
5
GQRX

SDR++
CubicSDR

RTL-SDR Server

Dump1090

FLDIGI
RTL_433

TWCLOCK

Morse2Ascii
PyQSO

Python!
Welle.io

qsstv

55

Dogan Ibrahim
Ahmet Ibrahim

Raspberry Pi 5
for Radio Amateurs
Program and Build Raspberry Pi 5 Based
Ham Station Utilities with the RTL-SDR

Raspberry Pi 5
for Radio Amateurs
Program and Build Raspberry Pi 5 Based
Ham Station Utilities with the RTL-SDR

The RTL-SDR devices (V3 and V4) have gained popularity among radio
amateurs because of their very low cost and rich features. A basic system
may consist of a USB based RTL-SDR device (dongle) with a suitable
antenna, a Raspberry Pi 5 computer, a USB based external audio input-
output adapter, and software installed on the Raspberry Pi 5 computer.
With such a modest setup, it is possible to receive signals from around
24 MHz to over 1.7 GHz.

This book is aimed at amateur radio enthusiasts and electronic engineering
students, as well as at anyone interested in learning to use the Raspberry
Pi 5 to build electronic projects. The book is suitable for both beginners
through experienced readers. Some knowledge of the Python programming
language is required to understand and eventually modify the projects
given in the book. A block diagram, a circuit diagram, and a complete
Python program listing is given for each project, alongside a compre-
hensive description.

The following popular RTL-SDR programs are discussed in detail, aided
by step-by-step installation guides for practical use on a Raspberry Pi 5:

> SimpleFM
> GQRX
> SDR++
> CubicSDR
> RTL-SDR Server
> Dump1090
> FLDIGI
> Quick
> RTL_433
> aldo

> xcwcp
> GPredict
> TWCLOCK
> CQRLOG
> klog
> Morse2Ascii
> PyQSO
> Welle.io
> Ham Clock
> CHIRP

> xastir
> qsstv
> flrig
> XyGrib
> FreeDV
> Qtel (EchoLink)
> XDX (DX-Cluster)
> WSJT-X

The application of the Python programming language on the latest
Raspberry Pi 5 platform precludes the use of the programs in the book
from working on older versions of Raspberry Pi computers.

Dogan Ibrahim
has a BSc
degree in
electronic
engineering,
an MSc degree

in automatic control engineering,
and a PhD degree in digital signal
processing. Dogan has worked
in many industrial organizations
before he returned to academic life.
Prof Ibrahim is the author of over
70 technical books and published
over 200 technical articles on
microcontrollers, microprocessors,
and related fields. He is a Chartered
electrical engineer and a Fellow of
the Institution of the Engineering
Technology. He has been a licenced
amateur radio operator for several
decades (G7SCU) and also holds an
Arduino certification.

Ahmet Ibrahim
holds BSc
(Hons) and
MSc degrees
in the fields
of computing,

software and networking. Ahmet has
held positions in many industries
involved in enterprise computing.
He enjoys advising, designing and
implementing complex cloud and
on-premises computer systems.
Ahmet is an experienced electronics
engineer and a licenced amateur
radio operator (2E1GUC).

Raspberry Pi 5 for Radio A
m

ateurs • D
ogan Ibrahim

 &
 Ahm

et Ibrahim

Elektor International Media
www.elektor.com

books booksbooks books

SKU20858_COV_Raspberry Pi 5 for Radio Amateurs_170x240_v01.indd Alle pagina'sSKU20858_COV_Raspberry Pi 5 for Radio Amateurs_170x240_v01.indd Alle pagina's 10-04-2024 09:0610-04-2024 09:06

Raspberry Pi 5 for
Radio Amateurs

Program and Build Raspberry Pi 5 Based
Ham Station Utilities with the RTL-SDR

●

Dogan Ibrahim, G7SCU
Ahmet Ibrahim, 2E1GUC

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 3Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 3 04-04-2024 13:1904-04-2024 13:19

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The authors and publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other
cause.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● �ISBN 978-3-89576-612-1 	 Print
ISBN 978-3-89576-613-8	 eBook

● �© Copyright 2024 Elektor International Media
www.elektor.com

�Editor: Jan Buiting, MA
Prepress Production: D-Vision, Julian van den Berg
Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 4Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 4 04-04-2024 13:1904-04-2024 13:19

Contents

● 5

Contents

Preface . 12

Chapter 1 ● �Installing the Raspberry Pi 5 Operating System 14

1.1 Overview . 14

1.2 Using a pre-installed micro SD card . 15

1.3 Larger font in Console mode . 16

1.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty Program 18

1.5 Accessing the Desktop GUI from your PC . 21

1.6 Assigning a Static IP Address to your Raspberry Pi 5 . 23

1.7 Enabling Bluetooth . 24

1.8 Connecting the Raspberry Pi 5 to a Wired Network . 24

 1.8.1 Unable to connect to a wired network . 25

1.9 Installing the Raspberry Pi 5 Bookworm Operating System on a Blank
microSD Card . 26

Chapter 2 ● �Using a Text editor, Creating and Running a Python Program 29

2.1 The nano Text Editor . 29

2.2 Creating and Running a Python Program . 34

 2.2.1 Method 1 — Interactively from command prompt in Console mode 34

2.3 Which method? . 36

Chapter 3 ● Amateur Radio Programs – Software-Only . 38

3.1 Overview . 38

3.2 4-Band Resistor Color Code Identifier . 38

3.3 4-Band Resistor Color Code Identifier Including Very Small Resistors 40

3.4 Series or Parallel Resistors . 42

3.5 Capacitor Identification . 44

3.6 Capacitors in Series or in Parallel . 46

3.7 Resistive Potential Divider . 48

3.8 Resistive Attenuator Design . 51

3.9 RC Charging Transient Circuit Response . 53

3.10 Calculating the Inductance of a Single-Layer, Air-Core Coil 56

3.11 Constructing a single layer coil for required inductance 57

Contents

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 5Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 5 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 6

3.12 Calculating the Capacitance for Required Resonance Frequency 58

3.13 DC Circuits Mesh Analysis . 60

 3.13.1 DC Circuits mesh analysis — a more complex example 62

3.14 DC Circuit Node Analysis . 63

3.15 Bipolar Junction Transistor Analysis . 66

3.16 Designing Active Low-Pass Filters . 69

3.17 Passive Low-Pass Butterworth Filter Design . 74

3.18 The 555 Timer IC . 77

3.19 Impedance Matching . 80

3.20 Designing a Common-Emitter BJT Transistor Amplifier Circuit 83

3.21 Using a Windows-Based Simulation Program . 88

 3.21.1 Simulating the Resistive Mesh Circuit in Figure 3.33 89

 3.21.2 Simulating the transistor circuit in Figure 3.42 . 90

 3.21.3 Simulating the transistor circuit in Figure 3.66 . 92

Chapter 4 ● Hardware Based Projects for Amateur Radio . 95

4.1 Overview . 95

4.2 Project 1: Logic Probe . 95

4.3 Project 2: Station Mains On-Off Power Control . 98

4.4 Project 3: Station Clock with Output to the Monitor . 103

4.5 Project 4: Station Clock with Output to LCD . 105

4.6 Project 5: Station Geographical Coordinates . 112

4.7 Project 6: Waveform Generation in Software — Sawtooth waveform 120

 4.7.1 The MCP4921 DAC . 120

4.8 Project 7: Generating a Waveform – Frequency Entry using Keypad and LCD . . . 126

 4.8.1 The AD9850 . 127

 4.8.2 Starting the program automatically at boot time . 139

 4.8.3 Boxing the project . 139

4.9 Project 8: Morse Code Exerciser with Rotary Encoder and LCD to Set wpm Value . 140

 4.9.1 Rotary encoder . 142

 4.9.2 Boxing the project . 148

4.10 Project 9: Morse Decoder . 149

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 6Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 6 04-04-2024 13:1904-04-2024 13:19

Contents

● 7

4.11 Project 10: Frequency Counter . 161

4.12 Project 11: FM Radio with Raspberry Pi 5 . 167

4.13 Project 12: Modified Project — Increasing the Output Signal Level –
Connecting a Loudspeaker . 175

4.14 Project 13: FM Radio using an LCD and Rotary Encoder to Set the Frequency . . 177

Chapter 5 ● Raspberry Pi 5 Audio Output . 184

5.1 Overview . 184

5.2 Using an External USB Audio Adapter . 184

5.3 Testing the Audio Output . 184

5.4 Audio Volume . 185

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5 . 188

6.1 Overview . 188

6.2 RTL-SDR V3 . 189

6.3 RTL-SDR V4 vs V3 . 190

6.4 The RTL-SDR Antenna Kit . 192

 6.4.1. Dipole orientation . 193

 6.4.2. Terrestrial signal reception . 194

 6.4.3. Satellite reception . 194

 6.4.4. Choosing the antenna element length . 194

6.5 Hardware Setup . 195

6.6 Installing the RTL-SDR Software on Raspberry Pi 5 . 195

6.7 Testing — Tuning to a Frequency Manually . 197

6.8 Testing the RTL-SDR Dongle . 198

Chapter 7 ● A Simple FM Receiver . 199

7.1 Overview . 199

7.2 The Program . 199

 7.2.1 Creating a shell script . 200

Chapter 8 ● GQRX on the Raspberry Pi 5 . 201

8.1 Overview . 201

8.2 Installation on Raspberry Pi 5 . 201

8.3 Using the GQRX . 201

 8.3.1 The audio frame . 207

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 7Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 7 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 8

 8.3.2 Streaming audio to your PC . 208

Chapter 9 ● SDR++ . 210

9.1 Overview . 210

9.2 Installing SDR++ on the Raspberry Pi 5 . 210

9.3 Using the SDR++ . 211

 9.3.1 Quick startup example . 211

 9.3.2 Graphical outputs . 215

 9.3.3 Source options . 216

 9.3.4 Display options . 217

 9.3.5 Radio module . 218

 9.3.6 Frequency Manager . 219

9.3.7 Recorder . 219

Chapter 10 ● CubicSDR . 220

10.1 Introduction to CubicSDR . 220

10.2 Quick Startup . 220

Chapter 11 ● RTL-SDR Server . 223

11.1 Overview . 223

Chapter 12 ● Dump1090 . 226

12.1 Overview . 226

12.2 Dump1090 Essential Features . 226

12.3 Installing Dump1090 on the Raspberry Pi 5 . 226

12.4 Launching the Dump1090 Software . 227

Chapter 13 ● FLDIGI . 229

13.1 Overview . 229

13.2 Features . 229

13.3 Digital Formats . 229

13.4 Installation on Raspberry Pi 5 . 230

13.5 Starting the Program . 231

13.6 Decoding Morse Code (CW) . 232

13.7 Receiving Weather Fax (WEFAX) . 233

13.8 Receiving RTTY Traffic . 238

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 8Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 8 04-04-2024 13:1904-04-2024 13:19

Contents

● 9

 13.8.1 Using fldigi to receive RTTY messages . 239

13.9 Receiving NAVTEX Messages . 239

 13.9.1 Using fldigi to receive NAVTEX messages . 240

Chapter 14 ● Quisk . 242

14.1 Overview . 242

14.2 Installing quisk on the Raspberry Pi 5 . 242

Chapter 15 ● RTL_433 . 244

15.1 Overview . 244

15.2 Installing RTL_433 on the Raspberry Pi 5 . 244

15.3 Program Options . 245

Chapter 16 ● Other SDR hardware . 246

16.1 Overview . 246

16.2 HackRF One . 246

16.3 NooElec NESDR Smart HF Bundle . 247

16.4 BladeRF . 248

16.5 LimeSDR . 249

16.6 Universal Software Radio Peripheral (USRP) . 250

16.7 ADALM-Pluto . 250

16.8 AirSpy HF+ Discovery . 251

Chapter 17 ● �Installation and Use of Some Popular Radio Applications 252

17.1 Overview . 252

17.2 Aldo Morse Code Tutor – Text Based . 252

 17.2.1 Installing aldo on the Raspberry Pi 5 . 252

17.3 xcwcp Morse Code Tutor — Graphical . 252

 17.3.1 Installing xcwcp on Raspberry Pi 5 . 252

17.4 GPredict — Satellite/Orbital Object Tracking and Rig Control 253

 17.4.1 Installing GPredict on Raspberry Pi 5 . 253

 17.4.2 GPredict controls . 254

17.5 TWCLOCK . 262

 17.5.1 Installation on Raspberry Pi 5 . 262

 17.5.2 Using the program . 262

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 9Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 9 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 10

17.6 CQRLOG . 265

 17.6.1 Installation on Raspberry Pi 5 . 265

 17.6.2 Running the program . 265

17.7 Klog . 266

 17.7.1 Installation on Raspberry Pi 5 . 266

 17.7.2 Using the program . 266

17.8 Morse2Ascii . 268

 17.8.1 Installation on Raspberry Pi 5 . 268

 17.8.2 Using the program . 268

17.9 PyQSO . 269

 17.9.1 Installation on Raspberry Pi 5 . 269

 17.9.2 Using the program . 270

17.10 Welle.io (DAB/DAB+ Radio) . 271

 17.10.1 Installation on Raspberry Pi 5 . 272

 17.10.2 Running the program . 272

17.11 Ham Clock . 273

 17.11.1 Installation on Raspberry Pi 5 . 273

 17.11.2 Running the program . 274

 17.11.3 Accessing from a web browser . 276

17.12 Chirp . 277

 17.12.1 Installation on Raspberry Pi 5 . 277

 17.12.2 Running the program . 277

17.13 Xastir . 278

 17.13.1 Installation on Raspberry Pi 5 . 279

 17.13.2 Running the program and configuring for internet APRS 279

17.14 QSSTV . 282

 17.14.1 Installation on Raspberry Pi 5 . 283

 17.14.2 Running the program . 283

 17.14.3 Testing the program . 284

17.15	 FLRIG . 285

 17.15.1 Installation on Raspberry Pi 5 . 286

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 10Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 10 04-04-2024 13:1904-04-2024 13:19

Contents

● 11

 17.15.2 Running flrig . 286

17.16 XyGrib . 288

 17.16.1 Installation of XyGrib on Raspberry Pi 5 . 288

1 7.16.2 Running XyGrib . 289

17.17 FreeDV . 291

 17.17.1 Installation on Raspberry Pi 5 . 292

 17.7.2 Running FreeDV . 292

17.18 Qtel (EchoLink) . 293

 17.18.1 Qtel installation on Raspberry Pi . 293

 17.18.2 Running the program . 293

 17.18.3 Using EchoLink on smart phones . 294

17.19 XDX (DX-Cluster) . 297

 17.19.1 Installation on Raspberry Pi 5 . 297

 17.19.2 Running the program . 297

17.20 WSJT-X . 298

 17.20.1 Installation on Raspberry Pi 5 . 298

17.20.2 Running the program . 298

Index . 300

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 11Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 11 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 12

Preface

In recent years there have been major changes in the radio equipment used by the radio
amateurs. Although the classical HF and mobile equipment is still in use by large numbers
of amateurs, computers and digital techniques are becoming very popular among amateur
radio operators or 'hams'. In early days of digital communications, personal computers
were used by hams to communicate with each other. PCs have the disadvantage that
they are rather expensive and bulky. Nowadays, anyone can purchase a £40 Raspberry
Pi computer and run almost all of the amateur radio software on this computer, which is
slightly bigger than the size of a credit card.

The Raspberry Pi 5 is the latest credit-card sized computer from the Raspberry Pi Foundation
that can be used in many applications, such as in audio and video media centers, as a
desktop computer, in industrial controllers, robotics, and in many domestic and commercial
applications. In addition to many features found in other Raspberry Pi computers, the
Raspberry Pi 5 offers Wi-Fi, Classic Bluetooth, and Bluetooth BLE capability which makes it
highly desirable in remote and Internet-based control and monitoring applications.

The Raspberry Pi 5 is a 64-bit quad-core Arm Cortex-A76 processor running at 2.4 GHz,
which is two to three times the performance boost when compared to the earlier Raspberry
Pi 4. The Raspberry Pi 5 comes with an enhanced graphic performance, using the 800-
MHz VideoCore VII graphics chip. Additionally, the Raspberry Pi 5 features a Southbridge
chipset made for the first time by the Raspberry Pi Foundation. With the help of this RP1
Southbridge, the Raspberry Pi 5 delivers higher performance and functionality for peripheral
devices. It should now be possible to carry out many real-time operations such as audio
digital signal processing, real-time digital control and monitoring, and many other real-time
operations using this tiny powerhouse.

The RTL-SDR devices (V3 and V4 dongles) have become very popular among radio fans
because of their very low cost (some around £12) and rich features. A basic system may
consist of a USB-based RTL-SDR device (dongle) with a suitable antenna, a Raspberry Pi
5 computer, an USB-based external audio input/output adapter, and software installed on
the Raspberry Pi 5 computer. With such a simple setup, it is possible to receive signals from
around 24 MHz to over 1.7 GHz.

This book has four purposes. Firstly, it is aimed to teach the installation of the operating
system and basic operating principles and features of the Raspberry Pi 5 to beginners.
Secondly, many hardware-based projects are given using the Raspberry Pi 5 together
with the Python programming language. These projects have been chosen to be useful to
amateur radio operators. Thirdly, the book explains in some detail how to use the RTL-SDR
devices (both V3 and V4) together with a Raspberry Pi 5 and popular RTL-SDR software to
tune in and receive signals from a wide range of ham and other frequency bands. Lastly,
the book also explains how to install and use some of the popular amateur radio software
packages on the Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 12Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 12 04-04-2024 13:1904-04-2024 13:19

Preface

● 13

It is important to realize that the book uses the Python programming language on the
latest Raspberry Pi 5 platform, and most of the programs in the book will not work on
older versions of Raspberry Pi computers. Readers interested in exploring older Raspberry
Pi models in amateur radio projects are recommended to purchase author's earlier book
entitled: Raspberry Pi for Radio Amateurs: Program and build RPI-based ham station
utilities, tools, and instruments (available from Elektor).

I hope you enjoy reading the book.

Dogan Ibrahim, G7SCU and Ahmet Ibrahim, 2E1GUC
London, 2024

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 13Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 13 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 14

Chapter 1 ● �Installing the Raspberry Pi 5 Operating
System

1.1 Overview
The Raspberry Pi 5 is the latest credit card size computer from the Raspberry Pi Foundation.
It is based on 2.4-GHz Cortex-A76 Arm processor with a new Southgate bridge for handling
the peripheral interface. A new VideoCore VII GPU is provided with 800 MHz speed. A dual
camera interface is another nice feature of the Raspberry Pi 5. The microSD card interface
supports cards that work at much higher speeds than previously.

The Raspberry Pi 5 is similar to the older Raspberry Pi 4, where both devices have dual 2
4Kp60 HDMI display interfaces, although the Pi 5 supports HDR output. The 2×20-pin GPIO
interface is the same in both devices. The Raspberry Pi 5 additionally supports two camera
interfaces, a PCIe bus connector, a UART interface, an RTC clock power connector, and a fan
power connector. Wi-Fi and Bluetooth are supported by both devices. The on-board power
switch on the Raspberry Pi 5 is a useful feature. The Raspberry Pi 5 is powered from a 5 V,
4 A USB-C type power supply and is slightly more expensive than the Raspberry Pi 4.

The camera and display connectors on Raspberry Pi 5 are 15-pin and smaller instead of
the original 22-pin connector used on Pi 4. A ribbon cable with a 22-pin connector on one
side and a 15-pin one on the other side is required to connect an existing Raspberry Pi 4
camera to Raspberry Pi 5. The Raspberry Pi 5 has two connectors, allowing two cameras
or DSI displays (or a mix of) to be connected. The PCIe connector is for fast external PCIe
compatible peripherals, such as SSDs.

The new power button on Raspberry Pi 5 could be very useful. When the device is ON,
pressing the button brings up the shutdown (logout) menu. A safe shutdown will occur with
another press of the power button.

Figure 1.1 shows the front view of the Raspberry Pi 5 with the components labelled for
reference.

Figure 1.1: The Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 14Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 14 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 15

The Raspberry Pi 5 can get very hot when working. While the 'idle' CPU temperature is
around 50 degrees Celsius, it can go higher than 85 degrees under stress. It is recommended
to use a cooler to lower the CPU temperature. A dedicated active cooler is available for
Raspberry Pi 5. Holes and power points are provided on the board to install and power
the active cooler. Figure 1.2 shows the Raspberry Pi 5 with the active cooler installed. The
active cooler cools down the on-board SoC, RAM, and the Southgate chipset. With the
active cooler and when the CPU is idle, the CPU temperature is around 40 degrees. The fan
of the cooler operates automatically when the CPU temperature just exceeds 50 degrees
Celsius.

Figure 1.2: Raspberry Pi 5 with active cooler.

The Raspberry Pi 5 operating system called Bookworm is available either on a pre-installed
micro SD card or by downloading the system image onto a blank micro SD card. In this
chapter, you will learn to install the operating system using both methods.

1.2 Using a pre-installed micro SD card
The pre-installed Raspberry Pi 5 operating system is available in various size micro SD cards.
The author used the pre-installed 32 GB micro SD card supplied by Elektor. Additionally,
the author used a 7-inch HDMI compatible monitor, a Raspberry Pi official keyboard, and
a mouse. The author's hardware setup between the Raspberry Pi 5 and various devices is
shown in Figure 1.3.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 15Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 15 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 16

Figure 1.3: The authors' hardware setup.

The steps are as follows:

•	Insert the pre-installed micro SD card into your Raspberry Pi 5.

•	Connect all the devices as in Figure 1.3.

•	Connect the Raspberry Pi 5 adapter to the mains (AC power).

•	You should see the Raspberry Pi 5 booting the first time and asking you various
questions to setup the device, such as the username, password, WiFi name and
password, any updates if necessary, etc. etc. In this book, the username is set
to pi.

•	The Raspberry Pi 5 will boot in Desktop mode and will display the default
screen. You can press Cntrl+Alt+F1 at any time to change to the Console mode.

1.3 Larger font in Console mode
It is probably hard to see the characters on a 7-inch monitor in Console mode. You can
follow the steps below to increase the font size:

•	Make sure you are in the Console mode

•	Enter the following command:

pi@raspberrypi: ~ $ sudo dpkg-reconfigure console-setup

•	Select UTF-8 in the Package Configuration screen (Figure 1.4)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 16Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 16 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 17

Figure 1.4: Select UTF-8.

•	Select Guess optimal character set (Figure 1.5)

Figure 1.5: Select Guess optimal character set.

•	Select Terminus (Figure 1.6)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 17Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 17 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 18

Figure 1.6: Select Terminus.

•	Select font 16x32 (Figure 1.7)

Figure 1.7: Select font 16×32.

1.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty
Program
In many applications, you may want to access your Raspberry Pi 5 from your PC. This
requires enabling the SSH on your Raspberry Pi and then using a terminal emulation
software on your PC. The steps to enable the SSH are as follows:

•	Make sure you are in Console mode.

•	Type: sudo raspi-config.

•	Move down to Interface Options.

•	Highlight SSH and press Enter (Figure 1.8).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 18Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 18 04-04-2024 13:1904-04-2024 13:19

● 19

Figure 1.8: Highlight SSH.

•	Click Yes to enable SSH.

•	Click OK.

•	Move down and click Finish.

You will now have to install a terminal emulation software on your PC. The one used by the
authors is the popular 'Putty'. Download Putty from the following web site:

		 https://www.putty.org

•	Putty is a standalone program and there is no need to install it. Simply double
click to run it. You should see the Putty startup screen as in Figure 1.9.

Figure 1.9: Putty startup screen.

•	Make sure that the Connection type is SSH and enter the IP address of your
Raspberry Pi 5. You can obtain the IP address by entering the command
ifconfig in Console mode (Figure 1.10). In this example, the IP address was:
191.168.1.251 (see under wlan0:)

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 19Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 19 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 20

Figure 1.10: Command ifconfig.

•	Click Open in Putty after entering the IP address and selecting SSH.

•	The first time you run Putty you may get a security message. Click Yes to
accept this security alert.

•	You will then be prompted to enter the Raspberry Pi 5 username and password.
You can now enter all Console based commands through your PC.

•	To change your password, enter the following command:

pi@raspberrypi: ~ $ passwd

•	To restart the Raspberry Pi enter the following command:

pi@raspberrypi: ~ $ sudo reboot

•	To shut down the Raspberry Pi, enter the following command. By the way,
never shut down by pulling the power cable as this may result in the corruption
or loss of files!

pi@raspberrypi: ~ $ sudo shutdown –h now

By default, the Putty screen background is black with white foreground characters. The
authors prefer to have white background with black foreground characters, with the
character size set to 12 points bold. You should save your settings so that they are available
next time you want to use the Putty. The steps to configure the Putty with these settings
are given below:

•	Restart Putty.

•	Select SSH and enter the Raspberry Pi IP address.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 20Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 20 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 21

•	Click Colours under Window.

•	Set the Default Foreground and Default Bold Foreground colours to black
(Red:0, Green:0, Blue:0).

•	Set the Default Background and Default Bold Background to white
(Red:255, Green:255, Blue:255).

•	Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0).

•	Select Appearance under Window and click Change in Font settings. Set
the font to Bold 11.

•	Select Session and give a name to the session (e.g. MyZero) and click Save.

•	Click Open to open the Putty session with the saved configuration.

•	Next time you re-start the Putty, select the saved session and click Load
followed by Open to start a session with the saved configuration.

1.5 Accessing the Desktop GUI from your PC
If you are using your Raspberry Pi 5 with a local keyboard, mouse, and display you can
skip this section. If, on the other hand, you want to access your Desktop remotely over
the network, you will find that SSH services cannot be used. The easiest and simplest way
to access your Desktop remotely from a computer is by using the VNC (Virtual Network
Connection) client and server. The VNC server runs on your Pi and the VNC client runs on
your computer. It is recommended to use the tightvncserver on your Raspberry Pi 5. The
steps are:

•	Enter the following command:

pi$raspberrypi:~ $ sudo apt-get install tightvncserver

•	Run the tightvncserver:

pi$raspberrypi:~ $ tightvncserver

You will be prompted to create a password for remotely accessing the Raspberry Pi desktop.
You can also set-up an optional read-only password. The password should be entered every
time you want to access the Desktop. Enter a password and remember it.

•	Start the VNC server after reboot by the following command:

pi$raspberrypi:~ $ vncserver :1

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 21Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 21 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 22

You can optionally specify screen pixel size and colour depth in bits as follows:

pi$raspberrypi:~ $ vncserver :1 –geometry 1920x1080 –depth 24

•	You should now set up a VNC viewer on our laptop (or desktop) PC. There are
many VNC clients available, but the recommended one which is compatible
with TightVNC is the TightVNC for the PC which can be downloaded from the
following link:

https://www.tightvnc.com/download.php

•	Download and install the TightVNC software for your PC. You will have to
choose a password during the installation.

•	Start the TightVNC Viewer on your PC and enter the Raspberry Pi IP address
followed by :1. Click Connect to connect to your Raspberry Pi (Figure 1.11)

Figure 1.11: Connect to TightVNC Viewer.

•	Enter the password you have chosen earlier. You should now see the Raspberry
Pi 5 Desktop displayed on your PC screen (Figure 1.12)

Figure 1.12: Raspberry Pi 5 Desktop.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 22Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 22 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 23

•	The VNC server is now running on your Raspberry Pi 5 and you have access to
the Desktop GUI.

1.6 Assigning a Static IP Address to your Raspberry Pi 5
When you try to access your Raspberry Pi 5 remotely over your local network, it is possible
that the IP address given by your Wi-Fi router changes from time to time. This is annoying
as you have to find out the new IP address allocated to your Raspberry Pi. Without knowing
the IP address, you cannot log in using the SSH or the VNC.

In this section, you will learn how to fix your IP address so that it does not change between
reboots. The steps are as follows:

•	Log in to your Raspberry Pi 5 via Putty.

•	Check whether DHCP is active on your Raspberry Pi (it should normally be
active):

pi@raspberrypi:~ $ sudo service dhcpcd status

If DHCP is not active, activate it by entering the following commands:

pi@raspberrypi:~ $ sudo service dhcpcd start
pi@raspberrypi:~ $ sudo systemctl enable dhcpcd

•	Find the IP address currently allocated to you by entering command ifconfig
or hostname – I (Figure 1.13). In this example the IP address was:
191.168.1.251. You can use this IP address as your fixed address since no
other device on the network is currently using it.

Figure 1.13: Find the IP address using command hostname -I.

•	Find the IP address of your router by entering the command ip r (Figure 1.14).
In this example, the IP address was: 191.168.1.254.

Figure 1.14: Find the IP address of your router.

•	Find the IP address of your DNS by entering the following command (Figure
1.15). This is usually same as your router address:

pi@raspberrypi:~ $ grep "nameserver" /etc/resolv.conf

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 23Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 23 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 24

Figure 1.15: Find the DNS address.

•	Edit file /etc/dhcpcd.conf by entering the command:

pi@raspberrypi:~ $ nano /etc/dhcpcd.conf

•	Add the following lines to the bottom of the file (these will be different for your
router). If these lines already exist, remove the comment character # at the
beginning of the lines and change the lines as follows (you may notice that
eth0 for Ethernet is listed):

	 interface wlan0
	 static_routers=191.168.1.254
	 static domain_name_servers=191.168.1.254
	 static ip_address=191.168.1.251/24

•	Save the file by entering CNTRL + X followed by Y and reboot your
Raspberry Pi.

•	In this example, the Raspberry Pi should reboot with the static IP address:
191.168.1.251.

1.7 Enabling Bluetooth
In this section, you will see how to enable the Bluetooth on your Raspberry Pi 5 so that it
can communicate with other Bluetooth devices. The steps are given below:

•	Enable the Bluetooth on your other device.

•	Click on the Bluetooth icon on your Raspberry Pi 5 at the top right hand side
and select Make Discoverable. You should see the Bluetooth icon flashing.

•	Select raspberrypi in the Bluetooth menu on your other device.

•	Accept the pairing request on your Raspberry Pi 5.

•	You should now see the message Connected Successfully on your Raspberry
Pi 5. and you can exchange files between your other device and the Raspberry
Pi computer.

1.8 Connecting the Raspberry Pi 5 to a Wired Network
You may want to connect your Raspberry Pi 5 to a network through an Ethernet cable. The
steps are as follows:

Step 1: Connect a network cable between your Raspberry Pi 5 and your WiFi router.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 24Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 24 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 25

Step 2: Connect keyboard, mouse and monitor to your Raspberry Pi and power up as
normal.

Step 3: Log in to the system by entering your username and password.

Step 4: Providing your network hub supports DHCP (nearly all network routers support
DHCP), you will be connected automatically to the network and will be assigned a unique
IP address within your network. Note that DHCP assigns IP addresses to newly connected
devices.

Step 5: Check to find out the IP address assigned to your Raspberry Pi 5 by the network
router. Enter command ifconfig as described earlier.

1.8.1 Unable to connect to a wired network
If you find that you are not assigned an IP address by the DHCP, the possible causes are:

•	your network cable is faulty;
•	the network hub does not support DHCP;
•	your Raspberry Pi is not enabled to accept DHCP issued addresses. i.e. it may

have been configured for fixed IP addresses.

In most cases it is very unlikely that the network cable is faulty. Also, most network hubs
support the DHCP protocol. If you are having problems with the network, it is possible that
your Raspberry Pi is not configured to accept DHCP issued addresses. The Raspberry Pi is
normally configured to accept DHCP addresses but it is possible that you have changed the
configuration somehow.

To resolve the wired network connectivity problem, follow the steps given below.

Step 1: find out whether or not your Raspberry Pi is configured for DHCP or fixed IP
addresses. Enter the following command:

	 pi@raspberrypi ~$ cat /etc/network/interfaces

If your Raspberry Pi is configured to use the DHCP protocol (which is normally the default
configuration), the word dhcp should appear at the end of the following line:

	 iface eth0 inet dhcp

If on the other hand your Raspberry Pi is configured to use static addresses then you should
see the word static at the end of the following line:

	 iface eth0 inet static

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 25Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 25 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 26

Step 2: To use the DHCP protocol, edit file interfaces (e.g. using the nano text editor)
and change the word static to dhcp. It is recommended to make a backup copy of the file
interfaces before you change it:

	 pi@raspberrypi ~$ sudo cp /etc/network/interfaces /etc/network/int.bac

You should now restart your Raspberry Pi and an IP address will probably be assigned to
your device.

Step 3: To use static addressing, make sure that the word static appears as shown above.
If not, edit file interfaces and change dhcp to static

Step 4: You need to edit and add the required unique IP address, subnet mask and
gateway addresses to file interfaces as in the following example (this example assumes
that the required fixed IP address is 191.168.1.251, the subnet mask used in the network
is 255.255.255.0, and the gateway address is 191.168.1.1):

	 iface eth0 inet static
	 address 191.168.1.251
	 netmask 255.255.255.0
	 gateway 191.168.1.1

Save the changes and exit the editor. If you are using the nano editor, exit by pressing
Ctrl+X, and then enter Y to save the changes, and enter the filename to write to as /etc/
network/interfaces.

Re-start your Raspberry Pi 5.

1.9 Installing the Raspberry Pi 5 Bookworm Operating System on a
Blank microSD Card
If you have a pre-installed 'Bookworm' Raspberry Pi operating system on a microSD card
then you can start using it as described earlier in this chapter. In this section, you will learn
how to install the latest Bookworm operating system on a microSD card if you do not have
a pre-installed card.

The steps are as follows:

•	Insert a microSD card into your PC. You may need to use an SD card adapter.

•	Go to the website: https://www.raspberrypi.com/software/

•	Click to download the Raspberry Pi Imager. At the time of writing this book
this file was called: imager_1.7.5.exe.

•	Double click to start the imager program and click to install it.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 26Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 26 04-04-2024 13:1904-04-2024 13:19

Chapter 1 ● Installing the Raspberry Pi 5 Operating System

● 27

•	Click to Finish to run the imager.

•	Click Operating System and select the operating system at the top of the list
as: Raspberry Pi OS (64-bit). See Figure 1.16.

Figure 1.16: Select the operating system.

•	Click Storage and select the SD card storage.

•	Click to open the settings (gear shape).

•	Click to enable SSH.

•	Click to enable password authentication.

•	Set username and password.

•	Click to Configure wireless LAN.

•	Click Save.

•	Click Write to write the operating system to the microSD card.

•	Wait until writing and verifying are finished (Figure 1.17).

•	Remove the microSD card and insert into your Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 27Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 27 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 28

Figure 1.17: Writing to the micro SD card.

If you have a monitor and keyboard, you can log in to your raspberry Pi 5 directly and start
using it. Otherwise, find the IP address of your Raspberry Pi 5 (e.g., from your router, or
there are many apps for smartphones, such as who's on my wifi, showing all the devices
connected to your router with their IP addresses). Then log in to your Raspberry Pi 5 and
start using it.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 28Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 28 04-04-2024 13:1904-04-2024 13:19

Chapter 2 ● Using a Text editor, Creating and Running a Python Program

● 29

Chapter 2 ● �Using a Text editor, Creating and Running a
Python Program

A text editor is used to create or modify the contents of a text file. There are many text
editors available for the Linux operating system. Some popular ones are nano, vim, vi, and
many more. In this Chapter, you will be learning how to use the popular text editor called
nano. Additionally, you will be learning the different methods of creating and running a
Python program.

2.1 The nano Text Editor
This is probably the most commonly used text editor. Start the nano text editor by entering
the word nano, followed by the filename you wish to create or modify. An example is given
below, where a new file called first.txt is created:

	 pi@raspberrypi: ~ $ nano first.txt

You should see the editor screen as in Figure 2.1. The name of the file to be created or
modified is displayed at the top middle part of the screen. The message New File at the
bottom of the screen shows that this is a newly created file. The shortcuts at the bottom of
the screen are there to perform various editing functions. These shortcuts are accessed by
pressing the Ctrl key together with another key. Some of the useful shortcuts are described
below:

Ctrl+W: Search for a word.
Ctrl+V: Move to next page.
Ctrl+Y: Move to previous page.
Ctrl+K: Cut the current row of txt.
Ctrl+R: Read file.
Ctrl+U: Paste the text you previously cut.
Ctrl+J: Justify.
Ctrl+\: Search and replace text.
Ctrl+C: Display current column and row position.
Ctrl+G: Get detailed help on using nano.
Ctrl+-: Go to specified line and column position.
Ctrl+O: Save (write out) the file currently open.
Ctrl+X: Exit nano.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 29Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 29 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 30

Figure 2.1: nano text editor screen.

Now, type the following text as shown in Figure 2.2:

nano is a simple and yet powerful text editor.
This simple text example demonstrates how to use nano.
This is the last line of the example.

Figure 2.2: Sample text.

The use of nano is now demonstrated with the following steps.

Step 1: Go the beginning of the file by moving the cursor up and left.

Step 2: Look for word simple by pressing Ctrl+W and then typing simple in the window
opened at the bottom left hand corner of the screen. Press the Enter key. The cursor will be
positioned on the word simple (see Figure 2.3).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 30Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 30 04-04-2024 13:1904-04-2024 13:19

Chapter 2 ● Using a Text editor, Creating and Running a Python Program

● 31

Figure 2.3: Searching the word 'simple'.

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing
Ctrl+K. The first line will disappear as in Figure 2.4.

Figure 2.4: Cutting the first line.

Step 4: Paste the line cut after the second line. Place the cursor on the third line and press
Ctrl+U (see Figure 2.5).

Figure 2.5: Paste the line cut previously.

Step 5: Place cursor at the beginning of word simple on the first line. Enter Ctrl+C. The
row and column positions of this word will be displayed at the bottom of the screen (Figure
2.6).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 31Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 31 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 32

Figure 2.6: Displaying row and column position of a word.

Step 6: Press Ctrl+G to display help page as in Figure 2.7. Notice that the display is many
pages long and you can jump to the next pages by pressing Ctrl+Y or to the previous
pages by pressing Ctrl+V. Press Ctrl+X to exit the help page.

Figure 2.7: Displaying the Help page.

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter
key, to move cursor to line 2, column 5 (Figure 2.8).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 32Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 32 04-04-2024 13:1904-04-2024 13:19

Chapter 2 ● Using a Text editor, Creating and Running a Python Program

● 33

Figure 2.8: Move cursor to specified line and column.

Step 8: Replace word example with word file. Press Ctrl+\ and type the first word as
example (see Figure 2.9). Press Enter and then type the replacement word as file. Press
Enter and accept the change by typing y.

Figure 2.9: Replacing text.

Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then
enter the filename to be written to, or simply press Enter to write to the existing file (first.
txt in this example). The file will be saved in your current working directory.

Step 10: Display the contents of the file:

pi@raspberrypi: ~ $ cat first.txt
This simple text file demonstrates how to use nano.
This is the last line of the example.
Nano is a simple and yet powerful text editor
pi@raspberrypi: ~ $

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 33Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 33 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 34

In summary, nano is a simple and yet powerful text editor allowing us to create new text
files or to modify existing files.

2.2 Creating and Running a Python Program
You're now ready to start programming your Raspberry Pi 5 using the Python language.
It is worthwhile to look at the creation and running of a simple Python program on your
Raspberry Pi 5 computer. In this chapter, the message Hello From Raspberry Pi 5 will be
displayed on your PC screen.

As described below, there are 3 methods that you can create and run Python programs on
your Raspberry Pi 5.

2.2.1 Method 1 — Interactively from command prompt in Console mode
In this method, you will login to your Raspberry Pi 5 using the SSH and then create and run
the Python program interactively. This method is excellent for small programs. The steps
are as follows:

•	Log in to the Raspberry Pi 5 using SSH.

•	At the command prompt, enter python. You should see the Python command
mode which is identified by three characters >>>

•	Type the program:

print ("Hello From Raspberry Pi 5")

•	The text will be displayed interactively on the screen as shown in Figure 2.10.
Note that at the time of writing this book the Python version was: 3.11.2.

Figure 2.10 Running a Python program interactively

•	Type Cntrl+z to exit from the program.

In this method, you will log in to your Raspberry Pi 5 using the SSH as before and then
create a Python file. A Python file is simply a text file with the extension .py. You can use a
text editor, e.g. the nano text editor to create your file. In this example, a file called hello.
py is created using the nano text editor. Figure 2.11 shows the contents of file hello.py.
This figure also shows how to run the file under Python. Notice that the program is run by
entering the command:

>>> python hello.py

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 34Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 34 04-04-2024 13:1904-04-2024 13:19

Chapter 2 ● Using a Text editor, Creating and Running a Python Program

● 35

Figure 2.11: Creating and running a Python file.

In this method, you can login to your Raspberry Pi 5 using either a directly connected
monitor and keyboard through the mini HDMI port, or if you don't have a monitor, you
can login to the Desktop using the VNC as described earlier, and then create and run your
Python programs in GUI mode using the Thonny IDE. It is worthwhile at this stage to learn
the basics of using the Thonny IDE.

The 'Thonny' IDE
Start the Thonny IDE from the Desktop GUI under the Programming menu. Figure 2.12
shows the Thonny start up menu.

Figure 2.12: Thonny IDE startup menu.

The screen consists of two parts: the upper part is where you write your programs, and the
lower part is the shell where small interactive program codes can be written. This part is
mainly used for testing small program codes.

In the upper part contains the following menu items:

File: Open, close, or save a file.
Edit: Cut, paste, indent, select, toggle comment, uncomment, find & replace, clear
shell.
View: Exception, files, help, notes, shell, stack, variables, font size, plotter.
Run: Configure interpreter, run script, debug script, stop/start, interrupt execution.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 35Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 35 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 36

Tools: Manage packages, open program folder, open data folder, and manage plug-ins.
Help: Help contents, version history, report problems, about Thonny.

The Thonny IDE must be configured before it is used to write and upload programs to your
Raspberry Pi 5. Click the bottom right corner of the screen to select your processor type and
select Local Python 3. You are now ready to write your program. The steps are:

•	Type the following code to the upper part of the screen:

		 print("Hello from Raspberry Pi 5")

•	Click File  Save and save with the name hello.py (Figure 2.13)

Figure 2.13: Type your program and then save it.

•	Click the Run icon (green menu button at the top) to run the program. The
output of the program will be displayed at the bottom of the screen as shown in
Figure 2.14.

Figure 2.14: Run the program.

You can run small programs in interactive mode by entering them at the lower part of the
screen under Shell. The results will be displayed under Shell immediately.

2.3 Which method?
The choice of a method depends upon the size and complexity of a program. Small programs
can be run interactively in Shell under Thonny or directly in the Console mode (after typing
python) without creating a program file. Larger programs can be created as Python files
using the nano text editor and then they can then run either in the Console mode (after
typing python followed by the filename with extension .py), or in Desktop GUI mode under
the Thonny IDE. Running under the Thonny IDE has the advantage that justification of

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 36Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 36 04-04-2024 13:1904-04-2024 13:19

Chapter 2 ● Using a Text editor, Creating and Running a Python Program

● 37

the code is corrected automatically by the IDE as you write the code. In this book, the
Thonny IDE is used for small programs and the nano text editor is used for larger programs
to create the program files.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 37Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 37 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 38

Chapter 3 ● Amateur Radio Programs – Software-Only

3.1 Overview
This chapter presents simple electronic engineering based Python programs for your
Raspberry Pi 5 with a particular interest to radio amateurs designing and analyzing
elementary RF circuitry. The programs discussed are software-only, meaning they do not
use any external hardware to produce results.

3.2 4-Band Resistor Color Code Identifier
In this project, the user enters the three colors of a 4-band resistor and the program
calculates and displays the value of the resistor in Ohms. The tolerance of the resistor is
not displayed.

Resistor values are identified by the following color codes:

Black: 	 0
Brown: 	 1
Red: 	 2
Orange: 	 3
Yellow: 	 4
Green: 	 5
Blue: 	 6
Violet: 	 7
Grey:	 8
White: 	 9

The first two color determine the first two digits of the value while the last color determines
the multiplier. For example, red red brown corresponds to 22 × 10 = 220 ohms (Figure
3.1).

Figure 3.1: A 220-ohm resistor,

Program listing: Figure 3.2 shows the program listing (program: resistor.py). At the
beginning of the program a list called color is created which stores the valid resistor colors.
Then a heading is displayed and a while loop is created which runs as long as string variable
yn is equal to y. Inside the loop the program reads the three colors from the keyboard
using functions input and stores as strings in variables FirstColour, SecondColour and
ThirdColour. These strings are then converted into lower case so that they are compatible
with the values listed in the list box. The index values of these colors in the list are then
found using function calls of the form colours.index. Remember that the index values
start from 0. As an example if the user entered red then the corresponding index value
will be 2. The resistor value is then calculated by multiplying the first color number by 10

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 38Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 38 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 39

and adding to the second color number. The result is then multiplied by the power of 10
of the third color index. The final result is displayed on the screen. The program then asks
whether or not the user wants to continue. If the answer is y then the program returns to
the beginning, otherwise the program is terminated.

