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PREFACE TO THE TENTH EDITION

eÕ;kos'; euks ;s eka fuR;;qDrk miklrsA

J¼;k ij;ksisrkLrs es ;qDrrek erk%AA

μJhen~Hkkxor~xhrk

The Tenth edition of this textbook is an outcome of new syllabus of Mathematics–III

(KAS 402) for the students of B. Tech. II year, proposed and implemented by Dr. A.P.J. Abdul Kalam Technical University (A.K.T.U), Lucknow recently. The book has been renovated in

the light of the latest syllabus. It will work as the latest ready reckoner for the readers. 

The subject matter has been made more lucid and easier to understand. A large number

of new solved examples and questions have been added. All the answers have been checked

and verified. All the questions of latest university papers have been added in the body of the text. The suggestions from our colleagues and readers have been incorporated at the proper

places. An appreciably heavy demand of the book ensures its utility to the users. 

Separate exercise (CHAPTER END PROBLEMS) have been given at the end of each

chapter. 

This book is written with a unique style only meant for the welfare of dear students. We

hope that this book will be a strength for them and it will serve their very purpose of attaining excellent results. 

We are indebted to GOD for shower of blessing. The suggestions with a view to enhance

the utility of the book are always welcome. 

—AUTHORS
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Implicants, Logic Gates and Circuits, Truth Table, Boolean Functions, Karnaugh Maps. 
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MODULE – 1

C H A P T E R

1

 Laplace Transforms

1.1

INTRODUCTION

A transformation is a mathematical device which converts one function into another. For

F  d

example, when the differential operator D  ≡

HG

I operates on  f( x) = sin  x, it gives a new function

 dx KJ

 g( x) = D  f( x) = cos  x. 

Laplace transform or Laplace transformation is widely used by scientists and engineers. 

It is particularly effective in solving linear differential equations—ordinary as well as partial. 

It reduces an ordinary differential equation into an algebraic equation. 

Laplace transform directly gives the solution of differential equations with given initial

conditions without the necessity of first finding the general solution and then evaluating the arbitrary constants. 

French Mathematician Pierre De Laplace (1749–1827) used this transform much earlier

in 1799 while developing the theory of probability. 

1.2

DEFINITION

Let F( t) be a function of  t defined for all  t ≥ 0. Then the  Laplace transform of F( t), denoted by L{F( t)}, is defined by

∞

L{F( t)} =  f( p) = 

 e−  pt t dt

z F()

0

provided that the integral exists, ‘ p’ is a parameter which may be real or complex. 

L{F( t)} is said to exist if the above integral converges for some value of  p otherwise not. 

The function  f( p) is called the Laplace transform or the image of the object function F( t). 

Remark 1.  Some authors use the letter  s for the parameter instead of  p. Therefore, we may also write

∞

L {F( t)} = 

 e− st t dt

z F()  =  f( s). 

0

Remark 2.  In general, we will denote the object function by a capital letter and its transform by the same letter in lower case. But other notations that distinguish between functions and their transforms are sometimes preferable

 e.g., 

L{F( t)} = φ( p) or L{ y( t)} =   y(  p) or L{ f( t)} =   f (  p) etc. 

M-1.1
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1.3

LINEARITY PROPERTY

 If c , c  are constants and f, g are functions of t, then

 1

 2

L{ c f( t) +  c g( t)} =  c  L{ f( t)} +  c  L{ g( t)}

1 

2

1

2

∞

By definition, L{ c f( t) +  c g( t)} = 

−  pt

z

1 

2 

 e

{ c f ( t)

1

+  c g( t)}  dt

2

0

∞

∞

=  c

 e−  pt f t dt +  c

 e−  pt g( t)  dt =  c {

L  f t

( )} +  c  L{ g t

z () z

1

2

1

2

( )}

0

0

The result can easily be generalised. 

1.4

LAPLACE TRANSFORM OF SOME ELEMENTARY FUNCTIONS

(1) L{1} =  1 ,  p > 0

 p

−

∞

∞

 pt

−  pt

L  e

1

L{ }

1 =

. 1

= −

, if  p

. 

0

z  e dt

0

NM

O

 p  QP =

> 

 p

0

 n ! 

(2) L{ tn} = 

, where  n is a positive integer. 

 pn + 1

 n

∞

∞

 x

 x

 dx

L{ tn} = 

−

z  e pt tn.  dt=  −

z F

 e

, on putting  pt = x

0

0

HG I p KJ  p

1

∞

Γ( n + )

1

= 

 xne− x dx

z

= 

 n + 1

 p

0

 pn + 1  provided 

that 

 p > 0 and  n + 1 > 0  i.e. ,  n > – 1. 

If  n is a positive integer, Γ( n + 1) =  n ! 

 n ! 

∴

L{ tn} =   pn+1 . 

1

Note. For  n = 1, L( t) = 

. 

2

 p

(3) L{ eat} =  1 ,  p >  a

 p −  a

∞

∞

L −( p− ∞

 a) t

L{ eat} = 

−

z

 e

1

 e pt eat

. 

 dt  = 

− (  p −

z  e a) t dt =  −

, if  p >  a. 

0

0

NM

O

 p −  a  QP =  p −  a

0

 a

(4) L{sin  at} = 

,  p > 0

 p2  a2

+

∞

∞

L  e− pt

 a

L{sin  at} = 

−

z  e pt sin atdt = 

(–  p  sin  at −  a  cos  at)

. 

0

 p

NM

O

2 +  a 2

 p 2  a

QP = + 2

0

 p

(5) L{cos  at} = 

,  p > 0. 

 p2  a2

+

∞

∞

L  e− pt

 p

L{cos  at} = 

−

z  e pt.cos atdt = 

(−  p  cos  at +  a  sin  at)

. 

0

 p

NM

O

2 +  a 2

 p 2  a

QP = + 2

0
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 a

(6)  L{sinh  at} = 

,  p > |  a |. 

 p2  a2

−

∞

∞

 at

− at

 pt  L  e

 e

L[sinh  at] = 

−

z  e pt sinh  at dt =  −

z

−

 e

. 

 dt

0

0

2

NM

OQP

∞

L

(  p a) t

(  p a) t

O

=  1

−

−

∞ − +

NMz  e

 dt − z  e

 dt

2 0

0

QP

1 L 1

1

 a

= 

−

, for  p > |  a |. 

2

2

2

NM

O

 p −  a

 p +  a QP =  p −  a

Note.  We can also prove it by using linearity property. 

Thus L{sinh  at} = L{ 1 ( eat e− at)} 1 L( eat) 1 L( e− at

−

=

−

)

2

2

2

1 F 1

1 F 1

 a

=  2 HG

I

− KJ − 2

2

2

 p a

HG

I

 p +  a KJ =  p −  a

 p

(7)  L{cosh  at} = 

,  p > |  a |. 

 p2  a2

−

L{cosh  at} = L{ 1 ( eat e− at)} 1 L{ eat } 1 L{ e− at

+

=

+

}

2

2

2

1 F 1

1 F 1

 p

= 

, for  p > |  a |. 

2 HG

I

− KJ + 2

2

2

 p a

HG

I

 p +  a KJ =  p −  a

For ready reference, the Laplace transforms of various elementary functions have been

listed in the following table:

 F(t)

 L[ F(t)]  = f(p)

1

1 ,  p > 0

 p

 t

1 ,  p > 0

2

 p

 tn,  n is a positive integer

 n! ,  p > 0

 pn + 1

 tn,  n > – 1

Γ ( n + )

1 ,  p > 0

 pn + 1

 eat

1 ,  p >  a

 p −  a

1

 e– at

 p +  a

sin  at

 a

,  p > 0

 p 2

 a 2

+

cos  at

 p

,  p > 0

 p 2

 a 2

+

sinh  at

 a

,  p > |  a |

 p 2

 a 2

−

cosh  at

 p

,  p > |  a |

 p 2

 a 2

−
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1.5

TRANSFORMS OF DISCONTINUOUS FUNCTIONS

The Laplace transform of F( t) will exist even if the object function F( t) is discontinuous, provided the integral in the definition of L{F( t)} exists. 

1.6

FIRST TRANSLATION PROPERTY

OR

FIRST SHIFTING PROPERTY

If

    

L{F( t)} =  f( p) then L{ eat F( t)} =  f( p –  a). 

∞



L{ eat F( t)} = 

−

z  e pt eat.F( t) dt

| By definition

0

∞

= 

− (  p −

z  e a) t F( t) dt =  f( p –  a). 

0

Remark 1.  L{ e–at  F( t)} =  f( p +  a). 

F

Remark 2.  L{ eat F( bt)} =  1

 p −  a

 f

 b  HG

I

 b  KJ . 

Applying this property to the elementary functions of Art. 3.4, we get the following useful

results:

 n ! 

(1) L{ eat tn} =  ( p −  a n)+1  ;  n is a positive integer. 

 b

 p −  a

(2) L{ eat sin  bt} =  ( p −  a)2 +  b2

(3) L{ eat cos  bt} =  ( p −  a)2 +  b2

 b

 p −  a

(4) L{ eat sinh  bt} =  ( p −  a)2 −  b2

(5) L{ eat cosh  bt} =  ( p −  a)2 −  b2 . 

1.7

SECOND TRANSLATION PROPERTY

OR

HEAVISIDE’S SHIFTING THEOREM

RF( t −  a),  t >  a U

If L{F( t)} =  f( p) and G( t) = ST

V

0, 

 t <  a  W

( U.P.T.U. 2015)

then, L{G( t)} =  e– ap f( p). 

∞

 a

∞

L{G( t)} = 

−

z  e pt.G( t) dt = − pt

−  pt

 e

G( t)  dt +

 e

G( t)  dt

z

z

0

0

 a

∞

∞

= 0 +

−  pt . F( −

z  e t a) dt =   e− pt  F t− a dt

z . ( )

 a

 a

Put  t –  a =  u ⇒  dt =  du

∞

∞

= 

 e−  p u+ a  F  u du

z ( ) ( ) =  e− pa e− pu u du

z F( )

0

0

∞

=  e− ap

 e−  pt t dt

z F()  =  e– ap f ( p). 

0

1.8 CHANGE OF SCALE PROPERTY

1 F  p I

If L{F( t)} =  f( p) then L{F( at)} = 

 f

 a  H  a  K . 

∞

 du

L{F( at)} = 

 e−  pt at dt

z F( )

Put  at =  u  ⇒  dt =

0

 a
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 u

F  p

∞ −  p

 du

1 ∞ −

 u

HG IKJ

= 

 e a

 u

z F( )  =   e a u du

z

F( )

0

 a

 a  0

F  p

∞

−

 t

1 F  p

=  1

 e  HG I

 a  KJ

 t dt

z

F( )

=   f

 a

HG IKJ. 

0

 a

 a

Example 1.   Find the Laplace transform of 7e2t + 9e–2t  + 5 cos t + 7t3 + 5 sin 3t + 2. 

Sol. L(7 e 2 t + 9 e–2 t + 5 cos  t + 7 t 3 + 5 sin 3 t + 2)

= 7 L( e 2 t) + 9 L( e–2 t) + 5 L(cos  t) + 7 L( t 3) + 5 L (sin 3 t) + 2 L(1) 1

1

 p

3! 

3

1

= 7 . 

+ 9 . 

+ 5 . 

+ 7 . 

+ 5 . 

+ 2 . 

− 2

+ 2

2

 p + 1

4

 p

 p

 p

2

 p + 9

 p

7

9

5  p

42

15

2

= 

+

+

+

+

+ . 

− 2

+ 2

2

 p + 1

4

2

 p

 p

 p

 p + 9

 p

Example 2.   Find the Laplace transforms of

( i)  sin 2t cos 3t

( ii)  sin3 2t

( iii)  cosh3 2t

( iv)  (1 + te–t)3. 

1

1

Sol.  ( i) Since  sin 2 t cos 3 t = 

2

( cos3 t  sin 2 )

 t = (sin 5 t − sin )

 t

2

2

1

1

∴

L{sin 2 t cos 3 t} = L{ (sin 5 t − sin  t })= [L{sin 5 t} − L{sin  t}]

2

2

1 L

5

1

2 2

(  p

5)

= 

−

2

2

NM

O

+ 52

2 + 12

2

QP =

−

(  p + 25

2

 p

 p

) (  p + 1)

( ii) Since

sin 6 t = 3 sin 2 t – 4 sin3 2 t

3

1

⇒

sin3 2 t =  sin 2 t − sin 6 t

4

4

R3

1

U 3

1

∴

L{sin3 2 t} = LS sin 2 t − sin 6 t V

{sin

L

2 t}

{

L sin 6 t}

T4

4

W =

−

4

4

3

2

1

6

48

=  . 

− . 

=

. 

4

2

 p + 22

4

2

 p + 62

2

(  p + 4

2

)(  p + 36)

( iii) Since

cosh 6 t = 4 cosh3 2 t – 3 cosh 2 t

3

1

⇒

cosh3 2 t =  cosh 2 t + cosh 6 t

4

4

R3

1

U 3

1

∴

L{cosh3 2 t} = LS cosh 2 t + cosh 6 t V

{c

L osh 2 t}

{cosh

L

6 t}

T4

4

W =

+

4

4

3

 p

1

2

 p

(

 p p

28)

=  . 

+ . 

=

−

. 

4

2

 p − 22

4

2

 p − 62

2

(  p − 4

2

)(  p − 36)

( iv)

(1 +  te–t)3 = 1 +  t 3  e–3 t + 3 te–t (1 +  te–t) = 1 +  t 3  e–3 t + 3 te–t + 3 t 2  e– 2 t L{(1 +  te–t)3} = L(1) + L( t 3  e–3 t) + 3L( te–t) + 3L( t 2  e– 2 t)

...(1)
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Determination of L( t3  e–3 t):

3 ! 

L( t 3) =  4

 p

3 ! 

6

∴

L( e–3 t  t 3) = 

=

|Using first shifting property

(  p + 3 4

)

(  p + 3 4

)

Determination of L( t e– t):

1

L( t) =  2

 p

1

∴

L( e–t . t) = 

|Using first shifting property

 p + 1 2

(

)

Determination of L( t2  e–2 t):

2 ! 

L( t 2) =  3

 p

2 ! 

2

∴

L( e–2 t . t 2) = 

= 

|Using first shifting property

(  p + 2 3

)

 p + 2 3

(

)

1

Also, 

L(1) =   p

1

6

3

6

Now, from (1), L{(1 +  t e–t)3} =  +

+

+

. 

( + 3 4

)

( + 1 2

)

( + 2 3

 p

 p

 p

 p

)

Example 3.   Find the Laplace transform of e–3t (cos 4t +  3 sin 4t). 

Sol. 

L (cos 4 t + 3 sin 4 t) = L (cos 4 t) + 3L (sin 4 t)

 p

12

 p + 12

= 

+

= 

 p 2 +

 p 2

16

+ 16

 p 2 + 16

(  p + )

3

12

∴

L{ e–3 t (cos 4 t + 3 sin 4 t)} = 

+

| Using first shifting property

(  p + )

3 2 + 16

 p  15

= 

+

. 

 p 2 + 6  p + 25

Example 4.   Find the Laplace transform of

F

 1 3

( i)

 t +

HG

I

 t  KJ

( ii)  cosh  at  sin bt

( iii)  sinh2 2t

 1

( iv)  e– t cos t cos 2t

( v)  et –

 t 2 . 

F

1 3

3

F 1

1 F

1

Sol.  ( i)

 t +

HG

I  =  (  t)3 +

3  t . 

 t

3/2

3

− /2

1/2

1

− /2

+

+ 3

+ 3

 t  KJ

HG I t KJ +

+

 t  HG

I

 t  KJ  =  t

 t

 t

 t
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FR

1 3 U

∴ LS|  t +

HG

I V| = L( t 3/2 +  t–3/2 + 3 t 1/2 + 3 t–1/2) = L( t 3/2) + L( t–3/2) + 3 L( t 1/2) + 3 L ( t–1/2) t  KJ

T|

W|

Γ(5)

1

3

1

2

Γ( − )

2

Γ( )

2

Γ( )

= 

2

+

+ 3

+ 3

5/2

1/

− 2

3/2

1/2

 p

 p

 p

 p

3 1

1

. 

π

(

π)

π

F 1

= 2 2

2

+ −

+ 3 2

. 

+ 3 π

∵   Γ −

2 π

5/2

−1/2

3/2

1/2

 p

 p

 p

 p

HG I2KJ = −

L 3

3

3 O

=  π M

− 2  p +

+

M

P

4 5/2

2 3/2

 p

 p

 p

N

QP

F  eat e− at

+

I

( ii) ∵ cosh  at sin  bt = 

sin  bt

HG 2 KJ

1 L

O 1L

 b

 b

∴ L (cosh  at sin  bt) = 

L

M ( eat  sin  bt) L ( e− at

+

sin  bt)P = 

+

2 NM

QP 2

2

2

2

2

NM

O

(  p −  a) +  b

(  p +  a) +  b  QP

|Using first shifting property

2 t

−2 t  2

F

I 1

( iii)

sinh2   2 t =   e −  e

HG

= 

4 t

4

( e

 e−  t

+

− 2)

2

KJ 4

1 L

O

∴

L(sinh2 2 t) = 

4 t

4

ML( e ) L( e−  t

+

) − L 2

( )P

4 NM

QP

1 L 1

1

2

1 L

 p

1

= 

+

−

−

4 NM

O

 p − 4

 p + 4

 p QP =  2 2

NM

O

 p − 16

 p QP

1

( iv)

cos  t cos 2 t =   (cos 3 t + cos  t)

2

1 L

O 1L  p+ 1

 p  1

∴ L{ e– t  cos  t cos 2 t} = 

L

M ( e− t  cos 3 t) + L( e− t  cos  t)P

+

+

2 NM

QP = 2 NM

O

 p + 1 2 + 9

 p + 1 2 + 1QP

(

)

(

)

| Using first shifting property

Γ( 1)

( v)

L( t–1/2) = 

2 = π

1/2

 p

 p

π

∴

L ( et t–1/2) = 

. 

| Using first shifting property

 p − 1

Example 5.   Find the Laplace transform of f(t) defined as

R  t , when 0 t T

 f(t) =

< < 

S| T1, when t

T|

>  T . 

∞

 T

∞

Sol.  

L

−  pt

−  pt

 t

{ f ( t)} =

 e

 f ( t)  dt =

 e

. 

 dt +

 e−  pt . 1  dt

z0

z0 T zT
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T

L

O

1

−  pt

∞

T

 e

 e−  pt

L e− pt

=  M  t. 

−

1. 

 dt P

z

T M

−  p

0

−  p

P + NM O

−  p

N

QP

0

Q

T

T

L

−  pt

O

1

T

 e−  p T

 e−  p T

F  e− p T I1  e− p T 1  e− p T

−  p

R e  U

T

1

=  M−  e

+ S

V P + 

=

−

–

–

T NM  p

 p  T −  p  W P

 p

 p

HG  p

T 2 KJ +

= −

 p

 p

T 2

. 

0 Q

Example 6.   Find the Laplace transform of R

 cos

R  t , 0 <  t < π

 1, 

 0 ≤  t <  1

( i)  F(t) =  S  0 , 

 t

T

> π

( ii)  F(t) =   t, 

S|  1≤ t <  2

 t2 , 2

T|

. 

≤  t < ∞

R  t2, 0 <  t <  2

( iii)  F(t) =   t

S| − 1, 2 <  t <  3

 7, 

 t >  3

T|

. 

∞

π

∞

Sol.  ( i)   L{F( t)}

 e pt

=

−

. F( t)  dt

z

= 

 e−  pt

 t dt +

 e−  pt . 0  dt

z .cos

0

z

0

π

L  e− pt

π

L  e− p π

1

= 

( −  p  cos  t + sin  t) = 

 p −

(−  p)

 p

NM

O

2 + 1

QP

 p

NM

O

2 +

 p 2

1

+ 1

QP

0

 p  1 +  e− p

(

π )

= 

 p 2 + 1

∞

1

2

∞

( ii)



L{F( t)}

 e pt

=

−

. F( t)  dt

z

= 

 e−  pt dt +

 t e−  pt dt +

 t 2 e−  pt dt

z0

z1

z

0

2

F

1

2

 e−  pt  I

F  e− pt e− pt  I

−

∞

−

F

I

2  e pt

∞

 e pt

= 

 t

HG

−

 t

 t

2

 dt

z . 

−  p  KJ + HG −  p

 p 2 KJ + HG

−  p  KJ − 2

−  p

0

1

2

F1− − p I F 2

2

−  p

−  p

−

 e

 p

−  p

 e

I F  e

 e  I

4 2

−  p

2 ∞

= 

2

 e

−

+   e

+

 t e−  pt dt

z

2

2

HG  p  KJ + −

−

HG  p

 p  KJ − HG −  p

 p  KJ

 p

 p  2

−

−

L − ∞

−

∞

O

1

2

 p

2  p

 pt

 pt

−

F

I

2  p

 e

 e

2

 e

 e

=  +

 e

+

−

+ M  t

1

 dt P

z . 

2

2

 p

 p

 p

 p

 p  HG

M −  p  KJ − 2

−  p

N

P

2

Q

−

−

L

−

∞ O

1

2

 p

2  p

 pt

−

−

F

I

2  p

 e

 e

2 2 2 p

1  e

=  +

 e

+

−

+

M  e +

P

2

2

 p

 p

 p

 p

 p  M  p

 p  HG −  p  KJ

N

P

2 Q

1

2

−  p

2

−  p

 e

3

2

−  p

2

= 

2

 e

 e

 e−  p

+

+

+

+

. 

2

2

3

 p

 p

 p

 p

 p

( iii) L {F ( t)} =  ∞ −

z  e pt .F( t)  dt

0

2

3

∞

= 

2 −

 t e pt dt

 t  1

z

z −

+

−  e pt

(

)

 dt  + 

7 −

z  e ptdt

0

2

3

2

3

∞

−

R

U

R

−

U

3

−

F − I

2

−

 e pt

 e pt

 e pt

2  e pt

 e pt

1

z

=   t

S

V

 t

2

 dt  +  (

S  t − )

V

 dt + 7

(

)

z

T −  p

0

(  p

W −

− )

(

T

− )

 p

2 (

)

 p

2

HG −  p

W − −

KJ

0

3
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L − 2

 pt

3

2

−

4

 pt

F −  pt I

− 2  p

2 R  e

U

O

 e

1 − 2 p  2 − 3 p  1  e

7

= −

 e

+

MS t

1. 

 dt P + 

− 3

 e

−

 e

+

 e p

 p

 p

(  p)

z

NMT

V

−

W − 0 (−  p)

 p

 p

 p  HG −  p  KJ +  p

0

QP

2

2

 pt

2  p

2  p

2 L −

4

2

 e

O 1 −2 p  2 −3 p  1 −3 p  1 −2 p  7

= −

−

 e

−

−

2

(  e

) +

− 3

 e

−

 e

−

 e

+

 e

+

 e p

2

2 M

+ 

 p

 p

 p  M

P

(−

N  p)QP

2

2

 p

 p

 p

 p

 p

0

−

4

2  p

2  p

4

2  p

2

2 e

1 − 2 p  2 − 3 p

1 − 3 p

1 − 2 p  7

= −

−

 e

−

−

 e

+

−

+ 

− 3

 e

−

 e

−

 e

+

 e

+

 e p

2

3

3

 p

 p

 p

 p

2

2

 p

 p

 p

 p

 p

2

− 2  p

− 3

 e

 e p

= 

−

2

( + 3 p + 3 2

 p ) +

5

(  p − 1)

3

3

2

 p

 p

 p

Example 7.   Find L{ F(t)}  if

R F

 sin t

|

− π  , t

| HG

IKJ > π

 2

R

( i)  F(t)

 3

 3

= S

−

> 

S

|

( ii)  F( t) =   (t 1) , t 1

 0, 

 0

T

. 

<  t <  1

 0, 

 t < π

T|

 3

−  p π

Sol.  ( i) L{F( t)} =  e  3    L(sin  t)

∵  a = π3

−  p  π

1

=  e  3 . 

|Using second shifting property

 p 2 + 1

( ii)

L{F( t)} =  e– p L( t 2)

| ∵  a = 1

2

= −

 e p .  p 3 . 

| Using second shifting property

 p2 +  2

Example 8.  If L (cos2 t) = 

 , find L (cos2 at). 

 p (p2 +  4)

Sol.  By change of scale property, 

L

O

2

M F  p

2 P

1 M HG I

 a KJ +

P

 p 2 + 2 a 2

L (cos2  at) =  M

P = 

2

 a  M  p  FR  p

2

2

M S|

UP  p( p + 4 a )

4V|

 a  HG I

 a KJ +

N T|

W|QP

F

F

− F

Example 9.   Given that 

 sin t

 1

 1

 L

 tan

HG

I

  , find 

 sin at

 L

 t  KJ =

HG I p KJ

HG

I

 t

KJ  . 

Sol.  By change of scale property, 

Fsin  at  1

F1 1

L HG

I

tan−

 at  KJ  =   a

HG

I

 p /  a KJ

1 F sin  at

1

− F  a



1

L

tan

 a  HG

I

 t  KJ =  a

HG I p KJ

Fsin  at

−1 F  a

⇒

L

tan

HG

I

. 

 t  KJ =

HG I p KJ
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 1

−  4p

Example 10.   If 

 e

 L { J ( t )} =

,  find L { J  (2 t )}. 

 0

 0

 p

Sol.  By change of scale property, 

1

R −

U

4(  p/4)

1

 e

S|

V|

L {J ( 4 t)} = . 

0

4

( /

 p )

4

T||

W||

1

⇒

L {J (2 

−1/

 e p. 

0

 t )} =   p

PROBLEM SET-I

 Find the Laplace transforms of (1–12) :

1. 

cosh  at – cos  at

2. cos ( at +  b)

3. sin  at  sin  bt

4. 

sin2 3 t

5. cos3 2 t

6. sinh3 2 t

7. 

 e–α t cos β t [ G.B.T.U. (C.O.) 2010] 8.  t 3  e–3 t 9. cosh  at cos  bt

( A.K.T.U. 2016)

10. 

 e–3 t(2 cos 5 t – 3 sin 5 t)

11. ( i) (sin  t – cos  t)2

( ii) (5 e 2 t – 3)2

12. 

( i) 

 t

3  t

sinh

sin

( ii) 3 t

( iii) cos  t cos 2 t cos 3 t

2

2

13. 

Find the Laplace transform of F( t) defined as F( t) = |  t – 1 | + |  t +  1|,  t ≥ 0. 

L

R2 0  t  1

Hint: F( t)

, 

=

≤ ≤

S

NM

O

T2 ,  t t > .1 QP

2 2

 k p

6

14. 

Show that ( i) L{sin  kt sinh  kt} = 

( ii) L(sin3  t) = 

. 

4

 p + 4 4

 k

2

 p + 1

2

(

) (  p + 9)

R F  t  U

15. 

If L{F( t)} =  f( p), show that L F

S

V  af ap

T HG I

 a KJW = ( ). 

16. 

Find the Laplace transform of F( t) defined as

R

R

( i) F( t) =   t , 0 <  t < 4

S

 t  0 <  t < 

S

π

, 

5  t

T

( ii) F( t)  =  sin , 

> 4

, 

0

 t

T

> π

R

 et

R , 0 <  t <1

( iii) F( t) =  cos , 

 t  0 <  t < 2

S

π

( iv) F( t) =  S

, 

0

 t

T

> 2π

0,  t

T

> 1

17. 

Find the Laplace transform of the following functions :

R  t / w, 0 <  t <  w

− at n − 1

( i) F( t) =   e

 t

( ii) F( t) = 

 t

1

S| − ,  w <  t < 2 w

[ G.B.T.U. (C.O.) 2010]

( n − 1) ! 

 w

, 

1

 w

2 <  t < ∞

T||

( iii) F( t) = sinh  kt cos  kt. 

( iv) F( t) =  t 2

( A.K.T.U. 2016)

18. 

Find the Laplace transform of the functions given below :

R F 2π

2π U

 t

R −  a

cos

|

 t −

, 

|

, 

U

|

3

3

( i) F( t) =   e

 t >  a

S

V

HG

IKJ > 

0

,  t

T

( M.T.U. 2012) ( ii) F( t) = 

<  a W

S|

V

2

, 

0

 t < π |

T|

3 W|

LAPLACE  TRANSFORMS

M-1.11

 e−1/  p

 e−3/  p

19. 

( i) If L{F( t)} = 

, show that L{F(3 t)} = 

. Also find L { e– t F(3 t)}. 

 p

 p

 p 2 −  p + 1

 p 2 − 2 p + 4

( ii) If L{F( t)} = 

, show that  L {F(2 t)} = 

. ( A.K.T.U. 2014, 2018)

2

(  p

2

+ 1) ( p − 1)

4( p

2

+ 1) ( p − 2)

1

20. 

If L{J  ( t)} = 

, find L {J  ( at)}. 

0

0

1

2

+  p

21. 

Find the Laplace transform of

( i) F( t) =  e 3 t  t 7/2

( ii) F( t) = sinh  at sin  at

( iii) F( t) =  e– t  sin2  t

( iv) F( t) = ( t + 2)2  et. 

22. 

Find the Laplace transform of

( i) F( t) =  e 4 t cos  t sin 2 t

( ii) F( t) =  e 2 t sin4  t

( iii) F( t) =  e–2 t  sin3  t. 

ANSWERS (PROBLEM SET I)

2 2

 a p

 p  cos  b −  a  sin  b

2 abp

1. 

2. 

4

4

 p −  a

 p 2 +  a 2

3. 

2

2

2

2

[  p + ( a +  b) ][  p + ( a −  b) ]

18

 p(  p 2 +

)

28

48

4. 

2

5. 

6. 

 p(  p + 36)

(  p 2 + 4)( p 2 + 3 )

6

2

 p − 4

2

(

) (  p − 36)

 p

6

1 ⎡

 p −  a

 p +  a

⎤

7. 

+ α

9. 

⎢

+

⎥

(  p + α)2 + β2

8.  p + 3 4

(

)

2

2

2

2

2 ⎣( p −  a) +  b

(  p +  a) +  b ⎦

2  p − 9

1

2

25

30

9

10. 

2

11. ( i) 

−

( ii)

−

+ ,  p > 4

 p + 6  p + 34

2

 p

 p + 4

 p − 4

 p − 2

 p

3  p

1

12. 

( i) 

( ii)

2 4

2

( p +  p + 1)

 p − log 3

1 L

 p

 p

 p

1 O

2 F

 e−  p  I

( iii) 

+

+

+

1 +

4

2

 p

NMM + 36 2 p + 16 2 p + 4  p QPP

13.  p  HG

 p  KJ

1

F

I

−  p

π

2

−  p

π

1−  p

4

−  p  1

1

1  e

 p(1 −  e

)

16. 

( i) 

+  e

( ii)

+

( iii)

( iv)   e

− 1

2

− 2

 p

HG  p p  KJ

2

 p + 1

 p 2 + 1

1 −  p

L

O

1

1

1

−

F

−

F

 pw

2

2  pw

1

 k (  p 2 − 2 k 2)

17. 

( i) 

( ii)

−  e

1 +

 e

2

( iii)

(  p

)

 a n

+

 p pw

NMM

HG

I

 pw KJ +

+

HG

I

 pw KJQPP

 p 4 + 4 k 4

2

( iv) 3

 p

− ap

−{ /

3 (  p + )

1 }

−(2π/ )

3  p

 p

 e

1

18. 

( i)   e

,  p > 1

( ii)  e

. 

19. ( i) 

20. 

 p − 1

 p 2 + 1

 p + 1

2

2

 p +  a

105

π

2 2

 a p

2

4 2

 p − 4  p + 2

21. 

( i) 

( ii)

( iii)

( iv)

16 (

3 9 2

) /

 p −

4

 p + 4 4

 a

 p + 1 2

(

)(  p + 2  p + 5)

(  p − 1 3

)

1 L

3

1

O

1 L 3

4(  p  2)

 p  2

O

22. 

( i) 

+

−

−

+

−

2

 p

NMM − 4)2 + 9  p − 4)2

(

(

+ 1QPP

( ii) 8 NMM − 2 ( p − 2 2) + 4 ( p −2 2

 p

) + 16QPP

3 L

1

1

O

( iii) 

−

4

2

NMM + 4 + 5 2

 p

 p

 p + 4  p + 13QPP . 
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1.9 FUNCTIONS OF EXPONENTIAL ORDER

A function F( t) is said to be of exponential order as  t →  ∞, if there exist constants M and  b and a fixed value  t  of  t such that

0

| F( t) | < M  ebt ,  for  t ≥  t 0

we also write F( t) = O ( ebt),  t → ∞ to mean that F( t) is of exponential order. 

From the definition, it is clear that if a constant  b exists, such that  lim −  bt

 e

F( t) exists

 t → ∞

or the value of limit is finite then the function F( t) is of exponential order. 

1.10

A FUNCTION OF CLASS ‘A’

A function which is sectionally (or piecewise) continuous over every finite interval in the range t ≥ 0 and is of exponential order as  t → ∞ is termed as a function of class A. A function F( t) is said to be piecewise continuous in any interval [ a,  b] if it is defined on that interval and is such that the interval can be broken up into a finite number of sub-intervals in each of which F( t) is continuous. 

1.11 EXISTENCE THEOREM

( U.K.T.U. 2011; M.T.U. 2012)

If  F( t) is sectionally continuous for  t ≥ 0 and is of exponential order b, then L{F( t)} =  f ( p) exists for  p >  b. 

In other words, if F( t) is a function of class A, L {F( t)} exists. 

∞

 t 0

∞

  

 e−  pt

 t dt

z F()  =   e− pt  F t dt+  e− pt.F t() dt

z . ()

= I  + I

(say)

0

z

1

2

0

 t 0

I  exists since F( t)  is sectionally continuous in every finite interval 0 

. 

1

≤  t ≤  t 0

∞

∞

| I  | 

 e−  pt

 t dt

z

F( )|   

−  pt

z

2

≤ 

|

. 

≤ 

| e

. F( t)| dt

 t 0

0

∞

≤ 

 e−  pt

 ebt dt

z .M

as F( t) is of exponential order  b

0

∞

M

≤   e−  p −  b t

 dt

z ( ) .M   =  . 

0

 p –  b

Thus the Laplace transform exists for  p >  b. 

Note. The conditions of the theorem are sufficient but not necessary for the existence of Laplace transform. 

Example 10.   Prove that tn is of exponential order as t → ∞. 

 n

 t

Sol. 

lim

− bt

 n

( e

.  t )  =  lim

 t → ∞

 t

 bt

→ ∞  e

 n − 1

 n − 2

=  

 nt

 n ( n − 1) t

 n ! 

lim

= lim

= lim

= 0

 t

 bt

→ ∞  be

 t

2  bt

→ ∞

 b e

 t

 n bt

→ ∞  b e

∵

 tn =  O ( ebt),  t → ∞ for any fixed positive value of  b

∴  t  n is of exponential order. 
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Example 11.   Show that et 2  is not of exponential order as t → ∞. 

F  t 2 I

2

 e

2

Sol. 

lim

−  bt t

( e

 e )  =  lim

 =   lim  t −  bt

 e

 t → ∞

 t

 bt

→ ∞ HG  e  KJ

 t → ∞

If   b ≤ 0, this limit is infinite

If   b > 0, 

lim  t( t –  b

 e

)  = ∞

 t → ∞

Thus, whatever be the value of  b, this limit is not finite hence we cannot find a number M such that

 et 2 < M ebt. 

∴  et 2  is not of exponential order as  t → ∞. 

1.12

LAPLACE TRANSFORM OF DERIVATIVES

Theorem 1.   If F(t) is continuous for all t ≥  0  and of exponential order b as t → ∞,  and if F′ (t) is of class A, then Laplace transform of the derivative F′ (t) exists when p > b and  L{ F′ (t)} =  pL{ F(t)}  – F(0) = pf(p) – F(0). 

| If L{F( t)} =  f( p)

∞

Proof.  L{F′( t)} = 

−

z  e pt.F′( t) dt

...(1)

0

∞

L

O

∞

= M e− pt .  t

F( )P

 p

 e−  pt .F  t

( )  dt

NM

QP + z

| Integrating by parts

0

0

=  lim   e– pt  F( t) – F(0) +  p L{F( t)}

...(2)

 t → ∞

Since F( t) is of exponential order  b as  t → ∞ then for  p >  b,  e– pt  F( t) → 0 as  t → ∞

∴ From (2), L{F′( t)} =  p L{F( t)} – F(0) =  pf( p) – F(0)

| if L{F( t)} =  f( p)

Note.  If F( t) fails to be continuous at  t = 0 but

lim  F( t) = F(0 + 0) exists, then L{F′( t)} =  p L{F( t)} – F(0 + 0). 

 t → 0

Theorem 2.    If F(t) is continuous, except for an

 ordinary discontinuity at t = a(a > 0) as given in figure:

 Then, 

 L{ F ′ (t)} =  pL { F(t)} –  F(0) – e–ap [ F(a + 0) – F(a – 0)]

 where F(a + 0) and F(a – 0) are the limits of F at t = a as

 t approaches a from right and from left respectively. The

 quantity F (a + 0) – F(a – 0) is called the jump at the

 discontinuity t = a, and e–pt F(t) →  0 as t → ∞. 

∞

Proof.   L{F′( t)} = 

−

z  e pt.F′( t) dt

0

 a

∞

= 

−  pt

−  pt

 e

.F′ ( t)  dt +

 e

.F′ ( t)  dt

z

z

0

 a
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 a

∞

L

O

 a

R

U

∞

=  M e− pt .F( t)P

 p

 e−  pt .F( t)  dt  S| e− pt .  t

F( )V|

 p

 e−  pt .F( t)  dt

0

 a

NM

QP +

+

0

T|

W| +

z

z

 a

∞

=  e– ap  F( a – 0) – F(0) +

−

 p  z  e pt.F( t)  dt +  lim  F(

−  pt

− ap

 e

 t) −  e

F( a + 0)

0

 t → ∞

L{F′( t)} =  p L{F( t)} – F(0) –  e–ap [F( a + 0) – F( a – 0)]. 

∵    Lt   −  pt

 e

F( t) = 0

 t → ∞

1.12.1

Generalization

If F( t) and its first ( n – 1) derivatives are continuous functions for all  t ≥ 0 and are of exponential order  b as  t → ∞ and if F( n)( t) is of class A then Laplace transform of F( n)( t) exists when  p >  b given by

L{F( n)( t)} =  pn L{F( t)} –  pn – 1 F(0) –  pn – 2 F′(0) – ...... – F( n – 1)(0). 

Proof. L{F″( t)} =  p L{F′( t)} – F′(0)

(Applying Theorem 1)

=  p[ p L{F( t)} – F(0)] – F′(0)

=  p 2L{F( t)} –  p F(0) – F′(0)

Again L{F″′( t)} =  p L{F″( t)} – F″(0)

=  p[ p 2L{F( t)} –  p F(0) – F′(0)] – F″(0)

=  p 3L{F( t)} –  p 2F(0) –  p F′(0) – F″(0)

Proceeding, we get

L{F( n)( t)} =  pn L{F( t)} –  pn–1 F(0) –  pn–2 F′(0) – ..... –  p F( n–2)(0) – F( n–1)(0). 

1.13

INITIAL-VALUE THEOREM

If F( t) is continuous for all  t ≥ 0 and is of exponential order as  t → ∞ and if F′( t) is of class A then

lim F( t) = lim  p L{F( t)}. 

 t → 0

 p → ∞

1.14

FINAL-VALUE THEOREM

If F( t) is continuous for all  t ≥ 0 and is of exponential order as  t → ∞ and if F′( t) is of class A then

lim F( t) = lim  p L{F( t)}. 

 t → ∞

 p → 0

Example 12.   If 

 1

 L { F (t)} =

  then, find

 p (p + β )

( i)  lim F( t)

( ii)  lim F( t) . 

 t → ∞

 t →  0

Sol.  ( i) By final-value theorem, 

lim F( t) = lim  p L{F( t)}

1

1

=  lim

=

 t → ∞

 p → 0

 p → 0  p + β

β

( ii) By initial-value theorem, 

 p

lim F( t) = lim  p L{F( t)} =  lim

= 

1

lim

= 0. 

 t → 0

 p → ∞

 p → ∞  p (  p + )

β

 p → ∞  p + β
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1.15

LEIBNITZ RULE

To develop the theory of Laplace transforms further, we state the following result for

differentiation under the integral sign. 

 u

Let

φ(α) =  2  f ( x, α)  dx,  a  α  b

z

≤ ≤

 u 1

where  u  and  u  may depend on the parameter 

1

2

α then, 

 d φ

 u 2

 f

 du

 du



= 

 dx +  f u

2

( , α)

−  f u

1

z ∂

( , α)

...(1)

 d α

2

1

 u 1

∂α

 d α

 d α

∂ f

for  a ≤ α ≤  b if  f( x,  α) and 

are continuous in both  x and α in some region of  x α plane including

∂α

 u  

,  a 

,  u  are continuous and have continuous derivatives in interval ( a, b). 

1 ≤  x ≤  u 2

≤ α ≤  b and  u 1 2

Note.  If  u ,  u  are constants, the last two terms in (1) are zero and so 1

2

 d

 u

φ

2

 f

=

∂  dx

z . 

 d α

 u 1 ∂α

1.16

LAPLACE TRANSFORM OF INTEGRALS

 t

R

U

If

L{F( t) } =   f( p), then L S F ( t)  dt

Tz

V

  f( p)

0

W =  1 p

 t

Let

G( t) = 

F ( t)  dt

z

, then

0

G′( t) = F( t) and G(0) = 0

Taking Laplace transform, we get

L{G′( t)} =  p L{G( t)} – G(0) =  p L{G( t)}

1

1

1

∴

L{G( t)} =  L{G′( t)} =  L{F( t)} =   f( p)

 p

 p

 p

 t

L

O 1

 i.e., 

L

F( t)  dt

NMz

 f( p)

0

QP =   p

1.17

MULTIPLICATION BY  tn

 dn

If L{F( t)} =  f( p), then

L{ tn F( t)} = (–1) n 

[ f (  p)], where  n = 1, 2, 3, ....... 

 dpn

We prove the theorem by mathematical induction

∞

L{F( t)} =   f (  p) ⇒

 e−  pt t dt

z F()  =  f( p)

0

Differentiating both sides w.r.t.  p (using Leibnitz’s rule for differentiation under the integral sign), we have

 d ∞

 d



 e−  pt t dt

z F()  =  [ f( p)]

 dp  0

 dp

∞

 d

or



∂  e− pt

[

 t

( )]  dt

z

F

= 

[ f ( p)]

0 ∂ p

 dp
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∞

−  pt

 d

or



–  t e

( t)  dt =

[ f ( )

 p ]

z

F

0

 dp

∞

 d

or

 e–  pt t

[ F( t)]  dt

z

=  – 

[ f ( p)]

0

 dp

 d

or

L{ t  F( t)} =  – 

[ f ( p)]

 dp

which confirms the truth of the theorem for  n = 1. 

Now assume  the theorem to be true for  n =  m, so that

 dm

L{ tm  F( t)} = (–1) m 

[ f (  p)]

 dpm

∞

 dm

or

 e−  pt tm

 t dt

z

F( )

= (–1) m 

[ f (  p)]

0

 dpm

Differentiating both sides w.r.t.  p, we have

 d ∞

 dm + 1

 e−  pt tm

 t dt

z

F( )

= (–1) m 

[ f ( p)]

 dp

 m  1

0

 dp +

∞ ∂

 dm + 1

or

 e−  pt tm

[

 t

( )]  dt

z

F

= (–1) m 

[ f ( p)]

0 ∂ p

 dpm + 1

∞

 dm + 1

or

− −

z  te pttm F( t) dt =(–1) m  [ f( p)]

0

 dpm + 1

 m + 1

∞

 d

or

 e−  pt tm + 1 F  t dt

z [ ()]  =(–1) m + 1  [ f( p)]

 m + 1

0

 dp

 dm + 1

or

L{ tm +  1 F( t)} = (–1) m + 1 

[ f (  p)]

 dpm + 1

which shows that the theorem is true for  n =  m + 1. 

Hence by mathematical induction, the theorem is true for all positive integer  n. 

1.18 DIVISION BY  t

R

U ∞

If  L{F( t)} =  f( p), then

1

LS F( t)V

 f (  p)  dp

T

z

 provided the integral exists. 

 t

W =  p

∞

We have

 f p =

 e–  pt

( )

F  t

( )  dt

z0

Integrating both sides w.r.t.   p  from  p to ∞, we have

∞

∞

∞

L

O

 f (  p)  dp =

 e−  pt  F  t

( )  dt dp

z

z NMz

 p

 p

0

QP

Since  p  and  t are independent, changing the order of integration on the right-hand side, we have

∞

∞

∞

L

O

 f (  p)  dp =

 e−  pt dp  F  t

( )  dt

z

z0 NMz

 p

 p

QP

∞

∞ L  e−  pt

∞

R1 U

= 

 t

F( )  dt

z

= 

−  pt

 t

 e

 dt

z F()  =  LS F( t)V

0 NM

O

− t  QP

T t

W. 

 p

0

 t
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 2 p

Example 13.  If L{ t sin  ω t}  = 

ω

,  evaluate

 (p2

 2

+ ω  )2

( i)  L{ω t cos  ω t + sin  ω t}

( ii)  L{ 2 cos  ω t –  ω t sin  ω t}. 

Sol.  Let

       F( t) =  t sin ω t, 

then

F ′( t) = ω t cos ω t + sin ω t

and

   F ″( t) = 2ω cos ω t – ω2 t  sin ω t

Also

    F(0) = 0, F′(0) = 0, F″(0) = 2ω

2  p

ω

Given :



 f (  p) = ( p 2 + 2

ω )2

( i)





L{F ′( t)} =   pf ( p)  –  F(0)

2  p

ω

2

2

ω p

⇒

L{ω t  cos ω t + sin ω t} =   p . 

– 0 = 

. 

(  p 2

2

+ ω )2

2

2 2

(  p + ω )

( ii)

L{F ″( t)} =   p 2  f ( p)  –  p F(0) – F ′(0)

2  p

2

3

 p

⇒

L{2ω cos ω t – ω2 t sin ω t} =  p 2 . 

ω

−  p . 0 – 0 = 

ω

2

2 2

(  p + ω )

2

2 2

(  p + ω )

2 3

 p

∴

L{2cos ω t – ω t sin ω t} =  2

2 2 . 

(  p + ω )

 eat −  cos bt

Example 14.   If F( t) = 

,  find the Laplace transform of F(t). 

 t 1

Sol. 

L( eat) =  p −  ap

L(cos  bt) =  p 2  b 2

+

1

 p

∴

L( eat –  cos  bt) =

− 2

2

 p −  a

 p +  b

 at

F

cos

I ∞ F

Now, 

 e −

 bt

1

 p

L

−

 dp

HG

z

 t

KJ =  p  HG

I

 p −  a

 p 2 +  b 2 KJ

L

∞

1

= log ( p − )

 a − log ( p 2 +  b 2)

NM

O

2

QP p

∞

1 L

O

=

2

2

2

Mlog ( p − ) a − log ( p +  b )P

2 NM

QP p

2

L F

O∞

 a

∞

M

1 −

P

1

2

L ( p − ) a

1 M

HG

I

 p KJ P

=

log

log

M

P

2

2

2

 p

NM

O

+  b

2

2

QP =

F  b  I

 p

M

1 +

P

2

NM HG  p  KJ QP p

1

2

( p

)

 a

1

2

2

R  p +  b  U

= −

−

log

=  log S

V

2

2

 p + 2

 b

2

2

( p

T − ) a  W. 
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 sin at

Example 15.   Find the Laplace transform of 

 . Does the Laplace transform of  cos at

 t

 t

 exist? 

sin  at

Sol.  Since   

sin  at

lim

=  a, the Laplace transform of 

exists. 

 t → 0

 t

 t

 a

Now, 

L(sin  at) =   p 2  a 2

+

F

∞

 a

∞

L

− F  p

1 F  p

π

∴

L sin  at

1

HG

I

 dp

z

=  tan−

=  − tan HG I

 a KJ

 t  KJ  =

NM

O

HG I

 a KJ

 p p 2 +  a 2

QP 2

 p

F

1 F  p

 a

= cot− HG I  = tan–1 

 a KJ

HG I p KJ

cos  at

The function 

is discontinuous at  t = 0, so its Laplace transform does not exist. 

 t

Example 16.   Find the Laplace transform of

( i)  t3 e–3t

( ii)  t  sin2 3t

 1 −  cos t

( iii)

(U.P.T.U. 2015)

( iv)  1 −  cos t . 

 t

 t2

1

Sol.  ( i)





L( e–3 t) =   p + 3

 d 3 F 1

(

)

1 3 3 ! 

6

∴

L( t 3  e–3 t) = (– 1)3 

  =  

 . 

 dp 3 HG

I

 p + 3KJ   =  − −

( + )

3 4

 p

 p + 3 4

(

)

6

Aliter:

L( t 3) =  4

 p

6

∴

L( e–3 t t 3) = 

. 

 p + 3 4

(

)

1 − cos 6 t

( ii)

sin2 3 t = 

2

1

1 F 1

 p

I

18

∴

L(sin2 3 t) =  [L (1) – L(cos 6 t)] = 

2

−

2

2

HG  p p + 36KJ =  2

 p(  p + 36)

 d  L

18

∴

L ( t sin2 3 t) = −  dp  NM

O

 p p 2

(

+ 36)QP

54

2

(  p + 12)

= (–18) (–1) ( p 3 + 36 p)–2 (3 p 2 + 36) = 

. 

2

2

 p (  p + 36 2

)

1

 p

( iii)

L(1 – cos  t) =  − 2

 p

 p + 1

F1 cos  t

∞ F 1

 p  I

L

−

HG

I  = 

−

 dp

z

 t

KJ

2

 p  HG  p

 p + 1KJ
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L

∞

∞

1

1

2

L F  p  IO

=   log  p − log ( p 2 + )

NM

O

1

=    Mlog

P

2

QP

2

2

NM HG

KJP

 p

 p + 1 Q p

L F

I ∞

M

OP

⎛1 cos  t ⎞

1

G 1 J

1

F 2 p  I 1

2

F  p + 1I

  

−

L

M

P

⎜

⎟   =  

log G

J  = − log

  =    log

⎝

 t

⎠

2 M

1

G

P

2

2

1

M G + JJ

2

HG  p + KJ1 2 HG  p  KJ

2

N H  p  KQP p

( iv) Proceeding as in ( iii), 

F1 cos  t

∞ 1

2

F  p  1I

∞

L 

−

= 

log

 dp

z

+

2

[log ( p + 1) − 2 log ]

 p dp

z

2

HG

I

 t

KJ  p  2

2

HG  p  KJ  = 12  p

1 L

F 2 p  2I

O

= 

2

{l

M og ( p + 1) − 2 log } p.  p −

−

 p dp

z

∞

. 

P

2 NM

2

HG  p + 1  p KJ

QP p

L

∞

 p

F  p 2 1IO

∞

 dp

 p

F

1 I

= M log

+

P z

1

2

NM

HG

+ 

= –

log

+

 –  tan–1  p

 p 2 KJQP

 p p 2 + 1

2

HG  p 2 KJ  + π2

 p

F1− cos  t

 p

F

1 I

⇒

L

2

HG

I = cot–1  p –   log  1

. 

 t

KJ

2

+ 2

HG

KJ

 p

F  t  I

 1

F  1

 1

Example 17.   Given L 2

HG

 . 

π KJ   =  p3/2 , show that L HG

I

π t  KJ   =  p

 t

1

Sol.  Let

F( t) = 2

∴ F′( t) = 

.  Also F(0) = 0

π

π t 1

∴



L{F′( t)} =  p L{F( t)} – F(0) =  p . 



3 2

 p /  – 0

F 1

1

∴

LHG I

. 

π t  KJ  =   p

Example 18.   Find the Laplace transform of

− at

− bt

( i)  e

−  e

( ii)  cos at −  cos bt . 

(A.K.T.U. 2017)

 t

 t

1

1

Sol.  ( i) Since L{ e– at –  e– bt} = 

– 

 p +  a

 p +  b

R e− at −  e− bt  U ∞F 1

1

∴

LS

V

−

 dp

z

 t

T|

W| =   p  HG

I

 p +  a

 p +  b KJ

L

 a  O∞

L

∞

L

1

 p +  a ∞

+

M

 p  P

=  log ( p + )

 a − log ( p + )

 b

NM

OQP  =  logNM O  = Mlog P

 p +  b QP

M

 b  P

 p

 p

1 +

NM

 p  QP p

 a

1 +

 p +  b

= log 1 –

 p

log

= 0 – log   p +  a  = log 

. 

 b

1

 p +  a

+

 p +  b

 p
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 p

 p

( ii) Since L{cos  at – cos  bt} = 

– 

 p 2  a 2

+

 p 2  b 2

+

Rcos  at − cos  bt U ∞F  p

 p

I

L1

∞

2

2

1

∴  L ST

V

−

 dp

z

= 

2

2

log ( p +  a ) − log ( p +  b )

 t

W =   p  HG  p 2  a 2  p 2 +  b 2

+

KJ

NM

O

2

2

QP p

2

L

∞

M

 a  O

1 +

P

1

2

2

L  p

∞

+  a

1

2

 p

= 

log

=  Mlog

P

2

2

2

 p

NM

O

+  b  QP

2

2

M

 b  P

 p

M 1+ P

2

N

 p  Q p

1

2

2

L

 p

 a

1

2

2

 p +  b

= 

log 1 − log

+

=  log

. 

2

2

2

NM

O

 p +  b  QP 2

2

2

 p +  a

Example 19.   Find the Laplace transform of the following functions:

( i)  t sin 3t cos 2t

( ii)  te– t  cosh t (U.P.T.U. 2014) ( iii)  t2 e–2t cos t. 

1

1 F

5

1 I

Sol.  ( i) L(sin 3 t cos 2 t) =  L (sin 5 t +  sin  t) = 

2

+

2

2

HG + 52

2

 p

 p + 1KJ

 d  L 1 F

5

1 IO

⇒ L( t sin 3 t cos 2 t) = −

M

+

2

2

P

 dp  NM2 HG  p + 25  p + KJ

1 QP

1 L

5

1

5  p

 p

= −

−

2

( )

 p −

(2 )

 p  = 

+

. 

2 NM

O

2

 p + 25 2

2

(  p + 1 2

(

)

)

QP

2

(  p + 25 2

2

)

(  p + 1 2

)

 t

L

− t

F

IO

F

− t

 e +  e

1 1

1

( ii)

L( e– t  cosh  t) = LM e

P

NM HG

  =    1 L (1 +  e– 2 t) = 

+

2

KJQP 2

2 HG

I

 p

 p + 2KJ

 d  L 1 F 1

1

1 L

1

1

1 L 1

1

⇒

L( te– t cosh  t) = −

+

= −

−

−

= 

+

 dp  NM

O

2 HG

I

 p

 p + 2KJQP

2 NM

O

2

( + 2 2

 p

 p

) QP 2 2

NM

O

+ 2 2

 p

 p

QP

(

)

 p + 2

 p + 2

( iii)

L( e–2 t   cos  t) = 

= 

 p + 2 2

(

) + 1

 p 2 + 4  p + 5

 d 2 L

 p + 2

 d  L

 p 2 4  p  3

⇒

L( t 2 e– 2 t cos  t) = (– 1)2 

= 

−

+

+

 dp 2 NM

O

 p 2 + 4  p + 5QP  dp

( p

NM

O

2 + 4 p + 2

5) QP

2 3

(  p + 6 2

 p + 9 p + 2)

= 

. 

2

(  p + 4  p + 5 3

)

Example 20.   Find the Laplace transform of the following functions:

− t

 1 −  cos 2t

( i)  e sin t  (G.B.T.U. 

2012)

( ii)

. 

 t

 t

1

Sol.  ( i)

L( e– t sin  t) =   p + 1 2

(

) + 1
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F

∞

 e− t  sin  t I

L 1

O

∞

1

⇒

LHG

=

 dp

z

=  Mtan− ( p + )

1 P

 t

KJ  p p + 1 2

(

) + 1

NM

QP p

= π  – tan– 1 ( p + 1) = cot–1 ( p + 1). 

2

1

 p

( ii)

L (1 – cos 2 t) =   – 

 p

 p 2

2

+ 2

F1− cos 2 t

∞ F 1

 p  I

⇒

L HG

I  =

−

 dp

z

 t

KJ

2

 p  HG  p

 p + 4KJ

L

∞

2

2

1 L

 p

∞

1

= log  p − log ( p + )

4

log

NM

O

2

QP =

2

 p

2

 p

NM

O

+ 4 QP p

LM

OP

1

1

2

 p

=

M lim log

− log

P

2  p

M →∞

4

2

P

1

 p + 4

+ 2

NM

 p

QP

2

L

1

2

F  p + 4I

= 1

 p + 4

log 1 + log

=  log

2

2

NM

O

 p

QP 2

2

HG  p  KJ . 

Example 21.   Evaluate:

∞

− t

 2

∞

( i)

 t3e− t sin t dt

z

( ii)

 e sin t dt

z


. 

 0

 0

 t

[G.B.T.U. (SUM) 2010]

[G.B.T.U. (C.O.) 2010, 2011]

1

Sol.  ( i)

L(sin  t) = 2

 p + 1

 d 3 F

1 I

L( t 3 sin  t) = (– 1)3   dp 3 2

HG  p + 1KJ

2 L

 d  L2 1

( − 3 p 2)

=  d

2  p

 dp 2 NM

O

(  p 2

2

+ 1) QP =   dp ( p 2

NM

O

+ 1 3

) QP

24

2

 p (  p − 1)

L( t 3 sin  t) =

...(1)

2

(  p + 1 4

)

∞

24

2

 p (  p − 1)

By definition, 

 e−  pt t 3

 t dt

z . sin  = 

0

2

(  p + 1 4

)

Put   p = 1

∞  e− t t  sin  t dt

z 3

= 0. 

0

1

1 F 1

 p  I

( ii)



L(sin2  t) =  L(1 – cos 2 t) = 

−

2

2

2

HG  p p + 4KJ
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Fsin2  t I 1 ∞F 1

 p  I

1

2

F  p + 4I

L HG

−

 dp

z

=  log

 t  KJ  =  2

2

 p  HG  p

 p + 4KJ

4

2

HG  p  KJ

F

I

∞

1

2

 p + 4

By definition, 

−  pt  sin2  t

 e

 dt

z . 

=  log

2

0

 t

4

HG  p  KJ

Put   p = 1

∞

1

− t

 t





 e

 dt

z sin2  =   log 5. 

0

 t

4

Example 22.   Find the Laplace transform of

 t

 t

( i)

 e− t cos t dt

z

( ii)

 sin t dt

z

 0

 0

 t

 t

( iii)

 t sin t

 e

 dt

z

. (U.P.T.U. 2014)

 0

 t

 p

Sol.  ( i)

L(cos  t) =  p 2 + 1

 p + 1

L( e– t cos  t) =

=  f ( p)

(say)

 p + 1 2

(

) + 1

 t

F

I 1

 p + 1

∴

L

 e− t  cos  t dt

HGz

=

 f ( p) = 

2

. 

0

KJ  p

 p (  p + 2 p + 2)

1

( ii)

L(sin  t) = 2

 p + 1

Fsin  t

∞

1

LHG

I

 dp

z

=  π  – tan–1  p = cot–1  p

 t  KJ  =

2

 p p + 1

2

 t

F

I 1

∴

L

sin  t dt

HGz

cot–1  p. 

0

 t

KJ  =  p

Fsin  t

( iii)

LHG

I

 t  KJ  = cot–1  p

| as done in part ( ii)

F  t  sin  t

∴

L  e

HG

I

 t  KJ  = cot–1 ( p – 1)

 t

F

I

 t  sin  t

1

∴

L

 e

 dt

HGz

cot–1 ( p – 1). 

0

 t

KJ =  p

Example 23.   Find the value of

∞

∞

( i) z   e–st t3 cos t  dt

( ii) z   e–3t t sin t dt. 

 0

 0

 p

Sol.  ( i)  



L(cos 

 t) =   p 2 + 1

 d 3 F

 p  I

L( t 3 cos  t) = (–1)3 



 dp 3 HG  p 2 + 1KJ
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 d 2 R 1

2

−  p  U

 d  L2 3

 p

 bp

6 4

(  p − 6 2

 p + 1)

= – 

S

V

= 

 dp 2

2

T( p + 1 2) W = −

−

 dp  NM

O

1

2 3

( +  p ) QP

1

2 4

( +  p )

∞

6 4

(  p − 6 2

 p + 1)

⇒

z   e–pt .  t 3 cos  t  dt = 

2 4

| By definition

0

1

( +  p )

Replacing  p by  s, we get

∞

6 4

( s − 6 2

 s + 1)



z  e–st .  t 3 cos  t  dt = 

2 4

0

1

( +  s )

1

( ii)

L(sin 

 t) =  2

 p + 1

 d  F 1 I

2  p

L( t sin  t) = –   dp  2

HG  p + 1KJ  =  2

(  p + 1 2

)

∞

2 p

z   e– pt .  t sin  t  dt = 

| By definition

0

2

(  p + 1 2

)

Put  p = 3

∞

6

3



z   e–3 t .  t sin  t  dt =   =  . 

0

100

50

Example 24.   Find the Laplace transform of

F  cos t I

 t/2

 2x

( i)  sin 

− −

 t  ; Hence find L HG

z   1 e   dx. 

 t  KJ

( ii)  0

 x

(  t)3

(  t)5

 t 3/2

 t 5/2

Sol.  ( i)

sin   t  =   t  – 

+ 

– ...... =  t 1/2 – 

+ 

– ...... 

3 ! 

5 ! 

3 ! 

5 ! 

3/2

5/2

F

I

1/2

 t

 t

Γ3 2

/

Γ5 2

/

Γ7 2

/

∴

L(sin   t ) = L   t

−

+

−

HG

......  = 

– 

+ 

– ...... 

3 ! 

5 ! 

KJ

3/2

 p

3

5 2

! 

/

 p

5

7 2

! 

/

 p

2

R F

U

1 I

1 F 1 I

= 

π   1

S| −

... V|

... 

2 3 2

 p /

HG22  p KJ + 2! HG22  p KJ −

T|

W|

⇒

L(sin   t ) = 

π   e–(1/4 p)

2 3 2

 p /

L  d

Now, 

L  (sin  t)

NM

O

 dt

QP =  p L (sin   t) – 0

| ∵ F(0) = 0

F

F

cos  t  I

π

1

−

L HG

 e  HG I

4  p KJ

2  t  KJ  =  2  p

F

F 1

cos  t  I

π − HG I

4 KJ

L 

HG

 e

 p . 

 t  KJ  =   p

M-1.24

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

 t/2 F 1

2

− −

 e x  I

( ii) z  

 dx

0

HG  x  KJ

 t  F 1

−

 e u  I

Put 2 x =  u so that 2 dx =  du

−

∴

Integral becomes z  

 du

0 HG

 u

KJ

1

1

Now, 

L (1 –  e– u) =

– 

 p

 p + 1

F

∞

1

−

 e u  I

∞ F

L F  p

L 

−

z 1 1

HG

=

−

 u

KJ  p  HG

I

 p

 p + 1KJ   dp =  log

NM

O

HG

I

 p + KJ

1 QP p

F  p

F  p

= 0 – log 

+

HG

I = log 

 p + KJ

1

HG

I

 p  KJ

1

L F1− − u

 t

I O 1

F  p +

1

F 1

∴

L Mz

 e

 du P  =  log 

log  1 +

. 

0

NM HG  u  KJ QP  p

HG

I

 p  KJ

1  =   p  HG IKJ p

Example 25.   Find the Laplace transform of

( i)  t e–t sin 2t [G.B.T.U. (SUM) 2010] ( ii)  t2et sin 4t

[G.B.T.U. (C.O.) 2011]

2

Sol.  ( i)

L (sin 2 t) = 2

 p + 4

 d  F

2

I

2

4  p

L ( t sin 2 t) = – 

. 2  p = 

 dp  HG  p 2 + 4KJ  =  2

 p + 4 2

(

)

2

(  p + 4 2

)

4 (  p + 1)

4  p + 4

∴

L ( te – t sin 2 t) =

= 

2

2

(  p + 1 2

2

) + 4

( p + 2 p + 5)

4

( ii)

L (sin 4 t) =  2

 p + 16

 d 2 F

4

I  d  R − 8 p  U

L ( t 2 sin 4 t) = (–1)2 

S 2

2 V

 dp 2 HG  p 2 + 16KJ  =   dp  T( p + 16) W

L 2

( p

16 2

) . 1  p . 2

2

( p

16) . 2 p

L 16 3 2 p

= −

+

−

+

8 NM

O = −

−

8

2

(  p + 16 4

)

QP

NM

O

2

( p + 16 3

) QP

LM

2 O

16 3 (  p  1) P 8 3 2

(  p − 6 p − 13)

∴

L ( et .  t 2 sin 4 t) = −

−

−

8 M

= 

M

2

3

2

3 P

(

o  p − 1) +

N

16t QP ( p − 2 p + 17)
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Example 26.   Using Laplace transform, evaluate the following integrals:

 t

F

I

∞ −

−  2t

−  4t

∞  e

 e

( i)

 e

 sin 3t dt

z

( ii)

 dt

z −

 0

 t

 0  HG

 t

KJ

3

Sol.  ( i)

L (sin 3  t)  =  2

 p + 3

F

∞

sin 3 t I

∞

3

L

1 F  p

L HG

 dp

z

=  tan−

 t

KJ  =

NM

O

HG I

3 KJ

 p p 2 + 3

QP p

π

F  p

− F  p

=

1

− tan

= cot– 1 

2

HG I

3 KJ

HG I

3 KJ

∞

1 F

 pt  sin

3 t

 p

⇒



−

z  e

 dt = cot−

0

 t

HG I

3 KJ

Putting  p = 1, we get

∞

1 F

 t  sin

3

−

z

 t

1

 e

 dt = cot−

=  π

0

 t

HG I

3 KJ

3

1

1

( ii)





L ( e–2 t –  e–4 t) = 

−

 p + 2

 p + 4

− 2 t

− 4 t

F

I ∞F 1

1

L  p

∞

2

 p + 4

L   e

−  e

z

+

HG

= 

−

 dp =  log

= log 

 t

KJ  p  HG

I

 p + 2

 p + 4KJ

NM

O

 p + 4QP

 p + 2

 p

− 2 t

− 4

∞

 t

F

 pt  F  e

 e

I

4

⇒

−

z

−

 e

 dt = log   p +

0

HG

 t

KJ

HG

I

 p + 2KJ

Putting  p = 0, we get

2 t

4

∞

−

−

F  e

 e t  I

z

−

 dt  = log 2

0 HG

 t

KJ

∞

 t

π

Example 27.   Prove that

−  t sin u

 e

 du dt

z z

  =  . 

(M.T.U. 2011)

 t =  0 u =  0

 u

 4

1

Sol. 

L (sin  u) = 2

 p + 1

Fsin  u

∞

1

1 F 1

L HG

I

 dp

z

  =  tan−

 u  KJ   = p p 2 + 1

HG I p KJ
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F sin

I 1

F

1

1

L   t

 u du

HGz

=

tan− HG IKJ

0

 u

KJ  p

 p

∞

 t

F

 pt  F

sin  u

I

⇒

−

z  e  HGz  du dt = 1 1 1

tan−

0

 o

 u

KJ

 p

HG I p KJ

Putting  p = 1, we get

∞

−

z z t t  sin u

 e

 du dt = tan–1 (1) =  π

0 0

 u

4

PROBLEM SET-II

1. 

Find the Laplace transforms of

( i)  t sinh  at

( ii)  te– 2t sin 3 t

( U.P.T.U. 2015)

( iii)  t 2  e–3 t     ( U.P.T.U. 2015)

( iv)  t eat  sin  at

( U.K.T.U. 2012)

( v)  t sin2  t

( vi)  t cosh 3 t

( vii)  t (3 sin 2 t – 2 cos 2 t)

( viii) sin  at –  at  cos  at

( ix)  tn eat, p >   a ;  n  is a positive integer

( x) ( t 2 – 3 t + 2) sin 3 t. 

 d 2

2. 

If L{F( t)} =  f( p), show that L{ t 2 F( t)} = 

{ f ( p)} . Use this result to obtain L( t 2 cos  at). 

 dp 2

F1 cos  at

1

R

cos ) U

2

2

3. 

If L

−

HG

I

, show that

 t(1 −

 at

3  p

 a

L S

. 

2

V

 a 2

KJ =  p ( p 2 +  a 2)

T

 a

W =

+

 p 2 (  p 2 +  a 2)2

4. 

Find the Laplace transform of

 t

( i) sin 2 t

( ii) 1 −  e

( iii) cos 2 t − cos  t

3

( iv) sin2  t

 t

 t

 t

 t

 t

 t

( v) sinh  t

( vi)  e − cos  t

( vii) 1 − −

 e

( viii) sin 3 t  cos  t . 

 t

 t

 t

 t

5. 

Evaluate:

∞

2

∞

∞ − at

−

 e

 e bt

( i) z sin  t dt ( U.P.T.U. 2009) ( ii) z sin  t dt

( iii) z

−

 dt

0

 t

0

2

 t

0

 t

( G.B.T.U. 2011)

3 t

6

∞ −

−  t

∞ cos 6 t  cos 4 t

∞

 t  sin  t

( iv) z  e −  e dt

( v) z

−

 dt

( vi)

−

z  e dt. 

0

 t

0

 t

0

 t

( M.T.U. 2012)

( M.T.U. 2013)

3

∞ −  t  sin

∞

( vii) z  e

 t dt

( viii)

2

−  t  2 sin 3

z  e t tdt. 

0

 t

0

( U.P.T.U. 2015)

( U.P.T.U. 2015)

6. 

Find the Laplace transform of

 t

2

 t

 at

 bt

( i)

 t

 t

 e

 dt

z − sin  ( U.P.T.U. 2013) ( ii)  e e dt

z − −−

0

 t

0

 t

 t

 t

( iii)

1

2  t

cos 2 t  cos 3 t

 dt

z −cos

( iv)

 dt

z −

. 

( U.P.T.U. 2014)

0

 t

0

 t
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7. 

Find the Laplace transform of

 t

 t

 t

 t

( i)

 at dt dt dt

z z z cos

( ii)

 t

 te

4 t dt

z − sin

0 0 0

0

 t

 t  1

( iii) − 4 t

sin  t

3

 e

 dt

z

( iv)

−

∫

4 u

 e

sin 3 u du

( G.B.T.U. 2013)

0

 t

0  u

8. 

Show that:

∞

11

∞

6

( i)

2 − 4 t  sin 2

z  t e tdt =  ( ii) −2 t  3

z  e  sin  tdt = 

0

500

0

65

∞

 t  F sin  t

sinh  t

F

− 1

3

1

( iii)

− 2

2

3

z

−

 e

HG

I  dt = 2 cot 2() + log

 t

KJ

HG IKJ . 

0

2

3

ANSWERS (PROBLEM SET II)

6 (  p + 2)

2

1. 

( i)

2 ap

( ii)

( iii)

2

2 2

2

2

(  p −  a )

{(  p + 2) + 9}

 p + 3 3

(

)

2 3 2

(  p + 4)

 p 2 + 9

8 + 12 p − 2 2

 p

( iv) 

2 a (  p −  a)

( v)

( vi)

( vii)

2

(  p − 2 ap + 2 2 2

 a )

2

2

 p (  p + 4)2

( p 2

2

− 9)

2

(  p + 4)2

2 3

 a

 n ! 

6 4

 p − 18 3

 p + 126 2

 p − 162 p + 432

( viii) 

( ix)

2

2 2

( p +  a )

(  p −  a n

) + 1

( x)

2

(  p + 9 3

)

2

2

 p (  p − 3 2

 a )

2. 

2

2 3

(  p +  a )

F

F

R

 p  1

1

2

F  p + 9I

1

2

 p + 4I

4. 

( i) cot–1   p

HG I

−

( iii)

log

log S|

2 KJ

( ii) log HG

I

 p  KJ

2

2

HG  p + 4KJ

( iv) 4

2

 p

T|

KJ

1

F  p

R

U

+ 1

1

2

 p + 1

F 1

( v)

log

log S|

V|

+

2

HG

I

 p − 1KJ

( vi) 2

(  p

T| − 1 2) W|

( vii) log 1

HG

IKJ p

1 L

− F  p

− F  p

( viii) 

1

1

π − tan

tan

2 NM

O

HG I

4 KJ −

HG I

2 KJQP

F

5. 

( i)

 b

π/2

( ii) π/2

( iii) log HG I a KJ

( iv) log 2

2

18

( v) log

( vi)

3

π/4

( vii) cot–1 (3)

( viii) 2197

1

R( p + 1 2) + 4U

F

1

F 4 I

6. 

( i)

log S|

V|

 p b

log

+

log 1 +

4

(  p

T|

+ 1 2

 p

)

W|

( ii) 1 p  HG

I

 p +  a KJ

( iii) 2

2

 p

HG  p  KJ

1

2

F  p  9I

( iv) 

log

+

2

2

 p

HG  p + 4KJ

− F

7. 

( i) 

1

( ii)

8 (  p + 1)

( iii)

1

1

 p + 4

cot

2

2

2

 p (  p +  a )

2

 p (  p + 2  p + 17 2

)

(  p + 4)

HG

I

3 KJ

1

 p  4

( iv) 

−1 ⎛

+ ⎞

cot ⎜

⎟ . 

 p

⎝ 3 ⎠
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1.19

LAPLACE TRANSFORM OF SOME SPECIAL FUNCTIONS

(1) The error function.  The error function denoted by erf   t  is defined as

2

 t

erf   t  = 

z   e−η2   d η

π 0

Note.   lim  erf  x = 0 and  lim  erf  x = 1. 

 x → 0

 x → ∞

Example 28.   Find L (erf   t )  and hence prove that

 3p +  8

  L (t. erf  2 t ) = 

. 

 p2(p +  4)3/2

Sol.  By definition, 

2

 t

erf  t  =

z   e−η2   d η

...(1)

π 0

2

 t

4

6

F

η

η

I

∴

erf  t  =

z   1 2

− η +

−

+ ......  d η

π 0 HG

2 ! 

3 ! 

KJ

2 F

1 /

1

/

1

=

 t 1/2 −  t 3 2 +

 t 5 2 −

 t 7/2 + ...... 

π HG

I

3

5 . 2 ! 

7 . 3 ! 

KJ

2 L ( /

3 )

2

( /

5 )

2

( /

7 )

2

( /

9 )

2

∴

L (erf   t ) =

Γ

Γ

Γ

Γ

−

+

−

+ ...... 

π

3/2

5/

NM

O

3

2

5 . 2 ! 7/2

7 . 3 ! 9/2

 p

 p

 p

 p

QP

1

1

1

1. 3

1

1. 3 . 5

1

=

− . 

+

. 

−

. 

+ ...... 

3/2

2

5/2

2 . 4

7/2

2 . 4 . 6

9/2

 p

 p

 p

 p

1 L

1 1

1. 3

1

1. 3 . 5

1

=

1 − . +

. 

−

. 

+ ...... 

3/2

2

2 . 4

2

2 . 4 . 6

3

 p

 p

NM

O

 p

 p

QP

−

1 F

1 1/2

1

=

1 +

= 

3 2

 p / HG

I

 p KJ

 p p + 1

1

2

Now, 

L(erf 2  t ) =  . 

1

= 

4

 p p

 p p + 4

+ 1

4 4

 d  L

2

 p (3  p + )

8

3 p + 8

∴

L( t erf 2  t ) = – 



= 

. 

 dp

3

NM

O

 p + 4 2 1/2

(

 p )

QP =   p 3 ( p + )3/

4 2

2

 p (  p + 4 3 2

) /

(2) The Bessel function.  Bessel function of order  n is given by

 xn

L

 x 2

 x 4

J  ( x) =

1 −

+

− ...... 

 n

 n

2 Γ( n + 1)

2 . 2

(  n

NM

O

+ 2) 2 4

. 2

(  n + 2) 2

(  n + 4)

QP

∞

(− )

1  r

2

F

= ∑  

 x n r

HG IKJ +

 r

 r ! Γ( n +  r + )

1

= 0

2
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Bessel function of order zero is given by

 x 2

 x 4

 x 6

J  ( x) = 1 – 

...... 

0

+

−

+

2

2

2

2

2

2

2

2 4

. 

2 . 4 . 6

Example 29.   Find L[ J  (t)],   where J  (t)  is  the Bessel function of order zero. Hence or 0

 0

 otherwise obtain L[ J  (t)] . 

 1

 t 2

 t 4

 t 6

Sol.  By definition, J ( t) = 1 – 

+

−

+ ...... 

...(1)

0

2

2

2

2

2

2

2

2 . 4

2 . 4 . 6

1

1 2 ! 

1

4 ! 

1

6 ! 

∴

L[J ( t)] =

−

. 

+

. 

−

. 

+ ...... 

0

22

3

22 . 42

5

22 . 42 . 62

7

 p

 p

 p

 p

1 L

1 F 1 I

1. 3 F 1 I

1. 3 . 5 F 1 I

O

=

M1 . 

P

...... 

 p

−

M 2 2

N

HG  p  KJ + 2.4 4

HG  p  KJ − 2.4.6 6

HG  p  KJ + QP

1

−1/2

FL

O

1 I

1

=

M 1

P = 

 p

+ 2

HGM  p  KJ

N

QP

1

2

+  p

We know by the recurrence relation, 

J

( t)

0′ ( t) = – J1

where J ( t) is the Bessel function of order one. 

1

∴

L[J ( t)] = – L[J

( t)} – 1] = 1 –  p 

1

1

0′( t)] = – [ p L{J0

1

2

+  p

⇒

L(J ( t)] = 1 – 

 p

. 

1

1  p 2

+

(3) The sine integral. The sine integral, denoted by S  ( t) is defined as

 i

 t  sin  y

S  ( t) = z  

 dy

 i

0

 y

(4) The cosine integral.  The cosine integral, denoted by C  ( t), is defined as i

∞

C  ( t) = z  cos u  du. 

 i

 t

 u

∞

Example 30.   Find L{ C (t)},   where C (t) = 

 cos u

z   du. 

 i

 i

 t

 u

∞ cos  u

Sol.  Let

F( t) = z  

 du = – z t  cos  u  du

 t

 u

∞

 u

cos  t

so that, 

F′( t) = – 

⇒

 t F′( t) = – cos  t

 tp

∴

L { t F′( t)} = –   p 2 + 1

 d

 p

⇒

– 

[L{F′( t)}] = – 

 dp

 p 2 + 1

 d

 p

⇒

[ p  f( p) – F(0)] =

 dp

 p 2 + 1

 d

 p

⇒

{ p  f( p)} =

(∵ F(0) is constant)

 dp

 p 2 + 1
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1

Integration yields,  pf( p) =   log ( p 2 + 1) +  c

...(1)

2

But from the final-value theorem, 

Lt   pf( p) = Lt  F( t) = 0

 p → 0

 t → ∞

∴ From (1), as  p → 0, we have  c = 0

1

∴

 pf( p) =  log ( p 2 + 1)

2

1

⇒

 f( p) =

log ( p 2 + 1)

2 p

(5) The complementary error function. The complementary error function is

defined as

2

∞

erf ( t) = 1 – erf  t = 

z   e− u 2  du. 

 c

π  t

Example 31.   Evaluate:  L(erf  c t ). 

1

1

Sol. L (erf  

– 

. 

 c

 t ) = L {1 – erf (  t )} = L(1) – L{erf (  t)} =   p p p + 1

(6) The exponential integral function.  The exponential integral is defined as

∞

− u

E   (t) =  z   e  du. 

 i

 t

 u

∞

− u

Example 32.   Evaluate:  L { E  (t)},   where E (t) = z   e   du. 

 i

 i

 t

 u

− u

R ∞  e

U

 du

 dv

Sol. L{E ( t)} = L S

 du

Tz

V

 i

=

 t

 u

W Put  u  = tv so that  u v

R ∞ − etv  U

= L STz

V

 dv

1

 v

W

∞

 tv

 pt  R

 e

U

=

−

∞ −

z  e  STz V dvdt

0

1

 v

W

∞ 1

∞

R

 pt

 tv

U

=

−

−

z S  e .  e dt dv |On changing the order of integration

 v  Tz

V

1

0

W

∞ 1

1

∞ 1 F 1

1

= z . 

 dv = z

−

 dv

 p  HG

I

 v

 p v KJ

1  v p +  v

1

+

L

∞

1 L

F  p

∞

1

= 1 log  v − log ( p +  v)  = 

– log

+ 1

=   log ( p + 1)

 p  NM

OQP  p NM

O

HG

I

 v

KJQP  p

1

1

(7) Laguerre polynomial. This polynomial is defined as

 ex dn

L ( x) =

( e− xxn) . 

 n

 n !  dxn
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Example 33.   Evaluate:  L { L (t)},   where L (t) is Laguerre polynomial and n is a (+)ve n

 n

 integer. 

∞

 t

 n

 pt

 e d

 t n  U

Sol. L{L ( t)} =

−

−

z R

 e

S

( e t )

 n

V  dt

 n

0

T n!  dt

W

1

 n

∞ −( p − )  t d

=

1

 e

( e− t tn)  dt

z n!0

 dtn

L

O

1

 n−1

∞

 n −  1

R

U

−(  p − )  t d

− t n

∞

− (  p − )  t

 d

=

1

MS e

( e t )V

{ (  p  1

1

)  e

}

( e− t tn)  dt P

z

 n−1

 n − 1

 n ! M

 dt

0

 dt

NT

W − − −

P

0

Q

1

 n−1

L

∞ −( p − )  t d

=

( p − 1

1

)

 e

( e− t tn)  dt

z

 n−1

 n ! 

0

 dt

NM

OQP

( p − )

 n

1 2 ∞

−2

−  p − 1  t d

=

(

)

 e

( e− t tn)  dt

z

 n ! 

 dtn−2

0

( p − ) n

1

∞

( p − ) n

1

∞

=

−(  p − )

 e

1  t e− t tn dt

z

= 

 e−  pt tn dt

z

 n ! 

0

 n ! 

0

(  p − ) n

1

 n ! 

(  p − ) n

1

=

. 

 n ! 

 pn + 1  =   pn + 1  ;  p > 1. 

(8) Unit Step Function (or Heaviside’s Unit Step Function)

The unit step function  u( t –  a) is defined as

R

u (t – a)

 u ( t –  a) =  0, for  t <  a

ST1, for  t , where  a 

≥  a

≥ 0. 

R

As a particular case,    u( t) =  0, for  t < 0

ST1, for  t≥0

R 0, for  t <  a

1

The product F( t) .  u ( t –  a) = SF

T ( ) t, for  t ≥  a

The function F( t –  a) .  u( t –  a) represents the graph

of F( t) shifted through a distance ‘ a’ to the right. 

Laplace Transform of Unit Step Function

O

a

t

∞

L{ u( t –  a)} = z  e–pt  u( t –  a)  dt

0

∞

L

 a

∞

 e−  pt

1

= z  e–pt  . 0  dt + z  e–pt  . 1  dt = 0 + 

 e–ap

0

 a

NM O

−  p  QP  =   p

 a

1

In particular,   L{ u( t)} =  . 

( U.P.T.U. 2014)

 p
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Second Shifting Theorem

If L{F( t)} =  f( p), then L{F( t –  a) .  u( t –  a)} =  e– ap  f( p). 

∞

L{F( t –  a) .  u( t –  a)} = z  e–pt  F( t –  a) .  u( t –  a)  dt 0

∞

∞

= z  e–pt  F( t –  a)  dt = z  e–p( u+a) F( u)  du, where  u =  t –  a a

0

∞

=  e–ap z  e–pu F( u)  du =  e–ap  f( p)

0

Note.  If  a = 0, L{F( t)  u( t)} =  f( p) = L{F( t)}. 

Example 34.   Express the following functions interms of Heaviside’s unit step function : R sin t , 0 <  t < π

− t

R

( i)  F( t) = S| sin 2t,  π <  t <  2 π

( ii)  F( t) =   e , 0 <  t <  3

S

 sin 3t, t

T|

>  2 π

 0 , 

 t

T

>  3

R

( iii)  F( t) =   sin t, 

 t > 

S

π . 

 cos t, 0

T

<  t < π

Sol. ( i)





F( t) = sin  t{ u( t) –  u( t – π)} + sin 2 t{ u( t – π) –  u( t – 2π)} + sin 3 t  u( t – 2π)

= sin  t  u( t) + (sin 2 t – sin  t)  u( t – π) + (sin 3 t – sin 2 t)  u( t – 2π) ( ii)

F( t) =  e– t { u( t) –  u( t – 3)} + 0{ u( t – 3)}

=  e– t { u( t) –  u( t – 3)}

( iii)

F( t) = sin  t  u( t – π) + cos  t{ u( t) –  u( t – π)}

= cos  t  u( t) + (sin  t – cos  t)  u( t – π) Example 35.   Find the Laplace transform of the functions:

 1

R  , 0 <  t <  1

R  2 if 0 <  t < π

| 2 , 1<  t <  2

|

( i)  F( t) = S|  0 if  π <  t <  2 π

( ii)  F( t) = S 3 , 2 <  t <  3 ( Staircase function) sin t if

 t

T|

>  2 π

| ...... ............ 

T| ...... ............ 

R 1 , 0 <  t <  2

R  0, 0 <  t <  / π 2

( iii)  F( t) =   2 , 2 <  t <  4

S|

S

 3 , 4 <  t <  6

 sin t, 

 t

T

>  /

π  2

T|

( iv)  F( t) = 

 0 , 

 t >  6

Sol.  ( i) F( t) = 2{ u( t) –  u( t – π)} + sin  t { u( t – 2π)}

= 2{ u( t) –  u( t – π)} + sin ( t – 2π + 2π)  u( t – 2π)

⇒

F( t) = 2{ u( t) –  u( t – π)} + sin ( t – 2π)  u( t – 2π) Taking Laplace transform, we get

−  p

F

π I



L{F( t)} = 2  1

 e

2

 e−  p

−

HG

π  L (sin  t) | Using second shifting theorem

 p

 p  KJ +

F1 −  p π

2

−

I −

 e

 e

 p

π

⇒

      f( p) = 2 

2

HG  p  KJ +  p + 1
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( ii)





F( t) = 1{ u( t) –  u( t – 1)} + 2{ u( t – 1) –  u( t – 2)}

+ 3{ u( t – 2) –  u( t – 3)} + ...... 

⇒

F( t) =  u( t) +  u( t – 1) +  u( t – 2) +  u( t – 3) + .... 

1

−  p

2

−  p

3

 e

 e

 e−  p

∴

L{F( t)} =  +

+

+

+ ..... 

 p

 p

 p

 p

1 F

1

I

⇒

      f( p) = 

. 

 p  HG 1  e− p

−

KJ

( iii)

F( t) = 1{ u( t) –  u( t – 2)} + 2{ u( t – 2) –  u( t – 4)}

+ 3{ u( t – 4) –  u( t – 6)}

=  u( t) +  u( t – 2) +  u( t – 4) – 3 u( t – 6) 1

2

−  p

4

 e

 e−  p

3 6

 e−  p

∴

L{F( t)} =  +

+

−

 p

 p

 p

 p

1

⇒

   f ( p) =   (1 +  e–2 p +  e–4 p – 3 e–6 p) p

( iv)



F( t) = sin  t  u( t – π/2)

F π πI F

F π F π

= sin   t − +

 u t  π

HG

= cos   t −

 u t

2

2KJ

−

HG

I2KJ HG I2KJ −HG I2KJ

− π  p

∴

L {F( t)} =  e  2  L (cos  t)

| Using second shifting theorem

 pe– bπ p/2g

⇒

   f( p) = 

. 

 p 2 + 1

Example 36.   Find the Laplace transform of

( i)  (t – 1)2 u(t – 1)

( ii)  sin t u (t –  π )

( iii)  e–3t u(t – 2)

( iv)  e–t { 1 – u (t – 2)}. 

Sol.  ( i) Comparing ( t – 1)2  u( t – 1) with F( t –  a)  u( t –  a), we have  a = 1 and F( t) =  t 2

2

∴

 f( p) = L{F( t)} =  3

 p

∴

L{( t – 1)2  u( t – 1)} =  e–pf( p)

| By second shifting property

2 e−  p

= 

3  . 

 p

( ii) Expressing sin  t as a function of ( t – π), we have

sin  t = sin [( t – π) + π] = – sin ( t – π)

Comparing – sin ( t – π)  u( t – π) with F ( t –  a)  u( t –  a), we get  a = π and F( t) = – sin  t
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1

∴



 f( p) = L{F( t)} = –  2

 p + 1

∴

L[sin  t  u( t – π)} =  e–π p  f( p)

| By second shifting property

− −

 e p

π

= 

. 

 p 2 + 1

 e− 2 p

( iii)

L   u

l  t( − )2q =   p

 e− 2 ( p + 3)

∴

L o e− 3 t u ( t − 2)t = 

| By first shifting property

 p + 3

1

− 2

 e p

( iv)

L [1 –  u ( t – 2)] =  −

 p

 p

− 2 (  p + 1

 e

)

∴ L   e−  t  1

l −  u ( t − 2)q  =  1 −

| By first shifting  property

 p +1

 p + 1

Example 37.  Express the function shown in the

 diagram in terms of unit step function and obtain its Laplace

f(t)

 transform. 

(U.P.T.U. 2015)

Sol.  Here, 

 t

R −1, 1<  t  2

    F( t) = 

< 

ST3− t, 2<  t<3

1

∴

F( t) = ( t – 1) { u( t – 1) –  u( t – 2)}

+ (3 –  t) { u( t – 2) –  u ( t – 3)}

O

1

2

3

t

= ( t – 3)  u( t – 3) – 2( t – 2)  u( t – 2) + ( t – 1)  u( t – 1) Hence,    L{F( t)} = L{( t – 3)  u( t – 3)} – 2 L{( t – 2)  u( t – 2)} + L{( t – 1)  u( t – 1)}

 e−3 p

2 2

 e−  p

 e−  p

= 

– 

+ 

| By second shifting property

 p 2

2

 p

 p 2

 e−  p (1 −  e−  p)2

= 

. 

 p 2

Example 38.   Express  the  following  function  interms  of  unit  step  function  and  find its  Laplace transform:

0, 

0 <  t < 1U

Sol.  Here, 

 f( t) =   t − 1, 1 <  t < 2V|

1, 

 t > 2 W|
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or

 f( t) = ( t – 1){ u( t – 1) –  u( t – 2)} +  u( t – 2)

= ( t – 1)  u( t – 1) – ( t – 2)  u( t – 2)

By second shifting theorem, 

If L{ f( t)} =   f ( p), then L{ f( t –  a)  u( t –  a)} =  e–ap   f ( p) 1

Here, 

L{ f( t)} = L( t) =  2

 p

1

1

∴

L{( t – 1)  u( t – 1)} =  e–p .  2 and L{( t – 2)  u ( t – 2)} =  e– 2 p . 

 p

2

 p

 e−  p −  e−2 p

Hence, 

L{( t – 1)  u( t – 1) – ( t – 2)  u( t – 2)} = 

. 

 p 2

Example 39.  Sketch the following functions and express them interms of unit step

 functions. Hence obtain the Laplace transform. 

 2

R

 cos

R  ( t ω + φ ),  0 <  t <  T

( i)  f(t) =   t ,  0 <  t ≤  2

S

S

 4t, 

 t

T

( ii)  f(t) = 

>  2

 0, 

 t > T

T

. 

Sol.  ( i) The graph is shown. In terms of unit-step

function, 

f(t)

  f( t) =  t 2{ u( t) –  u( t – 2)} + 4 t   u( t – 2) 8

=  t 2  u( t) + (4 t –  t 2)  u( t – 2)

∴ L{ f( t)} = L{ t 2  u( t)} + L[{4 – ( t – 2)2}  u( t – 2)]

2

4

=  3  +  e–2 p L(4 –  t 2)

 p

2

F 4 2 I

= 

O

1

2

t

3  +  e–2 p 

−

 p

3

HG  p p  KJ

2 1

2

( − −

 e p)

−  p

= 

+  4 2

 e

. 

3

 p

 p

( ii) The graph of the function is shown. 

In terms of unit step function, 

 f( t) = cos (ω t + φ) { u( t) –  u( t – T)}

∴ L{ f( t)} = L{cos (ω t + φ)} –  e–p T L{cos (ω t + ωT + φ)}

F

I

F

I

= cos φ 

 p

HG

– sin φ . 

ω

 p 2

2

+

KJ

ω

HG  p 2 ω2

+

KJ

–  e–p T L{cos ω t  cos (ωT + φ) – sin ω t sin (ωT + φ)}

 p  cos φ − ω sin φ

R

U

= 

cos (ωT + )

φ − ω sin (ωT + )

φ

S

. 

2

2

V

 p 2 + ω2

–  e–p T .  p

T

 p + ω

W
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Example 40.  A periodic square wave function F( t)  in terms of unit step functions, is written as

   F( t)  = k[ u ( t)  – 2u ( t)  + 2u ( t) –  2u  ( t)  + ... ]

 0

 a

 2a

 3a

 Find its Laplace transform. 

Sol. 

L[F( t)] =  k[L{ u ( t)} – 2L{ u ( t)} + 2L{ u ( t)} – 2L{ u ( t)} + ...]

0

 a

2 a

3 a

L

 e− ap

 e  2

−  ap

 e−3 ap

1

2

=  k

−

+ 2

− 2

+ ... 

 p

 p

 p

 p

NM

OQP

 k

=   [1 – 2( e–ap – e– 2 ap + e– 3 ap – ......)]

 p

 k  L

F  e− ap  IO  k  F1−  e− ap I

=  M1 − 2

= 

−

P

 p  NM

HG1+  e ap KJQP  p  HG1+  e− ap KJ

 k  F  eap/2 −  e– ap/2 I

 k

 ap

= 

tanh

. 

 p  HG  eap/2 +  e– ap/2 KJ  =   p

2

(9) Unit Impulse Function (or Dirac-delta Function)

In mechanics, we come across problems where a very

large force acts for a very small time. In the study of

bending of beams, we have point loads which is equivalent

to large pressure acting over a very small area. To deal

with such problems, we introduce the unit impulse function

or Dirac-delta function. 

Unit impulse function is considered as the limiting

form of the function

R0, for

 t <  a

1

δ ( t –  a) = S| , for  a ≤  t ≤  a + ε

ε

0, for

 t

T|ε

>  a

This function is represented in the figure. Integrating this function, we get

∞

 a +

1

z  δ ( t –  a)  dt = z ε 1  dt =   ( a + ε –  a) = 1

0

ε

 a

ε

ε

As  ε → 0,  the  function δ ( t –  a)  tends  to be infinite at  x =  a and zero elsewhere, with ε

the characteristic property that its integral across  t =  a is unity. If δ ( t –  a) represents a force ε

acting for short duration ε at time  t =  a, then the integral

Lt

 a +

z εδ ( t –  a)  dt = 1

ε → 0

0

ε

represents unit impulse at  t =  a. Hence the limiting form of δ ( t –  a) as ε

ε → 0 is expressed as

unit impulse function denoted by δ( t –  a). 

Thus the unit impulse function δ( t –  a) is defined as follows:

R , for  t a

δ( t –  a) =  ∞

=

ST0, for  t≠  a

∞

such that

z  δ( t –  a)   dt = 1. 

0
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Laplace Transform of Unit Impulse Function

If  f( t) is a function of  t continuous at  t =  a, then

∞

 a +



z   f( t) δ

z ε f( t) . 1 dt

0

ε ( t –  a)  dt =   a

ε

1

= ( a + ε –  a)  f( c) .   =  f( c), where  a <  c <  a + ε

ε

(by mean value theorem for integrals)

∞

As ε → 0, we get

z   f( t) δ( t –  a)  dt =  f( a). 

0

∞

Cor. 1. L{δ( t –  a)} = z   e–pt δ( t –  a)  dt  =  e–pa . 

0

Cor. 2. 

L{δ( t)} =  e 0 = 1. 

Example 41.   Evaluate:

∞

∞

( i) z  e–4t  δ (t – 3) dt

( ii) z φ (t) δ′ (t – a) dt. 

 0

 0

∞

Sol.  ( i) z  e–4 t δ( t –  3)  dt = [ e–4 t]  =  e–12

0

 t = 3

∞

∞

L

∞

( ii)

z φ( t) δ′( t –  a)  dt =  φ( ) t  δ( t − ) a  – z φ′( t) δ( t – a)  dt 0

NM

OQP0 0

= 0 – 0 – φ′( a) = – φ′( a). 

Example 15.   Find the Laplace transform of

( i)  t3 δ (t – 5)  (U.P.T.U. 2015)

( ii)  cos t log t δ (t – π ). 

∞

Sol.  ( i)   

L[ t 3 δ( t – 5)] = z   e–pt .  t 3 δ( t – 5)  dt = (5)3  e–5 p

| By definition

0

∞

( ii)  L{cos  t log  t δ( t – π)} = z   e–pt . cos  t log  t δ( t – π)  dt

| By definition

0

= cos π log π  e– p π = – log π  e– p π. 

(10) Periodic Functions.   If f(t) is a periodic function with period T, i.e., f(t + T) = f(t), then

 1

 T

 L{ f( t)} = 

z  e– pt  f(t)  dt. 

[G.B.T.U (C.O.) 2010]

 1 e pT

− −

 0

∞

T

2T

3T

Here, 

L{ f( t)} = z  e– pt  f( t)  dt =   z  e– pt  f( t)  dt + z  e– pt  f( t)  dt + z  e– pt  f( t)  dt + ...... 

0

0

T

2T

Putting  t =  u, t =  u + T,  t =  u + 2T, ...... in the successive integrals T

T

T

L{ f( t)} = z  e– pu  f( u)  du + z  e– p( u +  T)  f( u +  T)  du + z  e– p( u +  2T)  f( u +  2T)  du + ...... 

0

0

0

Since

  f( u) =  f( u + T) =  f( u + 2T) = ......, we have T

T

T

L{ f( t)} = z  e– pu  f( u)  du +  e– p T z  e– pu  f( u)  du +  e–2 p T z  e– pu  f( u)  du + ... 

0

0

0

T

T

= (1 +  e– p T +  e–2 p T + ...) z  e– pu  f( u)  du =  1  z  e– pt  f( t)  dt. 

0

1 − −

 e p T

0
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Example 42.   Find the Laplace transform of the following periodic functions:

( i)  f(t) =  t/ T, for 0 < t < T  (saw-tooth wave of period T) (U.K.T.U. 2011)

F π t

( ii)  f(t) =  sin HG I

 a  KJ   for 0 < t < a. (Rectified sine wave of period a)

1

T

1

T

Sol.  ( i) Here, 

L{ f( t)} = 

z   e–pt  f( t)  dt = 

z   e–pt  .  t   dt

1 − −

 e p T   0

1 − −

 e p T   0

T

1

L − pt  T T

−  pt

F

I

O

= 

 te

 e

M

1. 

 dt P

z

T 1

T

( − −

 e p ) HGM −  p  KJ − 0

−  p

N

0

QP

1

L − p T

−

 e

1  e p T

1

 e−  p T

= 

= 

–  

1 − −

 e p T −

+ −

NM

O

 p

 p 2 T QP

2

 p  T

 p  1 −  e−  p T

(

)

1

 a

F

( ii)

L{ f( t)} = 

z   e–pt . sin  π t

1 − −

 e ap  

HG IKJ   dt

...(1)

0

 a

 a

F

Let

I = z   e–pt . sin  π t

HG IKJ   dt

0

 a

 a

LM

OP

 e−  pt

F

 t

π

π

 t

π

=   M

−  p  sin

−

M

cos

2

2

π HG

IP

 a

 a

 a  KJP

 p

M +

N

2

P

 a

Q0

L

L

O

M

OP M

P

 e− ap

F π

1

F

M

π

− ap

. 

P (1+  e )  a

 =  M

π

M

−

2

  – 

2

M

π

HG I a KJP  =    2 2 2

2

π HG IP

 a KJP

 p

M +

2

 a p + π

N

 p

M +

P

2

P

 a

Q

2

N

 a

Q

(1 + −

 e ap)  a

∴ From (1), 

L { f( t)} = 

π

(1 − −

 e ap) ( 2 2

2

 a p + π )

F

 ap

 eap/2 +  e− ap/2 I F

 a π

I  a π coth

=   HG

2  . 

 eap/2 −  e− ap/2 KJ HG  a 2  p 2 π2

+

KJ  =   a 2 p 2 π2

+

Example 43.   Draw the graph and find the Laplace transform of the triangular wave

 function of period 2c given by

R

 f( t) = 

 t, 

 0 <  t ≤  c

S 2c

T

 . 

[U.P.T.U. 2014]

−  t,  c <  t <  2c

1

2 c

1

 c

2 c

L

Sol.   L{ f( t)} = 

z  e–pt f( t)  dt = 

−  pt

−  pt

+

(2 −

z . 

0

z

)

1

2

− −

 e cp  0

1

2

− −

 e cp  

 e

 t dt

 e

 c t dt

 c

NM

OQP

2 c

L

O

1

R  e− pt

 e−  pt c

U R

 e−  pt

 e−  pt  U

M

1

2

1

P

= 

 t

S . 

− . 

2 V

(

S  c t). 

− (− ). 

2 V

1

2

− −

 e cp  NMT −  p

 p

 p

 p

W +

−

0

T

−

W P

 c  Q
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1

LR − cp − ecp  1 U R −2 cp

− cp

−

 ce

 e

 ce

 e cp  UO

= 

MS

2

2 V

S 2

2 VP

1

2

− −

 e cp

−

−

+

NMT  p

 p

 p  W +

+

−

T  p

 p

 p  WQP

1

F1− 2 − cp  2−

 e

 e cp  I

1

(1 − −

 e cp)2

1

1

−

 e cp

= 

+

= 

. 

= 

.  −

1

2

− −

 e cp

2

HG

 p

KJ

2

 p

(1 + −

 e cp)(1 − −

 e cp)

2

 p

1 + −

 e cp

1

 cp/2

− cp/2

F

I 1

 cp

= 

–

2    e

 e

tanh 

. 

 p  HG  ecp/2 +  e− cp/2 KJ  =  2

 p

2

The graph of the given function is shown below:

f(t)

B

c

O

c

A

t

(Triangular wave function)

Example 44.   Find the Laplace transform of the rectified semi-wave function defined by R sin   t ω,  0 <  t  π

≤

 f(t) = 

ω

S|

π

 2

 0, 

<  t

π

< 

T|

  . 

(G.B.T.U. 2010; M.T.U. 2011)

ω

ω

 Or

 Find the Laplace transform of following periodic function

F(t)

1

t

O

p

2p

3p

w

w

w

(Half-wave rectifier)
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Sol.  Here  f( t) is a periodic function with period  2π

ω

1

2π/ω

1

π/ω

2π/ω

L

 pt

 pt

O

∴ L { f( t)} = 

z

NMz

−

 e

 t dt + z

−

2  p  

 e–pt  f( t)  dt = 

2  p  

sin ω

 e

. 0  dt

− π

0

− π

0

π/ω

QP

1 −  e  ω

1 −  e  ω

1

−  pt

L

π/ω

= 

(− sin ω − ω cos ω )

2  p    e

 p

 t

 t

− π

 p

NM

O

2

ω2

QP

1

+

−  e  ω

0

π p

− ω

 e

= 

ω

+ ω

ω

=

. 

π p

π p

π p

F

I F

I

F

I

−

−

−

ω

ω

1 −  e

1  e

(  p 2 ω2

ω

)

1 −  e

(  p 2 ω2

HG

KJ +

HG

KJ +

HG

KJ + )

Example 45.  Find the Laplace transform of the square-wave function of period a

 defined as:

R

 a  U

 1

 , 0 ≤  t ≤

 f(t) = 

 2

S|

V|

 a

−  1 , 

<  t <  a

T|

 2

W| . 

1

 a

1

 a/2

L

 a

Sol. 

L{ f( t)} = 

−

 e pt f ( t)  dt  = 

−

 e pt . 1  dt +

−

 e pt (− 1)  dt

 e ap  z

z

 e ap  z

1

0

− −

1

−

0

 a/2

−

NM

OQP

/2

L −  pt a

−  pt a  O

1

F  e  I

F  e  I

1

= 

M

P= 

[1 –  e– ap/2 +  e– ap –  e– ap/2]

1 − −

 e ap  HG

M −  p  KJ + HG  p  KJ P  p  1−  e− ap

(

)

0

 a/2

N

Q

1

1 F 1

−  ap/2

−  e

I 1  ap/4 − ap/4

F  e

 e

I

= 

(1 –  e– ap/2)2 =  . 

 p  1 −  e− ap

(

)

HG1 − ap/2

 ap/4

− ap/4

 p

+  e

KJ =

−

 p  HG  e

+  e

KJ

1

F  ap

=  tanh

 p

HG I

4 KJ . 

PROBLEM SET-III

1. 

Find the Laplace transform of

( i)  et– 2  u( t – 2)

( ii)  t 2  u( t – 3)

( iii) sin 2 t u( t – π)

( U.P.T.U. 2014)

2. 

Express the following functions interms of unit step function and find its Laplace transform:

R

E

R ,  a <  t <  b

( i)  f( t) =  8 ,  t < 2

S

S

6 ,  t

T

( ii)  f( t) = 

> 2

 t

T0 , >  b

R sin  t , 0 <  t < π

R

( iii)  f( t) = S

( iv)  f( t) =  sin 2 , 

 t  2π <  t < 4π

S

sin  t

2 , 

π <  t

T

, 

0

T

otherwise

[ G.B.T.U. (C.O.) 2011]

R 4 , 0 <  t < 1

R

( v)  f( t) = S|

 t, for

≤  t

− 2 , 1 <  t < 3

( vi)  f( t) =  2

0

≤ 5

S

5 , 

T|

 t > 3

10, for

 t

T

. 

> 5

3. 

Evaluate:

( i) L[ et– 1  u( t – 1)]

( ii) L{ t 2 u( t – 1) + δ( t – 1)}. 
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4. 

Find L{F( t)}, where F( t) is defined by

( i)   F( t) =  t, 0 <  t <  a  and F( t +  a) = F( t) R

( ii) F( t) =  sin , 

 t

0 <  t < 

S

π  and F( t + 2 ) = F( t)

( U.P.T.U. 2013)

0 , 

T

π <  t < 2π

π

R t, 0 <  t < 1

( iii) F( t) = S

 t)

, 

0 1

T

,  where F(  has period 2

<  t < 2

R 1, 0 ≤  t < 2

( iv) F( t) = S

and F( t + 4) = F( t)

T− 1, 2 ≤  t < 4

. 

 t, 0  t  1

( v) F( t) =  {

≤ ≤

1, 1 ≤  t ≤ 2 where F( t) has period 2. 

( G.B.T.U. 2013)

5. 

( i) Find the Laplace transform of a  periodic function  f( t) with period τ.   [ G.B.T.U. (C.O.) 2010]

( ii) Find the Laplace transform of “saw-tooth wave” function  f ( t) which is periodic with period 1

and defined as    f( t) =  kt in 0 <  t < 1. 

[ A.K.T.U. 2017]

6. 

Find the Laplace transform of the periodic function

1

⎧

for 0 ≤  t ≤ 1, 2 <  t ≤ 3, 4 <  t ≤ 5, ... 

F( t) =  0

⎨

for 1

⎩

≤  t ≤ 2, 3 <  t ≤ 4, 5 <  t ≤ 6, 

[Hint: The period of the given function is 2.]

7. 

Draw the graph and find the Laplace transform of the following function of period 2 a:

⎧

 h ,  t  0 <  t < 

⎪

 a

⎪

 f( t) = 

 a

⎨

( G.B.T.U. 2011)

⎪ h (2 a −  t),  a <  t < 2 a

⎪⎩ a

8. 

Draw the graph and find the Laplace transform of the triangular wave function of period 2π

given by

 f( t) = 

 t, 

0 <  t ≤ π⎫⎬

( A.K.T.U. 2018)

2π −  t, π <  t < 2π⎭

 ANSWERS (PROBLEM SET III)

 e−2 p

 e−3 p  2

( + 6  p + 9 p 2)

2 e−  p

π

1. 

( i)

( ii)

( iii)

 p − 1

 p 3

2

 p + 4

8

2

 e−  p

F  e− ap −  e− bp I

1 + −  p

π

2 −

 e

 e p

π

2. 

( i)

− 2

( ii) E

+

 p

 p

HG

 p

KJ

( iii)

2

 p + 1

2

 p + 4

2

4 6 −  p  7 3

−

+

−

 e

 e p

2

−5

( iv) ( e–2π p – e–4π p) . 

1 −  e p

(

)

2

( v)

( vi)

 p

2

+ 4

 p

 p

 e−  p

2

3

−  p (2 + 2  p +  p +  p )

3. 

( i)

( ii)  e

 p − 1

 p 3

1

 a  F

 ap

1

1 − −

 e p (  p + 1)

4. 

( i)

+

1 coth

( ii)

( iii)

2

−

π p

 p

2  p  HG

I

2 KJ

1 − −

 e

1

2

(

) ( +  p )

2

 p  1

2

( − −

 e p)

(1

2

− −

 e p)

( iv)

( v)

1

−  p  2

−

[(1 −  e ) −

 p

 pe ]

(

 p  1

2

+ −

 e p)

2

−

 p (1 − 2 p

 e

)

1

τ

−  p

5. 

( i) 

−

 e pt f t

( )  dt

( ii)  k

 ke

−

 e p τ z

1 − −

0

 p 2

 p  1

( −  e−  p)

1

 h

 ap

1

π p

6. 

tanh

tan h

 p  1

7. 

. 

8. 

+  e−  p

(

)

 ap 2

2

2

 p

2
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1.20

INVERSE LAPLACE TRANSFORM

If L{F( t)} =  f( p), then F( t) is called the inverse Laplace transform of  f( p) and is denoted by L–1{ f ( p)} = F( t)

Here L–1 denotes  the inverse Laplace transform operator. 

1

R

U

 e.g. , 

Since L{ e 5 t} = 

∴ L–1

1

S

V

 p − 5

T  p − 5W =  e 5 t

The inverse Laplace transforms given below follow at once from the results of Laplace

transforms given earlier :

R 1U

R 1 U

(1) L– 1 ST V

S

V

 p  W = 1

(2) L–1 T p–  aW =  eat

R U

 n – 1

 n − 1

L

 t

(3) L–1   1

S

=

T V

, if  n is a positive integer. 

otherwise

 pn  W =   t

( n − 1) ! 

G

NM

O

( n) QP

R

U

 n − 1

R

U 1

(4) L–1 

1

ST

V

(5) L–1 

1

S

V

 sin  at

(  p a) n

−

W =  eat   t

( n − 1) ! 

2

2

T  p +  a  W =  a

R

U

R 1 U 1

(6) L–1 

 p

ST

V

S

V

 sinh  at

 p2  a2

+

W = cos  at

(7) L–1 

2

2

T  p −  a  W =  a

R

U

(8) L– 1 

 p

ST

V

 p2  a2

−

W = cosh  at. 

 All the above results must be remembered. 

1.21

LINEARITY PROPERTY

If  c  and  c  are constants and L {F ( t)} =  f ( p) and L{F ( t)} =  f ( p), then 1

2

1

1

2

2

 L–1 { c f ( p) +  c f ( p)} =  c  L–1{ f ( p)} +  c  L–1{ f  ( p)}. 

1 1

2 2

1

1

2

2

By definition, 

∞

L{ c  F ( t) +  c  F  ( t)} = 

−  pt

z

1

1

2

2

 e

{ c  F ( t)

1

1

+  c  F  t

( )}  dt

2

2

0

∞

∞

  =  c

 e–  pt . F ( t)  dt +  c

 e–  pt . F  t

( )  dt

z

z

1

1

2

2

 =  c f ( p) +  c   f ( p)

1 1

2 2

0

0

⇒

L–1{ c f ( p) +  c f ( p)} =  c  F ( t) +  c  F ( t) =  c  L–1{ f  ( p)} +  c  L–1{ f  ( p)}

1 1

2 2

1

1

2

2

1

1

2

2

The above result can be extended to more than two functions. 

1.22

FIRST TRANSLATION OR SHIFTING PROPERTY

If

L–1{ f( p)} = F( t), then  L–1{ f( p –  a)} =  eat F( t)

 

∞

   f( p) = 

 e−  pt  F  t dt

z . ()

| By definition

0

LAPLACE  TRANSFORMS
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∞

∴

 f( p –  a) = 

 e−  p −  a t  F  t dt

z ( ) . ()

0

∞

= 

 e−  pt eat  F  t dt

z . ()  = L{ eat F( t)}

0

∴

L–1 { f( p –  a)} =  eat F( t). 

  

1.23 SECOND TRANSLATION OR SHIFTING PROPERTY

If

L–1 { f( p)} = F( t), then

R

   L–1 { e–  ap f( p)} = G( t) where G( t) =  F ( t − )

 a ,  t >  a

S 0, 

 t

T

. 

<  a

∞

 f( p) =

 e−  pt  F  t dt

z . ()

| By definition

0

∞

∞

∴

 e–  ap f( p) =

 e− ap e−  pt  F  t dt

z . . ()  =   e− pt+ a  F t dt

z ( ). ()

0

0

Put  t +  a =  u ∴   dt =  du

∞

∞

=

 e−  pu  F  u −  a du

z . ( )   =  e− pt  F t− a dt

z . ( )

 a

 a

 a

∞

∞

=

 e−  pt . 0  dt +

 e−  pt . F( t −  a)  dt

z

  = 

 e−  pt  G  t dt

z . ()  = L{G( t)}

0

z a

0

Hence the result. 

Remark.   We  may  write  G( t)  interms  of  Heaviside’s unit step function as F( t –  a) U( t –  a) or F( t –  a) H( t –  a)

∴ The theorem can be restated as

If

L–1 { f( p)} = F( t), then L–1{ e– ap f( p)} = F( t –  a) U( t –  a). 

1.24

CHANGE OF SCALE PROPERTY

1

F  t  I

If L–1{ f( p)} = F( t), then  L–1{ f( ap)} = 

F

 a

H  a K. 

∞

   f( p) = 

 e−  pt  F  t dt

z . ()

| By definition

0

∞

 du

∴

 f( ap) = 

 e− apt  F  t dt

z . ()

Put  at = u ∴  dt = 

0

 a

∞

F

−  pu

 u du

1 ∞

F

−  pt

 t

= 

 e

z .F

= 

 e

 dt

z .FHG IKJ

0

HG I a KJ  a a  0

 a

∞

R1 F U

R F U

−  pt

 t

1

 t

= 

 e

z S F V dt = LS F

T HG IKJV

0

T a  HG I a KJW

 a

 a  W

1 F  t

∴

L–1{ f( ap)} =  F

 a

HG I a KJ . 
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1.25

USE OF PARTIAL FRACTIONS

Whenever it is convenient to break an expression into partial fractions, it becomes easier to

manipulate inversion term by term. 

Example 46.   Find the inverse Laplace transform of

 3(p2 −  1)2

 2p +  1

( i)

( ii)

 2

 2p5

 p −  4

 4p +  15

 p +  1

( iii)

( iv)

. 

 16p2 −  25

 p2 +  p +  1

3 2

(  p − 1 2

)

3 4

 p − 6 2

 p + 3

3

1

1

1

Sol.  ( i)     

= 

=   .   – 3 . 

+  3  . 

2 5

 p

2 5

 p

2

 p

3

 p

2

5

 p

R3 2

( p − 1 2

) U 3

R1U

R 1 U 3

R 1 U

∴  L–1 S

V  L–1 S V

S V

L–1 S V

2 5

 p

T

W= 2

 p

T W – 3 L–1  3 p

T W + 2

5

 p

T W

3

R t 2 U 3 4

R t  U

=   (1) – 3 S V

S V

3 2

1 4

2

 t

 t . 

2 ! 

T W + 2 4! 

T W = 3 −

+

2

2

16

F 2 p + 1I

− F

I

− F

I

1

 p

1

1

2

1

( ii)



L–1 

2L

L

2

HG

= 2 cosh 2 t +   sinh 2 t. 

 p − 4

2

KJ =

HG  p − 4KJ + 2

2

HG  p − 4KJ

2

4  p + 15

4  p + 15

1

 p

15

1

( iii)

= 

=  . 

+

. 

16 2

 p − 25

F

2

2

2

25

16  p

4

16

−

HG

I

2

⎛ 5 ⎞

2

⎛ 5 ⎞

16KJ

 p − ⎜ ⎟

 p − ⎜ ⎟

⎝ 4 ⎠

⎝ 4 ⎠

R 4 p + 15 U 1

⎡

 p

⎤

⎡

1

⎤

∴ L–1 ST

V

L–1 

15

16 2

 p

⎢

2 ⎥

1 ⎢

2 ⎥

− 25W =  4

−

⎢

L

2

⎛ 5 ⎞

+

⎥

⎢ 2 ⎛ 5 ⎞ ⎥

 p − ⎜ ⎟

16

 p − ⎜ ⎟

⎢⎣

⎝ 4 ⎠ ⎥

⎢

⎦

⎣

⎝ 4 ⎠ ⎥⎦

1

⎛ 5 ⎞ 15 1

⎛ 5 ⎞

1

F5

3

F5

=  cosh ⎜  t⎟ +

. 

sinh ⎜  t⎟  =  cosh

 t

sinh

 t

4

⎝ 4 ⎠ 16 5

⎝ 4 ⎠

4

HG I

4 KJ + 4

HG I

4 KJ . 

4

⎛

1 ⎞ 1

 p

1

 p

⎜ + ⎟ +

+ 1

⎝

2 ⎠ 2

 p +

1

( iv)



= 

2

+   . 

1

 p 2

= 

+  p + 1

⎛

1 ⎞2

3

2

2

2

2

2

F I

⎜  p + ⎟ +

⎛

1 ⎞

⎛ 3 ⎞

F 1

3

⎝

2 ⎠

4

⎜  p + ⎟ + ⎜

⎟

⎜

⎟

 p +

⎝

2 ⎠

HG

IKJ +

⎝ 2 ⎠

2

HG 2 KJ

⎡

1

⎤

F

I

R

 p

G

J

 p + 1 U

⎢

+

⎥

1

1

∴

L– 1 S

2

G

J

T

= L–1  ⎢

⎥  +   L–1 

2

V

 p +  p + 1W

⎢

2

2

2

G

F I

⎛

1 ⎞2 ⎛ 3 ⎞ ⎥

2

F 1

3

J

⎢⎜  p + ⎟ + ⎜

⎟ ⎥

 p

G +

J

⎜

⎟

HG

IKJ +

⎢⎝

2 ⎠

2

⎥

G

HG KJ

⎝

⎠

2

2

J

⎢

H

K

⎣

⎥⎦
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F 3 I 1 1

F 3 I

=  e−( t/2)    cos 

 t

HG

. 

  e−( t/2)    sin 

 t

2 KJ  +  2

3

HG 2 KJ

2

1

F

3

3 I

= 

 e−( t/2)  

3 cos

 t + sin

 t

3

HG

2

2 KJ . 

Example 47.   Find the inverse Laplace transform of

 6

 3 4p

 8 6p

 p 3

( i)

−

+

+

−

( ii)

 2p 3

 9p2 −  16 16p2

−

+  9

 p 4

 a 4

−

 1

 4

 2p 18

( iii)

+

+

−

( iv)  2p +  9

 12

 1

+

+

. 

 p3/2

 p −  2

 p2 −  9

 p2 +  9 4 −  3p

 p

1 F

6

3 4  p

8 6  p  I

Sol.  ( i) L−

−

+

+

−

HG2 p −

2

3

9  p −

2

16

16  p + 9KJ

R

U

R

U

F

||

||

|

|

4

|

 p

|

= 3 L–1

1

1

1

HG

I  – 1 L− S

V – 

1

L− S

V

 p − 3 2KJ

/

3

2

|

F

9

2

|

F

2

4

|

2

4

|

 p −

T|

HG I

 p −

|

|

3KJ W|

T

HG I3KJ W

R|

U

R

U

|

||

||

|

 p

|

+  1

1

1

L− S

V –  3 1

L− S

V

2

2

|

F

2

2

3

| 8 |

F

 p

|

+

2

3

T|

HG I

 p

4KJ W|

+

T|

HG I4KJ W|

3

1 3

4

4

4

1 4

3

3

3

= 

 t

3 2

 e  –  .  sinh   t –  . cosh    t +   .   sin    t –   cos   t

3 4

3

9

3

2

3

4

8

4

3

1

4

4

4

2

3 t

3

3

= 

 t

3 2

 e  –   sinh    t –   cosh    t +   sin 

–   cos   t. 

4

3

9

3

3

4

8

4

F  p 3 I

L R

 p 2

UO

( ii) L–1HG

− M p  S 2

2

2

2 VP

 p 4  a 4

−

KJ  = L 1NM T( p −  a )( p +  a )WQP

L  p  F 1

1

IO 1 F  p

 p

I

= L 1

− M

+

L−1

2

2

2

2 P

NM

= 

+

2 HG  p −  a

 p +  a  KJQP 2

2

2

2

2

HG  p −  a p +  a  KJ

1

=  (cosh  at + cos  at) . 

2
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1F

1

4

2  p  18I

( iii) L−

+

+

−

HG 3/2

 p

 p −

2


2

 p − 9 KJ

1F

1 I

1F

 p  I

1F

1F

1 I

1

= L− HG

+ 4L−

+ 2L−

– 18L−

3 2

 p / KJ

HG

I

 p − 2KJ

HG 2 p − 9KJ

HG 2 p − 9KJ

 t 1/2

= 

+ 4 e 2 t  + 2 cosh 3 t –  6 sinh   3 t

Γ 3

( / 2)

 t

= 2

+ 4 e 2 t  + 2 cosh 3 t – 6 sinh 3 t. 

∵ Γ( /

3 )

2 = π

π

2

R2 p  9

12

1 U

( iv) L−1

+

S|

+

+

2

V|

T|  p + 9 4 − 3 p p W|

1 F 2  p

9I

1 F

12

F 1 I

= L−

+

L−

L−

HG

1

2

 p + 9KJ −

HG

I

3 p – 4KJ +

HG  p KJ

1 F

 p  I

1 F

3

I

F

I

1 G

1 J

F 1 I

= 2L−

L−

3

4L−

L−

HG

1

2

2

G

 p

 p

4 J

+ 9KJ +

HG + 9KJ −

G  p −

H

 p

3 KJ +

HG KJ

4

= 2 cos 3 t + 3 sin 3 t 

 t

1

− 4 3

 e

+

. 

π t

Example 48.  Find the Inverse Laplace transform of

 2

 2p +  1

F  p −  1 I

 p

 1

( i)

( ii)

( iv)

. 

 p (p +  1)

HG  p  KJ

( iii)  p4 4a4

+

 2p +  3

1 F

1 R  p

( p  1) U

1 L

1

1

Sol.  ( i) 

2  p  1

L−

+

NM

O = L− + +

S

V = L−

+

=  e– t + 1. 

 p ( p + 1)QP

T  p( p+ 1) W

HG

I

 p + 1  p KJ

F  p  I2

1

F  p  1 2  p I

1

 – 1 F 1

1

2 I

( ii)

L−1

−

HG

= L−

+ −

L

 –

 p  KJ

HG

2

 p

KJ =

+

HG

2

3 2

 p

 p

 p /  KJ

1 F

1 I

1 F 1 I

1 F 1

= L− HG I  + L−

– 2L−

 p KJ

HG 2 p KJ

HG 3 2

 p / KJ

 t 1/2

 t

= 1 +  t – 2 

= 1 +  t – 4

. 

Γ 3

( 2

/ )

π

( iii)

 p 4 + 4 a 4  = ( p 2 + 2 a 2 )2 – (2 ap)2 = ( p2 –  2 ap  + 2 a 2) ( p 2 + 2 ap +  2 a 2)

= {( p –  a)2 +  a 2} {( p +  a)2 +  a 2)}

 p

 p



= 

 p 4 +  a 4

4

{(  p −  a)2 +  a 2} {( p +  a)2 +  a 2}

1 L

1

1

= 

−

4

2

2

2

2

 a  NM

O

(  p −  a) +  a

(  p +  a) +  a  QP
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L R

U

R

UO

1F

 p

I 1 1

1

−

1

1

∴

L− HG

L

M S

V L− S

VP

4

= 

 p +

4

4 a  KJ

4

2

2

2

2

 a  NM T( p −  a) +  a  W − T( p +  a) +  a  WQP

1 L 1  at

− at

1

= 

 e  sin  at −  e

. sin  at

4 a  NM

O

 a

 a

QP

1

F  eat −  e− at  I

= 

sin  at

=  1 sin  at  sinh  at. 

2 2

 a

HG 2 KJ 2 2 a

F 1 I

F

1

I 1

F

I

( iv)

L−1

L−1

1

1

HG

= 

L−

2  p + 3 KJ =

HG 2  p + 3/2KJ

2

HG  p + 3/2KJ

1

F I

−(3/2) t

1

1

1

= 

 e

−

L

= 

−(3/2

 e

) t . 

2

HG  p KJ

2 π t

Example 49.   Find the Inverse Laplace transform of

 15

( i)

 1

( ii)

(U.P.T.U. 2015)

 p +  a

 p2 +  4p +  13

 p +  8

 p2 + 2 a2

( iii)

(A.K.T.U. 

2018)

( iv)

. 

 p2 +  4p +  5

 p4 +  4a4

F 1 I

F I

Sol.  ( i)  

L–1HG

1

1

| By first shifting property

 p +  a  KJ  =  e– at L− HG  p KJ

 t−1/2

 e− at

=  e– at . 

= 

. 

Γ 1

( 2

/ )

 t

π

F

15

I

R

15

U

( ii)

L−1HG

= L−1S

2

V

2

 p + 4  p + 13KJ

T( p + 2) + 9W

F 15 I

=  e–2 t L−1HG

| By first shifting property

2

 p + 9KJ

1

=  e–2 t . 15 .   sin 3 t = 5 e–2 t  sin 3 t. 

3

F  p + 8 I

R  p + 2 + 6 U

R  p + 2 U

R

1

U

( iii)

L–1 HG

= L– 1 (

)

S

= L–1S

+ 6 L–1 S

V

2

V

2

V

 p 2 + 4  p + 5KJ

T( p + )2 + 1W

T( p + )2 + 1W

T  p + 2 2

(

) + 1W

F  p  I

F 1 I

=  e– 2 t  L–1 HG  p 2 + 1KJ  + 6  e–2 t  L–1  2

HG  p + 1KJ

=  e–2 t  cos  t + 6  e– 2 t sin  t =  e–2 t (cos  t + 6 sin  t) . 

 p 2 + 2 a 2

1 L

1

1

( iv)

=

+

 p 4 + 4 a 4

2 NM

O

 p −  a  2 +  a 2

 p +  a  2 +  a 2 QP

(

)

(

)
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F  p 2 + 2 a 2 I 1 − L

1

1

∴

L–1 HG

L 1

+

 p 4 + 4 a 4 KJ = 2

NM

O

( p −  a  2

) +  a 2

( p +  a  2

) +  a 2 QP

1 L 1

 at

− at

F

I

 at

1

1  e +  e

= 

 e

 at +  e− at

sin

sin  at  = 

sin  at

2 NM

O

 a

 a

QP  a  HG 2 KJ

1

=  sin  at  cosh . 

 at

 a

Example 50.   Evaluate :

 2p

−

F I

F  e− p −  3e 3− p I

− ap

F

I

( i)  L–1   e

 1

 pe

−

HG

  ;   a >  0

 2

 p2  KJ  (U.P.T.U. 2013) ( ii)  L–1 HG

 p

KJ

( iii)  L  HG  p2 2

−

KJ

ω

F

−2π p

L

 e−  p  I

−  p/  2

−  p

F

π

I

 e

( iv)  L–1 

− 1

 pe

+  e

HG

( vi)  L–1

2

 p +  1 KJ

( v)  L  HG  p2 2

+ π

KJ

NM

O

 p(  p + 1)QP

(U.P.T.U. 2015)

(G.B.T.U. 2011)

Sol.  ( i) We have F 1 I

L–1 

2

HG  p  KJ  =  t = F( t)

| say

F 2 1 I R 2, 2U

∴

L–1  e−  p

HG

. 

=   t −

 t > 

S

V = ( t – 2)  u ( t – 2). 

 p 2 KJ

0, 

 t

T

< 2W

| By second shifting theorem

F

1 I

 t

R −1,  t  U1

( ii)

L–1  e−  p

HG . 

= 

> 

S

V = ( t – 1)  u ( t – 1)

 p 2 KJ

0, 

 t

T

< W

1

F 3 1 I  t R −3,  t  3U



L–1  e−  p

HG

. 

= 

> 

S

V  = ( t – 3)  u ( t – 3)

 p 2 KJ

0, 

 t

T

< 3W

F  e− p − 3 e−3 p I

Hence   L–1 HG

= ( t – 1)  u ( t – 1) – 3( t – 3)  u ( t – 3). 

 p 2

KJ

| By second shifting theorem

1 F

 p

I

( iii)

L−

cosh ω t  F(

HG

 t)

2

 p − 2

ω KJ =

=

− ap

1 F  pe

I cosh ω( t−  a),  t>  a U

∴

L− HG 2

= 

V  = cosh 

 p − 2

ω KJ

, 

0

 t <  a W

ω( t –  a)  u( t – a)

| By second shifting theorem

F

I

F I

1

( iv) We have, L−1

1

1

1

−

HG

=  e– t L−

= 

 e t

 p + 1KJ

HG  p KJ

π t

F − ep  I

−( t − 1

 e

)

U

1

−( t − )

1

∴

L− HG

,  t > 1

 p

=   e

. 

+ 1KJ = π  t( − 1)

V|

 u t

( − )

1

π  t

( − )

1

0,  t < 1 W|

| By second shifting theorem

LAPLACE  TRANSFORMS

M-1.49

1 F

π

I

1 F

 p

I

( v)

L− HG

= cos π t  and L−

= sin π t

2

 p + 2

π KJ

HG 2 p + 2πKJ

−  p/2

F 1 F 1

F 1

1 F  p e

I

∴

   L− HG

  = cos 

−

sin π

2

π  t

 u t

 t u t

 p

HG

I2KJ −HG I2KJ =

−

HG

I2KJ

+ 2

π KJ

−  p

1 F π  e

I

and

L− HG

= sin 

2

π( t – 1)  u( t – 1) = – sin π t  u( t – 1)

 p + 2

π KJ

−  p/2

−  p

L F 1

1 L  p e

π  e

∴  L−

+

−

 t  1

NM

O = sin π t u t

 u (

) . 

| By second shifting theorem

2

NM

O

HG

I2KJ − −

 p + 2

π

QP

QP

1 F 1

 p  I

1 L

1

( vi)

L− NM

O = L− −

= 1 – cos  t

2

 p( p + 1)QP

HG

2

 p

 p + 1KJ

−2  p

π

1 L

 e

∴ 

L− NM

O 1 cos( t  2π) u t( 2π)

2

= 1 – cos  t u( t – 2π)

 p( p + 1)QP = −

−

−

Example 51.  Find the inverse Laplace transform of

 p2 +  2p −  3

 1

( i)

( ii)

 p (p −  3) (p +  2)

 (p − α  ) (p − β )

 p

 p −  1

( iii)

( iv)

[G.B.T.U. (C.O.) 2011]

 (p2 1)2

−

 p2(p −  7)

 p 2 + 2 p − 3

1

4

3

Sol.  ( i)  

= 

+ 

– 

 p( p − 3) ( p + 2)

2 p

5(  p − 3)

10(  p + 2)

R  p 2 + 2 p − 3 U 1 F 1 4 F 1

3

F 1

∴ L–1 S

V =  L–1 

L–1 

L–1 

 p( p

T − 3) ( p + 2)W 2 HG I p KJ  + 5

HG

I

 p − 3KJ  –  10

HG

I

 p + 2KJ

1

4

3

=   +    e 3 t – 

 e– 2 t. 

2

5

10

1

1 F 1

1

( ii)



=

−

(  p − ) ( p − )

− HG

I

 p −

 p − KJ

α

β

α β

α

β

1

1 L

1

1

1 F

1

1

∴  L−

L−

α t

β t

NM

O

−

= 

( e −  e ). 

(  p − α) ( p − )

β QP = α − β

HG

I

 p − α

 p − βKJ

α − β

1

1

1 R

1

1

U

( iii)    

S

V

2

= 

= 

−

 p − 1 2

(

)

 p − 1 2  p + 1 2

(

) (

)

4

(

T − 1 2) ( + 1 2

 p

 p

 p

) W

 p

1 R

1

1

U



=  S

−

V

(  p 2 − )2

1

4 T  p − 1 2

 p + 1 2

(

)

(

) W

R  p  U 1 L 1R 1 U 1R 1 UO



L– 1S

−

−

T

V

L

M S

2 V

L S

2 VP

(  p 2 − )2

1 W =  4 NM T( p − 1) W −

T( p + 1) WQP

1

 t

=  { et .  t e t

− − .  t}  =   sinh  t. 

4

2

M-1.50

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

 p − 1

A

B

C

( iv)

= 

+

+

 p 2(  p − 7)

 p

 p 2

 p − 7

⇒

 p – 1 = A( p 2 – 7 p) + B( p – 7) + C p 2 = (A + C) p 2 + (B – 7A)  p – 7B

Comparison gives

A + C = 0, B – 7A = 1, – 7B = –1

6

1

6

⇒

A = – 

, B = , C =

49

7

49

L  p − 1

6 −1 1

1 −1 F 1 I

6

−1 F

1

∴

L–1 NM

O

L

L

L

 p 2  p − 7

49

 p

QP = −

FHG IKJ +7 HG p 2

(

)

KJ + 49 HG

I

 p − 7KJ

6

1

6

= −

+

+

7

 t

 e t

49

7

49

Example 52.  Find the inverse Laplace transform of the following functions:

 2p2 −  1

 2p2 −  6p +  5

 5p +  3

( i)

( ii)

( iii)

 (p2 +  1) (p2 +  4)

 p3 −  6p2 +  11p −  6

 (p −  1) (p2 +  2p +  5)

2 2

 p − 1

2 m  1

Sol. ( i)

=

−

2

2

 p =  m (say)

(  p + 1

2

) (  p + 4) ( m + 1) ( m + 4)

2 m − 1

– 1

3

Now, 

=

+

( m + 1) ( m + 4)  m + 1  m + 4

2 2

 p − 1

1

3

∴



= −

+

2

(  p + 1

2

) (  p + 4

2

)

 p + 1

2

 p + 4

2

1 F

1 I

1 F

3

I

1 L

2  p

1

−

3

∴

L−

−

−

−

NM

O = L

L

= – sin  t +   sin 2 t

2

( p +

2

1) ( p + 4)QP

HG 2 p + KJ +

1

HG 2 p + 4KJ

2

2 2 − 6 + 5

2 2

 p

 p

 p

6  p  5

1

1

5

( ii)





=

−

+

= 

−

+

3

 p − 6 2

 p + 11 p − 6 ( p − 1) ( p − 2) ( p − 3)

2( p − 1)

 p − 2 2( p − 3)

⎡

2

2 p

6 p  5

⎤

−

+

1 ⎡

1

⎤

1 ⎛

1 ⎞

1 ⎡

5

⎤

∴

L–1  ⎢

⎥  = −

−

−

L ⎢

⎥ − L ⎜

⎟ + L ⎢

⎥

⎢⎣( p − 1) ( p − 2) ( p − 3)⎥⎦

⎣2(  p − 1)⎦

⎝  p − 2 ⎠

⎣2(  p − 3)⎦

1  t

2 t

5

=

3

 e

 e

 e t

−

+

. 

2

2

A

B p  C

( iii) Let

5  p + 3

=

+

+

...(1)

(  p − 1

2

) (  p + 2 p + 5)

 p − 1  p 2 + 2 p + 5

⇒

5 p + 3 = A ( p 2 + 2 p + 5) + (B p + C) ( p – 1)

=  p 2 (A + B) +  p (2A + C – B) + (5A – C)
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Comparing the coefficients on both sides, we get

A + B = 0, 2A – B + C = 5, 5A – C = 3

⇒

A = 1, B = – 1, C = 2

∴ From (1), 

5  p + 3

1

 p  2

=

−

−

(  p − 1

2

) (  p + 2 p + 5)

− 1

2

 p

 p + 2 p + 5

Hence, 

L

F 1

− F

I

1

 p  2

L–1 

5 p + 3

NM

O  = L–1 

L

 p − 1

2

 p + 2 p + 5 QP

(

) (

)

HG

I

− 1

2

 p

KJ −

−

HG  p + 2 p + 5KJ

L ( p + )1 3

F

3

=  et – L–1 

−

NM

O =  et –  e– t  cos2 t− sin2 t

(  p + )

1 2 + 4 QP

HG

I

2

KJ

Example 53.   Prove that :

F

I

− 1

 p

 2

 t

    L  HG

  sinh   sin   3 t. 

 p4 +  p2 +  1 KJ   =  3

 2

 2

1

1

Sol. 

4

2

= 

 p +  p + 1

2

 p + 1 2

2

(

) −  p

1

1 L

1

1

= 

2

= 

−

 p −  p + 1

2

(

) (  p +  p + 1)

2

2

NM

O

− + 1

2

 p p

 p

 p +  p + 1QP

 p

1 F

1

1

I

∴

= 

−

 p 4 +  p 2 + 1

2

2

HG − + 1 2

 p

 p

 p +  p + 1KJ

L F

I

F

IO

1F

 p

I 1 1

1

−

1

1

L− HG

= 

L

M

L−

P

4

 p + 2

 p + KJ

1

2

2

NM HG  p −  p+ 1

2

KJ − HG  p +  p + 1KJQP

L R

M

O

|

U| R|

U|P

1 M

|

|

|

|P

−1

1

−1

1

=  ML S

V − L S

VP

2 M |F

1 2

2

F 3I |

|F 1 2

2

F 3I

M

P

|

|

 p −

 p

P

NM |HG

I

|

| +

|

2KJ +

T

HG 2 KJ |

|HG

I2KJ +

T

HG 2

W

KJ W|QP

1 L

O

 t/2

2

3

− t/2

2

3

2

3

 t

= 

 e

. 

sin

 t −  e

. 

sin

 t  = 

sin

 t  sinh . 

2

3

2

3

2

NMM

QPP

3

2

2

Example 54.   Find the inverse Laplace transform of following functions:

 14p +  10

 p2 +  2p +  3

( i)

( ii)

 49p2 +  28p +  13

 (p2 +  2p +  2) (p2 +  2p +  5)

 a (p2 −  2a2 )

( iii)

. 

 p4 +  4a4
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F 2

14  p +

6

14  p + 10

HG

I7KJ +

Sol.  ( i) 

14  p + 10

= 

= 

49 2

 p + 28  p + 13

7

(  p + 2 2

) + 9

F 2 2

49  p +

9

HG

I7KJ +

L F

O

F

I

2

M 14  p +

6

M HG

IKJ + P 2 t− 1F 14 p  6 I

∴

L–1 

14  p + 10

7

P

HG

=  e  7 −

+

L

49 2

 p + 28  p + 13KJ  = L–1 M

F 2 2

M

P

HG 49 p 2 + 9KJ

49  p +

9

NM HG

I

P

7KJ + QP

L

F

I

F

IO

2 t

−

M14

6

1

7

1 G

 p

J

1 G

JP

=  e

−

−

M L

L

49

G

M

P

G 2 9 J 49 G 2 9 J

 p +

J +

G  p

P

NM

H

49 K

+

H

49 KJ QP

2 t

−

2

3

6

7

3

7 L

=  e

cos  t +

. sin  t

NM

O

7

7

49 3

7 QP

2

2 t

−

F 3

3

= 

7

 e

cos  t + sin  t

7

HG

I

7

7 KJ

2

1 L

1

2

( ii)    

 p + 2 p + 3

= 

+

( p 2 + 2 p + 2) ( p 2 + 2 p + 5)

3

2

NM

O

+ 2 + 2

2

 p

 p

 p + 2 p + 5QP

2

L

+ 2 + 3

1

L

1

1

2

∴ L–1 

 p

 p

=  L−

+

 p 2

NM

O

+ 2 p + 2  p 2 + 2 p + 5 QP

(

) (

)

3

2

NM

O

+ 2 + 2

2 + 2 + 5QP

 p

 p

 p

 p

L

=  1

1

1

2

L−

+

3

NM

O

 p + 1 2 + 1

 p + 1 2 + 4QP

(

)

(

)

1

 e− t

=   ( e– t sin  t +  e– t sin 2 t) = 

(sin  t + sin  t

2 )

3

3

( iii)

   p 4 + 4 a 4 = ( p 2 + 2 a 2)2 – 4 a 2 p 2 = ( p 2 – 2 ap +  2 a 2) ( p 2 + 2 ap + 2 a 2)

=  (  p − )

 a  2 +  a 2 ( p + )

 a  2 +  a 2

o

to

t

2

2

 a (  p − 2 2

 a )

 p −  a

 p a





= 

−

+

4

 p + 4 4

 a

( p −  a)2 +  a 2

(  p +  a)2 +  a 2
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L a( p 2 − 2 a 2) 1 L R  p a  U

R  p a  UO

∴    L–1 

1

−

−

1

L

M S

V L− S

VP

 p 4

NM

O

+ 4 a 4 QP  =  2

2

2

2

2

NM T( p −  a) +  a  W −

+

T( p +  a) + a  WQP

1

= 

 eat

 at −  e− at

cos

cos  at

2

F  eat −  e− at I

= cos  at HG

= cos  at sinh  at

2

KJ

F  e− 1/p I

R

U

 cos 2 t

 e− a/p

Example 55.   If L–1 HG

 ,  find L–1  S|

V|

 p  KJ   = 

 t

π

 p

T|

W| . 

Sol.  Replacing  p by  kp, we get

F 1 I

−

G

 t

 t

 e kp  J

1 cos 2

1 cos 2

L–1 G

J 

 k

 k

 kp  =   . 

= 



HG

KJ  k

 t

 k

π

 t

π

 k

F 1 I

−

G

 t

 e kp  J

cos 2

⇒

L–1 G

J  = 

 k

 p

HG

KJ

 t

π

1

F  e− a/ p I

Putting  k =  , we get  L–1 

=  cos 2  at . 

 a

HG  p  KJ

 t

π

PROBLEM SET-IV

 Find the inverse Laplace transforms of (1–20):

2

F

 p  I

2  p + 6

 p + 2

1. 

1 −

2. 

3. 

2

HG  p  KJ

2

 p + 4

 p 2 − 4  p + 13

 p

 p + 1

4. 

4  p + 12

5. 

2

 p + 8  p + 16

(  p +  a)2

6.  p 2 + 2 p

3  p + 1

72

3 π

6

4

7. 

( i) 

( ii)

−

+

( iii)

(  p + 1 4

)

5

2 5/2

 p

 p

 p

2

 p + 2 p + 5 ( A.K.T.U. 2017)

( p + )

1  e−  p

π

−  p

−  p

8. 

( i) 

( ii) 5 3

 e

 e

−

 p 2 +  p + 1

 p

 p

3  p + 7

 p

 p  1

9. 

( i) 

+

2

( ii)

( iii)

 p

2

− 2  p − 3

 p + 6  p + 25

 p 2 − 6  p + 25

( G.B.T.U. 2011)

( G.B.T.U. 2010)

 p + 1

1

10. 

( i) 

( iii)

1

 p 2

( ii)

+ 6  p + 25

2

 p + 2 p + 5

2

 p(  p + 4)

 p 2 + 1

 p

11. 

12. 

 p 3 + 3 p 2 + 2 p

(  p 2 + )( p 2

1

+ 4)
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21 p − 33

2

13. 

( i) 

( ii)

2 p − 4

(  p + 1)( p − 2 3

)

(  p + 1)( p − 2)( p − 3)

3  p + 1

4  p + 5

 p + 2

14. 

( i) 

( ii)

15. 

(  p

2

− 1 2

)(  p + 1)

(  p − 1 2

) (  p + 2)

 p (  p + 3)

1

 p

16. 

17. 

 p + 1 2

(

)(  p + 2  p + 2)

(  p + )

1 2 (  p 2 + )

1

1

1

18. 

( i)  2 2

2

( ii)

 p (  p +  a )

2

 p + 4)( p + 1 2

(

)

 p + 2

 p + 3

1

19. 

( i) 

( ii)

( iii)

 p 2 + 4  p + 5 2

(

)

 p 2 + 6  p + 13 2

(

)

3

3

 p –  a

 e−π p

 p e−2 p

 e− cp

20. 

( i) 

( U.P.T.U. 2015) ( ii)

( iii)

,  c > 0

 p 2 + 1

 p 2 − 1

 p 2 (  p +  a)

1

−

−

F  p  I

F

 p  I

4 t

−K

 e−K2 /4 t

21. 

If 

 e

 e

 e

L−1G

J

, show that  −1G

J  = 

. 

HG

L

 p  KJ = π t

HG  p  KJ

 t

π

ANSWERS (PROBLEM SET IV)

 t 3

 t 2

16

4

1. 

+

–

 t 5/2

2. 2 cos 2 t + 3 sin 2 t

3.  e 2 t cos 3 t +   e 2 t sin 3 t

6

2

15 π

3

1

4. 

4 e– 4 t (1 –  t)

5. (1 –  at) e–at

6. 

1

(

–2

+  e t)

2

F

7. 

( i) 

3 2

1

 e– t

 t –

 t 3

HG

I

2

3 KJ

( ii) 3 t 4 – 2 t 3/2 + 6

( iii) 2 e– t sin 2 t

F  t

−

−

HG πI

2 KJ R

3(

π)

3(

π) U

8. 

( i)   e

 t −

 t

S| 3 cos

+

−

sin

V|  u( t )

( ii) 5 u( t – 3) –  u( t – 1)

3

T|

2

2

W| − π

F

3

9. 

( i) 4 e 3 t –  e– t

( ii)  e– 3 t  cos 4 t −

sin 4 t

HG

I

4

KJ

( iii)  e 3 t (cos 4 t + sin 4 t)

F

10. 

( i)  e– 3 t 

1

cos 4 t − sin 4 t

HG

I

 e− t  sin 2 t

( iii) 1 1

( – cos 2 )

 t

2

KJ

( ii) 12

4

11. 

1

– t

5

– 2

–2

 e

 e t

+

12. 1 (cos  t – cos 2 )

 t

2

2

3

3

13. 

( i) 2( e– t –  e 2 t) + 6 t  e 2 t +    t 2  e 2 t ( ii)

1 − t  4 2 t  7

–

3

 e −  e +  e t

2

6

3

2

1  t

 t

1

1

2 t

1

14. 

( i) 2 et – 2 cos  t + sin  t

( ii)

 e

3 te

 e t

+

–

–2

15. 

3

+

−

−

 e t

3

3

9

3

9

1

16. 

 e–t (1 – cos  t)

17. 

(sin –

–

 t t e t)

2

1

2 − t  1 − t

2

3

18. 

( i) 

( at – sin  at)

( ii)

 e +  t e −

cos 2 t −

sin 2 t

3

 a

25

5

25

50

1

L

O

1

R

U

 at

–  at

3

3

19. 

( i)  1

M

P

 te–2 t  sin  t

( ii)  1  te–3 t  sin 2 t

( iii) 

2

 e –  e

c

S| os  at + 3 sin  at V|

2

4

3 2

 a  M

2

2

N

T|

W|QP

1

20. 

( i) – sin  t . u( t – π) ( ii) cosh ( t – 2)  u ( t – 2) ( iii) a t c

1  e− a( t −  c

[ (

)

)

−

− +

]  u t

( −  c) . 

2

 a
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1.26

INVERSE LAPLACE TRANSFORM OF DERIVATIVES

If

L–1 { f( p)} = F( t), then

L  dn

  L–1 { f ( n) ( p)} = L–1 

{ f (  p)}

NM

O

 dpn

QP = (–1) n tn F( t). 

R  dn

U

We have, 

L { tn  F( t)} = (–1) n  S|

 f (  p)V|

 dpn

T|

W|  =  (–1) n  f ( n) ( p)

∴

L–1{ f ( n) ( p)} = (–1) n  tn  F( t). 

1.27

MULTIPLICATION BY  p

If

 L–1{ f( p)} = F( t) and F(0) = 0, then L–1{ pf ( p)} = F′( t). 

We have, 



L{F′( t)} =  pf( p) – F(0) =  pf( p)

| ∵ F(0) = 0

∴

L–1 { p  f ( p)} = F′( t). 

Note 1.  If F(0) ≠ 0, then

L–1{ pf( p) – F(0)} = F′( t) or L–1{ pf( p)} = F′( t) + F(0) δ( t) where δ( t) is the unit impulse function. 

Note 2.  Generalizations to L–1{ pn f( p)} are also possible for  n = 2, 3, ... . 

1.28

DIVISION BY  p

If

L–1{ f( p)} = F( t), then

 t

1R  f (  p) U

L− S

V

F(

T

 u)  du

 p  W = z0

 t

 t

1 R  f (  p) U

Also, 

L− S

 u)  du du

2 V

F(

T  p  W = z0 z0

 t

 t

 t

1 R  f (  p) U

L− S

 u)  du du du

3 V

F(

T  p  W = z0 z0 z0

 t

 t

 t

1 R  f (  p) U

∴

L− S

...... 

)

...... 

 n  V

F( u du

 du

 p

0 0

0 ( n  times)

( n  times)

T

W = z z

z

1.29

HEAVISIDE EXPANSION FORMULA FOR INVERSE LAPLACE TRANSFORM

If F( p) and G( p) are two polynomials in  p and the degree of F( p) is less than the degree of  G( p) and if G( p) = ( p –

) ( p –  ) ...... ( p –  )

 α1

α2

α n

where α ,  ,  ......,   are distinct constants, real or complex, then

1 α2

α n  R  p  U  n

1 F( )

L− S

F(α )

T

V = 

 r

α  t

 e r

∑

G( )

 p  W

G′ (α )

= 1

 r

 r
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By the method of partial fractions, let

F( )

 p

A

A

A



=  A1  + 

2

+ ...... + 

 r

+ ..... + 

 n

G( )

 p

 p − α

 p − α

 p − α

 p − α

1

2

 r

 n

Multiplying both sides by  p – α    and  allowing  p 

, we obtain, 

 r

→ α r

F( p) ( p − α )

 p − α

A   =  lim

 r  =  lim F

 r

( p) . lim

 r

 p → α r

G( p)

 p → α

 p

 r

→ α

( p)

 r

G

1

F(α )

=  lim F( )

 p . lim

  = 

 r

 p → α

 p

G′(α )

 r

→ α G′  p

 r

( )

 r

F( )

 p

F(α )

1

F(

1

α )

1

F (

 r

α )

 n

1

∴



= 

. 

+ ...... +

. 

+ ...... +

. 

G( )

 p

G′ (α )

1

 p − α

G′(

1

α )  p

 r

− α

G

 r

′ (α )  p

 n

− α n

R  p  U

1 F( )

F(α

 t

F

α1

α

( )

 t

F

 r

α r

α

(

)

∴   L− S

1)

 n

α  t

T

V = 

 e

+ ...... +

 e

+ ....... +

 e n

G( )

 p  W G′(α )

G′ α

( )

G

1

 r

′ α

(

)

 n

 n

F(α )

= 

 r

α  t

 e r

∑

. 

G′(α )

 r

 r = 1
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CONVOLUTION THEOREM

( A.K.T.U. 2016, 2018)

If  

   L–1 { f( p)} = F( t) and L–1 { g( p)} = G( t), then

 t

L–1 { f( p)  g( p)} = F * G =  z  F( u) G( t –  u)  du

0

 t

Let

φ( t) = z   F( u) G( t –  u)  du  then

0

∞

 t

L

O

∞

 t



L{φ( t)} = z   e– pt  F  u() G  t(  u)  du

NMz

−

QP  dt = z  z   e–pt F( u) G( t –  u)  du dt

0

0

0

0

On changing the order of integration, we get

∞ ∞

L{φ( t)} = z z   e–pt F( u) G( t –  u)  dt  du

0

 u

∞

∞

L

(

)

O

= z   e–pu F( u)  − p t− u

 e

G( t u)  dt

NMz

−

 du

0

 u

QP

∞

∞

L

 pv

O

= z   e–pu F( u)  −

NMz  e

 v

G( )  dv   du

0

0

QP

on putting  t –  u =  v

∞

∞

= z  e–pu F( u)  g( p)  du =  g( p) z  e–pu F( u)  du 0

0

=  g( p) .  f( p) =  f( p)  g( p)

 t

⇒ L–1 { f( p)  g( p)} = φ( t) = z F( u) G( t –  u)  du. 

0

We call F ∗ G, the convolution of F and G and the theorem is called the convolution

theorem or the convolution property. 
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Example 56.   Find the inverse Laplace transform of

F

 1  I

F  p +  1

( i)  log  1 +

HG  p2  KJ (U.P.T.U. 2015)

( ii)  log  HG

I

 p −  1 KJ

(U.K.T.U. 2012)

F  p +  3

F  2  I

( iii)  cot– 1 HG

I

 2  KJ  (M.T.U. 2013)

( iv)  tan–1 HG  p2 KJ

F  p

 2

L F

IO

( v)  cot– 1 HG I

− 1

 p +  4p +  5

M

P

 2 KJ

( vi)  L log

NM HG  p2 +  2p +  5 KJQP

(U.P.T.U. 2014)

R F

IU

Sol.  ( i) Let

L–1 

1

log

S|

1 +

V|  = F( t)

| say

2

T| HG  p  KJW|

L R F

IUO

∴

L–1   d

1

M S|log 1+ V|

M

P

 dp

N T| HG  p 2KJW|QP  = –   t F( t)

| By Art. 1.26

LM

O

F

P

⇒

L–1 

1

− 2

M

P  = –   t F( t)

1

3

M

HG I

 p  KJP

1 + 2

NM  p

QP

L

2

⇒

L–1 

−

NM

O  = –   t F( t)

2

 p (  p + 1)QP

F 1

 p  I

 t

⇒

L–1 

− 2

HG  p p

F( t)

+ 1KJ  = 2

 t

⇒

1 – cos  t =  F( t)

2

2 1

( − cos  t)

∴

F( t) =

 t

R F  p  1 U

( ii) Let

L–1 Slog

+

T HG

IV  = F( t)

| say

 p − KJ

1 W

L

∴ L–1   d  log(

l  p + )1 − log ( p − )

NM

O

1 q   = –   t F( t)

| By Art. 1.26

 dp

QP

L 1

1

⇒

L–1 

−

NM

O

 p + 1  p − 1QP  = –   t F( t)

⇒

 e– t –  et  = –   t F( t)

 et −  e− t

2 sinh  t

∴

F( t) =

= 

 t

 t
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R 1 F  p  3 U

( iii) Let

L–1  cot−

+

ST HG I   = F( t)

| say

2 KJ VW

L  d  R 1 F  p  3 U

∴

L–1 

cot−

+

S

V   = –   t F( t)

| By Art. 1.26

 dp

NM

O

T

HG

I

2 KJ WQP

LM

OP

⇒

1

1

L–1  M

−

M

. P

F

= –   t F( t)

M

3 2

 p

2P

1 +

+

NM HG

I

2 KJ

QPP

L

2

⇒

L–1 

−

NM

O  = –   t F( t)

 p + 3 2

(

) + 4QP

⇒

–  e–3 t  sin 2 t  = –   t F( t)

 e−3 t  sin  t

2

⇒

F( t) =

 t

F 2 I

F

2

I

( iv) Let

 f( p) = tan–1 

2

HG  p  KJ = tan–1 HG1 2

+

− 1KJ

 p

R

2

U

1

1

= tan–1 ST

V = tan–1 

– tan–1 

1 + ( p − 1) ( p + 1)W

 p − 1

 p + 1

R

R 1 F 1 U

1 F

1

U

∴

L–1 { f( p)} = L–1 Stan−

T

HG

IV

S

V

 p − KJ

1 W – L–1  tan−

T

HG

I

 p + 1KJW

F

F

=  et L–1  tan−

HG

1 1 I

1 1

 p KJ  –  e– t L–1  tan−

HG

I

 p KJ

F

sin  t

= 2 sinh  t L–1  tan−

HG

1 1 I

 p KJ  = 2 sinh  t .  t

2

⇒

F( t) =  sin  t sinh  t. 

 t

R 1 F  p  U

( v) Let     L–1  cot−

ST HG I  = F( t)

| say

2 KJVW

L  d  R 1 F  p  U

∴  L–1 

cot−

S

V  = –  t F( t)

| By Art. 1.26

 dp

NM

O

T

HG I

2 KJ WQP

F

I

G 1 1J

⇒

L–1 

−

GG

. 

= –  t F( t)

2

J

 p

2

1

J

+

H

4

K

F 2 I

⇒

L–1 

−

HG

= –  t F( t)

2

 p + 4KJ

⇒



– sin 2 t = –  t F( t)

sin 2 t

∴

F( t) = 

 t
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L F  p 2 + 4 p + 5IO

( vi) Let





L–1 Mlog

P

NM HG  p 2 +2 p + 5KJQP = F( t)

| say

L  d

∴

L–1 

log

o ( p 2 +  p + ) − log ( p 2

4

5

+ 2 p + )

5

NM

Ot = –  t F( t)

| By Art. 1.26

 dp

QP

L 2 p + 4

2  p  2

⇒

L–1 

−

+

2

NM

O

 p + 4  p + 5

2

 p + 2 p + 5QP = –  t F( t)

L 2( p + 2)

2(  p  1)

⇒

L–1 

−

+

NM

O

(  p + 2 2

) + 1 ( p + 1 2

) + 4QP = –  t F( t)

–1F

I

F

I

−2 t

 p

− t

−1

 p

⇒

2 e

L

2 e  L

2

HG  p

= –  t F( t)

+ 1

2

KJ −

HG  p + 4KJ

⇒

2 2

( e−  t  cos  t −  e− t  cos 2 )

 t  = –  t F( t)

2

⇒

F( t) = 

 e− t

2

2

 t −  e−  t

(

cos

cos  t)

 t

Example 57.  Find the inverse Laplace transforms of

 1

( i)

 1

( ii)

. 

 3

 2

 p (p +  2

 a )

 p (p 1)3

+

L 1

1

Sol.  ( i) Since L−1NM

O =   sin  at

2 + 2

 p

 a  QP  a

therefore, by Art. 1.28, we have

L

1

 t  1

1 L

 t

1

L−1NM

O z

2

sin  au du

1

( − cos  at)

(

= 

= 

cos  au  = 

+ 2

 p p

 a ) QP

−

0  a

2

 a  NM

OQP 2 a

0

L

1

 t  1

1 L

sin  au t

1 L

sin  at

L−1NM

O z

2

2

1

( − cos  au)  du

 u

 t

(

= 

= 

−

= 

−

+ 2

 p p

 a ) QP

2

0  a

2

 a  NM

O

 a

QP

2 NM

OQP

0

 a

 a

L

 t

1

 t  1 F

 au

1

2

L u  cos  au

1

2

L t  cos  at  1

L−1

z

sin

NM

O = 

 u −

 du  = 

= 

+

−

. 

3

2

+

(

+ 2

 p p

 a ) QP

2 HG

IKJ

0  a

 a

2

 a

2

2

 a

NM

OQP 2 2 2 2

 a

 a

 a

NM

OQP

0

L 1

 e− t .  t 2

( ii) Since  L−1 NM

O = 

By first shifting property

 p + 1 3

(

) QP

2 ! 

L

 t

1

1  t

1 L

O

∴

L−1

2 − t

z

2

− t

− t

− t

NM

O =   t e dt =  M t (− e )−2 t( e )+2(− e )P

( + 1 3

 p p

) QP 2 0

2 NM

QP0

1

2

F

 t  I

= 

2

[(−

− 2 − 2) −

 t

 t

 e t + 2] = 1 –  e– t  1 +  t +

. 

2

HG

2 KJ
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F  1  I

⎧⎪

 1

⎫⎪

Example 58.   Find ( i)  L–1  HG

⎨

⎬

 p p

. 

+  4  KJ ( ii)  L–1  ⎪⎩

 2

 p(p +  2

 a ) ⎪⎭

F 1 I

F 1 I

 t−1/2

 e−4 t

Sol.  ( i)

L–1 HG  p

= 

+ 4 KJ  =  e–4 t L–1 HG  p  KJ  =  e–4 t . Γ 1/ 2

 t

π

F 1 I  t −4 u

 t

∴

L–1 HG

z  e

z

 p p

 du =  1  

 e–4 u  u–1/2  du

+ 4 KJ  =  0

 u

π

π 0

Put 2  u  =  x ∴  u–1/2  du =  dx

1

F

I

2  t

1

2

2  t

2

1

= 

z  

− x

HG z

 e− x 2   dx =   . 

 e

 dx

   erf (2  t ). 

π

KJ  = 

0

2

0

π

2

F 1 I 1

( ii)





L–1 

sin  at

2

2

HG  p +  a  KJ  =  a

R

1

U  t  1

∴

L–1 S

V z

2

2

T  p( p

sin  au du =  1  (1 – cos  at). 

+  a )W =  0  a

2

 a

Example 59.   Find the inverse Laplace transform of

 2

 p −  2

 a

 2ap

( i)

 2

( ii)

 (p +  2 2

 a )

 2

 (p +  2 2

 a )

 1

 1

( iii)

( iv)

. 

 2

 (p +  2 2

 a )

 p4 +  4

F  p  I

Sol.  ( i)





L–1 HG  p 2  a 2

+

KJ  = cos  at

L  d  F  p  IO

∴

L–1 MM

P

 dp

N HG  p 2  a 2

+

KJQP = –  t cos  at

L  a 2 −  p 2

⇒

L–1 

= –  t cos  at

 p 2

NM

O

+  a 2 2 QP

(

)

L  p 2 −  a 2

∴

L–1 

=  t cos  at. 

 p 2

NM

O

+  a 2 2 QP

(

)

F

I

( ii)



L–1 

 a

HG  p 2  a 2

+

KJ  = sin  at

L  d  R  a  UO

∴

L–1 M

S

V

M

P

 dp

N T  p 2  a 2

+

WQP = –  t sin  at

R − 2 ap  U

⇒

L–1 ST

= –  t sin  at

2

2 2 V

(  p +  a ) W
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R 2 ap  U

or

L–1 S

V

2

2 2

(  p

T +  a ) W =  t sin  at. 

F 1 I 1

( iii)



L–1 

sin  at

2

2

HG  p +  a  KJ  =  a

R  d  F 1 IU  d  Fsin  at

∴

L–1 S|

V|

 da

T| HG



 p 2  a 2

+

KJW| =  da  HG

I

 a  KJ

R − 2 a  U  at  cos  at − sin  at

⇒



L–1 ST 2 2 2 V = 

(  p +  a ) W

 a 2

R

1

U

1

sin  at −  at  cos  at

or

L–1 S

V

2

2 2

(  p

T

( at cos  at – sin  at) = 

. 

+  a ) W = –  2 3

 a

2 a 3

( iv)





 p 4 + 4 = ( p 2 + 2)2 – (2 p)2 = ( p 2 – 2 p + 2) ( p 2 + 2 p + 2) 1

1

∴

= 

4

 p + 4

2

 p − 2 p + 2

2

(

) (  p + 2 p + 2)

1 L

1

1

= 

−

4

2

NM

O

− 2 + 2

2

 p p

 p

 p + 2 p + 2QP

...(1)

F

1

I

L

Now, 

L–1 

2

HG  p − 2 p +2KJ  = L–1 

1

NM

O

 p − 1 2

(

) + 1QP =  et sin  t

F

1

I

L

and

L–1 

2

HG  p + 2 p + 2KJ = L–1 

1

NM

O

 p + 1 2

(

) + 1QP =  e– t sin  t

F

I

∴ 1

1

1

1

L−

−

=  1 ( et e t

− − ) sin  t

4

2

HG − 2 + 2 2 + 2 + 2KJ

 p

 p

 p

 p

4

Hence

L 1 F

1

1

IO 1  t

L–1 M

−

 t

 t

M

P

 e

 e

 t dt

z − −

(

) sin

4

2

N HG − 2 + 2 2

 p p

 p

 p + 2 p + 2KJQP =  4 0

F

I 1 L et

 e− t

⇒

L–1 

1

(sin  t − cos  t) −

(− sin  t − cos  t)

4

HG  p + 4KJ  = 4 2

2

NM

OQP

1 L

F  et +  e− t  I

F  et e− t  IO

= 

sin

M  t

cos  t

P

4 NM

HG 2 KJ −

−

HG 2 KJQP

F

I 1

or, 

L–1 

1

sin  t  cosh  t − cos  t  sinh  t

4

HG  p + 4KJ  = 4
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Example 60.   Evaluate:

− 1/p

F

I

∞

∞

 e

( i) z  e− x 2   dx

( ii) z  sin x2 dx

( iii)  L–1 

 0

 0

HG  p  KJ. 

∞

Sol.  ( i) Let

G( t) = z   e− tx 2  dx

...(1)

0

∞

L

O

∞

 dx

1

F  x  I

π

∴

L{G( t)} = z  

= 

1

M tan−

P

0

 p +  x 2

M  p

N

HG  p KJQP  = 2  p

0

F π I

∴

G( t) = L–1HG2  p KJ

∞

π

1

1 π

⇒

z  e− tx 2  dx =   . 

= 

0

2

π t

2

 t

∞

2

1

If  t = 1, 



z   e− x   dx =  π

0

2

∞

( ii) Let  

G( t) = z  sin  tx 2  dx

0

∞

2

 p  sec2 θ  d θ

∴

L{G( t)} = z  x   dx

Put  x 2 =  p tan θ ⇒  dx = 

0  p 2

 x 4

+

2 tan θ

1

π/2

π/2

= 

z   tan θ   d θ =  1  z  sin1/2 θ cos–1/2 θ  d θ

2  p  0

2  p  0

1

(3 / )

4 ( /

1 )

4

1

π

= 

.  Γ

Γ

= 

. 

2  p

2 Γ( )

1

4  p

sin π / 4

F

I

π

π

L{G( t)} = 

⇒

G( t) = L–1 

2 2  p

HG2 2 p KJ

∞

π

1

1

⇒

z sin  tx 2  dx = 

. 

=    π

0

2 2

π t

2

2 t

∞

1

π

If  t = 1,    z sin  x 2  dx =    . 

0

2

2

1

1 R

1

1

1

U

( iii)

 e–1/ p =    1

S − +

−

+ .... V

.. 

 p

 p  T

 p

2

2

!  p

3

3

!  p

W

1

1

1

1

=  −

+

−

+ ...... 

2

2

3

! 

3

4

 p

 p

 p

!  p

F 1

2

3

−1/

 t

 t

 t 2

 t 3

∴

L–1 

 e p

HG

I

−

+ ...... 

 p

KJ  = 1–  t +  2

2

= 1 –  t + 

– 

+ ...... 

2

( ! )

3

( ! )

2

2

1 . 2

2

2

2

1 . 2 . 3

(2  t)2

(2  t)4

(2  t)6

= 1 – 

+ 

– 

+ ...... = J  (2  t ). 

22

22 . 42

22 . 42 . 62

0
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Example 61.   Apply Heaviside expansion theorem to obtain

F  2p2 +  5p −  4 I

R  3p +  1  U

( i)  L–1 HG

S

V

 p3 +  p2 −  2p KJ

( ii)  L–1  (p

T −  1)(p2 +  1) W . 

Sol.  ( i)

F( p) = 2 p 2 + 5 p – 4

G( p) =  p 3 +  p 2 – 2 p =  p( p – 1)( p + 2) G( p) = 0 gives  p = 0, 1, – 2

∴

α   = 0, 

= 1, 

= – 2

1

α2

α3

F(α ) = – 4, F( ) = 3, F( ) = – 6

1

α2

α3

G′( p) = 3 p 2 + 2 p – 2, 

G′ (α ) = – 2, G

) = 3, G

) = 6

1

′(α2

′(α3

F 2 2 p + 5 p − 4I F(α )

F(α )

F(α )

∴

L–1 

1   e α  t

2

α

3

α

1  + 

 e t 2  + + 

 e t 3

3

2

HG  p +  p − 2 p KJ  = G′(α )1

G′(α )

2

G′(α )

3

F 4

F3

F − 6

= −

HG I  e 0 t + 

 e–2 t = 2 +  et –  e–2 t. 

− 2KJ

HG I3KJ   et + HG I

6 KJ

( ii)

F( p) = 3 p + 1

G( p) = ( p – 1)( p 2 + 1) = ( p – 1)( p +  i)( p –  i) G( p) = 0  gives   p = 1,  i, –  i

∴

α   = 1, 

=  i, 

= –  i

1

α2

α3

F(α ) = 4, F( ) = 3 i + 1, F( ) = 1– 3 i

1

α2

α3

G′ ( p) = ( p – 1) . (2 p) +  p 2 + 1 = 3 p 2 – 2 p + 1

G′ (α ) = 2, G

) = – 2 – 2 i, G

) = 2 i – 2

1

′ (α2

′ (α3

R 3 p + 1 U F4

F 3 i + 1

F 1− 3 i

∴

L–1 ST

V

(  p

=

 e–it

− 1 2

)(  p + 1)W HG I

2KJ   et + HG

I

− 2 − 2 i KJ   eit + HG

I

2 i − 2KJ

F  i

F  i

 i

= 2 et – 

+ 1

HG

I

− 1

2

KJ   eit + HG

I

2

KJ   e–it = 2 et –  ( eit –  e–it) – ( eit +  e–it)

2

 i

= 2 et –   . 2 i sin  t – 2 cos  t = 2 et +  sin  t – 2 cos  t. 

2

Example 62.   State convolution theorem and hence evaluate

R

 p

U

R

 1

U

( i)  L–1  ST

V

S

V

 (p2 1)(p2

+

+  4) W  (M.T.U. 2013) ( ii)  L–1  T  p(p2 a2

−

 ) W

R

 1

U

( iii)  L–1  ST

V

 p(p +  1) (p +  2) W . 
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Sol.  If

L–1 { f( p)} = F( t) and L–1 { g( p)} = G( t), then

 t

L–1 { f( p) .  g( p)} = F ∗ G = z F( u) . G( t –  u)  du 0

1

 p

( i) Let 

 f( p) = 

and   g( p) = 

2

 p + 4

 p 2 + 1

1

∴

F( t) =   sin 2 t  and G( t) = cos  t

2

1

∴



F( u) =   sin 2 u, G( t –  u) = cos ( t –  u)

2

R

 p

U  t

∴ L–1 ST

V z 1

(  p 2

sin 2 u . cos ( t –  u)  du

+ ) ( p 2

1

+ 4)W =  0 2

1  t

=  z  [sin ( u +  t) + sin (3 u –  t)]  du

4 0

1 L

cos (  u t)  t

3

=    − cos ( u +  t) −

−

4 NM

O

3

QP0

1 F

L

cos 2 t

F

cos  t

=    − cos 2 t −

cos  t

4 HG

I

NM

O

3 KJ − −

−

HG

I

3 KJQP

1 L 4

4

1

=    −

cos 2 t + cos  t  =   (cos  t – cos 2 t). 

4 NM

O

3

3

QP 3

1

1

( ii) Let

  f( p) =  2

2

and  g( p) = 

 p −  a

 p

1

∴

F( t) =   sinh  at  and G( t) = 1

 a

1

∴

F( u) =   sinh  au  and G( t –  u) = 1

 a

R

1

U  t  1

∴

L–1 S

V z    sinh  au . 1  du

2

2

 p(  p

T

−  a )W =  0  a

1 cosh  au t

F

1

=   

= 

(cosh  at – 1). 

 a  HG

I

 a

KJ

2

0

 a

1

( iii) Let

  f( p) = 

and  g( p) =  1

 p (  p + 1)

 p + 2

R 1 U

F 1

1

∴

F( t) = L–1 S

V

−

 p ( p

T

+ 1)W = L–1 HG

I

 p

 p + 1KJ  = 1 –  e–t

F

and

G( t) = L–1 

1

HG

I

 p + 2KJ  =  e–2 t
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Now, 

F( u) = 1 –  e–u, G( t –  u) =  e– 2 ( t –  u)

∴ By convolution theorem, we get

R

1

U  t

L–1 S

V

 u

2

1

 t u

 e

 e

 du

z − − − −

(

)

(

)

 p ( p

T

+ 1) ( p + 2)W =  0

 t

 t

2 u

2 F

I

−  t

 e

=  e−2 t

( e 2 u

 eu)  du

z −  =  e

−  eu

0

HG 2

KJ0

2 t

L

2 t

2 F

1I

2

F

I F 1 O

−  t

 e

−  t

 e

=  e

M

−  et

1 P

 t

NMHG

=  e

−  e +

2

KJ − −

HG

I

2

KJQP

HG 2

2KJ

1

 t

1

= 

−

2

−

+

−

 e

 e t

2

2

Example 63.   Use convolution theorem to evaluate:

R

U

−  1

 p

( i)  L  S

V

 (p2

T +  4)2  W

(G.B.T.U. 2010)

 2

R

U

−  1

 p

( ii)  L  S

V

 (p2

T +  a2 )(p2 +  b2 ) W. 

(A.K.T.U. 2018)

 p

1

 p

Sol. ( i)



= 

. 

(  p 2 + )2

4

2 + 4

2

 p

 p + 4

1

 p

Let, 

  f( p) =  2

and  g( p) = 

 p + 4

 p 2 + 4

F 1 I 1

∴

F( t) = L–1{ f( p)} = L–1 

2

HG  p + 4KJ =  sin 2 t

2

F  p  I

and

G( t) = L–1{ g( p)} = L–1 HG  p 2 + 4KJ  = cos 2 t

1

Now, 

F( u) =   sin 2 u, G( t –  u) = cos 2( t –  u)

2

∴

By convolution theorem, we have

 t

1  t

1 R

 p

U

1

L− S

z

T

sin 2 u. cos 2( t –  u)  du = 

[sin 2 t + sin(4 u – 2 t)]  du

2

2 V

( p + 4) W = z0 2

4 0

1 L

cos 4

(  u  2 t t

)

 t

= 

 u  sin 2 t −

−

sin 2 t

4 NM

O

4

QP  = 

0

4

 p 2

 p

 p

( ii)        

=

. 

 p 2 +  a 2  p 2 +  b 2

 p 2 +  a 2  p 2 +  b 2

(

) (

)

 p

 p

Let, 

 f( p) = 

and  g( p) = 

 p 2  a 2

+

 p 2  b 2

+
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1 F

 p

I

∴

F( t) = L–1{ f( p)} = L− HG

= cos  at

2

 p + 2

 a  KJ

1 F

 p

I

and

G( t) = L–1{ g( p)} = L− HG

= cos  bt

2

 p + 2

 b  KJ

Now, 

F( u) = cos  au

G( t –  u) = cos  b( t –  u)

∴

By convolution theorem, we have

2

1 R

 p

U

L− S

 t

T

z

2

2

2

2 V = 

cos  au. cos  b( t –  u)  du

( p +  a ) ( p +  b )W

0

1  t

=  z [cos {( a –  b)  u +  bt} + cos {( a +  b)  u –  bt}]  du 2 0

1 Lsin {( a − )

 b u +  bt} sin {( a

)

 b u bt}  t

= 

+

+

−

2 NM

O

 a −  b

 a +  b

QP0

1 Lsin  at − sin  bt  sin  at  sin  bt

 a  sin  at −  b  sin  bt

= 

+

+

2 NM

O

 a −  b

 a +  b

QP = 

 a 2 −  b 2

. 

Example 64.   Prove that

R  1  U

( i)  F ∗  G = G ∗  F

( ii)  L–1  S|

V|

 (p

T| −  1) p W|  = et  erf   t. 

Sol.  ( i) By  convolution theorem, we have

 t

F ∗ G = L–1 { f( p) .  g( p)} = z F( u) . G( t –  u)  du 0

Putting  t –  u =  v  or  u =  t –  v, this gives

0

 t

F ∗ G = z F( t –  v) . G( v) (–  dv) = z G( v) F( t –  v)  dv = G * F

 t

0

This shows that the convolution of F and G obeys the commutative law of Algebra. 

1

1

( ii) Let

  f( p) = 

and  g( p) = 

, then

 p

 p − 1

1

F( t) = L–1 { f( p)} = 

and G( t) = L–1 { g( p)} =  et

π t

Hence by convolution theorem, we have

R

1

U  t

L–1 S|

V| z

(  p

T|

F( u) . G( t –  u)  du

− 1)  p  W| =  0

 t

 et

 t

 e− u

= z 1   et–u  du =   z     du

0

π u

π 0

 u

 du

Put   u  =  x ∴   

=  dx

2  u

F 2  t

I

2

=  et . 

 e− x dx

HG z0

π

KJ =  et erf   t. 
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 t2

Example 65.   Show that  1 ∗  1 ∗  1 = 

  hence evaluate 1 ∗  1 ∗  1 ∗  ...... ∗  1 (n times). 

 2

Sol.  For 1 ∗ 1, we have F( t) = 1 and G( t) = 1

∴ By convolution theorem, we have

 t

1 ∗ 1 = z  1 . 1  du =  t

| ∵ F( u) = 1 and G( t –  u) = 1

0

Using the convolution theorem again, we obtain

 t

F I

 t

 u 2

 t 2

1 ∗ 1 ∗ 1 =  t ∗ 1 = z  u . 1  du = 

0

HG 2 KJ  = 

0

2

 t 3

Similarly,  1 ∗ 1 ∗ 1 ∗ 1 =  3! 

 tn−1

Hence 1 ∗ 1 ∗ 1 ∗ ...... ∗ 1 ( n times) = 

. 

( n − 1) ! 

 t

Example 66.   Using the convolution theorem, evaluate z  sin u cos (t – u) du. 

 0

Sol.  By convolution theorem, we have

 t

z  sin  u cos ( t –  u)  du = sin  t ∗ cos  t

...(1)

0

Here, 

F( t) = sin  t, G( t) = cos  t

1

∴

   f( p) = L{F( t)} = L(sin  t) =  2

 p + 1

 p

and

    g( p) = L{G( t)} = L(cos  t) =   p 2 + 1

R  p  U

sin  t ∗ cos  t = L–1 { f( p) .  g( p)} = L–1 S

V

(  p 2

T + )2

1 W

...(2)

F  p  I

Now, 

L–1 HG  p 2  a 2

+

KJ  = cos  at

Differentiating this w.r.t.  a, we get

R − 2 ap  U

L–1 ST 2 2 2 V

(  p

= –  t sin  at

+  a ) W

R  p  U  t

If   a = 1, 

L–1 ST

V

(  p 2

sin  t

+ )2

1 W =  2

 t

1

From (1) and (2), z sin  u cos ( t –  u)  du =    t sin  t. 

0

2
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 1

Γ m  Γ n

Example 67.   Prove that:  β  (m, n) = z  xm–1 (1 – x)n–1 dx = 

;  m, n >  0. 

 0

Γ (m +  n)

 t

Sol.  Let

φ( t) = z   xm–1 ( t –  x) n–1  dx

...(1)

0

By convolution theorem, we have

 t

z  xm–1 ( t –  x) n–1  dx =  tm–1 ∗  tn–1

...(2)

0

Here, F( t) =  tm–1, G( t) =  tn–1

∴

  f( p) = L{F( t)} = L( tm–1) =  Γ( )

 m

 pm

Γ( )

 n

   g( p) = L{G( t)} = L( tn–1) =   pn

 tm–1 ∗  tn–1 = L–1 { f( p) .  g( p)}

F Γ( )

 m  Γ( )

 n  I

 tm+ n−1

= L–1 HG  pm+ n  KJ  = Γ( m) Γ( n) . Γ( m +  n)

 t

 tm+ n−1

∴ From (1) and (2), φ( t) =  z   xm–1 ( t –  x) n– 1  dx = Γ( m) Γ( n) . 

0

Γ( m +  n)

Letting  t = 1, we get

1

Γ( )

 m  Γ( )

 n

z   xm–1 (1 –  x) n–1  dx = 

. 

0

Γ( m + )

 n

Example 68.   Apply convolution theorem to show that

 t

 t

( i) z   J (u) J (t – u) du = J (t) – cos t ( ii) z   J (u) sin (t – u) du = t J (t). 

 0

 0

 1

 0

 0

 0

 1

Sol.  ( i) By convolution theorem, we have

 t

z    J ( u) J ( t –  u)  du = J ( t)* J ( t)

0

0

1

0

1

Here, 

F( t) = J ( t) , G( t) = J ( t)

0

1

1

∴

 f( p) = L{F( t)} = L{J ( t)} = 

0

2

 p + 1

 p

and

  g( p) = L{G( t)} = L[J ( t)] = 1 – 

1

 p 2 + 1

F

I

1

 p

∴

 J ( t) * J ( t) = L–1{ f( p) .  g( p)} = L–1 G

−

J

( t) – cos  t. 

0

1

G 2

H

J  = J

 p + 1

2

 p + 1K

0

( ii) By convolution theorem, we have

 t

z  J ( u) sin ( t –  u)  du = J ( t)* sin  t

0

0

0

Here, 

F( t) = J ( t) , G( t) = sin  t

0
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1

∴

  f( p) = L{F( t)} = L{J ( t)} = 

0

2

 p + 1

and

  g( p) = L {G( t)} = L (sin  t) = 

1

2

 p + 1

∴

J ( t) * sin  t = L–1 { f( p) .  g( p)}

0

R

U

1

1

R

1

U

= L–1 S|

. 

V| = L–1 S

V

2

 p

T|

+ 1

2

 p + 1W|

2

T

1 3 2

(

) /

 p +

W

...(1)

Now, we know that, 

1

L{J  ( at)} = 

0

2

2

 p +  a


Differentiating w.r.t. ‘ a’ we find

R  d

U

−  a



L S

J  at

T

V

 da  0 ( )W =  ( p 2 +  a 2)3/2

−  a

⇒

L { t J0′ ( at)} =  ( p 2 +  a 2)3/2

R

1

U

 t

 t

∴

L–1 S

V

J

J ( at)

|∵ J

( t)

2

2 3 2

T( + ) /

 p

 a

W = –  a  0′ ( at) =  a  1

0′ ( t) = – J1

Put  a = 1,R 1 U

∴

L–1 S

V

2

T

( t)

1 3 2

(

) /

 p +

W =  t J1

∴ From (1), J  ( t) * sin  t =  t J ( t). 

0

1

R  1  U  1

Example 69.   Prove that: L–1 ST

V

 (p2 1)3

[( 3 – t2) sin t – 3t cos t]. 

+

W =  8

Sol.  We have

F 1 I 1

L–1 

2

2

HG  p

sin  at

+  a  KJ  =   a

Diff. w.r.t.  a, we get

R  d  F 1 IU  d  Fsin  at

∴

L–1 S|

V|

 da

T| HG  p 2  a 2

+

KJW| =   

 da  HG

I

 a  KJ

R − 2 a  U

 t

⇒

L–1 ST

= –  1  sin  at +   cos  at

2

2 2 V

(  p +  a ) W

2

 a

 a

R

1

U 1

⇒

L–1 S

V

sin  at –   t  cos at

2

2 2

T( p +  a ) W = 2 2 a

2 a 2

Differentiating again w.r.t.  a, we get

R − 4 a  U

2

L–1 ST

= –  3  sin  at +   t  cos  at +   t  cos  at +   t  sin  at 2

2 3 V

(  p +  a ) W

2 4

 a

2 a 3

 a 3

 a 2

2
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Letting  a = 1, this readily yields

R 1 U 1

L–1 S

V

[3 (sin  t –  t cos  t) –  t 2 sin  t]

2

 p

T + 1 3

(

) W =  8

1

=   [(3 –  t 2) sin  t – 3  t cos  t]. 

8

PROBLEM SET-V

1. 

Find the inverse Laplace transforms of:

F

F 2

( i) cot–1   p

HG I

 a  KJ

( ii) tan–1 HG I p KJ

( iii) cot–1 ( p + 1)

F

F  p +  a

( iv) log  p(  p + )

1

( v) log 

1

1 +

( vi) log 

 p 2 + 4

HG

IKJ p

HG

I

 p +  b KJ

F

F  p 2 − 1I

2

F α I

( vii) log   p − 1

HG

I

( viii) log 

+

 p  KJ

HG  p 2 KJ

( ix) log  1

2

HG  p  KJ

2

R

U

1

2

2

R  p  β U

 p + 1

R

1

U

( x)

log

+

S|

V|

( xi) log S|

V|

( xii) log 

 p +

S

V

2

2

(  p

T| − α) W|

 p(  p + 1

T|

) W|

( p

T + 2) ( p + 3)W

( U.P.T.U. 2014)

1

2

2

F  p +  b  I

2

F  a  I

F

( xiii)

log

( xv)  p log   p − 1 . 

2

2

2

HG  p

−

+  a  KJ

( xiv) log  1

2

HG  p  KJ

HG

I

 p + 1KJ

2. 

Show that:

F 1

1

 t 3

 t 5

 t 7

( i) L–1 

sin

HG

I

+

−

+ ...... 

 p

 p KJ  =  t – 

2

2

2

3

( !)

5

( !)

7

( !)

F 1

1

 t 2

 t 4

 t 6

( ii) L–1 

cos

HG

I

+

−

+ ...... 

 p

 p KJ  = 1 – 

2

2

2

2

( !)

4

( !)

6

( !)

3. 

Apply Heaviside’s expansion formula to evaluate:

R 2 p

R

U

− 1

U

2 2

(  p − 2)

( i) L–1 S

V

( ii) L–1 S|

V|

 p(  p

T − 1)( p + 1)W

( p + 1)( p − 2)( p − 3)

T|

W|

F 3 p + 16 I

R

 p 2 − 6

U

( iii) L–1

S|

V|

2

HG

. 

 p −  p − 6KJ

( iv) L–1   p( p + 1)( p + 3

T|

) W|

4. 

Evaluate:

R

1

U

R

1

U

( i) L–1 S

V

S|

V|

(  p

T + ) a( p + ) b W

( ii) L–1   p

T| + 1 2

(

)( p + 1)W|

( A.K.T.U. 2017)

R 1 U

R

1

U

( iii) L–1 S|

V|

S|

V|

3

 p(  p

T| +  a) W| ( U.K.T.U. 2012)

( iv) L–1 

2

2

 p ( p

T|

+ 1)W| . 

L  p 2 O

L

1

O

( v) L–1 

[ G.B.T.U.(C.O.) 2010] ( vi) L–1 

 p 2

2 2

(

NMM + ω ) QPP

2

 p

NMM + 2 p + 5 2

(

) QPP
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5. 

Apply convolution theorem to evaluate:

L  p 2 O

L 1 O

( i) L–1  MM

P

(  p 2

2

N + 4) QP

( ii) L–1 

2

 p(  p

NMM

+ 4) QPP

R

1

U

L  p 2 O

( iii) L–1 S|

V|

M

P

4

2

 p (  p

T|

+ 1) W|

( iv) L–1  M  p 4  a 4

N − QP. 

6. 

Apply convolution theorem to show that

 t

 t 5

( i) z  J  ( u) J ( t –  u)  du = sin  t

( ii)  t ∗  t ∗  t = 

0

0

0

5 ! 

 t

( iii) z   u 2 cos ( t –  u)  du = 2 t – 2 sin  t. 

0

7. 

Evaluate:

∞

∞ sin  x

( i) z  cos  x 2  dx

( ii) z  

 dx

0

0

 x

∞

∞  x  sin  tx

( iii) z   x cos  x 3  dx

( iv) z  

2   dx,  t > 0

0

0

1 +  x

8. 

Prove that:

F

I

L

/ F

IO

( i) L–1 

1

− t

 t  2

3

3

M e −  e  cos  t − 3 sin  t  P

3

HG  p + 1KJ =  13 NM

HG

2

2 KJQP

L

O

 t

( ii) L–1 

1

. 

3/2

 p

( p

NMM

− 1)QPP =  et erf (  t ) – 2  π

9. 

( i) State convolution theorem for the inverse Laplace transform. Hence or otherwise, find the 8  p

inverse Laplace transform of the function 

2

. 

(  p + 16

2

)(  p + 1 2

)

 p

( ii) Find the function whose Laplace transform is :  p log 

+ cot–1  p. 

( U.P.T.U. 2013)

 p 2 + 1

10. 

Evaluate:

F

F

I

2 2

 p − 6  p + 5

I

1

( i) L–1 

G

J

3

HG  p − 6 2 p + 11 p − 6KJ

( ii) L–1 G 2

H

J

 p − 4  p + 20 K

L11 3 p − 47 2 p + 56 p + 4O

F  p 3 + 16 p − 24 I

( iii) L–1  MM

P

( iv) L–1 

(  p

N

− 2 3

) (  p + 2)

QP

HG  p 4 + 20 p 2 + 64KJ . 

11. 

Using convolution theorem, prove that

L

1

O 2 t

( i) L 1

− NMM

cos  t  1

( G.B.T.U. 2012)

3

2

 p (  p + 1)QPP =

+

−

2

L

1

O

( ii) 

1

L 1

− NMM

(sin  at at  cos )

 at

[ U.P.T.U. 2015]

2

 p + 2 2

 a

QPP =

−

2 3

(

)

 a
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12. 

Use convolution theorem to find

L

1

O

L

16

O

( i) L−1NMM

( A.K.T.U. 2016) ( ii) L 1

−

( U.P.T.U. 2014)

2

(  p + 4) ( p + 2) QPP

NMM  p − 2  p + 2 2

(

) (

) QPP

L

 p

O

( iii) L 1

− NMM

( M.T.U. 2012)

( p 2 +  a 2)3 QPP

⎡

1

⎤

( iv)  −1

L ⎢

( G.B.T.U. 2013)

2

2 ⎥

⎣  p (  p + 1) ⎦

 ANSWERS (PROBLEM SET IV)

sin  at

sin 2 t

sin  t

1. 

( i)

( ii)

( iii)   e– t 

 t

 t

 t

−  t

 t

 e−  bt −  e−  at

( iv) 2 cos 2 t −  e

− 1

( v) 1 − −

 e

( vi)

 t

 t

 t

 t

2

2 1

( − cos α )

 t

( vii)  1 −  e

( viii)

(1 – cosh  t)

( ix)

 t

 t

 t

 t

α

− cos  t + + −

2

1  e t

− − t + −2 t + −

 e

 e

 e  3 t

( x)   e − cos β t

( xi)

( xii)

 t

 t

 t

cos  at − cos  bt

2

2

( xiii) 

( xiv)

(1 – cosh  at)

( xv)

(sinh  t –  t cosh  t)

 t

 t

2

 t

1

3

1 −  t  4 2 t  7

3. 

( i) 1 +   et −   e–t

( ii) –   e

−

 e +   e 3 t

( iii) 5 e 3 t – 2 e–2 t

2

2

6

3

2

5 −  t  1

( iv)  – 2 + 

− 3

 e

+

 e t

2

2

F

I

 e−  at −  e−  bt

1

1

1

2 2

− at

 a t

4. 

( i) 

( ii)

(sin  t – cos  t +  e– t)

( iii)

−

 e

1 +  at +

 b −  a

2

3

3

 a

 a

HG

2 KJ

1

 t

1

( iv)  t – sin  t

( v)

sin ω t + cos ω t

( vi)

 e− t(sin 2 t − 2 t  cos 2 t)

2ω

2

16

1

1

 t 3

5. 

( i)   (sin 2 t + 2 t cos 2 t)

( ii)

(1 – cos 2 t)

( iii)

+ sin  t –  t

4

4

6

1

( iv)

(sinh  at + sin  at)

2 a

1 π

π

7. 

( i) 

( ii)

( iii)

π

( iv)  π  e−  t

2 2

2

3 3 Γ1 3

/

2

60 t  sin  t − 8 cos  t + 8 cos 4 t

1 − cos  t

9. 

( i) 

( ii)

225

2

 t

1  t

2 t

5

10. 

( i) 

3

 e

 e

 e t

−

+

( ii)  e 2 t J (4 t)

( iii) (2 t 2 –  t + 5)  e 2 t + 6 e– 2 t

2

2

0

1

( iv)  sin 4 t + cos 2 t – sin 2 t

2
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1

 t

12. 

( i) 

2 t

2

2

(sin

cos  t e t

−

+ − )

( ii)  e 2 t –  e–2 t (1 + 4 t)

( iii)

(sin  at −  at  cos  at)

8

8 a 3

( iv) ( t + 2) e– t +  t – 2 . 

1.31

APPLICATIONS TO DIFFERENTIAL EQUATIONS

1. Solution of ordinary linear differential equations with constant coefficients.  Laplace transforms can be used to solve ordinary linear differential equations with constant coefficients. 

The advantage of this method is that it yields the particular solution directly without the

necessity of first finding the general solution and then evaluating the arbitrary constants. 

Steps:

1. Take Laplace transform of both sides of the given differential equation, using

initial conditions. This gives an algebraic equation. 

2. Solve the algebraic equation to get   y  in terms of  p. 

3. Take Inverse Laplace transform of both sides. This gives  y as a function of  t which is the desired solution. 

Remember.    L{F( n) ( t)} =  pn f( p) –  pn–1 F (0)  –   pn–2 F

  

′(0) – ...... –  p F( n–2) (0)  –  F( n–1) (0); 

if L {F( t)} =  f( p). 

Example 70.   Solve the differential equation:

 d3 y

 d2 y

 dy

 dy

 d2 y

+  2

−

  – 2y = 0, where y = 1, 

  = 2, 

  = 2 at t = 0. 

 dt3

 dt2

 dt

 dt

 dt2

Sol.  The given equation is  y″′ + 2 y″  – y′ – 2 y = 0

Taking Laplace transform on both sides, we get

[ p 3  y  –  p 2 y(0) –  py′(0) –  y″(0)] + 2[ p 2  y  –  py(0) –  y′(0)] – [ p y  –  y(0)] – 2  y  = 0

…(1)

Using the given conditions  y(0) = 1,  y′(0) = 2,  y″(0) = 2, equation (1) reduces to ( p 3 + 2 p 2 –  p – 2)  y  =  p 2 + 4 p + 5

 p 2 + 4  p + 5

 p 2 + 4  p + 5

∴

 y  = 

= 

 p 3 + 2 p 2 −  p − 2

( p − 1)( p + 1)( p + 2)

5

1

1

= 

– 

+ 

(Partial Fractions)

3( p − 1)

 p + 1

3( p + 2)

Taking the Inverse Laplace transforms of both sides, we get

5

R

U − R

U

–1 R

U

–1

1

1

1

1

1

5

1

 y =  L S

V L S

V L S

V =    et –  e–t +    e– 2 t

3

 p

T − 1

 p  1

3

 p  2

W − T + W +

T + W 3

3

Example 71.   Solve the differential equation

 y″ –  3y′ +  2y = 4t + e3t , where y(0) = 1 and y′ (0) = – 1. 

Sol.  Taking Laplace transform of both sides, we get

4

1

[ p 2  y  –  py(0) –  y′(0)] – 3[ p y  –  y(0)] + 2  y  = 

+

2

 p

 p − 3
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Using the given conditions, it reduces to

4

1

( p 2 – 3 p + 2)  y  –  p + 1 + 3 = 

+

2

 p

 p − 3

4

1

or

( p 2 – 3 p + 2)  y  = 

+

2

+  p – 4

 p

 p − 3

 p 4 − 7 p 3 + 13 p 2 + 4  p − 12

∴

 y  = 

 p 2(  p − 1)( p − 2)( p − 3)

3

2

1

2

1



=  +

−

−

+

2

(Partial Fractions)

 p

 p

2(  p − 1)

 p − 2 2( p − 3)

Taking the Inverse Laplace transforms on both sides, we get

R1U

− R

U

− R

U

− R

U

R

U

1

1

1

1

1

1

1

1

1

   y = 3L–1 S V 2L S V

L S

V 2L S

V

L–1 S

V

2

 p

T W +

 p

2

 p  1

 p  2

2

 p  3

T W −

T − W −

T − W +

T − W

1

1

⇒

 y = 3 + 2 t –   et – 2 e 2 t +   e 3 t

2

2

Example 72.   Using Laplace transform, solve the following differential equation:

 d2x

 dx

+  2

+  5x =  e–t sin t, where x(0) = 0 and x′ (0) = 1. 

 dt2

 dt

[ M.T.U. 2011]

Sol.  The given equation is 

 x″ + 2 x′ + 5 x =  e–t sin  t

Taking Laplace transform of both sides, we get

1

[ p 2  x  –  px(0) –  x′(0)] + 2[ p x  –  x(0)] + 5  x  =   p + 1 2

(

) + 1

Using the given conditions, it reduces to

1

( p 2 + 2 p + 5)  x  – 1 =  2

 p + 2 p + 2

1

1

or

 x  = 

2

+ 

 p + 2 p + 2

2

(

)(  p + 2 p + 5)

2

 p + 2 p + 5

1 L

1

1

1

= 

−

3

2

NM

O

+ 2 + 2

2 + 2 + 5

2

 p

 p

 p

 p

QP +  p + 2 p + 5

1 L

1

2

1 L

1

2

= 

+

+

3

2

NM

O

+ 2 + 2

2

 p

 p

 p + 2 p + 5QP =  3 NM

O

 p + 1 2 + 1

 p + 1 2 + 22

(

)

(

)

QP

Taking Inverse Laplace transform of both sides, we get

1

R

1

1

U 1

  x =   L–1 S

+ 2 . 

V

[ e–t sin  t + 2 .  1   e–t sin 2 t]

3

 p

T + 1 2 + 1

(  p + 1 2

) + 22

(

)

W = 3

2

1

or

 x =    e–t (sin  t + sin 2 t). 

3

Example 73.   Using Laplace transformation, solve the differential equation

 d2x

F π

+  9x = cos 2t, if x(0) = 1, x 

 dt2

HG I 2 KJ = – 1. 

 (A.K.T.U. 2017)

Sol.  The given equation is

 x″ + 9 x = cos 2 t
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Taking the Laplace transform of both sides, we get

L( x″) + 9L( x) = L(cos 2 t)

 p

[ p 2  x  –  px(0) –  x′(0)] + 9  x  =   p 2 + 4

 p

⇒

 ( p 2 + 9)  x  –  p – A = 

| where  x′(0) = A (say)

 p 2 + 4

 p

 p

A

⇒

 x  = 

+ 

+ 

(  p 2 + )( p 2

4

+ )

9

 p 2 + 9

 p 2 + 9

1 F

 p

 p  I

 p

A

⇒

 x  = 

−

+ 

5 HG  p 2 +

 p 2

4

+ 9KJ  +   p 2 + 9

 p 2 + 9

Taking the Inverse Laplace transform of both sides, we get

1

A

 x =   (cos 2 t – cos 3 t) + cos 3 t +   sin 3 t

5

3

F

But  x  π

HG I2KJ = –1

1

A

1

A

12

⇒



–1 =   (–1 – 0) + 0 +   (–1)

– 

5

3

⇒ –1 = –  5 3 ⇒ A =  5

1

4

∴

  

 x( t) =   (cos 2 t – cos 3 t) + cos 3 t +   sin 3 t

5

5

1



= 

(cos 2 t + 4 cos 3 t + 4 sin 3 t). 

5

Example 74.   Solve the following differential equation by Laplace transform:

 (D2 + n2)x = a sin (nt +  α ) ; x = Dx = 0 at t = 0. 

Sol.  The given equation is

(D2 +  n 2) x =  a sin ( nt + α)

Taking Laplace transform of both sides, we get

L( x″) +  n 2 L( x) = L { a sin ( nt + α)}

 n

 p

⇒

  [ p 2  x  –  px(0) –  x′(0)] +  n 2  x  =  a  cos   α . 

+  a sin α . 

 p 2  n 2

+

 p 2  n 2

+

 an  cos α

 ap  sin α

⇒

( p 2 +  n 2)  x  = 

+ 

 p 2  n 2

+

 p 2  n 2

+

 an  cos α

 ap  sin α

⇒



 x  = 

+ 

...(1)

(  p 2  n 2)2

+

(  p 2  n 2)2

+

Taking the Inverse Laplace transform of both sides, we get

L

 n

L

 p

 x = ( a cos α) L–1 NM

O

(  p 2  n 2)2

+

QP + ( a  sin α) L–1 NM

O

(  p 2  n 2)2

+

QP

...(2)

F 1 I 1

We know that   L–1 

2

2

HG

sin  nt

...(3)

 p +  n  KJ  =   n
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L  d  R 1 UO  nt  cos  nt − sin  nt

L–1 M

S

V

M

P

 dn

N T  p 2 +  n 2

(

) WQP = 

 n 2

L − 2 n

 nt  cos  nt − sin  nt

L–1 NM

O

2

= 

(  p + 2 2

 n ) QP

 n 2

L

 n

1

L–1 NM

O

(sin  nt –  nt cos  nt]

(  p 2  n 2)2

+

QP = 2 2

 n

L  d  F 1 IO

1

Again, from (3), L–1 MM

P

sin  nt

 dp

N HG  p 2 +  n 2

(

)KJQP = –  t .  n

L − 2 p

 t

⇒

L–1 NM

O

2

= –   sin  nt

(  p + 2 2

 n ) QP

 n

L

 p

 t

⇒

L–1 NM

O

sin  nt

(  p 2

 n 2)2

+

QP = 2 n

1

 t

∴ From (2),  x = ( a cos α) . 

(sin  nt –  nt cos  nt) + ( a sin α) . 

sin  nt

2 2

 n

2 n

 a

= 

[cos α sin  nt –  nt cos (α +  nt)]. 

2 n 2

Example 75.   Solve the following equation by Laplace transform

π

   y″′ –  2y″ +  5y′ =  0 ; y = 0, y′ =  1 at t = 0 and y = 1 at t =  . 

 8

Sol.  Taking Laplace transform on both sides, we get

L( y″′) – 2L( y″) + 5L( y′) = L(0)

⇒

 p 3  y  –  p 2 y(0) –  py′(0) –  y″(0) – 2 [ p 2  y  –  py(0) –  y′(0)] + 5[ p y  –  y(0)] = 0

⇒

( p 3 – 2 p 2  + 5 p)  y  –  p – A + 2 = 0

| Let  y″(0) = A (say)

(A − )

2 +  p

⇒

 y  =  ( 2

 p p − 2 p + )

5

F A − 2 F 1

 p  2

I

1

= HG

I

−

−

5 KJ  

2

HG  p p − 2 p + 5KJ +  2 p − 2 p + 5

F A − 2 1 F A − 2 R ( p − )1 − 1 U

1

= HG

I  – 

S

2

V + 

5 KJ    p

HG

I

5 KJ  T( p − )1 + 4W

 p − 1 2

(

) + 4

F A − 2 1 F A − 2 L  p − 1

F A + 3 R

2

U

⇒

 y  = HG

I  – 

+ 

S

V

5 KJ    p

HG

I

5 KJ   NM

O

 p − 1 2

(

) + 4QP HG

I

10 KJ  . T  p − 1 2

(

) + 4W

Taking Inverse Laplace transform on both sides, we get

F A − 2 F A − 2

F A + 3

  y = HG

I

5 KJ  – HG

I

5 KJ   et cos 2 t + HG

I

10 KJ   et sin 2 t

F π

Since

     y HG I

8KJ  = 1
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F A − 2 F A − 2

1

F A + 3

1

∴

1 = HG

I

+ 

5 KJ  – HG

I

5 KJ   e π/8 .  2

HG

I

10 KJ   e π/8  .  2

⇒

A = 7

(on simplification)

Hence required solution is   y = 1 +  et (sin 2 t – cos 2 t). 

Example 76.   Using Laplace transform, find the solution of the initial value problem d2 y +  9y = 6 cos 3t; y(0) = 2, y′ (0) = 0

(U.P.T.U. 2015)

 dt2

Sol.  The given differential equation is

  

 y″ + 9 y = 6 cos 3 t

...(1)

Taking Laplace transform on both sides of eqn. (1), we get

L( y″) + 9L( y) = 6L(cos 3 t)

 p

⇒

 p 2  y −  py  0

( ) −  y′ 0

( ) + 9 y  = 6

| Here 

2

 y  = L( y)

 p + 9

6  p

⇒

( p 2 + 9)   y  – 2 p = 

|

2

∵  y(0) = 2,  y′(0) = 0

 p + 9

6  p

2  p

⇒

 y  = 

+

...(2)

2

( p + 9 2

2

)

 p + 9

Taking Inverse Laplace transform on both sides of (2), we get R

U

 y( t) =  t sin 3 t + 2 cos 3 t

|∵ L–1 

 p

 t

S

V

(  p 2

T +  a 2)2 2 a

W =  sin  at

Example 77.   Solve, using Laplace transform method

   y″ (t) +  4 y′( t)  + 4y(t) = 6e–t ; y(0) = – 2, y′ (0) = 8. 

Sol.  The given differential equation is

 y″ + 4 y′ + 4 y = 6 e–t

...(1)

Taking Laplace transform on both sides of eqn. (1), we get

L( y″) + 4L( y′) + 4L( y) = 6L( e– t)

6

⇒

[ p 2  y  –  py(0) –  y′(0)] + 4 [ p y  –  y(0)] + 4  y  = 

|Here   y  = L( y)

 p + 1

6

⇒

( p 2 + 4 p + 4)   y  + 2 p – 8 + 8 = 

|∵  y(0) = – 2 and  y′(0) = 8

 p + 1

6

2  p

⇒



 y  = 

−

 p + 1  p + 2 2

 p + 2 2

(

) (

)

(

)

L 1

1

1

2 (

l  p + 2) − 2q

= 6

−

−

NM

O

+ 1

+ 2 ( + 2 2

) QP −

(  p + 2 2

 p

 p

 p

)

6

6

6

2

4

= 

−

−

−

+

+ 1

+ 2 ( + 2 2

)

+ 2 ( + 2 2

 p

 p

 p

 p

 p

)

6

8

2

= 

−

−

+ 1

+ 2 ( + 2 2

 p

 p

 p

)
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Taking inverse Laplace transform on both sides, we get

    y = 6 e– t – 8 e–2 t – 2 t  e–2 t. 

Example 78.   Solve the following differential equation using Laplace transform

 d3 y

 d2 y

 dy

−  3

+  3

−  y = t2 et

 dt3

 dt2

 dt

F  dy

F  d2y I

 where

 y(0) = 1,  HG I   = 0, 

  = –  2. 

[A.K.T.U. 2018]

 dt  KJ

 2

HG KJ

 t =  0

 dt

 t =  0

Sol.  The given equation is

 y′″ – 3 y″ + 3 y′ –  y =  t 2 et

...(1)

Taking Laplace  transform on both sides of eqn. (1), we get

L( y′″) – 3L( y″) + 3L( y′) – L( y) = L( t 2 et)

⇒

 p 3  y −  p 2  y( ) −  py′ ( ) −  y″ ( ) −

 p 2

0

0

0

3

 y −  py  0

( ) −  y′ 0

( )

2

+ 3   py −  y( )

0 −  y  = 

| where   y  = L( y)

 p − 1 3

(

)

2

⇒

( p 3  y −  p 2 + ) − ( p 2

2

3

 y − )

 p + 3 ( py − )

1 −  y =   p − 1 3

(

)

2

⇒

( p 3 – 3 p 2 + 3 p – 1)   y  –  p 2 + 3 p – 1 =   p − 1 3

(

)

2

⇒

( p – 1)3   y  =  p 2 – 3 p + 1 +   p − 1 3

(

)

(  p − )

1 2

 p

2

⇒

 y  = 

−

+

(  p − )

1 3

(  p − )

1 3

(  p − )

1 6

1

(  p  1) 1

2

= 

−

− + +

− 1

(  p − 1 3

)

(  p − 1 6

 p

)

1

1

1

2

= 

−

−

+

...(2)

− 1 ( − 1 2

)

( − 1 3

)

( − 1 6

 p

 p

 p

 p

)

Taking inverse Laplace transform on both sides of eqn.(2), we get

 t 2

5  t

2

5

F

 t

 t  I

 t

 t e

   y =  et – t et – 

 e +

  =   1 −  t −

+

 et

2

60

HG

2

60KJ

Example 79.   Solve by Laplace transform:

 d2 y

 dy

+  y = t cos 2t, t > 0 given that y = 

  = 0 for t = 0. 

(A.K.T.U. 2016)

 dt2

 dt

Sol.  The given equation is

  y″ +  y =  t cos 2 t

...(1)
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Taking Laplace transform on both sides of eqn. (1), we get

L( y″) + L( y) = L( t cos 2 t)

 d  F

 p  I

⇒

 p 2  y −  py  0

( ) −  y′ 0

( ) +  y  = −

|where   y  = L( y)

 dp  HG  p 2 + 4KJ

 p 2 − 4

⇒

( p 2 + 1)   y  =  ( p 2

2

+ 4)

 p 2 − 4

⇒



 y  =  ( p 2 + 1) ( p 2

2

+ 4)

5

1

5

1

8

= −

+ . 

+

...(2)

9

2

 p + 1

9

2

(  p + 4) 3 2

(  p + 4 2

(

)

)

Taking inverse Laplace transform on both sides of (2), we get

5

5

8 1

     y = − sin  t +

sin 2 t + . 

(sin 2 t – 2 t cos 2 t)

9

18

3 16

R

1

U 1

| ∵ L–1 S

V

(sin  at –  at cos  at)

2

2 2

(  p

T +  a ) W = 2 3 a

5

4

 t

= − sin  t +

sin 2 t − cos 2 t. 

9

9

3

Example 80.   Voltage Ee–at is applied at t = 0 to a circuit of inductance L and resistance R. 

 E

 Show that the current at time t is 

 (e–at – e–Rt/L). 

 R −  aL

Sol.  Let I be the current in the circuit at any time  t,  then by Kirchhoff ’s law, we have d I

L 

+ RI = E e–at , where I(0) = 0

 dt

Taking Laplace transform of both sides, 

E

L[ p I  – I(0)] + RI  =   p + a

Using the given condition, it reduces to

E

(L p + R)I  =   p + a

E

E

F 1

L

E

F 1

1

or

I  = 

= 



= 



( p

−

−

+ )

 a  L

(  p + R)

R − L

 a

HG

I

 p +  a

 p

L + RKJ

R − L

 a

HG

I

 p +  a

 p

KJ

+ R/L

Taking the Inverse Laplace transforms of both sides, we get

E

R 1

1

U

E

I = 

L–1 S

V = 

[ e–at –  e– R t/L]. 

R

−

− L

 a

 p

T +  a p + R/LW R − L

 a
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2. Solution of simultaneous ordinary differential equations.  Laplace transform

technique can also be used in solving two or more simultaneous ordinary differential equa-

tions. 

This procedure is illustrated as follows. 

Example 81.   Solve the simultaneous equations:

 dx

 dy



–  y =  et, 

+  x = sin t,  given x(0) = 1, y(0) = 0. 

 dt

 dt

[G.B.T.U. (SUM) 2010; U.K.T.U. 2011]

Sol.  Taking Laplace transform of the given equations, we get

1

[ p x  –  x(0)] –   y  =   p − 1

1

 i.e., 

 p x  – 1 –   y  = 

[

 p − 1

∵  x(0) = 1]

 p

 i.e., 

 p x  –   y  = 

...(1)

 p − 1

1

and

[ p y  –  y(0)] +   x  =  2

 p + 1

1

 i.e., 

   x  +  p y  =  2

...(2)

[∵  y(0) = 0]

 p + 1

Solving (1) and (2) for   x  and   y , we have

 p 2

1

1 L

 p

1

1

 x  = 

+ 

=   

1 +

+

(  p − )

1 (  p 2 + 1)

2

 p + 1 2

(

)

2 NM

O

− 1

2

 p + 1

2

 p

 p + 1QP +  2

 p + 1 2

(

)

 p

 p

 p

1 L 1

 p

1

and

 y  = 

– 

= 

–   

−

+

(  p 2 + )2

1

(  p − )

1 (  p 2 + )

1

(  p 2 + )2

1

2 NM

O

− 1

2

 p + 1

2

 p

 p + 1QP

Taking Inverse Laplace transform of both sides, we get

1

L 1

 p

1

L 1

  x =  L–1 

+

+

2

NM

O

− 1

2

 p + 1

2

 p

 p + 1QP + L–1 

2

NM

O

 p + 1 2

(

) QP

1

=  [ et + cos  t + sin  t] +  1  (sin  t –  t cos  t) 2

2

L

1 L

1

1

O

∵

M L−

(sin  at at  cos  at)

2

2 2

3

P

NM

NM

O

(  p +  a ) QP =

−

2 a

QP

1

=  [ et + cos  t + 2 sin  t –  t  cos  t)

2 L  p

1

L 1

 p

1

 y = L–1 NM

O

L–1 

−

+

(  p 2 + )2

1 QP  –  2

NM

O

− 1

2

 p + 1

2

 p

 p + 1QP

L

1 L

 p

1

O

1

1

=   t sin  t –  [ et –  cos  t + sin  t]

∵

M L−

 t  sin  at

2

2 2

P

2

2

NM

NM

O

(  p +  a ) QP = 2 a

QP

1

=  [ t sin  t –  et + cos  t – sin  t]

2
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1

Hence

  x =  ( et + cos  t + 2 sin  t –  t cos  t)

2

1

  y =  ( t sin  t –  et + cos  t – sin  t). 

2

Example 82.   Solve the simultaneous equations

 (D2 – 3)x – 4y = 0

  x + (D2 + 1)y = 0

 dy

 dx

 for t >  0, given that x = y = 

=  0 and

=  2 at t = 0. 

 dt

 dt

Sol.  Taking Laplace transform of the given equations, we get

 p 2  x  –  px(0) –  x′(0) – 3  x  – 4  y  = 0

 i.e., 

( p 2 – 3)  x  – 4  y  = 2

...(1) [∵  x(0) = 0,  x′(0) = 2]

and

 x  +  p 2  y  –  py(0) –  y′(0) +   y  = 0

 i.e., 

 x  + ( p 2 + 1)  y  = 0

...(2) [∵  y(0) =  y′(0) = 0]

Solving (1) and (2) for   x  and   y , we get

2 2

( p + 1)

1

1

 x  = 

2

= 

+ 

(  p − 1 2

)

 p − 1 2

(

)

 p + 1 2

(

)

2

1 L 1

1

1

1

and

 y  = –  2

=  – 

−

−

+

 p − 1 2

(

)

2 NM

O

+ 1

− 1

+ 1 2

− 1 2

 p

 p

 p

 p

QP

(

)

(

)

Taking Inverse Laplace transform of both sides, we get

L 1

1

F  et e− t

+

I

  x = L–1 

+

NM

O

= 2 t cosh  t

 p − 1 2

 p + 1 2

(

)

(

) QP  =  tet +  te–t = 2 t HG 2 KJ

1

F 1

1

1

1

I

and

  y = –  L–1 

−

−

+

2

HG + 1

− 1

+ 1 2

− 1 2

 p

 p

 p

 p

KJ

(

)

(

)

1

 et

 e t

− −

F  et e− t

−

I

= –  ( e–t – et – te–t + tet) = 

–  t 

= (1 –  t) sinh  t

2

2

HG 2 KJ

Hence, 

  x = 2 t cosh  t,  y = (1 –  t) sinh  t. 

Example 83.   Solve the simultaneous equations

 2

 dx

 d2 y

 d x

 dy

+  5

–  x  = t,  2 

−

+  4y = 2

 dt2

 dt

 dt

 dt2

 dx

 dy

 given that when t = 0, x = 0, y = 0, 

=  0, 

  = 0. 

 dt

 dt

Sol.  Let

L{ x( t)} =   x ( p) and L{ y( t)} =   y ( p) then, taking Laplace transform of given equations, we get

1

{ p 2  x  –  px(0) –  x′(0)} + 5{ p y  –  y(0)} –   x  =  2

 p 2

and

2{ p x  –  x(0)} – { p 2  y  –  py(0) –  y′(0)} + 4  y  =   p Using the given initial conditions, these equations reduce to

1

( p 2 – 1)  x  + 5 p y  =  2

...(1)

 p

2

and

2 p x  – ( p 2 – 4)  y  = 

...(2)

 p
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Eliminating   y  between (1) and (2), we find that

 p 2 − 4

{( p 2 – 1)( p 2 – 4) + 10 p 2}  x  = 

+ 10

 p 2

11 2

 p − 4

1

5

4

∴

 x  = 

= – 

+ 

– 

2

2

 p (  p + 1 2

)(  p + 4)

2

 p

2

 p + 1

2

 p + 4

Taking Inverse Laplace transform, we get

  x = –  t + 5 sin  t – 2 sin 2 t

...(3)

Again eliminating   x  between (1) and (2), we have

2

2 2

( p − 1)

{10 p 2 + ( p 2 – 1)( p 2 – 4)}  y  =   – 

 p

 p

4 − 2 2

 p

1

2  p

 p

∴



 y  = 

2

=   – 

+ 

 p(  p + 1 2

)(  p + 4)

 p

2

 p + 1

 p 2 + 4

Taking Inverse Laplace transform, we get

  y = 1 – 2 cos  t + cos 2 t

...(4)

Thus (3) and (4) together constitute the desired solution. 

Example 84.  The co-ordinates (x, y) of a particle moving along a plane curve at any time dy

 dx

 t are given by 

  + 2x = sin 2t, 

  – 2y = cos 2t ; (t > 0). It is given that at t = 0, x = 1 and y = 0. 

 dt

 dt

 Show using transforms that the particle moves along the curve 4x2 + 4xy + 5y2 = 4. 

[A.K.T.U. 2017]

Sol. The given equations are

 dy  + 2 x = sin 2 t

...(1)

 dt

 dx  – 2 y = cos 2 t

...(2)

 dt

Above equations may be rewritten as

2 x + D y = sin 2 t

 d

D x – 2 y = cos 2 t, 

where D ≡   dt

Taking Laplace transform of eqn. (1) on both sides, we get

2

2 x +  py  –  y(0) =  2

, 

where   x  = L( x) and   y  = L( y)

 p + 4

2

⇒

2 x +  py  =  2

...(3) |

 p

∵

 y(0) = 0

+ 4

Again, taking Laplace transform of eqn. (2) on both sides, we get

 p

  

   p x  – x(0) – 2  y  = 

, where   x  =  L( x) and   y  = L( y)

 p 2 + 4

 p

⇒

 p x  – 2  y  = 

+ 1

...(4) |

 p 2

∵

 x(0) = 0

+ 4
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Multiplying equation (3) by 2 and equation (4) by  p and then adding, we get

4

2

 p

4  x  +  p 2  x  = 

+

+  p

2 + 4

2

 p

 p + 4

⇒

(4 +  p 2)  x  = 1 +  p

1 +  p

1

 p



 x  = 

=

+

4

2

2

+  p

 p + 4

2

 p + 4

Taking Inverse Laplace transform, we get

1

  x =   sin 2 t + cos 2 t

...(5)

2

Again, Multiplying eqn. (3) by  p  and eqn. (4) by 2 then subtracting eqn. (4) from (3), we get

2  p

2  p

  p 2  y  + 4  y  = 

−

2

– 2

 p + 4

2

 p + 4

− 2

⇒

 y  =  2

 p + 4

Taking Inverse Laplace transform, we get  y = – sin 2 t

...(6)

L1

Now, 

4 x 2 = 4 

2 2

2

sin

 t + cos 2 t + sin 2 t  cos 2 t

NM

O

4

QP

5 y 2 = 5 sin2 2 t

FL 1

4 xy = 4 

sin 2 t + cos 2 t . ( sin 2 )

 t

HG

I

NM

O

2

KJ −

QP = – (2 sin2 2 t + 4 sin 2 t cos 2 t)

∴

4 x 2 + 5 y 2 + 4 xy = 4 sin2 2 t + 4 cos2 2 t = 4

Hence the result. 

 dx

 dy

Example 85.  Use Laplace transform to solve: 

+  y = sin t, 

+  x = cos t given that

 dt

 dt

 x = 2, y = 0 at t = 0. 

(G.B.T.U. 2012)

Sol. Taking Laplace transform of the given equations, we get

1

  p x  –  x(0) +   y  =  2

 p + 1

1

⇒

 p x  +   y  = 

+ 2

2

...(1)

 p + 1

 p

and

  p y  –  y(0) +   x  =   p 2 + 1

 p

⇒

 x  +  p y  = 

...(2)

 p 2 + 1

Solving (1) and (2) for   x  and   y , we get

2  p

1

2

 x  = 

+

2

and  y  = 

 p − 1

1

2

 p

1

2

+

−  p

1

1

1

1

1

⇒

 x  = 

+

and  y  = 

+

−

 p + 1  p − 1

1

2

+  p

 p + 1  p − 1
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Taking Inverse Laplace transform on both sides, we get

    x =  e– t +  et

...(3)

and

  y = sin  t +  e– t –  et

...(4)

Equations (3) and (4), when taken together, give the complete solution. 

Example 86.   Solve the following simultaneous differential equations by Laplace transform dx

 dy

 dx

+  4

−  y = 0 ; 

+  2y = e– t with conditions x(0) = y(0) = 0. 

 dt

 dt

 dt

Sol.  The given equations are

 dx

 dy

+ 4

−  y  = 0

...(1)

 dt

 dt

 dx

and



+ 2 y =  e– t

...(2)

 dt

Taking Laplace transform on both sides of eqn. (1), we get

L( x′) + 4L( y′) – L( y) = L(0)

⇒    px −  x( )

0 + 4 [  py −  y( )

0 ] −  y = 0

| where   x  = L( x) and   y  = L( y)

⇒

 px + (4  p − )

1  y  = 0

...(3)

Similarly, taking Laplace transform on both sides of eqn. (2), we get

L( x′) + 2L( y) = L( e–t)

1

 px −  x( )

0 + 2 y  =   p + 1

1

 px + 2 y  = 

...(4)

 p + 1

Subtracting (4) from (3), we get

1

(4 p – 3)   y  = −  p + 1

1

1 F 1

1

⇒

 y  = −

= 

−

( p + 1) 4

(  p − 3)

7 HG

I

 p + 1  p − 3 4KJ

/

Taking inverse Laplace transform on both sides, we get

1

3 t

F

I

  y = 

− t

4

 e −  e

7 HG

KJ

...(5)

Substituting   y  in (4), we get

2 F 1

1

 px +

−

=  1

7 HG

I

 p + 1  p − 3/4KJ

 p + 1

5

2

 px  = 

+

7 ( p + 1) 7 ( p − 3/4)

5

2

 x  = 

+

7  p ( p + 1) 7 p ( p − 3/4)
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5 F 1

1

8 F

1

1

= 

−

−

7 HG

I

 p

 p + 1KJ + 21 HG

I

 p − 3 4

 p KJ

/

1

5

8

= 

−

+

3 p  7 ( p + 1) 21( p − 3/4)

Taking Inverse Laplace transform on both sides, we get

1 5

 t

 t

8 3

  x = 

−

4

−  e +

 e

...(6)

3 7

21

Equation (5) and (6), when taken together, give the complete solution. 

Example 87.   Solve the following simultaneous differential equations by Laplace transform dx

 dx

 dy

 3

−  y = 2t, 

+

−  y  = 0 with the conditions x(0) = y(0) = 0. 

 dt

 dt

 dt

Sol.  The given equations are

 dx

3

−  y = 2 t

...(1)

 dt

 dx

 dy

and



+

−  y  = 0

...(2)

 dt

 dt

Taking Laplace transform on both sides of eqn. (1), we get

3L( x′) – L( y) = L(2 t)

2

3  px −  x( )

0 −  y  =  2

| where L( x) = 

 p

 x  and L( y) =   y

2

3  px −  y  =  2

...(3)

 p

Similarly, taking Laplace transform on both sides of eqn. (2), we get

L( x′) + L( y′) – L( y) = L(0)

⇒

 px −  x( )

0 +  py −  y( )

0 −  y  = 0

⇒

 px + ( p − )

1  y  = 0

...(4)

Multiplying equation (4) by 3, we get

3  px + 3( p − 1)  y  = 0

...(5)

Subtracting equation (3) from (5), we get

2



(3 p – 2)   y  = − 2

 p

2

1

3

3

 y  = −

= 

+

−

2

 p  3

(  p − 2)

2

 p

2  p

2(  p − 2/3)

Taking inverse Laplace transform on both sides, we get

 y = 

3

3

 t

 e 2 t

+ −

/3

...(6)

2

2

Substituting   y  in (3), we get

2



1

3

3

3 px −

−

+

= 

2

 p

2  p

2(  p − 2/3)

2

 p
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3

3

3

3 p x  = 

+

−

2

 p

2  p

2(  p − 2/3)

1

1

1



 x  = 

+

−

3

2 2

 p

 p

2  p (  p − 2/3)

1

1

3 F

1

1



 x  = 

+

−

−

3

2 2

 p

 p

4 HG

I

 p − 2 3  p KJ

/

Taking inverse Laplace transform on both sides, we get

 t 2

 t

3

/

3

 x = 

+ −  e 2 t  3 +

...(7)

2

2

4

4

Equation (6) and (7), when taken together, give the complete solution. 

