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Foreword

Generations of theoretical physicists learned quantum field theory from Sidney Coleman.
Hundreds attended his famous lecture course at Harvard University — the lecture hall was
usually packed with listeners well beyond those registered for Physics 253 — while many more
encountered photocopies of handwritten notes from the course or saw videos of his lectures
long after they had been recorded. Coleman’s special gift for exposition, and his evident
delight for the material, simply could not be matched. A Coleman lecture on quantum field
theory wasn’t merely part of a course; it was an adventure.

Sidney Coleman was born in 1937 and grew up in Chicago. He showed keen interest in
science at an early age, and won the Chicago Science Fair while in high school for his design
of a rudimentary computer. He studied physics as an undergraduate at the Illinois Institute of
Technology, graduating in 1957, and then pursued his doctorate in physics at the California
Institute of Technology. At Caltech Coleman befriended Sheldon Glashow (then a postdoc),
took courses from Richard Feynman, and wrote his dissertation under the supervision of
Murray Gell-Mann. In 1961, as he was completing his dissertation, Coleman moved to Harvard
as the Corning Lecturer and Fellow. He joined the Physics Department faculty at Harvard
soon after that, and remained a member of the faculty until his retirement in 2006.!

For more than thirty years, Coleman led Harvard’s group in theoretical high-energy physics.
Colleagues and students alike came to consider him “the Oracle.”? At one point Coleman’s
colleague, Nobel laureate Steven Weinberg, was giving a seminar in the department. Coleman
had missed the talk and arrived during the question-and-answer session. Just as Coleman
entered the room, Weinberg replied to someone else, “I'm sorry, but I don’t know the answer to
that question.” “I do,” Coleman called out from the back. “What was the question?” Coleman
then listened to the question and answered without hesitation.?

Coleman had an off-scale personality, inspiring stories that colleagues and former students
frequently still share. He kept unusual hours, working late into the night; at one point he

1 Howard Georgi, “Sidney Coleman, March 7, 1937 — November 18, 2007,” Biographical Memoirs of the National
Academy of Sciences (2011), available at http://www.nasonline.org/publications/biographical-memoirs/
memoir-pdfs/coleman-sidney.pdf.

2 Quoted in Roberta Gordon, “Sidney Coleman dies at 70,” Harvard Gazette (29 November 2007).

3 David H. Freedman, “Maker of worlds,” Discover (July 1990): 46-52, on p. 48.
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xviii Foreword

complained to a colleague that he had been “dragged out of bed four hours before my usual
time of rising (i.e., at 8 o’clock in the morning) to receive your telegram.”* Indeed, he had
refused to teach a course at 9 a.m., explaining, “I can’t stay up that late.”® Coleman’s penchant
for chain-smoking — even while lecturing — made at least one journalist marvel that Coleman
never mistook his chalk for his cigarette.% In 1978, Harvard Magazine published a profile of
Coleman, to which he took exception. As he wrote to the editors:

Gentlemen:

In your September-October issue, I am described as “a wild-looking guy, with
scraggly black hair down to his shoulders and the worst slouch I've ever seen. He
wears a purple polyester sports jacket.”

This allegation is both false to fact and damaging to my reputation; I must
insist upon a retraction.

The jacket in question is wool. All my purple jackets are wool.”

Little wonder that Coleman was often described as a superposition of Albert Einstein and
comedian Woody Allen.®

Coleman had an extraordinary talent for wordplay as well as physics, and a lively, spon-
taneous wit. Once, while a journalist was preparing a feature article about him, Coleman
received a telephone call in his office; the caller had misdialed. “No, I'm not Frank,” the
journalist captured Coleman replying, “but I'm not entirely disingenuous either.”® Coleman
frequently sprinkled literary and historical allusions throughout his writings, published articles
and ephemeral correspondence alike. Writing to a colleague after a recent visit, for example,
Coleman noted that the reimbursement he had received did not cover some of his travel
expenses: “Samuel Gompers was once asked, ‘What does Labor want?’ He replied, ‘More.’”19
The lecture notes in this volume likewise include passing nods to Pliny the Elder, the plays of
Moliere, Sherlock Holmes stories, and more. He took the craft of writing quite seriously, at one
point advising a friend, “Literary investigation by bombarding a manuscript with prepositions
is as obsolete as electrical generation by beating a cat with an amber rod.”!!

Early in Coleman’s career, colleagues began to admire his unusual skill in the lecture
hall. Just a few years after joining Harvard’s faculty, he was in such high demand for the

4 Sidney Coleman to Antonino Zichichi, 5 November 1970. Coleman’s correspondence is in the possession of
his widow, Diana Coleman. Many of the letters quoted here will appear in the collection, Theoretical Physics
in Your Face: Selected Correspondence of Sidney Coleman, ed. Aaron Wright, Diana Coleman, and David
Kaiser (Singapore: World Scientific, forthcoming).

5 Quoted in Gordon, “Sidney Coleman dies at 70.”

6 Freedman, “Maker of worlds,” p. 48.

7 Sidney Coleman to the editors of Harvard Magazine, 10 October 1978. The profile appeared in Timothy
Noah, “Four good teachers,” Harvard Magazine 80, no. 7 (September-October 1978): 96-97. My thanks to
Tiffany Nichols for retrieving a copy of the original article.

8 Freedman, “Maker of worlds,” p. 48.

9 Quoted in Freedman, “Maker of worlds,” p. 48.

10 Sidney Coleman to Geoffrey West, 10 October 1978. Samuel Gompers, who founded the American Federation
of Labor (AFL), had been a major figure in the American labor movement during the late nineteenth and
early twentieth centuries.

11 Sidney Coleman to Avram Davidson, 6 June 1977. Davidson (1923-1993), a longtime friend of Coleman’s,
was an award-winning science fiction author.
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summer-school lecture circuit that he had to turn down more requests than he could accept.'?
He became a regular lecturer at the annual Ettore Majorana summer school in Erice, Italy,
and developed a warm friendship with its organizer, Antonino Zichichi. Usually Coleman
volunteered topics on which he planned to lecture at Erice — not infrequently using the summer
course as an opportunity to teach himself material he felt he had not quite mastered yet —
though sometimes Zichichi assigned topics to Coleman. Preparing for the 1969 summer school,
for example, Zichichi pressed him, “Please stop refusing to lecture on the topic I have assigned
to you. It is not my fault if you are among the few physicists who can lecture [on| anything.”*3

Coleman worked hard to keep his lectures fresh for his listeners, putting in significant
effort ahead of time on organization and balance. He described his method to a colleague in
1975: “The notes I produce while preparing a lecture are skeletal in the extreme, nothing but
equations without words.” That way he could be sure to hit his main points while keeping most
of his exposition fairly spontaneous.'® The light touch on his first pass-through meant that
Coleman needed to expend significant effort after the lectures were given, converting his sparse
notes into polished prose that could be published in the summer-school lecture-note volumes.
He often confided to colleagues that his “slothful” ways kept him from submitting manuscripts
of his lecture notes on time.'® Likely for that reason he shunned repeated invitations from
publishers to write a textbook. “Not even the Symbionese Liberation Army would be able to
convert me to writing an elementary physics text,” he replied to one eager editor.'®

Luckily for him — indeed, luckily for us — Coleman’s lecture course on quantum field theory
at Harvard was videotaped during the 1975-76 academic year, with no need for him to write up
his notes. Filming a lecture course back then was quite novel, so much so that Coleman felt the
need to explain why the large camera and associated equipment were perched in the back of the
lecture hall. “The apparatus you see around here is part of a CIA surveillance project,” he joked
at the start of his first lecture, drawing immediate laughter from the students. He continued:
“T fall within their domain because I read JETP Letters,” inciting further laughter.!” Hardly a
spy caper, the videotapes were actually part of an experiment in educational technology.'®

News of the tapes spread, and soon they were in high demand well beyond Cambridge.
Colleagues wrote to Coleman, asking if they could acquire copies of the videotapes for their

12 See, e.g., Sidney Coleman to Jack Steinberger, 6 October 1966.

13 Antonino Zichichi to Sidney Coleman, 4 March 1969; cf. Coleman to Zichichi, 26 May 1967. Coleman
republished several of his Erice lectures in his book, Aspects of Symmetry: Selected Erice Lectures (New York:
Cambridge University Press, 1985).

1 Sidney Coleman to Luis J. Boya, 18 April 1975.

15 See, e.g., Sidney Coleman to Gian Carlo Wick, 8 October 1970; Coleman to Zichichi, 5 November 1970.

16 Sidney Coleman to Gavin Borden, 12 March 1976. The “Symbionese Liberation Army” was a group of
left-wing radicals that perpetrated several high-profile acts between 1973-75 in the United States, most famously
kidnapping the wealthy publishing heiress Patty Hearst and allegedly “brainwashing” her into supporting their
cause. See Jeffrey Toobin, American Heiress: The Wild Saga of the Kidnapping, Crimes, and Trial of Patly
Hearst (New York: Doubleday, 2016).

17 The American Institute of Physics began translating Soviet physics journals into English in 1955, including
the Journal of Experimental and Theoretical Physics (JETP), as part of a Cold War effort to stay current on
Soviet scientists’ advances. See David Kaiser, “The physics of spin: Sputnik politics and American physicists
in the 1950s,” Social Research 73 (Winter 2006): 1225-1252.

18 Coleman participated in other experiments involving videotaped lectures around the same time: Sheldon A.
Buckler (Vice President of Polaroid Corporation) to Sidney Coleman, 16 April 1974; Peter Wensberg (Senior
Vice President of Polaroid Corporation) to Sidney Coleman, 27 February 1975; and Sidney Coleman to Steven
Abbott, 27 February 1976.
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own use, from as far away as Edinburgh and Haifa.!” Coleman’s administrative assistant
explained to one interested colleague in 1983 that the tapes had begun to “deteriorate badly”
from overuse, yet they remained “in great demand even if those in use are in poor condition.”?%
Years later, in 2007, Harvard’s Physics Department arranged for the surviving videotapes to
be digitized, and they are now available, for free, on the Department’s website.?! As David
Derbes explains in his Preface, the editorial team made extensive use of the videos while
preparing this volume.

Physicists knitted together what we now recognize as (nonrelativistic) quantum mechanics
in a flurry of papers during the mid-1920s. The pace was extraordinary. Within less than a
year — between July 1925 and June 1926 — Werner Heisenberg submitted his first paper on
what would become known as “matrix mechanics,” Erwin Schrédinger independently developed
“wave mechanics,” several physicists began to elucidate their mathematical equivalence, and
Max Born postulated that Schrodinger’s new wavefunction, v, could be interpreted as a
probability amplitude. A few months after that, in March 1927, Heisenberg submitted his
now-famous paper on the uncertainty principle.??

In hindsight, many physicists have tended to consider that brief burst of effort as a capstone,
the end of a longer story that stretched from Max Planck’s first intimations about blackbody
radiation, through Albert Einstein’s hypothesis about light quanta, to Niels Bohr’s model of
the atom and Louis de Broglie’s suggestive insights about matter waves. To leading physicists
at the time, however, the drumbeat of activity during the mid-1920s seemed to herald the
start of a new endeavor, not the culmination of an old one. Already in 1926 and 1927, Werner
Heisenberg, Pascual Jordan, Wolfgang Pauli, Paul Dirac and others were hard at work trying
to quantize the electromagnetic field, and to reconcile quantum theory with special relativity.
They had begun to craft quantum field theory.?3

Those early efforts quickly foundered, as a series of divergences bedeviled physicists’
calculations. By the early 1930s, theorists had identified several types of divergences — infinite
self-energies, infinite vacuum polarization — which seemed to arise whenever they tried to
incorporate the effects of “virtual particles” in a systematic way. Some leaders, like Heisenberg,
called for yet another grand, conceptual revolution, as sweeping as the disruptions of 1925-27
had been, which would replace quantum field theory with some new, as-yet unknown framework.
No clear candidate emerged, and before long physicists around the world found their attention

19 David J. Wallace to Sidney Coleman, 12 June 1980; J. Avron to Sidney Coleman, 12 July 1983.

20 Blanche F. Mabee to J. Avron, 19 August 1983; see also David J. Wallace to John B. Mather, 24 June 1980.
21 nttps://www.physics.harvard.edu/events/videos/Phys253

22 Many of the original articles are reprinted (in English translation) in B. L. van der Waerden, ed., Sources of
Quantum Mechanics (Amsterdam: North-Holland, 1967). See also Max Jammer, The Conceptual Development
of Quantum Mechanics (New York: McGraw-Hill, 1966); Olivier Darrigol, From c-Numbers to g-Numbers:
The Classical Analogy in the History of Quantum Theory (Berkeley: University of California Press, 1992); and
Mara Beller, Quantum Dialogue: The Making of a Revolution (Chicago: University of Chicago Press, 1999).
23 Many important papers from this effort are reprinted (in English translation) in Arthur I. Miller, ed., Early
Quantum Electrodynamics: A Source Book (New York: Cambridge University Press, 1994). See also Silvan
S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga (Princeton:
Princeton University Press, 1994), chap. 1; Tian Yu Cao, Conceptual Developments of 20th Century Field
Theories (New York: Cambridge University Press, 1997), chaps. 6-8; and the succinct historical introduction
in Steven Weinberg, The Quantum Theory of Fields, vol. 1 (New York: Cambridge University Press, 1995),
chap. 1.
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absorbed by the rise of fascism and the outbreak of World War II.24

Soon after the war, a younger generation of physicists returned to the challenge of quantum
field theory and its divergences. Many had spent the war years working on various applied
projects, such as radar and the Manhattan Project, and had developed skills in wringing
numerical predictions from seemingly intractable equations — what physicist and historian
of science Silvan (Sam) Schweber dubbed, “getting the numbers out.” Some had gained
crash-course experience in engineers’ effective-circuit approaches while working on radar;
others had tinkered with techniques akin to Green’s functions to estimate rates for processes
like neutron diffusion within a volume of fissile material.?® After the war, these younger
physicists were further intrigued and inspired by new experimental results, likewise made
possible by the wartime projects. In the late 1940s, experimental physicists like Willis Lamb
and Isidor Rabi — using surplus equipment from the radar project and exploiting newfound
skills in manipulating microwave-frequency electronics — measured tiny but unmistakeable
effects, including a miniscule difference between the energy levels of an electron in the 2s
versus 2p states of a hydrogen atom, and an “anomalous” magnetic moment of the electron,
ever-so-slightly larger than the value predicted by Dirac’s equation.2%

Prodded by what seemed like tantalizing evidence of the effects of virtual particles, young
theorists like Julian Schwinger and Richard Feynman worked out various “renormalization”
techniques in 1947 and 1948, with which to tame the infinities within quantum electrodynamics
(QED). They soon learned that Schwinger’s approach was remarkably similar to ideas that Sin-
itiro Tomonaga and colleagues had developed independently in Tokyo, during the war. Early in
1949, meanwhile, Freeman Dyson demonstrated a fundamental, underlying equivalence between
the Tomonaga—Schwinger approach and Feynman’s distinct-looking efforts, and further showed
that renormalization should work at arbitrary perturbative order in QED — a remarkable
synthesis at least as potent, and as surprising, as the earlier demonstrations had been, two
decades earlier, that Heisenberg’s and Schrodinger’s approaches to quantum theory were
mathematically equivalent.?7

Dyson became adept at teaching the new approach to quantum field theory. Hectographed
copies of his lecture notes from a 1951 course at Cornell University quickly began to circulate.?®
The unpublished notes provided a template for the first generation of textbooks on quantum
field theory, written after the great breakthroughs in renormalization: books like Josef Jauch
and Fritz Rohrlich’s The Theory of Photons and Electrons (1955) and Silvan Schweber’s
massive Introduction to Relativistic Quantum Field Theory (1961), culminating in the pair of
textbooks by James Bjorken and Sidney Drell, Relativistic Quantum Mechanics (1964) and
Relativistic Quantum Fields (1965).%

24 See especially Schweber, QED and the Men Who Made It, chap. 2.

25 Schweber, QED and the Men Who Made It, pp. xii, 452 and chaps. 7-8; see also Julian Schwinger, “Two
shakers of physics: Memorial lecture for Sin-itiro Tomonaga,” in The Birth of Particle Physics, ed. L. M.
Brown and L. Hoddeson (New York: Cambridge University Press, 1983), pp. 354-375; and Peter Galison,
“Feynman’s war: Modelling weapons, modelling nature,” Stud. Hist. Phil. Mod. Phys. 29 (1998): 391-434.
26 See especially Schweber, QED and the Men Who Made It, chap. 5.

27 See the articles reprinted in Julian Schwinger, ed., Selected Papers on Quantum Electrodynamics (New York:
Dover, 1958). See also Schweber, QED and the Men Who Made It, chaps. 6-9; and David Kaiser, Drawing
Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics (Chicago: University of Chicago
Press, 2005), chaps. 2-3.

28 Kaiser, Drawing Theories Apart, pp. 81-83.

29 3. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Reading, MA: Addison-Wesley, 1955);
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Yet the field did not stand still; new puzzles soon demanded attention. In 1957, for example,
experimentalist Chien-Shiung Wu and her colleagues demonstrated that parity symmetry was
violated in weak-force interactions, such as the -decay of cobalt-60 nuclei: nature really did
seem to distinguish between right-handed and left-handed orientations in space. Theorists
T. D. Lee and C. N. Yang had hypothesized that the weak nuclear force might violate parity,
and, soon after Wu'’s experiment, Murray Gell-Mann, Richard Feynman, and others published
models of such parity-violating interactions within a field-theory framework.?® Yet their models
suffered from poor behavior at high energies, which led others, including Sidney Bludman,
Julian Schwinger, and Sheldon Glashow to return to suggestive hints from Yang and Robert
Mills: perhaps nuclear forces were mediated by sets of force-carrying particles — and perhaps
those particles obeyed a nontrivial gauge symmetry, with more complicated structure than the
simple U(1) gauge symmetry that seemed to govern electrodynamics.3!

Mathematical physicists like Hermann Weyl had first explored gauge theories early in the
20th century, when thinking about the structure of spacetime in the context of Einstein’s general
theory of relativity. Decades later, in the mid-1950s, Yang and Mills, Robert Shaw, Ryoyu
Utiyama, and Schwinger suggested that nontrivial gauge symmetries could help physicists
parse the nuclear forces.?? Yet applying such ideas to nuclear forces remained far from
straightforward. For one thing, nuclear forces clearly had a finite range, which seemed to imply
that the corresponding force-carrying particles should have a large mass. But inserting such
mass terms by hand within the field-theoretic models violated the very gauge symmetries that
those particles were meant to protect. These challenges drove several theorists to investigate
spontaneous symmetry breaking in gauge field theories during the late 1950s through the
mid-1960s, culminating in what has come to be known as the “Higgs mechanism.”33

Another major challenge concerned how to treat strongly coupled particles, including the
flood of nuclear particles — cousins of the familiar protons and neutrons — that physicists
began to discover with their hulking particle accelerators. Dyson observed in 1953 that hardly
a month went by without the announcement that physicists had discovered a new particle.®*
Whereas electrons and photons interacted with a relatively small coupling constant, e? ~ 1/137
(in appropriate units), many of the new particles seemed to interact strongly with each other,
with coupling constants g? > 1. The small size of ¢? had been critical to the perturbative
approaches of Tomonaga, Schwinger, Feynman, and Dyson; how could anyone perform a
systematic calculation among strongly coupled particles? For just this reason, Feynman

S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Evanston, IL: Row, Peterson, 1961);
J. D. Bjorken and S. Drell, Relativistic Quantum Mechanics (New York: McGraw-Hill, 1964); Bjorken and
Drell, Relativistic Quantum Fields (New York: McGraw-Hill, 1965). Decades later, Dyson’s 1951 lecture notes
were beautifully typeset by David Derbes and published by World Scientific, so they are readily available today:
Freeman Dyson, Advanced Quantum Mechanics, ed. David Derbes, 2nd ed. (Singapore: World Scientific, 2011).
30 See, e.g., Allan Franklin, The Neglect of Experiment (New York: Cambridge University Press, 1986), chap. 1.
31 Sidney Coleman described some of this work in a magnificent, brief essay: Coleman, “The 1979 Nobel Prize
in Physics,” Science 206 (14 December 1979): 1290-1292. See also the helpful discussion in Peter Renton,
Electroweak Interactions: An Introduction to the Physics of Quarks and Leptons (New York: Cambridge
University Press, 1990), chap. 5.

32 Several original papers are available in Lochlainn O’Raifeartaigh, ed., The Dawning of Gauge Theory
(Princeton: Princeton University Press, 1997).

33 See, e.g., L. M. Brown, R. Brout, T. Y. Cao, P. Higgs, and Y. Nambu, “Panel discussion: Spontaneous
breaking of symmetry,” in The Rise of the Standard Model: Particle Physics in the 1960s and 1970s,
ed. L. Hoddeson, L. Brown, M. Riordan, and M. Dresden (New York: Cambridge University Press, 1997),
pp- 478-522; and Cao, Conceptual Developments of 20th Century Field Theories, chaps. 9-10.

34 Freeman Dyson, “Field theory,” Scientific American 188 (April 1953): 57-64, on p. 57.
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himself cautioned Enrico Fermi in December, 1951, “Don’t believe any calculation in meson
theory which uses a Feynman diagram!”3°

Some theorists, like Murray Gell-Mann and Yuval Ne’eman, sought to make headway by
deploying symmetry arguments and tools from group theory. Gell-Mann introduced his famous
“Fightfold Way” in 1961, for example, to try to understand certain regularities among nuclear
particles by arranging them in various arrays, sorted by quantum numbers like isospin and
hypercharge.?® Others, such as Geoffrey Chew, embarked on an even more ambitious program
to replace quantum field theory altogether. Chew announced at a conference in June 1961
that quantum field theory was “sterile with respect to the strong interactions” and therefore
“destined not to die but just to fade away.” He and his colleagues focused on an “autonomous
S-matrix program,” eschewing all talk of Lagrangians, virtual particles, and much of the
apparatus that Dyson had so patiently assembled for making calculations in QED.?7

Amid the turmoil and uncertainty, quantum field theory was never quite as dead as theorists
like Chew liked to proclaim. Nonetheless, its status among high-energy physicists seemed
far less settled in 1970 than it had been in 1950. The tide turned back toward field theory’s
advocates during the mid-1970s, driven by several important developments. First was the
construction of a unified model of the electromagnetic and weak interactions, accomplished
independently by Sheldon Glashow, Steven Weinberg, and Abdus Salam. Though they had
published their work in the mid-1960s, it only attracted sustained attention from the community
after Gerard 't Hooft and Martinus Veltman demonstrated in 1971-72 that such gauge field
theories could be renormalized in a systematic way. (As Coleman observed, 't Hooft’s work
revealed “Weinberg and Salam’s frog to be an enchanted prince.”) Soon after that, in 1973-74,
teams of experimentalists at CERN and Fermilab independently found evidence of weak
neutral currents, as predicted by the Glashow—Weinberg-Salam theory.?®

Meanwhile, other theorists, led by Yoichiro Nambu, Murray Gell-Mann, and Harald Fritzsch,
developed quantum chromodynamics: a well-defined scheme for treating strong interactions
among quarks and gluons, developed in analogy to QED but incorporating the kind of
nontrivial gauge structure at the heart of the Glashow—Weinberg—Salam electroweak theory.
The demonstration in 1973 by Coleman’s student David Politzer and independently by David
Gross and Frank Wilczek that the effective coupling strength between quarks and gluons in
this model should decrease at short distances (or, correspondingly, high energies) — which
came to be known as “asymptotic freedom” — breathed new life into field-theoretic approaches
to the strong interactions.?® Before long, the distinct threads of electroweak unification and

35 Richard Feynman to Enrico Fermi, 19 December 1951, as quoted in Kaiser, Drawing Theories Apart, p. 201;
see also ibid., pp. 197-206; and L. Brown, M. Dresden, and L. Hoddeson, eds., Pions to Quarks: Particle
Physics in the 1950s (New York: Cambridge University Press, 1989).

36 M. Gell-Mann and Y. Ne’eman, eds., The Eightfold Way (New York: W. A. Benjamin, 1964).

37 Quoted in Kaiser, Drawing Theories Apart, p. 306. See also G. F. Chew, S-Matriz Theory of Strong
Interactions (New York: W. A. Benjamin, 1961); Chew, The Analytic S Matriz: A Basis for Nuclear
Democracy (New York: W. A. Benjamin, 1966); and Kaiser, Drawing Theories Apart, chaps. 8-9.

38 Coleman, “The 1979 Nobel Prize in Physics,” 1291. See also Martinus Veltman, “The path to renormalizability,”
in Hoddeson et al., The Rise of the Standard Model, pp. 145-178; and Gerard ’t Hooft, “Renormalization
of gauge theories,” in ibid., pp. 179-198. On the experimental detection of weak neutral currents, see Peter
Galison, How Ezperiments End (Chicago: University of Chicago Press, 1983), chap. 4. Glashow, Weinberg,
and Salam shared the Nobel Prize in Physics in 1979; Veltman and 't Hooft shared the Nobel Prize in Physics
in 1999.

39 David Gross, “Asymptotic freedom and the emergence of QCD,” in Hoddeson et al., The Rise of the Standard
Model, pp. 199-232. Politzer, Gross, and Wilczek shared the Nobel Prize in Physics in 2004.
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quantum chromodynamics were knitted into a single “Standard Model” of particle physics, a
model built squarely within the framework of quantum field theory.*°

Even as physicists’ pursuit of field-theoretic techniques outstripped the template of pertur-
bative QED during the 1960s, Dyson’s crisp pedagogical model, which had been honed in the
era of QED’s great successes, continued to dominate in the classroom. Nobel laureate David
Gross, for example, recalled his first course on quantum field theory at Berkeley in 1965, in
which he and his fellow students were taught “that field theory equals Feynman rules”: quantum
field theory was still taught as if all that mattered were clever techniques for performing
perturbative calculations.*!

Coleman plotted a different course when he began teaching quantum field theory at Harvard
a few years later. Early in the first semester, his students would practice drawing Feynman
diagrams for perturbative calculations, to be sure. But in Coleman’s classroom, quantum field
theory would no longer be taught as a mere grab-bag of perturbative techniques. Coleman’s
course, in turn, helped to reinvigorate the study of quantum field theory more generally,
following a protracted period when its fate seemed far from clear.

One obvious distinction between Coleman’s pedagogical approach and Dyson’s was an
emphasis upon group theory and gauge symmetries. Coleman, after all, had written his
dissertation at Caltech on “The Structure of Strong Interaction Symmetries,” working closely
with Gell-Mann just at the time that Gell-Mann introduced his “Eightfold Way.” Coleman
incorporated group-theoretic techniques into his teaching rather early, devoting his first set of
summer-school lectures at Erice to the topic in 1966 (drawing extensively from his dissertation);
Howard Georgi likewise recalls learning group theory from a course that Coleman taught
at Harvard around the same time. Coleman continued to refine his presentation over the
years. By the mid-1970s, he devoted several weeks of his course on quantum field theory to
non-Abelian groups like SU(3) and their role in gauge field theories.*?

Second was an emphasis on path-integral techniques. Although Feynman had developed
path integrals in his Ph.D. dissertation and published on them in the 1940s, they had garnered
virtually no space in the textbooks on quantum field theory published during the 1950s and
1960s. Nonetheless, several theorists began to recognize the power and elegance of path-integral
techniques over the course of the 1960s, especially for tackling models with nontrivial gauge
structure.*> When Coleman began teaching his course on quantum field theory, he featured
functional integration and path-integral methods prominently.

Third was an emphasis on spontaneous symmetry breaking. Coleman liked to joke with

40 Laurie Brown, Michael Riordan, Max Dresden, and Lillian Hoddeson, “The Rise of the Standard Model,
1964-1979,” in Hoddeson et al., The Rise of the Standard Model, pp. 3-35.

41 Gross, “Asymptotic freedom and the emergence of QCD,” p. 202.

42 Sidney Coleman, The Structure of Strong Interaction Symmetries (Ph.D. dissertation, Caltech, 1962);
Coleman, “An introduction to unitary symmetry” (1966), reprinted in Coleman, Aspects of Symmetry, chap. 1;
Georgi, “Sidney Coleman,” p. 4.

43 Richard Feynman, “Spacetime approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20 (1948):
367-387; L. D. Faddeev and V. N. Popov, “Feynman diagrams for the Yang-Mills field,” Phys. Lett. B 25
(1967): 29-30. See also Schweber, QED and the Men Who Made It, pp. 389-397; Veltmann, “The path to
renormalizability,” pp. 158-159; Gross, “Asymptotic freedom and the emergence of QCD,” pp. 201-202.
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his students about his curious inability to predict what would become the most important
developments in the field. Indeed, handwritten lecture notes from 1990 record him explaining:

At crucial moments in the history of physics, I have often said about a new idea
that I think it must be wrong. When the quark model was proposed, I thought it
was wrong; likewise the Higgs mechanism. That’s a good sign. If I say something
isn’t worth paying attention to, it probably isn’t worth paying attention to. If I
say it’s wrong, then the idea merits careful examination — it may be important.*

Peter Higgs himself recalled that when he visited Harvard in the spring of 1966 to present his
work, Coleman was ready to pounce, so certain was he that Higgs’s work must be mistaken.*®

For all the joking, however, Coleman rapidly became a leading expert on spontaneous
symmetry breaking and one of its best-known expositors. He lectured on the subject at Erice
and incorporated extensive material on symmetry breaking in his Harvard course on quantum
field theory. Not only that: together with his graduate student Erick Weinberg, Coleman
extended the idea to symmetries of an effective potential that could be broken by radiative
corrections (known today as “Coleman—Weinberg” symmetry breaking), and later, with Curt
Callan and Frank De Luccia, Coleman explored “the fate of the false vacuum,” laying crucial
groundwork for our modern understanding of early-universe cosmology.*°

Coleman’s lecture course on quantum field theory thus moved well beyond the earlier
pedagogical tradition modeled on Dyson’s notes and typified by Bjorken and Drell’s Relativistic
Quantum Fields. The differences lay not just in topics covered, but in underlying spirit. Cole-
man presented quantum field theory as a capacious framework, with significant nonperturbative
structure. His style was neither overly rigorous nor narrowly phenomenological, offering an
introduction to the Standard Model with an emphasis on general principles. In that way, his
course remained more accessible and less axiomatic than many of the books that began to
appear in the 1980s, such as Claude Itzykson and Jean-Bernard Zuber’s compendious Quantum
Field Theory (1980) or Ta-Pei Cheng and Ling-Fong Li’s more specialized Gauge Theory of
Elementary Particle Physics (1984).47

In at least one significant way, however, Coleman’s pedagogical approach remained closer
in spirit to Dyson’s lectures than more recent developments. Renormalizability retained a
special place for Coleman: models were adjudicated at least in part on whether divergences
could be systematically removed for processes involving arbitrarily high energies. This, after
all, was how (in Coleman’s telling) 't Hooft’s results had ennobled the Glashow—Weinberg—
Salam model. Though Coleman was deeply impressed by Kenneth Wilson’s work on the

44 Transcribed from p. 210 of the handwritten lecture notes for Physics 253B, spring 1990.

45 Peter Higgs in “Panel discussion: Spontaneous breaking of symmetry,” p. 509. See also Higgs, “My life as a
boson,” available at http://inspirehep.net/record/1288273/files/MyLifeasaBoson.pdf.

46 Coleman, “Secret symmetry: An introduction to spontaneous symmetry breakdown and gauge fields” (1973),
reprinted in Coleman, Aspects of Symmetry, chap. 5. See also S. Coleman and E. J. Weinberg, “Radiative
corrections as the origin of spontaneous symmetry breaking,” Phys. Rev. D 7 (1973): 1888-1910; Coleman,
“The fate of the false vacuum, I: Semiclassical theory,” Phys. Rev. D 15 (1977): 2929-2936; C. G. Callan,
Jr. and S. Coleman, “The fate of the false vacuum, II: First quantum corrections,” Phys. Rev. D 16 (1977):
1762-1768; and S. Coleman and F. De Luccia, “Gravitational effects on and of vacuum decay,” Phys. Rev. D
21 (1980): 3305-3315.

47 Claude Itzykson and Jean-Bernard Zuber, Quantum Field Theory (New York: McGraw-Hill, 1980); Ta-Pei
Cheng and Ling-Fong Li, Gauge Theory of Elementary Particle Physics (New York: Oxford University Press,
1984).
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renormalization group — late in 1985, he remarked upon “Ken Wilson’s double triumph” of
uniting the study of field theory and critical phenomena — Coleman never fully adopted the
viewpoint of effective field theory.*® In effective field theories, physicists allow for an infinite
tower of nonrenormalizable interaction terms — all terms consistent with some underlying
symmetries — and calculate resulting processes for energy scales below some threshold, A.
Though effective field theory techniques have become central to research in many areas of
high-energy physics over the past three decades, today’s popular textbooks on quantum field
theory still rarely devote much space to the topic — so Coleman’s lecture course continues to
enjoy excellent company.*’

I took the two-semester course Physics 253 with Sidney Coleman during the 1993-94
academic year, my first year in graduate school. For each semester, a large percentage of
students’ grades in the class derived from how well they did on a final exam: a 72-hour
take-home exam that Coleman distributed on a Friday afternoon. My recollections of the
weekend I spent working on the exam that fall semester are a bit hazy — much sweating, a bit
of cursing, and very little sleep — and in the end, I ran out of time before I could complete
the last problem. Sleep deprived, desperate, and more than a little inspired by Coleman’s
own sense of humor, I decided to appeal to a variant of the CPT theorem, on which we had
focused so dutifully in class. In haste I scribbled down, “The final result follows from CBT': the
Coleman Benevolence Theorem.” A few days later I got back the marked exam. In Coleman’s
inimitable, blocky handwriting he had scrawled, “Be careful: This has not been experimentally
verified.”5%

Pace Coleman’s warning, there is plenty of evidence of his benevolence. I was struck
recently, for example, by a questionnaire that he filled out in 1983, in preparation for his
30th high school reunion. By that time he had been elevated to an endowed professorship at
Harvard and elected a member of the U.S. National Academy of Sciences. Yet in the space
provided on the form for “occupation or profession,” Coleman wrote, simply, “teacher.”

And quite a teacher he was. Throughout his career, he supervised 40 Ph.D. students. He
routinely shared his home telephone number with students (undergraduates and graduate
students alike), encouraging them to call him at all hours. “Don’t worry about disturbing
me if you call me at home,” he advised a group of undergraduates in the early 1990s. “I'm

48 Sidney Coleman to Mirdza E. Berzins, 19 December 1985. Other leading field theorists shared Coleman’s
emphasis on renormalizability at the time. See, e.g., Steven Weinberg, “The search for unity: Notes for a
history of quantum field theory,” Daedalus 106 (Fall 1977): 17-35; cf. Weinberg, “Effective field theory, past
and future,” Proceedings of Science (CD09): 001, arXiv:0908.1964 [hep-th|.

49 For interesting historical perspectives on the shift to (nonrenormalizable) effective field theory approaches,
see Tian Yu Cao, “New philosophy of renormalization: From the renormalization group equations to effective
field theories,” in Renormalization: From Lorentz to Landau (and Beyond), ed. L. M. Brown (New York:
Springer, 1993), pp. 87-133; and Silvan S. Schweber, “Changing conceptualization of renormalization theory”
in ibid., pp. 135-166. For brief introductions to effective field theory, see Anthony Zee, Quantum Field
Theory in a Nutshell, 2nd ed. (Princeton: Princeton University Press, 2010), chap. VIIL.3; and Steven
Weinberg, The Quantum Theory of Fields, vol. 2 (New York: Cambridge University Press, 1996), chap. 19.
See also lain W. Stewart’s course on “Effective Field Theory,” available for free on the edX platform at
https://www.edx.org/course/effective-field-theory-mitx-8-eftx.

50 Despite my flub on the exam that first semester, Coleman kindly agreed to serve on my dissertation
committee.
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home most nights and usually stay up until 4 a.m. or so.” That sort of dedication left an
impression. “I would like to thank you for providing me with the best academic course I have
ever encountered throughout my college career,” wrote one undergraduate upon completing a
course on quantum mechanics with Coleman. “I commend you on your excellent preparation
for each and every lecture, your availability and helpfulness to each student, and particularly,
your concern that the student develop his understanding and interest in the subject.” Another
undergraduate, who had taken Physics 253, wrote to Coleman a few years later that he was
“one of the very best teachers I have had in my life.”?!

That spirit infuses this volume. Producing these lecture notes has been an enormous labor
of love, initiated by David Derbes and brought to fruition thanks to the tireless efforts of a
large editorial team, with special contributions from Bryan Gin-ge Chen, David Derbes, David
Griffiths, Brian Hill, Richard Sohn, and Yuan-Sen Ting. This volume is proof that Sidney
Coleman inspired benevolence enough to go around.®?

David Kaiser

Germeshausen Professor of the History of Science
and Professor of Physics
Massachusetts Institute of Technology

51 Sidney Coleman, memo to undergraduate advisees, 6 September 1991; Robert L. Veal to Sidney Coleman,
23 June 1974; Mark Carter to Sidney Coleman, 3 July 1981.

52 1t is a pleasure to thank David Derbes for inviting me to contribute this Foreword to the volume, and to
Diana Coleman for sharing copies of Professor Coleman’s correspondence. I am also grateful to Feraz Azhar,
David Derbes, David Griffiths, Matthew Headrick, Richard Sohn, Jesse Thaler, and Aaron Wright for helpful
comments on an earlier draft.
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Preface

Sidney Coleman was not only a leader in theoretical particle physics, but also a hugely gifted
and dedicated teacher. In his courses he found just the right balance between rigor and
intuition, enlivened by wit, humor and a deep store of anecdotes about the history of physics.
Very often these were first-hand accounts; if he wasn’t a participant, he was an eyewitness.
He made many important contributions to particle theory, but perhaps his most lasting
contribution will prove to be his teaching. For many years he gave a series of celebrated
summer school courses at the International Center for Scientific Culture “Ettore Majorana” in
Erice, Sicily, under the directorship of Antonino Zichichi. A collection of these was published
as a book, Aspects of Symmetry, by Cambridge University Press in 1985. This work, Prof.
Coleman’s only previous book, is now recognized as a classic.

Over three decades, Prof. Coleman taught Physics 253, the foundation course on quantum
field theory to Harvard’s graduate students in physics.>® Many of the top American theoretical
particle physicists learned quantum field theory in this course. Alas, he died much too young,
at the age of 70, before he took the time away from his research to write the corresponding
textbook. Brian Hill, one of Prof. Coleman’s graduate students at Harvard (and the Teaching
Fellow for the course for three years), had taken very careful notes of the course’s first seven
months from the fall of 1986, about one and a half semesters. He edited and rewrote these
after every class. Xeroxes of Brian’s handwritten notes were made available at Harvard for
later classes, and served for nearly two decades as a de facto textbook for the first part of
the course. In 2006, Bryan Gin-ge Chen, a Harvard undergraduate in physics, asked Brian if
he could typeset his notes with the standard software I¥TEX. Bryan got through Lecture 11.
Yuan-Sen Ting, an undergraduate overseas, followed up in 2010, completing the typesetting of
Brian’s notes through Lecture 28. (Yuan-Sen completed a PhD at Harvard in astrophysics;
Bryan moved to Penn for his in physics.) These notes were posted in 2011, with Brian Hill’s

53 Harvard offered Physics 253, on relativistic quantum theory, for decades before it became Prof. Coleman’s
signature course. For example, in 1965—66 Julian Schwinger taught the class, then called “Advanced Quantum
Theory”. Prof. Coleman also taught the course, in 1968 (and perhaps earlier). In 1974 it was renamed “Quantum
Field Theory”. He first taught this course in 1975-76, repeated it on and off until 1986, and thereafter taught
it annually through the fall of 2002. He was to have taught the second semester in 2003, but his health did not
permit it; those duties fell to Nima Arkani-Hamed (now at IAS, Princeton). I am very grateful to Marina
Werbeloff for this information, which she gleaned at my request by searching through fifty years of course
catalogs. I thank her for this and for much other assistance, without which the project likely would not have
been completed.
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introduction, at the arXiv, a free online repository for papers in physics, mathematics and
many other subjects. I found them in the summer of 2013.

Like many, I wrote to Yuan-Sen and Bryan to express my thanks, and asked: Might we
see the second semester some day? Yuan-Sen wrote back to say that unfortunately they did
not have a copy of any second semester notes. I am a high school teacher, and I have been
privileged to teach some remarkably talented young men and women, a few of whom later
took Prof. Coleman’s course. One of these, Matthew Headrick at Brandeis, had not only a set
of second semester notes (from a second graduate student, who wishes to remain anonymous),
but also a complete set of homework problems and solutions. He kindly sent these to me. I
got in touch with Yuan-Sen and Bryan and suggested we now type up the second semester
together with homework problems and solutions. Yuan-Sen was trying to finish his thesis, and
Bryan had taken a position in Belgium. While they couldn’t add to the work they’d already
done, they offered their encouragement. Yuan-Sen also suggested that I get in touch with his
colleague, Richard Sohn, who had been of significant help to them while typing up Brian’s
notes. Richard had gone through the notes carefully and corrected typos and a few minor
glitches in note-taking or the lectures themselves. Even more enticing, Harvard’s Physics
Department, perhaps recognizing that something special was taking place, had videotaped
Prof. Coleman’s entire course in 1975-76. (The cameraman was Martin Ro¢ek, now at Stony
Brook.) This was an experiment, as Prof. Coleman himself remarks at the very beginning of
the first lecture. Other courses were videotaped, but it’s noteworthy that, according to Marina
Werbeloff, Harvard’s Physics Librarian, only Prof. Coleman’s tapes continued to circulate for
thirty years. Aware that the frequently borrowed VHS tapes were starting to deteriorate, she
had them digitized. In 2007, Maggie McFee, then head of the department’s Computer Services,
set up a small server to post these online in 2008. Perhaps the two semesters of notes and
the videos could provide enough to put together something like the book that Prof. Coleman
might have written himself. Some years earlier I had stumbled onto copies of Freeman Dyson’s
famous Cornell notes (“Advanced Quantum Mechanics”, 1951) at MIT’s website, and with
Prof. Dyson’s permission had typeset these with IXTEX for the arXiv. Soon thereafter World
Scientific contacted Prof. Dyson and me to publish the notes as a book. Yuan-Sen wondered
if World Scientific would be interested in publishing Coleman’s lectures. I emailed Lakshmi
Narayanan, my liaison for Prof. Dyson’s notes. Indeed, World Scientific was very interested.

Now began a lengthy series of communications with all the interested parties. Neither
Richard nor I sought royalties. Prof. Coleman’s widow Diana Coleman is alive and the
deserving party. She was happy to allow us to proceed. I got in touch both with Brian Hill
and with the author of the second semester notes; each graciously agreed to our using their
invaluable notes for this project. Through the kindness of Ms. Werbeloff, who responded after
I asked Harvard about using the videotapes, I got in touch with Masahiro Morii, the chair of
Harvard’s Physics Department, who obtained approval from Harvard’s Intellectual Property
Department for us to use the videos. Ms. Werbeloff arranged to have the digitized video files
transferred to a hard drive I sent to her. I cloned the returned drive and sent that to Richard.
David Kaiser of MIT, a physicist and historian of physics, and also a former graduate student
of Prof. Coleman’s, generously agreed to write a foreword for these lectures. Additionally, Prof.
Kaiser carefully read the manuscript and provided many corrections. He and Richard visited
Ms. Coleman in Cambridge and got from her xeroxes of Prof. Coleman’s own class notes,
a priceless resource, particularly as these seem to be from the same year as the videotapes.
Through Matt Headrick, I was able to contact the authors of the 1997-98 homework solutions,
two of Prof. Coleman’s graduate teaching assistants, David Lee and Nathan Salwen. They
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not only gave their permission for their solutions to be used, but generously provided the
ETEX source. Finally, we obtained a second set of lecture notes from Peter Woit at Columbia.
Richard and I set to work from five separate records of the course: Brian Hill’s and the
anonymous graduate student’s class notes; Prof. Coleman’s own notes; class notes from Peter
Woit; and our transcriptions of the videotaped lecture notes. Richard, far more conversant
with modern field theory than I, would tackle the second semester, while I would start folding
in my transcriptions of Prof. Coleman’s videotaped lectures into the Hill-Ting—Chen notes,
together with homework and solutions. To be sure, there are gaps in nearly all our accounts of
the course (though Brian Hill’s notes are complete, there are pages missing in Prof. Coleman’s
notes, quite a few electronic glitches in the forty-year old videotapes, and so on), but we seem
to have a pretty complete record. The years are different (1975-76 for the videotapes and
for Prof. Coleman’s own lecture notes, 1978-79 for Peter Woit’s notes, 1986-87 for Brian
Hill’s notes, and spring 1990 for the anonymous graduate student’s), but the correspondence
between these, particularly in the first semester, is remarkably close.’® All of the contributions
have been strictly voluntary; we have done this work out of respect and affection for Sidney
Coleman.

Richard and I had been at work for about six months, when David Griffiths, who earned his
PhD with Prof. Coleman, found the Hill-Chen-Ting notes at the arXiv, and wrote Yuan-Sen
and Bryan to ask about the second semester. Yuan-Sen forwarded the email to me, and I wrote
back. Prof. Griffiths, now emeritus at Reed College and the author of several widely admired
physics textbooks, also wanted to see Prof. Coleman’s course notes turned into a book. He has
been an unbelievably careful and valuable critic, catching many of our mistakes, suggesting
perhaps a hundred editorial changes per chapter, clarifications or alternative solutions in the
homework, and generally improving the work enormously. Many of the last chapters were read
by Prof. Jonathan L. Rosner, University of Chicago, who cleared up several misunderstandings.
The responsibility for all errors, of course, rests with the last two editors, Richard and me.

The editors are profoundly grateful to all who have so generously offered their time, their
expertise and their work to this project. We are particularly grateful to the talented staff at
World Scientific for their hard work and their immense patience. We hope that were Prof.
Coleman alive today, he would be pleased with our second-order efforts. They are only an
approximation. This book can never be the equal of what he might have done, but we hope
we have captured at least a little of his magic. May later generations of physics students learn,
as so many before them have learned, from one of the best teachers our science has known.

David Derbes
The Laboratory Schools
The Uniwversity of Chicago

54 Very late in the project, we obtained a set of class notes, problems and exams from 2000-01, courtesy of
another former student, Michael A. Levin of the University of Chicago. Through Michael we were able to get
in touch with Prof. Coleman’s last Teaching Fellow (1999-2002), Daniel Podolsky of the Israel Institute of
Technology (Technion), Haifa. Daniel had two sets of typed notes for the course; his own, beautifully IATEXed,
which Michael had originally provided, and other notes (but missing many equations) from spring, 1999. A
Harvard student hired by Prof. Coleman recorded the lectures as she took notes, and typed them up at home.
The following summer Daniel worked with Prof. Coleman to edit the notes, but they did not get very far.
Daniel’s notes (both sets) were used primarily to check our completed work, but in a few places we have
incorporated some very valuable insights from them.
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A note on the problems

The classes in Physics 253a (fall) and Physics 253b (spring) ran as two ninety-minute lectures
per week. Students were assigned problem sets (from one to four problems) nearly every week,
and given solutions to them after the due date. As this book has fifty chapters, it seemed
reasonable to include twenty-five problem sets. These include all the assigned problems from
1997-98 (with two exceptions),! some additional problems from other years that were not
assigned in 1997-98, and a handful of final examination questions. In 1975-76, Coleman
began the second semester material a little early, in the last part of the last lecture of 253a,
Chapter 25. This material was moved forward into Chapter 26, which marks the beginning of
the second semester, and an approximate dividing line for the provenance of the problems.
Usually, those from 253a are placed before Chapter 26; those from 253b, after. Problems 14
are transitional: though assigned in the second semester, they involve first semester material.

The editors obtained complete sets of assigned problems and examinations (and their
solutions) from the year 1978-79, the years 1980-82, and the year 1986-87 from Diana
Coleman (via David Kaiser); 1990-91, from Matthew Headrick; 1997-98 from Matthew
Headrick, Nathan Salwen and David Lee; 2000-01 from Michael Levin; and examination
questions from 1988-2000 from Daniel Podolsky. John LoSecco provided a problem cited
in the video of Lecture 50 (Problem 4 on the 1975a Final) and its solution, which appears
here as Problem 15.4. In fact, only a few assigned problems from these other years do not
appear in this book. Most of the problems were used over and over throughout the roughly
thirty years that Coleman taught the course; sometimes a problem used in an examination
was assigned for homework in later years, or vice versa. The solutions were written up by
Teaching Fellows (notably by Brian Hill, but very probably some are due to Ian Affleck, John
LoSecco, Bernard Grossman, Katherine Benson, Vineer Bhansali, Nathan Salwen, David
Lee, and Daniel Podolsky, among many others unknown to us). Some solutions, particularly
to the exam questions, are by Coleman himself. It’s hard to know the authorship of many
solutions—the same problems assigned ten years apart often have essentially identical solutions,
though in different handwriting, and we may not have the original author’s work. Now and

I [Eds.] Two questions were omitted, as the videotaped lectures of 1975-76, on which the text is based, include
their solutions: (1997a 2.3), on the form of the energy-momentum tensor for a scalar field; and (1998b 10.1),
on the mixing angle for the p and w eigenstates of the mass-squared matrix for the J¥ = 1~ meson octet. The
first is worked out in §5.5, (5.52)—(5.58); the second appears in §39.3, (39.19)—(39.35).
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then the editors have added a little to a problem’s solution, but most of the solutions are
presented just as they were originally.

A century ago, it was customary in British mathematics textbooks to cite the provenance
(if known) of problems; e.g., an exercise taken from the Cambridge Mathematical Tripos
was indicated by the abbreviation “MT” and the year of the examination. Here, (1998a 2.3)
indicates Problem 2.3 assigned in the fall of 1998. To aid the reader in finding a particular
problem, succinct statements of them are given below. (Incidentally, the Paracelsus epigraph?
in Problems 1 comes from the first 253a assignment in 1978.)

1.1

1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
4.1
4.2
4.3
5.1
6.1

6.2
6.3
6.4

7.1
7.2

7.3

8.1

9.1
9.2

3
Show that the measure — - is Lorentz invariant.
(2m)32wp
Show that (0|T(¢(xz)p(y))|0) is a Green’s function for the Klein—-Gordon equation.

Show that the variance of ¢(z) over large regions is tiny, and roughly classical; over small regions, it
fluctuates as a typical quantum system.

Find the dimensions of various Lagrangians in d spacetime dimensions.
Rework Problem 1.3 from the point of view of dimensional analysis.
Obtain the Maxwell equations from the Maxwell Lagrangian, . = _iF“UF#w

Obtain both the canonical energy-momentum tensor, and an improved, symmetric version, for the
Maxwell field.

Obtain Schrédinger’s equation from a given Lagrangian.

Quantize the theory in 3.1.

Show that only two of the symmetries { P, C, T} have corresponding unitary operators for this theory.
Examine dilation invariance for the massless Klein—-Gordon theory.

Evaluate the real constant o in Model 1 in terms of its only Wick diagram, e—e.

Demonstrate various properties of the coherent states of a single harmonic oscillator.

Obtain expectation values of an operator in terms of a generalized delta function.

Evaluate (p|S — 1|p’) for the pair model, and show that its S-matrix is unitary, i.e. (p|STS — 1|p/) = 0.

Let Model 3 describe kaon decay into pions (K ~ ¢, m ~ 1)), and determine the value of g/my to one
significant digit.

Compute do/dQ (c.o.m. frame) for elastic NN scattering in Model 3 to lowest order in g.
Compute do/d2 (c.o.m. frame) for N + N — 27 in Model 3 to lowest order in g.

Determine the behavior of the S-matrix in a free scalar field under an anti-unitary operator (as required
for CPT symmetry).

Determine the two-particle density of states factor in an arbitrary frame of reference.

Calculate the decay A — B + C' + D in a theory of four scalar fields {A, B,C, D} if A is massive but
the other three are massless, with ./ = gABCD.

Determine the density of states factor for particle decay if the universe is filled with a thermal distribution
of mesons at a temperature 7.

Replace a free Klein—Gordon field ¢ by ¢ = A + %gAQ, and show that to O(g?) the sum of all A-A
scattering graphs vanishes.

Calculate the imaginary part of the renormalized meson self-energy II'(p?) in Model 3 to O(g?).

Compute the Model 3 vertex —il"(p?, p'2, ¢2) to O(g®) as an integral over two Feynman parameters,

for p? = p'2 = m?2.

2 [Eds.] Theophrastus von Hohenheim (1493-1541), known as Paracelsus, a pioneering Swiss physician,
alchemist, and astrologer.



10.1

10.2
11.1
11.2
12.1

12.2

12.3

13.1

13.2

14.1

14.2
14.3

14.4

15.2
15.3

15.4

16.1

16.2

16.3

17.1

17.2
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Calculate the renormalized “nucleon” self-energy, ' (p?), in Model 3 to O(g?), expressing the answer as
an integral over a single Feynman parameter.

Verify the Lie algebra of the Lorentz group’s generators using the defining representation of the group.
Find the positive energy helicity eigenstates of the Dirac equation.
Work out trace identities for various products of Dirac gamma matrices.

Attempt the canonical quantization of a free Klein-Gordon field ¢(z) with anticommutators, and show
that the Hilbert space norm of (¢|{6,07}|$) cannot be positive.

Compute, to lowest nontrivial order, do/dQ2 (c.o.m. frame) for the scattering N + ¢ — N + ¢ if
£ = gy (the “scalar” theory).

Compute, to lowest nontrivial order, do/dQ (c.o.m. frame) for the scattering N + N — N + N if
2 = gyivsd (the “pseudoscalar” theory).

In the “pseudoscalar” theory, £’ = giiysip¢, calculate the renormalized “nucleon” self-energy, >/ (k?),
to O(g2). Leave your answer in terms of an integral over a single Feynman parameter.

In the same theory, compute the renormalized meson self-energy, 11’ (k2), to O(g2). Again, leave your
answer in terms of an integral over a single Feynman parameter. Check that the imaginary part of this
quantity has the correct (negative) sign.

Given an interaction Hamiltonian of four-fermion interactions whose S-matrix is C'PT-invariant, show
that the Hamiltonian is itself invariant. Investigate under what circumstances it is invariant under the
sub-symmetries of CPT, e.g., PT and P.

Derive the superficial degree of divergence D for a general Feynman graph in d spacetime dimensions.

In the generalized “pseudoscalar” theory, .¥’ = gNiysT+wN, calculate various N + 7 — N’ + 7/
amplitudes, using isospin invariance.

Show that to O(g2), the original “pseudoscalar” theory’s scattering amplitudes coincide with those of a

second Lagrangian, " = p~! [ag%wwam + ngElngbQ} , for appropriate choices of a and b.

Investigate the (four dimensionally) longitudinal solutions of the free Proca Lagrangian, and construct
its Hamiltonian. Show that for an appropriate identification of Ag and its conjugate momentum with ¢
and 7 of the Klein—Gordon equation, the Hamiltonians of the two theories are identical.

Construct the Hamiltonian of a free, massive vector in terms of its creation and annihilation operators.

Let A, be a vector of mass p be coupled to two Dirac fields ¥1 and 2 of mass m1 and m2, respectively,
according to the interaction Lagrangian .2’ = gA, (1 yHaba + PyyHep1). Compute the decay width T'
for 1 — 2 + v if m1 > ma + p to lowest nonvanishing order.

Compute elastic meson—meson scattering to O(g?) in a scalar theory with the interaction .#’ =
—(1/4)g¢™* — (1/41)C¢'* in terms of the Mandelstam variables s, ¢, and u. Define the counterterm C
by the requirement that i.A = —ig when all four mesons are on the mass shell, at the symmetry point
where the Mandelstam variables all equal 442 /3.

A Dirac field is minimally coupled to a Proca field of mass p. Compute, to lowest nontrivial order, the
amplitude for elastic fermion—antifermion scattering, and show that the part proportional to k* k:"/,u2
vanishes.

In this same theory, compute the amplitude for elastic vector—spinor scattering to lowest nontrivial
order, and show that if the meson’s spin vector ¢# is aligned with its four-momentum k* (for either the
outgoing or incoming vector), the amplitude vanishes. Repeat the calculation, substituting a scalar for
the spinor.

Two Dirac fields A and B of masses m 4 and mp interact with a complex charged scalar field C' of mass
m¢ according to the Lagrangian .#" = g(Aiys BC + Biys AC*). Let the fields be minimally coupled to
a Proca field, and let their charges (in units of €) be g4, g5, and ¢¢, such that ¢4 = ¢ + gqc. Show
that the amplitude for v + A — B + C vanishes to lowest order (eg) if the Proca spin is aligned with its
four-momentum.

A scalar field is quadratically coupled to a source J, i.e., with an interaction term %J¢2. From Chapter
27, it can be shown that (0|S|0); = (det[A — ie|/ det[K — ie])~'/2, where A = (02 + u? — J), and
K = (D2 + u2). Show that you obtain the same result by summing Feynman graphs.

C

Using functional integrals, determine the photon propagator Dy,

in Coulomb gauge, V+-A = 0.



x1

17.3

18.1

18.2

18.3

19.1

19.2

20.1

20.2

21.2
21.3

22.1

22.2

23.1

23.2

24.1
24.2

24.3

25.1

25.2

A note on the problems

Compute, to O(e?), the invariant Feynman amplitude for electron—electron scattering in both the
Coulomb and Feynman gauge, and show that the final answers are the same.

Compute, to O(e?), the renormalized photon self-energy ﬁi“,(pQ) in the theory of a charged Dirac
field minimally coupled to a massless photon. Write the answer as an integral over a single Feynman
parameter, and handle the divergences with Pauli—Villars regulator fields.

Compute, to O(e?), the renormalized photon self-energy ﬁLV(pQ) in the theory of a charged spinless
meson minimally coupled to a photon. Write the answer as an integral over a single Feynman parameter,
and handle the divergences with dimensional regularization.

Add to the standard Maxwell Lagrangian the interaction term ¢’ = f%/\(auA“ +cAuAR)? and a
ghost Lagrangian Zp0st. Determine the latter, the ghost propagator, and the Feynman rules for the
ghost vertices.

Carry out computations for a charged scalar particle minimally coupled to a massless photon parallel to
those earlier calculations for a charged Dirac particle: Ward identity and its verification at tree level,
identification of the normalized charge with the physical charge, determination of Fi(q?) and Fz(q?).

Compute the decay width I' for the process ¥1 — w2 + v if m1 > mg, for the Lagrangian < =
9o p1 FHY 4 h.c.

The errors on the anomalous magnetic moments, and hence on 1 + F»(0), of the electron and the muon
are 3 x 10711 and 8 x 10™7, respectively. What bounds do these place on a hypothetical massive photon
whose mass M is much greater than the muon’s mass?

Express the renormalized photon propagator (in Landau gauge) in terms of its spectral representation
with spectral function p(k?), and show that the hadronic contribution pg(a?) is proportional, to O(e*)
and O(e?m?/a?), to the total cross-section o7 for eT-e~ — hadrons.

Show that the two SU(3)-invariant quartic self-couplings of the pseudoscalar octet, Tr(¢*) and (Tr(¢?))2,
are proportional to each other.

Show that the magnetic moments within the SU(3) decuplet are proportional to the charge.

Assuming that the magnetic moments of quarks are proportional to their charges, u = kqo, where o is
the vector of Pauli matrices, determine the ratio of the proton and neutron magnetic moments, and
compare with experiment.

Consider the scattering of two distinct, spinless particles below inelastic threshold. Find the relation
between the s-wave scattering length a and the invariant Feynman amplitude, A, evaluated at threshold.

Consider a massless neutrino and an electron coupled to a Proca field W of mass M. For the process
v+7 — W+W, there are nine independent amplitudes. Find them. Some are well-behaved at high energy,
but others grow without limit. Which are which? Show that all amplitudes become well-behaved by the
addition of new terms to the Lagrangian, 2/ = ¢ (i) — M)e’ + f(Wie'v* (14 v5)v + Wuo(1 —v5)yte’),
if f is chosen proportional to g.

A charged scalar ¢ of mass m is minimally coupled to the photon. A second massless neutral meson
¢ is coupled through the term &’ = ggpe"V° F,, Fy,. Determine do/dQ2 to O(e?g?) for the process
Y+Y = o+

Starting from the Goldstone model, find a solution ¢(z) of the field equations, such that ¢(+£oo0) = +a.
These solutions could represent “domain walls” in the early universe. Find the energy of these domain
walls in terms of the Goldstone parameters A and a.

Verify an approximation (44.51) used in the derivation of the scalar field’s effective potential.

Consider the full Yukawa theory of a triplet of pions and the nucleon doublet, with isospin-invariant
interaction ¢/ = —igN~s7T*®N and a quartic pion self-coupling iA(‘I’ e )2 + Zor. Let the fields
now be minimally coupled to a massless photon, and determine the contributions to the proton and
neutron form factors F»(0).

Consider the Goldstone model minimally coupled to a Proca field with mass po. What is the mass of
this “photon” after the symmetry breaks? Does the Goldstone boson survive, and if so, what is its mass?

A free Proca field of mass p is coupled to a real scalar field ¢ of mass m by the interaction Lagrangian
2" = gA* A, é. There are nine independent amplitudes for the process A4+¢ — A+ ¢, some well-behaved
at high energy, and some not. Find them. Which are which? Show that all become well-behaved with
the addition of a new term, h¢? A, A*, for an appropriate choice of h.

From the infinitesimal form of the non-Abelian gauge transformation, determine the finite (integrated)
form, and show that its corresponding unitary matrix U(s) satisfies a particular differential equation.



25.3

25.4

A note on the problems xli

Compute k;LM H for the elastic scattering of non-Abelian gauge bosons off Dirac particles in the tree
approximation (i.e., to O(g?)) where M* is the matrix element of a conserved current, by setting

1% __ L./
S k“.

Compute, to O(g?), elastic vector-scalar scattering in the Abelian Higgs model, for the case in which
both the initial and final vector mesons have zero helicity, but at fixed scattering angle 6 (# 7,0). Show
that the amplitude approaches a limit at high energy, even though some individual graphs grow with
energy.
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Adding special relativity to quantum mechanics

1.1 Introductory remarks

This is Physics 253, a course in relativistic quantum mechanics. This subject has a notorious
reputation for difficulty, and as this course progresses, you will see this reputation is well
deserved. In non-relativistic quantum mechanics, rotational invariance simplifies scattering
problems. Why does adding in special relativity, to include Lorentz invariance, complicate
quantum mechanics?

The addition of relativity is necessary at energies E > mc?. At these energies the reaction
p+p—p+p+m°
is possible. At slightly higher energies, the reaction
pP+p—>pt+p+p+Dp

can occur. The exact solution of a high energy scattering problem necessarily involves
many-particle processes.

You might think that for a given F, only a finite number, maybe only a small number, of
processes actually contribute. But you already know from non-relativistic quantum mechanics
that this isn’t true. For example, if a perturbation dV is added to the Hamiltonian H, the
ground state energy Fj changes according to the rule

(0[6V|n) |2

Ey— Ey+ 0FEy where 0Ep= <0‘5V‘0> + Z ‘ E i (1.1)
n 0 — Ln

Intermediate states of all energies contribute, suppressed by energy denominators.