#===
RESISTOR COLOUR CODES

#
The user enters the three colours of a resistor
and the program calculates and displays the value
of the resistor in Ohms
#
Program: resistor.py
Date : February, 2024
Author : Dogan Ibrahim
#===
colours = ['black','brown','red','orange','yellow','green',\
'blue','violet','grey','white']

print("RESISTOR VALUE CALCULATOR")
print("=========================")
yn = "y"

while yn == 'y':
 FirstColour = input("Enter First Colour: ")
 SecondColour = input("Enter Second Colour: ")
 ThirdColour = input("Enter Third Colour: ")
#
Convert to lower case

 FirstColour = FirstColour.lower()
 SecondColour = SecondColour.lower()
 ThirdColour = ThirdColour.lower()
#
Find the values of colours
#
 FirstValue = colours.index(FirstColour)
 SecondValue = colours.index(SecondColour)
 ThirdValue = colours.index(ThirdColour)
#
Now calculate the value of the resistor
#
 Resistor = 10 * FirstValue + SecondValue
 Resistor = Resistor * (10 ** ThirdValue)
 print("Resistance = %d Ohms" % (Resistor))

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 39Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 39 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 40

#
Ask for more

 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 3.2: Program listing.

Figure 3.3 shows a typical run of the program where 220-ohm and 2200-ohm resistors are
identified. The program was run in Console mode with the following command:

	 pi@raspberrypi: ~ $ python resistor.py

Figure 3.3: Typical run of the program.

3.3 4-Band Resistor Color Code Identifier Including Very Small Resis-
tors
The program given in Figure 3.2 can calculate the values of resistors with a value greater
than or equal to 10 ohms. For smaller resistors, gold and silver colors are used as the third
color. Gold divides the result by 10 and silver divides by 100. For example, red red silver
corresponds to 0.22 ohms (Figure 3.4). This program calculates the values of all types of
resistors identified by 4 color bands.

Figure 3.4: A 0.22-ohm resistor.

Program listing: Figure 3.5 shows the program listing (program: resistor2.py). The
colors gold and silver are added to the list. The indexes of gold and silver in the list are
10 and 11, respectively. Most of the program is same as in Figure 3.2, except that if the

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 40Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 40 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 41

third color is gold then the result is divided by 10. Similarly, if the third color is silver then
the result is divided by 100. Notice that if the resistor value is less than 10 ohms then it is
displayed in floating point format with two digits after the decimal point by using the print
formatting parameter %3.2f.

#===
RESISTOR COLOUR CODES

#
The user enters the three colours of a resistor
and the program calculates and displays the value
of the resistor in Ohms. The program identifies all
types of resistors with 4 colour bands
#
Program: resistor2.py
Date : February, 2024
Author : Dogan Ibrahim
#===
colours = ['black','brown','red','orange','yellow','green',\
'blue','violet','grey','white', 'gold', 'silver']

print("RESISTOR VALUE CALCULATOR")
print("=========================")
yn = "y"

while yn == 'y':
 FirstColour = input("Enter First Colour: ")
 SecondColour = input("Enter Second Colour: ")
 ThirdColour = input("Enter Third Colour: ")
#
Convert to lower case

 FirstColour = FirstColour.lower()
 SecondColour = SecondColour.lower()
 ThirdColour = ThirdColour.lower()
#
Find the values of colours
#
 FirstValue = colours.index(FirstColour)
 SecondValue = colours.index(SecondColour)
 ThirdValue = colours.index(ThirdColour)
#
Now calculate the value of the resistor
#
 Resistor = 10 * FirstValue + SecondValue
 if ThirdValue == 10:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 41Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 41 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 42

 Resistor = Resistor / 10.0
 print("Resistance = %3.2f Ohms" % (Resistor))
 elif ThirdValue == 11:
 Resistor = Resistor/100.0
 print("Resistance = %3.2f Ohms" % (Resistor))
 else:
 Resistor = Resistor * (10 ** ThirdValue)
 print("Resistance = %d Ohms" % (Resistor))
#
Ask for more

 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 3.5: Program listing.

Figure 3.6 shows a typical run of the program. The program was run in Console mode with
the following command:

	 pi@raspberrypi: ~ $ python resistor2.py

Figure 3.6: Typical run of the program.

3.4 Series or Parallel Resistors
This program calculates the total resistance of a number of series- or parallel-connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

When a number of resistors are in series, the resultant resistance is the sum of the resistance
of each resistor. When the resistors are in parallel, the reciprocal of the resultant resistance
equals the sum of the reciprocal resistances of each resistor.

Program Listing: Figure 3.7 shows the program listing (program: serpal.py). At the
beginning of the program a heading is displayed and the program enters into a while loop.
Inside this loop, the user is prompted to enter the number of resistors in the circuit and

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 42Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 42 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 43

whether they are connected in series or in parallel. Function str converts a number into
its equivalent string. e.g., number 5 is converted into string "5". If the connection is serial
(mode equals to 's') then the value of each resistor is accepted from the keyboard and the
resultant is calculated and displayed on the screen. If on the other hand the connection
is parallel (mode is equals to 'p') then again the value of each resistor is accepted from
the keyboard and the reciprocal of the number is added to the total. When all the resistor
values are entered, the resultant resistance is displayed on the screen.

#===
RESISTORS IN SERIES OR PARALLEL

#
This program calculates the total resistance of
serial or parallel connected resistors
#
Program: serpal.py
Date : February, 2024
Author : Dogan Ibrahim
#===
print("RESISTORS IN SERIES OR PARALLEL")
print("===============================")
yn = "y"

while yn == 'y':
 N = int(input("\nHow many resistors are there?: "))
 mode = input("Are the resistors series (s) or parallel (p)?: ")
 mode = mode.lower()
#
Read the resistor values and calculate the total
#
 resistor = 0.0

 if mode == 's':
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = int(input(s))
 resistor = resistor + r
 print("Total resistance = %d Ohms" %(resistor))

 elif mode == 'p':
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = float(input(s))
 resistor = resistor + 1 / r
 print("Total resistance = %.2f Ohms" %(1 / resistor))
#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 43Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 43 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 44

Check if the user wants to exit
#
 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 3.7: Program listing.

Figure 3.8 shows a typical run of the program.

Figure 3.8: Typical run of the program.

3.5 Capacitor Identification
The marking of capacitor values depends on the type of capacitor used.

Electrolytic capacitors
As shown in Figure 3.9, the capacitance, maximum working voltage, and the polarity of
these capacitors are marked on the body of the capacitor. In the image, the capacitor is
1000 μF and its maximum working voltage is16 V.

Figure 3.9: Electrolytic capacitor marking.

Ceramic capacitors
These capacitors have 3-digit numeric markings on them. First two digits are the capacitance
values and the third digit is the multiplier as follows:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 44Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 44 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 45

•	0: multiply by 1
•	1: multiply by 10
•	2: multiply by 100
•	3: multiply by 1000
•	4: multiply by 10,000
•	5: multiply by 100,000
•	6: multiply by 1,000,000

For example, the capacitor with marking 100 is 10 × 1 = 10 pF (Figure 3.10). Similarly,

101 is 10 × 10 = 100 pF
102 is 10 × 100 = 1000 pF
103 is 10 × 1000 = 10,000 pF (10 nF)

and so on.

Figure 3.10: A 10,000-pF (10-nF) ceramic capacitor.

Program listing: Figure 3.11 shows the program listing (program: capacitor.py). At the
beginning of the program, a heading is displayed and the program enters into a while loop.
Inside this loop the user is prompted to enter the marking on the capacitor (e.g., 102). The
program then calculates the value of the capacitor and displays on the screen.

#==
CAPACITOR IDENTIFICATION

#
The user enters the marking on the capacitor (e.g. 102)
and the program displays the capacitance in pF
#
Program: capacitor.py
Date : February, 2024
Author : Dogan Ibrahim
#==
print("CAPACITOR VALUE CALCULATOR")
print("==========================")
yn = "y"

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 45Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 45 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 46

while yn == 'y':
 Marking = input("Enter the marking on the capacitor (e.g. 102): ")
#
Find the value and multiplier
#
 Multiplier = int(Marking[2])
 Value = int(Marking[0:2])
 Cap = Value * 10 ** Multiplier
 print("Capacitance = %d pF" % (Cap))
#
Ask for more

 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 3.11: Program listing.

Figure 3.12 shows a typical run of the program.

Figure 3.12: Typical run of the program.

3.6 Capacitors in Series or in Parallel
This program calculates the total capacitance of a number of series- or parallel-connected
capacitors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of capacitors used is also specified at the beginning of the program.

When a number of capacitors are in parallel then the resultant capacitance is the sum of the
capacitance of each capacitor. When the capacitors are in series then the reciprocal of the
resultant capacitance is equal to the sum of the reciprocal capacitances of each capacitor.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 46Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 46 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 47

Program Listing: Figure 3.13 shows the program listing (program: capserpal.py). At the
beginning of the program a heading is displayed and the program enters into a while loop.
Inside this loop, the user is prompted to enter the number of capacitors in the circuit and
whether they are connected in series or in parallel. Function str converts a number into
its equivalent string. e.g., number 5 is converted into string "5". If the connection is serial
(mode equals to 's') then the value of each capacitor is accepted from the keyboard and
the resultant is calculated and displayed on the screen. If on the other hand the connection
is parallel (mode is equals to 'p') then again the value of each capacitor is accepted from
the keyboard and the reciprocal of the number is added to the total. When all the capacitor
values are entered, the resultant capacitance is displayed on the screen. Note that the
entered capacitors must all have the same units.

#===
CAPACITORS IN SERIES OR PARALLEL

#
This program calculates the total capacitance of
serial or parallel connected capacitors
#
Program: capserpal.py
Date : February, 2024
Author : Dogan Ibrahim
#===
print("CAPACITORS IN SERIES OR PARALLEL")
print("================================")
print()
print("Use same units for all capacitors")
yn = "y"

while yn == 'y':
 N = int(input("\nHow many capacitors are there?: "))
 mode = input("Are the capacitors series (s) or parallel (p)?: ")
 mode = mode.lower()
#
Read the capacitor values and calculate the total
#
 capacitor = 0.0

 if mode == 'p':
 for n in range(0,N):
 s = "Enter capacitor " + str(n+1) + ": "
 r = int(input(s))
 capacitor = capacitor + r
 print("Total capacitance = %d" %(capacitor))

 elif mode == 's':

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 47Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 47 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 48

 for n in range(0,N):
 s = "Enter capacitor " + str(n+1) + ": "
 r = float(input(s))
 capacitor = capacitor + 1 / r
 print("Total capacitance = %.2f" %(1 / capacitor))
#
Check if the user wants to exit
#
 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 3.13: Program listing.

Figure 3.14 shows a typical run of the program.

Figure 3.14: Typical run of the program.

3.7 Resistive Potential Divider
Resistive potential divider circuits typically consist of two or more resistors. These circuits
are used to lower a voltage to a desired value. Figure 3.15 shows a typical resistive potential
divider circuit. Here, Vin and Vo are the input and output voltages, respectively. R1 and R2
is the resistor pair used to lower the voltage from Vin to Vo. A large number of resistor pairs
can be used to get the desired output voltage. Choosing high-value resistors draws little
current from the circuit, and choosing low-value resistors draws larger currents. In this
design, the user specifies Vin, Vo, and R2. The program calculates the required R1 value to
lower the voltage to the desired level. Additionally, the program displays the output voltage
with the chosen physical resistors.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 48Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 48 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 49

Figure 3.15: Resistive potential divider circuit.

The output voltage is given by:

	 Vo = Vin R2 / (R1 + R2)

R1 is then given by:

	 R1 = (Vin – Vo) R2/ Vo

The above formula is used to calculate the required value of R1, given Vin, Vo, and R2.

Program listing: Figure 3.16 shows the program listing (program: divider.py). At the
beginning of the program, a heading is displayed. The program then reads Vin, Vo, and R2
from the keyboard. The program calculates R1 and displays R1 and R2. The user is then
asked to enter a chosen physical value for R1. With the chosen value of R1, the program
displays Vin, Vo, R1, and R2 and asks the user whether or not the result is acceptable. If the
answer to this question is y then the program terminates. If on the other hand the answer
is n then the user is given the option of trying again.

#==
RESISTIVE POTENTIAL DIVIDER

#
This is a resistive potential divider circuit program.
The program calculates the resistance values that will
lower the input voltage to the desired value
#
Program: divider.py
Date : February, 2024
Author : Dogan Ibrahim
#===
print("RESISTIVE POTENTIAL DIVIDER")
print("===========================")
R1flag = 1
R2flag = 0

while R1flag == 1:
 Vin = float(input("\nInput voltage (Volts): "))
 Vo = float(input("Desired output voltage (Volts): "))

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 49Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 49 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 50

 R2 = float(input("Enter R2 (in Ohms): "))
#
Calculate R1

 R1 = R2 * (Vin - Vo) / Vo
 print("\nR1 = %3.2f Ohms R2 = %3.2f Ohms" %(R1, R2))
#
Read chosen physical R1 and display actual Vo
#
 NewR1 = float(input("\nEnter chosen R1 (Ohms): "))

#
Display and print the output voltage with chosen R1
#
 print("\nWith the chosen R1,the results are:")
 Vo = R2 * Vin / (NewR1 + R2)
 print("R1 = %3.2F R2 = %3.2f Vin = %3.2f Vo = %3.3f" %(NewR1,R2,Vin,Vo))
#
Check if happy with the values ?
#
 happy = input("\nAre you happy with the values? ")
 happy = happy.lower()
 if happy == 'y':
 break
 else:
 mode = input("Do you want to try again? ")
 mode = mode.lower()
 if mode == 'y':
 R1flag = 1
 else:
 R1flag = 0
 break

Figure 3.16: Program listing.

Figure 3.17 shows a typical run of the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 50Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 50 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 51

Figure 3.17: Typical run of the program.

3.8 Resistive Attenuator Design
A resistive attenuator is a two-port resistive circuit designed to attenuate the voltage and
hence the power applied to its input terminals. Attenuators are generally used in radio,
audio, and communication circuits to weaken a (too) strong signal. Attenuators are also
used to provide impedance matching between a source and a load. The performance of
an attenuator is expressed by the number of decibels (dB) the input signal has decreased.
Expressed mathematically, the logarithm to base 10 of the ratio of the output signal to the
input signal, multiplied by 20 is known as the decibel:

dB = 20 log10 Vo / Vin

For example, if the ratio of output/input voltage is 0.707, this corresponds to –3 dB.
Similarly, a ratio of 0.5 corresponds to –6 dB. To find the actual voltage ratio with a given
dB, we have to take the anti-logarithm as given by the following formula:

	 Vo / Vin = antilog10 (dB / 20)

As an example, –10dB corresponds to the voltage ratio of Vo / Vin = antilog10 (–0.5) =
0.316.

In this example, you get to calculate the resistances in a resistive attenuator circuit where
the source and the load resistances may or may not be equal to each other. In this section,
you will only consider a 'pi' (π) type network shown in Figure 3.18.

Figure 3.18: Pi type attenuator.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 51Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 51 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 52

The design equations are as shown in Figure 3.19.

Figure 3.19: Pi attenuator design equations.

Program listing: Figure 3.20 shows the program listing (program: attenuator.py). After
displaying a heading, the user is prompted to enter the source and the load resistances ZS
and ZL, and the attenuation factor K in decibels. The program calculates and displays the
values of the resistors.

#--
#	 	 RESISTIVE Pi ATTENUATOR DESIGN
#	 	 ==============================
#
This program designs a Pi type resistive attenuator
where the source and the load resistances may be
different to each other
#
Author: Dogan Ibrahim
File : attenuator.py
Date : February, 2024
#--
import math

print("Resistive Attenuator Design")
print("===========================")
ZS = float(input("Enter source resistance in Ohms: "))
ZL = float(input("Enter load resistance in Ohms: "))
Kdb = float(input("Enter attenuation Factor in dB: "))
K = pow(10.0, Kdb/20.0)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 52Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 52 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 53

R1 = ZS * ((K * K - 1) / (K * K - 2 * K * math.sqrt(ZS / ZL) + 1))
R2 = 0.5 * (math.sqrt(ZS * ZL)) * (K * K - 1) / K
R3 = ZL * ((K * K - 1) / (1 + K * K - (2 * K / math.sqrt(ZS/ZL))))

print("\nResults:")
print("-------")
print("ZS = %f Ohms\nZL = %f Ohms\nK = %f dB\nK (Vi/Vo) = %f\nR1=%f Ohms\nR2=%f
Ohms\nR3=%f Ohms"%(ZS, ZL, Kdb, K, R1, R2, R3))

Figure 3.20: Program listing.

An example run of the program is shown in Figure 3.21. The design parameters are as
follows:

source resistance, ZS = 75 ohms
load resistance, ZL = 50 ohms
attenuation factor = 6 decibels

Figure 3.21: Example run of the program.

The designed circuit is shown in Figure 3.22.

Figure 3.22: Designed attenuator circuit.

3.9 RC Charging Transient Circuit Response
RC circuits are used in many radio and communications circuits. A typical RC transient
circuit consists of a resistor in series with a capacitor as shown in Figure 3.23. When the
switch is closed, the voltage across the capacitor rises exponentially with a time constant,
T = RC.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 53Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 53 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 54

Figure 3.23: Charging RC circuit.

Expressed mathematically, assuming that initially the capacitor is discharged, when the
switch is closed the voltage across the capacitor rises a given by the following formula:

	

Initially, the voltage across the capacitor is 0 V, and in steady state the voltage across the
capacitor becomes equal to Vin. The time constant is the time where the output voltage
rises to around 63.2% of its final value.

Program Listing: This example uses the Matplotlib Python plotting library that can be
used to create two dimensional graphs. Before using this package, it has to be installed on
your Raspberry Pi 5 using the following command:

	 pi@raspberrypi:~ $ sudo apt-get install python3-matplotlib

You must import module matplotlib at the beginning of you programs using the statement:

	 import matplotlib.pyplot as plt

Figure 3.24 shows the program listing (program: RCrise.py). After displaying heading,
the values of the input voltage Vin, and resistor and capacitor values are read from the
keyboard. The program then calculates the time constant as T=RC and displays the time
constant and also draws the time response of the circuit. The graph is drawn as the time
value (x-axis) changes from 0 to 6T and 50 points are taken to draw the graph. The time
constant is also written on the graph at the point (Time constant, Vin / 2). The horizontal
axis is in seconds, while the vertical axis is in volts.

#--
#	 	 RC TRANSIENT RESPONSE
#	 	 =====================
#
This program reads the R and C values and then
calculates and displays the time conctant. Also,
the time response of teh circuit is drawn
#
Author: Dogan Ibrahim
File : RCrise.py

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 54Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 54 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 55

Date : February, 2024
#--
import matplotlib.pyplot as plt
import numpy as np
import math

print("RC Transient Response")
print("=====================")

#
Read Vin, R and C
#
Vin = float(input("Enter Vin in Volts: "))
R = float(input("Enter R in Ohms: "))
C = float(input("Enter C in microfarads: "))
C = C / 1000000.0

#
Calculate and display time constant
#
T = R * C
F = 6.0 * T
N = F / 50.0
print("Time constant = %f seconds" %(T))

#
Now plot the time response
#
x = np.arange(0, F, N)
y = [(Vin * (1.0 - math.exp(-i/T))) for i in x]

plt.plot(x, y)
plt.xlabel("Time (s)")
plt.ylabel("Capacitor Volts")
plt.title("RC Response")
plt.grid(True)
TC = "T="+str(T)+"s"
plt.text(T, Vin/2, TC)
plt.show()

Figure 3.24: Program listing.

Figure 3.25 shows an example graph displayed by the program. Notice that the program
must run in Desktop GUI mode (e.g., using the Terminal menu). In this program the
following input values were used (see Figure 3.26):

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 55Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 55 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 56

	 Vin = 10 volts
	 R = 100 ohms
	 C = 10 microfarads

The time constant was calculated to be 0.1 seconds.

Figure 3.25: Graph plotted by the program.

Figure 3.26: Input values to the example program.

3.10 Calculating the Inductance of a Single-Layer, Air-Core Coil
Single layer coils are used in almost all communications equipment. In this example, we
will calculate the inductance of an air core single layer coil, given its diameter, length, and
the number of turns.

The inductance of a single-layer air-core coil can be calculated using the well-known
Wheeler's formula. The formula given below is accurate to within 1% for L/D > 0.4 i.e.,
given that the coil is not too short. For short coils, this formula is not very suitable:

	

Where L is the inductance in microhenries, N is the number of turns, D is the diameter of
the coil in cm, and Len is the length of the coil in cm.

Program listing: Figure 3.27 shows the program listing (program: coil.py). The program
reads D, N, and L from the keyboard. The inductance is then calculated and displayed. The
user is warned that the results may not be accurate if the coil is short. Figure 3.28 shows
a typical run of the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 56Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 56 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 57

#===
Inductance of a Single Layer Coil
=================================
#
This program calculates the inductance of a single layer air
core coil. Number of turns,diameter,and length are read from keyboard
#
Author: Dogan Ibrahim
File : coil.py
Date : February, 2024
#===

N = float(input("Enter Number of turns: "))
D = float(input("Enter Diameter (cm): "))
L = float(input("Enter Length (cm): "))

#
Now carry out the calculation and display the inductance
#
Ind = (D * D * N * N) / (45 * D + 100* L)
print("Inductance = %10.4f" %(Ind))
if L / D <= 0.4:
 print("Coil is too short, may not be accurate")
else:
 print("Inductance (microhenries)= %10.4f" %(Ind))

Figure 3.27: Program listing.

Figure 3.28: Typical run of the program.

3.11 Constructing a single layer coil for required inductance
In this example, we will read the coil diameter D, coil length Len, and the required inductance
and then calculate the required number of turns N. Also, the diameter of the required wire
is displayed, assuming the coil is wound closely with the wires touching each other.

The coil design equation can be written as:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 57Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 57 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 58

The required wire diameter is given by Len/N.

Program listing: Figure 3.29 shows the program listing (program: coil2.py). The program
reads D, Len, and L and calculates and displays N and the wire diameter. An example run
of the program is given in Figure 3.30.

#===
#		 Inductance of a Single Layer Coil
#		 =================================
#
This program calculates the required number of turns of a single
layer air core coil. Also, the wire diameter is calculated
#
Author: Dogan Ibrahim
File : coil2.py
Date : February, 2024
#===
import math

L = float(input("Enter inductance (microhenries): "))
D = float(input("Enter Diameter (cm): "))
Len = float(input("Enter Length (cm): "))

#
Now carry out the calculation and display N
#
N = (45 * D + 100 * Len) * L / (D * D)
N = math.sqrt(N)
print("Number of turns = %10.4f" %(N))
W = 10 * Len / N
print("Wire diameter (mm) = %10.4f" %(W))

Figure 3.29: Program listing.

Figure 3.30: Example run of the program.

3.12 Calculating the Capacitance for Required Resonance Frequency
In a series resonance, RLC circuit there is a frequency point where the capacitive reactance
of the capacitor becomes equal to the inductive reactance of the inductor. The point at
which this occurs is called the resonant frequency of the circuit. Series-resonance circuits
are used in tuned circuits in communication systems, mains filters, noise filters etc. The
resonant frequency fr of an RLC circuit is given by the following formula:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 58Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 58 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 59

	

Given the required frequency and inductor values, the required capacitor value can be
calculated from the following formula:

	

Program listing: Figure 3.31 shows the program listing (program: rescap.py). The
required frequency (in Hz) and inductor value (in mH) are entered. The program calculates
the required capacitor value in μF.

#==
#		 Capacitor value in Resonance
#		 ============================
#
This program reads the required frequency and inductor values
and calculates the capacitor value
#
Author: Dogan Ibrahim
File : rescap.py
Date : February, 2024
#==
import math
pi = 3.14159

#
Read the circuit components
#
L = float(input("Enter L (in mH): "))
f = float(input("Enter f (in Hz): "))

L = L /1000.0			 # convert to Henries

#
Now carry out the calculations
#
C = 1 / (4 * pi * pi * L * f * f)
Cuf = C * 1000000.0

print("C(in uF) = %10.2f" %(Cuf))

Figure 3.31: Program listing.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 59Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 59 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 60

Figure 3.32 shows an example run of the program.

Figure 3.32: Example run of the program.

3.13 DC Circuits Mesh Analysis
Mesh analysis is a method of representing an electrical circuit as a matrix and then analyzing
and calculating the current and voltages in the circuit. In this example, we will analyze a
simple DC circuit consisting of three resistors and two batteries. It is assumed that the
readers are familiar with the basic circuit theory and have analyzed circuits using the mesh
analysis before.

In mesh analysis, we assume currents in each loop of the circuit and then enter the circuit
elements (resistors and batteries in this case). Then the matrix equation Ax = b is formed
where A represent the circuit elements in terms of resistances, x represents the currents
in the circuit, and b represents the voltage sources (e.g., batteries). The matrix equation is
then solved as shown in the examples earlier in this chapter. After calculating the currents
in the circuit, we can easily calculate the voltage across every resistor.

In this example, the circuit shown in Figure 3.33 is used as an example. This circuit consists
of 3 resistors: 10 ohms, 20 ohms, and 40 ohms, and two voltage sources (batteries): 10
volts and 20 volts.

Figure 3.33: Circuit to be analyzed.

From an inspection of the circuit, we can write the elements of matrices A, b, and x for this
circuit are as follows:

Here,

	

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 60Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 60 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 61

Just as a reminder, assuming that the currents in each loop are taken in the same direction
(e.g., clockwise):

A11 = Sum of all the resistances in loop1.
A12 = Sum of all the resistances common to loop 1 and loop 2 (negative).
A21 = Sum of all the resistances common to loop 2 and loop 1 (negative).
A22 = Sum of all the resistances in loop 2.

Program Listing: Figure 3.34 shows the program listing (program: mesh.py). At the
beginning of the program, a heading is displayed. Arrays A and b are cleared (filled with
zeroes). The program then reads the number of rows of the A matrix, which is also equal to
the number of columns. Then the elements of A and b matrices are read and the currents
are calculated and displayed. As shown in Figure 3.35, the currents in the two loops are:
I1 = –0.143 A and I2 = –0.429 A. We can then calculate the voltage across each resistor
as follows:

Voltage across 10 ohm resistor = 10 × I1 = –1.43 volts
Voltage across 40 ohm resistor = 40 × (I1 – I2) = 11.44 volts
Voltage across 20 ohm resistor = 20 × I2 = –8.58 volts

#==
#		 CIRCUIT MESH ANALYSIS
#		 =====================
#
This program carries out mesh analysis of a circuit.
The user enters the circuit elements in the form of
A and b matrices and the program calculates and
displays the values of the currents in the circuit
#
Author: Dogan Ibrahim
File : mesh.py
Date : February, 2023
#==
from numpy import array
from numpy import *
from numpy.linalg import solve

print("Circuit Mesh Analysis")
print("=====================")
rows = int(input("Enter number of rows of A: "))
cols = rows
A = zeros((rows, cols))
b = zeros(rows)

#
Read the matrix A elements

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 61Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 61 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 62

#
for i in range(0, rows):
 for j in range(0, cols):
 A[i, j] = float(input("Enter A%d%d:" %(i+1, j+1)))

#
Read the matrix b elements
#
print("")
for i in range(0, rows):
 b[i] = float(input("Enter b%d:" %(i+1)))

#
Calculate and display the currents in the circuit
#
x = solve(A, b)

print("\nResults:")
for i in range(0, rows):
 print("I%d = %7.3fA" %(i+1, x[i]))

Figure 3.34: Program listing.

Figure 3.35: Calculating the currents in the circuit.

3.13.1 DC Circuits mesh analysis — a more complex example
In this example, a more complex circuit is given which includes a current source in addition
to voltage sources. The currents in the circuit are calculated using the program mesh.py.

The circuit used in this example is shown in Figure 3.36 — it consists of four resistors, a
voltage source, and a current source.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 62Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 62 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 63

Figure 3.36: Circuit for the example.

The circuit shown in Figure 3.36 can be converted into its equivalent circuit by replacing the
current source with voltage source as shown in Figure 3.37.

Figure 3.37: Equivalent circuit of Figure 3.36.

The circuit now consists of two loops with 4 resistors. Using the mesh analysis program, the
current in the circuit are calculated to be: I1 = 0.182 A, I2 = –0.182 A as shown in Figure
3.38.

Figure 3.38: Calculating currents in the circuit.

3.14 DC Circuit Node Analysis
In this example, we analyze a simple circuit using the node analysis method. Node analysis
gives the voltages at the node points of the circuit.

Node analysis is similar to mesh analysis but here you have to enter the circuit elements at
the nodes of the circuit. If there are n nodes in a circuit then there will be n-1 independent
equations where one node is taken to be the reference node. Then the matrix equation
Ax = b is formed where A represent the circuit elements in terms of conductance (inverse
or resistance), x represents the voltages at each node in the circuit, and b represents the
current sources. The matrix equation is then solved as shown in the examples earlier in
this chapter. After calculating the voltages in the circuit, we can easily calculate the current
through every resistor.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 63Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 63 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 64

In this section, the circuit shown in Figure 3.39 is used as an example. This circuit consists
of four resistors and two current sources, and has three nodes.

Figure 3.39: Circuit to be analyzed.

From an inspection of the circuit, you can write the elements of matrices A, b, and x for this
circuit are as follows:

Here,

	

Note. To make the calculation simpler, we will be entering the resistances to the program
and the program will convert them into conductance for its internal calculations.

Figure 3.40 shows the program listing (program: node.py). At the beginning of the program
a heading is displayed and the user is asked to enter the number of nodes there are in the
circuit (excluding the reference node). The elements at each node are then entered for
the A matrix in terms of the resistances at each node. Note that a '0 'must be entered to
terminate the entry for a node. The program internally converts the entered values into
conductance by taking their inverses. This makes it easier to enter the element values.
The currents at each node are then entered for the b matrix. The program calculates and
displays the voltages at the nodes. After calculating the voltages, we can easily calculate
the current through each resistor by dividing the voltage across it by its resistance.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 64Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 64 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 65

#==
#		 CIRCUIT NODE ANALYSIS
#		 =====================
#
This program carries out node analysis of a circuit.
The user enters the circuit elements in the form of
A and b matrices and the program calculates and
displays the values of the voltages in the circuit
#
Author: Dogan Ibrahim
File : node.py
Date : February, 2024
#==
from numpy import array
from numpy import *
from numpy.linalg import solve

print("Circuit Node Analysis")
print("=====================")
rows = int(input("Enter number of nodes: "))
cols = rows
A = zeros((rows, cols))
b = zeros(rows)

#
Read the matrix A elements
#
total = 0
elements = 1
for i in range(0, rows):
 for j in range(0, cols):
 while True:
 elements = float(input("Enter A%d%d:" %(i+1, j+1)))
 if elements == 0:
 break
 total = total + (1 / elements)
 A[i, j] = total
 total = 0
 print("")

#
Read the matrix b elements
#
print("")
for i in range(0, rows):
 b[i] = float(input("Enter b%d:" %(i+1)))

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 65Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 65 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 66

#
Calculate and display the currents in the circuit
#
x = solve(A, b)

print("\nResults:")
for i in range(0, rows):
 print("V%d = %7.3fV" %(i+1, x[i]))

Figure 3.40: Program listing.

Figure 3.41 shows the output when the program is run for this example. The voltages at
each node are calculated to be: V1 = 404.286 V, V2 = 350.000 V, V3 = 412.875 V.

Figure 3.41: Calculating voltages in the circuit.

3.15 Bipolar Junction Transistor Analysis
In this example, we will analyze the DC voltages and currents in a BJT transistor circuit
shown in Figure 3.42. The user enters the values of all the resistors, supply voltage, and
the value of the transistor current gain β.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 66Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 66 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 67

Figure 3.42: BJT transistor circuit.

The voltages and currents relating to Figure 3.42 can be calculated as follows:

	
Notice that the base current is usually very small compared to the collector current and in
most calculations equations one can make the approximation:

	

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 67Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 67 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 68

Figure 3.43 shows the program listing (program: bias.py). The program displays a heading
and then reads the values of all the two resistors, supply voltage, and the current gain β (or
B) of the transistor. It then calculates and displays all the voltages and current in the circuit.
A typical run of the program is shown in Figure 3.44 with the following component values:

	 Vcc = 12 volts
	 RB1 = 30,000 ohms
	 RB2 = 10,000 ohms
	 RC = 1000 ohms
	 RE = 1000 ohms
	 β = 100

#===
#	 	 Voltage Divider Biasing
#	 	 =======================
#
This program analyzes a voltage divider bias
#
Author: Dogan Ibrahim
File : bias.py
Date : February, 2024
#===
print("Voltage Divider Biassed Transistor Analysis")
print("===")
#
Read the component values
#
Vcc = float(input("Enter supply voltage (Volts): "))
RB1 = float(input("Enter RB1 (Ohms): "))
RB2 = float(input("Enter RB2 (ohms): "))
RC = float(input("Enter RC (Ohms): "))
RE = float(input("Enter RE (Ohms): "))
B = float(input("Enter current gain(B): "))

#
Calculations
#
Vb = 0.7
VB = Vcc * (RB2 / (RB1 + RB2))
IB1 = (Vcc - VB) / RB1
IE = (VB - Vb) / RE
RB = RB1 * RB2 / (RB1 + RB2)
IB = (VB - Vb) / (RB + RE * (B + 1))
IB2 = IB1 - IB
IC = IE - IB
VCE = Vcc - (IC * RC + IE * RE)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 68Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 68 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 69

VE = IE * RE
VC = Vcc - RC * IC
IB1 = 1000.0 * IB1
IB2 = 1000.0 * IB2
IE = 1000.0 * IE
IC = 1000.0 * IC
IB = 1000.0 * IB

#
Display the results
#
print("\nVB=%7.3f V\nVCE=%7.3f V\nVE=%7.3f V\nVC=%7.3f V" %(VB,VCE,VE,VC))
print("\nIB1=%7.3f mA\nIB2=%7.3f mA\nIB=%7.3f mA\nIC=%7.3f mA\nIE=%7.3f mA"
%(IB1,IB2,IB,IC,IE))

Figure 3.43: Program listing.

Figure 3.44 Typical run of the program.

3.16 Designing Active Low-Pass Filters
Low-pass filters are commonly used in almost all communications circuits. In this example,
we will design a second order low-pass active filter. Users enter the cut-off frequency of the
filter and the program will calculate and display the component values.

There are several forms of second order active low-pass filters. The one used in this
example study is the well-known Sallen-Key type filter whose circuit diagram is shown in
Figure 3.45. The filter consists of two capacitors and two resistors. This type of filter has
unity gain (i.e., 1) in the pass-band.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 69Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 69 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 70

Figure 3.45: Second-order low-pass filter.

Although it is possible to design Sallen-Key type filters with higher gains, care should
be taken since the high-gain filters can easily become unstable and oscillate, giving high
overshoot in their time responses and high gains at their cut-off frequencies. The Q factor
of a filter defines its quality, i.e., the damping of the response. For low-pass filters, Q should
have a value of 0.707. Higher values of Q may cause instability and overshoots in the time
and frequency responses. Another parameter used in filter design is the damping factor,
denoted with ξ. This is related to the Q factor with the following equation:

	

The ideal value for ξ is also 0.707. Lower values of ξ give rise to oscillations and instability
in the designed circuit. To maintain stability the gain of an active filter must not be greater
than 3. The relationship between the gain and Q factor is:

	

Figure 3.46 shows the filter frequency response for various values of ξ. It is clear from this
figure that ξ = 0.707 gives a flat response.

Figure 3.46: Filter frequency response for different values of ξ.

The cut-off frequency of the filter in Figure 3.45 is given by:

	

In order to make sure that Q = 0.707, the following must be satisfied:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 70Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 70 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 71

Let R1 = R2 = R, and C1 / C2 = n, then we have to make sure that C1 / C2 >= 4Q2, i.e., C1
/ C2 >= 2,

Or C2 / C1 <= 0.5.

The filter design equation then becomes:

	
or

	

The design steps are then as follows:

•	Read the filter cut-off frequency.
•	Select a value for C2.
•	Select a value for C1, making sure that C1 / C2 >= 2. For Q = 0.707, select C1

/ C2 = 2.
•	Calculate the required R.

Figure 3.47 shows the program listing (program: lowpass.py). At the beginning of the
program a heading is displayed and the user is required to enter the filter cut-off frequency,
C1 and C2 in microfarads. The program calculates and displays the required resistors,
making sure that the above inequality is satisfied. The user is then asked to enter the actual
physical resistors to be used and displays the actual cut-off frequency when these resistors
are used. If the user is not happy with the calculated cut-off frequency, then the program
is re-started so that the user can select new values for the capacitors.

#===
Second Order Low-Pass Active Filter Design
==
#
This program designs a second order low-pass filter
#
Author: Dogan Ibrahim
File : lowpass.py
Date : February, 2024
#==
import math

yn = 'n'
while yn == 'n':
 print("Second Order Low-Pass Active Filter Design")
 print("==")
#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 71Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 71 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 72

Read the cut-off frequency and C1, C2
#
 C1 = 1
 C2 = 1
 f = float(input("Enter the cut-off frequency (Hz): "))

 while C1/C2 < 2:
 C2 = float(input("Enter C2 (microfards): "))
 C = 2 * C2
 C1 = float(input("Enter C1 (microfarads) C1 >= %d : " %(C)))

 C1F = C1 / 1000000.0
 C2F = C2 / 1000000.0
#
Calculations
#
 n = C1F / C2F
 r = 2 * math.pi * f * C2F * math.sqrt(n)
 R = 1 / r

#
Display the results
#
 print("\nRESULTS:")
 print("=======")
 print("C1=%7.3f uF\nC2=%7.3f uF\nR1=%7.3f Ohm\nR2=%7.3f Ohm" %(C1,C2,R,R))

 print("\nEnter the actual physical resistors to be used:")
 Rnew = float(input("Enter R1, R2 (Ohms): "))
 fn = 2 * math.pi * Rnew * C2F * math.sqrt(n)
 fnew = 1 / fn
 print("Actual cut-off requency = %7.3f Hz" %(fnew))
 yn = input("Are you happy with the actual cut-off frequecy (yn)? ")
 yn = yn.lower()

Figure 3.47: Program listing.

An example run of the program is shown in Figure 3.48. In this example, the following
specifications were used:

	 Cut-off frequency = 1000 Hz
	 C2 = 12 μF
	 C1 = 6 μF

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 72Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 72 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 73

Figure 3.48: Example run of the program.

The resistor values are calculated to be R1 = R2 = 18.759 ohms. Selecting the nearest
physical value as 18 ohms gives the cut-off frequency as 1042.033 Hz. We accept this value
and respond with y to terminate the program. The application given in the following link can
be used to display the frequency response, Q factor etc of a low-pass Sallen-Key type filter:

	 http://sim.okawa-denshi.jp/en/OPstool.php

Using this application, the transfer function, Q, the damping factor, the frequency and
phase responses of the designed filter with the new resistors is shown in Figure 3.49 and
Figure 3.50.

Figure 3.49: Designed filter specifications.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 73Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 73 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 74

Figure 3.50: Frequency and phase responses of the designed filter.

You can design higher-order filters by cascading the basic second order section given in
this example.

3.17 Passive Low-Pass Butterworth Filter Design
Passive filters are used in many communications circuits. In this section, a program is
presented to design low-pass Butterworth type passive filters having capacitors and
inductors. Figure 3.51 shows the frequency response of low-pass Butterworth filters with
different orders.

Figure 3.51: Frequency response of Butterworth filters

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 74Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 74 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 75

Low-pass Butterworth filters can be realized using the Cauer topology, where inductors
and capacitors are used in the topology. The topology assumes 1 ohm source and load
resistances and 1 rad/sec frequency. As shown below, there are two topologies depending
whether an inductor or a shunt capacitor is first used at the source end.

Type 1
Figure 3.52 shows the Type-1 topology.

Figure 3.52: Filter Type-1 topology.

The coefficients of the Butterworth low-pass filter are given by:

where k is even.

where k is odd.

Type 2
Figure 3.53 shows the Type-2 topology.

Figure 3.53: Filter Type-2 topology.

The coefficients of the Butterworth low-pass filter are given by:

 where k is odd.

 where k is even.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 75Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 75 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 76

After finding the L and C values, we have to scale them to the required source resistance,
load resistance, and the cut-off frequency by applying the following transformations:

	 L  L × R / ωc

	 C  C / (ωc × R)

R is the source and load resistance (they are equal), and ωc = 2 × π × f where f is the
required cut-off frequency.

Figure 3.54 shows the program listing (program: LPPassive). At the beginning of the
program, the user is required to select the topology type and then enter the required
source and load resistance, order of the filter, and then the required cut-off frequency. The
program calculates and displays the L and C values for the chosen topology.

#===
PASSIVE BUTTERWORTH LOW-PASS FILTER DESIGN
#
This program displays the L and C values for a low-pass filter
whose order, cut-off frequency and source (load) resistance given
#
Author: Dogan Ibrahim
File : LPPassive.py
Date : February, 2024
#===
import math
print("Passive Butterworth Low-Pass Filter Design")
topology = int(input("Choose topology Type 1 (1) or Type 2 (2): "))
n = int(input("Enter filter order: "))
R = int(input("Enter source and load resistance (Ohms): "))
f = int(input("Enter cut-off frequency (Hz): "))
w = 2 * 3.14159 * f

if topology == 1:
 for k in range(1, n+1):
 m = (2 * k - 1) * 3.14159 / (2 * n)
 if (k % 2) == 0:
 C = 2 * math.sin(m)
 CC = 1000000 * C / (w * R)
 print("C%d = %f uF" %(k, CC))
 else:
 L = 2 * math.sin(m)
 LL = 1000 * L * R / w
 print("L%d = %f mH" %(k, LL))
elif topology == 2:
 for k in range(1, n+1):
 m = (2 * k - 1) * 3.14159 / (2 * n)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 76Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 76 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 77

 if (k % 2) == 0:
 L = 2 * math.sin(m)
 LL = 1000 * L * R / w
 print("L%d = %f mH" %(k, LL))
 else:
 C = 2 * math.sin(m)
 CC = 1000000 * C / (w * R)
 print("C%d = %f uF" %(k, CC))

Figure 3.54: Program listing.

Figure 3.55 shows an example output of designing a Type 1 4th order Butterworth passive
low-pass filter with a cut-off frequency of 1000 Hz and source (load) resistance of 50 ohms.
The designed filter circuit is shown in Figure 3.56.

Figure 3.55: Example output.

Figure 3.56: Designed filter circuit.

3.18 The 555 Timer IC
LM555/NE555 is a very popular integrated circuit used in monostable and astable circuit
designs. The chip is commonly used as a monostable to generate delays, or as an astable to
generate square wave signals. In this section, you will give a program that can be used to
design 555-based monostable and astable circuits. Note that LM556/NE556 is a dual timer
chip, including two 555 timer modules.

Monostable circuit
Figure 3.57 shows the circuit diagram of a 555 based monostable circuit. A negative-going
(high-to-low) trigger pulse is applied to pin 2 of the chip. A pulse is generated at output pin
3. The duration of this pulse is set by R and C by the following formula:

 	 T = 1.1RC

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 77Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 77 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 78

Figure 3.57: Monostable circuit.

Astable circuit
Figure 3.58 shows the circuit diagram of a 555 based astable circuit. The period T of the
output square waveform is set by R1, R2 and C1 and is given by:

	 T = Th + Tl, where Th is the output high time and Tl is output low time.

and
	 Th = 0.7 × (R1 + R2) × C1
	 Tl = 0.7 ×R2 × C1

Using the above formula, the period of the output waveform is given by:

	 T = 0.7 × (R1 + 2R2) × C1

And the frequency is given by:

	

The duty cycle of the waveform is the ratio of the ON time to the period and is given by:

	 D = 100 x Th / T %
or	 D = (R1 + R2) / (R1 + 2R2) × 100%

Note that 50% duty cycle is not possible. For a duty cycle as close as feasible to 50%,
choose a large value for R2.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 78Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 78 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 79

Figure 3.58: Astable circuit.

Figure 3.59 shows the program listing (program: NE555). At the beginning of the program
user is asked to enter m (monostable) or a (astable). If a monostable circuit is to be
designed, then t and C values are read and R is calculated and displayed. If an astable
circuit is to be designed, then f, C1, and R2 values are read and R1 is calculated and
displayed.

#==
NE555/LM555 TIMER CHIP
#
This program calculate steh component values for designing monostable
and astable circuits using a 555 chip
#
Author: Dogan Ibrahim
File: NE555.py
Date: February, 2024
#===
print("555 MONOSTABLE-ASTABLE DESIGN")
mode = input("Monostable(m) or Astable (a) ?: ")
if mode == 'm':
 t = float(input("Required output pulse width (seconds): "))
 C = float(input("Enter capacitor C (uF): "))
 C = C / 1000000
 R = t / (1.1 * C)
 print("Required resistor value is (Ohms): %5.2f" %(R))
elif mode == 'a':
 f = float(input("Required frequency (Hz): "))
 C1 = float(input("Enter capacitor C1 (uF): "))
 C1 = C1 / 1000000
 R2 = float(input("Enter R2 (Ohms): "))

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 79Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 79 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 80

 R1 = 1.44 / (f * C1) - 2 * R2
 print("Required resistor R1 value is (Ohms): %5.2f" %(R1))
 D = 100 * (R1 + R2) / (R1 + 2 * R2)
 print("Duty cycle = %3.2f percent" %(D))

Figure 3.59: Program listing.