3. Solution of ordinary differential equations with variable coefficients. The

method is illustrated as follows:

 2

F  dy

Example 88.   Solve:  d y(t)

 dy(t)

+  t

−  y(t) =  0  if y(0) = 0,  HG IKJ  =  1. 

 dt2

 dt

 dt t =  0

Sol.  Taking the Laplace transform of both sides of the given equation, we get

L( y″) + L( ty′) – L( y) = L(0)

 d

⇒

{ p 2  y  –  py(0) –  y′(0)} – 

L(  y′) –   y  = 0

 dp

 d

⇒

  p 2  y  – 1 – 

{ p y  –  y(0)} –   y  = 0

 dp

 d

⇒

  p 2  y  – 1 – 

( p y ) –   y  = 0

 dp

 d y

⇒

–  p 

+ ( p 2 – 2)  y  = 1

 dp

 d y  F 2

1

+

–  p y –

which is linear. 

 dp

HG

I

 p

KJ =  p F2− p dp

zHG IKJ

I.F. =  e p

=  p 2 e−  p 2 /2

Solution of equation is

F – 1

 y p 2 e−  p 2 /2  = zHG I   p 2 − 2/2  dp +  c

 p  KJ

 e p

= –   p e p

z − 2/2  dp +  c =  c +  e− p 2/2 | where  c is a constant c must vanish if   y  is a transform since    y  → 0 as  p → ∞

1

∴

 y  =  2

 p  F 1 I

or

  y = L–1 

2

HG  p  KJ  =  t. 
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Example 89.   Solve the problem

 2

 dy

 t   d y

 dy

+

+  4ty = 0   given that y = 3 and 

  = 0 when t = 0. 

 dt2

 dt

 dt

Sol.  Taking Laplace transform on both sides of the given equation, we have

L( ty″) + L( y′) + 4L( ty) = L(0)

 d

 d

⇒

–   L( y

L( y) = 0

 dp

″) + L( y′) – 4   dp

 d

 d y

⇒  –  { p 2  y  –  py(0) –  y′(0)} + { p y  –  y(0)} – 4 

= 0

 dp

 dp

 d y

⇒

( p 2 + 4) 

+  p y  = 0

...(1)

 dp

Separating the variables, we have

 d y

 p dp



+ 

= 0

...(2)

 y

 p 2 + 4

1

Integration yields

log   y  +  log ( p 2 + 4) = log  c

2

 c

⇒

 y  = 

...(3)

 p 2 + 4

Taking Inverse Laplace transform, we get

     y =  c J  (2 t)

...(4)

0

Since  y(0) = 3, from (4), 

   y(0) =  c J (0) =  c

0

∴

   c = 3

Hence the required solution is

 y = 3J (2 t). 

0

Example 90.  Using Laplace transform, solve the differential equation y″  + 2ty′  – y = t, when y(0) = 0 and y′ (0) = 1. 

Sol. Taking Laplace transform on both sides, we get

L( y″) + 2 L( ty′) – L( y) = L( t)

...(1)

L

⇒

 p 2  y  –  py(0) –  y′(0) + 2 

 d

1

–

L( y′)

 y

NM

O

, 

where   y  = L( y)

 dp

QP − =  p 2

 d

1

∵

 y( )

0 = 0

⇒

   p 2  y  – 1 – 2   dp  { p y –  y(0)} –   y =  2

 p

and  y′( )

0 = 1

F  dy

1

⇒

  

  p 2  y  – 1 – 2   p

+  y

 y

HG

I

 dp

KJ − =  p 2

| ∵  y(0) = 0

 dy

1

⇒

– 2 p 

+  y ( p 2 − )

3 =

+ 1

 dp

 p 2

 dy  F 3  p 2 I

1

1



+

−

 y –

...(2)

 dp  HG 2 p  KJ =

−

2  p 3

2 p

which is a linear diff. equation of I order in   y  and  p. 

2

F

I

1

F 3

1

 p

−  p dp

z

3 log  p −

HG

KJ

2

I.F. = 

2

2

 e 2 HG

I

 p

KJ   = e

=  e− ( p /4)  p 3/2

M-1.88

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Solution to eqn. (2) is

F

I

F

I

2

1

1

2

1

2

 y  .  e−  p  4/  p 3/2  = –  1

3/2

(  p  4

+

 p

 e

/ )  dp

z

−

= –  1

 p /4

 p +

 e

 dp

z

−

2

3

HG  p p KJ

2

3/2

HG

 p

KJ

 dt

Put  p 2 = 4 t ⇒  p = 2  t  so that  dp =   t

2

F 1/4 1 −

−  t dt

⇒  y  .  p 3/2  e−  p /4  = –  1

2

3 4

 t

+

 t

 e

z

/

2

HG

I

2 2

KJ

 t

1

F –1/4 1

= – 

− 5/4

 t

+  t

 e−  t dt

z2 HG

I

4

KJ

1

−  t

L

F

− 1/4  e

1 − 5/4 −  t

1

= – 

− 5/4

 t

+

−

 t

 e

 dt

 t

 e−  t dt

(

) z

z

2 NM

O

− 1

HG I

4 KJ

+ 4

QP

1

2 − 1/4

(

/ ) F

I

1

−  t − 1/4

1

2

−  p

 p

2

= 

4

 e

 t

=

 e

= 

− (

/4

 e p )

2

2

HG 4 KJ

 p

1

⇒

 y  =  2  +  c,   where  c is a constant. 

 p

 c must vanish if   y  is a transform since   y  → 0 as  p → ∞

1

∴

 y  =  2

 p

Taking Inverse Laplace transform, we get

F 1 I

 y = L–1 

2

HG  p  KJ  =  t

which is the required solution. 

4. Solution of integral equations. An equation in which an unknown function occurs

inside an integral is called an integral equation. 

Thus an equation of the form, 

 b

Y( t) = F( t) + z Y( u) K( u,  t)  du

...(1)

 a

in which F( t) and K( u, t) are known functions and Y( t) is the unknown function is an integral equation. Here  a and  b are either constants or functions of  t. 

The function K( u, t) is often called the kernel of the integral equation. 

If  a and  b are constants, eqn. (1) is  called  Fredholm  integral  equation.    If    a  is a constant while  b =  t, it is called a Volterra integral equation. 

A special integral equation of convolution type is

 t

Y( t) = F( t) + z Y( u) . G( t –  u)  du

0

The Laplace transform is an excellent tool for solving such integral equations of

convolution type. The method is illustrated as follows :
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Example 91.   Solve the integral equation

 t

  y( t) =  t2 + z  y(u) . sin (t – u) du. 

 0

Sol.  We have

  y( t) =  t 2 +  y( t)∗ sin  t

...(1)

Let L{ y( t)} =   y ( p) then taking Laplace transform and using convolution theorem, we find that

2

1

 y  =  3  +   y  . 

 p

2

 p + 1

F

1 I

2

F  p 2 I 2

⇒    y   1 −

= 

2

HG

⇒

 y  

+ 1KJ

 p

3

 p

HG  p 2 + 1KJ  =  3 p

2 2

(  p + 1)

2

2

⇒



 y  = 

5

= 

+ 

...(2)

 p

3

 p

5

 p

Taking Inverse Laplace transform, we get

 t 4

 y =  t 2 + 

. 

12

Example 92.  A function f (t) obeys the equation

 t

 f(t) + 2 

 f(t) dt

z   = cosh 2t

 0

 Find the Laplace transform of f(t). 

Sol.  Taking the Laplace transform of the given equation, 

 t

F

We have L l f t()q + L

2

 f t

( )  dt

HG

I

z

= L (cosh 2 t)

0

KJ

2

 p

⇒

 f ( p) +

 f ( p) = 

where   f ( p) = L{ f( t)}

 p

 p 2 − 4

F  p+ 2

 p

⇒



 f ( p

HG

I ) = 

 p  KJ

 p 2 − 4

 p 2

 p 2

⇒

 f ( p) = 

= 

( p + ) ( p 2

2

− 4)

( p

2

+ 2) ( p − 2)

 p 2

or, 

L{ f ( t)} =  ( p  2

+ 2) ( p − 2)

 t

Example 93.   Solve for y(t) the equation y(t) = 1 +

 y(τ)  cos ( t − τ)  d

z

τ . 

0

Sol.  We have the equation

 y( t) = 1 + ( y( t) * cos  t)

...(1)

Taking Laplace transform on both sides of eqn. (1), we get

1

 p

 y  =  +  y . 

| where L( y) =   y

2

 p

 p + 1
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F

 p  I

1

⇒

 y   1 −

= 

2

HG  p + 1KJ  p

 p 2 + 1

1

1

⇒



 y  = 

=  +

 p 2 −  p + 1

2

 p

 p −  p + 1

1

1

=  + F

...(2)

1 2

 p

3

 p −

HG

I2KJ + 4

Taking inverse Laplace transform on both sides of (2), we get

 t/

− F

I

2

1

1

  y = 1 +  e

L

2

HG  p + 3/4KJ

2  t/2

3

⇒



 y = 1 +

 e

sin

 t . 

3

2

REVIEW QUESTIONS

 Solve the following equations by Laplace transform (1–18):

1. 

(D2 – 2D + 2) x = 0,  x = D x = 1 at  t = 0

2. (D2 – 2D + 1)  x =  et ;  x = 2, D x = – 1 at  t = 0. 

3. 

 y″ + 4 y′ + 3 y =  e– t,  y(0) =  y′(0) = 1. 

4.  x″ – 3 x′ + 2 x = 1 –  e 2 t,  x(0) = 1,  x′(0) = 0. 

5. 

 y″ +  y′ – 2 y =  t,  y(0) = 1,  y′(0) = 0. 

6. (D3 + D) x = 2,  x = 3, D x = 1, D2 x = – 2 at  t = 0. 

2

 d x

7. 

( i) 

+ 9 x  = sin 2 t,  x(0) = 1,  x

2

′(0) = 0. 

[ G.B.T.U. (C.O.) 2011]

 dt

2

 d y

 dy

( ii) 

+ 4

+ 8 y  = sin  x,  y(0) = 1,  y

2

′(0) = 0

( G.B.T.U. 2013)

 dx

 dx

( iii) (D2 – D – 2) x = 20 sin 2 t,  x(0) = – 1,  x′(0) = 2. 

2

 d y

8. 

( i) 

+ 2

 n y =  a sin ( nx + 2), given:  y(0) = 0 and  y

2

′(0) = 0. 

[ G.B.T.U. (C.O.) 2010]

 dx

2

 d y

 dy

( ii) 

+ 9 y = sin 3 t

0 at  t  0

2

, given:  y = 0, 

=

=

 dt

 dt

( M.T.U. 2012)

 d 2 y

 dy

9. 

( i) 

+ 

– 2 y = 3 cos 3 t – 11 sin 3 t given that  y(0) = 0 and  y′(0) = 6. 

 dt 2

 dt

( ii) (D3 – D2 + 4D – 4) x = 68  et sin 2 t ;  x = 1, D x = – 19, D2 x = – 37 at  t = 0. 

10. 

( i)  y″ +  y =  e–2 t sin  t,  y(0) = 0,  y′(0) = 0. 

2

( ii)   d y

 dy

− 2

+  y  =  et,  y(0) = 0  y′(0) = 1

( M.T.U. 2013)

2

 dt

 dt

 d 2 x

 dx

11. 

+ 6

+ 8 x =  e  3

−  t −  e  5

−  t  ;  x(0) = 0,  x′(0) = 0

 dt 2

 dt

12. 

( i)  y″ + 2 y′ +  y =  te– t;  y(0) = 1,  y′(0) = –2. 

( U.P.T.U. 2015)

( ii)  y″ + 3 y′  +  2 y =  t e– t;  y(0) = 1,  y′ (0) = 0

( G.B.T.U. 2012)

( iii)  y″ + 2 y′  + y =  t e– t;  y(0) = 1,  y′ (0) = 2

[ M.T.U. (SUM) 2011]

( iv)  y″ – 8 y′ + 15 y = 9 te 2 t ;  y(0) = 5,  y′(0) = 10. 

( v) (D3 – D2 – D + 1) y = 8 te–t ;  y(0) = 0,  y′(0) = 1,  y″(0) = 0. 

( U.P.T.U. 2014)
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13. 

 y″ +  y = sin  t sin 2 t ;  y(0) = 1,  y′(0) = 0. 

 dy

 t

14. 

 y dt

 dt  + 2 y +  ∫

= sin  t,  y(0) = 1

( A.K.T.U. 2017)

0

15. 

(D4 – 16) y = 30 sin  t ;  y(0) = 0,  y′(0) = 2,  y″(π) = 0,  y″′(π) = – 18

 d 2 x

1

16. 

,  x′ (0) = 0

( U.P.T.U. 2014)

 dt 2  + 16 x = 2 sin 4 t ;  x(0) = –  2

17. 

Determine the response of damped mass-spring system under a square wave given by

 y′′ + 3 y′ + 2 y =  u( t – 1) –  u( t – 2),  y(0) = 0,  y′(0) = 0

using the laplace transform. 

( A.K.T.U. 2013, 2017)

2

 d x

 dx

⎧  t

18. 

( i) 

+ 3

+ 2 x  =  r( t) where,  r( t) =   e , 0 <  t < 2

2

⎨

 dt

 dt

⎩0,  t > 2

and

  x(0) = 1,  x′(0) = –2

[ G.B.T.U.(C.O.) 2010]

2

 d y

 t

<  t < π

( ii)

+ 9 y  =  r( t) with initial conditions  y(0) = 0 and  y

2

′(0) = 4 where  r( t) =  {8 sin , 0

 dt

0, 

 t > π

( G.B.T.U. 2011)

19. 

A particle moves in a line so that its displacement  x from a fixed point O at any time  t, is given by d 2 x

 dx

+ 4

+ 5 x = 80 sin 5 t. 

 dt 2

 dt

Using Laplace transform, find its displacement at any time  t if initially particle is at rest at  x = 0. 

20. 

An alternating e.m.f. E sin ω t is applied to circuit with an inductance L and a capacitance  C in series. Show that the current in the circuit is

Eω

1

(cos ω t – cos  nt) where  n 2 = 

. 

( G.B.T.U. 2010)

2

2

( n − ω ) L

LC

21. 

Constant voltage E is applied at  t = 0 to a circuit with an inductance L, capacitance C and resistance R. Find the current I at time  t, if the initial current and charge are zero. 

 Solve the following simultaneous equations by using Laplace transform (22–27):

 dx

 dy

22. 

+  y  = 0 ; 

−  x = 0 under the conditions  x(0) = 1,  y(0) = 0. 

 dt

 dt

 dx

 dy

 dy

23. 

+

+  x +  y  = 1, 

= 2 x +  y ;  x(0) = 0,  y(0) = 1

[ M.T.U. (SUM) 2011]

 dt

 dt

 dt

24. 

D2 x +  y = – 5 cos 2 t, D2 y +  x = 5 cos 2 t,  where  x(0) =  x′(0) =  y′(0) = 1 and  y(0) = – 1. 

 dx

 dy

 dx

 dy

25. 

2

 x

 y e t

+

− − = − , 

2 x

 y et

+

+

+ = ;  y(0) = 1,  x(0) = 2. 

 dt

 dt

 dt

 dt

 dx

 dy

26. 

– 2 x + 3 y = 0, 

+ 2 x –  y = 0 given that  x(0) = 8 and  y(0) = 3. 

 dt

 dt

27. 

(D – 2) x – (D + 1) y = 6 e 3 t

(2D – 3) x + (D – 3) y = 6 e 3 t; Given:  x = 3,  y = 0 when  t = 0. 

28. 

( i) The currents  i  and  i  in mesh are given by the differential equations: 1

2

 di 1

 di

– ω i  =  a cos  pt,  2  + ω i  =  a sin  pt. 

 dt

2

 dt

1

Find the currents  i  and  i  by Laplace transform, if  i  =  i  = 0 at  t = 0. 

1

2

1

2
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( ii) A mechanical system, with two degrees of freedom, satisfies the equations:

 d 2 x

 dy

 d 2 y

 dx

2 

+ 3 

= 4, 2 

– 3 

= 0. 

 dt 2

 dt

 dt 2

 dt

Use Laplace transform to determine  x and  y at any instant, given that  x, y,  dx  ,  dy  all vanish dt

 dt

at  t = 0. 

29. 

Solve the following integral equations:

 t

 y u

( )

 t

( i) z

 du = 1 +  t +  t 2

( ii) z  y( u) .  y( t –  u)  du = 16 sin 4 t. 

0

 t −  u

0

 t

 t

( iii)  y( t) =  e– t – 2

 y u

( ) . cos  t

(

 u)  du

z

−

( iv)  y( t) = 1  –  sinh  t + z (1 +  u) ( yt −  u)  du 0

0 [ G.B.T.U. (C.O.) 2011]

30. 

Solve the differential equation using Laplace transform method:

∂ y

∂2 y

F π

F ∂ y

= 3

, 

0, 

0 and  y( x, 0) = 30 cos 5 x. 

∂ t

∂ x 2  where   y

 t

HG I

2 KJ =  HG

I

∂ x KJ

=

 x=0

ANSWERS

1. 

 x =  et cos  t

2.  x = (2 – 3 t +  12  t 2) et

7

3

3

−  t

1

1

3. 

 y =   e− t  –   e

−  te− t

4.  x = 

1

2

+ ( − )

 t e t

4

4

2

2

2

1

2

−  t

1

5. 

 y =  et +  ( e

− 1) −  t

6.  x = 1 + 2 t + 2 cos  t – sin  t

4

2

1

2

7. 

( i)  x = cos 3 t +   sin 2 t – 

sin 3 t

5

15

⎛ 69

131

⎞

1

( ii)  y =  e–2 x ⎜

cos 2 x +

sin 2 x ⎟  – 

(4 cos  x − 7 sin  x)

⎝ 65

130

⎠

65

( iii)  x = 2 e 2 t – 4 e– t + cos 2 t – 3 sin 2 t a

1

8. 

( i)  y = 

[cos 2 sin  nx –  nx  cos ( nx + 2)]

( ii)  y = 

(sin 3 t − 3 t  cos 3 )

 t

2

2 n

18

9. 

( i)  y =  et –  e–2 t + sin 3 t

1

( ii)  x =   ( et + 14 cos 2 t – 3 sin 2 t) – 2 et (cos 2 t + 4 sin 2 t) 5

1

 e−2 t

⎛

2

 t ⎞

10. 

( i)  y =  (sin  t – cos  t) + 

(sin  t + cos  t) ( ii)  y = 

 t

 t

 e

8

⎜ +

⎟

8

⎜

⎟

⎝

2 ⎠

1

11. 

 x = 

2

−  t

5

−  t

3

−  t

−4

( e

−  e ) −  e

+  e t

3

3

F

 t  I

F t 2 I

12. 

( i)  y =  1 − +

HG

 e t

( ii)  y = 3 e–t – 2 e–2 t +  e– t 

−  t

6 KJ −

 t

HG 2 KJ

3

⎛

⎞

( iii)  y =  − t

 t

 e

1

⎜ + 3 t + ⎟

⎜

( iv)  y = 4 e 2 t + 3 t  e 2 t + 3 e 3 t – 2 e 5 t 6 ⎟

⎝

⎠

( v)  y =  e–t (1 + 2 t +  t 2) –  et (1 –  t) 15

 t

1

⎛

3 ⎞

 t

1

13. 

 y = 

cos  t + sin  t +

cos 3 t

14.  y = 

−

⎜1 −  t⎟  e + sin  t

16

4

16

⎝

2 ⎠

2

15. 

 y = 2(sin 2 t – sin  t)
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F 1  t

1

16. 

 x = – 

+

cos 4 t

sin 4

HG

I

 t

2

4KJ

+ 16

R1 −( t − 1) 1 2−( t − 1)U

R1 −( t − 2) 1 − ( t − U

17. 

S  e

 e

V  u( t  1

2

2)

−

+

) S

 e

 e

V  u ( t  2

T

)

2

2

W − − −

+

T2

2

W

−

4

 t

1

1

 t

1

 t

1

18. 

( i)  x = 

−2 +

 t

 e

 e [1 − (

 u t − 2)]

−

4 −

6 − 2

−

+

( − 2) −

 t

 e

 e

 u t

 e

(

 u t − 2)

3

6

2

2

3

1

( ii)  y = sin 3 t + sin  t +  ⎡

⎤

⎢sin( t − π) − sin 3( t − π)⎥ (

 u t − π)

⎣

3

⎦

19. 

 x =  e–2 t (2 cos  t + 14 sin  t) – 2 cos 5 t – 2 sin 5 t E

21. 

I = 

(1 –  e–R t/L)

22.  x = cos  t,  y = sin  t

R

23. 

 x =  e–t – 1,  y = 2 –  e– t

24.  x = sin  t + cos 2 t,  y = sin  t – cos 2 t

25. 

 x =  2 cos  t + 8 sin  t,  y = cos  t – 13 sin  t + sinh  t 26. 

 x = 5 e– t + 3 e 4 t,  y = 5 e–t – 2 e 4 t 27.  y = sinh  t + cosh  t –  e–3 t –  tet ;   x =  et +  2 t et + 2 e 3 t. 

 a

 a

28. 

( i)  i  = 

(sin 

= 

(cos 

1

 p +

ω t + sin  pt),  i

ω t – cos  pt)

ω

2

 p +  ω

8 F

3

8 F 3

3

( ii)  x = 

1 − cos  t ,  y

 t  sin

 t

9 HG

I

2 KJ

=

−

9 HG

I

2

2 KJ

29. 

( i)  y =   t–1/2  (3 + 6 t + 8 t 2)

( ii)  y = ± 8J (4 t)

( iii)  y =  e– t(1 –  t)2

3π

0

( iv)  y( t) = cosh  t

30.  y( x,  t) = 30  e–75 t cos 5 x. 

CHAPTER END PROBLEMS

1. 

Find the Laplace transform of  f( t) =  t 4 e 2 t. 

( G.B.T.U. 2012)

−  p

π

2. 

Find the function whose Laplace transform is   e

. 

( G.B.T.U. 2012)

 p 2 + 2

3. 

State the conditions for the existence of Laplace transform. 

( M.T.U. 2012)

4. 

State convolution theorem. 

( M.T.U. 2012)

R 1 U

5. 

Evaluate:  L 1

− S|

( U.P.T.U. 2015)

6. Evaluate: L( teat   sin   at)

T|

V|

 p + 3 4

(

) W|

7. 

Evaluate: L( te–t cosh 2 t)

8. Evaluate: L [ t   u( t – 2)]

L 1 O

F  e−4 p I

9. 

Evaluate: L–1  MM

P

. 

 p (  p 2

N

+ )

1 QP . 

10. Evaluate: L–1  HG  p 3 KJ

F  e−2 p −  e−3 p I

11. 

Evaluate: L–1  HG

. 

12. Find the inverse Laplace transform of 1. 

 p

KJ

F − bp  I

R

U

13. 

Find L–1 

λ e

( t − )

HG

. 

14. Find L  δ

π

S

V

 p 2 + λ2 KJ

T  t  W . 
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 t

U

15. 

Find the Laplace of transform of F( t) =  1, 0 ≤ < 2V ; F( t + 4) = F( t) 1

− , 2 ≤  t < 4W

L F

F π I

1 O

 e−  p

16. 

Find L–1 

 p

log

+

NMM HG

I

17. Find L–1 

. 

( U.P.T.U. 2015)

 p – 1KJQPP

HG  p 2 KJ

2

L

O

18. 

Find L–1 

 p

MM

P

(  p 2

2

N + 4) QP . 

19. Find L [ t 2   u  ( t – 3)]

F

I

⎛

1

⎞

20. 

( i) Find L–1 

1

1

L ⎜

⎟

( M.T.U. 2013)

3 2

HG

⎜ 2

⎟

 p / KJ ( M.T.U. 2011)

( ii) Find:  − ⎝  p − 3 p + 3⎠

 e−1/  p

21. 

If L [F( t)] = 

then find L [ e– t F(3 t)]

( A.K.T.U. 2014, 2018)

 p

22. 

Find the Laplace transform of  u( t –  a)

( A.K.T.U. 2016)

L 1

23. 

Find L–1  NM

O

 p + 2 2

(

) QP. 

∞

24. 

Using Laplace transform, evaluate: 

2

−  t  cos 3

z  e tdt

0

F

1

I

L  p  O

25. 

Find L–1 

M

P

2

HG  p + 4 p +13KJ . 

26. Find L–1  M(2 p  3)2

N + QP . 

L

O

27. 

Find L ( e 2 t cos 2 t). 

28. Find L–1 

3

2

 p

NMM + 2 p − 8QPP. 

( U.P.T.U. 2014)

 t t t

29. 

Find the Laplace transform of 

 au du du du

zzz cos

0 0 0

F

I

30. 

Find L–1  2 p + 1

2

HG  p − 4KJ . 

31. Find L–1 [cot–1 (1 +  p)]. 

L

1

O

L 3 p +1 O

32. 

Find L–1  MM

P

M

P . 

 p

N − 2 2

(

) (  p + 1)QP . 

33. Find L–1  M( p

N −1 2

) (  p + 1)QP

L

F I

2

1

34. 

Find L–1  ( p

NM

O

− 1) (  p − 2)QP . 

35. Find L–1  HG  p KJ

[ M.T.U. (SUM) 2011]

( G.B.T.U. 2011)

36. 

Find L( e 2 t – 3) [ M.T.U. (SUM) 2011]

37. Find L( t 3   e–3 t)

[ G.B.T.U. (SUM) 2010]

R 0, 0 <  t < 5U

38. 

Find the Laplace transform of  F( t) = ST

V

 t − 3, 

 t > 5W. 

39. 

Find the Laplace transform of  f( t) =  t sin  7  t. 

( G.B.T.U. 2013)

8

40. 

Find the function whose Laplace transform is F( p) = 

( G.B.T.U. 2013)

2

 p −  p − 2
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41. 

( i) If Laplace transform of  f( t) is F( p) then show that Laplace transform of  eatf( t) is F( p –  a), where  a is any real number. 

( M.T.U. 2013)

( ii) Prove that L[ eat  f( t)] = F( p –  a)

( A.K.T.U. 2017)

 t

42. 

Find the Laplace transform of  f( t) = 

( t u

 e

)  du

z − −

( U.P.T.U. 2013)

0

 t

 t

43. 

Find the Laplace transform of 

 u du du

z z sin

( U.P.T.U. 2015)

0 0

 p

44. 

Find inverse Laplace transform of the function  f( p) = 

( A.K.T.U. 2016)

2

2 p + 8

sin  at

45. 

Find the Laplace transform of  f( t) = 

. 

( A.K.T.U. 2017)

 t

 t

46. 

Evaluate the laplace transform of integral of a function  ∫  f ( t)  d .  t ( A.K.T.U. 2017)

0

∞

47. 

Evaluate the integral: 

−

∫

2 t

 t e

cos  t dt

( A.K.T.U. 2017)

0

ANSWERS

24

1

1. 

2. 

sin  2 ( t – π)   u( t – π)

 p − 2 5

(

)

2

 t 3 e  3

−  t

2

5. 

6. 

2 a (  p −  a)

7. 

 p + 2 p + 5

6

2

2 2

[(  p −  a) +  a ]

(  p 2 + 2 p

2

− 3)

F 1 2I 2

( t − 4)2

8. 

+

HG 2

KJ − e p

9. 1 – cos  t

10. 

 u( t − 4)

 p

 p

2

 t

U

11. 

F( t) =  1, 

2 < < 3V

12. 

0, otherwiseW

δ( t)

13. sin  λ  ( t –  b)   u( t –b)

− π

−2  p

14. 

 e p

15. 

1 −  e

16. 2 sinh  t

π

 p  1

−2

+  e p

(

)

 t

F

I

17. 

( t – 

 t

π)   u( t – π)

18. 1 sin 2 t + cos 2 t

19.  e–3 p 

2

6

9

+

+

4

2

3

2

HG  p p p KJ

 t

3

2

 t

3

20. 

( i)  2

( ii)

2

 e  sin

 t

21. 

1

3

− /( + 1

 e

 p

)

π

3

2

 p + 1

− ap

2

22. 

 e

23.  t e–2 t

24. 

 p

13

25. 

1

2

2

 e−  t  sin 3 t

26. 1 2 3

3 2

(

)

/

−

−

 t e t

27. 

 p −

3

8

 p 2 − 4  p + 8

1

28. 

 e– t sinh 3 t

29. 

1

30. 2 cosh 2 t + 

sinh 2 t

2

2

2

 p (  p +  a )

2
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− t

1 2 t  1

2

31. 

 e  sin t

32. 

 e − cos  t − sin  t

33.  et – 2 cos  t + sin  t

 t

5

5

5

−3

34. 

2( e 2 t –  et)

35. 1

36.  e

π t

 p − 2

6

5 F 1

2 I

2 7  p

37. 

38.  e−  p

+

39. 

 p + 3 4

(

)

HG  p 2  p KJ

2

(  p + 2

7)

16

1

1

 t

3

40. 

/2

 e  sinh

 t

42. 

43. 

3

2

 p(  p + 1)

2

2

 p (  p + 1)

1

⎛  p⎞

F( )

 p

44. 

cos 2 t

45. cot–1  ⎜ ⎟

46. 

if L[ f( t)] = F( p)

2

⎝  a⎠

 p

2

 p + 4  p + 3

47. 

2

( p + 4  p + 2

5)

MODULE – 2

C H A P T E R

1

 Integral Transforms

1.1

INTRODUCTION

The theory of integral transforms affords mathematical devices through which solutions of

numerous boundary value problems of engineering can be obtained  e.g.  conduction of heat, transverse vibrations of a string, transverse oscillations of an elastic beam, transmission lines etc. 

The choice of a particular transform to be employed for the solution of an equation

depends on the boundary conditions of the problem and the ease with which the transform can

be inverted. An integral transform when applied to a partial differential equation reduces the number of its independent variables by one. 

1.2

DEFINITION

The integral transform  f( p) of a function F( x) is defined as

 b

I{F( x)} =  f( p) = z F( x) K( p, x)  dx, 

 a

where K( p, x) is a known function of  p and  x, called the kernel of the transform :  p is called the parameter  of the transform and F( x) is called the inverse transform of  f( p). 

Some of the well-known transforms are given below:

( i) Laplace Transform.  K( p, x) =  e–px

∞

L{F( x)} =  f( p) = z F( x)  e–px  dx

0

( ii) Complex Fourier Transform.  K( p, x) =  eipx

∞

F{F( x)} =  f( p) = z F( x)  eipx  dx

−∞

( iii) Hankel Transform.   K( p, x) =  x J  ( px)

 n

∞

H {F( x)} =  f( p) = z F( x)  x J  ( px)  dx

 n

0

 n

where J  ( px) is the Bessel function of the first kind and of order  n. 

 n

( iv) Mellin Transform.    K( p, x) =  xp–1

∞

M{F( x)} =  f( p) = z  f( x)  xp–1  dx. 

0

Other special transforms arise when the kernel is a sine or a cosine function. These lead

to Fourier sine or cosine transforms respectively. 
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1.3 FOURIER INTEGRAL THEOREM

Statement.  If

( i)  F( x)  satisfies Dirichlet’s conditions in every interval ( – c, c) , however large. 

∞

( ii) z  |F( x) | dx converges; 

−∞

 1 ∞ ∞

 then

  F( x)  = 

 F t

( )  cos  λ  t

( −  x)  dt d λ

z0 z

π

−∞

 The integral on the right hand side is called Fourier integral of F( x) . 

Proof.  We know that Fourier series of a function F( x) in (–  c,  c) is given by a

∞ F

0

 n π x

 n π x

F( x) = 

+

 a

∑

cos


+  b

 n

sin

...(1)

2

HG

I

 c

 n

 c  KJ

 n = 1

1  c

where, 

 a  = 

 t dt

z F()

0

 c − c

 c

 a  =  1

 n t

z

 n

F( t) cos π  dt

 c − c

 c

1  c

 n t

and

 b  = 

 t

 dt

z F()sin π

 n

 c − c

 c

Substituting the values of  a ,  a  and  b  in (1), we get

0

 n

 n

1  c

1 ∞

 c  L

 n π x

 n π t

 n π x

 n π t

F( x) = 

 t

F( )  dt

z

+ ∑ z cos

cos

+ sin

sin

F( t)  dt

2 c − c

 c

− c  NM

O

 c

 c

 c

 c  QP

 n = 1

1  c

1 ∞

 c

 n π( t −  x)

= 

F( t)  dt

z

+ ∑ z cos

F( t)  dt

...(2)

2 c − c

 c

− c

 c

 n = 1

∞

If we assume that z |F( ) x| dx converges  i.e. , F( x) is absolutely integrable on the  x-axis, 

−∞

the first term on right side of (2) approaches 0 as  c → ∞ since

1  c

1 ∞

F( t)  dt ≤

|F( t)| dt

z

z

2 c − c

2 c −∞

∞

∞

From (2), 

F( x) = Lim 1

 n π( t −  x)

 t

F( ) cos

∑ z

 dt

 c → ∞  c

−∞

 c

 n = 1

∞

= 

1

∞

Lim

∑ (Δλ) F( t) cos{ n(Δλ)( t x)}

z

−

 dt

...(3)

where π = Δλ

Δλ → 0 π

 c

 n = 1

−∞

This resembles a Riemann sum of a definite integral and is of the form

∞

Lim

 f ( n

)  i.e., 

∞

z  f(λ) d λ

0 ∑

Δλ

Δλ →  n=1

0

Hence as  c → ∞, (3) reduces to

∞ ∞

F( x) =  1 z z F( t) cos λ( t –  x)  dt  d λ

...(4)

π 0 −∞

which is known as Fourier integral of F( x). Eqn. (4) is true at a point of continuity. 
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At a point of discontinuity, the value of the integral on the right is

1  [F( x + 0) + F( x – 0)]. 

2

1.4

FOURIER SINE AND COSINE INTEGRALS

We know that

cos λ( t –  x) = cos λ t cos λ x + sin λ t sin λ x

∴ Fourier integral of F( x) can be written as

1 ∞ ∞

F( x) =  z z F( t){cos λ t cos λ x + sin λ t sin λ x}  dt d λ

π 0 −∞

∞

∞

∞

∞

=  1

cos λ x

( )

 t

z z F  cos λ t  dt  d λ  +  1 sinλ x ( t)

z z F  sin λ t  dt  d λ

π 0

−∞

π 0

−∞

...(1)

Case I.   When F( x)  is an odd function

F( t) cos λ t is odd while F( t) sin λ t is even. Thus the first integral in (1) vanishes and we get 2 ∞

∞

F( x) = 

sin λ x

F( t) sin λt  dt d λ

z z

π 0

0

This is called Fourier sine integral. 

Case II.   When F( x)  is an even function

F( t) cos λ t is even while F( t) sin λ t is odd. Thus, the second integral in (1) vanishes and we get

2 ∞

∞

F( x) = 

cos λ x

F( t) cos λ t dt d λ

z z

π 0

0

This is called Fourier cosine integral. 

1.5 COMPLEX FORM OF FOURIER INTEGRAL

Fourier integral of F( x) is

1 ∞ ∞

F( x) = 

F( )

 t  cos λ( t x)  dt d λ

z z

−

...(1)

π 0 −∞

Since cos λ( t –  x) is an even function of λ, we have from (1), 

1 ∞ ∞

F( x) = 

F( t) cos λ( t

)

 x dt d λ

z z

−

...(2)

2π −∞ −∞

Also, since sin λ( t –  x) is an odd function of λ, we have

1 ∞ ∞

0 = 

F( t) sin λ( t

)

 x dt  λ

z z

−

 d

...(3)

2π −∞ −∞

Multiplying (3) by  i and adding to (2), we get

∞

∞

F( x) =  1 z z F( t) [cos λ( t –  x) +  i sin λ( t –  x)]  dt  d λ

2π −∞ −∞

1 ∞ ∞

= 

 i λ  t −  x

λ

z z F(). ( )

 t e

 dt d

2π −∞ −∞

1 ∞

∞

F( x) = 

− i λ x

λ

 e

 t ei t

F( ) . 

 dt d λ

z z

2π −∞

−∞

which is known as the complex form of F ourier integral. 
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 1 , for|x|≤ ⎫

 1

Example 1.   Express the function F(x) = 

⎬   as a Fourier integral. Hence

 0 , for|x|> ⎭

 1

∞

 evaluate 

 sin cos x d

z λ λ λ . 

 (A.K.T.U. 2018)

 0

λ

Sol.  Fourier integral for F( x) is

∞ ∞

F( x) =  1

F( t) cos λ( t

)

 x dt  λ

z z

−

 d

π 0 −∞

1 ∞ 1

⎧1, − 1 ≤  t ≤ ⎫

1

= 

cos λ( t x)  dt d λ

z z

−

∵ F( t) = ⎨

⎬

π 0 −1

⎩0, otherwise⎭

1

1

∞ Lsin λ( t x)

= 

 d λ

z

−

π 0 NM

O

λ

QP−1

1 ∞ [sin λ 1

(

)

 x

sin λ( 1

)]

 x

= 

λ

z

−

−

− −

 d

π 0

λ

1 ∞ Lsin λ 1

(

)

 x

sin λ 1

(

)

 x

= 

 d λ

z

+

+

−

π 0 NM

O

λ

QP

2 ∞

λ

λ

= 

λ

z sin cos  x d

π 0

λ

∞

sin λ cos λ x

π

π/2 ,  for |x|≤ ⎫

1

∴

  

 d λ = F( x) =

⎬

∫0

λ

2

0 ,  for |x|> ⎭

1

∞ sin

∞ sin  x

Note. Putting  x = 0, we get z

λ

π

λ = π

 d

or, z

 dx = . 

0

λ

2

0

 x

2

Example 2.   Using Fourier sine integral, show that

∞ F  1 cos  πλ

R

U

 sin (x λ  ) d

 /2, when 0 x

z −HG I

λ

π

π  . 

λ

KJ

=

< < 

S

V

 0

T  0, 

 when x > πW

π/2 , 0 <  x < πU

Sol. Let, 

F( x) = 

V

, 

0

 x > πW

Using Fourier sine integral, we have

2 ∞

∞

F( x) = 

sin λ x

F( t) sin λ t dt d λ

z z

π 0

0

2 ∞

π

L

O

   =  

sin λ

π

 x

sin λ t dt d λ

z NMz

π 0

0 2

QP

∞

F cos λ π

 t

π F 1 cos πλ

=   z

−

sin λ x  HG

I  d λ  = 

sin ( λ

 x ) λ

z −

 d

λ

KJ

HG

IKJ

0

0

0

λ

π F 1 cos πλ

R 2 0

U

∴

sin ( λ

 x )  d λ

π

π

z −HG IKJ

= F( )

/ , 

 x

 x

=

< < 

S

V . 

0

T 0

λ

, 

 x > πW
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Example 3.  Using Fourier integral representation, show that

∞ ω  sin x ω

π

∞  cos x

( i)

− x

 d ω =

 e

z

 , x > 0

( ii)

ω

π − x

 d ω =  e

z

 , x ≥  0. 

 0

 2

 1 + ω

 2

 0

 2

 1 + ω

 2

Sol. ( i) Fourier sine integral is

2 ∞

∞

F( x) = 

sin λ x

F( t) sin λ t dt d λ

z z

π 0

0

2 ∞

∞

   e–x = 

sin λ

−

 x

 e t  sin λ t dt d λ

z z

| Let F( x) =  e– x

π 0

0

2 ∞

−

∞

L  e t

= 

sin λ x

(− sin λ t − λ cos λ t)

λ

z

 d

π 0

1

2

NM

O

+ λ

QP0

2 ∞

F

I

2 ∞ λ sin λ x

= 

sin λ

λ

 x

 d λ

z

= 

 d λ

z 2

0

HG1 2

π

+ λ KJ

π 0 1 + λ

∞ λ sin λ x

π

⇒



−

z

 d λ =  e x,  x > 0

0

2

1 + λ

2

∞ ω sin ω x

π

or, 

−

z

 d ω =  e x,  x > 0

0

2

1 + ω

2

( ii) Fourier cosine integral is

∞

∞

F( x) =  2

cos λ x

F( t) cos λ t dt d λ

z z

π 0

0

2 ∞

∞

   e–x = 

cos λ

−

 x

 e t  cos λ t dt d λ

z z

| Let F( x) =  e–x

π 0

0

2 ∞

−

∞

L  e t

= 

cos λ x

(− cos λ t + λ sin λ t)

λ

z

 d

π 0

1

2

NM

O

+ λ

QP0

2 ∞

F 1 I

= 

cos λ x . 

λ

z

 d

0

HG1 2

π

+ λ KJ

∞ cos λ x

π

⇒



−

z

 d λ =  e x,  x ≥ 0

0

2

1 + λ

2

∞ cos ω x

π

or, 

−

z

 d ω =  e x ,  x ≥ 0. 

0

2

1 + ω

2

Example 4.   Using Fourier integral representation, show that

R

U

∞  cos x ω ω  sin x

 0 , if x <  0

ω  d ω = S|  /2

π

 , if x =  0

z

+

V| . 

 0

 2

 1 + ω

− x

T|  e π  , if x >  0 W|

Sol.  From example 3, we have

∞ cos  x ω

π



−

z

 d ω =  e x,  x > 0 and

∞ ω sin  x ω

π −

z

 d

 e x,  x > 0

0

2

1 + ω

2

ω =

0

2

1 + ω

2

Adding, we get

∞ cos  x ω ω sin  x ω

π − x  π −

z

+

 d ω =  e +  e x ,  x > 0

0

2

1 + ω

2

2

= p e– x, 





 x > 0
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∞ cos  x ω ω sin  x

∞

+

ω

 d ω

∞

F

π

when  x = 0,  z

 d ω =

=  tan−1 ω  = 

+ ω

z

0

2

0

2

1

1 + ω

HG

IKJ 2

0

when  x < 0, 

∞ cos  x ω ω sin  x

∞

+

ω

cos  x ω ω sin  x ω

π − x  π



z

 d ω =

−

 d ω  =   e −  e− x = 0

+ ω

z

0

2

0

2

1

1 + ω

2

2

Hence, 

R 0, if  x < 0U

∞



cos  x ω ω sin  x ω  d ω = S|π 2 /, if  x = 0

z

+

V|. 

0

2

1 + ω

−

T|  e x

π

, if  x > 0W|

Example 5.   Find the complex form of the Fourier integral representation of

− kx

R

 f( x) =   e

,  x >  0 and k >  0

ST  0, otherwise

Sol.  We know that the complex form of Fourier integral representation of  f( x) is given by 1 ∞

∞

  f( x) = 

− λ

 i x

λ

 e

 f t ei t

( )

 dt  λ

z z

 d

...(1)

2π − ∞

− ∞

− kt

R

Here, 

  f( t) =   e ,  x > 0 and  k > 

S

0

T 0, otherwise

∞

∞

 i x  L

 kt

 i t

O

∴ From (1), 

  f( x) =  1

− λ

−

λ

z  e  NMz  e e dt   d λ

2π − ∞

0

QP

1

∞

∞

 i x  L

( k i t

)

O

= 

− λ

− − λ

z  e  NMz  e dt   d λ

2π − ∞

0

QP

1

− ( k − λ

∞

∞

 i ) t

λ

∞

−  i x

 i x  L  e

1

 e

= 

− λ

z  e

 d λ = 

λ

z

 d . 

2π − ∞

NM

O

− ( k − λ

 i )QP

2π − ∞  k − λ

 i

0

PROBLEM SET-I

1. 

Using Fourier integral representation, show that

∞

  e–ax =  2 a

cos  x

λ  d λ

z

;  a > 0,  x ≥ 0. 

 (A.K.T.U. 2016)

π 0 2

2

λ +  a

2. 

Find Fourier sine integral for F( x) =  e–α x. 

3. 

Using Fourier integral representation, show that

∞

−α x

−

z λ λ

β

sin  x

( e

 e x)

 d λ = π

−

. 

0

2

2

2

2

2

2

(λ + α )(λ + β )

2

β

(

− α )

Hence find the Fourier sine integral representation of  e–x –  e–2 x. 

0

R ,  x < 0 U

4. 

If F( x) = S| , 

 x  0 ≤  x ≤ πV| , then show that

0, 

 x

T|

> π W|

1

∞

F( x) = 

z  [

2

λπ sin λ(π –  x) + cos λ(π –  x) – cos λ x]  d λ

πλ

0
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5. 

Using Fourier integral formula, prove that

2

∞ F λ

2I

( i)

−

z + λ λ π

cos  x d

 e x cos  x, if  x > 0

0

4

HG λ + 4KJ

= 2

3

∞ F λ I

( ii)

−

z

λ

λ π

sin  x d

 e x cos  x, if  x > 0. 

0

4

HG λ + 4KJ

= 2

6. 

Using Fourier integral method, prove that

∞ sin πλI

Rπ

U

( i)

sin , 

 x  if 0

z F sinλ x  λ d  S|

 x  π

2

V|

0

2

HG 1– λ KJ

=

≤ ≤

0

T|

, 

if  x > π

W|

cos πλ cos  x

Rπ

π U

∞

λ

2

cos , 

 x  if | x|< 

( ii)

2

2

z FHG IKJ λ d=S|

V|. 

0

2

1 − λ

0, 

if | x|> π

T|

2 W|

7. 

Find Fourier sine integral representation of

R0, 0 <  x <1U

( i)   F( x) = S| k, 1 <  x < 2V| , where  k is a constant. 

( ii)  F( x) =  x 2, 0 ≤  x ≤ 1. 

0, 

T|

 x > 2 W|

8. 

Find Fourier cosine integral representation of

si

R n ,  x  0 ≤  x ≤ πU

R

U

( i) F( x) = S

V

, 

0 ≤ ≤ 2

0, 

 x

T

> π W

( ii) F( x) =   x

 x

ST

V

0, otherwiseW

9. 

Find the complex form of the Fourier integral representation of

0

R , − ∞ <  x < − 1

F( x) = S| , 

 x

− 1 <  x < 0

0, 

T|

 x > 0

10. 

If Fourier cosine integral of a function F( x) can be represented as

∞

2 ∞

F( x) = z A(λ) cos λ x d λ where A(λ) = 

 t

λ

z F()cos  tdt

0

π 0

1 ∞

Prove that

F( ax) =  z F

A λ  cos  x λ  d λ. 

( a > 0)

 a

HG IKJ

0

 a

ANSWERS (PROBLEM SET I)

2 ∞ sin  x

6 ∞

sin  x

2. 

λ

λ

λ

z

 d

3. 

λ

λ

λ

z

 d

0

2

2

π

α + λ

0

2

(λ + 1 2

π

) λ

(

+ 4)

2 k ∞ F cos λ − cos 2λ

7. 

( i) F( x) = 

z  

sin λ x  d λ

π

HG

IKJ

0

λ

2 ∞ F

L − 1 2

2 sin

2

( ii) F( x) =  z  

+

cos λ

λ

sin λ x  d λ

π

HG

I

NM

O

3

λ

λ KJ

+

−

2

3

0

λ

λ QP

2 ∞ F 1 cos

I

8. 

( i) F( x) = – 

λπ

z +  cos λ x  d λ

0

2

π

HG λ − 1 KJ

2 ∞ F

( ii) F( x) =  z   2sin 2λ cos 2λ 1

π

+

−

0

2

HG

I

λ

λ

KJ  cos λ x dλ

1

∞

R 1 F 1 1 − U

9. 

F( x) = 

z   e–i λ x 

λ

S +

−

 e i  V  d λ. 

2π

2

2

T

HG

I

 i

KJ

− ∞

λ

λ

λ

W
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1.6

COMPLEX FOURIER TRANSFORM

If a function F( x) defined on the interval (– ∞, ∞) is piecewise continuous in each finite partial interval and absolutely integrable in (– ∞, ∞), then

∞

 f( p) = F{F( x)} = z F( x) .  eipx  dx

−∞

is defined as the Fourier transform of F( x) and is denoted by  f( p). The function F( x) is called the inverse Fourier transform of  f( p). 

The inverse formula for Fourier transform is given by

1 ∞

F–1 { f( p)} = F( x) = 

z   f( p) .  e–ipx  dp. 

2π −∞

Note.  Some authors write the formulae as

1

∞

1

∞

   f( p) = 

z  eipx . F( x)  dx  and F( x) =  z  e–ipx .  f( p)  dp. 

2π −∞

2π −∞

1.7

FOURIER SINE TRANSFORM

The infinite Fourier sine transform of the function F( x), 0 <  x < ∞ is denoted by F  {F( x)} or  f ( p) s

 s

and defined by

∞

   f ( p) = z F( x) . sin  px dx

 s

0

and the function F( x) is called the inverse Fourier sine transform of F  {F( x)}. 

 s

The inverse formula is given by

2 ∞

F( x) = F  – 1 { f  ( p)} =  z  f  ( p) . sin  px dp. 

 s

 s

π 0  s

1.8

FOURIER COSINE TRANSFORM

The infinite Fourier cosine transform of the function F( x). 0 <  x < ∞ is denoted by F {F( x)} or c

 f ( p) and defined by

 c

∞

      f ( p) = F {F( x)} = z F( x) . cos  px dx

 c

 c

0

and the function F( x) is called inverse Fourier cosine transform of  f ( p). 

 c

The inverse formula for infinite Fourier cosine transform is given by

2 ∞

F( x) = F –1 [ f ( p)] =  z  f  ( p) . cos  px dp. 

 c

 c

π 0  c

1.9

SOME IMPORTANT RESULTS

∞

∞

1. z sin  mx

2

 dx

π

= π , ( m > 0)

2. 

−

z  e x dx=

0

 x

2

0

2

∞  ax

−

 e

 e ax

1

 a

∞  ax

−

 e

 e ax

1

 a

3. z

+

 dx = sec , (– π <  a < π)

4. z

−

 dx = tan

 x

, (– 

π

 x

π <  a < π)

0

 x

π

−

 e +  e x

π

2

2

0

−

 e −  e  π

2

2

∞

5. 

sin  rx

π −

z

 dx =  e ar sin  br, ( r > 0). 

−∞ ( x − )

 b  2 +  a 2

 a
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1.10 PROPERTIES OF FOURIER TRANSFORMS

1.10.1

Linear Property

 If f (p) and f (p) are the Fourier transforms of F (x) and F (x) respectively then

 1

 2

 1

 2

 F [ c F (x) + c F (x)]  = c f (p) + c f (p)

 1 1

 2 2

 1 1

 2 2

 where c  and c  are constants. 

 1

 2

Proof. We have, 

∞

F [ c  F ( x) +  c  F ( x)] = z

 ipx

1 1

2 2

[ c  F ( )

 x

1 1

+  c  F ( )

 x ] .  e

 dx

2 2

−∞

∞

∞

=  c  z F ( ) x.  eipx dx +  c  z

  eipx dx

1

F

1

2

2 ( x)

−∞

−∞

=  c  F [F ( x)] +  c  F[F ( x)] =  c f ( p) +  c   f ( p). 

1 

1

2

2

1  1

2 2

1.10.2 Change of Scale Property (Similarity Theorem)

 If f(p) is the complex Fourier transform of F(x) then

 1  F  p

  F [ F(ax)]  =  f

 a  HG I

 a KJ    , 

 a ≠  0. 

Put  ax =  t

∞

Proof. 

F[F( ax)] = z  eipx .F( ax)  dx

 dt

−∞

⇒  dx =  a

 t

F  p

1 ∞  i

 t

1 F  p

=  ∞

z  ip dt

HG IKJ

 e a

 t

F( )

= 

 e a

z  F( t)  dt =   f  HG IKJ. 

−∞

 a

 a −∞

 a

 a

From this property, it is evident that if the width of a function is decreased while its

height is kept constant then its Fourier transform becomes wider and shorter. If its width is

increased, its transform becomes narrower and taller. 

Remark.  If  f ( p) and  f ( p) are Fourier sine and cosine transforms of F( x) respectively then s

 c

1

F  p

1

F  p

F [F( ax)] = 

 f

[F( ax)] =   f

 s 

 a s  HG I

 a  KJ and F c 

 a c  HG I

 a  KJ . 

1.10.3

Shifting Property

 If f (p) is the complex Fourier transform of F(x) then

 F [ F(x – a)]  = eiap f(p)

∞

Put  x −  a =  u

Proof.  F 

[F( x –  a)] = z F( x − ) a.  eipx dx

∴

 dx =  du

−∞

∞

∞

= 

 ip u+

z F( ) (  a)

 u e

 du =  eiap z F( ) u eipu du =  eiap  f( p). 

−∞

−∞

1.10.4 Modulation Theorem

 If f(p) is the complex Fourier transform of F(x) then

(A.K.T.U. 2017)

 1

   

 F 

[ F(x) cos ax]  =   [ f(p + a) + f(p – a)]

 2
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∞

Proof. 

F [F( x) cos  ax] = z  eipx .F( x) cos  ax  dx

−∞

∞

 iax

− iax

 ipx

F  e

 e

I

= z

+

 e

. F( x) . 

 dx

−∞

HG

2

KJ

1

∞

∞

L

 i(  p a)  x

 i(  p a)  x

O

= 

+

−

NMz  e

. F( x)  dx + z  e

. F( x)  dx

2 −∞

−∞

QP

1

=   [ f( p +  a) +  f( p –  a)]. 

2

This result has application in radio and television where the harmonic carrier wave is

modulated by an envelope. 

Note.  If  f ( p) and  f ( p) are Fourier sine and cosine transforms of F( x) respectively then s

 c

1

( i) F [F( x) cos  ax] =   [ f ( p +  a) +  f ( p –  a)]

 s 

2  s

 s

1

( ii) F  [F( x) sin  ax] =   [ f ( p –  a) –  f ( p + a)]

 s

2  c

 c

1

( iii) F  [F( x) sin  ax] =   [ f ( p +  a) –  f ( p –  a)]. 

 c

2  s

 s

1.10.5

Convolution Theorem

[ M.T.U. 2014,  U.P.T.U. 2010]

The convolution of two functions F( x) and G( x) over the interval (– ∞, ∞) is defined as

∞



F 

∗ G = z F( ) u . G( x –  u)  du = H( x). 

−∞

Statement.   The Fourier transform of the convolution of F(x) and G(x) is the product of their Fourier transform i.e., 

  F{ F(x) ∗  G(x)}  = F{ F(x)}  . F{ G(x)}

Proof. We have, 

∞

R

U

F{F( x) ∗ G( x)} = F STz F( ) u.G( x − ) u du V

−∞

W

∞

∞

R

U

= z STz F( ) u.G( x − ) u du V  eipx dx

−∞

−∞

W

∞

∞

R

 ipx

U

on changing the order

= z F( ) u  STz G( x − ) u.  e dx V  du

−∞

−∞

W

of integration

∞

∞

R  ip( x u)

U

= 

−

z F( ) u.STz  e .G( x− ) ud( x− ) u V eipudu

−∞

−∞

W

∞

∞

 ipu

R  ipt

U

= z  e  F  u() STz  e  G( t)  dt V  du

| where  x –  u =  t (say)

−∞

−∞

W

∞

= z  eipu  F  u()  du.F{G( t)}

−∞

∞

= z  eipx .F( x)  dx. {FG( x)} = F{F( x)} . F{G( x)}. 

−∞
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1.10.6 If F [F(x)] = f (p) and F [F(x)] = f (p), then

s 

s

c 

c

 d

 d

( i) F  [ x  F( x)] = – 

[ f ( p)]

( ii) F  [ x F( x)] = 

[ f ( p)]. 

 s

 dp c

 c

 dp s

∞

Proof. ( i)

 f ( p) = z

 c

F( )

 x  cos  px dx

0

 d

∞



z

 dp  { f ( p)} = – 

[ x F( x)]

 c

F( )

 x .  x  sin  px dx  = – F s

0

 d

⇒

F  [ x F( x)] = – 

[ f ( p)]

 s

 dp c

∞

( ii)

 f ( p) = z

 s

F( )

 x . sin  px dx

0

 d

∞



{ f ( p)} = z F( ) x.  x  cos  px dx = F [ x F( x)]

 dp s

0

 c 

 d

⇒

F  [ x F( x)] = 

( p)]

 c

 dp  [ fs

Example 6.   Find the Fourier transform of following functions:

 ei ω x , for a <  x <  b U

 1

U

( i)  F(x) = 

V|

 , |x|≤ εV|

 0, 

 otherwise  W|

( ii)  F(x) =  2 ε 0 , x>εW|

( iii)  F(x) = e–|x|

( iv)  F(x) = e–a|x|,  a >  0

 t, for|t|<  a U

( v)  F(t) = 

V

 0, for|t|>  a W . 

∞

 b

Sol. ( i) 

 f( p) = z F( ) x.  eipx dx = z  ei ω x .  eipx dx

−∞

 a

 b

L  ei(ω+ p) x

 ei(ω +  p) b ei(ω+  p) a

= 

. 

 i(

NM

O

ω +  p)

 i(

QP =

−

ω +  p)

 a

∞

( ii)

 f( p) = z F( ) x.  eipx dx

−∞

ε

1  ipx

1

ε

= z

 e

 dx =

(cos  px +  i  sin  px)  dx

ε 2ε

2 ∈ z

−

−ε

1

ε

1

ε

Fsin  px

sin  p

= 

. 2

ε

cos

z  pxdx=

. 

2ε

0

ε HG

I

 p  KJ =  p

0

ε

∞

∞

( iii)

  

 f( p) = z F( ) x eipx dx = z  e–| x|  eipx dx

−∞

−∞

0

∞

= z  ex eipx dx + z  e– x  eipx dx

−∞

0

M-2.12

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

0

∞

L e(1+ ip) x

L  e−(1− ip) x

1

1

2

= 

+

= 

. 

1

NM

O

+  ip

(1  ip)

QP + NM

O

− −

QP  = 1+  ip  1−  ip  1 2

+  p

−∞

0

( iv) We have just proved that

F{ e–| x|} = 

2

1

2

+  p

Using change of scale property, we get

1 L

2

O

2 a

F{ e– a| x|} =   M

P = 

. 

 a  M

2

F  p  P

2

2

 p +  a

NM 1+ HG I P

 a KJ Q

∞

 a

( v)

  

  

  f( p) = z  F( t) .  eipt  dt = z   t eipt  dt

−∞

− a

 a

 a

= z   t (cos  pt +  i sin  pt)  dt = 2 i z   t sin  pt dt

− a

0

 a

LR F

O

cos  pt  U

 a

F cos  pt

= 2 i M  t

S . −

V

1. 

 dt P

z

NMT HG

I

 p  KJ

0

HG

I

 p

W −

−

KJ

0

QP

L  a

1 F sin  pt a  O

= 2 i M−

cos  ap +

M  p

 p  HG

I

 p  KJ P

N

0 QP

L  a

1

2 i

= 2 i  −

cos  ap +

NM

O

sin  ap

(sin  ap –  ap cos  ap). 

 p

 p 2

QP =  p 2

Example 7.  Find the Fourier transform of the function

 sin ax

( i)  F(x) = xe–a|x|, a > 0

( ii)  F(x) = 

 , a > 0

 x

R  x

U

 1 +  , for −  a <  x <  0

|

|

 a

|

|

( iii)  F(x) =  S

 x

V

 1 −  , for 0 <  x <  a

|

 . 

 a

|

T|  0, otherwise  W|

∞

Sol.  ( i)

 f( p) = z   x  e–a| x |  eipx  dx

−∞

∞

∞

= z0  x  eax  eipx  dx + z   x  e–ax  eipx  dx = z0  x  e( a+ip) x  dx + z  x  e–( a–ip) x  dx

−∞

0

−∞

0

R

0

 x e( a+ ip) x  U

0

 e( a+ ip) x

R  e−( a− ip) x ∞U ∞  e−( a− ip) x

= S

V

1. 

 dx +

z

S x. 

V

1. 

z

 dx

 a

T| +  ip

−∞

 a ip

T| − ( a −  ip)

0

( a ip)

W| −

+

W| −

−

−

−∞

0

L

0

 e( a+ ip)  x

L  e−( a− ip) x ∞

1

1

4  iap

= – 

+

=

( a

NM

O

+  ip)2

( a ip)2

( a ip)2

( a −  ip)2

( a 2 +  p 2)

QP + NM

O

−

−

QP = − +

2

−∞

0

∞

∞

( ii)

 f( p) = z sin  ax   eipx  dx = z sin  ax (cos  px +  i sin  p ) x dx

−∞

 x

−∞

 x

∞

∞ Rsin ( a

)

 p x

sin ( a – )

 p x  U

= 2 z sin  ax  cos  px dx = z

+

S

+

V  dx

...(1)

0

 x

0 T

 x

 x

W
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Case I.  If | p| <  a then  a +  p and  a –  p both are positive and then (1) gives π π

   f( p) =  +  = 

2

2

π. 

Case II.  If | p| >  a then for positive values of  p, ( a +  p) is positive whereas ( a –  p) is negative and for negative values of  p, ( a +  p) is negative while ( a –  p) is positive. Consequently, we get

π π

π π

    f( p) =  −

or –  +  = 0

2

2

2

2

R

 p <  a U

Hence,    f( p) =  π, | |

ST

V

, 

0 | |

 p >  a W

∞

0 F

 x

 a  F

 x

( iii)

 f( p) = z F( x) .  eipx  dx = z 1+   eipx  dx +  1

z −HG IKJ  eipx  dx

 a  HG

I a KJ

−∞

−

0

 a

 a

1 0

1  a

= z  eipx dx +  z  x  eipx  dx –  z  x eipx dx

...(1)

− a

 a − a

 a  0

 a

L

0

0

O

 eipx  I

1 F

 eipx  I

 eipx

F

M

L

 ipx a

 ipx

F

I

O

. 

1. 

P 1

 e

 a

 e

= 

 x

 dx

HG

z

M

P

z

 ip  KJ +  a  MHG

 ip  KJ −

– 

 x . 

1. 

 dx

− a

 ip

P  a  HGM  ip  KJ −

 ip

P

− a

N

− a

Q

0

N

0

Q

F

−

L −

0 O

L

O

 eipa e ipa  I

1

 e ipa

1 F  eipx  I

1

 eipa

1 F  eipx a

−

I

= 

M a

P

M a

. 

P

HG

 ip

KJ +

−

 a  M

 ip

 ip  HG  ip  KJ P −

−

 a  M  ip

 ip  HG  ip

N

KJ P

− a  Q

N

0 Q

1 L 1

− ipa

1

= 

1 −  e

−

 eipa

(

)

(

− 1)

2

2

 a  NM

O

 p

 p

QP

2

1

2

= 

−

2

2  [ e–ipa +  eipa] = 

(1 – cos  ap) ;  p ≠ 0

 ap

 ap

2

 ap

when  p = 0, 

 a

0

 a

1

1

 f( p) = z 1.  dx +

 x dx

 x dx

| From (1)

 a  z

−

 a

 a

 a  z

−

−

0

 a

1

2 0

F  x  I

1

2

F  x  I

 a

 a

= 2 a + 

= 2 a –  −  = 2 a –  a =  a

 a  HG 2 KJ −  a  HG 2 KJ

2

2

− a

0

R 2

U

1

( − cos  ap) ;  p ≠ 0

Hence,  f( p) = 

2

S| ap

V|

 a; 

 p

T|

= 0W|. 

Example 8.   Find the complex Fourier transform of dirac delta function δ (x – a). 

∞

Sol.    F{δ( x –  a)} = z δ( x –  a) .  eipx  dx

−∞

 a+ h

 a +  h  1

 ipx

1 F  e  I

= Lim

 eipx  dx = Lim

0 z

 h →

 a

 h

 h → 0  h  HG  ip  KJ  a

 iph

F  e

I1

 iph

F  e

I1

= Lim  ipa

 e

−

=  eipa

−

∵

Lt

1

 h → 0

HG  iph  KJ

 iph → HG  iph  KJ =

0

Remark. For the function δ( t), F[δ( t)] = 1. 
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Example 9.  Find the Fourier transform of e x2

−

 . Hence find the Fourier transform of

( i)  F(x) = e ax2

−

 , (a > 0)

(A.K.T.U. 2017) ( ii)  F(x) = e x2

−  /2

( iii)  F(x) = e 4(x 3)2

−

−

( iv)  F(x) = e x2

−

  cos 2x. 

∞

∞

Sol. 

   f( p) = 

−

z

2

 e x 2 .  eipx dx  = 

−( x −

z  e ipx)  dx

−∞

−∞

RF  ip  2  p 2 U

∞

−S|  x −

HG

I

2 KJ +

V|

4

= 

T|

W|

z  e

 dx

−∞

F  ip  2

 ip

2

∞ −  x −

(

/4)

HG

I

2 KJ

Put  x −

=  z

=  e−  p

 e

 dx

z

2

−∞

⇒  dx =  dz

2

∞

 = e−( p / )

 e− z 2

4

 dz

z−∞

2

∞

⇒

F( e− x ) = 2

2

2

2

−(  p /4)

− z

−(  p /4

 e

 e

 dz

 e

z

=

)

π

...(1)

0

( i) By change of scale property, 

1 F  p  2

−

2

1

4 HG

IKJ

2

π



F( − ax )

 a

−(  p /4 a)

 e

=

π  e

=

 e

 a

 a

1

( ii) Comparing with the result of deduction ( i), we get  a =  2

Hence, 



F( e− x 2 / ) = 2  e−( p 2

2

/2)

π

( iii) We have, from (1), 

2

2



F( e− x ) =

 e−  p  4

π ( / )

1 F  p  2

2

2

−

∴   F( e−4 x ) F { e–(2 x) } = π  e  4 HG I

2 KJ

=

=  π

2

−(

/16

 e p

)

| By change of scale property

2

2

Hence, 

F { −4( x−3)2 }

π 3 ip –( p 2 /16)

 e

=

 e

 e

=  π [3

2

−(

/16

 e ip p

)]

| By shifting property

2

2

( iv) We have, from (1), 

F( − x 2 )

− (  p 2 /4)

 e

= π  e

π L

1

2

1

2

∴

F(

− (  p+2)

− (  p  2) O

 e− x 2  cos 2 x) = 



−

4

4

2 NM  e

+  e

QP. 

| By Modulation theorem

Example 10.  Find the inverse Fourier transform of f(p) = e–|p|y. 

1 ∞

Sol. 

F( x) = 

−| p y

|

−

z  e .  e ipx dp

2π −∞

1

0

L

 py

 ipx

 py

 ipx

O

= 

−

∞ −

−

NMz  e e dp + z  e e dp

2π −∞

0

QP

0

L

O

1 R e p( y− ix) U

R  e−( y+ ix) p ∞U

= 

MS

V

S

V P

2π M  y

NT| −  ix

( y ix)

W| + T|− + W| P

−∞

0 Q

1 L 1

1

 y

= 

+

. 

2π NM

O

 y −  ix

 y +  ix QP  =  π( y 2  x 2

+

)
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Example 11.  Find the Fourier transform of

 1, |x|<  a U

    F(x) = 

V

 0, |x|>  a W . 

(U.P.T.U. 2016, 2014, 2010)

 Hence evaluate

∞

∞  sin p

( i) z  sin ap cos px dp

( ii)

 dp

z

. 

−∞

 p

 0

 p

∞

 a

 a

Sol. 

 f( p) = z F( ) x.  eipx dx = z

 ipx

1.  e

 dx = 2

cos  px dx

 a

z

−∞

−

0

2 sin  ap

= 

,  p 

 p

≠ 0

For  p = 0, we find  f( p) = 2 a

Taking Inverse Fourier transform of  f( p), we get

1 ∞

1 ∞ 2

F( x) = 

−

z  f p e ipx

( ) . 

 dp = 

−

z sin ape ipx dp

2π −∞

2π −∞

 p

1 ∞ sin  ap (cos  px i  sin  p )

 x

=  z

−

 dp

π −∞

 p

R1, | x|<  a U 1 ∞ sin  ap cos  px

⇒

S

V

| Second integral vanishes

π z

0

T , | x|>  a

 dp

W = −∞

 p

∞ sin  ap  cos  px

R ,π | | U

⇒  z

 dp

 x

 a

=

< 

S

V

...( i)

−∞

 p

T ,0 | x|>  a W

Hence the first result. 

∞ sin  ap  cos  px

R ,π | | U

Again, from ( i), 2 z

 dp

 x

 a

=

< 

S

V

0

 p

T0, | x|>  a W

∞ sin  ap  cos  px

Rπ 2/, | | U

⇒

z

 dp

 x

 a

=

< 

S

V

0

 p

T 0, | x|>  a W

Putting  x = 0 and  a = 1, we get

∞

z sin  pdp=π. 

...( ii)

0

 p

2

 1

R  x2

−

 , if |x|<  1

Example 12.   Find the Fourier transform of F(x) = ST  0, if |x|>  1

∞ F  x cos x −  sin x

 x

 and use it to evaluate 

 cos

 dx

z HG

I

. 

(U.P.T.U. 2015)

 x3

KJ

 0

 2

Sol.  Fourier transform of F( x) is given by

∞

1

 f( p) = z  eipx . F( x)  dx = z  eipx (1 –  x 2)  dx

–∞

−1

1

1

= z cos  px (1 –  x 2)  dx +  i z sin  px (1 –  x 2)  dx

−1

−1

1

 =  2

cos  px  1

2

( −  x )  dx

z

 | Using property of Definite Integral

0
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1

L

 px

 px

O

1

1

R

U

2 sin

sin

4

= 2 MS 1

( −  x )

V

( 2 )

 x . 

 dx P

 x  sin  px dx

NMT

 p  W − −

 p

P =

z

 p  z

0

0

0

Q

1

L

O

cos

cos

L cos

sin

O

4 R

U

1

F −  px

F

 px

4

 p

1

1

F  px

=  MS x

V

1. 

 dx P

M

P

z

 p  NMT HG

I

 p

KJ

0

HG

I

 p

KJ P = −

+

 p  M  p

 p  HG

I

 p

W −

−

KJ P

0

0

Q

N

Q

4

= 

(sin  p −  p  cos  p)

3

 p

By inversion formula for Fourier transform

1 ∞ 4

F( )

 x

(sin  p p  cos )

 p .  e ipx

=

−

−

 dp

2 z−∞  p 3

π

2 ∞

Fsin  p −  p cos  p I

= 

(cos  px −  i  sin

)

 px . 

 dp

z

3

π

HG

 p

KJ

−∞

4 ∞ F sin  p −  p  cos  p I

= 

. cos  px dp

z

| Using prop. of definite integral

3

π 0 HG

 p

KJ

1

F

∞

Put  x =  , 



1

4

(sin  p p  cos )

 p

 p

F

. cos

 dp

π z

2

HG I2

3

KJ =

−

0

 p

2

3

4 ∞ F  p  cos  p  sin  p I

 p

⇒

= −

−

. cos

 dp

...(2)

π z

4

3

0 HG

 p

KJ

2

F

F 2

where

1

1

1

3

F HG I 1

1

2KJ = − HG I

2KJ = − =

4

4

∞

From eqn. (2), 

(  p  cos  p − sin )

 p

 p

3

. cos

 dp = −

z

π

 p 3

0

2

16

Replacing  p by  x, we get

∞ ( x  cos  x − sin )

 x

 x

3

cos  dx = −

z

π . 

 x 3

0

2

16

Example 13.  Find the Fourier transform of the function

F(t)

 shown in the adjoining figure. 

2

2

R , for − 1<  t < 1 U

Sol. Here, 

F( t) =  1

S| , for − 2 <  t < − 1V|

1

1, for 1

T|

<  t < 2

W|

Fourier transform is given by, 

– 2

– 1

0

1

2

t

−1

1

2

  f( p) = z 1.  eipt dt + z 2.  eipt dt + 1.  eipt dt

2

1

z

−

−

1

1

1

2

 eipt  I −

F  eipt  I F  eipt

F

I

= HG

2

 ip  KJ +

2

HG  ip  KJ +

1

HG  ip  KJ

−

−

1

F  e− ip −  e−2 ip I F  eip e− ip I F  e 2 ip eip I

= HG

2

 ip

KJ +

−

HG  ip  KJ +

−

HG  ip  KJ
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F  eip e− ip I F  e 2 ip e−2 ip

−

I

= HG  ip  KJ +

−

HG

 ip

KJ

=  1

1

2

2

( sin  p) + 2 sin 2 p =  sin  p (1 + 2 cos  p). 

 p

 p

 p

∞

Example 14.   Find the Fourier sine transform of e–| x |. Hence evaluate z  x sin mx  dx. 

 0

 1 x2

+

Sol.  In the interval (0, ∞),  x is positive so that  e–|  x | =  e–x. 

Fourier sine transform of  f( x) =  e– x is given by

∞

∞

F { f( x)} = z  f( x) sin  px dx = z  e–x sin  px dx s

0

0

L  e− x

∞

 p

= 

(− sin  px −  p  cos  px

NM

O)  = 

+  p

QP

1

2

1 +  p 2

0

Using inversion formula for Fourier sine transform, we get

2 ∞

2 ∞

     f( x) =   z F { f( x)} sin  px dp  or  e–x =  z  p  sin  px dp π 0  s

π 0 1  p 2

+

2 ∞

2 ∞ sin

Replacing  x by  m, we have  e–m =  z  p  sin  mp dp =  z  x mx   dx π 0 1  p 2

+

π 0 1  x 2

+

∞

sin

π

Hence, 

z  x mx  dx =    e–m. 

0

1  x 2

+

2

 e− ax

Example 15.    Find Fourier sine transform of   

,  a > 0.  Hence find Fourier sine

 x

 1

 transform of   . 

(G.B.T.U. 2011; U.P.T.U. 2015)

 x

∞

∞ − ax

Sol. 

 f  ( p) = z  F( x) sin  px dx = z  e  . sin  px dx = I  (say)

...(1)

 s

0

0

 x

 d I

 d  F ∞  e− ax

I

∴

. sin  px dx

HGz

 dp  =   dp  

| Differentiating (1) w.r.t.  p

0

 x

KJ

∞  e− ax ∂

∞  e− ax

∞

= z  



z    .  x cos  px dx = z   e–ax cos  px dx

0

 x

∂ p  (sin  px)  dx =  0

 x

0

− ax

∞

L

 a

= 

 e

(−  a  cos  px +  p  sin  px)  = 

 a

NM

O

2 +  p 2

QP

 a 2

 p 2

+

0

Integration w.r.t.  p yields,F  p

I = tan–1 HG I

 a KJ  +  c

...(2)

Initially when  p = 0,  I = 0

∴

 c = 0

| From (2)

F  p

∴ From (2),   I = tan–1 HG I

 a KJ

∞  e− ax

F  p

∴

z    . sin  px dx = tan–1 HG I a KJ

0

 x
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Take limit as  a → 0

∞

z 1

π

sin  px dx = 

0

 x

2

Example 16.   Find Fourier cosine transform of the following functions:

R

 1

 x, 

 0 <  x < 

|

 2

|

 1

( i)  F(x) = S  1 −  x, 

<  x <  1

 2

|  0, 

 x >  1

|T|R cosx,  0<  x<  a

 eax +  e− ax

 cosh ax

( ii)  F(x) = S|T|

( iii)  F(x) = 

 or 

, – π <  a < π

 0, 

 x >  a

 e π x +  e− π x

 cosh x

π

 x2

( iv)  F(x)  = e–2x + 4e–3x

( v)  F(x) =  sin 

. 

 2

∞

1/2

1

Sol.  ( i)   f ( p) = z F( x) cos  px  dx = z   x cos  px dx + z (1 –  x) cos  px dx c

0

0

1/2

F  x  sin  px  1/2

1

1/2

R

sin  px  U

1

sin  px

= HG

I  – z sin  px  dx +  (S1− ) x  V  – z (–1)    dx

 p

KJ

 p

T

 p  W

 p

0

0

1/2

1/2

1/2

1

1

 p

Fcos  px I

1

 p

1 F

= 

sin   + 

sin   – 

cos  px

2 p

2

HG  p 2 KJ  – 2 p

2

2

 p  HG

IKJ

0

1/2

1 F

 p

1 F

 p

= 

cos

− 1

 p −

2

HG

I

2 KJ

 p  HG

I

2

KJ −   cos cos

 p 2

1 F

 p

=  2   2 cos − 1 − cos  p

 p  HG

I

2

KJ

∞

( ii)

 f ( p) = z  F( x) cos  px dx

 c

0

 a

1  a

= z  cos  x cos  px dx =  z [cos (1 +  p)  x + cos (1 –  p) x]  dx 0

2 0

1 Lsin (1 + )

 p x

sin (1

)

 p x a

1 Lsin (1 + )

 p a  sin (1

)

 p a

= 

+

−

= 

+

−

2 NM

O

1 +  p

1 −  p

QP 2 NM

O

1 +  p

1 −  p

QP

0

 ipx

− ipx

F

I

∞ F  eax +  e− ax  I

∞

 ax

− ax

F

I  e +  e

( iii)

 f ( p) = z  

cos  px dx = z  e +  e  

 dx

 c

 x

π

−  x

π

 x

π

−  x

π

HG

2

KJ

0

HG  e +  e  KJ

0 HG  e

+  e

KJ

1 L ∞  e( a +  ip)  x e− ( a +  ip) x

∞

+

 e( a −  ip)  x e− ( a −  ip) x

=   

 dx +

+

 dx

z π π

z

2

 e x

NM

O

+  e−  x

 e x

π +  e−  x

π

0

0

QP

L

O

1 L

M

P

1

F  a +  ip  1 F  a ip

1

1

1

=   

sec

sec

M

+

P

2 NM

O

2

HG

I

2 KJ +

−

2

HG

I

2 KJQP =  4 M

F  a +  ip

F  a −  ip  P

cos

cos

NM HG

I

2 KJ

HG

I

2 KJ QP
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 a

 ip

 a

 p

1

2 cos

cos

cos

cosh

=   . 

2

2

= 

2

2

∵ cos  ip = cosh  p

4

F  a +  ip

F  a ip  cos  a + cosh  p

cos

cos

HG

I

2 KJ

−

HG

I

2 KJ

∞

( iv)

  f ( p) = z  ( e– 2 x + 4 e–3 x) cos  px dx

 c

0

∞

∞

2

12

= z   e– 2 x cos  px dx + 4 z  e–3 x cos  px dx =  2  +  2

0

0

 p + 4

 p + 9

∞

 x 2

1 ∞ R

F  x 2

I

F  x 2

IU

( v)

  f  ( p) = z sin   cos  px dx =  z si

S| n

+  px

sin

 px  V|

 c

0

2

2 0 T| HG 2

KJ +

−

HG 2

KJW|  dx

1 ∞

2

F

I

1 –∞

2

F

I

1 ∞

F  x 2

I

=  z sin   x +  px

z sin   x +  px

z  sin  +  px

2 0

HG 2

KJ  dx – 2 0

HG 2

KJ  dx = 2 −∞ HG 2

KJ  dx

F  x 2

I

1 ∞  i

+  px

1 ∞

2

= Im. part of  z  e  HG 2 KJ   dx = Im. part of  z   ei ( x +2 px) 2

 dx

2 −∞

2 −∞

1 ∞

( x p)2

2

2

1

∞

−

+

= Im. part of  z

2

 e i {( x +  p) −  p }

z

2

 dx = Im. part of    e− ip  2/

 e

2 i

 dx

2 −∞

2

− ∞

1

2

π

= Im. part of     e−( ip /2)  

2

1

2 i

π

2

2

F

I F

= Im. part of 



 p

 p

π

π

cos

−  i  sin

+  i

2 HG

2

2 KJ cos

sin

HG

I

4

4KJ

π F

 p 2

 p 2 I

1

π F

 p 2

 p 2 I

= 

cos

− sin

= 

cos

− sin

2 HG

2

2 KJ  .  2

2 HG

2

2 KJ . 

 1

Example 17.    Find Fourier cosine transform of 

 and   hence find Fourier sine

 1 x2

+

 x

 transform of 

 . 

(A.K.T.U. 2018, 2017)

 1 x2

+

∞

Sol. 



  f ( p) = z 1  cos  px dx = I  (say)

...(1)

 c

0 1

2

+  x

 d I

∞

 x  sin  px

∞ (1

2

+  x − )

1 sin  px

∴



= z −

z  

 dx

 dp

0

1 +  x 2   dx = –  0

 x(1

2

+  x )

∞ sin  px

∞

sin  px

= – z  

 dx + z  

 dx

0

 x

0

 x(1  x 2

+

)

 d I

π

∞

sin  px



= –   + z  

 dx

...(2)

 dp

2

0

 x(1  x 2

+

)
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 d 2I

∞  x  cos  px

∞ cos  px

Again, 



= z

 dx =

 dx = I

| From (1)

 x ( +  x )

z

 dp 2

0

2

0

2

1

1 +  x

 d 2I

⇒



– I = 0

...(3)

 dp 2

Solution of (3) is, 

I =  c   ep +  c e–p

...(4)

1

2 

 d I

∴



=  c ep –  c   e–p

...(5) | From (4)

 dp

1 

2

∞

π

When  p = 0, 

I = z 1   dx = 

| From (1)

0 1

2

+  x

2

 d I

π

and

= – 

| From (2)

 dp

2

Applying to (4) and (5), we get

  c  +  c  = 

–  c  = – 

1

2

π/2 and  c 1

2

π/2

so that, 

   c  = 0,  c  = 

1

2

π/2

π

∴ From (4), 

I =    e–p

2

∞ cos  px

π

⇒

z  

 dx =    e–p

0

1  x 2

+

2

Differentiating w.r.t.  p, we get

∞

z − x sin  px

π

∞  x  sin  px

π



 e–p ⇒ z  

 dx =    e–p. 

0

1 +  x 2   dx = –  2

0

1  x 2

+

2

Example 18.   Find the Fourier cosine transform of  e x2

−

. 

Sol.  Fourier cosine transform of  e x2

−

is given by

∞



F  {

z  e x2− cos  px dx = I (say)

...(1)

 c e x2

−

} =  0

Differentiating w.r.t.  p, we have

 d I

∞

1 ∞



z − 2

z

 dp  = – 

 xe x  sin  px dx = 

(sin  px) (– 2 x e x2

−

)  dx

0

2 0

1

2

∞

∞

L

2

=    sin

{  px e− x } −  p  cos  px e− x dx

(Integrating by parts)

0

z

2 NM

O

0

QP

 p ∞

 p

= – 

z  e− x 2 cos  px dx = –   I

2 0

2

 d I

 p

 dp  = –    dp

2

2

 p 2

 p

−

Integrating, we have   log I = – 

+ log A or I = A  e  4

...(2)

4

∞

Now when  p = 0, from (1), I = z  e− x 2  dx =  π

0

2

∴ From (2), 



π  = A

2
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 p 2

−

Hence, 

I = F  { e− x 2 } =  π   e  4 . 

 c

2

 1

F I

 1

 2

Example 19.   If   f (p) =  tan−

 c

 , then find F(x). 

(M.T.U. 2014)

 2

HG  p2 KJ

F I

L

−1F

1

−1F

Sol. 



−1

2

−1

2

1

tan

tan

tan

tan

2

HG KJ =

NM

O =

( 2 − 1) + 1QP

 p

 p

HG

I

 p − KJ −

1

HG

I

 p + KJ

1

2 ∞ 1

−1F 2 I

F( )

 x =

tan

cos  px dp

z0 2 HG p 2

π

KJ

1 ∞ R

−1F

1

−1F

1

U

=

tan

tan

cos  px dp

π z S

0 T

HG

I

V

 p − KJ −

1

HG

I

 p + 1KJW

1 L ∞

∞

F

1F

1

1



=

tan

cos  px dp

tan−

cos

z 1

 px dp

π z

NM

−

0

HG

I

 p − 1KJ

− 0

HG

I

 p + 1KJ

OQP

= 

I  + I

(say)

...(1)

1

2

L

1 R

F 1

sin  px  U∞

∞

−

1

sin  px

O

where

I

1

MStan

. 

V z

1

. 

. 

 dp

1 = π NM −

T

HG

I

 p − 1KJ

 x

W − 0 ( p − 1 2) R

1

U  x

0

S1+

T

QP

2 V

( p − 1) W

1 ∞

sin  px

=

 dp

π x  z ( p − 1 2

0

) + 1

1 ∞

sin  px

Similarly, 

I

 dp

π x  z

2 = −

2

0 (  p + 1) + 1

1 ∞ R sin  px

sin  px  U

From (1), 

I =

 dp

π x  z S

−

0 T

2

2

V

(  p − 1) + 1 ( p + 1) + 1W

1 Lπ

 x

 x

π

−

 e  sin  x

=

−

 e

 x −

−

 e x

sin

sin (−  x)

2



. 

π x  NM

O

1

1

QP =  x

Example 20.   Solve the integral equations:

R  1, 0 ≤  t <  1

∞

∞

( i)

 f(x) cos  λ x dx e  λ

= −

z

( ii)

 F(x)  sin  tx dx =

z

S|  2, 1≤  t <  2. 

 0

 0

 0, 

 t

T|

≥  2

2 ∞

2

1

Sol.  ( i)

 f ( x)

 e–

=

λ cos λ x d λ = . 

∵  f

 e

 c ( )

–

λ

λ

=

π z

2

0

π 1 +  x

2 ∞

2 L 1

2

( ii)





F( )

 x =

 f ( t) sin  tx dt =

sin  tx dt +

sin  tx dt

π z0

z 2

π z

 s

0

NM

O

1

QP

2 LF

1

cos  tx

F

2

cos  tx  O

=

−

M

π MHG

I

 x

KJ − 2

0

HG

I

 x  KJ P

N

1 QP

2 L 1 cos  x

Fcos 2 x  cos  x

2

=

−

− 2

−

=

1

( + cos  x − 2 cos 2 x). 

π NM

O

 x

 x

HG

I

 x

 x  KJQP π x
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Example 21.   Solve the integral equation

∞

 1

R −  p, 0 ≤  p≤  1

 F(x) cos px dx =

z

S

 0

T  0, p>  1

∞  sin2t

 Hence prove that 

 dt =

z

π   . 

 t2

 0

 2

∞

R1−  p, 0 ≤  p≤ 1

Sol.  Let

F( )

 x  cos  px dx =  f ( )

 p

z

S

 c

, then   f p

 c ( ) =

0

, 

0  p

T

> 1

∴ By inversion formula for Fourier cosine transform, we have

2 ∞

2 L 1

∞

F( )

 x =

 f ( )

 p  cos  px dp =

1

( − )

 p  cos  px dp +

. cos  px dp

π z0

z 0

π z  c

0

NM

O

1

QP

2 L

1

sin  px

cos  px

2 L cos  x

1

2 1

(

cos )

 x

=

1

( − )

 p . 

−

−

(– ) . 

=

−

2

+

π NM

O

1

2

 x

 x

QP π NM

O2

 x

 x  QP =

−

2

 x

. 

0

π

∞

R1− ,  p  0 ≤  p  1

2 1

( − cos )

 x

Deduction.  Since 

≤

F( )

 x  cos  px dx =

z

S

where F( x) = 

2

0

T ,0  p> 1

 x

π

2 ∞ 1 −

R1− ,  p  0 ≤  p≤ 1

∴

z cos x . cos pxdx  S

2

=

0

π

 x

, 

0  p

T

> 1

2  x

2 ∞ 1

2 sin

∞

When  p = 0, we have 

−

 dx = 1

z cos x

or

2  dx

z

2

= π

0

π

 x

2

0

 x

2

∞ sin2  t

Putting  x = 2 t so that  dx = 2 dt, we get

 dt =

z

π  . 

2

0

 t

2

R

Example 22.   Taking the function   F(x)

 1, 0 x

=

< < 

S

π

 0, 

T

 x > π

∞ F

R

 1 −  cos p

π

 show that

 . sin px dp

 , 0 x

z

π

S|

π   . 

 0  HG

I

 p

 2

KJ

=

< < 

T|  0, x > π

R ,1 0  x  π

Sol.  Consider

F( )

 x =

< < 

ST0,  x>π

Taking sine transform, 

∞

π

 f (  p)

1 cos  p

=

( x) . sin  px dx

z F

π

 s

=

. sin  px dx = −

z 1

0

0

 p

By inversion formula for Fourier sine transform. 

2 ∞ F 1 −

π

z cos p

R

sin  px dp

1, 0  x

=

< < 

S

π

0

π

HG

I

 p

KJ

T0,  x > π

π

∞ F

R

1 −

 p π

, 0 <  x < π

⇒

z

cos

sin  px dp  S|2

0 HG

I

 p

KJ

= T| 0,  x> .π
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Example 23.   Find Fourier sine and cosine transform of F(x) =  xn e–ax  ;   a > 0,  n > –  1

 Hence find Fourier sine and cosine transforms of

( i)  xm–1

( ii)  x–m. 

Sol.  Here

F( x) =  xn e–ax

∞

∞

F  eipx −  e− ipx I

  f ( p) = z   xn e–ax . sin  px dx = z   xn e–ax . 

 dx

 s

0

0

HG

 i

2

KJ

1

∞

∞

L

= 



 xn e−  a −  ip x dx −

 xn e−( a+  ip)  x dx

z ( )

0

z

2 i  NM

O

0

QP

1 L Γ( n + )

1

Γ( n

)

1

∞

−  zx

 n

Γ( n)

= 



−

+

∵

 e

 x −  dx =

z

1

2 i  NM

O

( a −  i )

 p n+1

( a +  i )

 p n+1 QP

0

 zn

Put  a =  r cos θ,  p =  r sin θ

so that, 

 a +  ip =  r(cos θ +  i sin θ)

∴

( a +  ip) n+ 1 =  rn+ 1 {cos ( n + 1) θ +  i sin ( n + 1) θ}

and



 a –  ip =  r (cos θ –  i sin θ)

∴

( a –  ip) n+ 1 =  rn+ 1 {cos ( n + 1) θ –  i sin ( n + 1) θ}

 p

Also, 

 r 2 =  a 2 +  p 2 and

tan θ =   a

Γ( n + )

1 L2  n+1

 i r

sin ( n + 1) θ

Now, 

  f ( p) = 



 s

2 i

2( n+1

 r

NM

O

)

QP

Γ( n + )

1 sin ( n + )

1 θ

 n + 1

 n  1

 p

= 

=  Γ(

) sin ( + )θ  where tan θ = 

 rn + 1

( a 2 +  p 2)( n+ )1/2

 a

Γ( n + )

1 cos ( n + )

1 θ

 p

Similarly, 

  f  ( p) = 

where tan 

 c

θ = 

( a 2 +  p 2)( n+ )1/2

 a

∴ We have the relations, 

∞

Γ( n + )

1 sin ( n + )

1 θ

z   e–ax .   xn sin  px dx = 

...(1)

0

( a 2 +  p 2)( n+ )1/2

∞

Γ( n + )

1 cos ( n + )

1 θ

and

z  e–ax  xn cos  px dx =  

...(2)

0

( a 2 +  p 2)( n+ )1/2

 p

where tan θ =   a

Put  a = 0 and replace  n by  m – 1 in (1) and (2), we get

∞

Γ( )

 m  sin  m  π / 2

z   xm– 1 sin  px dx = 

...(3)

0

 pm

∞

Γ( )

 m  cos  m  π / 2

and

z   xm– 1 cos  px dx = 

...(4)

0

 pm

Replace  m by  m + 1 in (3) and (4), we get

∞

z

Γ( m + )

1 sin ( m + )

1 /

π 2

Γ( m + )

1 cos  m  π / 2

 xm sin  px dx = 

= 

...(5)

0

 pm+1

 pm+1

∞

− Γ( m + )

1 sin  m  π / 2

and

z   xm cos  px dx = 

1

...(6)

0

+

 pm
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Replacing  m by –  m in (5) and (6), we get

∞

Γ(1 −  m) cos  m  π / 2

z   x–m sin  px dx = 

0

1 −

 p m

π

1

cos  m  π / 2

π

∵ Γ( )

 m  Γ(1 − )

 m =

; 

= 

. 

. 

sin  m

sin  m  π Γ( m)

π

 p 1− m

0 <  m < 1

π

 pm−1

π cos  m

π

 m  1

 p −

 m  π

= 

2

. 

=  . 

cosec

Γ( m)

 m

2 sin

π cos  m  π 2 Γ( m)

2

2

2

∞

π

 m  1

 p −

 m  π

Similarly, z   x–m cos  px dx =  . 

sec

0

2 Γ( m)

2

PROBLEM SET-II

R0, for  x <  a  U

1. 

Find Fourier transform of F( x) = S| 1, for  a <  x <  b  V|

0, for  x

T|

>  b

W|. 

2. 

Show that the Fourier transform of

R | |, 

for| |

U

2

∞ sin  t

F( x) =   a −  x

 x <  a

S

V is  2  (1 – cos  ap). Hence show that z

 dt = π . 

, 

0

for| x

T

|>  a > 0W

2

 p

0

2

 t

2

3. 

Find the Fourier transform of

1

R , | x|< 1U

∞

F( x) = S

V

z sin x  dx. 

( G.B.T.U. 2011)

0, | x|

T

> 1W hence evaluate  0


 x

F(t)

1

4. 

Find the Fourier transform of the single gate function (rectangular pulse)

shown in the adjoining figure. 

– T/2

T/2

t

5. 

Find the Fourier transform of the function F( t)as shown in the

figure:

F(t)

L

RA t

U

M

O

Hint. 

F

0  t  T

( )

, 

 t =

< < 

S|

P

T

V|

M

P

M

N

A, 

T

N

T|

<  t < T

2 W|Q

A

R x 2, | x|<  a U

6. 

Find Fourier transform of F( x) = S

V

0, 

| x|

T

>  a W. 

O

T

2T

t

7. 

Find Fourier sine and cosine transform of



( i) F( x) =  e–x,  x ≥ 0

( ii) F( x) = 2 e–5 x + 5 e– 2 x

Fig. of Q. 5

1

R , 0 ≤  x <  a U

( iii) F( x) = cosh  x – sinh  x

( iv) F( x) = S

V

0, 

T  x >  a  W

( v)  x e–ax,  a > 0. 
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R  x, 

for

0 <  x < 1U

8. 

Obtain Fourier cosine transform of F( x) =  2

S| −  x, 

for

1 <  x < 2V|

, 

0

for  x

T|

> 2

W|. 

Also, find its Fourier sine transform. 

9. 

Find Fourier sine transform of

0

R , 0 <  x <  a U

1

( i) F( x) = S| ,  x a ≤  x ≤  b V|

2

2

0,  x

T|

>  b

W|

( ii) F( x) =   x( x +  a )

2

 eax +  e− ax

( iii) F( x) =  xe−  x /2

( iv) F( x) = 

or  cosh  ax , – π <  a < π

 e x

π −  e−  x

π

sinh π x

− ax

− bx

( v)  e

−  e

. 

 x

1

10. 

Find Fourier sine transform of 

1

and deduce that  f  (cosech π x) =   tanh ( p/2). 

 e π x −  e−π x

 s

2

11. 

Find Fourier cosine transform of F( x) = sech π x. 

F  e− ap I

F 1

12. 

Find F –1 

–1 

 s

HG  p  KJ  and hence evaluate F s  HG I p KJ. 

( A.K.T.U. 2016)

13. 

By taking  e–ax  for F( x);  a > 0,  x > 0; show that



∞

z cos px  π

∞

z  p sin px

 dp = 

 e–ax  and

 dp =  π   e–ax. 

0

2

2

 a +  p

2 a

0

2

2

 a +  p

2

14. 

Find F( x) if its Fourier sine transform is

 p

π

R

U

( i)

 p  0 <  p < π

S

V

1  p 2

( ii)

( iii) (2

+

2

π p)1/2

( iv) sin , 

, 

0

 p

T

≥ π

W. 

2 2

2 2

15. 

Find Fourier cosine transform of   e− a x  and hence evaluate Fourier sine transform of  xe− a x . 

1

16. 

Find Fourier sine and cosine transform of 

. 

 x

17. 

( i) If  f( p) is the Fourier transform of F( x), prove that F[ eiax  F( x)] =  f( p +  a). 

  

 dn

( ii) If  f( p) is the Fourier transform of F( x), prove that F[ xn  F( x)] = (–  i) n   dpn  { f( p)}. 

1

2

2

18. 

A certain function of time F( t) has the following Fourier transform  f( p) = 

 e− {2 p /( p + )

1 }

2

 p + 1

Using the properties of the Fourier transform, obtain the Fourier transforms of

( i) F(2 t)

( ii) F( t – 2)

( iii) F( t) cos 2 t

( iv)  e 2 it F( t). 

19. 

State and prove the convolution theorem for the Fourier transform. Verify this theorem for the functions  f( t) =  e– t and  g( t) = sin  t. 

( U.P.T.U. 2010)

20. 

Find the Fourier transform of Block function  f( t) of height 1 and duration  a defined by

⎧

 a

1, for| t|

⎫

⎪

≤ ⎪

 f( t) =  ⎨

2 ⎬ . 

( A.K.T.U. 2016)

⎪0, otherwise⎪

⎩

⎭
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ANSWERS (PROBLEM SET II)

( eibp

 eiap

−

)

2 sin  p

π

1. 

3. 

,  p 

 ip

 p

≠ 0 ;  2

F  p T F

sin

A

T

 ip

A 2 ip T

4. 

T sin  c 

where sin  c

HG I

θ

θ

( e

− 1) +

 e

2 KJ

=

HG

I

5. 

θ KJ

T p 2

 ip

F 2 2 a  4 I

4 a

6. 

− 3

HG  p p  KJ sin  ap +   cos  ap

2

 p

 p

1

F

I

F

I

7. 

( i) 

; 

5

1

1

1  p 2 1  p 2

( ii)  p 

2

+

+

+

; 10

2

HG

+

+ 25

2 + 4

2

KJ

HG + 25 2

 p

 p

 p

 p + 4KJ

 p

1

F 1− cos  ap  sin  ap

2

2

2

 ap

 a −  p

( iii)

; 

; 

; 

1  p 2 1  p 2

( iv)

+

+

HG

I

 p

KJ

 p

( v)

2

2 2

2

2 2

( a +  p )

( a +  p )

2

2

8. 

2  cos  p (1 – cos  p) ; 

sin  p (1 – cos  p)

 p

2

 p

π

9. 

( i)  ( a  cos  ap −  b  cos  b )

 p

(sin  bp  sin

)

 ap

+

−

( ii)

(1 –  e–ap)

 p

 p 2

2 2

 a

π

sinh  p

F  p

− F  p

( iii)

 p

2

 e−( p /2)

( iv)

( v) tan–1 

tan 1

2

2 (cos  a + cosh )

 p

HG I

 a  KJ −

HG I

 b  KJ

1

 p

1

 p

2

F  x

10. 

tanh 

11. 

sech

12. 

tan–1 

4

2

2

2

π

HG I

 a KJ  ; 1

1

1

2

sin π x

14. 

( i)  e–x

( ii)

( iii)

. 

 x

 x x

( iv)

1

2

π ( −  x )

π

2

2

−(  p /4 a )

 p  π

2

2

π

π

15. 

−(  p /4

 e

 e

 a )

; 

16. 

, 

2 a

4 3

 a

2  p

2  p

F 2 2 p  I

−

2

1

2

2

18. 

( i) 

2

HG  p + 4KJ

 e

( ii)  e 2 ip . 

− {2

/(

+ 1

 e

 p

 p

)}

2

 p + 4

2

 p + 1

L

R 2( p  2)2 U

R 2( p  2)2 UO

R 2( p  2)2 U

1 M

1

−

+

S|T|

V|

S|

V|

−

+

S|

V|

+

+

T| − + P

(  p  2)2 1

1

2

2

( iii)



(  p  2)

1

M

 e

W|

−

−

+

 e

W|P ( iv) 

1

(  p

T| + 2) + 1W|. 

2 M

 e

(  p + 2 2

) + 1

(  p − 2 2

) + 1

2

NM

QPP

(  p + 2) + 1

2

 ap

20. 

sin

 p

2

1.11 FOURIER TRANSFORMS OF THE DERIVATIVES OF A FUNCTION

Let  u( p,  t) be the Fourier transform of the function  u( x,  t). 

∞

Then

 u(  p,  t) = 

 u x t eipx

( , )

 dx

z−∞

∂ u

∂2 u

Suppose  u and 

both vanish as  x → ± ∞. Then the Fourier transform of 

is given

∂ x

∂ 2

 x

by
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R∂2 u U ∞ ∂2 u

FS

V

 eipx dx

z

T∂ 2 x  W = −∞ ∂ 2 x

LR  ipx u∂

 ipx

U∞

∞

O

∞

= MS e

−  ipe

.  u

 ip

( )2  eipx .  u dx  = −  p 2

 ueipx dx = −

z

 p 2  u

 x

∂

z

P

NMT

VW +

− ∞

− ∞

QP

− ∞

F∂2 u I

Hence, 

F HG∂ 2 x KJ  = –  p 2  u

where  u  = F( u)

If  u p t

 s ( , )  and  u

 p t

 c ( , )  be the Fourier sine and cosine transforms of  u( x,  t), then

∞

∞

 u p t =

 u

 px dx

z

z

 s ( , )

sin

and  u(  p,  t) =

 u  cos  px dx

0

0

∂2 u

The Fourier sine transform of 

is given by

∂ 2

 x

R∂2 u U ∞ ∂2 u

F S

V z

 s

sin  px dx

 x

T∂ 2

 x

W = ∂ 2

0

LR

 u

∂

U∞ ∞

O

= MSsin  px

−  p  cos  px .  u

 p 2

 px u dx

 x

∂

0

z sin . P

NMT

VW − 0

QP

L R U

∞

O

2

sin

R U

=   p u

S V

 p 2 us

0

z

= M  p u

S V

 p

 u

 px dx P

NM T W −

=

0

P

 x

Q T W −

 x = 0

F∂2 u I

Hence, 

F  

–  p 2

( u)

 s  HG

 u

∂ 2

 x  KJ  =  p( u) x = 0

 s

where  us  = F s

Similarly, we have, 

F∂2 u I

F∂ u

   F  

–  p 2

( u)

 c  HG

 u

∂ 2

 x  KJ  = – HG I

∂ x KJ

 c

where  uc  = F c

 x = 0

In general, the Fourier transform of the  n th derivative of F( x) is given by

F  dn FI

F HG  dxn  KJ  = (–  ip) n F{F( x)}

Note.   s may also be used as a parameter in place of  p. 

1.12 CHOICE OF INFINITE FOURIER SINE OR COSINE TRANSFORM

∂2 u

For exclusion of 

from a differential equation, we require

∂ 2

 x

F∂ u

( i) ( u)

in sine transform. 

( ii)

in cosine transform. 

 x = 0

HG I

∂ x KJ  x = 0
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1.13

APPLICATIONS OF FOURIER TRANSFORMS TO HEAT CONDUCTION (TRANSFER)

EQUATIONS

In one dimensional heat transfer eqns, the partial differential equation can easily be trans-

formed into an ordinary differential equation by applying Fourier transforms. The required

solution is then obtained by solving this equation and inverting by means of the complex inversion formula. This is illustrated through the following examples. 

 2

Example 24.   Solve the equation  ∂ u

∂  u

=

 , x >  0, t >  0 subject to the conditions

∂ t

∂ x2

R

( i)  u =  0 when x =  0, t > 0

( ii)

 1, 0

 x

 1

 u =

< < 

S 0, x

T

 when t = 0

≥  1

 and ( iii)  u(x, t)  is bounded. 

(G.B.T.U. 2011; U.P.T.U. 2015)

Sol.  Since ( u)

is given, taking Fourier sine transform of both sides of the given

 x =  0

equation, we have

∞ ∂ u

∞ ∂2 u

sin  px dx =

sin  px dx

z0

z

∂ t

∂ x 2

0

 d

∞

F

I

⇒  

 u  sin  px dx

HGz

=  p( u)

–  p 2 

 dt

 u

0

KJ

 x = 0 

 du

∞

⇒

  

+  p 2

= z sin

 dt

 u  = 0

...(1)

where  u

 u

 px dx

0

Solution to (1) is

2

 u  =  c e−  p t, 

...(2)

1

where  c  is a constant. 

1

Now, when  t = 0, Fourier sine transform of  u( x, t)

∞

1

∞

( u )

= z   u( x, 0) sin  px dx =  1.sin  px dx + 0

z

z .sin  pxdx

 t = 0 

0

0

1

F − cos  px  1 1 cos  p

= HG

I

 p

KJ = −  p

0

∴ From (2), 

( u )

=  c

 t = 0 

1

1 − cos  p

⇒

  c  = 

1

 p

F1− cos  p

2

∴ From (2), 

 u  = HG

I   e−  p t

 p

KJ

Applying inverse Fourier sine transform, we have

2 ∞F 1 cos  p

2

 u( x, t) = 

−

z −  e pt sin pxdp

π 0 HG

I

 p

KJ

which is the required solution. 

Example 25.   Determine the distribution of temperature in the semi-infinite medium x ≥  0

 when the end x = 0 is maintained at zero temperature and the initial distribution of temperature is F(x). 

INTEGRAL  TRANSFORMS

M-2.29

Sol.  Let  u( x, t) be the temperature at point  x at any time  t. Heat flow equation is

∂ u

∂2 u

=  c 2 

, ( x > 0,  t > 0)

...(1)

∂ t

∂ 2

 x

Subjected to the initial condition  u( x, 0) = F( x)

...(2)

and the boundary condition  u(0,  t) = 0

...(3)

Taking Fourier sine transform of eqn. (1), we get

∞

z ∂ u

2

∞

 u

sin  px dx =  c 2 z ∂ sin  px dx

0 ∂ t

0

2

∂ x

 du

⇒



=  c 2 [ p ( u)

–  p 2 

0

 dt

 x = 0

 u ] = –  c 2 p 2 u

∵ ( )

 u x = 0 =

 du

∞

⇒



+  c 2 p 2

= z sin

 dt

 u  = 0

...(4)

where  u

 u

 px dx

0

Solution to (4) is



2 2

 u  =  c e−  c p t

...(5)

1

Taking Fourier sine transform of (2), we get

∞

( u )

= z

( p)

| say

 t = 0 

F( )

 x  sin  px dx  =  fs

0

From (5), 

( u )

=  c

=  f ( p)

 t = 0 

1

⇒  c 1

 s

2 2

∴ From (5), 

 u  =  f ( p)  e−  c p t

 s

Now Taking its inverse Fourier sine transform, we get

2 ∞

2 2

  u( x, t) = 

−

z  f p e c pt

( )

sin  px dp

π

 s

0

∂ u

∂ 2u

Example 26.   Use Fourier sine transform to solve the equation 

=  2 

 under the

∂ t

∂  2

 x

 conditions

( i)  u(0, t) = 0

( ii)  u(x, 0) = e–x

( iii)  u(x, t) is bounded. 

Sol.  The given equation is

∂ u

∂2 u

= 2 

...(1)

∂ t

∂ 2

 x

Taking Fourier sine transform on both sides of eqn. (1), we get

∞

z ∂ u

∞

 2u

sin  px dx  = 2 z ∂ sin  px dx

0 ∂ t

0 ∂  2

 x

 du

⇒



= 2 [ p( u)

–  p 2 u ]

 dt

 x = 0

 du

∞

⇒



+ 2 p 2 u  = 0

where  u =

 u  sin  px dx

z

 dt

0

Its solution is



2

 u  =  c e− 2 p t

...(2)

1

where  c  is a constant. 

1

∞

∞

 p

At  t = 0, 

( u )

= z ( ) u  sin  px dx =  −

z  e x sin  pxdx = 

...(3)

 t = 0 

 t = 0

0

0

1  p 2

+

From (2), 

( u )

=  c

...(4)

 t = 0 

1
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 p

∴ From (3) and (4),  c  = 

1

1  p 2

+ p

From (2), 





2

 u  = 

 e− 2 p t

...(5)

1  p 2

+

Taking inverse Fourier sine transform, we get

2 ∞

 p

  u( x, t) = 

−2 2

z

 e p t sin  px dp. 

π 0 1

2

+  p

Example 27.   The temperature u in the semi-infinite rod 0 ≤  x < ∞  is determined by the

∂ u

∂ 2u

 differential equation 

=  k 

 subject to conditions

∂ t

∂  2

 x

∂ u

( i)  u = 0 when t = 0, x ≥  0

( ii)

= – μ  (a constant) when x = 0 and t > 0

∂ x

( A.K.T.U. 2018)

∞

 2 μ

 cos px

 Making use of cosine transform, show that  u(x, t) = 

−

 (1 −

∫

 2

 kp t

 e

 ) dp. 

π

 2

 0

 p

Sol.  Taking Fourier cosine transform on both sides of given equation, we get

∞  u

2

∞

 u



z ∂ .cos pxdx =  k z ∂ cos pxdx

0 ∂ t

0

2

∂ x

 du

L F∂ u

⇒



=  k  −

 p 2 u

 dt

NM

O

HG I

∂ x  KJ

−

 x  0

QP

=

∞

=  k μ –  kp 2 u

where  u =

 u  cos  px dx

z0

 du

⇒

+  kp 2 u  =  k

 dt

μ

...(1)

2

I.F. =  e kp t

Solution to (1) is

2

2

2

 u  .  e kp t =   k .  ekp t

μ

 dt c

z

+ 1 =  μ   e kp t +  c

 p 2

1

2

⇒

 u  =  μ  +  c e−  kp t

...(2)

 p 2

1

∞

At  t = 0, 

(

z

 u )

= 

( )

 u

cos  px dx  = 0

...(3)

 t = 0 

 t = 0

0

From (2), 

( u )

=  μ  +  c

...(4)

 t = 0 

 p 2

1

⇒

   c  = –  μ

| From (3) and (4)

1

 p 2

2

∴ From (2), 



 u  =  μ  (1 –  e−  kp t )

 p 2

Taking inverse Fourier cosine transform, we get

2

 u = 

∞ μ (1

2

−  e – kp t)

z

cos  px dp. 

π 0  p 2
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Example 28.  ( i)  If the initial temperature of an infinite bar is given by

R ,  for| x|  a

θ

θ

 (x)

 0

=

< 

S 0 T,  for| x|>  a

 determine the temperature at any point x and at any instant t. 

( ii)  If the initial temperature of an infinite bar is given by

 1, 

R  for −  c <  x <  c U

μ( x, 0) = S

V

 0, otherwise

T

W

 determine the temperature of an infinite bar at any point x and at any time t > 0. 

Sol.  ( i) To determine the temperature θ( x,  t), we have to solve the heat-flow equation

∂θ

2

2 ∂ θ



=  c

,  t > 0

...(1)

∂ t

∂ x 2

R

subject to the initial condition

, for| x|  a

θ

θ

( , 

 x )

0

0

=

< 

ST

...(2)

, 

0 for| x|>  a

Taking Fourier transform of (1), we get

∞ ∂θ

2

 ipx

∞ ∂ θ

 e

 dx c

 eipx

=

 dx

z

2 z

−∞ ∂ t

−∞ ∂ x 2

 d ∞

or

 eipx

θ

 dx = −  c p  θ

z

2 2

 dt − ∞

 d

∞

or

θ = −  c 2 p 2θ

...(3) 

where θ =

θ

z  eipx dx

 dt

–∞

Now taking the Fourier transform of (2), we get

 ipx a

∞

 a

L

 ipx

 ipx

 e

θ( , 

 p )

0 =

θ( , 

 x )

0  e

 dx =

θ  e

 dx

z

z 0 =θ0

− ∞

−  a

 ip

NM OQP− a

L eipa e− ipa

θ

2

L eipa e− ipa

−

2θ sin  pa

= θ

0

0

0

 ip

 p

2 i

NM

OQP=

−

NM

OQP =  p

...(4)

 d θ

From (3), 





= −  c 2  p 2 dt

θ

Integrating, 

log θ = −  c 2  p 2 t + log A or

2 2

θ =

−

A  e c p t

2θ sin  pa

Since 

θ

2

0

θ =

0 sin  pa  when   t = 0, from (4), we get A = 

 p

 p

θ

2 sin  pa

2 2

∴

θ =

0

−

 e c p t

 p

Taking its inverse Fourier transform, we get

1 ∞ θ

2 sin  ap

2 2

θ( , 

 x t)

0

.  e c p t .  e ipx

=

−

−

 dp

2 z

π −∞

 p

∞

θ

sin  ap

2 2

= 0

−

.  e c p t (cos  xp −  i  sin  x )

 p dp

π z−∞

 p
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θ0 L ∞ sin  ap

2 2

∞

 c p t

sin  ap

2 2

=

−

.  e

cos  xp dp −  i

.  e c p t  sin  xp dp

π z

 p

z

NM

−

O

−∞

−∞

 p

QP

∞

θ

sin  ap

2 2

= 0

−

.  e c p t  cos  xp dp

π z−∞

 p

(The second integral vanishes since its integrand is an odd function)

2

∞ sin  ap

2 2

 c p t

2 2

θ

−

∞

=

0

−

.  e c p t  cos  xp dp  θ

 e

= 0

. 2 sin  ap  cos  xp dp

π z

π z0

 p

0

 p

∞

θ0

− 2 2

 c p t  F sin ( a

 x)  p  sin ( a x)  p

=

+

+

−

 e

 dp

π z0

HG

I

 p

KJ

∞

θ0

− 2

 v  R

( a x) v

( a –  x) v U  dv

=

+

 e

sin

sin

where  v 2 =  c 2 p 2 t

π z

S

+

0

T

V

 c t

 c t  W  v

θ

∞

 t

 dt

π

F

2

 c

0 R

F  a x

F  a x  U

=

+

S erf

 erf

.   ∵

−

z  e  sin( ct/  x). =  erf . 

2 T HG

I

2 c t  KJ +

−

HG

I

2 c t  KJVW

0

 t

2

HG

I

2  x  KJ

( ii) To determine the temperature μ( x,  t), we have to solve the heat-flow equation

∂μ

∂2μ



=  k 2 

,  t > 0

...(1)

∂ t

∂ 2

 x

1, for  c x c

subject to the initial condition 

− < < U

μ( x, 0) = 

V

0, otherwise

W

...(2)

Taking Fourier transform of (1), we get

∞

∞

2

z ∂μ  eipx

. 

 dx  =  k 2 z ∂ μ  eipx

. 

 dx

− ∞ ∂ t

− ∞ ∂ 2

 x

 d ∞

⇒



 eipx

z μ  dx = –  k 2 p 2μ

 dt − ∞

 d μ

∞

 ipx

⇒



= –  k 2 p 2

= z

 e

 dx

 dt

μ

where μ

μ

− ∞

 d μ

⇒



= –  k 2 p 2  dt

μ

Integrating, we get

log μ  = –  k 2 p 2 t + log A

| A is a constant

or, 



2 2

μ  = A  e− k p t

...(3)

Now, taking Fourier transform of (2), we get

∞

μ ( p, 0) = z  μ( x, 0)  eipx dx

− ∞

 c

 eipc −  e− ipc

2

= z   eipx  dx = 

=   sin  cp

...(4)

−  c

 ip

 p
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From (3), At  t = 0,  2  sin  cp = A

 p

2

2 2

∴

μ  =   sin  cp  e− k p t

 p

Taking its inverse Fourier transform, we get

1

∞

μ( x,  t) = 

z   2  sin  cp  e− k 2 p 2 t .  e–ipx dp

2π − ∞  p

which is the required solution. 

Example 29.   Use Fourier cosine transform to show that the steady temperature u in the semi-infinite solid y > 0 when the temperature on the surface y = 0 is kept at unity over the strip

 | x | < a and at zero outside the strip is

 1  L

F

F

O

 1 a +  x

−

 1 a −  x

 tan

 tan−

π NMM

HG

I

 y  KJ +

HG

I

 y  KJQPP

∞

F

−  px − 1

− 1 r

 The results 

 e

 x sin rx dx tan

 (r , p 0)

z

=

 0

HG I p KJ

>   may be assumed. 

2

2

 u

 u

Sol.  Taking Fourier cosine transform of  ∂

∂

+

= 0 ,  we have

∂ 2

 x

∂ 2

 y

∞ ∂2 u

∞ ∂2 u



. cos  px dx +

. cos  px dx = 0

z

z

0 ∂ 2

 x

∂ 2

0

 y

F  u

2

– ∂

HG I

2

 d

∞

z

∂ x KJ

−  p u +

 u

( ) = 0 where  u =

 u  cos  px dx

 x

2

= 0

 dy

0

 d 2  u

∂ u

⇒



−  p 2  u = 0

∵

→ 0  as x → ∞ ...(1)

 dy 2

∂ x

Its solution is

 u c e py c e py

=

+

−

...(2)

1

2

But  u  is finite so  c  = 0, otherwise 

1

 u  → ∞ as  y → ∞

∴ From (2), 

 u c e py

=

−

2

...(3)

But



∞

 u =  u

 px dx

z cos

0

∞

 a

sin  pa

∴

( u)

=

. cos  px dx =

z 1

...(4)

0 =

( )

 u

cos  px dx

z

 y =

 y = 0

0

0

 p

From (3), 

( u)

 c

 y = 0 = 2

sin  pa

∴



 c 2 =

 p

sin  pa

∴ From (3), 

 u

 e py

=

−

 p

Applying inverse Fourier cosine transform, we get

2 ∞ sin  pa

−

1 ∞

 py

 u

 e py

 e

=

−

cos  px dp =

( sin  pa  cos  px)  dp

π z

2

π z0

 p

0

 p
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−

1 ∞  e py

=

[sin ( a +  x)  p + sin ( a −  x)  p]  dp

π z0  p

1 L

−1F  a

 x

−1F  a

 x

=

+

tan

tan

π NM

O

HG

I

 y  KJ +

−

HG

I

 y  KJQP . 

PROBLEM SET-III

1. 

Apply appropriate Fourier transform to solve the partial differential equation

∂V

∂2V

=

;  x > , 

0  t > 0

∂

∂ 2

 t

 x

subject to the conditions

R x, 0 ≤  x ≤ 1

( i) V  (0,  t) = 0

( ii) V( x, 0) = S

( iii) V( x, t) is bounded. 

 x

, 

0

 x

T

> 1

 u

2 u

2. 

Solve  ∂

∂

=  k

for  x ≥ 0,  t ≥ 0 under the conditions

∂ t

∂ x 2

( i)  u(0,  t) =  u ,  t > 0

( ii)  u

( x, 0) = 0,  x  0

( iii)  u( x,  t) is bounded. 

0

≥

3. 

Using the method of Fourier transform, determine the displacement  y( x,  t) of an infinite string given that the string is initially at rest and that the initial displacement is  f( x), – ∞ <  x < ∞. Show that the solution can also be put in the form  y( x,  t)  1

= [ f ( x +  c )

 t +  f ( x −  c )

 t ]. 

2

4. 

Using Fourier transform, solve

∂V

∂2V

=

, − ∞ <  x < ∞,  t > 0; V( x, 0) =  f ( x)

( U.P.T.U. 2014)

∂ t

∂ x 2

5. 

Using Fourier transforms, solve the following initial boundary value problem:

, 

1 − 1 <  x < 0U

∂ u

2

2 ∂  u

=  c

, − ∞ <  x < ∞,  t > 0;  u( x, )

0 = − , 

1 0 <  x < 1 V|

∂ t

∂ x 2

, 

0 otherwise W|

ANSWERS (PROBLEM SET III)

2 ∞ F sin  p

cos  p  1I

2

1. 

V( x, t) = 

−

z

+

−

 e p t cos  px dp

π 0

2

HG  p

 p

KJ

2

F

I

2 u

∞ 1  e− kp t

2. 

 u( x, t) = 

0 z −

π

0

 p

HGG

KJJ  sin  px dp. 

1

∞

∞

4. 

V( x,  t) = 

2

F( )

 p e−  p t .  e− ipx dp

z

where F( )

 p

 f ( )

 x eipx

=

 dx

z

2π −∞

− ∞

1

∞ 1

2 2

5. 

 u( x,  t) = 

1

(

cos  p)  e− c p t .  e− ipx dp

z −

 i π −∞  p
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1.14

FINITE FOURIER TRANSFORMS

The finite Fourier sine transform of F( x), 0 <  x <  l is defined as l

 p π x

 f (  p) =

( x) . sin

 dx ;  p

 s

∈

z F

I

0

 l

Similarly, the finite Fourier cosine transform of F( x), 0 <  x <  l is defined as l

 p π x

       f (  p) =

( x) . cos

 dx ;  p

 c

∈

z F

I

0

 l

Generally, the choice of π as the upper limit of integration in these transforms is found

convenient and can easily be arranged by having suitable substitutions to actual problems, 

then

π

π

 f p = F  x

 px dx

z

z

 s ( )

( ) . sin

and  f p =

F  x

 px dx

 c ( )

( ) . cos

. 

0

0

Note.   f ( p) is always zero when  p = 0. 

 s

1.15 INVERSE FINITE FOURIER TRANSFORMS

Inversion formulae are given as follows:

(1) When upper limit is π

For sine transform:

∞

2

F( x) =

 f ( )

 p  sin  px

∑  s

π  p = 1

For cosine transform:

∞

1

2

π

F( )

 x =  f ( )

0 +

 f ( )

 p  cos  px

z

 c

∑  c

where  f (0) stands for 

F( )

 x dx . 

π

π

 c

0

 p = 1

(2) When upper limit is  l

For sine transform:

∞

2

 p π x

F( x) =

 f ( )

 p  sin

∑

 l

 s

 l

 p = 1

For cosine transform:

∞

1

2

 p π x

 l

F( )

 x =  f ( )

0 +

 f ( )

 p  cos

∑

where  f (0) stands for 

F( )

 x d . 

 x

z

 l c

 l

 c

 l

 c

0

 p =1

 x

Example 30.   Find finite Fourier sine transform of  F(x) =  1 − . 

π

Sol.  The finite Fourier sine transform of F( x) is given by, 

π F

 x

 f p =

1 −

 px dx

z

 s ( )

sin

0 HG

IπKJ

FR  x  F cos  px  Uπ πF

F



= 

1

S

cos  px

1 −

HG

IKJ −

. 

 dx

π

 p

z

T

HG

IKJV HG IπKJ −

0

W − −

HG

I

 p  KJ

0

1

1 F

 px  π

sin

1

=

−

 p

 p

. 

π HG

I

 p  KJ =  p

0
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Example 31.   Find finite Fourier cosine transform of 

 cos k(  π  x)

 F(x) = −

−

. 

 k sin k π

π

cos  k (π  x)

Sol. 

 f p =

−

−

cos  px dx

z

 c ( )

0

 k sin  k π

1

π

=  –

[cos { k (π –  x)  px} cos { (

 k  π – )

 x –  px}]  dx

z

+

+

2 k  sin  k π 0

1

Lsin ( k π –  kx p ) x  sin ( k π –  kx –  p ) x  π

+

=  –

–

2 k  sin  k π NM

O

 p –  k

 p +  k

QP0

1 L 1

1

=

−

1

,  k ≠ 0, 1, 2, ... 

2 k  NM

O

 p −  k p +  k QP =  2

2

 p −  k

Example 32.   Find F.F.S.T. and F.F.C.T. of F(x) = 2x, 0 < x < 4. 

4

 p π x

Sol. ( i)  f p =

2 x

 dx

z

 s ( )

. sin

(Here  l = 4)

0

4

L R

4

M

 p x

π O

|

U

R

 p x

π U

−

M | cos

|

cos

R 32

4 |P

4

|−

|

|

4 |

= 2 x . S

1

(

cos  p π) ,  p  0

M

P

. 

 dx

−

≠

S|

 p



π

z

| F

V|P − 2 S

=  p π

0

| F

V

 p π

|

NM T| HG I

T|

0, 

 p  0

4 KJ W|QP

=

0

T| HG I

4 KJ W|

4

 p π x

( ii)

 f p =

2 x

 dx

z

 c ( )

. cos

0

4

L R

4

M

 p x

π O

|

U

sin

|

R  p x

π U

M

P

4

|sin

|

2 x . S|

4 V|P

. 

 dx

 p π

z 2 S| 4 V|

= M

| F

|P − 0

| F  p π |

NM T| HG I

4 KJ W|QP0

T| HG I

4 KJ W|

4

R

 p x

π

|

U|

32

8 − cos

|

|

32

= 

4

sin  p π −

S

V = 

(cos  p π − 1),  p ≠ 0

 p π

 p π | F  p π |

2 2

 p  π

T| HG I

4 KJ W|0

4

When  p = 0, 

 f (  p) =  f ( )

0 =

2 x dx

 c

 c

=

z

16. 

0

R sin p /

π  2

U

,  p =  1, 2 , ... 

Example 33.   Find  F(x) if f (p)  S|

V|

 c

=

 2p

  where 0 < x < 2 π. 

 /

π  4, 

 p

T|

=  0

W|

1 π

2

∞

sin  p π/2

 p π x

Sol. 

F( )

 x =

. 

+



. cos

∑

2π 4 2π

2  p

2π

 p = 1

1 π

2

∞

sin  p π / 2

 px

=

. 

+



cos

∑

2π 4 2π

2  p

2

 p =1

∞

1

1

sin (  p π/ )

2

 px

F( )

 x =

+

cos

. 

∑

8

π

2  p

2

 p =1
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PROBLEM SET-IV

1. 

Find finite Fourier sine and cosine transforms of

( i) F( x) =  x 2, 

0  <  x < π

( ii) F( x)  =  1 ,  0  < x <  π

( iii) F( x) =  x, 

0  <  x < π. 

F  x  2

2. 

Find finite Fourier cosine transform of F( )

 x = 1 −

. 

HG

I

πKJ

3. 

Find finite Fourier sine transform of

 x

( i) F( x) = 

( ii) F( x) = sin 



 nx,  n  I

( iii) F( x) =  x(

π

∈

π2 –  x 2)

( iv) F( x)  = x (π  – x)

( v) F( x) =  ecx

( vi) cos  mx. 

4. 

Find finite Fourier cosine transform of

π

 x 2

1

0

π 2U

( i) F( x) =

−  x +

(

 ii) sin  nx,  n 

, 

 x

/

∈ I

( iii) F( )

 x =

< < 

. 

V

3

2π

− 1, π / 2 <  x < πW

R ,  x  0 ≤  x ≤ π / 2 U

5. 

Find finite Fourier sine transform of F( )

 x = S|

π

V|. 

π − , 

 x

≤  x < 

T|

π

2

W|

6. 

Find inverse finite Fourier sine transform of

 p

π (

) −

2

1

1

1 cos  p π

( i)  f (  p) =

−

,  p = 1 , 2 , ... (0 <  x

 s

< π) ( ii)  f p = −

, 0 <  x

 s( )

< π . 

 p 3

 p 2 2

π

ANSWERS (PROBLEM SET IV)

R

R

 p

U

π2( 1) p

2

2π(− 1)

 p

U

−

−

+

[(− 1) − 1]

|

,  p ≠ 0|

2

|  p

|

1. 

( i) ( a)  f (  p) = 

3

, 

≠

S|

0

 p

 p

 p

V|  ( b)  f ( p) = S

V

 s

T|

 c

3

0, 

 p = 0W|

| π

|

, 

 p = 0

T| 3

W|

R1

 p

U

R

U

( ii) ( a)  f (  p) = 

1

{ − (− 1) },  p ≠ 0

S|

V|

(  p) =  0, if  p ≠ 0

S

V

 s

 p

π, if  p

T

= 0W

0, 

 p

T|

= 0W|

( b)  fc

R 1  p  1

U

Rπ

{(− ) − }

 p

|

 p  0|

(− ) +

1

1

U

, 

≠

, 

0

|

2

 p

|

( iii) ( a)  f (  p) =   p

 p ≠

S|

V|

( b)  f (  p) = S

V

 s

 c

, 

0

 p

T|

2

= 0W|

| π

|

, 

|

 p =

T

0

2

W|

R 2

U

,  p ≠ 0

| 2

|

2. 

 f (  p) =  π p

S

V

 c

| π ,  p = 0|

T| 3

W|

(− ) p+

1

1

0, 

if  p ≠  n U

6π

3. 

( i)

( ii)

V

( iii)

(− 1  p+1

)

 p

π / 2, if  p =  n W

3

 p

2

 p

 p

( iv)

1 − − 1  p

[

(

) ]

 p

[1 − (− 1)  e π c]

 p

[1 − (− 1) cos  m π]

3

( v)

( vi)

 p

 p 2 +  c 2

 p 2 −  m 2

1

2 n

4. 

( i)  2

( ii)

; ( n −  p)  is odd and 0 if even

 p

2

2

 n −  p

2

 p π

2

 p

( iii)

sin

;  p ≠ 0 and 0 if  p = 0

5. 

sin π

 p

2

2

 p

2

2 ∞ 2π(− 1 −1

)

2 ∞ F 1 −

π

 p  I

6. 

( i) 

sin

∑

 p

 px

∑

cos

sin

. 

 px

3

( ii)

π

 p

3

2

π

HG  p

KJ

1

1
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1.16

PARSEVAL’S IDENTITY FOR FOURIER TRANSFORMS

M.A. Parseval (1755–1836), a French Mathematician, gave the following result. 

If the Fourier transforms of F( x) and G( x) are  f( p) and  g( p) respectively, then 1

∞

( i)

( ) ( )

z  f p g p

∞

z

2π

  dp = 

(

F )

 x  G( )

 x dx

– ∞

– ∞

1

( ii)

∞

2

∞

2

z | f( ) p|  dp=z (

|F )

 x |  dx

2π −∞

− ∞

where bar implies the complex conjugate. 

R 1

 ipx

U

Using inversion formula

Proof. 



∞

∞

∞

z F( ) x G( ) xdx=z F( ) x ST2π z  g( ) pe  V dpdx

− ∞

− ∞

− ∞

W

for Fourier transform

1

R

 ipx

U

= 

∞

∞

z  g( p)STz (F x) e dx V dp

2π −∞

− ∞

W|Changing order of integration

1

= 

∞

z  f( p)  g( p) dp

...(1) | By definition

2π −∞

Now, take G( x) = F( x) in (1), we get

1

∞

∞

z  f( p) f( p) dp=z (F x)F( x) dx

2π −∞

− ∞

1

∞

∞

⇒

2

| ( )|

z  f p dp =  | ( )|

z F  x  2  dx

...(2)

2π – ∞

– ∞

Hence the results. 

Corollary 1. Following Parseval’s identities for Fourier cosine and sine transforms can be proved as above:

2 ∞

∞

2 ∞

∞

( i)

z  f p ( p)  dp = z F( ) x G( x)  dx ( ii)

2

z | f ( ) p|

2

z | (F ) x|   dx

π

 c ( )   g

 c

 dp = 

0

 c

0

π 0

0

2 ∞

∞

2 ∞

∞

( iii)

z  f p ( p)  dp = z F( ) x G( ) xdx ( iv)

2

z | f ( ) p|

2

z | (F ) x|  dx. 

π

 s ( )   g

 s

 dp = 

0

 s

0

π 0

0

 2

∞

 x

π

Example 34.   Using Parseval’s identity, show that 

 dx

z

=

 0

 2

 2

 2

 2

( a +  x )  b

(

+  x )

 2( a +  b)

 2

∞

 x

 Hence find

 dx

z

. 

(U.P.T.U. 2015)

 0

 2

 2

( x +  1)

 p

Sol.  If F( x) =  e–  ax then  f ( p) = 

 s

 a 2

 p 2

+

∴ By Parseval’s identity for sine transform, 

2 ∞

z  f ( p)  g ( p) dp =  ∞z F( ) x G( ) xdx

0

π

 s

 s

0
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2 ∞

 p

 p

∞

⇒

z

⋅

 dp  =   z  e–  ax.  e– bx dx

0

2

2

2

2

π

 a +  p b +  p

0

2

∞

L

O

∞

 p

 e– ( a +  b)  x

⇒

z

 dp  =  π

π

M

P

0

2

2

2

2

( a +  p )  b

(

+  p )

2 M – ( a +  b) P = 2( a +  b)

N

Q0

Thus, 

2

∞

z

 x

 dx = 

π

0

2

2

2

2

( a +  x )  b

(

+  x )

2( a + )

 b

For  a =  b = 1, we get

2

∞

z

 x

 dx =  π

0

2

2

( x + 1)

4

− a

∞

sin  ax

π  1

( −  e 2 )

Example 35.   Using Parseval’s identity, show that 

 dx

z

=

. 

 0

 2

 2

 2

 x( a +  x )

 2

 a

1

R , 0  x a U

Sol. Let

F( x) =  e– ax  and G( x) = 

< < 

S

 x a V

0, 

T

> W

 a

sin  ap

then



 f ( p) = 

and  g ( p) = 

 c 

 a 2

 p 2

+

 c

 p

Parseval’s identity for Fourier  cosine transform is

2 ∞

∞



z  f p ( p)  dp = z F( ) x G( ) xdx

π

 c ( )   g

0

 c 

0

2

2

 a  sin  ap

∞

1 – –

 e a

⇒

∞

z

 dp  =  z  e–  ax . 1  dx = 

0

2

2

π

 p ( a +  p )

0

 a

∞

sin  ax

π

2

∴

z

 dx = 

1  e–  a

( –

)

0

2

2

 x( a +  x )

2 2

 a

PROBLEM SET-V

∞

 dx

π

1. 

Using Parseval’s identity, show that  z

=

. 

0

2

2

2

2

( a +  x )  b

(

+  x )

2 ab ( a +  b)

Hence evaluate ∞

z  dx

0

2

2

( x + 1)

1

R , | x|<  a U

2

∞ sin  ax

 a

2. 

If F( x) =  S

V

z

π

0, | x|

T

>  a W , prove  that 

 dx =

using Parseval’s identity. 

0

2

 x

2

3. 

Evaluate using Parseval’s identity:

2

∞ 1 – cos  x

4

∞

L

1 0

1

( i) z F

 dx

( ii) z sin  x dx Hint:Take F( ) , 

 x

 x

=

≤ ≤

0 HG

I

 x

KJ

0

2

 x

, 

0

 x

NM

O

≥ 1 QP
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4

∞ sin  x

⎡

1 –| x|, 

| x|< 1 ⎤

4. 

Prove that:  z F

 dx  = π/3

⎢Hint : Take F( x) =

⎣

{ 0, otherwis }⎥

0 HG

I

 x  KJ

e ⎦

2

∞

 x  cos  x – sin  x)

5. 

Use Parseval’s identity to prove that:  z (

 dx = π

0

6

 x

15

ANSWERS (PROBLEM SET V)

1. 

π/4

3. ( i) π/2

( ii) π/2

1.17

THE Z-TRANSFORM

The Z-transform plays an important role in the field of Communication Engineering and Control

Engineering at the stage of analysis and representation of discrete-time linear shift invariance system. When continuous signals are sampled, discrete-time functions arise. The application

of Z-transform in discrete time systems is similar to that of the Laplace transform in continuous time systems. 

1.18

DEFINITIONS

1.18.1 One-Sided Z-transform

Let { f( k)} be a sequence defined for all positive integers ‘ k’. Then the  Z-transform of  f( k) is defined as

∞

Z{ f( k)} = F( z) = 

− k

 f ( k)  z

∑

...(1)

 k = 0

where  z is an arbitrary complex number and  Z is an operator of Z-transform. 

This is one-sided Z-transform. 

1.18.2 Two-Sided Z-transform

If { f( k)} is a sequence defined for  k = 0, ± 1, ± 2, .... 

∞

then

Z{ f( k)} = F( z) = 

− k

 f k z

∑ ( )

...(2)

 k = − ∞

where  z is an arbitrary complex number and Z is an operator of Z-transform. 

This is two sided Z-transform. 

Note 1.  If  f( k) = 0 for  k < 0 then { f( k)} is called a casual sequence. 

− 1

2.  If  f( k) is a non-casual sequence,  f( k) = 0 for  k ≥ 0, then its Z-transform is F( z) = 

−

∑  f k z k

( )

and

− ∞

is also called one sided Z-transform. 

3.  The curly bracket {  } represents sequence. Sequence { f( k)} is an ordered list of real or complex numbers. 

4.  The infinite series on R.H.S. of (1) will be convergent only for certain values of  z depending on sequence { f( x)}. 

5.  The inverse Z-transform of Z{ f( k)} = F( z) is defined as Z–1[F( z)] = { f( k)}. 

INTEGRAL  TRANSFORMS

M-2.41

1.19

UNIT STEP AND UNIT IMPULSE SEQUENCES

Unit step sequence is defined as

1

1

R ,  k≥ 0U

  u( k) = S

V

0

T ,  k < 0W

Unit impulse sequence is defined as

–2

–1

0

1

2

3

k

1

R ,  k = 0U

1

δ( k) = S

V

0

T ,  k ≠ 0W

δ(k)

–2

–1

0

1

2

3

k

1.20

RELATION BETWEEN UNIT IMPULSE SEQUENCE AND UNIT STEP SEQUENCE

∞

 u( k) = 

 k

∑ δ( ) and δ( k) =  u( k) –  u( k – 1)

 k = − ∞

1

R ,  k =  n U

We have

δ( n –  k) = S

V

0

T ,  k ≠  n W

∞

Also, 

 f( n) = 

 f ( k) δ ( n k

∑

− ) . 

 k = − ∞

1.21

Z-TRANSFORM OF UNIT IMPULSE FUNCTION

1,  k = 0U

We know that

δ( k) = 

V

0,  k ≠ 0W

∞

∴

Z{δ( k)} = 

− k

 k z

∑ δ( )  = [...... + 0 + 0 + 1 + 0 + 0 + ......] = 1

 k = − ∞

Hence, 

Z{δ( k)} = 1

1.22

Z-TRANSFORM OF DISCRETE UNIT STEP FUNCTION

1,  k ≥ 0U

We know that

 u( k) = 

V

0,  k < 0W

∞

∞

∴

Z{ u( k)} = 

− k

 u k z

∑ ( )  = 

− k

 z

∑

 k = − ∞

 k = 0

1

 z

= 1 +  z–1 +  z–2 + ...... = 

= 

; |  z | > 1. 

1

1

− −

 z

 z − 1
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1.23

Z-TRANSFORM FOR DISCRETE VALUES OF  t

If  f( t) is a function defined for discrete values of  t, where  t =  n T,  n = 0, 1, 2, ......, T being the sampling period, then Z-transform of  f( t) is defined as

∞

Z{ f( t)} = 

 f ( n T) z− k

∑

= F( z). 

 k = 0

Note. The important element of discrete-time systems is the samples in which a switch close to admit an input signal in every T seconds. A samples is a conversion device which converts a continuous signal into a sequence of pulses occurring at sampling instants 0, T, 2T, ...... where T is the sampling  period. 

Example 36.   Find the Z-transform of the following sequences:

( i)  f(k) = { 15, 10,7, 4, 1, 1, 0, 3, 6}

A

−

( ii)  f(k) = { 5, 6, 1, 2, – 1, 0, 8, 4, 3}

R  1  U

R  1  U

( iii)  f(k) = ST V

S V

 4k  W

( iv)  f(k) = T 2k  W, –  3 ≤  k ≤  3

 k

R

U

( v)  f(k) =   5 , 

 k <  0

S

V

 2k, 

 k

T

≥  0 W. 

Sol. ( i) The symbol ↑ is used to denote the term in zeroth position  i.e.,  when  k = 0.  k is an index of position of a term in a sequence. 

1

1

3

6

Z{ f( k)} = 15 z 3 + 10 z 2 + 7 z + 4 +  −

+ 0 +

+

2

4

5

 z

 z

 z

 z

1

1

3

6

⇒

F( z) = 15 z 3 + 10 z 2 + 7 z + 4 +  −

+

+

2

4

5

 z

 z

 z

 z

( ii) In case the symbol ↑ is not given, extreme left term is considered as zeroth term corresponding to  k = 0. Here, the zeroth term is 5. 

6

1

2

1

8

4

3

∴

Z{ f( k)} = 5 +  +

+

−

+ 0 +

+

+

2

3

4

6

7

8

 z

 z

 z

 z

 z

 z

 z

6

1

2

1

8

4

3

⇒

F( z) = 5 + +

+

−

+

+

+

2

3

4

6

7

8

 z

 z

 z

 z

 z

 z

 z

∞

∞

( iii)

Z{ f( k)} = 

 f ( k)  z− k

∑

=

−

∑ 1  k

 z

4 k

 k = − ∞

 k = − ∞

1

1

1

= ...... + 64 z 3 + 16 z 2 + 4 z + 1 + 

+

+

+ ...... 

4

16 2

64 3

 z

 z

 z

3

( iv)



Z{ f( k)} = 

 f k z k

( ) −

∑

(since – 3 ≤  k ≤ 3)

− 3

3

1

1

1

=

−

∑ 1  k

 z  = 8 z 3 + 4 z 2  +  2 z + 1 + 

+

+

2 k

2

4 2

8 3

 z

 z

 z

− 3
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− 1

∞

( v)  

Z{ f( k)} = 

5 k − k

 z

+

2 k − k

 z

∑

∑

 k = − ∞

 k = 0

L 2 4 8

= [...... + 5–3 z 3 + 5–2 z 2 + 5–1 z] +  1 +

+

+

+ ...... 

2

3

NM

O

 z

 z

 z

QP

−

5 1  z

1

 z

 z

=

+

=

+

;  |  z | < 5, |  z | > 2. 

1 − −

5 1  z

1 − 2

( / z)

5 −  z z − 2

Example 37.   Find the Z-transform of

 1

 1

( i)  f(k) = { a| k |}

( ii)  f(k) =   , k 

,  k 

 k

≥  1

( iii)  f(k) = 

≥  0

 k(k +  1)

 k π

 0, k >  0 U

( iv)  f(k) = cos 

,  k 

V

 2

≥  0

( v)  f(k) =  1, k ≤  0 W. 

∞

Sol.  ( i)  

Z{ f( k)} = 

− k

 f k z

∑ ( )

 k = − ∞

− 1

∞

∞ F  a k

=

− k

−

∑  a z k +

 k

−

∑  a z k  = (...... +  a 3 z 3 +  a 2 z 2 +  az) + ∑ HG I z KJ

 k = − ∞

 k = 0

 k = 0

F

∞

 a  1

−1

 k

=

+ 1 −



 az

 z . 

∵ (1 − )

 x

= ∑  x

1 −

HG

I z KJ−

 az

 az

=

+

1 −  az z −  a

 k = 0

F 1

∞

1

( ii)





Z

 z− k

HG I ∑

 k KJ =

 k

 k = 1

1

1

1

F 1

1

=  +

+

+ ...... = – log  1 −

if

< 1

2 2

3 3

 z

 z

 z

HG

IKJ z z

F  z

= log HG

I

 z − KJ

1

if |  z | > 1. 

R 1 U F 1 1

F 1

F 1

( iii)  Z S

V Z

T

Z

 k( k + 1)W =

−

HG

I

 k

 k + 1KJ  = Z HG I

 k KJ − HG

I

 k + 1KJ

F

∞

 z

1

F  z

F

= log

1

1

HG

I

−

∑

 z k

log

1

...... 

 z − KJ −

1

 k + 1

=

HG

I

 z

KJ − + +

+

1

HG

I

2 z

3 z 2

KJ

 k = 0

−

F  z

R1 1 F1 2 1 F1 3

U

= log HG

I  z S|

V|

...... 

 z − KJ −

+

1

 z

2 HG I

 z KJ + 3 HG I

 z KJ +

T|

W|

F  z

R

F 1 U

= log HG

I  z S log 1 V

 z − KJ −

−

−

1

T

HG

I z KJW

F  z

F  z

F  z

= log HG

I  z log

 z − KJ −

1

HG

I

 z − KJ

1  = (1 –  z) log HG

I

 z − KJ

1 . 
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F  k π

∞

 k π

( iv)  

Z cos

cos

 z k

HG

I ∑

2 KJ =

−

2

 k = 0

1

1

F 1 1

 z 2

= −

+

− ...... ∞ = 1 +

2

4

= 

if | 

 z | > 1. 

 z

 z

HG

I2

 z  KJ −

1

 z 2 + 1

∞

∞

( v) Z{ f( k)} = 

1

 f ( k)  z− k =

 zk

∑

∑ =

; if

|  z | < 1. 

1 −  z

 k = − ∞

 k = 0

Example 38.   Find the Z-transform of

R ak

U

 1

( i)  f(k) = 

 , k ≥  0

S| k! 

V|

 , k ≥  0. 

( k +  1)  ! 

 0, 

T|

 otherwise W|

( ii)  f(k) = 

∞

 ak

∞

−  k

− k

( az )

1

Sol.  ( i) Z{ f( k)} = 

 z

∑

1

=

=  eaz−

∑

=  ea/ z. 

 k ! 

 k ! 

 k = 0

 k = 0

L 1

∞

1

1

( ii)   

Z NM

O ∑   1   z–k = 1 +    z–1 +    z–2 + ...... 

( k + 1) !QP =  k

2 ! 

3 ! 

= 0

( k + 1) ! 

L

1

1

=  z  z−1

 z−2

 z−

+

+

3 +

NM

O

...... 

2 ! 

3 ! 

QP

L

=  z 

1

1

−

2

1

1

−

3

+

+

+

−

 z

 z

 z + ...... − 1

NM

O

2 ! 

3 ! 

QP

=  z ( ez−1  – 1) =  z( e 1/ z –1). 

Example 39.   Find the Z-transform of

( i)  u(k – 1)

( ii)  4 k δ (k – 1) ; k ≥  0

( iii) δ (k – n) ; k ≥  0

( iv)  { nC } ; 0 

 k

≤  k ≤  n. 

(M.T.U. 2014)

∞

F

− k

1

1

1

1

1

1

Sol.  ( i) Z{ f( k)} = 

1.  z

∑

= +

+

+ ...... =    1

...... 

2

3

+ +

+

 z

 z

 z

 z

2

HG

I

 z

KJ

 z

 k = 1

1

1

1

=   

if 

 z  F

1

 z  < 1

1 −

HG

IKJ z

1



= 

 z − 1 if | 

 z | > 1. 

∞

4

( ii)



Z{ f( k)} =  ∑  4 k δ( k – 1)  z–k =  . 

 z

 k = 0

∞

1

( iii)

Z{ f( k)} =  ∑ δ( k –  n)  z–k =   zn  ,  n is (+)ve integer. 

 k = 0

 n

( iv)

Z{ f( k)} =  ∑   n C   z–k = 1 +  n C   z–1 +  n C   z– 2 + ...... +  n C   z–n = (1 +  z–1) n. 

 k

1

2

 n

 k = 0
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Example 40.   Determine the Z-transform of the sequence given by

R|

U|

 2k, 

 k <  0

||F

|

 1 k

|

 f(k) = S

,  k 0, 2, 4, ...... 

HG I

V

 2 KJ

=

||

|

F  1 k

|

|

,  k 1, 3, 5,...... 

T HG I

|

 3 KJ

=

W

 What is the region of convergence for the Z-transform F(z)? 

∞

Sol. 

F( z) = 

 f k

∑ ( )  z–k

 k = − ∞

− 1

∞

F 1

∞

F 1

=  ∑  2 k  z–k +  ∑ HG I

∑

2KJ  k  z–k + 

HG I3KJ k  z–k

 k = − ∞

 k = 0

 k = 0

( k-even)

( k-odd)

∞

∞

2  p

F 1

∞

2 q + 1

1

= 

− m

 m

−2  p

2

 z +

 z

∑

∑ HG I

+ 

− (2 q

 z

+

∑ F

1)

2KJ

HG I3KJ

 m = 1

 p = 0

 q = 0

where  m = −  k, 

 k

 k  1

 p = ,  q = −

2

2

= F ( z) + F ( z) + F ( z)

1

2

3

2

=   z / 2

 z

 z / 3

+

+

1 −  z / 2

2

1

2

1

 z −

 z −

4

9

Region of convergence for F ( z): |  z | < 2

1

1

Region of convergence for F ( z): |  z | > 

2

2

1

Region of convergence for F ( z): |  z | > 

3

3

1

Hence, Region of convergence for F( z):   < |  z | < 2. 

2

PROBLEM SET-VI

1. 

Determine the Z-transform of the following sequences :

( i)  f( k) = { , 

2 , 

4 5, , 

7 , 

0 , 

1 2}

A

( ii)  f( k) = {3, 1, 2, 5, 7, 0, 1}

A

( iii)  f( k) = {0, 0, 1, 2, 5, 4, 0, 1}

( iv)  f( k) = {1, 2, 5, 4, 0, 1}

( v)  f( k) = δ( k +  n). 

2. 

Find the Z-transform of

0

R , for  k < 0

U

1, for 0 ≤  k ≤ 5

  f( k) = S|

V|

2, for 6 ≤  k ≤ 10

3, for  k

T|

> 10

W|. 
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3. 

Find the Z-transform of

RF1  k k  0

( i)  u( k – 4)

( ii) δ( k – 5)

( iii) S| HG I

3KJ

≥

. 

T|(− 2  k)  k ≤ − 1

4. 

Determine Z-transform for the sequences given below :

 f(0) = 1 ; 

 f(1) = 4.7 ; 

 f(2) = 0 ; 

 f(3) = 0

 f(4) = 0.75 ; 

 f(5) =  2  ; 

 f( k) = 0 ;  k ≥ 6. 

5. 

Express the signals shown below in terms of unit impulse functions and hence find the Z-transform. 

( i)

f(k)

( ii)

f(k)

2

2

1

2

1

1

0.5

–1

3

k

k

–2

–1

0

1

2

–2

0

1

2

–1

– 0.5

ANSWERS (PROBLEM SET I)

7

1

2

7

1

1. 

( i) 2 z 2 + 4 z + 5 +  + 3 + 4

+

 z

( ii) 3 z 3 +  z 2 + 2 z + 5 + 

 z

 z

3

 z

 z

( iii)  z–2 + 2 z–3 + 5 z–4 + 4 z–5 +  z–7 ( iv) 1 + 2 z–1 + 5 z–2 + 4 z–3 +  z–5

( v)  zn

2. 

1 +   z–1 +  z–2 +  z–3 +  z–4 +  z–5 + 2( z–6 +  z–7 +  z–8 + ...... +  z–10) + 3( z–11 +  z–12 + ......) z−4

 z

 z

3. 

( i)

; |  z | > 1

( ii)  z–5

( iii)

−

 z−

− 1

1

1

 z

 z

−

+ 2

3

4. 

F( z) = 1 + 4.7  z–1 + 0.75  z–4 +  2  z–5

5. 

( i)   f( k) = 0.5 δ( k + 1) + 2δ( k) + 2δ( k – 1) + δ( k – 2); F( z) = 0.5 z + 2 + 2 z–1 +  z–2

( ii)  f( k) = δ( k + 2) – δ( k + 1) + 2δ( k) + δ( k – 2) – 0.5 δ( k – 3); F( z) =  z 2 –  z + 2 +  z–2 – 0.5  z–3. 

1.24

PROPERTIES OF Z-TRANSFORMS

1.24.1 Linearity Property

 Z{ a f( k) ±  bg( k)} =  a Z{ f( k)} ±  b Z { g( k)}

∞

Proof.  Z{ a  f( k) ±  b g( k)} = ∑ { a f( ) k ±

−

 b g( )

 k } z k

| by definition

 k = − ∞

∞

∞

=

−

 a ∑  f ( k) z k ±

−

 b ∑  g( k) z k  =  a Z{ f( k)} ±  b Z{ g( k)}. 

 k = − ∞

 k = − ∞

Remark. If Z{ f( k)} = F( z) and Z{ g( k)} = G( z), then Z–1 [ a F( z) ±  b G( z)] =  a Z–1 {F( z)} ±  b Z–1 {G( z)}

where  a and  b are constants and Z–1 is inverse Z-transform operator. 
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1.24.2 Change of Scale Property

⎛ z ⎞

 If Z{f(k)} = F(z), then  Z{|ak f(k)|} = F  ⎜ ⎟

⎝ a ⎠

∞

Proof. 

F( z) = Z{ f( k)} = 

 f ( k) z− k

∑

 k = − ∞

 z

Substituting   for  z, we get

 a

F  z

∞

F  z k

∞

F HG I

( )

∑

∑ akf( k) z k

 a KJ  = 

 f k  HG I  =

−  = Z{| ak f( k)|}. 

 a KJ −



 k = − ∞

 k = − ∞

 z/ a

 z

Remark ( i) Z{ ak U( k)} =   z

=

if |  z | > |  a |

 z −  a

− 1

 a

 z

 z

( ii) Z{ ak} = 

since Z(1) = 

. 

 z −  a

 z − 1

1.24.3

Multiplication by kn

F

n

If Z{f(k)} = F(z), then Z{kn f(k)} =  −

HG d I

z

 F(z)

dzKJ

∞

Proof. 



Z{ k f( k)} = 

 k f ( k) z− k

∑

 k = − ∞

∞

∞

 d

 k

 d



= −  z ∑  f ( k) (− − −

 kz k  1)  = −

−

 z ∑  f ( k)

( z ) = −  z

F( z)

 dz

 dz

 k = − ∞

 k = − ∞

F

 n

In general,  Z{ |kn f( k)|} = 

 d

−

HG

I

 z

F( z). 

 dz  KJ

 d

 d  F  z

 az

Remark. Z{( k  ak)} = −  z

Z  ak

[ ( )] = −  z

. 

 dz

 dz  HG

I

 z −  a KJ = ( z −  a)2

 z

Note.   Since Z(1) =   z − 1, we have the following results. 

 z( z + )

1

( i) Z( k) = 

 z

( ii) Z( k 2) = 

( z − )

1 2

( z − )

1 3

 z 3 + 4 z 2 +  z

 z 4 +

 z 3

11

+

 z 2

11

+  z

( iii) Z( k 3) = 

( iv) Z( k 4) = 

. 

( z

4

− 1)

( z

5

− 1)

1.24.4

Shifting Property

   If Z{f(k)} = F(z), then Z{f(k ± n)} = z±n F(z)

∞

∞

Proof.  Z{ f( k ±  n)} = 

 f ( k n) z− k

 z± n

 f ( k n) z−( k ±  n)

∑ ±

=

∑ ±

 k = − ∞

 k = − ∞
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∞

= ± n

−

 z

∑  f( r) z r

( r =  k ±  n)

 k = − ∞

=  z± n F( z). 

Corollary 1. For casual sequence, 

Z{ f( k –  n)} =  z– n F( z)

Also, 



Z{ f( k + 1)} =  z F( z) –  z  f(0)

and

Z{ f( k + 2)} =  z 2 F( z) –  z 2 f(0) –  z  f(1) R

U

2

 f  1

( )

=   z  F(

S  z) –  f  0() –

T

V

 z  W and so on. 

Corollary 2. Z–1[ z– n F( z)] =  f( k –  n) = Z–1[F( z)]

 . 

 k →  k –  n

1.24.5

Division by k

z

R U

 If  Z{f(k)} = F(z), then Z  f(k)

S V

z 1 F(z) dz

T k W = − −

z

R f

∞

( k) U

 f ( k) −

Proof. 



Z 

ST V

 z k

∑

 k  W = 

 k

 k = − ∞

∞

F 1

∞

 z

−

∑  f( k) z  k  1

= ∑  f ( k) HG

I

 z k

 z

 dz

 k

KJ = −

− −

 k = − ∞

 k = − ∞

∞

 z

 k  1

= − z ∑

− −

 f ( k)  z

 dz

 k = − ∞

F ∞

 z

I

z –1

 k

 z

= −

 z  G ∑

−

 f ( k)  z  J

HG

 dz  =

−

– z  z  1 F( ) z dz. 

 k = − ∞

KJ

1.24.6 Initial Value Theorem

   If Z{f(k)} = F(z), k ≥ 0, then f(0) =  Lt F(z)

z → ∞

∞

Proof. 

Z{ f( k)} = 

 f ( k)  z− k

∑

 k = 0

⇒

F( z) =  f(0) +  f(1)  z–1 +  f(2) z–2 + ...... 

Taking limit as  z → ∞, we get

 f(0) =  Lt F( z) . 

 z → ∞

1.24.7 Final Value Theorem

  If Z{f(k)} = F(z) ; k ≥ 0, then  Lt f(k) = Lt (z − 1) F(z)

k → ∞

z → 1

∞

Proof.  Z{ f( k + 1) –  f( k)} = 

− k

{ f( k  1)  f( k)}  z

∑

+

−

 k = 0
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 n

 z F( z) –  f(0) – F( z) =  Lt

− k

{ f ( k  1)  f ( k)}  z

∑

+

−

 n → ∞  k = 0

 n

− k

Lt ( z − 1)F( z) =  f  0

( ) + Lt . Lt

{ f ( k  1)

( )}

1

1

∑

+

−  f k z

 z →

 z →

 n → ∞  k = 0

 n

=  f ( )

0 + Lt ∑ Lt { f ( k + )1 −

−

 f ( k)}  z k

 n → ∞

 z → 1

 k = 0

| Changing the order of limits

L

 n

O

= Lt M f ( )

0 +

{ f ( k

)

1

 f ( k)}

 n

∑

+

−

P

→ ∞ NM

 k = 0

QP

= Lim  f ( n + )

1  = Lim  f ( n) = Lim  f ( k). 

 n → ∞

 n → ∞

 k → ∞

1.24.8

Differentiation Property

Let Z[{ f( k)}] = F( z). An infinite series can be differentiated term by term within its region of convergence. F( z) may be treated as a function of  z–1. 

∞

∞

F( z) =  ∑   f( k)  z–k =  ∑   f( k) ( z–1) k k = 0

 k = 0

Differentiating on both sides w.r.t.  z–1

 d

∞





∑   kf( k) ( z–1) k– 1

...(1)

 dz−1  F( z) =  k = 0

 d F( z)

∞

  

   z–1  

∑   kf( k)  z–k = Z{ kf( k)}

 dz−1   =  k = 0

 d F( z)

∴

Z{ kf( k)} =  z– 1 

...(2)

 dz−1

Differentiating (1) w.r.t.  z–1 again, we get

 d 2F( z)

∞






=  ∑  k( k – 1)  f( k) ( z– 1) k –  2

 d( z  1

− 2

)

 k = 0

 d 2F( z)

∞

  

  

 z– 2 

=  ∑  k( k – 1)  f( k)  z–k = Z{ k( k – 1)  f( k)}

 d( z  1

− 2

)

 k = 0

 d 2F( z)

∴

Z[ k( k – 1)  f( k)] =  z–2 

...(3)

 d( z  1

− 2

)

1.24.9

Convolution Theorem

( U.P.T.U. 2015)

The convolution of two sequences { f( n)} and { g( n)} is defined as

∞

 w( n) =  ∑   f( k)  g( n –  k) =  f ∗  g k = − ∞
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If it is one sided (right) sequence, take  f( k) = 0,  g( k) = 0 for  k < 0, then

∞

 w( n) = 

 f ( k

∑ )  g( n –  k) =  f *  g. 

 k = 0

Statement.  If  w( n) is the convolution of two sequences  f( n) and  g( n), then Z{ w( n)} = W( z) = Z{ f( n)} . Z{ g( n)} = F( z) G( z) ( U.P.T.U. 2015)

L ∞

O ∞ L ∞

O

Proof. 

W( z) = Z{ w( n)} = Z M

 f ( k) g( n

∑

−  k)P

M  f( k) g( n

∑

−  k)P

NM

=  ∑ M

  z–n

0

P

0

P

 k =

Q  n=0 N k=

Q

∞

L ∞

O

=  ∑   f( k) M

 g( n

∑

−  k) z− n

M

P

0

P

 k = 0

N  n=

Q

(by changing the order of summation)

∞

L ∞

O

=  ∑   f( k) M

 g(  p) z−( p+ k)

∑

M

P, 

(putting  n –  k =  p)

0

P

 k = 0

N  p=

Q

L ∞

O L ∞

O

= M

 f ( k) z− k

∑

P M

( ) −

∑

P

NM



 g p z p

M

= F( z) G( z). 

0

P

0

P

 k =

Q N  p=

Q

Note.  This result will be true only for the values of  z inside the region of convergence. 

1.24.10

Another form of Convolution Theorem

If Z{ f( t)} = F( z), Z{ g( t)} = G( z), then the convolution product is

∞

  w( t) =  ∑   f( k T)  g( n T –  k T) =  f *  g k = 0

and

Z{ w( t)} = W( z) = Z{ f( t)} Z{ g( t)} = F( z) G( z). 

Proof.  (Here we are dealing with one sided Z-transform only)

∞

∞

F( z) =  ∑   f( m T)  z– m ; G( z) =  ∑  g( n T)  z– n m = 0

 n = 0

R ∞

U R ∞

U

F( z) G( z) = S|

 f( m T) z− m

∑

V| S|

 g( n T) z− n

∑

V|

 m

T| =0

W|  n

T| =0

W|

∞

∞

∞

F  n

I

=   ∑ ∑   f( m T)  g( n T)  z–m–n =  ∑ G

 f (  p T)  g{( n

∑

−  p)T}

G

JJ  z–n

 n = 0  m = 0

H =0

K

 n = 0

 p

R ∞

U



= Z S|

 f (  p T)  g{( n

∑

−  p)T}V|  z– n = Z{ f ∗  g}. 

 p

T| =0

W|
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1.24.11

Time Reversal Property

If F( z) is the Z-transform of  f( k), then Z{ f (–  k)} = F( z–1) 1.24.12 Correlation Property

If Z{ f ( k)} = F ( z) and

( z) = F ( z). F ( z–1)

1

1

Z{ f ( k)} = F ( z), then  R

2

2

 f f

1 2

1

2

and

cross-correlation sequence  rf f ( l) = Z–1[  R  ( z)]. 

1 2

 f f

1 2

1.25

SOME IMPORTANT Z-TRANSFORM RESULTS

 S. No. 

{ f(k)} , k ≥  0

 F(z) = Z { f(k)}

1. 

δ( k)

1

 z

2. 

U( k)  or 1

 z − 1

 z

3. 

 k

( z − )

1 2  , |  z | > 1

F  d n

4. 

 kn  f( k)

−

HG

I

 z

F( z)

 dz KJ

F

 d n

 z

5. 

 kn

−

HG

I

 z

, |  z | > 1

 dz KJ  z − 1

 z

6. 

 ak  or   ak U( k)

; |  z | > |  a |

 z −  a

1

F  z

7. 

log 

 k

HG

I

 z − KJ

1  , |  z | > 1

1

F  z

8. 

 k + 1

 z log HG

I

 z − KJ

1

1

9. 

 k ! 

 e 1/ z

10. 

δ( k –  n)

 z–n

11. 

 f(0)

Lt  F( z)

 z → ∞

12. 

Lt   f( k)

Lt  ( z – 1) F( z)

 k → ∞

 z → 1

∞

13. 

 r

( l) =  ∑   f ( k)  f ( k –  l)

( z) = F ( z) F ( z–1)

 f f

R

1 2

1

2

 f f

1

2

1 2

 k = − ∞

14. 

 h( k) =  f( k) ∗  g( k)

F( z) . G( z)

15. 

 f(–  k)

F( z–1)
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Example 41.   Determine the Z-transform of

   f(k) =  δ (k + 1) + 3 δ (k) + 6 δ (k – 3) –  δ (k – 4). 

Sol.  By linearity property, we have

F( z) = Z{ f( k)} = Z{δ( k + 1)} + 3 Z{δ( k)} + 6 Z{δ( k – 3)} – Z{δ( k – 4)}

=  z + 3 + 6 z–3 –  z–4. 

Example 42.   Find the Z-transform of

R (k +  1)(k +  2) U

( i) { ak+3}

( ii) { k2}

( iii) ST

V

 2

W

( iv) { abk}  ; a ≠  0, b ≠  0

( v) { k (k – 1)}. 

∞

Sol.  ( i)





Z{ f( k)} = 

 k +

− k

 a

 z

∑

3

=  a 3 Z( ak)

…(1)

 k = − ∞

 z

We know that,   Z(1) =   z − 1

 z/ a

 z

∴

Z( ak) = 

=

(By change of scale property)

( z/ a) − 1  z −  a

 za 3

∴ From (1), Z{ f( k)} = 

. 

 z −  a

F

2

F  d  LF  d  F

( ii)



Z( k 2) = 

 d

 z

−

HG

I

 z

Z(1)  = −  z

 z

 dz KJ

HG

I

 dz KJ −

HG

I

 dz KJ

NM

O

HG

I

 z − 1KJQP

 d  L

 z

 z( z

)

1

= −  z

. 

 dz  NM

O

( z − )

1 2 QP =

+

( z − )

1 3

R( k + )1( k + )2U 1

( iii)  Z S

V Z( k 2 3 k )

T

2

2

W =

+

+

2

1

1 L  z( z  1)

R  d

U 2 z

=   [Z( k 2) + 3 Z( k) + Z(2)] =

+

+ 3

 z

Z( )

3

S−

1 V

2

2 NM

O

( z − 1)

T  dz

W +  z − 1QP

1 L  z( z  1)

 d  F  z

2 z

1 L  z( z  1)

3 z

2 z

=

+

− 3 z

+

+

2 NM

O

( z

=

+

. 

− 1 3

)

 dz  HG

I

 z − KJ +

1

 z − 1QP 2 NM

O

( z − 1 3

)

( z – 1 2

)

 z − 1QP

F  z

( iv)  Z( abk) =  a Z( bk) =  a  HG

I

 z −  b KJ  if | 

 z | > |  b |. 

 z( z

)

1

 z

2 z

( v)  Z{ k( k – 1)} = Z( k 2 –  k) = Z( k 2) – Z( k) =

+

−

=

. 

( z − )

1 3

( z − )

1 2

( z − )

1 3

Example 43.   Find the Z-transform of f(k) = u(– k). 

(A.K.T.U. 2018)

 z

Sol.  We know that Z{ u( k)} =   z − 1

By time reversal property, we have

 z−1

1

Z{ u(–  k)} = 

= 

 z−1 − 1

1 −  z  ; |  z | < 1. 

INTEGRAL  TRANSFORMS

M-2.53

Example 44.   Find the Z-transform of

( i) { k +  nC }  or { k + nC }  ; k 

  ak}  ; k 

 n

 k

≥  0

( ii) { k +  nCn

≥  0. 

Sol.  ( i)     

Z{ k+n C } = Z{ k+n C }

 n

 k

∞

=  ∑  k+n C   z–k = 1 +  n+ 1C   z–1 +   n+ 2C   z– 2 + ...... 

 k

1

2

 k = 0

( n + )

2 ( n + )

1

= 1 + ( n + 1)  z–1 + 

 z–2 + ...... 

2 ! 

(−  n − )

1 (−  n − )

2

= 1 + ( – n – 1)(–  z–1) + 

(–  z–1)2 + ...... 

2 !F  z n+1

= (1 –  z–1)– n–1 = (1 –  z–1)–( n+1) = HG

I . 

 z − KJ

1

F  z a n

/

+1

( ii)



Z{ k+n C   ak} = 

| Change of scale property using ( i)

 n

HG

I

 z /  a − KJ

1

F  z n+1

= HG

I . 

 z −  a KJ

Example 45.   Find the Z-transform of

( i)  sin α k,  k ≥  0

(U.P.T.U. 2015)

( ii)  sin  (3k + 5), k ≥  0. 

∞

1

∞

Sol.  ( i)    

Z(sin α k) =  ∑ sin α k  z– k =    ∑  ( ei α k –  e–i α k)  z–k 2 i

 k = 0

 k = 0

1 L ∞

∞

O

= 

M

(  i α –1) k

∑

−

( − i α –1

 e z

 e

 z ) k

∑

P

2 i  NM 0

0

P

 k =

 k =

Q

1

= 

[(1 –  ei α  z–1)– 1 – (1 –  e–i α  z–1)–1]

2 i

1 L

1

1

1 L

 z

 z

= 



−

= 



−

2 i  NM

O

1

 i α

−1

 e z

1

− i α

−1

−

−  e

 z  QP 2 i  NM

O

 z ei α

 z −  e− i

−

α QP

1 L

 z( ei α −  e− i α)

 z  sin α

= 



= 

. 

2 i z

NM

O

2 −  z( ei α +  e− i α) + 1QP  z 2 − 2 z  cos α + 1

∞

1

∞

( ii)    Z{sin (3 k + 5)} =  ∑ sin (3 k + 5)  z–k =    ∑ { ei(3 k + 5) –  e–i(3 k + 5)}  z–k 2 i

 k = 0

 k = 0

L ∞

∞

O

1

= 

M

 e 5 i ( e 3 i z–1  k

)

∑

−

 e−5 i ( e−3 i z–1  k

)

∑

P

2 i  NM

P

 k = 0

 k = 0

Q

1

= 

[ e 5 i (1 –  e 3 i  z–1)–1 –  e– 5 i (1 –  e– 3 i  z–1)–1]

2 i

 e 5 i  F

I  e−5 i  F

1

I

= 



1

– 



 i

2 HG 1 3 i −1

−  e z  KJ

2 i  HG 1

−3 i

−1

−  e

 z  KJ
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 e 5 i  F

I  e−5 i  F

I 1 L e 5 i z( z −  e  3− i) −  e  5− i z( z −  e 3 i)

= 



 z

– 



 z

= 



 i

2 HG  z e 3 i

−

KJ 2 i  HG  z e−3 i

−

KJ 2 i

( z

NM

O

−  e 3 i) ( z −  e  3

−  i )

QP

1 L( e 5 i −  e  5

−  i ) z 2 − (

 z e 2 i −  e− 2 i)

 z 2 sin 5 −  z  sin 2

= 



= 

;  |  z | > 1. 

2 i  NM

O

−  z ( e 3 i +  e  3

−  i ) +  z 2

1

QP  z 2 − 2 z  cos 3 + 1

Example 46.   Find the Z-transform of

( i)  ck cosh ( α  k),  k ≥  0

( ii)  ck cos ( α  k), k ≥  0

F  k

( iii)  cosh 

π + α

HG

I

 2

KJ  ,  k ≥  0. 

∞

α k

−α k

F

L

O

 e

 e

I

1

∞

∞

Sol.  ( i) Z{cosh (α k)} =  ∑

+

 z–k = 

α

−1  k

− α

−1  k

M ( e z ) + ( e z

∑

∑

) P

2

2 M

P

0 HG

KJ

 k =

N k=0

 k = 0

Q

1

1 L  z

 z

= 

1

α

1

−

1

−

− + 1

−α

1

−

1

(

)

( −

)−

 e z

 e z

= 

+

2

2 NM

O

 z −  e α

 z −  e− α QP

 z  L 2 z − ( e α +  e−α)

 z ( z − cosh α)

=  . 

= 

2

 z

NM

O

2 −  z( e α +  e−α) + 1QP  z 2 − 2 z  cosh α + 1

By change of scale property, 

 z  F  z − cosh α

 c  HG

I

 c

KJ

 z ( z −  c  cosh α)

Z{ ck  cosh  (α k)} =  F

= 

. 

 z  2

F  z

2

2

HG I

 z − 2 cz  cosh α +  c

2

cosh α 1

 c KJ − HG I

 c KJ

+

∞ F

L

O

 ei k

α

 e− i k

α

+

I

1

∞

∞

( ii)

Z{cos (α k)} =  ∑

 z–k = 

 i α

−1  k

−  i α

−1  k

M ( e z ) + ( e z

∑

∑

) P

2

2 M

P

= 0 HG

KJ

 k

N k=0

 k = 0

Q

1

1 L

 z

 z

= 

1

 i α

1

−

1

−

− + 1

− i α

−1 1

(

)

( −

)−

 e z

 e

 z

= 

+

2

2 NM

O

 z ei α

 z −  e−  i

−

α QP

 z  F 2 z − 2 cos α I

 z ( z − cos α)

= 

= 

2 HG  z 2 − 2 z  cos α + 1KJ

 z 2 − 2 z  cos α + 1

By  change of scale property, 

F  z  F  z

HG I

cos α

 c KJ

−

HG

I

 c

KJ

 z ( z −  c  cos α)

Z{ ck cos (α k)} =  F

= 

. 

 z  2

F  z

 z 2 −  cz  cos α +  c 2

2

HG I 2

cos α 1

 c KJ − HG I

 c KJ

+

R

F

∞

R F k π

F  k

U

 k

U ∞

F  k

1

+ α

π α

HG

IKJ − +

HG

IKJ

( iii) Z  cosh

π

S

+ α

π

∑

2

2

T

HG

IV ∑  cosh  +α



S| e

+  e

V|

2

KJW = 

HG

IKJ  z–k = 2

 k = 0

2

 k = 0 T|

W|  z–k

L ∞

∞

O

1

=   M e α

 e π/2  z–1  k

∑

+  e−α

 e−π

(

)

(

/2  z–1  k

)

∑

P

2 NM

P

0

0

Q
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1

=   

2 [ e α (1 –  e π/2  z–1)–1 +  e– α (1 –  e– π/2  z–1)–1]

1 L

F  z  I

F

IO

α

−π/2

− α

π/

L

2

–

 z

 z e ( z −  e

) +  e

( z −  e )

=   M e α . 

 e  α

= 

2

− 2 P

2 NM HG  z e π/ KJ +

HG  z −  e  π/

−

KJQP 2

( z

NM

O

−  e π/2) ( z −  e−π/2)

QP

L

F

 z z  cosh α − cosh π − α

 z  L2 z  cosh α − cosh (α − π 2

/ )

NM

O

HG

I

2

KJQP

=   

. 

2

2

NM

O

 z − 2

( cosh π 2

/ ) z + 1 QP  = 

 z 2 − 2 z  cosh π/2 + 1

R F  k

U

Example 47.   Find the Z-transform of S cos  π + α

T HG

IV

 8

KJW ;   k ≥  0. 

R F

∞

 k

U ∞

F  k π

F  k π

 k

Sol.     Z  cos

π

S

+ α

∑

π

T HG

IV ∑ cos  +α

cos

cos α − sin

sin α

8

KJW = 

HG

IKJ  z–k =    HG

IKJ  z–k

 k = 0

8

 k = 0

8

8

F  k

F  k π

= cos α Z  cos π

HG

I

8 KJ  – sin α Z  sin

HG

I

8 KJ

R

U

F

I

 z ( z − cos π / )

8

G  z sin π / 8 J

= cos α . S|

V| – sin α . G

J

2

π

 z 2 − 2 z  cos π +

T|

1

G  z − 2 z  cos + 1J

8

W|

H

8

K

| From Ex. 5 and 6

F

F

 z 2 −  z  cos π cos α  z

HG

I

sin π sin α

 z 2 cos α −  z  cos π − α

8KJ

−

8

HG

I

8

KJ





= 

= 

. 

 z 2 − 2 z  cos π + 1

 z 2 − 2 z  cos π + 1

8

8

 z(z −  cos aT)

Example 48.   If F(z) = 

,  find f(0). 

 z2 −  2z cos aT +  1

Sol.  From initial value theorem,  f(0) =  Lt F( z)

 z → ∞

 z( z − cos  a T)

∴

  f(0) =  Lt

= 1 by L’ Hospital rule. 

 z → ∞  z 2 − 2 z  cos  a T + 1

 z

Example 49.   If F(z) = 

,  find   Lt   f(t). 

 z e T

− −

 t → ∞

Sol.  From final value theorem, we have

 z

Lt   f( t) =  Lt  ( z – 1)F( z) =  Lt  ( z – 1) 

= 0. 

 t → ∞

 z → 1

 z → 1

 z −  e−T

R

U

R  z  U

Example 50.   Find Z–1 

 1

ST V

S

V

 z +  1 W  given Z–1  z

T +  1 W  = (– 1)k. 

R 1 U

R 1  z  U

Sol. 

Z–1 S

V

−

S . 

V

 z

T + 1W = Z–1   z z

T

+ 1W

R

R

 k  U

 z  U

F

= Z–1 S

S| 1 V|

T

V

=  −

= {(– 1) k– 1},  k = 1, 2, 3, ...... 

 z + 1W

HG IKJ

T|

W|

 k→ k−1

 k →  k − 1
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F  3

Example 51.   Find Z–1  HG

I

 3z −  1 KJ   . 

L

O

R

R

U

3 U

R

U

1

M 1  z  P

Sol. 

Z–1 S

V

= Z–1 M z− S|

V|P

3 z

T − 1W= Z–1 S| 1V|

 z

1

−

M

 z −

P

3

T|

W|

NM T| 3W|QP

R

U

1  k  1

F

1  k  1

F

= Z–1 

 z

S|

= 

or 

 u( k – 1). 

1 V|

HG IKJ −

HG IKJ −

 z

3

−

3

T| 3W| k→ k−1

Example 52.   Using differentiation property, find the Z-transform of

( i)  k ak u(k)

( ii)  k(k – 1) ak u (k). 

 d

F  z

Sol.  ( i) Z{ kak u( k)} =  z–1   dz−1  HG

I

 z −  a KJ

 d

1

−

=  z–1 

 az

 dz−1  (1 –  az–1)–1 =  z–1 . 

 a

=

(1  az−1)2

(1 −  az  1

− )2

−

 d 2

2 2 2

 a z−

( ii)

Z { k( k – 1)  ak u( k)} =  z–2 

(1 –  az–1)–1 = 

. 

 d z  1

− 2

(

)

1

−1 3

( −  az )

 z−1

2 2

 z−

Note.  If  a = 1, then Z{ k  u( k)} = 

and Z{ k( k – 1)  u( k)} = 

. 

 z−

− 1 2

1

(

)

1

1

− 3

( −  z )

Example 53.   Find the Z-transform of f ∗  g where

( i)  f(n) =  u(n),  g(n) =  2n u(n)

( ii)  f(n) =  3n u(n),  g(n) =  4n u(n)  using convolution theorem. 

∞

 z

Sol.  ( i)



F( z) = Z{ u( n)} =  ∑  1 .  z–n = 

if |  z | > 1

 z − 1

 n = 0

∞

 z

G( z) = Z{2 n  u( n)} =  ∑  2 n  z– n =   z − 2  if |  z | > | 2 |

 n = 0

By convolution theorem

Z{ f ∗  g} = Z{ w( n)} = W( z) = F( z). G( z) z

 z

 z 2

= 

. 

= 

if |  z | > | 2 |. 

 z − 1  z − 2

( z − 1)( z − 2)

 z

( ii)

F( z) = Z{3 nu( n)} = 

if |  z | > | 3 |

 z − 3

 z

G( z) = Z{4 nu( n)} = 

if |  z | > | 4 |

 z − 4

By convolution theorem

Z{ f ∗  g} = Z{ w( n)} = W( z) = F( z) . G( z) z

 z

 z 2

= 

. 

= 

if |  z | > | 4 |. 

 z − 3  z − 4

( z − 3)( z − 4)
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Example 54.   Compute the convolution f(k) of the two sequences :

 1, 

R  0 ≤  k≤  5  U

  f (k) = { 4, – 2, 1}  and f (k) =  S

V

 1

 2

 0, 

T  otherwise W . 

Sol. 

F ( z) = Z{ f ( k)} = 4 – 2 z–1 +  z–2

1

1

F ( z) = Z{ f ( k)} = 1 +  z–1 +  z–2 +  z–3 +  z–4 +  z–5

2

2

∴

F( z) = F ( z) . F ( z) = 4 + 2 z–1 + 3 z–2 + 3 z–3 + 3 z–4 + 3 z–5 –  z–6 +  z–7

1

2



Taking inverse Z-transform, we get

 f( k) = { , 

4 , 

2 , 

3 , 

3 , 

3 , 

3

, 

1 }

1

A

−

. 

Example 55.   Determine the cross-correlation sequence rf f  (l) of the sequences :

 1 2

 f (k) = { 1, 2, 3, 4 }  and f (k) = { 4, 3, 2, 1}. 

 1

 2

Sol.  Cross-correlation sequence can be obtained using the correlation property of

Z-transform. 

F ( z) = 1 + 2 z–1 + 3 z–2 + 4 z–3

1

F ( z) = 4 + 3 z–1 + 2 z–2 +  z–3

2

⇒

F ( z–1) = 4 + 3 z + 2 z 2 +  z 3

2

R

( z) = F ( z) . F ( z–1) = (1 + 2 z–1 + 3 z–2 + 4 z–3) (4 + 3 z + 2 z 2 +  z 3) f f

1 2

1

2

= ( z 3 + 4 z 2 + 10 z + 20 + 25 z–1 + 24 z–2 + 16 z–3)

∴

 rf f ( l) = Z–1{R ( z)} = { , 

1 , 

4

, 

10

, 

20

, 

25

, 

24 16}

1 2

 f f

1 2

A

. 

 2z2 +  5z +  14

Example 56.   If F(z) = 

,  evaluate f(2) and f(3). 

 (z −  1)4

1 L2 + 5 1

 z− + 14 2

 z−

Sol. 

F( z) = 

. 

2

1

1

− 4

 z

(

NM

O

−  z )

QP

By initial value theorem,  f(0) =  Lt . F( z) = 0

 z → ∞

Similarly, 

 f(1) =  Lt   z{F( z) –  f(0)} = 0

 z → ∞

   f(2) =  Lt   z 2{F( z) –  f(0) –  z–1 f(1)} = 2 – 0 – 0 = 2

 z → ∞

   f(3) =  Lt  z 3{F( z) –  f(0) –  z–1 f(1) –  z–2  f(2)} =  Lt   z 3{F( z) – 2 z–2}

 z → ∞

 z → ∞

L2 2 z + 5 z + 14 2

=  Lt   z 3 . 

−

4

2

 z → ∞

 z

NM

O

− 1

 z  QP

(

)

R13 3 z + 2 2 z + 8 z − 2U

=  Lt   z 3. S

V

2

4

= 13. 

 z → ∞

 z ( z

T

− 1)

W
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PROBLEM SET-VII

1. 

Find the Z-transform (one sided) of the following sequences { f( k)} where  f( k) is F

( i) 1

HG I4KJ k  u( k)

( ii) (cos θ +  i sin θ) k

( iii) (– 1) k  u( k)

 k π

 k π

F 1  k

( iv) 3 k sin 

( v) 2 k cos 

( vi) 4 k + 

 u( k – 3). 

2

2

HG I2KJ +

2. 

Find the Z-transform of { f( k)} where  f( k) =  k 2 k

3. 

Show that

 z( z − cosh )

θ

 z  sinh θ

( i) Z(cosh  k θ) = 

( ii) Z(sinh  k θ) = 

. 

 z 2 − 2 z  cosh θ + 1

 z 2 − 2 z  cosh θ + 1

4. 

Show that

 zea ( zea − cos )

θ

 zea  sin θ

( i) Z( e–ak cos  k θ) = 

( ii) Z( e–ak sin  k θ) = 

. 

 z 2 e 2 a − 2 zea  cos θ + 1

 z 2 e 2 a − 2 zea  cos θ + 1

 z( z + )

1

 z 2( z + 1)

5. 

Using Z( n 2) = 

. 

( z − )

1 3 , show that Z( n + 1)2 =  ( z

3

− 1)

2 2

 z + 3 z + 4

6. 

Given Z( u ) = 

, |  z | > 3, show that   u  = 2,  u  = 21,  u  = 139. 

 n

( z − 3 3

)

1

2

3

 z

( z 3 + )

 z  cos θ − 2 z 2

7. 

Using Z( k) = 

. 

( z − )

1 2  , show that  Z( k cos  k θ) =  ( z 2 − 2 z  cos θ + )2

1

8. 

Find the convolutions of

( i)  k( k – 1) ∗ 3 k

( ii) 3 k ∗ cos  k θ

( iii) cos   k π  ∗ sin   k π  . 

2

2

 d

9. 

Prove that Z{ kn} = –  z 

[Z{ kn– 1}]. 

 dz

∞

∞

10. 

Evaluate the Z-transform of the sequence { f( k)} =  ∑ 2 k  ∑ 3 k. 

 k = 0

 k = 0

ANSWERS (PROBLEM SET VII)

4 z

 z

 z

3 z

1. 

( i) 4 z − 1

( ii)

( iii)

( iv)

 z ei

− θ

 z + 1

2

 z + 9

 z 2

 z

2 z

1

( v)

( vi)

+

+

 z 2 + 4

 z − 4

2 z − 1  z 2( z − 1)

2 z

2 2

 z

 z 2 ( z − cos )

θ

2. 

8. ( i) 

( ii)

( z − 2 2

)

( z − 1 3

) ( z − 3)

( z − )( z 2

3

− 2 z  cos θ + 1)

 z 3

 z 2

( iii)

10. 

. 

( z 2

2

+ 1)

( z − 2)( z − 3)

1.26

INVERSE Z-TRANSFORM

Inverse Z-transform is a process for determining the sequence which generates given

Z-transform. If F( z) is the Z-transform of the sequence { f( k)}, then { f( k)} is called the inverse Z-transform of F( z). The operator for inverse Z-transform is Z–1. 

If Z{ f( k)} = F( z), then Z–1 [F( z)] = { f( k)}. 
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1.27

METHODS OF FINDING INVERSE Z-TRANSFORMS

We have the following methods of finding inverse Z-transforms:

(1) Convolution method

(2) Long division method

(3) Partial fractional method

(4) Residue method (or Inverse Integral method)

(5) Power series method. 

1.27.1 Convolution Method

 (A.K.T.U. 2017)

We know that

Z{ f ∗  g} = F( z) G( z)

 k

∴

Z–1 {F( z) G( z)} =  f ∗  g =  

 f ( m)  g( k m

∑

− ). 

 m = 0

 2

R

U

Example 57.   Find Z–1 

 z

S

V

 (z

T −  a)(z −  b) W  using convolution theorem. 

Sol.  We know that  Z–1 {F( z) G( z)} =  f ∗  g

R

U

Let

F( z) = 

 z

∴  f( k) = Z–1{F( z)} = Z–1 

 z

S

V

( z −  a)

 z

T −  a W =  ak

R

U

G( z) =   z

∴  g( k) = Z–1{G( z)} = Z–1 

 z

S

V

 z −  b

 z

T −  b W =  bk



Z–1{F( z) G( z)} =  f ∗  g =  ak ∗  bk

 k

 k

 m

F

=  ∑   ambk–m =  bk  ∑  a

HG IKJ (a G.P.)

 m = 0

 m = 0

 b

R  a k

F| +1 U

|HG I

1|

 b KJ

− |  ak+1 −  bk+1

= 

 bk S

V

 a

|

= 

. 

−

|

1 |

 a −  b

 b

T

W|

R

 z2

U

Example 58.   Using Convolution theorem, evaluate Z–1 S|

V|

 (z −  1)(z −  3)

T|

W|  . ( A.K.T.U. 2017)

Sol.  We know that

Z–1 {F( z) . G( z)} =  f ∗  g

 z

Let

F( z) = 

∴

 f( k) = (1) k

 z − 1

 z

G( z) =   z − 3

∴

 g( k) = (3) k

Now,  Z–1 {F( z) . G( z)} = (1) k ∗ (3) k
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 k

 k

F

= 

∑ 1 m 3 k–m = 3 k  ∑ 1

HG IKJ m

(a G.P.)

 m = 0

 m = 0

3

R 1  k+1

F|

U

1

|HG I

|

3KJ

− | ( )1 k+1 − ( )3 k+1 R1

U

= 

3 k S

V

S 3 k+1

(

− 1)V

1

|

= 

= T

W. 

− 1

2

|

|

1 − 3

3

T

W|

1.27.2 Long Division Method

∞

Since Z-transform is defined by the series F( z) =  ∑   f( k)  z–k (one sided), to find the inverse k = 0

Z-transform  i.e. , Z–1 [F( z)], expand F( z) in the proper power series and collect the coefficient of z– k to get  f( k). 

Example 59.   Find inverse Z-transform of

 10z

 2(z3 −  z)

( i)

( ii)

. 

 z2 −  3z +  2

 (z2 +  1)2

10 z

10 1

 z−

Sol.  ( i) F( z) =  2

= 

 z − 3 z + 2

1 3 1

 z−

2 2

 z−

−

+

By actual division, 

10 z–1 + 30 z–2 + 70 z–3 + ...... 



1 – 3 z–1 + 2 z–2 )  10 z–1

10 z–1 – 30 z–2 + 20 z–3

30 z–2 – 20 z–3

30 z– 2 – 90 z–3 + 60 z–4

70 z–3 – 60 z–4

70 z–3 – 210 z–4 + 140 z–5

+ 150 z–4 – 140 z–5

∴

F( z) = 10 z–1 + 30 z–2 + 70 z–3 + ...... 

Now comparing the quotient with

∞

∑   f( k)  z–k =  f(0) +  f(1) z–1 +  f(2)  z–2 + ...... 

 k = 0

We get the sequence  f( k) as

 f(0) = 0,   f(1) = 10,   f(2) = 30,  f(3) = 70, ...... 

 i.e., 

we can get

  f( k) = 10(2 k – 1),  k = 0, 1, 2, ...... 

2

2

 z( z − 1)

2 1

 z− − 2 − 3

 z

( ii)

F( z) = 

2

= 

( z + 1 2

)

1 + 2 − 2

4

 z

+  z−

By actual division, we get 

F( z) = 2 z–1 – 6 z–3 + 10 z–5 – 14 z–7 + ...... 

INTEGRAL  TRANSFORMS

M-2.61

∞

Comparing the quotient with   ∑   f( k)  z– k =  f(0) +  f(1) z– 1 +  f(2) z–2 + ...... 

 k = 0

We get     f(0) = 0,  f(1) = 2,  f(2) = 0,  f(3) = – 6,   f(4) = 0,  f(5) = 10,  f(6) = 0, ...... 

 k π

In general

  f( k) = 2 k sin 

,  k = 0, 1, 2, ...... 

2

Example 60.   Find the inverse Z-transform of

 4z

 F(z) =   z −  a

 for  

( i) |  z | > |  a |

( ii) |  z | < |  a |. 

Sol. ( i) For |  z | > |  a |, we have

 4z

4 z

1

F

∞

 a k

F

 a

= 

1 −

= 4  ∑

< 1

 z −  a

 z  HG

IKJ− az

HG IKJ

if

 z

 k = 0

 z

∞

=  ∑ 4 ak  z– k, where |  z | > |  a |

 k = 0

F 4 z

  Z–1 HG

I

 z −  a KJ  = {4 ak}. 

( ii) For |  z | < |  a |, we have

4 z

4 z

1

F



= – 

1 −

 z −  a

 a  HG

IKJ− za

4 z

2

3

F  z z z

I

= – 

1 + +

+

+ ......  ,  if  |  z | < |  a |

 a

2

3

HG  a a a

KJ

4 z

2

3

4

= – 

–  4 z

4 z

4 z

−

−

– ..... 

 a

2

3

4

 a

 a

 a

F 4 z

  Z–1 HG

I

 z −  a KJ  = { f( k)}

R

4 − 4 − 4 − 4U

where { f( k)} =  ..... 

S .− , , , 

T

4

3

2

V. 

 a

 a

 a

 a  W

Example 61.   Find the inverse Z-transform of

(U.P.T.U. 2014)

 1

   F(z) = 

 for

 (z −  3)(z −  2)

   

( i) |  z | <  2 ( ii)  2 < |  z | <  3 ( iii) |  z | >  3. 

1

1

1

Sol. 

F( z) = 

= 

−

( z − 3)( z − 2)

 z − 3  z − 2

( i) For | z | < 2. 

1

1

F

1

1

F

F( z) = –    1 −

1 −

3 HG

I3KJ− z  + 2HG I2KJ− z
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1

1

= –   (1 + 3–1 z + 3–2 z 2 + 3–3 z 3 + ...) +   (1 + 2–1 z + 2–2 z 2 + 2–3 z 3 + ...) 3

2

= – (3–1 + 3–2 z + 3–3 z 2 + ...) + (2–1 + 2–2 z + 2–3 z 2 + ...)

Here coeff. of  z–k (if  k > 0) = 0

Coeff. of   z–k (if  k < 0) = – 

1

1

+

= – 3 k–1 + 2 k– 1

3− k + 1

2− k+1

Now, Z–1{F( z)} = { f( k)} = {– 3 k–1} + {2 k–1}. 

( ii) For 2 <  | z | < 3. 

1

1

F

1 F

2 1

F( z) = –    1

1

3

−

HG

I

−

3KJ −

 z

–   z  HG

I z KJ−

1

2

3

F  z z z

I 1 F 2 22 23

I

= –    1 + +

+

+ ......  – 

1 + +

+

+

3 HG

3 32

33

KJ

2

3

 z  HG

 z

 z

 z

KJ

...... 

= – (3–1 + 3–2 z + 3–3 z 2 + 3–4 z 3 + ......) – ( z–1 + 2 z–2 + 22 z–3 + ......) Here, coeff. of   z– k (if  k > 0) = – 2 k–1

Coeff. of

   z–k (if  k ≤ 0) = – 3 k–1R−  k−21,  k>0U

Now, 

Z–1{F( z)} = { f( k)} = S|  k  1

V|

T|− −

3

, 

 k ≤ 0W|

( iii) For | z |  >   3. 

1 F

3 1

1 F

2 1

F( z) = 

1 −

1 −

 z  HG

I z KJ−  –  z HG I z KJ−

1

1

=   (1 + 3 z–1 + 32 z–2 + ......) –   (1 + 2 z–1 + 22 z–2 + ......) z

 z

3 k−1

R

− 2 k−1 , 

 k ≥ 1

∴

Z–1{F( z)} = { f( k)} = ST

. 

0, 

 k ≤ 0

1.27.3 Partial Fractional Method

Here we split the given F( z) into partial fractions whose inverse transforms can be

written directly. 

Example 62.   Find the inverse Z-transform of

 z

 z3 −  20z

 8z2

( i)

( ii)

( iii)

. 

 z2 +  7z +  10

 (z −  2)3(z −  4)

 (2z −  1)(4z −  1)

F( )

 z

1

1

A

B

Sol.  ( i)

= 

= 

= 

+ 

 z

2

 z + 7 z + 10

( z + 2)( z + 5)

 z + 2

 z + 5

1 1

1

1

F

1

1

= 

− . 

∵ A = , B = −

3  z + 2 3  z + 5

HG

I

3

3KJ

1  z

1  z

∴

F( z) = 

−

3  z + 2 3  z + 5

INTEGRAL  TRANSFORMS

M-2.63

1

R  z  U 1 −1 R  z  U

∴

  f( k) = Z–1{F( z)} =   Z–1 S

V Z S

V

3

 z

T + 2 3

 z

W −

T + 5W

R 1

1

U

L

 k

 z

= ST  (– 2) k –   (– 5) k  V

 a =

3

3

W

∵ Z(

)

NM

O

 z −  a QP

 z 3 − 20 z

F( )

 z

 z 2 − 20

( ii)

F( z) = 

or

= 

( z

3

− 2) ( z − 4)

 z

( z

3

− 2) ( z − 4)

F( )

 z

 z 2 − 20

A + B z + C z 2

D

Now



= 

= 

+ 

 z

( z

3

− 2) ( z − 4)

( z − 3

2)

 z − 4

1

1

⇒

D = –  , A = 6, B = 0, C = 

2

2

1

F 1

2

 z

−

F( )

 z

6 +

HG I2KJ

∴

= 

2

+

 z

( z − 2 3

)

 z − 4

1 R12

3

 z +  z

 z  U 1 R  z( z  2 2

)

4 2

 z

8 z

 z  U

or

F( z) =   S

−

V S

−

V

2

( z

T − 2 3)  z − 4 2

( z  2 3

)

 z

T

− 4

W =

−

+

+

−

W

1 R  z

2 z 2 4 z

 z  U

=   S

+

+

2 . 

−

3

V

2  z

T − 2

( z − 2)

 z − 4W

1

L

2

2

1 R  az

 a z U

O

Now

    f( k) = Z–1{F( z)} =   {2 k + 2 k 22 k – 4 k}, 

∵

M Z−

+

S

2

 k ak

3 V

P

2

NM

T ( z −  a) W =

QP

= {2 k–1 + 2 k .  k 2 – 22 k–1}

8 2

 z

 z 2

( iii)

F( z) = 

= 

2

(  z − 1) 4

(  z − 1)

F 1 F 1

 z −

 z

HG

I2KJ −

HG

I4KJ

F( )

 z

 z

A

B

2

1



= 

= 

+

= 

−

 z

F 1 F 1

1

1

1

1

 z −

 z

HG

I

 z −

 z −

 z −

 z −

2KJ

−

HG

I4KJ

2

4

2

4

2 z

 z

∴

F( z) = 

−

 z − 1

( / 2)

 z − 1

( / 4)

R F1  k  F 1  k U

  f( k) = Z–1{F( z)} =  2

S| HG I

V| ,  k = 0, 1, 2, ...... 

2KJ − HG I

4KJ

T|

W|

1.27.4 Inverse Integral Method (or Residue Method)

By using the theory of complex variables, it can be shown that the inverse Z-transform is

1

given by  f( k) = 

z F( z)  zk– 1  dz, where C is the circle (may be even closed contour) which 2π i  C

contains all the isolated singularities of F( z) and containing the origin of the  z-plane in the region of convergence. Hence by  Cauchy’s  Residue theorem, 

 f( k) = sum of the residues of the singularities of F( z). 
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Example 63.   By Residue method, find the inverse Z-transform of

 z

 z

 z2 +  z

( i)

( ii)

( iii)

 z2 +  7z +  10

 z2 −  2z +  2

 (z −  1)(z2 +  1)

 2z

 z(z +  1)

 z(z2 −  1)

( iv)

( v)

( vi)

. 

 z3

 z2

−

+  z −  1

 (z −  1)3

 (z2 +  1)2

 z

Sol.  ( i)

F( z) =   z 2 + 7 z + 10

1

  f( k) = 

z  zk– 1 F( z)  dz = sum of residues

2π i  C

1

 z

1

 k

= 

z  zk– 1 

 dz = 

z    z   dz

2π i  C

 z 2 + 7 z + 10

2π i  C ( z + )

2 ( z + )

5

Poles are  z = – 2, – 5. These are simple poles. 

 k

(− )

2  k

Residue (at  z = – 2) =  Lt  ( z + 2) 

 z

= 

 z → − 2

( z + )

2 ( z + )

5

3

 k

 k

Residue (at  z = – 5) = 

5

Lt  ( z + 5) 

 z

=  (− )

 z → − 5

( z + )

2 ( z + )

5

− 3

(− )

2  k

R(− )5 k  U 1

∴

 f( k) = sum of residues = 

+ S

V =   {(– 2) k – (– 5) k}. 

3

T| − 3 W| 3

 z

( ii)



F( z) =   z 2 − 2 z + 2

1

  f( k) = 

z  zk– 1 F( z)  dz = sum of the residues

2π i  C

1

 z

1

 k

= 

z  zk– 1 . 

 dz = 

z  z   dz

2π i  C

 z 2 − 2 z + 2

2π i  C  z 2 − 2 z + 2

The poles are given by  z 2 – 2 z + 2 = 0 ∴  z = 1 ±  i both are simple poles. 

Residue at  z = 1 +  i is

 k

(1 + ) ik

Lt  [ z – (1 +  i)] 

 z

= 

 z → 1 +  i

[ z − (1 +  i)][ z − (1 −  i)]

2 i

Similarly, residue at  z = 1 –  i is

 zk

(1 − ) ik

Lt  [ z – (1 –  i)] 

= 

 z → 1 −  i

[ z − (1 +  i)][ z − (1 −  i)]

− 2 i

(1 + ) ik

1  i k

∴  f( k) = sum of the residues = 

+  ( − )

2 i

− 2 i

R

U

=  1

ST [(1 +  i) k – (1 –  i) k]V

2 i

W

...(1)
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R

U

We know that



(1 +  i) k = ( 2 ) k 

 k π

 k

cos

S

+  i  sin π

T

V

4

4 W

R

U





 k π

 k

(1 –  i) k = ( 2 ) k  cos

S

−  i  sin π

T

V

4

4 W

R

U

∴

(1 +  i) k – (1 –  i) k = ( 2 ) k 

 k

2

S  i sin π

T

V

4 W

R

π U

Substituting in (1), we get  f( k) =  (

S 2) k k

sin

T

V

4 W

 z 2 +  z

( iii)

F( z) =  ( z − )( z 2

1

+ 1)

1

 f( k) = 

z  zk– 1 F( z)  dz = sum of the residues

2π i  C

1

 z 2 +  z

1

( z + )

1

= 

z  zk– 1 

 dz = 

z  zk

2π i

2

2

 dz

C

( z − 1)( z + 1)

2π i  C ( z − )

1 ( z + )

1

Poles are given by  z = 1, ±  i

( z + )

1

Residue (at  z = 1) =  Lt  ( z – 1)  zk 

2

= 1

 z → 1

( z − )

1 ( z + )

1

 zk ( z + )

1

 ik i

( + )

1

 ik(1 +  i)

1

Residue (at  z =  i) =  Lt  ( z –  i) 

= 

= 

= –    ik

 z →  i

( z − )

1 ( z −  i)( z +  i)

 i

( − )

1 (  i

2 )

− (

2 1 +  i)

2

1

Similarly, residue (at  z = –  i) is = –   (–  i) k

2

∴

   f( k) = sum of the residues

1

1

1

= 1 –    ik –   (–  i) k = 1 –   { ik + (–  i) k}

...(1)

2

2

2

 k

 k

 k

 k

     ik = cos  π  +  i sin  π  ; (–  i) k = cos  π  –  i sin  π

2

2

2

2

 k

   ik + (–  i) k = 2 cos  π  . Substituting in (1), we get

2

1 R

 k  U R

 k  U

   f( k) = 1 –    2

S cos πV S

π V

2 T

2 W = T 1 – cos  2 W . 

2 z

2 z

( iv)

F( z) =  3

2

= 

 z −  z +  z − 1

( z − 1 2

)( z + 1)

Poles are  z = 1,  z = ±  i

2 zk

Residue (at  z = 1) =  Lt  ( z – 1) 

= 1

 z → 1

( z − 1 2

)( z + 1)

2 zk

2 ik

 ik

Residue (at  z =  i) =  Lt  ( z –  i) 

= 

= – 

 z →  i

( z − 1)( z −  i)( z +  i)

 i

( − 1) 2

(  i)

1 +  i

(− ) ik

Residue (at  z = –  i) = –  1−  i
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R  ik (  i k) U

 f( k) = sum of the residues = 1 – S

+ −

V

1

T| +  i  1−  i  W|

F  ik  I

 ik  π/2



= 1 – 2 R.P. of HG1+  i KJ  = 1 – 2 R.P. of   e ei π/4

2

= 1 –  2  R.P. of  eik  π/2 −  i π/4

F  k

R F  k π

 k  U

= 1 – 

π π

π

2  cos 

−

HG

I S – cos +sin V

2

4KJ  =  1

T HG

I

2

2 KJW . 

 z( z + )

1

( v)

F( z) =  ( z − )13

 z = 1 is a pole of order 3

1

 d 2 R( z

)

1 3 .  zk

−

( z + )

1 U

∴ Residue (at 

 z = 1) = 

Lt  

S

3

V

2 !  z → 1  dz 2

( z

T|

− )

1

W|

1

= 

Lt  { k( k + 1) zk–1 +  k( k – 1) zk–2}

2 !  z → 1

1

=   { k 2 +  k +  k 2 –  k} =  k 2

2

∴  f( k) = sum of the residues = { k 2},  k = 0, 1, 2, ...... 

 z( z 2 − )

1

( vi)

F( z) =  ( z 2 + )2

1

 z = ±  i are poles and each is a pole of order 2. 

R

2

 k

2

R

U

2

 zk ( z − )

1

U

 d

 z ( z − )

1

Residue (at  z =  i) = 

 d

Lt

(

S  z − )1

S

V

2

2 V  =  Lt



2

 z →  i dz

( z

T|

− ) i ( z + ) i  W|  z→  i dz

( z

T| +  i) W|

( z

)

 i  2 [ zk . 2 z kzk−1 ( z 2

)

1 ]  zk

+

+

−

−

( z 2 − )

1 . (

2  z + ) i k

=  Lt  

=   ik– 1

 z →  i

( z + ) i 4

2

 k

Similarly,    R  = Residue of  f( z) (at  z = –  i) =  (–  i) k–1

2

2

R k

U

∴

       f( k) = sum of the residues = S  ik−1 + −  i k−1

[

( )

]

T

V

2

W,  k = 0, 1, 2, ..... 

R 8z −  z3  U

Example 64.   Using residue’s method, evaluate  Z–1 S

V

 (4

T −  z)3  W. 

(A.K.T.U 2016)

(8

3

 z −  z )

Sol.  Here, 

F( z) =  (4 3

−  z)

Poles are given by, 

 z = 4 (pole of order 3)

Residue of F( z) (at  z = 4) is

1

L 2

 d  R

3

3

 k − 1 8 z

 z  UO

R =

M

( z

)  z

. 

2 S

−

−

4

3 VP

3

( − 1) ! NM dz  T

(4 − )

 z  WQP z = 4
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1 L 2

 d

1 L 2

 d

=

3

{( z −

−

8

1

 z) zk }



 k + 2

( z

8 zk)

2 NM

O

2

=

−

 dz

QP

2 NM

O

2

 dz

QP

 z = 4

 z = 4

1

=   [( k + 2)( k + 1) zk – 8 k( k – 1) zk – 2]

2

 z = 4

1

1

=   [( k +  2)( k + 1) (4) k –    k( k – 1) (4) k]

2

2

4 k  L 2

1

=

 k + 3 k + 2 −

2

( k −  k)  = ( k 2 + 7 k + 4) (4) k – 1

2 NM

O

2

QP

R8

3

 z −  z  U

∴

Z–1 S

V = R = {( k 2 + 7 k + 4) (4) k – 1}. 

4

3

T( −  z) W

Example 65.  Using residue’s method, show that

R  3z2 +  2  U  53 k 31

 Z–1 S

V

 (.2)

 ( .4)k

 (5z

T −  1)(5z +  2) 75

 75

W =

+

−

. 

3 2

 z + 2

Sol. Here, 

F( z) =  5( z − 1) 5( z + 2)

Poles are given by (5 z – 1)(5 z + 2) = 0

1

2

⇒  z =  , −  which are simple poles. Consider a contour |  z | = 1

5 5

1

FL

2

1

1

3 z

2

Residue (at  z =  ) is   R  =  Lt

 k

 z −

 z − . 

5

1

HG

I5KJ

+

 z

5

(  z

NM

O

− 1) 5

(  z

→

+ 2)QP

1

5 L1 1

=  Lt

 k

. 

 z − 1 3

(  z 2 + 2)

1

 z

NM

O

5 5

(  z  2)

QP

→

+

5

1 1  k − 1

F

F 3

53

= 

2  = 

(.2) k

15 HG I

5KJ

+

HG

I

25

KJ 75

Residue (at  z = – 2/5) is

F 2

2

R  = 

 z

.  zk– 1 . 

3 z + 2

2

Lt

+

HG

I5KJ

 z → − 2/5

5

(  z − 1) 5

(  z + 2)

L

=  Lt   1

1

 k−1

 z

3 2

. 

(  z + 2)

 z → − 2/5 NM

O

5 5

(  z − 1)

QP

1 F 1 F 2  k−1 F 12

(− )

1  k .  k−

2 1

62

=  . −

. 

2  = 

. 

5 HG

I3KJ −HG I5KJ

+

HG

I

25

KJ

( ) k+

5 2

3

62

31

= 

(– 1) k . 2 k– 1 (.2) k = 

(– .4) k

75

75

53

 k

31

Hence, Z–1 {F( z)} = { f( k)} = sum of residues = R  + R  = 

2

(. )

( 4

. ) k

+

−

. 

1

2

75

75
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1.27.5 Power Series Method

In this method we find the inverse Z-transform by expanding F( z) in power series as illustrated in the following example. 

R F  z  U

Example 66.   Find Z–1 S log

T HG

IV

 z +  1 KJW  by power series method. 

R  z  U

Sol. 

F( z) = log ST V , 

 z + 1W

1

R 1/  y  U

Let  z = 

then

F( z) = log S

V

 y

1 /  y

T

+ 1W = – log (1 +  y)

1

1

1

1

1

= –  y +    y 2 –    y 3 + ...... = –   + 

– 

+ ······ +  (− )

1  k   z–k

2

3

 z

2 2

 z

3 3

 z

 k

R 0, 

for  k = 0

∴

 f( k) =  z–1 {F( z)} = S|(− 1) k , otherwise

T|

. 

 k

1.28

SOME IMPORTANT INVERSE Z-TRANSFORM RESULTS

 S.No. 

 F(z)

{ f(k)}

{ f(k)}

 where | z | > | a  |, k >  0

 where | z | < | a |, k < 0

1

1. 

 ak– 1 U ( k – 1)

–  ak– 1 U(–  k)

 z −  a

 z

2. 

 ak U ( k) or  ak

–  ak

 z −  a

 z 2

3. 

( k + 1)  ak

– ( k + 1)  ak

 z −  a  2

(

)

1

4. 

2

( k – 1)  ak–2 U ( k – 2)

– ( k – 1)  ak–2 U (–  k + 1)

( z − )

 a

 zn

1

1

5. 

( k + 1) ...... ( k +  n – 1)  ak  U( k)

– 

( k + 1) ...... ( k +  n – 1)  ak

 z −  a n

(

)

( n − 1) ! 

( n − 1) ! 

1.29

DIFFERENCE EQUATIONS

The inherent discrete nature of some physical phenomena gives rise to work with discrete

functions. The mathematical models in which a variable can have only discrete set of values, 

give a chance to study difference equations. Difference calculus also forms the basis of difference equations which arise in the theory of probability, in the study of electrical networks, in

statistical problems and in all situations where sequential relation exists at various discrete values of the independent variable. 
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1.30

DEFINITION

A difference equation is a relation between the differences of an unknown function at one or

more general values of the argument. 

 Or

An equation which connects various differences of an unknown function is called a

difference equation. 

A difference equation is a relationship of the form

L

 y

Δ

Δ2  y

 n

Δ  y

F  x,  y, 

, 

, ......, 

 x

NM

O

Δ

 x

Δ 2

 xn

Δ QP = 0

...(1)

Δ y

 f ( x +  h) −  f ( x)

Let  y =  f( x), then



= 

Δ x

 h

Δ2  y

 f ( x + 2 h) − 2 f ( x +  h) +  f ( x)

= 

Δ 2

 x

 h 2



Δ n y

 f ( x +  nh) − ...... + ...... 

= 

... , 

Δ  n

 x

 hn

where  h is the interval of differencing. Hence eqn. (1) can be rewritten as

φ [ x, f( x),  f( x +  h),  f( x + 2 h), ......,  f( x +  nh)] = 0

...(2)

where  f( x) =  y is an unknown function. 

 e.g. 

Δ y  + 2 y  = 0

...(3)

 k

 k



Δ2 y  + 3

+  y   = 0

...(4)

 k

Δ yk

 k

If we put Δ ≡ E – 1, where E is an operator called shift operator such that E{ f( x)} =  f( x + 1), then eqns. (3) and (4) can be rewritten as

(E – 1) y  + 2 y  = 0

 k

 k

⇒



(E + 1) y   = 0

...(5)

 k

and

(E – 1)2 y   + 3(E – 1) y   +  y  = 0

 k

 k

 k

⇒

E2 y   + E y  –  y   = 0

...(6)

 k

 k

 k

Eqns. (3) and (4) may also be put as

  

 y

+  y   = 0;  y

+  y

–  y   = 0. 

 k+ 1

 k

 k+ 2

 k+ 1

 k

1.31

ORDER OF A DIFFERENCE EQUATION

The order of a difference equation is defined as the difference between the largest and the

smallest arguments for the function involved divided by  h, the interval of differencing. 

Consider the difference equation

   y

+  y

–  y   = 0

 k+ 2

 k+ 1

 k

( k + )

2 −  k

Order = 

= 2. 

1

Note.  While finding the order of a difference equation, it must always be expressed in a form free of Δ’s. 

1.32

DEGREE OF A DIFFERENCE EQUATION

The degree of a difference equation is defined to be the highest power of  f( x). 
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1.33

SOLUTION OF A DIFFERENCE EQUATION

A solution of a difference equation is any function which satisfies the given equation. The

general solution of a difference equation is defined as the solution which involves as many

arbitrary constants as the order of the difference equation. 

The particular solution is  a solution obtained from the general solution by assigning

particular values to periodic constants. 

Consider a difference equation

 y

– 2 y  = 0 ;  h = 0, 1, 2, ...... 

…(1)

 h + 1

 h

Let

     y  = 2 h,  h = 0, 1, 2, ..... 

…(2)

 h

The function  y  defined by (2) satisfies the difference equation (1) so it is called a solution h

of eqn. (1). Generally eqn. (1) is satisfied by

     

  y  =  c . 2 h for any constant  c

 ... (3)

 h

The function   y  given by eqn. (2) is a particular solution of eqn. (1) while function  y  in h

 h

eqn. (3) is the general solution of eqn. (1). 

Remark.  A difference equation may have no solution just as in case of algebraic equation e.g.   ( y

–  y )2 +  y  2 = – 1 is satisfied for no real-valued function  y. 

 h+1

 h

 h

We will now proceed to solve difference equations with the help of Z-transforms. 

1.34

APPLICATIONS OF Z-TRANSFORMS TO DIFFERENCE EQUATIONS

Z-transform is useful in solving difference equations. 

The given difference equation can be converted to the form   y  = φ( z) by taking Z-transform on it, provided the initial values of  y are known. Using inversion, we can get the value of  yk which is the solution of the given difference equations. 

1.35

PROVE THAT

F

y

y

 Z(y

) = zn   y − y

1

−

− ... 

n−1  , where Z(y ) = 

k+n

0

−

HG

I

y. 

z

zn−1 KJ

k

∞

∞

Proof. 



LHS = Z  ( y

) =  ∑   y   z–k =  zn  ∑   y   z–( n+k)

 k+n

 k+n

 k+n

 k = 0

 k = 0

Setting  m =  n +  k, we get

L

1

O

∞

∞

 n −

M

–

P

  z( y

) =  zn  ∑   y   z–m =  zn 

− m

− m

 y z

 y z

∑

∑

 k+n

 m

 m

 m

M 0

0

P

 m

N

Q

=  n

 m =

 m =

L

 y

 y

 y

=  zn   y −  y

1

2

 n  1

0 −

−

− ...... −

NM

− O . 

 z

 z 2

 zn−1 QP

Note.  For  n = 1, 2, 3, ......, we have

Z( y

) =  z(

)

 k+ 1

 y  –  y 0

F

 y



Z( y

) =  z 2   y −  y

1

0 −

 k+ 2

HG

I

 z  KJ

F

 y

 y



Z( y

) =  z 3   y −  y

1

2  and so on ... 

 k+ 3

0 −

−

HG

I

 z

 z 2 KJ

Note.  If Z( y ) = 

) =  z–n 

 k

 y , then Z( yk–n

 y . 
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Example 67.   Solve by Z-transform: y

  + y  = 1 if y  = 0. 

 k+1

 k

 0

Sol.  Take Z-transform on both sides, we get

Z( y

) + Z( y ) = Z(1)

 k+ 1

 k

 z

∴

  z(  y  –  y ) +   y  = 

0

 z − 1

 z

⇒

 y ( z + 1) =   z − 1

(∵  y  = 0)

0

 z

1 L  z

 z

∴

 y  = 

=   

−

( z – )

1 ( z + )

1

2 NM

O

 z −

 z + QP

1

1

Take inverse Z-transform, 

1 L

1

1 F

 z

1 F

 z

∴

 y  =    −

−

=   {1 – (– 1) k}. 

 k

Z

Z

2 NM

O

HG

I

 z − 1KJ −

HG

I

 z + KJ

1 QP 2

Example 68.   Solve by Z-transform: y

  – 3y

  + 2y  = 0; y  = 0, y  = 1. 

 k+2

 k+1

 k

 0

 1

Sol.  Take Z-transform on both sides, 

Z( y

) – 3Z( y

) + 2Z( y ) = Z(0)

 k+ 2

 k+ 1

 k

F

 y

⇒

 z 2   y −  y

1

0 −

HG

I – 3 z ( y –  y ) + 2 y = 0

 z  KJ

0

( z 2 – 3 z + 2)  y  =  z

 z

 z

 z

 z

∴

 y  = 

= 

= 

– 

 z 2 − 3 z + 2

( z − )

1 ( z − )

2

 z − 2

 z − 1

Take inverse Z-transform, we getF

 y  = Z – 1 

 z

 z

= {2 k – 1}

where  k = 0, 1, 2, .... 

 k

−

HG

I

 z −

 z − KJ

2

1

Example 69.   Solve the following difference equations using Z-transform

 y

  – 2y  = 1; k 

  = 1. 

 k+1

 k

≥  0, y0

Sol.  Taking Z-transform on both sides, we get

Z( y

) – 2 Z( y ) = Z(1)

 k+1

 k

 z

⇒

      z(  y  –  y ) – 2  y  = 

0

 z − 1

 z 2

⇒

( z – 2)   y  =   z  +  z = 

| ∵  y  = 1

 z − 1

 z − 1

0

 z 2

⇒

 y = ( z −1)( z − 2)

 y

 z

2

1

⇒

= 

=

−

 z

( z − )

1 ( z − )

2

 z − 2  z − 1

2 z

 z

or

 y  = 

−

 z − 2  z − 1
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Taking inverse Z-transform, we getF  z

F  z

 y  = 2 Z–1 

 k

HG

I

 z − KJ

2  – Z–1 HG

I

 z − KJ

1  = 2 (2 k) – 1 = {2 k+1 – 1}. 

Example 70.   Solve using Z-transform : y   – 2 cos 

  + y  = 0, y  = 0, y  = 1. 

 x+2

α  yx+1

 x

 0

 1

Sol.  Take Z-transform on both sides, 

F

 y

 z 2   y −  y

1

0 −

HG

I – 2 cos α .  z ( y –  y ) +  y = 0

 z  KJ

0

F 1

⇒

 z 2   y −

HG

I – 2 z cos α .  y +  y = 0

 z KJ

 z

 z

 y  = 

=

 z 2 − 2 z  cos α + 1 ( z −  ei α)( z −  e− i α) F

I

F

I

 y

 z

 i

 z

=  −  i  

. 

2 sin α HG  z ei α KJ + 2 sin

HG  z −  e− i

−

α

α

KJ

∴ Taking inverse Z-transform, we get

 y  =  −  i  [( ei α) x – ( e–i α) x]

 x

2 sin α

=  −  i  [(cos α  x +  i sin α  x) – (cos α  x –  i sin α  x)]

2 sin α

Rsin  x U

= 

α

S

V

sin

T α W . 

 1

 1

Example 71.   Solve using Z-transform : y  +    y  = 



 k

 4 k–1  δ (k) +   3  δ (k – 1)

 where  δ (k) is unit impulse sequence. 

Sol.  Taking Z-transform on both sides, we get

1

1

Z( y ) +   Z( y ) = Z{

Z{

 k

4

 k–1

δ( k)} +  3 δ( k – 1)}

1

1

⇒



 y  +    z–1   y  = 1 +    z–1

4

3

1 −1

1

1 +  z

 z +

⇒

 y  = 

3

3

1

=

−1

1

1 +  z

 z +

4

4

1

There is only one simple pole at  z = –   . 

4

L

1 O

F

M

 z

F 1

P

Residue  at  z = −

HG

IKJ1 is   = M  z+ .  zk−1 3

. 

P

4

HG

I

M

4KJ

+

F 1 P

 z +

NM

HG

I4KJQP 1

 z = − 4
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L

 k−1

 k−1

F

F

F

1 F

1

1

1

1

1

1

= 

 zk− .  z +

NM

O

HG

I

= 

−

. 

3KJQP

1

HG

I

3

4KJ −

HG I4KJ =

−

12 HG

I4KJ

 z = − 4

R 1 F 1  k−1U

∴

 y  = Residue = S|

V| . 

 k

−

12 HG

I4KJ

T|

W|

 1

F  1 k

Example 72.   Solve by Z-transform y

+   y

 = 0. 

 k+1

=

 4 k  HG I

 4 KJ  ;  k ≥  0,  y0

Sol.  Take Z-transform on both sides, 

FL 1  k O

Z( y

) +  1  Z( y ) = Z M

P

 k+1

HG I

M KJ

4

 k

4

N

QP

 z

⇒

  z(  y  –  y ) +  1  

0

 y  = 

4

1

 z − 4  z

∴

 y  =  F 1 F 1

 z −

 z

HG

I4KJ +

HG

I4KJ

L

O

 y

M 1

1

2 M

P

–

1

1 P

=

 z

M z –

 z +

N 4

4 QP

F

I

G  z

 z  J

∴



 y = 2 GG

–

1

1 J

 z –

 z +

H 4

4 KJ

Take inverse Z-transform on both sides, 

FR  k  F

 k  U

    

  y  = 2  1

1

S|

V|. 

 k

HG I4KJ − −

HG I4KJ

T|

W|

 1

 1 k

F

 k π

Example 73.   Solve:  y  + 

 y  = 

 (k 

 k

 25 k–2  HG I

≥  0)  by residue method. 

 5 KJ   cos   2

Sol.  Take Z-transform on both sides, we get

F

1

FL 1  k

O

Z   y +

 y

M

cos  k π / 2P

 k

 k

HG

I

−

= Z 

25

2 KJ

HG I5

M KJ

N

QP

1

 k

(

 z z c  cos α)

–2

 z 2

( c  cos α )

 k

⇒  

 y +

 z

 y =

∵ Z

=

−

2

2

25

 z − 2 cz  cos α +  c

2

1

 z + 25

Here α = π / , 

2  c = 1 / 5

 z 2

 z 4

∴

 y  =  F

= 

1 F

1

2

 z 2 +

1

 z  2

HG

I

−

F 2 1

25KJ

+

HG

I

25

KJ

 z +

HG

I

25KJ

 i

−  i

There are two poles of II order at  z =   and  z = 

. 

5

5
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L R

UO

F

M |

2

4

|P

 i

M  d  F|  i

 k – 1

 z

|

Residue    at  z

 z –

.  z

. 

P

=

HG

IKJ M S

2 V

5 =  dz  HG

I5KJ

M |

F 2 1 |P

 z +

P

NM T|

HG

I

25KJ W|QP  i

 z = 5

L R

M

O

|

U

LF  i  2

 k+2

 k+3

F  i  O

M

M  z

( k  3)  z

–  z

2  z

P

 d |

 k+3

|

 z

|P

+

MHG

I5KJ +

+

HG

I5KJ

. 

P

P

= M

S

=

M dz |F

2 V

 i

|P

M

F  i  4

P

 z +

P

NM T|HG

I

M

 z +

P

5KJ W|QP

NM

HG

I5KJ

 i

QP  i

 z =

 z =

5

5

F  k

 k

 k

 k

2

1

 k

F  k  2 1 F

=

+

HG

I . 

. 

. 

cos π

sin π

4 KJ FHG I

5KJ

 i =

+

HG

I

4 KJ FHG I

5KJ

+

HG

I

 i

2

2KJ

( k

)

2 F

π

π

=

+

. cos  k

+  i  sin  k

4 . (  k

5 ) HG

I

2

2KJ

F

 i

( k + )

2 F

 k π

 k

Residue  at  z = −

HG

IKJ =    cos − i sin π

5

4 . (  k

5 ) HG

I

2

2 KJ

( k + )

2

 k

  

 y  = sum of residues = 

cos   π  . 

 k

2 . (  k

5 )

2

Example 74.   Solve by Z-transform the difference equation

  y

 + 6y

  + 9y  = 2k ; (y  = y  = 0). 

