each coefficient is 160 bits. Even
imagining the level of computational impossibility is difficult.
Curves over a finite field p are called group 1 curves orG1. Curves over a field extension

pk are called group 2 curves orG2. The same coefficients in equation 3.1 (y2 = x3+a4x+a6)
on a G1 curve are used to create the points on a G2 curve. The coefficients a4 and a6 are
still modulo the same field prime but turn into coefficients of t0 modulo an irreducible
polynomial. So the x and y values become polynomials for theG2 curve.
After listing all the polynomial elliptic curve code I will give a really tiny example so

theG1 andG2 points can be listed. This will make the meaning more visible.

Exercise 13.1
Suppose we have an elliptic curve over field prime of 41. There is a ”large
prime factor” in the cardinality of 29. What is the embedding degree?

13.2 Elliptic curve routines
This section repeats the code from chapter 3 but changes it to work with polynomials in a
field extension.
The routines that implement elliptic curves over a field extension are similar to the

routines of chapter 3. In addition to operating modulo a field prime they also operate
modulo an irreducible polynomial. Similar to chapter 3 a structure for points and curves

is set up but using polynomials. Initializing and clearing these structures is used in all the
following routines:

poly_test_point()

poly_fofx()

FF_bump()

poly_elptic_embed()

poly_point_rand()

poly_elptic_sum()

poly_elptic_mul()
Code for copying points as well as printing points and curves for field extensions will

then be shown. A routine to test for the point at infinity (poly_test_point()) followed by a
routine to compute the right-hand side of equation 3.1 (x3 + a4x + a6) (poly_fofx()) over
a field extension is presented.
For embedding a point a special routine is created to increment a polynomial (FF_bump()).

It is overly complicated, so it will work with the tiny example curve. With that special
routine, the embedding code itself is then presented (poly_elptic_embed()). Creating a
random point on a field extension then calls the embedding routine (poly_point_rand()).
The routines to compute addition (poy_elptic_sum()) andmultiplication (poly_elptic_mul())

of finite field extension points are at the end of this section.

13.2.1 Polynomial curve setup

This section defines structures used with field extension points and curves. These will be
used in all the remaining subroutines in this book..
I start off with a header which defines a point and curve structure using polynomials as

shown in listing 13.1. I put this in a file called poly_eliptic.h (and I still can’t spell!)

Listing 13.1 Polynomial elliptic curve structures

#include ''poly.h''

typedef struct
{

POLY x;
POLY y;

polynomials for
x and y values

}POLY_POINT;

typedef struct
{

POLY a4;
POLY a6;

polynomials for
curve parameters

}POLY_CURVE;

As with structures for group 1 curves the structures in 13.1 require initialization and
clearing. These routines are shown in listing 13.2.

Listing 13.2 Polynomial elliptic curve structure manipulation

void poly_point_init(POLY_POINT *P)
{

int i;

P->x.deg = 0;
P->y.deg = 0;
for(i=0; i<MAXDEGREE; i++)

zero out
both x and y
components

mpz_inits(P->x.coef[i], P->y.coef[i], NULL);
}

void poly_point_clear(POLY_POINT *P)
{

int i;

for(i=0; i<MAXDEGREE; i++)
mpz_clears(P->x.coef[i], P->y.coef[i], NULL);

remove all components
from GMP heap

}

void poly_curve_init(POLY_CURVE *E)
{

int i;

E->a4.deg = 0;
E->a6.deg = 0;
for(i=0; i<MAXDEGREE; i++)

mpz_inits(E->a4.coef[i], E->a6.coef[i], NULL);

put polynomials a4
and a6 on stack

}

void poly_curve_clear(POLY_CURVE *E)
{

int i;

for(i=0; i<MAXDEGREE; i++)
mpz_clears(E->a4.coef[i], E->a6.coef[i], NULL);

remove a4 and
a6 from stack

}

The polynomial code is not space efficient. It is just a lot easier to see what is going on
by simply allowing the possibility of a maximum degree polynomial.

13.2.2 Polynomial curve utilities

In this section a few basic routines are described for manipulating polynomial points.
Utility routines are shown in listing 13.3. Copying a point and printing points which

are polynomials are simple poly* calls for the x and y components.

Listing 13.3 Polynomial elliptic curve utility functions

void poly_point_copy(POLY_POINT *R, POLY_POINT P)
{

int i;

poly_copy(&R->x, P.x); copy x component
poly_copy(&R->y, P.y); copy y component

}

void poly_point_printf(char *str, POLY_POINT P)
{

printf(''%s'', str);
poly_printf(''x: '', P.x);
poly_printf(''y: '', P.y);

output x and y
components on
separate lines

}

void poly_curve_printf(char *str, POLY_CURVE E)
{

printf(''%s'', str);
poly_printf(''a4: '', E.a4);
poly_printf(''a6: '', E.a6);

output a4 and a6
components on
separate lines

}

As with prime field curves the point at infinity is the same test over polynomial curves.
Listing 13.4 shows the routine for this test.

Listing 13.4 Polynomial elliptic curve test point at infinity

int poly_test_point(POLY_POINT P)
{

int i;

if(P.x.deg || P.y.deg) neither polynomial constant then not 0
return 0;

if(!mpz_cmp_ui(P.x.coef[0], 0) && !mpz_cmp_ui(P.y.coef[0], 0))
return 1;

both x and y zero for
point at infinityreturn 0;

}

This is pretty easy to bail on if either the x or y are actually polynomials, they can’t be
zero. If both x and y are constants then I can check if both are zero.

13.2.3 Polynomial curve point embedding

In this section the code for embedding a polynomial onto a field extension curve is ex-
plained.
There are several subroutines used to embed polynomial points on a curve. The fofx()

routine is the same as before, but there is a new routine to increment an x value. Listing
13.5 shows the polynomial version of fofx() which is the right-hand side of equation 3.1
(x3 + a4x + a6).

Listing 13.5 Polynomial elliptic curve right-hand side

void poly_fofx(POLY *f, POLY x, POLY_CURVE E)
{

POLY t1, t2;

poly_init(&t1);
poly_init(&t2);
poly_mul(&t1, x, x);
poly_mul(&t1, t1, x);

t1 = x3

poly_mul(&t2, E.a4, x); t2 = xa4
poly_add(f, t1, t2);
poly_add(f, *f, E.a6); f= x3 + xa4 + a6
poly_clear(&t1);
poly_clear(&t2);

}

Listing 13.6 shows the new routine to increment an x value. The problem I found is
that the coefficients will just cycle because they are modulo a prime. When a coefficient
rolls over I want to then increment the next coefficient. This goes all the way up the chain
to the maximum possible degree. The only time this really happens is for very small prime
fields.
To know the limit of how far I can increment, the irreducible polynomial is retrieved.

The input polynomial is assumed to be of small enough degree that its size can be increased.
If a coefficient at index i rolls over then i is incremented. If index i is larger than the input
degree then the degree of x is incremented as well but only if the degree is less than the
prime polynomial.

Listing 13.6 Polynomial elliptic curve finite field increment

void FF_bump(POLY *x)
{

int i;
mpz_t one;
POLY ird;

mpz_init_set_ui(one, 1); create constant 1
poly_init(&ird);
poly_irrd_get(&ird); get irreducible polynomial

i = 0;
while(i < ird.deg)
{

madd(x->coef[i], x->coef[i], one); increment i th coefficient
if(mpz_cmp_ui(x->coef[i], 0))

return;
no rollover
then all done

i++;
if((i > x->deg) && (x->deg < ird.deg))

x->deg++;

next coefficient
and increase
degree of x

}
mpz_clear(one);
poly_clear(&ird);

}

To embed a polynomial x on a curve I first compute the right-hand side of equation
3.1 using function fofx() as shown in listing 13.5. I then check to see if this is a quadratic

residue using poly_sqr() (listing 12.9). The variable x is incremented using FF_bump()
from listing 13.6 until a quadratic residue is found. This first part of the embedding routine
is shown in listing 13.7.

Listing 13.7 Polynomial elliptic curve embedding

void poly_elptic_embed(POLY_POINT *P1, POLY_POINT *P2, POLY x, POLY_CURVE E)
{

POLY f;
int done, i;
mpz_t tmp;

poly_init(&f);
poly_copy(&P1->x, x); work with copy of input
done = 0;
while(!done)
{

poly_fofx(&f, P1->x, E);
if(poly_sqr(f) > 0)

look for f (x)
which is quadratic residue

done = 1;
else
FF_bump(&(P1->x)); it was not so try next value

}
poly_copy(&(P2->x), P1->x); two y values at same x
poly_sqrt(&(P1->y), f);
for(i=0; i<=P1->y.deg; i++)

mneg(P2->y.coef[i], P1->y.coef[i]);

y1 =
√
f

y2 = −y1

P2->y.deg = P1->y.deg;
done = mpz_cmp(P2->y.coef[P2->y.deg], P1->y.coef[P1->y.deg]);
if(done < 0)

smallest leading
y coefficient
becomes y1

{
mpz_init(tmp);
for(i=0; i<=P1->y.deg; i++)
{
mpz_set(tmp, P1->y.coef[i]);
mpz_set(P1->y.coef[i], P2->y.coef[i]);
mpz_set(P2->y.coef[i], tmp);

}
mpz_clear(tmp);

}
poly_clear(&f);

}

The second part of the routine is not required. The idea is to set the first point with
"smaller" y value which is determined by the leading coefficient. This really is arbitrary
since a smaller positive value means a larger negative one over a prime field. Doing this
helped keep track of things while debugging.

13.2.4 Polynomial curve random point

In this section I show how a random polynomial is converted into a point. This will be
used in chapter 18 for several protocols.
Choosing random points is straightforward once we have an embedding routine. Listing

13.8 shows the routine. Since there are two points to choose from the last bit from the
lowest coefficient of the returned random polynomial is used to determine which of the
two is actually used.

Listing 13.8 Polynomial elliptic curve random point

void poly_point_rand(POLY_POINT *P, POLY_CURVE E)
{

POLY r;
POLY_POINT mP;

poly_init(&r);
poly_rand(&r); create random polynomial modulo prime polynomial
poly_point_init(&mP); dummy point
if(mpz_tstbit(r.coef[0], 0))

poly_elptic_embed(P, &mP, r, E);
else

poly_elptic_embed(&mP, P, r, E);

last bit set
return first point
otherwise
second point

poly_clear(&r);
poly_point_clear(&mP);

}

13.2.5 Polynomial elliptic curve addition

In this section I show how point addition is computed on a field extension curve.
Adding two points over a field extension curve uses the same formulas 3.2 through 3.4

with each value becoming a polynomial modulo the irreducible polynomial. Here are the
formulas

𝜆 =
x21 + x1x2 + x

2
2 + a4

y1 + y2
x3 = 𝜆 2 − x1 − x2
y3 = 𝜆 (x1 − x3) − y1

(13.4)

Compared with the routines from chapter 3 the code expands a bit because each poly-
nomial variable has to be initialized and removed from the stack separately.
Listing 13.9 shows the head of the point addition routine. The first thing done is to

check if either input point is the point at infinity and to return the other point if so.

Listing 13.9 Polynomial elliptic curve addition zero check

void poly_elptic_sum(POLY_POINT *R, POLY_POINT P, POLY_POINT Q, POLY_CURVE E)
{

POLY lmbda, ltp, lbt, t1, t2, t3;
POLY_POINT rslt;

if(poly_test_point(P))
see if either input
is point at infinity

{
poly_point_copy(R, Q);
return;

first point at infinity
return second point

}
if(poly_test_point(Q))
{

poly_point_copy(R, P);
return;

second point at infinity
return first point

}

There is still a check if the slope 𝜆 is infinite to determine if the result really is the point
at infinity or a different form for 𝜆 should be used. This portion is shown in listing 13.10.
If y1 + y2 is zero we need to check if x1− x2 is zero. Only under those two conditions being
true do we return the point at infinity. Then of course clean up the stack.

Listing 13.10 Polynomial elliptic curve addition slope calculation

poly_init(&t1);
poly_init(&t2);
poly_init(&t3);
poly_init(<p);
poly_init(&lbt);
poly_init(&lmbda);

initialize all
temporary variables

poly_mul(&t1, P.x, P.x);
poly_mul(&t2, P.x, Q.x);

compute lambda
using general form

poly_mul(&t3, Q.x, Q.x);
poly_add(<p, t1, t2);
poly_add(<p, ltp, t3);
poly_add(<p, ltp, E.a4);

numerator =
x21 + x1x2 + x

2
2 + a4

poly_add(&lbt, P.y, Q.y); denominator = y1 + y2

if(!lbt.deg && !mpz_cmp_ui(lbt.coef[0], 0))
if(y1 = −y2)
denominator is zero{

poly_sub(&lbt, Q.x, P.x);
if(!lbt.deg && !mpz_cmp_ui(lbt.coef[0], 0)) Really P == -Q?
{

x1 == x2R->x.deg = 0;
mpz_set_ui(R->x.coef[0], 0);
R->y.deg = 0;
mpz_set_ui(R->y.coef[0], 0);

return point at
infinity

poly_clear(&t1);
poly_clear(&t2);
poly_clear(&t3);
poly_clear(<p);
poly_clear(&lbt);
poly_clear(&lmbda);

clean up
stack

return;
}

poly_sub(<p, Q.y, P.y);
}

The last chunk of the routine computes formulas 13.4 for x3 and y3 then cleans up the
temporary variables as shown in listing 13.11.

Listing 13.11 Polynomial elliptic curve addition result point

finally, compute
resulting point

poly_div(&lmbda, ltp, lbt); 𝜆 = correct version
poly_point_init(&rslt);
poly_mul(&t1, lmbda, lmbda);
poly_add(&t2, P.x, Q.x);
poly_sub(&rslt.x, t1, t2);

x3 = 𝜆2 − (x1 + x2)

poly_sub(&t1, P.x, rslt.x);
poly_mul(&t2, t1, lmbda);
poly_sub(&rslt.y, t2, P.y);

y3 = (x1 − x3)𝜆 − y1

poly_point_copy(R, rslt); copy to output

poly_clear(&t1);
poly_clear(&t2);
poly_clear(&t3);
poly_clear(<p);
poly_clear(&lbt);
poly_clear(&lmbda);
poly_point_clear(&rslt);

clean up stack

}

13.2.6 Polynomial elliptic curve point multiplication

In this section code to compute point multiplication over field extension curves is de-
scribed.
The last routine in the chapter does look the same as its counterpart in chapter 3. The

only difference are the calls to polynomial routines instead of modular math routines. The
double and add method still applies, and a local result is copied to the destination at the
end.

Listing 13.12 Polynomial elliptic curve multiplication

void poly_elptic_mul(POLY_POINT *Q, POLY_POINT P, mpz_t k, POLY_CURVE E)
{

int bit, j;
POLY_POINT R;

poly_point_init(&R);
poly_point_copy(&R, P);

allow in
place operation

j = mpz_sizeinbase(k, 2) - 2; number of bits to go
while(j >= 0)
{

poly_elptic_sum(&R, R, R, E); double at every bit position
bit = mpz_tstbit(k, j);
if(bit)
poly_elptic_sum(&R, R, P, E);

if this bit set
add in original
point

j--;
}
poly_point_copy(Q, R);
poly_point_clear(&R);

copy to output
clean up stack

}

13.3 Tiny example
In this section example code for a curve with small field prime value is shown.
In the next few chapters I will cover how to find the cardinality of a field extension as

well as how to find the order of a point on a curve over a finite field. I chose the following
example using a field prime p = 43 with a specific curve that had cardinality of 55 with an
embedding degree of 2. This was a very rare curve. This example will be used in chapters
15 and 16 on pairings, so there are a few subroutines used in the following listings which
will be covered later. The program name is weil_6_bit_pairing.c.

field prime
p = 43

extension field k = 2
irrd = x2 + x + 3

elliptic curve
y2 = x3 + 23x − 1

base curve 55 points

list all pointsG1

extension field 1815 points

list all pointsG2

pairing examples

Figure 13.2 Tiny example overall description

Figure 13.2 shows the procedure followed in the tiny example. The field prime deter-
mines what irreducible trinomial will work for the tiny extension field. Both the field prime
and irreducible polynomial determine the order of the elliptic curve. The "large prime" for
the tiny example base curve is 11. The group structure of the extension field is 11 × 165.
The pairing examples appear in chapter 15.

13.3.1 Tiny example variables

This section describes the initialization code for the tiny example.
The start of the tiny example lists the includes for points and curves of both G1 and

G2 types. It also creates space for all the variables on the stack, many will be used in later
chapters. Listing 13.13 is the start of the program.

Listing 13.13 Tiny example startup

#include ''poly_eliptic.h''
#include ''eliptic.h''
#include ''pairing.h''

#define M 43

int main(int argc, char *argv[])
{

FILE *pnts;
POLY_CURVE Ex; extension
CURVE E; base
POLY_POINT Px1, Px2, Qx, Tx; extension
POINT P1, P2; base
mpz_t prm, x, ordr, factors[8], tor;
POLY irrd, xtnd, t1, t2, t3, t4;
int i, j, k, m, which, skip;

mpz_init_set_ui(prm, M);
minit(prm);

initialize
field prime

poly_init(&irrd);
if(poly_irreducible(&irrd, 2)) find irreducible polynomial

poly_printf(''Found irreducible polynomial:\n'', irrd);
else

printf(''no irreducible polynomial found...\n'');
poly_irrd_set(irrd);
poly_mulprep(irrd);

set up prime polynomial
and multiplication table

POINTs P1, P2 and POLY_POINTs Px1, Px2 along with CURVE E and POLY_CURVE Ex

will be used to find all the points on the base curve and the field extension curve. The prime
field is initialized to 43 using the variable prm and then an irreducible polynomial is found.
If that failed the program should really just exit. So far in all my tests poly_irreducible()
has never failed to find an irreducible polynomial. Once the irreducible polynomial is
found the multiplication table is created for all the polynomial multiplication routines.
Since none of this is random the output is always the same as shown here:

Found irreducible polynomial:
Mod(1, 43)*x^2 + Mod(1, 43)*x^1 + Mod(3, 43)

Which is x2 + x +3. This means all polynomials will be degree 1 (or zero) for the x and
y values.

