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Preface

I started solving optimal control problems during my student years. These were ap-
plied problems arising in the process of carrying out some scientific and technical
projects. Gradually, my interest moved to the area of mathematical theory of opti-
mal control. It soon became clear that I lacked knowledge in the field of functional
analysis to justify optimality conditions, study the solvability of optimization prob-
lems, and prove the convergence of numerical optimization methods. I took up the
study of literature. My attention was drawn to the book by B. Gelbaum and L.
Olmsted Counterexamples in analysis [77].

Yes, of course, there are a significant number of excellent textbooks on functional
analysis. They present basic concepts of analysis in an accessible form and provide
complete proofs of the most important theorems. All this is illustrated with numer-
ous examples showing what these concepts boil down to and how these theorems
work in specific situations. However, the book by Gelbaum and Olmsted is based
on completely different principles. It lacks general theoretical results with standard
definitions and proofs of theorems, and the examples given are non-standard. It is
not for nothing that the term counterexamples is used for them. They are unusual,
not obvious, and seem to be on the edge, behind which the Unknown is hidden. At
the same time, they do not require cumbersome and boring transformations that can
“scare off” the reader, for whom mathematical analysis is not a goal, but a means for
solving some other problems.

Over time, I began to teach myself. Among the many courses that I had the
opportunity to teach was the optimal control theory. Over time, I had a desire to
write my own version of counterexamples in relation to this area. The result was the
book Counterexamples in the Optimal Control Theory, published initially in
Russian in 2001, and subsequently in English by Brill Academic Press in 2004 and
republished in 2011 by De Gruyter [170]. It dealt with eight fairly simple optimal
control problems with unusual properties.

As time went. My collection of custom examples has steadily expanded. In 2012,
a new book by Gelbaum and Olmsted, Theorems and Counterexamples in
Mathematics was published [78]. When the number of “bad” examples reached
well over fifty, I decided that I, perhaps, should also write a new book, significantly
different from the previous one in form, content, and volume. This is how the idea
of Optimization. 100 examples came about. The missing examples had to be
invented during the writing of the book. However, I got a little carried away, so in
reality, there were even a few more examples. I somehow did not want to change the
title, which was already officially approved at that time, especially since there was
a precedent. As one knows, the Hundred Years’ War lasted slightly longer than the

xv
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specified number of years. In reality, in my book, there are approximately as many
examples of how many years this war lasted.

The main goal of this book is to analyze examples related to the optimal control
theory, for which something does not happen quite as we would like. Moreover, all
examples must differ from each other either in the class of problems being solved or in
the effects that arise in the process of their analysis. In addition, the examples should
be extremely simple, so that, firstly, the study is not accompanied by cumbersome
transformations that obscure the essence of the considered properties, and, secondly,
so that the illusion does not arise that non-standard effects are characteristic only
for exotic problems. In order to make it clear exactly what properties we would
like to observe, we had to give the corresponding statements (we remember that
Gelbaum and Olmsted also included theorems in the second book), and illustrate
each of them with a “good” example. However, when presenting them, we did not
strive for maximum rigor and completeness, since these issues are well covered in
numerous literature. It was only important for us to draw the reader’s attention to
the logic of reasoning, the contribution that one or another condition of the theorem
makes to the final result. Only then, when analyzing “bad” examples, it is established
how this or that undesirable property is an indispensable consequence of the violation
of one of the conditions of the corresponding theorem.

Naturally, this book should not be used for the first acquaintance with the optimal
control theory. For these purposes, there is already a sufficient amount of relevant
literature. Likewise, Gelbaum and Olmsted’s book is not suitable as a textbook on
analysis. It is intended for those who are already familiar with this area and would
like to better understand the essence of the matter. In addition, analysis of unusual
examples stimulates the desire to push the boundaries of applicability of known math-
ematical methods, and therefore contributes to the development of the theory itself.

In our case, there is one more important circumstance. In practice, we are often
forced to solve an optimization problem without strictly justifying the optimization
methods used. Under these conditions, one must allow for the possibility of the man-
ifestation of those very undesirable effects that are described in this book. The very
fact of the appearance of various difficulties in extremely simple problems indicates
the widespread prevalence of the described phenomena and a fairly high probability
of these effects appearing in the practical solution of applied optimization problems.
Analysis of the presented examples increases the chances of correctly diagnosing the
results obtained during the solving process and choosing the appropriate actions in
case of any troubles.

The book consists of five parts. The first part is devoted to the problems of mini-
mizing functions of one variable and is auxiliary. Its inclusion in the book is explained
solely by the fact that almost all the features of optimal control problems described
below can be found already for problems of minimizing functions. In subsequent
parts, problems of optimal control of systems with a free and fixed final state are
considered, in the presence of an isoperimetric condition and in the absence of initial
conditions.

Each part, consisting of several chapters, begins with a brief description of known
optimization methods in relation to a given class of problems, features of their
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practical application, as well as an example illustrating the effectiveness of the de-
scribed method. Then a series of examples of similar problems is given in which the
use of these methods leads to certain difficulties.

Each chapter includes four sections: Lecture, Results, Appendix, and Notes. Lecture
includes basic theoretical material, as well as the most important examples. The
reader who wants to get only a general idea of the plot being described can limit
himself to reading only this paragraph.

Results invariably consist of three subsections. By turning to the Questions sub-
section, the reader can check the degree of his understanding of the lecture materials.
The subsection Conclusions summarizes the main results of the Lecture. The Prob-
lems subsection lists directions for further development of the lecture material with
links to Appendix or Notes.

If the reader wants to get a more complete and in-depth understanding of the
issues discussed, he can refer to Appendix. Here are some additional theoretical results,
as well as new examples that complement those presented in the Lecture.

Notes are references throughout the text of the Lecture and Appendix. It provides
some explanations that may be useful to the more interested reader, as well as def-
initions of some concepts used in the text that goes beyond the scope of the book.
Some technical calculations are also included here, which allows you to unload the
main text of the chapter. In addition, there are links to literature on specific issues.
Finally, it provides cross-references to material from other chapters of the book that
are in some way related to the specific issues discussed in this chapter.

The preparation of the book was greatly facilitated by a special course lectured
by the author for many years at the Faculty of Mechanics and Mathematics of the
al-Farabi Kazakh National University.

I want to express my deep gratitude, first of all, to S. Aisagaliev, whose lectures
began my acquaintance with the optimal control theory, J.L. Lions, from whose ex-
cellent books I studied and who assessed my own research in this direction, as well
as B. Gelbaum and L. Olmstead, whose book inspired me to write this book. I am
very grateful to S. Kabanikhin for the opportunity to publish the previous book
in English and M. Ruzhansky, who connected me with Taylor and Francis Group.
I also express my gratitude to A. Antipin, F. Aliev, V. Amerbaev, A. Ashimov, V.
Boltyansky, A. Butkovsky, M. Dzhenaliev, A. Egorov, R. Fedorenko, A. Fursikov, Yu.
Gasimov, M. Gebel, A. Iskenderov, O. Ladyzhenskaya, V. Litvinov, A. Lukyanov, K.
Lurie, V. Neronov, D. Nurseitov, V. Osmolovsky, U. Raitums, T. Sirazetdinov, Sh.
Smagulov, U. Sultangazin, V. Tikhomirov, N. Uraltseva, F. Vasiliev, V. Yakubovich,
O. Zhautykov, with whom I had the opportunity to discuss various problems related
to optimization methods over the years. I express my deep gratitude to the staff and
students of the al-Farabi Kazakh National University, who to one degree or another
helped me in my work. I am extremely grateful to the staff of CRC Press/Taylor
and Francis Group C. Frazer, M. Kabra, and S. Kumar, who actively supported me
throughout the work on the book. I am also grateful to the artists I. Saitov and B.
Tasov for preparing the cover of the book. I express special gratitude to A. Teplov,
without whom this book would hardly have been written. Finally, I am deeply grateful
to my wife Larissa Ananyeva for her understanding and support.
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I will be very grateful to readers for comments and suggestions, for any sharp
criticism on individual issues and on the book as a whole. I would be especially glad
to have an opportunity to add to the collection of unusual examples of optimal control
problems. For those wishing to respond, I provide my address: serovajskys@mail.ru.

I dedicate this book to school No. 25 in Almaty, which determined my future des-
tiny, to its teachers who gave me deep knowledge, as well as to my friends classmates
who were next to me all these years, no matter how many thousands of kilometers
separated us.
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The main purpose of this book is to analyze unusual examples of optimal con-
trol problems, as well as to discuss the difficulties that arise in their practical study.
However, similar problems appear already for the simplest problem of finding an ex-
tremum, which consists of minimizing a function of one variable in the absence of
any restrictions. The first part, which is introductory, is devoted to the analysis of
these problems. It consists of two chapters, the first of which contains the classical
Fermat theorem characterizing the necessary condition for a local extremum of a
function. The second chapter discusses some additional results related to minimiza-
tion of functions, in particular, the problem of the conditional minimum of a function,
minimization of a function depending on a parameter, and approximate methods for
minimizing functions.
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C H A P T E R 1

Fermat theorem

The simplest problem in the theory of extremum is the problem of finding the unconditional
minimum of a function of one variable. We confine ourselves to considering the simplest
and at the same time fundamental result of the theory of extremum, according to which the
derivative of a smooth function vanishes at its minimum point. In Section 1.1, we give this
statement, called Fermat theorem, and consider different examples related to its practical
application1. Additional problems arising in this case (existence and uniqueness of minimum
points, Tikhonov well-posedness of the minimization problem, sufficiency of the extremum
condition, minimization of non-smooth functions) are analyzed in Appendix.

1.1 LECTURE

This section deals with the problem of minimizing a differentiable function of one variable2.
The main result here is Fermat theorem, which determines a necessary condition for a lo-
cal extremum of a function. We give a proof of this result (Section 1.1.1) and describe its
application to minimizing some fairly simple functions. In the process of analyzing these
examples, the problems of the existence of a function minimum (Section 1.1.3), its unique-
ness, the Tikhonov well-posedness of the minimization problem, and the sufficiency of the
extremum condition (Section 1.1.2), as well as the applicability of the described method
(Section 1.1.4) arise.

1.1.1 Fermat theorem

The simplest problem of the extremum theory is to minimize the function of one
variable on the entire real axis, i.e., the problem of unconditional minimization of a
function.

Problem 1.1 Find a point of minimum for a function f = f(x).

The most natural way to analyze the behavior of a function is to study the
properties of its derivative3.

5DOI: 10.1201/9781003398585-1
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6 ■ Optimization: 100 examples

Theorem 1.1 (Fermat theorem). In order for the differentiable function f = f(x)
to reach its minimum at the point x, it is necessary that it satisfies the equality

f ′(x) = 0. (1.1)

Proof. Let x be a point of minimum for the function f . Therefore, the following
inequality holds

f(y) ≥ f(x) ∀y,

whence follows the relation4

f(x+ h) ≥ f(x) ∀h.

Using the Taylor formula, taking into account the differentiability of the consid-
ered function, we obtain the equality

f ′(x+ h) = f ′(x) + f ′(x)h+ o(h),

where o(h)/h → 0 as h → 0. As a result, the last inequality takes the form

f ′(x)h+ o(h) ≥ 0 ∀h. (1.2)

Hence, h > 0 follows the relation

f ′(x) + o(h)/h ≥ 0.

After passage to the limit as h → 0, we get

f ′(x) ≥ 0. (1.3)

Analogically, from the formula (1.2) for h < 0, it follows the inequality

f ′(x) + o(h)/h ≤ 0,

so, after the passage to the limit as h → 0, we obtain

f ′(x) ≤ 0. (1.4)

From the inequalities (1.3) and (1.4) it follows the equality (1.1). □

Thus, the search for the minimum of a smooth function on the set of real numbers
is reduced to the analysis of formula (1.1), which is an algebraic equation (as a rule,
non-linear) with respect to the desired value x.

Definition 1.1 The equality (1.1) is called the stationary condition or Fermat
condition, and its solution is called the stationary point or the critical point5

of the function f.

By Theorem 1.1, for solving of function minimization problem, it is necessary
to find the stationary points and analyze its properties6. Consider easy examples of
using the Fermat theorem for concrete functions.
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Figure 1.1 The unique stationary point is the global minimum of the function.

Example 1.1 Find a minimum of the function f(x) = x2.

Equality (1.1) for this function is 2x = 0. The unique solution x = 0 of this
equation is the point of minimum for the function f ; see Figure 1.1.