Figure 3.60 shows design of an astable circuit with frequency 1 Hz, C = 1 μF, and R2 chosen
as 680 kilo-ohms.

Figure 3.60: Example design of an astable circuit.

3.19 Impedance Matching
Impedance matching is very important concept in maximum power transfer applications.
For maximum power transfer the source and the load resistances must be the same. In
RF design we usually have complex source and/or load impedances with real parts and
reactances. Such impedances are usually matched at a given frequency. Matching complex
impedances is not an easy task. In this section, a program is given which can be used to
calculate the required inductor and capacitor values in order to match a source impedance
to a load impedance at a given frequency.

In this section, L-type matching networks are considered. Figure 3.61 (Shunt-series) and
Figure 3.62 (Series-shunt) show two types of impedance matching circuits. Here, (R1 +
jX1)is the source impedance, and (R2 + jX2) is the load impedance.

Figure 3.61: Shunt-series impedance matching circuit.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 80Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 80 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 81

Figure 3.62: Series-shunt impedance matching circuit.

Impedance matching is a complex process and interested readers can get the required
formula from the following site (Francesco Urbani):

	 https://urbanij.github.io/projects/matching_networks/

Figure 3.63 shows the program listing (program: match). At the beginning of the program
the user enters the source and load impedances and the frequency of operation. The
program calculates the matching circuit components and displays them on the screen.

#===
IMPEDANCE MATCHING
#
This program calculates the inductance and capacitance for
impedance matching a source to a load at a given frequency
#
Author: Dogan Ibrahim
Date : February, 2024
File : match.py
#===
R1=float(input("R1 (Ohm): "))
X1=float(input("X1 (Ohm): "))
R2=float(input("R2 (Ohm): "))
X2=float(input("X2 (Ohm): "))
f=float(input("freq (MHz): "))
w = 2 * 3141592 * f

if R1 * (R1 - R2) + X1 * X1 >= 0:
 print("Shunt-Series Design")
 xshu1=(R1*X2+R2*X1-R1*(X2-((R2*(R1**2-R2*R1+X1**2))/R1)**(1/2)))/(R1-R2)
 xser1=X2-((R2*(R1**2-R2*R1+X1**2))/R1)**(1/2)
 xshu2=(R1*X2+R2*X1-R1*(X2+((R2*(R1**2-R2*R1+X1**2))/R1)**(1/2)))/(R1-R2)
 xser2=X2+((R2*(R1**2-R2*R1+X1**2))/R1)**(1/2)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 81Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 81 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 82

 Lshunt = 1E9 * xshu1 / w
 print("shunt inductor=%f Ohm, %5.3f nH" %(xshu1, Lshunt))

 Cseries = 1E12 / (w * xser2)
 print("series capacitor=%f Ohm, %5.3f pF" %(xser2, Cseries))

 print("OR")
 Cshunt = -1E12 / (w * xshu2)
 print("shunt capacitor=%f Ohm, %5.3f pF" %(xshu2, Cshunt))

 Lseries = -1E9 * xser1 / w
 print("series inductor=%f Ohm, %5.3f nH" %(xser1, Lseries))

elif R2 * (R2 - R1) + X2 * X2 >= 0:
 print("Series-shunt Design")
 xshu1=(R1*X2+(R1*R2*(R2**2-R1*R2+X2**2))**(1/2))/(R1-R2)
 xser1=-(R2*X1-(R1*R2*(R2**2-R1*R2+X2**2))**(1/2))/R2
 xshu2=(R1*X2-(R1*R2*(R2**2-R1*R2+X2**2))**(1/2))/(R1-R2)
 xser2=-(R2*X1+(R1*R2*(R2**2-R1*R2+X2**2))**(1/2))/R2

 Lshunt = -1E9 * xshu1 / w
 print("shunt inductor=%f Ohm, %5.3f nH" %(xshu1, Lshunt))

 Cseries = -1E12 / (w * xser2)
 print("series capacitor=%f Ohm, %5.3f pF" %(xser2, Cseries))

 print("OR")
 Cshunt = 1E12 / (w * xshu2)
 print("shunt capacitor=%f Ohm, %5.3f pF" %(xshu2, Cshunt))

 Lseries = 1E9 * xser1 / w
 print("series inductor=%f Ohm, %5.3f nH" %(xser1, Lseries))

Figure 3.63: Program listing.

Figure 3.64 shows an example design. Notice that there are two solutions to the problem
and both solutions are displayed by the program. The designed circuits are shown in Figure
3.65.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 82Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 82 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 83

Figure 3.64: Example design.

Figure 3.65: Designed impedance matching circuits.

3.20 Designing a Common-Emitter BJT Transistor Amplifier Circuit
In this example you will design a single common-emitter transistor amplifier circuit with
the given supply voltage and required voltage gain. The circuit diagram of a single stage
common-emitter amplifier circuit is shown in Figure 3.66. The AC parameters of this
amplifier circuit can be calculated using the following formula (see Hybrid Pi model):

	

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 83Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 83 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 84

	

Notice that in general, assuming that the only load resistance is RL and IE ≈ IC, the voltage
gain is given by:

	 Av = –gm RL

Where, 	gm = Ic / VT

and 	 VT = kT / q

At room temperature (15 degrees C), VT = 25mV.

Therefore,

	 Av = –RL × Ic / 25

The design starts from the specification of the required voltage gain, or the input voltage
and the required output voltage. The power supply voltage is usually supplied. We first have
to find the resistor values to for biasing the transistor and also providing the required gain.
Briefly, the steps are as follows:

•	Given the input and required output voltages, calculate the required voltage
gain.

•	Choose a collector current of around 2 mA.
•	Assume the VCE to be VCC/2.
•	Choose a value for RL. If the gain without the source and load resistors is given

by RL x IE /25 at room temperature, choose RL to give 30% higher gain than
the required value.

•	Choose a value for RE (assuming that IE = Ic) from: Vcc = IcRL + VCE +IcRE.
•	Calculate base current from IB / β.
•	Calculate the base voltage from VB = 0.7 + IcRE

•	Assume that the current in R1 and R2 will be 10 times the base current and
calculate suitable values for R1 and R2.

•	Calculate the input and output impedances.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 84Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 84 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 85

•	Check that the overall gain is as required, if not go back and adjust Ic, RL, or
RE.

•	Calculate suitable values for C1, C2 and CE.

Figure 3.66: Common-emitter amplifier circuit.

Figure 3.67 shows the program listing (program: amplifier.py). At the beginning of the
program, a heading is displayed. The program then reads the various parameters and
requirements. The program calculates the parameters listed above and displays on the
monitor.

#===
Single Stage Common Emitter Amplifier Design
==
#
This program designs a common emitter amplifier
#
#
Author: Dogan Ibrahim
File : amplifier.py
Date : February, 2024
#==
import math

print("Single Stage Common Emitter Amplifier Design")
print("==")
#
Read the component values
#
Vcc = float(input("Enter supply voltage (Volts): "))
Vin = float(input("Enter Vin (Volts): "))
Vout = float(input("Enter Vout (Volts): "))
RS = float(input("Enter Rs (ohms): "))
RL = float(input("Enter RL (Ohms): "))

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 85Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 85 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 86

f = float(input("Enter lowest frequency to amplify (Hz): "))
B = float(input("Enter current ratio (B): "))

#
Calculations
#
Gr = Vout / Vin			 # Gain
IC = 2					 # IC=2mA
Ge = Gr * (1.3)			 # Estimate gain 30% higher
RC = Ge * 25 / IC			 # Collector resistance
RCRL = (RC * RL) / (RC + RL)
re = 25.0 / IC
Rinbase = B * re			 # Base resistance
G1 = RCRL / re				 # G1
VCE = Vcc / 2				 # VCE
IC = IC / 1000.0
RE = (Vcc - RC * IC - VCE) / IC	 # RE
VB = 0.7 + IC * RE
IB = IC / B
IR1R2 = 10.0 * IB			 # 10 times base current
R2 = VB / IR1R2
R1 = (Vcc - VB) / IR1R2
RB = (R1 * R2) / (R1 + R2)
Zi = (RB * Rinbase) / (RB + Rinbase)
G2 = Zi / (RS + Zi)
G = G1 * G2
XC = Zi / 10.0
C1 = 1000000.0 / (2 * math.pi * f * XC)
Zo = RCRL
XC = Zo / 10.0
C2 = 1000000.0 / (2 * math.pi * f * XC)
XC = RE / 10.0
CE = 1000000.0 / (2 * math.pi * f * XC)

#
Display the results
#
print("\nRESULTS:")
print("=======")
print("Gain=%7.3f\nIC=%7.3f mA\nIB=%7.3f mA" %(G,IC*1000.0,IB*1000.0))
print("\nVcc=%7.3f V\nVB=%7.3f V\nVCE=%7.3f V" %(Vcc,VB,VCE))
print("\nR1=%7.3f Ohm\nR2=%7.3f Ohm\nRC=%7.3f Ohm\nRE=%7.3f Ohm" %(R1,R2,RC,RE))
print("\nC1=%7.3f uF\nC2=%7.3f uF\nCE=%7.3f uF" %(C1,C2,CE))
print("\nZi=%7.3f Ohm\nZo=%7.3f Ohm" %(Zi,Zo))

Figure 3.67: Program listing.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 86Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 86 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 87

An example run of the program is shown in Figure 3.68. In this example, the following
specifications were assumed:

	 Vin = 0.010 V
	 Vout = 0.4 V
	 Rs = 100 ohms
	 RL = 15 kilo-ohms
	 fl = 20 kHz
	 Vcc = 12 V
	 β = 100

It is clear that the required voltage gain of the transistor (without the source and load
resistances) is 0.4 V / 0.010 V = 40. We can use the following physical components for our
circuit:

R1 = 33 kΩ
R2 = 27 kΩ
RC = 680 Ω
RE = 2.2 kΩ
C1 = C2 = C3 = 1 μF

Figure 3.68: Example run of the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 87Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 87 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 88

3.21 Using a Windows-Based Simulation Program
Simulation is a powerful tool that enables an electrical circuit to be analyzed on a PC. Using
a simulator program, you can draw a circuit on a PC and then display all the voltages and
currents in the circuit, draw waveforms, etc. Simulation can be used for passive and active
electrical circuits as well as for digital circuits.

Although the simulation is an invaluable tool in designing and developing electronic circuits,
it has the following advantages and disadvantages:

•	Any component whatever the cost is, can be modelled and simulated using a
simulator. The virtual instruments are computer programs and thus there are
no cost issues.

•	Simulation does not usually take into consideration the component tolerances,
aging, or temperature effects. Readers may think that all components are ideal
at all times.

•	Virtual instruments and components used in a simulation cannot be damaged
by connecting wrongly or by applying large voltages or currents.

•	There is no calibration problems associated with virtual instruments. They are
available at all times and operate with the same specifications.

•	Simulation allows measurements of internal currents and voltages that in many
cases are virtually impossible to do while using real components.

There are many commercially available simulation programs available. There are also freely
available simulation programs available on the Internet. In this book, we will be using the
freely available Texas Instruments simulation package called TINA-TI which can be used
to simulate large number of passive and active circuit as well as digital circuits.

You can use simulation to check the operation of your electronic circuits. In this section, we
will use the windows based TINA-TI simulation program to compare the theoretical results
of some of the circuits used in the book with the simulation results.

The steps to download the TINA-TI simulation program on your Windows PC are as follows:

•	Go to the Texas Instruments web site:

https://www.ti.com/tool/TINA-TI

•	Scroll down to TINA-TI_ENGLISH and click Download (Figure 3.69)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 88Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 88 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 89

Figure 3.69: Click: Download.

•	Login to the site. If this is the first time you are using the Texas Instruments
site you will have to register before you can log in.

•	After you logging in, click to download the TINA-TI simulation package.
At the time of authoring this book, the package had the name:TINA90-
Tien.9.3.200.277.zip.

•	 Copy the zip file to a new folder, extract the contents and click TINA90-Tien.
exe to install the simulator program on your PC.

3.21.1 Simulating the Resistive Mesh Circuit in Figure 3.33
Let's apply TINA-TI to a the previously discussed resistive mesh setup. The steps are as
follows:

•	Click on the icon to start the TINA-TI simulator program.

•	Click on resistor and place it on the screen. Click on the resistor again and join
the three resistors as in Figure 3.33.

•	Click on battery and place the 10 V and 20 V batteries. Connect the batteries to
the circuit as shown in Figure 3.33.

•	Right click on resistors and batteries and change their values to be as in Figure
3.33.

•	Insert an earth symbol at the bottom part of the circuit. It is important that
every circuit to be simulated must have an ground path.

•	Figure 3.70 shows the circuit built on the simulator.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 89Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 89 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 90

Figure 3.70 Circuit build on the simulator.

You are now ready to simulate your circuit. Click Analysis  DC Analysis  Table of
DC results. A table of all the currents and voltages in the circuit will be displayed as shown
in Figure 3.71. Note that for example, I_R1 is the current through resistor R1. The results
obtained with the simulation are the same as the theoretical results.

Figure 3.71: Simulation results.

3.21.2 Simulating the transistor circuit in Figure 3.42
The steps are as follows:

•	Click on the icon to start the TINA-TI simulator program.

•	Click on Semiconductors and place an NPN transistor.

•	Place the four resistors.

•	Insert a battery.

•	Right click on the transistor and set the type to BC337. The minimum β of this
transistor is 100.

•	Right-click on the battery and set its voltage to 12 V.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 90Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 90 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 91

•	Right-click on resistors and set their values as in Figure 3.42.

•	Figure 3.72 shows the circuit built on the simulator.

Figure 3.72: Circuit built on the simulator.

You are now ready to simulate your circuit. Click Analysis  DC Analysis  Table of
DC results. A table of all the currents and voltages in the circuit will be displayed as shown
in Figure 3.73. The results obtained with the simulation are the same as the theoretical
results.

Figure 3.73: Simulation results.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 91Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 91 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 92

3.21.3 Simulating the transistor circuit in Figure 3.66
The steps are as follows:

•	Click on the icon to start the TINA-TI simulator program.

•	Click on Semiconductors and place an NPN transistor.

•	Place the resistors.

•	Place the capacitors

•	Insert a battery.

•	Insert a voltage generator.

•	Right click on the transistor and set the type to BC337. The minimum β of this
transistor is 100.

•	Right-click on the battery and set its voltage to 12 V.

•	Right-click on resistors and capacitors and set their values as in Figure 3.66.

•	Right click on the voltage generator and set it to sine wave with amplitude
0.010V

Figure 3.74 shows the circuit built on the simulator

Figure 3.74: Circuit built on the simulator.

You are now ready to simulate your circuit. Click Analysis  DC Analysis  Table of
DC results. A table of all the currents and voltages in the circuit will be displayed as shown
in Figure 3.75. The results obtained with the simulation are the same as the theoretical
results.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 92Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 92 04-04-2024 13:1904-04-2024 13:19

Chapter 3 ● Amateur Radio Programs – Software-Only

● 93

Figure 3.75: DC voltages and currents in the circuit.

Let's proceed by displaying the input and output waveforms on a virtual oscilloscope and
then calculate the voltage gain of the amplifier. This requires Voltage Pins to be inserted at
the input and output of the circuit. The steps are:

•	Click Meters and select the Voltage Pin, then place it at the output of the circuit
(named VF1).

•	Click Meters again and select the Voltage Pin and place it at the input of the
circuit (named VF2). See Figure 3.76.

•	Click Analysis and select the Oscilloscope.

•	Set the Channel to VF1 and X source to VF1, the Time/Div to 20u (20
microseconds), and Volts/Div to 500m (500 mV). You should see the amplifier
output voltage displayed in red color.

•	Set the Channel to VF2, the Volts/Div to 20m (20mV). You should see the
amplifier input voltage displayed in green.

•	The output voltage is measured to be about 800mV peak to peak. Similarly,
the input voltage is measured to be about 20 mV peak to peak. Therefore,
the voltage gain of the amplifier is about 800 / 20 = 40 as was calculated
theoretically.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 93Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 93 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 94

Figure 3.77 shows the input and output waveforms of the amplifier.

Figure 3.76: Insert Voltage Pins.

Figure 3.77: Input-output waveforms.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 94Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 94 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 95

Chapter 4 ● Hardware Based Projects for Amateur Radio

4.1 Overview
In this chapter, hardware based projects are given that could be useful to amateur radio
operators. The projects are built using the Raspberry Pi 5. Note that the author Dogan
Ibrahim has a book entitled Raspberry Pi for Radio Amateurs published by Elektor. Some of
the projects in that book have been modified to run under Raspberry Pi 5 and are included
here.

4.2 Project 1: Logic Probe
Description: This is a simple logic probe. A logic probe is used to indicate the logic status
of an unknown digital signal. In this application, a test lead (probe) is used to detect the
unknown signal and two different color LEDs are used to indicate the logic status. If for
example the signal is logic 0 then the RED LED is turned ON. If on the other hand the signal
is logic 1 then the GREEN LED is turned ON. The circuit also detects high-impedance state
where none of the LEDs are turned ON when there is no applied logic level.

Block diagram: Figure 4.1 shows the block diagram of the project. Logic input is applied
to the terminal labelled Logic Probe. Because the Raspberry Pi 5 inputs are not +5 V
compatible. the logic input voltage must not be greater than +3.3 V.

Figure 4.1: Block diagram of the project.

Circuit diagram: Figure 4.2 shows the circuit diagram. In this project, a type BC108 NPN
transistor is used.

Figure 4.2: Circuit diagram of the project.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 95Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 95 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 96

The operation of the circuit is as follows: the transistor is configured as an emitter-follower
stage with the base connected to GPIO4, configured as an output port. The external logic
signal is applied to the base of the transistor through a 10kΩ resistor. The emitter of the
transistor is connected to GPIO17, which is configured as an input port. GPIO4 applies
logic levels to the base of the transistor and then pin GPIO17 determines the state of the
external signal as shown in Table 4.1. For example, if after setting GPIO4 = 1, we detect
that GPIO17 =1 and also after setting GPIO4 = 0 we again detect that GPIO17 = 1, then
the probe must be at logic 1.

Probe State Output from GPIO4 Detected at GPIO17

At high impedance 1
0

1
0

Probe at logic 1 1
0

1
1

Probe at logic 0 1
0

0
0

 Table 4.1: Applied and detected logic levels.

Program listing: Figure 4.3 shows the program listing (program: Probe). At the beginning
of the program, PROBE is assigned to GPIO17, RED and GREEN assigned to GPIO27
and GPIO22 respectively, and CHECK assigned to GPIO4. The LEDs and CHECK are then
configured as digital outputs and PROBE configured as digital input. The remainder of the
program executes in an endless loop and implements the logic given in Table 4.1 in order
to turn ON/OFF the RED and GREEN LEDs.

#***
LOGIC PROBE
===========

This is a logic probe program. Two LEDs, one RED and one
GREEN are connected to Raspberry Pi 5. The program determines
the state of the applied logic voltage. If voltage is LOW 0 then
the RED LED is turned ON. If on the other hand the voltage is
HIGH then the GREEN LED is turned ON.
#
The program detects the high impedance state when there is no logic
level applied at the input

Autor : Dogan Ibrahim
Program: Probe.py
Date : February, 2024
#***
from gpiozero import LED, InputDevice, OutputDevice
from time import sleep

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 96Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 96 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 97

PROBE = InputDevice(17)
RED = LED(27)
GREEN = LED(22)
CHECK = OutputDevice(4)

#
Turn OFF the LEDs at the start
#
RED.off()
GREEN.off()

#
Examine the state of the applied external logic signal. If
there is nothing connected at the input then assume high
impedance state and turn OFF both LEDs. If on the other
hand the state is 0, then turn ON the RED LED. if on the
other hand the external applied logic state is 1, then
turn ON the GREEN LED

while True:
 CHECK.on()				 # set CHECH = 1
 sleep(0.001)
 if PROBE.value == 1:
 CHECK.off()
 sleep(0.001)
 if PROBE.value == 0:
 RED.off()
 GREEN.off()			 # High impedance
 else:
 RED.off()
 GREEN.on()
 else:
 CHECK.off()
 sleep(0.001)
 if PROBE.value == 0:
 GREEN.off()
 RED.on()

Figure 4.3: Program listing.

The project built on a breadboard is shown in Figure 4.4.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 97Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 97 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 98

Figure 4.4: Project built on a breadboard.

4.3 Project 2: Station Mains On-Off Power Control
Description: In this project, 4 buttons and 4 relays are connected to Raspberry Pi 5.
The relays change state when their corresponding buttons are pushed. For example,
various mains operated equipment in the station can be connected to the mains supply
through the relays, and such equipment can be switched ON or OFF easily by pressing their
corresponding buttons.

Block Diagram: Figure 4.5 shows the block diagram of the project.

Figure 4.5: Block diagram of the project.

Circuit Diagram: In this project, a 4-channel relay board from Elegoo (www.elegoo.com)
is used (Figure 4.6). This is an optocoupled relay board with 4 inputs — one for each
channel. The relay inputs are at the bottom right hand side of the board while the relay
outputs are located at the top side of the board. The middle position of each relay is the
common point, the connection to its left is the normally closed (NC) contact, while the
connection to the right is the normally open (NO; N.O.) contact. The relay contacts support
250VAC at 10 A and 30 VDC at 10 A. IN1, IN2, IN3 and IN4 are the active-LOW inputs,
which means that a relay is activated when a logic LOW signal is applied to its input pin. The

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 98Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 98 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 99

relay contacts are normally closed (NC). Activating the relay changes the active contacts
such that the common pin and NC pin become the two relay contacts and at the same time
the LED at the input circuit of the relay board corresponding to the activated relay is turned
ON. The VCC can be connected to either +3.3V or to +5V. Jumper JD is used to select the
voltage for the relay.

Note: because the current drawn by a relay can be in excess of 80 mA, you must remove
this jumper and connect an external power supply (e.g., +5 V) to the JD-VCC pin.

Figure 4.6: Four-channel relay board.

The circuit diagram of the project is shown in Figure 4.7. The buttons are named as A,
B, C and D and they are connected to Raspberry Pi 5 port pins GPIO4, GPIO17, GPIO27,
and GPIO22 respectively. The button outputs are at logic 1 and go to logic 0 when the
button is pressed. Pins IN1, IN2, IN3, and IN4 of the relay module are connected to port
pins GPIO21, GPIO20, GPIO16, and GPIO12 respectively. The relay contacts should be
connected to the equipment to be switched ON/OFF through the mains supply.

WARNING: care should be taken when working with live mains voltages and you should
seek professional advice if you are not sure about connections to the mains supply.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 99Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 99 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 100

Figure 4.7: Circuit diagram of the project.

Program Listing: Figure 4.8 shows the program listing (program: relays.py). At the
beginning of the program the button and relay connection to the Raspberry Pi are defined.
Port pins where the relay input pins IN1-IN4 are connected to are configured as outputs. Port
pins where the button pins BUTTONA, BUTTONB, BUTTONC, and BUTTOND are connected
to are configured as inputs. All the 4 relays are then turned OFF at the beginning of the
program. The remainder of the program is executed inside the main program loop where a
while loop is used. Here, function TestButton is used to check the state of a button and if
the button is pressed then the state of the corresponding relay is toggled.

Functions are useful programming tools that are used when parts of a program is to be
repeated several times. A function declaration in Python starts with the keyword def,
followed by a bracket. Inside the bracket, the arguments to be passed to the function are
specified (if there are any). Notice that the arguments are local to the function. Function
TestButton is shown here:

	 def TestButton(Button, IN):
		 if Button.value == 0:
			 IN.toggle()
			 while Button.value == 0;
				 pass

The second line of the function tests if Button is equal to 0, i.e., if the Button is pressed.
Remember that normally when the Button is not pressed its state is at logic 1. If the Button
is pressed, then the state of the corresponding relay pin is toggled. The function then waits
until the Button is released.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 100Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 100 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 101

#---
#			 STATION MAINS ON-OFF CONTROL
#			 ----------------------------
In this project 4 buttons and 4 relays are connected to Raspberry
Pi 5.The status of the relays are toggled each time its corresonding
button is pressed. So, if the relay is ON, it is turned OFF, if it
is OFF it is turned ON etc.
#
Author: Dogan Ibrahim
File : relays.py
Date : February, 2024
#---
from gpiozero import InputDevice, OutputDevice
import time

ON = 0
OFF = 1

#
Button connections
#
BUTTONA = 4					 # Button A
BUTTONB = 17					 # Button B
BUTTONC = 27					 # ButtonC
BUTTOND = 22					 # Button D

#
Relay connections
#
IN1 = 21					 # IN1 pin
IN2 = 20					 # IN2 pin
IN3 = 16					 # IN3 pin
IN4 = 12					 # IN4 pin

#
IN1-IN4 are Outputs
#
in1 = OutputDevice(IN1)			 # IN1 is output
in2 = OutputDevice(IN2)			 # IN2 is output
in3 = OutputDevice(IN3)			 # IN3 is output
in4 = OutputDevice(IN4)			 # IN4 is output

#
BUTTONA-BUTOND are inputs
#
buttona = InputDevice(BUTTONA)			 # BUTTONA is input

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 101Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 101 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 102

buttonb = InputDevice(BUTTONB)			 # BUTTONB is input
buttonc = InputDevice(BUTTONC)			 # BUTTONC is input
buttond = InputDevice(BUTTOND)			 # BUTTOND is input

#
Turn OFF all relays at the beginning. Setting ON turns it OFF
#
in1.on()
in2.on()
in3.on()
in4.on()

#
This function checks if Button is pressed and toggles pin IN
of the relay If the relay is ON, it is tured OFF, if it is OFF,
it is turned ON
#
def TestButton(Button, IN):
 if Button.value == 0:
 IN.toggle()
 while Button.value == 0:
 pass

try:

 while True:					 # Do forever
 TestButton(buttona, in1)			 # Test BUTTONA
 TestButton(buttonb, in2)			 # Test BUTTONB
 TestButton(buttonc, in3)			 # Test BUTTONC
 TestButton(buttond, in4)			 # Test BUTTOND
 time.sleep(0.1)

except KeyboardInterrupt:			 # Cntrl+C detected
 print("End of program")			 # End of program

Figure 4.8: Program: relays.py.

While developing hardware based projects on the Raspberry Pi 5 you will have to make
connections to the 40-pin male type GPIO connector placed at the edge of the board. This
can easily be done using a breadboard and female-male type jumper leads. One side of the
jumper lead can be connected to the GPIO connector, while the other side can be connected
to a breadboard so that external components can easily be interfaced to the Raspberry
Pi 5. It is recommended to use a 40-way ribbon cable with a T-connector to bring all the
GPIO pins to the breadboard for easy access. Figure 4.9 shows such a connector which
is available on the Internet. It may however be difficult to attach a T-connector to your
Raspberry Pi 5 if its fitted with a cooler.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 102Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 102 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 103

Figure 4.9: T-connector with ribbon cable (by Sintron).

Figure 4.10 shows the project built on a breadboard and connections made using jumper
wires.

Figure 4.10: Project built on a breadboard.

4.4 Project 3: Station Clock with Output to the Monitor
Description: In this project, you will develop a real-time clock to display the current date
and time on the monitor. When the Raspberry Pi 5 boots, it receives the current date and
time from the Internet automatically (if it is connected to the Internet). One nice feature
of Raspberry Pi 5 is that it includes an on-board Real-Time-Clock (RTC) module. If the

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 103Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 103 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 104

Internet is not available then the date and time can be read from the RTC module. An
external battery can be attached to Raspberry Pi 5 to power the RTC module so that the
module keeps the date and time when Raspberry Pi 5 is powered off. The RTC module can
also be configured to operate with very low current and can be programmed to wake-up
the processor at set intervals.

This project displays the current date and time every second on the monitor.

Program listing: Figure 4.11 shows the program listing (Program: StnTim.py). The
program runs in an endless loop displaying the date and time as shown in Figure 4.12.

#==
#		 CURRENT DATE AND TIME
#		 =====================
#
This program displays the current date and time on the monitor
every second
#
Author: Dogan Ibrahim
File : StnTim.py
Date : January, 2024
#===
import time
from datetime import date

while True:
 today = date.today()
 print("Date & Time: ",date.today().strftime("%d-%m-%Y"),time.
strftime("%H:%M:%S"))
 time.sleep(1)

Figure 4.11: Program listing.

Figure 4.12: Sample output.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 104Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 104 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 105

4.5 Project 4: Station Clock with Output to LCD
Description: This project is similar to the previous one but the data and time are displayed
on an LCD.

Block Diagram: Figure 4.13 shows the block diagram of the project. In this project an I2C
type LCD is used.

Figure 4.13: Block diagram of the project.

LCDs are used as display devices in many microcontroller-based projects. Basically, there
are two types of LCDs: parallel and I2C-based. Parallel LCDs are usually controlled with 4
data lines and 2 control lines. The main advantage of these types of LCDs is their low cost.
Parallel LCDs have the disadvantage that an external potentiometer is required to adjust
the contrast of their screens. I2C based LCDs are basically parallel LCDs with the addition of
a small board at the back of the LCD which translates the I2C signals to parallel signals. The
advantage of the I2C based LCDs is that their control requires only 4 wires, and the contrast
adjustment potentiometer is located on the I2C board. They are, however, more expensive
than the standard parallel LCDs.

The I2C (or I2C) bus is commonly used in microcontroller based projects. In this chapter,
you will be looking at the use of this bus on the Raspberry Pi 5. Some other interesting
projects are also given here. The aim is to make the reader familiar with the I2C bus library
functions and to show how they can be used in a real project. Before looking at the details
of the projects, it is worthwhile to look at the basic principles of the I2C bus.

The I2C Bus
The I2C bus is one of the most commonly used microcontroller communication protocols for
communicating with external devices such as sensors and actuators. The I2C bus is a single
master, multiple slave bus and it can operate at standard mode: 100 Kbit/s, full speed: 400
Kbit/s, fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-drain
wires, 'pulled up' to Vcc with resistors:

SDA: data line
SCL: clock line

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 105Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 105 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 106

Figure 4.14 shows the structure of an I2C bus with one master and three slaves.

Figure 4.14: I2C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an
individual slave device on the same bus. For this reason, the protocol defines that each
slave device provides a unique slave address for the given bus. This address is usually
7-bits wide. When the bus is free both lines are HIGH. All communication on the bus is
initiated and completed by the master, which initially sends a START bit, and completes a
transaction by sending STOP bit. This alerts all the slaves that some data is coming on the
bus and all the slaves listen on the bus. After the start bit, 7 bits of unique slave address
is sent. Each slave device on the bus has its own address and this ensures that only the
addressed slave communicates on the bus at any time to avoid any collisions. The last sent
bit is read/write bit such that if this bit is 0, it means that the master wishes to write to the
bus (e.g., to a register of a slave), if this bit is a 1, it means that the master wishes to read
from the bus (e.g., from the register of a slave). The data is sent on the bus with the MSB
bit first. An acknowledgement (ACK) bit takes place after every byte and this bit allows the
receiver to signal the transmitter that the byte was received successfully and as a result
another byte may be sent. The ACK bit is sent at the 9th clock pulse.

The communication over the I2C bus is simply as follows:

•	The master sends on the bus the address of the slave it wants to communicate
with

•	The LSB is the R/W bit which establishes the direction of data transmission, i.e.,
from mater to slave (R/W = 0), or from slave to master (R/W = 1)

•	Required bytes are sent, each interleaved with an ACK bit, until a stop condition
occurs

Depending on te type of slave device used, some transactions may require separate
transaction. For example, the steps to read data from an I2C compatible memory device
are:

•	Master starts the transaction in write mode (R/W = 0) by sending the slave
address on the bus

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 106Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 106 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 107

•	The memory location to be retrieved are then sent as two bytes (assuming
64Kbit memory)

•	The master sends a STOP condition to end the transaction
•	The master starts a new transaction in read mode (R/W = 1) by sending the

slave address on the bus
•	The master reads the data from the memory. If reading the memory in

sequential format, then more than one byte will be read
•	The master sets a stop condition on the bus

I2C pins of the Raspberry Pi 5
The Raspberry Pi 5 board has two I2C pins at its 40-pin GPIO header, as follows:

GPIO 2	 SDA1	 pin 3
GPIO 3	 SCL1	 pin 5

GPIO 0	 SDA0	 pin27
GPIO 1	 SCL0	 pin 28

1.8 kΩ pull-up resistors are used from the I2C pins to +3.3 V. Notice that because the I2C
pins are pulled-up to +3.3 V and the Raspberry Pi 5 pins are not +5 V compatible, it is
necessary to use voltage level converter circuits if the I2C LCD operates at +5 V.

The I2C LCD
The I2C LCD has 4 pins: GND, +V, SDA, and SCL. SDA can be connected to pin GPIO 2
and SCL to pin GPIO 3. +V pin of the display should be connected to the +5V (pin 2) of
the Raspberry Pi 5. Raspberry Pi GPIO pins are not +5V tolerant, but the I2C LCD operates
with +5V where its SDA and SCL pins are pulled to +5V. It is not a good idea to connect
the LCD directly to the Raspberry Pi as it can damage its I/O circuitry. There are several
solutions here. One solution is to remove the I2C pull-up resistors on the LCD module.
The other option is to use an LCD which operates with +3.3V. The other solution is to use
a bidirectional +3.3V to +5V logic level converter chip. In this project you will use the
TXS0102 bidirectional logic level converter chip like the one shown in Figure 4.15.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 107Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 107 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 108

Figure 4.15 Logic level converter

Note: Raspberry Pi 5 GPIO pins are claimed to be +5V tolerant as long as the RP1
module is powered ON. But for safety, a logic level converter is used in this project.

Circuit Diagram: The I2C LCD has 4 pins: GND, +V, SDA, and SCL. SDA is connected to
pin GPIO2 and SCL is connected to pin GPIO3 of the Raspberry Pi respectively through a
logic level converter.

Figure 4.16 shows the front and back of the I2C based LCD. Notice that the LCD has a
small board mounted at its back to control the I2C interface. The LCD contrast is adjusted
through the small potentiometer mounted on this board. A jumper is provided on this board
to disable the backlight if required.

Figure 4.16: I2C based LCD (front and back views).

The I2C clock signal is always generated by the bus master. The devices on the I2C bus can
communicate at 100 kHz or 400 kHz. Figure 4.17 shows the circuit diagram of the project.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 108Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 108 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 109

Figure 4.17: Circuit diagram of the project.

Program Listing: Before using the I2C pins of the Raspberry Pi 5, you have to enable the
I2C peripheral interface on the device. The steps for this are as follows:

•	Start the configuration menu from the command prompt:

pi@raspberrypi:~ $ sudo raspi-config

•	Go down the menu to Interface Options

•	Go down and select I2C

•	Enable the I2C interface

•	Select Finish to complete

Now you have to check that the I2C library is available on your Raspberry Pi 5. The steps
are as follows:

•	Enter the following command. You should see the i2c tools (Figure 4.18:

pi@raspberrypi:~ $ lsmod | grep i2c

Figure 4.18: Check the I2C tools.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 109Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 109 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 110

•	Connect your LCD to the Raspberry Pi 5 device and enter the following
command to check whether or not the LCD is recognized by the Raspberry Pi 5:

pi@raspberrypi:~ $ sudo i2cdetect –y 1

You should see a table similar to the one shown below. A number in the table
means that the LCD has been recognized correctly and the I2C slave address of
the LCD is shown in the table. In this example the LCD address is 27:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

You should now install an I2C LCD library so that you can send commands and data to the
LCD. There are many Python libraries available for the I2C type LCDs. The one chosen here
is on GitHub from Dave Hylands. This library is installed as follows:

•	Go to the following web link:

https://github.com/dhylands/python_lcd/tree/master/lcd

•	Copy the following files to your home directory /home/pi using WinSCP:

i2c_lcd.py
lcd_api.py

•	Check to make sure that the files are copied successfully. You should see the
files listed with the command:

pi@raspberrypi: ~ $ ls

You are now ready to write the program. Figure 4.19 shows the program listing (Stationtim.
py). At the beginning of the program the LCD driver libraries lcd_api and i2c_lcd are
imported to the program. The heading DATE AND TIME is displayed for three seconds at the
top row (row 1) and the program enters a loop. Inside this loop the current date and time
are displayed row 1 and row 2 of the LCD respectively.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 110Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 110 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 111

#---
#			 STATION DATE AND TIME
#			 ---------------------
In this project an I2C LCD is connected to the Raspberry Pi 5.
The program gets the current date and time and displays on
the LCD
#
Author: Dogan Ibrahim
File : Stationtim.py
Date : February, 2024
#---
import time
from datetime import date

#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

mylcd.clear()					 # clear LCD
mylcd.putstr("DATE AND TIME")			 # display heading
time.sleep(3)					 # Wait 3 seconds

#
Get current date and time. Display date at first row and time
in the second row of the LCD
#
try:

 while True:
 mylcd.clear()
 today = date.today()
 mylcd.move_to(0,0)
 mylcd.putstr(date.today().strftime("%d-%m-%Y"))
 mylcd.move_to(0,1)
 mylcd.putstr(time.strftime("%H:%M:%S"))
 time.sleep(1)

except KeyboardInterrupt:			 # Cntrl+C detected
 print("End of program")			 # End of program

Figure 4.19: Program listing.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 111Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 111 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 112

Figure 4.20 shows example output on the LCD.

Figure 4.20: Example output on LCD.

The I2C LCD library supports many functions. Some of the commonly used functions are
(see the LCD library documentation for more details):

clear()			 clear LCD and set to home position
show_cursor()		 show cursor
hide_cursor()		 hide cursor
blink_cursor_on()		 blink cursor
blink_cursor_off()		 stop blinking cursor
display_on()			 display on
display_off()			 display off
backlight_on()		 backlight on
backlight_off()		 backlight off
move_to(x, y)		 move cursor to (x, y)
putchar()			 display a character
putstr()			 display a string

4.6 Project 5: Station Geographical Coordinates
There are requirements, especially when working mobile that we may want to know the
geographical coordinates (e.g., latitude and longitude) of our station. In this project, we
use a GPS to read and display the geographical coordinates of our station on an LCD.

Description: GPS receivers receive geographical data from the GPS satellites and they
provide accurate information about the position of the user on Earth. These satellites circle
the Earth at an altitude of about 20,000 kms and complete two full orbits every day. In order
for a receiver to determine its position, it is necessary that for the receiver to communicate
with at least 3 satellites. Therefore, if the receiver does not have clear view of the sky then
it may not be possible to determine its position on Earth. In some applications external
antennas are used so that even very weak signals can be received from the GPS satellites.

The data sent out from a GPS receiver is in text format and is known as the NMEA Sentences.
Each NMEA sentence starts with a $ character and the values in a sentence are separated
by commas. Some of the NMEA sentences returned by a GPS receiver are given below:

3$GPGLL: This sentence returns the local geographical latitude and longitude.

$GPRMC: This sentence returns the local geographical latitude and longitude, speed, track
angle, date, time, and magnetic variation.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 112Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 112 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 113

$GPVTG: This sentence true track, magnetic track, and the ground speed.

$GGGA: This sentence returns the local geographical latitude and longitude, time, fix
quality, number of satellites being tracked, horizontal dilution of position, altitude, height
of geoid, and DGPS data.

$GPGSV: There are 4 sentences with this heading. These sentences return the number of
satellites in view, satellite number, elevation, azimuth, and SNR.

In this project, the GPS Click board (www.mikroe.com) is used to receive the NMEA
sentences. This is a small GPS receiver (see Figure 4.21) which is based on the LEA-6S
type GPS. This board operates with +3.3 V and provides two types of outputs: I2C or serial
output. In this project the default serial output is used which operates at 9600 Baud rate.
An external dynamic antenna can be attached to the board in order to improve its reception
for indoor use or in for use in places where there may not be clear view of the sky.

Figure 4.21: GPS Click board.

Figure 4.22 shows the complete list of the NMEA sentences output from the GPS Click board
every second.

Figure 4.22: NMEA sentences output from the GPS Click board.

GPS Click board is a 2x8 pin dual-in-line module and it has the following pin configuration
(pin 1 is the top left pin of the module):

1: No connection	 16: No connection
2: Reset		 15: No connection
3: No connection	 14: TX
4: No connection	 13: RX
5: No connection	 12: SCL

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 113Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 113 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 114

6: No connection	 11: SDA
7: +3.3V		 10: No connection
8: GND		 9: GND

In serial operation, only the following pins are required: +3.3V, GND, TX. In this project,
an external dynamic antenna is attached to the GPS Click board as it was tested indoors.

$GPGLL is one of the commonly used NMEA sentence and this is the sentence used in
this project to extract the station geographical coordinates. This sentence is output every
second in the following format:

	 $GPGLL,5127.37032,N,00003.12782,E,221918.00,A,A*61

The fields in this sentence can be decoded as follows:

GLL		 Geographic position, latitude and longitude
5127.37032	 Latitude 51 deg., 27.3702 min. North
00003.12782	 Longitude 0 deg., 3.12782 min. East
221918		 Fix taken at 22L19L18 UTC
A		 Data active (or V for void)
*61		 checksum data

Notice that the received data fields are separated by commas. The validity of the received
data is shown by letters A or V in the data, where A shows that the data is valid, and V
indicates that the data is not valid. A checksum is used at the end of the data.

Block Diagram: Figure 4.23 shows the block diagram of the project. An I2C LCD is used
to display the latitude and longitude of the station.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 114Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 114 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 115

Figure 4.23: Block diagram of the project.

The Serial Debug port, marked as UART on the board (Figure 4.24), is used to communicate
with the GPS click board. This serial port is identified as /dev/ttyAMA10.

Figure 4.24: Raspberry Pi 5 Serial Debug port (UART)

The Serial Debug port is interfaced to external world through a 3-pin JST-SH type micro
connector and cables (Figure 4.25).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 115Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 115 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 116

Figure 4.25: 3-pin JST-SH connector and cable.

The JST-SH cable is identified with different colors:

Orange:		 RX (serial input to Raspberry Pi 5)
Black:		 Ground
Yellow:		 RX (serial output from Raspberry Pi 5)

Circuit Diagram: The circuit diagram of the project is shown in Figure 4.26. The UART TX
pin of the GPS click board (pin 14) and Ground (pin 8) are connected to RX (yellow) and
Ground (black) pins of the cable. The I2C LCD is connected as in the previous projects. i.e.,
the SDA and SCL pins are connected to GPIO2 and GPIO3 respectively through a logic level
converter module. The GPS click board is powered from the Raspberry Pi 5's +3.3 V supply.

Figure 4.26: Circuit diagram of the project.

We can display all the GPS NMEA sentences sent by the GPS click board by entering the
following command. This command is useful for testing purposes since it verifies if the
connection to the GPS is correct and also if the GPS is receiving data from the satellites :

	 pi@raspberrypi:~ $ sudo cat /dev/ttyAMA10

An example output is shown in Figure 4.27 (only part of the output is shown).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 116Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 116 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 117

Figure 4.27: Example output of NMEA sentences.

In this project, the latitude and longitude are extracted from the NMEA sentence $GPGLL
without using a library.

Program Listing: Figure 4.28 shows the program listing (program: gps.py). Variable
port is assigned to /dev/ttyAMA10 which is the debug serial port name for Raspberry
Pi 5. Function Get_GPS() receives a line of NMEA sentence and looks for string $GPGLL.
When this string is detected the line of sentence is broken down into parts separated by
commas using built-in function split(",") and stored in sdata. If the 6th field is character
V then it is assumed that the sentence is not valid (e.g., there is no satellite reception)
and the text NO DATA is displayed at the top row of the LCD. Otherwise, the latitude
and its direction are extracted from fields 1 and 2 and stored in variables lat and latdir
respectively. The longitude and its direction are extracted from fields 3 and 4 and stored in
variables lon and londir respectively.

The latitude is received in the format: ddmm.mmmmmD which corresponds to dd degrees
mm.mmmmm minutes, and direction D which is N or S. Similarly, the longitude is received
in the format: dddmm.mmmmmD where D is E or W. The main program separates the
degrees and minutes and displays them on the LCD. The latitude is displayed at the top
row of the LCD in the format: dd mm.mmmmm D, and the longitude is displayed as: ddd
mm.mmmmm D.