For highly accurate calculations at low energy, it’s reasonable to include relativistic effects
of order (v/c)?. Intermediate states with extra particles will contribute corrections of the same

order: )
(typical energies in problem) E mv? <v> (12)

(typical energy denominator) — mc? T T\ ¢

As a general conclusion, the corrections of relativistic kinematics and the corrections from
multi-particle intermediate states are comparable; relativity forces you to consider many-body
problems.
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There are however very special cases, due to the specific dynamics involved, where the
kinematic effects of relativity are considerably larger than the effects of pair states. One
of these is the hydrogen atom. That’s why Dirac’s theory! gives excellent results to order
(v/c)? for the hydrogen atom, even without considering pair production and multi-particle
intermediate states. This is a fluke.? Dirac’s success was a good thing because it told people
that the basic ideas were right, but it was a bad thing because it led people to spend a lot
of time worrying about one-particle, two-particle, and three-particle theories, because they
didn’t realize the hydrogen atom was a very special system. We will see that you cannot have
a consistent relativistic picture without pair production.

Units

Because we're doing relativistic (¢) quantum mechanics (%), we choose units such that
h=c=1 (1.3)

This leaves us with one unit free. Typically we will choose it in a given problem to be the
mass of an interesting particle, which we will then set equal to one. We’ll never get into any
problems with that. Just remember that an ordinary macroscopic motion like scratching your
head has infinitesimal velocity and astronomical angular momentum! Consequently, in terms
of dimensions,

[m] = [E] = [T)7 = [L]7" (1.4)

Also, it’s useful to know
(1fermi)™' ~ 197MeV;  m. ~0.5MeV = 7.8 x 10257 = 2.6 x 10" cm™* (1.5)

We will say things like the inverse Compton wavelength of the proton is “1 GeV”.
Lorentz invariance

The arena for all the physics we're going to do is Minkowski space, flat spacetime in which
there are a bunch of points labeled by four coordinates. We write these coordinates as a
4-vector:

ot = (20 2, 2?, 2®) = (¢, %) (1.6)

Sometimes I will suppress the index p when there’s no possibility of confusion and simply
write z# as x. This is not the only four-component object we will deal with. In classical
mechanics there is also the momentum of a particle, which we can call p*;

P =®",p) (1.7)

The zeroth component of this 4-vector, the time component, has a special name: the energy.
The space component p is of course called the momentum, and sometimes I will write p*
as p. I can indiscriminately write p as k, because h = 1. The time component k° of k* is

1 [Eds.] P. A. M. Dirac, “The Quantum Theory of the Electron”, Proc. Roy. Soc. Lond. A 117 (1928) 610-624;
“The Quantum Theory of the Electron. Part II”, Proc. Roy. Soc. Lond. A 118 (1928) 351-361.

2[Eds.] See H.Bethe and E.Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Plenum
Publishing, 1977, p.77 and references therein; republished by Dover Publications, 2008; and M. E. Rose,
Relativistic Electron Theory, Wiley, 1961, pp.193-196. Rose explicitly shows the suppression of positron
density near the hydrogen nucleus as |p| — 0, and ascribes this suppression to Coulomb repulsion acting on
positrons.
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the frequency w. Any contravariant 4-vector a* can be written as a* = (a°,a’) = (a°,a);
similarly the covariant 4-vector a,, = (ag,a;) = (a°, —a). The four-dimensional inner product
a - b between two 4-vectors a*, b” is

a-b=atb, =a,b" =a’b +a'by + a*by + a’by = a’b” —a<b (1.8)

where a+b is the usual 3-vector inner product. We will as above adopt the so-called Einstein
summation convention, I presume familiar to you, where sums over repeated indices are implied.
This inner product is invariant under Lorentz transformations. Please note I have adopted
the “west coast” metric signature,® (+ — — —). The inner product of a 4-vector a* with itself
usually will be written a?;

a® = a'a, = a’ag —a+a (1.9)

The inner product can also be written as
G a"b” (1.10)
where the metric tensor g, is defined by

goo =1=—g11 = —g22 = —gs3 (1.11)
This object is used to lower indices;
guwA” = A, (1.12)

It is convenient to have an object to raise indices as well. We define the metric tensor with
upper indices as the inverse matrix to the metric tensor with lower indices;

gung =0, (1.13)

where 5Z is the conventional Kronecker delta,

gr= b in=v (1.14)
" 0, fpu#v

This is an easy equation to solve; g/ is numerically equal to g, if we have units such that
c=1.

Lorentz transformations on 4-vectors will be denoted by 4 x 4 matrices A%. These act on
4-vectors as follows:
Azt — 2t = Ao = Az (1.15)

Because of the invariance of the inner product,
Aa-Ab=a-b (1.16)

The Lorentz transformations form a group in the mathematical sense: The product of any two
Lorentz transformations is a Lorentz transformation, the inverse of a Lorentz transformation

3 [Eds.] The official text for the course was the two-volume set Relativistic Quantum Mechanics and Relativistic
Quantum Fields (hereafter, RQM and Fields, respectively) by James D. Bjorken and Sidney D. Drell, McGraw-
Hill, 1964 and 1965, respectively. Coleman said this (in 1975) about the books: “I will try to keep my notational
conventions close to those of Bjorken and Drell. It’s the best available. People like it by an objective test: it is
the book most frequently stolen from the Physics Research Library.”
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is a Lorentz transformation and so on. This group has a name: O(3,1). The O stands for the
orthogonal group. The (3,1) means that it’s not quite an orthogonal group because three of
the terms in an inner product have one sign and the fourth has the other. This group is in fact
a little too big for our purposes, because it includes transformations which are not invariances
of nature: parity and time reversal which as you probably know are broken by the weak
interactions. We will restrict ourselves in this course strictly to the connected Lorentz group,
those Lorentz transformations which can be obtained from the identity by continuous changes.
Thus we exclude things like parity and time reversal. Mathematicians call the connected*
Lorentz group, SO(3,1), with the S meaning “special”, in the sense that the determinant of the
matrix equals 1. If we were talking about rotations, we would be looking not at all orthogonal
transformations, but rotations in the proper sense, excluding reflections. Every element of
the full Lorentz group can be written as a product of an element of the connected Lorentz
group with one of the following: {1, P, T, PT}. The parity operator P reflects all three-space
components,

P:x— —x (1.17)

The time reversal operator T reflects the time ¢; T': t — —t, and PT is the product of these.
By Lorentz invariance we will mean invariance under SO(3,1).

Under the action of the Lorentz group, 4-vectors fall into three classes: timelike, spacelike
and null (or lightlike). These terms describe the invariant square of a 4-vector a*;

timelike, if a> > 0
a* is called ¢ spacelike, if a> < 0 (1.18)
null, if a®> =0

The same terms are applied to 4-vector inner products. Given two 4-vectors x and y, the
invariant square of the difference (z — y) between them, (z* — y")(z, — y,) = (z — y)?, will
be called the separation or the interval.

Actually the world is supposed to be invariant under a larger, though no more glamorous,
group, which contains the homogeneous Lorentz group as well as space-time translations; this
is the Poincaré group. Nobody found that exciting because invariance under translations was
known in Newton’s time. Nevertheless we will have occasion to consider this larger group. Its
elements are labeled by a Lorentz transformation A and a 4-vector a. They act on space-time
points by Lorentz transformation and translation through a.

Conventions on integration, differentiation and special functions

The fundamental differential operator is denoted d,,, defined to be

o) o 0 o0
%= gur = (axo ax> = (aﬂ) (1.19)

It acts on functions of space and time. Note that I have written the operator with a lower
index, while I have written «* with an upper index. This is correct. The operator d,, does not
transform like a contravariant vector a*, but instead like a covariant vector a,. The easy way

4 [Eds.] Strictly speaking, the connected Lorentz group is the orthochronous Lorentz group, SO (3, 1), the
subgroup of SO(3,1) preserving the sign of the zeroth component of a 4-vector.



1.1 Introductory remarks )

to remember this is to observe that

— ¢ (1.20)

by definition. If we wrote both the operator and the coordinate with lower indices, we should
have a g rather than a § on the right-hand side. An object almost as important as the Laplace
operator V2 is the d’Alembert operator 9%, which we’ll write as [J?,

0? = 0% =99, = (0")? — V2 (1.21)
This is a Lorentz invariant differential operator.’

Now for integration. When I don’t put any upper or lower limits on an integral, I mean
that the integral is to run from —oo to oo. In particular, a four-dimensional integral over the
components of a 4-vector a*;

/d4a5/ dao/ dal/ da2/ da® (1.22)

Delta functions over more than one variable will be written as §(3)(x) for three dimensions or
5@ () for four dimensions. If we define the Fourier transform F(k) of a function F(z) as

F(k) = /d4a: F(z)e* (1.23)

where k£ and x are both 4-vectors, then

F(x):l/jéggiﬁXk)e4kw (1.24)

I will try to adopt the convention that every dk (or dp) has a denominator of 2. This will
unfortunately lead me to writing down square roots of 27 at intermediate stages. But I will
craftily arrange matters so that in the end all factors of dk will carry denominators of 27, and
there will be no other place a 27 comes from. That’s important. Sometimes we get sloppy, and
act like 1 = —1 = 27 and 1/(27) =+ = “one-bar” or something. Well, suppose you predict a
result from a beautiful theory. Someone asks if it is measurable, and you say, yes it is. You're
going to feel pretty silly if they spend a million and a half dollars to do the measurement
and can’t find it because you've put a (27)? in a numerator when it should have been in the
denominator. ..

There’s one last function I will occasionally use, 6(z), the theta function.® The theta

function is defined by
1 ifx>0
0(x) = 1.25
(=) {0 if 2 <0 (1.25)

5 [Eds.] Most authors write O for the d’Alembertian, rather than 02. Coleman used (02, so that’s what is
used here.

6 [Eds.] Also denoted H(z), and frequently called the Heaviside step function, after Oliver Heaviside (1850
1925) who used it extensively. See H. Jeffreys, Operational Methods in Mathematical Physics, Cambridge
Tracts in Mathematics and Mathematical Physics No. 23, Cambridge U. P., 1927, p. 10.
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Its value at the jump, x = 0, will be irrelevant in every place we use the function. The
derivative of the theta function is a delta function;
do(x)
dx

= 4(x) (1.26)
We are now ready to investigate our very first example of a relativistic quantum system.

1.2 Theory of a single free, spinless particle of mass

The state of a spinless particle is completely specified by its momentum, and the components
of momentum form a complete set of commuting variables:”

Plp)=p|p) (1.27)
The states are normalized by the condition
(plp) =W (p - p)) (1.28)

The statement that these kets |p) form a complete set of states, and that there are no others,
is written

1= / & p)(p| (1.29)

so that any state [¢)) can be expanded in terms of these;

W)= [ @puip)lp)  where v(p) = (ply) (130
If we were doing non-relativistic quantum mechanics, we’d finish describing the theory by
giving the Hamiltonian H, and thus the time evolution of the states; H|p) = (|p|?/2u) |p)-

For relativistic quantum mechanics, we take instead

Hlp) = V/Ip|* + 1?|p) = wp |P) (1.31)

That’s it, the theory of a single free, spinless particle, made relativistic.

How do we know that this theory is Lorentz invariant? Just because it contains one
relativistic formula does not necessarily mean it is relativistic. The theory is not manifestly
Lorentz invariant. The theory is however manifestly rotationally and translationally invariant.
Let’s be more precise about this.

Translation invariance

To any active translation specified by a given 4-vector a*, there should be a linear operator
U (a) satisfying these conditions:

U(a)U(a)t =1, to preserve probability amplitudes (1.32)
U0) =1 (1.33)
U(a)U(b) =U(a+b) (1.34)

7 [Eds.] Because p = hk, and in our units i = 1, we could equally well use kets |k); p and k both stand for
momentum.
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The operator U satisfying these conditions is U(a) = e'** where P* = (H, P).

Aside. T've laid out this material in pedagogical, not logical order. The logical order would be
to state:

1. We want to set up a translationally invariant theory of a spinless particle. The theory
will contain unitary translation operators U(a).

2. Define P? as
oU (a)

i
aa a=0

Pi=i (1.35)

From (1.34), [P;, Pj] = 0; and from (1.32), P = P,
3. Declare P to be a complete set and classify the states by momentum.

4. Define H = /|P|? 4+ u2, and thus give the time evolution.

Continuing with the pedagogical order:

States described by kets are transformed by U(a) = e'F¢ as follows:
U(a)|0) = |a) (1.36)

where |2) means a state centered at *; |0) means a state centered at the origin. Operators O
transform as

O(x +a) = U(a)O(z)U(a)' (1.37)
and expectation values transform as

(a|O(z + a)la) = (0|O(x)]0) (1.38)
Reducing the transformations to space translations,

U(a) = e Pra
e”'P*?|q) = |q +a) (1.39)
e" P2 0(x) e ? = O(x + a)

Only operators localized in space transform according to this rule. The position operator q
does not:

qe "?lq) =(q+a)lq+a)
¢Prag e iPra la) = (q+a)|q) (1.40)

= eiP-aaefiP-a :a+a

which looks like the opposite of the operator transformation rule (1.39) given above. The
operator g is not an operator localized at q, so there is no reason for these last two equations
to look alike.
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Rotational invariance

Given a rotation R € SO(3), there should be a unitary operator U(R) satisfying these
conditions:

URUR) =1 (1.41)
U)=1 (1.42)
U(R1)U(R2) = U(R1Ry) (1.43)

Denote a transformed ket by [¢)') = U(R) |¢), and require for any [¢) the rule

(W'[P[Y") = R(¥[P)) (1.44)
so we get

U(R)'PU(R) = RP 1.45)

UR)'HU(R) = H 1.46)

A U(R) satisfying all these properties is given by
U(R)|p) = |Rp) (1.47)

That (1.42) and (1.43) are satisfied is trivial. To prove (1.41), insert a complete set between U
and UT:

Uum)! = v | [ @ ool V) = [ @@ b6l
(1.48)
- / &*p |Rp)(Rp|
Let p’ = Rp; the Jacobian is 1, so d*p’ = d*p, and

UR)U(R)! = / d*p |Rp)(Rp| = / p' [p')(p'] = 1 (1.49)

To prove (1.45), write

U(R)'PU(R) =U(R)'P(UR)™HT by (1.41)

U(RHPU(R™HT by (1.42) and (1.43)
U

(R1)P / &p |p)(p| U(R™)!

—U(RY) / &ppp)(p| U(R™) (1.50)
- /d3pp |[R™'p)(R™'p| (Let p = Rp'; d°p = d°p’)

_ / &*p' Rp' [p')(p'|

= RP

The proof of (1.46) is left to you.
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Constructing Lorentz invariant kets

Our study of rotations provides a template for studying Lorentz invariance. Suppose a silly
physicist took for normalized three-momentum states the kets |p) ¢ defined by

Ip)s = V1+p2Ip) (1.51)

These kets are normalized by the condition
s(pP)s = (1+p2) 6 (p—p) (1.52)
The completeness relation is
3 1
= [dp T2 P)s s (P (1.53)

If our silly physicist now took Ug(R)|p)g = |Rp)g, his proofs of (1.41), (1.45) and (1.46)
would break down, because

is mot a rotationally invariant measure.

(1.54)
Let’s apply this lesson. The usual 3-space normalization, (p|p’) = 6®)(p — p’), is a silly
normalization for Lorentz invariance; d®p is not a Lorentz invariant measure. We want a
Lorentz invariant measure on the hyperboloid p* = (p°)? — |p|? = u?, p® > 0. The measure

ie., dp

1
dS
i T+ /2 L+ 2

1+ p? 7 4

: P = VPP 12

d|p| Ip|

Figure 1.1: Restricting |dp| to the invariant hyperboloid p* = u*

d*p is Lorentz invariant. To restrict it to the hyperboloid, multiply it by the Lorentz invariant
factor §(p® — u2)0(p®). That yields our relativistic measure on the hyperboloid®
00 d3
[ {@pst - ween)} = 52 (1.55)
PO=—oo 2wp
where
wp = V[pI*+p? P = (wp,p) (1.56)

Oz —a;

8 [Eds.] The equality follows from the identity §(f(z)) = Z H
- a;

(0 — wp) N 5(p° + wp)
2wp 2wp

where {a;} are the zeroes of f(z).

Then

5(p® — p?) = 6((0°)* — wp)

The 0(p°) factor kills the second delta function, and integrating over p° gives just the factor (2wp)~!, times

the remaining d®p. Similarly, one can show d3x §(|x|? — R?) = %Rsin@d@ do.
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Later on, we’ll want factors of 27 to come out right in Feynman diagrams, so we’ll take for
our relativistically normalized kets |p)

Ip) = V/(2m)*\/2wp [P) (1.57)

so that

t= (271r)3 /d4p5(p2 —1)0(°) Ip)(p| = /d3p|p><p| (1.58)

From the graph of the hyperbola, it looks like the factor multiplying d®*p ought to get larger
as |p| gets large. This is an illusion, caused by graphing on Euclidean paper. It’s the same
illusion that occurs in the Twin Paradox: Though the moving twin’s path appears longer, in
fact that twin’s proper time is shorter.

Now let’s demonstrate Lorentz invariance. Given any Lorentz transformation A, define
U(A) p) = [Ap) (1.59)

The unitary operator U(A) satisfies these conditions:

UMNUMN)T =1 (1.60)
Ul) =1 (1.61)
U(A)U(Ag) = U(A1A) (1.62)
U(AN)PU(A) = AP (1.63)

The proofs of these are exactly like the proofs of rotational invariance, using the completeness
relation

1= [ G5Bl (1.64)

3
27)3 2wy,
and the invariance of the measure,

d3p _ d3p/ (1 65)
(2m)32wp  (27)3 2wy '

1.3 Determination of the position operator X

We have a fairly complete theory, except that we don’t know where anything is; a particle
could be at the origin or at the Andromeda galaxy. In non-relativistic quantum mechanics, if
a particle is in an eigenstate of a position operator X, its position x is its eigenvalue. Can we
construct a position operator, X, for our system? Fortunately we can write down some general
conditions about such an operator, conditions we can all agree are perfectly reasonable, which
will be enough to specify this operator uniquely.” And then there will be a surprise, because
we’ll find out that this uniquely specified operator is totally unsatisfactory! There will be a
physical reason for that.

9 [Eds.] See §22 “Schrédinger’s Representation”, in P. A. M. Dirac, The Principles of Quantum Mechanics, 4th
ed. revised, Oxford U.P., 1967.
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What conditions do we want our X operator to satisfy? These conditions will not involve
Lorentz invariance, but only invariance under rotations and translations in space:

X=Xt (1.66)
U@ XU(a) =ePaXxe P2=X1a (1.67)
U(R)'XU(R) = RX (1.68)

We impose the first condition because x is an observable. The second condition is the rule
(1.40). The third condition says that X transforms as a 3-vector, so we might as well write it
as X or its components as X¢. Then, by taking 0/da; of the second condition and evaluating
at a; = 0, we get the usual commutator ¢[P;, X;] = ¢;;. Now you see a new origin for this
familiar equation.

From the commutator, we can deduce something about X?;

, o ‘

X'=i + R 1.69
o (1.69)

where R’ is a remainder that must commute with P7 in order to give us the right result. We

know that this expression for X* has the right commutation relations. Now to find R".

We know something about our system. We know that the three components P’ are a
complete set of commuting operators. From non-relativistic quantum mechanics, we know
that anything that commutes with a complete set of commuting operators must be a function
of those operators. Therefore R? must be some function of the P¥’s. According to the third
condition (1.68), X* must transform as a 3-vector, and so must R’. That tells us R must be
of the form

R = piF(p?) (1.70)

where F(|p|?) is an unknown function of |p|?. But any such function of this form is a gradient
of some scalar function G(|p|?); that is,

9G(Ipl*)

‘F(p|?) = ——= 1.71
P E(pl) = =5 (171)
This specifies the position operator to be
,_ .0 0G(]p]?)
X' =i—4 ——= 1.72
"op, * op; (1.72)

We can do more. We can eliminate the remainder term entirely by changing the phase of the
P states:

p) = [p)e = 0P |p) (1.73)
I'm perfectly free to make that reassignment. It does not affect the physics of theses states.
These are still eigenstates of P; with eigenvalues p;, they are still eigenstates of H with
eigenvalues +/|p|? + p?, and they are still normalized in the same way. This is a unitary

transformation; call it U(G):
Ip) = U(G)[p) (1.74)

and so the operators change accordingly:

X - U(G)'XU(G) = X¢ (1.75)
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The only formula this transformation affects in all we have done so far is the expression for
X" on |p). Now we have

2 2 . 2
Xi, [p), = e~ iGPP) (ia n 3G(|P|)> G by

Opi Op;
— o—iG(p?) iG(pl?) Zﬁ 4 8G(W_ oG (| Ip) (1.76)
Op; Op; Opi ¢

Thus the unique candidate for the X’ operator—providing one chooses the phase for the
eigenstates appropriately—is nothing more nor less than the good old-fashioned X* operator
in non-relativistic quantum mechanics, the operator which in P space is i9/0p;. Let’s make
this choice, and drop the G subscripts from now on.

Now that we have found our X operator, we know where our particle is. Or do we? Let’s
do a thought experiment. If we really have, in a relativistic theory, a well-defined position
operator, we should be able to say of our particle that it does not travel faster than light. That
is, we can start out with a state where our particle is sharply localized, say at the origin,'®
allow that state to evolve in time (according to the Schrodinger equation, since we know the
Hamiltonian), and see if at some later time there is a non-zero probability for the particle to
have moved faster than the speed of light. We have all the equipment; we need only do the
computation. Let’s do it.

We start out with a state |¢) localized at the origin at time ¢ = 0, i.e.,
(xly) = 6@ (x) (1.77)

Because the X* operator is its usual self, we can make use of the usual relation!!

eip) = (%1)3/2 P (1.78)
and so at t =0
) = [ (b i) = [ Gom i dx= o)

We wish to compute the probability amplitude for the particle to be found at position x at
time ¢, which by the general rules of quantum mechanics is given by

(x|~ ) (1.80)

10 By translational invariance and superposition, we could easily get the evolution of any configuration from
this calculation.

11 |[Eds.] Consider (x|X?|p). If we let the operator operate to the left, we get
(x|X"|p) = 2" (x|p)
but operating to the right,

(xIX'Ip) =i (xIp)
Op;
so the quantity (x|p) satisfies the differential equation i0/dp; (x|p) = z* (x|p). Then (x|p) = Ce'P**, where C
may depend on z (but not p). By considering (x| P?|p), you can show C'is a constant, and we set C' = 1/(27)3/2
for convenience. See Dirac, op. cit., §23, “The momentum representation”.
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The operators X’ and P’ are the same; only the Hamiltonian is novel. Thus we can do the
computation, we just put the pieces together:

3
(e 1) = [ (el i) (ol = [ B (L81)

because H |p) = wp |p), and so (x|e”t|p) = e~™»! (x|p) = e~ rt+Px /(27)3/2 Compute
the integral in the usual way by going over to polar coordinates,

dS ) ) 0o 2d ) T o
/ p3 OIS 67'prt _ / p Igefzwpt / etPr cos 6 <in 6 do/ dd)
(2m) o (2m) 0 0

1 00 ] (eipr _ efipr) 1 [e's) ) ]
— d —iwpt — d ipr—iwpt
(27r)2/0 ppe ir "2n)r /_oo ppe

(1.82)

(letting r = |x|, p = |p| and w, = y/p? + p2.) This is a messy integral, full of oscillations. It’s
difficult to tell if it vanishes outside the light cone, or not. Remember, in our units, the speed
of light is 1. Since we started out with » = 0 at ¢ = 0, if the particle is traveling faster than
light, the probability amplitude for r > ¢ will be non-zero.

To calculate the integral, we extend p to complex values, and let p — z = z +iy. We'll take
the = axis as part of a contour C', and close the contour with a large semicircular arc above or
below the z-axis. Our integrand is not however an analytic function of p, because the function
wp = /p? + p? has branch points at p = %ip, and thus also a branch line connecting these
two points. I choose to write the branch cuts as extending from +ip up along the positive
imaginary axis, and from —iy down along the negative imaginary axis. If we distort the
semicircular contour C' to avoid the branch cuts, the integrand is an analytic function within
the region bounded by the distorted contour, as shown below.

Im p

Re p

—i 8. branch cut

ipr—iwpt

Figure 1.2: Contour for evaluating the integral ffooo dppe

Since the integrand is analytic within C, the integral along C, say counter-clockwise, gives
zero. The original integral along the x axis then equals the rest of the integral in the opposite
sense, going clockwise along the large arcs, going down on the left side of the branch cut, and
up on the right side. Along the upper branch cut, p is parametrized by ¢y. The value of w,, is



14 1. Special relativity and quantum mechanics

discontinuous across this branch cut; its value on either side of the branch cut is'?

W, = Wy v=0F (1.83)
b —i/y? —p?, x=0-— '

Along the large arcs, p is parametrized by Re? = Rcosf + iRsinf, where 7 > 6 > 7/2 on
the left-hand arc, and 7/2 > 6 > 0 on the right-hand arc. The integrand involves elipr—iwpt
which is bounded, since r > ¢, by e~ f"s"?  Consequently in the limit R — oo, the large arcs
contribute nothing to the integral. The small arc likewise contributes nothing in the limit as
the small circle’s radius goes to zero. Then

. . m oo
(e~ ) = l/ dyy e IVt +/ dyye""“mt] (1.84)
n

2m)*r | Joo

Though the w,, part of the exponential is damped on the left side of the cut, the exponential
increases on the right side. However since r > ¢, the strictly damped part of the exponential,
—ry, dominates over the increasing part ++/y2? — u2t. Changing the limits in the first term
gives

i 1 o 0 2_ 2 S — 2
(el 10) = e [ gy [V ]
“w

oo
/ dyye™ " sinh(\/y? — p?t)
o

This is bad news, boys and girls, because this integrand is a product of positive terms. Therefore
the integral is not zero, and our particle always has uncertain nonzero probability amplitude
for traveling faster than the speed of light. So the particle can move faster than light and
thus backwards in time, with all the associated paradoxes. I hope you understand the titanic
meaning of that statement.

(1.85)

2m2r

Things are not so bad, however, as you would think. The particle doesn’t have much of a
probability of traveling faster than light. It’s impossible to do the integral, which means the
answer is a Bessel function.'® But it’s rather trivial to bound the integral by keeping only the
increasing exponential part of the sinh, and then replacing \/y? — p2 by y. This will give us
an overestimate. We have then

—i 1 e e 1 1
iHt (r—t)y _ ,—(r—t)p

< d = + 1.86
(x| ) 2271'27" /u yye € <(7‘—t)2 (T—t)) ( )

The chance that the particle is found outside of the forward light cone falls off exponentially
as you get farther from the light cone. This makes it extremely unlikely that, for example, 1
could go back in time and convince my mother to have an abortion. But if it is at all possible,
it is still unacceptable if you're a purist. If you're a purist, the X? operator we have defined
is absolutely rotten, no good, and to be rejected. If instead you're a slob, it’s not so bad,

12 |Eds.] For the details, see the example on pp. 71-73 of Mathematics for Physicists, Phillipe Dennery and
André Krzywicki, Harper and Row, 1967, republished by Dover Publications, 1996, or Example 2 in Chap. 7,
pp. 202-205 of Complex Variables and Applications, Ruel V. Churchill and James Ward Brown, McGraw-Hill,
1974.

13 [Eds.] Coleman is joking. Mathematica fails to find a closed form for this integral, so it isn’t really a Bessel
function.



1.8 The position operator X 15

because the amplitude of finding the particle outside of the forward light cone is rather small.
It’s exponentially damped, and if we go a few factors of 1/u, a few of the particle’s Compton
wavelengths away from the light cone, the amplitude comes down quite a bit.

What we have discovered is that we cannot get a precise determination of where the particle
is. But if we’re only concerned with finding the particle to within a few of its own Compton
wavelengths, in practice things are not so bad. In principle, the inability to localize a single
particle is a disaster. How does nature get out of this disaster? Is there a physical basis for an
escape? Yes, there is.

Suppose I attempt to localize a particle in the traditional gedanken experiment methods of
Niels Bohr. (In fact, this argument is due to Niels Bohr.!4) T build an impermeable box with
moveable sides. I put the particle inside it. I turn the crank, like the Spanish Inquisition, and
the sides of the box squeeze down. It appears that I can localize the particle as sharply as I
want. What goes wrong? What could relativity possibly have to do with this?

|
N

Figure 1.3: Particle in a box with a movable wall

The point is this. If I try to localize the particle within a space of dimensions L on the order
of its own Compton wavelength, L ~ O(1/u), then not relativity, but our old reliable friend
the Uncertainty Principle comes into play and tells us

Ap 2 O(n). (1.87)

If the dispersion in p is on the order of p, then so must p itself be at least the order of . Then
we have enough energy in the box to produce pairs.

Figure 1.4: Particle squeezed in the box

Like the worm Ouroboros,'® this section ends where it began, with pair production. If we
squeeze the particle down more and more, we must have more and more uncertainty in

14 [Eds.] N.Bohr and L.Rosenfeld, “Field and Charge Measurements in Quantum Electrodynamics”,
Phys. Rev. 78 (1950) 794-798.

15 [Eds.] The Worm Ouroboros is a fantasy novel by E.R.Eddison, published in 1922; J. R. R. Tolkien was an
admirer. The ouroboros (Greek ovpd, “tail” + Bdpos, “devouring”) is the image of a snake or dragon eating
its own tail. Originally ancient Egyptian, it entered western tradition via Greece, and came to be associated
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momentum. If we have a large spread in momentum, there must be a probability for having
a large energy inside the box. If we have a large energy inside the box, we know there’s
something inside the box, but we don’t know it’s a single particle. It could be three particles,
or five, or seven. The moral of the story is that we cannot satisfactorily localize the particle in
a single-particle theory.

So we can localize something, but what we’re localizing is not a single particle. Because of
the phenomena of pair production, not only is momentum complementary to position, but
particle number is complementary to position. If we make a very precise measurement of
position, we’ll have a very big spread in momentum and therefore, because pair production takes
place, we do not know how many particles we have. Relativistic causality is inconsistent with
a single-particle quantum theory. The real world evades the conflict through pair production.
That’s the physical reason for the mathematics we’ve just gone through. This leads to our
next topic, a discussion of many free particles.

with European alchemy during the Middle Ages. It is often used as a symbol of the eternal cycle of death and
rebirth. See A Dictionary of Symbols, J. E. Cirlot, Dover Publications, 2002, pp. 15, 48, 87, 246-247. The
German chemist August Kekulé reported that a dream of the ouroboros led him to propose the structure
of the benzene ring: O.Theodor Benfey, trans., “August Kekulé and the Birth of the Structural Theory of
Chemistry in 1858”, J. Chem. Ed. 35 (1958) 21-23.



The simplest many-particle theory

In the last section we fiddled around with the theory of a single, relativistic spinless particle.
We found some things that will be useful to us in the remainder of this course, like the
Lorentz transformation properties of the particle, and some things that served only to delineate
dead ends, e.g., we could not define a satisfactory X* operator. When we tried to localize
a particle, we found that the particle moved faster than the speed of light. At the end of
the lecture I pointed out that the problem of localizing a particle could be approached from
another viewpoint. Instead of staying within the theory of a single particle, we could imagine
an idealized example of the real world in which pair creation occurs. We discovered that
we couldn’t localize a particle in a box. If the box was too small, it wasn’t full of a single
particle, it was full of pairs. This motivates us to investigate a slightly more complicated
system, a system consisting of an arbitrary number of free, relativistic spinless particles. The
investigation of this system will occupy this whole section. The problem of localization should
be in the back of our minds but I won’t say anything about it.

2.1 First steps in describing a many-particle state

The general subject is called Fock space.’ That is the name for the Hilbert space, the space
of states that describes the system we’re going to talk about. We’ll discover that when we
first write down Fock space it will be extremely ugly and awkward. We will have to do a
lot of work to find an efficient bookkeeping algorithm to enable us to manipulate Fock space
without going crazy. The bookkeeping will be managed though the algebra of objects called
annihilation and creation operators, which may be familiar to you from an earlier course in
quantum mechanics.

The devices I'm going to introduce here—although we will use them exclusively for the
purposes of relativistic quantum mechanics—are not exclusively applied to that. There are
frequently systems in many-body theory and in statistical mechanics where the number of
particles is not fixed. In statistical physics we wish frequently to consider the so-called grand
canonical ensemble, where we average over states with different numbers of particles in them,
the number fluctuating around a value determined by the chemical potential. In solid state

L [Eds.] V. Fock, “Konfigurationsraum und zweite Quantelung” (Configuration space and second quantization),
Zeits. f. Phys. 75 (1932) 622-627.

17
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physics, there’s typically a lot of electrons in a solid but we are usually interested only in
the electrons that have stuck their heads above the Fermi sea, the conduction electrons. The
number of these electrons can change as electrons drop in and out of the Fermi sea. So the
methods are of wider applicability. In order to keep that clear, I will use our non-relativistic
normalization of states and non-relativistic notation and just switch to relativity at the end
when we want to talk about Lorentz transformation properties.

Let me remind you of the Hilbert space of non-relativistic one-particle states we had before:
the momentum kets |p) labeled by a basis vector p, and normalized with a delta function,

(plp) =% (p - p) (2.1)

which is standard for plane waves. These are simultaneous eigenstates of the Hamiltonian,
H, with eigenvalues wp = +/|p|? + 2 (but that’s not going to be relevant here), and of the
momentum operator P, with eigenvalues p;

Hlp)=wplp) Plp)=plp) (2.2)

They also of course have well defined Lorentz transformation properties, which we talked about
last time, but I'm not going to focus on that for the moment. In the last section this was a
complete set of basis vectors for our Hilbert space; a general state was a linear combination of
these states. But now we are after a bigger Hilbert space, so these will be just a subset of
the basis vectors. I will call these “one-particle basis vectors”. We are considering a situation
where we look at the world and maybe we find one particle in it, but maybe we find two or
three or four, and maybe we find some linear combination of these situations. Therefore we
need more basis vectors. In particular we need two-particle basis vectors. I'll write down the
construction for them, and then I'll just write down an “et cetera” for the remainder (the
three-particle states, the four-particle states, .. .)

A two-particle state describes two independent particles, and will be labeled by the momenta
of the two particles, which I will call p; and ps, which can be any two 3-vectors. (Don’t
confuse these subscripts with vector indices, the index labels the particle.) We will assume
that our spinless particles are identical bosons, and therefore to incorporate Bose? statistics
we label the state |p1, p2) which in fact is the same state designated by |p2,p1). It doesn’t
matter whether the first particle has one momentum and the second the other, or vice versa.
We will normalize the states again with traditional delta function normalization:

(P1, 2P, Ph) = 6@ (p1 — p1’) 0¥ (pa — p2’) + 6 (p1 — p2’) 6 (p2 — p1’) (2.3)

The states are orthogonal, unless the two momenta involved are equal, either for one permu-
tation or the other. We have to include both those terms or else we’ll have a contradiction
with the normalization equation for a single particle. These states are eigenstates of the
Hamiltonian and their energies are of course the sum of the energies associated with the two
individual particles, and they are eigenstates of the momentum operator, and their momentum
is the sum of the two momenta of the two individual particles:

H |p1,p2) = (wp, +Wp,) [P1,P2) P |p1,p2) = (P1 + P2) |P1,P2) (2.4)

2T was recently informed by a colleague from subcontinental India that this name should be pronounced
“Bosh”, and I'll try to train myself to pronounce it correctly. But bosons are still “boséans”.
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The extension to three particles is just “et cetera”. While “et cetera” is of course the end of the
story, we have not really started with the beginning of the story. There is one thing we have
left out. It is possible that we look upon the world and we find a probability for there being
no particles. And therefore we need to add at least one basis vector to this infinite string, to
wit, a no-particle basis vector, a single state, to account for a possibility that there are no
particles around at all. We will denote this state |0). It is called the vacuum state. We will
assume that the vacuum state is unique. This state |0) is of course an eigenstate of the energy
with eigenvalue zero, and simultaneously an eigenstate of momentum with eigenvalue zero:

HI0)=0 PJ0)=0 (2.5)

The vacuum state is Lorentz invariant, U(A) |0) = |0). All observers agree that the state with
no particles is the state with no particles. We will normalize it to 1,

(00) = 1. (2.6)

This normalization is conventional for a discrete eigenstate of the Hamiltonian, one which is
not part of the continuum. Please do not confuse the vacuum state with the zero vector in
Hilbert space, which is not a state at all, having probability zero associated with it, nor with
the state of a single particle with 3-momentum p equal to zero, |0). That ket is denoted with
the vector 0.

We now have a complete catalog of basis vectors. A general state |¥) in Fock space will be
some linear combination of these basis vectors:

)= 00[0) + [1(p) P&’ + 57 [ valprpa) lprpad Eprdpat o (2)

This is some number, some probability amplitude times the no-particle state, the vacuum,
plus the integral of some function ;(p) times the ket |p) plus a one over 2! inserted by
convention—I’ll explain the reason for that convention—times the integral over two momenta of
a function of both momenta times the two-particle ket, with dots indicating the three-particle,
the four-particle et cetera states, going on forever.

I should explain the factor of % Since the state |p1, p2) is the same as the state |p2, p1),

without any loss of generality we can choose

Y2(P1, P2) = Y2(P2, P1) (2.8)

That is to say we can choose a Bose wave function for two bosons to be symmetric in the two
arguments. I then insert the % to take account of the fact that I am counting the same state
with the same coefficient twice when I integrate once over p; and once over py in one order,
and then in the other order. Likewise, successive terms for the three-particle or four-particle
states will have corresponding factors of %, % et cetera.

The squared norm |¥|? of the state |¥) is
1
\mhﬂwm=ww+/fmmmW+§/fmfmwm%mW+~- (2.9)

The state |¥) exists and is normalizable as always only if [¥'|? < oo, so we can multiply it by
a constant and make its norm 1, and speak about probabilities in a sensible way.
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Well, in a sense we have solved our problem. We have described the space of states we want
to talk about. But we have described it in a singularly awkward and ugly way. To describe a
state, we need an infinite string of wave functions: the zero particle wave function, a function
of a single variable, a function of two variables, a function of three variables, a function of four
variables et cetera, ad nauseam. Handling a system of this kind by conventional Schrédinger
equation techniques, describing the dynamics by an interaction operator made up out of ¢’s
and d/dp’s and some sort of incredible integral-differential operator that mixes up functions of
two or three or four or any number of variables with other such functions is a quick route to
insanity. We need to find some simpler way of describing the system.

2.2 Occupation number representation

In order to minimize problems that arise when one is playing with delta functions and things
like that I will brutally mutilate the physics by putting the system in a periodic box. So we
will have only discrete values of the momentum to sum over instead of continuous values to
integrate over. Of course this is a dreadful thing to do: It destroys Lorentz invariance; in fact
it even destroys rotational invariance. But it’s just a pedagogic device. In a little while I'll let
the walls of the box go to infinity and we’ll be back in the continuum case.

With the system in a periodic box, we imagine the momenta restricted to a discrete set of
values which are labeled by
2mn, 2mn, 2mn,
= 2.1
P < T I (2.10)

The box is a cube of length L; the numbers n,,n, and n, are integers. Instead of filling out
3-space, the momenta span a cubic lattice. Since we have discrete states we can use ordinary
normalization rather than delta function normalization. For example, in the one-particle states

<P|p/> = Opp’ (2-11)

the Kronecker delta equaling 1 if p = p’, and zero otherwise. Integrations in the continuum
case are replaced by sums over the whole lattice of the allowed momenta. These will be
discrete, infinite sums.

In this box we can label our basis states in a somewhat different way than we have labeled
them up to now. In our previous analysis we haven’t exploited Bose statistics much; it’s
been rather ad hoc. We tell how many particles there are, we imagine the particles are
distinguishable, we give the momentum of the first particle, the momentum of the second, the
third, et cetera; and then we say as an afterthought that it’s the same as giving the same set of
momenta in a different permutation. Now as you all know from elementary quantum statistical
mechanics where you count states in a box, there is a much simpler way of describing the
basis states. We can describe our basis states by saying how many particles there are with
this momentum, how many particles are there with that momentum, how many with some
other momentum. We can describe our states by giving them occupation numbers N(p), a
function from the lattice of allowed one-particle momenta into the integers which is simply
the number of particles with momentum p. Obviously this is exactly equivalent; it describes
not only the same Hilbert space but the same set of basis vectors as we’ve described before,
providing of course we have the condition that

> N(p) < oo (2.12)
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No fair writing down a state where there is one particle with each momentum! That’s not in
our counting, and anyway it would be a state of infinite energy.

This is not a change of basis in the normal sense, but just a relabeling of the same basis
in a different way. We can label our states by an infinite string of integers {N(p)}, a sort of
super-matrix® which you can imagine as this three-dimensional lattice whose axes are p,, p,,
and p,, with integer numbers N (p,, py, p-) sitting on every lattice point. Of course, most of
the numbers will be zero. T'll write such a labeling this way, with a curly bracket, just to
remind you that this is not a state labeled by a single number N(p) and a single vector p, but
by this matrix of integers.

The advantage of the occupation number labeling is of course that the Bose statistics is
exploited, taken care of automatically. When I say there is one particle with this momentum
and one particle with that momentum, I have described the state; I don’t have to say which is
the first particle and which is the second. In terms of this labeling the Hamiltonian has a very
simple form:

H=3 w,N(p) (2.13)

The energy of the many-particle state is the sum of the energies of the individual particles.
The momentum likewise has a very simple form:

P ZpN(p) (2.14)

Staring at the expression (2.13) for the energy, we notice something that wasn’t obvious in
the other way of writing things: First, the energy is a sum of independent terms, one for
each value of p, and second, within each independent term we have a sequence of equally
spaced energies separated by wp. We can have zero times wp, 1 times wp, 2 times wp, and so
on. Such a structure of energy spacings is of course familiar to us: It’s what occurs in the
harmonic oscillator. In fact this is exactly like the summation we would get if we had an
infinite assembly of uncoupled harmonic oscillators, each with frequency wp, except that the
zero-point energy, the %wm is missing. But other than that, this looks, both in the numbers
of states and their energies, exactly like an infinite assembly of uncoupled harmonic oscillators.
The two systems are completely different. In our many-particle theory, N(p) tells us how
many particles are present with momentum p. In a system of harmonic oscillators, N(p) gives
the excitation level of the oscillator labeled by p. Still, let us pursue this clue. And in order
that we will all know the same things about the harmonic oscillator, I will now digress into a
brief review on this topic. Most people will have seen this material in any previous quantum
mechanics course. I apologize, but theoretical physics is defined as a sequence of courses, each
of which discusses the harmonic oscillator.*

3 [Eds.] In other words an infinite, rank 3 array, with integer matrix elements Np,, p, p., pi = 27n;/L,n; =
1,2,...

4[Eds.] A variation of this remark attributed to Coleman is: “The career of a young theoretical physicist
consists of treating the harmonic oscillator at ever-increasing levels of abstraction.”
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2.3 Operator formalism and the harmonic oscillator

Consider a single harmonic oscillator. The momentum p and the position ¢ are now not
numbers, they are quantum operators obeying the much-beloved commutation relations

lg.p] =i (2.15)

The Hamiltonian is®

H=1%wp*+¢-1) (2.16)

I subtract 1 here to adjust the zero of my good old-fashioned harmonic oscillator so that the
ground state has energy zero. The Hamiltonian will then look exactly like one of the terms in
the sum (2.13), not just qualitatively like it.

Now the famous way of solving this system is to introduce the operator a and its adjoint

al,
L @+ L (2.17)
a = —= (3 a' = — — .
V2 qT1p 2 q—1p
It is easy to compute the commutator [a, a']:
[a,a'] = }[g +ip,q — ip] = [q, —ip] = 1. (2.18)

We get a contribution only from the cross-terms, both of which give equal contributions and
cancel out the % that comes from squaring the % It is also easy to rewrite the Hamiltonian

in terms of a and a', since

—(a+ah) (a—ah) (2.19)

q= V2
Then
H=1wp’+¢ —1] = waa' +a'a— 1] =wa'a = wN (2.20)

As promised, this expression for the harmonic oscillator Hamiltonian looks exactly like one
of the terms in (2.13); we need only confirm that N = aa is a number operator. From these
two equations, (2.18) and (2.20), plus one additional assumption, one can reconstruct the entire
state structure of the harmonic oscillator. I will assume the ground state is unique. Without
this assumption I would not know for example that I was dealing with a spinless harmonic
oscillator; it might be a particle of spin 17, where the spin never enters the Hamiltonian. Then
I would get twice 17 + 1 or 35 duplicates of a harmonic oscillator, corresponding to the various
values of the z components of the spin. The assumption of a unique ground state will take

5[Eds.] This form of the Hamiltonian is the result of a canonical transformation of the usual harmonic
oscillator Hamiltonian,

with [Q, P] = i, namely
p = P/v/muw; q = vVmwQ

This canonical transformation preserves the commutator, [¢, p] = ¢ and leads to the form
H = jw(q® +p?)
See Goldstein et al. CM, pp. 377-381.
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care of the possibility of other dynamical variables being around that would give us a multiply
degenerate ground state. Let’s now determine the system. I presume you’ve all seen it before.

Compute the commutators of H with a and a';

[H,a] = wl[a'a,a] = wla', ala = —wa (2.21)

[H,a'] = wla'a, a'] = wa'[a,a’] = wa' (2.22)

Let us consider some energy eigenstate of this system. I will assume it’s labeled by its energy,
and denote it in the following way, |E), where of course

H|E) = E|E) (2.23)
Now consider H acting on the state a' |E). By the equation above,
Ha' |E) = [H,a']|E) +a'H|E) = wa' |E) + a'E|E) = (E + w)a' |E) (2.24)

Thus, given a state |E) of energy E, I can obtain a state of energy E + w by applying af. 1
can draw a spectroscopic diagram, Figure 2.1.

———————————— E+
E+ 2w
Tal
Ladder : F+w
of states T @ B
a
\L E—-w
____________ E—

Figure 2.1: Traveling up and down the ladder of energy states

And of course I can build this ladder up forever by successive applications of af. By the same
reasoning applied to a, I obtain a similar equation:

Ha|E) =[H,d]|E) +aH |E) = —wa |E) + aE |E) = (E — w)a|E) (2.25)

By applying a I can go down the ladder. For this reason a' and a are called “raising” and
“lowering” operators because they raise and lower the energy. Can we go up and down forever?

I don’t know yet about going up, but about going down I can say something. The
Hamiltonian is the product of an operator and its adjoint, and therefore it always has non-
negative expectation values and non-negative eigenvalues. So the energy must be bounded
below. There must be a place where I can no longer continue going down. Let me write the
lowest energy eigenstate, the ground state, as |Ep), which by assumption is unique. Now
there’s no fighting this equation (2.25): Applying a to |Ep) gives me a state which is an
eigenstate with energy Fy — w;

Ha|Ey) = (Eo — w)a|Eo) (2:26)

On the other hand by assumption there is no eigenstate with energy lower than Fy. The only
way these apparent contradictions can be reconciled is if

a|Ey) =0 (2.27)
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because a |Ey) = 0 satisfies the equation (2.26) for any value of Fy. This of course determines
the energy of the ground state, because H = a'a, and therefore

H |Ep) = wa'a|Ep) = 0 = Ey|Eg) = Eog=0 (2.28)

Therefore the ground state, by assumption unique, is a state of energy 0, and I will relabel the
ground state:
[Eo) = 0) (2:29)

meaning, the ground state is the state of zero energy. All the other states of the system have
energies which are integer multiples of w because the ladder has integer spacing. We can label
these |n), i.e.,

H|n) = wN |n) = nw|n) (2.30)

We obtain the states [n) from systematic application of af on the ground state:
) o< (a")" |0) (2.31)

Equation (2.30) follows from (2.31) and commuting H with (a")", confirming N = a'a as a
number operator. Let’s say
alln) =Cpn+1) (2.32)

and obtain C,, by normalizing the states with the usual convention,
(nlm) = dpm (2.33)

If T compute the square of the norm of the state af [n) = C,, |n + 1), the inner product of this
ket with the corresponding bra on the right-hand side, I get

(nlaatln) = [Cul? (n + Ln + 1) = |C?

(2.34)
= (nlafa + 1|n) = (n|(H/w) + 1|n) = (n + 1) (n|n) = (n + 1)

That determines C,, up to a phase. I have not yet made any statement that determines the
relative phases of the various energy eigenstates, and I am free to choose the phase so that

{C,} are real:
Cp=vntl (2.35)

We then have the fundamental expression for the action of af on an arbitrary state |n),
a'ln) =vn+1n+1) (2.36)
By similar reasoning or by direct application of the definition of the adjoint, we determine

aln) =+/nin—1) (2.37)

I have snuck something over on you. I have talked as if the ladder of states, built out of
successive applications of a' on the ground state, is the entire space of energy states. You
know that is true for the harmonic oscillator, but I haven’t proved it using just the algebra of
the a’s and a'’s. So let’s demonstrate that.

If we have an operator A which commutes with both p and ¢, then A must be a multiple
of the identity:
If [p, A] =0 and [¢, A] = 0 then A = \] (2.38)
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where )\ is some constant.% Say there is a state 1)) which has a component not on the ladder.
Presumably there is a projection operator, P which projects [1)) onto the ladder. Since a' and
a keep a state on the ladder, it must be that

[P,a] = [P,a’] =0 (2.39)
But as ¢ and p can be written as linear combinations of a and af, we can say
[P.p] =[P.q)=0 = P =X (2.40)

The projection operator is proportional to the identity, so there are no parts of any ket |¢)
not on the ladder; there are no other states except those already found.

Two or three or four decoupled harmonic oscillators can be handled in exactly the same way.
We simply have two or three or four sets of raising and lowering operators. The Hamiltonian is
the sum of expressions of this form over the various sets. Conversely, if we have a system with
the structure of a harmonic oscillator, with equally spaced energy eigenstates, we can define
operators a and a' for each set, and then regain the algebraic structure and the expression for
the Hamiltonian and complete the system in that way.

This completes the discussion of the harmonic oscillator. Its entire structure follows from
these algebraic statements (2.18)—-(2.25) and the mild assumption of minimality, that there is
only one ground state.

2.4 The operator formalism applied to Fock space

Now let us turn to the particular system we have: An infinite assembly of harmonic oscillator-
like objects, one for every point in our momentum space lattice. The analogs, the mathematical
equivalents to the harmonic oscillator excitation numbers are the occupation numbers. There-
fore we can define raising and lowering operators on the system, al, and ap, one for every
lattice point, that is to say, for every value of p.

The lowering operators associated with different oscillators have nothing to do with each other:

[ap, ap] =0 (2.41)

The raising operators associated with different oscillators have nothing to do with each other:
Tt

lap,ap] =0 (2.42)

The raising and lowering operators for two oscillators have the conventional commutators
[ap, al,] = dppr (2.43)
equalling 1 if they describe the same oscillator, and commuting otherwise.

The Hamiltonian is the sum of the Hamiltonians for each of the individual oscillators,

H = Z Wp ai,ap (2.44)
P

6 [Eds.] If A commutes with g, then it is either a constant or a function of ¢. But if it is a function of ¢, it
cannot commute with p. So it must be a constant, i.e., a multiple of the identity. This is an application of
Schur’s lemma. See Thomas F. Jordan, Linear Operators for Quantum Mechanics, Dover Publications, 2006,
pp. 69-70.
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The oscillators are labeled by the index p, a 3-vector on the lattice, and each has energy wp,.
We haven’t talked about the momentum operator in our discussion of a single oscillator, but
of course it will be given by an expression precisely similar to the Hamiltonian. The factor

multiplying wp, aLap, has eigenvalues N(p), so the momentum operator is

P= ZpaLap (2.45)
P

This set of equations defines Fock space in the same way as the corresponding set of equations
defines the single oscillator. The only change is a change in nomenclature.

As you’ll recall, the thing that corresponded to the excitation level of an oscillator was
the number of particles bearing momentum p. We will no longer call aL and ap “raising” and
“lowering” operators, respectively. We will call them creation and annihilation operators
because applying a;[, raises an equivalent oscillator, that is to say, adds one particle of momentum
p; applying ap lowers an equivalent oscillator, i.e., removes one particle of momentum p.
Another term will be changed from that of the oscillator problem. We normally do not call
the simultaneous ground state of all the oscillators “the ground state”; we call it as I have told
you, the vacuum state. The vacuum state is defined by the equation that any annihilation
operator applied to it gives zero:

ap|0) =0 (2.46)

The advantage of these algebraic equations over the original definition of Fock space is great.
You see here they take only a few lines. The original definition filled a page or so. As shown
by the argument with the oscillators, they give you the complete structure of the space: they
tell you what the states are, they tell you what their normalizations are, they tell you the
energy and momentum of any desired state. So we have made progress, by reducing many
equations to a few.

I am now going to blow up the box, letting L — oo, and attempt to go to the continuum
limit. I will not attempt to go to the continuum limit in the occupation number or equivalent
oscillator formalism. That is certainly possible but it involves refined mathematical concepts.
Instead of a direct product of individual oscillators spaces, we would get a sort of integral-direct
product, a horrible mess. The point is that we can generalize these algebraic equations directly.
These contain the entire content of the system. We can generalize them simply by taking a
step backward from what we did to get to the box in the first place: we replaced all Dirac
delta functions by Kronecker deltas, and all integrals by sums. If we undo this, replacing
sums with integrals and Kronecker deltas with Dirac deltas, we will get a system that gives us
continuum Fock space. T'll check that it works. I won’t check every step because most of it is
pretty obvious, but I’ll check a few examples for you.

I'm going to define the system purely algebraically just as I defined the oscillator and Fock
space for a box purely algebraically. There are a fundamental set of operators, aL and ap
for any value of p now, not just integer values defined on the lattice, and they obey these

equations;

(2.47)

The Hamiltonian is
H= /d?’p Wp aLap = /d3p wp N(p) (2.48)
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and the total momentum operator is

P = /dsp pajap = /d3p p N(p) (2.49)

where
N(p) = alap (2.50)

is the number operator. That’s it. These statements (2.47)-(2.50), together with the technical
assumption that the ground state of the system is unique, will define continuum Fock space in
the same way the precisely parallel statements defined Fock space for particles in a box. Let’s
check that for a few simple states.

First, the ground state of the system, the vacuum, which is assumed to be unique, is defined
by
ap |0) =0 (2.51)

for all p. Directly from the expressions for the energy and the momentum, this state is an
eigenstate of the energy with eigenvalue zero, and of the momentum, with eigenvalue zero. Of
course the algebraic structure doesn’t tell us how we normalize the vacuum. That’s a matter
of convention, and we will choose that convention to be the same as before,

(0j0) =1 (2.52)

the vacuum state has norm 1. To make one-particle states we apply creation operators to the
vacuum; that is a one-particle state of momentum p. If all we were working from were the
previous algebraic equations for the harmonic oscillators, according to (2.36) the one-particle
state of momentum p would be obtained like this:

af, [0) = C1 [p) = VO +1Ip) = |p) (2.53)
Let’s assume this is right for the continuum Fock space, and compute the norm of this state:
(p'[p) = (Oapra}0) (2.54)
We have our fundamental commutation relations and so we will commute;
(p'[p) = (Olaprab|0)
= (0[[apr, af]|0) + (Oabap[0) (2.55)
= (06 (p = p")|0) +0 =6 (p — p')

The first term is §©) (p — p’) times the norm of the vacuum which is one. The second term
is zero because ap/ acting on the vacuum is zero; every annihilation operator acting on the
vacuum is zero. Thus the state has the right norm. This looks good.

What about the energy of the single-particle states? Well, it’s the same story:
Hal, |0) = /d3p'wpfal,,apfal, |0) = /d3p’ (wp/ [ai,,ap/, alll0) +alH |O>> (2.56)

We know the commutations required to compute this; all a;f) commute with each other, all ap,
commute with each other, the commutation of any aL and any ap, is a delta function:

lalyapr,al] = al, [apr,al] = al, 6 (p — p) (2.57)
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and H on the vacuum is zero. Then
Hal |0) = / d*p'wpral, ¢ (p — p')0) = wpaf, [0) (2.58)

which also looks good. Et cetera for the momentum, et cetera for the two-particle states, the
three-particle states and so on. Here is an example of a two-particle state, just to write down
its definition,

IP1,P2) = aLlaLQ |0) (2.59)

This state |p1, p2) is of course automatically equal to the state |ps2, p1) because the two creation
operators commute. It doesn’t matter what order you put them in. The Bose statistics are
taken account of automatically. I leave it to you to go through the necessary commutators to
show that the state has the same normalization as the one we wrote down before, and that
it has the right energy and the right momentum. The operations are exactly parallel to the
operations I've done explicitly for the single particle state.

To summarize where we have gone: The algebraic equations plus the technical assumption
that there exists a unique vacuum state, the ground state of the system, completely specify
everything about Fock space we initially wrote down formally. This is obviously a great
advantage; it’s much simpler to manipulate these annihilation and creation operators than
it would be to manipulate a number plus a function of one variable plus a function of two
variables plus a function of three variables et cetera.

Now there are two further points I want to make before we leave the topic of Fock space
and go on to our next topic. One is a point for mathematical purists. Those of you who are
not mathematical purists may snooze while I make this point. In the technical sense of Hilbert
space theories these aL and ap we have introduced are not operators because when applied to
an arbitrary state they can give you a non-normalizable result. For instance, a;g |0) is a plane
wave |p), and a plane wave is not normalizable ((p|p) = 6©*)(0) = 00). Occasionally while
browsing through Physical Review, or more likely through Communications in Mathematical
Physics, you may come across people not talking about these things as operators—they are
purists—but as “operator valued distributions.” A “distribution”, to a mathematician, means
something like a delta function, which is not itself a function, but it becomes a function when
it is smeared, integrated over in a product with some nice smoothing function. These af
and ap are operator-valued distributions labeled by indices p, and the things that are really
sensible operators are smeared combinations like [ d®p f (p)a;f) where f(p) is some nice smooth
function. That creates a particle in a normalizable state, a wave packet state, with f(p) the
momentum space wave function describing its shape. And that’s the thing that people who
are careful about their mathematics like to talk about.” I am not a person who is careful
about his mathematics; I won’t use that language. But in case you run across it in some other
course, you should know that there are people who use this language and this is the reason
why they use it. They prefer to talk about the smeared combinations rather than the ap’s
themselves.

Secondly—and this is not for purists, this is for real—since we’re back in infinite space, we
can sensibly talk about Lorentz transformations again. To complete this section, I should
specify how Lorentz transformations are defined in terms of the creation and annihilation

7 [Eds.] For an accessible, slim and inexpensive book about distributions, also known as “generalized functions”,
see M. J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions, Cambridge U. P.; 1958.
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operators. The essential trick is to observe that just as we defined the relativistically normalized
states, so we can define relativistically normalized creation operators that when applied to the
vacuum will create states with the correct relativistic normalization.

I will call these operators a(p) and af(p). The momentum index p is now a 4-vector, but
the fourth component is constrained just as before: p° = wp. These creation operators are
defined by

ot (p) = (21)*/2 /2wy a;r) (2.60)

Operating on the vacuum, this operator makes the same state as a;f) does. It creates the same

particle, but with relativistic normalization and not just the §®)(p — p’) normalization (see

(1.57)):
al(p) |0) = (2m)%/2\/2wp al, 0) = (27)%/2\/2wp D) = |p) (2.61)

Of course there is also a relativistic annihilation operator which we can write down just by

taking the adjoint,
a(p) = (27)%/%\ /2wy ap (2.62)

These operators, as you can convince yourself, transform simply under Lorentz transformations.
We can determine the Lorentz and translation properties of these operators af(p) and a(p)
from the assumed transformations of the kets. First, consider the vacuum. It’s obvious that
the vacuum is Lorentz invariant, since it is the unique state in our whole Fock space of zero
energy and zero momentum, and that’s a Lorentz invariant statement. So U(A) acting on the
vacuum must give us the vacuum, since U is unitary and does not change the norm:

U(A)|0) = 10) (2.63)
Then, for a single particle state |p), assume that

U(A) [p) = [Ap) (2.64)
and for a multi-particle state,

U(A) |p1ap23"'7pn> = |Ap1aAp2a~'~7Apn> (265>

From (2.64), we determine how af(p) behaves under a Lorentz transformation:

[Ap) = U(A)Ip) = U(A)a! (p) [0) = U(A)a! (p)(UT(A)U(A)) |0) because UT = U~

=U(AN)af(p)UT(A) |0) because U(A) |0) = |0)
= af(Ap) |0) by definition; |[Ap) = af(Ap) |0)
ol (Ap) = U(A)al (m)UT(A) (2.66)

That is to say, af(Ap) is the creation operator of the transformed 4-momentum. And of course

taking the adjoint equation
UM)a(p)UT(A) = a(Ap) (2.67)

Just to check that these are right, let’s compute the transformation acting on a multi-particle
state, |p, p1,p2,...,Pn). We have

U(A) [psp1,p2, .-, pn) = U(A)QT(P) Ip1, P2, Pn) = U(A)OCT(P)UT(A)U(A) [p1; P25 -+ Pn)
= U(A)a! (p)UT(A) [Apr, Apa, ..., Apy)
= o (Ap) [Ap1, Apa, ..., Apy)
= |Ap, Ap1, Apa, ..., Apy)
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which is the desired result. The same argument would have worked for any p;, or for that
matter any set of the p;’s, since the kets are symmetric in the p;’s. Here’s another way to
think about the transformation of a multi-particle state:

U(A) [p1,p2, - -, pn) = U(M)a! (p1)al (p2) - - ol (pn) [0)
= UA)at (p)UT (MU (M) (p2)UT(A) - - U(A)a (p)UT (AU (A) [0)
= al(Ap1)al(Ap2) - af(Ap,) |0)
= |Ap1, Apa, ..., Apy)

So this system, defined by the operators a(p) and a(p)T, admits unitary Lorentz transformations,
as of course it should, because it’s the same system we were talking about before. The action
of these Lorentz transformations can be defined if we wish by these equations (2.63)—(2.67).
That enables us to tell how every state Lorentz transforms.

Likewise the translation properties of the creation and annihilation operators are easily found
from the transformations of the kets. The unitary operators of translations are U(a) = ¢!
Because

P*10) =0 (2.68)

and

Pt p1pa,..pn) = (0 + 05 + -+ 0) Ip1,p2, - on) = (X)) Ip1op2, - on) - (2.69)
we get
U(a)[0) = |0) 2.70)
and |
Ula)|p1,pas-- . pn) = €@2Pi

A derivation analogous to the Lorentz transformation leads to the translational properties of
af(p) and a(p),

p17p27"'7pn> (271)

eiP~maT (p)efiP-:c _ eipma"[ (p)

(P o (p)e=Pr olp) (27

_ e—ip-w

In the next section I return to the question which inspired us. (Actually, what inspired us
is the fact that quantum electrodynamics predicts the right anomalous magnetic moment of
the electron, but we won’t get to that until the second half of this course!®) What inspired us
in this elegant but historically false line of reasoning, to consider an infinite, great big Hilbert
space in the first place was the problem of localization. In the next section I will talk about
localization from another tack, not about localizing particles, but instead about localizing
observations. Incidentally, note that these operators a(p) and af(p) depend on time as well
as space. We are working in the Heisenberg representation, in which the states are constant
but the operators depend on time, rather than the Schréodinger representation in which the
operators are time-independent but the states evolve in time.