This example illustrates the method of solving the problem of minimizing a func-
tion using Fermat theorem. To do this, the extremal problem is reduced to the cor-
responding algebraic equation, which is solved directly. However, some complications
are possible.

1.1.2 Non-uniqueness of the solution of the stationary condition

Consider another example.

Example 1.2 Find a minimum of the function f(x) = 3x4–4x3–12x2.

Equality (1.1) is the cubic equation x3–x2–2x = 0. It has three solutions: x1 = –1,
x2 = 0, and x3 = 2; see Figure 1.2. By Theorem 1.1, the minimum point of this
function should be sought among these quantities. Find the values of this function at
these points: f(x1) = –5, f(x2) = 0, and f(x3) = –32. The smallest of the obtained
numbers is the minimum of the considered function. Therefore, the point x3 = 2 is
the solution of the given minimization problem.

Because of Example 1.2, we refine the scheme for solving the function minimiza-
tion problem using Fermat theorem. If several solutions are found during the analysis
of the stationary condition, then the minimum point of the given function is one of
them, which corresponds to the smallest of the values of the function on these solu-
tions.

The results obtained lead to the need to clarify the concepts used, in particular,
extremum points7; see Figure 1.3.
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Figure 1.2 Stationary points for Example 1.2.

Definition 1.2 A function f has the local minimum (local maximum,
respectively) at a point x if there exists a neighborhood8 V of this point such that
the following inequality holds f(x) ≤ f(y) (f(x) ≥ f(y), respectively) for all y ∈ V .
If in these relations the equal sign is possible only for y = x, then we have a strict
local minimum (maximum). If these inequalities are valid for all values of y, then
x is the point of absolute or global minimum (absolute or global maximum)
of the function f .

Figure 1.3 Types of function extrema.
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Obviously, of the three stationary points in Example 1.2, the first corresponds to
the local minimum of the considered function, the second to the local maximum of
the function, and the third to its global minimum; see Figure 1.2.

Let some relation Q be given, which may or may not be satisfied by some objects
from the set on which the extremal problem P is carried out9.

Definition 1.3 The relation Q is called a necessary extremum condition for
problem P if any solution to this problem satisfies relation Q. The relation Q is called
a sufficient extremum condition for problem P if any object satisfying it turns
out to be a solution to problem P.

If the extremum conditions are necessary and sufficient10, then its solutions and
only they turn out to be solutions of the extremum problem under study, i.e., ex-
tremum problem and extremum conditions conditions are equivalent; see Figure 1.4.
In the general case, the set of solutions to the stationary condition turns out to be
wider than the set of minimum points of the considered function11, i.e., the stationary
condition is a necessary condition for the local function minimum12. Particularly, the
stationary condition for Example 1.1 is a necessary and sufficient condition for the
function minimum, but for Example 1.2 it is necessary, but not sufficient13.

Figure 1.4 Relations between the set U0 of extremum problem solution and the set U∗ of
extremum condition solution.

Obviously, the maximum of the function f corresponds to the minimum of the
function g, characterized by the equality g(x) = –f(x). As a result, maximization
problems can always be reduced to minimization problems, and therefore do not
require the development of a special theory. In particular, the stationary condition
can also be used to find the maxima of a function.

The following example illustrates another important property of the problem of
finding extrema.

Example 1.3 Find a minimum of the function f(x) = x4–2x2.

From the stationary condition, we find three solutions of the corresponding al-
gebraic equation (1.1) x1 = –1, x2 = 0, and x3 = 1; see Figure 1.5. The second of
them corresponds to the local maximum of the function under consideration, and the
other two are solutions to the problem of its minimization, since this function takes
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the same value on them14. In this case, we have simultaneously the absence of both
the uniqueness of the solution of the problem and the sufficiency of the stationary
condition15.

Figure 1.5 The function has two points of minimum.

The non-uniqueness of the minimum points of the function in the example con-
sidered is due to the fact that this function is even, i.e., invariant with respect to
changes in the sign of the argument16. Naturally, the ambiguity of the solution to
the problem of finding the function extremum can be observed in the absence of this
property.

Example 1.4 Find a maximum of the function f(x) = x6– 6x5 + 13x4– 12x3 + 4x2.

The corresponding stationarity condition is a fifth-order algebraic equation

3x5– 15x4 + 26x3– 18x2 + 4x = 0.

It has the following solutions

x1 = 0, x2 = 1–1/
√

3, x3 = 1, x4 = 1 + 1/
√

3, x5 = 2.

Obviously, the first, third, and fifth solutions correspond to the absolute maxima
of the function under consideration, and the second and fourth are the points of
its local minima; see Figure 1.6. Thus, the problem under consideration has three

Figure 1.6 The function has three maximum points.
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solutions, and the stationary condition is a necessary but not sufficient condition for
the maximum17.

As follows from the next examples, the set of global minimum points of the
function can be quite large.

Example 1.5 Find a minimum of the function f(x) = sin x.

The corresponding stationary condition cosx = 0 has an infinite set of solutions
xk = π/2 + kπ, where k is an arbitrary integer; see Figure 1.7. In this case, even
values of k correspond to absolute minimum points, and odd values correspond to
maximum points. Thus, the stationary condition for the considered function is not
a sufficient minimum condition, and the set of solutions of the corresponding mini-
mization problem turns out to be infinite18.

Figure 1.7 The function has an infinite set of minimum points.

A situation is possible when the set of minimum points of a differentiable function
turns out to be even wider.

Example 1.6 Find a minimum of the function f = f(x) that is equal to (x + 1)2

for x < –1, to zero for –1 ≤ x ≤ 1 and to (x–1)2 for x > 1.

The derivative of this function vanishes at all points from the segment [–1, 1],
which are the points of its minimum; see Figure 1.8. Thus, in this case, the station-
ary condition is a necessary and sufficient condition for a minimum, and the set of
solutions to the problem of minimizing the function f is not only infinite, but not
even countable19.

Consider another property of extremum problems20.

Example 1.7 Find a minimum of the function f(x) = x2/(1 + x4).

Find the derivative
f(x) = 2x(1 − x4)

(1 + x4)2 .
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Figure 1.8 The set of points of minimum is uncountable.

The corresponding stationary condition has three solutions –1, 0, and 1. Determine
the value of the function at these points: f(0) = 0, f(–1) = f(1) = 1/2. Obviously, 0
is the absolute minimum point of this function, and the values –1, 1 are its absolute
maximum points; see Figure 1.9. Thus, the problem of minimizing the function f has
a unique solution, and the corresponding stationary condition gives a necessary but
not sufficient minimum condition. We have already encountered a similar situation
in Example 1.2. However, this example has another surprising property.

Figure 1.9 The function from Example 1.2.

Consider the sequence {xk} characterized by the equalities21 xk = k, k = 1, 2, . . ..
Obviously, the corresponding sequence of values {f(xk)} converges to zero, i.e., to
the minimum of the considered function. Sequences that have this property are called
minimizing sequences. At the same time, the sequence {xk} itself diverges and
does not have a minimum point (problem solution) as its limit. The result obtained
leads to the following concept22.

Definition 1.4 A function minimization problem is called Tikhonov well-posed
if any minimizing sequence for it converges to the point of minimum for this function.

Thus, in Example 1.7, we consider the problem of minimizing a function that is
Tikhonov ill-posed23.

Many methods for the approximate solution of problems in the theory of ex-
tremum are based on iterative processes in which the subsequent approximation is
selected in such a way that the corresponding value of the minimized quantity turns
out to be less than its previous value24. For ill-posed problems, such methods do not
guarantee finding the minimum point of the function with the desired exactness, even
if they converge25.
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In this section, functions were considered for which the corresponding stationary
conditions had a non-unique solution. However, the opposite situation is possible,
when the stationary condition has no solution at all.

1.1.3 Absence of function minimum points

We continue to apply Fermat theorem to find the minima of functions.

Example 1.8 Find a minimum of the function f(x) = x.

The stationary condition in this case is reduced to the equality 1 = f ′(x) = 0,
which has no solution. It is clear that the problem of minimizing the considered
function also has no solution; see Figure 1.10. Nevertheless, since the sets of solutions
to this problem and relation (1.1) coincide (both are empty), the extremum condition
used is necessary and sufficient.

Figure 1.10 There are no stationary points for the unsolvable extremal problem.

The absence of stationary points allows us to conclude that the problem of mini-
mizing the function under consideration turns out to be unsolvable26. Note that the
insufficiency of the extremum condition and the absence of a minimum of the func-
tion are independent properties. In particular, Example 1.2 has a minimum but no
sufficiency, and Example 1.7 has sufficiency but no minimum. The following example
provides additional information about the relationship between these properties.

Example 1.9 Find a minimum of the function f(x) = x3.

The necessary extremum condition has a unique solution x = 0 that does not
minimize the function f ; see Figure 1.11. The problem of its minimization has no
solution, so relation (1.1) is a necessary but not sufficient condition for an extremum.

It is characteristic that in the last example the only point of stationary is not even
a point of local extremum of the considered function27. In this case, we are dealing
with both the absence of minimum points and the insufficiency of the extremum
condition28.

We note one more possible situation.
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Figure 1.11 There are no stationary points for the unsolvable extremal problem.

Example 1.10 Find a minimum of the function f(x) = x3 − 3x.

The stationary condition here has two solutions: x1 = –1 and x2 = 1. The first
of these corresponds to a local maximum, and the second to a local minimum of
the function f , while there is no global minimum; see Figure 1.12. We again face
the lack of sufficiency of the extremum condition in the case of insolvability of the
minimization problem, however, with a different combination of properties than in
the previous example.

Figure 1.12 Two stationary points correspond to the local maximum and minimum.

It remains to clarify one more question related to the applicability of Fermat
theorem.

1.1.4 Inapplicability of Fermat theorem

The following examples correspond to cases where the stationary condition is inap-
plicable for finding the minimum of a given function.
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Example 1.11 Find a minimum of the function f(x) = |x|.

Due to the fact that f is not differentiable, Fermat theorem is not applicable
here29. Thus, the search for a real-life minimum point x = 0 (see Figure 1.13) requires
the involvement of another mathematical apparatus.

Figure 1.13 The stationarity condition is not applicable because of the non-smoothness of
the function.

Example 1.12 Find a minimum of the function f(x) = (x + 1)2 on the interval
[0, 1].

The stationary condition has a unique solution x = –1; see Figure 1.14. However,
this value is not a solution to the problem under consideration, since it lies outside
the specified interval. Thus, the application of the stationary condition in this case
does not lead to the desired results30, because in Theorem 1.1, the problem of the
unconditional extremum of a function was considered. It is clear that in the presence
of restrictions, the solution of the problem may not satisfy the stationary condition31.

Figure 1.14 In the conditional extremum problem, the solution of the stationary condition
is not a minimum point.

RESULTS

Here is a list of questions in the field of problems of minimizing the function and stationary
conditions, the main conclusions on this topic, as well as the problems that arise in this
case, partially solved in Appendix, partially taken out in Notes.
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Questions

It is required to answer questions about the properties of the problem of minimizing
a function of one variable and the stationary condition.

1. What are the applicability conditions of Fermat theorem?

2. What class of mathematical problems does the stationary condition belong to?

3. Applying the stationary condition, we do not solve the minimization problem,
but reduce it to a different problem. What justifies such an approach?

4. What is the difference between local and absolute extremum?

5. What is the difference between strict and non-strict extremum?

6. What is the difference between a necessary and sufficient condition for an ex-
tremum?

7. Why is the stationary condition satisfied not only for the minimum points of
the function, but also for the maximum points?

8. Why is the stationary condition satisfied not only for the global extremum
points of the function, but also for its local extremum points?

9. What can be the relationship between the set of solutions to the problem of
minimizing a function and the set of stationary points?

10. Can the number of stationary points be less than the number of local extrema
of the function?

11. What should be done if the solution of the stationary condition is not unique?

12. How can one distinguish between the minimum and maximum points of a func-
tion that equally satisfy the stationary condition?

13. Suppose that two solutions to the stationary condition have been found. How
can we know if we have the insufficiency of the extremum condition or with the
non-uniqueness of the minimum points?

14. Assume that a continuous function has several local extrema. How can the
various minimum and maximum points be located relative to each other?