13.3.2 Tiny example base curve

This section describes the base curve of the tiny example in detail.
Computing the points on the G1 group comes from the curve I found using a PARI

search. The curve is
y2 = x3 + 23x + 42 mod 43.

This curve is plotted in figure 3.6. This curve was chosen because it has a very small num-
ber of points and a field extension that is also very small. A duplicate of figure 3.6 is shown
in figure 13.3.

x

y

10 20 30 40

10

5

15

-10

-5

-15

Figure 13.3 All points on tiny elliptic curve y2 = x3 + 23x − 1 mod 43

The initialization for that curve is listed here:

pnts = fopen(''all_points_prm_43.dat'', ''w''); save points to file
curve_init(&E);
mpz_set_ui(E.a4, 23);
mpz_set_ui(E.a6, 42);

initialize
curve to
y2 = x3 + 23x + 42

A file to hold all the points is also created.
The search for points is in listing 13.14. I start with two counters. Variable i is used to

keep track of the x value. Since eliptic_embed() increments x until it finds a value on
the curve, I have to update i at the end of the loop to match the new x value.

Listing 13.14 Tiny example base points

i = 1;
j = 0;

variable i becomes x
variable j is point index

while(i<M-1)
{

mpz_set_ui(x, i);
elptic_embed(&P1, &P2, x, E);

find next
available x value

get_order(ordr, P1, E, factors, 3); find order of point
gmp_fprintf(pnts, ''%2d: (%Zd, %Zd) order: %Zd\n'', j, P1.x, P1.y, ordr);
j++;

save both
points to disk

gmp_fprintf(pnts, ''%2d: (%Zd, %Zd)\n'', j, P2.x, P2.y);

j++;
while(mpz_cmp_ui(P1.x, i) >= 0) i++; increment i until 1 past x

}
fprintf(pnts, ''\n'');

The variable j counts each point. The two points are printed to the file along with the
order of the point. The subroutine get_order() is a simple brute force operation which
I’ll explain in chapter 16.
The reason I use variable i instead of P1.x directly is because the while loop requires

an integer.
Sample output from the file looks like this:

0: (1, 18) order: 5
1: (1, 25)
2: (2, 15) order: 55
3: (2, 28)
4: (3, 3) order: 11
5: (3, 40)
6: (5, 14) order: 55
7: (5, 29)
8: (6, 3) order: 55
9: (6, 40)
10: (10, 5) order: 55
11: (10, 38)
12: (11, 11) order: 11
13: (11, 32)
14: (12, 5) order: 55
15: (12, 38)
16: (13, 1) order: 55
17: (13, 42)

There are 54 points inG1 listed in the file. The order is 55 because the point at infinity
is included in the size of the group. This is true of each group. There are 4 points of order
5, 10 points of order 11 and 40 points of order 55 in the list. All the points of order 55
eventually become points of order 5 or 11. That is one reason to always choose a base
point of prime order. For these examples I will choose points of order 11 because they are
prime order and will not mix with other points of other orders.

13.3.3 Tiny example field extension curve

This section describes the field extension points for the tiny example.
The field extension curve uses the same coefficients as the base curve, but they are

polynomials. Here is the code that sets up the curve for the group 2 points:

poly_curve_init(&Ex);
mpz_set_ui(Ex.a4.coef[0], 23);
mpz_set_ui(Ex.a6.coef[0], 42);

We see from listing 13.2 that the degree of the coefficients is set to zero during initial-
ization. So these values are polynomial constants.

As a first step, let’s see how many points we expect on the field extension curve. From
formula 13.3 we have t0 = 2, t1 = −11, so

t2 = t1 × t1 − 43 × t0 = −11 × (−11) − 43 × 2 = 35.

This gives us (from equation 13.2)

#E2 = 432 + 1 − 35 = 1815.

From listing 13.7 two points are returned from the poly_embed() routine. The input
x value is now a polynomial which I call xtnd. Here is the initialization:

poly_point_init(&Px1);
poly_point_init(&Px2);
poly_init(&xtnd); start at x = 0
j = 0;

The variable j is again tracking the number of points. As we just computed, the cardi-
nality of the curve is 1815. The j counter limit is one less than that because the point at
infinity is part of the cardinality, but not on the curve. The variable j is incremented after
each point found is saved to the file.
Listing 13.15 has one line that embeds the next x on the extension curve. As shown in

section 13.2.3 this skips past gaps as in figure 13.3, but in two dimensions. The next line
finds the order of the point. Routine poly_get_order()is described in chapter 16. The
next block of lines prints the points in a nice readable format. The output is specific to this
tiny example and not general. The last two lines update the xtnd variable to one past the
x value of the point saved using routine FF_bump() described in listing 13.6.

Listing 13.15 Tiny example field extension points

while(j < 1814) known number of points
{

poly_elptic_embed(&Px1, &Px2, xtnd, Ex); embed next value of x onto curve
poly_get_order(ordr, Px1, Ex, factors, 8); find order of point
gmp_fprintf(pnts, ''%2d: x = '', j); save index to file
if(Px1.x.deg)
gmp_fprintf(pnts, ''%Zd*x + '', Px1.x.coef[1]);

gmp_fprintf(pnts, ''%Zd y = '', Px1.x.coef[0]);
if(Px1.y.deg)
gmp_fprintf(pnts, ''%Zd*x + '', Px1.y.coef[1]);

save x and y
values to file

gmp_fprintf(pnts, ''%Zd order: %Zd | %ld\n'', Px1.y.coef[0], ordr, g1g2(Px1));
j++;
gmp_fprintf(pnts, ''%2d: x = '', j);
if(Px2.x.deg)
gmp_fprintf(pnts, ''%Zd*x + '', Px2.x.coef[1]);

gmp_fprintf(pnts, ''%Zd y = '', Px2.x.coef[0]);
if(Px2.y.deg)
gmp_fprintf(pnts, ''%Zd*x + '', Px2.y.coef[1]);

repeat
for
second
point

gmp_fprintf(pnts, ''%Zd | %ld\n'', Px2.y.coef[0], g1g2(Px2));

j++;
poly_copy(&xtnd, Px1.x);
FF_bump(&xtnd); increment polynomial x

}
fclose(pnts);

The routine g1g2() looks at the degree of the x and y polynomials. If both are zero it
returns 1, if degree of x is 1 and y is zero it returns 2, if x degree is 0 and y is 1 it returns
3 and if both degrees are 1 it returns 4. This was more for curiosity than useful.
The output from this search for points has manyG1 points to start with:

0: x = 0 y = 4*x + 2 order: 11 | 3
1: x = 0 y = 39*x + 41 | 3
2: x = 1 y = 18 order: 5 | 1
3: x = 1 y = 25 | 1
4: x = 2 y = 15 order: 55 | 1
5: x = 2 y = 28 | 1
6: x = 3 y = 3 order: 11 | 1
7: x = 3 y = 40 | 1
8: x = 4 y = 10*x + 5 order: 33 | 3
9: x = 4 y = 33*x + 38 | 3

10: x = 5 y = 14 order: 55 | 1
11: x = 5 y = 29 | 1
12: x = 6 y = 3 order: 55 | 1
13: x = 6 y = 40 | 1
14: x = 7 y = 6*x + 3 order: 33 | 3
15: x = 7 y = 37*x + 40 | 3

But in addition there are many G2 points as well. Every constant x value (i.e. degree
zero value) has a point on the curve. When x becomes a degree 1 polynomial then gaps
begin to appear:

276: x = 6*x + 3 y = 2*x + 16 order: 11 | 4
277: x = 6*x + 3 y = 41*x + 27 | 4
278: x = 6*x + 6 y = 19*x + 21 order: 165 | 4
279: x = 6*x + 6 y = 24*x + 22 | 4
280: x = 6*x + 8 y = 16*x + 32 order: 55 | 4
281: x = 6*x + 8 y = 27*x + 11 | 4
282: x = 6*x + 10 y = 20*x + 40 order: 55 | 4
283: x = 6*x + 10 y = 23*x + 3 | 4
284: x = 6*x + 12 y = 17*x + 19 order: 165 | 4
285: x = 6*x + 12 y = 26*x + 24 | 4
286: x = 6*x + 14 y = 6*x + 39 order: 165 | 4
287: x = 6*x + 14 y = 37*x + 4 | 4
288: x = 6*x + 17 y = 2*x + 38 order: 165 | 4
289: x = 6*x + 17 y = 41*x + 5 | 4

The purpose of this example is to show that a field extension of a curve has all the
points of the base field plus a lot more. This becomes very useful as we get into pairing
calculations.

Unfortunately attempting to graph this tiny example on paper is challenging. There
are two dimensions for the x value and two dimensions for the y value, so the graph sits
on a four dimensional plane. Field extensions for cryptographic purposes require 11 to
31 dimensions. Using graphs like figure 13.3 for the base curve or graphs like figure 13.4
(both copied from chapter 3) allow us to imagine what is happening with the mathematics.
The formulas are the same, so this abstract connection is perfectly valid.

Figure 13.4 General shape of elliptic curve to help with field extension abstraction

13.4 Summary
An elliptic curve over a finite field has cardinality #E = h · r with r a large prime. That
curve has field extension k when

pk � 1 mod r .

For elliptic curve pairings we want k to be small.

The cardinality of a field extension curve is

#Ek = p
k + 1 − tk

with tk found from the recurrence relation

tn+2 = t1tn+1 − ptn .

This is used to find cofactors of field extension curves.

Points on a field prime curve are labeledG1. Points on an extension curve are labeled
G2. A field extension curve has the same coefficients as a field prime curve, but they
are constructed as zero degree polynomials.

Testing for a polynomial point at infinity uses the degree of the polynomials as well
as lowest coefficient to determine if both x and y are zero. This is used to determine
the order of a point on a field extension curve.

Embedding a polynomial point on a polynomial curve requires a "bump" routine that
increments the next coefficient. Only used for small test cases since large coefficients
will never roll over.

The polynomial random point function embeds a random polynomial on a polyno-
mial curve. This is used to find reference points for pairing calculations.

Polynomial elliptic curve addition uses the same formulas as field prime elliptic curve
point addition. It just calls polynomial functions to process the math. These routines
are used in aggregated signature and zero knowledge algorithms.

Polynomial elliptic curve multiplication is also the same as field prime elliptic curve
multiplication. The double and add formula is exactly identical. These routines are
used in aggregated signature and zero knowledge algorithms.

A tiny example shows howG1 andG2 points are on the same curve. A field extension
has bothG1 andG2 points. A prime field curve can only seeG1 points.

Chapter Bibliography
Freeman, David, Scott, Michael, & Teske, Edlyn. 2006. A taxonomy of pairing-friendly
elliptic curves. Cryptology ePrint Archive, Paper 2006/372. https://eprint.iacr.
org/2006/372.

Lidl, Rudolf, & Niederreiter, Harald. 1997. Finite Fields. 2 edn. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press.

Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York.

13.5 Answer to exercise
13.1) Embedding degree = 4 because 414 = 1 mod 29.

https://eprint.iacr.org/2006/372
https://eprint.iacr.org/2006/372

14Finding low embedding
degree elliptic curves

This chapter covers
Algorithms for finding low embedding degree
field extensions.

The j-invariant and Hilbert class polynomials.

The method of complex multiplication, used to
find elliptic curves.

Routines to find secure curves with low embed-
ding degree.

In this chapter I explain the reasons for choosing specific size extension fields to create a
secure pairing friendly curve. The optimal size depends on the security level desired. Too
small and it might be broken, too large and it may not be efficient for practical use.
I then discuss algorithms which can find curves of low embedding degree. This involves

searching for primes usingmathematical functions. The parameters found during this pro-
cess will allow us to use anothermathematical function to find curves which have the prime
number of points found for pairings.
The method used to find the curves of interest is called complex multiplication. One

of the parameters from the search process will tell us which function we use to find the
curve coefficients. The factoring of that function is the last step in theory before diving

into code.

14.1 Security of field extensions for elliptic curve pairing
In this section I cover the security requirements of pairings over elliptic curve field exten-
sions. Knowing the security level you want drives the field sizes and embedding degrees.
Finding the private key from the public key and base point is called the elliptic curve

discrete log problem. For curves over a prime field the difficulty comes from the size of
the prime and goes as the square root of the order of the base point. So an equivalent sym-
metric key is half the size of an elliptic curve key. The elliptic curve is still an exponential
security level.
Field extensions can be attacked with algorithms similar to factoring. These are subex-

ponential, so the number of bits required for security grows more rapidly. This becomes a
problem for pairing applications because both the base curve and the field extension must
be secure at the same level.
Table 14.1 is taken directly from reference (Freeman et al., 2006) . The first column is

the number of bits for a symmetric key system such as AES. The second column is the
number of bits required for an equivalent security level for key exchange using elliptic
curves over a prime field as in chapter 3. The third column is the number of bits required
for the same level of security for an elliptic curve over a field extension as in chapter 13.
The last column is the embedding degree required to go from the field in column two to
the extension field in column three. It is derived by dividing column three by column two.

Table 14.1 Elliptic curve field sizes for pairings

Security level Subgroup size Extension field Embedding degree

80 160 960 - 1280 6 - 8

112 224 2200 - 3600 10 - 16

128 256 3000 - 5000 12 - 20

192 384 8000 - 10000 20 - 26

256 512 14000 - 18000 28 - 36

What is not shown in table 14.1 is the size of the prime field. The column headed
subgroup size indicates the number of bits in a large prime factor within the cardinality
usually called r. The ratio of the number of bits in the field prime (p) to the number of
bits in the subgroup size is called 𝜌. In formula form

𝜌 =
log2 (p)
log2 (r)

.

One of the early descriptions of pairing friendly curves which has gained wide use is
called BLS curves (Barreto et al., 2003) . These curves have a 𝜌 value near 1.5 while the
curves from (Freeman et al., 2006) are less than 1.1 for embedding degrees above 19. For
security levels above 128 bits this is quite a large savings in resources, thus lower cost for
the same level of security.

In the preface and about this book, I describe how one of the primary goals of this
book is to ensure the best level of security rather than high speed or efficiency. I choose
embedding degrees of prime value for that reason. The choice of embedding degree is
then 7, 11, 13, 17, 19, 23, 29 or 31 for the security levels shown in table 14.1. Reference
(Freeman et al., 2006) gives many algorithms for any embedding degree, but I will use
only two of them applicable to these primes.
The methods of reference (Freeman et al., 2006) determine a field prime and a large

prime order for a given embedding degree along with the cardinality of the base curve.
They then call on the method of complex multiplication (CM) to find a curve that fits the
parameters. It is at this point that the mathematical rabbit hole gets very, very deep (see
chapter II in (Silverman, 2013)).
In the following sections I describe the mathematics at a functional level. Two formulas

from reference (Freeman et al., 2006) each apply to some of the primes in table 14.1.
Then I give a very simplified description of how the CM method works. References for
deeper understanding include (Blake et al., 1999) , (Cohen, 2000) and (Silverman, 2013) .
As part of the trip down the rabbit hole we are going to run across two terms that you

may have run across before. The first is the discriminant of a quadratic equation. This dis-
criminant really is similar to what you ran across in high school solving quadratic equations.
The quadratic equation is

Dy2 = 4q − t2 (14.1)

where q is the field prime, t is the trace of Frobenius, y is being solved for and D is the
discriminant. For details on where this formula comes from see (Freeman et al., 2006) .
The second term is called the j-invariant. This is the last value in the list from chapter

6 from PARI’s elliptic curve parameters. Elliptic curves which have the same j-invariant
are isomorphic which means they have the same number of points. We can find curve
coefficients a4 and a6 once we know the value of a j-invariant.
The method of complex multiplication is a search process seeking prime values of q

and r with known values of D. Using q and D we can find the roots of a polynomial which
will give us the j-invariant of an elliptic curve with those values of q, r and t. As part of the
trip down the rabbit hole keep track of the relationships #E = q + 1 − t = h · r.

Exercise 14.1
Define the meaning of the variables #E, q, t, h, and r in the previous
sentence.

14.2 Low embedding degree
In this section I describe how low embedding degree field extensions are found.
In chapter 13 I pointed out that the typical embedding degree for average curves with

large prime r as a factor in the cardinality normally have embedding degree the same
size as r. This is many orders of magnitude too large for pairing where we only need an
embedding degree in the six bit range. Mathematicians have spent a lot of time and effort
developingmethods which solve this problem. In this section I discuss just two of themany

methods which have been developed.
Figure 14.1 shows the algorithm which will be described for finding pairing friendly

curves. Choosing from the list of primes determines which set of formulas we pick from
reference (Freeman et al., 2006) . A sweep over the inputs to those functions will eventually
find a prime value of r. If q is not also prime the sweep continues. The red line is a dividing
point in my software implementation. Above the line is a sweep program, below the line
is the curve finding program.
The curve finding program uses the 𝛼 value and q to factor a polynomial. Those factors

are the j-invariant for the curve we seek. Once the j-invariant values are known the curve
parameters a4 and a6 can be computed.

chose embedding
degree k

for 13, 17, 19 use 6.2
for 7, 11, 19, 23, 31 use 6.20

formulas for r, q, t

sweep over x and 𝛼

to find prime r

is q prime?

find #E = q + 1 − t = h · r

use 𝛼 to look up
Hilbert class polynomial

factor polynomial mod q
to find j-invariant

find a4, a6 of curve

no

yes

Figure 14.1 Pairing friendly curves algorithm. Above the dashed line is one program which searches for
good parameters. Below the dashed line is a program that finds one curve for one set of parameters.