8 [Eds.] §34.3, pp. 743-749.
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Constructing a scalar quantum field

3.1 Ensuring relativistic causality

In ordinary, non-relativistic quantum mechanics, every Hermitian operator is an observable.
Given anything measurable, any physicist, if she is only crafty enough, can manage to think
up some apparatus that measures it. She measures the position z with a bubble chamber,
she measures the momentum p with a bending magnet, she may have to be a real genius to
measure a symmetrized product of p* times 2%, but in principle there’s nothing to keep her
from measuring that. It’s only a matter of skill. I cannot measure the length of my own foot,
but that’s only due to my lack of skill. The words “Hermitian operator” and “observable” are
synonymous, and we do not bother to introduce distinctions about what an idealized observer
can measure and a Hermitian operator.

In particular, every observer can measure every operator and therefore every observer can
measure non-commuting operators. One can measure o, and also measure o,. Now you know
the measurement of non-commuting observables does not commute. If I have an electron and I
measure its 0., and I turn my back for a moment, and Carlo Rubbia,! having just come in on
a jet plane, sneaks into the room—he does a lot of experiments—and measures something that
commutes with o, like p,., and then sneaks out again before I can turn around, I won’t notice
any difference when I measure o, a second time. If on the other hand when Carlo comes in he
measures oy, then I will notice a big difference. My system will no longer be in the eigenstate
of 0, in which I had carefully prepared it; it will now be in an eigenstate of o, and I will
notice the change. I will know that someone has made a measurement even if I keep my eyes
closed.

If we say every observer can measure every observable, even in the most idealized sense of
“observer” and “observable”; then we encounter problems in a relativistic theory. I after all
have a finite spatial extent, and my travels, far and wide as they are, occupy only a finite
spatial extent. And, alas, the human condition states that I also have only a finite temporal
extent. There is some region of space and time within which all the experiments I can do are
isolated. The earth goes around the sun, so my spatial extent is perhaps the diameter of the

! [Eds.] Rubbia shared the 1984 Physics Nobel Prize with Simon van der Meer, for experimental work leading
to the discoveries of the WE and Z° (see §48.2). At the time of these lectures, Rubbia was commuting between
CERN and Harvard.

31
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solar system in width, and, if I give up smoking soon, maybe 75 years in length, but. .. that’s
it. Now let us imagine another observer similarly localized, say somewhere in the Andromeda
galaxy, and he has a similar life expectancy and spatial extent. If both he and I can measure
all observables, then he can measure an observable that doesn’t commute with an observable
I can measure. Therefore, instead of Carlo Rubbia sneaking into the room after I've done
my experiment, he can just stay in Andromeda and do his experiment on a non-commuting
observable. Just as if Carlo had come sneaking into the room, I would notice that my results
had changed, and thus would deduce that he has made a measurement. That’s impossible
because the only way to get information from him there in Andromeda to me here on earth
between the time of my two measurements is for information to travel faster than the speed
of light. Therefore it cannot be that I can measure everything, and it cannot be that he can
measure everything. There must be some things that I can measure and some things that he
can measure, and it must be that everything that I can measure commutes with everything
that he can measure. Otherwise he could send information faster than the speed of light,
namely, the information that he has measured an observable that does not commute with an
observable that I have just measured. The reasoning is abstract, but I hope simple and clear.

Even if we are going to be generous in our idealization, we have to realize that somehow
in any sensible relativistic quantum mechanical theory, there must be some things that can
be measured by people who are constrained to live in a certain spacetime region and some
things they cannot measure. Within every region of space and time, out of the whole set of
Hermitian operators, there must be only some of them that those people can measure. If this
were not so we would run into contradictions between the most general principles of quantum
mechanics—the interpretation rules that tell us how Hermitian operators are connected with
observations—and the principle of Einstein causality, that information cannot travel faster
than the speed of light. I have said a lot of words. Let me try to make them precise.

Say we have two regions of space and time, R; and R, open sets of points if you want
to be mathematically precise. These regions are such that no information can get from R;
to Ro without traveling faster than the speed of light. Mathematically the condition can be
expressed like this. If 27 is any four-dimensional point in Rj, and z9 is any four-dimensional
point in R, then the square of the distance between these points is negative:

(zo —21)2 < 0. (3.1)
Recall (1.18) that two points satisfying this condition are said to be separated by a spacelike

interval. Every point in our region R; is spacelike separated from every point in our region
Rs.

Regions R, and Rs are spacelike separated:
r1 € Ryand 23 € Ry = (19 — 21)? < 0

oI
Ry Ry

01'2

Figure 3.1: Spacelike separated regions

Let &7 be any observable that can be measured in R;. Likewise, let 05 be any observable
that can be measured in Ry. Our theory must contain a rule for associating observables with
spacetime regions:

If ((Eg — .’E1)2 < 0, then [ﬁl, ﬁz] = 0. (32)
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Every Hermitian operator that is measurable in the region R;, even according to our most
abstract and generalized sense of measurement, must commute with every Hermitian operator
that is measurable in region Ry. It’s got to be so. This conclusion comes just from the general
conditions of quantum mechanics and the statement that no information can travel faster
than the speed of light. This is a very severe, very curious kind of restriction to place on a
theory, in addition to all the usual dynamics, imposing a rule associating observables with
spacetime regions. We’ve certainly never encountered it in quantum mechanics before; we’ve
never encountered such a rule in relativistic quantum mechanics, either. Have we encountered
it in relativistic classical mechanics? Well, in the relativistic theory of a point particle we
haven’t; but we have in classical electrodynamics.

Maxwell’s equations have fields in them, say the electric field as a function of z#, a spacetime
point. You know very well what you can measure if you're stuck in the spacetime region R;
and all you have is an electrometer. You can measure E(x,?) in the region Ry, and that’s it.
To phrase it perhaps more precisely, depending on the shape and size of the pith balls in your
electrometer, you can measure some sort of average of the field smeared over some function
f(x) which is to vanish if « is not in Ry. Of course, if you have more than just pith balls,
if you have dielectrics and other electromagnetic materials, you might be able to measure
squares of the electric field or more. For example, you might be able to measure

/d49€1d4$2 (w1, 22)Ei(21) Ej(22) (3.3)

where f(z1,22) = 0 if x; and/or x5 is outside of Ry. That is to say there is an entity in
familiar classical physics that does enable us, in a natural way, to associate observations
with definite spacetime regions: the electromagnetic field. What you can measure are the
electric and magnetic fields, or perhaps combinations of them, in that region, but not outside
that region. We can’t design an apparatus right here to measure the electric field right
now over there in Andromeda. This gives us a clue as to how to associate observables with
spacetime regions in relativistic quantum mechanics. What we need is the quantum analog of
something like the electromagnetic field. We have to find a field, ¢(z), or maybe a bunch of
them, ¢®(z), operator-valued—because we're now in quantum mechanics, and observables are
operators—functions of space and time. Then the observables—I'm just pretending to guess
now, but it’s a natural guess—the observables we can measure in a region R; are things that
are built up out of the field (or fields, if there are many fields involved), restricted to the
spacetime region R;. What is strongly suggested is that quantum mechanics and relativistic
causality force us to introduce quantum fields. In fact, relativistic quantum mechanics is
practically synonymous with quantum field theory.

So one way (perhaps not the only way) of implementing Einstein causality—that nothing
goes faster than the speed of light—within the framework of a relativistic quantum theory is
to construct a quantum field, the hero of this course—one of the two heroes, I should say; the
other is the S matrix, but we won’t get to that for a while. The center of all our interest,
the hero sans peur et sans reproche? of this course, is the quantum field. That will give us a
definition of what it means to localize observations. Once we have that definition, we won’t
have to worry about what it means to localize a particle. Forget that, that’s irrelevant. If
we know where the observations are, we don’t have to know where the particles are. If we

2 [Eds.] Originally this French phrase described the “perfect knight” Pierre Terrail, Chevalier de Bayard
(1473-1524), “without fear and without flaw”.
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know where the Geiger counter is, and if we know what it means when we say the Geiger
counter responds, the implications of doing a measurement with the Geiger counter change.
Ultimately, what we want to describe are observations, not particles. The observables we
build as functions of the fields will commute for spacelike separations if the fields commute for
spacelike separations. If we can construct a quantum field, we will settle two problems at once.
We will see how our theory can be made consistent with the principle of causality, and we will
make irrelevant the question of where the particles are. If we can’t do it with fields, we’ll have
to think again. But we will be able to do it with fields. I want to remind you of something I
said at the end of the last section. These fields will depend not only on space but on time.
That is, we are working in the Heisenberg picture.

3.2 Conditions to be satisfied by a scalar quantum field

We will try to build our observables from a complete set of N commuting quantum fields
¢%(x), a =1,..., N, each field an operator-valued function of points z* in spacetime. We
will construct our fields out of creation and annihilation operators. What I am going to do
is write down a set of conditions that we want our fields to satisfy, so that they give us a
definition of locality. Some of these conditions will be inevitable; any field we can imagine
must satisfy these conditions. Some of them will just be simplifying conditions. T’ll look
for simple examples first, and then if I fail in my search for simple examples—but in fact I
won’t fail—we can imagine systematically loosening those conditions and looking for more
complicated examples.

These five conditions will determine the form of the fields:

L. [¢%(z), ¢°(y)] = 0 if (z — y)? < 0, to guarantee that observables in spacelike separated
regions commute.

2. ¢*(x) = ¢*(x)t. The fields are to be Hermitian (and so observable).
3. 7P Ypa(x)et’V = ¢ (x — 5). The fields transform properly under translations.

4. U(N)T¢2(2)U(A) = ¢*(A~'2). The fields transform properly as scalars under Lorentz
transformations.

5. The fields are assumed to be linear combinations of the operators,
% (z) = /d3p {Fg(x)ap + Gg(x)a;f)} (3.4)

I want to say more about these conditions before we apply them.

Let’s start with the first and second conditions. We will frequently have occasion to
deal—not so much in this lecture, but in subsequent lectures—with non-Hermitian fields. Of
course, only a Hermitian operator can be an observable but sometimes it’s convenient to
sum together two Hermitian operators with an ¢ in the summation to make a non-Hermitian
operator. So I might as well tell you now that if I talk about a non-Hermitian field I mean its
real and imaginary parts, or, this being quantum mechanics, its Hermitian and anti-Hermitian
parts, are separately observables, to take account of the possibility of non-Hermitian fields. In
other words,

[6%(2)", ¢"(y)T] = 0 if (x — y)* <0 (3.5)
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That’s just tantamount to saying the Hermitian and anti-Hermitian parts of the fields are all
considered as a big set of fields, and all obey the first condition.

Now let’s talk about the third and fourth conditions, on the transformation properties of the
fields. We know in the specific case we're looking at, Fock space, how spacetime translations
and Lorentz transformations act on the states. This should tell us something about how these
transformations act on the fields. Let’s try to figure out what that something is, by considering
the more limited transformations of space translations and ordinary rotations. First, space
translations.

We can conceive of an operator valued field even in non-relativistic quantum mechanics.
Suppose for example we have an electron gas or the Thomas—Fermi model. We can think of
the electron density at every space point as being a field, an observable, an operator. It’s a
rather trivial operator, of course, delta functions summed over the individual electrons, but
it’s an operator that’s a function of position. Let’s call this operator p(x). The point x is
not a quantum variable, it is just the point at which we are asking the question “What is the
electron density?” If we have some arbitrary state |¢), I'll write the function f(x) for the
expectation value of p(x) in that state |¢):

f(x) = (¥]p(x)[¥) (3.6)
Now suppose we spatially translate the state. I define
[0') = TRy (3.7)

This is the state where I've picked up the whole boxful of electrons and moved it to the right
by a distance a. Now what of the expectation value? It becomes

(@' lp(x) ") (3.8)

If there’s any sense in the world at all, this must be f(x —a). Perhaps that minus sign requires
a little explanation.

Let’s say I plot f(x) peaked near the origin. Now if I translate things by a distance a to
the right, I get the second plot:

f(x)

1 X T X

Figure 3.2: Expectation values for a state 1)) and the state |¢') translated by a

The value of f(x — a) is peaked at x = a if f(x) is peaked at the origin. That is the correct
sign for moving the state over from being centered at the origin to being centered at a. And
that’s why there is a minus sign in this equation and not a plus sign. Now of course

fx—a) = (Wpx)[0') = @l 2p(x)e ) (3.9)
by the definition of |¢)’). On the other hand, rewriting (3.6) for x — x — a, we can say

fx—a) = (lp(x—a)ly) (3.10)
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Since |¢) is an arbitrary state, and a Hermitian operator is completely determined by its
expectation values in an arbitrary state, we can eliminate [¢) and write

ePrap(x)e P a = p(x — a) (3.11)
in agreement with (1.39). This is simply the statement that if you translate the fields as you
translate the states, this is what you find. We generalize this in the obvious way to translations
in Minkowski space, where we have both purely spatial translations and time translations, and

that is our third condition; ' 4
e" g (z)et = p(x — a) (3.12)

This last equation is in fact four equations at once. Three of them correspond to the three
space components of a and are just the previous equation rewritten. The fourth I obtained by
generalization, but it should not be unfamiliar to you. The fourth equation, the one where a
points purely in the time direction, is simply the integrated form of the Heisenberg equation
of motion, since P is the Hamiltonian.3

As far as condition 4 goes, let’s first consider how a set of fields in general transforms under
an ordinary rotation:

¢°(x) 5 ¢%'(x') = Ri¢" (R 'x) (3.13)

However, if the fields transform as scalars, Ry = di. That is to say,
U(R) p(x)U(R) = p(R~"x) (3.14)

The R~! appears here for the same reason that the —a appeared in the previous argument. If
the expectation value is peaked at a given point, the transformed expectation value will be
peaked at the rotated point.

That’s the transformation for a scalar field, like p(x), but not every field is a scalar. If we
were to consider, for example, Vp(x), the gradient of p, we would discover as an elementary
exercise that

U(R)'Vp(x)U(R) = RVp(R x) (3.15)

As you undoubtedly know from previous courses, the gradient of a scalar is a wvector, and
this is the transformation rule for rotated vector fields, a set of three operators for every
spatial point. Of course gradients of scalars are not the only vectors. There are all sorts of
three-dimensional vector fields one encounters in classical physics that are not gradients of
scalar fields, for example, the magnetic field. And there are more complicated objects with
more complicated transformation laws under rotations: tensor fields, spinor fields, etc.

From the behavior under rotations, we now generalize to Lorentz transformations, just as
we generalized the space translation behavior to spacetime translations. In general, a set of
fields ¢%(x) will transform as

6%(x) 5 0% (2) = Sp (M) (A a) (3.16)

3 [Eds]. Let a* = (dt,0,0,0) be an infinitesimal translation in time. Then with P® = H,
do(x,1)
dt

(expanding the right-hand side in a Taylor series) or i[H, ¢(z)] = d¢(x)/dt, which is just the Heisenberg
equation of motion.

e p(2)et T = ¢(x — a) & (1 — iHdt)d(x,t) (1 + iHdt) = ¢(x,t) — i[H, §|dt ~ $(x,t) — dt




3.8 The explicit form of the scalar quantum field 37

Again, if the fields transform as scalars,
¢*'(a") = U(A) ¢ (2)U(A) = ¢(A"2) (3.17)

The A~! appears here for the same reason that the R~! appeared before. If the expectation
value is peaked at a given point, the transformed expectation value will be peaked at the Lorentz
transformed point. One can consider the Lorentz transformation of much more complicated
objects: tensor fields, spinor fields, etc. (In particular, the gradient 0*¢® transforms as a
Lorentz 4-vector if ¢® is a Lorentz scalar.) However the scalar field is certainly the simplest
possibility, and therefore for my fourth condition I will assume my fields transform like scalars
under Lorentz transformations. This is an assumption of pure simplicity. If this doesn’t lead
to a viable theory, we’ll have to consider fields with more complicated transformation laws.

So conditions 1 and 2 are universal, absolutely necessary, while conditions 3 and 4 are
just simplifying assumptions. We can think of unitary transformations acting in two separate
ways: as transformations on the states, such that 1)) — U |[¢)), or as transformations on the
operators, A — UTAU; but not both.*

Condition 5 is a super-simplifying condition. We have these a’s and a'’s floating around,
so we'll make a very simplifying assumption that the ¢*(x) are linear combinations of the ap’s
and a;f,’s. If the linear combinations prove insufficient, we’ll consider quadratic and higher
powers of the operators. But this won’t be necessary.

3.3  The explicit form of the scalar quantum field

In order to exploit these five conditions, I’ll have to remind you of the properties of the ap
and aL operators. We worked all these out in the last lecture, so I’ll just write them down.
First, the algebra of the creation and annihilation operators:

[ap, aj] = 0@ (p — p) (3.18)
lap, apr] = [a},al,] =0 (3.19)
Then, for translations,
eiP-ma;r)e—iP-w _ ez‘pmaL e Tane P = g (3.20)
and finally for Lorentz transformations,
U(NapU'(A) =arp  UN)abUT(A) = al, (3.21)

To construct the fields, I'll now use these properties of the ap’s and a;[,’s, and the five conditions
in reverse order. Condition 1 is the hardest to check.

First we’ll satisfy condition 5. I'll simply try to find the most general ¢ without an index
a. If I find several such solutions, I'll call them ¢, ¢?, and so on. We can start with ¢(0) and
use condition 3 to shift ¢(0) — ¢(z);

o(x) = eiP'”(/)(O)e_iP'x (3.22)

4 [Eds.] One can define a transformation U in terms of its action on the states, and then check that it acts
correctly on the operators, or one can define it in terms of its action on the operators, and check that it has
the proper effect on states. But one should not simply assume that it works both ways.
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It will be convenient to write the fields in terms of a(p) and af(p). There is no harm and
much to be gained by putting in the Lorentz invariant measure. So the most general form
looks like this:

3
00) = [ Griiea [ o)+ a0l (323)

where f, and g, are some unknown functions of p. As always these functions f,, and g, depend
not on four independent variables p*, but only three.

At this stage f,, and g, are arbitrary functions, so there’s an infinite number of solutions to
condition 5, which is not surprising. They’re not restricted to be Hermitian, or to be complex
conjugates of each other. We get more information about f, and g, by examining Lorentz
invariance.

A special case of condition 4 tells us
U(N)p(0)UT(A) = ¢(0) because AO =0 (3.24)

Applying the transformation to ¢(0) I find

#(0) = /mj;gwp) {fpa(p) + 9p aT(p)}

U [ e [foat) + 900! ()] 0 1)

)?(2wp)
_/ Pp DA —_ Ut (A (3.25)
= | Gty Ve TA@UT(A) 49, UA)aT(p)UT(A)
a(Ap) at(Ap)
3
- / (275{9,(2%) {fpa(ApngaT(Ap)}

Note that U(A) goes right through f,, and g, like beet through a baby. Now I define p’ = Ap,
and I can write the integration over p’. The Lorentz invariant measure is the same, so it
doesn’t change at all. The only thing that changes is

o = fa—1p 9p = ga-1p (3.26)
so that g
60) = [ gy [0 o) + 9101 ) (3.27)

Comparing this with the first expression above for ¢(0), the two integrands must be equal.
But the a(p)’s and af (p)’s are linearly independent operators, therefore the coefficients must
be equal, and I deduce

fp = fa-1p and g, = gp-1,, for any p and any A (3.28)

The values of p are constrained to lie on the upper invariant mass hyperboloid I drew previously
(Figure 1.1). It follows from special relativity that I can get from any point on this hyperboloid
to any other on it by a Lorentz transformation. Because relativity can change the value of p
without changing the values of f, and g,, they have the same value for all values of p. That
implies

fp=Ff and gp=g (3.29)
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where f and g are constants to be determined. So conditions 5 and 4 have taken us pretty far;
we are down to two unknown constants. What about ¢(x)? Will that involve other constants?
No, because if I use condition 3, replacing x with 0 and a with —z, I obtain

$(a) = e T(0)e (3.30)

which of course I can compute since I have an expression for ¢(0), and I know how the operators
a(p) and af(p) transform (the same as the ap and af,, see (3.20)). Then

P d*p —iPx

<z><w>=e“°l/ [fa()+ga()}e’ :
(27T) (2wp)

_ / [ femireg

Here is ¢(z), and I still only need the two arbitrary constants f and g. I haven’t used all of

the content of conditions 3, 4 and 5; for example, I've only used condition 4 at the origin. But

I leave it as a trivial exercise for you to show that every expression of this form satisfies the
conditions 3, 4 and 5 for all x and all a. You can almost read it off, I think.

zP Ty —zP~a: + g eiP~acaT (p)e—iP'gc} (331)
p-

p)+ ge'™al ()|

So let’s summarize the situation before we apply conditions 1 and 2. A general field
satisfying 3, 4 and 5 can be written as the sum of two independent fields, which I will call
#F)(z) and ¢(~)(x). The fields ¢(t)(z) and ¢(~)(z) are the coefficients of f and g, but I'll
write them not in terms of the a’s but the a’s, since it’s easier to compute the commutators
using the a’s:

o(x) = f') (x) + g0 (x) (3.32)

where

3 , a3 .
@) = [ G e " 90w = / SRk (339

and as usual when the 4-vector p appears, its time component is wp. Note that ¢(_)(96)T =
¢ (x). The assignment of ¢(~)(z) to the field involving af, seems completely bananas but it
was established by Heisenberg and Pauli,” on the basis that ¢(~)(z) only involves p*’s with

negative frequencies, i. e. with a sign of +ip°z( in the exponential’s argument, and similarly
with () (z).6

Now to apply condition 2, hermiticity. Two independent Hermitian combinations are
¢o'(2) = oM (@) + (@) () =i(6'(x) — () (3.34)

These are two independent cases of the most general choice satisfying condition 2:

¢(z) = ¢ (z) + e 97 (2) (3.35)

5 [Eds.] Werner Heisenberg and Wolfgang Pauli, “Zur Quantendynamik der Wellenfelder” (On the quantum
dynamics of wave fields) Zeits. f. Phys. 56 (1929) 1-61, “Zur Quantendynamik der Wellenfelder II”, Zeits. f. Phys.
59 (1930) 168-190.

6 [Eds.] Schweber RQFT, p. 167.
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where 6 could in principle be any real number.

Now to satisfy condition 1. There are three possible outcomes:

Possibility A: Two independent solutions, ¢! (x) and ¢?(x), which commute with
themselves and with each other. Any combination a¢!(x) + bp?(x)
is observable, with a and b real constants.

Possibility B: Only the single combination e??¢(*)(x) 4+ e=$(~) (x) is observable.
The most general Hermitian combination is, aside from an irrelevant
multiplying factor, some complex number of magnitude 1 times
) (x) plus that complex number’s conjugate times ¢(~) ().

Possibility C: The program crashes. We’ll need to weaken condition 5 or think
harder.

So either we have two fields or we have one field, and if we have one field, it must be of this
form (3.35) to be Hermitian. Actually we can shorten our work a bit by realizing that we can
get rid of the phase factor by redefining ap and aL:

ap — eay aL — e_i‘gaL (3.36)
If we make such a redefinition, that changes no prior equation before the definition of ¢(z).
Then I might as well consider equivalently Possibility B':

Possibility B': ¢ = ¢ (z) 4+ ¢ (x)

We really only have two independent possibilities to consider: Possibility A, in which we say
both ¢(*)(z) and ¢(~)(z) are local fields (i.e., they commute for spacetime separations), and
Possibility B’ in which we say just the sum of ¢(*)(z) and ¢(~)(x) is observable, and the
difference is not observable.

Now we will look at these two possibilities systematically. Everything we have to compute
to check A, we also have to compute to check B’. So let’s start with A. We want to see
that everything commutes with itself for spacelike separation. If A is true, then ¢!(x) must
commute with ¢?(y), and each must commute with itself. For example, we must have the
commutator [¢!(x), ¢%(y)] equal to zero for spacelike separations. Is it?

(6" (2),0*(y)] = [ (z) + ¢ (2), ' (y) — ¢ (v)]
= i[¢(x), o ()] — i[e™ (), ()]
+i[p ) (@), 6P (y)] — i) (z), 67 ()]
29

(3.37)

For ¢(t)(x) with ¢(t)(y), spacelike, shmacelike; they all involve nothing but annihilation
operators, and all annihilation operators commute with each other no matter what we multiply

them by, so that’s zero. By similar reasoning, or by taking the adjoint, the same thing goes
for ¢(=)(z) with () (y).
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Now we come to the crunch. Let’s compute

- d3p —ip-x d3p/ ip’ -
[¢(+)(:L');¢( )(y)] = l/ Wape P ,/WGL,ez) y]

) L,
—ip-x ,ip’ -y T
e e [ap,ap,}

/ d3p / d3p/
(27m)3/2, 2wy ) (27)3/%\ /2wy

(3.38)
e~ P oip’ Y §(3) (p—-p)

/ d3p / d3p/
(27m)3/2, 2wy ) (27)3/2 /2wy

_ d’p —ip-(z—y) — L2
‘/Wwe = A+@ -y

This function is one of a series of similar functions that will turn up again and again in
our investigations. This one is actually a Neumann function or something, but its name in
quantum field theory is A, . It’s a function of the difference of the spacetime points, (z — y),
as is obvious from the expression, and the mass, from the definition of w, and the value of
p°. To keep things short, since we're only worried about one mass, I'll suppress the p? and
just call this Ay (x —y). If we were worrying about several different types of particles with
different masses we would have to distinguish between the different A, ’s.

You might expect that A, (z) is a Lorentz scalar function:
Ay (z) = AL (Ax) (3.39)

This is indeed true. The argument of the exponential is a Lorentz scalar, and the factors have
come together to make the Lorentz invariant measure. The Lorentz invariance of A, (z) will
be a useful fact to us later. Another useful relation is

[0 (@), 6 (y)] = —As(y — ) (3.40)
which follows easily from the definition of Ay (z —y).

The real question we want to ask now is: Does Ay (z) = 0 if 22 < 0?7 If so, we’re home
free. Otherwise we have to look at Possibility B’. Well, it doesn’t. We know it doesn’t from
Chapter 1. If I take the time derivative of A, (z), that cancels out the wj, in the denominator,

0 i [ dP’p .
@m(l«):_i/(%)ge g (3.41)

and we get precisely the integral (1.81) we had to consider in Chapter 1 when I wondered
whether particles could travel faster than the speed of light. Now if a function vanishes
for all spacelike z2, its time derivative surely vanishes for all spacelike 2. By the explicit
computation of Chapter 1, its time derivative doesn’t vanish, so the function doesn’t vanish,
either. The answer to the question “Is A, (x) = 0 for spacelike 22?” is “No”. (Never waste a
calculation!) Possibility A is thrown into the garbage pail, and we turn to the only remaining
hope, Possibility B’. If B’ also gets thrown into the garbage pail not only this lecture but this
entire course will end in disaster!

Here we only have one field so we only have one commutator to check. Now fortunately
since this ¢(z) is o) (z) + ¢~ (z), the commutator is the sum of four terms we have already
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computed:

[6(x), 6(y)] = [0 (@) + ¢ (@), 6 () + ¢ ()]
(6 (2), 67 ()] + [0 (), 6 ()] (3.42)
=Ay(z—y)—Ay(y—z)=iA(z —y)

This iA(z — ) is a new Lorentz invariant function (using the notation of Bjorken and Drell;”
the conventions differ from text to text). Like Ay (x — y), iA(x — y) depends on the square
of the mass 2, but if there’s only a single type of particle around, we don’t need to write it.
Does this expression equal zero for spacelike separations, (z — y)? < 0?7 Yes, and we can see
this without any calculation. A spacelike vector can be turned into its negative by a Lorentz
tramsformation,8 SO

Ap(z—y)=Ar(y—=) if (x-y)* <0 (3.43)
and so
[¢(x),d(y)] = iA(z —y) =0 if (z —y)* <0 (3.44)

Possibility B’ thus escapes the garbage pail, and we don’t have to consider Possibility C. Our
single free scalar quantum field of mass pu is then written

d*p

o(x) = / W (ape*”” + aLe”””) (3.45)

or in terms of the a(p)’s and af(p)’s,

o) = [ ot (alwe > + 1) (3.46)

(Particularly important equations will be boxed.) We have constructed the scalar field. It is
the object that observables are built from. Now we take off in a new direction.

3.4 Turning the argument around: the free scalar field as the fundamental object

Several times in the course of our development we have introduced auxiliary objects like the
annihilation and creation operators and then showed that the whole theory could be defined in
terms of their properties. I would now like to show that the whole theory can be reconstructed
from certain properties of the free quantum field. I will have to derive those properties. The
structure we have built is rigid and strong enough to be inverted. We can make the top story
the foundation.

7 [Eds.] Bjorken & Drell Fields, Appendix C.

8 [Eds.] This would not be true for a timelike vector. Proper Lorentz U= /[r]2 + w2
transformations move a timelike vector z* satisfying z2 = k2,
inside the light cone, (24 and x4 in the diagram) around the -
upper and lower hyperboloids ¢t = ++/|r|? + k2, respectively, > y |2 — 2 = K2
but cannot change the sign of ¢, and so cannot transform a
forward pointing vector like ' into a backward pointing vector
like :v’; By contrast, proper Lorentz transformations move a
spacelike vector z# satisfying 2 = —«2, outside the light cone,
(zf and —a¥) around on the hyperbolic sheet |r|2 — t2 = £2.
Since both z and —z% lie on the same sheet, a spacelike vector
can always bBe Lorentz3 transformed into its negative. t=—VIr? +x
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The first property is trivial to demonstrate, that ¢(x) obeys this differential equation:?
D?¢(x) + plp(z) =0  (O*=0"0,) (3.47)

This is just a statement that in momentum space p? equals p2. This is most easily shown by
rewriting (3.46) in terms of the explicitly Lorentz invariant measure:

4
o@) = [ 5807 = )06 (alp)e™ 7 + o e (3.45)

If T differentiate twice with respect to x* I obtain

00,0(0) = [ 1525 00° = i) 00" (1) ()7 +al p)e™)  (.49)
so that
4
Pole) +00(0) = [ (505007 20604 + 1) (alple ™+ alp)e?7)  (350)

The product x6(x) is identically zero, so the product (—p? + p?)d(p? — u?) guarantees the
integrand vanishes, and ¢(x) satisfies the differential equation.

The equation (3.47) has a famous name. It is called the Klein—Gordon equation.!’ As
you might guess from the name, it was first written down by Schrodinger,!! but he didn’t
know what to do with it. He wrote it down as a relativistic analog of the free Schrédinger
equation. Recall that Schrédinger’s original equation comes from the replacement E — ihd/0t,
p — —ihV into a Newtonian expression for the energy, now regarded as an operator equation
acting on a wave function. Schrédinger, no dummy, knew the relativistic expression for energy
and made the same substitutions into that. Then he said “Arrgh!” or the German equivalent,
because he observed that the solutions had both positive and negative frequencies. And he
said, “If this is a one-particle wave equation we are in the soup because we only want positive
energies. We don’t want negative energies!” We have encountered this equation not as a
one-particle wave equation—that’s the wrong context, that’s garbage—but as an equation in
quantum field theory where particles may be created and annihilated.

We already have the second property:

3
[¢(2), ¢(y)] = iA(z —y) = / (277)%’(;)2(*);,) [e*ip'(””*y) - eip'("”*y)} =0 if (z—y)?> <0 (3.51)

These two equations (3.47) and (3.51), as I'll sketch out, completely define the Hilbert—Fock
space and everything else. We postulate these two equations, together with the assumption

9 [Eds.] To remind the reader: Though most authors let 0 = 9#3,,, Coleman writes (2.

10 [Eds.] Walter Gordon, “Der Comptoneffekt nach der Schrédingerschen Theorie” (The Compton effect
according to Schrodinger’s theory), Zeits. f. Phys. 40 (1926) 117-133; Oskar Klein, “Elektrodynamik und
Wellenmechanik vom Standpunkt des Korrespondenzprizips” (Electrodynamics and wave mechanics from the
standpoint of the Correspondence Principles”), Zeits. f. Phys. 41 (1927) 407-422. According to Klein’s obituary
(“Oskar Klein”, Physics Today 30 (1977) 67-88, written by his son-in-law, Stanley Deser), Klein symmetrically
anticipated Schrodinger’s more familiar equation, but was prevented from publishing it by a long illness.

1 [Eds.] Erwin Schrédinger, “Quantisierung als Eigenwertproblem (Viete Mitteilung)” (Quantization as an
eigenvalue problem, part 4.), Ann. Physik 81 (1926) 109-139. English translation in Collected Papers on Wave
Mechanics, E. Schrédinger, AMS Chelsea Publishing, 2003. See equation (36).
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of hermiticity (¢(x) = ¢(z)) and the scalar field’s behavior under translations and Lorentz
transformations (conditions 3 and 4 on p.34.) In this way the scalar field which we’ve
introduced as an auxiliary variable can just as well be thought of as the object that defines
the theory.

We begin with the Klein-Gordon equation, (3.47). We can write the solution to it in its
most general form (the factors of (27)~%/2(2w,)~!/? are included for later convenience),

d*p
)= | —————
¢() / (2m)3/2 2wy,
This is the most general expression for a solution of the Klein—Gordon equation with unknown

Fourier components a, and b,. The condition of hermiticity requires that b, = a;g, so that
the most general solution is just what we had before, (3.45):

(apefip"ﬁ” + bpe”’“) (3.52)

dp ( i ,
2)= [ ————— (ape P* +al e””) 3.53
¢( ) / (271_)3/2\/% P P ( )
We could now deduce the commutators of ap and a;f) uniquely by substituting this expression
into the second equation (3.51) and Fourier transforming the result. Once we have observed
that the commutators are unique, we don’t have to go through the whole calculation because

we already know one commutator of ay with aL that is consistent with everything else, the
delta function 53 (k — k'), as in (3.18).

Finally from condition 3,
oz —a) = e"Fop(x)er e (3.54)

we can deduce the commutators of the ax and aL with the P%’s and the Hamiltonian simply
by differentiation. For example, differentiating the previous equation gives the Heisenberg
equation of motion
9¢(x —a)
Aa®

_ 99()
ot

B = i[H, ¢(x)] (3.55)

Plugging the expression (3.45) in gives

8/d3p (a e~ T 4 qf ei’p'x) :/d3p (—iw ape” P 4 jwsal eip'x)
ot ) (2m)3/2/2wp \ P P (2m)3/2 2w, PP PP

- / (%)gilz/ﬂ (i1, aple ™" 4 ilH, af ] )
(3.56)

which gives, by Fourier transformation, the commutators of ap and aL with the Hamiltonian,
telling us that a;f) is an energy raising operator, identical to (2.22), and ap, is an energy lowering
operator, the same as (2.21). And off we go! Just as in the middle of the last section, we can
reconstruct all of Fock space on the basis of this operator algebra.

So that was a sketch, not a proof. I've leapt from mountain peak to mountain peak without
going through the valleys but I hope the logic is clear. Of course this procedure does not give
us a zero of energy, the energy of the ground state, but that’s just a matter of convention. We
can always define that by convention to be zero.
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Now this is not all. We go on because (3.51) can be weakened. This commutator, our
condition 1 (p.34) can be replaced by two separate equations, two new commutators, say 1’(a)
and 1’(b). The first specifies the commutator of ¢(x,t) with ¢(y,¢). That is to say, the time
components of the two points z and y are to be taken as equal; this is the so-called equal
time commutator. The result is a definite function which we can compute. The second
will be the equal time commutator of ¢(x,t) with ¢(y,t), where the dot always means time
derivative. This will equal something else, again a definite numerical function which we will
shortly compute.'?

Why do I say that condition 1 can be replaced by conditions 1’(a) and 1'(b)? Well, it’s
because the Klein—Gordon equation is a differential equation second-order in the time. I can
operate on the commutator with (02 = 92, considering the variable y as fixed. Therefore I can
just bring the operator through and use the Klein—-Gordon equation. Consequently

(02 + 1?)[é(2), 6(y)] = 0 (3.57)

We know the solution of the second-order differential equation for arbitrary values of the
argument if we know its value and its first time derivative at some fixed time: the initial value
conditions. We need only compute the equation 1'(a)

[6(x, ), 6(3, )] = iA(x - y) (358)
and equation 1’(b)
95,1, 6(3, 1] = i3 Az~ ) (3.59)

£0=y0
for some fixed time ¢, integrate away as in all books on differential equations, and we will know
the solution uniquely. That will be sufficient—because we know iA(z — y) obeys a differential
equation, second-order in time—to compute these commutators and iA(z — y) for all times.
So let’s calculate. From (3.51),
[6(x,1), oy, )] = / _dp (e‘“""“” —~ e“”““”) =0 (3.60)
O ] @y (aw) B |

because the integrand is an odd function. Equation 1’(b) is also easily computed:

3
[b(x,1), d(y, )] = / (27rdp (~iwpe™ P9 — uein )

)?(2wp)
- d’p —ipe(x—Yy) | pip*(x~y)
- 71/ (27)3(2) (6 te )
- d’p —ips(x—y) — _;503)
= —z/ W@ = -0 (x—y) (3.61)

because the integrand is an even function.

As T've argued, conditions 1’(a), 1’(b) and 2 are sufficient to reconstruct the whole theory.
The field which we introduced as an auxiliary entity not only gives us a definition of locality

12 [Eds.] The commutators can be restricted to equal times, because spacelike vectors can always be Lorentz
transformed to purely spatial vectors, with zero time components. With the 4-vector  — y transformed to a
purely spatial vector, z° — 30 = 0. So the restriction of spacelike separation can be replaced by the weaker
condition z° = y0. See note 8, p. 42.
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consistent with the dynamics we had before, but in fact all the dynamics we had earlier can
be expressed in terms of this field: it obeys the Klein-Gordon equation, it is Hermitian, it
satisfies these two equal time commutation relations. Your homework problems ask you to
play with these equations to develop certain identities that will be useful to us later on in the
course.

3.5 A hint of things to come

I’'m now going into mystic and visionary mode, to remind you that these equations look
very similar to some equations you might very well have encountered before, in mechanics
and in non-relativistic quantum mechanics: good old canonical commutation relations and
canonical quantization. We have a set of equations for the Heisenberg picture operators in
non-relativistic quantum mechanics. There’s normally an A in these equations but I've set A
equal to 1. In fact, there is a third that comes with the first two:

[¢°(t), ¢"(t)] = 0 (3.62)
[P (t),¢"(1)] = —i6® (3.63)
[p*(t), " ()] = 0 (3.64)

Now the first two of these equations bear a certain structural similarity to the equations (3.60)
and (3.61) if T identify (,Z.S(X, t) with p® and ¢(x,t) with ¢. Instead of the discrete indices a and
b labeling the various coordinates I have continuous indices x and y, and as a consequence of
that, instead of a Kronecker delta I have a Dirac delta function, but otherwise they look very
similar.

To test that vague similarity let me try to compute the analog of the third equation. If
identify p® with ¢(x,t) in the system I have to compute

[B(x,t), d(y, t)] (3.65)

which, if the analogy holds, should equal zero. This is nearly the same computation as before;

. . a3 ) )
(B, 1), $(y, )] = / T (‘2’%) (~wzemipr ey 42 ety

= /(2:;?(2)(—@) (e_ip'("_” - eip’("‘”) =0

because the integrand is again an odd function. The commutator does equal zero, which looks
awfully like the third equation. To summarize,

(3.66)

[B(x, 1), d(y, )] = [(x,1), (y. t)] =0 (3.67a)
[6(x,1), d(y. t)] = i6® (x — y) (3.67b)

Therefore, there seems to be some vague connection with the system we have developed without
ever talking about canonical equal time commutation relations and the canonical quantization
method. Maybe. Or maybe I'm just dribbling on at the mouth. But there seems to be a
certain suggestive structural similarity. In the next section, I will exploit that similarity in a
much more systematic way. It’s going to take two or three minutes for me to explain what
that systematic way is.
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With the new method I will develop this entire system by a completely different and
independent line of approach. This method will be the method of canonical quantization, or
as I will describe it somewhat colorfully, the “method of the missing box”.

At the start of the next section I will review, in my characteristic lightning fashion, the
introductory parts arising from material I assume you all know, the mechanics of Lagrange
and Hamilton. You also may or may not know that you can generalize classical particle theory
consistent with an infinite number of degrees of freedom or a continuous infinity of degrees of
freedom and write down Hamiltonians and Lagrangians for classical field theory. There is also
a standard procedure for getting from classical particle theory to non-relativistic quantum
mechanics which I will review. What we will attempt to do in the second half of the next
lecture is fill in the “missing box”, to get to the thing you don’t know anything about, or I
pretend you don’t know anything about, quantum field theory. We will again arrive at the
same system, but by another path.
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Problems 1

He who can do nothing,
understands nothing.

PARACELSUS

1.1 Some people were not happy with the method I used in class to show

d3p B d3p/ (Pl 1)
(2m)32w  (2m)32w’ '

where p and p’ are single-particle 3-momenta connected by a Lorentz transformation, while w and w’ are the
associated energies. Show the equation is true directly, just by using the elementary calculus formula for the
change in a volume element under a change of coordinates. (HiNT: The equation is obviously true for rotations,
so you need only to check it for Lorentz boosts (to frames of reference moving at different speeds). Indeed, you
need only check it for a boost in the z-direction.)

(19974 1.1)

1.2 This problem and 1.3 deal with the time-ordered product, an object which will play a central role in
our development of diagrammatic perturbation theory later in the course.

The time-ordered product of two fields, A(x) and B(y), is defined by

A(z)B(y) if zo > yo

B(y)A(z) if yo > zo (P1.2)

T(A(z)B(y)) = {

Using only the field equation and the equal time commutation relations, show that, for a free scalar field of
mass f,

(@2 + 12) (OIT ($(2)$(1))]0) = 5@ (z —y) (PL.3)
and find ¢, the constant of proportionality.
(1997a 1.2)
1.3 Show that
OIT(6(@)sw)I0) = tim, [ Bp i) __ = (P14)
e—ot ) (2m)* p? — u? +ie '

The limit symbol indicates that e goes to zero from above, i.e., through positive values. (If ¢ were not present,
the integral would be ill-defined, because it would have poles in the domain of integration.) (HinTs: Do the po
integration first, and compare your result with the expression for the left-hand side obtained by inserting the
explicit form of the field (3.45). Treat the cases 2° > y? and 20 < y© separately.)

(1997a 1.3)

1.4 In a quantum theory, most observables do not have a definite value in the ground state of the theory. For
a general observable A, a reasonable measure of this quantum spread in the ground state value of A is given by
the ground state variance of A, defined by

var A = ((A — (A))?) = (4%) — (A)2 (P1.5)

49
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where the brackets (- --) indicate the ground state expectation value.

In the theory of a free scalar field ¢(x) of mass p, define the observable

1 2.2

—— [ d®xp(x,0) e IxI7/a P1.6

g | dxo0) (PL6)
where a is some length. Note that the Gaussian has been normalized so that its space integral is 1; thus this
is a smoothed-out version of the field averaged over a region of size a. Express the ground state (vacuum)
variance of A(a) as an integral over a single variable. You are not required to evaluate this integral except in
the limiting cases of very small a and very large a. In both these limits you should find

var A(a) = aa® 4 ... (P1.7)

Aa) =

where o and 8 are constants you are to find (with different values for the different limits), and the ... denote
terms negligible in the limit compared to the term displayed. You should find that var A(a) goes to zero for
large a while it blows up for small a. Speaking somewhat loosely, on large scales the average field is almost a
classical variable, while on small scales quantum fluctuations are enormous.

(1997a 1.4)



Solutions 1

1.1 Consider A, a boost in the z-direction:

A (W, pz,py,pz) = (w/,p;,p;,p;) = (wcosh x + p: sinh x, pz, py, p= cosh x + wsinh x) (S1.1)

where tanh x = v/¢ = v (in units where ¢ = 1.) The change of volume element is given by the Jacobian
determinant,

d’p — &®p’ = Jd%p (S1.2)
where
Opy  Opy  Oph
Opz  Opy  Op- 1 0 0
opl, 0op, Op 1o}
J= Py TPy Py | _ (90.:0 Ow ! gw = coshx + s sinh x (S1.3)
Opz  Opy  Op-: ——sinhy ——sinhy coshy+ sinh x 9p=
op., op, Op. Ope Opy Op-
Opx apy Opz
But 9 9
w_ 9 Jo o o o Pz S1.4
Op= Op= bz +py BECRE w ( ' )
SO

J = coshx + p—zsinhx (S1.5)
w
Using (S1.1) for w’, and (S1.5) for the Jacobian gives

d®p’  (coshx + (p./w)sinhx)d3p  d3p

= - |
2w’ 2(wcosh x + p» sinh x) 2w
1.2 The Heaviside theta function, or step function, 6(z), is defined by
1 if 0
ba) =4
0 ifz<0
The extension to 6(xz — a), where a is a constant, should be clear. Its derivative is a delta function:
do(x —
BE=a) _ 50— a) (S1.6)
dx

Using theta functions, we can write the time-ordered product (P1.2) of two operators A(z), B(y) like this:
T(A(@)B()) = 0(z0 — y0) A(2) B(y) + 0(yo — 20) By) A(x)
The d’Alembertian (12 (the 4-vector equivalent of V2, the Laplacian) is
82

=09y =——5 —V?
Ox?

o1
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Look at the first partial derivative with respect to zg:

T (o(2)¢(y))

oxg

0¢(x)
[oA)

= d(z0 — yo)#(x)d(y) + 0(z0 — yo) #(y)

— 8(yo — z0)p(y)$() + O(yo — x0)(y) 657(?

(S1.7)

Delta functions are even: d(z —y) = 6(y — z). Also, as 6(xz —a) = 0 unless z = a, f(z)d(z —a) = f(a)d(z — a).
The two terms involving delta functions can be written

6(z0 — y0)P(2)4(y) — 6(yo — 20)P(y)d(x) = &(z0 — yo)[d(2), H(y)]

S1.8
= da0 — o) [9(@) 6], =0 (319
because the equal time commutator of the two fields equals zero. (But see the Alternative solution below!)
Then
TN _ gy — o) 220 g3 1 (0 — o)1) 202 (1.9
0 836() 6$O
The second derivative goes much the same way,
0T 0 02
TN — s — o) 20 o(0) + 020 — 1) 1 8(0)
g Oxg
0 0?
~ 3(u0 ~ 70)6(3) 22 + 0o — w0)p(a) s
zo 0o
0 0? 02
~ 5(a0 —w) | ;’(””),cs(y) + 00— 10) 2 5(0) + 00 — w0)(y) T
0 R oxg oxg
52
= =80 =) + 0o — ) o) + 800 — 20)o)
o

because [p(x), ¢(y)] = —i63) (x — y) at equal times. The Laplacian does not act on the # functions, so
—V2(T(¢(2)$(y)) = 0(z0 — y0) (= V?d(2))(y) + 0(yo — z0)(y) (~V>¢(x))
and consequently
(O + 1) T($(@)b(y)) = —i6™ (x — y) + 0(z0 — o) (O + p?)b(@)]b(y) + O(yo — x0)$(y) (O + 1°)b(x)]
=—is@W(z —y)
because ¢ satisfies the Klein-Gordon equation, (0%¢(x) + p2¢(x) = 0. Then
(32 + 12) (OIT($(2)¢(9))|0) = (0] — 6™ (z — y)|0) = —is™) (x — y)

in agreement with (P1.3), and the constant ¢ = —i. | |

Alternative Solution. A purist might object to setting the quantity d(zo — yo)[¢(x), ¢(y)] equal to zero. After
all, the differential equation is second-order, and maybe we should carry the second time derivative all the way
through; 02 = 92 — V2. Then

(0% + 1) T($(2)$(y)) = 85 (6(z0 — yo)$(2)d(y) + 0(yo — z0)$(y)$(x))
+0(20 —yo) (~V?6(2) + 1?6(2)) () + 0(yo — 20)6(y) (~V26(2) + n?6(a) )
Let’s look carefully at the first line of the previous equation. We can write
83 (00 — y0)#(x)(y)) = 80 (S(x0 — y0)d(2)8(y) + 0(x0 — y0)d()B(y) )
= 908(x0 — yo) P(x)(y) + 26(x0 — yo)S(x)d(y) + 0(z0 — yo) d(x)B(y)

Delta functions really only make sense in the context of being under an integral sign, multiplying some suitably
smooth function. If we integrate 9pd(zo — yo) ¢(z)d(y) with respect to zo and use integration by parts,
assuming that ¢(z) — 0 as zg — +oo, then we can say

806(z0 — yo) ¢(2)(y) = —8(x0 — yo) d(x)d(y)
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Using this identity, we have

85 (8(z0 — yo) $(2)$(y)) = 8(z0 — yo) $(2)é(y) + 6(xo — yo) d(x)d(y)

Plug this (and a similar expression with ¢(z) and ¢(y) swapped, and an extra — sign) into the original equation
to obtain

(O +BT(6(@)6()) = 0w = yo) [(B + 12)6(2)] 1) + 00 = 20)0(y) [(@ + ) ()]
+6(z0 — o) [#(2), $(v)]
— 6D y)

which gives the same result. [ ]

1.3 We need to show that for zg > yo,

d*p ; —c
0 o= I —ip(a—y) "¢ S1.10
Ol = tim [ e . (51.10)
and for yo > xo,

Qoo = tim [ e (SL.1D)

x)[0) = lim e _-— .
Y e—ot ) (2m)% p? — p? +ic
The right-hand sides of (S1.10) and (S1.11) are the same. Swap x and y (so that now xg > yg) and obtain
d*p ; —c
0 0 = ki —ip(y—®) 7% S1.12
Ol = tim [ e . (51.12)

The only difference between (S1.10) and (S1.12) is the sign of the exponential’s argument. But if we take
p — —p, nothing changes except the sign of the argument: (S1.10) and (S1.12), and hence also (S1.11), are
equivalent. (There’s a second argument that’s worth seeing; it will be given at the end.) Let’s work on
(S1.10) first. In the product of ¢(x)¢(y), there will be four separate products of creation and annihilation
operators, aa, aa’, ata and aTat. Sandwiched between vacuum states, only the second term survives, because
a|0) = (0] at = 0. Because (O\aLaﬂO) =0, we can write

(0apaly|0) = (0llap, al]|0) = 6 (p — q)
Then

aLeiq'y |0)

3 ) 3
us Wp e wq

d’p ; dq ;
= (0 / e i / 953 (p — q)|0
(l V(2m)32wp V(2m)32wq ( )10)
The integrals sandwiched between the vacuum states are c-numbers, so the integrals merely multiply the inner

product (0|0) = 1. Either integral can be done quickly owing to the delta function. Performing the q integral
gives

d3p :
0 0)= [ —r—e @Y S1.13
Ol = [ e (51.13)
Now to work on the right-hand side of (S1.10), substituting in the value ¢ = —i found in Problem 1.2:
4 ; 3 =i -
/ d Pemiwe—y) 1 _ / d P_ipe(x) dpo e ZLZO yf]) (S1.14)
(2m) p% — p? +ie (2m) 2T pg — wp + i€

Rewrite the pg integral:
dpo je—Po(zo—y0) dpo je—Po(T0—Y0)
o 22 . o - -
2w pp —wp e 27 (py — Vwp? — i€)(po + Vwp? — i€)

Because € is small, we can write

SR 1. — .
Vwp? —ie B wp — zic/wp = wp — in

where 7 is also a small quantity: n — 0 as ¢ — 0. Rewrite the pg integral once again;

dpo ie—Po(zo—vo) / dpo se—Po(x0—yo)
2 pE — w3 +ic - 27 (po — (wp — in))(po + (wp — in))
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Im pg go

Repo

Figure S1.1: Contours for the pg integral in (0|T(p(z)d(y)|0)

Use Cauchy’s integral formula to evaluate this, by extending pp to the complex plane. We’ll use a contour
which has a large semicircular arc of radius R and a diameter along the real axis; we need to choose the upper
or the lower contour. There are two poles, at +(wp — in). For case (S1.10), g > yo, the quantity in the
exponential will be negative if Im pg is negative, so that the semicircular arc of radius R will contribute nothing
as R — oo. That means we take the contour below the real axis, enclosing only the root wp — in. Then by
Cauchy’s formula

/ dpo je—Po(z0—vo) 1 je—i(wp—in)(zo—vo0)

— - —— = (—1) X 27w x — -
27 (po — (wp — i) (Po + (wp — in)) 2r 2(wp —in)
the extra factor of (—1) coming because the bottom contour is clockwise. We can now safely take the limit
n — 0, and the p® integral gives
e~ ilwp—in)(zo—vo)  e—iwp(zo—vo)
lim - =
n—0+ 2(wp —1m) 2wp

Put this back into the original integral (S1.14) to obtain
4 ; 3 —i - 3
lim / AP —ip(omy) ¢ :/ PP ipe(xy) €770 700) :/ PP in@-w (5115)
es0+ ) (2m)4 p? — p? +ie (2m)3 2wp (27)32wp

The right-hand side of (S1.15) is identical to the right-hand side of (S1.13), so the left-hand side of (S1.15) must
equal the left-hand side of (S1.13). That establishes case (S1.10) (and (S1.11) also, since they’re equivalent).

Case (S1.11) can also be done on its own. Now yg > x9. By symmetry, we can write down at once the

equivalent of (S1.13):
Olswowio = [ 4P

T = [ ———

Y (27m)32wp

The right side of (S1.10) is the same as the right side of (S1.11). The po integral is the same as before, but now

Yo > xo. That means the imaginary part of pg has to be positive in order to guarantee that the semicircular

arc contributes nothing. Now we take the upper contour, counter-clockwise, which encloses only the root

—wp + 1. Then

e~ y=2) (S1.16)

- - = 2T X — - —
27 (po — (wp — i) (po + (wp — in)) 2r —2(wp —in) 2wp

/ dpo je—Po(zo—vo) 1 jel(wp—in)(zo—yo) eiwp(zo—vo)

as n — 0. Not surprisingly, the sign of the exponential’s argument changes from the previous calculation.
Substitute this back into (S1.14) to obtain

4 i 3 ' B
I e — s DR R 1
ot ) (2m)t p? — p? + e (2m)? 2wp

Unfortunately, the sign of the exponentials do not now match up to give the inner product of two 4-vectors;
we’d need the space parts to be negative. That’s easy to arrange: Let p — —p. Equation (S1.17) becomes

4 ; 3 ' - 3
R e — — B T
eso0+ ) (2m)4 p? — p? + e (2m)3 2wp (27)32wp

The right-hand side of (S1.16) is the same as the right-hand side of (S1.18), so the left-hand side of (S1.16) is
the same as the left-hand side of (S1.18). That establishes (S1.11). [ ]
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1.4 We first notice that 1
1xI2 /a2
(A) = W/013><e %12/ (0], 0)[0) = 0 (S1.19)

since ¢(x,0) is linear in ap and an, and (0|ap|0) = <O|a;§,\0) = 0. So var A = (A2). To calculate (A2), notice
that A2 involves (0|é(x,0)¢(y,0)]|0). In the product of the two ¢’s, the only non-zero term will be of the form
apal;, where q is a dummy momentum variable. Then

(A%) = 2 //d3xd3ye*(\XI2+Iy|2)/a2/ d’p / P ipxg=iay (glapal 0) ($1.20)
m3ab (2m)3/22wp J (27)3/2,/2wq Pra

The vacuum expectation value can be rewritten as

(0lapaf;|0) = (0|[ap, a}]|0) = 6 (p — q) (S1.21)

because (0|a£ap|0) = 0. Then integrating over q with the help of the delta function,

2y 1 d*p 3y o—(1x]%/a?)+ipex 3y —(y|?/a?)—ipe
(A= e [ ot d3x e~ (IxI7/a”)+ip d3y e~ (I¥I7/a%)—ipey (S1.22)
m3a (27)32wp

The integrals over x and y have the same form. Looking at the integral over x,
3 3
/d3xe_(x2/a2)+ip‘x — H/dxz e-(z?/a2)+ipiz,- _ H a\/;ren?(ip,;)z/él _ a3(ﬂ_)3/26—a2|p\2/4
=1 =1
using the identity [ e—cr?+br gp — (\/ﬂ/C) eb?/4e with ¢ = 1/a? and b = ip;. Then

. a2
(A4%) = ; / s _(wa2)3e—a’IPI*/2 :/00 iy’ dp ~ gt ; /Oo e
3
(2m)32wp 0

m3af 0o (2m)324/p? + p? ‘ = 4n2q? VuZ ¥ p2a?

Now to consider the limits. As a — 0,

1

AL 5 ——
{ >_)47r2a2

° —u?/2 1 3 1
. e udu = m:aoa 0 = aozm, Bo = —2 (S1.23)

As a — oo,

(A2) — ; /(><> 67’“2/2112 du = ; T aoaP> = s = ! E, Boo = —3 (S1.24)
4n2pa’ Jo 4m2pad \ 2 a2\ 2

Just as claimed, as a — oo, the variance tends to zero; as a — 0, when quantum fluctuations are expected
to be enormous, the variance tends to infinity. [ ]
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The method of the missing box

In the last lecture I told you we would find the same object, the quantum field, we had found
a few minutes earlier, by a rather lengthy sequence of investigations, using a totally different
method which I described in my characteristic colorful way as the method of the missing box.
The method may be illustrated by this diagram:

continuum 5

limit
CLASSICAL CLASSICAL
PARTICLE FIELD
MECHANICS THEORY
canonical
quantization
Pl :
1
QUANTUM i\ QUANTUM 1
PARTICLE : FIELD :
Y MECHANICS ' THEORY !
1
1 1

Figure 4.1: The missing box

I presume that three of these boxes are familiar to you. I will give brief summaries of them,
complete but fast, in the first half of this lecture. We start out at the upper left corner with
classical particle mechanics, summarize that, and, moving down, summarize how that extends
to quantum particle mechanics. If you’ve had a good course in non-relativistic quantum
mechanics, you know that there is a standard procedure for getting from classical particle
theory to quantum theory, which I will review, called canonical quantization. Just to remind
you of what that is I'll say it in great detail: You write the system in Hamiltonian form and
you set commutation relations between the classical p’s and ¢’s. This leads to quantum particle
theory. We also can move across, to the right, and summarize how classical particle mechanics
is extended to systems with infinite numbers of degrees of freedom, indeed continuously infinite
numbers of degrees of freedom, i.e., classical field theory: the classical theory of Maxwell’s
equations, of sound waves in a fluid, of elasticity in an elastic solid; classical continuum theory.
What we will attempt to do in the second half of this lecture is to fill in the missing box,

o7
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quantum field theory. As the arrows show it can either be viewed as the result of applying
canonical quantization to classical field theory, following the arrow down; or alternatively,
by following the arrow across from quantum particle theory, generalizing to systems with a
continuous infinity of degrees of freedom. In the language of the algebraic topologists, this is a
commutative diagram.

4.1 Classical particle mechanics

Classical particle mechanics deals with systems characterized by dynamical variables, ordinary
real number functions of time called generalized coordinates. I will denote these as

q*(t), a=1,2,...N.

In the simplest system these may be the coordinates 2 of an assembly of N particles moving
in 3-space where 7 goes from 1 to 3IN. These could represent the three Cartesian coordinates
or the three spherical coordinates of each of the particles. Lagrangian systems are those whose
dynamics are determined by a function L called the Lagrangian. It depends on the ¢*’s and
their time derivatives, which I indicate with a dot, ¢*, and possibly explicitly on the time:

L:L(q17q27~~-7qN7417Q27-~-7QN7t)

We define a functional! called the action, S—ahistorically by the way; it is not the action first
introduced by Maupertuis?—by the integral
to

S= [ dtL(¢* 1) (4.1)

t1

The Lagrangian determines the equations of motion of the system via Hamilton’s Principle,
which is the statement that if I consider a small variation in the ¢%’s,

q" — q" +0q° (4.2)
the resulting change in the action is zero:

58 =0 (4.3)

L [Eds.] In this book, a functional F[f] is a function F of a function f, mapping f to a number, real or
complex, and will be realized by an integral.

2 [Eds.] See Ch.IX, §100 in Edmund T. Whittaker, A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies, Cambridge U.P., 1959. Maupertuis’ action, introduced in 1744, is the integral [¢(0L/dq) dt.
Whittaker says Maupertuis’ Principle of Least Action was actually established by Euler. Lagrange’s equations
were introduced in his Mécanique analytique in 1788. For Hamilton’s introduction of his equations see
W. R. Hamilton, “On the application to dynamics of a general mathematical method previously applied to
optics”, Report of the British Association for the Advancement of Science, 4th meeting, 1834, pp. 513-518.
Lanczos, citing Cayley, says that Lagrange and Cauchy anticipated Hamilton; see Cornelius Lanczos, The
Variational Principles of Mechanics, 4th ed., University of Toronto Press, 1970, p. 168. See also Whittaker,
op. cit., Ch.X, §109 and Arthur Cayley, “Report on the Recent Progress of Theoretical Dynamics”, in his
Collected Papers, Cambridge U. P., 1890, v.III, pp. 156204 for further references. What is now universally
called “the action” was originally called “Hamilton’s first principal function”. See v.II, Lecture 19, p.19-8 in
Richard P. Feynman, Robert B. Leighton and Matthew Sands, The Feynman Lectures on Physics (the New
Millennium edition), Basic Books, 2010.
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I use 6 to indicate an infinitesimal variation; the Weierstrass revolution in calculus has not yet
reached this lecture: we are Newtonians. The variations are subject to the restriction that
they vanish at both endpoints of the integration;

84" (1) = 6q°(t) = 0 (4.4)

From Hamilton’s Principle one can derive equations of motion by the standard methods of the
calculus of variations. One simply computes dS for a general change dq“:

0S8 =

to
dt [‘% OL 55 (4.5)

0q% + —
t dq” 0q°

And here I have made a slight notational simplification by adopting the Einstein summation
convention over the index a, so I don’t have to write a couple of sigmas. As it will turn up
again and again in our equations, I will define p,, the canonical momentum conjugate to qq,

Do = —— (4.6)

(By the way I've arranged my upper and lower indices so that things look like they do in
relativity: Differentiation with respect to an object with a lower index gives you an object with
an upper index and vice versa. It’s just a matter of definition.) From the definition of d¢“, of

course §¢* = ﬁdq“. By substitution and integration of the last term by parts we obtain

t2 oL  dp, u ol
65—/tl dt ([aqa— dt}&] + padq

t1

2

(4.7)

Since dq* are supposed to be arbitrary infinitesimal functions which vanish at the boundaries,
the last term above equals zero and the quantity inside the square brackets must vanish
everywhere. Thus we obtain the equations of motion

OL  dpa. _
dq® dt

(4.8)

These are the Euler-Lagrange equations. I will not do specific examples. I presume you’ve all
seen how this works out for particles and a system of particles with potentials and velocity
dependent forces and all of those things. This gets us halfway through the first box. I will
now discuss the Hamiltonian formulation.

We consider the expression defined by the Legendre transformation®
H=p,q"—L (4.9)

H is called the Hamiltonian. It can be thought of as a function not of the ¢*’s and the ¢%’s,
which is the natural way to write the right-hand side, but of the ¢*’s and the p,’s and possibly
also of time. I will just tell you something about the Hamiltonian which you may remember
from classical mechanics, though in fact we will prove it in the course of another investigation
later on. If the Lagrangian is independent of time, then the Hamiltonian is identical with the

3 [Eds.] Goldstein et al. CM, Section 8.1, pp. 334-338.
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energy of the system, a conserved quantity whose conservation comes from invariance of the
Lagrangian under time translation.