15. How many solutions can the stationary condition have?

16. How many solutions can the problem of minimizing a continuous function have?

17. What properties can solutions of the stationary condition for a function of one
variable have in the general case?

18. What is the difference between the properties of Examples 1.2 and 1.6?
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19. Can a Tikhonov well-posed problem not have a solution?

20. Why are minimization problems with non-unique solutions not Tikhonov well-
posed?

21. What difficulties may arise in the practical implementation of problems that
are Tikhonov ill-posed?

22. Why the stationary condition makes sense even in the absence of a solution to
the function minimization problem?

23. What properties can the stationary condition have if the problem is unsolvable?

24. What conclusion can be drawn in the absence of a solution to the stationary
condition?

25. In what cases can the stationary condition be inapplicable?

26. Why is the stationary condition inapplicable for non-smooth functions?

27. Why is the stationary condition inapplicable for the conditional extremum prob-
lem?

28. Can the stationary condition be effective in the problem on the conditional
extremum of a function?

29. What can be the solution to the problem of minimizing a continuous function
on an interval?

Conclusions

Based on the study of the minimization problem for functions using Fermat theorem
and the results of the analysis of considered examples, we can have the following
conclusions.

• The unconditional function minimization problem can have one, several, an
infinite set of minimum points, or not have them at all.

• To solve the minimization problem for a differentiable function of one variable
on the set of real numbers, one can use Fermat theorem.

• Fermat theorem reduces the function minimization problem to the stationary
condition.

• The stationary condition is an algebraic equation.

• The stationary condition is satisfied both for the minimum points of the func-
tion and for its maximum points.

• The stationary condition is fulfilled not only for the absolute extremum points
of the function, but also for the local extremum points.



18 ■ Optimization: 100 examples

• Fermat theorem gives a necessary condition for a local extremum of a function,
i.e., any local extremum point satisfies the stationary condition, but solutions to
the stationary condition may not be the local extremum points of the function.

• If the stationary condition has several solutions, then the optimal one is the
one that corresponds to the smallest of the values of the minimized function on
these solutions.

• The function minimization problem can to be Tikhonov ill-posed such that
minimizing sequences are not required to converge to the minimum point of
this function.

• If the stationary condition has no solutions, then this means that there are no
minimum points for this function.

• The stationary condition is not applicable if a non-smooth function is considered
or this is a conditional function extremum.

Problems

On the basis of the results obtained above, we have the following problems of function
minimization, which require further analysis.

1. Solvability. In Examples 1.8, 1.9, and 1.10, there is no solution to the problem
of minimizing the corresponding functions, while in all other cases the problem
has a solution. We would like to know what properties of the function guarantee
the existence of a solution to the problem. This issue is explored in Appendix.

2. Uniqueness of solution. In Examples 1.3, 1.5, and 1.6, the solution to the
minimization problem is not unique, while in all other cases, the problem has a
unique solution if, of course, it exists. It is desirable to establish the properties
of the function that guarantee the uniqueness of the problem solution. This
problem is analyzed in Appendix.

3. Tikhonov well-posedness. In Example 1.7, we considered the Tikhonov ill-
posed problem. It would be interesting to establish under what conditions such
a problem turns out to be well-posed. This issue is considered in Appendix.

4. Concept of approximate solution. The Tikhonov ill-posedness of the prob-
lem actualized the question of what is meant by an approximate solution to the
problem. The corresponding definitions are given in the next chapter.

5. Sufficiency of extremum condition. In Example 1.2, we discovered the
insufficiency of the stationary condition by calculating the values of the function
in the found solutions. One would like to check whether the solutions of the
stationary condition are minimum points without calculating the function in
them. This seems to be relevant, at least in the case when only one solution of
the stationary condition is somehow found so that there is nothing to compare
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the value of the function at this point with. This problem is investigated in
Appendix.

6. Algorithm for solving. In all the examples considered, extremely simple func-
tions were investigated. As a result, finding solutions to the stationary condition
did not cause any serious difficulties. However, in the general case, we are deal-
ing with a non-linear algebraic equation, the solution of which is difficult to find
explicitly. It is necessary to be able to find stationary points for fairly complex
functions. This problem is explored in the next chapter.

7. Non-smooth problems. In Example 1.11, we could not use the stationary
condition because of non-differentiability of the minimized function. It would
be desirable to establish some generalization of the stationary condition in the
case of non-smooth functions. This result is given in Appendix.

8. Global extremum. Fermat theorem gives a necessary condition for a local
extremum. The problem of finding the global extremum is much more difficult.
About methods for finding the global extremum see Notes32.

9. Conditional extremum. In Example 1.12, the stationary condition was in-
effective due to the presence of additional restrictions. The development of
methods for solving the problem for the conditional extremum of a function
seems to be very important. In the next chapter, we consider the problem of
minimizing a function on an interval and the problem of minimizing a function
of two variables related by some equality. More difficult conditional extremum
problems related to optimal control theory are explored in later parts of the
book.

10. Alternative methods. To solve the problem of minimizing functions, the
stationarity condition was used. However, there are other methods for solving
such problems; see Notes33.

11. Dependence on parameters. When solving applied problems for an ex-
tremum, the value to be minimized often depends on some parameters. In
practice, these parameters are known with some errors. In this regard, the
question arises, how small an error in determining the parameters will affect
the accuracy of solving the minimization problem? Let us also note such a cir-
cumstance. The minimized functions in Examples 1.2 and 1.3 and, respectively,
in Examples 1.9 and 1.10 are quite close. In particular, they are polynomials of
the same order, differing only in lower terms. At the same time, the properties of
the corresponding problems differ significantly. Particularly, we considered the
function f(x) = x3–ax, where the parameter a is zero in Example 1.9 and three
in Example 1.10. However, in the first case, there is a unique solution of the
stationary condition, which is an inflection point, and in the second, there are
two solutions, which are points of local extrema. Obviously, for arbitrarily small
positive values of this parameter, the function will have the same properties as
in Example 1.10. However, with a = 0, we get Example 1.9 with qualitatively
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different properties. Consequently, with a small change in the parameter, the
problem of minimizing a function qualitatively changes its properties. Such
effects are discussed in the next chapter.

12. Generalizations. We have considered the simplest problem of minimizing a
function of one variable. In Appendix, the established results are naturally
extended to functions of many variables. In the subsequent parts of the book,
optimal control problems will be considered in which functionals defined on a
certain class of functions are minimized under additional constraints.

1.2 APPENDIX

When analyzing the examples discussed earlier in the Lecture, we had some problems that
need additional research. There are the problems of existence and uniqueness of a function
minimum, a sufficient condition for an extremum, and the minimization of a non-smooth
function. Below, we present results that clarify the situation, and the examples given earlier
will be considered as applications. The final section provides information about the problem
of minimizing functions of many variables.

1.2.1 Existence of function minimum

In most of the examples considered earlier, the minimum of the function exists, but
in some cases the minimization problem was be unsolvable. All these examples are
quite simple, so that it was quite easy to find a solution to the problem or to establish
the absence of its solution. However, it would be extremely interesting to know why
some functions have minima and others do not. The classical result in the field of
solvability of extremum theory problems is the following assertion34.

Theorem 1.2 (Weierstrass theorem). The continuous function on a closed35

bounded36 set has its minimum and maximum.

Proof. Let a continuous function f defined in a closed bounded domain U of
the real line be given. Then the set of values f(U) is bounded. Therefore, there
exists inf f(U), and hence a sequence {xk} of elements of the set U such that
f(xk) → inf f(U). Since the set U is bounded, this sequence is bounded too. Us-
ing the Bolzano–Weierstrass theorem37, we extract from it a subsequence {xs} such
that xs → x. Since the set U is closed38, the inclusion x ∈ U is true. Taking into
account the continuity of the function f , we obtain the convergence f(xs) → f(x).
However, the entire sequence {f(xk)}, and hence any of its subsequences, has the
number inf f(U) as its limit. This implies that there exists a point x from the set U
for which the equality f(x) = inf f(U) holds. Thus, the considered function reaches
its minimum on the given set. The existence of its maximum is proved similarly. □

The requirement that the set on which the function is minimized be closed is
very essential. Thus, in the problem of minimizing the function f(x) = x on an open
interval (0, 1), we have the function that is continuous in a bounded set. However,
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this problem has no solution due to the absence of a minimum positive number. The
same function on the closed unbounded set (−∞, 0], also has no minimum. On the
other hand, the function f(x) = 1/x has no extremum on the closed bounded set
[−1, 1], since it is not there continuous.

We considered the minimization problem for the function f(x) = (x+ 1)2 on the
interval [0, 1]; see Example 1.11. We are indeed dealing with a continuous function
defined on a closed bounded set. Thus, this problem has a solution due to Theorem
1.2. However, for all the other examples considered earlier, we are unable to use this
result, since they consider problems for an unconditional extremum, which means
that we are talking about minimizing a function on the real line, which is not a
bounded set. Nevertheless, in most of the considered examples, the minimum of the
function exists. In this regard, we would like to have a statement that guarantees the
solvability of the minimization problem for functions in unbounded domains. Such a
result can be established if the function satisfies some additional property.

Definition 1.5 A function f is called coercive if for |xk| → ∞ there is a convergence
f(xk) → +∞.

The following assertion is true39.

Theorem 1.3 The continuous coercive function lower bounded on a closed subset of
the real line reaches its minimum.

Proof. Since the function f is lower bounded on the closed set U , its infimum
inf I(U) exists. Thus, there is a sequence {xk} of elements of the set U such that
f(xk) → inf f(U). Suppose that this sequence is not bounded, i.e., |xk| → ∞. Then,
due to the coercivity of the function f , we obtain f(xk) → +∞. However, it was
previously established that the sequence {f(xk)} has the lower bound of this function
as its limit. Therefore, the assumption that the sequence {xk} is unbounded is not
true. The proof ends in the same way as in Theorem 1.2. □

Let us now turn to the examples considered earlier. Everywhere, with the excep-
tion of Example 1.11, the whole set of real numbers, which is closed, was used as
the domain of definition. All considered functions were continuous. In Example 1.1,
the function f(x) = x2 was minimized, which is obviously bounded below and co-
ercive. Thus, the existence of its minimum follows from Theorem 1.3. The functions
f(x) = 3x4–4x3–12x2, f(x) = x4–2x2 and f(x) = |x| considered in Examples 1.2,
1.3 and 1.10, as well as the function from Example 1.6, have similar properties. In
all these cases, the solvability of the minimization problem is also established using
Theorem 1.3. On the other hand, this statement is not applicable to the functions
f(x) = x, f(x) = x3 and f(x) = x3–3x considered in Examples 1.8, 1.9 and 1.10
because they are unbounded from below. All of them do not have minimums. There
remains the function f(x) = sin x from Example 1.5, which, being bounded, is not
coercive. However, it reaches its minimum. Note that the conditions of Theorems
1.2 and 1.3 are sufficient conditions for the existence of a minimum of the function,
i.e., violation of these properties does not mean that the corresponding minimization
problem turns out to be unsolvable40.
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1.2.2 Uniqueness of function minimum

In many of the examples considered earlier, the minimum point of the function was
unique, but in some cases, the solution was not unique. In this regard, we would like
to reveal the properties of the function, under which the uniqueness of the solution
of the minimization problem would be guaranteed.

Definition 1.6 A function f determined on the interval [a, b] is convex41 if the
following inequality holds

f
(
αx+ (1 − α)y

)
≤ αf(x) + (1 − α)f(y) ∀x, y ∈ [a, b], α ∈ (0, 1).

If in this relation the equal sign is realized only when x = y, then the function is
called strictly convex.

The convexity of a function defined on the whole number axis is defined similarly.
Geometrically, the convexity of a function means that the part of the curve f = f(x),
connecting the points with coordinates (x, f(x)) and (y, f(y)), is located no higher
(for a strictly convex function – below) the line segment connecting these points; see
Figure 1.15.

Figure 1.15 Convexity of functions.

The sufficient condition for the uniqueness of the minimum of a function gives
the following statement42.

Theorem 1.4 The strictly convex function on an interval or on a real line has at
most one minimum point43.