Reference (Freeman et al., 2006) goes through many other methods listing a table for
each embedding degree value and which algorithm gives the lowest value of 𝜌. I am ac-
tually going to combine two construction algorithms with Theorem 6.19 from (Freeman
et al., 2006) for a simplified description of the algorithms.
The algorithms to find curves with low embedding degree use functions for a large

prime factor common to both G1 and G2 called r (x), the trace of Frobenius t(x) and the

field prime q(x) for a specific embedding degree k. Theorem 6.19 in (Freeman et al., 2006)
says we can replace x2 in all these functions by z = 𝛼x2 where 𝛼 is a square free value. It
turns out this value is the discriminant in equation 14.1. For the two algorithms of interest
here, there are specific values of 𝛼 which will create useful curves.

Table 14.2 Low embedding algorithms

construction 6.2 6.20

k 13, 17, 29 7, 11, 19, 23, 31

r (z) zk−1 − zk−2 + · · · − z + 1 zk−1 − zk−2 + · · · − z + 1
t (z) 1 − z 1 + z (k+1)/2

q (z) (zk+2 + 2zk+1 + zk + z2 − 2z + 1)/4 (zk+1 + zk + 4z (k+1)/2 + z + 1)/4

The first line of table 14.2 shows the k values allowed for the embedding degree formu-
las which I will use. The allowed values for 𝛼 in z = 𝛼x2 are

𝛼 = 7, 11, 15, 19, 23 + a × 20 for a ∈ {0, 1, · · · , 7}

and x is any value.
These formulas require a great deal of testing. Sweeps in both 𝛼 and x are required to

determine if both r (z) and q(z) are primes because most are not. Once a triplet of (r , t , q)
is found the next step is to find a curve which fits that triplet.

14.3 Complex multiplication
In this section I show how finding a curve which meets the low embedding degree pa-
rameters is found. After choosing security parameters, these methods give a curve which
satisfies those parameters.
This is the place where the theory of elliptic curves gets really deep. It is fun to dive

into the details of the mathematics, but it is not essential to creating pairing friendly curves.
In this section I lay down the rules of mathematics used to solve the problem without
explaining where those rules come from.
Taking the value of the discriminant, we look up a formula whose roots are the j-

invariant. Once we know a j-invariant value we can write down the equation of the curve
as

y2 = x3 + 3cx + 2c (14.2)

where
c =

j
1728 − j . (14.3)

See (Blake et al., 1999) section VIII.2 for more details.
The j-invariant can be computed from roots of the Hilbert-Class polynomial modulo

the prime q. Rather than attempt to explain what that means, we are going to just use PARI
to give us the polynomials for each of the 𝛼 values listed above. The connection between
the complex plane, the j-invariant modular function and integer results is mind-bending,

and I urge you to read as much as you can deal with. For example, the largest 𝛼 in the list
is 163. In section 7.2.3 of (Cohen, 2000) he shows that e𝜋

√
163 is almost an integer within

12 decimal places.
Appendix B lists the code which prints out the Hilbert polynomials along with the out-

put file itself. Since the roots of these polynomials find a j-invariant and the formulas above
give curves based on the j-invariant value, we should be done right? No, we have one more
problem called the twist curve. This comes from the value of t in table 14.2 having the
possibility of being positive or negative in the cardinality formula 6.2 (#E = p + 1 − t).
For polynomials with several roots we can keep trying curves until we find the one with

cardinality factors we desire. For Hilbert polynomials with one root we only have a 50%
chance of getting the correct curve. When we don’t get the right curve we use the method
described in (Blake et al., 1999) section VIII.2 which picks a quadratic non-residue f and
changes equation 14.2 to

y2 = x3 + 3c f 2x + 2c f 3 (14.4)

The method of determining the correct curve is to choose a random point on the curve
and then multiply by the desired cardinality. If we get the point at infinity it is the curve
we want. The twist curve will not result in the point at infinity.

14.3.1 Factoring Hilbert class polynomial

In this section I explain what a Hilbert class polynomial looks like and how it can be fac-
tored. Each factor gives a j-invariant which can be used to find the curve which has the
prime field and large prime factor used to compute pairings. This completes the method
of complex multiplication as shown below the dashed line in figure 14.1.
The Hilbert class polynomial has unique factors in the form

H (x) =
∏
i

(x − ji) (14.5)

with ji unique for each i. While the formula looks the same for every discriminant the
results are different for each modulus. The method to solve for the factors comes from
algorithm 1.6.1 in reference (Cohen, 2000) which is diagrammed in figure 14.2. The
flow chart is actually part of a recursive algorithm with input P (x) coming from one of the
two possible outputs at the end of the algorithm.
Our input is actually a polynomial of the form

P (x) = anxn + an−1xn−1 + · · · a1x + a0.

The process of factoring breaks this down into two factors which each can be processed
again to find smaller factors. At some point we get down to degree 1 or degree 2 polyno-
mials which we can directly solve for the roots.
The first step in figure 14.2 computes the greatest common divisor by first defining

h(x) = xp mod P (x) and then computing gcd(h(x) − x , P (x)). The same process occurs
in the computation of B(x). If A(0) = 0 then there is a root equal to zero and a new A(x)
is found by division with x. Done means finished with that root, and we can proceed to
check any others.

A(x) ←− gcd(xp − x , P (x))

A(0) = 0?
A(x) ←− A(x)/x

root = 0

deg(A) < 3?
compute
1 or 2
roots

done

yes

no

done

yes
pick random a

B(x) = gcd((x + a) (p−1)/2 − 1, A(x))

deg(B) = 0 or deg(A)?

no

yesuse B and A/B
for P and repeat

no

Figure 14.2 Roots mod p of P(x)

If the degree of A(x) is less than three we can directly compute one or two roots. If the
degree is 1 then we have

x = − a0
a1
. (14.6)

If the degree is two then we can use the quadratic solution using the method described in
algorithm 1.6.1 from reference (Cohen, 2000)

d ← a21 − 4a0a2
e ←
√
d

x1 =
−a1 + e
2a2

x2 =
−a1 − e
2a2

(14.7)

For the degree of A(x) larger than two the algorithm picks a random value a and com-
putes h(x) = (x + a) (p−1)/2 mod A(x) to find B(x) = gcd(h(x) − 1, A(x)). If the deg(B) is
zero or the same as deg(A) we try a different random a. If the value for deg(B) is acceptable
we use B(x) and A(x)/B(x) for the next round.
The actual implementation pushes each polynomial B(x) and A(x)/B(x) on a stack and

adds roots to an array. The initial degree of the Hilbert class polynomial determines the
number of roots. Every time we hit a done portion we have popped a polynomial off the
stack and found roots. In this way all roots are found and the process for finding curves
can begin.

14.4 Code for finding pairing friendly curves
In this section I present two programs which help find pairing friendly curves.

The first program inputs the embedding degree and number of bits in r and sweeps
over 𝛼 and x searching for prime q and prime r.

The second program takes the first program’s output 𝛼, q, and t as input to find a
curve by solving for the roots of the correct Hilbert class polynomial.

14.4.1 Pairing sweep

In this section I get into the details of sweeping over many possible inputs to equations
r (z), t(z), and q(z) from table 14.2. After describing the subroutines for those functions
the main program will explain how the inputs are chosen to perform the sweep. Figure
14.3 shows the flow chart for the main program. Remember that z = 𝛼x2. The sweep
changes 𝛼 independently from x.

Request bit size
for security level

Request embedding
degree k

create output file
pairings_alpha.<k>

compute max x value

for every 𝛼 value

for every odd x
value < max

compute r (𝛼x2)

is r prime?

compute q(𝛼x2), t(𝛼x2)

is q prime?

save r , q , t , 𝛼 to file

all x?

all 𝛼?

no

no

done

no

yes

no

yes

yes

yes

Figure 14.3 Program which sweeps over 𝛼 to find pairing friendly curves

The sweep over 𝛼 and x in formulas shown in table 14.2 leads to a maximum size in r
of x2k−2. The program input asks for maximum bit size because that is how we think about
security. Calling the input lg2r, I take the maximum sweep over x to be 2lg2r/(2k−2) . This
is a little too big because it does not account for 𝛼, but it is close enough to be reasonable.

The opening of program pairing_sweep_alpha.c brings in the modulo and polyno-
mial function headers along with math.h. I then put in several subroutines to compute
r (z), q(z) and t(z). Listing 14.1 shows the top of the program along with the routine that
computes r (z).

Listing 14.1 Pairing sweep r (z) routine

#include ''modulo.h''
#include ''poly.h''
#include <math.h>

void phi4k(mpz_t r, long k, mpz_t alpha, mpz_t x)

input 𝛼 and x
as separate values
k is embedding degree

{
int i;
mpz_t z[36], ck; max embedding degree assumed < 36

mpz_init_set_ui(ck, 1);
mpz_init(z[0]);
mpz_mul(z[0], x, x);
mpz_mul(z[0], alpha, z[0]);

z[0] = 𝛼x2

mpz_sub(ck, ck, z[0]); start at 1 − z
for(i=1; i<k-1; i++)
{

mpz_init(z[i]);
mpz_mul(z[i], z[i - 1], z[0]); z[i] = zi−1

if(i & 1)
mpz_add(ck, ck, z[i]);

else
mpz_sub(ck, ck, z[i]);

alternate sign
between terms

}
mpz_set(r, ck); output result
mpz_clear(ck);
for(i=0; i<k-1; i++)

mpz_clear(z[i]);
clean up stack

}

The name of the routine comes from the cyclotomic polynomial which defines r. The
inputs include the embedding degree k, the discriminant 𝛼 and the value of x. I found that
even x values never result in a prime, so the calling loops include only odd x values.
The purpose of subroutine phi4k() is to compute the formula r (x) in table 14.2. The

routine starts by computing z = 𝛼x2 and then begins with 1− z. The array z[] holds each
power of z, so it is easy to add or subtract the correct power and then compute the next
power on each loop. The index zero holds z1, so the loop ends at k − 2 which is zk−1. As
seen in the r (z) line of table 14.2 that is the correct final power.
The q(z) routines are similar to each other but as seen in table 14.2 they are different

enough to require their own routines. Listing 14.2 shows the code for algorithm 6.20 and
listing 14.3 has the code for algorithm 6.2.

Listing 14.2 Pairing sweep q(z) algorithm 6.20

void qofz_20(mpz_t q, long k, mpz_t alpha, mpz_t x)

input 𝛼 and x
as separate values
k is embedding degree

{
long k1, k2;
mpz_t t1, t2, t3, t4, z;

mpz_inits(z, t1, t2, t3, t4, NULL);
k1 = k + 1;
k2 = k1/2;

offsets to
embedding degree

mpz_mul(z, x, x);
mpz_mul(z, z, alpha); z = 𝛼x2

mpz_pow_ui(t1, z, k1); zk+1

mpz_pow_ui(t2, z, k); zk

mpz_pow_ui(t3, z, k2);
mpz_mul_ui(t3, t3, 4); 4z (k+1)/2

mpz_add_ui(t4, z, 1);
mpz_add(t1, t1, t2);
mpz_add(t1, t1, t3);
mpz_add(t1, t1, t4);
mpz_fdiv_q_ui(q, t1, 4);

1 + z + 4z (k+1)/2 + zk + zk+1
4

mpz_clears(z, t1, t2, t3, t4, NULL);
}

These routines are just straight calculation of the formulas. The exponents are slightly
different in each routine. It’s interesting that the structure of the formulas are quite similar
otherwise.

Listing 14.3 Pairing sweep q(z) algorithm 6.2

void qofz_2(mpz_t q, long k, mpz_t alpha, mpz_t x)

input 𝛼 and x
as separate values
k is embedding degree

{
long k1, k2;
mpz_t t1, t2, t3, t4, z;

mpz_inits(z, t1, t2, t3, t4, NULL);
k1 = k + 1;
k2 = k + 2;

offsets to
embedding degree

mpz_mul(z, x, x);
mpz_mul(z, z, alpha); z = 𝛼x2

mpz_pow_ui(t1, z, k2); zk+2

mpz_pow_ui(t2, z, k1);
mpz_mul_ui(t2, t2, 2); 2zk+1

mpz_pow_ui(t3, z, k); zk

mpz_sub_ui(t4, z, 1);
mpz_mul(t4, t4, t4); (z − 1)2

mpz_add(t1, t1, t2);
mpz_add(t1, t1, t3);

mpz_add(t1, t1, t4);
mpz_fdiv_q_ui(q, t1, 4);

zk+2 + 2zk+1 + zk + (z − 1)2
4

mpz_clears(z, t1, t2, t3, t4, NULL);
}

Listing 14.4 shows the code for t(z) algorithm 6.20 and listing 14.5 shows t(z) for
algorithm 6.2.

Listing 14.4 Pairing sweep t(z) algorithm 6.20

void tofz_20(mpz_t t, long k, mpz_t alpha, mpz_t x)

input 𝛼 and x
as separate values
k is embedding degree

{
mpz_t z, t1;
long k1;

mpz_inits(z, t1, NULL);
mpz_mul(z, x, x);
mpz_mul(z, z, alpha); z = 𝛼x2

k1 = (k + 1)/2;
mpz_pow_ui(t1, z, k1);
mpz_add_ui(t, t1, 1); t = 1 + z (k+1)/2
mpz_clears(z, t1, NULL);

}

These are very simple. As with the other routines 𝛼 and x are inputs.

Listing 14.5 Pairing sweep t(z) algorithm 6.2

void tofz_2(mpz_t t, long k, mpz_t alpha, mpz_t x)

input 𝛼 and x
as separate values
k is embedding degree

{
mpz_t z, one;

mpz_init(z);
mpz_mul(z, x, x);
mpz_mul(z, z, alpha); z = 𝛼x2

mpz_init_set_ui(one, 1);
mpz_sub(t, one, z); t = 1 − z
mpz_clears(z, one, NULL);

}

Listing 14.6 is the beginning of the main routine for sweeping a specific embedding
degree. The variables atab[] and ktab[] are arrays for the 𝛼 and k values in table 14.2.
The array algt[] tells which algorithm to use (6.2 or 6.20) for each value in the ktab[]
array.
The program expects one input. This is the largest number of bits in r desired. The

sweep will find many values smaller than this, so over estimating by five or six bits is use-
ful.

Listing 14.6 Pairing sweep main

int main(int argc, char *argv[])
{

FILE *pair;
mpz_t r, alpha, x, q, t;
long k, u, lg2r, alphabase, rpm, qpm, rsz, qsz;
long max, atab[5] = 7, 11, 15, 19, 23;

𝛼 table
starting values

double rho;
int j, m, nmrpm, a, kdex;

prime embedding degrees

int ktab[9] = 5, 7, 11, 13, 17, 19, 23, 29, 31;
int algt[9] = 1, 0, 0, 1, 1, 0, 0, 1, 0; // 1 == 6.2 0 == 6.20
double xsz, asz;

flag for which
algorithm to usechar filename[128];

if(argc < 2)
{

expect number of
security bits for input

printf(''Use: ./pairing_sweep_alpha <log2(r) max range>\n'');
exit(-1);

}
lg2r = atol(argv[1]);
if(lg2r < 3)
{

printf(''need more bits to work with\n'');
exit(-2);

small to play
is ok but not
too small!

}
printf(''choose embedding degree k from 5, 7, 11, 13, 17, 19, 23, 29, 31: '');
fflush(stdout);
scanf(''%ld'', &k);
for(kdex=0; kdex<9; kdex++)

if(k == ktab[kdex])
break;

request embedding degree
and check if in table

if(kdex > 8)
{

printf(''k must be from list.\n'');
exit(-1);

ignore input
if not found

}
sprintf(filename, ''pairings_alpha.%02ld'', k);
pair = fopen(filename, ''w'');

create file
for found parameters

nmrpm = 0;
mpz_inits(r, alpha, x, q, t, NULL);
max = exp2(lg2r/2/(k - 1)); compute largest x

The program asks for an embedding degree after listing the options that are acceptable.
After scanning the ktab[] array for a match it will exit the program on an incorrect input.
For an acceptable choice a new file is created to hold the prime values r , q and all other
parameters for the chosen embedding degree.
The variable nmrpm is a count of the number of r prime values found. The GMP vari-

ables are named according to their use from the formulas.

Listing 14.7 shows the full sweep. The outer loop adds the multiple 20a to 𝛼. The
variable m steps through the atab[] array. Between these two loops all possible values of
𝛼 available from the Hilbert class polynomial list is attempted.

Listing 14.7 Pairing sweep loop

for(a=0; a<8; a++)
{

for(m=0; m<5; m++)
{
alphabase = atab[m] + a*20; integer version of 𝛼
printf(''processing alpha = %ld\n'', alphabase);

long slow process
let user know
program running

mpz_set_ui(alpha, alphabase);
for(j=1; j<max; j+=2)
{

mpz_set_ui(x, j);

only odd
values of x
are useful

phi4k(r, k, alpha, x); both algorithms use same r (x)
rsz = mpz_sizeinbase(r, 2);
if(rsz > lg2r)
break;

is returned
r value
acceptable size?

rpm = mpz_probab_prime_p(r, 25); is r value prime?
if(rpm)
{
nmrpm++;

yes so
increment number
r primes found

if(algt[kdex])
{
qofz_2(q, k, alpha, x);
tofz_2(t, k, alpha, x);

}
else
{
qofz_20(q, k, alpha, x);

use correct
algorithm for
this embedding degree

tofz_20(t, k, alpha, x);
}
qsz = mpz_sizeinbase(q, 2); number of bits in q
qpm = mpz_probab_prime_p(q, 25);
if(qpm) is q prime?