Let us consider the change in the Hamiltonian when we vary the ¢%’s and the ¢*’s (or
equivalently, the p,’s and the ¢%’s) at a fixed time:
0H OH

H=""6p,
0 8pa5p +8q“

oq”

or oL (4.10)

o0~ g
the sum on a always implied. This is just the Chain Rule for differentiation. The second and
fourth terms cancel, and dL/0q™ = p,. Because we can vary the p,’s and ¢*’s independently,
we can now read off Hamilton’s equations,
oH OH |
apa - q 8qa - pa

I presume they are also familiar to you, and I shall not bother to give specific examples.

= ¢"0pa + padq” —

(4.11)

This is a standard derivation, but I should like to make a point that is sometimes not
made in elementary texts. We will have to confront it several times, not in this lecture but
in subsequent lectures. In order to go from the Lagrangian formulation to the Hamilton
formulation there are certain conditions which the p,’s and ¢®’s must obey as functions of
the p,’s and the ¢*’s. The p,’s and ¢*’s must be complete and independent. Tacitly I'm
assuming that these functions, the ¢®’s and the ¢*’s, have two properties. I assume, first, that
it is possible to write the Hamiltonian as a function of just the ¢*’s and the p,’s. Maybe that’s
not so. In most simple cases it is so, but it’s very hard to prove in general that it is always so,
because I can write examples where it’s not so. So this is the condition which we will call
completeness. If the set of the ¢*’s and the ¢%’s is complete, it is possible to express the ¢*’s
and the ¢*’s as functions of the ¢®’s and the p,’s at least to such an extent that it is possible
to write the Hamiltonian as just functions of the ¢%’s and the p,’s. By independent I mean
that I can make small variations of the ¢*’s and the p,’s at any time by appropriately choosing
the variations of the ¢*’s and the ¢®’s independently. If I couldn’t make such small variations,
if there were some constraint coming from the definition of the p,’s that kept me from varying
them all independently, then I couldn’t get from (4.10) to (4.11), because I couldn’t vary them
one at a time.

To give a specific example where the ¢*’s and the p,’s are complete but not independent,
consider a particle of mass m constrained to move on the surface of a sphere of unit radius. If
you know any classical mechanics at all, you know there are two ways of doing this problem.
You have three dynamical variables, three components of the position vector x of the particle.
You can of course go to some coordinates in which you have only two variables, such as
spherical coordinates. Then you don’t have any equation of constraint and off you go by the
standard methods. Alternatively you can keep all three coordinates and write things in terms
of Lagrange multipliers. That is to say you can write a Lagrangian,

L= %mig + )\(x2 -1)

by the method of Lagrange multipliers, which I hope you all know—if not, take five minutes
to read the appropriate section in Chapter 2 of Goldstein.* If I stick this last term in a

4 [Eds.] Goldstein et al. CM, Section 2.4, pp. 45-50.
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Lagrangian I get precisely equivalent equations to the Lagrangian in two coordinates without
the constraint. By varying with respect to A, I obtain the equation of constraint, and by
varying with respect to the three other variables I obtain the equations of motion with the
force of constraint on the right-hand side. From the viewpoint of mechanics this constrained
Lagrangian is just as good as the other. However it does not allow passage to a Hamiltonian
form by the usual procedure: py, the canonical momentum associated with the variable A,
happens to be zero. There is no A = d\/dt in the Lagrangian, and X is not an independent
variable. I cannot get the Hamilton equations of motion involving the three components of
x and their conjugate momenta and A and its conjugate momentum because I cannot vary
with respect to py, which is zero by definition; zero is not an independently variable quantity.
The equation (4.10) is true, but the equation (4.11), which appears to be such an evident
consequence of it, is false. Things break down because the generalized coordinates aren’t
independent. There is no method of Lagrange multipliers in the Hamiltonian formulation of
mechanics.

This is just something to keep in the back of your mind because all of the examples we will
do in this lecture—in fact, everything—will be complete and independent. But then in later
lectures we’ll get to things where they’re not. And if you have a Lagrangian system in such a
form where you do not have a bunch of independent variables, then you have to beat on it,
in the same way as we beat on this example, by eliminating Lagrange multipliers until you
get it into shape where you can go to Hamiltonian form. This completes for the moment my
discussion of the first box, classical particle mechanics.

4.2  Quantum particle mechanics

We go now to the second box, quantum particle mechanics and canonical quantization. I'm
going to explain the arrow leading from classical mechanics to quantum mechanics, and
something about what lies at the end of the arrow. Of course it will not be everything in
quantum mechanics; that’s a course by itself!

Canonical quantization is a uniform procedure for obtaining a quantum mechanical system
from a given classical mechanical system in Hamiltonian form, by turning a crank. It is
certainly not the only way of getting quantum mechanical systems. For example, when you
took quantum mechanics, you didn’t take care of the theory of electron spin by starting out
with the classical theory of spinning electrons and canonically quantizing it. However it is a
way and it has certain advantages. I will first explain the prescription and then the ambiguities
that inevitably plague canonical quantization. Finally I will explain its advantages.

The quantum mechanical system has a complete set of dynamical variables that are the
¢’s and the p’s of the classical system. I will abuse notation by using the same letters for the
quantum variables as the classical variables, instead of writing them with capitals or writing
them with a subscript “op” or something. The classical dynamical variables obey the canonical
Poisson brackets®

{¢%d"} =0={pa,pe}; {¢"m} =6 (4.12)
We replace these dynamical variables by time-dependent (Heisenberg picture) operator-valued
functions, which obey these universal commutators, independent of the system:

[g“(),d"(1)] = 0 = [pa(t), pu(t)];  [q*(t), pu(t)] = iy (4.13)

5 [Eds.] Goldstein et al. CM, Section 9.5, pp. 388-396.
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(Traditionally there is a factor of h on the right-hand side of the last equation, but we're
keeping i = 1.) The commutators are trivial except for the (g, p) commutators, and for that
matter the (¢, p) commutators are also pretty trivial. We assume that the set of ¢* and p, are
Hermitian (and hence observable), and complete.

The Hamiltonian of the quantum system is the same as the classical Hamiltonian, but now
it is a function of the operators ¢® and pg;

H:H(p17p27"'7pN7q17q27"'7qN7t) (414>

Please notice that the prescription for constructing the Hamiltonian is inherently ambiguous.
It doesn’t tell you what order you are to put the ¢*’s and p,’s in, when you write out the
expression for H. In the classical expression it doesn’t matter if you write p?¢? + ¢?p? or if
you write 2pg?p, but in the quantum theory it does make a difference. I choose this particular
example because the ambiguity cannot be resolved just by saying a quantum Hamiltonian
should be Hermitian. This is just an ambiguity that we have to live with. The prescription of
replacing the classical p’s and ¢’s by their quantum counterparts does not define a unique theory
except in especially simple cases. In general there is no way to resolve ordering ambiguities. If
we write the commutator with traditional units,

q“py = ppq® + 1hdy — prg® + (a negligible quantity in the classical limit) (4.15)
so there are no ordering ambiguities in the classical limit.

For this reason we always try and write our quantum systems in terms of the coordinates
of our classical system before canonical quantization, so that the ordering ambiguity causes
the least damage for particles moving in a potential. (We usually quantize the system directly
in Cartesian coordinates. If we are then to do a transformation to spherical coordinates, we do
that after we have quantized the system, after we have written down the Schrodinger equation.)
Why do we do this? It is an ambiguous rule. Why on earth would any sane person or even
an inspired madman have written down this particular rule rather than some others? Well,
historically the only motivation for connecting a classical mechanical system with a quantum
system was the Correspondence Principle, the statement that the quantum system in some
sense should reproduce the classical system if, for some set of experiments concerning that
system, classical physics gives a good description.

The operator that generates infinitesimal time evolutions of the quantum system is the
classical Hamiltonian function of the quantum ¢* and p, operators. For any operator A(t),
dA 0A
— =i[H, A+ — 4.16
o = AL+ o (4.16)
the last term appearing only if the operator has an explicit time dependence in addition to
the implicit time-dependence arising from the ¢*’s and p,’s. In particular, we can rederive the
Heisenberg equations (4.11),

Wi =i (g ) = o

dt Opa Opa (417)
LU L A ) | :
ar W Pal =0 Zaqa - 0q

Let me explain the second step. Because of the canonical commutation relations, taking
the commutator of ¢* or p, with any function of the p’s and ¢’s amounts to differentiation with
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respect to the conjugate variable, times a factor of +i. For example, taking the commutator
of a monomial such as ¢®p.psq® with ¢%, we get

[¢"pepag®. a”] = ¢"pelpas a*1a° + @°[pe. 4" 1pag”
(4.18)

0
_Z-(sab e_,ié'ab e — 4
dq Pcq c4q Pdq Opa

(qbpcpdqe)

If there is a single p, in the expression, I get a 1 from the commutator, if there is a p2 1 get
2p,’s, if there’s a p2 T get 3p2, etc. Thus the quantum mechanical definition of the Hamiltonian
tells us that ¢* equals i[H, ¢%], which is 0H/Op,. Since p, is just another operator, likewise
Pa is just the commutator i[H, p,] which because of the minus sign when I switch around
the canonical commutator gives us —9H/9q*. Canonical quantization is a prescription that
guarantees that the Heisenberg equations of motion for the quantum mechanical system are
identical in form with the Hamilton equations for the corresponding classical system. This is
an expression of the Correspondence Principle.

Consider a state in which classical mechanics offers a good description, a state where at
least for the duration of our experiment, (¢"), the expectation value of ¢", equals (¢)", the
n'™ power of the expectation value of ¢, within our experimental accuracy—we don’t know
that ¢ is statistically distributed—and likewise the expectation value (p™) of the n*® power of
pis (p)", the n*™® power of the expectation value of p. Then by taking the expectation value
of the quantum equations of motion, we observe that they equal, via the mean values of the
particle position and momentum, the classical equations of motion. Of course, if the state
does not obey that classical condition, if it is not (within our experimental accuracy) a sharp
wave packet in both p and ¢, then quantum mechanics gives different results from the classical
physics.

This concludes my rather brief discussion of the arrow descending from the first box,
classical mechanics to quantum mechanics, the second box. We have taken care of classical
mechanics and quantum mechanics in one half hour. Well, of course there is a lot more to be
said about these systems and we’ll return to them occasionally to get clues to say some of
those things. But that’s the only part of them I will need for this lecture.

4.3 Classical field theory

Now we come to something that might be novel to some of you: the extension from classical
particle mechanics to classical field theory. In general the only difference between classical
particle mechanics and classical field theory is that in one case the variables are finite in
number, and in the other case one has an infinite number of variables. The infinite number of
the dynamical variables, say in Maxwell’s electromagnetic theory, are labeled sometimes by
a continuum index. Instead of worrying about the position of the first particle, the position
of the second particle, the position of the n*" particle, one worries about the value of the
electromagnetic field at every spatial point and the value of the magnetic field at every spatial
point.

That is to say instead of having ¢“(¢) one has a set of fields ¢?(x, t). I make no assumptions
about their Lorentz transformation properties or even about the Lorentz invariance of the
theory at this moment; I will shortly. These fields may be components of vectors or scalars
or tensors or spinors or whatever; I don’t care about that right now. The important thing
to remember in the analogy is that in going from the first box to the third, it is not that ¢
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is analogous to the quadruplets z* and ¢, but that a, the index that labels the variables, is
analogous to a and x.

It is sometimes a handy mnemonic to think of = (¢,x) as a generalization of ¢, but that is
not the right way to think about it. For example we are used to giving initial value data at a
fixed time t in classical particle mechanics. In classical field theory, we need initial value data
not at some fixed time ¢ and some x, but at a fixed time ¢ and all x. That x is continuous is
in fact irrelevant because if I wanted to—although I shan’t—I could just as well trade these
variables for their Fourier coefficients in terms of some orthonormal basis. And then I would
have a discrete set, say harmonic oscillator wave functions, and I would have a discrete variable
replacing x. The big difference is that the index is infinite in range, not finite. I will stay
with x because I presume you all know that in manipulating functions of variables it doesn’t
matter whether you use a discrete basis or a continuum basis to describe them, whether you
use harmonic oscillator wave functions or delta functions. With a discrete basis you have a
Kronecker delta and with a continuum basis you have a Dirac delta. Otherwise the rules are
exactly the same.

In classical particle mechanics you have a bunch of dynamical variables ¢*(¢) which evolve
in time. In classical field theory you have a bunch of dynamical variables ¢%(x,¢) that evolve
in time interacting with each other. In classical particle mechanics the individual dynamical
variables are labeled by the discrete index a; in classical field theory the individual dynamical
variables are labeled by both the discrete index a and the continuous index x. We can
summarize the correspondence like this:

qa(t) A ¢a(x7 t)
tet (4.19)

ara,x

In general I have some Lagrangian that is determined by some complicated functions of the
¢*’s at every spatial point and their time derivatives and I just go, carrying on with the system.
However I will instantly make a simplification.

In the final analysis we are interested only in Lorentz invariant theories. If we have an
action S that is the integral of something that is local in time, it seems that it should also be
the integral of something that is local in space, because space and time are on the same footing
in Lorentz transformations. Likewise since the integrand involves time derivatives of only the
first order, it should only involve first order space derivatives. Therefore we’ll instantly limit
the general framework (which I have not even written down) to the special case in which the
Lagrangian—the ordinary Lagrangian L in the sense of the first box—will be the integral over
3-space of something called a Lagrangian density, .Z:

L= / &L d*x (4.20)

This is in general some function of ¢!, ... ¢", some function of 9,¢!,...9,¢" and possibly
some function of the spacetime position x. We will indeed consider Lagrangians that depend
explicitly on the position z when we consider systems subject to external forces.

This is a specialization. There are of course many non-Lorentz invariant theories that follow
these criteria: first order in space and time derivatives, integral over d®x, and so on. Most
of the theories that describe hydrodynamics, a continuum system, do. Most of the theories
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that describe elasticity are of this form. But there are many that do not. For example, if
we consider the vibrations of an electrically charged crystal, we have to insert the Coulomb
interaction between the different parts of the crystal which is not expressible as an integral of
a single spatial density of the crystal variables; it’s a double integral involving the Coulomb
Green’s function. But we will restrict our attention to this form.

When we write down an expression of this form—whenever we have an infinite number of
degrees of freedom—we have to worry a lot about questions of convergence. I will of course
behave in typical physicist slob fashion and avoid such worry simply by ignoring these questions.
But it should be stipulated that this object, L, is well defined. It is tacitly assumed that
all the ¢’s go to zero as x goes to infinity. We will only consider configurations of that sort.
Otherwise the Lagrangian would be a divergent quantity, and everything we do would be
evidently nonsense. So without saying more about it, I will establish a rule that we assume
whenever possible, whenever necessary, that not only the ¢’s are sufficiently differentiable so
that we can do all the derivatives we want to do, but also that they go to zero sufficiently
rapidly so we can do all the integration by parts we want to do. I leave it to mathematicians
to worry about how rapid “sufficiently” is.

We define the Lagrangian L as

L= /d?’xg(gb“(x),aﬂgba(x),x) (4.21)

and the action S as "
S:/ dtL:/d4x$(¢“(x),8ﬂ¢“(x),w) (4.22)

ty

(but the time integration is limited). We can derive the Euler-Lagrange equations from this
expression for the action.

It’s useful now to treat all four coordinates as analogous to ¢. If the Lagrangian density
is a Lorentz invariant, the Euler-Lagrange equations will be Lorentz covariant; Lorentz
invariance is now manifest. Treating the four coordinates equally is a bad thing to do for
Hamiltonian dynamics but a good thing to do for this particular problem; it will allow us to
do all four (if necessary) integrations by parts in one fell swoop. So let’s do that and derive
the Euler-Lagrange equations:

0=0S = /d4m (agw + wa(aﬂw)) (4.23)

D¢ 9(0u9?)

Observe that 6(9,¢%) equals 0,,(0¢*). I can now perform integration by parts. In the space
derivative, the space boundary term vanishes by my assumption that everything goes to zero
at spatial infinity. In the time derivative, the time boundary term vanishes not from that
assumption but from the universal condition attached to Hamilton’s Principle, that I only
consider variations that are zero at the initial and final times; d¢®(x,%1) = d¢”(x,t2) = 0.

Then
I T X 0.4 .
0=068 = /d 7 | 5gr ~ On (a(auqsa)) 3 (4.24)

Following closely upon my development in particle mechanics I will simply define an entity
called 7%

%
7Tg = W (425)
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Since d¢® is an arbitrary function (aside from going to zero at spatial infinity and at the time
boundaries) I deduce, just as in the particle mechanics case, the Euler-Lagrange equations of
motion,

0L

% - Nﬂ-g =0 (426)

These are the same Euler—Lagrange equations of motion derived from the same Hamilton’s
Principle as in the other case. All that we have changed is to have had an infinite number of
variables, and to have specified that the Lagrangian depended on these variables in a rather
restricted way. The quantities 7# should not be thought of as a 4-vector generalization of p,.
The correspondence is actually

o (%, 1) ¢ pa(t) (4.27)

Now you may not be as familiar with these equations as with their particle mechanics analogues.
So let me here pause from my general discussion to do a specific example. Once I do that
specific example maybe there won’t be as many questions about the general discussion as
there would be if I asked for questions now.

EXAMPLE. A Lagrangian density £ for a single real scalar field

I want to construct a simple example. Well, first, the simplest thing I can imagine is
one real scalar field, ¢(z) = ¢*(z), instead of a whole bunch of fields. Secondly, simple here
really means that the equations of motion are linear. That requires a Lagrangian density
£ quadratic in ¢ and J,¢, because the equations of motion come from differentiating the
Lagrangian. T’ll assume a quadratic Lagrangian so I'll get linear equations of motion. And,
thirdly, since I want the equations of motion eventually to be Lorentz invariant I want .Z to
be a Lorentz scalar. That looks like a good set of criteria for constructing a simple example.
Here is the most general of the simple Lagrangians we can construct:

£ =+l (aaﬂqs B + b¢2) (4.28)

Of course this determines the example completely. I've put a one half in front for later
simplifications. There is some unknown real coefficient a times 0,¢ 0"¢. That’s the only
Lorentz invariant term I can make that’s quadratic in d,¢. I can’t make anything Lorentz
invariant out of ¢ and 9,¢. If I multiply them together I just get a vector. And finally I can
have some other coefficient b times ¢ squared, where a and b are arbitrary numbers. Now I hate
to work with more arbitrary coeflicients than I need, so I will instantly make a simplification
that comes from redefining ¢;

¢ — ¢ = ¢/|a] (4.29)

If we rewrite the Lagrangian in terms of ¢, the Lagrangian becomes
£ =+l (aﬂqs' o1 + (b/a)¢’2) (4.30)

From now on I will drop the primes and just call this field ¢. So in fact we have in this
Lagrangian just two elements of arbitrariness, an arbitrary real number (b/a), and the discrete
choice about whether we choose the + sign or the — sign. We’ll later see that this discrete
choice is determined by the requirement that the energy must be positive. That’s sort of
obvious because the Hamiltonian is linearly related to the Lagrangian. So if I take minus the
Lagrangian I'll get minus the Hamiltonian. If it’s positive in one case, it’s going to be negative
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in the other. And if it is positive in no cases, if the energy cannot be bounded in either case, I
wouldn’t have looked at this example!

Now let’s use our general machine. Defining

0L

the Euler-Lagrange equations become, since 0.2 /9¢ = +(b/a)o,
Oumt = £(b/a)p (4.32)

The one half is canceled by the fact that we’re differentiating squares. Or, plugging in the
definition of 7#,

0,0 = (b/a) (4.33)
which is rather similar to the Klein—-Gordon equation that materialized in the latter part of
last lecture. This of course is another reason why I chose this particular example.

Let us now go to the question of the Hamiltonian form. I’ll postpone the Hamilton equations
of motion for a while and just try and derive the Hamiltonian in its guise as the energy. The
question is, what is the analog of p? Well, it’s pretty obvious what the p is. You recall that
one way of defining p was by a partial derivative. You could say

AL = padi® + - -- (4.34)

the dots indicating the other term which contains no time derivative. That’s the definition of
Pq; it’s the thing that multiplies dg,. Now going over to functionals, there’s an unfortunate
change in notation that really makes no sense: we use a wiggly delta, J, instead of a straight d,
but of course it’s the same concept, the infinitesimal change of the dependent variable under
the infinitesimal change of the independent variable;

o ez = [ i B0 = [Exmnsimn s (43)
a

the dots representing terms with no time derivatives. What their explicit forms are, I don’t

care. Some have gradients and some have nothing differentiated, but they don’t have any time

derivatives. Hence the thing that is the analog of p,, in fact the thing that is p, for an infinite

number of degrees of freedom, is

0¥
Mg = — (4.36)
d(o*)
which is the canonical momentum. This expression is also equal to our previous 7#, (4.25),
with u set equal to zero;

0L
0
) a(ao¢a) a ( )
So it’s the time component of 7# which is the generalized version of the canonical momentum,
sometimes called the canonical momentum density. Parallel to this equation
H =p,¢*— L (4.38)

is this equation

H= / dPx (waq's“ - ,2) (4.39)



68 4. The missing box

indeed, they are the same equation. In the former all the summations are absorbed into the
summation convention; in the latter half the summations are absorbed into the summation
convention and the other half are written as integrals. The expression

H =T — & (4.40)

is called the Hamiltonian density; it’s the thing you have to integrate to get the Hamiltonian.

The fact that we obtain the Hamiltonian, the total energy in the time-independent case, as
an integral over x at fixed time is of course not surprising. To find out how much energy there
is in the world, you add up the energy in every little infinitesimal volume. Let’s apply these
formulas to our simple example, (4.30);

L =41 |(6)° = Vo> + (b/a)$? (4.41)

the minus sign coming from our metric. The canonical momentum density 7 is the zero
component of 7 = 0.2 /0(0,¢), so
T ==%t¢ (4.42)

i.e., Jpp(x,t). Therefore the Hamilton density .7 is
H = |76 % 10,00"6 F $(b/a)¢?]

(4.43)

= &[4+ 1Vl - L(b/a)¢?]
We choose the + sign, to ensure that the 72 cannot become arbitrarily large and negative; we
want the energy to be bounded below. And if we don’t want the ¢? term to become arbitrarily
large and negative, we had better choose (b/a) to be less than zero, a fact that I will express
by writing (b/a) as minus the square of a real number, u; (b/a) = —p?. Thus our equations
now have only one unknown quantity in them, the positive number 2, if we’re to have positive
energies. Here is what we have in that case:

2 =5 (0,00"0 - 16?) (4.44)
=1 <7r2 Ve + /ﬁ¢2) (4.45)

The equations of motion become
O%¢ + p?¢p = 0 (4.46)

which is just the Klein—-Gordon equation. Note that the Hamiltonian is the sum of three
positive terms.

We could now go on and write down the classical Hamilton equations of motion in the
general case and then proceed to canonical quantization. However time is running on and I
will do things in one fell swoop. I will describe canonical quantization immediately. After all,
this classical field is just the same as the classical particle system, except that a runs over an
infinite range symbolized by the two variables a and x. So that part about the Correspondence
Principle in the whole song and dance I gave about going from classical mechanics to quantum
mechanics should still be true. Therefore, I will now describe the “missing box”: quantum field
theory.
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4.4  Quantum field theory

We simply write down the corresponding canonical commutators for the quantum field, just as
we did to go from classical mechanics to quantum mechanics:

[6°(x,1), ¢"(y,1)] = [ma(x,1), 7o(y, )] = 0

4.47
[6°(x,1), m(y, 1)) = 1636 (x — y) A

We know that we should have [g, p] = . Which delta? Well, for discrete indices, a Kronecker
delta; for continuous indices, a Dirac delta. The quantum Hamiltonian H is the integral

H:/dBX%

where J# is a function of ¢!, ¢?,... (and their spatial derivatives); 71,72, ..., and possibly
also explicitly of x and ¢, though not in our simple example. But we might consider systems
with external forces.

The set (4.47) is essentially the same set (4.13) we wrote down to find quantum particle
mechanics. It’s not even a generalization; the only generalization is to an infinite number of
degrees of freedom. Since I never worried about whether my sums on a were infinite or finite
in all my formal manipulations, I don’t have to go through the computations again. They are
the same computations. The only change is notational. For continuous indices we write a sum
as an integral, but every operation is the same once you learn that transcription rule. The
advantage of this procedure is that it reproduces the classical field theory in the limit where
classical mechanics is supposed to be valid. There’s just a lot more p’s and ¢’s. Otherwise
there is no difference.

Let us check this with our specific example by explicitly deriving the Heisenberg equations
of motion and seeing that they give us the Euler—Lagrange equations. I won’t bother to write
down the equal time commutators for our specific example because they are these equations
(4.47) with the a’s and b’s erased, because there is only one ¢ and there is only one 7. Okay?
So let’s do it with the example.

H= %/d?’x (7r(x,t)2 + |Vo(x, t)|2 + ,u2<b(x7t)2) (4.48)

There is a universal rule (4.16) for computing the time derivative of any operator. We used
that rule to compute the Heisenberg equations of motion in the particle case. I will now use
this rule to compute them for 7 and ¢, just as we computed them for p and gq.

T’ll start out with ¢ because that’s easier. I will do this in tedious detail to pay my dues so
that every subsequent such calculation I can do with lightning-like rapidity. The only thing in
the Hamiltonian that ¢ does not commute with is 7. The rule says

Sx.t) = ilH. 6(x, )] =i [ Py 3y 0% 00,0 =i [ Py iy, )(-is*(y - %) =n(x.0)

(4.49)
just using the rule [a, b*] = ba, b] + [a,b]b. This equation should be no surprise to you. It is
one of the two Hamilton equations;

o(x,t) = 7(x,1) (4.50)
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Secondly I will compute 7(x,t) by the same universal Heisenberg equation of motion, 7(x,t) =
i[H,w]. Now there are two terms with which 7 does not commute: the gradient term and the
¢? term. Let’s write things out.

i(x,t) = i[H,m(x,1)] = i / &y} { IVo(y. 2, 7(x )] + 2 oy, )%, 7(x,1)| } (4.51)

We have a factor of —1 different from the previous equation, since we are now reversing the
order of the commutator of w with ¢. The % is again canceled because we’re always commuting
with squares. We get

ilH, m(x,t)] = i/d3y {Wﬁ(y,t) V(i6°(y — x)) + 12y, 1)(i6°(y — X))}
= Vz(;S(X, t) - M2¢(X7 t)

I have used the fact that the commutator of m with V¢ is proportional to the gradient of
the delta function, which follows from differentiating the commutator with respect to y.
The integral is also trivial, though not quite so trivial as before, because we have to do an
integration by parts. But it is one I think we can do by eye. This expression should be 7(x, ).
Plugging in from (4.50) to eliminate 7 and write a differential equation in terms of ¢ we obtain

(4.52)

d;(xv t) = V2¢(X, t) - :u2¢(xv t) (453)
which is of course the classical equation of motion, the Klein—Gordon equation.

Thus we have checked, in our specific example, the consistency of the procedure, and
shown that the Heisenberg equations of motion yield the classical Euler-Lagrange equations
of motion, at least up to ordering ambiguities which are rather trivial for linear equations of
motion.%

Now we have obtained the Heisenberg equations of motion, the Klein—-Gordon equation and
the equal time commutators for our free scalar field in two different ways. These two methods
define the same system. As I said, from here on in I could go through everything I did in
the first three lectures running backwards and show that the system defines an assembly of
free, spinless Bose particles, Fock space, the whole routine. One way occupied the first three
lectures and the other took only one lecture. Actually if I had started out this way I would
have had to run over a lot of the material in the first three lectures in the opposite order so it
might have taken me two and a half lectures rather than one.

In any event we have two methods. One method is full of physical insight, I hope. T tried
to put as much physical insight into it as I could. We built the many-particle space out of the
one-particle space. We knew why we wanted to look for a field. It wasn’t because Heisenberg
told us we had to look for a field. We had some physical reasons for it. We constructed the
field, we found it was unique under certain simplifying assumptions, we deduced its properties
and then we showed everything was characterized in terms of the field. The other method is
completely free of physical insight. We have this mechanical device like a pasta machine: the
canonical quantization procedure. You feed in the dough at one end, you feed in the classical

6 By the way much of the material in this lecture is covered in Chapters 11 and 12 of Bjorken and Drell, the
first two chapters of volume II, in a somewhat different way so you might want to look at that. You don’t need
to look at it but you might want to.
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theory, and the rigatoni, the quantum theory, comes out at the other. It’s totally mechanical.
When you’re done you have a set of equations that you hope characterizes the system but
you’ve got a lot of work to do to find their physical interpretation.

Well, since I've characterized these two methods praising the first so much and being so
pejorative about the second, you should not be surprised when I tell you that in the remainder
of the course we will use the second method almost exclusively. The reason is very simple.
The first method we could go through because we already understood everything. It was just
a system of free particles in a box or on an infinite space. We already had access to a complete
solution to the physics; we already knew the whole spectrum of the theory. If we had tried to
apply the first method to an interacting system we wouldn’t be able to get off the ground,
because we would have to know in advance the exact spectrum of the theory. Here if we want
to introduce interactions in the canonical method, at least formally, we just write ’em down.
For example, here’s an interaction:

Ao (x, 1) (4.54)

We have a free theory, £ (¢, 0"¢), equation (4.44), and I’ll throw in this interaction. Better
give it a minus sign so the classical energy at least will be positive:

L — L -\t (x,1) (4.55)

There it is! There is an interaction between the system’s fields, okay? We could do canonical
quantization at least formally, if there are no problems with summing over infinite numbers
of variables (and in fact we’ll see there are, but that particular nightmare lies far in our
future). We get a theory that looks like it has a nice energy bounded below, it looks Lorentz
invariant, everything commutes for spacelike separations because they commute for equal
times, and the whole thing is Lorentz invariant. So it’s got all the general features we want it
to have. And it looks like particles can scatter off of each other because if we do old-fashioned
Born perturbation theory, the expansion of the interaction term will involve two annihilation
operators and two creation operators. At the first order in perturbation theory, you can go
from one two-particle state to another two-particle state, two into two scattering. At the
second order, we’ll get two-particle states into four-particle states and into six-particle states:
pair production! So there it is! We may not know what it means, but at least it’s a cheap
way of constructing an interacting field theory that obeys all of our general assumptions. Of
course this means there’s a lot of work to be done. Why did I write down this interaction
with a power 4 and not the power g? Well, you’ll learn why I didn’t write down %; there’s a
reason for it. But you won’t learn that till later on.” But at least we wound up with some
equations to play with that don’t look as if they have any evident inconsistencies with the
general principles of relativity and causality. So we can begin investigating the properties of
such theories. It is just such an investigation that will occupy the next several lectures or
indeed, essentially the remainder of the first term of the course.

4.5 Normal ordering

I have one more thing I want to say about the free field. Let’s do another consistency check for
our system. Since we have ¢’s and ¢’s = 7’s that obey the canonical commutators and obey
the Klein—Gordon equation we can, as sketched out in the last lecture, express the field in

7 [Eds.] See §16.4.
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terms of annihilation and creation operators. Just as a consistency check, let us take such an
expression, plug it into this expression (4.45) for the Hamiltonian density and see if we get the
same thing, equation (2.48), for the energy as a function of annihilation and creation operators
as we found before, for the Fock space of spinless particles. Here’s the Hamiltonian again,

H= %/dgx (72 + [Voix, 0" + p2o(x,0)?) (4.56)

and let’s write ¢(x,t) once again in terms of its Fourier expansion, equation (3.45), separating
out the space and time parts,
d*p

d(x,t) = /(27T)3/2 2oy

This defines the operators a, and aL. Our game is to plug this expression into the Hamiltonian

(ape—zwpt+zp-x + a;r)ezwpt—zp-x)

(recalling that m = gb), do the space integral, and see if we get a familiar result. This will lead
to a triple integral, but we can do some of the integrations in very short order. Look, for
example, at the first term only,

3 3 3/
/d3x7r X, t /// d Xd pd’p (_iwpape—iwptﬂp'x +zw aT iwpt— 1p-X) %
\/WpWp'

. —iw s t+ip ex - T dw t—ip ex
(—zwp/ap/e P + iwpray, €p (4.57)

We'll get four terms in multiplying out the a’s and a'’s, all involving exponentials like

eTx(PEP) | The space integral is done easily, producing a delta function in momentum,®
which allows us to do the integral over p’ quickly,
. d3 -
%/ddxﬂx’t)z - %/ 2wp [_wr% (apa—pe 2ert 4 abal e Mpt)
P (4.58)

+wf, (apaz, + aLap)]
because wp = w_p. The other two terms in the Hamiltonian can now be done by eye,
L] a*x ’qu(x t)’2 = & p| 12 (apa_pe2"rt —i—aT Toe?rt 4 g al +ala (4.59)
2 ) =3 2 P pl-—p -p pdp T dplp :
5 [ @xptotx.

What will T get for the Hamiltonian? I will now do this in one fell swoop having so well
organized my computation:

1 ’p 2iwpt o 2wpt

X (—wf, +Ip|* + u2) + (apaI, + aI,ap) (wf) +|p|* + /ﬂ) ] (4.61)

=0 :2wg

a3 .
/ P 2 apa_pe ~Ziwpt 4 a:, T_p62“‘"°t + apa;r) —|—al,ap> (4.60)

8 [Eds.] [d®xeT®P* = (27)353) (p)
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We observe that there is a certain simplification here. For example this first term is zero,
because the factor (—w2 4 |p|* + 1?) is zero. Of course we could’ve checked that out on a priori
grounds. We know the equations of motion should tell us the Hamiltonian is independent of
the time. If it is independent of the time it is not going to have any factors like these time
dependent exponentials. The second term has this other factor, (w3 + [p|? 4 11?). It doesn’t
simplify so drastically but it still simplifies to ng. Therefore, we have

H= %/d?’p (apaz) + ai)ap) Wp (4.62)

This is almost but not quite what we expected, (2.48):

H= / @p (ahap ) wp (4.63)

The expression (4.62) differs from what we wanted by a constant . .. and, surprise, that constant
is infinite. Because (4.62) is of course

H= /d3p (ai,ap + %[ap,ai,]) wp = /d3p (ai,ap + %5(3) (0)) Wp (4.64)

The result of commuting [ap, al)] gives 6 (p — p) = 6%(0). It’s only the first term we want.
We don’t like that second term.

Now what can we say about this aside from making expressions of disgust? This infinity is
no big deal for two reasons. First, you can’t measure absolute energies, only differences, so it’s
stupid to worry about what the zero point energy is. This occurs even in elementary physics.
We usually put interaction energies equal to zero when particles are infinitely far apart, but
for some potentials you can’t do that, and you have to choose the zero of energy somewhere
else. There was some fast talking you let me get away with at the end of last lecture, probably
because you were tired. I said: “We’ve got the equal time commutators of the Hamiltonian
with the canonical variables, the equations of motion. Because these tell you the commutators
of the annihilation and creation operators with the Hamiltonian, they determine everything
except for the zero point of the energy, which we don’t care about.” Well, that’s still true.
They have determined everything except for the zero point of the energy. And if we still want
to say we don’t care about it we can say “infinite, schminfinite”; it’s just a constant, so I can
drop it. I can always put the zero of the energy wherever I want.

In general relativity, the absolute value of the energy density does matter. Einstein’s
equations,

R, — %gWR = —81GT, (4.65)

couple directly to the energy density Tyo. Indeed, introducing a change in the vacuum energy
density, in a covariant way like this

T;uz — Tm/ - Aguu (466)

is just a way of changing the cosmological constant A, a term introduced by Einstein and
repudiated by him ten years later. No astronomer has ever observed a non-zero cosmological
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constant. We won’t talk about why the cosmological constant is zero in this course. They
don’t explain it in any course given at Harvard because nobody knows why it is zero.”

Secondly, we can see physically why the second term comes in if we think of the analogy
between this system and a harmonic oscillator. We have an infinite assembly of harmonic
oscillators here but we wrote things just as if the individual Hamiltonians were p? + ¢2; we
haven’t got the extra term of —1 as in (2.16). Therefore, we get the zero point energies in the
expression for the individual oscillators. And since there is an infinite number of oscillators
we get a summed infinite zero point energy. It’s doubly infinite: infinite because of §()(0)
and infinite because [ d®*pwp is infinite. Generally there are two types of infinities: infrared
infinities, which disappear if we put the world in a box (the 5(3)(0) would be replaced by the
volume of the box); and wultraviolet infinities, due to arbitrarily high frequencies. The bad
term here has both types of infinities.

An alternative way of saying the same thing is that canonical quantization gives you the
right answers up to ordering ambiguities, and the only problem here is the order. I will use
my freedom to get rid of ordering ambiguities by defining those terms ordered in another way.
This idea, although it sounds silly and brings universal ridicule, is in fact a profitable way to
proceed. I will therefore define an unconventional way of ordering expressions made only out
of free fields which I will call normal ordering. I'll write down that definition and then I'll
show you that normal ordering defines the right ordering. By the way the most significant
feature of this calculation is I'm being very cavalier about the treatment of infinite quantities.
And if you think it’s bad in this lecture, just wait!

Let {¢**(z1),...,¢% (x,)} be a set of free scalar fields. There may be a whole bunch of
them with different masses and so on. The normal-ordered product of the fields, indicated
by colons on either side,

19N (w1)9" (w2) - " (24) (4.67)

means that this is not to be interpreted as the ordinary product, but instead is the expression
reordered with all annihilation operators on the right and a fortiori all creation operators on
the left.

That is the definition of normal ordering, of this normal ordered product of a string of
free fields. I don’t have to tell you the order of the annihilation operators because they all
commute with each other. Just break every field up into its annihilation and creation parts,
and you shove all the annihilation parts on the right. If the expression involves a sum of
products, each of those terms is redefined by sticking all the annihilation operators on the
right. This seems like a dumb definition. Nevertheless, take my word for it, this concept will
be very useful to us in the sequel. This enables us to write down the proper formula for the

9 [Eds.] Applied to the universe as a whole, Einstein’s equations imply that its size is not static. Einstein
found this conclusion unacceptable, and introduced A to keep the size fixed. Edwin Hubble’s discovery in
1929, establishing the universe’s expansion, apparently removed the need for A. In his posthumously published
autobiography, George Gamow wrote “Much later, when I was discussing cosmological problems with Einstein,
he remarked that the introduction of the cosmological constant was the biggest blunder of his life.” (G. Gamow,
My World Line, Viking, 1970, p.44.) Gamow’s account seems to be the only record of Einstein’s repudiation
of A. But things are not so simple. In 1998, two teams measuring supernova distances discovered that the
expansion of the universe is accelerating, consistent with A > 0. For this discovery Saul Perlmutter, Adam Riess,
and Brian P. Schmidt were awarded the Nobel Prize in 2011. The observational value on A is, in “natural” units
where G = h = ¢ = 1, on the order of (1073 eV)*: A.Zee, Finstein’s Gravity in a Nutshell, Princeton U.P. 2008,
p.359; PDG 2016, p. 349 quotes a value for py = (2.3 x 1073 eV)%. (In natural units, 1eV = 1.76 x 10736 kg,
1eV~! =1.97 x 1077 m, and in conventional units, A = (87G/c*)pp ~ 107952 /m* ~ 10752 m=2.)
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Hamiltonian in terms of local fields:
H = %/d?’x (:7r2 + Vol + u2g? :) (4.68)

That just tells us that whenever we run across the product of an ¢ and an a we put the a
on the right and therefore the adjoint a' on the left. What could be simpler? To advance
this elaborate definition just to take care of what I said in words five minutes ago may seem
extremely silly to you, but we will use the normal ordered product again and again in this
course. This is the first occasion we have had to use it and so I introduced it here. The name
is a little bit bad because “normal order product” causes some students to get confused and
weak in the head. They think you start out with the ordinary product and then you apply
an operation to it called normal ordering. That is not so. This whole symbol, the string of
operators and the colons, define something just as AB defines the product of the operator A
and the operator B. In particular, “normal order” should not be interpreted as a verb, because

it leads to contradictions. Suppose, for example, you attempted to normal order an equation,
like this:

ata=aa’ =15 :ala: = 1aal: -1 = ala=ala—1 = 0=-1 (4.69)

We don’t “normal order” equations. Normal ordering is not derived from the ordinary product
any more than the cross product is derived from the dot product.

The divergent zero-point energy is the first infinity encountered in this course. We’ll
encounter more ferocious infinities later on. We ran into this one because we asked a dumb
question, a physically uninteresting question, about an unobservable quantity. Later on we’ll
have to think harder about what we've done wrong to get rid of troublesome infinities.

This concludes what I wish to say about canonical quantization of the free scalar field. If
we wanted to get as quickly as possible to applications of quantum field theory, we’d develop
scattering theory and perturbation theory next. But first we are going to get some more exact
results from field theory.

Next lecture we’ll go through the connection between symmetries and conservation laws.
We’ll talk about energy and momentum and angular momentum and the friends of angular
momentum that come when you have Lorentz invariance. We’ll talk about parity and time
reversal, all for scalar fields. We’ll talk about internal symmetries like isospin, found in systems
of m mesons (which are scalar particles, and so within our domain). And we’ll talk about
the discrete internal symmetries like charge conjugation and so on, all on the level of formal
classical field theory made quantum by canonical quantization.



This page intentionally left blank



Symmetries and conservation laws |. Spacetime symmetries

Last lecture we discussed canonical quantization and how it established correspondences
between classical field theories and quantum field theories. We also talked about how those
correspondences had to be taken cum grano salis because they included ordering ambiguities.
At the last moment we had to check to make sure that we could order things in such a way
that everything went through all right.

Today I would like to begin a sequence of lectures that will exploit that correspondence by
studying the connection in classical physics between symmetries and conservation laws, and
extending that to quantum physics by the canonical quantization procedure. We will thus
obtain explicit expressions for objects like the momentum or the angular momentum, et cetera,
in field theory, even including for example interactions like A¢*. Of course, these expressions
we find will also have to be taken with a grain of salt. We always have to check that we can
make sense out of them by appropriately ordering things and we will do that check first. We
will begin with typical cases for the free field theory.

Having cleared my conscience by telling you that nothing is to be trusted, I will now
conduct the entire lecture as if everything can be trusted, without worrying about fine points.

5.1 Symmetries and conservation laws in classical particle mechanics

As always I will begin with classical particle mechanics and consider a general Lagrangian
involving a set of dynamical variables and their time derivatives, and perhaps explicitly the
time,

L(qlv"'qnvqla"' 7qn7t)

I would like to consider some one-parameter family of continuous transformations on these
dynamical variables. I will assume for every real number A I have defined some transformation

A gh(t) = q"(t;\) (5.1)

that turns the old motion of the system into some new motion parameterized by the number
A. T will always assume we have chosen the zero of A such that ¢*(t,0) = ¢°(t).

7
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As a specific example let’s consider a transformation for a particular class of systems, an
assembly of point particles, say. I'll give them different masses. The Lagrangian is

L=131) mX X"+ VOI(x" —x%) (5.2)

r>Ss

That’s the conventional kinetic energy, plus some potential energy V("*) depending only on
the differences between the positions x” and x* of the r** and s*® particles, respectively. The
sort of transformation I want to consider for this system is a spatial translation along some
particular direction, to wit, the transformation

x" = x" + el (5.3)

where e is some fixed vector. I translate all the particles by an amount A\ along the direction
e. Other examples of one-parameter families of transformations which we frequently find it
profitable to consider in classical mechanics are time translations, rotations about a fixed axis
and Lorentz transformations in a fixed direction. We will talk about all of these, and others,
in the course of time.

Now we return to the general case. It will be convenient to study infinitesimal transforma-
tions,

q* = q" + (Dg") dA (5-4)

q“ goes into ¢ plus an object I will call Dg® times d\, the infinitesimal change in the parameter
A, where

0q”

oA |y,

If T know how ¢* transforms I know how ¢ transforms, since it is just the time derivative of
q®. Thus D¢, the infinitesimal change of ¢, defined in the same way, is d/dt of Dq®, as we
see just by differentiating (5.4) with respect to ¢; A is a constant and t-independent. We also
know how the Lagrangian transforms:

Dq” (5.5)

oL oL oL dDg"
pr = 2 pge D¢ = L pge 4 p, 2L
o1 T 9Pl T gt TPy

(5.6)

We will always call the expression OL/J¢* the canonical momentum, p,. Similarly we know
how any function of ¢*’s and ¢*’s transforms under either the finite or the infinitesimal version
of the transformation.

Definition. We will call a transformation a symmetry if and only if

_dF

DL = —
dt

(5.7)
for some function F(q%,¢%, t). This equality must hold for arbitrary functions ¢(¢), which
need not satisfy the equations of motion.

Most transformations are not symmetries. Why do I adopt such a peculiar definition?
Well, our intuitive idea of a symmetry is that a symmetry is a transformation that does not
affect the dynamics. When we say a theory is invariant under, say, a space translation, we
mean if we take a motion picture of the system, and if we then space translate the initial
conditions, we get the space translated motion picture. Certainly this would be true if the
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Lagrangian were unchanged by this transformation. But it could also be true if the change
DL in the Lagrangian were of the form dF/dt, because a change of this form simply adds a
boundary term to the action integral. And as we saw in our derivation of the Euler-Lagrange
equations we can add boundary terms to the action integral at will without affecting the form
of the Euler-Lagrange equations. Explicitly,!

t2 t2 dF
s’z/ L’<qa’,q'act>dt=/ dt [L<qa,q'a7t>+ =S4 (g0 ts) — Flqt gt 1)

t1 t1 dt
(5.8)
Since &’ and S differ only by a quantity which equals zero on variation, the conditions 6S" = 0
and 6§ = 0 give equations of motion with the same form.

Whenever one has such an infinitesimal symmetry (in a Lagrangian) one has a conservation
law. This amazing general theorem which I will now prove is called Noether’s Theorem.?
In fact the proof is practically already done.

I will prove it by explicitly constructing a formula for the conserved quantity, a function of
the ¢*’s and ¢®’s which as a consequence of the Euler-Lagrange equations is independent of
time. I will call this conserved quantity @, in general; @ for “quantity”

Q =psDqg" = F (5.9)

This is a universal definition (notice we are using the summation convention). I will now show
that this quantity is independent of time:

d@Q
— = p.Dq® o
7 PaDqg” +p

dDq* dF
—_— = — 5.10

dt dt ( )
Now I will use the Euler-Lagrange equation, which tells us that p, = 0L/Jq,. We have two
expressions for DL. The first one, (5.6), tells us that the sum of the first two terms in (5.10)
is DL. The definition of a symmetry, (5.7), tells us that the last term in (5.10) is —DL.
Therefore, the sum of the three terms is equal to zero, and d@/dt = 0.

So this equation, (5.9), is the magic, universal formula. Given a one-parameter family
of symmetries, (5.4), first you extract an infinitesimal symmetry, (5.5), and then from the
infinitesimal symmetry you extract a conservation law. (There is no guarantee that @ # 0, or
that for each independent symmetry we’ll get another independent (). In fact, the construction
fails to produce a @ for gauge symmetries.®> The rules are universal and of general applicability.
I will give three examples.)

1 [Eds.] See L.D.Landau and E. M. Lifshitz, Mechanics, §2, “The principle of least action”, p. 4.

2 [Eds.] The theorem was stated and proved by Emmy Noether in 1915 while helping David Hilbert
with general relativity, and published by her in 1918. See E.Nother, “Invariante Variationsprobleme”,
Nachr. d. Kénigs. Gesellsch. d. Wiss. zu Géttingen, Math-phys. Klasse (1918) 235-257. English translation by
M. A. Tavel, “Invariant Variation Problem”, Transport Theory and Statistical Physics 1 (1971) 183—-207, and
IXTEX’ed by Frank Y. Wang at arXiv:physics/0503066v1. See also Dwight E. Neuenschwander, Emmy Noether’s
Wonderful Theorem, rev.ed., Johns Hopkins Press, 2017.

3 [Eds.] See note 2, p.579. Coleman may have meant to say “gauge invariance” for “gauge symmetries”. As
note 2 makes clear, Coleman did not regard gauge invariance as a symmetry. On the other hand, (global)
phase invariance does lead to conserved quantities.
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ExaMPLE 1. For the Lagrangian (5.2), space translation of all the particles through a fixed
vector, e:

x" = x"+ e

,
Dx" = ai =e
N |,_o (5.11)
DL =0
F=0

The Lagrangian is unchanged under these translations because V' depends only on the differences
between positions, and all are translated by the same amount, Ae. I of course for this particular
example is zero, because the Lagrangian is unchanged under these translations, and therefore
DL = dF/dt = 0. From (5.9), the conserved quantity is

Q=e*> mx (5.12)

This quantity @ is the sum of the canonical momenta p, dotted with e, the change in the
corresponding coordinate. By this method we obtain an infinite number of conservation laws,
for there are an infinite number of choices of e. But in fact they can all be written as a linear
combination of three linearly independent conservation laws which we obtain by taking e to
be the unit vector along each coordinate axis, and therefore we actually obtain only three
conservation laws, p

1%

i 0 (5.13)

where
p=>_ mX (5.14)

This expression is not peculiar to the Lagrangian (5.2). Whenever we have a Lagrangian from
which we get conserved quantities from spatial translation invariance, whether or not the
system looks anything like a collection of point particles, we’ll call the conserved quantity
the momentum, p. The expression (5.14) for the momentum would not be so simple if the
Lagrangian contained velocity dependent forces, but the conservation laws would nevertheless
exist.

EXAMPLE 2. A general Lagrangian L(g%, ¢®) where I only assume that it is independent of
the time: OL/0t = 0. Look at time translation:

q" = q"(t+A)

Dy = 9q _ 4o
OA a0 (5.15)
DI anﬂJr aLda:di_ai:@
dq” g dt ot dt
F=1L

The only time dependence in the Lagrangian is that through the ¢*’s and their time derivatives.
Therefore F' equals L, because F' is that which when differentiated with respect to time gives
you the change in the Lagrangian. The conserved quantity is (summing over a)

Q=psDq* —F =p,q*—L=F (5.16)
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Whenever we get a conserved quantity from time translation invariance, we’ll call the conserved
quantity the energy, E. It is related to time translation as the momenta are related to space
translations. It is also sometimes called the Hamiltonian, H, when written as a function of the
p’s and the ¢’s. I'm sure this is familiar material to those of you who have taken a standard
undergraduate mechanics course.

EXAMPLE 3. Again using the Lagrangian (5.2), consider a rotation about an axis e through
an angle A:

x" = R(\ e)x”

Dx" = 0% =exx"
I =0 (5.17)
DL =0
F=0

This Lagrangian is rotationally invariant, so DL = 0 and F' = 0, as in Example 1. The
conserved quantity is

QZZPM(EXXT):E}-ZXT><pr=e-J (5.18)

Again, taking e to be a unit vector along a coordinate axis, we obtain three conservation laws,
one for each component of angular momentum, J. Whenever we get conserved quantities from
rotational invariance, we’ll call the conserved quantities the angular momentum.

There is nothing here that was not already in the Euler-Lagrange equations. What
Noether’s theorem provides us with is a “turn the crank” method for obtaining conservation
laws from a variety of theories. Before this theorem, the existence of conserved quantities, like
the energy, had to be noticed from the equations of motion in each new theory. Noether’s
theorem organizes conservation laws. It explains, for example, why a variety of theories,
including ones with velocity-dependent potentials, all have a conserved Hamiltonian, or energy,
as in Example 2.

5.2 Extension to quantum particle mechanics

Now when we quantize the theory, when we engage in canonical quantization, an amusing
extra feature appears. I will state a theorem which I will not prove, or more properly, will
prove only for a restricted class of theories. Most of the cases we will consider will belong to
this class. When we come to one that does not fall under the restriction we will check the
theorem by explicit computation.

In the quantum theory there is a peculiar closing of the circle. In classical mechanics
and in quantum mechanics modulo* ordering ambiguities, whenever we have an infinitesimal
symmetry we have a conservation law, a conserved quantity. In quantum theory the circle
closes: We can use the conserved quantity to re-create the infinitesimal symmetry. Specifically,

[¢", Q] = iDq" (5.19)

4 [Eds.] Slang (American?) for the prepositional “except for”, just as 5 modulo 3 = 2 (5 equals a multiple of 3,
except for the remainder of 2). This usage occurs about a dozen times in the lectures.
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That is to say, the conserved quantity @ is the generator of the infinitesimal transformation,
something in fact we have already exploited in our general discussions for the components of
the energy and momentum. This is obviously true if both Dg¢® and F are independent of ¢¢,
because in that case the only term in @ (defined in (5.9)) that does not commute with ¢ is
po and the commutator manifestly gives the desired result:

[¢°, Q] = [¢*,pvDq" — F]| = [¢", py) Dg" = iy Dq" = iDq"

It is not so obvious that (5.19) holds if Dg® or F' involve the ¢®’s. It is nevertheless true but I
don’t want to go through the trouble of proving the general result. We have up to now seen
one case where it is not obviously true. That one case is time translation, where Dgq, does
involve the ¢%’s and so does F'. But the equation is nevertheless true because in that case @
is the Hamiltonian, and (5.19) is the Heisenberg equation of motion:

[¢", H] = i¢*

I have gone fast because I presume this material is mainly familiar to you.®

5.3 Extension to field theory

So much for classical particle mechanics and quantum particle mechanics. We now turn to
classical field theory. As with the special class of classical field theories I discussed last lecture,
I have a Lagrangian density that depends on a set of fields ¢, their derivatives 0,¢%, and
perhaps explicitly on the spacetime location z#. I will construct my notation in such a way
that when things become relativistic, the notation will be right for the relativistic case, but I
will not assume Lorentz invariance until I tell you we now assume Lorentz invariance. So do
not be misled by the appearance of upper and lower indices and things like that, into thinking
I’'m assuming Lorentz invariance at a stage when I’'m not.

Now in one sense there is no work to be done because our only general formula, (5.9),
goes through without alteration. It’s just that instead of a sum on a discrete index we have
a sum on a discrete index and an integral on a continuous index. In another sense however
we get extra information because the dynamics are so very special, because the Lagrangian
is obtained by integrating a local density point by point in space. And we will see not only
a global conservation law that tells us the total quantity of @ is unchanged, we will also be
able to localize the amount of @) and see @) flowing from one part of space to another part
of space in such a way that the total quantity of @ is unchanged. That’s a feature of the
special structure of the class of theories we are looking at, that the Lagrangian is obtained by
integrating a local function of the fields. We can see these extra features in electromagnetism.

5 [Eds.] A question was asked: “Can you extend your remarks in the more general case, [when Dq® and F'
involve the ¢%’s] that up to ordering...” Coleman responds: “No, if you don’t worry about ordering it is true. It
can be proven formally if you don’t worry about ordering.” The student follows up: “Are there cases where
there simply doesn’t exist any ordering?” Coleman replies: “Yeah, there are cases even where this breaks down,
that d@Q/dt is zero. We won’t run into any such cases but they exist. Quantum field theorists call them by the
pejorative name of anomalies. There is a whole lore about when they exist and when they don’t, there’s an
elaborate theory, but it’s on a much greater level of sophistication. We’ll talk about that. I can’t tell you the
conditions under which this general formula (5.19) is true or false in ¢* theory because we don’t even know
how to make sense out of ¢* theory yet. We don’t know how to order the ¢* term. We'll play with it formally
as if we did; and then later on when we learn more about it we’ll see that most of the formal playing can be
redeemed. But at the moment I can’t say anything.”
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Electromagnetism possesses a conserved quantity @, the charge, the integral of the charge
density p:

_ 3
Q= /vd x p(x,t)

There is also a current density, j, and a much stronger statement of charge conservation than

d
d—cf = 0. Local charge conservation says

9p o

Integrate this equation over any volume V' with boundary S to get

@:7/ d3xV-j:f/d25ﬁ~j
dt v s

using Gauss’s theorem. This equation says that you can see the charge change in any volume
by watching the current flowing out of the volume. Imagine two stationary, opposite charges
separated in space, suddenly winking out of existence at some time ¢ with nothing happening
anywhere else, as in Figure 5.1. You can’t have this. This picture satisfies global charge

t

Figure 5.1: Two charges winking out of existence

conservation, but violates local charge conservation. You have to be able to account for the
change in charge in any volume, and there would have to be a flow of current in between the
two charges. Even if there were not a current and a local conservation law, we could invoke
Lorentz invariance to show this scenario is impossible. In another frame the charges do not
disappear simultaneously, and for at least a moment, global charge conservation is violated.
Field theory, which embodies the idea of local measurements, should have local conservation
laws.

Well, let’s try and just go through the same arguments in this case as we went through
before. Our dynamical variables are now a set of fields, ¢“(z), and we consider a one-parameter
set of transformations of them,

¢"(x) = ¢"(x, ) (5.20)
with ¢®(z,0) = ¢*(x). We define as before

a_ 99°
Do™=x o

(5.21)

Definition. We consider an infinitesimal transformation a symmetry if and only if

DY = ,F" (5.22)



84 5. Spacetime symmetries

That is to say, the change in the Lagrange density is the divergence of some four-component
object F*(¢%,0,,¢%, x). This equality must hold for arbitrary ¢®(z), not necessarily satisfying
the equations of motion.

This is an obvious generalization of our condition in the particle case, (5.7). The integral
of the divergence also vanishes from the action principle; the time derivative disappearing for
the reasons I have stated and the space derivative disappearing because we always assume
everything goes to zero sufficiently rapidly in space so we can integrate by parts. Of course,
the F' of the previous discussion can be obtained from this more general expression. Consider
the change in the Lagrangian, L,

d
DL = D/d?’xz = /d?’xaﬂF“ =2 /d3xF0 (5.23)
The space derivatives disappear by integration by parts, and the time derivative can be pulled
out of the integral. So the F' of our previous discussion, (5.7), exists in this case and it is
simply the space integral of F©,

F= /d3xF0 (5.24)

As in (5.8), the variation in the action results in boundary terms which can be discarded,
6S = /d% DY = /d%@HF“ = /d3x {FO(X, ty) — FO(x, 1) (5.25)

Thus a symmetry transformation does not affect the equations of motion (we consider only
variations that vanish at the endpoints when deriving the equations of motion). So the previous
case, classical mechanics, is a special case of the general theory. However we can do more, as
I announced earlier. Let me do that “more” now by following a path parallel to the earlier
discussion leading up to (5.6).

I will compute D.Z for a field theory;°

0L
DY = ?&Déa + wh 0, (Do") (5.26)
(The quantities 7% were defined in (4.25); the u = 0 components are the canonical momenta.)
Parallel to the earlier discussion I will define a four-component object which I will call J#,

JH = gl D¢ — FH (5.27)

(This is not necessarily a Lorentz 4-vector, because I'm not making any assumptions about
Lorentz transformation properties.) There is an obvious parallelism between the definition (5.9)
of a global object, @, and this definition (5.27) of the four local objects, the four components
of JH.

I will now show that the Euler-Lagrange equations of motion imply something interesting
about the divergence 9, J* of this object, J*:

By J* = (8,74 D" + w8, Dp® — 8, F*

6 D(0#¢?) is of course equivalent to O (Dp®).
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By the Euler-Lagrange equations of motion,

0¥
Oumh = 967
and everything else I will copy down unchanged,
0L
o J" = %Dqﬁa + 780, Do — 0, F" (5.28)

Just as before we have two expressions for D.Z. One of them, (5.26), is the sum of the first
two terms in (5.28). The other one occurs in the definition of F'*, (5.22). So we get

8" =0 (5.29)

Thus we arrive at Noether’s Theorem applied to field theory: For every infinitesimal symmetry
of this special type, (5.22)—this is a specialization of our previous formalism, just as this
formula, (5.27) is a specialization of our previous formalism—we obtain something that we can
call a conserved current. I will explain what that means in a moment.

Now for the physical interpretation of this. I will define J° as the density of stuff. What
the stuff is depends on what symmetry we are considering. I will call J, the space part of
this, the current of stuff. I will now show that the words I have attached to these objects,
density for J° and current for J, have a simple and direct physical interpretation involving
stuff flowing around through space in the course of time.

Let me take any ordinary volume V' in space—not in spacetime—which has a surface S, as
shown in Figure 5.2. The equation (5.29) we have derived tells us

9o JY + VeI =0

Integrating this equation over the volume V', I find

n

S

Figure 5.2: A volume V, its surface S, and a unit normal i

ao/ dngO:f/ d?’xV-J:f/szﬁ-J (5.30)
14 14 S

by Gauss’s theorem. The last term is the integral over the surface S. The (—) sign indicates
the outward pointing normal vector n, the standard Gauss’s theorem notation, dotted into
J. This equation verifies the interpretation I have given you, because it says if I take any
volume that’s got a certain amount of stuff in it, the net amount of stuff changes with time
depending on how much stuff is flowing out of the boundaries. Notice that the signs are right:
If J is pointing outwards that means stuff is flowing out, so this time derivative is negative
and indeed there in (5.30) is the minus sign.
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Of course this means, since stuff only leaves one volume in order to appear in an adjacent
volume, that the total quantity of stuff is conserved, assuming of course that everything will
go smoothly to zero at infinity so we don’t have a current at infinity. Then

80/d3x J°=0Q=0 (5.31)

So @ is independent of time. This is in fact just our general result again. Remember our
definition of J°. Then Q is the integral of J°:

Q= /d3xJ° = /d3X7r2quSa - /d3xF° = /d3x7r3D¢a ~F (5.32)

(Notice that 70 is just the thing we previously called m,, the conjugate momentum density,
and the integral of F is the previous F.)

This is just our previous formula, (5.9). The total conserved quantity is pDq summed over
everything which in this case means both summed and integrated, minus the quantity F'. So
of course the general case contains all the consequences of the special case, which is what
you would expect for special cases and general cases. But it contains more: Not only do we
have a global conservation law that the total quantity of stuff is unchanged, we have a local
conservation law that tells us we can watch stuff floating around, J, and we have localized
stuff, J°. But there is a subtlety we need to address.

5.4 Conserved currents are not uniquely defined

Let’s gather our basic equations,
Jt =7mhDo* — FF
DY =0,F"
OpJ" =0
Okay. There in summary is everything we’ve done until now.

There is, even in classical physics, a certain ambiguity present in the definition of the stuff
@, the current J* and the object F* whose divergence is the change D.% in the Lagrange
density. The reason is this. Suppose I redefine F* by adding to it the divergence of some
object A" where all I say about A*" is that it is antisymmetric:

F' — FF 4+ 9,A"  where A" = — AVW (5.33)

We defined F'* through its divergence, 0, F*; we have not defined F* itself. Under (5.33) the
divergence itself goes as
o F" — 0,F" 4 0,0, A" (5.34)

Now 0,, and 0, commute with each other, and A*” is antisymmetric, so
0, F" + 0,0, A" = 0, F" (5.35)

So our new F'* satisfies the defining equation just as well as our old F'*. However this changes
the definition (5.27) of the current, J*:

JH = JH— 9, AP (5.36)
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because we’ve added something to F* and therefore we’ve subtracted something from the
current. So we have another definition of the current that is just as good as our old definition,
in terms of local density of stuff and the flow of stuff. On the other hand, I didn’t call your
attention to any such ambiguity in particle theory and indeed there was none. So we would
expect that the definition of the total charge is unchanged. Let’s verify that. Our charge
transforms under (5.33) like this:

Q- / x> / x (10 + 0,4 (5.37)

Why did I only write 9; A%, instead of 9, A°”? Shouldn’t I have 9y A% in addition? Well, yes,
but A% is zero, because A*¥ is antisymmetric.

Now, the second term of (5.37) is a space integral of a space derivative and therefore it
equals zero by integration by parts, assuming, as we always do, that everything goes to zero
rapidly enough at infinity to enable us to integrate by parts as many times as we want to.
Therefore, although we have an infinite family of possible definitions of the local current, this
ambiguity gets washed out when we integrate J° to obtain the total quantity of stuff.