Proof. Suppose there are two distinct points x and y of the minimum of a strictly
convex function f on the set U , which is a segment or the entire set of real numbers.
Then the point αx+(1–α)y for any number α ∈ (0, 1) belongs to the considered set44.
Taking into account the strict convexity of the function, we establish the inequality

f
(
αx+ (1–α)y

)
< αf(x) + (1–α)f(y) = αmin f(U) + (1–α) min f(U) = min f(U).
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Thus, there is such an element of the set U , on which the value of the functional is
less than the minimum possible value. Thus, the assumption of the existence of two
different minimum points led to a contradiction. □

Let us make sure that the function f(x) = x2 considered in Example 1.1 is strictly
convex. Indeed, we have

f(
(
αx+ (1–α)y

)
–αf(x)–(1–α)f(y) = [αx+ (1–α)y]2–αx2–(1–α)y2

= α(α− 1)(x2–2xy + y2) = α(α− 1)(x–y)2.

Obviously, the value on the right side of this equality is not positive because of the
inclusion α ∈ (0, 1), and the equality to zero here is possible only for x = y. Thus,
the function under consideration turns out to be strictly convex, and the unique-
ness of the previously established solution to the problem of its minimization follows
from Theorem 1.4. Similarly, the uniqueness of the minimum point of the function
f(x) = (x+ 1)2 on the interval [0,1] described in Example 1.12 is established. On the
other hand, the functions in Examples 1.3 and 1.5 are non-convex, and the function
in Example 1.6 is convex, but not strictly convex; see Figure 1.8. As a result, it is
clear why the problems of their minimization have not a unique solution. However,
the function f(x) = |x| from Example 1.11, being not strictly convex, has a unique
minimum point45. A unique minimum exists both for the non-convex function shown
in Figure 1.9 and for the non-convex function f(x) = 3x4–4x3–12x2 considered in
Example 1.2. However, in the latter case, there is additionally a local minimum. An
example of a non-convex function with a unique minimum point is shown in Figure
1.1646.

Figure 1.16 Non-convex function with a unique minimum.

1.2.3 Tikhonov well-posedness of problems

In Example 1.7, we considered the Tikhonov ill-posed problem of minimizing a func-
tion. A minimizing sequence was specified that did not converge to the minimum
point of the given function. Below, we present one result on the well-posedness of the
function minimization problem of a general form. In this case, the following property
will be used, which is a strengthened version of the convexity of the function47.
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Definition 1.7 A function f determined on the interval [a, b] is strongly convex if
the following inequality holds

f
(
αx+ (1 − α)y

)
≤ αf(x) + (1 − α)f(y)–cα(1–α)(x–y)2 ∀x, y ∈ [a, b], α ∈ (0, 1),

where c is a positive number.

The following assertion is true48.

Theorem 1.5 If the function f strongly convex, then the problem of its minimization
is Tikhonov well-posed.

Proof. Let x be the minimum point of the given function, and let {xk} be an
arbitrary minimizing sequence, i.e., f(xk) → inf f . To prove the theorem, it suffices
to establish the convergence xk → x.

We have

f
(
αxk + (1–α)x

)
≤ αf(xk) + (1–α)f(x)–cα(1–α)(xk–x)2.

This implies the inequality

f
(
αxk + (1–α)x

)
− f(x) ≤ α[f(xk) − f(x)]–cα(1–α)(xk–x)2.

By optimality of the number x, the value at the left-hand side of this inequality is
non-negative. After division by α, we obtain

c(1–α)(xk–x)2 ≤ f(xk) − f(x).

The parameter α is arbitrary, so we can pass to the limit as α → 0. Thus, we obtain
the inequality

0 ≤ c(xk–x)2 ≤ f(xk) − f(x).

The sequence {xk} is minimizing sequence. Therefore, the value on the right-hand
side here tends to zero. Now we have the convergence (xk–x)2 → 0, i.e., the sequence
{xk} tends to the point of minimum x. Thus, this problem is Tikhonov well-posed.
□

Example 1.1 considers the function f(x) = x2. Check its convexity. For all values
x, y and α ∈ (0, 1) we find

f(αx+ (1 − α)y) − αf(x) − (1 − α)f(y) = [αx+ (1–α)y]2

= –α(1–α)(x2–2xy + y2) = –α(1–α)(x–y)2.

Thus, the strong convexity property is true in the form of equality with constant
c = 1, so the problem is well-posed. However, the function from Example 1.7 is non-
convex; see Figure 1.9. Therefore, the ill-posedness of the corresponding minimization
problem is quite natural.
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1.2.4 Sufficient conditions of function minimum

In Example 1.1, the stationary condition was a necessary and sufficient condition
for the minimum of functions, while in the following examples, individual stationary
points were not solutions to the minimization problem. In these examples, we found
all solutions of the stationary condition, calculated the values of the function at each
of these points, and then found the solution to the problem, leaving only those points
at which the value of the function turned out to be the smallest. Naturally, such a
procedure is possible only in exceptional situations, when the considered function
is sufficiently simple, and we can find all stationary points. A more realistic case is
when a stationary point is found, and one would like to know whether it is a point,
if not of an absolute, then at least of a local minimum of a given function. Below is
one result in this direction49.

Theorem 1.6 If at a stationary point the second derivative of the function is pos-
itive (respectively, negative), then at this point a strict local minimum (respectively,
maximum) of this function is reached.

Proof. Suppose that for the function f = f(x) at some point x0, the conditions
f ′(x0) = 0 and f ′′(x0) > 0 are true. By the last inequality, the first derivative of the
function at the point x0 increases. Considering that the value of the derivative at the
point itself is equal to zero, we conclude that for a sufficiently small positive number ε,
the derivative f ′(x) is negative if x ∈ (x0–ε, x0) and positive if x ∈ (x0, x0 +ε). Using
the Lagrange finite-increments formula, for any point x ∈ (x0–ε, x0) the following
equality holds f(x) = f(x0)–f ′(ξ)(x0–x), where ξ ∈ (x, x0). Taking into account
the negativeness of the derivative, we conclude that f(x) > f(x0). Similarly, for any
point x ∈ (x0, x0 + ε) we have f(x) = f(x0) + f ′(ξ)(x–x0). Taking into account the
positiveness of the derivative, we conclude that f(x) > f(x0). Thus, for sufficiently
small ε, the last inequality is true for any point from the interval (x0–ε, x0 +ε), other
than x0. Therefore, x0 is indeed a strict local minimum point of this function. The
properties of the local maximum are established similarly. □

Let us use this theorem for further analysis of the previously described examples.
Example 1.1 considered the function f(x) = x2, which has a unique stationary point
x = 0. Its second derivative is 2, i.e., positive. Then, by virtue of Theorem 1.5, this
point reaches a minimum, which was established earlier. Example 1.2 considered the
function f(x) = 3x4–4x3–12x2 with three stationary points x1 = –1, x2 = 0, x3 = 2.
Find the second derivative f ′′(x) = 12(3x2–2x–2). Determine the corresponding val-
ues at the indicated points: f ′′(–1) = 36, f ′′(0) = –24, f ′′(2) = 72. As a result, we
conclude that a strict local minimum is realized at the points x1 and x3, and a strict
local maximum is realized at the point x2, which is consistent with the results ob-
tained earlier; see Figure 1.2. Similar reasoning can be carried out for Examples 1.3
and 1.5.

Theorem 1.6 does not consider the case when the second derivative of a func-
tion vanishes at its critical point, which is the case for Example 1.10. However, the
corresponding results can be easily obtained using higher-order derivatives50.
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1.2.5 Minimization of non-smooth functions

In almost all the cases considered earlier, differentiable functions were investigated.
However, in Example 1.11, a non-smooth function f(x) = |x| was given. The question
arises whether the stationary condition can be somehow extended to problems of this
nature. A similar result could be obtained by generalizing the concept of a derivative.

Definition 1.8 A number p is called a subgradient of the function f at the point
x0 if for any number x the following inequality holds

f(x) ≥ f(x0) + p(x–x0).

The set of all subgradients of a function at a given point is called its subdifferential
and is denoted by ∂f(x0). If the subdifferential of a function at a point is not empty,
then the function is said to be subdifferentiable at the given point.

The function subgradient has a natural geometric meaning. Consider the line
l(x) = f(x0) + p(x–x0). According to the above inequality, the line l does not lie
above the curve f , and they coincide at the point x0. Then p is the tangent of the
angle between the line l and the x-axis; see Figure 1.17. We recall that the derivative
is the tangent of the slope of the tangent at a given point.

Figure 1.17 Derivative and subgradient.

If the function f is differentiable at the point x0, then, obviously, its derivative
f ′(x0) is a subgradient (it suffices to compare the graphs in Figure 1.17). It is easy
to verify that for continuously differentiable functions the subdifferential consists
of a unique element that is the derivative, and in the case when there is a unique
subgradient at some point, then the derivative of the function at this point exists and
is equal to the subgradient51. Thus, the subgradient turns out to be a generalization
of the concept of derivative52.

Consider, as an example, the function f(x) = |x|. At any point other than zero,
this function is differentiable, which means that its subdifferential consists exclu-
sively of a derivative equal to –1 for negative values of the argument and 1 for its
positive values. Hence, it follows that ∂f(x) = {–1} if x < 0 and ∂f(x) = {1} if
x > 0. It remains to define the subdifferential at zero, where the given function is not
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differentiable. For any p ∈ [–1, 1] we have px ≤ |p||x| ≤ |x| for any x, i.e.,
f(x0) + p(x–x0) ≤ f(x) for x0 = 0. Thus, the inclusion [–1, 1] ⊂ ∂f(0). Suppose
now that for |p| > 1 we have p ∈ ∂f(0). Then, using the definition of a subgradient,
we establish that |x| ≥ px for any x. Assuming x = p, we get |p| ≥ |p|2, which cannot
be. Thus, we obtain the equality ∂f(0) = [–1, 1]; see Figure 1.18.

Figure 1.18 Subdifferential of the function f(x) = |x| at zero.

Theorem 1.7 If a subdifferentiable function f at a point x0 has a minimum at this
point, then the following inclusion holds 0 ∈ ∂f(x0).

Indeed, the inequality f(x) ≥ f(x0) + p(x–x0) for p = 0 is f(x) ≥ f(x0). Since,
according to the definition of the subgradient, this relation must hold for all x, we
conclude that at the point x0 this function has a minimum53.

Theorem 1.7 is a generalization of Theorem 1.1, because if a function is differen-
tiable, its only subgradient is the derivative, which, by virtue of Theorem 1.7, is equal
to zero54. As an illustration, let us return to Example 1.11, for which f(x) = |x|. It
was previously established that the subdifferential of this function consists of a unique
value –1 for negative x, a unique value of 1 for positive x, and is a segment [–1,1]
at the zero point. Obviously, the zero value of the subgradient can only be reached
at zero. Thus, only the point x0 = 0 can be the minimum point of the considered
function. Naturally, the function f(x) = |x| reaches its minimum at this point.

1.2.6 Minimization of functions of many variables

A natural generalization of Problem 1.1 is its vector analog, i.e., the problem of
unconditional minimization of a function of many variables.

Problem 1.2 Find a point of minimum for a function f = f(x1, x2, ..., xn).

Having defined the vector x = (x1, x2, ..., xn), we can formally reduce Problem
1.2 to Problem 1.1 of minimizing the function f = f(x). Almost all results related to
the minimization of the function of one variable remain valid here.

The vector analog of the stationary condition f ′(x) = 0 is the equality

▽f(x) = 0. (1.5)
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Here ▽f(x) is the gradient of the function f at the point x, i.e., a vector whose
components are all partial derivatives of the function under consideration at a point
x of the n-dimensional Euclidean space Rn, and 0 is the zero element of this space,
i.e., an n-dimensional vector with all components equal to zero. The vector analog of
Fermat theorem is the statement that in order for a differentiable function of many
variables to have a minimum at some point, it is necessary that its gradient at this
point vanishes55, i.e., relation (1.5) was satisfied. More precisely, it is a necessary
condition for a local extremum of a function of many variables. We know that the
stationary condition is an algebraic equation with respect to the extremum point.
Analogically, the formula (1.5) is a system of algebraic equations.

A continuous function of many variables in a closed bounded set of Euclidean
space reaches its maximum and minimum. Moreover, a continuous coercive func-
tion of several variables bounded from below on a closed subset of the Euclidean
space reaches its minimum. The function f is called coercive here if the convergence
f(x) → +∞ takes place as |x| → ∞, where |x| is the modulus of the vector.

The formulation of the uniqueness theorem for a function of many variables uses
an extremely important property of the domain of the considered function56.

Definition 1.9 A subset U of Euclidean space is called convex if the following con-
dition holds

αx+ (1–α)y ∈ U ∀x, y ∈ U, α ∈ (0, 1).