#---
#		 STATION GEOGRAPHICAL COORDINATES
#		 --------------------------------
#
In this project a GPS receiver module (GPS CLICK) is connected
to the serial debug port of the Raspberry Pi 5. Additionally,
an I2C LCD is connected. The program displays the latitude and
longitude of the receiver location on the LCD
#
Author: Dogan Ibrahim
File : gps.py
Date : January, 2024
#---
import time

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 117Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 117 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 118

#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

#
LCD configuration
#
I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()				 # clear LCD

import serial				 # Import srial

port = "/dev/ttyAMA10"			 # Serial port
lat=latdir=lon=londir = "0"

#
This function receives and extracts the latitude and longitude
from the NME sentence $PGLL
#
def Get_GPS(data):
 global lat,latdir,lon,londir
 dat = data.decode('utf-8')
 if dat[0:6] == "$GPGLL":
 sdata = dat.split(",")			 # SPlit data
 if sdata[6] == "V":			 # Valid data?
 mylcd.clear()			 # Clear LCD
 mylcd.move_to(0, 0)			 # At 0,0
 mylcd.putstr("NO DATA")		 # No data
 return
 lat = sdata[1]				 # Get latitude
 latdir = sdata[2]			 # Latitude dir
 lon = sdata[3]				 # Get longitude
 londir = sdata[4]			 # Longitude dir
 return

#
Receive the GPS coordinates and display on the LCD
#
ser = serial.Serial(port,baudrate=9600,timeout=0.5)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 118Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 118 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 119

try:

 while True:
 data = ser.readline()			 # Read a line
 Get_GPS(data)				 # Decode

 deg = lat[0:2]
 min = lat[2:]
 latitude = str(deg) + " " + str(min) + " " + str(latdir)

 deg = lon[0:3]
 min = lon[3:]
 longitude = str(deg) + " " + str(min) + " " + str(londir)

 mylcd.clear()
 mylcd.move_to(0, 0)
 mylcd.putstr(latitude)			 # Display latitude
 mylcd.move_to(0, 1)
 mylcd.putstr(longitude)			 # Display longitude
 time.sleep(1) 				 # WAit 1 secons

except KeyboardInterrupt:			 # Cntrl+C detected
 ser.close()					 # Close serial
 print("End of program")			 # End of program

Figure 4.28: Program listing.

An example display on the LCD is shown in Figure 4.29.

Figure 4.29: Example display on the LCD.

Figure 4.30 shows the project built on a breadboard and connections made using jumper
wires.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 119Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 119 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 120

Figure 4.30: Project built on a breadboard.

4.7 Project 6: Waveform Generation in Software — Sawtooth wave-
form
Waveform generators are important tools for amateur radio operators. There are many
commercially available equipment such as signal generators for generating various
waveforms. The author's earlier book entitled Raspberry Pi for Radio Amateurs gives
examples of several projects for generating square wave, triangular wave, sawtooth wave,
sine wave etc using a Raspberry Pi 4. In this section, we will give an example of generating
a sawtooth wave using a Raspberry Pi 5. Readers who have the earlier book and Raspberry
Pi 5 should be able to convert the programs in that book to work on the Raspberry Pi 5.

Before generating an analog waveform, it is necessary to use a Digital-to-Analog Converter
chip (DAC) to convert the generated digital signals into analog form. In this book we will be
using the popular MCP4921 DAC chip from Microchip.

4.7.1 The MCP4921 DAC
Before using the MCP4921, it is worthwhile to look at its features and operation in some
detail. MCP4921 is a 12-bit DAC that operates with the SPI bus interface. Figure 4.31 shows
the pin layout of this chip. The basic features are:

•	12-bit operation
•	20 MHz clock support
•	4.5 μs settling time
•	External voltage reference input
•	Unity or 2× gain control
•	1× or 2× gain
•	2.7 to 5.5 V supply voltage
•	–40 ºC to +125 ºC temperature range

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 120Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 120 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 121

Figure 4.31: The MCP4921 DAC.

The pin descriptions are:

Vdd:	 supply voltage
CS:		 chip select (active LOW)
SCK:	 SPI clock
SDI:	 SPI data in
LDAC:	 Used to transfer input register data to the output (active LOW)
Vref		 Reference input voltage
Vout:	 analog output
Vss:		 supply ground

In this project, you will be operating the MCP4921 set to a gain of 1. As a result, with a
reference voltage of 3.3 V and 12-bit conversion data, the LSB resolution of the DAC will
be 3300 mV / 4096 = 0.8 mV.

The SPI Bus
The Serial Peripheral Interface (SPI) bus consists of two data wires and one clock wire.
Additionally, a chip enable (CE or CS) connection is used to select a slave in a multi-slave
system. The wires used are:

MOSI (or SDI): Master Out Slave In. This signal is output from the master and is input
to a slave.

MISO: Master In Slave Out. This signal is output from a slave and input to a master.

SCLK (or SCK): The clock, controlled by the master.

CE (or CS): Chip Enable (slave select).

There are four SPI operational modes known as mode 0 to mode3. The mode determines
the relationship between the clock pulses and the data pulses. Data can be read at the
leading edge or at the trailing edge of the clock. CPOL (clock polarity) and CPHA (clock
phase) determine the mode of operation. CPOL determines the polarity of the clock. In
mode 0, both CPOL and CPHA are 0 and data is sampled at the leading rising edge of the
clock. In mode 2, CPOL=1 and CPHA=0, data is sampled at the leading falling edge of the
clock. In mode 1, CPOL=0 and CPHA=1 and the data is sampled on the trailing falling edge
of the clock. Finally, in mode 3, CPOL=1 and CPHA=1 where the data is sampled on the
trailing rising edge of the clock. Mode 0,0 is used by the Raspberry Pi which is the most
commonly used mode.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 121Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 121 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 122

The following pins are the SPI bus pins on Raspberry Pi 5:

GPIO pin	 SPI	 Physical pin no
GPIO10	 MOSI	 19
GPIO9	 MISO	 21
GPIO11	 SCLK	 23
GPIO8	 24	 CE0
GPIO7	 26	 CE1

The SPI bus must be enabled on the Raspberry Pi 5 before it can be used. The steps are:

•	Start the configuration tool:

pi@raspberrypi:~ $ sudo raspi-config

•	Select Interfacing Options.

•	Select SPI.

•	Select Yes to enable it.

•	Select Finish.

•	Select to reboot your Raspberry Pi 5.

After the system comes up, enter the following command to confirm that the SPI bus has
been enabled:

	 pi@raspberrypi:~ $ ls /dev/*spi*

You should get a response similar to:

	 /dev/spidev0.0 /dev/spidev0.1

This represents that there could be up to two SPI devices on chip enable pins 0 and 1. Note
that you can have more SPI devices daisy-chained and sharing the same chip enable pin
if you want.

The SPI bus on Raspberry Pi 5 supports the following functions:

Function			 Description
open (0,0)			 Open SPI bus 0 using CE0
open (0,1)			 Open SPI bus 0 using CE1
close()			 disconnect the device from the SPI bus
writebytes([array of bytes])	 Write an array of bytes to SPI bus device
readbytes(len)		 Read len bytes from SPI bus device

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 122Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 122 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 123

xfer2([array of bytes])	 Send an array of bytes to the device with CEx asserted
				 at all times
xfer([array of bytes])		� Send an array of bytes de-asserting and asserting CEx

with every byte transmitted

Description: In this project we will be using the MCP4921 DAC to generate a sawtooth
wave signal with the following specifications:

	 Peak voltage: 		 3.3 V
	 Step width:		 1 ms
	 Number of steps:	 6

Block diagram: Figure 4.32 shows the block diagram of the project. The output voltage is
plotted using a Velleman PCSGU250 model oscilloscope & function generator. Pin GPIO26
is used as an output and is connected to the oscilloscope.

Figure 4.32: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is as shown in Figure 4.33

Figure 4.33: Circuit diagram of the project.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 123Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 123 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 124

Program Listing: Data is written to the DAC in 2 bytes. The lower byte specifies D0:D8 of
the digital input data. The upper byte consists of the following bits:

D8:D11	 bits D8:D11 of the digital input data
SHDN	 1: active (output available), 0: shutdown the device
GA		 output gain control. 0: gain is 2×, 1: gain is 1×
BUF		 0: input unbuffered, 1: input buffered
A/B		 0: write to DACa, 1: Write to DACb (MCP4921 supports only DACa)

In normal operation, you send the upper byte (D8:D11) of the 12 bit (D0:D11) input data
with bits D12 and D13 set to 1 so that the device is active and the gain is set to 1x. Then
you send the low byte (D0:D7) of the data. This means that 0x30 should be added to the
upper byte before sending it to the DAC.

Figure 4.34 shows the program listing (program: sawtooth.py). At the beginning of the
program GPIO26 is used as the CS pin and is configured as an output. Variable frequency
is set to 1000 which is the required frequency. Function DAC sends the 12 bit input data to
the DAC. This function has two parts. In the first part, the HIGH byte is sent after adding
0x30 as described above. Function xfer2 is used to send the data to the DAC. In the second
part of the function, the LOW byte is extracted and is sent to the DAC. Notice that we could
have send both the high byte and the low byte using the same xfer2 function as follows:

	 highbyte = (data >> 8) & 0x0F
 	 highbyte = highbyte + 0x30

	 lowbyte = data & 0xFF
	 xfer2([highbyte, lowbyte])

Notice that the speed of the SPI interface is set to 3900000 which corresponds to 3.9MHz.
The table below shows the values set for the speed and the actual speed of the SPI interface:

Speed spi.max_speed_hz value

125.0 MHz 125000000

62.5 MHz 62500000

31.2 MHz 31200000

15.6 MHz 15600000

7.8 MHz 7800000

3.9 MHz 3900000

1953 kHz 1953000

976 kHz 976000

488 kHz 488000

244 kHz 244000

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 124Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 124 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 125

122 kHz 122000

61 kHz 61000

30.5 kHz 30500

15.2 kHz 15200

7629 Hz 7629

#---
GENERATE SAWTOOTH WAVEFORM
==========================
#
This program generates sawtooth waveform with 6 steps where each
step has a width of 1ms
#
Author: Dogan Ibrahim
File : sawtooth.py
Date : February, 2024
#---
from gpiozero import OutputDevice
import time					 # Import time
import spidev					 # Import SPI

spi = spidev.SpiDev()
spi.open(0, 0)					 # Bus=0, device=0
spi.max_speed_hz = 3900000

CS = 26					 # GPIO26 is CS output
cs = OutputDevice(CS)

cs.on()					 # Disable CS

#
This function implements the DAC. The data in "data" is sent
to the DAC
#
def DAC(data):
 cs.off()					 # Enable CS

#
Send HIGH byte
#
 temp = (data >> 8) & 0x0F			 # Get upper byte
 temp = temp + 0x30				 # OR with 0x30
 spi.xfer2([temp])				 # Send to DAC
#
Send LOW byte

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 125Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 125 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 126

#
 temp = data & 0xFF				 # Get lower byte
 spi.xfer2([temp])				 # Send to DAC

 cs.on()					 # Disable CS

try:

 while True:					 # Do forever
 i = 0
 while i < 1.1:
 DACValue = int(i*4095)			 # Value to send
 DAC(DACValue)				 # Send to DAC
 time.sleep(0.0007)			 # Wait
 i = i + 0.2

except KeyboardInterrupt:
 exit(0)

Figure 4.34: Program listing.

An example output waveform taken from the oscilloscope is shown in Figure 4.35. Notice
that the time delay had to be adjusted experimentally to give the correct timing.

Figure 4.35: Example output waveform.

4.8 Project 7: Generating a Waveform – Frequency Entry using Keypad
and LCD
In this section, you will explore the use of a programmable signal generator module that
can be used to generate accurate sine and square wave signals. You will be using the
popular AD9850 signal generator module together with the Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 126Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 126 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 127

4.8.1 The AD9850
The AD9850 (see Figure 4.36) module is a dual sine- and square-wave generator with the
following features:

•	0 – 40 MHz sine wave output.
•	0 – 1 MHz square wave output.
•	3.3 V or 5 V operation.
•	125 MHz on-board timing crystal.
•	On-chip 10 bit DAC.
•	Serial or parallel programming data.
•	60 mA operating current.

Figure 4.36: The AD9850 module.

The AD9850's circuit architecture allows the generation of output frequencies of up to
one-half the reference clock frequency (or 62.5 MHz). The device also provides five bits
of digitally controlled phase modulation, which enables phase shifting of its output in
increments of 180°, 90°, 45°, 22.5°,11.25°, and any combination thereof.

Before using the AD9850 in a project, you need to know how to program it, and this
is described briefly in the following sections (more information on the AD9850 can be
obtained from the manufacturers' data sheet at:

	� https://www.analog.com/media/en/technical-documentation/data-sheets/
ad9850.pdf)

Figure 4.37 shows the AD9850 pin layout.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 127Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 127 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 128

Figure 4.37: AD9850 module pin layout.

The pin definitions are:

VCC: supply voltage (3.3 V or 5 V)
GND: supply ground
W_CLK: load word clock (used to load parallel or serial frequency/phase words)
FQ_UD: frequency update (the frequency or phase is updated on rising edge of this
pin)
DATA: serial load pin
RESET: master reset pin (HIGH to reset to clear all registers)
D0-D7: parallel data input (for loading 32-bit frequency and 8-bit phase/control word)
Square Wave Output1: square wave output 1 (comparator output)
Square Wave Output2: square wave output 2 (comparator complement output)
Sine Wave Output1: analog sine wave output 1 (DAC output)
Sine Wave Output2: analog sine wave output 2 (DAC complement output)

The on-board potentiometer is used to set the duty cycle of the square waveform.

The AD9850 can be loaded either in parallel or in serial form. In this project, you will be
using the serial mode. The relationship between the output frequency, reference clock,
and tuning word of the AD9850 is determined by the following formula:

	 Fout = ΔPhase × REFCLOCK / 232

or	 ΔPhase = Fout × 232 /REFCLOCK

where Fout is the output frequency in MHz, ΔPhase is the value of the 32-bit tuning word,
and REFCLOCK is the reference clock in MHz. The output sine wave is an analog signal
output by a 10-bit DAC. Notice that 232 = 4,294,967,296.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 128Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 128 04-04-2024 13:1904-04-2024 13:19

.

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 129

The AD9850 contains a 40-bit register, consisting of the 32-bit frequency control word,
5-bit phase modulation word, and the power-down function. In this project this register is
loaded serially. In this mode, rising edge of W_CLK shifts the 1-bit data on pin D7 (DATA)
through the 40-bits of programming information. After shifting 40-bits, an FQ_UD pulse is
required to update the output frequency (or phase).

The serial mode is enabled by the following sequence (see Data Sheet page 12, Figure 10):

•	Pulse RESET
•	Pulse W_CLK
•	Pulse FQ_UD

The 40-bit serial data is loaded as follows:

•	Send bit 0 - frequency (LSB)
•	Send bit 1 - frequency
•	Send bit 2 - frequency
•	……….
•	……….
•	Send bit 31 - frequency (MSB)
•	Send bit 32 – Control (set to 0)
•	Send bit 33 – Control (set to 0)
•	Send bit 34 - power down
•	Send bit 35 - phase (LSB)
•	Send bit 36 - phase
•	Send bit 37 – phase
•	Send bit 38 – phase
•	Send bit 38 – phase
•	Send bit 39 – phase (MSB)

Description: In this project a keypad and an I2C LCD are used to set the frequency of the
waveform. This makes the project autonomous so that for example the Raspberry Pi 5 can
be used on its own without having to use a PC to set the frequency of the waveform. In this
project the generated sine wave frequency is set to 2000 Hz.

Block Diagram: Figure 4.38 shows the block diagram of the project. The keypad sets
the desired frequency which is displayed on the LCD as it is entered. The generated signal
waveform is output by the AD9850 module which can be displayed on an oscilloscope if
desired.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 129Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 129 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 130

Figure 4.38: Block diagram of the project.

The Keypad: There are several types of keypads that can be used in microcontroller based
projects. In this project a 4×4 keypad (see Figure 4.39) is used. This keypad has keys for
numbers 0 to 9 and letters A, B, C, D, *, and #. The keypad is interfaced to the processor
with 8 wires with the names R1 to R4 and C1 to C4, representing the rows and columns
respectively of the keypad (see Figure 4.40).

Figure 4.39: 4×4 keypad used in the project.

Figure 4.40: Circuit diagram of the 4×4 keypad.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 130Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 130 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 131

The operation of the keypad is very simple: the columns are configured as outputs and the
rows as inputs. The pressed key is identified by using column scanning. Here, a column is
forced low while the other columns are held high. Then the state of each row is scanned,
and if a row is found to be low, then the key at the intersection of the row which is low and
this column is the key pressed. This process is repeated for all the rows.

Circuit Diagram: Figure 4.41 shows the circuit diagram of the project. The I2C LCD is
connected to the Raspberry Pi 5 as in the previous projects, where GPIO 2 and GPIO 3 are
used as the SDA and SCL pins respectively. The AD9850 module and the 4x4 keypad are
connected to the following GPIO pins of the Raspberry Pi 5.

AD9850 module pin	 Raspberry Pi 5 pin
FQ_UD		 	 GPIO26
W_CLK		 	 GPIO19
RESET		 	 GPIO13
DATA		 	 GPIO6

Keypad pin			 Raspberry Pi 5 pin
R1				 PIO 14
R2				 GPIO 15
R3				 GPIO 12
R4				 GPIO 23
C1				 GPIO 24
C2				 GPIO 25
C3				 GPIO 8
C4				 GPIO 7

The keypad row pins are held high using 10-kΩ pull-up resistors to +3.3 V. Notice that the
Raspberry Pi 5 has internal pull-up resistors when a pin is used as an input but the use of
these pull-up resistors is not reliable.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 131Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 131 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 132

Figure 4.41: Circuit diagram of the project.

Figure 4.42 shows the pin configuration of the 4×4 keypad used in the project.

Figure 4.42: Pin configuration of the 4x4 keypad.

Program Listing: The SPI interface must be disabled using the raspi-config command
before the program is run. This is because some of the ports used by the program are
shared with the SPI interface and this gives GPIO busy errors.

You are now ready to develop the program of this project. Figure 4.43 shows the program
listing (Program: keypadsig.py). At the beginning of the program the connections of

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 132Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 132 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 133

AD9850 pins FQ_UD, W_CLK, RESET, and DATA are set to 26, 19, 13, and 6 respectively
which are the GPIO pin names. These pins are configured as outputs and all are cleared to 0
at the beginning of the program. Also, connections to the keypad and the LCD are defined.
The program consists of a number of functions:

SendPulse: This function sends a HIGH-LOW logic signals to the pin specified in its
argument GPIOpin.

SendByte: This function receives a byte as its argument. Then a loop is formed to send
the 8 bits of this byte to serial input DATA. A pulse is sent to W_CLK after sending a bit.

SetSerialMode: This function puts the AD9850 into serial mode by pulsing pins RESET,
W_CLK, and FQ_UD.

LoadFrequency: This function receives the required frequency as its argument. Then the
tuning word is calculated using the formula described earlier in this section and is stored
in variable f. Then a for loop is formed to iterate 4 times. The LOW byte of f is then sent to
function SendByte so that its 8 bits are sent to the serial input. Variable f is then shifted
right 8 times so that the next higher byte is serialized and sent to function SendByte. This
process is repeated for the 4 bytes, making a total of 32-bits. Then, the remaining 8 bits are
sent as zeroes so that the two Control words are 0, and also the phase bits are 0.

In this program, key D is assumed to be the ENTER key where all the inputs to the keypad
must be terminated by pressing the ENTER key. Only keys 0 to 9 and key D are accepted
by the program. Pressing any other key is ignored by the program. When key D is pressed,
the program stores the entered frequency in variable Total which is then copied to variable
frequency. After pressing the D key, the LCD displays OK to confirm that the entered
frequency value is accepted by the program. After a short delay, the second row of the LCD
is cleared so that it is ready to accept a new frequency value.

#--
FREQUENCY GENERATOR WITH KEYPAD AND LCD
=======================================
#
In this program the required frequency is entered from a keypad
in Hz. An LCD is used to display the entered frequency
#
Author: Dogan Ibrahim
File : keypadsig.py
Date : February, 2024
#---
import time
from gpiozero import OutputDevice, InputDevice
#
Import LCD libraries
#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 133Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 133 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 134

from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()					 # clear LCD

#
Keypad connections
#
KEYPAD = [# Keypad keys
 [1,2,3,"A"],
 [4,5,6,"B"],
 [7,8,9,"C"],
 ["*",0,"#","D"]]				 # D is ENTER key

ROWS = [14,15,12,23]				 # Row pins
COLS = [24,25,8,7]				 # Column pins

cols=[0]*4
rows=[0]*4
#
Configure columns
#
for i in range(4):				 # Conf columns
 cols[i] = OutputDevice(COLS[i])
 cols[i].on()

#
Configure rows
#
for j in range(4):				 # Conf rows
 rows[j] = InputDevice(ROWS[j])

#
This function reads a key from the keypad
#
def Get_Key():
 while True:
 for j in range(4):
 cols[j].off()				 # Set col j to 0
 for i in range(4):				 # For all rows
 if rows[i].value == 0:			 # Is row 0?

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 134Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 134 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 135

 return (KEYPAD[i][j])		 # Return key
 while rows[i].value == 0:
 pass
 cols[j].on()					 # col back to 1
 time.sleep(0.05)				 # Wait 0.05s

#
================ AD9850 functions ===================
#

#
AD9850 module connections
#
FQ_UD = 26					 # FQ_UD pin
W_CLK = 19					 # W_CLK pin
RESET = 13					 # RESET pin
DATA = 6					 # DATA pin				
		 # GPIO26 is CS output

#
Configure AD9850 pins as outputs
#
fq_ud = OutputDevice(FQ_UD)
w_clk = OutputDevice(W_CLK)
reset = OutputDevice(RESET)
data = OutputDevice(DATA)

#
Set all outputs to 0 at the beginning
#
fq_ud.off()					 # FQ_UD = 0
w_clk.off()					 # W_CLK = 0
reset.off()					 # RESET = 0
data.off()					 # DATA = 0

#
This function sends a pulse to the pin specified in the argument
#
def SendPulse(GPIOpin):
 GPIOpin.on()				 # Send 1
 GPIOpin.off()				 # Send 0
 return

#
This function sends bits of a byte of data to the AD9850 module
#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 135Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 135 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 136

def SendByte(DataByte):
 for k in range(0, 8):			 # Do 8 times
 p = DataByte & 0x01			 # Get bit 0
 if p == 0:
 data.off()
 else:
 data.on()
 SendPulse(w_clk)				 # Send clock
 DataByte = DataByte >> 1			 # Get next bit
 return

#
This function puts AD9850 module into serial mode
#
def SetSerialMode():
 SendPulse(reset)				 # Pulse RESET
 SendPulse(w_clk)				 # Pulse W_CLK
 SendPulse(fq_ud)				 # Pulse FQ_UD
 return

#
This function loads the 40-bit data to the AD9850. 32-bit
frequency data is sent, then the power down bit is sent as 0,
two Control bits are sent as 0, and then the 5 phase bits are
sent as 0
#
def LoadFrequency(frequency):
 f = int(frequency * 4294967296 / 125000000)	# See book
 for p in range(0, 4):			 # Do 4 times
 SendByte(f & 0xFF)			 # Send Low byte
 f = f >> 8				 # Get next byte
 SendByte(0x00)				 # Send remaining bits
 SendPulse(fq_ud)				 # Terminate serial
 return

Total = 0
mylcd.clear()					 # Clear LCD
mylcd.move_to(0, 0)				 # To (0,0)
mylcd.putstr("Frequency (Hz):")		 # Heading
mylcd.move_to(0, 1)				 # To (0,1)

try:

 while True:
 mylcd.move_to(0, 1)
 flag = 0

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 136Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 136 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 137

 while flag == 0:
 key = Get_Key()			 # Get a key
 if key != "D":				 # Is it ENTER?
 if str(key).isnumeric():		 # IS it numeric?
 mylcd.putstr(str(key))		 # Display key
 N = int(key)
 Total = 10*Total + N		 # Total so far
 else:					 # ENTER detected
 frequency = Total			 # Get freuency
 Total = 0
 flag = 1
 mylcd.putstr(" - OK")		 # Display OK
 time.sleep(0.2)			 # WAit 0.2 sec

 SetSerialMode()				 # Select serial mode
 LoadFrequency(frequency)			 # Load register
 time.sleep(5)
 mylcd.move_to(0, 1)
 mylcd.putstr(" ")

except KeyboardInterrupt:			 # Keyboard Cntrl+C
 SendPulse(reset)				 # Stop AD9850

Figure 4.43: Program listing.

Figure 4.44 shows the LCD before entering the frequency, after entering frequency and
after pressing the D (ENTER) key respectively.

Figure 4.44: Before entering the frequency.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 137Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 137 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 138

The project was constructed on a breadboard as shown in Figure 4.45 and connections
were made to the Raspberry Pi 5 and other components using jumper wires. Interested
readers can design a PCB for the project.

Figure 4.45: Project constructed on a breadboard.

Figure 4.46 shows the generated sine waveform at pin Sine-wave pin 1 of the AD9850. It
is clear that the frequency is exactly 2000 Hz. Figure 4.47 shows the square wave output
at pin Square-wave pin 1.

Figure 4.46: Sine wave output.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 138Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 138 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 139

Figure 4.47: Square wave output.

4.8.2 Starting the program automatically at boot time
You may want to start the program automatically when you power up your Raspberry Pi 5,
or after a reboot. The steps are as follows:

•	Use the nano editor to edit file /etc/rc.local

pi@raspberrypi:~ $ sudo nano /etc/rc.local

•	Insert your program name to the end of the file, terminating the filename with
the & character so that the program runs at the background when Raspberry Pi
5 starts:

/usr/bin/python /home/pi/keypadsig.py &

Remember to remove the program from /etc/rc.local if you decide not to start the program
automatically.

4.8.3 Boxing the project
You may like to box the project so that it can be used in your station as a sine wave/square
wave signal generator. Figure 4.48 shows the front view of a possible box.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 139Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 139 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 140

Figure 4.48: Boxing the project.

4.9 Project 8: Morse Code Exerciser with Rotary Encoder and LCD to
Set wpm Value
Description: In this project we will design a Morse code exerciser where the Morse code
of random characters and numbers are generated and output to a buzzer. The timing of the
code is set using a rotary encoder together with an I2C LCD.

Morse code
The information given here may not be new to some readers, but it is given for completeness.

The timing in Morse code is as follows:

•	A dit: 1 unit
•	A dah: 3 units
•	Character spacing between dit and dah of a character: 1 unit
•	Character spacing between the characters of a word: 3 units
•	Word spacing: 7 units

The speed of a Morse code message conveyed over radio or telegraph is specified by how
many words per minute the operator can send or receive. In most amateur radio exams,
candidates are expected to send and receive at least 12 words per minute (wpm).

The word PARIS is used as the standard word, which consists of 50 units of time:

P:	 .--.	 1 1 3 1 3 1 1 (3)		 14 units
A:	 .-	 1 1 3 (3)		 8 units
R:	 .-.	 1 1 3 1 1 (3)		 10 units
I:	 ..	 1 1 1 (3)		 6 units
S:	 …	 1 1 1 1 1 [7]		 12 units

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 140Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 140 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 141

Where () is the inter-character time, and [] is the inter-word time. Notice that at the end
of a character, you do not insert a dot time, but instead insert an inter-character time
(3 units). Similarly, at the end of a word, not dot time is inserted but an inter-word time
(7 units).

	 Total units = 50

The formula for the words per minute can be calculated as follows:

	 Let wpm = words per minute
	 Then seconds per word is given by: spw = 60 / wpm

If we take dits per word to be 50 as the standard, then

	 Seconds per dit, spd = 60 / (50wpm), or spd = 1.2/wpm

We can specify this in milliseconds, giving:

	 Milliseconds per dit, mpd = 60000 / (50 wpm) = 1200/wpm

Therefore, given the required words per minute, we can calculate the time of each dit in
milliseconds as:

	 mpd = 1200/wpm

For example, if the required words per minute is 12, then

	 mpd = 1200/12 = 100 milliseconds

Meaning we have to allow 100 ms for the basic unit of timing. Similarly, if the required
words per minute is 20 then the bit timing should be 1200/20 = 60 ms.

Block Diagram: Figure 4.49 shows the block diagram of the project. There are two types
of buzzers available: passive, and active. Passive buzzers can give sounds at different
frequencies and input to such buzzers are usually signals at the required frequencies. An
active buzzer on the other hand generates a single tone of sound when a logic 1 is applied
across its terminals. In this project, an active buzzer is used for simplicity.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 141Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 141 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 142

Figure 4.49: Block diagram of the project.

4.9.1 Rotary encoder
A rotary encoder is a device that looks like a potentiometer. It senses the rotation and
direction of the spindle and the attached knob. The device has two internal contacts that
make and break a circuit as the knob is turned. As the knob is turned, a click is felt so
the user knows the device has been rotated by one position. With simple logic, you can
determine the direction of rotation.

A rotary encoder has the following pins:

GND: power supply ground.
Vcc (+): power supply.
CLK: This is an output pin used to determine the amount of rotation. Each time the knob is
rotated by one click in either direction, the CLK output goes to HIGH and then LOW.
DT: This is an output similar to CLK pin, but it lags the CLK by 90 degrees. This output is
used to determine the direction of rotation.
SW: This is an active-Low pushbutton. When the knob is pushed, the voltage goes logic
Low.

In this project, each rotation (i.e., click) of the knob will increment (or decrement) the
words per minute count by 1. Turning the knob in one direction will increment the count by
one, while turning it in the other direction will decrement it by one. When the required value
is reached, the user has to push the knob so that the program starts generating random
characters of Morse code on the buzzer.

Circuit Diagram: Figure 4.50 shows the circuit diagram of the project. The I2C LCD is
connected to Raspberry Pi 5 as in the previous LCD based projects, where the SDA and
SCL pins are connected to GPIO2 and GPIO3 respectively. The buzzer is connected to pin
GPIO26 through a transistor switch. The rotary encoder is connected as follows:

Rotary encoder	 GPIO pin
CLK			 GPIO19
DT			 GPIO13
SW			 GPIO6
GND		 GND
Vcc(+)		 3.3V

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 142Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 142 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 143

Figure 4.50: Circuit diagram of the project.

Program Listing: Figure 4.51 shows the program listing (Program: Morse.py). At the
beginning of the program the LCD library is imported and the type of LCD is defined. Then
the interface between the rotary encoder and the Raspberry Pi 5 are defined and pins CLK,
DT, and SW of the rotary encoder are configured as inputs.

The words per minute value increments or decrements as the user turns the knob of the
rotary encoder clockwise or anticlockwise respectively, where the minimum value is 1. The
LCD displays the WPM and expects the user to select the required WPM by rotating the
encoder knob. Pushing in the rotary encoder knob starts the program loop where random
characters are generated and their Morse codes are sent to the buzzer. The LCD displays
the characters in real time as they are generated randomly by the program.

You can start the program from the command line as:

	 pi@raspberrypi:~ $ python Morse.py

#---
MORSE CODE EXERCISER
====================
#
This is a Morse code exercise program. The program generates
random characters which are converted into Morse code and sent
to the buzzer. In this program the speed is set using a rotary
encoder and an I2C LCD. Turning the rotary encoder know increments
or decrements the wpm. Pushing in the knob start generating the
Morse codes. The generated characters are displayed at the bottom
row of the LCD
#
Author: Dogan Ibrahim
File : Morse.py
Date : February, 2024

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 143Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 143 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 144

#---
from gpiozero import InputDevice, OutputDevice
import time
import random

#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.clear()					 # clear LCD

Buzzer = 26					 # Buzzer pin

#
Rotary encoder connections
#
CLK = 19					 # CLK pin
DT = 13					 # DT pin
SW = 6						 # SW pin

#
Configure buzzer and rotary encoder
#
buzzer = OutputDevice(Buzzer)
clk = InputDevice(CLK)
dt = InputDevice(DT)
sw = InputDevice(SW)

buzzer.off()					 # Disable Buzzer

#
Morse code table as a dictionary
#
MorseCode = {' ': ' ',
 '0': '-----',
 '1': '.----',
 '2': '..---',
 '3': '...--',
 '4': '....-',

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 144Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 144 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 145

 '5': '.....',
 '6': '-....',
 '7': '--...',
 '8': '---..',
 '9': '----.',
 ':': '---...',
 ';': '-.-.-.',
 '?': '..--..',
 '/': '-..-.',
 '.': '.-.-.-',
 ',': '--..--',
 'A': '.-',
 'B': '-...',
 'C': '-.-.',
 'D': '-..',
 'E': '.',
 'F': '..-.',
 'G': '--.',
 'H': '....',
 'I': '..',
 'J': '.---',
 'K': '-.-',
 'L': '.-..',
 'M': '--',
 'N': '-.',
 'O': '---',
 'P': '.--.',
 'Q': '--.-',
 'R': '.-.',
 'S': '...',
 'T': '-',
 'U': '..-',
 'V': '...-',
 'W': '.--',
 'X': '-..-',
 'Y': '-.--',
 'Z': '--..'}

#
Output a dot
#
def Dot():
 buzzer.on()
 time.sleep(DotTime)
 buzzer.off()
 time.sleep(DotTime)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 145Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 145 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 146

#
Output a dash
#
def Dash():
 buzzer.on()
 time.sleep(DashTime)
 buzzer.off()
 time.sleep(DashTime)

wpm = 1					 # Default value
ClkOldState = clk.value			 # Get CLK state
flag = 1
mylcd.clear()					 # Clear LCD
mylcd.move_to(0, 0)				 # At (0,0)
mylcd.putstr("Enter WPM:")			 # Heading
mylcd.move_to(0, 1)
mylcd.putstr("1")

try:

#
Get the required words per minute. User turns the rotary
encoder know to set the wpm. Also, calculate timings
#
 while flag == 1:
 ClkState = clk.value
 DTState = dt.value
 if ClkState != ClkOldState and ClkState == 1:
 if DTState != ClkState:
 wpm = wpm + 1
 else:
 wpm = wpm - 1
 if wpm == 0:
 wpm = 1
 mylcd.move_to(0, 1)
 mylcd.putstr(" ")
 mylcd.move_to(0, 1)
 mylcd.putstr(str(wpm))
 ClkOldState = ClkState

 SWState = sw.value			 # Get state of SW
 if SWState == 0:				 # Knob pushed in?
 flag = 0				 # Clear flag

#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 146Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 146 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 147

We come here when the user pushes in the rotary encode knob
#
 UnitTime = 1.2/wpm
 DotTime = UnitTime
 InterCharTime = 2 * UnitTime
 DashTime = 3 * UnitTime
 WordTime = 6* UnitTime

 values = MorseCode.values()
 values_list = list(values)
 keys = MorseCode.keys()
 keys_list = list(keys)

 mylcd.clear()					 # Clear LCD
 mylcd.move_to(0, 0)					 # At (0, 0)
 s = "Working: " + str(wpm) + " wpm"			 # Heading
 mylcd.putstr(s)
 mylcd.move_to(0, 1)					 # At (1, 0)
 col = 0

#
The Morse codes are generated in the loop below
#
 while True:					 # Do forever
 r = random.randint(1, 42)		 # Random number
 c = values_list[r]			 # Get a value
 d = keys_list[r]				 # Get its key
# print(d, end="", flush=True)		 # Display key
 mylcd.putstr(d)				 # Display chars
 col = col + 1
 if col > 16:
 col = 0
 mylcd.move_to(0, 1)
 mylcd.putstr(" ")
 mylcd.move_to(0,1)
 for code in c:				 # Do for code
 if code == '-':			 # If dash
 Dash()
 elif code == '.':			 # if dot
 Dot()
 time.sleep(InterCharTime)

except KeyboardInterrupt:
 print("")

Figure 4.51: Program listing.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 147Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 147 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 148

Figure 4.52 shows example displays on the LCD. Figure 4.53 shows the project built on a
breadboard.

Figure 4.52: Example displays.

Figure 4.53: Project built on a breadboard.

4.9.2 Boxing the project
You may like to box the project so that it can be used in your station as a Morse code
exerciser. Figure 4.54 shows the front view of a possible box.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 148Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 148 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 149

Figure 4.54: Boxing the project.

4.10 Project 9: Morse Decoder
Morse code is still used by many amateur radio operators. Although it is much more fun to
decode the code manually by listening to it, there are many amateurs who may prefer to
use a computer to decode the code and have it displayed on a LCD or on a computer screen.

In previous project, you have learned how to generate Morse code using the Raspberry Pi
5. There, the project was about setting the required word-per-minute and then generating
random characters and sending their Morse codes to a buzzer as well as displaying these
characters on LCD.

In this project you will develop a Morse code decoder which will receive audible code
through a microphone and then translate the code into text and display it on the screen in
real time. The program adjusts to the transmission speed of the code automatically.

Just to review, the Morse code timing (i.e., the speed) is as follows:

•	A Dit: 1 unit
•	A Dah: 3 units
•	Character spacing between dit and dah of a character: 1 unit
•	Character spacing between the characters of a word: 3 units
•	Word spacing: 7 units

The speed of a Morse code is specified by how many words per minute can be sent or
received. In most Amateur radio exams candidates are expected to send and receive at
least 12 words per minute.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 149Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 149 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 150

The word PARIS is used as the standard word when calculating the speed. This word
consists of 50 units of time:

P:	 .--.	 1 1 3 1 3 1 1 (3)		 14 units
A:	 .-	 1 1 3 (3)		 8 units
R:	 .-.	 1 1 3 1 1 (3)		 10 units
I:	 ..	 1 1 1 (3)		 6 units
S:	 …	 1 1 1 1 1 [7]		 12 units

Where () is the inter-character time, and [] is the inter-word time. Notice that at the end
of a character, we do not insert a dot time, but we insert an inter-character time (3 units).
Similarly, at the end of a word, we do not insert a dot time, but we insert an inter-word
time (7 units).

Knowing the words per minute (WPM), you can calculate the Dit (or bit) time in seconds
as follows:

	 Dit time = 60 / (50 × wpm)

Thus, for example, at 20 wpm, the basic Dit time is given by: 60 / (50 × 20) = 60 ms.

In this project, Morse code is received through a microphone as audio and the program
initially estimates the Dit timing. The other timings are then automatically calculated and
the received codes are translated to text and displayed on LCD.

Block diagram: Figure 4.55 shows the block diagram of the project. An audio amplifier
with on-board microphone module (Mic click board, manufactured by Mikroelektronika)
is used to receive the audible Morse code. The audio code is then amplified and sent to a
tone decoder IC (LM567), which generates binary High and Low values based on the input
tone. The output of the tone generator is connected to a GPIO pin of the Raspberry Pi 5.
The translated code is then displayed.

Figure 4.55: Block diagram of the project.

The Mic click board
The Mic click is an audio amplifier board (see www.mikroe.com) that carries a
SPQ0410HR5H-B surface mount silicon microphone with maximum RF protection. The
board (Figure 4.56) is designed to run on a 3.3 V power supply. Using the SiSonic™ MEMS
technology, the SPQ0410HR5H-B consists of an acoustic sensor, a low noise input buffer,
and an analog output amplifier. MaxRF protection prevents RF noise in traces from getting
into the mic output.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 150Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 150 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 151

Figure 4.56: The Mic click board.

The basic features of the Mic click board are:

•	Supply current: 120 μA (typical)
•	Sensitivity: –42 dBV/Pa
•	Signal to noise ratio: 59 dB(A)
•	Total harmonic distortion: 1%
•	Output impedance: 400 ohms
•	Analog output
•	Direction: Omnidirectional

Pin 1 is the output voltage. +3.3 V power supply must be connected to pin 7 of the board.

The tone decoder
Figure 4.57 shows pin layout of the LM567 tone decoder IC. LM567 is a high-stability low-
frequency integrated phase-locked loop decoder. Due to its good noise suppression ability
and center frequency stability, it is widely used in the decoding of various communication
equipment and the demodulation circuit of AM and FM signals. The chip is also used in
circuits such as touch tone decoding, ultrasonic controls, precision oscillator, frequency
monitoring and control, paging detectors etc. The LM567 tone decoder is a device capable
of detecting whether an input signal is within a selectable detection range. The device
has an open collector transistor output, so an external resistor is required to reach the
appropriate logic levels. When the input signal is in the detection band, the device output
changes to the LOW state. The internal free operating frequency of the VCO defines the
center frequency of the detection band. An external RC filter is required to adjust this
frequency. The bandwidth in which the device will detect the desired frequency depends on
the capacity of the loop filter terminal. Usually, a 1µF capacitor is connected to this pin. Pin
descriptions of the LM567 are shown in Table 4.1.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 151Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 151 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 152

Figure 4.57: Pin layout of LM567.

Table 4.1: LM567 pin descriptions.

The LM567 IC has the following basic features:

•	Operating voltage: 4.5 V to 9.0 V
•	Quiescent power supply current: 7 mA (typical)
•	Active power supply current: 12 mA (typical)
•	Smallest detectable input voltage: 20 mvrms

•	Highest center frequency: 500 kHz
•	Center frequency stability: 35 ± 60 ppm/ºC
•	Output saturation voltage: 0.2 V (typical)
•	Switching speed: center frequency / 20

Circuit diagram
Figure 4.58 shows the circuit diagram of the project. The Morse code audio signal is applied
to pin 3 through a 470 nF capacitor. The Output is open-collector and taken from pin 7.

The center frequency of the LM567 tone decoder is equal to the free-running frequency of
the voltage-controlled oscillator. In order to set this frequency, external components should
be placed externally. The component values are given by:

	 11
0

1.1
CR

f =

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 152Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 152 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 153

Where, R1 = Timing Resistor at pin 5, C1 = timing capacitor at pin 6. Using a 10-kΩ resistor
in series with a 10-kΩ potentiometer and 0.1-μF capacitor, the center frequency can take
the following values as the potentiometer is varied:

at 10 kΩ	

at 5 kΩ		

at 1 kΩ		

at 0 kΩ		

The frequency range f0 = 500 Hz to about f0 = 800 Hz should be a good choice with the
potentiometer arm between full and half turn.

To eliminate undesired signals that could trigger the output stage, a post detection filter is
featured in the LM567C. This filter consists of an internal 4.7 kΩ resistor and an external
capacitor. Although typically external capacitor value is not critical, it is recommended to
be at least twice the value of the loop filter capacitor. If the output filter capacitor value is
too large, the turn-on and turn off-time of the output will present a delay until the voltage
across this capacitor reaches the threshold level.

The bandwidth depends on the capacitor connected to pin 2 (C2) and is given as a percentage
of the center frequency, where (assuming Vi <= 200 mVrms):

	

Where Vi is in volts rms, f0 is Hz, and C2 in μF.

For example, with f0 = 600 Hz, and C2 = 1 μF, the BW will be about 20% of the center
frequency which will be approximately 120 Hz. A smaller C2 value will increase the bandwidth
and a larger value will decrease it.

The output filter is determined by capacitor C3. Although it is recommended to choose a
value to be at least twice the value of C2, it is found that about 1 μF gives good results.

The switching speed of LM567 depends on the center frequency. With f0 = 550 Hz, the
switching speed is 550/20 = 27.5 and with f0 = 800 Hz, the switching speed is 800 / 20 =
40. It is therefore necessary to choose high center frequencies for faster switching rates.
Because the output of LM567 is open-collector, it is necessary to connect a pull-up resistor
to this pin as shown in Figure 6.169. An LED is connected in series with the pull-up resistor
and this LED flashes to indicate the received Morse code output by the tone decoder.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 153Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 153 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 154

Figure 4.59 shows the frequency detection where the output changes state (goes from High
to Low) when the input reaches the center frequency.

Figure 4.58: Circuit diagram of the project.

Figure 4.59: Frequency detection.

The program listing is shown in Figure 4.60 (Program: MorseDecoder.py). In this program,
the Morse code is embedded into the binary version of numbers from 2 to 63 as described
by Budd Churchward (WB7FHC, VK2IDL_Morse_Decoder_2.7, see this link: https://github.
com/ideal54/VK2IDL_CW_Decoder). The operation is as follows:

Initially 1 is stored in a variable, say MyNum. After a dit or dah is received, this number is
the shifted left. If a dit is received then MyNum is incremented by one, if a dah is received,
just 0 is added to the number and the next dit or dah is processed. The following string is
used to transform the number in MyNum into letters and numbers:

	� Morse = "##TEMNAIOGKDWRUS##QZYCXBJP#L+F
VH09#8###7#####/-61#######2###3#45";

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 154Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 154 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 155

As an example, some characters and the number stored in MyNum are given below
(remember that the leftmost 1 is always added to the number):

Morse code: dah dit dahdah dahdit ditdah ditdit	
Letter: T E M N A I
MyNum (binary): 10 11 100 101 110 111
MyNum (decimal): 2 3 4 5 6 7

If we now use MyNum as an index into string Morse we will get the correct characters.
e.g., Morse[2] = T, Morse[3] = E, Morse[4] = M and so on. Notice that the index positions
of the # characters are not used. i.e., Morse[0] and Morse[1] are not used.

At the beginning of the program the libraries used are imported to the program. Text
MORSE is displayed at the top row of the LCD for 2 seconds. The program consists of 2
functions: Setup() and Decode().

Setup(): This function receives Morse code of at least 10 dits and dahs and then finds the
maximum dit time in milliseconds and stores it in variable ditmax. It is therefore necessary
to train the program at the beginning by sending several characters (e.g., sending ABCDEF).
This value is used in function Decode() to determine if a dit or a dah is received. The
edges of the input signal are detected using while statements. For example, the following
statements wait until the signal changes from 1 to 0. Built-in function time.monotonic()
is used at the beginning and end of an input change in order to determine the durations in
milliseconds of the input high or low times.

while signal.value() == 1:
 pass

Decode(): This is the main function of the program where the Morse code is received and
transformed into letters and numbers. Variable MyNum is initially set to 1. After receiving
a Low and a High signal, variable MyNum is shifted left by one position so that it contains
binary number 10. The program then determines whether the Low signal was a dit or a dah.
Variables Mark and Space refer to signal Low and High states respectively, where Low is
when a tone is received and High is when there is no tone.