Some textbooks try to avoid this point, or nervously rub one foot across the other leg and
natter about the best definition or the optimum definition, or what is it that unambiguously
fixes the definition of a four-component current, J*. And the right answer is, of course, there’s
nothing to natter about, there’s nothing to be disturbed about. It is something to be pleased
about. If we have many objects that satisfy desirable general criteria, then that’s better than
having just one. And in a special case when we want to add some extra criteria, then we might
be able to pick one out of this large set that satisfies, in addition to the general criteria, the
special criteria we want for our immediate purposes. If we only had one object for the current,
we would be stuck. We might not be able to make it work. The more freedom you have, the
better. So, there are many of them? Good! We live with many of them. It doesn’t affect the
definition of the globally conserved quantities. It’s like being passed a plate of cookies and
someone starts arguing about which is the best cookie. They're all edible! And when we come
to particular purposes, we may well want to redefine our currents by adding the derivative of
an antisymmetric tensor to make things look especially nice for some special purpose we may
have in mind.

5.5 Calculation of currents from spacetime translations

I'm now going to apply this general machinery to the particular cases of spacetime translations
and Lorentz transformations. It will just be plug-in and crank, both long and tedious,
because for the spatial translations I'll have a lot of indices floating around, and for Lorentz
transformations I will have even more indices floating around. So I will cover the board with
indices, and you will all feel nauseous, but... I gotta do the computation.

We want to apply the general formula, (5.27), first to the case where our theory is translation
invariant, that is to say where the Lagrangian density .Z does not depend explicitly on x, and
then to the case when our theory is Lorentz invariant, that is to say when the Lagrangian
density is a Lorentz scalar.

First, we will study spacetime translations. We’ve discussed these transformations earlier
for particle mechanics. We know the globally conserved quantities we will get out of this are
the momentum and the energy. Since in field theory we always get densities as well, we will
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actually recover the density of energy, which we found last lecture (the Hamiltonian density),
and the density of momentum, and also obtain a current of energy showing how energy flows
and a current of momentum. The sort of transformation we wish to consider is

o (x) = ¢*(x + Ae) (5.38)

where e, is some constant four-component object. I put the index p in the lower position just
to make some later equations look simple. The infinitesimal transformation—mno assumptions
about the Lorentz transformation properties of ¢® at this stage, they could be the components
of a vector—is of course obtained by differentiating with respect to A at A = 0,

_ do°

D¢® = (5.39)
ax |-,
which gives an expression which I will write
D¢® = e,0"¢" (x) (5.40)

What we expect to get from here is a set of conserved currents that depend linearly on e,,.
We have to compute the actual coefficients of e, using the formula (5.27). Since this is an
invariance of the Lagrangian, the currents will be e, dotted into some object, T**,

Jh = e, TPV (5.41)

I’'m using Lorentz invariant notation but I'm not assuming anything. This is just the most
general linear function of e,. We will of course find that we get an infinite number of
conservation laws this way because we have an infinite choice of e,’s, but we only have four
linearly independent ones. Therefore we will obtain actually four conservation laws for the
four values of the index p. They will be of the form

9,T7" =0 (5.42)

because we have four independent infinitesimal transformations. That’s just 9,J" with the e,
factored out. The object we will obtain in this way has a name. It is called the canonical
energy-momentum tensor. It is called “canonical” because it is what we get by plugging
into our general formula. It’s called a tensor because although we haven’t talked about Lorentz
invariance, it is sort of obvious by counting indices that in a Lorentz invariant theory it will
be a tensor field.

The energy-momentum tensor is not unique. Different energy-momentum tensors may be
obtained by adding the divergence of an antisymmetric object APH*:

o1 = TP + O\(APF),  APPY = — AP, (5.43)
so that 0°H like TP*, has zero divergence in its last index:
0,07 =0, T + 6M8A(AP“A) =0 (5.44)

The second term vanishes because 9,0, is symmetric in g and A, and AP** is antisymmetric
in those indices. There are many different energy-momentum tensors in the literature. There’s
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a tensor of Belinfante,” there is a tensor which I had a hand in inventing® that is very useful
to consider if you were playing with conformal transformations, but we won’t talk about
any of that. We will just talk about this one, since this is not a lecture on the 42 different
energy-momentum tensors that occur in the literature. And of course they all unambiguously
define the same conserved quantities when you integrate. These conserved quantities are called
pr

)

Pr = /d3xTP0 (5.45)

They are called P” because for space translations one gets the conservation of momentum and
for time translations one gets the conservation of energy. Those are the objects, energy and
momentum, which one normally sticks together in a single four-component object. So this is
the general outline of what has to happen. The only thing we have to do is to compute T
explicitly.

Now we have the general formulas. We have D¢*, (5.40). The only thing we need to
compute is D.Z, (5.26). Well, by assumption everything is translationally invariant. The only
spacetime dependence of .Z is via the field, so

0L 0L
—e, | 0P0% + ——_9P(8¢*)| = e, 0"
DY =e, (%aa or + a(al'qba)a (0"¢%)| =e,0°Z (5.46)

This is not as it stands the divergence of something, it’s the gradient of something. But it’s
easy enough to make it a divergence. One simply writes this as

DL = 0,(9""e, L) (5.47)

That’s the rule for raising indices. Note that d, commutes with e, because e is a constant
vector, and with g"” which is a constant tensor. Thus we have the object we have called F*,
(5.22),

Ft = ghte, & (5.48)

We can use our general formula, (5.27) to construct the conserved current,
Jt =nle, 00 — g"Pe, L (5.49)

We obtain the tensor T°* by factoring out e,, (5.41),

TPl = ghgP s — gh? L (5.50)

This is the general formula for the canonical energy-momentum tensor. Notice there is no
reason for it to be a symmetric tensor. It turns out to be a symmetric tensor for simple
theories, but in general we should distinguish between the indices p and p. The first term
doesn’t have any obvious symmetry between p and p. There is this symmetry for the free field
theory we talked about, because 7# was just 0"¢®. But in general 77" will not be symmetric.

7 |Eds.] Often called the Belinfante-Rosenfeld tensor. See F.J.Belinfante, “On the current and density of the
electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”, Physica viii
(1940) 449-474, and L. Rosenfeld, “Sur la tenseur d’impulsion-énergie”, (On the momentum-energy tensor),
Mém. Acad. Roy. Belg. Soc. 18 (1940) 1-30. This tensor is symmetric, as required by general relativity.

8 [Eds.] C.G. Callan, S. Coleman and R. Jackiw, “A New, Improved Energy Momentum Tensor”, Ann. Phys. 59
(1970) 42-73. This tensor is traceless, as required in conformally invariant theories.
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The index p plays the role of the general index in our discussion of currents. If it is a time
index, 0, you get a density. If it is a space index, any of {1, 2,3}, you get a current. The index
p tells you what you get a density of and what you get a current of in each particular case.
When p is zero, you get the density of energy or the current of energy, depending on the value
of . When p is a space index, you get the density of the space component of momentum or
the current of that space component of momentum.

Just to check that we haven’t made any errors, let us look at 7°° which should be the
density of energy; density because the second index p is zero, energy because the first index p
is zero:

T = 7199 — g0 L = 1,6* — & (5.51)

This is simply the Hamiltonian density, (4.40), which we arrived at last lecture. So indeed this
is the quantity which when integrated over all space gives you the total energy.

To make another check, let’s compute the total momentum, for a case where we know what
is going on, by integrating the density of momentum over all space. The case where we know
what is going on is that of a single free quantum field of mass p. There is only one 7#, which
I remind you is 9"¢, equations (4.25) and (4.44). The density of momentum is T%, p = i
because we're looking at momentum, p = 0 because we're looking at a density, and is therefore

T = 798i¢ — g% = (8°¢)(8'0) (5.52)

Just to check that this is right, the total momentum P should be obtained by integrating this
quantity,

- / % (8°6)(V9) (5.53)

The minus sign is there because T has §° with an upper index, and V is 9; with a lower
index. When we raise the space index we get a minus sign from the metric.

Now let’s actually evaluate this component (5.53) for the free quantum field, plugging in
our famous expression (3.45) in terms of annihilation and creation operators,

d*p ( ; .
)= [ ————— (ape ™" +al e”’"’”) 3.45
¢( ) / (27T)3/2\/ﬂ o P ( )
Let’s see if we get our conventional momentum, up to possible ordering trouble such as we
encountered with the Hamiltonian. This is a consistency check. Well, the calculation is almost
like the calculation of the Hamiltonian at the end of the last lecture (p.72), and therefore we
can use the same shortcuts as there.

dx d3p &P>p’ ) ) ) )
_/ (80¢ V(b /// 2X 3 (_iwpape_lwpt+lp'x _’_Z‘wpai)elet—lp'x) %
71' OJpUJp

. —iw s t+ip ex T iw s t—ip ex
(zp apre”“r —ipag, e’ ) (5.54)

The z integral and the (27)% will be killed in making two delta functions, §*)(p — p’) and
5@ (p 4+ p’). That takes care of one p integral, say p’, and we will end up with a single p
integral. T gave you a general argument last time why the terms with two creation operators
and two annihilation operators should vanish, so I won’t even bother to compute them this
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time. They’ll still have coefflicients that oscillate in time and therefore must go out because of
the conservation equation.’ So I'll just compute the coefficients of apaI) and ai,ap7 and I get

dp ‘ . . ‘
p—- | 2oy |(iw)(—ip)apab) + (iop) 7P (ahap) | = § [ (aph + dhan) b (5.59
As before with the Hamiltonian (4.62), this is not the right expression; the first term is out of
order for our convention of having the annihilation operators to the right and therefore we
will commute the first term. We get

P= /d3p <aLap + 3lap, aI)]) p (5.56)

= /d3p (a;[,ap>p+%/d3p5(3)(0)p (5.57)

Here if I'm willing to be especially cavalier with infinities I can simply say well, this second
integral in (5.57) is the integral of an odd function of p, albeit a divergent integral with a
divergent coefficient, and therefore it gives me zero. If I'm willing to be more precise I mumble
something about ordering ambiguities and say that in the quantum theory the proper result is
not the expression (5.55), but this expression,

P - /d3p (ai,ap) p (5.58)

with normal ordering. In either case we certainly have no more troubles than we have with
the Hamiltonian and we have less if you're willing to accept that dumb argument about the
integral of an odd function being zero. And we got the right answer with the right sign. So
that suggests that the formulas we have derived in the general case are not total nonsense.

5.6 Lorentz transformations, angular momentum and something else

We’ve gone through the machine for spacetime translations. Obviously the next step is the
other universal conservation law, from Lorentz transformations (including both rotations
and boosts). Here there is a technical obstacle we have to surmount. We don’t have an
explicit expression for a Lorentz transformation matrix as we do for spatial translation. It’s
some 4 x 4 matrix A that obeys some godawful constraint.!® Therefore we can’t directly
find the infinitesimal transformation by differentiating with respect to the parameters of the
Lorentz transformation because we don’t have a parameterized form of a Lorentz matrix. I
will avoid this problem by writing down the conditions that an infinitesimal transformation be
an infinitesimal Lorentz transformation, and we’ll find the infinitesimal Lorentz transformation
directly from these conditions. In the first instance Lorentz transformations are defined as
acting on spacetime points, so let us consider an infinitesimal transformation acting on a
spacetime point, and see what conditions make it a Lorentz transformation.

So we consider the infinitesimal form of (1.15),

Aot — ot + e a,d) (5.59)

9 [Eds.] The term involving two annihilation operators is % [ d®ppapa_pe~2wpt. The quantity multiplying
p is manifestly even, while p is odd, and so the integral vanishes. The same argument applies to the term
involving two creation operators.

10 [Eds.] In matrix terms, ATgA = g, or in components, A", g, A, = gop-
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Now I've got to be very careful how I put my upper and lower indices. That is certainly the
most general linear transformation on z#. I could have put the index v on the ¢ downstairs
and the second v on the x upstairs and find the same thing, of course, but I choose to do it
this way because otherwise if I had one index upstairs and one downstairs I would go batty
trying to figure out which index on € was the first index and which was the second. By keeping
both of €’s indices upstairs I don’t have that problem.

A second vector, y,,, under the same transformation but lowering all the indices, goes into
Yu = Yp T €y’ dA (5.60)

This infinitesimal transformation is a Lorentz transformation if z*y,, is unchanged (1.16) for
general x and y. Substituting,

oty = 2Py, + ey dh + eyt et dA (5.61)
and because the transformation is infinitesimal we only retain terms to first order in dA.

In order to compare the second term to the third, I will lower the indices on e*” and raise
them on x and y. But of course when I raise the coordinate indices I get the v on the x
and the g on the y. That’s not good for comparison, so I'll exchange p with v. They’re just
summation indices and it doesn’t matter what we call them. Then we get

'y = 'y, + (6w + €vp) TyYdA (5.62)

Now for this to be a Lorentz transformation, the sum must equal z*y,,. That’s the definition
of a Lorentz transformation, it doesn’t affect the inner product. Therefore, since x and y are
perfectly general and the coefficient of the term bilinear in y and x is €,, + €, I find

€uv + €op = 0 (563)

That is to say, €,, is an antisymmetric matrix. You could write € with both indices upper or
with both lower; either way € is an antisymmetric matrix although a different antisymmetric
matrix because of the intervention of the metric tensor. If you write it with one upper and
one lower index, it’s something horribly ugly; it’s not antisymmetric at all.

So an infinitesimal Lorentz transformation is characterized by a 4 x 4 antisymmetric matrix.
Let’s just check if this makes sense when counting parameters. A 4 x 4 antisymmetric matrix
has %4 X (4 — 1) = 6 independent entries. That’s just right, because there are six parameters
in Lorentz transformations: three parameters to describe the three axes about which one can
rotate, and three to describe each direction in which one can perform pure Lorentz boosts.

Let’s consider the case where
?=1=—- (5.64)
all other matrix entries zero. In that case I find from the formula (5.59)
!t — 2t + e2a0d) = 2t — 22d),
2 2, 21 2 1 (5.65)
v =+ xd\ =2+ d

(Raising a space index gives a minus sign.) Only 2! and z? get changed. Equation (5.65) is
the infinitesimal form of the rotation
2t — zlcos A — 22 sin )\,

5.66
22 = 2% cos A+ z'sin A ( )
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Notice that (5.65) is what you get by differentiating (5.66) with respect to A and setting A to
zero, in accordance with equations (5.4) and (5.5),
Dzl = —2?

5.67
Dz? =2t ( )

So e"” with non-zero components only for the indices 1 and 2 corresponds to what one usually
calls a rotation about the z-axis; 2% and z° are of course are unchanged.

To take another example, consider
eV=1=-" (5.68)
all other entries zero. Here only 2° and 2! get changed:;

¥ = 20 + lpd\ = 20 + xld/\,

(5.69)

2t = 2t + e O%pd\ = 2t + 2%\
In the first expression, we raise the x index 1, gaining a minus sign, but there’s also a minus
sign in €”!. In the second, there’s no minus sign in €'°, and there’s no minus sign from raising
the index, so

Dot — 20
Dy — 41 (5.70)
This is the infinitesimal form of
2% — 2% cosh A 4+ x! sinh A,
(5.71)

' = 2! cosh A + 2% sinh A

which is a Lorentz boost along the ' direction. Please notice how the signs of the metric tensor
take care of the sign differences between finite rotations and finite Lorentz transformations,
one using trigonometric functions and the other using hyperbolic functions, just by introducing
minus signs at the appropriate moment. So it all works out; it all takes care of itself.

Now we come to the dirty work of figuring out the implications of all this for a field theory,
with scalar fields only. I have not yet written down the Lorentz transformation properties of
fields other than scalars. That’s the only thing I know how to Lorentz transform. However,
just as for the case of translations we can write down some things in general. We know we
will obtain a conserved current, J*. We know it must be linear in ¢ and therefore I will write
things as

JH = Ley, MK (5.72)
The % is there to prevent double counting. Since € is antisymmetric, with no loss of generality
I can define M*** to be antisymmetric in the indices p and A. If it had a symmetric part,
that would vanish in the summation on the indices p and A. And therefore I put a % in here
because really I'm counting twice; I'm counting M°' once when I sum it with €g1, counting
it again when I sum it with €;9. Since €y, is constant and perfectly general aside from the
antisymmetry condition, I know (from (5.29)) that

O M 1 =0 (5.73)
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Therefore I will obtain six global conservation laws,
JA = / d®x MO (5.74)

Remember it’s p that plays our general role here, A and p are just along for the ride to multiply
the € which I have factored out.!’ The 4 x 4 antisymmetric tensor M**9 will give us six
conservation laws. Three of these should be old friends of ours, the conservation of angular
momentum. We know for example that if we look at €15 we get z rotations which lead to
the conservation of the z component of angular momentum. So J'2, aside from a sign or
normalization factor, should be identical with the third component of angular momentum,
J? with the first, J3! with the second, because those are the conservation laws you get from
those rotations. On the other hand the (01), (02), (03) components of J will be new objects
that will give us new conservation laws to associate with Lorentz invariance, laws we have not
previously studied. We will see what those conservation laws are at the end of this lecture.
The computation will be hairy, because I've got three indices to keep track of. I hope I have
organized it in such a way that it will not be too bad. But now let’s compute.

We're only considering scalar fields, so I will study'?
A: ¢%(z) — ¢"(A ') (5.75)
(A=1x)? is to be an infinitesimal Lorentz transformation, to wit
(A '2)P = 2F — " x,d\ = 2P + €Pryd\ (5.76)

(See (5.59).) Therefore D¢® is obtained by expanding out to first order in d\ and dividing by
d,
D¢® = €7P2,,6° (5.77)

Since I chose to write (5.72) in terms of lower indices on €y, I will drop my indices and raise
them again:
Do¢® = €,,27 079" (5.78)

I know this drives some people crazy. When I was in graduate school a friend of mine, Gerry
Pollack, now a distinguished worker on noble gas crystals, once said to me, “I'm so bad at
tensor analysis that whenever I raise an index I get a hernia.” Nevertheless, you will have to
acquire facility with these things, although this is about as many indices as you will ever have
to manipulate in this course.

Now by the same token, since we are assuming Lorentz invariance, that is to say, we assume
£ is a Lorentz scalar,
DY = e€,,2°0° L (5.79)

I will choose to write this as

DL = 0°(ey,1” L) (5.80)

11 [Eds.] When Coleman says that a tensor TAP 1 is conserved, he means BMTAP'““ = 0. He always puts a
conserved 4-tensor’s conserved index farthest to the right, in the last position, and always denotes this index as
. These conventions, particularly the first, are unusual.

12 [Eds.] This looks strange, but it’s correct. Under A: z# — 2/* = A"z, the transformation induced in a
field ¢ is ¢(x) — ¢'(z') = S(A)p(A~1x), where S(A) is a matrix depending on the tensorial character of ¢.
For a scalar, S(A) equals 1. See (3.16).
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because bringing the 9” through the constant €,, does no harm, nor does bringing the 9”
through z7. Since 9z is ¢”?, symmetric in p and o, the term vanishes upon summation
with the antisymmetric €,,. By the same trick as before, used to go from (5.46) to (5.47), I
can write this as

DY = 0,(g"eopx® L) = 0, F" (5.81)

Now we have all we need to get the whole thing, the conserved current J*, (5.27). We
have the change D¢® in the field and we have the change in the Lagrangian written as the
divergence of something, F*. We can put the whole thing together and get J*,

Jt =7l D¢ — F" = €,,27 [th 0P 9" — g'’ L] (5.82)

That is straight substitution. Now we may notice that for the special case of scalar fields, this
particular combination is one we have seen before, aside from the z. It’s simply the definition
(5.50) of the canonical energy-momentum tensor, T°H:

TPH = ghdPg® — ghP P
a
So in terms of the energy-momentum tensor, the conserved current is
JH = €zpx® TP (5.83)

This is not the end of the story; z°T** is not antisymmetric in o and p, and the symmetric
part of it is irrelevant, since €,, is antisymmetric. To construct M*7*, (5.72), I should
antisymmetrize the product z°7T** in ¢ and p, and write

JH = Seop (x7TP* — 2PTH) (5.84)

and therefore
MPOPH — O TPH _ P TR (585)

I want to talk about the meaning of this. The derivation may have put you to sleep but if it
didn’t, it should have been totally straightforward, step-by-step, plug-in and crank. A lot of
indices to take care of but we took care of them.

This tensor M?P* is a collection of six objects labeled by the antisymmetric pair of indices o
and p, each of which has four components labeled by the index p. Each of them is respectively,
depending upon the value of u, a current of stuff or a density of stuff. Let us compute a
typical component of this thing for various values of o and p to see if the expressions for these
conserved quantities are physically reasonable or physically preposterous.

Let us compute J'2, (5.74). This is
T2 = / dix [ T2 — 227" (5.86)

Now this is a very reasonable expression for the z component of the angular momentum, which
was what this object should be. I am simply saying I have a density of the two-component
of momentum P? distributed throughout space given by 72°, and also the density of the
one-component of momentum P! given by T'°. To find the total angular momentum I just
take x in a cross product with the density of momentum and integrate it: ' times the density
of the two-component of momentum minus 2 times the density of the one-component of
momentum. That’s the normal thing you would write down for the total angular momentum
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of a continuum system, a fluid or a rigid body or something like that, where you have a
momentum density. More properly, I should say it’s the orbital angular momentum, if we think
quantum mechanically for a moment. And the reason for that is because we’re considering a
set of spinless particles. If we had vector or tensor or spinor fields, we would have extra terms
in Dg®, (5.77), that would generate extra terms in M*7*. These could be identified as the
spin contribution to the angular momentum, that which does not come from x x p. However I
won’t bother to do that out in detail, I just wanted to show you a particular case.

Now what about the funny components—the ones we haven’t talked about before or perhaps
haven’t seen before in a non-relativistic theory—the conserved quantities like J'0?

T = / dix [T — 207 (5.87)

Well, that also has a definite meaning and it is not a surprise conservation law. You might
think it’s some new law, the conservation of zilch,'® never seen before! Not true. Notice that
this is a very peculiar conservation law in comparison to the others. It explicitly involves
20, the time. We’ve never seen a conservation law explicitly involving the time before. That
however has an advantage. It means we can bring the z° out through the integral sign and
write J'0 as

J0 = / dix [a'T] —1 / dPx TV = / d*x [2'T"] — tP! (5.88)
Now, what does d/dt of this thing say?

dJlO
dt

— _i 3 100 1
_o_dt/dx{xT}—P (5.89)

You have seen the non-relativistic analog of this formula. This is simply the law of steady
motion of the center-of-mass.

For a system of point particles or a continuum system, if you recall, you define the center-
of-mass as the integral of the mass density p(x,t) times the position x, divided by the total
mass M,

Xem = %/d%{ (xp(x,t)] (5.90)

The time derivative of the center-of-mass, the velocity of the center-of-mass, is a constant,
equal to the total momentum P divided by the total mass M,

_ Bem _d (1] _P
Vem =~ = = o (M/d x[xp(x,t)]) = (5.91)

Equation (5.89) is the relativistic analog of the #! component of that law, (5.91), multiplied
by the total mass. The only change is precisely the change you would expect if you have seen
Einstein’s headstone,'* E = mc?, and remember we're working in units where ¢ = 1. Instead

13 [Eds.] Although it looks Yiddish, “zilch” (“nothing, zero”) apparently derives from a fictional insignificant
person (in Yiddish, a nebbish; see Rosten Joys, p.387), “Mr. Zilch”, who appears in a 1920s-era comic magazine,
Ballyhoo. Coleman seems to be using it as a generic synonym for some unimportant quantity. This usage
appears a few times in this book.

14 [Eds.] Coleman is joking. Einstein has neither a grave nor a headstone. His body was cremated and the
ashes scattered in an unknown location, as he wished. On the other hand, Boltzmann’s headstone (in Vienna)
has S = klog W on it. See also note 33, p. 749.
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of the mass density and the law of steady motion of the center-of-mass, we have the energy
density, 7°°, and therefore we have the law of steady motion of the center of energy. The
center of energy of a relativistic continuum system moves in a straight line with velocity P/E,
where E is the total energy. The x component of that law is the same as (5.89) divided by FE.
Therefore the three conservation laws which we get from Lorentz transformations are not new
conservation laws at all, but simply the relativistic generalization of the old non-relativistic
law of steady motion of the center-of-mass, trivially generalized to become the law of steady
motion of the center of energy. The conserved quantities J*° corresponding to Lorentz boosts
can be written

) . . ) 1 )
JO = ER" —tP" where R" = = / Bx2'T and E = / d3x T (5.92)

The quantities R’ are the components of the center of energy. The .J? are the Lorentz partners
of the components of angular momentum, and the law of steady motion of the center of energy
is the Lorentz partner of the law of the conservation of angular momentum.

You don’t normally think of the law of steady motion of the center-of-mass (or energy)
as a conservation law because you don’t normally think of conserved quantities as explicitly
involving ¢, but these do, and this is a conservation law. And that’s the end of this lecture.

Next lecture we will go on and talk about less familiar symmetries and less familiar
conservation laws.
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Problems 2

2.1 Even though we have set i = ¢ = 1, we can still do dimensional analysis, because we still have one unit
left, mass (or 1/length). In d space-time dimensions (1 time and d — 1 space), what is the dimension (in mass
units) of a canonical free scalar field, ¢? (Work it out from the equal-time commutation relations.) Still in d
dimensions, the Lagrangian density for a scalar field with self-interactions might be of the form

L= 5(0,00"0) — > ang” (P2.1)
n>2

What is the dimension (again in mass units) of the Lagrangian density? The action? The coefficients a,,? (As
a check, whatever the value of d, as had better have the dimensions of (mass)?.

(1997a 2.1)

2.2 Dimensional analysis can sometimes give us very quickly results that would otherwise require tedious
computations. In Problem 1.4, I defined the observable

A(a) = (ay/m) 73 /d3x¢(x,0) e~ IxI?/a?
where ¢(z) was a free scalar field of mass p, and a was some length. I defined the variance of A as
var A = (A?) — (A)2, and T asked you to show that for small a,
var A(a) = aad® + ...

and to find the coefficients o and S. (I also asked you to study things for large a, but that’s not relevant to this
problem.) If we're working at very small distances, it’s reasonable to assume that the Compton wavelength
h/pe might as well be infinite, that is to say, we might as well replace p by zero. In this case, the coefficient 8
is completely determined by dimensional analysis.

(a) For a general dimension d (with a (d — 1) dimensional Gaussian replacing the three-dimensional one in the
definition of A(a)), find 8. Check your result by showing that it reproduces the answer to Problem 1.4 for
d=4.

(b) What if instead of ¢ we had the energy density, 700? (Again, take p = 0.)
(19970 2.2)

2.3 In class thus far all my examples have involved scalar fields. Here’s a vector field theory for you to explore:
Consider the classical theory of a real vector field, A;, with dynamics defined by the Lagrangian density

¥ = —f(BHA,, Oy Ay)(OHAY — BVAH) (P2.2)
Derive the Euler-Lagrange equations. Show that if we define!

Fuu = 0, A, — 9, A, (P2.3)

! [Eds.] This definition differs by a sign from that given in (14.1), p. 68 in Bjorken & Drell Fields.
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and further define two 3-vectors E and B by
E= (F1° F20 30y  B= (2 F3 F (P2.4)

then E and B obey the free (empty space) Maxwell’s equations in rationalized units (with neither 47’s nor
€0’s.)
(1997a 2.4)

2.4 Use the procedure explained in Chapter 5 to construct 7", the energy-momentum tensor, for the theory
of the proceeding problem. This turns out to be a rather ugly object; T"" is not equal to T"* and T9° is
not the usual electromagnetic energy density, %(\EP + |B|?). However, as I explained in class, we can always
construct a new energy-momentum tensor that gives the same energy and momentum as the old one by adding
the divergence of an antisymmetric object.

Show that if we define
OVF = TVH 4 ady(AY FHN) (P2.5)

then, for an appropriate choice of the constant a, ¥* = 0*¥, and 0°C is the usual energy density, % (IE* +|BJ?).
Find this value of a.

(1997a 2.5)



2.1 As in Lecture 1, define

[M] = units of mass
[L] = units of length
[T] = units of time
[E] = units of energy

and let [A] denote the units of the quantity A. Then

Solutions 2

_ _
[ = T 1= [L]=[T) (S2.1)
(7] = [E)[T] = [M][]*[T] = [M][T] = 1 = [M] = 1/[L] (52.2)
We also have
[0u] = (0] = [L] 7! = [M]
Since
/d"XE(")(x) =1
for any (integer) power n, and [d"x]| = [L]", it follows
B ()] = [£]~" = [M]" (52.3)
Following the hint, consider the equal-time commutator (3.61),
[6(x, ), Sy, 1)] = i@~V (x ~y)
It follows )
[611¢] = [L] ' [g]l¢] = [M][¢]* = (61~ V] = [M]?~! = [¢] = [M](@/2~1 (52.4)
The units of the Lagrangian density .Z can be deduced from the kinetic term, %(8;“75 oF);
[£] = [9u¢)? = ((M][8])* = (M) (52.5)
The action S is the integral over all space-time of the Lagrangian density, so
81 = [ a'x 2] = [Ly{py =1 (52.6)

To find the units of a,, note that all the terms of the Lagrangian density must have the same units, so

[an"] = M) = [an][¢]" = [an) (MDD = [ay) = [M]*n— 374 (52.7)

We were asked to check that the units of ag should be equal to (mass)?, whatever the value of d. According
to (S2.7), [a2] = [M]?, independent of d. The interpretation of y as a mass in the Klein-Gordon Lagrangian
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density (4.44) is consistent with its units. n

2.2 (a) The d — 1 dimensional Gaussian is just the d — 1 product of individual Gaussians, so ([a] has the units

[L]) .
/dd_lxe_‘xlz/a2 = (/ d:ve_zz/a) = (ay/m)?~!

To normalize the observable in d — 1 dimensions, we have to redefine A(a) as

Afa) = (av/m) 1 /dd—lx $(x,0)e—>/a

2

By definition,
var A = (A?) — (A)? so [var A] = [A]?
and

[A@) = (1 ~(L1* 1) = (67 = (M2 = ()= (52.8)

If as before we take for small a
var A(a) = aa” + ...

then
[var A] = [aa®] = [M]?~2 (S2.9)
We know « is a constant and therefore independent of a, the only variable with dimensions. Consequently «
has to have no units, and so, because a has the units of [L] = [M]~!
var A(a)] = 0?1 = M) 2= [M]7° = 8=2—d (S2.10)
In the solution to Problem 1.4, we found g = —2 for small a, which agrees with this result. | ]

(b) The canonical energy-momentum tensor is defined by (5.50), and its component 790 is
TOO — ﬂ_aq;a _ @

(summation on a); this is also the Hamiltonian density 57 (see (4.40)). Then [T°°] = [£] = [M]¢ = [7]. If we
define
A (a) = (aﬁ)l—d/dd—lx%’(x, 0)e—x>/a> (S2.11)
we get
[var A e (@)] = [Aope (@) = [#]2 = (M) (s2.12)
If we set
var Ay (a) = aypa’*

then by the previous reasoning, since a has the units of [L] = [M]~!, we find 8 = —2d. We note that the
fluctuations of the energy density grow more rapidly at small distances than those of the field itself. ]

2.3 We start with the Lagrangian density (P2.2)
L = —5(0uAL — B, A,)(9AY — DVAM)

0L _ 0 907 —0
DAc  dxy \ 8(0*M°) )
The first term is identically zero. Using the identity

8(8HAV) — 6#51/
O(0NA) AT

The Euler-Lagrange equations are

the Euler-Lagrange equations are
0 [3 (340 - o502) (0., —0,4,] =0

The quantity in the square brackets becomes, multiplying it all out, the antisymmetric F,:

Frg = Oz\Ao — 05 Ax
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and so the Euler—Lagrange equations become

8*F\, =0 or equivalently, (S2.13)

These represent four different equations. First, let’s look at o = 0:
ONFN = 9gF%0 4 9, F10 4 9, F20 4 95 30
=01 F10 + 9, F?0 + 93F3°  (because FO0 = 0) (52.14)
=V:E=0

if, as the problem suggests, we call F?® = E?. (Recall V* = 9; = §/0x*.) That is Gauss’s Law in empty space.
Now consider o = i, in particular, let’s say ¢ = 1. Then

ONFMN = 8gFO + 9, F2! 4 93 F31 (S2.15)

(the term 01 F'! is identically zero, since F'! = 0). Following the identification in the original problem,
Bl = F32 B2 = F13 and B3 = F?!, and using the antisymmetry of F#”, we have FO! = —E! = —E,. Then
this equation (52.15) becomes

0E, 0B. 0By OE
_ _ =0 = (VxB). = — S2.16
ot + Oy oz (V> B), ( ot )1 ( )

which is the x component of Ampere’s Law. Similarly, ¢ = 2 and ¢ = 3 are the y and z components of Ampeére’s
Law.

The identification of the components of F'#*¥ with the electric and magnetic fields is an easy consequence
of identifying the 4-vector A* with a four-component object (¢, A), the electric potential ¢ and the magnetic
vector potential A. Then

FO =94 — 04T = — (Vo + A) = B
o (52.17)
F9=9'A7 —9IA" = 9% B, where B* = (V x A)F

The Euler—Lagrange equations give half of Maxwell’s equations, Ampere’s Law and Gauss’s Law, but not

the other half. Those can be obtained from the Bianchi identities,

8>\Fy,u + 6MFV/\ + al’F)\ll« =0 (8218)

which follow easily from the definition of F/#¥ as a sort of four-dimensional “curl” of the 4-vector A*. The
Bianchi identities are non-zero only when {\, p, v} are all different, so there are only four non-vanishing
components. Let one of the indices be zero, and the other two be {1,2}. Then (recall 9* = —V?)

_9B. OB, 0E.

ot ox oy

which is the z component of Faraday’s Law, V x E = —90B/dt. The set {0,4, j} give all three components of
Faraday’s Law. If none of the indices are zero, there is only one non-vanishing component,

0By 0By 0B
oz oy 0z

the last of Maxwell’s equations. [ ]

9OF12 4 9lp20 4 5201 — (g — (S2.19)

9L F23 4 9231 4 9312 — ¢ —Vv-B (S2.20)

2.4 Using the results of Problem 2.3, we have from the definition of the canonical energy-momentum tensor
(5.50)
0Z
T = ———09"A\ — g ¥
(OuAx)

= —FI0" A\ + ;9" F 7 Fy,
The first term is not symmetric in {y,v}. Following the suggested prescription, we add the divergence of an
antisymmetric tensor,

0"H = T¥" + ady (FF AY)

We already know from (5.44) that 9,,0”* = 0. We need to determine the value for a so that /¥ is symmetric.

Because of the boxed Euler-Lagrange equations (S2.13) above, 9y F** = 0, so
O\(FPAAY) = FrA 9y AY (S2.21)
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and the new tensor becomes
OVH = —FFAQY Ay + Lg" FA Fy, + aFM 95 AY
= —FF (0VA) — aO\A") + 2g" F M Fy, (S2.22)
—F#gas (0"A% — ad” A”) + 19" F Fro

If we choose a = 1, the term in the parentheses is just F'¥?, and the resulting tensor is symmetric:
OVF = —gro FFAFY? + gt FAFy, (S2.23)

The other problem with 700 is that it fails to give the correct energy density for Maxwell’s theory. What about
690? Let’s see:

00 — _gy, FONFOo | %QOOFAUF/\J — _FY%Fy, + % (FOiFOi + FOR, + FijFij>
) (S2.24)
= *%FOZFO«; + % <F23F23 + F3 gy + F12F12> = % (|E‘2 + |B‘2)

as desired. -



Symmetries and conservation laws Il. Internal symmetries

I would like to continue the discussion of symmetries and conservation laws that we began last
lecture by considering a new class of continuous transformations. From these we will extract
the associated conserved currents and the associated global conservation laws, like conservation
of electric charge, conservation of baryon number and conservation of lepton number which
we have not yet considered in detail. This new class of symmetries is not universal; they
occur only in specific theories whose Lagrangians' have special properties. We believe on
good experimental grounds that if we attempt to explain the world with a field theory, that
theory had better be translationally invariant and Lorentz invariant. Those symmetries led to
the conservation of P* and J"”. However, some field theories which people have invented to
understand the world turn out to have larger groups of symmetries than just those associated
with the Poincaré group. These symmetries commute with spacetime translations and with
Lorentz transformations, and so we expect that the conserved quantities @ associated with
them will be Lorentz scalars. These new symmetries are given the somewhat deceptive name of
internal symmetries. “Internal” historically meant that somehow you were doing something
to the interior structure of the particle; you were not moving it about in space or rotating it.
The word is deceptive because, as you will see, it applies to theories of structureless particles,
in particular, to free field theories. Nevertheless the nomenclature is standard, and I will use
it. For us, “internal” will mean ‘“non-geometrical”. These internal symmetries will not relate
fields at different spacetime points, but only transform fields at the same spacetime point
into one another. Conservation laws are the best guide for looking for theories that actually
describe the world, because the existence of a conservation law is a qualitative fact that greatly
constrains the form of the Lagrangian.

6.1 Continuous symmetries

ExXAMPLE 1. SO(2)

As a simple example of a theory that possesses an internal symmetry, let me take a theory
involving a set of scalar fields, all of them free and all of them with the same mass and—this is
the simplest nontrivial case—I will let the index a range over only two values, a = {1,2}. The

L 'We have left particle mechanics behind, and I’ll often use Lagrangian to mean the Lagrangian density, .Z.
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Lagrangian is
P = % (a,u(z)a M¢a_M2¢a¢a>
_ %(8u¢1au¢l _N2¢1¢1) 4 %(ap¢2au¢2 _/1'2¢2¢2)

So this is simply a sum of two free Lagrangians, each of them for a free scalar field of mass pu.

(6.1)

Now this Lagrangian possesses a rather obvious symmetry. Since everything involves the
quadratic form ¢%¢“, it is invariant under a group that is isomorphic to the two-dimensional
rotation group of Euclidean geometry, SO(2). This will describe not two-dimensional rotations
in the z-y plane, or in the y-z plane but in the 1-2 plane between the fields ¢! and ¢2. To be
specific, for any A, if I make the transformation

ot — ¢t cos A+ ¢? sin A 6.2)
&% — ¢?cos A — dlsin A .

the Lagrangian is obviously unchanged.

This is a symmetry of this particular sample Lagrangian. It is not connected in any way
with geometry; it’s not a spatial translation and it’s not a Lorentz transformation. I could
write more complicated Lagrangians which possess the same symmetry. For example, I could
add to this any power of ¢?¢“ times some negative constant, (negative, so it will come out
with a positive sign in the energy), like the quadratic

L = L =L — g(¢"9")? (6.3)

or a term in ¢®¢® cubed or to the fifth power. The new Lagrangian would still be invariant
under this transformation because ¢*¢* is invariant under this transformation: the sum of the
squares is preserved by rotations.

Now let us extract the consequences of this symmetry. Let’s feed it into our general
machinery, turn the crank and see what happens. In terms of the general formula (5.21),

1_ 42
522 ; q_s(bl (6.4)
We need the derivatives (4.31),
= 8(?9;2;1) = 0"ty b = 8(?);?(;52) = M g? (6.5)
We also need the four-component object I called F* last time, defined by (5.22),
DZ =0,F*" (6.6)

This Lagrangian is unchanged, so F* = 0. We construct the current by our general formula,
(5.27),
Jh =l Dg® — Fit = (9"¢1)¢* — (9"9%)¢' (6.7)

This is the formal classical expression. As we see, this current is conserved, d,,J* = 0, because
both ¢! and ¢? satisfy the Klein-Gordon equation with the same mass ;. We will later
investigate whether or not the formal expression has to be normal ordered, in the case when
g = 0. What we have to do to make sense of the theory when ¢ is not equal to zero is a
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subject we will investigate much later in the course. The associated conserved quantity @ is
the integral of the zero component of this current.

Let’s compute @ in the case where ¢ = 0. And I remind you once again of our expression
(3.45) for the free fields,

a d3p a) ,—ip-x a)t ip-x
¢ (.T) = /W (a; )6 P —+ a£, )Te p ) (68)

I should really have a draftsman write this formula on a piece of cardboard which I could nail

up above the blackboard. The creation and annihilation operators satisfy the relations
a b a b

[ag) )v ai)’)] = [CLE) )Tv a;/)T] =0 (6.9)

a b a ’

[0l al)"] = 6°°6*) (p — p')

We compute @ by our usual tricks. It’s exactly the same calculation as the others we have
done (e.g., the calculation of P, (5.53) through (5.58)),

Q= [ dx [(@06)" - (@ns*)e] (6.10)
= i/d3p [ag”ag) - ag”ag)} (6.11)

Once again there’s no need to keep track of the product of two annihilation operators or two
creation operators. On a priori grounds these products must vanish because their coefficients
involve oscillating factors that have no hope of canceling, and @ is supposed to be time
independent. I have written it already in normal ordered form, not that it matters here.
There’s no need to worry about the order of the operators because a type 1 operator and a
type 2 operator always commute.

The expression (6.11) for the charge is very nice. It has all the properties you would
expect for an internal symmetry. It commutes with the energy, (2.48); it commutes with the
momentum, (2.49); and it annihilates the vacuum:

Ql0)=0 (6.12)

And as we'll see shortly (§6.2), it is also Lorentz invariant, because it is the space integral of
the time component of a conserved current (6.7). The expression is nice, however it is hardly
transparent. On the other hand, the charge @ is not diagonal with respect to the operators
(a) (0.
{ap’} and {ap”"'}:
@, agl)] = —ie“bag’) (@, ag‘”] = fieabag’ﬁ (6.13)
(where €'2 = —e2! = 1,el! = €22 = 0). The first term in the integrand (6.11) replaces a type 2
particle with a type 1 particle; the second term acts vice versa with 2 replacing 1.

One can make things much simpler by defining new annihilation and creation operators
which are linear combinations of our original agl) and ag’)T. We will define by, and b;f) as

1
bo (agp + m§3>)

(agﬁ _ mg)f)

(6.14)
b

S-S

t
P
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(the v/2 is there for a reason that will become clear shortly). Likewise I will define ¢, and CI,
as the other obvious combinations,

1
Cp = —F= (ag) — iag))

(6.15)
A

These are also annihilation and creation operators. They create particles in states that are
linear combinations of state 1 and state 2. It is easy to check that they, too, obey the

commutators for annihilation and creation operators. All the commutators vanish except for
[bp. bL,] = [epy ch ] = 6@ (p — 1) (6.16)

I inserted the v/2 in the denominators so that this would come out equal to & (3)(p — p’) rather
than twice that. If it is not obvious to you that all the other commutators are zero, let me
show you. Any annihilation operator, b, or cp, commutes with any other annihilation operator,
since both of these are linear combinations of commuting operators. For the same reason, any
creation operator, b;g or c;f), commutes with any other creation operator. So let’s check the
annihilation operator b, with the creation operator cL,,

. 1 . (2
] = B+ il + 2] = Yol o))~ B
=369 -p) - $6¥(-p)=0
The other combination also commutes:
b, cpr] = 0. (6.18)

The b’s and ¢’s obey the same algebra as the a(!)’s and a(?)’s because, for any given value
of p, the b’s and ¢’s are annihilation and creation operators for orthogonal single particle
states. There are two states which we called, arbitrarily, the type 1 meson and the type 2
meson. Whenever we have a degenerate subspace of states, we are perfectly free to choose a
different orthogonal linear combination to be our basis vectors. Here we have chosen a linear
combination of a type 1 meson with a type 2 meson to be a b-type meson, and the orthogonal
linear combination to be a c-type meson. If we have a Fock space with two degenerate kinds of
particles—with the same mass, y—it doesn’t matter which two independent vectors we choose
to be our fundamental mesons.

Why do I choose these combinations, (6.14) and (6.15)7 I could just as well have chosen
the coefficients of ap and aL to be sin @ and cos 6 for the b’s, and cos @ and —sin 6 for the bt’s
and so on; the algebra would have worked out the same. Well, I choose these combinations
because both the expression of the charge ) and the algebra of () with the b’s and ¢’s work
out particularly simply.

By substitution, you can see pretty easily that
Q= / & [Bhbp — chep| = Ny — N (6.19)

where N, and N, are the number of b-type and c-type mesons, respectively, in a given state
(see (2.50)). Then you will be able to check by eyeball that unlike the type 1 and type 2
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mesons, the b and ¢ type mesons are eigenstates of Q; @ is diagonal with respect to these
mesons:

Q. bp] = —bp  [Q,b]] =bf, (6.20)
[Qa Cp] =Cp [Qa CJ{)] = 701—; (621)

Thus we have a much simpler interpretation of (). We have diagonalized ) by writing this
expression (6.19), and made it easy to see what basis vectors diagonalize (). As a result, we
have two kinds of particles with different values of ). The value of ) does not depend on the
momentum of the particle. A b type, whatever its momentum, carries a value () = +1, and the
other, the ¢ type, carries a value of @ = —1. The two kinds are like particles and antiparticles,
with the same mass but opposite charge. We see in (6.19) that @ is simply N, minus N.. This
is very similar to electric charge. These particles for example could be 7+ and 7~ mesons,
and @ could be the electric charge. The total charge of the system is obtained by counting
the number of particles of one kind and subtracting the number of particles of the other kind.
For this reason I called this @ “charge”, but we haven’t deduced the conservation of electric
charge or anything like that. I have simply cooked up an arbitrary example with a symmetry
leading to a conservation law that has some structural resemblance to the conservation of
electric charge. I said “7™ and 7~ mesons”, but I could just as well have said “electrons and
positrons”, aside from the fact that electrons and positrons have spin. @ needn’t be electric
charge. If we were considering electrons and positrons, I could have let @ be lepton number
instead of electric charge. Lepton number also has this kind of structure.

In terms of the new operators, we can write the Hamiltonian as (see (4.63))
H= / d*pawp [y + chep)| (6.22)

This expression is easily obtained from the sum of the two free field Hamiltonians for ¢! and ¢>
by substitution. I've introduced these combinations of the original a(!)’s and a(?)’s to simplify
the representation of the charge @ in terms of annihilation and creation operators.

Aside: Complex fields

I would like to digress now, in a direction that really has nothing to do with symmetries.
I would like to talk about putting together two real fields to make a complex field. The
simple, diagonal expression of the charge suggests that maybe we should make this complex
combination not just on the level of the annihilation and creation operators, but on the level
of the fields themselves. That might make things look even simpler. Therefore let me define a
new field v, complex and non-Hermitian, and its adjoint, ¥*,

1
b= — (¢ +i0?

) o
v =5 (6 -i0?)

Properly I should write ¢ for the adjoint, but the star () is traditionally used for this purpose
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in the literature. In terms of creation and annihilation operators, ¥ and ¥* are written
dp
)= | ——————
v(=) / (27)3/23/ 2wy,
. d’p
)= | ———————
vii@) / (27)3/21/ 2wy,

Our old fields ¢! and ¢? have rather messy commutators with Q. If you commute either with
Q@ you get the other with some coefficient:

o + o]
(6.24)
[Bhe + pe= 7]

[Q, 9% ()] = —ie™ P (x) (6.25)
Note that this equation follows the general rule for charges and symmetries, (5.19),
(@, ¢"(z)] = —iD¢"(z) (6.26)

that the conserved charge generates the transformation. The new fields ¢ and ¥* have neat
commutators with @:

Q. 9] =—v
[Q, "] ="
Like every free field, this ¢ is an operator that can both annihilate and create. It has a definite
charge changing property. It always lowers the charge by 1, either by annihilating a b particle

with charge +1 or by creating a ¢ particle with charge —1. Likewise ¢* always raises the
charge, either annihilating a ¢ particle of charge —1 or creating a b particle with charge +1.

(6.27)

The new fields 1 and 1* have very interesting equal-time commutators. The fields ¢! and
¢? commute with themselves and with each other at equal-times. Because they are linear
combinations of ¢! and ¢2, ¥ and ¢* also commute with themselves and with each other at
equal-times:

[Y(x,1),(y, )] = ["(x,1), " (y, 1)] = [¥(x,1), ¥*(y,1)] = 0 (6.28)

More interesting is ¢(x, t) with dy(y,t). That also happens to be zero, because it will involve
the commutator of b, with CL,, and from (6.17) these commute:

[V(x,1), ¥(y, )] =0 (6.29)

The adjoint of this commutator, [¢*(x,t),¥*(y,t)], involves the commutator of bl, with cpr.
But from (6.18), it also equals zero,

[V*(x,1),¢*(y,1)] = 0 (6.30)

Indeed the only non-zero equal-time commutators are ¥ (x, t) with dytp*(y, t) and *(x, t) with
80¢(Y7 t)7

[(x, 1), 9" (y,0)] = [" (x, 1), Py, 1)] = i6® (x — y) (6.31)

Of course since they are linear combinations of ¢! and ¢2, ¥ and 1* also obey the Klein—Gordon
equation,

0%y + p?y =0 (6.32)

%" + p?y* =0 (6.33)
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Now why did I bother to do all this, to rewrite the theory of two scalar fields in terms of a
complex field and its conjugate? Well, to recast the Lagrangian (6.1) in terms of ¢ and ¢*.
We can just as well write

L = (9, ")) — Pt (6.34)
If we look at this theory’s structure, equations (6.28)—(6.33), and read it backwards, it looks
very much as if these are equations we could have found by doing something that, at first
glance, seems extremely silly. If we had started out with this Lagrangian, (6.34), and treated
1 and 1™ as if they were independent variables, and not in fact each other’s complex conjugate,
it would have seemed the ultimate in dumb procedure. But let’s proceed anyway.

By varying the Lagrangian with respect to ¥*, we obtain the Klein-Gordon equation for v,

0L o (0L |\ _ o 2
B 8“(3(3@*)) (2 — 0% =0 (6.35)

and by varying with respect to ¥ we would obtain the Klein—-Gordon equation for ©*. Treating
1) and ¥* as independent variables, we find that the canonical momentum to v is dgib™,
0L
h = ———— = *Y* 6.36

P - 0
Likewise, the canonical momentum conjugate to ¥* is dy1), expressed in the adjoint equation
which I won'’t bother to write down. Canonical quantization then leads to (6.31). For the other
commutators, we would find that v and ¥* commute at equal times because they are ¢ type
variables, and that ¢ and Jy1) commute at equal times because they are the ¢ for one variable
and the p for another variable. So had we been foolish enough to write the Lagrangian in terms
of complex fields to begin with, and to treat ¢ and ¥* as if they were independent, we would
have obtained, in this particular instance at least, exactly the same results as we obtained by
doing things correctly, treating ¢! and ¢? as real independent variables. My motivation may
have been baffling, but I went through this sequence of computations to make this point.

So it turns out it is not dumb to treat 1 and ¥* as independent. I will begin—I will not
complete it, because once you’ve seen how the first part of it goes, the rest of it will be a
trivial exercise—to show that you will always get the right results if you have a Lagrangian
expressed in terms of complex fields, and simply treat ¢) and 1* as if they were independent.
I sketch out why it is legitimate as far as the derivation of the Euler-Lagrange equations goes.
Once you’ve seen my method you will see that the same method can be carried through to
obtain the Hamiltonian form, the equal-time commutators, and so on.

Suppose I have a Lagrangian that depends on a set of fields ¥ and *, complex conjugates
of each other, and also on the gradients of ¥ and ¥*,

L =L, 0", ") (6.37)

For most practical purposes this Lagrangian is set up so that the action integral is real,
guaranteeing that the Hamiltonian will be Hermitian when we’re all done with quantization.
That’s not going to be necessary to any of the proofs I'm going to give, but I might as well
point it out. (This restriction is not practical in all cases; a real Lagrangian is not a completely
general function of these variables.) If T were to go through the variational procedure that
leads to the Euler-Lagrange equations, varying both ¢ and *, I would obtain

58 = /d4x (Adyp + A*5p*) = 0 (6.38)
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This is the integral of some god-awful mess obtained by doing all my integration by parts,
some coefficient I'll just call A to indicate I'm not concerned about its structure, times d1),
plus the conjugate god-awful mess, A* times d¢*. Nobody can fault me on that.

Now if I were foolishly to treat ¢ and §¢* as independent, that is, if I were to consider
the variation

01 = (an arbitrary function), §p* =0 (6.39)

that would be obvious nonsense, because ©* is the conjugate of 1; I can’t vary them indepen-
dently. T would obtain an equation of motion which says

A=0. (6.40)

but saying nothing about A*. Likewise by making §¢* arbitrary and d¢ = 0, I would obtain
A* = 0 and those would be my two Fuler-Lagrange equations of motion. This is obviously
illegitimate. I cannot vary 1 without simultaneously varying ¢* because they’re conjugates.
On the other hand, what I certainly can do is choose matters such that

51p = op* (6.41)

with 01 real. From this I deduce
A+A*=0 (6.42)

That’s legitimate. Alternatively, I could just as well arrange things such that dv¢ is pure
imaginary,

§1p = —o6u* (6.43)

from which I deduce
A—A*=0 (6.44)

The net result of the equations (6.42) and (6.44) is
A=A"=0 (6.45)

The consequences of this correct procedure are exactly the same as the consequences of the
manifestly silly procedure. I leave it as an exercise to carry out all the other steps of the
canonical program, the introduction of canonical momenta and the Hamiltonian, and the
working out of canonical commutation relations, to show that in general it all comes out the
same as if one had treated the 1) and ¢* as independent variables.

Just to show how this goes, I'll work out the form of the current in the ¥-v* formalism.
Let’s remember how our transformations work in our original basis, (6.2). For every A,

¢! — ¢l cos A+ p?sin A (6.46)
¢% — p%cos\ — @sin A '

so that
1

Y=— (qSl + Z¢2) O — (¢1 + z¢2> (COSA _ isin)\) _ 671‘)‘”(/}
V=5 <¢1 - i¢2) - 7 ((f)l - i¢2> (cos A +isin \) = ey (647)
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The group defined by the symmetry (6.47) is called U(1), the unitary group in one dimension.
It has the same algebraic structure as SO(2); mathematicians call these two groups “isomorphic”.
We have a very simple expression for D, (see (5.21))

Cow|
Dy = 2o = i) (6.48)

Likewise by considering the transformation properties of ¥*, or by taking the conjugate of
this equation,
D™ = ip* (6.49)

These are two of the ingredients we need to construct the canonical current. The others are
the respective conjugate momenta:

KGR
o (6.50)
A= 9L gy,
v 50,0

The Lagrangian (6.34) is obviously invariant under the symmetry (6.47) and F* of course is
still equal to zero whether we express the Lagrangian in terms of ¢! and ¢ or in terms of v
and ¥*:

JH = TI'de) + WZ*Dd)* = —i(OHY* ) + (" Y)y* (6.51)

By inspection, d,J" = 0; the current is conserved.

On the classical level, it is an elementary substitution to show that (6.51) is the same
current (6.7) as before; work it out if you don’t believe me. On the quantum level for free
fields it is, in this case, necessary to normal order so that we get the same results as before.
When we write things as (6.51), ¢ and 9*4¢* do not commute, and we have to normal order
to make sure that all of our annihilation and creation operators are in the right place. This
concludes the discussion of complex fields.

EXAMPLE 2. SO(n)

We’ve discussed a very simple example involving internal symmetries in which there were
only two fields. There was a digression on the method of complex fields, which enabled us
to simplify somewhat the representations of things in that case. We can get much more
complicated internal symmetry structures simply by returning to our original expression (6.1)
with real fields,

z=1 (aw“am“ - u%%ﬂ) (6.52)
and possibly some interaction, say
—g(67¢°)? (6.53)
but now a runs not from 1 to 2, but from 1 to some number n, your choice.

In the same way that the previous theory was invariant under SO(2), this Lagrangian
(6.52) is invariant under SO(n), the connected group of all orthogonal transformations on n
real variables. We can imagine these fields as being labeled by vectors in some n-dimensional
space, an abstract, internal space. For every rotation in that n-dimensional space, there is
a transformation of the fields among themselves that would leave the Lagrangian invariant.
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We can go through the elaborate procedure of constructing the currents, but I hope you
have learned enough about the n-dimensional rotation group to know that a complete and
independent set of infinitesimal transformations are rotations in the 1-2 plane, rotations in the
2-3 plane, rotations in the 1-3 plane, etc.,? each of which is something we have already done,
with a slight relabeling. Therefore we will obtain %n(n — 1) conserved currents, because we
have n choices for the first number that labels the plane, n — 1 choices for the second, and as
it doesn’t matter what we call first or second when we’re labeling, we divide by 2. The form
of these currents, say the current corresponding to rotation in the a-b plane, will be exactly

the same as before,

T = (040")8" — (0,0")9" = — I (6.54

That’s the same expression as (6.7), with 1 and 2 replaced by a and b. As you see, only

%n(n — 1) of these currents are independent, because when a = b the current is zero, and if I

interchange a and b, I just get minus the same current.

There is no analog in this more complicated case for the trick of complex fields. The reason
is very simple. That trick was based on diagonalizing the charge. Here I can hardly expect to
diagonalize all the charges simultaneously, because the corresponding transformations do not
commute; a 1-2 rotation does not commute with a 2-3 rotation. Therefore the corresponding
charges should not commute. Still, in some cases it is convenient to pick one of the %n(n —1)
charges as a “nice” charge, and arrange the fields to diagonalize this one charge, the others
remaining ugly and awkward. For example, for n = 3, when we have three degenerate particles,
it is frequently convenient to diagonalize arbitrarily the 1-2 charge. We introduce the fields

b= (¢ +1i¢?)/V2
P = (o' —ig*)V2 (6.55)
b0 = ¢°

The field 1) lowers the 1-2 charge Q'2 by one unit, 1* raises it by one unit and ¢o doesn’t change
it at all. The fields change the charge or not because v either creates negatively charged particles
or annihilates positively charged particles, vice versa for 1*, and ¢ creates and annihilates
neutral particles, whence the subscript “nought”. This notation occurs most frequently when
we consider the system of the three 7 mesons. In the absence of electromagnetism and the weak
interactions, as you probably know from other courses, all three pions would be degenerate in
mass. Indeed this is due to a group with precisely the structure of SO(3) called the isospin
group that acts in exactly the prescribed way on the three pions.®> We pluck out the 1-2
subgroup because when we introduce electromagnetism the full SO(3) invariance is broken,
but a subgroup SO(2) remains, and this 1-2 invariance corresponds to the conservation of
electric charge. The charged pions have the same mass, but the neutral 7% has a different
mass. Of course the m mesons interact with a lot of other particles, so there’s plenty of “+
.” in the Lagrangian.

2 [Eds.] See Goldstein et al. CM, Section 4.8, “Infinitesimal Rotations”, pp. 163171, or Greiner & Miiller
QMS, Section 1.8, “Rotations and their Group Theoretical Properties”, pp. 35-37.

3 [Eds.] Isospin is equally well described by the group SU(2), which is locally isomorphic to SO(3). See note
37, p. 791.
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6.2 Lorentz transformation properties of the charges

Before I leave the general discussion on continuous symmetries there is one gap in our
arguments. [ have not discussed the Lorentz transformation properties of the conserved
quantities associated with these currents. You expect from the examples I have given you that
the Lorentz transformation properties are the same as those of the currents except that one
index is absent. That is to say, if the current transforms like an n*"-rank tensor, we want to
show that the conserved quantity transforms like an (n — 1)%*-rank tensor. Where we have
a current that transforms like a 4-vector, the associated conserved quantity is charge, which
is a scalar. When we have a two-index object, for example the energy-momentum tensor,
the associated conserved quantity is a one-index object, the total four-momentum. When we
have a three-index object, such as M** that I talked about before, the angular momentum
currents, the associated object J** is a two-index object, which appears to be a tensor, but
we haven’t proved that it is a tensor. We’ve proved it in particular cases by writing explicit
expressions for these objects and showing how they transform, whereupon it is manifest that
they transform in the desired way. But we haven’t shown it in general. So let me now attack
the general problem: If we know how the current transforms, how does the associated charge
transform? I will do in detail in the case of a 4-vector current, J*. Once I do it, you will
visualize with your mind’s eye, by adding extra indices to the equations, how the whole thing
works out for the energy-momentum tensor and the angular momentum current.

I have a conserved current, d,J#* = 0. I will assume it transforms, as in the case of an
internal symmetry, like a vector field. That is to say under a Lorentz transformation A,

JH(z) D Jr(2)) = ARJY (A ) (6.56)

Remember when we were discussing field transformation laws, we said that there’s always an
inverse operator in the argument, but the un-inverted thing outside. This will be my only
input. This equation could be in classical physics, in which we take some field configuration
and Lorentz transform it, and the current transforms in this way. Or it could be in quantum
mechanics where this transformation is effected by a unitary transformation. Since all the
equations I manipulate will be linear in J*, it will be irrelevant whether J* is a c-number field
or an operator field.

Now we define @) as
Q= /dSXJO(X, 0) (6.57)

We can define @ at any time, since the charge is independent of time by the conservation
equation. So just for notational convenience I will choose ¢t = 0. Because we know how J#
transforms, we know how () transforms. It will go into some object which we’ll compute in
a moment and which I will denote by Q’. We wish to ask, “Is Q' = Q7”7 That is to say, in
this case, is the space integral of the time component of the current a scalar? To make this
demonstration work, I will have to rewrite the expression for the charge in a way that makes
its Lorentz transformation properties more evident:

Q- / Az d(n-z)n - J(x) (6.58)

turning the space integral (6.57) into a four dimensional integral with #° = 0. The 4-vector
n, = (1,0,0,0) is the unit vector pointing in the time direction, so n -z = 20, The expression
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n - J(x) is simply a fancy way of writing JV. An equivalent way of writing the same thing is

Q= /d4:10 0 0(n - x) JH(x) (6.59)

because the space derivative of this theta function is zero, and the time derivative gives us
6(x0);
0ub(n-x) =nyuo(n-x) (6.60)

This form (6.59) may make you feel a little nervous because it looks like we can make @ equal
zero by integrating by parts. But we do not have control over the time boundary conditions,
and 0(x) = 1 for all positive x, so we can’t get rid of the boundary term in the time integration
by parts.

I will now write a corresponding expression for Q)’;
Q' = /d4x S(n-x)n-AJ(A ' x) (6.61)

We transform the fields, and then do the same experiment on the transformed field configuration.
We're taking an active view of transformations. We do not change the integration surface at
the same time. The experimenter is not transformed; that would be a no-no. If we changed
both the current and the integration surface, we would obviously get the same answer. So we
are measuring ', the same () defined in exactly the same way for the transformed current.
We have n - J in (6.58), but in (6.61) we have n - (AJ), that’s A2J”(A~1z), written out in
compressed notation. That is the same integral of the same component, the time component,
for the current corresponding to the transformed field configuration.