The geometric meaning of this definition is as clear as possible for flat sets. In
particular, a set is convex if, with any two of its points, it completely contains the
line segment connecting these points; see Figure 1.19. Naturally, the segment [a, b] is
a convex subset of the real line.

Figure 1.19 Convexity of sets on the plane.

As is known, sufficient conditions for the extremum of a function of one variable
at the stationary point were determined by the sign of its second derivative. For a
function of n variables, the analog of the second derivative is the Hessian, which
is the square matrix of the n order, the elements of which are all possible partial
derivatives of the second order of the given function at the point under consideration.
If the Hessian of the function at the stationary point, i.e., on the solution of the
system of equations (1.5), is positive definite, then this point is the point of the local
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minimum of the function, and if it is negative definite, then this is the point of its local
maximum. The matrix A is called positive definite here if the following inequality
holds

⟨Ax, x⟩ > 0 ∀x ∈ Rn, x ≠ 0,

and negative definite, if here the > sign is replaced by <, and the dot product
of the corresponding vectors (the sum of the products of their components) is on the
left side of this inequality.

If a function of many variables has a minimum at some point, then the zero vector
belongs to the subdifferential of the function at this point, where the subdifferential
of the function f at the point x0 consists of all vectors p (subgradients) satisfying
the following inequality57.

f(x) ≥ f(x0) + ⟨p, x− x0⟩ ∀x ∈ Rn.

Additional conclusions

Based on the results presented in Appendix, some additional conclusions can be
drawn about the function minimization problem.

• The existence of a minimum and a maximum of a function is guaranteed if the
function itself is continuous and the area on which it is minimized is closed and
bounded.

• The existence of a minimum of a continuous function on an unbounded closed
set is guaranteed if the function itself is lower bounded and coercive.

• In the absence of the above restrictions, the existence of a minimum of the
function is possible, but not guaranteed.

• The uniqueness of the minimum point is guaranteed for a strictly convex func-
tion considered on a segment or on the entire real line.

• In the absence of the above properties, the uniqueness of the minimum of the
function is possible, but not necessary.

• Tikhonov well-posedness of the function minimization problem is guaranteed
in the case of strong convexity of this function.

• If at the stationary point the second derivative of the function is positive (re-
spectively, negative), then at this point a strict local minimum (respectively,
maximum) of the function is reached.

• A generalization of the stationary condition to non-smooth functions is the
condition of including zero in the subdifferential of a function at the point of
its local minimum.
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• The previous statement can be used for the problem of minimizing a modulus
that is a subdifferentiable but not differentiable function.

• If a function is differentiable at a point, then its derivative is its unique sub-
gradient at that point.

• If a function is subdifferentiable at a point, and the subdifferential consists of a
unique element, then the latter is the derivative of the function at that point.

• The results obtained are naturally extended to problems of minimizing a func-
tion of many variables.

Notes

1. Here and throughout what follows we focus on those examples in which some unusual
effects are observed that are manifestations of certain difficulties. Such examples are usually
called counterexamples; see [77], [78].

2. A significant amount of literature is devoted to problems of minimizing functions; see, for
example, [26], [41], [42], [49], [65], [70], [69], [79], [112], [132], [139], [141], [149], [180], [193]. One
can also consider the problem of finding the minimum of a function of many variables and even
functionals, i.e., transformations that associate an object of an arbitrary nature (for example,
a function) with a certain number. Calculus of variations (see [37], [61], [208]) is related to the
problems of minimizing functionals, as well as the theory of optimal control, which is the direct
subject of this book.

3. The stationary condition is classified as a first-order extremum condition, since it uses
only the first derivative of the function being minimized

4. In fact, on this idea of comparing the minimized function or functional at the minimum
point and on its perturbation, the variational method is based, which underlies the theory of
extremum, in particular, the calculus of variations.

5. Critical points of functionals in the calculus of variations are called extremals.

6. The study of critical points of a function is connected with Morse theory; see [15], [94],
[131], [153].

7. The above concepts naturally extend to functions of many variables and functionals of
general form.

8. Neighborhood is an essential concept in topology; see, for example, [101]. For the functions,
everything is quite obvious, but when passing to functionals, it is necessary to clarify what
exactly is meant by neighborhoods. It is intuitively clear that the neighborhood of a point is
the set of points sufficiently close to it. However, in the general case, a point can be understood
as a function or even a vector function, as a result of which the meaning of the concept
of proximity requires clarification. In particular, in the calculus of variations, the conditions
of a weak and strong extremum are considered, which just differ in the definition of the
neighborhoods, see [37], [61].

9. The problem of finding the unconditional minimum of a function of one variable is not
necessarily considered here. P can be understood as a problem of minimizing some functional
on an arbitrary set.
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10. We do not consider here proper sufficient extremum conditions. On sufficient conditions for
the calculus of variations; see [37], [61], [208]. Sufficient conditions in optimal control problems
are given, for example, in [70], [85], [108], [146].

11. Since the extremum condition, which is both necessary and sufficient, will be equivalent
to the original problem of finding an extremum, they have the same degree of difficulty. The
fact that the stationary condition is, in principle, a simpler object of study than the original
problem requires a certain price. Such is the possibility of obtaining ”extra” solutions.

12. To clarify the question why “extra” points appear in the process of studying the stationary
condition, let us return to the proof of Theorem (1.1). If the considered point x delivered the
maximum, and not the minimum, of the function f , then the value on the left side of inequality
(1.2) would have the opposite sign. As a result, instead of (1.3), we would obtain relation (1.4),
and instead of inequality (1.4), condition (1.3). Thus, both inequalities (1.3) and (1.4), and
hence the stationary condition (1.1), can be equally obtained in the case when x is the minimum
and maximum point of the function f . Therefore, on the basis of equality (1.1) it is impossible
to distinguish the minimum from the maximum of the function. If now x turns out to be only
a point of only a local minimum of the function, then relation (1.2) will be valid not for all
h, but only for small enough values of this parameter. In this case, nothing prevents us from
again passing to the limit at h → 0 and obtaining inequality (1.3), and hence the stationary
condition. This explains the fact that the extremum condition (1.1) can be satisfied not only
by the global extremum point of the function, but also by any point of its local extremum.

13. We will encounter the absence of sufficient optimality conditions for various optimal control
problems more than once; see, in particular, Chapters 5, 6, 10, 14, and 15.

14. Pay attention to the fact that the considered function is even, i.e., is invariant under sign
change. Indeed, two values of the argument that differ in sign correspond to the same value of
the function. This circumstance explains the lack of uniqueness of the solution of the problem.
We will encounter similar effects in the analysis of optimal control problems; see Chapters 5,
11, 14, and 15.

15. Examples of optimal control problems in which both the uniqueness of the solution and
the sufficiency of the extremum conditions are absent will be considered in Chapters 5, 6, 11,
14, and 15.

16. We will encounter this property more than once when studying optimal control problems.

17. We will meet the considered function in Chapter 5 when studying an optimal control
problem that has three solutions; see Example 5.3.

18. Example 5.1 will consider an optimal control problem for which the optimality conditions
also have an infinite set of solutions. However, only two of them are optimal. Other examples
with similar properties are also discussed in Chapters 6, 11, 15.

19. Here, we have a set with continuum cardinality. In Section 1.2.2, we consider an optimal
control problem whose solution set is also a continuum set; see Example 6.1. Characteristically,
in both cases we are dealing with a function and a functional that are convex but not strictly
convex. Qualitatively different examples of optimal control problems with a continuum set of
solutions are given in Chapters 11 and 15.

20. This example is considered in [193]

21. For the same purpose, we can consider the sequence yk = –k, k = 1, 2, ... or a sequence
whose elements take the values k and –k through time.
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22. Similarly, the concept of Tikhonov well-posedness is introduced for problems of minimiza-
tion of functionals; see Section 1.2.4. In Chapter 2, the concept of Hadamard well-posedness
will also be defined.

23. Any extremal problems with non-unique solutions are Tikhonov ill-posed. As a non-
converging minimizing sequence for them, one can choose a sequence in which different so-
lutions of the problem alternate. Examples of optimal control problems that are ill-posed in
the sense of Tikhonov are considered in Chapters 8, 12, and 15; see also [194].

24. Approximate methods for solving function minimization problems are described in the next
chapter.

25. In this regard, the question of what should be understood as an approximate solution of
the function minimization problem becomes relevant; see Chapter 2.

26. The proof of Theorem 1.1 begins with the assumption that x is the minimum point of the
function under consideration. If this assumption is not realized, then the subsequent reasoning
loses its meaning. However, if a solution to the problem existed, then it would certainly satisfy
the stationary condition. Thus, the absence of solutions to the stationary condition is a sure
sign that the absolute minimum of the function does not exist. Examples of optimal control
problems that have no solution are given in Chapters 7, 11, and 15.

27. This circumstance is connected with the absence of extrema in the considered function. In
this case, we are dealing with the inflection point of the function. Curiously, at this point, not
only the first, but also the second derivative of the function vanishes. However, one should not
think that the vanishing of the first two derivatives of a function at some point is evidence that
we are dealing precisely with an inflection point. A similar situation is realized, for example,
for the function f(x) = x4 at zero. However, this feature has an absolute minimum there. For
a function of one variable, the solution of the stationary condition turns out to be either an
extremum point (local or global) or an inflection point. For functions of many variables, and
even more so for functionals of general form, there is a much richer variety of forms of critical
points; see [11]

28. This situation is especially unpleasant in the practical solution of extremal problems, which,
as a rule, is carried out on the basis of certain approximate methods. Indeed, if the extremum
condition has no solution, then in the process of numerically solving the problem, we will
not get anything. However, in the situation of Example 1.9, by solving the extremum condition
approximately, we can determine its solution. Since nothing else can be found, and the structure
of the real problem is rather complicated, a false impression may arise that a solution to the
minimization problem has been found. In Chapter 11, an optimal control problem is presented
that has no solution, while the solution of the corresponding necessary optimality condition for
the solution has; see Example 11.6.

29. Naturally, in the case when the function being minimized is not differentiable, we cannot
obtain inequality 1.2 and the stationary condition that follows from it. Nevertheless, the task
of minimizing this function is quite meaningful, and therefore, the development of effective
methods for solving such problems is of undoubted interest.

30. A method for solving such problems is described in the following chapter

31. Naturally, in the case when the stationary point satisfies the given constraints, it can be
a solution to the problem. In particular, if the function f(x) = (x + 1)2 is minimized on the
interval [–2, 0], then the only stationary point x = –1 turns out to be a solution to this problem.
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32. For methods for finding the global minimum of functions; see [39], [69], [70], [92][147], [202]

33. Other methods for finding function extrema are considered in [26], [35], [41], [42], [49], [65],
[69], [70], [79], [132], [139], [141], [149], [112], [180], [193]

34. The Weierstrass theorem talks about the solvability of the conditional extremum problem,
which will actually be considered in the next chapter.

35. The closeness of a set is one of the most important topological concepts; see [101]. On
the number line, closed sets are the entire line, semi-infinite intervals (−∞, b], [a, ∞), closed
intervals [a, b], sets consisting of individual points {x}, and unions of the indicated sets. We
will meet with the closeness of sets in function spaces in Chapter 7 when proving the existence
of a solution to optimal control problems.

36. The concept of boundedness of a numerical set is quite natural. In passing to general
problems, the boundedness of a set will be understood as the uniform boundedness of the
norms of its elements.

37. In the transition to functional minimization problems, we will no longer be able to use
the Bolzano–Weierstrass theorem in proving the existence of a solution. However, there is a
generalization of it, called the Banach–Alaoglu theorem, which allows one to achieve the desired
results for a certain class of problems to be solved; see [94], [158].

38. Closed sets contain the limits of all convergent sequences of elements of this set. Thus, the
sequence {xk}, characterized by the equality xk = 1/k consists of elements of the non-closed
interval (0,1) and converges. However, its limit does not belong to this interval.

39. Chapter 7 generalizes Theorem 1.3 to the functional minimization problem on an un-
bounded subset of some normed vector space. In this case, the coercivity property of the
functionals will be used.

40. For example, a function that takes the value −1 for negative values of the argument and
1 for their positive values reaches its minimum, being discontinuous. A quadratic function on
the interval (–1,1) has a minimum point, although it is minimized on a non-closed set.

41. The concept of convexity can be naturally generalized to general functionals; see Chapter
5.

42. Chapter 5 will generalize Theorem 1.4 to the problem of minimizing a strictly convex
functional on a convex subset of a vector space.