{
gmp_fprintf(pair, ''k= %ld alpha = %Zd x = %Zd\n'', k, alpha, x);
gmp_fprintf(pair, ''r = %Zd numbits: %ld\n'', r, rsz);
gmp_fprintf(pair, ''q = %Zd numbits: %ld\n'', q, qsz);
fprintf(pair, ''rho = %lf\n'', (double)qsz/(double)rsz);
gmp_fprintf(pair, ''t = %Zd\n\n'', t);

}
save all parameters
including 𝜌
to file

}
}

}
}
fclose(pair);

mpz_clears(r, alpha, x, q, t, NULL);
printf(''found %d r primes\n'', nmrpm);

}

The variable j is converted to the x value used in all the formulas. Only odd values are
useful, so the loop increment is 2. Since both algorithms use the same formula for r (x)
this is computed first. If the size of r exceeds the requested limit the j loop is terminated.
The routine mpz_probab_prime() checks to see if r is prime. The GMP manual says

values between 15 and 50 are reasonable for the second argument, so I chose 25. Higher
values take longer and lower values run the risk of being wrong since it is probabilistic.
If r is a prime then q and t are computed using the correct subroutines for this choice

of embedding degree. The value of q is also checked to ensure it is in fact a prime. There
is no output if q is not prime.
Once good values for r and q are found all the values are saved to the file. Here is an

example for embedding degree 13. From table 14.1 the subgroup size of 224 can use
embedding degree 13. But when used as input the only value found is much too small.
When an input size of 260 is requested then one value is found as shown here:

$./pairing_sweep_alpha 260
choose embedding degree k from 5, 7, 11, 13, 17, 19, 23, 29, 31: 13
processing alpha = 7
processing alpha = 11
processing alpha = 15
...
processing alpha = 151
processing alpha = 155
processing alpha = 159
processing alpha = 163
found 182 r primes

Of the 182 r values which were prime, only three had corresponding prime q values.
Listing 14.8 is the output from this particular run. Low embedding degrees have higher
𝜌 values, in this case 𝜌 = 280/226 = 1.2. For higher security levels the value of 𝜌 drops
below 1.1.

Listing 14.8 Output pairing_sweep.13

k= 13 alpha = 35 x = 1
r = 3285353271721733941 numbits: 62
q = 38320360561362304687789 numbits: 76
rho = 1.225806
t = -34

k= 13 alpha = 39 x = 3
r = 3486983164606836942954707537101 numbits: 102
q = 38020502258415206163027687275572682401 numbits: 125
rho = 1.225490
t = -350

k= 13 alpha = 55 x = 91
r = 79679158002503797122797469815576171221524228764283160439578042655821
numbits: 226
q = 188201910506566789076013521962076573175506406392106419771149765094125925
5989359586529 numbits: 280
rho = 1.238938
t = -455454

14.4.2 Finding the curve

In this section the code to find a curve using one set of parameters from the sweep program
is described.
The prime q values in listing 14.8 are the modulus used for finding the roots of the

Hilbert class polynomials listed in appendix B. Each curve will have different roots even
though the equation is the same for the same 𝛼 value. The get_curve.c program de-
scribed in this section takes the 𝛼, q and t values from the pairing_sweep.* file as inputs.
It scans the Hilbert_Polynomials.list file for the correct polynomial and then proceeds
to find all the factors modulo q. Once we have those factors, we can compute the coeffi-
cients for pairing friendly curves.
Since each root is a j-invariant the values for a4 and a6 can be computed using formula

14.3. The cardinality is computed using formula 6.2 (#E = p + 1 − t) with the input t
value. Multiplying a random point on the curve by the cardinality should give the point
at infinity. If not, I keep trying roots until one is found that works. If none work, then the
twist of the first curve attempted is computed. This is again tested with a random point,
and if that fails the program gives up. The program has never failed to find a curve (so far).
If the degree of the Hilbert class polynomial is 1, the root is just the negative of the

zeroth degree coefficient because the Hilbert polynomial is monic. If the degree is two we
can use the quadratic formula of equation 14.7 modulo q to find the two roots. For higher
degrees we need to break the polynomial down into smaller chunks and peel off 1 and 2
degree factors at a time as shown in figure 14.2.
The program get_curve.c starts with a subroutine for computing the quadratic roots

modulo q as shown in listing 14.9.

Listing 14.9 Finding curve quadratic roots subroutine

#include ''poly.h''
#include ''eliptic.h''
#include <string.h>

void tworoots(mpz_t j1, mpz_t j2, POLY hc)

input polynomial hc
outputs roots j1, j2

{
mpz_t d, e, f;

if(hc.deg != 2) just bail out if not degree 2
return;

if(mpz_cmp_ui(hc.coef[2], 1))
{

mdiv(hc.coef[1], hc.coef[1], hc.coef[2]);
mdiv(hc.coef[0], hc.coef[0], hc.coef[2]); force monic

}
mpz_inits(d, e, NULL);
mmul(d, hc.coef[1], hc.coef[1]);
mpz_init_set_ui(f, 4);
mmul(e, hc.coef[0], f);
msub(d, d, e);

d = a2 − 4b

msqrt(e, d); e =
√
d

mpz_neg(j1, hc.coef[1]);
mpz_neg(j2, hc.coef[1]);
madd(j1, j1, e);
msub(j2, j2, e);
mpz_set_ui(f, 2);
mdiv(j1, j1, f);
mdiv(j2, j2, f);

j1 = (−a + e)/2

j2 = (−a − e)/2

mpz_clears(d, e, f, NULL);
}

If the input polynomial is not degree two the routine immediately bails out. The poly-
nomial is then normalized. With the input polynomial being

x2 + ax + b = 0

The subroutine then computes equations 14.7. Note that in formula 14.7 there is division
by a2. By forcing the equation to be monic a2 = 1 so that is ignored in the code.
The main() routine of the get_curve.c program is in listing 14.10. This checks for

proper input and looks for the Hilbert_Polynomials.list file. If not found the program
exits. After opening the file it reads all of Hilbert_Polynomials.list into memory for
easy random access.

Listing 14.10 Find curve initialize

int main(int argc, char *argv[])
{

FILE *hilb;
POLY hc, stack[16], x1, hofx, Aofx, Bofx, rem;
int i, j, k, alpha, xs, xe, sign, stckp, done;
mpz_t root[16], p, c, a4[16], a6[16], tp, b, j0;
mpz_t two, tri, t, crde;
char *hcdat;
POINT R, P0;
CURVE E;

if(argc < 4)
{

check input values
are all on command line

printf(''Use: ./get_curve <discriminant> <prime> <t>\n'');
printf('' values from output of parings_alpha.k\n'');
exit(-1);

}

read in
Hilbert Class Polynomials

hilb = fopen(''Hilbert_Polynomials.list'', ''r'');
if(!hilb)
{

ensure Hilbert
polynomials file is there

printf(''can't find file Hilbert_Polynomials.list\n'');
exit(-2);

}
hcdat = (char*)malloc(6*1024);
k = 0;
while(!feof(hilb))
{

hcdat[k] = fgetc(hilb);
k++;

}
fclose(hilb);

read in
entire file
to small
buffer

k -= 2;

Listing 14.11 shows the scan for the discriminant. If the input value is not one of the
values used in creating the Hilbert polynomial list the program issues an error and ex-
its.

Listing 14.11 Find curve check discriminant

alpha = atol(argv[1]);
if(alpha < 0)

alpha *= -1; technically discriminant is negative
i = 0; buffer index
j = 0; 𝛼 value from file
while((j < alpha) && (i < k))
{

sscanf(&hcdat[i], ''%d'', &j);
j *= -1;

use positive
values to make
search and limit
easier

if(j == alpha)
break; found correct polynomial

while(hcdat[i] != '\n')
i++;

i++;

skip to
end of line

see if discriminant in list

}
if(j != alpha)
{

exit if
not found

printf(''invalid discriminant %d\n'', alpha);
exit(-3);

}

The discriminant values are actually negative. The output value from program
pairing_sweep_alpha.c is positive, so I chose to make the comparison with the assump-
tion that the input is positive. If the input is actually negative I make it positive so the
compare works. Obviously there are many different ways to do this.

The beginning of each line in the Hilbert_Polynomials.list file holds the 𝛼 value. Scan-
ning for the newline character and then skipping over the newline puts the index at the
start of the next entry. If the index goes past the end of the buffer no match was found and
the program issues an error and stops.
Listing 14.12 starts by checking inputs q and t are integers. If not the program exits.

If they are, the field prime modulus is initialized. The Hilbert class polynomial is then
converted from text to internal representation. The polynomial is monic so the first x has
no coefficient in the text file. If there is a ^ after the first x entry the degree of the Hilbert
polynomial is set. If not, the degree is set to 1.
The variable j then keeps track of the remaining coefficients. The first thing to look

for is a + or − sign. After that the end of the coefficient is found with the asterisk which
is changed to a zero. The GMP conversion routine then places the coefficient in the right
place with binary format. The sign is applied, and the final result is reduced modulo the
field prime.

Listing 14.12 Find curve set parameters

if(mpz_init_set_str(p, argv[2], 10) < 0) Set up mod q operations
{

printf(''invalid prime string\n'');
exit(-4);

make sure
prime modulus
is an integer

}
minit(p); initialize base field prime

if(mpz_init_set_str(t, argv[3], 10) < 0) input factor t = p + 1 - #E
{

printf(''invalid t string\n'');
exit(-5);

make sure
Frobenius trace
is an integer

}

poly_init(&hc);
xs = i; xs is coefficient start index
while(hcdat[xs] != 'x') xs++;
if(hcdat[xs + 1] == '^')
{

xs += 2;
sscanf(&hcdat[xs], ''%ld'', &hc.deg);

no first coefficient
so check for
degree of
polynomial

read in Hilbert polynomial

}
else

hc.deg = 1; special case degree 1
mpz_set_ui(hc.coef[hc.deg], 1); monic polynomial
j = hc.deg - 1;
while(j >= 0)

for all remaining
coefficients

{
while((hcdat[xs] != '+') && (hcdat[xs] != '-'))

xs++;

if(hcdat[xs] == '-')
sign = -1;

else
sign = 1;

look for sign

xs++;
xe = xs+1;
while((hcdat[xe] != '*') && (hcdat[xe] != '\n'))
xe++;

* marks end
of coefficient

hcdat[xe] = 0;
mpz_set_str(hc.coef[j], &hcdat[xs], 10);

convert text
to binary

if(sign < 0)
mpz_neg(hc.coef[j], hc.coef[j]);

apply sign
and ensure modulo field prime

mpz_mod(hc.coef[j], hc.coef[j], p);
j--;

continue with next coefficient}

If the polynomial degree is 1 or 2 we can directly solve for the j-invariant. This is shown
in listing 14.13. Degree 1 is trivial, degree 2 calls the subroutine tworoots() from listing
14.9.

Listing 14.13 Find curve low degree Hilbert polynomial

/* for order 1 and 2, output result directly */

stckp = 0; stack pointer for polynomials
if(hc.deg < 3)

degree 1 or 2
no stack{

if(hc.deg == 1)
{
mpz_init_set(root[0], hc.coef[0]);
mpz_neg(root[0], root[0]);

degree 1 root
from only coefficient

}
else
{
mpz_inits(root[0], root[1], NULL);
tworoots(root[0], root[1], hc);

degree 2
subroutine gets both roots

}
}

ForHilbert class polynomials of degree larger than two the section of code shown in list-
ing 14.14 is executed. The polynomial multiplication table is prepared using the Hilbert
class polynomial hc(x). The polynomial xp mod hc(x) is computed and then x is sub-
tracted to give h(x) = xp − x mod hc(x). The polynomial A(x) is then computed as the
gcd(h(x) , hc(x)). If the result is a constant something is wrong and the program exits.
To create the flow of figure 14.2 the variable B(x) is initialized along with a fixed size

stack of polynomials. A(x) is then pushed on the stack.

Listing 14.14 Find curve high degree initialize

else
{

enter this when
Hilbert polynomial > 3

find h(x) = xp mod hc(x)
poly_mulprep(hc); set up polynomial power table
poly_init(&x1);
x1.deg = 1;
mpz_set_ui(x1.coef[1], 1);

polynomial x1 = x1

poly_init(&hofx);
poly_xp(&hofx, x1);
poly_sub(&hofx, hofx, x1);

hofx = (xp mod hc (x)) − x

A(x) = gcd(xp − x, hc(x))

poly_init(&Aofx);
poly_gcd(&Aofx, hc, hofx); A(x) = gcd(hofx, hc(x))
if(!Aofx.deg)
{

printf(''no roots found for this combination:\n'');
poly_print(hc);
gmp_printf(''prime: %Zd\n'', p);

extreme badness
should never happen

exit(-5);
}
poly_init(&Bofx);
poly_init(&rem);

initialize stack
polynomials

push first A(x) on stack
for(i=0; i<16; i++)

poly_init(&stack[i]);
create all
possible stack entries

poly_copy(&stack[stckp], Aofx); push first A(x) on stack

initialize all roots to zero
for(i=0; i<hc.deg; i++)

mpz_init(root[i]);
initialize all
possible roots

j = 0; root index counter
stckp++; one item on stack

}

The meat of the root finding routine is shown in listing 14.15. This implements the
algorithm shown in figure 14.2. By pushing and popping polynomials off a stack it is easy
to break down each factor until the degree is 1 or 2 and a direct root can be added to the
list.
As long as there are polynomials on the stack the loop continues to pull one off. The

variable done flags when roots have been added to the list and no more polynomials will
be added to the stack. A root of zero will continue processing unless A(x) actually is zero.
If A(x) has one or two roots they are added to the list and the next item on the stack will
be processed.
If the done flag is not set the polynomial multiplication table is prepared with A(x).

A random value a is placed in the constant coefficient of x1 to create (x + a). The value
(x + a) (p−1)/2 mod A(x) is then computed using the gpow_p2() routine. The value B(x) =
gcd((x + a) (p−1)/2 − 1, A(x)) is then found. This is repeated until B(x) has degree smaller
than A(x). Then the polynomials B(x) and the quotient from A(x)/B(x) are both pushed
on the stack for further processing.

Listing 14.15 Find curve high degree root finding

while(stckp) continue until all factors removed from stack
{

pop next A(x) off stack
stckp--;
poly_copy(&Aofx, stack[stckp]);
done = 0;
while(!done)
{
if(!Aofx.coef[0]) is A(0) = 0?
{

j++;
array value zero already

for(i=1; i<=Aofx.deg; i++)

if last coefficient
is zero
divide by x

mpz_set(Aofx.coef[i - 1], Aofx.coef[i]);
Aofx.deg--;
if(!Aofx.deg)
done = 1; go to next item on stack

}
if(Aofx.deg == 1)
{

if(!mpz_cmp_ui(Aofx.coef[1], 1))
mpz_set(root[j], Aofx.coef[0]);

monic single root

else
mdiv(root[j], Aofx.coef[0], Aofx.coef[1]);

normal single root
mneg(root[j], root[j]);
j++;
done = 1; go to next item on stack

}
else if(Aofx.deg == 2)
{

tworoots(root[j+1], root[j], Aofx); degree two, get roots directly
j += 2;
done = 1; go to next item on stack

}
if(!done)
{

Bofx.deg = 0;
poly_mulprep(Aofx); set up multiplication table
while(!Bofx.deg || (Bofx.deg == Aofx.deg))
{
mrand(x1.coef[0]);

gpow_p2(&hofx, x1);
mpz_sub_ui(hofx.coef[0], hofx.coef[0], 1);
poly_gcd(&Bofx, hofx, Aofx);

for random a
compute
(x + a) (p−1)/2 − 1 mod A(x)
until deg(B) < deg(A)

}
poly_copy(&stack[stckp], Bofx);
stckp++;

push B (x)
on stack

poly_euclid(&stack[stckp], &rem, Aofx, Bofx);
stckp++;

push A(x)/B (x)
on stack

done = 1;
}

}
if(stckp > 15) exit(0); max degree 10, so this should never happen

}

Once all the roots are found they are printed out as shown in listing 14.16.

Listing 14.16 Find curve output roots

for(i=0; i<hc.deg; i++)
gmp_printf(''%d: %Zd\n'', i, root[i]);

output all
found roots

Each root in the array is a j-invariant which can be used in equation 14.3. The values
of a4 and a6 are then easy to compute from equation 14.2. I create an array of these for
each root as shown in listing 14.17. The constants 1728, 2 and 3 are created outside the
loop. Inside the loop each a4 and a6 coefficient is than added to the appropriate array and
printed out.