(U.P.T.U. 2010, 2014)

 k+2

 k+1

 k

 0

 1

Sol.  Taking Z-transform on both sides, we get

Z( y

) + Z(6 y

) + Z(9 y ) = Z(2 k)

 k+ 2

 k+ 1

 k

F

 y

 z

⇒

 z 2   y −  y

1

0 −

HG

I

 z  KJ  + 6 z (  y  –  y ) + 9  y  = 

0

 z − 2

 z

⇒

( z 2 + 6 z + 9)  y  =   z − 2

 z

⇒

 y  =  ( z − )2( z + )32

Poles are given by

( z – 2)( z + 3)2 = 0 ⇒

 z = 2, – 3

There are two poles out of which one is simple and other is double. 

L

 k  1

 z

−

L  zk

2 k

Residue (at  z = 2)

=  ( z − )

2  z

. 

NM

O

( z − )

2 ( z + )

3 2 QP

= 

= 

 z = 2

( z

NM

O

+ )

3 2 QP

25

 z = 2

1

L d 2−1 R

UO

2

 k−1

 z

Residue (at  z = – 3)

= 

M

S( z + 3) .  z

VP

2

( − 1) ! M dz 2−1

N

T

( z − 2)( z

2

+ 3) WQP z = − 3

L  d  R  zk  UO

L( z − )2.  kzk−1 −  zk

= M

S

VP

= 

 dz ( z

NM T| − )2W|QP

( z

NM

O

− )

2 2

QP

 z = − 3

 z = − 3
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−

5

3 1

 k

 k

3  k

(

)

(

)

1

(− )

3  k

=  −

−

− −

= –    k(– 3) k–1 – 

25

5

25

R  k k

(− )

3  k  U

Hence

  f( k) = Sum of the residues = ST 2 −  (– 3) k–1 – 

V

25

5

25 W . 

Example 75.   Using Z-transform, solve the following difference equation:

 y

  + 4y

  + 3y  = 3k, given y  = 0 and y  = 1. 

(A.K.T.U. 2018, 2016)

 k+2

 k+1

 k

 0

 1

Sol.  Taking Z-transform on both sides, we get

Z( y

) + 4Z( y

) + 3Z( y ) = Z(3 k)

 k+2

 k+1

 k

F

 y

 z

⇒

 z 2   y −  y

1

0 −

HG

I 

 z  KJ + 4 z(  y  –  y ) + 3  y  = 

0

 z − 3

 z

⇒

( z 2 + 4 z + 3)  y  –  z =   z − 3

 z

 z

⇒



 y  = 

+

( z − )

3 ( z + )

1 ( z + )

3

( z + )

1 ( z + )

3

Taking inverse Z-transform, R

 z

U − R

 z

U

 y  = Z–1 S

V Z 1 S

V

 k

( z

T − )3( z + )1( z + )3

( z

)

1 ( z

)

W + T +

+ 3 W

= Z–1 {P( z)} + Z–1 {Q( z)}

 z

3 k

Residue of P( z) at ( z = 3) =  Lt  ( z – 3).  zk–1 . 

 z → 3

( z − )

3 ( z + )

1 ( z + )

3  =  24

 z

(− )

1  k

Residue of P( z) at ( z = – 1) = Lt  ( z + 1) .  zk–1 . 

 z → –1

( z − )

3 ( z + )

1 ( z + )

3  =  (− )

8

 z

(− )

3  k

Residue of P( z) at ( z = – 3) =  Lt  ( z + 3) .  zk–1 . 

 z → –3

( z − )

3 ( z + )

1 ( z + )

3  =  12

 z

(− )

1  k

Residue of Q( z) at ( z = – 1) =  Lt  ( z + 1) .   zk–1 . 

 z → − 1

( z + )

1 ( z + )

3  =  2

 z

(− )

3  k

Residue of Q( z) at ( z = – 3) =  Lt  ( z + 3) .   zk–1 . 

 z

( z + )

1 ( z + )

3  = 

→ − 3

− 2

R3 k ( 1  k) ( 3  k) U R( 1  k) ( 3  k) U

∴  y  = sum of residues = S

− −

+ −

V S

V

 k

24

8

12

2

2

T|

W| + − − −

T|

W|

R3 k  3

U

 k

5

= S

( 1)

( 3  k

+

−

−

− ) V. 

24

8

12

T|

W|

Example 76.   Use Z-transform to solve the difference equation:

 y

  – 2y

  + y  = 3k + 5. 

 k+2

 k+1

 k

Sol.  We have, 

 y

– 2 y

+  y  = 3 k + 5. 

...(1)

 k+2

 k+1

 k
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Taking Z-transform on both sides of the given equation, we get

F

 y

 z

 z

 z 2   y −  y

1

+ 5 . 

0 −

HG

I – 2 z ( y –  y ) +  y = Z(3 k + 5) = 3 . 

...(2)

 z  KJ

0

( z − )

1 2

 z − 1

Let  y  =  a  and  y  =  b then, (2) becomes

0

1

F

 b

3 z

5 z

 z 2   y −  a −

HG

I

+

 z KJ  – 2 z(  y  –  a) +   y  =  ( z − 1 2

)

 z − 1

3 z

5 z

( z 2 – 2 z + 1)  y  –  az 2 + 2 az –  bz = 

+

( z − 1 2

)

 z − 1

3 z


5 z

⇒

( z – 1)2  y  = 

+

+  az 2 + ( b – 2 a)  z

( z − 1 2

)

 z − 1

2

 y

3 z

5 z

 az

 z

= 

+

+

+  b

( − 2 a)

...(3)

( z − 1 4

)

( z − 1 3

)

( z − 1 2

)

( z − 1 2

)

Taking inverse Z-transform, we get

L 3

2

 z

− L

− L

1

5 z

 az

 b

(

2 a)  z

 y  = Z–1 

Z

Z 1

...(4)

 k

NM

O

( z − 1 4

) QP +

NM

O

( z − 1 3

) QP +

+

−

( z

NM

O

− 1 2

)

QP

3 z

Now, let

F( z) =  ( z − 1 4)

Pole is  z = 1 of order 4. 

1 L  d 3 R

3

−

UO

4

 k  1

3 z

 d

Residue (at  z = 1)

= 

M

(

S  z − 1) .  z . 

VP  = 1 L

3

(  zk)

3 ! M dz 3

N T

( z

4

− 1) WQP

6 NM

O

3

 dz

QP

 z = 1

 z = 1

1

 k−3

 k( k  1)( k  2)

= 

 k( k − 1)( k − 2) z

=

−

−

2

 z = 1

2

 k( k − )

1 ( k − )

2

∴



Z–1 [F( z)] = 

2

5 z

Let

G( z) =  ( z − 1 3)

Pole is  z = 1 of order 3. 

1 L  d 2 R

2

− UO

3

5 z

 d

Residue (at  z = 1) 

= 

M

(

S  z − 1) . 

.  zk  1VP

=  1 L

5

(  zk)

2 ! M dz 2

N

T

( z

3

− 1)

WQP

2 NM

O

2

 dz

QP

 z = 1

 z = 1

5

5 k ( k − 1)

=   [ k( k – 1) zk–2]

= 

2

 z = 1

2

5

∴

Z–1[G( z)] =    k( k – 1)

2

 az 2 +  b

( − 2 a) z

Let

H( z) = 

( z

2

− 1)
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Pole is  z = 1 of order 2. 

1

2

L  d  R  k−

 az

 b

 a z  UO

1

2 {

+ ( − 2 ) }

Residue (at  z = 1)

= 

M S z ( z − 1) . 

VP

2

( − 1) ! M dz

(

N T

 z − 1 2

)

WQP z=1

F  d k−1 2

L  d

= 

 z

{ az +  b

( − 2 a) z

HG

I}

( azk+1 +  b

( − 2 a) zk)

 dz

KJ  = NM

OQP

 z = 1

 dz

 z=1

= [ a( k + 1) zk + ( b – 2 a)  kzk–1]  =  a( k + 1) + ( b – 2 a) k z=1

=  a +  bk –  ak =  a(1 –  k) +  bk

∴



Z–1[H( z)] =  a(1 –  k) +  bk

Now, from (4), 

 k( k − )

2 ( k − )

1

5

  y  = 

+   k( k – 1) +  bk –  a( k – 1)

 k

2

2

 k( k − )

1

= 

( k + 3) +  bk –  a( k – 1)

2

 k( k − )

1 ( k + )

3

= 

+ ( b – a) k +  a

2

R k( k − )1( k + )3

U

= S

+ C0 + C  k

T

1 V

2

W. 

where, C  =  a  and C  =  b –  a. 

0

1

Example 77.   Using the Z-transform, solve the following difference equation:

 6y

  – y

  – y  = 0, y(0) = 0, y(1) = 1. 

 k+2

 k+1

 k

Sol.  Taking Z-transform on both sides of given equation, we get

Z(6 y

) – Z( y

) – Z( y ) = Z(0)

 k+2

 k+1  

 k

F

 y

⇒

6 z 2   y −  y

1

0 −

HG

I –  z( y –  y ) –  y = 0

 z  KJ

0

F 1

6 z 2   y −

HG

I –  zy –  y = 0

 z KJ

(6 z 2 –  z – 1)  y  = 6 z

6 z

6 z

 z

or

 y  = 

= 

= 

6 2

 z −  z − 1

3

(  z + 1) 2

(  z − 1)

F 1 F 1

 z +

 z

HG

I3KJ −

HG

I2KJ

FL

I F

IO

F

I

 y

6 G

M 1 J G 1 JP

6 G  z

 z  J

or

=  M

P or  y = 

 z

G

J G

J

−

G

J

5

1

1

GM  z

1

− J − G  z

H

+ JP

5

1

NM

G  z −

 z + J

2 K H

3 K QP

H 2

3 K

Taking inverse Z-transform on both sides, we get

L F

I

F

IO

6 M

G  z  J

G  z  JP 6 FR  k  F

 k  U

 y  =   

1

−

−1

M

P =    1

1

. 

 k

Z

Z

S|

V|

5

G

M G 1J

G 1J 5 HG IKJ − −HG IKJ

 z −

 z

P

2

3

NM H

T|

W|

2 KJ −

G +

H 3KJQP
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Example 78.   Using the Z-transform, solve the following difference equation:

 y

  – 3y

  + 3y

  – y  =  u (k); y(0) = y(1) = y(2) = 0. 

 k+3

 k+ 2

 k+1

 k

Sol.  We have, 

 y

– 3 y

+ 3 y

–  y  =  u( k)

...(1)

 k+ 3

 k+ 2

 k+1

 k

Taking Z-transform on both sides of equation (1), we get

F

 y

 y

F

 z

 z 3   y

 y

−  y

1

2

1

0 −

−

HG

I  – 3 z 2   y −  y

+ 3 z (  y  –  y ) –   y  = 

 z

0 −

 z 2 KJ

HG

I

 z  KJ

0

 z − 1

 z

⇒

( z 3 – 3 z 2 + 3 z – 1)  y  =   z − 1 z

⇒



 y  =  ( z − )14

Taking inverse Z-transform, we get

L  z

  y  = Z–1 

 k

NM

O

( z − ) QP

1 4

 z

Now, 

F( z) =  ( z − )14

Pole is  z = 1 (Pole of order 4)

1 L  d 3 R

3

L

−

UO

4

 k  1

 z

1

 d

Residue at this pole

= 

M

(

S  z − 1) .  z . 

VP  =   

( zk)

3 ! M dz 3

N T

( z

4

− 1) WQP

6  dz 3

NM

OQP

 z = 1

 z = 1

1

 k( k − )

1 ( k − )

2

=  [ k( k – 1)( k – 2)  zk–3]  = 

6

 z=1

6

R k( k − )1( k − )2U

Hence, 

 y  = S

V,  k 

 k

T

6

W ≥ 3. 

Example 79.   Using the Z-transform, solve the following difference equation:

F  1

R  1 k

F U

  y  – 

= S|

V|

 k

HG I 3 KJ  yk–1  HG I 3 KJ

T|

W| ,  k ≥  0, y(0) = 0. 

Sol.  Taking Z-transform on both sides, we get

R  k U

1

F 1

Z( y ) –   Z( y ) = Z S|

V|

 k

3

 k– 1

HG I3KJ

T|

W|

1

 z

⇒

 y  –    z–1  y  = 

3

1

 z − 3

F

 z

 z 2

⇒



1

1

−1

−

HG

I

 z

 y  = 

⇒

 y  = 

...(1)

3

KJ

1

2

 z −

F 1

3

 z −

HG

I3KJ

Taking inverse Z-transform on both sides, we get

LM

OP

2

  y  = Z–1 

 z

M

P

...(2)

 k

2

MF 1

M

P

 z −

NMHG

I P

3KJ QP
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 z 2

Here, 

F( z) = 

2

F 1

 z −

HG

I3KJ

1

Poles are  z =   which are of order 2. 

3

L R

M

O

|

U|P

1

M  d  F| 1 2

2

 k−

 z

|

 z

 z

P

Residue at this pole

= 

1

M S −

. 

. 

V

2

( − 1) !  dz  HG

I3KJ

M |

F

P

1 2 |

 z −

P

NM T|

HG

I3KJ |P 1

WQ z= 3

L  d

L

 k + 1

= 

( zk+1)

NM

O  =  ( k+ )1 zk  = 

 dz

QP 1

 k

 z =

NM

OQP 1 3

3

 z = 3

R k + 1U

∴ From (2), 

   y  = S

V. 

 k

 k

T 3 W

Example 80.   Using the Z-transform, solve the following difference equation:

F  1

R  1 k

F

 k π U

 y  + 

  =  S|

 cos

V|  , k 

 k

HG I

 16 KJ   yk–2

HG I 4 KJ

FHG I 2 KJ

T|

W| ≥  0. 

1

F 1

 k π

Sol. 

   y  + 

 y  = 

,  k 

 k

16  k–2

HG I4KJ k cos  2

≥ 0

...(1)

Taking Z-transform on both sides of equation (1), we get

1

2

 y  + 

 z–2  y  = 

 z

16

 z 2

1

+ 16

F 1

 z 2

1

2

+

HG

− I

 z

16

KJ   y =   z 2 1

+ 16

 z 4

 z 4

 y  =  F

= 

1 F

1

2

F

 z 2 +

 z 2

HG

I

1

 z 2

16KJ

+

HG

I

16KJ

+

HG

I

16KJ

 i

−  i

1

There are two poles of II order at  z =   and  z = 

. Consider a contour |  z | = 

4

4

2

L R

UO

L R

UO

F

M |

M |

3

|P

2

4

|

M

P

 d  F

|

 i

M  d |  zk+ |P

−1

|

 k

 z

. 

. 

P

Residue 

 i

at  z =

HG

IKJ = M S  z−  z

= M S

2 V

2 V

P

4

 dz  HG

I4KJ

M |

F

 dz

M |F

|

2

1

|P

 i

 z +

P

P

NM T|

HG

I

 z +

16KJ |P

NM T|HG

I4KJ |

 i

WQ

P  i

WQ

 z =

 z =

4

4

LF  i  2

+ 2

+3

F

O

 k

 k

 i

M  z +

. ( k  3)  z

 z

. 2  z

MHG

I4KJ +

−

+

HG

I4KJPP

= M

F  i

M

4

P

 z +

NM

HG

I4KJ

PP  i

Q z= 4
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LF  i

M

2

3 O

 z +

. ( k  3)  zk+

2 zk+

MHG

I4KJ +

−

PP

= M

F  i

M

3

P

 z +

NM

HG

I4KJ

PP  i

Q z= 4

 i

F  i k+2 F  i k+3

F

3

 k + 3  ik

2 3  ik

. ( k + 3)

2

HG IKJ − HG IKJ

 i

 i

 k

 k

HG

IKJ −

=  2

4

4

32

4

64

4

F

= 

 i  3

3 1

HG I

 i

2KJ

8

F  k + 2 F  i k k + 2 F  k π

 k π

= HG

I  

+  i

4 KJ HG I

4KJ  = 

 k +

4

1

( )

cos

sin

HG

I

2

2 KJ

F

 i

 k + 2 F

 k π

 k π

Residue  at  z = −

HG

IKJ is =    cos − i sin

4

 k+

4

1

( )

HG

I

2

2 KJ

R( k + )2

 k π U

∴  y  = Sum of residues = S

. 2 cos

+ 1

V. 

 k

T( ) k

4

2 W

R sin k; k≥  0 U

Example 81.   Solve  using Z-transform:   y

  – 5y  = S

V

  = 0. 

 k+1

 k

T  0; k<  0 W ; given that y0

Sol.  Take Z-transform, we get

 z  sin 1

 z(  y  –  y ) – 5  y  = 

...(1)

0

 z 2 − 2 z  cos 1 + 1

 z  sin 1

⇒

( z – 5)  y  = 

| ∵   y  = 0

 z 2 − 2 z  cos 1 + 1

0

 z  sin 1

∴



 y  =  ( z )5( z 2

−

− 2 z  cos 1 + )

1

Taking inverse Z-transform, we get

L

 z  sin 1

  y  = Z–1 

 k

NM

O

( z − )

5 ( z −  ei) ( z −  e− i) QP

 z  sin 1

Here

F( z) =  ( z − )5 ( z −  ei) ( z −  e− i)

Consider a contour |  z | = 6

Residue of F( z) at ( z = 5)

 z  sin 1

5 k  sin 1

=  Lt  ( z – 5) .  zk–1 . 

 i

− i  = 

 z → 5

( z − )

5 ( z −  e ) ( z −  e )

26 − 10 cos 1

Residue of F( z) at ( z =  ei)

 z  sin 1

=  Lt  ( z –  ei)  zk–1 . 

 i

− i

 z

 ei

→

( z − )

5 ( z −  e ) ( z −  e )

( ei) k  sin 1

 eik

= 

= 

( ei − )

5 ( ei −  e−  i)

 i ( ei

2

− 5)
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Residue of F( z) at ( z =  e–i)

 z  sin 1

=  Lt  ( z +  e– i) .  zk– 1 . 

 i

 i

 z

 e i

→ −

( z − )

5 ( z −  e )( z –  e)–

( e− i) k  sin 1

 e− ik

= 

=

( e− i − )

5 ( e− i −  ei) 2 i (5 −  e− i)

   f( k) = sum of residues

5 k  sin 1

 eik

 e− ik

= 

+ 

+

26 − 10 cos 1

 i ( ei − )

 i ( −  e− i

2

5

2 5

)

5 k  sin 1

L

= 

+  1

cos  k +  i  sin  k

cos  k i  sin  k

26

+

−

− 10 cos 1

2 i  NM

O

cos 1 +  i  sin 1 − 5 5 − cos 1 +  i  sin 1QP

5 k  sin 1

cos  k  sin 1

(5 − cos )

1 sin  k

= 

−

– 

26 − 10 cos 1 26 − 10 cos 1

26 − 10 cos 1

R

F

U

 k

5 − cos 1

sin 1

   f( k) = SA( )

5 − A cos  k − A

sin  k

T

HG

I

V

. 

sin 1 KJ

W where, A = 26 − 10 cos 1

Example 82.   Solve by Z-transform: y

  =   7y  + 10 x

 k+1

 k

 k

  

 x

  = y  + 4x  ;  y = 3, x  = 2. 

 k+1

 k

 k

 0 

 0

Sol. 

   y

= 7 y  + 10 x

 k+1

 k

 k

Taking Z-transforms, we get

 z(  y  –  y ) = 7  y  + 10

0

 x

⇒

(7 –  z)  y  + 10  x  = – 3 z

...(1)

Applying Z-transform to  x

=  y  +   4 x , we get

 k+ 1

 k

 k

 z(  x  –  x ) = 4

0

 x  +   y

⇒

 y  – ( z – 4)  x  = – 2 z

...(2)

Eliminating   y  from (1) and (2), we get



( z 2 – 11 z + 18)  x  = 2 z 2 – 11 z

2 2

 z − 11 z

 z

 z

 x  = 

=

+

( z − 2)( z − 9)  z − 9  z − 2

∴

  x  = {9 k + 2 k}

(Take inverse Z-transform)

 k

The equation is

   x

=  y  + 4 x

 k+ 1

 k

 k

∴

  y  =  x

– 4 x  = (9) k+1 + (2) k+1 – 4(9 k +  2 k) = 5 . 9 k – 2 . 2 k k

 k+ 1

 k

Hence the solution is

 x  = {9 k + 2 k} and  y  = {5 . 9 k – 2 . 2 k}. 

 k

 k
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REVIEW QUESTIONS

1. 

Find the inverse Z-transform of:

 z 2 +  z

2

 z

( i)

( ii)

 z + 2 z

( iii)

( z

2

− 1)

( z − 1)( z − 2)( z − 3)

( z − )

1 ( z − )

2 ( z − )

3

5 z

 z 2

( iv)

 z

( v)

( vi)

 z 2 +

 z

11 + 30

2

(  z − 1)( z − 3)

( z + )( z 2

2

+ 4)

4 1

 z−

3

4 2

 z − 2 z

( vii)

( viii)

9 z

 F( z) =

( ix)

. 

1

1

− 2

( −  z )

( z − 2)(3 z − )

1 3

3

 z − 5 2

 z + 8 z − 4

( M.T.U. 2014)

2. 

Using convolution theorem find the Z–1 of

2

2

 z 2

( i)

 z

( ii)

8 z

( iii)

. 

( z − 4)( z − 3)

2

(  z − 1) 4

(  z − 1)

 z −  a  2

(

)

3. 

Solve the following difference equations:

( i)  u( k + 2) – 5 u( k + 1) + 6 u( k) = 6 k if  u(0) =  u(1) = 0

( ii)  y

– 3 y

– 4 y = 0 ;  y  = 3,  y  = – 2

 k+2

 k + 1

 k 

  

0

1

( iii)  y

+  y

– 2 y  = 0 ;  y  = 4,  y  = 0

( A.K.T.U. 2017)

 k + 2

 k + 1

 k

0

1

( iv)  y

– 2 y

+  y  = 3 k + 5,  y(0) = 0,  y(1) = 1

( M.T.U. 2014)

 k + 2

 k + 1

 k

by using Z-transform. 

4. 

Solve by Z-transform:

( i)  y

– 4 y

+ 3 y  = 5 k, y  = y  =  1

( A.K.T.U. 2016, 17)

 k+2

 k+1

 k

0

1

( ii)  y

– 5 y

– 6 y  = 2 k

( iii)  y

– 6 y

+ 9 y  = 3 k. 

 k+2

 k+1

 k

 k+2

 k+1

 k

( iv)  y

– 4 y  =  k – 1

( v)  y

– 6 y

+ 8 y  = 2 k + 6 k

 k +2

 k

 k+2

 k+1

 k

( vi)  y

– 2 y

= 0,  k 

 k +1

 k –1

≥ 1,  y(0) = 1

( U.P.T.U. 2015)

5. 

Solve the following difference equations using Z-transform:

( i)  y

– 2 y

+  y  =  k ;  y  =  y  = 0

( ii)  y

– 4 y  = 0 ;  y  = 0,  y  = 2

 k+2

 k+1

 k

0

1

 k+2

 k

0

1

( iii)  y

– 2 y

+  y  = 2 k;  y  = 2,  y  = 1. 

( iv)  y  + 3 y  + 2 y  = 

 k+2

 k+1

 k

0

1

 k

 k–1

 k– 2

δ( k) + 2δ( k – 1)

3

L

O

6. 

Find Z– 1 

9 z

MM

P

3

(  z – 1 2

) ( z – 2)

N

QP

( U.P.T.U. 2015)

7. 

Using  z-transform, solve the following difference equation:

 u

+ 2 u

+  u  =  n  with  u  =  u  = 0

( A.K.T.U. 2017)

 n+2

 n+1

 n

0

1

8. 

Find the inverse  z-transform of F( z) where F( z) is given by

 z

 z −

2

7

11 z

( i)

( ii)

( A.K.T.U. 2018)

( z + 2) ( z + 3)

( z − 1) ( z − 2) ( z + 3)

ANSWERS

3

5

1

1

1. 

( i) 2 k + 1

( ii)

– 4(2) k +   (3) k

( iii)

– (2) k +   (3) k

( iv) (– 5) k – (– 6) k

2

2

2

2

F 1

 k  1

(2 ) k+1

 i

(2 ) k+1

 i

( v) 3 k – HG I

−

+

2

+ 

– 

( vii) 2 k( k – 1) U( k)

2KJ  k

( vi) (

)

8

8 i (1 + ) i

2 i (1 − ) i

36

F 25 2 85 72I 1  k

 k

 k

( viii)  f( k) = 

2

( ) k −

+

+

125

HG

250

KJ FHG I3KJ
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1  k  1

F

1 2

F

2. 

( i)   4 k+1 – 3 k+1

( ii) HG I  – 

2KJ −

HG I2KJ  k

( iii) ( k + 1)  ak U( k)

1

1

1

1

 k

14

3. 

( i)  u( k) = 

(6) k –   (3) k +   (2) k

( ii)  y  = 

4)

(

( 1) k

+

−

12

3

4

 k

5

5

8

4

 k( k

)

1 ( k

)

3

( iii)  y  =  +

(− 2) k

( iv)

 k

 y

 k

3

3

 k =

−

+

+

2

9

3 k

5 k

 k

4. 

( i)  y  = 

( ii)  y  =  c (– 1) k +  c (6) k –  2

 k

−

+

8

4

8

 k

1

2

12

1

 k

1

( iii)  y  = ( c  +  c k) (3) k +    k( k – 1) (3) k–2

( iv)  y  =  c (2) k +  c (– 2) k –  +

 k

1

2

2

 k

1

2

3

9

F

8

1

( v)  y  =  c (4) k + 

 k  (2) k + 2 k – 

( vi)  y  = 

 k

 k

{

}

 k

1

 c 2 −

HG

IKJ

( 2) + (− 2)

4

3

 k

2

 k − 1

5. 

( i)  y  = 

 k

{1 − (− 1) }

( ii)  y  = 2 k–1 + (– 2) k–1

( iii)  y  = 1 – 2 k + 2 k

 k

4

 k

 k

( iv) {(– 1) k  u( k)}

36

 k

F

 k

5 k + 11

1

6. 

2

( ) –

25

HG

I

25 KJ FHG I

3KJ . 

⎧⎛  n − 1⎞

 n ⎫

7. 

 u  = 

n = 0, 1, 2, ... 

 n

⎨⎜

⎟ (1 − (−1) )⎬

⎝ 4 ⎠

; 

⎩

⎭

8. 

( i) {(–2) k – (–3) k}

( ii) {1 – 3(2) k + 2(–3) k}

CHAPTER END PROBLEMS

R k, 0 <  x <  a U

1. 

Find Fourier cosine and sine transform of   f ( x) = S

V where  k is a constant. 

, 

0

 x

T

>  a

W

2. 

Find Fourier cosine transform of  e– ax cos  ax. F

3. 

Find  f( x) if its Fourier cosine transform is  1

 p

 a −

2π HG

I

2 KJ  if  p < 2 a and 0 if  p ≥ 2 a. 

∞

1

R − α, 0 ≤ α ≤ 1U

4. 

Solve the integral equation 

 f ( x) sin  x

α  dx

z

= S

V

0

, 

0

T

α > 1 W

∞

R

5. 

Solve: 

 f ( x) cos  x

α  dx

1 α, 0 α 1

z

=

−

≤ < 

S , 

0

0

T

α > 1

6. 

Define Fourier transform of a function  f( x). 

( U.P.T.U. 2014)

7. 

Define Fourier sine and cosine transform. 

8. 

Write any two properties of Fourier transform with proof. 

9. 

Find the complex Fourier transform of dirac-delta function δ( x –  a). 

10. 

State and prove convolution theorem of Fourier transform. 

( M.T.U. 2014)

11. 

( i) Define Z-transform of a sequence { f( k)}. 

( ii) Find the Z-transform of the sequaence { a }. 

( A.K.T.U. 2017)

 n

12. 

Define inverse Z-transform of a function F( z). 
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13. 

Define unit step sequence and find its Z-transform. 

14. 

( i) Define unit impulse sequence and find its Z-transform. 

⎧1,  k = 0⎫

( ii) Find Z-transfromation of  f( k) =  ⎨

⎬

( A.K.T.U. 2016)

⎩0,  k ≠ 0⎭

15. 

Find the Z-transform of { n C }, 0 

 k

≤  k ≤  n. 

( M.T.U. 2014)

16. 

State and prove change of scale property of Z-transform. 

17. 

Find the Z-transform of { k 3},  k ≥ 0. 

18. 

( i) State and prove convolution theorem for Z-transform. 

( ii) State the convolution theorem for inverse Z-transform. 

( A.K.T.U. 2017)

R 2

U

19. 

Find the Z-transform of   k + 3 k + 2

S|

V|

2

T|

W|,  k ≥ 0. 

20. 

Explain the inverse integral method of finding inverse Z-transform of a function F( z). 

21. 

Define a difference equation. Define its order and degree. How is Z-transform useful in finding the solution of a difference equation? 

4 1

 z−

22. 

Find the inverse Z-transform of 

. 

1

1

− 2

( −  z )

23. 

Solve by Z-transform:  y

+  y

– 2 y  = 0,  y  = 4,  y  = 0. 

 k+2

 k+1

 k

0

1

24. 

Solve:  y

– 5 y

– 6 y  = 2 k by Z-transform. 

 k+2

 k+1

 k

25. 

Find the Z-transform of { ak},  k ≥ 0. 

( A.K.T.U. 2016)

 z

26. 

Find the inverse Z-transform of F( z) = 

,| z|> 1. 

 z

( A.K.T.U. 2017)

− 1

27. 

Prove the modulation theorem:

1

F{ f( x) cos  ax} =  [ f( p +  a) +  f ( p –  a)] if F{ f( x)} =  f( p) ( A.K.T.U. 2017)

2

⎛ 5 ⎞

28. 

Find  z–1 ⎜

⎟ . 

( A.K.T.U. 2018)

⎝ 5 z − 1 ⎠

ANSWERS

 a(  p 2 + 2 a 2)

2

2

sin  ax

1. 

 k  sin  ap k(1 − cos  ap)

, 

2. 

3. 

. 

 p

 p

 p 4 + 4 a 4

2

2

π

 x

2 F  x − sin  x

2 1

( − cos )

 x

4. 

5. 

9.  eiap

2

π HG

I

2

 x

KJ

 x

π

∞

 z

11. 

( ii) F( z) = 

−

∑

 n

 n

 a z

13. 

14. ( i) 1, ( ii) 1

 z

 n = − ∞

− 1

F

 n

 z 3

L

O

+ 4 z 2 +  z

1  z( z + 1)

3 z

2 z

15. 

1

1 +

HG

IKJ

17. 

19. 

M

+

+

P

 z

( z

4

− 1)

2 M( z

N − 1 3) ( z − 1 2)  z − 1QP

8

4

( )

2  k

22. 

2 k( k – 1)  u( k)

23.  y  = 

  =  c  (– 1) k +  c  (6) k – 

 k

+

(– 2) k

24.  y

3

3

 k

1

2

12

 z

 k −

⎧⎪

1 ⎫

⎛ 1 ⎞

⎪

25. 

. 

26. { u( k)}

28. ⎨⎜ ⎟

⎬

 z −  a

⎪⎝

⎩ 5 ⎠

⎪⎭
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C H A P T E R

1

 Formal Logic

PREVIEW

Aristotle was the pioneer of logical reasoning. The Stoics developed an early form of

propositional logic, where the propositions have a truth-value such that at any time  they are either true or false. Logic is the study of valid inference. First order predicate logic is a kind of mathematical logic which was developed  to provide a logical foundation for Mathematics. Logical reasoning provides the theoretical base for many areas of Mathematics and consequently computer science. Logic is concerned with reasoning and with establishing the validity of arguments. It allows conclusions to be deduced from premises according  to logical  rules and the logical argument establishes the truth of the conclusion provided that the premises are true. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

• understand proposition and propositional variables

• understand compound propositions, basic connectors and derived connectors

• understand principle of duality and logical equivalence of propositions

• understand the algebra of propositions

• understand tautology, contradiction and contingency

• understand functionally complete sets of connectives

• understand argument and its types

• understand rules of inference, proof of validity and normal forms

• understand existential and universal quantifiers, negation of quantified propositions

and multiple  quantified propositions. 

1.1 INTRODUCTION

Logic is about deducing whether a statement is true or false on the basis of information we

have been given. Logic plays an important in the development of every area of learning. Math-

ematical logic is often used for logical proofs. Proofs are valid arguments that determine  the M-3.1
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truth values of mathematical statements. There are two parts of logic. The first part is called propositional or sentential logic and the second part is called first-order or predicate logic. Propositional Logic is concerned with statements to which the truth values, “true” and “false”, can be assigned. The purpose is to analyze these statements either individually or in a composite

manner. Propositional logic has very limited expressive power. First order logic or predicate logic generalizes propositional logic by involving quantifiers (“for all”, “there exists”). First-order Logic is an extension of propositional logic, which allows quantification over variables. In propositional logic we can only talk about specifics, whereas in predicate logic we can also talk more generally. 

This chapter discuses basic concepts of propositional logic,  methods of proofs, normal forms and introduction to first order predicate logic. 

1.2

PROPOSITION

A proposition is a statement which is either true or false. It is a declarative sentence. 

For example: The following statements are all propositions :

( i) Jawahar Lal Nehru was the first prime minister of India. 

( ii) It rained yesterday. 

( iii) If  x is an integer, then  x 2 is a + ve integer. 

For example: The following statements are not propositions :

( i) Please report at 11 a.m. sharp

( ii) What is your name ? 

( iii)  x 2 = 13. 

1.2.1

Propositional Variables

The lower case letters starting from P onwards are used to represent propositions  e.g., 

 p : India is in Asia

 q : 2 + 2 = 4. 

Example 1.  Classify the following statements as propositions or non-propositions. 

( i)  The population of India goes upto 100 million in year 2000. 

( ii)  x + y = 30

( iii)  Come here

( iv)  The Intel Pentium-III is a 64-bit computer. 

Sol. ( i) Proposition

( ii) Not a proposition

( iii) Not a proposition

( iv) Proposition. 

1.3

COMBINATION OF PROPOSITIONS

We can combine the propositions to produce new propositions. There are three fundamental

and three derived connectors to combine the propositions. These are explained as follows one by one. 

1.3.1

Fundamental Connectors

There are three fundamental connectors namely Conjunction, Disjunction and negation. 

FORMAL LOGIC

M-3.3

1.3.1.1 Conjunction. It means ANDing of two statements. Assume  p and  q be two propositions. Conjunction of  p and  q to be a proposition which is true when both  p and  q are true, otherwise false. It is denoted by  p ∧  q. (Fig. 1)

Truth tables are used to determine the truth or falsity of the combined proposition. 

 p

 q

 p ∧  q

T

T

T

T

F

F

F

T

F

F

F

F

Fig. 1.  Truth Table of  p ∧  q. 

1.3.1.2 Disjunction. It means ORing of two statements. Assume  p  and  q be two propositions. Disjunction of  p  and  q to be a proposition which is true when either one or both  p and  q are true and is false when both  p and  q are false. It is denoted by  p ∨  q (Fig. 2). 

 p

 q

 p ∨  q

T

T

T

T

F

T

F

T

T

F

F

F

Fig. 2.  Truth Table of  p ∨  q. 

1.3.1.3 Negation. It means opposite of original statement. Assume  p be a proposition. 

Negation of  p  to be a proposition which is true when  p is false, and is false when  p is true. It is denoted by ~  p. (Fig. 3)

 p

~  p

T

F

F

T

Fig. 3.  Truth Table of ~  p. 

Example 2.  Consider the following :

 p : He is rich

 q : He is Generous. 

 Write the proposition which combines the proposition p and q using conjunction (∧ ), disjunction (∨) , and negation ( ~) . 

Sol. Conjunction. He is rich and generous  i.e., p ∧  q. 

Disjunction. He is rich or generous  i.e., p ∨  q. 

Negation. He is not rich  i.e., ~  p

He is not generous  i.e., ~  q. 

It is false that he is rich or generous  i.e., ~ ( p ∨  q). 

He is neither rich nor generous  i.e., ~  p ∧ ~  q. 

It is false that he is not rich  i.e., ~ (~  p). 

Example 3.  Let p be ‘‘It is hot day’’ and q be ‘‘The temperature is 45° C’’. Write in simple sentences the meaning of following :

( i)  ~ p

( ii)  ~ (p ∨  q)

( iii)  ~ (p ∧  q)

( iv)  ~ (~ p)

( v)  p ∨  q

( vi)  p ∧  q

( vii)  ~ p ∧  ~ q

( viii)  ~ (~ p ∨  ~ q). 
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Sol. ( i) It is not a hot day. 

( ii) It is false that it is hot day or temperature is 45°C. 

( iii) It is not true that it is hot day and temperature is 45°C. 

( iv) It is false that it is not a hot day. 

( v) It is hot day or temperature is 45°C. 

( vi) It is hot day and temperature is 45°C. 

( vii) It is neither a hot day nor temperature is 45°C. 

( viii) It is false that it is not a hot day or temperature is not 45°C. 

Example 4.  Consider the following statements:

 p : He is coward. 

 q : He is lazy. 

 r : He is rich. 

 Write the following compound statements in the symbolic form. 

( i)  He is either coward or poor. 

( ii)  He is neither coward nor lazy. 

( iii)  It is false that he is coward but not lazy. 

( iv)  He is coward or lazy but not rich. 

( v)  It is false that he is coward or lazy but not rich. 

( vi)  It is not true that he is not rich. 

( vii)  He is rich or else he is both coward and lazy. 

Sol.  ( i)  p ∨ ~  r

( ii) ~  p ∧ ~  q

( iii) ~  ( p ∧ ~  q)

( iv) ( p ∨  q) ∧ ~  r

( v) ~(( p ∨  q) ∧ ~  r)

( vi) ~ (~  r)

( vii)  r ∨ ( p ∧  q). 

1.3.2

Derived Connectors

The commonly used derived connectors are NAND, NOR and XOR. 

1.3.2.1 NAND. It means negation after ANDing of two statements. Assume  p  and  q be two propositions. Nanding of  p and  q to be a proposition which is false when both  p and  q are true, otherwise true. It is denoted by  p ↑  q. (Fig. 4)

 p

 q

 p ↑  q

T

T

F

T

F

T

F

T

T

F

F

T

Fig. 4.  Truth table of NAND. 

1.3.2.2 NOR or Joint Denial. It means negation after ORing of two statements. Assume

 p  and  q be two propositions. NOring of  p and  q to be a proposition which is true when both  p  and q are false, otherwise false. It is denoted by  p ↓  q. (Fig. 5)

 p

 q

 p ↓  q

T

T

F

T

F

F

F

T

F

F

F

T

Fig. 5.  Truth table of NOR. 
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1.3.2.3 XOR. Assume  p  and  q be two propositions. XORing of  p and  q is true if  p  is true or if  q is true but not both and vice-versa. It is denoted by  p ⊕  q. (Fig. 6) p

 q

 p ⊕  q

T

T

F

T

F

T

F

T

T

F

F

F

Fig. 6.  Truth table of XOR. 

Example 5.  Generate the truth table for following:

( i)  A ⊕  B ⊕  C

( ii)   A ↑  B ↑  C. 

Sol. The truth table for ( i) is shown in Fig. 7. 

( i)

A

B

C



A ⊕ B



A ⊕ B ⊕ C

T

T

T

F

T

T

T

F

F

F

T

F

T

T

F

T

F

F

T

T

F

T

T

T

F

F

T

F

T

T

F

F

T

F

T

F

F

F

F

F

Fig. 7.  Truth table of A ⊕ B ⊕ C. 

( ii) Truth table for ( ii) is shown in Fig. 8. 

A

B

C



A ↑ B



A ↑ B ↑ C

T

T

T

F

T

T

T

F

F

T

T

F

T

T

F

T

F

F

T

T

F

T

T

T

F

F

T

F

T

T

F

F

T

T

F

F

F

F

T

T

Fig. 8.  Truth table of A ↑ B ↑ C. 

Example 6.  Prove that X ⊕  Y ≅   (X ∧  ~ Y) ∨  (~  X ∧  Y). 

Sol. Construct the truth table for both the propositions. (Fig. 9)

X

Y

X ⊕ Y



~ Y



~ X



X ∧ ~ Y

~ X ∧ Y

(X ∧ ~ Y) ∨ (~ X ∧ Y)

T

T

F

F

F

F

F

F

T

F

T

T

F

T

F

T

F

T

T

F

T

F

T

T

F

F

F

T

T

F

F

F

Fig. 9
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As the truth table for both the proposition are same. 

Thus

X ⊕ Y ≅ (X ∧ ~ Y) ∨ (~ X ∧ Y). 

Hence proved. 

Example 7.  Show that ( p ⊕  q) ∨  (p ↓  q) is equivalent to p ↑  q. 

Sol. Construct the truth table for both the propositions. 

 p

 q

( p ⊕  q)

( p ↓  q)

( p ⊕  q) ∨ ( p ↓  q)

 p ↑  q

T

T

F

F

F

F

T

F

T

F

T

T

F

T

T

F

T

T

F

F

F


T

T

T

Fig. 10

Since the values of ( p ⊕  q) ∨ ( p ↓  q) is same as  p ↑  q as shown in Fig. 10. Hence, they are equivalent. 

Example 8.  Show that (  p ↑  q)  ⊕ ( p ↑  q)  is equivalent to (p ∨  q) ∧  (p ↓  q). 

Sol. Construct the truth table for both the propositions

 p

 q

 p ↑  q

( p ↑  q) ⊕ ( p ↑  q)

 p ∨  q

 p ↓  q

( p ∨  q) ∧ ( p ↓  q)

T

T

F

F

T

F

F

T

F

T

F

T

F

F

F

T

T

F

T

F

F

F

F

T

F

F

T

F

Fig. 11

Since, the values of ( p ↑  q) ⊕ ( p ↑  q) and ( p ∨  q) ∧ ( p ↓  q) are same as shown in Fig. 11. Hence, they are equivalent. 

1.3.3

Some Other Connectors

The other commonly used connectors are Conditional and Biconditional. 

1.3.3.1 Conditional. Statements of the form ‘‘If  p then  q’’ are called conditional statements. 

It is denoted as  p →  q and read as ‘‘ p  implies  q’’ or ‘‘ q  is necessary for  p’’ or ‘‘ p is sufficient for  q’’. 

Conditional statement is true if both  p  and  q are true or if  p  is false. It is false if  p  is true and  q is false. The proposition  p is called hypothesis and the proposition  q is called conclusion. The truth table of conditional statement is

 p

 q

 p →  q

T

T

T

T

F

F

F

T

T

F

F

T

Fig. 12.  Truth Table of  p →  q. 
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For example : The followings are conditional statements :

1. If  a =  b and  b =  c, then  a =  c. 

2. If I will get money, then I will purchase computer. 

1.3.3.1.1 Variations in Conditional Statement

Contrapositive. The proposition ~  q → ~  p  is called contrapositive of  p →  q. 

Converse. The proposition  q →  p is called the converse of  p →  q. 

Inverse. The proposition ~  p → ~  q is called the inverse of  p →  q. 

Example 9.  Show that p →  q and its contrapositive ~ q →  ~ p are logically equivalent. 

Sol. Construct truth table for both the propositions. (as in Fig. 13)

 p

 q

  

 ~ p

  

 ~ q

  

 p →  q

  

  

 ~ q →  ~ p

T

T

F

F

T

T

T

F

F

T

F

F

F

T

T

F

T

T

F

F

T

T

T

T

Fig. 13.  Truth table of  p →  q and its contrapositive ~  q → ~  p. 

 As, the values in both cases are same, hence both propositions are equivalent. 

Example 10.  Show that proposition q →  p and ~ p → ~  q  is not equivalent to p →  q. 

Sol. Construct truth table for all the above propositions :

 p

 q

  

 ~ p

  

 ~ q

  

 p →  q

 q →  p

~  p →  ~ q

T

T

F

F

T

T

T

T

F

F

T

F

T

T

F

T

T

F

T

F

F

F

F

T

T

T

T

T

Fig. 14

As the values of  p →  q in table is not same to  q →  p  and ~  p → ~  q as in Fig. 14. So both of them are not equal to  p →  q but they are themselves logically equivalent. 

Example 11.  Prove that the following propositions are equivalent to p →  q. 

( i)  ~ (p ∧  ~ q)

( ii)  ~ p ∨  q

( iii)  ~ q → ~  p. 

Sol. Construct the truth table for all the above propositions :

 p

 q

  

 ~ p

  

 ~ q

  

  

 ~ p ∨  q

  

  

 ~ q →  ~ p

( p ∧ ~  q)

~ ( p ∧  ~ q)

 p →  q

T

T

F

F

T

T

F

T

T

T

F

F

T

F

F

T

F

F

F

T

T

F

T

T

F

T

T

F

F

T

T

T

T

F

T

T

Fig. 15

In the above table (Fig. 15), the values of  p →  q is equivalent to ( i), ( ii) and ( iii), hence they are equivalent to  p →  q. Hence proved. 
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1.3.3.1.2 Biconditional.  Statements of the form ‘‘if and only if ’’ are called biconditional statements. 

It is denoted as  p ↔  q and read as ‘‘ p if and only if  q’’. The proposition  p ↔  q is true if  p  and q have the same truth values and is false if  p  and  q do not have the same truth values. The name biconditional comes from the fact that  p ↔  q is equivalent to ( p →  q) ∧ ( q →  p). 

The truth table of  p ↔  q is shown in Fig. 16. 

 p

 q

 p ↔  q

T

T

T

T

F

F

F

T

F

F

F

T

Fig. 16. Truth Table of  p ↔  q. 

For example : ( i) Two lines are parallel if and only if they have same slope. 

( ii) You will pass the exam if and only if you will work hard. 

Example 12.  Prove that p ↔  q  is equivalent to (p →  q) ∧  (q →  p). 

Sol. Construct the truth tables of both propositions :

 p

 q

 p ↔  q

 p

 q

 p →  q

 q →  p

( p →  q) ∧ ( q →  p)

T

T

T

T

T

T

T

T

T

F

F

T

F

F

T

F

F

T

F

F

T

T

F

F

F

F

T

F

F

T

T

T

 Fig. 17.  Truth table of  p ↔  q

Fig. 18.  Truth table of ( p →  q) ∧ ( q →  p)

Since,  the  truth  tables  are  same,  hence  they  are logically equivalent. (Fig. 17 and

Fig. 18). Hence proved. 

1.4 PRINCIPLE OF DUALITY

Two formulas A  and A  are said to be duals of each other if either one can be obtained from

1

2

the other by replacing ∧ (AND) by ∨ (OR) and ∨ (OR) by ∧ (AND). Also if the formula contains T

(True) or F (False), then we replace T by F and F by T to obtain the dual. 

Note 1. The two connectives ∧ and ∨ are called dual of each other. 

2. Like AND and OR, ↑ (NAND) and  ↓  (NOR) are dual of each other. 

3. If any formula of proposition is valid, then its dual is also a valid formula. 

Example 13.  Determine the dual of each of the following:

( a)  p ∧ ( q ∧  r)

( b)  ~ p ∨  ~ q

( c)  (p ∧ ~  q) ∨  (~ p ∧  q)

( d)  (p ↑  q) ↑  (p ↑  q)

( e)  ((~ p ∨  q) ∧ ( q ∧  ~ s)) ∨  (p ∨  F), here F means false. 

Sol. To obtain the dual of all the above formulas, replace ∧ by ∨ and ∨ by ∧, and also replace T by F and F by T. 

Also replace ↑ by ↓ and vice-versa. 

( a)  p ∧ ( q ∧  r) =  p ∨ ( q ∨  r)

( b) ~  p ∨ ~  q = ~  p ∧ ~  q

( c) ( p ∧ ~  q) ∨ (~  p ∧  q) = ( p ∨ ~  q) ∧ (~  p ∨  q) ( d) ( p ↓  q) ↓ ( p ↓  q)

( e) ((~  p ∨  q) ∧ ( q ∧ ~  s)) ∨ ( p ∨ F) = ((~  p ∧  q) ∨ ( q ∨ ~  s)) ∧ ( p ∧ T)
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1.5 LOGICAL EQUIVALENCE OF PROPOSITIONS

Two propositions are said to be logically equivalent if they have exactly the same truth

values under all circumstances. The table 1 contains the fundamental logical equivalent

expressions:

Table 1. Logically equivalent expressions. 

1. De Morgan’s Laws

6. Complement Properties

~ ( p ∧  q) ≅ ~  p ∨ ~  q

 p ≅ ~ ~  p

 ~ ( p ∨  q) ≅  ~ p ∧ ~  q

7. Transposition

2. Commutative Properties

( p →  q) ≅ (~  q → ~  p)

 p ∨  q ≅  q ∨  p ;    p ∧  q ≅  q ∧  p

8. Material Implication

3. Associative Properties

( p →  q) ≅ (~  p ∨  q)

( p ∨  q) ∨  r ≅  p ∨ ( q ∨  r)

9. Material Equivalence

( p ∧  q) ∧  r ≅  p ∧ ( q ∧  r)

( p ↔  q) ≅ [( p →  q) ∧ ( q →  p)]

4. Distributive Properties

( p ↔  q) ≅ [( p →  q) ∨ (~  p ∧  ~ q)]

 p ∧ ( q ∨  r) ≅ ( p ∧  q) ∨ ( p ∧  r)

10. Exportation

 p ∨ ( q ∧  r) ≅ ( p ∨  q) ∧ ( p ∨  r)

[( p ∧  q) →  r] ≅ [ p → ( q →  r)]

5. Impotent Laws

 p ∨  p ≅  p  and  p ∧  p ≅  p

Example 14.  Consider the following propositions

 ~ p ∨  ~ q and ~ (p ∧  q). 

 Are they equivalent? 

Sol. Construct the truth table for both (as shown in Fig. 19). 

 p

 q

  

 ~ p

  

 ~ q

  

  

 ~ p ∨ ~  q

 p ∧  q

~ ( p ∧  q)

T

T

F

F

F

T

F

T

F

F

T

T

F

T

F

T

T

F

T

F

T

F

F

T

T

T

F

T

Fig. 19.  Truth table of ~  p ∨ ~  q and ~ ( p ∧  q). 

Since, the final values of both the propositions are same, hence the two propositions are

equivalent. 

1.6 ALGEBRA OF PROPOSITIONS

Propositions satisfy various laws which are shown in Table 1. 

1.7

TAUTOLOGIES

A proposition P is a tautology if it is true under all circumstances. It means it contains

only T in the final column of its truth table. 

Example 15.  Prove that the statement (p →  q) ↔  (~ q →  ~ p) is a tautology. 

Sol. Make the truth table of above statement :
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 p

 q

 p →  q

~  q

  

 ~ p

  

  

 ~ q →  ~ p

( p →  q) ↔ (~  q → ~  p)

T

T

T

F

F

T

T

T

F

F

T

F

F

T

F

T

T

F

T

T

T

F

F

T

T

T

T

T

Fig. 20.  Truth table of ( p →  q) ↔ (~  q → ~  p). 

As the final column contains all T’s, so it is a tautology. (Fig. 20)

Example 16.  Prove that p ∨  p ↔  p is a tautology. 

Sol. Construct the truth table of the given statement:

 p

 p ∨  p

 p ∨  p ↔  p

T

T

T

F

F

T

Fig. 21. Truth table of  p ∨  p ↔ p. 

As the last column contains all T’s, so it is a tautology. (Fig. 21)

1.8 CONTRADICTION

A statement that is always false is called a contradiction. 

Example 17.  Show that the statement p ∧  ~ p is a contradiction. 

 p

  

 ~

   p

 p ∧  ~ p

T

F

F

F

T

F

Fig. 22.  Truth table of  p ∧ ~  p. 

Sol. Construct the truth table of the given statement. 

Since, the last column contains all F’s, so it is a contradiction. (Fig. 22)

1.9

CONTINGENCY

A statement that can be either true or false depending on the truth values of its variables, 

is called a contingency. 

 p

 q

 p →  q

 p ∧  q

( p →  q) → ( p ∧  q)

T

T

T

T

T

T

F

F

F

T

F

T

T

F

F

F

F

T

F

F

Fig. 23.  Truth table of ( p →  q) → ( p ∧  q). 

Example 18.  Prove that the statement (p →  q) → ( p ∧  q) is a contingency. 

Sol. Construct the truth table of the given statement. 
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As, the value of final column depends on the truth value of the variables, so it is a contingency. 

(Fig. 23)

Example 19.  From the following formulae, find out tautology, contingency and contradiction. 

( i)  A ≅  A ∧  (A ∨  B)

( ii)  (p ∧  ~ q) ∨  (~ p ∧  q)

( iii)  ~ (p ∨  q) ∨  (~  p ∨  ~ q). 

Sol. ( i) Construct the truth table for A → A ∧ (A ∨ B). 

 A

 B

  

 A ∨  B

  

 A ∧  (A ∨  B)

 A →  A ∧  (A ∨  B)

T

T

T

T

T

T

F

T

T

T

F

T

T

F

T

F

F

F

F

T

Fig. 24.  Truth table of  A →  A ∧ ( A ∨  B). 

Since, the last column of the table contains all T’s, hence it is a tautology. (Fig. 24)

( ii) Construct the truth table for ( p ∧ ~  q) ∨ ( ~ p ∧  q) as shown in Fig. 25. 

 p

 q

  

 ~ p

  

 ~ q

  

 p ∧  ~ q

 ~ p ∧  q

 (p ∧  ~ q) ∨  (~ p ∧  q)

T

T

F

F

F

F

F

T

F

F

T

T

F

T

F

T

T

F

F

T

T

F

F

T

T

F

F

F

Fig. 25.  Truth table of ( p ∧ ~  q) ∨ (~  p ∧  q). 

Since, the value of the final column depends on the value of the different variables, hence it is a contingency. 

( iii) Construct the truth table of the proposition ~ ( p ∨  q) ∨ (~  p ∨ ~  q) as shown in Fig. 26. 

 p

 q

  

 ~ p

  

 ~ q

  

 p ∧  q

 ~ (p ∧  q)

 ~ p ∨  ~ q

 ~ (p ∨  q) ∨  (~ p ∨  ~ q)

T

T

F

F

T

F

F

F

T

F

F

T

F

T

T

T

F

T

T

F

F

T

T

T

F

F

T

T

F

T

T

T

Fig. 26.  Truth table of ~ ( p ∨  q) ∨ (~  p ∨ ~  q). 

Since, the value of final column depends upon the value of different variables, hence it is a

contingency. 

Example 20.  Verify that proposition p ∨  ~ (p ∧  q) is tautology. 

Sol. Construct the truth table for the given proposition. (Fig. 27)

 p

 q

 p ∧  q

 ~(p ∧  q)

 p ∨  ~ (p ∧  q)

T

T

T

F

T

T

F

F

T

T

F

T

F

T

T

F

F

F

T

T

Fig. 27. Truth table of  p ∨ ~ ( p ∧  q). 

Since, the last column contains all T’ s, hence it is a tautology. 
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Example 21.  Determine whether the following is a tautology, contingency or a contradiction :

( i)  p →  (p →  q)

( ii)  p →  (q →  p)

( iii)  p ∧  ~ p. 

Sol. ( i) Construct truth table for  p → ( p →  q) as shown in Fig. 28. 

 p

 q

 p →  q

 p → ( p →  q)

T

T

T

T

T

F

F

F

F

T

T

T

F

F

T

T

Fig. 28.  Truth table of  p → ( p →  q). 

Since, the value of last column depends on the value of different variables, hence it is a

contingency. 

( ii) Construct truth table for  p → ( q →  p) as shown in Fig. 29. 

 p

 q

 q →  p

 p → ( q →  p)

T

T

T

T

T

F

T

T

F

T

F

T

F

F

T

T

Fig. 29.  Truth table of  p → ( q →  p). 

Since, the last column contains all T’s, hence it is a tautology. 

( iii) Construct truth table for  p ∧ ~  p  as shown in Fig. 30. 

Since, the last column contains all F’s, hence it is a contradiction. 

 p

  

 ~ p

  

 p ∧  ~ p

T

F

F

F

T

F

Fig. 30.  Truth table of  p ∧ ~  p. 

1.10

FUNCTIONALLY COMPLETE SETS OF CONNECTIVES

We have three basic and two conditional connectives  i.e., ∧, ∨, ~, ⇒ and ⇔. If we have given any formula containing all these connectives, we can write an equivalent formula with certain

proper subsets of these connectives. 

A set of connectives is called functionally complete if every formula can be expressed in

terms of an equivalent formula containing the connectives from this set. 

Example 22.  Write an equivalent formula for P ∧  (R ⇔  S) ∨  (S ⇔  P) which does not involve biconditional. 

Sol. We know that   P ⇔ Q ≅ (P ⇒ Q) ∧ (Q ⇒ P)

...( i)

So, applying eqn. ( i) to the given formula, we can obtain an equivalent formula which does not involve biconditional. 

= [P ∧ ((R ⇒ S) ∧ (S ⇒ R)) ∨ ((S ⇒ P) ∧ (P ⇒ S))]. 
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Example 23.  Write an equivalent formula for R ∨   (S  ⇔   T), which does not involve biconditional as well as conditional. 

Sol. We know that

(P ⇔ Q) = (P ⇒ Q) ∧ (Q ⇒ P)

...( i)

(P ⇒ Q) = ~ P ∨ Q

...( ii)

So, applying the eqn. ( i) and ( ii) on the given formula, we can obtain an equivalent formula, which does not involve biconditional as well as conditional. 

[R ∨ (S ⇔ T)] = [R ∨ ((S ⇒ T) ∨ (T ⇒ S))]

= [R ∨ ((~ S ∨ T) ∨ (~ T ∨ S))]. 

Example 24.  Show that {~ , ∧}  is functionally complete. 

Sol. Take any formula which involve all the five connectives ∧, ∨, ~, ⇒ and ⇔. We can

obtain an equivalent formula by first replacing biconditional and then replacing conditional and finally replacing ∨. 

We have

P ⇔ Q = (P ⇒ Q) ∧ (Q ⇒ P)

= (~ P ∨ Q) ∧ (~ Q ∨ P) = (~ (~~P ∧ ~ Q)) ∧ (~ (~ ~ Q ∧ ~ P))

Hence, {~, ∧} is functionally complete. 

 Similarly, we can show that (~, ∨ } is functionally complete. 

Example 25.  Show that { ~, → } is functionally complete. 

Sol. We know that

P → Q ≅ ~ P ∨ Q. 

So, we have

P ∨ Q ≅ ~ P → Q. 

Since, { ~, ∨} is functionally complete. Hence from above, {~, →} is also functionally complete. 

 i.e.,  given any formula which involve all the five connectives, we can obtain an equivalent formula using {~, →} by first replacing biconditional (⇔) and then replacing (∧) AND and finally

replacing ∨ (OR). 

Example 26.  Express P ⇔  Q in terms of {  ~, ∧}  only. 

Sol. (P ⇔ Q) = (P ⇒ Q) ∧ (Q ⇒ P)

∵ (P ⇔ Q) = (P ⇒ Q) ∧ (Q ⇒ P)

= (~ P ∨ Q) ∧ (~ Q ∨ P)

∵ P ⇒ Q = ~ P ∨ Q

= (~ (~ ~ P ∧ ~ Q)) ∧ (~ (~ ~ Q ∧ ~ P)) ∵ P ∨ Q = ~ (~ P ∧ ~ Q). 

Example 27.  Express (P ∧ ~  Q) ∨  (~ P ∧  ~ Q) in terms of (~, ∨ ) only. 

Sol. (P ∧ ~ Q) ∨ (~ P ∧ ~ Q) = (~ (~ P ∨ ~ ~ Q)) ∨ (~ (~ ~ P ∨ ~ ~ Q)), ∵ P ∧ Q = ~ (~ P ∨ ~ Q). 

PROBLEM SET-I

1. Let  p be “Aditya speaks English” and let  q be “Arshita speaks Hindi”. Given a simple verbal sentence which describes each of the following:

( i)  p ∨  q

( ii)  p ∧  q

( iii)  p ∧ ~ q

( iv) ~ p ∨   ~ q

( v) ~~ q

( vi) ~(~ p ∧  ~ q)
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2. Let  p be “ It is cold ” and  q be “ It is raining”. Write each of the following in symbolic form: ( i) It is not cold

( ii) It is cold or raining

( iii) It is cold and raining

( iv) It is cold or it is not raining

( v) It is neither cold nor raining

( vi) It is not true that it is not raining

3. Consider the following:

 p: It is Hot day

 q: The temperature is 45°C. 

Write in simple sentences the meaning of the following:

( i) ~ p

( ii)  p ∨  q

( iii)  p ∧  p

( iv) ~( p ∨  q)

( v) ~( p ∧  q)

( vi) ~ p ∧ ~ q

( vii) ~( p ∨ ~ q)

4. Consider the following:

 p: The weather is pleasent. 

 q : It is raining. 

 r : The cold wind is blowing. 

Write in simple sentences the meaning of the following:

( i)  p ⇒  r

( ii) ~ q ⇒ ( p ∧  r)

( iii) ~ p ⇒ ( p ∨  r)

( iv) ( p ∨  q)  ⇔  r

( v) ( p ∧  q)  ⇒  r

( vi) ~ p ⇒  ~r

5. If  p is true and  q is false, find the truth values of the following: ( i)  p ∧  p

( ii)  p ⇒  q

( iii) ~ p ( p ⇒ ~ q)

( iv)

( p ∧  q)  ⇒ ( p ∨  q )

( v) ~( p ∧  q) ∨  ~( q ⇔  p)

6. Construct the truth tables for the following:

( i)  ~p ∨  q ⇒  ~q

( ii)  p ∧ ~ q ⇒  r

( iii)  p ∧ ~ r ⇔  q ∨   r

( iv) ~( p ∧  q) ∨ ~( q ⇔  p)

7. Write the converse, inverse and contrapositive of the following:

( i) If today is holiday, then it is Sunday. 

( ii) If  n is a prime number, then  n is 2 or  n is odd. 

( iii) If  p is a room, then  p is a square. 

8. Which of the following propositions represent talltologies:

( i)  p ⇒ ( q ⇒  p)

( ii) ( p ∧  q)  ⇒  p

( iii) ( q ⇒  p)  ⇒  p

( iv) ( p ∧  q) ⇒ ( p ⇒  q)

( v) ( p ⇒ ( q ⇒  r)   ⇒ (( p ⇒  q) ⇒ ( p ⇒  r) ( vi) ( p ∧ ( p ⇒  q)) ⇒  q

( vii) (~ p ⇒ ~ q)   ⇒ ( q ⇒  p)

9. Determine the dual of each of the following:

( i) ( p ∧ ~ q ∧ ~ r) ∨ ( p ∧  q ∧  r) ∨ (~ p ∧  q ∧  r) ( ii)  p ∨  q ∨  ~ q ∨  ~ r

( iii) ( p ∧ ~ q ∧ ~ r) ∨ ( q ∧  r)

( iv)  p ∨ ( p ∨  ~ q) ∧ T

( v) ( q ∧   p) ∨  p ≅  p

10. Show that the following pairs of propositions are logically equivalent:

( i)  p ∧  q and  q ∧  p

( ii)  p ∨ ( p ∧  q) and  q

( iii) ~( p ∧  q) and ~ p ∨ ~ q)

( iv) ( p ∨  q)  ⇒  r  and ( p ⇒  r) ∧ ( q ⇒  r) ( v)  p ⇔  q and ~( p ∨  q) ∨ ( p ∧  q)

( vi)  p ∧ (~ q ∨  q) and  p

11. Write the converse, inverse, contrapositive and negation of the given statement:

“If Manish finishes his work, he will go to see IPL match.” 

12. Which of the following is a tautology? 

( i) ( a ⇔  b) ⇒ ( a ∧  b)

( ii) ( a ⇔  b) ⇔ ( a ∧  b) ∨ (~ a ∧ ~ b)

( iii) ( a ∨  b) ∧ ( a ∨ ~ b)

( iv) ( a ⇒ T) ∧ (F ⇒  b)
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( v) (F ∨  a) ⇒ ( b ∧ F)

( vi) ((A → B) ∧ (B → ~A)) → A

( vii) (~B → ~A) → (~B → A) → B)

13. Show that the following pairs of proposition are logically equivalent, without using truth table. 

( i) ( p ∧  q) →  r  and  p → ( q →  r)

( ii) ( q ∨  r) →  p  and ( q →  p) ∧ ( r →  p)  ANSWERS AND HINTS (PROBLEM SET I)

1. 

( i) Aditya speaks English or Arshita speaks Hindi. 

( ii) Aditya speaks English and Arshita speaks Hindi. 

( iii) Aditya speaks English but Arshita does not speaks Hindi. 

( iv) Aditya does not speaks English or Arshita does not speaks Hindi. 

( v) It is not true that Arshita does not speak  Hindi. 

( vi) It is not true that Aditya does not speak English or Arshita does not speak Hindi. 

2. 

( i) ~ p

( ii)  p ∨  q

( iii)  p ∧  q

( iv)  p ∨ ~ q

( v) ~ p ∧ ~ q

( vi) ~~ q

3.  ( i) It is not a hot day. 

( ii) It is a Hot day or the temperature is 45°C. 

( iii) It is a Hot day and the temperature is 45°C. 

( iv) It is false that it is a Hot day or the temperature is 45°C. 

( v) It is not true that it is Hot day and the temperature is 45°C. 

( vi) It is neither a Hot day nor the temperature is 45°C. 

( vii) It is false that it not a cold day or temperature is not 45°C. 

4.  ( i) If the weather is pleasent then the cold wind is blowing. 

( ii) If it is not raining, then the weather is pleasent and the cold wind is blowing. 

( iii) If the weather is not pleasent then It is raining or the cold wind is blowing. 

( iv) The weather is pleasent or it is raining  if and only if the cold wind is blowing. 

( v) If weather is pleasent and it is raining then the cold wind is blowing. 

( vi) If the weather is not pleasent then the cold wind is not blowing. 

5. 

( i) F

( ii) F

( iii) F

( iv) T

( v) T

6. 

( i)

 p

 q

~ p

~ q

~ p ∨  q

~ p ∨  q ⇒ ~ q

F

F

T

T

T

T

F

T

T

F

T

F

T

F

F

T

F

T

T

T

F

F

T

F

( ii)

 p

 q

 r

~ q

 p ∧ ~ q

 p ∧ ~ q ⇒  r

T

T

T

F

F

T

T

T

F

F

F

T

T

F

T

T

T

T

T

F

F

T

T

F

F

T

T

F

F

T

F

T

F

F

F

T

F

F

T

T

F

T

F

F

F

T

F

T
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( iii)

 p

 q

 r

 p ∧ ~ r

 q ∨  r

 p ∧ ~ r ⇔  q ∨  r

T

T

T

F

T

F

T

T

F

T

T

T

T

F

T

F

T

F

T

F

F

T

F

F

F

T

T

F

T

F

F

T

F

F

T

F

F

F

T

F

T

F

F

F

F

F

F

T

( iv)

 p

 q

~( p ∧  q)

~( p ∧  q) ∨ ~ ( q ⇔  p)

T

T

F

F

T

F

T

T

F

T

T

T

F

F

T

T

7.  ( i) Converse: If it is Sunday then today is holiday:

Inverse: If today is not holiday then it is not Sunday

Contrapositive: If it is not sunday then today is not holiday

( ii) If  n is 2 or  n is odd then  n is a prime number. 

Inverse: If  n  is not 2 or  n is not odd then  n is not a prime number. 

Contrapositive: If  n is not a prime number then  n is not 2 or  n is not odd. 

( iii) If  p is a square then  p is a room. 

Inverse: If  p is not a room then  p is not a square. 

Contrapositive: If  p is not a square then  p is not a room. 

8.  ( i) It is a tautology. 

( ii) It is a tautology

( iii) It is not a tautology

( iv) It is a tautology. 

( v) It is a tautology

( vi) It is a tautology

( vii) It is a tautology. 

9.  ( i) ( p ∨ ~ q ∨ ~ r) ∧ ( p ∨  q ∨  r) ∧ (~ p ∨  q ∨  r) ( ii)  p ∧  q ∧ ~ q ∧ ~ r

( iii) ( p ∨ ~ q ∨ ~ r) ∧ ( q ∨  r)

( iv)

 q ∧ ( p ∧ ~ q) ∨ T

( v) ( p ∨  q) ∧  p ≅  p

11. Converse: If Manish goes to see IPL match, he will finish his work. 

Inverse: If Manish does no finish his work, he will not go to see the IPL match. 

Contrapositive: If Manish does to go to see IPL match, he does not finish his work. 

Negation: Manish finishes his work and he does not go to see the IPL match. 

12.  ( i) It is not a tautology

( ii) It is a tautology

( iii) It is not a tautology

( iv) It is a tautology. 

( v) It is not a tautology

( vi) It is not a tautology

( vii) It is a tautology. 

13. 

( i) ( p ∧  q) →  r

≅ ~( p ∧  q ) →  r

Def. of Conditional

≅ ( ~p ∨  ~q ) ∨  r

De-Morgan’s law

≅  ~p ∨ ( ~p ∨  r)

Associative law

≅  ~p ∨ ( q →  r)

Def. of Conditional

≅  p → ( q →  r)

Def. of Conditional
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( ii) ( q ∨  r) →  p

≅ ~( q ∨  r ) ∨  p

Def. of Conditional

≅ ( ~q ∧  ~r ) ∨  p

De-Morgan’s law

≅ ( ~q ∨ p) ∧  ( ~r ∨  p)

Distributive law

≅ ( q →  p) ∧  ( ~r ∨  p)

Def. of Conditional

≅ ( q →  p)  ∧ ( r →  p)

Def. of Conditional

1.11

ARGUMENT

An argument is an assertion ; that a group of propositions called premises, yields another

proposition, called the conclusion. Let P , P , P ,..., P  is the group of propositions that yields the 1

2

3

 n

conclusion Q. Then, it is denoted as P , P , P ,..., P  |– Q. 

1

2

 n

 n

Conclusion. The conclusion of an argument is the proposition that is asserted on the

basis of other proposition of the argument. 

Premises. The propositions, which are assumed for accepting the conclusion, are called

the premises of that argument. 

1.11.1 Valid Argument

An argument is called valid argument if the conclusion is true whenever all the premises

are true. 

The argument is also valid if and only if the ANDing of the group of propositions implies

conclusion is a tautology  i.e.,  P ( p ,  p ,  p ,...,  p ) 

,  p ,  p ,...,  p ) is

1

2

3

 n → Q is a tautology. Where P ( p 1

2

3

 n

the group of propositions and Q is the conclusion. 

Some common valid argument forms are given in Table 2. 

1.11.2 Falacy Argument

An argument is called falacy or an invalid argument if it is not a valid argument. 

1.12 RULES OF INFERENCE

A rule of inference is just an instruction for obtaining additional true statements from a list of true statements. There are lots of rules of inference to work with. We shall use rules of inference to assemble lists of true statements, called proofs. A proof is a way of showing how a conclusion follows from a collection of premises. Rules of inference are the tools for constructing new statements from old ones. In other words, a number of valid argument schemes are useful for drawing conclusions from the premises. These are called  inference rules. Inference rules preserve truth—if the premises are true, the conclusions must also be true. These rules of inference can be written in the following standard form. 

Premise 1

Premise 2

... 

Premise #n

Conclusion

The Table 2 shows all the rules of inference. We can also use any of the standard tautologies

as shown in Table 1 as rules of inference. 
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For example. The first inference rule is known as  modus ponens  is written as: p →  q

 p

∴  q

The Modus Ponens is the first rule of inference. Modus Ponens allows us to say that, if

 p →  q and  q both appear as statements in a proof, then we are justified in adding  q as another statement in the proof. 

Table 2. Rules of Inference

1. Modus ponens

2. Modus tollens

  

 p →  q

  

 p →  q

 p

  

 ~ q

∴  q

∴  ~ p

3. Hypothetical syllogism

4. Disjunctive syllogism

 p →  q

 p ∨  q

 q →  r

~  p

∴  p →  r

∴  q

5. Constructive dilemma

6. Absorption

( p →  q) ∧ ( r →  s)

 p →  q

 p ∨  r

∴   p → ( p ∧  q)

∴  q ∨  s

7. Simplification

8. Conjunction

 p ∧  q

 p

∴  p

 q

∴   p ∧  q

9. Addition

 p

∴  p ∨  q. 

Example 28.  Show that the addition rule is valid :

 p |– p ∨  q or p ∴  p ∨  q. 

Sol. We can prove addition rule from the truth table as shown in (Fig. 31)

 p

 q

 p ∨  q

T

T

T

T

F

T

F

T

T

F

F

F

Fig. 31.  Truth table for addition. 

In the truth table  p  is true in line 1 and 2 and  p ∨  q is also true in line 1 and 2. Hence, argument is valid. 
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Example 29.  Show that the rule modus ponens is valid. 

 p →  q

 p

∴

 q

Sol. The truth table of the rule modus ponens is as shown in : (Fig. 32)

 p

 q

 p →  q

T

T

T

T

F

F

F

T

T

F

F

T

Fig. 32.  Truth table for modus ponens. 

In the truth table  p  is true in line 1 and 2 and  p →  q and  p  both are true in line 1 and  q is also true in line 1. Hence, argument is valid. 

Example 30.  Show that the rule of hypothetical syllogism is valid

 p →  q

 q →  r

∴

 p →  r. 

Sol. The truth table of the given rule is as shown in Fig. 33. In the truth table. 

 p

 q

 r

 p →  q

 q →  r

 p →  r

T

T

T

T

T

T

T

T

F

T

F

F

T

F

F

F

T

F

T

F

T

F

T

T

F

T

T

T

T

T

F

T

F

T

F

T

F

F

T

T

T

T

F

F

F

T

T

T

Fig. 33.  Truth table for hypothetical syllogism. 

 p →  q is true in lines 1, 2, 5, 6, 7, 8. 

 q →  r is true in lines 1, 3, 4, 5, 7, 8. 

Both  p →  q and  q →  r is true in lines 1, 5, 7, 8 and  p →  r is also true in lines 1, 5, 7, 8. 

Hence, argument is valid. 

Example 31.  Show that the rule of Modus Tollens is valid

 p →  q

~  q

∴

~  p. 
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Sol. The truth table of modus tollens is shown in (Fig. 34)

 p

 q

  

 ~ p

  

 ~ q

  

 p →  q

T

T

F

F

T

T

F

F

T

F

F

T

T

F

T

F

F

T

T

T

Fig. 34. Truth table for modus tollens. 

In the truth table,  p →  q is true in line 1, 3 and 4 and ~  q is true in line 2 and 4. Both  p →  q and

~  q are true in line 4 and ~  p  is also true in line 4. Hence, the argument is valid. 

Example 32.  Show that the rule of disjunctive syllogism is valid

 p ∨  q

~  p

∴

  q. 

Sol. The truth table of the rule disjunctive syllogism is as shown in (Fig. 35). 

 p

 q

  

 ~ p

  

 p ∨  q

T

T

F

T

T

F

F

T

F

T

T

T

F

F

T

F

Fig. 35.  Truth table for disjunctive syllogism. 

In the truth table,  p ∨  q is true in line 1, 2 and 3 and ~  p  is true in line 3. Both  p ∨  q and

~  p  is true in line 3. As  q is also true in line 3. Hence, argument is valid. 

Example 33.  Show that the rule of simplification is valid

 p  ∧  q

∴

 p. 

Sol. The truth table of the rule of simplification is as shown in (Fig. 36). 

 p

 q

 p ∧  q

T

T

T

T

F

F

F

T

F

F

F

F

Fig. 36.  Truth table for simplification. 

In the truth table,  p ∧  q is true in line 1 and  p  is also true in line 1. Hence, the argument is valid. 
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Example 34.  Show that the rule of conjunction is valid. 

 p

 q

∴

 p ∧  q. 

Sol. The argument is valid if  p ∧  q →  p ∧  q is a tautology. The truth table for the rule of conjunction is shown in (Fig. 37). 

 p

 q

 p ∧  q

 p ∧  q →  p ∧  q

T

T

T

T

T

F

F

T

F

T

F

T

F

F

F

T

Fig. 37. Truth table for conjunction. 

As the proposition is a tautology. Hence, the argument is valid. 

Example 35.  Show that the rule of absorption is valid

 p →  q

∴

 p → ( p ∧  q). 

Sol. We have to show that ( p →  q) → [ p → ( p ∧  q)] is tautology. The truth table of the rule of absorption is as shown in (Fig. 38). 

 p

 q

 p ∧  q

 p →  q

 p → ( p ∧  q)

( p →  q) → [ p → ( p ∧  q)]

T

T

T

T

T

T

T

F

F

F

F

T

F

T

F

T

T

T

F

F

F

T

T

T

Fig. 38. Truth table for absorption. 

Since, the argument is a tautology. Hence, it is a valid argument. 

1.13 PROOF OF VALIDITY

We can test the validity of any argument by constructing the truth tables. But as the

number of variable statements increases, the truth tables grow unwieldly. So, a more efficient method to test the validity of the argument is to deduce its conclusion from its premises by a sequence of elementary arguments each of which is known to be valid or rules of inference. 

Example 36.  Prove that the argument p → ∼  q, r →  q, r|– ~  p is valid without using truth table. 

Sol. ( i)  p → ~  q

(Given)

( ii)  r →  q

(Given)

( iii) ~  q → ~  r

Contrapositive of ( ii)

( iv)  p → ~  r

Hypothetical syllogism using ( i) and ( iii)

( v)  r → ~  p

Contrapositive of ( iv)

( vi)  r is true

(Given)

( vii) ~  p  is true

Modus ponens using ( v) and ( vi). 
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Example 37.  Prove that the argument p →  q,  q →  r,  r →  s, ~  s, p ∨  t |–  t  is valid without using truth tables. 

Sol. ( i)  p →  q

(Given)

( ii)  q →  r

(Given)

( iii)  r →  s

(Given)

( iv) ~  s

(Given)

( v)  p ∨  t

(Given)

( vi)  p →  r

Hypothetical syllogism using ( i) and ( ii)

( vii)  p →  s

Hypothetical syllogism using ( vi) and ( iii)

( viii) ~  p

Modus tollens using ( vii) and ( iv)

( ix)  t

Disjunctive syllogism using ( v) and ( viii). 

Example 38.  Prove that the argument p, q |– (p ∨  r) ∧  q is valid without using truth tables. 

Sol. ( i)  p

(Given)

( ii)  p ∨  r

Rule of addition using ( i)

( iii)  q

(Given)

( iv) ( p ∨  r) ∧  q

Rule of conjunction using ( ii) and ( iii). 

Example 39.  Prove that the argument p →  q, p ∧  r |– q is valid without using truth table. 

Sol. ( i)  p →  q

(Given)

( ii)  p ∧  r

(Given)

( iii)  p

Rule of simplification using ( i)

( iv)  q

Modus ponens using ( i) and ( iii). 

Example 40.  Prove that the argument (p →  q) ∧  (r →  s), (p ∨  r) ∧  (q ∨  r) |– q ∨  s Sol. ( i) ( p →  q) ∧ ( r →  s)

(Given)

( ii) ( p ∨  r) ∧ ( q ∨  r)

(Given)

( iii) ( p ∨  r)

Simplification using ( iii)

( iv)  q ∨  s

Constructive dilemma using ( i) and ( iii). 

Example 41.  Prove that the argument (p ∧  q) ∨  (r →  s), t →  r, ~ (p ∧  q) |– t →  s is valid without using truth tables. 

Sol. ( i) ( p ∧  q) ∨ ( r →  s)

(Given)

( ii)  t →  r

(Given)

( iii) ~  ( p ∧  q)

(Given)

( iv)  r →  s

Disjunctive syllogism using ( i) and ( iii)

( v)  t →  s

Hypothetical syllogism using ( ii) and ( iii). 

Example 42.  Prove that the argument (p →  q) ∧  (r →  s), q →  s, (q →  s) →  (p ∨  r) |– q ∨  s is valid using deduction method. 

Sol.  ( i) ( p →  q) ∧ ( r →  s)

(Given)

( ii)  q →  s

(Given)

( iii) ( q →  s) → ( p ∨  r)

(Given)

( iv)  p ∨  r

Modus ponens using ( iii) and ( ii)

( v)  q ∨  s

Constructive dilemma using ( i) and ( iv). 
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Example 43.  Prove that the argument p →  (q ∨  r), (s ∧  t) →  q, (q ∨  r) →  (s ∧  t) |– p →  q is valid without using truth table. 

Sol. ( i)  p → ( q ∨  r)

(Given)

( ii) ( s ∧  t) →  q

(Given)

( iii) ( q ∨  r) → ( s ∧  t)

(Given)

( iv)  p → ( s ∧  t)

Hypothetical syllogism using ( i) and ( iii)

( v)  p →  q

Hypothetical syllogism using ( ii) and ( iv). 

Example 44.  Prove that the argument p ∨  (q →  p), ~ p ∧  r  |– ~ q is valid without using truth tables. 

Sol. ( i)  p ∨ ( q →  p)

(Given)

( ii) ~  p ∧  r

(Given)

( iii) ~  p

Rule of simplification using ( ii)

( iv)  q →  p

Disjunctive syllogism using ( i) and ( iii)

( v) ~  q

Modus tollens using ( iv) and ( iii). 

Example 45.  Test the validity of following argument. If I will select in IAS examination, then I will not be able to go to London. Since, I am going to London, I will not select in IAS

 examination. 

Sol. Let  p  be ‘‘I will select in IAS examination’’ and  q be ‘‘I am going to London’’. Then the above argument can be written in symbolic form as follows :

 p → ~  q

 q

∴

 ~ p

Construct the truth table for above argument as shown in (Fig. 39)

 p

 q

  

 ~ p

    ~ q

 p →  ~ q

T

T

F

F

F

T

F

F

T

T

F

T

T

F

T

F

F

T

T

T

Fig. 39

In the truth table,  p → ~  q is true in line 2, 3 and 4.  q is true in line 1 and 4 and ~  p  is true in line 3 and 4. Hence, all three are true in line 4. So it is a valid statement. 

Example 46.  Consider the following argument and determine whether it is valid. 

 Either I will get good marks or I will not graduate. If I did not graduate I will go to

 Canada. I get good marks. Thus, I would not go to Canada. 

Sol. Let  p  be ‘‘I will get good marks’’ and  q be ‘‘I will graduate’’ and  r be ‘‘I will go to Canada’’. Thus, the above argument can be written in symbolic form as follows:

 p ∨  ~ q

 ~ q →  r

 p

∴

~  r
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Construct the truth table of above proposition as shown in (Fig. 40)

 p

 q

 r

  

 ~ q

  

 ~ r

  

 p ∨  ~ q

 ~ q →  r

T

T

T

F

F

T

T

T

T

F

F

T

T

T

T

F

F

T

T

T

F

T

F

T

T

F

T

T

F

T

T

F

F

F

T

F

T

F

F

T

F

T

F

F

T

T

F

T

T

F

F

F

T

T

T

F

Fig. 40. 

In the truth table,  p ∨ ~  q is true in line 1, 2, 3, 4, 7, 8 and ~  q →  r is true in line 1, 2, 4, 5, 6, 7 and  p  is true in line 1, 2, 3 and 4. ~  r is true in 2, 3, 6 and 8. All the above are true in line 2. 

Hence, the argument is valid. 

Example 47.   Determine the validity of the following argument without using truth tables. 

 Either I will pass the examination, or, I will not graduate. If I do not graduate, I will go to Canada. I failed : Thus, I will go to Canada. 

Sol. Let  p  be ‘‘I will pass the examination’’ and  q be ‘‘I will graduate’’ and  t be ‘‘I will go to Canada’’. Thus the above argument, in symbolic form can be written as

 p ∨ ~  q

~  q →  t

~  p

∴

 t

Thus to prove the validity of the argument, use the standard results as follows :

( i)  p ∨ ~  q

(Given)

( ii)  ~ q →  t

(Given)

( iii) ~  p

(Given)

( iv) ~  q

Disjunctive syllogism using ( i) and ( iii)

( v)  t

Modus ponens using ( ii) and ( iv)

Hence proved. 

Example 48.  Determine the validity of the following argument using deduction method. 

 If I study, then I will pass examination. If I do not go to picnic, then I will study. But I failed examination. Therefore, I went to picnic. 

Sol. Let  p  be ‘‘I study’’ and  q be ‘‘I will pass examination’’ and  t be ‘‘I go to picnic’’. Then the above argument is written in symbolic form as follows :

 p →  q

~  t →  p

 ~ p

∴

 t
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Thus to prove the validity of the argument use the rules of inference. 

( i)  p →  q

(Given)

( ii) ~  t →  p

(Given)

( iii) ~  p

(Given)

( iv) ~  ~   t

Modus tollens using ( ii) and ( iii)

( v)  t

Complement property using ( iv)

Hence proved. 

Example 49.  Prove the validity of the following argument using truth table as well as deduction method. 

 ‘‘If the market is free then there is no inflation. If there is no inflation then there are price controls. Since there are price controls, therefore, the market is free’’. 

Sol. Let  p  be ‘‘The market is free’’ and  q be ‘‘There is inflation’’ and  r be ‘‘There are price controls’’. Then the above argument can be written in symbolic form as follows:

 p → ~  q

~  q →  r

 r

∴

 p

Ist Method. By using truth table

Construct the truth table of above argument as shown in (Fig. 41)

 p

 q

 r

  

 ~ q

  

 p → ~  q

  

 ~ q →  r

T

T

T

F

F

T

T

T

F

F

F

T

T

F

F

T

T

F

T

F

T

T

T

T

F

T

T

F

T

T

F

T

F

F

T

T

F

F

T

T

T

T

F

F

F

T

T

F

Fig. 41

In the truth table,  p → ~  q is true in line 3, 4, 5, 6, 7 and 8 ~  q →  r is true in line 1, 2, 4, 5, 6, 7  r is true in line 1, 4, 5, 7. All the above three are true in line 4 and 5. Also  p  is true in line 4. 

Hence the argument is valid. 

IInd Method. Using deduction method

( i)  p → ~  q

(Given)

( ii)  ~ q →  r

(Given)

( iii)  p →  r

Hypothetical syllogism using ( i) and ( ii)

( iv) ~  p → ~  r

Transposition using ( iii)

( v)  r

(Given)

( vi) ~  ~   p

Modus tollens using ( iv) and ( v)

( vii)  p

Complement of ( vi). 

Hence proved. 
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1.14 NORMAL FORMS

One method to determine whether two logical expressions P  and P  are equivalent is by

1

2

comparing their truth tables. This process is very bulky if the number of variables increases. A more better method is to transform the logical expressions to some standard forms and a simple comparison of these standard forms shows whether P  

. This type of standard forms are called

1 ≅ P2

normal forms or canonical forms. 

There are two types of Normal Forms. These are:

( a) Disjunctive Normal Form

( b) Conjunctive Normal Form

1.14.1 Disjunctive Normal Form

A disjunctive normal form (DNF) is a normalization of a logical formula. It is a disjunction

of conjunctive clauses or we can say it is an ORing of ANDs. It is also known as sum of products. 

Definition: A logical formula is said to be in disjunction normal form (DNF) if and only if it is a disjunction (ORing) of one or more conjunctions (ANDs) of one or more literals. 

Note : The and ; or and not are the only propositional operators in DNF. The not operator can only be used as a part of literal, this means that it can only precede a propositional variable. 

All logical formulas can be converted into DNF. But in same cases, the conversion to DNF

leads to an exponential increase of clauses in the formula e.g. the logical formulas of the following form have 2 n terms in DNF:

( x  

) 



) 



) 



)

1 ∨  y 1 ∧ ( x 2 ∨  y 2 ∧ ( x 3 ∨  y 3 ∧ .......... ∧ ( xn ∨  yn Example 50.  The following formulas are in disjunctive normal form (DNF)

( i)  p ∧  q

( ii)  p

( iii) ( p ∧  q) ∨  r

( iv)  p ∨  q

( v) ~ p

( vi)  p ∨ (~ q ∧  r)

( vii)  p ∨  q ∨ ~ q  ∨ ~ r

Example 51.  The following formulas are not in Disjunctive Normal Form (DNF). 

( i) ~(A ∨ B ∨ C )

( ii)  p ∧ ( q ∨  r)

( iii) ( p ∧  q) ∧ ~ q

Example 52.  Which of the following are in Disjunctive Normal Form (DNF). 

( i) ( p ∧  q ∧  r) ∨ ( p ∧  r) ∨ ( g ∧  r) ( ii) ( p ∧ ~ q) ∨ ( p ∨  r)

( iii) ( p ∧  q ∧  r) ∨ ~ r

( iv) (~ p ∧  q) ∨ ( p ∧  q) ∧  q

Sol. 

( i) It is in DNF

( ii) It is not in DNF

( iii) It is in DNF

( iv) It is not in DNF

Example 53.  Which of the following  are not in Disjunctive Normal From (DNF). 

( i) ( p ∧ ~ q) ∨ ( p ∧  r)

( ii) ( p ∧  q) ∨ ~ q

( iii) ( p  



) 



) 



)

( iv) ( p 

1 ∨  q 1 ∨  r 1 ∨ ( p 1 ∧  r 1 ∨ ( q 1 ∧  r 1

∨  q ∨  r) ∧ ~ r

Sol. The formula ( iii) and ( iv) are not in DNF. 
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1.14.1.1 Steps to Obtain DNF of a Logical Expression

The following steps are applied to obtain a DNF using algebraic manipulations:

1. Remove all conditional (⇒) and Bi-conditional (⇔) using an equivalents expression containing the connectives and (∧), or (∨) and not (~) only. Use  p ⇒  q ≅ ~ p ∨  q and p ⇔  q ≅ ( p ∧  q) ∨ (~ p ∧ ~ q). 

2. Eliminate not (~) before sums and products by using  the double negation  and/or using Demorgan’s law. 

Repeat the  steps 1–2 until the only  connectives are and (∧) and or (∨) and all the

negations are attached to sentential constants rather than to formulas. 

3. Apply the distributive law until the logical expression is a ORing of conjunctions (ANDs) of clauses. 

Example 54.  Obtain the DNF of the following logical expressions:

( i)  p ∧ ( q ⇒  q)

( ii) ~( p → ( q ∧  r))

Sol. ( i)   The given logical expression is

 p ∧ ( p ⇒  q)

≅  p ∧ (~ p ∨  q)

(Elimination of conditional)

≅ ( p ∧ ~ p) ∨ ( p ∧  q)

The required logical expression in DNF. 

( ii)   The given logical expression is

 ~(p → ( q ∧  r)

≅  ~(~ p ∨ ( q ∧  r)

(Elimination of conditional)

≅  ~(~ p) ∧ ~ ( q ∧  r)

(De Morgan’s law)

≅  p ∧ (~ q  ∨ ~ r)

(Idempotent laws and Demorgan’s law)

≅ ( p ∧ ~ q)  ∨ ( p ∧ ~ r)

(Distributive law)

The required logical expression in DNF. 

Example 55.  Obtain the DNF of the following logical expressions:

( i)  p ∨ (~ p ⇒ ( q ∨  ( q ⇒  ~ r)))

( ii) ( p ⇒  q) ∧ (~ p ∧  q)

Sol. ( i)   The given logical expression is

 = p ∨ (∼ p ⇒ ( q ∨ ( q ⇒ ∼ r)))

≅  p ∨ (~ p ⇒ ( q ∨  (~ q ∨  ~ r)))

(Elimination of conditional)

≅  p ∨ ( p ∨ ( q ∨ (~ q ∨  ~ r)))

(Elimination of conditional)

≅  p ∨  p ∨  q ∨ ~ q ∨  ~ r

≅  p ∨  q ∨  ~q ∨ ~ r

(Idempotent law)

This is the required logical expression in DNF. 

( ii)   The given logical expression is

( p ⇒  q) ∧ (∼ p ∧  q) ≅ (~ p ∨  q)  ∧ (~ p ∧  q) (Elimination of conditional)

≅ (~ p ∧ ~ p ∧  q) ∨ ( q ∧ ~ p ∧  q)

(Using distributive law)

≅ (~p ∧ q)   ∨ (~ p  ∧  q)

(Using idempotent law

and commutative law)

This is the required logical expression in DNF. 

1.14.1.2 Truth Table Method to Find DNF

Consider a statement P that contains  n variables  p ,  p ,  p , ....,  p . Its truth table contains 1

2

3

 n

2 n rows, we can obtain the DNF from the truth table. For each row of the truth table, in which the value of P is T, form the conjunction  p  

..... 



 ,  where  p  is put, if there is T

1 ∧  p 2 ∧  p 3 

∧ ~ pj ∧ ...... ∧  pn

 j

in the  j-th position in the row and  p  if there is F in the jth position in the row. This type of term is j

M-3.28

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

called a  minterm. The disjunction (ORing) of the minterms is the DNF of the given logical expression. This type of form is called  principal Disjunctive Normal form. 

For Example: Let  p and  q be two statement variables, then  p ∧  q,  p ∧ ~ q, ~ p ∧  q and ~ p ∧

~ q are the minterms of  p and  q. 

Let  p,  q and  r be three statement variables, then   p ∧  q ∧  r,  p ∧  q ∧ ~ r,  p ∧ ~ q ∧  r,  p ∧ ~ q ∧

~ r,   ~ p ∧  q ∧  r, ~ p ∧  q ∧ ~ r, ~ p ∧ ~ q ∧  r,   ~ p ∧ ~ q ∧ ~ r are the minterms of  p,  q and  r. 

Steps to find DNF using Truth Table

The following steps are applied to a logical expression to obtain DNF. 

1. Construct the truth table of the given proposition. 

2. For every truth value T of the given proposition, select the minterm, which also has the

value T for the same combination of the truth value of the statement variables, 

3. Then take the disjunctive (ORing) of the minterms selected in step 2. It is the required

disjunctive normal form. 

Example 56.  Obtain the DNF or principal disjunctive Normal form of the following

 logical expressions using truth table. 

( i)  p ⇒  q

( ii) ~ p ∨ ~ q

( iii) (~ p →  r) ∧ ( p ⇔  q)

Sol. ( i) The truth table of  p ⇒  q is shown in Fig. 42

 p

 q

 p ⇒  q

T

T

T

T

F

F

F

T

T

F

F

T

Fig. 42

There are three combinations in which the expression  p ⇒  q has truth value T. So the three minterms corresponding to  p ⇒  q is  p ∧  q, ~ p ∧  q and ~ p ∧ ~ q. Now to obtain the disjunctive normal form take the disjuntion of these minterms. Thus, 

( p ∧  q) ∨ (~ p ∧  q) ∨ (~ p ∧ ~ q) is the requared DNF. 

( ii) The truth table of ~ p ∨ ~ q  is shown in Fig. 43

 p

~ p

 q

~ q

~ p ∨ ~  q

T

F

T

F

F

T

F

F

T

T

F

T

T

F

T

F

T

F

T

T

Fig. 43

There are three combinations in which the expression ~ p ∨ ~ q has truth value T. So the three minterms corresponding to ~ p ∨ ~ q is ( p ∧ ~ q), (~ p ∧  q) and ~ p ∧ ~ q. Now to obtain the disjunctive normal form take the disjunction of these minterms. Thus, 

( p ∧ ~ q) ∨ (~ p ∧  q) ∨ (~ p ∧ ~ q) is the required DNF. 
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( iii) The truth table of (~ p →  r) ∧ ( p ⇔  q) is shown in Fig. 44

 p

 q

 r

~ p

(~ p ⇒  r)

( p ⇔  q) (~ p →  r) ∧ ( p ⇔  q)

T

T

T

F

T

T

T

T

T

F

F

T

T

T

T

F

T

F

T

F

F

T

F

F

F

T

F

F

F

T

T

T

T

F

F

F

T

F

T

F

F

F

F

F

T

T

T

T

T

F

F

F

T

F

T

F

Fig. 44

There are three combinations in which the expression (~ p ⇒  r) ∧ ( p ⇔  q) has truth value T. So the three minterms corresponding to (~ p ⇒  r) ∧ ( p ⇔  q) are ( p ∧  q ∧  r), ( p ∧

 q ∧ ~ r) and (~ p ∧ ~ q ∧  r). To obtain the disjunctive normal form take the disjunction of these minterms. Thus, 

( p ∧  q ∧  r) ∨ ( p ∧  q ∧  ~r) ∨ (~ p ∨ ~ q ∧  r) is the required DNF. 

1.14.2 Conjunctive Normal Form (CNF)

A formula is in conjunctive normal form (CNF) if it is a conjunction (ANDing) of clauses, 

where a clause is a disjunction (ORs) of literals. We can say it is an ANDing of ORs. It is also known as product of sums. 

Definition: A logical formula is said to be in conjunctive normal form (CNF) if and only if it is a conjunction (ORing) of one or more disjunctions (ORs) of one or more literals. 

Note: The and (∧), or (∨) and, not (~) are the only propositional operators in CNF. The not operator can only be used as a part of a literal, this means that it can only precede a propositional variable. 

Every proposition  of formula can be converted into an equivalent formula in CNF. But in

some cases, the conversion to CNF leads to an exponential increase in clauses in the formula. 

Example 57. The following formulas are in conjunctive normal form (CNF)? 

( i) ~ p ∧ ( q ∨  r)

( ii)  p ∨  q

( iii)  p ∧  q

( iv) ( p ∨  q) ∧  (~ q ∨  r ∨ ~ s)

( v) ( p ∨  q) ∧  ( r ∨ ~ s)

Example 58. The following formulas are not in conjunctive normal form (CNF)? 

( i) ~ (p ∨  q)

( ii) ( p ∧  q) ∨  r

( iii)  p ∧ ( q ∨ ( r ∧  s))

Example 59. Which of the following are in conjunctive normal form (CNF)? 

( i) ~ p ∧ ~ q

( ii) ( p ∨  q) ∧ ( q ∨  r)

( iii)  p ∨ (~ p ∧  q)

( iv)  (p ∨  q ∨  r) ∧ (~ p ∨  r)
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Sol. 

( i) It is in CNF

( ii) It is in CNF

( iii) It is not in CNF

( iv) It is in CNF

Example 60. Which of the following are not in conjunctive normal form (CNF)? 

( i) ~ p ∨ ( q ∧  r)

( ii) ( p ∨  q ∨  r) ∧ ~ r

( iii) ( p ∨  r)   ∧ (~ q ∨  p)

Sol. 

( i) It is not in CNF

( ii) It is not in CNF

( iii) It is in CNF

1.14.2.1 Steps to obtain CNF of a Logical Expression

The following steps are applied to a logical expression to obtain a CNF using algebraic

manipulations. 

1. Remove all conditional (⇒) and Bi-Conditional (⇔) using an equivalent expression con-

taining the connectives and (∧); or (∨) and not (~) only. Use  p ⇒  q ≅ ~ p ∨  q and  p ⇔  q ≅

(~ p ∨  q) ∧ (~ q ∨  p)

2. Eliminate not (~) before products and sums by using the double negation and/or using

DeMorgan’s law. 

Repeat the steps 1-2 until the only connectives are and (∧) and or (∨) and all the negations

are attached to sentential constants rather than to formulas. 

3. Apply the distributive law until the logical expression is a ANDing of disjunctions

(ORs) of clauses. 

Example 61. Obtain the CNF of the following logical expressions:

( i) ( p ∧  q) ∨  (~ p ∧   q  ∧  r)

( ii) ( q ∨ ( p ∧  r)) ∧ ~(( p ∨  r) ∧  q)

Sol. ( i) The given logical expression is

= ( p ∧  q) ∨ (~ p ∧  q ∧  r)

≅ ( p ∨ (~ p ∧  q ∧  r)) ∧ ( q ∨  (~ p ∧  q ∧  r)) (Distributive law)

≅ ( (p ∨ ~ p)  ∧  ( p ∨  q) ∧ ( p ∨  r)) ∧ (( q ∨ ~ p) ∧ ( q ∨  q) ∧ ( q ∨  r)) (Indempotent law)

≅ ( p ∨  q)  ∧  ( p ∨  r) ∧ ( q ∨  ~ p) ∧  q ∧ ( q ∨  r) (Complement law)

This is the required logical expression in CNF. 

( ii) The given logical expression is

( q ∨ ( p ∧  r)) ∧ ~(( p ∨  r) ∧  q)

≅ ( q ∨ ( p ∧  r)) ∧ (~( p ∨  r) ∨ ~ q)

(DeMorgan’s law)

≅ ( q ∨ ( p ∧  r)) ∧ ((~ p ∨ ~ r) ∨ ~ q)

(DeMorgan’s law)

≅ ( q ∨  p) ∧ ( q ∨  r) ∧ (~ p ∨ ~ q) ∧ (~ r ∨ ~ q) (Distributive law)

This is the required logical expression in CNF. 

Example 62. Obtain the CNF of the following logical expressions:


( i)  p ∧ ( p ⇒  q)

( ii) (~ p ⇒  r) ∧ ( p ⇔  q)

Sol. ( i) The given logical expression is

 p ∧ ( p ⇒  q) ≅  p ∧ (~ p ∨  q)

(Elimination of conditional)

This is the required logical expression in CNF. 
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( ii) The given logical expression is

(~ p ⇒  r) ∧  (p ⇔  q) ≅ (~ p ⇒  r) ∧ (( p ⇒  q) ∧ ( q ⇒  p)) (Elimination of Bi-conditional)

≅ (~(~ p) ∨  r) ∧ ((~ p ∨  q) ∧ (~ q ∨  p) (Elimination of conditional)

≅ ( p ∨  r) ∧ (~ p ∨  q) ∧ (~ q ∨  p)

(Double negation)

This is the required logical expression in CNF. 

1.14.2.2 Truth Table Method to Find CNF

Consider a statement P that contains  n variables  p ,  p ,  p , ....,  p . Its truth table contains 1

2

3

 n

2 n rows. We can obtain the CNF from the truth table. For each row of the truth table, in which the value of P is F form the disjunction  p  



.... 



, where  p  is put, if there is

1 ∨  p 2 ∨  p 3

∨ ~ pj ∨ .... ∨  pn

 j

T in the  j-th position in the row and ~ p  is there is F in the  j-th position in the row. This type of j

term is called a  maxterm. The conjunction (ANDing) of the maxterms is the CNF of the given logical expression. This type of form is called  Principal Conjunctive Normal Form. 

For Example. Let  p and  q be two statement variables, then  p ∨  q,  p ∨ ~ q, ~ p ∨  q and ~ p ∨

~ q are the maxterms. 

Let  p,  q and  r be the three statement variables then  p ∨  q ∨  r,  p ∨  q ∨  ~r,  p ∨  ~q ∨  r, p ∨  ~q ∨  ~r,  ~p ∨  q ∨  r,  ~p ∨  q ∨  ~r,  ~p ∨  ~q ∨  r, and  ~p ∨  ~q ∨  ~r are the maxterms. 

Steps to Find CNF Using Truth Table

The following steps are applied to a logical expression to obtain CNF. 

1. Construct the truth table of the given proposition. 

2. For every truth value F of the given proposition, select the maxterm, which also has

the value T for the same combination of the truth value of the statement variables. 

Negate each row. 

3. Then take the conjunction (ANDing) of the maxterms selected in step 2. It is the required

Conjunction Normal Form. 

Example 63.  Obtain the CNF or principal conjunctive normal form of the following logical expressions using truth tables. 

( i)  q ⇔   p

( ii) ( p ∨  q) ∧ ( p ∨  r)

( iii) (~ p ⇒  r) ∧ ( p ⇔  q)

Sol. ( i) The truth table of  q ⇔  p is shown in Fig.45

 p

 q

 q ⇔  p

T

T

T

T

F

F

F

T

F

F

F

T

Fig. 45

There are two combinations in which the expression  q ⇔  p has truth value F. So, the two terms corresponding to  q ⇔  p is ( p ∧ ~ q) and (~ p ∧  q). 

Now negate these terms ~( p ∧ ~ q) and ~(~ p ∧  q). These becomes (~ p ∨  q) and ( p ∨ ~ q). 

These are required maxterms. Now to obtain the CNF, take the conjunctions of these

maxterms. Thus, 

(~ p ∨  q) ∧ ( p ∨ ~ q) is the required CNF of the expression. 
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( ii) The truth table of ( p ∨  q) ∧ ( p ∨  r) is show in Fig. 46

 p

 p

 r

( p ∨  q)

( p ∨  r)

( p ∨  q) ∧ ( p ∨  r)

T

T

T

T

T

T

T

T

F

T

T

T

T

F

T

T

T

T

T

F

F

T

T

T

F

T

T

T

T

T

F

T

F

T

F

F

F

F

T

F

T

F

F

F

F

F

F

F

Fig. 46

There are three combinations in which the expression ( p ∨  q) ∧ ( p ∨  r) has truth value F. 

So the three terms corresponding to ( p ∨  q) ∧ ( p ∨ ~ r) is (~ p ∧  q ∧ ~ r), (~ p ∧ ~ q ∧  r) and (~ p ∧ ~ q ∧ ~ r). Now Negate these terms, we obtain ( p ∨ ~ q ∨  r), ( p ∨  q ∨ ~ r) and ( p ∨  q ∨  r). Now to obtain the CNF, take the conjunction of these maxterms. Thus, ( p ∨~ q ∨  r) ∧ ( p ∨  q ∨ ~ r) ∧ ( p ∨  q ∨  r) is the required CNF of the expression. 

( iii) The truth table of (~ p ⇒  r) ∧ ( p ⇔  q) is shown in Fig. 47

 p

 q

 r

~ p

( ~p ⇒  r)

 p ⇔  q

(~ p ⇒  r) ∧ ( p ⇔  q)

T

T

T

F

T

T

T

T

T

F

F

T

T

T

T

F

T

F

T

F

F

T

F

F

F

T

F

F

F

T

T

T

T

F

F

F

T

F

T

F

F

F

F

F

T

T

T

T

T

F

F

F

T

F

T

F

Fig. 47

There are five combinations in which the expression (~ p ⇒  r) ∧ ( p ⇔  q) has truth value F. 

So the five terms corresponding to the expression are ( p ∧ ~ q ∧  r), ( p ∧ ~ q ∧ ~ r), (~ p ∧  q ∧  r), (~ p ∧  q ∧ ~ r) and (~ p ∧ ~ q ∧~ r). Now negate these terms to obtain the maxterms. The obtained maxterms are (~ p ∨  q ∨ ~  r), (~ p ∨  q ∨  r), ( p ∨ ~ q ∨ ~ r), ( p ∨ ~ q ∨  r) and ( p ∨  q ∨  r). To obtain the CNF, take the conjunction of these maxterms. 

Thus, (~ p ∨  q ∨ ~ r) ∧ (~ p ∨  q ∨  r) ∧ ( p ∨ ~ q ∨ ~ r) ∧ ( p ∨ ~ q ∨  r) ∧ ( p ∨  q ∨  r) is the required CNF of the expression. 
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PROBLEM SET-II

1. Which of the following logical expressions are in DNF? 

( i) ( p ∧  q ∧ ~ r ) ∨ (~ p ∧  r)

( ii) ( p) ∨ (~ p ∨  q)

( iii)  p ∨  q

( iv)  p

( v)  p ∧ (~ p ∨  q)

2. Which of the following logical expressions are in CNF? 

( i) ( p) ∧ (~ p ∨  q)

( ii)  p ∨  q

( iii)  p

( iv)  p ∨ (~ p ∧  q)

( v) ((( p ∨  q) ∧ ~ r) ∨  ~p)

( vi) ( p ∨  q ∨ ~ r) ∧ (~ p ∨  r)

3. Obtain the conjunctive normal form (CNF) of the following formulas. 

( i) ~(~ p ∨  q) ∧ ( r ⇒ ~  s)

( ii) (~ p ⇒  q) ⇒ ( q ⇒ ~  r)

4. Convert the following logical expressions into CNF

( i) ( p ⇒  q) ⇔ ( p ⇒  r)

( ii) ( p ∨  q) ∧ ( p ∧  r)

5. Convert the following formula into CNF using truth table

( p ⇔  q) ⇒ (~ p ∧  r)

6. Obtain the CNF and DNF from the following truth table. 

( i)

X

Y

Z

 f( x,  y,  z)

T

T

T

T

T

T

F

F

T

F

T

F

T

F

F

T

F

T

T

F

F

T

F

T

F

F

T

T

F

F

F

F

Fig. 48

( ii)

 p

 q

 r

 f( p,  q,  r)

F

F

F

T

F

F

T

F

F

T

F

T

F

T

T

F

T

F

F

T

T

F

T

F

T

T

F

F

T

T

T

T

Fig. 49

7. Obtain the DNF of the following logical expressions:

( i) ( p ∧ ( p ⇒  q)) ⇒  q

( ii) ( p ⇒  q) ∧ (~ p ⇒  q)

( iii) (~ p ⇒  r ) ∧ ( p ⇔  q)
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8. Convert the following  formulas into DNF and CNF

( i)  p ∧ ( p ⇒  q)

( ii) ( p ∨  q) ⇔ ( p ∧  q)

( iii)  p ⇔ (~ p ∨ ~ q)

( iv) ( p ∨ ~ q) ⇒  q

9. Obtain the conjunctive normal form using truth tables. 

( i)  q ∧ ( p ∨ ~ q)

( ii) ( p ∧  q) ∨ (~ p ∧  r)

( iii)  ~( p ∨  q) ⇔  p ∧  q

10. Obtain the DNF using truth table

( i) ( p ∧  q ) ∨ (~ p ∧  r) ∨ ( q ∧  r)

11. Convert the following logical expressions into CNF without using truth table. 



( i) (A ⇒ B) ⇒ C

( ii) A ⇒ (B ⇒ C)

( iii) (A ⇒ B) ∨ (B ⇒ A)

( iv) (~ p ⇒ ( p ⇒  q))

( v) ( p ⇒ ( q ⇒  r)) ⇒ ( p ⇒ ( r ⇒  q))

( vi) ( p ⇒  q ) ⇒ (( q ⇒  r) ⇒ ( p ⇒  r))

12. Consider

Promises: If there was a rally, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. 

Conclusion: There was no rally. 

Determine whether the conclusion follows logically from the premises. Explain by representing

the statements symbolically and using rules of inference. 

13. Consider

If Manjeet has public support, then he will contest from Bengaluru. If Manjeet says “Jai Hind” in Bengaluru, he will not content from Bengaluru. Manjeet says “ Jai Hind” in Bengaluru. Therefore, Maenjeet does not have public support. 

Determine whether the conclusion follows logically from the premises. Explain by representing

statements symbolically and using rules of inference. 

14. Show that the following inference is valid using rules of inference. 

~ p ⇔  q

 q ⇒  r

~ r

∴  p

ANSWERS AND HINTS (PROBLEM SET II)

1. 

( i) It is in DNF

( ii) It is in DNF

( iii) It is in DNF

( iv) It is in DNF

( v) Not in DNF

2. 

( i) It is in CNF

( ii) It is in CNF

( iii) It is in CNF

( iv) Not in CNF

( v) Not in CNF

( vi) It is in CNF

3. 

( i) ( p ∨ ~ r ∨ ~ s) ∧ (~ q ∨ ~ r ∨ ~ s)

( ii) ( ~p ∨ ~ q ∨ ~  r) ∧ (~ q ∨ ~ r)

4. 

( i) ( ~q ∨ ~ p ∨  r) ∧ (~ r ∨ ~ p ∨  q)

( ii) This formula is in CNF. It can be read as ( p ∨  q) ∧  p ∧  r 5. 

The CNF formula is ( p ∨  q ∨  r) ∧ (~ p ∨ ~ q ∨  r) ∧ (~ p ∨ ~ q ∨ ~ r) 6. 

( i) DNF : ( x ∧  y ∧  z) ∨ ( x ∧ ~ y ∧ ~ z) ∨ (~ x ∧  y ∧ ~ z) ∨ (~ x ∧ ~ y ∧  z) CNF : (~ x ∨ ~ y ∨  z) ∧ (~ x ∨  y ∨ ~ z) ∧ ( x ∨ ~ y ∨ ~ z) ∧ ( x ∨  y ∨  z) ( ii) DNF : (~ p ∧ ~ q ∧ ~ r) ∨ (~ p ∧  q ∧ ~ r) ∨ ( p ∧ ~ q ∧ ~ r) ∨ ( p ∧  q ∧  r) CNF : ( p ∨  q ∨ ~ r) ∧ ( p ∨ ~ q ∨ ~ r) ∧ (~ p ∨  q ∨ ~ r) ∧ (~ p ∨ ~ q ∨  r) 7. 

( i) ~ p ∨ ( p ∧ ~ q) ∨  q

( ii) (~ p ∧  q) ∨ ( q ∧ ~ p)

( iii) ( p ∧  q ∧  r) ∨ ( p ∧  q ∧ ~ r)
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8. 

( i) DNF : ( p ∧  q). It is also in CNF. 

( ii) CNF : ( p ∨  q) ∧ (~ p ∨ ~ q); 

DNF : ( q ∧  ~p) ∨ ( p ∧  ~ q)

( iii) CNF : (~ p ∨ ~ q) ∧  p ∧ ( q ∨  p); 

DNF : (~ p ∧  p)

( iv) CNF : (~ p ∨  q) ∧  q; 

DNF : (~ p ∧  q) ∨  q

9. 

( i) ( ~p ∨  q) ∧ ( p ∨ ~ q) ∧ ( p ∨  q)

( ii) ( ~p ∨  q ∨  r) ∧ ( ~p ∨  q ∨ ~ r) ∧ ( p ∨  q ∨  r) ∧ ( p ∨ ~ q ∨  r) ( iii) ( p ∨  q) ∧ (~ p ∨ ∼ q)

10. 

( i) ( ~p ∨  q ∨ ~ r) ∧ ( ~p ∨  q ∨  r) ∧ ( p ∨ ~ q ∨  r) ∧ ( p ∨  q ∨  r) 11. 

( i) (A ∨ C) ∧ (~B ∨ C)



( ii) ~A ∨ ~B ∨ C

( iii) (~A ∨ B) ∨ (~B ∨ A)

( iv)  p ∨ ~ p ∨  q

( v) ~ p ∨  q ∨ ~ r

( vi) ( p ∨ ~ p ∨  q ∨  r) ∧ (~ p ∨  q ∨ ~  q ∨  r) 12. 

Let  p be “There was a rally”  q be “ travelling was difficult” and  r be “They arrived on time”. 

Then

Premises:  p →  q,  r → ~ q,  r

Conclusion : ~ p

So, 

1.  p →  q

premises

2.  r → ~ q

premises

3.  r

premises

4. ~ q

2, 3, modus ponens

5. ~ q → ~ p

1, Contrapositive

∴     ~ p

4, 5, modus ponens

Thus, the conclusion that there was no rally is logically true on the basis of given premises. 

13. 

1.  p →  q

premises

2.  r → ~ q

premises

3.  r

premises

4.  r ∧ ( r → ~ q)

2 ∧ 3

5. ~ q

4, modus ponens

6. ~ q →  ~ p

1, contrapositive

7. ~ q ∧  (~ q → ~ p)

5 ∧ 6

∴     ~ p

7, modus ponens. 

Therefore, “Manjeet does not have public support is logically true from the given premises. 

14. 

1.  ~p ⇔  q

premises

2.  ~p ⇒  q

From 1

3.  q ⇒  ~p

From 1

4.  q ⇒  r

Premises

5. ~ r ⇒  ~q

4, contrapositive

6. ~ r

Premises

7. ~ q

5, 6 modus ponens

8. ~ q ⇒  p

2, contrapositive

∴

 p

7, 8 modus ponens. 

1.15

PREDICATE LOGIC OF FIRST ORDER LOGIC

First order logic or predicate logic generalizes propositional logic by involving quantifiers

(“for all”, “there exits”). These quantifiers can only range over individual elements in your domain of discourse. E.g. “for all  x P( x)”, or “ there exists  x Q( x)”. P and Q are just propositions from
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propositional logic. All the inference rules in propositional calculus are also valid in predicate calculus. 

There are two important rules:

1. Universal Quantifier: Form (∀ x)F( x), infer F( a), where  a is a constant, and F( a) is obtained from F( x) with  x substituted by  a throughout F. 

2. Existential Quantifier: From F( a), infer (∃ x)F( x), where  a is a constant, and F( x) is obtained form F( a) with a substituted by  x throughout F. 

Intuitively, the first one says that what is true for everything must be true for a given

thing. The second one says that it is fine to replace a constant name with an existential variable. 

1.15.1 Existential Quantifier

If  p( x) is a proposition over the universe U. Then it is denoted as ∃ x  p( x) and read as ‘‘There exists at least one value in the universe of variable  x such that  p( x) is true. The quantifier ∃ is called the existential quantifier. 

There are several ways to write a proposition, with an existential quantifier  i.e., 

(∃ x ∈ A)  p( x) or ∃ x ∈   A such that  p( x) or (∃ x)  p( x) or  p( x) is true for some  x ∈ A. 

1.15.2

Universal Quantifier

If  p( x) is a proposition over the universe U. Then it is denoted as ∀  x,  p( x) and read as ‘‘For every  x ∈ U,  p( x) is true’’. The quantifier ∀ is called the universal quantifier. 

There are several ways to write a proposition, with a universal quantifier. 

∀ x ∈ A,  p( x) or  p( x), ∀ x ∈ A

or

∀ x,  p( x)

or  p( x) is true for all  x ∈ A. 

Example 64.  Let A(x) : x has a white colour, B(x) : x is a polar bear, C(x) : x is found in cold regions, over the universe of animals. Translate the following into simple sentences: ( i) ∃ x (B(x) ∧ ~  A(x))

( ii)  (∃ x) (~ C(x))

( iii)  (∀ x) (B(x) ∧  C(x) →  A(x)). 

Sol.  ( i) There exists a polar bear whose colour is not white. 

( ii) There exists an animal that is not found in cold regions. 

( iii) Every polar bear that is found in cold regions has a white colour. 

Example 65.  Let K(x) : x is a two-wheeler, L(x) : x is a scooter. M(x) : x is manufactured by Bajaj. Express the following using quantifiers. 

( i)  Every two wheeler is a scooter. 

( ii)  There is a two wheeler that is not manufactured by Bajaj. 

( iii)  There is a two wheeler manufactured by Bajaj that is not a scooter. 

( iv)  Every two wheeler that is a scooter is manufactured by Bajaj. 

Sol. ( i) (∀  x) (K( x) → L( x))

( ii) (∃  x) (K( x) ∧ M( x))

( iii) (∃  x) (K( x) ∧ M( x) → ~ L( x))

( iv) (∀  x) (K( x) ∧ L( x) → M( x))
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1.16

NEGATION OF QUANTIFIED PROPOSITIONS

When we negate a quantified proposition  i.e.,  when a universally quantified proposition is negated, we obtain an existentially quantified proposition and when an existentially quantified proposition is negated, we obtain a universally quantified proposition. 

The two rules for negation of quantified proposition are as follows. These are also called

 De Morgan’s law. 

( i) ~ ∃  x  p( x) ≅ ∀  x ~  p( x)

( ii) ~ ∀  x  p( x) ≅ ∃  x ~  p( x). 

Example 66.  Negate each of the following propositions:

( i)  All boys can run faster than all girls. 

( ii)  Some girls are more intelligent than all boys. 

( iii)  Some students do not live in hostel. 

( iv)  All students pass the semester exams. 

( v)  Some of the students are absent and the classroom is empty. 

Sol. ( i) Some boys can run faster than some girls. 

( ii) All girls are more intelligent than some boys. 

( iii) All students live in hostel. 

( iv) Some students do not pass the semester exams. 

( v) All students are present and the class-room is full. 

Example 67.  Negate each of the following propositions :

( i) ∀ x  P(x) ∧ ∃  y q(y)

( ii) ∀  x p(x) ∧ ∀  y q(y)

( iii) ∃  x p(x) ∨ ∀  y q(y)

( iv) ∃  x p(x) ∨ ∃  y q(y)

( v)  ( ∃  x ∈  U) (x + 6 = 25)

( vi)  (∀ x ∈  U) (x <  25). 

Sol. ( i)



~ (∀  x  p( x) ∧ ∃  y  q( y))

≅ ~ ∀  x  p( x) ∨ ~ ∃  y  q( y)

(∵ ~ ( p ∧  q) = ~  p ∨ ~  q)

≅ ∃  x ~  p( x) ∨ ∀  y ~  q( y)

( ii)



~ (∀  x  p( x) ∧ ∀  y q( y))

≅ ~ ∀  x  p( x) ∨ ~ ∀  y q( y)

(∵ ~ ( p ∧  q) = ~  p ∨ ~  q)

≅ ∃  x ~  p( x) ∨ ∃  y ~  q( y)

( iii)



~ (∃  x  p( x) ∨ ∀  y q( y))

≅ ~ ∃  x  p( x) ∧ ~ ∀  y  q( y)

(∵ ~ ( p ∨  q) = ~  p ∧ ~  q)

≅ ∀  x ~  p( x) ∧ ∃  y ~  q( y)

( iv)



~ (∃  x p( x) ∨ ∃  y q( y))

≅ ~ ∃  x  p( x) ∧ ~ ∃  y q( y)

(∵ ~ ( p ∨  q) = ~  p ∧ ~  q)

≅ ∀  x ~  p( x) ∧ ∀  y ~  q( y)

( v)



~ (∃  x ∈ U) ( x + 6) = 25

≅ ∀ x ∈ U ~ ( x + 6) = 25

≅ (∀ x ∈ U) ( x + 6) ≠ 25

( vi)



~ (∀  x ∈ U) ( x < 25)

≅ ∃  x ∈ U ~ ( x < 25)

≅ (∃  x ∈ U) ( x ≥ 25)
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1.17

PROPOSITIONS WITH MULTIPLE QUANTIFIERS

The proposition having more than one variable can be quantified with multiple quantifi-

ers. The multiple universal quantifiers can be arranged in any order without altering the meaning of the resulting proposition. Also the multiple existential quantifiers can be arranged in any order without altering the meaning of proposition. 

The proposition which contains both universal and existential quantifiers, the order of

these quantifiers can’t be exchanged without altering the meaning of proposition  e.g.,  the proposition ∃  x ∀  y  p( x,  y) means ‘‘ There exists some  x such that  p( x, y) is true for every  y’’. 

Example 68.  Write the negation for each of the following. Determine whether the resulting statement is true or false. Assume U = R. 

( i) ∀  x ∃  m(x2 < m)

( ii) ∃  m ∀  x(x2 < m). 

Sol. ( i) Negation of ∀  x ∃  m( x 2 <  m) is ∃  x ∀  m ( x 2 ≥  m). The meaning of ∃  x ∀  m( x 2 ≥  m) is that there exists some  x such that   x 2 ≥  m, for every  m. The statement is true as there is some greatest  x such that  x 2 ≥  m, for every  m. 

( ii) Negation of  ∃  m ∀  x ( x 2 <  m) is ∀  m ∃  x ( x 2 ≥  m). The meaning of ∀  m ∃  x ( x 2 ≥  m) is that for every  m, there exists some  x such that ( x 2 ≥  m). The statement is true as for every  m, there exists some greatest  x such that  x 2 ≥  m. 

Example 69.  Check the validity of following formula under given interpretation. 

 (a) ∀  x ∃  y  P(x, y) under interpretation domain = {1, 2} and P(1, 1) = T, P(1, 2) = F, P(2, 1) = T, P(2, 2) = T where T and F refer to true and false respectively. 

 (b) ∀  x  (P(x) →  Q(a, f(x)) under interpretation domain = {1, 2} and a = 1, f(1) = 2, f(2) = 1, P(1) = F, P(2) = T, Q(1, 1) = T, Q(1, 2) = T, Q(2, 1) = F and Q(2, 2) = T. Here T and F refer to true and false respectively. 

Sol. ( a) ∀  x ∃  y P( x, y) means for every  x, there exists some  y  such that P( x, y) is true. 

Since P(1, 1) = T and P(2, 1) = T. Hence, the formula is valid under the domain = {1, 2}. 

( b) ∀  x (P( x) → Q( a, F( x)) means for every  x, whenever P( x) is true implies Q( a,  f( x)) is also true. So, under the domain {1, 2}, the different values of ∀  x (P( x) → Q( a,  f( x)) are as follows :

 x

P( x)

Q( a,  f( x))

1

F

T

2

T

T

Fig. 50

So, when P( x) is true, Q( a,  f( x)) is also true. Hence, the formula is valid. 

PROBLEM SET-III

1. Determine the negations of the following quantified predicates without ‘~’ in front of any quantifier. 

1. ∀ x ∃ y: ( x ∨  y) ⇒  z

2. ∀ x ∀ y: ( x >  y) ⇒ ( x –  y) > 0

3. ∀ x ∀ y: ( x <  y) ⇒ ∃ z ( x <  z <  y)
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2. Write the following propositions as quantified predicates. 

( i) No pigs have wings

( ii) Men with short hair have all been to prison

( iii) All soldiers can march

( iv) Some babies are not soldiers

3. Let the universe be a social club, and let  x and  y range over the members of the club. Define the predicate P( x, y) as

P ( x,  y) =  x loves  y

Translate the following quantified predicate into English sentences. 

( i) ∀ x ∀ y P( x,   y)

( ii) ∃ x ∃ y P( x,   y)

( iii) ∀ x ∃ y P( x,   y)

( iv) ∃ x ∀ y P( x,   y)

4. Transform the informal argument below into predicate logic. 

“All cats are liked by some dogs. No dog likes a pig. There fore, no cat is a pig.” 

ANSWERS AND HINTS (PROBLEM SET III)

1. 

( i) ∀ x ∃ y: ( x ∨  y) ⇒  z ≅  ∃ x ~ ∃ y (( x ∨  y) ⇒  z)

≅  ∃ x ∀ y ~ (( x ∨  y) ⇒  z)

≅  ∃ x ∀ y (( x ∨  y) ∧  ~z)

( ii) ~∀ x ∃ y: (( x >  y) ⇒ ( x –  y) > 0)

≅  ∃ x ~ ∀ y (( x >  y) ⇒ ( x – y) > 0)

≅  ∃ x ∃ y ~  (( x >  y) ⇒ ( x – y) > 0)

≅  ∃ x ∃ y (( x >  y) ∧ ~ ( x – y) > 0)

≅  ∃ x ∃ y (( x >  y) ∧ ( x – y) ≤ 0)

≅  ∃ x ∃ y (( x >  y) ∧ ( x ≤  y))

( iii) ∃ x ∃ y ∀ z (( z ≤  x< y) ∨ ( x < y ≤  z)) 2. 

( i) Let  p( x):  x is a pig and  q( x):  x has wings. Then we have ∀ x[P( x) ⇒ ~ q( x)]. 

( ii) Let  p( x):  x is a man with short hair and  q( x):  x has been in prison then we have ∀ x( p( x) ⇒  q( x)). 

( iii) Let  p( x):  x is a soldier ,   q( x):  x is a baby and  t( x):  x can march, then we have, ∀ x( p( x) ⇒  t( x)) ( iv) ∃ x( q( x) ∧ ~ p( x)

3. 

( i) All members love each other

( ii) There are some members who love some of the members

( iii) All members love some members

( iv) There are some members who love all of the members. 

4. 

Let C( x) = “x is a cat”, D( x) = “x is a dog”,  p( x) = “x is a pig” and L( x,  y) = “x likes  y”. 

∀ x ∃ y (( x) → D( y) ∧   L( y,  x))

∀ x ∀ y ((D( x) ∧  p( x) →  ~L( y,  x))

∴ ∀ x ((C( x) →  ~p( x))

SOLVED PROBLEMS

Problem 1.  Translate the following statements in proposition logic :

( i)  If you study, you will get good marks. If you do not study, you will enjoy. Therefore, either you will get good marks or you will enjoy. 

( ii)  If the catalogue is correct, then if the seeds are planted in April, flowers will bloom in July. 
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( iii)  If John is elected class representative, then either Mary is elected treasurer or Alice is elected vice-treasurer. 

( iv)  Either taxes are increased or if expenditures rise, then the debt ceiling is raised. 

Sol. ( i) Let  p  be ‘‘You study’’ and  q be ‘‘You will get good marks’’ and  r be ‘‘You will enjoy’’. 

Then the proposition logic is

 p →  q

~  p →  r

∴

 q ∨  r

( ii) Let  p  be ‘‘The catalogue is correct’’ and  q be ‘‘Seeds are planted in April’’ and  r be ‘‘The flowers bloom in July’’. Then, proposition logic is

 p → ( q →  r)

( iii) Let  p  be ‘‘John is elected class representative’’ and  q be ‘‘Mary is elected treasurer’’ and r be ‘‘Alice is elected vice-treasurer’’. Then, proposition logic is

 p →  q ∨  r

( iv) Let  p  be ‘‘Taxes are increased’’ and  q be ‘‘Expenditures rise’’ and  r be ‘‘The debt ceiling is raised’’. Then proposition logic is

 p ∨ ( q →  r). 

Problem 2.  The meaning of proposition p →   q   is ‘‘If p then q’’ or ‘‘q is a necessary condition for p’’ or ‘‘p only if q’’ or ‘‘p is a sufficient condition for q’’. 

 Write the following statements in terms of above. 

 1.  p : New Delhi is capital of India

 q : India is in Asia. 

 2.  p : x2 = 4

 q : x = 2

 3.  p : x2 = y2

 q : x = y. 

 4.  p = he works hard q : he is a Gold Medalist. 

Sol. 1. ( i) If New Delhi is capital of India, then India is in Asia. 

( ii) India is in Asia is a necessary condition for New Delhi to be capital of India. 

( iii) New Delhi is capital of India only if India is in Asia. 

( iv) The fact that New Delhi is capital of India is a sufficient condition that India is in Asia. 

2. ( i) If  x 2 = 4, then  x = 2

( ii)  x = 2 is necessary for  x 2 = 4

( iii)  x2 =  4 only if  x = 2

( iv)  x 2 = 4 is sufficient for  x = 2. 

3. ( i) If  x 2 =  y 2 then  x =  y

( ii)  x =  y  is necessary for  x 2 =  y 2

( iii)  x 2 =  y 2 only if  x =  y

( iv)  x 2 =  y 2 is sufficient for  x =  y. 

4. ( i) If he works hard then he is a Gold Medalist. 

( ii) Gold medal is necessary for hard work. 

( iii) He works hard only if he is a Gold Medalist. 

( iv) Hard work is sufficient condition for Gold Medalist. 
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Problem 3.  Construct the truth tables for the following statements

( i)  (p →  p) → ( p →  ~ p)

( ii)  (~ q →  ~  p) →  (p →  q). 

Sol. ( i) The truth table for ( p →  p) → ( p →  ~ p) is shown in (Fig. 51) p

  

 ~ p

  

 p →  p

 p →  ~ p

( p →  p) → ( p → ~  p)

T

F

T

F

F

F

T

T

T

T

Fig. 51

( ii) The truth table of statement (~  q → ~  p) → ( p →  q) is shown in (Fig. 52) p

 q

  

 ~ p

  

 ~ q

    

  

 ~ q → ~  p

  

 p →  q

( ~ q →  ~ p) → ( p →  q)

T

T

F

F

T

T

T

T

F

F

T

F

F

T

F

T

T

F

T

T

T

F

F

T

T

T

T

T

Fig. 52

Problem 4.  Construct the truth tables for the following statements

( i)  (p →  (q →  r)) →  ((p →  q) →  (p →  r)) ( ii)  p ↔  (~ p ∨  ~ q)

( iii)  (p →  p) ∨  (p →  ~ p). 

Sol. ( i) The truth table for ( p → ( q →  r)) → (( p →  q) → ( p →  r)) is shown in (Fig. 53) p

 q

 r

 q →  r

 p →  q

 p →  r

( p → ( q →  r)) (( p →  q) → ( p →  r)) K → L

T

T

T

T

T

T

T

T

T

T

T

F

F

T

F

F

F

T

T

F

F

T

F

F

T

T

T

T

F

T

T

F

T

T

T

T

F

T

T

T

T

T

T

T

T

F

T

F

F

T

T

T

T

T

F

F

T

T

T

T

T

T

T

F

F

F

T

T

T

T

T

T

K

L

Fig. 53

( ii) The truth table for  p ↔ (~  p ∨ ~  q) is shown in (Fig. 54) p

 q

  

 ~ p

  

 ~ q

  

  

 ~ p ∨ ~  q

 p ↔ ( ~ p ∨ ~  q)

T

T

F

F

F

F

T

F

F

T

T

T

F

T

T

F

T

F

F

F

T

T

T

F

Fig. 54
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( iii) The truth table for ( p →  p) ∨ ( p → ~  p) is shown in (Fig. 55) p

  

 ~ p

  

 p →  p

 p →  ~ p

( p →  p) ∨ ( p → ~  p)

T

F

T

F

T

F

T

T

T

T

Fig. 55

Problem 5.  Assume the value of p →  q  is false. Determine the value of (~ p ∨  ~ q) →  q. 

Sol. Construct  the  truth  table  for  both  the  statements  and  determine  the value of (~  p ∨ ~  q) →  q against the false values of  p →  q. (Fig. 56) p

 q

  

 ~ p

  

 ~ q

  

 p →  q

  

  

 ~ p ∨  ~ q

(~  p ∨ ~  q) →  q

T

T

F

F

T

F

T

T

F

F

T

F

T

F

F

T

T

F

T

T

T

F

F

T

T

T

T

F

Fig. 56

So, when  p →  q is  false, the value of (~  p ∨ ~  q) →  q is also  false. 

Problem 6.  Given the value of p →  q is true. Determine the value of ~ p ∨  (p ↔  q). 

Sol. Construct the truth table for both statements. (Fig. 57)

 p

 q

  

 ~ p

 p →  q

 p ↔  q

  

  

 ~ p ∨ ( p ↔  q)

T

T

F

T

T

T

T

F

F

F

F

F

F

T

T

T

F

T

F

F

T

T

T

T

Fig. 57

So, when the value of  p →  q is true in line 1, 3 and 4. The value of ~  p ∨ ( p ↔  q) is also true. 

Problem 7.  Prove  that  the negation of conditional statement ~ (p →  q) is equivalent to p ∧ ~  q. 

Sol. The truth table of the given propositions are shown in (Fig. 58)

 p

 q

  

 ~ q

  

 p →  q

 ~ ( p →  q)

 p ∧ ~  q

T

T

F

T

F

F

T

F

T

F

T

T

F

T

F

T

F

F

F

F

T

T

F

F

Fig. 58

As the values of both the propositions are same in the truth table, hence ~ ( p →  q) ≅  p ∧ ~  q. 
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Problem 8.  Prove that the negation of biconditional statement ~ (p ↔  q) is equivalent to p ↔  ~ q or ~ p ↔  q. 

Sol. The truth table of all the given propositions is shown in (Fig. 59)

 p

 q

  

 ~ p

  

 ~ q

  

 p ↔  q

 ~ (p ↔  q)

 p ↔ ~  q

~  p ↔  q

T

T

F

F

T

F

F

F

T

F

F

T

F

T

T

T

F

T

T

F

F

T

T

T

F

F

T

T

T

F

F

F

Fig. 59

As the values of ~ ( p ↔  q) and  p ↔ ~  q and ~  p ↔  q are same, hence they all are equivalent. 

Problem 9.  From the following formulae, find out tautology, contingency and

 contradiction. 

( i)  ~ (A →  B) ∨  (~ A ∨  (A ∧  B))

( ii)  (H →  (I ∧  J)) → ~  (H →  I)

( iii)  (p ↔  q) ≅  (p ∧  q) ∨  (~ p ∧  q). 

Sol. ( i) Construct the truth table for ~ (A → B) ∨ (~ A ∨ (A ∧ B)) as shown in Fig. 60. 

A

B



~



A

~ A ∨ (A ∧ B)

A → B

~ (A → B)

~ (A → B) ∨ (~ A ∨ (A ∧ B))

T

T

F

T

T

F

T

T

F

F

F

F

T

T

F

T

T

T

T

F

T

F

F

T

T

T

F

T

Fig. 60

As the last column of the table contains all T’s, hence it is a tautology. 

( ii) Construct the truth table for (H → I ∧ J) → ~ (H → I)) as shown in (Fig. 61)

H

I

J

(I ∧ J)

H → (I ∧ J)

H → I

~ (H → I)

(H → I ∧ J) → ~ (H → I)

T

T

T

T

T

T

F

F

T

T

F

F

F

T

F

T

T

F

F

F

F

F

T

T

T

F

T

F

F

F

T

T

F

T

T

T

T

T

F

F

F

F

T

F

T

T

F

F

F

T

F

F

T

T

F

F

F

F

F

F

T

T

F

F

Fig. 61

As the value of last column depends upon the value of the variables, hence it is a contingency. 

( iii) Construct the truth table for ( p ↔  q) → ( p ∧  q) ∨ (~  p ∧  q) as shown in (Fig. 62) p

 q

  

 ~ p

  

 p ↔  q

 p ∧  q

    ~ p ∧  q

( p ∧  q) ∨ ( ~ p ∧  q)

( p ↔  q) → ( p ∧  q) ∨ (~  p ∧  q)

T

T

F

T

T

F

T

T

T

F

F

F

F

T

T

T

F

T

T

F

F

T

T

T

F

F

T

T

F

F

F

T

Fig. 62

As the last column contains all T’s, hence the above formulae is a tautology. 

M-3.44

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Problem 10.  Prove that following is a tautology

 A ∨  ( B ∧  C ) ≅  (A ∨  B) ∨  C . 

Sol. Construct the truth table for A ∨ (B ∧ C) → (A ∨ B) ∨ C  as shown in (Fig. 63)

A

B

C

B

C

B ∧ C A ∨ (B ∧ C) (A ∨ B) (A ∨ B) ∨ C A ∨ (B ∧ C)  → (A ∨ B) ∨ C

T

T

T

F

F

F

T

T

T

T

T

T

F

F

T

T

T

T

T

T

T

F

F

T

T

T

T

T

T

T

T

F

T

T

F

T

T

T

T

T

F

T

T

F

F

F

F

F

F

T

F

T

F

F

T

T

T

F

T

T

F

F

T

T

F

T

T

T

T

T

F

F

F

T

T

T

T

T

T

T

Fig. 63

As the last column of the table contains all T’s, hence it is a tautology. 

Problem 11.  Determine whether the following are equivalent, using biconditional

 statement. 

( i)  p ↔  q ≅  (p ∧  q) ∨ (~  p ∧ ~  q)

( ii)  (p →  q) →  t ≅  (p ∧  ~ q) →  t. 

Sol. To prove that the above pairs are equivalent. Prove that ( p ↔  q) → (( p ∧  q) ∨ (~  p ∧ ~  q)) and (( p →  q) →  t) → (( p ∧ ~  q) →  t) are tautologies. 

( i) Construct truth table for ( p ↔  q) → (( p ∧  q) ∨ (~  p ∧ ~  q)) as shown in (Fig. 64) p

 q

   ~ p

   ~ q

   p ↔  q p ∧  q

    ~ p ∧  ~ q ( p ∧  q) ∨ (~  p ∧  ~ q) (p ↔  q) → ( p ∧  q) ∨ ( ~ p ∧  ~ q) T

T

F

F

T

T

F

T

T

T

F

F

T

F

F

F

F

T

F

T

T

F

F

F

F

F

T

F

F

T

T

T

F

T

T

T

Fig. 64

As the proposition ( p ↔  q) → (( p ∧  q) ∨ (~  p ∧ ~  q)) is a tautology, hence they are equivalent. 

( ii) Construct the truth table for (( p →  q) →  t) → (( p ∧ ~  q) →  t) as shown in Fig. 65. 

 p

 q

 t

  

 ~ q

  

 p →  q

( p →  q) →  t p ∧ ~  q

 p ∧ ~  q →  t (( p →  q) →  t) → (( p ∧  ~ q) →  t)) T

T

T

F

T

T

F

T

T

T

T

F

F

T

F

F

T

F

T

F

F

T

F

T

T

F

F

T

F

T

T

F

T

T

T

T

F

T

T

T

T

T

F

T

T

F

T

F

F

T

F

F

T

F

F

F

T

T

T

T

F

T

T

F

F

F

F

T

F

F

T

F

Fig. 65

Since, the proposition is not a tautology, hence they are not equivalent. 
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Problem 12.  Determine the dual of each of the following:

( a)  (P ∧  Q) ∨  (~ P ∨  (~ P ∨  Q))

( b)  ~ P ∧  (~ Q ∧  R) ∨  (Q ∧  R) ∨  (P ∧  R) ( c)  (P ↓  Q) ↑  R. 

Sol. The dual of above propositions are as follows:

( a) (P ∧ Q) ∨ (~ P ∨ (~ P ∨ Q)) = (P ∨ Q) ∧ (~ P ∧ (~ P ∧ Q))

( b) ~ P ∧ (~ Q ∧ R) ∨ (Q ∧ R) ∨ (P ∧ R) = ~ P ∨ (~ Q ∨ R) ∧ (Q ∨ R) ∧ (P ∨ R)

( c) (P ↓ Q) ↑ R = (P ↑ Q) ↓ R. 

Problem 13.  Express P ⇒  Q using Nand ↑  only. 

Sol. P ⇒ Q ≅ ~ P ∨ Q ≅ ~ (~ ~ P ∧ ~ Q)

∵ P ∨ Q ≅ ~ (~ P ∧ ~ Q)

≅ ~ (P ∧ ~ Q)

∵ ~ ~ P ≡ P

≅ P ↑ ~ Q

∵ P ↑ Q ≡ ~ (P ∧ Q)

≅ P ↑ Q ↑ Q

∵ ~ P = P ↑ P. 

Problem 14.   Express P ↓  Q using ↑  only. 

Sol. P ↓ Q ≅ ~ (P ∨ Q) ≅ (P ∨ Q) ↑ (P ∨ Q)

≅ [(P ↑ P) ↑ (Q ↑ Q)] ↑ [(P ↑ P) ↑ (Q ↑ Q)]

∵ P ∨ Q ≅ (P ↑ P) ↑ (Q ↑ Q)

Problem 15.   Express the following formula using only ~ and ∧. 

 (P ↓  Q) ↑  R

 where ↓  denotes NOR and ↑  denotes NAND. 

Sol. (P ↓ Q) ↑ R ≅ ~ (P ∨ Q) ↑ R

∵ P ↓ Q ≅ ~ (P ∨ Q)

≅ ~ ((~ P ∨ Q) ∧ R)

∵ P ↑ Q ≅ ~ (P ∧ Q)

≅ ~ ((~ ~ ~ (P ∧ ~ Q)) ∧ R)

∵ P ∨ Q ≅ ~ (~ P ∧ ~ Q)

≅ ~ ((~ (P ∧ ~ Q)) ∧ R)

∵ ~ ~P = P

Note. ↑ (NAND) and ↓ (NOR) are dual of each other. 

Problem 16.  Show that the connective ↑  (Nand) is functionally complete. 

Sol. To show that the connective ↑ is functionally complete. We have to show that the set of connectives (∧, ~) and (∨, ~) can be expressed in terms of ↑ alone that can be expressed as follows:

~ P ≅ ~P ∨ ~ P ≅ ~ (P ∧ P) ≅ P ↑ P

P ∨ Q ≅ ~ (~P ∧ ~ Q) ≅ ~ P ↑ ~ Q ≅ (P ↑ P) ↑ (Q ↑ Q)

and

P∧ Q ≅ ~ (P ↑ Q) ≅ (P ↑ Q) ↑ (P ↑ Q)

Since the above expresses ∧, ∨ and ~ in terms of ↑ alone. Hence ↑ is functionally complete. 

Problem 17.  Prove the validity of following arguments without using truth tables. 

 1.  p ∨  q, ~ p |– q

 2. p, p →  q, q →  r|– r

 3.  p, q, (p ∧  q) →  r |– r

 4. p, (p ∧  ~ q) →  ~ p |– p →  q. 

Sol. 1. ( i)   p ∨  q

(Given)

( ii) ~  p

(Given)

( iii)  q

Disjunctive syllogism
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2. ( i)  p

(Given)

( ii)  p →  q

(Given)

( iii)  q →  r

(Given)

( iv)  p →  r

Hypothetical syllogism using ( ii) and ( iii)

( v)  r

Modus ponens using ( iv) and ( i)

3. ( i)  p

(Given)

( ii)  q

(Given)

( iii) ( p ∧  q) →  r

(Given)

( iv)  p ∧  q

Rule of conjunction using ( i) and ( ii)

( v)  r

Modus ponens using ( iii) and ( iv)

4. ( i)  p

(Given)

( ii) ( p ∧ ~  q) → ~  p

(Given)

( iii) ~  ( p ∧ ~  q)

Modus tollens using ( ii) and ( i)

( iv) ~  ~  ( p →  q)

As ~ ( p →  q) ≅ ( p ∧ ~  q)

( v)  p →  q

Complement property using ( iv). 

Problem 18.  Prove that the argument (p ∧  q) →  r, p →  q |– p → (( p ∧  q) ∧  r) is valid without using truth table. 

Sol. ( i) ( p ∧  q) →  r

(Given)

( ii)  p →  q

(Given)

( iii)  p →  (p ∧  q)

Rule of absorption using ( ii)

( iv) ( p ∧  q) → (( p ∧  q) ∧  r)

Rule of absorption using ( i)

( v)  p → (( p ∧  q) ∧  r)

Hypothetical syllogism using ( iii) and ( iv). 

Problem 19.  Prove that the following arguments are valid without using truth tables. 

 1. (p ∨  q) → ~  r, r ∨  t, p|– t

 2. (p ∧  q) →  r, (r →  q), (r →  q) →  (q ∧  r) |– (p ∧  q) →  (q ∧  r) Sol. 1. ( i) ( p ∨  q) →  ~ r

(Given)

( ii)  r ∨  t

(Given)

( iii)  p

(Given)

( iv)  p ∨  q

Rule of addition using ( iii)

( v) ~  r

Modus ponens using ( i) and ( iv)

( vi)  t

Disjunctive syllogism using ( ii) and ( v)

2. ( i)  p ∧  q →  r

(Given)

( ii)  r →  q

(Given)

( iii) ( r ∧  q) → ( q ∧  r)

(Given)

( iv)  r → ( r ∧  q)

Rule of absorption using ( ii)

( v) ( p ∧  q) → ( r ∧  q)

Hypothetical syllogism using ( i) and ( iv)

( vi) ( p ∧  q) → ( q ∧  r)

Hypothetical syllogism using ( v) and ( iii)
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Problem 20.  Prove the validity of following argument using deduction system. 

( 1)  A →  B

( 2)  B →  ~ C

( 3)  ~ C ∧  D

( 4)  A →  D

∴  B. 

Sol. ( i) A → B

(Given)

( ii) B → ~ C

(Given)

( iii) ~  C  ∧ D

(Given)

( iv) A → D

(Given)

( v) A → ~ C

Hypothetical syllogism using ( i) and ( ii)

( vi) ~ C

Simplification of ( iii)

( vii) ~  A  → C

Transposition of ( iv)

( viii) A

Modus tollens using ( vii) and ( vi)

( ix) B

Modus ponens using ( i) and ( viii)

Problem 21.  Prove the validity of following by deduction method. 

( A) ( i)  P →  Q

 (B) ( i)  P ∨  Q

 (C) ( i)  (Q →  R) ∧  (S →  T)

( ii)  ~ Q ∨  R

( ii)  Q →  R

( ii)  (U →  V) ∧  (W →  X)

( iii)  ~ (R ∧  ~ S)

( iii)  R ∧  S

 (iii) Q ∨  U

( iv)  P

( iv)  P →  S

∴  R ∨  V

∴  S

( v)  P

∴  S

Sol. (A) ( i) P → Q

(Given)

( ii) ~  Q  ∨ R

(Given)

( iii) ~ (R ∧ ~ S)

(Given)

( iv) P

(Given)

( v) Q

Modus ponens using ( i) and ( iv)

( vi)  R ∨ ~ Q

Commutative property using ( ii)

( vii) ~ R

Rule of Modus tollens using ( vi) and ( v)

( viii) ~  R  ∨ S

De Morgan’s Law using ( iii)

( ix) S

Modus ponens using ( viii) and ( vii)

(B) ( i) P ∨ Q

(Given)

( ii) Q → R

(Given)

( iii) R ∧ S

(Given)

( iv) P → S

(Given)

( v) P

(Given)

( vi) S

Modus ponens using ( iv) and ( v)

(C) ( i) (Q → R) ∧ (S → T)

(Given)

( ii) (U → V) ∧ (W → X)

(Given)

( iii) Q ∨ U

(Given)

( iv) (Q → R)

Simplification using ( i)

( v) (U → V)

Simplification using ( ii)

( vi) (Q → R) ∧ (U → V)

Conjunction using ( iv) and ( v)

( vii) R ∨ V

Constructive dilemma using ( vi) and ( iii)
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Problem 22.  Prove the validity of following argument using truth tables. 

 ‘‘If it rains then it will be cold. If it is cold then I shall stay at home. Since it rains therefore, I shall stay at home’’. 

Sol. Let  p  be ‘‘It rains’’ and  q be ‘‘It will be cold’’ and  r be ‘‘I shall stay at home’’. Then the above argument in symbolic form is

 p →  q

 q →  r

 p

∴

 r

Construct the truth table of ( p →  q) ∧ ( q →  r) ∧  p →  r as shown in (Fig. 66). 

 p

 q

 r

 p →  q q →  r ( p →  q) ∧ ( q →  r) ( p →  q) ∧ ( q →  r) ∧  p ( p →  q) ∧ ( q →  r) ∧  p →  r
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Fig. 66

As the last column contain all T’s, hence the argument is valid. 

Problem 23.  Translate the following into symbolic form and test the validity of the argument. 

 If 6 is even then 2 does not divide 7. Either 5 is not prime or 2 divides 7. But 5 is prime, therefore, 6 is odd. 

Sol. Let  p  be ‘‘6 is even’’ and  q be ‘‘2 divide 7’’ and  r be ‘‘5 is prime’’. Thus, the above argument in symbolic form can be written as

 p → ~  q

~  r ∨  q

 r

∴

~  p

Construct the truth table to test the validity as shown in (Fig. 67)

 p

 q

 r

  

 ~ p

  

 ~ q

  

 ~ r

  

 p →  ~ q

 ~ r ∨  q
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In the truth table,  p → ~  q is true in line 3, 4, 5, 6, 7 and 8, ~  r ∨  q is true in line 1, 2, 3, 4, 5 and  r is true in line 1, 4, 5 and 7. All the three are true in line 4 and 5 and ~  p  is true only in line 5. Hence, argument is not valid. 

Problem 24.  Determine the negation of the following statements

( i) ∀  x ∀ y ∀ z,  p(x, y, z)

( ii) ∀  x ∃  ,  p(x, y)

 y

( iii) ∃   

 , p(x, y, z). 

 y ∀  x ∀ z

Sol. ( i) ~ (∀

,   p( x, y, z)) 

  

~  p( x, y, z)

 x ∀ y∀ z

≅ ∃  x ∃ y ∃ z

( ii) ~  (∀   ,  p( x, y)) 

, ~  p( x, y)

 x ∃ y

≅ ∃ x∀ y

( iii) ~  (∃        , p( x, y, z)) 

, ~ p( x, y, z). 

 y ∀ x ∀ z

≅ ∀ y ∃ x ∃ z

Problem 25.  Determine the negation of the following statements

( i) ∃     (p(x) 

 (p(x, y) 

 x ∀ y

∨  q(y))

 (ii) ∀ x ∃ y

→  q(x, y))

( iii) ∀     (p(x) 

 x ∀ y

∧  q(y)). 

Sol.  ( i) ~ (∃ x ∀ , ( p( x) 

~ ( p( x) 

 y

∨  q( y)) ≅ ∀ x ∃ y

∨  q( y))

≅ ∀     (~  p( x) 

 x ∃ y

∧ ~  q( y))

( ii) ~ ∀    ( p( x,  y) 

~ ( p( x,  y) 

 x ∃ y

→  q( x,  y)) ≅ ∃ x ∀ y

→  q( x, y))

( iii) ≅ ∀     ( p ( x) 

~ ( p( x) 

( ~ p( x) 

 x ∀ y

∧  p( y)) ≅ ∃ x ∃ y

∧  p( y)) ≅ ∃ x ∃ y

∨ ~  p( y)). 

Problem 26.  Let U = Q. Use quantifiers to express the following statements

( i)  5  is not rational. 

( ii)  Subtraction of any two rational numbers is rational. 

Sol. ( i) ~(∃  x) ( x 2 = 5)

( ii) (∀ x) (∀ y) ( x –  y is a rational). 

MULTIPLE CHOICE QUESTIONS

1. Which one of the following is false? Read ∧ as AND,  v as OR, ~ as NOT, → as one way implication and ↔ as two way implication. 

( GATE, 1996)

( a) (( x →  y)∧  x) →  y

( b) ((~  x →  y) ∧ (~  x → ~  y)) →  x

( c) ( x → ( x ∨  y))

( d) (( x ∨  y ) ↔ (~  x → ~  y)). 

2. Which of the following proposition is a tautology? 

( GATE, 1997)

( a) ( p ∨  q) →  p

( b)  p ∨ ( q →  p )

( c) p ∨ (p → q )

( d)  p → ( p →  q). 

3. Which of the following is not a proposition? 

( a) India is in Asia

( b) 2 + 2 = 4

( c) The Intel Pentium – III is a 64-bit processor

( d)  X +  Y = 30. 

4. Let  p: He is coward and  q: He is rich. Which of the following is the symbolic form of the statement

“He is neither coward nor rich”? 

( a) ~   (  p ∧  q)

( b) ~  p ∧ ~  q

( c) ~  p ~  q

( d) ~  ( p ∧ ~  q). 
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5. Let  p →  q is a proposition, which of the following is FALSE? 

( a) ~  q → ~  p is contrapositive of  p →  q

( b)  q →  p is converse of  p →  q

( c) ~  p → ~  q is inverse of  p →  q

( d) ~  ( q →  p) is inverse of  p →  q. 

6. The biconditional statement  p ↔  q is equivalent to

( a) ( p →  q) ∧ ( q →  p)

( b) ( p →  q) ∨ ( q →  p)

( c) ( p ∨  q) ∧ ( q →  p)

( d) ( p ∨  q) ∨ (  q →  p). 

7. Which of the following statements is true about the formula? 

( p →  q) ↔ (~  q → ~  p)? 

( a) It is a contradiction

( b) It is contingency

( c) It is tautology

( d) None of these. 

8. Which of the following statement is the negation of the statement “4 is even or – 5 is negative”? 

( a) 4 is odd and – 5 is not negative

( b) 4 is even or – 5 is not negative

( c) 4 is odd or – 5 is not negative

( d) 4 is even and – 5 is not negative

9. Which one is the contrapositive of  q →  p? 

( a)  p →  q

( b) ¬  p →  ¬ q

( c) ¬  q → ¬  p

( d) None of these

10. Let  p be “He is tall” and let  q “He is handsome”. Then the statement “It is false that he is short or handsome” is

( a)  p ∧  q

( b) ~  (~  p ∨  q)

( c)  p ∨ ~  q

( d) ~  p ∧  q. 

11. Which of the following proposition is a tautology? 

( a) ( p ∨  q) →  p

( b)  p ∨ ( q →  p)

( c)  p ∨ ( p →  q)

( d)  p → ( p →  q). 

12. What is the converse of the following assertion? 

I stay only if you go. 

( a) I stay if you go. 

( b) If you do not go then I do not stay

( c) If I stay then you go. 

( d) If you do not stay then you go. 

13. In propositional logic which one of the following is equivalent to  p →  q ( a)  p  →  q

( b)  p →  q

( c)  p  ∨  q

( d)  q ∨  p. 

14. Which of the following statement is the negation of the statement “2 is even or – 3 is negative”? 

( a) 2 is even and – 3 is negative

( b) 2 is odd and – 3 is not negative

( c) 2 is odd or – 3 is not negative

( d) 2 is even or – 3 is not negative. 

15. The statement ( p ∧  q) ⇒  p is a

( a) Contingency. 

( b) Absurdity

( c) Tautology

( d) None of the above

16. [~  q ∧ ( p →  q)] → ~  p is, 

( a) Satisfiable

( b) Unsatisfiable

( c) Tautology

( d) Invalid. 

17.  p →  q  is logically equivalent to

( a) ~  q →  p

( b) ~  p →  q

( c) ~  p ∧  q

( d) ~  p ∨  q. 

18. Which of the following statement is the negation of the statement, “2 is even and – 3 is negative”? 

( a) 2 is even and – 3 is not negative

( b) 2 is odd and – 3 is not negative

( c) 2 is even or – 3 is not negative

( d) 2 is odd or – 3 is not negative. 
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ANSWERS

1. ( c)

2. ( b)

3. ( d)

4. ( b)

5. ( d)

6. ( a)

7. ( c)

8. ( a)

9. ( c)

10. ( b)

11. ( c)

12. ( b)

13. ( c)

14. ( b)

15. ( c)

16. ( c)

17. ( d)

18. ( d)

REVIEW QUESTIONS

1. What is proposition? Give example. 

2. Explain fundamental connectors by giving  examples. 

3. Explain derived connectors by giving examples. 

4. Explain conditional and Bi-conditional connector by giving example. 

5. Write truth tables for fundamental, Derived, conditional and Bi-conditional connectors. 

6. Explain contrapositive, converse and inverse of a conditional statement. 

7. Explain principal of duality by giving example. 

8. What is logical Equivalence of propositions? 

9. What id Tautology? Give example. 

10. What is contradiction? Give example. 

11. What is contingency? Give example. 

12. Explain functionally complete sets of connectives by giving example. 

13. What is argument? 

14. What is valid and  Falacy argument? Give example. 

15. Explain rules of inference. 

16. What is Proof of validity? 

17. What is Normal Form? Why it is used? 

18. Explain various types of Normal forms by giving example. 

19. Explain the steps to obtain DNF of a logical expression. 

20. How you can find DNF of a logical expression using truth table? 

21. Explain the steps to obtain CNF of a logical expression. 

22. How you can find CNF of a logical expression using truth table? 

23. What is first order logic? 

24. What is Existentiol and universal Quantifier? 

25. Explain Negation of quantified propositions. 

26. Explain propositions with multiple Quantifiers. 

CHAPTER END PROBLEMS

1. For each of the following sentences:

( a) Determine if it is a statement; 

( b) If it is a statement, determine whether it is always true, always false, or neither always true nor always false.  (Assume that variables  x and  y  are real numbers)

( c) Rewrite (whenever possible) in terms of simple statements and connectives. 

( i) A non-declarative sentence does not have a truth-value. 

( ii) Some sentences are statements but all statements are sentences. 

( iii) Is a declarative sentence which is either true or false but not both a statement? 

( iv) This sentence is not true. 
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( v)  x = 1 or – 1 if   x 2 = 1

( vi)  x = 1 or – 1 only if   x 2 = 1

( vii)  x = 1 or – 1 if and only if   x 2 = 1

( viii) For all integers  x,  x must be either an even or an odd number. 

( ix) There is a real number  x such that  x is neither a positive nor a negative number. 

( x) There is no smallest positive integer. 

( xi)  x is huge. 

( xii) 1 = 2. 

( xiii) If a number is not divisible by 3 or 4, it is also not divisible by 12. 

( xiv) The sum of the angles of a rectangle is 180 degrees. 

( xv)  x = 2  and   y = 2  implies  xy = 4

( xvi)  xy = 4  implies   x = 2  and   y = 2

( xvii) An apple a day keeps the doctor away. 

( xviii) If it is Saturday morning, turn on the TV and watch the cartoons. 

( xix) I don’t like computing, Mathematics, or Statistics, but Computer Related Mathematics and Statistics rocks. 

( xx) Just do it. 

2. Write in simple English:

~( ~ (  x > 0 ∨  y > 0) ∧ ~(  x < 0 ∨  y < 0)) ≡  x  y ≠ 0

3. If  p and  q are statements, construct truth tables to verify that the following compound statements are tautologies. 

( i) ( p ∧ ( q ∨ ~  q )) ↔  p

( ii) ( p ∧ ( q ∧ ~  q)) ↔ ( q ∧ ~ q )

( iii) ( p ∨ ( q ∨ ~ q)) ↔ ( q ∨ ~ q)

( iv) ( p ∨ ( q ∧ ~ q)) ↔  p

4. If   p,  q, and   r  are statements, construct truth tables to determine whether each of the following compound statements is a tautology, a contradiction, or a contingency. 

( i) ( p ∨ ( q ∨  r))  ↔ ((~ p ∧ (~ q ∧ ~ r)) ( ii) (( p →  q) →  r) → ( p → ( q →  r))

( iii) ~((~ p ∧  q) ∨ ~(~ q ∧  r)) → ( p ∨ ~ r) ( iv)  p ∨ (~ q → ( p ∨ ~ q))

( v) ( p Ù ~( q →  r)) → ( p → (( p ∧ ~ q) →  r)) ( vi)   p → ( ~ p ∨ (~ q →  q))

5. Prove that the following implications are tautologies:

( i) ((  p →  q ) ∧  p ) →   q

( RTU,2009)

( ii)  p ∧  q →    p ∨  q

( RTU,2010)

( iii) ~ p →   ( p →    q)

( RTU,2010)

6. Show that the propositional formula ( p ∧   q)  ∧ ( r ∧  s) →    p for any propositions p, q, r, s is a tautology. 

( RTU, 2010)

7. Prove that the following statement is a tautology:

 A student studied in the VCE finds employment in computer science or information technology.  To find employment in computer science, he must have a good understanding of logic.  However, he does not have a good understanding of logic.  Therefore, he finds employment in information technology. 

8. Using  truth tables prove that the following statement is a tautology:

~(  p ∨ ( ~ q ∨  r)) ⇒ ( ( ~ p ∧  q ) ∧ ~ r )

9. Prove by constructing truth table that:

( p ∨  q ) ∨  r  ↔  p ∨ ( q ∨  r) is a tautology. 

( MDU, 02 ( MCA))
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10. Write a compound statement that is true, when none or one or two of the three statements  p,  q,  r are true. Justify your answer. 

( KUK, 2006)

11. Using truth tables, determine whether the following statement is a tautology, a contradiction, or is contingency:

~((  p ∧ ~ q ) ∨ (  q ∧ ~ p ) ) ⇒ ~(~ p ⇔ ~ q)

12. Prove the following is a fallacy:  ( p ∧  q) ∧ ~ (  p ∨  q) ( RTU, 2009)

13. Write the contrapositive, the converse, and the inverse of the following statement: If today is Easter, then tomorrow is Monday. 

14. Write the meaning of each statement in English. State whether it is true or false. The universe of discourse in each case (for both  x and  y) is the set of all integers greater than or equal to 0. 

( i) ∃ x ∀ y( x >  y)

( ii) ∃ x ∃ y( x + y = 5)

( iii) ∀ x ∃ y ( x <  y – 5). 

15. Given the following argument form, 

If interest rates are going up, stock market prices will go down. 

Interest rates are not going up. 

∴ Stock market prices will not go down. 

( a) Write the argument form in propositional logic. 

( b) Is the following argument form valid or invalid? Explain your answer using a truth table. 

Indicate which columns represent the premises and which the conclusion. 

16. Simplify the following expression:

( p ∧ ( p →  q)) →  q

17. Complete the truth table for each:

 if p then

 p if and only

 p only if q

 p is a sufficient

 p is necessary

 q

 if q

 condition for q

 condition for q

 p

 q

T

T

T

F

F

T

F

F

18. Connect left expression with its equivalent expression on the right by drawing bidirectional arrows:

( i) ~( p →  q)

( a) ~  p ∨  q

( ii) ~( p ∧  q)

( b) ~  p ∨ ~  q

( iii) ~( p ∨  q → ~  q)

( c)  p ∧ ~  q

( iv)      p →  q

( d)  q

19. Consider the statement:

U: If  n and  n 2 + 8 are prime, then  n 3 + 4 and  n 4 + 2 are prime. 

( a) What is the converse statement of U? 

( b) What is the contrapositive statement of U? 

20. Write in English the converse of the following assertion:

“If I go to the station, I will take the train, unless I am late.” 

21. Write in English the negation of the following assertion:

“The sum of any two odd integers is an even integer.” 

22. Prove that ( p ∨  q) ⇒ ( p ∧  q) is logically equivalent to  p ⇔  q. 
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23. Write down statement in symbolic form

Let  p be “sam is rich” and let  q be “sam is happy”. (Assume “sam is poor” means “sam is not rich”, i.e., ~ p). 

( a) Sam is poor but happy. 

( b) Sam is neither rich nor happy

( c) Sam is either rich or unhappy. 

( d) Sam is poor or else he is rich and unhappy. 

24. Prove the following proposition using the method of proof by contraposition:

For all integers  n, if  n 2 is even then  n is even. 

25. Prove that for any propositions  p,  q,  r, the compound proposition

{ p → ( q →  r)} → {( p →  q) → ( p →  r)} is a tautology. 

( b) Prove the following logical equivalences without using truth tables

( i)  p ∨ [ p ∧ ( p ∨  q)]  ⇔  p, 

( ii) [(¬  p ∨  ¬  q) → ( p ∧  q ∧  r)] ⇔   p ∧  q ( VTU Jul ’07) 26. For any statements  p,  q, prove that:

( i) ¬  ( p ↓  q) ⇔ (¬  p ↑ ¬  q), 

( ii) ¬  ( p ↑  q) ⇔ (¬  p ↓ ¬  q), 

( VTU Jul ’07)

27. Let  p and  q be primitive statements for which  p →  q is false. Determine the truth value of the following:

( i)  p ∧  q, 

( ii) ¬  p ∨  q, 

( iii)  q →  p, 

( iv) ¬  q → ¬  p

28. Prove the following logical equivalences without using truth tables

( p →  q) ∧ [¬  q ∧ ( r ∨ ¬  q)] ⇔ ¬ ( q ∨  p) ( VTU Jan ’07)

29. Given statements  p and  q, show that ( p ∨  q) ↔ ( q ∨  p) is a tautology. 

( VTU Jul ’06)

30. If statement  q has truth value 1, determine the truth value assignments for the statements  p,  r and  s for which the truth value of the following statement is 1:

[ q → {(¬  p ∧  r) ∧ ¬  s}]  {¬  s → (¬  r ∧  q)}

( VTU Jan ’06)

31. ( a) Prove for any propositions  p,  q,  r : [( p →  q) ∧ ( q →  r)] → ( p →  r) is a tautology. 

( b) Prove without using truth tables

( i)  p ∨ [ p ∧ ( p ∨  q)] ⇔  p, 

( ii) ¬ [¬ {( p ∨  q) r}  ∨ ¬  q] ⇔  q ∧  r. 

( VTU Jan ’06)

32. Prove that [( ¬ p ∨  q) ∧ { p ∧ ( p ∧  q)}] ⇒  p ∧  q. Hence deduce that [(¬  p ∧  q) ∨ { p ∨ ( p ∨  q)}] ⇔  p ∨  q. 


( VTU Jul ’05)

33. Simplify the following statements using laws of logic:

( i) ( p ∨  q) ∧ ¬ (¬  p ∨  q)

( ii) ¬ [¬ {( p ∨  q) ∧  r} ∨ ¬  q]                          ( VTU Jan ’05) 34. Test the validity of the following argument:

I will become famous or I will not become a musician. 

I will become a musician. Therefore, I will become famous. 

( VTU Jul ’07)

35. Examine the validity of following argument:

If prices are higher than wages are high. Prices are high or there are price

controls. If there are price controls then there is not an inflation, there is an

inflation, therefore wages are high. 

( RTU 09,11)

36. Find whether the following argument is valid:

No engineering student of first or second semester studies logic. 

Anil is an engineering student who studies logic. 

Therefore Anil is not in second semester. 

( VTU Jan ’07)

37. Consider the following argument:

I will get grade A in this course or I will not graduate. 

If I do not graduate, I will join the army. 

I got grade A. Therefore, I will not join the army. 

( VTU Jul ’06)
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38. Test whether the following argument is valid:

If interest rates fall, then the stock market will rise. 

The stock market will not rise. Therefore, the interest rates will not fall. 

( VTU Jan ’06)

39. Check the validity of the following argument:

( RTU 2010)

Lions are dangerous animals. 

There are lions. 

Therefore, there are dangerous animals. 

40. Test whether the following argument is valid:

If I drive to work, then I will arrive tired. 

I am not tired (when I arrive at work). Hence I do not drive to work. 

( VTU Jul ’05)

41. If a band could not play rock music or the refreshments were not delivered on time, then the New Year’s party would have been cancelled and Alicia would have been angry. If the party were

cancelled, then refunds would have to be made. No refunds were made, therefore the band could

play rock music. Convert the given arguments into symbolic form and establish the validity of the arguments. 

( VTU Jan ’05)

42. Check the validity of the following argument:

( RTU 2009)

 p ∨  q

 p → ~ q

 p →  r

Therefore, 

 r

43. ( a) Write down the following propositions in symbolic form and find their negation: ( i) If all triangles are right angled, then no triangle is equiangular

( ii) For all integers  n, if  n is not divisible by 2, then  n is odd. 

( b) Prove that the following argument is valid for open statements  p( x),  q( x),  r( x):

∀  x [ p( x) →  q( x)]; ∀ x[ q( x) →  r( x)]; ∴ ∀  x [ p( x) →   r( x)]

( VTU Jul ’07)

44 . Prove that for all integers  k and l, if  k and l are both odd, then  k + l is even and  k.l is odd. 

( VTU Jan ’07)

45. Given  R( x,  y):  x +  y is even and the variables x and y are integers. Write a sentence for each of the following: ∀  x ∃  y R( x,  y) and ∃  x ∀  y R( x,  y) ( VTU Jul ’06)

46. Consider the following open statements with the set of all real numbers as universe: p( x):  x ≥ 0;  q( x):  x 2 ≥ 0 ;  r( x) :  x 2 – 3 x – 4 = 0;  s( x) :  x 2  – 3 > 0, then find the truth values of the following statements:

( i) ∃ x [ p( x) ∧  r( x)], 

( ii) ∀ x [ p( x) →  q( x)], 

( iii) ∀ x [ q( x) →  s( x)]. 

( VTU Jan ’06)

47. For the universe of all people, find whether the following is a valid argument:

All mathematics professors have studied calculus. 

Ramanujan is a mathematics professor. 

Therefore, Ramanujan has studied calculus. 

( VTU Jan ’06)

48. ( a) Give ( i) a direct proof, ( ii) an indirect proof, ( iii) a proof by contradiction, for

“If  n is an odd integer, then ( n + 9) is an even integer.” 

( b) For the universe of all students,  find whether the following is a valid argument: No engineering student is bad in studies. 

Ram is not bad in studies. 

Therefore, Ram is an engineering student. 

( VTU Jul ’06)

49. Let  p,  q,  r be propositions. Prove that (( p →  q) ∧ ( q →  r)) → ( p →  r) is a tautology. 

50. Let  p,  q,  r  be positions. Which of the following statements are true? 

( a) ( p ∧  q) → ( p ∨  q) is a tautology. 

( b) ( p ∧  q) → ( p ⊕  q) is a tautology. 
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( c) ( p ∨  q) → ( p ∧  q) is logically equivalent to  p ↔  q. 

( d) ( p ⊕  q) → ( p ∧  q) is logically equivalent to  p ↔  q. 

( e) ( p →  q) ∧ ( q →  r) is logically equivalent to ( p →  q) ∧ ( p →  r). 

( f) ( p →  q) →  r is logically equivalent to ( p ∧  q) →  r. 

( g) ¬  p → ( q →  r) is logically equivalent to  q → ( p ∨  r). 

( h)  p → ( q ∨  r)  is logically equivalent to ( p ∧ ¬  q) →  r. 

( i) ¬  p → ( q ∨  r) is logically equivalent to ¬  q ( p ∨  r). 

( j) ( p ↓  q) ↓  r is logically equivalent to  p ↓ ( q ↓  r). 

51. Let  p,  q, r,  s,  t stand for the following propositions. 

 p: The program terminates. 

 q: The program gives correct output. 

 r: The program is syntactically correct. 

 s: The program has bugs. 

 t: The correct algorithm is implemented. 

Consider the statement P: “If the program terminates, but gives incorrect output, then the program is syntactically correct, but either the program has bugs or the correct algorithm is not

implemented.” 

( a) Write P as a logical proposition involving  p,  q,  r,  s,  t. 

( b) Write in English the negation of P. 

( c) Write in English the contrapositive of P. 

( d) Write in English the coverse of P. 

( e) Write in English the inverse of P. 

( f) Write the following statement as a logical proposition: “Although the program has bugs, it terminates and gives the correct output.” 

( g) Write the following statement as a logical proposition: “Since the program has bugs, it either does not terminate or does not give the correct output.” 

52. Let P( x), Q( x) be predicates. Prove or disprove:

( a) (∀ x) [P( x) → Q( x)] ≡ (∀ x) [P( x)] → (∀ x) [Q( x)]. 

( b) (∀ x) [P( x)→ Q( x)] = (∃ x) [P( x)] → (∀ x) [Q( x)]. 

53. Consider the following predicates. 

A( x) : Program  x implements the correct algorithm. 

B( x) : Program  x has bugs. 

C( x,  y) : Program  x gives correct output upon input  y. 

D( x,  y) : Program  x halts upon input  y. 

Express the following general statement about a program: “If any program that gives correct

outputs on all possible inputs implements the correct algorithm, then for some input any buggy program either does not halt or gives incorrect output.” Write in English the negation, the

contrapositive and the converse of the above statement. 

54. Let  p,  q, r  be propositions. Which of the following statements are true? 

( a)  p ⇒  q is equivalent to ¬  p ∨  q. 

( b) ( p ⇒  q) ∧ ( q ⇒  r) is equivalent to  p ⇒  r. 

( c) ( p ⇒  q) ∧ ( q ⇒  r) is equivalent to ( p ⇒  q) ∧ ( p ⇒  r). 

( d)  p ⇒ ( q ⇒  r) is equivalent to ( p ∧  q) ⇒  r. 

( e) ¬  p ⇒ ( q ⇒  r) is equivalent to  q ⇒ ( p ∨  r). 

55. Determine the true or false statements from the following statements. If False write the correct statement. 

( i) A conditional statement is not logically equivalent to its contrapositive. 

( ii) A conditional statement and its converse are logically equivalent. 
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( iii) “∀ x,  r( x) is a  sufficient condition for  s( x)” means “∀ x, if  s( x) then  r( x)”. 

( iv) “∀ x,  r( x) is a  necessary condition for  s( x)” means “∀ x, if ~ r( x) then ~ s( x).” 

( v) “∀ x,  r( x)  only if  s( x)” means “x, if ~ s( x) then ~ r( x).” 

56. Write the each of the following statements in symbols using quantifiers and variables. 

( i) Any odd natural number is twice some natural number minus one. 

( ii) All students in CSE can correctly solve some assigned problems. 

( iii) Everybody loves somebody but nobody loves everybody. 

57. Write the each of the following statements in words with and without using quantifiers or variables. 

( i) ∀ n ∈ ∧ ( n is even → ∃ k ∈ ∧ ( n = 2 k)). 

( ii) ∃S (S is a student in CSE ∧ ∀P (P is an assigned problem → S can correctly solve P)) ( iii) ∀ lecturers L, ∃ student S (L thinks they know more than S)

∧∃ student S, ∀ lecturers L (S thinks they know more than L)

58. Write in predicate calculus notation using quantifiers and variables:

The sum of any two integers is also an integer. 

59. Write in simple English with and without using quantifiers or variables:



∃ x ∈ R,  ∀ y ∈ R ( x ≥  y)

60. Let L( x,  y) be the propositional function “x loves  y”. The universe of discourse is the set of all living people. Write each of the following propositions symbolically:

( a) Somebody loves everybody. 

( b) Everybody loves everybody. 

( c) Somebody loves somebody. 

( d) Everybody loves somebody. 

61. Convert the following formulas into CNF and DNF. 

( a)  p → ( q ∧  r)

( b) ( p ∨  q) →  r

( c) ~  (~ p ∨  q) ∨ ( r → ~  r)

( d) ~  (( p → ( q →  r))) → (( p →  q) → ( p →  r)) ( e)  p ∨ (~ q ∧ ( r → ~ p)))

( f) ~ ((( a →  b) →  a) →  a)

( g) ~  ( a ∨ ( a →  b)

ANSWERS AND HINTS TO CHAPTER END PROBLEMS

1. ( i) Statement, ~p

( iv) Not a statement. 

( vii) Statement,    (P ∨ Q) ↔ R

( x) Statement, ~P

( xiii) Statement,  ~(P ∨ Q) → ~R

( xvii) Simple statement, neither always true nor always false

( xx) Not a statement

3. All ( i), ( ii), ( iii) and ( iv) are tautologies. 

4. ( i) Contradiction

( ii) Tautology

( iii) Contingency

( iv) Tautology

( v) Tautology

( vi) Contingency

7. It is a tautology and is a valid  argument. 

56.  ( i)   ∀ n ∈ ⊆ ( n is odd →  ∃ k ∈ ⊆ ( n = 2 k – 1)) ( ii) ∀ student in CSE, ∃ assigned problem  p ( s can correctly solve  p) ( iii) ∀ people  x ∃ person  y ( x dislikes  y) ∧ ~ ∃ person  x, “people  y ( x loves  y)” 

57. ( i) Without quantifiers and variables:   Any even integer is twice some integer. 

With quantifiers and variables: For all integers  n, if  n is even then there exists an integer   k such that   n = 2 k. 

C H A P T E R

2

 Algebraic Structures

PREVIEW

There are many types of algebraic structures namely semigroups, monoids, groups rings, 

fields etc. An algebraic structure will have an underlying set, binary operations, unary operations, and constants. The algebraic structures have some properties like commutativity, asso-

ciativity, identity elements, inverse elements, and distributivity etc. The different kinds of structures will have different operations and properties. The algebraic structures are abstrac-tions and for each kind of structure there will be more than one example. Lagrange’s theorem

is about finite groups and their subgroups. The theorem is named after Joseph-Louis Lagrange. 

There are some algebraic structures which have more than one binary operation. Rings and

fields have addition, subtraction and multiplication operations. In a field, division is  also possible. Rings were studied in the 1800s. Noether gave general concept of commutative ring

in 1921 which was later generalized to include non-commutative rings. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

• understand the concept of binary operations and their properties

• understand the concept of semigroups, subsemigroups, free semigroups, product of

semigroups, congruence relation and monoids

• understand the concept of groups, their properties, finite and infinite group, order of

group, subgroup, abelian group and product of groups

• understand the concept of cyclic  groups, their properties and their type

• understand the concept of cosets, Lagrange’s theorem and Normal subgroup

• understand the concept of Homomorphism, isomorphism and automorphism

• understand the concept of permutation groups and operations

• understand the concept of rings, types of rings, sub-rings, integral domain and fields. 
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2.1

INTRODUCTION

In the year 1850’s Cayley gave the general definition for a group. A group is one of the

fundamental objects of study in the field of mathematics known as abstract algebra. A group

consists of a set of elements and an operation that takes any two elements of the set and forms another element of the  set in such a way that certain conditions are met. 

Group theory many applications in mathematics, science, and engineering. Many algebraic

structures such as rings, integral domain, ideals and fields my be defined concisely in terms of groups. A group is an algebraic structure consisting of a set together with an operation that

combines any two of its elements to form a third element. 

Groups having ability to represent geometric transformations find applications in chemistry, 

computer graphics, and other fields. This chapter explains basic concepts of groups, types of

groups, properties of groups, Lagrange’s theorem, cosets, permutation and cyclic groups, rings, integral domain and fields. 

2.2

DEFINITION

If there exists a system such that it consists of a non-empty set and one or more opera-

tions on that, set, then that system is called an algebraic system. It is generally denoted by (A,  op ,  op , ...,  op ), where A is a non-empty set and  op ,  op , ...,  op  are operations on A. 

1

2

 n

1

2

 n

An algebraic system is also called an algebraic structure because the operations on the

set A define a structure on the elements of A. 

 N-ARY Operation

A function  f : A × A × ... A → A is called an  n-ary operation. 

2.3

BINARY OPERATION

Consider a non-empty set A and a function  f such that  f : A × A → A is called a binary operation on A. If ∗ is a binary operation on A, then it may be written as  a ∗  b. 

A binary operation can be denoted by any of the symbols +, –, ∗, ⊕, Δ,  , ∨, ∧ etc. 

The value of the binary operation is denoted by placing the operator between the two

operands. 

 e.g., 

( i) The operation of addition is a binary operation on the set of natural numbers. 

( ii) The operation of subtraction is a binary operation on set of integers. But, the operation of subtraction is not a binary operation on the set of natural numbers because the sub-

traction of two natural numbers may or may not be a natural number. 

( iii) The operation of multiplication is a binary operation on the set of natural numbers, set of integers and set of complex numbers. 

( iv) The operation of set union is a binary operation on the set of subsets of a universal set. Similarly, the operation of set intersection is a binary operation on the set of subsets of a universal set. 
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2.4 TABLES OF OPERATION

Consider a non empty finite set A = { a ,   a ,   a , ...,  a }. A binary operation * on A can be 1

2

3

 n

described by means of a table as shown in Fig. 1. 

∗

 a

 a

 a

 a

1

2

3

 n

 a

 a

1

1∗ a 1

 a

 a

2

2∗ a 2

 a

 a

3

3∗ a 3

 a

 a

 n

 n∗ an

Fig. 1.  Table of operation. 

The entry in the  j th row and  k th column represent the element  a

. 

 j∗ ak

Example 1.  Consider the set A = {1, 2, 3} and a binary operation ∗  on the set A defined by a ∗  b = 2a + 2b. 

 Represent operation ∗  as a table on A. 

Sol. The table of the operation is shown in Fig. 2. 

∗

1

2

3

1

4

6

8

2

6

8

10

3

8

10

12

Fig. 2.  Operation * as a table on A. 

2.5 PROPERTIES OF BINARY OPERATIONS

There are many properties of the binary operations which are as follows :

2.5.1 Closure Property

Consider a non-empty set A and a binary operation * on A. Then A is closed under the

operation *, if  a *  b ∈ A, where  a and  b are elements of A. 

 e.g.,  The operation of addition on the set of integers is a closed operation. 

Example 2.  Consider the set A = {– 1, 0, 1}.   Determine whether A is closed under ( i)  addition ( ii)  multiplication. 

Sol. ( i) The sum of the elements is (– 1) + (– 1) = – 2 and 1 + 1 = 2 does not belong to A. 

Hence A is not closed under addition. 

( ii) The multiplication of every two elements of the set are

– 1 * 0 = 0; 

– 1 * 1 = – 1; 

– 1 * – 1 = 1

0 * – 1 = 0; 

0 * 1 = 0; 

0 * 0 = 0

1 * – 1 = – 1; 

1 * 0 = 0; 

1 * 1 = 1

Since, each multiplication belongs to A hence, A is closed under multiplication. 

ALGEBRAIC STRUCTURES

M-3.61

Example 3.  Consider the set A = {1, 3, 5, 7, 9, ...}, the set of odd +ve integers. Determine whether A is closed under ( i)  addition ( ii)  multiplication. 

Sol.  ( i) The set A is not closed under addition because the addition of two odd numbers always produces an even number which does not belong to A. 

( ii) The set A is closed under the operation multiplication because the multiplication of two odd numbers produces an odd number. So, for every  a,  b ∈ A, we have  a *  b ∈ A. 

2.5.2

Associative Property

Consider a non-empty set A and a binary operation * on A. Then the operation * on A is

associative, if for every  a,   b,  c ∈ A, we have ( a *  b) *  c =  a* ( b *  c). 

Example 4.  Consider the binary operation * on Q, the set of rational numbers, defined by a * b = a + b – ab, ∀  a, b ∈  Q. Determine whether * is associative. 

Sol. Let us assume elements  a, b, c ∈ Q, then by definition

( a *  b) *  c = ( a +  b –  ab) *  c = ( a +  b –  ab) +  c – ( a +  b –  ab) c

  = a +  b –  ab +  c –  ca –  bc +  abc =  a +  b +  c –  ab –  a c –  bc +  abc. 

Similarly, we have

  a 

* ( b *  c) =  a +  b +  c –  ab –  ac –  bc +  abc Therefore, 

( a *  b) *  c =  a * ( b * c). 

Hence * is associative. 

2.5.3

Commutative Property

Consider a non-empty set A and a binary operation * on A. Then the operation * on A is

commutative, if for every  a,  b ∈ A, we have  a * b =  b * a. 

Example 5.  Consider the binary operation * on Q, the set of rational numbers, defined by   a * b = a2 + b2, ∀  a, b ∈  Q. 

 Determine whether * is commutative. 

Sol. Let us assume elements  a,  b ∈ Q, then by definition

    a *  b =  a 2 +  b 2 =  b *  a

Hence * is commutative. 

Example 6.  Consider the binary operation * and Q, the set of rational numbers

 defined by

 ab

    a * b = 

, 

 2

∀  a, b ∈  Q. 

 Determine whether * is ( i)  associative ( ii)  commutative. 

Sol. ( i) Let  a,  b ∈ Q, then we have

 ab

    a *  b =  2  =  b *  a

Hence * is commutative. 
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( ii) Let  a,  b,  c  ∈ Q, then by definition we have

F

 ab

 ab

.  c

2

 abc

( a *  b) *  c = HG I

2 KJ  *  c =  2  =  4

 abc

F bc

2

 abc

Similarly, 

  a * ( b *  c) =  a * HG I

2 KJ  =  2  =  4

Therefore,      (  a *  b)  *  c =  a * ( b *  c) Hence, * is associative. 

2.5.4 Identity

Consider a non-empty set A and a binary operation * on A. Then the operation * has an

identity property if there exists an element,  e, in A such that

 a *  e (right identity) =  e *  a (left identity) =  a, ∀  a ∈ A. 

Theorem I.  Prove that e1′ =  e1″ , where e1′  is a right identity and e1″  is a left identity of a binary operation. 

Proof. We know that  e 1′ is a right identity. 

Hence, 

        e 1″ *  e 1′ =  e 1″

...( i)

Also, we know that  e  is a left identity. 

1″’

Hence, 

        e 1″ *  e 1′ =  e 1′

...( ii)

From ( i) and ( ii), we have  e 1′ =  e 1″. 

Thus, we can say that if  e is a right identity of a binary operation then  e is also a left identity or there is no left identity. 

Example 7.  Consider the binary operation * on I , the set of positive integers defined by

 + 

 ab

    a * b = 

 . 

 2

 Determine the identity for the binary operation *, if exists. 

Sol. Let us assume that  e be a +ve integer number, then

    c *  a =  a, ∀  a ∈ I+

 ea

or



=  a  or  e = 2

...( i)

2

Similarly, 

    a *  e =  a, ∀  a ∈ I+

 ae

or



=  a  or  e = 2

...( ii)

2

Form ( i) and ( ii) for  e = 2, we have  e *  a =  a *  e =  a Therefore, 2 is the identity element in I  for 

+

∗. 

2.5.5

Inverse

Consider a non-empty set A and a binary operation * on A. Then operation * has the

inverse property if for each  a ∈ A, there exists an element  b in A such that

 a ∗  b (right inverse) =  b ∗  a (left inverse) =  e, where  b is called an inverse of  a. 
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2.5.6

Idempotent

Consider a non-empty set A and a binary operation * on A. Then the operation * has the

idempotent property, if for each  a ∈ A, we have

     a ∗  a =  a, ∀  a ∈ A. 

2.5.7 Distributivity

Consider a non-empty set A and two binary operations * and + on A. Then the operation *

distributes over +, if for every  a,  b,  c ∈ A, we have

      a ∗ ( b +  c) = ( a ∗  b) + ( a ∗  c)

[Left distributivity]

and

( b +  c) ∗  a = ( b ∗  a) + ( c ∗  a)

[Right distributivity]

2.5.8 Cancellation

Consider a non-empty set A and a binary operation * on A. Then the operation * has the

cancellation property, if for every  a,  b,  c ∈ A, we have

    a ∗  b =  a ∗  c ⇒  b =  c

[Left cancellation]

and

    b ∗  a =  c ∗  a ⇒  b =  c

[Right cancellation]

2.6

SEMIGROUP

Let us consider, an algebraic system (A, ∗), where ∗ is a binary operation on A. Then, 

the system (A, ∗) is said to be a semi-group if it satisfies the following properties :

1. The operation * is a closed operation on set A. 

2. The operation * is an associative operation. 

Example 8.  Consider an algebraic system ( A, ∗) , where A = {1, 3, 5, 7, 9, ...}, the set of all positive  odd  integers  and ∗  is  a  binary operation means multiplication. Determine whether ( A, ∗)  is a semi-group. 

Sol. Closure property. The operation ∗ is a closed operation because multiplication of

two +ve odd integers is a +ve odd number. 

Associative property. The operation ∗ is an associative operation on set A. Since for

every  a, b, c ∈ A, we have

( a ∗  b) ∗  c =  a ∗ ( b ∗  c)

Hence, the algebraic system (A, ∗) is a semigroup. 

Example 9.  Consider the algebraic system ({0, 1}, ∗ ), where ∗  is  a multiplication operation. Determine whether ({0, 1}, ∗ ) is a semigroup. 

Sol. Closure property. The operation * is a closed operation on the given set since

0 ∗ 0 = 0; 0 ∗ 1 = 0; 1 ∗ 0 = 0; 1 ∗ 1 = 1. 

Associative property. The operation * is associative since we have

( a ∗  b) ∗  c =  a ∗ ( b ∗  c), ∀  a,  b,  c Since, the algebraic system is closed and associative. Hence, it is a semi-group. 
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Example 10.  Let  (A, ∗ )  be  semi-group.  Show  that  for  a, b, c in A, if a ∗  c = c ∗  a and b ∗  c = c ∗  b, then (a ∗  b) ∗  c = c ∗  (a ∗  b). 

Sol. Take L.H.S., we have

( a ∗  b) ∗  c

⇒  a ∗ ( b ∗  c)

[∵ ∗ is associative]

⇒

 a ∗ ( c ∗   b)

[∵  b ∗  c =  c ∗  b]

⇒

( a ∗  c) ∗  b

[∵ ∗ is associative]

⇒

( c ∗  a) ∗  b

[∵  a ∗  c =  c ∗  a]

⇒

 c ∗ ( a ∗  b)

[∵ ∗ is associative]

Which is equal to R.H.S. 

Hence, 

( a ∗  b) ∗  c =  c ∗ ( a ∗  b). 

2.6.1

Subsemigroup

Consider a semigroup (A, ∗) and let B ⊆ A. Then the system (B, ∗) is called a subsemigroup, 

if the set B is closed under the operation ∗. 

 e.g.,  Consider a semigroup (N, +), where N is the set of all natural numbers and + is an addition operation. The algebraic system (E, +) is a subsemigroup of (N, +), where E is a set of all

+ve even integers. 

2.6.2

Free Semigroup

Consider a nonempty set A = { a ,   a , ......,  a }. 

1

2

 n

Now A* is the set of all finite sequences of elements of A,  i.e.,  A* consists of all words that can be formed from the alphabet of A. 

If α, β and γ are any elements of A*, then α • (β • γ) = (α • β) • γ. 

Here • is a concatenation operation, which is an associative operation as shown above. 

Thus (A*, •) is a semigroup. This semigroup (A*, •) is called the free semigroup gener-

ated by set A. 

2.6.3 Product of Semigroup

Theorem II.  If ( S , *)  and ( S , *)  are semigroups, then ( S  × S ,   *)  is a semigroup, where 1

 2

 1

 2

*  is defined by ( s1′,  s 2′) ∗ ( s1″ , s2″ )  = ( s 1′ ∗  s 1″,  s 2′ ∗  s 2″). 

Proof. The semigroup S  × S  is closed under the operation*. 

1

2

Associativity of *. Let  a,  b,  c ∈ S  × S

1

2

So, 

  a ∗ ( b ∗  c) = ( a ,  a ) 

,  b ) 

,  c ))

1

2 ∗ (( b 1

2 ∗ ( c 1

2

= ( a ,   a ) 

 c ,  b     c )

1

2 ∗ ( b 1.∗1  1

2 ∗2 2

= ( a    ( b     c ),  a    ( b

 c )

1 ∗1

1 ∗1 1

2 ∗2

2∗2 2

= (( a     b )    c , ( a     b )    c )

1 ∗1

1 ∗1 1

2 ∗2

2 ∗2 2

= ( a     b ,  a     b ) 

,  c )

1 ∗1

1

2 ∗2

2 ∗ ( c 1

2

= (( a ,  a ) 

,  b )) 

,  c )

1

2 ∗ ( b 1

2

∗ ( c 1 2

= ( a ∗  b) ∗  c. 

Since ∗ is closed and associative. Hence S  × S  is a semigroup. 

1

2
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2.7 CONGRUENCE RELATION

An equivalence relation R on the semigroup (S, *) is called a congruence relation if

 a R a′ and  b R b′

⇒

( a ∗  b) R ( a′ ∗  b′)

Example 11.  Let ( I, +)  be a semigroup and R is an equivalence relation on I defined by aRb iff a ≅  b ( MOD 3) . 

Sol. If   a  and   b  yield  the  same  remainder when divided by 3, then we have 3 divides 3

 a –  b  i.e.,  

. 

( a − )

 b

Now, if  a ≅  b (MOD 3) and  c ≅  d (MOD 3) then 3 divides  a –  b and 3 divides  c –  d. 

Thus, we can write   a –  b = 3 m

...( i)

and

    c –  d = 3 n

...( ii)

Here  m  and  n are some integers of I. 

Adding eqns. ( i) and ( ii), we have

( a –  b) + ( c –  d) = 3 m + 3 n  or ( a +  c) – ( b +  d) = 3( m +  n) or

    a +  c =  b +  d (MOD 3)

Thus, the relation is a congruence relation. 

Example 12.  Consider the set A = {a, b}. Let (A*, •) is the semigroup generated by A, also let R is a relation on A defined by  α R β  iff  α  and  β  have the same number of a’s. 

 Show whether the relation R is a congruence relation on ( A*, •). 

Sol. First of all we will show that R is an equivalence relation. So, for that we will check reflexive, symmetric and transitive properties of the relation R. 

Reflexive. As αRα for every α ∈ A* since α has same number of  a’s as itself. Thus, R is reflexive. 

Symmetric. If α and β have same number of  a’s, then αRβ or we can say βRα. Thus, R

is symmetric. 

Transitive. If αRβ, it means α and β have same number of  a’s. If βRγ, it means β and γ

have same number of  a’s. It implies α and γ have same number of  a’s  i.e.,  αRγ. Thus, R is transitive. 

Hence, R is an equivalence relation. 

To show that R is a congruence relation, let us assume that αRα  and 

. It means 

1

βRβ1

α

and α  have same number of  a’s and 

have same number of  a’s. We know that the

1

β and β1

number of  a’s in α • β is the sum of number of  a’s in α and the number of  a’s in β. 

From the above discussion, we can say that the number of  a’s in α • β is same as in α • . 

1

β1

Hence (α • β) R (α •  )

1 

β1

which shows that R is a congruence relation. 

Example 13.  Consider  the  semigroup  ( I, +),   where  +  is  an  addition operation. Let f( x) =  x 2 –  2x – 3 and also let R is a relation on I defined by aRb iff f( a) =  f( b). 

 Show whether R is a congruence relation. 

Sol. It can be easily shown that the relation R is an equivalence relation on the set I. 
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To check whether R is congruence relation or not, we will try to find two pair of numbers

 a R b and  c R d but ( a +  b)  /R  ( c +  d) if possible. Then we will say R is not a congruence relation. 

Thus, we have

2 R 0

 i.e., 

 f(2) =  f(0) = – 3

and

 –  2 R 4

 i.e., 

 f(– 2) =  f(4) = 5

But (2 + (– 2))  /R (0 + 4)  i.e.,  0  /R 4

As      f(0) = – 3 and  f(4) = 5

Hence, R is not a congruence relation. 

2.8

MONOID

Let us consider an algebraic system (A,  o), where  o is a binary operation on A. Then the system (A,  o) is said to be a monoid if it satisfies the following properties. 

( i) The operation  o is a closed operation on set A. 

( ii) The operation  o is an associative operation. 

( iii) There exists an identity element w.r.t. the operation  o. 

Example 14.  Consider an algebraic system (N, +), where the set N = {0, 1, 2, 3, 4, ...} the set of natural numbers and + is an addition operation. Determine whether (N, +) is a monoid. 

Sol. Closure property. The operation + is closed since sum of two natural numbers is

a natural number. 

Associative property. The operation + is an associative operation since we have

( a +  b) +  c =  a + ( b +  c), ∀  a, b, c  ∈ N. 

Identity. There exists an identity element in set N w.r.t. the operation +. The element 0 is an identity element w.r.t. the operation +. Since, the operation + is a closed, associative and there exists an identity. Hence, the algebraic system (N, +) is a monoid. 

2.8.1 Submonoid

Let us consider a monoid (M,  o), also let S ⊆ M. Then (S,  o) is called a submonoid of (M,  o), if and only if it satisfies the following properties. 

( i) S is closed under the operation  o. 

( ii) There exists an identity element  e ∈ S. 

For example.    Let us consider, a monoid (M, *),where * is a binary operation and M is a set of all integers. Then (M , *) is a submonoid of (M, *), where M  is defined as

1

1

M  = { ai| i is from 0 to  n, a positive integer and  a 

1

∈ M}. 

2.9 GROUPS

Let us consider an algebraic system (G, *), where * is a binary operation on G. Then the

system (G, *) is said to be a group if it satisfies following properties. 

( i) The operation * is a closed operation. 

( ii) The operation * is an associative operation. 

( iii) There exists an identity element w.r.t. the operation *. 
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( iv) For every  a ∈ G, there exists an element  a– 1 ∈ G such that

  a– 1 *  a =  a *  a– 1 =  e

For example. The algebraic system (I, +), where I is the set of all integers and + is an addition operation, is a group. The element 0 is the identity element w.r.t. the operation +. 

The inverse of every element  a ∈ I is –  a ∈ I. 

Example 15.  Determine whether the algebraic system ( Q, +)  is a group where Q is the set of all rational numbers and + is an addition operation. 

Sol. Closure property. The set Q is closed under operation +, since the addition of two rational numbers is a rational number. 

Associative Property. The operation + is associative, since ( a +  b) +  c =  a + ( b +  c), ∀

 a, b, c ∈ Q. 

Identity. The element 0 is the identity element. Hence  a + 0 = 0 +  a =  a ∀  a ∈ Q. 

Inverse. The inverse of every element  a ∈ Q is –  a ∈ Q. Hence the inverse of every element exists. 

Since, the algebraic system ( a,  +) satisfy all the properties of a group, hence ( a,  +) is a group. 

Example 16.  Consider an algebraic system ( Q, *),   where Q is the set of rational numbers and * is a binary operation defined by

    a * b = a + b – ab,   ∀  a, b ∈  Q. 

 Determine whether ( Q, +)  is a group. 

Sol. Closure property. Since the element  a,  b ∈ Q for every  a, b ∈ Q, hence, the set Q

is closed under the operation *. 

Associative property. Let us assume  a, b, c ∈ Q, then we have

( a ∗  b) ∗  c = ( a +  b –  ab) ∗  c

= ( a +  b –  ab) + c  – ( a +  b –  ab) c

=  a +  b –  ab +  c –  ac –  bc +  abc

=  a +  b +  c –  ab –  ac –  bc +  abc

Similarly, 

  a ∗ ( b∗  c) =  a +  b +  c –  ab –  ac –  bc +  abc. 

Therefore, 

( a ∗  b) ∗  c =  a ∗ ( b ∗  c)

∴ * is associative. 

Identity. Let  e is an identity element. Then we have  a ∗  e =  a, ∀  a ∈ Q

∴

 a +  e –  ae =  a  or  e –  ae = 0

or

 e(1 –  a) = 0 or

 e = 0

Similarly, 

          e ∗  a =  a, ∀  a ∈ Q

Therefore, for  e = 0, we have  a ∗  e =  e ∗  a =  a

Thus 0 is the identity element. 

Inverse. Let us assume an element  a ∈ Q. Let  a– 1 is an inverse of  a, where  a– 1 ∈ Q. 

Then we have

       a ∗  a– 1 = 0

[Identity]

∴







 a +  a– 1 –  aa– 1 = 0

 a

or

 a– 1 (1 –  a) = –  a  or  a– 1 =   a − 1
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1

Now, 

 a  ∈ Q, if  a ≠ 

 a − 1

 a

Therefore, every element has inverse such that  a ≠ 1. 

Since, the algebraic system (Q, ∗) satisfy all the properties of a group. Hence, (Q, ∗) is a

group. 

2.9.1 Properties of Groups

The proof of some properties are as follows:

Theorem III.  Show that the identity element in a group is unique. 

Proof. Let us assume that there exists two identity elements of G  i.e., e  and  e′. 

Since,  e ∈ G and  e′ is an identity. 

We have  e′ e =  ee′ =  e

Also,  e′ ∈ G and  e is an identity. We have  e′ e =  ee′ =  e′

∴

 e =  e′

Hence, identity in a group is unique. 

Theorem IV.  Show that inverse of an element a in the group is unique. 

Proof. Let us assume that  a ∈ G be an element. Also, assume that  a – 1 and  a – 1 be two 1

2

inverse elements of  a. 

Then we have

  a – 1  a =  aa – 1 =  e  and  a – 1  a =  aa – 1 =  e 1

1

2

2

Now, 

 a – 1 =  a – 1  e =  a – 1( aa – 1) = ( a – 1  a) a – 1 =  ea – 1 =  a – 1

1

1

1

2

1

2

2

2

Thus, the inverse of an element is unique. 

Theorem V.  Show that ( a–  1) – 1 = a for all a ∈  G, where G is a group and a– 1 is an inverse of a. 

Proof. Given that  a– 1 is an inverse of  a. Then, we have

 aa– 1 =  a–  1  a =  e

This implies that  a is also an inverse of  a– 1. Therefore ( a– 1)– 1 =  a. 

Theorem VI.  Show that ( ab) – 1 = b– 1 a– 1 for all a, b ∈  G. 

Proof. We have to prove that  ab is inverse of  b– 1  a– 1. 

So, 

( ab)( b– 1  a– 1) = ( b– 1  a– 1)( ab) =  e

Now, take L.H.S. 

( ab)( b– 1  a– 1) = [( ab)  b– 1] a– 1 = [ a( bb– 1)]  a– 1

= ( ae)  a– 1 =  aa– 1 =  e

Similarly, the R.H.S.   i.e., ( b– 1  a– 1)( ab) =  e

Hence proved. 

Theorem VII.  Prove the left cancellation law i.e., ab =  ac ⇒  b = c,   ∀  a, b, c ∈  G. 

Proof. Consider that  ab =  ac. 

Then, we have

 b =  eb = ( a– 1  a) b =  a– 1 ( ab) =  a– 1 ( ac)

[∵  ab =  ac]

= ( a– 1  a) c =  ec =  c

Hence, 

 ab =  ac ⇒  b =  c. 
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Theorem VIII.  Prove the right cancellation law i.e., ba = ca ⇒  b = c, ∀  a, b, c ∈  G. 

Proof. Consider that  ba =  ca. 

Then, we have

 b =  be =  b( aa– 1) = ( ba) a– 1 = ( ca) a– 1

[∵  ba =  ca]

=  c( aa– 1) =  ce =  c

Hence, 

 ba =  ca ⇒  b =  c. 

2.9.2

Finite and Infinite Group

A group (G, ∗) is called a finite group if G is a finite set. 

A group (G, ∗) is called an infinite group if G is an infinite set. 

For example : The group (I, +) is an infinite group as the set I of integers is an infinite set. 

For example : The group G = {1, 2, 3, 4, 5, 6, 7} under multiplication modulo 8 is a

finite group as the set G is a finite set. 

2.9.3 Order of Group

The order of the group G is the number of elements in the group G. It is denoted by |G|. 

A group of order 1 has only the identity element  i.e., ({ e}, *). 

A group of order 2 has two elements  i.e.,  one identity element and one some other element. 

For example :  Let ({e, x}, *) be a group of order 2. The table of operation is shown in (Fig. 3). 

∗

 e

 x

 e

 e

 x

 x

 x

 e

Fig. 3. Table of operation for group of order 2. 

The group of order 3 has three elements  i.e.,  one identity element and two other elements. 

For example :  Let ({e, x, y}, *) be a group of order 3. The table of operation is shown in ( Fig. 4). 

∗

 e

 x

 y

 e

 e

 x

 y

 x

 x

 y

 e

 y

 y

 e

 x

Fig. 4. Table of operation for group of order 3. 

For example :  Consider an algebraic system ({ 0, 1}, +)  where the operation + is defined as shown in ( Fig. 5). 

+

0

1

0

0

1

1

1

0

Fig. 5. Table of operation. 

The system ({0, 1}, +) is a group. In this 0 is identity element and every element is its

own inverse. 
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2.9.4

Subgroup

Let us consider a group (G, ∗). Also, let S ⊆ G, then (S, ∗) is called a subgroup if it

satisfies following conditions :

( i) The operation * is closed operation on S. 

( ii) The operation * is an associative operation. 

( iii) As  e is an identity element belonged to G. It must belong to the set S  i.e.,  The identity element of (G, ∗) must belong to (S, ∗). 

( iv) For every element  a ∈ S,  a– 1 also belongs to S. 

For example 1. Let (G, +) be a group, where G is a set of all integers and (+) is an

addition operation. Then (H, +) is a subgroup of the  group G, where H = [{2K|K Î G}, the set

of all even integer]

For example 2.    Let G be a group. Then the two subgroups of G are G and G  = { e}, 1

where  c is the identity element. 

Example 17.  Let ( I, +)  be a group, where I is the set of all integers and ( +)  is an addition operation. Determine whether the following subsets of G are subgroups of G. 

( a)  The set G  of all odd integers. ( b)  The set G  of all positive integers. 

 1

 2

Sol. ( a) The set G  of all odd integers is not a subgroup of G. It does not satisfy the 1

closure property, since addition of two odd integers is always even. 

( b) Closure property. The set G  is closed under the operation +, since addition of two 2

even integers is always even. 

Associative property. The operation + is associative since ( a +  b) +  c =  a + ( b +  c) for every  a, b, c ∈ G .2

Identity. The element 0 is the identity element. Hence, 0 ∈ G . 

2

Inverse. The inverse of every element  a ∈ G  is –  a 

. Hence, the inverse of every

2

∉ G2

element does not exists. 

Since the system (G , +) does not satisfy all the conditions of a subgroup. Hence, (G , +)

2

2

is not a subgroup of (I, +). 

2.10 ABELIAN GROUP

Let us consider, an algebraic system (G, ∗), where ∗ is a binary operation on G. Then the

system (G, ∗)is said to be an abelian group if it satisfies all the properties of the group plus an additional following property :

( i) The operation ∗ is commutative  i.e., 

    a ∗  b =  b ∗  a,  ∀  a,  b ∈ G

For example.  Consider an algebraic system (I, +), where I is the set of all integers and

+ is an addition operation. The system (I, +) is an abelian group because it satisfies all the properties of a group also the operation + is commutative for every  a, b  Î I. 

Example 18.  Consider an algebraic system ( G, ∗) , where G is the set of all non-zero real numbers and * is a binary operation defined by

 ab

  a *  b =  4 . 

 Show that ( G, *)  is an abelian group. 
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 ab

Sol. Closure property. The set G is closed under the operation *. Since,  a ∗  b = 

is

2

a real number. Hence, belongs to G. 

Associative property. The operation * is associative. Let  a, b, c ∈ G, then we have F  ab

( )

 ab c

 abc

( a ∗  b) ∗  c = HG I

= 

. 

4 KJ ∗  c =  16

16

F bc a b( c)  abc

Similarly,  a ∗ ( b ∗  c) =  a ∗ HG I

= 

. 

4 KJ  =  16

16

Identity. To find the identity element, let us assume that  e is a +ve real number. Then e ∗  a =  a, where  a ∈ G. 

 ea



=  a  or  e = 4

4

Similarly, 

 a ∗  e =  a

 ae

or



=  a  or  e = 4. 

4

Thus, the identity element in G is 4. 

Inverse. Let us assume that  a ∈ G. If  a– 1 ∈ G is an inverse of  a, then  a ∗  a– 1 = 4

 aa−1

16

Therefore, 



= 4 or  a– 1 = 

4

 a

Similarly, 

 a– 1 ∗  a = 4

 a−1  a

16

Therefore, 

= 4 or  a– 1 = 

. 

4

 a

16

Thus, the inverse of element  a in G is 

. 

 a

Commutative. The operation * on G is commutative. 

 ab

Since, 

 a ∗  b = 

=  b 

4

∗  a. 

Thus, the algebraic system (G, ∗) is closed, associative, identity element, exists inverse

of every element and commutative. Hence, the system (G, ∗) is an abelian group. 

2.11 PRODUCT OF GROUPS

Theorem IX.  Prove that if (G ,  ) and (G ,  ) are groups, then G = G  ×  G  i.e., (G, 1 ∗ 1

 2 ∗ 2

 1

 2

∗ )

 is a group with operation defined by (a , b ) 

 , b ) = (a    a  , b    b ). 

 1

 1 ∗  (a2

 2

 1 ∗ 1

 2

 1 ∗ 2

 2

Proof. To prove that G  × G  is a group, we have to show that G  × G  has the associa-

1

2

1

2

tive property, has an identity and also exists inverse of every element. 

Associativity. Let  a, b, c ∈ G  × G , then

1

2

        a ∗ ( b ∗  c) = ( a ,   a ) 

,   b ) 

,   c ))

1

2 ∗ (( b 1

2 ∗ ( c 1

2

= ( a ,  a ) 

 c ,  b     c )

1

2 ∗ ( b 1 ∗1 1

2 ∗2 2

= ( a    ( b     c ),  a    ( b     c ))

1 ∗1

1 ∗1 1

2 ∗2

2 ∗2 2

= (( a     b )    c ), (( a     b )    c )

1 ∗1 1 ∗1 1

2 ∗2

2 ∗2 2
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= ( a     b ,  a     b ) 

,  c )

1 ∗1

1

2 ∗2

2 ∗ ( c 1

2

= (( a ,   a ) * ( b ,  b )) 

,  c ) = ( a 

1

2

1

2

∗ ( c 1 2

∗  b) ∗  c. 

Identity. Let  e  and  e  are identities for G  and G  respectively. Then, the identity for 1

2

1

2

G × G  is  e = ( e ,  e ). 

1 

2

1

2

Let us assume an element  a ∈ G  × G . 

1

2

Then

 a ∗  e = ( a ,   a ) 

,   e )

1

2 ∗ ( e 1

2

= ( a     e ,   a     e ) = ( a ,  a ) =  a

1 ∗1 1

2 ∗2 2

1

2

Similarly, we have  e ∗  a =  a. 

Inverse. To determine the inverse of an element in G  × G , we will determine it

1

2

componentwise  i.e., 

   a– 1 = ( a ,  a )– 1 = ( a – 1,  a – 1). 

1

2

1

2

Now to verify that this is the exact inverse, we will compute  a ∗  a–1 and  a– 1 ∗  a. 

Now

 a ∗  a– 1 = ( a ,  a ) 

– 1,  a – 1)

1

2 ∗ ( a 1

2

= ( a     a – 1,  a     a – 1) = ( e ,   e ) =  e 1 ∗1

1

2 ∗2

2

1

2

Similarly, we have  a– 1 ∗  a =  e. 

Thus, (G  × G , 

1

2 ∗) is a group. 

In general, if G , G , ......., G  are groups, then G = G  × G  × .....× G  is also a group. 

1

2

 n

1

2

 n

PROBLEM SET-I

1. Determine whether the operation, # defined on the following sets is a binary operation. 

( i) (I, #), where  a #  b = Max ( a,  b) ( ii) (I, #), where  a #  b =  a +  b + 2

( iii) (I, #), where  a #  b =  a + 4 b

( iv) (I , #), where  a #  b =  b –  a

+

( v) (R, #), where  a #  b =  a/ b

( vi) (R, #), where  a #  b =   a b

2. Consider a binary operation * be defined on the set A = { a,  b,  c,  d} as given below: ( i) Determine  a *  b and  b *  a. 

*

 a

 b

 c

 d

( ii) Determine  b *  c and  c *  b. 

 a

 a

 b

 c

 d

( iii) Determine  a * ( b *  c) and ( a *  b) *  c b

 b

 b

 c

 d

( iv) Is the operation * commutative? 

 c

 c

 c

 c

 a

( v) Is the operation * Associative? 

 d

 d

 d

 a

 d

3. Let A = { a,  b}. Consider the tables shown below. 

*

 a

 b

 *

 a

 b

 *

 a

 b

 *

 a

 b

 a

 a

 b

 a

 a

 b

 a

 a

 a

 a

 b

 b

 b

 a

 a

 b

 b

 a

 b

 b

 b

 b

 a

 a

I

II

III

IV

( i) Which of the given tables defines a semigroup? 

( ii) Which of the given tables defines a monoid? 

4. Give an example of a semigroup without an identity element. 

5. Give an example of an Infinite semigroup with an identity element  e such that no element except e  has an inverse. 

6. Let (G, ∗) be a group and  a ∈ G. Suppose that  a ∗  a =  a. Prove or disprove: a must be the identity element. 
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7. Prove or disprove: Every associative binary operation on a set with two elements is commutative. 

8. Let G = [0, 1) be the set of real numbers  x with 0 ≤  x < 1. Define an operation * on G by. 

⎡  x +  y if x +  y < 1 and

 x ∗  y =  ⎢⎣ x +  y −1  if x +  y ≥1

Determine whether (G, ∗) is a group. 

9. Consider the operation ∗ be defined on the set of real numbers R as given below:

 a ∗  b = | a –  b| for all  a,  b ∈ R. 

( i) Is ∗ a binary operation on R? 

( ii) Is ∗ a commutative operation on R? 

( iii) Show that (R, ∗) is not a semigroup. 

10. Show that the fourth roots of unity 1, –1,  i, – i form an abelian group on the operation multiplication. 

11. Consider G = {0, 1, 2, 3, 4,} under addition modulo 5. 

( i) Construct the addition table of G. 

( ii) Find 1–1, 2–1 and 4–1. 



( iii) Show that G is a finite abelian group of order 5. 

12. If G is an abelian group with identity  e, then prove that all elements  x of G satisfying the equation x 2 =  e form a subgroup H of G. 

13. Consider the set R of Real Numbers and let ∗ be the operation on R defined by  a ∗  b =  a +  b –  ab. 

( i) Determine 4 ∗ 5, 3 ∗ (–2), 7 ∗ 3. 

( ii) Is (R, ∗) a semigroup? 

( iii) Is R commutative? 

( iv) Determine the identity element of R. 

( v) Determine  the inverse, if it exists? 

14. Consider the set N of positive integers and let ∗ denote the operation of least common multiple on N. 

( i) Determine 3 ∗ 6, 4 ∗ 16, 3 ∗ 7 and 1 ∗ 9

( ii) Is (N, ∗) is commutative? 

( iii) Is (N, ∗) a semigroup? 

( iv) Determine the identity element of ∗. 

15. Determine which of the following is/are True/False? 

( i) The associative law holds in every group. 

( ii) There may be a group in which the cancellation law fails. 

( iii) Every group is a subgroup of itself. 

( iv) Every group has exactly two improper subgroups. 

( v) Every set of numbers that is a group under addition is also a group under multiplication. 

( vi) A subgroup may be defined as a subset of a group. 

( vii) Every subset of every group is a subgroup under the induced operation. 

( viii) Every monoid is semi group. 

( ix) Every binary operation satisfied closure property. 

( x) In a group there may be an element which has two inverses. 

( xi) If  g: {X, •}  → {Y, ∗} is one-one and onto then  g is called an isomorphism. 

( xii) An isomorphism  g: {X, •}  → {Y, ∗} is called an automorphism, if Y = X. 

( xiii) Composition of two homomorphisms is also a homomorphism. 

( xiv) There is an isomorphism Z  

× Z . 

34 → Z17

2

( xv) Let ∗ be an operation on a set A. If (A, ∗) has a neutral element  e, then  e is unique. 

( xvi) Let (G, ·) be a group and  a,  b ∈ G. Then ( ab)2 =  a 2  b 2. 
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( xvii) Let (G, ·) be a group and H and K subgroups of G. Then H ∪ K is a subgroup of G. 

( xviii) If G and H are groups, such that # G =  n and # H =  m. Then # (G × H) =  n ·  m. 

( xix) Any two groups of order 4 are isomorphic. 

( xx) Multiplication is an associative operation on the set of all 2 × 2 real matrices. 

( xxi) The group (Z, +) is isomorphic to one of its proper subgroups. 

( xxii) Multiplication is a commutative operation on the set of all permutations of {1, 2, 3}. 

( xxiii) Up to isomorphism, there is only one infinite abelian group. 

( xxiv) If G and H are isomorphic groups and every element of G has order 2, then every element of H must have order 2 also. 

( xxv) The identity element of a group (G, ∗) is not unique. 

( xxvi) The inverse of each element  of (G, ∗) is unique. 

( xxvii) (G, ∗) can have an idempotent element except the identity element. 

( xxviii) A group homomorphism  f is  called group isomorphism, if  f is one-to-one and onto. 

( xxix) If S is a non-empty set and ∗ be a binary operation on S, then the algebraic system {S, ∗} is called semigroup, if the operation ∗ is commutative. 

( xxx) Every subgroup of an Abelian group is Abelian. 

( xxxi) Every subgroup of a non-Abelian group is non-Abelian. 

( xxxii) Every subgroup of an Abelian group is normal. 

ANSWERS AND HINTS  (PROBLEM SET I)

1. 

( i) Binary operation

( ii) Binary operation

( iii) Binary operation

( iv) Not a binary operation

( v) Not a binary operation

( vi) Binary operation

2. 

( i)  a ∗  b =  b =  b ∗  a

( ii)  b ∗  c =  c =  c ∗  b

( iii)  a ∗ ( b ∗  c) =  c = ( a ∗  b) ∗  c ( iv) Yes, ∗ is commutative. 

( v) Yes, ∗ is Associative. 

3. 

( i) I, II and III are semigroups. IV is not a semigroup. 

( ii) II is monoid. I, III and IV are not monoids. 

4. Z  = {1, 2, 3, ...} is a semigroup without identity with binary operation  addition. 

+

5. N = {0, 1, 2, ...}  is a semigroup with binary operation addition. No  non identity element has an inverse. 

6. We have  a =  e ∗  a = ( a–1 ∗  a) ∗  a =  a–1 ∗  ( a ∗  a) =  a–1 ∗  a =  e 7. It is false. On any set A, we may define a binary operation  * by  x ∗  y =  x. Then ∗ is associative as for any  x,  y and  z from A, we have  x ∗ ( y ∗  z) =  x = ( x ∗  y) = ( x ∗  y) ∗  z. However, if A has at least two elements, then ∗ is not commutative. Since, if  x ≠  y, then  x ∗  y =  x ≠  y =  y ∗  x. 

8. Yes, (G, ∗) is a group. 

9. 

( i) Since | a –  b| is always a positive real number.  a ∗  b ∈ R for all  a,  b ∈ R. Therefore, ∗ is a binary operation on R. 

( ii) We have

| a –  b| =| b –  a| for all  a,  b ∈ R

so  a ∗  b =  b ∗  a for all  a,  b ∈ R. Therefor, ∗ is a  commutative operation. 

( iii) We have

1 ∗ (2 ∗ 3) = 1 ∗ |2 – 3| = 1 ∗  1 = |1 – 1| = 0

and

(1 ∗ 2) ∗ 3 = |1 – 2| ∗ 3 = 1 ∗ 3 = |1 – 3| = 2

Therefore, 1 ∗ (2 ∗ 3) ≠ (1 ∗ 2) ∗ 3. Thus, ∗ is not an associative operation. 

Hence, (R, ∗) is not a semigroup. 
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10. Let us assume that G = {1, –1,  i,  –  i}. The table of  operation is as

∗

1

–1

 i

– i

1

1

– i

 i

– i

–1

–1

+1

– i

 i

 i

 i

 –i

–1

1

– i

– i

 i

1

–1

– It is closed operation since all the enteries in the table are the elements of G. 

– It is associative since  a ∗ ( b ∗  c) = ( a ∗  b) ∗  c for all  a,  b, c ∈ G. 

– It is commutative since  a ∗  b =  b ∗  a for  all  a,  b ∈ G. 

– The identify element is 1 as 1.  a =  a.1 =  a. 

– The inverses of 1, –1,  i, – i are 1, –1, – i,  i respectively. 

Thus G is an abelian group under the operation multiplication. 

11. 

( i) The addition table of G is shown below

+

0

1

2

3

4

( ii) The element 0 is the identity element  of G. Thus

0

0

1

2

3

4

1–1 = 4

1

1

2

3

4

0

2–1 = 3

2

2

3

4

0

1

and 4–1 = 1

3

3

4

0

1

2

4

4

0

1

2

3

( iii) From the table, we have, + is a closed operation, 0 is the identity element, every element has an inverse. The operation + is associative and commutative. 

Hence, the set G is a finite abelian  group of order 5 under addition modulo 5. 

12. Let H = { x :  x 2 =  e}

So, 

 x 2 =  e ⇒  x =  x–1

Thus, if  x ∈ H, then  x–1 also belongs to H. 

Also  e 2  =  e. Thus the identity element of  G also belongs to H. 

Now, Let  x,  y ∈ H. Then, since G is abelian, we have

 xy =  yx

=  y–1 x–1 As  x–1 =  x and  y–1  = y

= ( xy)–1

Thus, 

( xy)2 =  e

Hence,  xy ∈ H and H is a subgroup of G. 

13. 

( i) –11, 7, –11

( ii) Yes

( iii) Yes

 a

( iv) 0

( v)

,  a ≠1

 a − 1

14. 

( i) 3 ∗ 6 = 6, 4 ∗ 16 = 16, 3 ∗ 7 = 21 and 1 ∗ 9 = 9. 

( ii) Yes, N is commutative, since 3 ∗ 7 = 21 = 7 ∗ 3. 

( iii) Yes, (N, ∗) is a semigroup. 

( iv) 1 ∗  a = LCM of 1 and  a =  a, for any +ve integer  a

Also  a ∗ 1 = LCM  of a and 1 =  a. Hence 1 is the identity element. 

15. 

( i) True

( ii) False

( iii) True

( iv) False

( v) False

( vi) False

( vii) False

( viii) True

( ix) False

( x) False

( xi) True

( xii) True

( xiii) True

( xiv) True
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( xv) True. Let  e ,  e  be two neutral elements in A, then  e =  e  

=  e . 

1

2

1 

1 ∗  e 2

2

( xvi) False. In general ( ab)2 =  abab ≠  aabb =  a 2  b 2. 

( xvii) False

( xviii) True. This follows from the definition of the Cartesian product. 

( xix) False

( xx) True

( xxi) True: for example, Z is isomorphic to 2Z (the subgroup consisting of all even integers) ( xxii) False: For Example, the permutation that switches 1 and 2 does not commute with the permutation that switches 2 and 3. 

( xxiii) False: Q and Z are both infinite abelian groups, but they are not isomorphic. 

( xxiv) True: if φ : G → H is an isomorphism and  b ∈ H, take  a ∈ G with φ ( a) =  b. Then  b 2 = φ ( a) 2 = φ ( a 2) = φ ( e) =  e. (Actually the question as stated is vacuously true because the identity element of  G cannot have order 2; I meant to say “every nonidentity element.”)

( xxv) False

( xxvi) True

( xxvii) False

( xxviii) True

( xxix) False

( xxx) True

( xxxi) False

( xxxii) True

2.12

CYCLIC GROUPS

A cyclic group is a group that can be generated by a single element. In a cyclic group

every element in the group is a multiple of a particular fixed element. For instance, every

element of Z is a multiple of 1 or – 1. 

Formal Definition of a Cyclic Group

Let G be a group. G is said to be a cyclic group if there exists  g ∈ G, such that every element in G is of the form  gn  for some integer  n. The  element ‘ g’  is called the generator of G

or that the group is generated by  g. Every cyclic group is denoted by Z  or C . 

 n

 n

Examples:

1. The integers under addition is a cyclic group. The number 1 is a generator. This is

because for any  n in the integers we have  n =  n .1. Note that – 1 is also a generator. 

2. The group G = {1, – 1,  i, –  i} with multiplication as its operation is a cyclic group with i and –  i as its generators. 