43. In order to obtain sufficient conditions for the uniqueness of the maximum of a function,
it is required in the conditions of the theorem to replace the convexity of the function with the
concavity, which is determined by changing the inequality sign in Definition 1.5.

44. In fact, the convexity of the set U is used here. The definition of the convexity of a subset
of a Euclidean space is given in Section 1.2.6, and the general definition of a convex set is given
in Chapter 5.

45. Chapter 6 will consider an optimal control problem with a convex but not strictly convex
functional that has an infinite number of solutions. On the other hand, Chapter 9 describes
an optimization problem with a convex but not strictly convex functional whose solution is
unique.



34 ■ Optimization: 100 examples

46. The function depicted in Figure 1.16 can be called locally strictly convex in the sense that
it is strictly convex in a neighborhood of the minimum point. Chapters 3 and 5 will consider
optimal control problems that have a unique solution even in the absence of local convexity of
the quantity being minimized.

47. The concept of strong convexity of a function of one variable naturally extends to functions
of many variables and even to functionals. In this case, the value (x–y)2 on the right side is
replaced by the squared norm of the difference ∥x–y∥2.

48. A generalization of Theorem 1.5 to problems of functional minimization will be given in
Chapter 8.

49. In Theorem 1.6, a second order extremum condition is given, since the second deriva-
tive of the function being minimized is used here; see also [26], [42], [70], [75]. Chapter 6
contains a statement that is a generalization of Theorem 1.6. We are talking about the Kelley
condition, which characterizes the optimality of a singular control that is a specific solution of
the necessary optimality condition in the form of the maximum principle.

50. Let all derivatives of the function at the critical point up to order n–1 vanish, and the nth
order derivative be non-zero. If the number n is even, and this derivative is positive (respectively,
negative), then the minimum (respectively, maximum) of this function is realized at a given
point. If the number n is odd, then the extremum is not reached at this point. In particular,
Example 1.10 considers the function f(x) = x3 with the only stationary point x = 0. Here,
the second derivative is zero, but the third derivative is non-zero. Since we have an odd-order
derivative, there is no extremum at this point, which is consistent with previous results; see
Figure 1.11. On the other hand, the function f(x) = x4 also has a unique stationary point
x = 0. However, now we already have an even order of the derivative. The corresponding
fourth derivative is positive, and the function has a minimum at this point. Note, however,
that for the analysis of optimal control problems, which are considered in the subsequent parts
of the book and are the main objects of research, work even with second derivatives, as a rule,
turns out to be inefficient. However, Chapter 6 will give one second-order optimality condition.

51. The proof of this statement and other properties of the subgradient; see [60], [109], [193].

52. The extension of the class of differentiable functions in the transition to subdifferentiable
functions is provided by refusing the uniqueness property. The derivative is always unique, but
the subgradient is not.

53. It also follows from Theorem 1.7 that at the minimum point an arbitrary function is
subdifferentiable.

54. There are also more general constructions for non-smooth optimization, such as the Clarke
derivative; see [47], [48]. For non-smooth optimization methods; see also [54], [55], [60], [68],
[70], [133], [132], [139]. Chapter 4 will consider one optimal control problem with a non-smooth
functional.

55. The concept of a derivative naturally extends to functionals, which predetermines the
possibility of generalizing Fermat theorem to a much wider class of problems of finding an
extremum. In particular, a necessary condition for the minimum of a functional defined on a
topological vector space is that its Gateaux derivative vanishes at the minimum point. These
statements for one specific example will be established in Chapter 4. In problems of minimizing
functionals of general form, the stationary condition will no longer be an algebraic equation. In
particular, in the calculus of variations, the Lagrange problem is considered, which involves
the minimization of an integral functional depending on the unknown function and its deriva-
tive. The corresponding stationary condition is the Euler equation, which is a second-order
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ordinary differential equation. For the Dirichlet problem, which consists of minimizing some
special integral depending on a function of many variables and its partial derivatives, the sta-
tionary condition is the Poisson equation, which belongs to the class of partial differential
equations. On the differentiation of functionals in normed spaces; see, for example, [15], [100],
[109], and in topological vector spaces; see [16], [71]. On the connection between the theory of
extremum and the general theory of differentiation; see [171].

56. The convexity property naturally extends to subsets of an arbitrary vector space.

57. This statement also extends to the functional minimization problem; see [60].



C H A P T E R 2

Additions

In the previous chapter, we considered the problem of minimizing a differentiable function
of one variable, for which Fermat theorem was applied. Some additional results in this
direction are given below. In particular, the stationary condition obtained using Fermat
theorem is not applicable to the problem of minimizing a function on an interval. In this
case, one can use the variational inequality. Further, in practice, problems often arise that
include some parameters known with some error. We would like to find out whether a small
error in determining these parameters will really entail a small error in determining the
solution of the problem and how much the properties of the minimization problem change
depending on the parameter. Finally, in the examples given earlier, fairly simple functions
were considered, as a result of which the solution of the corresponding stationary condition
did not cause any special difficulties. However, for sufficiently difficult functions, it is not
possible to explicitly find a solution to the stationary condition, as a result of which different
iterative methods have to be applied. In Appendix, the problem of sufficiency of variational
inequality is studied, the function minimization problem with an equality-type constraint
is solved, the problem of well-posedness of extremal problems is posed, general methods for
the approximate solution of function minimization problem are described, and the types of
approximate solutions of such problems are determined.

2.1 LECTURE

In the process of analyzing function minimization problems in the previous chapter, we
encountered some problems that remained unresolved. In particular, in Example 1.12, we
considered the problem of minimizing a function on an interval, for which Fermat theorem
is inapplicable. To study such problems, one uses the variational inequality (Section 2.1.1).
Further, in Examples 1.9 and 1.10, the problem of minimizing the function f(x) = x3–µx

with the values of the parameter µ equal to zero and three, respectively, was considered.
Despite the obvious similarity of these problems, they have qualitatively different properties:
in the second case, the function has two local extrema, while in the first one there are none
at all. Below, we study the problem of minimizing a function depending on a parameter
(Section 2.1.2). Finally, in all the examples considered earlier, we easily carried out the
analysis of the stationary condition. However, for quite difficult functions, the solution of
the problem can only be established approximately (Section 2.1.3). Note that all three
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questions discussed are independent of each other, so that the following parts of the lecture
can be considered in any order.

2.1.1 Variational inequality

We considered the problem of minimizing the function f(x) = (x+1)2 on the segment
[0, 1]; see Example 1.12. It is a partial case of the following conditional function
minimization problem1.

Problem 2.1 Find a point of minimum for a function f = f(x) on an interval [a, b].

To solve this problem, it is not possible to use the Fermat theorem. However, the
following statement is true.

Theorem 2.1 If a differentiable function f = f(x) has a minimum at the point x
on the interval [a, b], then it satisfies the inequality

f ′(x)(y–x) ≥ 0 ∀y ∈ [a, b]. (2.1)

Proof. If x is the minimum point of the function f on the given segment, then
f(x) ≤ f(z) for all z ∈ [a, b]. Obviously, for any point y from [a, b], the point
z = x+ σ(y–x) will belong to the same segment for any number σ from the unit
segment, i.e., we are dealing with a convex set. Substituting this value into the pre-
vious inequality, we get f(x + σ(y–x))–f(x) ≥ 0. Dividing this inequality by σ and
passing to the limit as σ → 0, we get formula (2.1). □

Definition 2.1 The formula (2.1) is called the variational inequality2

Obviously, any stationary point satisfies the variational inequality, which in this
case is fulfilled in the form of an equality. It is easy to see that in the absence of
restrictions, the solution of the variational inequality necessarily satisfies the sta-
tionary condition3. Thus, the variational inequality is a natural generalization of the
stationary condition to the case of problems of minimizing a function on an interval.

Let us consider some fairly simple examples of the application of variational in-
equalities for the analysis of conditional function minimization problems.

Example 2.1 Find a point of minimum of the function f(x) = (x + 1)2 on the
interval [a, b].

From the inequality (2.1), it follows

(x+ 1)(y–x) ≥ 0 ∀y ∈ [a, b]. (2.2)

The first multiplier of the left-hand side here has the concrete value x + 1 deter-
mined by unknown solution of the problem. However, the second multiplier includes
a variable number y.
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Suppose the sum x+ 1 is positive, i.e., x > –1. After division inequality (2.2) by
x + 1, determine y–x ≥ 0, so x ≤ y for all y from the interval [a, b]. However, the
point x is a solution of the given problem; hence it belongs to this interval. This is
possible only if x equals to this least possible value, i.e., a. Thus, if x > –1, then
x = a. Finally, we conclude that we have x = a for a > –1.

Suppose now that x < –1. Then, after dividing inequality (2.2) by x + 1, we set
y–x ≤ 0, and hence x ≤ y for all values of y from the segment [a, b]. Considering the
inclusion x ∈ [a, b], we conclude that x must take the largest of all possible values,
i.e., b. Therefore, if x < –1, then x = b. Thus, we obtain that for b < –1 we have
x = b.

Finally, suppose the equality x = –1. Then the condition (2.2) is true. However,
this value can be the solution of the given problem only if it is admissible. Thus, the
solution of the problem is –1 if a ≤ –1 ≤ b.

Combining all the above results, we conclude that x = a for a > –1, x = –1
for a ≤ –1 ≤ b, and x = b for b < –1; see Figure 2.1. According to the Weierstrass
theorem (see Theorem 1.2), the considered problem has a solution that is unique by
Theorem 1.3. Since the necessary minimum condition (2.2) has a unique solution, we
conclude that it is the solution of this problem. In particular, in Example 1.11 the
considered function was minimized in the segment [0, 1]. Considering that in this case
the inequality a > –1 is valid, we conclude that the solution to the problem is the
minimum admissible value, i.e., 0.

Figure 2.1 Minimum of the function f(x) = (x + 1)2 on the interval [a, b].

In the problem of an unconditional extremum, the transition from the search for a
minimum to the search for a maximum can turn a solvable problem into an unsolvable
one and vice versa. However, according to the Weierstrass theorem considered in the
previous chapter, both a minimum and a maximum of a continuous function on an
interval exist. Let us apply Theorem 2.1 to find the maximum of the function from
the last example.

Example 2.2 Find a point of maximum of the function f(x) = (x + 1)2 on the
interval [a, b].

Obviously, it is equivalent to the minimization problem on the same interval of
the function f(x) = –(x+ 1)2. In this case, the variational inequality (2.1) takes the
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form
(x+ 1)(y–x) ≤ 0 ∀y ∈ [a, b]. (2.3)

To solve it, we use the method described above.
Let us assume that x > –1. Then, after dividing inequality (2.3) by x+ 1, we get

y–x ≤ 0, and hence x ≥ y for all values of y from the interval [a, b]. This is possible
only when x takes the largest of all possible values, i.e., b. So, if x > –1, then x = b.
Thus, we conclude that for b > –1, we have x = b. If x < –1, then after dividing
inequality (2.3) by x + 1, we get y–x ≥ 0, and hence x ≤ y for all values of y from
the interval [a, b]. Thus, x must take the smallest of all possible values, i.e., a. So, if
x < –1, then x = a, i.e., for a < –1 we have x = a. Finally, if the first multiplier on
the left side of inequality (2.3) vanishes, then x = –1, but this value can only be a
solution to the problem for a ≤ –1 ≤ b.

Let us summarize. For b < –1, among the three situations described above, only
the inequality a < –1 is realized, and hence x = a. For a > –1, only the condition
b > –1 is realized, and therefore, x = b. Finally, for a ≤ –1 ≤ b, all three situations
are possible4, which means that all three values x = –1, x = a, and x = b satisfy
formula (2.3).

In fact, the maximum of the considered function on this segment is reached at
point a for b < –1 and at point b for a > –1. However, for a ≤ –1 ≤ b, the solution to
the problem is one of the two values a or b, which corresponds to the largest value of
the given function. Thus, for the considered variational inequality, it turns out to be
a necessary but not sufficient condition for an extremum5.

2.1.2 Dependence of the solution on parameters

In problems of finding an extremum that arises in real applications, the value to be
minimized, as a rule, depends on parameters. They are often known with some error.
In this regard, it is of interest to evaluate the degree of influence of parameters on
the solution of the corresponding problem. We will not present any general results
here, confining ourselves to individual examples.