Listing 14.17 Find curve a4, a6 coefficient array

mpz_inits(c, tp, b, j0, two, tri, NULL);
mpz_set_ui(j0, 1728);
mpz_set_ui(two, 2);
mpz_set_ui(tri, 3);

set up
constants
1728, 2 and 3

for(i=0; i<hc.deg; i++)
{

Compute a4 and a6
for each root

mpz_inits(a4[i], a6[i], NULL);
mpz_set(tp, root[i]);
msub(b, j0, tp);
mdiv(c, tp, b);

compute c =
j/(j − 1728)

mmul(a4[i], c, tri);
mmul(a6[i], c, two);

place a4, a6
into respective arrays

gmp_printf(''%d: a4= %Zd a6= %Zd\n'', i, a4[i], a6[i]);
}

The next code segment determines which of the roots give the correct curve and which
give the twist curve. Listing 14.18 starts by computing the curve cardinality from the input
value of t. A curve for every table entry of a4 and a6 is created and a random point on that
curve is created. If the order of the curve times the random point gives the point at infinity
we have the right curve. Otherwise, we have the twist.

Listing 14.18 Find curve twist or correct for each coefficient

mpz_init_set(crde, p);
mpz_add_ui(crde, crde, 1);
mpz_sub(crde, crde, t);

compute cardinality
#E = p + 1 − t
from input

gmp_printf(''#E = %Zd\n'', crde);
point_init(&R);
curve_init(&E);
point_init(&P0);

initialize random point
curve and
test variables

done = 0;
for(i=0; i<hc.deg; i++)
{

mpz_set(E.a4, a4[i]);
mpz_set(E.a6, a6[i]);

compute #E * random point
on each curve.
if we get point at infinity
this is the curve we want.

point_rand(&R, E);

pick random
point on
curve

elptic_mul(&P0, R, crde, E);
if(test_point(P0))

does multiply by cardinality
give point at infinity?

{
printf(''curve %d is right curve!\n'', i);
done = 1; if yes then no need for twist calculation

}
else
printf(''curve %d is not right curve.\n'', i);

}

If any of the roots give a correct result from a test for the point at infinity, then the
program is finished except for cleaning up the stack. If the done flag is not set after checking
every possible curve then the coefficients for a twist curve is computed using the first root.
This is shown in listing 14.19.
A random value is chosen which is a quadratic non-residue. This might take a few tries.

Then new coefficients are computed using equation 14.4. The check for the point at infin-
ity after multiplication by the curve cardinality is then checked again. Since all the roots
are the same, if this fails something is wrong and there is no point in trying anything else.

Listing 14.19 Find curve compute twist coefficients

if(!done)
{

k = 1;

if no curve is right
compute twist of
first one and try again.

while(k >= 0)
{
mrand(c);
k = msqr(c);

}

find random
quadratic
non-residue

mmul(b, c, c);
mmul(E.a4, a4[0], b);

twist a4
is c2a4

mmul(b, b, c);
mmul(E.a6, a6[0], b);

twist a6
is c3a6

point_rand(&R, E);
elptic_mul(&P0, R, crde, E);
if(test_point(P0))

does multiply by cardinality
give point at infinity?

{
gmp_printf(''a4 = %Zd a6 = %Zd\n'', E.a4, E.a6);
printf(''twist is right curve!\n'');

}
else

printf(''twist is not right curve.\n'');

output result

}
mpz_clears(c, tp, b, j0, two, tri, NULL);
mpz_clear(p);
poly_clear(&x1);
poly_clear(&Aofx);
poly_clear(&Bofx);
poly_clear(&hofx);
for(i=0; i<=hc.deg; i++)

mpz_clears(root[i], a4[i], a6[i], NULL);
point_clear(&R);
curve_clear(&E);

clean
up
stack

}

After compiling and linking get_curve we can use the output from the last entry of
listing 14.8 as inputs. The result is shown in listing 14.20.

Listing 14.20 Output get_curve

$./get_curve 55 188201910506566789076013521962076573175506406392106419771149765
0941259255989359586529 -455454
0: 1038191528230306924230785262021946512723818442487400885934294420937807251730
662541635
1: 1302285681750078536935633174882665155829737488037812286267764261926828503080
11676860
2: 1576488926260472962972745860266858723315464624596745496904287169260105156499
548298462
3: 1019129187465548040623175999464459711887871311954200783957637285491923253427
359971476
0: a4= 3231847582787070168007802896425676875799968217817450995915386916853931930
67046598812 a6= 147013590889624993837394367284222227955670725713520619820202422
8417768299370937456894
1: a4= 2532095904057655953378020231689999759414432511056482985779348999905998229
98245456275 a6= 142348579698095565739862482852651047179767154335114166419295503
3954572719325070028536
2: a4= 8005674394900595681820152381025154940992784222991313970476155348793624706
29762792943 a6= 178839102970381830596143363848218748390289499081346372983940879
0547081151079414919648
3: a4= 1630826654376410048630996565570070750432298119673273680239850165873493159
40968015165 a6= 136340118033553926374882325078518187119886258392559437715698844

5019072381286885067796
#E = 188201910506566789076013521962076573175506406392106419771149765094125925598
9360041984
curve 0 is right curve!
curve 1 is right curve!
curve 2 is not right curve.
curve 3 is not right curve.

From appendix B we see that the Hilbert class polynomial for discriminant 55 is 4th

order. The four roots are output first followed by the curve coefficients for each root. The
cardinality is printed next followed by the random point check. In this case, the first two
curves are the curve we want.
It does not matter which coefficient set we chose here. While the points on the two

curves will be different, the total number of points on each curve is identical. By definition,
they are isomorphic.
At this point we have found a base curve which has an extension to a degree 13 polyno-

mial. Using the find irreducible polynomial routine poly_irreducible() and using that
routines output in poly_mulprep() we are ready to work on a field extension curve. All
the routines from chapter 13 allow us to work on the field extension curve.

14.5 Summary
The ratio of the number of bits in the field prime to the number of bits in the largest
prime factor determines the efficiency of a field extension. The algorithms chosen
get this ratio as close to 1 as possible.

Low embedding degree algorithms for all possible degrees are available. To maximize
security only prime embedding degrees are described here.

Curves with the same j-invariant are isomorphic. The correct curve (or its twist) will
always be found by using the j-invariant to compute the curve coefficients.

The method of complex multiplication (CM) uses the j-invariant to find the curve
equation. We still have to test for the twist curve, but it is straightforward to change
the coefficients to get the curve we want.

The discriminant used to find a field prime and large prime order defines the Hilbert
class polynomial used to find the j-invariant. While this is an active area of research
to obtain exceptionally large discriminants, smaller values have not been found to be
insecure.

Factoring a k degree Hilbert class polynomial is a recursive process that finds k roots.
Each root gives one j-invariant.

The algorithms for low embedding degree have a low probability of success. Many
values must be tested to find acceptable parameters.

Direct calculation with the j-invariant can find the twist of the desired curve. It is
necessary to verify the point at infinity is reached when a random point is multiplied
by the curve cardinality. This proves we have the correct curve.

Chapter Bibliography
Barreto, Paulo S. L. M., Lynn, Ben, & Scott, Michael. 2003. Constructing Elliptic Curves
with Prescribed Embedding Degrees. Pages 257–267 of: Cimato, Stelvio, Persiano,
Giuseppe, & Galdi, Clemente (eds), Security in Communication Networks. Berlin, Hei-
delberg: Springer Berlin Heidelberg. 164

Blake, I., Seroussi, G., & Smart, N. 1999. Elliptic Curves in Cryptography. London Mathe-
matical Society Lecture Note Series. Cambridge University Press. 165, 167, 168

Cohen, Henri. 2000. A Course in Computational Algebraic Number Theory. Berlin, Heidel-
berg: Springer-Verlag. 165, 168, 169

Freeman, David, Scott, Michael, & Teske, Edlyn. 2006. A taxonomy of pairing-friendly
elliptic curves. Cryptology ePrint Archive, Paper 2006/372. https://eprint.iacr.
org/2006/372. 164, 165, 166, 167

Silverman, J.H. 2013. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts
in Mathematics. Springer New York. 165

14.6 Answers to exercises
14.1) #E is the cardinality of an elliptic curve, q is field prime the curve is defined
over, t is the trace of Frobenius, h is the small cofactor of the cardinality, and r is the
large prime factor which determines the security of the elliptic curve.

https://eprint.iacr.org/2006/372
https://eprint.iacr.org/2006/372

15General rules of elliptic
curve pairing explained

This chapter covers
An introduction to elliptic curve point pairing.

A geometric description of the pairing function.

The essential rules of pairing mathematics.

Routines to compute common pairing functions.

This chapter presents the point pairing mathematics over field extension elliptic curves.
With the background mathematics under our belts we can now begin to look at the

mathematics of pairing points on an elliptic curve. Pairing points gives us a one way trap
door function which is efficient and secure. It also gives us efficient ways to compute al-
gorithms which would be horribly complicated otherwise. Point pairing is a very deep
subject and I will do my best to ignore most of it. The fundamental reason for ignoring
this depth is that the underlying mathematics works and fully understanding why it works
is not critical to writing functional code.
In this chapter, I explain the general mathematical rules of pairings at a high level. The

rules are mostly symbolic manipulation, so the meanings will be explained before we get
into details.
There are two fundamental subroutines used in the following chapters which are the

guts of computing elliptic curve pairings. In this chapter I give a geometric hand waving

argument that completely ignores the actual mathematical underpinnings of these routines.
While the theory is extremely interesting, it is not necessary to understand everything to
use the algorithms. To gain a deeper understanding of the theory, I recommend reading
sections III.8 and XI.9 in (?) .

15.1 Mathematical rules of elliptic curve pairings
In this section I explain an elliptic curve group structure required for pairings to work
mathematically. The result of a pairing operation is not a point. I describe what the result
actually is and use vectors on the complex plane to get the idea across.
The group structure of an elliptic curve over a finite field is either cyclic or the product

of two cyclic groups. In fact, we can always say it is the product of two cyclic groups if
one of the groups has the size of one element. It is just more convenient to think of a base
curve having only one cyclic group.
From section III.3 in (?) we find that the structure of an elliptic curve over a finite field

is written as
EFq �

Z
d1Z
× Z
d2Z

(15.1)

where d1 divides d2. The meaning of the symbol
Z
d jZ

is "all integers divided by d j times

all integers". This boils down to integers modulo d j . For cryptographic purposes we look
for groups where d1 is a large prime. Since d1 is a factor of d2 the order of the curve is at
least d21 and there are no points of order d

2
1 because the two groups are separate.

For base curves the field q is a prime number and for almost all cases d1 = 1. That
means there is just one cyclic group. In chapter 2 when I described the group sizes this
is what I was referring to. In chapter 3 I showed the doughnut with two vectors which is
repeated here in figure ??. The two vectors represent the two independent groups d1 and
d2. We now look for curves over a field extension with two separate groups so we can create
elliptic curve pairings.

Figure 15.1 Elliptic curve over the complex plane

Figure ?? shows a circle to represent a cyclic group. For pairings to work a double cyclic
structure is required. Pairings will not work if there is only one of cyclic group. The phrase
"single cycle" means d1 = 1, the group structure is not complex enough to allow pairings
to work.
There must be a large prime that is squared in the order of the curve, and each factor

must be part of the two groups described by formula ??. I am pretty sure this is what makes
pairings so difficult to comprehend. It is not just that the rules are complicated. Finding
curves with the correct group structure is challenging on top of the complexity.

single
cycledouble

cyclic

pairings
work

pairings fail

Figure 15.2 Elliptic curve group structure for pairings to work

Given two points P andQ on an elliptic curve of order m the pairing of those points is
written as

em (P ,Q) = 𝜇m .

The form em (·, ·) is the pairing function and the symbol 𝜇m is an mth root of unity. As an
example from complex numbers, an mth root of unity is

𝜇m = e2i𝜋n/m

where m and n are integers and i =
√
−1. Taking 𝜇m to the mth power gives

𝜇mm = e2i𝜋n = 1.

0

1
2

3

4

5
6

imaginary

real

Figure 15.3 nth root of unity for n = 7 using complex numbers. Multiply any of these vectors by 7 and the
result is 1.

Figure ?? shows what 𝜇7 looks like on the complex plane. Each number in figure ?? is
the value of n in e2i𝜋n/m. All the angles are 2𝜋/7 · n, which clearly gets us back to 2𝜋 when
n = 7. The same idea applies with pairings of points over elliptic curves.
For pairings, 𝜇m is a member of the field extension pk that defines the points P and Q.

That means there are elements of order m in the extension field and points of order m on
the elliptic curve.
Note that the way we compute the order of a point is mP but the way we compute the

order of a field element is 𝜇mm (that is, 𝜇m to the m
th power). In the order of a point we get

the identity element which is the point at infinity and in the order of an mth root of unity
we get the identity element 1. The process of pairing points takes us from multiplication
of points (which is addition) to powers of elements (which is multiplication).
This is an important form of magic, so let’s look at some of the rules. The rules I

cover here include bilinearity and non-degeneracy. Different pairings will have additional
capabilities. These two rules are fundamental to all pairing operations.

Exercise 15.1
Show that 32x + 34 mod 43 is an 11th root of 1 modulo p = x2 + x + 3
mod 43. Hint: use PARI/gp.

15.1.1 Elliptic curve point pairing rule of bilinearity

In this section the mathematical rule of bilinearity is described. It is fundamental to how
pairings work.
The primary rule of importance for pairings is bilinearity which means it has the same

results on the right and left sides of the pairing. Take three points of order m as R, S and
T . Then the rule is

em (R + S ,T) = em (R ,T)em (S ,T)
em (R , S +T) = em (R , S)em (R ,T)

(15.2)

that is, the pairing of the sum of two points is the multiplication of the pairings of those
points. The rule converts addition of points to multiplication of pairings.
To expand on this rule we can take a multiplication of a point with some integer n and

pair it with another point. The result will be the power of the pairing of the two points.
That is

em (nS ,T) = em (S ,T)n .

Similarly by linearity we have

em (S , nT) = em (S ,T)n .

If we take integers a and b multiplied with points S and T then the same rule as ??
becomes

em (aS , bT) = em (S ,T)ab . (15.3)

Another important and useful relationship is

em (−S ,T) = em (S , −T) = em (S ,T)−1 (15.4)

Rule ?? is consistent with rules ?? and ??. It will allow us to create some interesting protocols.
This ability to combine points from an additive domain into a multiplicative domain

is what makes pairings such a powerful tool for cryptographic algorithms. The result is
no longer a point on the curve, it is a field element in pk. Given the number of possible
combinations of points that lead to a field element the use of pairings as a one way trap
door function has a lot of appeal.

Exercise 15.2
Show that em (aR + bS , cT) = [em (R ,T)aem (S ,T)b]c.

15.1.2 Non-degeneracy rule with point at infinity

This section describes how non-degeneracy works. This rule prevents division by zero.
The point at infinity is not actually on an elliptic curve. It is required to be the identity

element on an elliptic curve for the arithmetic to work. Point pairing operations may hit
the point at infinity as an input so a special rule of non-degeneracy is included to ensure
pairings work under all possible conditions.
If one of the points of a pairing is the point at infinity the rule of non-degeneracy states

we get 1 for an answer. The reason for this rule is to prevent division by zero.We can write
this rule as

em (S , 0) = em (0, S) = 1. (15.5)

This is true for any point S of order m on the curve. For example, if we take point Q as
the point at infinity and attempt to compute a pairing withT and −T one of those results
is the same as the inverse of the other. That is

em (0,T) = em (0, −T) = em (0,T)−1 = 1.

The main advantage of this rule is that it forces our code to behave nicely. The algo-
rithms presented in the next section take this rule into account as a special case.

15.2 Algorithms for pairing
In this section I introduce two algorithms that are used to compute pairings. For the first
algorithm, I will use a geometric image to give an idea of how it works. The real mathemat-
ics is much deeper, but you don’t need to know it all to use the algorithm correctly. The
second is calledMiller’s algorithm which is named after the mathematician who developed
it.
The first algorithm is actually a function used in Miller’s algorithm. Miller’s algorithm

is a function used in the pairings to be presented in chapters 16 and 17. The details of both
algorithms can be found in section XI.8 in (?) . In the mathematical literature both of these
functions have different symbols, so I will follow (?) and call the first function hP ,Q (R) and
the second function fP (R).

15.2.1 Function hP ,Q (R)
This section explains the core function of elliptic curve pairing operations.
The first algorithm is the heart of point pairing. It does not really have a name, so the

symbol hP ,Q (R) is the best reference. In this section I show how two points are paired using
a third point as a reference. In the symbol, P andQ are the points being paired while R is
the reference.
Figure ?? is an attempt to depict the relationships between three points P , Q and R =

(x , y). This is on the same curve shown in chapter 3 with

y2 = x3 − 5x + 5.

The sum of points P andQ results in the point P +Q. The line between P andQ intersects
the curve at x coordinate xP+Q shown with a dashed vertical line in figure ??.

Figure 15.4 hP ,Q (R) function diagram: line between points P andQ defines rise and run to reference
point R

Taking an arbitrary point R = (x , y) on the curve that is not related to P orQ, and not
the point at infinity, we can define the distance from that point to the x coordinate of P +Q
as the "run". This is labeled in figure ??.
The vertical distance from the line intersecting P and Q to the point R is called the

"rise" which is also labeled in figure ??. The function hP ,Q is defined as the rise over the

run:
hP ,Q (R) =

rise
run

.

The horizontal distance defining the run is easy to see as x− xP+Q . The vertical distance
is easy to derive. We know that the slope of the line between P andQ is 𝜆 which we found
in chapter 3. Let’s take the line intersecting P andQ as y′ = 𝜆 x′ + 𝜈. The distance labeled
rise in figure ?? is then y − 𝜆 x − 𝜈.
Combining the rise = y − 𝜆 x − 𝜈 with the run = x − xP+Q gives us the formula

hP ,Q =
y − 𝜆 x − 𝜈

x − xP+Q
.

From chapter 3 equation 3.3 we have

xP+Q = 𝜆 2 − xP − xQ .