In this form it is easy to see how to make ) look more comparable to Q. We define
x=Az', n=An, (6.62)
and so, by Lorentz invariance of the inner product,
n-x=Az"-An'=n"-2' and n-AJ=An"-AJ=n"-J (6.63)

We plug these into our integral (6.61), and we find
Q = /d4x’5(n' ~ayn' - J(a)
= / d*zo(n' -z)n - J(z) (6.64)
= /d4x 9,0(n" - x) J*(z)

In the first step, we use the invariance of d*z under a Lorentz transformation, and in the
second step, we simply change the variable of integration, as is our privilege, we can call it
what we please. The third step is just the same reasoning as gets us from (6.58) to (6.59).
Now the only difference between the expressions for Q and @’ is that n has been redefined.
For (', the surface of integration is ¢ = 0, and we take n’ - J in the ¢ direction. Our active
transformation has had the exact same effect as if we had made a passive transformation,
changing coordinates to ' = A~'x. It’s the same old story, the difference between an alias,
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another name, and an alibi, another place. The former corresponds to a passive transformation
and the latter to an active transformation.*

To show @ = @', we will compute Q — @Q’, and see that it equals zero:

Q-Q = / a4 (9, [6(n - ) — 6(n’ - 2)])J" (x) (6.65)

Now integration by parts is legitimate, because we can drop the surface terms, the integral
over dSy:

Q-Q = —/d4x [0(n-z)—0(n )] 0,J"(z) + /d4:€3ﬂ ([H(n -x) = 0(n - 1)) J”(@)

= —/d4x [0(n-z)—0(n )] 0,J"(x) + /dSM [O(n-z)—0(n )] J*(z)
(6.66)

In the surface integral, the quantity in brackets, although not zero, certainly goes to zero
at any fixed x as t — oo, because eventually n - z becomes positive and n’ - z also becomes
positive, each 8 function equals 1, and the difference vanishes. Likewise as t — —o0, eventually
both arguments become negative and each becomes zero.

’
T
0 “®4B
L 1]
n-r=0 .,
=i
0

Figure 6.1: The spacetime surfacesn-x =0 andn’ -x =0

Here’s spacetime, showing the surface n -z = 0 and the surface n’ - x = 0, some Lorentz
transformed plane. Okay? The difference of the two 6 functions is +1 in this shaded region
on the right, where you’re above the n - & surface but below the n' - x surface; the difference
is —1 in the shaded region on the left, where you're above and below in the opposite order;
zero when you're above both surfaces, so both 6’s equal +1, and zero when you’re below both
surfaces, so both 0’s equal zero. Therefore, I can integrate by parts in time without worrying
about boundary terms, as the surface integral goes to zero. So

Q-Q' =~ / d'z [0(n-z) = 0(n' - )] 9" () (6.67)

which equals zero, as 9, J# = 0. Thus ' = Q. QED

I've constructed this argument® so that you can readily see that hardly anything is changed

4 [Eds.] See pp. 18-19 and p. 36 in Greiner & Miiller QMS.

5 [Eds.] For an extended version of this argument, see Eugene J. Saletan and Alan H. Cromer, Theoretical
Mechanics, J. Wiley & Sons, (1971), pp. 282-283. In the literature this argument is sometimes called “Laue’s
theorem”, after Max von Laue (Physics Nobel Prize 1914, x-ray diffraction). See M. Laue, “Zur Dynamik der
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if T had had a tensor current, say T**, instead of a vector current.® If we’d had a tensor
current, the only difference would have been an extra index with an extra Lorentz matrix on it
which I would never ever have had to play with. This matrix would simply have been carried
through all of these equations, playing no role in any of my manipulations, except to emerge
at the end, to tell me that P* was a 4-vector.

6.3 Discrete symmetries

Of course, there are all sorts of symmetries in nature that are not continuous, not part of
some connected group that contains the identity transformation. Among them are such old
friends from non-relativistic quantum mechanics as parity and time reversal. So we will now
study discrete symmetries.

A discrete symmetry is a transformation where

¢(x) = ¢'(x) (6.68)

but there’s no parameter in the transformation; it simply doesn’t appear. There’s no such
thing as a parity transformation by 7°; there is only parity: either there is space reflection or
there is no space reflection. It’s not like a rotation. We will assume these things are symmetries
in the usual sense. That is to say that, at least for appropriately chosen boundaries, the action
is invariant:

[daz0.000) = [ dazs.09) (6.69)
Of course, there may be many fields, but I leave off the indices out of sheer laziness.

Now in a rough and heuristic way, we would expect such a transformation to be a symmetry
of classical physics. And in terms of classical physics this symmetry does what a symmetry
always does: it enables you to generate new solutions of the equations of motion out of old
solutions. But in general it is not connected with a conservation law, as continuous symmetries
are. In quantum mechanics there will be no Hermitian operator associated with these things, to
generate the infinitesimal transformation, for the excellent reason that there is no infinitesimal
transformation. We would nevertheless expect that there would be a unitary operator that
effects the finite transformation. Indeed though the argument is rough and ready, everything is
determined from the action by appropriate variations in canonical quantization and so on. The
action is the same for ¢ as it is for ¢’. We should find a one-to-one correspondence between
the Hilbert space we get by doing things in terms of ¢ and the Hilbert space we get by doing
things in terms of ¢’, since step by step, every step’s the same. If the transformation doesn’t
change the action it can’t change the quantum mechanics; and that means there’s a unitary
transformation that turns ¢ into ¢’. You know this argument is rough because it’s a lie for
time reversal, where there is no unitary transformation, but we won’t get to that until the

Relativitétstheorie” (On the dynamics of relativity theory), Ann. Phys. 35 (1911) 524-542. Von Laue (he
gained the “von” through his father, in 1913) was courageously public in his fierce opposition to the Nazis.
Lanczos writes, “Years after the Second World War an eminent physicist from Germany visited [Einstein| in
Princeton. As he was about to leave, he asked Einstein whether he wanted to send greetings to his old friends
in Germany. ‘Grussen Sie Laue’, was Einstein’s answer: ‘Greetings to Laue’. ‘Yes’, said the visitor, ‘1 shall
be happy to convey these greetings. But you know very well, Professor Einstein, that you have many other
friends in Germany’. Einstein pondered for a moment, then he repeated: ‘Grussen Sie Laue’.” (C.Lanczos,
The Einstein Decade 19051915, Paul Elek Scientific Books, (1971), p.23.)

6 [Eds.] See note 11, p. 94.
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end of this lecture. This is just a rough argument for the sake of orientation. Let’s do some
particular cases where we can see simply what is going on and tell whether or not there is a
unitary transformation.

Charge conjugation

The first case I will turn to is our good old example of two free fields of the same mass,
(6.1),

sz — % <8p¢)aau¢a _M2¢a¢a)
On a formal level everything I say will also be true if there’s an interaction, say of this form,
for example:
21 =—g(¢"9")?
I said that this system was SO(2) invariant but in fact it has a larger invariance group of
internal symmetries, including a discrete internal symmetry. It has full O(2) invariance. That
is to say it is invariant not just under proper rotations but under improper rotations; not
just under rotations but also under reflections. We’ve already studied all the consequences
of the rotations. And since every reflection is the product of some standard reflection and a
rotation, we might as well just consider one standard reflection which I will choose to be the
transformation
o' — ¢!

¢? = —¢°
At least in the free field case, where we can explore the Hilbert space completely, and even
in the general case, if we are willing to extract from non-relativistic quantum mechanics a
statement that any operation that doesn’t change the canonical commutators is unitarily
implementable, we can see that there is a unitary transformation that effects (6.70). In the

free case, g = 0, we just read off from (6.70) that if there is a unitary transformation U such
that

(6.70)

' —» UTp'U = ¢!

. 6.71
¢* = UTp*U = —¢? (6.71)
then U operates on the annihilation operators like this:
1) T = 4@
ay’ = U'ay’U =a
P b P (6.72)

ag) — UTaff)U = fag)
and the same thing for the creation operators just by taking the adjoint.

A unitary transformation that does the job in the free case acts on states with a definite
number of particles of type 1 and a definite number particles of type 2 by multiplying the
state by (—1), or equivalently e'", raised to the number operator N» of 2-type particles, where

M:/fwgwy (6.73)
Then
U|p17p27~--,pn> :(71)1\[2 |P17P2,~-~,pn> (674)

That obviously has the desired property, and works just as well on the fields:

Ulp'U = (—=1)M2¢! (-1)V2 = ¢'; UT¢*U = (-1)V2¢?*(—1)> = —¢? (6.75)
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The first equation follows because Ny commutes with ¢'. The second equation is true because
¢? will either create or annihilate a type 2 meson, and hence change their number by 1.

This unitary transformation is perhaps more simply expressed in terms of the b’s and the
¢’s. First, recall the definition (6.23) of the complex field ) and its conjugate ¢*. Then

1 1 .2y U 1 1 -2 * x U

— +1 - — —1 =", — 6.76
\@(425 ¢°) \/§(¢ %) =y", Pt (6.76)
Equally well you could say that this U acting on any state turns all the b-type particles into
c-type particles and all the c-type particles into b-type particles. From equations (6.14) and
(6.15),

P =

1 v 1
bp = —(aP +ia®) = —(aM) —ia?) = ¢
PR Rl Ty TR AR (6.77)
cpgbp

Such a transformation is called charge conjugation. “Conjugation” is a bad word; it sounds
like it shouldn’t be unitary. After all, complex conjugation is not a unitary operation. Perhaps
it would better be called “particle—antiparticle exchange”, because the transformation exchanges
particles and antiparticles, 77’s and 7~ ’s for example. We normally call this symmetry C, and
put a little subscript C' on the unitary operator, Ug, to tell you that that’s the transformation
it’s associated with. We can rewrite the transformations on by and cp in a compact form,

ot vt i) 6%

As I said before, in general a unitary operator is not an observable, and therefore we
normally don’t get a conserved quantity even though the unitary operator may commute with
the Hamiltonian. However there is one special case in which a unitary operator does give us a
conserved quantity, and that is when the unitary operator is itself Hermitian. This happens in
the case of charge conjugation because operating twice with U is just the identity. Applying
C once, you turn every b-type particle into a c-type particle, and then applying it a second
time you turn it back again into a b-type particle;

Ui =1 (6.79)
Because U¢ is also unitary, Ué =Ug ! and so
UoUL =1 = UL =Uc (6.80)

That is to say Uc is both unitary and Hermitian. That is rather obvious in terms of the
C operator’s action on type 1 and type 2 particles, where the eigenvalues were +1 and —1,
numbers that are both of modulus one and real. Note that from (6.19),

C:Q— ULQUs = -Q (6.81)

(this is the @ associated with the continuous group SO(2)). And so in this particular case,
even though this transformation is not associated with a continuous symmetry, we can divide
states up into C-eigenstates, because C' is also a Hermitian operator. This is usually not done
in practice except when you have equal numbers of particles and antiparticles, considering
states of a mT-m~ system for example. The terminology we now use for particles connected by
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this kind of transformation, to have equal numbers of particles and antiparticles, is even and
odd under charge conjugation, depending upon whether the wave function is symmetric or
antisymmetric under exchange of the 77 and 7~ variables. Since charge conjugation commutes
with the Hamiltonian, the notion of even or odd under charge conjugation can be used to
deduce consequences for transition amplitudes. Actually we won’t do that for 77’s and 7~ ’s
because you gain no information there that you don’t gain from parity, but we will use it for
electrons and positrons, where you do gain additional information.

I haven’t deduced particle-antiparticle symmetry. I have simply given an example of a
theory which I cooked up to possess a symmetry that is structurally similar to a symmetry
I know exists in nature by experiment, just to show you how such a symmetry could arise
within the context of Lagrangian field theory.”

Parity

As my next example, I would like to discuss parity. Parity changes the signs of the spatial
coordinates, leaving the time coordinate untouched:

X — —X

6.82
t—t1 (6.82)

Parity is closely related to reflection (say, reflection in the z-y plane, which would take z — —z
and leave x, y and ¢ unchanged). A parity transformation is the same thing as a reflection
(in any plane) followed by a rotation about the normal to that plane by 180°. So a theory
with rotational symmetry is parity-invariant if and only if it is reflection-invariant. But parity
is an improper rotation (its determinant equals —1), and parity invariance is not implied by
rotational invariance alone. Nevertheless, until the discovery by Wu and her group® that parity
was violated in beta decay, it was universally assumed that any realistic physical theory would
be parity-symmetric.

An ordinary scalar (mass m, for example) is invariant under parity, while an ordinary
3-vector, like velocity, v, changes sign:

P:m—=m, P:v—-—v (6.83)

On the other hand, a cross-product of two vectors (the angular momentum L = r X p, say)
picks up two minus signs, and the scalar triple product w = a (b X ¢) is a scalar that changes
sign:

P:L—L, P:w-—-—w (6.84)

7 |[Eds.] A student asks about the CPT Theorem. Coleman responds: “CPT is very different. That’s something
we won'’t get to until very late in this course if we bother to do it all. Just from general assumptions of field
theory—Lorentz invariance, the positivity of the energy, and locality (the fact that fields commute at spacelike
separations)—without making any assumption about the form of the Lagrangian, or even whether things are
derived from a Lagrangian, you can show that there is CPT invariance. This is the famous CPT Theorem.
Although one after another—parity, time reversal, and charge conjugation—have fallen to experimenters, the
combined symmetry CPT remains unbroken, and we believe the reason is the CPT Theorem. Indeed one of
the most revolutionary experimental results conceivable—well, violation of conservation of energy would also
be pretty revolutionary—would be that CPT had been found to be violated. If that were so, we would not
only have to sacrifice all the particular theories with which we hope to explain the world; we would have to
sacrifice the general ideas, including the idea of a Lagrangian field theory and indeed the general idea of local
fields. It would be back to Lecture 1; this whole course would be canceled out!”

8 [Eds.] C.S.Wu, E. Ambler, R. W. Hayward, D.D. Hoppes, and R. P. Hudson, “Experimental Test of Parity
Conservation in Beta Decay”, Phys. Rev. 105 (1957) 1413-1415.
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We call these axial vectors and pseudoscalars, respectively, because of their anomalous behavior
under parity.

In a field theory we can have scalar fields, pseudoscalar fields, vector fields, axial vector
fields, and so on. Moreover, if there are several fields, they can be mixed by the parity
transformation. In this sense the parity transformation is intrinsically ambiguous: it takes
x into —x (and ¢ into ¢), but what else it does is a matter of convention and convenience,
though we will assume that its action is always linear:

P:¢%(x,t) = M (—x,t) (6.85)

(summing on repeated indices). Parity turns the fields at a point (x,t) into some linear
combination of the fields at the point (—x,t). A theory is parity invariant if the action is
unchanged by some transformation of the form (6.85), but it is not always obvious how we
should choose the coefficients M. Parity can be very strange and I hope to amuse you by
cooking up a bunch of theories, some of which have no actual resemblance to nature, in which
P takes peculiar forms.

EXAMPLE 3. Scalar field with a quartic interaction

Let’s look at a scalar field with a quartic interaction:
W = 1(09,0)? — 12¢* — go? (6.86)

(I am tired of writing 0" ¢d,,¢; you know what the first term means.) This obviously possesses
a parity invariance,

P: op(x,t) = ¢(—x,1) (6.87)

This transformation changes the Lagrangian
P: W (x,t) - LWV (—x,1) (6.88)

but it doesn’t change the action. In the case of g = 0, it is implemented by the unitary

transformation
. ) Op i Jap _ Ja-p

The parity transformation turns either a creation or an annihilation operator with momentum
P into a creation or annihilation operator with momentum —p. The proof is simple: Apply
(6.87) to the definition (6.8) of the free fields, and then change the integration variable p into
the integration variable —p. This turns x into —x and doesn’t change ¢t. Thus parity takes a
particle going, say, this way, —, and turns it into particle going this way, <—, the usual thing
that parity does in non-relativistic particle physics. Acting on the basis states,

UP |p17p27"'7pn> — |_p1»_p2;~~~a_pn> (690)

There is an alternative parity transformation, which I will call P/,
P’ op(x,t) = —o(—x,1) (6.91)

This transformation is also an invariance of our Lagrangian (6.86) if (6.87) is, because our
Lagrangian is invariant under ¢ — —¢ (a trivial internal symmetry closely corresponding to
what we did to ¢, (6.70), in the discussion of charge conjugation), and the product of two
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symmetries is a symmetry. The transformation law (6.87) is called the scalar transformation
law, and (6.91) is called the pseudoscalar transformation law. The unitary transformation
Up: is given by

Up = (-1)NUp (6.92)

where N is the number of pseudoscalar fields being acted on. Likewise, on a basis state
describing n pseudoscalar particles,

Up/ |P1,P2s---Pn) = (—=1)" |=P1, —P2,-- -, —Pn) (6.93)

The first important point of this example is that it is merely a matter of convention for a
particular theory whether you say ¢ is a scalar field or ¢ is a pseudoscalar field. Whenever there
is an internal symmetry in a theory, I can multiply one definition of parity by an element of
the internal symmetry group, discrete or continuous, and get another definition of parity. This
theory has two symmetries, among others; one which is C-like and one which is P-like. The
product C'P is a symmetry; and which you call parity and which you call charge conjugation
or ¢ — —¢ times parity is a matter of taste; nobody can fault you. What is important is the
total group of symmetries admitted by Lagrangians, from which one draws all sorts of physical
consequences, not what names one attaches to individual members. As long as you have one
possible definition of parity, and you have internal symmetries around, you can always adopt
a new convention and new nomenclature. You can take the product of one of those internal
symmetries and parity and call that parity, and call your original parity the product of your
new parity and the inverse internal symmetry. Nobody can stop you and nobody should, as
long as when you are writing your papers or giving your lectures, you are clear about what
convention you are using.

Of course if the Lagrangian does not have the internal symmetry then you might end up
with a unique definition of parity because there will be no internal symmetries from which you
can multiply parity.

EXAMPLE 4. Cubic and quartic scalar interactions together

Consider the Lagrangian
L = 5(0u0)* — 51797 — 90" — ho? (6.94)

If T take .2 (D, the same Lagrangian as before, and add to it a term h¢®, then ¢ — —¢ (in the
sense of (6.91)) is no longer a good definition of parity nor is it a symmetry. In this case the
only sensible definition of parity is the scalar law, without the minus sign; the pseudoscalar
won’t work. You can call the pseudoscalar transformation “parity” if you want, but then you
have got yourself into the position of saying this theory is not parity conserving, which is a
silly thing to say. In nature, in the real world, sometimes there is no good definition of parity.
There is no way of defining parity so that the weak interactions preserve parity.

If you throw away the weak interactions you have a lot of internal symmetries: the
commuting one parameter groups corresponding to electron number, muon number, nucleon
number, electric charge, and strangeness. The relative parity of the electron and the muon is
a matter of convention. You can always multiply muon number into your definition of parity
to change the parity of the muon and the muon neutrino and nothing else. The relative parity
of the electron and the proton is a matter of convention, as is that of the proton and the A
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hyperon; you can multiply strangeness into that definition of parity. Usually these conventions
are established to make all those relative parities +1, but that’s just convention.

I have shown you an example where the scalar transformation is an okay definition of parity
but the pseudoscalar is not. I will now construct examples where it goes the other way. These
examples are rather unnatural, involving scalar fields. When finally we talk about fermions,
we will find we can write very simple interactions that have this property, but it can also be
shown with scalar fields. To do so, I have to write down a grotesque sort of interaction, using
the four-dimensional Levi-Civita tensor, €,,,,, which is completely antisymmetric (like its
three-dimensional cousin ;1 ), and €123 = 1. With this and with four 4-vectors, one can form
a Lorentz scalar but it will have funny parity properties. I will now give an example of how to
make something where the pseudoscalar law is forced on us if we hope to have the Lagrangian
invariant.

EXAMPLE 5. Coupling via €,,p0

X(S) _ %Z {(8l~b¢a)2 _ M3(¢a)2:| o Aeuypoau¢lau¢280¢3ao¢4 (6.95)

a=1

If we were to declare all four fields to transform as scalars, then the Levi—Civita term breaks
parity because, as you will notice, every term involves one time index and three space indices.
The space derivatives change sign under parity, and the time derivatives do not. We pile up
three minus signs when we parity transform this object, which is a disaster since three minus
signs change the sign of this term. We have to declare that one of the fields is pseudoscalar
and three of the fields are scalar, or vice-versa. Since we have total freedom to make the whole
large group of internal transformations, it’s a matter of taste which one (or three) of the four
we call pseudoscalar. That is just a matter of how we multiply an internal symmetry by a
parity.

EXAMPLE 6. The last example, plus a sum of cubic terms

4
LW =260 Y (6" (6.96)

a=1

There is no good definition of parity for ). I have to have a minus sign in one (or three) of
the fields to make .2 work out all right, but then the new term, in h, is disastrous, with a
sign of —1. On the other hand if I choose all the fields to be scalar, to get the new term to
work out, it breaks the invariance of .Z®). Whether I choose scalar or pseudoscalar fields, it
doesn’t matter; there is no symmetry that can be interpreted as parity for this Lagrangian.

Now this demonstration might lead you to think the only possible effect of a parity
transformation is a plus sign or a minus sign, where the particles have intrinsic positive parity
or intrinsic negative parity. I will now give an example where the only possible definition of
parity has an 4 in it. This will be super-grotesque and will involve a complex scalar field, .
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EXAMPLE 7. Modifying the last ezample by adding new fields

4
=3[0 = b0 = W]+ D sy oo

_Aeuupaau¢lau¢2ap¢3aj¢4 [(¢)2 + (1/}*)2:|

My free Lagrangian now has five fields in it, four real scalar fields ¢* with some four masses
lha, and a complex scalar field ¢ with some fifth mass p5. We still have the h term that keeps
us from letting the scalar fields be pseudoscalar. Now, however, I've multiplied this last term
by the sum of the squares of v and ¥*. The sesquilinear form in the fields with an epsilon
tensor is not one we will encounter in any of the theories we will take seriously, but it’s still
an amusing example. Though grotesque, it’s got all the properties we want: it’s Hermitian,
and if we are creative, it will have a legitimate parity. The four real fields can be taken as
scalars, so all the terms except for the last are all right. We need the last to go into +1 times
itself. That will happen for the last term even with scalars, provided

Ul { f(( ))} Up — {—iiqup(*?f;(t,)t)} 699

Since ¥(x,t) goes into i(—x,t), the square of ¢ supplies the missing minus sign for the
epsilon term from 7 squared, and the same is true for ¢*. The other terms in v and ¥* are
unchanged by (6.98).

This is just for fun, but it is an example where parity is so strange that, as you can readily
convince yourself, for this grotesque theory this is the only possible parity that will work. And
in this case, things are so strange that the square of parity is not even 1 on the complex field.
If you ever read a paper in which someone says on general a priori grounds the square of
parity must be +1, send him a postcard telling him about this example. He may say, “Oh, 1
wouldn’t call that parity,” but then you would say he was being pretty foolish, because if the
world really were like this, there would be this very useful symmetry that turns observables at
the point x into observables at the point —x, putting all sorts of restrictions on scattering
cross-sections and energy levels and all the things a symmetry usually does, and its square
happens not to be one. If he doesn’t want to call that parity, what is he going to call it??

Time reversal

Now of the famous discrete symmetries known and loved by physicists, I have left one
undiscussed: time reversal. Time reversal is rather peculiar in that unlike all the other
symmetries we have discussed until now, it is not represented by a unitary operator; it is
represented by an anti-unitary operator.

9 [Eds.] A student asks: Why are we concentrating on linear transformations? Coleman replies: “The linear
functions come from the fact that in all our examples, the kinetic energy is a standard quadratic form. That
means nonlinear transformations will turn the kinetic energy from a quadratic function of the fields to a messy
function of the fields. We could rewrite things in an ordinary, perfectly symmetric theory with two fields in it,
¢! and ¢2. Out of sheer perversity I could introduce fields ¢!’ = ¢! and, say, $2/ = (¢% + a¢')2. And then
my kinetic energy would look rather disgusting and my ordinary isospin transformations discussed earlier that
turned ¢! into ¢2 would look like horrible nonlinear transformations. That’s a silly thing to do but it is not
absolutely forbidden. So there is nothing sacred about linear transformation laws of fields. It’s the bilinear
structure of the kinetic energy that makes linear transformation laws of such interest to us.”
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Consider a particle in one dimension moving in a potential. The classical theory is invariant
under the time reversal transformation

. Ja(t) = a(=1)
T: {p(t) o) (6.99)

While ¢(t) goes into g(—t), p(t) goes into —p(—t) because p is proportional to ¢. That is to
say if you take a motion picture of this classical system and run the reel for the projector
backwards, you will obtain a motion perfectly consistent with the classical equations of motion.
One’s first guess is that there should be a unitary operator, which I'll call Ur, that effects this
transformation in the quantum theory:

Ul {28} Up < {_(1;(—3)} (6.100)

This, however, leads one into a grinding contradiction almost immediately. We know from the
canonical commutators that, at equal times,

[q(t), p(t)] = i (6.101)

Apply Ur to the right-hand side of the commutator and U} to the left side, for the time ¢t = 0:

UL q(0)UrULp(0)Ur — Ulp(0)UrUlq(0)Ur = —q(0)p(0) +p(0)g(0) = —[g(0),p(0)]  (6.102)

which is unfortunately not i but —i. It looks like we would have to give up our canonical
commutation relations to implement time reversal. Thus we have obtained an immediate
contradiction with our hypothesis, so the answer to this is not “What is the operator?”, but
instead, “There is no (unitary) operator.”

There is a second contradiction. We expect that Urp, if it exists, should reverse time
evolution, i.e.,

Ule U = et (6.103)
Take d/dt of both sides of this equation at ¢ = 0 to obtain

US(—iH)Up = iH (6.104)

Canceling the i’s, we see that H and —H are related by a unitary transformation. Operators
so related must have the same spectrum, and yet they cannot both be bounded from below! A
unitary time reversal operator makes no sense whatsoever. The resolution of these difficulties
is well known: Time reversal is not a unitary operator but an anti-unitary operator. As I will
prove, anti-unitary operators are also anti-linear.

Before getting into anti-unitary operators, let’s review the properties of unitary operators.
Unfortunately, one reason the Dirac notation is so wonderful is that a lot of facts about linear
operators are embedded in it subliminally. Anti-linear operators are therefore difficult to
describe in Dirac notation. So instead of using bras and kets I will use an alternative notation.

I will label states by lowercase Latin letters: a, b, ... These are vectors in Hilbert space. And
instead of talking about the inner product (a|b) I will write that as (a,b). Complex numbers
will be denoted by Greek letters, «, 3, ... and operators will be denoted by capital Latin

letters, A, B, ...
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An operator U is unitary if two conditions are met: it is invertible, and for any two vectors
a and b in Hilbert space, the Hilbert space inner product (a,b) is preserved:

(Ua,Ub) = (a,b) (6.105)

Thus U preserves the norm. (The simplest unitary operator is 1.) An operator U is linear if
for any two complex numbers a and  and any two vectors a and b in Hilbert space,

U(aa + Bb) = alUla + BUb (6.106)

The condition (6.105) is sufficient to show that U is linear, by a variation on a theorem to be
shown below. The adjoint A' of a linear operator A is defined by

(a, ATb) = (Aa,b) (6.107)
It’s easy to show that if U is unitary, then UT = U~
(a,U™D) = (Ua, UU'D) = (Ua,b) = (a,U'd) (6.108)

the first step following from U being unitary. A transformation of the states @ — Ua can be
thought of as a transformation on the operators:

(a, Ab) — (Ua, AUD) = (a,UTAUb) = A — UTAU (6.109)

An anti-unitary operator is an invertible operator, traditionally represented by an omega,

Q (one of the few instances of felicitous notation in theoretical physics, as an omega is a U
upside down), defined by

(Qa, Q2b) = (a,b)" = (b,a) (6.110)

The product of two anti-unitary operators is a unitary operator, the product of an anti-unitary
object and a unitary object is anti-unitary, and so on. The multiplication table is shown in
Figure 6.2.

U Q
U\u|Q
QI QU

Figure 6.2: Multiplication table for Q and U

Such operators §2 certainly exist. A simple example which obeys all of these conditions in one-
dimensional quantum mechanics is complex conjugation K of the Schrédinger wave function.
The complex conjugate of a linear superposition of two wave functions is the superposition of
the complex conjugate with complex conjugate coefficients:

K(ayy + Biba) = o] + B3 (6.111)

Likewise if I complex conjugate both factors in the inner product I complex conjugate the
inner product:

(K1, Kpa) = (Y1, %3) = (Y2,91) = (P1,92)" (6.112)

A useful fact (especially conceptually) is that any anti-unitary operator € can be written as
the product of a unitary operator U and the complex conjugation operator K: Q = UK. It’s
easy to prove this by construction: take U = QK.
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An operator A (not necessarily invertible) is called anti-linear if
A(aa + pBb) = o™ Aa + p* Ab (6.113)
To show that an anti-unitary operator must be also anti-linear, consider the inner product of
Q(aa + pb) — (a*Qa + QD) (6.114)

with itself. If this is equal to zero, the positive-definite inner product implies that the original
state is zero, i.e.,

Qaa + pb) = a™Qa + Qb (6.115)

It suffices to multiply out the nine terms of the inner product (6.114) and apply the relation
(6.110) to remove all instances of €, e.g.,

(a"Qa, Qaa + Bb)) = a(Qa, Q(aa + b)) = a(aa + Bb, a) (6.116)

and then expanding the five terms containing (aa + 8b). Sure enough, you obtain zero, thus
establishing (6.115). (The analogous proof that unitary operators are necessarily linear only
uses properties of the inner product, and is even easier.)

The transformation of the states under an anti-unitary operator 2, a — a, can also be
thought of as a transformation of the Hermitian operators in the theory, though in a more
limited sense. Consider the expectation value of a Hermitian operator A acting on the state a.
It transforms under €2 as

(a, Aa) — (Qa, AQa) = (AQa, Qa) = (A1 AQa, Qa) = (a, Q" AQa) (6.117)
So the transformation may alternatively be thought of as A — Q71 AQ. We do not write

QF AQ because QF is not even defined for anti-unitary operators.

The resolution of the contradictions, (6.102) and (6.104), is that time reversal is effected
by an anti-unitary operator. For the first contradiction, (6.102),

Q7' [9(0), p(0)] Qr = —[q(0), p(0)] = Q7" i Qp = —i (6.118)

because whenever we drag a complex number through an anti-unitary operator we complex
conjugate it. Thus the right- and left-hand sides of the equation match and the contradiction
disappears. Indeed, for this particular problem, it is easy to find the anti-unitary operator
that effects time reversal: it is complex conjugation in the x representation. That turns x into
x and it turns p which is —id/0x into —p because of the i.

As for the second contradiction, (6.104),
O (—iH)Qp = iH = Q7 (=) QpQ  HQp = iQ HQr = QL' HQr =H (6.119)

which resolves the second contradiction, provided H is invariant under time-reversal. So much
for a lightning summary of the situation in non-relativistic quantum mechanics.
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You may have heard of Wigner’s beautiful theorem,'® which tells you that, up to phases, an
operator that preserves the norm of the inner product must be either unitary or anti-unitary.
(It is not necessary to preserve inner products; they aren’t measurable. Only the probabilities
are measurable.) In the study of symmetries, as Wigner pointed out, all one really has to
consider on a priori grounds are unitary and anti-unitary operators; there is no need worrying
that someday we will find a symmetry that is implemented by a quasi-unitary operator or
some other entity not yet thought of by mathematicians. Simply put, Wigner’s theorem says
that if I’ is a continuous transformation mapping some Hilbert space H into itself, and if F’
preserves probabilities, then F' must be the product of a phase and a unitary or an anti-unitary
operator. That is, if a,b € H, then

|(F(a),F(b)|2 _ |(a,b)|2 = Pla) = cit(a) 5 U, a unita.u“y (?perator, if Fis unitary
(), an anti-unitary operator, otherwise

where ¢ : H — R.

We now wish to take our standard field theoretic system, the free scalar field of mass u,
and find a time reversal operator. So we are interested in the system defined by the Lagrange
density

2
2= 1(0"9)° - hue? (6.120)

I pick this one because we can explicitly write the operators on the state space. What I said
about parity also applies to time reversal; I can multiply the time reversal operator by any
internal symmetry and obtain an equally good time reversal operator. Let’s try to figure out
what €7 must be, working directly with the states, the opposite direction from which we
worked before, and then show what 7 does to the fields. In a relativistic theory, it is more
convenient to study Qpr than Qp, that is to say the product of parity and time reversal. The
reason is very simple. Acting on x*, PT multiplies all four components by —1. This operation
commutes with the Lorentz group. Time reversal multiplies only ¢ by —1, singling out one
component of the 4-vector x*, and does not mesh well with Lorentz transformations.

Now, what do we expect the combined symmetry PT to do to a single-particle state? Well,
if I have a particle whose momentum vector is represented by an arrow, —, parity will reverse
the sign, and make it <—; but time reversal will reverse it again from <— to —. So I expect PT
to do nothing to the momentum of the particle. Therefore I define the anti-unitary operator
Qpr acting on a complete set of basis states (assuming that Qpr [0) = |0))

QPT |p17p27"' 7pn> = |p17p27"' 7pn> (6121)

For either kind of operator, unitary or anti-unitary, if you specify its action on a complete
orthonormal basis, you have specified it everywhere. Notice that this does not imply (as
it would for a unitary operator) that Qpr = 1, because it’s an anti-unitary operator, and
therefore, although it turns these states into themselves, it doesn’t turn ¢ times these states

10 [Eds.] Eugene Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra,
Academic Press, 1959, Appendix to Chap. 20, “Electron Spin”, pp.233-236, and Chap. 26, “Time Inversion”,
pp- 325-348; Weinberg QTF1, Chap.2, Appendix A, pp.91-96. Wigner, a childhood friend of John von
Neumann and trained as a chemical engineer, was instrumental in the construction of the Chicago nuclear
pile (2 December 1942), and, with Alvin M. Weinberg, wrote the book on the design of subsequent reactors.
Perhaps the leading proponent of group theoretical methods in quantum mechanics, he shared the 1963 Physics
Nobel with Maria Goeppert-Mayer (until 2018, the only other woman Physics Laureate besides Marie Curie)
and J. Hans D. Jensen. Wigner was Dirac’s brother-in-law; Dirac married Wigner’s sister Margit in 1937.
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into themselves; it turns them into —i times these states. Okay, that’s our guess. I've defined
an anti-unitary operator which is a symmetry if there ever was one; it commutes with Lorentz
transformations, the Hamiltonian, and the momentum; that’s surely good enough to be a
symmetry..'! Let’s figure out what it does to the fields, ¢.

Well, let’s begin with the annihilation and creation operators. The formulas that define
the annihilation and creation operators only involve real numbers, and pr does nothing to
P, so one easily deduces that

QpTap S (LpQPT (6122)

Equivalently, multiplying from the left by Q}} we get
ap = QprapQpr (6.123)

It sure looks like Qpp acts like 1 so far. By the same reasoning we have a similar equation
with a‘Lp replacing ap. Now what about the field? Here comes the cute trick. The field, as you
recall from (6.8), is

_ dsp —ip-xT ip-x
o(x) _/(27r)3/2 G (ape —|—aLe ) (6.124)
Now when I apply QISlT and Qpr to this, what happens? Well, nothing happens to the d°p,
nothing happens to the (27T)3/27 nothing happens to the /2wy, nothing happens to the ap.
But ahh, the e~%® gets complex conjugated, and likewise the e®?*  so I get ¢(—x), which is
exactly what I would want for a PT operation—it turns the field at the spacetime point z*
into the field at the spacetime point —x*:

PT: ¢(z) = Qprd(2)Qpr = ¢(—2) (6.125)

The operator Qpr is not acting like 1, the identity, because the operator is anti-unitary. Any
equation defining an operator in terms of the states where it only has real matrix elements
will commute with Qpp, but not if the elements are complex or imaginary.

This concludes the discussion of time reversal. Because we were dealing with scalar particles,
the discussion was rather simple. Much later in this course when we deal with particles with
spin, time reversal will be somewhat more complicated, just as it is with spin in non-relativistic
quantum mechanics. This also concludes the general discussion of symmetry. Our next topic
is the beginning of perturbation theory.

11 [Eds.] Coleman will state later (§22.4) that the Klein-Gordon equation is invariant under P7T. He doesn’t
prove this, but it’s obvious. The KG operator is second order in both x and ¢, so it is invariant. We’ve seen
that ¢(x) — ¢(—x). By the Chain Rule, the Klein—Gordon equation is thus invariant under PT.
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Introduction to perturbation theory and scattering

We are now going to turn to a topic that in one guise or other will occupy us for the rest of
the semester, the topic of perturbation theory and scattering. This will lead us to Feynman
diagrams, complicated homework problems, worries about renormalization, and everything
else. But we begin at the beginning.

I want to divide the problem into two pieces: perturbation theory, and scattering, at least
on our first go-through. First I will discuss perturbation theory: How one solves quantum
dynamics in perturbation theory, how one finds the transition matrix or whatever you wish
to discuss, between states at finite times in perturbation theory. Next, I will discuss the
asymptotic problem: Given such a solution, how does one extract from it scattering matrix
elements. So first I'll discuss perturbative dynamics. After that I will discuss scattering.

7.1 The Schrodinger and Heisenberg pictures

I begin by reminding you of the two pictures that play such a large role in ordinary quantum
mechanics, the Schrédinger and Heisenberg pictures. I will put little subscripts on things, S
or H, to indicate whether we are in the Schrédinger picture or the Heisenberg picture,
respectively. First, the Schrodinger picture. In the Schriodinger picture, the fundamental
dynamical variables, the p’s and the ¢’s, are time-independent:

qs(t) = qs(0) =qs  ps(t) = ps(0) = ps (7.1)

I’ll speak as if there’s only one p and one ¢, just to simplify equations, but everything I say
will be true if there are a million p’s and a million ¢’s. The states, on the other hand are
time-dependent, and obey the Schrédinger equation

P p0)s = Hips, a5, 1) [9(1) s (7.2

The Hamiltonian H depends on pg, qs and perhaps also .

The fundamental dynamical problem in the Schrodinger picture is this: Given the state
[t)(t')) at any time ¢, determine the state at a later time ¢. We define an operator U(t,t),
called the time evolution operator, by this equation,

[W(t)s = Ut t) [¥(t)) s (7.3)

131



132 7. Introduction to perturbation theory

That is to say, the U operator takes the state at time ¢’ and produces a state at time ¢.
U(t,t") is a linear operator since the Schrodinger equation is a linear equation, and is a unitary
operator,

U=t t) =U(t,t) (7.4)

because the Schrodinger equation conserves probability. The operator U(t,t') obeys what we
might call a sort of group property, a composition law

Ut, "YU ")y =U(t,t") (7.5)

That is to say if I go first from time ¢” to time ¢’, and then from time ¢’ to time ¢, that’s the
same as going from t” to ¢ in one fell swoop. The U matrix also obeys a differential equation,
the Schrédinger equation,

.0 , ,
Z&U(t,t ) = H(?S»QS»t)U(t7t ) (76)

with the initial condition
Uit t')y=1 (7.7)

This differential equation is a direct consequence of the Schrodinger equation (7.2). Notice
that the initial condition and the composition law imply

Ut,t)=U"t,1) (7.8)

Solving dynamics in the Schrodinger picture is equivalent to finding this U operator. If H is
simply a function of pg and ¢g, that is to say, if H does not depend explicitly on ¢, then we
can at least write a formal expression for the U matrix,

Ut 1) = e~ ps as)(t=t) (7.9)

Things get more complicated if H is time-dependent. For the time being, we’ll assume H is
time-independent.

The Heisenberg picture is the same as with a time-dependent unitary transformation.
In the Heisenberg picture, the states are defined to be time-independent. Just so we can
compare the two pictures, we identify the Heisenberg states with the Schrédinger states at the
arbitrarily chosen time ¢ = 0:

1) = 19(0) g = [¥(0)) g (7.10)

so that '
[1(0)) 5 = P90 |4 (1)) (7.11)

In the Heisenberg picture, on the other hand, the fundamental p and ¢ operators are defined
to be time-dependent. In particular,

qu(t) = U(t,0)'qr (0)U(t,0) = U(t,0)'qs (0)U(t, 0) (7.12)
because we identify gz (0) with ¢g(0),
q(0) = qs(0) = gs (7.13)

and likewise for p. I won’t bother to write down the equation for p. The reason we define
things this way is that a Heisenberg picture operator Ay (t) evaluated between Heisenberg
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picture states at any particular time is equivalent to the corresponding Schrédinger picture
operator Ag(t) evaluated between Schrodinger picture states at the same time:

s As(D)|(1) g = 1@ Au (b)) g (7.14)

It’s just in one case you've got the U operator on the states and in the other case you’ve got
the U operator on the operators, but the combined expression is the same. The correspondence
between Ag(t) and Ag(t) follows:

(WO A (0)]Y(8) g

Y(0)|An (t)[¥(0))s
! (7.15)

s(¥(
sW@UT(0,6)Au (U0, )[4 (1))

s @) As@®)](t))s
A (t) =UT(t,0)As(H)U(t,0) = U(0,t)As(t)UT(0,t)

From this, we find the time evolution of the fundamental operators py(t) and gy (t) in the
Heisenberg picture:

%PH(t) = U'(t,0)ps(—iH (ps,qs))U(t,0) + U'(t,0)(iH (ps, g5)ps)U (¢, 0)
= iUT (tv O) [H(p5'7 QS)va]U(t7 O)

=i[H(pm,qu,t),pu(t)]

(7.16)

This is general quantum dynamics, independent of perturbation theory.

7.2 The interaction picture

I would now like to turn to perturbation theory computations of the U operator. Notice
please that solving the dynamics in the Heisenberg picture is tantamount to solving it in the
Schrodinger picture: they are both equivalent to finding the U operator.

We will consider a class of problems where the Hamiltonian H(p, ¢, t) is the sum of a free
Hamiltonian, Hy, let’s say in the Schrodinger picture, and a Hamiltonian H’ that may or may
not depend on the time,

H = Ho(p,q) + H'(p.q,1t) (7.17)

Ultimately we are interested in real-world dynamics, where the total Hamiltonian is time-
independent. But it’s frequently useful, when we’re doing some approximations to the real
world, to consider time-dependent Hamiltonians. For example, if we have an electron in a
synchrotron, we don’t normally want to have to solve the quantum mechanics of the synchrotron.
We could do it that way, but it’s inconvenient, and we normally consider the synchrotron
as a time-dependent pattern of classical external electric and magnetic fields acting on the
electron. And therefore I will consider time-dependent interaction Hamiltonians. We assume
that we could solve the problem exactly if it were not for H’. We wish to get a power series
expansion for the dynamics in terms of H’. That’s our problem. We can go first-order in H’,
second-order in H', etc. If you want, you can put a hypothetical small coupling constant in
front of H’, and say we are finding a power series expansion in that coupling constant, but I
won’t bother to do that.

This is most easily done by going to a special picture called the interaction picture (also
known as the Dirac picture), which is sort of halfway between the Schrodinger picture and
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the Heisenberg picture.! We move from the Schrédinger to the interaction picture with the
same kind of transformation that takes us from the Schrédinger picture to the Heisenberg
picture, but now using only the free part of the Hamiltonian:

a(t) = eiHo(ps,qs)tqs(t)e*iHo(psyqs)t (7.18)

where gs(t) = ¢s(0), and py(¢) similarly. Of course, we must also change the states,

(1)) = e To@s a9 (1)) (7.19)
and the operators,
Ap(t) = etHowsas)t A g (t)e=Hops 1)t = (¢, 0)T Ag(t)Uy(t, 0) (7.20)
This ensures
{WOA)](1); = s )| As(@)[¢ (1) s (7.21)

The advantage of the interaction picture is this: If H' were zero, H would equal Hy, and
[4(t)); in the interaction picture would be independent of time, because it would be the
Heisenberg picture; (7.19) would reduce to (7.11). Thus all the time dependence of |i)(t)),
comes from the presence of the interaction.

We can derive a differential equation for |t(t)), which we will then attempt to solve
iteratively in perturbation theory:

d ; . )
2 [P = e Hows:99)t (iHo(ps, qs) — iH (ps, qs.t)) [(t)) ¢
i . i 7.22
= o5 (i (ps;, gs, 1) e~ oS8 (1) (722
= —iH'(pr,q1,t) [(1));
where _ _
H'(pr, qr,t) = Hy(t) = 10399 Hi(pg, g, t)e~*Hopsa5)t (7.23)
H§(ps,qs,t) can be expanded as a power series in pg and ¢g, and factors of e~ "Hot giHot

can be inserted everywhere to turn pgs and gs into p; and ¢;. Hy(t) is the same function of
the interaction picture p’s and ¢’s as the Schrédinger interaction Hamiltonian HY is of the
Schrodinger picture p’s and ¢’s. As promised, the time evolution of [1(t)), goes to zero when
H’ goes to zero.

This equation, (7.22), is the key equation. By solving it iteratively, we will obtain the
solution to the time evolution problem as a power series in H;. We will always use perturbation
theory for the case where Hy is time-independent. On the other hand, please notice that even
if H{ is time-independent, H; might well be time-dependent because of the time dependence
of pr and ¢;. In all the cases we will treat, H; will be a polynomial, e.g., A¢*. This equation
(7.23) is true modulo ordering ambiguities if H; is any function of the p’s and ¢’s.

We solve (7.22) by introducing the interaction picture operator U;(t,t'), defined by the
equation

W), =Urt,t) [v(t)),; (7.24)

1 |[Eds.] See Schweber RQFT, Section 11.c, “The Dirac Picture”, pp. 316-325; J. J. Sakurai, S. F. Tuan, ed.,
Modern Quantum Mechanics, rev. ed., Addison-Wesley, 1994, p. 319.
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This is of course just like the ordinary U(t,t') operator. You give me the state of the system
at a time, oh, 100 BCE, and, by operating on it with Uy, I will tell you the state of the system
now. It obeys equations similar to the ordinary U. It’s unitary:

U7t t) = Ul (t,t) (7.25)
and, just as with the earlier U, one can get from " to t by going through an intermediate
time t/,

Ur(t, "YU (¢, t") = Ur(t,t") (7.26)
From these two equations one can derive a third as in the earlier case:

Ur(t,t') = U N, t) (7.27)

The earlier equation (7.8) wasn’t useful to us, but this one will be.

U; is not an independent entity; it is given in terms of the ordinary U. Let’s look at t =0
when all of our pictures coincide:

[¥(0)) g = [0(0); = [¥(0))gs  Au(0) = Ar(0) = As(0) (7.28)
just as in passing from the Schrodinger to the Heisenberg picture. From (7.3)
U(t,0) |4(0)) g = [4(t)) (7.29)

Moreover, from (7.19) and (7.24),
[W(t); = et [u(t) s = Ur(t,0) [¢(0)), (7.30)
Then, from the identity of the kets at ¢t = 0,
Ur(t,0) = etHol U (t,0) = eHlote—iH? (7.31)

For other times, things can be reconstructed using the known properties of the U’s. For
example,

Ur(t,t') = Up(t, 00U (', 0) = ottt 0) U (', 0)e ot = eHotyr(g, ¢')e= "ot (7.32)
Finally, (from (7.22) and (7.24)) Uy obeys a differential equation

i%U,(t, t') = Hy(t)Ur(t,t) with the boundary condition Uy(¢',t') = 1 (7.33)

just as in the development in the Schrédinger picture.

7.3 Dyson's formula

Our task now will be to solve this differential equation, (7.33). That is, we want to find a
formal power series solution for it which is equivalent to solving dynamics in the interaction
picture, and, by formula (7.31), to solving the dynamics in any picture. If we were doing the
very simplest kind of quantum mechanical system, with a one-dimensional Hilbert space, then
the solution would be simply

Ur(t,t") = exp <—z’//t dt” HI(t”)> (7.34)
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Unfortunately, H; is not a one-by-one matrix; it isn’t even an infinity-by-infinity matrix in most
cases, and H’s at different times do not commute with each other. So this formula is false. If
we attempt the differentiation to make things work out, we’ll find, after we differentiate, that
we get all sorts of factors inside other factors, which we can’t drag out to the left. I will take
care of this difficulty by introducing a new ordering, called time ordering, rather parallel to
the normal ordering we saw earlier.

Given a sequence of operators Aj (1), Aa(t2),. .., A, (t,) labeled by the times, I define the
time-ordered product T(A;(t1)As(ta) ... A,(t,)) of the string of operators as

T(A1(t1)A2(t2) .- An(tn)) = Ay (8) Aja () - - A5, (85,)  where £, > 15, > 45, - > L,

(7.35)
the same string of operators rearranged, such that the operator with the latest time is on the
far left, then the next latest time, then the next, and so on. The convention, thank God, has
a simple mnemonic, “later on the left”, easy to remember. If two or more times are equal, then
the time ordered product is in fact ambiguous. There are cases where we have to worry about
that ambiguity, if the two operators do not commute at equal times. In the exponential for
U;, however, we will apply the time ordering to factors of H;, and since H; commutes with
itself at equal times, there is no problem. You have seen this time ordering before, for two
operators. I defined it in the first homework assignment (Problems 1.2 and 1.3, p.49). That
earlier definition agrees with this one for the case when there are only two operators.

The time-ordering symbol shares many features with the normal-ordering symbol. For
example, the order in which you write the operators down inside the brackets is completely
irrelevant, since the actual order in which we are to multiply them is determined by their
times, not by the order in which they are written. As with the normal-order product, I must
warn you the time-ordering prescription is not, “Compute the ordinary product and then do
some mysterious operation to it, called time ordering”. It is a new way of interpreting those
symbols as they are written. I say this to keep you from getting into contradictions. Suppose
you have two free fields, ¢(t1) and ¢(t2). The time-ordered product of the commutator of
these two is zero, but the commutator is a number, and how can the time-ordered product of
a number be zero? That’s false reasoning. Time ordering a product means: “Rearrange the
terms and then evaluate the product.”

I will now demonstrate that the correct solution to our problem is the following beautiful
formula, due to Dyson?

Uit 1) = Texp (—i / g HI(t”)> (7.36)

almost the same formally as (7.34), but (7.36) defines a completely different operator because
everything is to be time ordered. This is called Dyson’s formula. I will say a little about the
meaning of the formula and then show you that it solves the equation. This formula is valid

2 [Eds.] Freeman J. Dyson, “The Radiation Theories of Tomonaga, Schwinger, and Feynman”, Phys. Rev. 75
(1949) 486-502; see equation (32). (Dyson denotes time ordering in this article by the symbol P; see
equation (29).) Coleman adds, “Without the use of the time ordering notation, this formula for Uy (¢,t")
was written down by Dirac 15 years before Dyson wrote it this way.” He is probably referring to P. A. M. Dirac,
“The Lagrangian in Quantum Mechanics”, Phys. Zeits. Sowjetunion 3 (1933) 64-72. Both Dyson’s and Dirac’s
articles are reprinted in Schwinger QFED. For the historical background, see Schwinger’s preface to this collection,
and Schweber QED. A careful proof of (7.36) is given in Greiner & Reinhardt FQ, Section 8.3, pp.215-219.
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only if ¢ is greater than ¢'. It is not true otherwise. Fortunately that presents no difficulties
because if we know how to compute U; for one ordering, we know from (7.25) and (7.27) how
to compute it for the other ordering, by taking the adjoint.

This formula is only interpretable as a formal power series. It’s not saying, “Compute the
integral, find out what operator is exponentiated, and then do something.” 1T will write out
the first three terms in the power series just to emphasize that:

Ur(tt) =1 _i/; ity Hy(th) + (—22;)2T </tt /; dt, dt, Hl(tl)HI(t2)> +... (7.37)

The first term is 1, and the time-ordering symbol does nothing to that. The second term
involves only a single operator, so again the time-ordering symbol carries no force. The third
term involves two integrals from ¢’ to ¢, and here I can’t drop the time-ordering symbol because
I have two operators and two times. Over half the range of integration where t; is greater
than o, this symbol is to be written first Hy(t1) then Hy(t2). Over the other half of the range
of integration where ¢; is less than 5 the two operators are to be flipped.

Now why is this time-ordered power series the solution to the differential equation (7.33)?
It certainly obeys the boundary conditions: it’s equal to one when ¢t = ' because the integrals
are all zero, and the series reduces to the first term only. Let’s evaluate its time derivative:

/ t
% — 7 | —iH (1) exp (—z‘ / dt" H,(t”)) (7.38)
t/

Inside the time-ordering symbol everything commutes, so in doing our differentiation we don’t
have to worry about the orders of the operators. We will get just what we would get by
differentiating naively, to wit, everything inside the time-ordering symbol: H;(t) times the
time-ordered exponential; the time-ordering symbol takes care of all the ordering for us. Now
comes the beauty part: ¢ is the absolute latest time that occurs anywhere in the expression
because the integral runs from ¢’ to ¢ and t is greater than ¢. Therefore the Hamiltonian H;(t)
has the latest time of any of the operators that occur within the time ordering, and latest is
left-est! The Hamiltonian is always on the left in every term in the power series expansion, so
we can write

% = —iH;(t)T | exp (—z/t dt” Hl(t”)> = —iH;(t)Ur(t,t) (7.39)

That is precisely the differential equation for which we sought a solution, so the argument is
complete. If the question is how do we do time-dependent perturbation theory, to find the
dynamics as a formal power series in an interaction, the answer is Dyson’s formula. Although
perfectly valid, Dyson’s formula is rather schematic, and we will beat on it quite a bit using
all sorts of combinatorial tricks to find efficient computational rules. The entire contents of
time-dependent perturbation theory is in this formula, (7.36).

7.4 Scattering and the S-matrix

The next problem we will discuss is scattering theory. I presume you have taken a course
in non-relativistic quantum mechanics, and so you have a general idea of the shape of non-
relativistic scattering theory. I would like to review some features of that theory, just to
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emphasize certain points to see what the beau idéal of a scattering theory should be, what
criteria should we choose, and then we will try to construct a description of scattering in
relativistic quantum mechanics. We will emphasize features important for our purposes that
might not have been considered important in non-relativistic quantum mechanics, and so may
be new to you.

What I mean by an ideal scattering theory is a description of scattering, of what information
you have to drag out of the dynamics to compute cross-sections or something, that makes no
reference whatsoever to perturbation theory. Then, if you could solve the problem exactly, if
you could find the U matrix, you’d have a machine. You’d feed a Lagrangian in, you’d turn
the crank, and you would fill out the cross-sections. You cannot solve for the U matrix exactly
in typical cases. You might for example only be able to solve for it in perturbation theory.
But that’s all right. If you have an approximate U matrix, you put it into exactly the same
machine, you turn the crank and out comes an approximation for the cross-section.

So let’s consider a non-relativistic Hamiltonian,

»?
H=—+V 7.40
2 V) (7.40)
This is really the simplest case, and I will assume that V(x) goes to zero, say, faster than

1/22, so we don’t have to worry about long-range forces. (I think it suffices to say it goes to
zero faster than 1/(zlogz), but forget that.)

Characteristic of a scattering problem is that a quite complicated motion at finite time
interpolates between simple motion, according to the free Schrodinger equation, in the far
past and the far future. Say I have this potential, V(x), localized say in the vicinity of my
overflowing ashtray. In the very, very far past, far from this potential, I prepare a wave packet.
I allow this wave packet to move through space towards the potential. It goes along as if it
were a free wave packet, until it (or its fringes, since it’s spreading out) intersects the potential.
Then it goes bananas, it wiggles and bounces around in quite complicated ways. And then,
after a while, fragments of the wave packet fly out in various directions. If I then look in
the very far future I have just a bunch of free wave packets now all moving away from the
potential. The problem with scattering is a problem of connecting the simple motion in the
far past with the simple motion in the far future. Let us frame these words in equations.

Since I talked about wave packets, I better look at the Schrodinger picture. Let |1)(t)) be a
solution of the free Schréodinger equation

(1)) = e~ o=t jy(t')) = Up (£, t') [(t)) (7.41)
where
»?
Hy = o (7.42)

This ket [¢(t)) represents the wave packet I have prepared in the far past. If there were no
potential, it would just evolve according to the free Schrédinger equation. In the very far
past, because the wave packet is very far from the potential, it evolves according to the free
Schrodinger equation. The ket [1)(¢)), and the other solutions to the free Hamiltonian, Hy,
belong to a Hilbert space, Hg. The solutions to H, the actual Hamiltonian of the world, belong
to a Hilbert space H. Somewhere in H there is a corresponding state that, in the distant
past, looks very much like |1(¢)). We will call this state |1(¢))™. It is a solution of the exact
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Schrédinger equation that represents what the wave packet really does:
()™ = e ()™ (7.43)

The two states [4(t)) and [)(¢))™ are connected by the requirement that if I look in the very
far past, I can’t tell the difference between them. That is to say,

. —iHgt _ _—iHt in|| _
Jim[lem 0 ) — e ) | = 0 (7.4

(where [¢0) = [1(0)) and |[))™ = [4(0))™). The norm of the difference of the states goes to
zero as t — —oo. The operation of associating the appropriate state [1))"™ € H to a given state
[t)) € Ho in the limit ¢ - —oo can be called “in-ing”.

I emphasize that WJ(t))in is a genuinely normalizable wave packet state. I can’t make
[(t))™ a plane wave, because a plane wave state has no norm. And physically, it doesn’t
make any sense to talk about a plane wave. It doesn’t make any difference whether you go to
the far past or the far future. Because a plane wave has infinite spatial extent, it never gets
away from the scattering center.

The distinction between past and future makes a great deal of difference to human beings,
but not so much to quantum dynamics, so we need to consider the far future as well. Given
another state |¢(t)) € Ho, there is another state in H that looks a great deal like |¢(¢)) in
the far future, which we’ll call |$(£))°". This ket is also a solution of the exact Schrddinger
equation:

()" = e~ HOE) () (7.45)

In the far future, these two corresponding states cannot be distinguished:

lim |le= 0t ) — e~ )"
t—o0

=0 (7.46)

The operation of associating the appropriate state |¢)*™ €  to a given state |¢) € Ho in the
limit £ — oo can be called “out-ing”.

For every free motion there is a physical motion that looks like it in the far past and
another physical motion that looks like it in the far future.? In-ing and out-ing connect the
free solution to the exact solution in the far past and the far future, respectively, turning free
motions into physical motions. We use free particle states as descriptors, to describe actual
interacting particle states. We know how to associate a state with these descriptors by these
correspondences.

Think of classical scattering in a potential. The analog of a free motion would be a
straight-line motion in classical mechanics. Figure 7.1 shows some motion of the particle, when
there is no potential. That’s the analog of [¢(¢)). If the potential is restricted to some finite
space-time region, the real motion of the particle looks like Figure 7.2. The particle enters
the potential and it deviates from that, and then it comes out, again moving freely. At the
lower right is [¢(¢))™, the exact motion that looks like [(¢)) in the far past. At the upper left
is [¢(t))°", the exact motion that looks like |4(¢)) in the far future. The in and out states
are exact solutions of the real Hamiltonian at all times. In scattering theory, we are trying to

3 [Eds.] See John R. Taylor, Scattering Theory: The Quantum Theory of Non-relativistic Collisions, Dover
Publications (2006), Section 2-c, “The Asymptotic Condition”, pp. 28-31.
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\ x
Figure 7.1: The free ¢ (V = 0) Figure 7.2: ™ and ¢°*', asymptotic to the free ¢ and ¢

find the probability, and hence the amplitude, that a given state looking like |¢) in the far
past will look like |¢) in the far future, namely ©*(¢[s))™. (Notice that we don’t have to put
a t in this expression because both [¢)™ and [¢)°"* evolve according to the exact Schrodinger
equation, and their inner product is independent of time.) The correspondences between |1/)>in
and |¢) and between |¢))Out and |¢) allow us to define a very important operator in H, the
scattering matrix S, which acts between the descriptor states.* We define the S-matrix by
the equation®

(B[S[3) = " (glep)™ (7.47)

The S-matrix obeys certain conditions. For example,
Sst =sfs =1 (7.48)

That is, the scattering matrix conserves probability. It also conserves energy, if this is a
time-independent problem:

[S, Ho] =0 (7.49)

Notice the H is Hy, because the energy operator acts on the descriptors, the states that move
according to the free equation. The operator S turns free states of a given energy into other
free states of a given energy. You prove this by computing the expectation value of the energy
(or any power of the energy) in the far past, when you can’t tell the in state from the free
state, and computing it again in the far future, when you can’t tell the out state from the free
state, and requiring that these values be the same.

So much for the scattering theory of a single particle and a potential. I've gone through it
in a dogmatic way without proving any of these equations because I presume you have seen
them before. We’re not going to use all this formalism, by the way, in relativistic theory, at
least not for the time being.

4 [Eds.] The S-matrix was introduced by John A. Wheeler: “On the Mathematical Description of Light Nuclei
by the Method of Resonating Group Structure”, Phys. Rev.32 (1937) 1107—1122; see his equation (31). It
was extended and refined by Heisenberg: W. Heisenberg, “Die ‘beobachtbaren Groflen’ in der Theorie der
Elementarteilchen” (The “observable sizes” in the theory of elementary particles), Zeits. f. Phys. 120 (1943)
513-538; part II, Zeits. f. Phys. 120 (1943) 673-702.

5 |[Eds.] To distinguish between the action and the S-matrix, different fonts are used for these quantities: the
action by S, and the S-matrix by S.
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Now it should be emphasized that in this way of linking states, it looks like there’s a
connection with perturbation theory, with breaking up the Hamiltonian into an Hy and a V.
This is not so. And the easiest way to demonstrate that is to consider another simple system.

Let’s consider three particles, all with the same mass, with central potentials between
them:
2
3

3
H =" 75 4 Via([x1 = xal) + Vaa(lx2 — xa|) + Via(lx1 = xa) (7.50)
i=1

where the arguments of the potentials are the usual differences between the centers of the
particles. Let me assume that V35 all by itself could make a bound state. The center of mass
Schrédinger equation is

7$W%m+mmmw+wmm (7.51)

where p is the reduced mass, and r = |x; — x3|. It has one bound state, and none of the other
potentials make bound states, they’re all repulsive, and this one has only one. This could be,
aside from the long-range nature of the forces (and the hypothetical equality of the masses),
a proton, an electron and a neutral 7% meson. There is no binding between the proton and
pion, nor between the electron and the pion, but there is binding between the proton and the
electron, to make a hydrogen atom. Of course, the hydrogen atom has an infinite number of
bound states.

Now if we seek for descriptors here, we find things fall into two channels, one in which, in
the far past, the states look like three free particles, and the other looking like one free particle
and one bound state of the 1 and 2 particles. Both of those can happen since 1 and 2 can bind.
Therefore we have two kinds of states, type I with corresponding in and out states like this:

IP1, P2, p3>iln’ ot (7.52)

labeling these as type I states. These are solutions to the exact Schrédinger equation that in
the far past and the far future look like three widely separated particles. For them, Hy is just

3
i
Hy = Z o (7.53)

i=1

We also have states of type II: orthogonal, exact solutions of the Schréodinger equation for
which a complete basis could be specified by giving the momentum of the third particle which
doesn’t bind, and the combined momentum p of the 1-2 pair (with respect to the center of
mass), which is in a bound state

p.ps)i ™ (7.54)
For these, the Hamiltonian is
2 2 2
p p3 pcm
Hy=—+—=+4+V 7.55
0 2u + 2m + Viz(r) + m ( )

If Via(r) is not in the Hamiltonian, these type II free states will not time-evolve in the
appropriate way. It’s Vio that keeps them held together; without this potential, the 1 and 2
particles will fly away from each other. In this case, there are two alternatives for the free
Hamiltonian for the definition of the in and out states, depending on what kind of states we
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look at. All the in states of type I are orthogonal to all the in states of type II, and the same is
true of the out states. If a state looks like three widely separated particles in the far past it is
also not going to look like one free particle and one bound state in the far past. Its probability
for doing that is zero. On the other hand the in states of type II are not orthogonal to the out
states of type I or vice versa: ionization can occur. You can scatter a free particle off of a
bound state in the far past and get three free particles in the far future. So this shows the
situation to be more complicated, and the complication has nothing to do with perturbation
theory.