Example 2.3 Find a point of maximum of the function f(x) = (x–µ)2, where µ is
a numerical parameter.

Using Fermat’s theorem, we find the stationary point x = µ, which is naturally
the unique solution to this problem. In this case, the fact that the solution of the
problem continuously depends on the problem parameter is of particular importance.

Definition 2.2 A problem is called Hadamard well-posed6 if it has a unique
solution that continuously depends on the problem parameters7.

Thus, the minimization problem considered in Example 2.3 is Hadamard well-
posed. However, another situation is possible.

Example 2.4 Find a point of maximum of the function f(x) = 3x4–16x3 + 6µx2

with parameter µ from the open interval8 (0, 4).
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The corresponding stationary condition is x3–4x2 + µx = 0. The resulting cubic
equation has three solutions x1 = 0, x2 = 2 −

√
4 − µ and x3 = 2 +

√
4 − µ. It is easy

to verify that the first and third values correspond to the minimum, and the second
to the maximum. Then the solution of the problem will be that of the values x1 or
x3, on which the function f takes a smaller value. Obviously, f(0) = 0. Thus, the
solution to the problem is point 0 if f(x3) is positive, and x3 if it is negative9.

Let us determine the value f(x3) for the parameter µ, which takes the boundary
values of the selected interval. For µ = 0 we have x3 = 4, whence it follows that
f(x3) = –256. On the other hand, for µ = 4, we have x3 = 2, which implies that
f(x3) = 16. Obviously, the dependence of f(x3) on the parameter µ is continuous on
the interval [0, 4]. At the same time, at the ends of this segment, it takes on values of
different signs. Then there is such a number µ∗ ∈ (0, 4) that the corresponding value
of f(x3) vanishes10. Obviously, for an arbitrarily small number ε > 0 with µ = µ∗–ε
the number f(x3) is negative, which means that the solution to the problem is the
point x3. However, when µ = µ∗ + ε the number f(x3) is positive, and hence the
function f has its minimum at zero. Thus, changing the parameter µ by an arbitrarily
small value 2ε leads to a large change in the solution of the problem; see Figure 2.2.
Therefore, the problem under consideration is not Hadamard well-posed11.

Figure 2.2 Function f(x) = 3x4–16x3 + 6µx2.

In the last example, a situation was considered when, with a small change in the
parameter of the problem, a significant change in its solution occurred. However, the
general properties of the considered function with the parameter values µ = µ∗–ε
and µ = µ∗ + ε remain unchanged. In both cases, the function has a local minimum,
a local maximum, and an absolute minimum. However, there are situations when
a small change in the problem parameter not only entails a large change in the
solution of the problem, but also leads to a qualitative change in the properties of
the minimized function.

Example 2.5 Find a point of maximum of the function f(x) = x3–µx with param-
eter µ.

The case µ = 0 corresponds to Example 1.9, and when µ = 3 we get Example
1.10. The corresponding stationary condition 3x2 = µ in the first case has a unique



Additions ■ 41

solution x = 0, which is the inflection point of the considered function; see Figure
1.11, and in the second case, there are two stationary points x = –1 and x = 1, the
first of which corresponds to a local maximum, and the second to the local minimum.
Moreover, with negative values of the parameter µ, for example, with µ = –1, the
stationary condition has no solution at all12. Thus, the behavior of the function for
parameter values from an arbitrarily small neighborhood of zero can be different in
quality: for positive values of the parameter µ, there are two local extrema, for zero,
there is only an inflection point, and for negative values, there are no stationary
points at all; see Figure 2.3.

Figure 2.3 Function f(x) = x3–µx.

Definition 2.3 Changing the number of solutions to a certain problem depending
on its parameters is called a bifurcation13, and the value of the parameter, when
passing through which this change occurs, is called a bifurcation point.

Thus, in this example, we have a bifurcation of solutions to the stationary condi-
tion for the considered function. In the final part of the following section, the behavior
of the algorithm for the approximate solution of the problem of minimizing a function
depending on a parameter will be considered14.

2.1.3 Approximate solving of the stationary condition

Earlier, we reduced the function minimization problem using Fermat Theorem to
the stationary condition, which is an algebraic equation. Since all the considered
functions were quite simple, the practical solution of this equation did not cause dif-
ficulties. However, in the general case, finding stationary points is a serious problem,
which requires the use of different iterative algorithms. In this case, the question of
convergence naturally arises. Below, we describe the corresponding algorithms for suf-
ficiently simple functions, when it is quite easy to establish whether these algorithms
converge, and if they converge, then where.
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Example 2.6 Find a point of maximum of the function f(x) = x2/2 + e–x.

Find the derivative f ′(x) = x − e–x. The corresponding stationary condition
x = e–x is the transcendental equation15. It is very difficult to find its solution ana-
lytically. However, one can try to solve it approximately using an iterative algorithm.
Choose an initial iteration x0. The simplest iterative process is characterized by the
equality xk+1 = exk , where k is the iteration number and xk is the corresponding
k-th approximation.

Definition 2.4 The described algorithm corresponds to the method of successive
approximations16 or the method of simple iteration.

It is known 17 that the algorithm xk+1 = F (xk) converges to a unique solution
of the algebraic equation x = F (x) for any initial approximation if the following
inequality holds18 |F ′(xk)| < 1 for all sufficiently large values of k. In this case, we
have F (x) = e–x, which means F ′(x) = –e–x. Then the last inequality reduces to
the condition e–x < 1, which is realized for all positive values of x. Obviously, for
any initial approximation x0 the value x1 = e−x0 is positive. All subsequent values of
xk are also positive. Thus, the given convergence condition is certainly satisfied, at
least starting from the number k = 1. Thus, the iterative process converges for any
initial approximation to a unique solution of the stationary condition, which is the
only minimum point of this function19. The minimized function and the behavior of
the algorithm are shown in Figure 2.4.

Figure 2.4 Function from Example 2.6 and analysis of the stationary condition.

In the considered example, for any initial approximation, the algorithm converges
to the solution of the problem. However, such a situation is not always observed.

Example 2.7 Find a point of maximum of the function f(x) = (x–1)4/4–x2/2.

Determine the derivative f ′(x) = (x–1)3–x. Now, the stationary condition is
x = (x–1)3. This equation is solved iteratively by the equality xk+1 = (xk–1)3. It is
easy to see that, although the stationary condition has a unique solution, the iterative
process diverges for any initial approximation20; see Figure 2.5.

In addition to the unconditional convergence and unconditional divergence of the
algorithm, an intermediate situation is also possible.
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Figure 2.5 Function from Example 2.7 and analysis of the stationary condition.

Example 2.8 Find a point of maximum of the function f such that f(x) = x3/3 for
x > 0 and f(x) = x2/2 + x/2 + 2/3(1/4–x)3/2 + 1/12 if x < 0.

This function is continuously differentiable, besides f ′(x) = x2 if x > 0 and
f ′(x) = x + 1/2–(1/4–x)1/2 if x < 0. Write the stationary condition as an equality
x = F (x), where F (x) = x2 + x if x > 0 and F (x) = –1/2 + (1/4–x)1/2 if x < 0. The
solution of the obtained algebraic equation will again be sought using an iterative
process characterized by the equality xk+1 = F (xk). Note that F ′(x) = 2x + 1 > 1
for x > 0 and 0 < F ′(x) = 1/2(1/4–x)−1/2 < 1 for x < 0. It is easy to see that
for negative initial approximations, the algorithm converges to the unique stationary
point x = 0, which is the solution to this problem, while for positive values of the
initial approximation, the process diverges; see Figure 2.6.

Figure 2.6 Function from Example 2.8 and analysis of the stationary condition.
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Thus, a situation is possible when the algorithm converges for some initial approx-
imations and diverges for other initial approximations. Thus, in the case of divergence
of the iterative process, the desired result can sometimes be obtained by changing
the initial approximation.

Example 2.9 Find a point of maximum of the function f(x) = x4/4–x2/2–x.

The function derivative is f ′(x) = x3–x–1. The corresponding stationary condi-
tion x3–x–1 = 0 is solved by the algorithm xk+1 = (xk)3–1. This diverges for any
initial iteration; see Figure 2.7. Therefore, by changing the initial approximation,
we do not find a solution to the problem. In this regard, we try to use a different
algorithm. Let us define a new variable y = x3. Then x = y1/3, and the stationary
condition takes the form y–y1/3–1 = 0. To solve the resulting equation, we use the
following algorithm yk+1 = (yk)1/3+1. Obviously, in this case, the iterative process
converges to a single value of y; see Figure 2.7. The corresponding point x = y1/3

minimizes the given function. Thus, if the applied algorithm does not converge, and
changing the initial approximation does not lead to the desired goal, then to solve
the problem, you can try to use another algorithm.

Figure 2.7 Function from Example 2.9 and analysis of the stationary condition.

So far, we have considered iterative methods for solving the stationary condition
for the case when the latter has a unique solution. However, as we already know, if
the solution of the minimization problem is non-unique or if the extremum condi-
tion is insufficient, the corresponding stationary condition has a non-unique solution.
Consider the operation of the iterative process in this situation.

Example 2.10 Find a point of maximum of the function f(x) = x2/2 – 3/4x4/3.

We have the stationary condition f ′(x) = x–x1/3 = 0. This is solved by the
algorithm xk+1 = (xk)1/3. Obviously, the process converges to one for positive initial
approximations and to minus one for negative approximations21; see Figure 2.8. Both
limit values are the minimum points of the considered function22.
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Figure 2.8 Function from Example 2.10 and analysis of the stationary condition.

We conclude that if the solution of the stationary condition is not unique, then
different initial iterations can give different solutions. Therefore, if the minimization
problem can have many solutions or the stationary condition is not sufficient, then
the calculation must be carried out many times with different initial iterations.

Consider now the iterative method of minimizing a function that depends on
parameter.

Example 2.11 Find a point of maximum of the function f(x) = 2µx3–3(µ–1)x2

with positive parameter µ.

The stationary condition here is µx2–µx + x = 0. We try to find its solution by
the equality xk+1 = µxk(1–xk). This is called the logistic mapping or discrete
Verhulst equation23. Consider the property of the algorithm for different values µ.
Obviously, for µ < 1, the algorithm converges to the value x = 0 that is the point of
local minimum of the function f ; see Figure 2.9.

Figure 2.9 The function of Example 2.11 for µ = 1/2 and the algorithm convergence.

For µ > 1, we have an algorithm xk+1 = F (xk) that converges if the inequality
|F ′(x)| < 1 is true for a stationary point x. For this case, F (x) = µx(1–x); so,
F ′(x) = µ(1–2x). The point x = 0 does not satisfy that inequality. However, there
exists the second stationary point x = (µ–1)/µ. The condition of the algorithm
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convergence for it is true for µ < 3. Thus, for 1 < µ < 3, the algorithm converges to
the second stationary point that is the local minimum of the function f , besides the
algorithm diverges for the larger values of µ; see Figure 2.10.

Figure 2.10 The function of Example 2.11 for µ = 2 and the algorithm convergence.

Consider the algorithm for µ > 3. Substituting in the right side of the existing
equality x = F (x) instead of x its equal value F (x), we get x = F (F (x)), that is,
x = µ2x(1–x)[1–µx(1–x)]. This fourth-order algebraic equation has four solutions24.
It can be shown that in the case of 3 < µ < 1 +

√
6 the algorithm will endlessly

oscillate between two of these solutions. With an increase in the parameter µ, the
algorithm will fluctuate endlessly between four values, which are solutions to the
equation x = F (F (F (x))). Further increase of this parameter causes the algorithm
to oscillate around 8, 16, etc. values25. Finally, for values of µ equal to approximately
3.57, the behavior of the algorithm becomes chaotic26.

RESULTS

Here is a list of questions following the results of the lecture, the main conclusions on
this chapter, as well as the problems that arise in this case, partially solved in Appendix,
partially in the Notes.

Questions

It is required to answer questions related to the previously given lecture subject.

1. Why is the stationary condition a necessary condition for both the minimum
and the maximum of a function, while the variational condition turns out to
be only a necessary condition for the minimum, but not the maximum?

2. What is the form of the variational inequality for the function maximum prob-
lem?

3. In what sense can the variational inequality be considered as a generalization
of the stationary condition?
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4. Can the stationary point be a solution to the variational inequality?