Since the point P is on the line we can take

𝜈 = yP − 𝜆 xP .

Plugging these two formulas into the formula for hP ,Q gives

hP ,Q (R) =
y − yP − 𝜆 (x − xP)
x + xP + xQ − 𝜆 2

(15.6)

In the special case when P = −Q the slope of the line between them is infinity. The
function hP ,Q (R) is then defined to be

hP ,Q (R) = x − xP 𝜆 = ∞ (15.7)

As seen in figure ?? this is just the "run" between the vertical line and the point R.
The final special case is when either P orQ is the point at infinity. Then we have

hP ,Q (R) = 1 P = 0 orQ = 0 (15.8)

The software subroutines will first check if either input is the point at infinity, then check
if the slope is infinite and then compute equation ?? if those tests are not applicable.

Exercise 15.3
Is there any problem with the hP ,Q (R) when P andQ are the same point?

15.2.2 Miller’s algorithm

In this section I cover Miller’s algorithm as a sequence of steps using a flow chart. The in-
puts toMiller’s algorithm are two points on the curve, with one of them being the reference
point mentioned in the hP ,Q (R) algorithm.
Miller’s algorithm looks like the multiplication of a point by m, the order of the point.

The double and add algorithm is followed for every bit in m as shown in figure ??. The

output of the algorithm is written as fP (R) with the subscript point being one of the points
in the pairing and the point R being a reference point. In chapters 16 and 17 we see how
Miller’s algorithm is used.
The function hT ,T (R) means the slope 𝜆 is a tangent, and we use equation 3.2 to com-

pute the slope. Repeated here the equation is

𝜆 =
x21 + x1x2 + x

2
2 + a4

y1 + y2
(15.9)

with x1 = x2 = xT and y1 = y2 = yT . For the addition step we use equation ?? with x1 = xT
and x2 = xP . Similarly, y1 = yP and y2 = yP .

input P , R

T = P , f = 1, i = n − 1

f = f 2 · hT ,T (R),T = 2T

mi
?
= 1 f = f · hT ,P (R),T =T + P

i − −

i
?
< 0

return fP (R)

no

yes

no

yes

Figure 15.5 Miller’s algorithm flow chart

Miller’s algorithm takes two points as input and returns a field element. All the equa-
tions are computed on a field extension of a curve. The value of every variable is a polyno-
mial modulo the prime polynomial that defines the field extension. So the equations look
simple, but all the subroutines of the previous chapters are required to make them work.

Exercise 15.4
Is every variable in figure ?? a polynomial modulo a prime polynomial (or
a point made from a pair of polynomials modulo a prime polynomial)?

15.3 Subroutine hP ,Q
In this section I describe code which implements the hP ,Q (R) function. I first deal with the
exceptional inputs which might cause problems, then describe the main algorithm which

does the calculations.
The pairing subroutines are in file pairing.c. In this chapter, I describe the primary

routines used for computing pairings. In chapters 16 and 17, I explain both the pairing
computation itself along with some of the utility functions.
This section covers the routine which computes the formulas ?? through ??. The routine

hpq() is shown in listing ??. The inputs are three points and the elliptic curve the points
are on. The output is a single polynomial value.
The first check on entry is for either input being the point at infinity. If either point does

test positive as the point at infinity, the output of hpq() is set to 1. The function returns
without creating any internal variables.

Listing 15.1 Computing hP ,Q infinite slope check

void hpq(POLY *h, POLY_POINT P, POLY_POINT Q, POLY_POINT R, POLY_CURVE E)
{

POLY t, lmbda, b, tx, t1;

if((poly_test_point(P)) || poly_test_point(Q)) is either point 0?
{

h->deg = 0;
mpz_set_ui(h->coef[0], 1);
return;

yes, return value of 1

}
poly_init(&t);
poly_init(&b);
poly_add(&b, P.y, Q.y);
if(!b.deg && !mpz_cmp_ui(b.coef[0], 0))

is yP + yQ = 0?

{
poly_sub(&b, P.x, Q.x); is xP − xQ = 0?
if(!b.deg && !mpz_cmp_ui(b.coef[0], 0)) Really P == -Q?
{

poly_sub(h, R.x, P.x);

slope is infinite, return xR − xQpoly_clear(&t);
poly_clear(&b);
return;

}
poly_sub(&t, P.y, Q.y);

y sum was zero
x difference is not
so slope is computable

}

The variables t and b are for top and bottom of the slope 𝜆 calculation. If the two y
inputs sum to zero then a check that the x coordinates are not the same is used to determine
if the slope is infinite. If the two x coordinates are the same then we return the value
specified in equation ??. If the two x coordinates are different then we can compute the
slope as the difference in y coordinates divided by the difference in x coordinates.
The conditions which make the first if statement true are rare, so most cases enter the

else section as shown in listing ??. This computes the t and b variables directly from nu-
merator and denominator of equation ??. On exit from the else section both t and b are

set and 𝜆 is found by their division.

Listing 15.2 Computing hP ,Q slope

else not a special case
compute lambda (slope between P and Q)
using secure form

{

poly_init(&t1);
poly_init(&tx);
poly_mul(&t, P.x, P.x);
poly_mul(&t1, P.x, Q.x);
poly_mul(&tx, Q.x, Q.x);
poly_add(&t, t, t1);
poly_add(&t, t, tx);
poly_add(&t, t, E.a4);

x2P +
xP xQ +
x2Q +
a4

poly_add(&b, Q.y, P.y); yQ + yP
}
poly_init(&lmbda);
poly_div(&lmbda, t, b); slope is top/bottom

Listing ?? shows the calculation of equation ??. The variables t and b are reused for the
numerator and denominator. Once the value of hP ,Q is placed in the designated output
location the stack is cleaned up, and the routine is finished.

Listing 15.3 Computing hP ,Q

poly_sub(&t, R.y, P.y);
poly_sub(&tx, R.x, P.x);
poly_mul(&tx, tx, lmbda);
poly_sub(&t, t, tx);

numerator =
yR − yP − 𝜆 (xR − xP)

poly_mul(&tx, lmbda, lmbda);
poly_sub(&b, R.x, tx);
poly_add(&b, b, P.x);

denominator =

poly_add(&b, b, Q.x); xR + xP + xQ − 𝜆2

poly_div(h, t, b); finally, compute h
poly_clear(&t);
poly_clear(&b);
poly_clear(&tx);
poly_clear(&t1);
poly_clear(&lmbda);

clean
up
stack

}

15.4 Miller’s algorithm code
This section presents the code which computes point pairings at the lowest level. This
subroutine will be called by routines in chapters 16 and 17.
The code to compute the algorithm shown in figure ?? is very similar to the routines

described for point multiplication in chapters 3 and 13. The fundamental difference is
that now there are three points involved as well as a field element to keep track of.

Listing 15.4 Miller’s algorithm routine

void miller(POLY *f, POLY_POINT P, POLY_POINT R, mpz_t m, POLY_CURVE E)
{

POLY_POINT T;
POLY h;
long mask;

mask = mpz_sizeinbase(m, 2) - 2; 1 less than number of bits
poly_point_init(&T);
poly_point_copy(&T, P);
f->deg = 0;
mpz_set_ui(f->coef[0], 1);

initialize f = 1
andT = P

poly_init(&h);
while(mask>=0) for every bit in m
{

hpq(&h, T, T, R, E);
poly_mul(f, *f, *f);
poly_mul(f, *f, h);

f ← f 2 · hT ,T

poly_elptic_sum(&T, T, T, E); T ← 2T
if(mpz_tstbit(m, mask)) is this bit set?
{

hpq(&h, T, P, R, E);
poly_mul(f, *f, h); f ← f · hT ,P
poly_elptic_sum(&T, T, P, E); T ←T + P

}
mask--; go to next bit

}
poly_point_clear(&T);
poly_clear(&h); clean up stack

}

The pointT keeps track of the multiplication of input point P by the order of the point
(which is m). The hP ,Q function usesT and R in the doubling step and all three pointsT ,
P and R in the addition step.
At both the doubling step which happens for every bit and the addition step which

happens for every set bit, the value of f is modified by the appropriate formula as shown
in figure ??.
Since there is no chance of over writing an input point the output fP (R) is computed

at each step directly. The variable f is assumed initialized before the call and what ever it
was before is lost.
The miller routine is fundamental to pairing calculations. In the next two chapters we

will use it to compute related but quite different pairings.

15.5 Summary
To incorporate elliptic curve pairing algorithms, curves which allow pairings must
have a dual group structure of the form

EFq �
Z
d1Z
× Z
d2Z

.

Purely cyclic curves described in chapter 3 will not work.

The pairing of points on an elliptic curve results in a field element which is a root of
unity. If the order of the points is m then the polynomial result of pairing is an mth

root of unity. This gives us a one way trap door function for cryptographic use.

The pairing function em (R ,T) is bilinear. The general form to show this is

em (aS , bT) = em (S ,T)ab .

This gives us a way to convert point addition over an elliptic curve to multiplication
over a finite field which is used in algorithms shown in chapters 18 and 19.

The pairing function is non-degenerate which means it never blows up. If one of the
input points is the point at infinity the value of the function is 1. This is essential to
ensure algorithms work under any condition.

The function hP ,Q (R) can be viewed geometrically as a relation between the line
adding P plusQ and a reference point R. hP ,Q (R) is the core of Miller’s algorithm.
Miller’s algorithm computes the function fP (R). The input is a point of order m and
a reference point. The output is a field element based on multiplying the input point
by m and using the hP ,Q function for doubling and adding. Miller’s algorithm is the
function used in chapters 16 and 17 to compute different kinds of pairings.

Chapter Bibliography
Blake, I., Seroussi, G., & Smart, N. 1999. Elliptic Curves in Cryptography. London Mathe-
matical Society Lecture Note Series. Cambridge University Press.

Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York.

15.6 Answers to exercises
15.1) Create the irreducible polynomial p using the Mod() command:

? p = Mod(1,43)*x^2+Mod(1,43)*x+Mod(3,43)
%59 = Mod(1, 43)*x^2 + Mod(1, 43)*x + Mod(3, 43)

Then make 32x + 34 a polynomial modulo p:
? a = Mod(Mod(32,43)*x+Mod(34,43),p)
= Mod(Mod(32, 43)*x + Mod(34, 43), Mod(1, 43)*x^2 + Mod(1, 43)*x + Mod(3, 43))

Finally take a to the 11th power:

? a^11
%61 = Mod(Mod(1, 43), Mod(1, 43)*x^2 + Mod(1, 43)*x + Mod(3, 43))

The result is 1, which shows that 32x + 34modulo x2 + x + 3 is an 11th root of unity.
15.2) From the point addition rule we have em (aR+bS , cT) = em (aR , cT)em (bS , cT)
From the rule of equation ?? this becomes em (R ,T)acem (S ,T)bc. Factoring out c from
the exponent gives the result [em (R ,T)aem (S ,T)b]c.

15.3) No. This is similar to point doubling where the slope is tangent to the elliptic
curve. Since 𝜆 is finite, equation ?? still applies.

15.4) No, i and n are integers and mi is a bit. T and P are points which are pairs
of polynomials and f (which is equal to fP (R)) is a polynomial modulo a prime
polynomial.

16Weil pairing defined

This chapter covers
Weil pairing properties

Code to compute Weil pairing

Example with tiny numbers

In this chapter I describe Weil pairings. These will be used with the example application
shown in chapter 18.
In chapter 15 I covered the fundamental functions that compute all pairings. In this

chapter I will explain the Weil pairing which has properties that make it unique. For some
cryptographic protocols these properties make theWeil pairing more useful, and for other
protocols the Weil pairing does not work. All the protocols explained in chapters 18 and
19 use different base points for the pairing algorithms, so the Weil pairing could work in
principle. If you run across algorithms which have the same base point for both pairing
input points, the Weil pairing will not work, use the Tate pairing from chapter 17 instead.
The formula that computes the Weil pairing uses the Miller fP (R) function from chap-

ter 15. After showing the properties of the Weil pairing I describe formulas in gory detail
so you can get a feel for why certain calculations should give specific results. This arms us
for debugging our code because the math has to work.
There are several utility routines included in this chapter alongwith theWeil subroutine.

After describing these routines I use the tiny example from chapter 13 to show how specific
inputs fromG1 andG2 points give useful and failing results. The purpose of the example

is to show how the Weil pairing works, not to explain any particular protocol.
As a reminder,G1 are points on a base curve andG2 are points on a field extension curve.

The subroutines are written with the assumption that all points are on the field extension
G2.

16.1 Weil pairing formula
In this section I describe the Weil pairing formula.
In 1940 A.Weil introduced the concept of pairing points of order n as a general concept

to solve a problem unrelated to elliptic curves. The method was then applied to elliptic
curves as a way to uncover the secret key. Today we have algorithms which take advantage
of the rulesWeil developed. In this section I go over the formulas which compute theWeil
pairing and describe the rules which result from those computations.
There are several definitions of theWeil pairing. I am going to use the version in section

XI.8 of (?) . The definition uses three points. Two points are being paired, and the third
point is a reference point. The reference point must not be in the same subgroup as the
points being paired. Figure ?? is a duplicate of figure ??.

Figure 16.1 Relations between points P, Q being paired and reference point S

We take two points of prime order m, call them P andQ. The third point is S which is
not in the same subgroup of P andQ. That is, it has order different fromm. As pointed out
in chapters 2 and 13, elliptic curves over finite fields have groups of points with the number
of points in each group related to the factors making up the cardinality of the curve. For
the point S, it is OK for m to be one of many factors in the order of S. Typically, most
random points on a field extension will have that property simply because the size of the

group m is small compared to the extension field curve cardinality.
Using the function fP (R) from section ??, the Weil pairing is defined as

em (P ,Q) =

fp (Q + S)
fp (S)

fQ (P − S)
fQ (−S)

(16.1)

Equation ?? is written as a fraction of two fractions to show the relationship with the ref-
erence point S and the two input points. The first argument of the pairing is the input
parameter to f on the top fraction and the second argument of the pairing is the input
parameter to f on the bottom fraction. This symmetry leads to a new rule for the Weil
pairing that is not available with other pairing definitions.
TheWeil pairing has a property called alternating. If both input points are the same we

have
em (T ,T) = 1. (16.2)

An additional part of this alternating property is that swapping the arguments inverts the
result. That is

em (P ,Q) = em (Q , P)−1. (16.3)

Equation ?? seems obvious from the definition ??. But the equation ?? implies that

fT (−S)
fT (S)

=
fT (T + S)
fT (T − S)

.

While these values are equal, they don’t have to be equal to 1. A hand waving argument
why this should be true (other than the mathematicians have proved it) is that we only
care about the distance from the reference point to the vertical line attached to the sum of
the two points in figure ??. The choice of positive or negative point for the reference point
does not matter. Clearly it actually does matter or the definition would be different. The
negative points are in the denominator of equation ??. The math works, so we work with
the formulas as defined.
Let’s rewrite ?? in a more computational friendly manner

em (P ,Q) =
fQ (−S)
fP (S)

fP (Q + S)
fQ (P − S)

(16.4)

and examine the rule

em (P , −Q) = em (P ,Q)−1 = em (Q , P).

The expansion of this using ?? is

f−Q (−S)
fP (S)

fP (S −Q)
f−Q (P − S)

=
fP (S)
fQ (−S)

fQ (P − S)
fP (Q + S)

=
fP (−S)
fQ (S)

fQ (P + S)
fP (Q − S)

(16.5)

A quick glance at this formula is rather head scratching. In the first term we have
f−Q (−S) and f−Q (P − S) which do not appear in either of the other two terms. In the

second term we have fP (Q +S) in the denominator with fQ (P +S) in the numerator of the
third term. According to the rules of pairings all these formulas are in fact identical. We
can use formulas like ?? to ensure our code is correct. Computing the three different Weil
pairings around an inverse should all give the same answer. If they don’t all give the same
result, we know we have a bug to find.

Exercise 16.1
The Diffie-Hellman protocol uses two public keys created from different
private keys and the same base point. Why would the Weil pairing of those
two public keys be useless? Hint: review pairing rule ??.

16.2 Pairing subroutines
This section provides the code to implement the Weil pairing of points on field extension
elliptic curves.
The Weil pairing subroutine is simple with just four calls to the Miller algorithm from

section ??. In addition to showing that listing, I also add the routines mentioned in chapter
13. Utilities include computing the cardinality recurrence formula 13.3 and finding the
order of a point for both base and extension fields.
The Weil pairing calculation is shown in listing ??. There are three points derived from

the input points shown in equation ??. These are the pointsQ + S, −S and P − S. The first
is computed directly from the input points. The value for −S is created by first copying
over the x component into the initialized point mS and then subtracting the y component
of S from the zeroed out y component of mS. Adding this value to the point P gives the
final point we need.
After computing the four Miller functions the top two are divided, then the bottom

two. The final answer is the division of these two intermediate results. The last operation
is cleaning up the stack.