3. The group G = {..., 1/4, 1/2, 1, 2, 4, 8, 16, ...} is cyclic with multiplication as its operation with generator 1/2. 

4. The trivial group G = { e} is cyclic with generator  e. 

5. The group (Z , +) of residue classes modulo  n is cyclic with generator 1. 

 n

2.12.1 Properties of Cyclic Groups

Every cyclic group is isomorphic to the group {0, 1, 2,  n – 1} under addition modulo  n, or Z, the additive group of all of integers. A cyclic group is the simplest group and has number of properties as given below:

Given a cyclic group G or order  n  and for every  g in G. 

1. G is abelian. This means that their group operation is commutative  i.e. ,  ab =  ba. It is so because  a +  b mod  n =  b +  a mod  n. 

2. If  n < ∞, then  gn =  e since  n mod  n = 0. 

3. If  n = ∞, then there are exactly two generators  i.e. , 1 and – 1 for Z, and any others mapped to them under an isomorphism in other infinite cyclic groups. 
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4. Every subgroup of G is cyclic. This means that each finite subgroup of G is a group of

{0, 1, 2, 3, ...,  m – 1} with addition modulo  m. And each infinite subgroup of G is  mZ for some m, which is isomorphic to Z. 

5.  The cyclic group  C is isomorphic to Z/ n Z (factor group of Z over  nZ) since Z/ nZ =

 n 

{0 +  nZ, 1 +  nZ, 2 +  nZ, 3 +  nZ, 4 +  nZ, ...,  n – 1 +  nZ} ≅ {0, 1, 2, ,3, 4, ...,  n – 1} under addition modulo  n. 

2.12.2 Types of Cyclic Groups

There are two basic types of cyclic groups namely Finite and Infinite. 

2.12.2.1 Finite Cyclic Groups

A cyclic group generated by a is finite if there exist a positive integer  n such that  an = 1. 

Such integer  n is not unique. For example, if  a 3 = 1, then  a 6,  a 9, ... are also 1. If  n is the smallest positive integer such that  an = 1, then the group has exactly  n  elements 1,  a,  a 2, ..., an – 1. The presentation of such group  is <  a |  an = 1 >. Every finite cyclic group is denoted by C . 

 n

For a finite cyclic group G having  n  elements, any element of order  n is a generator. If  x is a generator having order  n then the order of  nk  is  n/god ( n,  k) Note: A cyclic group is an abelian group although not every abelian group is a cyclic group. For example, the rational numbers under addition is not cyclic but is abelian. 

2.12.2.2 Infinite Cyclic Groups

If G is generated by  a and  an is not 1 for any integer  n, then the elements  a,  a 2,  a 3, ... are all distinct. So, G is infinite. 

Note that the inverse  a–  i of  ai is also an element of such group so the group contains all the elements ...  a– 3,  a– 2,  a– 1, 1 –  a 0,  a 1 =  a,  a 2,  a 3, ... . The infinite cyclic group is presented as

<  a >. 

The infinite cyclic group can be identified with the group of integers  i.e. , Z = {..., – 3, – 2, 

– 1, 0, 1, 2, 3, ...} by mapping  i to  ai. Every infinite cyclic group is isomorphic to Z and thus is defined with Z. 

Theorem X.   If G is a cyclic group then G is abelian. 

Proof. Let G be cyclic. Then G = ( a) for some  a ∈ G. If  x ∈ G and  y ∈ G,  x =  am and  y =  an for some  m,  n ∈ Z. 

Then  xy =  aman =  am +  n =  an +  m =  anam =  xy. 

Hence, G is abelian. 

2.13

COSETS

Consider an algebraic system (G, ∗), where ∗ is a binary operation. Now, if (G, ∗) is a

group and let  a be an element of G and H ⊆ G, then the LEFT COSET  a ∗ H of H is the set of elements such that

   a ∗ H = { a ∗  h :  h ∈ H}. 

The RIGHT COSET H ∗  a of H is the set of elements such that

H ∗  a = { h ∗  a :  h ∈ H}. 

The subset H is itself a left and right coset since  e ∗ H = H ∗  e = H. 
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Example 19.  Let us consider a group ( G, ∗),   where G is a set having elements {0, 1} and

∗  is a binary operation. Also, let H = {1} is a subgroup of G. Determine all the left cosets of H

 in G. 

Sol. There is only 2 left cosets  i.e., 

1 ∗ H = H = {1}

0 ∗ H = {0}. 

Example 20.  Let (I, +) is a group, where I is the set of all integers and + is an addition operation and let H = {..., – 4, – 2, 0, 2, 4, 6, 8, ...} be the subgroup consisting of multiples of 2. 

 Determine all the left cosets of H in I. 

Sol. There are two distinct left cosets of H in I. 

0 + H = { ..., – 6, – 4, – 2, 0, 2, 4, 6, ...} = H

1 + H = {... – 5, – 3, – 1, 1, 3, 5, 7, ...}

There is no other distinct left coset because any other left coset coincides with the cosets

given above. 

2.14 LAGRANGE’S THEOREM

Lagrange’s Theorem states that the number of elements in any subgroup of a finite

group must divide evenly into the number of elements in the group. 

The consequence of this theorem would be, that a group with 36 elements could not

have a subgroup of 7 elements since 7 does not divide 36. The subgroups may be of 2, 3, 4, 6, 9, 12 or 18 elements since these numbers are all divisors of 36. 

Theorem XI.  (Lagrange’s) – The order of any subgroup H of a finite group G divides the order of group G. 

Proof. Refer Problem 11 in Solved Problems. 

2.15 NORMAL SUBGROUP

Consider a group (G, ∗) and subgroup (H, ∗) of the group, then the (H, ∗) is called a

 normal sub-group if for any  a ∈ G, we have

    a H = H a. 

The meaning of the above definition is that if H is a normal sub-group, then both the

left and right cosets of H in G are equal. 

Theorem XII.  Show that every sub-group H of an abelian group G is normal. 

Proof. Let us assume any element  a ∈ H

Also, assume any element  b ∈ G

Then we have

  b– 1  ab =  ab– 1  b =  ae ∵  b– 1 b =  e We know that

 a ∈ H =  a

∵      ae =  a

Hence, H is a normal sub-group. 
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2.16 HOMOMORPHISMS

Let (G , 

, •) be two algebraic systems, where 

1 ∗) and (G2

∗ and • both are binary opera-

tions. Then, the mapping  f : G  

is said to be  homomorphism from (G , 

, •) such

1 → G2

1 ∗) to (G2

that for every  a, b ∈ G, we have

      f( a ∗  b) =  f( a) •  f( b). 

Example 21.   Let G  = G  = R, the set of real numbers under addition. That is 

 1

 2

∗   and •

 both correspond to addition. 

Sol. Let  f : R → R,  f( x)  = kx for any  k ∈ R. Then  f is a homomorphism because      f ( x ∗  y) =  k( x +  y)

=  kx +  ky

 = f( x) +  f( y)

 = f( x) •  f( y)

Example 22.   Let G  = G  = R , the set of non-zero real numbers under multiplication. 

 1

 2

 0

 That is, ∗  and •  both correspond to multiplication, Let f : R →  R, f(x) = xn  for any n ∈  I 0, the

 +

 positive integers. Then f is a homomorphism because

 f (x * y) = (x •  y)n

 = xn •  yn

  = f(x) •  f(y)

  = f(x) •  f(y)

2.16.1 Properties of Homomorphisms

The important properties of homomorphism  f are as follows:

( a) If  e is the identity in G  and  e  is the identity in G , then  f( e) =  e 1

1

2

1

We know that, 

  f 

( x) =  f ( x ∗  e) =  f ( x) •  f ( e) Thus,  f ( e) is the identity in G . 

2

( b)  f ( x–1) – ( f( x))–1

We know that

  

  x ∗  x–1 =  e

      

 f ( x ∗  x–1) =  f ( e)

⇒



 f ( x) •  f ( x–1) =  e

⇒





  f ( x–1) = ( f ( x))–1. 

2.17

ISOMORPHISM

An isomorphism is a homomorphism that is one-to-one. Let (G , 

, •) be two

1 ∗) and (G2

algebraic system, where ∗ and • both are binary operations. The systems (G , 

, •)

1 ∗) and (G2

are said to be  isomorphic if there exists an isomorphic mapping  f : G  

. 

1 → G2

When two algebraic systems are isomorphic, the system are structurally equivalent

and one can be obtained from another by simply remaining the elements and the operation. 
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Example 23.  Let ( A , 

 , •)  be the two algebraic systems as shown in ( Fig. 6). 

 1 ∗)  and ( A2

 Determine whether the two algebraic systems are isomorphic. 

∗

 a

 b

 c

•

1

 w

 w 2

 a

 a

 b

 c

1

1

 w

 w 2

 b

 b

 c

 a

 w

 w

 w 2

1

 c

 c

 a

 b

 w 2

 w 2

1

 w

Fig. 6.  Isomorphic algebraic systems. 

Sol. The two algebraic systems (A , 

, •) are isomorphic and (A , •) is an

1 ∗) and (A2

2

isomorphic image of A , such that

1

 f( a) = 1

   f( b) =  w

 f( c) =  w 2. 

Example 24.   Let G  = G  = R, the set of real numbers under addition. That is, 

 1

 2

∗  and • . 

 both correspond to addition. Let f : R – R, such that f (x) = kx for any k ∈  R. Show that f is an isomorphism. 

Sol.  The  f is an isomorphism since firstly, it is a homomorphism as shown in earlier example. Secondly, it is one-to-one, and can be proved by contradiction. 

Let  f is not one-to-one. Then there exists two values  x  and  x , such that  x  

, and

1

2

1 ≠  x 2

 f( x ) =  f( x ). 

1

2

That is

 f ( x ) =  f ( x )

1

2

⇒

 k( x ) =  k( x )

1

2

⇒



 k–1 kx  =  k–1 kx

1

2

⇒

 x  =  x

1

2

which is a contradiction. Hence  f is one-to-one. Thus, it is an isomorphism. 

2.18

AUTOMORPHISM

Let (G , 

, •) be two algebraic systems where 

and

1 ∗) and (G2

∗ is a binary operation on G1

G  respectively. Then an isomorphism from (G , 

, 

2

1 ∗) to (G2 ∗) is called an automorphism if

G = G . 

1

2

Thus, in an automorphism on an algebraic system, the elements in the system

interchange their rules. 

For example.    Consider the following two algebraic systems (G , 

, 

1 ∗) and (G2 ∗) as shown

in Fig. 6A. 

∗

 a

 b

 c

∗

 c

 a

 b

 a

 a

 b

 c

 c

 c

 a

 b

 b

 b

 c

 a

 a

 a

 b

 c

 c

 c

 a

 b

 b

 b

 c

 a

( i) (G , *)

( ii) (G , *)

1

2

Fig. 6A
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The function  f such that

 f( a) =  c

   f( b) =  a

 f( c) =  b

is an automorphism on the algebraic systems. 

2.19

PERMUTATION GROUPS

A permutation on a set A is a bijection from A into A ( i.e.,  itself). Here the set A is finite. 

If the set A contains  n  elements, then there are  n ! different permutations on A. 

The matrix form for describing the function on a finite set is to list the domains across

the top row and the image of each element exactly below it. 

For example.  Consider a set A = {x , x ,......, x } is a finite set and let p is a bijection on 1

 2

 n

 A. Then the elements of A and the corresponding images p(x ), p(x ), ......, p(x ) can be repre-1

 2

 n

 sented in the matrix form as follows :

⎛

1

 x

2

 x

 n

 x ⎞

⎜ (

 p

⎟

⎝

1

 x )

(

 p  2

 x )

(

 p x )

 n ⎠

The above matrix representation describes  p  completely because it gives the value of  p for every element of set A. In general, it is written as

⎛  x

 x

 x ⎞

P =

1

2

 n

⎜ (

 p

⎟

⎝

1

 x )

(

 p  2

 x )

(

 p x )

 n ⎠

So, if P represents a permutation of a set A (finite set), then the sequence  p( x ),  p( x ), 1

2

......,  p( x ) is a rearrangement of the elements of set A which corresponds to exactly one n

permutation of A. 

Example 25.  Consider A = {a, b}. Determine all the permutations of A. 

Sol. Since, the set A has two elements, hence, it has 2 ! = 2 permutations which are as follows :

⎛  a b⎞

 p  =

1

⎜  a b⎟

⎝

⎠

⎛  a b⎞

 p  =

2

⎜  a b⎟

⎝

⎠ . 

Example 26.  Consider A = {x , x , x }. Determine all permutation of A. 

 1

 2

 3

Sol. Since the set A has three elements, hence, it has 3 ! = 6 permutations which are as follows :

⎛  x

 x

 x ⎞

⎛  x

 x

 x ⎞

 p  =

1

2

3

=  1

2

3

1

⎜

⎟

⎝

⎜

⎟

1

 x

2

 x

3

 x ⎠

 p 1 ⎝ 1 x  3 x  2 x⎠

⎛  x

 x

 x ⎞

⎛  x

 x

 x ⎞

 p  =

1

2

3

=  1

2

3

2

⎜

⎟

⎝

⎜

⎟

2

 x

1

 x

3

 x ⎠

 p 3 ⎝ 2 x  3 x  1 x⎠

⎛  x

 x

 x ⎞

⎛  x

 x

 x ⎞

 p  =

1

2

3

=  1

2

3 . 

4

⎜

⎟

⎝

⎜

⎟

3

 x

1

 x

2

 x ⎠

 p 5 ⎝ 3 x  2 x  1 x⎠
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2.19.1 Inverse of a Permutation

The inverse of a permutation (which is written in matrix form) can be obtained by

exchanging the two rows and rearranging the columns so that the two row is in order. 

⎛  a b c d⎞

Example 27.  Consider the permutation p = 

. 

⎜  d c a b⎟

⎝

⎠  Determine inverse  p–1. 

Sol. The  p–1 is obtained by exchanging the rows and then ordering the first row. So

⎛  d c a b⎞

⎛  a b c d⎞

 p–1 = ⎜

⎟ =

. 

 a b c d

⎜  c d b a⎟

⎝

⎠

⎝

⎠

2.19.2 Composition (Product) of two Permutations

Consider two permutations  p   and  p   of a finite set A. The composition of  p   and  p , a

 b

 a

 b

written  p  o  p   is another permutation defined by

 b

 a

( p  o  p )( a) 

( p ( a)). 

 b

 a

≡  pb a

It means to find the image of  a  under  p  o  p , first find the image of  a  under  p   and then b

 a

 a

find the image of  p ( a) under  p . It is also called the product of two permutations. 

 a

 b

⎛  5 6 7⎞

⎛  5 6 7⎞

Example 28.  Consider a finite set A = {5, 6, 7}. Let p  = 

  = 

 1

⎜  5 7 6⎟

⎝

⎠  and p2

⎜  6 5 7⎟

⎝

⎠

 be  two permutation of A. Determine p  o p  and p  o p . 

 1

 2

 2

 1

⎛5 6 7⎞ ⎛5 6 7⎞

⎛5 6 7⎞

Sol. 

 p   o  p  = ⎜

⎟  o ⎜

⎟ =

1

2

⎜

⎟

⎝6 5 7⎠ ⎝5 7 6⎠

⎝7 5 6⎠

⎛5 6 7⎞ ⎛5 6 7⎞ ⎛5 6 7⎞

 p   o  p  = ⎜

⎟  o ⎜

⎟ =

2

1

⎜

⎟

⎝5 7 6⎠ ⎝6 5 7⎠ ⎝6 7 5⎠

From the above result, we have seen that the result obtained from the product of two

compositions is again a composition. 

2.19.3

Cyclic Permutation

Consider a finite set A = { x ,  x , ...,  x }. Also let  t ,  t , ...,  t  be k elements of the set A and 1

2

 n

1

2

 k

 the permutation p : A → A is defined by

 p( t ) =  t

1

2

 p( t ) =  t

2

3

...... 

...... 

...... 

 p( t

) =  t

 k – 1

 k

 p( t ) =  t

 k

1

is called a cyclic permutation of length  k. 

In general, 

 p( a) =  a  if  a ∈A, but  a ∉  t ,  t ,......,  t . 

1

2

 k
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It is also called cycle of length  k. It is generally denoted by ( t ,  t ,  t , ......  t ). We can 1 2 3

 k

arrange the elements  t ,  t ,  t , ......,  t   on a circle as shown in Fig. 7. 

1

2

3

 k

Fig. 7.  Cyclic permutation. 

A cycle  p  of length  k  moves the elements in clockwise direction. It means  t  sent to  t ,  t 1

2

2

sent to  t , ......,  t   sent to  t . The remaining elements of set A are fixed in permutation  p. 

3

 k

1

Example 29.  Consider the set A = {1, 2, 3, 4, 5, 6, 7, 8}. Determine the permutation p denoted by the cycle (1, 8, 3, 7). 

Sol. The permutation denoted by cycle (1, 8, 3, 7) is as follows :

⎛1 2 3 4 5 6 7 8⎞

 p =

. 

⎜8 2 7 4 5 6 1 3⎟

⎝

⎠

⎛  1 2 3 4 5 6 7⎞

Example 30.  Consider the permutation p =  ⎜ 7 4 6 1 5 3 2⎟

⎝

⎠   on the set

 A  = {1, 2, 3, 4, 5, 6, 7}. Determine all the cycles of permutation p. Also determine its length. 

⎛1 2 3 4 5 6 7⎞

Sol. The permutation  p =  ⎜7 4 6 1 5 3 2⎟

⎝

⎠  has three cycles as follows :

( i) (1, 7, 2, 4) is a cycle of length 4. 

( ii) (3, 6) is a cycle of length 2. 

( iii) (5) is a cycle of length 1. 

Note 1. A cycle (1, 7, 2, 4) can also be written as (7, 2, 4, 1) or (2, 4, 1, 7) or (4, 1, 7, 2). 

2. A cycle does not give exact number of elements in the set A. We have to explicitly write the set on which a cycle is defined. 

3. A cycle of length 1 in a set A is identity permutation. 

4. Since cycles are permutations, their composition (product) can be formed. 

5. The composition (product) of two cycles need not be a cycle. 

6. The composition (product) of two cycles is not always commutative. 

Example 31.  Show that composition (product) of two cycles may not be a cycle. 

Sol. We will discuss this by taking an example. Consider a set A = { a, b, c, d, e, f, g, h}. 

Now, find the product { e, f, c, d, a} o { a, b, h, g}

We know that

⎛  a b c d e f

 g h⎞

( e, f, c, d, a) = ⎜  e b d a f c g h⎟

⎝

⎠
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⎛  a b c d e f

 g h⎞

and

( a, b, h, g) = ⎜  b h c d e f a g⎟

⎝

⎠

Now, the product of two cycles is given by

⎛  a b c d e f

 g h⎞ ⎛  a b c d e f g h⎞

( e, f, c, d, a) o ( a, b, h, g) =

o

⎜  e b d a f c g h⎟ ⎜  b h c d e f a g⎟

⎝

⎠ ⎝

⎠

⎛  a b c d e f

 g h⎞

= ⎜  b h d a f c e g⎟

⎝

⎠

Its product is a cycle. 

Now, again consider a set A = {7, 8, 9, 10, 11, 12, 13}. Now find the product (10, 13, 8, 7). 

(8, 10). 

We know that

⎛ 7 8 9 10 11 12 13⎞

(10, 13, 8, 7) = ⎜10 7 9 13 11 12 8 ⎟

⎝

⎠

⎛7 8 9 10 11 12 13⎞

and

(8, 10) = ⎜7 10 9 8 11 12 13⎟

⎝

⎠

Now, the product of two cycles is given by

⎛ 7 8 9 10 11 12 13⎞ ⎛7 8 9 10 11 12 13⎞

(10, 13, 8, 7) o (8, 10) =

o

⎜10 7 9 13 11 12 8 ⎟ ⎜7 10 9 8 11 12 13⎟

⎝

⎠ ⎝

⎠

⎛ 7

8 9 10 11 12 13

=

⎞

⎜10 13 9 7 11 12 8 ⎟

⎝

⎠

Thus, its product is not a cycle. 

Example 32.  Show that composition (product) of two cycles is not commutative. 

Sol. We will show the non-commutativity by taking example. Consider the set A = { r, s, t, u, v, w}

Now find the product of ( r, t, v, w) o ( w, s, t) and ( w, s, t) o ( r, t, v, w). 

⎛  r s t u v w⎞

We know that

( r, t, v, w) = ⎜  t s v u w r⎟

⎝

⎠

⎛  r s t u v w⎞

and

( w, s, t) = ⎜  r t w u v s⎟

⎝

⎠

Now, the product of first one is as below :

⎛  r s t u v w⎞

⎛  r s t u v w⎞

( r, t, v, w) o ( w, s, t) = ⎜

o 

 t s v u w r ⎟

⎜

⎟

⎝

⎠

 r t w u v s

⎝

⎠

⎛  r s t u v w⎞

= ⎜  t v r u w s ⎟

...( i)

⎝

⎠
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Also, the product of second one is as below :

⎛  r s t u v w⎞

⎛  r s t u v w⎞

( w, s, t) o ( r, t, v, w) = ⎜  r t w u v s⎟

⎝

⎠  o  ⎜  t s v u w r ⎟

⎝

⎠

⎛  r s t u v w⎞

= ⎜  w t v u s r ⎟

...( ii)

⎝

⎠

From ( i) and ( ii), we can see that

( r, t, v, w) o ( w, s, t) ≠ ( w, s, t) ( r, t, v, w)

Hence, product of two cycles is not commutative. 

2.19.3.1 Disjoint Cycles. Two cycles are called disjoint cycles of a given set A if there does not exist an element  a ∈ A such that  a  appears in both cycles. 

For example.  Consider a finite set A = {a, b, c, d}. Then the cycles (a, b) and (c, d) are disjoint cycles and (a, b, c) and (a, b, d) are non-disjoint cycles. 

Note 1. Composition of two cycles is commutative if the two cycles are disjoint  i.e., p   o  p  =  p   o  p . 

 a

 b

 b

 a

2. A permutation of a finite set that is not the identity or a cycle can be written as a product of disjoint cycles of length ≥ 2. 

Example 33.  Show that composition of two disjoint cycles is commutative. 

Sol. We will show the commutativity of two disjoint cycles by taking an example. 

Consider the set A = { a, b, c, d, e, f, g}. 

Now, find the product of ( a, d, g) o ( b, c, f ) and ( b, c, f ) o ( a, d, g). 

We know that

⎛  a b c d e f

 g⎞

⎛  a b c d e f

 g⎞

( a, d, g) = ⎜  d b c g e f a⎟

⎝

⎠

and ( b,  c,  f) =  ⎜  a c f d e b g⎟

⎝

⎠

Now, the product of first one is as follows :

⎛  a b c d e f

 g⎞

⎛  a b c d e f

 g⎞

( a, d, g) o ( b, c, f) = ⎜  d b c g e f a⎟

⎝

⎠  o  ⎜  a c f d e b g⎟

⎝

⎠

⎛  a b c d e f

 g ⎞

= ⎜

...( i)

 d c f

 g e b a ⎟


⎝

⎠

Also, the product of second one is as below :

⎛  a b c d e f

 g⎞

⎛  a b c d e f

 g⎞

( b, c, f) o ( a, d, g) = ⎜

o 

 a c f d e b g⎟

⎝

⎠

⎜  d b c g e f a⎟

⎝

⎠

⎛  a b c d e f

 g⎞

= ⎜  d c f g e b a⎟

⎝

⎠

...( ii)

Since ( i) and ( ii) are equal, hence composition of two disjoint cycles is commutative. 

⎛  a b c d e f ⎞

Example 34.  Consider the permutation p =  ⎜

 on the set A =  {a, b, c, 

 b c a f d e⎟

⎝

⎠

 d, e, f}. Write p as a product of disjoint cycles. 

Sol. Begin with the first member of the set A  i.e., a  and find the mapping  p( a) =  b, then find mapping  p( b) =  c, then find  p( c) =  a, so we have got the cycle ( a, b, c). To find another cycle, choose the first element of A that does not contained in previous cycle. So,  d  is the first element that does not contained in the previous cycle. So, we have  p( d) =  f, and  p(  f ) =  e  and  p( e) =  d. We
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got another cycle  i.e., ( d,  e, f). Continue this process until all the elements of A appeared in any of the cycles. After obtaining all the cycles, write  p  as a product of disjoint cycles as below : p = ( d, e, f ) o ( a, b, c). 

2.19.4 Transposition

A transposition is defined as a cycle of length 2  i.e.,  a transposition is a cycle

 p = ( x , x ). Here,  p( x ) =  x   and  p( x ) =  x . 

 i

 j

 i

 j

 j

 i

For a given transposition  p = ( x , x ) of a finite set A, the composition  pop = I  (Identity i

 j

A

permutation of set A). 

Note 1. Every cycle can be written as a product of transpositions. 

2. Every permutation of a finite set with at least two elements can be written as a product of transpositions and the transpositions may or may not be disjoint. 

3. If a permutation of a finite set can be written as a product of an even no. of transpositions, then it can never be written as a product of an odd number of transpositions and vice-versa. 

Example 35.  Show that every cycle can be written as a product of transpositions i.e., (x , x , x , ......, x ) = (x , x ) o (x , x

 ) o ... o (x , x ) o (x , x ). 

 1

 2

 3

 n

 1

 n

 1

 n – 1

 1

 3

 1

 2

Sol. The above statement can be proved by the method of induction on  n. 

Basis Step. When  n = 2, then the cycle becomes ( x ,  x ) which is in required form. 

1

2

Induction Step. Let the result is true for  k. Let us assume that ( x ,  x ,  x , ......,  x , x

)

1

2

3

 k

 k+1

is a cycle of length  k + 1. Then we have

( x ,  x , ......,  x , x

) = ( x ,  x

) o ( x ,  x , ......,  x )

...( i)

1

2

 k

 k+1

1

 k + 1

1

2

 k

This can be verified by computing the composition. 

Now, by the induction composition

( x ,  x , ......,  x ) = ( x ,  x ) o ( x ,  x

) o ...... o ( x ,  x )

...( ii)

1

2

 k

1

 k

1

 k – 1

1

2

Substituting eqn. ( ii) in eqn. ( i), we have

( x ,  x ,  x ,......,  x ,  x

) = ( x ,  x

) o ( x ,  x ) o ...... o ( x ,  x ) o ( x ,  x )

1

2

3

 k

 k + 1

1

 k + 1

1

 k

1

3

1

2

which is the required result. 

Hence, by the principle of mathematical induction, the result holds for every cycle. 

Example 36.  Write the cycle (a, b, c, d, e, f) on the set A = {a, b, c, d, e, f} as a product of transpositions. 

Sol. The cycle ( a, b, c, d, e, f) = ( a, f) o ( a, e) o ( a, d) o ( a, c) o ( a, b) can be written as above in product of transposition form. 

⎛  k l m n o p q ⎞

Example 37.  Write the permutation p =  ⎜

 as a product of

 l k o

 p q n m⎟

⎝

⎠

 transpositions. 

Sol. First of all, write the permutation  p  as a product of disjoint cycles, which is given by p = ( k, l) o ( m, o, q) o ( n, p)

Now, the cycle ( m, o, q) can be written as

( m, o, q) = ( m, q) o ( m, o). 

Now, the permutation  p  in product of transpositions form can be written as

 p = ( k, l) o ( m, q) o ( m, o) o ( n, p). 
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2.19.5

Even and Odd Permutations

A permutation  p  of a finite set A is said to be EVEN if the permutation can be written as a product of an even number of transpositions. 

A permutation  p  of a finite set A is said to be ODD if the permutation can be written as a product of an odd number of transpositions. 

Example 38.  Determine whether the following permutation is odd or even

⎛  a b c d e f

 g h⎞

 p =

. 

⎜  b c a e f d h g⎟

⎝

⎠

Sol. First of all, write  p  as a product of disjoint cycles, which is as follows : p = ( a, b, c) o ( d, e, f ) o ( g, h)

Now, write all of the cycles as a product of transpositions, which is as follows :

( a, b, c) = ( a, c) o ( a, b)

( d, e, f ) = ( d, f) o ( d, e) and ( g, h) = ( g, h)

Then, we have  p = ( a, c) o ( a, b) o ( d, f ) o ( d, e) o ( g, h). Since,  p  is a product of an odd number of permutations, hence it is an odd permutation. 

Note 1. The product of two odd permutations is even. 

2. The product of two even permutations is even. 

3. The product of an even and an odd permutation is odd. 

PROBLEM SET-II

1. The set of integers w.r.t. +  i.e.  (I, +) is a cyclic group and 1 is a generator. 

2. The group (G = {0, 1, 2, 3, 4, 5}, +) is a cyclic group under Addition modulo 6. 

3. If  a is a generator of a cyclic group G, then  a–1 is also a generator of G. 

4. How many generator are there of the cyclic group G of order 8? 

5. For any two subgroups H and K of a group G, following holds. 

( i) H ∩   K is a subgroup of G. 

( ii) If H is normal in G, then H ∩ K is normal in K. 

6. Let G = (I, +) be a group, where I is the set of integers and + is an addition operation, also let H = {... –15, –10, –5, 0, 5, 10, 15 ...} be the subgroup consisting of the multiples of 5. Determine the cosets of  H in I. 

7. Let H is a subgroup of a group G. Then H is a normal subgroup of G iff  a H = H a,∀  a ∈ G

8. Consider the group G = {1, 2, 3, 4, 5, 6} under  multiplication modulo 7. 

( i) Construct the multiplication table of G. 

( ii) Show that G is a group. 

( iii) Determine 2–1, 4–1 and 6–1. 

( iv) Determine the orders and subgroups generated by 2 and 3. 

( v) Is G cyclic? Justify your answer. 

⎛1 2 3 4

⎛1 2 3 4⎞

9. Let A = {1, 2, 3, 4} and suppose that 

⎞

α =  ⎜2 4 1 3⎟  and β =  ⎜

⎟ . Determine αβ and

⎝

⎠

⎝3 2 4 1 ⎠

βα. 

⎛1 2 3 4⎞

10. Determine the order of α =  ⎜3 1 4 2⎟ . 

⎝

⎠
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11. What will 3 be mapped to by (1, 2) (3) (4, 5) (1, 5, 3) (2, 4)? 

12. Write the permutation (1, 3) (2, 7) (4, 5, 6) (8) in array form. 

⎛1 2 3 4 5 ⎞

⎛1 2 3 4 5⎞

13. Let α =  ⎜2 1 3 5 4⎟

⎝

⎠  and β =  ⎜5 4 1 2 3⎟ . 

⎝

⎠

( i) Write α and β in cycle rotation. 

( ii) Write αβ is cycle rotation. 

( iii) Write αβ in dis-joint cycle rotation. 

14. What is the inverse of (1, 2, 3)? 

15. Write 

⎛

⎞

α =  1 2 3 4 5 6 7 8

⎜3 5 7 4 2 8 1 6⎟  as a product of disjoint cycles. 

⎝

⎠

16. What is the order of (1, 3, 2) (2, 4) and (1, 2, 4), (3, 4, 5)? 

17. Write the following permutations as product of transpositions. 

( i) (1, 3, 7)

( ii) (1, 2, 3, 4, 5)

( iii) (1, 6, 3, 2) (4, 5, 7)

18. Write the following permutation as product of transpositions. 

⎛1 2 3 4 5 6 7 8⎞

⎜3 5 7 4 2 8 1 6⎟

⎝

⎠

19. Which of the following permutations is even or odd? 

( i) (1, 3, 7)

( ii) (1, 2, 4) (3, 6, 7, 5)

⎛1 2 3 4 5⎞

20. Find the permutation P =  ⎜? ? ? ? ? ⎟  represented by the following cyclic products. 

⎝

⎠

( i) (1, 3) (1, 3)

( ii) (1, 2, 3) (4, 5) (1, 2, 5) (4, 5)

( iii) (1, 4, 3, 2)

( iv) (1) (2) (5, 3) (4)

( v) (1, 3, 5) (4, 2)

21. What is the order of the following permutations? 

( i) (1, 2, 4) (3, 5, 6, 7)

( ii) (1, 2, 4) (3, 5, 7, 8, 6, 9)

( iii) (3, 4, 5) (2, 4, 5)

( iv) (1, 2, 3, 5) (2, 4, 5, 6, 7)

22. Determine whether the following permutations are odd or even? 

( i) (1, 3, 5, 6)

( ii) (1, 2) (1, 3, 4) (1, 5, 2)

( iii) (1, 2, 3, 4) (3, 5, 2, 1)

( iv) (1, 2, 3, 4, 5) (6, 7, 8)

23. Let α = (1, 2, 3) (1, 4, 5). Write α99 is disjoint  cycle form. 

⎛1 2 3 4 5 6 7⎞

24. What is the order of the permutation  ⎜7 6 1 2 3 4 5⎟ ? 

⎝

⎠

25. Determine which of the following is/are True/False? 

( a) A subgroup H of a group G is a normal subgroup if and only if the number of left cosets of H

is equal to the number of right cosets of H. 

( b) Some abelian group of order 45 has a subgroup of order 10. 

( c) Every abelian group of order 45 has a subgroup of order 9. 

( d) If G is a group and H is a normal subgroup of G, then G is isomorphic to the direct product group (G/H) × H. 

( e) A group G of order 200 may contain a non-normal subgroup of order 100. 

( f) Every cyclic group is abelian. 

( g) If  a is the generator of a cyclic group {G, ∗},  a–1 is not a generator of {G, ∗}. 
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( h) If a group G has the property that all elements (except the identity) are of order two, then G

is abelian. 

( i) If all subgroups of a group G are normal, the group is abelian. 

( j) The group Z  × Z  is cyclic. 

2

3

( k) The group Z  × Z  is cyclic. 

2

2

( l) If a group contains an element of order  d, it also contains a cyclic subgroup of order  d. 

( m) Every abelian group is cyclic. 

( n) In every cyclic group, every element is a generator. 

( o) A cyclic group has a unique generator. 

( p) Z  is a cyclic group. 

4

( q) Every subgroup of a cyclic group is cyclic. 

( r) Every subgroup of a cyclic group is normal. 

ANSWERS AND HINTS (PROBLEM SET II)

1. We have 1° = 1, 11 = 1, 12 = 1 + 1 = 2, 13 = 1 + 1 + 1 = 3 and so on. 

Further, 1–1 = inverse of 1 = –1

1–2 = (12)–1 = –2, 1–3 = (13)–1 = –3 and so on. 

Thus, each element of G can be expressed as same integral power of 1. Hence 1 is a generator of the group. 

Similarly, it can be shown that –1 is also a generator. 

2. We have

11 = 1, 12 = 1 + 1 = 2, 13 = 1 + 12 = 3, I4 = 1 + I3 = 4, I5 = 1 + I4 = 5, I6 = 0. 

Thus, G = {I°, I2, I3, I4, I5, I6 = 0}

This shows  that G is a cyclic group and 1 is a generator. 

Similarly, it can be shown that 5 is also a generator. 

3. Let us assume that G = <  a> be a cyclic group generated by  a. Further, let  at be any element of G, where  t is some integer. Now, we can write  at = ( a–1) –t . Since – t is also some integer, therefore each element of G, is generated by  a–1. Hence,  a–1 is also a generator of G. 

4. Let us assume that  a be the generator of G. Then 0( a) = 8. It can be written as G = { a,  a 2,  a 3,  a 4, a 5,  a 6,  a 7,  a 8}. 

Since 7 is prime to 8, therefore  a 7 is also generator of G. 

5 is prime to 8, therefore  a 5 is also generator of G. 

3 is prime to 8, therefore  a 3 is also generator of G. 

This shows that, there are four generators of G. These are  a,  a 3,  a 5,  a 7. 

5. 

( i) We have e ∈ H ∩ K, this means H ∩ K is non-empty. 

Then, Let  a,  b ∈ H ∩   K ⇒  a,  b ∈ H and  a,  b ∈ K

⇒  ab–1 ∈ H and  ab–1 ∈ K

⇒  ab–1 ∈ H ∩   K

Thus, H ∩   K is a subgroup of G. 

( ii) Let us assume that H be normal in G. Further, Let  x ∈ K and  a ∈ H ∩   K. 

Then  x–1  ax ∈ K since  x,  a ∈ K. 

Further,  x–1  ax ∈ H since H is  normal and  a ∈ H. Consequently

 x–1  ax ∈ H ∩   K, ∀  x ∈ K,  a ∈ H ∩   K. 

Hence, H ∩   K is a normal subgroup of K. 
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6. There are Five distinct left cosets of H in I. 

0 + H = {... –15, –10, –5, 0, 5, 10, 15, ...}

1 + H = {... –14, –9, –4, 1, 6, 11, 16, ...}

2 + H = {... –13, –8, –3, 2, 7, 12, 17, ...}

3 + H = {... –12, –7, –2, 3, 8, 13, 18, ...}

4 + H = {... –11, –6, –1, 4, 9, 14, 19, ...}

7. Suppose H is a normal subgroup of G. Then for all  a ∈ G, we have

 a H a–1 = H

⇔ ( a H a–1) a = H a

⇔  a H( a–1 a) = H a

⇔  a H e = H a ∴  a–1 a =  e

⇔  a H = H a. Hence proved. 

8. 

( i) The Multiplication table is shown below:

*

1

2

3

4

5

6

( ii) It is closed, associative, have identity 1 and there

1

1

2

3

4

5

6

exists inverse for every element. Hence it is a

2

2

4

6

1

3

5

group. 

3

3

6

2

5

1

4

( iii) 2–1 = 4, 4–1 = 2, 6–1 = 6

4

4

1

5

2

6

3

( iv) <2> = {1, 2, 4}, <3> = {1, 2, 3, 4, 5, 6}

5

5

3

1

6

4

2

( v) Since 0(3) = 6 = 0(G). Hence G is cyclic. 

6

6

5

4

3

2

1

⎛1 2 3 4⎞

⎛1 2 3 4⎞

9. αβ =  ⎜1 4 3 2⎟

⎜

⎟

⎝

⎠  and βα =  ⎝2 1 3 4⎠

10. We have to find  the smallest integer  n such that α n =  e, where the operation is composition  i.e.  α2

means αα. 

⎛

⎞

⎛

⎞

α2 =  1 2 3 4

⎜4 3 2 1 ⎟ ,α3 = α2α =  1 2 3 4

⎜

⎟  and

⎝

⎠

⎝2 4 1 3 ⎠

⎛

⎞

α4 = α3α =  1 2 3 4

⎜1 2 3 4⎟ =  e. Hence, |α| = 4. 

⎝

⎠

11. Proceed from right to left. (2, 4) has no action on 3. (1, 5, 3) maps 3 to 1 so, now we have 1. (4, 5) and (3) has no action on 1. (1, 2) maps 1 to 2. So, the answer is 3 → 2. 

12. The Permutation in  array form is

⎛1 2 3 4 5 6 7 8⎞

(1, 3) (2, 7) (4, 5, 6) (8) =  ⎜3 7 1 5 6 4 2 8⎟

⎝

⎠

13. 

( i) α = (1, 2) (3) (4, 5), β = (1, 5, 3) (2, 4)

= (1, 2) (4, 5)

( ii) αβ in cycle notation; αβ = (1, 2) (3) (4, 5) (1, 5, 3) (2, 4)

( iii) αβ(1) = 4, αβ(2) = 5, αβ(3) = 2, αβ(4) = 1, αβ(5) = 3. 

Thus, αβ = (1, 4) (2, 5, 3)

14. The composition of a cycle and its inverse must give identity. Thus (1, 2, 3)–1 = (3, 2, 1). We can verify (1, 2, 3) (3, 2, 1) =  e. 

15. α as product of cycles

⎛1 2 3 4 5 6 7 8⎞

⎜3 5 7 4 2 8 1 6⎟ = (1, 3, 7) (2, 5) (4) (6, 8)

⎝

⎠
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16. The order of (1, 3, 5) (2, 4) = LCM (3, 2) = 6

To find the order of (1, 2, 4) (3, 4, 5), First write it as a product of disjoint cycles. So (1, 2, 4) (3, 4, 5) = (1, 2, 4, 5, 3)

Thus the order is 5. 

17. 

( i) (1, 3, 7) = (1, 7) (1, 3)

( ii) (1, 2, 3, 4, 5) = (1, 5) (1, 4) (1, 3) (1, 2)

( iii) (1, 6, 3, 2) (4, 5, 7) = (1, 2) (1, 3) (1, 6) (4, 7) (4, 5)

18. ⎛1 2 3 4 5 6 7 8⎞

⎜3 5 7 4 2 8 1 6⎟  = (1, 3, 7) (2, 5) (4) (6, 8) = (1, 7) (1, 3) (2, 5) (6, 8)

⎝

⎠

19. 

( i) (1, 3, 7) = (1, 7) (1, 3). So it is even. 

( ii) (1, 2, 4) (3, 6, 7, 5) = (1, 4) (1, 2) (3, 5) (3, 7) (3, 6). So it is odd. 

⎛1 2 3 4 5⎞

20. 

( i) (1, 3) (1, 3) =  ⎜1 2 3 4 5⎟

⎝

⎠

⎛1 2 3 4 5⎞

( ii) (1, 2, 3) (4, 5) (1, 2, 5) (4, 5) =  ⎜3 4 1 2 5⎟

⎝

⎠

⎛1 2 3 4 5⎞

( iii) (1, 4, 3, 2) =  ⎜4 1 2 3 5⎟

⎝

⎠

⎛1 2 3 4 5⎞

( iv) (1) (2) (5, 3) (4) =  ⎜

⎟

⎝1 2 5 4 3⎠

⎛1 2 3 4 5⎞

( v) (1, 3, 5) (4, 2) =  ⎜3 4 5 2 1⎟

⎝

⎠

21. 

( i) 12

( ii) 6

( iii) 2

( iv) 12

22. 

( i) odd

( ii) odd

( iii) even

( iv) even

23. In disjoint cycle form, α = (1,4, 5, 2, 3). Thus, the permutation has order 5 and α5 =  e. So α99 = α5 .19 + 4

= (α5 . 19) α99

= ( e 5)19α4

= α19α4

= α4

Hence, compute α4 = (1, 4, 5, 2, 3) (1, 4, 5, 2, 3) (1, 4, 5, 2, 3) (1, 4, 5, 2, 3) = (1, 3, 2, 5, 4). 

24. Writing it as product of cycles, we have (1, 7, 5, 3) (2, 6, 4). The length of the cycles is 4 and 3. 

Thus the order of the permutation is LCM (4, 3) = 12. 

25. ( a) False. For every subgroup, the number of left cosets is equal to the number of right cosets. 

Normality means that every left coset is a right coset. 

( b) False. According to Lagrange’s theorem, the order of a subgroup divides the order of the group, but 10 does not divide 45. 

( c) True. This follows from the fundamental theorem of finite abelian groups. 

( d) False

( e) False: Every group of index 3 is normal. 

( f) True

( g) False

( h) True

( i) False

( j) True: It is isomorphic to Z6

( k) False: It contains no element of order 4, yet has 4 elements. 

( l) True: If  x has order  d, then the subgroup generated by  x is cyclic of order  d. 

( m) False: R and Q (under addition) are examples of abelian groups that are not cyclic. 

( n) False

( o) False

( p) True

( q) True

( r) False
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2.20

RINGS

An algebraic system (R, + ,•), where R is a set with two arbitrary binary operations

+ and •, is called a ring if it satisfies following conditions

( i) (R, +) is an abelian group. 

( ii) (R, •) is a semigroup. 

( iii) The multiplication operation,•, is distributive over the addition operation +  i.e., a( b +  c) =  ab +  ac and ( b +  c) a =  ba +  ca for all  a, b, c ∈ R.L

For example : Consider M be the set of all matrices of the type   c d

0

NM

O0QP over integers

under matrix addition and matrix multiplication. Thus M form a ring. 

For example : The set Z  = {0, 1, 2, 3, 4, 5, 6, 7, 8} under the operation addition and 9

multiplication modulo 9 forms a ring. 

2.20.1

Types of Rings

2.20.1.1 Commutative Rings. A ring (R, + ,•) is called a  commutative ring if it holds the commutative law under the operation of multiplication  i.e., 

 a • b =  b •  a, for every  a, b ∈ R

For example :   Consider a set E of all even integers under the operation of addition and multiplication. The set E forms a commutative ring. 

2.20.1.2 Ring with Unity. A ring (R, + ,•) is called a  ring with unity, if it has  a multiplicative identity  i.e., 

 a • e =  e •  a =  a for every  a ∈ R

For example : Consider a set M of all 2 × 2 matrices over integers under matrix multi-

L1 0

plication and matrix addition. The set M forms a ring with unity  0

NM O1QP. 

2.20.1.3 Ring with Zero Divisions. If  a • b = 0, where  a and  b are any two non-zero elements of R in the ring (R, + ,•), then  a and  b are called divisors of zero and the ring (R, + ,•) is called ring with zero division. 

2.20.1.4 Ring without Zero Division. An algebraic system (R, + ,•), where R is a set

with two arbitrary binary operation + and •, is called a ring without divisors of zero if for

every  a,  b ∈ R, we have

 a •  b ≠ 0 ⇒  a ≠ 0 and  b ≠ 0. 

2.20.2

Subrings

A subset A of a ring (R, + ,•) is called a  subring of R, if it satisfies following conditions. 

( i) (A, +) is a subgroup of the group (R, +)

( ii) A is closed under the multiplication operation  i.e., a •  b ∈ A, for every  a,  b ∈ A. 

For example : The ring (I, + ,•) of integers is a subring of ring (R, + ,•) of real numbers. 

Points to be Noted

( i) If R is any ring then {0} and R are subrings of R. 

( ii) Sum of two subrings may not be a subring. 

( iii) Intersection of subrings is a subring. 
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For example. Consider the ring M of 2 × 2 matrices of integers under matrix addition

L

and matrix multiplication. Now, S, the set of all matrices of the type   x  0

NM O

 y  0QP, where  x,  y are

integers is a subring of M. 

Theorem XIII.  Show that ( – a)(–  b) =  ab in a ring R. 

Proof. We have (–  a)(–  b) = – [ a(–  b)] = – (–  ab) =  ab Hence proved. 

Theorem XIV.  Show that a( b – c)  = ab – ac in a ring R. 

Proof. We have  a( b –  c) = –  a[ b + (–  c)] =  ab +  a(–  c) =  ab –  ac Hence proved. 

Theorem XV.  Show that a ⋅  0 = 0 . a = 0 for all a ∈  R, where R is a ring. 

Proof. We have     a ⋅ 0 =  a ⋅ (0 + 0)

⇒

 a ⋅ 0 =  a ⋅ 0 +  a ⋅ 0

⇒

 a ⋅ 0 + 0 =  a ⋅ 0 +  a ⋅ 0 ⇒ 0 =  a ⋅ 0

[Using left cancellation law]

Hence proved. 

Theorem XVI.  Show that a(–  b)  = ( – a) b = – ab for all a, b ∈  R, where R is a ring. 

Proof. We know that     a. 0 = 0

⇒  a(–  b +  b) = 0

⇒

  

  

 a(–  b) +  ab = 0

⇒   

 a(–  b) = – ( ab)

Similarly, we have (–  a) b = –  ab. Hence proved. 

Example 39.   If R is a ring and a,  b,  c,  d, ∈  R. Evaluate ( a +  b) ( c +  d). 

Sol. We have ( a +  b) ( c +  d) =  a( c +  d) +  b( c +  d) by distributive law

= ( ac +  ad) + ( bc +  bd)

=  ac +  ad +  bc +  bd

Example 40.   Prove that if a,  b ∈  R, then ( a +  b)2 =  a 2 +  ab +  ba +  b 2 ,   where by x2 we mean xx. 

Sol. 

( a +  b)2  = ( a +  b) ( a +  b) =  a( a +  b) +  b ( a +  b)

=  a 2 +  ab +  ba +  b 2

Note that if R is not a commutative ring  ab ≠  ba. 

Example 41.   If in a ring R every x ∈  R satisfies x 2 =  x, prove that R must be commutative. 

( A ring in which x 2  = x for all elements is called a Boolean ring). 

Sol.  Let  x,  y ∈ R. 

Then

( x +  y)2  = ( x +  y) ( x +  y) =  x 2 +  xy +  yx +  y 2

Since

 x 2 =  x and  y 2 =  y we have  x +  y =  x +  xy +  yx +  y. 

Hence

 xy  = –   yx. 

But for every  x ∈   R

(– x) = (– x)2 = (– x) (– x) =  x 2 =  x. 

Hence – yx =  yx  i.  e. we obtain  xy =  yx. 
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2.21 INTEGRAL DOMAIN

Let us consider, an algebraic system (D, +, ∗), where + and ∗ are two binary operations. 

The algebraic system (D, +, ∗) is called an  integral domain if it satisfies the following conditions. 

1. (D, +) is an abelian group. 

2. The operation ∗ is commutative. Also, if we have  z ≠ 0 and  z ∗  x =  z ∗  y; then we have x =  y. Hence 0 is the additive identity. 

3. The operation ∗ is distributive over the operation +. 

Example 42.  Let us consider an algebraic system ( I, +, ∗) , where I is the set of all integers and + and ∗  are the operations of addition and multiplication on integers respectively. Determine whether ( I, +, ∗)  is an integral domain. 

Sol. The algebraic system (I , +) is an abelian group. Here, the identity element is 0 and inverse of every element  a is –  a. 

The operation ∗ is commutative. 

Also, for every non-zero integer  z, we have

 z ∗  x =  z ∗  y ⇒  x =  y

Also, the operation * is distributive over +. Since, the system (I, +, *) satisfies all the

conditions of integral domain. Hence, (I, + ,*) is an integral domain. 

Example 43.  If D is an integral domain and if na = 0 for some a ≠  0 in D and some integer n ≠  0, prove that D is of finite characteristic. 

Sol. Let  b ∈ D. Consider  nab.  Since  ( na) = 0 we have  nab = 0. On the other had  nab =

 nba as integral domain is a commutative ring. 

So 0 =  nab =  nba. But  a ≠ 0 implies  nb = 0 for all  b ∈   D. 

Example 44.  D  is an integral domain and D is of finite characteristic, prove that the characteristic of D is a prime number. 

Sol. Let a be any non zero element of D. Then  a 2 ≠ 0 as D is an integral domain. Since D

is of positive characteristic  q, then  qa 2 = 0 for all  a ∈ D. 

If  q is a composite number, let  p  be a prime number dividing  q and let  q =  p q . 

1

1 1

Now

 qa 2 =  p q a 2 =  p aq a = 0. 

1 1

1

1

Since D is integral domain either  p a = 0 or  q a = 0. Thus either of these equations gives 1

1

a contradiction to the assumption that  q is the smallest positive integer such that  qx = 0 for all x ∈ D. Thus  q is not composite, it is a prime. 

Example 45.  Show that  the commutative ring D is an integral domain if and only if for a, b, c, ∈  D with a ≠  0 the relation ab =  ac implies that b = c. 

Sol. If D is a commutative ring and  a ≠ 0, then  ab =  ac implies  a( b –  c) = 0. Since  a ≠ 0

we obtain  b =  c. 

Conversely assume that  ab =  ac and  a ≠ 0 implies that  b =  c. Assume if possible that a ≠ 0 and  ab = 0 Then  ab =  a 0 and hence  b = 0
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2.22

FIELD

An algebraic system (F, +,•), where F is a set with two arbitrary binary operations +

and •, is called a  field if it satisfies the following conditions. 

( i) (F, +) is an abelian group. 

( ii) Every non-zero element has a multiplicative inverse. 

( iii) The operation • is distributive over the operation +. 

For example.  The algebraic system (R, +, •) is a field, where R is the set of all real numbers. 

Points to Remember

* Every field is a ring. 

* Every field is an integral domain but every integral domain is not a field. 

* Every finite integral domain is a field. 

 e.g.,  The set of rational numbers with addition and multiplication is not a field because the multiplicative inverse of elements do not exists. 

Definition. A field is a set F, containing at least two elements, on which two operations

+ and ⋅ (called addition and multiplication, respectively) are defined so that for each pair of elements  x,  y in F there are unique elements  x +  y and   x ⋅  y (often written  xy) in F for which the following conditions hold for all elements  x,  y,  z in F:

( i)  x +  y =  y +  x (commutativity of addition)

( ii) ( x +  y) +  z =  x + ( y +  z) (associativity of addition) ( iii) There is an element 0 ∈ F, called zero, such that  x + 0 =  x. (existence of an additive identity)

( iv) For each  x, there is an element – x ∈ F such that  x + (– x) = 0. (existence of additive inverses)

( v)  xy =  yx (commutativity of multiplication)

( vi) ( x ⋅  y) ⋅  z =  x ⋅ ( y ⋅  z) (associativity of multiplication) ( vii) ( x +  y) ⋅  z =  x ⋅  z +  y ⋅  z  and  x ⋅( y +  z) =  x ⋅  y +  x ⋅  z (distributivity) ( viii) There is an element 1 ∈ F, such that 1 ≠ 0 and  x ⋅ 1 =  x. (existence of a multiplicative identity)

( ix) If  x ≠ 0, then there is an element  x–1 ∈ F such that  x ⋅  x–1 = 1. (existence of  multiplicative inverses)

For example. The set Q of rational numbers with addition and multiplication operations

is a field. 

• The set of real Numbers, R with addition and multiplication operation is a field. 

• The set of complex Numbers, C with + and • operation is a field. 

• The set Z, of integers with + and • operation is not a field. 

Example 46.   Let F be a field. Show that the multiplicative identity of F is unique. 

Sol. Let us assume that 1 ∈ F and  p ∈ F are multiplicative identities. Since 1 is a multiplicative identity, hence  x ⋅ 1 =  x for all  x ∈   F. 

Now setting  x =  p, we have  p ⋅ 1 =  p. On the other hand, since  p is a multiplicative identity, hence  x ⋅  p =  x for all  x ∈ F. 
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Now take  x = 1, so we get 1 ⋅  p = 1. But 1 ⋅  p =  p ⋅ 1, by commutative property. 

So

 p =  p ⋅ 1 = 1 ⋅  p = 1. 

Hence, the multiplicative identity of F is  unique. 

Example 47.  Let F be a field. Show that a.  0 = 0 for all  a ∈  F. 

Sol.  Let us assume that  a ∈ F. Then

0 =  a –  a

(by def. of  inverse)

=  a ⋅1 –  a

(identity)

=  a ⋅ (0 + 1) –  a

(identity, commutativity)

= ( a ⋅ 0) + ( a.1) –  a

(distributivity)

= (( a ⋅ 0) +  a) –  a

(identity)

= ( a ⋅ 0) +  a –  a

(Associativity)

= ( a ⋅ 0) + 0

(def. of inverse)

=  a ⋅ 0

(identity)

Hence proved. 

Example 48.  Let F be a field. Show that the additive inverse of an element of F is

 unique. 

 or

 For any element a ∈  F, the additive inverse –a is unique. 

Sol. Let us assume that  a +  b = 0. Then adding – a both sides, we get a + (– a) +  b  = –  a

0 +  b  = –  a

That is, 

 b  = –  a. 

This shows that the only element that can be added to  a to get 0 is the element – a. 

Example 49.   Let F be a field. Show that the multiplicative inverse of a nonzero element of F is unique. 

 or

 For any element a ∈  F such that a ≠  0, the multiplicative inverse  a–1  is unique. 

Sol. Let us assume that  a ≠ 0, and there is  b ∈ F such that  ab = 1. Since  a ≠ 0 and  a–1

exists. Multiplying both side of the equation  ab = 1 by  a–1, we have

 a–1  ab =  a–11 =  a–1

 b =  a–1

(∵  a–1 a = 1)

Hence proved. 

Example 50.  Let F be a field. Show  that the additive identity  in F is unique. 

Sol.  Let us assume that some element  b ∈ F is an dditive identity. 

therefore

 b +  a =  a for all  a ∈ F. 

then

0 +  b =  b by the def. of 0

while

 b + 0 = 0 by the property hypothesized for  b. 

Summarizing the above statements and using commutative law

 b  = 0  +   b =  b + 0 = 0

Hence, 0 is the only additive identity and is unique. 
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Example 51.   (Cancellation law of multiplication) Let  a,  b  and  c  be elements of a field F. 

 Show that if ab =  cb  and  b ≠  0, then  a =  c. 

Sol.  Let us assume that  b  ≠ 0. Then, as per the rule of existence of multiplicative inverse, there exists  b–1 ∈ F such that

 b ⋅  b–1  = 1

Multiplying both sides of  ab =  cb on the  right by  b–1, we get

( ab) b–1  = ( cb)  b–1

 a( bb–1) =  c ( bb–1)

(By associativity of multiplication)

 a ⋅1 = c ⋅ 1

(∵  aa–1 = 1)

 a =  c

(existence of a multiplicative identity)

Hence proved. 

Example 52.   (Cancellation law of Addition) Let a, b, and c be elements of a field F. 

 Show that if a +  b =  c +  b,  then  a =  c. 

Sol. Let us assume that  a,  b,  c ∈ F, then

 a +  b =  c +  b

Additing – b to both sides, we have

( a +  b) + (– b) = ( c +  b) + (– b)

 a + ( b + (– b)) =  c + ( b + (– b))

(Associativity of Addition)

 a + 0 =  c + 0

(existence of additive inverse)

 a =  c

(existence of additive identity)

Hence proved. 

Example 53.  Let F be any field. Then + is a commutative operation on  F. 

Sol.  Let  x,  y be elements in F. Then since multiplication is commutative, we have. 

(1 +  x) ⋅ (1 +  y) = (1 +  y) ⋅ (1 +  x)

((1 +  x) ⋅ 1) + ((1 +  x) ⋅  y) = ((1 +  y) ⋅ 1) + ((1 +  y) ⋅  x) (By distributive law)

(1 +  x) + ((1 +  x) ⋅  y) = (1 +  y) + ((1 +  y) ⋅  x) (1 is multiplicative identity)

1 + ( x + ((1 +  x)  ⋅  y)) = 1 + ( y + ((1 +  y) ⋅  x) x + ((1 +  x) ⋅  y) =  y + ((1 +  y) ⋅  x)

(Cancellation law for addition)

 x + ( y ⋅ (1 +  x)) =  y + ( x ⋅ (1 +  y))

(Commutativity of  multiplication and distributive law)

 x + (( y ⋅ 1) + ( y ⋅  x)) =  y + (( x ⋅ 1) + ( x ⋅  y)) x + ( y + ( y ⋅  x)) =  y + ( x + ( x ⋅  y)) (1 is multiplicative identity and addition is associative)

( x +  y) + ( x ⋅  y) = ( y +  x) + ( x ⋅  y) (multiplication is commutative)

( x +  y) = ( y +  x)

(cancellation law for addition)

Hence, + is commutative. 

Example 54.  Let F be a field, and let x, y ∈  F. Then prove that x = – y. 

Sol.  To prove that  x = – y, it is sufficient to prove  x +  y = 0

So

 x +  y  = 0 ⇒ (( x +  y = 0) and ( y +  x = 0))

⇒

 y  = –   x  and  x = – y. 

Hence proved. 
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Example 55.  Let F be a field and let x, y ∈  F. Then prove that x =  y–1. 

Sol. To prove that  x =  y –1, it  is sufficient to prove that  x ⋅  y = 1

So

 x ⋅  y  = 1 ⇒ (( x ⋅  y = 1) and ( y ⋅  x = 1))

⇒

 x =  y–1 and  y =  x–1

Hence proved. 

Example 56 . Let F be a field. Then for all a ∈  F,  a ⋅  0 =  0

Sol.  We know that 0 = 0 + 0, thus

 a ⋅   0 =  a ⋅ (0 + 0)

=  a ⋅   0 +  a ⋅ 0

Also, 

 a ⋅   0 + 0 =  a ⋅ 0, so

 a ⋅   0 + 0 =  a ⋅   0 +  a ⋅   0. 

By the cancellation law for addition, 

0 =  a ⋅   0. 

Hence proved. 

Example 57.   Let F be a field. Then for all x,   y in F

( x ⋅  y = 0) ⇒ ( x = 0 or  y = 0)

...( i)

Sol.  There are two cases. 

Case I: Assume  x = 0. 

The equation ( i) is true because every statement implies a true statement. 

Case II: Assume  x ≠ 0

As shown in previous example,  x ⋅   0 = 0, hence

 x ⋅  y = 0 ⇒  x ⋅  y =  x ⋅   0

Since  x ≠ 0, using cancellation law for multiplication, we have. 

( x ⋅  y =  x ⋅   0) ⇒ ( y = 0) ⇒ ( x = 0 or  y = 0) Therefore, 

( x ⋅  y = 0) ⇒ ( x = 0 or  y = 0). 

Hence proved. 

Example 58.   Let F be a field. Then, for all x,   y ∈  F, 

 x ⋅ (–  y) = – ( x ⋅  y)

Sol.  Let us assume that  x,   y ∈ F. It is sufficient to prove that

 x ⋅ (– y) +  x ⋅  y = 0. 

So, we have

 x ⋅ (– y) +  x ⋅  y =  x ⋅ ((– y) +  y)

=  x ⋅   0

= 0. 

Hence proved. 

Example 59.   Let  a  and b  be elements of a field F. Then

( i)  a ⋅   0 = 0 ⋅  a = 0

( ii)  a(– b) = (– a) b = –( ab)

( iii) (– a) ( –b) =  ab. 
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Sol.  ( i) Let us assume that  x =  a ⋅ 0. Then we have

 x =  a ⋅ 0

 x =  a(0 + 0)

 x =  a ⋅   0 +  a ⋅   0

 x =  x +  x

Adding – x to both sides, we get  x = 0. Hence proved. 

( ii) Let us assume that  y =  a (– b). We want to show that  y is the additive inverse of  ab, i.e.   y +  ab = 0. So, we have

 y +  ab =  a(– b) +  ab

=  a(– b +  b)

=  a ⋅   0

= 0

Hence proved. 

( iii) Left as an exercise to reader. 

Example 60.  Prove that any field is an integral domain. 

Sol.  Let  a ≠ 0 and  b be two elements in the field F and  ab = 0. Since F is a field and a ≠ 0. We have  a–1 ∈  F. Hence  a–1  ab =  a–1 0 = 0. So we obtain  b = 0. 

Hence there exists no  zero divisor  in F. 

SOLVED PROBLEMS

Problem 1.  Let ( S, ∗)  be a commutative semigroup. Show that if x ∗  x = x and y ∗  y = y, then ( x ∗  y) ∗ ( x ∗  y) =  x ∗  y. 

Sol. Take L.H.S. ( x ∗  y) ∗ ( x ∗  y)

⇒

( x ∗  y) ∗ ( y ∗  x)

[∵ (S, ∗) is a commutative semigroup]

⇒

 x ∗  y ∗  y ∗  x ⇒  x ∗  y ∗  x

[∵  y ∗  y =  y]

⇒

 x ∗  x ∗  y

[∵ Commutative semigroup]

⇒

 x ∗  y

[∵  x ∗  x =  x]

Hence, 

( x ∗  y) ∗ ( x ∗  y) =  x ∗  y. 

Problem 2.  Let ({x, y}, .) be a semigroup where x . x = y show that

( i)  x . y = y . x

( ii)  y . y = y. 

Sol. ( i) To show that 

 x  .   y =  y.   x

We know that

 x .   x . x =  x .   x .   x ⇒  x .   y =  y .   x

[∵  x .   x =  y]

Hence proved. 

( ii) To show that

 y .   y =  y

We know that the set ( x,  y) is closed under the operation  y .  y. Therefore, we have two options

 x .   y =  x,    x .   y =  y

(I) Let

        x . y =  x

Now assume



  y . y =  y . ( x . x) = ( y . x)  . x

[∵  .  is associative]

= ( x . y)  . x

[∵  x . y =  y . x]
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=  x . x

[∵  x .   y =  x]

=  y

(II) Let



 x . y =  y

Now assume



    y . y = ( x . x)  . y

[∵  x . x =  y]

=  x . ( x . y)

[∵  .  is associative]

=  x . y

[∵  x . y =  y]

=  y

Hence proved. 

Problem 3.  Let ( A, *)  be a semigroup. Further more, for every a and b  in A, if a ≠  b,   then a ∗  b ≠  b ∗  a. 

( a)  Show that for every a in A

     a ∗  a = a

( b)  Show that for every a, b in A

       a ∗  b ∗  a = a

( c)  Show that for every a, b, c in A

       a ∗  b ∗  c =  a ∗  c. 

Sol. ( a) We know that A is a semigroup. 

∴

( a ∗  b) ∗  c =  a ∗ ( b ∗  c)

Now putting  b =  a and  c =  a, we have



( a ∗  a) ∗  a =  a ∗ ( a ∗  a)

Since A is not commutative semigroup. 

Hence

       a ∗  a =  a

...( i)

( b) Let us assume that  b ∈ A, then we have

     b ∗  b =  b

Multiplying both sides by  a, we get

         a ∗  b ∗  b =  a ∗  b  or ( a ∗  b) ∗   b =  a ∗  b

[∵ * is associative]

Hence, 

 a ∗  b = a

...( ii)

So, 

 a ∗  b ∗  a = ( a ∗  b) ∗  a

[∵ ∗ is associative]

=  a ∗  a

[∵  a ∗  b =  a from ( ii)]

=  a

[∵  a ∗  a =  a from ( i)]

( c) We know that

 a ∗  b ∗  c = ( a ∗  b) ∗  c

[∵ ∗ is associative]

=  a ∗  c

[∵  a ∗  b =  a from ( ii)]

Problem 4.  Let (Z , ∗)  be an algebraic structure, where z is the set of integers and the operation * is defined by n ∗  m = maximum (n, m). Determine whether (Z , ∗ ) is a monoid or a group or an abelian group. 

Sol. Closure Property

We know that  n ∗  m = max ( n,m) ∈ Z, ∀  n,   m ∈ Z

Hence ∗ is closed. 

Associative property. Let us assume  a, b, c ∈ Z. 

Then, we have  a ∗ ( b ∗  c) =  a ∗ max ( b,  c) = max ( a, max ( b,  c))

= max ( a, b, c)
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Similarly, 

( a ∗  b) ∗  c = max ( a, b, c)

Hence * is associative. 

Identity. Let  e be the identity element. Then max ( a,   e) =  a Hence, the minimum element is the identity element. 

Inverse. The inverse of any element does not exist. Since, the inverse does not exist, 

hence (Z,  ∗) is not a group or abelian group but a monoid as it satisfies the properties of closure, associative and has identity. 

Problem 5.  Let S = {0, 1, 2, 3, 4, 5, 6, 7} under multiplication modulo 8, that is

 x ⊗  y = (xy) Mod 8

( i)  Prove that ({0, 1}, ⊗ ) is not a group. 

( ii)  Write three distinct groups ( G, ⊗),   where G ⊂  S and G has 2 elements. 

Sol. ( i) ( a) Closure property. The set {0, 1} is closed under the operation ⊗, as shown in table of operation (Fig. 8). 

⊗

0

1

0

0

0

1

0

1

Fig. 8

( b) Associative property. The operation ⊗ is associative. Let  a, b, c ∈ G, then we have ( a ⊗  b) ⊗  c =  a ⊗ ( b ⊗  c)  e.g., (0 ⊗ 1) ⊗ 1 = (0) ⊗ 1 = 0

Similarly, 

0⊗ (1 ⊗ 1) = 0 ⊗ (1) = 0. 

( c) Identity. The element 1 is the identity element as for every

 a ∈ {0, 1}

  e ⊗  a =  a. 

( d) Inverse. There must exist an inverse of every element  a ∈ {0, 1}, such that     a ⊗  a– 1 =  e

But the inverse of element 0 does not exist. 

Therefore, since the inverse of every element  a ∈ {0, 1} does not exist. Hence ({0, 1}, ⊗) is not a group. 

( ii) The three distinct groups (G, ⊗), where G ⊂ S and G has 2 elements is as follows

( a) ({1, 3}, ⊗)

( b) ({1, 5}, ⊗)

( c) ({1, 7}, ⊗). 

Problem 6.  Determine whether a semigroup with more than one idempotent element

 can be group. 

Sol. Let (A, ∗) be a semigroup with two idempotent elements  a and  b. Then we have    a ∗  a =  a

...( i)

  

   b ∗  b =  b

...( ii), 

 a ≠  b. 

Now assume that A is a group with identity element  e. 

Then, 

  a ∗  e =  a  and  b ∗  e =  b

From ( i) and ( ii), we have  a ∗  a =  a ∗  e and  b ∗  b =  b ∗  e By the law of left cancellation, we get  a =  e =  b

which is a contradiction to  a ≠  b. 

Hence (A, ∗) can not be group. 

M-3.102

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Problem 7.  Let G  and G  be subgroups of a group G

 1

 2

( i)  Show that G  

  is also a subgroup of G. 

 1 ∩  G2

( ii)  Is G  

  always a subgroup of G ? 

 1 ∪  G2

Sol. ( i) Let G  and G  be two subgroups of G. Then we have

1

2

G  



and G ]

1 ∩ G2 ≠ φ

[∵ Identity element ∩ is common to both G1

2

To show that G  

is a subgroup, we shall have to prove that

1 ∩ G2

 a ∈ G  

and  b 





. 

1 ∩ G2

∈ G1 ∩ G2 ⇒  a, b ∈ G1 ∩ G2

Let us assume

 a ∈ G  

and  a 

1 ∩ G2

⇒  a ∈ G1

∈ G2

and

 b ∈ G  

and  b 

. 

1 ∩ G2

⇒  b ∈ G1

∈ G2

But we know that G  and G are subgroups. 

1

2 

Therefore, 

 a ∈ G

and  b 

...( i)

1

∈ G1 ⇒  ab– 1 ∈ G1

and

 a ∈ G

and  b 

...( ii)

2

∈ G2 ⇒  ab– 1 ∈ G2

From ( i) and ( ii), we have  ab– 1 ∈ G  

1 ∩ G2

Thus, we have

 a ∈ G  

and  b 





. 

1 ∩ G2

∈ G1 ∩ G2 ⇒  ab– 1 ∈ G1 ∩ G2

Hence G  

is a subgroup of G. 

1 ∩ G2

( ii) It is not always necessary that G  

is a subgroup of G. 

1 ∪ G2

Problem 8.  Let  (G, o)  be  a  group.  Show that ( G, o)  is an Abelian group if and only if ( a o b)2 =  a2 o b2 for all a and b in G. 

Sol. We know that

( a o b)2 = ( a o b)  o ( a o b) =  a o ( b o a)  o b

[∵  o is associative]

Now let us assume G is an Abelian group

=  a o ( a o b)  o b = ( a o a)  o ( b o b)

Hence, 

( a o b)2 =  a 2  o b 2, ∀  a, b ∈ G

Thus, the group G is Abelian if and only if

( a o b)2 =  a 2  o  b 2, ∀  a, b ∈ G. 

Problem 9.  Let G = (I, +) be a group, where I is the set of integers and + is an addition operation, also let G  = {......– 14, – 7, 0, 7, 14, 21, ......} be a subgroup consisting of the multiples 1

 of 7. Determine the cosets of G  in I. 

 1

Sol. The set I has 7 different cosets (left or right) of G , which are as shown below. 

1

0 + H = {...... – 14, – 7, 0, 7, 14, 21, ......}

1 + H = {...... – 13, – 6, 1, 8, 15, 22, ......}

2 + H = {...... – 12, – 5, 2, 9, 16, 23, ......}

3 + H = {...... – 11, – 4, 3, 10, 17, 24, ......}

4 + H = {...... – 10, – 3, 4, 11, 18, 25, ......}

5 + H = {...... – 9, – 2, 5, 12, 19, 26, ......}

6 + H = {...... – 8, – 1, 6, 13, 20, 27, ......}

All other cosets coincides with any one of the cosets shown above, hence we will not

count them. 

ALGEBRAIC  STRUCTURES

M-3.103

Problem 10.  Consider G = {1, 5, 7, 11, 13, 17} under multiplication modulo 18. 

( i)  Construct the multiplication table of G. 

( ii)  Find 5– 1, 7– 1 and 17– 1. 

( iii)  Find the order and group generated by

( a)  5

( b)  13. 

( iv)  Is G cyclic ? 

Sol. ( i) We can find  x *  y in G by finding the remainder when the product   xy is divided by 18. The table of multiplication modulo 18 is shown in (Fig. 9). 

∗

1

5

7

11

13

17

1

1

5

7

11

13

17

5

5

7

17

1

11

13

7

7

17

13

5

1

11

11

11

1

5

13

17

7

13

13

11

1

17

7

5

17

17

13

11

7

5

1

Fig. 9.  Table of multiplication modulo 18. 

( ii) We know that  a– 1 is the inverse of  a in G. The element 1 is the identity element of G. 

Also, we know that

    aa– 1 =  a– 1  a =  e

 i.e., 

 aa– 1 = 1

Hence, ( a)

5– 1 = 11

[∵ 5 ∗ 11= 11 ∗ 5 = 1]

( b)

7– 1 = 13

[∵ 7 ∗ 13 = 13 ∗ 7 = 1]

( c)

17– 1 = 17

[∵ 17 ∗ 17 = 17 ∗ 17 = 1]

( iii) ( a) We have

51 = 5, 52 = 7, 53 = 17; 

Thus, the order of the group |5| = 3 and the group generated by 5 = {5, 7, 17}. 

( b) Again we have  

131 = 13; 132 = 7; 133 = 1; 

Thus, the order of the group |13| = 3 and group generated by 13 = {1, 7, 13}. 

( iv) G is not cyclic since G ≠ any of the subgroups generated by 5 and 13. 

Problem 11.  Let G be a finite group and H be a subgroup of G. For a ∈  G, define aH = { ah : h ∈  H}

( a)  Show that |aH| = |H|. 

( b)  Show that for every pair of elements, a, b ∈  G either aH = bH or aH and bH are disjoint. 

( c)  Use the above to argue that the order of H must divide the order of G. 

Sol. ( a) To show  that | a H| = |H|

Let H = { h ,  h ,  h , ...,  h } be the  n elements of H. 

1

2

3

 n

Then

 a H = { ah ,  ah ,   ah ,   ...,  ah }

1

2

3

 n

But we know that

 ah  =  ah

if  h  =  h

 i

 j

 i

 j

Hence, the  n elements in  a H are distinct. 

Therefore, 

| a H| = |H|. 
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( b) Let us assume that ( a ∗ H) ∩ ( b ∗ H) is non empty

Also, let

 c ∈ ( a ∗ H) ∩ ( b ∗ H)

Then, we have

 c ∈  a ∗ H ⇒  a ∗ H =  c ∗ H

Also, 

 c ∈  b ∗ H ⇒  b ∗ H =  c * H

Therefore, 

     a ∗ H =  b ∗ H. 

Since the cosets form a partition of G. Hence  a H =  b H or  a H and  b H are disjoint. 

( c) Since we know that H is a subgroup of G. Let us assume, that the subgroup H has K

elements and let there are  b distinct left cosets. From the ( b) above, we have seen that the cosets partition the group G and from the ( a) above, we have seen that each coset has K

elements. 

Therefore, the group G must contain K *  b elements. Thus, it implies that the order of H

must divide the order of G. 

This is also called the Lagrange’s theorem. 

Problem 12.   ( a)  Let G be a cyclic group of order 6. How many of its elements generate G? 

( b)  Answer the same question for the cyclic groups of order 5, 10 and 8. 

Sol.  ( a) Suppose that G = <  a> for some a ∈ G; then G = {1,  a,  a 2,  a 3,  a 4,  a 5} since the order  o(G) = 6 ⇒  a 6 = 1. Now finding the generators of G amounts to finding the elements of G

of order 6; however this is possible iff the power of a is co-prime with 6  i.e.  iff  gcd ( a, 6) = 1

where  gcd refers to the greatest common divisor. Here the only generators  of G are  a and  a 5. 

Therefore, the number of generators of a cyclic group of order 6 is just 2. 

( b) Suppose that G =  <a>  so that G = {1,  a,  a 2,  a 3,  a 4} we can easily see here that  a,  a 2,  a 3, a 4 are the generators so we have 4 total generators. (Note that if the order of a group is p-prime then the number of generators is  p – 1.) Similarly, suppose that G = {1,  a,  a 2, ...,  a 9} then the generators here are  a,  a 3,  a 7,  a 9 and hence the number of generators is 4. 

Similarly, the number of generators of a cyclic group of order 8 is 4. 

Problem 13.   Prove that a group in which every element except the identity has order 2 is abelian. 

Sol.  Let G be a group such that for elements  a  ≠ 1 we have  a 2 = 1. Then we get a =  a–1. From closure property,  ab ∈ G for  a,  b ∈ G. Then  ab = ( ab)–1 =  b–1 a–1 =  ba (the second equality follows from the definition for the inverse of product of two elements and the third

one using the fact that  a =  a–1, for every  a ∈   G). We have proved that for any two elements a,  b ∈ G,  ab =  ba which means that G  is abelian. 

Problem 14.  Prove that a group of order 30 can have atmost 7 subgroups of order 5. 

Sol.  Let G be a group of order 30. This means it contains 30 elements. Suppose that H i is a subgroup  of G with order 5. But we know that a group having prime order is cyclic ⇒ H i

= <  a 1> for some  ai ∈ G. Using the fact that  two distinct groups of prime order intersect at 1, 7

subgroups is possible as we will have a total of 7.4 + 1 = 29 ≤ 30 elements. If we suppose we are able to have greater than 7 subgroups, say 8 we would get the total number of distinct elements in G as 8.4 + 1 = 33 > 30 which is not possible. Hence, the maximum possible number of subgroups of order 5 in a group of order 30 is 7. 

Problem 15.   Let G  be the group of integers, I, with 

 1

∗  being the addition operation. Let

 G  be the infinite group {... i–2, i–1, 1, i1, i2 ...} = {in | n 

 2

∈  I} with •  the multiplication operation. 

 Show that f : G  

 , f(x) = in is a homomorphism. 

 1 →  G2
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Sol.  The  f : G  

,  f( n) =  in is a homomorphism since

1 → G2

        f ( x *  y) =  ix +  y

=  ix •  iy

=  f ( x) •  f ( y)

=  f ( x) •  f ( y)

Hence, proved. 

Problem 16.   Let G  = G  = I , the set of integers modulo . m. Let 

 1

 2

 m

∗  and •  both correspond

 to addition mod m. Let f : G  

 , such that f(x) = kx mod m for any k 

 . Show that f is a

 1 →  G2

∈  Im

 homomorphism. 

Sol.  The  f is a homomorphism

since

        f ( x ∗  y) =  k ( x +  y) mod  m

= ( kx mod  m) + ( ky mod  m)

=  f( x) +  f( y)

=  f( x) •  f( y)

Hence proved. 

Problem 17.   Let G  = G  = R, the set of real numbers under addition. Let 

 1

 2

∗  and •  both

 correspond to addition. Let f : R →  R, such that f (x) = x2. Show that f is not a homomorphism. 

Sol.  The  f : R → R,  f ( x) =  x 2 is not a homomorphism

since

    f ( x ∗  y) = ( x +  y)2

and

   f ( x) •  f ( y) =  x 2 +  y 2

We know that, in general,  f ( x ∗  y) ≠  f( x) •  f( y). This proves that  f is not a homomorphism. 

Problem 18.   Consider any group G with any operation ∗ . Let G  = G  = G. Let f be the 1

 2

 identity on G. That is, f : G  

 , such that, f(x) = x. Show that f is an isomorphism. 

 1 →  G2

Sol. The  f is an isomorphism iff it is a homomorphism and one-to-one. 

The  f is a homomorphism

since

   

 f ( x ∗  y) =  x ∗  y

=  f ( x) •  f ( y)

=  f ( x) •  f ( y)

Also, it is one-to-one and can be proved by contradiction. 

Let us assume that  f is not one-to-one. Then there exists two values  x  and  x , such that 1

2

 x  

and  f ( x ) =  f ( x ). 

1 ≠  x 2

1

2

That is

      f ( x ) =  f ( x )

=  x

1

2

⇒  x 1

2

which is a contradiction. Thus,  f is one-to-one. 

Therefore,  f is an isomorphism. 

Problem 19.  Show that if G = G  × G  × ...... × G  is a group and (a , a , ......, a ) 1

 2

 n

 1

 2

 n ∈ G, 

then

( i) ( a , a , ......, a ) – 1 = (a – 1, a – 1, ......, a – 1)

 1

 2

 n

 1

 2

 n

( ii) ( a , a , ......, a ) m = ( a m, a m, ......,a m). 

 1

 2

 n

 1

 2

 n

Sol. ( i) Let  a ∈ G and also  a– 1 ∈ G. Also assume that

   

 a = ( a ,  a ,  a , ......,   a ) and  a– 1 = ( a – 1,  a – 1,  a – 1, ......   a – 1) 1

2

3

 n

1

2

3

 n
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Now

 a ∗  a– 1 = ( a ,  a ,  a , ......,  a ) 

– 1,  a – 1,  a – 1, ......,  a – 1)

1

2

3

 n ∗ ( a 1

2

3

 n

= ( a

– 1,  a

– 1, ......,  a  

– 1) = ( e ,  e ,  e , ......,   e )

1∗  a 1

2 ∗  a 2

 n ∗  an

1

2

3

 n

Here  e   is the identity of group G . 

 i

 i

Since,  a– 1 is the inverse of  a. So we can write ( a ,  a ,   a ,.....,   a )– 1 = ( a – 1,  a – 1, ......,   a – 1). 

1

2

3

 n

1

2

 n

( ii) We can prove this by the method of induction. Let us assume that  n = 2  i.e., ( a ,   a ,   a ,......,  a )2 = ( a ,   a ,   a , ......,  a )( a ,   a ,   a , ......,   a ) 1

2

3

 n

1

2

3

 n

1

2

3

 n

= ( a a ,  a a ,   a a , ......,  a a ) = ( a  2,  a  2,  a  2, ......,  a  2) 1 1

2 2

3 3

 n n

1

2

3

 n

Thus, the result is true for  n = 2. 

Let us assume that it is true for  n =  m – 1  i.e., 

( a ,   a ,   a , ......,   a ) m – 1 = ( a m – 1,   a m – 1,  a m – 1, ......,   a m – 1) 1

2

3

 n

1

2

3

 n

Now,  ( a ,  a ,  a , ......,   a ) m = ( a m – 1,  a m – 1,  a m – 1, .......,  a m – 1)( a ,   a ,   a ,......,  a ) 1

2

3

 n

1

2

3

 n

1

2

3

 n

= ( a m,  a m, a m, ......,   a m)

1

2

3

 n

Thus, it is true for  n =  m. 

Problem 20.  Show that if G = G  × G  × G   ...... × G   is a group and ( a , a , a , ......., a ) 1

 2

 3

 n

 1

 2

 3

 n

∈  G, then

( i)  The identity of G is (e , e , ......,e ), where e  is the identity of corresponding G . 

 1

 2

 n

 i

 i

( ii)  The group G is an abelian group iff each of groups G , G , ......, G  is abelian. 

 1

 2

 n

Sol. ( i) Let  e = ( e ,   e ,   e , ......,   e ) is the identity for G  × G × G  × ......, G , where  e  is the 1

2

3

 n

1

2 

3

 n

 i

identity for G .  i

Now let us assume that  a ∈ G  × G  × G  × ...... × G

1

2

3

 n

Then we have

  a ∗  e = ( a ,   a ,   a , ......,  a ) 

,   e , ......,  e )

1

2

3

 n ∗ ( e 1

2

 n

= ( a

,  a  

,  a  

, ......,  a  

)

1 ∗  e 1

2 ∗  e 2

3 ∗  e 3

 n ∗  en

= ( a ,   a ,......,  a )

[

  

=  a ]

1

2

 n

∵  ai ∗  ei

 i

Similarly, we can show that  e ∗  a =  a. 

Hence,  e is the identity of G. 

( ii) Let  a,  b ∈ G. Then, we have

  a = ( a ,   a ,   a , ......,   a ) and  b = ( b ,   b ,   b , ......,   b ) belongs to 1

2

3

 n

1

2

3

 n

G  × G  × G × ..... × G , where  a , b  belongs to the corresponding G . 

1

2

3 

 n

 i

 i

 i

Now, 

 a ∗  b = ( a ,   a ,   a , ......,   a ) 

,   b ,   b ,......,   b )

1

2

3

 n ∗ ( b 1

2

3

 n

= ( a  

,  a  

,  a  

, ......,  a  

)

1 ∗  b 1

2 ∗  b 2

3 ∗  b 3 

 n ∗  bn

Also, 

    b ∗  a = ( b ,   b ,   b , ......,  b ) 

,   a ,   a , ......,   a )

1

2

3

 n ∗ ( a 1

2

3

 n

= ( b *  a ,   b  *  a ,  b  *  a , ......,  b  *  a ) 1

1

2

2

3

3

 n

 n

A group G is an abelian group iff  a *  b =  b *  a. 

Thus, iff  a  

=  b  

for each G   i.e.,  the group G is an abelian group if each of the

 i ∗  bi

 i ∗  ai

 i

groups G , G , G , ....., G  is abelian. 

1

2

3

 n

Problem 21.  Consider a ring ( R, +, ∗)  defined by a ∗  a = a. 

 Determine whether the ring is commutative or not. 
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Sol. We have given the ring (R, +, ∗) satisfying the following properties

( i) (R, +) is an abelian group. 

( ii) (R, ∗) is a semigroup. 

( iii) The operation ∗ distributes over +. 

Also we have,  a ∗  a =  a, ∀  a in (R, +,∗). 

To prove that the ring (R,+,∗) is commutative. We have to prove that there exists an

identity element and (R, ∗) is a commutative monoid. 

Let us assume  a, b ∈ R

Also, let

   c =  a +  b

Since, + is a closed operation, hence  c ∈ R. 

Then, we have

   c ∗  c =  c ∗ ( a +  b)

We know that, the operation * distributes over +. 

So, 

 c ∗  c = ( a +  b) ∗ ( a +  b) =  a ∗  a +  a ∗  b +  b ∗  a +  b ∗  b So, 



 c =  a +  b +  a ∗  b +  b ∗  a

[∵  a ∗  a =  a]

or

   

 c =  c + ( a ∗  b +  b ∗  a)

Therefore,  a ∗  b +  b ∗  a =  e is an identity for operation + also  a ∗  b is inverse of  b ∗  a Again, let us assume  a +  a =  b

or

 a ∗ ( a +  a) =  a ∗  b

or

 a ∗  a +  a ∗  a =  a ∗  b

or

 a +  a =  a ∗  b

...( i)

Similarly, 

( a +  a) ∗  a =  b ∗  a

or

 a ∗  a +  a ∗  a =  b *  a

or

 a +  a =  b ∗  a

...( ii)

From ( i) and ( ii), we have

    a ∗  b =  b ∗  a

Thus, the operation ∗ is commutative. Since, (R, ∗) is a commutative monoid. Therefore, 

(R, +, ∗)is a commutative ring. 

Problems 22.   Let R be a set that satisfies all the axioms of a ring except possibly a + b =

 b + a. Then R is a ring. 

Sol.  It is sufficient to prove that addition is commutative. We compute ( a +  b) (1 + 1), in two different ways. Distributing on the right, 

( a +  b) (1 + 1) = ( a +  b)1 + ( a +  b) 1

=  a +  b +  a +  b

=  a + ( b + a) +  b

Similarly, distributing this product on the left, we get

( a +  b) (1 + 1) =  a(1 + 1) +  b(1 + 1)

=  a +  a +  b +  b

Thus, 

 a + ( b +  a) +  b  = ( a +  b) (1 + 1) =  a +  a +  b +  b Cancelling an  a on the left and the  b on the right, we have

 b +  a =  a +  b

Hence proved. 
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Problem 23.   In a ring R if x3 = x for all x ∈  R. Then show that R is commutative. 

Sol.  The assumption  x 3 =  x for all  x ∈ R implies that ( x +  x)3 = ( x +  x) for all  x ∈ R. This means (2 x)3 = 8 x = 2 x. Thus 6 x = 0 for all  x ∈ R. Also ( x 2 –  x)3 =  x 2 –  x implies that 3 x 2 = 3 x after simplifications. Consider S = {3 x |  x ∈ R}. It can be easily checked that S is  a subring of R and and for  y ∈   S. 

 y 2 = (3 x)2 = 9 x 2 = 6 x 2 + 3 x 2 = 3 x 2  = 3 x =  y as 6 x 2 = 0. Thus  y 2 =  y for all  y ∈ S implies that S is a commutative ring and so (3 x) (3 y) = (3 y) (3 x),  i.e.  9 xy = 9 yx which implies 3 xy = 3 yx. Now ( x +  y)3 =  x +  y implies. 

( i)  xy 2 +  x 2 y +  xyx +  yx 2 +  yxy +  y 2 x = 0 and ( x –  y)3 =  x –  y implies ( ii)  xy 2 –  x 2 y –  xyx –  yx 2 +  yxy +  y 2 x = 0 By adding ( i) and ( ii), we obtain 2 xy 2 + 2 yxy + 2 y 3 x  = 0

Multiply last equation by  y on right and then by  y on left we have

( iii) 2 xy + 2 yxy 2 + 2 y 2 xy = 0

( iv) 2 yxy 2 + 2 y 2 xy + 2 yx = 0 subtract ( iii) and ( iv) to get 2 xy  = 2 yx

Since 3 xy = 3 yx, we have  xy =  yx for all  x,  y ∈ R. Hence R is commutative. 

Problem 24.   Prove that the units in a commutative ring with unit element form an

 abelian group. 

Sol.  Let  x and  y be units in R. Then there exists  x–1 and  y–1 ∈ R such that xx–1 =  x –1 x = 1

and

 yy–1 =  y–1  y  = 1. 

Now

( xy) ( y–1  x–1) =  x ( yy–1)  x–1 =  xx–1 = 1

and

( y–1  x–1) ( xy) =  y–1( x–1 x) y =  y–1 y = 1. 

Hence  xy is invertible. Since ( x–1) –1 =  x the element  x–1 is also a unit. So the set of all units in R is closed with respect to the multiplication in R and taking inverses. 

Since the associativity is inherited from the ring axioms, the set of units in R is a group

with respect to the multiplication in R. 

Since the ring is commutative, the group is also commutative. 

Problem 25.   Prove that if K is any field which contains an integral domain D, then K

 contains a subfield isomorphic to the field F of the fractions of D. (In this sense F is the smallest field containing D). 

Sol.  Let  F be the field of fractions of the integral domain D. Let K be any field containing D. Every element in D is contained in K and has an inverse in K. Define a map

ϕ : F → K. 

[ a,  b] →  ab–1 since  a ∈ D, 0 ≠  b ∈ D and K is a field  b–1 ∈ K and the product  ab–1 ∈ K. 

ϕ is well defined. Indeed

[ a,  b] = [ c,  d], 

then

 ad =  bc

and hence

 ab–1 =  cd–1  i.e.  ϕ ([ a,  b]) = ϕ ([ c,  d]). Moreover ϕ ([ a,  b] [ c,  d]) = ϕ ([ ac,  ad]) = ( ac) ( bd)–1

= ( ab–1) ( cd–1) = ϕ ([ a,  b]) ϕ ([ c,  d])

and

ϕ ([ a,  b] + [ c,  d]) = ϕ ([ ad +  bc,  bd])

= ( ad +  bc) ( bd)–1 =  ab–1 +  cd–1
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= ϕ ([ a,  b]) + ϕ ([ c,  d]). 

For the kernel of the map ϕ we have

Kϕ = {[ a,  b]| ab–1 = 0} = [0,  b]

Hence K contains subfield ϕ (F) which is isomorphic to F. 

Problem 26.   Let D be an integral domain, a, b ∈  D. Suppose that an = bn and am = bm for two relatively prime positive integers m and n. Prove that a = b. 

Sol.  We may embed the integral domain into a field. 

If  a is zero then  b must be zero. 

Assume that  a is non-zero then  a has inverse in the field. Since  m and  n are relatively prime there exists

 x and  y in Z such that  mx +  ny = 1. Since one of the integers may be  negative we may need to  use the  fact that we can embed D into its field of fractions. Then

 a =  amx +  ny =  amx any =  bmxbny =   bmx +  ny =  b as required. 

Problem 27.   Let F be a field. Using the  axioms in the definition of field, prove that (– 1) ⋅  x  = – x for all  x ∈  F. 

Sol.  We must show that (–1) ⋅  x is an additive inverse of  x, that  is,  x + (–1) ⋅  x = 0. 

 x + (–1) ⋅  x =  x +  x ⋅ (–1)

by (Commutativity of multiplication)

=  x ⋅1 +  x ⋅ (–1)

by (Multiplicative identity)

=  x ⋅ (1 + (–1))

by (distributivity)

=  x ⋅ 0

by (additive inverse)

=  x ⋅ 0 + 0

by (additive identity)

=  x ⋅   0 + ( x ⋅   0 + – ( x ⋅   0))

by (additive inverse)

= ( x ⋅   0 +  x ⋅   0) + – ( x ⋅   0)

by (Associativity of Addition)

=  x ⋅ (0 + 0) + – ( x ⋅   0)

by (distributivity)

=  x ⋅ 0 + – ( x ⋅   0)

by (additive identity)

= 0

by (existence of additive inverse)

Hence proved. 

MULTIPLE CHOICE QUESTIONS

1. Let X = {2, 3, 6, 12, 24}. Let ≤ be the partial order defined by  x ≤  y if  x divides  y. The number of edges in the Hasse diagram of (X, ≤) is

( GATE, 1996)

( a) 3

( b) 4

( c) 9

( d) None of the above

2. Which of the following statements is false? 

( GATE, 1996)

( a) The set of rational numbers is an abelian group under addition. 

( b) The set of integers is an abelian group under addition. 

( c) The set of rational numbers form an abelian group under multiplication. 

( d) The set of real numbers excluding zero is an abelian group under multiplication. 

3. Which one of the following is false? 

( GATE, 1996)

( a) The set of all bijective functions on a finite set forms a group under function composition. 

( b) The set {1, 2, …,  p – 1} forms a group under multiplication mod  p where  p is a prime number. 
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( c) The set of all strings over a finite alphabet Σ forms a group under concatenation. 

( d) A subset S ≠ φ of G is a subgroup of the group <G, ∗> if and only if for any pair of elements  a, b ∈ S,  a ∗  b – 1 ∈ S. 

4. Let (Z, ∗) be an algebraic structure, where Z is the set of integers and the operation ∗ is defined by n ∗  m = maximum ( n,  m). Which of the following statements is true for (Z, ∗)? 

( GATE, 1997)

( a) (Z, ∗) is a monoid

( b) (Z, ∗) is an abelian group. 

( c) (Z, ∗) is a group. 

( d) None of the above. 

5. Which of the following is not a property of group G? 

( a) Closure property

( b) Identity

( c) There exist inverse of every element

( d) Commutative

6. Which of the following is necessarily a monoid? 

( a) Semigroup

( b) Subsemigroup

( c) Group

( d) Commutative semigroup

7. Let (A, ∗) be a group, then ( a ∗  b) is

( a)  b–1 ∗  a–1

( b)  a–1 ∗  b–1

( c) ( b ∗  a)–1

( d) (( a ∗  b)–1)–1

8. Let G = {0, 1} be a group and H = {1} is a subgroup of it. Which of the following are the left cosets of H in G.? 

( a) {0},{1}

( b) {0}

( c) {1}

( d) {0,1}

9. Let (G, ∗) be an algebraic system and G is the set of all non-zero real numbers and ∗ is a binary operation defined by   a∗ b =  ab/4

Which of the following is the most appropriate statement for the above? 

( a) (G,∗) is a semi-group

( b) (G,∗) is a group

( c) (G,∗) is an abelian group

( d) (G,∗) is a monoid. 

10. Which of following statement is false? 

( a) Every field is a ring

( b) Every field is not a ring

( c) Sum of two subrings may not be ring

( d) Intersection of subrings is a subring. 

11. Match the following:

A. Groups

I. Associativity

B. Semi groups

II. Identity

C. Monoids

III. Commutative

D. Abelian groups

IV. Left Inverse

Codes:

A

B

C

D

( a)

IV

I

II

III

( b)

III

I

IV

I

( c)

II

III

I

IV

( d)

I

II

III

IV

12. If the binary operation ∗ is defined on a set of ordered pairs of real numbers as ( a,  b) ∗ ( c,  d) =

( ad +  bc,  bd) and is associative, then (1,2) ∗ (3,5) ∗ (3,4) =

( a) (74, 40)

( b) (32, 40)

( c) (23, 11)

( d) (7,11)
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ANSWERS

1. ( b)

2. ( c)

3. ( d)

4. ( a)

5. ( d)

6. ( c)

7. ( a)

8. ( a)

9. ( c)

10. ( b)

11. ( a)

12. ( a). 

REVIEW QUESTIONS

1. What is an algebraic System? 

2. What is binary operation? Give examples. 

3. Explain the properties of binary operations by giving examples. 

4. Explain table of operation by giving example. 

5. What is semigroup? Give example. 

6. What is subsemigroup? Give example. 

7. What is free semigroup? Give example. 

8. What is congruence relation? Give example. 

9. What is monoid and submonoid? Give example. 

10. What is group? Give example. 

11. What are the properties of groups? 

12. What is finite and Infinite group? Give example. 

13. Explain order of group by giving example. 

14. What is subgroup? Give example. 

15. What is abelian group? Give example. 

16. Explain product of groups. 

17. What is cyclic group? Give example. 

18. What are the properties of cyclic goups? Explain. 

19. Explain various types of cyclic groups. 

20. What are cosets? Give example. 

21. State and prove Lagrange’s theorem. 

22. Explain normal subgroup by giving example. 

23. Explain homomorphism of algebraic systems. 

24. Explain properties of homomorphisms. 

25. What is isomorphism? Give example. 

26. What is Automorphism? Give example. 

27. What is permutation groups? Give example. 

28. What is inverse of permutation? Give example. 

29. What is composition of permutations? Give example. 

30. What is cyclic permutation? Give example. 

31. What is transposition? Give example. 

32. What is even and odd permutations? Give example. 

33. What is ring? Give example. 

34. Explain various types of rings. 

35. What is subring? Give example. 

36. What is intergral domain? Give example. 

37. What is field? Give example. 
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CHAPTER END PROBLEMS

1. State whether or not each of the following six numbers of the positive integers N is closed under the operation of multiplication:

( MDU, 2002)

( i) A = {0, 1}

( ii) B = A {1,2}

( iii) C = {  x :  x is prime}

( iv) D = { 2, 4, 6, … } = {  x :  x is even }

( v) E = { 1, 3, 5, … }  =  {  x :  x is odd}

( vi) F= { 2, 4, 8, … } = {  x :  x = 2 n ,  n ∈ N}

2. For any two integers  x,  y we define the binary operation Δ in I as follows: x Δ  y =  x +  y + 1

( IGNOU, 2000)

Find out whether

( a) Δ is closed in the set of even integers. ( b) Δ is closed in the set of odd integers. 

( c) Δ is commutative in integers. 

( d) Δ is associate in integers. 

3. Determine in the following whether the binary operation ∗ is commutative and whether it is associative

( a) On Z+, where  a ∗  b is  a +  b + 2. 

( b) On the set of rational numbers, where  a∗ b = ( a +  b)/2. 

4. State the number of possible commutative binary operations which can be defined on a set of size  n. 

5. Construct a table representing the operations of a group of order 4. 

6. Show that the set of all size 2 subsets of {1, 2, 3, 4} is the unique antichain of size 6. 

7. Let (A, ∗ ) be a group and B a subset of A. If B is a finite set, then (B, ∗) is a subgroup of (A, ∗) if

∗ is a closed operation on B. 

( IGNOU,   MCA)

8. Let (A, ∗) be an algebraic system, where ∗ is a binary operation such that for any  a and  b in A,  a∗ b

=  a. Show that this operation is associative. 

( DOEACC,2006)

9. Draw up addition and multiplication tables for Z  and find the multiplicative inverse of all non 7

zero elements. 

( DOEACC,2009)

10. Let G = { x in R |  x > 1} be the set of all real numbers greater than 1. Define x ∗  y =  xy –  x –  y + 2,   for  x,  y in G. 

( a) Show that the operation ∗ is closed on G. 

( b) Show that the associative law holds for ∗. 

( c) Show that 2 is the identity element for the operation ∗. 

( d) Show that for element a in G there exists an inverse  a–1 in G. 

11. Let N be the set of positive integers and let ∗ denote the operation of least common multiple on N. 

Is (N, ∗) a semigroup? Is it commutative? 

( IGNOU, MCA)

12. Which of the following are semigroups? Monoids? Groups? 

( a) C under addition of complex numbers. 

( b) C under multiplication of complex numbers. 

( c) C+ under addition of complex numbers, where C+ = C\{0}. 

( d) C+ under multiplication of complex numbers. 

( e) The set of all (univariate) polynomials with integer coefficients under polynomial addition. 

( f) The set of all polynomials with rational coefficients under polynomial addition. 

( g) The set of all non-zero polynomials with integer coefficients under polynomial multiplication. 

( h) The set of all non-zero polynomials with rational coefficients under polynomial multiplication. 

( i) The set of all non-constant polynomials with integer coefficients under polynomial addition. 

( j) The set of all non-constant polynomials with rational coefficients under polynomial multiplication. 
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( k) The set {1, – 1,  i, –  i} under multiplication, where  i is a complex square root of unity. 

( l) { a +  b  5   |  a,  b ∈ Z} under addition. The same set under multiplication. 

( m) { a +  b  5   |  a,  b ∈ Q} under addition. The same set under multiplication. 

( n) { a +  bi |  a,  b ∈ Z} under addition. The same set under multiplication. 

( o) { a +  bi |  a,  b ∈ Q} under addition. The same set under multiplication. 

( p) R under the operation ∗ defined as  x ∗  y =  xy + x +  y. 

13. Consider the group G= {1, 2, 3, 4, 5, 6 } under multiplication modulo 7:

( MDU, 02)

( i) Find the multiplication table of G. 

( ii) Find 2– 1, 3– 1, 6– 1. 

( iii) Find the orders and subgroups generated by 2 and 3. 

( iv) Is G cyclic? 

14. Show that a set of positive integers Z+ is a monoid for the operation defined by  a  o  b = max ( a,  b); a,  b ∈ Z+. 

( RTU,09,10)

15. If (G, ∗) is an abelian group, show that ( a ∗  b) n =  an ∗  bn for all  a,  b ∈ G, where  n is a positive integer. 

( DOEACC, 2007)

16. Let G be any group in which every element is its own inverse. Show that G is abelian. 

( DOEACC, VTU, 07, UPTU, 10)

17. Let ( a, ∗) be a commutative semigroup, show that  a ∗  a =  a and  b ∗  b =  b, then ( a ∗  b) ∗ ( a ∗  b)

=  a ∗  b. 

( DOEACC, 2007)

18. Let ({ a,  b}, ∗) be a semigroup where  a ∗  a =  b. Show that: ( i)  a ∗  b =  b ∗  a ( ii)  b ∗  b =  b. 

( DOEACC, 2008)

19. Let (M, ∗) be a semigroup and  a ∈ M such that the equations  a ∗  u =  x and  v ∗  a =  x have solutions in M for all  x ε M. Show that (M, ∗) is a monoid. 

( RTU, 2009)

20. Show that a semigroup (G, ∗) in which  a ∗  x =  b and  y∗ a =  b have unique solutions in G for  a,  b ε G. 

Show that (G, ∗) is a Group. 

( RTU, 2010)

21. Let G be the set of all nonzero real numbers and let  a∗ b =  ab/2. Show that (G,∗) is an abelian group. 

 (DOEACC,08, RTU,09)

22. If the binary operation  o: R × R → R is defined by  a  o  b =  a +  b – 5, prove that  o operation has an identity. Also find inverse of an element  a ∈ R with respect to this binary operation. 

( DOEACC,2009)

23. Let (G,  o) be a group. Show that (G,  o) is an abelian group if and only if  ( a o b)2 =  a 2  b 2 for all  a, b in G. 

( DOEACC,2009)

24. If  f is a homomorphism from commutative semigroup ( s, ∗) to a semigroup (T, +) then prove that (T, +) is also commutative. 

( DOEACC,2010)

25. Let T be the set of all even integers. Show that the semigroups {Z, +} and {T, +} are isomorphic. 

26. Let S be the set of 2 × 2 matrices with rational entries under the operation of matrix multiplication. Is S a group? 

( IGNOU, MCA)

27. ( a) If H and K are subgroups of a group G, prove that H ∩ K is also a subgroup of G. Is H ∪ K a subgroup of G? Justify your answer. 

( UPTU,10: RTU,11)

( b) In a ring (R, +, ∗} for all  a,  b ∈ R, prove that

(1)  a ∗ 0 = 0 ∗  a = 0, 

(2)  a ∗ (–  b) = (–  a) ∗  b = – ( a ∗  b)

( VTU, Jul,   07)

28. Let G be a group and G  = { x 

is a subgroup of G. 

1

∈ G |  x .  y =  y .  x for all  y ∈ G}. Prove that G1           ( VTU, Jan, 07)
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29. ( a) Show that the group (G, ∗), whose table is given below is cyclic

∗

 a

 b

 c

 d

 e

 f

 a

 a

 b

 c

 d

 e

 f

 b

 b

 c

 d

 e

 f

 e

 c

 c

 d

 e

 f

 a

 b

 d

 d

 e

 f

 a

 b

 c

 e

 e

 f

 a

 b

 c

 d

 f

 f

 a

 b

 c

 d

 e

( b) If G is a group of order  n and  a ∈ G, then prove that  an =  e. 

( VTU, Jul, 06)

30. ( a) Define a binary operation  o on Z by  x o y =  x +  y + 1. Verify that (Z,  o) is an abelian group. 

( VTU,  Jan, 05,  DOEACC, 04)

( b) Let (G,  o) and (H, ∗) be two groups with identities  e  and  e . If  f : G 

G

H

→ H is a homomorphism, 

then show that  f( e ) =  e  and  f( a–1) = [ f( a)]–1. 

G

H

31. If (G , 

, +) are two groups, then show that (G , 

= G  × G , and

1 ∗) and (G2

3 •) is a group, where G3

1

2

( a,  x) • ( b,  y) = ( a ∗  b,  x +  y). 

32. For each of the following, determine whether or not the set is a group under the stated binary operation:

( a) {– 1, 1} under multiplication

( b) {– 1, 0, 1} under addition

( c) {10  n |  n ∈ Z} under addition

( d) The set of all one-one functions  g : A  A, where A = {1, 2, 3, 4} under function composition. 

F 0 1I

33. Let A = H− 1 0K . Verify that {A, A2, A3, A4} is an abelian group under multiplication. 

34. Let (Z × Z, ⊕) be the abelian group, where ( a,  b) ⊕ ( c,  d) = ( a +  c,  b +  d) and let (G, +) be an additive group. If  f : Z × Z → G is a group homomorphism, where  f (1, 3) =  g  and  f (3, 7) =  g , express  f (4, 6) 1

2

in terms of  g  and  g . 

( VTU, Jul, 07)

1

2

35. Let (G , +) and (G , 

= { 0, 

= {2 n :  n 

}. Define a

1

2 •) be groups where G1

± 1, ± 2 , …} and G2

∈ G1

mapping  f from G  to G  by  f( a) =2 a. Is  f an isomorphism? Justify your answer. ( DOEACC,2010) 1

2

36. Let G be group and let a be a fixed element of G. Show that the functions  f : G 

 a

→ G defined by

 f ( x) =  axa–1 for  x 

 a

∈ G,  is an isomorphism. 

( DOEACC, 2005)

37. Let A = { a,  b,  c} and consider the semigroup (A∗, .), where . is the operation of concatenation.  If α =  abac, β =  cba, γ =  babc, compute

( i) (α . β).γ

( ii) γ.(α.α)

( iii) (γ . β).α

( DOEACC, 2005)

38. ( a)  Prove that a group G is abelian if and only if ( a .   b)2 =  a 2  .  b 2 for all  a,  b ∈ G. 

( b) If R is a ring with unity and  a,  b are units in R, prove that  ab is a unit in R and that ( a.  b)– 1

=  b– 1.  a– 1. 

( VTU, Jan, 06)

39. ( a) Let (G, ∗) be the set of all non-zero real numbers and let  a ∗  b = ( ab)/2. Show that  (G, ∗) is an abelian group. 

( b) Prove that every cyclic group is abelian. 

( VTU, Jul, 05)

40. Determine the closure property of the structure [5 × 5 Boolean matrices, ∧,  v, •,] with respect to the operations ∧, ∨ and •. Illustrate using examples and give the identity element, if one exists for all the binary operations. 

41. If  f is a homomorphism from a commutative semigroup (S, ∗) onto a semigroup (T, ∗), then show that (T, ∗) is also commutative. 

ALGEBRAIC  STRUCTURES

M-3.115

42. Let G be the set of all invertible ( i.e., non-singular) 2 × 2 matrices with real entries. Prove that G

is a group under matrix multiplication. 

43. Prove that an infinite group has infinitely many subgroups. 

44. If G is a group of order  n then order of any element  a ∈ G is a factor of  n, prove. ( UPTU, 2010) 45. Prove that every subgroup of (Z, +) is cyclic. 

46. Let (G, ∗) be a group. For subsets A, B of G, define A ∗ B = { a ∗  b |  a ∈ A,  b ∈ B}. Let H be a nonempty subset of G. Prove the Following assertions. 

( a) If H is a subgroup of G, then H ∗ H = H. 

( b) If H ∗ H = H, then H need not be a subgroup of G. 

( c) If H is finite and H ∗ H = H, then H is a subgroup of G. 

47. Which of the following assertions are true? Give reasons. 

( a) The set of all complex numbers of the form  x +  iy with  x,  y integers and with  x even is a group under addition of complex numbers. 

( b) Let G be a multiplicative group in which ( ab)–1 =  a–1  b–1 for all  a,  b ∈  G. Then G is Abelian. 

48. Let (G, ∗) and (G ,  ) be two groups, and let   f: G 

be a homomorphism from G to G . Then

1 ∗1

→ G1 

1  

prove the following:

( DOEACC, 2005)

( a) If  e is the identity in G and  e  is the identity in G , the  f( e) =  e . 

1

1

1

( b) If  a ε  g, then  f( a–1) = ( f( a))–1. 

49. Let (S, ∗) be a semigroup and a S. Justify which of the following semigroups is/are cyclic. 

( a) N under integer multiplication. 

( b) Z under integer addition. 

( c) Z  under addition modulo  n (for some arbitrary  n 

 n

∈ N). 

50. Let G be a multiplicative group and H, K subgroups of G with H ∩ K = {  e}. Assume that G = HK

= { hk|  h ∈ H,  k ∈ K}. Prove that every element  a ∈ G can be written as  a =  hk for some  unique elements  h ∈ H and  k ∈ K. 

51. Let S be a set, and let P(S) denote the power set of S. Define an operation Δ on P(S) as A ΔB =

(A – B) ∪ (B – A) = (A ∪ B) – (A ∩ B) ( i.e., the symmetric difference of A, B ∈ P(S)). Prove that P(S) is an abelian group under the operation Δ. 

52. Show that if  x and  y are in the same right coset of a subgroup H then  x •  y–1 is in H. 

53. Show that if  x •  y–1 is in subgroup H of group G then  x and  y are in the same right coset of H . 

54. Show that if  a and  b are elements of a group and  a •  b =  e, then  b =  a–1. 

55. Show that if  a and  b are elements of a group and  a •  b =  e then  a =  b–1. 

56. Show that if  a •  x =  b •  x then  a =  b. 

57. Show that if  x •  a =  x •  b then  a =  b. 

58. Show that the inverse of  a •  b is  b–1 •  a–1. 

59. Show that ( a–1)–1 =  a and  e–1 =  e

60. Show that if  a •  a =  a  then  a =  e. 

61. Show that  a–1 •  a =  e. 

62. Show that for all a in the group  e •  a =  a. 

63. Show that if U is a collection of subgroups of a group G then the intersection of U is also a subgroup of G. 

64. Show that if S is a subset of a group G and if for every  a and  b in S the group product  a •  b–1 is in S then S is a subgroup of G. 

65. Show that a finite subset of a group that is closed under the group operation is a subgroup of that group. 

66. According to the definition of a group it is sufficient to require the existence of a left identity element and the existence of left inverses. Give an example to show that it is  not sufficient to require the existence of a left identity element together with the existence of  right inverses. 
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67. Let G be a group, and suppose that  a and  b are any elements of G. Show that ( aba–1) n =  abn  a–1, for any positive integer  n. 

68. Let G be a group, and suppose that  a and  b are any elements of G. Show that if ( ab)2 =  a 2  b 2, then ba =  ab. 

69. For vectors ( a ,   a ,  a ) and ( b ,  b ,  b ) in R3, the cross product is defined by 1

2

3

1

2

3

( a ,   a ,   a ) × ( b ,   b ,   b ) = ( a b  –  b a ,  a b –  a b ,  a b –  a b ). 

1

2

3

1

2

3

2  3

3 2

3 1 

1 3

1 2 

2 1

Is R3 a group under this multiplication? 

70. Let G be an abelian group, and let  n be a fixed positive integer. Show that N = { g in G |  g =  an for some  a in G}

is a subgroup of G. 

71. Let G, G , G  be groups. Prove that if G is isomorphic to G  × G , then there are subgroups H and 1

2

1

2

K in G such that

( i) H ∩ K = { e}, 

( ii) HK = G, and

( iii)  hk =  kh for all  h in H and  k in K. 

72. Let G be a group, and let H be a subgroup of G. Prove that if a is any element of G, then the subset a H a–1 = { g in G |  g =  aha–1 for some  h in H}

is a subgroup of G that is isomorphic to H. 

73. Show that any cyclic group of even order has exactly one element of order 2. 

74. Prove that if G  and G  are groups of order 7 and 11, respectively, then the direct product G  × G

1

2

1

2

is a cyclic group. 

75. Find all generators of the cyclic group Z . 

28

76. In Z , find the order of the subgroup <[18] >; find the order of <[24] >. 

30

30

30

77. Let G = D , and let N = { e,  a 2,  a 4,  a 6 }. 

8

( a) List all left cosets and all right cosets of N, and verify that N is a normal subgroup of G. 

( b) Show that G/N has order 4, but is not cyclic. 

78. List the cosets of <7> in Z ×. Is the factor group Z ×/<7> cyclic? 

16

16

79. Let G = Z  × Z , let H = {(0,0), (0,2)}, and let K = {(0,0), (3,0)}. 

6

4

( a) List all cosets of H; list all cosets of K. 

( b) You may assume that any abelian group of order 12 is isomorphic to either Z  or Z  × Z . 

12

6

2

Which answer is correct for G/H? For G/K? 

80. Find the multiplicative inverse of each non-zero element of Z . 

7


81. Find the multiplicative inverse of each non-zero element of Z . 

13

82. Let G be a group, and let N and H be subgroups of G such that N is normal in G. 

( a) Prove that HN is a subgroup of G. 

( b) Prove that N is a normal subgroup of HN. 

( c) Prove that if H ∩ N = { e}, then HN/N is isomorphic to H. 

83. Find all abelian groups of order 108 (up to isomorphism). 

84. Let G and H be finite abelian groups, and assume that G × G is isomorphic to H × H. Prove that G is isomorphic to H. 

85. Let G be an abelian group which has 8 elements of order 3, 18 elements of order 9, and no other elements besides the identity. Find (with proof) the decomposition of G as a direct product of cyclic groups. 

86. Let G be a finite abelian group such that |G| = 216. If | 6 G | = 6, determine G up to isomorphism. 

87. Let G and H be finite abelian groups, and assume that they have the following property. For each positive integer  m, G and H have the same number of elements of order  m. Prove that G and H

are isomorphic. 

ALGEBRAIC  STRUCTURES
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88. Prove that a finite group whose only automorphism is the identity map must have order at most two. 

89. List the cosets of the cyclic subgroup <9> in Z ×. Is Z ×/<9> cyclic? 

20

20

90. Show that the three groups Z , Z ×, and Z × are isomorphic to each other. 

6

9

18

91. Suppose G is a group of order 12 with subgroup H. 

( a) What numbers are possible for the order of H

( b) Give an example of a group of order 12 which has no subgroup of order 6.Prove it. 

( c) Give an example of a group of order 12 which has a subgroup of order 6. Find it. 

( d) Show that if H has order 6, H is a normal subgroup. What is G/H isomorphic to? 

92. If a finite group G can be generated from one of its elements, a together with its inverse  a–1 then it can be generated from a alone. 

93. Every element a of some ring (R, +,  o) satisfies the equation  a  o  a =  a. Decide whether or not the ring is commutative. 

( GATE, 1994: CU, 2010)

94. Prove that every finite integral domain is a field. 

95. Let R be a ring. Prove that:

( a) 0 .  x = 0 for all  x ∈ R. 

( b)  x(–  y) = (–  x) y = – ( xy) and (–  x) ( – y) =  xy for all  x,  y ∈ R. 

( c) R is commutative if and only if ( x +  y)2 =  x 2 + 2 xy +  y 2 for all  x,  y ∈ R. 

( d) R is commutative if and only if ( x +  y) ( x –  y) =  x 2 –  y 2 for all  x,  y ∈ R. 

96. Prove that the set Z with binary operation ⊕ and ⊗ defined by

( VTU, Jan, 07)

 x ⊕  y =  x +  y – 1 ,  x ⊗  y =  x +  y –  x  y is a commutative ring with unity. 

Answers and Hints of Selected Problems

3. 

( a) ∗ is commutative and associative. 

( b) ∗ is commutative but not associative. 

12. 

( a) Group

( b) Group

( k) Group

( p) Group

47. 

( a) True

( b) True

49. 

( a) Not Cyclic

( b) Not Cyclic

( c) Cyclic
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C H A P T E R

1

 Sets

PREVIEW

This chapter deals with Set Theory. It covers the fundamental concepts of set theory such

as the basic ways of describing sets, use of set notation, finite sets, infinite sets, empty sets, subsets, power sets, equal sets, equivalent sets, disjoint sets, countable and uncountable sets, comparable and incomparable sets, universal sets, complement of a set, basic set operations

including intersection, union, difference and symmetric difference of two sets, Venn diagrams, Cartesian product of sets and proofs of algebra of sets. 

LEARNING OBJECTIVES

 After studying this chapter, Students will be able to:

•

define a set and represent the same in different forms. 

•

define and cite examples of  different types of sets such as, finite and infinite sets, 

empty set, singleton set, equivalent sets, equal sets, subsets, universal set, comparable

and incomparable sets, power set. 

•

define and cite examples of union, intersection of two sets, complement of a set and

difference between two sets, symmetric difference between two sets. 

•

define and cite examples of countable and uncountable sets and proof of their theorems

•

prove various theorems related to sets. 

•

draw and use Venn Diagrams to verify the equality of sets. 

•

define and cite examples of Cartesian product of two sets. 

1.1 INTRODUCTION

Set Theory aims at providing foundations for mathematics. Sets appears in all branches of

mathematics. The main developer of set theory is George Cantor (1845–1915 AD). The word set is synonym with “Collection”, “Class” or “Aggregate”. Basically Set theory is the mathematical

theory of well-determined collections, called sets of objects that are called members or  elements of the set. In Mathematics, the word “set” is used to represent a collection of objects viewed as a M-4.1
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single entity. The individual objects in the collection are called “elements” or “members” of the set. These elements are said to “belong to”or “contained” in the set. In this chapter, we only deals with sets of Mathematical objects e.g. sets of numbers, sets of geometric figures etc. 

1.2

DEFINITION

A set is defined as a collection of distinct objects of same type or class of objects. 

The objects of a set are called elements or members of the set. Objects can be numbers, 

alphabets, names etc. 

 e.g., 

A = {1, 2, 3, 4, 5}

A is a set of numbers containing elements 1, 2, 3, 4 and 5. 

* A set is usually denoted by capital letters A, B, C, D, P, Q, R, S, T etc. 

* Elements of the set are defined by  p,  q,  r,  t or  p ,  q ,  r ,  t  etc. 

1

1

1

1

1.3

STANDARD NOTATIONS

Some of the standard notations related with sets are as follows:

 x ∈ A

 x belongs to A or  x is an element of set A. 

 x ∉ A

 x does not belong to set A. 

φ

Empty set. 

U

Universal set. 

N

The set of all natural numbers. 

I, Z

The set of all integers. 

I , Z

The set of all non-zero integers. 

0

0

I , Z , Z+

The set of all +ve integers. 

+

+

C, C

The sets of all complex, non-zero complex numbers respectively. 

0

Q, Q , Q

The sets of rational, non-zero rational, + ve rational numbers respectively. 

0

+

R, R , R

The sets of real, non-zero real, +ve real number respectively. 

0

+

1.4

SET FORMATION OR REPRESENTATION OF A SET

The set, can be formed or represented by two ways :

( i) Tabular or roster form of a set

( ii) Builder form of a set. 

( i) Tabular or Roster Form of a Set.  If a set is defined by actually listing its members, e.g.,  if set P contains elements  a,  b,  c,  d then it is expressed as P = { a,  b,  c,  d}. 

This is called tabular or roster form of a set. 

( ii) Builder Form of a Set.  If a set is defined by the properties which its elements must satisfy  e.g., 

P = { x :  x ∈ N,  x is a multiple of 3}. 

R = { x :  x > 1 and  x < 10 and  x is an odd integer}. 

T = { x :  x is even and less than 9}. 

SETS
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1.5

TYPES OF SETS

Some common  type of sets are as follows:

1.5.1

Finite Set

If a set consists of specific number of different elements then that set is called finite set. 

 e.g. , 

P = { x :  x ∈ N, 3 <  x < 9}. 

Q = {2, 4, 6, 8}. 

R = {months of year}. 

1.5.2

Infinite Set

If a set consists of infinite number of different elements or if the counting of different

elements of the set does not come to an end, the set is called infinite set.  e.g., 

I = {The set of all integers}

E = { x :  x ∈ N,  x is a multiple of 2}. 

1.5.3

Countable Set

A set is called countable set if it is finite or denumerable set. 

 e.g. , 

1. Every finite set is a countable set. 

2. Every Denumerable set is countable set. 

1.5.3.1 Countably Infinite or Denumerable Set. A set is said to be countably infinite

if there is a one-to-one correspondence between the elements in the set and the elements in N. 

 e.g. , — The set of all non-negative odd integers {1, 3, 5, 7, ...} is a countably infinite set since there is one-to-one correspondence between all +ve odd integers and all natural

numbers. 

— The set of all positive multiples of 5 {0, 5, 10, 15, ...} is a countably infinite set. 

1.5.4 Uncountable Set

A set is called uncountable set if it is infinite and is not cardinally equivalent to N or is a non-denumerable set. 

 e.g.,  1. The set of complex numbers is an uncountable set. 

2. The set of real numbers between two integers is an uncountable set. 

1.5.4.1 Uncountable Infinite or Non-denumerable Set.  A set is said to be uncountable

infinite if it is infinite and there is no one-to-one correspondence between the elements in the set and the elements in N. 

 e.g. , 

— The set of real number is an uncountably infinite. 

— The set of real numbers between 0 and 1 is uncountably infinite. 

Theorem I.   Every subset of a countable set is countable. 

Proof.  Let A be a countable set. Then A is either finite or denumerable set. 

First consider that A be finite and we know that every subset of a finite set is finite and

hence it is countable. 

Secondly, let A is countably infinite set then A can be written as

A = ( a ,  a ,  a , .....)

...(1)

1

2

3
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Let B be a subset of A then if B = φ then B is countable but if B ≠ φ then B can be expressed

as B = ( a ,  a ,  a , .....), where  a  

 n 1

 n 2

 n 3

 ni ∈ A

From (1), we can say that B is countable. Hence proved. 

Theorem II.   A countable union of countable sets in countable. If S  is a countable set or i

∞

 for each integer i ≥  0, then set S = 

 S

∪  i  is countable. 

 i=0

Proof.  Firstly, if all the S ’ s are empty, then S is empty and therefore countable. Secondly, i

when S ’s are not empty, we describe a way of listing the elements of the Union. Consider  the two-i

dimensional array in which the elements of S  are listed in the  i th row. Since S  may be finite or i

 i

infinite, these rows are likely to be of unequal length as shown in figure. 

a

a

a

a

0,0

0,1

0,2

0,3

a

a

a

a

1,0

1,1

1,2

1,3

a

a

a

a

2,0

2,1

2,2

2,3

a

a

a

a

3,0

3,1

3,2

3,3

Now consider the path shown in figure, this path will hit each element of S at least once. 

It will hit an element more than once if that element belongs to S  for more than one  i. 

 i

Suppose we define the function on  f by

⎧ 0, 

 a  0 if  n = 0

⎪

 f( n) =  ⎨⎪The first element of S

⎩

− [ f (0),......,  f ( n − 1)] on the path if  n > 0

Then  f is one-to-one and onto (bijection) either from {0, 1, 2, 3,......,  m} to S or from N to S, depending on whether the set S is finite or infinite. Therefore, S is a countable set. 

Example 1.   Show that the set of real number in [ 0, 1]  is uncountable set. 

Sol.  Let us assume that the set of real numbers in [0, 1] is countable. Then all the real number in 0 ≤  n ≤ 1 can be listed in some order, say,  x ,  x ,  x , ...... . The representation of these 1

2

3

real numbers is as follows. 

 x  = 0 .  a   a   a   a  ...... 

1

11

12 13

14

 x  = 0 .  a   a   a   a  ...... 

2

21

22 23

24

 x  = 0 .  a   a   a   a  ...... 

3

31

32 33

34

...     ...     ...      ... 

...     ...     ...      ... 

where each  aij is one of the numbers of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Now form a new real number  y by the decimal. 

 y = 0.  b   b   b   b  ...... 

1 2 3 4

where,  b  = 1

if

 a  = 9

1

 ii

= 9 –  a

if

 a  = 0, 1, 2, 3, 4, 5, 6, 7, 8, for all  i. 

 ii

 ii
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For those numbers which can be expressed in two different decimal expansions  e.g. , 

1/2 = 0.50000000... = 0.49999999..., we choose the expansion which ends with nines. This ensures a unique representation of all numbers. 

The number 0.  b   b   b   b   b  ... is a real number between 0 and 1 that does not have trailing 1 2 3 4 5

0’s. Thus, the real number  y is not equal to any of  x ,  x ,  x , ...., since it differs from the first 1

2

3

number in the first digit, the second number in the second digit, the  i th number in the  i th digit, and so on. Since there is a real number  y between 0 and 1 that is not in the list which contradicts the assumption that this set is countably infinite so the set of real numbers between 0 and 1 is uncountable. 

Theorem III.   Every infinite set has a denumerable subset. 

Proof.  Let A be an infinite set, since A is non-empty, there exists an element  a  

1 ∈ A and

because A is an infinite set (not finite), there exists an element  a  

and  a  

2 ≠  a 1

2 ∈ A. Hence for any

natural number  n, there are  n distinct element  a ,  a ,  a , ....... ,  a  of A. Since A is infinite, we can 1

2

3

 n

find  a

in A distinct from these  n elements. Thus, we obtain a set { a ,   a ,  a , ......,  a ,  a

, 

 n + 1

1

2

3

 n

 n + 1

 a

, ......} which is a subset of A and is equivalent to N. 

 n + 2

1.5.5

Disjoint Sets

Two sets A and B are said to be disjoint if no element of A is in B and no element of B is in

A.  e.g., 

R = { a,  b,  c}, S = { k,  p,  m}

R and S are disjoint sets. 

1.5.6

Family of Sets

If a set A contains elements which are itself sets then it is called family of sets or a set of sets.  e.g., 

A = {{1, 2}, {3, 4}, φ}

A is set of sets. 

1.5.7 Subset of a Set

If every element of a set A is also an element of a set B then A is called subset of B and is

written as A ⊆ B. B is called superset of A. 

A ⊆ B = { x :  x ∈ A ⇒  x ∈ B}

1.5.7.1 Properties of Subsets.  Some properties of subsets are as follows:

1. Every set is a subset of itself. 

2. If set A is the subset of set B, then set B is called superset of the set A. 

3. If A ⊂ C and B ⊂ A, then A = B  i.e.,  if two sets A and B are subsets of each other then they are equal. 

4. φ is a subset of every set. 

5. If A ⊂ B and B ⊂ C then A ⊂ C  i.e.,  if A is a subset of B and B is a subset of C then A is a subset of C. 

6. If A ⊂ B, B ⊂ C and C ⊂ A, then A = C

7. N ⊆ Z ⊆ Q ⊆ R ⊆ C. 
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1.5.7.2 Proper Subset.  If A is subset of B and A ≠ B then A is said to be proper subset of B. If A is a proper subset of B then B is not subset of A  i.e.,  there is at least one element in B which is not in A.  e.g., 

( i) Let

A = {2, 3, 4}

B = {2, 3, 4, 5}

A is a proper subset of B. 

( ii) The null set φ is a proper subset of every set. 

1.5.7.3 Improper Subset.  If A is subset of B and A = B, then A is said to be an improper subset of B.  e.g., 

( i) A = {2, 3, 4}, B = {2, 3, 4}

A is improper subset of B. 

( ii) Every set is improper subset of itself. 

1.5.8

Singleton Set

A set is said to be singleton if it contains only one element. 

For example, the set { t} is a singleton set as it contains only one element. 

For examples. 

1. Let A = { x :  x is neither prime nor composite}. It is a singleton set as it contains one element  i.e.  1. 

2. Let A = { x : 25 <  x < 27 and  x ∈ N} is a singleton set as there is only one  element  i.e.  26. 

1.5.9 Null Set or Empty Set

The set that contains no element is called the null set or the empty set and is denoted by φ.  e.g., ( a) P = { x :  x 2 = 4,  x is odd}. 

( b) Q = { x :  x 2 = 9,  x is even}. 

( c) R = { x :  x 2 = 9, 2 x = 4}. 

The set φ = {0} is not a null set because 0 is the element of the set. 

The set A = {φ} is not a null set because set φ is the element of the set. 

1.5.10

Power Set

The power set of any given set A is the set of all subsets of A and is denoted by P(A). If A has n elements then P(A) has 2 n elements. 

If

A = { r,  s} then its subsets are φ, { r}, { s}, { r,  s}

P(A) = {φ, { r}, { s}, { r,  s}} which has 22 = 4 elements. 

Example 2.   Determine whether each of the following is true or false giving reason. 

( i) { a, b}  ⊆  2{ a, b, { a, b}}

( ii) {{ a, b}}  ∈  2{ a, b, { a, b}}

( iii)  2 φ  = {φ}

 (iv) {{ a} , { b}} ⊆  2{ a, b, { a, b}}

Sol.  ( i) False. Since 2{ a,  b, { a,  b}} = {{ a}, { b}, {{ a,  b}}, { a,  b}, { a, { a,  b}}, { b, { a,  b}}, { a,  b, { a,  b}}, φ}

( ii) True. As shown in part ( i)

( iii) True. Since φ is a subset of every set including the set φ. 

( iv) True. As shown in part ( i). 

SETS
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1.5.11

Universal Set

If all the sets under investigation are subsets of a fixed set U, then the set U is called

universal set.  e.g.,  in plane geometry, the universal set consists of all the points in the plane. 

1.5.12 Comparable and Incomparable Sets

Two sets A and B are  comparable if one of them is subset of other,  i.e.,  A ⊆ B or B ⊆ A. If A ⊆ B and B ⊆ A, then A = B. Set φ is  comparable to every set. Every set is  comparable to the universal set U. 

Two sets A and B are said to be  incomparable if A ⊄ B and also B ⊄ A  i.e.,  there is at least one element in A not in B and vice-versa. 

Theorem IV.   Prove that, the null set  φ  is a subset of every set. 

Proof.  Suppose that φ is not a subset of A  i.e.,  φ ⊄ A. 

Then there exists an element  x ∈ φ  such that  x ∉ A. 

But φ is the null set and hence for every  x,  x ∉ φ because null set does not contain any element. 

From above,  x ∈ φ and  x ∉ φ which is contradiction. Hence, φ ⊄ A is wrong supposition. 

Therefore, φ is a subset of A. Hence proved. 

Theorem V.   Prove that, every set is a subset of itself i.e., A ⊆  A. 

Proof.  Let  x ∈ A ⇒  x ∈ A ∴ A ⊆ A

As every element belonging to set A is also an element of set A. Therefore, A is subset of A

or itself. Hence proved. 

Theorem VI.   Prove that, if A ⊆  B and B ⊆  C, then A ⊆  C. 

Proof.  Let  x be any element of the set A. 

Since, 

A ⊆ B

∴  x ∈ A

⇒  x ∈ B

B ⊆ C

∴  x ∈ B

⇒  x ∈ C

∴  x ∈ A

⇒  x ∈ C

∴

A ⊆ C. Hence proved. 

Theorem VII.   Prove that, if A ⊆  B, B ⊆  C, C ⊆  A, then A = C. 

Proof.  If A ⊆ B and B ⊆ C, then A ⊆ C

C ⊆ A

(Given)

Since

A ⊆ C and C ⊆ A

∴

A = C. Hence proved. 

Theorem VIII.   Prove that, if A ⊂   φ,  then A =  φ. 

Proof. φ ⊂ A (As φ is subset of every set). 

But

A ⊂ φ

(Given)

∴

A = φ. Hence proved. 
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Example 3.   How many subsets can be formed from a set of n elements? How many of

 these will be proper and how many improper? 

Sol.  There are  n C  subsets each consisting of one of the elements of the given set. 

1

There will be  n C  subsets each consisting of any two of the  n elements of the given set. 

2

Also, there will be  n C  subsets each consisting of any three of the  n elements of given set. 

3

At last, there will be  n C  subset consisting of all the  n elements of the given set. 

 n

Also, there will be one set φ. 

Hence, the total number of subsets will be

( n C  +  n C  +  n C  + ...... +  n C ) + 1

(For the null set)

1

2

3

 n

or 

   n C  +  n C  +  n C  + ...... +  n C   =   2 n

= 1. 

0

1

2

 n

∵  n C0

Therefore, 2 n subsets formed from  n elements of a set. Out of 2 n subsets 2 n – 1 subsets will be proper and 1 (one) subset improper  i.e.,  the set itself. 

Theorem IX.   Prove that every set has more subsets than elements. 

Proof : Let S be a set and suppose that P(S) be the power set of S. The set S and its power set P(S), do not have the same number of elements. But P(S) cannot be smaller because it contains the subsets { x} of size 1 and there is one of these for every  x ∈ S. So, P(S) must be bigger. 

1.5.13 Equality of Sets or Equal Sets

Two sets A and B are said to be equal and written as A = B if both have the same elements. 

Therefore, every element which belongs to A is also an element of the set B and every element

which belongs to the set B is also an element of the set A. 

A = B

⇔

( x ∈ A ⇔  x ∈ B). 

If there is some element in a set A that does not belong to set B or vice-versa then A ≠ B  i.e., A is not equal to B. 

* A set does not change if one or more of its elements are repeated. 

* A set does not change if we change the order in which its elements are tabulated.  e.g., 

( a)





A = { x :  x < 10 and  x is even}

B = {2, 4, 6, 8}

C = { x :  x > 1 and  x < 10 and  x is even}

All the three sets are equal. 

( b)





P = { r,  s,  t}

Q = { r, r, s, t}

R = { s,  r,  t}

S = { r,  s,  t,  t}

All the four sets P, Q, R, S are equal. 

( c)





A = { a,  b,  c}

B = { b,  a,  c}

C = { b,  a}

The sets A and B are equal but C is not equal to either A or B. 

SETS

M-4.9

1.5.14 Equivalent Sets

Two sets A and B are said to be equivalent if they have the same number of elements. The

elements do not need to be the same. In ther words, we can say that two sets are equivalent if their cardinality is same  i.e., |A| = |B|. 

In equivalent sets there is one-to-one correspondence beteeen the elements of  the sets. The

symbol for denoting equivalent set is ‘∼’. 

For example. 

Let A = {Is, Am, Are} and B = {1, 2, 3}, then A ∼ B. 

Another Example. 

Let A = {1, 3, 5, 7} and B = { x :  x is a letter in the word ‘GOLD’}, then A ∼ B. 

1.6 CARDINALITY OR CARDINAL NUMBER OF A SET

The number of elements in a set A is called cardinality or cardinal number of a set. 

The total numbers of unique elements in the set is called the cardinality of the set. The

cardinality of the countably infinite set is countably infinite. It is denoted by |A| or  n (A).  e.g. 

1. Let P = { k,  l,  m,  n}

The cardinality of the set P is 4. 

2. Let A is the set of all non-negative even integers  i.e. , 

A = {0, 2, 4, 6, 8, 10, .........}

As A is countably infinite set hence the cardinality. 

PROBLEM SET-I

1. Which of the following are sets? Justify your answer. 

( a) A team of eleven best-football strikes of the world. 

( b) The collection of all girls in the University. 

( c) The collection of all positive integers less than 50. 

( d) The collection of books written by S.B. Gupta. 

( e) The collection of most flowered plants of the world. 

2. Write the following sets in Tabular or roster form. 

( a) P  =  { x :  x is a positive integer and  x 3 < 50}. 

( b) Q  =  { x :  x is natural number and  x < 10}. 

( c) R = The set of all letters in the word UNIVERSITY. 

( d) S = The set of all letters that comes between A and E. 

( e) T  =  { x :  x is an even natural number}

3. Which of the following sets are finite or infinite? 

( a) The set of points on a line. 

( b) The set of subjects of B.Tech (CSE). 

( c) The set of prime numbers. 

( d) The set of prime numbers less than 200. 

( e) The set of letters in the English alphabet. 

( f) The set of birds living on earth. 

( g) The set of numbers that are multiple of 3. 
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4. Which of the following pair of sets are equal? 

( i) M  =  { p,  q,  r,  s}, N = { q,   r,  s,  p}

( ii) A = { 4, 6, 8, 10}, B = {4, 4, 6, 8, 10}

( iii) P = {1, 3, 5, 7, 9}, Q = { x :  x is positive odd integer < 10}

( iv) A = {1, 2, 3, 4, 5, 6}, B = {1, 2, 3, 4, 5, 7}

( v) A  =  { x :  x is a letter in the word MADAM}, B = { x :  x is a letter in the word MODEM}

( vi) A = {0}, B = { x :  x 2 = 5}

5. Which of the following statements are TRUE or FALSE? 



( i) φ ⊂ A

( ii) {1, 2} ⊂ {1, 2, 3, 4, 5}

( iii) { a,  b} ⊄ { b,  a,  c}

6. Which of the following statements are TRUE or FALSE? 

( i) { a} ∈ { a,  b,  c}

( ii) φ ∈ A

( iii) {φ} ∈ A

7. Write down all the subsets of the following sets. 

( i) A = {1, 2}

( ii) A = {3, 4, 5}

( iii) A  =  φ

8. In each of the following, determine whether the statement is True or False. If it is true, prove it. If it is false, give an Example. 

( i) If  x ∈ A and A ∈ B, then  x ∈ B. 

( ii) If A ⊂ B and B ∈ C, then A ∈ C. 

( iii) If A ⊄ B and B ⊄ C, then A ⊄ C. 

9. Determine whether the following statements are True or False. If it is true prove it. If it is false, give an Example. 

( a) If  x ∈ A and A ⊄ B, then  x ∈ B. 

( b) If A ⊂ B and  x ∉ B, then  x ∉ A. 

10. Determine the power sets of the following sets. 

( i) A  =  { a}

( ii) A = {{ a}}

( iii) A  =  {φ, {φ}}

11. Which of the following sets are empty ? 

( a) Set of odd numbers between 21 and 23. ( b) Set of odd numbers divisible by 2. 

( c) The set containing numbers between 5 and 50. 

( d) {  }

( e) {φ}

( f) {1}

12. Which of the following pair of sets are equivalent sets? 

( a) A = {May, June, July}, B = {A, B, C}

( b) A = {Days of week}, B = {Letters of the word ‘SUBSETS’}

( c) A  =  { x :  x is a month having 32 days}, B = { x :  x is a year of 367 days}

( d) A = {2, 4, 6, 8, 10}, B = { Even natural Number less than or equal to 12}

13. How many elements are there in power sets of the following sets? 

( i) A = {0, φ}

( ii) B = {1, 2, 3}

( iii) C  =  { r,  s,  t,  u}

( iv) D  =  {φ, {φ}, 0}

14. What Universal sets  would you propose for the following? 

( i) The set of all integer numbers. 

( ii) The set of all non-positive integers. 

( iii) The set of all prime numbers. 

( iv) The set of all squares. 

15. Let A be the set of letters of the word PARAM. Determine

( i) A

( ii) |A|

( iii) Number of subsets of A

( iv) Number of proper subsets of A. 

( v) Power set of A. 
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16. Determine the cardinality of the following sets:

( a) A = {0, 1, 2, 3}

( b) B = {–2, –1, 0, 1, 2}

( c) C = {1, 1, 2, 2, 3, 3}

( d) Natural Number between 4 and 8. 

17. State whether the following are TRUE or FALSE. 

( i) An empty set is a finite set

( ii) If two sets are equal, they are certainly equivalent. 

( iii) If two sets are equivalent, they are certainly equal. 

( iv) {φ} represents a null set. 

( v) {0} represents a null set. 

18. Which of following pair of sets are Comparable or non-Comparable? 

( i) A = {1, 2, 3}, B = {1, 2, 3, 4}

( ii) A = {2, 4, 6}, B = {2, 4, 6}

( iii) A  =  { a,  b,  c,  d,  e}, B = { a,  c,  d,  e,  f}

( iv) A = {Even natural numbers}, B = {Odd natural numbers}

19. Which of the following pair of sets are disjoint? 

( i) A = {1, 2, 3}, B = {4, 5, 6, 7}

( ii) A = {2, 4, 6}, B = {6, 8, 10, 12}

( iii) A = {1, 4, 9, 16}, B = {12, 22, 32, 42, 52}

( iv) A = {2, 3, 4, 6}, B = {6, 8, 10, 12}

20. Which of the following sets are singleton sets? 

( i) A  =  { x :  x 2 = 25,  x is an odd integer}

( ii) A  =  {φ}

( iii) B  =  { x :  x 2 = 7}

( iv) Set of even numbers between 25 and 27. 

21. In each of the following, determine whether the statement is True or False. Justify your answer also. 

( i) φ ∈ φ

( ii) φ ⊂ φ

( iii) φ ⊆ φ

( iv) {1, 2} ⊂ 2{1, 2}

( v) {1, 2} ∈ 2{1, 2}

( vi) { a,  b} ∈ {{ a,  b}}

ANSWERS AND HINTS (PROBLEM SET-I)

1. ( a) Not a set

( b) yes

( c) yes

( d) yes

( e) Not a set

2. 

( i) {1, 2, 3}

( ii) {1, 2, 3, 4, 5, 6, 7, 8, 9}

( iii) {U, N, I, V, E, R, S, I, T, Y}

( iv) {B, C, D}

( v) {2, 4, 6, ...}

3. ( a) Infinite

( b) Finite

( c) Infinite

( d) Finite

( e) Finite

( f) Infinite

( g) Infinite

4. 

( i) Equal

( ii) Equal

( iii) Equal

( iv) Not equal

( v) Not equal

( vi) Not equal

5. 

( i) True

( ii) True

( iii) False

6. 

( i) False

( ii) True

( iii) False

7. 

( i) {1}, {2}, {1, 2}, φ

( ii) {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}, φ ( iii) φ

8. 

( i) False

( ii) False

( iii) False

9. ( a) False

( b) True

10. 

( i) P(A) = {{ a}, φ} ( ii) P(A) = {{{ a}}, φ} ( iii) P(A) = {{φ}, {{φ}}, {φ,{φ}}, φ}

11. ( a) empty

( b) empty

( c) Not empty

( d) empty

( e) Not empty

( f) Not empty

12. ( a) Equivalent

( b) Equivalent

( c) Not equivalent ( d) Not equivalent

13. 

( i) 4

( ii) 8

( iii) 16

( iv) 8

14. 

( i) The set of integers I

( ii) The set of integers I

( iii) The set of natural numbers N. ( iv) The set of quadrilaterals. 
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15. 

( i) A = {P, A, R, M} ( ii)|A| = 4

( iii) 16

( iv) 15

16. ( a) |A| = 4

( b) |B| = 5

( c) |C| = 3

( d) 3

17. 

( i) True

( ii) False

( iii) False

( iv) False

( v) False

18. 

( i) Comparable ( ii) Comparable & Equal

( iii) Not Comparable

( iv) Not Comparable

19. 

( i) Disjoint

( ii) Not disjoint

( iii) Not disjoint

( iv) Not disjoint

20. 

( i) Singleton

( ii) Singleton

( iii) Not singleton ( iv) Singleton

21. 

( i) False, the empty set has no elements

( ii) False, the empty set has no proper subsets

( iii) True

( iv) False, 1 and 2 are not members of the set {{1}, {2}, {1, 2}, φ}. 

( v) True

( vi) True. 

1.7

OPERATIONS ON SETS

The basic set operations are as follows :

1. Union of Sets.  Union of the sets A and B is defined to be the set of all those elements which belong to A or B or both and is denoted by A ∪ B. 

A ∪ B = { x :  x ∈ A or  x ∈ B}

 e.g. , 

Let

A = {1, 2, 3}, B = {3, 4, 5, 6}

then

A ∪ B = {1, 2, 3, 4, 5, 6}. 

2.  Intersection of Sets.  Intersection of two sets A and B is the set of all those elements which belong to both A and B and is denoted by A ∩  B. 

A ∩ B = { x :  x ∈ A and  x ∈ B}

 e.g., 

Let

A = { a,  b,  c,  d}, B = { a,  b,  l,  m}

then

A ∩ B = { a,  b}. 

3. Difference of Sets.  The difference of two sets A and B is a set of all those elements which belong to A but do not belong to B and is denoted by A – B. 

A – B = { x :  x ∈ A and  x ∉ B}

 e.g., 

Let

A = { a,  b,  c,  d}, B = { d,  l,  m,  n}

then

A – B = { a,  b,  c}. 

4. Complement of a Set w.r.t. a Universal Set.  The complement of a set A is a set of

all those elements of the universal set which do not belong to A and is denoted by A c  or  A′ or   A . 

A c = U – A = { x :  x ∈ U and  x ∉ A} = { x :  x ∉ A}

 e.g. , 

Let U is the set of all natural numbers. 

Let

A = {1, 2, 3}

then

A c = {all natural numbers except 1, 2, 3}. 

5. Symmetric Difference of Sets.  The symmetric difference of two sets A and B is the

set containing all the elements that are in A or in B but not in both and is denoted by A ⊕ B, A Δ B  i.e., 

A ⊕ B = (A ∪ B) – (A ∩ B)

 e.g., 

( i) Let

A = { a,  b,  c,  d}

B = { a,  b,  l,  m}

then

A ⊕ B = { c,  d,  l,  m}
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( ii) Let

A = {1, 2, 3, 4}

then A ⊕ φ = {1, 2, 3, 4}

( iii) Let

A = { l,  m,  n,  k}

then

A ⊕ A = φ. 

1.8 ALGEBRA OF SETS

A set is obtained from a set formula by replacing the variables by definite sets. When the

set variables appearing in two set formulas are replaced by any sets and both the set formulas are equal as sets, then we call that both the set formula are equal. The equality of set formulas are called set identities. Some of the identities describe certain properties of the operations involved. 

These properties describe an algebra called algebra of sets. 

The Table I shows the laws of algebra of sets. 

Table I

( i) Idempotent Laws

( vi) Identity Laws

( a) A ∪ A = A

( a) A ∪ φ = A

( b) A ∩ A = A

( b) A ∩ U = A

( ii) Associative Laws

( c) A ∪ U = U

( a) (A ∪ B) ∪ C = A ∪ (B ∪ C)

( d) A ∩ φ = φ

( b) (A ∩ B) ∩ C = A ∩ (B ∩ C)

( vii) Complement Laws

( iii) Commutative Laws

( a) A ∪ A c = U

( a) A ∪ B = B ∪ A

( b) A ∩ A c = φ

( b) A ∩ B = B ∩ A

( c) U c = φ

( iv) Distributive Laws

( d) φ c =  U

( a) A ∪ (B ∩ C) = (A ∪ B) ∩  (A ∪ C)

( viii) Involution Law

( b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

( a) (A c) c = A

( v) De Morgan’s Laws

( a) (A ∪ B) c = A c ∩ B c

( b) (A ∩ B) c = A c ∪ B c

Example 4.   Prove (a) A ∪  A = A

( b)  A ∩  A =  A. 

Sol.  ( a) To prove A ∪ A = A

Since, B ⊂ A ∪ B, therefore A ⊂ A ∪ A

Let

 x ∈ A ∪ A ⇒  x ∈ A or  x ∈ A ⇒  x ∈ A

∴

A ∪ A ⊂ A

As A ∪ A ⊂ A and A ⊂ A ∪ A ⇒ A = A ∪ A. Hence proved. 

( b) To prove A ∩ A = A

Since, A ∩ B ⊂ B, therefore A ∩ A ⊂ A

Let     x ∈ A ⇒  x ∈ A and  x ∈ A

⇒

 x ∈ A ∩ A

∴ A ⊂ A ∩ A

As A ∩ A ⊂ A and A ⊂ A ∩ A ⇒ A = A ∩ A. Hence proved. 

M-4.14

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Example 5.   Prove ( a)  (A ∪  B) ∪  C = A ∪  (B ∪  C),  ( b)  (A ∩  B) ∩  C = A ∩  (B ∩  C). 

Sol.  ( a) To prove (A ∪ B) ∪ C = A ∪ (B ∪ C)

Let some  x ∈ (A ∪ B) ∪ C

⇒

( x ∈ A

or

 x ∈ B)    or

 x ∈ C

⇒

 x ∈ A

or

 x ∈ B

or

 x ∈ C

⇒

 x ∈ A

or

( x   ∈ B   or

 x ∈ C)

⇒

 x ∈ A

or

 x ∈ B ∪ C

⇒

 x ∈ A ∪ (B ∪ C). 

Similarly, if some

 x ∈ A ∪ (B ∪ C), then  x ∈ (A ∪ B) ∪ C. 

Thus, any

 x ∈ A ∪ (B ∪ C)

⇔  x ∈ (A ∪ B) ∪ C. 

Hence proved. 

( b) To prove (A ∩ B) ∩ C = A ∩ (B ∩ C)

Let some  x ∈ A ∩ (B ∩ C)

⇒

 x ∈ A and  x ∈ B ∩ C

⇒

 x ∈ A and ( x ∈ B and  x ∈ C)

⇒

 x ∈ A and  x ∈ B and  x ∈ C

⇒

( x ∈ A and  x ∈ B) and  x ∈ C

⇒

 x ∈ A ∩ B and  x ∈ C

⇒

 x ∈ (A ∩ B) ∩ C. 

Similarly, if some  x ∈ A ∩ (B ∩ C), then  x ∈ (A ∩ B) ∩ C

Thus, any  x ∈ (A ∩ B) ∩ C

⇔

 x ∈ A ∩ (B ∩ C). Hence proved. 

Example 6.   Prove (a) A ∪  B = B ∪  A

 (b) A ∩  B = B ∩  A. 

Sol.  ( a) To prove

A ∪ B = B ∪ A

A ∪ B = { x :  x ∈ A or  x ∈ B}

= { x :  x ∈ B or  x ∈ A}   (∵ Order is not preserved in case of sets)

= B ∪ A. Hence proved. 

( b) To prove

A ∩ B = B ∩ A

A ∩ B = { x :  x ∈ A and  x ∈ B}

=  { x :  x ∈ B and  x ∈ A}

(∵ Order is not preserved in case of sets)

= B ∩ A. Hence proved. 

Example 7.   Prove (a) Intersection of sets is distributive w.r.t. union of sets i.e., A ∩  (B ∪  C) = (A ∩  B) ∪  (A ∩  C)

( b)  Union of sets is distributive w.r.t. intersection of sets i.e., 

 A ∪  (B ∩  C) = (A ∪  B) ∩  (A ∪  C). 

Sol.  ( a) To prove A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Let

 x ∈ A ∩ (B ∪ C)

⇒

 x ∈ A and  x ∈ B ∪ C

⇒

( x ∈ A and  x ∈ A) and

( x ∈ B or  x ∈ C)

⇒

( x ∈ A and  x ∈ B) or

( x ∈ A and  x ∈ C)

⇒

 x ∈ A ∩  B or  x ∈ A ∩ C

⇒

 x ∈ (A ∩ B) ∪ (A ∩ C)

Therefore, 

A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C)

...( i)

Again, let

 y ∈ (A ∩ B) ∪ (A ∩ C) ⇒  y ∈ A ∩ B or  y ∈ A ∩ C
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⇒

( y ∈ A and  y ∈ B) or ( y ∈ A and  y ∈ C)

⇒

( y ∈ A or  y ∈ A) and ( y ∈ B or  y ∈ C)

⇒

 y ∈ A and  y ∈ B ∪ C

⇒

 y ∈ A ∩ (B ∪ C)

Therefore, (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)

...( ii)

Combining ( i) and ( ii), we get A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).  Hence proved. 

( b) To prove A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Let

 x ∈ A ∪ (B ∩ C) ⇒  x ∈ A or  x ∈ B ∩ C

⇒

( x ∈ A or  x ∈ A) or ( x ∈ B and  x ∈ C)

⇒

( x ∈ A or  x ∈ B) and ( x ∈ A or  x ∈ C)

⇒

 x ∈ A ∪ B and  x ∈ A ∪ C

⇒

 x ∈ (A ∪ B) ∩ (A ∪ C)

Therefore, A ∪ (B ∩ C) ⊂ (A ∪ B) ∩ (A ∪ C)

...( i)

Again, let

 y ∈ (A ∪ B) ∩ (A ∪ C)

⇒  y ∈ A ∪ B and  y ∈ A ∪ C

⇒

( y ∈ A or  y ∈ B) and ( y ∈ A or  y ∈ C)

⇒

( y ∈ A and  y ∈ A) or ( y ∈ B and  y ∈ C)

⇒

 y ∈ A or  y ∈ B ∩ C

⇒

 y ∈ A ∪ (B ∩ C)

Therefore, (A ∪ B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C)

...( ii)

Combining ( i) and ( ii), we get A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Hence proved. 

Example 8.   Prove De Morgan’s Laws

( a)  (A ∪  B)c = Ac ∩  Bc

( b)  (A ∩  B)c = Ac ∪  Bc. 

Sol.  ( a) To prove

(A ∪ B) c = A c ∩ B c

Let

 x ∈ (A ∪ B) c

⇒

 x ∉ A ∪ B

(∵  a ∈ A ⇔  a ∉ A c)

⇒

 x ∉ A and  x ∉ B

⇒

 x ∈ A c and  x ∈ B c

⇒

 x ∈ A c ∩ B c

Therefore, 

(A ∪ B) c ⊂ A c ∩ B c

...( i)

Again, let

 x ∈ A c ∩ B c

⇒

 x ∈ A c and  x ∈ B c

⇒

 x ∉ A and  x ∉ B

⇒

 x ∉ A ∪ B

⇒

 x ∈ (A ∪ B) c

Therefore, 

A c ∩ B c ⊂ (A ∪ B) c

...( ii)

Combining ( i) and ( ii), we get A c ∩ B c = (A ∪ B) c.  Hence proved. 

( b) To prove

(A ∩ B) c = A c ∪ B c

Let

 x ∈ (A ∩ B) c

⇒



 x ∉ A ∩ B

(∵  a ∈ A ⇔  a ∉ A c)

⇒

 x ∉ A or  x ∉ B

⇒

 x ∈ A c  or  x ∈ B c

⇒

 x ∈ A c ∪ B c

∴

(A ∩ B) c ⊂ A c ∪ B c

...( i)
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Again, let

 x ∈ A c ∪ B c

⇒

 x ∈ A c  or  x ∈ B c

⇒

 x ∉ A or  x ∉ B

⇒

 x ∉ A ∩ B

⇒

 x ∈ (A ∩ B) c

∴

A c ∪ B c ⊂ (A ∩ B) c

...( ii)

Combining ( i) and ( ii), we get (A ∩ B) c = A c ∪ B c. Hence proved. 

Example 9.   Prove

( a)  A ∪   φ  = A

( b)  A ∩   φ  =  φ

( c)  A ∪  U = U

( d)  A ∩  U = A. 

Sol.  ( a) To prove

A ∪ φ = A

Let

 x ∈ A ∪ φ

⇒

 x ∈ A or  x ∈ φ

⇒

 x ∈ A

(∵  x ∉ φ, as φ is the null set)

Therefore, 

 x ∈ A ∪ φ

⇒

 x ∈ A

Hence

A ∪ φ ⊂ A. 

We know that A ⊂ A ∪ B for any set B. 

But for B = φ, we have A ⊂ A ∪ φ

From above, A ⊂ A ∪ φ, A ∪ φ ⊂ A

⇒

A = A ∪ φ. Hence 

proved. 

( b) To prove

A ∩ φ = φ

If  x ∈ A, then  x ∉ φ

(∵ φ is null set)

Therefore,  x ∈ A,  x ∉ φ ⇒ A ∩ φ = φ. Hence proved. 

( c) To prove

A ∪ U = U

Every set is a subset of universal set

∴

A ∪ U ⊆ U

Also, 

U ⊆ A ∪ U

Therefore, A ∪ U = U.  Hence proved. 

( d) To prove

A ∩ U = A

We know

A ∩ U ⊂ A

...( i)

So we have to show that A ⊂ A ∩ U

Let

  x ∈ A

⇒

 x ∈ A and



 x ∈ U

(∵ A ⊂ U so  x ∈ A ⇒  x ∈ U)

∴

 x ∈ A

⇒

 x ∈ A ∩ U

∴

A ⊂ A ∩ U

...( ii)

From ( i) and ( ii), we get A ∩ U = A.  Hence proved. 

Example 10.   Prove (a) A ∪  Ac = U

 (b) A ∩  Ac =  φ

      (c) Uc =  φ

 (d)  φ c = U. 

Sol.  ( a) To prove

A ∪ A c =  U

Every set is a subset of U

∴

A ∪ A c ⊂ U

...( i)

We have to show that U ⊆ A ∪ A c

Let  x ∈ U

⇒

 x ∈ A or  x ∉ A

⇒

 x ∈ A or  x ∈ A c

⇒

 x ∈ A ∪ A c

∴

U ⊆ A ∪ A c

...( ii)

From ( i) and ( ii), we get A ∪ A c = U.  Hence proved. 
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( b) To prove

A ∩ A c = φ

As φ is a subset of every set

∴



φ ⊆ A ∩ A c

...( i)

We have to show that A ∩ A c ⊆ φ

Let  x ∈ A ∩ A c

⇒

 x ∈ A and  x ∈ A c

⇒

 x ∈ A and  x ∉ A

(A contradictory statement)

⇒

 x ∈ φ

∴

A ∩ A c ⊂ φ

...( ii)

From ( i) and ( ii), we get

A ∩ A c = φ. Hence 

proved. 

( c) To prove

U c = φ

Let

 x ∈ U c

⇔  x ∉ U ⇔

 x ∈ φ

∴

U c = φ. 

(As U is a universal set)  Hence proved. 

( d) To prove

φ c = U

Let

  x ∈ φ c

⇔

 x ∉ φ

⇔

 x ∈ U  (As φ is an empty set)

∴

φ c = U.  Hence proved. 

Example 11.   Prove

 (Ac)c = A. 

Sol.  Let

 x ∈ (A c) c

⇔

 x ∉ A c

⇔

 x ∈ A

∴ (A c) c = A. Hence proved. 

1.9 VENN DIAGRAMS

The Venn diagram represent sets as regions in a plane. These are used to understand the

relationships between sets. Results from a Venn diagram usually are not considered to constitute a proof, but the results in the Venn diagram can be converted into a proof. 

Venn Diagrams and Set Operations.  Venn diagrams are used to represent set opera-

tions. In Venn diagrams, shadings are used to indicate which regions represent which sets. The results are obtained by determining which regions in the diagram are shaded in which fashion. 

To draw Venn diagrams following points are to be taken into consideration :

( i) All the sets are usually represented by circles. 

( ii) The universal set is represented by a rectangle. 

( iii) The complement of the set is represented by that portion of the universal set which is not in the set. 

U

Example 12.   Draw Venn diagram to represent the sets A, Ac and U. 

c

A

Sol.  The shaded portion represents the set A. (Fig. 1). 

A

The unshaded portion represents the set A c w.r.t. the universal set

represented by the rectangle. 

Fig. 1
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Example 13.   Draw the Venn diagrams for the following :

( i)  A ∪  B

( ii)  A ∩  B. 

Sol.  ( i) The Venn diagram for A ∪ B is shown in Fig. 2. 

A

B

A ∪ B

Fig. 2

( ii) The Venn diagram for A ∩ B is shown in Fig. 3. 

A

B

A ∩ B

Fig. 3

The region shaded in both directions represents A ∩ B. 

Example 14.   Draw the Venn diagram for Ac ∩  Bc ∩  Cc. 

Sol.  The Venn diagram for A c ∩ B c ∩ C c  is shown in Fig. 4. 

A

B

C

c

c

c

A ∩ B ∩ C

Fig. 4

The shaded portion represents A c ∩ B c ∩ C c. 

PROBLEM SET-II

1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}; A = {1, 2, 3, 4}

B = {2, 4, 6, 8} and C = {3, 4, 5, 6}

Determine

( i) A′

( ii) B′

( iii) A′ ∩ B′

( iv) (A ∪ B)′

( v) (A ∩ C)′

( vi) (A′)′

( vii) (B – C)′

2. Show that if A ⊂ B, then C – B ⊂ C – A. 
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3. Let A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7}, find (A – B) ∩ (B – A). 

4. Let A = {1, 2, 3, 4, 5, 6}. If  n represents any member of A, express the following as sets. 

( i)

 n ∈ A but 2 n ∉ A

( ii)  n + 5 = 8

( iii)  n > 4

5. If A = {3, 5, 7, 9, 11}, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17} then find. 

( i) A ∩ B

( ii) B ∩ C

( iii) A ∩

C ∩ D



( iv) A ∩ C

( v) B ∩ D

( vi) A ∩ (B ∪ C) ( vii

) A ∩ D

( viii) A ∩ (B ∪ D)

( ix) (A ∩ B) ∩ (B ∪ C)

( x) (A ∪ D) ∩ (B ∪ C)

6. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6} and C = {5, 6, 7, 8}, then find

( i) A ∪ B   ∪ C

( ii) A ∩ B   ∩ C

( iii) A  –  B

( iv) A ∪ (B ∩ C)

( v) (A ∪ B) ∩ (A ∪ C)

( vi) (A ∩ B) ∪ (A ∩ C)

7. Let  A = {1, 2, 3}, B = {3, 4, 5}, and C = {5, 6, 7}, then find

( i) (A – B) – C ( ii) A – (B ∪ C)

( iii) (A – C) – B

( iv) (A – C) – (B – C)

( v) (A – B) ∩ B

8. Let  A = { a,  b,  c,  d}, B = { c,  d,  e,  f}, and C = { f,  g,  h,  i}, then find ( i) (A – B) – (A – C)

( ii) (A – B) ∪ (A – C)

( iii) (A – B) ∩ (A – C)

( iv) (A – B) ⊕ (A – C)

9. For any sets A and B, show that:

P (A ∩ B) = P(A) ∩ P(B)

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A = {1, 2, 3, 4}, 

B = {2, 4, 6}, C = {1, 2, 5}. Determine the following

( i) (A ∪ B) – (B ∪ C)′

( ii) (A′ – B′) ∩ (B′ – C′)

( iii) (A – B) ∪ (A ∩ C)

( iv) Verify that A – B = A ∩ B′ = B′ – A′

ANSWERS AND HINTS (PROBLEM SET-II)

1. 

( i) A′ = {5, 6, 7, 8, 9}

( ii) B′ = {1, 3, 5, 7, 9}

( iii) A′ ∩ B′ = {5, 7, 9}

( iv) (A ∪ B)′ = {5, 7, 9}

( v) (A ∩ C)′ = {1, 2, 5, 6, 7, 8, 9}

( vi) (A′)′ = A = {1, 2, 3, 4}

( vii) (B – C)′ = {1, 3, 4, 5, 6, 7, 9}

2. Let  x ∈ C – B ⇒  x ∈ C but  x ∉ B

⇒  x ∈ C but  x ∉ A, since A ⊂ B

⇒  x ∈ C – A

Therefore, if A ⊂ B, then C – B ⊂ C – A. 

3. φ

4. 

( i) {4, 5, 6}

( ii) {3}

( iii) {5, 6}

5. 

( i) {7, 9, 11}

( ii) {11, 13}

( iii) φ

( iv) {11}

( v) φ

( vi) {7, 9, 11}

( vii) φ

( viii) {7,  9, 11}

( ix) {7, 9, 11}

( x) {7, 9, 11, 15}

6. 

( i) {1, 2, 3, 4, 5, 6, 7, 8}

( ii) φ

( iii) {1, 2}

( iv) {1, 2, 3, 4, 5, 6}

( v) {1, 2, 3, 4, 5, 6}

( vi) {3, 4}

7. 

( i) {1, 2}

( ii) {1, 2}

( iii) {1, 2}

( iv) {1, 2}

( v) φ

8. 

( i) φ

( ii) { a,  b,  c,  d}

( iii) { a,  b}

( iv) { c,  d}

9. 

Let X ∈ P(A ∩ B), then X ⊂ A ∩ B

This means, X ⊂ A and X ⊂ B

Therefore, X ∈ P(A) and X ∈ P(B)
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This implies X ∈ P(A) ∩ P(B). 

This gives P(A ∩ B) ⊂ P(A) ∩ P(B)

... ( i)

Similarly, Let Y ∈ P(A) ∩ P(B), then Y ∈ P(A) and  y ∈ P (B)

This means, Y ⊂ A and Y ⊂ B. 

Therefore, Y ⊂ A ∩ B. 

This implies Y ∈ P(A ∩ B). 

This gives, P(A) ∩ P(B) ⊂ P(A ∩ B)

...( ii)

From ( i) and ( ii), we have

P(A ∩ B) = P(A) ∩ P(B). 

10. 

( i) {1, 2, 4, 6}

( ii) φ

( iii) {1, 2, 3}

( iv) A – B = A ∩ B′ = B′ – A′ = {1, 3}

1.10 PARTITIONS OF SETS

The partition of a set S is a class of non-empty subsets of S such that every element of S

belongs to exactly one of the subsets. This means the sets in a partition are mutually disjoint. 

The partition of set A is a set of non-empty subsets A , A , A , ... such that

1

2

3

( i)





A = A  



... 

1 ∪ A2 ∪ A3

∪ A n

( ii)

The subsets A  are mutually disjont  i.e.  A  

= 

 i

 i ∩ A j

φ for  i ≠  j. 

Example 15.   Determine all the possible partitions of set A = { 3, 4, 5} . 

Sol. The possible partitions of set A are

( i) [{3}, {4}, {5}]

( ii) [{3}, {4, 5}]

( iii) [{4}, {3, 5}]

( iv) [{5}, {3, 4}]

( v) [{3, 4, 5}]. 

Example 16.   How many total ways are there to partition A = { a, b, c}  into two subsets? 

Sol. There are total three ways to partition A = { a,  b,  c} into two subsets. These are ( i) {{ a}, { b, c}}

( ii) {{ b}, { a,  c}}

( iii) {{ c}, { a,  b}}

1.11 PRINCIPLE OF DUALITY

The ‘dual’ of an equation is obtained by replacing each occurrence of ∪, ∩, U and φ with   ∩, 

∪, φ and U respectively. 

If any equation is an identity, then its dual is also an identity. 

Example 17.   Write the dual of the following equations:

( i)  A ∪  B

( ii) ( A ∪  B) ∪  C

( iii)  A ∪ ( B ∩  C)

( iv)  A ∪  Ac = U

( v)  Uc = φ

( vi) ( A ∪  B) c =  Ac ∩  Bc

Sol. The dual of the given equations are as follows. 

( i) A ∩ B

( ii) (A ∩ B) ∩ C

( iii) A ∩ (B ∪ C)

( iv) A ∩ A c = φ

( v) φ c = U

( vi) (A ∩ B) c = A c ∪ B c

1.12 ORDERED PAIRS

An ordered pair consists of two elements such that one of them is designated as first

member and other as second member. If  p is the first element and  q is the second element, then the ordered pair is written as ( p,  q). 
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 e.g., 

Let

A = {1, 2}, then possible ordered pairs of A × A

A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}

1.13 CARTESIAN PRODUCT OF TWO SETS

The cartesian product of two sets P and Q in that order is the set of all ordered pairs whose

first member belongs to the set P and second member belongs to set Q and is denoted by P × Q

 i.e., 

P × Q = {( x,  y) :  x ∈ P,  y ∈ Q}. 

Example 18.   Let P = { a, b, c}  and Q = { k, l, m, n} . Determine the cartesian product of P and Q. 

Sol.  The cartesian product of P and Q is

(

R ,  a ) k,( ,  a ) l,( ,  a )

 m , ( , 

 a )

 n  U

P × Q = S|( , 

 b )

 k , ( , 

 b )

 l , ( , 

 b

)

 m , ( , 

 b )

 n  V|

( , 

 c )

 k , ( , 

 c )

 l , ( , 

 c

)

 m , ( , 

 c )

 n

T|

W|. 

Example 19.   Let R = { 1, 2, 3}  and S = { 4, 5, 6} . Determine the cartesian product. 

Sol.  The cartesian product of R and S is

(1

R , 4),(1,5),(1,6)U

R × S = S|(2, 4), (2, 5), ( , 

2 )

6 V|

( , 

3 )

4 , ( , 

3 )

5 , ( , 

3 )

6

T|

W|. 

Example 20.   Prove that (A × B) ∩  (P × Q) = (A ∩  P) × (B ∩  Q). 

Sol.  Let

( x,  y) ∈ (A × B) ∩ (P × Q)

⇒

( x,  y) ∈ (A × B) and ( x,  y) ∈ (P × Q)

⇒

( x ∈ A and  y ∈ B) and ( x ∈ P and  y ∈ Q)

⇒

( x ∈ A and  x ∈ P) and ( y ∈ B and  y ∈ Q)

⇒

 x ∈ (A ∩ P) and  y ∈ (B ∩ Q)

⇒

( x,  y) ∈ (A ∩ P) × (B ∩ Q)

Therefore, (A × B) ∩ (P × Q) ⊂ (A ∩ P) × (B ∩ Q)

...( i)

Now, conversely let ( x,  y) ∈ (A ∩ P) × (B ∩ Q)

⇒

 x ∈ (A ∩ P) and  y ∈ (B ∩ Q)

⇒

( x ∈ A and  x ∈ P) and ( y ∈ B and  y ∈ Q)

⇒

( x ∈ A and  y ∈ B) and ( x ∈ P and  y ∈ Q)

⇒

( x,  y) ∈ (A × B) and ( x,  y) ∈ (P × Q)

⇒

( x,  y) ∈ (A × B) ∩ (P × Q)

Therefore, (A ∩ P) × (B ∩ Q) ⊂ (A × B) ∩ (P × Q)

...( ii)

From ( i) and ( ii), we have

(A × B) ∩ (P × Q) = (A ∩ P) × (B ∩ Q). Hence proved. 

Example 21.   Prove that A × (B ∩  C) = (A × B) ∩  (A × C). 

Sol.  Let ( x,  y) ∈ A × (B ∩ C)

⇒

 x ∈ A and  y ∈ B ∩ C

⇒

 x ∈ A and ( y ∈ B and  y ∈ C)

⇒

 x ∈ A and  y ∈ B and  x ∈ A and  y ∈ C
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⇒

( x,  y) ∈ A × B and ( x,  y) ∈ A × C

⇒

( x,  y) ∈ (A × B) ∩ (A × C)

Therefore, 

A × (B ∩ C) ⊂ (A × B) ∩ (A × C)

...( i)

Now, conversely let ( x,  y) ∈ (A × B) ∩ (A × C)

⇒

( x,  y) ∈ A × B and ( x,  y) ∈ A × C

⇒

( x ∈ A and  y ∈ B) and ( x ∈ A and  y ∈ C)

⇒

 x ∈ A and  y ∈ B and  y ∈ C

⇒

 x ∈ A and  y ∈ B ∩ C

⇒

( x,  y) ∈ A × (B ∩ C)

Therefore, (A × B) ∩ (A × C) ⊂ A × (B ∩ C)

...( ii)

From ( i) and ( ii), we have A × (B ∩ C) = (A × B) ∩ (A × C). Hence proved. 

Example 22.   Prove that: A × (B ∪  C) = (A × B) ∪  (A × C). 

Sol.  Let ( x,  y) ∈ A × (B ∪ C)

⇒

 x ∈ A and  y ∈ B ∪ C

⇒   x ∈ A and ( y ∈ B or  y ∈ C)

⇒

( x ∈ A and  y ∈ B) or ( x ∈ A and  y ∈ C)

⇒ ( x,  y) ∈ A × B or ( x,  y) ∈ (A × C)

⇒

( x,  y) ∈ (A × B) ∪ (A × C)

Therefore, A × (B ∪ C) ⊂ (A × B) ∪ (A × C)

...( i)

Now, conversely let ( x,  y) ∈ (A × B) ∪ (A × C)

⇒  ( x,  y) ∈ (A × B) or ( x,  y) ∈ (A × C) ⇒

( x ∈ A and  y ∈ B) or ( x ∈ A and  y ∈ C)

⇒   x ∈ A and  y ∈ B or  y ∈ C

⇒

 x ∈ A and  y ∈ (B ∪ C)

⇒  ( x,  y) ∈ A × (B ∪ C)

Therefore, (A × B) ∪ (A × C) ⊂ A × (B ∪ C)

...( ii)

From ( i) and ( ii), we have A × (B ∪ C) = (A × B) ∪ (A × C). Hence proved. 

Example 23.   Prove that if A ⊂  B, then A × C ⊂  B × C. 

Sol.  Let ( x,  y) ∈ A × C

⇒  x ∈ A and  y ∈ C



⇒  x ∈ B and  y ∈ C

(∵ A ⊂ B)

⇒ ( x,  y) ∈ B × C

Therefore, A × C ⊂ B × C. Hence proved. 

Example 24.   If S and T have n elements in common. Show that S × T and T × S have

 n2 elements in common. 

Sol.  Suppose, a set R, consisting of  n common elements of S and T. 

Therefore, R ⊂ S and R ⊂ T

Let ( x,  y) ∈ (R × R)

⇔  x ∈ R and  y ∈ R

⇔ ( x ∈ R and  y ∈ R) and ( x ∈ R and  y ∈ R)

⇔ ( x ∈ S and  y ∈ T) and ( x ∈ T and  y ∈ S)  (∵ R ⊂ S ; R ⊂ T)

⇔ ( x,  y) ∈ (S × T) and ( x,  y) ∈ (T × S)

⇔ ( x,  y) ∈ (S × T) ∩ (T × S)

Therefore, 

(R × R) = (S × T) ∩ (T × S). 

The right hand side contains ordered pairs common to both S × T and T × S. 

The left hand side R × R has  n 2 elements

(∵ R has  n elements)

Since, the two sets are equal, both have the same number of elements. 

Hence, S × T and T × S have  n 2 common elements. 
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PROBLEM SET-III

1. Let A = {0, 1, 2, 3, 4, 5}, A  = {0, 1}, A  = {2, 3}, A  = {4, 5}. Is {A , A , A } a  partition of A? 

1

2

3

1

2

3

2. Which of the following are partition of A = { a,  b,  c,  d,  e,  f,  g}? For each collection of subsets that is not a partition of A, explain your answer. 

( a) S  = {{ a,  c,  e,  g}, { b,  f}, { d}}

( b) S  = {{ a,  b,  c,   d}, { e,  f}}

1

2

( c) S  = {A}

( d) S  = {{ a}, 

3

4

φ, { b,  c,  d}, { e,  f,  g}}

( e) S  = {{ a,  c,  d}, { b,  g}, { e}, { b,  f}}

5

3. Find the number of partitions of  a set with 5 elements {1, 2, 3, 4, 5} in which there exists exactly a subset with ( a) 4 elements ( b) 3 elements. 

4. Find the number of partitions of a set with 4 elements {1, 2, 3, 4} with at least a subset with 2

elements. 

5. Give an example of a partition of N into three subsets. 

6. Consider the sets:

R  = { x 

0

∈ Z|  x = 2 k for some integer  k} (even numbers). 

R  = { x 

1

∈ Z|  x = 2 k + 1 for some integer  k} (odd numbers). 

( i) Is {R , R } a partition of Z? 

0

1

( ii) Are the sets R  and R  above a partition of Z+? 

0

1

7. Let A = {φ, {φ}}. Determine A × P(A). 

8. For two sets A and B, we know that A × B is the Cartesian product of A and B. 

( a) Let A = { a,  b}. Determine A × P(A). 

( b) Let A = {0, 1} and B = {0, 1} ∩ A and C = R. What is A × B × C? 

9. Suppose A = {0, 1} and B = {1, 2}. 

Find:

( i) (A × B) ∩ (B × B)

( ii) (A × B) ∪ (B × B)

( iii) (A × B) – (B × B)

( iv) (A ∩ B) × A

( v) (A × B) ∩ B

10. Suppose that A, B, and C are sets. Which of the following statements are true or false? 

( a) (A ∪ B) × C = (A × C) ∪ (B × C) ( b) (A ∩ B) × C = (A × C) ∩ (B × C)

( c) (A – B) × C = (A × C) – (B × C)

( d) If A, B = φ, then A × B = B × A if and only if A = B. 

( e) If A  



× B  

1 ∈ P(A) and B1 ∈ P(B), then A1

1 ∈ P(A × B). 

( f) If A and B have at least two elements, then not every element of P(A × B) has the form A  × B

1

1

for some A  

1 ∈ P(A) and B1 ∈ P(B). 

( g) φ × A = φ

11. Suppose A ≠ φ. Show that A × B ⊆ A × C, iff B ⊆ C. 

12. Suppose B ≠ φ and A × B ⊆ B × C. Prove A ⊆ C. 

13. Suppose A, B, C and D are sets. Show that (A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D)

14. Suppose A, B, and C are sets. Show that A × B ⊆ A × C, iff B ⊆ C. 

15. Suppose A = {2, 3, 4} and B = {1, 2}. Determine

( i) (A × B) ∩ (B × B)

( ii) (A × B) ∪ (B × B)

( iii) (A × B) – (B × B)



( iv) (A × B) ∩ B

( v) (A ∩ B) × A

( vi) P(A) × P(B)

( vii) P(A × B)

( viii) P(A × B) ∪ P(B × A)

16. Give an example of two uncountable sets A and B such that A – B  is finite. 

17. Give an example of two uncountable sets A and B such that A – B  is countably infinite. 

18. Give an example of two uncountable sets A and B such that A – B  is uncountable. 

19. Give an example of two uncountable sets A and B such that A ∩ B  is finite. 

20. Give an example of two uncountable sets A and B such that A ∩ B  is countably infinite. 

21. Give an example of two uncountable sets A and B such that A ∩ B  is uncountable. 
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22. Show with an example that the intersection of two uncountable sets can be empty, finite, countably infinite, or uncountably infinite. 

23. Prove that if A ** is an uncountable set and A ⊆ B then B is also uncountable. 

24. If A is a proper subset of B, then |A| < |B|. If this statement is true prove it, if it is false give a counter example. 

ANSWERS AND HINTS (PROBLEM SET III)

1. Yes. Since, A = A  



and A , A  and A  have no common elements. 

1 ∪ A2 ∪ A3

1

2

3

2. ( a) S  is partition ( b) S  is not a partition as element  g is missing ( c) S  is a partition ( d) S  is not 1

2

3

4

partition as it contains the empty set ( e) S  is not a partition as it contains element  b twice. 

4

3. ( a) There are five partitions

( i) {1, 2, 3, 4}, {5}

( ii) {1, 2, 3, 5}, {4}

( iii) {1, 2, 4, 5}, {3}

( iv) {1, 3, 4, 5}, {2}

( v) {2, 3, 4, 5}, {1}

( b) There are 20 partitions

( i) {1, 2, 3}, {4, 5}

( ii) {1, 2, 3}, {4}, {5}

( iii) {1, 2, 4}, {3, 5}

( iv) {1, 2, 4}, {3}, {5}

( v) {1, 3,4}, {2, 5}

( vi) {1, 3, 4}, {2}, {5}

( vii) {2, 3, 4}, {1, 5}

( viii) {2, 3, 4}, {1}, {5}

( ix) {1, 2, 5}, {3, 4}

( x) {1, 2, 5}, {3}, {4}

( xi) {1, 3, 5}, {2, 4}

( xii) {1, 3, 5}, {2}, {4}

( xiii) {2, 3, 5}, {1, 4}

( xiv) {2, 3, 5}, {1}, {4}

( xv) {1, 4, 5}, {2, 3}

( xvi) {1, 4, 5}, {2}, {3}

( xvii) {2, 4, 5}, {1, 3}

( xviii) {2, 4, 5}, {1}, {3}

( xix) {3, 4, 5}, {1, 2}

( xx) {3, 4, 5}, {1}, {2}. 

4. There are 9 partitions

( i) {1, 2}, {3, 4}

( ii) {1, 3}, {2, 4}

( iii) {1, 4}, {2, 3}

( iv) {1, 2}, {3}, {4}

( v) {1, 3}, {2}, {4}

( vi) {1, 4}, {2}, {3}

( vii) {2, 3}, {1}, {4}

( viii) {2, 4}, {1}, {3}

( ix) {3, 4}, {1}, {2}. 

5. Two solutions are given. The first one is N = {1} ∪ {2} ∪ {3, 4, 5, ...}

The second one is let S = {A , A , A } where

1

2

3

A   = {3 q + 1 |  q 

1

∈ Z and  q ≥ 0}

A   = {3 q + 2 |  q 

2

∈ Z and  q ≥ 0}

A   = {3 q + 3 |  q 

3

∈ Z and  q ≥ 0}

6. 

( i) Yes. Since every number is either odd or even R  

= Z. No number is both odd and even, so

0 ∪ R1

R  

= 

0 ∩ R1

ϕ. 

( ii) No. – 2 ∈ R , so – 2 



, but – 2 does not belong to Z+. So R  



0

∈ R0 ∪ R1

0 ∪ R1 ≠ Z+. 

7. A × P(A) = {(φ, φ), (φ , {φ}), (φ, {{φ}}), (φ, {φ, {φ}}), ({φ}, φ), ({φ}, {φ}), ({φ}, {{φ}}), ({φ}, {φ, {φ}})}

8. ( a) P(A) = {φ, { a}, { b}, { a,  b}}. So, A × P(A) = {( a, φ), ( a, { a}), ( a, { b}), ( a, { a,  b}), ( b, φ), ( b, { a}), ( b, { b}), ( b, { a,  b})}. 

( b) Since B = φ. So, there is no triple of the form ( a,  b,  c) with  a ∈ A,  b ∈ B,   c ∈ C. 

Thus, A × B × C = φ. 

9. 

( i) (A × B) ∩ (B × B) = {(1, 1), (1, 2)}

( ii) (A × B) ∪ (B × B) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}

( iii) (A × B) – (B × B) = {(0, 1), (0, 2)}

( iv) (A ∩ B) × A = {(1, 0), (1, 1)}. 

10. ( a) True

( b) True

( c) True

( d) True

( e) True

( f) True

( g) True
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16. Let A and B both be the same set, R, the set of real numbers. Then A – B is empty and is finite. 

17. Let A be the set of real numbers R. Let B = R – Z+. That is, B is the set of all numbers that are real but that are not positive integers. Then A – B = Z+, which is countably infinite. 

18. Let A be the positive real numbers greater than zero and B be the negative real numbers. Then A – B = A, which is uncountable. 

19. Let A be the positive real numbers greater than zero and B be the negative real numbers. 

Then A ∩ B is empty and is finite. 

20. Let A be the set of all positive real numbers and B be the set of all negative real numbers and all integers. Then A ∩ B = Z+, which is countably infinite. 

21. Let A and B both be the same set, R, the set of real numbers. Then A ∩ B = R, which is uncountable. 

22. [0,1] ∩ [3, 4] = φ, [0, 1] ∩ [1, 2] = {1}, (Q ∪ [0,1]) ∩ (Q ∪ [1, 2]) = Q. R ∩ R = R. 

23. We prove this by contradiction. Let us assume that there exist sets A and B such that A ⊆ B, and A is uncountable but B is countable. Since B is countable, (we know that every subset of a

countable set is countable) hence every subset of B is countable. This means A is countable. 

However, this contradicts our assumption that A is uncountable. 

24. False.  Counter-example: let A = Z+ and B = N. We have that Z+ is a proper subset of N, but both are infinitely countable and hence |Z+| = |N|. 

SOLVED PROBLEMS

Problem 1.   Write the following sets in builder form :

( a)  A = { 1, 3, 5, 7, 9, ... }

( b)  B = { 1, 8, 27, 64, ... }

( c)  R = { a, e, i, o, u}

( d)  S  = { 2, 3, 5, 7, 11, 13, 17, 19, ... }

( e)  T = { JAWAHAR LAL NEHRU, INDIRA GANDHI, ..., ATAL BEHARI VAJPAI} . 

Sol.  ( a) { x :  x is an odd +ve integer}. 

( b) { x :  x is a +ve integer,  x is a perfect cube}. 

( c) { x :  x is a letter of alphabet and  x is a vowel}. 

( d) { x :  x is a +ve integer and  x is a prime number}. 

( e) { x :  x was prime minister of India}. 

Problem 2.   Write the following sets in builder from :

( a)  A = { 2, 4, 6, 8, 10, 12, 14}

( b)  K  = { 3, 6, 9, 12, 15, 18, ... }

( c)  L = { PUNJAB, HARYANA, DELHI, UP, ..., BIHAR} . 

Sol. ( a) { x :  x is a +ve integer divisible by 2 and less than 15}. 

( b) { x :  x is +ve integer and is multiple of 3}. 

( c) { x :  x is the state of India}. 

Problem 3.   Write the following sets in tabular form :

( a)  A = { x : x2 = 9}

( b)  B = { x : x is a multiple of 3 and 0 < x < 20}

( c)  C = { x : x is a +ve even integer}

( d)  D = { x : x is a multiple of 5} . 

Sol.  ( a) A = {3}

( b) B = {3, 6, 9, 12, 15, 18}

( c) C = {2, 4, 6, 8, 10, ...}

( d) D = {5, 10, 15, 20, 25, ...}
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Problem 4.   Write the following sets in tabular form :

( a)  A = { x : x is a +ve integer and a perfect square}

( b)  B = { x : x is a divisor of 24}

( c)  C = { x : x is a multiple of 3 and 5}

( d)  D = { x : x is a multiple of 3 or 5}

( e)  T = { x : x is a letter in the alphabet} . 

Sol.  ( a) A = {1, 4, 9, 16, 25, 36, ...}

( b) B = {1, 2, 3, 4, 6, 8, 12, 24}

( c) C = {15, 30, 45, 60, ...}

( d) D = {3, 5, 6, 10, 15, ...}

( e) T  =  { a,  b,  c,  d,  e, ...}. 

Problem 5.   Determine finite or infinite sets among the sets in Example 4. 

Sol.  ( a) Infinite. There are infinite integers that are perfect square. 

( b) Finite. Divisor of 24 are finite. 

( c) Infinite. There are infinite numbers that are multiple of 3 and 5. 

( d) Infinite. There are infinite numbers that are multiple of 3 or 5. 

( e) Finite. There are 26 letters in the alphabet. 

Problem 6.   Determine finite or infinite sets among the following :

( i)  R  = { month in a year}

( ii)  S = { lines through the origin}

( iii)  T = { positive odd integer}

( iv)  K = { cities in India}

( v)  L = { members of the Parliament}

( vi)  M  = { positive integer between 1 and – 1} . 

Sol.  ( i) Finite. Twelve months in a year. 

( ii) Infinite. There are infinite number of lines passing through origin. 

( iii) Infinite. There are infinite number of +ve odd integers. 

( iv) Finite. There are finite number of cities in India. 

( v) Finite. The members of the parliament are finite. 

( vi) Finite. The set is empty. There is no +ve integer between 1 and – 1. 

Problem 7.   Which of the following sets are equal:

( i)  A = { a, b, c, d}

( ii)  B = { a, a, b, b, c, d, d, d}

( iii)  K = { d, a, c, b}

( iv)  L = { x : x is the letter of alphabet before e}

( v)  M = { First four letters of the alphabet} . 

Sol.  All the sets are equal. In set B multiple number of same elements does not affect  the set. In set K, the order does not change the set. 

Problem 8.   Which of the following sets are equal :

( a)  R = { x : x2 = 7}

( b)  S  = { x : x + 4 = 4}

( c)  T = { x : x2 + 2 = 8} . 

Sol.  The sets R and T are equal as they are empty sets. The set S is not, because element 0 (zero) belongs to set S. 
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Problem 9.   Determine the power set P(A) of the set A = { 1, 2, 3} . 

Sol.  P(A) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, φ}. 

Problem 10.   Let A = { a , a , ..., a }  be a non-empty set of n elements. How many subsets 1

 2

 n

 of A contain the element {a } ? 

 1

Sol.  There are 2 n subsets of A. We want to know that how many of these do not contain

{ a } ? The number of such subsets B = A – { a }. We know that B is a set of  n – 1 elements, and 1

1

therefore has 2 n – 1 distinct elements. Thus, there are |A| – |B| = 2 n – 2 n – 1 = 2 n – 1 subsets of A that contain the element { a }. 

1

Problem 11.   Give a proof or a counter example for each of the following statements. 

 (i) 2A ∪  B = 2A ∪  2B

 (ii) 2A ∩  B = 2A ∩  2B

Sol.  ( i) This statement is not true. Let us assume that

A = { a} and B = { b}. Then

2A ∪ B = {{ a}, { b}, { a,  b}, φ}

While

2A ∪ 2B = {{ a}, φ} ∪ {{ b}, φ}

= {{ a}, { b}, φ}

Hence, 

2A ∪ B ≠ 2A ∪ 2B

( ii) This statement is true. For proof, 

We know that 

2A ∩ B ⊂ 2A and 2A ∩ B ⊂ 2B

Thus, 

2A ∩ B ⊂ 2A ∩ 2B

...( i)

Now, to prove that  2A ∩ 2B ⊂ 2A ∩ B

Let us assume that, C ∈ 2A ∩ 2B

⇒

C ∈ 2A and C ∈ 2B

⇒

∀  x ∈ C,  x ∈ A and  x ∈ B

⇒

∀  x ∈ C,  x ∈ A ∩ B

⇒

C ∈ 2A ∩ B

Therefore, 

2A ∩   2B ⊂ 2A ∩ B

...( ii)

Hence, 

2A ∩ 2B = 2A ∩ B

Problem 12.   Determine the power sets of the following sets:

( a) { a}

( b) {{ a}}

( c) {φ , {φ}} . 

Sol.  ( a) {{ a}, φ}

( b) {{{ a}}, φ}

( c) {{φ}, {{φ}}, {φ, {φ}}, φ}. 

Problem 13.   Let A = {φ , {φ}} . Determine whether the following statements are true or false. 

( a) φ ∈  P( A)

( b) φ ⊆  P( A)

( c) {φ} ⊆  P( A)

( d) {φ} ⊆  A

( e) {φ} ∈  P( A)

( f ) {φ} ∈  A

( g) {{φ}} ⊆  P( A)

( h) {{φ}} ⊆  A

( i) {{φ}} ∈  P( A)

(  j) {{φ}} ∈  A. 

Sol.  The power P(A) = {{φ}, {{φ}}, {φ, {φ}}, φ}

( a) True

( b) True

( c) True

( d) True

( e) True

( f) True

( g) True

( h) True

( i) True

( j) False. 
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Problem 14.   Let A = { a, { a}} . Determine whether each of the following is true or false : ( a) φ ∈  P(A)

( b) φ ⊆  P(A)

( c) { a} ∈  P(A)

( d) { a} ⊆  P(A)

( e) {{ a}} ∈  P(A)

( f) {{ a}} ⊆  P(A)

( g) { a, { a}} ∈  P(A)

( h) { a, { a}} ⊆  P(A)

( i) {{{ a}}} ∈  P(A)

( j) {{{ a}}} ⊆  P(A). 

Sol.  The power set P(A) = {{ a}, {{ a}}, { a, { a}}, φ}

( a) True

( b) True

( c) True

( d) False

( e) True

( f ) True

( g) True

( h) False

( i) False

(  j) True. 

Problem 15.   Let A = {φ} . Let B = P(P(A)). 

( a)  Is  φ ∈  B ?  φ ⊆  B  ? 

( b)  Is {φ}  ∈  B ? {φ}  ⊆  B ? 

( c)  Is {{φ}}  ∈  B ? {{φ}}  ⊆  B ? 

Sol.  The power set of A  i.e.,  P(A) = {{φ}, φ}

B = P(P(A)) = {{φ}, {{φ}}, {{φ}, φ}, φ}

( a) Yes, φ ∈ B and φ ⊆ B as φ is a subset of every set. 

( b) Yes, {φ} ∈ B. Also, {φ} ⊆ B as φ is an element in B. 

( c) Yes, {{φ}} ∈ B and also {{φ}} ⊆ B since {φ} is an element of set B. 

Problem 16.  Suppose

 U = { 1, 2, 3, 4, 5, 6, 7, 8, 9}

 A = { 1, 4, 9}

 P = { x : x ∈  U and x is a perfect square}

 R = { 1, 2, 3, 5, 7, 9}

 D = { 2, 3, 5, 7}

 N = { x : x ∈  U and x is a prime number}

φ

( a)  Determine which sets are subsets of others. 

( b)  Determine which sets are proper subsets of others. 

( c)  Determine pair of sets which are disjoint. 

( d)  Determine pair of sets which are comparable. 

( e)  Determine pair of sets which are incomparable. 

Sol.  ( a) All the sets are subsets of U since the elements of every set belong to U. Set φ is subset of all other sets. Set A is subset of P. Set D is subset of R and N. 

( b) All the sets are proper subsets of U since they are not equal to U. Set D is proper subset of R. Set N is proper subset of R. Set φ is proper subset of all the other sets. 

( c) The pairs A and D, A and N, P and D, and P and N are disjoint sets. 

( d) All the sets are comparable with the set U. 

Set D is comparable with R as D ⊆ R

Set N is comparable with R as N ⊆ R

All sets comparable with φ as φ ⊆ Every set. 

( e) The pairs A and R, A and D, A and N, P and R, P and D, P and N, are incomparable. 
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Problem 17.   Is it possible for every member of a set A to also be a subset of A ? If so, is it possible for all cardinalities ? Provide examples or proofs as to why this cannot be. 

Sol.  It is possible for all cardinalities. Define the sequence  a  = 

= {

= {{

0

φ,  a 1

φ},  a 2

φ}}, etc. 

For any non-negative integer  n, the set  A = { a ,  a , ...,  a

} satisfies the conditions-specifically, 

0

1

 n – 1  

the number  a  is also the set { a

}. When  n = 0, A = 

 i

 i – 1

φ which also works; since φ has no members

it will satisfy any condition that states a property for all members of a set. 

Problem 18.   Determine the cardinalities of the sets:

( a)  P = { n7 : n is a positive integer}

( b)  Q = { n109 : n is a positive integer}

( c)  P ∪  Q

( d)  P ∩  Q. 

Sol.  ( a) The cardinality of the set P is infinite as the number of +ve integers are infinite. 

( b) The cardinality of the set Q is infinite as the number of positive integers are infinite. 

( c) Since sets P and Q are both infinite, their union is also infinite and hence cardinality. 

( d) The cardinality of P ∩ Q is one because for  n = 1

17 = 1109

But for  n = 2 ; 

27 ≠ 2109

and so on. 

Hence, P ∩ Q contains only one element. 

Problem 19.   Let N is the set of all natural numbers. Let P denotes all finite subsets of N. 

 What is the cardinality of set P ? Give reason. 

Sol.  The number of subsets of any set is given  by 2 n, where  n is number of elements in the set. As the number of subsets of set N is 2 n, hence there are 2 n number of subsets in set P. 

Therefore, the cardinality of set P is 2 n. 

Problem 20.   Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9}  and suppose that

 A = { 1, 2, 3, 4, 5} , B = { 4, 5, 6, 7} , C = { 5, 6, 7, 8, 9} , D = { 1, 3, 5, 7, 9} . 

 Find the following subsets of U :

( a)  A ∪  B

( b)  A ∩  B

( c)  A′

( d)  C – D

( e)  (C ∪  D)′. 

Sol.  ( a) A ∪ B = {1, 2, 3, 4, 5, 6, 7}

( b) A ∩ B = {4, 5}

( c) A′ = {6, 7, 8, 9}

( d) C – D = {6, 8}

( e) (C ∪ D)′ = {2, 4}. 

Problem 21.   Determine the following sets :

( a) φ  ∪  {φ}



( b) φ  ∩  {φ}

( c) {φ} ∪  { a,  φ , {φ}}

( d) {φ} ∩  { a,  φ , {φ}}

( e) φ ⊕  { a,  φ , {φ}}

( f) {φ} ⊕  { a,  φ , {φ}} . 

Sol.  ( a) {φ}

( b) φ

( c) { a, φ, {φ}}

( d) {φ}

( e) { a, φ, {φ}}

( f) { a, {φ}}. 

Problem 22.   Determine whether each of the following statements is true or false. 

 Explain your answer. 

( a)  A ∪  P( A)  = P( A)

( b)  A ∩  P( A) =  A

( c) { A} ∪  P( A) =  P( A)

( d) { A} ∩  P(A)  = A

( e)  A – P( A)  = A

( f )  P(A) – { A}  = P( A) . 
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Sol.  ( a) A ∪ P(A) = P(A). 

False.  P(A) contains all subsets of A but does not contain all elements of A. Therefore, A ∪ P(A) ≠ P(A). 

( b) A ∩ P(A) = A. 

False.  Since power set of A contains all subsets of A but no elements of A, hence there is no element common to both the sets. 

( c) {A} ∪ P(A) = P(A)

True.  P(A) contains all subsets of A and {A} is also an element of P(A). 

( d) {A} ∩ P(A) = A. 

False. {A} is common to both {A} and P(A) because P(A) contains all subsets of A but their intersection is not A but {A}. 

( e) A – P(A) = A True. 

( f) P(A) – {A} = P(A). 

False. {A} is also an element of P(A). Therefore, P(A) – {A} ≠ P(A). 

Problem 23.   Let A = {φ ,   a} . Construct the following sets: ( a)  A –  φ

( b) {φ} –  A

( c)  A ∪  P{ A}

( d)  A ∩  P{ A} . 

Sol.  ( a) {φ,  a}

( b) φ

( c) {φ,  a} ∪ {{φ}, { a}, {φ,  a}, φ} = {φ,  a, {φ}, { a}, {φ,  a}}

( d) {φ,  a} ∩ {{φ}, { a}, {φ,   a}, φ} = {φ}. 

Problem 24.   Let A, B, C be sets. Under what conditions is each of the following true? 

( a)  (A – B)  – (A – C) = φ

( b)  (A – B) ∪  (A – C) = φ

( c)  (A – B) ∩  (A – C) = φ

( d)  (A – B) ⊕  (A – C) = φ. 

Sol.  ( a) This is true if B and C are null sets or A and B are disjoint sets and A and C are disjoint sets. 

( b) This is true if A = B = C or A, B and C are null sets. 

( c) This is true if A = B = C or all three sets are null sets. 

( d) This is true if A ⊆ B and A ⊆ C. 

It is also true if A ⊆ B and A ⊆/ C but B = C. 

Problem 25.   What can you say about P and Q if

( a)  P ∩  Q = P

( b)  P ∪  Q = P

( c)  P ⊕  Q = P

( d)  P ∩  Q = P ∪  Q. 

Sol.  ( a) This tells that P ⊆ Q. 

( b) This tells that P = Q or Q ⊆ P. 

( c) This tells that Q is a null set. 

( d) This tells that P = Q. 

Problem 26.  Let A, B, C be arbitrary sets :

( a)  Show that (A – B) – C = A – (B ∪  C). 

( b)  Show that (A – B) – C = (A – C) – B. 

( c)  Show that (A – B) – C = (A – C) – (B – C). 

Sol.  ( a) (A – B) – C = A – (B ∪ C)

Let  x ∈ (A – B) – C

⇒  x ∈ (A – B),  x ∉ C

⇒  x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ A,  x ∉ B or C
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⇒  x ∈ A,  x ∉ B ∪ C

⇒  x ∈ A – (B ∪ C). 

∴

A – (B ∪ C) ⊆ (A – B) – C

...( i)

Conversely, let  x ∈ A – (B ∪ C)

⇒  x ∈ A,  x ∉ B ∪ C

⇒  x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ A – B,  x ∉ C

⇒  x ∈ (A – B) – C

∴

(A – B) – C ⊆ A – (B ∪ C)

...( ii)

From ( i) and ( ii), we get (A – B) – C = A – (B ∪ C). 

( b) (A – B) – C = (A – C) – B

Let

 x ∈ (A – B) – C

⇒  x ∈ A – B,  x ∉ C

⇒  x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ A – C,  x ∉ B

⇒  x ∈ (A – C) – B

∴

(A – C) – B ⊆ (A – B) – C

...( i)

Conversely, let  x ∈ (A – C) – B

⇒  x ∈ (A – C),  x ∉ B

⇒  x ∈ A,  x ∉ C,  x ∉ B

⇒  x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ (A – B),  x ∉ C

⇒  x ∈ (A – B) – C

∴ (A – B) – C ⊆ (A – C) – B

...( ii)

From ( i) and ( ii), we get (A – B) – C = (A – C) – B. 

( c) (A – B) – C = (A – C) – (B – C)

Let

 x ∈ (A – B) – C

⇒  x ∈ (A – B),  x ∉ C

⇒

 x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ A,  x ∉ C,  x ∉ B,  x ∉ C

⇒

 x ∈ A – C,  x ∉ B – C

⇒  x ∈ (A – C) – (B – C)

∴ (A – C) – (B – C) ⊆ (A – B) – C

...( i)

Conversely, let  x ∈ (A – C) – (B – C)

⇒  x ∈ (A – C),  x ∉ (B – C)

⇒  x ∈ A,  x ∉ C,  x ∉ B,  x ∉ C

⇒  x ∈ A,  x ∉ B,  x ∉ C

⇒  x ∈ A – B,  x ∉ C

⇒  x ∈ (A – B) – C

∴

(A – B) – C ⊆ (A – C) – (B – C)

...( ii)

From ( i) and ( ii), we get (A – B) – C = (A – C) – (B – C). 

Problem 27.   Given that P ∪  Q = P ∪  R, is it necessary that Q = R ? Justify your answer. 

Sol.  This is not necessary. 

P ∪ Q

⇒ all elements of P or Q are in this set. 

P ∪ R

⇒ all elements of P or R are in this set. 

If

Q ⊆ P and also R ⊆ P. Then P ∪ Q = P ∪ R = P. 

Therefore, it is not necessary that Q = R. 

 e.g., 

Let P = {1, 2, 3, 4}, Q = {1, 2}, R = {3, 4}, then P ∪ Q = P ∪ R = P

But here Q ≠ R. 
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Problem 28.   Given that P ∩  Q = P ∩  R, is it necessary that Q = R? Justify your answer. 

Sol.  This is not necessary

P ∩ Q contains elements common to both P and Q. 

P ∩ R contains elements common to both P and R. 

But it is not necessary that Q = R because set R can have elements of set Q which are

elements of set P as well, but it can also have elements other than those in set Q. 

 e.g. , Let P = {1, 2, 5, 6}, Q = {1, 2, 8}, R = {1, 2, 9}

Then P ∩ Q = P ∩ R = {1, 2} ; but Q ≠ R. 

Problem 29.   Given that P ⊕  Q = P ⊕  R, is it necessary that Q = R ? Justify your answer. 

Sol.  It is necessary that Q = R. 

Because P ⊕ Q = (P ∪ Q) – (P ∩ Q)  i.e.,  this set contains elements which are in sets P or Q

but does not contain elements common to both sets. 

Similarly, P ⊕ R = (P ∪ R) – (P ∩ R)  i.e.,  this set contains elements which are in sets P or R but does not contain elements common to both sets. 

As  P ⊕ Q = P ⊕ R

∴ (P ∪ Q) – (P ∩ Q) = (P ∪ R) – (P ∩ R)

⇒ P ∪ Q = P ∪ R and P ∩ Q = P ∩ R

⇒

Q = R

 e.g., 

Let

P = {1, 2, 3, 4}, Q = {1, 5}, R = {1, 5}

P ⊕ Q = (P ∪ Q) – (P ∩ Q) = {1, 2, 3, 4, 5} – {1} = {2, 3, 4, 5}

P ⊕ R = (P ∪ R) – (P ∩ R) = {1, 2, 3, 4, 5} – {1} = {2, 3, 4, 5}

⇒

Q = R. 

Problem 30.   Prove that (A – B) ∩  B =  φ . 

Sol.  (A – B) ∩ B = φ

If  x ∈ B, then  x ∉ A – B due to definition of A – B

    x ∈ B,  x ∉ A – B ⇒ (A – B) ∩ B = φ. Hence proved. 

Problem 31.   Prove that A ∪  B =  φ ⇒  A =  φ , B =  φ . 

Sol.  Let A ∪ B = φ

Now φ is a subset of every set ⇒ φ ⊂ A, φ ⊂ B

Since, 

A ⊂ A ∪ B, B ⊂ A ∪ B

Hence, A ⊂ φ, B ⊂ φ

So

A ⊂ φ, φ ⊂ A

⇒ A = φ

B ⊂ φ, φ ⊂ B

⇒ B = φ. Hence proved. 

Problem 32.   Prove that A – B ⊂  B′ . 

Sol.  Let  x ∈ A – B

⇒  x ∈ A and  x ∉ B

⇒

 x ∈ A and  x ∈ B′

⇒  x ∈ A ∩ B′ as A ∩ B′ ⊂ B′

⇒

 x ∈ B′

Therefore, any  x ∈ A – B ⇒  x ∈ B′

So A – B ⊂ B′. Hence proved. 
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Problem 33.   Given that

 (A ∩  C) ⊆  (B ∩  C)

 (A ∩  C ) ⊆  (B ∩  C )

 Show that A ⊆  B. 

Sol.  For (A ∩ C) ⊆ (B ∩ C), all elements of set A which are also elements of set C are contained in a set which contains elements common to both B and C. It implies A ⊆ B for elements which are common in A and C, and B and C. 

For (A ∩ C ) ⊆ (B ∩ C ), elements common to sets A and C  are contained in a set containing

elements common to both B and C. It implies A ⊆ B for elements common in A and C  and also in

B and C . 

Hence, from both conditions it is shown that A ⊆ B. 

Problem 34.   If 2A ⊆  2B, what is the relation between A and B? 

Sol.  We know that 2A is the set of all subsets of A, including A itself. The condition tells us that every subset of A is also a subset of B, and in particular A itself is a subset of B. So A ⊆ B. 

Problem 35.   Let A be a set with m elements and B be a set with n elements, and assume m < n. For each of the following sets, give upper and lower bounds on their cardinality and provide sufficient conditions for each bound to hold with equality. 

 (a) A ∩  B

 (b) A ∪  B

 (c) A – B

 (d) 2A ∪  A

Sol.  ( a) Upper bound.  The largest intersection has all of the members of the smaller set, so  m is the upper bound. This will be satisfied if A ⊂ B. 

Lower bound.  The intersection can be empty, so 0 is the lower bound. We say A and B are disjoint if A ∩ B = φ. Using it can be impressed as A – B = A or B – A = B. 

( b) Upper bound.  The largest union occurs if all members of both sets are in the Union, so the sets must be disjoint. So the bound is  m +  n elements. 

Lower bound.  The smallest union occurs when the two sets have a maximal number of

common elements, this occurs when A ⊂ B. Here the resulting size of the set is  n. 

( c) Upper bound.  This will occur when A and B have no elements in common, meaning that they are disjoint. Then A – B = A so the upper bound is  m. 

Lower bound.  This will occur when there are maximal number of common elements, so

A ⊂ B. Then A – B = φ and the bound is 0. 

( d) Upper bound.  If 2A and A are disjoint, their union will have  m + 2 m elements. We know that all members of a power set are themselve sets, so any set A with no members that are sets will be disjoint with its power set. 

Lower bound.  If A ⊆ 2A, then the union will have 2 m elements. Since the power set is the set of all subsets, this occurs for a set for which all members are also subsets of a set. 

Problem 36.   Let A and B be sets. What is A ×  φ ? 

Sol.  The set A × φ is equal to

{( x,  y) |  x ∈ A and  y ∈ φ}

However, since there cannot exist any element  y ∈ φ, there cannot exist any pair ( x,  y) with x ∈ A and  y ∈ φ. Thus, the set A × φ has no elements and is therefore equal to φ. 
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Problem 37.   Show that the set I of all integers is countable. 

Sol.  The set I of all integers is an infinite set. If it is countable, it must be countability infinite. 

To prove I to be countably infinite, we have to show that there is one-to-one correspondence

between N and I. We can define as function from N to I which is one-to-one and onto as shown

below. 

N =

1

2

3

4

5

6

7

......... 

I =

0

1

–1

2

–2

3

–3

......... 

The description of the above function can be described by the explicit formula

 f : I → N as

⎧ n

if  n is +ve even integer

⎪⎪2

 f( n) = ⎨(1

⎪ −  n) if  n is +ve odd integer. 

⎪⎩ 2

Problem 38.   Show that the set of all bit strings is countable. 

Sol.  Let the bit strings is of length K. So there are a finite number 2K bit strings of length K. The set of all bit strings is the Union of the bit strings of length K over K = 0, 1, 2, 3, ......... . 

Since the union of a countable sets is countable, there are a countable number of bit strings. 

Problem 39.   Show that if A is an uncountable set and B is a countable set, then A – B

 must be uncountable set. 

Sol.  Let us assume that A – B is countable. Then, since A = (A – B) ∪ B, hence the

elements of A can be listed in a sequence by alternating elements of A – B and elements of B. This contradicts the uncountability of A. 

Problem 40.   Show that if X is an uncountable set and X ⊂  Y, then Y is uncountable. 

Sol.  Let us assume that Y is countable. Then the elements of X can be listed as  x ,  x ,  x , 1

2

3

......... . Since X is a subset of Y, taking the subsequence of { x } that contains the terms that are in n

X gives a listing of the elements of X. Since X is uncountable, this is not possible. 

Problem 41.  Given A is a countable set and B is uncountable set. 

( i)  Is A ∩  B countable ? 

( ii)  Is A ∪  B countable ? Why? 

Sol.  ( i) We know that A ∩ B ⊆ A. Also, A is countable. Therefore, A ∩ B is countable because any subset of a countable set is countable. 

( ii) We know that B ⊆ A ∪ B. Also, B is uncountable. Therefore, A ∪ B is uncountable

because any set with an uncountable subset is uncountable. 

MULTIPLE CHOICE QUESTIONS

1. Let P(S) denotes the powerset of set S. Which of the following is always true? 

( a) P(P(S)) = P(S)

( b) P(S) ∩ S = P(S)

( c) P(S) ∩ P(P(S)) = {φ}

( d) S ∈ P(S)

2. Let X and Y be sets. If |X| = 5 and |Y | = 2, then |X × Y | =

( a) 5

( b) 7

( c) 10

( d) 25
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3. If P, Q, R are subsets of the universal set U, then (P ∩ Q ∩ R) ∪ (P′ ∩ Q ∩ R) ∪ Q′ ∪ R′ is: ( a) Q′ ∪ R′

( b) P ∪ Q′ ∪ R′

( c) P′ ∪ Q′ ∪ R′

( d) U

4. Let A and B be sets and let A′ and B′ denote the complements of the sets A and B. The set (A – B) ∪ (B – A) ∪ (A ∩ B) is equal to :



( a) A ∪ B

( b) A′ ∪ B′

( c) A ∩ B

( d) A′ ∩ B′

5. If P = { a,  b,  e,  f}, Q = { a,  d,  e,  f }and R = { c,  d,  e,  g}, then (P ∩ Q) ∩ R is: ( a) { d}

( b) { a,  d}

( c) { a,  b,  c,  d,  e,  f,  g}

( d) φ

6. If a set A contains  n elements, then the power set P(A) has:

( a)  n 2 elements

( b) 2 n + 1 elements

( c) 2 n elements

( d)  n 2 + 1 elements

7. The number of elements in |P ((A × B) ∪ (B × A)) | = |P ((A × B) ∪ (A × B))| iff:

( a) A  =  φ or A = B

( b) B  = φ or A = B

( c) A  =  φ or B = φ

( d) A  =  φ or B = φ or A = B

8. Which of the following statements is true? 

( a) A – (B ∪ C) = (B – C) – A

( b) A – (B – C) = (A – B) – C



( c) B – (A′)′ = B′ ∩ A

( d) A – (B ∪ C) = (A – C) – B

9. How many subsets of a set A = {1, 2, 3 ......  n} contain the element {1}? 

( a) 1

( b) 2 n

( c)  n

( d) 2 n – 1

10. Let A be a finite set of size  n. The number of elements in the power set of A × A is: 2

( a) 22 n

( b) 2 n

( c) (2 n)2

( d) (22) n

11. Let Z is a set of integers defined as follows: 1 ∈ Z, 2 ∈ Z, if  x ∈ Z then (3 +  x) ∈ Z. Nothing else is in Z. Which of the following best describes Z? 

( a) Positive integers evenly divisible by 3

( b) Positive integers

( c) Positive integers not evenly divisible by 3

( d) Primes and square numbers

ANSWERS

1. ( d)

2. ( c)

3. ( d)

4. ( a)

5. ( a)

6. ( c)

7. ( d)

8. ( d)

9. ( d)

10. ( b)

11. ( c)

REVIEW QUESTIONS

1. What is a set? Give example. 

2. How sets  can be represented? Explain by giving examples. 

3. What is finite and Infinite sets? Explain by giving examples. 

4. What is equality of sets? Explain by giving examples. 

5. What are disjoint sets? Give example. 

6. What is family of sets? Give example. 
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7. What is a subset of a set? Give example. 

8. What is proper and improper subset? Give examples. 

9. What is NULL set? Explain by giving example. 

10. What is power set? Give example. 

11. What is Universal set? Give example. 

12. What are comparable and incomparable sets? Explain by give examples. 

13. Explain various operations on sets? Explain by giving examples. 

14. Prove De-Morgan’s laws. 

15. What is cardinality of a set? Give example. 

16. What is VENN Diagram? How these can be constructed? Explain by giving examples. 

17. What is ordered pair? Give example. 

18. What is cartesian product of two sets? Explain by giving example. 

19. What is countable and uncountable sets? Explain by giving example. 

20. What is symmetric difference of two sets? Give example. 

21. How many elements are there in a power set if there are  n elements in a set? 

22. What is singleton set? Give example. 

23. What is equivalent set? Give example. 

24. What is complement of a set? Explain by giving example. 

CHAPTER END PROBLEMS

1. Consider the following sets, 

A = {2 x |  x ∈ Z} ; B = { x | 0 <  x < 50 ∧  x is prime}; C = { x |  x ² – 2 x – 15 = 0}; D = { x |  x is divisible by 6}

Describe the following using either the tabular method (roster method) or set builder form notation. 

( a) A ∩ B

 (b) (B  ∩ C) – D

( c) [(A – C) ∪ (C – D)] ∩ (B ∩ D)

( d) B – (A ∪ C)

2. Consider the following sets, 

E  = [– 2, 1) ∪ (3, 4), F = (– 5, – 3] ∪ [0, 3], G = (0, 8], H = [0, 2) ∪ (4, 10]

Describe the following using either the tabular form (roster method) or set builder form notation. 

( a) (E  ∩ F) ∪ (G – F)

( b) (G ∪ H) – F

( c) (H Δ F) – (G Δ E)

( d) (G – H) ∪ (F ∩ (E ∪ G))

3. Determine whether the following statements are true or false. 

( a) { x} ⊆ { x}

( b) { x} ∈ { x}

( c) { x} ∈ { x, { x}}

( d) { x} ⊆ { x, { x}}

( e) φ ⊆ φ

( f) φ ⊆ φ

( g) φ ⊆ {φ}

4. Indicate which of the following are true and which are false? 

( a) { x} ∈ { x}

( b) { x} ⊂ {{ x}}

( c) φ ⊂ {φ}

( d) φ ∈ {φ}

( e) { x} ∈ { x, { x}}

5. Indicate which of the following are true and which are false? 

( a) {{1}} ∈ {1, {{1}}}

( b) {φ} ⊂ {1, {φ}}

( c) φ ∈ {{ x}, {φ},  x}

( d) φ ⊂ {φ, { x}}
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( e) If A ⊂ B, then A ∩ B = A

( f) A – (B ∪ B) = (A – B) ∪ (A – C)

( g) If A ∩ B = φ, then A = φ

( h) A ⊂ (A – B) ∪ B

6. Which of the following statements are true and which are false ? The A, B and C below represent sets:

(1) {1, 2} × φ = { < 1, φ >, < 2, φ >}

(2) {φ} ⊂ {2}; 

(3) φ ∈ {{1}, {2}, {φ}}

(4) {1, 2} = {1, 2, 1}

(5) (A – B) ∪ (A – C) = A – (B ∩ C)

(6) If A ∪ B = B, then A ∩ B = A

(7) {1} ⊂ 2{1, 2}

(8) φ ∈ A for every set A

(9) If A ∪ B = U and A ∩ B = φ, where U is the universal set, then B = A

(10) (A – B) ∪ (B – C) = A – C

(11) If (A – B) ∪ (B – A) = A ∪ B, then A ∩ B = φ

(12) The cardinality (size) of {1, 2, 1} is 3

(13) | A × B |= 6, if | A |= 3 and | B |= 2

(14) The maximum possible value of | A ∩ B | is equal to the smaller of | A | and | B |

(15) A × B = B × A

7. Let A = { a,  c}, B = { b,  c,  d}, and C = { b,  c,  d,  e}. Determine if the following are true or false. Give a brief justification for your answer. 



( i) A ⊂ C

( ii) (A ∪ B) ⊆ C



( iii) (A ∩ B) ⊆ C

( iv) ( c,  c) ∈ A × B

( v) { c,  c} ∈ P(B)

8. Find sets A and B such that both A ∈ B and A ⊆ B. 

9. Let U = { 1, 2, 3, 4, 5, 6 } be the universal set. If A = {  x ∈ U |  x ∈ { 0, 1, 2, 3 } } and B = {  x ∈ U |

 x ∈ { 2, 3, 4, 5 } }. Write down the following sets:



( i) A ∩ B

( ii) A ∪ B

( iii) A  –  B

( iv) B  –  A

( v) A′

( vi) B′

( vii) P (A ∩ B)

( viii) P (A ∪ B)

10. Write the following using braces, commas, numerals, … (for infinite sets), and φ only. 

( a) ({1, 3, 5} ∪ {3, 1}) ∩ {3, 5, 7}

( b) ∪{{3}, {3, 5}, ∩{{5, 7}, {7, 9}}}

( c) ({1, 2, 5} – {5, 7, 9}) ∪ ({5, 7, 9} – {1, 2, 5})

( d) 2{7, 8, 9} – 2{7, 9}

( e) 2φ

( f) { x : ∃ y ∈ N where  x =  y 2}

( g) { x :  x is an integer and  x 2 = 2}

11. Find the power set of each of the following sets:

( i) {3, 5}

( ii) {φ}

( iii) {{1}, φ}

( iv) {{φ}, φ}

12. Find the following Cartesian products:

( i) φ × {{φ}, {1}}

( ii) {{φ}, φ} × {φ}

13. Let A = {1, 2} and B = {2, 3}. Write down the following sets:

( i) P(A)

( ii) P(B)

( iii) P(A) × P(B)

14. Consider the sets, A = {1, 2, 3}, B = φ and C = { a,  b}. List the elements of the following sets. 

( a) A  ×  C

( b) C  ×  A

( c) C3

( d) (C2) × A

( e) (C3) × B

M-4.38

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

15. Consider the sets S = {1, 2, 3} and T = {1, 3, 5, 7}. List the elements of the following sets. 

( i) S  ×  T

( ii) (S ∩ T)3

( iii) P(S) ∩  P(T)

16. Write each of the following sets explicitly:

( a) {1} × {1, 2} × {1, 2, 3}

( b) φ × {1, 2}

( c) 2{1,2} × {1, 2}

17. Consider the sets S = { a,  b} and T = { b,  c}. List the elements of P, where P = 2S ∩ 2T. 

18. Let Z be the set of integers. Let S = { x ∈ Z : ∃ y ∈ Z and  x = 2 y}. Let T = { x ∈ Z : ∃ y ∈ Z and  x = 2 y}. Let W = S – T. Describe W in English. List any five consecutive elements of W. Let X = T – S. What is X? 

19. A set U contains 6 elements. How many elements would P (U) and P (P(U)) contain? Give reasons. 

20. Let S be the set { a,  b,  c,  d}. 

( i) Describe briefly how each subset of S can be represented by a unique 4-bit binary string. 

( ii) Write down the string corresponding to the subset { a,  c,  d} and the subset corresponding to the string 0110. 

( iii) What is the total number of subsets of S? 

21. Define set  P  to be the power set of {1, 2, ....,  i}. 

 i

( i) What is P ? 

( ii) What is P –   P ? 

4

5  

4

 n

( iii) Describe in general, the set P

 – P . 

( iv) What is  

P

P = P

P ? 

 i + 1  

 i

∪  i +1 −  i

 n +1 − 1

 i + 1

 n

( v) What is  ∩ P

P ? 

 i + 1 −

 i

 i = 1

22. Let A  = { i,  i + 1,  i + 2, …} and B  be the set of all non-empty bit strings of length not exceeding  i. 

 i

 i

(For example, B  = {0, 1, 00, 01, 10, 11}). Determine the values of the following:

 2

 n

 n

( a) ∪ A

∪ B

 i

( b)

 i

 i  1

=

 i  1

=

 n

 n

(c) ∩ A

∩B

 i

( d)

 i

 i  1

=

 i  1

=

23. Find the power set and the corresponding cardinality of each of the following sets. 

( i) φ

( ii) {φ}

( iii) {φ, {φ}}

24. Let S= {2, 5,  2 , 25, π, 5/2 } and T = { 4, 25,  2 , 6, 3/2 }. Find S ∩ T and T × (S ∩ T). 

25. If A= φ and B= {{{ a}}}, φ }, then find (P(P(A))) and P(B). 

26. Let X= {  n 2:  n is a positive integer} and Y = {  n 3:  n is a positive integer}. Find X ∩ Y. 

27. For each of the following pairs of sets, determine whether the two sets are equal. 

( i) {1, 2, 3, 4}, {1, 3, 4, 2}

( ii) {  x :  x ∈ R and  x 2 – 3 x – 18 = 0 }, {3, – 6}

( iii) { x :  x ∈ R and | x| = 5}, {5}

( iv) {3, 4, 5, 6}, { x :  x ∈ R and 2 <  x < 7}

28. Show that A = {2, 3, 4, 5} is not a subset of B = { x :  x ∈ N,  x is even}. 

29. List the elements of the following sets if the universal set is U = { a,  b,  c, … ,  y,  z}. Furthermore, identify which of the sets, if any, are equal

A =  {  x :  x is a vowel}

B = {  x :  x is a letter in the word “little”}

C = {  x :  x precedes  f in the alphabet}

D = {  x :  x is a letter in the word “title”}

30. If S = {1, 2, 3} and T = {3, 5}, then determine the cardinality of the following:

( i) |S|

( ii) |T|

( iii) |(S ∩ T)|

( iv) |(S ∪ T)|
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( v) |(S – T) |

( vi) |(S × T)|

( vii) |P(S)| = 8. 

31. What is the cardinality of each of the following sets? Justify your answer. 

( a) S = N – {2, 3, 4}

( b) S  =  {φ, {φ}}

(c) S = 2{ a,  b,  c}

( d) S  =  { a,  b,  c} × {1, 2, 3, 4}

( e) S  =  { a,  b, ....,  z} × N

32. Let A, B be finite sets. Recall that |A ∩ B| = |A| + |B| – |A ∩ B|. Find a similar formula for

|A ∪ B ∪ C|, and justify your answer. 