#---
#			 MORSE CODE DECODER
#			 ------------------
#
This is a Morse code decoder project implemented on the Raspberry
Pi 5. A Mic click board, equipped with a microphone is used to
receive the audible Morse code. This code is then fed to a LM567
type tone decoder chip. The tone decoder trigger frequency is set
by using a potentiometer. An LED is connected to the output of the
tone decoder which makes it easy to adjust the frequency. It is

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 155Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 155 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 156

recommended to use around 800 Hz audio. The Raspberry Pi 5 decodes
the Morse code and displays in text form on an LCD
#
Author: Dogan Ibrahim
File : MorseDecoder.py
Date : February, 2024
#---
import time
from gpiozero import InputDevice
#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)

Morse = "##TEMNAIOGKDWRUS##QZYCXBJP#L+FVH09#8###7#####/-61#######2###3#45"
mylcd.clear()
mylcd.putstr("MORSE")
time.sleep(2)
mylcd.clear()
tim = 1000

global ditmax, MyNum
maxdit = [0]*10
MyNum = 1
SIGNAL = 21					 # At GPIO21
#
Signal connections. Morse is input to GP21 through tone decoder
#
signal = InputDevice(SIGNAL)

#
Find max dit and dah times by listening to some code. ditmax is
the maximum measured dit time which is used later in the code
#
#
def Setup():
 global ditmax, dahmax
 for i in range(0, 10):
 while signal.value == 1:			 # Wait if 1

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 156Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 156 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 157

 pass
 time.sleep(0.01)
 TmrStrt = tim*time.monotonic()		 # Elapsed time

 while signal.value == 0:			 # Wait if 0
 pass
 time.sleep(0.01)
 TmrEnd = tim*time.monotonic() - 20	 # Elapsed time
 maxdit[i] = TmrEnd - TmrStrt
 dahmax = max(maxdit)
 ditmax = dahmax / 3

#
This function runs continuously, decoding and displaying the
Morse code on the LCD
#
def Decode():
 global MyNum, ditmax
 flag = 0
 if signal.value == 1:
 mylcd.putstr(" ")
 while signal.value == 1:
 pass
 time.sleep(0.01)
 while True:
 TmrStrt = tim*time.monotonic()
 while signal.value == 0:
 pass
 time.sleep(0.01)
 TmrEnd = tim*time.monotonic()
 MarkTime = TmrEnd - TmrStrt

 TmrStrt = tim*time.monotonic()
 while signal.value == 1:
 if (tim*time.monotonic() - TmrStrt) > 5 * ditmax:
 flag = 1
 break
 time.sleep(0.01)
 TmrEnd = tim*time.monotonic()
 SpaceTime = TmrEnd - TmrStrt

 MyNum = MyNum << 1
 if MarkTime < 2*ditmax:
 MyNum = MyNum + 1
 if SpaceTime > 2*ditmax:
 mylcd.putstr(Morse[MyNum])		 # Display text

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 157Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 157 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 158

 MyNum = 1
 if flag == 1:
 break

Setup()

try:
 while True:
 Decode()
except:
 print("End of program")
 time.sleep(2)

Figure 4.60: Program listing.

Testing the program
The steps to test the program are:

•	Construct the hardware.

•	Apply power to the Raspberry Pi 5. Make sure that the green LED on the Mic
click board is turned ON. Run the program (click the green button if using
Thonny, otherwise enter python MorseDecoder.py at the console). Make
sure that the text MORSE is displayed on the LCD for 2 seconds. If these do
not happen then you should check your hardware and software carefully before
continuing.

•	Use a Morse code audio generator apps, e.g., on your smartphone. For
example, the Morse Code Translator program, available on Internet (link:
https://morsecode.world/international/translator.html) can be very
helpful during testing (see Figure 4.61) using your Android smartphone.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 158Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 158 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 159

Figure 4.61: Morse code translator apps.

•	Click Configure and set it to 12 wpm, 800 Hz tone, and maximum volume of
100 as shown in Figure 4.62.

Figure 4.62: Configure the apps.

•	Place your smartphone very close to the Mic click board microphone and type
in some letters in window labelled Translate a Message. e.g., ABCDEFG
(see Figure 4.63), and press Play. Turn the frequency potentiometer
slowly until the LED starts flashing. The LED will flash as the Morse code
is output from your smartphone speaker. After a while, the Morse code will

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 159Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 159 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 160

be transformed into letters and displayed on the LCD. Notice that the first few
letters will not be displayed as they will be used to set up the speed in the
program. Thereafter, all the letters will be displayed correctly. Notice that the
LCD is not cleared and characters on the LCD are replaced with the new ones.
This is because clearing the LCD takes some time and you may miss some
characters during this time.

Figure 4.63: Enter some letters for testing.

Note: The program was tested at speeds up to 80 wpm. It was found that up to about
60 wpm the characters are received, transformed, and displayed correctly. Above 60
wpm most of the characters are displayed correctly, but occasional errors could occur.

It is recommended to keep the tone volume high and the audio output very close to the Mic
click board microphone.

Figure 4.64 shows the project built on a breadboard. You may want to save the program so
that it starts automatically after reboot (see Section 4.8.2).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 160Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 160 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 161

Figure 4.64: Project built on a breadboard.

4.11 Project 10: Frequency Counter
Description: There are many cases where you want to know the frequency of a signal.
Frequency counters are one of the important instruments used by all amateurs. Without
a frequency counter the only other option to find out the frequency of a signal is to use
an oscilloscope. In this project, you will be using a Raspberry Pi 5 to design a frequency
counter circuit. The frequency of the measured signal will be displayed on an I2C LCD. The
signal whose frequency is to be measured is initially converted into square wave so that
it is easier to interface to a processor. There are basically three methods to measure the
frequency of a signal as described below.

Measuring the period: In this method, the signal is applied to one of the digital pins of
the processor. The processor measures the period of the signal by using an internal timer.
Here, the timer is started on the rising edge of the signal, and is stopped on the next rising
edge. Knowing the period, we then take its inverse to calculate the frequency. Although this
method can give accurate results, it requires a very accurate timer. Raspberry Pi 5 is not
an MCU as it has an operating system and its internal timer is not suited to measuring the
frequency using this method.

Measuring the pulses (internal timer): In this method, an internal timer is used as a
gate. The processor starts a timer with a known duration (e.g., one second) and counts the
number of pulses received during this time period. The frequency is then calculated from
the knowledge of this count. For example, if the gate time is one second, then the number
of counts is directly proportional to the frequency of the signal. This method required an
internal processor counter, which can be updated by an external signal, and is not suited
to Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 161Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 161 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 162

Measuring the pulses (external timer): Here, an external counter chip is used to count
the number of pulses in a given time duration. This count is then read by the processor and
the frequency is easily calculated. In this project we will be using this third method.

Block Diagram: Figure 4.65 shows the block diagram of the project.

Figure 4.65: Block diagram of the project.

Circuit Diagram: In this project a type SN74LV8154 counter chip is used. The basic
features of this chip are:

•	Dual 16-bit counter
•	Can be chained as a 32-bit counter
•	2 V to 5.5 V operating voltage
•	Clear input

The nice thing about this counter is that it can be chained as a 32-bit counter for more
accuracy. Additionally, it operates at 3.3 V, making it compatible with the Raspberry Pi 5
GPIO.

Figure 4.66 shows the pin configuration of the chip.

Figure 4.66: Pin configuration of SN74LV8154.

The pin descriptions are (A and B are the two identical halves of the counter):

CCLR: clear input
CLKA, CLKB: rising edge clock inputs
CLKBEN: clock B enable (active LOW)
GAL, GAU: gate A lower and upper bytes (active LOW puts A data on Y bus)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 162Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 162 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 163

GBL, GBU: gate B lower and upper bytes (active LOW puts B data on Y bus)
GND: power supply ground
RCLK: register clock (rising edge stores data internally)
RCOA: active LOW when counter A is full, and ready to overflow to B
Vcc: power supply
Y0-Y7: Data outputs (Y0 is LSB)

The circuit diagram of the project is shown in Figure 4.67. The circuit requires a 1-Hz
timing pulse for its RCLK input. On the rising edge of RCLK, the value of the 32-bit counter
is stored internally so that it can be read through its Y0–Y7 outputs in 4 stages. In this
project, the 1 Hz timing pulses are obtained using a GPS receiver (the GPS click from www.
mikroe.com). Pin TP of GPS click receiver is connected to pin RCLK of SN74LV8154. It is
also possible to use a 32768 Hz crystal with a 15-stage binary counter circuit as shown in
Figure 4.68. This circuit is made up of a 14-bit counter and a D-type flip-flop, driven by a
32768 HZ square waveform.

Figure 4.67: Circuit diagram of the project.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 163Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 163 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 164

Figure 4.68: 15 stage binary counter with 32768 Hz crystal.

Program Listing: Figure 4.69 shows the program listing (Program: freq.py). The
operation of the project is as follows: RCLK input is pulsed every second by the time pulses
received from the GPS receiver (these time pulses have about 1 ms ON time). As soon
the rising edge of this pulse is detected, the 32-bit value is read and stored in variable
Reading1. The next reading is obtained on the arrival of the next pulse and this is stored
in variable Reading2. The time difference between the two adjacent pulses is exactly one
second. Therefore, the difference between the two readings (i.e., variable difference) is
the number of counts in a second, i.e., the frequency of the waveform. By dividing this
value by 1,000 you can find the frequency in kHz.

Function GetByte reads 8 bits (a byte) of data from the output Y0 – Y7 of the counter and
returns this value to the main program. Function GetData reads the 32-bit data stored
inside the 74LV8154 counter chip by enabling inputs GAL, GAU, GBL, and GBU. The data is
returned to the main program.

#---
FREQUENCY COUNTER
=================
#
This is a frequency counter software. The ferquency is displayed
on an LCD
#
Author: Dogan Ibrahim
File : freq.py
Date : February, 2024
#---
import time
from gpiozero import OutputDevice,InputDevice
#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 164Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 164 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 165

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2
I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR,I2C_NUM_ROWS,I2C_NUM_COLS)
mylcd.putstr("Frequency Cntr")
time.sleep(2)
mylcd.clear()					 # clear LCD

YPINS = [21, 20, 16, 12, 7, 8, 25, 24]		 # Y0-Y7 pins
GPINS = [26, 19, 13, 6]			 # GA/GB pins
data = [0, 0, 0, 0]

RCLK = 5					 # RCLK pin
disable = 1
enable = 0
pwrof32 = 2**32

gpins = [0]*4
ypins = [0]*8

for j in range(4):
 gpins[j] = OutputDevice(GPINS[j])

for j in range(8):
 ypins[j] = InputDevice(YPINS[j])		 # Set as inputs

rclk = InputDevice(RCLK)

for j in range(4):				 # Disable all
 gpins[j].on()

#
Read a byte of data from specified 8 port bits
#
def GetByte():
 total = 0
 k = 0
 for j in range(8):
 data = ypins[j].value
 data = data << k
 total = total | data
 k = k + 1
 return total

#

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 165Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 165 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 166

Get 32-bit data from the counter
#
def GetData():
 for j in range(4):
 gpins[j].off()
 data[j] = GetByte()
 gpins[j].on()
 count = data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24)
 return count

while rclk.value == 1:			 # Wait if 1
 pass
while rclk.value == 0:			 # Wait if 0
 pass

Reading1 = GetData()			 # Read Reading1
while rclk.value == 1:
 pass

mylcd.clear()
mylcd.move_to(0, 0)
mylcd.putstr("Frequency (kHz):")	 # Heading

try:

 while True:				 # Do forever
 while rclk.value == 0:		 # While 0
 pass

 Reading2 = GetData()		 # Read Reading2
 while rclk.value == 1:		 # While 1
 pass

 difference = Reading2 - Reading1		 # Caculate diff
 if difference < 0:
 difference = difference + pwrof32
 frequency = difference / 1000		 # Frequency (kHz)
 frequency = str(frequency)[:12]		 # As string
 mylcd.move_to(0, 1)
 mylcd.putstr(" ")
 mylcd.move_to(0, 1)
 mylcd.putstr(frequency)			 # Display
 Reading1 = Reading2

except KeyboardInterrupt:
 exit(0)

Figure 4.69: Program listing.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 166Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 166 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 167

A resistive potential divider circuit can be used at the input for large inputs. Also, binary
divider circuits can be used at the input of the circuit to increase the frequency range of the
meter. For example, by using a 4-bit binary dividing circuit the useful range of the meter
can be extended by a factor of 16 (you have to make sure that the components you use
can work at the chosen higher frequencies).

Figure 4.70 shows an example output of the program on the LCD. In this example, the input
frequency was 500 kHz.

Figure 4.70: Example output.

Testing the project
The steps are:

•	Construct the hardware and connect the Raspberry Pi 5 to power supply.

•	Connect an external antenna to the GPS receiver and make sure that the
antenna can see the direct sky. The green LED should turn ON to indicate that
power is applied to the GPS click board. Wait until the red LED on the GPS click
board flashes every second. This may take several minutes.

•	Use a sine wave generator and set its output frequency e.g., to 100 kHz,
3 V peak-to-peak amplitude and adjust the offset so that the waveform is all
positive.

•	Connect the output of the sine wave generator to the input (earth and
transistor Base) of your frequency counter.

•	You should see the frequency displayed in kHz on the LCD.

You can start the project automatically after reboot if you wish, as described in Section
4.8.2.

4.12 Project 11: FM Radio with Raspberry Pi 5
Description: FM radios are very popular nowadays as there are many stations to choose
from on the FM band, Aso, practically all radios are equipped with the FM band. The sound
quality of FM radios is also superb and most stations around the world provide stereo
transmissions.

This is an FM radio project based on the TEA5767 FM radio module, is a low-cost FM radio
device costing around $10. The module (Figure 4.71) is interfaced to the external world via

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 167Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 167 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 168

its I2C pins (SDA and SCL). It has 4 pins, the remaining two pins are for the power supply
and ground. Two small jack sockets are provided on the module; one for the antenna, and
the other one for an earphone. A small solid antenna with a jack connector is provided
with the module. All the user has to do is connect an earphone and program the module to
the required frequency. The antenna is connected to the left hand socket when facing the
component side of the module, and the earphone to the other socket.

Figure 4.71: TEA5767 FM radio module.

The TEA5767 is a single-chip electronically-tuned FM stereo radio for low-voltage
applications, incorporating IF selectivity and demodulation. The module has the following
features (further information can be obtained from the TEA5767 Product Data Sheet):

•	Operation in the US/European FM band of 87.5 MHz to 108 MHz, and also
Japanese FM band of 76 MHz to 91 MHz

•	RF Automatic Gain Control (AGC) circuit
•	Phase-locked loop (PLL) synthesizer tuning system
•	Crystal reference frequency oscillator
•	I2C bus interface requiring only 2 pins
•	Software mute
•	Signal dependent mono to stereo blend
•	Signal dependent High Cut Control (HCC)
•	Autonomous search tuning function
•	Standby mode
•	Two software programmable ports
•	2.5 V to 5 V operation
•	8.4 mA typical analog supply current, 3 mA digital supply current
•	Stereo channel separation of 30 dB
•	Typically 0.4% harmonic distortion

The default I2C address of the module is 0x60. Data sequence has to be in this order:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 168Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 168 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 169

address, byte 1, byte 2, byte 3, byte 4 and byte 5. The Least Significant Bit (LSB) = 0 of the
address indicates a WRITE operation to the TEA5767HN. Bit 7 of each byte is considered
as the Most Significant Bit (MSB) and has to be transferred as the first bit of the byte. The
data becomes valid bitwise at the appropriate falling edge of the clock. A STOP condition
after any byte can shorten transmission times. At Power-on reset the mute is set, and all
other bits are set to LOW.

The TEA5767 is programmed by loading 5 bytes of data to its registers via the I2C bus.
Table 5 to Table 16 of the data sheet specifies the data to be loaded for various device
configurations. For example, the first data byte consists of the following bits:

Bit 7: mute bit. Setting this bit mutes the radio. It must be cleared for normal operation.

Bit 6: search mode bit. Setting this bit puts the chip into search mode. It must be cleared
for normal operation.

Bit 0 – 5: higher 6 bits of the required frequency.

The second byte contains the 8 low bits of the required frequency.

The frequency is specified as 14 bits by loading the PLL register. The data to be loaded to
the PLL register is given by:

	

Where

	 N = decimal value of PLL word.

	
is the wanted tuning frequency in Hz.

	 is the intermediate frequency in Hz (225 kHz).

	
is the reference frequency in Hz (32768 for the 32.768 kHz crystal).

As an example, to receive the broadcast at 100 MHZ, the required PLL word is:

	
This data must be divided into two bytes and the upper 8 bits loaded as data byte 1 (with
mute and search cleared) and the lower 8 bits loaded as data byte 2. This can be done as
follows:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 169Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 169 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 170

Upper byte = N >> 8
Lower byte = N & 0xFF

The third data byte specifies the search moe, mono-stereo operation, and left-right mute.
The fourth data byte specifies the standby mode, band limits, clock freauency, noise
cancelling etc. The fifth data byte PLL reference frequencyand the de-amphasis time
constant.

Block diagram: Figure 4.72 shows the project block diagram, An earphone is connected
to the output of the TEA5767 module.

Figure 4.72: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 4.73. SDA (GPIO2, pin 3) and SCL
(GPIO3, pin 5) of Raspberry Pi 5 are connected to the radio module which is powered from
the +5V of Raspberry Pi 5.

Figure 4.73: Circuit diagram of the project.

Before developing the program, you will have to enable I2C using the raspi-config utility.
Then, construct the program as shown in Figure 4.73. Enter the following command to
make sure that the TEA5767 module is detected by the Raspberry Pi 5 and read its address
as shown in Figure 4.74. By default the address is 0x60.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 170Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 170 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 171

Figure 4.74: Fetch the I2C addess.

Program listing: Figure 4.75 shows the program listing. The program (Program: fmradio.
py) consists of the following functions:

init(): This function initualizes the TEA5767 module.

set_freq(freq): This function receives the required station frequency as its parameter.
The function loads the 5 data bytes to start receiving the broadcast at this frequency. At
the beginning of the function, N is used to set the PLL value for the required frequency
as shown in the above formula. Nupper and Nlower are the upper and lower bytes of N
respectively. Notice that the mute bit (bit 7) is cleared so that the module is not in mute
mode.

Array buff is used to hold the data bytes. buff[0] is loaded wih the lower part of the
requires frequwncy, buff[1] is loaded with the following bits enabled (see the TEA5767
data sheet):

Bit 	 Symbol	 Definition
7	 SUD	 enable search UP
6,5	 SSL	 search stop level low
4	 HLSI	 high side LO injection
0-3	 MS,MR,ML,SWP1	 mute is not enabled, port SWP1 is low

buff[2] and buff[3] are loaded such that (see the TEA5767 data sheet) the clock frequency
is set to 32.768 kHz. The 5 byte buff data is then loaded to the chip using the I2C function
i2c.write_i2c_block_data, with the upper part of the frequency loaded as the second
argument of the call The set frequency is displayed on the screen.

Mute: this function mutes the module so that no broadcast is received and no output is
heard. Here, the frequency is set to 0, and mute bit (bit 7) is set in buff[0]. The other bytes
are left as in function set_freq. The message Radio is muted… is displayed on the screen.

Inside the main program, the frequency is initially set to 97.3 MHz which is the local
radio station broadcasting frequency in London. The user is then prompted to enter a one
character command. These commands are used either to select the prr-defined default
frequencies or to increment/decrement the frequency. Valid commands and their meanings
are as follows:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 171Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 171 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 172

Command	 meaning
f		 start receiving from default local station at 97.3 MHz
n		 start receiving from the next popular local station. Set to 105.4 MHz
+		 increment the frequency by 1 MHz
 		 decrement the frequency by 1 MHz
> 		 increment the ferquency by 0.1 MHz
<		 decrement the frequency by 0.1 MHz
m		 mute
u		 unmute
q		 quit (mute and exit). Message Exitting is displayed

#---
# 	 FM RADIO
# 	 ========
#
This is an FM radio using the TEA5767 radio module. The module
operates with the I2C signals SDA and SCL, connected to Raspberry
PI 5 I2C pins.
#
Author: Dogan Ibrahim
File : fmradio.py
Date : February, 2024
#---
import smbus as smbus
i2c=smbus.SMBus(1)
DEVICE_ADDR = 0x60
import time

buff = [0]*4
print("TEA5767 FM RADIO")
print("================")

#
TEA5767 Radio module connected to SDA0, SCL0
#

def init():
 i2c.write_quick(DEVICE_ADDR)
 time.sleep(0.1)

#
This function sets the radio to required frequency
#
def set_freq(freq):
 N = int (4 * (freq * 1000000 + 225000) / 32768)
 Nupper = N >> 8

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 172Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 172 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 173

 Nlower = N & 0xFF

 buff[0] = Nlower
 buff[1] = 0xB0
 buff[2] = 0x10
 buff[3] = 0x00

 i2c.write_i2c_block_data(DEVICE_ADDR, Nupper,buff)
 print("Frequency set to: " + str(freq))

#
This function mutes the radio
#
def mute():
 N = int(4 * (0 * 1000000 + 225000) / 32768)
 Nlower = N & 0xFF
 init = 0x80
 buff[0] = Nlower
 buff[1] = 0xB0
 buff[2] = 0x10
 buff[3] = 0x00
 time.sleep(1)
 i2c.write_i2c_block_data(DEVICE_ADDR, init,buff)
 print("Radio Muted...")

init()
frequency = 97.3 					 # Starting frequency

try:
 while True:
 c = input("command (fn+-><muq): ")
 print(c)
 if c == 'f': 				 # Set to 101.4
 frequency = 97.3
 set_freq(frequency)
 time.sleep(1)
 elif c == 'n': 				 # Set to 102.0
 frequency = 105.4
 set_freq(frequency)
 time.sleep(1)
 elif c == '+': 				 # Increment by 1 MHz
 frequency = frequency + 1
 set_freq(frequency)
 time.sleep(1)
 elif c == '-': 				 # Decrement by 1 MHz

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 173Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 173 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 174

 frequency = frequency - 1
 set_freq(frequency)
 time.sleep(1)
 elif c == '>': 				 # Increment by 0.1 MHz
 frequency = frequency + 0.1
 set_freq(frequency)
 time.sleep(1)
 elif c == '<': 				 # Decrement by 0.1 MHz
 frequency -= 0.1
 set_freq(frequency)
 time.sleep(1)
 elif c == 'm': 				 # Mute
 mute()
 time.sleep(1)
 elif c == 'u': 				 # Unmute
 set_freq(frequency)
 time.sleep(1)
 elif c == 'q': 				 # Mute and Exit
 mute()
 print("Exitting")
 break

except KeyboardInterrupt:
 print("Command error")

Figure 4.7: Program listing

Testing the radio
To check for proper operation, follow these steps.

•	Construct the circuit.

•	Connect the antenna and earphone to the module.

•	Enter the following command to start the program:

		 pi@raspberrypi:~ $ python fmradio.py

•	Enter f and then Enter. By default, the radio will receive broadcast from 97.3
MHz (change this if required). Use the commands to increase/decrease the
frequency as required. You should receive the broadcasts on your earphone.
Type q followed by the Enter key to terminate.

Figure 4.76 shows an example run of the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 174Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 174 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 175

Figure 4.76: Example run of the program.

Note: Make sure that the TEA5767 is as far as possible from the Raspberry Pi 5 board
as repetitive clicking noise may occur in the audio output when the two are close to each
other.

4.13 Project 12: Modified Project — Increasing the Output Signal Level
– Connecting a Loudspeaker
Description: In the previous project, you had to use earphones to listen to your radio
station(s). An audio power amplifier can be used to increase the signal level so that the
radio can be connected to a loudspeaker.

There are many low-cost audio power amplifier modules available in the market. One of
the cheapest options is to use the type LM386 audio amplifier IC. The disadvantages of the
LM386 are that it is (1) mono and (2) its output power may be too low, requiring further
amplification. In this section you will see how to connect an LM386 module to your radio.

Figure 4.77 shows the LM386 amplifier module. The module consists of an LM386 chip, a
potentiometer to adjust the volume, a capacitor, a few resistors, a 4-way connector to hook
up the audio input and the power supply, and a 2-way screw terminal connector for a small
loudspeaker.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 175Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 175 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 176

Figure 4.77: The LM386 audio amplifier module.

Block diagram: The block diagram of the modified project is pictured in Figure 4.78.

Figure 4.78: Block diagram of the modified project.

Circuit diagram: The modified circuit diagram is shown in Figure 4.79. The amplifier
module is operated at +5 V supply voltage taken from the Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 176Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 176 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 177

Figure 4.79: Circuit diagram of the modified project.

The author recommends using a more powerful stereo audio amplifier module. Some models
which are low-cost and available on Amazon are shown in Figure 4.80. Interested amateur
radio readers may prefer to design and construct transistor-based audio amp circuits. A
volume control can also be added to the project with the audio amplifier. Alternatively you
can use the speaker+amplifier module that you will be using in your RTL-SDR projects (see
Chapter 5).

Figure 4.80: Some low-cost audio power amplifier modules.

4.14 Project 13: FM Radio using an LCD and Rotary Encoder to Set the
Frequency
Description: This project is similar to the previous one but here a rotary encoder is used
to set the frequency instead of setting it from the keyboard. Setting the frequency with a
rotary encoder is accurate and very easy. In this project, turning the encoder shaft by one
click changes the frequency by 100 kHz but obviously that can be changed if desired.

Block diagram: Figure 4.81 shows the block diagram of the project. The frequency settings
are displayed on the LCD as the rotary encoder is turned.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 177Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 177 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 178

Figure 4.81: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.82. The connections
between the Raspberry Pi 5 and the external components are as follows. Notice that the I2C
LCD and the TEA5767 both use the same I2C port of the Raspberry Pi 5 and because they
have different addresses, there is no problem:

Raspberry Pi 5 GPIO	 Pin number	 Connected to
	 GPIO2			 3		 I2C LCD SDA, TEA5767 SDA
	 GPIO3			 5		 I2C LCD SCL, TEA5767 SCL

	 GPIO21			 40		 SW Rotary encoder
	 GPIO20			 38		 DT Rotary encoder
	 GPIO16			 36		 CLK Rotary encoder

Figure 4.82: Circuit diagram of the project.

Notice that a voltage level converter module is used for the I2C LCD connections.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 178Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 178 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 179

Program listing: Figure 4.83 shows the program listing (Program: RadioRotary.py).
At the beginning of the program, the modules used are imported, I2C LCD connection is
defined, and text TEA5767 FM RADIO is displayed on the top row of the LCD. Then, the
rotary encoder connections and the TEA5767 FM radio module connections are defined.
Functions init() and set_freq() are as in the previous projects. The main program is
executed in a loop forever using a while statement. Inside this loop, the rotary encoder
turnings are sensed and the frequency is changed by 0.1 MHz at each click of the rotary
encoder (this value can be changed if desired). The resulting frequency is sent to function
set_freq() which then configures the radio module to be set to this frequency and receive
broadcasts. Make sure that you connect the antenna and an earphone to the TEA5767 radio
module before testing the project. Pushing in the encoder knob terminates the program.

#---
FM RADIO WITH LCD AND ROTARY ENCODER
====================================
#
This is an FM radio using the TEA5767 radio module. The module
operates with the I2C signals SDA and SCL, connected to Raspberry
PI 5 I2C pins. Additionally, a rotary encoder and an LCD are
connected to the circuit. The rotary encoder is used to increase
or decrease the frequency in steps of 0.1 MHz. It is recommended
to use an audio amplifier to increase the audio signal level.
#
Author: Dogan Ibrahim
File : RadioRotary.py
Date : February, 2024
#---
from gpiozero import InputDevice

#
Import I2C libraries
#
import smbus as smbus
i2c=smbus.SMBus(1)
DEVICE_ADDR = 0x60

import time

#
Import LCD libraries
#
from lcd_api import LcdApi
from i2c_lcd import I2cLcd

I2C_ADDR = 0x27
I2C_NUM_ROWS = 2

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 179Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 179 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 180

I2C_NUM_COLS = 16

mylcd = I2cLcd(1,I2C_ADDR, I2C_NUM_ROWS, I2C_NUM_COLS)
mylcd.clear()
mylcd.move_to(0,0)
mylcd.putstr("TEA5767 FM RADIO")
time.sleep(3)

buff = [0]*4

#
Rotary encoder connections
#
SW = 21
DT = 20
CLK = 16

#
Rotary encoder configuration
#
clk = InputDevice(CLK)
dt = InputDevice(DT)
sw = InputDevice(SW)

#
TEA5767 Radio module connected to SDA, SCL
#

def init():
 i2c.write_quick(DEVICE_ADDR)
 time.sleep(0.1)

#
This function sets the radio to required frequency
#
def set_freq(freq):
 N = int (4 * (freq * 1000000 + 225000) / 32768)
 Nupper = N >> 8
 Nlower = N & 0xFF

 buff[0] = Nlower
 buff[1] = 0xB0
 buff[2] = 0x10
 buff[3] = 0x00

 i2c.write_i2c_block_data(DEVICE_ADDR, Nupper,buff)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 180Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 180 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 181

 mylcd.clear()
 mylcd.move_to(0,0)
 mylcd.putstr("freq set to:")
 mylcd.move_to(0,1)
 mylcd.putstr(str(freq)[:6]+" MHz")

#
This function mutes the radio
#
def mute():
 N = int(4 * (0 * 1000000 + 225000) / 32768)
 Nlower = N & 0xFF
 init = 0x80
 buff[0] = Nlower
 buff[1] = 0xB0
 buff[2] = 0x10
 buff[3] = 0x00
 time.sleep(1)
 i2c.write_i2c_block_data(DEVICE_ADDR, init,buff)
 mylcd.clear()
 mylcd.move_to(0,0)
 mylcd.putstr("Exit")

init()
frequency = 97.3 					 # Starting frequency
set_freq(frequency)

flag = 1
ClkOldState = clk.value

#
Get the required frequency. Each click of the rotary encodes
increment or decrements the frequency by 0.1 MHz
#
while flag == 1:
 ClkState = clk.value
 DTState = dt.value
 if ClkState != ClkOldState and ClkState == 1:
 if DTState != ClkState:
 frequency = frequency + 0.1
 else:
 frequency = frequency - 0.1
 set_freq(frequency)
 ClkOldState = ClkState

 SWState = sw.value

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 181Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 181 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 182

 if SWState == 0:			 # If SW pressed
 flag = 0
 mute()				 # Mute and exit
 time.sleep(1)

Figure 4.83 Program listing

Note: Make sure that the TEA5767 is as far as possible from the Raspberry Pi 5 board
as repetitive clicking noise may occur in the audio output when the two are close to each
other.

Complete Raspberry Pi 5 FM radio

1. Battery operation
Now that the project is independent of the PC, you might want to operate it with a battery.
Perhaps the easiest option is to use a power bank used to charge mobile phones. Then, the
Raspberry Pi 5 can be connected to the power pack using the micro USB cable.

2. Auto boot
When operating independent of the PC, you may want the radio program to start as soon
as power is applied to the Raspberry Pi 5. The auto boot mechanism is explained earlier in
this Chapter.

3. Using an audio amplifier module
As described in the previous project, an audio amplifier module will be required before the
radio can be connected to a loudspeaker. As an example, you can use the audio amplifier
shown in Figure 4.84. This amplifier conveniently has built-in volume control.

Figure 4.84: Audio amplifier module.

4. Radio case front panel layout
A suitable front panel layout for your radio is shown in Figure 4.85. A block diagram of the
components inside the case is shown in Figure 4.86.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 182Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 182 04-04-2024 13:1904-04-2024 13:19

Chapter 4 ● Hardware Based Projects for Amateur Radio

● 183

Figure 4.85: Suggested front panel layout.

Figure 4.86: Block diagram of the radio.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 183Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 183 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 184

Chapter 5 ● Raspberry Pi 5 Audio Output

5.1 Overview
Whereas the Raspberry Pi 4 has a 3.5-mm jack type audio output socket, the Raspberry Pi
5 has none. Users can revert to the HDMI audio output from a monitor. Alternatively and
preferably though, a USB type external audio adapter can be connected to the Raspberry
Pi 5 plus an amplifier based speaker. In this chapter, you will learn how to use such a USB
audio adapter device.

5.2 Using an External USB Audio Adapter
In many radio amateur applications, you will need audio output to a speaker or headphones.
The authors recommend the use of a USB audio adapter like the UGREEN (see Figure 5.1),
or one with a built-in amplifier and volume control. Having a hardware volume control has
the advantage that the volume can be set easily. The authors employ the UGREEN audio
adapter which has two sockets — one for the microphone input (pink socket) and one for
the audio output (green socket).

Figure 5.1: UGREEN audio adapter.

You will also need to have a speaker with a built-in amplifier module, having a 3.5-mm jack
plug and preferably powered by USB. An example speaker is shown in Figure 5.2, although
there are many such speakers available in the market.

Figure 5.2: Speaker with built-in amplifier.

5.3 Testing the Audio Output
Connect the USB audio adapter to one of the USB ports of your Raspberry Pi 5 and connect
the speaker and amplifier module to the green port of the UGREEN adapter. Enter the
following command to list the audio devices available on your system:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 184Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 184 04-04-2024 13:1904-04-2024 13:19

Chapter 5 ● Raspberry Pi 5 Audio Output

● 185

	 pi@raspberrypi:~ $ aplay –l

Notice that as shown in Figure 5.3, the USB audio adapter is on card: 2.

Figure 5.3: Audio devices.

Enter the following command to test the audio output. This test will generate a 500 Hz sine
wave signal on the speaker:

	 pi@raspberrypi:~ $ speaker-test –c2 –t sine –f 500

You can also download a short .wav type audio file (e.g. music file) to your Raspberry Pi 5
home folder and then run the file to hear the music. For example, the authors downloaded
and tested the music file named: sample-file-4.wav:

	 pi@raspberrypi:~ $ aplay sample-file-4.wav

Press Cntrl+C to stop the music.

5.4 Audio Volume
Most speakers with built-in amplifiers have volume control buttons that you can adjust the
volume output. You may also use the alsamixer program on your Raspberry Pi 5 to set the
volume in software. The steps are as follows.

•	Enter the following command and you will see the screen as in Figure 5.4:

		 pi@raspberrypi:~ $ alsamixer

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 185Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 185 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 186

Figure 5.4: The alsamixer screen.

•	Press the F6 function key and select the USB audio device (Figure 5.5), then
press the Enter key

Figure 5.5: Select the USB audio device.

•	Click on the column Speaker and use the up-down arrow keys to increase/
decrease the speaker volume. Figure 5.6 shows the maximum volume setting.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 186Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 186 04-04-2024 13:1904-04-2024 13:19

Chapter 5 ● Raspberry Pi 5 Audio Output

● 187

Figure 5.6: Maximum speaker volume setting.

•	Press the ESC key to exit from the alsamixer program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 187Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 187 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 188

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

6.1 Overview
RTL-SDR is a cheap USB dongle that can be used as a computer based radio scanner for
receiving live radio signals without Internet access. RTL-SDR is normally used as a receiver
only and unable to transmit radio signals. Depending on the particular model you purchase,
you can receive radio signals in the frequency range from 500 kHz to 1.75 GHz. There are
also other more expensive software defined radio modules upping on the RTL-SDR, some
of which can even transmit (e.g. HackRF). All of these all come at a higher price though.

In this chapter, you will explore the use of your Raspberry Pi 5 in conjunction with RTL-
SDR dongles. Most RTL-SDR dongles in the market and based on the RTL2832U chip have
recently become popular as they can be used as cheap SDRs. There are many different types
of RTL-SDR dongles in the market but earlier models are mostly based on the RTL2832U
chip, while the newer dongles have the R828D chip. There are currently two versions of the
dongles: V3 and V4. Figure 6.1 shows pictures of both types of dongles.

Figure 6.1: V3 and V4 RTL-SDR modules.

Back in 2012, an undocumented feature of the RTL2832U chip surfaced that enabled
the device to be used as a general-purpose SDR. With the development of hardware
and software, these cheap dongles can now be used as sophisticated SDR receivers. For
example, an RTL-SDR dongle can be connected to a Raspberry Pi and many interesting
amateur radio software packages can be downloaded and cheerfully operated on Raspberry
Pi.

Without these dongles, such receivers would have cost hundreds or thousands of dollars to
bring similar features. Application areas of RTL-SDR dongles include:

•	Listening to air traffic control conversations
•	Tracking aircraft positions
•	Receiving meteorological transmissions
•	Listening to amateur radio bands
•	Listening to shortwave and FM radio
•	Monitoring meteor scatter
•	Listening to DAB broadcast transmissions
•	Listening to International Space Station
•	Listening to amateur radio
•	Receiving HF weatherfax
•	Listening short wave radio
•	Receiving and decoding GPS signals
•	Decoding ham radio APRS packets

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 188Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 188 04-04-2024 13:1904-04-2024 13:19

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

● 189

•	Developing a radio scanner
•	Watching analog broadcast TV
•	Using it as a spectrum analyzer
•	Using it as a receiver server
•	Receiving GPS signals and decoding them
•	Scanning cordless phones and baby monitors
•	Watching weather satellite
•	Radio astronomy
•	and more

The minimum requirements to use an RTL-SDR dongle are:

•	an RTL-SDR dongle device;
•	a suitable antenna;
•	a powerful computer (like Raspberry Pi 5);
•	RTL-SDR driver and application software (there are many and most are free).

Depending on your requirements and applications, you may also need to use filters to
improve the signal to noise ratio.

6.2 RTL-SDR V3
Earlier RTL-SDR V3 devices could work from about 500 kHz to over 1.7 GHz. The lower
frequency range can be extended by using an upconverter device or by direct sampling
mode. The upconverter is connected to the antenna ahead of the RTL-SDR device. Some
upconverters operate down to several kHz. If the upconverter oscillator frequency is 125
MHz and you want to tune to 5 MHz, simply tune your receiver (or GQRX, for example) to
130 MHz. The direct-sampling mode requires a small change to be made to the RTL-SDR
hardware and the software, where a connection is made inside the hardware. Some RTL-
SDR devices have a small hole allowing a connection to be made by inserting a jumper wire,
thus there is no need to open the device and get the solder iron out. The software should
be configured so that the sampling mode is set to Direct Sampling.

The RTL-SDR has 3.2 MHz bandwidth (2.4 MHz stable), 8-bit analog-to-digital converters
(ADC), less than 4.5 dB noise figure, and 75 ohms input impedance (not 50 ohms which is
the de facto impedance used in amateur radio. In general, the mismatch between the 75
and 50 ohms is less than 0.2 dB). Because the RTL-SDR devices are cheap, they use 28.8
MHz crystal oscillators and their clock accuracy may drift several kHz. Most popular RTL-
SDR software packages have options in the form of ppm drift values for calibrating this drift
in software. There are also noise bursts in the form of harmonics at multiples of 28.8 MHz.
These bursts or "spikes" can usually be observed in waterfall displays.

For good reception and low noise, the RTL-SDR should be placed close to the antenna
so that the lossy coaxial cable is replaced with loss-free USB cable. You should take care
however that the length of the USB cable is not more than 5 meters for USB2.0, or 3 meters
for USB3.0. If longer length USB cables are required, then it is recommended to use USB
hubs or USB repeater devices.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 189Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 189 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 190

The RTL-SDR dongles should be installed in metal enclosures in order to minimize external
interferences and they should not be near power lines, motors, TVs, appliances, or other
equipment likely to generate electromagnetic noise.

Having a good antenna is also very important while using your RTL-SDR. The cheap antenna
typically delivered with the device is about 12-15cm long and not generally suitable for
amateur work. You should place this antenna over a metal surface, which has a radius of
around 12-15 cm minimum to make a quarter-wave "Marconi" antenna and improve the
reception characteristics.

6.3 RTL-SDR V4 vs V3
The new V4 dongle has many improvements compared to the earlier V3 dongle:

•	V4 has built-in upconverter that improves the HF reception and provides
adjustable gain on HF.

•	V4 provides improves filtering as it uses the R828D tuner chip with inputs for
three bands HF, VHF, and UHF. As a result of this out of band interference from
strong broadcasting stations is less likely

•	In addition to improved filtering discussed above, the R828D chip in the V4
version has an open-drain pin which allows simple notch filters to be added to
minimize interference mainly from the AM broadcasts.

•	The power supply noise on V4 is significantly reduced due to improved power
supply design.

•	The V4 dongle uses less current and consequently generates less heat
compared to the V3.

•	The price tag of the V4 was initially higher than that of the V3 but is currently
at level.

Both the V3 and V4 are built with black metal enclosures, which act as a heatsink for
passive cooling and also protect from electromagnetic fields.

V4, however, has some disadvantages compared to V3:

•	Reduced sensitivity on some bands due to increased filtering
•	Requires different drivers than V3
•	The R828D tuner chip is currently out of production and it may be difficult to

obtain V4 dongles.

Figures 6.2 and 6.3 show the inside of V3 and V4 dongles, respectively.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 190Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 190 04-04-2024 13:1904-04-2024 13:19

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

● 191

Figure 6.2: Inside the V3 dongle.

Figure 6.3: Inside the V4 dongle.
Source: https://www.rtl-sdr.com/rtl-sdr-blog-v4-dongle-initial-release/

It is interesting to note that the RTL-SDR is community based and is not owned by any
company or person. It is all community supported open software and hardware. It came
into life by combined efforts of Antti Palosaari, Eric Fry and Osmocom (in particular Steve
Markgraf). It was first discovered that certain TV dongles could be used for SDR. Osmocom
in particular developed the first RTL-SDR driver which was released as open-source.

In this chapter, we are only interested in using an RTL-SDR device with the Raspberry Pi
5. Although the V4 dongle is used in the book, the driver is downward compatible and will
work with V3 dongles as well. The theory and operation of the RTL-SDR devices are beyond

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 191Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 191 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 192

the scope of this book. Interested readers can get tons of information on RTL-SDR from the
Internet and from many books available on this topic. The following websites could be of
interest to readers who may want to learn more about the RTL-SDRs:

https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr
https://www.elektor.com/elektor-raspberry-pi-rtl-sdr-v4-bundle-en
https://www.rtl-sdr.com/V4/
https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/
https://www.rtl-sdr.com/using-our-new-dipole-antenna-kit/

6.4 The RTL-SDR Antenna Kit
To get the most enjoyment out of RTL-SDR you will need a decent antenna. Some retailers
and distributors (including Elektor) supply the RTL-SDR dongles as a bundle with antennas.
A dipole antenna kit is usually supplied as shown in Figure 6.4. Be sure to get the dipole up
high and outside (during good weather only) for best results. The recommended outdoor
antenna for general scanning is a so-called discone due to its wideband receiving properties.
You can also cheaply build a wideband planar disk antenna from some metal pizza pans.

This dipole antenna kit includes the following (see Elektor site: https://www.rtl-sdr.com/
using-our-new-dipole-antenna-kit/):

•	1× dipole antenna base with 60 cm RG174 cable and SMA Male
connector. This is the dipole base where the telescopic antennas connect
to. The short run of RG174 coax is decoupled from the base elements with a
ferrite choke. This helps to prevent the feed line from interfering with the dipole
radiation pattern. The dipole has a 1/4 inch threading on the bottom, which
allows you to use standard camera mount products for mounting.

•	1× 3 meter RG174 coax cable extension. This coax cable extension allows
you to mount the antenna in a place that gets better reception, like outside on
a window, or higher up.

•	2× 23 cm to 1 m telescopic antennas. The telescopic dipoles are detachable
from the dipole base via an M5 thread, which allows for greater portability and
the ability to swap them out. These long telescopic antennas cover VHF to UHF.

•	2x 5 cm to 13 cm telescopic antennas. These smaller antennas cover
UHF to 1090 MHz ADS-B, and even still work decently up to L-band 1.5 GHz
frequencies.

•	1× flexible tripod mount with 1/4" screw. This piece allows you to mount
the dipole on a variety of different locations like on a pole, a tree branch, a
desk, a door, or a window sill. The legs of the tripod are bendy and rubberized
so can wrap securely around many objects.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 192Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 192 04-04-2024 13:1904-04-2024 13:19

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

● 193

•	1× suction cup mount with 1/4" screw. With this mount, you can install
the dipole on the outside of a window, on a wall, car roof/window, or on any
other smooth surface. To use it, first clean the surface with window cleaner or
isopropyl alcohol. Then place the suction cup on the cleaned surface and close
the lever to activate the suction.

Figure 6.4: RTL-SDR dipole antenna kit.

6.4.1. Dipole orientation
Signals are normally transmitted with either horizontal, vertical or right hand/left hand
circular polarization (RHCP/LHCP). This is essentially the "orientation" of a signal. At the
receiver side, an antenna with the same polarization should be used too for best performance.
A dipole can be used in either vertical or horizontal polarization just by orienting it either
vertically or horizontally.

If you mismatch vertical and horizontal polarization or RHCP and LHCP, you'll get an instant
20 dB loss. If you mismatch vertical/RHCP, vertical/LHCP, horizontal/RHCP, horizontal/
LHCP, you'll only get a 3 dB loss.