Listing 16.1 Weil pairing routine

void weil(POLY *w, POLY_POINT P, POLY_POINT Q, POLY_POINT S, mpz_t m,
POLY_CURVE E)

{
POLY_POINT QpS, mS, PmS;
POLY t1, t2, t3, t4, w1, w2;

poly_point_init(&QpS);
poly_elptic_sum(&QpS, Q, S, E); createQ + S point

poly_point_init(&mS);
poly_copy(&mS.x, S.x);
poly_point_init(&PmS);
poly_sub(&mS.y, PmS.y, S.y);

create −S point

poly_elptic_sum(&PmS, P, mS, E); create P − S point
poly_init(&t1);
miller(&t1, P, QpS, m, E); compute fP (Q + S)

poly_init(&t2);
miller(&t2, P, S, m, E); compute fP (S)
poly_init(&t3);
miller(&t3, Q, PmS, m, E); compute fQ (P − S)
poly_init(&t4);
miller(&t4, Q, mS, m, E); compute fQ (−S)
poly_init(&w1);
poly_div(&w1, t1, t2);
poly_init(&w2);
poly_div(&w2, t3, t4);
poly_div(w, w1, w2);

Weil pairing =
fP (Q + S) / fP (S)
over
fQ (P − S) / fQ (−S)

poly_clear(&w1);
poly_clear(&w2);
poly_clear(&t1);
poly_clear(&t2);
poly_clear(&t3);
poly_clear(&t4);
poly_point_clear(&QpS);
poly_point_clear(&PmS);
poly_point_clear(&mS);

clean up stack

}

The equation for cardinality of a curve over a field extension is given in chapter 13
along with the recurrence relation in equations 13.2 and 13.3. Copied here they are

#Ek = p
k + 1 − tk

tn+2 = t1tn+1 − ptn .
(16.6)

The routine to compute this is shown in listing ??. The inputs to this routine are the trace
of Frobenius and the embedding degree. It is assumed that the field prime has already been
set.
Because the input variable is t I used the array v[] to keep track of the tn in equation

??. Since we start at zero and go to k there are k + 1 elements in the v[] array. After space
is allocated the array elements are initialized to zero and then the first two are set to the
correct values to start the recurrence.

Listing 16.2 Field extension cardinality

void cardinality(mpz_t crd, mpz_t t, long k)
{

mpz_t *v, t1, t2, p, pk;
int i;

v = (mpz_t *)malloc(sizeof(mpz_t)*(k+1));
for(i=0; i<=k; i++)

mpz_init(v[i]);

allocate space
for k + 1
variables

mpz_set_ui(v[0], 2);
mpz_set(v[1], t);

first two values are
2 and t

mpz_inits(t1, t2, NULL);

mget(p); recover field prime
for(i=2; i<=k; i++) first two values already set
{

mpz_mul(t1, t, v[i - 1]);
mpz_mul(t2, p, v[i - 2]);
mpz_sub(v[i], t1, t2);

recurrence is
tn+2 = t1tn+1 − ptn

}
poly_q_get(pk);
mpz_set(crd, pk);

get pk from
global static storage

mpz_add_ui(crd, crd, 1);
mpz_sub(crd, crd, v[k]);

compute
#Ek = pk + 1 − tk

for(i=0; i<=k; i++)
mpz_clear(v[i]);

mpz_clears(t1, t2, p, pk, NULL);
clean up stack

}

With the field prime collected from the modulo.c static global the recurrence relation
is computed in the loop. The value of pk is taken from global storage in file poly.c and
equation ?? is computed for the cardinality.

16.3 Example code with tiny curves
In this section an example with printable points is shown which implements the Weil
pairing.
In chapter 13 I introduced a tiny field prime and extension curve. I want to show what

happens with several of the points from that example when used with the Weil pairing.
First I describe the routines used in chapter 13 which checked the order of a point. Then I
look at the remainder of the program introduced in chapter 13 to examine Weil pairings.
Two utility routines were used in the example code from chapter 13. These look for

the order of a point. The assumption is that we have already found all the possible factors.
These routines won’t work on really large extension fields. In fact, it is the difficulty of
factoring these very large numbers which helps with their security.
Figure ?? is a flow chart for the routine which finds the order of a point. The inputs

include the point, curve, and list of factors which make up the order of the curve as well
as the number of factors. If all the factors are correct no error should ever occur.

input point,
curve, list of factors

for each factor

is point × factor
= point at infinity?

checked all
factors?

return order
output
error

no

yes

no

yes

Figure 16.2 Subroutine to find order of a point with known factors

Listing ?? takes a point and a curve as input. It also expects an array of integers which
are all the possible factors the point could have. The length of that array is the final input
value. The routine brute force tests multiplication of each factor with the point until one
of the multiplies hits the point at infinity. If none of the factors is correct the routine halts
the program with an error that some factor is missing.

Listing 16.3 Order of point on base curve

int get_order(mpz_t order, POINT P, CURVE E, mpz_t *factors, int n)
{

array of factors
and number of factors

int i;
POINT R;

point_init(&R);
for(i=0; i<n; i++)
{

elptic_mul(&R, P, factors[i], E);
if(test_point(R))
break;

when a factor
gives point at infinity
we have point order

}
if(i<n)

mpz_set(order, factors[i]); set output order
else
{

printf(''missing order in base!!\n'');
exit(-3);

catastrophic error
kill program

}
point_clear(&R);
return i; return index of factor as well

}

Listing ?? shows the same process for polynomial field extension points and curves. As
we’ll see in the example code, the factor list is the same array as in listing ?? but the list is

longer.

Listing 16.4 Order of point on field extension

int poly_get_order(mpz_t order, POLY_POINT P, POLY_CURVE E,
mpz_t *factors, int n)

{

array of factors
and number of factors

int i;
POLY_POINT R;

poly_point_init(&R);
for(i=0; i<n; i++)
{

poly_elptic_mul(&R, P, factors[i], E);
if(poly_test_point(R))
break;

when a factor
gives point at infinity
we have point order

}
if(i<n)

mpz_set(order, factors[i]); set output order
else
{

printf(''missing order in xtended!!\n'');
exit(-4);

catastrophic error
kill program

}
poly_point_clear(&R);
return i; return index of factor as well

}

In listing 13.13, I showed the start of a test program. The object of showing the code
was to list the points for a tiny example. In the print-out I showed the order of each point
using the routines ?? and ??. The input variable factors[] is set up as shown in listing ??.

Listing 16.5 Factors setup for tiny example

for(i=0; i<8; i++)
mpz_init(factors[i]);

initialize each element
in the array

mpz_set_ui(factors[0], 5);
mpz_set_ui(factors[1], 11);
mpz_set_ui(factors[2], 55);

first 3 numbers
are for base curve

mpz_set_ui(factors[3], 3);
mpz_set_ui(factors[4], 33);
mpz_set_ui(factors[5], 15);
mpz_set_ui(factors[6], 165);

last set
includes all
remaining possibilities

mpz_set_ui(factors[7], 1815); no points of this order!

The order of the G1 curve is 55 which has factors 5 and 11. So the first three entries
are used to define all the possible orders for the base curve. The extension curve has 1815
points with factors 3, 5 and 112. Notice that there is no group of order 121 points. As

described in chapter 15, the structure of the field extension curve is

EFq �
Z
d1Z
× Z
d2Z

with d1 = 11 and d2 = 165 for the tiny example. The two groups are independent, so there
are no points of order 121.
The tiny example base curve all by itself will not work with theWeil pairing. It does not

have a squared prime value that splits between two groups. The tiny example extension
curve does have a squared prime value. So we can use all the points of order 11 on the
curve as inputs to the Weil pairing routine.
In the listings of chapter 13 I explained how the points were generated. In listing ?? I

show how they are saved in a table. I also indexed the order of each point along with the
group "type", which again does not mean anything. It was useful for picking outG1 andG2
points.

Listing 16.6 Tiny example point saving

while(j < 1814)
{

poly_elptic_embed(&Px1, &Px2, xtnd, Ex);
poly_get_order(ordr, Px1, Ex, factors, 8); find the order of the point
:
:
poly_point_init(&table[j]);
poly_point_copy(&table[j], Px1);

put first point
into table

grp[2*j] = g1g2(Px1);
grp[2*j + 1] = mpz_get_ui(ordr); convert GMP value to integer
j++;

The vertical dots in listing ?? are the print statements in listing 13.13. With every point
placed in table[] and every order placed in grp[] it is now possible to see how the Weil
pairing works.
The main usefulness of the g1g2() routine is to pick out base points vs extension field

points. Values of 1 are all on the base curve and values of 2, 3 and 4 are on the extension
curve. Points of order 11 were chosen because that is a "large prime" in the base curve and
because the structure of the extension field curve is [11 x 165].
To test the Weil pairing I chose four points. Three of the points are order 11 and the

fourth point is order 55. The fourth point is used as the reference point, and the other 3
points are combined to test equation ??.
The entire test program and all the output are in the code repository. The repository

is found at URL https://github.com/drmike8888/Elliptic-curve-pairings. The points for
both the base and extension fields are found in directory Chapter13 while the Weil pairing
output can be found under directory Chapter16. Some of the output is just debugging data.
Here I want to point out some of the test results because failure shows up. If you run

across these kinds of problems while testing your programs, this might be a useful clue on
what to fix.

https://github.com/drmike8888/Elliptic-curve-pairings

For the G1 x G1 test three points are on the base curve. The chosen points were P =
(3, 40), Q = (11, 11) and T = (23, 24). The reference point was chosen to be S =
(x , 22x + 32). All these numbers are modulo 43, the value of the field prime. The irre-
ducible polynomial for the extension field is x2 + x + 3.
The Weil pairing of the points em (P ,Q) and em (P ,T) were both 1. From formula ??

these act like the same point. The powering equation ?? says

em (aS , bT) = em (S ,T)ab

so the points are directly related to each other by some factor with Q = aP and T = bP .
Because the numbers are small we could figure out what the multiplier is. The idea behind
the exercise isG1 xG1 fails to be useful.
For the G1 x G2 test I left P as the same point and chose Q = (x + 4, 15x + 18) and

T = (3x + 1, 41x + 32). The reference point S was also left to be the same. This time the
pairings came out to be

em (P ,Q) = 36x + 25
em (P ,T) = 11x + 2

(16.7)

The pointT +Q = 24x + 36 and the Weil pairing of P withT +Q came out as

em (P ,T +Q) = 37x + 23.

Multiplication of em (P ,Q) with em (P ,T) gives

em (P ,Q)em (P ,T) = 37x + 23

which is what we expect from the rules of pairings.
Remember that all these operations are done modulo the irreducible polynomial which

defines the field extension. Taking these last two results to the 11th power because the order
of the points being used is 11 the expected result of 1 is output. That is, two points of order
11 fed into the Weil pairing algorithm result in an 11th root of unity.
In the test for a G2 x G2 example I changed the value of P to (x + 39, 39x + 4). The

value forQ was (3x + 1, 2x + 11),T was chosen to be (3x + 16, 41x + 11), and S was left
as (x , 22x + 32). The results came out to be

em (P ,Q) = 34x + 19
em (P ,T) = 11x + 2

em (P ,Q)em (P ,T) = 32x + 34
em (P ,Q +T) = 32x + 34
em (P ,Q +T)11 = 1

(16.8)

I did not do a G2 xG1 test. We expect that it would work, and we know from formula
?? that using the same values from the G1 x G2 test we should get the inverse result. For
the Weil pairing the order of the arguments matters. The G1 x G1 test shows the non-
degeneracy property, but otherwise it is not useful.

16.4 Summary
The Weil pairing is computed using four calls to Miller’s algorithm. Two points of
the same order m are paired and a third reference point of different order are inputs
to the operation. The input values are field extension points and the output is a field
extension value which is an mth root of unity.

A Weil pairing of a point with itself gives a result of 1. Most other pairings do not
have this property. Algorithms with multiple base points work well withWeil pairing.

AWeil pairing will compute an inverse result if the input points are exchanged. That
is

em (P ,Q) = em (Q , P)−1.

This is a very useful way to test code is working correctly.

The cardinality of an extension curve is easy to compute. It may be exceptionally
difficult to factor. For very large field primes this inability to completely factor the
cardinality increases the security of pairing friendly curves.

Chapter Bibliography
Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York.

16.5 Answer to exercise
16.1) With base point T and two private keys a and b the Weil pairing of the two
public keys is

em (aT , bT) = em (T ,T)ab = 1ab = 1.

The Weil pairing of two directly related points is always 1.

17Tate pairing defined

This chapter covers
Mathematical description of Tate pairing

Implementation of Tate pairing

Test with tiny example to see how Tate pairings
work

In this chapter the Tate pairing is described. This will be used with the example in chapter
19.
The Tate pairing has the properties of bilinearity and non-degeneracy but not the al-

ternating property which the Weil pairing of chapter 16 possesses. In this chapter I will
first go over the mathematical description of the Tate pairing. In chapter 16 pairing test
code utility routines were described, so this chapter will just show how the Tate pairing is
computed with one listing.
The tiny example introduced in chapter 13 will again be used to show how the number

of points available for the Tate pairing is enlarged over the Weil pairing. Explaining the
math with words is great, but seeing an example should help to get an intuitive feel for
what the mathematics actually means. Using the same tiny example, the Tate pairing will
be explored in detail.

17.1 Tate pairing mathematics
In this section the mathematics of the Tate pairing is explained.
Similar to the general pairing description of a curve having two cyclic groups, the Tate

pairing is described in reference (?) section XI.9 with the mathematical statement

𝜏 : E [m] × E
mE
−→ 𝜇m (17.1)

The symbol 𝜏 is the Tate pairing operation. To distinguish it from the Weil pairing I’ll
use 𝜏 (·, ·) for the Tate pairing of two points. The symbol E [m] means all the points of
order m on the curve E. The symbol 𝜇m is again the mth root of unity.

That leaves the symbol
E
mE

which to be honest, threw me for a loop the first time I ran

across it. It’s actually pretty simple. It means the points on curve E with all the points m
times every point on E removed. The reason this confused me is that the points of order
m go to the point at infinity. Those points are not removed. Points which have an order
with a factor of m are also not removed. The points which are not the point at infinity after
multiplication bym are removed, so we are left with points of orderm and all points which
have m as one of the factors of their order.

Initial set of points

55 33 11 5 3

multiply every point by 11

5 3 5 3

remove these points from initial set

55 33 11

Quotient set of points

Figure 17.1 Example of quotient set
E
mE

for m = 11. The first row shows all possible point orders, the

second row shows the resulting orders of points after multiplying all points by 11, the third row shows the
first row minus the second row.

Figure ?? shows a concrete example taken from the tiny field extension curve. Each
circle represent all the points with the order given by the number in the circle. When
points of order 55 and 33 are multiplied by 11 the result is a point of order 5 and 3
respectively. Points of order 11 go to infinity, so that circle is empty. Points of order 5 and
3 are removed from the possible points in a Tate pairing, but the points of order 55 and
33 can be used. That is really cool.
The Tate pairing calculation formula is found in section 5.1 of (?) . In terms of Miller’s

formula fp (R) it is

𝜏 (P ,Q) =
(
fP (Q + S)
fP (S)

) (pk−1)/m
(17.2)

where m is the order of the points we are interested in. Equation 13.1 (pk � 1 mod m)
says that m divides pk − 1. That means the exponent in equation ?? is an integer. For high
security situations it is a very large integer as seen in table 14.1. For a 256 bit security
level that exponent is over 15,000 bits. So while the Weil pairing requires four calls to the
Miller function, the Tate pairing requires two calls to the Miller function plus a final power
operation. In the literature I have seen arguments that one is faster than the other, but the
reality is "it depends" on the case.
If the two points of input are the same, we do not get 1 as an answer. This is different

from the Weil pairing. In addition, if we swap the inputs we do not get an inverse, we get
a completely different result. Most protocols which use the Tate pairing are very specific
about which points go into each slot especially if there is a requirement to use a G1 x G2
pairing.

Exercise 17.1
An elliptic curve with field prime 41 and large prime m = 29 has embed-
ding degree 4. What is the exponent value for a Tate pairing of this field
extension curve?

17.2 The Tate pairing subroutine described
In this section the code to compute the Tate pairing of points on an elliptic curve over a
field extension is described.
The execution of equation ?? is straightforward. The use of the Tate subroutine is illus-

trated in figure ?? and the code is shown in listing ??. As with the Weil pairing the first two
points are being paired and the third point is the reference for the Miller calculation. Un-
like the Weil pairing, the second point only requires that it have the factor m in the order
of the point. The first point must be of order m. I verified this with brute force testing as
we’ll see in a bit.

output input

tate(&t, P, Q, R, m, E)

polynomial
result points to

be paired

reference
point

torsion
value

elliptic
curve

Figure 17.2 Tate pairing subroutine calling parameters

Listing 17.1 Tate pairing routine

void tate(POLY *t, POLY_POINT P, POLY_POINT Q, POLY_POINT S, mpz_t m,
POLY_CURVE E)

{
POLY_POINT QpS;

POLY t1, t2;
mpz_t pw;

poly_point_init(&QpS);
poly_init(&t1);
poly_init(&t2);
poly_elptic_sum(&QpS, Q, S, E);

create point
Q + S

miller(&t1, P, QpS, m, E); numerator = fP (Q + S)
miller(&t2, P, S, m, E); denominator = fP (S)
poly_div(t, t1, t2); fP (Q + s)/ fP (S)
poly_q_get(pw);
mpz_sub_ui(pw, pw, 1);
mpz_divexact(pw, pw, m);

prepare result
to power (pk − 1)/m

poly_pow(t, *t, pw); full result
poly_point_clear(&QpS);
poly_clear(&t1);
poly_clear(&t2);
mpz_clear(pw);

clean
up
stack

}

The reference point S cannot be related to either input point. One suggestion I found
in the literature was to choose a point S with x component equal to zero. Unfortunately
that might be a point of order m so that choice would not work in every case.
Listing ?? follows the equation ?? directly. The point Q + S is found, then the Miller

algorithm is computed for that point. The Miller algorithm is computed for the point S
and then the two results are divided. The value (pk −1)/m is computed. This is used as the
power to the result from division of Miller functions and the final result is placed in the
requested location. Now that we have all the machinery of modulo polynomial operations
available, it looks easy.