33. Let A, B, C and D be finite sets, and let |A| denote the cardinality of A. 

( i) Express the cardinalities of A ∪ B, A – B and A × B using the cardinalities of A, B and A ∩ B. 

( ii) Determine whether the following statements about cardinalities are True or False: ( a) | (A ∪ B) – (A ∪ B)| = |(A – B) ∪ (B – A)|

( b) |(A × B ) – (C × B)| = |(A – C) × (B – D)|

If true, give a proof. If false, give a counter-example. 

34. Which of the following sets are equal? 

S  = {1, 2, 2, 3}, 

S  = { x |  x 2 – 2 x + 1 = 0}, 

1

2

S  = {1, 2, 3}, 

S  = { x |  x 3 – 6 x 2 + 11 x – 6 = 0}, 

3

4

35. Find the number of proper subsets of the set of letters UTTAR PRADESH. 

36. Consider the sets A = { 1, 3, 5 }, B = { 3, 5, 7 }, and C = { 2, 4, 6 }. List the elements of ( A × B ) × C. 

Further, 

( i) List the elements of ( A ∩ B ) × C and ( A × C ) ∩ ( B × C ). 

( ii) List the elements of ( A ∪ B ) × C and ( A × C ) ∪ ( B × C ). 

37. Consider the sets, A = φ, B = {1, 2, 3}, C = {3, 4, 5} and D = Z, where Z denotes the set of integer numbers. Determine the following:



( a) (D ∩ C) ∪ B

( b) (B ∪ D ∩ A) ∪ C



( c) (D ∩ B ∩ C) ∪ D

( d) (D – B) ∩ C

38. Let A = {1, 3, 5 } and B = {2, 3 }. Write down explicit sets for



( a) A ∪ B and A ∩ B

( b) A – B and B – A

( c) (A ∪ B) – B and (A – B)   ∪ B

( d) A Δ B and B Δ A

( e) A × B, A × φ and B × A

( f)  p (A). 

39. Let A = {{ a}, { b}} and B = { a,  b, { a}}. Determine A ∩ B, A ∪ B, P (B), A ∩ P (B), A × B, (A × B) ∩ (B × A) and A Δ B. 

40. Determine the values of A ∪ B, A ∩ B, A – B and A × B for the following sets. 

( i) A  =  { a,  c, 

 d } and B = { c,  e }

( ii) A  =  {φ } and B = φ

( iii) A = {{ b}, { a}} and B = { a, φ, { b}}

41. Consider a set A  = {1, 2, 3, … , 10}. 

( a) How many subsets of A   contain all even integers in A? 

( b) How many subsets of A   contain exactly two even integers and two odd integers? 

( c) How many 3-element subsets of A   have the greatest element greater than 5? 

( d) How many subsets of A contain not equal amount of even and odd numbers? 

42. A set contains (2 n + 1) elements. If the number of subsets of this set which contain at most  n elements is 8192. Find the value of  n. 

43. Let X = { a ,  a , ...,  a } and Y = { b ,  b , ...,  b }. How many elements are there in X × Y? Write down the 1

2

 m

1

2

 n

elements of X × Y. 

44. Let U = { c,  o,  a,  l,  i,  t,  i,  o,  n,  o,  f,  t,  h,  e,  w,  i,  l,  l,  i,  n,  g} be the Universal set. 

Let J = { x ∈ U|  x ∈ { j,  o,  h,  n } }, 

T = { x ∈ U |  x ∈ { t,  o,  n,  y}} and

W = { x ∈ U |  x ∈ { d,  u,  b,  y,  a}} be subsets of the Universal set. 
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( i) List the elements of each of these four sets. 

( ii) Using part ( i), draw a sigle Venn diagram showing these four sets. 

( iii) Using part ( ii), write down the following sets:



( a) J ∩ T



( b) T ∪ W

( c) W  –  J

( d) J′ – T′

( e) T′ ∩ W′

( f) W ∪ J

45. Determine the sets A and B given that A – B = {1, 3, 7, 11}, B – A = {2, 6, 8} and A ∩ B = {4, 9}. 

46. If B = {0, 3, 6, 9, ... } give a partition of B containing

( i) Two finite subsets

( ii) Three infinite subsets

( iii) One finite subset and one infinite subset

47. Let A = {1, 2, 3, 4, 5} and let B = {4, 5, 6, 7}. Compute

( i) A  –  B

( ii) B  –  A

( iii) A  ×  B

( iv) 2 B – A (Power set)

48. Determine the sets A and B, given that A – B = {1, 2, 4}, B – A = {7, 8} and

A 

∪ B = {1, 2, 4, 5, 7, 8, 9}. 

49. Can you conclude that A = B if A, B, and C are sets such that

( i) A ∪ C = B ∪ C

( ii) A ∩ C = B ∩ C. If yes, prove it. If no, provide a counter-example. 

50. Consider the sets A = {2, 3, 5, 7} and B = {1, 3, 5}. List each element in the following sets: ( i) A  ×  B

( ii) A ∪ B



( iii) A ∩ B

( iv) A  –  B

51. Given the sets A, B and C from the universal I such that A 

+ 

∩ B ⊆ C and C ⊆ A ∪ B. 

( i) Prove that C – A ⊆ B – A. 

( ii) Also show that B – A ⊆ C – A, is not always true by giving a counter-example. 

52. Show that for sets, A, B and C, taken from the universe {1, 2, 3, 4, 5, 6} that the following two claims are not always true by giving a counter-example for each:

( i) If  A  ∩ B ⊆ C, then C ⊆ A ∪ B. 

( ii) If C ⊆ A ∪ B, then A ∩ B ⊆ C. 

53. Let A, B be two sets. If 2A = 2B, must A = B? Prove your answer. 

54. Give an example of sets A, B and C such that A ∈ B, B ∈ C and A does not belong to C. 

55. Let A and B be two arbitrary sets. Show that P (A  ∩ B) = P (A) ∩ P (B) or give a counter example. 

56. Let A and B be any sets. Prove:

( MDU, 2002)

A ∪ B is the disjoint union of AB, A ∩ B and B\A. 

57. Let N denote the set of all natural numbers. Let S denote the set of all finite subsets of N. What is the cardinality of S? Justify your answer. 

58. Let A be an arbitrary set. Is the set A × φ well defined? 

59. Given that A × B = φ, what can one say about the sets A and B? 

60. Is it possible that A ⊂ A × A for some set A? 

61. Determine {φ} )∩ {  a,  d, {φ}}. 

62. Show that for any set X, |X| = | X × {O}|. What is the value of |X × φ|? 

63. Let A and B be two sets. Show that if A – B = A then A and B are disjoint sets. 

64. Let A = { x,  y,  z}, B = { x,  y} and P(S) be the power set of set S. Determine the following : ( a) Is A a subset of B? 

( b) Is B a subset of A? 

( c) Is P(B) a subset of P(A)? 

( d) What is A ∪ B? 

( e) What is A ∩ B? 

( f) Is φ a member of P(B)? 
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65. Let A    be the set of all non-empty strings of over 

   has length not

 i

Σ = {0, 1}, where each string in A i

exceeding  i. Give a formula for the cardinality of A . Justify your answer. 

 i

66. Let X and Y be sets such that X – Y = Y. Show that both X and Y are empty sets. 

67. Show that every superset of an uncountable set is uncountable. 

68. Show that “The set of prim numbers is an infinite set”. 

Hint: Assume that the set of primes is finite. 

Let  P = { p ,  p ,  p , …  p } be the set of all prime numbers where  p ,  p ,  p , …  p , and  n  are natural 1

2

3

 n

1

2

3

 n

numbers. P is a therefore a finite set. 

Now consider  y = ( p  ×  p  ×  p  × ... ×  p ) + 1. Clearly,  y  is a natural number larger than all of the 1

2

3

 n

prime numbers. Therefore,  y  must be a composite number. However, we cannot divide  y  by any prime number without leaving a non-zero remainder. Therefore,  y  must be a prime number. This is impossible and so our original assumption must be wrong. Therefore, the set of prime numbers is not a finite set. 

69. Prove that the set of all infinite sequences is uncountable. 

70. Prove that the set B of all infinite subsets of N is uncountable. 

71. Which of the following are countable/uncountable. Prove. 

( i) The set S  of all finite subsets of N whose sizes are odd. 

3

( ii) The set S  of all subsets of N containing no odd integers. 

4

( iii) The set S  of all functions  f : N – Z with the property that  f( n) = 0 except for finitely many 5

 n ∈ N. 

72. Mark the following as “true” or “false”. Suppose that A and B are sets. If I prove that every element of A is also an element of B, I can conclude that A = B. 

73. Let U be the universal set and let A, B, and C be subsets of U. 

Prove or disprove: (( A – B ) – C ) ≤ ( A – ( B – C ))

74. For any three sets A, B, C prove that

(A – B) – C = A – (B ∪ C) = (A – C) – (B – C)

75. Let A, B and C be any three sets. Prove or disprove the following propositions:

( a) If A ⊆ B ∪ C, then either A ⊆ B or A ⊆ C

( b) (A – C) ⊆ (C – B) = φ

( c) P(A) – P(B) ⊆ P (A – B)

76. Prove each of the following:

( a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

( b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

( c) A ∩ (A ∪ B) = A

( d) A ∪ (A ∩ B) = A

( e) A – (B ∩ C) = (A – B) ∪ (A – C)

77. Let U be the universal set and let A, B and C be subsets of U. Using the list of Set Theorems, prove the following statements:

( i) (A ∪ B) ∪ C  =  A ∩ (B ∩ C)

( ii) (A ∩ B) ∩ C  =  A ∪ (B ∪ C)

Clearly state which set theorem you are using for each step. 

78. If S, T ⊆ U, prove that S and T are disjoint if and only if S ∪ T = S Δ T. Where Δ is a symmetric difference operation. 

79. Simplify the expression  (A ∪ B ∩ C) ∪ B . 

80. For any two sets A and B, prove the following: A – (A – B) = A ∩ B. 

81. Prove that  A Δ B  =  A  Δ B = A Δ  B . Where Δ is a symmetric difference operation? 

82. Prove that A Δ B = (B ∩  A ) ∪ (A ∩  B ) = (B – A) ∪ (A – B)
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83. Let A, B, C be sets. Prove or disprove the following using any valid method. 

( i) (A – C) ∩ (C – B) = φ

( ii) A – (B – C) = (A – B) – C

( iii) A Δ (B ∩ C) = (A Δ B) ∩ (A Δ C)

( iv) If U = A ∪ B ∪ C, then A ∪ (B – C) =  (C – A)

84. Let U be the universal set and let A, B and C be subsets of U. Prove or disprove that: ( i) A ⊆ (B ∪ C) → (A ⊆ B ∧ A ⊆ C )

( ii) (A – B ) ⊆ C → A ⊆ C ∨ B ⊆ C

85. Using Venn diagram, prove the following property of the symmetric difference:

( i) A Δ (B Δ C) = (A Δ B) Δ C

86. Let A, B, C be sets. Which of the following statements are true ? 

( a) A\B = A ∩  B

( b) (A\B)\C = A\ (B\C)

( c) A\(B ∪ C) = (A\B) ∪ (A\C)

( d) A\(B ∪ C) = (A\B) ∩ (A\C). 

87. Let A, B, and C denote 3 sets. Prove that if A ∪ C  = B ∪ C   and A  ∩   C  = B  ∩   C, then A = B. 

(Hint: Let  x ∈ A, then  x ∈ A  ∪ C is true.)

88. Let A, B, and C be sets such that C  ⊂ B ( i.e. , C is a proper subset of B, or possibly C = B). Use appropriate set theoretic laws and theorems to prove that (A – B) ∪ (B – C) = ¬ C ∩ (A ∪ B). Be sure to explain each step of your proof. 

89. Given arbitrary sets A, B, C, and Y prove the following statement:

[A × B ⊆ Y ⊆ C × B ] → [ ((C – A) × B) – ~Y = Y – (A × B)]

90. Suppose A, B   and C   are sets. Prove that: A  – (B  –  C) ⊆ (A  –  B) ∪ C. 

91. For both parts of this question, let A, B and C be finite sets. 

( a) Prove or disprove: if A ⊆ B and A ⊆ C, then ¬ (B ∩ C) ⊆ A. 

( b) Prove or disprove: if A – B = B – C, then A = φ. 

92. Given arbitrary sets A, B, and C chosen from the universe of {1, 2, 3, 4, 5}, prove or disprove the following two assertions. If disproved give a counter-example. 

( a) If B ⊆ C, then (B – A) ⊆ (C – A). 

( b) If (B – A) ⊆ (C – A), then B ⊆ C. 

93. Let A, B, and C be three sets, prove that: (C – (A ∪ B)) ∪ (B ∩ C) ∪ (A ∩ C) = C. 

94. Let   A, B, and C denote three arbitrary sets. If A ⊂ B, prove that (C  –  B) ∩   A  = φ. 

95. Draw Venn diagrams representing the following Sets:

( i) A ∩ B

( ii) A ∩ (B ∪ C)

96. Give an example of sets (A, B, and C) for which, A – C = B – C, but A ≠ B. 

97. Let A, B   and C   be any three sets. Prove or disprove the following propositions: ( i) If C = φ then (A – B) – C = A – (B – C)

( ii) If A ⊆ B  ∪ C, then either A  ⊆ B   or A  ⊆ C

( iii) A  ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C. 

98. Let A, B and C   denote sets and suppose that A – B ⊆ C and A ⊆ C (A   is NOT a subset of C). Prove or disprove that A ∩ B ≠ φ. 

99. Prove or disprove the two assertions below about arbitrary sets A, B and C. Explain each step in your proof/disproof. 

( a) If C  ⊆ B ,  then, (A – B) ∪ (B – C) = ¬ C ∩ (A ∪ B). 

( b) If (A – B) – C = A – (B – C) then A ∩ C = φ. 

100. Given arbitrary sets A, B, and C chosen from the universe of integers, prove or disprove the following two assertions. Give a single counter-example to the assertion. 

( a) If A ∩ C = φ, then A – B – C = A – (B – C)

( b) If A – B – C = A – (B – C) then A ∩ C = φ. 
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101. Let A and B be arbitrary sets taken from the universe of integers. 

( a) Show that the following statement is false by providing a single counter-example:

if A × B ⊆ B × A, then A = B. 

( b) Show that if we restrict A and B to both be non-empty sets, then the proposition above is true. 

102. Let A, B and C be arbitrary sets taken from the positive integers. 

Prove or disprove: If A  ∩ B ∩ C = φ,    then (A ⊆  B ) ∨ (A ⊆ C ). 

103. Use set laws to prove that the two following sets are equivalent. 

(1) A ∪ B

(2) (A ∩ B) ∪ (A ∩  B ) ∪ ( A  ∩ B)

104. Prove the following for arbitrarily chosen sets A ,  B and C:

(B – A) ∪ (C – A) = (B ∪ C) – A

105. ( a) Prove the following for arbitrarily chosen sets A ,  B and C:

(A – C) – (B – C) ⊆ A – B

( b) Give a small example to show that these two sets, (A – C) – (B – C) and A – B, are not necessarily equal. 

106. Prove that A – (B ∩ C) = (A – B) ∪ (A – C). 

107.  If A and B are two subsets of a universal set then prove that A – B = A ∩ BC . 

108. If A and B are two subsets of a universal set then prove that A – B = A ∩  B

109. Prove that A ∪ B = (A – B) ∪ (B – A) ∪ (A ∩ B). 

110. Suppose A  ⊆ B  – C   and A  ≠ ∅. Prove or disprove that ( i) B   cannot be a subset of C. 

( ii) |  B  | > | C  |. 

111. Let S be the subset of the set of ordered pairs of integers defined recursively by: Basis step:  (0, 0) ∈ S. 

Recursive step: if ( a,   b) ∈ S, then ( a + 2,  b + 3) ∈ S and ( a + 3,  b + 2) ∈ S

( a) List the elements of S produced by the first five applications of the recursive definition (including the basis step). 

( b) Use induction to show that 5| a +  b| when  ( a,  b) ∈ S. (That is, the remainder is zero when a +  b  is divided by 5.)

112. Let A = { q}. 

( i) What is value of P(P(A))? 

( ii) What is P(A) × P(A))? 

( iii) What is P(P(A)) × P(P(A))? 

113. Prove that for any two sets A and B, A ⊂ B iff A ∪ B = B. 

114. Prove or disprove the following statements. If disproved provide a counter-example). 

( a) If (A ∪ B) ⊂ (A ∩ B), then A = B. 

( b) If A ∩ B = A ∩ C and A ∪ B = A ∪ C, then B = C. 

115. ( a) Given that A ⊂ C and B ⊂ D, prove that A × B ⊂ C × D. 

( b) Prove or disprove: If A × B ⊂ C × D, then A ⊂ C and B ⊂ D. 

116. Let A, B, and C are subsets of a set S. Prove or disprove the following identities. 

( a)

A ∩ (B ∪  A ) = B ∩ A

( b) (A ∪ B) ∩ A  =  A ∩ B

117. Let A and B be sets. Prove each of the following statements. 



( i) (A ∩ B) ⊆ A

( ii) A ⊆ A ∪ B

( iii) A ∩ (B – A) = φ

118. Let A, B, and C be sets. Use the rules of logic or set identities to prove that A ∪ (B ∩ C) =

(A – B) ∪ (A – C) ∪ (B ∩ C). 

119. ( a) Let P   be the set of integers greater than or equal to –1. What numbers does the set S = { x|

 x = 2 k + 3,   k ∈ P} represent? 
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( b) Let N be the set of all natural numbers. 

What numbers does the set S = { x|  x = ( k + 1)2 –  k 2,   k ∈ N} represent? 

120. Let ( x,  y) be a point on a plane. What points does the set S = ( x,  y) | x 2 +  y 2 <1} represent? 

ANSWERS AND HINTS TO SELECTED QUESTION

3. ( a) True

( b) False

( c) True

( d) True

( e) False

( f) True

( g) True

5. ( a) True

( b) False

( c) False

( d) True

( e) True

( f) False

( g) False

( h) True

6. (1) False

(2) False

(3) True

(4) True

(5) True

(6) True

(7) False

(8) False

(9) True

(10) False

(11) True

(12) False

(13) True

(14) True

(15) False

7. (1) False

(2) False

(3) True

(4) True

(5) True

8. One solution is A = {1, 2}, B = {1, 2, {1, 2}}

9. ( vii) P(A ∩ B) = A ∩ B has 5 elements so P ( A ∩ B ) has 25 = 32 elements. 

( viii) {φ, {2}, {3}, {2, 3}}

10. 

( e) {φ}

( f) {0, 1, 4, 9, 25, 36...}

( g) φ (since the square root of 2 is not an integer)

11. ( ii) {φ, {φ}}

( iv) {φ, {{φ}}, {φ}, {{φ}, φ}}

12. 

( i) φ

( ii) {({φ}, φ),(φ, φ)}

14. 

( c) {( a,  a,  a), ( a,  a,  b), ( a,  b,  a), ( a,  b,  b), ( b,  a,  a), ( b,  a,  b), ( b,  b,  a), ( b,  b,  b)}

( d) {(( a,  a), 1), (( a,  a), 2), (( a,  b), 1), (( a,  b), 2), (( b,  a), 1), (( b,  a), 2), (( b,  b), 1), (( b,  b), 2) }

15. ( ii) {(1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3), (3, 1, 1), (3, 1, 3), (3, 3, 1), (3, 3, 3)}

16. 

( c) {(φ, 1), (φ, 2), ({1}, 1), ({1}, 2), ({2}, 1), ({2}, 2), ({1, 2}, 1), ({1, 2}, 2)}

 n

 n

22. ( b)

B = B

∪  i n ( d)

B = {0,1}

 i

=

∩

1

B 33.  ( ii) ( a) True ( b) False

 i = 1

 i =1

34. S  and S are equal

3

4 

35. 510

42. 6.5

119. Set of positive odd integers

C H A P T E R

 Principle of Inclusion

2

 and Exclusion

PREVIEW

The Principle of Inclusion and Exclusion is a counting technique that computes the number

of elements that satisfy at least one of several properties while guaranteeing that elements satisfying more than one property are not counted twice. This chapter introduces and proves the principle of inclusion and exclusion for two sets and three sets. Then generalized formula is given. A lot of solved and unsolved problems are also provided to clear the concept. 

LEARNING OBJECTIVES

 After studying this chapter, students will be able to

•

know the statements and proofs of the important theorems in the subject

•

perform related calculations

•

solve problems using the principle of inclusion-exclusion. 

2.1 INTRODUCTION

The Principle of Inclusion-Exclusion provides an organized formula to find the number of

elements in the union of a given group of sets, the size of each set, and the size of all possible intersections among the sets. The name comes from the idea that the principle is based on over-generous inclusion, followed by compensating exclusion. A well-known application of the inclusion-exclusion principle is to the combinatorial problem of counting all derangements of a finite set. 

The meaning of the statement is that the number of elements in the union of the two sets is the sum of the elements in each set, respectively, minus the number of elements that are in both. The inclusion-exclusion principle is simple to state and relatively easy to prove. 

2.2

FIRST PRINCIPLE

As we know the cardinality of the set P is the number of unique elements in set P. It is

denoted as | P | and read as cardinality of set P. 

If P and Q are disjoint sets, then

| P ∪ Q | = | P | + | Q |. 
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Theorem I.   Let P and Q be any two non-disjoint sets. Then

 | P ∪  Q | = | P | + | Q |  – | P ∩  Q |. 

Proof.  Draw Venn diagram for the above as shown in Fig. 1. 

From figure, we see that P ∪ Q can be seen to be the union

of three disjoint sets P – Q, Q – P and P ∩ Q. 

P

Q

So,  | P ∪ Q | = | P – Q | + | Q – P | + | P ∩ Q | ...( i)

Also, 

| P | = | P – Q | + | P ∩ Q |

...( ii)

P – Q

Q – P

and, 

| Q | = | Q – P | + | P ∩ Q |

...( iii)

Combining ( ii) and ( iii), 

| P | + | Q | = | P – Q | + | Q – P | + 2 | P ∩ Q |

P ∩ Q

| P | + | Q | = | P ∪ Q | + | P ∩ Q |

Fig. 1

(As | P ∪ Q | = | P – Q | + | Q – P | + | P ∩ Q |)

| P ∪ Q | = | P | + | Q | – | P ∩ Q |

Hence proved. 

Theorem II.   Let P, Q and R are three finite sets. Then

 | P ∪  Q ∪  R | = | P | + | Q | + | R | – | P ∩  Q |

 – | P ∩  R | – | Q ∩  R | + | P ∩  Q ∩  R |. 

Proof.  Using theorem I, we have

| P ∪ (Q ∪ R) | = | P | + | Q ∪ R | – | P ∩ (Q ∪ R) |

= | P | + | Q | + | R | – | Q ∩ R | – | P ∩ (Q ∪ R) |

...( i)

As

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R)

So

| P ∩ (Q ∪ R) | = | P ∩ Q | + | P ∩ R | – | (P ∩ Q) ∩ (P ∩ R) |

= | P ∩ Q | + | P ∩ R | – | P ∩ Q ∩ R |

...( ii)

Putting ( ii) in ( i), we get

| P ∪ Q ∪ R | = | P | + | Q | + | R | – | P ∩ Q | – | P ∩ R |

– | Q ∩ R | + | P ∩ Q ∩  R |

Hence proved. 

2.3 INCLUSION-EXCLUSION PRINCIPLE IN GENERAL

Let P , P , ......, P  are finite sets. Then | P  



| = 

|P |

|P

P |

1

2

 n

1 ∪ P2 ∪ ...... P n

Σ

 i −

Σ

 i ∩

 j

1 ≤  i ≤  n

1 ≤  i <  j ≤  n

+ 

Σ

| P  ∩ P  ∩ P  | + ...... + (– 1) n – 1 | P  ∩ P  ∩ ...... P  |

1

 i

 j

 k

1

2

 n

≤  i <  j <  k ≤  n

SOLVED PROBLEMS

Problem 1.   In a survey of 200 musicians, it was found that 40 wore gloves on the left hand and 39 wore gloves on the right hand. If 160 wore no gloves at all, how many wore a glove on only the right hand? Only the left hand? On both hands? 

Sol.  Total number of musicians wore gloves on left, right or both hands  i.e., 

| L ∪ R | = 200 – 160 = 40
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Musicians wore gloves on left hand | L | = 40

Musicians wore gloves on right hand | R | = 39

Musicians who wore gloves on both hands

| L ∩ R | = | L | + | R | – | L ∪ R | = 40 + 39 – 40 = 39

Musicians who wore gloves only on right hand

= 40 – 39 = 1

Musicians who wore gloves only on left hand

= 39 – 39 = 0. 

Problem 2.   Out of 1200 students at a college

  582 took Economics

  627 took English

  543 took Mathematics

  217 took both Economics and English

  307 took both Economics and Mathematics

  250 took both Mathematics and English

  222 took all three courses. 

 How many took none of the three? 

Sol.  Suppose

| A | = 582

| B | = 627

| C | = 543

| A ∩ B | = 217

| A ∩ C | = 307

| B ∩ C | = 250

| A ∩ B ∩ C | = 222

The total number of students who took any of three subjects

| A ∪ B ∪ C | = 582 + 627 + 543 – 217 – 307 – 250 + 222 = 1200

Students who took none of three

= (total students in the college) – (total students who took any of three subjects)

= 1200 – 1200 = 0. 

Problem 3.   40 computer programmers interviewed for a job. 25 knew JAVA, 28 knew

 ORACLE, and 7 knew neither language. How many knew both languages? 

Sol.  Now, 

| J | = 25

| O | = 28

| J ∪ O | = 40 – 7 = 33

Computer programmers who knew both languages are

| J ∩ O | = 25 + 28 – 33 = 20. 

Problem 4.   Among 100 students, 32 study Mathematics, 20 study Physics, 45 study

 Biology, 15 study Mathematics and Biology, 7 study Mathematics and Physics, 10 study Physics and Biology and 30 do not study any of three subjects. 

( a)  Find the number of students studying all three subjects. 

( b)  Find the number of students studying exactly one of the three subjects. 

Sol. 

| M | = 32

| P | = 20

| B | = 45

| M ∩ B | = 15

| M ∩ P | = 7

| P  ∩ B | = 10

| M ∪ P ∪ B | = 100 – 30 = 70. 
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( a) Number of students studying all three subjects

| M ∩ P ∩ B | = 70 – 32 – 20 – 45 + 15 + 7 + 10 = 5. 

( b) 5 study all three subjects. 

15 – 5 = 10 study Mathematics and Biology but not all the three. 

7 – 5 = 2 study Mathematics and Physics but not all the three. 

10 – 5 = 5 study Physics and Biology but not all the three. 

32 – 10 – 2 – 5 = 15 study only Mathematics. 

20 – 2 – 5 – 5 = 8 study only Physics. 

45 – 10 – 5 – 5 = 25 study only Biology. 

Number of students studying exactly one of three subjects

= 15 + 8 + 25 = 48. 

Problem 5.   A survey of 550 television watchers produced the following information : 285 watch football games

 195 watch hockey games

 115 watch baseball games

 45 watch football and baseball games

 70 watch football and hockey games

 50 watch hockey and baseball games

 100 do not watch any of the three games. 

( a)  How many people in the survey watch all three games? 

( b)  How many people watch exactly one of the three games? 

Sol. 

| F | = 285 ; | H | = 195 ; | B | = 115

| F ∩ B | = 45 ; | F ∩ H | = 70 ; | H ∩ B | = 50

| F ∪ H ∪ B | = 550 – 100 = 450

( a) The number of people watch all three games

| F ∩ H ∩ B | = 450 – 285 – 195 – 115 + 45 + 70 + 50 = 20. 

( b) 20 watch all three games. 

45 – 20 = 25 watch football and baseball but not all three. 

70 – 20 = 50 watch football and hockey but not all three. 

50 – 20 = 30 watch hockey and baseball but not all three. 

285 – 25 – 50 – 20 = 190 watch only football. 

195 – 50 – 30 – 20 = 95 watch only hockey. 

115 – 25 – 30 – 20 = 40 watch only baseball. 

Number of people exactly watch one of the three games

= 190 + 95 + 40 = 325. 

Problem 6.   In a survey of 300 students, 

 64 had taken a Mathematics course

 94 had taken an English course

 58 had taken a Computer course

 28 had taken both a Mathematics and a Computer course

 26 had taken both an English and a Mathematics course
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 22 had taken both an English and a Computer course

 14 had taken all three courses. 

( a)  How many students were surveyed who had taken non of the three courses? 

( b)  How many had taken only a Computer course? 

Sol. 

| M | = 64 ; | E | = 94 ; | C | = 58

| M ∩ C | = 28 ; | M ∩ E | = 26 ; | E ∩ C | = 22

| M ∩ E ∩ C | = 14

( a)

| M ∪ E ∪ C | = | M | + | E | + | C | – | M ∩ C |

– | M ∩ E | – |  E ∩ C | + | M ∩ E ∩ C |

= 64 + 94 + 58 – 28 – 26 – 22 + 14 = 154

Students who had taken none of the courses

= 300 – 154 = 146. 

( b) 14 had taken all three courses. 



28 – 14 = 14 had taken both a Mathematics and a Computer but not all three

22 – 14 = 8 had taken both an English and a Computer courses but not all three

58 – 14 – 8 – 14 = 22 had taken only Computer course. 

Problem 7.   A survey was conducted among 1000 people. Of these 595 like Metro Chan-

 nel, 595 like Star Movies and 550 like Zee TV ; 395 of them like Metro Channel and Star Movies, 350 of them like Metro Channel and Zee TV and 400 of them like Star Movies and Zee TV ; 250

 of them like Metro Channel, Star Movies and Zee TV. 

( a)  How many of them who do not like Metro Channel, do not like Star Movies and do not like Zee TV ? 

( b)  How many of them who like Metro Channel, do not like Star Movies and do not like Zee TV ? 

Sol. 

| M | = 595 ; 

| S | = 595 ; 

| Z | = 550

| M ∩ S | = 395 ; | M ∩ Z | = 350 ; | S ∩ Z | = 400

| M ∩ S ∩ Z | = 250

( a) Number of people like at least one of the channels

| M ∪ S ∪ Z | = 595 + 595 + 550 – 395 – 350 – 400 + 250 = 845

The number of people who do not like Metro Channel, do not like Star Movies and do not

like Zee TV

= total number of people surveyed – number of people like at least one of the channels

= 1000 – 845 = 155. 

( b) 250 people like all the three channels

395 – 250 = 145 like Metro and Star Movies but not all the three

350 – 250 = 100 like Metro and Zee TV but not all the three

595 – 145 – 100 – 250 = 100 people like Metro Channel but do not like Star Movies and do

not like Zee TV. 

Problem 8.   Among the first 500 positive integers :

( a)  Determine the integers which are not divisible by 2, nor by 3, nor by 5. 

( b)  Determine the integers which are exactly divisible by one of them. 

Sol.  Let A is the number of integers divisible by 2

B is the number of integers divisible by 3
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C is the number of integers divisible by 5. 

L500

L500

L500

| A | = NM O

2 QP = 250 ; 



| B | = NM O

3 QP  = 166 ;    | C | = NM

O

5 QP  = 100

L 500

L 500

| A ∩ B | = NM O

2 × 3QP = 83 ; 

| A ∩ C | = NM O

2 × 5QP = 50

L 500

L

| B ∩ C | = NM O

3 × 5QP = 33 ; 

| A ∩ B ∩ C | = 

500

NM

O

3 × 3 × 5QP = 16. 

( a) | A ∪ B ∪ C | = 250 + 166 + 100 – 83 – 50 – 33 + 16 = 366

The integers not divisible by 2, 3 and 5 = 500 – 366 = 134. 

( b) The integers divisible by all the three = 16

83 – 16 = 67 integers are divisible by 2 and 3 but not all the three

50 – 16 = 34 integers are divisible by 2 and 5 but not by all the three

33 – 16 = 17 integers are divisible by 3 and 5 but not by all the three

250 – 67 – 34 – 16 = 133 integers are only divisible by 2

166 – 67 – 17 – 16 = 66 integers are only divisible by 3

100 – 34 – 17 – 16 = 33 integers are only divisible by 5

Total number of integers only divisible by 2, 3 and 5

= 133 + 33 + 66 = 232. 

Problem 9.   Among the first 1000 positive integers :

( a)  Determine the integers which are not divisible by 5, nor by 7, nor by 9. 

( b)  Determine the integers divisible by 5, but not by 7, not by 9. 

Sol.  Let A be the number of integers divisible by 5

B is the number of integers divisible by 7

C is the number of integers divisible by 9. 

1000

L1000

So, 

| A | = 

= 200 ; 

| B | = 

5

NM

O

7 QP = 142

L1000

L1000

| C | = NM

O

9 QP = 111 ; 

| A ∩ B | = NM

O

5 × 7 QP = 28

L1000

L1000

| A ∩ C | = NM

O

5 × 9 QP = 22 ; 

| B ∩ C | = NM

O

7 × 9 QP = 15

L 1000

| A ∩ B ∩ C | = NM

O

5 × 7 × 9QP = 3. 

( a) The number of integers divisible by 5, 7 and 9

| A ∪ B ∪ C | = 200 + 142 + 111 – 28 – 22 – 15 + 3

= 391. 
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The number of integers not divisible by 5, nor by 7, nor by 9

= Total number of integers – integers divisible by 5, 7 and 9

= 1000 – 391 = 609. 

( b) The integers divisible by all the three integers = 3

28 – 3 = 25 integers divisible by 5 and 7 but not by all the three

22 – 3 = 19 integers divisible by 5 and 9 but not by all the three

∴ 200 – 25 – 19 – 3 = 153 integers divisible by 5 but not by 7, not by 9. 

Problem 10.   Use principle of inclusion-exclusion, to determine the number of permutations of the alphabet (A – Z) that contain at least one of the words DASH, YOUR, and TIME. 

Sol.  Let A, B and C be the permutations of the alphabet which contain the strings DASH, YOUR and TIME respectively. We have to find |A ∪ B ∪ C |. 

Now, group four letters of DASH in a single block, and arrange them with the remaining

22 letters. Thus you have to order 23 distinct things. 

So, we have 23 ! permutations in which the string DASH appears. Similarly, we have 23 ! 

permutations each in which the string YOUR and TIME appears. 

Therefore, 

|A| = |B| = |C| = 23 ! 

The permutations containing both DASH and YOUR can be obtained by taking each of

these strings as a single object and then arranging them in same order with 18 other objects, 

which is 20 ! ways. 

Similarly, the other possible pairs of two strings can be obtained. So we have

| A ∩ B | = | A ∩ C | = | B ∩ C | = 20 ! 

At last, the permutations containing all three strings can be obtained by permuting 17

objects  i.e.,  three blocks DASH, YOUR, and TIME and the remaining 14 letters of the alphabet. 

So, we have  | A ∩ B ∩ C | = 17 ! 

So, finally we have

| A ∪ B ∪ C | = 23 ! + 23 ! + 23 ! – 20 ! – 20 ! – 20 ! + 17 ! elements. 

Problem 11.   Let the sets A and B contains 10 and 18 elements respectively. Determine the minimum and the maximum number of elements in A ∪  B. 

Sol. we have | A ∪ B | = | A | + | B | – | A ∩ B |. 

Therefore, | A ∪ B | is minimum or maximum depending on | A ∩ B | is maximum or

minimum respectively. 

Case I.   When |  A ∩  B |  is minimum. 

In this case, | A ∩ B | = 0

This is possible iff A ∩ B = φ

thus, | A ∪ B | = | A | + | B | – 0 = | A | + | B | = 3 + 8 = 11. 

Hence, the maximum number of elements in A ∪ B is 11. 

Case II.   When |  A ∩  B |  is maximum. 

This is possible when A ⊂ B i.e, | A ∩ B | = 3

Therefore, | A ∪ B | = | A | + | B | – | A ∩ B |

= 3 + 8 – 3 = 8

Hence, the minimum number of elements in A ∪ B is 8. 
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Problem 12.   How many bit strings of length 8 either start with 1 or end with two bits 00? 

Sol.  Let A be the set of the strings with the digit 1, and B be the set of the strings ending with 00. 

Then, 

| A ∪ B | = | A | + | B | – | A ∩ B |

= 27 + 26 – 25 = 160. 

MULTIPLE CHOICE QUESTIONS

1. According to principle of inclusion and exclusion

( a) |A  

| = |A | + |A | – |A  

|

( b) |A  

| = |A | + |A | + |A  

|

1 ∪ A2

1

2

1 ∩ A2

1 ∪ A2

1

2

1 ∩ A2

( c) |A  

| = |A | – |A | – |A  

|

( d) None of these

1 ∪ A2

1

2

1 ∩ A2

2. Suppose 100 out of 120 students of mathematics at a college take at least one of the languages Hindi, English and German. Also suppose 65 study Hindi, 45 study English and 42 German. If 20

study Hindi and English, 25 study English and German and 15 study Hindi and German. The

number of students who study all the three language are

( RTU, 11)

( a) 7

( b) 8

( c) 9

( d) 100

3. A computer company must hire 25 programmers to handle systems programming jobs and 40 for the application programming. Of the hired persons, 10 will have to do the jobs of both types. Find out how many programmers must be hired? 

( RTU, 2010)

( a) 45

( b) 50

( c) 55

( d) 65

ANSWERS

1. ( a)

2. ( b)

3. ( c)

REVIEW QUESTIONS

1. Show that | P ∪  Q | = | P | + | Q | – | P ∩ Q |

2. Show that | P ∪ Q ∪ R | = | P | + | Q | + | R | – | P ∩ Q | – | P ∩ R | – | Q ∩ R | + | P ∩ Q ∩ R |

3. Write Inclusion-Exclusion principle in general. 

4. If A and B are two sets such that | A | = 27, | B | = 33 and | A ∪ B | = 48, determine | A ∩ B |. 

5. If A and B are two sets such that A has 31 elements, B has 42 elements and A ∩ B has 21

elements. How many elements does A ∪ Β have? 

CHAPTER END PROBLEMS

1. In a group of 25 students, 12 have taken Mathematics, 8 have taken Mathematics but not Biology. 

Find the number of students who have taken Mathematics and Biology and those who have taken

Biology but not Mathematics. 

2. In a room containing 28 Females, there are 18 Females who speak English, 15 Females speak French and 22 speak German. 9 Females speak both English and French, 11 Females speak both

French and German whereas 13 speak both German and English. How many Females speak all

the three languages? 
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3. In a science fair of a school, 34 students received awards for scientific projects. Out of which 14

awards were given for projects in Physics, 13 in Biology and 21 in Chemistry. If 3 students

received awards in all three subjects, find the number of students received awards for exactly ( a) one subject ( b) two subjects. 

4. Suppose that A and B are subsets of some set X, and |A| = 140, |B| = 92. 

( a) Find |A ∪ B|, given that |A ∩ B| = 36. 

( b) Find |A ∩ B|, given that |A ∪ B| = 150. 

( c) Prove that it is impossible to have another subset C of X such that

|C| = 58, |A ∩ B| = 32, |A ∩ B ∩ C| = 10, |A ∪ B ∪ C| = 250. 

5. There are 20 students in a room. Out of them, 7 study Mathematics, 10 study Science, and 10

study computer programming. Also, 3 study Mathematics and Science, 4 study Mathematics and

Computer programming, and 5 study Science and Computer programming. We know that 1 student

studies all three subjects. How many of these students study none of the three subjects? 

6. Let A, B, and C be sets with the following properties: |A| = 100, |B| = 50, and |C| = 48. 

• The number of elements that belong to exactly one of the three sets is twice the number that belongs to exactly two of the sets. 

• The number of elements that belong to exactly one of the three sets is three times the number that belongs to all of the sets. 

How many elements belong to all three sets? 

7. Three sets A, B, and C have the following properties: |A| = 63, |B| = 91, |C| = 44, |A ∩ B| = 25, 

|A ∩ C| = 23, |C ∩ B| = 21. Also, |A ∪ B ∪ C| = 139. What is |A ∩ B ∩ C|? 

8. Two circles and a triangle are given in the plane. What is the largest number of points that can belong to at least two of the three figures? 

9. Fix a regular hexagon. Let S denote its vertices, together with its center. (Draw a picture if the situation is confusion). How many equilateral triangles have at least two vertices in S? 

10. ( a) How many integers between 1 and 2005 are NOT multiples of any of the numbers 2, 3 or 5? 

( b) How many integers in the set {1, 2, 3, 4, ..., 360} have at least one prime divisor in common with 360? 

( c) Find the number of integers  x  such that 1 ≤  x ≤ 2004 and  x is relatively prime to 2005. 

11. All the phone numbers in Aircell either start with 56, or end with 7, or both. Otherwise, the digits of the phone number can be any of the digits 0–9. How many possible phone numbers exist in

Aircell? 

12. Let U = {1, . . . , 1000} and define subsets A , A , A  as follows, 

2

3

5

A  = { n | 1 

2

≤  n ≤ 1000 and n is even}

A  = { n | 1 

3

≤  n ≤ 1000 and n is a multiple of 3}

A  = { n | 1 

5

≤  n ≤ 1000 and n is a multiple of 5}

For each A , write A–  i for U-A  (the complement of A  in U). Find the number of elements of each of i

 i

 i

the sets listed below:

( a) A  



( b) A  



2 ∩ A3 ∩ A5

2 ∩ A3 ∩ A5

( c) A  

( d) A



2 ∩ A3  ∩ A5

2 ∩ A3 ∩ A5

( e) A2 ∩ A3 ∩ A

( f) A



5

2 ∩ A3 ∩ A5

( g) A2 ∩ A3 ∩ A5

( h) A2 ∩ A3 ∩ A5

13. In a math contest, three problems, A, B, and C were posed. Among the participants there were 25

who solved at least one problem. Of all the participants who did not solve problem A, the number who solved problem B was twice the number who solved C. The number who solved only problem

A was one more than the number who solved A and at least one other problem. Of all participants who solved just one problem, half did not solve problem A. How many solved just problem B? 
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14. How many numbers can be obtained as the product of two or more of the numbers 3, 4, 4, 5, 5, 6, 7, 7, 7? 

15. How many of the first 100 positive integers are expressible as a sum of three or fewer members of the set {1, 3, 9, 27, 81} if we are allowed to use the same power more than once. For example, 5 can be represented, but 8 cannot. 

16. How many integers can be expressed as a sum of two or more different members of the set 0, 1, 2, 4, 8, 16, 31? 

17. Of 28 students taking at least one subject, the number taking Math and English but not History equals the number taking Math but not History or English. No student takes English only or

History only, and six students take Math and History but not English. The number taking English and History but not Math is 5 times the number taking all three subjects. If the number taking all three subjects is even and non-zero, how many are taking English and Math but not History? 

18. In a survey of the chewing gum tastes of a group of Cricket players, it was found that: 22 liked juicy fruit; 

25 liked spearmint; 

39 like bubble gum; 

9 like both spearmint and juicy fruit; 

17 liked juicy fruit and bubble gum; 

20 liked spearmint and bubble gum; 

6 liked all three; 

Given that four liked none of the above, how many Cricket players were surveyed? 

19. A poultry farm has chickens. Each can be described as thin or fat, brown or red, hen or rooster. 

Four are thin brown hens, 17 are hens, 14 are thin chickens, 4 are thin hens, 11 are thin brown chickens, 5 are brown hens, 3 are fat red roosters, 17 are thin or brown chickens. How many

chickens does Poultry farm have? 

20. Consider the following information regarding three sets A, B, and C all of which are subsets of a set U. Suppose that |A| = 14, |B| = 10, |A ∪ B ∪ C| = 24 and |A ∩ B| = 6. 

Consider the following assertions:

( i) C has at most 24 members

( ii) C has at least 6 members

( iii) A ∪ B has exactly 18 members. 

Which ones are true? 

21. There are 15 students seated in classroom. The teacher is not satisfied with the seating arrangement and demands that everyone move to a new seat. How many new configurations are

possible? 

22. How many 10 digits phone numbers contain at least one of each odd digit? 

23. At a late night dance party, 20 couples are dancing peacefully. Of the 20 couples, 10 are cricket player-cheerleader couples. The Coach arrives and decides that things are getting a little too steamy. He asks that everyone switch to a new partner. Of course the Cricket players again end up with the cheerleaders. Given this, how many new configurations are possible? 

24. Mr. Gupta has a new cell phone and he’s having difficulty remembering the new ten-digit phone number. He remembers that the second, fourth, and fifth digits are either 7 or 9, the third and tenth digits are either a 2 or 4, there are two zeros in the number, and the sum of the digits is 42. 

Given this information, how many possibilities are there for Mr. Gupta’s phone number? 

25. A professor takes a survey on his class to determine how many students know certain computer languages. The finding is that out of 50 students in the class, 23 know Java, 18 know C++, 31 know C, 11 know both java and C++, 19 know Java and C, 14 know both C++ and C, 37 know at least one of the three languages. 

( i) How many students know all three languages? 

( ii) How many know only C and no other languages? 
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26. How many integers from 1 to 999 are divisible by 2? How many integers from 1 to 999 are divisible by 9? How many integers from 1 to 999 are divisible by 18? How many integers from 1 to 999 are divisible by 2 or 9? 

27. In a university 60 per cent of the professors like to play basketball, 50 per cent of them play hockey, 70 per cent play football, 20 per cent play basketball and hockey, 30 per cent play basketball and football, 40 per cent play hockey and football. If someone claimed that 20 per cent of the professors play football, hockey and basketball, would you believe this claim? Why? 

28. In a survey of 500 women half of them were found to be married, half of them were graduates and one-fifth of them were working women. 85 were married graduates, 75 were married women with

jobs, 40 women with jobs were graduates and 50 women were single, jobless without graduation. 

Find the number of married, graduate working women. 

29. If 60,000 fans who attended the home Formula 1 game bought up all the paraphernalia for their cars. Altogether 20,000 stickers, 36000 car decals and 12000 key chains were sold. We know that 52000 fans bought at least one items and no one bought more than one of a given item. Also 6000

fans bought both decals and key chains, 9000 bought both decals and stickers and 5000 bought

both key chains and stickers. 

( i) How many fans bought all three items? 

( ii) How many fans bought exactly one item? 

30. A survey of 500 television watchers produced the following information 285 watch cricket game, 195 watch badminton games, 115 watch tennis games, 45 watch cricket and tennis games, 70

watch cricket and badminton games, 50 watch badminton and tennis games, 50 do not watch any

of the three games. 

( VTU, Jul ’07)

( i) How many people in the survey watch all three games? 

( ii) How many people watch exactly one of the three games? 

31. In a party, Rosy went around asking questions of everyone and recording their responses. She collected the following data: Every nephew was a cousin. Half of all uncles were cousins. One-third of all cousins were nephews. There were 30 uncles and 20 nephews. One-sixth of all uncles were nephews. She herself was a cousin but not a nephew or an uncle. 

( i) How many cousins were neither nephews nor uncles? 

( ii) How many uncles were also cousins but not nephews? 

32. Of 30 personal computers (PCs) owned by faculty members in a University department, 20 run Windows, 8 have 21 inch monitors, 25 have CD-ROM drives, 20 have at least two of these features, and 6 have all three. 

( a) How many PCs have at least one of these features? 

( b) How many have none of these features? 

( c) How many have exactly one feature? 

33. A license plate of the City has 5 digits and 1 letter. For example, 2-A1234. However, the first digit is always 2. Suppose the letter can range between A and Z, and each of the last three digits can range between 0 and 9, how many unique license plates can the City issue? 

34. A group of  n men enter a restaurant and check their hats. The hat-checker is absent minded, and upon leaving, she redistributes the hats back to the men at random. What is the probability P n that no man gets his correct hat, and how does P  behave as  n approaches infinity? 

 n

35. By inclusion-exclusion, find the number of placements of four non-attacking Queens ( i.e. , no two Queens are in the same row or column) in the 4 × 4 Chess Board. 

X

·

·

·

X X X

·

·

· X X

·

·

·

·

Where the positions marked with “X” are forbidden squares. 
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36. How many natural numbers less than 200 have no divisor in {6, 10, 15}? 

37. Find the number of integers between 1 and 10,000 which are neither perfect squares nor perfect cubes. 

38. Suppose that 75% of all farmers in a District fertilize their fields, 60% apply herbicides and 35%

apply insecticides. In addition, 20% apply none of these, 30% apply all three, 56% apply herbicides and fertilizer, and 33% apply insecticides and fertilizer. What percentage apply:

( a) herbicides and insecticides; 

( b) herbicides and insecticides but not fertilizer? 

39. Of the cars sold during the month of July, 90 had airconditioning, 100 had automatic transmissions, and 75 had power steering. 5 cars had all three of these extras. 20 cars had none of these extras. 

20 cars had only airconditioning, 60 cars had only automatic transmissions, and 30 cars had only power steering. 10 cars had both automatic transmission and power steering. 

( i) How many cars had both power steering and airconditioning? 

( ii) How many cars had both automatic transmission and airconditioning, but not power steering? 

( iii) How many cars did not have power steering? 

( iv) How many cars were sold in July? 

( v) How many cars had automatic transmission or airconditioning or both? 

40. The students in a dormitory were asked whether they had a dictionary (D) or a thesaurus (T) in their rooms. The results showed that 650 students had a dictionary, 150 did not have a dictionary, 175 had a thesaurus, and 50 had neither a dictionary nor a thesaurus. Find the number K of

students who: ( a) live in the dormitory, ( b) have both a dictionary and a thesaurus, and ( c) have only a thesaurus

41. A professor has 24 textbooks on computer science and is concerned about their coverage of the topics (A) compiler, (B) data structure and (C) operating systems. The following data gives the number of books that contain material on these topics:

|A| = 8, |B| = 13, |C| = 13, |A ∩ B| = 5, |A ∩ C| = 3, |B ∩ C| = 6, |A ∩ B ∩ C| = 2. 

( i) How many of the textbooks include material on exactly one of these topics? 

( ii) How many do not deal with any of these topics? 

( iii) How many have no material on compilers? 

42. A survey of a sample of 25 new cars showed that the cars had the following options: 15 cars had air conditioners, 12 cars had radios, 11 cars had power windows, 5 cars had airconditioners and

power windows, 9 cars had air conditioners and radios, 4 cars had radios and power windows, 3

cars had all three options. Find the number of cars that had ( i) only power windows, ( ii) at least one option. 

43. The computer department in a private engineering college has 300 students. It is known that 180

can program in PASCAL, 120 in FORTRAN, 30 in C++, 12 in PASCAL and C++, 18 in FORTRAN

and C++, 12 in PASCAL and FORTRAN and 6 in all three languages. If two students are selected

at random, what is the probability that they can ( i) both program in PASCAL, ( ii) both program only in PASCAL. 

44. In a class of 60 boys, 45 boys playcards and 30 boys play carrom. How many boys play both games? 

How many playcards only and how many play carrom only? 

45. In a group of athletic teams in a certain institute, 21 are in the basketball team, 26 in the hockey team, 29 in the football team. If 14 play hockey and basketball, 12 play football and basketball, 15 play hockey and football, 8 play all the three games. 

( i) How many players are there in all? 

( ii) How many play only football? 

46. In a survey of 85 people it is found that 31 like to drink milk, 43 like coffee and 39 like tea. Also 13 like both milk and tea, 15 like milk and coffee, 20 like tea and coffee and 12 like none of the three drinks. Find the number of people who like all the three drinks. Display the answer using Venn Diagram. 
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47. Determine the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 5 and 7. 

48. How many integers in the set {1, 2, 3, ..., 1000} are divisible by 5 or 7? 

49. ( a) How many arrangements of the word COMPUTER contain the word MOP and do not contain the word RUT? 

( b) How many arrangements of the word COMPUTER contain the word MOP and do not contain the word PUT? Justify your answers. 

50. Given sets A, B, and C such that |A|+|B|+|C| = 30, |A ∩ B ∩ C| = 4, and |A ∪ (B ∩ C)| = 7, find

|B ∪ C|. 

51. How many non-negative integer solutions are there to the equation  x +  y +  z +  w = 13 such that  w does not exceed 5? 

52. How many students are enrolled in a course either in calculus, discrete mathematics, data structures, or programming languages at a school if there are 507, 292, 312, and 344 students in these courses, respectively; 14 in both calculus and data structures; 213 in both calculus and programming languages; 211 in both discrete mathematics and data structures; 43 in both discrete mathematics and programming languages; and no student may take calculus and discrete

mathematics, or data structures and programming languages concurrently? 

53. Find out the number of integers 1 and 10,000 that are divisible by any of the integers 2, 3, 5 and 7. 

ANSWERS

1. 4 and 13

2. 6

4. ( a) 196

( b) 82

( c) No C exists. 

27. Not possible

28. 50

29. 

( i) 4000

( ii) 40000

30. 

( i) 20

( ii) 325

31. 

( i) 30

( ii) 10

31. ( a) 27

( b) 3

( c) 7

32. 26000

34. 3

36. 146

37. 9883

38. ( a) 31

( b) 1

39. 

( i) 40

( ii) 30

( iii) 130

( iv) 205

( v) 155

40. ( a) 800

( b) 75

( c) 100

41. 

( i) 12

( ii) 2

( iii) 16

42. 

( i) 5

( ii) 23

44. 30, 15

45. 

( i) 43

( ii) 10

46. 8

47. 193

48. 314

49. ( a) 696

( b) 696

50. 19

52. 974

53. 7715

C H A P T E R

3

 Relations

PREVIEW

In mathematics a binary relation, from a set A to a set B, is a set of ordered pairs, ( a,  b), where  a is from the set A and  b is from the set B and  a is related to  b by some rule. This chapter introduces concept of relations, domain and range of relations, inverse of a relation, complement of a relation, representation of relation using directed graph, arrow diagram matrix and tables, Further, this chapter discusses properties of relations and closure properties of relation. Types of relations such as equivalence relation, partial order relation, total order relation and circular relations are discussed in detail. Paths in relations, composition of relations and combination of relations are also explained in detail. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

•

define relations

•

find the domain and range of a relation with examples

•

define the complement and inverse of a relation with examples

•

represent the relation as matrix, directed graph, arrow diagram and table with examples

•

define composition of two relations with examples

•

define path in relations and composition of paths with examples

•

define combination of two relations with examples

•

represent relations in computer

•

define various properties of relations with examples

•

define various closure properties of relations with examples

•

define and prove equivalence relations and partial order relations

•

define and prove total order relations and circular relations

•

define partition with examples. 

3.1 INTRODUCTION

There exist many relations in our everyday life such as relation between parent and child, 

relation between car and owner, relation beween name and address or telephone number etc. A

relation is a relationship between sets of values. When we represent relations using  numbers, a M-4.58
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relation is a set of ordered pairs. The elements in the relation are the numbers that represent specific coordinate points. A binary relation on a set A is a subset of the Cartesian product A × A. 

In math, the relation is between the  x-values and  y-values of ordered pairs. The set of all  x-values is called the domain, and the set of all  y-values is called the range. 

3.2

BINARY RELATION

Let P and Q be two non-empty sets. A binary relation R is defined to be a subset of P × Q

from a set P to Q. If ( a,  b) ∈ R and R ⊆ P × Q then  a is related to  b by R  i.e., a R b. If sets P and Q

are equal, then we say R ⊆ P × P is a relation on P  e.g., 

( i) Let

A = { a, b, c}

B = { r, s, t}

Then 

R = {( a, r), ( b, r), ( b,  t), ( c,  s)}

is a relation from A to B. 

( ii) Let 

A = {1, 2, 3} and B = A

R = {(1, 1), (2, 2), (3, 3)}

is a relation (equal) on A. 

Example 1.  If a set A has n elements, how many relations are there from A to A. 

Sol. If a set A has  n elements, A × A has  n 2 elements. So, there are 2 2

 n  relations from A to A. 

Example 2.  If A has m elements and B has n elements. How many relations are there

 from A to B and vice-versa? 

Sol. There are  m ×  n elements, hence there are 2 m ×  n relations from A to B. 

Example 3.  If a set A = {1, 2}.  Determine all relations from A to A. 

Sol. There  are  22 = 4  elements   i.e., {(1, 2), (2, 1), (1, 1), (2, 2)}  in A × A. So, there  are 24 = 16 relations from A to A.  i.e., 

{(1, 2)}, {(2, 1)}, {(1, 1)}, {(2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (1, 1)}, {(1, 2), (2, 2)}, {(2, 1), (1, 1)}, 

{(2, 1), (2, 2)}, {(1, 1), (2, 2)}, {(1, 2), (2, 1), (1, 1)}, {(1, 2), (1, 1), (2, 2)}, {(2, 1), (1, 1), (2, 2)}, 

{(1, 2), (2, 1), (2, 2)}, {(1, 2), (2, 1), (1, 1), (2, 2)} and φ. 

Example 4.   Show that the number of different relation from a set A with n elements to a set B with m elements is  2 mn. 

Sol.  Let we have, A = { a ,   a ,   a , ...,   a } and B = { b ,   b ,   b , ...,   b }, then Cartesian product 1

2

3

 n

1

2

3

 m

of A and B is given as

A × B = {( a ,   s ), ( a ,   s ), ( a ,   s ), ..., ( a ,   s ), ( a ,   b ), ( a ,   b ), ( a ,   b ), ..., ( a ,   b ), ... ( a ,   b ), 1

1

1

2

1

3

1

 n

2

1

2

2

2

3

2

 n

 n

1

( a ,   b ), ( a ,   b ), ..., ( a ,   b )}

 n

2

 n

3

 n

 n

This set of ordered pairs contains  m ∗  n pairs. 

Now these pairs can be present in A × B or can be absent. 

So total number of possible relations = 2 mn. 

3.2.1 Domain of Relation

The domain of relation R is the set of elements in P which are related to some element in Q

or it is the set of all first entries of the ordered pairs in R. It is denoted by DOM (R). 
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3.2.2

Range of Relation

The range of a relation R is the set of elements in Q which are related to some element in

P or it is the set of all second entries of the ordered pairs in R. It is denoted by RAN (R). 

For example: Let A = { 1, 2, 3, 4}, B = { a, b, c, d} and R = { (1, a), (1, b), (1, c), (2, b), (2, c), (2, d)}. 

Then, 

DOM (R) = {1, 2}

RAN (R) = { a, b, c, d}

3.3 COMPLEMENT OF A RELATION

Consider a relation R from a set A to B. The complement of relation R denoted by R is a

relation from A to B such that

R  = {( a, b) : ( a, b) ∉ R}. 

Example 5.  Consider the relation R from X to Y

 X  = { 1, 2, 3}  ; Y = { 8, 9}  and R = {( 1, 8) , ( 2, 8) , ( 1, 9) , ( 3, 9)} . 

 Find the complement of relation R. 

Sol. First we find the universal relation X × Y  i.e., 

X × Y = {(1, 8), (2, 8), (3, 8), (1, 9), (2, 9), (3, 9)}

Now, we find the complement relation R  w.r.t. X × Y

R  = {(3, 8), (2, 9)}. 

Example 6.  Let A = { 7, 8, 9}  and B = { k, l, m, n}  and R is relation from A to B. 

 R = {( 7, k) , ( 8, k) , ( 8, l) , ( 8, m) , ( 9, m) , ( 9, n)}. 

 Determine its complement. 

Sol. The relation A × B from the set A to B is

A × B = {(7,  k), (7,  l), (7,  m), (7,  n), (8,  k), (8,  l), (8,  m), (8,  n), (9,  k), (9,  l), (9,  m), (9,  n)}

The complement of relation R w.r.t. A × B is

R  = {(7,  l), (7,  m), (7,  n), (8,  n), (9,  k), (9,  l)}. 

3.4

INVERSE OF A RELATION

Consider a relation R from a set A to B. The inverse of a relation R, denoted by R–1, is a

relation from B to A such that  b R–1  a  iff  a R b i.e., 

R–1 = {( b, a) : ( a, b) ∈ R}. 

Example 7.  Consider the relation ‘ ≤’  on the set A = { 2, 3, 4, 5} .   Determine its inverse. 

Sol. The relation ‘≤’ is defined by ( a, b) ∈ R if  a ≤  b,  a, b ∈ A. Then R = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5)}

and

R–1 = {(2, 2), (3, 2), (4, 2), (5, 2), (3, 3), (4, 3), (5, 3), (4, 4), (5, 4), (5, 5)}. 
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Example 8.  Consider the following relation R on the set of +ve integers. Find its inverse  R = {( 1, 1), (1, 2), (1, 3), (2, 1), (3, 1) (3, 2), (2, 3)} . 

Sol. The inverse of relation R is

R–1 = {(1, 1), (2, 1), (3, 1), (1, 2), (1, 3), (2, 3), (3, 2)}. 

3.5

REPRESENTATION OF RELATIONS

Relations can be represented in many ways. Some of which are as follows:

3.5.1 Relation as a Matrix

Let P = { a ,  a , ....,  a } and Q = { b ,  b , ....,  b } are finite sets, containing  m  and  n number 1

2

 m

1

2

 n

of elements respectively. R is a relation from P to Q. The relation R can be represented by  m ×  n matrix M = [M ], defined as

 ij

0

R if ( a ,  b ) ∉R

M  = 

 i

 j

S

 ij

1 if ( a ,  b ) ∈R

 i

 j

T

 e.g., 

Let

P = {1, 2, 3, 4}, Q = { a, b, c, d}

and

R = {(1,  a), (1,  b), (1,  c), (2,  b), (2,  c), (2,  d)}. 

The matrix of the relation R is shown in Fig. 1. 

 a b c d

1 L1 1 1 0O

2 0

M 1 1 1P

M  =  M

P

R

3 0 0 0 0

M

P

4 0

N 0 0 0Q

Fig. 1. Relation as matrix. 

3.5.2 Relation as a Directed Graph

If P is a finite set and R is a relation on P, R

can be represented as a directed graph as follows :

2

Draw a small circle for each element of P and

label the circle with corresponding element of P. 

1

These circles are called vertices. Draw a directed

line from vertex  a  to vertex  a  if  a  R  a . These

3

 i

 j

 i

 j

directed lines are called edges. The obtained picture

is the directed graph. 

For example : Let P = {1, 2, 3, 4}

4

and

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 4), 

(4, 3), (4, 4)}

Fig. 2.  Relation as digraph. 

which is a relation on P. 

Then the directed graph of relation R is shown in Fig. 2. 
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From Fig. 2, we see that the edges in the directed graph of R corresponds to the pairs in R, 

and the vertices correspond to the elements in the set P. 

Example 9.  Find the relations determined by the following figures. 

2

1

2

4

1

3

1

3

2

5

5

4

3

4

 i

 ii

 iii

Fig. 3.  Digraphs. 

Sol. The relations determined by above figures are as follows:

( i) R = {(1, 2), (2, 2), (2, 3), (3, 4), (4, 4), (5, 4), (5, 1)}

( ii) R = {(1, 2), (1, 4), (2, 2), (2, 3), (4, 1), (4, 4), (4, 5)}

( iii) R = {(1, 1), (1, 3), (2, 3), (3, 2), (3, 3), (4, 3)}. 

3.5.3 Relation as an Arrow Diagram

If P and Q are finite sets and R is a relation from P

1

a

to Q. Relation R can be represented as an arrow diagram

as follows. 

2

b

Draw two ellipses for the sets P and Q. Write down

3

c

the elements of P and elements of Q columnwise in these

4

d

ellipses. Then draw an arrow from first ellipse to second

ellipse if  a is related to  b and  a ∈ P and  b ∈ Q. 

Fig. 4.  Relation as arrow diagram. 

For example : Let P = {1, 2, 3, 4}, Q = { a, b, c, d}

and

R = {(1,  a), (2,  a), (3,  a), (1,  b), (4,  b), (4,  c), (4,  d)}

The arrow diagram of relation R is shown in Fig. 4. 

3.5.4

Relation as a Table

x

y

z

k

If P and Q are finite sets and R is a relation from P

1

×

×

to Q. Relation R can be represented in tabular form. 

2

×

Make the table which contains rows equivalent to

3

×

elements of P and columns equivalent to elements of Q. 

Then place cross (×) in the boxes which represents relation

4

×

of elements on set P to set Q. 

Fig. 5.  Relation as a table. 

For example: Let  P = {1, 2, 3, 4}, Q = { x, y, z, k}

and

R = {(1,  x), (1,   y), (2,  z), (3,  z), (4,  k)}. 

The tabular form of relation is as shown in Fig. 5. 
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3.6 COMPOSITION OF RELATIONS

Consider a relation R  from A to B and R  be a relation from B to C. The composition of

1

2

relation R  and R  denoted by R  o R , is the relation from A to C and is defined by

1

2

1

2

R  o R  = {( a,  c) : ( a, b) 

and ( b, c) 

for some  b 

1

2

∈ R1

∈ R2

∈ B}. 

Example 10.  Let P and Q be the relations on set A = { 1, 2, 3, 4}  defined by P = {( 1, 2), (2, 2), (2, 3), (2, 4), (3, 2), (4, 2), (4, 3)}

 and

 Q = {( 2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2)}

 Find (i)  P o P (ii) P o Q (iii) P o P o Q. 

Sol. ( i) P o P = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 2), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}

( ii) P o Q = {(1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (2, 1), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4)}

( iii) P o P = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (4, 2), (3, 2), (3, 4), (4, 3), (4, 4)}

P o P o Q = {(1, 2), (1, 3), (1, 4), (1, 1), (2, 2), (2, 3), (2, 4), (2, 1), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3)}. 

Example 11.   Let X = { 4, 5, 6} , Y = { a,b, c}  and Z = { l, m, n} . Consider the relation R  from 1

 X to Y and R  from Y to Z. 

 2

  R  = {( 4, a), ( 4, b), ( 5, c), ( 6, a), ( 6, c)}

 1

  R  = {( a, l), ( a, n), ( b, l), ( b, m), ( c, l), ( c, m), ( c, n)}

 2

X

Y

Y

Z

4

a

a

 l

5

b

b

m

6

c

c

n

Fig. 6

Fig. 7

 Find the composition relation (i) R  o R  (ii) R  o R –1. 

 1

 2

 1

 1

Sol. ( i) The composition relation R  o R  is as shown in Fig. 8. 

1

2

X

Y

Z

4

a

 l

5

b

m

6

c

n

Fig. 8.  R  o R . 

1

2

R  o R  = {(4,  l), (4,  n), (4,  m), (5,  l), (5,  m), (5,  n), (6,  l), (6,  m), (6,  n)}

1

2

( ii) The composition relation R  o R–1 is shown in Fig. 9. 

1

R  o R –1 = {(4, 4), (5, 5), (5, 6), (6, 4), (6, 5), (4, 6), (6, 6)}. 

1

1
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X

Y

Z

4

a

4

5

b

5

6

c

6

Fig. 9.  R  o R –1. 

1

1

Example 12.  Let  P = { 2, 3, 4, 5} . Consider the relation R and S on P defined by  R = {( 2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (5, 3)}

 and

  S = {( 2, 3), (2, 5), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 5)} . 

 Find the matrices of the above relations. 

 Use matrices to find the following compositions of the relations R and S. 

( i)  R o S

( ii)  R o R

( iii)  S o R. 

Sol. The matrices of the relations R and S are as shown in Fig. 10. 

   2 3 4 5

2    3  4    5

2 L1 1 1 1

M

OP

2 0

L 1 0 1

M

OP

M  = 3 0 0 1 1

M

P

= 3 0 0 1 1

M

P

R

4 0 0 0 1

M

P   and MS 4 1 1 0 1

M

P

5 0

N 1 0 0Q

5 N1 0 0 1Q

Fig. 10

( i) To obtain the composition of relations R and S. First multiply M  with M  to obtain the R

S

matrix M  × M  as shown in Fig. 11. 

R

S

The non-zero entries in the matrix M  × M  tells the elements related in R o S. So, 

R

S

2 3 4 5

2 2

L 2 1 4O

3 2

M 1 0 2P

M  × M  =  M

P

R

S

4 1 0 0 1

M

P

5 0

N 0 1 1Q

Fig. 11

Hence, the composition R o S of the relation R and S is

R o S = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}. 

( ii) First, multiply the matrix M  by itself, as shown in Fig. 12. 

R

2 3 4     5

2 L1 2 2 3O

3 0

M 1 0 1P

M  × M  =  M

P

R

S

4 0 1 0 0

M

P

5 0

N 0 1 1Q

  Fig. 12

Hence, the composition R o R of the relation R is

R o R = {(2, 2), (3, 2), (3, 3), (3, 4), (4, 2), (4, 5), (5, 2), (5, 3), (5, 5)}. 

RELATIONS

M-4.65

( iii) Multiply the matrix M  with M  to obtain the matrix M  × M  as shown in Fig. 13. 

S

R

S

R

2 3 4 5

2 0

L 1 1 1O

3 0

M 1 0 1P

M  × M  =  M

P

S

R

4 1 2 2 2

M

P

5 N1 1 1 1Q

 Fig. 13

The non-zero entries in matrix M  × M  tells the elements related in S o R. 

S

R

Hence, the composition S o R of the relation S and R is

S o R = {(2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 2), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}. 

3.7

PATH IN RELATIONS

Consider a relation R on set A. A path of length  n in R from  a to  b,  is a finite sequence  a, Y , 1

Y , Y , ......, Y

,  b which begins with  a and ends with  b such that

2

3

 n – 1

 a RY , Y RY , Y RY , ........, Y

R b

1

1

2

2

3

 n –1

The path which has length  n must have  n + 1 elements of A. The elements may be distinct or same. 

A path that begins and ends at the same vertex is called a cycle. 

As we have seen earlier that a relation can be uniquely represented by a directed graph. So, 

the path in a directed graph is a sequence of edges in the indicated direction. Hence, the path length is the number of edges in the path. 

For Example.  Consider the graph shown in

b

d

 Fig. 13( i). 

The graph has a path P  =  a, b, d, f  of length 3. 

1

The graph has a path P  =  a, b, e, c, d, f  of length 5. a

2

f

The graph has a cycle P  =  a, b, d, f, a  of length 4. 

3

The graph has a cycle P  =  a, b, e, c, d, f, a  of

4

length 6. 

c

e

Fig. 13( i) Directed graph. 

Example 13.   Consider the directed graph as shown in Fig. 13 ( ii). 

2

1

3

6

4

5

Fig. 13( ii) Directed graph. 

 Determine all the paths of length 1 and 2. 
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Sol. Paths that have length 1 are as follows:

P  = 1, 2

P  = 2, 3

P  = 3, 4

P  = 5, 4

1

2

3

4

P  = 6, 5

P  = 6, 3

P  = 2, 5

P  = 5, 3

P  = 6, 2. 

5

6

7

8

9

Paths that have length 2 are as follows :

P  = 1, 2, 3

P  = 6, 2, 3

P  = 6, 3, 4

P  = 6, 5, 3

10

11

12

13

P  = 6, 5, 4

P  = 2, 5, 4

P  = 2, 5, 3

P  = 2, 3, 4 P  = 6, 2, 5. 

14

15

16

17

18

Paths in a relation R can be used to define following relation on the set A. 

R n. The relation R n on the set A is defined as a path of length  n from  a to  b in R and is denoted by R n  b. 

R∞. The relation R∞ on the set A is defined as some path from  a to  b in R. The length of the path will depend on  a and  b. It is also called the connectivity relation for R. 

R n( x). It is defined as a set consisting of all the vertices that can be reached from  x by means of a path in R of length  n. 

R∞( x). It is defined as a set consisting of all the vertices that can be reached from  x by some path in R. 

R*. Consider a set A having  n elements and let R is a relation on A. Then relation R* of R

is defined as a relation such that  a R* b if  a =  b or  a R∞ b. It is also called the reachability relation. 

The meaning of this is that  b is reachable from  a if either  b =  a or there is some path from  a to  b. 

Example 14.   Consider the set A = { a, b, c, d, e} . Let R be the relation whose digraph is shown in Fig. 13( iii).  Determine the digraph of the relation

( i)  R 2

( ii)  R 3  on A. 

a

b

e

c

d

Fig. 13( iii) Digraph of R. 

Sol. ( i) To obtain the digraph of the relation R2, we will find all lines that connects two vertices in R2, when there is a path of length two connecting those vertices in R. The digraph of R2

is shown in Fig. 13( iv). 

a

b

e

d

c

Fig. 13( iv) Digraph of R2. 
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( ii) To obtain the digraph of the relation R3, we will find all paths of length 3 in R from any vertex to any other vertex and then join those vertices in R3 by a direct line. The digraph of R3 is shown in Fig. 13( v). 

a

b

e

d

c

Fig. 13( v) Digraph of R3. 

Example 15.   Consider the set A = {4, 5, 6, 7} and the relation R on A is given by

  R = {( 4, 5), (5, 6), (5, 7), (6, 6), (6, 7), (7, 6), (7, 7)} . 

 Determine ( a)  R 3 ( b)  R∞. 

Sol. The diagraph of R is shown in Fig. 13( vi). 

4

5

6

7

Fig. 13( vi) Digraph of R. 

( a) Now find all the paths of length 3 from any vertex to any other vertex in R and write these vertices by pair vertices in R3. Thus, the R3 is given by

R3 = {(4, 6), (4, 7), (5, 6), (5, 7), (6, 6), (6, 7), (6, 7), (7, 7)}. 

( b) To determine R∞, find all the ordered pairs of vertices for which there is a path of any length from any vertex to any other vertex of the set A. Thus, R∞ is given by

R∞ = {(4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 6), (6, 7), (7, 6), (7, 7)}. 

Example 16.  Consider the digraph of the relation R on set A = { a, b, c, d, e, f, g}  as shown in Fig. 13( vii). 

a

b

f

d

c

g

e

Fig. 13( vii) Digraph of R. 
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 Determine  ( a)  R 2( d)

( b)  R 2( g)

( c)  R∞( e)

( d)  R∞( b). 

Sol. To find R2( d) and R2( g) determine all the vertices which can be reached from  d  and  g by means of a path of length 2 respectively. Thus, 

( a) R2( d) = { g}

( b) R2( g) = { c}

Now to find R∞( e) and R∞( b), determine all the vertices which can be reached from  e  and  b by means of a path of some length respectively. Thus, 

( c) R∞( e) = { c, d, f, g}

( d) R∞( b) = { d, f, g, e, c}. 

3.7.1

Computation of M 2 using M

R

R

Consider a relation R on the set A = { a ,  a , ....,  a }. 

1

2

 n

Also let M  be the matrix representation of R, we can compute the matrix M 2 of R2 from M . 

R

R

R

Theorem I.  Show that if R is a relation on the set A = { a ,   a , .....,  a }  and M  is the 1

2

 n

 R

 corresponding matrix of R, Then  M

  { The symbol 

 R 2  = MR ⊗  MR

⊗  means not an ordinary matrix

 product} . 

Proof. Let us consider that M  = [ b ] and M 2 = [C ]

R

 ij

R

 ij

Now from definition, we have  i, j th element of M  

is equal to 1 iff row  i of first M  and

R ⊗ MR

R

column  j of second M  have 1 in the same relative position (say  k). Thus,  b  = 1 and  b  = 1 for R

 ik

 kj

some  k, where 1 ≤  k ≤  n.  From the definition of matrix and using the above constraints we have a  R a  and  a  R a . Thus,  a  R2 a . Hence  c  = 1. 

 i

 k

 k

 j

 i

 j

 ij


In the above, we have shown that  i, j th element of M  

is 1 iff  c  = 1. Thus, 

R ⊗  MR

 ij

M  

= M

R ⊗ M R

R2 . 

Example 17.  Consider the set A = { 1, 2, 3, 4}  and the relation

 R = {( 1, 2), (2, 1), (2, 2), (3, 2), (3, 3), (3, 4), (4, 4)}  on set A. Determine  MR 2   from R. 

Sol. The matrix representation of R is given by

1 2 3 4

1 0

L 1 0 0O

2 M1 1 0 0P

M  =  M

P

R

3 0 1 1 1

M

P

4 0

N 0 0 1Q

Now, compute M using M , which is given as follows:

R2

R

0

L 1 0 0

M

O 0L 1 0 0O

1 1 0 0P

M1 1 0 0P

M

⊗ M  = M

P M

P

R2  = MR

R

0 1 1 1

M

P ⊗  0 1 1 1

M

P

0

N 0 0 1Q 0N 0 0 1Q

L1 1 0 0

M

O

1 1 0 0P

M

M

P

R2  =  1 1 1 1

M

P

0

N 0 0 1Q
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Thus, the result   MR 2 obtained by using the matrix is same as if we obtain it by using diagraph of R. 

3.7.2 Computation of the Matrix of R n

Consider a relation R on a finite set A. Also let  n ≥ 2. The matrix M of R is given by R n

M  = M  ⊗ M  ⊗ M ......⊗ M  ( n  times)

R n

R

R

R

R

3.7.3 Computation of the Matrix of R∞

Consider a relation R on a finite set A. A vertex is  a R∞ b iff both the vertices are connected by a path in R of length  n. Thus,  a R∞ b iff  a R b or  aR 2 b  or  a R3 b or...... so on. 

Hence, 

M



2 

3 

R∞  = MR ∨ MR ∨ MR ∨ ...... 

Note 1. If R and S are two relations on A, then R ∪ S is a relation such that  a (R ∪ S)  b iff  a R b or  a S b. 

∞

2.  The relation R∞ can be defined also as R∞ = R ∪ R2 ∪ R3 ∪ R4...... =  ∪ R n. 

 n = 1

3. The matrix of R ∪ S denoted by {M

can be defined as M

= M

. 

R ∪ S

R ∪ S

R ∨ MS

3.7.4 Computation of the Matrix of R*

As discussed earlier, we know R* is a reachability relation, which mean  b is reachable from  a if either  b =  a or there is a path from  a to  b. Thus, MR*  is defined as: M



∞

R*  = I n ∨ MR

[Here I  is the identity matrix of  n ×  n  and  n  is the number of elements in A]

 n

or putting the value of MR∞, we have

M





2 

3 

R*  = I n ∨ MR ∨ MR ∨ MR ∨ .... . 

Example 18.  Consider the digraph of the relation R on set A = { 1, 2, 3, 4, 5 }  as shown in Fig. 13( viii). 

1

3

5

2

4

Fig. 13( viii) Digraph of R. 

 Determine the following ( a)  R* ( b)  MR* . 
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Sol. ( a) The relation R* of R on set A is given by

R* = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 3), (3, 4), (3, 5), (4, 4), (5, 4), (5, 5)}

The matrix M is obtained by finding the value of M and then O Ring with I  (Identity

R*

R∞

 n

matrix), which is as follows :

1  2 3 4  5

1 0

L 1 0 1 0O

2 0

M 0 0 1 0

M

PP

M  =  3 0 1 0 1 1

M

P

R∞

4 0 0 0 0 0

M

P

5 0

NM 0 0 1 0QP

L1 0 0 0 0O 0L 1 0 1 0O

0

M 1 0 0 0 M

P

M

PP 0 0 0 1 0

M

P

Now, 

M

0 0 1 0 0   0 1 0 1 1

M

P

R*  =  M

P ∨ 

0 0 0 1 0

M

P 0 0 0 0 0

M

P

0

NM 0 0 0 1QP 0NM 0 0 1 0QP

L1 1 0 1 0O

0

M 1 0 1 0

M

PP

=   0 1 1 1 1

M

P

0 0 0 1 0

M

P

0

NM 0 0 1 1QP

which is same as we obtained from R*. 

3.8 COMPOSITION OF PATHS

Consider a relation R on a set A. Let  p  :  x,  a ,   a ,   a ,.....  ,a

, Y be a path in the relation

1

1

2

3

 n – 1

R whose length is  n from  x to  y. Also let  p  :  y,  b ,   b ,   b ,   b , ....,  b

,  z be a path in the relation

2

1

2

3

4

 m – 1

R whose length is  m from  y  to  z. 

Then,  the  composition  of   p   and   p  denoted by  p  o p  is a path  x,  a ,  a ,  a ,....., 

,   b , 

1

2

2

1

1

2

3

∨,  b 1 2

 b ,.....,   b

,  z of length  n +  m, which is a path from  x to  z. 

3

 m—1

Example 19.  Consider the digraph of the relation R on the set

 A = { a, b, c, d, e, f, g}  as shown in Fig. 13 ( ix).  Also let p   : a, d, b, c and p   : c, e, f, g. 

1

2

Fig. 13( ix) Digraph of relation R. 

 Determine the composition on p   o p . 

2

1

Sol. The composition of  p  and  p  is a path from  a to  g of length 6 given by 1

2

 p  o  p  :  a, d, b, c, e, f, g. 

2

1
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3.9 COMBINING RELATIONS

The relations from A to B are subsets A × B, thus the two relations from A to B can be

combined through set operations. 

Union of Relations: Suppose we have two relations R  and R , the Union of these relations, 1

2

denoted by R  

is defined as

1 ∪ R2

R  

= {( a,  b) : ( a,  b) 

or ( a,  b) 

}

1 ∪ R2

∈ R1

∈ R2

Intersection of Relations: Suppose we have two relations R  and R , the Intersection of 1

2

these relations, denoted by R  

is deined as

1 ∩ R2

R  

= {( a,  b) : ( a,  b) 

and ( a,  b) 

}

1 ∩ R2

∈ R1

∈ R2

Difference of Relations: Suppose we have two relations R  and R , the difference of

1

2

these relations, denoted by R  – R  (in that order) is defined as

1

2

R  – R   = {( a,   b) : ( a,   b) 

and ( a,   b) 

}

1

2

∈ R1

∉ R2

Example 20.   Let A = { 1, 2, 3}  and B = { 1, 2, 3, 4} , and we have the relations R  = { (1, 1), 1

 (1, 3), (2, 2), (3, 3)}  and R  = {( 1, 1), (1, 2), (1, 3), (1, 4)} . Determine R  

 , R  

 , R  – R  and

 2

 1 ∪  R2

 1 ∩  R2

 1

 2

 R  – R . 

 2

 1

Sol. 

R  

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)}

1 ∪ R2

R  

= {(1, 1), (1, 3)}

1 ∩ R2

R  – R  = {(2, 2), (3, 3)}

1

2

R  – R  = {(1, 2), (1, 4)}. 

2

1

3.10 REPRESENTATION OF RELATION IN COMPUTER

There are two possible ways to store a relation :

1. Two dimensional array representation. 

2. Linked list representation. 

3.10.1

Two Dimensional Array Representation

Consider  a  set  S  and relation R on the set S. The relation R can be represented by an

 n ×  n matrix M, where  n is the number of elements in S. The matrix M is a boolean matrix containing only 0 and 1. 

For example.  Let S = { 1, 2, 3}  and R = {( 1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} . 

 Then the relation R on S can be represented by an n × n array. 

1   2   3

1 L1 1 0O

M  = 2 M1 1 0P

R

M

P

3 0

N 0 1Q

The value in matrix is 1 if the corresponding pair is in R otherwise zero. 

3.10.2

Linked List

We can create a linked list that contains all the edges of the digraph of a relation. The data can be represented by three arrays : TAIL, HEAD and NEXT. The TAIL and HEAD array contains

the beginning vertex and end vertex, for all rows, respectively. The array NEXT is an array of pointers from each edge to the next edge, which make the edge data into a linked list. 
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For example :  Consider the relation represented by digraph as shown in Fig. 13(x). 

2

1

2

4

3

1

6

4

5

7

3

5

8

Fig. 13( x) Relation as Digraph. 

 The digraph shown in Fig. 13 (x) is stored in linked list form as shown in Fig. 13 (xi). The logical ordering coincides with the numbering of edges. 

START

TAIL

HEAD

NEXT

1

1

2

6

3

2

4

3

4

5

4

3

3

3

1

8

2

4

7

2

3

2

3

5

0

Fig. 13 ( xi) Linked list representation of relation. 

In Fig. 13 ( xi), the START contains the index 1  i.e.,  the address of the first edge which is started at index 1. The NEXT (1) contains 6, so we locate the next edge in position 6. The NEXT

[6] contains 7, so we locate the next edge at index 7. The NULL pointer is represented by 0, which indicates no further data. 

Disadvantages. If we want to investigate the edges that begin or end at a particular

vertex, it is not possible in this type of storage scheme. 

3.10.2.1 Modified linked list. 

The modified linked list representation consists of an additional array VERT having one

position for each vertex in the diagraph. Here, VERT[J] is the index for each vertex  j, in TAIL and HEAD. The VERT contains pointers to the edges. 

For every vertex  j, the pointers are arranged in the NEXT in such a way that they link together all edges leaving  j, starting with the edge pointed to by VERT[ j]. The last of these edges point to zero in each case. Thus, several linked lists of edges (one for each vertex) contained in the data array TAIL and HEAD. 
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For example.  Consider the relation represented by digraph as shown in Fig. 13(xii). 

6

1

5

2

4

5

3

4

6

7

Fig. 13( xii) Relation as digraph. 

The digraph shown in Fig.13( xii) is stored in modified linked list representation as shown in Fig.13( xiii). 

VERT

TAIL

HEAD

NEXT

1

5

1

5

7

4

2

1

2

7

5

0

3

3

3

6

4

0

4

2

4

5

6

0

5

4

6

6

6

4

7

0

7

8

Fig. 13( xiii) Modified linked list representation of relation. 

In the modified linked list representation, VERT[1] contains 5, thus the first edge leaving

vertex 1 must be stored in the 5th data position  i.e.,  the edge (4, 6). Again NEXT[5] contains 6, so the next edge leaving vertex 1 is (4, 7) in the 6th data position. Again NEXT[6] contains 0. Thus, we have come to the end of all those edges that begin at vertex 1. 

Proceeding similarly we can trace through the edges coming from each vertex. 

Example 21.  Consider a set A = {k, l, m, n} and let R be a relation on A defined by the matrix M  as shown :

 R

       k l   m  n

 k  L 1 0 0 1

M

OP

M  =   l 0 1 1 0

M

P

R

 m 0 0 0 1

M

P

 n  N 1 0 0 0 Q

 Construct a modified linked list representation for the relation R. 
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Sol. The modified linked list representation has four arrays  i.e.,  VERT, TAIL, HEAD and NEXT. We have four vertices  k, l, m  and  n and six edges. The four arrays are as shown : VERT = [3, 6, 4, 5]

TAIL = [ k, l, k, m, n, l]

HEAD = [ n, m, k, n, n, l]

NEXT = [0, 0, 1, 0, 0, 2]

The indexes defined in VERT are arbitrary. You can choose any index ordering. 

Example 22.  Consider the set A = { a, b, c, d}  and let R be the relation whose digraph is shown in Fig. 13(xiv). 

5

6

2

a

b

1

3

c

d

8

4

7

Fig. 13( xiv) Digraph of relation. 

 Construct a modified linked list representation for the relation R. 

Sol. The modified linked list representation has four arrays  i.e.,  VERT, TAIL, HEAD and NEXT, which are as shown below:

VERT = [6, 8, 3, 5]

TAIL = [ a, b, c, d, d, a, c, b]

HEAD = [ a, b, d, d, b, c, c, a]

NEXT = [0, 0, 7, 0, 4, 1, 0, 2]

Example 23.   Consider the arrays as shown :

 VERT = [ 5, 4, 3, 7, 6]

 TAIL = [ a, a, c, b, a, e, d]

 HEAD = [ c, d, e, e, b, d, e]

 NEXT = [ 2, 0, 0, 0, 1, 0, 0]

 These arrays describe a relation R on the set A = { a, b, c, d, e}. 

 Determine the digraph of R and the corresponding matrix M . 

 R

Sol. The digraph described by the arrays is shown in Fig. 13( xv). 

4

b

e

6

1

3

7

a

d

2

c

5

Fig. 13( xv).  Digraph of relation R. 

RELATIONS

M-4.75

The corresponding matrix M  of the relation R is as shown in Fig. 13( xvi). 

R

             a b   c d   e

 a  0

L 1 1 1 0O

 b  0

M 0 0 0 1

M

PP

M  =   c  0 0 0 0 1

R

M

P

 d  0 0 0 0 1

M

P

 e  0

NM 0 0 1 0QP

Fig. 13( xvi) Matrix M  of relation R. 

R

PROBLEM SET-I

1. Find the relation R, Dom(R) and Range(R) of the following functions. 

( i) Let A = {2, 3, 4} and B = {3, 4, 5, 6, 7}. Define the relation R by  a Rb if and only if  a divides  b: ( ii) Let A = {1, 2, 3, 4}. Define the relation R by  a Rb if and only if  a ≤  b. 

2. Determine the range and domain of the following relations. 

( a) {(1, 2), (1, 4), (1, 6), (2, 8)}

( b) {( x,  y):  x ∈ N and  x +  y = 12}

( c) {( x,  y):  x ∈ N,  x < 10 and  y = 4}

( d) {( x,  y):  y = | x – 1| , x ∈ Z and | x| ≤ 5}

3. Let R = {(1,  y), (1,  z), (3,  y)} be a relation from A = {1, 2, 3} to B = { x,  y,  z}. 

( a) find R – 1:

( b) Compare (R – 1) – 1 and R:

4. Given the following two relations from A = {1, 2, 4} to B = {2, 6, 8, 10}. 

 a R b if and only if  a| b

 a  S  b if and only if  b – 4 =  a

List the elements of R, S, R ∪ S, and R ∩ S. 

5. Let R  and R  be relations on a set A represented by the matrices. 

1

2

⎡0 1 0⎤

⎡0 1 0⎤

M  = ⎢1 1 1⎥

M  = ⎢0 1 1⎥

1

R

⎢

⎥

R2

⎢

⎥

⎣1 0 0⎦

⎣1 1 1⎦

Find the Matrices that represent

( a) R  

( b) R  

( c) R  o R

1 ∪ R2

1 ∩ R2

2

1

6. Let A = {(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)} and S = {(2,  u), (4,  s), (4,  t), (6,  t), (8,   u)}. Find S o R. 

7. Let A = {1, 2, 3} and R be the relation  x  R  y if and only if  x ≤  y: Find R . 

8. Let A = {1, 2, 3} and B = {2, 3, 4} and define the relations R  and R  from A to B as follows: 1

2

R   = {  ( x,  y)

1

|  x +  y is even}

and

R   = {  ( x,  y)

2

|  xy is odd }

List all of the elements of A × B, R , and R . What are R  

and R  

? 

1

2

1 ∩ R2

1 ∪ R2

9. List ordered pairs in the following relations

( a)  a  R  b iff  a = 2 *  b. 

( b)  a  R  b iff  a mod 3 =  b mod 3

( c)  a  R  b iff  a and  b are both prime or both non-prime. 

10. How can the matrix for R , the complement of the relation R, be found from the matrix representing R, when R is a relation on a finite set A? 
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11. Let A = { x,  y,  z}, B = {1, 2, 3, 4}, and C = { a,  b,  c}. Let R be the following relation from A to B : R

= {( x, 1), ( x, 2), ( y, 2), ( y, 3), ( z, 3)}, and S be the following relation from B to C : S = {(1,  a), (2,  a), (2,  b), (3,  b), (4,  b), (4,  c)}. Compute the composition of R and S. 

12. Consider two relations R and S from A to B:

R = {(3, 4), (3, 5), (3, 9), (5, 9), (6, 9), (7, 9)}

and

S = {(3, 5), (6, 4), (7, 5), (7, 9)}

Determine R ∪ S, R ∩ S and R – S. 

13. Let R  = {(1, 2), (2, 3), (3, 4)} and R  = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4)}. Find 1

2

( a) R  

( b) R  

( c) R  – R

( d) R  – R

1 ∪ R2

1 ∩ R2

1

2

2

1

14. Represent each of these relations on {1, 2, 3} with a matrix, directed graph, an arrow diagram and a table. 

( i) {(1, 1), (1, 2), (1, 3)}

( ii) {(1, 1), (2, 2), (3, 3)}

( iii) {(1, 2), (2, 1), (2, 2), (3, 3)}

( iv) {(1, 3), (3, 1)}

( v) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

( vi) {(1, 2), (2, 1), (1, 3), (3, 1)}

15. Let A = {1, 2, 3}, B = { a,  b}, C = { x,  y,  z}

( i) Let R = {(1,  a), (2,  b), (3,  a)} and S = {( a,  y), ( a,  z), ( b,  x), ( b,  z)} Find S o R. 

( ii) Let R = {(1,  a), (2,  b), (3,  a)} and S = {( a,  y), ( a,  z)} Find S o R. 

( iii) Let R = {(1,  a), (2,  b) } and S = {( a,  y), ( b,  y), ( b,  z),} Find S o R. 

16. Let R = {(1,  a), (2,  b), (3,  a)} and S = {( a,  y), ( a,  z), ( b,  x), ( b,  z)}. Find R – 1, S – 1 and R – 1 o S – 1. 

17. How many non-zero entries does the matrix representing the relation R on A = {1, 2, 3, ..., 100}

consisting of the first 100 positive integers if R is

( i) {( a,  b): a >  b}? 

( ii) {( a,  b): a ≠  b}? 

( iii) {( a,  b): a =  b + 1}? 

( iv) {( a,  b): a = 1}? 

( v) {( a,  b): ab = 1}? 

18. Let R be the relation represented by the matrix

⎡1 0 0⎤

M = ⎢0 0 1⎥

 R

⎢

⎥

⎣0 1 0⎦

Find the matrix representing ( i) R – 1 ( ii) R2 ( iii) R

19. List the ordered pairs in the relations represented by the directed graph. 

1

4

2

3

Also, represent it with its matrix, arrow diagram and table. 

20. Show how reflexive, symmetric and antisymmetric relations can be represented by matrix representation. 

21. The following arrays describe a relation R on the set A = {1, 2, 3, 4, 5}. 

Compute both the digraph of R and the matrix M . 

 R

VERT = [6, 2, 8, 7, 10]

TAIL = [2, 2, 2, 2,1, 1, 4, 3, 4, 5]

HEAD = [4, 3, 5, 1, 2, 3, 5, 4, 2, 4]

NEXT = [3, 1, 4, 0, 0, 5, 9, 0, 0, 0]

22. Let  t be the relation on R defined by  x  t  y if and only if  f ( x) = – 4 x + 9. Let  g be the relation on R

defined by  x g y if and only  g( x) = 2 x – 7. Find  f o g and  g  o  f. 
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ANSWERS AND HINTS (PROBLEM SET I)

1. 

( i) R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}, Dom(R) = {2, 3, 4} and Range(R) = {3, 4, 6}

( ii) R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4),(3, 3), (3, 4), (4, 4)}, Dom(R) = A and Range (R) = A

2. ( a) Dom = {1, 2}, Range = {2, 4, 6, 8}

( b) Dom = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, Range = {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

( c) Dom = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Range = {4}

( d) Dom = {–5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5}, Range = {6, 5, 4, 3, 2, 1, 0}

3. ( a) R–1 = {( y, 1), ( z, 1), ( y, 3)}. ( b) (R–1)–1 = R. 

4. R = {(1, 2), (1, 6), (1, 8), (1, 10), (2, 2), (2, 6), (2, 8), (2, 10), (4, 8)}

S = {(2, 6), (4, 8)}; R ∪ S = R; R ∩ S = S

⎡0 1 0⎤

⎡0 1 0⎤

5. ( a) R  

=  ⎢1 1 1⎥

( b) R  

=  ⎢0 1 1⎥

1 ∪ R2

⎢

1 ∩ R2

1 1 1⎥

⎢

⎥

⎣

⎦

1 0 0

⎣

⎦

⎡0 1 1⎤

( c) R  o R  =  ⎢1 1 1⎥

2

1

⎢0 1 0⎥

⎣

⎦

6. S o R = { (1,  u), (1,  t), (2,  s), (2,  t), (3,  s), (3,  t), (3,  u)}

7. Do yourself. 

8. A × B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

R  = {(1, 3), (2, 2), (2, 4), (3, 3)}

1

R  = {(1, 3), (3, 3)}

2

R  

= {(1, 3), (2, 2), (2, 4), (3, 3) } = R

1 ∩ R2

1

R  

= {(1, 3), (3, 3)} = R

1 ∪ R2

2

9. ( a) R = {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5)}

( b) R = {(1, 1), (1, 4), (4, 1), (1, 7), (7, 1), (1, 10), (10, 1), (2, 2),(2, 5), (5, 2), (2, 8), (8, 2), (3, 3), (3, 6), (6, 3), (3, 9), (9, 3), (4, 4), (4, 7), (7, 4), (4, 10), (10, 4), (5, 5), (5, 8),(8, 5), (6, 6), (6, 9), (9, 6), (7, 7), (7, 10), (10, 7), (8, 8), (9, 9), (10, 10)}

( c) R = {(1, 1), (1, 4), (1, 6), (1, 8), (1, 9), (1, 10), (2, 2), (2, 3), (2, 5), (2, 7), (3, 2), (3, 3), (3, 5),(3, 7), (4, 1), (4, 4), (4, 6), (4, 8), (4, 9), (4, 10), (5, 2), (5, 3), (5, 5), (5, 7), (6, 1), (6, 4), (6, 6), (6, 8), (6, 9), (6, 10), (7, 2), (7, 3), (7, 5), (7, 7), (8, 1), (8, 4), (8, 6), (8, 8), (8, 9), (8, 10), (9, 1), (9, 4), (9, 6), (9, 8), (9, 9), (9, 10), (10, 1), (10, 4), (10, 6), (10, 8), (10, 9), (10, 10)}

10. Let A = { a ,...   a } and B = { b ,...,  b }. We have  m  = 1 when ( a ,  b ) 

= 0 when ( a ,  b ) 

1

 n

1

 m

 ij

 i

 j ∈ R, and  mij

 i

 j ∉ R. 

Since R consists of the pairs ( a ,  b ) which do not belong to R, the corresponding matrix has 1s at i

 j

the positions where the matrix for R has 0s, and has 0s at the positions where the matrix for R has 1 s. 

11. {( x,  a), ( x,  b), ( y,  a), ( y,  b), ( z,  b)}. 

12. R ∪ S = { (3, 4), (3, 5), (3, 9), (5, 9), (6, 9), (7, 9), (6, 4), (7, 5)}

R ∩ S = {(3, 5), (7, 9)}

R – S = {(3, 4), (3, 9), (5, 9), (6, 9)}

13. ( a) R  

= {(1, 2), (2, 3), (3, 4), (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}

1 ∪ R2

( b) R  

= {(1, 2), (2, 3), (3, 4)}

1 ∩ R2

( c) R  – R  = {

1

2

∅}

( d) R  – R  = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}

2

1

14. Do yourself. 
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15. 

( i) {(1,   y), (1,   z), (2,   x), (2,   z), (3,   y), (3,   z)}

( ii) {(1,   y), (1,   z), (3,   y), (3,   z)}

( iii) {(1,   y),(2,   y),(2,   z)}

16. R–1 = {( a, 1), ( b, 2), ( a, 3)} S–1 = { ( y,   a),( z,   a),( x,   b),( z,   b)}

R–1  o S–1 = {( y, 1), ( y, 3), ( x, 2), ( z, 1), ( z, 3), ( z, 2)}

17. 

( i) 4950

( ii) 9900

( iii) 99

( iv) 100

( v) 1

18. Do yourself. 

19. Do yourself. 

20. 

1

⎡0 1 1 0 0⎤

1

⎢

0 1 1 1⎥

⎢0 0 0 1 0⎥

5

2

21. M  =  ⎢

⎥

 R

0 1 0 0 1

⎢

⎥

⎢0 0 0 1 0

⎣

⎥⎦

4

3

22. Do yourself. 

3.11

PROPERTIES OF RELATIONS

Property of the relation tells the nature or type of the relation. There are many properties

of relations  i.e.,  reflexive, symmetric, asymmetric, transitive, antisymmetric etc. which are as follows:

3.11.1

Reflexive Relation

Consider a binary relation R on a set A. Relation R is called a reflexive relation if, for every a in set A, ( a, a) ∈ R,  i.e., ( a, a) ∈ R, ∀  a ∈ A. 

3.11.2

Irreflexive Relation

Consider a binary relation R on a set A. Relation R is called irreflexive relation if, for every a in set A, ( a, a) ∉ R,  i.e., ( a, a) ∉ R, ∀  a ∈ A. 

Example 24.  Let A = { 1, 2}  and R = { (1, 1), (1, 2), (2, 2)} . Is the relation reflexive or irreflexive ? 

Sol. The relation is reflexive as for every  a ∈ A. ( a, a) ∈ R,  i.e., (1, 1), (2, 2) ∈ R. 

The relation is not irreflexive. 

Example 25.  Let A = { 1, 2, 3, 4}  and R = { (1, 2), (2, 1), (3, 1), (4, 1)} . Is the relation reflexive or irreflexive ? 

Sol. The relation R is not reflexive as for every  a ∈ A ( a, a) ∉ R. 

The relation is irreflexive as for every  a ∈ A, ( a, a) ∉ R. 
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Example 26.  Let A = { 1, 2, 3}  and R = { (1, 2), (2, 2), (3, 1), (1, 3)} . Is the relation reflexive or irreflexive ? 

Sol. The relation R is not reflexive as for every  a ∈ A, ( a, a) ∉ R,  i.e., (1, 1) and (3, 3) ∉ R. 

The relation is not irreflexive as ( a, a) ∈ R, for some  a ∈ A,  i.e., (2, 2) ∈ R. 

Example 27.  Show that number of reflexive relations on a set with n elements are 2n( n–1) . 

Sol. A relation has ordered pairs ( a,  b). This can be chosen in  n ways and similarly we can choose for  b. So, the set of ordered pairs contains  n 2 pairs. For a relation to be reflexive, ( a,   a) must be present in these ordered pairs. We have  n pairs of ( a,  a) in total, thus the number of ordered pairs will be  n 2 –  n pairs. Therefore, the total number of reflexive relations = 2 n( n – 1). 

Example 28.  Show that the number of irreflexive relations on a set with n elements are 2n( n–1) . 

Sol. A relation has ordered pairs ( a,  b). For a relation to be irreflexive, no ( a,  a) holds for every element  a ∈ R. It is opposite of reflexive relation. 

For a relation to be irreflexive, ( a,  a) must not be present in these ordered pairs means total n pairs of ( a,  a) is not present in R, So number of ordered pairs will be  n 2 –  n pairs. Therefore, the total number of reflexive relations = 2  n( n – 1). 

3.11.3

Symmetric Relation

Consider a binary relation R on a set A. Relation R is called a symmetric relation if for

every ( a, b) ∈ R implies that ( b, a) also belong to R. 

3.11.4

Asymmetric Relation

Consider a binary relation R on a set A. Relation R is called an asymmetric relation if for

every ( a, b) ∈ R implies that ( b, a) does not belongs to R. 

Note:  A relation is asymmetric iff it is both anti-symmetric and irreflexive. 

Example 29.  Let A = { 1, 2, 3}  and R = { (1, 2), (2, 1), (3, 2), (2, 3)} . Is the relation symmetric or asymmetric? 

Sol. The relation is symmetric as for every ( a, b) ∈ R, we have ( b, a) ∈ R. 

The relation is not asymmetric as we have ( b, a) ∈ R, for some ( a, b) ∈ R. 

Example 30.  Let A = { 4, 5, 6}  and R = { (4, 3), (5, 6), (6, 4)}.   Is the relation symmetric or asymmetric? 

Sol. The relation is not symmetric as for every ( a, b) ∈ R, we have ( b, a) ∉ R  i.e., (4, 3) ∈ R

but (3, 4) ∉ R. 

The relation is asymmetric as for every ( a, b) ∈ R, we have ( b, a) ∉ R. 

Example 31.  Let A = { 7, 8, 9}  and R = {( 7, 8), ( 8, 7), ( 7, 9), ( 8, 9)} . Is the relation symmetric or asymmetric? 

Sol. The relation is not symmetric as for every ( a, b) ∈ R, we have ( b, a) ∉ R  i.e., (7, 9) ∈ R

but (9, 7) ∉ R. 

The relation is not asymmetric as for some ( a, b) ∈ R, we have ( b, a) ∈ R  i.e., (7, 8) ∈ R and (8, 7) ∈ R. 
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Example 32.  Show that the number of symmetric relations on a set with n elements are 2n( n+1)/ 2. 

Sol. A relation has ordered pairs ( a,  b). For a relation to be symmetric, if ( a,  b) ∈ R, then ( b,  a) must belong to R. 

Further, if we see the relation in matrix form, then if  a  is present in relation, then  a  is 12 

21

also present in relation. Also we know that reflexive relation is part of symmetric relation. 

So from total  n 2 pairs, only  n( n + 1)/2 pairs will be chosen for symmetric relation. Therefore, the total number of symmetric relation = 2  n( n + 1)/ 2. 

Example 33.  Show that the number of asymmetric relations on a set with n elements are 3n( n– 1)/ 2. 

Sol. An element a cannot be in relation with itself in asymmetric relations. This means there is no  a  R  a ∀  a∈A relation. And then it is same as Anti-Symmetric Relations. So we have three choice for pairs ( a,  b) ( b,  a). Therefore, the total number of asymmetric relation = 3 n( n – 1)/2. 

Example 34.  Show that the number of reflexive and symmetric relations on a set with n elements are  2 n( n –  1)/2 . 

Sol. A relation has ordered pair ( a,  b). A relation to be reflexive and symmetric means ( a,  a) ε R and ( a,  b) and ( b,  a) pairs can be included or not. Therefore, the total number of reflexive and symmetric Relations = 2 n( n – 1)/2. 

3.11.5

Transitive Relations

Consider a binary relation R on a set A. Relation R is called transitive relation if whenever

both ( a, b) and ( b, c) belong to R, implies that ( a,  c) also belongs to R  i.e., ( a, b), ( b, c) ∈ R  ⇒  ( a, c)

∈ R. Example 35.  Let A = { 1, 2, 3}  and R = {( 1, 2), (2, 1), ( 1, 1), (2, 2)} . Is the relation transitive. 

Sol. The relation R is transitive as for every ( a, b), ( b, c) belong to R, we have ( a, c) ∈ R  i.e., (1, 2), (2, 1) ∈ R  ⇒  (1, 1) ∈ R. 

Example 36.  Let A = { 3, 4, 5}  and R = {( 3, 4), ( 4, 3), ( 5, 4), ( 5, 3)} . Is the relation R

 transitive ? 

Sol. The relation R is not transitive as for every ( a, b), ( b, c) ∈ R. We have ( a, c) ∉ R  i.e., (3, 4), (4, 3) ∈ R but (3, 3) ∉ R. 

3.11.6

Antisymmetric Relations

Consider a binary relation R on a set A. Relation R is called antisymmetric relation if

( a, b) ∈ R implies that ( b, a) ∉ R unless  a = b.  In other words, we can say if ( a, b) and ( b, a) belong to R, then  a =  b. 

Note: Symmetric and anti-symmetric relations are not opposite because a relation can contain both  the properties or may not. 

Example 37.  Let A = { 4, 5, 6}  and R = {( 4, 4), ( 4, 5), ( 5, 4), ( 5, 6), ( 4, 6)} . Is the relation R

 antisymmetric? 

Sol. The relation R is not anti-symmetric as 4 ≠ 5 but (4, 5) and (5, 4) both belong to R. 
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Example 38.  Let A = { 1, 2, 3}  and R = { (1, 1), (2, 2)} . Is the relation R anti-symmetric? 

Sol. The relation R is anti-symmetric as  a =  b when ( a, b) and ( b, a) both belong to R. 

Example 39.  Show that the number of anti-symmetric relations on a set with n elements are 2n 3n(n –1)/2. 

Sol. A relation has ordered pairs ( a,  b). For a relation to be anti-symmetric, if ( a,  b) ∈ R

and ( b,  a) ∈ R then  a =  b. (This means  a is in relation with itself for any  a). So for ( a, a), total number of ordered pairs =  n and total number of relation = 2 n. 

Now if ( a,  b) and ( b, a) both are not present in relation or Either ( a, b) or ( b, a) is not present in relation. So there are three possibilities and total number of ordered pairs for this condition is n( n – 1)/2. As we have to find number of ordered pairs where  a ≠  b. It is like opposite of symmetric relation means total number of ordered pairs = ( n 2) – symmetric ordered pairs ( n( n + 1)/2)

=  n( n – 1)/2. So, total number of relation is 3 n( n–1)/2. So total number of anti-symmetric relation

= 2 n . 3 n( n – 1)/2. 

Example 40.  Let A = { 4, 5, 6, 7} . Determine whether the following relations are reflexive, symmetric, transitive or anti-symmetric. 

( i)  R  = {( 4, 4), ( 5, 5), ( 6, 6), ( 7, 7)}

( ii)  R  = {( 4, 4), ( 5, 5)}

 1

 2

( iii)  R  = 

  = {( 4, 5), ( 5, 4), ( 7, 6), ( 6, 7)} . 

 3

φ

( iv)  R4

Sol. ( i) Reflexive. The  relation  is  reflexive  as  for every  a ∈ A, ( a, a) ∈ R ,  i.e., (4, 4), 1

(5, 5), (6, 6), (7, 7) ∈ R . 

1

Symmetric. The relation is symmetric as there is no such pair ( a, b) ∈ R , such that 1

( b, a) does not belongs to R   i.e.,  it does not contradict symmetric property. 

1

Transitive. The relation is transitive as there is no such pairs  i.e., ( a, b) ∈ R  and 1

( b, c) ∈ R  for which we have ( a, c) 

. It does not contradict transitive property. 

1

∉ R1

Anti-symmetric. The relation is anti-symmetric as if ( a, b) and ( b, a) belong to R , we 1

have  a =  b. 

( ii) Reflexive. The relation is not reflexive as for every  a, ( a, a) ∉ R ,  i.e., (6, 6) 

. 

2

∉ R2

Symmetric. The relation is symmetric as there is no such pair ( a, b) ∈ R , such that 2

( b, a) does not belong to R . 

2

Transitive. The relation is transitive as there is no such pair ( a, b) ∈ R  and ( b, c) 

, 

2

∈ R2

such that ( a, c) does not belong to R . 

2

Anti-symmetric. The relation is anti-symmetric because whenever ( a, b)  ∈  R and 2 

( b, a) ∈ R , we have  a =  b. 

2

( iii) Reflexive. The relation is not reflexive as for every  a ∈ A, ( a, a) ∉ R .3

Symmetric. The relation is symmetric as there is no such element ( a, b) ∈ R  for which 3

we have ( b, a) ∉ R . 

3

Transitive. The relation is transitive as there is no such elements ( a, b)  ∈ R  and 3

( b, c) ∈ R  for which we have ( a, c) 

. 

3

∉ R3

Anti-symmetric. The relation is antisymmetric as there is no such elements ( a, b) ∈ R3

and ( b, a) ∈ R , such that  a =  b. 

3
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( iv) Reflexive. The relation is not reflexive as for every  a ∈ A, ( a, a) ∉ R . 

4

Symmetric. The relation is symmetric as for each ( a, b) ∈ R , we have ( b, a) 

. 

4

∈ R4

Transitive. The relation is not transitive as for elements ( a, b) ∈ R  and ( b, c) 

, we

4

∈ R4

have ( a, c) ∉ R   i.e., (4, 5) 

and (5, 4) 

but (4, 4) 

. 

4

∈ R4

∈ R4

∉ R4

Anti-symmetric. The relation is not anti-symmetric as for pairs ( a, b) ∈ R  and ( b, a)

, 

4

∈ R4

we have  a ≠  b  i.e., (7, 6) ∈ R  and (6, 7) 

but 6 

4

∈ R4

≠ 7. 

Example 41.  Determine whether the relation R on set A = { a, b, c, d}  whose directed graph is given in Fig. 14 is ( i)  reflexive ( ii)  symmetric ( iii)  transitive ( iv)  antisymmetric. 

a

b

c

d

Fig. 14

Sol. ( i) Reflexive. The relation is not reflexive as each vertex does not contain an edge on itself  i.e.,  a self-loop. 

( ii) Symmetric. The relation is not symmetric because when there is an edge ( a, b) ∈ R, we have no edge ( b, a) ∈ R  e.g., ( a, c) ∈ R but ( c, a) ∉ R. 

( iii) Transitive. The relation is not transitive because when there is an edge ( a, b) ∈ R and ( b, c) ∈ R, we have ( a, c) ∉ R  e.g., ( a, c) ∈ R and ( c, d) ∈ R but ( a, d) ∉ R. 

( iv) Antisymmetric. The  relation  is  antisymmetric  because  we  have no such edges ( a, b) ∈ R and ( b, a) ∈ R for which  a ≠  b. 

3.12

CLOSURE PROPERTIES OF RELATIONS

Consider a relation R on some set A. Suppose the relation R does not possess the desired

property. We will add as few new pairs as possible to relation R to get a relation that does have the desired property. 

The smallest relation S on A that contains R and the desired property is called the closure

of relation R with the desired property. 

3.12.1

Reflexive Closure

Consider a relation R on a set A. Relation R  is called reflexive closure of R if R  is the

F

F

smallest relation containing R, having the reflexive property  i.e.,  R  = R 

F

∪ Δ where Δ is a diagonal

relation. 
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Example 42.  Consider the relation R on A = { 7, 8, 9}  defined by R = {( 7, 8), ( 7, 9), ( 8, 8), (9, 7)}.   Find the reflexive closure of R. 

Sol. The smallest relation containing R having the reflexive property is

R ∪ Δ = {(7, 7), (7, 8), (7, 9), (8, 8), (9, 7), (9, 9)}. 

Example 43.  Let A = { k, l, m} . Let R be a relation on A defined by

 R = {( k, k), ( k, l), ( l, m), ( m, k)} . Find the reflexive closure of R. 

Sol. R ∪ Δ is the smallest relation having reflexive property. Hence, 

R  = R 

F

∪ Δ = {( k, k), ( k, l), ( l, l), ( l, m), ( m, m), ( m, k)}. 

3.12.2 Symmetric Closure

Consider a relation R on set A. Relation R  is called the symmetric closure of R if R

 s

S is the

smallest relation containing R, having the symmetric property. The relation R  = R 

S

∪ R–1 is the

smallest symmetric relation containing R. 

Example 44.  Consider the relation R on A = { 4, 5, 6, 7}  defined by

  R = {( 4, 5), ( 5, 5), ( 5, 6), ( 6, 7), ( 7, 4), ( 7, 7)}

 Find the symmetric closure of R. 

Sol. The smallest relation containing R, having the symmetric property is R ∪ R–1  i.e., R  = R 

S

∪ R–1 = {(4, 5), (5, 4), (5, 5), (5, 6), (6, 5), (6, 7), (7, 6), (7, 4),  (4, 7), (7, 7)}. 

Example 45.  Let A = {  Maths, Physics, English, Chemistry} . Let R is relation ‘combination of subjects’ on the set A, defined by

 R = {( Maths, Physics), (Physics, English), (Chemistry, English), (Chemistry, Physics), (Physics, Chemistry)} . 

 Find the symmetric closure R  of R. 

 S

Sol. R ∪ R–1 is the smallest relation having the symmetric property. Thus, 

R  = R 

S

∪ R–1 = {(Maths, Physics), (Physics, Math), (Physics, English), (English, Physics), 

(Chemistry, English), (English, Chemistry), (Chemistry, Physics), (Physics, Chemistry)}. 

3.12.3

Transitive Closure

Consider a relation R on a set A. The transitive closure R of a relation R is the smallest

transitive relation containing R. 

Method to find transitive closure. Draw directed graph of the relation R. Find whether

there is a path from Ist vertex to any other vertex of the graph. Include the ordered pair for that vertices in R* if there is path from 1st vertex to any other vertex. Similarly, we proceed to check all the paths from all vertices to all other vertices and include the corresponding ordered pairs in R*. 

At the end we got the transitive closure R* of relation R. 
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Example 46.  Let A = { a, b, c, d} . Let R = {( a, b), ( a, c), ( b, a) , ( b, c), ( c, d), ( d, a)} . 

a

b

 Find the transitive closure of R. 

Sol. The directed graph of relation R is shown in Fig. 15. 

From vertex  a, we have paths to vertices  a, b, c  and  d. So, the

ordered pairs included in R* is ( a, a), ( a, b), ( a, c) and ( a, d). Similarly, from vertex  b, we have paths to vertices  a, b, c and  d. So, the ordered d

c

pairs included in R* is ( b, b), ( b, c), ( b, d), ( b, a). From vertex  c, we have paths to vertices  c, b, d and  a. From vertex  d, we have paths to

Fig. 15

vertices  d, a, b  and  c.  So, the vertices included in R* is ( c, c), ( c, d), ( c, b), ( c, a) and ( d, d), ( d, a), ( d, b), ( d, c). Hence, transitive closure R* is R* = {( a, a), ( b, b), ( c, c), ( d, d), ( a, b), ( a, c), ( a, d), ( b, c), ( b, a), ( b, d), ( c, a), ( c, b), ( c, d), ( d, a), ( d, b), ( d, c)}. 

Example 47.  Let A = { 4, 6, 8, 10}  and R = {( 4, 4), ( 4, 10), ( 6, 6), ( 6, 8), ( 8, 10)}  is a relation on set A. Determine transitive closure of R. 

Sol. The matrix of relation R is shown in Fig. 16. 

4    6   8  10

4 L1 0 0 1O

6 0

M 1 1 0P

M  = 

M

P

R

8 0 0 0 1

M

P

10 0

N 0 0 0Q

Fig. 16

Now, find the powers of M  as in Figs. 17, 18 and 19. 

R

4   6   8  10

4  6    8   10

4 L1 0 0 1O

4 L1 0 0 1O

6 0

M 1 1 1P

M

P

M

M

P

6 0 1 1 1

M

P

R2  =  8 0 0 0 0

M

P

MR3  =  8 0 0 0 0

M

P

10 0

N 0 0 0Q

10 0

N 0 0 0Q

 Fig. 17

  Fig. 18

4   6    8  10

4 L1 0 0 1O

6 0

M 1 1 1P

M

M

P

R4  =  8 0 0 0 0

M

P

10 0

N 0 0 0Q

  Fig. 19

Hence, the transitive closure of M  is M  as shown in Fig. 20. (Where M  is the ORing of

R

R*

R*

powers of M ). 

R

RELATIONS

M-4.85

4   6   8   10

4 L1 0 0 1O

6 0

M 1 1 1P

M  = M  



; 

M  = 

M

P

R*

R ∨ MR2  ∨ MR3  ∨ MR4

R*

8 0 0 0 1

M

P

10 0

N 0 0 0Q

Fig. 20

Thus,  R* = {(4, 4), (4, 10), (6, 8), (6, 6), (6, 10), (8, 10)}. 

Note. While ORing the powers of the matrix R, we can eliminate MR n  because it is equal to MR2

if  n is even and is equal to MR3  if  n is odd. 

PROBLEM SET-II

1. Let A = {0, 1, 2, 3,} and define a relation R on A as follows: R = {(0, 2), (0, 3), (2, 0), (2, 1)}. 

( a) Draw the directed graph of R. 

( b) Is R reflexive? Explain. 

( c) Is R symmetric? Explain. 

( d) Is R transitive? Explain. 

2. The following relations are defined on the set of integers Z. Determine whether these are reflexive, symmetric, transitive or antisymmetric. 

( i)  a  R  b iff | a| = | b|

( ii)  a  R  b iff  a ≥  b, 

( iii)  a  R  b iff  a ≠  b, 

( iv)  a  R  b iff  a –  b = 2 k for some  k ∈ Z, 3. The following relations are defined on the set of Real numbers, R. Determine whether these are reflexive, symmetric, transitive or anti-symmetric. 

( i)  x  R  y iff  y –  x ∈ Z, 

( ii)  x  R  y iff  x –  y ∈ Q, 

( iii)  x  R  y iff  xy ≥ 0, 

( iv)  x  R  y iff  xy ≥ 1, 

4. The following relations are defined on the set of integers  z. Determine whether these are reflexive, symmetric, transitive or anti-symmetric. 

( i)  a  R  b iff  a =  b + 1, 

( ii)  a R b iff  a ≥  b 2

( iii)  a  R  b iff  a and  b are some common divisor other than 1. 

5. The following relations are defined on the set of Real numbers, R. Determine whether these are reflexive, symmetric, transitive or anti-symmetric. 

( i)  x  R  y iff  x =  y 2

( ii)  x  R  y iff  x ≥  y 2

( iii)  x  R  y iff | x| ≤ | y|

6. Let R be a binary relation on the set of all strings of 0’s and 1’s such that R = {( a,  b) | a and  b are strings that have same number of 0’ s}. Is R reflexive? Symmetric? Antisymmetric? Transitive? 

7. Give examples of relations on any set A = {0, 1, 2} which satisfy each of the following combinations of properties. 

( a) Neither reflexive nor irreflexive

( b) Reflexive and symmetric, but not transitive

( c) Reflexive and antisymmetric, but not transitive

( d) Reflexive and transitive, but not symmetric

( e) Reflexive but neither symmetric nor transitive. 

( f) Not reflexive, not symmetric, not antisymmetric, and not transitive. 

8. Suppose R  and R  are transitive relations on a set A. Is the relation R  

necessarily a

1

2

1 ∪  R2

transitive relation? Justify your answer. 

9. Suppose that R is a relation on a set A. Prove or disprove: If R2 is reflexive then R must be reflexive. 
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10. How many different binary relations on a set A of cardinality  n are both symmetric and reflexive? 

11. Determine whether the relation R:  m = –  n on the set of integers is ( a) reflexive, 

( b) irreflexive, 

( c) symmetric, 

( d) transitive. 

12. Consider the relation  x = 2 y + 1 between real numbers  x,  y. Is it reflexive? Is it symmetric? Is it transitive? 

13. Suppose R is a relation on A. If R is symmetric and transitive, then R is reflexive. Give a counterexample to the claim. 

14. Consider the relation R = {( a,  b), ( a,  c), ( c,  b), ( b,  c)} on the set A = { a,  b,  c}. Which of the properties reflexive, symmetric and transitive does R possess and why? If a property does not hold, say why? 

15. For each of the following relations, state whether they are reflexive, symmetric or transitive. 

( a) X is the set of people in the world, and  x R y if and only if  x and  y have a parent in common. 

( b) X is the set of real numbers,  x R y is true when  x 2 =  y 2. 

( c) X is any set, and R = X × X. 

( d) X = {  a,  b,  c,  d} and R = {( a,  a), ( a,  b), ( a,  c), ( d,  b), ( b,  b), ( c,  d)}. 

16. Find reflexive closure of the relation R = {( a,  b) | a >  b} on the set of integers. 

17. Let R be a relation on a set A. Is the transitive closure of R always equal to the transitive closure of R2? Prove or disprove. 

18. Suppose R is the relation on the integers where  x R y if and only if  x =  y + 1. Describe the relation that is the transitive closure of R. 

19. If R is a relation on a set A then we say that R is total if and only if ∀ x ∈A (∃  y ∈ A( x  R  y)). Prove that if R is symmetric and total then its transitive closure is also reflexive. 

20. What is the reflexive-symmetric-transitive closure of the relation

R = {(1, 2), (1, 3), (2, 4), (5, 6)} defined on the set A = {1, 2, 3, 4, 5, 6}. 

ANSWERS AND HINTS (PROBLEM SET II)

1. ( a)

( b) not reflexive

( c) not symmetric

( d) not transitive

2. 

( i) Reflexive, symmetric, transitive but not antisymmetric

( ii) Reflexive, not symmetric, transitive, antisymmetric

( iii) not Reflexive, symmetric, not transitive not antisymmetric

( iv) Reflexive, symmetric, transitive but not antisymmetric

3. 

( i) Reflexive, symmetric, transitive, antisymmetric

( ii) Reflexive, symmetric, transitive, not antisymmetric

( iii) Reflexive, symmetric, not transitive, not antisymmetric

( iv) not reflexive, symmetric, not transitive, not antisymmetric

4. 

( i) not Reflexive, not symmetric, not transitive but antisymmetric

( ii) not Reflexive, not symmetric, not transitive, not antisymmetric

( iii) not Reflexive, symmetric, not transitive, not antisymmetric
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5. 

( i) not Reflexive, not symmetric, not transitive, anti-symmetric

( ii) not Reflexive, not symmetric, not transitive, not anti-symmetric

( iii) Reflexive, not symmetric, transitive, not anti-symmetric

6. R is reflexive, symmetric and transitive. 

7. ( a) R = {(0, 0)}

( b) R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0), (1, 2), (2, 1)}. 

( c) R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}. 

( d) R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (0, 2)}. 

( e) R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}. 

( f) R = {(0, 1), (1, 0), (1, 2)}. 

8. No. {(1, 2)} and {(2, 3)} are each transitive relations, but their union {(1, 2), (2, 3)} is not transitive. 

9. Let A = {1, 2} and R = {(1, 2), (2, 1)}. Then R2 = {(1, 1), (2, 2)} which is reflexive, but R is not. 

10. | A | =  n. To satisfy the reflexive requirement, we should add all pairs of ( ai,  ai). Then, we can freely select the pairs of the form that ( ai,  aj),  i <  j (and the opposite one( aj,  ai), to satisfy the symmetric requirement. There are totally  n ( n – 1)/2 such ( ai,  aj),  i <  j, and each of them can be in or not in the relation. So, the number of possible choices is 2 n( n – 1)/2. 

So, the number of the possible relations is: N = 2 n( n – 1)/2. 

11. not reflexive, not irreflexive, symmetric, not transitive. 

12. not reflexive, not symmetric, not transitive

13. 

( i) Let R be the empty relation on some non-empty set A. R is symmetric and transitive, but not reflexive. 

( ii) Let R = {( a,  a), ( a,  b), ( b,  a), ( b,  b)} on the set A = { a,  b,  c}. It is symmetric and transitive but not reflexive. 

14. R is not reflexive because ( a,  a) ∉ R. 

R is not symmetric because ( a,  b) ∈ R but ( b,  a) ∉ R. 

R is not transitive because  c  R  b and  b R  c are true, but  c  R  c is false. 

15. ( a) Symmetric, reflexive, not transitive

( b) Symmetric, reflexive, transitive

(c) Symmetric, reflexive, transitive

( d) not reflexive, not symmetric, not transitive

16. R+ = R ∪ Δ = { ( a,  b) |  a >  b} ∪ {( a,  a) | ( a ∈ Z} = {( a,  b) |  a ≥  b}

17. Suppose A = {1, 2, 3} and R = {(1, 2), (2, 3)}. Then R2 = {(1, 3)}. 

Transitive closure of R is R* = {(1, 2), (2, 3), (1, 3)}. 

Transitive closure of R2 is {(1, 3)}. 

They are not always equal. 

18. R* = {( x,  y) |  x >  y}

19. For all  x ∈  A, there is a pair ( x,  y) ∈ R for some  y, because R is total. Since R is symmetric, ( y,  x) ∈

R. From ( x,  y) and ( y,  x), the transitive closure will include ( x,  x) for all  x ∈ A and is thus reflexive. 

20. For reflexive, add (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6). For symmetric, add (2, 1), (3, 1), (4, 2), (6, 5). 

For transitive, add (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3). So the, reflexive-symmetric-transitive closure of the relation is the original pairs in R and all the added ones. 

3.13

WARSHALL’S ALGORITHM TO FIND TRANSITIVE CLOSURE

1. Let  n be the number of elements in a given set A  i.e., n → | A |

2. Let  w ,  w ,  w , ......,  w  be Warshall sets. 

0

1

2

 n
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3. To find transitive closure of relation R on A, maximum of  n Warshall sets of which  w  is n

the last need to be computed. 

The procedure to compute  w  from  w

is as follows :

 k

 k – 1

( i) Copy 1 to all entries in  w  from  w

, where there is 1 in  w

. 

 k

 k – 1

 k – 1

( ii) Find the row numbers  p ,   p ,   p ,.......for which there is 1 in column  k in  w and the

1

2

3

 k – 1 

column numbers  q ,   q ,   q ,.........for which there is 1 in row  k in  w

. 

1

2

3

 k – 1

( iii) Mark entries in  w  as 1 for ( p ,  q ) of  w  if there are not already 1. 

 k

 i

 i

 k

4. Stop when  w  is obtained and it is the needed result (transitive closure). 

 n

Example 48.   Consider the example 47, where A = { 4, 6, 8, 10}  and R = {( 4, 4), ( 4, 10), ( 6, 6), ( 6, 8), ( 8, 10)}  is a relation on set A. Determine the transitive closure of R using Warshall’s algorithm. 

Sol. The digraph of relation R and its corresponding matrix M  is shown in Fig. 21. 

R

4

6

4 6 8 10

4 L1 0 0 1

M

OP

M  =  6 0 1 1 0

M

P

R

8 0 0 0 1

M

P

10 0

N 0 0 0Q

10

8

Fig. 21

The value of  n = | A | = 4. Thus, we have to find the Warshall’s sets  w ,  w ,  w ,  w  and  w . 

0

1

2

3

4

The first set  w  is same as M , which is shown below:

0

R

L1 0 0 1O

0

M 1 1 0P

 w  = M  = M

P

0

R

0 0 0 1

M

P

0

N 0 0 0Q

Now to find  w  from  w  we have row number 1 for column 1 in  w  and column number 1

0

0

1 and 4 for row 1 in  w . Thus, new entries in  w  are (4, 4) and (4, 10) which are already one. Thus, 0

1

 w  is same as  w , which is as follows:

1

0

L1 0 0 1O

0

M 1 1 0P

 w  = M

P

1

0 0 0 1

M

P

0

N 0 0 0Q

To find  w  from  w , we have row number 2 for column 2 in  w  and column number 2 and 2

1

1

3 for row 2 in  w . Thus, new entries in  w  are (6, 6) and (6, 8), which are already one. Thus,  w  is 1

2

2

same as  w , which is as follows :

1

L1 0 0 1O

0

M 1 1 0P

 w  = M

P

2

0 0 0 1

M

P

0

N 0 0 0Q
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Similarly,  w  is obtained from  w . Here, we have row number 2 in column 3 and column 3

2

number 4 in row 3. Thus, the new entries in  w  are (6, 10). So,  w  is as follows: 3

3

L1 0 0 1O

0

M 1 1 1P

  w  = M

P

3

0 0 0 1

M

P

0

N 0 0 0Q

Similarly,  w  is obtained from  w . But there are no new entries of 1’s in  w . Hence, 4

3

4

M  =  w  =  w , which is the transitive closure of R, and is same as in example 46. 

R∞

4

3

3.14

EQUIVALENCE RELATIONS

A relation R on a set A is called an equivalence relation if it satisfies following three

properties:

1. Relation R is reflexive  i.e., a R a ∀  a ∈ A. 

2. Relation R is symmetric  i.e., a R b  ⇒   b R a. 

3. Relation R is transitive  i.e., a R b and  b R c  ⇒   a R c. 

Example 49.   Let  A  =  { 1, 2, 3, 4}  and R = {( 1, 1), ( 1, 3), ( 2, 2), ( 2, 4), ( 3, 1), ( 3, 3), ( 4, 2), ( 4, 4)} . 

 Show that R is an equivalence relation. 

Sol. Reflexive. Relation R is reflexive as (1, 1), (2, 2), (3, 3), and (4, 4) ∈ R. 

Transitive. Relation R is transitive because whenever ( a, b) and ( b, c) belong to R, ( a, c) also belong to R  e.g., (3, 1) ∈ R and (1, 3) ∈ R  ⇒  (3, 3) ∈ R. 

Symmetric. Relation R is symmetric because whenever ( a, b) ∈ R, ( b, a) also belong to R

 e.g., (2, 4) ∈ R ⇒ (4, 2) ∈ R. 

So, as R is reflexive, symmetric and transitive. Hence, R is an equivalence relation. 

Example 50.  Let S be the set of all points in a plane. Let R be a relation such that for any two points a and b ; (a, b) ∈  R if b is within two centimeter from A. Show that R is an equivalence relation. 

Sol. Reflexive. We have ( a, a) ∈ R, for every 



 a ∈ S

[∵  a lies within 2 cm from  a]

Therefore, R is reflexive. 

Symmetric. Assume that ( a, b) ∈ R

⇒  b lies within 2 cm from  a

⇒  a lies within 2 cm from  b. 

⇒

( b, a) ∈ R. 

Thus, ( a, b) ∈ R ⇒ ( b, a) ∈ R. 

Therefore, R is symmetric. 

Transitive. Assume that ( a, b) and ( b, c) ∈ R. 

Therefore,  b lies within 2 cm from  a. 

 c  lies within 2 cm from  b. 

It does not implies  c lies within 2 cm from  a. Therefore, ( a, b) ∈ R, ( b, c) ∈ R then ( a, c) may not belong to R. 

Hence, relation R is not always transitive. Therefore, relation is not an equivalence relation. 
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3.15

PARTIAL ORDER RELATION

A relation R on a set A is called a partial order relation if it satisfies the following three properties:

1. Relation R is reflexive  i.e., a  R  a ∀  a ∈ A. 

2. Relation R is antisymmetric  a  R  b and  b  R  a ⇒  a =  b. 

3. Relation R is transitive  a  R  b and  b  R  c ⇒  a  R  c. 

Example 51.   Show whether the relation (x, y) ∈ R, if  x ≥  y defined on the set of + ve integers is a partial order relation. 

Sol. Consider the set A = {1, 2, 3, 4} containing four + ve integers. Find the relation for this set such as R = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (1, 1), (2, 2), (3, 3), (4, 4)}. 

Reflexive. The relation is reflexive as for every  a ∈ A ( a, a) ∈ R  i.e., (1, 1), (2, 2), (3, 3) and (4, 4) ∈ R. 

Antisymmetric. The relation is antisymmetric as whenever ( a, b) and ( b, a) ∈ R, we have a =  b. 

Transitive. The relation is transitive as whenever ( a, b) and ( b, c) ∈ R, we have ( a, c) ∈ R

 e.g., (4, 2) ∈ R and (2, 1) ∈ R, implies (4, 1) ∈ R. 

As the relation is reflexive, antisymmetric and transitive. Hence, it is a partial order

relation. 

Example 52.  Show that the relation ‘Divides’ defined on N is a partial order relation. 

Sol. Reflexive. We have  a divides  a, ∀  a ∈ N. Therefore, relation ‘Divides’ is reflexive. 

Anti-asymmetric. Let  a,  b ∈ N, such that  a divides  b. It implies  b divides  a iff  a =  b. 

So, relation is antisymmetric. 

Transitive. Let  a,  b,  c ∈ N, such that  a divides  b and  b divides  c. 

Then   a divides  c. Hence, relation is transitive. Thus, the relation being reflexive, antisymmetric and transitive, the relation ‘divides’ is a partial order relation. 

3.15.1 Partial Order Set (Poset)

The set A together with a partially order relation R on the set A and is denoted by (A, R) is

called a partially ordered set or POSET. 

3.16

TOTAL ORDER RELATION

Consider the relation R on the set A. If it is also the case that for all  a, b ∈ A, we have either ( a, b) ∈ R or ( b, a) ∈ R or  a =  b, then the relation R is called total order relation on set A. 

Example 53.  Show that the relation ‘<’  (less than) defined on N, the set of + ve integers is neither an equivalence relation nor partially ordered relation but is a total order relation. 

Sol. Reflexive. Let  a ∈ N, then  a <  a

⇒ ‘<’ is not reflexive. 

As, the relation ‘<’ (less than) is not reflexive, it is neither an equivalence relation nor the partial order relation. 
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But, as ∀  a, b ∈ N, we have either  a <  b or  b <  a or  a =  b. So, the relation is a total ordered relation. 

3.17

PARTITION

A partition (A , A , ..., A ) of a non-empty set A is defined as a collection of non-empty

1

2

 i

subsets of A, such that

( a) Every element of A belongs to one of A   i.e.,  the union of A  is equal to set A. 

 i

 i

( b) If A  and A  are distinct, then A  

= 

 i

 j

 i ∩ A j

φ  i.e.,  the partitions divides the elements of the

set A into disjoint subsets. 

The subsets in a partition are called blocks or cells. 

Example 54.  Let A = { 7, 8, 9} . Determine all the partitions of the set A. 

Sol. We have three elements in set A. So, in a partition there can be 1, 2 or 3 elements at the maximum. Hence, the partitions are as follows :

( i) [{7}, {8}, {9}]

( ii) [{7}, {8, 9}]

( iii) [{8}, {7, 9}]

( iv) [{9}, {7, 8}]

( v) [{7, 8, 9}]. 

Example 55.  Let A = { 1, 2, 3, 4, 5, 6, 7, 8} . Determine whether the following is a partition of A or not

( i)  P  = [{ 1, 2, 3, 4}, { 1, 3, 5, 6, 7, 8}]

 1

( ii)  P  = [{ 1, 3, 5, 7}, { 2, 4}, { 6, 8}]

 2

( iii)  P  = [{ 1, 2, 3, 4}, { 6, 8}]

 3

( iv)  P  = [{ 1, 3, 5, 6, 7, 8}, { 2, 4}] . 

 4

Sol. ( i) Not a partition because 1 ∈ A  belongs to both the cells. 

( ii) P  is a partition. 

2

( iii) P  is not a partition because 7 

. 

3

∈ A does not belong to any cell of P3

( iv) P  is a partition. 

4

3.18 EQUIVALENCE CLASS

Consider, an equivalence relation R on a set A. The equivalence class of an element

 a ∈ A, is the set of elements of A to which element  a is related. It is denoted by [ a]. 

Example 56.  Let R be an equivalence relation on the set A = { 4, 5, 6, 7}  defined by  R = {( 4, 4),  (5, 5), ( 6, 6), ( 7, 7), ( 4, 6), ( 6, 4)} . 

 Determine its equivalence classes. 

Sol. The equivalence classes are as follows :

[4] = [6] = {4, 6}

[5] = {5}

[7] = {7}. 

Example 57.  Let R be an equivalence relation on set A = { 1, 2, 3, 4, 5}  defined by R = {( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4), ( 5, 5), ( 1, 4), ( 4, 1), ( 2, 4), ( 4, 2), ( 1, 2), ( 2, 1)}

 Determine equivalence classes of R. 
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Sol. The equivalence classes of R is

[1] = [2] = [4] = {1, 2, 4}

[3] = {3}

[5] = {5}. 

Example 58.  Let R be an equivalence relation on the set A = { 6, 7, 8, 9, 10}  defined by R = {( 6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (6, 7), (7, 6), (8, 9), (9, 8), (9, 10), (10, 9), (8, 10), (10, 8)} . 

 Find the equivalence classes of R and hence find the partition of A corresponding to R. 

Sol. The equivalence classes of R are as follows. Element 6 is related with 6 and 7, therefore

[6] = [7] = {6, 7}. 

Element 8 is related with 8, 9 and 10, therefore, [8] = [9] = [10] = {8, 9, 10}. 

Hence, the partition corresponding to R is

P = {(6, 7), (8, 9, 10)}. 

3.19 CIRCULAR RELATION

Consider  a  binary  relation  R  on a set A. Relation R is called circular if ( a, b) ∈ R and ( b, c) ∈ R implies ( c, a) ∈ R. 

Example 59.  Show that relation R is reflexive and circular if and only if it is an equivalence relation. 

Sol. Consider, the relation is reflexive and circular. 

Therefore, ( a, a) ∈ R for every  a ∈ A

(∵ R is reflexive)

Also, let ( a, b) ∈ R and ( b, c

) ∈ R implies ( c, a) ∈ R

(∵ R is circular)

Now, as ( c, a) ∈ R and ( a, a

) ∈ R implies ( a, c) ∈ R

(∵ R is circular)

⇒ R is transitive. 

Let ( a, b) ∈ R implies (



 a, a) ∈ R and ( b, b) ∈ R

(∵ R is reflexive)



It implies ( b, a) ∈ R

(∵ R is circular)

Therefore, R is symmetric. 

Therefore, relation R being reflexive, transitive and symmetric, hence it is an equivalence

relation. 

Example 60.  Consider R is an equivalence relation. Show that R is reflexive and circular. 

Sol. Reflexive. As, the relation R is an equivalence relation. So, reflexivity is the property of an equivalence relation. Hence, R is reflexive. 

Circular. Let ( a, b) ∈ R and ( b, c) ∈ R



⇒

( a, c) ∈ R

(∵ R is transitive)

⇒

( c, a) ∈ R

(∵ R is symmetric)

Thus, R is circular. 

PROBLEM SET-III

1. For each of the following relations between positive integers  m,  n, determine whether it is an equivalence relation, a partial order relation or it is a total order relation:

2. Which of the following relations in the set of real numbers are equivalence relations? 

( i)  a  R  b if |  a | = |  b |

( ii)  a  R  b if |  a | ∈ |  b |

( iii)  a R b if  a –  b ∈ 0
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3. In  a  set S = { a, b, c, d} of four men,  a is younger to the other three,  b is younger to  c and  d only and c is younger to  d only. Is the relation ‘‘is younger to’’ an equivalence relation? Give reasons. 

4. If A is a set of all integers. Then prove that R = {( a,  b):  a,  b ∈ A, ( a –  b) is an even integer} is an equivalence relation on A. 

5. Let R be the relation on the set N of positive integers defined by R = {( a,  b):  a +  b is even}. Prove that R is an equivalence relation. 

6. Consider the following relation R, S, T, U on A = {0, 1, 2}. 

R = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (0, 2), (1, 0)}. 

S = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (0, 2)}. 

T = {(0, 0), (0, 1), (1, 1)}. 

U = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)}. 

Are any of R, S, T, U a partial order on A? Provide justification. 

7. How many different possible equivalence relations can be defined on the set A = {1, 2}?, A = {1, 2, 3}? A = {1, 2, 3, 4}? 

8. On the set of integers  between 0 and 12 inclusive, define two integers to be related if they have the same remainder on division by 3. Which numbers are related to 0? to 1? to 2? to 3? to 4?. Is this relationship an equivalence relation? 

9. Give three different equivalence relations on the set { a,  b,  c,  d}. 

10. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is anti-symmetric, and whether it is transitive. Which of these relations are equivalence relations? 

( a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}. 

( b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}. 

( c) {(2, 4), (4, 2)}. 

11. Consider the following relation over the set of sets. 

 R  = {( A,  B) |  A ∩  B ≠ φ }

Is R an equivalence relation? Why or why not? 

12. Find the partition of the set {1, 2, ... , 6} corresponding to the equivalence relation | m – 3| =  |n – 3|. 

13. Consider the equivalence relation between non-empty subsets  A,  B of {1, 2,...,100} defined by the condition: The greatest element of A is the same as the greatest element of B. Let P be the

partition corresponding to this equivalence relation. 

( a) Find the cardinality of P. 

( b) Find an element of P. 

( c) Find one more element of P. 

14. Find a partition of N that consists  of one infinite set and infinitely many finite sets. 

15. Suppose you are given the description of an equivalence relation R as given below. 

R = {(1, 1), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (1, 3), (3, 1), (4, 5), (5, 4), (4, 7), (7, 4), (5, 7), (7, 5)}. 

Find the set of minimal number of pairs that are to be stored without losing any information. This means it is possible to determine the entire original equialence relation from the obtained minimal number of pairs. 

16. There are two different equivalence relations on the set A = { a,  b}. Describe all of them. 

Also list all the partitions of the set A = { a,  b}. 

17. In each case, say whether or not R is an equivalence relation on A. If it is an equivalence relation, what are the equivalence classes and how many equivalence classes are there? 

( a) R  =  ( x,  y) ∈ W × W | the words  x and  y start with the same letter where W is the set of all words in the 2001 edition of the Oxford English dictionary. 

( b) R = {( x,  y) ∈ W × W | the words  x and  y have at least one letter in common. 
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( c) R = {( x,  y)∈ W × W and the word  x comes before the word  y alphabetically. 

( d) R = {( x,  y)∈ B × B, where B is the set of all bit strings and  x and  y have the same number of 1 s. 

18. Given the partition P = {{1, 2}, {3}, {4, 5}} of the set A = {1, 2, 3, 4, 5}, consider R the associated equivalence relation on A. Draw the digraph associated to R and write down the matrix  M . 

 R

19. Let R be a set of all people. Let R be the binary relation on R  i.e.,  a  R  b if  a is the brother of  b. Is  R

reflexive, symmetric, anti-symmetric, transitive, an equivalence relation? 

20. Let R be the relation on the set  Z of integers defined by  R = {( x,  y):  x ∈ Z,  y ∈ Z, ( x –  y) is divisible by 6}. Prove that R is an equivalence relation. 

21. Let A = {1, 2, 3, 4, 5, 6}, and consider the equivalence relation R on A: R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 3), (3, 2), (4, 5), (5, 4), (4, 6), (6, 4), (5, 6), (6, 5)}. List the equivalence classes of R. 

22. Which of the following is True/False? Justify your answer. 

( a) If R is an equivalence relation on a finite non-empty set A, then the equivalence classes of R

all have the same number of elements. 

( b) The intersection of two equivalence relations on a non-empty set A is an equivalence relation. 

( c) Let R be a relation defined on the set Z by  a R b if  a =  b. Then R is symmetric and transitive. 

( d) Let A = { a, b, c, d}, and let R be the relation defined as follow: R = {( a, a), ( b, b), ( c, c), ( d,  d), ( c, a), ( a, d), ( c, d), ( b, c), ( b, d), ( b, a)}. Then R a total order on A. 

( e) Suppose R is a binary relation on a set A, and let  a ∈ A. If  R is not reflexive, then ( a, a) ∉  R. 

( f) Define a relation R on the set Z of all integers as follows: for all  m, n ∈ Z,  m R n iff  m +  n is even. 

Then, R a partial order relation. 

( g) Let A = {2 ,  3 ,  4}, and let R be the relation on A given by R = {(2, 2), (3, 4), (4, 3), (4, 4)}. Then R

is transitive. 

( h) Let M  be a matrix representing a relation R on a set A, then

R

⎡1 0 0 1 1⎤

⎢0 1 0 0 0⎥

 M  =  ⎢

⎥

1 0 1 1 1

 R

⎢

⎥

⎢1 0 1 1 0⎥

⎢0 0 1 0 1⎥

⎣

⎦

( a) R is reflexive. 

( b) R is symmetric. 

( c) R is antisymmetric. 

( i) If R is an equivalence relation on an infinite set A, then R has infinitely many equivalence classes. 

ANSWERS AND HINTS   (PROBLEM SET III)

1. ( a) It is a partial order. But it is neither equivalence nor total relation. 

( b) It is not an equivalence relation. It is neither partial order nor total order relation. 

( c) It is not an equivalence relation. It is neither partial order nor total order relation. 

( d) It is not an equivalence relation. It is neither partial order nor total order relation. 

2. 

( i) equivalence relation

( ii) not an equivalence relation

( iii) not an equivalence relation. 

3. We have  a <  b <  c <  d. The given relation is neither reflexive nor symmetric. Hence, it is not an equivalence relation. 

4. The relation is reflexive, symmetric and transitive. It is an equivalence relation. 

5. R is an equivalence relation. 

6. R is reflexive, symmetric and transitive but R is not antisymmetric since (0, 1), (1, 0) ∈ R and 0 ≠ 1. Hence R is an equivalence relation but R is not a partial order relation. 
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S reflexive, transitive, antisymmetric but not symmetric. Hence R is not an equivalence relation but a partial order relation. 

T is not reflexive since (2, 2) ∉T. Hence R is neither an equivalence relation nor partial order relation. 

U is not transitive since (0, 1), (1, 2) ∈U but (0, 2) ∉ U. Hence R is neither an equivalence  relation nor partial order relation. 

7. 2, 5 and 15 equivalence relations. 

8. The numbers related to 0 are {0, 3, 6, 9, 12}, 

The numbers related to 1 are { 1, 4, 7, 10}, 

The numbers related to 2 are { 2, 5, 8, 11}, 

The numbers related to 3 are { 0, 3, 6, 9, 12}, 

The numbers related to 4 are {1, 4, 7, 10}, 

The relation is an equivalence relation. 

9. 

( i) {( a,  a), ( b,  b), ( c,  c), ( d,  d)}

( ii) {( a,  a), ( b,  b), ( c,  c), ( d,  d), ( a,  b), ( b,  a)}

( iii) {( a,  a), ( b,  b), ( c,  c), ( d,  d), ( c,  d), ( d,  c)}

10. ( a) Not reflexive, not symmetric and not anti-symmetric, transitive. It is not an equivalence relation. 

( b) Reflexive, symmetric and transitive, but not antisymmetric. It is an equivalence relation. 

( c) Not reflexive, Symmetric, Not antisymmetric, Not transitive. It is not an equivalence relation. 

11. Not an equivalence relation as R is not transitive. 

Let A = {1, 2}, B = {1, 2, 3}, and C = {3}. Note that A is related to B, and B is related to C, but A is not related to C. 

12. {{1, 5}, {2, 4}, {3}, {6}}. 

13. Each equivalence class of  this relation consist of the non-empty subsets of {1, 2, ...,100} that have the same greatest element. ( a) There are 100 equivalence classes, because there are 100 choices for the greatest element. So the cardinality of P is 100. ( b) {{1}} is an element of P. ( c) {{1, 2}, {2}}

is another element of P. 

14. One answer is {{0, 2, 4, 6,...}, {1}, {3}, {5},...}. 

15. {(6, 6), (1, 3), (4, 5), (5, 7)}. The set of the pairs is minimal that are needed to determine the entire original equivalence relation. 

16. R = {( a,  a), ( b,  b)} and R = {( a,  a), ( b,  b), ( a,  b), ( b,  a)}. 

There are only two partitions {{ a}, { b}} and {{ a,  b}} corresponding to the two equivalence relations. 

17. ( a) R is an equivalence relation since it is reflexive, symmetric, and transitive. The equivalence class of  x with respect to R is the set [ x]  = the set of words  y, such that  y has the same first R

letter as  x. There are 26 equivalence classes, one for each letter of the English alphabet. 

( b) R is reflexive and symmetric, but it is not transitive. Therefore, R is not an equivalence relation. 

( c) R is not reflexive but it is transitive and antisymmetric. It is not an equivalence relation, but it is a partial order. 

( e) R is reflexive, symmetric and transitive, and therefore an equivalence relation. There is an equivalence class for each natural number corresponding to bit strings with that number of

1s. 

18. Do yourself. 

19. Do yourself. 

20. Do yourself. 

21. The equivalence classes are: [1] = {1}; [2] = [3] = {2, 3}; [4] = [5] = [6] = {4, 5, 6}. 

22. ( a) False. For example, if A = {1, 2, 3} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} then [1] = {1, 2} has more elements than [3] = {3}. 
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( b) True

( c) False. The relation is symmetric but not transitive. For example, 3 = 5 and 5 = 3. But by property of transitivity we have 3 = 3, which is False. 

( d) True, since R is reflexive. R is antisymmetric. R is transitive. Therefore, R is a partial order. 

Since all elements are comparable, R is a total order. 

( e) False

( f) False. The relation is symmetric but not antisymmetric

( g) False

( h) ( a) True

( b) False

( c) False

( i) False. Consider the relation of congruence modulo 2. It is a relation on the infinite set Z, but it has only two equivalence classes. 

SOLVED PROBLEMS

Problem 1.  Let R be a relation on set A = { k, l, m, n}  defined by

  R = {( k, l), (m, l), (n, l), (l, l), (k, k), (m, k), (l, k), (n, k)} . 

 Find domain and range of relation R. 

Sol. The domain of relation R is

Dom (R) = { k, l, m, n} = A

The range of relation R is

RAN (R) = { k, l}. 

Problem 2.  Let R be a relation on set A = { 1, 2, 3, 4}  defined by

  R = {( 1, 1), (2, 2), (3, 3), (4, 4), (4, 3), (4, 2), (4, 1), (3, 2), (3, 1)} . 

 Find the matrix and directed graph of relation R. 

Sol. The matrix of relation R is a 4 × 4 matrix as shown in Fig. 22. 

1   2   3   4

1 L1 0 0 0O

2 0

M 1 0 0P

M  =  M

P

R

3 1 1 1 0

M

P

4 N1 1 1 1Q

 Fig. 22

The directed graph of relation R is as shown in Fig. 23. 

1

2

4

3

Fig. 23

RELATIONS

M-4.97

Problem 3.   Let R be a relation on set A = { 1, 2, 3, 4, 5} , whose matrix is shown in Fig. 24. 

 Find the directed graph of relation R. 

5

1

2

L 1 1 1 1 1

M

O

 0 0 0 0 0

M

PP

 M  =  1 1 0 0 0

 R

M

P

 0 0 0 0 0

M

P

NM 1 1 1 1 1 QP

3

4

Fig. 24

Fig. 25

Sol. The directed graph of relation R whose matrix M  is given is as shown in Fig. 25. 

R

Problem 4.  Let R be a relation on set A whose directed graph is as shown in Fig. 26. 

 Determine its matrix. 

1

2

4

3

Fig. 26

Sol. The matrix M  of the relation R whose directed graph is shown above is as shown in R

Fig. 27. 

1 2 3 4

1 L1 1 0 1O

2 M1 1 1 1P

M  =  M

P

R

3 0 1 1 1

M

P

4 N1 1 1 1Q

Fig. 27

Problem 5.  Let R be a relation on set A = { x, y, z}  defined by

  R = {( x, x), (y, y), (z, z), (x, z), (x, y), (y, z)} . 

 Write the relation as a table and also find its arrow diagram. 
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Sol. Relation R as a table shown in Fig. 28. 

 x

 y

 z

x

x

 x

×

×

×

 y

×

×

y

y

 z

×

z

z

Fig. 28

Fig. 29

The arrow diagram of relation R is shown in Fig. 29. 

Problem 6.   Consider a relation R whose directed graph is shown in Fig. 30. Determine its inverse R–1 and complement  R . 

a

b

d

c

Fig. 30. Directed Graph of R. 

Sol. The elements of relation R from the directed graph is

R = {( a, b), ( a, c), ( b, b), ( b, c), ( c, d), ( d, d), ( d, a), ( d, b)}

( i) The inverse of relation R is

R–1 = {( b, a), ( c, a), ( b, b), ( c, b), ( d, c), ( d, d), ( a, d), ( b, d)}. 

The directed graph of R–1 is as shown in Fig. 31. 

a

b

d

c

Fig. 31.  Directed Graph of R–1. 

( ii) The universal relation R × R on set { a, b, c, d} is

R × R = {( a, a), ( a, b), ( a, c), ( a, d), ( b, b), ( b, c), ( b, d), ( b, a), ( c, c), ( c, d), ( c, b), ( c, a), ( d, d), ( d, a), ( d, b), ( d, c)}. 

The complement of R is

R  = [( a, a), ( a, d), ( b, d), ( b, a), ( c, a), ( c, b), ( c, c), ( d, c)]. 
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The directed graph of R  is shown in Fig. 32. 

a

b

d

c

Fig. 32.  Directed Graph of R . 

Problem 7.  Consider a relation R from a set A to B whose matrix is shown in Fig. 33. 

 Determine its inverse R–1 and complement  R . 

L 1 0 0 1

M

O

 1 1 1 1 P

M = M

P

R 

 0 0 1 1

NM

P

 1 1 0 0 Q

Fig. 33

Sol. The elements of relation R is

R = {(1, 1), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 1), (4, 2)}

( i) The inverse of relation R is

R–1 = {(1, 1), (4, 1), (1, 2), (2, 2), (3, 2), (4, 2), (3, 3), (4, 3), (1, 4), (2, 4)}. 

For writing in the matrix form, transpose the original matrix  i.e., (Fig. 34.). 

L1 1 0 1O

0

M 1 0 1P

M –1 = M

P

R

0 1 1 0

NM

P

1 1 1 0Q

Fig. 34

( ii) The complement of relation R is taken by exchanging 0’s with 1’s and 1’s with 0’s. (Fig. 35). 

0

L 1 1 0O

0

M 0 0 0P

M  = M

P

R

1 1 0 0

M

P

0

N 0 1 1Q

Fig. 35

So, R  = {(1, 2), (1, 3), (3, 1), (3, 2), (4, 3), (4, 4)}. 

Problem 8.   Let R and S be two relation from A to B. Show that

( i) ( R ∩  S) –1 = R–1 ∩  S–1

( ii) ( R ∪  S) –1 = R–1 ∪  S–1. 

Sol. ( i) Let ( a, b) ∈ (R ∩ S)–1. So, we have ( b, a) ∈ (R ∩ S). Now ( b, a) ∈ R and ( b, a) ∈ S. This means ( a, b) ∈ R–1 and ( a, b) ∈ S–1. 
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Hence, ( a, b) ∈ R–1 ∩ S–1

...( i)

Conversely,  let  ( a, b)  ∈  R–1 ∩ S–1. So, we have ( a, b) ∈ R–1 and ( a, b) ∈ S–1. This means ( b, a) ∈ R and ( b, a) ∈ S. So, ( b, a) ∈ (R ∩ S). 

Hence, ( a, b) ∈ (R ∩ S)–1

...( ii)

Form ( i) and ( ii), we have

(R ∩ S)–1 = R–1 ∩ S–1

Hence proved. 

( ii) Let ( a, b) ∈ (R ∪ S)–1. So, we have ( b, a) ∈ (R ∪ S)

Now, ( b, a)   ∈ R or ( b, a) ∈ S. This means ( a, b) ∈ R–1 or ( a, b) ∈ S–1

Hence, ( a, b) ∈ R–1 ∪ S–1

...( i)

Conversely,  let  ( a, b)  ∈  R–1 ∪ S–1. So, we have ( a, b) ∈ R–1 or ( a, b) ∈ S–1. This means ( b, a)

∈ R or ( b, a) ∈ S. So, ( b, a) ∈ R ∪ S. 

Hence,      ( a, b) ∈ (R ∪ S)–1

...( ii)

From ( i) and ( ii), we have

(R ∪ S)–1 = R–1 ∪ S–1. 

Hence proved. 

Problem 9.   Let A = { k, l, m, n}

 Let

 R = {( k, k), (l, l), (m, m), (k, l), (k, m), (l, m), (m, n), (n, k)}

 Let

 S = {( n, k), (n, l), (n, m), (m, k), (m, l), (l, k), (k, k)} . 

 Find the composition ( i)  RoR ( ii)  SoS. 

Sol.  ( i) The composition RoR is shown in Fig. 36. 

k

k

k

 l

 l

 l

m

m

m

n

n

n

Fig. 36.  RoR. 

RoR = {( k, k),  ( k, l),  ( k, m),  ( k, n),  ( l, l), ( l, m), ( l, n), ( m, m), ( m, n), ( m, k), ( n, k), ( n, l), ( n, m)}

( ii) The composition SoS is shown in Fig. 37. 

k

k

k

 l

 l

 l

m

m

m

n

n

n

Fig. 37.  SoS. 

SoS = {( k, k), ( l, k), ( m, k), ( n, k), ( n, l)}
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Problem 10.  Give an example of relations R , R , R , R  and R  on A = { 4, 5, 6, 7, 8}

 1

 2

 3

 4

 5

 having property

( i)  R  is reflexive and transitive but not symmetric. 

 1

( ii)  R  is symmetric and antisymmetric. 

 2

( iii)  R  is antisymmetric but not reflexive. 

 3

( iv)  R  is neither symmetric nor antisymmetric. 

 4

( v)  R  is neither symmetric and asymmetric nor antisymmetric. 

 5

Sol. ( i) R  = {(4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (4, 5), (5, 6), (4, 6)}. 

1

( ii) R  = {(4, 4), (5, 5), (6, 6), (7, 7)}. 

2

( iii) R  = {(4, 4), (5, 5), (6, 6)}. 

3

( iv) R  = {(4, 4), (4, 3), (3, 4), (4, 2)}. 

4

( v) R  = {(4, 4), (4, 5), (5, 4), (4, 6)}. 

5

Problem 11.  Give an example of relations R , R , R and R  on A = { a, b, c, d}  having 1

 2

 3 

 4

 property

( i)  R  is irreflexive and antisymmetric. 

 1

( ii)  R  is asymmetric and antisymmetric. 

 2

( iii)  R  is asymmetric but R  

 –1 is symmetric. 

 3

 3 ∪  R3

( iv)  R  is transitive but R  

 –1 is not transitive. 

 4

 4 ∪  R4

Sol. ( i) R  = {( a, b), ( b, c), ( c, d), ( d, a)}

( ii) R  = {( a, a), ( b, b), ( c, d), ( b, d), ( a, d)}

1

2

( iii) R  = {( a, b), ( b, c), ( c, d), ( d, a)}

( iv) R  = {( a, c), ( d, d)}. 

3

4

Problem 12.   Give an example of a relation R on the set A = {4, 5, 6, 7} which have no property i.e., the relation R is not reflexive, irreflexive, symmetric, asymmetric, transitive and anti-symmetric. 

Sol. The relation R having no property is R = {(4, 4), (5, 5), (4, 5), (5, 4), (4, 7)}. 

Problem 13.  Give an example of a relation R on the set A = {5, 6, 7} which is reflexive, symmetric, transitive and anti-symmetric i.e., a relation having all these four properties. 

Sol. The relation R having all the above four properties is

R = {(5, 5), (6, 6), (7, 7)}. 

Problem 14.  Let A be a set of books. 

( i)  Let R  be a binary relation on A, such that ( a, b)  is in R  if book ‘a’ costs more and 1

 1

 contains fewer pages than book ‘b’. In general, is R  reflexive ? symmetric ? antisymmetric ? and 1

 transitive ? 

( ii)  Let R  is a binary relation on A, such that ( a, b)   is in R  if book ‘a’ costs more or 2

 2

 contains fewer pages than book ‘b’. In general is R  reflexive ? symmetric ? antisymmetric ? and 2

 transitive ? 

Sol. ( i) Reflexive. A book does not costs more from itself and does not contain fewer pages than itself. Hence, ( a, a) ∉ R . Therefore, the relation is not reflexive. 

1

Symmetric. If book a costs more and contains fewer pages than book  b, it implies ( a, b)

∈ R . But it is not possible that book  b  also costs more and contains fewer pages than book  a. 

1

Hence ( b, a) ∉ R . Therefore, relation is not symmetric. 

1
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Antisymmetric. There is no such condition in the relation that ( a, b) ∈ R  and ( b, a) 1

∈ R1

such that  a ≠  b. Hence, relation is antisymmetric. 

Transitive. Let us assume that ( a, b) ∈ R  and ( b, c) 

 i.e.,  book a costs more and

1

∈ R1

contains fewer pages than book  b and book  b costs more and contains fewer pages than book  c. So, it is sure that book  a costs more and contains fewer pages than book  c i.e., ( a, c) ∈ R . Therefore, 1

the relation is transitive. 

( ii) Reflexive. A  book   a  doesn’t costs more or contains fewer pages than itself. Hence ( a, a) ∉ R . Therefore, the relation is not reflexive. 

2

Symmetric. Let ( a, b) ∈ R   i.e.,  book  a costs more or contains fewer pages than book  b. 

2

But it does not imply that book  b  costs more or contains fewer pages than book  c. Hence, ( b, a) ∉ R . Therefore, relation is not always symmetric. 

1

Antisymmetric. Sometimes,  there  exists  condition  that ( a, b) ∈ R and ( b, a) ∈ R but a ≠  b.  Hence, the relation is not antisymmetric. 

Transitive. Let ( a, b) ∈ R and ( b, c) ∈ R  i.e.,  book  a costs more than  b and  b contains fewer pages than book  c. So, we may have book  a that costs less or does not contains fewer pages than book  c. Hence, the relation is not always transitive. 

Problem 15.  Determine whether the relation R = {( a, b) ∈  R, a – b ≤  1 on the set I  ( set of

 +

 + ve integers)}  is

( i)  reflexive

( ii)  symmetric

( iii)  transitive

( iv)  antisymmetric

( v)  a partial order relation

( vi)  an equivalence relation. 

Sol. ( i) Reflexive. The relation is not reflexive because  a –  a ≤ 1, for every  a ∈ I . So ( a, a)

+ 

∈ R for every  a ∈ I . 

+

( ii) Symmetric. The relation is not symmetric because whenever  a –  b ≤ 1, we have b –  a  ≤| 1. So, for ( a, b) ∈ R, we also have ( b, a) ∈ R. 

( iii) Transitive. The relation is  not transitive because when some  a –  b ≤ 1 and ( b – c) ≤ 1

we have  a –  c > 1  e.g., (5, 4) ∈ R and (4, 3) ∈ R but (5, 3) ∉ R. 

( iv) Antisymmetric. The relation is not antisymmetric because whenever  a –  b ≤ 1 and b –  a < 1, we have  a ≠  b  e.g., (1, 2) ∈ R and (2, 1) ∈ R but 1 ≠ 2. 

( v) Partial Order Relation. The relation is not partial order relation as it is reflexive but not transitive and anti-symmetric. 

( vi) Equivalence Relation. The relation is not an equivalence relation as it is reflexive and symmetric but not transitive. 

Problem 16.  Determine whether the relation

 R = {( a, b) ∈   R  :   a + b   is even} . On the set I  (set of +ve integers) is ( i)   reflexive

 +

( ii)  symmetric ( iii)  transitive ( iv)  antisymmetric ( v)  a partial order relation ( vi)  an equivalence relation. 

Sol. ( i) Reflexive. The relation is reflexive because when a number whether it is even or odd added to itself, it always is even. So, for every  a ∈ I  ( a, a) 

+

∈ R. 

( ii) Symmetric. The relation is symmetric because whenever  a +  b is even,  b +  a is also even. So, for each ( a, b) ∈ R we have ( b, a) ∈ R. 

( iii) Transitive. The relation is transitive because whenever  a +  b is even  b +  c is even, we have  a +  c is even. So, whenever ( a, b) ∈ R and ( b, c) ∈ R we have ( a, c) ∈ R. 

( iv) Antisymmetric. The relation is not anti-symmetric because we have elements ( a, b) ∈ R and ( b, a) ∈ R such that  a ≠  b e.g., (2, 4) ∈ R and (4, 2) ∈ R but 2 ≠ 4. 
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( v) Partial Order Relation. The relation is not a partial order relation as it is reflexive and transitive but not antisymmetric. 

( vi) Equivalence Relation. The relation is an equivalence relation as it is reflexive, symmetric and transitive also. 

Problem 17.  Let R be the relation on set A = { a, b, c, d }  defined by R = [( a, b), (b, c), (d, c), (d, a), (a, d), (d, d)]

 Determine ( i)  Reflexive closure of R

( ii)  Symmetric closure of R

( iii)  Transitive closure of R. 

Sol. ( i) The smallest relation R having the reflexive property is

R ∪ Δ = {( a, a), ( b, b), ( c, c), ( d, d), ( a, b), ( b, c), ( d, c), ( d, a), ( a, d)}

( ii) The smallest relation R having symmetric property is

R ∪ R–1 = {( a, b), ( b, a), ( b, c), ( c, b), ( d, c), ( c, d), ( d, a), ( a, d), ( d, d)}

( iii) To find the transitive closure of R, draw the directed graph of R as shown in Fig. 38. 

a

b

c

d

Fig. 38.  Directed graph of R. 

Now, from vertex  a, we have paths to the vertices  a, b, c and  d. So, the ordered pairs included in R* are ( a, a) ( a, b) ( a, c) and ( a, d). From vertex  b, we have paths to vertex  c. So, ordered pairs included in R* are ( b, c). From vertex  c, we have no paths to any other vertex. 

Hence, no ordered pair is included in R*. Similarly, from vertex  d, we have paths to vertices a, b, c and  d. So, the ordered pairs included in R* are ( d, a), ( d, b), ( d, c) and ( d, d). 

Therefore, transitive closure of R is

R* = {( a, a), ( a, b), ( a, c), ( a, d), ( b, c), ( d, a), ( d, b), ( d, c), ( d, d)}. 

Problem 18.  Determine whether the relation R on the set A of all triangles in the plane defined by

 R = { (a, b) : triangle  a is similar to triangle b}  is an equivalence relation. 

Sol. Reflexive. Triangle  a is similar to itself. Hence ( a, a) ∈ R for every  a ∈ A. Therefore, R is reflexive. 

Symmetric. If triangle  a is similar to  b, then it is sure that triangle  b is also similar to  a. 

Hence, whenever ( a, b) ∈ R, we have ( b, a) also belong to R. So, R is symmetric. 

Transitive. If triangle  a is similar to  b and triangle  b is similar to  c. 

We have, triangle  a similar to  c. 

Hence, whenever ( a, b) ∈ R and ( b, c) ∈ R, we have ( a, c) ∈ R. 

Therefore, R is transitive. 

So, being reflexive, symmetric and transitive ; the relation R is an equivalence relation. 
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Problem 19.  Determine whether the relation S = {( a, b) : a ≥  b}  on the set R of real numbers is an equivalence relation. 

Sol. Reflexive. We have ( a, a) ∈ S, for every  a ∈ R because  a =  a for every  a ∈ R. Hence, the relation is reflexive. 

Symmetric. Let ( a, b) ∈ S. So, we have  a ≥  b but for this it is not possible that  b ≥  a. 

Hence, ( b, a) ∉ S. Therefore, relation is not symmetric. 

Transitive. Let ( a, b) ∈ S and ( b, c) ∈ S. So, when we have  a ≥  b and  b ≥  c, it is sure that a ≥  c. Hence, ( a, c) ∈ S. Therefore, the relation is transitive. 

So, being the relation reflexive and transitive but not symmetric, it is not an equivalence

relation. 

Problem 20.  Prove that the relation R “a –  b  is divisible by 5” ∀  a,  b ∈  I  (a set of + ve

 +

 integers) is an equivalence relation. 

Sol. Reflexive. The relation is reflexive because  a –  a is divisible by 5 for every  a ∈ I . 

+

Symmetric. Let ( a, b) ∈ R. 

If  a –  b is divisible by 5 then it is sure that  b –  a is also divisible by 5. Hence, ( b, a) ∈ R. 

Therefore, the relation is symmetric. 

Transitive. Let ( a, b) ∈ R and ( b, c) ∈ R

 i.e.,  a –  b is divisible by 5. 

 b –  c is divisible by 5. 

It implies  a –  c is divisible by 5. 

Hence, ( a, c) ∈ R. 

Therefore, the relation is transitive. 

So, being reflexive, symmetric and transitive, the relation “a – b is divisible by 5” is an equivalence relation. Hence proved. 

Problem 21.  If R and S are equivalence relations on the set A. Show that following are equivalence relations

( i)  R ∩  S

( ii)  R ∪  S. 

Sol. ( i) Reflexive. The relations R and S are equivalence relations. We have ( a, a) ∈ R and ( a, a) ∈ S, for every  a ∈ A. So, ( a, a) ∈ R ∩ S for every  a ∈ A. Therefore, R ∩ S is reflexive. 

Symmetric. Let ( a, b) ∈ R ∩ S

So, we have (



 a, b) ∈ R also ( b, a) ∈ R

(∵ R is symmetric)

Similarly, we have ( a, b) ∈ S



Also

( b, a) ∈ S

(∵ S is symmetric)

Thus, from above, we conclude that ( b, a) ∈ R ∩ S

Therefore, R ∩ S is symmetric. 

Transitive. Let ( a, b) ∈ R ∩ S and ( b, c) ∈ R ∩ S. 

So, we have ( a, b) ∈ R and ( b, c) ∈ R



Also, 

( a, c) ∈ R

(∵ R is transitive)

Similarly, we have ( a, b) ∈ S and ( b, c) ∈ S



Also, 

( a, c) ∈ S

(∵ S is transitive)

Thus, from above we conclude that ( a, c) ∈ R ∩ S. 
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Therefore, R ∩ S is transitive. 

So, being reflexive, symmetric and transitive, R ∩ S is an equivalence relation. 

( ii) Reflexive. We have ( a, a) ∈ R and ( a, a) ∈ S, for every  a ∈ A. Hence, ( a, a) ∈ R  ∪ S. 

Therefore, the R ∪ S is reflexive. 

Symmetric. Let ( a, b) ∈ R ∪ S. 

So, we have 

(

 a, b) ∈ R ⇒ ( b, a) ∈ R

(∵ R is symmetric)

or

( a, b) ∈ S ⇒ ( b, a) ∈ S

(∵ S is symmetric)

Hence, from above we conclude that ( b, a) ∈ R ∪ S

Therefore, R ∪ S is symmetric. 

Transitive. Let  ( a, b) ∈ R ∪ S and ( b, c) ∈ R ∪ S. 

So, we have 

( a, b) ∈ R and ( b, c) ∈ R ⇒

( a, c) ∈ R

(∵ R is transitive)

or

( a, b) ∈ S and ( b, c) ∈ S ⇒

( a, c) ∈ S

(∵ S is transitive)

Hence, from above we conclude that ( a, c) ∈ R ∪ S

Therefore, R ∪ S is transitive. 

So, relation R ∪ S being reflexive, symmetric and transitive is an equivalence relation. 

Problem 22.   Let S be a set of size n. Show that:

 (i) The number of relations on S is  2n2

 (ii) The number of reflexive relations on S is 2n(n – 1)

 1 n(n +  1)

 (iii) The number of symmetric relations on S is  2 2

Sol. ( i) A relation on set S is a set of ordered pairs. There exists two choices for each ordered pair the relation holds for that pair or it does not. Since there are  n 2 ordered pairs, there are 2 2

 n

choices. Hence, there are 2 2

 n  relations. 

( ii) The ordered pairs can be represented by putting dots in an  n ×  n table where each dot can be changed to a tick or a cross depending on whether or not the relation holds in that case. For a reflexive relation the diagonal of this table will have to consist of all X’s leaving


 n 2 –  n dots for which there is a choice of a tick or a cross. Thus, the number of reflexive relations is 2 n( n – 1). 

( iii) For a symmetric relation, the table of ticks and crosses has to be symmetric about the diagonal. So we are free to choose a tick or a cross for the dots above the diagonal and also those on the diagonal. But having done so there is no more choice available below the diagonal. This gives 1

1

 n( n – 1) positions above the diagonal and  n positions on the diagonal, giving a total of    n( n + 1) 2

2

1 n(n + 1 )

positions in total and hence 22

symmetric relations. 

Problem 23.  Let A = { a, b, c, d, e}  and

 R = {( a, b), (a, a), (b, a), (b, b), (c, c), (d, d), (d, e), (e, d), (e, e)}

 S = {( a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a), (d, e), (e, d)}

 be equivalence relations on A. Determine the partitions corresponding to following (if it is an equivalence relation). 

( i)  R–1

( ii)  R ∪  S

( iii)  R ∩  S. 
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Sol. ( i) The relation R–1 is

R–1 = {( b, a), ( a, a), ( a, b), ( b, b), ( c, c), ( d, d), ( e, d), ( d, e), ( e, e)}

The partition corresponding R–1 is

P = {{ a, b}, { c}, { d, e}}. 

( ii) The relation R ∪ S is

R ∪ S = {( a, a), ( b, b), ( c, c), ( d, d), ( e, e), ( a, b), ( b, a), ( a, c), ( c, a), ( e, d), ( d, e)}

The partition corresponding to  R ∪ S is P = {{ a,  b,  c}, { d,  e}}

( iii) The relation R ∩ S is

    R ∩ S = {( a, a), ( b, b), ( c, c), ( d, d), ( e, e), ( d, e), ( e, d)}

The partition corresponding to R ∩ S is

   P = {{ a}, { b}, { c}, { d, e}}. 

Problem 24.  Let R is an equivalence relation on the set A = { p, q, r, s}  defined by partition P = {{ p, s} , { q, r}} . Determine the elements of equivalence relation and also find the equivalence classes of R. 

Sol. The elements of equivalence relation defined by partition P is

R = {( p, p), ( s, s), ( p, s), ( s, p), ( q, q), ( r, r), ( q, r), ( r, q)}

The equivalence classes of R are

[ p] = [ s] = { p, s}

[ q] = [ r] = { q,  r}. 

Problem 25.  Let R is an equivalence relation on the set A = { 7, 8, 9, 10}  defined by partition P = {( 7), (8), (9), (10)} . Determine the elements of equivalence relation and also find the equivalence classes of R. 

Sol. The elements of equivalence relation defined by partition P is

R = {(7, 7), (8, 8), (9, 9), (10, 10)}. 

The equivalence classes of R are

[7] = {7}, 

[8] = {8}

[9] = {9}, 

[10] = {10}. 

Problem 26.   Let A = { a, b, c, d, e} . Determine the 10 different partitions of A into 4 subsets. 

Sol.  The 10 different partition of A into 4 subsets are as follows :

( i) P  = [{ a}, { b}, { c}, { d,  e}]

( ii)     P  = [{ a}, { b}, { c,  e}, { d}]

1

2

( iii) P  = [{ a}, { b,  e}, { c}, { d}]

( iv)     P  = [{ a,  e}, { b}, { c}, { d}]

3

4

( v) P  = [{ a}, { b}, { c,  d}, { e}]

( vi)     P  = [{ a}, { b,  d}, { c}, { e}]

5

6

( vii) P  = [{ a,  d}, { b}, { c}, { e}]

( viii)     P  = [{ a}, { b,  c}, { d}, { e}]

7

8

( ix) P  = [{ a,  c}, { b}, { d}, { e}]

( x) P  = [{ a,  b}, { c}, { d}, { e}]

9

10

Problem 27.  Let A = { 1, 2, 3, 4}  and R = {( 2, 1), ( 2, 3), ( 3, 2), ( 4, 3)} . Find the transitive closure of R using Warshall’s algo. 
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Sol. The digraph of relation R and its corresponding matrix M  is shown in Fig. 39. 

R

1

2

1 2 3 4

1 0

L 0 0 0O

2 M1 0 1 0P

M  =  M

P

R

3 0 1 0 0

M

P

4

3

4 0

N 0 1 0Q

Fig. 39.  Digraph of relation R and its matrix M . 

R

The value of  n = |A| = 4. Thus, we have to find the Warshall sets  w ,  w ,  w ,  w ,  w . 

0

1

2

3

4

The first set  w  is same as M  and is shown below:

0

R

0

L 0 0 0

M

O

1 0 1 0P

   w  = M  = M

P

0

R

0 1 0 0

M

P

0

N 0 1 0Q

Now to find  w  from  w , we have row number 2 from column 1 in  w . But there are no 1

0

0

column numbers for row 1 in  w . Thus, no new entries of 1 are added in  w . So,  w  is same as  w 0

1

1

0

and is shown below :

0

L 0 0 0

M

O

1 0 1 0P

   w  = M

P

1

0 1 0 0

M

P

0

N 0 1 0Q

To find  w  from  w , we have row number 3 for column 2 and column numbers 1 and 3 for 2

1

row 2. Thus, the new entries in  w  are (3, 1) and (3, 3). Thus,  w  is shown as follows : 2

2

0

L 0 0 0

M

O

1 0 1 0P

   w  = M

P

2

1 1 1 0

M

P

0

N 0 1 0Q

Similarly,  w  is obtained from  w . Here we have row number 2, 3 and 4 for column 3 and 3

2

column numbers 1, 2 and 3 for row 3. Thus, the possible new entries in  w  are (2, 1), (2, 2), (2, 3), 3

(3, 1), (3, 2), (3, 3), (4, 1), (4, 2) and (4, 3). Thus,  w  is as follows :

3

0

L 0 0 0

M

O

1 1 1 0P

   w  = M

P

3

1 1 1 0

NM

P

1 1 1 0Q

Similarly,  w  can be obtained from  w . But there are no new entries of 1’s in  w  as there is 4

3

4

row number for column 4, where there is 1 in  w . Hence, 

3

M

=  w

R∞  =  w 4

3

which is the transitive closure of R. 

MULTIPLE CHOICE QUESTIONS

1. A relation R is defined on the set of integers as  x R y iff ( x +  y) is even. Which of the following statements is true? 

( a) R is not an equivalence relation

( b) R is an equivalence relation having 1 equivalence class
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( c) R is an equivalence relation having 2 equivalence classes

( d) R is an equivalence relation having 3 equivalence classes

2. Consider the following relations:

R1: ( a,  b) iff ( a +  b) is even over the set of integers

R2: ( a,  b) iff ( a +  b) is odd over the set of integers

R3: ( a,  b) iff  a .  b > 0 over the set of non-zero rational numbers R4: ( a,  b) iff  a –  b/2 over the set of natural numbers

Which of the following statements is correct? 

( a) R  and R  are equivalence relations, R  and R  are not

1

2

3

4

( b) R  and R  are equivalence relations, R  and R  are not

1

3

2

4

( c) R  and R  are equivalence relations, R  and R  are not

1

4

2

3

( d) R , R , R  and R  are all equivalence relations

1

2

3

4

3. The binary relation S = 0 (empty set) on set A = {1, 2, 3} is

( a) Neither reflexive nor symmetric

( b) Symmetric and reflexive

( c) Transitive and reflexive

( d) Transitive and symmetric

4. Let R and S be any two equivalence relations on a non-empty set A. Which one of the following statements is TRUE? 

( a) R ∪ S, R ∩ S are both equivalence relations. 

( b) R ∪ S is an equivalence relation. 

( c) R ∩ S is an equivalence relation. 

( d) Neither R ∪ S nor R ∩ S is an equivalence relation

5. A relation R is defined on ordered pairs of integers as follows: ( x,  y) R ( u,  v) if  x <  u and  y >  v. Then R is:

( a) Neither a Partial Order nor an Equivalence Relation

( b) An Equivalence Relation

( c) A Total Order

( d) A Partial Order but not a Total Order

6. The number of binary relations on a set with  n elements is:

( a)  n 2

( b) 2 n

( c) 2 n 2

( d) None of the above

7. Let R be a non-empty relation on a collection of sets defined by A R B if and only if A ∩ B = φ. Then pick the true statement

( a) R is reflexive and transitive

( b) R is symmetric and not transitive

( c) R is an equivalence relation

( d) R is not reflexive and not symmetric

8. Let R be a symmetric and transitive relation on a set A. Then

( a) R is reflexive and hence an equivalence relation. 

( b) R is reflexive and hence a partial order. 

( c) R is not reflexive and hence not an equivalent relation

( d) None of the above. 

9. Which of the following relations on the set A= {1, 2, 3, 4} is an equivalence as well as partial order relation? 

( a) R  = {(1, 1), (2, 2), (3, 3), (4, 4)}

( b) R  = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)}

1

2

( c) R  = 

= {(1, 1), (2, 2), (1, 2), (2, 1)}

3

φ

( d) R4
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10. Let R is a relation on the set of +ve integers defined by  x R y iff 2 x + 2 y = 20. 

Which of the following is the domain of R? 

( a) {2, 4, 6, 8, 10}

( b) {1, 3, 5, 7, 9}

( c) {1, 2, 3, 4, 5, 6, 7, 8, 9}

( d) {1, 2, 3, 7, 8, 9}

11. If a set A has  n elements, how many relations are there from A to A? 

( a)  n

( b)  n 2

( c) 2 n

( d) 2 n 2

12. Let  a = { a,  b,  c,  d,  e}. Which of the following is a partition? 

( a) {{ a,  b}, { c}, { d,  e}}

( b) {{ a,  b}, { b,  c}, { c,  d}, { d,  e}}

( c) {{ a,  b}, { d}, { e}}

( d) {{ a,  b,  c}, { c,  d,  e}}

13. Which of the following relation on the set A = {4, 5, 6, 7} have no property i.e. the relation is not reflexive, symmetric, transitive and antisymmetric. 

( a) {(4, 4), (5, 5), (6, 6), (7, 7)}

( b) {(4, 4), (5, 5), (4, 5), (5, 4)}

( c) {(4, 4), (5, 5), (4, 5), (5, 4), (4, 7)}

( d) {(4, 4), (4, 5), (5, 4)}

14. A relation R is defined on the set of +  ve integers as  x R y iff ( x +  y) is even. Which of the following statements is TRUE? 

( a) R is not an equivalence relation. 

( b) R is an equivalence relation having One equivalence class. 

( c) R is an equivalence relation having Two equivalence classes. 

( d) R is an equivalence relation having Three equivalence classes. 

15. A partial ordered relation is transitive, reflexive and

( a) Antisymmetric

(b) Asymmetric

( c) Antireflexive

( d) Both ( a) and ( b)

16. Let N = {1, 2, 3, ....} be ordered by divisibility, which of the following subset is totally ordered, ( a) (2, 6, 24)

( b) (3, 5, 15)

( c) (2, 9, 16)

( d) (4, 15, 30)

17. For a relation R on set A, let M  = [ m ],  m  = 1 if  a  R a   and 0 otherwise, be the matrix of R

 ij

 ij

 i 

 j

relation R. If (M )2 = M

R

R  then R is, 

( a) Symmetric

( b) Transitive

( c) Antisymmetric

( d) Reflexive

18. Let A = Z+, be the set of positive integers, and R be the relation on A defined by  a  R  b if and only if there exist a  k ∈ Z+ such that  a =  bk. Which one of the following belongs to R? 

( a) (8, 128)

( b) (16, 256)

( c) (11, 3)

( d) (169, 13)

19. The relation {(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)} is ( a) Reflexive

( b) Transitive

( c) Symmetric

( d) Asymmetric

20. A partial order relation is reflexive, antisymmetric and

( a) Transitive

( b) Symmetric

( c) Asymmetric

( d) Both ( a) and ( b)

21. The number of distinct relations on a set of 3 elements is:

( a) 8

( b) 9

( c) 18

( d) 512

22. Transitivity and irreflexive imply:

( a) Symmetric

( b) Reflexive

( c) Irreflexive

( d) Asymmetric
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23. Find the number of relations from A = {cat, dog, rat} to B = {male, female}

( a) 64

( b) 6

( c) 32

( d) 15

24. If R is a relation “Less Than” from A = {1, 2, 3, 4} to B = {1, 3, 5} then RoR–1 is ( a) {(3, 3), (3, 4), (3, 5)}

( b) {(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)}

( c) {(3, 3), (3, 5), (5, 3), (5, 5)}

( d) {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)}

ANSWERS

1. 

( c)

2. ( b)

3. ( d)

4. ( a)

5. ( a)

6. 

( c)

7. ( b)

8. ( d)

9. ( a)

10. ( c)

11. ( d)

12. ( a)

13. ( c)

14. ( c)

15. ( a)

16. ( a)

17. ( b)

18. ( d)

19. ( b)

20. ( a)

21. ( d)

22. ( d)

23. ( a)

24. ( c)

REVIEW QUESTIONS

1. What is relation? Give example. 

2. What is binary relation? Give example. 

3. Explain domain and range of a relation by giving example. 

4. What is complement of a relation? Give example. 

5. What is inverse of a relation? Give example. 

6. Explain the various representations of relations by giving examples. 

7. Explain composition of relations by giving examples. 

8. Explain path in relations with the help of an example. 

9. Explain composition of paths by giving examples. 

10. Explain composition of relations with the help of examples. 

11. Explain representation of relation in computer by giving example. 

12. Explain various properties of relations by giving examples. 

13. Explain closure properties of relations by giving examples. 

14. Explain Worshall’s algorithm to find transitive closure of a relation. 

15. What is equivalence relation? Explain by giving example. 

16. What is partial order relation? Give example. 

17. What is total order relation? Give example. 

18. What is partition? Give example. 

19. What is equivalence class? Give example. 

20. What is circular relation? Give example. 

CHAPTER END PROBLEMS

1. R is a relation defined on S in precisely the following cases:

 b R b;  b R c;  c R b;  c R c;  c R d;  d R a. 

( i) Draw the relationship digraph for R on S. 

( ii) The relation R is not reflexive. Which minimal set of pairs should be added to R to make it reflexive? 
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( iii) The relation R is not symmetric. Which minimal set of pairs should be added to R to make it symmetric? 

( iv) The relation R is not transitive. Which minimal set of pairs should be added to R to make it transitive? 

( v) Is the relation R anti-symmetric? Justify your answer. 

2. Show which of the properties i.e., Reflexive, symmetric and transitive the following relations possess:

( a)  x <  y on the set of integers. 

( b) The relation {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)} on the set {1, 2, 3, 4}

( c)  x R y ↔  x =  yn for some  n ∈ N on the set N. 

( d)  x R y ↔ | x –  y| < 3

( e)  x R y ↔  x –  y is even, defined on the set Z. 

3. Let S = {1, 2, 3} and let R = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}. Show that R is an equivalence relation and find its equivalence classes. 

4. Show that  x ∈ [ y] ↔ [ x] = [ y]. 

5. Show that, for all  x,  y ∈ S, either [ x] ∩ [ y] = φ or [ x] = [ y]. 

6. Show which of the properties i.e. Reflexive, symmetric and transitive the following relations possess :

( a) Mother-of

( b) Would-recognize-picture-of

( c) Has-ever-been-married-to

( d) Ancestor-of

( e) Hangs-out-with

( f) Less-than-or-equal-to

7. For the following sets, state whether or not it is a partition of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

( a) {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}

( b) {φ, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}

( c) {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

( d) {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}

8. For each of the following relations, state whether it is a partial order (that is not also total), a total order, or neither. Justify your answer. 

( a) Divisible By, defined on the natural numbers. ( x,  y) ∈ Divisible by iff  x is evenly divisible by  y. 

( b) Less Than or Equal defined on ordered pairs of natural numbers. ( a,  b) ≤ ( x,  y) iff  a ≤  x or ( a =  x and  b ≤  y). 

( c) The relation defined by the following Boolean matrix:

1

1

1

1

1

1

1

1

9. What is the reflexive transitive closure R* of the relation

R = {( a,  b), ( a,  c), ( a,  d), ( d,  c), ( d,  e)}. Draw a directed graph representing R*. 

10. For each of the following relations R, over some domain D, compute the reflexive, symmetric, transitive closure R′. Try to think of a simple descriptive name for the new relation R′. Since R′

must be an equivalence relation, describe the partition that R induces on D. 
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( a) Let D be the set of 20 states in INDIA. ∀ xy,  x R y iff  x shares a boundary with  y. 

( b) Let D be the natural numbers. ∀ xy,  x R y iff  y =  x + 3. 

( c) Let D be the set of strings containing no symbol except a. ∀ xy,  x R y iff  y =  xa. ( i.  e., if  y equals  x concatenated with ( a). 

11. Consider an infinite rectangular grid (like an infinite sheet of graph paper). Let S be the set of intersection points on the grid. Let each point in S be represented as a pair of ( x,  y) coordinates where adjacent points differ in one coordinate by exactly 1 and coordinates increase (as is standard) as you move up and to the right. 

( a) Let R be the following relation on S: ∀( x ,  y )( x ,  y ), ( x ,   y )R( x ,   y ) iff  x =   x + 1 and  y =  y + 1. 

1

1

2

2

1

1

2

2

2 

1 

2 

1 

Let R′ be the reflexive, symmetric, transitive closure of R. Describe in English the partition P

that R′ induces on S. What is the cardinality of P? 

( b) Let R be the following relation on S: ∀( x ,  y ), ( x ,   y ), ( x ,   y ) R( x ,   y )  iff ( x =  x + 1 and  y =  y + 1) 1

1

2

2

1

1

2

2

2 

1 

2 

1

or ( x =  x – 1 and  y =  y + 1). Let R

2 

1 

2 

1 

′ be the reflexive, symmetric, transitive closure of R. Describe

in English the partition P that R′ induces on S. What is the cardinality of P? 

( c) Let R be the following relation on S: ∀( x ,  y ), ( x ,  y ), ( x ,  y ) R( x ,  y ) iff ( x ,   y ) is reachable from 1

1

2

2

1

1

2

2

2

2

( x ,   y ) by moving two squares in any one of the four directions and then one square in a 1

1

perpendicular direction. Let R′ be the reflexive, symmetric, transitive closure of R. Describe in English the partition P that R′ induces on S. What is the cardinality of P? 

12. Is the transitive closure of the symmetric closure of a binary relation necessarily reflexive? Prove it or give a counterexample. 

13. Give an example of a binary relation that is not reflexive but has a transitive closure that is reflexive. 

14. Consider the partition P = {{A, C, E}, {B}, {D}} of the set {A, B, C, D, E}. Draw the matrix of the equivalence relation corresponding to P. 

15. Determine each of the reflexive, symmetric and transitive closures of the relation  R = {( a,  a), ( b,  b), ( c,  c), ( a,  c), ( a,  d), ( b,  d), ( c,  a), ( d,  a)} on the set  A = { a,  b,  c,  d}. 

16. A relation  R ⊆ Z × Z on the set of integers Z is given by  xRy  if and only if  x 2 –  y 2 is divisible by 3. Show that  R is an equivalence relation and determine the corresponding partition of Z into distinct equivalence classes. 

17. List all the relations on a set A  = {1, 2, 3} that satisfy the following properties: ( a) reflexive, symmetric and do not contain (1, 2); 

( b) transitive, symmetric and reflexive; 

( c) antisymmetric, irreflexive and contain (1, 2) and (2, 3); 

( d) irreflexive and transitive. 

18. Find all possible partitions of a set A  = {1, 2, 3, 4} with exactly two parts and give the corresponding equivalence relations on set A. 

19. Prove or disprove each of the following propositions. 

( a) If R  ⊆ A  ×   A is symmetric, then the relation A × A  –   R is antisymmetric. 

( b) If R  ⊆ A  ×   A is reflexive, then A × A – R is irreflexive. 

( c) If R  ⊆ A  ×   A is irreflexive, then R2 is irreflexive. 

20. Suppose R  ⊆ A × B   is a relation from A   to B and S, T ⊆ B × C are relations from B to C. Prove or disprove that R  o (S  ∩ T) = (R  o  S) ∩ (R  o T). 

21. A = {(1, 16), (2, 4), (– 4, – 8), (4, 64), (1, 5), (3, 6), (1, 2), (6, 30)}, R is defined on A as follows: for all ( a,  b), ( c,  d) ∈ A, ( a,  b) R ( c,  d) ⇔  ad = bc. 

Draw a digraph representing R:

( a) Is R reflexive? 

( b) Is R symmetric? 

( c) Is R transitive? 

If not find the transitive closure of R:
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If they exist, list the distinct equivalence classes of R (union the transitive closure elements if needed). 

22. Consider the relation R ⊆ A × A, defined as R = {( x,  y) |  x is a divisor of  y}, where A = {1, 2, 3, 4, 5, 6}. 

( a) Write down the relation R as a set of ordered pairs. 

( b) Draw the directed graph representation of the relation R. 

( c) Give the matrix representation of R. 

( d) Specify if the relation R has each of the following properties: reflexive, symmetric, antisymmetric and transitive. 

23. Let R , R , and R  be binary relations on 

1

2

3

∇ defined as follows:

( i) R  = { ( x,  y) |  x 

1

∈ ∧ ∧  x >  y} :

( ii) R  = { ( x,  y) |  y 

2

∈ ∧ ∧  x <  y 2}

( iii) R  = { ( x,  y) |  x 2 +  y 2 

3

≠ 25}

For each relation, answer the following questions:

( a) Write down the domain and range of the relation; 

( b) Write down the inverse of the relation; 

( c) Is the relation reflexive, symmetric, and/or transitive? 

( d) Is the relation an equivalence relation? 

( e) Is the relation many-to-one, one-to-many, one-to-one, or many-to-many? 

( f) Is the relation a function? 

( g) Is the relation onto ∧ ? onto ∇ ? 

( h) Sketch the graph of the relation in ∇2. 

Note that although relations R and R  define that one of our variables must be an integer, they do 1 

2

not define the other variable. Further, relation R  does not define either variable. In all three 3

cases, we assume that any undefined variables must be real numbers. 

24. Let R , R , and R  be binary relations on H, the set of human beings, defined as follows: 1

2

3

( i) R  = {( h ,  h ) |  h  is the sister of  h }

1

1

2

1

2

( ii) R  = {( h ,  h ) |  h  is the son of  h }

2

1

2

1

2

( iii) R  = {( h ,  h ) |  h  is the cousin of  h }

3

1

2

1

2

For each relation, answer the following questions:

( a) Write down the domain and range of the relation; 

( b) Write down the inverse of the relation; 

( c) Is the relation reflexive, symmetric, and/or transitive? 

( d) Is the relation an equivalence relation? 

( e) Is the relation many-to-one, one-to-many, one-to-one, or many-to-many? 

( f) Is the relation a function? 

( g) Is the relation onto H? 

25. Let A = {1, 2, 3} and B = {2, 3, 4} and define the relations R  and R  from A to B as follows: 1

2

R  = {( x,  y) |  x +  y is even} : R  = {( x,  y) |  x   y is odd}

1

2

( i) List all of the elements of A × B, R , and R . What are R  

and R  

? 

1

2

1 ∩ R2

1 ∪ R2

( ii) Prove or disprove: Whether R and R have reflexive, symmetric, and transitive properties of 1 

2 

relations. 

( iii) Are R  and R  functions? 

1

2

26. Let R be the relation of congruence modulo 7. Which of the following equivalence classes are equal? 

[35], [3], [– 7], [12], [0], [– 2], [17]

27. Let T  be a relation on the set of all humans defined as follows: T  = {( h ,  h ) |  h  is older than  h }

1

1

1

2

1

2

( i) Write down the domain and range of T . 

1
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( ii) Is T  reflexive, symmetric, and/or transitive? For each property, if the property is true, give a 1

brief explanation why. If the property is false, demonstrate why? 

( iii) Is T  an equivalence relation? If the property is true, give a brief explanation why? If the 1

property is false, demonstrate why? 

28. Consider the following relations:

( a)  a R  b iff  a = 2* b

( b)  a R  b iff  a mod 3 =  b mod 3

( c)  a R  b iff  a and  b are both prime or both non-prime. 

Determine the following:

( i) List ordered pairs in the relations. 

( ii) Determine whether the relations are reflexive, symmetric, and transitive. 

( iii) Determine whether they are equivalence relations. If so, show the equivalence classes. 

29. Let A = { a,   b,  c} and B =  {1, 2, 3}, and let R = {( a, 2), ( a, 3), ( b, 1), ( b, 3), ( c, 1)}. 

( a) Give the diagram and matrix representations of R. 

( b) Find R  and R–1, and state their types. 

( c) Find (R )–1 and state its type. 

30. Let A = {1, 2, 3, 4}, B = { a,  b,  c,  d} and C = { x,  y,  z}, and let R =  {(1,  a), (2,  d), (3,  a), (3,  b), (3,  d)} and S = {( b,  x), ( b,  z), ( c,  y), ( d,  z)}. Give the diagram and matrix representation of R and S. In the following relations, either list their elements and give their types, or explain why they are not well-defined:

R–1, S , R ∪ S, R  o S. 

31. Let R, S ⊆ A × A. Prove that the following statements are true:

( a) if R ⊆ S then R–1 ⊆ S–1; 

( b) (R  o S)–1 = S–1  o R–1. 

( c) Suppose that R ⊆ S and S is symmetric. Show that R ∪ R–1 ⊆ S. 

( d) Show that R symmetric implies R  o R is symmetric. 

32. Find a specific example of a binary relation R on a set A with | A | =  n such that  t(R) ≠ R ∪ R2 ∪

... ∪ R n–1. 

33. ( a)Determine which of the following binary relations on {1, 2, 3, 4} are reflexive, symmetric and transitive:

( i) {(1, 1), (1, 2), (2, 3), (3, 1), (2, 1)}; 

( ii) φ ; 

( iii) {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}. 

34. If | A | =  k and | B |=  m, how many relations are there between A and B? If in addition | C | =  n, how many ternary relation are there in A × B × C? 

35. Define R on Z by  a R b if 3 divides  a –  b. Show that R is an equivalence relation. 

36. What is the total number of antisymmetric relations on a finite set of size  n? 

37. Given A = {1, 2, 3, 4} and  b = s {  x,  y,  z }. Let R be the following relation from A to B: R = { (1,  y), (1,  z), (3,  y), (4,  x), (4,  z)}

( i) Determine the matrix of the relation

( ii) Draw the arrow diagram of R. 

( iii) Find the inverse relation R–1 of R

( iv) Determine the domain and range of R. 

38. Find domain, range, relation matrix and digraph for the relation R

Where A = {1, 2, 3, 4, 8} = B and  a R b iff  a +  b ≤ 9. 

39. If { { a,  b,  c }, { d,  e} { f,  g,  h }} is a partition set of A= {  a,  b,  c,  d,  e,  f,  g,  h } then determine the equivalence relation determined by this partition. 
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40. Let P be set of all people. Let R be the binary relation on R  i.  e.  a R b iff  a is a brother of  b. Is R

reflexive, symmetric, antisymmetric, an equivalence relation, a partial order relation? 

41. Let R be a binary relation on the set of all strings of 0’s and 1’s such that R = {( a, b) |  a and  b are strings that have same number of 0’s}. Show which of the following properties hold on R? 

( i) Reflexive

( ii) Symmetric

( iii) Antisymmetric

( iv) Transitive

( v) Equivalence relation

( vi) Partial order relation. 

42. Suppose R is an arbitrary transitive and reflexive relation on a set A. Prove that the relation E

defined by ‘‘ x E y iff ×  x R y and  y R x’’ is an equivalence relaiton. 

43. For integers  a,  b define  a ~  b if and only if 2 a + 3 b = 5 n for some integer  n. Show that ~ defines an equivalence relation on Z. 

44. Find all Partitions of S = {1, 2, 3}. 

45. Let A = { a,  b,  c}. Let R be a relation defined on A by R = {( a,  b), ( b,  a), ( c,  c)}. Find the reflexive, symmetric and trasitive closures of the relation R. 

46. Show that the relation R on Z × Z defined by ( a,  b) R ( c,  d) if and only if  a +  d =  b +  c is an equivalence relation. Write three equivalence classes. 

47. Let A = { a,  b,  c,  d} and B =  {1, 2, 3}, and R  be the following relation from A to B R = {( a, 1), ( a, 3), ( b, 2), ( b, 3), ( c, 1), ( c, 3), ( d, 1), ( d, 2), ( d, 3)}. Give matrix representation of R and find R2. 

( DOEACC, 2009)

48. Let R be the relation on the set of real numbers such that  a R b if and only if  a –  b is an integer. Is R an equivalence relation? 

( DOEACC, 2010)

49. Let S = {0, 1, 2, ..., 20}. Let R be the relation defined on S by  a R b if and only if  a and  b leave the some non-negative remainder on dividing by 3. Show that R is an equivalence relation. 

( DOEACC, 2010)

50. Let A = {1, 2, 3, 4} and R  and R  be relations on A defined by

1

2

R  = {(1, 2), (2, 3), (4, 1), (1, 4)}

1

R  = {(1, 1), (2, 1), (4, 1)}

2

Find R  o R –1. 

( DOEACC, 2010)

1

2

51. String  x overlaps  y if the end of string  x is the same as the beginning of string  y. For simplicity, ∈

overlaps, itself, but  no other string overlaps or is overlapped by ∈. For instance,  abdef overlaps  def ef, and  m overlaps  mc, but  b does not overlap  abc. 

( a) Give a formal definition of what it means for one string to overlap another. (Note that this need not be an inductive definition. In fact, a correct deffinition might take less than one line of text.)

( b) Prove that the overlap relation is reflexive. 

( c) Is the overlap relation symmetric? If so, prove it. If not, provide a counterexample. 

( d) Is the overlap relation transitive? If so, prove it. If not, provide a counterexample. 

( e) Let  x and  y be strings. Define a binary relation, R, as follows:  x R y ⇔ either  x overlaps  y or  y overlaps  x. is R an equivalence relation? If so prove it. If not, provide a counterexample. 

52. Let  x = {1, 2, 3}. 

( i) How many reflexive relations can be defined on  x? 

( ii) If R = {(1, 2), (2, 3), (2, 1)}, find the smallest transitive relation on  x containing R. 

53. Let A = {1, 2, ...11}. Let R = {( x,  y) :  x –  y = 3 m for some integer  m}

Show that R is equivalence relation. Also, find all the equivalence classes. 
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54. Each of the following defines a relation on the posiive integers N:

1.  x is greater than  y

2.  xy is the square of an integer

3.  x +  y = 10

4.  x + 4 y = 10

Determine, which relations are

( i) reflexive

( ii) Symmetric

( iii) anti-symmetric

( iv) Transitive

55. Prove or disprove that if a relation on a set A is transitive and irreflexive, then it is asymmetric. 

56. Let Q be the set of all rational numbers, then if the relation  p is defined as: x p y ↔ |  x | ≤  |  y |; for ∀ x,  y ∈ Q

Check the relation for reflexivity, symmetry, anti-symmetry and transitivity. 

57. Let A = {1, 2, 3, 4. 5} × {1. 2, 3. 4. 5} and define a relation R on A by ( x ,  y )R{ x ,  y } if  x  +  y  =  x  +  y . 

1

1

2

2

1

1

2

2

Show that R is an equivalence relation on A. Determine the equivalence classes [(1, 3)], [(2, 4)]

and [(1, 1)]. 

58. Given S = {1, 2, 3, 4} and relation R on S defined by R = {(1, 2), (4, 3), (2, 2), (2, 1), (3, 1)}. Show that R is not transitive. Find a relation R constructed from R such that R  is transitive. Can you find 1 

1

another relation R  constructed from R which is also transitive? 

2

59. Let R be a binary relation on the set of all positive integers such that:

R = {( a,  b) :  a –  b is an odd positive integer}

Is R reflexive? Symmetric? Antisymmetric /Transitive? Equivalence Relation? 

( IGNOU, MCA)

60. Let R be the relation on the set J of integers defined by the rule:  x R y if  x –  y is divisible by 4 (that is,  x –  y = 4 n for some integer  n). Show that R is an equivalence relation, and describe the equivalence classes. 

61. Let  f : A → B be a function and σ an equivalence relation on B. Define a relation ρ on A as:  a ρ  a′ if and only if  f( a) σ  f( a′). Prove that ρ is an equivalence relation on A. 

62. Let R and S be relations on A. Show that (R ∩ S)2 is a subset of R2 ∩ S2 . 

63. Let A = {1, 2, 3} and let R be the relation on A whose matrix is

F1 1 1I

M = G

J

R

0 0 1

HG

J

0 0 1K

Show that R is transitive. 

64. Prove the relation Θ big theta is an equivalence relation. 

65. Let A = { a,  b,  c,  d,  e,  f,  g}. Let R be a binary relation on A with the following pairs related:  a R b,  c R a, d R f,  g R e. Write the following sets using ordered pair notation. 

( a) R

( b) The reflexive closure of R. 

( c) The symmetric closure of R. 

( d) The transitive closure of R. 

66. Let R be a relation defined by

1

0

0

0

1

0

0

0

1

0

0

1

1

1

0

0

0

1

1

0

1

0

1

0

0

0

0

0

0

1

0

1

1

1

0

0
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( i) Write the matrices representing the reflexive and symmetric closures of R. 

( ii) Is R asymmetric? 

( iii) Is R antisymmetric? 

( iv) Is R reflexive? 

( v) Is R irreflexive? 

Give reasons for your answers. 

67. For each of the following, give the new relation requested. Use the representation specified to show the relation. 

1. Let R be a relation on the set A = {1, 2, 3, 4, 5}, where R is defined as. 

R = {(1, 1), (1, 4), (2, 3), (2, 4), (2, 2), (3, 1), (3, 3), (4, 1), (4, 4)}

Give the transitive closure of R using the MATRIX notation. 

2. Let P be a relation on the set B = { 1, 2, 3 } where the Matrix representation of the relation P is 1 1 1

Mp = 0 0 0

1 1 0

Give the matrix representation of X where X is the symmetric closure of P. 

68. ( a) Let A = {1, 2, 3, 4, 6} and R be a relation on A defined by  a R b if and only if  a is a multiple of  b. 

Write down the relation matrix M and draw its digraph. 

R 

( b) Let A = { a,  b,  c,  d,  e}. Consider the partition P = {{ a,  b}, { c,  d}, { e}} of A. 

Find the equivalence relation inducing this partition. 

69. ( a) Let A = {1, 2, 3} and B = {1, 2, 3, 4} and let the relations R and S from A to B be represented by the following matrices. Determine the relations R , R ∩ S and R ∩ S and their matrix

representations: LM1 0 1 0OP

LM1 1 1 OP1

M(R) = 0 0 0 1 and M S

( )

M

P

= M0 0 0 P1

NM1 1 1 0QP

NM0 1 0 QP1

( b) Let A = {1, 2, 3, 4} and let R be a relation on A defined by R = {(1, 2), (1, 3), (2, 4), (3, 2), (3, 3), (3, 4)}. Find R2 and R3 and write the graphs of R, R2 and R3. 

70. ( a) Let T be the set of all triangles. Define a relation R on T by  t  R  t  if  t  and  t  have an angle of the 1 

2 

1

2

same measure. Verify whether R is an equivalence relation. 

( b) If U = {1, 2, 3, 4, 5}, A = {1, 2, 3} and B = {2, 4, 5} determine the number of possible relations from A to B. 

71. A matrix A ∈ G is said to be similar to a matrix B ∈ G if B = PAP–1 for some P ∈ G. Prove that similarity is an equivalence relation on G. 

72. Prove or disprove that Similarity is a congruence relation on G. 

73. A partial order R on a set A is called a total order if for any two different  a,  b ∈ A either  a R  b or b R a. Justify which of the following relations R , R , R  on N are total orders. (For each of the 1

2

3

relations R , R , R . First determine whether the relation is partial order, and if so, whether it is 1

2

3

a total order. 

( a)  a R  b if and only if  a 

1

≤  b + 1701. 

( b)  a R  b if and only if  a 

2

≥  b + 1701. 

( c)  a R  b if and only if either  u < v or  u =  v and  x 3

≤  y, where  a = 2 ux and  b = 2 vy with  x and  y odd. 

74. Let A = {1, 2, 3, 4, 5}. Define the relation R on A as follows:

R = {(1, 1), (1, 2), (1, 3), (1, 5), (2, 1), (2, 4), (3, 3), (4, 5)}. 

( a) Determine the reflexive closure of R. 

( b) Determine the symmetric closure of R. 
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( c) Determine the antisymmetric closure of R. 

( d) Determine the transitive closure of R. 

75. Define the relation R on the set of real numbers as:  a R b if and only if  a –  b ∈ Z. 

( a) Prove that R is an equivalence relation on R. 

( b) Find good representatives for the equivalence classes of R. 

76. Which of the following relations are reflexive? Symmetric? Anti-symmetric? Transtive? 

( a) ⊆ on P(A), where A is a non-empty set. 

( b) The relation R  on N defined as:  a R  b if and only if the decimal representations of a and b start 1

1

with the same digit. 

( c) The relation R  on N defined as:  a R  b if and only if the decimal representations of  a and  b 2

2

contain a common digit. (Do not allow leading 0 digits.)

( d) The relation R  on N × N defined as: ( a,  b) R ( c,  d) if and only if ( a 3

3

≤  b) or ( a =  b and  c ≤  d). 

77. The antisymmetric closure of a relation R on a set A exists if and only if R itself is antisymmetric. 

78. Determine the properties of the relations given by the graphs shown in Fig. ( i) and ( ii) and also write the corresponding relation matrices. 

( i)

x

x

x

1

2

3

( ii)

x1

x2

x4

x3

79. Let X be the set of all programs of a given programming language. Let R the relation on X be defined as P RP  if P  and P  give the same output on all the inputs for which they terminate. 

1

2

1

2

Is R an equivalence relation? If not which property fails? 

80. Let R be the relation on the set of ordered pairs of positive integers such that (( a,  b), ( c,  d)) ∈ R if and only if  ad =  bc. Determine whether R is an equivalence relation or a partial ordering. 

81. Let  m be  a positive integer with  m > 1. Determine whether or not the following relation is an equivalent relation. 

R = {( a,  b) |  a ≡  b (mod  m)}

82. Let A = {1, 2, 3, 4} and, R = {(1, 1), (1, 4), (2, 1), (2, 2), (3, 3), (4, 4)}. 

Use Warshall’s algorithm to find the transitive closure of R. 

83. Determine if the relation represented by the following Boolean matrix is partially ordered. 

L1 0 1

M

OP

1 1 0

M

P

0

M 0 1

N

QP
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84. Let A ⊆ Z and  f : A  → N be a one-one function where Z is a set of integers and N is a set of natural numbers. Let R be a relation on A defined as under:

( x,  y) ∈ R if and only if  f( y) =  k  f( x) where  k ∈ N

Prove that R is a partial order relation on A. 

85. Let A = {1, 2, 3, 4} and let R and S be the relations on A described by

LM0 0 0 OP1

LM1 1 0 0OP

0 0 0 0

0 1 0 0

M

M

P

M

P

R = M

M

0 1 0 0P

S = M0 0 1 0P

NM

M

P

0 0 1 0QP

N0 1 0 Q1

and

Use Warshall’s algorithm to compute the transitive closure of R ∪ S. 

86. Show that is R  and R  are equivalence relations on A, then R  

is an equivalence relation. 

1

2

1 ∩ R2

87. If R is a relation N × N defined by ( a,  b) R ( c,  d) iff  a +  d =  b +  c, show that R is an equivalence relation. 

88. For any relation R in a set A, we can define the inverse relation R–1 by  a R –1 iff  a R . Prove that b

 b

( i) As a subset of A × A, R–1 = {( b,  a)/( a,  b) ∈ R}. 

( ii) R is symmetric iff  R = R–1

89. What is equivalence relation? Prove that relation ‘congruence modulo’ (≡ mod  m) is an equivalence relation. 

90. Let R be a relation on a set A. Then prove that R∞ is the transitive closure of R. 

91. How many relations are possible from a set A of ‘ m’ elements to another set B of ‘ n’ elements? 

92. Let A = { a,  b,  c,  d,  e} and R = {( a,  a), ( a,  b), ( b,  c), ( c,  e), ( c,  d), ( d,  e)} Compute ( i) R2 and ( ii) R∞. 

93. What is a partition on a set? Let A = {1, 2, 3, 4, 5} and a relation R defined on A is R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)}. Obtain the cells of the partition. 

94. Draw a diagraph for each of the following relation:

( i) Let A = { a,  b,  c,  d} and let R = {( a,  b), ( b,  d), ( a,  d), ( d,  a), ( d,  b), ( b,  a), ( c,  c)}

( ii) Let A = {1, 2, 3, 4, 5, 6, 7, 8} and Let  x R , wherever  y is divisible by  x. 

 y

Determine which of the above relations are reflexive, transitive, symmetric and anti-symmetric. 

95. Let R be a relation with R ⊂ A × A, where |   A  | = 5. Answer the following questions, giving justifications for your answers. 

( a) Give an example of a non-empty relation that is both symmetric and anti-symmetric on the set A = { a,  b,  c,  d,  e}. 

( b) How many relations R are symmetric? 

96. ( a) Prove or disprove: If R  

and S  

, then R 0 S

0 S . 

1 ⊂ R2

1 ⊂ S2

1

1 ⊂ R2

2

( b) Prove or disprove: If R  

and S  

, then R 0 S

0 S . 

1 ≠ R2

1 ≠ S2

1

1 ≠ R2

2

97. Consider the relation R on the set of integers Z = { ... –2, –1, 0, 1, 2, ...}:

 R = {( x,  y) |  x,  y ∈ A   and  x ≡  y (mod 5)}. 

( i) Prove that this relation is an equivalence relation. 

( ii) How many equivalence classes are induced by this relation on Z? 

98. Suppose R, S ⊆ A × A   are two symmetric relations on a set A. Prove or disprove each of the following propositions. 

( a) the relation R o S   is symmetric

( b) the relation R o S  ∪ S   o R   is symmetric. 

99. Consider the following relation on a set of positive integers  n  > 0. 

R  = {( a,  b) | gcd ( a,  b) = 15 and lcm ( a,  b) = 180}. 

Explicitly write out all pairs in R   and show that no other pairs are members of R . 
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100. Given the set A = {2, 3, 4, 8, 9, 12, 18}, define a relation T over A such that T = {( a,  b) |  a ∈ A and b ∈ A and  ab  is a perfect square,  i.  e.,  ab =  c 2 for some integer  c}. 

Answer the folllowing questions:

( a) Draw the directed graph representation of the relation T. 

( b) Determine, with proof, if the relation T satisfies each of the properties: reflexive, irreflexive, symmetric, anti-symmetric and transitive. 

( c) Give the matrix representation of T. 

101. Let R be a relation on K × K such that:

R = {( n,  m) |  n ∈ K,  m ∈ K, ∧  n  +  n  +  n  =  m  +  m  +  m }

1

2

3

1

2

3

( a) Is R an equivalence relation? Why or why not? 

( b) If R is an equivalence relation, how many equivalence classes are there? 

102. Let R and S be two relations on set A,  i.  e. R, S ⊆ A × A. Prove or disprove each of the following propositions:

( a) If both R and S are symmetric, then (R – S) ⊆ A × A is symmetric. 

( b) If both R and S are transitive, then (R – S) ⊆ A × A is transitive. 

103. Let A denote an arbitrary set, and let R denote a transitive relation over A, that is, R ⊂ A × A, and for all  x,  y,  z ∈ A, if ( x,  y) ∈ R and ( y,  z) ∈ R then ( x,  z) ∈ R. Prove that the composition relation R2 = R  o R is transitive. 

104. Let A denote an arbitrary non-empty set, and let L denote the relation defined over A as follows: L = {( a,  a) |  a ∈ A}

Suppose R is a transitive relation over A, that is, R ⊂ A × A, and for all  x,  y,  z ∈ A, if ( x,  y) ∈ R and ( y,  z) ∈ R then ( x,  z) ∈ R. Prove that the relation R ∪ L is transitive. 

105. Let A denote an arbitrary non-empty set, and let R denote a binary relation, R ⊂ A × A. 

Answer the following two parts independently of each other:

( a) Suppose R is transitive. Prove that the inverse relation R–1 is also transitive, where R–1 is defined as R–1 = {( a,  b) | ( b,  a) ∈ R}. 

( b) Suppose R ≠ φ and R is irreflexive (that is, there does not exist any a ∈ A such that ( a,  a) ∈ R). 

Prove that either R is not symmetric or R is not transitive. 

106. Let A denote an arbitrary non-empty set, and let R, S, and T denote binary relations defined over A,  i.  e., R ⊂  A × A, S ⊂ A × A, and T ⊂ A × A. Answer the following two questions independently of each of other:

( a) Prove (R  o (S ∩ T)) ⊂ (R  o S) ∩ (R  o T). 

( b) Suppose A = { a,  b,  c}. Use an example of relations R, S, and T defined over this A to show that (R  o (S ∩ T)) ≠ (R  o S) ∩ (R  o T). 

107. ( a) Let A = {1, 2, 3, 4, 5}. Let R be a binary relation over the set A. (Thus, R ⊆ A × A.) In particular R = {(1, 2), (3, 1), (4, 2), (2, 4), (3, 3), (5, 2)}. Explain why R is not reflexive, irreflexive, symmetric, anti-symmetric or transitive. 

( b) Let R be a binary relation over the set of integers defined as follows:

R = {( a,  b) |  a –  b ≡ 0 mod 10}

Prove that R is an equivalence relation. 

108. Given an arbitrary set A, relation R on A,  i.  e. R ⊆  A × A, satisfies the following property P: ∀  a ∈ A ∀  b ∈ A, |R ∩{( a,  b), ( b,  a)}| ≤ 1. 

Answer the following questions and justify your answers by a simple proof or a counter example. 

( i) Can R be symmetric? 

( ii) Is R necessarily anti-symmetric? 

( iii) Is R necessarily transitive? 

( iv) Can R be reflexive? 

109. Let R denote a relation on a set A,  i.  e. R ⊆ A × A. Assume that R is symmetric and transitive. 

( a) Prove or disprove that R is reflexive. 

( b) Prove or disprove that R  o R ⊆ R. 
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110. ( a) Let A = {1, 2, 3, 4, 5} and R be a binary relation over A such that R = { (1,1), (1, 3), (1,5), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (5, 1), (5, 3), (5,5)}. Is R reflexive, irreflexive, symmetric, antisymmetric, or transitive? Justify each answer. 

( b) Let R and S be binary relations over Z. Prove or disprove: if R is transitive and S is transitive, then R  o  S is also transitive. 

111. ( a) Let A = {1, 2, 3, 4, 5}. R is a relation defined on A, (so R ⊆ A × A.) In particular, R = {(1, 3), (1, 5), (1, 1), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (2, 2), (4, 4)}

Is R ( i) reflexive? ( ii) symmetric? ( iii) transitive? Prove your answers. 

( b) For natural numbers  a and  b, define  a R b iff  a 2 +  b is even. Prove that R defines an equivalence relation on N. 

112. ( a) Show that a relation R over the integers (R ⊆ Z × Z) defined as R = {( a,  b) |  a 2 =  b 2 and  a,  b ∈ Z}

is an equivalence relation. 

( b) Is the relation R given in part ( a) a function? Briefly, why or why not? 

113. Let R be a non-empty relation on a set A. Prove that if R is symmetric and transitive, that it is NOT irreflexive. 

114. Let A = {10, 11, 12, 13, 14, 20, 21, 22, 23, 24}. Define the following relation R on A: R = {( x,  y) | the sum of the digits in  x equals the sum of the digits in  y}. 

( a) Show that R is an equivalence relation. 

( b) Find the partition A/R. 

115. Let S = {–2, –1, 0, 1} and let A = S × S. Define the following relation R on A:

R = {(( a,  b), ( c,  d)) |  a –  b =  c –  d}

( a) Show that R is an equivalence relation. 

( b) Find the partition A/R. 

116. Define the following relation R on Z+ : R = {( x,  y) | ∃ c ∈ Z+,   y =  cx }. Show that R is a partial-ordering relation. 

117. Let R be the relation defined on Z where  a R b means that  a +  b 2 ≡ 0 (mod 2). 

( a) Prove that R is an equivalence relation. 

( b) Find the equivalence class [–13]. 

118. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where ( a,  b) R ( c,  d) means that  a +  d =  b +  c. 

( a) Prove that R is an equivalence relation. 

( b) Find [(1, 1)]. 

119. Let A and B denote two non-empty sets, and let R and S denote two binary relations where R ⊂ A

× B and S ⊂ A × B. Answer the following two parts for this question:

( a) Suppose both R and R ∩ S define a function from A to B. Prove that R ⊂ S. 

( b) (This part is independent of Part ( a).) Suppose both R and R ∪ S define a function from A to B. 

Prove that S ⊂ R. 

120. Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where ( x,   y) ∈ R if and only if

( a)  x +  y = 0

( b)  x = ±  y

( c)  x –  y is a rational number

( d)  x = 2 y



( e)  xy ≥ 0

( f)  xy = 0

( g)  x = 1

( h)  x = 1 or  y = 1. 

121. Let R  and R  be the “divides” and “is a multiple of” relations on the set of all positive integers, 1

2

respectively. That is, R  = {( a,  b) |  a divides  b} and R  = {( a,  b) |  a is a multiple of  b}. Find: 1

2

( a) R  

( b) R  

1 ∪ R2

1 ∩ R2

( c) R  – R

( d) R  – R

1

2

2

1

( e) R  

. 

1 ⊕ R2
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122. How many transitive relations are there on a set with  n elements if

( a)  n = 1? 

( b)  n = 2? 

( c)  n = 3? 

123. On the set Z of all integers, define the relation R by:

R = {( a,  b) : 5 | ( a 2 –  b 2)}. 

( a) Show that R is an equivalence relation. ( b) Find the equivalence classes of R on Z. 

124. Find the transitive closures of the following relations R on the set {1, 2, 3, 4}: ( a) R = {(2, 2), (3, 3), (1, 3), (2, 1)}

( b) R = {(1, 3), (3, 2), (2, 1)}. 

125. Given a relation R, R–1 is defined as follows: R–1 = {( a,  b) : ( b,  a) ∈ R}. Prove or disprove: If a relation R is reflexive and transitive on a set A, then R ∩ R–1 is an equivalence relation on A. 

126. Define a relation R on the set Z × Z (pairs of integers) by ( m,   t) R ( n,  r) if and only if  m =  n and t –  r ≥ 0. Is R a POSet? Prove your response. 

127. Let A =  { a,  b,  c} and B = {1, 2, 3} and let R = {( a, 2), ( a, 3), ( b, 1), ( b, 3), ( c, 1)}. 

( a) Give the diagram and matrix representation of R. 

( b) Find R′ and R–1, and state their types. 

( c) Find (R′)–1 and state its type. 

128. Given a set R = {1, 2, 3, 4} and the following relations on R:

( a) R  = {(1, 1), (1, 2), (3, 3), (4, 4)}

( b) R  = {(1, 2), (2, 1), (1, 3), (3, 1)}

1

2

( c) R  = {(1, 1), (1, 2), (2, 3), (3, 2), (4, 4)}

3

( d) R  = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)}

4

Categorize each relation as reflexive, symmetric, antisymmetric and/or transitive. 