For vertical polarization, in theory it does not matter which way around you orient the
antenna as long as it is vertical. However, in practice, you may get slightly better results by
having the element connected to the center coax conductor pointing UP. You can confirm
which element is connected to the center conductor by temporarily removing the black lid
on the dipole base (it can be easily pried off with a nail or flat head screwdriver).

There are also ways to optimize the radiation pattern with dipoles. For example, for LEO VHF
satellites, you can use a V-dipole configuration. You can also make a somewhat directional
antenna by using a bent dipole configuration.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 193Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 193 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 194

6.4.2. Terrestrial signal reception
Most signals broadcast terrestrially (on Earth) are vertically polarized. To use the dipole
for vertically polarized signals, all that you need to do is orient the elements vertically
(up and down). In theory there is no such thing as up and down for the dipole when used
in the vertical orientation. However, in practice you may find slightly better performance
when the "active" element points up. The active element is the one connected to the center
conductor. You can check which element is connected to the center conductor by removing
the top cap on the dipole base — this will let you look inside at the connections.

6.4.3. Satellite reception
The dipole can be used in a V-Dipole configuration for polar orbiting satellite reception. The
idea is to use the dipole in horizontal polarization. This gives 3 dB loss on the RHCP satellite
signals, but also nicely gives 20 dB loss on terrestrial signals which could be overloading
your RTL-SDR.

For 137 MHz satellites like NOAA and Meteor M2, extend the larger antenna elements out to
about 53.4 cm each (about 2.5 sections). Angle the dipole so it is horizontal and in a 'Vee'
shape, at about 120 degrees. Place the dipole in the North-South direction.

6.4.4. Choosing the antenna element length
Just as with the whip antenna, you can use an online calculator to calculate the optimal
length for your frequency of interest. This dipole calculator is recommended: 	
	 http://www.csgnetwork.com/antennaedcalc.html

The exact length does not matter too much, but try to get the lengths as close as you can
to what the calculator says. With the pure dipole, you want both elements to be the same
length. In reality, extending the antenna to almost any random length will work just fine
for most strong signals. But if you're really trying to optimize those weak signals you'll want
to fine tune the lengths.

Basically, the longer the antenna, the lower its resonant frequency. The shorter the
antenna, the higher the resonant frequency. You want to be close to the resonant frequency.
Remember that there is about 2 cm of metal inside the antenna itself, which needs to be
added on. Below is a cheat sheet for various lengths and frequencies. Note that the length
refers to the length of one side of the dipole only (e.g. the length that you need to extend
each element out to).

•	Large Antenna, 5 Sections, 100 cm + 2 cm is resonant @ ~70 MHz
•	Large Antenna, 4 Sections, 80 cm + 2 cm is resonant @ ~87MHz
•	Large Antenna, 3 Sections, 60 cm + 2 cm is resonant @ ~115 MHz
•	Large Antenna, 2 Sections, 42 cm + 2 cm is resonant @ ~162 MHz
•	Large Antenna, 1 Section, 23 cm + 2 cm is resonant @ ~ 285 MHz
•	Small Antenna, 4 Sections, 14 cm + 2 cm is resonant @ ~445 MHz
•	Small Antenna, 3 Sections, 11 cm + 2 cm is resonant @ ~550 MHz
•	Small Antenna, 2 Sections, 8 cm + 2 cm is resonant @ ~720MHz
•	Small Antenna, 1 Section, 5 cm + 2 cm is resonant @ ~1030 MHz.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 194Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 194 04-04-2024 13:1904-04-2024 13:19

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

● 195

See the SWR plots at the end for a more accurate reading of the resonance points. But in
most cases, no matter what you extend the length to, the SWR should be below 5 at most
frequencies which results in 2.5 dB loss or less.

There are many online tools for calculating the antenna length for dipole, inverted-V,
vertical antennas etc. Some interesting sites are:

	 https://m0ukd.com/calculators/quarter-wave-ground-plane-antenna-calculator/
	 https://www.westmountainradio.com/antenna_calculator.php
	 https://www.hamradiosecrets.com/antenna-calculator.html
	 https://www.qsl.net/w/w7lk/site/antennachart.htm
	� https://www.ws6x.com/ant_calc.htm#:~:text=The%20basic%20formula%20

for%20determining,)%20%3D%20Length%20(feet).

6.5 Hardware Setup
Figure 6.5 shows the RTL-SDR hardware setup using a V4 dongle, dipole antenna kit,
Raspberry Pi 5 computer, UGREEN audio adapter, and speaker with amplifier module. This
is probably the minimum hardware setup you will require for your RTL-SDR based projects.

Figure 6.5: Hardware setup.

6.6 Installing the RTL-SDR Software on Raspberry Pi 5
Set up the hardware as in Figure 6.5 and enter the following command to list the recognized
USB devices. Figure 6.6 shows the results where the RTL-SDR dongle is recognized as:
RealTek Semiconductor Corp. RTL2838 DVB-T

pi@raspberrypi:~ $ lsusb

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 195Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 195 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 196

Figure 6.6: List of USB devices.

Although the dongle has been detected, it has been recognized as a DVB-T television
dongle. Check to see what modules are loaded into the Kernel for the dongle. Enter (see
Figure 6.7):

pi@raspberrypi:~ $ lsmod | egrep 'sdr|dvb'

Figure 6.7: Kernel-loaded modules.

If you already have RTL-SDR installed on your Raspberry Pi 5, remove it as follows (ignore
any error messages):

•	sudo apt purge ^librtlsdr
•	sudo rm -rvf /usr/lib/librtlsdr* /usr/include/rtl-sdr* /usr/local/lib/librtlsdr* /usr/

local/include/rtl-sdr* /usr/local/include/rtl_* /usr/local/bin/rtl_*

Install the RTL-SDR drivers as follows:

•	sudo apt-get install libusb-1.0-0-dev git cmake pkg-config
•	git clone https://github.com/rtlsdrblog/rtl-sdr-blog
•	cd rtl-sdr-blog
•	mkdir build
•	cd build
•	cmake ../ -DINSTALL_UDEV_RULES=ON
•	make
•	sudo make install
•	sudo cp ../rtl-sdr.rules /etc/udev/rules.d/
•	sudo ldconfig
•	sudo apt install debhelper
•	cd rtl-sdr-blog
•	sudo dpkg-buildpackage -b --no-sign

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 196Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 196 04-04-2024 13:1904-04-2024 13:19

Chapter 6 ● RTL-SDR Meets Raspberry Pi 5

● 197

•	cd ..
•	sudo dpkg -i librtlsdr0_*
•	sudo dpkg -i librtlsdr-dev_*
•	sudo dpkg -i rtl-sdr_*

As you can see from Figure 6.6, you have to disable module: dvb_usb_rtl28xxu so that
the dongle is not recognized as a TV device. The easiest option is to blacklist the dongle
device so that it is not recognized as a TV dongle. The command is:

echo 'blacklist dvb_usb_rtl28xxu' | sudo tee --append /etc/modprobe.d/blacklist-
dvb_usb_rtl28xxu.conf

Now reboot you Raspberry Pi 5:

sudo reboot

Enter the following command to check the modules loaded for the sdr/dvb. There should
be no output displayed:

lsmod | egrep 'sdr|dvb'

Note: You must install the RTL-SDR software on your Raspberry Pi 5 before any other
RTL-SDR based program is installed.

6.7 Testing — Tuning to a Frequency Manually
You can use the RTL-SDR software to tune to a frequency by entering a command at the
command line. As an example, the following command tunes to frequency 97.3 MHz, which
happens to be the LBC radio station broadcasting on FM in London:

	� pi@raspberrypi:~ $ rtl_fm –M wbfm –f 97300000 | aplay –r 32000 –f S16_
LE –c 1

You should be able to hear the radio broadcast on the 97.3 MHz or the frequency you
entered. Figure 6.8 shows the what is displayed by Raspberry Pi 5 when the above
command is entered. Enter Cntrl+C to terminate the command and stop receiving the
radio broadcast. If you are using the RTL-SDR V3, make sure that you connect it to a USB
2.0 port of your Raspberry Pi 5.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 197Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 197 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 198

Figure 6.8: Tuning to a frequency manually.

In the remaining chapters of the book, you'll discover some of the popular amateur radio
programs for the RTL-SDR dongles and learn how to install and use them.

6.8 Testing the RTL-SDR Dongle
You can enter the command rtl_test to test your RTL-SDR dongle. Figure 6.9 shows a
typical output displayed on Raspberry Pi 5.

Figure 6.9: Testing the RTL-SDR dongle.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 198Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 198 04-04-2024 13:1904-04-2024 13:19

Chapter 7 ● A Simple FM Receiver

● 199

Chapter 7 ● A Simple FM Receiver

7.1 Overview
This is a few lines of Python program developed by the authors, which should enable you
to tune to a broadcast frequency in the VHF FM band (88–108 MHz) and then listen to the
broadcast.

7.2 The Program
The program is based on the RTL_FM and Figure 7.1 shows the program listing (Program:
simpleFM.py) which consists of only a few lines of code. The program prompts the user
to enter the required frequency in kHz and then uses RTL_FM to tune to the frequency
entered. Copy the program to your Raspberry Pi 5, plug in your RTL-SDR, and enter the
following command to launch the program:

	 pi@raspberrypi:~ $ python3 simpleFM.py

#==
#			 TUNE TO FM FREQUENCY
#			 ====================
#
This program tunes to an FM frequency (WBFM) using the RTL_FM
#
Author: Dogan Ibrahim (G7SCU)
File : simpleFM.py
Date : February, 2024
#===
import os
print("")
print("SimpleFM - Tune to a FM frequency")
print("=================================")
print("")

freq = 1000.0*float(input("Enter the FM frequency (kHz): "))
frequency = str(freq)
rtl = "rtl_fm -M wbfm -f" + frequency + " | aplay -r 32000 -fS16_LE -c 1"
os.system(rtl)

Figure 7.1: Program listing.

Figure 7.2 shows an example run of the program where the required frequency was 97.3
MHz (frequency of the LBC radio broadcast in London). Enter Cntrl+C to terminate the
program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 199Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 199 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 200

Figure 7.2: Example run of the program.

7.2.1 Creating a shell script
An alternative to creating a Python program is to create a shell script and run RTL_FM from
this script. The steps are:

•	Use the nano editor and create a file called fm with the contents as follows:

!/bin/sh
rtl_fm –M wbfm –f$1 | aplya –r 32000 –fS16_LE –c 1

•	Make the script executable:

pi@raspberrypi:~ $ sudo chmod +x fm

•	Run the script file and specify the frequency. For example, if the frequency is
97.3 MHz, enter:

pi@raspberrypi:~ $./fm 97.3M

or,

pi@raspberrypi:~ $ sh fm 97.3M

Notice that $1 in the script corresponds to the entered frequency value.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 200Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 200 04-04-2024 13:1904-04-2024 13:19

Chapter 8 ● GQRX on the Raspberry Pi 5

● 201

Chapter 8 ● GQRX on the Raspberry Pi 5

8.1 Overview
GQRX is an excellent open source software defined radio receiver (SDR) created by
Alexander Csete (OZ9AEC) and powered by the GNU Radio and the Qt graphical toolkit. In
this chapter, you'll see how to install the GQRX on your Raspberry Pi 5 and learn how to use
it. GQRX offers the following features:

•	Change frequency, gain and apply various corrections
•	AM, SSB, CW, FM-N and FM-W demodulators
•	FM ode for NOAA APT
•	Variable band-pass filter
•	FFT plot and waterfall
•	AGC, squelch and noise blankers
•	Record and playback raw baseband data and audio to/from WAV file
•	Spectrum analyzer
•	Remote control through TCP
•	Streaming audio output over UDP
•	Discover devices attached to the computer

8.2 Installation on Raspberry Pi 5
The steps to install the latest version of GQRX on your Raspberry Pi 5 are given below:

•	sudo apt-get update
•	sudo apt-get install -y cmake gnuradio-dev gr-osmosdr qt6-base-dev qt6-svg-

dev qt6-wayland libasound2-dev libjack-jackd2-dev portaudio19-dev libpulse-
dev

•	git clone https://github.com/gqrx-sdr/gqrx.git
•	cd gqrx
•	mkdir build
•	cd build
•	cmake ..
•	make
•	sudo make install
•	volk_profile

Press Cntrl+C to terminate volk_profile, Notice that the volk_profile command is used
to optimize the signal processing routines for best performance, and to work around a
bug that would otherwise prevent the AM demodulator from working.

8.3 Using the GQRX
Before using the GQRX, make sure that your RTL-SDR dongle, USB audio adapter, and the
antenna are all connected as required, and proven to be operational. This is important since
the dongle and the audio adapter are checked at the beginning of the program and the
program may not recognize them if they are connected after it starts.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 201Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 201 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 202

The steps are:

•	Start your Desktop. If you do not have a directly connected monitor with HDMI
cable, then start the vncserver and then the TightVNC Viewer so that the
Desktop is displayed on your PC. If you have a directly connected monitor and
keyboard then just continue.

•	Start a terminal session on your Desktop and type:

pi@raspberrypi:~ $ gqrx

Figure 8.1 shows the GQRX main screen tuned to 97.3 MHz, which happens to be the
broadcast frequency of London LBC radio which is local to the authors. You will see the
following menu items at the upper part of the screen:

•	File
•	Tools
•	View
•	Help

Figure 8.1: GQRX main screen.

By selecting the File menu you can configure the I/O devices, load saved settings, save the
current settings, save the waterfall, or quit the program. Click File  Start DSP to start
receiving radio signals at the selected frequency (or click the grey Start/Stop button under
File). The I/O devices menu (Figure 8.2) is the first displayed menu. This menu allows you
to select items such as the type of device you are using, input rate, audio device, and audio

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 202Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 202 04-04-2024 13:1904-04-2024 13:19

Chapter 8 ● GQRX on the Raspberry Pi 5

● 203

sample rate. In this example, the Realtek RTL2838UHIDII is selected as the device (this
is the RTL-SDR V3 dongle). The Input rate is set to 1800000 but you can experiment with
different values. The Audio output is set to Default (the authors had the UGREEN audio
adapter connected to one of the USB ports of the Raspberry Pi 5).

Figure 8.2: The I/O device menu.

Near the bottom right of the screen, you will see 3 tabs with the names: Input Controls,
Receiver Options, and FFT Settings.

At the top of the Input Controls (Figure 8.3) is the LNB LO which is the local oscillator
frequency in front of your SDR dongle, and it is set to 0 in most cases.

The Hardware AGC should be ticked as it enables automatic gain control.

Swap I/Q is used to swap I and Q channels and it should normally not be ticked.

No limits must not be ticked as it may enable use of the SDR beyond its normal frequencies
(you may have to enable it to receive HF frequencies).

DC remove removes the DC bias and it should be ticked.

IQ balance should not be ticked unless there seems to be ghost images in the spectrum.

Freq Correction is used to correct for the drift in the SDR internal oscillator. This is
adjusted by tuning the dongle to a very well-known stable frequency (e.g. using a frequency
generator) and then adjusting this correction until the displayed frequency matches the
frequency of the generator. In most cases, you can leave this set to 0.0. After making a
correction, you should save the settings.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 203Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 203 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 204

Antenna should be kept at RX as there is usually no other options with most dongles,

You should tick the Reset frequency controller digits.

Figure 8.3: Input controls.

At the top of the Receiver Options (Figure 8.4) you can offset the selected frequency from
the main frequency entered in the left window. This is normally kept at 0.000.

Filter width and Filter shape can be selected as required. They are usually set to Normal.

Mode is used to select the require modulation mode and it can be:

•	Demod Off turns off signal processing (the real time spectrum can still be
viewed).

•	Raw I/Q is selected to pass raw I/Q data without any demodulation.
•	Narrow FM used to select narrow FM.
•	WFM (mono or stereo) is used to select broadcasting stations in the FM band
•	USB or LSB are the upper and lower side bands, selected for side band

amplitude modulation.
•	CW-L or CW-U are selected for Morse code modulation.

AGC should be selected as required.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 204Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 204 04-04-2024 13:1904-04-2024 13:19

Chapter 8 ● GQRX on the Raspberry Pi 5

● 205

Squelch value can be set manually, or you can wait until there is silence in the band and
then click on the button A to its right to automatically adjust the squelch level to the current
signal or noise level. Clicking R rsets the squelch level to its default value.

Noise blanker NB1 and NB2 attenuate noise.

The Audio section at the bottom of the Receiver Options controls the audio signal level
by using the slider. Set the audio level to several dB. The audio signal can be recorded by
clicking the Recording tab. The UDP tab allows you to stream the raw audio over UDP
connection.

Figure 8.4: Receiver options.

The FFT Settings window is shown in Figure 8.5. FFT Size is the number of points used
in the FFT calculation and it determines the resolution of the plot. For example, if the
bandwidth is 200 kHz and FFT size is 8192, then the FFT resolution is 200000 / 8192 = 24
Hz / FFT which is related to the screen pixels

FFT rate is the frames per second and it can be selected to up to 60 fps.

Window is the type of windowing used in the DSP and by default it is set to Hann.

FFT Averaging is the averaging gain used to reduce the noise level. The averaging affects
the FFT plot and not the waterfall.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 205Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 205 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 206

The Peak Detect button will show little circles at the peaks of the spectrum display (Figure
8.6). Band Plan will show the band details (Figure 8.7).

The WF dB sets the waterfall gain in dB.

Freq zoom sets the frequency axis scale

Figure 8.5: FFT settings options.

Figure 8.6: Peak Detect selected.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 206Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 206 04-04-2024 13:1904-04-2024 13:19

Chapter 8 ● GQRX on the Raspberry Pi 5

● 207

Figure 8.7: Band Plan selected.

8.3.1 The audio frame
In the lower right window appears either the spectrum and controls of the Audio signal
received (Figure 8.8) or the FFT Settings depending on which tab you clicked on. The Audio
spectrum frame shows the spectrum of the demodulated signal. You can change the scale
of the spectrum by click and drag the mouse pointer of the frequency scale, and move it
right-left with the mouse wheel. The slider below the audio spectrum control the output
level to the speaker/headphone,

Figure 8.8 Audio frame

Clicking the Mute button stops output to the speaker/headphone. Rec (recording) button
is used to record the received audio. The audio file name format is:

gqrx_yyyymmdd_hhmmss_frequency.wav

where,

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 207Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 207 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 208

yyyy is the year
mm is the month
dd is the day
hhmmss the start hour, minutes,seconds
frequency is the hardware in Hz

For example, click the Rec button for a short while the reception is in progress. The filename
will be displayed under the Rec button. Click the button again to stop the recording. A file
will be created in your /home/pi directory. As an example, the following file was created
in author's test:

	 gqrx_20240205_151413_97300000.wav

in the above example, the audio was recorded on the 5th of February 2024 (20240205) at
15:14:13 hours and the receiver was set to 97.3 MHz.

You can click the Play button to playback a previously recorded file.

8.3.2 Streaming audio to your PC
GQRX has the option of streaming the audio data over the network using the UDP protocol.
This is, for example, useful if you are having problems outputting audio directly to your
speakers with the GQRX. Before streaming the data, we have to configure the GQRX
network settings. Open the network window by clicking the audio settings in the Audio
window. Click the network tab as shown in Figure 8.9, where 192.168.1.202 is the IP
address of the Raspberry Pi 5 (use command ifconfig to find the IP address it if you do
know what it is). Click the bottom right-hand tab (Audio settings) under the Audio tab
and then the Network tab to start outputting the audio from the GQRX.

Figure 8.9: Open the network tab

Then enter the following command (see Figure 8.10) at the command line to stream the
audio on your Raspberry Pi 5 speakers. Enter Cntrl+C to terminate the streaming:

	 pi@raspberrypi:~ $ nc -l -u 7355 | aplay -r 48000 -f S16_LE -t raw -c 1

Figure 8.10: Start the audio streaming.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 208Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 208 04-04-2024 13:1904-04-2024 13:19

Chapter 8 ● GQRX on the Raspberry Pi 5

● 209

You could get a better audio quality by sending the output to the VLC media play program
as shown below (Figure 8.11). Enter Cntrl+C to terminate the streaming:

pi@raspberrypi:~ $ vlc --demux=rawaud --rawaud-channels=1 --rawaud-
samplerate=48000 udp://@:7355

Figure 8.11: Sending the output to VLC.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 209Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 209 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 210

Chapter 9 ● SDR++

9.1 Overview
SDR++ (or "SDR PlusPlus") is an open source, cross-platform, software-defined radio
program that works with the RTL-SDR as well as many other SDR receivers. It is a popular
and easy to use program, which can be installed and operated on many platforms.

SDR++ has the following features (SDR++ User Guide):

•	Wide hardware support (e.g. Raspberry Pi, Windows, MAC etc.).
•	Full waterfall.
•	Listening to more than one frequency at the same time within the receive

bandwidth.
•	Remote operation of the SDR using the built in server.
•	Range scanner.

In this chapter, you explore the installation and practical use of the SDR++ on the Raspberry
Pi 5.

9.2 Installing SDR++ on the Raspberry Pi 5
The steps are:

•	sudo apt update
•	sudo apt install -y build-essential cmake git libfftw3-dev libglfw3-dev libglew-

dev libvolk2-dev libsoapysdr-dev libairspyhf-dev libairspy-dev \
•	 libiio-dev libad9361-dev librtaudio-dev libhackrf-dev librtlsdr-dev libbladerf-dev

liblimesuite-dev p7zip-full wget
•	git clone https://github.com/AlexandreRouma/SDRPlusPlus
•	cd SDRPlusPlus
•	sudo mkdir -p build
•	cd build
•	sudo mkdir -p CMakeFiles
•	sudo cmake .. -DOPT_BUILD_RTL_SDR_SOURCE=ON
•	sudo make
•	sudo make install

The git clone command requires your GitHub username and token number. If you don't
have a github account you should create one using your PC after giving a username and
password. The steps to get a token number are as follows:

•	 log in into your GitHub account.

•	go to Settings  Developer Settings  Personal Access Token 
Tokens (classic)

•	Generate token.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 210Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 210 04-04-2024 13:1904-04-2024 13:19

Chapter 9 ● SDR++

● 211

•	copy the generated token and use it where the password
is requested. The token will be something like: ghp_
sFhFsSHh0ytzMDRLjmks4yy76gf59zgthdvfsrta

9.3 Using the SDR++
The SDR++ program requires a directly connected monitor (using a HDMI cable) to work.
You cannot connect using a PC with vncserver and TightVNCViewer in Desktop mode.

To start the SDR++ follow the steps:

•	Connect your Raspberry Pi 5 to a monitor using a HDMI cable.

•	Connect the RTL-SDR dongle, antenna, audio adapter, keyboard, and mouse.

•	Boot your Raspberry Pi 5. If it starts in console mode enter the following
command to start the Desktop mode:

 pi@raspberrypi:~ $ startx

•	Open a terminal session in Desktop mode and enter the following command to
start the SDR++:

pi@raspberrypi:~ $ sdrpp

Figure 9.1 shows the SDR++ startup screen.

Figure 9.1: SDR++ startup screen.

9.3.1 Quick startup example
Perhaps the easiest way to learn to use the SDR++ is to look at an example. In this
example, we will tune to 97.3 MHz which is the frequency of radio station "LBC" in London.
The steps are as follows:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 211Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 211 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 212

•	Click at the bottom or top of the frequency numbers and set it to 97.300.000 as
shown in Figure 9.2.

Figure 9.2: Set the required frequency.

•	Click Source and set the SDR receiver type to RTL-SDR (Figure 9.3).

Figure 9.3: Set Source to RTL-SDR.

•	Click Source and click to enable Tuner AGC (Figure 9.4).

Figure 9.4: Enable Tuner AGC.

•	Expand Radio and select WFM (Figure 9.5).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 212Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 212 04-04-2024 13:1904-04-2024 13:19

Chapter 9 ● SDR++

● 213

Figure 9.5: Enable WFM.

•	If required, select Stereo, Low Pass (filter) etc. (Figure 9.6).

Figure 9.6: Select Stereo, etc.

•	Click Display and enable Show Waterfall (Figure 9.7).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 213Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 213 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 214

Figure 9.7: Enable Waterfall.

•	Click Audio and select Audio Adapter (Figure 9.8). Note that if you select the
Built-in Audio then the sound will be output from your monitor.

Figure 9.8: Select your audio adapter.

•	Finally, click the right arrow button at the top left of the screen to start the
reception. You should hear the radio on your speakers. Figure 9.9 shows the
reception with the waterfall.

Figure 9.9: Reception using the "waterfall" display.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 214Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 214 04-04-2024 13:1904-04-2024 13:19

Chapter 9 ● SDR++

● 215

In the remaining parts of this chapter, we will look at other options of SDR++ in some
detail. Notice that if an option is greyed out, it cannot be changed.

9.3.2 Graphical outputs
Figure 9.10 shows the top part of the display where various graphical items are identified.

Figure 9.10: Top part of the display.

SNR Meter
The SNR meter is not calibrated, it just shows a measure of the relative strength of signals
above the background noise.

Frequency Tuning
The received can be tuned in several ways.

•	Place the mouse cursor over a digit that you want to change and change it
using the scroll wheel.

•	Click at the top or bottom of a digit to increase or decrease the frequency,
respectively.

•	Place the mouse pointer over the largest digit you want to change and type in
the complete frequency you want to set to.

•	Drag the frequency scale at the bottom of the FFT spectrum display.

Tuning Mode
The tuning can either be Centre tuning or Normal tuning. With the Centre tuning, when
you click or tap on the waterfall (or spectrum) to tune, the selected frequency snaps to the
center of the display, which may be the preferable option. In Normal tuning mode you can
tap or tune anywhere on the spectrum display and they stay where they are.

The icon
The icon at the top right of the display shows the credits and the build version of the
SDR++.

The spectrum display
You can see several receptions on the display and select which one you want to investigate.
The vertical axis shows the signal strength while the horizontal axis shows the frequency.
You can see the strength of each signal through the depth of the colour and the width of the

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 215Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 215 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 216

transmission. You can tap on a peak to select that frequency. You can move the sliding bar
at the right hand side of the display (marked Max) up or down to change the range of the
frequency scale. The spectrum display is also useful to match a manual antenna tuner for
maximum signal strength. You should adjust the antenna tuner until you get the maximum
peaks on the spectrum.

9.3.3 Source options
AGC
This is the Automatic-Gain-Control. The AGC automatically adjusts the gain so that weak
signals become stronger and the gain of strong signals is reduced. This helps to have a
comfortable gain.

Sample Rate
This shows how much the frequency spectrum your SDR can show for the selected
frequency. This depends on the type of SDR device used. Most RTL-SDR dongles can show
signals across to up to about 2 MHz.

Offset Tuning (for up-down converters)
Up-conversion and down-conversion are done using additional external hardware connected
to your SDR dongle. For example, if your SDR receiver covers VHF 30 – 300 MHz and you
want to listen to say lower than 30 MHz frequencies, then you can use an up converter to
raise the frequencies so that your SDR can receive them. You can click the offset mode to
see the true frequency of the signal received. Do not click the offset mode if you are not
using a converter.

IQ correction
Adjust this value if you can see effects such as spikes on the frequency display, or
imbalances that may affect the audio. You should adjust the value until the unwanted
spikes or imbalances disappear.

Decimation
This should normally be at zero. It reduces the number of times a sample is taken of the
radio signals received. For example, 2 means that 1 in every 2 samples will be taken.
Decimation can increase the dynamic range of the receiver. You may like to try different
settings.

Gain Control
The LNA, or the gain control, is used for gain control. If you have selected AGC then you
will not be able to adjust the gain manually. By adjusting the gain manually you can boost
the received signal and this is shown in decibels (dB). The gain is increased by dragging
the blue bar to the right and reduced by dragging it to the left. When you select a different
frequency, you may have to adjust the gain manually again unless the AGC is selected.

Direct Sampling
You can select lower frequencies by using direct sampling. Although this works, the
performance may become poor (poorer performance than using an up converter). In order

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 216Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 216 04-04-2024 13:1904-04-2024 13:19

Chapter 9 ● SDR++

● 217

to receive frequencies in the range 500 kHz – 24 MHz, direct sampling can be used, but
when this is selected you will not be able to use VHF and UHF band signals.

PPM Correction
The oscillator of an RTL-SDR device may not be stable, especially this is true for inexpensive
devices. More expensive RTL-SDR devices use temperature controlled crystal oscillators
for accuracy. You can use the PPM correction to calibrate your receiver if it happens not to
be accurate. The correction is in parts per million. The way to calibrate your RTL-SDR in
SDR++ is to use the rtl_test utility.

9.3.4 Display options
The display options control the waterfall and the FFT features of the program.

Show Waterfall
Used to turn the waterfall display ON/OFF.

Fast FFT
Use this to change the rendering speed, e.g., show less detail in the waterfall and spectrum
displays.

Full Waterfall Update
Enable it to update the history of the waterfall when zooming or min/max changes

FFT Hold
Use this to display the maximum signal level that has been reached. The trace duration can
be adjusted.

Lock Menu Order
Enable this so that the menu section cannot be moved.

High-DPI Scaling
Using this option you can control the size of the controls, scroll bars, and text (e.g., if you
have a high resolution monitor).

FFT Frame Rate
The default of 20 should be ok. It can be set to produce more detailed FFT/Spectrum
display at the expense of frequency resolution.

FFT size
Use this option to increase or decrease the waterfall/spectrum display. Higher will be better
as it can show weaker signals, but it will require more processing power.

FFT Window
This sets the algorithm used for the FFT.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 217Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 217 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 218

9.3.5 Radio module
These options set the modulation type. The options are shown in Table 9.1 (taken from the
SDR++ User Guide – For SDR++ up to version 1.1, December 2022.

Table 9.1: Modulation types (source: https://sdrpp.org).

Squelch
The squelch stops the audio if the signal does nor exceed a chosen level. Squelch is used
to mute background noise and to allow wanted signals to pass. The squelch can be set by
ticking the box to activate it and then dragging the marker.

Snap Interval
Use this option to set the frequency step during tuning.

Stereo
Use this option to toggle between stereo and mono (WFM only).

Low Pass
Use this option to apply filter to the received audio signal. The filter removes frequencies
exceeding a modulation index of 1.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 218Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 218 04-04-2024 13:1904-04-2024 13:19

Chapter 9 ● SDR++

● 219

9.3.6 Frequency Manager
This can be used to save and display your favourite frequencies in bookmarks (Figure
9.11). Bookmarked frequencies can be displayed in the spectrum. You can create lists in
the frequency manager (there is by default a General list). For more details refer to the
SDR++ User Guide.

Figure 9.11: Frequency manager.

9.3.7 Recorder
The Recorder option allows the audio you are tuned to be recorded, or the baseband
to be recorded (The baseband is the whole of the raw IQ data from the bandwidth the
SDR is processing). By default the recorder saves the file in a sub-folder recordings of
the directory where SDR++ is installed. In Raspberry Pi 5 this is in ~/.config/sdrpp/
recordings. There is a signal strength (S-) meter to enable you to adjust the output so
that only the strongest peaks go into the red.

Press Record to start recording, the button will change into a Stop button, which can be
clicked to stop recording. The recorded files are stored in the following format:

	 audio_frequency_hh-mm-ss_dd-mm-yyyy/wav

For example, if the receiver is tuned to 97.3 MHz and the recording was done at 14:21:05
on 7th of February 2014, the file will heve the format:

	 audio_97300000Hz_14-21-05_07-02-2024.wav

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 219Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 219 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 220

Chapter 10 ● CubicSDR

10.1 Introduction to CubicSDR
CubicSDR is a cross-platform, software-defined radio receiver that allows you to tune
across the radio spectrum within the bands of the RTL-SDR dongle. CubicSDR supports
many SDR hardware devices such as SDRPlay, HackRF, BladeRF, AirSpy, Red Pitaya, and of
course the RTL-SDR dongle.

The CubicSDR is probably one of the best SDR software for the beginners, and yet it
includes almost everything that a user may want. CubicSDR supports most RTL-SDRs.

The CubicSDR runs nicely on the Raspberry Pi 5 Desktop monitor (it does not run on a
PC logged in via the vncserver and TightVNC Viewer). The installation steps are simple, as
follows:

•	Start the Desktop on your Raspberry Pi 5.

•	Click Preferences  Add/Remove Software.

•	Enter CubicSDR in the search box and press Enter.

•	Click to select the software and click Apply.

•	Enter your Raspberry Pi 5 password and wait until the installation is finished.

•	To run the software, start a terminal session by clicking the Terminal menu in
Desktop and enter CubicSDR and press Enter. Alternatively, click Other from
the Applications menu on Desktop and click on CubicSDR icon.

•	Select SDR Devices and then double click on the RTL… to start the receiver.

10.2 Quick Startup
In this example, we tune to 97.3 MHz which is the frequency of the London LBC radio
station. The steps are:

Start the CubicSDR as described above and double click on RTL… in SDR Devices menu.

Click anywhere on the waterfall to start the receiver. Note that by default the sound will be
output on your monitor speakers (through the HDMI cable). You can change this to your
audio adapter if you wish by selecting Audio Out from the FM settings at the top left of the
screen next to FM.

Select the mode, e.g., FM, enter the required frequency e.g., 97.3 MHz (entered as
93700000). You can click at the bottom or top of a frequency number in tuning menu to set
the required frequency. Alternatively, click on the top frequency digit and then enter the
required frequency through the keyboard.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 220Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 220 04-04-2024 13:1904-04-2024 13:19

Chapter 10 ● CubicSDR

● 221

Figure 10.1 shows the CubicSDR running at 97.3 MHz FM. Various parts of the screen are
also identified in this figure (further details on the CubicSDR can be obtained from the web
site: https://cubicsdr.readthedocs.io/en/latest/application-window.html).

Figure 10.1: CubicSDR running at 97.3 MHz.

The main spectrum and waterfall displays can be zoomed in or out using the arrow keys or
the mouse wheel. CubicSDR uses a fixed-resolution FFT. The Visual Gain can be adjusted
by right-clicking and dragging on the Main Spectrum or the Waterfall.

The center frequency is set by dragging left or right on the main spectrum, or by using the
left and right arrow keys, or pointing the mouse on a number and using the mouse wheel
to change the number.

The modulation can be selected as: AM, FM, FMS (stereo), NBFM, LSB, USB, DSB, or I/Q
Raw.

The squelch can be set by dragging the slider at the right side of the Modem Waterfall. Right
clicking the squelch will set it just above the current signal level.

The Waterfall speed can be adjusted from 1 to 1024 lines per second by dragging the meter
to the right of the main waterfall (or by using the mouse wheel).

Most numeric controls can be entered directly using the keyboard. Just hover over the
desired value and press SPACE to open the input dialog, or just start typing the numbers.

When entering the frequency values, if the value is greater than 3000 then Hz will be
assumed automatically. Direct input accepts suffixes such as Hz, MHz, or GHz.

The modulation selection has the following options (see the CubicSDR Documentation for
more details):

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 221Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 221 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 222

• AM: Amplitude — AM with carrier signal, Default 6 kHz, Min. 500 Hz, Max. 500 kHz.

• FM: Frequency — Default 20 kHz bandwidth, Min. 500 Hz, Max. 500 kHz, Mono.

• FMS: Stereo Bandwidth — Default 200 kHz, Min. 100 kHz, Max. 500 kHz, Stereo
(multiplex).

• NBFM: Narrow-Band Frequency Modulation — Default 12.5 kHz, Min. 500 Hz, Max.
500 kHz, Mono.

• LSB: Lower Side Band — Lower sideband of AM (no carrier), Default 2.7 kHz, Min.
250 Hz, Max. 250 kHz.

• USB: Upper Side Band — Upper sideband of AM (no carrier), Default 2.7 kHz, Min.
250 Hz, Max. 250 kHz.

• DSB: Dual Side Band — Same as AM but without carrier signal, Default 5.4 kHz, Min.
500 Hz, Max. 500 kHz.

• I/Q: Raw I/Q Pass-Thru (no modulation) — Raw I/Q samples that would normally
go to a modem are passed through to the sound card for use elsewhere. Bandwidth is
fixed to the selected sound card output frequency and will change along with it.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 222Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 222 04-04-2024 13:1904-04-2024 13:19

Chapter 11 ● RTL-SDR Server

● 223

Chapter 11 ● RTL-SDR Server

11.1 Overview
The concept of RTL-SDR is highly interesting as it allows an RTL-SDR dongle to be plugged
into, say, a Raspberry Pi 5 computer, and then the received data is sent over the network
using the TCP protocol to a SDR software running on another computer. RTL-SDR server
could be used, for example, if you have your Raspberry Pi 5 together with the antenna at
a remote location, and you wish to access the RTL-SDR remotely, say, out in the garden.

Figure 11.1 shows the concept of an RTL-SDR server using a Raspberry Pi 5 and a PC. In
this image, an RTL-SDR dongle is attached to a Raspberry Pi 5 computer together with
a suitable antenna. The PC runs a software defined radio program — here, the popular
Windows-based SDR Sharp program is used.

Figure 11.1: RTL-SDR server in action.

The operation of the system is as follows:

•	Obtain the IP address of your Raspberry Pi 5, for example, using command
hostname -I as shown in Figure 11.2. In this example, the IP address was
192.168.1.251.

Figure 11.2: Raspberry Pi 5 IP address.

•	A command is entered on the Raspberry Pi 5 to start the server process.

•	The SDR program on the remote computer (PC) is configured to use the TCP
protocol.

The actual steps below describe the operation using commands:

•	Plug the dongle into one of the USB ports of your Raspberry Pi.

•	Enter the following command with your own IP address:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 223Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 223 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 224

pi@raspberrypi:~ $ rtl_tcp –a 192.168.1.251

where 192.168.1.251 is the IP address of author's Raspberry Pi 5, and 1234 is
the port address. You should see a message as in Figure 11.3.

Figure 11.3: Start the server.

•	Start SDR Sharp on your laptop (assuming you have installed the SDR Sharp
on your laptop). Figure 11.4 shows the startup screen.

Figure 11.4: SDR Sharp startup screen.

•	 Select RTL-SDR (TCP) under menu Source on your SDR display(Figure
11.5))

Figure 11.5: Select RTL-SDR (TCP).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 224Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 224 04-04-2024 13:1904-04-2024 13:19

Chapter 11 ● RTL-SDR Server

● 225

•	Click the Configure Source (Cog wheel icon) and enter the IP address of your
Raspberry Pi 5 in the Host field, set the port to 1234, and click the Tuner AGC
(Figure 11.6).

Figure 11.6: Enter the IP address.

•	Tune the SDR Sharp to the frequency you wish to listen to (e.g., set it to a
local FM broadcast frequency for easy checking). You should hear the reception
on your PC speakers. Figure 11.7 shows the SDR Sharp display after tuning to
the local radio at 97.3 MHz.

Figure 11.7: SDR Sharp after tuning to 97.3 MHz (example frequency).

Critically evaluated, you may find that the audio quality is not as good as expected. A better
response can be obtained if your Raspberry Pi 5 is connected to your network directly (i.e.,
through an Ethernet cable) rather than over air by Wi-Fi.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 225Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 225 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 226

Chapter 12 ● Dump1090

12.1 Overview
Dump1090 is a software defined radio program, originally written by Salvatore Sanfilippo
in 2012 and is used to get real-time air traffic data from aircraft. The program accesses the
ADS-B data using a RTL-SDR dongle. The program is available on several platforms such as
Windows, Linux etc. The original software was developed by several people and it is now
available for use by the Plane Plotter community as well.

12.2 Dump1090 Essential Features
•	HTTP support to display the detected aircrafts on Google Maps.
•	Ability to decode DF11, DF17 messages.
•	Ability to decode DF formats like DF0, DF5, DF16, DF20 and DF21.
•	Interactive commands to display detected aircraft.
•	CPR coordinates decoding and track calculation from velocity.
•	Decoding of weak messages and improved range.
•	Ability to decode raw IQ samples from file.
•	Plane Plotter interface.
•	And more.

A dedicated antenna is recommended for 1.090 GHz operation. The antenna should be
mounted as high as possible with a clear view all round (e.g., not in an attic). Additionally,
good quality low-loss antenna cable should be used since at 1.090 GHz the cable losses
are significant. If you have a decent antenna then you should be able to pick up signals
from aircraft very far from your position. With the simple wine-cork antenna given in the
following website it was reported to pick up signals from over 200 kms away from the local
position:

	 http://antirez.com/news/46

Other good antennas are described in these websites:

	 http://balarad.net
	 http://gnuradio.org/data/grcon11/06-foster-adsb.pdf
	 http://modesbeast.com/pix/adsb-ant-drawing.gif

By default, Dump1090 tries to fix single bit errors using the checksum method.

12.3 Installing Dump1090 on the Raspberry Pi 5
The steps to install the Dump1090 are:

•	git clone https://github.com/antirez/dump1090
•	cd dump1090
•	make

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 226Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 226 04-04-2024 13:1904-04-2024 13:19

Chapter 12 ● Dump1090

● 227

12.4 Launching the Dump1090 Software
Enter the following commands:

	 pi@raspberrypi:~ $ cd dump1090
	 pi@raspberrypi:~/dump1090 $ sudo ./dump1090 --interactive

As shown in Figure 12.1, you should see a dynamic list of the local aircraft with their flight
numbers, altitude, speed, latitude, longitude, track, messages, and time observed. The list
is updated constantly as more aircraft are detected by the program.

Figure 12.1: List of aircraft detected.

You can display the aircraft on a Google Map after entering the following commands:

	 pi@raspberrypi:~/dump1090 $ sudo ./dump1090 --interactive --net

Make a note of the IP address of your Raspberry Pi 5, and then enter the following command
at your Web Browser (e.g., on a PC), where 192.168.1.251 is the IP address of the author:

	 http://192.168.1.251:8080

Figure 12.2 shows a map of London with the aircraft displayed in real time (it might be
hard to see the aircraft in this small map). Click on a plane to display information about it.

Figure 12.2: Aircraft display on the map.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 227Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 227 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 228

Dump1090 can be called with many other command options to set the gain, frequency, etc.
A list of valid commands is obtained by typing:

	 ./dump1090 --help

Some important options are described below:

•	--gain <dB>		 set gain (default is max. gain, –100 for auto gain)
•	--enable agc		 enable automatic gain control (default: off)
•	--freq <Hz>		 set frequency (default: 1090 MHz)
•	--ifile <filename>	 read data from file
•	--interactive		 interactive mode refreshing data every second
•	--interactive-ttl <sec>	 remove from list if idle (default: 60 seconds)
•	--raw			 show only message hex values
•	--net			 enable networking
•	--net-only		 enable just networking
•	--net-http-port <port>	 HTTP server port (default: 8080)
•	--no-fix		 disable single bit error correction
•	--metric		 use metric units (meters, km/h etc.)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 228Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 228 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 229

Chapter 13 ● FLDIGI

13.1 Overview
FLDIGI is a popular Digital Mode data modem program by David Freese, W1HKJ. It
operates in conjunction with a conventional HF SSB transceiver, using audio frequency
signals over an audio adapter. Fldigi includes most of the popular digital modes including
MFSK16, PSK31, Contestia, DominoEX, CW, FSQ, RTTY, Thor, Olivia, etc.

Using this program, it is possible to communicate worldwide using only a few watts of RF
power. The program can also be used for amateur radio emergency communications when
other communication systems fail, e.g., due to natural disasters or power outage.

Fldigi can run on many platforms, such as Windows, macOS, Linux, FreeBSD, OpenBSD,
Solaris etc. Multiple sound systems are supported by fldigi, such as Open Sound System
(OSS), PortAudio, PulseAudio, etc.

13.2 Features
Some important features of fldigi are:

•	Support of transmission and reception in all languages (using UTF-8 character)
•	Narrowband emergency messaging system
•	Connection to outside via TCP/IP on port 7322
•	DTMF encoding and decoding
•	Can be used as a KISS modem via TCP port 7342
•	Sound card oscillator frequency correction
•	Measure of RF receiver frequency skew and sound card oscillator skew
•	Control of external radio hardware
•	Simultaneous decoding of multiple Morse code (CW) signals

13.3 Digital Formats
Fldigi supports many digital formats. Some popular ones are:

Morse code	 5 – 50 words per minute
PSK	 31, 63, 63F, 125, 250, 500, 1000
FSQ	 2, 3, 4, 5, 6
DominoEX	 Micro, 4, 5, 8, 11, 16, 22, 44, 88
MFSK	 4, 8, 11, 16, 22, 31, 32, 64, 64L, 128, 128L
QPSK	 31, 63, 125, 250, 500
NAVTEX	 Navtex/SitorB
RTTY	 45, 45/170, 50/170, 75.170, 75.850
WEFAX	 IOC-576, IOC-288

The following YouTube video gives a good introduction to FLDIGI:

https://www.youtube.com/watch?v=jvOJFFkYlAs

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 229Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 229 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 230

Figure 13.1 shows the typical FLDIGI based system setup. Audio output from the transceiver
is sent to the Raspberry Pi 5 audio adapter microphone input, and the speaker output port
of the audio adapter is connected to the line input of the transceiver.

Figure 13.1: FLDIGI based system setup.

13.4 Installation on Raspberry Pi 5
This section discusses the installation of fldigi from the "Raspbian" repository. The steps
are given below:

•	Start the Desktop GUI.

•	Click the Applications Menu and then click to open Preferences and select
Add/Remove Software.