17.3 Testing the Tate pairing using a tiny example
In this section a printable point code example of the Tate pairing is explained.
The Weil tiny example program discussed in chapter 16 was copied and modified to

use the Tate pairing. The program is in the repository under directory Chapter17 as is
the output. Saving the points to a file was removed. But the table of points was kept, so
any point could be tested. Listing ?? shows the essential setup copied from the Weil tiny
example into the Tate tiny example. The group size is 11 and the extension curve has the
same coefficients.

Listing 17.2 Tate tiny setup

mpz_init_set_ui(prm, M);
minit(prm); set up field prime to 43

poly_init(&irrd);
:

poly_irrd_set(irrd);
poly_mulprep(irrd);

set up irreducible polynomial
and multiplication table

:
mpz_set_ui(factors[2], 11); m = 11 is prime group order

:
mpz_init_set(tor, factors[2]);

:
poly_curve_init(&Ex);
mpz_set_ui(Ex.a4.coef[0], 23);
mpz_set_ui(Ex.a6.coef[0], 42);

same curve
for tiny example

:

Rather than pick specific points to test the algorithm, I decided to use the built-in ran-
dom number generator of gcc initialized with the nanosecond clock as a seed. The setup
for this is shown in listing ??.

Listing 17.3 Tate random setup

#include <time.h>
:

struct timespec ts;

use internal
clock to change
rand seed

:

clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
srand(ts.tv_nsec);

use nanoseconds
to stir things up

Since the order of the point matters for the algorithm, I set up an array with each index
into the list of points separated by order. The first step was to determine howmany points
were in each order. I modified listing 13.15 to increment a counter with the same index as
the factor found from the poly_get_order() routine. This is shown in listing ??. There
are two points for every embedded value, so the counter is bumped by two each time.

Listing 17.4 Tate order counting

k = poly_get_order(xtndordr[j], xtndpnt[j], Ex, factors, 7);
numxtdpnts[k] += 2; increment correct order
:
:

for(i=0; i<7; i++)
{

output number of points
in each order

gmp_printf(''order %Zd has %d points\n'', factors[i], numxtdpnts[i]);
pdex[i] = 0;

}

Listing ?? shows the output from listing ??.

Listing 17.5 Tate orders found

order 3 has 2 points
order 5 has 4 points
order 11 has 120 points

order 15 has 8 points
order 33 has 240 points
order 55 has 480 points
order 165 has 960 points

The largest order has 960 points and there are 7 different orders, so the index list is
7 groups of 1000 index values. Table ?? is a schematic layout of the point list array. The
point list array holds an index into the list of points created by brute force embedding, not
the (x , y) values for each point.

Table 17.1 Point array for Tate pairing test

order 3 5 11 15 33 55 165

P13 P15 P111 P115 P133 P155 P1165
P23 P25 P211 P215 P233 P255 P2165

Points P35 P311 P315 P333 P355 P3165
P45 P411 P415 P433 P455 P4165

...
...

...
...

...

The creation of the point_list[] array was by brute force as shown in listing ??. Every
point and every possible order was checked. This allowedme to take the points found from
the embedding order and create the array as shown in table ??.

Listing 17.6 Tate point_list[] array creation

point_list = (int*)malloc(sizeof(int)*7*1000); one column for each factor
one entry for each pointfor(j=0; j<XTEND; j++)

{ loop over each point

for(i=0; i<7; i++)
{ loop over each factor

if(!mpz_cmp_ui(factors[i], grp[2*j + 1])) look for which column this point belongs
{

k = i*1000 + pdex[i];
point_list[k] = j;

2D index into point_list
saves this point’s place

pdex[i]++; each column has an index counter
}

}
}

A random point was selected from a particular column as shown in listing ??. The input
to the routine includes the grp[] array which holds the order and group type, a pointer to
one of the columns in the point_list[] array, the length of that array and 0 for aG1 or
1 for aG2 point. If there is noG1 point for a selected order it is an infinite loop that never
exits. I realized this mistake a few times. The purpose of this test is education, so I learned
a lot!

Listing 17.7 Tate random selection

int rndselect(long *grp, int *point_list, int nmpnt, int type)
{

pointer to column with correct order
number of points to pick from

G1=0,G2=1int j, k, r;

r = -1;
while(r < 0)
{

k = rand() % nmpnt;

pseudo random modulo length of array

j = point_list[k]; index of point in grp[] table
if(!type && (grp[2*j] == 1))
r = j;

else if(type && (grp[2*j] > 1))
r = j;

choose index
if correct group

} repeat forever if no match!
return j;

}

For the tests of orders 11x11 and 11x55, the point S was found using the criteria that
it be inG2 and have order 3. Since there are only two points of order 3 there is not much
choice. For tests with orders 11x33 I changed S to be order 5 inG1. I left S as order 5 in
G1 for 11x165 tests as well.
I also tried reversing the orders using 33x11, 55x11, 165x11 and 55x55. Every single

one of these failed to compute a correct pairing such that

𝜏 (P ,Q +T) = 𝜏 (P ,Q)𝜏 (P ,T). (17.3)

On occasion one of these backward tests would give a matching result, but running the
random selection 20 times showed these were accidents of luck.
Listing ?? shows one of the test programs performed where the second group is order

165 which is only possible for aG2 group. The two tests are orders 11x165 with G1 xG2
andG2 xG2. The point S was reset to order 5 at the beginning of this test.

Listing 17.8 Tate 11x165 test

k = rndselect(grp, &point_list[1000], numxtdpnts[1], 0);
poly_point_copy(&S, xtndpnt[k]);
poly_point_printf(''order 5 S:\n'', S);

set S to
order 5,G1

printf(''===\n'');
printf(''Tate G1 x G2* (order 11x165)\n\n'');
k = rndselect(grp, &point_list[2000], numxtdpnts[2], 0);
poly_point_copy(&P, xtndpnt[k]);
poly_point_printf(''P:\n'', P);

set P to
order 11,G1

k = rndselect(grp, &point_list[6000], numxtdpnts[6], 1);
poly_point_copy(&Q, xtndpnt[k]);
poly_point_printf(''Q:\n'', Q);

setQ to
order 165,G2

k = rndselect(grp, &point_list[6000], numxtdpnts[6], 1);
poly_point_copy(&T, xtndpnt[k]);

poly_point_printf(''T:\n'', T);

setT to
order 165,G2

tate(&t1, P, Q, S, tor, Ex); compute 𝜏 (P ,Q)
poly_printf(''tate(P, Q): '', t1);
tate(&t2, P, T, S, tor, Ex); compute 𝜏 (P ,T)
poly_printf(''tate(P, T): '', t2);
poly_mul(&t3, t1, t2); product 𝜏 (P ,Q)𝜏 (P ,T)
poly_printf(''(P, Q)*(P, T): '', t3);

comparepoly_elptic_sum(&TpQ, T, Q, Ex); computeQ +T
tate(&t4, P, TpQ, S, tor, Ex); compute 𝜏 (P ,Q +T)
poly_printf(''(P, T+Q): '', t4);

output

printf(''===\n'');
printf(''Tate G2 x G2* (order 11x165)\n\n'');
k = rndselect(grp, &point_list[2000], numxtdpnts[2], 1);
poly_point_copy(&P, xtndpnt[k]);
poly_point_printf(''P:\n'', P);

set P to
order 11,G2

k = rndselect(grp, &point_list[6000], numxtdpnts[6], 1);
poly_point_copy(&Q, xtndpnt[k]);
poly_point_printf(''Q:\n'', Q);

setQ to
order 165,G2

k = rndselect(grp, &point_list[6000], numxtdpnts[6], 1);
poly_point_copy(&T, xtndpnt[k]);
poly_point_printf(''T:\n'', T);

setT to
order 165,G2

tate(&t1, P, Q, S, tor, Ex); compute 𝜏 (P ,Q)
poly_printf(''tate(P, Q): '', t1);
tate(&t2, P, T, S, tor, Ex); compute 𝜏 (P ,T)
poly_printf(''tate(P, T): '', t2);
poly_mul(&t3, t1, t2); product 𝜏 (P ,Q)𝜏 (P ,T)
poly_printf(''(P, Q)*(P, T): '', t3);

comparepoly_elptic_sum(&TpQ, T, Q, Ex); computeQ +T
tate(&t4, P, TpQ, S, tor, Ex); compute 𝜏 (P ,Q +T)
poly_printf(''(P, T+Q): '', t4);

output

I ran this test many times and was happy to see equation ??matched every time. Table
?? shows the summary of two of these runs. Each run has a G1 x G2 column with point
P being the G1 value and points Q and T being order 165 in G2. The second column of
each run has P being order 11 in G2. There are enough random points that we see no
duplicates. Each point entry is an x, y pair and all values are modulo 43.

Table 17.2 Tate pairing tiny test random points 11x165

run 1 run 2

G1 xG2 G2 xG2 G1 xG2 G2 xG2

S 39, 12 39, 31

P 30, 30 13x + 17, 10x + 21 24, 20 19x + 12, 37x + 30
Q 27x + 35, 2x + 16 7x + 36, 18x + 5 13x + 21, 10x + 1 23x + 35, 42x + 35
T 15x + 32, 5x + 4 25x + 25, 42x + 29 40x + 35, 18x + 38 33x, 41x + 8

𝜏 (P ,Q) 6x + 29 12x + 17 31x + 5 7x + 32
𝜏 (P ,T) 36x + 25 11x + 2 31x + 5 9x + 28

𝜏 (P ,Q)𝜏 (P ,T) 32x + 34 36x + 25 37x + 23 34x + 19
𝜏 (P ,T +Q) 32x + 34 36x + 25 37x + 23 34x + 19

At the bottom of the table we see that the multiply of Tate pairings equals the Tate
pairing of the sum of points. We also see duplicate values for pairings. This makes sense
because there are only 11 possible values for pairing results. They must be 11th roots of
unity, and only 11 of the 432 = 1849 values have this property.

17.4 Summary
The Tate pairing is a bilinear pairing between two points on an elliptic curve defined
over a finite field.

The Tate pairing works with points which have a factorm of large prime order for the
second point. The first point must only be of large prime order m. Mathematically
this is written as

E [m] × E
mE
−→ 𝜇m

The Tate pairing uses two calls to the Miller algorithm followed by being taken to the
power of (pk − 1)/m. The formula is

𝜏 (P ,Q) =
(
fP (Q + S)
fP (S)

) (pk−1)/m

Chapter Bibliography
Menezes, Alfred. 2009. An introduction to pairing-based cryptography. Contemporary
Mathematics, 477, 47–65. Providence, RI.

Silverman, J.H. 2013. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York.

17.5 Answer to exercise
17.1) From formula ?? we get

414 − 1
29

= 97440.

	Elliptic Curve Cryptography for Developers MEAP V06
	Copyright
	Welcome
	Brief contents
	Chapter 1: Pairings over elliptic curves
	1.1 What is elliptic curve cryptography?
	1.2 Why use elliptic curve cryptography
	1.3 Elliptic curves come to public key cryptography
	1.3.1 General description of Key exchange
	1.3.2 Digital signature algorithms explained
	1.3.3 How multiple people can sign the same document
	1.3.4 Zero knowledge, or how to keep a secret and prove you have one

	1.4 Who this book is for
	1.5 Summary

	Part 1: Basics
	Chapter 2: Description of finite field
	2.1 Basic mathematics of finite fields
	2.1.1 Elliptic curves form groups of points over a finite field

	2.2 Basic subroutines for finite field arithmetic
	2.3 Computing quadratic residues over a prime field
	2.4 Computing the square root mod n
	2.5 Summary
	2.6 Answers to exercises

	Chapter 3: Explaining the core ofelliptic curve mathematics
	3.1 Elliptic curve algebra
	3.1.1 Point representation
	3.1.2 Elliptic curves over Finite fields
	3.1.3 Point addition
	3.1.4 Point multiplication
	3.1.5 Embedding data on a curve

	3.2 Elliptic curve subroutines
	3.2.1 Code to represent curves and points
	3.2.2 Code for point addition
	3.2.3 Code for point multiplication

	3.3 Code for embedding data on a curve
	3.4 Miscellaneous routines
	3.5 Summary
	3.6 Answers to exercises

	Chapter 4: Key exchange using elliptic curves
	4.1 Diffie-Hellman algorithm description
	4.1.1 Elliptic curve math
	4.1.2 Hash function
	4.1.3 Key generation
	4.1.4 Computing shared keys

	4.2 MQV algorithm
	4.2.1 Elliptic curve math for MQV algorithm
	4.2.2 MQV code

	4.3 Example test code
	4.3.1 Test curves
	4.3.2 Diffie-Hellman test routines
	4.3.3 MQV test routine

	4.4 Summary
	Chapter Bibliography

	Chapter 5: Prime field elliptic curve digital signatures explained
	5.1 Schnorr digital signature
	5.1.1 Schnorr elliptic curve math
	5.1.2 Schnorr sign subroutine
	5.1.3 Schnorr verify subroutine
	5.1.4 Schnorr test example

	5.2 NIST ECDSA
	5.2.1 ECDSA sign subroutine
	5.2.2 ECDSA verify subroutine
	5.2.3 ECDSA example code

	5.3 Summary
	Chapter Bibliography

	Chapter 6: Finding good cryptographic elliptic curves
	6.1 PARI/gp for elliptic curves
	6.1.1 Starting PARI/gp
	6.1.2 PARI/gp elliptic curves over finite fields
	6.1.3 LibPARI with elliptic curves

	6.2 General ordinary curves
	6.2.1 Variables and initialization
	6.2.2 Main loop

	6.3 Bad curves
	6.4 Summary
	Chapter Bibliography
	6.5 Answers to exercises

	Chapter 7: Description of finite field polynomial math
	7.1 Field extension
	7.2 Polynomial setup
	7.3 Polynomial addition
	7.4 Polynomial utilities
	7.5 Summary
	7.6 Answer to exercise

	Chapter 8: Multiplication of polynomials explained
	8.1 Defining irreducible polynomials
	8.2 Irreducible polynomial as modulus
	8.3 Building the matrix
	8.4 Multiplication code
	8.4.1 Creating the multiplication table
	8.4.2 Polynomial multiply

	8.5 Miscellaneous multiply routines
	8.6 Summary
	Chapter Bibliography
	8.7 Answers to exercises

	Chapter 9: Computing powers of polynomials
	9.1 Using square and multiply to rapidly compute powers
	9.2 Polynomial powers code for general exponents
	9.3 Explicit polynomial example
	9.4 Powers of field prime
	9.5 Summary
	9.6 Answer to exercise

	Chapter 10: Description of polynomial division using Euclid's algorithm
	10.1 Euclid's algorithm and gcd
	10.2 Inversion and division
	10.3 Euclid's algorithm code
	10.4 Gcd code
	10.5 Inversion modulo a prime polynomial
	10.6 Division modulo a prime polynomial
	10.7 Summary
	Chapter Bibliography
	10.8 Answers to exercises

	Chapter 11: Creating irreducible polynomials
	11.1 Basic theory of irreducible polynomials
	11.2 Code for finding irreducible polynomials
	11.3 Summary
	Chapter Bibliography
	11.4 Answer to exercise

	Chapter 12: Taking square roots of polynomialsp
	12.1 Mathematics for square root modulo a prime polynomial
	12.2 Code for square roots modulo a prime polynomial
	12.2.1 Content routine
	12.2.2 Pseudo-division routine
	12.2.3 Resultant subroutine
	12.2.4 Quadratic residue
	12.2.5 Polynomial square root routine

	12.3 Summary
	Chapter Bibliography

	Chapter 13: Finite field extension curves described
	13.1 Field extension properties
	13.2 Elliptic curve routines
	13.2.1 Polynomial curve setup
	13.2.2 Polynomial curve utilities
	13.2.3 Polynomial curve point embedding
	13.2.4 Polynomial curve random point
	13.2.5 Polynomial elliptic curve addition
	13.2.6 Polynomial elliptic curve point multiplication

	13.3 Tiny example
	13.3.1 Tiny example variables
	13.3.2 Tiny example base curve
	13.3.3 Tiny example field extension curve

	13.4 Summary
	Chapter Bibliography

	Chapter 14: Finding low embedding degree elliptic curves
	14.1 Security of field extensions for elliptic curve pairing
	14.2 Low embedding degree
	14.3 Complex multiplication
	14.3.1 Factoring Hilbert class polynomial

	14.4 Code for finding pairing friendly curves
	14.4.1 Pairing sweep
	14.4.2 Finding the curve

	14.5 Summary
	Chapter Bibliography

	Chapter 15: General rules of elliptic curve pairing explained
	15.1 Mathematical rules of elliptic curve pairings
	15.1.1 Elliptic curve point pairing rule of bilinearity
	15.1.2 Non-degeneracy rule with point at infinity

	15.2 Algorithms for pairing
	15.2.1 Function hP,Q(R)
	15.2.2 Miller's algorithm

	15.3 Subroutine hP,Q
	15.4 Miller's algorithm code
	15.5 Summary
	Chapter Bibliography
	15.6 Answers to exercises

	Chapter 16: Weil pairing defined
	16.1 Weil pairing formula
	16.2 Pairing subroutines
	16.3 Example code with tiny curves
	16.4 Summary
	Chapter Bibliography

	16.5 Answer to exercise
	Chapter 17: Tate pairing defined
	17.1 Tate pairing mathematics
	17.2 The Tate pairing subroutine described
	17.3 Testing the Tate pairing using a tiny example
	17.4 Summary
	Chapter Bibliography
	17.5 Answer to exercise