129. Consider the following three relations on the integers:

R = {( x,  y) |  x –  y > = 0}

S = {( x,  y) | gcd ( x,  y) = 1}

T = {( x,  y) |  x –  y <1}

For each entry of the following matrix, write YES if the relation labeling its column has the

property labeling its row. Else write NO. For each NO give a counter-example to prove that the given relation does not have the given property. 

 Reflexive

 Symmetric

 Transitive

 Antisymmetric

R

S

T

130. Suppose that the relation R on a set S is an equivalence relation. Decide whether the relation R2

is an equivalence relation. 

131. Let R, S ⊆ A × A. Prove that the following statements are true:

( a) if R ⊆ S then R–1 ⊆ S–1; 

( b) (R  o S)–1 = S–1  o R–1. 

( c) Suppose that R ⊆ S and S is symmetric. Show that R ∪ R–1 ⊆ S. 

( d) Show that R symmetric implies R  o R is symmetric. 

132. Find a specific example of a binary relation R on a set A with | A | =  n such that  t(R) ≠ R ∪ R2 ∪

... ∪ R n–1

133. A binary relation R on a set  x, denoted as (X, R) is a subset of the Cartesian product X × X. We use

∼  a R b to denote that ( a,  b) is not in R. Prove the following statement A binary relation is irreflexive, transitive and antisymmetric if and only if it is transitive and asymmetric. 
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134. Let R be a partial order on X and Y ⊆ X. If every two elements in Y are comparable, then Y is a chain of X. If no two distinct elements of Y are comparable, then Y is an  antichain of X. Now, prove or disprove the following statement. In any partial order on a Set X of  mn + 1 elements, there exists a chain of size  m + 1 or an antichain of size  n + 1. 

ANSWERS AND HINTS TO SELECTED PROBLEMS

2. ( a) Not Reflexive, Not Symmetric, Transitive

( c) Reflexive, Not symmetric, Transitive

( e) Reflexive, Symmetric, Transitive:

3. The equivalence classes are: [1] = [3] and [2]. 

6. ( a) Not reflexive, Not symmetric, Not transitive. 

( c) Not reflexive, Not transitive:

( e) Not transitive

7. ( a) yes

( c) no, 0 is missing

8. ( a) It is a partial order. But is not a total order

( c) Not a partial order: It is reflexive and antisymmetric but not transitive. 

10. ( c) R′ relates all strings composed only a’s to each other and the partition is

[ε,  a,  aa,  aaa,  aaaa, …]

11.  ( c) Every point is related to every other point and the cardinality of P is 1. 

13.  R = {( a,  b), ( b,  a)} on the set A = { a,  b}

26. [35] = [– 7] = [0], [3] = [17], and [12] = [–2]

27. ( ii) Not reflexive, not symmetric, transitive

28. ( ii) ( a) Not reflexive, not symmetric, not transitive. ( b) Reflexive, symmetric, and transitive. 

( c) Reflexive, symmetric, and transitive. 

33. ( i) Not reflexive, Not symmetric, Not transitive

( iii) Reflexive, transitive but not symmetric. 

35.  Equivalence relation

36.  2 n ×  3 n( n – 1)/2

40.  Reflexive, Not symmetric, Transitive, Antisymmetric

41.  Reflexive, Symmetric, Transitive, Not Antisymmetric. 

60.  R is reflexive, symmetric and transitive and is an equivalence relation. 

61.  It is an equivalence relation. 

65. ( b) The reflexive closure of R: {( a,  a), ( b,  b), ( c,  c), ( d,  d), ( e,  e), ( f,  f), ( g,  g)} ∪ R. 

( d) The transitive closure of R: { ( c,  b)} ∪ R. 

66. Not asymmetric, Not antisymmetric, Not reflexive, Not irreflexive. 

73. ( a) Not a partial order. 

( c) Partial order as well as Total order. 

78. ( i) Reflexive, Symmetric, Transitive and Antisymmetric

( ii) Reflexive, Symmetric but not transitive. 

79. Equivalence relation

80. Equivalence relation

81. Equivalence relation

82. The transitive closure of R = {(1, 1), (1, 4), (2,1), (2, 2), (2, 4), (3, 3), (4, 4)}. 

83. Not a partial order

84. Partial order
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 Functions

PREVIEW

Functions in Mathematics are special relationships. Basically, a function is a mathematical

procedure performed on a number to produce another number with certain limitations imposed. 

This chapter introduces concept of functions, their types, inverse of a function, equal and identity functions, composition of functions, combination of functions, and functions applicable in Computer Science such as floor, ceil, remainder and hash functions. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

•

identify the differences between a relation and a fuction. 

•

define function with examples

•

find domain, co-domain and range of a function

•

define different types of functions such as one-one, many-one, onto, into and bijective

functions with examples

•

determine wheather a function is one-one, many-one, onto or into

•

draw the graph of functions

•

combine two functions using various operations with examples

•

define composition of two functions with examples

•

define the inverse of a function with examples

•

understand the steps and the conditions for the inverse to exist. 

4.1 INTRODUCTION

The word function was introduced by Leibnitz in 1694. He took function to designate, in

very general terms. He also introduced the terms ‘‘constant,’’ ‘‘variable,’’ and ‘‘parameter.’’ In this chapter we introduce the concept of a function. In general terms, a function defines how one variable depends on one or more other variables. The concept of functions is that we are performing mathematical procedures on numbers to obtain an answer. For example,  y = 25 x + 50 is a function, we can use the functional notation,  f( x) = 25 x + 50 to represent this function. Function is a special type of relation. Each function is a relation but each relation is not a function. 
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4.2 DEFINITION

A function  f  from a set P into a set Q is a relation from P to Q such that each element of P

is related to exactly one element of the set Q. It is denoted as  f : P → Q and read as ‘‘ f is a function from P to Q’’. 

4.3

FUNCTIONS AS A SET

If P and Q are any two non-empty sets, then a function  f from P to Q is a subset of P × Q, with two important restrictions

( i) ∀  a ∈ P, ( a, b) ∈  f for some  b ∈ Q

( ii) If ( a, b) ∈  f and ( a, c) ∈  f then  b =  c. 

Note 1. There may be some elements of the Q which are not related to any element of set P. 

2. Every element of P must be related with exactly one element of Q. 

Example 1.  If a set A has n elements, how many functions are there from A to A. 

Sol. If a set A has  n elements, then there are  nn functions from A to A. 

Example 2.  If A has m elements and B has n elements, how many functions are there

 from A to B and from B to A. 

Sol. A has  m elements and B has  n elements. So, the total number of functions from A to B are  nm and the total number of functions from B to A are  mn. 

Example 3.   If A = {2, 3, 4} and B = {5, 6}. Determine all functions from A to B. 

Sol. The total number of functions from A → B are 23 = 8

( i) {(2, 5), (3, 5), (4, 5)}

( ii) {(2, 6), (3, 6), (4, 6)}

( iii) {(2, 5), (3, 5), (4, 6)}

( iv) {(2, 5), (3, 6), (4, 6)}

( v) {(2, 6), (3, 5), (4, 5)}

( vi) {(2, 6), (3, 6), (4, 5)}

( vii) {(2, 6), (3, 5), (4, 6)}

( viii) {(2, 5), (3, 6), (4, 5)}. 

4.4 DOMAIN OF A FUNCTION

Let  f be a function from P to Q. The set P is called domain of the function  f. 

4.5 CO-DOMAIN OF A FUNCTION

Let  f be a function from P to Q. The set Q is called co-domain of the function  f. 

4.6

IMAGE OF AN ELEMENT

If the element  x of P corresponds to  y under function  f, then  y is the image of  x under  f and is written as

 f( x) =  y. 

If  f( x) =  y, then we say that  x is a per image of  y. 

If  f : X → Y, then each element of P has unique image in Q, whereas every element in Q

need not be image of some  x in P. 
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Example 4.  Let A = { 1, 2, 3, 4}  and the function f : A →  A as shown in Fig. 1. Find ( i)  the image of each element of A ( ii)  the image f(A) of the function f. 

1

1

2

2

3

3

4

4

Fig. 1. Images of elements. 

Sol. ( i) The image of  f(1) = 3,  f(2) = 3,  f(3) = 1 and  f(4) = 1. 

( ii) The image of  f(A) of  f consists of all the image values. 

Therefore,  f(A) = {1, 3}. 

4.7

RANGE OF A FUNCTION

The range of a function is the set of images of its domain. In other words, we can say it is

a subset of its co-domain. It is denoted as  f(domain). 

If  f : P → Q, then  f(P) = { f( x) :  x ∈ P} = { y :  y ∈ Q |∃  x ∈ P, such that  f( x) =  y}. 

Example 5.  Let P = { x, y, z, u}  and Q = { a, b, c, d}  and f : P →  Q, such that    f = { (x, a), (y, b), (z, c), (u, c)} . 

 Find the domain, co-domain and range of function. 

Sol. Domain of function  f is the set P

Co-domain of function  f is the set Q and range of the function  f is { a, b, c}. 

Example 6.  Let A = { 2, 3, 4}  and B = { a, b, c}  and f = { (2, a), (3, b), (4, b)}

 Find domain, co-domain and range of the function. 

Sol. Domain of function is Domain ( f ) = {2, 3, 4}

Co-domain of function is co-domain ( f ) = { a, b, c}

Range of function is Range ( f ) = { a, b}. 

4.8

REPRESENTATION OF A FUNCTION

We can represent a function by a diagram also. The two sets P and Q are represented by

two circles. The function  f : P → Q is represented by a collection of arrows joining the points which represent the elements of P and corresponding elements of Q

 e.g., 

Let

P = { a, b, c} and Q = { x, y, z} and  f : P → Q such that

 f = {( a, x), ( b, z), ( c, x)}

Then  f can be represented by a diagram as shown in (Fig. 2). 
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a

x

b

y

c

z

Fig. 2.  Function is arrow diagram. 

Example 7.  Let X = { x, y, z, k}  and Y = { 1, 2, 3, 4} . Determine which of the following are functions. Give reasons if it is not. Find range if it is a function

( i)   f  = {( x, 1) , ( y, 2) , ( z, 3) , ( k, 4)}

( ii)  g = {( x, 1) ,  ( y, 1) , ( k, 4)}

( iii)  h  = {( x, 1) , ( x, 2) , ( x, 3) , ( x, 4)}

( iv)   l = {( x, 1) , ( y, 1) , ( z, 1) , ( k, 1)}

( v)  d  = {( x, 1) , ( y, 2) , ( y, 3) ,  ( z, 4) ,  ( z, 4)} . 

Sol. ( i) It is a function. Range ( f ) = {1, 2, 3, 4}. 

( ii) It is not a function because every element of X does not relate with some element of Y

 i.e.,  Z is not related with any element of Y. 

( iii)  h is not a function because  h( x) = {1, 2, 3, 4}  i.e.,  element  x has more than one image in set Y. 

( iv) It is a function. Range ( l) = {1}. 

( v)  d is not a function because  d( y) = {2, 3}  i.e.,  element  y has more than one image in set Y. 

4.9 EVERYWHERE DEFINED FUNCTION

Consider a function  f from A to B. Then the function  f is everywhere defined if dom ( f ) = A. 

Example 8.  Let A = { 1, 2, 3, 4}  and B = { a, b, c}  and C = {α, β, γ}.   Consider the following two functions from B to C and A to C. 

( i)  f = {( a,  α) , ( b,  β) , ( c,  γ)}

( ii)  g = {( 1,  α) , ( 3,  β) , ( 2,  γ)}

 Determine whether or not each function is everywhere defined. 

Sol. ( i)  f is everywhere defined since dom ( f ) = B. 

( ii)  g is not everywhere defined since dom ( g) = {1, 2, 3} and A = {1, 2, 3, 4} which is not equal. 

4.10

TYPES OF FUNCTIONS

The types of the functions are as follows:

4.10.1

Injective (One-to-One) Functions

Let  f : X → Y. The function  f is called one-to-one or injective if different elements in X have different images in Y  i.e.,  if  f( a) =  f( a′) ⇒  a =  a′, ∀  a,  a ∈ X. 

Another way of defining injective function is that every element of domain X has a unique

image in the co-domain Y and there is no element of Y which is image of more than one element

of domain X. 
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For example : Consider, X = { x, y, z, k} and Y = {1, 2, 3, 4} and  f is function from X to Y

such that

 f = {( x, 1), ( y, 2), ( z, 3), ( k, 4)}

The function  f is injective function as every element of domain X has a unique image in the co-domain Y (Fig. 3). 

f

X

1

Y

2

Z

3

K

4

X

Y

Fig. 3.  Injective function. 

4.10.2

Surjective (Onto) Functions

Let  f : X → Y. The function  f is called surjective function if each element in Y, is the image of at least one element in X. In other words, in surjective functions, the range of  f is equal to co-domain Y  i.e., ∀  b ∈ Y,  b =  f( a) for some  a ∈ X. 

For example :  Consider,  X = {1, 2, 3, 4, 5},  Y = { a, b, c, d}  and   f = {(1,  a), (2,  a), (3,  b), (4,  c), (5,  d)}. 

It is a surjective function, as every element of Y is the image of some element of X (Fig. 4). 

f

1

a

2

b

3

c

4

5

d

X

Y

Fig. 4. Surjective function. 

4.10.3

Bijective (One-to-One Onto) Functions

A function which is both injective (one-to-one) and

f

surjective (onto) is called a bijective (one-to-one and onto)

x

a

function. 

y

b

For example : Consider, 

P = { x, y, z}, Q = { a, b, c} and  f : P → Q such that

z

c

 f  = {( x, a), ( y, b), ( z, c)}

The function  f is one-to-one and also it is onto. So it is a

P

Q

Fig. 5.  Bijective function. 

bijective function (Fig. 5). 
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4.10.4

Into Functions

Let  f : X → Y. The function  f is called an into function if the range of  f is not equal to the co-domain Y. Therefore, there must be an element of co-domain Y which is not the image of any

element of domain X. 

For example : Consider, X = {1, 2, 3}, Y = { k, l, m, n, p} and  f : X → Y such that f = {(1,  k), (2,  n), (3,  p)}. 

In the function  f, the range  i.e., { k, n, p} ≠ co-domain of Y  i.e., { k, l, m, n, p}

Therefore, it is an into function (Fig. 6). 

f

1

k

 l

2

m

n

3

p

X

Y

Fig. 6.  Into function. 

4.10.5

One-One Into Functions

Let  f : X → Y. The function  f is called one-one into function if different elements of X have different unique images of Y. 

For example : Consider, X = { k, l, m}, Y = {1, 2, 3, 4} and  f : X → Y such that   f = {( k,  1), ( l,  3), ( m,  4)}

The function  f is one-one into function (Fig. 7). 

f

k

1

2

 l

3

m

4

X

Y

Fig. 7.  One-one into function. 

4.10.6

Many One Functions

Let  f : X → Y. The function  f is said to be many one

f

1

function if there exists two or more than two different elements

x

2

in X having the same image in Y. 

3

y

For example: Consider X = {1, 2, 3, 4, 5}, Y = { x, y, z}

4

and  f : X → Y such that

z

5

 f = {(1,  x), (2,  x), (3,  x), (4,  y), (5,  z)}

X

Y

The function  f is a many one function. (Fig. 8)

Fig. 8.  Many one function
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4.10.7 Many One Into Functions

Let  f : X → Y. The function  f is called many-one into function if and only if it is both many one and into function. 

For example: Consider X = { a, b, c}, Y = {1, 2} and  f : X → Y such that    f = {( a, 1), ( b, 1), ( c, 1)}

As the function  f is many-one and into, so it is a many-one into function (Fig. 9). 

f

a

1

b

2

c

X

Y

Fig. 9.  Many one into function. 

4.10.8 Many One Onto Functions

Let  f : X → Y. The function  f is called many-one-onto

function if and only if it is both many one and onto. 

f

1

k

For example: Consider, X = {1, 2, 3, 4}, Y = { k, l} and

2

 f : X → Y such that

 f = {(1,  k), (2,  k), (3,  l), (4,  l)}

3

The function  f is many-one (as two elements have the

4

 l

same image in Y) and it is onto (as every element of Y is the

image of some element X). So, it is many-one onto function

X

Y

(Fig. 10). 

Fig. 10. Many one onto function. 

Example 9.   A function f : { 1, 2, ..., n} → { 1, 2, ..., m}  is called monotone nondecreasing if 1 ≤  i <  j ≤  n ⇒  f(i) ≤  f(j). 

( i)  How many such functions are there? 

( ii)  How many such functions are there that are surjective? 

( iii)  How many such functions are there that are injective? 

Sol.  ( i) There are  n +  m – 1C  such functions. Consider the co-domain {1, 2, ...,  m} as bins and n

the domain {1, 2, ...,  n} as balls. If a bin (co-domain element) contains a ball, it means that one of the elements in the domain maps to it. Thus, if we represent this as bins and balls, any ordering of the bins and balls will give us a unique mapping from domain to co-domain since it has to be monotone nondecreasing. 

( ii) There are ( n –  m) +  m – 1C

=  n–1C

such functions. We have to first allocate 1 ball for

 n –  m

 n –  m

each bin, and then choose position for the rest of the balls. Thus,  n –  m balls are left for us to put into bins. 

( iii) There are  m C  such functions. Once we choose the set of  n elements from  m, we will n

know the exact mapping because the function must be monotone nondecreasing. Thus, we have to

determine in how many ways can we choose  n elements from  m. 
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4.11 EQUAL FUNCTIONS

Consider two functions  f and  h from a set X to a set Y. The functions  f and  h are called equal functions if and only if  f( a) =  h( a), for every  a ∈ X. 

The  functions   f  and   h  are called unequal functions if there exist at least one element a ∈ X such that  f( a) ≠  h( a). 

Example 10.  Let X = { 1, 2, 3}  and Y = { a, b, c} . Consider the function f : X →  Y, g : X →  Y

 and h : X →  Y such that

  f = {( 1, a) , ( 2, a) , ( 3, c)}

 g = {( 1, b) , ( 2, a) , ( 3, c)}

 h = {( 1, a) , ( 2, a) , ( 3, c)}

 Determine which functions are equal and which are unequal. 

Sol. The functions  f and  h are equal functions. The functions  f and  g and  g and  h are unequal functions. 

4.12 IDENTITY FUNCTIONS

Consider any set A. Let the function  f : A → A. The

function  f is called the identity function if each element of set A

f

1

1

has image on itself  i.e., f( a) =  a, ∀  a ∈ A. 

2

2

It is denoted by I. 

3

3

For example: Consider, A = {1, 2, 3, 4, 5} and  f : A → A

4

4

such that

  f = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. 

5

5

The function  f is an identity function as each element of

A

A

A is mapped onto itself. The function  f is one-one and onto

Fig. 11. Identity function. 

(Fig. 11). 

PROBLEM SET-I

1. Which of the following relations R ⊆ X × Y are really functions from X to Y ? Justify your answer. 

( a) R ⊆ R × R,  x R y : ↔  y =  x 3. 

( b) R ⊆ R × R,  x R y : ↔  x =  y 3. 

( c) R ⊆ N × N,  x R y : ↔  x =  y 4. 

( d) R ⊆ { x ∈ R | | x| ≤ 1} × { y ∈ R | | y| ≤ 1 },  x  R  y : ↔  x 2 +  y 2 = 1. 

2. Suppose A = {0, 1, 2, 3, 4}, B = {2, 3, 4, 5} and  f = {(0, 3), (1, 3), (2, 4), (3, 2), (4, 2) }. State the domain and range of  f. Find  f (2) and  f (1). 

3. There are four different functions  f : { a,  b} → {0, 1}. List them all. 

4. Let S = {–1, 0, 2, 4, 7}. Find  f(S) when

( a)  f ( x) = 2 and  f = {(–1, 2), (0, 2), (2, 2), (4, 2), (7, 2)}. 

( b)  f ( x) = 3 x + 1 and  f = {(–1, –2), (0, 1), (2, 7), (4, 13), (7, 22)}. 

( c)  f ( x) = ⎡ x/5⎤ and  f = {(–1, 0), (0, 0), (2, 1), (4, 1), (7, 2)}. 

( d)  f ( x) = ⎣( x 2 + 1)/3⎦ and  f = {(–1, 0), (0, 0), (2, 1), (4, 5), (7, 16)}. 

5. Suppose A = { a,  b,  c,  d}, B = {2, 3, 4, 5, 6} and  f = {( a, 2), ( b, 3), ( c, 4), ( d, 5)}. State the domain and range of  f. Find  f ( b) and  f ( d). 
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6. Let A = {4 n| n ∈ N} and we have the characteristic function  f : Z 

A

→ Z. Determine the

( a) Domain

( b) Codomain

( c) Range

 x − 1

7. Find the inverse of the function  f :R – {–2} → R – {1} defined by  f ( x) =   x + 2 . 

8. Consider the function  f : R → R defined as  f ( x) =  x 2 + 3. Find  f ([–3, 5]) and  f – 1 ([12, 19]). 

9. Let  f : { s,  t,  u,  v,  w,  x,  y,  z} → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, where  f = {( s, 4), ( t, 8), ( u, 8), ( v, 1), ( w, 2), ( x, 4), ( y, 6), ( z, 4)}. Determine the following:

( a)  f ( { s,  t,  u,  z}) ( b)  f ( { s,  x,  z}) ( c)  f ( { s,  v,  w,  y})

( d) 7′({4})

( e) 7′({4, 9}

( f) 7′({9})

( g) 7′({1, 4, 8})

10. Suppose  f : R → R is defined by  f ( x) =  ⎣ x⎦ . Find ( a) the range of  f. 

( b) the image of Z, the set of integers. 

( c)  f – 1 (–1.5). 

( d)  f – 1 (N), where N is the set of natural numbers. 

( e)  f – 1 ([2.5, 5.5]). 

( f)  f ([2.5, 5.5]). 

( g)  f ( f – 1([2.5, 5.5])). 

( h)  f – 1( f ([2.5, 5.5])). 

11. Which of the following functions are surjective, injective or bijective? If it is bijective, write down the inverse function. 

( a)  f : R → R :  y =  f( x) =  x 3. 

( b)  f : N → N :  y =  f( x) =  x 2. 

( c)  f : R → R :  y =  f( x) =  x 2. 

12. How many injective functions are there from {1, 2, 3,} to {1, 2, 3, 4, 5}? 

13. How many surjective functions are there from {1, 2, 3, 4, 5} to {1, 2, 3, 4}? 

14. Determine whether each of these functions is a bijection from R to R

( i)  f ( x) = –3 x + 4. 

( ii)  f ( x) = –3 x 2 + 7. 

15. Determine whether each of these functions from Z to Z is one-to-one

( i)  f ( n) =  n 2 + 1. 

( ii)  f ( n) = ⎡ n/2⎤. 

16. Consider  f : Z+ → Z+ defined by  f ( a) =  a 2. Is  f  one-to-one? Is  f onto? Why? 

17. Determine whether each of these functions is a bijection from R to R

( i)  f ( x) = ( x + 1)/( x + 2). 

( ii)  f ( x) =  x 5 + 1. 

18. Determine whether each of these functions from Z to Z is one-to-one

( i)  f ( n) =  n – 1. 

( ii)  f ( n) =  n 3

19. Determine whether  f is a function from R to R if

( i)  f ( x) = 1/ x. 

( ii)  f ( x) =  ( x). 

( iii)  f ( x) = ∓ 

2

 x + 1 . 

20. Which of the following is True/False? Justify your answer. 

( a) Let A and B be finite sets. If  f : A → B is injective, then it is surjective. 

( b) There is a one-to-one function from A to B if and only if there exists an onto function from B

to A. 

( c) A function  f : A → B is one-to-one if, for every  a ∈ A, there is only one  b ∈ B such that  f ( a) =  b. 

( d) If  f is a one-to-one function from an infinite set A to itself, then  f must be onto. 

( e) The function  y =  x 2 is

( i) one to one on the set of integers

( ii) onto on the set of integers

( ii) one-to-one on the set of positive integers. 

( f) If  f is a one-to-one function from a finite set A to itself, then  f must be onto. 

( g) If |A| = 4 and |B| = 5, then there cannot be a surjective function from A to B. 
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( h) Let A = { n 2 :  n ∈ N}. Then A is a well-ordered set. 

( i) Every bijective function is surjective. 

( j) The function  f : N → N defined by  f( x) =  x + 1 is surjective. 

21. Let the functions  f : {A ,  B ,  C ,  D ,  E} → {1, 2, 3, 4, 5, 6, 7}. How many such functions are there? How many of these functions are injective? How many are surjective? How many are bijective? 

22. Let the functions  f : {A ,  B ,  C ,  D ,  E ,  F ,  G} → {1, 2}. How many such functions are there? How many of these functions are injective? How many are surjective? How many are bijective? 

23. There are eight different functions  f : { a, b, c} → {0, 1}. List them all. 

24. Let A = {1, 2, 3, 4} and B = { a, b, c}. Give an example of a function  f : A → B that is neither injective nor surjective. 

25.  A function  f : Z → Z is defined as  f ( n) = 2 n + 1. Verify whether the function  f is injective and whether it is surjective. 

ANSWERS AND HINTS (PROBLEM SET I)

1. ( a) It is a function, since for each  x there is a unique  y with  y =  x 3. 

( b) It is a function; 

( c) It is not a function for two reasons : for  x = 2 there is no  y ∈ N with  x =  y 4 and for  x = 16 there are two  y’ s ( y = ±2), instead of a unique one, with  x =  y 4. 

( d) It is not a function; 

( e) It is a function; 

2. Do yourself. 

3.  f  = {( a, 0), ( b, 0)},  f  = {( a, 1), ( b, 0)},  f  = {( a, 0), ( b, 1},  f  = {( a, 1), ( b, 1)}

1

2

3

4

4. ( a)  f ( S) = { 2 }

( b)  f (S) = {–2, 1,7,13,22}

( c)  f (S) = {0, 1, 2)

( d)  f (S) = {0, 1, 5, 16}

5. Do yourself. 

6. ( a) Z

( b)   Z

( c) {0, 1}

1 + 2 x

7.  f – 1 : R – {1} → R – {–2},  f – 1 ( x) =  1 −  x 8.  f ([–3, 5]) = [3, 28];  f  1 ([12, 19]) = [–4, –3] ∪ [3, 4]. 

9. ( a) {8, 4}

( b) {4}

( c) {1, 2, 4, 6}

( d) { s,  x,  z}

( e) { s,  x,  z}

( f) φ

( g) { s,  t,  u,  v,  x,  z}

10. ( a) Z

( b) Z

( c) φ

( d) [0,1]

( e) [3, 6)

( f) {2, 3, 4, 5}

( g) {3, 4, 5}

( h) [2, 6)

11. ( a) It is bijective and  f – 1 ( x) =  3  x  is the inverse function. 

( b) It is injective but not surjective. 

( c) It neither injective nor surjective. 

12. Let  f be such a function. Then  f (1) can take 5 values,  f (2) can then take only 4 values and  f (3) can then take only 3 values. Hence the total number of functions is 5 × 4 × 3 = 60. 

13. Every surjective function  f sends some two elements of {1, 2, 3, 4, 5} to the same element of {1, 2, 3, 4}. There are (5C ) = 10 such pairs of elements. 

2

For a given pair { i,  j} ⊂ {1, 2, 3, 4, 5} there are 4! = 24 surjective functions  f such that  f ( i) =  f ( j). 

Hence there are a total of 24 × 10 = 240 surjective functions. 
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14. 

( i) This function is both one-to-one and onto, therefore it is a bijection. 

( ii) This function is neither one-to-one nor onto, therefore it is not a bijection. 

15. 

( i) The values 2 and –2 map to the same image in Z, therefore it is not one-to-one. 

( ii) The values 3 and 4 map to the same image in Z, therefore it is not one-to-one. 

16.  f is one-to-one, since if  f ( a) =  f ( b) for  a,  b ∈ Z+, then  a 2 =  b 2. Therefore, since elements of Z+ are positive, then we have  a =  b and thus  f is one-to-one.  f is not onto. For example, 2 is not in the image f (Z+). 

17. 

( i) This is not a function. Does not map the value –2? 

( ii) This function is both one-to-one and onto, therefore it is a bijection. 

18. 

( i) This function map each value in Z to a unique image, therefore it is one-to-one. 

( ii) This function maps each value in Z to a unique image, therefore it is one-to-one. 

19. 

( i) not a function

( ii) not a function

( iii) not a function

20. ( a) False. It would be true if A and B have the same sizes but is not true in general. 

For example, if A = { a}, B = { b ,  b }, and  f = {( a,  b )}, then  f is injective but not surjective. 

1

2

1

( b) True. There is a one-to-one function from A to B only if |A| ≤ |B|, in which case there is a onto function from B to A. 

(c) False. 

( d) False

( e) ( i) False

( ii) False

( iii) True

( f) True

( g) True. There just are not enough elements of A to hit everything in B. 

( h) True. The set A is a subset of N. 

( i) True. The definition of a bijective function requires it to be both surjective and injective. 

( j) False. The element 1 ∈ N is not in the range. 

21. Function  f can described as a list (  f (A),  f (B),  f (C),  f (D),  f (E),  f (F),  f (G)), where there are seven choices for each entry. By the multiplication principle, the total number of functions  f is 77 =

823543. 

If  f is injective, then this list cannot have any repetition, so there are 7! = 5040 injective functions. 

Since any injective function sends the seven elements of the domain to seven distinct elements of the codomain, all of the injective functions are surjective, and vice versa. Thus there are 5040

surjective functions and 5040 bijective functions. 

22. Function  f can described as a list as discussed in Q 21. Therefore the total number of functions is 27 = 128. It is impossible for any function to send all seven elements of {A, B, C, D, E, F, G} to seven distinct elements of {1, 2}, so none of these 128 functions is injective, hence none are bijective. 

Only two of the 128 functions are not surjective, and they are the ‘‘constant’’ functions {(A, 1), (B, 1), (C, 1), (D, 1), (E, 1), (F, 1), (G, 1)} and {(A, 2), (B, 2), (C, 2), (D, 2), (E, 2), (F, 2), (G, 2)}. So there are 126 surjective functions. 

23. Do yourself. 

24. Consider  f = {(1,  a), (2,  a), (3,  a), (4,  a)}. Then  f is not injective because  f (1) =  f (2). Also  f is not surjective because it sends no element of A to the element  c ∈ B. 

25. The function is injective. Let us assume that  m,  n ∈ Z and  f( m) =  f( n). This means 2 m + 1 = 2 n + 1, from which we get 2 m = 2 n, and then  m =  n. Thus  f is injective. 

The function is not surjective. Note that  f( n) is odd for all  n ∈ Z. So, given the even number 2 in the codomain Z, there is no  n with  f( n) = 2. 
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4.13 INVERTIBLE (INVERSE) FUNCTIONS

A function  f : X → Y is invertible if and only if it is a bijective function. 

Consider the bijective (one to one onto) function  f : X → Y. As  f is one-to-one, therefore, each element of X corresponds to a distinct element of Y. As  f is onto, there is no element of Y, which is not the image of any element of X  i.e.,  range = co-domain Y. 

The inverse function for  f exists if  f – 1 is a function from Y to X. 

For example: Consider, X = {1, 2, 3}, Y = { k, l, m} and  f : X → Y, such that f = {(1,  k), (2,  m), (3,  l)} as shown in Fig. 12. 

f

1

k

2

 l

3

m

X

Y

Fig. 12.  Invertible function. 

The inverse function of  f is shown in Fig. 13. 

k

1

 l

2

m

–1

f

3

Y

X

Fig. 13. Inverse of function  f( f –1). 

4.13.1 Properties of Inverse Functions

1. Only one to one functions have inverses. If  f and  f – 1 are inverses of each other then both are one to one functions. 

2. If  f – 1 is the inverse of  f then  f is the inverse of  f – 1. We say  f  and  f – 1 are inverses of each other. 

3. The inverse of  f – 1 is  f  i.e.  ( f – 1) – 1 =  f

4.  f and  g are inverses of each other if and only if ( f  o  g) ( x) =  x,  x in the domain of  g and ( g  o  f) ( x) =  x,  x in the domain of  f. 

5. If  f and  f – 1 are inverses of each other then the domain of  f is equal to the range of  f – 1

and the range of  f is equal to the domain of  f – 1,  i.e.   f – 1 ( f( x)) =  x for all  x ∈ Dom( f) and  f( f – 1( y)) =  y for all  y ∈ Ran( f)

6. If point ( a,  b) is on the graph of  f then point ( b,  a) is on the graph of  f – 1. 
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4.13.2 Steps to Find the Inverse of a Function

Given the function  f( x), the following four steps are applied to find the inverse function, f – 1( x). 

1. First, replace  f( x) with  y. 

2. Replace every  x with  a  y and replace every  y with an  x. 

3. Solve the equation from Step 2 for  y. 

4. Replace  y with  f – 1( x). 

Example 11.  Find the inverse of  f( x) =  x + 5. 

Sol. Step 1. 

 y =  x + 5

:  f( x) is replaced with  y

Step 2. 

 x =  y + 5

: every  x is replaced with  y and vice versa

Step 3. Now, solve for  y

 y =  x – 5

Step 4. 

 f – 1( x) =  x – 5

:  y is replaced with  f – 1 ( x). 

Example 12.  Find the inverse of  g( x) = 2 x/ x – 1

Sol. Step 1. 

 y  = 2 x/ x – 1

:  g( x) is replaced with  y

Step 2. 

 x  = 2 y/ y – 1

: every  x is replaced with  y and vice vers

Step 3. Now, solve for  y

 x ( y – 1) = 2 y

 xy –  x  = 2 y

 xy – 2 y =  x

 y( x – 2) =  x

 y =  x/ x – 2

Step 4. 

 g – 1( x) =  x/ x – 2

:  y is replaced with  g – 1 ( x). 

Example 13.  Given  f( x) = 3 x – 2, find  f – 1 ( x). 

Sol. Step 1. 

 y  = 3 x – 2

:  f( x) is replaced with  y

Step 2. 

 x  = 3 y – 2

: every  x is replaced with  y and vice versa

Step 3. Now, solve for  y

 y =  x – 5

 x + 2 = 3 y

( x + 2)/3 =  y

Step 4. 

 f – 1 ( x) = ( x + 2)/3

:  y is replaced with  f – 1 ( x). 

4.14

COMPOSITION OF FUNCTIONS

Consider functions,  f : A → B and  g : B → C. The composition of  f with  g is a function from A into C defined by ( gof ) ( x) =  g[  f( x)] and is denoted by  gof. 

To find the composition of  f and  g, first find the image of  x under  f and then find the image of  f( x) under  g. 
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Example 14.  Let X = { 1, 2, 3} , Y = { a, b}  and Z = { 5, 6, 7} . Consider the functions f = { (1, a), (2, a), (3, b)}  and g = { (a, 5), (b, 7)}  as shown in Figs. 14 and 15. Find the composition of gof. 

1

f

g

5

a

a

2

6

b

b

3

7

X

Y

Y

Z

Fig. 14. Function  f. 

 Fig. 15.  Function  g. 

Sol. The composition function  gof is shown in Fig. 16. 

1

f

g

5

a

2

6

b

3

7

X

Y

Z

Fig. 16.  Composition function  gof. 

( gof ) (1) =  g[ f(1)] =  g( a) = 5, ( gof) (2) =  g[ f(2)] =  g( a) = 5

( gof ) (3) =  g[ f(3)] =  g( b) = 7. 

Example 15.  Consider f, g and h, all functions on the integers, and is given by f(n) = n2, g(n) = n + 1 and h(n) = n – 1. 

 Determine (i) hofog

 (ii) gofoh

 (iii) fogoh. 

Sol. ( i)

 hofog( n) =  n + 1, 

 hof( n + 1) = ( n + 1)2

 h[( n + 1)2] = ( n + 1)2 – 1 =  n 2 + 1 + 2 n – 1 =  n 2 + 2 n. 

( ii)

 gofoh( n) =  n – 1,   gof( n – 1) = ( n – 1)2

 g[( n – 1)2] = ( n – 1)2 + 1 =  n 2 + 1 – 2 n + 1 =  n 2 – 2 n + 2. 

( iii)

 fogoh( n) =  n – 1

 fog( n – 1) = ( n – 1) + 1 =  n

 f( n) =  n 2. 

Theorem I.  Prove that if f : X →  Y and g : Y →  Z are one to one functions, then gof is also one-to-one function. 

Proof. Consider two distinct elements  a  and  a  

1

2 ∈ X. 

Now, 

 a  

) 

)

(

1 ≠  a 2

⇒  f ( a 1 ≠  f ( a 2

∵  f is one-to-one)

⇒

 g[ f ( a )] 

)]

(

1

≠  g[ f ( a 2

∵  g is one-to-one)

⇒

( gof) ( a ) 

). 

1 ≠ ( gof) ( a 2

Therefore, the function  gof has distinct elements ∈ X that are mapped to distinct element of Z. Hence,  gof  is one-to-one function. 
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Theorem II.  Prove that if f : X →  Y and g : Y →  Z are onto functions, then gof is onto function. 

Proof. Consider an element  c ∈ Z. As  g is an onto function from Y → Z, therefore, there exists  b ∈ Y, such that  g( b) =  c. 

Now, since  f is onto function from X to Y, therefore, there exists  a ∈ X such that  f( a) =  b. 

Thus ∀  c ∈ Z, there exists  a ∈ X such that C =  g( b) =  g[ f( a)] = ( gof)( a). 

Thus,  gof  is a function of X onto Z. Hence,  gof is an onto function. 

Theorem III.  Prove that if f : X →  Y and g : Y →  Z be two one-to-one onto functions, then gof is also one-to-one onto function. 

Proof. Assume two elements  a ,  a  



. 

1

2 ∈ X with  a 1 ≠  a 2

As   f : X → Y  is  a  one-to-one onto function therefore, there exists distinct elements b ,  b  

1

2 ∈ Y. 

So, 

  f( a ) =  b ,  f ( a ) =  b

and  b  

...(1)

1

1

2

2

1 ≠  b 2

The function  g : Y → Z is also one-to-one onto. 

Therefore, there exists unique elements  c ,  c  

1

2 ∈ Z. 

So, 

 g( b ) =  c ,  g( b ) =  c

and  c  

...(2)

1

1

2

2

1 ≠  c 2

The composition of (1) and (2) gives

( gof)( a ) =  g[ f( a )] =  g( b ) =  c

1

1

1

1

and

( gof)( a ) =  g[ f( a )] =  g( b ) =  c

2

2

2

2

We know  c  

so ( gof)( a ) 

)

1 ≠  c 2

1 ≠ ( gof)( a 2

As

  a  

) 

). 

1 ≠  a 2

⇒ ( gof)( a 1 ≠ ( gof)( a 2

Therefore,  gof is one-to-one function. 

Now, assume an element  c ∈ Z. 

As  g : Y → Z is a one-to-one onto function. 

Therefore, there exists a distinct element  b ∈ Y ⇒  g( b) =  c

As  f : X → Y is one-to-one onto function. 

Therefore, there exists a distinct element  a ∈ X ⇒  f( a) =  b

Therefore, 

( gof)( a) =  g[ f( a)] =  g( b) =  c

It implies every element of  c has image under  gof. Therefore,  gof is an onto function. 

So, we conclude that  gof  is one-to-one onto function. 

4.15

COMBINATION OF FUNCTIONS

The functions can be combined by sum, difference, product and quotient operations. Two

functions can be added, subtracted, multiplied or divided as long as there are numbers common to the domains of both functions. The common domain for the sum, difference, product or quotient of two functions is the set of numbers that are common to the domains of both functions. 
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 4.15.1 Sum of Functions

Let us assume two functions  f and  g. The sum of the functions  f +  g is a function whose domains are the set of all real numbers common to the domains of  f and  g and is defined as ( f +  g)( x) =  f( x) +  g( x). 

Example 16.   Consider the following two functions. 

 f( x) =  9x –  5 and g( x) =  4x +  1

 Find the sum of these functions  f( x) +  g( x). 

Sol.  The sum of these functions can be written as  f( x) +  g( x) or as ( f +  g)( x). 

( f +  g)( x) =  f( x) +  g( x)

( f +  g)( x) = (9 x – 5) + (4 x + 1)

( f +  g)( x) = (9 x + 4 x –5 + 1)

( f +  g)( x) = 13 x – 4

4.15.2 Difference of functions

Let us assume two functions  f and  g. The difference of the functions  f –  g is a function whose domains are the set of all real numbers common to the domains of  f and  g and is defined as ( f –  g)( x) =  f( x) –  g( x). 

Example 17.   Consider the following two functions:

 f( x) =  9x +  6 and g( x) = 4 x + 1

 Find the difference of these functions  f( x) –  g( x). 

Sol.  The difference of these functions can be written as  f( x) –  g( x) or as ( f –  g)( x). 

( f –  g)( x) =  f( x) –  g( x)

( f –  g)( x) = (9 x + 6) – (4 x + 1)

( f – g) ( x) = (9 x + 6 – 4 x – 1)

( f –  g)( x) = 5 x + 5

4.15.3 Product of Functions

Let us assume two functions  f and  g. The product of the functions  f  ∗  g is a function whose domains are the set of all real numbers common to the domains of  f and  g and is defined as ( f ∗  g)( x) =  f( x) ∗  g( x). 

Example 18.   Consider the following two functions:

 f( x) =  2x +  1 and g( x) =  5x –  3

 Find the product of these functions f( x) ∗  g( x). 

Sol.  The product of these functions can be written as  f( x) *  g( x) or as ( f *  g)( x). 

( f ∗ g)( x) =  f ( x) ∗  g( x)

( f ∗  g)( x) = (2 x + 1) ⋅ (5 x – 3)

( f ∗  g)( x) = (10 x 2 – 6 x + 5 x – 3)

( f  ∗  g)( x) = 10 x 2 –  x – 3
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4.15.4

Quotient of Functions

Let us assume two functions  f and  g. The quotient of the functions  f /  g is a function whose domains are the set of all real numbers common to the domains of  f and  g and is defined as ( f/ g)( x) =  f( x)/  g( x),  g( x) ≠ 0. 

Example 19.   Let us take two functions  f ( x) =  x 2  and  g ( x) =  x. 

Sol.  The sum of the functions  f and  g =  f ( x) +  g( x) =  x 2 +  x. 

The difference of the functions  f and  g =  f ( x) –  g( x) =  x 2 –  x. 

The product of the functions  f and  g =  f ( x) ·  g( x) =  x 2 ·  x =  x 3. 

The quotient of the functions  f and  g =  f ( x)/ g( x) =  x 2/ x =  x. 

Example 20.   Consider the following two functions f and g. 

 f( x) =  3 x  –  2 and f( g) =  x2 +  5

 Determine the following:

( i) ( f +  g) ( x)

( ii) ( f +  g) (4)

( iii) ( f –  g) ( x)

( iv) ( f –  g) (4)

( v) ( f ·  g) ( x)

( vi) ( f ·  g) (4)

( vii) ( f/ g) ( x)

( viii) ( f/ g) (4)

Sol. 

( i)

( f +  g)( x) =  f( x) +  g( x)

( f +  g)( x) = 3  x  – 2 +  x 2 + 5

( ii)

( f +  g)(4) =  f(4) +  g(4)

( f +  g)(4) = 3 4  – 2 + 42 + 5

( f +  g)(4) = 6 – 2 + 16 + 5 = 25

( iii)

( f –  g)( x) =  f( x) –  g( x)

( f –  g)( x) = 3  x  – 2 – ( x 2 + 5)

( iv)

( f –  g)(4) =  f(4) –  g(4)

( f –  g)(4) = 3 4  – 2 – (42 + 5)

( f –  g)(4) = 6 – 2 – 16 – 5 = – 17

( v)

( f ⋅  g)( x) =  f( x) ·  g( x)

( f ⋅  g)( x) = (3  x  – 2) · ( x 2 + 5)

( vi)

( f ⋅  g)(4) =  f(4) ·  g(4)

( f ⋅  g)(4) = (3 4  – 2) · (42 + 5)

( f ⋅  g)(4) = (6 – 2) · (16 + 5) = 4(21) = 84

⎛  f ⎞

 f ( )

 x

( vii)

⎜ ⎟ ( x)  =

⎝  g⎠

 g( )

 x

⎛  f ⎞

(3  x − 2)

⎜ ⎟ ( x)

⎝  g⎠

=

2

( x + 5)

⎛  f ⎞

(3 4 − 2)

(6 − 2)

4

( viii)

⎜ ⎟ (4)

⎝  g⎠

=

2

= 

(4 + 5)

(16 + 5)  =  21
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Example 21.   Let  f( x) = 2 x + 1  and  g( x) =  x 2 –  x. Find: ( i) ( f +  g)(2)

( ii) ( f –  g)(–1)

( iii) ( f –  g)( x)

( iv) ( f ·  g)(3)

Sol.  ( i) ( f +  g)(2) = 7

( ii) ( f –  g) (–1) = – 3

( iii) ( f –  g)( x) = –  x 2 + 3 x + 1

( iv) ( f ·  g)(3) = 42

4.16

FUNCTIONS APPLICABLE IN COMPUTER SCIENCE

The following are the functions which are widely used in Computer Science. 

4.16.1

Characteristic Function of A

Consider a subset A of the universal set U = { u ,  u ,  u ,  u , .......,  u

,  u }. The characteristic

1

2

3

4

 n – 1

 n

function of A is a function from U to {0, 1} defined as follows :

1, 

R if  u ∈A

  f ( u ) = 

 j

S

A

 j

0, if  u ∉A

 j

T

Note. The characteristic function of A  i.e., f  is not one to one but is everywhere defined and onto. 

A

Example 22.  Let A = { a, c, e}  and U = { a, b, c, d, e, f, g} . Compute the following function values:

( i)  f (a)

( ii)  f  (g)

( iii)  f  (e)

( iv)  f  (t)

( v)  f  (d). 

 A

 A

 A

 A

 A

Sol. ( i)  f  ( a) = 1

( ii)  f  ( g) = 0

( iii)  f  ( e) = 1

A

A

A

( iv)  f  ( t) = undefined

( v)  f  ( d) = 0. 

A

A

4.16.2

Floor Functions

The floor function for any real number  x is defined as  f( x) is the greatest integer 1 less than or equal to  x. It is denoted by  ⎢ x

⎣ ⎥. 

⎦

Example 23.  Determine the value of

( i) ⎣ 3.5⎦

( ii) ⎣ –2.4⎦

( iii) ⎣ 3.143⎦

Sol. ( i) ⎣3.5⎦ = 3

( ii) ⎣–2.4⎦ = – 3

( iii) ⎣3.143⎦ = 3. 

Example 24.  Determine the value of

( i) ⎣  27 ⎦

( ii) ⎣– 13⎦

( iii) ⎣  6 ⎦ . 

Sol. ( i) ⎣ 27 ⎦ = 6

( ii) ⎣–13⎦ = – 13

( iii) ⎣ 6 ⎦ = 2. 

4.16.3

Ceiling Function

The ceiling function for any real number  x is defined as  h( x) is the smallest integer greater than or equal to  x. It is denoted by ⎡ x⎤. 

Example 25.  Determine the value of

( i) ⎡ 3.5⎤

( ii) ⎡ – 2.4⎤

( iii) ⎡ 3.143⎤ . 

Sol. ( i) ⎡3.5⎤ = 4

( ii) ⎡– 2.4⎤ = – 2

( iii) ⎡3.143⎤ = 4. 
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Example 26.  Determine the value of

( i) ⎡  27 ⎤

( ii) ⎡ – 13⎤

( iii) ⎡  6 ⎤  . 

Sol. ( i) ⎡ 27 ⎤ = 6

( ii) ⎡– 13⎤ = – 13

( iii) ⎡ 6 ⎤ = 3. 

4.16.4

Remainder Function

The integer remainder is obtained when some  a is divided by  m. It is denoted by  a (MOD M). 

We can also define it as,  a (MOD M) is the unique integer  t such that  a = M q +  t. Here  q is the quotient and 0 ≤  t < M. 

Example 27.  Determine the value of the following:

( i)  35(MOD 7)

( ii)  20(MOD 3)

( iii)  4(MOD 9)

( iv)  25(MOD 9)

( v)  1111(MOD 11)

( vi)  2424(MOD 20). 

Sol. ( i) 35(MOD 7) = 0

( ii) 20(MOD 3) = 2

( iii) 4(MOD 9) = 4

( iv) 25(MOD 9) = 7

( v) 1111(MOD 11) = 0

( vi) 2424(MOD 20) = 4. 

4.16.5


Boolean Function

Consider a set Y = {true, false}. Then a function from a set X to set Y is called a Boolean

function. 

For example.  Consider the following: P(x) : x is –ve integer and Q(y) : y is + ve integer. 

Then, we have P(–18) is true

P(18) is false

and

Q(–16) is false

Q(16) is true. 

Example 28.  Consider the following: R(x) : x is odd and S(y) : y is even. 

 Also let T(x, y) : x is odd and y is even. 

 Determine the Boolean function T(3, 4), T(4, 3), T(4, 4). 

Sol. Since T( x, y) is a Boolean function with two variables. Hence the solution of above functions is

T(3, 4) is true. 

T(4, 3) is false. 

T(4, 4) is false. 

4.16.6

Exponential Functions

Consider  two  sets  A  and  B.  Let  A = B = I  and also let  f : A 

+

→ B be defined by  f( n) =  kn. 

Here  n is a +ve integer. The function  f is called the base  k exponential function. 

Note 1.  kt = k.k.k.......k ( t times). 

1

2.   k 0 = 1,  k–M =   k M . 

3. For rational number,  a/ b, the exponential function is  ka/b =  b   ka  =  ( b k ) a. 

FUNCTIONS

M-4.143

Example 29.  Determine the value of the following :

( i)  26

( ii)  103

( iii)  10–4

( iv)  51/2

( v)  3–5

( vi)  9–3/2. 

Sol. ( i) 26 = 2 ·  2 ·  2 ·  2 ·  2 ·  2 = 64

( ii) 103 = 10 . 10 . 10 = 1000

1

1

1

( iii) 10–4 = 

= 

= 

( iv) 51/2 = 2.23607

104

10 . 10 .10 . 10

10000

1

1

1

( v) 3–5 = 

= 

( vi) 9–3/2 = 0.037. 

35  =  3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3

243

4.16.7

Logarithmic Functions

Consider two sets A and B. Let A = B = R (the set of real numbers) and also let  f  : A n

→ B

be defined for each positive integer  n > 1 as  f  ( x) = log  ( x) the logarithm to the base  n of  x. 

 n

 n

Note 1.  k =  log   x and  nk = x  are equivalent. 

 n

2. For any base  n, log  1 = 0 as  n 0 = 1. 

 n

3. For any base  n, log   n = 1 as  n 1 =  n. 

 n

Example 30.  Determine the value of the following:

( i)  log  16

( ii)  log  256

( iii)  log  1000

( iv)  log  0.0001

 2

 2

 10

 10

( v)  log  100

( vi)  log  (1/ 32)

( vii)  log  0.001. 

 2

 2

 2

Sol. ( i) log  16 = 4 as 24 = 16

2

( ii) log  256 = 8 and 28 = 256

2

( iii) log  1000 = 3 as 103 = 1000

10

( iv) log  0.0001 = – 4 as 10–4 = 0.0001

10

( v) log  100 = 6 as 26 = 64 but 27 = 128 which is greater

2

1

1

( vi) log  (1/32) = – 5 as 2–5 = 

= 

2

25

32

1

1

( vii) log  (0.001) = – 9 as 2– 9 = 

but 2– 10 = 

which is greater. 

2

512

1024

4.16.8

Hashing Functions

Let us assume that there is a file of  n records with a set of keys  k  which uniquely determine T

the records in file. Also, assume that the file is maintained in memory by a table of  m memory locations and L is the set of memory addresses of the locations in the table, T(0 ......   m – 1). The set of keys  k  and the addresses in L are integers. 

1

A hash function  h is used to compute the address of a record from the set of keys  k . 

T

Here  h maps the set of keys  k  into the set of memory addresses called slots of a hash table 0

T(0 ......  m – 1). Thus, a function  h :  k  

T → L is called a hash function. But the major problem

with such  a function  h is that two keys may hash to the same slot  i.e.,  two distinct keys will generate the same hash address called collision. 

A good hash function is a function  h which satisfies the following two principle criterias : ( i) The function  h  should be very easy and quick to complete. 

( ii) The function  h should uniformally distribute the hash addresses, so that there are minimum number of collisions. 
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There are three most popular methods for creating hash functions. These are :

( i) Division Method

( ii) Midsquare Method

( iii) Universal or Folding Method. 

1. Division Method. Select a number M(usually a prime number near  m) larger than the number  n of keys in  k , then hash function  h is defined as

T

 h( k) =  k(Mod M)

where  k (MOD M) denotes the remainder when  k is divided by M. 

Using a prime number M reduces the number of collisions. 

2. Midsquare Method. In this method, the key  k is squared  i.e., k 2 and then the address is obtained by deleting or choping the digits from both ends of  k 2. The hash function  h is defined as h( k) =  p. 

Here  p is obtained by choping digits from both ends of  k 2 and the same positions of  k 2 is used for all the keys. 

3. Universal Method or Folding Method. The key  k is divided into a number of parts k ,   k , ......   k . Here each part consists of the same number of digits as the desired address except 1

2  

 t

the last one. After that these parts are added together, ignoring the last carry. Thus, the hash function  h is defined as

   h( k) =  k  +  k  + ......   k . 

1

2

 t

The leading digit carries are ignored, if any. To get more precise values, the even-num-

bered parts  i.e., k ,   k ,   k  ...... can be reversed before addition. 

2

4

6

Example 31.  Consider an organisation which has 53 employes and each one is assigned a unique 3-digit employee number. Suppose the L consists of 100 two digit addresses (00, 01, ..., 99). 

 Determine the hash addresses generated by different hash function for the following employee numbers

 100, 213, 710, 934. 

Sol. 1. Division Method. The prime number close to 99 is 97. Thus, the hash address

generated by employee number 100 is obtained by dividing 100 by 97 which gives remainder 3

which is required hash address. All other hash addresses are generated similarly

 h(100) = 3,  h(213) = 19,  h(710) = 31,  h(934) = 61. 

2. Midsquare Method. Calculate the square of the employee address and then chop off

the digits from both ends. The remaining digits is the hash address obtained. The third and

fourth digits, from right are chosen to be the hash address

 k :

100

213

710

934

 k 2 :

10,000

45,369

50,4100

87,2356



 h( k) :

00

53

41

23. 

3. Universal Method. Divide the key  k into two parts and then add to obtain the hash address by this method. Thus, the hash addresses generated by the employee numbers are as

follows :

 h(100) = 10 + 0 = 10

 h(213) = 21 + 3 = 24

 h(710) = 71 + 0 = 71

 h(934) = 93 + 4 = 97. 

Note. If sum of two digits is more than 99, delete the leading digit and retain only two least significant digits. 
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PROBLEM SET-II

1. Find the inverse of the following functions:

( i)  f ( x) = 

 x 2 – 2 x,  x ≥ 1

( ii)  f ( x) = 3 x – 2

( iii)  f( x) = 2/ x

( iv)  f ( x) = –

 x 2 + 2,  x ≥ 0

( v)  f ( x) = ( x + 1)/( x – 1)

( vi)  f ( x) = ( x + 1)1/3

( vii)  f ( x) = ln( x)

( viii)  f ( x) =  ( x − 1)

( ix)  f ( x) =  e  x – 1 + 3

( x)  f ( x) = ln ( x + 2) – 3

2. Suppose  A = {5, 6, 8},  B = {0, 1},  C = {1, 2, 3}. Let  f:  A →  B be the function  f = {(5, 1), (6, 0), (8, 1)}, and g: B→C be  g = {(0, 1), (1, 1)}. Find  g  o  f. 

3. Given the following functions  f( x) = 3 x + 2,  g( x) =  2 x + 5  and  h( x) = 3 x 2 – 5 x + 4. Find ( i)  f   o  g(1)

( ii)  h  o  f( x)

( iii)  f  o  g( x)

( iv)  f  o  h( x + 2)

4. Suppose A = {1, 2, 3}. Let  f : A→A be the function  f = {(1, 2), (2, 2), (3, 1)}, and let  g : A → A be the function  g = {(1, 3), (2, 1), (3, 2)}. Find  g  o  f and  f  o  g. 

5. Consider the functions  f : Z × Z → Z defined as  f ( m,   n) =  m +  n and  g : Z → Z   ×   Z defined as g( m) = ( m,   m). Find the formulas for  g  o  f and  f  o  g. 

6. For the following composed functions find  f and  g such that ( f  o  g)( x) = H( x); ( i) H( x) =  π

( ii) H( x) =  x 2 + 6 x + 9

7. If  f( x) =  x 2 – 4 x + 2 and  g( x) = 3 x – 7, find ( f o  g)( x) 8. Given two functions  f = {(–2, 1), (0, 3), (4, 5)} and  g = {(1, 1), (3, 3), (7, 9)}. Find the composite function  gof and write its domain and range. 

9. Example: Let  f( x) =  x 2 and  g( x) =

2

1 −  x . Find ( g o f)( x) and ( f o g)( x). 

10. For the following problems, find and simplify   f ( x + )

 h −  f ( )

 x . 

 h

( i)  f( x) = 3 x + 5

( ii)  f( x) =  x 3 + 1

11. Given the function  f( x) = 3 x + 5 and  g( x) = 2 x 3. Determine ( gof)( x) and ( fog)( x). 

12. If  f( x) =  x 2,  g( x) =  x 3 and  h( x) = 3 x + 2. Determine  fohog( x). 

13. For each of the following, give an example of sets A, B and C and functions  f : A → B and  g : B → C

which satisfy the given conditions. 

( a)  g is onto C, but  g  o  f is not onto C. 

( b)  f is not onto  B, but  g  o  f is onto C. 

( c)  f is one-to-one, but  g  o  f is not one-to-one. 

14. Let S = {1, 2, 3, 4, 5} and let  f,  g,  h : S → S be the functions defined by  f = {(1, 2), (2, 1), (3, 4), (4, 5), (5, 3)},  g = {(1, 3), (2, 5), (3, 1), (4, 2), (5, 4)} and  h = {(1, 2), (2, 2), (3, 4), (4, 3), (5, 1)}

( i) Find  f – 1 and  g – 1. 

( ii) Show that ( f   o  g) – 1 =  g – 1  o  f – 1 6 ≠  f – 1  o  g – 1. 

15. Which of the following is True/False? 

( a) If  f ( x) = 9 x + 5 and  g( x) =  x 2 then  f ( g(3 x – 2)) = 9 x 2 + 90 x + 230. 

( b)  f ( g( x)) =  g( f ( x)) for any two functions  f and  g. 

( c) Let  f ( x) =  x 2 +  x – 3. Using the domain of {–2, –1, 0, 1, 2} will give the range = {–1, –3, 3}. 

( d) If  f ( x) = 9 x + 5 and  g( x) =  x 2, then  g( f (3 x – 2)) = 81 x 2 + 900 x + 2300. 

( e) Let  f ( x) =  x 2 +  x – 3. Using the domain of {–2, –1, 0, 1, 2} will give the range = {–1, –3, 0}. 
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16. Let  f( x) = 5 x + 2 and  g( x) =  x 2 – 1. Determine the following: ( a) ( f +  g)( x)

( b) ( f +  g)(2)

( c) ( f –  g)( x)

( d) ( f –  g)(2)

( e) ( f· g)( x)

( f) ( f· g)(2)

( g) ( f/ g)( x)

( h) ( f/ g)(2)

ANSWERS AND HINTS (PROBLEM SET II)

1. ( i)  f – 1 ( x) =  1 + ( x + 1)

( ii)  f – 1 ( x) = ( x + 2)/3

( iii)  f – 1 ( x) = 2/ x

( iv)  f – 1 ( x) =  (2 −  x)

( v)  f – 1 ( x) = ( x + 1)/( x – 1)

( vi)  f – 1 ( x) =  x 3 – 1

( vii)  f – 1 ( x) =  ex

( viii)  f – 1 ( x) = 1 +  x 2,  x ≥  0

( ix)  f – 1 ( x) = ln ( x – 3) + 1

( x)  f – 1( x) = e x + 3 – 2

2.  g o f = {(5, 1), (6, 1), (8, 1)}

5

3. ( i) 3 7  + 2

( ii) 27 x 2 + 21 x + 6 ; (–∞, ∞)

( iii)

⎡

⎞

3 2 x + 5 + 2; ⎢ − , ∞⎟

⎣

2

⎠

( iv) 9 x 2 + 21 x + 20 ; ( – ∞, ∞)

4.  g o f = {(1, 1), (2, 1), (3, 3)} and  f o g = {(1, 1), (2, 2), (3, 2)}. 

5.  g o f ( m,  n) = ( m +  n,  m +  n) ;  f  o  g( m) = 2 m 6. ( i)  f( x) =   x   g( x) =  x + 3

( ii)  f( x) =  x 2,  g( x) =  x + 3

7. ( fog)( x) = 9 x 2 – 54 x + 79

8.  gof = { (– 2, 1), (0, 3) }. The domain D = {– 2, 0} and range R = {1, 3}

9. ( gof)( x) =  g( f( x)) =  g( x 2) = 

2 2

4

1 − ( x ) = 1 −  x

( fog)( x) =  f( g( x)) =  f

− 2

 x =

− 2 2

( 1

) ( 1  x )  = 1 –  x 2

10. ( i) 3

( ii) 3 x 2 + 3 hx +  h 2

11. ( g o f)( x) = 54 x 3 + 270 x 2 + 450 x + 250 and ( f o g)( x) = 6 x 3 + 5

12.  f o h o g( x) =  f[ h( g( x))] = (3 x 3 + 2)2

13. ( a) Let A = { a}, B = { p,  q} and C = { x,  y}, with  f = {( a,  p)} and  g = {( p,  x), ( q,  y)}. 

( b) Let A = { a,  b}, B = { p,  q,  r} and C = { x,  y}, with  f = {( a,  p), ( b,  q)} and  g = {( p,  x), ( q,  y), ( r,  y)}. 

( c) Let A = { a,  b}, B = { p,  q,  r} and C = { x}, with  f = {( a,  p), ( b,  q)} and  g = {( p,  x), ( q,  x), ( r,  x)}. 

14. ( i)  f – 1 = {(1, 2), (2, 1), (3, 5), (4, 3), (5, 4)} and  g – 1 = {(1, 3), (2, 4), (3, 1), (4, 5), (5, 2)}. 

( ii) ( f  o  g) – 1 = {(1, 4), (2, 3), (3, 2), (4, 1), (5, 5)}

 g – 1  o  f – 1 = {(1, 4), (2, 3), (3, 2), (4, 1), (5, 5)} = ( f  o  g)– 1

 f – 1  o  g – 1 = {(1, 5), (2, 3), (3, 2), (4, 4), (5, 1)} ≠ ( f  o  g)– 1

15. ( a) True

( b) False

( c) True

( d) True

( e) False

16. ( a)  x 2 + 5 x + 1

( b) 15

( c)   –   x 2 + 5 x + 3

( d) 9

( e) 5 x 3 + 2 x 2 – 5 x – 2

( f) 36

( g) (5 x + 2)/( x 2 – 1)

( h) 4
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SOLVED PROBLEMS

Problem 1.  Let X = { x, y, z, k}  and Y = { a, b, c} . Determine whether the relation S from X

 to Y is a function. If it is a function, give its domain and range. 

( i)  S = { (x, a), (y, a), (x, b), (y, b)}

( ii)  S = { (x, c), (y, a), (z, b)}

( iii)  S = { (x, a), (y, b), (z, c), (k, b)}

( iv)  S = { (x, c), (y, a), (z, a), (k, c)} . 

Sol. ( i) Not a function because domain of S ≠ X  i.e.,  there is no image of  z and  k in set Y. 

( ii) Not a function because domain of S ≠ X  i.e.,  there is no image of  k in set Y. 

( iii) It is a function. 

Domain  (S) = { x, y, z, k}, 

Range (S) = { a, b, c}

( iv) It is a function. 

Domain  (S) = { x, y, z, k}, 

Range (S) = { a, c}. 

Problem 2.  Let A = B = { 1, 2, 3, 4} . Define functions f : A →  B (if possible) such that ( i)  f is one-to-one and onto

( ii)  f is neither one-to-one nor onto

( iii)  f is onto but not one-to-one

( iv)  f is one-to-one but not onto. 

Sol. ( i) The function  f = {(1, 1), (2, 4), (3, 2), (4, 3)} is one-to-one and onto (Fig. 17). 

( ii) The function  f = {(1, 1), (2, 1), (3, 2), (4, 3)} is neither one-to-one nor onto (Fig.18). 

f

1

1

f

1

1

2

2

2

2

3

3

3

3

4

4

4

4

A

B

Fig. 17

Fig. 18

( iii) The function  f which is onto but not one-to-one is not possible on the set A = B = {1, 2, 3, 4}. 

( iv) The function  f which is one-to-one but not onto is not possible on the set A = B = {1, 2, 3, 4}. 

Problem 3.  Consider the sets X and Y and let f : X →  Y. Determine whether the following functions are:

( a)  one-to-one function

( b)  onto function

( c)  one-to-one onto

( d)  neither one-to-one nor onto. 

( i)  X = { x, y, z}  ; Y = { 1, 2, 3, 4} , f = { (x, 1), (y, 1), (z, 3)}

( ii)  X = { a, b, c, d}  = Y, f = { (a, a), (b, c), (c, d), (d, b)}
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R 1 1 1  U

FR  1

 1

 1

U

( iii)  X =  S  , , 

T

V

S ,  b , ,  d , ,  a  V

 6 9 12 W  ; Y = { a, b, c, d} , f =   HG

I

T  6  KJ FHG I

 9

KJ FHG

I

 12  KJ W

( iv)  X = { y , y , y }  ; Y = { k, l} , f = { (y , l), (y , l), (y , k)} . 

 1

 2

 3

 1

 2

 3

Sol. ( i) Neither one-to-one nor onto

( ii) one-to-one onto

( iii) one-to-one

( iv) onto. 

Problem 4.   Consider f : R →  R : f (x) = 3x2 – 3x + 1. Is f injective? Is f surjective? Show that your answer is correct. 

Sol.  The function  f is not injective since  f (0) =  f (1) = 1. 

The function  f is not surjective since it has no real zeroes, which can be seen by using the

− (− )

3 ± (− )

3 2 − . 

4 . 

3 1

quadratic formula  x = 

and since 9 – 12 = – 3 < 0, which shows that

. 

2 3

∀  x ∈ R,  f ( x) ≠ 0. 

Problem 5.   Determine whether the function f : N →  N defined by f (x) = 2x – 1, is one-to-one? If not give a counter example. 

Sol.  We know that  N = {0, 1, 2, 3, ......}

Also, 

 f (0) = 2.0 – 1 = – 1 ∉ N. 

Thus,  f is not a function from N to N. 

So,  f is not one-to-one function. 

Now, suppose  f: N → I, where I is the set of all integers. 

Now, for any  x  

in N, we have

1 ≠  x 2

 f ( x ) –  f ( x ) = 2 x  – 1 – (2 x  – 1) = 2 ( x  –  x ) 1

2

1

2

1

2 ≠ 0

⇒

  

  f ( x ) 

)

1 ≠  f ( x 2

Thus,  f : N → I is one-to-one function. 

Problem 6.  Consider the sets X = { k, l, m, n}  to Y = { 7, 8, 9, 10} . Let f : X →  Y such that ( i)  f = { (k, 10), (l, 7), (m, 8), (n, 9)}

( ii)  f = { (k, 7), (l, 8), (m, 7), (n, 8)}

 Determine whether f–1 is a function. 

Sol. ( i) The  f –1 is  f –1 = {(10,  k), (7,   l), (8,  m), (9,  n)}

The  f –1 is also a function. 

( ii) The  f –1 is  f –1 = {(7,  k), (8,  l), (7,  m), (8,  n)}

The domain ( f ) ≠ set Y. So  f–1 is not a function. 

Problem 7.   Determine whether the following functions f : 2{ a, b, c}   →  { 0, 1, ..., 7}  are invertible? If yes, give the inverse function f –1, if no, explain why not? 

 (i)

 x

φ

{ a}

{  b}

{ c}

{ a, b}

{  b, c}

{ c, a}

{ a, b, c}

 f(x)

 0

 1

 1

 1

 2

 2

 2

 3

 (ii)

 x

φ

{ a}

{  b}

{ c}

{ a, b}

{ b, c}

{ c, a}

{ a, b, c}

 f(x)

 1

 4

 2

 1

 6

 3

 5

 7
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Sol.  ( i) The function is not invertible. The reason is that for a function to be invertible, it must be one-to-one. The given function is not one-to-one, since many elements have the same

image:

( ii) The function is invertible. The inverse function  f –1 is as follows:

 y

0

1

2

3

4

5

6

7

 f –1 ( y)

φ

{ c}

{ b}

{ b,  c}

{ a}

{ c,  a}

{ a,  b}

{ a,  b,  c}

Problem 8.  Let X = Y = Z = R, be the set of reals. 

 Consider the functions f and g such that

 f( x) =  x +  2, x ∈  R, g( y) =  y 2,  y ∈ R. 

 Find the composition function gof. 

Sol. The composition of  f with  g is given by

 gof( x) =  g( x + 2) = ( x + 2)2,  x ∈ R. 

Problem 9.  Consider the functions f, g : R →  R  defined by

 f( x) =  x 2 +  3x +  1,  g( x) =  2x – 3. 

 Find the composition functions:

( i)  fof

( ii)  fog

( iii)  gof

Sol. ( i)



( fof )( x) =  f [  f( x)] =  f( x 2 + 3 x + 1)

= ( x 2 + 3 x + 1)2 + 3( x 2 + 3 x + 1) + 1

=  x 4 + 9 x 2 + 1 + 6 x 3 + 2 x 2 + 6 x + 3 x 2 + 9 x + 3 + 1

=  x 4 + 6 x 3 + 14 x 2 + 15 x + 5. 

( ii)

( gof )( x) =  g[ f( x)] =  g( x 2 + 3 x + 1)

=  2( x 2 + 3 x + 1) – 3

= 2 x 2 + 6 x + 2 – 3

= 2 x 2 + 6 x – 1. 

( iii)



(  fog)( x) =  f[ g( x)] =  f(2 x – 3)

= (2 x – 3)2 + 3(2 x – 3) + 1

= 4 x 2 + 9 – 12 x + 6 x – 9 + 1

= 4 x 2 – 6 x + 1. 

Problem 10.  Let f, g, h be functions from N to N, where N is the set of natural numbers so that

     f(n) = n + 1

    g(n) = 2n

 0

R  when n is even

    h(n) =  S 1 when n is odd. 

T

 Determine fof, fog, gof, goh, hog, (fog)oh. 

Sol. ( i)

    fof( n) =  n + 1

   f [ f( n)] =  n + 1

   f( n + 1) = ( n + 1) + 1 =  n + 2. 
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( ii)

   fog( n) = 2 n

  f [ g( n)] = 2 n

    f [2 n] = 2 n + 1

( iii)

  gof( n) =  n + 1

   g[ f( n)] =  n + 1

       g( n + 1) = 2( n + 1) = 2 n + 2. 

( iv)

 goh( n) = 0 ;  n  is even

      goh( n) = 1 ;  n is odd

    g(0) = 0 when  n is even

   g(1) = 2 when  n  is odd. 

( v)

  hog( n) = 2 n

       h[ g( n)] = 2 n

      h[2 n] = 0, as  n is even every time. 

( vi)

  fogoh( n) = 0;  n  is even

   

 fogoh( n) = 1;  n  is odd

   fog[ h( n)] = 0 and  fog[ h( n)] = 1

    fog(0) = 0 and  fog(1) = 2

   f[ g(0)] = 0 and  f[ g(1)] = 2

    f(0) = 1 and  f(2) = 2 + 1 = 3. 

So, (  fog) oh = 1 when  n is even, (  fog) oh = 3 when  n is odd. 

Problem 11.  Consider A = B = C = R and let f: A →  B and g: B →  C be defined by f(x) = x + 9 and g(y) = y2 + 3. 

 Find the following composition functions:

( i)  (fof)(a)

( ii)  (gog)(a)

( iii)  (fog)(b)

( iv)  (gof)(b)

( v)  (gof)(4)

( vi)  (fog)(–4). 

Sol. ( i) ( fof )( a) =  f[ f( a)] =  f( a + 9) = ( a + 9) + 9 =  a + 18. 

( ii) ( gog)( a) =  g[ g( a)] =  g( a 2 + 3) = ( a 2 + 3)2 + 3 =  a 4 + 6 a 2 + 12. 

( iii) ( fog)( b) =  f [ g( b)] =  f( b 2 + 3) = ( b 2 + 3) + 9 =  b 2 + 12. 

( iv) ( gof )( b) =  g[ f( b)] =  g( b + 9) = ( b + 9)2 + 3 =  b 2 + 18 b + 84. 

( v) ( gof )(4) =  g[ f(4)] =  g(13) = (13)2 + 3 = 172. 

( vi) ( fog)(– 4) =  f [ g(– 4)] =  f(19) = 19 + 9 = 28. 

Problem 12.  Let  X = { a, b, c} . Define f : X →  X such that

 f = { (a, b), (b, a), (c, c)}

 Find ( i)  f –1

( ii)  f 2

( iii)  f 3

( iv)  f 4. 

Sol. ( i) The inverse function  f–1 = {( b, a), ( a, b), ( c, c)} is shown in Fig. 19. 

( ii) The  f  2 is  fof (Fig. 20). 

( fof)( a) =  f[ f( a)] =  f( b) =  a, ( fof)( b) =  f[ f( b)] =  f( a) =  b
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a

a

b

b

c

c

f

Fig. 19.  Function  f –1. 

f

f

a

a

a

b

b

b

c

c

c

Fig. 20.  Function  f  2. 

( fof)( c) =  f[ f( c)] =  f( c) =  c, So, 

   

 f  2 = {( a, a), ( b, b), ( c, c)}. 

( iii) The  f  3 is  fofof i.e., fof  2 (Fig. 21). 

( fof)2 ( a) =  f[ f  2( a)] =  f( a) =  b, ( fof  2)( b) =  f[ f  2 ( b)] =  f( b) =  a ( fof  2)( c) =  f[ f  2( c)] =  f( c) =  c 2

f

f

a

a

a

a

a

b

b

b

b

b

c

c

c

c

c

3

f

Fig. 21.  Function  f  3. 

So, 

 f  3 = {( a, b), ( b,  a), ( c, c)}. 

( iv) The  f  4 is  fofofof i.e., fof  3 (Fig. 22). 

( fof  3) ( a) =  f[  f  3 ( a)] =  f( b) =  a, ( fof  3) ( b) =  f [  f  3 ( b)] =  f( a) =  b ( fof  3) ( c) =  f [  f  3 ( c)] =  f( c) =  c 3

f

f

a

a

a

a

a

b

b

b

b

b

c

c

c

c

c

4

f

Fig. 22.  Function  f  4. 

So, 

 f  4 = {( a, a), ( b, b), ( c, c)}. 
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Problem 13.  Consider the functions f, g and h as shown in Figs. 23, 24 and 25. 

x

y

y

z

1

1

1

1

x

y

y

2

2

2

z2

x

y

y

3

3



3

x

y

y

z

4

4

4

3

  Fig. 23. Function  f. 

 Fig. 24. Function  g. 

z

k

1

1

z

k

2

2

z

k

3

3

Fig. 25.  Function  h. 

 Determine ( i)  gof

( ii)  ho(gof)

( iii)  (hog)of. 

Sol. ( i) Consider Fig. 26. 

f

g

x

y

z

1

1

1

x

y

2

2

z2

x

y

3

3

x

y

z

4

4

3

Fig. 26.  gof. 

( gof)( x ) =  g[ f( x )] =  g( y ) =  z , ( gof)( x ) =  g[ f( x )] =  g( y ) =  z

1

1

1

1

2

2

3

3

( gof)( x ) =  g[ f( x )] =  g( y ) =  z , ( gof)( x ) =  g[ f( x )] =  g( y ) =  z

3

3

2

3

4

4

2

3

So, 

 gof  = {( x ,  z ), ( x ,  z ), ( x ,  z ), ( x ,  z )}. 

1

1

2

3

3

3

4

3

( ii) First find the composition of  f with  g and then with  h (Fig. 27). 

 ho( gof ) ( x ) =  ho[ g( f( x ))] =  ho[ g( y )] =  h( z ) =  k 1

1

1

1

1

 ho( gof) ( x ) =  ho[ g( f( x ))] =  ho[ g( y )] =  h( z ) =  k 2

2

3

3

3

 ho( gof) ( x ) =  ho[ g( f( x ))] =  ho[ g( y )] =  h( z ) =  k 3

3

2

3

3

 ho( gof) ( x ) =  ho[ g( f( x ))] =  h[ g( y )] =  h( z ) =  k 4

4

2

3

3

f

g

h

x

y

z

k

1

1

1

1

x

y

2

2

z

k

2

2

x

y

3

3

x

y

z

k

4

4

3

3

Fig. 27.   ho( gof). 

So, 

   ho( gof) = {( x ,  k ), ( x ,  k ), ( x ,  k ), ( x ,  k )}. 

1

1

2

3

3

3

4

3
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( iii) First find the composition of  g with  h and then with  f(Fig. 28). 

f

g

h

x

y

z

k

1

1

1

1

x

y

2

2

z

k

2

2

x

y

3

3

x

y

z

k

4

4

3

3

Fig. 28. ( hog) of. 

( hog)( y ) =  h( g( y )) =  h( z ) =  k , ( hog)( y ) =  h( g( y )) =  h( z ) =  k

1

1

1

1

2

2

3

3

( hog)( y ) =  h( g( y )) =  h( z ) =  k , ( hog)( y ) =  h( g( y )) =  h( z ) =  k

3

3

3

3

4

4

3

3

So, 

       hog = {( y ,  k ), ( y ,  k ), ( y ,  k ), ( y ,  k )}

1

1

2

3

3

3

4

4

Now, 

(( hog) of ) ( x ) = ( hog)( f( x )) =  hog( y ) =  k 1

1

1

1

(( hog) of ) ( x ) = ( hog)( f( x )) =  hog( y ) =  k 2

2

3

3

(( hog) of ) ( x ) = ( hog)( f( x )) =  hog( y ) =  k 3

3

2

3

(( hog) of ) ( x ) = ( hog)( f( x )) =  hog( y ) =  k 4

4

2

3

So, 

( hog) of = {( y ,  k ), ( y ,  k ), ( y ,  k ), ( y ,  k )}. 

1

1

2

3

3

3

4

3

Problem 14.  Determine the value of each of the following floor functions:

( i) ⎣ 8.2⎦

( ii) ⎣ 19.1231⎦

( iii) ⎣ – 9.6⎦

( iv) ⎣ 8⎦

( v) ⎣  5 ⎦

( vi) ⎣ – 11.2⎦  . 

Sol. ( i) ⎣8.2⎦ = 8

( ii) ⎣19.1231⎦ = 19

( iii) ⎣– 9.6⎦ = – 10

( iv) ⎣8⎦ = 8

( v) ⎣ 15⎦ = 3

( vi) ⎣– 11.2⎦ = – 12. 

Problem 15.  Determine the value of each of the following ceiling functions:

( i) ⎡ 8.3⎤

( ii) ⎡ 19 .1231⎤

( iii) ⎡ – 9.7⎤

( iv) ⎡ 9⎤

( v) ⎡  17 ⎤

( vi) ⎡ – 11.1⎤  . 

Sol. ( i) ⎡8.3⎤ = 9

( ii) ⎡19.1231⎤ = 20

( iii) ⎡– 9.7⎤ = – 9

( iv) ⎡9⎤ = 9

( v) ⎡ 17 ⎤ = 5

( vi) ⎡– 11.1⎤ = – 11. 

Problem 16.  Let X = { 10, 20, 30}  and U = { 10, 20, 30, ......,100} . Compute the following function values:

( i)  f  (10)

( ii)  f  (80)

( iii)  f  (110)

 x

 x

 x

( iv)  f  (30)

( v)  f  (40). 

 x

 x

Sol. ( i)  f  (10) = 1

( ii)  f  (80) = 0

( iii)  f  (110) = Undefined

 x

 x

 x

( iv)  f  (30) = 1

( v)  f  (40) = 0. 

 x

 x

Problem 17.  Determine the value of the following functions:

( i)  18(MOD 3)

( ii)  11(MOD 9)

( iii)  40(MOD 7)

Sol.  ( i) 18(MOD 3) = 0

( ii) 11(MOD 9) = 2

( iii) 40(MOD 7) = 5. 
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Problem 18.  Let f be the function from X = { 0, 1, 2, 3, 4}  to X defined by f(x) = 4x(MOD 5). 

 Write f as a set of ordered pairs. Is f one-to-one? 

Sol. We have

 f( x) = 4 x(MOD 5)

(given)

Now put the value of X in the function  f( x) one by one and obtain the corresponding second value of the pair

 e.g., 

 f(0) = 4 × 0(MOD 5) = 0(MOD 5) = 0

 f(1) = 4 × 1(MOD 5) = 4(MOD 5) = 4 and so on. 

Thus, the required set of ordered pairs is

  f = {(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)}

Yes,  f is one-to-one since there is exactly one value of  f( x) for each  x ∈ X. 

Problem 19.  Consider the following Boolean function:

 T(x, y) : x is greater than 10 and y is less than 10. 

 Determine the value of the Boolean functions

 T(25, 8), T(5, 25) and T(10, 10). 

Sol. The solution of the above functions is :

T(25, 8) is true

T(5, 25) is false

and

T(10, 10) is false. 

Problem 20.   Let P be a function defined by P(x, y) = (~ x ∨  y) ∨  x.   Determine each of the following:

( i)  p(false, false)

( ii)  P(true, true)

( iii)  P(false, true)

( iv)  P(true, true). 

Sol. The values of the above functions is as follows :

( i) P(false, false) is false. 

( ii) P(true, true) is true. 

( iii) P(false, true) is true. 

( iv) P(true, false) is true. 

Problem 21.  Determine the value of the following exponential functions:

( i)  10–3

( ii)  4–4

( iii)  8–3/2

( iv)  71/2

( v)  36

( vi)  210. 

1

1

1

1

Sol. ( i) 10–3 = 

= 

( ii) 4–4 = 

=

= 0.0039 ( iii) 8–3/2 = 0.0441942

103

1000

44

4 . 4 . 4 . 4

( iv) 71/2 = 2.64575

( v) 36 = 729

( vi) 210 = 1024. 

Problem 22.  Determine the value of the following logarithmic functions:

( i)  log  24

( ii)  log  4

 (iii) log  1024

 2

 4

 2

( iv)  log  1

( v)  log  0.0001. 

 10

 2

Sol. ( i) log  24 = 4 as 25 = 32, which is greater. 

2

( ii) log 4 = 1

( iii) log  1024 = 10 as 210 = 1024

4

2

( iv) log  1 = 0

( v) log 0.0001 = – 13. 

10

2 
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Problem 23.  For the following hash function, show how the data would be inserted in the order given in initially empty cells. Use the collision resolution policy. 

 h(x) = x MOD 11 and cells indexed from 0 to 10 and data is given as:

 53, 281, 743, 13, 20, 10, 796, 377. 

Sol. The following figure shows the result of storing the above data in initially empty cells. 

10

13

377

796

281

743

53

20

0

1

2

3

4

5

6

7

8

9

10

The collision occurred at the numbers 743, 20 and 10. One collision resolution policy is to

find the next highest unoccupied cell. Thus  h(743) = 6 but is stored at 7, the next highest cell. 

Problem 24.   Let A be a set with 5 elements and B a set with 4 elements. 

 (a) How many functions are there from A to B ? 

 (b) How many functions are there from B to A ? 

 (c) How many functions from B to A are injective (one-to-one) ? 

 (d) How many functions from A to B are surjective (onto) ? 

Sol.  ( a) There are BA = 45 = 1024 functions  i.e.,  for each of the five elements of A, choose one of the four elements of B as its image. 

( b) There are AB = 54 = 625 functions  i.e.,  for each of the four elements of B, choose one of the five elements of A as its image. 

( c) For the first element of B, we may choose any element of A as its image (we have 5

choices). For the second element, we may choose any element of A which we have not already

chosen (we have 4 choices) and for the third and fourth elements of B we make one of 3 and 2

choices respectively. Thus, we have 5 × 4 × 3 × 2 = 120 injections from B to A. 

( d) We will use principal of inclusion-exclusion to solve this problem. Let A , A , A  and A 1

2

3

4

be sets of functions from A to B, where the functions in A  are those functions which do not include i

the  i th element of B in their range. 

We have to find how many functions from A to B are not in any of the A   i.e.,  we have to find i

the value

1024 – |A  





|. 

1 ∪ A2 ∪ A3 ∪ A4

Since, there are 35 functions in A i

25 functions in A  

( i 

 i ∩ A j

≠  j)

15 functions in A  



( i, j, k all distinct)

 i ∩ A j ∩ A k

and

0 functions in A  





. 

1 ∩ A2 ∩ A3 ∩ A4

Then, using the principal of inclusion-exclusion, we have

| A  





| = 4.35 – 6.25 + 4.15 – 0

1 ∪ A2 ∪ A3 ∪ A4

= 972 – 192 + 4 – 0 = 784

So, the number of surjective functions from A to B are 1024 – 784 = 240. 
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MULTIPLE CHOICE QUESTIONS

1. Let A = {1, 2} and B = {2, 3, 4}. Which of the following relations from A to B are functions? 

( a) {(1, 3), (2, 4)}

( b) {(1, 3), (1, 4)}

( c) {(1, 3), (1, 3)}

( d) {(2, 2), (1, 4)}

2. Let  f: A → B be a function, and let E and F be subsets of A. Consider the following statements about images. 

S :  f(E 

:  f(E 

1

∪ F) =  f(E) ∪  f(F)

S2

∩ F) =  f(E) ∩  f(F)

Which of the following is true about S  and S ? 

1

2

( a) Only S  is correct

( b) Only S  is correct

1

2

( c) Both S  and S  are correct

( d) None of S  and S  is correct

1

2

1

2

3. Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and the hash function x mod 10, which of the following statements are true? 

( i) 9679, 1989, 4199 hash to the same value

( ii) 1471, 6171 hash to the same value

( iii) All elements hash to the same value

( iv) Each element hashes to a different value

( a) ( i) only

( b) ( ii)   only

( c) ( i) and ( ii) only

( d) ( iii) or ( iv)

4. Let  f: B → C and  g: A → B be two functions let  h =  fo g. Given that h is an onto function which one of the following is TRUE? 

( a)  f and  g should both be onto functions

( b)  f should be onto but g need to be onto

( c)  g should be onto but  f  need not be onto

( d) both  f and  g need to be onto

5. Let X, Y, Z be sets of sizes  x,  y and  z respectively. Let W = X × Y and E be the set of all subsets of W. 

The number of functions from Z to E is:

( GATE, 2006)

( a) Z2 xy

( b) Z  ×  2 xy

( c) Z2 x- y

( d) 2 xyz

6. Given the relation A = {(5, 2), (7, 4), (9, 10), ( x, 5)}. Which of the following values for  x will make relation  A  a function? 

( a) 7

( b) 9

( c) 4

( d) 5

7. Suppose X and Y are sets and | X | and | Y | are their respective cardinalities. It is given that there are exactly 97 functions from X to Y. From this one can conclude that

( GATE, 1996)

( a) | X | = 1, | Y | = 97

( b) | X | =  97, | Y | = 1

( c) | X | = 97, | Y | = 97

( d) None of the above

8. Let R denote the set of real numbers. Let  f: R × R → R × R be a bijective function defined by f ( x,  y) = ( x +  y,  x –  y). The inverse function is given by ( GATE, 1996)

( a)  f –1 ( x,  y) = (1/ x +  y, 1/ x –  y) ( b)  f –1 ( x,  y) = ( x –  y ,  x +  y) ( c)  f –1 ( x,  y) = ( x +  y/2,  x –  y/2) ( d)  f –1 ( x,  y) = (2( x –  y), 2( x +  y)) 9. If  f( n) = 2 n and  g( n) =  n 2, then ( f ο  g) ( n) is equal to ( a) 2 n 2

( b) (2 n)2

( c) 2 n ×  n 2

( d) 2 n
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10. Which one of the following is a function from A → A on the set A = {1, 2, 3}

( a) {(1, 3), (1, 2), (2, 1)}

( b) {(1, 2), (2, 3)}

( c) {(1, 1), (2, 1), (3, 1)}

( d) φ

11. Which one of following is an invertible function on the set A = { a,  b,  c}

( a) {( a,  a), ( b,   a), ( c,  c)}

( b) {( a,  b), ( b,  b), ( c,   c)}

( c) {( a,  b), ( b,  a), ( c,   c)}

( d) {( a,   c), ( b,  c), ( c,  c)}

12. The dom ( f) = Ran ( f), when the function is

( a) Injective function

( b) Surjective function

( c) Bijective function

( d) Identity function

13. How many functions are there from set A → B, where set A contains  m elements and set B

contains  n elements

( a)  m ×  n

( b)  nm

( c)  mn

( d)  m –  n

14. Consider the two functions  f : R → R and  g : R → R where  f( x) = 2 x + 1 and  g( x) =  x 2 – 2. 

( a) ( g o f) ( x) = 4 x 2 – 3 x

( b) ( g  o  f) ( x) = 4 x 2 + 4 x – 1

( c) ( g  o  f) (–  x) = 4 x 2 – 4 x + 1

( d) ( g  o  f) (–  x) = 3 – 4 x 2

15. If  f( x) = cos  x and  g( x) =  x 3, then ( f  o  g) ( x) is ( a) (cos  x)3

( b) cos 3 x

( c)  x(cos  x)3

( d) cos  x 3. 

16. Pigeonhole principle states that  f: A → B and| A | > | B | then:

( a)  f is not onto

( b)  f is not one-one

( c)  f is neither one-one nor onto

( d)  f may be one-one

ANSWERS

1. ( a), ( d)

2. ( c)

3. ( a), ( b)

4. ( a)

5. ( a)

6. ( c)

7. ( a)

8. ( a)

9. ( b)

10. ( a)

11. ( c)

12. ( d)

13. ( c)

14. ( b)

15. ( d)

16. ( b)

REVIEW QUESTIONS

1. Define a function. 

2. Define function on a set. 

3. Explain domain, co-domain and range of a function by giving example. 

4. Define image of an element. 

5. Explain representation of a function by giving example. 

6. Define Everywhere defined function. 

7. Explain various types of functions by giving examples. 

8. Explain Injective, Subjective and Bijective functions by giving examples. 

9. Define equal functions. 

10. Define identity function. 

11. Explain inverse function. Also write its properties. 

12. Explain the steps to find the inverse of a function. 

13. Explain composition of functions by giving examples. 
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14. Explain combination of functions by giving examples. 

15. Explain various types of functions applicable in computer science. 

CHAPTER END PROBLEMS

1. For  h( x) = 4 x – 3, and where x is –1, 1, 3, and 5, list the ordered pairs generated by  h( x). 

2. For  f( t) = 2 t – 8, what value ( s) of  t will make  f( t) = 20? 

3. For  f( x) = 2 x – 3 and  g( x) = 3 x – 4, find the value of each of the following: ( a)  f(2) +  g(2)

( b)  f(2) +  g(3)

( c)  f(– 5) –  g(3)

( d)  f(4) –  g(–1)

( e)  g(3) –  f(–5)

( f)  f(3) ×  g(1)

( g)  f(3) ×  g(3)

( h) 4 f(3)

( i) 5 g(2) – 3 f(– 2)

( j)  g(3) × 2 f(3)

( k)  f( m) +  g( m)

( l)  f(– 2 n) –  g( n)

( m) Find ( f +  g)( x)

( n) Find ( f +  g)(2)

4. If  f( x) = 2 x 2 –  x + 3, and  g( x) = 3 x + 1, find the value of each of the following: ( a)  f [ g (2)]

( b)  f [ g (– 1)]

( c) 2 f [ g (0)]

( d) 4 f [ g (– 2)]

( e)  g[ f(– 1)]

( f) 3 g[ f (0)]

( g)  f [ f(– 2)]

( h)  g[ f ( r)]

5. If  f( x) = 2 x + 6,  g( x) = – 3 x + 4, and  h( x) = (1/2)  x – 3, find the value of each of the following: ( a)  f (3) +  g(2) +  h(1)

( b)  g(4) – 2 h(1) +  f (5)

( c)  g[ h (2)]

( d)  h{ g [ f (3)]}

( e)  f [ h (4)]

( f)  h[ f (4)]

( g) What did you notice about ( e) and ( f)? Why did this happen? Would it happen for all functions? 

Try redoing part  ( c) as  h[ g(2)]? 

( h) Compare the results obtained for  f [ g ( x)] and  g [ f ( x)]. 

( i)  f (2 +  h) –  f(2)

( j) [ f (2 +  h) –  f(2)]/ h

6. If  f( x) = 2 x + 8, then find the value of each of the following: ( a)  f (3)

( b)  f (– 4)

( c)  f (0)

( d)  f ( s – 3)

7. If  f( x) = – 2 x + 1, then find the value of each of the following: ( a)  f (–1)

( b)  f (– 4)

( c)  f (6)

( d)  f (2 +  t)

8. If  g( x) = 3 x 2 – 4 x + 5, find the value of each of the following: ( a)  g(– 2)

( b)  g(3)

( c)  g(– 5)

( d)  g(3 +  h)

9. Mark the following as “true” or “false” 

( a) Let  f : R → Z such that  f( x) = [ x].  f is onto. 

( b) A function from N2 to N cannot be one-to-one because N2 has more elements than N. (Remember that N2 is the set of all pairs of natural numbers.)

10. Label the following functions as: injective, surjective, both (bijective), or neither. 

( a) F : {1, 2, 3 } → { a,  b}, F = {(1,  a), (2,  b), (3,  b)}

( b) F : {1, 2 } → { a,  b,  c}, F = {(1,  a), (2,  b)}
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( c) F : {1, 2, 3 } → { a,  b,  c}, F = {(1,  a), (3,  b), (2,  c)}

( d) F : {1, 2, 3 } → { a,  b,  c}, F = { (1,  b), (2,  b), (3,  a)}

( e) F : {1, 2 } → { a,  b,  c}, F = {(1,  a), (2,  a)}

11. Consider the following functions from R → R:

( a)  f ( x) =  x + 1; 

( b)  g( x) =  x 2 + 1; 

( c)  h( x) =  x 3 +  x 2; 

( d)  k( x) =  ex. 

Which of the above functions are one-one, onto, both or neither? 

12. Let R = {( a,  b), ( a,  c), ( c,  d), ( a,  a), ( b,  a)}. What is R o R, the composition of R with itself? What is R– 1, the inverse of R? Is R, R o R, or R– 1 a function? 

13. For each of the following functions, state whether or not it is ( i) one-to-one, ( ii) onto, and ( iii) idempotent. Justify your answers. 

( a) + : P × P → P, where P is the set of positive integers, and

+ ( a,  b) =  a +  b (In other words, simply addition defined on the positive integers) ( b) X : B × B → B, where B is the set {True, False}

X( a,  b) = the exclusive or of  a and  b

14. Let A = B = { a,  b,  c}. Consider the relation  g = {( a,  b), ( b,  c); ( c,  c)}. Is  g one-to-one? Is  g onto? Why? 

15. Consider  f : Z+ → Z+ defined by  f( a) =  a 2. Is  f one-to-one? Is  f onto? Why? 

16. Let A = {1, 2} and B = {3, 4, 5}. Write down all functions  f : A →   B as sets of pairs. For example, 

{(1, 3), (2, 4)} corresponds to the function  f (1) = 3 and  f (2) = 4. Indicate which are one-to-one and which are onto. 

17. Let  f  be a function from X = {0, 1, 2, 3} to X   defined by the formula  f ( x) = 6 x mod 4. Write  f  as a set of ordered pairs and draw an arrow diagram of  f. Is  f  one-to-one and is it onto? Explain your answer. 

18. Let  f : R → R be defined by the formula:

2 x  5

  

 f ( x) =

+  

(R – the set of real numbers). 

3

Prove that  f  is surjective and injective and find a formula for  f – 1. 

19. Let  A = R – {– 1}, where R is the set of real numbers, and define the function  f : A  → R by the 2 x

formula   f ( x) =

. Prove or disprove that ( a)  f is injective ( b)  f is surjective. 

 x + 1

20. Which of the following are functions? Which functions are injective? Which functions are surjective? 

 (a) f : Z → N where  f  is defined by  f ( x) =  x 2 + 1. 

( b)  f : {1, 2, 3} → { p,  q,  r } where  f = {(1,  q), (2,  r), (3,  p)}

( c)  g : N → N where  g  is defined by  g ( x) = 2 x. 

21. If there is an injective function G : A → B, then | B | ≥ | A |. 

22. If F: A → B is a surjective function, but it is not injective, then its inverse F –1 is also a function. 

23. For each function (on R) say whether it is 1-1 and onto. Justify your answers. 

( a)  f ( x) = 6 x – 9

( b)  f ( x) = 2 x 3 – 4. 

24. Find the inverse. In both parts  f : R → R. 

( a)  f ( x) = 4 x + 2

( b)  f ( x) = 3 log   x

2

25. Let  f and  g be functions from Z+ to Z+ such that  f ( n) = 2 n + 1 and  g( n) = 3 n – 1. 

( a) Find  f o f. 

( b) Find  f o g. 

( c) Find  g o f. 
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26. Suppose F ( x) =  x 3 – 5 x and G( x) =  x + 4 and H( x) = sin  x. 

( a) What is F (G( z))? 

( b) What is G (G (G (G (G (10)))))? 

( c) What is H (G (F (1))) × F (G (H ( π )))? 

27. ( a) Let S = { x ∈ Z | 9 y ∈ Z ( y 2 =  x) }. Give a bijection  f : N → S and prove that  f is a bijection. 

( b) Give an example  f : N → N that is an injection but not a surjection. Briefly explain why it meets both of these criteria. 

28. ( a) Let  f : A → B and  g : B → C where A, B and C are sets. Show that if  g o f is surjective then  g is surjective. 

( b) Let S be the set of open intervals in R with rational endpoints. Is S countable or uncountable? 

Briefly justify your answer. 

29. Let A = {1, 2} and B = { a,  b,  c}. List the elements of the sets A → B, A → A and B → A. State which functions are one-to-one and onto, and which are bijections. 

30. Let A = {0, 2, 4, 6} and B = {1, 3, 5, 7}. Determine whether each of the following sets of ordered pairs is a function with domain A and codomain B. If so, is it one-to-one? Is it onto? 

( a) {(0, 2), (2, 4), (4, 6), (6, 0)}

( b) {(6, 3), (2, 1), (0, 3), (4, 5)}

( c) {(2, 3), (4, 7), (0, 1), (6, 5)}

( d) {(2, 1), (4, 5), (6, 3)}

( e) {(6, 1), (0, 3), (4, 1), (0, 7), (2, 5)}

For any bijections, describe the invers functions. 

31. Determine which of the following relations are functions. For those which are functions, determine whether they are one-to-one and onto. Also, give the inverse function when it exists. Justify your answer throughout. 

( a) {( m,  n) ∈ N × N :  m ≠  n}

( b) φ ⊆ N × N

( c) {( a,  a), ( a,  b), ( a,  c)} ⊆ { a,  b,  c} × { a,  b,  c}

( d) {( a,  a), ( b,  a), ( c,  a)} ⊆ { a,  b,  c} × { a,  b,  c}

( e) {( a,  a), ( b,  a)}

( f) {(2, 1), (4, 5), (6, 3)}

( g) {(6, 1), (0, 3), (4, 1), (0, 7), (2, 5)}

32. ( a) Let A = { a,  b, { b}} and B = {{ a}, { b}}. How many functions are there from A to B? How many of these functions are onto? How many one-to-one? How many partial functions are there from A

to B? 

( b) Again let A and B be arbitrary sets with | A | =  m and | B | =  n. How many functions are there from A to b? How many partial functions? 

33. Let  f : A → B and  g : B → C be functions. 

( a) Prove that if  g o  f is one-to-one then so is  f. 

( b) Prove that if  g o f is onto then so is  g. 

( c) Give a specific example of  f  and  g such that  g o  f is one-to-one but  g is not. 

( d) Give a specific example of  f  and  g such that  g  o f is onto but  f is not. 

34. ( a) Functions are special case of relations. Give examples of functions from {1, 2, 3, 4 } to {1, 2, 3, 4}

which are

( i) Reflexive

( ii) Transitive, but not reflexive or symmetric

( iii) Symmetric, but not reflexive or transitive. 

Prove that there is no function which is transitive and symmetric, but not reflexive. 

( b) State which functions are one-to-one and which are onto that are given in part ( a)
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35. Prove that  f o f is surjective if and only if  f  is surjective. 

36.  Prove that  f : (– 1, 1) → R given by  f( x) =  x/ x 2 – 1 is a bijection. 

37. Find an explicit bijection from (0, 1) to [4, 9]. 

38. Given  f : A → B and  g : B → C be functions

( a) Prove that if  f  is surjective and  g is not injective, then  g o f  is not injective. 

( b) Prove that if  f is not surjective and  g  is injective, then  g o f is not surjective. 

39. Prove that | N | = | Z | by finding a bijection and proving that it is one. 

40. Verify  f : R3 →  R3 defined by  f ( x,  y,  z) = ( x +  y, 2 y +  z,  z –  x) is a bijection. 

41. Verify  f : N → N defined by  f ( n) =  n 2 is an injection but not a surjection. 

42. Prove or disprove that if the composition of 2 functions is an injection then the original 2 functions were injections. 

43. Prove or disprove that if the composition of 2 functions is a surjection then the original 2 functions were surjections. 

44. Give an example of injective function  f : R → R that is injective but not monotone. 

45. Let  h : A → A. Prove that if  h o h o h  is an injection then  h  is an injection. 

46. Let  f : A → B and  g : B → A be functions. Prove that if  g is a surjection and  f ( g ( x)) =  x for all  x ∈ B

then  g ( f ( y)) =  y for all  y ∈ A. 

47.  Prove that composition of 2 injections is an injection. 

48. Determine the cardinality of the set S = { f : {1, 2} → {1, 2, 3} |  f is an injection}. 

49. For the function,  f ( x) = 3 x 2 –  x + 6, find ( a)  f (5), ( b)  f (– 2), ( c). If  x = – 1, find  y. 

50. Given  f( x) = 2 x – 1 and  g ( x) =  x 2, find each function. 

( a) ( f +  g ) ( x)

( b) ( f –  g) ( x)

( c) ( f ×  g) ( x)

( d) ( f / g) ( x)

51. Let  f : N → N be a bijection not equal to the identity map. Prove that there exists  n ∈ N such that n <  f ( n) and  n <  f – 1 ( n). 

52. Define different types of functions and if A is a set of workers and B , B  and B  are the jobs. How 1

2

3

will you define different types of functions? 

( MDU, 1998)

53. Show that the mapping  f : R → R be defined by  f ( x) =  ax +  b, where  a,  b,  x ε R,  a ≠ 0 is invertible. 

Define its inverse. 

( DOEACC, 2008)

54. A function  f  is defined on the set of integers as follows:

( DOEACC, 2008)

 x

 if  0 £  x < 1

F ( )

 x =  x - 2  if  1 £  x < 3

4 x - 5  if  3 £  x > 5

Find its domain, range and check for one-one or many one. 

55. Let N be the set of natural numbers including zero. Determine which of the following functions are one-to-one, which are onto and which are one-to-one onto? 

( DOEACC, 2008)

( i)  f : N → N  f ( j) =  j 2 + 2

( ii)  f : N → N  f ( j) = 1 if  j is odd

= 0 otherwise

56. Show that the function  f from R to R [where R is the set of real numbers] defined by  f ( x) = 3 x – 1

is invertible. Also, find the inverse of  f. 

( DOEACC, 2010)

57. Let A = {0, 1, 2, 3, ... }. Define function  f,  g and  h from A to A by ( DOEACC, 2005)

 f ( x) =  x + 1,  g ( x) = 2 x and

 h( x) = 0, when  x is even and  h ( x) = 1, when  x is odd. 

Is  f one-to-one? Is  g onto? Compute ( h  o g)  o  f (3). 
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58. Let S be a finite set, with | S | =  n. Find

( DOEACC, 2004)

( i) Number of functions from S to S. 

( ii) Number of 1-1 functions from S to S. 

( iii) Number of functions from S onto S. 

59. Let  f : N → N be defined by  f( x) =  x + 1. Let  g : N → N be defined as  g ( x) = 3 x. Calculate ( i) ( g o f) (5)

( ii) ( f o g) (5)

( iii) ( g o f) ( x)

( iv) ( f o g) ( x)

( v) ( f o f) ( x)

( vi) ( g o g) ( x)

( DOEACC, 2004)

60. If  f : R → R is defined by  f( x) =  x 2 – 3 x + 2. Find  f ( f ( x)). 

( KUK, 2001)

61. Let A = B = R, the set of real numbers. Let  f : A → B be given by the formula  f( x) = 2 x 3 – 1 and let g : B → A be given by

1

1

 g ( y) = 3

 y +

2

2

Show that  f  is a bijection between A and B and  g is bijection between B and A. 

62. ( a) Let  f,  g,  h be functions from Z to Z defined by: 0

R ,  x  even

 f( x) =  x – 1,  g ( x) = 3 x,  h( x) = S1,  x  odd T

Verify that  f  o ( g   o h) = ( f o g)   o h

( VTU, July 2007)

63. ( a) For any A, B ⊆ ∪, prove that  f  ( x) = 1 –  f  ( x) and   f ( x) =  f   ( x).  f   ( x). 

A

A

A ∩ B

A

B 

( b) Using characteristic function, prove that (A Δ B) Δ C = A Δ (B Δ C). 

( VTU, Jan. 2007)

64. ( a) In each of the following cases, given sets A and B and a function ‘ f ’ from A to B, determine whether  f is one-one or onto or both or neither:

( i) A = {1, 2, 3, 4}, B = {1, 2, 3, 4},  f = {(1, 1), (2, 3), (3, 4), (4, 2)}

( ii) A  =  { a,  b,  c}, B = {1, 2, 3, 4},  f = {( a, 1), ( b, 1), ( c, 3)}

( iii) A = {1, 2, 3}, B = {1, 2, 3, 4, 5},  f = {(1, 1), (2, 3), (3, 4)}

( iv) A = {1, 2, 3}, B = {1, 2, 3, 4, 5},  f = {(1, 1), (2, 3), (3,3)}

( b) Let A = B = C = R and  f : A → B,  g : B → C be defined by  f( a) = 3 a –1,  g( b) =  b 2  + 1. Find ( g  o f) (–2) and ( f  o f) ( y). 

( VTU, Jan. 2007)

65. ( a) Let A = { a ,  a ,  a ,  a }, B = { b ,  b ,  b }, C = { c ,  c }, D = { d ,  d ,  d ,  d }, 1

2

3

4

1

2

3

1

2

1

2

3

4

Consider the following four functions from A → B, A → D, B → C and D → B, 

 f  = {( a ,  b ), ( a ,  b ), ( a ,  b ,)},  f   = {( a ,  d ), ( a ,  d ), ( a ,  d )}, 1

1

2

2

3

3

1

2

1

2

2

1

3

4

 f  = {( b ,  c ), ( b ,  c ), ( b ,  c )},  f  = {( d ,  b ), ( d ,  b ), ( d ,  b )}, 3

1

2

2

2

3

1

4

1

1

2

2

3

1

Determine whether or not each function is one-one, onto and well defined. 

( b) Let A = {1, 2, 3, 4}, B = { a,  b,  c}, C = { w,  x,  y,  z} with  f : A 



→ B,  g : B → C given by  f = {(1,   a),(2,  a), 

(3,  b),(4,  c)},  g = {( a,  x),( b,  y),( c,  z)}, find  g o  f. 

( VTU, July 2006)

66. ( a) If there are 2187 functions from A to B and | B | = 3, what is | A |? 

( b) Let A = {1, 2, 3, 4, 5, 6, 7} and B = { w,  x,  y,  z}. Find the number of onto functions from A to B. 

( VTU, July 2005)

67. ( a) Let  f,  g,  h : R → R, where  f( x) =  x 2 + 1;  g ( x) =  x + 5;  h( x) = 

2

 x + 5 . Show that ( h  o  g)  o f =  h o ( g o f) ( b) Given A = {1, 2, 3, 4} and  f : A → A defined by  f = {(1, 2), (2, 2), (3,1), (4,3)}. Find  f  2. 

( VTU, Jan. 2005)

68. Let  f: Z → N be defined by

⎧2 x − 1  x > 0

 f( x) =  ⎨⎩ − 2 x x ≤ 0

Prove that  f is one-to-one and onto. Determine  f– 1. 
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69. ( a) Let  f : A → B and  g : B → C be functions such that  g o f : A → C is a bijection. Then  f must be a bijection too. 

( b) The function  f : Q → N that maps  a/ b with  g c d ( a,  b) = 1 to  a 2 +  b 2 is injective. 

70. For each of the following determine if it a bijection (one-to-one and onto). If it is, determine the value of the inverse function from R → R. If it is not, give the reason it is not a bijection. 

( i)  f ( x) = – 3 x + 4

( ii)  f ( x) = ( x 2 + 1) / ( x 2 + 2)

( iii)  f ( x) =  x 3

71. Consider the function  f : N → N, where N is the set of natural numbers, defined by  f ( n) =  n 2 +  n + 1. 

Show that the function  f is one-one but not onto. 

72. Let A = {– 2, – 1, 0, 1, 2}, B = {0, 1, 4} and  f : A → B is defined as  f ( x) =  x 2 is a function. If so find that whether it is one-to-one or bijection? 

73. Let  f : A → B, be a function, and  g : B → C be a function. 

( a) If  g o f : A → C is surjective (onto), prove that  g is also surjective (onto). 

( b) Give a small example of functions  f  and  g such that  f is an injection (one-to-one) and  g is a surjection (onto), but  g o f is not an injection (one-to-one). 

74. Let  f : A  → B and  g : B  → C   denote two functions. Answer the following two parts for this question: ( a) If both  f and  g are injections, then prove the composition function  g o  f : A  → C   is an injection. 

( b) If the function  g o  f : A  → C   is a surjection, and  g is an injection, then prove the function  f is a surjection. 

75. Suppose  f : A → B   and  g : B  → A   are two functions. Assume that for any element  y ∈ B, ( f  o  g ) ( y) =  y, but there is at least one element  x ∈ A such that ( g o f ) ( x) ≠  x. Prove that  f  is onto, but not one-to-one. 

76. ( a) Let Z = {... – 2, – 1, 0, 1, 2, ...} denote the set of integers. Suppose  f : Z → Z is a function, defined by

R n / 2 if  n  is even

 f ( n) = S 2 n  if  n  is odd

T

( i) Prove or disprove that  f  is one-to-one (injective)

( ii) Prove or disprove that  f is onto (surjective). 

( b) Let  f : A  →   A be a function. Prove or disprove, that if  f  is onto, then  f o  f is onto as well. 

77. ( a) How many functions are there from a set with 3 elements to a set with 8 elements? 

( b) How many one-to-one functions are there from a set with 3 elements to a set with 8 elements? 

( c) How many onto functions are there from a set with 3 elements to a set with 8 elements? 

Explain your answer. 

78. Let Z = {0, 1,  –  1, 2,  –  2, …} denote the set of all integers (zero, positive, and negative). Define a function  g : Z → Z by the following formula:

1

R − , 

 m  if  m  is an even integer; otherwise, 

 g( m) =  ST m + 3, if  m  is an odd integer. 

(Thus, for example,  g(0) = 1  – 0 = 1;  g(1) = 1 + 3 = 4;  g( – 1) =  –  1 + 3 = 2, etc.) Prove that the function  g defines a bijection from Z to Z; that is, prove that  g is an injection (one-to-one) and  g is a surjection (onto). 

79. ( a) Determine which of the followings are functions with domain X. 

( i) X = {1, 3, 5, 7, 8} and R ={(1,7), (3,5), (5,3), (7, 7), (8,5)}

( ii) X = {– 2, – 1, 0, 1} and R = {(– 2, 6), (0, 3), (1, – 1)}

( iii) X is the set of real numbers and, for  x ∈ X, 

 g ( x) =  x 2 – 3 x + 2, assume that the codomain is also X

( iv) X is the set of real numbers and, for  x ∈ X, 

 g ( x) =   x 2 - 3 x + 2  assume that the codomain is also X

( v) X is the set of real numbers and, for  x ∈ X,  g ( x) = log  x, assume that the codomain is also X

2
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( b) Let Z = {... – 2, – 1, 0, 1, 2, ...} denote the set of integers. Suppose  f : Z → Z is a function, defined by

⎧ n / 2 i  f  n  i  s even

 f( n) = ⎨⎩ 2n if  n is odd

( i) Prove or disprove that  f  is one-to-one (injective)

( ii) Prove or disprove that  f is onto (surjective). 

80. Given three arbitrary sets A, B, C and functions  f : A → B and  g : B → C. Answer the following. 

( a) Fill in each of the blank cells in the table below by using one of the following phrases that best fits in it: “invertible, non-invertible, cannot be determined”. 

 Case #

 f

 g

 g o f

1

invertible

invertible

2

invertible

non-invertible

3

non-invertible

invertible

4

non-invertible

non-invertible

5

onto

invertible

( b) Provide a formal proof of one of your answers by first stating clearly that you want to prove. 

81. Let  f : A  → A   be a function from some nonempty set A   to itself. In the following propositions  x  and y  are variables ranging over A and  g is a variable ranging over functions from A to A. Circle all propositions that are equivalent to the proposition that  f  is one-to-one. 

( a) ( x =  y) ∨ [ f ( x) ≠  f ( y)]

( b) ( x =  y) → [  f ( x) =  f ( y)]

( c) ( x ≠  y) → [  f ( x) ≠  f ( y)]

( d) [ f ( x) =  f ( y)] → ( x =  y)

( e) ¬ [∃ x ∃ y (( x ≠  y) ∧ ( f ( x) =  f ( y))]

( f) ∃ g ∀ x [ g ( f ( x)) =  x]

( g) ∃ g ∀ x [ f ( g ( x)) =  x]

( h) ¬ [∃ y ∀ x ( f ( x) ≠  y)]

82. Let  f and  g be functions such that  f : A → B,  g : B → C, where A, B and C are finite sets. 

( a) Prove or disprove: if  f is surjective and  g is surjective, then  g o  f is surjective. 

( b) Prove or disprove: if  f is surjective and  g is injective, then  g o  f is injective. 

83. Consider the subset N ⊆ Z and the function  f : Z → N defined by

R ,1  if n = ;0

 f ( n) = S| 2 n, 

 if n > ; 

0

T|1− 2 n,  if n < ;0

( a) Prove that  f is injective. 

( b) Prove that  f is surjective. 

84. ( a) Formally define the two properties of a relation R ⊆ A × B for it to be a function from A to B. 

( b) Define a bijective function from A to B. 

( c) Is it possible to have a bijection from the set {1, 2, 3, 4, 5} to the set {– 2, – 1, 0, 1}? Why or why not? 

( d) Is it possible to have a bijection from the set of even integers to the set of integers? Why or why not? 

85. Let  f be a function with f: A → B and  g be a function with  g : B → C. 

( a) Show by example that is it is possible for  g o f( x) to be surjective while  f( x) is not. 

( b) Prove that if  g o f( x) is surjective, then  g( x) must be as well. 

3 x

86. Let  f( x) = 

, for all real x ≥ 1. Find  f –1 ( x) and state the domain and range of  f –1( x). 

 x + 6

87. Let  f( x) =  x 2 – 5 x, for all real  x ≥ 5. Find  f –1 ( x) and state both the domain and range of  f –1( x). 
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88. Let  f and  g be functions such that  f : A → B and  g : B → C. Prove or disprove the following: ( a) If  g  o  f is surjective, then  g is surjective. 

( b) If  g is surjective, then  g  o  f is surjective. 

89. Let  f  and  g be functions such that  f : A → B,  g : B → C, where A, B and C are finite sets. 

( a) Disprove the following statement with a single counter-example:

if  f is surjective and  g is injective, then  g o f  is injective. 

( b) Under what conditions is the statement above true? (Specifically, deduce something about the relationship between | A |, | B | and | C | for the situations when the statement holds.)

90. Let  f and  g be functions such that  f: A → B and  g: B → C. Prove or disprove the following: ( a) If  g o  f is injective, then  g is injective. 

( b) If  f  and  g are surjective, then  g o f is surjective

91. How many one-to-one functions are there from a set with five elements to sets with the following number of elements? 

( a) 4

( b) 5

( c) 6

( d) 7

92. Let  g : A  →   A   be a bijective function. That is,  g is both one-to-one and onto. For  n ≥   2, define gn =  g  o  g  o ...  o  g , where  g is composed with itself  n times. Prove that for  n ≥ 2, (1)  gn is a bijective function from A to A; and (2) ( gn)–1 = ( g–1) n. 

93. Let  f ( x) = 10 –   x

( a) Find  f  o (2 f)

( b) What is the domain and the co-domain of  f o (2 f)? 

94. Which of the following are functions from the domain to the codomain given? Which of these functions are injective? Which are surjective? Which are bijective? 

1

( a)  f : Z → R,  f ( x) = 

-

2

( b)  f : Z → R,  f ( x) =   x 2 9

 x - 9

L  x

( c)  f: N → R,  f ( x) = ±  x 2 + 9

( d)  f : N → N,  f ( x) = NM O2QP

R x + 1 if  x  is even

( e)  f: N → N,  f ( x) = S x

T - 1 otherwise

95. Let  f  be a function from the set A to the set B. Let Q be a subset of B. We define the inverse image of Q to be the subset of A containing all pre-images of all elements of Q. We denote the inverse image of S by  f –1 (Q), so that  f –1(Q) = { a ∈ A | f ( a) ∈ Q}. 

Let  S and  T be subsets of  B. Show that:

( a)  f–1 (S ∪ T) =  f –1 (S) ∪  f–1 (T)

( b)  f –1 (S ∩ T) =  f –1 (S) ∩  f  –1 (T)

96. Which of the following are functions from the domain to the codomain given? Which functions are one-to-one? Which functions are onto? Describe the inverse function for any bijective function. 

( a)  f : Z → N where  f is defined by  f ( x) =  x 2 + 1

( b)  h : Z × N → Q where h is defined by  h( z,  n) =  z / ( n + 1) R x / 2 if  x  is even

( c)  f : N → N where f is defined by  f ( x) = S x

T + 1 if  x  is odd

( d)  h : N × N × N → N where  h  is given by  h( x,   y,   z)  = x + y – z 97. Let S = { x |  x ∈ R and  x ≥ 1}, and T = { x |  x ∈ R and 0 <  x ≤ 1}. Find a function  f : S → T that is a bijection. 

98. Let  f: N → N be defined by  f( x)  = x +   1. Let  g: N → N be defined by  g( x)  =   3 x. Calculate ( a) ( f o  g) (5)

( b) ( g o f) ( x)

( c) ( f o f) ( x)
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99. Let  f be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to be the subset of A containing all pre-images of all elements of S. We denote the inverse image of S by  f –1 (S), so that  f –1(S) = { a ∈ A |  f ( a) ∈ S}. 

Let  f be the function from R to R defined by  f( x) =  x 2. Find: ( a)  f–1 ({1})

( b)  f–1({ x : 0 <  x <1})

( c)  f–1({ x :  x >1})

100. Let  f : S → T and  g : T → U be functions. 

( a) Prove that if  g  o  f is onto, so is  g. 

( b) Find an example where  g o f is onto, so  f is not onto. 

101. Consider the following two functions  f ( x) =  x 2 + 2 and  g ( x) =  x – 6. Determine ( a) ( f + g) ( x)

( b) ( f – g) ( x)

( c) ( f *  g) ( x)

( d) ( f/ g) ( x)

( e) ( f + g) (– 4)

( f) ( f + g) ( x – 4)

102. Let  f ( x) =  x – 5 and  f ( x) =  x 2  –  1. Find each of the following functions: ( a) ( f + g) ( x)

( b) ( f – g) ( x)

( c) ( f ·  g) ( x)

( d) ⎛  f ⎞

⎜ ⎟( x)

⎝  g ⎠

103. Find formulas for the functions  f +  g,  f –  g, and  f ∗  g and state the domain of the sum, difference or product. 

( a)  f ( x) = ( x – 1)2;  g ( x) = 3 –  x

( b)  f ( x) =   x + 5 ;  g ( x) = | x + 3|

 f

 g

104. Find formulas for 

and 

. Give the domain of each. 

 g

 f

( a)  f ( x) =   x + 3 ;  g ( x) =  x 2

( b)  f ( x) =  x 2;  g ( x) = 

− 2

1  x

ANSWERS AND HINTS TO SELECTED PROBLEMS

3. ( a) 3

( d) 12

( g) 15

( l) – 7 n + 1

4.  ( a) 94

( d) 55

( g) 328

5.  ( a) 15/2

( d) 13

9.  ( a) True

( b) False

10.  ( a) Surjective

( c) bijective

( e) neither

11.  ( a) 1-1 and onto ( c) onto but not 1-1

13. ( a) not one-to-one, not onto and is not idempotent

14. not one-to-one, not onto

15. one-to-one but is not onto. 

C H A P T E R

5

 Methods of Proof

PREVIEW

A proof is a demonstration, or argument, that shows beyond a doubt that a given assertion

is a logical consequence of the axioms and definitions used in the proof. In other words, if we are asked to give a proof of the problem, then we must follow certain rules and some certain

fundamental knowledge should also be assumed. We may assume the axioms and any previously

stated theorems to provide proofs of the problems at hand. In most of the cases, we have to

prove the assertions of the form “if  p, then  q”, where  p and  q are propositions. The proposition p is the hypothesis and  q is the conclusion. It is almost always useful to translate a statement that must be proved into an “if..., then ...” statement if it is not already in that form. This chapter introduces the basic structures involved in the mathematical proof and some important

methods of mathematical proofs. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

• understand the basic structures involved in the mathematical proofs

• understand various types of methods of proof

• understand which proof technique should be choose for a given problem

• understand the direct proof of method

• understand the proof by contrapositive method

• understand the proof by contradiction method

• understand the proof by cases method

• understand the Bi-conditional proof of method

5.1

INTRODUCTION

A proof is a sequence of logical statements, one implying another, which gives an explanation

of why a given statement is true. The theorems established previously may be used to deduce

the new ones. We may also refer to axioms, which are the starting points, or rules accepted by everyone. Mathematical proof is absolute, which means that once a theorem is proved, it is

proved forever. Until proven though, the statement is never accepted as a true one. A large

number of proofs simply involve showing that a certain definition is satisfied. 

The distinction between a valid mathematical proof itself and how it was thought of is

something that is very important to keep in mind when you work on your own proofs. When
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solving a problem, start with the hypotheses and work forward, or start with the conclusion

and work backwards or some combination of the two. 

We prove statements, which are usually called theorems, propositions, lemmas and

corollaries. There is not much difference between these types of statements, all need proofs. 

Theorems are important results, propositions are somewhat less important than theorems, 

lemmas are statements that are used in the proofs of other results and corollaries are statements that follow easily from other results. 

5.2

BASIC TERMS

Some of the basic terms related to proofs are as follows

( a) Theorem: A statement that can be shown to be true. 

( b) Proposition: A less important theorem. 

( c) Lemma: A minor theorem used as a stepping-stone to proving a major theorem. A less important theorem that is helpful in the proof of other results. 

( d) Corollary: A minor theorem proved as an easy consequence of a major theorem. A theorem that can be established easily from a theorem that has been proven. 

( e) Conjecture: A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)

( f) Theory: The set of all theorems that can be proven from a given set of axioms. 

( g) Proof: A convincing explanation of why the theorem is true. 

( h) Axiom: A statement which is assumed to be true. 

5.3

VARIOUS TYPES OF METHODS OF PROOFS

There are many techniques that can be used to prove the statements. It is often not obvious at the beginning which one to use, although with a bit of practice, we may be able to give an

“educated guess” and hopefully reach the required conclusion, It is important to notice that

there is no one ideal proof—a theorem can be established using different techniques and none

of them will be better or worse. Some of the common techniques used to prove the statements

are as follows

1. Direct Proof: Assume  p, and then use the rules of inference, axioms, definitions, and logical equivalences to prove  q. 

2. Proof by Contradiction (Indirect Proof): Assume   p and ∼ q and derive a contradiction  r ∧ ∼ r. 

3. Proof by Contrapositive: (Special case of Proof by Contradiction.) Give a direct

proof of ∼ q → ∼ p. Assume ∼ q and then use the rules of inference, axioms, definitions, and logical equivalences to prove ~ p. (Can be thought of as a proof by contradiction

in which you assume  p and :  q and arrive at the contradiction  p ∧ ∼ p.) 4. Proof by Cases: If the hypothesis  p can be separated into cases  p  V  p  V– – –V  pk, 1

2

prove each of the propositions, 

 p  



1 →  q,  p 2 →  q, ...,  pk →  q,  separately. 

5.4

CHOOSING A PROOF TECHNIQUE

There is no hard and fast rule to choose a proofing method for some problem. By practice and

knowing the type of problem you can choose a proofing method for some problem. Some

suggestions, when to choose which proofing technique are as follows

METHODS  OF  PROOF

M-4.169

• Direct Proof: A direct proof technique is the best strategy in most of the cases. It is the simplest and most natural method of proof. If a direct proof technique fails, then

you consider other available methods of proof. 

• Proof by  Contraposition:  This technique is the same as a direct proof of the contrapositive statement. This method is worth considering if the direct proof of the

original statement does not appear to work. 

• Proof by Contradiction: This technique is effective in situations, where we want to conclude that something does not have a certain property. A proof by contradiction

is logically more complicated and prone to more errors. In this method, we assume

that the property does hold and trying to derive a contradiction from this assumption. 

It is a natural approach that is generally successful. 

Note: Use proof by contradiction only as a last option, when all other approaches do not seem to work

• Proof by Cases: This technique is suitable when it is possible to logically break down the problem into several cases, further, it is possible that each of these cases

can be handled in a relatively straightforward manner (generally, by a direct proof, 

proof by contraposition or contradiction). 

Definition 1: An integer  n is called even iff  n = 2 k for some  k. 

We have, 12 an even number because 12 = 2.6. further, according to the definition 11 is

not an even number because there is no integer  k for which 11 = 2 k. 

Definition 2: An integer  n is called odd iff  n = 2 k + 1 for some integer  k; Thus 11 is an odd number because 11 = 2.5 + 1. If in a proof a certain number is even, 

then definition allows us to write it as 2 k for some integer  k. If some number has form 2 p + l where  p is an integer, then the definition tells us that the number is odd. 

We will use these definitions whenever the concept of even or odd numbers arises. 

Definition 3: Two integers  a and  b are consecutive if and only if  b =  a + 1. 

Suppose we have a number 9 and 10, then 10 = 9 + 1. Hence, 9 and 10 are consecutive

integers. Further, according to the definition, 8 and 10 are not consecutive integers because

10  ≠ 8 + 1. 

Definition 4: Let  a and  b be integers. The number  a divides the number  b if there is some integer  q such that  aq =  b. If  a divides  b, we write  a| b, and we say that a is a factor of  b, and that  b is divisible by  a. 

We have 10 divides 60 because 60 = 10.6. We will write this as 10|60. Similarly 18|36

since 36 = 18.2, and –9|18 since 18 = –9.–2. However, 16 does not divide 36 because there is no integer for which 36 = 16.  q. 

Definition 5: A natural number  p is prime if it has exactly two positive divisors, 1 and  p. 

Definition 6: Two integers have the same parity if they are both even or they are both odd. 

Otherwise they have opposite parity. 

Thus 3 and 41 have the same parity. Similarly 12 and 0 have the same parity, but 5 and

2 have opposite parity. 

Definition 7: The greatest common divisor of integers  a and  b, denoted  gcd( a,  b), is the largest integer that divides both  a and  b. 

Thus,  gcd(28, 7) = 7,  gcd(12, 12) = 12 and  gcd(45, –5) = 5. Also  gcd(60, 9) = 3, but gcd(40, 9) = 1. Further, the  gcd(0, 3) = 3, because, although every integer divides 0, the largest divisor of 3 is 3. 
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Definition 8: The least common multiple of non-zero integers  a and  b, denoted  l cm ( a,  b), is smallest positive integer that is a multiple of both  a and  b. 

Thus, lcm (6, 12) = 24, and lcm (9, 9) = 9. 

Important Point Before You Start Writing Proofs

There are two major steps to the route of writing an effective proof. The first one is the

formulating of proof and the second one is actually writing the proof. These two activities are totally different from each other. But in some cases, where the proofs are very simple and

straightforward you can formulate the proof as you write it. In general, first you formulate the proof and then write it. (Formulation is not the part of the proof when you have to

write the proofs in examination).  Thus, in summary, first of all you formulate a tentative proof then try to write it up. Find flaws if any, if some flaws exist then go back to the formulating stage. Continue this process until you found the proof. 

5.5

DIRECT PROOFS

This is the simplest form of proofing method. Each step in this proof method directly

follows from previous steps or from the hypotheses until the desired conclusion is reached. 

Along the way the proof may use definitions or other relevant known facts to move from one

step to the next. 

Suppose we wish to prove an implication  p →  q. Assume that P is true, and produce a series of steps, each one following from the previous ones, which eventually lead to Q. This

type of proof is called a direct proof. 

Theorem I.  Let a, b and c be integers. If a|b and b|c, then a|c. 

 Formulation of the problem: The goal is to show that a|c, we need to find some integer k such that ak = c. We can choose any k, since a|b and b|c is given, there are integers q and r such that aq = b and br = c. Substituting the first equation into the second equation, we get (aq)r = c. By adjusting the LHS of the equation, we see that k = qr is a good guess. 

Proof. Suppose that  a| b and  b| c. 

Hence there are integers  q and  r such that  aq =  b and  br =  c. 

Define the integer  k by  k =  qr. Then  ak =  a( qr) = ( aq) r =  br =  c. 

Because  ak =  c, it follows that  a| c. 

This proves the result. 

Theorem II.  Any integer divides zero. 

 Formulation of the problem: Here, we are not given any particular choices of values. 

 To prove something about any possible integer, we chose an integer n (say). Now, we have to show that n|0. It is sufficient to choose a number, say 3, and then show that 3 divides 0. Once n is chosen, the other details of the proof are very simple. 

Proof. Suppose that  n be an integer. You will see that  n∗0 = 0. 

Hence  n|0. 

Example 1.  If a and b are consecutive integers, then the sum a + b is odd. 

Sol.  Suppose that  a and  b are consecutive integers. 

Because  a and  b are consecutive we know that  b =  a + 1. 

Thus, the sum  a +  b may be re-written as 2 a + l. 

Hence, there exists a number  k such that  a +  b = 2 k + 1 so the sum  a +  b is odd. 
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Example 2.  Let n and m be integers. 

( a)  If n and m are both even, then n + m is even. 

( b)  If n and m are both odd, then n + m is even. 

( c)  If n is even and m is odd, then n + m is odd. 

Sol. 

( a) Suppose that  n and  m are both even. Then there exist integers  k and  j such that n = 2 k and  m = 2 j. Then  n +  m = 2 k + 2 j = 2( k +  j) Because  k and  j are integers, so is  k +  j. Hence  m +  n is even. 

( b) Suppose  m and  n are arbitrary odd integers. Then  m and  n can be written in the form  m = 2 a + 1 and  n = 2 b + 1, where  a and  b are also integers. Then m +  n  = (2 a + l) + (2 b + 1)

= 2 a + 2 b + 2

= 2( a +  b + 1)

Since  m +  n is twice another integer, namely,  a +  b + 1,  m +  n is an even integer. 

( c) Left as an exercise. 

Example 3.  Suppose n ∈  Z. If n is an odd integer, then n2 is an odd integer. 

Sol.  If  n is odd, then  n = 2 k + 1 for some integer  k. Thus, n 2  = (2 k + 1)2 = 4 k 2 + 4 k + 1

= 2(2 k 2 + 2 k) + 1. 

Therefore, 

 n 2  = 2 j + 1( j = 2 k 2 + 2 k), thus  n 2 is odd. 

Example 4.  If n and m are both perfect squares then nm is also a perfect square. 

Sol. Suppose that  n and  m are perfect squares. 

(An integer  a is perfect square if there exist an integer  b such that  a =  b 2) By definition, there exist integers  s and  t such that  n =  s 2 and  m =  t 2. 

 nm =  s 2  t 2 = ( st)2

Let

 k =  st, thus  nm =  k 2

Hence, by definition,  nm is a perfect square. 

Example 5.  Prove that if  x| a  and  x| b, then x|(a –  b). 

Sol.  Let us suppose that  x| a and  x| b. Thus  a =  xm and  b =  xn for some integers  m and  n. Now we have to show that  x|( a –  b).  i.e., show that  a –  b =  xq for some integer  q. Then a –  b =  xm –  xn

(by assumptions)

=  x( m –  n)

(by distributive property)

=  xq, where  q =  m –  n is an integer. 

Thus, 

 x| ( a –  b)

Example 6.  Suppose x ∈  Z. If 7x + 9 is even, then x is odd. 

Sol.  Suppose that 7 x + 9 is even. Thus 7 x + 9 = 2 a for some integer  a. 

Subtracting 6 x + 9 from both sides, we get  x = 2 a – 6 x – 9. 

Thus  x = 2 a – 6 x – 9 = 2 a – 6 x – 10 + 1 = 2( a – 3 x – 5) + 1. 

Consequently  x = 2 b + l, where  b =  a – 3 x – 5 ∈ Z. 

Therefore  x is odd. 
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Example 7.  Let x, y, z ∈  Z. If x + y = x + z, then y = z. 

Sol. We have given that  x +  y =  x +  z

⇒

(– x) + ( x +  y) = (– x) + ( x +  z)

⇒

((– x) +  x)) +  y = ((– x) +  x)) +  z

⇒

( x + (– x)) +  y  = ( x + (– x)) +  z

⇒

0 +  y = 0 +  z

⇒

 y =  z, this proves the result. 

Example 8.  Show that ∀  x ∈  Z, 0 ∗  x = x ∗  0 = 0. 

Sol. We have

 x ∗ 0 =  x ∗ (0 + 0)

(because 0 = 0 + 0)

⇒

 x ∗ 0 =  x ∗ 0 +  x ∗ 0

(by the distributivity)

⇒

0 + ( x ∗ 0) =  x ∗ 0 +  x ∗ 0

(by the existence of zero)

⇒

0 =  x ∗ 0

(by the cancellation)

Similarly, we can show that 0 = 0 ∗  x. 

Example 9.  Using direct proof, show that the negative of any even integer is even. 

Sol.    Suppose  n is any even integer. 

By definition of even,  n = 2 k for some integer  k. 

Then

– n  = –2 k = 2.(– k)

But 2 (– k) is even by definition of even

because – k is integer (being the product of the integers –1 and  k)

Hence –  n is even .. 

Example 10.  If an integer is simultaneously a square and a cube ( ex: 64 = 82 = 43) , verify that the integer must be of the form 7n or 7n + 1. 

Sol. Let  z =  x 2 and  z =  y 3 for some  x,  y ∈ I. 

Note that any number  x ε I can be represented as  x mod 7 =  i, 0 ≤  i ≤ 6. 

This implies  x 2 mod 7 =  j,  j = {0, 1,  2, 4}. 

Similarly,  y mod 7 =  i, 0 ≤  i ≤ 6 implies that  y 3 mod 7 =  k,  k = {0, 1,  6}. 

It follows that if  z mod 7 = 0 or  z mod 7 = 1. 

Therefore,  z = 7 n or  z = 7 n + 1. Hence proved

5.6

PROOF BY CONTRAPOSITIVE

The technique of contrapositive proof is used to prove conditional statements of the

form “if P, then Q.” Although it is possible to use direct proof exclusively, there are occasions where contrapositive proof is much easier. The expression ∼ Q ⇒ ∼ P is called the contrapositive form of P ⇒ Q. 

This technique is most useful when both the conclusion and hypothesis claim that

something does not occur;  i.e., are negative statements. The first task is to carefully state the contrapositive of the implication P ⇒ Q, which is written as “If not Q then not P.” Then prove the contrapositive statement instead, using whatever method works best. 

To prove an implication P ⇒ Q using proof by contrapositive, assume that ‘Q is not

true’. Use logic and definitions to transform the statement ∼Q to the statement ∼P. Then

arrive at a deduction “Therefore P is not true.” 
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In general, a proof by contrapositive follows this strategy:

Proof of  p ⇒  q by Contrapositive

( i) Assume  q is false. 

( ii) Follow the method of Direct Proof to conclude that  p is also false. 

( iii) Conclude that ¬  q ⇒ ¬  p is true. 

( iv) Since (¬  q ⇒ ¬  p) ≅ ( p ⇒  q), conclude that  p ⇒  q is true Example 11.   Let n be an integer. If n2 is odd, then n is odd. 

Formulation of the problem:  Begin with the supposition that n2 is odd. Then by the

 definition of odd, there exists some integer j such that n2 = 2j + l. The proof by contrapositive assumes that n is not odd, means n is even and then deducing that n2 is even, which implies that n is not odd. Now begin by assuming that if n is even, then there is some integer k such that n = 2k, and we then compute n2 in terms of k. This takes us to required result. 

Sol. Suppose that  n  is even. Then there is some integer  k  such that  n = 2 k. Hence  n 2 =

(2 k)2 = 4 k 2 = 2(2 k 2). Because 2 k 2 is an integer, it follows that  n 2 is even. By contrapositive, we see that if  n 2 is odd then  n is odd. 

Example 12.   If the sum a + b is not odd, then a and b are not consecutive integers. 

Sol.  Suppose that the sum of the integers  a and  b is not odd. 

Then, there exists no integer  k such that  a +  b = 2 k + 1. 

Thus,  a +  b ≠  k + ( k + 1) for all integers  k. Since  k + 1 is the successor of  k, this implies that  a and  b cannot be consecutive integers. 

Example 13. Show that for any sets A, B and C,  if A – C ⊆  A – B then B ⊆ C. 

Sol.  We will prove the contrapositive of the given implication, which states that if

B ⊆ C then A – C ⊆ A – B. 

To conclude that A – C ⊆ A – B we must show that if  x ∈ A – C then  x ∈ A – B. 

So suppose that  x ∈ A – C. This means that  x ∈ A but  x ∉ C. 

However, we are given that B  ⊆   C . 

Because  x ∉ C, we may deduce that  x ∉ B either. 

We now have  x ∈ A but  x ∉ B, which means that  x ∈ A – B, as desired. 

Since the contrapositive is logically equivalent to the original statement. Hence proved. 

Example 14.   Suppose x ∈  Z. If 7x + 9 is even, then x is odd. 

Sol.  Suppose that  x is not an odd integer. 

Thus  x is an even number, so  x = 2 a for some integer  a. 

Then 7 x + 9 = 7(2 a) + 9 = 14 a + 8 + 1 = 2(7 a + 4) + 1. 

Therefore 7 x + 9 = 2 b + 1, where  b is the integer 7 a + 4. 

Thus, 7 x + 9 is odd. Therefore 7 x + 9 is not even. 

Example 15.   Suppose x ∈  Z. If x2 – 6x + 5 is even, then x is odd. 

Sol.  Suppose that  x is not an odd. Thus  x is even, so  x = 2 a for some integer  a. 

Then, 

 x 2 – 6 x + 5 = (2 a)2 – 6(2 a) + 5

= 4 a 2 – 12 a + 5

= 4 a 2 – 12 a + 4 + 1

= 2(2 a 2 – 6 a+ 2) + 1. 

Therefore,  x 2 – 6 x + 5 = 2 b + 1, where  b is the integer 2 a 2 – 6 a + 2. 
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Example 16.   Suppose n ∈  Z. If 3n + 2 is odd, then n is odd. 

Sol.  Suppose that  n is even. Then  n = 2 k for some integer  k. 

Then

3 n + 2 = 3(2 k) + 2

= 6 k + 2

= 2(3 k + 1). 

Therefore, 3 n + 2 is even, because it equals 2 j for integer  j = 3 k + 1. So 3 n + 2 is not odd. 

Hence, 3 n + 2 is odd, therefore  n is odd is also true. 

Example 17.   If n is an integer and n2 is even, then n is even. 

Sol.  Suppose that  n is an odd integer. 

Then, 

 n  = 2 k + 1 ( k is integer)

 n 2  = (2 k + 1)2

= 4 k 2 + 4 k + 1

= 2(2 k 2 + 2 k) + 1

Now assume that integer  m = 2 k 2 + 2 k. 

Then  n 2 = 2 m + 1. So,  n 2 is odd. Hence, if  n 2 is even, then  n is even. 

Example 18.  For all integers m and n, show that if the product of m and n is even, then m is even or n is even. 

Sol.  Suppose that  m and  n are arbitrary odd integers. 

Then, 

 m  = 2 a + 1

and

 n  = 2 b + 1, where  a and  b are integers. 

Then

 m ∗  n  = (2 a + 1)(2 b + 1)

= 4 ab + 2 a + 2 b + 1

= 2(2 ab +  a +  b) + 1

Since  m ∗  n is twice an integer (namely, 2 ab +  a +  b) plus 1, Hence,  mn is odd. 

Example 19.   Let m and n are positive integers and that m ≤  n. Prove that if m2 = n2, then m = n using contrapositive method. 

Sol.  Suppose that if  m ≠  n,    then  m2 ≠  n2  and if  m ≠  n  then  m <   n Hence there is a positive integer  p  such that  m + p = n

Thus, 

( m + p)2 =  n 2

⇒

 m 2 + 2 mp +  p 2 =  n 2

Since  m  and  p are positive, 2 mp + p 2   is also positive and so  m 2  < n 2. 

Thus  m 2  ≠  n 2.  . 

Example 20.   Suppose x, y, ∈ R . If y3 + yx2 ≤  x3 + xy2, then y ≤  x. 

Sol.  Suppose that it is not true that  y ≤  x, so  y >  x. 

Then  y  – x > 0. Multiply both sides of  y – x >  0 by the positive value  x 2 +  y 2. 

( y – x) ( x 2 +  y 2) > 0 ( x 2 +  y 2)

⇒  yx 2   + y 3 –  x 3 –  xy 2  > 0

⇒

 y 3 +  yx 2 >  x 3 +  xy 2

Therefore  y 3 +  yx 2 >  x 3 +  xy 2. So it is not true that  y 3 +  yx 2 ≤  x 3 +  xy 2 . 

Example 21.  Suppose a, b ∈ Z  and n ∈ N . If 12a T  12b (mod n), then n  F  12. 

Sol. Suppose  n|12. so there is an integer  c  for which 12 =  nc.  Now reason as follows. 

12 =  nc

⇒

l2( a – b) =  nc( a –  b)
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12 a – 12 b =  n( ca –  cb)

Since  ca – cb ∈ Z, the equation 12 a – 12 b =  n( ca – cb)  implies  n | (12 a – 12 b). This in turn means 12 a = 12 b (mod  n). 

5.7 PROOF BY CONTRADICTION

This method is effective when attempting to prove that something does not occur, such

as an implication of the form P ⇒ Q, where Q is a negative statement. The idea is to assume

the negative of the conclusion and then argue to a contradiction. In other words, show that

assuming both P and 7Q leads to an impossible or absurd situation. Employ the following

strategy to establish the result using Proof by Contradiction. 

To prove an implication P ⇒ Q using proof by contradiction, assume that the result (Q)

to be proved is in fact false, then combine this assumption with given information (P) and any other useful true statements to arrive at a deduction which contradicts a known fact. 

In general, a proof by contradiction follows this basic structure:

Proof of  p by Contradiction

( i) Assume  p is false. 

( ii) Follow the method of Direct Proof to conclude that  q must be true (for some  q that is observably false). 

( iii) Conclude that  p cannot be false. 

( iv) Conclude that  p is therefore true. 

Example 22.  The only consecutive non-negative integers a, b and c that satisfy a2 + b2 = c2

 are 3, 4 and 5. 

 Formulation of the problem: Begin by supposing that consecutive integers a, b and c, other than 3, 4 and 5, exist and satisfy a2 + b2 = c2. Then derive a contradiction. Further, you will also note that if a, b and c are consecutive integers, then b = a + 1 and c = a + 2. 

Sol. Suppose that  a, b and  c are non-negative consecutive integers other than 3, 4 and 5, and that

 a 2 +  b 2 =  c 2. 

Because  a, b and  c  are not 3, 4 and 5, we know that  a ≠ 3, and because the three numbers are consecutive, we know that  b =  a + 1 and  c =  a + 2. 

From  a 2 +  b 2 =  c 2 we deduce that  a 2 + ( a + 1)2 = ( a + 2)2. 

After expanding and rearranging we obtain  a 2 – 2 a – 3 = 0. 

This equation factors as ( a – 3)( a + 1) = 0. 

Hence  a = 3 or  a = –1. 

We have already pointed out that  a ≠   3, and we know  a is non-negative. Therefore we have a contradiction. Hence proved. 

Example 23.  The circumference of a wheel is divided into 36 sectors to which the numbers 1, 2,...,36 are assigned in some arbitrary manner. Show that there are 3 consecutive sectors such that the sum of their assigned numbers is at least 56. 

Sol. Let  a  denotes the sum of three consecutive sectors from sector  i, 1 

 i

≤  i ≤ 36. Suppose

that the sum of any three consecutive sectors is ≤ 55. Therefore, 

36

∑  ia  ≤  36 × 55

 i = 1

3 × (1 + 2 + ... + 36) ≤ (36 × 55)
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36 37

3 × 

×

≤ (36 × 55)

2

111 ≤ 110

This is a contradiction. Thus, our supposition that the sum of any three consecutive

sectors is ≤ 55 is wrong. 

Therefore, there exist 3 consecutive sectors such that the sum of their assigned numbers

is at least 56. 

Theorem III.   Prove by contradiction that there are infinitely many prime numbers. 

Proof. Suppose that there are finitely many (let us say  u) primes. 

Therefore, the prime numbers are  p  ...  p  and every other number (except 1) is composite. 

1

 n

Consider the number  p – 1 +  p  ×  p  × ... ×  p . 

1

2

 n

We know that it is composite since the number of primes is finite and  p ≠  p .i

Further, every number is divisible by some prime number. Therefore,  p is divisible by

one of  p ,   ... ,   p . 


1

 n

However, dividing  p  by  p   leaves a remainder of 1 for each  i = 1,   ... ,   n. 

 i

As a result, we conclude that  p  is a prime too. 

This means that  p , ...,   p  cannot be all the primes. This contradicts our supposition. 

1

 n 

Hence proved. 

Example 24.   Prove that  2  is irrational. 

Sol. Suppose that  2  is rational. 

By definition, this means that  2  can be written as   m  for some integers in  m and  n. 

 n

2

 m

Since  2  =   m , it follows that 2 = 

, so  m 2 = 2 n 2. 

 n

2

 n

Now any square number  x 2 must have an even number of prime factors, since any prime

factor found in the first  x must also appear in the second  x. 

Therefore,  m 2 must have an even number of prime factors. 

However,  n 2 must also have an even number of prime factors, and 2 is a prime number, 

2 n 2 must have an odd number of prime factors. 

This is a contradiction, since we claimed that  m 2 = 2 n 2, and no number can have both an even number of prime factors and an odd number of prime factors. 

Therefore, our supposition is wrong, and  2  is irrational. 

Example 25 .   Prove that:  2 +  6 <  15 . 

Sol. Assume for a contradiction that  2  +  6 ≥ 15

⇒

+

2

( 2

6)  ≥ 15

⇒

8 +  2 12  ≥ 15

⇒

2 12  ≥ 7

⇒

48 ≥ 49

The last statement is clearly not true, hence we reached the contradiction. Therefore, 

we proved that  2 + 6 < 15 . 
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5.7.1

Proving Conditional Propositions using Contradiction:

Earlier we have proved simple conditional statements, now we wish to prove a statement

of the form  p ⇒  q. This statement is logically equivalent to (¬  p) ∨  q. 

In general, the strategy for proving conditional propositions using contradiction is as

follows:

Proof of  p ⇒  q by Contradiction

( i) Assume  p is true, and  q is false. 

( ii) Follow the method of Direct Proof to conclude that  r must be true (for some  r that is observably false). 

( iii) Conclude that if  p is true,  q cannot be false. 

( iv) Conclude that any time  p is true,  q is also true, and thus  p ⇒  q. 

Example 26.  If there are 104 different pairs of people who know each other at a party of 30 people, then show that some person has 6 or fewer acquaintances. 

Sol.  Suppose that all persons are having at least 7 acquaintances. 

Therefore, the number of distinct acquaintance pair is at least 30 × 7/2 = 105. 

This is a contradiction. 

Hence, our supposition is wrong. Thus there exists at least a person with 6 or fewer

acquaintances. 

Example 27.  If a and b are consecutive integers, then the sum a + b is odd. 

Sol.  Suppose that  a and  b are consecutive integers. Further suppose that the sum a +  b is not odd. 

Because the sum  a +  b is not odd, there exists no number  k such that  a +  b = 2 k + 1. 

However, the integers  a and  b are consecutive, so we may write the sum  a +  b as 2 a + 1. 

Thus, we have derived that  a +  b ≠ 2 k + 1 for any integer  k and also that  a +  b = 2 a + 1. 

This is a contradiction. 

Hence, if we hold that  a and  b are consecutive then the sum  a +  b must be odd. 

Example 28.  If 3 is a factor of n2, then 3 is a factor of n. 

Sol.  Suppose that 3 is a factor of  n 2 and 3 is not a factor of  n. Then, 

• ∃ a such that  n 2 = 3 a

• ∃ b  such that  n = 3 b + 1 or  n = 3 b + 2

Let  n = 3 b + 2

 n 2  = (3 b + 2)2 = 9 b 2 + 12 b + 4 = 3 (3 b 2 + 4 b + 1) + 1

Let

 k  = 3 b 2 + 4 b + 1. 

 n 2  = 3 k + 1. 

So, 3 is not a factor of  n 2, which is a contradiction. 

Hence, if 3 is a factor of  n 2, then 3 is a factor of  n. 

Definition 9: The real number  r is rational if  r =  p/ q, and there exists integers  p and  q such that  q ≠ 0. 

Example 29.   Show that if  α  is irrational then 3 α  is also irrational. 

 m

Sol.  Suppose that 3α is rational. This means that we could write 3α = 

for integers  m

 n

and  n. 
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 m

Dividing by 3 yields α = 

. 

3 n

But this contradicts the fact that we are told that α is irrational, since we could write    α

 m

as the ratio 

of the integers  m and 3 n. 

3 n

Since supposing that 3α is rational leads to a contradiction. Hence 3α is irrational. 

Example 30.   Suppose n ∈  Z. If 3n + 2 is odd, then n is odd. 

Sol.  Suppose that 3 n + 2 is even, and  n is odd. 

 n  = 2 k + 1 for some integer  k by the definition of odd integers. 

3 n + 2 = 3(2 k + 1) + 2

= 6 k + 3 + 2

= 6 k + 4 + 1

= 2(3 k + 2) + 1, 

so 3 n + 2 is odd, but we assumed 3 n + 2 was even. This is a contradiction. Hence proved. 

Example 31.   Prove if 3n + 5 is even then n is odd. 

Sol.  Suppose that 3 n + 5 is even and  n is even. 

Then by definition of even integer,  n = 2 k (for some integer  k)

So, 

3 n + 5 = 3(2 k) + 5

= 6 k + 5

= 2(3 k + 2) + 1

Now assume that

 m  = 3 k + 2. 

3 n + 5 = 2 m + 1

Hence 3 n + 5 is odd. 

This is a contradiction. Thus, if 3 n + 5 is even then  n is odd. 

Theorem IV.   Let a be rational and b be irrational. Then

( a)  a + b is irrational. 

( b)  if a ≠  0, then ab is also irrational. 

 m

Proof.  ( a) Suppose that  a + b is rational, so  a + b = 

 . 

 n

Now, as  a is rational, we can write it as  a =   p . 

 q

 m

 p

 mq −  pn

So, 

 b  = ( a + b) –  a = 

−

=

. 

 n

 q

 nq

Hence  b is rational, which contradicts the assumption. 

( b) Suppose  a =   m  with  m,  n, ∈ Z,  n ≠ 0. We have to obtain the contradiction, assume n

 mq

that  ab is rational, say  ab =  p/ q with  p,  q ≠ 0. Then  b = 

would be rational, which is a

 np

contradiction. Hence proved. 

Example 32.   Prove that if 2 |  5n, then n is even. 

Sol.  Suppose that 2 | 5 n and  n is odd. 

Since 2 | 5 n, we have 5 n = 2 d for some integer  d. 

Since  n is odd, we have  n = 2 k + 1 for some integer  k. 
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Then we have

2 d  = 5 n = 5(2 k + 1) = 10 k + 5. 

So

2 d  = 10 k + 5. 

Solve for 5 to get, 

5 = 2 d – 10 k = 2( d – 5 k). 

But this says that 5 is an even number, which is a contradiction. 

Hence proved. 

5.8 PROOF BY CASES

This method consists of breaking up the analysis into two or more cases that together

exhaust all possibilities, and showing, by separate arguments, that for each of these cases the desired statement holds. 

For example, to prove that a statement such as  n 3 –  n is even, holds for all integers  n, it is natural to consider separately the case when  n is even and the case when  n is odd, and to show that the claimed result holds in each of these cases. 

Example 33.   Prove that if A and B are sets, then P(A) ∪  P(B) ⊆  P(A ∪  B). 

Sol.  Suppose X ∈ P(A) ∪ P(B). 

By definition of union, this means X ∈ P(A) or X ∈ P(B). 

Therefore X ⊆ A or X ⊆ B (by definition of power sets). We consider cases. 

Case 1.  Suppose X ⊆ A. Then X ⊆ A ∪ B, and this means X ∈ P(A ∪ B). 

Case 2.  Suppose X ⊆ B. Then X ⊆   A ∪ B, and this means X ∈ P(A ∪ B). 

(We do not need to consider the case where X ⊆ A and X ⊆ B because that is taken care

of by either of cases 1 or 2.) The above cases show that X ∈ P(A ∪ B). 

Thus we have shown that X ∈ P(A) ∪ P(B) implies X ∈ P(A ∪ B), and this completes the

proof that P(A) ∪ P(B) ⊆ P(A ∪ B). 

Example 34.   Prove that any two consecutive integers have opposite parity. (That is, if one is even, the other is odd and vice versa.)

Sol.  Let  m  and  n  be consecutive integers with  m < n.   Then  n = m +  1. 

Case 1: Suppose  m  is even. Then there exists an integer  k  such that  m = 2k.   Therefore, n = m +  1 =  2k +  1, so  n  is odd. 

Case 2: Suppose  m  is odd. Then there exists an integer  k  such that  m = 2k +  1. 

Therefore, 

 n = m + 1 = (2 k +  1) + 1 = 2 k + 2 = 2( k + 1), so it follows that  n  is even. 

Example 35.   If n is a positive integer then n7 – n is divisible by 7. 

Sol.  First we factor  n 7 –  n =  n( n 6 – 1) =  n( n 3 – 1)( n 3 + 1) =  n( n – 1) ( n 2 +  n + 1) ( n +   1) ( n 2 –  n + 1). Now there are 7 cases to consider, depending on  n = 7 q +  r where  r = 0, 1, 2, 3, 4, 5, 6, 7. 

Case 1:  n = 7 q. Then  n 7 –  n has the factor  n, which is divisible by 7. 

Case 2:  n = 7 q + 1. Then  n 7 –  n has the factor  n – 1 = 7 q. 

Case 3:  n = 7 q + 2. Then the factor  n 2 +  n + 1 = (7 q + 2)2 + (7 q + 2) + 1

= 49  q 2 + 35  q + 7 is clearly divisible by 7. 

Case 4:  n = 7 q + 3. Then the factor  n 2 –  n + 1 = (7 q + 3)2 – (7 q + 3) + 1

= 49  q 2 + 35  q + 7 is clearly divisible by 7. 

Case 5:  n = 7 q + 4. Then the factor  n 2 +  n + 1 = (7 q + 4)2 + (7 q + 4) + 1

= 49  q 2 + 63  q + 21 is clearly divisible by 7. 
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Case 6:  n = 7 q + 5. Then the factor  n 2 –  n + 1 = (7 q + 5)2 – (7 q + 5) + 1

= 49  q 2 + 63  q + 21 is clearly divisible by 7. 

Case 7:  n = 7 q + 6. Then the factor  n + 1 = 7 q + 7 is clearly divisible by 7. 

Example 36.   For any integer n ≥  2, n2 – 3 is never divisible by 4. 

Sol.  If  n is even, then  n 2 is even, and so  n 2 – 3 is odd and hence not divisible by 4. Thus the remaining case to consider is when  n is odd. 

Any integer  n can be put into one of the four cases 4 q, 4 q + 1, 4 q + 2, and 4 q + 3. Since 4 q and 4 q + 2 are even, only the cases 4 q + 1 and 4 q + 3 need be considered. 

Case 1:  n = 4 q + 1. 

 n 2 – 3 = 16 q 2 + 1  + 8 q – 3 = 16 q 2 + 8 q – 2. 

Not divisible by 4. (Although the first two terms are, last term is not)

Case 2:  n = 4 q + 3. 

 n 2 – 3 = 16 q 2 + 9 + 24 q – 3

= 16 q 2 + 24 q + 6. 

Not divisible by 4. (Although the first two terms are, last term is not)

Therefore, we have proved that  n 2 – 3 is never divisible by 4, for any integer  n ≥ 2. 

Example 37.   Suppose x, y, ∈ Z . If 5  F  xy, then 5  F  x and 5  F  y. 

Sol.   (Contrapositive) Suppose it is not true that 5 F  x and 5 F  y

By DeMorgan’s law,. it is not true that 5 F  y or it is not true that 5 F  y. 

Therefore 5  |x or 5  |  y.  We consider these possibilities separately. 

Case 1.  Suppose 5  |  x. Then  x = 5a  for some  a ∈ Z. 

From this we get  xy =  5( ay), and that means 5  | xy. 

Case 2.  Suppose 5  |  y.  Then  y = 5 a for some  a ∈ Z. 

From this we get  xy =  5( ax) ,  and that means 5  |  xy. 

The above cases show that 5 F  xy, so it is not true that 5 F  xy. 

Example 38.  Prove that if x is a real number, then |x + 3| – x > 2. 

Sol. Consider the following cases:

Case I: Assume that  x ≥ – 3. 

Then  x + 3 ≥ 0 and | x + 3| =  x + 3, so that | x + 3| –  x = ( x + 3) –  x = 3 > 2, i.e., 

| x + 3|–  x  > 2. 

Case II: Assume that  x < – 3. Then  x + 3 < 0 and | x + 3| = – ( x + 3) = –  x – 3, so that

| x +  3| –  x = (–  x – 3) –  x = – 2 x – 3 > – 2(–3) – 3 = 3 > 2 ⇒ | x + 3| –  x > 2. 

Thus, for all possible cases, it has been proved that | x +  3| –  x > 2. 

Example 39.  Prove that x is a real number, then |x – 1| + |x + 5| ≥   6. 

Sol.  Consider the following cases:

Case I: Assume that  x ≤ – 5, so that  x – 1 < 0,  x + 5 ≤ 0, | x – 1| = – ( x – 1) = 1 –  x and

| x + 5| = – ( x + 5) = –  x – 5, then | x – 1| + | x + 5| = (1 –  x) + (–  x – 5) = – 2 x – 4 ≥ – 2(–5) – 4 = 6

 i.e.,  | x – 1| + | x + 5| ≥ 6. 

Case II: Assume that – 5 <  x < 1, so that  x – 1 < 0,  x + 5 > 0, | x – 1| = – ( x – 1) = 1 –  x and

| x + 5| =  ( x + 5), then | x – 1| + | x + 5| = (1 –  x) + ( x + 5) = 6 ≥ 6  i.e., | x – 1| + | x + 5| ≥ 6. 

Case III: Assume that  x ≥ 1, so that  x – 1 ≥ 0,  x + 5 > 0, | x – 1| =  x – 1 and | x + 5| =  x + 5. 

Then | x – 1| + | x + 5| = ( x – 1) + ( x + 5) = 2 x + 4 ≥ 2(1) + 4 = 6  i.e.,  | x – 1| + | x  + 5| ≥ 6. 

Thus for all possible cases, it has been proved that | x – 1| + | x + 5| ≥ 6. 
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5.9 BI-CONDITIONAL (If and only If) PROOFS

To prove a statement of the form “Under certain conditions, P ⇔ Q.” This is usually

signified by the phrase “P if and only if Q” or “P is necessary and sufficient for Q.” To prove a bi-conditional, show that each statement implies the other, using any helpful proof techniques. 

Employ the following strategy to establish this result. 

[Prove P ⇒ Q using direct, contrapositive or contradiction proof.]

[Prove Q ⇒ P using direct, contrapositive or contradiction proof.]

Example 40.   The integer n is odd if and only if n2 is odd. 

Sol. First we show that  n being odd implies that  n 2 is odd. 

Suppose  n is odd. Then, by definition of an odd number,  n = 2 a + 1 for some integer  a. 

Thus  n 2 = (2 a + 1)2 = 4 a 2 + 4 a+ 1 = 2(2 a 2 + 2 a) + 1. This shows that  n 2 is twice of an integer plus 1, so  n 2 is odd. 

Conversely, we need to prove that  n 2 being odd implies that  n is odd. We use contrapositive proof. Suppose  n is not odd. Then  n is even, so  n = 2 a for some integer  a. Thus n 2 = (2 a)2 = 2(2 a 2), so  n 2 is even because it is twice an integer. Thus  n 2 is not odd. 

We have proved that if  n is not odd, then  n 2 is not odd, and this is a contrapositive proof that if  n 2 is odd then  n is odd. 

Note: In proving “P if and only if Q,” you should always begin a new paragraph when

starting the proof of Q ⇒ P. Since this is the converse of P ⇒ Q, it’s a good idea to begin the paragraph with the word “Conversely” to remind the reader that you have finished the first

part of the proof and are moving on to the second. Further, it is also a good idea to remind the reader of exactly what statement that paragraph is proving. 

Example 41.  Suppose a and b are integers. Then a ≡  b (mod 6) if and only if a ≡  b (mod 2) and a ≡  b ( mod 3) . 

Sol.  First we prove that if  a ≡  b (mod 6), then  a ≡  b (mod 2) and  a ≡  b (mod 3). Suppose a ≡  b (mod 6). This means 6|( a –  b), so there is an integer  n for which a – b = 6 n. 

From this we get  a –  b = 2(3 n), which implies 2|( a –  b), so  a ≡  b (mod 2). But we also get a – b = 3(2 n), which implies 3|( a – b), so  a ≡  b (mod 3). Therefore,  a ≡  b (mod 2) and  a ≡  b (mod 3). 

Conversely, suppose   a  ≡   b (mod 2) and  a  ≡   b (mod 3). Since  a ≡   b (mod 2) we get 2|( a – b), so there is an integer  k for which  a –  b = 2 k. Therefore  a –  b is even. Also, from  a ≡   b (mod 3) we get 3|( a –  b), so there is an integer ′ for which  a – b = 3 l. 

But since we know  a – b is even, it follows that 3 l must be even also, for if it were odd then  a – b = 3 l would be odd. (Because  a –  b would be the product of two odd integers.) Hence l = 2 m for some integer  m. Thus  a –  b = 3 l = 3⋅2 m = 6 m. This means 6|( a –  b), so  a ≡  b (mod 6). 

SOLVED PROBLEMS

Problem 1.   Prove by direct proof that if n is odd integer, then  n3 + n is even. 

Sol.  Let  n be an odd integer, then  n = 2 k + 1 for some  k ∈ Z

Now, 

 n 3 +  n =  n ( n 2 + 1)

= (2 k + l) ((2 k +   1)2 + 1)

= (2 k+ l) (4 k 2 + 4 k + 1 + 1)
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= (2 k + 1) (4 k 2 + 4 k + 2)

= (2 k + 1) . 2(2 k 2 + 2 k + 1)

= 2 . (2 k + 1) (2 k 2 + 2 k + 1)

for some  k ∈ Z. 

= an even integer. 

Therefore, every number which is multiple of 2 is an even number. Hence proved. 

Problem 2.   Prove by direct proof that given any two distinct rational numbers r and s with r < s, there is a rational number x such that r < x < s. 

Sol. From definition of rational, let  r =  a| b, and  s =  c| d for integers  a, b, c, d,  with  b ≠ 0

and  d ≠ 0. 

Re-express the fractions  r and  s over the same denominator 2 bd:

 r  = 2 da|2 bd

and

 s = 2 bc|2 bd. 

Since

 r <  s, 2 da < 2 bc. 

Then (2 da + 2 bc)/2 =  da +  bc is the odd integer that lies halfway between the integers 2 da and 2 bc. 

Hence ( da +  bc)/2 bd is a rational number that lies between  r and  s. 

2

⎢  n ⎥

 n  1

 n  1

Problem 3.  Prove by direct proof that for any odd integer n, 

⎛

⎞ ⎛

⎞

⎢

⎥  = 

−

+

⎜

⎟ ⎜

⎟ . 

⎢ 4

⎣

⎥⎦

⎝ 2 ⎠ ⎝ 2 ⎠

 n  1

 n  1

⎛ 2

 n

1⎞

Sol.  We know that  ⎛ − ⎞ ⎛ + ⎞

−

⎜

⎟ ⎜

⎟  = 

⎝ 2 ⎠ ⎝ 2 ⎠

⎜

⎟

⎝

4 ⎠

2

⎢  n ⎥

2

Therefore, we want to prove: 

 n

1

⎢

⎥  = 

− . 

⎢ 4

⎣

⎥⎦

4

From definition of odd, we have  n = 2 k + 1. 

2

 n

1

2

4 k + 4 k + 1 − 1

Then the right hand side equals: 

−  = 

=  k 2 +  k. 

4

4

2

⎢  n ⎥

2

⎡4 k

4 k  1⎤

+

+

And the left hand side equals:  ⎢

⎥  =  ⎢

⎥  =  2

⎢ k  +  k + 0.25⎥

⎢ 4

⎣

⎥⎦

⎢

4

⎣

⎥⎦

⎣

⎦  =  k 2 +  k. 

Therefore, the right hand side equals the left hand side. 

Problem 4.  Prove that if x | a and x | b, then x | (a2 – b2). 

Sol.  Suppose that  x |  a and  x |  b.  Thus  a =  xm and  b =  xn for some integers  m and  n. 

Show that  x | ( a 2 –  b 2),  i.e.,  show that  a 2 –  b 2 =  xq for some integer  q. 

Then

 a 2 –  b 2  = ( xm)2 – ( xn)2

(by supposition)

=  x 2 m 2 –  x 2 n 2

(by properties of exponents)

=  x( xm 2 –  xn 2)

(by distributive property)

=  xq, 

where  q =  xm 2 –  xn 2 is an integer. Thus,  x | ( a 2 –  b 2). 
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Problem 5.  Prove that if x | a and y | b, then xy | ab

Sol. Suppose that  x |  a and  y |  b. Thus  a =  xm and  b =  yn for some integers  m and  n. 

Show that  xy |  ab,  i.e. , show that  ab =  xy ·  q for some integer  q. 

Then

 ab  = ( xm) ( yn)

(by supposition)

=  xy ( mn)

(by associative and commutative property)

=  xy ·  q

where  q =  mn is an integer thus  xy |  ab. 

Problem 6.   Prove that if m is even and n is odd, then mn + 3n is odd. 

Sol.  Suppose that  m is even and  n is odd. 

Thus  m = 2 k and  n = 2 p + 1 for some integers  k and  p. Show that  mn is odd  i.e. , show that  mn = 2 q + 1 for some integer  q. 

Then

 mn + 3 n  = (2 k) (2 p + 1) + 3 (2 p + 1)

(by supposition)

= 4 kp + 2 k + 6 p + 3

(By distributive property)

= 4 kp + 2 k + 6 p + 2 + 1

= 2(2 kp +  k + 3 p + 1) + 1

(By distributive property)

= 2 q + 1

where  q = 2 kp +  k + 3 p + 1 is an integer. Thus,   mn + 3 n is odd. 

Problem 7.  Prove that if m is odd, then m2 + 1 is even. 

Sol.  Suppose that  m is odd. Thus  m = 2 k + 1 for some integer  k. Show that  m 2 + 1 is even i.e, show that  m 2 + 1 = 2 p for some integer  p. 

Then, 

 m 2 + 1 = (2 k + 1)2 + 1

(by supposition)

= (4 k 2 + 4 k + 1) + 1

= 4 k 2 + 4 k + 2

= 2(2 k 2 + 2 k + 1)

(by distributive property)

= 2 q

where  q = 2 k 2 + 2 k + 1 is an integer. Thus,  m 2 + 1 is even. 

Problem 8.   Prove by contrapositive that if m 3  is even, then m is even. 

Sol . Suppose that   m is odd it implies  m 3 is odd, is a contrapositive of the original statement. 

Since  m is odd. Then  m 3 = odd ∗ odd ∗ odd = (odd ∗ odd) ∗ odd = odd ∗ odd = odd. 

Hence  m is even. Say  m = 2 ∗  k for some integer  k. Then  m 3 = (2 k)3 = 8 k 3. 

From statement as above,  m 3 = 2 n 3. So, 8 k 3 = 2 n 3, and thus 4 k 3 =  n 3. 

Hence  n 3 is even, and  n is even. 

Problem 9.  Prove by contrapositive that if q2 is divisible by 3, so is q. 

Sol. The contrapositive of the given statement is if  q is not divisible by 3, then  q 2 is not divisible by 3. 

We know that if  q is not divisible by 3, then  q 2 ≡ 1 (mod 3). Thus  q 2 is not divisible by 3. 

Hence proved. 

Problem 10.  Prove that if n is an integer and 3n + 2 is even, then n is even using

( i)  proof by contraposition and

( ii)  proof by contradiction:

Sol. ( i) Proof by contraposition

Suppose  n is odd and show that 3 n + 2 is odd. 
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Then

 n  = 2 k + 1 for some integer  k

(definition of odd integers)

3 n + 2 = 3(2 k + 1) + 2

= 6 k +5

= 6 k + 4 + 1

= 2(3 k + 2) + 1, so 3 n + 2 is 2 times an integer + 1, so it is odd. 

( ii) Proof by contradiction:

Suppose that 3 n + 2 is even, and  n is odd. 

Then

 n  = 2 k +1 for some integer  k

(definition of odd integers)

3 n + 2 = 3(2 k + 1) + 2

= 6 k + 3 + 2

= 6 k + 4 + 1

= 2(3 k + 2) + 1, so 3 n + 2 is odd. 

This is a contradiction of our supposition that 3 n + 2 is even. 

Hence proved. 

Problem 11.  What are the differences between a proof by contrapositive and a proof by contradiction, as in both cases, the first assumption includes the explicit assumption that q is false. 

Sol.  There is a key difference. In a proof by contrapositive, you have a specific goal: assuming  q is false, you wish to prove that  p is false. In a proof by contradiction, you have a nonspecific goal: you assume that  q is false and  p is true, and wish to arrive at any logically impossible conclusion. 

There are a lot of different logically impossible conclusions, so proofs by contradiction

have a less clear target than proofs by contrapositive. 

Problem 12.   Prove by contradiction that  5  is irrational number. 

Sol.  Suppose  5  is rational ⇒  ∃  p, q ∈   Z, ( p, q)  = 1 and  q ≠ 0 such that p| q  = 5  ⇒  p 2| q 2 = 5 ⇒  p 2 = 5 q 2

 p 2| q  = 5 q

...( i)

Since ‘ p’ and ‘ q’ are integers and ( p,  q) = 1. 

So LHS of equation ( i) is not integer. But RHS of equation ( i) is integer which is not possible. Thus our supposition is wrong. Hence  5  is irrational. 

Problem 13.   Prove by contradiction that  3 2  is irrational. 

Sol. Suppose  3 2  is rational. Then there are integers  m and  n with no common factors, such that  3 2  =  m/ n. 

Taking the cube of both sides gives: 2 =  m 3 | n 3 or 2 n 3 =  m 3. 

This means that  m 3 is even, a contradiction. 

Hence our supposition is false and  3 2  is irrational. 

Problem 14.  Prove by contradiction that  3 +  7  is irrational. 

Sol. Suppose  3 + 7    is rational. Then, by definition of rational, there exists integers a and  b with  b ≠ 0 such that
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3

 a

+ 7  =

. 

 b

Squaring both sides, we get

2

 a

⇒

3 + 7 + 2 3 7  = 2

 b

2

 a

⇒

10 +  2 3 × 7  = 2

 b

2

 a

⇒

2 21  =

–10

2

 b

2

2

 a

10 b

⇒

21  =

−

2

2 b

Since  a and  b are integers, so are  a 2 – 10 b 2 and 2 b 2 with 2 b 2 ≠ 0.  Hence  21  is the quotient of two integers. Accordingly,  21  is rational. But this is a contradiction. Hence our supposition is false and  3 + 7  is irrational. 

Problem 15.   Prove by contradiction that  3  is an irrational. 

Sol. Suppose  3 is rational ⇒  ∃  p,q ∈ Z ,(p , q) =  1 and  q ≠ 0 such that p  = 3

 q

2

 p

⇒

= 3

(Squaring on both sides)

2

 q

⇒

 p 2  = 3 q 2

2

 p   = 3 q

...( i)

 q

Since ‘ p’ and ‘ q’ are integers and ( p, q) = 1. 

So LHS of equation ( i) is not integer. But RHS of equation ( i) is integer which is not possible. 

Thus our supposition is wrong. Hence  3  is irrational. 

Problem 16.  Prove by contradicton that  2 +  3  is irrational. 

Sol.  Suppose the statement is false. 

Then there is a rational number such that  2 + 3  =  r

Now, squaring both sides, we have 2 + 2 6  + 3 =  r 2

This means that

2

 r − 5

⇒

6  =

2
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Now, we know 2,  6  is irrational, and we know that ( r 2 – 5)/2 is rational since  r is rational. 

This makes the left hand side of the equation irrational and the right hand side rational. 

This is a contradiction. 

Therefore, our supposition is false, which implies that  2 + 3  is irrational. 

Problem 17.  Prove by contradiction that there exist no integers a and b for which

 18a + 6b = 1. 

Sol. Suppose that integers  a and  b can be found for which 18 a + 6 b = 1. 

Dividing by 6 we obtain 3 a +  b = 1/6. 

This is a contradiction, since by the closure properties 3 a +  b is an integer but 1/6 is not. 

Therefore, it must be that no integers  a and  b  exist for which 18 a + 6 b = 1. 

Problem 18.  Prove by contradiction that if a and b are odd integers then a + b is an even integer. 

Sol.   Suppose  a and  b are odd and  a + b is not even

Now, 

 a  = 2 p + 1

 b  = 2 q + 1 for  p, q ∈ Z

 a +  b  = (2 p + 1) + (2 q + 1)

= 2 p + 2 q + 2

= 2( p + q + 1)

This is even, contradicting our supposition that  a + b is odd. Hence  a + b is even. 

Problem 19.  Prove by contradiction that there’s no least positive rational number. 

Sol. Suppose there exists at least positive rational number, call it R. 

This means that R ≤  r for all rational numbers  r. Say R =  a/ b, for integers  a,  b,  b ≠ 0. 

Now multiply  b by 2 to get R′ =  a/2 b. R′ is still a positive rational number and in fact R′ < R since they have the same numerator and R′ has  a larger denominator. But then this

means that R′ is smaller than the least positive rational number. Therefore, it is a contradiction. 

Problem 20.   Prove by contradiction that there is no largest real number. 

Sol.  Suppose that there was a largest real number, say  n ( i.e.,  assume there exists  n such that  n ≥  x for all  x)

We know 1 > 0 so  n + 1 >  n by the order axioms. 

But this contradicts the intial supposition that  n ≥  n + 1. Hence proved. 

Problem 21.  Prove by contradiction that for any integers a, b the product ab is even if and only if a is even or b is even. 

Sol.  If  a is even or  b is even then clearly the product is too. 

Suppose that  a,  b is even but neither  a nor  b is even

Say

 a  = 2 k + 1,  b = 2 j + 1. 

Then

 ab  = (2 k + 1) (2 j + 1) = 2(2 kj +  k +  j) + 1 is not even. 

This contradict our supposition. Hence proved. 
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Problem 22.   Prove by contradiction that if for two integers a, b, 4 divides a2 – 3b2 then at least one of a, b is even. 

Sol.  Suppose that  a,  b are odd but 4 divides  a 2 – 3 b2. 

We write

 a  = 2 j + 1,  b = 2 k + 1. 

Then

 a 2 – 3 b 2  = 4 j 2 + 4 j + 1 – 12 k 2 – 12 k – 3

= 4( j 2 +  j – 3 k 2 – 3 k – 1) + 2 which is not divisible by 4. 

This is contradiction. Hence proved. 

Problem 23.  Prove by contradiction that for every n, if n > 2 and n is prime then n is odd. 

Sol.  Suppose that there is an  n such that  n > 2,  n  is prime and  n is even, all at the same time. 

Since  n is even, we can write  n = 2 m for some  m. 

Now, since  n > 2, as well,  m cannot be equal to 1. 

As a result,  n can be written as the product of 2 and another number  m that is not 1. 

Therefore,  n is composite. 

However, we assumed that  n was prime. 

A number cannot be prime and composite at the same time. 

This contradicts our supposition. Hence proved. 

Problem 24.  Prove by the method of Proof by Cases that if n is an odd integer then n4

 mod 16 = 1. 

Sol. We know that  n 4 mod 16 = 1 is equivalent to saying ( n 4 – 1) mod 16 = 0

So, we want to prove that  n 4 – 1 is a multiple of 16. 

Observe that  n 4 – 1 = ( n 2 – 1) ( n 2 + 1)

∵ { a 2 – 1 = ( a – 1) ( a + 1)}

Since  n is odd, it can be written in one of two forms: 4 q + 1, 4 q + 3. 

In the first case,  n 2 = 16 q 2 + 8 q + 1, and in the second case  n 2 = 16 q 2 + 24 q + 9. 

In either case, observe that ( n 2 – 1) is a multiple of 8 and ( n 2 + 1) is a multiple of 2. 

Hence their product, which equals ( n 4 – 1), is a multiple of 16. 

Problem 25.  Prove that 2m2 – 1 is odd for all integers m. 

Sol: Consider the following cases:

Case I: Suppose that  m is even,   i.e. ,  m = 2 n for some integer  n. Then 2 m 2 – 1

= 2(2 a)2 – 1 = 8 n 2 – 1 = 8 n 2  – 1 – 1 + 1 = 8 n 2  – 2 + 1 = 2(4 n 2  – 1) + 1 = 2 k + 1, where  k = 4 n 2  – 1

is an integer. Thus, 2 m 2  – 1 is odd. 

Case II: Suppose that  m is odd,  i.e.,  m = 2 n + 1 for some integers  n. Then 2 m 2  – 1 = 2(2 n

+ 1)2 – 1 = 2(4 n 2  + 4 n + 1) – 1 = 8 n 2  + 8 n + 2 – 1 = 8 n 2  + 8 n + 1 = 2(4 n 2  + 4 n) + 1 = 2 k + 1, where k = 4 n 2  + 4 n is an integer. 

Thus, 2 m 2 – 1 is odd. 

Thus, for all possible cases, it has been proved that 2 m 2 – 1 is odd. 

Problem 26.   Prove that if n is even integer, then n = 4j or n = 4j – 2 for same integer j. 

Sol.  Consider the following cases:

Case I: Suppose that  m is even, so that  m = 2 p for some integer P. Then  n = 2 m = 2(2 p)

= 4 p = 4 j, where  j =  p is an integer and the conclusion is true. 

Case II: Suppose that  m is odd, so that  m = 2 p + 1 for some integer P. Then  n = 2 m

= 2(2 p + 1) = 4 p + 2 = 4 p + 2 + 2 – 2 = 4 p + 4 – 2 = 4( p + 1) – 2 = 4 j – 2, where  j =  p + 1 is an integer and the conclusion is true. 
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Thus, for all possible cases, it has been proved that  n = 4 j or  n = 4 j  – 2 for some integer  j. 

Problem 27.   Prove that if a and b are real numbers, then ||a| – |b|| ≤  |a – b|. 

Sol.  If  a = 0 or  b = 0 or both  a = 0 and  b = 0, then the result is trivially true. The rest of the proof will assume that neither  a = 0 nor  b = 0, consider the following cases: Case I: Suppose that  a > 0 and  b > 0, so that | a| =  a  and | b| =  b then, || a| – | b||

= | a –  b| ≤ | a –  b| i.e., || a| – | b|| ≤ | a –  b|. 

Case II: Suppose that  a < 0 and  b ≤ 0, so that | a| = –  a and | b| = –  b then || a| – | b||, 

=|(– a) – ( –b)|= |(–1)( a –  b)| = |–1|| a –  b| = | a –  b|≤ | a –  b|  i.e.,  || a| – | b|| ≤ | a –  b|

Case III: Suppose that  a > 0,  b < 0 and | a| ≥ | b| (In other words,  a is further from zero than   b is). Then | a| =  a, | b| = –   b and 0 ≤   a +  b  ≤   a –  b. It follows that || a| – | b||

= | a – (–  b)| = | a + b| =  a + b <   a – b = | a –  b| ≤ | a –  b|. 

Case IV: Suppose that  a > 0,  b < 0 and | a| < | b| (In other words,  b is further from zero than  a is). Then | a| =  a, | b| = –  b, 0 ≤ –  b≤  a – b, and  b ≤  a +  b ≤ 0. It follows that  a –  b is further from zero than  a +  b is,  i.e,   | a +  b| < | a –  b|. Thus, || a| – | b|| = | a – (– b)|

= | a +  b| < | a –  b| ≤ | a –  b|  i.e. , || a| – | b|| ≤ | a –  b|

Case V: Suppose that  a < 0,  b > 0 and | b| ≥ | a|. (In other word,  b is furthers from zero than  a is). This case is proven analgously to case III. 

Case VI: Suppose that  a < 0,  b > 0 and | b| < | a|(In other words,  a is further from zero than  b is). This case is proven analgously to case IV. 

Thus, for all possible cases, it has been proven that || a| – | b|| ≤ | a –  b|. 

Problem 28.  Prove by the method of Proof by Cases that for every real number x there exists a real number y such that x2y + 2x = x. 

Sol.  Divide the proof into cases. 

Let  x  be a real number. 

Case 1: If  x = 0 then set  y = –1/ x. Then  x 2 y + 2 x =  x 2(–1/ x) + 2 x = –  x + 2 x =  x. 

Case 2: If  x = 0 set  y = 1 (or any other choice of  y). Then  x 2 y + 2 x = (0) 1 + 0 = 0 =  x. 

Problem 29.   Prove by the method of Bi-Conditional that integer a is odd if and only if a + 1 is even. 

Sol: Suppose  a is an odd integer. 

Ther exists an integer  k so that  a = 2 k + 1. 

 a + 1 = (2 k + 1) + 1 = 2 k + 2 = 2( k + 1)

Since  k + 1 is an integer,  a + 1 is even. 

Conversely, suppose  a + 1 is an even integer. 

There exists an integer  k so that  a + 1 = 2 k. 

 a =  a + 1 – 1 = (2 k) – 1 = (2( k – 1) + 2) – 1 = 2( k – 1) + 1

Since  k – 1 is an integer, Hence  a is odd. 

Problem 30.   Prove  by the method of Bi-Conditional that a positive integer n is evenly divisible by 3 if and only if, the sum of the digits of n is divisible by 3. 

Sol.  Suppose  n is a positive integer whose digit representation is  a a  ...  a . 

0 1

 k

This means,  n =  a  +  a  10 + ...  a  10 k. The digit sum is  s =  a  +  a  + ... +  a . 

0

1

 k

0

1

 k

Now,  n –  s = ( a  +  a  10 + ...  a  10 k) – ( a  +  a  + ... +  a ) =  a  9 +  a  99 + ... +  a  (99...9) 0

1

 k

0

1

 k

1

2

 k

(where the last term has  k nines). 

So, clearly,  n –  s is divisible by 3. It follows that  n is divisible by 3 if and only if,  s is divisible by 3. 
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Problem 31.   Prove by the method of Bi-Conditional that if a is an integer, then a is not evenly divisible by 3 if, and only if, a2 – 1 is evenly divisible by 3. 

Sol.  First we prove “a is not evenly divisible by 3 if  a 2 – 1 is evenly divisible by 3”. 

Suppose, 3 evenly divides  a 2 – 1 = ( a – 1) ( a + 1). Since 3 is a prime number, 3 must evenly divide either  a – 1 or  a + 1. 

In either case, it should be apparent that 3 cannot evenly divide  a. 

Conversely, we prove “a is not evenly divisible by 3 only if  a 2 – 1 is evenly divisible by 3.” 

We can write  a = 3 q +  r,  where  r = 0, 1 or 2. 

Our assumption that  a is not divisible  by 3 implies  r cannot be 0. If  r = l, then  a – l = 3 q and so 3 evenly divides  a 2 – 1 = ( a – 1) ( a + 1). 

A similar argument works if  r = 2. 

REVIEW QUESTIONS

1. 

What is proof? Explain various types of methods of proof? 

2. 

How you can choose a proof technique for a given problem? Explain. 

3. 

What is direct proof? Explain by giving example. 

4. 

What is proof by contrapositive? Explain by giving example. 

5. 

What is proof by contradiction? Explain by giving example. 

6. 

What is proof by cases method? Explain by giving example. 

7. 

What is Bi-conditional proof? Explain by giving example. 

 Prove the following using any of the given methods of proof

8. 

Let  x and  y be real numbers. If  xy is irrational, then  x or  y is irrational. 

9. 

Let  a and  b be non-zero integers. Then  a |  b and  b |  a if and only if  a =  b or  a = – b. 

10. 

Let  m and  n be integers. Then  m⋅ n is odd if and only if both  m and  n are odd. 

11. 

Let  n be an integer. Then  n 2 +  n is even. 

12. 

Prove that the product of a non-zero rational number and an irrational number is irrational. 

13. 

Let  x, y, z ∈ Z. If  x +  y =  x +  z, then  y =  z. 

14. 

The square of any integer is of the form 3 k or 3 k + 1. 

CHAPTER END PROBLEMS

 Prove the following using Direct Proofs

1. 

The product of two odd numbers is odd. 

2. 

The product of an even number and any other number is even. 

3. 

Prove that  x is odd if and only if | x| is odd. 

4. 

If  x and  y are integers and  x 2 +  y 2 is even, prove that  x +  y is even. 

5. 

Let  n be an integer, prove that if  n is even, then 3 n is even. 

6. 

Let  n be an integer, prove that if  n is odd, then 3 n is odd. 

7. 

Let  n be an integer, prove that 1 | n. 

8. 

Let  n be an integer, prove that  n| n. 

9. 

Let  n and  m be integers, prove that if  m| n, then  m|(–  n). 

10. 

Let  n be an integer, prove that if  n is even then  n 2 is even, and if  n is odd then  n 2 is odd. 

11. 

Let  n and  m be integers. Suppose that  n and  m are divisible by 3. Prove that  n +  m is divisible by 3. 
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12. 

Let  n and  m be integers. Suppose that  n and  m are divisible by 3. Prove that  n *  m is divisible by 3. 

13. 

Let  a, b, c and  d be integers. Prove that if  a| b and  c| d, then  ac| bd. 

14. 

Let  a and  b be integers. Prove that if  a| b, then  an| bn for all positive integers  n. 

 Prove the following using Proof by Contrapositive

15. 

Suppose  n ∈ Z. If  n 2 is even, then  n is even. 

16. 

Suppose  n ∈ Z. If  n 2 is odd, then  n is odd. 

17. 

Suppose  a, b ∈ Z. If  a 2( b 2 – 2 b) is odd, then  a and  b are odd. 

18. 

Suppose  a,  b,  c ∈ Z. If a does not divide  bc, then  a does not divide  b. 

19. 

Suppose  a, b ∈ Z. If both  ab and  a +  b are even, then both  a  and  b  are even. 

20. 

Suppose  x,  y ∈ Z. If  x 2  ( y + 3) is even, then  x is even or  y is odd. 

21. 

Suppose  a ∈ Z. If  a 2 is not divisible by 4, then  a is odd. 

22. 

Suppose  x ∈ R. If  x 2 + 5 x < 0 then  x < 0. 

23. 

Suppose  x ∈ R. If  x 3 –  x > 0 then  x  > –1. 

24. 

Suppose  x ∈ Z. If  x 3 – 1 is even, then  x is odd. 

25. 

Let β be an irrational number. Employ proof by contrapositive to prove that  β  is also irrational. 

26. 

Let  m and  n be positive integers. Prove that if  m 3 is not divisible by  n 3, then  m is not divisible by  n. 

27. 

Show that for a real number  x, if  x > 1 then 3 x > 3 x. 

28. 

For finite sets A and B, prove that if A ⊆ B then |A| ≥ 1. 

29. 

If all the sides of a triangle have different lengths, then all of its angles have different sizes. 

 Prove the following using Proof by Contradiction

30. 

For sets A and B prove that if A ×  B =  φ   then either A = φ or B = φ. 

31. 

For sets A, B and C demonstrate that if A ç B ∪ C then A – B ç C. 

32. 

Let A, B and C be sets such that A ⊆ B ∩ C. Prove that B ∪ C  ⊆   A. 

33. 

Let  x be a real number. Prove that if  x 3  + 5 x = 40 then  x < 3. 

 x

 y

34. 

Prove that for real numbers  x and  y, if  x ≠  y then 

≠

. 

2 x − 1 2 y − 1

 x

1

 y

1

35. 

Prove that if  x, y ∈ R are positive then 

≥ or

≥ . 

 x + 2 y  3

 y + 2 x  3

36. 

Let β be an irrational number. Use proof by contradiction to prove that β – 4 is also irrational. 

37. 

Prove that there is no positive rational number that is smaller than all other positive rational numbers. 

38. 

Let A, B and C be finite nonempty sets such that P(A) ∪ P(B) = P(C). Prove that either A = C or B = C. 

39. 

If  a, b ∈   Z, then  a2 – 4 b – 2 ≠ 0. 

40. 

If a,  b ∈   Z ,  then  a2 – 4 b – 3 ≠ 0. 

41. 

Suppose  a,b,c ∈   Z. If  a2 +b2 = c2,  then  a  or  b  is even. 

42. 

Suppose  a, b ∈   R. If  a is rational and  ab  is irrational, then  b  is irrational. 

43. 

There exist no integers  a  and  b  for which 21 a +  30 b =  1. 

44. 

There exist no integers  a  and  b  for which 18 a + 6 b =  1. 

45. 

For every positive rational number  x,  there is a positive rational number  y  for which  y < x. 

46. 

Suppose  a,  b ∈ Z .  If 4|( a 2  + b2),  then  a and  b  are not both odd. 

47. 

If A and B are sets, then A ∩ (B – A) = φ

48. 

For all integers  a and  b there exist integers  m and  n such that  a =  m +  n and  b =  m –  n. 
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 Prove the following using Proof by cases

49. 

Let  a, b and  c be integers. Suppose that  c ≠ 0. Prove that  a |  b if and only if  ac|  bc. 

50. 

Let  n be an integer. Prove that one of the two numbers  n and  n + 1 is even, and the other is odd. 

51. 

Let  n be an odd integer. Prove that there is an integer  k such that  n 2 = 8 k +  l. 

52. 

Let  n be an integer. Using only the fact that every integer is even or odd, prove that precisely one of the following holds: either  n = 4 k for some integer  k, or  n = 4 k + 1 for some integer  k, or  n = 4 k

+ 2 for some integer  k, or  n = 4 k + 3 for some integer  k. 

53. 

Let  a and  b be integers. The numbers  a and  b are relatively prime if the following condition holds: if  n is an integer such that  n| a and  n| b, then  n =  ± 1. 

( a) Find two integers  p and  q that are relatively prime. Find two integers  c and  d that are not relatively prime. 

( b) Prove that the following are equivalent. 

( i)  a and  b are relatively prime. 

( ii)  a and – b are relatively prime. 

( iii)  a +  b and  b are relatively prime. 

( iv)  a –  b and  b are relatively prime. 

 Prove the following using Bi-Conditional Proofs

54. 

If  a is an integer, then  a is not evenly divisible by 5 if, and only if,  a 4 – 1 is evenly divisble by 5. 

55. 

For two integers  a  and  b,  a +  b is odd if, and only if, exactly one of the integers,  a or  b, is odd. 

56. 

For two integers  a  and  b, the product  ab  is even if and only if at least one of the integers,  a or  b, is even. 

57. 

A positive integer  n is evenly divisible by 9 if, and only if, the sum of the digits of  n is divisible by 9. 

58. 

A positive integer  n is evenly divisible by 11 if, and only if, the difference of the sums of the digits in the even and odd positions in  n is divisible by 11. 

C H A P T E R

6

 Mathematical Induction

PREVIEW

The Induction Rule, and Strong Induction are the most powerful methods for establishing

truth. These methods are useful when we need to prove that a predicate is true for all natural numbers. Mathematical induction is a form of mathematical proof in which it must be shown for

a statement, P , involving the positive integer  n that P  is true and that the truth of P  implies n

1

 k

the truth of P

for every positive  k. This chapter discusses, the Induction Rule, and Strong

 k + 1

Induction in detail with lots of examples. 

LEARNING OBJECTIVES

 After studying this chapter, students will be able to:

•

understand the first (weak) and second (strong) principle of mathematical induction

•

prove first and second principle of mathematical induction

•

solve problems using first and second principle of induction

6.1 INTRODUCTION

The term mathematical induction was introduced and the process was put on a rigorous

basis by the British mathematician Augustus De Morgan in 1838. Mathematical induction is an

attractive method by which one is able to prove infinitely many things in finite terms. Induction is considerably the most powerful and commonly-used proof technique in discrete Mathematics

and Computer Science. In reality, the use of induction is a defining characteristic of discrete Mathematics. There are three methods namely well ordering principle, weak induction and strong induction that are equivalent. Sometimes induction proofs are clearer because they do not require proof by contradiction. The induction proofs also provide recursive procedures that reduce handling of large inputs to smaller ones. This chapter introduces two versions of induction, weak and

Strong and explains how to use them in proofs. 

6.2

FIRST PRINCIPLE OF MATHEMATICAL INDUCTION: WEAK FORM

If, for any statement involving a positive integer,  n, the following are true:

1. The statement holds for  n = 1, and

2. Whenever the statements holds for  n =  k it must also hold for  n =  k + 1 then the statement holds for all positive integers,  n. 
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In Proof by Mathematical induction, if the base sleep and inductive step are proved then

 p( x) is true for all natural numbers. In inductive step we need to assume P( k) is true and this assumption is called as induction hypothesis. By using this assumption we prove P( k + 1) is true. 

While proving for the base case we can take P(0) or P(1). 

Theorem 1. (First Principle of Mathematical Induction: Weak Form).   Let P(n) be

 a statement about a positive integer n such that

 1. P(1) is true, and

 2. P(k + 1) is true whenever one assumes that P(k) is true. 

 Then P(n) is true for all positive integer  n. 

Proof.  Let us assume that there exists  n  

) is not true. 

0 ∈ N such that P( n 0

Now, consider the set S = {  m ∈ N : P( m) is false }. 

As  n  

0 ∈ S, S ≠ φ. So, by Well-Ordering Principle, S must have a least element, say N. 

By assumption, N ≠ 1 as P(1) is true. 

Thus, N ≥ 2 and hence N – 1 ∈ N. 

Therefore, from the assumption that N is the least element in S and S contains all those

 m ∈ N for which P( m) is false, we can deduce that P(N – 1) holds true as N – 1 < N ≤ 2. 

Thus, the implication ‘‘P(N – 1) is true’’ and Hypoth esis 2 imply that P(N) is true. This

leads to a contradiction and the first assumption that there exists  n  

) is not

0 ∈ N, such that P( n 0

true is false. 

6.2.1 Method for First Principal of Mathematical

Let  n  be a fixed integer. Suppose P( n) is a statement involving the natural number  n and 0

we wish to prove that P( n) is true for all  n ≥    n .0

1. Basis of Induction. P( n ) is true  i.e,  P( n) is true for  n =  n . 

0

0

2. Induction Step. Assume that the P( k) is true for  n =  k. 

Then P ( k + 1) must also be true. 

Then P( n) is true for all  n ≥  n . 

0

Example 1.   Prove by Mathematical Induction 1 + 3 + 5 + ... + 2n – 1 = n2. 

Sol. Basis of Induction.  Let us assume that

P( n) = 1 + 3 + 5 + ... + (2 n – 1) =  n 2. 

For  n = 1, 

P(1) = 1 = 12 = 1

It is true for  n = 1. 

...( i)

Induction Step. 

For  n =  r, 





P( r) = 1 + 3 + 5 + ... + 2 r – 1 =  r 2 is true

...( ii)

Adding 2 r + 1 in both sides, 

P( r + 1) = 1 + 3 + 5 + ... + 2 r – 1 + 2 r + 1

=  r 2 + (2 r + 1) =  r 2 + 2 r + 1 = ( r + 1)2

...( iii)

As P( r) is true. Hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

1 + 3 + 5 + ... + 2 n – 1 =  n 2

is true for  n = 1, 2, 3, 4, 5, ... . Hence proved. 
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 n(n +  1)(2n +  1)

Example 2.  Prove by Mathematical Induction 12 + 22 + 32 + ... + n2 = 

 . 

 6

Sol. Basis of Induction. 

1 1

( + 1) 2

( 1

( ) + 1) 6

For  n = 1, 

P(1) = 12 = 

=  = 1

6

6

It is true for  n = 1. 

...( i)

Induction Step. 

For  n =  r, 

 r( r + )

1 (2 r + )

1

P( r) = 12 + 22 + 32 + ... +  r 2 = 

is true

...( ii)

6

Adding ( r + 1)2 on both sides, we get

 r( r + )

1 (2 r + )

1

P( r + 1) = 12 + 22 + 32 + ... +  r 2 + ( r + 1)2 = 

+ ( r + 1)2

6

 r( r + )

1 (2 r + )

1 + 6( r + )

1 2

L r(2 r + )1 + (6 r + )1

= 

= ( r + )

1

6

NM

O

6

QP

( r + )

1

( r + )

1

= 

[ r(2 r + 1) + 6( r + 1)] = 

[2 r 2 + 7 r + 6]

6

6

( r + )

1 ( r + )

2 (2 r + )

3

= 

...( iii)

6

As P( r) is true, hence P( r + 1) is true. 

From ( i), ( ii) and ( iii), we conclude that

 n( n + )

1 (2 n + )

1

12 + 22 + 32 + ... +  n 2 = 

6

is true for  n = 1, 2, 3, 4, 5, ... . Hence proved. 

Example 3.  Prove by Mathematical Induction

 ( 1)n+ 1

−

 n(n +  1)

 12 – 22 + 32 + ... + (– 1)n+1 n2 = 

 . 

 2

(− ) n+

1 1 (

 n n + )

1

Sol.  Let

P( n) = 12 – 22 + 32 + ... + (– 1) n+1  n 2 = 

. 

2

(− ) +

1 1 1 . 1. (1 + )

1

Basic Step.  For  n = 1, P(1) = (– 1)2 . 12 = 1 = 

= 1

2

It is true for  n = 1. 

...( i)

Induction Step. 

(− ) r+

1 1  r( r + )

1

For  n =  r,   P( r) = 12 – 22 + 32 + ... + (– 1) r+1  r 2 = 

is true

...( ii)

2

Adding (– 1) r+2 . ( r + 1)2 in both sides, we get

P( r + 1) = 12 – 22 + 32 + ... + (– 1) r+1 .  r 2 + (– 1) r+2 ( r + 1)2

(− ) r+

1 1  r( r + )

1

= 

+ (– 1) r+2 ( r + 1)2

2

(− ) r+1  r( r + ) + {(− ) r+

1

1

2

1 2 ( r + )

1 2}

= 

2
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(− ) r+2 ( r + ) (

o − )−

1

1

1 1 r + (

2  r + )

1 t

= 

2

(− ) r+

1 2 ( r + )

1 ( r + )

2

= 

...( iii)

2

As P( r) is true, hence P( r + 1) is also true. From ( i), ( ii) and ( iii), we conclude that (− ) n+

1 1  n( n + )

1

12 – 22 + 32 + ... + (– 1) n+1  n 2 = 

2

is true for  n = 1, 2, 3, 4, 5, ... . Hence proved. 

L n(n +  1) 2

Example 4.   Prove by Mathematical Induction 13 + 23 + 33 + ... + n3 =  NM

O

 2

QP  . 

L n( n + )1 2

Sol.  Let

P( n) = 13 + 23 + 33 + ... +  n 3 = NM

O . 

2

QP

Basic Step. 

L1 1+ 1 2

(

)

For  n = 1,      P(1) = 13 = NM

O

2

QP  = (1)2 = 1

Hence P( n) is true for  n = 1. 

...( i)

Induction Step. 

L r( r + )1 2

For  n =  r, 

P( r) = 13 + 23 + 33 + ··· +  r 3 = NM

O  is true

...( ii)

2

QP

Adding ( r + 1)3 on both sides

L r( r + )1 2

P( r + 1) = 13 + 23 + 33 + ··· +  r 3 + ( r + 1)3 = NM

O  + ( r + 1)3

2

QP

 r 2( r

2

+ ) + ( r + )( r

2

+ )

( r

2

1) { r 2

1

4

1

1

4( r  1)}

= 

=

+

+

+

4

4

( r + )

1 2 [ r 2 + 4 r + 4] ( r

)

1 2 ( r

)

2 2

= 

=

+

+

4

4

L( r + )1( r + )2 2

= NM

O

...( iii)

2

QP

As P( r) is true, hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

L n( n + )1 2

13 + 23 + 33 + ... +  n 3 =  NM

O

2

QP

is true for  n = 1, 2, 3, 4, 5, ... . Hence proved. 

Example 5.   Prove by Mathematical Induction

 n(n +  1)(n +  2)

 1 . 2 + 2 . 3 + 3 . 4 + ... + n(n + 1) = 

 . 

 3

 n( n + )

1 ( n + )

2

Sol.  Let P( n) = 1  .  2 + 2  .  3 + 3  .  4 + ... +  n( n + 1) = 

. 

3
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Basis of induction. 

1 1

( + 1) 1

( + 2)

For  n = 1,    P(1) = 1 . 2 = 

= 1 . 2

3

It is true for  n = 1. 

...( i)

Induction Step. 

 r( r + )

1 ( r + )

2

For  n =  r,  P( r) = 1 . 2 + 2 . 3 + 3 . 4 + ... +  r( r + 1) = 

is true

...( ii)

3

Adding ( r + 1)( r + 2) on both sides, 

P( r + 1) = 1 . 2 + 2 ⋅ 3 + 3 ⋅ 4 + ... +  r( r + 1) + ( r + 1)( r + 2) r( r + )

1 ( r + )

2

= 

+ ( r + 1)( r + 2)

3

 r( r + )

1 ( r + )

2 + (

3  r + )

1 ( r + )

2

( r

)

1 ( r

)

2 ( r

)

3

= 

=

+

+

+

...( iii)

3

3

As P( r) is true, hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

 n( n + )

1 ( n + )

2

1 . 2 + 2 . 3 + 3 . 4 + ... +  n( n + 1) = 

3

is true for  n = 1, 2, 3, 4, ... . Hence proved. 

Example 6.   Prove by Mathematical Induction

 1

 1

 1

 1

 n

+

+

+  ... +

=

 . 

 1 ⋅  3 3 ⋅  5 5 ⋅  7

 (2n −  1)(2n +  1) 2n +  1

Sol.  Basic Step. 

1

1

1

1

For  n = 1, 

= =

=

2

( − 1) 2

( + 1) 3 2 1

( ) + 1 3

Hence P( n) is true for  n = 1. 

...( i)

Induction Step. 

1

1

1

1

 r

For  n =  r, P( r) = 

+

+

+ ... +

=

is true

...( ii)

1 ⋅ 3 3 ⋅ 5 5 ⋅ 7

(2 r − 1)(2 r + 1) 2 r + 1

1

Adding 

on both sides, 

2

(  r + 1) 2

(  r + 3)

1

1

1

1

1

P( r + 1) = 

+

+

+ ... +

+

1 ⋅ 3 3 ⋅ 5 5 ⋅ 7

(2 r − 1)(2 r + 1) (2 r + 1)(2 r + 3)

 r

1

 r  2

(  r  3) 1

= 

+

=

+

+

2 r + 1

2

(  r + 1) 2

(  r + 3)

2

(  r + 1) 2

(  r + 3)

2

=  2 r + 3 r + 1

2

(  r  1)( r  1)

( r  1)

=

+

+

=

+

...( iii)

2

(  r + 1) 2

(  r + 3)

2

(  r + 1) 2

(  r + 3)

2

(  r + 3)

As P( r) is true, hence P( r + 1) is also true. 
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From ( i), ( ii) and ( iii), we conclude that

1

1

1

1

 n

+

+

+ ... +

=

1 ⋅ 3 3 ⋅ 5 5 ⋅ 7

(2 n − 1)(2 n + 1) 2 n + 1

is true for  n = 1, 2, 3, 4, ... . Hence proved. 

Example 7.  Prove by Mathematical Induction 1(1 !) + 2(2 !) + ... + n(n !) = (n + 1) ! – 1. 

Sol.  Let P( n) = 1(1 !) + 2(2 !) + ... +  n( n !) = ( n + 1) ! – 1. 

Basis of Induction. 

For  n = 1, 

P(1) = 1(1 !) = (1 + 1) ! – 1 ⇒ 2 ! – 1 ⇒ 1 = 1

It is true for  n = 1. 

...( i)

Induction Step. 

For  n =  r, 

P( r) = 1(1 !) + 2(2 !) + ⋅⋅⋅ +  r( r !) = ( r + 1) ! –1 is true. 

...( ii)

Adding ( r + 1) [( r + 1) !] on both sides, 

P( r + 1) = 1(1 !) + 2(2 !) + ... +  r( r !) + ( r + 1)( r + 1) ! 

= ( r + 1) ! – 1 + ( r + 1)( r + 1) ! 

= ( r + 1) ! ( r + 1 + 1) – 1 = ( r + 1) ! ( r + 2) – 1

= ( r + 2) . ( r + 1) ! – 1 = ( r + 2) ! – 1

...( iii)

As P( r) is true, hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

1(1 !) + 2(2 !) + ... +  n( n !) = ( n + 1) ! – 1

is true for  n = 1, 2, 3, 4, 5, ... . Hence proved. 

PROBLEM SET-I

1. Prove by first principle of mathematical induction that 2 n >  n 2 for  n > 4. 

2. Prove by first principleof mathematical induction that  n 2 >  2n for  n > 2. 

3. Prove by first principle of mathematical induction that 3 n > 2 n for all natural numbers. 

4. Prove by first principle of mathematical induction that  n 3 + 2  n is divisible by 3. 

5. Prove by first principle of mathematical induction that ( ab) n =  anbn  for all natural numbers. 

6. Prove by first principle of mathematical induction that 2 n < 3 n for  n > = 1. 

7. Prove by first principle of mathematical induction that 1 + 3 + 5 + ... + (2 n – 1) =  n 2. 

8. Prove by first principle of mathematical induction that  n 3 + 2 n is divisible by 3. 

9. Prove by first principle of mathematical induction that the 3 n < 4 n for  n > = 1. 

10. Prove by first principle of mathematical induction that 9 n – 2 n is divisible by 7. 

11. Prove by first principle of mathematical induction that 9 n – 1 is divisible by 8. 

12. Prove by first principle of mathematical induction that (1 +  x) n > = (1 +  nx) for all  n > –1,  x > 0. 

6.3 SECOND PRINCIPLE OF MATHEMATICAL INDUCTION: STRONG FORM

Strong Induction is similar to weak induction. But for strong induction in inductive step

we assume all  P (1),  P (2),  P (3)......  P ( k) are true to prove P ( k + 1) is true. When weak induction fails to prove a statement for all the cases we use strong induction. If a statement is true for weak induction, it is obvious that it is true for strong induction also. The formal statement of strong induction is as follows
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If, for any statement, involving a positive integer,  n, the following are true:

1. The statement holds for  n = 1, and

2. Whenever the statement holds for all  n ≤  k, it must also hold for  n =  k + 1 then the statement holds for all positive integers,  n. 

Theorem 2. (Second Principle of Mathematical Induction: Strong From): Let P

( n) be a statement about a positive integer  n such that

1.  P  (1) is true, and

2.  P ( k + 1) is true whenever one assume that  P ( m) is true, for all  m, 1 ≤  m ≤  k. 

Then,  P ( n) is true for all positive integer  n. 

Proof.  Let  R( n) be the statement that ‘‘the statement  P ( m) holds, for all positive integers m with 1 ≤  m ≤  n’’. 

We prove that  R( n) holds, for all positive integers  n, using the weak-form of mathematical induction. 

This will give us the required result as the statement ‘‘ R ( n) holds true’’ clearly implies that ‘‘ P( n) also holds true’’. 

As the first step of the induction hypothesis, we have  R (1) holds true (Assumed in the hypothesis of the theorem). 

So, let us assume that R( n) holds true. We need to prove that R( n + 1) holds true. The assumption that R( n) holds true is equivalent to the statement ‘‘P( m) holds true, for all  m, 1 ≤  m ≤  n’’. 

Therefore, by Hypothesis 2,  P ( n + 1) holds true. That is, the statements ‘‘R( n) holds true’’

and ‘‘ P( n + 1) holds true’’ are equivalent to the statement ‘‘ P( m) holds true, for all  m, 1 ≤  m ≤   n + 1’’. 

Hence, it is shown that R ( n + 1) holds true. Therefore, the result follows, using the weak-form of the principle of mathematical induction. 

Example 8.   Prove the following equality using the strong mathematical Induction. For any natural number  n, 

 1 + 3 + ... + ( 2n + 1)  = ( n + 1) 2. 

Proof: Basis of Induction. 

For  n = 1, we have 1 + (2 + 1) = (1 + 1)2 = 4

It is true for  n = 1. 

Inductive Step. 

Assume that  1 + 3 + ··· + ( 2k + 1)  = ( k + 1) 2  holds for all  k, 1 ≤  k <  n. 

Then

1 + 3 +  ··· + (2 n + 1) = (1 + 3 +  ··· + (2 n – 1) + (2 n + 1)

=  n 2 + (2 n + 1) = ( n + 1)2 by the induction hypothesis. 

Hence by the principle of strong induction

1 + 3 + ... + (2 n + 1) = ( n + 1)2

holds for all natural numbers. 

Example 9:  Prove that for all positive integer n, 

 n

∑ = 1  i ( i!) = ( n +  1)! –  1. 

 i

Sol. Basis of Induction. 

For  n = 1, we have 1 (1!) = (1 + 1)! – 1 = 1

It is true for  n = 1. 
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Basis of Induction. 

Assume that 1 * 1! + 2 * 2! + ... +  k *  k! = ( k + 1)! – 1 for all  k, 1 ≤  k <  n. 

Then 1 * 1! + 2 * 2! + ... + ( n – 1) * ( n – 1)! +  n *  n! 

=  n!   –  1  + n *  n! by the induction hypothesis. 

= ( n + 1) n! – 1. 

Hence by the principle of strong induction positive integers. 

 n

∑ = 1  i ( i!) = ( n + 1)! – 1 holds

 i

for all positive integers. 

Example 10.   Suppose we have the following sequence:

( i)  a  = 1

1

( ii)  a  = 3

2

( iii)  a  =  a    + 2 a

, for all integers  k 

 k

 k – 2

 k – 1

≥ 3. 

For all integers  n ≥ 1, P( n): Given the sequence  a ,   a ,...,   a  as defined above,  a  is odd. 

1

2

 k

 n

Prove it by using strong mathematical induction. 

Sol. Basis of Induction:

Consider  n = 1: By the sequence definition,  a  = 1 and 1 is odd. 

1

Consider  n = 2: By the sequence definition,  a  = 3 and 3 is odd. 

2

So, we have  P(1) and  P(2). 

Inductive Step:

Let  k be any integer such that  k ≥ 2. Suppose that for all integers  i, 1 ≤  i ≤  k,  P( i) is true. 

This means  a  is odd. 

 i

Consider  a

. From the definition of  k, we know  k 

 k+1

≥ 2. So, if we add 1 to both side of this

inequality, we get  k + 1 ≥ 3. 

So,   a

=  a  + 2 a . Now, we have to see  a  and  a :

 k+ 1

 k– 1

 k

 k–1

 k

•

It is definitely true that 1 ≤  k ≤  k, so  a  is odd. 

 k

•

Also, it is true that 1 ≤  k – 1 ≤  k, so  a

is odd. 

 k – 1

Applying the definition of odd gives us the following two facts:

•

∃ r ∈ Z such that  a

= 2 r + 1

 k – 1

•

∃ s ∈ Z  such that  a  = 2 s + 1

 k

Now, let's consider  a

again, 

 k + 1

 A  =  a  + 2 a

by substitution from sequence definition

 k+1

 k–1

 k

=   (2 r + 1) + 2 (2 s + 1) by substitution from definition of odd

= 2 r + 1 + 4 s + 2

by distributive law

= 2 r + 4 s + 2 + 1

by commutative law

= 2  ( r + 2 s + 1) + 1

by factoring

As 2 ∈ Z and  s ∈ Z and Z is closed under multiplication, 2 s ∈ Z. 

Next, as  r ∈ Z, 2 s ∈ Z, and 1 ∈ Z, closure of Z under addition gets us that  r + 2 s + 1 ∈ Z. 

Thus, we have written  a

in the form “2 (some integer) + 1,”so by definition of odd,  a

is odd. 

 k + 1

 k + 1

Thus, we have shown that  P( k + 1) is true. 

By the principle of strong Mathematical Induction,  P( n) is true for all integers  n ≥ 1. 

M-4.200

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Example 11.   Consider the following sequence of natural numbers:

⎧1, 

 n = 0

⎪⎪2, 

 n = 1

 a  =

 n

⎨3, 

 n =

⎪

2

⎪⎩  a −1 +  a − 2 +  a − 3,  n ≥ 3

 n

 n

 n

 Show that a  

 n ≤   3 n for all n ≥   0 . Use principle of strong mathematical Induction. 

Sol. Let S( n) be  a  

 n ≤ 3 n. 

We have to prove S ( n) for all  n ≥ 0. 

Basis of Induction: For  n  = 0, 

30  = 1

For  n  = 1, 

31 ≥ 2

For  n  = 2, 

32 ≥ 3

Induction step: Let us assume that it is true for all integers  k such that 2 ≤  k <  n, for arbitrary  n and  n,  k ∈ N. We have to show that S( k) is true for  n. So we have a  =  a

+  a

+  a

{By def. 3}

 n

 n – 1

 n – 2

 n – 3

≤ 3

+ 3

+ 3

{By Induction hypothesis}

 n – 1

 n – 2 

 n – 3

Also since

 n > 2, so  n – 3,  n – 2,  n – 1 ≥ 0

= 323 n – 3 + 31 3 n – 3 + 3 n – 3

13

= (9 + 3 + 1) 3 n – 3 = 

3 n

27

< 3 n

Thus, by the principle of strong mathematical Induction, the result is true for all positive

integers  n. 

PROBLEM SET-II

1. What is the difference between weak induction and strong induction? 

2. Prove by second principle of mathematical induction that  m .  n > 1 for all natural numbers  m and  n greater than 1. 

3. Prove by second principal of mathematical induction that  n 3 > ( n + 1)2 for all natural numbers  n ≥ 3. 

4. Prove by second principal of mathematical induction that 2 n >  n 2 for all  n ≥ 5. 

5. Prove by second principal of mathematical induction that if 0 <  a < 1, then  an < 1 for any positive integer  n. 

6. Prove by second principle of mathematical induction that  n! > 2 n for  n ≥ 4. 

7. Prove by principle of strong mathematical induction that every positive integer n can be represented as a sum of distinct powers of 2,  i.e. , in the form  n = 2 il + ... + 2 ih with integers 0 ≤  i  

. 

1 < ... <  ih

8. Prove by principle of strong mathematical induction that any integer  n ≥ 1 has a representation in the form  n =  d  1! +  d  2! +... +  d r! with ‘‘digists’’  d  in the range  d 1

2

 r

 i

 i ∈ {0, 1, ...,  i}. 

SOLVED PROBLEMS

Problem 1.   Show that 1 + 2 + 22 + 23 + ... + 2n = 2n+1 – 1 by induction (for n ≥  0). 

Sol.  Consider P( n) = 1 + 2 + 22 + 23 + ... + 2 n = 2 n+1 – 1. 
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Basis of Induction. 

For  n = 0, 

P(0) = 1 = 21 – 1 = 1

It is true for  n = 0. 

...( i)

Induction Step. 

For  n =  r, P( r) = 1 + 2 + 22 + 23 + ... + 2 r = 2 r+1 – 1 is true. 

...( ii)

Adding 2 r+1 to both sides, 

P( r + 1) = 1 + 2 + 22 + 23 + ... + 2 r + 2 r+1 = 2 r+1 – 1 + 2 r+1

= 2(2 r+1) – 1 = 2 r+2 – 1

...( iii)

As P( r) is true, hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

1 + 2 + 22 + ... + 2 n = 2 n+1 – 1. 



is true for  n = 1, 2, 3, ... . 

 1 −  an+ 1

Problem 2.   Prove by induction that for n ≥  0 and a ≠  1 ; 1 + a + a2 + ... + an = 

 . 

 1 −  a

Sol.  Basis of Induction. 

1

1+1

 a

1

2

−

 a

For  n = 1, 

1 +  a 1 = 

= −

= 1 +  a

1 −  a

1 −  a

It is true for  n = 1. 

...( i)

Induction Step. 

1

 r+1

−  a

For  n =  r, 

P( r) = 1 +  a +  a 2 + ... +  ar = 

is true

...( ii)

1 −  a

Adding  ar+1 to both sides, 

1

 r+2

−  a

P( r + 1) = 1 +  a +  a 2 + ... +  ar +  ar+1 =  1−  a

1

 r+1

 r+1

 r+1

 r+2

−  a

 r+2

 r+1

1  a

 a

 a

1 −  a

= 

+  a

= −

+

−

= 

...( iii)

1 −  a

1 −  a

1 −  a

As P( r) is true, hence P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

1

 n+1

 a

1 +  a +  a 2 + ... +  an =  −

is true for  n ≥ 0. Hence proved. 

1 −  a

Problem 3.   Prove: 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n(n + 1)(n + 2)

 1

 =   n(n + 1)(n + 2)(n + 3). 

 4

Sol.  Basis of Induction.  For  n = 1, 

L.H.S. = 1(1 + 1)(1 + 2) = 1  .  2  .  3 = 6

1

1

R.H.S. =    .  1(1 + 1)(1 + 2) (1 + 3) =    .  1  .  2  .  3  .  4 = 6

4

4

It is true for  n = 1. 
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Induction Step.  For  n =  r, 

1

1  .  2  .  3 + 2  .  3  .  4 + 3 . 4  .  5 + ... +  r( r + 1)( r + 2) =    r( r + 1)( r + 2)( r + 3) is true. 

4

For  n =  r + 1, 

LHS = 1  .  2  .  3 + 2  .  3  .  4 + ... +  r( r + 1)( r + 2) + ( r + 1)( r + 2)( r + 3) 1

=    r( r + 1)( r + 2)( r + 3) + ( r + 1)( r + 2)( r + 3) 41

=   ( r + 1)( r + 2)( r + 3)( r + 4)

4

= RHS, for  n =  r + 1. 

1

Hence, 1  .  2  .  3 + 2  .  3  .  4 + 3  .  4  .  5 + ... +  n( n + 1)( n + 2) =    n( n + 1)( n + 2)( n + 3). Hence 4

proved. 

Problem 4.   Show that for any integer n,   11n+2 + 122n+1 is divisible by 133. 

Sol.  Let P( n) = 11 n+2 + 122 n+1

Basis of Induction.  For  n = 1, P(1) = 113 + 123 = 3059 = 133 × 23

So, 133 divides P(1). 

...( i)

Induction Step.  For  n =  r,  P( r) = 11 r+2 + 122 r+1 = 133 ×  s

...( ii)

Now, for  n =  r + 1, 

P( r + 1) = 11 r+2+1 + 122 r+3 = 11[133 s – 122 r+1] + 144· 122 r+1

= 11 × 133 s + 122 r+1· 133 = 133[11 s + 122 r+1] = 133 ×  t

...( iii)

As ( i), ( ii) and ( iii) all are true, hence P( n) is divisible by 133. 

Problem 5.   Prove by induction that the sum of the cubes of three consecutive integers is divisible by 9. 

Sol.  Let P( n) =  n 3 + ( n + 1)3 + ( n + 2)3

P( n) is divisible by 9

P(1) = 1 + 8 + 27 = 36

which is divisible by 9. 

...( i)

For  n =  r, 

P( r) =  r 3 + ( r + 1)3 + ( r + 2)3 = 9 .  q

...( ii)

For  n =  r + 1, 

P( r + 1) = ( r + 1)3 + ( r + 2)3 + ( r + 3)3

=  r 3 + ( r + 1)3 + ( r + 2)3 + [9  r 2 + 27 r + 27]

= 9 q + 9( r 2 + 3 r + 3) = 9[ q +  r 2 + 3 r + 3]

= 9  .   q

...( iii)

From ( i), ( ii) and ( iii), we have the required result by induction. Hence proved. 

 1

 1

 1

 13

Problem 6.   Prove: 

+

+  ... +

> 

 , for n ≥  2. 

 n +  1 n +  2

 2n

 24

1

1

7

13

Sol.  For  n = 2, LHS = 

+

=

> 

= RHS

...( i)

2 + 1 2 + 2 12 24

It is true for  n = 2. 

1

1

1

13

Now, for  n =  r, where  r > 2 

+

+ ... +

> 

...( ii)

 r + 1  r + 2

2 r

24
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For  n =  r + 1, 

1

1

1

1

1

13

1

1

1

LHS = 

+

+ ... +

+

+

> 

+

+

−

 r + 2  r + 3

2 r

2 r + 1 2 r + 2 24 2 r + 1 2 r + 2  r + 1 [Using ( ii)]

13

2 r  2 2 r  1 2 2

(  r  1)

13

1

13

= 

+

+ +

+ −

+

=

+

> 

. 

24

2

(  r + 1) 2

(  r + 2)

24

2

(  r + 1) 2

(  r + 2) 24

As   n =  r is true. Thus, the result is also true for  n =  r + 1. Hence, we have the result for n ≥ 2 by induction. Hence proved. 

 1

 1

 1

 1

 n

Problem 7.   Prove : 

+

+

+  ... +

=

 . 

 1 ×  2 2 ×  3 3 ×  4

 n(n +  1) n +  1

1

1

1

1

Sol. Basis of Induction.  For  n = 1, 

= =

=

1 1

( + 1) 2 1 + 1 2

It is true for  n = 1. 

1

1

1

1

 r

Induction Step.  For  n =  r, P( r) = 

+

+

+ ... +

=

is true. 

1 × 2 2 × 3 3 × 4

 r( r + 1)  r + 1

For  n =  r + 1, 

1

1

1

1

LHS = 

+

+

+ ... +

1 × 2 2 × 3 3 × 4

( r + 1)( r + 1 + 1)

1

1

1

1

= 

+

+ ... +

+

1 × 2 2 × 3

 r( r + 1) ( r + 1)( r + 2)

 r

1

1 F

1

= 

+

=

 r +

 r +

( r + 1)( r + 2)  r + 1 HG

I

 r + 2KJ

1

 r 2 + 2 r + 1

 r  1

= 

= +

( r + 1)( r + 2)  r + 2

 r + 1

 r  1

RHS = 

= +

 r + 1 + 1  r + 2

LHS = RHS

1

1

1

1

 n

Therefore, 

+

+

+ ... +

=

is true for  n =  r + 1. 

1 × 2 2 × 3 3 × 4

(

 n n + 1)  n + 1

Hence proved. 