•	Type fldigi and press Enter as shown in Figure 13.2.

•	Select digital modem program for ham radio operators and click Apply to install
the software.

•	Click OK and exit from the menu.

Figure 13.2: Select the program and click Apply.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 230Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 230 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 231

13.5 Starting the Program
To start the program, make sure you are in Desktop mode, click Applications Menu 
Hamradio  fldigi. When the program is run for the first time, you will be presented with
a configuration wizard as shown in Figure 13.3.

Figure 13.3: The Fldigi screen.

Click Next and enter the details such as the station name, operator callsign, station QTH
etc. (Figure 13.4). Click Next to configure the audio. Click Devices and then PulseAudio
and select Default and click Enable next to it as shown in Figure 13.5. Click Finish to
exit the configuration menu. You may also want to configure your rig either during the first
startup or by clicking the Configure menu and selecting Rig Control  Rig  Hamlin
after the program is up and running.

Figure 13.4: Enter callsign, station, etc.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 231Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 231 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 232

Figure 13.5: Enter audio details,

Figure 13.6 shows the FLDIGI operating screen. The top part (yellow) is where the received
text is displayed. The middle part (blue) is where you type the text to be transmitted.
Under the middle part are some buttons where you can click to activate various controls.
The operation mode is selected by clicking menu item Op Mode at the top left part of the
screen.

Figure 13.6: FLDIGI operating screen.

In this chapter you will be using fldigi to decode Morse code, to receive and display WEFAX
weather messages, to receive and display RTTY and NAVTEX messages.

13.6 Decoding Morse Code (CW)
In this section you will receive Morse code in audio format and then decode and display it
on the fldigi screen. For simplicity, let's use a PC to generate test Morse code, but you can
use your receiver hardware tuned to a CW transmission for this purpose.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 232Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 232 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 233

The steps are as follows (see Figure 13.7):

•	Connect the audio output of your PC to the microphone input of the Raspberry
Pi 5 through a USB audio adapter (e.g. UGREEN).

•	Start the fldigi program.

•	Select CW at the top left and then select CW in the OP Mode.

•	There are many sample Morse code audio files on the Internet (e.g., see
website
https://commons.wikimedia.org/wiki/Category:Audio_files_of_Morse_code).
Play one of the files (e.g. A through Z in Morse code), making sure that the
audio volume is high enough, and click in the waterfall to start the decoding.
You should see the signal level meter (in green) at the center bottom part of
the screen moving to show the received signal levels.

•	You should see the decoded Morse code text displayed on the yellow part of
your fldigi screen as shown in Figure 13.8.

Figure 13.7: Stup to receive test Morse code.

Figure 13.8: Decoded Morse code letters.

13.7 Receiving Weather Fax (WEFAX)
WEFAX (or Weatherfax; Weather Facsimile) is a slow-scan image transmission of weather
charts and meteorological reports.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 233Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 233 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 234

WEFAX is transmitted at 60, 90, 100, 120, 180 or 240 LPM (Lines per Minute) speeds with
modes called IOC 576 or IOC 288. Most weather forecasts are sent at 120 LPM in IOC 576.
In this format, the duration of the fax is as follows:

	 Start tone:	 5 seconds
	 Phasing signal: 	 30 seconds
	 Image: 	 	 10 minutes (at 120 LPM)
	 Stop tone:	 5 seconds
	 Black:		 10 seconds

At 120 LPM, fax is transmitted line by line at a rate of 120 lines per minute (or half a second
per line). The pixels in the image are converted into certain audio tones. For example,
1500 Hz represents black, 2300 Hz represents white, and frequencies in between represent
various shades of gray.

Weather faxes are transmitted by many countries around the world. For example,
Northwood in UK (GYA Northwood) transmits weather fax messages at specified times (see
link: http://www.yachtcom.co.uk/comms/weather/) on the following frequencies:

Nominal frequency GQRX freq Times

2618.5 kHz 2616.6 kHz 2000-0600 UTC

4610.0 kHz 4608.1 kHz 0000-2400 UTC

8040.0 kHz 8038.1 kHz 0000-2400 UTC

11086.5 kHz 11084.6 kHz 0600-2400 UTC

You can set your fldigi for WEFAX messages from the Northwood transmitter format as
follows:

Configure the WEFAX:

•	Click Configure  Config Dialog  Modem  Wefax

•	Set the Frequency shift to 800 Hz (this is the default, inGermany this is 850
Hz)

•	Set the Center frequency to 1900 Hz

•	Set the Filter to Medium

•	Specify the image destination folder and filename. e.g. /home/pi/

•	Leave the other settings as shown in Figure 13.9. Click Save and then Close

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 234Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 234 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 235

Figure 13.9: WEFAX configuration.

The definitions of the WEFAX configuration settings are as follows:

Frequency shift adjustment: the default is 800 Hz (850 Hz for the Deutsche Wetter
Dienst).
Center frequency: the center frequency of the USB modulated signal.
Maximum rows: the image is automatically saved when it has more than this number of
rows.
Auto align: the decoder searches for the start, stop, and phasing components of the
transmission.

The buttons at the bottom of the screen are:

Save:	 saves the current image as a PNG file
Clear:	 clears the image
Cont':	 the image can be paused and then resumed
Mag:	 changes the displayed magnification of the Wefax image
Tilt:	� used to adjust the slant of the image A value of 0.0071 should be satisfactory (set

to 0.0118 for Germany)
Align:	 used to manually adjust the horizontal center of the image
Auto:	 press to center the image
Noise:	 used to enable noise filtering.
Bin:	 convert to binary image using the specified level

Receiving WEFAX:

•	Start the fldigi program.

•	Click OP Mode and select WEFAX and then WEFAX-IOCIOC756.

•	Set the frequency to 4608.1 kHz with the nominal frequency at 4610.0 kHz.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 235Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 235 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 236

•	Tune your wireless radio to 1.9 kHz below the transmit frequency, i.e. at 4608.1
kHz. Figure 13.10 shows the fldigi screen setup

Figure 13.10: fldigi screen setup.

•	Check the time of transmission and wait to receive the WEFAX data.

•	at the time of writing the book, a sample fax sound file was available at the
following link:

https://www.youtube.com/watch?v=FRfCYKQQ3_4

•	You should align the two vertical red lines at the edges of the waterfall.

•	Notice that the image is built in real time on the fldigi screen as data is
received. The row number is increased and the signal meter moves to indicate
data reception. The row counter will stop when the data reception is complete.
Figure 13.11 shows the fldigi screen as the data is received.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 236Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 236 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 237

Figure 13.11: The screen as the data is received.

The image is stored in the specified directory in the following format:

	 wefax_yyyymmdd+hhmmss_fffffff_nocorr.png

For example, if the image was received on the 11th of February, 2024 at 21:50:45 with the
frequency set to 4608.100 Hz, then the filename will be:

	 wefax_20240211_21:50:45_4608100_nocorr.png

The received image is shown in Figure 13.12.

Figure 13.12: Received image.

The following weather fax related websites can be of interest to readers:

http://www.bbrc.info/articles/receiving-weatherfax-maps
http://www.blackcatsystems.com/radio/rfax.html

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 237Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 237 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 238

http://www.blackcatsystems.com/software/multimode/fax.html#GFA
http://www.blackcatsystems.com/software/multimode/fax.html#CFH
http://www.blackcatsystems.com/software/multimode/fax.html#NMC

13.8 Receiving RTTY Traffic
RTTY (Radio TeleTYpe) is a method of using tones to send digital messages between stations
oparting in amateur HF bands. Some other services also still employ RTTY. You can send
messages with RTTY using several coding methods such as Baudot, Amtor, simple ASCII,
etc. You will need to modulate the characters using AFSK (audio frequency shift keying) or
FSK (frequency shift keying).

The code representing letters consists of low and high voltages (known as Mark and Space)
which are shifted between two audio frequencies which give different tones on a speaker.
The frequency shift is around 200 Hz. A Mark represents 1445 Hz and a Space 1275 Hz.
Changing to upper case (or vice versa) is done using shift keys. RTTY has the disadvantage
that it can be used to send only letters, characters and a few other symbols. Data is
sent relatively slowly because the old "teleprinters" couldn't achieve fast operation. The
standard RTTY speed is 45.5 baud for amateur radio operation, although faster speeds such
as 50, 75, 88 are also available.

RTTY operation is usually found in the following bands:

160 meters, between 1.800 and 1.820 MHz
80 meters, between 3.58 and 3.65 MHz
30 meters, between 10.110 and 10.150 MHz
20 meters, between 14.080 and 14.099 MHz
15 meters, between 21.080 and 21.100 MHz
10 meters, between 28.080 and 28.100 MHz

RTTY is used by ships to receive weather information. Across Western Europe and the
Middle East, the German Weather Service broadcasts RTTY weather messages for mariners
at the frequencies shown in Table 13.1.

Table 13.1: RTTY weather messages at Western Europe and Middle East (https://weather.
mailasail.com/Franks-Weather/Radio-Teletype-Weather-Broadcasts)

Frequency Callsign Times of broadcast Power Class of emission Speed Shift

147.3 kHz DDH 47 05.30 - 22.00 UTC 20 kW F1B 50 Baud ± 42.5 Hz

11039 kHz DDH 9 05.30 - 22.00 UTC 1 kW F1B 50 Baud ± 225 Hz

14467.3 kHz DDH 8 05.30 - 22.00 UTC 1 kW F1B 50 Baud ± 225 Hz

4583 kHz DDK 2 00.00 - 24.00 UTC 1 kW F1B 50 Baud ± 225 Hz

7646 kHz DDH 7 00.00 - 24.00 UTC 1 kW F1B 50 Baud ± 225 Hz

10100.8 kHz DDK 9 00.00 - 24.00 UTC 10 kW F1B 50 Baud ± 225 Hz

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 238Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 238 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 239

13.8.1 Using fldigi to receive RTTY messages
An example is shown is this section how RTTY messages can be received and displayed
using the fldigi program. At the time of writing this book, a demo site was available on the
Internet at the following link that generates RTTY messages for test purposes:

	 https://www.youtube.com/watch?v=wzkAeopX7P0

The steps are as follows:

•	Start the fldigi program.

•	Click OP Mode and select RTTY and set the speed to 45.5 baud (RTTY-45).

•	If you are using the above test RTTY code, go to the specified web site. Connect
the audio output of your laptop to microphone input of your Raspberry Pi 5
audio adapter.

•	Start to play the RTTY code on your laptop.

•	Set the two vertical lines to the sides of the waterfall. You should see messages
similar to Figure 13.13 displayed on your fldigi screen.

•	As an exercise, you may want to try to tune to a real RTTY transmission.

Figure 13.13: Test RTTY.

13.9 Receiving NAVTEX Messages
NAVTEX, or NAVigational TEleX, is an international medium frequency (518 kHz and 490
kHz) service for broadcasting free navigational and meteorological warnings and forecasts
as well as safety information to ships. Safety information to ships (MSI) is also broadcast
on 4209.5 kHz.

NAVTEX messages are transmitted in BFSK (Binary Frequency Shift Keying) at 100 bits per
second and with 170 Hz phase shifting. A list of European NAVTEX stations can be found
on the following web site:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 239Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 239 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 240

	� https://weather.mailasail.com/Franks-Weather/European-And-Mediterranean-
Navtex-Schedules

Warnings to ships are broadcast as soon as possible and repeated every 4 hours. Warnings
are listed by areas with a gale warning in force.

There are 3 transmitting stations in the UK and 2 stations in Ireland. A total coverage of
the UK and Irish waters are covered with these stations. The stations are given unique
identification letters so that ships can identify them.

13.9.1 Using fldigi to receive NAVTEX messages
An example is shown is this section how NAVTEX messages can be received and displayed
using the fldigi program. At the time of writing this book, a test site was available on
the Internet at the following link that generates weekly NAVTEX messages in a YouTube
video for testing the FURUNO NAVTEX hardware. The message generates text "THIS IS AN
INTERNAL TEST MESSAGE" and then generates code for letters of the alphabet, numbers
and some symbols. The actual NAVTEX messages start from about mid-point of the video.
Listen to the video and find the point where the NAVTEX messages start. Stop the video
just before this point:

	 https://www.youtube.com/watch?v=5KntVVyvewI

The steps are as follows:

•	Start the fldigi program.

•	Click OP Mode and select Navtex/SitorB and then click to select NAVTEX.

•	If you are using the above NAVTEX test code, go to the specified web site and
stop. the video just before the NAVTEX test starts. Connect the audio output of
your laptop to microphone input of your Raspberry Pi 5 audio adapter.

•	Start to play the code on your laptop.

•	Set the two vertical lines to the sides of the waterfall. You should see messages
similar to Figure 13.14 displayed on your fldigi screen.

•	As an exercise, you may want to try to tune to a real NAVTEX transmission.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 240Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 240 04-04-2024 13:1904-04-2024 13:19

Chapter 13 ● FLDIGI

● 241

Figure 13.14: Give NAVTEX decoding a test run.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 241Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 241 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 242

Chapter 14 ● Quisk

14.1 Overview
Quisk is a SDR transceiver software developed in Python by James Ahlstrom (N2ADR). The
software runs on higher-end SDR devices such as the SoftRock, Hermes Lite-2, Red Pitaya,
Odyssey, SdrMicron, RadioBerry-2 etc. In this chapter, you examine the installation of the
quisk on Raspberry Pi 5 and also look at some features of quisk. One advantage of quisk is
that it is simple to use.

Quisk works with this hardware:

•	SoftRock connected to the sound card.
•	many other SDRs connected to the sound card.
•	SDR-IQ connected by USB.
•	Perseus connected by USB.
•	N2ADR hardware connected by Ethernet and IP.
•	HiQSDR hardware connected by Ethernet and IP.
•	the Hermes-Lite project at hermeslite.com.

Quisk is written in Python and C and the source code is available. Data can come from a
sound card, Ethernet or USB. Quisk receiver can read data, filter it, demodulate it, and send
the audio to the sound card for output to speakers or headphones. The quisk transmitter
accepts a microphone input and sends to a transmitter via a soundcard or Ethernet.

14.2 Installing quisk on the Raspberry Pi 5
Quick can easily be installed on the Raspberry Pi 5 running in Desktop mode:

•	Start the Desktop

•	Click Applications Menu  Preferences  Add/Remove Software.

•	Enter quisk in the Search box and press Enter.

•	Select Software Defined radio (SDR) and click Apply to install.

•	Enter your Raspberry Pi 5 password.

•	Wait until the software is installed.

To run quisk, open a terminal session in Desktop and enter the command quisk. Alternatively
click Applications Menu  Hamradio  quisk:

	 pi@raspberrypi:~ $ quisk

Figure 14.1 shows the quisk startup screen. Click the Config button and then click Radios
to select your radio type as shown in Figure 24.28.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 242Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 242 04-04-2024 13:1904-04-2024 13:19

Chapter 14 ● Quisk

● 243

Figure 14.1: Quisk startup screen.

Figure 14.2: Select your radio.

Give a name to your radio (at the right hand side) and click Add (you may have to move
the slider to the right). Click Config followed by Help with Radios to display help on using
quisk.

More information on quisk can be obtained from the following web pages:

https://james.ahlstrom.name/quisk/
https://community.linuxmint.com/software/view/quisk
https://www.oz9aec.net/radios/gnu-radio/quisk-a-software-defined-radio-for-linux
https://www.youtube.com/watch?v=yADRRJAJscg

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 243Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 243 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 244

Chapter 15 ● RTL_433

15.1 Overview
RTL_433 is a popular decoder (open source) of data devices that use the ISM (Industrial,
Scientific, Medical) bands to broadcast data wirelessly. Low-cost consumer devices, wireless
weather stations, wireless devices such as wireless thermostats, wireless temperature and
pressure sensors, wireless alarm sensors, etc., all broadcast their status which can be
received by RTL-SDR dongles and decoded and displayed by the rtl_433 program. The
program works mainly for the 433.92 MHz, 868 MHz (SRD), 315 MHz, 345 MHz, and 915
MHz ISM bands. The default frequency is 433.92 MHz with 250 kHz sample rate.

15.2 Installing RTL_433 on the Raspberry Pi 5
Enter the following command to install tl_433 on Raspberry Pi 5:

	 pi@raspberrypi:~ $ sudo apt-get rtl-433

Run the program by simply typing rtl_433. The program initially displays the messages
shown in Figure 15.1 when it is started.

Figure 15.1: Initial messages.

A sample default display is shown in Figure 15.2 with no options specified. This shows the
temperature, humidity battery status, pressure etc. of various devices transmitting close to
the RTL-SDR dongle antenna. It is clear that some of the data comes from nearby vehicles
and temperature and humidity sensors.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 244Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 244 04-04-2024 13:1904-04-2024 13:19

Chapter 15 ● RTL_433

● 245

Figure 15.2: Default display.

15.3 Program Options
The program options can be displayed by entering the command:

		 pi@raspberrypi:~ $ rtl_433 –h

Some commonly used options are:

-f : 			 receive frequency. The default is: 433920000 Hz
-g <gain>:		 the default is auto
-V:			 display the version
-r <filename>:	 read data from file instead of a receiver
-w <filename>:	 save data to a file
-W <filename>:	 save data to a file, overwrite existing data
-n <value>:		 specify number of samples to take
-T <seconds>:	 specify number of seconds to run

You can configure to start the RTL_433 at boot time if you wish.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 245Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 245 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 246

Chapter 16 ● Other SDR hardware

16.1 Overview
So far, we have been using the RTL-SDR type dongles with SDR programs. For most general
purpose applications, such as listening to the broadcast stations, amateur bands, air traffic,
monitoring satellites, and so on, the cheap RTL-SDR dongles are great because the signal
levels are usually high and indoor aerials can be used.

There are many other SDR hardware in the form of USB dongles that are available in the
market and can be used with the SDR programs. This chapter presents a brief look at some
of these devices.

Some SDRs like HackRF One, Red Pitaya, RS-HFIQ, Xiegu G90, RS-918, Hermes Lite-2,
and others are both RX and TX devices. One of the problems of using SDR devices with the
Raspberry Pi 5 is the requirement of high CPU speed. Transceiver software like Quisk, and
linHPSDR is available for TX/RX type SDR hardware and can be installed on a Raspberry
Pi 5.

16.2 HackRF One
This SDR transceiver (web link: https://greatscottgadgets.com/hackrf/one/) from Great
Scott Gadgets costs around £320, and it has the following features (Figure 16.1).

•	1 MHz to 6 GHz operating frequency
•	20 million samples/s
•	Half-duplex TX/RX
•	Compatible with popular software (SDR#, GNU radio etc)
•	USB 2.0 interface
•	USB powered
•	8-bit resolution
•	Open source hardware
•	SMA female antenna connector
•	Protected by molded plastic enclosure

 Figure 16.1: The HackRF One.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 246Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 246 04-04-2024 13:1904-04-2024 13:19

Chapter 16 ● Other SDR hardware

● 247

The transmit power is up to 10 dBm for the frequency range up to 4 GHz. An external RF
amplifier is recommended to increase the power if required. The maximum receive power
is -5 dBm.

Opera Cake (Figure 16.2) is an antenna switching add-on board for HackRF One that is
configured with command-line software either manually, or for automated port switching
based on frequency or time. It has two primary ports, each connected to any of eight
secondary ports, and is optimized for use as a pair of 1×4 switches or as a single 1×8
switch. Its recommended frequency range is 1 MHz to 4 GHz.

When HackRF One is used to transmit, Opera Cake can automatically route its output to the
appropriate transmit antennas, as well as any external filters and amplifiers. No changes
are needed to the existing SDR software, but full control from the host is available.

Opera Cake also enhances the HackRF One's use as a spectrum analyzer across its entire
operating frequency range of 1 MHz to 4 GHz. Antenna switching works with the existing
hackrf_sweep feature, which can sweep the whole tuning range in less than a second.
Automatic switching mid-sweep enables the use of multiple antennas when sweeping a
wide frequency range.

Figure 16.2: Opera Cake.

HackRF One is sold as a bundle including the following items:

•	1× HackRF One SDR
•	1x Injection molded plastic enclosure
•	1x micro-USB cable
•	1x Opera Cake Antenna Switch

16.3 NooElec NESDR Smart HF Bundle
The NooElec NESDR Smart HF is a 100 kHz – 1.7 GHz SDR bundle (Figure 16.3) for HF/
UHF/VHF, including RTL-SDR, upconverter, balun, all necessary adapters, desktop indoor
antennas, and cables, costing £103. The bundle is a good starting kit for those who wish to
enter into the world of SDR. Using the upconverter, the RTL-SDR can operate at as low as
100 kHz, thus enabling the amateurs to use the HF.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 247Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 247 04-04-2024 13:1904-04-2024 13:19

Raspberry Pi 5 for Radio Amateurs

● 248

Figure 16.3: The NooElect SDR.

The instructions to use the SDR in the HF band are as follows:

•	Connect the antenna to the Ham It Up unit.
•	Connect the SDR to the IF output using the supplied connector.
•	Make sure the toggle switch is in the Enable position.
•	Connect the SDR to your Raspberry Pi using a USB cable.
•	Plug the Ham It Up USB-B USB jack to a USB power source.
•	Start using the device. Tune to 125 MHz (+/– the tuning offset from the tuning

procedure) + your desired frequency.

16.4 BladeRF
This is a high performance SDR receiver/transmitter (Figure 16.4) and unlike the HackRF, it
is full duplex, making it ideal for higher performance applications. Out of the box BladeRF
can tune from 300 MHz to 3.8 GHz.

Figure 16.4: BladeRF.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 248Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 248 04-04-2024 13:2004-04-2024 13:20

Chapter 16 ● Other SDR hardware

● 249

Some of its salient features are:

•	Independent RX/TX 12-bit 40 MSPS quadrature sampling
•	16-bit DAC factory calibrated
•	On-board 200 MHz ARM9 processor with 512 KB SRAM
•	Fully bus powered
•	DC power jack for running headless
•	Extensible gold plated RF SMA connectors
•	Linux, Windows, Mac and GNURadio software support
•	The hardware can be operated as a spectrum analyzer, vector signal analyzer,

and vector signal generator

The Blade RF 2.0 micro xA5 has the frequency range 47 MHz to 6 GHz, costing around
$670.

16.5 LimeSDR
This device (Figure 16.5) is capable of receiving and transmitting UMTS, LTE, GSM, LoRa,
Bluetooth, ZigBee, RFID, digital broadcasting and more. The device is integrated into the
Snappy Ubuntu core and can be used through an app.

Figure 16.5: LimeSDR.

Some features of the LimeSDR are:

•	RF transceiver
•	256 MB memory
•	FPGA Altera Cyclone
•	USB 3.0 controller
•	100 kHz to 3.8 GHz continuous frequency range
•	61.44 MHz bandwidth
•	10 dBm power output (CW)
•	microUSB or external power supply
•	There is also a smaller less expensive version of the LimeSDR known as the

LimeSDR Mini.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 249Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 249 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 250

16.6 Universal Software Radio Peripheral (USRP)
USR (Figure 16.6) was developed by Ettus Research and has been very popular especially
among academic researchers, allowing connection of the device to a host computer and
control hardware for data transmission/reception.

Some features of the USRP are:

•	frequency range 70 MHz to 6 GHz
•	12-bits ADC and DAC
•	61.44 MHz bandwidth
•	Xilix Spartan-6 FPGA

Figure 16.6: USRP.

16.7 ADALM-Pluto
ADALM-Pluto (Figure 16.7) is an easy to use SDR, made as a learning aid for teachers and
students, to impart the fundamentals of the software defined radio. Its basic features are:

•	Frequency range: 325 MHz to 3.8 GHz
•	12-bit ADC and DAC
•	20 MHz channel bandwidth
•	Xilinx Zynq Z-7010 FPGA
•	MATLAB and Simulink support
•	USB 2.0 powered

Figure 16.7: ADALM-Pluto.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 250Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 250 04-04-2024 13:2004-04-2024 13:20

Chapter 16 ● Other SDR hardware

● 251

16.8 AirSpy HF+ Discovery
This is a high performance SDR (Figure 16.8) developed jointly between Airspy, Itead
Studio, and ST Microelectronics (see website: https://airspy.com/airspy-hf-plus/).

The basic technical specifications of this device are:

•	HF coverage starting from 9 kHz
•	60 to 260 MHz VHF coverage (new receivers also cover 0.5 kHz to 31 MHz)
•	22-bit resolution
•	0.5 ppm high precision low noise clock
•	1 ppb frequency adjustment
•	Excellent noise reduction (claimed to be the best one in the market)
•	High dynamic range (ADC up to 36 MSPS)
•	Wide band RF filter bank
•	Tracking RF filters
•	Inputs matched to 50 ohms
•	4× GPIO
•	Smart AGC with real time optimization
•	Supported by well-known software, such as SDR Sharp, SDR-Console, GQRX,

HDSR, Krypto1000, etc.
•	Supported by operating systems, such as Windows, Linux, BSD, OSX
•	Supported by hardware, such as Windows PPC, Raspberry Pi, Odroid, etc

Figure 16.8: AirSpy HF+ Discovery.

In 2019, the Airspy HF+ Dual Port won the prestigious WRTH Award in front of a fierce
competition of highly refined communication receivers and other SDRs. The device offers
an excellent noise reduction algorithm.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 251Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 251 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 252

Chapter 17 ● �Installation and Use of Some Popular
Radio Applications

17.1 Overview
In this chapter you will learn how to install and use some other amateur radio programs.

17.2 Aldo Morse Code Tutor – Text Based
Aldo is a text based Morse Code training program. The program offers several training
methods. Morse code is output on the speaker by default.

17.2.1 Installing aldo on the Raspberry Pi 5
The steps are:

•	Start the Desktop.

•	Click Applications Menu  Preferences  Add/Remove Software.

•	Enter aldo in the search box and press Enter.

•	Enter your Raspberry Pi 5 password.

•	Wait until the software is installed.

To run aldo, open a terminal session in Desktop and enter the command aldo. The program
will start with the menu options shown in Figure 17.1. Choose an option and you should
hear the Morse code output on your speaker:

Figure 17.1: aldo menu options.

17.3 xcwcp Morse Code Tutor — Graphical
Aldo is a graphical Morse Code training program. The program offers several training
methods. Morse code is output on the speaker by default.

17.3.1 Installing xcwcp on Raspberry Pi 5
The steps are:

•	Start the Desktop.

•	Click Applications Menu  Preferences  Add/Remove Software.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 252Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 252 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 253

•	Enter xcwcp in the search box and press Enter.

•	Enter your Raspberry Pi 5 password.

•	Wait until the software is installed.

To run xcwcp, start your Desktop GUI, click Application Menu  Hamradio and then
click on xcwcp. Alternatively, open a terminal session n Desktop mode and enter the
command xcwcp. As shown in Figure 17.2, you will be presented with a screen. Select the
type of output you want (e.g., English words), speed (wpm), tone (e.g. 800 Hz), volume
(say, 70%) and the gap. Click the green arrow button at the top left of the screen to start
generating Morse code. You should hear the output on your speaker.

Figure 17.2: xcwcp screen.

17.4 GPredict — Satellite/Orbital Object Tracking and Rig Control
GPredict is a real-time program tracking satellites, predicting their positions and velocity
at a given time, and also can do rig control. There is no software limit on the number
of satellites being tracked. Satellite data is given in the forms of maps and tables and
polar plots. Satellites can be grouped into modules for simplicity. Support os provided for
automated ground station operations providing both Doppler tuning for radios and anrenna
rotator control. Further details on the GPredict program are available in the following
document:

	� GPredict User Manual, Work in progress for GPredict 2.x,
by Alexandru Csete, OZ9AEC.

17.4.1 Installing GPredict on Raspberry Pi 5
To install GPredict, follow the steps given in in the previous sections, enter GP redict to
search box, and wait until the program is installed.

Start the program in Desktop mode by selecting Applications Menu  Hamradio and click
on Gpredict. Alternatively open the terminal in Desktop mode and enter the command:
GPredict. Figure 17.3 shows the startup menu.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 253Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 253 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 254

Figure 17.3: GPredict startup menu.

17.4.2 GPredict controls
Selecting a satellite:

•	Click on File  New Module

•	Choose a satellite. e.g., GPS Operational, GPS BIIF-1 (PRN 25). Double-click
on the satellite name at the left pane or click on the satellite name and click the
right arrow to move the satellite name to the right pane (Figure 17.4).

•	Choose a Module Name, e.g. FirstGPS.

•	Click OK.

•	Figure 17.5 shows the map and the selected satellite. Navigational data is given
about the selected satellite at the bottom right hand side of the map.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 254Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 254 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 255

Figure 17.4: Selecting a GPS satellite.

Figure 17.5: Map and the selected satellite.

The polar view (or radar view) shows the satellites on a polar plot, where the polar axis
corresponds to the azimuth and the radial axis to the elevation. This graph can be helpful
to give the position of the satellite in the sky.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 255Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 255 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 256

Selecting a group of satellites

•	The process is similar to above but move the required satellite names to the
right hand pane. Figure 17.6 shows the selecting of 3 GPS satellites.

•	The Module Name is set to GPS3 in this example, and Figure 17.7 shows the
map and satellite positions. You can double-click on a satellite to display data
about it (Figure 17.8).

Figure 17.6: Select 3 GPS satellites.

Figure 17.7 Map and selected satellites.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 256Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 256 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 257

Figure 17.8: Double click on a satellite.

The Ground Station
The Ground Station details are below the Module name. this is the geographical location
that is used as reference point in the calculations. The Ground Station should be defined
accurately as it is used in the calculations. By default the Ground Station is set to a place
in Denmark, called sample. You can add your Ground Station by clicking the Add button.
A form will be displayed as in Figure 17.9. Enter your Ground Station details. For example,
you can choose a location name, e.g. the name of your city and country. You will notice that
your Ground Station will be displayed on the map (Figure 17.10).

Note: You should set your Ground station details before observing the satellites and
their data.

Figure 17.9: Ground Station details.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 257Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 257 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 258

Figure 17.10: Your Ground Station displayed.

File menu
This menu enables you to create a new module, or to open an existing module, or to display
the log. Select the previously created module name in order to open it. GPredict logs all
run-time messages into a log file for later examination — for example, if there are errors.

Edit menu
GPredict needs up to date Keplerian Elements (TLE data) for the satellites. This menu
updates the TLE data either from the network or from local files. It also updates the
transponder data.

The Preferences sub-menu item is an important one. When opened, Figure 17.11 shows
the display.

Figure 17.11: The Preferences menu item.

The menu items are:

General — This option defines the global parameters of the program, such as the Number
Formats, Ground Stations, TLE Update, and Message Logs.

Number Formats — Specify the time and geographical formats, local time instead of UTC,
imperial units or metric units.

Ground Stations — List of Ground stations created (Figure 17.12)

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 258Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 258 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 259

Figure 17.12: Ground Stations.

TLE Update — auto update, TLE sources, etc.

Message logs — debug level and deleting log files.

Modules
In this menu, you can select the Layout, Refresh Rates, List View, Map View, Polar View,
and Single Sat View.

Layout — Select the display layout and window placements. Figure 17.13 shows the layout
options.

Figure 17.13: Layout options.

As an example, Figure 17.14 shows the display when the All Views (Narrow) is selected,
where information is displayed below the map for the selected satellites.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 259Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 259 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 260

Figure 17.14: All View option.

Selecting option Polar and upcoming passes displays as in Figure 17.15.

Figure 17.15 Polar and upcoming passes.

Refresh Rates — This menu option enables the refresh rates to be set (Figure 17.16)

Figure 17.16: Set the refresh rates.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 260Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 260 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 261

List View — Use this menu option to select the items to be displayed when the List Menu
is selected. The defaults are ticked on the menu option.

Map View — Use this menu option to configure the map display, such as the colours etc.

Polar View — Use this menu option to configure the polar view display, such as the colors
etc.

Single Sat View — Use this menu option to select the items to be displayed when a single
satellite is selected. The defaults are ticked on the menu option.

Interfaces
Use this menu to configure the radios and rotators that you might be using in your station.
The GPredict User Manual gives lots of information on how to use this menu.

Predict
Use this menu option to predict satellite passes in the future. The parameters and options
on this page define how Gpredict predicts future passes for satellites. You can select Pass
Conditions, Multiple Passes, Single Pass, and Sky at a Glance.

Pass Conditions — You can select various parameters such as the minimum elevation,
number of passes, pass details, satellite visibility etc.

Multiple Passes — Use this menu option to select the items to be displayed when the
Multiple Passes is selected. The defaults are ticked on the menu option

Single Pass — Use this menu option to select the items to be displayed when the Single
Pass is selected. The defaults are ticked on the menu option

Sky at a Glance — Use this menu option to select the time within which the passes should
occur, and also customize the satellite colours (Figure 17.17)

Figure 17.17 Sky at a Glance

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 261Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 261 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 262

17.5 TWCLOCK
This program (by WA0EIR) displays the local time and GMT in hundreds of major cities
around the world. The program also has a timer, which can be set so that the station
ID is output as audio Morse code at the specified time intervals. The sound output can
be connected to the Audio In pin of your rig's accessory jack to have it transmitted
automatically at the set intervals.

17.5.1 Installation on Raspberry Pi 5
The program can easily be installed from the Raspbian repository in desktop as in the
previous installations in this chapter. Enter teclock to search box and wait until the program
is installed.

17.5.2 Using the program
To start the program, open a terminal session in Desktop and enter:

	 pi@raspberrypi@~ $ twclock

Hold at the bottom right of the display to expand it as shown in Figure 17.18. Right click at
the bottom of the twclock screen to display its options (Figure 17.19)

Figure 17.18: twclock startup screen.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 262Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 262 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 263

Figure 17.19: twclock options.

To see the world time, click the right button of your mouse and select Others. Select
Region (e.g. Europe), select City (e.g. Turkey), click OK. You should see the time in Turkey
displayed as shown in Figure 17.20.

Figure 17.20: Displaying time in the selected city.

twclock is installed by default to the following directory:

	 /etc/X11/app-defaults

Before using the ID and the timer we have to specify our station ID (call sign) and the
Morse code to be transmitted at the set timer intervals. This is done as follows:

•	Use the nano editor and edit file:

pi@raspberrypi:~ $ sudo nano /etc/X11/app-defaults/Twclock

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 263Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 263 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 264

•	Specify your station ID by editing the following statement (e.g. assuming the
ID is G7SCU):

Twclock.form.call_toggleB.labelString: G7SCU

•	Specify the Morse code to be transmitted at the set time intervals (you can also
change the CW speed, tone frequency, etc.):

Twclock.cwStr: de G7SCU

•	You may like to look at the other settings and change them if you wish.

•	You should now re-start the twclock for the changes to take effect

Clicking ID Now in the main menu plays your station ID as an audible Morse code and
you should hear it from your speaker. The time interval to play the station ID can be set
by clicking Set Timer in the main menu (see Figure 17.21) and then entering the time in
minutes and seconds, followed by OK. You should click CW ID to enable playing the CW.
Setting Auto Reset will repeat the audio output at the specified intervals. The CW speed and
the tone frequency can also be set from this menu.

Figure 17.21: Set Timer selected.

A help option is provided in the menu for displaying information on various features of the
twclock.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 264Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 264 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 265

17.6 CQRLOG
CQRLOG is one of the popular amateur radio logging programs (by Petr, OK7AN and Martin,
OK1RR), based on the MySQL database. The program provides radio control based on
hamlib libraries, online callbook, internal QSL manager database support. CQRLOG is
intended for daily general logging of HF, CW, and SSB contacts.

17.6.1 Installation on Raspberry Pi 5
Enter the following command to install the CQRLOG on Raspberry Pi 5:

pi@raspberrypi:~ $ sudo apt-get install cqrlog

17.6.2 Running the program
Run the program in Desktop by selecting CQRLOG from menu item Hamradio in the
Applications Menu. Alternatively, start a terminal session in Desktop and type cqrlog.

When the program is run the first time, it creates the MySQL database and this may take
several minutes. Click Open Log to open the log as shown in Figure 17.22.

Figure 17.22: Main screen of CQRLOG.

Detailed information on using the program is available at the following web site:

	 https://www.cqrlog.com/help/index.html
 	 http://www.cqrlog.com

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 265Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 265 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 266

17.7 Klog
This program (by Jaime Robles, EA4TV) has been developed to replace paper logbook. The
program is easy to use and is available in many platforms (e.g. Windows, MAC etc.) and in
many languages. Klog provides QSo management, QSL management, DXCC management,
club log integration, and much more.

17.7.1 Installation on Raspberry Pi 5
The program should be installed as described in Desktop using the Applications Menu but
do enter klog for the program name. The program is listed as Multiplatfoem ham radio
logging program.

17.7.2 Using the program
To start te program, open a terminal session in Desktop and enter:

	 pi@raspberrypi@~ $ klog

When the program is run for the first time, you will be asked to accept a license condition
and click to download country data.

Figure 17.23: Download the country data.

Then, a Config Dialog screen will be displayed to enter configuration data e.g. callsign,
personal data, station data, band details, modes of operation etc. Figure 17.24 shows the
main screen of klog. The program is very comprehensive and includes many menus and
options. At top left we have the entry box, top right the output box, and the at the bottom
part we have the Log, DX-Cluster, and DXCC. Perhaps the best way to learn to use this
program is to download it and start playing with it.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 266Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 266 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 267

Figure 17.24: Klog main screen.

As an example, Figure 17.25 shows a log assuming the contact callsign is ABCD and you
made a contact on the 20th of January 2023 at 10:00:00 with voice clarity 5-9, on 14 MHz,
to Mr. A. Jones and running 5 watts of RF power. Click ADD and you should see the data
added to the log at the bottom part of the display.

Figure 17.25: Example log.

Using klog, the operator can:

•	add/edit/search/remove QSOs
•	manage QSLs
•	 import data from formats such as ADIF, TLF, Cabrillo
•	support DXCC and WAZ local awards

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 267Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 267 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 268

•	do eQSL management
•	do ClubLog integration
•	get Satellite logging support

The program has the following menu options:

File: use this menu to import/export ADIF compatible files, to print the log, and for setting
user data.

Figure 17.26 shows the user data settings menu that should be filled by the user before
any log data is stored. The form requires the callsign, bands of interest, time format etc to
be entered.

Figure 17.26: User data settings form.

Tools: use this menu for QSL tools, QRZ.com tools, etc.

Help: this is the help menu.

17.8 Morse2Ascii
This program (by Luigi Auriemma) converts a Morse code sound file in .WAV format into
text and displays at the bottom of the screen, meaning it decodes Morse code sound files.

17.8.1 Installation on Raspberry Pi 5
The program should be installed as described in Desktop using the Applications Menu but
do enter morse2ascii for the program name. The program is listed as tool for decoding
the morse codes from a PCM WAV file.

17.8.2 Using the program
Enter the command morse2ascii followed by the WAV filename. The program will display
the decoded code in text at the bottom of the display. An example run of the program is

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 268Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 268 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 269

shown in Figure 17.27. Note that file morse.wav was created by the authors which include
the sound for morse text this is a test morse code.

Figure 17.27 Running the program

Note that you can use the following website to convert text into a Morse code WAV sound
file for testing:

	 https://textcleaner.net/morse-code-translator/

Morse2Ascii program accepts the options shown in Figure 17.28 (taken directly from the
program by just entering morse2ascii:

Figure 17.28: Program options.

17.9 PyQSO
This is another amateur radio operator logging program (by Christian Thomas Jacobs).

17.9.1 Installation on Raspberry Pi 5
The program should be installed as described earlier in Desktop, using the Applications
Menu, but do enter pyqso for the program name. The program is listed as logging tool
for amateur radio operators

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 269Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 269 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 270

17.9.2 Using the program
Run the program from Desktop by clicking Application Menu  Hamradio  pyQSO or
open a terminal session in Desktop and enter pyqso.

Figure 17.29 shows the startup screen of the program. The menu options are Logbook,
Records, View, and Help.

Figure 17.29: pyQSO startup screen.

Logbook: use this option to create a new logbook, to open an existing logbook, import
and export ADIF formatted files, print a logboog, and preferences. In the Preferences sub-
menu you can show yearly statistics, set the visible fields, set the modes, TX power, callsign
lookup, world map, etc.

Records: you can add/edit/delete records display record count.

To create a new log, click Logbook  New log and enter a log name. Initially the screen
shown in Figure 17.30 is created. Click Records to add a new record to logbook. Click +
for a logname. Click Records  Add record to Add record to the logbook. Click OK at the
bottom of the form to save it. An example is shown in Figure 17.31.

Figure 17.30: Initial screen.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 270Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 270 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 271

Figure 17.31: A new log.

Figure 17.32 shows the main screen after the log is added. Clicking Records  Record
Count will display '1' as there is only one record in the logbook.

Figure 17.32: Main menu after adding a log.

17.10 Welle.io (DAB/DAB+ Radio)
DAB stands for Digital Audio Broadcasting, where sound is transmitted digitally. Most
readers are familiar with the popular classic FM radios. DAB radios actually are successors
of classic FM radios. DAB radios have the great advantages that they are of high quality
even at remote locations, provided you are within their reception ranges.

FM radios are analog where radio waves are transmitted as analog signals. DAB radios on
the other hand are digital transmissions and they can be received without any static noise
caused by radio waves. Digital radios usually have automatic channel search functions, not
requiring the manual selection of stations. It is expected that in 2030s all FM radios will be
replaced by DAB radios.

There is also differences between DAB radios and internet based radios. Internet radios
require reliable stable internet connections and they stream the programmes online, while
the DAB radios receive content digitally without streaming. Listening to DAB radio is like
listening to a CD.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 271Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 271 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 272

DAB+ is the successor of DAB and is already incorporated in many vehicles in the European
maket. Increasing number of digital radio stations are now available in DAB+. The main
differences between the DAB and DAB+ radio are:

•	DAB+ radio uses MPEG-4 audio codec, which is currently one of the best
codecs, while DAB radios use MPEG-1 to compress files which is inferior to
MPEG-4.

•	DAB+ works with 80 kB per second transmission rate, while DAB works with
128 kB per second. As a result, a single channel can accommodate multiple
stations.

17.10.1 Installation on Raspberry Pi 5
The DAB/DAB+ program used in this book requires the RTL-SDR dongle to be connected to
your Raspberry Pi 5 with a suitable antenna.

The program should be installed as described earlier in Desktop, using the Applications
Menu  Preferences  Add/Remove software, but enter welle.io for the program
name. The program is listed as DAB/DAB+ Software Radio

17.10.2 Running the program
Open a Terminal session in Desktop and enter the command: welle-io to start the program.
Click the three vertical lines opposite All Stations and click Start station scan to scan and
load stations to the program (Figure 17.33). After a while, you will see the DAB/DAB+
station names populated at the left pane of the screen (Figure 17.34). Double-click on
a station name to receive the broadcast. The selected station name and its details are
displayed on the right pane (Figure 17.34) and you should hear the broadcast from your
speaker.

Figure 17.33: Scan for stations.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 272Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 272 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 273

Figure 17.34: DAB/DAB+ Station names.

You have the option to clear all stations, as well as to set a station to play when the program
is started (in Station Settings)

17.11 Ham Clock
The Ham Clock (by Karl-Heinz, DL1GKK) is a detailed dynamic display (see: https://
dl1gkk.com/ham-clock-raspberry-pi/) which is updated in real-time and displays the
following interesting and useful items (only some items are listed here):

•	your callsign
•	 lLocal (or UTC) date and time
•	sunlight position and illumination
•	analog clock
•	satellite information
•	XRay or Kp indx or VOACAP
•	sunspots or solar flux
•	solar images
•	NCDXF beacons
•	orbital predictions to show when your favorite ham satellites are going to be

overhead.

17.11.1 Installation on Raspberry Pi 5
The steps to install the software are as follows:

•	pi@raspberrypi:~ $ sudo apt-get update
•	pi@raspberrypi:~ $ sudo apt-get upgrade
•	pi@raspberrypi:~ $ sudo apt-get dist-upgrade
•	pi@raspberrypi:~ $ sudo reboot

After the reboot, enter the following commands:

•		�pi@raspberrypi:~ $ curl -o ESPHamClock.zip http://www.
clearskyinstitute.com/ham/HamClock/ESPHamClock.zip

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 273Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 273 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 274

•	pi@raspberrypi:~ $ unzip ESPHamClock.zip
•	pi@raspberrypi:~ $ cd ESPHamClock
•	pi@raspberrypi:~/ESPHamClock $ make -j 4 hamclock

17.11.2 Running the program
•	Enter the following command to run the program in Desktop after opening a

terminal session:

pi@raspberrypi:~ $ cd ESPHamClock
pi@raspberrypi:~/ESPHamClock $./hamclock

When the program runs you should do some configuration (see the User Guide at web site:
https://www.clearskyinstitute.com/ham/HamClock/), where the program asks 5 pages of
configuration, including your callsign, your latitude and longitude etc. Click DONE at the
bottom of the configuration menu when completed.

Figure 17.35, Figure 17.36, and Figure 17.37 show two displays from the program. Notice
that your location is marked on the map. Current date and time are displayed at the top
left corner of the screen.

Figure 17.35: Display from the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 274Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 274 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 275

Figure 17.36: Another display from the program.

Figure 17.37: Another display from the program.