Now, what are we looking for? What is the beau idéal, the grail of a quantum field theory,
to describe relativistic quantum scattering? What sort of in states and out states do we
expect to have? Well, fortunately we have locality and all that. We imagine that if we have a
particle of type zilch,® we can have two widely separated particles of type zilch, or three widely
separated particles of type zilch, so we would expect that our descriptor states would belong
to a Fock space for a bunch of free particles. That would correspond to 1, 2, 3 ... particles of
various kinds, moving in toward each other or moving away from each other in the far past,
all in appropriate wave packets. What kind of particles should be there? Well, all the stable
particles in the world, whatever they are! That’s a big list of particles. There’s electrons,
and neutrinos, and there are hydrogen atoms in their ground states, and there are photons,
and there are alpha particles and there are ashtrays. (That’s a stable system; I don’t think
I’ve ever seen an ashtray decay—it has a lot of excited states, you can put dimples in it and
everything, but it’s a stable system. Fortunately, we have to go to quite a high center-of-mass
energy before we begin to worry about ashtray—anti-ashtray production.) They should all be
there, and there should be a great big Fock space that describes states of, say, one electron,
17 photons, 14 protons, 4 alpha particles, and 6 ashtrays. And then there would be some
S-matrix that connects one to the other.”

To describe a scattering theory that is capable of handling the situation is a tall order.
After setting up these high hopes, I will make you all groan by describing the simple way we
are going to do scattering theory for our first run through. This first description of scattering
theory will obviously be inadequate. We will eventually develop a description that in principle
will enable us to handle a situation of this complexity. In practice, of course, it’s a different
story, just as in practice it’s a very difficult thing to compute ionization in any sensible
approximation. But we will develop a description where, if we did know the time evolution
exactly, we would be able to compute all scattering matrix elements exactly. This description
will however take quite a long time to develop.

There are many features of the general description that are rather obscure, if you are
working with no specific examples to think back on. And so I will begin with the crudest
and simplest description of scattering, the most ham-handed possible. Then, as we go along
doing examples, we will find places where this description clearly has to be fixed up. To make
our Model A work,® we will add a tail fin here, and change the carburetor there. After we’ve
gained a lot of experience with this jerry-built jalopy, I will go through a sequence of one
or two lectures on a very high level of abstraction, where I explain what the real scattering

6 [Eds.] See note 13, p. 96.

71 didn’t list the neutron. There’s a reason for that. Neutrons aren’t stable; they last 15 minutes on the
average. We never find, in the very far future, a neutron coming out; we find an electron, a proton and an
anti-neutrino coming out, but not a neutron.

8 [Eds.] The Ford Model A, sold from 1927-1931, was the successor to Ford’s Model T automobile.
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theory is like. I do things this way so that you can get a lot of particular examples under your
belt before we fly off into a Never Never Land, or really, an Ever Ever Land, of abstraction.

I will now explain the incredibly crude approximation we will use. I will take H;(t) and
bluntly multiply it by a function of time f(¢,7T, A) depending on the time, ¢, and two numbers
T and A:

H=Hy+ H/(t) = Ho + f(t, T, A)H(t) (7.56)

This function f(¢,T,A) will provide a so-called adiabatic turning on and off of the interaction.
It will be equal to 1 for a long time which I will call T, and then it will slowly make its way to
zero over a time I will call A. This function is illustrated by Figure 7.3. Why have I stuck
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Figure 7.3: The adiabatic function f(t,T,A)

this artificial function in my theory? Well, if we think of particle scattering in a potential,
this approximation makes the computation of the S-matrix rather simple. In the far past
when f(¢,T,A) is zero, the theory is not in some sense asymptotically equal to a free theory,
it is ezactly equal to a free theory. So we have a free wave packet going along on its way
to the potential. While it’s on its way to the potential, we turn on the interaction, but it
doesn’t know that until it reaches the potential. And then it reaches the potential and scatters,
and goes off in fragments. After the fragments have all flown away, we carefully turn off the
potential again. Again, the wave packet fragments don’t notice that, because they’'re away
from the potential.

For a scattering of particles in a potential, we have a very simple formula for the S-matrix.
We don’t have to worry about in states and out states, because the in states are the states in
the far past, and the out states are the states in the far future:

(o)) = lim e jy) = lim U1(0,¢) |v)
——00 t'——o0

: 1" . " (7.57)
B(o0))™ = Jim o= |6) = Tim U4(0,1")]9)
t" —o0 t"" —00
In the far past and the far future, f(¢t) = 0 and H = H,, and the Hamiltonian that gives the
evolution of the asymptotically simple states, Hy, is the full Hamiltonian, H. So the S-matrix
can be written
S= lim Us(co, —00) (7.58)
T — oo
A — oo
(A/T) — 0

We want the limits 7' — oo and A — oo. We keep the interaction on for a longer and
longer time, and turn it on and off more and more adiabatically. A/T goes to zero in the
limit, so at the fringes, the transient terms we would expect to get from the boundaries are
trivial compared to the terms we get from U;(co, —o0), while keeping the potential on. The
interaction picture is highly suitable to our purposes, because it takes out the factors of e*fo?
that are in the free evolution of the initial and final states. There is no harm to the physics in
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computing the S-matrix this way for particle scattering in a potential. This approach may lack
something in elegance. Instead of solving the real problem, you solve a substitute problem
with an adiabatic turning on and off function, and then you let the turning on and off go away.
But it certainly corresponds to all the physics we would think would be there.

Here’s why (7.58) is true.” By the definition of the S-matrix, (7.47), in the Schrédinger
picture,

(6I810) = " (olu)™ = lim_(GIUJ(0,U10,010) = lim_(9lUr(#,0)01(0, )]
t' — oo t' — oo
= lim (9|Ur(¢',0)|¢) = {$lUr(c0, —00)|¥) (7.59)
t' — oo
.S =Ur(oo, —0)

There are two problems with the adiabatic approach. We’ve already talked about the
problem with bound states. The second problem is this: In what sense are the particles really
non-interacting when they’re far from each other? Haven’t we all heard about those virtual
photons that surround charged particles, and stuff like that? Well, we’ll eventually worry
about that question in detail, but for now let me say this. In slightly racy language, the
electron without its cloud of photons is called a “bare” electron, and with its cloud of photons,
a “dressed” electron. The scattering process goes like this: In the far past, a bare electron
moves freely along. A billion years before it is to interact, it leisurely dresses itself. Then
it moves along for a long time as a dressed electron, briefly interacts with another (dressed)
electron, and moves away for a long time, still dressed. Then it leisurely undresses. For the
time being, though, we will adopt this supremely simple-minded definition, (7.58), of the
S-matrix, because it enables us to make immediate contact with time-dependent perturbation
theory, and start computing things.

As we compute things, we will find that indeed this method is too simple-minded. We
will have to fix it up systematically, but we will discover how to do that. Meanwhile, we will
be doing lots of calculations and gaining lots of experience, developing our intuition. And
then finally we will junk the Model A altogether, and replace it with the supreme model of
scattering theory. So that is the outline of what we will be doing. Next time, we will begin
exploring our simple-minded model by developing a sequence of algorithms, starting from
Dyson’s formula, to evaluate the U; matrix in terms of diagrams.

9 [Eds.] See Schweber RQFT, Section 11.c, “The Dirac Picture”, pp. 316-318.
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In the first three problems, you are asked to apply the methods of the last few weeks to a non-relativistic field
theory, defined by the Lagrangian

L =" 0o + bVY* -V (P3.1)
where b is some real number. As your investigation proceeds, you should discover an old friend hiding inside a
new formalism. (This Lagrange density is not real, but that’s all right: The action integral is real; the effect of
complex conjugation is undone by integration by parts.)

3.1 Consider .Z as defining a classical field theory.

(a) Find the Euler-Lagrange equations.

(b) Find the plane-wave solutions, those for which ¢ = et(P*x—wt) "and find w as a function of p.

(c) Although this theory is not Lorentz-invariant, it is invariant under spacetime translations and the internal
symmetry transformation

Y= e R, Pt et (P3.2)
Thus it possesses a conserved energy, a conserved linear momentum, and a conserved charge associated with
the internal symmetry. Find these quantities as integrals of the fields and their derivatives. Fix the sign of b
by demanding the energy be bounded below.

(As explained in class, in dealing with complex fields, you just turn the crank, ignoring the fact that ¢ and *
are complex conjugates. Everything should turn out all right in the end: The equation of motion for ¢ will be
the complex conjugate of that for 1*, and the conserved quantities will be real. WARNING: Even though this
is a non-relativistic problem, our formalism is set up with relativistic conventions. Don’t miss minus signs
associated with raising and lowering spatial indices.)

(1997a 3.1)

3.2 (a) Canonically quantize the theory. (HiNT: You may be bothered by the fact that the momentum
conjugate to ¥* vanishes. Don’t be. Because the equations of motion are first-order in time, a complete and
independent set of initial-value data consists of 1) and its conjugate momentum, 41)*, alone. It is only on these
that you need to impose the canonical quantization conditions.)

(b) Identify appropriately normalized coefficients in the expansion of the fields in terms of plane wave solutions
with annihilation and/or creation operators.

(c) Write the energy, linear momentum and internal-symmetry charge in terms of these operators. (Normal-order
freely.)

(1997a 3.2)
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3.3 For a relativistic complex scalar field, I constructed in class a unitary charge-conjugation operator, Uc, a
unitary parity operator, Up, and an anti-unitary time-reversal operator, Q7, such that

ULy (x,)Uc = ¥*(x,t),
UbLp(x,t)Up = (—x,t), and (P3.3)
QY (%, 1) Q7 = ¥(x, —t)

For the theory at hand, only two of these three operators exist. Which two? Construct them (that is to say,
define them in terms of their action on the creation and annihilation operators).

(1997a 8.3)
3.4 The Lagrangian of a free, massless scalar field
L(x) = %8“(]5(90)8;;(;5(:(3)

possesses a one-parameter family of symmetry transformations, called scale transformations, or dilations,
defined by
D: ¢(z) = erp(e ) (P3.4)

(a) Show that the action S = [ d*z.%(z) is invariant under this transformation.

(b) Compute the associated conserved current and the conserved quantity, Q.

(¢) Compute the commutator of  with ¢, and show that this obeys the assertion, following (5.19), that the
conserved quantity @ is the generator of the infinitesimal transformation:

[¢,Q] =1iD¢ (P3.5)
(d) Compute the commutator of @ with the components of the four-momentum, P#, and show that
(@, P*] =iP* (P3.6)

(You are not required to write things in terms of annihilation and creation operators, nor need you worry about
whether the formal expression for @ should be normal ordered.)?

(1991a 6)

1 [Eds.] In the context of quantum mechanics, the dilation operator @ is represented by zH P, and is often
denoted D. It is easy to see that [D, P#| = iP*. Because D does not commute with P*, it does not commute
with P2, and so only massless theories can have dilation invariance. The dilation operator, together with the
Poincaré group operators {P*, M*”} and four “special conformal operators” {K*}, form the 15 parameter
conformal group, the group that leaves invariant the square of a lightlike 4-vector. In addition to the usual
Poincaré commutators

[P>\7 MMV] = i(gAuPV - QAI/PM)
[Ma[% M,“,] = i(guuMuﬁ - gocVMpﬂ + Q/B;J,Muw - gﬁuMa,u)
we have

[PH7PV] = [KM7KV] = [DvMHV] =0
D, P] = iP,
D, K] = —iK,,
[K;u Pl = Qi(guvD - M;W)
[K/\7 M,uu} = i(gApKV - g)\VK,Ua)
The conformal group was discovered in 1909 by Harry Bateman (“The conformal transformations of a space
of four dimensions and their applications to geometrical optics”, Proc. Lond. Math. Soc. 7, s.2, (1909), 70-89),
and later that year was shown by Ebenezer Cunningham to be the largest group of transformations leaving

Maxwell’s equations invariant (“The principle of relativity in electrodynamics and an extension thereof”,
Proc. Lond. Math. Soc. 8, s.2, (1909), 77-98).



Solutions 3

3.1 The Lagrange density . has the form

L = ip* 0ot + bVY* -V (S3.1)
Treating 1 and ¢* as independent fields, the Euler-Lagrange equations are, for v,
0L 0L .
= Oy =00 — 0 — 8;(bO¢) = i) — bV p =0
pyE ua(au¢*) 1007 z( 17/)) i P
and for ¢*,
0L 0L .
— Oy ——— =0 —p(ip*) — 0; (b p*) = —ip* — bVZp* =0
87,/) Ma(a;ﬂﬂ) O(Zw ) 1( i) ) ) P

That answers (a). As expected, these equations are complex conjugates of each other. For b < 0 (and we will
see shortly that this condition is necessary) the first equation is nothing but the time-dependent Schrodinger
equation for a free particle of mass m = —1/(2b). To find plane wave solutions, set

= Aei(p-x—wt)

and plug into the equations of motion. We find

i) — bV = (w+blp|* )P =0 = w=—b|p| (S3.2)
That answers (b). To answer (c), recall the definition (5.50),
0L 0L
Tuu:ﬂsau(ba_g,uug: 8”’(/)+ 81/#)*_9;“/2
(Out) O(Oup*)

Note that 7r2) =)™, and 7r2)* = 0. For T9 we obtain
T% = 7,0%¢ + 7). %" — &
= i) + 0 — )" — VY -V = —bV* -V
The space integral of T9° gives the Hamiltonian:
H= 7b/d3wi*-vw

The integrand is positive definite. If the energy is to be bounded from below, we have to take b < 0. To make
the analogy with the Schrodinger equation explicit, set b = —1/2m. Then using integration by parts,

_7L 3 * 72
H= Qm/d X V2 (S3.3)

which should be familiar as the expectation value of the Hamiltonian for a free particle in the Schrodinger
theory. For v = ¢, we find for the momentum density (recall V = 9; = —9")

0L 0L

70 __
= 500 @0u™)

It = —ih* Vo

ai
v+
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and so the momentum is
P= —i/d3x Y*Vp (S3.4)

which is the expectation value of the momentum for a free particle in the Schrédinger theory. For the internal
symmetry,

; d
Y—e ™y Dy= % = —it
A=0 (S3.5)
* TN,k * diﬁ* .k
Y* eyt Dyt = =it
dX |x=o
To construct the conserved current, use (5.27),
JH =gt D¢* — FH
Here, F'* = 0 because the Lagrange density is invariant under the symmetry. Then
JO = m) Dy + m). DY* = igp* (—inh) + 0 = p*¢
so
Q= /d3x¢*w (S3.6)

In the usual single-particle Schrédinger equation, the integral of the square of the wave function is used to
determine its normalization. If the norm is constant, probability is conserved. In the language of quantum
field theory, as we will see in the next problem, @ is associated with the number of particles. | |

3.2 (a) The classical field theory of the .Z (S3.1) resembles the Schrodinger theory for a single free particle.
What happens in the context of quantum field theory? Since the Euler-Lagrange equations are first-order in
time, 1 and its conjugate momentum m = 430* form a complete set of initial-value data. Impose the canonical
commutation relations:

[(x,),9(y, )] = [" (%, 1),¢" (v, 1)] = 0 (S3.7)
[(x, 1), 4" (y, )] = 6 (x — y) (53.8)

(b) Try a Fourier expansion, following (3.45),
Ux,t) = [ @ (£(p) ape P20 4 g(p) ape(Pxnt)
W (xt) = / d*p (f*(p) ahe ™ P9P1) 1 g (p) ape!Pxp?))

where f(p) and g(p) are functions to be determined, and (from (S3.2)) wp = |p|?/2m. If we assume the
relations (3.18) and (3.19),

[ap,al,] =@ (p - p') (3.18)

[a’Pv ap’] = [anvaI,/] =0 (319)

then we find
[x,0,57 ()] = [ @ (1£() POy — Jg(p) e Py

This must equal 63 (x —y) to satisfy the canonical commutation relation (S3.8). In the original expression (3.45),
f(p) = g(p) = 1/(2n)3/2) /2wy, and the equal-time commutator of two fields vanishes (4.47), as required.
That won’t do here. There is a clue, however, in the original wording of the problem: “Identify appropriately
normalized coefficients in the expansion of the fields in terms of plane wave solutions with annihilation and/or
creation operators.” We can satisfy the canonical commutation relation by the choice of coefficients

1

f(P)=W7 g(p)=0

This choice also ensures that (S3.7) holds, because 1 contains only annihilation operators, and ¥* contains
only creation operators.
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(¢) Obtain the expressions for H, P and @ by plugging in the expressions for ¢ and ¥* into (S3.3), (S3.4)
and (S3.6), respectively:

H= —/d3x iw*(x, t) V2 (x, t)

!
d’x 3 13 P 12

. . ’
ane—z(p-x—wpt) ap/el(p x wp/t)

) (2n)3 2m,
. (53.9)
= /d3Pd3P, Ip 7 aLei(wppr’)t ap/6(3) (P—-p)
2m
2
_ 3 |p| t
= /d p% anap
That’s the Hamiltonian. The momentum P goes the same way:
P= fi/d3xw*(x,t)vw(x,t)
3
_ 77;/ d X3 d3pd3p/ ’ipl age—ip-x—wpt) ap/ei(p/-x—wp/t)
(27) (83.10)

— /d3pd3p/ p/ aLei(wp—wp/)t ap/(;(g) (p 7 p/)

= / dgppanap
Finally, the charge Q:
d>x
_ 3 * _
Q—/ﬁxw@ﬁwxw—/@ﬂg

This is the theory of a set of free, non-relativistic, identical bosons, all with mass m. Each boson has momentum
p and energy F = w = |p\2/2m. The conserved charge @ is the number of bosons. Note that all of the
operators H, P and @Q are time-independent. ]

d3pd3p/ aLe—i(p-x—wpt) ap,ei(p/-x—wp/t) _ /d3paL(lp (S3.11)

3.3 First, define a parity transformation as in (6.89):
a a a—
P:{RY UL Up =3 1P
{at-ufafo-{i

d*p ; d*p
Uby(x,)Up = a_pe!Px=wpt) —
r @ " V@)
The measure d3p over all momenta is invariant under the reflection p — —p, the energy is a quadratic function
of p and so invariant under reflection, and the last integral is by definition (—x,t). In exactly the same way

Then

ape’(TPE=wWRt) — g(_x 1) (S3.12)

3 . 3 .
U},tb*(x, t)Up _ d°p T 672(p4x7wpt) _ d°p Te*1<*P‘x*Wpt> — w*(*x,t) (8313)

al ———a
ViCOEN Vi) P

There’s no problem with a unitary parity operator, Up. Now for time reversal. Because T': p — —p, it follows

that we should have (recalling that Qp is anti-unitary)

o1yl %P (S3.14)
T {az, aip

* . d3p

7d3p a (e ——a
N ) VenE P

d3 .
— I i(p-X+wpt) _ w t
= ape =P(x,
as desired. The field w* (){7 t) transforms in exactly the same way;

Q7" (x, 1) Qr = ¥ (x, —t) (S3.16)

Then

e—i(p-x—wpt)

Q7 (%, H)Qr = i(p-x—wpw)

(S3.15)
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So there’s no problem with an anti-unitary operator Q7. The problem is with charge conjugation. A unitary
charge conjugation operator Ug, if it exists, would transform ) into ¥*, and vice-versa:

ULp(x, )Uc = 9*(x,t);  UL*(x,t)Uc = ¥(x,t) (83.17)

The canonical commutation relation (S3.7) says, dividing out the 14,

[W(x,1), " (v, 1)] = 6@ (x — y) (83.18)
Then
ULl (x,1), 97 (v, )]Uc = UL6® (x — y)Uo = 6@ (x — y) (83.19)
But
UL (x, 1), 4" (v, )]Uc = UL (x, )™ (v, t)Uc — ULw* (y, )y (x, )Uc
= [ULw(x,)Uc, ULy (v, t)UC] (S3.20)
= [0 (y, 1), ¢(x,8)] = =0 (y —x) = =6 (x — y)

This is a contradiction. There is no such operator Ug for this theory.

This model is very much like the complex Klein—Gordon theory, with three exceptions: the energy is
non-relativistic, it lacks a charge conjugation operator, and there are no antiparticles. The charge @} counts
simply the number of particles, rather than the difference between particles and antiparticles. |

3.4 (a) Let y* = e*z#. Then the transformation on 9*¢(z) becomes

b, 00() | A 0(E0) _ L 00(y) O _ 5 00(w)

Oxh Oxh oyY  Oxk Oy
Thus D: .Z(z) — ¢** Z(y). Then the action becomes

S = /d4r$(m) — /6_4)‘d4y P2 (y) = /d4y$(y)
Relabeling the dummy variable y to z, the action is manifestly invariant under dilations.

(b) From (5.21),

d¢

De(x) = i o

=(1+z- 0)¢p(x) (S3.21)
A=0

= |:e>‘¢(e>‘x) +e

A
A ad’a(;aﬂﬁ) ekxa:|

Then using (5.26) and (4.25),
D= %Dqs + 70,(D§) = 70, (D) = 9, [(1 + 2°0a)d()]

— oM [am +5%0ad + xﬂaaam] (53.22)
=209 0u¢ + 0 px - 0(0ud)
=20V) Oy + 3z 0 () Oudp)
But 0pz® = 6,0;, so Oyxt = 4. Then
DY =% (10 0u6 + @ 0(9"6 0u9) ) = 0, (30"0°6 0ad) = Oy (¥ 2) = 0, F* (83.23)
where F# = z#Z. The Noetherian current is defined by (5.27),
JE=ahD¢p* — FF =0F¢p(1+2-0)p — a2l L = (0Vp)dp + xa(0H P 0P — g*H.&L) (S3.24)
and the conserved charge @ is the space integral of the zeroth component,
0= /d3x [(6°6)6 + 2a(8°6 070 — 9°°2)]| = /d3x (76 + (e 0)¢ — 12°(0%6 0u)] (83.25)

where 7 = 70 (see (4.27)).
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(c) We need to show [¢(y), Q] = iD¢(y). The charge Q is time-independent, so we can take its time to be the
same as y°, the time of ¢(y). Then, using the equal-time commutators (3.60) and (3.61),

0.Q) = [ @ {6, 7(@)6(@)] + [9lu),7(@) @ 0)o(e)] ~ 3[6(0), 20" 0(0) Doz }
- [ i {[<z> ), T(@)]6(2) + [6(v), 7(@)](@ - D)(x) + 7(@)aald(y), 0 6(2)] — 29" [6(y), IO |
= / x5 (y = x) {¢(2) + (2 0)9(@) + 7(2)7a 9 — 2°9" 900, 6() } (S3.26)

- /d3xi6<3)(y —x) {¢(a:) + (2 9)p(x) + m(x)z® — xo@oqﬁ(m)}
=i(l+y-0)¢(y) = iD¢(y)

as required.

(d) We need to calculate [P*,Q]. The expression for P*, (5.45), is the component T#9 of the canonical
energy-momentum tensor density T#” given by (5.50), THP = wPIt¢p — gPH.L, so that

ph = / dBxTHO = / dx [r(@)0" o(x) — % 2] (83.27)
We will need the commutators of @@ and the derivatives 9#¢. The easiest approach is to differentiate the

commutator [¢, Q] because @ is a constant. (Alternatively, we could proceed as in (b), but that is a lot more
work.) Then

[0"6(2), Q] = 9[d(2), Q] = 9*(iD(x)) = i (1 + & - D)) = i(2 + x - 9) D (x) (53.28)

and in particular,
[m(x),Q] =i(2+ x - 9)m(x) (S3.29)

Using these relations,

Q)= [ de{[Tr(z 2 6(x), Q) 91, Q)
= [ @x {n(@)[0"6(2), Q) + [n(), Q0" 6(z) ~ 1% {0a6(@)]0" 6(a), @] + 0a(2), QIO 6(2)} }
=i / Bx {4ﬂ(x)a“¢>(x) + (x - 9) (v(x)0¥p(x)) — Lg% [48a¢(:r)8°‘¢(x) +(z-9) (8a¢(m)8°‘¢(x))]}
— 4 / dx [n(x) p(x) — g™ 2] +i / @x (2 9) (w(x) 96(x) — g™ 2)

(S3.30)
The second term can be written

/ &*x (z - 0) (ﬂ(x) AH(x) — go“cf> = i2%8p / &*x [ (z) 04 (z) — gO“J]
+i / d®x (279;) [W(z) AHep(z) — go”f]
— 200, P" +i / Bx; (:cj [7(2) 0#6(a) - goﬂ,zﬂ]) ($3.31)
—i / d*x (9;27) [ﬂ(x) () — go“f]
— 3 / dy [rw) 0% — g2 ]

because P* is time-independent, the second integral is a divergence to be transformed into a surface integral
at infinity, and 9;y* = 3. Then

[PH, Q] = (4i — 3i) / d3x [ﬂ(:v) IMp(z) — go“,f] = iPr (S3.32)

which was to be shown. [ ]
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8

Perturbation theory |. Wick diagrams

We begin with the expression for the S-matrix introduced last time, (7.58), written in terms of
Dyson’s formula, (7.36),

S = U(oo,—o0) = Texp (—i /_OO dtHI(t)> (8.1)

We will use good old quantum field theory to evaluate this object, applied to three specific
examples, model theories, which we will discuss at various times throughout these lectures.

8.1 Three model field theories

Here are our three models.

MODEL 1:
L = 5(0"9)(0u0) — 34°0” — gp(2) (<) (8.2)
Model 1 is a scalar field, ¢(z), interacting with some spacetime-dependent c-number function,
p(x), which we may vary experimentally as we wish. I will assume, to make everything simple,
that p(z) goes to zero as x goes to infinity in either a spacelike or timelike direction. The
variable g is a free parameter called the coupling constant. I could of course absorb g in
p(x). But later on, I would like to study what happens if I increase g while keeping p(z) fixed.

I choose this Lagrangian because the field obeys the equation of motion

(O + 1) ¢(x) = —gp() (8.3)

This equation is very similar to the fundamental equation of electrodynamics in the Lorenz!

gauge,

O%AH = —eJ” (8.4)
where J* is the electromagnetic current. In the real world, the electromagnetic current is some
complicated function of the fields of charged particles. You’ve seen how to construct them,

1 [Eds.] Often rendered “Lorentz”, after Hendrik A. Lorentz (1853-1928), but in fact due to Ludvig V. Lorenz
(1829-1891). See J.D. Jackson and L. B. Okun, “Historical Roots of Gauge Invariance”, Rev. Mod. Phys. (2001)
73, 663-680.
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(5.27). Tt’s frequently convenient, however, to consider a simpler problem, where J* is just
some c-number function under our experimental control. We could move large charged bodies
around on tracks in some classical way, changing the current. This makes light, photons in the
quantum theory. Model 1 describes a theory analogous to the electromagnetic field (which
we don’t yet know how to quantize) in an external current, a scalar field for a meson in an
external current.

We know from electromagnetic theory that this current J* makes light. We also know
that light is photons, so this current makes photons. We would expect, in the analogous case,
that when we wiggle the source p(z)—turn it on and off and shake it around—we should shake
off mesons. We will try to compute exactly how many mesons are shaken off and in what
states. This will be our simplest model, because there is no need here to invoke an adiabatic
turning on and off function. The real honest-to-goodness physics of the problem with p(x)
automatically turns itself on and off by assumption.

MODEL 2:
Z = 5(0"0)(0u0) — 31°0* — gp(x)¢(x) (8.5)
Our second model is exactly the same as Model 1, except that we restrict p to be a function
of x only, independent of time. Analytically, Model 2 is somewhat simpler, but physically it
requires a bit more thought. Again I’ll assume p(x) goes to zero as rapidly as necessary to
make any of our integrals converge as x — co.

Model 2 is analogous to good old electrostatics:: Given a static charge distribution or a
constant current distribution, compute the electromagnetic field it makes. In Model 2 we
have a static source. We don’t know at this stage what’s going to happen. Maybe mesons
will scatter off this static source, and it will act like a potential in which they move, we’ll see.
This problem requires slightly more sophisticated thought, as we will see, because here we will
indeed have to put in a turning on and off function; the physics doesn’t turn itself off.

MODEL 3:
L = L(0"0)(0u0) — 31287 + 0" Op1p — mPY e — g (8.6)

The third model involves two fields, one neutral, ¢, and one charged, v, which is a linear
combination of two other scalar fields, ¢! and ¢?, as in (6.23). As the coupling constant g
goes to zero, we have three free particles: a particle and its antiparticle from the terms in
Y*1), and a single neutral particle from the terms in ¢2. In the last term, we have a coupling
between them.

The equation of motion for the ¢ field is

(2 + p?)¢ = —gib™e (8.7)

This is beginning to look like the real thing. Aside from the fact that nothing has spin, and I
haven’t put in any derivatives or tensor indices, this is very similar in its algebraic structure
to what we would expect for real electrodynamics. In real electrodynamics, the current J* is
not prescribed, but is due to the presence of charged particles. Here the electromagnetic field
mimicked by the ¢ field is coupled to a quadratic function in the fields of the charged particles.
If Model 2 can be described as quantum meso-statics, Model 3 is quantum meso-dynamics.

The equation of motion for the v field is
(D% + m?)yp = —gvpo (8.8)
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This model is also very similar to Yukawa’s theory of the interaction between mesons and
nucleons.? These fields play an important role in the theory of nuclear forces. And so I will
sometimes refer to the 1 and ¥* particles as nucleons and antinucleons respectively, and the
quanta created by the ¢ as mesons. They are of course scalar nucleons and scalar mesons.
Actually we had better not push this theory too far (we’ll only do low orders in perturbation
theory with it). The Hamiltonian contains the term g@ip*e), which is not bounded below for
either sign of g.

We will attempt to evaluate the Uy matrix (and thus the scattering matrix) in all these
cases by Dyson’s formula, written as

Ui(co, —o0) = T exp <—i/d4x %(x)) =S (8.9)

The integral in the exponential is equivalent to [ d¢ Hy(t). The interaction Hamiltonian density
for Model 1 is
1
AN = gp(a)¢() (8.10)

Note that since we are always working in the interaction representation, ¢(z) = ¢r(x). For
Models 2 and 3, we must put in the adiabatic function f(t),

A2 = g (H)p(x)p(z) (8.11)
A = g () o (8.12)

For Models 1 and 2, we have to take p real in order that H; be Hermitian. In all three cases,
we will attempt to analyze the problem by interaction picture perturbation theory.

So these are the three models we’re going to play with. I should tell you in advance that it
will turn out that for Models 1 and 2, we will be able to sum our perturbation theory and solve
the models exactly. That should not surprise you because the Heisenberg equations of motion
are linear, and anything that involves linear equations of motion is an exactly soluble system.

8.2 Wick's theorem

Our general trick will be an algorithm for turning time ordered products into normal ordered
products and some extra terms. Time ordered products are not defined for every string of field
operators; they are only defined for strings of field operators that have time labels on them.
Normal ordered products are not defined for any string of operators; they are only defined for
strings of free fields. Fortunately in Dyson’s formula, we have both things: operators with
time labels, and operators which are free fields. So it makes sense to talk about writing those
things alternatively, in terms of time ordered products and normal ordered products. This is a
useful thing to do, because it’s very easy to compute the matrix elements of normal ordered
products once you have them.

For example, consider Model 1, with .77 = gp(z)¢(z). At the n'" order of perturbation
theory, we will have a string of n ¢’s. If we sandwich the normal ordering of this string between
two-particle states,

(p1, 15| 1 (1) p(22) - - G(n) * 1, p2) (8.13)

2 [Eds.] See note 11, p. 193.
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the expression must equal zero for n > 4. In that case, each term will contain the product of
five operators at least. Each will have either too many annihilation operators, three or more,
or too many creation operators. If the former, then let the operators act on the state on the
right. Two of these get you to the vacuum at best, but the third annihilates the state. If the
latter, the product has too many creation operators, whereupon acting on the state on the left,
the same arguments apply and again the state is annihilated. All the normal ordered products
that involve more than four field operators are of no interest to us.

What happens with (8.13) if n =47 All that can happen is that the annihilation part of
two of the field operators must annihilate the two initial particles, taking you down to the
vacuum, and then two others spit out the two final particles bringing you back to the final
two-particle state. If we can find an algorithm for turning a time ordered product of operators
into a normal ordered product of those operators, plus perhaps some c-number terms, we will
have gone a long way in making the successive terms of this perturbation expansion easier to
compute, and minimizing the amount of operator algebra we have to play with.

Fortunately there is such an algorithm, due to Wick.? To explain it, I will have to give
some definitions. Let A(z) and B(y) be free fields. (We're always dealing with free fields, since
we're always in the interaction picture.) Define an object called the contraction of A(z) and
B(y), as the difference between the time ordered product and the normal ordered product of
the two fields:

A@)B(y) = T(A@@)B(y)) — : Ax) B(y): (8.14)

For free fields, I can prove that the contraction is a c-number. We will evaluate it for the cases
we need, that is to say for two ¢’s, a ¢ and a 1, a ¢» and a ", etc.

To prove the contraction is a c-number I will assume for the moment that zy > yo. The
corresponding formula when zg < yg will follow by the same reasoning. In this case,

T(A(z)B(y)) = A(z)B(y) (because x¢ > yo) (8.15)
Break each field up into its creation and annihilation parts,
Ax) = AN (@) + AD(z);  Bly)=BM(y)+ B (y) (8.16)

where A=) and B(~) contain each field’s respective creation operators, while A(f) and B(+)
contain the annihilation operators (see the discussion following (3.33) on p.39). Then

T(A(x)B(y)) = AP (2)BD (y) + A7 (2) B () + A7) (2) B (1) + AP () BT () (8.17)

There are four terms in the product A(z)B(z), and three of them are already normal ordered.
The only one that is not normal ordered is the last. Therefore the right-hand side is the
normal ordered product, plus a commutator:

T(A(x)B(y) = :A)B(y): + [AT)(2), BT (y)] (8.18)
The commutator is a c-number (see (3.38)):

: (8.19)
0, if A+ B

(A (@), B (y)] = {

3 [Eds.] Gian-Carlo Wick, “The Evaluation of the Collision Matrix”, Phys. Rev. 80 (1950) 268-272.
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A similar argument goes for z¢ < yo, so that we can write
—

A(2)A(y) = 0(z0 — yo)[AD (2), AT ()] + 0(yo — w0)[AT) (), AT ()] (8.20)
= 0(z0 — yo) Ay (z —y) + 0(yo — 20) Ay (y — 2)
That tells us that the contraction is a c-number.

We can write another expression for the contraction simply by taking the ground state
expectation value of (8.14) above:

A(x)B(y) = (0]A(x) B(»)[0) = (0| T(A()B(y)) |0) — (0]: A(x)B(y):[0)

= (0] T(A(z)B(y)) |0)

because, by design, a normal ordered product always has zero vacuum expectation value.
Consequently,

(8.21)

—

P(x)o(y) = (0| T(d(x)o(y)) [0) (8.22)

By an amazing “coincidence”; the right-hand side of this equation is something which you

computed in your first homework (see Problem 1.3). I will save all of us the time to work it
out again, and just remind you

4 .

OIT(@)6(w) 0) = tim [ L emmten

_ 8.23
e—o+ J (2m)4 p% — p? +ie (8.23)

Whenever I write an € in the denominator in the future, you will need to remember that we are

to take the expression in the limit e — 0%. Although you didn’t do this for 4, it’s essentially

the same calculation, and it’s very easy to see that
[ — d*p

Y (x)Y(y) = Y(x)Y*(y) = lim o—ip-(@—y)

e—0+ ) (2m)* p? —m? +ie

i

(8.24)

You get two equal terms from the ¢! and ¢2, but that 2 is canceled by the v/2 in the definitions
of ¢ and v*. All other contractions equal zero:

D(@)py) = 1" (@)6y) = b@)bly) = " (@) (y) = 0 (8.25)

That’s how it goes for two fields. Wick proved the same procedure works for a string of
fields. We’ll want two pieces of notation before diving into the proof. First, suppose we have a
normal ordered string of fields, and want to contract two which are not immediately adjacent.
Then

 A(2)B(y)C(2)D(w): = : A(2)C(): B(y)D(w) (8.26)
And, just for short, write
" (21)p" (v2) - -+ ¢ (Tn) = P12 by (8.27)

With those two conventions established, let’s state Wick’s Theorem:

T(P12--¢n) = P12 D

—
+ 1d1¢2 -+ P + (all other terms with one contraction)

S (8.28)
+ 1d1P20304 -+ - ¢ + (all other terms with two contractions)

+---+ (all terms with 2n or £(n — 1) contractions)
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If n is even, the last terms contain %n contractions, otherwise they contain %(n— 1) contractions

and a single field. It’s perhaps not surprising that you obtain all the terms on the right-hand
side of (8.28). A remarkable and graceful feature of the theorem is that each term appears
exactly once, with coefficient +1.

Proof. The proof proceeds by induction on n. Let W (¢1¢a - - - ¢, ) denote the right-hand
side of (8.28). It is trivially true that T(¢1) = W (¢1), because both sides simply equal ¢.
We'’ve already established

T(pr12) = 1102 + 3@25 =W(p1¢2) (8.29)

By the induction hypothesis, assume T(¢1¢2 -« - dn—1) = W(d1¢2 -+ - ¢p—1). If we can show
T(p102 - ) = W(d102 - ¢y ), we're done. Without loss of generality, we can relabel the

fields, such that :1:10 > x20 > 9630 > e > x,?, and suppose we have then, by the induction
hypothesis,

T(p2p3 -~ pn) = W(p2¢s - dn) (8.30)

The job now is to show T(¢1¢s -+ dn) = W(d1¢2 - - - ¢ ). Multiply both sides of (8.30) by ¢:

01T (203~ b)) = 1 W (P23 - - - hn) (8.31)

The left-hand side of this equation is T'(¢1¢o - - - ¢,,), because x is larger than all the other
times. The right-hand side is

DLW (o3 - ) = ( §+) + ¢§_)> W (a3 - - - )

= O W (923 dn) + W (g2 d) 0y + [0, W(ats - 60)]
(8.32)
W contains two types of elements, normal ordered strings and contractions. All of the terms in
(8.32) are normal ordered. The first two terms on the right-hand side contain all contractions
that do not involve ¢y, as well as the remainder (if any) of uncontracted fields in normal
order. Within the commutator, all the purely c-number terms, if any, will commute with qbgﬂ.
The other terms will produce all the contractions that do involve ¢;. Either a contraction
involves ¢1, or it does not. Therefore, the right-hand side of (8.32) is a normal ordered series
containing all possible contractions of the n fields: it is equal to W(d1¢2 - ¢,,). QED

I leave it as an exercise to show that Wick’s theorem can also be written in the form

99
T(dpr¢p2---dn) =:exp [ 5 > ibjm—7— | dr192-- ¢ (8.33)
o P2 50, |

8.3 Dyson's formula expressed in Wick diagrams

Wick’s theorem is very nice, but we are going to find something even better: We're going
to find a diagrammatic rule for representing every term in the Wick expansion, i.e., the
application of Wick’s theorem to the Taylor expansion of Dyson’s formula (8.1). Instead of
having to write complicated contractions, we can just write simple looking diagrams. These
are not yet the famous Feynman diagrams.* I am introducing these objects ad hoc, to make

4 [Eds.] In an interview with Charles Weiner of the American Institute of Physics, Richard Feynman said,
“I was working on the self-energy of the electron, and I was making a lot of these pictures to visualize the
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the eventual passage to Feynman diagrams (in Chapter 10) as painless as possible. T will call
these objects Wick diagrams. They differ from Feynman diagrams because Wick diagrams
represent operators and Feynman diagrams represent matrix elements. Most textbooks go
directly to the Feynman diagrams. I find the combinatorics gets too complicated that way. 1
will explain this diagrammatic rule using our third example, Model 3, (8.6), which has the
most complicated interaction Hamiltonian, (8.12), of the three models we are considering:

Hr = gf ()P Yo (8.12)

We'll keep the compressed notation, writing ¢(x1) as ¢1, etc., to simplify things. Dyson’s
formula (8.9), the thing we have to study, is the time-ordered exponential of the expression

—i / d*x A7 (8.34)
A typical term in Dyson’s formula arising in n*® order of perturbation theory will involve a
product of n copies of this expression (8.12), integrated over points x1,xa, ..., z,. Let’s look
at the second-order term:
(—ig)? 4 4 * *
51 d*zy d>xo f (1) f(t2) T (V119103 02¢2) (8.35)

I will draw a diagram, starting with dots labeled 1, 2, and so on, indicating 1, x2 etc. The
number of dots is the order in perturbation theory to which you are going. Associated with

le ®2
Figure 8.1: Two points, for the second-order term in Dyson’s formula
each dot, we will draw an arrow going into the dot, and an arrow going out from the dot,
and a line without an arrow on it at all, one end attached to the dot. An arrow going in

corresponds to the factor ¥; an arrow going out is a ¥*, and the plain line corresponds to ¢.
We draw these at point 1 to associate the fields at x1, and similarly for the second dot. In this

(G (G

(G (@

Figure 8.2: Two vertices, for the second-order term in Dyson’s formula

way I can associate various terms that occur in the expansion with a pattern of dots, with
three lines coming out from each dot.

various terms and thinking about the various terms, that a moment occurred—I remember distinctly—when
I looked at these, and they looked very funny to me. They were funny-looking pictures. And I did think
consciously: Wouldn’t it be funny if this turns out to be useful, and the Physical Review would be all full of
these funny-looking pictures? It would be very amusing.” Quoted by Schweber QED, p.434. For a history
of the introduction and dispersion of Feynman diagrams, see David Kaiser, Drawing Theories Apart, U. of
Chicago Press, 2005.
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What is the prescription for contractions? Whenever two fields are contracted, for x; and
x2, say, we will join the appropriate lines from those two dots. We can either join a straight
line with a straight line if there’s a ¢ — ¢ contraction, or we can join the head of an arrow
with the tail of an arrow if there’s a 1¥* — ¢ contraction. For example, the Wick expansion of
the second-order contribution (8.35) includes the term

(—ig)?
2

1
/ iy ds f(0) f(ts) 10 G110 oty (8.36)

Associated with this term is the diagram in Figure 8.3. The term (8.36) can contribute to a

Figure 8.3: Second-order diagram for Model 3, with ¢ — ¢ contraction

variety of physical processes. The operator

YT P1s e (8.37)

contains, within the 1 field, operators that can annihilate a “nucleon”, IV, as well as operators
that can create an “antinucleon”, NV, while the operators within the ¢* field can create N and

annihilate N (see (6.24).) Consequently the amplitude
(final two nucleon state | : 1] 1113519 : | initial two nucleon state ) (8.38)

will not be zero, because there are two annihilation operators in the two v fields to destroy
the two nucleons in the initial state, and two creation operators in the two * fields to create
two nucleons in the final state. The term (8.36) thus contributes to these reactions:
N+N-—-N+N
N+N-N+N (8.39)
N+N—-N+N
It cannot contribute to N+ N — N + N, which would require the v field to create N and the
1* field to annihilate N. That’s a good thing, because such a process would break the U(1)

symmetry and thus violate charge conservation. On the other hand, it looks like the operator
(8.37) could contribute to the process

vacuum - N + N + N+ N

which does not violate charge conservation, but it does violate energy-momentum conservation.
That would be a disaster. The coefficient of the term after integrating over x; and z9 had
better turn out to be zero.

As a second example, another term in the Wick expansion of the second-order contribution

(—ig)?

2!

is

 —
/d4$1 d4$2 f(tl)f(t2) 3¢T7/11¢17/J§1/)2¢23 (8~40)
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1 2

Figure 8.4: Second-order diagram for Model 3, with 1™ — 1 contraction

For the diagram corresponding to this term, see Figure 8.4. Here we have an operator
21195 ¢9 ¢ containing an uncontracted v, an uncontracted ¢* and two uncontracted ¢’s.
This particular operator could contribute, for example, to the processes

N+¢—=N+¢
N+¢—>N+¢ (8.41)
N+N—=¢p+¢

That is, “nucleon” plus meson (remember, “nucleons” are what our ¢ fields annihilate) go to
“nucleon” plus meson, because the operator 11115 ¢2 contains a nucleon annihilation operator,
a meson annihilation operator, a nucleon creation operator (in ¥*) and a meson creation
operator. It could also make a contribution to the matrix elements of the process “antinucleon’
plus meson goes into “antinucleon” plus meson, because every term that contains a nucleon
creation operator also contains an antinucleon annihilation operator. Or, for example, it could
contribute to the process where ¢ + ¢ go into N plus N, or N plus N go into ¢ + ¢, picking
annihilation and creation operators in the right way. Notice that we can’t have N — ¢+ ¢+ N,
because of energy-momentum conservation.

)

Just as we can draw a diagram from the corresponding expression in the Wick expansion,
so we can write down the Wick expansion term from a given diagram. For example, consider
the diagram in Figure 8.3. Reading this diagram and remembering what the theory is, with
the rules given earlier about drawing the diagrams, we can write down what is going on.
This is a second-order perturbation diagram because there are two vertices. Each vertex
contributes a term (—ig), and a term of 1/2! comes from the expansion of the exponential.
We have d*x; d*zs because we've got two d*z’s; two vertices. The internal line corresponds to
a contraction of the two ¢ operators, and this is the only contraction. The external lines show
two 1 fields (the inward going arrows) and two ¢* fields (the outward going arrows.) So the
remainder of the operator must correspond to the normal ordered product : ¢ 119519 : of the
“nucleon” field operators. Therefore we recover the associated operator (8.36),

(—ig)*
2

/d4$1 d*xy f(t) f(t2) s sihe: <Z,51_<|/>2 (8.36)

Given any term in the Wick expansion, we can find the corresponding Wick diagram, and
vice-versa:

The Wick diagrams are in 1: 1 correspondence with the terms in the Wick expansion.

The entire Wick expansion may be represented by a series of diagrams, every possible diagram,
though some may evaluate to zero. For example, for Model 3, the terms in Wick’s theorem of
17t order consist of all diagrams with 17 dots, with all lines connecting them drawn in all
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possible ways, ranging from the first term in Wick’s theorem, the normal ordered product of
17 x 3 = 51 fields, with no lines connecting the dots, to the second term with one contraction,
diagrams with one line joining two dots, to the third term with two contractions, with two
lines joining the dots, etc. In first-order perturbation theory, the Wick expansion involves a
product of three operators, and has two terms,

[
W, 4%, ¢) = " ed: + ¢ o (8.42)

and so two diagrams, but both turn out to vanish by energy-momentum conservation. This is
a product of three field operators. The first term has nothing contracted, and vanishes unless
we’ve stupidly chosen our meson mass to be so large it can decay into nucleon and antinucleon.
The second term vanishes again by energy-momentum conservation because you can’t build a
one meson state that has the same energy and momentum as the vacuum state.

Some terms in the Wick expansion contribute nothing. For example, this term

(—ig)?

2!

| —
/d4$1 d4$2 f(tl)f(t2) 3¢T¢1¢1¢;¢2¢23 (8~43)

I
is zero, because the contraction )*1* is zero. So we will never write down a diagram like
Figure 8.5: the arrows must line up with the same orientation. That means we can shorten the

DN

1 2

Figure 8.5: A forbidden process in Model 3

middle two arrows in Figure 8.4, and redraw this as in Figure 8.6. Notice only the topological

DN

1 2

Figure 8.6: Second-order diagram (Figure8.4) for Model 8, with ¥* — 1 contraction, redrawn

character of these diagrams is important. If I could have written a term twisted upside down
or bent around upon itself, it wouldn’t matter; it would represent the same term. It’s enough
that we represent the three field operators associated with each integration point by an object
as shown in Figure 8.2, and when we contract two field operators, we join their corresponding
lines. So we have a one-to-one correspondence between these diagrams and the terms in Wick’s
theorem. Because the terms

— —
T 101s g and TP dr1Psada: (8.44)

are distinct, so are their diagrams, as shown in Figure 8.7. After integration over d*z; and
d*z5, however, the operators corresponding to these diagrams are the same. Just to remind
you, these Wick diagrams are not Feynman diagrams, but they are most of the way to them.
Feynman diagrams do not have labeled points, but they will have labeled momenta on the
external lines.



8.4 Connected and disconnected Wick diagrams 163

1 1
T 1P103 o T V19105a s
1 2 2 1

Figure 8.7: FEach term in the Wick expansion gets its own diagram

Some Wick diagrams do not have any external lines. Those are the terms where everything
is contracted. We will discover what they mean in the course of time. For example, this term
also occurs in second-order perturbation theory for Model 3:

(—ig)®
9!

4 4 A * .
d wy d s f(t1) f(t2) 2h1¢1d19312: (8.45)

The appropriate diagram is given in Figure 8.8:

Figure 8.8: The diagram from the operator :1)7v1¢19510)202:

Here I have contracted the ¢ at 1 with the ¢ at 2. I can join an undirected line to an undirected
line because there is a non-zero ¢—¢ contraction. I can join the head of an arrow to a tail
of the arrow because there’s a non-zero ¢)—* contraction. It would be incorrect to draw a
diagram in which I connected the head of an arrow to the head of an arrow because that would
be a 1)*—1* contraction, which vanishes. You might think that there is a second diagram, with
the labels 1 and 2 switched. But that is exactly the same as Figure 8.8 rotated through 180°
in the plane of the page. There is only one way to contract all the fields. That’s what Wick’s
theorem says: Make all possible contractions. This means simply that we draw diagrams with
all possible connections. Diagrams with no external lines are perhaps a little unexpected, but
they’re there because Wick’s theorem tells you they’re there.

8.4 Connected and disconnected Wick diagrams

Having given you a headache over Wick’s theorem and then over the diagrammatic representa-
tion of Wick’s theorem, I will now give you even more of a headache by manipulating these
diagrams in certain ways. It’s obvious that if we attempted to compute all these diagrams
individually and then sum them up, we would do the same computation several times. For
example, in Figure 8.7, as I emphasized, the diagram on the right, with 1 and 2 interchanged, is
not the same as the original diagram on the left: it represents a different term in the integrand.
However the integrals are identical because we end up integrating over x; and x2, and that will
give us exactly the same answer for both diagrams once we’re done integrating. Remember,
we apply Wick’s theorem before we integrate. Indeed, any other diagram we obtain from a
given diagram by merely permuting the indices will give us the same result, because all that
the indices on the vertices tell us is what we call ;1 and what we call x5, and we’re integrating
over all of them in the end.
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So I will introduce a little more combinatorics notation. Given some diagram D, let the
number of vertices be n(D). I will say that two diagrams Dy and D are “of the same pattern”
if they differ from each other only by a permutation of the indices on the vertices. The two
diagrams in Figure 8.7 are of the same pattern. Within the Wick expansion of (8.1) are various
operators O(D) associated with a particular diagram D. For example, let D be the diagram
in Figure 8.3. The operator O(D) associated with it is (8.36), but multiplied by the factorial
2! for reasons that will become clear:

.2 4 4
O(D) = (~ig)? [ o daa F(t2)1(t2) 6516105020 (8.46)
For any diagram D of a given pattern and its associated operator O(D), introduce the operator
:0(D):
—_— 4
n(D)! (847)

I'm going to pay special attention to the factor of n(D)!. Factorials are always important
in combinatoric discussions so I write it out in front. There are n(D)! ways of rearranging
the indices. This does not mean however that there are n(D)! different diagrams of the same
pattern. It would be lovely if it were so, but it is not so. In the case of Figure 8.3, there
are n(D)! = 2! = 2 different diagrams, because when we exchange 2 and 1 we get a different
diagram. In the case of Figure 8.8 though, there ain’t! I need to introduce the symmetry
number, S(D), equal to the number of permutations of indices that do not change anything.
For example, in the case of Figure 8.8, exchanging the indices 1 and 2 doesn’t change a thing;
S(D) = 2. For a second example, consider the diagrams in Figure 8.9. Diagram (a) is not
distinct from diagram (b), or from two other cyclic permutations. But these are distinct from
similar diagrams with non-cyclic permutations. For this diagram, S(D) = 4.

Figure 8.9: A fourth-order contribution in Model 3

A more complicated example is shown in Figure 8.10. This diagram contributes to nucleon—
nucleon scattering in the sixth order of perturbation theory. This diagram has S(D) equal to 2.
There are only two permutations of the indices that don’t change anything, corresponding to
switching all of the bottom indices with all the top indices, or rotating the diagram about the
horizontal dashed line. You see that vertex 1 plays exactly the same role as vertex 2, contract
meson at 1 with meson on 2, 5 and 6 play exactly the same role as 4 and 3.

Once I have taken account of this, say by declaring 4 to be the top vertex of the nucleon loop,
then all the others are completely determined. Once I decide which of 4 and 5 is 4 and which
is 5, then I have everything labeled uniquely, and all other permutations of the indices will
reproduce different terms in the Wick expansion. You can play around, if you enjoy these
sorts of combinatoric games, trying to invent diagrams with S(D) = 3, or 6, and so on, for all
sorts of things.
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Figure 8.10: A sixth-order contribution in Model 3

How many distinct terms do we get with each pattern? There are n(D)!/S(D) terms. If
we permute the indices in all possible ways we get n(D)! different things, but we’re over-
counting by S(D). Summing over a whole pattern—everything of the same pattern as a given
diagram—yields

sum of all diagrams\ n(D)! :O(D): :0(D):
< in a given pattern ) ~ S(D) n(D)Y ~ S(D) (8.48)

Therefore the n(D)! gets knocked down into simply S(D). Well, it looks a bit complicated
but we’ve saved ourselves labor. If we were really going to compute this diagram, there are
6! different permutations and it would really be rather stupid to compute all 720 different
diagrams.

All the diagrams I've written down up to now are connected. “Connected” means (in any
theory) that the diagram is in one piece; all the parts of the diagram are contiguous to at least
one other part at a vertex. People sometimes confuse “connected” with contracted. You can
have a connected diagram without a contraction, as shown in Figure 8.11.

10—
Figure 8.11: A first-order contribution in Model 1

But you can imagine a disconnected diagram. Here is one that arises in fourth order.
1 o—e 2 3e—e14

Figure 8.12: A fourth-order disconnected graph in Model 1

This is a perfectly reasonable Wick diagram. Anything I can draw, as long as I don’t connect
the head of an arrow with the head of an arrow (or tail to tail), is acceptable. Here is a more
complicated diagram with three disconnected components.

3 4
Figure 8.13: A sixth-order disconnected graph in Model 3

Now we come to a marvelous theorem involving Wick diagrams. I will state it first:

Z all Wick diagrams = :exp (Z connected Wick diagrams) : (8.49)
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I have to define some variables. Let D,(,C)7 r=1,2,3,...,00 be a complete set of connected
diagrams, one of each pattern. A general diagram D will have some integer n, components of
the pattern of Dﬁc), where the n,’s could be any non-negative integer. For example, the diagram
in Figure 8.13 has two of the n,’s not equal to zero. One of them, the one corresponding to
the connected diagram with vertices 1 and 2, is equal to 2, and the one corresponding to the
connected diagram with vertices 5 and 6 is equal to 1.

I’'m going to try to write what a general diagram gives us, from its individual connected
parts, in terms of the operators associated with all the diagrams of each pattern. After all,
it is pretty easy. (This will be the last of our combinatoric exercises.) Consider the graph
in Figure8.13. The operator in the piece containing vertices 1 and 2 has an integral over
d*zy d*z5, and we’ve only got functions of z; and x5 in the integrand. The next piece goes
the same way, with functions only of x3 and x4, and the final piece likewise with z5 and xzg.
The entire expression for the diagram splits into three factors: the diagram yields an operator
which is, apart from the combinatoric factor, a product of other operators. From the first
piece we get some operator from doing the x1-z2 integral, some operator from doing the zz-x4
integral from the second, some operator from doing the z5-xg integral from the third. So
for this one diagram, we get a single operator squared, and another operator once. That’s
characteristic of disconnected diagrams: the operators associated with them are simply the
normal ordered products of the operators associated with the individual connected components.
The contribution for a disconnected diagram D9 with connected components Dﬁc) may be
written as

O(D): ﬁ { } : (8.50)

In fact this holds not only for a disconnected diagram D4, but for a general diagram D. If
D is connected, the product involves only a single term: n, = 1 for that single diagram, and
» = 0 for all other diagrams.

Now, what about the symmetry number S(D) for all the diagrams of a particular pattern?
Consider the combinatoric factor for this single diagram, Figure 8.13. How many permutations
can I make that will not change the diagram? Well, first I could permute the indices. Within
each component I can certainly permute the indices just as if that component were there all
by itself. Therefore I get the product on r of 1/S ( )”T I can do it in the first component,
I can do it in the second, I can do it in the third, but now I can do one thing more. If I have
two identical components, I can bodily exchange the indices in the first component and those
in the second, with 1 and 2 as a block for 3 and 4. That’s an extra permutation. And if 1
have three identical components, I can do 3! extra permutations. Therefore I have for the
sum of all diagrams D of a particular pattern

) o e)
'Og E”ll()l[?)(c;] : (8.51)

We are now in a position to get a very simple expression for the matrix U; which is the sum
of all diagrams. Here in (8.51) I've got an expression for a diagram in terms of the operators
attached to connected diagrams. The final stroke, and the end of the combinatorics calisthenics
for the moment, is to recognize that Ur(co, —o0) is the sum over all possible patterns. That is
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to say,

o) = o Wik = 32 3 I

n1=0n9=0 r=1

O
[ (Dr ))] L (852)

Now we can commute the sum and the product, to obtain
. 1 [oD!)
Zall Wick diagrams = H Z ] [ C))] : (8.53)
r=1n,=0
The sum on each of the n,.’s simply gives us the famous formula for the exponential:
(f) (f))
TZae] - O(Em) o

Everything is inside the normal ordering symbols so I don’t have to worry about how the
operators go. By another easy manipulation we can write

(c) o0 ()
H exp ( )> = eXpZ (O(DZ)> : (8.55)

(D) =\ S0
and thus
O(D\?)
Ur(oo, —x) = Zall Wick diagrams = : expz W : QED (8.56)
r= DTC

Now we can forget about all of our combinatorics. We have this one wonderful master
theorem which is obviously not special in any way to some particular theory, that the sum of
all Wick diagrams, the matrix Uy(oco, —o0), is in fact simply the normal ordered exponential
of the sum of the connected diagrams. It was a long journey, but it was worth it. This is a
very nice theorem to have, and it is important. Actually it is more important in statistical
mechanics and condensed matter physics than it is in our present study of quantum field
theory. In statistical mechanics, you study the operator e ## | and in particular its trace,
Tr e~ PH | the partition function. The operator e #H is, after all, not that different in its
algebraic structure from the operator e~**. Typically you compute the partition function in
perturbation theory, and then you take its logarithm to get the free energy, the quantity you
really want. This identity, (8.56), is the key to getting a direct perturbative expansion for the
free energy, rather than having to first compute the partition function in perturbation theory,
and then compute its logarithm by a horrible operation. The free energy is just the sum of
the connected diagrams.

8.5 The exact solution of Model 1
I will now use the formula (8.56) to solve Model 1, whose interaction Hamiltonian density is

i = gp(x)d(x) (8.57)

where p is some spacetime function that goes to zero in all directions as rapidly as we please.
In Model 1 there are also diagrams. The vertices look much simpler. The primitive vertex out
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16—

Figure 8.14: Diagram D1 in Model 1

of which all diagrams are built is just a single line with a single vertex because there is only
one ¢ field with each Hj. T’ll call this diagram D, .

This still means we can make a lot of diagrams. For example, I could make a diagram of 4274
order by joining forty-two of those vertices, one on top of another. The set of Wick diagrams
is infinite, but there are only two connected Wick diagrams. D; is the first.

A second diagram, D, looks like this:
] o——e2

Figure 8.15: Diagram D2 in Model 1

If you have a pattern of vertices such that only one line can come out of any one of them,
you can only draw two connected diagrams, D; and Ds. Each of them is the only diagram of
their pattern. D; has only the single figure, so its symmetry number S(D1) equals 1. All the
diagrams D; correspond to the operator

O, = fig/dzlxl p(x1)d(w1) (8.58)

The —ig comes from (8.9). Ds has its symmetry number equal to 2. That is to say, if you
exchange 2 and 1, you get the same barbell, just flipped around. The operator corresponding
to all of the diagrams D5 is

0, = (~ig)’® / Aty s (1) (2 p(a1) plara) (8.59)

There are no operators left in Oo; it is equal to some complex number —a + 8 which you’ll
compute in a homework problem:

Oy = —a+i8 (where a > 0) (8.60)

By our general theorem, (8.56), we have a closed form expression for U(co, —00):
Ui(oo, —00) = :exp ( + ) i = texp (302) exp(Oy): = g3 (—atif) rexp(01): (8.61)

This is the complete expression for the S-matrix as a sum of normal ordered terms. The first
factor is a complex number we’ll call A, whose magnitude |A| is an overall normalization
constant which I will determine later by a consistency argument. (We won’t care about its
phase.)

A = ez(-otif) (8.62)

As I told you, Model 1 is exactly soluble. There may be fifty ways to solve it exactly. It
has linear equations of motion, and anything with linear equations of motion is essentially an
assembly of harmonic oscillators. An assembly of harmonic oscillators can always be solved by
any method you wish. Few are the methods so powerless that they cannot successfully treat
an assembly of harmonic oscillators.



8.5 The exact solution of Model 1 169

Now let’s evaluate the expression for :exp(O;):. After all, ¢ is a free field, so we know
what ¢ is in terms of annihilation and creation operators, namely our old formula (3.45),

d*p

¢($):/(27r)3/2 /72wp

Define the Fourier transform p(p) of p(z) as (this is the same definition as (1.23))

(ape_ip"” + al,eip'z) (3.45)

(o) = / dhz 6 p(z) (3.63)

That is, for a function f(¢) of time and a function g(x) of space,

fw) = / dte i@ | ) = / dx P g(x) (3.64)

Then (note 5(—p) = 5(p)°)
3
01 = ~ig [ d'apla)o(e) = ~ig [ mﬁ[ F(prwp)” + ah prwp)]  (5.65)

(Remember, the four components of p* are not free; p® equals wy.) To keep from writing the
complicated expression (8.65) for O; over and over again, I will write®

01 = [ & [~h(p)" ap + hip) a} (8.66)

where h(p) is defined by

h( ) —igﬁ(p,wp)

(27)3/2 /2wy,

It’s important to observe that if p(x) is non-zero but its Fourier transform p(p) vanishes on
the mass shell, when p® = wp,, then nothin’ happens. This is simply the law of conservation
of energy-momentum, and the diagrammatic observation that the operator O; makes mesons
one at a time.” The amount of energy and momentum drawn off from the source must be
consistent with the meson energy-momentum relation. If p(p,wp) is zero, even if O; has a lot
of other Fourier components that aren’t zero, off the mass shell, it’s not going to be able make
a meson. If A(p) is non-zero, O; can make mesons.

(8.67)

Let’s examine the simplest case. We start out with the vacuum state, turn on our source,
wiggle it around, oscillate it, and mesons come flying out. How many mesons? To answer this,

5 [Eds.] Coleman’s f(p) has been changed to h(p) to avoid confusion with the adiabatic function f(t).

6 [Eds.] The mass shell is the four-dimensional hyperboloid p? = u?.