Problem 8.   Show that n3 + 2n is divisible by 3 for all n ≥  1 by induction. 

Sol.  Basis of Induction.  For  n = 1, P(1) = 13 + 2 × 1 = 3. It is divisible by 3. 

Induction Step.  For  n =  r,  P( r) =  r 3 + 2 r = 3 r. 

For  n =  r + 1, P( r + 1) = ( r + 1)3 + 2( r + 1) =  r 3 + 1 + 3 r( r + 1) + 2 r + 2

=  r 3 + 1 + 3 r 2 + 3 r + 2 r + 2

=  r 3 + 3 + 5 r + 3 r 2 =  r 3 + 2 r + 3 + 3 r + 3 r 2

= 3 r + 3 + 3 r + 3 r 2 = 3 r 2 + 6 r + 3

(∵  r 3 + 2 r = 3 r)

= 3( r 2 + 2 r + 1) = 3( r + 1)2. 

It is divisible by 3. 

Hence, we have the required result by induction. 

M-4.204

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Problem 9.   Show that 2n × 2n – 1 is divisible by 3 for all n ≥  1 by induction. 

Sol. Basis of Induction. For  n = 1, 21 × 21 – 1 = 3 divisible by 3. 

It is true for  n = 1. 

Induction Step.  For  n =  r, 2 r  2 r – 1 = 3 r i.e.,  2 r+1 – 1 = 3 r For  n =  r + 1, 

2 r+1 . 2 r+1 – 1 = 2 r+1 (3 r + 1) – 1

= 3 . 2 r+2 + 2 r+1 – 1 = 3 · 2 r+2 + 3 r

= 3(2 r+2 +  r). 

It is divisible by 3. 

Hence, we have the required result by induction. 

 n(2n −  1)(2n +  1)

Problem 10.   Show that 12 + 32 + 52 + ··· + (2n – 1)2 = 

 . 

 3

1 2

( × 1 − 1) 2

( × 1 + 1)

Sol.  Basis of Induction.  For  n = 1, (2 × 1 – 1)2 = 1 = 

= 1

3

It is true of  n = 1. 

 r(2 r − )

1 (2 r + )

1

Induction Step.  For  n =  r,  12 + 32 + 52 +  ···  + (2 r – 1)2 = 

is true. 

3

For  n =  r + 1, 

( r + )

1 (2 r + )

1 (2 r + )

3

P( r + 1) = 12 + 32 + 52 + ···  + (2 r – 1)2 + [2( r + 1) – 1]2 = 

3

 r(2 r − )

1 (2 r + )

1

 r(2 r − )

1 (2 r + )

1 + (

3 2 r + )

1 2

LHS = 

+ (2 r + 1)2 = 

3

3

(2 + )

1 [2 2 − + 6 + ]

3

(2

)

1 [2 2

 r

 r

 r

 r

 r

 r

5 r

]

3

= 

=

+

+

+

3

3

(2 + )

1 [2 2

 r

 r + 3 r + 2 r + ]

3

(2 r

)

1 (2 r

)

3 ( r

)

1

= 

=

+

+

+

3

3

LHS = RHS

 n(2 n − )

1 (2 n + )

1

So, 

12 + 32 + 52 + ··· + (2 n – 1)2 = 

. 

3

 2

 2

 2

 1

 2

 n

 n(n +  1)

Problem 11.   Show that: 

+

+  ... +

=

 . 

 1 ⋅  3 3 ⋅  5

 (2n −  1)(2n +  1) 2(2n +  1)

1

1 ⋅ 2 1

Sol.  Basis of Induction.  For  n = 1, 

=

=

1 ⋅ 3 2 ⋅ 3 3

It is true for  n = 1. 

Induction Step. 

2

2

2

1

2

 r

 r( r + 1)

For  n =  r, 

+

+ ... +

=

1 ⋅ 3 3 ⋅ 5

(2 r − 1)(2 r + 1) 2(2 r + 1)

2

2

2

2

1

2

 r

( r + 1)

( r + 1)( r + 2)

Now, for  n =  r + 1, 

+

+ ... +

+

=

1 ⋅ 3 3 ⋅ 5

(2 r − 1)(2 r + 1) (2 r + 1)(2 r + 3)

2(2 r + 3)
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 r( r + )

1

( r

)

1 2

 r  1 L  r

( r

)

1

LHS = 

+

+

=

+

+

+

(

2 2 r + )

1

(2 r + )

1 (2 r + )

3

2 r + 1 NM

O

2

(2 r + )

3 QP

 r + 1 L2 r 2 + 3 r + 2 r  2

= 

+

2 r + 1

2 2

(  r

NM

O

+ 3)

QP

( r + )

1 (2 r 2 + 5 r + )

2

( r

)

1 ( r

)

2

= 

=

+

+

(

2 2 r + )

1 (2 r + )

3

(

2 2 r + )

3

LHS = RHS

2

2

2

So, 

1

2

 n

(

 n n + 1)

+

+ ... +

=

. 

1 ⋅ 3 3 ⋅ 5

(2 n − 1)(2 n + 1) 2(2 n + 1)

 n(n +  1)

Problem 12.   Prove by mathematical induction 1 + 2 + 3 + 4 + ... + n = 

 . 

 2

 n( n + )

1

Sol.  Let

P( n) = 1 + 2 + 3 + ... +  n = 

2

1 1

( + 1)

Basis of Induction.  For  n = 1, P(1) = 1 = 

= 1

...( i)

2

It is true for  n = 1. 

 r( r + )

1


Induction Step.  For  n =  r,  P( r) = 1 + 2 + 3 + ··· +  r = 

...( ii)

2

Now, for  n =  r + 1, 

( r + )

1 ( r + )

2

P( r + 1) = 1 + 2 + 3 + 4 + ··· +  r + ( r + 1) = 

2

Consider, LHS = 1 + 2 + 3 + ... +  r + ( r + 1)

 r( r + )

1

 r( r + )

1 + (

2  r + )

1

= 

+ ( r + 1) = 

2

2

 r + 1

( r + )

1 ( r + )

2

= 

[ r + 2] = 

= RHS

...( iii)

2

2

As P( r) is true. Hence, P( r + 1) is also true. 

From ( i), ( ii) and ( iii), we conclude that

 n( n + )

1

1 + 2 + 3 + 4 + ···  +  n = 

. Hence proved. 

2

Problem 13.   Prove that n(n + 1)(n + 2) is a multiple of 6. 

Sol.  P( n) =  n( n + 1)( n + 2)

Basis of Induction.  For  n = 1, P(1) = 1 . (1 + 1)(1 + 2) = 1 ⋅ 2 ⋅ 3 = 6

which is true. 

Induction Step.  For  n =  r,  P( r) =  r( r + 1)( r + 2) be a multiple of 6

For  n =  r + 1, 

P( r + 1) = ( r + 1)( r + 2)( r + 3) is also a multiple of 6. 

Now, 

P( r + 1) = ( r + 1)( r + 2)( r + 3) = ( r + 1)( r + 2)  r + 3( r + 1)( r + 2)

=  r( r + 1)( r + 2) + 3(2 r′)

where ( r + 1)( r + 2) = even = 2 r′ =  r( r + 1)( r + 2) + 6 r′

which is a multiple of 6. 

M-4.206

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

Thus, P( r + 1) is true as P( r) is true. 

∴ P( n) is true for all natural numbers  n

 i.e.,   n( n + 1)( n + 2) is a multiple of 6. Hence proved. 

Problem 14.   Prove that ∀ n ∈  N,    1 5 1 3

 7

 n +  n +

  n is a natural number. 

 5

 3

 15

1 5 1 3

7

Sol.  Let P( n) =   n +  n +

 n is a natural number. 

5

3

15

1

1

7

Basis of Induction.  For  n = 1,  + +

= 1, which is a natural number. 

5

3

15

It is true for  n = 1. 

F 1 5 1 3 7

Induction Step.  For  n =  r, 

 r +  r +

 r

HG

I

5

3

15 KJ  is a natural number

...( i)

For  n =  r + 1, 

1

1

7

( r + 1)5 +   ( r + 1)3 + 

( r + 1)

5

3

15

1

1

7

=   ( r 5 + 5 r 4 + 10 r 3 + 10 r 2 + 5 r + 1) +   ( r 3 + 3 r 2 + 3 r + 1) + 

( r + 1)

5

3

15

F 1 5 1 3 7

= 

 r +  r +

 r

HG

I

5

3

15 KJ  + ( r 4 + 2 r 3 + 3 r 2 + 2 r) + 1

= (a natural number) + (a natural number) + 1

[Using ( i)]

= a natural number

As (P( r)) is true, hence P( r + 1) is also true. 

Hence, by induction, P( n) is true ∀ n ∈ N. Hence proved. 

Problem 15.   Prove that n(n + 1)(2n + 1) is divisible by 6. 

Sol.  Let P( n) =  n( n + 1)(2 n + 1) is divisible by 6. 

Basis of Induction. 

For  n = 1, 

P(1) = 1(1 + 1)(2 + 1) = 1 ⋅ 2 ⋅ 3 = 6 which is true for  n = 1

...( i)

Induction Step. 

For  n =  r, 

P( r) =  r( r + 1)(2 r + 1) be divisible by 6

...( ii)

For  n =  r + 1, 

P( r + 1) = ( r + 1)( r + 2)(2 r + 3)

LHS = ( r + 1)( r + 2)(2 r + 3) = 2 r 3 + 9 r 2 + 13 r + 6

= (2 r 3 + 3 r 2 +  r) + (6 r 2 + 12 r + 6)

=  r( r + 1)(2 r + 1) + 6( r 2 + 2 r + 1)

which is divisible by 6. 

[From ( ii)]

As (P( r)) is true, hence P( r + 1) is also true. 

∴ P( n) is true for all natural numbers  n

 i.e., 

 n( n + 1)(2 n + 1) is divisible by 6. Hence proved. 
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Problem 16.   Prove by induction that, for any set A, | 2A | = 2|A|. 

Sol.  The induction is on the cardinality. 

Induction basis: For the induction basis, any set of cardinality 0 is the empty set ; its power set is {0}. So |20| = 1 = 2|0|. 

Induction step.  Assume the claim holds for  n = K, so for any set A such that |A| = K and

|2A| = 2|A|. Now, any set A  of K + 1 elements can be seen as a set A of K elements plus one new 1

element  e. A set S ∈ 2A1  either contains  e or not. Sets that do not contain  e are subsets of A and their number is 2|A| by the induction hypothesis. For a set S ∈ 2A1  that contains  e, consider S  = S – { e}. Thus, S  

0

0 ∈ 2A and every element of 2A can be uniquely obtained this way. Therefore, 

the number of sets S ∈ 2A1  that contain  e is also 2|A|. This implies that |2A1 | = 2 × 2|A| =

2|A| + 1 = 2|A1|. This concludes the induction step and proves the claim. 

Problem 17:  Using principle of strong mathematical Induction, show that every integer greater than 27 can be written as

 a . 5 + b . 8, ∀  a,b ≥  0. 

Sol.  Let

Z′  =   { n ∈ Z |  n ≥ 28}

and

S = { n ∈ Z′ |  n =  a ⋅ 5 +  b ⋅ 8 for  a, b ≥ 0}

Basis of Induction:

For  n = 28, 4.5 + 1.8

For  n = 29, 1.5 + 3.8

For  n = 30, 6.5 + 0.8

For  n = 31, 3.5 + 2.8

For  n = 32, 0.5 + 4.8

All these belong to S. 

Induction step: Let us assume that it is true for all intgers  k such that 28 ≤  k <  n. 

For  n > 32, assume that { k ∈ Z′ | 28 ≤  k <  n} ⊆ S

We have to show that  n ∈ S. 

Since  n – 5 ∈ S, ∃  a,b ≥ 0 such that

 n – 5 =  b ⋅ 8

⇒

 n  = ( a + 1) ⋅ 5 =  b.8

⇒

 n ∈ S

Therefore, Z ⊆ S. Hence proved. 

 1

Problem 18:  Let a be a positive real number such that   a +     is an integer. Using a

 principle of strong mathematical Induction, show  that

 1

 an +

. 

...( i)

 n

 a

 is also an integer for all positive integers n. 

1

Sol.  Let  a be a positive real number such that  a +   is an integer. 

 a

Basis of Induction: We have to show that equation ( i) is also true for  n = 2. Thus, 
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2

⎛

1

1

1

1

 a

⎞

⎜ +

=  a 2 +  a.   + 

=  a 2 + 

+ 1

 a ⎟

⎝

⎠

 a

2

 a

2

 a

1

2

⎛

1 ⎞

So

 a 2 + 

 a

2  = ⎜

+

– 1

 a

 a ⎟

⎝

⎠

Since the expression on the RHS of this equality is an integer, thus the expression on the

L.H.S. is also an integer. 

Inductive step – Let us assume that equation ( i) is true for all integers  k such that 1 ≤  k ≤  n, we have to show that equation ( i) is also true for  n + 1. So, we have

⎛  n

1

⎛

1

1

1

 a

⎞

⎞

1

1

⎜

+

 a

⎜ +

=  an + 1 +  an .  +  a . 

+ 

=  an + 1 + 

 n ⎟

⎟

⎝

 a ⎠ ⎝

 a ⎠

 a

 n

 a

 n  1

 a +

 n + 1

 a

which gives

1

⎛  n

1 ⎞ ⎛

1 ⎞

⎛  n

1 ⎞

 an + 1 + 

=  a

⎜

+

 a

⎜ +

– 

− 1

 a

⎜

+

 n  1

⎟

⎟

⎟

 a +

 n

⎝

 a ⎠ ⎝

 a ⎠

 n − 1

⎝

 a

⎠

From the inductive hypothesis, the expression on the RHS of this equality is an integer, 

thus the expression on the LHS is also an integer. Therefore, the equation ( i) is true for  n + 1. 

Thus, by the principle of strong mathematical induction, the result is true for all positive

integers  n. 

Problem 19.   Let a  be the number of strings of length n from the alphabet 

 n

Σ  = {0, 1, 2}

 with no consecutive 0’s. 

( a)  Find a , a , a , a . 

 1

 2

 3

 4

( b)  Give a simple counting argument to show that

 a   = 2a

  + 2a

 n

 n – 1

 n – 2

 for all n ≥  3. 

( c)  By using principle of strong mathematical induction show that:

1

 n + 2

 n + 2

⎡

⎤

 a  =

⎢(1 + 3)

− (1 − 3)

...( i)

 n

4 3

⎥

⎣

⎦

 for all n ≥  0. 

Sol.  ( a) For  n = 1, every string of length 1 from the alphabet Σ = {0, 1, 2} contains no consecutive 0’s, and therefore  a  = 3. 

1

For  n = 2, the total number of strings of length 2 is 32, and there is only one string with consecutive 0’ s, namely 00, and therefore,  a  = 32 – 1 = 8. 

2

For  n = 3, there are only 5 strings of length 3 that contain consecutive 0’s, namely, 

000 100 200 001 002, 

and the total number of strings of length 3 from the alphabet Σ = {0, 1, 2} is 33, and therefore a  = 33 – 5 = 22. 

3

For  n = 4, given a string of length 4 from the alphabet  ∑ = {0, 1, 2} with no consecutive 0’ s, it either starts with  a 0,  a 1, or  a 2. 

If it starts with  a 0, the second element of the string must be either  a 1 or  a 2, and so there are 2 a  strings of length 4 with no consecutive 0’ s that start with  a 0. 

2
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If it starts with  a 1, then there are  a  strings of length 4 with no consecutive 0’ s that start 3

with  a 1. 

If it starts with  a 2, then there are  a  strings of length 4 with no consecutive 0’s that start 3

with  a 2. 

Since this comes out for all strings of length 4 with no consecutive 0’ s, and since these cases

are mutually exclusive, then

 a   = 2 a  + 2 a  = 2

4

2

3

⋅8 + 2⋅22 = 60. 

( b) We can use the method we used to determine  a  to find a recurrence relation satisfied 4

by  a  for all  n 

 n

≥ 3. Any string of length  n with no consecutive 0’ s from the alphabet Σ = {0, 1, 2}

either starts with  a 0,  a 1, or  a 2. Reasoning as above, there are 2 a that start with  a 0,  a

 n – 2

 n – 1

that start with  a 1, and  a

that start with  a 2. Thus for all such strings of length  n, and

 n – 1

therefore

 a   = 2 a

+ 2 a

 n

 n – 1

 n – 2

for all  n ≥ 3. 

( c) If we want to show that equation ( i) holds for all  n ≥ 0, we need to define  a , and this can 0

be done by using the recurrence relation and the values of  a  and  a . we need

1

2

8 =  a  = 2 a  + 2 a  = 6 + 2 a , 

2

1

0

0

so that we should define  a  = 1. Since there is only one string of length 0, namely, the 0

empty string, and it has no consecutive 0’ s. 

Now the recurrence relation

 a

= 2 a

+ 2 a

 n + 2

 n + 1

 n

holds for all  n ≥ 0, and we will use this to show by the principle of strong mathematical induction that

1

 n + 2

 n + 2

⎡

⎤

 a  =

⎢(1 + 3)

− (1 − 3)

 n

4 3

⎥

⎣

⎦

is true for all  n ≥ 0. 

Basis of Induction: For  n = 0, we have

1

2

2

⎡

⎤

1

⎢(1 + 3) − (1 − 3)  = 

⎡4 2 3

⎣

(4 2 3)⎤

+

−

−

4 3

⎥

⎣

⎦

4 3

⎦  = 1 =  a 0

and (*) holds for  n = 0. 

Inductive Step: Let  n ≥ 0 be arbitrary and assume that ( i) holds for all integers  k with 0 ≤  k ≤  n, then from the recurrence relation we have

 a

= 2 a  + 2 a

 n + 1

 n

 n – 1

1

 n + 2

 n + 2

1

 n + 1

 n + 1

⎡

⎤

=

⎡⎢(1 3)

(1 3) ⎤

+

−

−

+ 

⎢(1 + 3)

− (1 − 3)

2 3

⎥

⎣

⎦

2 3

⎥

⎣

⎦

1

 n + 2

 n + 1

⎡

⎤

1

 n + 2

 n + 1

⎡

⎤

=

⎢(1 + 3)

+ (1 + 3)

– 

⎢(1 − 3)

+ (1 − 3)

2 3

⎥

⎣

⎦

2 3

⎥

⎣

⎦

1

 n +

⎡

⎤

1

 n +

⎡

⎤

=

( + ) + ( +

⎢

) 1

2

3

1

3

– 

( − ) ( −

⎢

) 1

2

3 1

3

2 3

⎥

⎣

⎦

2 3

⎥

⎣

⎦
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⎡

2

⎡

⎤

⎢(1 + 3)2

⎤

⎢(1 − 3)

1

 n + 1 ⎥

1

 n + 1 ⎥

=

⎢

(1 + 3

⎢

(1 − 3

2

)

2

) ⎥ – 



⎥ , 

2 3 ⎢

⎥

⎣

⎦

2 3 ⎢

⎥

⎣

⎦

Since, 

+

2

(1

3)  = 2 (2 + 3)  and  −

2

(1

3)  =  2(2 − 3). 

1

 n + 3

 n + 3

⎡

⎤

Therefore, 

 a

=

⎢(1 + 3)

− (1 − 3)

, 

 n + 1

4 3

⎥

⎣

⎦

and ( i) also holds for  n + 1. 

Therefore, ( i) holds for all integers  n ≥ 0 by the principle of strong mathematical induction. 

MULTIPLE CHOICE QUESTIONS

1. For  n ∈ N, P( n) is a proposition such that for any positive integer  n greater than 5, P( n) ⇒ P( n + 1) is true. Which one of the following is true? 

( a) There is  n ∈ N such that P( n)

( b) For any  n ∈ N, P( n)

( c) For any  n ∈ N,  n ≥ 6 ⇒ P( n)

( d) For any  n ∈N, ( n > 5 ∧ P(6)) ⇒ P( n)

2. For  n ∈N, P( n) is a proposition such that for any  n ∈ N, P( n) ⇒ P( n + 1) is true. Which of the following is/are true? 

( a) For any  n ∈ N, P( n +1) ⇒ P( n)

( b) For any  n ∈ N, P(5) ⇒ P( n)

( c) P(1) ⇒ P(5)

( d) For any  n ∈ N, P(1) ⇒ P( n)

3. For  n ∈N, P( n) is a proposition such that for any  n ∈ N, P( n + 1) ⇒ P( n) is true. Which of the following are(is) true? 

( a) For any  n ∈ N, P( n)

( b) For any  n ∈ N, P(1) ⇒ P( n)

( c) For any  n ∈ N, (P(5) ∧  n < 5) ⇒ P( n)

( d) P(10) ⇒ P(9)

4. For  n ∈N, P( n) is a proposition such that for any  n ∈ N, P( n) ⇒ P( n + 2) is true. Which of the following is(are) true? 

( a) For any  n ∈ N, P(1) ⇒ P( n)

( b) For any  n ∈ N, (P(1) ∨ P(2)) ⇒ P( n)

( c) For any  n ∈ N, P( n)

( d) For any  n ∈ N, (P(1) ∧ P(2)) ⇒ P( n). 

5. For  n ∈N, P( n) is a proposition such that P(1) ⇒ P(2) and, for any  n ∈ N / {1}, P( n) ⇒ P( n + 1) are true. Which of the following are(is) true? 

( a) For any  n ∈ N, P( n)

( b) For any  n ∈ N, P(1) ⇒ P( n)

( c) For any  n ∈ N, P( n ) ⇒ P( n + 1)

( d) For any  n ∈ N, P(2) ⇒ P( n)

( e) P(4) ⇒ P(6)

ANSWERS

1. ( b)

2. ( c), ( d)

3. ( c), ( d)

4. ( d)

5. ( b), ( c), ( e)

REVIEW QUESTIONS

1. Explain the first principle of Mathematical Induction. 

2. State and prove first principle of Mathematical Induction. 

3. Explain the second principle of Mathematical Induction. 

4. State and prove second principle of Mathematical Induction. 
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5. For any natural number  n, 1 + 3 + 5 + ...(2 n + 1) = ( n + 1)2. Prove this equality using the second principle of Mathematical Induction. 

6. Prove the equality given in Q. No. 5 using the first principle of Mathematical Induction. 

CHAPTER END PROBLEMS

1. If we know how to prove something starting with the  n th case, is it necessary to start with the base case? 

2. Is it always necessary to have  g ( n + 1) in the right side of the inductive step, even if the problem is not a sum? 

3. Why is proof by induction better for solving some problems rather than using a different method? 

4. Is it possible to prove a false statement true by induction? If so, what is the most likely flaw? 

Explain with the help of example. 

5. When writing the proof, do we always have to show that the previous case is true? Explain with the help of example. 

6. Is there exists any problem, where for a statement P( n), P(1) and P( n) be true, but P( n + 1) false? 

Give an example to support your answer. 

7. Can axioms be used when using induction to prove the statement? 

8. Can theorems be used when using induction? 

9. What is the use of induction when you are already given a proved formula? 

10. Suppose that we want to prove by induction on  n the fact that P( n) is true for all  n ∈ N. How many basis cases do you have to prove in each of the following cases? 

( a) ∀ n ≥ 0 [ P( n) →  P( n + 5)]

( b) ∀ n ≥ 0 [ P( n) ∧  P( n + 2) → P( n + 3)]

( c) ∀ n ≥ 1 [ P([ n/2]) →  P( n)]

( d) ∀ n ≥ 1 [ P( n – 1) ∧  P( n – 2) ∧...∧  P( n/2)] →  P( n)]

11. Prove by mathematical induction that 3 + 3 * 5 + 3 * 52+ ... + 3 * 5 n = 3 (5 n+1 – 1)/4. 

12. Prove by mathematical induction that 12 + 32 + ... + (2 n + 1)2 = ( n + 1)(2 n + 1)(2 n + 3)/3 whenever  n is a non-negative integer. 

13. Prove by mathematical induction that postage of  n paisa can be formed using 3-paisa and 5-paisa stamps if  n “is greater than 7”. 

14. Prove by mathematical induction that  n 5 –  n is divisible by 5 when  n is a non-negative integer. 

 n

 n

15. Prove by mathematical induction that 

A

∪

=

A

 i

∩  i . 

 i =1

 i = 1

16. Prove by mathematical induction that for any natural number  n, 2 + 4 + ... + 2 n =  n( n + 1). 

17. Prove by mathematical induction that for any natural number  n, 12 + 22 + ··· +  n 2 =  n ( n + 1)(2 n + 1)/6. 

18. Prove by mathematical induction that if  r is a real number not equal to 1, then for every  n ≥ 0, r 0 +  r 1 + ... +  rn = (1 –  rn+1)/(1 –   r). 

19. Prove by mathematical induction that for every  n ≥ 4,  n! > 2 n. 

 n

 n

20. Let A , A , ..., A , and B , B , ..., B  be sets. Then if A  

for  i = 1, 2, ..., then 

A

∩ ⊆

B . 

1

2

 n

1

2

 n

 i ⊆ B i

 i

∩  i

 i = 1

 i = 1

21. Prove by induction that, for any natural number  n, 1 + 3 + ···  + (2 n + 1) = ( n + 1)2. 

22. Prove that for all positive integer  n, 

 n

∑  i  ( i!)  =  ( n  +  1)!  −   1 . 

 i =1

23. Prove that any positive integer  n > 1, can be written as the product of prime numbers. 
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24. Prove that 2 n × 2 n–1 is divisible by 3 for all  n ≥ 1 by induction. 

25. Prove that  f  < 2 n (Where  f  is the  n th Fibonacci number). 

 n

 n

26. Prove by mathematical induction that 5 n – 1 is divisible by 4. 

27. Prove by Mathematical Induction that 1 + 2 n ≤ 3 n for all  n ≥ 1. 

28. Use the Principle of Mathematical Induction to prove that:

 n+1

3

1

1 + 3 + 9 + 27 + ... + 3 n = 

−  for all  n ≥ 0. 

2

29. Use mathematical induction to prove that every amount of postage of six paisa or more can be formed using 3-paisa and 4-paisa stamps. 

⎛1 1  n

30. Predict the value of 

⎞

⎜

and prove your result true by induction. 

0 1⎟

⎝

⎠

31. Let  f ( n) = 24 n+1 + 3. By considering  f ( n + 1) –  f ( n), or otherwise, prove that 24 n+1+3 is a multiple of 5 for any positive integer  n. 

32. For  n ∈ Z+ prove that   23 n + 2 + 5 n + 1 is divisible by 3. 

33. Prove by induction that 2 + (3 × 2) + (4 × 22) + ... + ( n + 1)2 n–1 =  n 2 n, for all integers  n ≥ 1. 

34. Prove by induction,  n < 2 n for all  n ∈ N. 

35. Prove that (1 +  x) n ≥ (1 +  nx), for all natural numbers  n, where  x > –1. 

36. For all  n ≥ 1, prove that 11.2 + 12.3 + 13.4 +......1 n( n+1) =  nn+1

37. Prove by induction that for all  n ∈ N, 121 + 122 + 123 + ........+ 12 n = 1 – 12 n 38. Prove by induction:  n 2 +  n  is an even number, for every natural number  n. 

39. Prove by mathematical induction that for every positive integer  n, 3 divides  n 3 –  n. 

( VTU, Jan’07)

40. Prove that 4 n < ( n 2  – 7) for all positive integers  n ≥ 6. 

( VTU, Jan’06)

41. By mathematical induction, prove that  n! > 2 n – 1 for all integers  n ≥ 1. 

(VTU, 05: CU, 10: MDU, 11)

42. Prove by induction that:

|A  



| = |A | + |A | + ... + |A | – |A  

| – ... – |A



| +

1 ∪ A2 ∪ ..., ∪ A n

1

2

 n

1 ∩ A2

 n–1 ∩ A n

... + 

 k  1

∑ (−1) − |A

| + ... + (–1) n–1|A  



|

 i 1 ∩ A i 2 ∩ ... ∩ A ik

1 ∩ A2 ∩ … ∩ A n

1

 i < ... <  ki

43. Prove by mathematical induction that if a set A has  n elements, then P(A) has 2 n elements. 

44. Prove by mathematical induction that  xn –  yn is divisible by ( x –  y) for all positive integral values of  n. 

45. Let  D( n) be the  n-digit number consisting of just 1s. Use induction to show that 11 |  D(2 n), for all integers  n > 0. 

(Note that we can recursively define  D( n) as follows:  D( n) = 10 D( n – 1) + 1 for  n > 1,  D(1) = 1. 

Explicitly,  D( n) = (10 n – 1) / 9.)

46. Let  n ≥ 1 denote a positive integer. Answer the following two parts for this question: 1

1

1

1

( a) Prove without using induction that 

+

+ ... +

≥ . 

2 n + 1 2 n + 2

2 n + 2 n  2

F

1

H

1

Hint : Explain 

≥ 

for each  i in the range 1 ≤  i ≤ 2 n I

2 n +  i

2 n

 n

+ 2

K

Note that for each  i in the range 1 ≤  i ≤ 2 n , we have 2 n +  i ≤ 2 n + 2 n. Therefore, 1

1

1

1

1

⎛

 n

1

⎞ 1

≥

and thus, 

+

+ ... +

≥ 2 ⎜

⎟ = . 

2 n +

2 n + 2 n

 i

 n

 n

 n

 n

⎜  n

 n ⎟

2 + 1 2 + 1

2 + 2

⎝ 2 + 2 ⎠ 2
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( b) Use the results of Part ( a) and use induction on  n ≥ 1 to prove the following inequality: 2 n  1

 n

∑ ≥1 + . 

 j

2

 j  1

=

(Basis Step) When  n = 1. In this case, 

2 n

2 n

 n

1

LHS =  ∑1

1

1

= ∑ = 1 + ,  and RHS = 1 +   = 1 +   = LHS. 

 j

 j

2

2

2

 j=1

 j=1

Thus, the Basis Step is proved. 

(Induction Hypothesis) When  n =  k. Suppose

2 k

∑ 1

 k

= 1 +  for some  k ≥ 1. 

 j

2

 j =1

(Induction Step) When  n =  k + 1. We need to prove

 k+1

2

1

 k +

∑

1

= 1 +

...(1)

 j

2

 j =1

 k

 k +1

2

2

1

1

Note that LHS of (1) =  ∑ + ∑

by definition of summation

=1  j

 j

=2 k

 j

 j

+1

 k +1

2

 k

1

1 + + ∑

, by the Induction Hypothesis

2

 j

=2 k

 j

+1

 k

1

1 + + , using the results of Part ( a)

2

2

 k + 1

= 1 +

. 

2

Therefore, the Induction Step is proved. By induction, we have proved the inequality for all  n ≥ 1. 

47. Prove by induction that the sum of the squares of any six consecutive non-negative integers always leaves a remainder of seven when divided by twelve. 

48. Use induction on  n to prove the following inequality for all positive integers  n: 2

 n

(

 n n + 1)(4 n − 1)

∑  i ≤

6

. 

 i =1

(Hint: √( x2 –  y) ≤  x for all positive integers  x and non-negative integers  y ≤  x2. ) 49. Prove by using induction on  n that for all positive integers  n > 0, n

 i

 n  1

( i – 1)2

2 +

∑

=

− 2. 

 i =1

(

 i i +1)

 n +1

50. Using induction on  n, prove for all positive integers  n that

 n

 i( i +1) ( i + 2)

(

 n n +1)( n + 2)( n + 3)

∑

=

. 

6

24

 i =1

51. The  n th Harmonic number denoted by H  is defined as follows:

 n

 n  1

    H n = ∑  i

 i =1
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Prove by induction that the following equation is true for all positive integers  n:

 n

 i

∑

= ( n + 1) − H n+1

 i + 1

 i =1

1

1

1

52. Harmonic numbers H   ,  k = 1, 2, 3, … are defined by H  = 1 +  + + ... +

. 

 k

 k

2

3

 k

Use mathematical induction to prove that H  + H  + ... + H  = ( n + 1)H  –  n for all  n 1

2

 n

 n

≥ 1. 

53. Prove the induction step in an induction proof for the following summation identity: 1

 n  1

+ ∑

= 1 , where  n denotes an integer and  n ≥ 1. 

2 n

 j

 j =1 2

That is, state the induction hypothesis precisely, then prove the induction step based on the

induction hypothesis. 

54. Prove the induction step in an induction proof for the following summation result:

 n

1

1

∑

< 1 − , for all integer  n ≥ 2. 

2

 i

 n

 i = 2

That is, state the induction hypothesis precisely, then prove the induction step based on the

induction hypothesis. 

55. Use induction on  n ≥ 0 to prove the following summation formula:

 n

∑( i + 2) 2 i = ( n + 1)2 n+1, for all  n ≥ 0, 

 i = 0

56. Let  f( n) be defined as follows:

 n−1

 n−1

(2

1) ( f ( n  1) 1) 2

 f(1) = 1,  f ( n) = 

−

− +

+

, for all  n > 1. 

2 n − 1

 n +1

2

−  n − 2

Prove, using induction on  n, that  f ( n) = 

for all positive integers  n. 

2 n −1

 n

57. Let T  denote the  n th Triangle number. In particular, T  =  ∑  i , for all positive integers  n. Using n

 n

 i =1

induction on  n, prove that the following summation holds for all positive integers  n: n

1

⎛

1 ⎞

∑ = 2⎜1 −

⎟

 i =1 T

 n

 i

⎝

+1 ⎠

(Hint: You should solve for T  in a closed form solution in terms of  n before working on

 n

this problem. )

2

1

2

 n

 n

58. Use mathematical induction to prove that  + + ... +

< 

, for all  n ≥ 2. 

2

3

 n + 1  n + 1

59. Prove for all non-negative integers  n that (22 n – 3 n – 1) is divisible by 9. 

60. Prove by mathematical induction that 6 n+2 + 72 n+1 is divisible by 43 for each positive integer  n. 

61. The Lucas numbers, are defined as follows:

L  = 1, L  = 3, L  = L

+ L

, for all integers  n > 2. (Thus, the third Lucas number, L  = 4 and the

1

2

 n

 n–1

 n–2

3

fourth Lucas number L  = 7.)

4

Prove that the following equation is true for all positive integers  n, using induction on  n: n

∑ 2

L i = L L

2

 n

 n+1 −

 i =1
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⎛

 n

 n

 n

 c

1 ⎞

−

62. Prove for all positive integers  n that  ⎛  c  1⎞

⎜ c

⎟

⎜

⎟ = ⎜

 c − 1 , where  c is any real number not

0 1

⎟

⎝

⎠

⎜

⎟

⎝ 0

1 ⎠

equal to 1. 

(Hint: A matrix raised to a power is repeated matrix multiplication and that for 2×2 matrices, multiplication is defined as follows:

⎛ a b⎞ ⎛  e f ⎞

⎛ ae +  bg af +  bh⎞

⎜

⎟ ⎜

⎟ =

⎝  c d⎠ ⎝  g h

⎜

⎠

⎝  ce dg cf

 dh⎟

+

+

⎠

 n

(

 n n + 1)( n + 2)

63. Using proof by induction, prove that  ∑[ ( ii + 1)] =

, for all positive integers  n. 

3

 i =1

64.  Define a sequence of numbers as follows. Let  W  denote the  i th  W-number. In particular,  W  = 2, i

0

 W

 W  = 1, and  W  =  W

+   n−2  and for all integers  n > 1. 

1

 n

 n–1

2

 n

W i−

2

For all positive integers  n, prove that 

1

∑

= 2 −

. 

 i =1 W W

W

 i

 i +1

 n  1

+

65. Using proof by induction on  n, prove that 8 | (32 n+1 + 52 n+1) |for all non-negative integers  n. 

 n

 n(3 n + 5)

66. Using induction to prove that  ∑(3 i + 1) =

for all  n ≥ 1. 

 i =1

2

C H A P T E R

 Recurrence Relations and

7

 Generating Functions

PREVIEW

Recurrence Relations (RR) is an aspect of discrete mathematics. It is an equation that

defines a sequence based on a rule that gives the next term as a function of the previous

term(s). Recurrence relations are one of the fundamental mathematical tools of computation

as most computational tasks rely on recursive techniques, at one time or another. The extensive use of recurrence relations can be attributed to their fundamental constructive quality, and

the great simplicity with which they are agreeable to  mechanization. Recurrence relations

can be used to model varieties of problems such as determining the number of moves in the

Tower of Hanoi puzzle with n-number of disks, closed form formula for finding compound

interest, Lucas number, Fibonacci number etc. 

Generating functions are a powerful technique for solving recurrences. Generating

functions can be used to solve recurrence relations by translating a recurrence relation for the terms of a sequence into an equation involving a generating function. This equation can then

be solved to find a closed form for the generating function. From this closed form, the coefficients of the power series for the generating function can be found, solving the original recurrence

relation. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

• understand the basic concepts of recurrence relations or difference  equations

• determine the order and degree of a recurrence relation

• understand Linear Recurrence Relations with Constant Coefficients (LRRWCC’s)

• understand Linear Homogeneous Recurrence Relations with Constant Coefficients

(LHRRWCC’s)

• understand and determine the particular solution of a recurrence relation

• understand Non-Homogeneous Recurrence Relations with Constant Coefficients

• solve Recurrence Relations using Generating Functions. 
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7.1

INTRODUCTION

A recurrence relation is an equation that uses recursion to relate terms in a sequence or

elements in an array. It is a way to define a sequence or array in terms of itself. Many tech-

niques exist for solving recurrences: iteration, characteristic equations, substitution, change of variable, and the master method. Recurrence relations have applications in many areas of

mathematics such as number theory—the Fibonacci sequence, combinatorics—distribution of

objects into bins, calculus-Euler’s method etc. 

Generating functions are a more powerful technique for solving recurrences which allow

us to use the power of calculus. Recurrences have the property that the nth term in the sequence is a function of previous terms. With generating functions, the nth term in the sequence is  the coefficient of  the  nth  term in  the generating function. 

7.2

DEFINITION

A recurrence relation is a functional relation between the independent variable  x, 

dependent variable  f( x) and the differences of various order of  f( x). A recurrence relation is also called a difference equation and we will use these two terms interchangeably. 

For example : The equation  f( x + 3 h) + 3 f( x + 2 h) + 6 f ( x +  h) + 9 f( x) = 0

is a recurrence relation. 

It can also be written as

 a

+ 3 a

+ 6 a

+ 9 a = 0

 r + 3

 r + 2

 r + 1

 r 

or

 y

+ 3 y

+ 6 y

+ 9 y  = 0. 

 k + 3

 k + 2

 k + 1

 k

For example : The Fibonacci sequence is defined by the recurrence relation

 a  =  a

+  a

,  r 

= 1 and  a  = 1. 

 r

 r – 2

 r – 1

≥ 2, with the initial conditions  a 0

1

7.3 ORDER OF THE RECURRENCE RELATION

The order of the recurrence relation or difference equation is defined to be the difference

between the highest and lowest subscripts of  f( x) or  a  or  y . 

 r

 k

For example : The equation 13 a  + 20 a

= 0

 r

 r – 1

is a first order recurrence relation. 

For example : The equation 8 f( x) + 4 f( x + 1) + 8 f( x + 2) =  k( x) is a second order difference equation. 

7.4 DEGREE OF THE DIFFERENCE EQUATION

The degree of a difference equation is defined to be the highest power of  f( x) or  a  or  y . 

 r

 k

For example : The equation  y  3   +  2 y  2  + 2 y

= 0

 k + 3

 k + 2

 k + 1

has the degree 3, as the highest power of  y  is 3. 

 k

For example : The equation  a  4 + 3 a  3  + 6 a  2  + 4 a

= 0

 r

 r – 1

 r – 2

 r – 3

has the degree 4, as the highest power of  a  is 4. 

 r

For example : The equation  y

+ 2 y

+ 4 y

+ 2 y  =  k( x)

 k + 3

 k + 2

 k + 1

 k

has the degree 1, because the highest power of  y  is 1 and its order is 3. 

 k

For example : The equation  f( x + 2 h) – 4 f( x +  h) + 2 f( x) = 0 has the degree 1 and its order is 2. 
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7.5 LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS

A recurrence relation is called linear if its degree is one. 

The general form of linear recurrence relation with constant coefficient is

C   y + C   y

+ C   y

+ ... + C   y

= R( n)

0  n 

1  n – 1

2  n – 2 

 k n – k

where C , C , C , ..., C  are constants and R( n) is some function of independent variable  n. 

0

1

2

 n

A solution of a recurrence relation is any function which satisfies the given equation. 

7.5.1

Linear Homogeneous Recurrence Relation with Constant Coefficients

The equation is said to be linear homogeneous difference equation if and only if R( n) = 0

and it will be of order  n. 

The equation is said to be linear non-homogeneous difference equation if R( n) ≠ 0. 

To solve Non-Homogeneous Recurrence Relations, first of  all you have to solve an

associated homogeneous recurrence as part of the process. Therefore, first we will discuss the process of solving linear homogeneous recurrence relations with constant coefficients

(LHRRWCC’s). 

• Linear refers to the fact that  y , y ,  y

...  y

   appear in separate terms and to

 n

 n–1

 n – 2

 n –  k

the first power. 

• Homogeneous refers to the fact that the total degree of each term is  the same

( i.e.  there is no constant term)

• Constant Coefficients refers to the fact that  c ,  c ,  c , ...,  c  are fixed real numbers 0

1

2  

 k

that do not depend on  n. 

• Degree  k refers to the fact that the expression for  y  contains the previous  k terms n

 y

,  y

...  y

. 

 n – 1

 n – 2

 n –  k

7.5.2 General Procedure for Solving Linear Homogeneous Recurrence Realtions with

Constant Coefficients (LHRRWCC’s)

1. Determine the characteristic equation. 

2. Find the roots of this equation and their multiplicities. 

3. Write down the general solution. 

4. Use the initial conditions to get a system of  k equation in   k unknowns, and then solve it to obtain the desired solution. (Where  k is the degree of the characteristic equation.) For example : The equation  a

+ 6 a

+ 12 a

+ 8 a = 0

 r + 3

 r + 2

 r + 1

 r 

is a linear homogeneous equation of order 3. 

For example : The equation  a

– 4 a

+ 4 a = 3 r + 2 r

 r + 2

 r + 1

 r 

is a linear non-homogeneous equation of order 2. 

A linear homogeneous difference equation with constant coefficients is given by

C   y  + C   y

+ C   y

+ ... + C   y

  = 0

...( i)

0  n

1  n – 1

2  n – 2

 r n –  r

where C , C , C , ..., C  are constants. 

0

1

2

 r

The solution of the equation ( i) is of the form Aα K, where   is the characteristic root 1

α1

and A is constant. 

Substituting the values of AαK for  y  in equation ( i), we have

 n

C  A

A

A

A

0

αK + C1 αK – 1 + C2 αK – 2 + ... + C r  αK –  r = 0

...( ii)

After simplifying equation ( ii), we have
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C  





= 0

...( iii)

0 α r + C1 α r – 1 + C2 α r – 2 + ... + C r 

The equation ( iii) is called the characteristic equation of the difference equation. 

If  α  is one of the roots of the characteristic equation, then A K is a homogeneous

1

α1

solution to the difference equation. 

To find the solution of the linear homogeneous difference equations, we have the four

cases, that are discussed as follows. 

Case I. If the characteristic equation has  n distinct real roots α ,  ,  , ...,  . 

1 α2 α3

α n

Thus, α K,  K, ......,  K are all solutions of equation ( i). 

1

α2

α n

Also, we have, A   K, A

K, ......, A   K are all solutions of equation ( i). The sums of

1 α1

2 α1

 n  α n

solutions are also solutions. 

Hence, the homogeneous solution of the difference equation is

 y  = A

K + A

K + ... + A   K. 

K

1α1

2α2

 n  α n

Case II. If the characteristic equation has repeated real roots. 

If α  =  , then (A  + A  K)  K is also a solution. 

1

α2

1

2

α1

If α  =   =  , then (A  + A  K + A  K2)  K is also a solution. 

1

α2 α3

1

2

3

α1

Similarly, if root α  is repeated  n times, then

1

(A  + A  K + A  K2 + ... + A  K n – 1)  K

1

2

3

 n

α1

is the solution of the homogeneous equation. 

Case III. If the characteristic equation has one imaginary root. 

If α +  i β is the root of the characteristic equation, then α –  i β is also the root, where α

and β are real. 

Thus, (α +  i β)K and (α –  i β)K are solutions of the equations. This implies

(α +  i β)K A  + (

1

α –  i β)K A2

is also a solution of the characteristic equation, where A  and A  are constants which are to be 1

2

determined. 

Case IV.  If the characteristic equation has repeated imaginary roots. 

When the characteristic equation has repeated imaginary roots, 

(C  + C  K) (

+ C  K)(

1

2

α +  i β)K + (C3

4

α –  i β)K

is the solution of the homogeneous equation. 

Example 1.  Solve the difference equation a  – 3a

  + 2a

  = 0. 

 r

 r – 1

 r– 2

Sol. The characteristic equation is given by

 s 2 – 3 s + 2 = 0 or ( s – 1)( s – 2) = 0

⇒   s = 1, 2

Therefore, the homogeneous solution of the equation is

 a  = C  + C . 2 r. 

 r

1

2 

Example 2.  Solve the difference equation a  – 6a

  + 8a

  = 0. 

 r

 r – 1

 r – 2

Sol. The characteristic equation is

   s 2 – 6 s + 8 = 0 or ( s – 2)( s – 4) = 0

⇒  s = 2, 4

Therefore, the homogeneous solution of the equation is

 a  = C  . 2 r + C  . 4 r. 

 r

1

2
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Example 3.  Solve the difference equation 9y

  – 6y

  + y  = 0. 

 K + 2

 K + 1

 K

Sol. The characteristic equation is

9 s 2 – 6 s + 1 = 0 or (3 s – 1)2 = 0

1

1

⇒  s = 

and

3

3

Therefore, the homogeneous solution is given by

F 1

  y  = (C  + C K) . 

K

1

2 

HG I3KJK. 

Example 4.  Solve the difference equation a  – 4a

  + 4a

  = 0. 

 r

 r – 1

 r – 2

Sol. The characteristic equation is given by

  s 2 – 4 s + 4 = 0 or ( s – 2)2 = 0

⇒  s = 2 and 2

Therefore, the homogeneous solution of equation is  a  = (C  + C   r) . 2 r. 

 r

1

2

Example 5.  Solve the difference equation a  + a

  + a

  = 0. 

 r

 r – 1

 r – 2

Sol. The characteristic equation is  s 2 +  s + 1 = 0

− 1 +  i  3

1  i  3

The roots of this characteristic equation are imaginary,  i.e., s = 

and  − −

. 

2

2

Therefore, the homogeneous solution of the equation is

L

 r

 r

1  i  3 O

L 1  i  3O

  a =  − +

C +  − −

C . 

 r 

NMM 2 QPP 1 NMM 2 QPP 2

Example 6.  Solve the difference equation y  – y

  – y

  = 0. 

 K

 K – 1

 K – 2

Sol. The characteristic equation is  s 2 –  s – 1 = 0

1 ± 1 + 4

1 ± 5

 s = 

= 

2

2

Therefore, the homogeneous solution of the equation is

L

K

K

1 + 5 O

L1− 5O

 y  = C  

+ C  

. 

K

1

2

NMM

QPP

2

2

NMM

QPP

Example 7.  Solve the difference equation a

  + 2a

  + 3a

  + 2a

  + a  = 0. 

 r + 4

 r + 3

 r + 2

 r+ 1

 r

Sol. The characteristic equation is  s 4 + 2 s 3 + 3 s 2 + 2 s + 1 = 0

or

( s 2 +  s + 1)( s 2 +  s + 1) = 0

1  i  3

1  i  3

or

 s =  − ±

,  − ±

2

2

Therefore, the homogeneous solution is given by

F

 r

 r

1  i  3 I

F 1  i  3I

  a = (C  + C   r) − +

+ (C  + C   r)  − −

. 

 r 

1

2

HG 2 KJ

3

4

HG 2 KJ
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Example 8.  Solve the difference equation y

  + 4y

  + 8y

  + 8y

  + 4y  = 0. 

 K + 4

 K + 3

 K + 2

 K + 1

 K

Sol. The characteristic equation is  s 4 + 4 s 3 + 8 s 2 + 8 s + 4 = 0

or

( s 2 + 2 s + 2)( s 2 + 2 s + 2) = 0

or

 s = – 1 ±  i,   – 1 ±  i

Therefore, the homogeneous solution is given by

 y  = (C  + C  K)(– 1 +  i)K + (C  + C  K)(– 1 –  i)K. 

K

1

2

3

4

7.5.3 Particular Solution

7.5.3.1 Homogeneous Linear Difference Equations

We can find the particular solution of the difference equation, when the equation is of

homogeneous linear type by putting the values of the initial conditions in the homogeneous solution. 

Example 9.  Solve the difference equation 2a  – 5a

  + 2a

  = 0 and find particular

 r

 r – 1

 r – 2

 solution such that a  = 0 and a  = 1. 

 0

 1

Sol. The characteristic equation is 2 s 2 – 5 s + 2 = 0

or

(2 s – 1)( s – 2) = 0

1

or



 s = 

and 2. 

2

Therefore, the homogeneous solution is given by

F 1

 a

= C  

. 2 r

...( i)

 r( h)

1 HG I

2KJ  r + C2

Putting  r = 0 and  r = 1 in equation ( i), we get

 a  = C  + C  = 0

...( a)

0

1

2

1

 a  =   C  + 2C  = 1

...( b)

1

2 1

2

Solving eq. ( a) and ( b), we have

2

2

C  = – 

and C  = 

1

3

2

3

Hence, the particular solution is

2 F 1

2

  a

= –  . 

. (2) r. 

 r(P)

3 HG I

2KJ  r +  3

Example 10.  Solve the difference equation a –  4a

  + 4a

  = 0 and find the particular

 r 

 r – 1

 r – 2

 solution, given that a  = 1 and a  = 6. 

 0

 1

Sol. The characteristic equation is

     s 2 – 4 s + 4 = 0 or ( s – 2)2 = 0

or

 s = 2, 2

Therefore, the homogeneous solution is given by

 a

= (C  + C   r) . 2 r

...( i)

 r( n) 

1

2

Putting  r = 0 and  r = 1 in equation ( i), we get

 a  = (C  + 0) . 20 = 1

= 1

0

1

∴ C1

 a  = (C  + C ) . 2 = 6

+ C  = 3 

= 2

1

1

2

∴ C1

2

⇒ C2

Hence, the particular solution is  a

= (1 + 2 r) . 2 r. 

 r(P)
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Example 11.  Solve the difference equation 9a  –  6a

  + a

  = 0 satisfying the condi-

 r

 r – 1

 r – 2

 tions a  = 0 and a  = 2. 

 0

 1

Sol. The characteristic equation is

9 s 2 – 6 s + 1 = 0 or (3 s – 1)2 = 0

1 1

or

 s =  , 

3 3

Therefore, the homogeneous solution is given by

F 1

 a

= (C  + C   r) . 

 r( h) 

1

2

HG I3KJ r

...( i)

Putting  r = 0 and  r = 1 in equation ( i), we get

  a = C  = 0

...( a)

0 

1

1

 a  = (C  + C ) .   = 2. 

+ C  = 6 

= 6

1

1

2

3

∴ C1

2

⇒ C2

Hence, the particular solution is

F 1

  a

= 6 r . 

 r(P)

HG I3KJ r. 

Example 12.  Solve the difference equation a  – 7a

 + 10a

  = 0 satisfying the condi-

 r

 r – 1 

 r – 2

 tions a  = 0 and a  = 6. 

 0

 1

Sol. The characteristic equation is

    s 2 – 7 s + 10 = 0 or ( s – 5)( s – 2) = 0 or  s = 2, 5

Therefore, the homogeneous solution is given by

 a

= C . 2 r + C . 5 r. 

...( i)

 r( h)

1 

2 

Putting  r = 0 and  r = 1 in equation ( i), we get

  a  = C  + C  = 0

...( a)

0

1

2

  a  = 2C  + 5C  = 6

...( b)

1

1

2

From eq. ( a)





C  = – C

1

2

From eq. ( b)

3C  = 6

= 2 and C  = – 2. 

2

∴ C2

1

Hence, the particular solution is  a

= – 2 . 2 r + 2 . 5 r. 

 r(P)

PROBLEM SET-I

1. Determine which of the following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are

( a) A  = (1.11)A

( b)  a  =  a

+  a 2

( c)  f  =  f

+  f

. 

 n

 n – 1

 n

 n – 1

 n–2

 n

 n – 1

 n – 2

2. Determine which of the following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are

( a) A = 2A

+ 1

( b)  a =  a

( c) A =  n A

. 

 n 

 n – 1

 n 

 n– 6

 n 

 n – 1

3. Determine which of the  following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are

( a)  a = 3 a

+ 4 a

+ 5 a

( b)  a = 2 na

+  a

 n 

 n – 1

 n – 2

 n – 3

 n 

 n – 1

 n – 2

( c)  a =  a

+  a

( d)  a =  a

+ 2

 n 

 n – 1

 n – 4

 n 

 n – 1
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4. Determine which of the  following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are. 

( a)  a =  a 2

+  a

( b)  a =  a

( c)  a =  a

+  n

 n 

 n – 1

 n – 2

 n 

 n – 2

 n 

 n – 1

5. Determine which of the following are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are. 

( a)  a = 3 a

. 

( b)  a = 3. 

 n 

 n – 2

 n 

( c)  a =  a

. 

( d)  a =  a

+ 2 a

. 

 n 

2 n – 1

 n 

 n – 1

 n – 3

( e)  a =  a

. 

( f)  a =  a

+  a

+  n + 3. 

 n 

 n – 1/ n

 n 

 n – 1

 n – 2

( g)  a = 4 a

+ 5 a

+ 9 a

. 

 n 

 n – 2

 n – 4

 n – 7

6. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 2, 2, 2, 2, – 3, –3, – 3, 4, 4, – 6? 

7. Find a recurrence relation and initial condition so that the first few terms of the sequence  a  are n

given by 2, 5, 11, 23, 47, 95. 

8. Solve the recurrence relation  b  = 2 b

for  n 

= 3. 

 n

 n – 1

≥ 1 with initial condition  b 0

9. Solve the recurrence relations  a  = – 4 a

+ 5 a

with  n 

= 1 and  a  = 2. What is  a ? 

 n

 n – 1

 n – 2

≥ 2,  a 0

1

10

10. Solve the recurrence relation  a  =  a

+ 2 a

with initial conditions  a  = 2 and   a  =  7? 

 n

 n – 1

 n – 2

0

1

11. Solve the recurrence relations together with the initial conditions  a = 5 a

– 6 a

for  n 

 n 

 n – 1 

 n – 2

≥ 2, 

 a  = 1,  a  = 0. 

0

1

12. Solve the recurrence relation  f  =  f

+  f

with initial conditions  f  = 0 and  f  = 1? 

 n

 n – 1

 n – 2

0

1

13. Find the solution to the recurrence relation  a  = 6 a

– 11 a

+ 6 a

with the initial conditions

 n

 n – 1

 n – 2

 n – 3

 a  = 2,  a  = 5 and  a = 15. 

0

1

2 

14. Solve the recurrence relation  a  = –  a

+ 4 a

+ 4 a

with initial conditions  a  = 8,  a  = 6 and

 n

 n – 1

 n – 2

 n – 3

0

1

 a  = 26? 

2

15. Solve the recurrence relation  a  =  a

+ 8 a

– 12 a

,  n 

 n

 n – 1

 n – 2

 n – 3

≥ 3, subject to the initial conditions

 a  = 0,  a  = 1,  a  = 3. 

0

1

2

16. Solve the recurrence relation  a  = 6 a

– 9 a

with initial conditions  a  = 1 and  a  = 6? 

 n

 n – 1

 n – 2

0

1

17. Solve the recurrence relation  a  = 7 a

+ 6 a

with initial conditions  a  = 9,  a  = 10,  a  = 32. 

 n

 n – 2

 n – 3

0

1

2

18. Solve the recurrence relation  a  = – 3 a

– 3 a

 – a

with initial conditions  a  = 1,  a  = – 2

 n

 n – 1

 n – 2

 n – 3 

0

1

and  a  = –1? 

2

19. Solve the recurrence relation  a  = 8 a

– 16 a

, for  n 

= 1,  a  = 4, 

 n

 n – 2

 n – 4

≥ 4, with initial conditions  a 0

1

 a  = 28 and  a  = 32? 

2

3

20. Which of the following is/are True/False? 

( a) A function  f( n) is said to be a general solution to the recurrence relation if it satisfies the recurrence equation. 

( b) A function  g( n) is said to be the particular solution to a recurrence relation if it satisfies the recurrence equation, together with the initial conditions. 

( c) The recurrence relation  a  = (1.04)  a

is a linear homogeneous recurrence relation of

 n

 n – 1

degree 1. 

( d) The recurrence relation F  = F

+ F

is a linear homogeneous recurrence relation of

 n

 n – 1

 n – 2

degree 2. 

( e) The recurrence relation  a =  a

is a linear homogeneous recurrence relation of degree 5. 

 n 

 n – 5

( f) The recurrence relation  a  =  a

 a

is not linear. 

 n

 n – 1

 n – 2

( g) The recurrence relation  a  = 2 a

+ 1 is not homogeneous. 

 n

 n– 1

( h) The recurrence relation  a  =  na

does not have constant coefficients. 

 n

 n – 1

( i) Homogeneous refers to the fact that the total degree of each term is the same. 
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( j) Linear refers to the fact that  a

,  a

, ...,  a

appear in separate terms and to the first

 n – 1

 n – 2

 n –  k

power. 

( k)  a  =  a

+  a

  + ... + a  is homogeneous, has no order, but has degree 1. 

 n

 n – 1

 n – 2

0

( l)  a  = a 2

+  a

 a

 a

is homogeneous of order 4 and degree 2. 

 n

 n – 1

 n – 2

 n – 3   n – 4 

( m)There are infinitely many “general solutions” to any recurrence relation without initial condition (s), one for each set of values for the initial terms, but only one “solution” once the first  k initial terms are fixed for recurrence relations of order  k. 

( n) The general solution to  a  =  a

is  a  =  c, where  c is any constant, but if in addition  a = 1, 

 n

 n – 1

 n

0 

then the solution is  a  = 1,  n 

 n

≥ 0. 

( o) The general solution to  a  =  a

+ 1 is  a  =  c +  n, where  c is any constant; if  a  = 0, then the n

 n – 1

 n

0

solution is  a  =  n,  n 

 n

≥ 0. 

( p) Let α, β be constants, and consider the recurrence  relation   a  = 4 a

– 4 a

for  n 

 n

 n – 1

 n– 2

≥ 2 with

initial conditions  a  = 

= 

=  b 

0

α and  a 1 β. Then there are constants  b,  d so that  an

• 2 n +  d • 2 n. 

( q) Consider the recurrence relation  a  = – 8 a

– 15 a

with initial  conditions  a  = 0 and

 n

 n – 1

 n – 2

0

 a  = 2. Then  a  = (– 5) n – (– 3) n  is a solution of this recurrence relation. 

1

 n

( r) Consider the recurrence relation  a = 2 a

–  a

( n 

  = 3 n is a solution of this

 n 

 n –1

 n – 2

≥ 2). Then  an

recurrence  relation. 

( s) Consider the recurrence relation  a  = 2 a

–  a

( n 

= 2 n   is a solution of this

 n

 n – 1

 n – 2

≥ 2). Then  an

recurrence relation. 

ANSWERS AND HINTS (PROBLEM SET I)

1. ( a) The relation is linear homogeneous recurrence relation of  degree one. 

( b) This relation is not linear. 

( c) The relation is linear homogeneous recurrence relation of degree two. 

2. ( a) This relation is not homogeneous. 

( b) This relation is linear homogeneous recurrence relation of  degree six. 

( c) This relation does not have constant coefficient. 

3. ( a) This relation is linear homogeneous recurrence relation of  degree three. 

( b) This relation is not homogeneous. Since 2 n is not a constant coefficient. 

( c) This relation is linear homogeneous recurrence relation of degree four. 

( d) This relation is not homogeneous because of the 2. 

4. ( a) This is relation not linear because of  a 2

. 

 n – 1

( b) This relation is linear homogeneous recurrence relation of  degree two. 

( c) This relation is not homogeneous because of the  n. 

5. ( a) This relation is linear homogeneous recurrence relation of degree two. 

( b) This relation is linear but not homogeneous. 

( c) This relation  is not linear but homogeneous. 

( d) This relation is linear homogeneous recurrence relation of degree three. 

( e) This relation is not linear but homogeneous. 

( f) This relation is linear but not homogeneous. 

( g) This relation is linear homogeneous recurrence relation of  degree seven. 

6. We have 4 roots that have multiple multiplicities. 

 r  = 2 with multiplicity 4,  r  = – 3 with multiplicity 3,  r  = 4 with multiplicity 2, and  r  = – 6 with 1

2

3

4

multiplicity 1. 

So the general solution is of the form:

 a  = (C  + C  n + C  n 2 + C  n 3) 2 n + (C  + C  n + C  n 2) (– 3) n + (C  + C  n) 4 n + C  (– 6) n n

1

2

3

4

1

2

3

1

2

1
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7.  a  = 2,  a  = 2 a

+ 1 for  n 

1

 n

 n – 1

≥ 2. 


8. 3 ⋅ 2 n. 

9. 

7

1

7

1

 a = 

( 5) n

 a = 

( 5)  = – 1627603. 

 n 

−

−

−

− 10

6

6

10  

6

6

10.  a  = 3 

 n

⋅ 2 n – (– 1) n. 

11.  a = 3 

 n 

⋅ 2 n – 2 ⋅ 3 n. 

 n

 n

1

⎛ (1

5) ⎞

+

−1 ⎛ (1

5) ⎞

−

12.  a = 

– 

⎜

⎟

 n 

⋅  ⎜

⎟

5 ⎝

2

⎠

5 ⎝

2

⎠

13.  a = 1 – 2 n + 2 

 n 

⋅ 3 n. 

14.  a = 2 

 n 

⋅ (–1) n + (–2) n + 5 ⋅ 2 n

 n

 n

⎛ − ⎞2

2

⎛

⎞ n 2

3

⎛ 2 ⎞

15.  a = 

+ 

(– 3) n

 n 

⎜

⎟

⎜

⎟

+ ⎜

⎟

⎝ 25 ⎠

⎝ 10 ⎠

⎝ 25 ⎠

16.  a = 3 n +  n 3 n

 n 

17.  a = 8(–1) n + 4(3) n + (– 3) (– 2) n

 n 

18.  a = (1 + 3 n – 2 n 2) (–1) n

 n 

19.  a = (1 + 2 n) 2 n +  n(–2) n

 n 

20. ( a) True

( b) True

( c) True

( d) True

( e) True

( f) True

( g) True

( h) True

( i) True

( j) True

( k) True

( l) True

( m) True

( n) True

( o) True

( p) False. The answer is of the form  b • 2 n +  d•  n • 2 n. 

( q) False. The answer is  a = (– 3) n – (– 5) n

 n 

( r) True

( s) False

7.6 NON-HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS

The particular solution of non-homogeneous linear difference equations can be

determined using the undetermined coefficients method. 

7.6.1 General Procedure for Solving Non-Homogeneous Recurrence Relations

1. Write down the associated homogeneous recurrence and find its general solution. 

2. Find a particular solution of the non-homogeneous recurrence. This may involve

solving several simpler non-homogeneous recurrences. 

3. Add all of the above solutions together to  obtain the general solution to the non-

homogeneous recurrence. 

4. Use the initial conditions to get a system of  k equations in  k unknowns, then solve it to obtain the desired solution. 
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Note.  It is necessary to solve the associated homogeneous recurrence first because you need to know the roots of the characteristic equation and their multiplicities before finding the particualr solution you want in the next step. 

Undetermined Coefficients Method. This method is used to find particular solution

of non-homogeneous linear difference equations, whose R.H.S. term R( n) consists of terms of special forms. 

In this method, firstly we assume the general form of the particular solution according

to the form of R( n) containing a number of unknown constant coefficients, which have to be determined. Then according to the difference equation, we will determine the exact solution. 

The general form of particular solution to be assumed for the special forms of R( n), to find the exact solution is shown in the table. 

Form of R( n)

General form to be assumed

Z, here  z is a constant

A

Z r, here Z is a constant

A . Z r

P( r), a polynomial of degree  n

A  rn + A   rn – 1 + ... + A

0 

1

 n

Z r. P( r), here P( r) is a polynomial of  n th

[A   rn + A   rn – 1 + ... + A ]. Z r

0

1

 n

degree in  r. Z is a constant. 

Example 13.  Find the particular solution of the difference equation

 a

  – 3a

  + 2a  = Zr, 

 ... ( i)

 r + 2

 r + 1

 r

 where Z is some constant. 

Sol. The general form of solution is = A . Z r

Now putting this solution on L.H.S. of equation ( i), we get

= AZ r + 2 – 3AZ r + 1 + 2AZ r = (Z2 – 3Z + 2)AZ r

...( ii)

Equating equation ( ii) with R.H.S. of equation ( i), we get

(Z2 – 3Z + 2)A = 1

1

1

or



A =  2

Z – 3Z + 2  =  (Z − 1)(Z − 2)  (Z ≠ 1, Z ≠ 2)

Z r

Therefore, the particular solution is 

. 

(Z − )(Z

1

− )

2

Example 14.  Find the particular solution of the difference equation

 a

  – 5a

  + 6a  = 5r. 

...( i)

 r + 2

 r + 1

 r

Sol. Let us assume the general form of the solution = A . 5 r. 

Now to find the value of A, put this solution on L.H.S. of the equation ( i), then this becomes

= A ⋅ 5 r + 2 – 5 ⋅ A5 r + 1 + 6 ⋅ A5 r

= 25A ⋅ 5 r – 25A ⋅ 5 r + 6A ⋅ 5 r

= 6A ⋅ 5 r

...( ii)

Equating equation ( ii) to R.H.S. of equation ( i), we get

1

A =  6

1

Therefore, the particular solution of the difference equation is =   

6 ⋅ 5 r. 
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Example 15.  Find the particular solution of the difference equation

      a

  – 4a  = r2 + r – 1. 

 ... ( i)

 r + 2

 r

Sol. The homogeneous solution of the difference equation is given by

    a

= C (2) r +C  (– 2) r

 r( h)

1

2

To find the particular solution, let us assume the general form of the solution is

= A   r 2 + A   r + A . 

1

2

3

Putting this solution in L.H.S. of equation ( i), we get

= A  ( r + 2)2 + A  ( r + 2) + A  – 4A   r 2 – 4A   r – 4A

1

2

3

1

2

3

= – 3A   r 2 + (4A  – 3A ) r + (4A  + 2A  – 3A )

...( ii)

1

1

2

1

2

3

Equating equation ( ii) with R.H.S. of equation ( i), we get

– 3A  = 1

1

4A  – 3A  = 1

1

2

4A  + 2A  – 3A  = – 1

1

2

3

After solving these three equations, we get

1

7

17

A  = –  , A  = –  , A  = – 

1

3

2

9

3

27

2

Therefore, the particular solution is = –   r

7

17

−  r −

. 

3

9

27

Example 16.  Find the particular solution of the difference equation

 a

  – 2a

  + a  = 3r + 5. 

 ... ( i)

 r + 2

 r + 1

 r

Sol. The homogeneous solution of the difference equation is given by

  a

= C + C   r

...( ii)

 r( h)

1 

2

Corresponding to the term 3 r + 5, we assume the general form of the solution as A  r + A 1

2

but due to occurrence of these terms in equation ( ii), we multiply this by suitable power of  r so that none of the term will occur in equation ( ii). Thus multiply by  r 2. 

Hence, the general form of the solution becomes

= A   r 3 + A   r 2 ...... 

1

2

Putting this solution in L.H.S. of equation ( i), we get

= A ( r + 2)3 + A  ( r + 2)2 – 2A  ( r + 1)3 – 2A  ( r + 1)2 + A   r 3 + A   r 2

1

2

1

2

1

2

= A  ( r 3 + 8 + 6 r 2 + 12 r) + A ( r 2 + 4 + 4 r) – 2A ( r 3 + 1 + 3 r 2 + 3 r) 1

2

1– 2A ( r 2 + 1 + 2 r) + A   r 3 + A   r 2

2

1

2

= (12A  + 4A  – 6A  – 4A ) r + (8A  + 4A  – 2A  – 2A )

1

2

1

2

1

2

1

2

= (6A ) r + (6A  + 2A )

...( iii)

1

1

2

Equating equation ( iii) with R.H.S. of equation ( i), we get

1

6A  = 3

= 

1

∴ A1 2

6A  + 2A  = 5

= 1

1

2

∴ A2

1

Therefore, the particular solution is   r 3 +  r 2. 

2
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Example 17.  Find the particular solution of the difference equation

 a

  + a

  + a  = r 

 r + 2

 r + 1

 r 

⋅  2r. 

 ... ( i)

Sol. Let us assume the general form of the solution = (A  + A   r) 

0

1

⋅ 2 r

Now, put this solution in the L.H.S. of equation ( i), we get

= 2 r + 2 [A  + A  ( r + 2)] + 2 r + 1 [A  + A  ( r + 1)] + 2 r (A  + A   r) 0

1

0

1

0

1

= 4 ⋅ 2 r (A  + A  r + 2A ) + 2 

+ A   r + A ) + 2 r (A  + A   r)

0

1

1

⋅ 2 r (A0

1

1

0

1

=  r ⋅ 2 r(7A ) + 2 r (7A  + 10A )

...( ii)

1

0

1

Equating equation ( ii) with R.H.S. of equation ( i), we get

1

7A  = 1

= 

1

∴ A1 7

−10

7A  + 10A  = 0

= 

0

1

∴ A0

49

F 10 1

Therefore, the particular solution is 2 r  −

+

HG

I r . 

49

7 KJ

Example 18.  Find the particular solution of the difference equation

 a  – 4a

  + 4a

 = ( r + 1) 

 r

 r– 1

 r – 2 

⋅  2r. 

...( i)

Sol. The homogeneous solution of the difference equation is given by

 a

= (C  + C  r) 

 r( h)

1

2

⋅ 2 r

...( ii)

because it has two real and equal roots  i.e.,  2 and 2. 

To find the particular solution, let us assume the general form of the solution is

= 2 r (A  r + A ), but due to occurrence of there terms in equation ( ii), we multiply this by suit-1

0

able power of  r so that none of the terms will occur in equation ( ii). Thus multiply by  r 2. 

Hence, the general form of the solution becomes = 2 r (A  r + A ) .  r 2

1

0

Putting this solution in L.H.S. of equation ( i), we get

= 2 r⋅ (A  r + A ) 

( r – 2) + A ] 

( r – 2) + A ] 

1

0 ⋅  r 2 – 4 ⋅ 2 r – 1 [A1

0 ⋅ ( r – 1)2 + 4 ⋅ 2 r – 2 [A1

0 ⋅ ( r – 2)2

= 2 r ⋅ (A  r + A ) 

 r – A  + A ) + ( r 2 + 4 – 4 r) 

 r – 2A  + A )

1

0 ⋅  r 2 – 2( r 2 + 1 – 2 r) ⋅ 2 r (A1

1

0

⋅ 2 r ⋅  ( A1

1

0

=  r ⋅ 2 r (6A ) + 2 r (– 6A  + 2A )

...( iii)

1

1

0

Equating equation ( iii) with R.H.S. of equation ( i), we get

1

6A  = 1

= 

1

∴ A1 6

– 6A  + 2A  = 1

= 1

1

0

∴ A0

F  r

Therefore, the particular solution is =  r 2. 2 r

+ 1

HG

I

6

KJ . 

Example 19.   Find the particular solution of the difference equation: 2a

  – a  = 12

 r + 1

 r

Sol.  We have, 

2 a  –  a  = 12

...( i)

 r+1

 r

Let us assume the general form of the solution = A. 

Now substitute this general form solution in L.H.S. of equation ( i), we get. 

2A – A = 12 or A = 12. 

Thus, the particular solution of the difference equations is  a  = 12. 

 r( p)
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Example 20.   Find the particular solution of difference equation:

   a  – 3a

  + 2a

  = 2r

 r

 r –1

 r –2

Sol.  We have, 

   a  – 3 a  + 2 a  = 2 r

...( i)

 r

 r–1

 r–2

The Homogeneous solution of the difference equation is given by

            a

= C  + C  

 r( h)

1

2 ⋅ 2 r

...( ii)

To find the particular solution, let us assume the general form of the solution is = A ⋅ 2 r but due to occurrence of this term in equation ( ii), we multiply this general form by a suitable power of  r. Thus, multiply by  r, we get  r (A ⋅ 2 r)

Now, substitute this general form solution in L.H.S. of equation ( i), we get

 r (A ⋅ 2 r) – 3 [( r – 1) (A ⋅ 2 r – 1)] + 2 [( r – 2) (A ⋅ 2 r – 2)]

 r (A ⋅ 2 r) – 3 [ r A ⋅ 2 r – 1 – A ⋅ 2 r –1] + 2 [ r ⋅ A ⋅ 2 r – 2 – 2A ⋅ 2 r – 2]

⎡1

 r

1

 r ⎤

⎡1

 r

1

⎤

 r (A ⋅ 2 r) – 3 

A

⎢

⋅ 2 − A ⋅ 2 ⎥ + 2 ⎢

⋅ ⋅ 2 −

⋅ 2 r

 r

 r A

 A

2

2

4

2

⎥

⎣

⎦

⎣

⎦

3

 r

3

 r

1

1

 r (A ⋅ 2 r) – 

A ⋅ 2 + A ⋅ 2 +

⋅ A ⋅ 2 r − A ⋅ 2 r

 r

 r

= +   A ⋅ 2 r

2

2

2

2

Equating it with R.H.S. of equation ( i), we get

1

+ A 

2 ⋅ 2 r = 2 r

1

+   A = 1

2  A = 2

Therefore, the particular solution of the difference equation is

   a  =  r (2 

 r( p)

⋅ 2 r) =  r (2 r + 1)

7.7 TOTAL SOLUTION

The total solution or the general solution of a non-homogeneous linear difference equation

with constant coefficients is the sum of the homogeneous solution and particular solution. If

no initial conditions are given, then our work is finished. If  n initial conditions are given, obtain  n linear equations in  n unknowns and solve them, if possible to get a total solution. 

As we already know that the homogeneous solution of the recurrence relation is obtained

by putting the right hand side of the equation equal to zero and the particular solution is

obtained with R( n) on the right hand side of the equation. 

If  y  denotes the homogeneous solution of the recurrence relation and  y  denotes the ( h)

( p)

particular solution of the recurrence relation then, the total solution or the general solution  y of the recurrence relation is given by

 y =  y  +  y . 

( h)

( p)

Example 21.  Solve the difference equation: a  – 4a

  + 4a

  = 3r + 2r. 

 ... ( i)

 r

 r – 1

 r – 2

Sol. The homogeneous solution of this equation is obtained by putting R.H.S. equal to

zero   i.e., 

 a – 4 a

+ 4 a

= 0

 r 

 r – 1

 r – 2

The homogeneous solution is  a

= (C  + C   r) 

 r( h)

1

2

⋅ 2 r

To find the particular solution of ( i), divide the particular solution in two parts  i.e., particular solution for the term 3 r and particular solution for the term 2 r and then add them
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to obtain the particular solution for the term 3 r + 2 r. Thus, the particular solution for the term 3 r is

 a  – 4 a

+ 4 a

= 3 r

...( ii)

 r

 r – 1

 r – 2

The general form for the particular solution is = A  r + A

1

2

Substituting the value of general form in eq. ( ii), we get

A  r + A  – 4[A  ( r – 1) + A ] + 4 [A  ( r – 2) + A ]

1

2

1

2

1

2

A  r + A  – 4 [A  r – A  + A ] + 4 [A  r – 2A  + A ]

1

2

1

1

2

1

1

2

A  r + A  – 4A  r + 4A  – 4A  + 4A  r – 8A  + 4A

1

2

1

1

2

1

1

2

A  r + A  – 4A

1

2

1

Equating the value with R.H.S. of equation ( ii), we get

A  r = 3 r

...( a)

1



A  – 4A  = 0

...( b)

2

1

Solving these equations, we get A  = 3 and A  = 12. Thus, the particular solution for the

1

2

term 3 r is

= 3 r + 12

...(I)

The particular solution for the term 2 r is

 a  – 4 a

+ 4 a

= 2 r

...( iii)

 r

 r – 1

 r – 2

The general form for the particular solution is = A  

3 ⋅ 2 r but due to occurrence of this

term in Homogeneous solution, we multiply this term by a suitable power of  r. Thus, multiply by  r 2 we get =  r 2 A  

3 ⋅ 2 r. 

Now, substitute this value of general form in eq. ( iii), we get

 r 2A  





3 ⋅ 2 r – 4 [( r – 1)2 A3 ⋅ 2 r – 1] + 4 [( r – 2)2 A3 ⋅ 2 r – 2]

L

L

 r 2 A  

2

1

 r

2

1

 r

−

+

A ⋅

3 ⋅ 2 r – 4  ( r

 r

2

)

1

2

4 ( r

 r

4

)

4

A

2

3

3

NM

O

2

QP +

−

+

⋅

NM

O

4

QP

 r 2A  

 r 2 







2 r + 4A  

3 ⋅ 2 r – 2A3

⋅ 2 r + 4 r A3 ⋅ 2 r – 2A3 ⋅ 2 r +  r 2A3 ⋅ 2 r– 4 r A3

3 ⋅ 2 r

= 2A  

2 ⋅ 2 r

Equating the value with R.H.S. of eq. ( iii), we get

2A  

2 ⋅ 2 r = 2 r

2A  = 1 or A  = 1/2. 

2

2

1

The particular solution for the term 2 r is =    r 2 

2

⋅ 2 r =  r 2 ⋅ 2 r – 1

...(II)

From (I) and (II)

The particular solution for the term 3 r + 2 r is

= 3 r + 12 +  r 2 ⋅ 2 r – 1

The total solution of equation ( i) becomes

(C  + C  r) 

1

2

⋅ 2 r + 3 r + 12 +  r 2 ⋅ 2 r – 1. 

Example 22.  Solve the difference equation a  + 4a

  + 4a

  = r2 – 3r + 5. 

 ... ( i)

 r

 r – 1

 r – 2

Sol. Put the R.H.S. of the equation equal to zero  i.e., 

 a  + 4 a

+ 4 a

= 0

 r

 r – 1

 r – 2

This can be written as

( s 2 + 4 s + 4)  a  = 0

 r

or

( s + 2)2 = 0 or  s = – 2, – 2
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The homogeneous solution is given by

  a

= (C  + C   r) 

 r( h)

1

2

⋅ (– 2) r

The general form of the particular solution is = A  r 2 + A  r + A

1

2

3

Putting this solution in L.H.S. of equation ( i), we get

A  r 2 + A  r + A  + 4 [A  ( r – 1)2 + A  ( r – 1) + A ] + 4 [A  ( r – 2)2 + A  ( r – 2) + A ]

1

2

3

1

2

3

1

2

3

A  r 2 + A  r + A  + 4 [A  r 2 – 2A  r + A  + A  r – A  + A ] + 4 [A  r 2 – 4A  r 1

2

3

1

1

1

2

2

3

1

1

+ 4A  + A  r – 2A  + A ]

1

2

2

3

[A  r 2 + 4A  r 2 + 4A  r 2] + [A  r – 8A  r + 4A  r – 16A  r + 4A  r]

1

1

1

2

1

2

1

2

+ [A  + 4A  – 4A  + 4A  + 16A  – 8A  + 4A ]

3

1

2

3

1

2

3

9A  r 2 + 9A  r – 24A  r + 20A  – 12A  + 9A

...( ii)

1

2

1

1

2

3

Equating eq. ( ii) with R.H.S. of equation ( i), we get

9A  r 2 =  r 2

1

9A  r – 24A  r = – 3 r

2

1

20A  – 12A  + 9A  = 5

1

2

3

1

Solving these equations, we get,  A  =  , A  = – 3 and A  = – 299

1

9

2

3

1

Thus, the particular solution

 a  =   r 2 – 3 r – 299

 r( p)

9

1

Therefore, the total solution is

= (C  + C  r) 

 r 2 – 3 r – 299. 

1

2

⋅ (– 2) r +  9

Example 23.  Solve the difference equation: a  + a

  + a

  = r 

 r

 r – 1

 r – 2

⋅  2r. 

...( i)

Sol. Put the R.H.S. of the equation to zero  i.e., 

   a +  a

+  a

= 0

 r 

 r – 1

 r – 2

The homogeneous solution is

L

 r

L

 r

1  i  3 O

1  i  3 O

− −

 a

=  − +

C  + 

C

 r( h)

NMM 2 QPP 1 NMM 2 QPP 2

The general form of the particular solution is = 2 r (A  r + A ). 

1

2

Putting this solution in L.H.S. of equation ( i), we get

2 r (A  r + A ) + 2 r – 1 (A ( r – 1) + A ) + 2 r – 2 (A  ( r – 2) + A ) 1

2

1 

2

1

2

4

Solving these equation, we get A  =   and A  = 1

1

7

2

F4

Hence, the particular solution is  a

= 2 r 

 r + 1

 r(  p)

HG

I

7

KJ

L

 r

 r

− 1 +  i  3 O

L 1  i  3O

 r  F 4

The total solution  a  = 

 C

 C

2

 r  1 . 

 r

NMM 2 QPP 1 + − −

NMM 2 QPP 2 +

+

HG

I

7

KJ
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Example 24.  Solve the difference equation a  + 6a

  + 9a

  = 3 with initial conditions

 r

 r – 1

 r – 2

 a  = 0 and a  = 1. 

 0

 1

Sol. Put the R.H.S. of the equation ( i) equal to zero  i.e., 

  a + 6 a

+ 9 a

= 0

 r 

 r – 1

 r – 2

This can be written as E2 + 6E + 9 = 0

or

(E + 3)(E + 3) = 0

or

E = – 3, – 3

The homogeneous solution is  a

= (C  + C   r) 

 r( h)

1

2

⋅ (– 3) r

The general form of the particular solution is A. 

Putting this solution in L.H.S. of equation ( i), we get

A + 6A + 9A = 3

16 A = 3

A = 3/16. 

3

Hence, the particular solution is  a  = 

. 

 r( p)

16

3

The total solution      a  = (C  + C  r) 

. 

 r

1

2

⋅ (– 3) r +  16

3

Therefore, 

 a  = C  + 

= 0

0

1

16

3

     a  = (C  + C ) 

= 1

1

1

2 ⋅ (– 3) +  16

− 3

Solving these equations, we get C  = 

and C  = 12

1

16

2

Thus, the total solution satisfying initial conditions is

F − 3

 r

3

  a  = 

+ 12 r . ( 3)

. 

 r

HG

I

16

KJ − + 16

PROBLEM SET-II

1. Which of the following recurrence relations are linear  non-homogeneous recurrence relations? 

( a)  a  =  a

+ 2 n

( b)  a  =  a

+  a

+  n 2 +  n + 1

 n

 n – 1

 n

 n – 1

 n – 2

( c)  a  =  a

+  a

+  n! 

( d)  a  =  a

+  n 2 n

 n

 n – 1

 n – 4

 n

 n – 6

2. What is the general form of the particular solution of the linear non-homogeneous recurrence relation  a  = 8 a

– 16 a

+  n 3 ? 

 n

 n – 2

 n – 4

3. What is the general form of the particular solution of the linear non-homogeneous recurrence relation  a  = 8 a

– 16 a

+  n 2 n ? 

 n

 n – 2

 n – 4

4. What is the general form of the particular solution of the linear non-homogeneous recurrence relation  a  = 8 a

– 16 a

+  n 42 n ? 

 n

 n – 2

 n – 4

5. What is the general form of the particular solution of the linear non-homogeneous recurrence relation  a  = 8 a

– 16 a

+ 2 ? 

 n

 n – 2

 n – 4

6. Solve the recurrence relation  a  =  a

+  a

+ 3 n + 1 for  n 

= 2 and

 n

 n–1

 n– 2

≥ 2, with initial conditions  a 0

 a  = 3. 

1

7. Solve the recurrence relation  a  = 2 a

+ 3 n with initial condition  a = 5. 

 n

 n – 1

1 
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8. Solve the recurrence relation  a  = 4 a

– 4 a

+  n 2 n + 3 n + 4;  n 

= 0, 

 n

 n – 1

 n – 2

≥ 2, with initial condition  a 0 

 a  = 1. 

1

9. Solve the recurrence relation  a  = 4 a

– 4 a

+ ( n + 1)2 n. 

 n

 n – 1

 n – 2

10. Solve the recurrence relation  a  = 7 a

– 10 a

– 2 

= 12,  a  = 39. 

 n

 n – 1

 n – 2

⋅ 3 n, with initial conditions  a 0 

1

11. Solve the recurrence relation  a  =  a

+  a

+ 3 n + 1 for  n 

= 2 and

 n

 n – 1 

 n – 2

≥ 2, with initial conditions  a 0

 a  = 3. 

1

12. Solve the recurrence relation  a  = 2 a

–  a

+ 2 n for  n 

= 1 and

 n

 n – 1 

 n – 2

≥ 2, with initial conditions  a 0

 a  = 2. 

1

13. Solve the recurrence relation  a  – 7 a

+ 10 a

= 6 + 8 n with initial conditions  a  = 1 and

 n

 n – 1 

 n – 2

0

 a  = 2. 

1

14. Solve the recurrence relation  a  = 7 a

– 10 a

+ 3 

= 1,  a  = 7. 

 n

 n – 1 

 n – 2

⋅ 5 n – 1 with initial conditions  a 0

1

15. Solve the recurrence relation  a

– 4 a

+ 3 a  = – 200,  n 

= 3000, 

 n+ 2

 n + 1

 n

≥ 0, with initial conditions  a 0

 a  = 3300. 

1

16. Which of the following is/are True/False? 

( a) The general solution to a non-homogeneous recurrence relation should be the sum of the general solution to the associated homogeneous recurrence and any particular solution to the non-homogeneous recurrence. 

( b)  a  = 3 a

+  n 2 is non-homogeneous of order 1 and degree 1. 

 n

 n – 1

( c)  a  =  na

+ 2 n is non-homogeneous of order 2 and degree 1. 

 n

 n – 2

( d)  a  = sin  a

+ cos  a

+ sin  a

+  ... +en is non-homogeneous, has no order and non degree. 

 n

 n – 1

 n – 2

 n – 3

ANSWERS AND HINTS (PROBLEM SET II)

1. ( a) The relation is linear non-homogeneous recurrence relation. 

( b) The relation is linear non-homogeneous recurrence relation. 

( c) The relation is linear non-homogeneous recurrence relation. 

( d) The relation is linear non-homogeneous recurrence relation. 

2. A  + A  n + A  n 2 + A  n 3

0

1

2

3

3. (A  + A  n) 

0

1

⋅ 2 n

4. (A  + A  n + A  n 2 + A  n 3 + A  n 4)2 n

0

1

2

3

4

5. A0

6. Try yourself. 

7. The characteristic equation is  r – 2 = 0. 

 a  = – 2 n + 1 + 3 n + 1. 

 n

8. 

⎛ −8 ⎞

⎛ 1

1 ⎞

 a  = (– 13)2 n +  ⎜

⎟ 2 n

 n + 4 + 9 

⎜

+ ⎟2 n

 n

 n

⎝ 3 ⎠

⋅ 3 n + n 2   ⎝6

2 ⎠

9. The characteristic equation is  r 2 – 4 r + 4 = 0. 

 a  = –  an = C 2 n + C  n 2 n +  n 2 

 n

0

1

⋅ 2 n +  n 3/6 ⋅ 2 n. 

10.  a  = 2 n + 2 

 n

⋅ 5 n + 3 n + 2

 n

⎛ (1

 n

+ 5) ⎞

⎛

⎞

11.  a  = –3 n – 10 + (6 + 2 5 ) 

+ (6 – 2 5 )  (1 − 5)

 n

⎜

⎟

⎝

2

⎠

⎜

⎟

⎝

2

⎠

12.  a  = 4 

 n

⋅ 2 n – 3 n – 3. 

13.  a  = – 9 

 n

⋅ 2 n + 2 ⋅ 5 n + 8 + 2 n

14.  a  = 2 n + n 

 n

⋅ 5 n

15.  a  =  c (3 n) +  c  + 100 n

 n

1

2

16. ( a) True

( b) True

( c) True

( d) True
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7.8 GENERATING FUNCTIONS

Generating functions is a method to solve the recurrence relations. 

Let us consider, the sequence  a ,   a ,  a ,  ..., a , ... of real numbers. For some interval of 0

1

2

 r

real numbers containing zero whose value at  t is given, the function G( t) is defined by the series

G( t) =  a  +  a   t +  a   t 2 + ... +  a tr + ... 

...( i)

0

1

2

 r 

This function G( t) is called the generating function of the sequence  a .  r Now, for the constant sequence 1, 1, 1, 1, ... the generating function is

1

G( t) =  1(− ) t

because it can be expressed as

G( t) = (1 –  t)– 1 = 1 +  t +  t 2 +  t 3 +  t 4 + ... 

[By Binomial expansion]

Comparing, this with equation ( i), we get

 a  = 1,  a  = 1,  a  = 1 and so on. 

0

1

2

For, the constant sequence 1, 2, 3, 4, 5, ... the generating function is

1

G( t) = 

because it can be expressed as

1

2

( −  t)

G( t) = (1 –  t)– 2 = 1 + 2 t + 3 t 2 + 4 t 3 + ... + ( r + 1)  tr Comparing this with equation ( i), we get

 a  = 1,  a  = 2,  a  = 3,  a  = 4 and so on. 

0

1

2

3

The generating function of Z r, (Z ≠ 0 and Z is a constant) is given by

G( t) = 1 + Z t + Z2  t 2 + Z3  t 3 + ... + Z r  tr

1

or

G( t) = 

[Assume |Z t|< 1]

1

( − Z )

 t

1

So

G( t) = 

generates Z r, Z ≠ 0. 

1

( − Z )

 t

Also, if  a (1) has the generating function G  ( t) and  a (2) has the generating function r

1

 r

G ( t), then    a (1) +    a (2) has the generating function   G  ( t) +   G  ( t). Here   and 2

λ1  r

λ2  r

λ1 1

λ2 2

λ1

λ2

are constants. 

Example 25.    Find simple expressions for the generating functions of the following sequences:

 (i) 1, – 1, 1, – 1, 1, – 1, ... 

 (ii) 1, 3, 32, 33, ... 

 (iii) 2, 2, 2, ... 

Sol.  ( i) We have the sequence 1, – 1, 1, – 1, 1 – 1, ... 

The generating function for this sequence is

∞

G( t) = 

 n n

( 1)  t

∑ −

 n = 0

1

Thus, 

G( t) =  1+  t
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( ii) We have the sequence 1, 3, 32, 33, ... 

The generating function for this sequence is

∞

G( t) = 

 n n

3  t

∑

 n = 0

1

Thus

G( t) =  1− 3 t

( iii) We have the sequence 2, 2, 2, ... 

The generating function for this sequence is

∞

∞

2

G( t) = 

 n

 n

2 t = 2

 t

∑

∑ = 1−  t

 n = 0

 n = 0

2

Thus

G( t) = 

. 

1 −  t

Example 26.   Determine the sequences associated with the following generating function : 1

 t

 (i)

 (ii)

 (iii) (3 + 4t)2. 

 1 +  2t

 1 −  t

1

Sol.  ( i)



= 1 – 2 t + 22 t 2 – 23 t 3 + ... 

1 + 2 t

Thus, the sequence is  1, – 2, 22, 23, .... 

 t

( ii)

=  t +  t 2 +  t 3, ... 

1 −  t

Thus, the sequence is  0, 1, 1, 1, ... 

( iii) (3 + 4 t)2 = 9 + 24 t + 16 t 2

Thus, the sequence is  9, 24, 16, 0, 0, ... . 

Theorem I.   If we know the generating function for the sequence a , then the generating r

 function of sequences a

 , a

  can be find easily. 

 r + 1

 r + 2

Proof. Let us consider, that G( t) be the generating function for the sequence, having the general term  a , then we have

 r

G( t) =  a  +  a   t +  a   t 2 + ... +  a tr + ... 

0

1

2

 r 

G( )

 t −  a

or



0  =  a  +  a   t +  a   t 2 + ... +  a   tr – 1 +  a tr + ... 

 t

1

2

3

 r

 r + 1

G( )

 t −  a

Thus, 

0  is the generating function for the sequence  a

. 

 t

 r + 1

In the same way, 

G( )

 t −  a 0 −  a t

1  =  a  +  a   t +  a   t 2 + ... 

 t 2

2

3

4

is the generating function for  a

. 

 r + 2
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The summary of results, which we have deduced from the above discussion, is shown in

Table 1. 

Table 1

 S. No. 

 General term of sequence a

 Generating function G( t)

 r

1. 

1

1/(1 – t)

2. 

 r + 1

1/(1 –  t)2

3. 

 r

 t/(1 –  t)2

4. 

 r( r + 1)

2 t/(1 –  t)3

5. 

Z r, here  z is a constant

1/(1 – Z t)

6. 

 n C A n – r.  Z r ( r = 0, 1, 2, 3, ...,   n)  r >  n (A + Z t) n

 r 

7. 

 a

G( t)

 r

G( )

 t −  a

8. 

 a

0

 r + 1

 t

G( t) −  a 0 −  a .  t

9. 

 a

1

 r + 2

 t 2

G( )

 t −  a

2

0 −  a .  t

1

−  a t

10. 

 a

2

 r + 3

 t 3

G( t) −  a

1

0 −  a t

1

− ...... −  a

 tn −

11. 

 a

 n − 1

 r +  n

 tn

12. 

λ   a (1) +    a (2)

G ( t) +   G ( t)

1

 r

λ2  r

λ1 1

λ2 2

7.8.1 General Procedure for Solving a Recurrence Relation Using Generating Functions

The method for solving a recurrence relation using generating functions has three steps:

1. Choose the general form of the generating function G( x), 

2. Derive a formula for G( x) using the recurrence, 

3. Derive a closed form expression for the coefficients of G( x). 

This clsoed form expression allows us to compute the  n th term in the recurrence. 

Generating functions apply wherever sequences apply. 

Example 27.   Determine the numeric function corresponding to the following generating 2

 function : G( x) = 

. 

 1 4x2

−

2

Sol. We have, 

G( x) =  1 4 2

−  x

It can also be written as

1

1

G( x) = 

+

1 − 2 x  1 + 2 x

From table, putting the value of the Generating function, we have

    a  = 2 r + (– 2) r,  r 

 r

≥ 0

It can also be written as R 0  r odd

    a  = S

 r

2 r + 1

T

 r  even
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Example 28.   Determine the numeric function corresponding to each of the following

 generating functions :

 2 3x 6x2

+

−

 x4

 (i) G(x) = 

 (ii) G(x) = 

 1 −  2x

 1 −  2x

2 + 3 x − 6 2

 x

Sol.  ( i) We have,    G( x) = 

1 − 2 x

Now take LCM, we get

2

2

G( x) = 

+ 3 x  or G( x) = 3 x +

1 − 2 x

1 − 2 x

So, the numeric function corresponding to the given generating function is

R 2  r = 0

      a  =  S| 7

 r = 1

 r

2 r  1  r

T| +

≥ 2. 

 x 4

( ii)



G( x) = 

=  x 4 (1 – 2 x)–1

1 − 2 x

=  x 4 [1 + 2 x + 22 x 2 + ......]

=  x 4 + 2 x 5 + 22 x 6 + ......]

0

R

, 0 ≤  r ≤ 4

∴



 a  = S

 r

T2 r −4, 

 r ≤ 5. 

Example 29.   Determine the generating function of the numeric function a , where

 r

 r

R

 a  = 

 2

 if r is even

S

 r

T  2r

−

 if r is odd . 

Sol.  We know that corresponding to numeric function 2 r, the generating function is 1

and corresponding to numeric function – 2 r, the generating function is 

1

or

1

( − 2 )

 t

1 − (− 2 )

 t

1

1

. Thus, the final answer is 

= (– 2) r, gives 2 r, when  r is even and – 2 r when

1 + 2 t

1 + 2 t  since  ar

1

 r is odd. Hence, the numeric function is 

. 

1 + 2 t

Example 30.  Solve the recurrence relation a

  – 3a

  + 2a  = 0

 ... ( i)

 r + 2

 r + 1

 r

 by the method of generating functions with the initial conditions a  = 2 and a  = 3. 

 0

 1

Sol. Let us assume that

∞

G( t) = 

 a tr

∑  r

0

Multiply equation ( i) by  tr and summing from  r = 0 to ∞, we have

∞

∞

∞

 a

 tr

∑ 2 − 3  a tr

∑ 1 + 2  a tr

 r +

 r +

∑  r = 0

0

0

0
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or

( a  +  a   t +  a   t 2 + ...) – 3( a  +  a   t +  a   t 2 + ...) + 2( a  +  a   t +  a   t 2 + ...) = 0

2

3

4

1

2

3

0

1

2

[∵ G( t) =  a  +  a   t +  a   t 2 + ...]

0

1

2

G( t) −  a

FG( t) −  a

0 −  a t

∴

1

– 3 

0

+ 2G( t) = 0

...( ii)

 t 2

HG

I

 t

KJ

Now, put  a  = 2 and  a  = 3 in equation ( ii) and solving, we get

0

1

2 − 3 t

2 − 3 t

G( t) = 

or G( t) = 

1 − 3 t + 2 2

 t

1

( −  t) 1

( − 2 t)

2 − 3 t

A

B

Now, let    

= 

+

1

( −  t) 1

( − 2 t)

1 −  t  1 − 2 t

 i.e., 

      2 – 3 t = A(1 – 2 t) + B(1 –  t)

...( iii)

Put  t = 1 on both sides of equation ( iii) to find A. Hence

– 1 = – A ∴ A = 1

1

Put  t =   on both sides of equation ( iii) to find B. Hence

2

1

1

=  B

2

2

∴ B = 1

1

1

Thus, 

G( t) = 

+

. Hence,  a  = 1 + 2 r. 

1 −  t  1 − 2 t

 r

Example 31.  Solve the recurrence relation a  – 7a

  + 10a

  = 0

 ... ( i)

 r

 r – 1

 r – 2

 by the method of generating functions with the initial conditions a  = 3 and a  = 3. 

 0

 1

Sol. Let us assume that

∞

G( t) = 

 a tr

∑  r

0

Multiply equation ( i) by  tr and summing from  r = 2 to ∞, we have

∞

∞

∞



 a tr

∑

 r

 r

 r

– 7

 a

 t

∑  r−1 + 10   a t

∑  r−2  = 0

2

2

2

or

( a t 2 +  a   t 3 + ...) – 7( a   t 2 +  a   t 3 + ...) + 10( a   t 2 +  a t 3 + ...) = 0

2 

3

1

2

0

1 

G( t) –  a  –  a   t – 7 t[G( t) –  a ] + 10 t 2 G( t) = 0

...( ii)

0

1

0

Now, put  a  = 3 and  a  = 3 in equation ( ii) and solving, we get

0

1

3 + 24 t

3 + 24 t

G( t) = 

= 

10 2

 t − 7 t + 1

5

(  t − 1) 2

(  t − 1)

By partial fractions

10

13

13

10

G( t) = 

– 

or G( t) = 

– 

2

(  t − 1)

5

(  t − 1)

1

( − 5 )

 t

1

( − 2 )

 t

Therefore, 

  

     a  = 13(5) r – 10(2) r. 

 r

Example 32.  Solve the recurrence relation: a

  – 2a

  + a  = 2r

...( i)

 r + 2

 r + 1

 r

 by the method of generating functions with the initial conditions a  = 2 and a  = 1. 

 0

 1

Sol. By taking generating functions of equation ( i) both the sides, we have

G( t) −  a

F

1

0 −  a t

1

G( t) −  a

– 2 

0  + G( t) = 

...( ii)

 t 2

HG

I

 t

KJ

1 − 2 t
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Now, put  a  = 2 and  a  = 1 in equation ( ii) and solving, we get

0

1

 t 2

G( t) – 2 –  t – 2 t G( t) – 2 t +  t 2 G( t) =  1−  t 2

 t 2

( t 2 – 2 t + 1) G( t) = 2 + 3 t +  1−  t 2

 t 2

(1 –  t)2 G( t) = 2 + 3 t +  1−  t 2

2

3 t

 t 2

G( t) = 

+ 

+ 

1

2

( −  t)

1

2

( −  t)

( −  t)( −  t  2

1 2 1

)

 t 2

1

1

By partial fraction 

= 

– 

( −  t)( −  t  2

1 2 1

)

1

( − 2 )

 t

1

2

( −  t)

1

3 t

1

Hence, 

G( t) = 

+ 

+ 

1

2

( −  t)

1

2

( −  t)

1

( − 2 )

 t

Therefore, 

   a = ( r + 1) + 3 r + 2 r

 r 

       a  = 1 + 4 r + 2 r. 

 r

Example 33.  Solve the recurrence relation a

  – 5a

  + 6a  = 2

...( i)

 r + 2

 r + 1

 r

 by the method of generating functions satisfying the initial conditions a  = 1 and a  = 2. 

 0

 1

Sol. Let us assume that

∞

G( t) = 

 a tr

∑  r

0

Now, by taking generating functions of equation ( i), we have

G( t) −  a

F

0 −  a t

G( t) −  a

2



1

0  + 6G( t) = 

 t 2

– 5 HG

I

 t

KJ

1 −  t

Put  a  = 1 and  a  = 3 in the above equation and solving, we get

0

1

5 2

 t − 4 t + 1

G( t) =  1(−  t) 1(− 2 t) 1(− 3 t)

By partial fractions

1

− 1

1

G( t) = 

+ 

1

( −  t)

1

( − 2 )

 t  +  1

( − 3 )

 t

Therefore, the solution after applying inverse transformations

       a  = 1 – 2 r + 3 r. 

 r

PROBLEM SET-III

1. Solve the recurrence  relation  a  = 4 a

– 4 a

+ 2 n  with initial conditions  a  = 1 and  a  = 4

 n

 n – 1

 n – 2

0

1

using the generating function. 

2. Solve the recurrence  relation  a  – 9 a

+ 26 a

– 24 a

= 0,  n 

 n

 n – 1

 n – 2

 n–3

≥ 3, with the initial conditions

 a  = 6,   a  = 17 and  a  = 53 using generating functions. 

0

1

2
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3. Solve the recurrence relation  a  – 3 a

– 10 a

= 28 × 5 n for  n 

= 25 and  a  = 120

 n

 n – 1 

 n – 2

≥ 2 with  a 0

1

using generating functions. 

4. Solve the recurrence relation  a

= 14 a

–  a

,   n > 1 with the initial conditions  a  = 1,  a  = 1

 n + 2

 n + 1

 n – 4

1

2

using generating functions. 

5. Solve the recurrence relation  a

= 5 a

– 4 a  for  n 

= 1,  a  = 2

 n + 2

 n + 1

 n

≥ 0 with the initial conditions  a 0

1

using generating functions. 

6. Which of the following is/are True/False? 

( a) The generating function for the sequence 1, 2, 4, 8, ... is the function

1

∞

= 1 +  x +  x 2 + ... =  ∑

 j

 x

1 −  x

 j = 0

( b) The generating function for the sequence 1, 2, 4, 8 ... is the function

1

∞

= 1 + 2 x + 4 x 2 + ... =  ∑  j j

 z x

1 − 2 x

 j = 0

ANSWERS AND HINTS (PROBLEM SET III)

1.  a  = 2 k – 1 ( k 2 +  k + 2) for  k 

 k

∈ N

2.  a  = 3.2 n + 3 n + 2.4 n,  n 

 n

≥ 0. 

3.  a = 15(–2) n – 10.5 n + 20( n + 1)5 n = 15(–2) n + (10 + 20 n) 5 n,  n n 

≥ 0

4.  a =  1

2 n − 3 + 2 + 

2 n − 3

(2 + 3)

]

 n 

[(2 − 3)

6

4 n + 2

5.  a = 

 n 

3

6. ( a) True

( b) True

SOLVED PROBLEMS

Problem 1.   How many slices of bread can a person obtain by making n straight cuts

 with a bread knife ? 

Sol.  For small cases, we have

  a  = 2,  a  = 4,  a  = 8. 

1

2

3

We have seen that the  n th line hits the previous ( n – 1) lines in ( n – 1) different places, hence, it splits  n old regions and so the number of regions increased by  n. 

Therefore, the recurrence relation is

 a  =  a

+  n for  n 

= 2. 

 n

 n – 1

≥ 2 with  a 1

Problem 2.  Solve the following difference equation

 y

  + y

  – 8y

  – 12y  = 0. 

 K + 3

 K + 2

 K + 1

 K

Sol. The characteristic equation is given by

     s 3 +  s 2 – 8 s – 12 = 0

or

( s – 3)( s + 2)( s + 2) = 0
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or



 s = 3, – 2, – 2

Therefore, the homogeneous solution of the equation is

 y  = C . 3K + (C  + C  K) . (– 2)K. 

K

1

2

3

Problem 3.  Solve the difference equation y

  + 6y

  + 12y

  + 8y  = 0. 

 K + 3

 K + 2

 K + 1

 K

Sol. The characteristic equation is

  s 3  + 6 s2 + 12 s + 8 = 0

or

( s + 2)( s + 2)( s + 2) = 0

or

   s = – 2, – 2, – 2. 

Therefore, the homogeneous solution of the equation is

 y  = (C  K2 + C  K + C ) . (– 2)K. 

K

1

2

3

Problem 4.  Solve the difference equation a  –  4a  –  6a  –  4a  +  a  =  0. 

 r

 r–1

 r–2

 r–3

 r–4

Sol. The characteristic equation is given by

 s 3 – 4 s 3 + 6 s 2 – 4 s + 1 = 0

or

( s – 1)( s 3 – 3 s 2 + 2 s – 1) = 0

or

( s – 1)( s –1)( s 2 – 2 s + 1) = 0

or

( s – 1)( s – 1)( s – 1)( s – 1) = 0

or

 s = 1, 1, 1, 1, 

Therefore, the homogeneous solution of the equation is

 y  = (C   r 3 + C   r 2 + C   r + C ) . (1) r. 

K

1

2

3

4

Problem 5.  Solve the difference equation a  –  2a  +  2a  –  a  =  0. 

 r

 r–1

 r–2

 r–3

Sol. The characteristic equation is given by

    s 3 – 2 s 2 + 2 s – 1 = 0

or

( s – 1)( s 2 –  s + 1) = 0

1 +  i  3 1 −  i  3

or

  s = 1, 

, 

2

2

Therefore, the homogeneous solution of the equation is

 r

 r

⎡

⎤

1

⎡

 i  3 ⎤

−

 a  = C  + C   1 +  i  3 +C  

. 

 r

1

2 ⎢

⎢

⎥

2

⎥

3

⎣

⎦

2

⎣

⎦

Problem 6.   Solve the recurrence relation a  – 5

  + 6a

  = 0 with initial conditions

 r

 r – 1

 r – 2

 a  = 1 and a  = 4. 

 0

 1

Sol. The characteristic equation is

 s 2 – 5 s + 6 = ( s – 2) ( s – 3) = 0 or  s = 2, 3. 

Therefore, the homogeneous solution of the equation is

 a  = C . 2 r + C  . 3 r

 r

1 

2

Therefore, 

 a  = C  + C  = 1

 0

1

2

 a  = 2C  + 3C  = 4

1

1

2

Solving these equations, we get C  = – 1 and C  = 2

1

2

Thus, the solution satisfying initial conditions is

 a  = – 2 r + 2.3 r. 


 r
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Problem 7.  Solve the difference equation y  –  y

–  6y

=  – 30. Given that y  = 20, 

 K

 K–1

 K–2

 0

 y  = – 5. 

 1

Sol. The given differential equation is

   y  –  y

– 6 y

=  –  30

...( i)

K

K–1

K–2

The equation ( i) can be written as

( s 2 –  s – 6) y  = –30

K

Its homogeneous solution is given as

( s 2 –  s – 6) y  = 0

K

or

( s – 3)( s + 2) = 0

or

   s = 3, – 2

Thus, the homogeneous solution is

 y

= C  . 3K + C  . (– 2)K

K( h)

1

2

For the particular solution of equation ( i), consider the general form of solution = A Put in the general form in L.H.S. of equation ( i), we get

A – A – 6A = – 30 ⇒ A = 5

Therefore, the particular solution = 5

The total solution is  y  = C . 3K + C (– 2)K + 5

K

1 

2

Now, putting K = 0, we have

     y  = C  + C  + 5 = 20

0

1

2

∴

C  + C  = 15

...( ii)

1

2

Now, putting K = 1, we have

 y  = 3C  – 2C  + 5

1

1

2

– 5 = 3C  – 2C  + 5 = 3C  – 2C  = – 10

...( iii)

1

2

1

2

Solving ( ii) and ( iii), we have

C  = 4, C  = 11

1

2

Therefore, the total solution satisfying the initial conditions is

 y  = 4. 3K + 11(– 2)K + 5. 

K

Problem 8.  Solve the recurrence relation a

  –  2a

+  a  =  r2 . 2r. 

...( i)

 r + 2

 r + 1

 r

Sol. Put R.H.S. of the equation ( i) equal to zero  i.e., 

 a

  – 2 a

+  a  = 0

 r + 2

 r + 1

 r

This can be written as ( s 2 – 2 s + 1)  a  = 0

 r

or

( s – 1)2 = 0

or

   s = 1, 1

Therefore, the homogeneous solution is

     a

= C  + C   r

 r( h)

1

2

For, finding particular solution of equation ( i), consider its general form

   a  = 2 r(A  + A   r + A   r 2)

 r

0

1

2

Putting this solution in the L.H.S. of equation ( i), we get

= 2 r + 2[A  ( r + 2)2 + A  ( r + 2) + A ] – 2 . 2 r + 1 [A  ( r + 1)2 + A  ( r + 1) + A ]

2

1

0

2

1

0

+ 2 r (A   r 2 + A   r + A )

2

1

0

=  r 2 . 2 r (A ) +  r . 2r (8A  + A ) + 2 r (12A  + 4A  + A )

...( ii)

2

2

1

2

1

0
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Equating equation ( ii) with R.H.S. of equation ( i), we get

A  = 1

2

8A  + A  = 0

2

1

12A  + 4A  + A  = 0

2

1

0

On solving these equations, we get

A  = 20, A  = – 8, A  = 1

0

1

2

Therefore, the particular solution is

     a  = 2 r ( r 2 – 8 r + 20)

 r( p)

Hence, the total solution is

 a  = C  + C  + 2 r( r 2 – 8 r + 20)

 r

1

2 r

Problem 9.   Solve the recurrence relation a  – 4a

  + 3a

  = (r + 6) 3r

 ...(i)

 r

 r – 1

 r – 2

Sol.  The characteristic equation is

      s 2 – 4 s + 3 = 0

or

( s – 3) ( s – 1) = 0 or  s = 3, 1. 

Therefore, the homogeneous solution is C  + C 3 r

1

2

For finding, the particular solution consider the general form of the solution = (A  r + A ) 3 r. 

0

2

Since, one of the terms of the solution occurs in the homogeneous solution, so multiply the

solution by  r, we get  r (A  r + A ) 3 r. 

0

2

Substituting this particular solution into equation ( i), we get

 r (A  r + A ) 3 r = 4 ( r – 1) [A  ( r – 1) + A ] 3 r – 1 – 3[A  ( r – 2) + A ] 3 r – 2 + ( r + 6) 3 r 0

2

0

1

0

1

3

On solving, we get

A  = 

and A  = 9. 

0

4

1

Therefore, the particular solution is

F3 r

=  r

 r

+ 9 3

HG

I

4

KJ

Hence, the total solution of the recurrence relation is

F3 r

    a  = C  + C 3 r +  r 

+ 9 3 r

 r

1

2

HG

I

4

KJ . 

Problem 10.  Solve the recurrence relation a  +  a

+  a

=  0

...( i)

 r

 r – 1

 r – 2

 satisfying the initial conditions a  = 0 and a  = 2. 

 0

 1

Sol. This equation can be written as ( s 2 +  s + 1)  a  = 0

 r

−1 +  i  3 −1 −  i  3

or

 s = 

, 

2

2

Therefore, the solution is given by

 r

⎡

 r

1  i  3 ⎤

− +

⎡ 1  i  3 ⎤

− −

 a  = C   ⎢

⎥ +C   ⎢

⎥

...( ii)

 r

1

2

⎣

⎦

2

2

⎣

⎦

Put  r = 0, in equation ( ii), we have

 a  = C  + C  = 0

...( iii)

0

1

2
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Put  r = 1, in equation ( ii), we have

⎡ 1  i  3 ⎤

− +

⎡ 1  i  3 ⎤

− −

 a  = C  

+ C  

= 2

...( iv)

1

1 ⎢

2

⎥

⎢

⎥

⎣

⎦

2

2

⎣

⎦

On solving equations ( iii) and ( iv), we have

2

C  = 

1

 i  3

2

C  =  −

2

 i  3

Therefore, the solution satisfying initial conditions is

 r

 r

2 ⎡ 1

− +  i  3 ⎤

2 ⎡ 1

− −  i  3 ⎤

 a  = 

. 

 r

⎢

⎥ −

⎢

⎥

 i  3

2

⎣

⎦

 i  3

2

⎣

⎦

Problem 11.  Solve the recurrence relation a  –  a

–  a

=  0

...( i)

 r

 r – 1

 r – 2

 satisfying the initial conditions a  = 1 and a  = 1. 

 0

 1

Sol. The equation ( i) can also be written as

1 + 5 1 − 5

( s 2 –  s – 1)  a  = 0 or  s = 

, 

 r

2

2

Therefore, the solution is given by

 r

 r

⎡

⎤

⎡

⎤

      a  = 

1 + 5

1 − 5

C ⎢

⎥ + C

...( ii)

 r

1

2

2

⎢ 2 ⎥

⎣

⎦

⎣

⎦

Put  r = 0, in equation ( ii), we have

  a  = C  + C  = 1

...( iii)

0

1

2

Put  r = 1, in equation ( ii), we have

⎡

⎤

⎡

⎤

  a  = 

1 + 5

1 − 5

C ⎢

⎥ + C

= 1

...( iv)

1

1

2

2

⎢ 2 ⎥

⎣

⎦

⎣

⎦

On solving equations ( iii) and ( iv), we have

5 +1

C  = 

1

2 5

5 −1

C  = 

2

2 5

Therefore, the solution satisfying initial conditions is

 r

 r

⎛ 5 +1⎞ ⎛1 + 5 ⎞ ⎛ 5 −1⎞ ⎛1 − 5 ⎞

  a  =  ⎜

⎟ ⎜

⎟ + ⎜

⎟

. 

 r

⎜

⎟

⎜⎝ 2 5 ⎟

2

⎜

⎠ ⎝

⎠

⎝ 2 5 ⎟

2

⎠ ⎝

⎠

Problem 12.  Solve the recurrence relation

 a

  –  3a  =   2 r. 

...( i)

 r + 1

 r

Sol. Put R.H.S. of the equation ( i) equal to zero  i.e., 

 a

– 3 a  = 0

 r + 1

 r

This can be written as    ( s – 3) a  = 0 or  s = 3. 

 r
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Therefore, the homogeneous solution is

    a

= C  . 3 r

 r( h)

1

For the particular solution of the equation ( i), consider the general form of the solution

= A . 2 r

Put this solution on L.H.S. of equation ( i), we have

= A . 2 r + 1 – 3A2 r = (2A – 3A) . 2 r

= – A . 2 r

...( ii)

Equating equation ( ii) with R.H.S. of equation ( i), we get

A = – 1

Therefore, the particular solution is

    a  = – (2 r)

 r( p)

Hence, the total solution is  a  = C  . 3 r – (2 r). 

 r

1

Problem 13.  Solve the recurrence relation a

  –  5a

  +  6a  =  5r. 

...( i)

 r + 2

 r + 1

 r

Sol. Put the R.H.S. of equation equal to zero  i.e., 

 a

– 5 a

+ 6 a  = 0

 r + 2

 r + 1

 r

This can also be written as

( s 2 – 5 s + 6)  a  = 0

 r

or

( s – 3)( s – 2) = 0

or

  s = 3, 2

Therefore, the homogeneous solution is

    a

= C  . 2 r + C  . 3 r

 r( h)

1

2

For, finding the particular solution consider the general form of the solution = A . 5 r. 

Now, put this solution on L.H.S. of equation ( i), we get

= A . 5 r + 2 – 5 . A . 5 r + 1 + 6 . A . 5 r

= 25A . 5 r – 25A . 5 r + 6A . 5 r

= 6A . 5 r

...( ii)

Equating equation ( ii) to R.H.S. of equation ( i), we get

1

A =  6

Therefore, the particular solution is

1

  a  = 

 r( p)

6  . 5 r

Hence, the total solution is

1

  a  = C  . 2 r + C  . 3 r + 

 r

1

2

6  . 5 r. 

Problem 14.  Solve the recurrence relation a  –  a

  =  7r. 

...( i)

 r

 r – 1

Sol. Put the R.H.S. of equation ( i) equal to zero  i.e., 

 a  –  a

= 0

 r

 r – 1

This equation can also be written as

( s – 1) a  = 0 or  s = 1

 r
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Therefore, the homogeneous solution is

   a

= C

 r( h)

1

For finding, the particular solution, consider the general form of the solution = A   r + A . 

0

1

Since, one of the terms of the solution occurs in the homogeneous solution, so multiply

the solution by  r, we get A   r 2 + A  .  r. 

0

1

Now, put this solution in L.H.S of equation ( i), we have

= A   r 2 + A   r – A ( r – 1)2 – A  ( r – 1) = 2A   r + A  – A

...( ii)

0

1

0

1

0

1

0

Equating equation ( ii) with R.H.S. of equation ( i), we get

A  =  7

0

2

A  – A  = 0

=  7

1

0

⇒

A1 2

Therefore, the particular solution is  a  =  7 2 7

 r +  r

 r( p)

2

2

Hence, the total solution is

  a  = C  +  7 2 7

 r +  r . 

 r

1

2

2

Problem 15.  Solve the recurrence relation a

  –  5a

  +  6a  =  r2. 

...( i)

 r + 2

 r + 1

 r

Sol. The homogeneous solution of the equation ( i) is

  a

= C  . 2 r + C  . 3 r

 r( h)

1

2

For finding, the particular solution of equation ( i), consider the general form of the solution

= A   r 2 + A   r + A

1

2

3

Put this solution in L.H.S. of equation ( i), we have

= A  ( r + 2)2 + A  ( r + 2) + A  – 5A  ( r + 1)2 – 5A ( r + 1) – 5A  + 6A   r 2  + 6A  r + 6A 1

2

3

1

2

3

1

2

3

= (2A ) r 2 + (– 6A  + 2A ) r + (– A  – 3A  + 2A )

...( ii)

1

1

2

1

2

3

Equating equation ( ii) with R.H.S. of equation ( i), we get

2A  = 1

...( iii)

1

– 6A  + 2A  = 0

...( iv)

1

2

– A  – 3A  + 2A  = 0

...( v)

1

2

3

On solving equation ( iii), ( iv) and ( v), we get

A  =  1 , A  =  3 , A  =  5

1

2

2

2

3

2

Therefore, the particular solution is

1

3

5

 a  = 

2

 r +  r +

 r( p)

2

2

2

Hence, the total solution is

1

3

5

    a  = C  . 2 r + C  . 3 r + 

2

 r +  r + . 

 r

1

2

2

2

2
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Problem 16.  Solve the recurrence relation y

  –  5y  =  5K satisfying the initial condition

 K + 1

 K

 y  = 3. 

 0

Sol. The given recurrence relation is

   y

– 5 y   = 5K

...( i)

K + 1

K

Put the R.H.S. of the equation ( i) equal to zero  i.e., 

   y

– 5 y  = 0

K + 1

K

This can also be written as

( s – 5) y  = 0 or  s = 5

K

Therefore, the homogeneous solution is  y

= C  . 5K. 

K( h)

1

For finding, the particular solution, consider the general form of the solution = A . 5K. 

Since, this term occurs in the homogeneous solution, so multiply the solution by K. 

Hence, the general form of the solution becomes = AK . 5K. 

Now, put this solution on L.H.S. of equation ( i), we have

= A (K + 1) . 5K + 1 – 5AK . 5K = A . 5K + 1

= 5A . 5K

...( ii)

Equating equations ( ii) with R.H.S. of equation ( i), we get

1

A =  5

Therefore, the particular solution is

1

 y

= 

K( p)

5 K . 5K

Hence, the total solution is

1

⎛

K ⎞

 y  = C  . 5K + 

=  ⎜C +

⎟   . 5K

...( iii)

K

1

5  K . 5K or  y K

1

⎝

5 ⎠

Put K = 0, in equation ( iii), we have

   y  = C  = 3. 

0

1

The total solution satisfying the initial condition is

⎛

K ⎞

   y  =  ⎜3 +

⎟  . 5K. 

K

⎝

5 ⎠

Problem 17.  Solve the recurrence relation a  –  3a

  +  2a

  =  0 satisfying the initial

 r

 r –  1

 r –  2

 conditions a  = 1 and a  = 4. 

 0

 1

Sol. The given recurrence relation is

 a  – 3 a

  +   2 a

= 0

...( i)

 r

 r – 1

 r – 2

The equation ( i) can also be written as

( s 2 – 3 s + 2) a  = 0 or ( s – 2)( s – 1) = 0

 r

or

 s = 1, 2

Therefore, the solution is  a  = C  + C  . 2 r

...( ii)

 r

1

2

Put  r = 0, in equation ( ii), we have

   a  = C  + C  = 1

...( iii)

0

1

2

Put  r = 1, in equation ( ii), we have

 a  = C  + 2C  = 4

...( iv)

1

1

2
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On solving equations ( iii) and ( iv), we get

C  = – 2

1

C  = 3

2

Therefore, the solution satisfying the initial conditions is

   a  = – 2 + 3 . 2 r. 

 r

Problem 18.   Determine the recurrence relation for the number of ways to climb n stairs if stairs can be climbed two or three at a time ? What are the initial conditions ? In how many ways ten stairs can be climbed ? 

Sol.  Let,  a  be the number of ways to climb  n stairs. Now, if  n 

=  a

 n

≥ 4, then  an

 n – 2

+  a

 i.e.,  climb  n – 2 stairs in one of  a

ways and then climb two more, or climb  n – 3 stairs

 n –3

 n – 2

in one of  a

ways and then climb three more. 

 n – 3

The initial conditions are  a  = 0,  a  = 1 and  a  = 1. 

1

2

3

To find the number of ways to climb ten stairs, first we have to find  a ,  a ,  a ,  a ,  a ,  a 4

5

6

7

8

9

and then  a . So

10

  a  = 1 + 0 = 1, 

 a  = 1 + 1 = 2, 

 a  = 1 + 1 = 2

4

5

6

  a  = 2 + 1 = 3, 

 a  = 2 + 2 = 4, 

 a  = 3 + 2 = 5

7

8

9

and

 a  = 4 + 3 = 7. 

10

Problem 19.   Two companies A and B control the market for a certain product, each

 starting off with a 50% share. From one year to the next A retains 70% and loses to B the

 remaining 30% of its customer while B retains 60% and loses to A the remaining 40% of its

 customers. Let A  and B  denote the market shares of A and B respectively after n years. 

 n

 n

 (i) Derive a recurrence relation. 

 (ii) Solve the recurrence relation. 

Sol.  ( i) We have

7

4

A

= 

A +

B

...( i)

 n + 1

10  n

10  n

3

6

and

B

= 

A +

B

...( ii)

 n+1

10  n

10  n

From equation ( i), we have

10 F

7

B  = 

A

−

A

 n

4

 n + 1

HG

I

10  n KJ

...( iii)

7

4

Now, 

A

= 

A

+

B

 n + 2

10  n+1 10  n+1

7

4 F 3

6

= 

A

+

A +

B

10  n+1

10 HG

I

10  n

10  n KJ

7

4 ⎧ 3

6 ⎡10 ⎛

7

⎞⎤⎫

= 

A n+1 +

⎨

A +

⎢

⎜ A

 n

 n +1 −

A

10

10 10

10

⎩

⎣ 4 ⎝

10  n ⎟⎥⎬

⎠⎦⎭

13

3

A

= 

A

−

A

 n + 2

10  n+ 1

10  n

which gives

13

3

A



 n + 2 −

A n+1 +

A

10

10  n  = 0

...( iv)
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( ii) The characteristic equation corresponding to recurrence relation in eqn. ( iv) is 3

 s 2

13

−

 s +

= 0

10

10

or





( s – 1) ( s – 3/10) = 0 or  s = 1, 3/10. 

Therefore, the homogeneous solution is given by

F

  a

= C  + C   3

 r( h)

1

2 HG I

10KJ  n

We have to find the value of C  and C  to complete the solution. From the problem

1

2

1

1

statement, we know that A  =   and B  =  , the starting market share of the two companies. 

0

2

0

2

Thus from eq. ( iii), we have

10 F

7

B  = 

A

−

A

 n

4

 n + 1

HG

I

10  n KJ

Putting the value of  a

in this equation, we have

 r( h)

 n

⎧

+1

10 ⎪

⎛ 3 ⎞

7 ⎡

⎛ 3  n ⎤⎫

⎞ ⎪

= 

⎨ 1

C + C2 ⎜ ⎟

−

⎢ 1

C + C2

4

⎝10 ⎠

10

⎜

⎪

⎢

⎝10 ⎟ ⎥⎬

⎠

⎩

⎣

⎥⎦⎪⎭

10 3

3  n

⎡

3

7 ⎤

⎛

⎞ ⎛

⎞

= 

⎢

1

C + 2

C

4 10

⎜

⎢

⎝10 ⎟ ⎜

⎠ ⎝10 − 10 ⎟⎥

⎠

⎣

⎥⎦

3

F 3

B  =  C −

C

 n

4 1 HG

I

10

2

KJ n . 

But, we have

1

1

3

= A  = C  + C

and

= B  =  C − C

2

0

1

2

2

0

4 1

2

Solving these equations for C  and C , we get

1

2

4

1

C  = 

and C  = 

. 

1

7

2

14

Hence, the particular solution is

4

1 F 3

 a

= 

 n(p)

+

7

14 HG

I

10KJ  n. 

Problem 20.   Solve the recurrence relation a  – 5a

  + 6a

  = 2r + r, r 

 r

 r – 1

 r – 2

≥  2 by the method

 of generating functions with the initial conditions a  = 1, a  = 1. 

 0

 1

Sol.  Let us assume that

∞

G( t) = ∑  a tr

 r

0

Multiply equation ( i) by  tr and summing from  r = 2 to ∞, we have

∞

∞

∞

∞

∞

 a tr − 5

∑

∑  a r

 r

 r

 r

 r − 1 t + 6 ∑  ar − 2 t

 r

= 

2

∑ + ∑  rt

2

2

2

2

2

4

L 1

or

G( t) –  a  –  a t – 5 t (G( t) –  a ) + 6 t 2G( t) = 

−  t

− 1

0

1

0

1 2

NM

O

1

2

−

( −  t)

QP

 t
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Putting value  a  = 1 and  a  = 1, we have

0

1

1 − 8 t + 27 2

 t − 35 3

 t + 14 4

 t

G( t) = 

1

2

( −  t) 1

( − 2 2

 t) 1

( − 3 t)

5/4

1/2

3

2

17/4

G( t) = 

+

−

−

+

1 −  t

1

2

( −  t)

1

( − 2 )

 t

1

( − 2 2

)

 t

1 − 3 t

5

1

 r

 r

17

Therefore, 

 a  =  + ( r + 1) − 3 2

. 

− 2 ( r + 1) . 2 +

. 3 r. 

 r

4

2

4

MULTIPLE CHOICE QUESTIONS

1. Which of following is the homogeneous solution of the recurrence relation? 

 a  – 3 a

+ 2 a

= 0

 r

 r – 1

 r – 2

( a) A  + A  

+  A  )

1

2 ⋅ 2 r

( b) (A1

2  ⋅ 2 r

( c) 3A  + 2A

( d) (A  +  A  ) 

1

2

1

2

⋅  r

2. Which of following is the order of the recurrence relation? 

8 a  + 4 a

+ 8 a

= 0

 r

 r + 1

 r + 2

( a) 2

( b) 1

( c) 3

( d) 0

3. If  a  – 4 a

+ 4 a

= 0 and the initial conditions are  a  = 1 and   a  = 6, then the particular

 r

 r – 1

 r – 2

0

1

solution of this recurrence relation is:

( a) (A  +  A   r).2 r

( b) (1 +  2 r) 

1

2

⋅ 2 r

( c) (2 +  r) ⋅ 2 r

( d) (1/2 + 2 r) ⋅ 2 r

4. If  a

– 2 a

+  a  = 3 r + 5 is a recurrence relation then the particular solution of it is:

 r + 2

 r + 1

 r

( a) 1/2 r 3 +  r 2

( b) 1/2 r 2 +  r 3

( c)  r 3 +  r 2

( d) 1/2 r 3 + 1/3 r 2

5. If  a  = A r + B is a solution of the recurrence relation  a  = 2 a

+  r + 5 then the value of A and B

 r

 r

 r – 1

is:

( a) 1, 7

( b) – 1, – 7

( c) – 7, – 1

( d) 7, 1

ANSWERS

1. ( a)

2. ( a)

3. ( b)

4. ( a)

5. ( b)

REVIEW QUESTIONS

1. What is recurrence relation? Give an example. 

2. What is the order of a recurrence relation? Explain by giving example. 

3. What is the degree of a recurrence relation? Explain by giving example. 

4. What is Linear Recurrence Relations with Constant Coeffiecients (LRRWCC’s)? 

5. What is Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCC’s)? 

Give Example. 

6. What are the steps to solve Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCC’s)? 
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7. What is Non-Homogeneous Linear Recurrence Relations with Constant Coefficients? Give example. 

8. What are the steps to solve Non-Homogeneous Linear Recurrence Relations with Constant Coefficients? 

9. What is particular solution? Give Example. 

10. What is Total Solution? Give example. 

11. What is Generating Function? What are the steps to solve recurrence relations using generating functions? 

CHAPATER END PROBLEMS

1. Solve the following recurrence relation and indicate if it is a linear homogeneous relation or not. 

If yes, give its degree and if not, justify your answer. 

 t  =  t    +  n,  t  = 4

 n

 n – 1

1

2. Solve the following difference equation:   a

=  a

+  a :  n 

= 0,  a = 1

( RTU, 2009)

 n + 2 

 n + 1 

 n

≥ 0  a 0

1 

3. Solve the following recurrences:

( a)  a  = 7 a

for  n 

= 3. 

 n

 n – 1

≥ 1 where  a 0

( b)  a

= 5 a  for  n 

= 2. 

 n + 1

 n

≥ 0 where  a 0

( c)  a  = –  a

for  n 

= 4. 

 n

 n – 1

≥ 1 where  a 0

4. Solve the following recurrences:

( a)  a  = 4 a

– 4 a

for  n 

= 1,  a  = 4. 

 n

 n – 1

 n – 2

≥ 2 where  a 0

1

( b)  a  = 6 a

– 9 a

for  n 

= 2,  a  = – 3. 

 n

 n – 1

 n – 2

≥ 2 where  a 0

1

( c)  a  = 6 a

– 12 a

+ 8 a

for  n 

= 2,  a  = 4,  a  = 16. 

 n

 n – 1

 n – 2

 n – 3

≥ 3 where  a 0

1

2

5. Solve the following non-homogeneous recurrence relations:

( a)  a  = 3 a

+ 4 a

– 12 n – 2 for  n 

= 2,  a  = 3. 

 n

 n – 1 

 n – 2 

≥ 2, where  a 0

1

( b)  a  = 4 a

– 4 a

+ 2 for  n 

= – 1,  a  = 2. 

 n

 n – 1 

 n – 2 

≥ 2, where  a 0

1

( c)  a  = 5 a

– 6 a

+ 4 n + 2 n + 3 for  n 

= 5,  a  = 19. 

 n

 n – 1 

 n – 2 

≥ 2 where  a 0

1

6. Solve the following recurrence relations:

( a)  a  = 5 a

– 6 a

for  n 

= 2,  a  = 5. 

 n

 n – 1

 n – 2

≥ 2, where  a 0

1

( b)  a  = 4 a

– 3 a

for  n 

= – 1,  a  = 2. 

 n

 n – 1

 n – 2 

≥ 2, where  a 0

1

( c)  a  = 4 a

 –  4 a

for  n 

= 3,  a  = 8. 

 n

 n – 1 

 n –   2

≥   2, where  a 0

1

( d)  a  = 6 a

– 9 a

for  n 

= 2,  a  = – 3. 

 n

 n – 1 

 n – 2

≥ 2, where  a 0

1

( e)  a  = 6 a

– 11 a

+ 6 a

for  n 

= 3,  a  = 5,  a  = 11. 

 n

 n – 1 

 n – 2 

 n – 3 

≥ 3, where  a 0

1

2

( f)  a  = 6 a

– 12 a

+ 8 a

for  n 

= 2,  a  = 4,  a  = 16. 

 n

 n – 1 

 n – 2 

 n – 3 

≥ 3, where  a 0

1

2

( g)  a  = –  a

for  n 

= 4,  a  = 6. 

 n

 n – 2

≥ 2, where  a 0

1

7. Solve the recurrence relation  d  = 2 d

–  d

with initial conditions  d  = 1.5 and  d  = 3. 

 n

 n – 1 

 n – 2 

1

2

( RTU, 2009)

8. Solve the following recurrence relation:

  a  = 1, 

0 

 a  = 3, 

1

2 a  = 3 a

–  a    + 1

for  n 

 n

 n – 1

 n – 2

≥ 2. 
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9. Solve the recurrence relation:

T  = 3, 

1

T  = 7, 

2

T  = 2T

–  T

+ 2

for  n 

3

 n – 1

 n – 2

≥ 3. 

10. Solve the following recurrence relation to find an explicit formula for the sequence  T : n

T  = 1, 

0

T  = 2, 

1

T  = 28, 

2

T  = 5T

– 3T     + 2

for  n 

 n

 n – 1

 n – 2

≥ 3. 

11. Solve the recurrence relation  2 a  – 11 a

+ 5 a

= 0,  n 

= 1,  a  = – 8. 

 n

 n – 1

 n – 2

≥ 2,  a 0

1

12. Solve the recurrence relation. 

 a  = 10 a

– 21 a

with initial conditions  a  = – 1 and  a  = 1. 

 n

 n – 1 

 n – 2 

0

1

13. Solve the following recurrence. 

 a = 4 a

– 4 a

+ 1 for  n > = 2 with initial conditions  a = 1,  a = 2. 

 n

 n – 1 

 n –  2 

0

1 

14. Solve the following recurrence. 

 a  = 8 a

– 15 a

with initial conditions  a  = 0;  a  = 1. 

 n

 n – 1

 n – 2

0

1

15. Solve the following recurrence

( UPTU, 2010)

 a – 6 a

+ 8 a

=  r.4 r given  a  = 8;  a  = 22. 

 r 

 r – 1 

 r – 2 

0

1

16. Solve the recurrence relation  a  = 2 n  a

 n > 0 with initial condition  a  = 1. 

( CU, 2010)

 n

 n – 1, 



0

17. Solve the recurrence  a  = 2 a

+ 2 n – 1 with initial condition  a  = 0. 

 n

 n – 1 

0

18. A person opens a bank account with a deposit of ` 100/– and adds ` 10/– each month. The account earns interest at 6% per annum compounded monthly. 

( a) Let  a  = amount in account after  n months. Write down the initial condition and a recurrence n

for  a

in terms of  a . 

 n + 1 

 n

( b) Find a formula for  a  in terms of  n and check your answer by induction. 

 n

( c) How much will be in the account after 10 years? 20 years? How long will the person take to become a millionaire? 

19. A fly lands on a piece of food depositing a malignant single-celled organism which divides into two every 5 minutes. 

( a) How many organisms will inhabit the food after one hour? How will it take before there are one million organisms? 100 million organisms? 

( b) Suppose in addition that a natural antibiotic is activated which, after one hour has elapsed, kills 2,000 organisms initially and then each 5 minutes, so we may assume

 a  = 211,  a

= 2 a  – 2,000 for  n 

11

 n + 1

 n

≥ 11. 

where  a  denotes the number of organisms 5 n minutes from the moment the fly landed. The food n

is safe to eat provided there are less than one million organisms. Find a general formula for  an and the period of time for which the food remains safe. 

20. Let  a  be the number of ways of forming a line of  n people distinguished only by whether they are n

male (M) or female (F). For example there are four possibilities with 2 people:

FF, FM, MF, MM. 

Write down a recurrence for  a  and an explicit formula in terms of  n. 

 n

21. Assume that deer population in a country is 200 at time  n = 0 and 220 at time  n = 1 and that increase from  n – 1 to time  n is twice the increase from time  n –  2 to time ( n – 1). Write a recurrence relation and an initial condition that define deer population at time n and then solve the recurrence relation. 

( DOEACC, 2005)
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22. Let  b  be the number of ways of forming a line of  n people distinguished only by whether they are n

male (M) or female (F), such that no two males are next to each other. For example there are five possibilities with 3 people:

FFF, FFM, FMF, MFM, MFF. 

Write down a recurrence for  b  and an explicit formula in terms of  n. Also recognize the sequence. 

 n

23. Derive the recurrence relation to find the number of distinct binary trees that can be generated with  n nodes. Also obtain its solution. 

( DOEACC, 2004)

24. Find a recurrence relation for the number of ways to arrange flags on a flagpole  n  feet tall using 4 types of flags: red flags 2 feet high, white, blue and yellow flags each 1 foot high. 

25. Find the general solution of S( k) – 3S( k – 1) – 4S( k – 2) = 4 k ( MDU, 1998)

26. Find the recurrence relation and initial condition that uniquely determines each of the geometric progressions

( a) 2, 10, 50, 250, ... 

( b) 6, – 18, 54, – 162, ... 

27. Solve the recurrence relation  a

– 4 a

+ 4 a  = 2 n

( RTU, 09,10)

 n + 2 

 n + 1

 n

28. Find the general solution of

( MDU, 2002)

S – 4S

+ 4S

= 2 r +  r  2 r

 r 

 r – 1

 r – 2

29. Find the explicit formula for  c  =  c

+  n,  c  = 5. 

( VTU, Jan ’07)

 n

 n – 1

1

30. Find an explicit formula for the sequence defined by  c  = 3 c

– 2 c   , with the initial conditions

 n

 n – 1

 n – 2

 c  = 5, and  c  = 3. 

( VTU, Jul ’06)

1

2

31. Solve for  a , the recurrence relation

 n

 a  – 2 a

– 3 a

= 0,  n 

= 3 and  a  = 1. 

 n

 n – 1

 n – 2

≥ 2, with  a 0

1

32. Solve the recurrence relation S( k) – 4S( k – 1) + 3S( k) = 3 k. 

33. Solve the difference equation  u

+  u

+  u  =  n 2 +  n + 1. 

( RTU, 2009)

 n + 2 

 n + 1 

 n

34. Solve the recurrence relation  a  + 5 a

– 6 a

= 3 n 2 – 2 n + 1

( RTU, 2010)

 n

 n – 1

 n – 2   

35. Find the generating function of the sequence 1,  a,  a 2,  a 3, …

( DOEACC, 2005)

36. Find the generating function for 0, 0, 1,  a,  a 2,  a 3,  a 4, ... for  a ≠ 0. 

37. Find the simple expression for the generating function of following discrete numeric function 1, 2/3, 3/9, 4/27, … ( r + 1)/3 r, …

( UPTU, 2010)

38. Give the generating function for the following sequence:

( DOEACC, 2010)

3, 1, 3, 1, 3, 1, …

39. Solve S(



 n) – 2S( n – 1) – 3S( n – 2) = 0,  n ≥ 2

( MDU, 1998)

With S(0) = 3 and S(1) = 1 recurrence relation using generating function. 

40. Solve the following difference equation using generating function

( MDU, 2001)

 a  –  a

–  a

= 0,  r 

= 1 and  a = 2

 r

 r – 1

 r – 2 

≥ 2 :  a 0

1 

41. Solve the recurrence relation

( KU, 2005)

 a – 7 a

+10 a

= 0  by the method of generating functions with the initial conditions  a  = 3 and

 r 

 r – 1 

 r – 2 

0

 a  = 3. 

1

42. Solve by the method of generating function:

( ANDRA, 2001)

 a  +  a

– 56 a

= 7 r +  r 2 ;  r 

 r

 r – 1

 r – 2 

≥ 2

43. Solve the recurrence relation

( KU, 2001)

 a  –  a

= 5(7 n),  n 

= 1 by the method of generating function. 

 n

 n – 1 



≥ 1;  a 0

44. Using generating function solve the recurrence relation

 a  =  3 a

,  k = 1, 2, 3 ...... and  the initial condition  a  = 2. 

 k

 k – 1

0 
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ANSWERS TO SELECTED PROBLEMS

1.  t  =  n( n+1)/2 + 3

 n

3. ( a)  a  = 3(7 n)

( b)  a  = 2(5 n)

( c)  a  = 4(– 1) n

 n

 n

 n

4. ( a)  a  = 2 n(1 +  n) ( b)  a  = 3 n(2 – 3 n) ( c)  a  = 2 n(2 –  n +  n 2) n

 n

 n

5. ( a)  an = 2 n + 4 – 4 n + (– 1) n + 1. 

( b)  a  = 2 n(3 n –  3) + 2 . 

 n

( c)  a  =  n + 5  –  5  ×  2 n –  3 n + 1 + 2  ×  4 n + 1 . 

 n

6. ( a)  a  = 2 n + 3 n. ( b)  an = 3 n + 1 – 5/2 ( c)  an = 3  ×  2 n +  n 2 n = ( n + 3)2 n n

( d)  a  = 3 n(2  –  3 n)

( e)  a  = 3 n + 2. ( f)  a = 2 n (2 –  n +  n 2). 

 n

 n

 n 

8.  a =  n + 3 – 1/2 n –1. 

 n 

9. T  =  n 2 +  n + 1

 n

10. T = 25/16 (– 1) n + (7/4 n – 9/16) 3 n

 n 

11.  a  = (26/9)(1/2) n – (17/9)(5) n,  n > = 0

 n

18. ( a)  a

= 201/200  a  + 10

( b)  a  = 2100 (201/200) n – 2000

 n + 1

 n

 n

( c) 103.05 Years. 

19. ( a) 100 minutes and 2 hours 15 minutes

( b) 2 hours 5 minutes

20.  a  = 2 n

 n

24. 2A – 3A

– 10A

= 0 and A = 3; A = 10. 

 n 

 n – 1

 n – 2 

1 

2 

26. ( a)  a  = 5 a

 n > = 1,  a = 2

( b)  a  = – 3 a

 n > = 1,  a = 6

 n

 n – 1, 

0 

 n

 n – 1, 

0 

28. S  = A2 r + Br2 r

 r

31.  a  = 2(–1) n + 3 n

 n

32.  S  = A + B3 k – 3/2 k 3 k

 k

36.  x 2/(1 –  ax)

44.  a  = 2 * 3 k. 

 k

C H A P T E R

8

 Counting Techniques

PREVIEW

There are counting problems which come under the branch of Mathematics called

combinatorics. This chapter covers methods for counting how many possible outcomes there

are in various situations. It specifically covers the basic principles of counting, factorial, permutations, combinations and pigeonhole principle. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

•

understand the first (sum) and second (multiplication) principle of counting

•

dolve problems using first and second principle of counting

•

understand the permutation and restrictions on permutations

•

solve counting problems using permutations

•

understand the combination

•

solve counting problems using combinations

•

understand the pigeonhole principle

•

solve counting problems using pigeonhole principle

8.1

INTRODUCTION

In a sequence of events, the total possible number of ways all events can be performed

is the product of the possible number of ways each individual event can be performed. 

Permutations and Combinations involve counting the number of different selections possible

from a set of objects given certain restrictions and conditions. 

By permutation we mean an arrangement of objects in a particular order. A permutation

is a selection where the order in which the objects are selected is important and repetition of objects is not allowed. For example, the selection 123 is different to the selection 132 as

permutations. 
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By combination we mean an arrangement of objects without repetition where order is

not important. A combination is a selection where the order in which the objects are selected

is not important and repetition of objects is not allowed. For example, the selection 123 is the same as the selection 132 as combinations. 

The difference between a permutation and a combination is not whether there is

repetition or not. The only difference in the definition of a permutation and a combination is whether order  is important. 

The pigeonhole principle is very important to solve many problems in combinatorics. It

was introduced by a German mathematician, Peter Gustav Lejeune Dirichlet in 1834. The

pigeonhole principle states that if there are more pigeons than pigeonholes, then there must

be at least one pigeonhole with at least two pigeons in it. 

8.2

FIRST COUNTING PRINCIPLE

If an event can occur in  r different steps, and

Step 1 can occur in  n  ways. 

1

Step 2 can occur in  n  ways. 

2

............................................. 

............................................. 

Step  r can occur in  n  ways. 

 r

Then the number of possible events that can occur is =  n .  n .  n ...  n . 

1 

2 

3 

 r

This is the fundamental principle of counting. 

Example 1.  A child has four hats, three pair of gloves and five pair of socks. Determine different possible triplets he can wear? 

Sol. A hat can be selected in four ways. 

A pair of gloves can be selected in three ways. 

A pair of socks can be selected in five ways. 

∴ By principle of counting. 

Total number of possible triplets the child can wear are = 4 × 3 × 5 = 60 ways. 

Example 2.  A person has to arrange five books on a shelf. In how many ways can he do so ? 

Sol. The first book can be arranged in 5 ways. 

The second book can be arranged in 4 ways. 

The third book can be arranged in 3 ways. 

The fourth book can be arranged in 2 ways. 

The fifth book can be arranged in 1 way. 

Thus, by principle of counting, 

Total number of ways five books can be arranged in 5 × 4 × 3 × 2 × 1 = 120 ways. 

Theorem I.  Prove that a set containing n elements has 2n subsets. Use the first principle of counting. 

Proof. As we have  n elements in the set, a subset can be constructed in  n different steps  i.e., 
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Take or do not take first element. 

Take or do not take second element. 

..................................................... 

..................................................... 

Take or do not take  n th element. 

So, each step can be done in two different ways. 

Hence the possible number of subsets = 2 ⋅ 2 ⋅ 2 ⋅ 2 ...  n times = 2 n. 

Example 3.  How many different 8-bit strings are there that begin and end with one? 

Sol. An 8-bit string that begins and end with 1 can be constructed in 6 steps  i.e., By selecting II bit, III bit, IV bit, V bit, VI bit and VII bit and each bit can be selected in 2 ways. 

Hence, the total number of 8-bit strings that begins and end with 1 is

= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 26. 

Example 4.  How many different 2-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 ? When repetition is allowed? When repetition is not allowed? 

Sol. When repetition is allowed

The tens place can be filled by 10 ways and the units place can be filled by 10 ways. 

∴ The total number of 2 digit numbers = 10 × 10 = 100. 

When repetition is not allowed. 

The tens place can be filled by 10 ways and the units place can be filled by 9 ways. 

∴ The total number of 2-digit numbers = 10 × 9 = 90. 

Example 5.  A five person committee having members Ankit, Arjit, Sonu, Monu and

 Nonu is to select a president, vice-president and secretary. 

( a)  How many selections exclude Nonu? 

( b)  How many selections include Sonu and Monu? 

( c)  How many selections exclude Sonu and Monu? 

( d)  How many selections are there in which Ankit is president? 

Sol. ( a) After excluding Nonu, we have to select three persons from the remaining four. 

Therefore, president can be selected in 4 ways, vice-president can be selected in 3 ways, and

secretary can be selected in 2 ways. 

Hence, the total number of selections that exclude Nonu = 4 × 3 × 2 = 24. 

( b) We have 3 ways to assign any post to Sonu. After selecting Sonu, there are 2 ways to assign any post to Monu. After selecting Sonu and Monu, we can assign the remaining post to

any of the three persons. 

Hence, the total number of selections that include Sonu and Monu = 3 × 2 × 3 = 18. 

( c) After excluding Sonu and Monu, we have to select three persons from the remaining

three. Therefore, president can be selected in 3 ways, vice-president can be selected in 2 ways, and secretary can be selected in 1 way. 

Hence, the total number of selections that exclude Sonu and Monu = 3 × 2 × 1 = 6. 
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( d) When Ankit is selected as president, then we have to select vice-president and

secretary from the remaining four. Therefore, Vice-president can be selected in 4 ways and

secretary can be selected in 3 ways. 

Hence, the total number of selections in which Ankit is president = 4 × 3 = 12. 

Example 6.  Ram has five different ‘Data Structure Books’, four different ‘Discrete

 Structure Books’ and five different ‘Programming Language Books’. 

( a)  In how many ways Ram can arrange these books on a shelf? 

( b)  In how many ways can these books be arranged on a shelf if all five programming language books are on the right? 

( c)  In how many ways can these books be arranged on a shelf if all five data structure books are on the left and all five programming language books are on the right? 

Sol. We have total = 5 + 4 + 5 = 14 books. 

( a)

The first book can be arranged in 14 ways. 

The second book can be arranged in 13 ways. 

The third book can be arranged in 12 ways. 

........................................................................ 

........................................................................ 

The fourteenth book can be arranged in 1 way. 

Hence, the total number of ways the book can be placed on a shelf

= 14 × 13 × 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

= 8.717 × 1010. 

( b) We have to place all the five programming language books on the right. Thus, the

remaining books to be arranged are = 14 – 5 = 9. 

The first book can be arranged in 9 ways. 

The second book can be arranged in 8 ways. 

........................................................................ 

........................................................................ 

The ninth book can be arranged in 1 way. 

Hence, the total number of ways arranging remaining books

= 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 362880. 

The five programming language books can be arranged in following ways :

The first one can be arranged in 5 ways. 

The second one can be arranged in 4 ways. 

........................................................................ 

........................................................................ 

The fifth one can be arranged in 1 way. 

The total number of ways the programming language books can be arranged

= 5 × 4 × 3 × 2 × 1 = 120. 

The total number of ways to arrange the books on a shelf when all five programming

language books are on right

= 362880 × 120 = 43545600. 
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( c) As explained earlier, we have 120 ways to place five programming language books

on the shelf. Also we have 120 ways to arrange five data structure books on the shelf. Similarly, we have 24 ways to arrange four discrete structure books on the shelf. 

Hence, the total number of ways the book can be arranged on a shelf if all five data

structure books are on the left and all five programming language books are on the right is

= 120 × 120 × 24 = 345600. 

8.3

SECOND COUNTING PRINCIPLE

Consider that {D , D , D ,...,D } is a pairwise disjoint family of sets and some set D  has

1

2

3

 r

 j

 n  elements. Then the number of possible selection of elements from the sets D  or D  or D  or j

1

2

3

D  or ... D  is

4

 r

 n  +  n  +  n  +  n  + ... +  n . 

1

2

3

4

 r

We can also define this principle in another way, consider an event A  can occur in  n

1

1

ways and another event A  can occur in  n  ways and A  and A  are mutually exclusive, then A 2

2

1

2

1

or A  can occur in ( n  +  n ) ways. It is applicable for any number of events. 

2

1

2

Example 7.  A five person committee having members Ankit, Arjit, Sonu, Monu and

 Nonu is to select a president, vice-president and secretary. 

( a)  In how many ways can this occur if either Sonu or Monu must be president? 

( b)  How many selections are there in which either Nonu is a secretary or he is excluded? 

( c)  How many selections exclude Ankit or Arjit? 

Sol. ( a) If Sonu is president, then vice-president can be selected in 4 ways and secretary can be selected in 3 ways. 

Hence, the total number of ways to select the remaining is  = 4 × 3 = 12. 

Similarly, if Monu is president, then the remaining persons can be selected in 12 ways

as shown above. 

As these are mutually exclusive events, hence the total number of ways if either Sonu

or Monu must be president is

= 12 + 12 = 24. 

( b) If Nonu is a secretary, then the remaining two posts can be filled in 12 ways as

discussed earlier. The number of selections in which Nonu is excluded is 24. 

As these are mutually exclusive events, hence the total number of selections in which

either Nonu is a secretary or he is excluded at all is

= 12 + 24 = 36. 

( c) The number of selections in which Ankit is excluded:

Since president can be selected in from the remaining 4 persons. 

Vice-president can be selected from remaining 3 persons after selecting president. 

Secretary can be selected from remaining 2 persons after selecting vice-president. 

Hence, total number of selections = 4 × 3 × 2 = 24. 

Similarly, the number of selections in which Arjit is excluded is 24. 

These two sets of selections are disjoint, hence the total number of selections in which

Ankit or Arjit are excluded is

= 24 + 24 = 48. 
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8.4 DEFINE FACTORIAL  N

The product of first  n natural numbers is called factorial  n. It is denoted by  n ! or | n . 

The factorial  n can also be written as

   n ! =  n( n – 1)( n – 2)( n – 3) ......... 1. 

We have, 

1 ! = 1 and 0 ! = 1. 

Example 8.  Find the value of 5 !. 

Sol. 

5 ! = 5 × (5 – 1)(5 – 2)(5 – 3)(5 – 4) = 5 × 4 × 3 × 2 × 1 = 120. 

Example 9.  Find the value of  10 ! . 

 8 ! 

10 ! 

10 × 9 × 8 ! 

Sol. 

8!  = 

= 10 × 9 = 90. 

8 ! 

Example 10.  Determine the value of 

 n ! 

 . 

 (n −  1) ! 

 n ! 

 n( n − )

1 ! 

Sol. 



= 

=  n. 

( n − 1) ! 

( n − 1) ! 

 n ! 

Example 11.  Find the value of 

 , when n = 6, r = 4. 

 r !(n −  r) ! 

Sol. 

 n ! 

. Substitute the value of  n and  r. 

 r !( n −  r) ! 

6 ! 

6 ! 

6 × 5 × 4 ! 

We have

= 

= 

= 15. 

4 ! 6

( − 4) ! 

4 ! 2 ! 

4 ! × 2

Example 12.  Find the value of z, if  1

 1

 z

+

=

 . 

 4 ! 

 5 ! 

 6 ! 

1

1

 z

5 + 1

 z

Sol. We have 

+

=

= 

=

4 ! 5 ! 6 ! 

5 ! 

6 ! 

6 × 6 ! 

6 × 6 × 5 ! 

6

 z

=

;  z = 

;  z = 

;  z = 36. 

5 ! 6 ! 

5 ! 

5 ! 

Example 13.  Show that 3 ! + 4 ! ≠  (3 + 4) !. 

Sol. 

3 ! + 4 ! = (3 × 2 × 1) + (4 × 3 × 2 × 1)

= 6 + 24 = 30

and

(3 + 4) ! = 7 ! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

Hence, 

3 ! + 4 ! ≠ (3 + 4) !. 

Example 14.  Show that 10 ! – 8 ! ≠  (10 – 8) !. 

Sol. 

10 ! – 8 ! = 3628800 – 40320 = 3588480

and

(10 – 8) ! = (2) ! = 2

Hence, 

10 ! – 8 ! ≠ (10 – 8) !. 
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PROBLEM SET-I

1. ( a) How many different 4-digit numbers can be formed using digits {0, 2, 3, 5, 8}? (Note: the first digit cannot be 0, or else the number would be a 3-digit number). 

( b) How many different 4-digit numbers that are multiples of 5 can be formed? 

2. A seven-question quiz has four true/false questions followed by 3 multiple choice questions. For each multiple choice question there are four possible answers. In how many different ways is it possible to answer the seven questions? 

3. A ‘combination’ lock has a dial bearing the numbers 1 through 16. How many different 3-number

‘combinations’ are possible if there are no restrictions on the 3 numbers? 

4. There are eight finalists in the Miss World contest. How many different outcomes are possible if one girl will be selected First Runner-Up and another will be Miss World? 

5. There are four dogs. They will be asked to arrange themselves from left to right in a line-up. How many different line-ups are possible? 

6. Raj Kumar has to take a 5 true/false question. He will guess at each question. In how many different ways is it possible to answer the questions? How likely is it that he will get a score of 100%? 

7. A lucky dip contains 6 different prizes. In how many different ways can six children win these prizes? 

8. If a phone number has 8 digits, how many different phone numbers exist that do not repeat any numbers? 

9. Find the number of routes from A to C if there are 3 roads from A to B and 4 from B to C. 

10. Eight birds are to be placed in eight different cages. How many arrangements are possible if each bird is placed in a separate cage. 

11. Simplify the following expressions:

( a) ( n – 1)! / ( n + 1)! 

( b) (2 n + 2)! / 2 n! 

12. Evaluate

7! 

15! 

( a)

( b)

5!3! 

9!6! 

13. In how many different ways can a committee of three people be selected from a total of eight people? 

14. An ice cream parlor has 15 different flavors. George orders a sundae and has to select 3 flavors. 

How many different selections are possible? 

15. How many four-digit numbers can be made using the digits 1, 2, 3, 4, 5, 6, 7 if it is okay to repeat a digit in a number? 

16. How many four-digit numbers could you make with the digits 1, 2, 3, 4, 5, 6, 7 if you could not repeat the use of any digit? 

17. How many arrangements of all the letters in the word PYRAMID do not end with D? 

18. Simplify and compute each of the following. 

( a) 10! 

( b)

20! 

8! 

18!2! 

( c)

7! 

( d) 75! 

4!3! 

73! 

19. How many three-digit numbers can be formed using the digits 1, 2, 3, 4, and 5, if the digits can repeat? 

20. How many multiples of 5 are there from 10 to 95? 
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21. Which of the following is true/False? 

( a)  n! =  n ( n – 1)! 

( b) ( n ×  m)! ≠  n! ×  m! 

( c) ( n +  m)! ≠  n! +  m! 

( d) ( n –  m)! ≠  n! –  m! 

( e) There are 739 ways in which 6 rings of different types can be worn in 3 fingers. 

( f) There are 120 numbers between 99 and 1000 having 7 in the units place. 

( g) There are 729 ways in which 6 rings of different types can be worn in 3 fingers. 

( h) There are 252 numbers between 99 and 1000 having atleast one of their digits 7. 

ANSWERS AND HINTS (PROBLEM SET I)

1. ( a) 500

( b) 200

2.  1024

3. 4096

4. 56

5.  24

6. 32 different ways to answer the 5 questions. The likelihood of getting all five questions correct by guessing is 1 out of 32. 

7.  720

8. 40320

9. 12 choices of route from A to C. 

10.  40320 ways. 

11. ( a) 1 / [ n * ( n + 1) ]

( b) (2 n + 1) * (2 n + 2)

12. ( a) 7

( b) 5005

13. 56

14. 455

15. 2401

16. 840

17. 4320

18. ( a) 90

( b) 190

( c) 35

( d) 5550

19. 125

20. 18

21. ( a) True

( b)  True

( c)  True

( d)  True

( e)  False

( f) False

( g)  True

( h)  True

8.5 PERMUTATION

A permutation is an arrangement of number of objects in some definite order taken

some or all at a time. The total number of permutations of  n distinct objects taken  r at a time is denoted by  n r

P  or P( n,  r), where 1 ≤  r ≤  n. 

Theorem II.  Prove that the number of different permutations of n distinct objects taken r at a time, r ≤  n is given by

 n ! 

 n r


P  =  b n −  r g  =  n ( n – 1)( n – 2) ...( n – r + 1). 

 ! 

Proof. The number of permutations of  n  distinct objects taken  r at a time is like filling of  r places with  n objects. 

The first place can be filled in by any one of the  n objects. So, this can be done in  n ways =  n  P1 =  n. 

The second place can be filled in by any one of the  n – 1 objects because after filling first place. We are left with ( n – 1) objects. Thus, the first two places can be filled in  n( n – 1) ways. 

∴

 n  P2 =  n( n – 1)

Similarly, the third place can be filled in by any one of the remaining ( n – 2) objects. 

Therefore, the first three places can be filled in  n( n – 1) ( n – 2) ways. 

Proceeding in this way, we have the number of permutations of  n different objects taken r at a time is
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=  n( n – 1)( n – 2) ...  r

=  n( n – 1)( n – 2) ...( n –  r – 1)

 n r

P  =  n( n – 1)( n – 2) ... ( n –  r + 1). 

Theorem III.  Prove that the number of permutations of n things taken all at a time

 is n !. 

Proof. We know that

 n ! 

 n ! 

 n ! 

 n

=

=

 n

P  = 

[

( n

∵ 0 ! = 1]

−  n) ! 0 ! 

1

=  n ! 

Hence proved. 

Example 15.  Determine the value of the following

( i)  4 2

 P

( ii)  9 3

 P

( iii)  20 2

 P

( iv)  52 4

 P . 

4 ! 

4 × 3 × 2 ! 

Sol. ( i) 4

= 

= 12

2

P  =  (4 – 2)! 

2 ! 

9 ! 

9 × 8 × 7 × 6 ! 

( ii) 9

= 

= 504

3

P  =  9( − 3)! 

6 ! 

20 ! 

20 × 19 × 18 ! 

( iii) 20

= 

= 380

2

P  =  20

(

− 2) ! 

18 ! 

52 ! 

52 × 51 × 50 × 49 × 48 ! 

( iv) 52

= 6497400. 

4

P  =  b52 − 4g  = 

! 

48 ! 

Example 16.  Determine the value of n if

( i)  4 × n

+

 . 

( ii)  6 × n

+

 . 

( iii) 3 ×  n

−

. 

 3

 P  = n 1 3

 P

 3

 P  = 3 × n 1 3

 P

 4

 P  = 7 ×  n 1 4

 P

 n ! 

( n + )

1 ! 

L

 n ! 

Sol. ( i) 

4 × 

= 

∵  n r

P =

( n − )

3 ! 

( n + 1 − )

3 ! 

NM

O

( n −  r) !QP

4  n ! 

b n + 1g ×  n! 



×

= 

( n − 3) ! 

b n − 2gb n − 3g! 

4( n – 2) = ( n + 1)

4 n – 8 =  n + 1

3 n = 9

 n = 3. 

( ii) 

6 ×  n  P  = 3 ×  n+1

3

3

P

L

 n ! 

b n  1g! 

 n ! 

6 × 

+

b

∵  n r

P =

 n − 3g  = 3 × 

! 

b n + 1− 3g! 

b n

NM

O

−  r g !QP

6  n ! 

3b n + 1gb n  g! 



×

b n − 3g  = 

! 

b n − 2gb n − 3g! 
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6( n – 2) = 3 × ( n + 1)

6 n – 12 = 3 n + 3

6 n – 3 n = 12 + 3

3 n = 15

   n = 5. 

( iii) 

3 ×  n P  = 7 ×  n–1P

4

4

 n ! 

b n  1g! 

L

3 × 

−

 n ! 

b

P

 n

∵  n

− 4g  = 7 × 

! 

b n

=

− 1 − 4g ! 

 r

NM

O

( n −  r) !QP

3 ×  n × ( n − 1) ! 

7 × ( n − 1) ! 



= 

( n − 4)( n − 5) ! 

( n − 5) ! 

3 n = 7( n – 4)

3 n = 7 n – 28

3 n – 7 n = – 28

– 4 n = – 28

   n = 7. 

Example 17.  How many variable names of 8 letters can be formed from the letters a, b, c, d, e, f, g, h, i, if no letter is repeated. 

Sol. There are 9 letters and 8 are to be selected. 

9 ! 

9 ! 

∴ Total number of variable names of 8 letters is = 9P = 

= 

= 9 !. 

8 

9

( − 8) ! 

1! 

Example 18.  There are 10 persons called on an interview. Each one is capable to be

 selected for the job. How many permutation are there to select 4 from the 10. 

Sol. There are 10 persons and 4 are to be selected. 

∴ Total number of permutations to select 4 persons is = 10 4

P

10 ! 

10 × 9 × 8 × 7 × 6 ! 

= 

= 

= 5040. 

10

(

− 4) ! 

6 ! 

Example 19.  How many 6-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, 6, 7, if no digit is repeated. 

Sol. There are 8 numbers and 6 are to be selected. 

8 ! 

8 ! 

∴ Total number of 6-digit numbers = 8

= 

6

P  =  8

( − 6) ! 

2 ! 

8 × 7 × 6 × 5 × 4 × 3 × 2 ! 

= 

2 ! 

= 22560. 

8.5.1

Permutation with Restrictions

( i) The number of permutations of  n different objects taken  r at a time in which  p particular objects do not occur is  n – p P r

( ii) The number of permutations of  n different objects taken  r at a time in which  p particular objects are present is  n – p P

  × r P . 

 r – p

 p
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Example 20.  How many 6-digit numbers can be formed by using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, if every number is to start with ‘30’ with no digit repeated. 

Sol. All the numbers begin with ‘30’. So, we have to choose 4-digits from the remaining 7-digits. 

∴ Total number of 6-digit numbers that begins with ‘30’ is

7 ! 

7 × 6 × 5 × 4 × 3 ! 

7P  = 

= 

= 840. 

4

7

( − 4) ! 

3 ! 

Example 21.  In how many ways 5 different microprocessor books and 4 different digital electronics books be arranged in a shelf so that all the four digital electronics books are together? 

Sol. Consider the four digital electronics books as one unit. Thus, we have 6 units that can be arranged in 6 ! ways. 

For each of these arrangements, 4 digital electronics books can be arranged among

themselves in 4 ! ways. 

∴ Total number of arrangements in which all the four digital electronics books are

together is

= 6 ! × 4 ! = 720 × 24 = 17280. 

Example 22.  How many permutations can be made out of the letter of word

 “COMPUTER’’ ? How many of these

( i)  begin with C? 

( ii)  end with R? 

( iii)  begin with C and end with R? 

( iv)  C and R occupy the end places? 

Sol. There are 8 letters in the word ‘COMPUTER’ and all are distinct. 

∴ The total number of permutations of these letters is 8 ! = 40320. 

( i) Permutations which begin with C. 

The first position can be filled in only one way  i.e.,  C and the remaining 7 letters can be arranged in 7 ! ways. 

∴ Total number of permutations starting with C are

= 1 × 7 ! = 5040. 

( ii) Permutations which end with R. 

The last position can be filled in only one way  i.e.,  R and the remaining 7 letters can be arranged in 7 ! ways. 

∴ The total number of permutations ending with R are = 7 ! × 1 = 5040. 

( iii) Permutations begin with C and end with R. 

The first position can be filled in only one way  i.e.,  C and the last place can also be filled in only one way  i.e.,  R and the remaining 6 letters can be arranged in 6 ! ways. 

∴ The total number of permutations that begin with C and end with R is

= 1 × 6 ! × 1 = 720. 

( iv) Permutations in which C and R occupy end places. 

C and R occupy end positions in 2 ! ways  i.e.,  C, R and R, C and the remaining 6 letters can be arranged in 6 ! ways. 

∴ The total number of permutations in which C and R occupy end places is

= 2 ! × 6 ! = 1440. 
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8.5.2 Permutations when All of the Objects are Not Distinct

Theorem IV.  The number of permutations of n objects, of which n  objects are of one 1

 n ! 

 kind and n  objects of another kind, when all are taken at a time is 

 . 

 2

 n ! n ! 

 1

 2

Proof. Let us assume that the number of required permutations be K. Now consider a

single particular permutation of these K permutations, in which  n  objects of one kind is 1

followed by  n  objects of other kind. 

2

Also, assume that all  n  object are distinct from all  n  objects. 

1

2

So, number of permutations of  n  objects taken all at a time is =  n 1

! 

1

P  =  n

 n 1

1

Also, the number of permutations of  n  objects taken all at a time is =  n 2

! 

2

P  =  n

 n 2

2

By the fundamental principle of counting, these K permutations will give rise to  n  !  n ! 

1

2

permutations by arranging the objects of one kind within the places occupied by them. 

Therefore, K permutations will give rise to K.  n  !  n  ! permutations. 

1

2

For  n distinct objects, the number of permutations is =  n P  =  n ! 

 n

Therefore, 

K ×  n  !  n  ! =  n ! 

1

2

 n ! 

K =   n !  n ! 

1

2

This result can be generalised as follows :

If  n  objects are of one kind,  n  objects are of second kind,  n  objects are of third kind, 1

2

3

and so on upto  n  objects are of  t  kind then the number of permutations is given by t

 n ! 

[Here  n  +  n  +  n  + ... +  n  =  n]

 n !  n !  n ! ...  n ! 

1

2

3

 t

1

2

3

 t

Example 23.  Determine the number of permutations that can be made out of the letters of the word ‘PROGRAMMING’. 

Sol. There are 11 letters in the word ‘PROGRAMMING’ out of which G’s and M’s and

R’s are two each. 

∴ The total number of permutations is

11! 

11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 ! 

= 

= 

2 ! × 2 ! × 2 ! 

2 × 1 × 2 × 1 × 2 ! 

= 4989600. 

Example 24.  There are 4 blue, 3 red and 2 black pens in a box. These are drawn one by one. Determine all the different permutations. 

Sol. There are total 9 pens in the box out of which 4 are blue, 3 are red and 2 are black. 

∴ The total number of permutations is

9 ! 

9 × 8 × 7 × 6 × 5 × 4 ! 

=  4 ! × 3! × 2! =  4! × 3 × 2 × 1× 2 × 1  = 1080. 
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Example 25.  How many different variable names can be formed by using the letters a, a, a, b, b, b, b, c, c, c? 

Sol. There are total 10 letters out of which 3 are  a’s, 4 are  b’s and 3  c’s. 

∴ Total number of permutations is

10 ! 

10 × 9 × 8 × 7 × 6 × 5 × 4 ! 

= 

= 

3 ! × 4 ! × 3 ! 

3 × 2 × 1 × 4 ! × 3 × 2 × 1

= 10 × 3 × 4 × 7 × 5 = 4200. 

Example 26.  How many 7-digits numbers can be formed using digits 1, 7, 2, 7, 6, 7, 6? 

Sol. There are total 7-digits out of which 3 are 7’s and 2 are 6’s. 

7 ! 

∴ Total number of permutations is =  3! × 2! = 420. 

8.5.3

Permutations with Repeated Objects

Theorem V.  Prove that the number of different permutations of n distinct objects taken r at a time when every object is allowed to repeat any number of times is given by nr. 

Proof. Assume that with  n objects we have to fill  r places when repetition of objects is allowed. 

Therefore, the number of ways of filling the first place is =  n

The number of ways of filling second place =  n

............................................................................. 

............................................................................. 

The number of ways of filling  r th place =  n

Thus, the total number of ways of filling  r places with  n objects is

=  n. n. n. n. ......  r times =  nr. 

Example 27.  How many 4-digits numbers can be formed by using the digits 2, 4, 6, 8

 when repetition of digits is allowed. 

Sol. We have 4-digits. 

So, number of ways of filling unit’s place = 4. 

Number of ways of filling ten’s place

= 4. 

Number of ways of filling hundred’s place  = 4. 

Number of ways of filling thousand’s place = 4. 

Therefore, the total number of 4-digits numbers is

= 4 × 4 × 4 × 4 = 256. 

Example 28.  How many 2-digits even numbers can be formed by using the digits 1, 3, 4, 6, 8, when repetition of digits is allowed. 

Sol. We have three even numbers and two odd number. 

Thus, number of ways of filling unit’s place = 3. 

Number of ways of filling ten’s place

= 5. 

∴ Total number of two digits even numbers = 3 × 5 = 15. 
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Example 29.  In how many ways can 5 software projects be allotted to 6 final year students when all the 5 projects are not allotted to the same student? 

Sol. We have 5 projects and 6 students. 

Each projects can be allotted in 6 ways. 

Thus, the number of ways of alloting 5 projects is = 6 × 6 × 6 × 6 × 6 = 65. 

Number of ways in which all projects allotted to same student is = 6. 

Therefore, total number of ways to allocate 5 projects to 6 students is = 65 – 6 = 7770. 

8.5.4

Circular Permutations

The circular permutations are the permutations of the objects

k

 l

placed in a circle. Consider the letters  k,  l, m, n, o placed along the

circle as shown in Fig. 1. 

If we place letters linearly, there are five different permuta-

tions  i.e., k, l, m, n, o ; l, m, n, o, k ; m, n, o, k, l ; n, o, k, l, m ; o, k, l, 

 m, n,  but there is only one circular permutation  k,  l, m, n, o.  Therefore, there is no starting and ending in circular permutation. We only

o

m

consider the relative positions. 

Theorem VI.  Prove that the number of circular permutations

n

 of n different objects is ( n –  1) !. 

Fig. 1

Proof. Let us consider that K be the number of permutations required. 

For each such circular permutation of K, there are  n corresponding linear permuta-

tions. As shown earlier, we start from every object of  n objects in the circular permutation. 

Thus, for K circular permutations, we have K.  n  linear permutations. 

 n ! 

Therefore, 

K.   n = n ! or K   =  n

 n × ( n − )

1 ! 

or

K = 

= ( n – 1) ! 

 n

Hence proved. 

Example 30.  In how many ways can the letters a, b, c, d, e, f be arranged in a circle? 

Sol. There are 6 letters and hence the number of ways to arrange these 6 letters in a

circle is

= (6 – 1) ! = 5 ! = 120. 

Example 31.  In how many ways 10 programmers can sit on a round table to discuss the project so that project leader and a particular programmer always sit together. 

Sol. There are total 10 programmers but project leader and a particular programmer

always sit together. So, both become a single unit and hence there are (10 – 2 + 1) = 9

remains. 

Thus, these 9 units can be arranged on round table in (9 – 1) ! ways. 

The two programmers  i.e.,  project leader and a particular programmer can be arranged

in 2 ! ways. 
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Therefore, the total number of ways in which 10 programmers can sit on a round table is

= (9 – 1) ! × 2 ! = 8 ! × 2 ! = 80640. 

Example 32.  Determine the number of ways in which 5 software engineers and 6

 electronics engineers can be sat at a round table so that no two software engineers can sit together. 

Sol. There are 6 electronics engineers that can be

S

E

E

arranged around a table in (6 – 1) ! ways. There are 5 software

engineers and they are not to sit together so we have six places

S

S

for software engineers and can be placed in 6 ! ways as shown

in Fig. 2. 

E

E

Therefore, total number of ways to arrange the engi-

neers on a round table is

S

S

= (6 – 1) ! × 6 ! = 5 ! × 6 ! 

= 120 × 720

E

E

S

= 86400. 

Fig. 2

PROBLEM SET-II

1. How many five-letter “words” can be formed from the letters in the word COMBINE? 

2. In how many ways can six different algebra books and three different geometry books be arranged on a shelf if all the books of one subject must remain together? 

3. The three number combinations can be picked from the numbers 0–35. How many different locker combinations could you make up if none of the numbers can be repeated? 

4. You have 5 trophies but the shelf only has space for eight trophies. How many display arrangements are possible? 

5. What is the maximum possible number of 3-letter words in English that do not contain any vowel? 

6. What is the maximum possible number of 3-letter words in English which do not have any vowel other than ‘ a’? 

7. There are 4 books on math, 5 chemistry and 3 physics. In how many ways can you arrange these so that books on math are together, chemistry are together and physics are together and in the order, books on math, chemistry and physics. 

8. In how many ways can 4 girls and 5 boys be arranged in a row so that all the four girls are together? 

9. Find the number of permutations of the letters of the word 'TENDULKAR', in each of the following cases:

( i)  beginning with T and ending with R. 

( ii)  vowels are always together. 

( iii)  vowels are never together. 

10. A group of 12 friends meet at a party. Each person shake hands once with all others. How many handshakes will be there? 

11. A multiple choice test has 5 questions and each question has 4 choices. How many ways are there to answer the questions, if you know the answer to the first question? 

12. In how many ways can the letters of the word METRIC be arranged so that the two vowels are never together? 
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13. In how many different ways 5 boys and 5 girls can sit in a circular table so that the boys and the girls are alternately placed? 

14. How many 6 digit telephone numbers can be formed if each number starts with 35 and no digit appears more than once? 

15. A maths debating team consists of 4 speakers. 

( a)  In how many ways can all 4 speakers be arranged in a row for a photo? 

( b)  How many ways can the captain and vice-captain be chosen? 

16.  Which of the following are True/False? 

( a) 8 Indians and, 4 American and 4 Englishmen can be seated in a row in 8! × 4! × 4! ways so that all person of the same nationality sit together. 

( b) 10 examination papers can be arranged in 9* 8! Ways so that the best and the worst papers never come together. 

( c) There are 1440 words with or without dictionary meaning can be formed using the letters of the word EQUATION so the vowel and consonant are side by side. 

( d) 8 Indians and, 4 American and 4 Englishmen can be seated in a row in 3!*8!*4!*4! ways so that all person of the same nationality sit together. 

( e) 10 examination papers can be arranged in 8*9! ways so that the best and the worst papers never come together. 

( f) There are 720, 3-letter words with or without meaning, can be formed out of the letters of the word, 'LOGARITHMS', if repetition of letters is not allowed. 

ANSWERS AND HINTS (PROBLEM SET II)

1. 3360

2. 8640

3. 42840

4. 259459200

5. 7980

6. 9240

7. 17280 ways

8. 17280

9. ( i) 5040

( ii) 30240

( iii) 332640

10. 66

11. 256

12. 480

13. 2880

14. 1680

15. ( a) 4! 

( b) 12

16. ( a) False

( b) False

( c) True

( d) False

( e) True

( f) True

8.6

COMBINATION

A combination is a selection of some or all, objects from a set of given objects, where

order of the objects does not matter. The number of combinations of  n objects, taken  r at a time is represented by  n C  or C( n,  r). 

 r

Theorem VII.  The number of combinations of n different things, taken r at a time is given by

 n ! 

      nC  = 

 , n 

 r

≥  r ≥  1. 

 r ! ( n −  r)  ! 

Proof. The number of permutations of  n  different things, taken  r at a time is given by n ! 

    n P  = 

 r

( n −  r) ! 

As there is no matter about the order of arrangement of the objects, therefore, to every

combination of  r things, there are  r ! arrangements  i.e., 
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 n

 n ! 

    n P  =  r !  n C

or  n C  =

 r

 P =

    n 

 r

 r

 r   

≥  r

 r !      ( n −  r) !  r !  ’

 n ! 

Thus, 

  

  n C  = 

. 

 r

( n −  r) !  r ! 

Theorem VIII.  Prove that the number of combinations of n things taken all at a time is one. 

Proof. We know that

 n ! 

 n ! 

    n C  = 

= 

= 1

[

 n

( n

∵ 0 ! = 1]

−  n) !  n ! 

0 !  n ! 

Theorem IX.  Prove that the number of combinations of n things taken none at a time is one. 

Proof. We know that

 n ! 

 n ! 

 n ! 

    n C  = 

= 

= 

0

( n − )

0 ! 0 ! 

 n ! 0 ! 

 n !  = 1

[∵ 0 ! = 1]

Theorem X.  Prove that nC

  = nC ,   n 

 n – r

 r

≥  r ≥  1. 

Proof. We know that

 n ! 

 n ! 

    nC

 = 

  = 

 n – r 

 n − ( n −  r) ! ( n −  r) ! 

( n −  n +  r) ! ( n −  r) ! 

 n ! 

 = 

  = n C . 

 r ! ( n −  r) ! 

 r

Example 33.  Determine the value of following:

( i)  10C

( ii)  50C

( iii)  52C

( iv)  20C . 

 6

 45

 4

 10

10 ! 

10 × 9 × 8 × 7 × 6 ! 

Sol. ( i) 10C  = 

= 

= 10 × 3 × 7 = 210. 

6

6

( ) ! × 1

( 0 − 6) ! 

6 ! × 4 × 3 × 2 × 1

50 ! 

50 × 49 × 48 × 47 × 46 × 45 ! 

( ii) 50C  = 

= 

= 2118760. 

45

45 ! × 50

(

− 45) ! 

45 ! × 5 × 4 × 3 × 2 × 1

52 ! 

52 × 51 × 50 × 49 × 48 ! 

( iii) 52C  = 

= 

= 270725. 

4

4 ! × 5

( 2 − 4) ! 

4 × 3 × 2 × 1 × 48 ! 

20 ! 

20 × 19 × 18 × 17 × 16 × 15 × 14 × 13 × 12 × 11 × 10 ! 

( iv) 20C  = 

= 

10

10 ! × 20

(

− 10) ! 

10 ! × 10 ! 

= 184756. 

Example 34.  Determine the value of n if:

( i)  nC  = nC

( ii)  nC

  = 10

( iii)  20C

  = 20C

. 

 4

 3

 n – 2

 n + 2

 2n – 1

Sol. ( i)

    n C =  n C

4 

3

 n ! 

 n ! 



= 

4 ! × ( n − )

4 ! 

3 ! ( n − )

3 ! 
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 n ! 

4 ! × ( n − 4) ! 

4 × 3 ! × ( n − 4) ! 



= 

= 

 n ! 

3 ! × ( n − 3) ! 

3 ! × ( n − 3) × ( n − 4) ! 

4



1 =   n − 3

     n – 3 = 4

    n = 7. 

( ii)

 n C

= 10

 n – 2

 n ! 

 n ! 

Thus, 



= 10 or

= 10

( n − )

2 ! [ n − ( n − )

2 ] ! 

( n − )

2 ! × 2 ! 

 n × ( n − )

1 × ( n

)

2 ! 

or

−

= 10

( n − )

2 ! × 2 ! 

  n × ( n – 1) = 10 × 2 ! 

 n 2 –  n – 20 = 0

     n = – 4, 5. Since – 4 is not possible, hence  n = 5. 

( iii) 

20C

= 20C

 n + 2

2 n – 1

Therefore, we have either

    n + 2 = 2   n   – 1 or ( n + 2) + (2 n – 1) = 25

–  n = – 3

or

3 n = 24

   n = 3

  n = 8

So

   

 n = 3, 8. 

Example 35.  How many 16-bit strings are there containing exactly five 0’s? 

Sol. A 16-bit string having exactly five 0’s is determined if we tell which bits are 0’s. 

This can be done in 16C  ways. 

5

Therefore, the total number of 16-bit strings

16 ! 

= 16C  = 

5

5 ! × 1

( 6 − 5) ! 

16 × 15 × 14 × 13 × 12 × 11! 

= 

5 × 4 × 3 × 2 × 1 × 11! 

= 4368. 

Example 36.  How many ways can we select a software development group of 1 project

 leader, 5 programmers and 6 data entry operators from a group of 5 project leaders, 20 programmers and 25 data entry operators? 

Sol. There are 5 project leaders out of which one can be selected in 5C  ways. 

1

There are 20 programmers out of which five can be selected in 20C  ways. 

5

There are 25 data entry operators out of which six can be selected in 25C  ways. 

6

Therefore, the total number of ways to select the software development group

= 5C  × 20C  × 25C  = 96101544000. 

1

5

6

Example 37.  From 10 programmers in how many ways can 5 be selected when

( a)  A particular programmer is included every time. 

( b)  A particular programmer is not included at all. 
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Sol. We have to select 5 programmers from the 10 programmers. So, the number of

ways to select them is 10C5

10 ! 

10 × 9 × 8 × 7 × 6 × 5 ! 

=  5! × 1(0 − 5)! =  5 × 4 × 3 × 2 × 1× 5! 

= 252. 

( a) When  a  particular  programmer  is included every time then the remaining = 5 – 1 = 4

programmers can be selected from the remaining = 10 – 1 = 9 programmers. This can be done

in 9C  ways

4

9 ! 

9 × 8 × 7 × 6 × 5 ! 

=  4 ! 9( − 4)! =  4 × 3 × 2 × 1× 5!  = 126. 

( b) When a particular programmer is not included at all, then  the five programmers

can be selected from the remaining = 10 – 1 = 9 programmers. 

This can be done in 11C  ways

5

9 ! 

9 × 8 × 7 × 6 × 5 × 4 ! 

=  5! 9( − 5)!  = 5 × 4 × 3 × 2 × 1× 4! = 126. 

PROBLEM SET-III

1. How many different five-card hands with exactly three hearts and two diamonds exist in a standard deck of 52 cards? 

2. In how many ways can twelve pieces of fruits be divided into two baskets containing five and seven pieces of fruit respectively? 

3. Find the number of subsets of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} having 4 elements. 

4. A question paper consists of 10 questions divided into two parts  A and  B. Each part contains five questions. A candidate is required to attempt six questions in all of which at least 2 should be from part  A and at least 2 from part  B. In how many ways can the candidate select the questions if he can answer all questions equally well? 

5. A committee of 5 students is to be formed from 6 boys and 4 girls. In how many ways can this be done when

( i) at least 2 girls are included? 

( ii) atmost 2 girls are included? 

6. The University Cricket team consists of 16 players. It includes 2 wicket keepers and 5 bowlers. 

In how many ways can a cricket eleven be selected if we have to select 1 wicket keeper and at

least 4 bowlers? 

7. A club has 20 members. 

( a) In how many different ways could the club choose a president and a vice-president? 

( b) In how many different ways could the club choose two co-presidents? 

( c) In how many different ways could the club choose a president, vice-president, and secretary? 

( d) In how many different ways could the club choose a three-member governing committee? 

( e) In how many different ways could the club choose two co-presidents and a secretary? 

8.  ( a) How many committees of 4 people can be chosen from 5 men and 3 women? 

( b) How many of these could be all men? 

( c) How many would consist of 2 men and 2 women? 

9.  A student has to answer 8 out of 10 questions in an exam. How many different choices she has? 
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10. How many ways are there of playing a game of lotto requiring you to select 6 correct numbers out of 44? 

11. In how many ways a team of 11 players be selected from a list of 20 players where two particular players should always be included in the team? 

12. In how many ways can 7 multiplication signs and 5 division signs be arranged in a row so that no two division signs are together? 

13. A bag contains 5 different red balls and 6 different white balls. In how many ways can 6 balls be selected so that there are at least two balls of each color? 

14. Determine the number of ways in which 30 marks can be allocated to eight questions if each question carries atleast 2 marks. 

15. How many 5 letter words containing 3 vowels and 2 consonants can be formed using the letters of the word EQUATION so that the 2 consonants always occur together in every word? 

16. Which of the following is True/False? 

( a) A bag contains 2 white balls, 3 black balls and 4 red balls. There are 64 ways such that 3 balls can be drawn from the bag, if at least one black ball is to be included in the draw. 

( b)  n C =  n C = 1. 

0 

 n 

( c) A mixed doubles tennis game is to be arranged from 5 married couples. There are 120 ways the game be arranged if no husband and wife pair is included in the same game? 

( d) There are 1422 four letter words can be formed using the letters of the word 'INEFFECTIVE'. 

( e) There are 150 ways in which one or more letters can be selected from the letters K, K, K, K, L, L, L, M, N, P. 

( f) A mixed doubles tennis game is to be arranged from 5 married couples. There are 60 ways the game be arranged if no husband and wife pair is included in the same game? 

( g) There are 1320 four letter words can be formed using the letters of the word 'INEFFECTIVE'. 

( h) There are 159 ways in which one or more letters can be selected from the letters K, K, K, K, L, L, L, M, N, P. 

ANSWERS AND HINTS (PROBLEM SET III)

1. 22,308. 

2. 792,792

3. 330 ways

4. 200 ways. 

5. ( i) 186

( ii) 186

6.  1092

7. ( a) 380

( b) 190

( c) 6840

( d) 1140

( e) 3420

8. ( a) 70

( b) 5

( c) 30

9. 45

10. 7059052

11. 18C

12. 56

13. 425

14. 21C

15. 1440

9

7

16. ( a) True

( b) True

( c) False

( d) True

( e) False

( f) True

( g) False

( h) True

8.7 THE PIGEONHOLE PRINCIPLE

Theorem XI.  Show that if n pigeons are assigned to m pigeonholes and m < n, then there is at least one pigeonhole that contains two or more pigeons. 

Proof. Let us label the  n pigeons with the numbers 1 through  n and the  m pigeonholes with the numbers 1 through  m. Now starting with pigeon 1 and Pigeonhole 1, assign each pigeon in order to the pigeonhole with the same number. So we can assign as many pigeons as

possible  to  distinct  pigeonholes,  but  as we know that pigeonholes are less than pigeons  i.e., m <  n.  Thus, there remains  n –  m pigeons that have not yet been assigned to a pigeonhole. 

Hence, there is at least one pigeonhole that will be assigned a second pigeon. 

COUNTING TECHNIQUES

M-4.275

Example 38.  Show that if any four numbers from 1 to 6 are chosen, then two of them

 will add to 7. 

Sol. Make three sets containing two numbers whose sum is 7. 

A = {1, 6}, B = {2, 5}, C = {3, 4}. The four numbers that will be chosen assigned to the set

that contains it. 

As there are only three sets, two numbers that are chosen is from the same set whose

sum is 7. 

Example 39.  Show that at least two people must have their birthday in the same month if 13 people are assembled in a room. 

Sol. We assigned each person the month of the year on which he was born. Since there

are 12 months in a year. 

So, according to pigeonhole principle, there must be at least two people assigned to the

same month. 

Example 40.  Show that if any eight +ve integers are chosen, two of them will have same remainder when divided by 7. 

Sol. Take any eight +ve integers. When these are divided by 7 each have some remain-

der. Since there are eight integers and only seven distinct remainders because number 7 can

generate only 7 remainders, so two +ve integers must have same remainder. 

8.7.1

Extended Pigeonhole Principle

It states that if  n pigeons are assigned to  m pigeonholes (The number of pigeons is very large than the number of pigeonholes), then one of the pigeonholes must contain

at least ⎣( n –  1)/ m⎦ + 1 pigeons. 

Theorem XII.  Prove that extended pigeonhole principle. 

Proof. We can prove this by the method of contradiction. Assume that each pigeon-

hole does not contain more than ⎣( n – 1)/  m⎦ pigeons. Then, there will be at most  m⎣( n –

1)/ m⎦ ≤  m( n – 1)/ m =  n – 1 pigeons in all. This is in contradiction to our assumption. Hence, for given  m pigeonholes, one of these must contain at least ⎣( n – 1)/ m⎦ + 1 pigeons. 

Example 41.  Show that if 9 colours are used to paint 100 houses, at least 12 houses will be of the same colour. 

Sol. Let us assume the colours be the pigeonholes and the houses the pigeons. Now

100 pigeons are to be assigned to 9 pigeonholes. Using the extended pigeonhole principle, 

⎣( n – 1)/ m⎦ + 1, where  n = 100 and  m = 9, we have ⎣(100 – 1)/9⎦ + 1 = 12. Thus, there are 12 houses of the same colour. 

PROBLEM SET-IV

1. Prove that if six numbers are chosen at random, then at least two of them will have the same remainder when divided by 5. 

2. Prove that if  a is a natural number, then there exist two unequal natural numbers  k and  l for which  ak =  a 1 is divisible by 10. 
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3. Prove that if six natural numbers are chosen at random, then the sum or difference of two of them is divisible by 9. 

4. Prove that any set of seven distinct natural numbers contains a pair of numbers whose sum or difference is divisible by 10. 

5. There are 20 points within a 3-meter square. Show that some set of three of these points can be covered by a 1-meter square. 

6. Prove there is a number consisting entirely of ones that is divisible by 7777. 

7. 15 students take a quiz. Their scores sum to 100. Prove that there are two students that have the same score. 

8. Given 8 different positive integers, all < 15, show there are at least 3 pairs that have the same positive difference. 

9. The integers 1,2...,10 are written on a circle, in any order. Show that there are 3 adjacent numbers whose sum is 17 or greater. 

10. Let A be any set of 19 distinct integers chosen from the arithmetic progression 1, 4, 7,..,100. 

Prove that there must be two distinct integers in A whose sum is 104. 

11. If 9 people are seated in a row of 12 chairs, then show that some consecutive set of 3 chairs are filled with people. 

12. If more than half of the integers from {1,2,...,2n} are selected, then show that some two of the selected integers have the property that one divides the other. 

13. Twenty five boys and twenty five girls sit around a table. Prove that it is always possible to find a person both of whose neighbors are girls. 

14. In a tournament where each team meets every other team once, then show that there are always two teams that played the same number of games. 

15. There are 2009 clubs, each with 45 members, any two of which have exactly one person in common. 

Show that there is one person who is a member of all the clubs. 

16. Show that if 101 integers are chosen from the set {1,2,3,...,200} then one of the chosen integers divides another. 

17. Show that there is a Fibonacci number that ends with 9999 (base 10 representation). 

18. Prove that any collection of 31 distinct integers between 1 and 60 has the property that one divides another. 

SOLVED PROBLEMS

Problem 1.  How many different 8-bit strings are there that end with 0111? 

Sol. An 8-bit string that end with 0111 can be constructed in 4 steps  i.e., 

By selecting I bit, II bit, III bit and IV bit and each bit can be selected in 2 ways. 

Hence, the total number of 8-bit strings that end with 0111 are

= 2 ⋅ 2 ⋅ 2 ⋅ 2 = 24. 

Problem 2.  How many 2-digits numbers greater than 40 can be formed by using the

 digits 1, 2, 3, 4, 6, 7? 

( a)  When repetition is allowed  ( b)  When repetition is not allowed. 

Sol. ( a) When repetition is allowed

We have to find the numbers greater than 40. Therefore, 

Ten’s place can be filled up by 3 ways. 

Unit’s place can be filled up by 6 ways. 

∴ The total number of 2-digits numbers greater than 40 is = 3 × 6 = 18. 
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( b) When repetition is not allowed

Ten’s place can be filled up by 3 ways. 

Unit’s place can be filled up by 5 ways. 

∴ The total number of 2-digits numbers greater than 40 = 3 × 5 = 15. 

Problem 3.  How many words can be constructed of three English alphabets? 

( a)  When repetition of alphabets is allowed

( b)  When repetition is not allowed. 

Sol. There are 26 alphabets in English. Therefore, 

( a) When repetition is allowed

First alphabet of word can be selected in 26 ways. 

Second alphabet of word can be selected in 26 ways. 

Third alphabet of word can be selected in 26 ways. 

Hence, total number of words that can be constructed using three alphabets

= 26 × 26 × 26 = 17576. 

( b) When repetition is not allowed

First alphabet of word can be selected in 26 ways. 

Second alphabet of word can be selected in 25 ways. 

Third alphabet of word can be selected in 24 ways. 

Hence, the total number of words of three distinct alphabets = 26 × 25 × 24 = 15600. 

Problem 4.  Show that 0 ! = 1. 

Sol. We have

 n ! 

     n P = 

...( i)

 r 

( n −  r) ! 

Now put  r =  n in equation ( i), we have

 n ! 

      n P  = 

 n

( n −  n) ! 

 n ! 

   n ! =  0! 

 n ! 

0 ! =   n! 

Hence 0 ! = 1. 

Problem 5.  There are n objects out of which r objects are to be arranged. Find the total number of permutations when

( a)  four particular objects always occur. 

( b)  four particular objects never occur. 

Sol. ( a) Number of ways to arrange first object =  r

Number of ways to arrange second object

=  r – 1

Number of ways to arrange third object

=  r – 2

Number of ways to arrange fourth object

=  r – 3
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Number of ways to arrange remaining  n – 4 objects taking  r – 4 at a time =  n – 4P

. 

 r – 4

Therefore, the total number of permutation when four particular objects always occur is

=  r( r – 1)( r – 2)( r – 3)  n – 4P

. 

[Using first principle of counting]

 r – 4

( b) There are four particular objects which never occur in any arrangement. Hence set

aside these four particular objects. 

Thus, we have to find the number of arrangements of  n – 4 objects taking  r at a time. 

∴ The total number of arrangements is =  n – 4P .  r

Problem 6.  How many permutations can be made out of the letters of the word ‘‘Basic’’? 

 How many of these

( i)  begin with B? 

( ii)  end with C? 

( iii)  B and C occupy the end places? 

Sol. There are 5 letters in the word ‘Basic’ and all are distinct. 

∴ The number of permutations of these letters

= 5 ! = 5 × 4 × 3 × 2 × 1 = 120. 

( i) Permutations which begin with B

The first position can be filled in only one way  i.e.,  B and the remaining 4 letters can be arranged in 4 ! ways. 

∴ Total number of permutations starting with B = 1 × 4 ! = 24. 

( ii) Permutations which end with C

The first position can be filled in only one way  i.e.,  C and the remaining 4 letters can be arranged in 4 ! ways. 

∴ Total number of permutations ending with C

= 4 ! × 1 = 24. 

( iii) Permutations in which B and C occupy end places

B and C occupy end positions in 2 ! ways  i.e.,  B, C and C, B and the remaining 3 letters can be arranged in 3 ! ways. 

∴ Total number of permutations in which B and C occupy end places

= 2 ! × 3 ! = 12. 

Problem 7.  Show that nC + nC

  = n + 1C , where n 

 r 

 r – 1

 r

≥  r ≥  1 and n and r are natural

 numbers. 

Sol. Take L.H.S. of equation  i.e., 

 n ! 

 n ! 

  n C  +  n C

= 

+ 

 r

 r – 1

 r ! × ( n –  r) ! 

( r − )

1 ! × ( n −  r + )

1 ! 

 n ! 

 n ! 

= 

+ 

 r( r − )

1 ! × ( n −  r) ! 

( r − )

1 ! × ( n −  r + )

1 ( n −  r) ! 

 n ! × ( n −  r + )

1 +  n ! ×  r

 n ! × ( n −  r + 1 +  r)

= 

= 

 r( r − )

1 ! × ( n −  r) ! × ( n −  r + )

1

 r ! × ( n −  r + )

1 ! 

 n ! × ( n + )

1

= 

=  n + 1C

 r ! × ( n −  r + )

1 ! 

 r

Hence proved. 
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Problem 8.  In the ‘Discrete Structures Paper’ there are 8 questions. In how many ways can an examinee select five questions in all if first question is compulsory? 

Sol. Since the first question is compulsory, the examinee has to select 4 questions from the remaining 7 questions. 

Therefore, the number of ways to select 5 questions = 7C4

7 ! 

7 × 6 × 5 × 4 ! 

= 

= 

= 35. 

4 ! × 7

( − 4) ! 

4 ! × 3 × 2 × 1

Problem 9.  Determine the number of triangles that are formed by selecting points from a set of 15 points out of which 8 are collinear. 

Sol. When we take all the 15 points, the number of triangles formed is 15C . 

3

As 8 points lie on the same line, they do not form any triangle. Thus, 8C  triangles are

3

lost. 

∴ The total number of triangles produced

15 ! 

8 ! 

15 × 14 × 13 × 12 ! 8 7 6 5 ! 

15C  – 8C  = 

−

= 

− × × ×

3

3

3 × 1

( 5 − 3) ! 3 8

!( − 3) ! 

3 × 12 ! 

3 × 2 × 1 × 5 ! 

15 × 14 × 13 8 7 6



= 

− × ×

3

3 × 2 × 1  = 910 – 56 = 854. 

Problem 10.  How many lines can be drawn through 10 points on a circle? 

Sol. As all the points on the circle are not collinear. Thus, no lines will lost. 

∴ The total number of lines that can be drawn through a circle = 10C2

10 ! 

10 × 9 × 8 ! 

=  2! × 1(0 − 2)!  =  2 × 1× 8!  = 45. 

Problem 11.  Determine the number of diagonals that can be drawn by joining the nodes of octagon. 

Sol. The number of lines that can be formed by joining 2 out of 8 points = 8C2

8 × 7

= 

= 28

2

Out of these 28 lines, the 8 are sides of the octagon. 

∴ The number of diagonals = 28 – 8 = 20. 

Problem 12.  In a shipment, there are 40 floppy disks of which 5 are defective. Determine ( a)  In how many ways we can select five floppy disks? 

( b)  In how many ways we can select five non-defective floppy disks? 

( c)  In how many ways we can select five floppy disks containing exactly three defective floppy disks? 

( d)   In how many ways we can select five floppy disks containing at least 1 defective floppy disk? 

Sol. ( a) There are 40 floppy disks out of which we have to select 5 floppy disks. These can be done in 40C  ways  i.e., 

5

40 ! 

40 × 39 × 38 × 37 × 36 × 35 ! 

=  5! 4

( 0 − 5) !  = 

5 ! × 35 ! 

= 658008. 
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( b) There are 40 – 5 = 35 non-defective floppy disks out of which we have to select 5. 

This can be done in 35C  ways. 

5

35 ! 

35 × 34 × 33 × 32 × 31 × 30 ! 

=  5! 3(5 − 5)! =  5 × 4 × 3 × 2 × 1× 30! 

= 324632. 

( c) To select exactly three defective floppy disks out of total 5 we have 5C  ways and the 3

remaining 2 floppy disks can be selected in 35C  ways. 

2

Therefore, the total number of ways to select 5 floppy disks out of which exactly 3 are

defective is = 5C  × 35C

3

2

5 ! 

35 ! 

5 × 4 × 3 ! 

35 × 34 × 33 ! 

=  3! 5( − 3)! × 2! × 3(5 − 2)! =  3! × 2 × 1 ×  2 × 1× 33! 

= 5950. 

( d) There are five defective floppy disks out of which at least 1 must be selected. We know that the total number of ways to select 5 floppy disks out of total 40 disks is = 40C . 

5

Also, the number of ways to select 5 floppy disks with none defective is

= 35C . 

5

Therefore, the total number of ways to select 5 floppy disks out of which at least one is

defective is

= 40C  – 35C  = 611625. 

5

5

Problem 13.  Seven members of a family have total ` 2886 in their pockets. Show that at least one of them must have at least ` 416 in his pocket. 

Sol. Let us assume the members of the family be the pigeonholes and the Rupees the

pigeons. Now 2886 pigeons are to be assigned to 7 pigeonholes. Using the extended pigeonhole

principle, where  n = 2886 and  m = 7, we have ⎣(2886 – 1)/7⎦ + 1 = 416. Hence, there are 416

Rupees in one member’s pocket. 

Problem 14.  How many people must you have to guarantee that at least 9 of them will have birthdays in the same day of the week. 

Sol. Let us assume the days of week be the pigeonholes and the people the pigeons. 

Since there are seven days in a week, thus we have 7 pigeonholes and we have to find pigeons. 

Using the extended pigeonhole principle, we have

⎣( n – 1)/7⎦ + 1 = 9

⎣( n – 1)/7⎦ = 9 – 1 = 8

   n – 1 = 8 × 7

   n = 56 + 1 = 57. 

Thus, there must be 57 people to guarantee that at least 9 of them will have birthdays

in the same day of the week. 

Problem 15.   For a class with 60 students, what is the least number of students that must have last names that begin with the same letter. 

Sol.  Let us assume the letters of the alphabet be the pigeonholes and the student names the pigeons. So we have 26 pigeonholes and 60 pigeons. Using the pigeonhole principal, we have L60



2 3

MM O

26PP = .  = 3. 

Thus, at least 3 students must have last names that begin with the same letter. 
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Problem 16.   At a party, there are n people. Each of them knows some number of the

 other people. Show that there are some two people at the party who know the same number of other people. (Assume that if A knows B then B also knows A.)

Sol.  The number of people a given person knows is between 0 and  n – 1, so there are  n possibilities. However, if one person knows  n – 1 of the other people, then every other person knows that person, so there cannot be anyone who knows 0 of the other people. Therefore, the

number of other people each person knows takes only  n – 1 values, so by the pigeonhole principle, it takes the same value at least twice. 

MULTIPLE CHOICE QUESTIONS

1. In a contest in which there are 8 participants, in how many ways can 5 distinct prizes be awarded? 

( a) 112

( b) 6720

( c) 336

( d) 672

2. A club elects a president, vice-president, and secretary-treasurer. How many sets of officers are possible if there are 15 members and any member can be elected to each position? No person can hold more than one position. 

( a) 2730

( b) 32,760

( c) 910

( d) 1365

3. A church has 7 bells in its bell tower. Before each church service 5 bells are rung in sequence. No bell is rung more than once. How many possible sequences are there? 

( a) 2520

( b) 42

( c) 84

( d) 21

4. How many arrangements can be made using 2 letters of the word HYPERBOLAS if no letter is to be used more than once? 

( a) 1,814,400

( b) 3,628,800

( c) 45

( d) 90

5. A work softball team has 15 players on its roster. There are 9 distinct positions in which these players can be placed. How many lineups can be fielded? 

( a) 1,505,667,870

( b) 1,635,890

( c) 1,816,214,400

( d) 214,400

6. How many integers, greater than 999 but not greater than 4000, can be formed with the digits 0, 1, 2, 3 and 4, if repetition of digits is allowed? 

( a) 499

( b) 500

( c) 375

( d) 376

7. There are 6 boxes numbered 1, 2...6. Each box is to be filled up either with a red or a green ball in such a way that at least 1 box contains a green ball and the boxes containing green balls are

consecutively numbered. The total number of ways in which this can be done is

( a) 5

( b) 21

( c) 33

( d) 60

8. From a group of 8 people, 5 will each win $1,000. How many different winning groups are possible? 

( a) 56

( b) 6720

( c) 168

( d) 336

9. Of a classroom filled with 20 students, 2 will be selected to stay after school and correct home-work for extra credit. How many combinations are possible? 

( a) 190

( b) 210

( c) 63

( d) 40
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10. To win the lottery, one must correctly select 6 numbers from a collection of 50 numbers (one through 50). The order in which the selection is made does not matter. How many different

selections are possible? 

( a) 250

( b) 15,890,700

( c) 300

( d) 13,983,816

11. A test is administered with 15 questions. Students are allowed to answer any ten. How many choices of ten questions are there? 

( a) 150

( b) 250

( c) 3003

( d) 3000

12. The number of ways to select 11 cricket players from a group of 20 players is

( a) 20 !/11 ! 

( b) 20 !/9 ! 

( c) 20 !/11 ! 9 ! 

( d) None of  these

13. The number of bit strings of length 8 that have exactly Three 1’s are

( a) 8 ! /5 ! 3 ! 

( b) 8 ! /5 ! 

( c) 8 ! /3 ! 

( d) 8  ! 

14. The number of divisors of 360 not including 1 or 360 are

( a) 24

( b) 22

( c) 12

( d) 11

15. The number of permutations of  n distinct objects taken  r at a time in which  p particular objects are present is

( a)  n P

( b)  n –  p P

 r

 r

( c)  n –  p P

 x  r P

( d)  n P X  r P

 r –  p 

 p

 r 

 p

16. How many numbers between 20,000 and 50,000 can be formed with the digits 1, 2, 3,4,5,6 such that no digits are repeated in any of the numbers? 

( a) 720

( b) 120

( c)  360

( d) 320

17. How many words can be formed out of the letters of the word ‘PECULIAR’ beginning with P and ending with R? 

( a) 100

( b) 120

( c) 720

( d) 150

18. In how many ways can a president and vice president be chosen from a set of 30 candidates? 

( a) 820

( b) 850

( c) 880

( d) 870

19. In how many ways can 5 balls be chosen so that 2 are red and 3 are black

( a) 910

( b) 990

( c) 980

( d) 970

20. In how many ways can a party of 7 persons arrange themselves around a circular table? 

( a) 6  ! 

( b) 7  ! 

( c) 5  ! 

( d) 7

21. In how many ways can a hungry student choose 3 toppings for his prize from a list of 10 delicious possibilities? 

( a) 100

( b) 120

( c) 110

( d) 150

22. A debating team consists of 3 boys and 2 girls.  Find the number of ways they can sit in a row? 

( a) 120

( b) 24

( c) 720

( d) 12
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ANSWERS

1. ( b)

2. ( a)

3. ( a)

4. ( d)

5. ( c)

6. ( d)

7. ( b)

8. ( a)

9. ( a)

10. ( b)

11. ( c)

12. ( a)

13. ( a)

14. ( b)

15. ( c)

16. ( c)

17. ( c)

18. ( d)

19. ( b)

20. ( a)

21. ( b)

22. ( a)

REVIEW QUESTIONS

1. Explain first Counting Principle. 

2. Explain second Counting Principle. 

3. Define factorial. 

4. What is permutation? 

5. Explain permutation with restrictions. 

6. Explain permutations when all of the objects are not distinct. 

7. Explain permutations with repeated objects. 

8. What is circular permutations? 

9. What is combination? 

10. What is Pigeonhole Principle? 

11. What is extended Pigeonhole Principle? 

CHAPTER END PROBLEMS

1. List up all permutations of three items out of four items { a,  b,  c,  d} in lexico-graphic order. 

2. List up all combinations of three items out of five items { a,  b,  c,  d,  e} in lexico-graphic order. 

3. Count the bit-strings of length ten that:

( a) start with 01 and end with 10. 

( b) start with 01 and do not end with 10. 

( c) neither start with 01 nor end with 10. 

( d) contain neither 01 not 10 as a substring. 

( e) Contain 01 but not 10 as a substring. 

( f) contain both 01 and 10 as substrings. 

( g) contain equal number of 0’s and 1’s. 

( h) contain more 0’s than 1’s. 

4. Count the positive integers less than or equal to 1000 that are:

( a) divisible by 5 or 7 (or both). 

( e) divisible by 6 or 8 (or both). 

( b) divisible by both 5 and 7. 

( f) divisible by both 6 and 8. 

( c) divisible by neither 5 nor 7. 

( g) divisible by neither 6 nor 8. 

( d) divisible by 5 but not 7. 

( h) divisible by 6 but not by 8. 

5. If there are 10 people in a room and they would make handshakes with each one in the room, how many unique handshakes would be made? 

6. If you have 5 pants and 8 shirts, how many ways can you wear them? 

7. In a restaurant, there are 3 choices of soup, 5 choices of entrees, and 2 choices of desert. How many ways can you order them if each order consists of one soup, one entree, and one desert? 

8. If 4 warriors line up so that the order matters, how many ordered combinations are possible? 
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9. If you count from 1 to 100, How many zeroes are there? How many sevens are there? 

10. How many integers, greater than 999 but not greater than 4000, can be formed with the digits 0, 1, 2, 3 and 4, if repetition of digits is allowed? 

11. The Madras Café  has a daily breakfast special in which the customer may choose one item from each of the following groups:

 Breakfast Sandwich

 Accompaniments

 Juice

egg and ham

breakfast potatoes

orange

egg and bread

apple slices

mango

egg and cheese

fresh fruit cup

carrot

pastry

apple

grape

( a) How many different breakfast specials are possible? 

( b) How many different breakfast specials without egg are possible? 

12. A teacher is making a multiple choice quiz.  She wants to give each student the same questions, but have each student’s questions appear in a different order.  If there are twenty-seven students in the class, what is the least number of questions the quiz must contain? 

13. How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated? 

14. There are 6 boxes numbered 1, 2...6. Each box is to be filled up either with a red or a green ball in such a way that at least 1 box contains a green ball and the boxes containing green balls are

consecutively numbered. Determine the total number of ways in which this can be done? 

15. Solve the equation for  n:

( a)  n C  = 35

( b)  n C  = 70

4

4

16. In how many different ways can an international committee of 4 be formed from 5 Americans, 4

Asians, and 3 Europeans so that at least one representative from each group is included? 

17. The College of Computer and Information Science has 30 faculty members: 13 Full Professors, 11

Associate Professors, and 6 Assistant Professors. Four of the professors are women and 26 are

men. Among the professors are 1 Dean (full professor, male) and 2 Associate Deans (full professors, one male and one female). Photos of the faculty have been taken, and they will be displayed in a row along the entry hallway. 

( a) In how many ways can the photos be displayed so that all of the women are together? 

( b) In how many ways can the photos be displayed so that all of the women are together and all of the men are together? 

( c) In how many ways can the photos be displayed so that all of the women are together or all of the men are together (or both)? 

( d) In how many ways can the photos be displayed with the Dean appearing first, followed by the Associate Deans, the (remaining) Full Professors, the Associate Professors, and finally

the Assistant Professors, in that order? 

( e) In how many ways can the photos be displayed if the Dean appears first, and the remaining photos are displayed in such a way that the Associate Deans are both together, the (remaining) ( f) In how many ways can the photos be displayed so that no two women are adjacent? 

[Hint: Consider arranging the men’s photos first and then placing the women’s photos among the men’s photos so as to ensure that no two women are adjacent.]

18. How many different 3-digit numbers can be formed by using the digits 2, 4, 5, 6, and 7, if repetition of digits is allowed? 

19. Determine whether the following problems involve permutations or combinations by giving the reason. No need to solve the problems. 
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( a) A record club offers a choice of 9 records from a list of 60. In how many ways can a member make a selection? 

( b) One hundred people purchase lottery tickets. Three winning tickets will be selected at random. 

If first prize is $100, second prize is $50, and third prize is $10, in how many different ways can the prizes be awarded? 

( c) How many different 4 letter user ID’s can be formed from the letters D, A, N, Y if no repetition of letters is allowed? 

( d) Seven of a sample of 150 computers will be selected and tested. How many ways are there to make this selection? 

20. Let S be an  n-set. Fill in each blank with an expression involving  n. 

( a) How many subsets does S have? 

( b) How many permutations does S have? 

( c) How many 3-combinations does S have?( d) How many 3-permutations does S have? 

21. Determine whether the following problems involve permutations or combinations by giving the reason. Then solve the problems. 

( i) Find the number of ways in which 4 prizes (1st, 2nd, 3rd, and 4th places) can be awarded to 5

girls, when no girl is to receive more than one prize. 

( ii) How many four-digit numbers can be formed using the digits 1, 3, 5, 7, and 8, without repeating any digits? How many of these four digit numbers begin with 7 and end with 1? 

22. A box contains 2 white balls, 3 black balls and 4 red balls. In how many ways can 3 balls be drawn from the box, if at least one black ball is to be included in the draw? 

23. A rook on a chessboard is said to put another chess piece under attack if they are in the same row or column. How many ways are there to arrange 8 rooks on a chessboard (the usual 8 × 8 one) so that none are under attack? 

24. A phone number is a 7-digit sequence that does not start with 0. Call a phone number lucky if its digits are in nondecreasing order. For example, 1112234 is lucky, but 1112232 is not. How many lucky phone numbers are there? A phone number is very lucky if its digits are strictly increasing, such as with 1235689. How many very lucky phone numbers are there? 

25. How many zeroes are there at the end of 12 !? at the end of 26 !? at the end of 53 !? 

26. A computer password consists of a letter of the alphabet by three or four digits. Find the total number of passwords that can be formed, and also the number of passwords in which no digit

repeats. 

( DOEACC, 2008)

27. Consider an exam consisting of 16 problems divided into two groups of 8 problems each. Students are required to solve 10 of the 16 problems. 

( a) In how many ways can a student choose 10 of the 16 problems? 

( b) Suppose that students are required to solve 5 problems from the first group and 5 problems from the second group. In how many ways can a student choose the 10 problems to solve? 

( c) Now suppose that students are allowed to solve any 10 problems out of the 16 but no more than 6 from either group. In how many ways can a student choose the 10 problems to solve? 

28. A marketing firm has been hired to conduct a survey of automobile purchases in the greater Boston area. The survey consists of recording, for each household surveyed, the number of cars presently owned by that household among the following six major manufacturers: GM, Ford, 

Chrysler, Toyota, Honda, and Nissan. Thus, one household may have two GMs and a Ford, another

household may have one Honda and one Nissan, etc. 

( a) Suppose that no household surveyed has more than four cars. In how many different ways can the survey sheet be filled out? 

( b) There are approximately 1,200,000 households in the greater Boston area. Suppose that all households are surveyed, the resulting survey sheets are organized and tallied by type

(e.g., two GMs and a Ford vs. one Honda and one Nissan, etc.), and the survey results are

sorted by popularity (e.g., two GMs and a Ford is the most common, one Honda and one

Nissan is the second most common, etc.). At a minimum, how large must be the count

associated with the most popular survey result? 

M-4.286

A TEXTBOOK OF ENGINEERING MATHEMATICS

29. There are 20 boys available for election. How many different basketball teams could be formed? 

30. A man has, in his pocket, a silver dollar, a half- dollar, a quarter, a dime, a nickel, and a penny. 

If he reaches into his pocket and pulls out three coins, how many different sums may he have? 

31. Find the value of  C . 

3 3

32. How many possible combinations can a person make with letters (lower case)  a- z and 1-9; starting from 1 digit and ending up with up to 8 digits? When repetition is not allowed? When repetition is allowed? 

33. A woman ordering dinner has a choice of one meat dish from four, four vegetables from seven, one salad from three, and one dessert from four. How many different menus are possible? 

34. How many permutations of six objects taken two at a time can be made? 

35. In how many ways can eight people be arranged in a row? 

36. Eight first class and six second class petty officers are on the board of the 56 club. In how many ways can the members elect, from the board, a president, a vice-president, a secretary, and a

treasurer if the president and secretary must be first class petty officers and the vice-president and treasurer must be second class petty officers? 

37. A set of 15 different words is given. In how many ways is it possible to choose a subset of not more than 5 words? 

38. For the example 37, suppose we are asked the following: In how many ways can the members elect the office holders from the board if two of the office holders must be first class petty officers and two of the office holders must be second class petty officers? 

39. In how many ways could you arrange the following numbers of books on your bookshelf? 

( a) 5 books from a set of 9 books? 

( b) 6 books from a set of 11 books? 

( c) all 8 books from a set of 8 books? 

40. Find the number of ways you can arrange 5 things taken any at a time, without repetition. 

41. How many ways can 6 people sit around a table for dinner? 

42. In how many ways can 8 different coloured flowers be strung as a garland? 

43. There are 2 brothers among a group of 20 persons. In how many ways can the group be arranged around a circle so that there is exactly one person between the two brothers? 

44. A permutation of {1, 2, 3, 4, 5} can be thought of as a number with these five digits in some order, such as 21453 or 41352. There are 5 ! = 120 such numbers. 

( a) How many of these numbers start with 5 and end with 2? 

( b) How many have a first digit which is larger than the second digit? 

( c) How many have the property that the first digit is larger than the second, which is smaller than the third, which is larger than the fourth, which is smaller than the fifth? (Hint: what positions can the digit 1 occupy in such a number?)

45. A factory makes jelly beans of 15 different flavours, which it sells in bags of 10. If the jelly beans in a bag must all have different flavours, how many possible kinds of bag are there? What about if this restriction is removed? 

46. If there are 10 chairs in a row and 8 students who want to sit down, you would normally say there are 10P8 = 1814400 possible outcomes (a case of ordered selection with repetition not allowed). 

What unusual circumstances would make you change this answer to 108? How about 10C or

8  

17C ? 

8

47. There are 15 points in a plane, no three of which are in a straight line except 6 all of which are in one straight line. 

( i) How many straight lines can be formed by joining them? 

( ii) How many triangles can be formed by joining them? 

48. What is the minimum number of students required in a class to be sure that at least 6 will receive the same grade if there are five possible grades A, B, C, D and F? 
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 n

49. Let  n be a positive integer. Then prove that 

 k

∑ (− 1) C( n,  r) = 0. 

 k = 0

50. Show that among any  n + 1 positive integers whose value does not exceed 2 n, there must be  an integer that divides one of the other integers. 

51. How many permutations of MISSISSIPPI have no consecutive vowels? 

( KU, 2005)

52 . How many permutations of the word ABRACADABRA are there? 

53. How many permutations are there of the letters in the word ENGINEERING? 

54. How many permutations are there in the following DNA sequence “ATTTAGCCCCCATG”? 

55. How many permutations are there of the following string “VERYEASYEXAM”? 

56. Find the number of permutations that can be made using all the letters of the word

MATHEMATICS. 

57. In how many different ways can the letters of the word ‘CORPORATION’ be arranged so that the vowels always come together? 

58. In how many ways can the letters of the word ABACUS be rearranged such that the vowels always appear together? 

59. How many permutations of the letters A B C D E F G H contain string DEF? 

60. How many 6-letter words can be formed by ordering the letters ABCDEF if A appears before C

and E appears before C? 

61. How many permutations of the letters ABCDEFG contain

( a) the string BCD? 

( b) the string CFGA? 

( c) the strings BA and GF? 

( d) the strings ABC and DE? 

( e) the strings ABC and CDE? 

( f) the strings CBA and BED? 

62. How many words can be obtained by arranging the letters of the word ‘UNIVERSAL’ in different ways? In how many of them

( i) E,R,S occur together

( ii) No two of the letters  E,R,S occur together. 

63. Find how many words can be formed out of the letters of the word DAUGHTER such that ( i) The vowels are always together. 

( ii) The vowels occupy even places. 

64. ( a) How many distinguishable ways are there to rearrange the letters in the word COMBINATORICS? 

( b) How many distinguishable arrangements are possible with the restriction that all vowels (“A”, “I”, “O”) are always grouped together to form a contiguous block? 

( c) How many distinguishable arrangements are possible with the restriction that all vowels are alphabetically ordered  and all consonants are alphabetically ordered? For example:

BACICINOONRST is one such arrangement. 

65. How many permutations of the word ‘FOUNDATION’ are there? A valid password is 5 letters long and uses a selection of the letters in the word ‘FOUNDATION’. (Thus, a password may have

at most 2 N’s, at most 2 O’s, and at most 1 copy of each of the other letters {A, D, F, I, U, T} in

‘FOUNDATION’.). ( i) How many valid passwords are there? ( ii)An ascending word is one where the letters of the word appear in alphabetical order. Thus, for example, AFNNT is a valid password that is ascending. How many of the valid passwords are ascending? 

66. In the word ‘MANORAMA’

( a) Find the number of permutations formed taking all letters. 

( b) Out of these the number of permutations with all A’s together. 

( c) Find the number of permutations which start with A and end with M. 

67. A man has four friends.  In how many ways can he invite one or more friends to tea party? 

68. Find the number of ways in which 5 prizes can be distributed among 5 students such that ( i) Each student may get a prize. 

( ii) There is no restriction to the number of prizes a student gets. 
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69. Shirts numbered consecutively from 1 to 20 are worn by 20 members of a bowling league. When any three of these members are chosen to be a team, the league proposes to use the sum of their shirt numbers as the code number for the team. Show that if any eight of the 20 are selected, 

then from these eight one may form at least two different teams having the same code number. 

70. Find the number of ways in which we can put  n distinct objects into two identical boxes so that no box remains empty. 

71. How many different sub-committees can be formed each containing three women from an available set of 20 women and four men from an available set of 30 men? 

72. A box contains six red balls and four green balls. Four balls are selected at random from the box. 

What is the probability that two of the selected balls will be red and two will be green? 

73. How many words of 4 letters can be formed with the letters  a,  b,  c,  d,  e,  f,  g and  h, when ( i)  e and f are not to be included and ( ii)  e and  f are to be included. 

74. Let  n C = ( n + 1) .  n P

. then compute ( n + 1) C

, 7C . 

 r 

( r – 1) 

( r – 1) 

4

75. Consider six-digit numbers with all distinct digits that do NOT start with 0. Answer the following questions about these numbers. Leave the answer in factorial form. 

( a) How many such numbers are there? 

( b) How many of these numbers contain a 3 but not 6? 

( c) How many of these numbers contain either 3 or 6 (or both)? 

76. A class has 18 girls and 12 boys. In how many ways can a committee of two boys and two girls be chosen? 

77. Consider four receptacles (R , R , R , and R ) containing marbles.  The marbles are red, white, or 1

2

3

4

blue but are otherwise indistinguishable. 

R : Has 10 red, 10 white, and 10 blue marbles. 

1

R : Has 10 red marbles. 

2

R : Has 10 white marbles. 

3

R : Has 10 blue marbles. 

4

Marbles are selected from the jars and laid out in a row. (Thus, the order in which the marbles are chosen makes a difference. For example, RWWWBRR is a different order than RRWWWB.)

How many linear arrangements can be created under the following circumstances? 

( a) Seven marbles are chosen, all from R . 

1

( b) Ten marbles are chosen. The first marble chosen is from R . Then zero or more marbles are 1

chosen from R , followed by zero or more marbles form R , followed by zero or more marbles

2

3

from R . The total number of marbles chosen from these last three receptacles must be nine. 

4

(For example, WRRRBBBBBB is permissible, while, WRRWRBBBBB is not.)

78. Tom has 15 ping-pong balls each uniquely numbered with a number between 1 and 15.  He also has a red box, a blue box, and a green box.  ( a)  How many ways can Tom place the 15 distinct balls into the three boxes?  ( b)  Suppose now that Tom has placed 5 ping-pong balls in each box. 

How many ways can he choose 5 balls from the three boxes so that he chooses at least one from

each box? 