A Desktop shortcut can be created to run the program easily by clicking on this shortcut.
The steps are (see the User Guide):

•	Right click in Desktop to create an empty file on the Desktop named
HamClock.desktop

•	Edit the file and add the following statements

]Desktop Entry]
Name=HamClock
Comment=Open HamClock
Exec=/home/pi/ESPHamClock/hamclock
Type=Application
Encoding=UTF-8

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 275Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 275 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 276

Terminal=false
Categories=None;

17.11.3 Accessing from a web browser
Ham Clock can be accessed from a web browser (e.g. Firefox, Chrome etc). The steps are:

•	Get the IP address of your Raspberry Pi 5.

•	Start the Ham Clock program on your Raspberry Pi 5.

•	Enter the following address on your web browser.

		 http://192.168.1.251:8081/live.html

Where 192.168.1.251 is the IP address of Author's Raspberry Pi 5. Figure 17.38 shows the
Ham Clock displayed on a web browser

Figure 17.38: Displaying on a web browser.

Ham Clock also includes an alarm clock with a countdown timer. Click on the clock next to
the time display to display the alarm clock (Figure 17.39). Enter the required countdown
time and click Run to start or Stop to stop the timer.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 276Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 276 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 277

Figure 17.39: Alarm clock display.

17.12 Chirp
CHIRP is a popular tool for programming amateur radios. CHIRP is available on
several platforms including the Raspberry Pi 5. The program supports a large number
of manufacturers and models. It is especially popular for programming cheap Chinese
radios such as Baofengs Wouxun etc. The CHIRP website given below provides detailed
information on the supported models and how to use the software:

	 https://chirp.danplanet.com/projects/chirp/wiki/Home
also:	 https://chirp.danplanet.com/projects/chirp/wiki/Beginners_Guide

17.12.1 Installation on Raspberry Pi 5
You can install the program from the Desktop Applications Menu  Preferences Add/
Remove software. Type chirp in the search box and press Enter. The program is shown
with the name: Configuration tool for amateur radios. Click to select the program and
click Apply to install it.

17.12.2 Running the program
The program can be run from the Desktop by clicking Application Menu  Hamradio
and then CHIRP.

Figure 17.40 shows the startup screen when the program runs. Click Radio followed by
Download to set your serial port and to select a manufacturer and a model. Note that the
Raspberry Pi 5 serial port is named /dev/tyAMA10 as shown in Figure 17.41. You should
connect your radio to Raspberry Pi 5 using either serial connection or through the USB port
depending on your radio and the type of cable. Depending on the type of radio you have,
you will either see a progress display bar, or the program will jump to the memory editor
when the download is complete.

Figure 17.40: CHIRP startup screen.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 277Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 277 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 278

Figure 17.41: Selecting the serial port.

Figure 17.42 shows the serial port (UART) on Raspberry Pi 5 board and the serial cable
compatible with this port.

Figure 17.42: Raspberry Pi 5 serial port and cable.

17.13 Xastir
Xastir is an APRS program that provides mapping, tracking, messaging, weather, weather
alerts, and search and rescue operations over radio. APRS is a digital communication
system for real-time exchange of digital information. APRS (Automatic Packet Reporting
System) is digital communication system for real-time exchange of digital information. It
allows broadcast and reception of APRS traffic via an Internet connection or via a connected
radio (e.g., to receive APRS stations in your area). APRS was originally developed by Bob
Bruninga (WB4APR). The name XASTIR is an acronym for X Amateur Station Tracking and
Information Reporting.

You need to provide your callsign to identify yourself and get a password as explained later
in this section. You are encouraged to use the standard suffixes to differentiate the type
of station you have (e.g., mobile, on boat, aircraft, etc). The map shows your suffix as an
icon. For example, if your call sign is G5SUT and you are using your station on an aircraft,
you would see G5SUT-11 on the map and an aircraft icon will be displayed. A list of the
international suffixes are:

-0 Your primary station usually fixed and message capable
-1 generic additional station, digi, mobile, wx, etc.
-2 generic additional station, digi, mobile, wx, etc.
-3 generic additional station, digi, mobile, wx, etc.
-4 generic additional station, digi, mobile, wx, etc.
-5 Other networks (Dstar, Iphones, Androids, Blackberry's etc).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 278Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 278 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 279

-6 Special activity, Satellite ops, camping or 6 meters, etc.
-7 walkie talkies, HT's or other human portable.
-8 boats, sailboats, RV's or second main mobile.
-9 Primary Mobile (usually message capable).
-10 internet, Igates, echolink, winlink, AVRS, APRN, etc.
-11 balloons, aircraft, spacecraft, etc.
-12 APRStt, DTMF, RFID, devices, one-way trackers*, etc.
-13 Weather stations.
-14 Truckers or generally full-time drivers.
-15 generic additional station, digi, mobile, wx, etc.

17.13.1 Installation on Raspberry Pi 5
You can install the program from the Desktop Applications Menu  Preferences 
Add/Remove software. Type xastir in the search box and press Enter. Click to select the
program and click Apply to install it.

17.13.2 Running the program and configuring for internet APRS
Before running the program, you should get a password by entering the command:

callpass YOURCALL

Where YOURCALL is your callsign. A numeric password will be displayed on the screen.
Keep this in a safe place as you will need it while running xastir.

Open a terminal session in Desktop and enter the following command:

	 pi@raspberrypi:~ $ sudo xastir

When the program starts for the first time, you should see the Configure Station menu
(Figure 17.43) where you should enter your callsign and the LAT/LONG of your station etc.
and click OK. You should then see the main screen as shown in Figure 17.44. Click the IN
button to zoom in to the map and use the four arrow keys next to OUT button to navigate
through the map. Figure 17.45 shows the map zoomed in to the UK.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 279Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 279 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 280

Figure 17.43: Configure Station menu.

Figure 17.44: Main menu.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 280Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 280 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 281

Figure 17.45: Map zoomed in.

Configuring APRS Internet server
Click Interface  Interface Control  Add  Internet Server  Add

You will have to enter an APRS internet server address and port name. The authors used
the following server and port:

	 london.aprs2.net:14580

Where 14580 is the port number, and london.aprs2.net is the Internet APRS server
name. Enter these details on the form. You will also be asked to enter your Pass-code
which is the password you were given in response to callpass. Click OK to accept. The
status of this server van be viewed at web address: http://london.aprs2.net:14501/. You
can add more servers if you wish.

APRS filters
You can use filters for your server connection. For example, you can specify to show N
stations within M kilometres away from your station, show all stations, search for a given
station, search for specific prefixes etc.

Map menu
Click Map  Map Chooser to select a map type, etc. There re many Map options that you
can choose from.

View menu
You can view a list of all stations by clicking View  All Stations. Click View  Mobile
Stations to display a list of mobile stations. Click View  Weather Stations to display a
list of the weather stations. Click View  Incoming Data to display the incoming packet
data etc.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 281Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 281 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 282

Station menu
Click Station  Find Station to locate a station by specifying the callsign. Click Station 
Track Station to track a station by specifying the callsign. Click Station  Filter Display
to select filters for the display. Click Station  Filter Data to filter data, etc.

Message
Click Message  Send Message to send a message by specifying a station's callsign.
Enter the message as text and click Send Now to send the message. Click Messsage
 Pending Messages to display any pending messages. Click Message  Clear All
Outgoing Messages to clear any outgoing messages etc.

For further details on using xastir, head to:

https://xastir.org/index.php/Main_Page
https://www.george-smart.co.uk/aprs/ui_view_aprs_is_settings/

17.14 QSSTV
SSTV is a means of sharing images among amateurs. It was introduced by Copthorne
Macdonald back in 1957-58, where he used an electrostatic monitor and a Vidicon tube. He
managed to transmit black and white 120 lines and about 120 pixels per line still picture
using a 3 kHz wide telephone channel.

Using a receiver capable of demodulating single-sideband modulation, SSTV transmissions
can be heard on the following frequencies:

160 m	 -	 1.890 MHz, LSB, analog
			 1.924 MHz, LSB, analog
80 m	 -	 3.845 MHz (3.73 MHz in Europe), LSB, analog
40 m	 -	 7.171 MHz (7.165 MHz in Europe), LSB, analog
20 m	 -	 14.230 MHz, USB, analog
10 m	 -	 28.680 MHz, USB, analog
6 m		 -	 50.680 MHz, FM, analog
			 50.950 MHz, USB, analog
2 m			 144.500, FM, analog
			 145.550 MHz, USB, analog
			 145.800 MHz, FM, analog
70 cms		 430.950 MHz, USB, analog

SSTV uses the audio band to send image. In a typical application, the computer (e.g.
Raspberry Pi 5) audio adapter is connected to the audio interface of the rig. Then a program
(like qsstv) runs on the computer to receive the images. There are several SSTV frequencies
in the amateur band, such as in 2 meters (144.550 MHz, 145.500 MHz, 145.600 MHz), on
20 meters (14.230 MHz and 14.233 MHz), and others. This is the Slow Scan TV application
(by Johan Maes, ON4QZ) program QSSTV.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 282Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 282 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 283

17.14.1 Installation on Raspberry Pi 5
You can install the program from the Desktop Applications Menu  Preferences 
Add/Remove software. Type qsstv in the search box and press Enter. Click to select
the program and click Apply to install it. The version installed by the authors was V9.5.8.

17.14.2 Running the program
To start the program, open a terminal session in Desktop and enter the following command:

	 pi@raspberrypi:~ $ qsstv

Alternatively, you can click Applications Menu in Desktop and then click QSSTV.

Figure 17.46 shows the qsstv startup menu. When the program is run the first time it
should be configured. Click Options menu and then Configuration and enter the operator
details, Directories, GUI, audio details, CW speed etc (see Figure 17.47 for operator details).
Click OK when finished. Figure 17.48 shows the audio configuration.

Figure 17.46: qsstv startup menu.

Figure 17.47: Configure operator details.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 283Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 283 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 284

Figure 17.48: Audio configuration.

Click Options and then Calibrate to calibrate your sound card. You may have to wait for
several minutes until the calibration is over.

17.14.3 Testing the program
There are many SSTV audio files available on the Internet that can be used to test the
program. For example, Essex Ham (UK) provides 4 audio CCTV signals on their website:
https://www.essexham.co.uk/sstv-the-basics. The steps to use one of these signals to test
the software are as follows:

•	Connect the speaker output of your PC to the microphone input of your
Raspberry Pi 5 audio adapter (e.g. UGREEN).

•	Configure the QSSTV software to receive audio data from the audio adapter
USB port (Figure 17.48) and click OK.

•	Open the Essex Ham web site where the audio files are located. Four files are
given on their web site. Thanks to Paul M0CNL for suggesting that it would be
handy to have access to some test SSTV audio files.

•	Make sure the QSSTV software menu is set in Receive mode and click the start
button (the blue play button under Receive).

•	Click to play one of the audio files on the Essex Ham web site, making sure that
your volume control is up on your PC.

•	You should see the image received on the QSSTV screen as shown in Figure
17.49. The file played in this example was named: Essex Ham 01 Scottie2
MP3, it lasts for 1 minute 12 seconds.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 284Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 284 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 285

Figure 17.49: Image built on QSSTV screen.

There are several other test audio files on this web page: https://www.sigidwiki.com/wiki/
Slow-Scan_Television_(SSTV). Figure 17.50 shows the example file Scottie1 taken from
this website.

Figure 17.50: Example image built on QSSTV screen.

17.15 FLRIG
FLRIG is a transceiver control program. It can be used either standalone or together with
FLDIGI or third part programs such as the wsjtx. The program supports large number
of transceivers from Elecraft, Icom, Kenwood, Ten-Tec, Yaesu, etc. The FLRIG interface
changes depending on the degree of CAT support available for the transceiver in use.

Interested users can get detailed information on FLRIG from the following online manual:

	 http://www.w1hkj.com/files/manuals/US_English/flrig-help.pdf

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 285Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 285 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 286

17.15.1 Installation on Raspberry Pi 5
FLRIG is available on Raspian repository and can easily be downloaded through the Desktop
by clicking Applications Menu  Preferences  Add/Remove Software. However,
the version on the repository may not be the latest version. The latest version (2.0.05) can
be installed from the sources as follows (see: https://dl1gkk.com/setup-raspberry-pi-for-
ham-radio/ for more information):

•	Head to: www.w1hkj.com/files/ and make note of the latest versions of files:
flxmlrpc and flrig by clicking on the files. At the time of writing this book, the
latest versions of these files were: 0.1.4 and 2.0.05 respectively. You will be
using these versions numbers below.

•	Enter the following commands at the Raspberry Pi 5 Console:

	- sudo apt-get install libfltk1.3-dev libjpeg-dev libxft-dev libxinerama-dev
libxcursor-dev libsndfile1-dev libsamplerate0-dev portaudio19-dev libpulse-
dev libudev-dev

	- cd Downloads
	- wget http://www.w1hkj.com/files/flxmlrpc/flxmlrpc-0.1.4.tar.gz
	- tar –zxvf flxmlrpc-0.1.4.tar.gz
	- cd flxmlrpc-0.1.4
	- ./configure –prefix=/usr/local –enable-static
	- make
	- sudo make install
	- sudo ldconfig
	- cd ~/Downloads
	- wget http://www.w1hkj.com/files/flrig/flrig-2.0.05
	- tar –zxvf flrig-2.0.05.tar.gz
	- cd flrig-2.0.05
	- ./configure –prefix=/usr/local –enable-static
	- make

•	sudo make install

•	cd ~

17.15.2 Running flrig
Open a terminal session in Desktop and type flrig to start the program. Alternatively click
on flrig in Desktop Applications Menu  Hamradio  flrig to start the program. Figure
17.51 shows the flrig startup menu (your startup menu could look slightly different).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 286Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 286 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 287

Figure 17.51: flrig startup menu.

Config menu — This menu item has two submenus: Setup and UI (User Interface).

Setup — Select Setup to configure for your transceiver (option Xcvr) as shown in Figure
17.52. Other options in Setup are:

•	Transceiver: select your transceiver (and serial I/O parameters)
•	TCPIP: configure for remote TCPIP/serial controlled transceiver
•	PTT: configure PTT serial ports
•	Polling: configure transceiver parameters to poll
•	Trace: configure program execution paths
•	Restore: read and restore transceiver parameters

Figure 17.52: Transceiver selection menu.

Note that the Raspberry Pi 5 serial port is named: /dev/tty/AMA10 whose interface
socket is located on the board between the two microHDMI sockets. Select the rig, serial
port, baud rate, number of stop bits, poll interval etc. when you select a rig, the default
values associated for that rig will be displayed.

There are many options to choose from and a full discussion is beyond the scope of this
book. Interested readers should refer to the following online manual and tutorials:

	 http://www.w1hkj.com/files/manuals/US_English/flrig-help.pdf
	 http://www.w1hkj.com/FldigiHelp/rig_config_page.html
	 http://www.w1hkj.com/flrig-help/ft991a_how_to_page.html
	 http://www.w1hkj.com/flrig-help/ic7300_how_to_page.html

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 287Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 287 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 288

UI (User Interface)
Select this submenu option for meter filters, slider sizing, user interface etc. Figure 17.53
shows the User Interface form.

Figure 17.53: User Interface form.

Frequency control
The frequency control display is shown in Figure 17.54. You can use the mouse scroll wheel
and left/right buttons to change the values. For example, clicking on the upper half of a
digit will increase it, and clicking on the lower end will decrease the number. You can also
click on a digit and keep it clicked to change its value. You can click on the A/B button to
swap the left and right VFOs.

Figure 17.54: Frequency control display.

17.16 XyGrib
XyGrib is a GRIB file reader program that displays meteorological data in a given location
on map in visual form. The program can be used by radio amateurs as well as by sailors,
aviators, farmers etc. to examine the weather forecasts. GRIB files are weather forecast
files that you can download. A typical file can include a forecast for one day, or for a longer
period of time. Of course, shorter forecasts are more accurate.

The basic features of the program are:

•	visualization of meteorological data in a given area;
•	playing animations of 8-day weather forecasts;
•	creating your own weather maps;
•	plotting wind speed and direction, pressure, temperature, rain, humidity, snow,

total cloud cover, dew point, wave height and high altitude data in visual as well
as in text form.

17.16.1 Installation of XyGrib on Raspberry Pi 5
You can install XyGrib from the Desktop by following Applications Menu  Preferences
 Add/Remove Software. Enter XyGrib in the Search box and press Enter (Figure 17.55).
Click Apply to install the program and the maps and then click OK at the end.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 288Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 288 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 289

Figure 17.55: Installing XyGrib.

17.16.2 Running XyGrib
To start the program, open a terminal in Desktop mode and enter the command XyGrib.
Figure 17.56 shows the start up screen where a map of the world is displayed. You can zoom
in/out, move left/right by clicking the buttons on the map. By moving the mouse cursor
over the map you will see that the geographical coordinates where the mouse pointer is
displayed at the top left hand side.

Figure 17.56: XyGrib startup screen.

An example run of the program is given below step-by-step where the UK is selected and
the forecasted wind data is plotted on the map.

•	Move the mouse pointer over UK and select the UK on the map.

•	Zoom-in to the UK.

•	Select File  Download GRIB.

•	Select Wind under tab Surface Data (Figure 17.57).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 289Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 289 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 290

Figure 17.57: Select Wind.

•	Click Download and save the file to disk.

•	You should see the wind data on the map as shown in Figure 17.58. As you
move the cursor pointer over the map you should see the wind direction and
wind speed displayed at the top left part of the screen.

Figure 17.58: Showing the wind data.

•	You can change the time or day of the forecast by clicking at the top left part of
the screen where it displays the data and time and UTC (Figure 17.59).

Figure 17.59 Change the time or day of the forecast.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 290Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 290 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 291

•	Click on the rocketship icon at the top right hand to animate the display. You
should see the time advancing and the state of the wind as the time is changing
(Figure 17.60 where only part of the display is shown).

Figure 17.60: Animation of the display.

•	Right-click on the top left corner of the display where the date and time are
displayed. Select Meteotable. In this example, the total cloud cover and
precipitation were selected. Figure 17.61 shows the data as a table. The current
time is displayed with a yellow background. You can move the table with the
slider at the bottom to the right to view the forecast for later days and times.

Figure 17.61: Tabulating the total cloud cover and precipitation.

Detailed information on XyGrib can be obtained from the following websites:

	 https://live.osgeo.org/en/quickstart/xygrib_quickstart.html
	 https://navigationlaptops.com/xygrib-tutorial-free-detailed-marine-weather/
	 https://www.youtube.com/playlist?list=PLx1XvLdpAhGA4om2oDuBIsTAUzqdpPSUg

17.17 FreeDV
FreeDV allows any SSB radio to be used for low bit rate digital voice. It is a GUI-based
program. FreeDV was built by an international team of radio amateurs working together
to design and test the system, and then releasing it under GNU Public License. In FreeDV,
speech is compressed down to 1400 bits/s and then modulated onto a 1100 Hz signal which
is sent to a microphone input of a SSB radio. At the receiver side, the signal is picked up by
an SSB radio and then demodulated and decoded by FreeDV.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 291Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 291 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 292

Using FreeDV, communication is readable down to 2 dB S/N and very long distance contact
is possible with only a few watts of RF power.

17.17.1 Installation on Raspberry Pi 5
You can install FreeDV from the Desktop by following Applications Menu  Preferences
 Add/Remove Software. Enter FreeDV in the search box and press Enter (Figure
17.62). Click Apply to install the program and the maps and then click OK at the end.

Figure 17.62: Installing FreeDV.

17.7.2	Running FreeDV
You can run FreeDV from the Desktop by clicking Applications Menu  Hamradio and
then FreeDV. When the program is run for the first time, you are required to enter the
Radio and Audio details. Figure 17.63 shows the startup screen.

Figure 17.63: FreeDV startup screen.

Detailed information on FreeDV can be obtained from the following websites:

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 292Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 292 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 293

	 https://www.g0hwc.com/other_digital.html
	 https://freedv.org/
	 https://ei7gl.blogspot.com/2019/11/freedv-digital-voice-mode-for-hf-bands.html

17.18 Qtel (EchoLink)
Qtel (EchoLink Client) is an amateur radio system that allows amateurs to communicate
with other amateurs using voice over IP (VoIP) technology on the Internet. It is a computer-
based system. Using this program, amateurs can communicate reliably worldwide. It is
similar to other VoIP applications such as the Skype, but with the ability to communicate to
an amateur radio station's transceiver. An EchoLink node is an active EchoLink station with
a transceiver attached. Any low-powered amateur radio transceiver which has contact with
a local node can use the Internet connection of that station to send its transmission via VoIP
to any other active node anywhere on Earth. EchoLink is also available on smartphones
(e.g. iPhone, Android etc). A computer with a microphone or a transceiver can be used to
link to EchoLink.

EchoLink was first developed in 2002 by Jonathan Taylor (K1RFD). Today, there are over
200,000 registered Qtel (EchoLink) users in over 151 countries.

17.18.1 Qtel installation on Raspberry Pi
You can install Qtel from the Desktop by following Applications Menu  Preferences 
Add/Remove Software. Enter qtel in the search box and select Graphical Client for
EchoLink Protocol, press Enter. Click Apply to install the program and the maps and then
click OK at the end.

17.18.2 Running the program
You can run the FreeDV from the Desktop by clicking Applications Menu  Hamradio and
then Qtel. When the program is run for the first time, you are required to enter the Radio
and Audio details. Figure 17.64 shows the startup screen (part of the screen is shown).

Figure 17.64: Qtel (EchoLink Client) startup screen.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 293Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 293 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 294

You have to register at http:/www.echolink.org/validation and validate that you are a
licenced radio amateur before you can use the EchoLink program. This involves entering
your callsign, address, email address, and sending a scanned copy of your radio amateur
certificate to the given web link. The validation process takes no more than 24 hours and
you will be notified of successful validation by an email. After this, enter your password
in Qtel Settings in the User Info section, and start using the program to communicate
with other radio amateurs. If you forget your password, you can send for a new password
by searching Google for "echolink forgot password". Enter your callsign and your email
address. A password reset link will be sent to your email where you can create a new
password.

Figure 17.65 shows the program screen after the radio amateur license validation. At the
left pane you have the menu options: Conferences, Links, Repeaters, and Stations. You
can, for example, select the Conferences and select a conference room for communication.
Double-click on the selected conference room and then click on Connect. Other useful
information, such as the station location/description, status, local time, Node ID, and IP
address are also displayed.

Note that EchoLink uses UDP ports 5198 and 5199 for incoming requests, and TCP port
5200 for outgoing requests. You should make sure that these ports are enabled on your Wi-
Fi router to direct all incoming data on these two ports and assign them to the Raspberry Pi
5. This can be done using Forwarding on your router, or by doing Port Triggering if you
wish to use EchoLink on several different computers.

Figure 17.65: Program screen.

17.18.3 Using EchoLink on smart phones
You can also use EchoLink apps on your smartphone (iPhone or Android). The steps to set
up EchoLink on Android phones are given below:

•	Go to Play Store on your smart phone.

•	Search for echolink apps (Figure 17.66) and install it.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 294Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 294 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 295

Figure 17.66: EchoLink in Olay Store.

•	Start the apps and enter your password.

•	Figure 17.67 shows the start up screen.

Figure 17.67: EchoLink start up screen on Android smartphone.

Figure 17.68 shows the Conferences submenu. The settings submenu is shown in Figure
17.69.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 295Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 295 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 296

Figure 17.68: Conferences submenu.

Figure 17.69: Settings submenu.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 296Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 296 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 297

17.19 XDX (DX-Cluster)
DX Clusters provide real-time information on amateur radio contacts around the world.
The clusters collect messages from active radio amateurs and then distribute them to
connected participants. The messages contain information such as the callsign, time,
frequency, comments, etc. Radio amateurs can use DX Clusters to acquire information
about activities on the amateur radio bands. Whenever a DX Cluster receives a message, it
is sent to all other DX Clusters and to connected participants.

17.19.1 Installation on Raspberry Pi 5
You can install Qtel from the Desktop by following Applications Menu  Preferences
 Add/Remove Software. Enter xdx in the Search box and select DX-cluster tcp/ip
client for amateur radio, then press Enter. Click Apply to install the program and the
maps and then click OK in closing.

17.19.2 Running the program
You can run xdx from the Desktop by clicking Applications Menu  Hamradio and then
xdx. Click Settings  Preferences and enter your callsign, web browser, etc., under the
General tab as shown in Figure 17.70. Select Output under the Settings  Preferences
menu to direct the output and also select the fields to be displayed. Eight function boxes are
provided that can be set to any required valid xdx commands (you can remove the function
keys bar from the Settings menu if you wish).

Figure 17.70: Preferences menu.

Click Host and enter a DX Cluster host name and port number. In this example, the host
name dxspider.co.uk was used with the port number set to 7300. There are many DX
Cluster nodes available, and they all connect to the same network and provide similar
services. Figure 17.71 shows a typical display from the program.

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 297Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 297 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 298

Figure 17.71: ßTypical display from xdx.

17.20 WSJT-X
WSJT-X is a program developed for amateur radio communication using very weak signals.
The program was initially developed by Bill Somerville (G4WJS), Steve Franke (K9AN), and
Nico Palermo (IV3NWV) between 2001 and 2016. The program offers 11 different protocols,
including: FST4, FT4, FT8, JT4, JT9, JT65, Q65, MSK144, WSPR, FST4W, and Echo.

17.20.1 Installation on Raspberry Pi 5
You can install WSJT-X from the Desktop by following Applications Menu  Preferences
 Add/Remove Software. Enter wsjt in the search box as shown in Figure 17.72. Click
Apply to install the program and then click OK at the end.

Figure 17.72: Installation of WSJT-X.

17.20.2 Running the program
You can run WSJT-X from the Desktop by clicking Applications Menu  Hamradio and
then wstjx. Figure 17.73 shows the start up screen of the program (only the upper part of
the screen is shown).

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 298Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 298 04-04-2024 13:2004-04-2024 13:20

Chapter 17 ● Installation and Use of Some Popular Radio Applications

● 299

Figure 17.73: WSJT-X launch screen.

The use of the WSJT-R program is unfortunately beyond the scope of this book. Interested
reader will find the following websites useful:

	 https://wsjt.sourceforge.io/wsjtx-doc/wsjtx-main-2.6.0.pdf
	 https://wsjt.sourceforge.io/wsjtx-doc/wsjtx-main-2.6.1.html
	 https://en.wikipedia.org/wiki/WSJT_(amateur_radio_software)
	 https://wsjt.sourceforge.io/wsjtx.html

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 299Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 299 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 300

Index

4-channel relay	 98
555 Timer	 77

A
ACK	 106
AC parameters	 83
active cooler	 15
active low-pass filters	 69
AD9850	 127
ADALM-Pluto	 250
AGC	 204
air-core	 56
AirSpy HF+	 251
air traffic data	 226
Aldo	 252
alsamixer	 185
Antenna Kit	 192
APRS	 278
APRS filters	 281
astable	 77
Astable circuit	 78
Audio Adapter	 184
Audio Output	 184
audio power amplifier	 175
Audio Volume	 185
Auto boot	 182

B
base current	 67
Battery operation	 182
BFSK	 239
BJT transistor	 66
BladeRF	 248
Bluetooth	 24
Bookworm	 15
Built-in Audio	 214
Butterworth	 74

C
Cauer topology	 75
CE	 121
Ceramic capacitors	 44
CHIRP	 277
collector current	 67

Common-Emitter	 83
Console mode	 16
Cortex-A76	 14
CPHA	 121
CPOL	 121
CQRLOG	 265
CubicSDR	 220
cut-off frequency	 70
CW	 232
CW transmission	 232

D
DAB	 271
DAB+	 272
DC remove	 203
Decimation	 216
Demod Off	 204
Desktop GUI	 21
DGPS	 113
DHCP	 23
Digital-to-Analog Converter	 120
dipole antenna	 192
Dipole orientation	 193
Direct Sampling	 216
direct sampling mode	 189
DNS	 23
dot time	 141
DSI displays	 14
DTMF	 229
Dump1090	 226
duty cycle	 78
DVB-T	 196
DX Clusters	 297

E
EchoLink	 293
Electrolytic capacitors	 44

F
FFT Averaging	 205
FFT rate	 205
FFT Settings	 203
Filter shape	 204
Filter width	 204

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 300Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 300 04-04-2024 13:2004-04-2024 13:20

Index

● 301

FLDIGI	 229
FLRIG	 285
FM Radio	 167
FreeDV	 291
Freq Correction	 203
Frequency Counter	 161
Freq zoom	 206

G
Gain Control	 216
git clone	 210
GNU Radio	 201
GPredict	 253
GPS	 112
GPS Click board	 113
GPS receiver	 112
GPS satellites	 112
GQRX	 201
GREEN LED	 95

H
HackRF One	 246
Ham Clock	 273
Hardware AGC	 203
Hermes Lite-2	 242
horizontal polarization	 193

I
I2C based LCDs	 105
I2C bus	 105
ifconfig	 19
Impedance matching	 80
Inductance	 56
inter-character time	 141
inter-word time	 141
IP address	 19
IQ balance	 203
IQ correction	 216

J
JST-SH	 116

K
keypad	 130
Klog	 266

L
latitude	 112
LCD	 105
LimeSDR	 249
LM386	 175
LM567	 151
load impedance	 80
Logic Probe	 95
longitude	 112
Loudspeaker	 175
Low-pass filters	 69
L-type matching	 80

M
Matplotlib	 54
matrix equation	 63
maximum power transfer	 80
MCP4921	 120
Mesh analysis	 60
Mic click	 150
microphone input	 184
MISO	 121
monostable	 77
Morse2Ascii	 268
Morse code	 140
Morse Decoder	 149
MOSI	 121
MySQL	 265

N
nano	 29
Narrow FM	 204
NAVTEX	 239
NMEA sentence	 112
Node Analysis	 63
NooElec NESDR	 247
normally closed	 99
normally open	 98

O
Odyssey	 242
Offset Tuning	 216
Opera Cake	 247
OP Mode	 239
optocoupled relay	 98

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 301Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 301 04-04-2024 13:2004-04-2024 13:20

Raspberry Pi 5 for Radio Amateurs

● 302

P
Parallel LCDs	 105
Passive filters	 74
password	 20
PCIe connector	 14
Peak Detect	 206
PortAudio	 229
potential divider	 48
Power Control	 98
PPM Correction	 217
PulseAudio	 229
Putty	 19
PyQSO	 269
Python plotting	 54

Q
Qtel	 293
Quisk	 242

R
R828D	 190
RadioBerry-2	 242
raspi-config	 18
Raw I/Q	 204
RC circuits	 53
RC transient	 53
Real-Time-Clock	 103
RED LED	 95
Red Pitaya	 242
resistive attenuator	 51
Resistor Color Code	 38
resonant frequency	 58, 194
resultant capacitance	 46
resultant resistance	 42
RG174	 192
RLC circuit	 58
Rotary Encoder	 140
RTC	 104
RTL_433	 244
RTL2832U	 188
RTL-SDR V3	 189
RTL-SDR V4	 190
RTTY	 238

S
Sallen-Key	 70

Sample Rate	 216
Satellite reception	 194
SCLK	 121
SDR++	 210
SdrMicron	 242
SDR Sharp	 223
Serial Debug port	 115
serial mode	 128
Series-shunt	 80
shell script	 200
Shunt-series	 80
Simulation	 88
Single payer coils	 56
SN74LV8154	 162
SNR Meter	 215
SoC	 15
SoftRock	 242
source impedance	 80
SPI Bus	 121
Squelch	 205
SSH	 18
SSTV	 282
START bit	 106
startx	 211
Static IP Address	 23
Station Clock	 103
STOP bit	 106
Streaming audio	 208
Swap I/Q	 203
switching speed	 153

T
T-connector	 102
TEA5767	 167
telescopic antennas	 192
The Q factor	 70
The spectrum display	 215
Thonny IDE	 35
tightvncserver	 21
TightVNC Viewer	 22
TINA-TI	 88
tone decoder	 151
transistor amplifier circuit	 83
transistor current gain	 66
Tuning Mode	 215
TWCLOCK	 262

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 302Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 302 04-04-2024 13:2004-04-2024 13:20

Index

● 303

U
UART	 115
UGREEN	 184
upconverter	 189
USB-C	 14
USB dongle	 188
USRP	 250

V
vertical polarization	 193
Very Small Resistors	 40
VNC clients	 22
VNC server	 21
VoIP	 293

W
waterfall	 205
Waveform generators	 120
Weather Fax	 233
WEFAX	 233
Welle.io	 271
WFM	 204
whip antenna	 194
Wired Network	 24
words per minute	 141
wpm	 141
WSJT-X	 298

X
Xastir	 278
XASTIR	 278
xcwcp	 252
XDX	 297
XyGrib	 288

Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 303Boek Raspberry Pi 5 for Radio Amateurs-UK 240321.indd 303 04-04-2024 13:2004-04-2024 13:20

5
GQRX

SDR++
CubicSDR

RTL-SDR Server

Dump1090

FLDIGI
RTL_433

TWCLOCK

Morse2Ascii
PyQSO

Python!
Welle.io

qsstv

55

Dogan Ibrahim
Ahmet Ibrahim

Raspberry Pi 5
for Radio Amateurs
Program and Build Raspberry Pi 5 Based
Ham Station Utilities with the RTL-SDR

Raspberry Pi 5
for Radio Amateurs
Program and Build Raspberry Pi 5 Based
Ham Station Utilities with the RTL-SDR

The RTL-SDR devices (V3 and V4) have gained popularity among radio
amateurs because of their very low cost and rich features. A basic system
may consist of a USB based RTL-SDR device (dongle) with a suitable
antenna, a Raspberry Pi 5 computer, a USB based external audio input-
output adapter, and software installed on the Raspberry Pi 5 computer.
With such a modest setup, it is possible to receive signals from around
24 MHz to over 1.7 GHz.

This book is aimed at amateur radio enthusiasts and electronic engineering
students, as well as at anyone interested in learning to use the Raspberry
Pi 5 to build electronic projects. The book is suitable for both beginners
through experienced readers. Some knowledge of the Python programming
language is required to understand and eventually modify the projects
given in the book. A block diagram, a circuit diagram, and a complete
Python program listing is given for each project, alongside a compre-
hensive description.

The following popular RTL-SDR programs are discussed in detail, aided
by step-by-step installation guides for practical use on a Raspberry Pi 5:

> SimpleFM
> GQRX
> SDR++
> CubicSDR
> RTL-SDR Server
> Dump1090
> FLDIGI
> Quick
> RTL_433
> aldo

> xcwcp
> GPredict
> TWCLOCK
> CQRLOG
> klog
> Morse2Ascii
> PyQSO
> Welle.io
> Ham Clock
> CHIRP

> xastir
> qsstv
> flrig
> XyGrib
> FreeDV
> Qtel (EchoLink)
> XDX (DX-Cluster)
> WSJT-X

The application of the Python programming language on the latest
Raspberry Pi 5 platform precludes the use of the programs in the book
from working on older versions of Raspberry Pi computers.

Dogan Ibrahim
has a BSc
degree in
electronic
engineering,
an MSc degree

in automatic control engineering,
and a PhD degree in digital signal
processing. Dogan has worked
in many industrial organizations
before he returned to academic life.
Prof Ibrahim is the author of over
70 technical books and published
over 200 technical articles on
microcontrollers, microprocessors,
and related fields. He is a Chartered
electrical engineer and a Fellow of
the Institution of the Engineering
Technology. He has been a licenced
amateur radio operator for several
decades (G7SCU) and also holds an
Arduino certification.

Ahmet Ibrahim
holds BSc
(Hons) and
MSc degrees
in the fields
of computing,

software and networking. Ahmet has
held positions in many industries
involved in enterprise computing.
He enjoys advising, designing and
implementing complex cloud and
on-premises computer systems.
Ahmet is an experienced electronics
engineer and a licenced amateur
radio operator (2E1GUC).

Raspberry Pi 5 for Radio A
m

ateurs • D
ogan Ibrahim

 &
 Ahm

et Ibrahim

Elektor International Media
www.elektor.com

books booksbooks books

SKU20858_COV_Raspberry Pi 5 for Radio Amateurs_170x240_v01.indd Alle pagina'sSKU20858_COV_Raspberry Pi 5 for Radio Amateurs_170x240_v01.indd Alle pagina's 10-04-2024 09:0610-04-2024 09:06

	Search…
	Raspberry Pi 5 for Radio Amateurs
	All rights reserved
	Contents
	Preface

	1 ● Installing the Raspberry Pi 5 Operating System
	1.1 Overview
	1.2 Using a pre-installed micro SD card
	1.3 Larger font in Console mode
	1.4 Accessing your Raspberry Pi 5 Console from your PC – the Putty Program
	1.5 Accessing the Desktop GUI from your PC
	1.6 Assigning a Static IP Address to your Raspberry Pi 5
	1.7 Enabling Bluetooth
	1.8 Connecting the Raspberry Pi 5 to a Wired Network
	1.8.1 Unable to connect to a wired network

	1.9 Installing the Raspberry Pi 5 Bookworm Operating System on a Blank microSD Card

	2 ● Using a Text editor, Creating and Running a Python Program
	2.1 The nano Text Editor
	2.2 Creating and Running a Python Program
	2.2.1 Method 1 — Interactively from command prompt in Console mode

	2.3 Which method?

	3 ● Amateur Radio Programs – Software-Only
	3.1 Overview
	3.2 4-Band Resistor Color Code Identifier
	3.3 4-Band Resistor Color Code Identifier Including Very Small Resistors
	3.4 Series or Parallel Resistors
	3.5 Capacitor Identification
	3.6 Capacitors in Series or in Parallel
	3.7 Resistive Potential Divider
	3.8 Resistive Attenuator Design
	3.9 RC Charging Transient Circuit Response
	3.10 Calculating the Inductance of a Single-Layer, Air-Core Coil
	3.11 Constructing a single layer coil for required inductance
	3.12 Calculating the Capacitance for Required Resonance Frequency
	3.13 DC Circuits Mesh Analysis
	3.13.1 DC Circuits mesh analysis — a more complex example

	3.14 DC Circuit Node Analysis
	3.15 Bipolar Junction Transistor Analysis
	3.16 Designing Active Low-Pass Filters
	3.17 Passive Low-Pass Butterworth Filter Design
	3.18 The 555 Timer IC
	3.19 Impedance Matching
	3.20 Designing a Common-Emitter BJT Transistor Amplifier Circuit
	3.21 Using a Windows-Based Simulation Program
	3.21.1 Simulating the Resistive Mesh Circuit in Figure 3.33
	3.21.2 Simulating the transistor circuit in Figure 3.42
	3.21.3 Simulating the transistor circuit in Figure 3.66

	4 ● Hardware Based Projects for Amateur Radio
	4.1 Overview
	4.2 Project 1: Logic Probe
	4.3 Project 2: Station Mains On-Off Power Control
	4.4 Project 3: Station Clock with Output to the Monitor
	4.5 Project 4: Station Clock with Output to LCD
	4.6 Project 5: Station Geographical Coordinates
	4.7 Project 6: Waveform Generation in Software — Sawtooth waveform
	4.7.1 The MCP4921 DAC

	4.8 Project 7: Generating a Waveform – Frequency Entry using Keypad and L
	4.8.1 The AD9850
	4.8.2 Starting the program automatically at boot time
	4.8.3 Boxing the project

	4.9 Project 8: Morse Code Exerciser with Rotary Encoder and LCD to Set wpm Value
	4.9.1 Rotary encoder
	4.9.2 Boxing the project

	4.10 Project 9: Morse Decoder
	4.11 Project 10: Frequency Counter
	4.12 Project 11: FM Radio with Raspberry Pi 5
	4.13 Project 12: Modified Project — Increasing the Output Signal Level – Connecting a Loudspeaker
	4.14 Project 13: FM Radio using an LCD and Rotary Encoder to Set the Frequency

	5 ● Raspberry Pi 5 Audio Output
	5.1 Overview
	5.2 Using an External USB Audio Adapter
	5.3 Testing the Audio Output
	5.4 Audio Volume

	6 ● RTL-SDR Meets Raspberry Pi 5
	6.1 Overview
	6.2 RTL-SDR V3
	6.3 RTL-SDR V4 vs V3
	6.4 The RTL-SDR Antenna Kit
	6.4.1. Dipole orientation
	6.4.2. Terrestrial signal reception
	6.4.3. Satellite reception
	6.4.4. Choosing the antenna element length

	6.5 Hardware Setup
	6.6 Installing the RTL-SDR Software on Raspberry Pi 5
	6.7 Testing — Tuning to a Frequency Manually
	6.8 Testing the RTL-SDR Dongle

	7 ● A Simple FM Receiver
	7.1 Overview
	7.2 The Program
	7.2.1 Creating a shell script

	8 ● GQRX on the Raspberry Pi 5
	8.1 Overview
	8.2 Installation on Raspberry Pi 5
	8.3 Using the GQRX
	8.3.1 The audio frame
	8.3.2 Streaming audio to your PC

	9 ● SDR++
	9.1 Overview
	9.2 Installing SDR++ on the Raspberry Pi 5
	9.3 Using the SDR++
	9.3.1 Quick startup example
	9.3.2 Graphical outputs
	9.3.3 Source options
	9.3.4 Display options
	9.3.5 Radio module
	9.3.6 Frequency Manager
	9.3.7 Recorder

	10 ● CubicSDR
	10.1 Introduction to CubicSDR
	10.2 Quick Startup

	11 ● RTL-SDR Server
	11.1 Overview

	12 ● Dump1090
	12.1 Overview
	12.2 Dump1090 Essential Features
	12.3 Installing Dump1090 on the Raspberry Pi 5
	12.4 Launching the Dump1090 Software

	13 ● FLDIGI
	13.1 Overview
	13.2 Features
	13.3 Digital Formats
	13.4 Installation on Raspberry Pi 5
	13.5 Starting the Program
	13.6 Decoding Morse Code (CW)
	13.7 Receiving Weather Fax (WEFAX)
	13.8 Receiving RTTY Traffic
	13.8.1 Using fldigi to receive RTTY messages

	13.9 Receiving NAVTEX Messages
	13.9.1 Using fldigi to receive NAVTEX messages

	14 ● Quisk
	14.1 Overview
	14.2 Installing quisk on the Raspberry Pi 5

	15 ● RTL_433
	15.1 Overview
	15.2 Installing RTL_433 on the Raspberry Pi 5
	15.3 Program Options

	16 ● Other SDR hardware
	16.1 Overview
	16.2 HackRF One
	16.3 NooElec NESDR Smart HF Bundle
	16.4 BladeRF
	16.5 LimeSDR
	16.6 Universal Software Radio Peripheral (USRP)
	16.7 ADALM-Pluto
	16.8 AirSpy HF+ Discovery

	17 ● Installation and Use of Some Popular Radio Applications
	17.1 Overview
	17.2 Aldo Morse Code Tutor – Text Based
	17.2.1 Installing aldo on the Raspberry Pi 5

	17.3 xcwcp Morse Code Tutor — Graphical
	17.3.1 Installing xcwcp on Raspberry Pi 5

	17.4 GPredict — Satellite/Orbital Object Tracking and Rig Control
	17.4.1 Installing GPredict on Raspberry Pi 5
	17.4.2 GPredict controls

	17.5 TWCLOCK
	17.5.1 Installation on Raspberry Pi 5
	17.5.2 Using the program

	17.6 CQRLOG
	17.6.1 Installation on Raspberry Pi 5
	17.6.2 Running the program

	17.7 Klog
	17.7.1 Installation on Raspberry Pi 5
	17.7.2 Using the program

	17.8 Morse2Ascii
	17.8.1 Installation on Raspberry Pi 5
	17.8.2 Using the program

	17.9 PyQSO
	17.9.1 Installation on Raspberry Pi 5
	17.9.2 Using the program

	17.10 Welle.io (DAB/DAB+ Radio)
	17.10.1 Installation on Raspberry Pi 5
	17.10.2 Running the program

	17.11 Ham Clock
	17.11.1 Installation on Raspberry Pi 5
	17.11.2 Running the program
	17.11.3 Accessing from a web browser

	17.12 Chirp
	17.12.1 Installation on Raspberry Pi 5
	17.12.2 Running the program

	17.13 Xastir
	17.13.1 Installation on Raspberry Pi 5
	17.13.2 Running the program and configuring for internet APRS

	17.14 QSSTV
	17.14.1 Installation on Raspberry Pi 5
	17.14.2 Running the program
	17.14.3 Testing the program

	17.15 FLRIG
	17.15.1 Installation on Raspberry Pi 5
	17.15.2 Running flrig

	17.16 XyGrib
	17.16.1 Installation of XyGrib on Raspberry Pi 5
	17.16.2 Running XyGrib

	17.17 FreeDV
	17.17.1 Installation on Raspberry Pi 5
	17.17.2 Running FreeDV

	17.18 Qtel (EchoLink)
	17.18.1 Qtel installation on Raspberry Pi
	17.18.2 Running the program
	17.18.3 Using EchoLink on smart phones

	17.19 XDX (DX-Cluster)
	17.19.1 Installation on Raspberry Pi 5
	17.19.2 Running the program

	17.20 WSJT-X
	17.20.1 Installation on Raspberry Pi 5
	17.20.2 Running the program

	Index