7 |Eds.] At the beginning of the next lecture, a student asks about this remark. Coleman replies, “I said we
could understand that [the four-momentum restricted to the mass shell value| physically by looking at the
structure of the diagrams, which we could interpret as saying that mesons were made one at a time. If we had
had an interaction like pg?, then we would have diagrams like this:

with two ¢’s coming to a single vertex. Then we would not have found the same mass shell
constraint, because you could add the two momenta of these produced mesons together to make
practically anything in Fourier space. It would not be only the value on the mass shell that would
be relevant.”
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we've got to compute Uy (oo, —00) on the ground state of the free field, because, by assumption,
that’s the system’s starting condition. That’s the experiment we wish to do. This gives us

w»so>Uxm,o@m>Amn{/wwhmwgym{/d%hmraJ:m

= A:exp U d*p h(p) ag] Z% (—/d3p h(p)*ap>n: |0) (8.68)

= Aexp [/ d*p h(p) GL} I(;;_0

The ap’s and the normal ordering symbol take care of each other. Because of normal ordering,
the ap’s are on the right where they meet the vacuum and get turned into zero. Only the first
term in the sum, equal to 1, survives. We're left with just those terms that have nothing but
aL’s in them. The aL’s all commute with each other, so I no longer have to write the colon.

In Chapter 2, I defined a two-particle wave function |py, p2) (see (2.59)). The extension to
an n-particle state is straightforward:

IP1.P2, .-, Pn) = al, al,---af, [0) (8.69)
We write the general state [¢) as

=1
|Qp> = Z ﬁ /d3p1 d3p2 s dspn 1/J(")(P1, P2, .- apn) |p17 P2, -- 7pn> (87())
n=0
where
¢(n)(p17p27 R pn) = <p17p2a ey pn|¢> - <p15 p2,. .. 7p7L|S|O> (871)
Comparing (8.68) with (8.70) we have
w(O) — A
M) = Ah(p)
Y = Ah(p1)h(p2) (8.72)

Z/J(n) = Ah(p1)h(p2) - - - h(pn)

But what happened to the factor of 2! in the second term? That disappeared because there
are two possibilities for the two-particle state. Either the first creation operator in the integral
creates |p1) and the second creates |pa, p1), or vice-versa: the states |p2, p1) and |p1, p2) are
the same. This symmetry cancels the 2! from the exponential. In fact, the symmetry cancels
the n! factor in the n'" term.

The probability P(n) of finding n mesons in the final state is given by

1
P(n) = ] /d3P1 Ppy - dPp, [0 (P, P2y, Do) (8.73)

(The divisor n! prevents over-counting.) Substituting in from (8.72),

Py =47 | [ p o] 874
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It is now easy to sum up P(n). Of course, the sum of P(n) over all n must be one; that is the
conservation of probability. Put another way, we demand the unitarity of the S-matrix. Then
|1} will have norm 1, as it is equal to S |0), the result of a unitary matrix acting on a ket of
norm 1. Therefore

1= gp(m e ig, ( [ h<p>|2)" — AP exp ( [ |h<p>2) (8.75)

so that

4P = exp (- [ o bip)?) (8.76)

That’s the consistency argument. In (8.62), we defined A = e2(=2+i8) “and thus

a= / & h(p)|? (8.77)

Substituting into (8.74), P(n), the probability of finding n particles in the final state, is then
given by

P(n)=e“— (8.78)
the famous Poisson distribution.

Thus we find, in this radiation process, the probability of finding n mesons—what a high-
energy physicist would call the “multiplicity distribution”—is a Poisson distribution. What is
the average number of mesons produced? That’s also an interesting question. Or as we say,
what is the mean multiplicity? If you do the experiment a billion times, what is the average
number (N) of mesons made each time?

=> nP(n)=> nP Z T (8.79)
n=0 n=1

n=1

That’s just standard fun and games with the Poisson distribution. So this quantity a =
[ d®p|h(p)|? is in fact the mean multiplicity. Because « is proportional to g2, the square of
the coupling constant, the probability P(n’) of any particular number n’ of mesons decreases
as g increases, but (N) increases.

The n-particle states we make are very simple. Well, it is a very simple theory. The
n-particle states are all determined in terms of the one-particle state, and the wave function
for the n mesons is just a product of the n single meson wave functions. It’s as close to an
uncorrelated state as you can get, modulo the conditions imposed by Bose statistics. This
kind of state occurs in quantum optics. In the corresponding optical problem, you have some
big piece of charged matter moving up and down. The photon state turns out to be this
kind of state, and so a peculiar optical terminology is used to describe such states: they
are called “coherent states”. These are characteristic not just of classical sources, but of all
conditions where the source that is making the mesons or the photons can be effectively treated
as classical. For example, if we have a charged particle passing through matter, it’s slowed
down by the fact that it is ionizing atoms, and hence it gives off a lot of photons. In extreme
cases, these photons produce the so-called Cherenkov radiation. The very energetic photons
know that the charged particle is not just a classical source, because they give it a gigantic
recoil whenever it emits one of those very energetic photons. But from the viewpoint of not
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so energetic photons, what we call “soft” photons, the piece of matter is enormously heavy,
essentially a classical object that does not recoil. So the soft part of the photon spectrum
emitted in the passage of a charged particle through matter is a coherent state pattern. The
bending of a charged particle in a magnetic field also qualifies as a coherent state pattern.

Coherent states of the harmonic oscillator are
IA) = e*' |0) (8.80)

where af and a are respectively the usual harmonic oscillator raising and lowering operators,
(2.17). These states diagonalize a:

a|\) = ae*® |0) = [a,e*']]0) = Ae*@’ [0) = A [A) (8.81)

The coherent states |A) in Model 1 are

IA) =:e291:|0) = exp <)\/d3p h(p)a;> |0) (8.82)

These states are also eigenvectors of ¢ (x) with eigenvalue \y:
d*p -
Ay = )\ —ipTp 8.83

Except for a factor of 1/n!, the state |A\) has an n particle part which is just the product
of n one-particle states. The expectation values (z) = (Az|\) and (p) = (A|p|)\) oscillate
sinusoidally like the classical variables.®

Let’s now compute the average energy, produced in the process where we start off with the
vacuum state, wiggle the scalar source around, turn it off, and then see how many mesons are
left. The average energy, the expectation value of the Hamiltonian in the final state, is

(E) = (Y| Hp)

— 1
S [ @pree o (WlHIpL 2 B} (P1Pa - Palt)
n=0 (8.84)

= 1
Z E/dspl.“d?)p" |w(n)|2(°~”p1 +wp, + -+ wp,,)
n=0 "

the n! because we don’t want to over-count states. Otherwise we would be counting the state
¥ (p1, p2) and the state 1)(?) (py, py) separately. That is a bad thing to do, because they are
the same state. The expression (8.84) can be simplified because everything is symmetric. We
can just as well write

o0 1 .
(E) = Z ] /d3p1 o dpy e h(p1)]? - |h(pn)|? nwp, (8.85)
n=0 "

in terms of one of the wy’s, say wp,, as the others give n — 1 equal contributions, Since the
first term is zero, when n equals zero, I can write the summation from n —1 = 0 to oco; the

8 [Eds.] For more about coherent states, see Problem 4.2, p. 175, and the references at the end of its solution.
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term with n = 0 does not contribute. The integral is simple to do, because (n — 1) of the
integrals give us «, (8.77). So we obtain

> an—l
() =3 L [ Ep )P, (3.56)

Of course, the summation is nothing but a fancy way of writing 1. So we have a simple
expression for the mean energy emitted in our process. It is simply

(E) = / &p |h(p) [ wp (8.87)

The mean momentum can be obtained by an identical computation with p’s replacing wp’s,
and that is equal to

(p) = /d‘°’p Ih(p)]* p (8.88)

This completes for the moment our analysis of Model 1. We'll return to it later and find out
some other things about it.

In the next lecture I will go on to Model 2, which is also exactly soluble.
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Problems 4

4.1 In class we studied
L = 5(0u0)° — 31°¢* — gp(x)¢(x)

1 )

and found an operator for Ur(co, —00) as the product of a constant, A (which I wrote as 67(70‘7”*8)), and a

known operator. In class we found a by a self-consistency argument. Find « by evaluating the real part of the
relevant diagram, Figure (8.15) on p. 168:

*—a@

and show that this agrees with what we found in class. You may find the following formula useful:

X 1 1
lim — — -
e—0 | x + 1€ T — 1€

= —2mid(x) (P4.1)

(1997a 4.1)

4.2 In solving Model 1 in class, I mentioned the idea of a coherent state.! Although we won’t use coherent
states much in this course, they do have applications in all sorts of odd corners of physics, and working out
their properties is an instructive exercise in manipulating annihilation and creation operators.

It suffices to study a single harmonic oscillator; the generalization to a free field (= many oscillators) is
trivial. Let
H= 30" +4")
and, as usual, let us define

a= -1

sa+ip) b= J5(g—ip)

S

Define the coherent state |z) by
2) = Ne*e' |0) (P4.2)

where z is a complex number and N is a real, positive normalization factor (dependent on z), chosen such that
(z]z) = 1.

(a) Find N.
(b) Compute (z|z').

(c) Show that |z) is an eigenstate of the annihilation operator a, and find its eigenvalue. (Do not be disturbed
by finding non-orthogonal eigenvectors with complex eigenvalues: a is not a Hermitian operator.)

(d) The set of all coherent states for all values of z is obviously complete. Indeed, it is overcomplete: The
energy eigenstates can all be constructed by taking successive derivatives at z = 0, so the coherent states

! [Eds.] Roy J. Glauber, “Photon correlations”, Phys. Rev. Lett. 10 (1963) 83-86. Glauber won the 2005 Nobel
Prize in Physics for research in optical coherence.

175
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with z in some small, real interval around the origin are already enough. Show that, despite this, there is an
equation that looks something like a completeness relation, namely

l=«a /d(Re z)d(Im z) e 7% |2) (2| (P4.3)

and find the real constants o and S.
(e) Show that if F(p,q) is any polynomial in the two canonical variables,

(z[:F(p,@): 12) = F(§,0) (P4.4)
where p and g are real numbers. Find p and § in terms of z and z*.

(f) The statement that |z) is an eigenstate of a with known eigenvalue (part (c), above) is, in the g-representation,
a first-order differential equation for (g|z), the position-space wave function of |z). Solve this equation and find
this wave function. (Don’t bother with normalization factors here.)

(19974 4.2)

4.3 Let K be a Hermitian operator, and |¢) a state of norm 1. Given a function f(K) of K, its expectation
value in the state |1) is defined by

(F(K) = @[ (K)|) (P4.5)
Suppose we introduce the function n(k) of a real variable k:
n(k) = (6(K — k) = (Pl6(K = k)[¢) (P4.6)

Then (as you can easily show)
() = [ di 0y n(k) (P4.7)

This works in ordinary quantum mechanics as well as in quantum field theory. Find n(k) for the vacuum state
of a free scalar field of mass m, if

K = /d3xg(x)¢(x, 0) (P4.8)

and g(x) is some infinitely differentiable c-number function that goes to zero rapidly at infinity. You should
find that n(k) a Gaussian whose width is proportional to the integral of the square of the Fourier transform of

9(x).

HinTs:

(a) Express the delta function as a Fourier transform,

5 _ M —igz
()= [ e
(b) The results of Problem 4.1, and the discussion from (8.62) to (8.77) may be helpful. You may assume

B =0in (8.62).

Comment: That the answer is a Gaussian should be no surprise. After all, the theory is really just that of an
assembly of uncoupled harmonic oscillators.

(1986a 11)
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4.1 Recall how « was defined (see (8.59) and (8.60)):
02 = —a+ 8 = (~ig)? [ dhody o(@)oy)p()p(y)

Using the expression (8.23) for the contraction,

dip e~ (z—y)
—io? | dizd?
(—ig) / 24y Gy pe _M2+i€p(x)p(y)

a=— lim Re
e—0

d*p i i .
Jim, Re [ / (2m)% p? — 2 +ie /d4“ v zp(x)/d4y e yp(y):|

(S4.1)
d*p i

= lim Re —_— *p

lim Reg? [ o P p(pﬂ

dip 1

— lim I 2/ PR

6;151 m |:g (2m) p72 — 12 1 ie A(p) P(P):|

because for any complex number z = a + ib, Re(iz) = —Im(z). To make use of the hint (P4.1), note that

1 € i 1 1
Im = — = — —
a + ie a? + €2 2 la—ie a-+ie

Substituting,

i d*p 1 1
= 4 2 _ ~ * ~
a=3 lim {g @)1 (p2 S ie) p(p) p(p)}

S Ay . e D501 ) (~2riss? — ) (i e i)

- —/ G ) DI — )
d(po — wp) 0(po + wp)

g / b o) ()
= = pPp) pp
2 (27")3 |po + Wp| \po - Wp|

_ / [ PP wp)" AP, wp) p(p,—wpm(p,—wp)]

2wp 2wp

(note 8, p.9)

By definition, 5(p,wp) = fd4:c e’”””p(:c), S0
p(p, —wp) = /d4x e'PTXTIRT0 p(z) = j(—p,wp)* = H(—P,w-p)*

177



178 Solutions 4

because p(z) = p(x)* and wp = w_p. Substituting,

4 d*p p(p,wp)* AP, wp) d3p p(=p,w—p)p(—p, —w-p)*
‘T </ (2m)3 p2wp : >+ </ (2m)3 p2w,p § >

d3 p(p, * , S4.2
= g2 P_p(p,wp) (P, wp) (p — —p in the second integral) ( )
(2m)3 2wp
— [ @pne)nm) = [ dphe)?
using (8.67), in agreement with (8.77). |

4.2 We have to do (a) and (b) at the same time. Let a properly normalized oscillator energy eigenfunction be
denoted |n), n an integer. Recall (2.36):

atny =V +1)|n+1) (2.36)

so (af)™|0) = v/n!|n). Then (we are told to take N to be real)

|2) = Ne NZ—(a Z— (S4.3)
Vil
The inner product of two such states will be
(=)™ ()"
(2]2") = N(2)N(= )Z Z  (min) = DD = Omn
vm \/7 57 vVmlvn!
= N(2)N(z )Z (= :N(z)N(z’)ez*z/
Set the norm of the coherent state vectors (z|z) equal to 1 to obtain
N(z) = ezlel
That answers (a). Then the inner product of two vectors gives
(2]2") = e B (12174217 2" (S4.4)

which answers (b).
(c) To show |z) is an eigenvector of a, recall (2.37),
aln) =vnn—1) (2.37)

Then operating with a,

alz) =aN(z Z N(z)z f|n—1 7zN(z)Z\/7 —1)=1z|z)

The kets |z) are eigenvectors of a with eigenvalue z.

A more elegant approach is to recall that for canonically conjugate variables u and v, when [u,v] = 1, then

of(v)

fu £ )] = =5,

Since [a,a’] = 1, it follows

ZGT +

alz) = ae*® |0) = [a,e*2']|0) + e*2" a0y = 0) + 0 = ze*®

0) = z|2)

(d) The problem states that derivatives of the coherent states |z) in the neighborhood of z = 0 generate the
energy eigenstates |n). Then the |z)’s form a complete set, because the energy eigenstates are a complete set.
In fact, the |z)’s are “overcomplete”, because (z|z’) # 0 even when z # z’. It isn’t clear that the problem asks
us to demonstrate this first statement, and indeed it’s not straightforward to do so.

1 2
The difficulty arises because the normalization constant N = e2!*I” depends on the function |22 which
does not have a derivative everywhere. However, its derivative does exist at the origin, and only at the origin,
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where it equals zero.! If it is permissible to regard all the derivatives of N as equal to zero at the origin, the
demonstration proceeds like this:

om om z" nn—1)(n—2)---(n—m+1)z""™
aam 17 L:o 9zm nz::o i Z} e )
z=0 z=0
=N Z nton™ In) = NVm!|m) as claimed.
m)!vn!

We are now asked to find a and S such that
1= a/dRe(z) dlm(z) e Bl |2) (2|

Write z = @ + iy, and use the form (S4.3) for the kets (and the appropriate bras):
1 2, .2 2.2
l=« 7/d$d e PETHY) =@V (4 i)™ (2 — i)™ |n)(m
;ﬂ =T Y (z +1y)"(z —iy)™ [n) (m]
Go to polar coordinates: x + iy = re'?, and dx dy = rdr df. Then
1 2 .
l=« 7/7’d7’d06_(ﬂ+1)r ryrtmet(n=mif ) (m
T;H T (r) n)(m|

The 6 integral is
27 .
/ do 'm0 = 27 6,
0

SO
1 =21 Z |:/ dr e—(ﬂ+1)r2 2n+1] ) (]

Let (8 + 1)r2 = u. Then the r integral becomes
o —(B+1)r? 2n4+1 _ 1 —nt1) [T n_—u _ 1 —(n+1)
: dre r =35(B+1) ; duu”e™" = Snl(B+1)

Plugging this result in, and using the standard equation 1 = > |n)(n|, we find

1*7ro¢2,8+1 Y= (D) ) (n| = Z|n

n=0
That is, 8 = 0 and o = 1/7. That answers (d).

(e) Start with a general monomial, p™¢™. From (2.19),

o= (o) e iy (o)

o (o) (sl - Soere

for some undetermined coefficient matrix C;; the exact values do not matter for this argument. Equation
(S4.5) is an identity for any c-number variables z and y;

(cids =) (a0 = S
4,3

we have

Then
<Z‘ pmqn ‘Z> — <Z|Z T)la]| ZC”(Z
0,5

= (—z% (z—z*)>m<7 (z+ 2" )) = (vV2Im 2)™ (V2 Re 2)"

! [Eds.] R.V.Churchill and J. W. Brown, Complex Variables and Applications, 4th ed., Mc-Graw Hill, 1984,
p. 40.
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Any normal-ordered polynomial : F'(p, ¢): is simply a linear combination Y ¢mn :pq™: of such monomials,

and
L F(,0) 12) = (313 emn - 970 1) = 3 Cmn (2] 5 P75 |2)
= Z emn(V2Im 2)™(V2Re 2)" = F(vV2Im z, V2 Re 2)
That is, p = v2Im z, and § = V2 Re z.
(f) The kets |z) are eigenvectors of a: a|z) = z|z), so
L
2

(alalz) = = {al2) = (gl —= (g + ip)|2) = —=q {ql2) + (al2)

V2

NE
£l

Try the solution (g|z) = e/(9). Then

el @ ;Lfef(cn — V32ef @
q

Divide out /(@) to obtain

d
£=—q+ﬁz = fl9) = —34° +V22q+C

SO
(q]2) = e exp (—%tf + ﬁzq)

At ¢ = 0, we have (0]z) = €%, so
(al2) = (0]z) exp (—14* + V22q) "

(For more about coherent states, see J.J.Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1985,
p-97; Problem 2.18, p. 147, and references therein; D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed.,
Cambridge U. P., Problem 3.35, p. 127; and W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998,
Section 1.5, pp. 16-20.)

4.3 Following Hint (a),

() = (6 ~ 110} = [ 52 (0fexp [—iq ([ a#xatiocx0) - k)} 0) (51.6)

which can be written suggestively as

n(k) = / ;%eiqk (0] exp [—iq (/ d*z G(a;)¢(w)>:| |0)  where G(z) = g(x)d(t)

Because there is actually no time-dependent operator in the expression, we can just as well write

n(k) = / %eiqk (O|T exp | —iq ( / de G(m)¢>(;p)>} 10) (S4.7)

Now it so happens that we have already worked out this matrix element, in Model 1 (see (7.59), (8.9), and
(8.10)):

(01510} = (0T exp | —ig ( / d%,,(x)qj(x))} 10) = A (0] exp ( / d?’ph(pfal,) 0) = A (s4.8)
(only the zeroth term in the power series for the exponential survives). The form of A comes from (8.62):
A=e* = 6%02 = e%(ia+iﬁ) (849)
and (S4.2) with (8.67),
d*p d®p ~
= [ &plh 2:2/7~, 2—>2/7G, 2 S4.10
o / plh(P)" =y @m)20g |p(p,wp)|” — q (%)32wp| (P, wp) ( )

substituting g — ¢ and p(z) — G(z). Using (8.63) and (8.64),

G(p,wp) = / diz e T G(x) = / dt d®x ™ PP g (x)5(t) = / d*xe™*g(x) = §(p) (S4.11)
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SO

dS
2 2 = 2
— —_— = here = ——— S4.12
oo [ e a0 = e where o= [ EE i) (s4.12)
Plugging this into (S4.7), and assuming, from Hint (b), that 8 = 0, we have
N 2
n(k) = / @eiqkeféq?"’ — k)20 / ﬁexp —%o q— ik = Le_kz/g" (S4.13)
2w 2w o 2wo

which is indeed a Gaussian, whose width o is proportional to the integral of the square of the Fourier transform
of g(z). |

Alternative solution. Let M and N be two operators. The Baker—Campbell-Hausdorff formula? says
eMeN =e? where Z= M+ N + 3[M,N] + & ([M,[M,N]] + [N, [N, M]]) + - -- (S4.14)
If [M, N] is a c-number, or otherwise commutes with M and N, the formula for Z truncates after three terms,
and MAN _ M N~ 3[MN] (S4.15)
The field ¢ (see (3.45)), written more conveniently in terms of ¢& (see (3.33)), is ¢p(z) = ¢t (z) + ¢~ (), so
the exponent in (S4.6) can be expressed as the sum of two operators:

~ig [ @xg(x)6x,0) = ~ig [ dxg(x)6”(x,0) ~ig [ d*xg(x)6" (x,0) (S4.16)

M N
From (3.38), the commutator is

[M, N] = —¢? / Bxdy g(x)g(y) [¢<—><x, 0), 6 (y,0)]

=q /d3xd3yg(x g()’)/ 3 e/Pry)
2wp

. #p o et ity s (S4.17)
— : d —ipexg(x) [d’y ipey

q /(ZW)%D / xe ePVg(y)

d3
=q / m\ﬂp)‘z =q°0, ac-number
From (S4.15)
(0]eM+N|0y = (0]eMeN |0y e~ 2977 = ¢~ 27°7 (S4.18)

because M includes only aI,, so (0] eM = (0|, and similarly eV |0) = |0), and the rest of the problem goes as
before. =

2 [Eds.] Often invoked, rarely cited. See Example 1.2, pp.20-27 and Exercise 1.3, pp.27-29 in Greiner &
Reinhardt FQ. The formula predates quantum mechanics by a quarter century. John E.Campbell, “On a
law of combination of operators (second paper)”, Proc. Lond. Math. Soc. 29(1) (1897) 14-32; Henry F. Baker,
“Alternants and continuous groups”, Proc. Lond. Math. Soc. (Ser.2) 3 (1905) 24-47; Felix Hausdorff, “Die
symbolische Exponentialformel in der Gruppentheorie” (The symbolic exponential formula in group theory),
Ber. Verh. Sichs. Akad. Wiss. Leipzig 58 (1906) 19-48. Reprinted in Hausdorfl’'s Gesammelte Werke, Band 1V,
Analysis, Algebra und Zahlentheorie, Springer, 2002, pp.431-460. Baker calls commutators “alternants”.
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Perturbation theory Il. Divergences and counterterms

Now I turn to our Model 2, whose Hamiltonian density

1 = go(x)p(x) (9-1)

is exactly the same as in Model 1, except that p(x) is now time-independent. This interaction
doesn’t actually turn off in the far past and the far future. To fit it into our somewhat clumsy
formulation of scattering theory, we have to insert an adiabatic switching function f(¢) that
turns the interaction on and off by hand:!

Hi(t) = g [ d*xo(a)plx) - F(6.T. ) Hr(t) (9.2)

The field ¢(x) is the interaction picture ¢;(x), but I won’t write the subscript I on the field.
A plot of the adiabatic function f(¢) was given earlier, in Figure 7.3, but for convenience I'll
draw it again. The left dashed line occurs at ¢ = —T'/2, and the right dashed line at ¢t = T'/2.

| il
! to
! I
; o t
A T A
Figure 9.1: The adiabatic function f(t,T,A)
The function slowly rises during a time interval A from 0 to the value 1 at ¢t = —7'/2, stays at

1 until ¢ = T'/2, then it goes down to zero in a way that is supposed to be symmetric with its
rise.

I [Eds.] Localized particles are described by wave packets, but because scattering in terms of wave packets is
mathematically awkward, initial and final states are usually represented by plane waves. The use of plane
waves leads to mathematical ambiguities if the interaction does not go to zero sufficiently rapidly as ¢ — £oo.
These ambiguities are removed by introducing an adiabatic switching function f(t), often of the form eeltl,
See Lurié P&F, pp. 213-214.
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184 9. Divergences and counterterms

9.1 The need for a counterterm in Model 2

Something peculiar occurs in this model, and it shows us that we have been a bit too sanguine
about the harmlessness of an adiabatic function’s turning the interaction on and off. If we
compute the S-matrix using our formula, we find, doing the naive calculation, that there are
terms that depend on the time T in a nontrivial way, terms which do not go to zero in the
limit T"— oo. We should have

Aim (O[U; (T, =1)|0) = {0[S[0) =1 (9:3)

but that’s not what happens when we have the adiabatic function in our interaction Hamiltonian.
Let me explain the physics of why that happens. I will show you how to cure it, and then we
will solve the model by summing up the diagrams.

Let me first introduce some notation. We use |0) to represent the ground state of the
non-interacting theory. Therefore H on |0) equals zero:

Hy|0) =0 (9.4)

Of course the real physical theory also has a ground state, |0) p, whose energy Ej is not likely
to be zero:

This energy arises in the theory not from the adiabatic function f(¢), but just from the extra
term H; added to its Hamiltonian. Here, |0) is the actual ground state of the interacting
system without the adiabatic f(t), or with f(t) = 1, if you prefer. Generally when we add an
interaction term to a Hamiltonian, not only does the ground state wave function change, but
the ground state energy also changes. So the new ground state |0), will have some energy
which I will call Ej.

Now let’s make a chart of how Model 2’s ground state evolves in the Schrédinger picture.

time, t Schrddinger state

t<—(T/2+A) |0)

-T/2 e 0)p

T/2 e~ i(v—+EoT) 0)
t>(T/2+A) e i+Tr-+ET) o)

We start out with the ground state of the non-interacting theory, at the beginning of
time. Up to the time —7'/2 — A, nothing has happened because the Hamiltonian Hy is a
non-interacting Hamiltonian, and

10) 1< (zy248) = U(t, —(T/2 + A))[0) = e~ Ho(t=(T/2+8)) 1) — |o) (9.6)

The ground state doesn’t even acquire a phase, because its energy is zero. We then slowly
turn on the interaction over a time A, to reach its full strength at the time —7'/2. By the
adiabatic theorem? we expect the ground state |0) of the non-interacting system to move

2 [Eds.] LeonardI.Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, 1968. See Section 35, “Methods for
time-dependent problems”; pp. 279-292.
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smoothly from t = —(7'/2) + A to t = —(T'/2) into the ground state |0) , of the interacting
system with probability 1. I haven’t established any phase conventions for the state, so we
might get the physical vacuum |0) , with some phase, which I will write simply as e~“7= where
~_ is some real number:

—(1/2) ,
10) 1=—(1/2) = exp <—Z/ dt [Ho + f(t)Hz(t)]> 0) = e~ |0) (9.7)

—(T/2+A4)

Between —T'/2 and T'/2, the system evolves in time according to the full interacting Hamiltonian.
The state |0) 5 is an eigenstate of the full interacting Hamiltonian, so it gains a new phase,
winding up as e~"1-e~ 0T |0)

10 i=7/2) = Ur(T/2,~T/2)e" 7~ [0}, = e e T [0) , = e e BT [0),  (9.8)

Finally we reach the time 7'/2, and again the adiabatic hypothesis takes over from ¢t = T'/2
tot = T/2 + A. The physical state |0), turns back into the state |0) associated with the
free Hamiltonian, Hy, but with a new phase factor which I'll call v;. The state becomes
e~ v +y—+EoT) |0), an exponential factor times the non-interacting vacuum state, the “bare”
vacuum as we sometimes say. This is a straightforward computation in the Schrédinger picture,
using the adiabatic theorem of non-relativistic quantum mechanics, which, if we’re lucky,
should be true in this instance. Incidentally, according to time-reversal invariance, the phases
~— and 74 should be equal.

The Schrédinger state at time ¢t = —oo is |0). At time ¢ = oo, it is e *(++7-FET(),
Writing the state at t = oo in terms of the U matrix, the time-evolution matrix, we find

(0]U (00, =00)|0) = ¢~ # 7=+ FoT) (9.9)

We have an equation, (7.31), that tells us that Uy (t,0) is e~*0t{/(¢,0). By taking the adjoint,
Ur(0,t) equals U(0,t)etot. We see, writing U (co, —00) as U(oo, 0)U (0, —co) that

(0]U (00, =20)[0) = (0]U (00, 0)U (0, —00)|0) = (0|Ur (00, 0)U;(0, —00)[0) = (0[S|0)  (9.10)
since |0) is an eigenstate of H, with eigenvalue zero. Consequently,
(0S]0) = e~ *r+H+y-+ET) (9.11)

Now this is just dumb. In the theory without the artificially introduced f(t), this can’t
possibly be the S-matrix element between the initial ground state and the final ground state.
In the real theory, without the f(t), 7' does not appear, so you can hardly get an answer that
depends on T'. The sensible way to define this S-matrix element is to say that its vacuum
expectation value is 1. You start out with a static source with no mesons going in, it just
lies there like a lump. At the end of time, there are no mesons coming out. In this analysis,
we have obtained a spurious phase factor. The origin of that spurious phase factor is my
hand-waving argument that when you turn on the interaction, the system is going adiabatically
from the free particle states to the corresponding in states. I forgot about phases! The states
can develop phases. And if we have a mismatch between the vacuum state energy of the free
theory, and the corresponding vacuum state energy of the interacting theory, then we will
get a spurious phase factor, as we have seen. If we can rid ourselves of the mismatch, we’ll
eliminate the problem.
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Now there’s a very simple way of getting rid of the unwanted phase factor and obtaining a
correct theory, by adding an extra term to our interaction Hamiltonian, called a counterterm.
I will eliminate the phase factor for the ground state and then worry about whether there are
corresponding spurious phase factors for the other states of the theory.?

I write
H; — [g/d3xp(x)¢(x, t)—al f(t) (9.12)

I have added to the Hamiltonian a new extra term, little a. It’s just a number. It is called a
counterterm, because it is designed to counteract our error. I will choose the value of a so
that the phase factor we found in (9.11) is completely canceled:

a/dtf(t) =a(T+0(A) =74 +7- + EoT (9.13)
In other words, I choose a such as to force
(0|U (00, —00)|0) =1 (9.14)

This equation determines the counterterm. Thus a is not a free constant, and I do not have to
go beyond the scattering perturbation theory I have previously developed to compute it. 1
can just compute it self-consistently, order by order, in perturbation theory for the U; matrix
simply by imposing, in whatever order in computation or whatever approximation I am doing,
this condition (9.14), which fixes a.

Of course, we can also compute a as a by-product of our computation of the S-matrix.
That’s interesting, because in the limit as T' goes to infinity,

lim aT(1+O0(%)) = lim (y4 +7v- + EoT) (9.15)
T—o0 T— o0
and therefore

My counterterm « is identified with Fy in the limit of large T". If T happen to be interested in
the numerical value of the ground state energy, I can compute it, because in the limit of large
T, a is equal to the ground state energy, Fj.

So we’ve done two things with this counterterm. We have eliminated our error in mis-
matching the phases, i.e., mismatching the energies for the ground state, and we have found a
way to use the Uy matrix to compute the ground state energy, if we want to do that. Adding
the counterterm is a good thing to do. It cures our disease, and also gives us a bonus, the
ground state energy.

3 [Eds.] There are in principle two reasons to add a counterterm in Models 2 and 3: to deal with the factor
T arising from the adiabatic function, and to ensure that the vacuum energy is the same with and without
the interaction. Neither of these motivations applies to Model 1. By assumption p(x,t) — 0 as t — $o00 all
by itself, so there is no need to add the adiabatic function, and 7" does not appear. Then, as is evident from
(8.85), (0|Hp|0) = (0|H|0) = 0; the sum reduces to a single term proportional to n = 0. That is, the Model 1
interaction does not change the vacuum energy, so a is not needed here, either.
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9.2 Evaluating the S matrix in Model 2

In the case of Model 2, once we have matched the ground state energies for the interacting
and non-interacting systems, there should be no problems for the other states of the theory,
because all the other states presumably consist of 1, 2, 3, 4, etc., meson wave packets impinging
on p. And if we go to the very far past, those states are away from p, and therefore they
should add exactly as much to the energy as they would in a free field theory. On the other
hand, we don’t expect this to happen in Model 3.

In Model 3, the particles are interacting even when they are far away from p—there is no p
in fact, but instead ¢ *9—and even when they are far away from each other. In that case we
should expect an energy mismatch for the states with real mesons in them as well as for just
the ground state. However in Model 2, knock on wood, we anticipate that this counterterm
will take care of all the phase factors caused by any energy mismatch. If it doesn’t, we will
discover that soon enough, as we explicitly compute the S-matrix. If it indeed involves terms
that don’t go to constants as T' approaches infinity, I will know that my confident statement
was wrong.

I know that many are uncomfortable when I give general arguments. You've been trained
for years that if the argument involves an equation, you just accept it, but if it involves
words, you don’t understand it. But now we’re going to do the computation.* We have our
Hamiltonian, (9.12). We have the condition (9.14) that fixes a. We remember that as T — oo,
a = Eo.

We now have three connected Wick diagrams. Two are exactly the same as in the previous
model: Dy, which we talked about before,

] o—m

Figure 9.2: Diagram D1 in Model 2

and Do, which is just a number. We will calculate it.
lo——eo2
Figure 9.3: Diagram D2 in Model 2

Now, because we have a new term in the Hamiltonian, a, we have a third diagram, D3, which
T’ll represent by a cross:

X

Figure 9.4: Diagram Ds in Model 2 for the counterterm +ia

It doesn’t have any lines on it. Its contribution as a connected diagram is simply +ia, and its
symmetry number is 1.

4[Eds.] A student asks: Is the reason why you made a general argument because we're going to do
renormalization? Coleman replies: “Yeah, we’re going to get there. We're going to talk about renormalization,
in a little while, or at least part of it. We won’t get to wave function and charge renormalization for a few
weeks. But we’ll talk about mass renormalization.”
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As before, define the operators corresponding to these diagrams. For the first,

01 = ~ig [ d*xt plx)o(o) (1) (9.17)

For the second diagram,

N2 4. 4

02 = (—ig) /d z1d s §(21)P(22)p(x1)p(x2) f(t1) f (t2) (9.18)

and finally, for the third,
O3 = ia/dt f) (9.19)

As before, the S-matrix can be written
O Oz Os
or, somewhat symbolically,

§ = eM+@+B). — @2)+B) . (). (9.21)

The contributions of Dy and D3 are pure numbers, so normal ordering is unnecessary for them.
Only these two diagrams contribute to the vacuum-to-vacuum U; matrix element (0]S|0),
given by the exponential of their contributions. This is, by the definition of a, equal to one, so
the contributions of Dy and D3 sum to zero:

(2)+(3)=0 (9.22)

Therefore, if we are interested in calculating the ground state energy, we just have to calculate
D5. That will fix a, and a is the ground state energy.

However, if we are not interested in computing the ground state energy, but only the
S-matrix element, we need compute neither Dy nor Ds, since their sum is zero. This is in
general what will happen even if we have a more complicated theory with such a counterterm.
The effect of the counterterm will be to cancel all Wick diagrams with no external lines,
because the sum of all those diagrams makes precisely a phase factor which by assertion is to
be canceled by a.

So to get the S-matrix we need only calculate D;. Let’s go.

Ur(oo,~00) = sexp (—ig [ a*xar f0p00(2) ) (9.23)

The argument of the exponential, Oy, is exactly the same as in Model 1, (8.58), except for the
time independence of p(x) and the adiabatic function f(¢). Putting in the explicit form (3.45)
of ¢(x), the previous four-dimensional Fourier transform (8.63) for p(x,t) now factors into a
three-dimensional Fourier transform and a one-dimensional one:

3
0, = —ig / d’x dt p(x) f(t) / Mﬁ

= iv | G (ool + f) o) o))

<€—ip.zap + eipma,;)
(9.24)
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There’s our old p(p,wp), now a product of two terms, times ap, just as before, (see (8.65)),
plus the Hermitian conjugate.®

Well, what does this tell us? Look again at the graph of f(t), Figure9.1: It approaches a
constant function equal to 1 for large T'. So for a large T, its Fourier transform, f(wp),

Flaw) = [ate st (9.25)

approaches the Fourier transform of 1, or 27 times a delta function. If we plot f (wp) against

f(wp)

T —] | \«—o(/1)
| "
Figure 9.5: The Fourier transform f(wp) of f(t)

wp, we'll get some very highly peaked function with its spread on the order of 1/T, and
a height on the order of 27T, to make the total area equal to 2w. As T grows larger and
larger, f (wp) gets narrower and higher, and eventually becomes 27 times a delta function
concentrated at wp = 0.

Now this has interesting implications. Since wy is always greater than p, f (wp) goes to
zero for any wy of interest, because it is concentrated at the origin, and has a spread only
O(1/T). Eventually 1/T gets much less than pu, so

lim O; =0 (9.26)
T—o0
Therefore
lim $= lim :eM: = =1 (9.27)
T—o00 T— o0

As T goes to infinity, the S-matrix goes to the exponential of zero, which is 1. This S-matrix
is indeed a unitary matrix and completely free of dependence on T', as required. Of course it’s
physically rather uninteresting. It’s as if we have this lump p(x) sitting there, and we send a
meson to scatter off of it, the meson doesn’t scatter! It just goes right on by ...

That the Model 2 S-matrix turns out to be equal to 1 can be explained with much the
same physical argument we used to describe the production of mesons in Model 1. Following
(8.67), I argued that the Model 1 operator O; vanishes unless p(p,wp) is non-zero on the mass
shell (wp = v/|p|? + 112). Additionally, in Model 1, mesons were absorbed or emitted by the
source one at a time, because of the corresponding Diagram 1. In Model 2 we have the same
Diagram 1, and we have an example of a non-zero function f(t) whose Fourier transform f(wp)
vanishes on the mass shell. In fact f (wp) vanishes everywhere except for a tiny neighborhood
of wp = 0, which does not include any part of the mass hyperboloid. Again, the mesons are
either absorbed or emitted by the source one at a time. A time independent source like p(x)

5 [Eds.] Note that f(pr) = f(wp)*, and p(—p) = p(p)*.
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cannot transfer energy; it can only transfer momentum. That means it can’t absorb or emit a
meson, because those processes require energy transfer. A meson always has non-zero energy.
So the S-matrix is identically equal to 1, and there is no scattering in Model 2.

This theory is a complete washout as far as scattering is concerned. While this was easy to
see in the formalism we have built up, it was obscure when people were evaluating this same
model theory in the Born approximation. Not until the discovery of miraculous cancellations
of all the fourth-order terms in the Born series did people realize that they should try to prove
the S-matrix for this model was identically equal to 1, to all orders.”

This result holds in the massless case as well. Since there is no scattering for all p # 0,
you have only to prove that the non-vanishing of f(wp) in the neighborhood of wp, = 0, a set
of measure zero, does not screw up wave packets centered about p = 0.

Even if the S-matrix is uninteresting, we can still compute the ground state energy. That
may be interesting. So let us now turn to that.
9.3 Computing the Model 2 ground state energy

Let’s write down the condition that these two diagrams, Dy and Ds, cancel:

lim Bf + 03} =0 (9.28)

T—o0

where Oy and O3 are given by (9.18) and (9.19), respectively. Using the identity (see (8.22)
and (8.23))

P(z1)¢p(x2) = lim ED pmiporon) I (9.29)
e—ot ) (2m)4 p? — u? +ie
the contribution of Dy can be written

Os . —ig? d*p 1 N2 E )

22

2~ Dov 2! / Gry w2 — ol — 2 +ie PP ()l o
= lim _ig2 / dsp |ﬁ(p)|2 dwfp |f(wp)|2 .

e—0t 2! (2m)3 21 wd — |p[? — p? +ie

Let us now go to the limit of large T', because that’s what we have to do to compute
the energy. In this limit, f (wp) is sharply peaked about wp = 0. That means in the second
integral, we can simply replace wp with the value 0. With this replacement, the denominator
will never equal zero, so we no longer need the ie nor the limit, and we can write

[f(wp)? (9-31)

Oy ig*> [ d°p |p(p) /de

20 20 ) @n)l¥plP+p? ) 2n

6 [Eds.] For an older approach to Models 1 and 2, see Gregor Wentzel, Quantum Theory of Fields, trans.
C. Houtermans and J. M. Jauch, Interscience, 1947, Chap. II, §7, “Real fields with sources”, pp. 37—48; republished
by Dover Publications, 2003.
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Now we invoke a famous relation, Parseval’s theorem”:

[ 21w = [ atiso (9.32)

As f(t) has the value 1 for the interval (—7/2,7T/2) we can say that its square is also equal to
1 in that region, and

/dt\f(t)|2 — T4 0(A) = T(1+ O(A/T)) (9.33)
From (9.20) and (9.22), we require O2/2! = —O3, which is, in the limit as T — oo,
05 = ia / dt f(t) = iaT(1 + O(A/T)) (9.34)

Setting O2/2! = —O3 we have

3 ~ 2
T(1+0O(A/T)) 29' / (‘21;)’3 m = —iaT(1 + O(A/T)) (9.35)

The T7s cancel, the i’s cancel, so I get a real energy, which is a relief. The ground state energy

is given by the formula
d3 |2
- E _7d 9.36
T / )3 Ipl2 + p? (9:36)

This is in a sense the final and complete answer to our problem. It tells us what the ground
state energy is. Note that the sign is negative, as we should expect. There’s a general theorem
that if you add a term to the Hamiltonian with zero expectation value in the unperturbed
ground state, then that always lowers the energy. That’s a trivial consequence of the variational
principle. The term we have added is linear in ¢, and therefore has zero expectation value in
the unperturbed ground state. If the sign had not come out negative I would have been very
disturbed.

It’s worth a little work to transform this formula (9.36) from momentum space into position
space. It can be written as®

Bo= -3¢ [ dxdy o)V (x = y)oly) (9.37)

where

[ o
Ve = | e 939

7 [Eds.] Some reserve the name “Parseval’s theorem”’ for the Fourier series version of this theorem, and call

the Fourier integral version “Plancherel’s theorem”. See Gilbert Strang, Introduction to Applied Mathematics,
Wellesley-Cambridge Press, 1986, p. 313; or Philippe Dennery and André Krzywicki, Mathematics for Physicists,
Harper & Row, 1967, p. 224, Theorem 2. Others make no distinction between the discrete and continuous
cases, and call both versions “Parseval’s theorem”, e.g., Philip M. Morse and Herman Feshbach, Methods of
Theoretical Physics, Part I, McGraw-Hill, 1953, p.456, or Richard Courant and David Hilbert, Methods of
Mathematical Physics, vol.Il, Interscience, 1962, p.794.

8 [Eds.] See note 5, p. 189.
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I called this model “quantum meso-statics”, because p(x) is a sort of classical version of
“nucleon density”, just like the classical charge distributions that enter in electrostatics. So
I've written the energy of the system in a form that looks very much like the energy of an
electrostatic system:”

E= %/d?’x >y pi‘)p(y’? (9.39)

The % is also there in electrostatics. There is a minus sign in (9.37), whereas in electrostatics
there’s a plus sign. The potential (9.38) represents an attractive potential between our
infinitesimal elements of “nucleonic charge”, rather than the repulsive one as in electrostatics.
Also, the integrand 1/(|p|?+ 1?) of (9.38) is not the Fourier transform of the Coulomb potential
1/|x — y| of electrostatics, but something different, representing the interaction between two
infinitesimal elements of “nucleonic charge”, as opposed to electric charge.

The integral (9.38) for V(x) can be performed in the usual way.'’ Let |p| = p, and |x| = r.

Then
e’ dp p2 /71' ) o /27r
Vi(r)= / —_—— df e'™P" " sin @ do
r) o (2m)3(p* +p?) Jo 0
1 00 dpp2 eipr _ e—ipr
pr— .4
(2m)? /o (P + p?) < ipr ) (840)

_ i / > dppe™”
@m0 )
The last integral can be done by Cauchy’s theorem. The integrand has two poles, at p = +ipu.

Because r is always positive, I can safely complete the contour of integration in the upper half
p plane where the exponential decreases unbearably rapidly; see Figure 9.6.

W
/ R | . c
ip

Figure 9.6: Contour of integration for V(r) in Model 2

Now all T have within the contour of integration is a single pole, p = iu. I can evaluate the
integral by Cauchy’s residue formula:

i dp pe’P" i | ipe™HT
V r) = — / : - = — 27TZ s
=" Je i =i o ( 2ip ) (9.41)
_ 1 —pur
T 4ar

9 [Eds.] Jackson CE, p.41, equation (1.52).

10 [Eds.] In the video for Lecture 9, Coleman remarks that his students from Physics 251 (the Harvard graduate
course in non-relativistic quantum mechanics) could “probably wake up screaming while doing this integral.
But for the benefit of those of you who have missed that golden experience”, he goes through the calculation in
detail, adding, “this kind of integral is very useful in doing the hydrogen atom and all sorts of such things.”
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which is known as the Yukawa potential.!!

Thus the infinitesimal elements of this quantity p(x), which we have called “nucleonic
charge density”, have an interaction energy proportional to a Yukawa potential. Notice that the
singularity of the Yukawa potential at » = 0 is the same is as the singularity of the Coulomb
potential at » = 0. Of course, the large r behavior is very different. The Yukawa potential
falls off rapidly with distance, being essentially negligible when r is several times greater than
1/p, that is to say, when r is several times greater than the Compton wavelength (h/uc, in
conventional units) of the meson, a meson which doesn’t scatter, but is still responsible for
the force between the elements of nuclear matter.

We could model a two-nucleon system like this:
p(x) = “60) (x — x1 )" + “60) (x — x5)" (9.42)

where the “6(3) (x)”s are similar to delta functions. They are highly-peaked functions which
vanish outside of a small interval around x. The nucleons are localized in neighborhoods of x;
and x5. Substituting (9.42) and (9.41) into (9.37),

—p|x1 —x2|
5 €

o -
0 g47T|X1_X2|+

(term independent of x; and x3) (9.43)
This force is attractive between like charges, and short-range, and so has some of the essential
features of the real nuclear force. That the force here is attractive turns out to be an example
of a general rule: For forces mediated by the exchange of even-spin particles, like particles
attract; for forces mediated by the exchange of odd-spin particles, like particles repel. This
force is mediated by the exchange of zero-spin bosons, so it is attractive.

Notice also that if we had specified p(x) as a point charge (or a collection of point charges),
plx) = 09 (x) (9.44)

then just as in electrostatics the energy would be infinite. That’s an important observation:
As p(x) = 0¥ (x), Ey — oo (9.45)

This divergence is called an ultraviolet divergence, because in p-space it corresponds to
the integral blowing up at high |p|. If p(x) is a delta function, then j(p) is a constant, and
the integral (9.36) blows up like d°p/|p|?.

This divergence, appearing in the term in (9.43) and not depending on the positions of
the nucleons, is nothing to worry about. If nuclear matter need not be an assembly of point
particles, then p(x) need not be a delta function. Even if there were some fixed number of
point particles, say seven of them moving about on little tracks, the terms coming from the
self-energy of the particles are totally irrelevant. You cannot measure that energy. It exerts
no force. It doesn’t change as you move the particles apart. The only term that you actually
measure is the part that depends on the separation between the particles—the only thing you
can adjust—and that part is of course perfectly finite, if they’re at finite distances from each
other.

11 [Eds.] Hideki Yukawa (1907-1981), Nobel Prize in Physics 1949. See “On the Interaction of Elementary Par-
ticles. 1.”, Proc. Phys.-Math. Soc. Japan 17 (1935) 48-57. Reprinted in D. M. Brink, Nuclear Forces, Pergamon
Press, 1965.
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I wanted to emphasize in this model that first, we get a Yukawa force, and second, we get
an ultraviolet divergence if we go towards the point-particle limit. This may cause us some
troubles when we finally get to Model 3, where the interaction is ¢ *1) without any integrating
functions to smear things out. Our nucleons there are not like the nucleons here. They’re real
particles that can recoil and be produced, but they still definitely interact with the ¢ field
at a single point, and therefore we might get an infinite energy shift which we would have to
worry about.

9.4 The ground state wave function in Model 2

We can compute not only the ground state energy, but also the ground state wave function,

an expansion of the physical vacuum |0) , into the basis states |p1,...,pn), eigenstates of the
non-interacting Hamiltonian Hy. Thus we want to calculate the quantities
(P1,---,Pn|0)p (9.46)

This is just an exercise to show that restricting ourselves to time-dependent perturbation
theory is not as restrictive as you might think. We can do all the things we usually do in
non-relativistic quantum mechanics with time-independent perturbation theory. In particular
we can construct the ground state wave function.

We use the interaction Hamiltonian
Hy(t) = g / @ 6, £)p(x) £ (1) (9.47)

When we studied the interaction turning on and off adiabatically, we said that in the large T,
large A limit,
U(0,—00)[0) = |0)p (9.48)

That’s just the statement that the U operator up to t = 0, halfway along the way after the
interaction has been turned on, times the bare vacuum |0), equals the physical vacuum [0) p,
times a phase factor. This phase factor is of no physical interest, and I won’t bother writing it
down. Because e~ 0! makes no difference to the ground state, (9.48) is equivalent to (see
(7.31))

U1(0, =00)[0) = |0)p (9.49)

Now let us consider, for anything that’s adiabatically turned on,

f(t) = e for t < 0. (9.50)

As usual we'll consider the limit € — 0. If we extend f(t) for positive ¢ in the following rather

discontinuous way,
et ift<0
t) = 9.51
4o {0 ift>0 ( )

(this function is graphed in Figure 9.7) then we can write (9.49) as
Ui (00, =00) [0) = |0) p (9.52)

and therefore
<p17 te 7pn|0>P = <pla v 7pn|UI(Oov _OO)|O> (953)
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Figure 9.7: The extended adiabatic function f(t)

Now we know how to compute that. Indeed, we learned how to compute it last lecture, when
we were looking at Model 1. It’s just that now the space and time dependence of the source,
p(x)f(t), are somewhat peculiar.

This expression (9.53) gives the expansion of the physical ground state in terms of ap-
propriate wave functions of the non-interacting Hamiltonian, or as we say in our somewhat
colorful way, the amplitude for finding n bare mesons in the physical ground state. That’s the
confusing language people use to describe the expansion of the interacting system’s ground
state in energy eigenstates of the non-interacting system. The ground state just lies there.
There are no particles moving around in it.

We can apply the results of Model 1—(8.62), (8.71), and (8.72)—to write

(P1s- - PulUr(00, —00)|0) = 22T h(py)*h(pa)* - - - h(py)* (9.54)

where, analogous to (8.67),

h(p) m (9.55)

The expression (9.54) is always a product, whatever the form of p(x). The Fourier transform
of the adiabatic function (9.51) is

[eS) 0 .
flwp) = / dte”“»t f(t) = / dt e”rte = ! L ase—0 (9.56)

—0o0 —00 € — Wp Wp

Then the expression for «, analogous to (8.77), becomes

3 _ 3
o= [aphe)l =g [ Gl 5, o [ @l 057

The probability of finding n bare mesons is the probability amplitude squared for the
physical ground state having a component in the n meson subspace of the non-interacting
Hamiltonian,

P(n) = (9.58)

the Poisson distribution we had before.

Something very interesting happens to the expansion (8.70) of the ground state wave
function, if we consider a point particle: p(x) goes to a delta function, and p(p) becomes a
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constant. The expansion blows up! The reason is that « diverges logarithmically (at large |p|):

3 3
a=g / (dpm(p)? ~ g / (dp as p(x) = 59 (x)

2m)32w3 2m)32w3

NQZ/ dgp Ng2 1 /@
(2m)%2|p® 2m)? ) p

This isn’t as bad a divergence as the energy, which, as you’ll recall, went at high |p| like
d*p/|p|* ~ dp. Still, a — oo as p(x) approaches a delta function. So what do we make of
that?

(9.59)

Recall from last time that we found
(N) = ZnP(n) =« (8.79)
n=0

The average number (N) of bare mesons in the theory gets very, very large as the source gets
more and more concentrated. On the other hand, the probability P(n) of finding any given
number n of bare mesons goes to zero as the source becomes a point. As p(x) goes to a point
in position space, or p(p) goes to a constant in Fourier space, a and the peak of the Poisson
distribution zoom out towards infinity. That’s disgusting behavior. It’s a good thing that
in the future we won’t worry about computing things like the difference between the ground
state energies of the interacting and non-interacting Hamiltonians for a single particle, or the
amplitude for finding the non-interacting ground state in the interacting ground state. Nobody
really should worry about those questions, because in real models with realistic theories, you
don’t have the freedom to turn off the interaction. You don’t have the freedom to find out what
the energy of the one-electron state would be, if there were no electromagnetic interaction,
because, although we give ourselves considerable airs at times, we do not have the power to
change the electromagnetic interaction, say the fine-structure constant, by one jot or tittle.

Fortunately those things which are physically measurable in this theory—for example, the
interaction energy between two separated point charges—do not display such pathological
ultraviolet divergences. So, (knock on wood), maybe we’ll be lucky. Maybe we can get by with
our theory of point particles even if it turns out to include all sorts of disgusting infinities.
Perhaps those infinities won’t enter into any physically observable quantities; perhaps they
will. Probably it depends on what the theory is. We’ll have to wait and see.

9.5 An infrared divergence

There is another divergence implicit in the integral for o which has nothing to do with what
I have been discussing. It is perhaps best expressed not by thinking of this integral as an
example of Model 2, expanding the ground state, but as an example of Model 1, where we
have just chosen a particular form of f(t), one where we turn things on very slowly and then
turn them off abruptly. In this case the formula (9.57) has another kind of divergence, not
dependent on how p(x) is distributed. It has to do with the mass of the meson. The formula
for o blows up as p goes to zero, unless p(p) vanishes at |p| = 0:
lim oo =00 (if p(0) # 0) (9.60)
n—0
If u = 0, then wp, = |p|, and at the low-energy end the integral blows up like d*p/|p|3. For
obvious reasons, this is called an infrared divergence. Since we will eventually have to
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confront theories of massless particles that are indeed radiated in interaction processes—in
particular we will have to confront the theory of photons—it is perhaps worth saying a few
words about this divergence.

This divergence is also unphysical. Let’s call our massless mesons “photons” for a moment,
abusing language. If we have a source which we build up slowly and turn off abruptly, on the
average we will radiate an infinite number of “photons”. That’s rather silly. This example
is very far from being a real photon experiment, but in a real photon experiment there is a
detector, say a photomultiplier tube. You will never read a report that says, “We observed
an infinite number of counts...” Although an infinite number of photons are radiated in this
process, only a finite amount of energy is radiated, because the formula for the expectation
value (E) of the energy

(E) = / &p |h(p) [ wp (8.87)

has an extra factor of wp, as we showed at the end of last lecture. Putting in the factors we
have X
d’p
E)y=¢ | w——|p(p) 9.61
This integral does not diverge as p goes to zero. At small |p| it behaves as d®p/|p|?, which is
perfectly convergent.

What has happened recalls Zeno’s paradox of Achilles and the tortoise. You have a finite
amount of energy to distribute, but photons are massless. You can give smaller and smaller
amounts of energy to each photon. You could give half the energy to one photon, and a
quarter of the energy to another photon, an eighth of the energy to a third photon, a 16th of
the energy to a fourth, and so distribute a finite amount of energy among an infinite number
of photons.

Most of the photons from this infinite number, indeed the overwhelming majority, had
arbitrarily low energy. That means they had very, very long wavelengths. The actual
experimental apparatus, a photomultiplier tube or a radar antenna or anything else at all,
however you are detecting your photons, has a low-frequency cut-off. If the photon is sufficiently
soft that the electromagnetic radiation has a sufficiently large wavelength, then you cannot
detect it with any finite experimental apparatus. To detect a photon that has a wavelength
of a thousand light years, you need a radar antenna that is a thousand light years on a side.
Those are not found in your average high-energy physics laboratory! The reason we got an
infinite answer again, in the extreme limit p — 0, is because we were asking a unphysical
question, just as unphysical as asking about the energy of a point source if we turned off the
interaction. These are unphysical questions. How many photons would we detect if we had an
experimental apparatus that could detect any photon, no matter how long its wavelength?
That is an impossible question. If we asked a different question, what is the average number
of photons we can detect if our experimental apparatus can only detect photons of momentum
greater than a certain threshold |p|,,in, then it is easy to see that in the integral for o we would
not integrate all the way down to zero, but just down to our low-energy experimental cut-off.
And then, even as p went to zero, a would not go to infinity, but to a finite value.!? Once

12 [Eds.] Coleman is referring to the infra-red divergence. This famous problem is not discussed in this book.
The classic treatment is due to Bloch and Nordsieck: F. Bloch and A. Nordsieck, “Note on the Radiation Field
of the Electron”, Phys. Rev.50 (1937) 54-59. A fuller explanation is given in J. M. Jauch and F. Rohrlich,
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again, we're saved! It’s a real Perils of Pauline story.'? If we’re sloppy, and ask questions that
are empirically unanswerable, we get, in extreme—but physically reasonable—limits, nonsense
answers. If we're careful and restrict ourselves only to asking questions corresponding to
experiments we can really do, then we get finite answers, even in those extreme limits.

So far, in our simple theories, the divergences have restricted themselves to unobservable
quantities, and thus kept in quarantine. Such theories are called renormalizable. Whether
that situation will prevail when we go to more complicated theories than the ones we have at
hand here, is a question that will be resolved only by future investigation, which I will begin
next lecture, when we start to tackle Model 3.

The Theory of Photons and Electrons, 2nd expanded ed., Springer-Verlag, 1976, Section 16-1, pp. 390-405, or
Bjorken & Drell RQM, pp. 162-176, and Bjorken & Drell Fields, pp.202-207. It should perhaps be mentioned
that the first edition of Jauch and Rohrlich (1955) was among the very first American textbooks to teach the
use of Feynman diagrams; see David Kaiser, Drawing Theories Apart: The dispersion of Feynman diagrams in
postwar physics, U. Chicago Press, 2005, Chapter 7, pp. 253-263.

13 [Eds.] A series of short, silent World War I-era movies shown before a full-length feature, with the title
heroine in a succession of grave dangers from week to week, only to be rescued in the nick of time.



Problem 5

5.1 The pair model, invented by G.Wentzel!, is a variant on Model 2 in which there is a bilinear interaction of
the meson field with a time-independent c-number source, instead of a linear one. This is more complicated
than Model 2, but the theory is still exactly soluble, because it is still just a quadratic Hamiltonian. Unlike
Model 2, in this model scattering (but only elastic scattering) can occur.

The Hamiltonian for the theory is of the form H = Ho + Hjy, where Hy is the standard Hamiltonian for a
free scalar field of mass p. The interaction Hamiltonian Hy is

1= o [ @xpostx t>)2

where g is a positive constant, and p(x) is some smooth, real function of space only that goes to zero rapidly
at infinity. (Note that the interaction here is not the integral of a local density, but the square of such an
integral.)

(a) Compute (p|(S — 1)|p’), the scattering matrix element between (non-relativistically normalized) one-meson
states, by summing up all the connected Wick diagrams (shown below). Start with Dyson’s formula (8.1), and
use Wick’s theorem (8.28) to evaluate the relevant terms. Don’t worry about f(t) or any counterterms.

— e — + —o—9¢o— + —o—0o—0o— + .-
1 1 2 1 2 3

Show that
(pIS = 1p") = p(P)*p(p") F(wp)d(wp — wp) (P5.1)

where F(wp) is a function you are to compute in terms of an integral over |5(p)|?.

(b) The pair model has no non-vanishing Wick diagrams for one particle going into more than one particle;
thus the S matrix restricted to one-particle initial and final states should be unitary. Explicitly verify this.
That is, show explicitly that STS = 1 for two one-particle states:

(pISTS —1[p’) =0 (P5.2)
Many comments:
(1) In addition to the diagrams shown, there are also diagrams with no uncontracted fields, (i.e., no external

legs), but you don’t have to worry about them; they’re cancelled in the computation of the S matrix by the
ground state energy counterterm, just as in Model 2.

(2) Note that every vertex in the diagrams represents a seven-dimensional integral: two three-dimensional
spatial integrals and one time integral.

(3) I’'ve only drawn one diagram of each pattern. There are others, obtained by permuting the labels 1, 2,
L., n.

I [Eds.] “Zur Paartheorie der Kernkrifte” (Towards a pair theory of nuclear forces), Helv. Phys. Acta 15 (1942)
111-126.
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(4) Even after you assign the labels, there are still 2" identical terms, because there are two choices at each
vertex, of which field gets contracted which way. This cancels the 1/2" from the n*" power of H; in Dyson’s
formula.

(5) Don’t get involved with mathematical niceties. Assume that p(x) is sufficiently smooth and falls off
sufficiently rapidly as |x| — 400 to justify any manipulations you wish to make, that all power series converge,
etc.

(6) The answer involves an integral over p defined in terms of 5(p), the Fourier transform of p(x). It’s not
possible to simplify this integral for general p(x); don’t waste your time by trying to do so. On the other hand,
if you have more complicated things than this (double integrals, unsummed infinite series, etc.), you have more
to do.

(7) Don’t assume p(x) is spherically symmetric.
(19970 5.1)



Solution 5

5.1 (a) The interaction Hamiltonian is

1= a ([ @x o000 ([ @y 100 (85.1)

The matrix element of interest is

(plS ~ 11p') = (p| 7 [exp (-i/ dtHf)} 119y = 3 I [t et ol T 00) - Hi 0) )
(S5.2)

n=1
From Wick’s Theorem (8.28), the relevant terms are

[e%S) i)™
(pls—1lp’) =>_ (2753, /dt1 d*x1 d®y1 - dtn dPxp dPyn p(x1)p(y1) -+ p(x0)p(yn) X
n=1 :

1 r 1

T 1
(| :p(x1,11)B(y1, 1) (%2, 12)D(y2, 12)D(X3,13) - - (Yn—1, tn—1)(Xn, tn)d(yn, tn): [P')
+ permutations

We deal with the permutations in two steps. First, from Coleman’s comment (4), we can cancel the factor of
1/2™ (because we can swap x; and y;.) Next, there are n pairings (n — 1 contractions plus one uncontracted
pair). These can be arranged in any order, so there are n! ways. This cancels the factor of 1/n!. Then

(pIS—1Jp’) = i(*ig)" /dt1 d*x1 dPy1 -+ dbn d*xn dPyn p(x1)p(y1) -+ p(xn)p(yn) X
(Pl :p(x1,11)p(y1, t1)p(x2,t2)p(y2, t2)p(x3,t3) - - d(Yn—1,tn—1)P(Xn, tn)$(¥n, tn): [P)
The contractions are c-numbers, and they can be moved outside the inner product, leaving
(Pl p(x1,t1)(yn, tn): |P')
In the notation of (3.33),
B(@)0): = (67 (@) +6 @E W) +6 W) = $F (@ W)+~ W (@) +6™ @) (1) + 6™ ()6 (v)

(recall that the annihilation operators are in ¢+, and the creation operators in ¢~). Sandwiched between (p|
and |p’), the first and last terms give zero. We have already accounted for the two different orderings of x and
y, so the normal ordering simply replaces ¢(x1,t1) by ¢~ (x1,t1), and ¢(yn,tn) by ¢ (yn,tn):

(pls —1[p') = > (~ig)" / dty d*x1 d*y1 -+ - din d*xn dPyn p(x1)p(y1) -+ p(xn)p(