79. You are given 12 playing cards that include 3 spades, 3 hearts, 3 diamonds, and 3 clubs (that is, 3 cards of each “suit.”)

( a) How many ways can one select 6 cards total from the 12 when choosing 1 spade, 1 heart, 2

diamonds, and 2 clubs? 

( b) How many ways can one select 6 cards total from the 12 when choosing at least 1 card from each suit? 

COUNTING TECHNIQUES

M-4.289

80. ( a) A class has 8 girls and 4 boys. If the class contains 6 sets of identical twins, where each child is indistinguishable from their twin, how many different ways can the class line up to go to

recess? (Do not count two configurations as distinct if the only difference between the two is twins swapping spots in line.)

( b) Unfortunately, each day when the class (the same class with 6 pairs of twins described in part A) lines up to go to recess (this is done once a day), if two boys are adjacent to each other in line, they always cause problems. But, the kids also cause problems if they are ever lined

up the same way on two separate days. How many possible orders can the class line up in

without having any problems? 

81. An ascending number is a number where each of the digits are distinct and are contained in the number in ascending order. For example, 145 and 24679 are ascending numbers and no ascending

numbers start with the digit 0. How many ascending numbers are there total? 

82. A ternary string is a string composed of the symbols 0, 1, and 2. How many ternary strings of length 9 contain 5 zeroes, 2 ones, and 2 twos? (For example, one such string is 010010202.)

83. Ten professors are planning to sit in a row of seats at a conference. Professor Sutton would rather not sit next to Professor Merriman, because he knows Professor Merriman has a cold. How many

ways are there for the ten professors to be seated so that Professor Sutton is not seated next to Professor Merriman? 

84. In a popular computer game, during each turn, the player has the choice of moving North, East, South, or West. How many paths of 8 moves can be created in which each move is either North, 

East, South, or West? For example, one such path is North, East, East, South, South, West, 

South, West. Two paths are counted as the same only if each “move” in order is identical in both paths. For example, East, North, East, South, South, West, South, West should count differently than the previously mentioned path. 

85. How many strings of 7 lowercase letters from the English alphabet (of 26 letters) contain ( a) The letter  d  at least once? 

( b) The letters  a,  b, and  c, in that order, with all letters distinct? For example,  daebyxc is a valid string, because all letters are distinct, and  a,  b, and  c appear in order within the string. 

86. An icecream parlour sells six flavours of icecream: vanilla, chocolate, strawberry, cookies and cream, mint chocolate chip, and chocolate chip cookie dough. How many combinations of fewer

than 20 scoops are there? (Note: two combinations count as distinct if they differ in the number of scoops of at least one flavour of ice cream.)

87. There are N users and M   servers with M  ≥   N.  Each user can send a request to any of the servers. 

Determine the number of situations in which at least one collision occurs,  i.e., there is at least one pair of users that sends the request to the same server. 

88. There are four students and each owns one book. They put the four books in a box and randomly pick one. What is the probability that exactly two students get their own book? 

[Note: There are 24 possible assignments of books, so the probability is simply the number of different assignments where exactly two students get their own book divided by 24.]

89. How many strings of three decimal digits? 

( a) do not contain the same digit three times? 

( b) begin with an odd digit? 

( c) have exactly three digits that are 9s? 

90. How many ways are there to travel in  xyz space from the origin (0,0,0) to the point (4,3,5) by taking steps on unit in the positive x direction, one unit in the positive y direction, or one unit in the positive  z direction?  (Moving in the negative  x, y, or  z   direction is prohibited, so that no backtracking is allowed). 
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91. The letters of the word ‘ENGINEERING’ are arranged in random order.  Find:

( a) The number of distinguishable arrangements; 

( b) The probability that the letters spell  ‘ENGINEERING’

( c) The probability that the arrangement begins and ends with the same letter; 

( d) The probability that the G’s are not beside each other. 

92. Given  n pigeons to be distributed among  k pigeonholes. What is a necessary and sufficient condition on  n and  k that, in every distribution, at least two pigeonholes must contain the same number of pigeons? 

93. Prove the proposition that in a room of 13 people, 2 or more people have their birthday in the same month. 

94. Show that if there are 30 students in a class, then at least two have last names that begin with the same letter. 

95. By using pigeonhole principle, show that if any five numbers from 1 to 8 are chosen, then two of them will add upto 9. 

96. Explain extended pigeonhole principle and show that if 7 colors are used to paint 50 bicycles, at least 8 bicycles will be the same color. 

97. A bag contains 100 apples, 100 oranges, 100 bananas and 100 pears. Every minute you choose one fruit from the bag. How long will it take to ensure that you have at least a dozen fruit of the same kind? 

98. 5 friends run a race everyday for four months (excluding February). If no race ends in a tie, show that there are at least 2 races with identical outcomes. 

99. Given any 5 points in a unit square, show that two of these points must be within  2 /2  of each other. 

ANSWERS TO SELECTED PROBLEMS

5. 

45

6. 40

7. 30

8. 24

9. 

11 zeroes and 20 sevens

10. 376

11. ( a) 60

( b) 20

12. 

At least 5

13. 20

14. 21

15. ( a) 7

16. 270

17. ( a) 4  ! . 26 ! . 27 ( b) 4 ! . 26 ! . 2

( c) 4 ! . 26 ! . 30

( d) 1 . 2 ! . 10 ! . 11 ! . 6 ! 

( e) 4 ! . (1 . 2 ! . 10 ! . 11 ! . 6 !)

( f) 26 ! . 27 . 26 . 25 . 24

18. 125

19. ( a) combinations ( b) permutations ( c) permutations  ( d) combinations 20. ( a) 2 n

( b)  n ! 

( c) C( n, 3) = ( n C ) =  n !/3 ! ( n – 3) ! 

3

( d) P( n, 3) =  n!/( n – 3) ! or  n( n – 1)( n – 2) 21. 

( i) permutations, 120

( ii) permutations, 120, 6

22. 

64

23. 8 ! 

24. ( a) 6435

( b) 36

25. 2,6,12

27. ( a) 8008    ( b) 3136 ( c) 7056

28. ( a) 210

( b) 5715

29. 15504

30. 

20

31. 1

32. 32267667, 35 + 352 + 353 + 354 + 355 + 356 + 357 + 358

33. 1680

34. 30

35. 4032

36. 1680

37. 4944

38. 10080

39. ( a) 15120

( b) 332640

( c) 40320

40. 326

41. 120

42. 

2520

43. 2 * 18 ! 

44. ( a) 6

( b) 60

( c) 16

45. 1961256

46. 10C if repetition was not allowed, 17C if repetition was allowed

8 

8 

F I

47. 

( i) 91 ( ii) 425

48. 26

50. 720

51. 8

7

H

52. 

11! 

4K

! 

4 ! 2 ! 

5 ! 2 ! 2 ! 1! 1! 

COUNTING TECHNIQUES

M-4.291

53. 

11! 

54. 

14 ! 

55. 

12 ! 

56. 

11! 

= 4,989,600

3 ! 3 ! 2 ! 2 ! 1! 

2 ! 3 ! 4 ! 5 ! 

3 ! 2 ! 2 ! 

2 ! × 2 ! × 2 ! 

57. 50400

58. 4 ! * 3 ! 

59. 720

60. 240

2 ! 

61. ( a) 120

( b) 24

( c) 120

( d) 24

( e) 6

( f) 0

62. 

( i) 7 ! * 3 ! 

( ii) 9 ! – 8 ! * 6

63. ( i) 4320

( ii) 2880

64. ( a) 13 !/(2 !)3

( b) (9 ! × 5 !)/(2!)3 ( c) 13!/(8!5!)

65. ( a) 10 !/(2 !2 !)

( b) 11100

( c) 132

66. 

( i) 3360

( ii) 360

( iii) 360

67. 15

L x  1  xx

(

− 1 2

−

) O

68. 

( i) 5 ! Ways

( ii) 65

70. MM

P 71. 31241700

72. 3/7

1 −  x

N

QP  

73. 

( i) 360

( ii) 1680

74. 1680

F18I F12I

75. ( a) 136080

( b) 36120

( c) 118440

76. 

H 2 K H 2 K

77. ( a) 37

( b) 165

78. ( a) 315

( b) 2250

79. ( a) 81

( b) 594

80. ( a) 12 !/(2 !)6

( b) (9C ) 4 ! 8 !/26

4

81. 29 – 1

82. 756

83. 8(9 !). 

84. 48

FMI

85. ( a) 267 – 257

( b) 35 . 23 . 22 . 21 . 20

86. 25C

87. MN – 

6

HNK  N! 

88. 

1

89. ( a) 990

( b) 500

( c) 999

90. 27720

4

91. ( a) 11 !/144

( b) 144/11 ! 

( c) 8/55

( d) 9/11. 


MODULE – 5

C H A P T E R

1

 Posets and Lattices

PREVIEW

In the 1930’s, Garrett Birkhoff had done the early work of partially ordered sets and

lattices. The term “poset” is short for “partially ordered set”. A poset is a set in which the elements are ordered but not all pairs of elements are necessary to be comparable in the order. 

Partial order sets and lattice theory play an important role in many disciplines of computer

science and engineering. Posets and Lattices have applications in concurrency theory, pro-

gramming languages, combinatorics and group theory. One of the most important practical

applications of lattice theory is the use of Boolean algebras in modeling and simplifying switching circuits. This chapter covers basic concepts of POSets, Hasse Diagram, Lattices, their

representation, their types, their elements etc. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

• understand the basic concepts of POSets and Lattices. 

• construction and understand the Hasse Diagrams. 

• understand the elements of POSets

• understand the Isomorphic ordered sets

• define lattice and elements of lattices

• understand the sub-lattices and isomorphic lattices

• understand the concept of Bounded and distributive lattices

• understand the concept of complemented and modular lattices

• understand the direct product of lattices

1.1

INTRODUCTION

The early development of partially ordered sets and lattices are found in the works of

George Boole, Richard Dedekind, Charles Sanders Peirce and others. Relations can be used to

order some or all the elements of a set. For example, the set of Natural numbers is ordered by the relation ≤ such that for every ordered pair ( x, y) in the relation, the natural number  x comes before the natural number  y unless both are equal. A relation R on set A is called a M-5.1
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partial ordering or partial order relation if it is reflexive, anti-symmetric and transitive. A set S together with a partial ordering R is called a partially ordered set or poset. The poset is

denoted as (S, R). A lattice consists of a partially ordered set in which every two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called

a greatest lower bound or meet). The lattices can be isomorphic, Bounded, distributive, complemented and modular. This chapter gives introductory concepts of posets and lattices with lots

of solved examples. 

1.2 PARTIALLY ORDERED SET

Definition. Consider a relation R on a set S satisfying the following properties :

1. R is reflexive  i.e., x R x for every  x ∈ S. 

2. R is antisymmetric  i.e.,  if  x R y and  y R x, then  x =  y. 

3. R is transitive  i.e.,  if  x R y and  y R z, then  x R z. 

Then R is called a partially order relation and the set S together with partial order is

called a partially order set or POSET and is denoted by (S, ≤). 

For example

1. The set N of natural numbers form a poset under the relation ‘≤’ because firstly  x ≤  x, secondly, if  x ≤  y and  y ≤  x, then we have  x =  y and lastly if  x ≤  y and  y ≤  z, it implies  x ≤  z for all x,  y,  z ∈ N. 

2. The set N of natural numbers under divisibility  i.e.,  ‘ x divides  y’ forms a poset because x/ x for every  x ∈ N. Also if  x/ y and  y/ x, we have  x =  y. Again if  x/ y,  y/ z we have  x/ z, for every x, y, z ∈ N. 

3. Consider a set S = {1, 2} and power set of S is P(S). The relation of set inclusion ⊆ is a

partial order. Since, for any sets A, B, C in P(S), firstly we have A ⊆ A, secondly, if A ⊆ B and B ⊆ A, then we have A = B. Lastly, if A ⊆ B and B ⊆ C, then A ⊆ C. Hence, (P(S), ⊆) is a poset. 

Example 1.  Consider a set S = {a, b, c}. Is the relation of set inclusion ‘⊆’  is a partial order on P( S)  where P( S)  is a power set of S ? 

Sol. The power set of S is

P(S) = {{ a}, { b}, { c}, { a,  b}, { a,  c}, { b,  c}, { a, b, c}, φ}

Now consider any sets A, B and C in P(S). 

1. Since every A ⊆ A, hence it is reflexive. 

2. If A ⊆ B and B ⊆ A, we have A = B. Hence it is antisymmetric. 

3. If A ⊆ B, B ⊆ C, we have A ⊆ C. Hence it is transitive. 

∴ (P(S), ⊆) is a poset. 

Example 2.  Consider a set A = {4, 9, 16, 36}. Is the relation ‘ divides’  a partial order. 

Sol. The relation ‘divides’ is a partial order if it satisfies the property of reflexivity, antisymmetry and transitivity. 

1. Since for every  a ∈ A, we have  a/ a. Hence, ‘divides’ is reflexive. 

2. If  a/ b and  b/ a, we have  a =  b for any  a, b ∈ A. Hence, ‘divides’ is antisymmetric. 

3. If  a/ b and  b/ c, we have  a/ c for any  a, b, c ∈ A. Hence, the relation ‘divides’ is a partial order and (A, /) is a poset. 
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1.3 COMPARABLE ELEMENTS AND NON-COMPARABLE ELEMENTS

(i) Comparable Elements

Consider an ordered set A. Two elements  a and  b of set A are called comparable if a ≤  b

or

 b ≤  a. 

R

R

(ii) Non-Comparable Elements

Consider an ordered set A. Two elements  a and  b of set A are called non-comparable if neither  a ≤  b nor  b ≤  a. 

Example 3.  Consider A = {1, 2, 3, 5, 6, 10, 15, 30} is ordered by divisibility. Determine all the comparable and non-comparable pairs of elements of A. 

Sol. The comparable pairs of elements of A are :

{1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 10}, {1, 15}, {1, 30}

{2, 6}, {2, 10}, {2, 30}

{3, 6}, {3, 15}, {3, 30}

{5, 10}, {5, 15}, {5, 30}

{6, 30}, {10, 30}, {15, 30}. 

The non-comparable pair of elements of A are :

{2, 3}, {2, 5}, {2, 15}

{3, 5}, {3, 10}, {5, 6}, {6, 10}, {6, 15}, {10, 15}. 

1.4

LINEARLY ORDERED SET (CHAIN)

Consider an ordered set A. The set A is called linearly ordered set or totally ordered set, 

if every pair of elements in A are comparable. The total order set is called a chain. A chain is said to be anti-chain if no two distinct elements of the set are related. 

For Example : The set of positive integers I  with the usual order 

+

≤ is a linearly ordered set. 

Example 4.  Consider the set I = {1, 2, 3,......} is ordered by divisibility. Determine whether each of the following subsets of I are linearly ordered or not. 

( i)  {2, 4, 8}

( ii)  {3, 6, 9, 11}

( iii)  {1}

( iv)  {2, 4, 6, 8, 10, ......}. 

Sol. ( i) The subset is linearly ordered, since every pair of elements is comparable  i.e.,  2|4|8. 

( ii) The subset is not linearly ordered, since the pair (3, 11) is not comparable. 

( iii) The subset is linearly ordered, since the set containing one element is always linearly ordered. 

( iv) The subset is not linearly ordered since every pair of elements is not comparable  i.e., neither 4/6 nor 6/4. 

PROBLEM SET-I

1. Show that the set Z , the set of all positive integers under divisibility relation forms a poset. 

+

2. Show that the set Z, the set of all integers under divisibility relation is not a poset. 

M-5.4
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3. Consider the set I  = {1, 2, 3, 4, ... } of all positive integers. The set I  is ordered by divisibility. 

+

+

Insert the correct symbol, <, >, or || (not comparable) between the following pair of numbers. 

( i) 4 – 8

( ii) 16 – 36

( iii) 80 – 20

( iv) 5 – 45

( v) 105 – 35

4. Consider the set I  = {1, 2, 3, 4, ...} of all positive integers. The set I  is ordered by divisibility. 

+

+

Determine whether the following subsets of I  are linearly ordered or not? 

+

( i) {3, 12, 6}

( ii) {2, 3, 15}

( iii) {4, 8, 32, 16}

( iv) {1}

( v) {5, 10, 15, 20}

( vi) {5, 15, 30}

( vii) {1, 2, 3, ... 10}

( viii) I+

5. Determine two pair of incomparable elements in each of the following posets. 

( a) ({2, 4, 6, 8, 10}, /)

( ii) (P({ a, b, c}), ⊆)

6. Consider the set A = {1, 2}. Determine all the relations on A, that are partial order. 

7. The set P({1, 2, 3, 4}) is a partially ordered w.r.t. the subset relation ⊆. Determine a chain of length 4 in P({1, 2, 3, 4}). Also determine an anti-chain of 4 elements. 

8. Show that the relation ≥ is a partial ordering on the set of integers, I. 

9. Which of the following pairs of elements are comparable in the poset  (I , /)? 

+

( i) 5 – 15

( ii) 6 – 9

( iii) 8 – 16

( iv) 7 – 7

10. Determine whether the relations represented by the following matrixes are partial order. 

⎡1 0 1 0⎤

⎡1 0 1⎤

⎢

⎥

⎢

⎥

⎢0 1 1 0⎥

( a) ⎢1 1 0⎥

( b) ⎢0 0 1 1⎥

⎢0 0 1⎥

⎣

⎦

⎢

⎥

⎣1 1 0 1⎦

11. Let A = {≠,  p, 1}, with partial order determined by  p < 1 < #. Put the following elements of A × A × A in lexicographic order:

( p,  p, 1), ( p, 1, #), (#, #,  p), ( p,  p,  p), (#, 1, 1), (1, #,  p), ( p, 1, 1), (#, #, #). 

ANSWERS AND HINTS (PROBLEM SET I)

1. Since  n/ n  for all  n ∈ Z , hence divisibility (/) relation is reflexive. Now,  n/ m and  m/ n, this means

+

 n = m,  hence, (/) divisibility relation  is antisymmetric. Further,  n/ m and  m/ p, implies  n/ p, hence divisibility relation is transitive. From above, it follows that/is a partial ordering on Z  and

+

(Z , /) is a poset. 

+

2. Since a and – a both divide each other but  a ≠ –  a. Thus the relation/is not antisymmetric. Hence it is not a partial order relation. 

3. 

( i) Since 4 divides 8 and 4 precedes 8, thus 4 < 8. 

( ii) 16||36

( iii) 80 > 20

( iv) 4 < 45

( v) 105 > 35

4. 

( i) The set is linearly ordered since 3 divides 6 which divides 12. 

( ii) The set is not linearly ordered since 2 and 3 are not comparable, neither 2 and 15. 

( iii) The set is linearly ordered. 

( iv) Any set containing single element is linearly ordered. 

( v) Not linearly ordered since 10 and 15 are not comparable. 

( vi) The set is linearly ordered. 

( vii) Not linearly ordered. 

( viii) Not linearly ordered. 

5. ( a) 4 and 6, 6 and 8, 6 and 10, 8 and 10. 

( b) { a, b} and { a, c}, { a, b} and { b, c}, { a, c}   and { b, c}
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6. R  = {(1, 1), (2, 2)} R  = {(1, 1), (2, 2), (1, 2)} and R  = {(1, 1), (2, 2), (2, 1)}

1

2

3

7. Chain of length 4: φ ⊆ {1} ⊆ {1, 3} ⊆ {1, 3, 4} ⊆ {1, 2, 3, 4}

Anti-chain of 4 elements = {{1, 2,}, {1, 3}, {2, 3}, {2, 4}} and {{1, 2}, {2, 3}, {1, 4}, {2, 4}}

8. The relation ≥ is reflexive, since  a ≥  a for every  a ∈ I. 

The relation ≥ is antisymmetric, since  a ≥  b and  b ≥  a ⇒  a =  b. 

The relation ≥ is transitive, since  a ≥  b and  b ≥  c ⇒  a ≥  c. 

Thus, the relation ≥ is a partial ordering on the set of integers and (I, ≥) is a poset. 

9. ( i) Comparable

( ii) Not Comparable

( iii) Comparable

( iv) Comparable

10. ( a) Not a partial order relation since it is not transitive. 

( b) Not a partial order relation since it is not transitive. 

11. ( p, p, p) < ( p, p,  1) < ( p, 1, 1) < ( p, 1, # ) < (1, #,  p) < ( #, 1, 1) < ( #, #,  p) < ( #, #, # ) 1.5

HASSE DIAGRAMS

It is a useful tool, which completely describes the associated partial order. Therefore, it

is also called an ordering diagram. It is very easy to convert a directed graph of a relation on a set A to an equivalent Hasse diagram. Therefore, while drawing a Hasse diagram following

points must be remembered. 

1. The vertices in Hasse diagram are denoted by points rather than by circles. 

2. Since a partial order is reflexive, hence each vertex of A must be related to itself, so

the edges from a vertex to itself are deleted in Hasse diagram. 

3. Since a partial order is transitive, hence whenever  a R b,  b R c, we have  a R c. Eliminate all edges that are implied by the transitive property in Hasse diagram  i.e.,  Delete edge from a to  c but retain the other two edges. 

4. If a vertex ‘ a’ is connected to vertex ‘ b’ by an edge  i.e., a R b, then vertex ‘ b’ appears above vertex ‘ a’. Therefore, the arrows may be ommitted from the edges in Hasse diagram. 

The Hasse diagram is much simpler than the directed graph of the partial order. 

Example 5.  Consider the set A = {4, 5, 6, 7}. Let R be the relation ≤  on A. Draw the directed graph and the Hasse diagram of R. 

Sol. The relation ≤ on the set A is given by

R = {{4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}, {4, 4}, {5, 5}, {6, 6}, {7, 7}}

The directed graph of the relation R is as shown in Fig. 1. 

4

5

6

7

Fig. 1
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To draw the Hasse diagram of partial order, apply the following points :

7

1. Delete all edges implied by reflexive property

  i.e., 

(4, 4), (5, 5), (6, 6), (7, 7). 

6

2. Delete all edges implied by transitive property

5

 i.e., 

(4, 7), (5, 7) and (4, 6). 

3. Replace the circles representing the vertices by dots. 

4

4. Omit the arrows. 

The Hasse diagram is as shown in Fig. 2. 

Fig. 2

Example 6.  Draw the directed graph of relation determined by the Hasse diagram on

 the set A = {1, 4, 6, 8} as shown in Fig. 3. 

8

6

4

1

Fig. 3

Sol. The directed graph is shown in Fig. 4. 

4

1

6

8

Fig. 4

Example 7.  Determine the Hasse diagram of the partial order having the directed graph as shown in Fig. 5. 

1

3

2

4

Fig. 5
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Sol. The Hasse diagram of the given partial order determine by the directed graph is as shown in Fig. 6. 

1

2

3

4

Fig. 6

Example 8.  Consider the set A = {k, l, m, n, p} and the corresponding relation R = {(k, k), (l, l), (m, m), (n, n), (p, p), (k, m), (k, l), (k, n), (k, p), (m, n), (m, p), (n, p), (l, p)}. 

 Construct the directed graph and the corresponding Hasse diagram of this partial order. 

Sol.  The directed graph of the partial order is as shown in Fig. 7. 

p

k

m

n

 l

 l

n

m

p

k

Fig. 7

Fig. 8

The Hasse diagram of the partial order is as shown in Fig. 8. 

Example 9.  Consider the Hasse diagram as shown in Fig. 9. Determine the value of set A and also determine the set R. 

{1, 2}

{1}

{2}

f

Fig. 9

Sol. The set A = {{1}, {2}, {1, 2}, φ} and

R = {({1}, {1}), ({2}, {2}), ({1, 2}, {1, 2}), {φ, φ}, ({1}, {1, 2}), ({2}, {1, 2}), (φ, {1}), (φ, {2}), (φ, {1, 2})}. 

Here the relation R is (set inclusion) ⊆. 
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Example 10.  Determine the Hasse diagram of the relation on A = {a, b, c, d, e} whose matrix is shown in Fig. 10. 

  a  b  c d e

 a  L1 0 1 1 1O

 b  0

M 1 1 1 1

M

PP

 c  0 0 1 1 1

M

P

 d  0 0 0 1 0

M

P

 e  0

NM 0 0 0 1QP

Fig. 10

Sol. The Hasse diagram of the relation on A = { a, b, c, d, e} is shown in Fig. 11. 

d

e

c

a

b

Fig. 11

Example 11.  Let A = {1, 2, 3, 4, 5} be ordered by Hasse diagram. 

1

2

3

5

4

Fig. 12

 Insert correct symbol <, >,  or || ( not comparable)  between : ( i)  1 – 5


( ii)  2 – 3

( iii)  4 – 1

( iv)  3 – 4. 

Sol. ( i) As there is a path from 1 to 5, hence 1 > 5. 

( ii) As there is no path from 2 to 3 or vice-versa, hence 2 || 3. 

( iii) As there is a path from 4 to 1, hence 4 < 1. 

( iv) As there is no path from 3 to 4, hence 3 || 4. 

1.6

ELEMENTS OF POSET

The elements of the posets are as follows:

1.6.1 Maximal Element

An element  a ∈ A is called a maximal element of A if there is no element  c in A such that a ≤  c. 

1.6.2

Minimal Element

An element  b ∈ A is called a minimal element of A if there is no element  c in A such that c ≤  b. 

Note. There can be more than one maximal or more than one minimal element. 
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Example 12.  Determine all the maximal and minimal elements of the poset whose Hasse diagram is shown in Fig. 13. 

b

f

a

c

e

d

Fig. 13

Sol. The maximal elements are  b and  f. 

The minimal elements are  d and  e. 

Example 13.  Let A = {2, 3, 4, 6, 8, 24, 48} with partial ordering of divisibility. Determine all the maximal and minimal elements of A. 

Sol. The maximal element is 48. 

The minimal elements are 2 and 3. 

Theorem I.  Prove that the finite non empty poset ( A, ≤)  has at least one maximal and one minimal element in A. 

Proof. Consider an element  a ∈ A. Now if  a is not maximal element, we will find another element  b ∈ A such that  a <  b. Again if  b is not a maximal element, we will find another element  c ∈ A such that  b <  c. At last, we will stop finding the element, as we cannot continue this process indefinitely since A is a finite set. Hence, we obtain a finite sequence

 a <  b <  c <  d ...... <  n

which cannot be extended further. 

Therefore, we cannot have  n <  x for any  x ∈ A. So, we conclude that  n is a maximal element of (A, ≤). By giving similar arguments we can prove that the finite non empty poset

(A, ≤) has atleast one minimal element in A. 

1.6.3 Greatest or Last Element

An element  x ∈ A is called a greatest element of A if for all  a ∈ A,   a ≤  x. 

1.6.4 Least or First Element

An element  y ∈ A is called a least element of A if, for all  a ∈ A,  y ≤  a. 

* The greatest element of a poset is denoted by 1 and is called the unit element and the

least element of a poset is denoted by 0 and is called the zero element. 

The poset may have neither a greatest nor a least element, even when S is finite. 
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Example 14.  Determine the greatest and least elements of the poset whose Hasse diagrams are shown in Fig. 14, if they exist. 

d

e

c

d

4

3

c

2

a

b

b

1

I

II

III

Fig. 14

Sol. The poset shown in Fig. 14(I) has neither greatest nor least element. 

The poset shown in Fig. 14(II) has no greatest element but  b is the least element. 

The poset shown in Fig. 14(III) has 4 as greatest element and 1 as least element. 

Theorem II.  Prove that a poset has at the most one greatest element and one least element. 

Proof. Let  x and  y are two greatest elements of a poset A. Now, since  y is a greatest element, so we have  x ≤  y. Also, as  x is a greatest element, so we have  y ≤  x which implies that x =  y ( antisymmetric property). Hence, we can say that if the poset has a greatest element, there exists only one such element. 

By similar arguments, we can prove that if the poset has a least element, there exists

only one such element. 

1.6.5 Upper Bound

Consider B be a subset of a partially ordered set A. An element  x ∈ A is called an upper bound of B if  y ≤  x for every  y ∈ B. 

1.6.6 Lower Bound

Again, consider B be a subset of a partially order set A. An element  z ∈ A is called a lower bound of B if  z ≤  x for every  x ∈ B. 

Example 15.  Consider the poset A = {a, b, c, d, e, f, g} be ordered as shown in Fig. 15. 

 Also let B = {c, d, e}. Determine the upper and lower bounds of B. 

f

g

e

c

d

a

b

Fig. 15

Sol. The upper bounds of B are  e,  f and  g because every element of B is ‘≤’  e,  f and  g. 

The lower bounds of B are  a  and  b because  a and  b are ‘≤’ every element of B. 
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Example 16.  Consider the poset A = {1, 2, 3, 4, 5, 6} be ordered as shown in Fig. 16. 

 Also let B = { 3, 4}.   Determine the upper and lower bounds of B. 

6

5

4

3

2

1

Fig. 16

Sol. The upper bound of B is 4, 5 and 6 because every element of B is ‘≤’ 4, 5 and 6. 

The lower bound of B is 3, 2 and 1 because 3, 2 and 1 are ‘≤’ every element of B. 

Example 17.  Consider the poset A = {1, 2, 3, 4, 5, 6, 7, 8}  be ordered as shown in Fig. 17. 

 Also let B = {3, 4, 5}. Determine the upper and lower bounds of B. 

6

8

4

5

3

7

1

2

Fig. 17

Sol. The upper bound of B is 6 because every element of B is ‘≤’ 6. The 8 is not an upper bound of B since 4  /≤ 8. 

The lower bound of B is 1, 2 and 3 because 1 and 2 are ‘≤’ every element of B. The 7 is not

a lower bound of B since 7  /≤ 3 and also 7  /≤ 4. 

Example 18.  Consider the poset A = {a, b, c, d} as shown in Fig. 18 and let B = {c}. 

 Determine the upper and lower bounds of B. 

d

c

a

b

Fig. 18

Sol. The upper bound of B is  c, d. 

The lower bound of B is  a, b, c. 
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Note 1. A subset B of a poset A may or may not contain upper bounds or lower bounds in poset A. 

2. An upper bound or lower bound of B may or may not belong to the subset B itself. 

1.6.7

Least Upper Bound (Supremum)

Consider B be a subset of a partially ordered set A. An element  x ∈ A is called a least upper bound of B or supremum written as L U B (B) or S U P(B) if  x is an upper bound of B and we have  x ≤  x′ for every  x′ which is an upper bound of B. 

1.6.8

Greatest Lower Bound (Infimum)

Consider B be a subset of a partially ordered set A. An element  y ∈ A is called a greatest lower bound or infimum of B, written as GLB(B) or INF(B) if  y is a lower bound of B and we have  y′ ≤  y, for every  y′ which is a lower bound of B. 

Example 19.  Determine the least upper bound and greatest lower bound of B = {a, b, c}

 if they exist, of the poset whose Hasse diagram is shown in Fig. 19. 

d

e

c

a

b

k

Fig. 19

Sol. The least upper bound is  c. 

The greatest lower bound is  k. 

Example 20.  Let D  = {1, 2, 4, 5, 10, 20, 25, 50, 100} and let the relation 

 100

≤  be the

 relation/(divides) be a partial ordering on D . 

 100

( a)  Determine the GLB of B, where B = {10, 20}. 

( b)  Determine the LUB of B, where B = {10, 20}. 

( c)  Determine the GLB of B, where B = {5, 10, 20, 25}. 

( d)  Determine the LUB of B, where B = {5, 10, 20, 25}. 

Sol. The Hasse diagram of the poset D  is as shown in Fig. 20. 

100

100

50

20

25

4

10

5

2

1

Fig. 20
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( a) The GLB (B) is 10. 

( b) The LUB (B) is 20. 

( c) The GLB (B) is 5. 

( d) The LUB (B) is 100. 

Note. D  denote the set of all positive integers which are divisors of  n, where  n is a + ve integer n

 e.g., 

D  = {1, 2, 5, 10} as all are divisors of 10. 

10

5

Example 21.  Determine the least upper bound and greatest lower

4

 bound of each B if they exist, of the poset whose Hasse diagram is shown in

 Fig. 21. 

3

( i)  B = {2, 3}

( ii)  B = {2, 3, 4}

2

( iii)  B = {1, 2, 3, 4}

( iv)  B = {1, 2, 3, 4, 5}. 

Sol. ( i) The least upper bound of B is 3. The greatest lower bound of B

1

is 2. 

Fig. 21

( ii) The least upper bound of B is 4. The greatest lower bound of B is 2. 

( iii) The least upper bound of B is 4. The greatest lower bound of B is 1. 

( iv) The least upper bound is 5. The greatest lower bound is 1. 

Note. Let B = { b ,   b ,......,   b }. If  a = LUB(B), then  a is the first vertex that can be reached from 1

2

 r

 b ,  b ,......,   b  by upward paths. Similarly, if  a = GLB(B), then  a is the first vertex that can be reached 1

2

 r

from  b ,   b ,......,   b  by downward paths. 

1

2

 r

Theorem III. Show that the least upper bound (LUB) of a set in a poset is unique, if it exists. 

Proof.  Consider a poset ( p, ≤). Further, Let us assume that there exists two LUB’s in ( p, ≤)  i.e.,   u ,  u

1

2

Since  u  is an upper bound, then by def.  u  

1

2 ≤  u 1

Since  u  is an upper bound, then by def.  u  

2

1 ≤  u 2

By Antisymmetric property,  u , =  u

1

2

Thus, the least upper bound of a set in a poset is unique, if it exists. 

Theorem IV.  Show that the greatest lower bound (GLB) of a set in a poset is unique, if it exists. 

Proof. Identical to previous proof. 

1.7 ISOMORPHIC ORDERED SETS

Suppose A and B are partially ordered sets. A bijection  f: A → B is called an isomorphism if for all  x, y ∈ A,  x ≤  y if and only if  f( x) ≤  f( y). If there is such a function we say A and B are isomorphic. 

Whenever two posets are order isomorphic, they can be considered to be “essentially the

same” in the sense that one of the orders can be obtained from the other just by renaming of

elements. Further, it can be shown that two ordered sets are isomorphic if and only if they can be drawn with identical diagrams. 

Example 22. Let A = P({0, 1}), ordered by ⊆. Let B = {1, 2, 3, 6}, with  n ≤  m if and only if  n| m.  Then A and B are isomorphic. 

Example 23. Let B  = P({1, 2}), ordered by 

= {1, 2, 3, 6}, with  n 

2

⊆. Let D6

≤  m if and only

if  n| m. The Hasse diagram of both the Posets are shown in Fig. 22. Thus A and B are isomorphic. 
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Fig. 22

Example 24.  Let A = {1, 2, 3, 4} is the set with the usual order on integers. Let D  = {1, 8

2, 4, 8}, with  n ≤  m if and only if  n| m. The Hasse diagram of both the Posets are shown in Fig. 23. Thus A and B are isomorphic. 

Fig. 23

Theorem V: Suppose A, B and C are partially ordered sets. Then

( a) A is isomorphic to itself. 

( b) If A is isomorphic to B, then B is isomorphic to A. 

( c) If A is isomorphic to B and B is isomorphic to C, then A is isomorphic to C. 

Proof.  ( c) Let us suppose that  f: A → B and  g: B → C are isomorphisms. Note that  gof  is a bijection, and if  x, y ∈ A, then  x ≤  y if and only if  f( x) ≤  f( y) (since  f is an isomorphism) if and only if  g( f( x)) ≤  g( f( y)) (since  g is an isomorphism). 

Example 25. If a is any real number, let I  = (–

 a

∞,  a] ⊆ R, and let S be the collection of

all of the intervals I , S = {I :  a 

 a

 a

∈ R} ⊆ P(R), ordered by inclusion. Define φ : R → S by φ ( a) = I a

Thus, φ is a bijection. Note that  a ≤  b if and only if (∞,  a] ⊆ (∞,  b], so φ is an isomorphism. 

This example can be generalized. Let us suppose ≤ is a partial ordering of a set A. If

 a ∈ A, let I  = { x 

:  a 

 a

∈ A :  x ≤  a}. We can call this the interval determined by a. Let S = {I a

∈ A}

⊆ P(A), ordered by inclusion. Define φ : A → S by φ( a) = I . Therefore, 

 a

φ is an isomorphism. 

Theorem VI: Any partially ordered set is isomorphic to a subset of a power set, ordered by the subset relation. 

Proof.  Let φ : R → S by φ( a) = I . We first show that 

 a

φ is bijective. By the definition of S, 

φ is surjective. To show that it is injective, suppose  a, b ∈ A and φ( a) = φ( b). Since  a ≤  a,  a ∈ I a

= φ( a) = φ( b) = I , so  a 

 b

≤  b. Similarly,  b ≤  a, so  a =  b, and φ is injective. Now, given  a, b ∈ A, we need to show that  a ≤  b if and only if I  

. Suppose first that I  

; then  a 



implies

 a ⊆ I b

 a ∈ I b

∈ I a ⊆ I b

that  a ≤  b. Conversely, suppose  a ≤  b; then for any  x∈I ,  x 

. 

 a

≤  a and  a ≤  b, so  x ≤  b and hence  x∈I b

This shows that I  

. 

 a ⊆ I b
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Example 26.  Suppose for  a,  b∈N,  a ≤  b mean  a| b. Then I  = {1, 2, 3, 6} and I  = {1, 2, 6

12

3, 4, 6, 12}. Note that 6|12 and I  

. The theorem implies that for any  a, b

6 ⊆ I12

∈N,  a divides  b

if and only if the set of divisors of  a is a subset of the set of divisors of  b. This is true. Hence Proved. 

Example 27.  Draw the Hasse diagram of all different (non-isomorphic) posets on

 4-elements. 

Sol.  There are 16 different posets on four elements that are not isomorphic as shown in Fig. 24. 

Fig. 24

Example 28.   For two posets A and B:

( a)  Show that if f : A →  B is an order preserving, then f is one-to-one. 

( b) S how that if f : A →  B is an order isomorphism, then there is an order isomorphism g : B →  A. 

Sol.  ( a) We need to show that  a ≠  a′ ⇒  f( a) ≠  f( a′). Equivalently, we can show that  f( a) =

 f( a′) ⇒  a =  a′. Note that  f( a) =  f( a′) ⇒  f( a) ≤  f( a′) and  f( a) =  f( a′) ⇒  f( a′) ≤  f( a). Since  f is an order preserving, this implies that  a ≤  a′ and  a′ ≤  a, which together imply that  a =  a′. 

( b) Using the result from part ( a),  f is one-to-one and onto, so  f –1 is a well-defined function and is also one-to-one and onto. Let  g =  f –1. We can show that  g is an order preserving, and hence an order isomorphism. To show that, note that since  f is an order preserving,  f( a) ≤  f( a′)

⇐⇒  a ≤  a′, which, letting  b =  f( a) and  b′ =  f( a′), implies that  b ≤  b′  ⇐⇒  g( b) ≤  g( b′). Thus,  g is an order preserving. 

PROBLEM SET-II

1. Consider the Hasse diagram of the set A = { a, b, c, d, e, f}. Insert the correct symbol, <, >, or || (not comparable) between each of the following pair of elements. 

( i)  a – e

( ii)  c –  d

( iii)  a –  f

( iv)  b –  f

( v)  d –  e

( vi)  d –  f

( vii)  d –  a
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2. Consider the set A = {1, 2, 3, 4, 5, 6} and / is a partial order relation on A. Draw the Hasse diagram of (A, /). 

3. Draw the Hasse diagram for the divisibility relation  i.e., x divides  y, on each of the following sets. 

( i) A  = {1, 2, 3, 4, 6, 8, 9, 12, 18}

( ii) A  = {2, 3, 6, 12, 24, 48}

1

2

( iii) A  = {3, 6, 12, 24, 36}

( iv) A  = {1, 2, 3, 5, 6, 10, 15, 30}

3

4

4. Let D  denote the positive divisors of  n ordered by divisibility. Draw the Hasse diagram of the n

following. 

( i) D

( ii) D

( iii) D

( iv) D

( v) D

12

15

16

17

18

5. Consider the ordered set A as shown in the figure below. 

( i) Determine all minimal and maximal elements of A. 

( ii) Is first element or last element of A exists? If Yes then write. 

6. Consider the set A = { a, b, c, d, e, f} be ordered as shown in the figure below. 

( i) Determine all minimal and maximal elements of A

( ii) Is first element or last element of A exists? If yes, then write. 

( iii) Determine all linearly ordered subsets of A, which contain at least three elements. 

7. Consider the Hasse diagrams of the ordered sets as shown in the figure below. 

( i) Determine all minimal and maximal elements of all the ordered sets. 

( ii) Determine first element and last element, if it exists. 

8. Consider a set A = { p, q, r, s, t, u} be a poset. Suppose there are only six pairs of elements such that the first precedes the second as given below:

 u <<  p,  u <<  s,  t <<  q,  r <<  u,  t <<  r,  q <<  u. 

( i) Determine all minimal and maximal elements of A. 

( ii) Determine first and last element of A, if it exists. 

( iii) Determine all pair of elements which are non comparable. 

POSETS AND LATTICES
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9. Determine the ordered pairs in the relation determined by the Hasse diagrams shown below of the poset (A, ≤) on the set A = {1, 2, 3, 4}. 

10. Consider the poset whose Hasse diagram is show below. Consider the subsets A  = {4, 5}, A  =

1

2

{3, 4, 5} A  = {4, 5, 6, 7}, A  = {6, 7, 8} A  = {1, 2}

3

4

5

( i) Determine all the lower and upper bounds of these subsets. 

( ii) Determine the GLB and LUB of these subsets. 

11. Consider Set S is an ordered set as shown in Fig. Let us assume that A = {1, 2, 3, 4, 5} is isomorphic to S and  f = {( x, 1) ( y, 3), ( z, 5), ( t, 2), ( v, 4)} is a similarity mopping from S to A. Construct the Hasse diagram of A. 

12. Consider the poset D , the divisors of 36 ordered by divisibility. Determine the lower and upper 36

bound, also determine GLB and LUB of the sets {6, 18}, {2, 3, 4} and {4, 6, 9}. 

13. Answer the following questions for the partial order represented by the following Hasse diagram. 

( i) Determine the maximal elements. 

( ii) Determine the minimal elements. 

( iii) Determine greatest element, if it exists? 

( iv) Determine least element, if it exists? 

( v) Determine all upper bounds of { a, b, c}. 

( vi) Determine the least upper bound of { a, b, c}, if it exists? 

( vii) Determine all lower bounds of { f,  g,  h}. 

( viii) Determine the greatest lower bound (GLB) of ( f, g, h), if it

exists? 

( ix) Determine the LUB of { d, i,  j}, if it exists? 

( x) Determine the GLB of { f, g, k}, if it exists? 
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14. Answer the following questions concerning the poset ({2, 4, 6, 9, 12, 18, 27, 36 48, 60, 72}, /). 

( i) Determine the maximal elements. 

( ii) Determine the minimal elements. 

( iii) Is greatest element exists? 

( iv) Is least element exists? 

( v) Determine all upper bounds of {2, 9}

( vi) Determine the LUB of {2, 9}, if it exists? 

( vii) Determine all lower bounds of {60, 72}

( viii) Determine the GLB of {60, 72}, if it exists? 

15. Give an example of a poset having the following properties. 

( i) No maximal element but a minimal element. 

( ii) A maximal element but no minimal element. 

( iii) Neither maximal element nor minimal element. 

16. Show that (P(S), ⊆), where S = { x, y, z}, is isomorphic to the poset D  of divisors of 42 with 42

relation given by divisibility. 

17. Give the Hasse diagram (or poset) and an associated subset for each of the following. 

( i) A subset such that it has two maximal and two minimal elements. 

( ii) A subset such that it has a maximal element but no minimal elements. Is it possible to find such a subset if the underlying set is an infinite set? 

( iii) A subset such that it has a lower bound but no greatest lower bound. If such a subset is not possible, comment why? 

( iv) A subset such that it has an upper bound but no least upper bound. If such a subset is not possible, comment why? 

18. Is there finite set such that it is a poset and totally ordered set but not a well-ordered set-justify your answer. 

19. Determine whether the following are True/False? 

( a) If a linearly ordered set A has only one element  a, then a is the greatest element. 

( b) If a poset has only one maximal element a, then a is the greatest element. 

( c) If a finite poset has only one maximal element a, then a is the greatest element. 

( d) Consider a poset A is isomorphic to poset B and  f : A → B is a similarity mapping. An element a ∈ A is a least or greatest element of A iff  f( a) is a least of greatest element of B. 

( e) Consider a poset A is isomorphic to poset B and  f : A → B is a similarity mapping. An element a ∈ A immediately precedes an element  a′ ∈ A iff  f( a) <<  f( a′). 

( f) Every subset of a totally order set S must also be totally ordered. 

( g) A subset B of a poset may or may not have upper or lower bounds. 

( h) There can be more than one upper bound and lower bound of a set. 

( i) Every poset has a greatest element. 

( j) Let A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and consider the divides relation on A. 

Then the length of the maximal chain C = 3, the number of maximal elements M = 8 and the

number of minimal elements  m = 6. 

( k) Consider the divides relation,  m/ n on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. Then the number of edges in the corresponding Hasse diagram is 7. 

ANSWERS AND HINTS (PROBLEM SET II)

1. 

( i)  a >  e, since there is an upward path from  e to  b to  a, thus  e precedes  a. 

( ii) C ||  d, since there is no path from C to  d or vice versa. 

( iii)  a >  f

( iv)  b ||  f

( v)  d ||  e

( vi)  d ||  f

( vii)  d <  a. 

POSETS AND LATTICES

M-5.19

2. 

3. 

( i)

( ii)

( iii)

( iv)

4. 

( i)

( ii)

( iii)

( iv)

( v)

5. 

( i) Minimal element 4 and 5, maximal element 1. 

( ii) A has no first element, 1 is the last element of A. 

6. 

( i) Minimal element  d and  f,  maximal element  a. 

( ii) A has no first element, a is the last element of A. 

( iii) { a, b, d}, { a, b, e, f}, { a, c, f}

7. ( a) Minimal element: 4 and 5, maximal element: 1, No first element, last element: 1

( b) Minimal element: 1, maximal element : 3 and 4, First element : 1, No last element

( c) Minimal element :  v, maximal element :  x, First element :  v,  last element:  x ( d) Minimal element : 1, maximal element : 18 and 24, First element : 1, No last element. 

( e) Minimal element :  a, maximal element:  e, First element:  a, maximal element:  e 8. The Hasse diagram is shown in the adjoining figure

( i) Minimal element :  t, maximal element :  p and  s

( ii) First element :  t,  No last element. 

( iii) Non-Comparable elements: ( p, q) and ( q, r)

9. ( a) {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

( b) {(1, 1), (2, 2), (3, 3), (4, 4), (4, 3), (4, 1), (4, 2), (3, 1), (3, 2)}
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( c) {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}

( d) {(1, 1), (2, 2), (3, 3), (4, 4), (3, 1), (3, 2), (3, 4), (1, 4)}

10. 

( i) lower bounds of A  = 1, 2 and 3; upper bounds of A  = 6, 7 and 8

1

1

lower bounds of A  = 1, 2 and 3; upper bounds of A  = 6, 7 and 8

2

2

lower bounds of A  = 1, 2 and 3; upper bounds A  = 8

3

3

lower bounds of A  = 1, 2 and 3; upper bounds A  = 8

4

4

lower bounds of A  = None; upper bounds of A  = 3, 4, 5, 6, 7 and 8

5

5

( ii) GLB (A ) = 3; LUB (A ) = None

1

1

GLB (A ) = 3; LUB (A ) = None

2

2

GLB (A ) = 3; LUB (A ) = 8

3

3

GLB (A ) = 3; LUB (A ) = 8

4

4

GLB (A ) = None; LUB (A ) = 3

5

5

11. The Hasse diagram is as follows:

12. Draw the Hasse diagram of D . 

36

— Lower bound of {6, 18} = 1, 2, 3, 6; upper bounds of {6, 18} = 18, 36

GLB (6, 18) = 6; LUB (6, 18) = 18

— Lower bound of {2, 3, 4} = 1; upper bounds of {2, 3, 4} = 12, 36

GLB {2, 3, 4} = 1; LUB (2, 3, 4) = 12. 

— Lower bounds of {4, 6, 9} = 1; upper bounds of {4, 6, 9} = 36

GLB = 1; LUB = 36. 

13. ( i)  p, z

( ii)  a, b, c

( iii) None

( iv) None

( v)  p, k, z

( vi)  k

( vii) None

( viii) None

( ix)  j

( x)  f

14. Draw the Hasse diagram. 

( i) 27, 48, 60, 72

( ii) 9, 2

( iii) None

( iv) None

( v) 18, 36, 72

( vi) 18

( vii) 2, 4, 6, 12

( viii) 12

15. ( i) (I , 

, 

+ ≤) or  (N, ≤)

( ii) (I– ≤)

( iii) (I, ≤) or (R, ≤)

16. Draw the Hasse diagrams of both the posets as show below. 

An implicit one-to-one correspondence that preserves the partial orders is show below. 

{ x, y, z} ⇔ 42, { x, y} ⇔ 6, { x, z} ⇔ 14, { y, z} ⇔ 21, { x} ⇔ 2, { y} ⇔ 3, { z} ⇔ 7, φ ⇔ 1. 
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17. Consider the following Hasse diagrams. 

( i) For the subset { c, e}, maximal element:  d, f and minimal elements:  a, b  as shown in Fig ( b). 

( ii) For the subset {9, 8, 7, 6, ...}, 9 is the maximal element, as shown in Fig. ( a). 

( iii) For the subset { c, e}, Lower bounds are  a, b  but there is no greatest lower bound (GLB), as shown in Fig. ( b). 

( iv) For the subset { c, e}, upper bounds are  d,  f but there is no least upper bound (LUB), as shown in fig. ( b). 

18. We know that (A, ≤) is a well ordered if (A, ≤) is a total order and for all A′ ⊆ A, A′ ≠ φ, hence A′ has a least element. Therefore, all finite totally ordered sets are well ordered. 

19. ( a) True

( b) False

( c) True

( d) True

( e) True

( f) True

( g) True

( h) True

( i) False, the poset (R, ≤) has no greatest element. 

( j) True

( k) True. 

1.8

LATTICES

Definition

A lattice L is a poset in which every pair of elements has a least upper bound (LUB) or

supremum and a greatest lower bound (GLB) or infimum. 

Join

Consider a poset L under the ordering ≤. Let  a, b ∈ L. Then LUB ( a, b) or SUP ( a, b) is denoted by  a ∨  b or  a ∪  b and is called the join of  a and  b  i.e., a ∨  b = SUP ( a,  b). 

Meet

Consider a poset L under the ordering ≤. Let  a,  b ∈ L. Then GLB ( a,  b) or inf ( a,  b) is denoted by  a ∧  b or  a ∩  b and is called the meet of  a and  b  i.e., a ∧  b = inf ( a,  b). 

From the above, it follows that a lattice L is a mathematical structure with two binary

operations ∨ (Join) and ∧ (meet). It is denoted by {L, ∨, ∧}. The lattice L for any elements  a,  b and  c satisfies the following properties :

( a) Commutative Property

( b) Associative Property

( i)  a ∧  b =  b ∧  a

( i) ( a ∧  b) ∧  c =  a ∧ ( b ∧  c)

( ii)  a ∨  b =  b ∨  a. 

( ii) ( a ∨  b) ∨  c =  a ∨ ( b ∨  c). 

( c) Absorption Property

( i)  a ∧ ( a ∨  b) =  a

( ii)  a ∨ ( a ∧  b) =  a. 
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Theorem VII.  Prove that if L be a lattice then a ∧  b = a if and only if a ∨  b =  b. 

Proof. Let us first assume that  a ∧  b =  a. 

Using absorption property, we have

 b =  b ∨ ( b ∧  a) =  b ∨ ( a ∧  b) =  b ∨  a =  a ∨  b

...( i)

Conversely, let us assume  a ∨  b =  b. 

Again using the absorption property, we have

 a =  a ∧ ( a ∨  b) =  a ∨  b

...( ii)

From eqn. ( i) and ( ii), we have

  a ∧  b =  a if and only if  a ∨  b =  b. 

Theorem VIII.  Prove that for elements of lattice

( i)  a ∧  a =  a

( ii)  a ∨  a =  a

Idempotent property

Proof. ( i)  a ∧  a =  a ∧ ( a ∨ ( a ∧  b))

{Using absorption property  c( ii)}

=  a

{Using absorption property  c( i)}

( ii)

 a ∨  a =  a ∨ ( a ∧ ( a ∨  b))

{Using absorption property  c( i)}



=  a

{Using absorption property  c( ii)}

Theorem IX.  Consider a lattice L. Prove that the relation a  ≤   b defined by either a ∧  b = a or a ∨  b = b is a partial ordering on lattice L. 

Proof. For any element  a ∈ L, we have  a ∧  a =  a

 i.e., 

 a ≤  a.  Therefore, the relation ≤ is reflexive. Now assume  a ≤  b and  b ≤  a. Then we have  a ∧  b =  a  and  b ∧  a =  b

Thus,  a =  a ∧  b =  b ∧  a =  b, therefore the relation ≤ is antisymmetric. 

At last, we assume  a ≤  b and  b ≤  c. So, we have

  a ∧  b =  a  and  b ∧  c =  b

 i.e., 

  a ∧  c = ( a ∧  b) ∧  c =  a ∧ ( b ∧  c)

=  a ∧  b =  a

Therefore,  a ≤  c. So, the relation ≤ is transitive. From above, we can say, ≤ is a partial order on L. 

Example 29.  Let P( S)  be the power set of the set S = {1, 2, 3}. Construct the Hasse diagram of the partial order induced on P( S)  by the lattice ( P( S) , ∧, ∨). 

Sol. The Hasse diagram obtained by a lattice is same as obtained under the partial

ordering of set inclusion. In the lattice,  a ≤  b whenever  a ∧  b =  a. Thus, in the above case  a ≤  b, whenever  a ∧  b =  a

{1, 2, 3}

{1, 2}

{1, 3}

{2, 3}

{1}

{2}

{3}

f

Fig. 25. 
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Example 30.  Determine which of the posets shown in Fig. 26 are lattices. 

6

7

4

5

4

6

2

3

2

5

3

4

1

1

I

II

III

Fig. 26. 

Sol. All the posets shown in Fig. 23 are lattices. 

Example 31.  Determine whether the posets shown in Fig. 27 are lattices or not. 

z

5

z

x

y

4

3

x

b

y

r

s

2

a

1

t

I

II

III

Fig. 27. 

Sol. The posets shown in Figs. 27(II) and 27(III) are lattices. The posets shown in

Fig. 27(I) is not lattice as ( x,  y) has three lower bounds  i.e., r, s  and  t but the inf ( x, y) does not exist. Also, sup ( r,  s) does not exist. 

Example 32.  Determine whether the posets shown in Fig. 28 are lattices or not. 

7

6

e

f

5

6

3

5

d

4

4

c

2

3

2

a

b

1

1

I

II

III

Fig. 28. 

Sol. The poset shown in Fig. 28(II) is a lattice. The poset shown in Fig. 28(I) is not

lattice since the elements  e and  f have no upper bound, hence sup ( e,  f) does not exist. Similarly, the  elements  a and  b have no lower bound, hence inf ( a,  b) does not exist. 

The poset shown in Fig. 28(III) is lattice. 
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1.9

BOUNDED LATTICES

A  lattice  L  is  called  a  bounded  lattice  if  it has a greatest element 1 and a least

element 0. 

For example ( i). The power set P(S) of the set S under the operations of intersection and union is a bounded lattice since φ is the least element of P(S) and the set S is the greatest element of P(S). 

( ii) The set of +ve integers I  under the usual order of 

+

≤ is not a bounded lattice since it

has a least element 1 but the greatest element does not exist. 

1.9.1 Properties of Bounded Lattices

It L is a bounded lattice, then for any element  a ∈ L, we have the following identities : ( i)  a ∨ 1 = 1

( ii)  a ∧ 1 =  a

( iii)  a ∨ 0 =  a

( iv)  a ∧ 0 = 0. 

Theorem X.  Prove that every finite lattice L = {a , a , a , ......, a }  is bounded. 

 1

 2

 3

 n

Proof. We have given the finite lattice :

L = { a ,  a ,  a , ......,  a }

1

2

3

 n

Thus, the greatest element of lattice L is  a  





. 

1 ∨  a 2 ∨  a 3 ∨ ...... ∨  an

Also, the least element of lattice L is  a  





 . 

1 ∧  a 2 ∧  a 3 ∧ ...... ∧  an

Since, the greatest and least elements exist for every finite lattice. Hence L is bounded. 

1.10

SUBLATTICES

Consider a non empty subset L  of a lattice L. Then L  is called a sublattice of L if L

1

1

1

itself is a lattice w.r.t. the operations of L  i.e.,  if  a ∨  b ∈ L  and  a whenever  a 

and

1

∧  b ∈ L1

∈ L1

 b ∈ L . 

1

Example 33.  Consider the lattice of all +ve integers I  under the operation of divisibility. 

 +

 The lattice D  of all divisors of n > 1 is a sublattice of I . 

 n

 +

 Determine all the sublattices of D  that contain at least four elements, D  = {1, 2, 3, 5, 30

 30

 6, 10, 15, 30}. 

Sol. The sublattices of D  that contain at least four elements are as follows :

30

( i) {1, 2, 6, 30}

( ii) {1, 2, 3, 30}

( iii) {1, 5, 15, 30}

( iv) {1, 3, 6, 30}

( v) {1, 5, 10, 30}

( vi) {1, 3, 15, 30}

( vii) {2, 6, 10, 30}. 

Example 34.  Consider the lattice L = {1, 2, 3, 4, 5} as shown in Fig. 29. Determine all the sublattices with three or more elements. 

5

2

3

4

1

Fig. 29. 
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Sol. All the sublattices with three or more elements are those whose supremum and

infimum exists for every pair of elements which are as follows :

( i) {1, 2, 5}

( ii) {1, 3, 5}

( iii) {1, 4, 5}

( iv) {1, 2, 3, 5}

( v) {1, 3, 4, 5}

( vi) {1, 2, 3, 4, 5}

( vii) {1, 2, 4, 5}. 

Example 35.  Consider the lattice L as shown in Fig. 30. Determine whether or not each of the following is a sublattice of L. 

{1, 2, 3}

{1, 2}

{1, 3}

{2, 3}

{1}

{2}

{3}

f

Fig. 30. 

 A = { φ , {1, 2}, {2, 3}, {1, 2, 3}}

 B = { φ , {1}, {1, 2}, {1, 2, 3}}

 C = { φ , {3}, {1, 3}, {1, 2, 3}}

 D = {{1}, {3}, {1, 3}, {1, 2, 3}}

 E = { φ , {3}, {1, 2}, {1, 2, 3}}. 

Sol. A is not a sublattice since {1, 2} ∧ {2, 3} = {2} which does not exist in A. 

B is a sublattice since sup and inf of every pair of elements exist. 

C is a sublattice since sup and inf of every pair of elements exist. 

D is not a sublattice since {1} ∧ {3} = φ which does not exist in D. 

E is a sublattice since sup and inf of every pair of elements exist. 

1.11 ISOMORPHIC LATTICES

Two lattices L  and L  are called isomorphic lattices if there is a bijection from L  to L

1

2

1

2

 i.e., f :L  

, such that

1 → L2

 f( a ∧  b) =  f( a) ∧  f( b) and  f( a ∨  b) =  f( a) ∨  f( b) for every element  a,  b belongs to L . 

1

Example 36.  Determine whether the lattices shown in Fig. 31 are isomorphic. 

Sol.  The lattices shown in Fig. 31 are isomorphic. Consider the mapping  f = {( a, 1), ( b, 2), ( c, 3), ( d, 4)}. For example  f( b ∧  c) =  f( a) = 1. Also we have  f( b) ∧  f( c) = 2 ∧ 3 = 1. 
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d

4

b

c

3

2

a

1

I

II

Fig. 31. 

Example 37.  Determine whether the lattices shown in Fig. 32 are isomorphic. 

Sol. The lattices shown in Fig. 32 are not isomorphic since bijection is not possible as the element of the two lattices are not same. 

7

e

5

6

4

b

c

d

2

3

a

1

I

II

Fig. 32. 

1.12 DISTRIBUTIVE LATTICE

A lattice L is called distributive lattice if for any elements  a,  b and  c of L, it satisfies following distributive properties :

( i)  a ∧ ( b ∨  c) = ( a ∧  b) ∨ ( a ∧  c) ( ii)  a ∨ ( b ∧  c) = ( a ∨  b) ∧ ( a ∨  c). 

If the lattice L does not satisfies the above properties, it is called a non-distributive

lattice. 

For example

1. The power set P(S) of the set S under the operations of intersection and union is a

distributive function. Since, 

   a ∩ ( b ∪  c) = ( a ∩  b) ∪ ( a ∩  c)

and also   a ∪ ( b ∩  c) = ( a ∪  b) ∩ ( a ∪  c) for any sets  a,  b and  c of P(S). 

2. The lattice shown in Fig. 33 is distributive. Since it satisfies the distributive proper-

ties for all ordered triples which are taken from 1, 2, 3 and 4. 
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4

3

2

1

Fig. 33. 

Example 38.  Show that the lattices shown in Fig. 34 are non-distributive. 

I

I

a

b

a

b

c

c

o

o

I

II

Fig. 34. 

Sol. 

I. From the ( i) property of distributivity, we have

 a ∧ ( b ∨  c) =  a ∧ I =  a

But, 

( a ∧  b) ∨ ( a ∧  c) = 0 ∨  c =  c

Since

 a ∧ ( b ∨  c) ≠ ( a ∧  b) ∨ ( a ∧  c)

Hence, the lattice is not distributive. 

II. Again, from the ( i) property of distributivity, we have

 a ∧ ( b ∨  c) =  a ∧ I =  a

But

( a ∧  b) ∨ ( a ∧  c) = 0 ∨ 0 = 0

Since

 a ∧ ( b ∨  c) ≠ ( a ∧  b) ∨ ( a ∧  c)

Hence, the lattice is not distributive. 

Note. A lattice L is non-distributive if and only if it contains a sublattice that is isomorphic to one of the two lattices shown in Figs. 34(I) and (II). 

Theorem XI.  Prove that in a distributive lattice ( L, ∧,  ∨), 

( a  ∧   b)  ∨  ( b  ∧   c)  ∨  ( c  ∧   a) = ( a  ∨   b)  ∧  ( b  ∨   c)  ∧  ( c  ∨   a)   holds for all a, b, c ∈   L. 

Proof. We have given that L is distributive, so using distributive property, we have

( a ∧  b) ∨ ( b ∧  c) ∨ ( c ∧  a) = {[( a ∨  b) ∨   b] ∧ [( a ∧  b) ∨  c]} ∨ ( c ∧  a)

= [ b ∧ {( a ∨  c) ∧ ( b ∨  c)}] ∨ ( c ∧  a)

= [( a ∨  c) ∧ { b ∧ ( b ∨  c)}] ∨ ( c ∧  a)

= [( a ∨  c) ∧  b] ∨ ( c ∧  a)

= [( a ∨  c) ∨ ( c ∧  a)] ∧ [ b ∨ ( c ∧  a)]

= [{( a ∨  c) ∨  c} ∧ {( a ∨  c) ∨  a}] ∧ [( b ∨  c) ∧ ( b ∨  a)]

= ( a ∨  c) ∧ ( a ∨  c) ∧ ( b ∨  c) ∧ ( a ∨  b)

= ( a ∨  c) ∧ ( b ∨  c) ∧ ( a ∨  b) = R.H.S. 
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1.13

ELEMENTS OF LATTICES

The elements of lattices are as follows:

1.13.1 Join-Irreducible

Consider a lattice (L, ∧, ∨). An element  a ∈ L is called join-irreducible if it can be expressed as the join of two distinct elements of L  i.e., a ∈ L is join-irreducible if

 a  =  x ∨  y ⇒  a =  x or  a =  y, where  x, y ∈ L. 

Example 39.  Determine the join-irreducible elements of the lattices as shown in Fig. 35. 

Sol. 1. The join-irreducible elements of Fig. 35(I) are  a,  b and  d. 

I

5

c

d

2

3

4

a

b

1

o

I

II

Fig. 35

2. The join-irreducible elements of Fig. 35(II) are 2, 3 and 4. 

1.13.2 Meet-Irreducible

Consider a lattice (L, ∧, ∨). An element  a ∈ L is called meet-irreducible if it can be expressed as the meet of two distinct elements of L  i.e., a ∈ L is meet-irreducible if a =  x ∧  y ⇒  a =  x or  a =  y, 

where  x,  y ∈ L. 

Example 40.  Determine  the  meet-irreducible  elements  of  the  lattices  as  shown  in Fig. 36. 

Sol. 1. The meet-irreducible elements of Fig. 36(I) are  a,  b and  c. 

I

5

c

d

2

3

4

a

b

1

o

I

II

Fig. 36

2. The meet-irreducible elements of Fig. 36(II) are 2, 3 and 4. 
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1.13.3

Atom

Consider a lattice (L, ∧, ∨) with a lower bound (1). An element  a is called an atom if it is an immediate successor of 0  i.e., a ≠ 0 is an atom if 0 ≤  b ≤  a ⇒  b = 0 or  b =  a. 

1.13.4

Antiatom

Consider a lattice (L, ∧, ∨) with an upper bound 1. An element  a is called an antiatom if it is an immediate predecessor of 1  i.e., a ≠ 1 is an antiatom if

 a ≤  b ≤ 1 ⇒  b =  a  or  b = 1. 

Example 41.  Determine  the  atoms  and antiatoms of the following lattices shown in Fig. 37. 

Sol. Atoms. 1. Atoms of Fig. 37(I) are  a and  b. 

I

I

e

f

d

e

c

d

c

b

a

a

b

o

o

I

II

Fig. 37

2. Atoms of Fig. 37(II) are  a and  b. 

Antiatoms. 1. Antiatoms of Fig. 37(I) are  e and  f. 

2. Antiatoms of Fig. 37(II) are  d and  e. 

Example 42.  Construct the meet and join table of the lattice ( L, ∨, ∧)  as shown in Fig. 38. 

a

b

d

c

e

f

g

Fig. 38
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Sol. The following tables show the meet and join table of the lattice (L, ∧, ∨). 

∨

 a

 b

 c

 d

 e

 f

 g

 a

 a

 a

 a

 a

 a

 a

 a

 b

 a

 b

 a

 a

 b

 a

 b

 c

 a

 a

 c

 a

 c

 c

 c

 d

 a

 a

 a

 d

 a

 d

 d

 e

 a

 b

 c

 a

 e

 c

 e

 f

 a

 a

 c

 d

 c

 f

 f

 g

 a

 b

 c

 d

 e

 f

 g

∧

 a

 b

 c

 d

 e

 f

 g

 a

 a

 b

 c

 d

 e

 f

 g

 b

 b

 b

 e

 g

 e

 g

 g

 c

 c

 e

 c

 f

 e

 f

 g

 d

 d

 g

 f

 d

 g

 f

 g

 e

 e

 e

 e

 g

 e

 g

 g

 f

 f

 g

 f

 f

 g

 f

 g

 g

 g

 g

 g

 g

 g

 g

 g

1.14 COMPLEMENTED LATTICES

Consider a bounded lattice L with greatest element I and the least element 0. An ele-

ment  x ∈ L is called a complement of  x if  x ∨  x′ = 1 and  x ∧  x′ = 0. 

From the definition of complement, if  x′ is a complement of  x, then  x is a complement of x′. It is not necessary that an element  x has a complement. Also the complements need not be unique  i.e.,  an element have more than one complement. 

Note. That 1′ = 0 and 0′ = 1. 

Definition. A lattice L is called a complemented lattice if L is bounded and every ele-

ment in L has a complement. 

Example 43.  Determine the complement of a and c in Fig. 39. 

I

c

d

a

b

o

Fig. 39

POSETS AND LATTICES

M-5.31

Sol.  The complement of  a is  d. Since,  a ∨  d = 1 and  a ∧  d = 0. 

The complement of  c does not exist. Since, there does not exist any element  c such that c ∨  c′ = 1 and  c ∧  c′ = 0. 

Theorem XII.  Prove that 0 and 1 are complement of each other. 

Proof. To show that 1 is the only complement of 0, consider that  c ≠ 1 is a complement of 0 and  c ∈ L. 

Then, 

0 ∧  c = 0 and 0 ∨  c = 1

But

0 ∨  c =  c

{Property of bounded lattice}

and  c ≠ 1 leads to a contradiction. 

Similarly, we can show that 0 is the only complement of 1. 

Example. The power set P(S) of the set S under the operations of intersection and

union is a complemented lattice L since each element of L has a unique complement. 

Example. The lattices shown below are complemented lattices Fig. 40. 

I

I

c

b

a

b

c

a

o

o

Fig. 40

But the complements of some of the elements are not unique  e.g., b has two comple-

ments  a and  c in both the cases. 

Theorem XIII.  Prove that for a bounded distributive lattice L, the complements are

 unique if they exist. 

Proof. Consider  a  and  a  be complements of some elements  a 

1

2

∈ L. Then, we have

    a ∨  a  = I and  a 

= I

1

∨  a 2

Also

    a ∧  a  = 0 and  a 

= 0

1

∧  a 2

Now using the distributive property, we have

   a  =  a  



)

1

1 ∨ 0 =  a 1 ∨ ( a ∧  a 2

= ( a  



) = ( a 

) 



) = I 



) =  a  

1 ∨  a) ∧ ( a 1 ∨  a 2

∨  a 1 ∧ ( a 1 ∨  a 2

∧ ( a 1 ∨  a 2

1 ∨  a 2

Similarly, 

   a  =  a  



) = ( a  



)

2

2 ∨ 0 =  a 2 ∨ ( a ∧  a 1

2 ∨  a) ∧ ( a 2 ∨  a 1

= ( a ∨  a ) 



)

2 ∧ ( a 1 ∨  a 2

= I ∧ ( a  

) =  a  

1 ∨  a 2

1 ∨  a 2

Thus,  a  =  a . Hence proved. 

1

2
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Example 44.  Consider the bounded distributive lattice as shown in Fig. 41. Show that every complement is unique if it exists. 

I

y

x

o

Fig. 41

Sol. The complement of  x is  y and vice-versa. Similarly, the complement of 0 is I and vice-versa. Hence, all the complements are unique. 

1.15 MODULAR LATTICE

A lattice (L, ∧, ∨) is called a modular lattice if  a ∨ ( b ∧  c) = ( a ∨  b) ∧  c whenever  a ≤  c. 

Theorem XIV.  Show that a ∨ ( b ∧  c) = ( a ∨  b) ∧  c  whenever a ≤  c. 

Proof. If  a ≤  c, then  a ∨  c =  c

If L is distributive, then, we have

       a ∨ ( b ∧  c) = ( a ∨  b) ∧ ( a ∨  c) = ( a ∨  b) ∧  c

|∵  a ∨  c =  c

Note. ( i) Every distributive lattice is modular. 

( ii) Every modular lattice is not distributive. 

I

Example. The lattice shown in Fig. 42 is a non-distributive

modular lattice. 

a

b

c

We can check that the lattice shown in Fig. 42 is not distributive. 

 a ∧ ( b ∨  c) =  a ∧ 1 =  a

but

( a ∧  b) ∨ ( a ∧   c) = 0 ∨ 0 = 0

o

To, check the modularity holds for  a =  c. 

Fig. 42

1.16 DIRECT PRODUCT OF LATTICES

Let (L ,  ,  ) and (L ,  ,  ) be two lattices. Then (L, 

1 ∨1 ∧1

2 ∨2 ∧2

∨, ∧) is the direct product of lattices, 

where L = L  × L  in which the binary operations 

1

2

∨(join) and ∧(meet) on L are such that for any

( a ,  b ) and ( a ,  b ) in L. 

1

1

2

2

( a ,  b ) 

,  b ) = ( a     a ,  b     b )

1

1 ∨ ( a 2

2

1 ∨1 2

1 ∨2 2

and

( a ,  b ) 

,  b ) = ( a     a ,  b     b ). 

1

1 ∧ ( a 2

2

1 ∧1 2

1 ∧2 2
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Example 45.  Consider a lattice ( L, ≤)  as shown in Fig. 43, where L = {1, 2}. Determine the lattice ( L2, ≤),  where L2 = L × L. 

2

1

(L, ≤)

Fig. 43

(2, 2)

Sol. The lattice (L2, ≤) is as shown in Fig. 44. 

(1, 2)

(2, 1)

(1, 1)

(L2, ≤)

Fig. 44

Example 46.  Let (L , 

 , 

 1 ≤ ) and (L2 ≤ ) be two lattices as shown in Figs. 45 and 46. Determine

 the lattice (L, ≤ ), where L = L  × L . 

 1

 2

3

2

2

1

(L , )

£

1

1

(L , )

£

2

Fig. 45

Fig. 46

Sol. The  lattice  (L, ≤)  is  a direct product of the lattices (L , 

, 

1 ≤) and (L2 ≤) as shown in

Fig. 47. 

(1, 3)

(1, 2)

(0, 3)

(1, 1)

(0, 2)

(0, 1)

Fig. 47
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PROBLEM SET-III

1. Determine whether the posets represented by each of following Hasse-diagrams are lattices. 

2. Show that D , the set of all divisors of 70 forms  a lattice. 

70

3. Consider the lattice L show in the figure below. 

( i) Determine all sublattices with Four elements

( ii) Determine complements of  b and  d, if they exist? 

( iii) Is L distributive? 

( iv) Is L complemented lattice? 

4. Determine whether the following posets are lattices. 

( i) ({1, 5, 25, 125}, /)

( ii) (Z, ≥)

( iii) ({1, 3, 6, 9, 12}, /)

( iv) (D , /), where D  is the set of all divisors of 210. 

210

210

5. Consider the lattice L shown in the figure below. 

( i) Determine non zero join irreducible elements of L. 

( ii) Determine elements that are atoms. 

( iii) Is L distributive? 

( iv) Is L a complemented Lattice? 

( v) Determine complements of  p,   q  and  t, if they exist. 

( vi) Which of the following are sublattices of L. 

L  = { o, p, q,  I}, L = { o, p, t,  I}, L = { p, r, s, I}, L  = { o, r, s,  I}

1

2 

3 

4

6. Consider the lattice L shown in the figure below. 

( i) Determine all sublattices of L with five elements. 

( ii) Determine all join-irreducible elements of L. 
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( iii) Determine all the atoms of L. 

( iv) Determine complements of  u and  v, if they exist? 

( v) Is L distributive? 

( vi) Is L a complemented lattice? 

7. Consider the lattice D , the divisors of 60 ordered by divisibility. 

60

( i) Draw the Hasse diagram of D . 

60

( ii) Determine the join irreducible elements of D . 

60

( iii) Determine the atoms of D . 

60

( iv) Determine the complements of 2 and 10, if they exist. 

( v) Is D  a distributive lattice? 

60

( vi) Is D  a complemented lattice? 

60

8. Determine all the sub lattices of D  that contain five or more elements. 

24

9. Consider the lattices D , the divisors of 42 ordered by divisibility. 

42

( a) Draw the Hasse diagram of D . 

42

( b) Determine the atoms of D . 

42

( c) Determine the complement of each element of D . 

42

( d) Is D  a complemented lattice? 

42

( e) Is D  a distributive lattice? 

42

10. Consider the  lattice M show in the figure below:

( i) Which of the followings are sublattices of M? 

M  = { o, a, b,  I}, M  = { o, a, e,  1}, M  = { a, c, d,  1}

1

2

3

( ii) Determine complements of  a, b and  c, if it exists? 

( iii) Is M a complemented lattice? 

( iv) Is M a distributive lattice? 

11. Which of the following are True/False? 

( a) Every chain is a lattice. 

( b) All the posets are lattices. 

( c) All the lattices are posets. 

( d) Isomorphic lattices look identical except for the label of nodes. 

( e) The Union of two sublattices is always a sublattice. 

( f) A lattice which has both elements 0 and 1 is called a bounded lattice. 

( g) Every finite lattice is a complete lattice. 

( h) A lattice L is called complemented lattice if it is bounded and every element in L has a complement. 

( i) An element  a ∈ L may have more than one complement. 

( j) The complements are unique in a lattice. 

( k) Every chain is a distributive lattice. 

( l) In a distributive lattice, if an element has complement then this complement is unique. 

( m) Every distributive lattice is modular. 

( n) Every modular lattice is distributive. 

( o) The elements which immediately succeed element O are called atoms. 

( p) Every finite lattice has a least element. 

( q) Every nonempty subset of a lattice has a LUB and GLB. 

( r) Every nonempty subset of a finite lattice has a LUB and GLB. 
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ANSWERS AND HINTS (PROBLEM SET III)

1. 

( i) Lattice

( ii) Lattice

( iii) Lattice

( iv) It is not lattice since GLB of ( a, b) does not exist. 

( v) It is not a lattice since LUB of ( u, v) does not exist. 

( vi) It is not a lattice since LUB of ( a, b) and GLB of ( c, d) does not exist. 

( vii) Lattice

( viii) It is not a lattice since LUB of (24, 36) and GLB of (2, 3) does not exist. 

2. D  = {1, 2, 5, 7, 10, 14, 35, 70}. The Hasse diagram of D  is shown below. Since there exists a 70

70

unique LUB and GLB for each pair of elements, hence D  is a lattice. 

70

3. 

( i) Three sublattices { a, b, c, z}, { a, c, d, z}, { a, b, d, z}

( ii) Complement of  b = { c, d} and complement of  d = { b, c}

( iii) No

( iv) Yes

4. 

( i) It is a linear order hence it is a lattice. 

( ii) It is a linear order hence it is a lattice. 

( iii) The elements 6 and 9 have no upper bound hence it is not a lattice. 

( iv) It is a lattice. 

5. 

( i) The join-irreducible elements are  p, q, s and  t. 

( ii) The atoms are  p and  q. 

( iii) The lattice L is not distributive since L′ = { o, p, s, t,  I} is a sublattice, which is isomorphic to the non-distributive lattice shown in Fig. 31(I). 

( iv) The lattice L is not complemented. The element  r has no complement. 

( v)  p ∧  t =  0 and  p ∨  t = I, thus  p and  t are complements. Similarly,  q and  s are complements. 

( vi) L  and L  are not sublattices. L  and L  are sublattices. 

1

4

2

3

6. 

( i) L  = { o, u, v, x,  I}, L  = { o, v, w, y,  I}, L  = { o, u, x, w,  I}, L  = { o, u, x, y,  I}, L  = { o, w, y, x,  I} L  = { o, u, 1

2

3

4

5

6

 w, y,  I}. 

( ii) The join-irreducible elements are  u, v  and  y. 

( iii) The atoms are  u,   v,   w. 

( iv) The complement of  u is  y and  w the complement of  v does not exist. 

( v) The lattice L is not distributive since L (shown above) is  u sublattice which is isomorphic to 4 

the non-distributive lattice shown in Fig. 34(I). 

( vi) The lattice L is not complemented. The element  v has no complement. 

POSETS AND LATTICES

M-5.37

7. 

( i) The Hasse diagram of D  is shown below:

60

( ii) The join irreducible elements of D  are 1, 2, 3, 4 and 5. 

60

( iii) The atoms of D  are 2, 3 and 5. 

60

( iv) The complement of 2 does not exist. The complement of 10 is 3. 

( v) No. 

( vi) No, since complement of 2 does not exist. 

8. There are four sublattices of D . These are L  = {1, 2, 3, 6, 12}, L  = {1, 2, 3, 6, 12, 24}, L  = {1, 2, 6, 24

1

2

3

12, 24} and L  = {1, 3, 6, 12, 24}. 

4

9. ( a) The Hasse diagram of D  is shown below:

42

( b) The atoms of D  are 2, 3 and 7. 

42

( c) 1′ = 42, 2′ = 21, 3′ = 14, 6′ = 7′, 7′ = 6, 14′ = 3, 21′ = 2, 42′ = 1. 

( d) Yes, it is a complemented lattice. 

( e) D  is not a distributive lattice since sublattice. 

42

{1, 3, 6, 14, 42} is isomorphic to the non-distributive lattice shown in Fig. 34(I). 

10. 

( i) M  and M  are sublattices but M  is not a sublattice. 

2

3

1

( ii) The complement of  a and  b are  e and  d respectively. The complement of  c does not exist. 

( iii) The Lattice M is not complemented lattice since complement of  c does not exist. 

( iv) The lattice M is not distributive since the sublattice M′ = { o, a, d, e,  1} is isomorphic to the nondistributive lattice shown in Fig. 34(I). 

11. ( a) True

( b) False

( c) True

( d) True

( e) False

( f) True

( g) True

( h) Ture

( i) True

( j) False

( k) True

( l) True

( m) True

( n) False

( o) True

( p) True, if the elements of the lattice are  a ,  a , ...  a , then  a is the least element. 

1

2

 n

1 ∧  a 2 ∧  a 3 ∧ ... ∧  an

( q) False

( r) True
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SOLVED PROBLEMS

Problem 1.  Consider the set D  = {1, 2, 5, 10, 25, 50} and the relation divides (/) be a 50

 partial ordering relation on D . 

 50

( a)  Draw the Hasse diagram of D  with relation divides. 

 50

50

( b)  Determine all upper bounds of 5 and 10. 

( c)  Determine all lower bounds of 5 and 10. 

25

10

( d)  Determine g.l.b. of 5 and 10. 

( e)  Determine l.u.b. of 5 and 10. 

( f)  Determine the greatest and least element of D . 

5

2

 50

Sol. ( a) The Hasse diagram of D  is shown in Fig. 48. 

50

( b) The upper bounds of 5 and 10 are 10 and 50. 

1

Fig. 48

( c) The lower bounds of 5 and 10 are 5 and 1. 

( d) The greatest lower bound of 5 and 10 is 5. 

( e) The least upper bound of 5 and 10 is 10. 

( f) The greatest element of D  is 50. 

50

The least element of D  is 1. 

50

Problem 2.  Consider the Hasse diagram of the poset as shown

 in Fig. 49. 

a

a

4

5

( a)  Determine the least and greatest element of the poset, if they

 exist. 

a

a

2

3

( b)  Determine the l.u.b. of all pairs of elements. 

( c)  Determine the g.l.b. of all pairs of elements. 

a1

Sol. ( a) The least element of the poset is  a . 

1

The greatest element of the poset does not exist. 

Fig. 49

( b) The least upper bound (l.u.b.) of all pairs of elements of the poset is shown in the table as follows :

 l.u.b. 

 a

 a

 a

 a

 a

1

2

3

4

5

 a

 a

 a

 a

 a

 a

1

1

2

3

4

5

 a

 a

 a

 a

 a

–

2

2

2

4

4

 a

 a

 a

 a

 a

 a

3

3

4

3

4

5

 a

 a

 a

 a

 a

–

4

4

4

4

4

 a

 a

–

 a

–

 a

5

5

5

5

Note. The (–) indicates that for these pairs of elements l.u.b. does not exist. 
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( c) The greatest lower bound (g.l.b.) of all pairs of elements of the poset is shown in the table as follows :

 g.l.b. 

 a

 a

 a

 a

 a

1

2

3

4

5

 a

 a

 a

 a

 a

 a

1

1

1

1

1

1

 a

 a

 a

 a

 a

 a

2

1

2

1

2

1

 a

 a

 a

 a

 a

 a

3

1

1

3

3

3

 a

 a

 a

 a

 a

 a

4

1

2

3

4

3

 a

 a

 a

 a

 a

 a

5

1

1

3

3

5

Problem 3.  Determine whether the posets shown in Fig. 50 are lattices or not ? 

Fig. 50

Sol. ( i) The poset shown in Fig. 50(I) is not a lattice since the elements 6 and 7 have no upper bound. Similarly, the elements 1 and 2, 1 and 3, 2 and 3 have no lower bound. 

( ii) The poset shown in Fig. 50(II) is not a lattice since the elements  b and  c have no lower bound  i.e.,  inf ( b,  c) does not exist. 

( iii) The poset shown in Fig. 50(III) is not a lattice since the elements  a and  b have no lower bound  i.e.,  inf ( a,  b) does not exist. 

Problem 4.  Consider the lattice as shown in Fig. 51. 

7

5

6

4

2

3

1

Fig. 51
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( i)  Determine the join-irreducible elements of the lattice. 

( ii)  Determine the meet-irreducible elements of the lattice. 

( iii)  Determine the atoms of the lattice. 

( iv)  Determine the antiatoms of the lattice. 

Sol.  ( i) The join-irreducible elements of the lattice are 2, 3, and 4. 

( ii) The meet-irreducible elements of the lattice are 5, 6, 2 and 3. 

( iii) The atoms of the lattice are 2, 3 and 4. 

( iv) The antiatoms of the lattice are 5 and 6. 

Problem 5.   Draw the diagram of a lattice which is the direct product of the following lattices shown in Fig. 52. 

I

2

c

b

1

a

O

Fig. 52

Sol.  The lattice which is the direct product of the lattices shown in Fig. 52 is as shown Fig. 53. 

(1, 1)

(2, 1)

(2, 0)

(1, c)

(2, b)

(1, b)

(1, a)

(2, a)

(1, 0)

(2, 0)

Fig. 53

Problem 6.   Determine whether or not each of the following sets is a lattice with respect to divisibility:

( i)  A  =  {1, 2, 4, 5, 20}

 I

( ii)  A  = {2, 4, 8, 10, 20, 40}

 2

( iii)  A  = {1, 2, 3, 4, 5, 6, 10, 15, 20, 30, 60}. 

 3

Sol.  ( i) A  is not a lattice since l.c.m. of (2, 5) = 10, which does not belong to set A . 

1

1

( ii) A  is a lattice since for every pair ( a,  b) of elements inf( a,  b) and sup( a,  b) exists. 

2

( iii) A  is a lattice. 

3
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Problem 7.   Let A = {1, 2, 4, 8, 16, 32}. Draw the Hasse diagram of the

32

 poset (A, /). 

Sol.  The Hasse diagram of the poset is shown in Fig. 54. 

16

8

4

2

1

Fig. 54. 

Problem 8.   If L be any Lattice, then for any a, b, c ∈  L. Prove the following: (i) a ∨  a =  a

 (ii) a ∨  b = b ∨  a

 (iii) a ∨  (b ∨  c) = (a ∨  b) ∨  c

 (iv) a ∨  (a ∧  b) = a

Sol.  ( i) We have,   a ∨  a =  a

(Idempotent property)

     a ∨  a = LUB { a,  a} = LUB { a} =  a

Hence proved. 

( ii)  a ∨  b =  b ∨  a

(Commutative property)

We have, 

   a ∨  b = LUB { a, b} = LUB { b,  a} =  b 



∨  a

Hence proved. 

( iii)  a ∨ ( b ∨  c) = ( a ∨  b) ∨  c

(Associative property)

We have, 

( a ∨  b) ∨  c = LUB { a ∨  b,  c}

So

    a ∨  b ≤ ( a ∨  b) ∨  c  and  c ≤ ( a ∨  b) ∨  c Also

 a ≤  a ∨  b

and    b ≤  a ∨  b

Hence, 

 a ≤ ( a ∨  b) ∨  c  and      b ≤ ( a ∨  b) ∨  c (Transitive property)

Thus, ( a ∨  b) ∨  c is an upper bound of  a and  b. 

By definition of LUB of  b and  c  i.e.,   b ∨  c. 

 a,  b ∨  c ≤ ( a ∨  b) ∨  c. 

So, this is an upper bound of  a and  b ∨  c. 

Thus, by definition of ∨, we have

 a ∨ ( b ∨  c) ≤ ( a ∨  b) ∨  c

Similarly, ( a ∨  b) ∨  c ≤  a ∨ ( b ∨  c)

Due to antisymmetry of ≤, we have

( a ∨  b) ∨  c =  a ∨ ( b ∨  c)

Hence proved

( iv)  a ∨ ( a ∧  b) =  a

(absorption property)

We know that

 a ∧  b ≤  a and  a ≤  a, so  a is an upper bound of  a ∧  b and  a. 

Thus,  a ∨ ( a ∧  b) ≤  a. 

By definition of LUB, we have

 a ≤  a ∨ ( a ∧  b)
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Therefore, by the property of antisymmetry of ≤, 

We have, 

 a ∨ ( a ∧  b) =  a

Hence proved. 

Problem 9.   Show that, In any Lattice L, 

 (a ∧  b) ∨  (b ∧  c) ∨  (c ∧  a) ≤  (a ∨  b) ∧  (b ∨  c) ∧  (c ∨  a), for all a, b, c ∈  L. 

Sol.  We have

 a ∧  b ≤  a ≤  a ∨  b

 a ∧  b ≤  b ≤  b ∨  c

 a ∧  b ≤  c ≤  c ∨  a

This means

( a ∧  b) ≤ ( a ∨  b) ∧ ( b ∨  c) ∧ ( c ∨  a) Similarly, 

( b ∧  c) ≤ ( a ∨  b) ∧ ( b ∨  c) ∧ ( c ∨  a) and

( c ∧  a) ≤ ( a ∨  b) ∧ ( b ∨  c) ∧ ( c ∨  a) Therefore, 

( a ∧  b) ∨ ( b ∧  c) ∨ ( c ∧  a) ≤ ( a ∨  b) ∧ ( b ∨  c) ∧ ( c ∨  a). 

Problem 10.   Show that the poset (I ,   /) is a lattice. 

 +

Sol.  Let  a,  b, be two positive integers. Then the least common multiple (lcm) of  a and  b is the Least Upper Bound (LUB) and greatest common divisior (gcd) of  a and  b is the Greatest Lower Bound (GLB) of these two integers, which are +ve integers. Since the LUB and GLB of every pair of elements exist, hence (I , / ) is a lattice. 

+

Problem 11.   Show that the lattice L = {1, 2, 3, 6} under the relation divisibility and the lattice {P (s), ≤ }, where s = {a , a } are isomorphic. 

 1

 2

Sol.  The mapping between the two lattices is defined as

 f : L → P ( s) such that. 

 f (1) = φ ;  f(2) = { a } ;  f (3) = { a } and  f (6) = { a ,  a }

1

2

1

2

As shown, the mapping  f is one-one and onto. 

Also, 

 f ( a  

) =  f ( a ) 

) and  f ( a  

) =  f ( a ) 

)

1 ∧  a 2

1 ∧  f ( a 2

1 ∨  a 2

1 ∨  f ( a 2

Therefore,  f is an isomorphism. 

Problem 12.   Show that every sub-lattice of a distributive lattice is distributive. 

Sol.  Let us assume that S be a sub lattice of a distributive lattice L. Further, assume that a,  b,  c ∈ S, then  a,  b,  c ∈ L. 

Therefore, 

 a ∧ ( b ∨  c) = ( a ∧  b) ∨ ( a ∧  c) is in L. 

Since S is closed in ∧ and ∨, we have

 a ∧ ( b ∨  c) = ( a ∧  b) ∨ ( a ∧  c) is also in S. 

Hence, S is distributive. 

Problem 13.   Show that every sublattice of a modular lattice is modular. 

Sol.  Let us assume that S be a sub lattice of a modular lattice L. Further, if  a,  b,  c ∈ S

with  a ≤  c then  a,  b,  c ∈ L. 

Therefore, 

 a ∨ ( b ∧  c) = ( a ∨  b) ∧  c

Since S is closed in ∧ and ∨, the above result also holds in S. 

Hence, S is modular. 
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Problem 14.   Show that, in a modular lattice L if two elements b and c are comparable and a ∧  b = a ∧  c, a ∨  b = a ∨  c, for every a ∈  L then b = c. 

Sol.  Let us assume that  b ≥  c. Then

    b =  b ∧ ( a ∨  b)

=  b ∧ ( a ∨  c)

= ( b ∧  a) ∨  c

 = ( a ∧  c) ∨  c

 = c

Therefore, 

 b =  c. 

Hence proved. 

Problem 15.   Show that in a complemented, distributive lattice, the following are

 equivalent :

 (i) a ≤  b

 (ii) a ∧  b′  = 0

 (iii) a′  ∨  b = 1

 (iv) b′  ≤  a′ . 

Sol.  To show that all are equivalent, we have to show that ( i) ⇒ ( ii), ( ii) ⇒ ( iii), ( iii) ⇒ ( iv) and ( iv) ⇒ ( i). 

To show that ( i) ⇒ ( ii), we have. 

 a ≤  b

⇒ ( a ∨  b) =  b

⇒ ( a ∨  b) ∧  b′ = 0

[∵  b ∧  b′ = 0]

⇒ ( a ∧  b′) ∨ ( b ∧  b′) = 0

⇒  a ∧  b′ = 0

Hence ( i) ⇒ ( ii)

To show that ( ii) ⇒ ( iii), we have, 

   a ∧  b′ = 0

⇒ ( a ∧  b′)′ = 1

⇒ ( a′ ∧ ( b′)′) = 1

⇒  a′ ∨  b = 1

Hence ( ii) ⇒ ( iii)

To show that ( iii) ⇒ ( iv), we have, 

   a′ ∨  b = 1

⇒ ( a′ ∨  b) ∧  b′ =  b′

[1 ∧  b′ =  b′]

⇒ ( a′ ∧  b′) ∨ ( b ∧  b′) =  b′

[By distributive law]

⇒  a′ ∧  b′ =  b′

[∵  b ∧  b′ = 0]

⇒  b′ ∧  a′

Hence ( iii) ⇒ ( iv)

To show that ( iv) ⇒ ( i), we have. 

 b′ ≤  a′

⇒  a′ ∧  b′ =  b′

⇒ ( a′ ∧  b′)′ =  b

[Demorgan’s law]

⇒  a ∨  b =  b

⇒  a ≤  b

Hence ( iv) ⇒ ( i)

Therefore, ( i), ( ii), ( iii) and ( iv) are equivalent. 
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Problem 16.   Show that every distributive lattice is modular. 

Sol.  Let us assume that (L, ≤) be a distributive lattice. Further, assume that  a,  b,  c ∈ L

such that  a ≤  c. Thus, if  a ≤  c, then  a ∨  c =  c. 

So, we have

 a ∨ ( b ∧  c) = ( a ∨  b) ∧ ( a ∨  c) = ( a ∨  b) ∧  c Thus, if  a ≤  c, then modular equation is satisfied and hence L is modular. 

Problem 17.   Let A = {1, 2, 3, 12, 15} and R be a binary relation on A defined by

∀  a, b ∈  A (a, b) ∈  R iff a/ b

 That is, (a, b) ∈  R iff a divides b. 

 (i) Show that R is a partial order relation. 

 (ii) Draw the Hasse diagram for the relation R. 

 (iii) Give the least element and the greatest element, if they exist. 

Sol.  The elements in the relation R are

R = {(1, 1), (1, 2), (1, 3), (1, 12), (1, 15), (2, 2), (2, 12), 

(3, 3), (3, 12), (3, 15), (12, 12), (15, 15)}

( i) To show R is a partial order relation, we have to show that R is a reflexive, antisymmetric and transitive relation. 

The relation R is reflexive since  a/ a for every  a ∈ A. 

The relation R is antisymmetric since if  a/ b and  b/ a then  a =  b, where  a,  b ∈ A. 

The relation R is transitive since if  a/ b and  b/ c then  a/ c, for every  a,  b, c ∈ A. 

Since the relation R is reflexive, antisymmetric and transitive hence it is an equivalence

relation. 

( ii) The Hasse diagram of the relation R is shown  in Fig. 55. 

12

15

2

3

1

Fig. 55

( iii) The least element is = 1. 

The greatest element does not exist. 

MULTIPLE CHOICE QUESTIONS

1. Given the set I= {1, 2, 3, 4, .........} and is ordered by the divisibility. Which of the following is not a linearly ordered subset? 

( a) {2, 4, 8}

( b) {1}

( c) {3, 6, 12}

( d) {2, 4, 6, 8, 10 …}
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2. Which of the following is FALSE about Lattices? 

( a) It is Poset

( b) It is a Boolean algebra

( c) Every pair of elements has a LUB and GLB

( d) It satisfies the property of comutativity, Absorption and Associativity. 

3. Which of the following is the property of Bounded Lattices? 

( a)  a ∨ 1 = 1,  a ∧ 1 =  a,  a ∨ 0 =  a,  a ∧ 0 = 0

( b)  a ∨ 1 =  a,  a ∧ 1 = 1,  a ∨ 0 =  a,  a ∧ 0 = 0

( c)  a ∨ 1 = 1,  a ∧ 1 =  a,  a ∨ 0 = 0,  a ∧ 0 =  a ( d)  a ∨ 1 =  a,  a ∧ 1 = 1,  a ∨ 0 = 0,  a ∧ 0 =  a 4. Which of the following is not the sub-lattice of D ? 

30

( a) (1, 2, 6, 30)

( b) (1, 2, 3, 30)

( c) (2, 6, 10, 30)

( d) (2, 3, 6, 15)

5. Consider the lattice D on the relation divides. Which of the following is a GLB and LUB of 50 

2 and 5

( a) 1, 10

( b) 1, 50

( c) 1, 2

( d) 1, 5

6. The inclusion of which of the following sets into

S = {{1, 2}, {1, 2, 3}, {1, 3, 5}, {1, 2, 4}, {1, 2, 3, 4, 5}

Is necessary and sufficient to make S a complete lattice under the partial order defined   by the set containment? 

( a) {1}

( b) {1}, {2, 3}

( c) {1}, {1, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}

( d) {1}, {1, 3}

7. Match the following

1. Partial ordered set are used for

1. Searching

2. Diagramatic forms of lattices are used 2. Sorting

3. Lattices are used for

3. Boolean Algebra and Logic Circuits

4. The concepts of posets and lattices are 4. Construction of Logical representation

used in

( a) (1, 1), (2, 3), (3, 2), (4, 4)

( b) (1, 3), (2, 3), (3, 4), (4, 1)

( c) (1, 2), (2, 3), (3, 1), (4, 4)

( d) None of these

8. Match the following

1. Chain

1. Is a set S with relation R on S which is reflexive, 

antisymmetric and transitive

2. Atoms

2. The elements in level – 1

3. Posets

3. A poset if for any pair of elements  x,  y, ε, L, 

glb ( x,  y) and lub( x,   y) exist

4. Lattice

4. In a poset is sequence  a ,  a   a , ……….  , a

0

1, 2

 n

( a) (1, 1) (2, 2), (3, 3), (4, 4)

( b) (1, 2), (2, 3), (3, 1) (4, 4)

( c) (1, 4), (2, 2), (3, 1), (4, 3)

( d) None of these

9. A lattice (L) is called ______ if its elements  a,  b,  c in L satisfies following ______ properties. 

 a ∧ ( b ∨  c) = ( a ∧  b) ∨ ( a ∧  c)

 a ∨ ( b ∧  c) = ( a ∨  b) ∧ ( a ∨  c)

( a) Bounded, associative

( b) Distributive, distributive

( c) Both ( a) and ( b)

( d) None of these

10. Let L be a lattice. Then for every  a and  b in L which one of the following is correct? 

( a)  a ∨  b =  a ∧  b

( b)  a ∧ (B ∨ C) = ( a ∨ B) ∨ C

( c)  a ∨ ( b ∧  c) =  a

( d)  a ∨ ( b ∨  c) =  b
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11. Consider the divides relation,  m |  n, on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. The number of edges in the Hasse diagram for this partial order relation is

( a) 5

( b) 6

( c) 7

( d) 8

ANSWERS

1. ( d)

2. ( b)

3. ( a)

4. ( d)

5. ( a)

6. ( d)

7. ( b)

8. ( c)

9. ( b)

10. ( b)

11. ( c)

REVIEW QUESTIONS

1. What is Poset? Give an example. 

2. What are comparable and non-comparable elements? Give example. 

3. What is linearly ordered set? Give example. 

4. What is Hasse diagram? What are the steps to  construct it from a directed graph? 

5. What are maximal and minimal elements? Give example. 

6. What are greatest and least elements? Give example. 

7. What is least bound and upper bound? Give example. 

8. What is Least Upper Bound (LUB) and Greatest Lower Bound (GLB)? Give example. 

9. What is Isomorphic ordered sets? Give example. 

10. What is Lattice? Give an example. 

11. What is Join and Meet? Give example. 

12. What are the properties of Lattices? 

13. What is Bounded Lattices?  Give example. 

14. What are the properties of Bounded lattices? 

15. What is Sub-lattice? Give example. 

16. What are isomorphic lattice? Give example. 

17. What  is distributive lattice? Give example. 

18. Exaplain various elements of lattices. 

19. What is Join-Irreducible and meet-Irreducible? Give example. 

20. What is Atom and Anti-atom? Give example. 

21. What is Complemented lattice? Give example. 

22. What is modular lattice? Give example. 

23. What is direct product of lattices? Give example. 

CHAPTER END PROBLEMS

1. Let A = {1, 2, 3, 4, 12}. Consider the partial order of divisibility on A. That is, if  a and  b € A,  a ≤  b if and only if  a |  b. Draw the Hasse diagram of the poset (A, ≤). 

2. Show that the lattice shown in the figure  is nondistributive. 

I

a

b

c

O

POSETS AND LATTICES
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3. Prove that a linearly order set is a lattice. 

4. Let A = {2, 3, 4, 6, 8, 12, 24, 48} and ≤ denotes partial order of divisibility. Construct the Hasse diagram. Let B= { 4, 6, 12 }. Find

( MDU, 2002)

( i) All upper bounds of B

( ii) Least upper bounds of B

( iii) All lower bounds of B

( iv) Greatest lower bound of  b. 

5. For any  a,  b,  c,  d in a lattice (A, ≤), if  a ≤  b and  c ≤  d then prove that ( a ∨  c) ≤ ( b ∨  d) and ( a ∧  c) ≤ ( b ∧  d) (where ∨ is join and ∧ is meet operation). 

( DOEACC, 2006)

6. Prove that if the meet operation is distributive over the join operation in a lattice, then the join operation is also distributive over the meet operation. 

( DOEACC, 2006)

7. Let X = {2, 3, 6, 12, 24, 36} and the relation ≤ be such that  x ≤  y if  x divides  y. Draw the Hasse diagram of <X, ≤>. 

( DOEACC, 2007)

8. Prove that composition of two homomorphism is also a homomorphism. 

( DOEACC, 2007)

9. Consider the poset A = ({1, 2, 3, 4, 6, 9, 12, 18, 36}, /,}, find the greatest lower bound and the least bound of the sets {6, 18} and {4, 6, 9}. 

( DOEACC, 2008)

10. Let (L, ≤) be any lattice. Let  a,  x,  y be elements of L such that  x ≤  y. Show that  a ∧  x ≤  a ∧  y. 

( DOEACC, 2010)

11. Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but glb(S) does not exist. 

12. Determine whether the following are True  or False? Justify your answer. 

( a) The antisymmetric closure of a relation R on a set A exists if and only if R itself is antisymmetric. 

( b) There exists a relation that well-orders Z. 

13. Let ∗ be a binary operation on a set A, and suppose that ∗ satisfies the following properties for any a,  b and  c in A

1.  a =  a ∗  a

Idempotent property^

2.  a ∗  b =  b ∗  a

Commutative property

3.  a ∗ ( b ∗  c) = ( a ∗  b) ∗  c

Associative property

Define a relation ≤ on A by  a ≤  b if and only if  a =  a ∗  b. Show that (A, ≤) is a poset, and for all  a,  b in A, GLB ( a,   b) =  a ∗  b. 

14. Let L be a distributive lattice.  Show that if there exists an a with

 a ∧  x =  a ∧  y  and  a ∨  x =  a ∨  y, then  x =  y. 

15. Which of the partially ordered sets in figures ( i), ( ii) and ( iii) are lattices? Justify your answer. 

I

I

d

e

I

c

d

c

c

d

b

a

b

a

O

O

a

b

O

(i)


(ii)

(iii)

16. Prove that if λ  and   are elements of a lattice <L; 

1

λ2

∨, ∧> then

(λ  

=  ) 



=  ) 



)

1 ∨ λ2

λ1 ↔ (λ1 ∧ λ2 λ2 ↔ (λ2 ≤ λ1
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17. Let A = {1, 2, 4, 8, 16} and relation R  be partial order of divisibility on A. Let A 1

′ = {0, 1, 2, 3, 4} and

R  be the relation “less than or equal to” on integers. Show that (A, R ) and (A

) are isomorphic

2

1

′, R2

posets. 

18. For any positive integer  n, let I  = { x | 1 

 n

≤  x ≤  n}. Let the relation “divides” be written as  a |  b iff  a divides  b or  b =  ac for some integer  c. Draw the Hasse diagram and determine whether I  is a 12

lattice. 

19. If [L, ∧, ∨] is a complemented and distributive lattice, then the complement  a  of any element a ∈ L is unique. 

( UPTU, 2010)

20. Consider the following Hasse diagram and the set B = {3, 4, 6}. Find, if they exist, 5

8

4

9

6

3

7

1

2

( i) all upper bounds of B

( ii) all lower bounds of B

( iii) the least upper bound of B

( iv) the greatest lower bound of B. 

21. Prove that the direct product of any two distributive lattice is a distributive. 

22. Consider the poset ({1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4} ≤). 

( i) Find the maximal elements

( ii) Find the minimal elements

( iii) Is there a least element

( iv) Find the least upper bound of {{2}, {4}}, if it exists. 

23. Let L be a bounded distributive lattice. Show that if  a complement exists it is unique. 

24. Draw the Hasse diagram for the poset (ρ(A), ⊂) where A = {1, 2, 3, 4} and ρ(A) is the power set of A. 

25. Let L be a lattice then for every  a and  b in L

 a ∨  b =  b if and only if  a < =  b

26. Let (A, ≤) and (B, ≤) be two posets. Prove that (A × B, ≤) is a poset, where ( a,  b) ≤ ( c,  d) if and only if  a ≤  c,  b ≤  d. 

( UPTU, 2010)

27. Let  a,  b,  c be elements in a lattice (A, ≤). Show that if   a ≤  b then ( UPTU, 2010)

 a ∨ ( b ∧  c) ≤  b ∧ ( a ∨  c)

28. What is a lattice? Which of the following graphs are lattice and why? 

(a)

(b)

(c)

29. Prove that if (A, ≤) has a least element, then (A, ≤) has a unique least element. 

POSETS AND LATTICES
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30. Make an addition table and multiplication table for Z . Confirm the following properties hold. 

7

These all hold for real numbers. 

( a +  b) +  c =  a + ( b +  c)

additive associative property

 a +  b =  b +  a

commutative property

 a + 0 = 0 +  a =  a

zero element (additive unit element)

 a + (–  a) = 0

additive inverse

( ab) c =  a( bc)

multiplicative associative property

 a 1 = 1 a =  a

multiplicative unit element

 a ≠ 0 --> 

there exist  a–1 such that  aa–1 = 1 multiplicative inverse

 a( b +  c) =  ab +  ac

forward distributive

( a +  b) c =  ac +  bc

backward distributive

31. Draw the Hasse diagram for the set inclusion for {1, 2, 3, 4}. 

32. Draw the Hasse diagram of (A, ≤) where A = {3, 4, 12, 24, 48, 72} and the relation ≤ be such that a ≤  b if  a divides  b. 

( UPTU,2010)

33. Consider the set A = {2, 7, 14, 28, 56, 84} and the relation  a ≤  b  if and only if  a divides  b. Give the Hasse diagram for the poset (A, ≤). 

34. ( a) Let ≤ D denote a binary relation on the positive natural numbers defined to n ≤ D  m iff  n divides  m. 

Prove that it is a partial order. 

( b) Draw the Hasse diagram of the partial order ({2, 4, 5, 10, 12, 20, 25}, ≤ D). Which elements are maximal and which minimal? 

( c) Explain why the partial order in part 1 b is not total. Find a total order ≤ T on {2, 4, 5, 10, 12, 20, 25} such that  n ≤ D m implies  n ≤ T m. 

35. Let (P(A), ≤) denote the standard partial order on the subsets of A, given by set inclusion. 

( a) Determine whether there is a greatest and least element of (P(A), ⊆). 

( b) Draw the Hasse diagram of (P({ a,  b,  c}, ⊆). 

( c) Explain why (P({ a,  b,  c}), ⊆) is not total. Find a total order (P({ a,  b,  c}), ⊆ ) such that A T

⊆ B

implies A ⊆  B for every A, B 

T

∈ P ({ a,  b,  c}). 

36. Consider the partial order (A = {1, 2, 3, 4}, ≤), where ≤ denotes the usual ordering of natural numbers and let ≤ L denote the lexicographic order on A × A. 

( a) Find all pair in A × A which are less than (2, 3). 

( b) Find all pair in A × A which are greater than (3, 1). 

( c) Draw the Hasse diagram of the partial order (A × A, ≤ L). 

ANSWERS

11. Take A = { a,  b,  c,  d} and the relation

R = {( a,  a), ( a,  c), ( a,  d), ( b,  b), ( b,  c), ( b,  d), ( c,  c), ( d,  d)} on A. 

The subset S = { c,  d} of A has two lower bounds  a and  b, but these bounds are not comparable to one another. 

12. ( a) True

( b) True

15. All are lattices. 

20. ( i) 5

( ii) {1, 2, 3}

( iii) 5

( iv) 3

22. ( i) The maximal elements are {1, 2}, {1, 3, 4} and {2, 3, 4}

( ii) The minimal elements are {1}, {2} and {3}

( iii) There is no least element in the poset. 

( iv) The least of the upper bounds is {2, 4}. 

28. ( a) Lattice

( b) Not a lattice

( c) Not a lattice

C H A P T E R

2

 Boolean Algebra

PREVIEW

Boolean algebra is a basic model for mathematical systems. In computing, two-valued

Boolean algebra is used. These two values are True (1) or False (0). Boolean algebra is used to analyze and simplify the logic circuits. It is also called Binary Algebra. A Boolean algebra is a mathematical structure that is similar to a Boolean ring, but that is defined using the meet

and join operators instead of the usual addition and multiplication operators. Boolean algebra has applications in computer circuits, computer programming, mathematical logic, engineering, 

set theory and statistics. 

LEARNING OBJECTIVES

 After studying this chapter, the students will be able to:

•

understand the basic concepts of Boolean algebra

•

understand the sub-algebra and isomorphic Boolean algebras

•

understand the identities of Boolean algebra and how to prove them

•

understand the principle of duality

•

understand the Boolean functions and their representation

•

understand the Boolean expressions

•

understand and how to obtain the disjunctive normal form from the given expression

•

understand and how to obtain the conjunctive normal form from the given expression

•

understand design of digital circuits

•

understand applications of Boolean algebra in switching theory

•

understand  k-maps and their use for simplification of Boolean functions

2.1

INTRODUCTION

Boolean algebra was introduced by George Boole in 1854. Boolean algebra is a division

of mathematics which deals with operations on logical values and incorporates binary variables. 
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The distinguishing factor of Boolean algebra is that it deals only with the study of binary

values or two variables. Boolean algebra provides the basis for analyzing the validity of logical propositions because it captures the binary value character of statements that may be either

TRUE or FALSE. Boolean algebra uses letters to stand for values and certain symbols to

stand for operations on those values. However, there are only two possible values in Boolean

algebra i.e. True (1) or False (0). Further, the operations in Boolean algebra are not addition, subtraction, multiplication but are AND, OR, NOT etc. A logical statement can either be true

or false depending on the value of the variable. In Boolean algebra, however, variables do not represent the values that make a statement true, instead they represent the truth or falsity of the statement. That is, a Boolean variable can only have one of two values. 

2.2

DEFINITION

A complemented distributive lattice is called a Boolean algebra. It is denoted by

(B, ∧, ∨,′, 0, 1), where B is a set on which two binary operations ∧ (∗) and ∨ (+) and a uniary operation  ′ (complement) are defined. Here 0 and 1 are two distinct elements of B. 

Since (B, ∧, ∨) is a complemented distributive lattice, therefore each element of B has a

unique complement. 

Alternate Definition

Consider a set B on which two binary operations ∗ and + and a uniary operation′ (comple-

ment) are defined. Also let 0 and 1 are two distinct elements of B. Then it is called a Boolean algebra, if the following properties are satisfied for any elements  a,  b and  c of the set B by it. 

1. Commutative Properties 2. Distributive Properties

( i)  a +  b =  b +  a

( i)  a + ( b ∗  c) = ( a +  b)∗ ( a +  c) ( ii)  a ∗  b =  b ∗  a

( ii)  a ∗ ( b +  c) = ( a ∗  b) + ( a ∗  c) 3. Identity Properties

4. Complement Laws

( i)  a + 0 =  a

( i)  a +  a′ = 1

( ii)  a ∗ 1 =  a

( ii)  a ∗  a′ = 0

The Boolean algebra is denoted by (B, + , ∗, ′, 0, 1). 

For example. Consider a set B = {0, 1}. Also consider the operations ∗, + and ′ on the

set B as shown in Fig. 1. Since the algebra (B, ∗, +, ′, 0, 1) satisfies all the properties. Hence, it is a Boolean algebra. 

∗

0

1

+

0

1

 x

 x′

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

Fig. 1

For example. Consider a non-empty set S and power set of S is P(S). Since P(S) is a

collection of set S closed under the operations ∪ (union), ∩ (intersection) and ~ (complement). 

Hence P(S) is a Boolean algebra, with the empty set φ as the zero element and unit element is

U (universal set). The complement of any subset A ⊆ U is ~ A = U – A, called the relative

complement of the set A. 
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Note 1. If a finite lattice L does not contain 2 n element for some positive integer  n, then L cannot be a Boolean algebra. 

2.  If |L| = 2 n, then L may or may not be a Boolean algebra. 

Example 1.  Determine whether the poset given in Fig. 2 is a Boolean algebra or not. 

 Give reason. 

I

I

 l

I

c

d

d

f

e

c

b

c

a

a

b

a

b

a

b

o

o

o

k

(a)

(b)

(c)

(d)

Fig. 2

Sol. 1. The poset shown in Fig. 2( a) is not a Boolean algebra since it contains 6 elements and 6 ≠ 2 n for any integer  n ≥ 0. 

2. The poset shown in Fig. 2( b) is not a Boolean algebra since it contains 5 elements and 5 ≠ 2 n for any integer  n ≥ 0. 

3. The poset shown in Fig. 2( c) is not a Boolean algebra since it does not satisfy the properties of Boolean algebra  i.e.,  complement of  a and  b does not exist. 

4. The poset shown in Fig. 2( d) is a Boolean algebra since it is isomorphic to (P(S), ⊆) which is a Boolean algebra. Here P(S) is a power set of S having three elements. 

Theorem I.  Prove that the complement of every element on a Boolean algebra B is unique. 

Proof. Consider an element  a ∈ B, let  a has two complements  a 1′ an  a 2″ in B. 

1

1

1

U

Therefore, 



 a +  a ′ = =  a ′ +  a

...(1)

*

0

V

 a a 1′ = =  a 1′ ∗  a W

 a +  a 2′ = 1 =  a 2′ +  a U

and also

*

0

* V

 a a

...(2)

2 ′ =

=  a 2′  a W

We know that



 a

1

{

1′ =  a 1′ ∗

∵  a 1′ ∗ 1 =  a 1′}

=  a 1′ ∗ ( a +  a 2′)

{∵  a +  a 2′ = 1}

= ( a 1′ ∗  a) + ( a 1′∗  a 2′)

{∵ B is distributive}

= 0  +  ( a 1′ ∗  a 2′)

{∵  a 1′ ∗  a = 0}

=  a ∗  a 2′ +  a 1′ ∗  a 2′

{∵  a ∗  a 2′ = 0}

= ( a +  a 1′) ∗  a 2′

{∵ B is distributive}

= 1 ∗  a 2′

{∵  a +  a 1′ = 1}

=  a 2′

{∵ 1 ∗  a 2′ =  a 2′}

Hence, the complement is unique. 
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Example 2.  Show that the algebra of subsets of a set is Boolean algebra. 

Sol.  Let S be any set and K = P(S) be the power set (and the set of all subsets) of S. Then K is the Boolean algebra, where the meet is the intersection of two sets; the join is the union of two sets; the Boolean complement is the complement of a set; the zero element is the empty

set; the unit is S. 

Example 3.  Show that the algebra of propositions is Boolean algebra. 

Sol.  Let L be the set of all propositions. Then L is a Boolean algebra, where the meet is the conjunction of two propositions; the join is the disjunction of two propositions; the Boolean complement is the negation of a proposition; the zero element is a proposition F that is always false; the unit element is a proposition T that is always true. 

Example 4.  Find the complement of the following functions

( i) F  =  x

 =  x( y

1

′ yz′ +  x′ y′ z

( ii) F2

′ z′ +  yz)

Sol. 

( i) F1′

= ( x′ yz′  + x′ y′ z)′

= ( x′ yz′)′ ( x′ y′ z)′

= ( x + y′  + z) ( x + y + z′)

( ii) F2′

= [ x ( y′ z′  + yz)]′

=  x′ + ( y′ z′ +  yz)′

=  x′ + ( y′ z′)′ . ( yz)′

=  x′ + ( y + z) ( y′ +  z′)

2.3

SUB-ALGEBRA

Consider a Boolean algebra (B, ∗, +, ′, 0, 1) and let A ⊆ B. Then (A, ∗, +, ′, 0, 1) is called a sub-algebra or sub-Boolean algebra of B if A itself is a Boolean algebra  i.e.,  A contains the elements 0 and 1 and is closed under the operations ∗, + and ′. 

For example. Consider the Boolean algebra D , whose Hasse diagram is shown in

70

Fig. 3. 

70

35

14

10

7

2

5

1

Fig. 3

Clearly, A = {1, 7, 10, 70} and B = {1, 2, 35, 70} is sub-algebra of D . Since, both A and

70

B are closed under operation ∧, ∨ and ′. 

Note. A subset of a Boolean algebra can be a Boolean algebra but it may or may not be a sub-algebra as it may not closed w.r.t. the operations in B. 

Example 5.  Consider the Boolean algebra ( B, +, *,   ′,  O, I)  as shown in Fig. 4. Let the subsets of S be as follows :
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( i)  S  = {c, b, O, I}

( ii)  S  = {a, b, O, I}

 1

 2

( iii)  S  = {a, b, O, f}

( iv)  S  = {a, c, O, I}

 3

 4

( v)  S  = {a, c, f, I}. 

 5

I

d

f

e

c

a

b

o

Fig. 4

 Determine whether the S , S , S , S , S  are Boolean algebra, sub-algebra, either both or

 1   2 

 3

 4

 5

 none. 

Sol. ( i) The subset S  is a sub-algebra, since it is closed under the operations 1

∗, +, ′. So, 

it is also a Boolean algebra. 

( ii) The subset S  is neither a sub-algebra nor Boolean algebra. 

2

( iii) The subset S  is a Boolean algebra, but not a sub-algebra of B. 

3

( iv) The subset S  is neither a Boolean algebra nor a sub-algebra of B. 

4

( v) The subset S  is not a sub-algebra, but it is a Boolean algebra. 

5

Note 1. Every Boolean sub-algebra of a Boolean algebra B is a Boolean algebra. But there may be Boolean algebras which are not Boolean sub-algebras of B. 

2. The Boolean algebra B and {0, 1} are always sub-algebras of B. 

Example 6.  Consider the Boolean algebra D . Determine the following :

 30

( a)  All the Boolean sub-algebra of D . 

 30

( b)  All Boolean algebras which are not Boolean sub-algebras of D  having at least four 30

 elements. 

Sol. The Hasse diagram of D  is shown in Fig. 5. 

30

( a) All Boolean sub-algebras of D  are

30

30

6

10

15

3

2

5

1

Fig. 5

B  = {1, 2, 15, 30}

B  = {1, 30}

1

4

B  = {1, 5, 6, 30}

B  = {1, 2, 3, 5, 6, 10, 15, 30}. 

2

5

B  = {1, 3, 10, 30}

3
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( b) All Boolean algebras which are not Boolean sub-algebras of D  are :

30

B  = {1, 2, 3, 6}

B  = {1, 3, 5, 15}

1

2

B  = {3, 6, 5, 30}

B  = {1, 2, 5, 10}

3

4

B  = {5, 10, 15, 30}

B  = {2, 6, 10, 30}. 

5

6

2.4 ISOMORPHIC BOOLEAN ALGEBRAS

Two Boolean algebras B and B  are called isomorphic if there is a one-to-one corre-

1

spondence  f : B → B  which preserves the three operations +, 

1

∗ and ′ for any elements  a,  b in B

 i.e., 

 f( a +  b) =  f( a) +  f( b)

  f( a ∗  b) =  f( a) ∗  f( b) and  f( a′) =  f( a)′. 

For example. The following are two distinct Boolean algebras with two elements, which

are isomorphic. 

1. The first one is a Boolean algebra that is derived from a power set P(S) under ⊆ (set

inclusion)  i.e.,  let S = { a}, then B = {P(S), ∪, ∩, ′} is a boolean algebra with two elements P(S)

= {φ, { a}}. 

2. The second one is a Boolean algebra {B, ∨, ∧, ′} with two elements 1 and  p {here  p is a prime number} under operation divides  i.e.,  let B = {1,  p}. So, we have 1 ∧  p = 1 and 1 ∨  p =  p also 1′ =  p and  p′ = 1. 

2.5 IDENTITIES OF BOOLEAN ALGEBRA

Boolean algebra has a number of useful identities. An identity is simply a relation that

is always true, regardless of the values that any variables involved might take on. Many of

these are very similar to normal multiplication and addition. But there are some identities

that are different. The Table I shows all the identities of a Boolean algebra (B, *, +, ′, 0, 1) for any elements a, b, c belongs to B. The greatest and least elements of B are denoted by 1 and 0

respectively. 

Table I

1.  a ≤  b iff  a +  b =  b

2.  a ≤  b iff  a ∗  b =  a

3. Idempotent Laws

4. Commutative Property

( i)  a +  b =  a

( i)  a +  b =  b +  a

( ii)  a ∗  a =  a

( ii)  a ∗  b =  b ∗  a

5. Associative Property

6. Absorption Laws

( i)  a + ( b +  c) = ( a +  b) +  c

( i)  a + ( a ∗  b) =  a

( ii)  a ∗ ( b ∗  c) = ( a ∗  b) ∗  c

( ii)  a ∗ ( a +  b) =  a

7. Identity Laws

8. Null Laws

( i)  a + 0 =  a

( i)  a ∗ 0 = 0

( ii)  a ∗ 1 =  a

( ii)  a + 1 = 1
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9. Distributive Laws

10. Complement Laws

( i)  a ∗ ( b +  c) = ( a ∗  b) + ( a ∗  c) ( i) 0′ = 1

( ii)  a + ( b ∗  c) = ( a +  b) ∗ ( a +  c) ( ii) 1′ = 0

( iii)  a +  a′ = 1

( iv)  a ∗  a′ = 0

11. Involution Law

12. De Morgan’s Laws

( a′)′ =  a

( i) ( a ∗  b)′ = ( a′ +  b′)

( ii) ( a +  b)′ = ( a′ ∗  b′). 

Note. ( i) 0 ≤  a ≤ 1 for every  a ∈ B. 

( ii) Every element  b has a unique complement  b′. 

Each of these identities can be proven by simply creating a fully-enumerated truth

table for the expression on the left of the equality sign and another for the expression on the right and showing that they produce the same result for every  possible input combination. 

Another method is to use previously proven identities to prove subsequent ones. 

Theorem II.  Prove the idempotent laws i.e., 

( i)  a ∗  a =  a

( ii)  a +  a =  a. 

Proof. ( i)

 a =  a ∗ 1 =  a ∗ ( a +  a′)

= ( a ∗  a) + ( a ∗  a′)

...(Distributive Law}

= ( a ∗  a) + 0 =  a ∗  a. 

( ii) It follows from the duality of ( i). 

Theorem III.  Prove the Boundedness (NULL) laws i.e., 

( i)  a ∗  0 =  0

( ii)  a +  1 = 1. 

Proof. ( i)

 a ∗   0 = ( a ∗ 0) + 0

= ( a ∗ 0) + ( a ∗  a′)

...{Complement law}

=  a ∗ (0 +  a′)

...{Distributive law}

=  a ∗ ( a′ + 0)

=  a ∗  a′

= 0. 

( ii) It is directly followed from the duality of proof ( i). 

Theorem IV.  Prove the absorption laws i.e., 

( i)  a + ( a ∗  b)  = a

( ii)  a ∗ ( a +  b) =  a. 

Proof. ( ii)

 a ∗ ( a +  b) = ( a + 0)∗ ( a +  b)

=  a + (0 ∗  b)

...[Distributive law]

=  a + ( b ∗ 0)

=  a + 0

...[Null law]

=  a

( i) It is directly followed from duality of proof ( ii). 
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Theorem V.  Prove De Morgan’s laws i.e., 

( i) ( a +  b)′ =  a′ ∗  b′

( ii) ( a ∗  b)′ =  a′ +  b′. 

Proof. ( i) We have to show that

( a +  b) + ( a′ ∗  b′) = 1 and ( a +  b) ∗ ( a′ ∗  b′) = 0

Then, we have

  a′ ∗  b′ = ( a +  b)′

Now,  ( a +  b) + ( a′ ∗  b′) =  b +  a + ( a′ ∗  b′)

=  b + ( a +  a′) ∗ ( a +  b′)

...[Distributive law]

=  b + [1 ∗ ( a +  b′)] ⇒  b + (1 ∗  a) + (1 ∗  b′)

=  b +  a +  b′ =  b +  b′ +  a

= 1 +  a = 1

Also, 

( a +  b) ∗ ( a′ ∗  b′) = (( a +  b) ∗  a′) ∗  b′

= (( a ∗  a′) + ( b ∗  a′)) ∗  b′

= (0 + ( b ∗  a′)) ∗  b′

= ( b ∗  a′) ∗  b′

= ( b ∗  b′) ∗  a′

= 0  +   a′

= 0

Thus, 

 a′ ∗  b′  = ( a +  b)′. 

( ii) It follows directly from duality of proof ( i). 

2.6

DUALITY

The dual of any statement in a Boolean algebra B is the statement obtained by inter-

changing the operations + and * and also interchanging the identity elements 0 and 1 in the

original statement. 

For example: The dual of the statement (0 ∗  a) + ( b ∗ 1) is (1 +  a) ∗ ( b + 0) Note: The dual of any theorem in a Boolean algebra is also a theorem. 

Example 7.  Determine the dual of the following

( i) ( x ∗  y′ +  y ∗  z) ∗ ( x ∗  z + y ∗  z′) ( ii)  y′ ∗ ( y +  z) ∗ ( y +  z′)

( iii) ( d + a) ∗ ( d +  b) ∗ ( d +  c)

( iv) ( p +  q ∗  t) (1 +  t)

( v)  x + 1 = 1

( vi) 1 ∗ ( a + 1) = ( a + 1)

Sol.  ( i) ( x +  y′ ∗  y +  z) + ( x +  z ∗  y +  z′) ( ii)  y′ + ( y ∗  z) + ( y ∗  z′)

( iii) ( d ∗  a) + ( d ∗  b) + ( d ∗  c)

( iv) ( p ∗  q +  t) + (0 ∗  t)

( v)  x ∗ 0 = 0

( vi) 0  +  ( a ∗ 0) = ( a ∗ 0)
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2.7

BOOLEAN ALGEBRAS AS LATTICES

Every Boolean algebra B satisfies the associative, commutative, and absorption laws

and hence is a lattice where + and * are the join and meet operations, respectively. With

respect to this lattice,  a + 1 = 1 implies  a ≤ 1   and  a ∗ 0 = 0 implies 0 ≤  a, for any element  a ∈ B. 

Thus B is a bounded lattice. 

Furthermore, B is also distributive and complemented. Conversely, every bounded, dis-

tributive, and complemented lattice satisfy the commutative, distributive, identity and

complement laws. Accordingly, we have the following:

Alternate Definition: A Boolean algebra B is a bounded, distributive and complemented

lattice. Since a Boolean algebra B is a lattice, it means it has a partial ordering also. 

Theorem VI.  The following are equivalent in a Boolean algebra:

( i)  a +  b =  b, 

( ii)  a ∗  b =  a, 

( iii)  a′ +  b = 1, 

( iv)  a ∗  b′ = 0

Thus in a Boolean algebra we can write  a ≤  b whenever any of the above four conditions is known to be true. 

For example: Consider a Boolean algebra of sets. Then set A precedes set B if A is a

subset of B. If A ⊆ B, then the following conditions hold:

( i) A ∪ B = B

( ii) A ∩ B = A

( iii) A c ∪ B = U

( iv) A ∩ B c = Φ

For example: Consider the Boolean algebra D . Then a precedes  b if  a divides  b. In 70

such a case,  lcm ( a, b) =  b and  gcd( a, b)  = a.  For example, let  a = 2 and  b = 14. Then the following conditions hold:

( i)  lcm (2, 14) = 14

( ii)  gcd (2, 14) = 2

( iii)  lcm (2′, 14) =  lcm (35, 14) = 70. 

( iv)  gcd (2, 14′) =  gcd (2, 5) = 1. 

2.8

BOOLEAN FUNCTIONS AND ITS REPRESENTATION

Consider the Boolean algebra (B, ∨, ∧, ′, 0, 1). A function from A n to A is called a Boolean function if it can be specified by a Boolean expression of  n variables. 

For the two valued Boolean algebra any function from {0, 1} n to {0, 1} is a Boolean

function. 

For example:   The table shows a function  f from {0, 1}3 to {0, 1}

  Table II

( x, y, z)

 f

(0, 0, 0)

0

(0, 0, 1)

0

(0, 1, 0)

1

(0, 1, 1)

0

(1, 0, 0)

1

(1, 0, 1)

1

(1, 1, 0)

0

(1, 1, 1)

1
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For example: The table shows a function  f from {0, 1, 2, 3}2 to {0, 1, 2, 3}. 

 Table III

( x,  y)

 f

(0, 0)

1

(0, 1)

0

(0, 2)

0

(0, 3)

3

(1, 0)

1

(1, 1)

1

(1, 2)

0

(1, 3)

3

(2, 0)

2

(2, 1)

0

(2, 2)

1

(2, 3)

1

(3, 0)

3

(3, 1)

0

(3, 2)

0

(3, 3)

2

Note. A Boolean function can always be represented in tabular form. An alternative way of describing the Boolean functions is specifying the function by an expression. 

2.9

BOOLEAN EXPRESSION

Consider a Boolean algebra (B, ∨, ∧, ′, 0, 1). A Boolean expression over Boolean algebra

B is defined as

( i) Every element of B is a Boolean expression

( ii) Every variable name is a Boolean expression

( iii) If   a  and  a  are Boolean expressions, then  a



and  a  

are Boolean

1

2

1′,  a 1 ∨   a 2

1 ∧   a 2

expressions. 

For example:  Consider the Boolean algebra ({0, 1, 2, 3}, ∨, ∧, ′, 0, 1)

( i) 0 ∨  x

( ii) (2 ∧ )

3

( iii) ( x  

) 

1 ∨   x

∧ ( x ∧  x )

2

1

3

are Boolean expressions over the Boolean algebra. 

A Boolean expression that contains  n distinct variables is usually referred to as a Boolean expression of  n variables. 

2.9.1 Evaluation of Boolean Expression

Let E( x ,  x ,......,  x ) be a Boolean expression of  n variables over a Boolean algebra B. By 1

2 

 n

an assignment of values to the variables  x ,  x , ......,   x , means an assignment of elements of A 1

2

 n

to be the values of the variables. 

We can evaluate the expression E( x ,  x , ......,   x ) by substituting the variables in the 1

2

 n

expression by their values. 

M-5.60

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

For example. Consider the Boolean expression

E( x ,  x ,  x ) = ( x  

) 



) 

1

2

3

1 ∨  x 2 ∧ (  x ∨   x

∧ ( x ∨  x )

1

2

2

3

over the Boolean algebra ({0, 1}, ∨, ∧,′)

By assigning the values  x  = 0,  x  = 1,  x  = 0 yields

1

2

3

E(0, 1, 0) = (0 ∨ 1) ∧ (0 ∨ 1) ∧ (1 ∨ 0 ) = 1 ∧ 1 ∧ 0 = 0. 

2.9.2

Equivalent Boolean Expressions

Two Boolean expressions of  n variables are said to be equivalent if they assume the

same value for every assignment of values to the  n variables. 

For example: The following two Boolean algebras

( x  

) 



) and  x  



)

1 ∧  x 2 ∨ ( x 1 ∧   x

∧ ( x ∨   x

3

1

2

3

are equivalent. 

We may write E ( x ,  x , ......,    x )  = E ( x ,  x , ......,  x ) to mean the two expressions 1 

1

2

 n

2 

1

2

 n

E   ( x ,  x , ......,  x ) and E   ( x ,  x , ......,  x ) are equivalent. 

1

1

2

 n

2

1

2

 n

2.9.3

Minterm

A Boolean expression of  n variables ~ x 1, ~ x 2, ......, ~ xn  is said to be a minterm if it is of the form

~ x 1 ∧ ~ x 2 ∧ ~ x 3 ∧ ...... ∧ ~ xn

where ~ xi  is used to denote  x  or  x

 i

 i′. 

2.9.4

Maxterm

A Boolean expression of  n variables   x ,   x ,.....,   x  is said to be a maxterm if it is of the 1

2

 n

form ~ x 1 ∨ ~ x 2 ∨ ...... ∨ ~ xn , where ~ xi is used to denote  x  or  x i

 i′. 

Example 8.   Express F = A + B′ C as a sum of minterms form. 

Sol.  We have

F = A + B′C

=  A(B + B′) + (A + A′)B′C

= AB + AB′ + AB′C + A′B′C

Note the terms, AB and AB′ are still lack the variable C, we will expand them by

(C + C′)

= AB (C + C′) + AB′ (C + C′) + AB′C + A′B′C

= ABC + ABC′ + AB′C + AB′C + AB′C + A′B′C

= ABC + ABC′ + AB′C + AB′C′ + A′B′C

This is the required expression in sum of minterms form. 

Example 9.   Express F = xy + x′ z in product of maxterms form. 

Sol.  To express the Boolean function as a product of MAXTERMs it must first, be brought into a form of OR terms. This may be done by using the distributive law:  x + yz = ( x + y) ( x + z) Then any missing variable  x in each OR term is ORed with  xx′. 
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Thus we have

F = ( xy + x′ z)

= ( x′  + xy) ( z + xy)

= ( x′ +  x) ( x′ +  y) ( z +  x) ( z +  y)

= (1) ( x′ +  y) ( x +  z) ( y + z)

= ( x′ +  y + zz′) ( x + z + yy′) ( y + z + xx′)

= ( x′  + y + z) ( x′  + y +  z′) ( x + z + y) ( x + z + y′) ( y + z + x) ( y + z + x′) Remove the repeated terms from the expression

= ( x′  + y + z) ( x′  + y + z′) ( x + z + y′) ( x + z + y) This is the required expression in product of maxterms form. 

2.10

DISJUNCTIVE NORMAL FORM OR SUM OF PRODUCTS OR SOP

A Boolean expression over ({0, 1}, ∨, ∧, ′) is said to be in disjunctive normal form if it is

a join of minterms  i.e., m vm  rm vm  ...... m

0

1

2

3

 n

For example: The

( x







)

1′ ∧  x 2′ ∧  x 3′) ∨ ( x 1′ ∧  x 2 ∧  x 3′) ∨ ( x 1 ∧  x 2 ∧  x 3

is a Boolean expression in disjunctive normal form. 

There are three minterms  x



and  x  



. 

1′ ∧  x 2′ ∧  x 3′,  x 1′ ∧  x 2 ∧  x 3

1 ∧  x 2 ∧  x 3

2.10.1 Obtaining a Disjunctive Normal Form

Consider a function from {0, 1} n to {0, 1}. A Boolean expression can be obtained in

disjunctive normal form corresponding to this function by having a minterm corresponding to

each ordered  n-tuple of 0’s and 1’s for which the value of function is 1. 

2.11

CONJUNCTIVE NORMAL FORM OR PRODUCTS OF SUMS OR POS

A Boolean expression over ({0, 1}, ∨, ∧, ′) is said to be in conjunctive normal form if it is

a meet of maxterms  i.e., m  



......   m

0 ∧  m 1 ∧  m 2 

 n

For example: The ( x  



) 





) 





) 



)

1 ∨  x 2 ∨  x 3 ∧ ( x 1 ∨  x 2 ∨  x 3 ∧ ( x 1 ∨  x 2 ∨  x 3 ∧ ( x 1′ ∨  x 2 ∨  x 3′) ∧ ( x 1′ ∧  x 2′ ∧  x 3

is a Boolean expression in conjunctive normal form consisting of five maxterms. 

2.11.1 Obtaining a Conjunctive Normal Form

Consider a function from {0, 1} n to {0, 1}. A Boolean expression can be obtained in conjunctive normal form corresponding to this function by having a maxterm corresponding to

each ordered  n-tuple of 0’s and 1’s at which the value of function is 0. 

Example 10.  Express the following function in

( i)  Disjunctive normal form

( ii)  Conjunctive normal form

 f

 f

 (0, 0, 0)

 1

 (1, 0, 0)

 0

 (0, 0, 1)

 0

 (1, 0, 1)

 1

 (0, 1, 0)

 1

 (1, 1, 0)

 0

 (0, 1, 1)

 0

 (1, 1, 1)

 1
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Sol. ( i) ( x





) 





)—DNF

1′ ∧  x 2′ ∧  x 3′) ∨ ( x 1′ ∧  x 2 ∧  x 3′) ∨ ( x 1 ∧  x 2′ ∧  x 3 ∨ ( x 1 ∧  x 2 ∧  x 3

( ii) ( x  





) 



) 

)—CNF

1 ∨  x 2 ∨  x 3′) ∧ ( x 1 ∨  x′2 ∨  x′3 ∧ ( x 1′ ∨  x 2 ∨  x 3 ∧ ( x 1′ ∨  x 2′ ∨  x 3

Example 11.  If f(x, y, z) = (x ∨   y)  ∧   (x  ∨   y′ )  ∧   (x′  ∨   z) be a given Boolean function. 

 Determine its DN form. 

Sol. First determine all values of  f( x, y, z) when  x, y, z take values 0, 1 and then from this table, we will find the DN form

 x

 y

 z

 f( x, y, z)

( x ∨  y) ∧ ( x ∨  y′) ∧ ( x′ ∨  z)

0

0

0

0

= (0 ∨ 0) ∧ (0 ∨ 1) ∧ (1 ∨ 0)

0

0

1

0

= (0 ∨ 0) ∧ (0 ∨ 1) ∧ (1 ∨ 1)

0

1

0

0

= (0 ∨ 1) ∧ (0 ∨ 0) ∧ (1 ∨ 0)

0

1

1

0

= (0 ∨ 1) ∧ (0 ∨ 0) ∧ (1 ∨ 1)

1

0

0

0

= (1 ∨ 0) ∧ (1 ∨ 1) ∧ (0 ∨ 0)

1

0

1

1

= (1 ∨ 0) ∧ (1 ∨ 1) ∧ (0 ∨ 1)

1

1

0

0

= (1 ∨ 1) ∧ (1 ∨ 0) ∧ (0 ∨ 0)

1

1

1

1

= (1 ∨ 1) ∧ (1 ∨ 0) ∧ (0 ∨ 1)

The disjunctive normal form of the function is

 f( x, y, z) = ( x ∧  y′ ∧  z) ∨ ( x ∧  y ∧  z). 

Example 12.  Determine the disjunctive normal form of the following Boolean expression : x ∧ ( y ∨  z). 

Sol. First determine all values of  f( x,  y, z) when  x, y, z take values 0, 1 and then from this table we will write disjunctive form. Thus, 

 x

 y

 z

 f( x,  y, z)

 x ∧ ( y ∨  z)

0

0

0

0

= 0 ∧ (0 ∨ 0)

0

0

1

0

= 0 ∧ (0 ∨ 1)

0

1

0

0

= 0 ∧ (1 ∨ 0)

0

1

1

0

= 0 ∧ (1 ∨ 1)

1

0

0

0

= 1 ∧ (0 ∨ 0)

1

0

1

1

= 1 ∧ (0 ∨ 1)

1

1

0

1

= 1 ∧ (1 ∨ 0)

1

1

1

1

= 1 ∧ (1 ∨ 1)

Thus, the DNF of the function is

  f( x, y, z) = ( x ∧  y ∧  z) ∨ ( x ∧  y′ ∧  z) ∨ ( x ∧  y ∧  z′). 

Example 13.  Find the Boolean expression in conjunctive normal form that defines the function f given by

 x

 y

 z

 f

 0

 0

 0

 1

 0

 0

 1

 0

 0

 1

 0

 1

 0

 1

 1

 0

 1

 0

 0

 0

 1

 0

 1

 0

 1

 1

 0

 0

 1

 1

 1

 1
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Sol. To obtain the expression in conjunctive normal form, take the values of  f( x, y, z) when it is 0  i.e.,  take the max. terms of the function. Thus, the expression in CN form is ( x ∨  y ∨  z′) ∧ ( x ∨  y′ ∨  z′) ∧ ( x′ ∨  y ∨  z) ∧ ( x′ ∨  y ∨  z′) ∧ ( x′ ∨  y′ ∨  z). 

PROBLEM SET-I

1. Write the dual of the following Boolean Expressions. 

( i) X · Y + Z

( ii) X′YZ′ + X′Y′Z

( iii)  a( a′ +  b) =  ab

( iv) A · C + A · 1 + A · C

( v) X(Y′Z′ + YZ)

( vi) (A + 0) · (A · 1 ·  A )

( vii) X · (Y + Z) +  X (Y + Z)

( viii)  a + a′ b =  a + b

( ix)  xy( y + y′ z) +  x′ z

( x) ( a ∗ 1) ∗ (0  +  a′) = 0

2. Determine the complement of the following Boolean Expressions. 

( i)  x′ y + xz′

( ii)  x( y′ z′  + yz)

( iii)  xy′ +  xz +  y′ z

( iv)  xyz +  x yz

( v)  x( y z +  yz)

3. Consider the Boolean algebra D . 

110

( i) List its elements and draw the Hasse diagram. 

( ii) Determine all its sub-algebras. 

( iii) Determine the number of sub-lattices with four elements. 

( iv) Determine the set A of atoms of D . 

110

4. Consider the Boolean algebra D . 

210

( i) List its elements

( ii) Determine the set A of Atoms. 

( iii) Is L  = {1, 2, 6, 210} a sublattice of D ? A sub-algebra? 

1

210

( iv) Is L  = {1, 2, 3, 6} a sublattice of D ? A sub-algebra? 

2

210

( v) Determine two sub-algebras with eight elements. 

( vi) Determine all the sub-algebras with two elements. 

( vii) Find the number of sub-algebras of D . 

210

5. Simplify the following Boolean products to either o or a fundamental product

( i)  xy′ zxy′

( ii)  abcd

( iii)  abc′ ba

( iv)  abc′ db′ d

( v)  ab′ c a′ db′

6. Express each of the following Boolean expressions E as a sum of products and then in complete sum of products form. 

( i) E  =  ( x + y′ z) ( y + z′)

( ii) E  =  ( x′  + y)′ +  y′ z

( iii) E  =   x( xy′  + x′ y + y′ z)

( iv) E  =  ( x′  + y)′ +  x′ y

( v) E  =   x( xy +  y′ +  x′ y)

( vi) E  =  ( x′ y)′( x′ +  xyz′)

7. Obtain the Disjunctive Normal Form (DNF) of the following Boolean functions. 

( i) F  =  ( yz + xz′) ( xy′  + z)′

( ii) F  =   xy′  + z

( iii) F  =  ( x′  y)′ · ( x + z)

( iv) F  =  ( x′+  y +  z′) · ( x′ + y + z) · ( x + y′  + z) ( v) F  =   x + y′ z

( vi) F  =   x · ( y′ z)′

8. Obtain the Conjunctive Normal Form (CNF) of the following Boolean Expressions. 

( i) E  =  ( xy′  + xz)′ + z′

( ii) E = ( x + y)·  y

( iii) E = ( x + y + z) ( xy + x′ z)′

( iv) E =  xy′  + xz + xy

( v) E =  xyz + ( x + y) · ( x +  z)

( vi) E = ( x + y) ( x + y′) ( x′  + z)

9. Let B be any Boolean algebra and  a ∈ B such that  a ≠ 0 and  a ≠ 1. Then the subset B  = { a, a 1

′ , 

0, 1} is a sub-Boolean algebra of B. 
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10. Convert each of the following expressions into sum of products (SOP) and products of sums (POS). 

( i) (BC + D) (C + AD′)

( ii)  y′ +  y( y + z′) ( x′  + z)

11. Determine the DNF of the functions whose truth table are given below:

( i)

( ii)

( iii)

 x

 y

 f( x,   y)

 x

 y

 z

 f( x,  y,  z)

 x

 y

 z

 f ( x,  y, z)

1

1

1

0

0

0

1

0

0

0

1

1

0

0

0

0

1

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

1

0

1

1

1

0

1

0

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

12. Determine the CNF of the functions whoes truth table are given in problem 11. 

 ANSWERS AND HINTS (PROBLEM SET I)

1. 

( i)  x +  y ⋅  z

( ii) ( x′  + y + z′) ⋅ ( x′  + y′  + z)

( iii)  a + ( a′ ⋅  b) =  a +  b

( iv) (A + C) . (A + 0) . (A + C)

( v) X + (Y′ + Z′) · (Y + Z)

( vi) (A · 1) + (A + 0 +  A )

( vii) X   + (Y · Z) ·  X  + (Y· Z)

( viii)  a · ( a′  + b) =  a ·  b

( ix) ( x + y) + ( y · ( y′ +  z)) · ( x′ +  z) ( x)   ( a + 0) + (1 +  a′) = 1

2. 

( i) ( x + y′) · ( x′  + z)

( ii)  x′ + ( y + z) · ( y′ +  z′)

( iii) ( x′  + y) · ( x +  z) · ( y +  z′)

( iv) ( x + y′  + z) · ( x + y +  z′)

( v)  x  + ( y + z) (  y +  z )

3. 

( i) The elements are 1, 2, 5, 10, 11, 22, 55, 110. The

Hasse diagram is shown below. 

( ii) D  have five sub-algebras: These are {1, 110}, 

110

{1, 2, 55, 110}, {1, 5, 22, 110}, {1, 10, 11, 110}, D . 

110

( iii) There are 15 sub-lattices. 

( iv) The set of Atoms A = {2, 5, 11}. 

4. 

( i) The elements are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 

35, 42, 70, 105 and 210. 

( ii) The set of Atoms A = {2, 3, 5, 7}. 

( iii) L  is a sub-lattice as it is linearly ordered. L  is not a sub-algebra. 

1

1

( iv) L  is a sub-lattice but not a sub-algebra. 

2

( v) Two sub-algebras with eight elements are L  = {1, 2, 3, 6, 35, 70, 105, 210} and L  = {1, 5, 6, 1

2

7, 30, 35, 42, 210}. 

( vi) There is only one sub-algebra with two elements  i.e. , {1, 210}. 

( vii) There are total 15 sub-algebras. One of two elements, seven of four elements, six of eight element and one of sixteen elements. 
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5. Use the commutative law, complement law and idempotent law

( i)  xy′ zxy′  = xxy′ y′ z = xy′ z

( ii)  abcb = abbc = abc

( iii)  abc′ ba = aabbc′  = abc′

( iv)  abc′ db′ d = abb′ c′ dd = aoc′ d = 0

( v)  ab′ ca′ db′  = aa′ b′ b′ cd = ob′ cd = 0

6. ( i) we have

E = ( x + y′ z) ( y + z′)

E =  xy + yy′ z + xz′  + y′ zz′

E =  xy + xz′ (sum of products form)

E =  xy( z + z′) +  xz′( y + y′)

E =  xyz + xyz′  + xyz′  + xy′ z′

E =  xyz + xyz′  + xy′ z′  (complete sum of products form)

( ii) SOP form =  xy′ +  y′ z; complete SOP form =  xy′ z +  xy′ z′ +  x′ y′ z ( iii) SOP form =  xy′ +  xy′ z; complete SOP form =  xy′ z +  xy′ z′

( iv) SOP form =  xy′ +  y′ z; complete SOP form =  xy′ z + xy′ z′  +  x′ yz +  x′ yz′

( v) SOP form =  xy +  xy′; complete SOP form =  xyz +  xyz′ +  xy′ z + xy′ z′

( vi) SOP form =  xyz′ +  x′ y′; complete SOP form =  xyz′  +  x′ y′ z +  x′ y′ z′

7. 

( i)  xyz′

( ii)  xyz′  + xy′ z′  + xyz + x′ yz + x′ yz′

( iii)  xyz +  xyz′  + xy′ z + xy′ z′  + x′ y′ z ( iv)  x′ y′ z′  + x′ y′ z + x′ yz +  xyz′ +  xyz ( v)  xyz + xyz′  + xy′ z + xy′ z′  + x′ y′ z ( vi)  xyz + xyz′  + xy′ z′

8. 

( i) ( x′  + y + z′) · ( x′ +  z′ +  y) · ( x′  + z′  + y′) ( ii) ( x + y + z) · ( x +  y +  z′) ( x + y′  + z) · ( x′  + y + z) ( x′  + y + z′) ( iii) ( x + y + z) · ( x′  + y′  + z) · ( x′  + y′  + z′) · ( x + y + z′) · ( x + y′  + z′) ( iv) ( x + y + z) · ( x +  y +  z′) · ( x + y′  + z) · ( x + y′  + z′) ( v) ( x + y + z) · ( x +  y +  z′) · ( x + y′  + z) ( vi) ( x + y + z) ( x +  y +  z′) ( x + y′  + z) ( x + y′  + z′) ( x′  + y + z) ( x′  + y′  + z) 9. We have to show that B  is closed w.r.t. the operations +, 

1

⋅ and ′ of B. We know that for every

 a ∈ B, we have  a + a = a, a ·  a = a, a + 1 = 1 and  a · 0 = 0

Using these results, construct the composition tables for +, · and ′ for the elements of B  as given 1

below. 

+

 a

 a′

0

1

⋅

 a

 a′

0

1

′

 a

 a′

0

1

 a

 a

1

 a

1

 a

 a

0

0

 a

 a′

 a

1

0

 a′

1

 a′

 a′

1

 a′

0

 a′

0

 a′

0

 a

 a′

0

1

0

0

0

0

0

1

1

1

1

1

1

 a

 a′

0

1

As all the enteries in the tables are elements of B  thus B  is closed w.r.t. the operations +, · and 1

1

′. 

Hence B  is a sub-algebra of B. 

1

10. ( i) We have, 

F = (BC + D) (C + AD′)

= BC + ABCD′ + CD + ADD′

= BC (1 + AD′) + CD

= BC + CD (SOP form)

= (B + D) C (POS form)

( ii)  x′ +  y′ +  z (SOP and POS)

11. 

( i)  xy + x′ y′

( ii)  x′ y′ z′  + x′ y′ z + x′ yz + xy′ z ( iii)  x′ y′ z′  + xy′ z′  + xyz′  + xyz
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12. 

( i) ( x′  + y) · ( x + y′)

( ii) ( x + y′  + z) · ( x′  + y + z) · ( x′  + y′  + z) · ( x′  + y′  + z′) ( iii) ( x + y + z′) · ( x + y′  + z) · ( x + y′  + z′) · ( x′  + y + z′) 2.12

MINIMIZATION OF BOOLEAN EXPRESSIONS AND PRIME IMPLICANTS

There are lot of ways to represent the same Boolean expression E. This section defines

and study a minimal SOP (sum of products) form for E. The prime implicants of E is also

defined and examined as the minimal SOP involves these prime implicants. 

2.12.1 Minimal Sum of Products (SOP)

Let us consider a Boolean sum of products expression E. Let E  denote the number of

L

literals in E (Counted according to multiplicity) and let E  denote the number of summands

 s

in E. 

For example,  let

E =  xy + x′ yz′  + xyz′ t′  + xy′ zt

then

E  = 2 + 3 + 4 + 4 = 13

L

and

E   = 4. 

S

Let E and F be equivalent Boolean sum-of products expressions. Then E is called simpler

than F if

( i) E  < F  and E  

or

( ii) E  

and E  < F

L

L

S ≤ FS

L ≤ FL

S

S

Definition: A Boolean sum of product expression is called minimal if there is no equivalent sum of product expression which is simpler than E. 

Note: There can be more than one equivalent minimum sum of products expressions. 

2.12.2 Prime Implicants

A fundamental product P is called  a prime implicant of a Boolean expression E if P + E

= E but no other fundamental product contained in P has this property. 

Example 14.   Consider the Boolean Expression E = xy′  + xyz′  + x′ yz′ . Show that ( i)  xz′ +  E =  E

( ii)  x +  E ≠  E

( iii)  z′ +  E ≠  E. 

Sol.  ( i) First of all, find the complete sum of products form of  xz′. So we have xz′ =  xz′( y + y′) =  xz′ y + xz′ y′

...( i)

We know that the complete sum of products form is unique, A + E = E, where A ≠ 0 iff

the summands in the complete Sum of products form for A are among the summands in

the complete sum of products form for E. We see that summands  xyz′   and  xy′ z′ in ( i) are in complete form of E, as shown below

E =  xy′( z + z′) +  xyz′  + x′ yz′

=  xy′ z + xy′ z′  + xyz′  + x′ yz′

Thus, by the given argument

 xz′  +  E = E

( ii) Further, the complete sum of products form of  x is

 x =  x ( y +  y′) ( z + z′)  = ( xy + xy′) ( z + z′)

=  xyz + xyz′  + xy′ z + xy′ z′

The summand  xyz of  x is not a summand of E. Thus  x + E ≠ E. 
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( iii) Similarly, the complete sum of products form of  z′ is

 z′ =  z′( x +  x′) ( y + y′) = ( z′ x + z′ x′)  ( y +  y′)

=  xyz′  + xy′ z′  + x′ yz′  + x′ y′ z′

The summand  z′ y′ z′ of  z′is not a summand of E. Thus  z′ + E ≠ E. 

Since, the fundamental products  x and  z′ contained in  xz′do not have the property P + E =  E but  xz′ has this property. Hence  xz′ is a prime implicant of E. 

Theorem VII.  A minimal sum of products form for a Boolean expression E is a sum of

prime implicants of E. 

2.12.3

Consensus of Fundamental Products

Consider P  and P  be two fundamental products such that exactly one variable say  x

1

2

 i

appears uncomplemented in one of P  and P  and Complemented in the other. Then the Con-

1

2

sensus of P  and P  is the product (without repetitions) of the literals of P  and the literals of 1

2

1

P  after deleting  x  and  x . 

2

 i

′ i

LEMMA 1.   If Q is the consensus of P  and P . Then P  + P  + Q = P  + P . 

 1

 2

 1

 2

 1

 2

Proof. We know that literals commute, so we can assume without loss of generality

that

P  =  a a ,  ...  a t, P  =  b b , ...  b t

1

1 2

 r

2

1 2

 s ′

and

Q =  a a , ...  a   b b , ...  b

1 2

 r  1 2

 s

Now, Q = Q( t +  t′) = Q t + Q t′. Because Q t contains P , P  + Q t = P ; and because Q t 1

1

1

′

contain P , P  + Q t

. 

2

2

′ = P2

Thus, 

P  + P  + Q = P  + P  + Q t + Q t

1

2

1

2

′

= (P  + Q t) + (P  + Q t

1

2

′)

= P  + P

1

2

Hence proved. 

Example 15.   Determine the consensus Q of the given P  and P , if it exists. 

 1

 2

( i)  P  =  xyz

=  xyzs

 1

′ ,   P2

( ii)  P  =  xy

=  x

 1

′ z,  P2

′ yz

Sol.  ( i) The consensus Q exists. Delete  z and  z′   and then multiply the literals of P  and 1

P  (without repetition). We have

2

Q =  xys

( ii) The Consensus Q does not exist. Two literals  x and  y appear complemented in one product and uncomplemented in the other. 

Example 16.   Determine the consensus Q of the given P  and P , if it exists. 

 1

 2

( i)  P  =  xy

=  y

 1

′ z and  P2

( ii)  P  =  x

=  x

 1

′ y′ z and  P2

′ y′ ts

( iii)  P  =  xy

=  x

 1

′ and  P2

′ y

Sol. ( i) The consensus Q exists. Delete  y and  y′   and then multiply the literals of P  and 1

P  (without repetition). We have

2

Q =  xy

( ii) The consensus Q does not exist. No variable appears uncomplemented in one of the

products and complemented in the other. 

( iii) The consensus Q does not exist. Two literals appear complemented in one product

and uncomplemented in the other. 
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2.12.4

Consensus Method for Finding Prime Implicants

In consensus method, consensus is made between all pairs of product terms. The

consensus terms of all pairs of terms that are not contained in some other term are added to

the equation. The new terms are compared to the existing terms and among themselves to see

if more new consensus terms can be  generated. All terms that are contained in some other

term are removed. Once no more new terms can be generated, the SOP comprises of only

prime Implicants. 

Given below is the formal algorithm  to find the prime Implicants of a Boolean expression. 

Algorithm (Consensus Method)

Input: A Boolean Expression E = P  + P  + ... P , where P’s are fundamental products. 

1

2

 n

Output: The Boolean Expression E as a sum of its prime implicants. 

Step 1.  Remove any fundamental product P  which includes any other fundamental

 i

product P .  j

Step 2.  Add the consensus of any P  and P  provided Q does not include any of the P’s. 

 i

 j

Step 3. Repeat steps 1 and/or step 2 until neither can be applied. 

Example 17.   Consider the Boolean expression  E =  x′ z′ +  xyz′  + xy′ z′  + xy′ z.   Determine the prime implicants of this Boolean expression. 

Sol.  Take the Boolean expression E. 

E =  x′ z′  + xyz′  + xy′ z′  + xy′ z

(given)

=  x′ z′  + xyz′  + xy′ z′  + xy′ z +  xz′

(consensus of  xyz′ and  xy′ z′)

=  x′ z′  + xy′ z + xz′

( xyz′   and  xy′ z′ include  xz′)

=  x′ z′  + xy′ z + xz′  + z′

(consensus of  x′ z′ and  xz′)

=  xy′ z +  z′

( x′ z′ and  xz′ include  z′)

=  xy′ z + z′  + xy′

(consensus of  xy′ z  and  z′)

E =  xy′ +  z′

( xy′ z  includes  xy′)

Now, no step in the consensus method will change E. 

Therefore, E is the sum of its prime implicants. 

The prime implicants are  xy′ and  z′. 

Example 18.   Consider the Boolean expression E =  xyz +  x′ z′ +  xyz′ +  x′ y′ z +  x′ yz′.  Determine the prime implicants of this Boolean expression. 

Sol. Take the Boolean expression E. 

E =  xyz +  x′ z′+  xyz′  + z′ y′ z + x′ yz′

(Given)

 = xyz +  xyz′  + x′ y′ z +  x′ z′

( x′ yz′ includes  x′ z′)

=  xyz + x′ z′ +  xyz′  + x′ y′ z + xy

(consensus of  xyz and  xyz′)

=  x′ z′ +  x′ y′ z +  xy

( xyz   and  xyz′ include  xy)

=  x′ z′  + x′ y′ z + xy + x′ y′

(consensus of  x′ z′ and  x′ y′ z)

=  x′ z′  + xy + x′ y′

( x′ y′ z  includes  x′ y′)

E =  x′ z′  + xy + x′ y′  + yz′

(consensus of  x′ z′   and  xy)

Now, no step in the consensus method will change E. 

Therefore, E is the sum of its prime implicants. 

The prime implicants are  x′ z′,   xy,  x′ y′ and  yz′. 
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2.12.5

Finding Minimal Sum of Products (SOP) form Using Consensus Method

A Minimum cost SOP formula can be obtained by considering prime Implicants only. 

Since we know how to obtain all the prime implicants of a Boolean expression, then we have to

select a subset of prime implicants of minimum cost. The following algorithm can be used to

find a minimal sum of products form for the Boolean expression E (which is a sum of all of its prime implicants). 

Algorithm: (Minimum SOP Form):

Input: A Boolean expression E = P  + P  + ... + P , where the P’s are all prime Implicants 1

2

 n

of E. 

Output: The Boolean expression E as a minimal sum of products. 

Step 1.  State each prime implicant P as a complete sum of products. 

Step 2.  Remove one by one all those prime implicants whoes summands appear among

the summands of the remaining prime implicants. 

Example 19.   Consider the Boolean expression E of all prime implicants. 

 E =  x′ y + x′ z′  + y′ z′  + yz

 Find the minimal sum of products form of E. 

Sol.  First of all, express each prime Implicant of E as a complete sum of products as

shown below:

 x′ y =  x′ y( z + z′) =  x′ yz +  x′ yz′

 x′ z′  =  x′ z′( y + y′) =  x′ yz′  + x′ y′ z′

 y′ z′ =  y′ z′( x + x′) =  xy′ z′  + x′ y′ z′

 yz = yz( x + x′) =  xyz +  x′ yz

The summands  x′ y are  x′ yz and  x′ yz′ which appear among the other summands. Thus Remove  x′ y to obtain

E =  x′ z′ +  y′ z′ +  yz

The summands of no other prime implicant appear among the summands of the

remaining prime implicants. Therefore, it is the minimal sum of products form of E. 

Example 20.   Consider the Boolean expression E of all prime implicants

 E =  x′ y′ +  x′ z′  +  yz′ +  xy

 Find the minimal sum of products form of E. 

Sol.  First of all express each prime implicant of E as a complete sum of products as

shown below

 x′ y′ =  x′ y′( z + z′) =  x′ y′ z +  x′ y′ z′

 x′ z′  =  x′ z′( y + y′) =  x′ yz′  + x′ y′ z′

 yz′ =  yz′( x + x′) =  xyz′  + x′ yz′

 xy = xy( z + z′) =  xyz +  xyz′

The summands of  x′ z′ are  x′ yz′ and  x′ y′ z′ which appear among the other summands. 

Thus remove  x′ z′ to obtain

E   = x′ y′  + yz′ +  xy

Since the summands of no other prime implicant appear among the summands of the

remaining prime implicants. Therefore, it is the minimal sum of products form of E. 
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2.13 DESIGN OF DIGITAL CIRCUITS

Schematic or Graphical Representation of Boolean Expressions

The Boolean expressions can be graphically represented by using logic circuits. These

logic circuits can be constructed using solid state devices called gates, which are capable of switching voltage levels. 

2.13.1 Basic Gates

If  x and  y are variables, then the basic expressions  x ∧  y (AND),  x ∨  y (OR) and  x′ (NOT) are shown graphically as follows :

( i) AND Gate. An AND gate receives inputs  x and  y and produces output denoted  x ∧  y, as shown in logic table. 

 x

 y

 x ∧  y

0

0

0

x

0

1

0

x Ù y

y

1

0

0

1

1

1

AND Gate

Fig. 6

( ii) OR Gate. An OR gate receives inputs  x and  y and produces output denoted  x ∨  y as shown in logic table. 

 x

 y

 x ∨  y

0

0

0

x

0

1

1

x Ú y

y

1

0

1

1

1

1

OR Gate

Fig. 7

( iii) NOT Gate. A NOT gate receives input  x and produces output  y denoted   x, as shown in logic table. 

 x

 x

0

1

x

y

1

0

Fig. 8

We can interconnect these devices to form an electronic circuit that realizes any given

Boolean expression. 
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Example 21.  Design a combinatorial circuit for the following Boolean expression :

( i)  (x ∧   y ) ∨ ( x ∧  y)

( ii)  (x  

 ) 

 . 

 1 ∨  x2 ∧  x1

Sol.  ( i) The combinatorial circuit of the Boolean expression is shown in Fig. 9 ( a). 

Fig. 9 ( a)

( ii) The combinatorial circuit of the Boolean expression is shown in Fig. 9 ( b). 

x1

x2

Fig. 9 ( b)

2.13.2

Derived Gates

The AND, OR and NOT are the basic gates. We can create any logic gate or any Boolean

expression by combining them. The derived gates are derived from basic gates. The derived

gates have their own symbols truth tables and Boolean expressions. The NAND and NOR

gate are called universal gates because each and every circuit can be constructed using these

two gates. In general, NAND gates are used widely, as it takes less number of gates to construct a digital circuit. 

( i) NAND GATE: A NAND Gate receives inputs  x and  y  and produces output denoted by ( x ^  y)′ as shown in logic table. 

The corresponding Nand Gate is shown in Fig. 10( a)

X

Y

X ∧ Y

( x ∧  y)′

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

0

Fig. 10.( a)

By De-Morgan’s law ( x ^ y)′ =  x′ +  y′ =  x′ ∨   y′
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( ii) NOR GATE: A NOR Gate receives inputs  x and  y and produces output denoted by ( x ∨  y)′, as shown in logic table. The corresponding NOR gate is shown in Fig. 10.( b) X

Y

X ∨ Y

( x ∨  y)′

0

0

0

1

0

1

1

0

1

0

1

0

1

1

1

0

Fig. 10.( b)

By De-Morgan’s law ( x ∨  y)′ =  x′  ∧  y′ =  x′  ·  y′

( iii) XOR GATE: An XOR Gate receives inputs  x and  y and produces output denoted by ( x ⊕  y) as shown in logic table. The corresponding XOR gate is shown in Fig. 10.( c) X

Y

X ⊕ Y

0

0

0

0

1

1

1

0

1

1

1

0

Fig. 10.( c)

Example 22.   Draw a logic circuit using only NAND gates for the expression X = AC + BC. 

Sol.  The logic circuit corresponding to the expression X = AC + BC using only NAND

gates is shown in Fig. 10( d). 

Fig. 10.( d)

Example 23.   Draw a logic circuit using only NOR gates for the expression X =  AC +  BC . 

Sol.  The logic circuit corresponding to the expression X =  AC + BC using only NOR

gates is shown in Fig. 10( e). 

Fig. 10.( e)
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2.14

APPLICATIONS OF BOOLEAN ALGEBRA IN SWITCHING THEORY

The simplest switching device is ON-OFF switch. A switch is a device in an electric

circuit which lets or does not let the current to flow through the circuit. 

The switch has two states ON or OFF (closed or open)

–– If the switch is closed, current will pass through it. 

–– If the switch is open, current will not pass through it. 

–– ON is denoted by 1. 

OFF is denoted by 0. 

The electrical circuits containing switches by Boolean expressions, if ON is denoted by

true or 1 and OFF is denoted by False or 0. 

2.15

SERIES AND PARALLEL CONNECTION

There are 2 ways in which switches are connected with each other. 

( i) Series connection

( ii) Parallel connection. 

2.15.1

Series Connection

Two switches  x  and  x  are said to be connected in series if current can pass only when 1

2

both the switches are ON (closed) and the current does not flow if both the switches or any one are OFF (open). Symbolically, series connection of two switches  x  and  x  is denoted by  x 1

2

1 ∧  x 2

or   x  

. It is represented diagrammatically as follows :

1 ∗  x 2

x

x

1

2

2.15.2

Parallel Connection

Two switches  x  and  x  are said to be connected in parallel if current flows when both or 1

2

any one of the switches are ON (closed) and current does not flow when both are OFF (open). 

Symbolically, parallel connection of two switches  x  and  x  is denoted by  x or  x  +  x . It is

1

2

1 ∨  x 2

1

2

represented diagrammatically as follows :

x1

x2

Example 24.  Construct  the  circuit  diagram  represented  by  Boolean  expression

 a  ∧   (b  ∨   c). 

Sol. For the given Boolean expression, we will see that the current would flow when  a and  b or  a and  c are ON (closed). So, it is represented as follows :
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b

b

Example 25.  Draw the circuit diagram represented by following Boolean expressions : ( i)  (a ∧  b ∧  c) ∨  (a′ ∧  b′ ∧  c′ )

( ii)  (x  

 ) 

 1 ∧  x2 ∨  (x1 ′ ∧  x2 ′ ). 

Sol. ( i) For the given expression, we will see that the current would flow when  a, b, c or  a′,  b′,  c′ are ON (closed). It is represented as follows :

a

b

c

a′

b′

c′

( ii) The circuit diagram for the expression is represented as follows :

x

x

1

2

x ′

x ′

1

2

2.16

TRUTH TABLE AND BOOLEAN FUNCTIONS

2.16.1

Truth Tables

A truth table is a mathematical table/logical device that is used in mathematics as well

as in Computer Science. The truth table is a table of all possible combinations of the variables showing the relation between the values that variables may take and the result of the operation. 

Truth tables are used to determine how the truth or falsity of a complicated statement depends on the truth or falsity of its components. 

For example. Consider a logic circuit M consisting of 3 input devices A, B and C and

output O. Let us assume the expression

O = A · B′ · C′ + A′ · C′ + A · B

Now, the every assignment of a set of three bits to the input A, B, C gives an output bit

for O. There are 2 n = 23 = 8 possible ways to assign bits to the input as given below: 000, 001, 010, 011, 100, 101, 110, 111. 

or

A

B

C

0

0

0

0

0

1

0

1

0
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0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

Now, let us assume that the sequence of first bits is assigned to A, the sequence of

second bits to B, and the sequence of third bits to C. Thus the given set of inputs may be

rewritten in the form

A = 00001111, B = 00110011, C = 01010101

These three sequences of 2 n = 23 = 8 bits contain the eight possible combinations of  the input bits. 

The truth table T = T(M) of the logic circuit M consists of the output sequence O that

corresponds to the input sequence A, B and C. 

The truth table T can be represented using relational notation or fractional notation. 

Thus, T may be written as

T(M) = [A, B, C; O] or T(A, B, C) = O

The truth table for M is same as we generally have written in vertical columns. The

only difference is that here we write A, B, C and O horizontally. 

Consider a logic circuit M with  n input devices. There are many ways to form  n input sequences I , I , ...., I  so that they contain 2 n different possible combinations of the input bits. 

1

2

 n

Point to be noted here is that each sequence must contain 2 n bits. One possible scheme of assignment is given below

I  : Assign 2 n–1 bits which are 0 followed by 2 n–1 bits which are 1. 

1

I  : Assign 2 n–2 bits which are 0 followed by 2 n–2 bits which are 1. 

2

I : Assign 2 n–3 bits which are 0 followed by 2 n–3 bits which are 1. 

3

_

_

_

and so on. 

The sequence so obtained is known as “Special Sequence”. If we replace 0 by 1 and 1 by

0 in the special sequence, then it yield the complements of the special sequences. 

Example 26.  Consider a logic circuit M. Let us assume that it has n = 4 input devices A, B, C, D. Determine the special sequences for A, B, C, D. 

Sol.  There are 2 n = 24 = 16 bit special sequences for A, B, C, D as given below A = 0000000011111111

(23 = 8  zeros followed by 8 ones)

B = 0000111100001111

(2 n – 2 = 24 – 2 = 4 zeros followed by 4 ones)

C = 0011001100110011

(2 n – 3 = 24 – 3 = 2 zeros followed by 2 ones)

D = 0101010101010101

(2 n – 4 = 24 – 4 = 20 = 1 zero followed by 1 one)
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Example 27.   Consider a logic circuit M. Let us assume that it has n = 3 input devices A, B, C. Determine the special sequences for A, B, C and their complements A, ′  B, ′  C′. 

Sol.  There are 2 n = 23 = 8 bit special sequences for A, B, C as given below

A = 00001111

(22 = 4 zeroes followed by 4 ones)

B = 00110011

(2 n–2 = 23–2 = 2 zeros followed by 2 ones)

C = 01010101

(2 n–3 = 23–3 = 20 = 1 zero followed by 1 one)

Similarly, there are 2 n = 23 = 8 bit special sequences for A′, B′, C′, as given below

A′ = 11110000, B′ = 11001100, C′ = 10101010

Now we are presenting an algorithm that will give a truth table for a logic circuit when

a Boolean sum of products expression is given as an input to it. 

Algorithm (Truth table for a logic circuit)

Input: A Boolean sum of products expression O = O(I , I , ...)

1

2

Output: Truth table for a logic circuit M

Step 1.  Write down the special sequences for the inputs I , I , ... and their complements. 

1

2

Step 2.  Find each product appearing in O, keeping in mind that  x ,  x , ... = 1 is a 1

2

position iff all  x ,  x  ... have 1 in the position. 

1

2

Step 3.  Find the sum O of the products keeping in mind that  x  +  x  + ... = 0 in a position 1

2

iff all  x ,  x , ..., have O in the position. 

1

2

Example 28.   Consider the following sum of products Boolean expressions. Determine

 the truth table T = T(M). 

( i)  O = A· B′ · C + A′  · B + A · B · C

( ii)  O = A′ · B · C′  + A · B′  + A′  · B · C

( iii)  O = A · B · C′  + A · B + A′ · B′ · C

Sol. The special sequences and their complements are shown in the previous example

above. 

( i) The product are

A · B′ · C = 00000100, A′ · B = 00110000 A · B · C = 00000001

The sum O = 00110101 = T(M)

( ii) The product are

A′ · B · C′ = 00100000, A · B′ = 11000000 A′ · B · C = 00010000

The sum O = 11110000 = T(M)

( iii) The product are

A · B · C′ = 00000010, A · B = 00000011 A′ · B′ · C = 010000000

The sum O = 01000011 = T(M)

Example 29.  Find the output sequence O for an AND gate with inputs A, B, C (or equivalently for O = ABC) for the following special sequences. 

( i)  A = 100001, 

 B = 100100, 

 C = 110000. 

( ii)  A = 11000010, 

 B = 10101010, 

 C = 11000011. 

( iii)  A = 00111111, 

 B = 11110011, 

 C = 11000011

( iv)  A = 11000000, 

 B = 10101010, 

 C = 00000011. 
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Sol. The output O = 1 for an AND gate iff there are 1’s in all the positions of the input sequences. Hence

( i) Only the first positions have 1′s in all three sequences. Therefore, O = 100000

( ii) Only the first and seventh positions have 1′s in all three sequences. Therefore, O =

10000010

( iii) Only the seventh and eighth positions have 1′s in all three sequence. Therefore, O =

00000011

( iv) No positions have 1′s in all three sequences. Therefore, O = 00000000

Example 30.    Find the output sequence O for an OR gate with inputs A, B, C (or

 equivalently for O = A + B + C) for the following special sequences. 

( i)  A = 10100100, 

 B = 10010100, 

 C = 11001110. 

( ii)  A = 10111100, 

 B = 10101010, 

 C = 00111100. 

( iii)  A = 00100111, 

 B = 11100100, 

 C = 11000011. 

( iv)  A = 11100111, 

 B = 10011100, 

 C = 11000010. 

Sol. The output O = 0 for an OR gate iff there are 0′s in all the positions of the input sequences. Hence

( i) Only the eighth positions have 0′s in all three sequences. Therefore, O = 11111110

( ii) Only the second and eighth positions have 0′s in all three sequences. Therefore, O =

10111110

( iii) Only the fourth and fifth positions have 0′s in all three sequences. Therefore, O =

11100111

( iv) No position has 0′s in all three sequences. Therefore, O = 11111111

2.16.2 Boolean Functions

Let E be a Boolean expression with  n variables  x ,  x , ... ,  x . The special sequences are 1

2

 n

assigned to the variables  x ,  x , ... ,  x  instead of the input devices. The truth table T = T(E) of 1

2

 n

E is defined in the same way as the truth table T = T(M) for a logic circuit M. 

Example 31.  Consider the Boolean expression E = xyz + xy′ z + x′ y. Determine the truth table. 

Sol.  The truth table T = T(E) of E is defined in the same way as the truth table T = T(M) for a logic circuit M. Hence

T(00001111, 00110011, 01010101) = 00110101

Or

T(E) = 00110101. 

Points to Note: The truth table for a Boolean expression E = E( x ,  x , ...,  x ) with  n 1

2

 n

variables may also be viewed as a “Boolean” function from B n into B. That is, each element in B n is a list of  n bits which when assigned to the list of variables in E produces an element in B. 

The truth table T(E) of E is the graph of the function. 

Example 32.  Find the truth table T = T(E) for the Boolean expression E = E(x, y, z) for the following expressions. 

( i)  E =  xz +  xy′

( ii)  E =  x′ yz +  xy +  z′

( iii)  E =  xyz′+  x′ yz

( iv)  E =  xyz +  xy′ z +  x′ y′ z. 
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Sol. 

( i) The  xz = 00000101 and  xy′ = 00001100. Then E =  xz +  xy′ = 00001101. Therefore T(00001111, 00110011, 01010101) = 00001101

Or

T(E) = 00110101. 

( ii) Here  x′ yz = 00010000,  xy = 00000011, and  z′ = 01010101. 

Then E =  x′ yz +  xy +  z′ = 01010111. Therefore

T(00001111, 00110011, 01010101) = 01010111

Or

T(E) = 01010111

( iii) Here  xy z′ = 00000010 and  x′ yz = 00010000. Then E =  xyz′ +  x′ yz = 00010010. 

Therefore, T(E) = 00010010

( iv) Here  xyz = 00000001,  xy′ z = 00000100 and  x′ y′ z = 01000000. 

Then, E =  xyz +  xy′ z +  x′ y′ z = 01000101. Therefore, T(E) = 01000101

Example 33.   Consider Boolean expressions E = E(x, y, z) with three variables. The eight minterms (fundamental products involving all three variables) are as follows. 

 xyz, xyz′ , xy′ z, x′ yz, xy′ z′ , x′ yz′ , x′ y′ z′ , Write the truth tables for these minterms (using the special sequences for  x, y, z). 

Sol.  The truth tables for these minterms using the special sequences for  x, y, z are as given below:

 xyz = 00000001, 

 xyz′ = 00000010, 

 xy′ z = 00000100, 

 x′ yz = 00001000

 xy′ z′ = 00010000, 

 x′ yz′ = 00100000, 

 x′ y′ z = 01000000, 

 x′ y′ z′ = 10000000

Point to be noted here that each minterm assumes the value 1 in only one of the eight

positions. 

Example 34.   Consider the Boolean expression E = xyz′  + x′ yz + x′ y′ z, where E is a complete sum of products expression containing three minterms. 

 Find the truth table T = T(E) for E, using the special sequences for x, y, z. 

Sol. The truth T = T(E) for E can be easily obtained from the sequences shown in previous example, 

T(00001111, 00110011, 01010101) = 01001010

Or

T(E) = 01001010. 

You can see particularly that the truth table T(E) will contain exactly three 1′s in the

same positions as the 1′s in the three minterms in E. 

Example 35.   Find the truth table T = T(E) for the Boolean expression E = E(x, y, z) for the following expressions. 

( i)  E =  xyz + xy′ z

( ii)  E =  x′ yz +  xyz +  xyz′

( iii)  E =  xy′ z′  + x′ y′ z

( iv)  E =  xyz′ +  xy′ z +  x′ yz′. 

Sol. In the given expressions, the E is a complete sum of products expression which is

the sum of minterms. We know that each minterm contains a single 1 in its truth table. 

Therefore, the truth table of E will have 1′s in the same positions as the 1′s in the minterms in E. This gives us

( i) T(E) = 00000101

( ii) T(E) = 00001011

( iii) T(E) = 01010000

( iv) T(E) = 00100110
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Example 36.   Find the Boolean expression E = E(x, y, z) corresponding to the truth table: ( i) T(E) = 00001011

( ii) T(E) = 10010001

( iii) T(E) = 11001001

( iv) T(E) = 10010101

Sol.  In the given expressions, each 1 in T(E) corresponds to the minterm with the 1 in the same position. For example, the 1 in the eighth position corresponds to  x  yz whose truth table has a single 1 in the last position. Hence E is the sum of these minterms. Therefore, the Boolean expression corresponding to the truth table are as follows:

( i) E =  x′ yz + xyz′  + xyz

( ii) E =  x′ y′ z′  + xy′ z′  + xyz

( iii) E =  x′ y′ z′  + x′ y′ z + x′ yz + xyz ( iv) E =  x′ y′ z′  + xy′ z′  + xy′ z + xyz 2.17

KARNAUGH MAPS

A karnaugh map is a planar area subdivided into 2 n equal cells each representing a

point B  n for functions of  n variables. Each variable  x is used to split the area into two equal 2

halves in a different ways  i.e.,  one for  x and other for  x′. The cells corresponding to the arguments for which the function has the value 1 contains 1. 

For example 1. When the number of variables  n = 1, the karnaugh map is like as

shown in Fig. 11. 

Fig. 11

2. When the number of variables  n = 2, the karnaugh map is like as shown in Fig. 12. 

x

x

2

2

x1

x1

Fig. 12

3. When the number of variables  n  = 3 or 4, the karnaugh map is like as shown in

Fig. 13( a) and 13( b). 

Fig. 13( a)

Fig. 13( b)
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Example 37.  Represent the following functions by using karnaugh maps :

( a)  f(x , x , x ) = x  x  x  + x x

  + x

 1

 2

 3

 1 2 3

 1 2′ x3

 1′ x2′ x3

( b)  f(x , x ) = x x

 x . 

 1

 2

 1 2′  + x1 2

Sol. ( a) The function is represented by the karnaugh map (Fig. 14). 

x ¢ x ¢

x ¢ x

x x

x x ¢

2

3

2

3

2

3

2

3

x 

1

1

x1


1

1

Fig. 14

( b) The function is represented by k-map shown in Fig. 15. 

x ¢

x

2

2

x ¢

1

x1

1

1

Fig. 15

Note. It is widely used for representation and simplification of Boolean functions. It is most efficient method for simplification of functions having upto 5 variables. 

2.17.1 Simplification of Boolean Functions Using k-Map

Boolean functions can be simplified with  k-map. It is based on the principle of combining terms in adjacent cells. Two cells are said to be adjacent if they differ in only one variable. 

In adjacent cells one of the variable is same, whereas the other variable appears in

uncomplemented form in one and in the complemented form in the other cell. 

2.17.1.1 Minimisation of SOP Form

The following algorithm can be used by which minimized expression can be obtained :

1. Identify the ones which cannot be combined with any other ones encircle them. 

2. Identify the ones that can be combined in groups of two in only one way and encircle

them as groups. 

3. Identify the ones that can be combined with three other ones, to make a group of four

adjacent ones, in only one way and encircle them as groups. 

4. Identify the ones that can be combined with seven other ones, to make a group of

eight adjacent ones, in only way and encircle them as groups. 

5. After identifying the essential groups of 2, 4 and 8 ones, if there still remains some

ones which have not been encircled then these are to be combined with each other or with

other already encircled ones  i.e.,  we should combine the left over ones in largest possible groups and in as few groupings as possible. 
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Example 38.  Minimize the following Boolean expression using k-map :

  f(A, B) =  AB + BA. 

Sol. First of all draw the 2-variable  k-map and insert 1’s in the corresponding cells as shown in Fig. 16. 

B

0

1

A

0

1

1

1

Fig. 16

Now, group the 1’s as described earlier. Then the required minimized Boolean expression is

 f = B. 

Example 39.  Minimize the following Boolean expression using k-map :

 AB +  AB + B A. 

Sol. Draw the two variable  k-map and insert 1’s in the corresponding cells as shown in Fig. 17. 

0

1

0

1

1

1

1

Fig. 17

Now, group the 1’s as described earlier. Then the required minimized Boolean expression is

 f = A + B. 

Example 40.  Minimize following Boolean expression using k-map :

 f(A, B, C) = A BC +  ABC + AB +  A BC. 

Sol. Draw the 3-variable  k-map and insert 1’s in the corresponding cells as shown in Fig. 18. 

BC 00

01

11

10

A

0

1

1

1

1

1

1

Fig. 18

Now, group the 1’s as described earlier. Then the required minimized Boolean expression is

  f = AB + C . 
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Example 41.  Minimize the four-variable logic function using k-map :

    

  f(A, B, C, D) =  Σ  (0, 1, 2, 3, 5, 7, 8, 9, 11, 14). 

Sol. The  k-map corresponding to the logic function is shown in Fig. 19. From Fig. 19 we have noticed the following points. 

AB

CD

00

01

11

10

0

4

12

8

00

1

1

1

5

13

9

01

1

1

3

7

15

11

11

1

1

2

6

14

10

10

1

1

Fig. 19

( a) Encircle 1 in cell 14 which cannot be combined with any other 1. The term for this is ABCD . 

( b) There is only one possible group of four adjacent ones involving each of the cells 8, 11, 5 or 7 and 2, and these are (8, 9, 0, 1), (11, 9, 1, 3), (5, 7, 3, 1) and (2, 3, 10) respectively. 

Encircle these groups. The terms corresponding to these groups are BC,  BD,  AD  and A B

respectively. Since all the ones have been encircled, therefore, the minimized equation is

     f(A, B, C, D) = ABCD  + BC + BD + AD  + A B. 

2.17.1.2 Minimisation of Boolean Functions Not in Minterms/Maxterms

One way to minimize such functions is to convert them into standard forms  i.e.,  SOP or POS, then make the  k-map and obtain the minimized function. 

Another way is to directly prepare the  k-map using the following algorithm :

1. Enter ones for minterms and zeros for maxterms. 

2. Enter a pair of ones/zeros for each of the terms with one variable less than the total

number of variables. 

3. Enter a four adjacent ones/zeros for terms with two variables less than the total

number of variables. 

4. Repeat for other terms in similar way. 

After preparing the  k-map, the minimization procedure is same. 

Example 42.  Minimize the four variable logic function

    f(A, B, C, D) = ABC D +  ABCD +  A BC  +  A B D + AC  + A BC +  B. 

Sol. The  k-map is obtained by following way as shown in Fig. 20. 

( a) Enter 1 in the cell with A = 1, B = 1, C = 0, D = 1 corresponding to the minterm ABC D. 

( b) Enter 1 in the cell with A = 0, B = 1, C = 1, D = 1 corresponding to the minterm A BCD. 

( c) Enter 1’s in the two cells with A = 0, B = 0, C = 0 corresponding to the term A B C . 
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( d) Enter 1’s in the two cells with A = 0, B = 0, D = 0 corresponding to the term A B D. 

( e) Enter 1’s in the two cells with A = 1, B = 0, C = 1 corresponding to the term ABC. 

( f) Enter 1’s in the four cells with A = 1, C = 0 corresponding to the term AC . 

( g) Enter 1’s in the eight cells with B = 0 corresponding to the term B. 

The minimized expression is B + AC  + A CD. 

AB

CD

00

01

11

10

00

1

1

1

01

1

1

1

11

1

1

1

10

1

1

Fig. 20

Example 43.  Given the Boolean expression f = ABC + BC D +  ABC. 

( i)  Make a truth table

( ii)  Simplify using k-map

( iii)  Make the switching circuit of the expression. 

Sol. ( i) The truth table of the Boolean expression is shown in Fig. 21. 

A

B

C

D

ABC + BC D + A CD

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

1

0

1

1

0

1

CD

0

1

1

1

1

00

01

11

10

AB

1

0

0

0

0

1

0

0

1

0

00

1

0

1

0

0

1

01

1

0

1

1

0

1

1

0

0

0

11

1

1

1

1

1

0

1

1

1

1

1

0

1

10

1

1

1

1

1

1

1

Fig. 21

Fig. 22
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( ii) Draw the 4-variable  k- map and insert 1’s in the corresponding cells as shown in Fig. 22. Now, group the 1’s. The required simplified Boolean expression is as follows :

  f = AC + BCD . 

( iii) The switching circuit of the Boolean expression is shown in Fig. 23. 

A

B

C

B

C

D

A

B

C

Fig. 23

PROBLEM SET-II

1. Determine E  and E  of the following Boolean sum of products expressions. Here, E  is number of L

 s

 L

literals and E  is number of summands. 

 s

( i) E = y +  yz′ +  x′ z +  xyz +  x′ y′ z′

( ii) E  =   x′ y′ z +  xyz′ t +  x′ zt

( iii) E  =   xy′ + ( xy′ +  yx′)′

( iv) E  =   xyz +  xy′ t +  xy′ zt

( v) E  =   xt +  x′ t +  xyt +  xyz′ t

( vi) E =  xy +  yt +  z′ +  x′ t +  xz

2. Determine the consensus Q of the fundamental products P  and P  of the given values. 

1

2

( i) P  =  x

=  xyt

( ii) P  =  xyzt, P  =  xyzt

1

′ yz′ ,  P2

1

2

′

( iii) P  =  x

=  x

=  x

=  xzt

1

′ yz′, P2

′ z′ t

( iv) P1

′ yt, P2

( v) P  =  xyz

=  xzt

( vi) P  =  xyz

=  xy

1

′ t′, P2

1

′, P2

′ zt

3. Determine the prime implicants of each of the following Boolean expression using consensus method. 

( i) E  =  x

=  x

1

′ yz′ +  xyz′  +  xy′

( ii) E2

′ yz + x′ y′ z′  + xy′ z′  + x′ y

( iii) E  =  abcd +  a

3

′ bc′ d +  abc′ d′ +  a′ b′ c′ +  ac′ d′

( iv) E  =  ab +  b

=  a

4

′ d +  ab′ cd′  +  a′ bc′

( v) E5

′ b′ cd′ +  abcd′ +  ab′ +  a′ c′ d

4. Determine the minimal sum of products form for each of the Boolean expressions given in Problem 3. 

5. Consider the Boolean Expression E =  xy′ +  x′ z′ t +  xyzt′  +  x′ y′ zt′. Determine which of the following values of P satisfy the formula P + E = E. 

( i) P  =   xy′

( ii) P =  xz

( iii)  x′ z′ t

( iv)  y′ z′ t

( v)  y′ z′

( vi)  z′ t

( vii)  x′ z′

( viii)  y′ zt′

6. Minimize and Implement the following Boolean function F =  yz +  y′ z′ +  z′ z ( i) With AND, or and inverter gates. 

( ii) With NAND and inverter gates. 

( iii) With NOR and inverter gates. 
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7. Write the following switching circuits symbolically. 

( i)

( ii)

( iii)

( iv)

8. Express the output F as a Boolean expression in the inputs A, B, C for logic circuits given below. 

( i)

( ii)

( iii)

( iv)

9. Determine the output sequence O for  a NOT gate with input A (or equivalently for O = A′) for the following special sequences. 

( i) A = 10101010

( ii) A = 11001100

( iii) A = 11000011

( v) A = 11111100

10. Determine the truth table T = T(E) for the following Boolean expressions E = E( x, y, z) ( i) E  =   xy + x′ z

( ii) E =  xyz +  y +  xy′ z

( iii) E  =   xyz′ +  y +  xy′

( iv) E  =   x′ y′ +  x′ z′

11. Determine the truth table T = T(E) for the following Boolean expressions E = E( x, y, z) ( i) E  =   x′ yz′ +  xy′ z

( ii) E  =   xyz +  xy′ z +  x′ y′ z′

( iii) E  =   x′ yz′ +  x′ y′ z

( iv) E  =   x′ yz′ +  xy′ z′ +  xyz′

12. Determine the Boolean expression E = E( x, y, z) corresponding to the following truth tables. 

( i) T(E) = 10001010

( ii) 00110010

( iii) T(E) = 00010001

( iv) 10010011
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13. Simplify the following Boolean functions using K-maps. 

( a) F( x, y, z) = Σ(0, 3, 4, 5, 6, 7)

( b) F( x, y, z) = Π(3, 5, 7)

( c) F( x, y, z) = Σ(0, 2, 5, 7)

14. Simplify the following Boolean expressions using K-maps. 

( a) F( x, y, z) =  x′ y′ z′ +  yz +  x′ y′ z ( b) F( x, y, z) =  xy + y′ z′  + x′ y′ z

( c) F( x, y, z) =  x′ y +  y′ z +  x′ z′

( d) F( x, y, z) =  xyz +  xy′ z′  +  x′ yz′

15. Simplify the following Boolean functions using Karnaugh maps. 

( a) F(A, B, C, D) = Σ(1, 5, 6, 7, 11, 12, 13, 15)

( b) F( w, x, y, z) = Σ(0, 1, 2, 4, 5, 8, 9, 10, 11, 13)

( c) F( w, x, y, z) = Π(0, 2, 3, 8, 10)

ANSWERS AND HINTS (PROBLEM SET II)

1. 

( i) E  = 1 + 2 + 2 + 3 + 3 = 11; E  = 5

L

 s

( ii) E  = 3 + 4 + 3 = 10; E  = 3

L

 s

( iii) E  and E  are not defined as E is not written as sum of products

L

 s

( iv) E  = 3 + 3 + 4 = 10; E  = 3

L

 s

( v) E  = 2 + 2 + 3 + 4 = 11; E  = 4

L

 s

( vi) E  = 2 + 2 + 1 + 2 + 2 = 9; E  = 5

L

 s

2. ( i) Q  =   yz′ t

( ii) Q =  xyz

( iii) No consensus

( iv) Q =  yzt

( v) No consensus

( vi) No consensus

3. 

( i)  xy′,  xz′ and  yz′ are prime implicants. 

( ii)  x′ y,  x′ z′ and  y′ z′ are prime implicants. 

( iii)  a′ c′ d,  a′ b′ c′,  a′ c′ d′,  ac′ d′   and  abcd are prime implicants ( iv)  ab,  ac,  ad,  b′ d,  bc′ and  c′ d are prime implicants. 

( v)  b′ c′ d,  a′ c′ d,  b′ cd′,  acd′, and  ab′ are prime implicants. 

4. 

( i) E  =  xy

1

′  +  yz′   is a minimal sum. 

( ii) E  =  x

2

′ z′ +  x′ y is a minimal sum. 

( iii) E  =  a

3

′ c′ d +  a′ b′ c′ +  ac′ d′ +  abcd is a minimal sum. 

( iv) E  =  bc

4

′ +  ac +  b′ d is a minimal sum. 

( v) E  =  ab

5

′  +  a′ c′ d +  acd′  +  b′ c′ d is a minimal sum. 

5. ( i) Yes

( ii) No

( iii) Yes

( iv) Yes

( v) No

( vi) No

( vii) No

( viii) Yes. 

6. F =  yz +  y′ z′+  z′ z

F =  yz +  y′ z′

(Θ  z′ z = 0)

( i) with AND, OR and inverter gates, 
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( ii) with NAND and inverter gates, 

( iii) with NOR and inverter gates. 

Convert from sum of products to product of sums: ( y + z′)( y′  + z) = (( y + z′)′ + ( y′ +  z′))′

7. 

( i) AB + CA′

( ii) (A (C + D)) + (B(D′ + C′A + C))

( iii) ( x + y ) z

( iv)  ab + ab′  + a′ b′

8. 

( i) F = AB′ + B′C

( ii) F = AB′ + AC

( iii) F = (A + BC)′ + B

( iv) F = AB′ + (Α + Β)′ + (A′B)′

9. 

( i) A′ = 01010101

( ii) A′ = 00110011

( iii) A′ = 00111100

( iv) A′ = 00000011

10. 

( i) T(E) = 01010011

( ii) T(E) = 00110111

( iii) T(E) = 00111111

( iv) T(E) = 11100000

11. 

( i) T(E) = 00100100

( ii) T(E) = 10000101

( iii) T(E) = 01100000

( iv) T(E) = 00110010

12. 

( i) E  =   x′ y′ z′ +  x′ yz +  xyz′

( ii) E  =   x′ yz′  + xy′ z′  + xyz′

( iii) E  =   xy′ z′  +  xyz

( iv) E  =   x′ y′ z′  +  xy′ z′  +  xyz′  +  xyz 13. ( a) F( x, y, z) = Σ(0, 3, 4, 5, 6, 7)

( b) F( x, y, z) = Π(3, 5, 7)

F =  x +  yz +  y′ z′

F =  z′ +  x′ y′
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( c) F( x, y, z) = Σ(0, 2, 5, 7)

F =  x′ z′ +  xz

14. ( a) F( x, y, z) =  x′ y′ z′  + yz + x′ y′ z ( b) F( x, y, z) =  xy +  y′ z′ +  x′ y′ z F =  x′ z′ +  yz

F =  xy + x′ y′ +  y′ z′

( c) F( x, y, z) =  x′ y + y′ z + x′ z′

( d) F( x, y, z) =  xyz + xy′ z′  + x′ yz′

F =  x′  +  y′ z

Cannot reduce

F ( x,  y,  z) =  xyz +  xy′ z′ +  x′ yz′

15. ( a) F(A, B, C, D) = Σ(1, 5, 6, 7, 11, 12, 13, 15)

( b) F( w, x, y, z) = Σ(0, 1, 2, 4, 5, 8, 9, 10, 11, 13)

F = BD + A′C′D + ACD + ABC′ + A′BC

F =  wx′ +  y′ z +  w′ y′ +  x′ z′
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( c) F( w, x, y, z) = Π(0, 2, 3, 8, 10)

F = B + C′D + AD

SOLVED PROBLEMS

Problem 1.   A non-empty subset B, of a Boolean algebra (B, +, ·, ′ , 0, 1) is a sub-algebra of B, if and only if B  is closed w.r.t. operations +, ·, and 

 1

′ . 

Sol.  If B, is sub-algebra of (B, +, ·, ′, 0, 1) then B  is closed with respect to operations +, 1

· and ′. Therefore, B  is closed with respect to. 

1

Let

 a, b ∈ B  

1 ⇒  a ·  b ∈ B1

Further, 

 a,   b ∈ B  

(

is closed w.r.t. operation

1 ⇒  a′ , b′ , ∈ B1

Θ

B1

′)

⇒  a′  + b′ ∈ B

(

is closed w.r.t operation +)

1

Θ

B1

⇒ ( a′  + b′)′ ∈ B

(

is closed w.r.t operation

1

Θ

B1

′)

But

( a′ +  b′)′  = ( a′)′ · ( b′)′ =  a ·  b

Thus

 a ·  b ∈ B1

Hence, B  is closed w.r.t. operation · also. 

1

This shows that B  is a Boolean algebra. 

1

Problem 2.  In a Boolean algebra B if b + a = c + a and b + a′  = c + a′ , then b = c. Also if ba = ca and ba′  = ca′ , then b = c. 

Sol.  Let us assume that

 b +  a =  c +  a and  b +  a′ =  c +  a′. 

we have

 b =  b + 0

=  b +  aa′

(Θ  aa′ = 0)

= ( b +  a) ( b + a′)

= ( c + a) ( c + a′)

(given)

= ( c +  aa′)

=  c + 0

=  c

Thus, if

 b +  a′ =  c +  a′ then  b =  c. 
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Similarly, again let us assume that

 ba =  ca and  ba′ =  ca′

we have

 b =  b · 1

(Multiplicative identity)

=  b( a +  a′)

( a +  a′ = 1)

=  ba +  ba′

(distributive law)

=  ca +  ca′

(given)

=  c( a + a′)

(distributive law)

=  c · 1 =  c

This shows that, if

 ba =  ca and  ba′ =  ca′ then  b =  c. 

Problem 3.   In any Boolean algebra B, prove that

 a′ +  b  = 1 ⇔  a +  b =  b, ∀  a, b ∈ B. 

Sol.  Let us assume that

 a +  b =  b

...( i)

then

 a′ + ( a +  b) = ( a′ +  a) +  b

(Associative law)

= ( a + a′) +  b

(Commutative law)

= 1  +   b

= 1

But

 a′ + ( a + b) =  a′ +  b, 

therefore, 

 a′ +  b = 1

...(From ( i))

Conversely, Again let us assume that  a′ +  b = 1

then

 a +  b  = ( a +  b) · 1

= ( a + b) ( a′ +  b)

(Θ  a′ +  b = 1)

= ( b + a) ( b +  a′)

(Commutative law)

= ( b +  aa′)

=  b + 0

=  b

Thus, 

 a′ +  b  = 1 ⇔  a +  b =  b. 

Problem 4.   If a, b, c are elements of a Boolean Algebra, then prove that

 a +  b ·  c =  b( a +  c)

Sol. 

 a +  bc  = ( a + b)( a + c)

= ( b + a) ( a +  c)

= ( b +  a) · 1 · ( a +  c)

= ( b + a)( b +  b′) ( a +  c)

= ( b +  ab′) ( a +  c)

= ( b +  0) ( a + c)

=  b( a + c)

Hence, 

 a +  b ·  c =  b( a +  c)
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Problem 5.   In a Boolean Algebra (B, +, ·, ′),  prove that

( i) ( a + b)′ + ( a + b′)′ =  a′

( ii)  ab + a′ b′  = ( a′  + b) ( a + b′)

Sol. 

( i) We know, ( ab)′ =  a′ +  b′

Hence, 

( a + b)′ + ( a + b′)′  = [( a + b) ( a + b′)]′

= ( a + bb′)′

[Θ  bb′ = 0]

 = ( a + 0)′

=  a′

Hence, ( a + b)′ + ( a +  b′)′ =  a′

( ii)

 ab + a′ b′  = ( ab + a′) ( ab +  b′)

= ( a′  + ab) ( b′ +  ab)

= ( a′  + a) ( a′ +  b) ( b′ +  a) ( b′ +  b)

= 1( a′  + b) ( b +  a′) · 1

= ( a′ +  b) ( a +  b′)

Hence, 

 ab +  a′ b′  = ( a′  + b) ( a +  b′)

Problem 6.   If a, b, c are elements of any Boolean Algebra then prove that

( a + b) ( a′  + c) =  ac + a′ b

Sol.  We have, 

= ( a + b) ( a′ +  c)

= ( a + b) a′ + ( a +  b) c

=  a′( a + b)+  c( a +  b)

=  a′ a + a′ b + c( a +  a′ b)

[ a + a′ b = ( a + a′)( a +  b) =  a +  b]

= O +  a′ b  + ca + ca′ b

=  a′ b +  ca′ b +  ca

=  a′ b + a′ bc +  ac

=  a′ b(1 +  c) + a · c

(1 +  c = 1)

 = a′ b ·  1 +  a· c

=  a′ b + ac

Hence, ( a + b) · ( a′  + c)  =  a′ b +  ac

Problem 7.   If a, b, c are elements of a Boolean Algebra B, then prove that ∀  a, b, c ∈  B

 a + ( a′ c +  b) =  a + b + c

Sol. 

 a + ( a′ c + b) = ( a + a′ c) +  b

= ( a + a′) ( a + c) +  b

= 1( a +  c) +  b

=  a +  c +  b

=  a +  b +  c

Hence, 

 a + ( a′ c + b) =  a + b + c. 

Problem 8.  Show that the following Boolean expressions are equivalent :

( i)  x ∧ ( y ∨ ( y′ ∧ ( y ∨  y′))) ;  x

( ii) ( z′ ∨  x) ∧ (( x ∧  y) ∨  z) ∧ ( z′ ∨  y) ;  x ∧  y. 

Sol. ( i) Take L.H.S. of the Boolean expression

=  x ∧ ( y ∨ ( y′ ∧ ( y ∨  y′)))

=  x ∧ ( y ∨ ( y′ ∧ 1))

{∵  y ∨  y′ = 1}

=  x ∧ ( y ∨  y′)

{∵  y′ ∧ 1 =  y′}



=  x ∧ 1

{∵  y ∨  y′ = 1}

=  x

{∵  x ∧ 1 =  x}

Hence, the Boolean expressions are equivalent. 
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( ii) Take the L.H.S. of the Boolean expression

= ( z′ ∨  x) ∧ (( x ∧  y) ∨  z) ∧ ( z′ ∨  y)

= ( z′ ∨ ( x ∧  y)) ∧ (( x ∧  y) ∨  z)

{∵  x ∧  x =  x,  z ∧  z′ = 0}

= ( x ∧  y) ∨ (

 z′ ∧  z) = ( x ∧  y) ∨ 0

{∵  z′ ∧  z = 0}

=  x ∧  y. 

Hence, the Boolean expressions are equivalent. 

Problem 9.  Show that if M  

  

  is the disjunctive normal form of f(x , x , 

 1 ∨  M2 ∨ ......∨  Mk

 1

 2

 ......, x ), then  M



 n

 1  ∧   M2 ∧ ...... ∧   Mk   is the conjunctive normal form of  f( x , x , ......, x ) 1

 2

 n . 

Sol. We have

  f( x ,  x , ......,  x ) = M  



...Disjunctive normal form

1

2

 n

1 ∨ M2 ∨ ...... ∨ M k

  f( x ,  x , ......,  x )

...... 

1

2

 n  = M ∨ M ∨

∨ M

1

2

 k

= M1 ∧ M2  ∧ M3  ∧ ...... ∧ M k

{By De Morgan’s law A ∨ B = A  ∧ B}

which is the conjunctive normal form of  f( x ,  x , ......,  x )

1

2

 n

Problem 10.  Show that the following switching circuits are equivalent (Fig. 24). 

Fig. 24

Sol. Two switching circuits are equivalent if the Boolean expressions that represent

them are equal. 

The Boolean expression of both the switching circuits are as follows :

  x ∧ (  y  ∨  z)

...(1)

and

( x ∧   y ) ∨ ( x ∧  z)

...(2)

Now take the Boolean expression (1), we have

= ( x ∧   y ) ∨ ( x  ∧  z) =  x ∧ (  y  ∨  z)

{Distributive law}

which is equal to the Boolean expression (1). Hence both the switching circuits are equivalent. 

Problem 11.  Show whether the following circuits are equivalent or not (Fig. 25). 

x

x1

f

y1

y

f

z1

z

I

II

Fig. 25

BOOLEAN ALGEBRA

M-5.93

Sol. Two combinatorial circuits, both having inputs  x ,  x , ......,  x  and a single output 1

2

 n

are equivalent if, whenever the circuits receive the same inputs, they produce the same outputs. 

The truth table of both the circuits are as shown below :

 x

 y

 z

 f

 x

 y

 z

 f

1

1

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

1

1

1

1

1

1

1

1

Since the two combinatorial circuits have not the same logic tables, hence they are not

equivalent. 

Problem 12.  Write the Boolean expression that represents the following combinatorial circuit, write the logic table and also write the output of each gate symbolically on the figure. 

( i)

x1

x2

x3

I

( ii)

x1

x2

x3

II

( iii)

x1

x2

x3

III

Fig. 26
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Sol. ( i) The Boolean expression of the combinatorial circuit is

 x  

). 

1 ∧ (  x 2  ∨  x 3

The logic table of the combinatorial circuit is

 x

 x

 x

 x  

)

1

2

3

1 ∧ (  x 2  ∨  x 3

1

1

1

1

1

1

0

0

1

0

1

1

1

0

0

1

0

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

The output of each gate symbolically is shown in the Fig. 27. 

x

x

1

1

x

x

2

2

x ∧ ( x ∨ x )

1

2

3

x3

x ∨ x

2

3

Fig. 27

( ii) The Boolean expression of the combinatorial circuit is (( x  

) 

) 

1 ∧  x 2 ∨ ( x ∧  x )

1

3

∧   x 3. 

The logic table of the combinatorial circuit is

 x

 x

 x

(( x  

)  

 x ∧  x )  

 1

 2

 3

 1 ∧  x2 ∨ (

)

 1

 3

∧   x3

1

1

1

0

1

1

0

1

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

The output of each gate symbolically is shown in Fig. 28. 
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Fig. 28

( iii) The Boolean expression of the combinatorial circuit is

( x  

) 

1 ∧  x 2 ∨   x 3 . 

The logic table of the combinatorial circuit is

 x

 x

 x

( x  

) 

 1

 2

 3

 1 ∧  x2 ∨   x3

1

1

1

1

1

1

0

1

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

The output of each gate is shown symbolically in Fig. 29. 

x1

x ∧ x

1

2

x2

( x ∧ x ) ∨ x

1

2

3

x3

x3

Fig. 29

Problem 13.  Represent the following circuits show in Fig. 30 symbolically and also give its switching table. 

( i)

M-5.96

A  TEXTBOOK  OF  ENGINEERING  MATHEMATICS

( ii)

( iii)

Fig. 30

Sol. ( i) The symbolic representation of the circuit is ( x  



)) 

1 ∧ ( x 2 ∨  x 3

∨   x 2. 

The switching table of the circuit is as shown below :

 x

 x

 x

( x  

  

)) 

 1

 2

 3

 1 ∧ ( x2 ∨  x3

∨   x2

1

1

1

1

1

1

0

1

1

0

1

1

1

0

0

1

0

1

1

0

0

1

0

0

0

0

1

1

0

0

0

1

( ii) The symbolic representation of the circuit is (A ∧ B) ∨ (A  ∧ C). 

The switching table of the circuit is as shown below :

 A

 B

 C

 (A ∧  B) ∨  ( A  ∧  C)

1

1

1

1

1

1

0

1

1

0

1

0

1

0

0

0

0

1

1

1

0

1

0

0

0

0

1

1

0

0

0

0
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( iii) The symbolic representation of the circuit is

 x  



) 







))) 

. 

1 ∧ (( x 2 ∨  x 4 ∨ ( x 3 ∧ ( x 1 ∨  x 4 ∨  x 3

∧  x 2

The switching table of the circuit is as shown below :

 x

 x

 x

 x

 x  

  

) 

  

  

  

))) 

 1

 2

 3

 4

 1 ∧ (( x2 ∨  x4 ∨ ( x3 ∧ ( x1 ∨  x4 ∨  x3

∧  x2

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

Problem 14.  Find the combinatorial circuit corresponding to each of the following

 Boolean expressions:

( i)  x  

  

)

( ii) ( x  

  

 1 ∧ ( x2 ∨  x3

 1 ∧   x2 ) ∨ ( x1 ∧   x3 )

( iii) ( A ∧ )

 B

( iv) ( x  

  

))) 

  

). 

 1 ∧ (( x2 ∧   x3 ) ∨ (  x2  ∧  x3

∨ (  x1 ∧  x2 ∧  x3

Sol. ( i) The combinatorial circuit of the Boolean expression is shown in Fig. 31. 

Fig. 31

( ii) The combinatorial circuit of the Boolean expression is shown in Fig. 32. 

x1

x2

( x Ù x) Ú ( x Ú x )

1

1

3

x3

Fig. 32
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( iii) The combinatorial circuit of the Boolean expression is shown in Fig. 33. 

A

B

A ∨ B

Fig. 33

( iv) The combinatorial circuit of the Boolean expression is shown in Fig. 34. 

x2

x3

x1

Fig. 34

Problem 15.  Represent the following expressions as switching circuits and also write the switching tables :

( i) ( x  

( ii) ( x  

)  

)

 1 ∧   x2 ) ∨  x1

 1 ∧  x3 ∨  (  x1  ∧  x2

( iii) ( x  

  



  

  

 1 ∧ ( x2 ∨ ( x1 ∧   x2 ))) ∨ (( x1 ∧   x2 ) ∨ ( x1 ∧   x3 )). 

Sol. ( i) The switching circuit and the corresponding switching table of the Boolean expression is shown in Fig. 35. 

 x

 x

( x  

 1

 2

 1 ∧   x2 ) ∨  x1

1

1

1

1

0

1

0

1

0

0

0

0

Fig. 35

( ii) The switching circuit and the corresponding switching table of the Boolean expression is shown in Fig. 36. 

 x

 x

 x

( x  

) 

)

 1

 2

 3

 1 ∧  x3 ∨ (  x1  ∧  x2

1

1

1

1

1

1

0

0

1

0

1

1

1

0

0

0

0

1

1

1

0

1

0

1

Fig. 36

0

0

1

0

0

0

0

0
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( iii) The switching circuit and the corresponding switching table of the Boolean expression is shown in Fig. 37. 

 x

 x

 x

( x  

  

  

 1

 2

 3

 1 ∧ ( x2 ∨ ( x1 ∧   x2 )))

∨ (( x  

  

 1 ∧   x2 ) ∨ ( x1 ∧   x3 ))

1

1

1

1

1

1

0

1

1

0

1

1

1

0

0

1

0

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

Fig. 37

Problem 16.  Find the disjunctive normal form and also the corresponding combinato-

 rial circuit of the following Boolean functions :

( i)

( ii)

 A

 B

 C

 f(A, B, C)

 A

 B

 C

 f(A, B, C)

 0

 0

 0

 1

 0

 0

 0

 0

 0

 0

 1

 1

 0

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

 0

 0

 1

 1

 0

 0

 1

 1

 1

 1

 0

 0

 0

 1

 0

 0

 1

 1

 0

 1

 1

 1

 0

 1

 0

 1

 1

 0

 1

 1

 1

 0

 1

 1

 1

 1

 1

 1

 1

 1

 0
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Sol. ( i) The disjunctive normal form of the Boolean function is

  f = A B C  + A B C + A  B C  + A B  C + A B C  + A B C

and the corresponding combinatorial circuit is shown in Fig. 38. 

A

B

C

f

Fig. 38

( ii) The disjunctive normal form of the Boolean function is

  f = A B C  + A B C + AB C  + A B C

and the corresponding combinatorial circuit is shown in Fig. 39. 

A

B

C

Fig. 39
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Problem 17.  Find the disjunctive and conjunctive normal form of the following Boolean function:

 A

 B

 C

 D

 F( A, B, C, D)

 0

 0

 0

 0

 1

 0

 0

 0

 1

 0

 0

 0

 1

 0

 1

 0

 0

 1

 1

 0

 0

 1

 0

 0

 1

 0

 1

 0

 1

 1

 0

 1

 1

 0

 1

 0

 1

 1

 1

 0

 1

 0

 0

 0

 1

 1

 0

 0

 1

 0

 1

 0

 1

 0

 1

 1

 0

 1

 1

 1

 1

 1

 0

 0

 1

 1

 1

 0

 1

 1

 1

 1

 1

 0

 0

 1

 1

 1

 1

 0

Sol. The disjunctive normal form of the Boolean function is given by

F = A B C D + A B  CD + A  B C  D + A  B C  D + A  B C D + A B C D + A B C D

+ A B  C D + A B C D + A B C D + A B C D. 

The conjunctive normal form of the Boolean function is given by

F = (A + B + C + D) * (A + B + C  + D) * (A + B  + C  + D) * (A  + B + C + D) *

(A  + B  + C  + D) * (A  + B  + C  + D). 

Problem 18.  Design a circuit that accepts a 3-bit number and gives an output 0 if input represents even decimal number and gives an output 1 if input represents an odd decimal number. 

Sol. The  block  diagram  of  the  circuit  and the corresponding logic table is shown in Fig. 40. 

Decimal

Number

 x

 y

 z

 F

0

0

0

0

0

1

0

0

1

1

2

0

1

0

0

x

0, if input is even

3

0

1

1

1

Combinatorial

y

F

Circuit

1, if input is odd

4

1

0

0

0

z

5

1

0

1

1

Fig. 40

6

1

1

0

0

7

1

1

1

1
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From the logic table we obtained the following Boolean expression :

F =   x y z +   x   y  z +  x   y   z +  x  y  z The logic circuit corresponding to the above Boolean expression is shown in Fig. 41. 

x

y

z

F

Fig. 41

MULTIPLE CHOICE QUESTIONS

1. Let L be a set with a relation R which is transitive, anti-symmetric and reflexive and for any two elements  a,  b ∈ L let the least upper bound lub( a,  b) and the greatest lower bound glb( a,  b) exist. 

Which of the following is/are true? 

( GATE, 1999)

( a) L is a poset

( b) L  is a Boolean algebra

( c) L is a lattice

( d) None of the above. 

2. Which of the following is not a Necessary property of Boolean Algebra? 

( a) Commutative

( b) Complement

( c) Identity

( d) Left cancellation

3. Which of the following is a Boolean Algebra ? 

1

a

b

0

( a)

( b)

c

d

a

b

0

1

0

a

( c)



( d)

b

1

0

BOOLEAN ALGEBRA
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4. Which of the following is not a sub-algebra of D30

( a) {1, 2, 15, 30}

( b) {1, 30}

( c) {1, 3, 10, 30}

( d) {1, 2, 3, 6}

5. Consider the Boolean expression

( x  

) 



) 

)

1 ∨  x 2 Λ ( x′1 ∨  x′2 Λ (( x 2 ∨  x 3 ′)

If  x  = 0,  x = 1 and  x  = 0, the formula yields

1

2 

3

( a) 1

( b) either 0 or 1

( c) 0

( d) Neither 0 nor 1. 

6. Which of the following is the minimized equation of the given four variable logic function f(A, B, C, D) = Σ(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)

( a) ABCD′ + (BC)′ + B′D + A′D + A′B′

( b) A′BCD + (BC)′ + B′D + A′D + A′B′

( c) ABCD′ + (BC)′ + BD′ + AD′ + A′B′

( d) ABCD′ + (BC)′ + B′D + A′D + AB

7. The Boolean function X′ Y′ + XY + X′Y is equivalent to

( a) X′ + Y

( b) X  +  Y′

( c) X′ + Y′

( d) X + Y

8. The minimized expression of ABC  +  ABC + A BC +  A BC  is

( a) A + C

( b) BC

( c) C

( d) C

9. If B is a Boolean Algebra, then which of the following is true

( a) B is a finite but not complemented lattice. 

( b) B is a finite, complemented and distributive lattice. 

( c) B is a finite, distributive but not complemented lattice. 

( d) B is not distributive lattice. 

10. The expression  a +  a c is equivalent to

( a)  a

( b)  a +  c

( c)  c

( d) 1

11. The Boolean expression X Y + X Y′ + X′ Z + X Z′ is independent of the Boolean variable: ( a) Y

( b) X

( c) Z

( d) None of these. 

12. The Boolean expression A + AB +  AB  is independent to

( a) A

( b) B

( c) Both A and B

( d) None

13. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results? 

( a) ABCDEF

( b) AB

( c) AB + CD + EF

( d) A + B + C + D + E + F

ANSWERS

1. ( c)

2. ( d)

3. ( c)

4. ( d)

5. ( b)

6. ( a)

7. ( a)

8. ( c)

9. ( b)

10. ( b)

11. ( a)

12. ( b)

13. ( b). 
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REVIEW QUESTIONS

1. What is Boolean algebra? Give Example. 

2. What is Sub-Algebra? Give Example. 

3. Explain isomorphic algebras by giving examples. 

4. State and prove Boolean algebra identities. 

5. What is Boolean Function? How it can be represented? Explain. 

6. What is Boolean expression? Give Examples. 

7. How Boolean expressions can be evaluated? Give example. 

8. What do you mean by equivalent Boolean expressions? Give example. 

9. What is minterm and maxterm? Give example of each. 

10. What is Conjunctive Normal Form (CNF)? How it can be obtained? Give Example. 

11. What is disjunctive Normal Form (DNF)? How it can be obtained? Give Example. 

12. What is principle of duality? Give example. 

13. What is digital Circuit? How it can be designed? 

14. What are the applications of Boolean algebra in switching theory? 

15. What is series and parallel connection? Give Example. 

16. What is K-Map? Give Example. 

17. How the K-maps are used to simplify the Boolean functions? Give Example. 

CHAPTER END PROBLEMS

1. Let E =  xy +  y′  t + x′  y z′ +  xy′  zt′, find ( i) Prime implicants of E, ( ii) Minimal sum for E. 

2. Construct K-maps and give the minimum DNF for the function whose truth table is shown below: x

 y

 z

 f( x,  y,  z)

0

0

0

1

0

0

1

1

0

1

0

0

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

1

1

1

1

0

3. Give the formula and the Karnaugh map for the minimum DNF, (Disjunctive Normal Form) ( p ∧ ~  q) ∨ (~  q ∧ ~  s) ∨ ( p ∧ ~  r ∧  s). 

4. Minimize the following Boolean expression using  k-map method

F(A, B, C, D) = π(0, 1, 4, 5, 8, 12, 13, 14, 15). 

5. Use Karnaugh map to simplify the following Boolean expression

 wx y z  +  w x yz + w x y z  +  w x y z  +  w x y z  +  w x y z  +  w x y z . 

6. Simplify the Boolean function: F =  A BC + BCD + ABCD + A BC . 

7. Simplify the Boolean function:   F( w,  x,  y,  z) = Σ(0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 14). 
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8. Minimize the following expression using either Boolean Algebra or Karnaugh maps:

F = (~  p ∧ ~  q ∧ ~  r ∧ ~  s) ∨ (~  p ∧ ~  q ∧  r ∧ ~  s) ∨ (~  p ∧  q ∧ ~  r ∧  s) ∨ (~  p ∧  q ∧  r ∧  s)

∨ ( p ∧  q ∧ ~  r ∧  s) ∨ ( p ∧  q ∧  r ∧  s) ∨ ( p ∧ ~ q ∧ ~ r ∧ ~s) ∨ ( p ∧ ~ q ∧  r ∧ ~ s). 

9. Simplify the logical expression  XY + XZ + YZ + YZW . 

10. Minimize the following Boolean expression using Karnaugh map. 

( DOEACC, 2006)

F =  ABC + ABC + ABC + A BC . 

11. Use Karnaugh map to simplify the expression

( DOEACC, 2008)

X = A′ B′ CD + A′ B′ CD′ + AB′CD′ + AB′

12. Consider the following truth table:

( DOEACC, 2008)

P

Q

R

S

1

1

1

0

1

1

0

0

1

0

1

1

1

0

0

1

0

1

1

0

0

1

0

1

0

0

1

0

0

0

0

0

Construct a Boolean Expression having this table as truth table. Simplify this expression. Also construct a circuit having P, Q, R as input and S as output. 

13. Simplify the following Boolean expression: C (B + C) (A + B + C)

( DOEACC, 2009)

14. Simplify the following Boolean expression using Karnaugh map:  f( x,  y,  z) = Σ(2, 3, 6, 7). 

( DOEACC, 2010)

15. Minimize the Boolean expression (by algebraic method)

F =  AC + AB + ABC + BC and then draw the circuit diagram using only NAND gate. 

16. Simplify the given expression AB + (AC)′ + AB′C (AB + C)

17. Find the Conjuctive Normal Form of the formula (~  p → R) ∧ (Q ↔ P). 

( DOEACC, 2007)

18. Prove that for any  a,  b in a Boolean algebra B

( DOEACC, 2008)

( i)  a +  a .  b =  a

( ii)  a . ( a +  b) =  a. 

19. Simplify the following expressions in a Boolean algebra

( DOEACC, 2009)

( i) ( a +  b) •  a′ •  b′

( ii) ( a +  a′ •  b) • ( a′ +  a •  b). 

20. Consider the set of all subsets { a,  b, …,  z} with an even number of elements ∧ and V are taken as

∩ and ∪ respectively. Is it a Boolean algebra? Justify your answer. 

( DOEACC, 09)

21. Obtain the disjunctive normal form of the Boolean expression

( DOEACC, 2009)

 f( x,  y,  z) = ( x′ ∧  y). 

22. Express the following Boolean function and its  complement in DNF. 

( DOEACC, 2010)

 f( x,  y,  z) = ( x ∨  y) ∧ ( x ∨  y′) ∧ ( x′ ∨  z). 
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23. Find the expression, S, representing the following truth table by writing out the disjunctive normal form of S then draw the circuit:

 p

 q

 r

 s

T

T

T

T

T

T

F

F

T

F

T

F

T

F

F

T

F

T

T

F

F

T

F

F

F

F

T

F

F

F

F

T

24. Prove the following Boolean expression: ( x ∨  y) ∧ ( x ∨  ~  y) ∧ (~  x ∨  z) =  x ∧  z. 

25. Find the sum-of-products expression for following function, F( x,  y,  z) =  y +   z 26. Using other identities of Boolean algebra prove the absorption law,  x +  xy =  x Construct an identity by taking the duals of the above identity and prove it too. 

27. State DeMorgan′s law. Prove it using the truth table. 

28. Show that a positive logic NAND gate is equivalent to negative logic NOR gate. 

29. Using Boolean algebra show that   abc +  abc  +   ab c  +  abc  =  ab +  ac +  bc. 

30. Prove that, the complement of every element in a Boolean algebra B is unique. 

31. Show that in a Boolean algebra, for any  a and  b, ( a ∧  b) ∨ ( a ∧  b′) =  a. 

Hints and Answers to Selected Problems

2. Minimum DNF is  y′ z′ +  x′  y′ +  xz′

3. The formula is  pq′ +  s′ q′ +  pr′ s

4. The minimized Boolean expression is C′D′ + A′C′ + AB. 

5. The simplified Boolean expression is  wx′ y +  x′ yz′ +  y′ z′. 

6. The simplified expression is  BC + BD + ACD . 

7. The function in simplified form is   f( w,  x,  y,  z) =  y′ z′ +  w′ x′ +  wy′ +  w′ z′ +  xz′

9. The expression is  x′ y′ +  zw′ +  yz. 

25. The sum of product notation is F( x,  y,  z) =  x′ y′ z′ +  x′ yz′ +  x′ yz +  xy′ z′ +  xyz′ +  xyz
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