5. Can the stationary point not be a solution to the variational inequality?

6. Can the solution of the variational inequality be a stationary point?

7. Can the solution of the variational inequality not be a stationary point?

8. Is it possible to use the variational inequality to minimize a function on semi-
infinite intervals like (−∞, b] or [a,∞)?

9. Why is in generally the variational inequality a necessary but, not a sufficient
condition for optimality?

10. What can be said about the variational inequality in the case of non-smoothness
of the function being minimized?

11. What can be said about the variational inequality in the problem of minimizing
a function on a set [a, b] ∪ [c, d], where b < c?

12. Why can the absence of Hadamard ill-posedness has the serious negative con-
sequence in solving extremal problems that arise in applications even when the
problem itself has a unique solution?

13. Why can the absence of Hadamard correctness have serious negative conse-
quences when solving extremal problems, even in the case when all the param-
eters included in the formulation of the problem are specified exactly?

14. What causes the Hadamard ill-posedness of the problem considered in Example
2.5.

15. What effects can be observed when changing the parameters included in the
definition of the minimized function?

16. How, in principle, can an iterative process behave for an approximate solution
of the stationary condition?

17. What are the properties of the iterative algorithm for a stationary condition if
the function minimization problem has no solution?

18. What are the properties of the iterative algorithm for a stationary condition if
it has more than one solution?

19. Why can the iterative process for solving the stationary condition converge to
different values with a change in the initial approximation?

20. What should be done if different results are obtained for different initial ap-
proximations when iteratively solving optimality conditions?

21. How can one establish the non-uniqueness of the solutions to the stationary
condition using the iterative method?
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22. What actions are possible with the divergence of the iterative method to solve
the stationary condition?

Conclusions

Based on the obtained results, we come to the following conclusions.

• Variational inequality is the necessary condition of minimum for differentiable
functions on the interval.

• Variational inequality can also be established for function maximization prob-
lems.

• Any stationary point satisfies the corresponding variational inequality.

• Any solution of variational inequality is a stationary point if we minimize the
function on the numerical line.

• Sometimes, the variational inequality admits an analytical solution. Function
minimization problems may depend on parameters.

• A situation is possible when a small measurement of a problem parameter
entails a small change in its solution, which corresponds to Hadamard well-
posedness.

• In the absence of Hadamard well-posedness, a small change in a problem pa-
rameter can lead to a large change in its solution and even significantly change
the general properties of the function.

• In the absence of Hadamard well-posedness, any computational errors (round-
ing, calculation of special functions, use of series, integrals, derivatives, etc.)
can cause significant deviations in determining the solution to the problem.

• For the practical solving stationary conditions, in generally, iterative methods
are used.

• The corresponding iterative algorithms may or may not converge.

• If the algorithm diverges, the desired result can be achieved by changing the
initial approximation.

• If changing the initial approximation does not lead to the desired goal, then
another algorithm should be applied to solve the stationary condition.

• If the stationary condition has no solution, then the iterative process for solving
it cannot converge.

• If the solution of the stationary condition is not unique, then for different initial
approximations the algorithm may converge to different limits.
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Problems

Based on the results obtained above, we arrive at the following problems.

1. Generalization of variational inequalities. Theorem 2.1 gives a necessary
condition for the minimum of differentiable functions on an interval. This re-
sult easily extends to smooth functions of many variables and even to general
differentiable functionals defined on a convex set27.

2. Sufficiency of the minimum condition in the form of a variational in-
equality. In Example 2.1, the variational inequality turns out to be a necessary
and sufficient condition for the minimum of this function, while in Example 2.2,
sufficiency is not realized. We would like to understand under what conditions
sufficiency is realized. This result is given in Appendix.

3. Practical solving of variational inequalities. In Examples 2.1 and 2.2,
fairly simple functions were considered. As a result, the practical solving of
variational inequalities did not cause difficulties. However, in the general case,
this is not an easy problem. One result in this direction is given in Appendix.

4. Minimization of a function with a constraint in the form of equality.
Section 2.1.1 dealt with the problem of minimizing a function on an interval,
i.e., conditional extremum problem with an additional constraint in the form
of an inequality: the value of the desired value changes within the specified
limits. However, in practice, problems of finding an extremum often arise when
additional constraints are given in the form of equalities. Appendix describes
two methods for studying such problems.

5. Hadamard well-posedness condition. In Example 2.3, the function mini-
mization problem was Hadamard will-posed, while in Example 2.4, the problem
is ill-posed. It would be desirable to establish under what conditions the func-
tion minimization problem turns out to be well-posed. This result is explored
in Appendix.

6. Changing the properties of the problem when changing its param-
eters. In Example 2.5, not only was there no continuous dependence of the
solution to the function minimization problem, but there was a radical change
in the properties of the considered function. This effect is related to the sin-
gularity theory28.

7. General method for the practical solving of function minimization
problems. In Examples 2.6–2.10, for finding an approximate solution of the
stationary condition, the method of successive approximations was used. Writ-
ing the corresponding algorithm did not cause any particular difficulties due
to the sufficient simplicity of the considered functions. Appendix describes a
general method for solving the function minimization problem, which can be
easily extended to functions of many variables and even to functionals. General
method for the practical solving of function minimization problems.
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8. Convergence of iterative methods for function minimization. In Ex-
ample 2.6 the method of successive approximations for solving the function
minimization problem converges, in Example 2.7 it diverges, and in Example
2.8 convergence is observed only for a class of initial approximations. We would
like to know under what conditions the approximate method for solving these
problems converges. About convergence of approximate methods of extremum
theory see Notes29.

9. Concept of an approximate solution of extremum problem. In prac-
tice, the problem of finding an extremum, as a rule, is solved approximately.
However, the very concept of an approximate solution of the problem needs to
be clarified. Different types of approximate solutions are defined in Appendix.

2.2 APPENDIX

Some additional results related to the problems raised earlier are considered below. In par-
ticular, a necessary condition for the minimum of a function on an interval was obtained
in the form of a variational inequality. Section 2.2.1 will establish a statement about the
sufficiency of this condition. Sections 2.2.2 and 2.2.3 describe two methods for finding the
conditional minimum of a function when there is an equality constraint. The lecture in-
troduced the notion of Hadamard well-posedness of the function minimization problem.
Section 2.2.4 provides conditions that guarantee this property. In addition, for a number of
examples, approximate methods for solving the corresponding stationary conditions were
described. Section 2.2.5 provides a general method for the practical solving of the considered
problems. Different types of approximate solutions to minimization problems are described
in Section 2.2.630.

2.2.1 Sufficiency of the minimum condition in the form of variational inequalities

Theorem 2.1 gives a necessary condition for the minimum of a differentiable function
on an interval. As can be seen from Example 2.1, the resulting variational inequality
may be a sufficient minimum condition, although Example 2.2 shows that this situa-
tion is not always realized. Below is a statement about the sufficiency of the function
minimum condition in the form of a variational inequality31.

Theorem 2.2 In order for a convex differentiable function f to reach its minimum
on the interval [a, b] at a point x, it is necessary and sufficient that it satisfies the
variational inequality (2.1).

Proof. The necessity was proved in Theorem 2.1. Let us show that under the
variational inequality

f ′(x)(y–x) ≥ 0 ∀y ∈ [a, b]

the function f has the minimum at the point x. Using the function convexity, we get

f((1–α)x+ αy) ≤ (1–α)f(x) + αf(y) ∀α ∈ (0, 1)
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for all y ∈ [a, b]. Then we obtain

f(x+ α(y–x))–f(x) ≤ α[f(y)–f(x)].

Dividing this inequality by α and passing to the limit as α → 0, determine

f(y)–f(x) ≥ f ′(x)(y–x).

Using the variational inequality, we establish that f(y) ≥ f(x), whence, due to the
arbitrariness of y, it follows that x is the minimum point of this function on the
considered segment. □

Example 2.1 dealt with the minimization problem of the function f(x) = x2, that
is convex. The corresponding extremum condition turned out to be necessary and
sufficient by Theorem 2.2. However, in Example 2.2, the problem was to maximize the
same function, which is equivalent to minimizing the non-convex function f(x) = –x2.
This case is not covered by Theorem 2.2, and the corresponding variational inequality
was not a sufficient condition for the minimum of the indicated function32.

2.2.2 Lagrange multiplier method

The Lecture considered Problem 2.1 on the conditional extremum of a function. At
the same time, an additional constraint implied that the desired value must belong
to a certain interval. However, often the additional condition is given in the form
of equality. We consider the following problem of minimizing a function with an
equality-type constraint33.

Problem 2.2 Find a point of minimum of the function f1 = f1(x1, x2) on the set of
number pairs x = (x1, x2) that satisfy the equality f2(x) = 0.

For solving this problem, it can find the dependence of x2 on x1 from the equality
f2(x1, x2) = 0, i.e., define a function x2 = g(x1) such that f2(x1, g(x1)) = 0. After
that, the function of one variable h = h(x1) = f1(x1, g(x1)) is determined, which is
minimized on the entire number line by known methods. However, for difficult enough
functions f1 and f2, this approach turns out to be inefficient.

To solve the problem, we use the Lagrange multiplier method34. Determine
the function

L = L(x, λ) = L(x1, x2, λ1, λ2) = λ1f1(x1, x2) + λ2f2(x1, x2).

Definition 2.5 The function L is called the Lagrange function, and the numbers
λ1 and λ2 are the Lagrange multipliers.

To derive the extremum condition, we use the following assertion that is called
the implicit function theorem35.
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Theorem 2.3 Let F = F (x, y) = (F1(x1, x2, y), F2(x1, x2, y)) be a continuously dif-
ferentiable second order vector function of three variables such that F (x∗, y∗) = 0,
besides the matrix (∂Fi(x∗, y∗)/∂xj), i, j = 1, 2 is non-degenerate36. Then for any y
close enough to y∗ there exists a second order vector x(y) such that F (x(y), y) = 0.

The necessary extremum condition for Problem 2.2 gives the following state-
ment37.

Theorem 2.4 If the point x∗ = (x∗
1, x

∗
2) is a solution of Problem 2.2, then there

exists a non-zero vector λ∗ = (λ∗
1, λ

∗
2) such that

∂

∂xj
L(x∗, λ∗) = 0, j = 1, 2.

Proof. The last equalities are as follows

λ1
∂f1(x∗)
∂xj

+ λ2
∂f2(x∗)
∂xj

= 0, j = 1, 2. (2.4)

This can be interpreted as a system of linear algebraic equations with respect to λ1
and λ2. Assume that the assertions of theorem are not true, i.e., this system has only
zero solution. This is only possible if the matrix

(
∂fi(x∗)/∂xj

)
is not degenerate.

Determine the second order vectors F (x, y) = (F1(x, y), F2(x, y)) with three ar-
guments by the equalities

F1(x, y) = f1(x)–f1(x∗) + y, F2(x, y) = f2(x).

Consider the system of non-linear algebraic equations

F (x, y) = 0 (2.5)

with respect to the vector x with parameter y. Obviously, F (x∗, 0) = 0.
Find the derivatives

∂F (x∗)
∂xj

=
(
∂F1(x∗)
∂xj

,
∂F2(x∗)
∂xj

)
=

(
∂f1(x∗)
∂xj

,
∂f2(x∗)
∂xj

)
, j = 1, 2.

Therefore, the matrix
(
∂Fi(x∗, 0)/∂xj

)
is equal to

(
∂fi(x∗)/∂xj

)
, so, it is not also

degenerate. Using the implicit function theorem, determine that the system (2.5) has
a solution x = x(y) for all small enough positive value y, i.e., F (x(y)) = 0. By the
definition of F , we get

f1(x(y)) = f1(x∗)–y, f2(x(y)) = 0.

Thus, there exists a vector x(y) such that f2(x(y)) = 0, and the following inequality
holds

f1(x(y)) = f1(x∗)–y < f1(x∗),
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by positivity of y. We conclude that x∗ cannot be a solution of Problem 2.2, because
another point was found that satisfies the given constraints, at which the value of the
minimized function turned out to be less. Thus, the assumption that relations (2.4)
can be satisfied only for the zero vector λ∗ is not true. Consequently, these equalities
are valid for some non-zero vector of the second order. □

Theorem 2.4 gives an algorithm for solving Problem 2.2. In each specific case, the
Lagrange function must first be determined. Then its partial derivatives with respect
to the functions x1 and x2 are equated to zero. This gives two conditions (2.4) for
finding unknown quantities, which also include two unknown Lagrange multipliers
λ1 and λ2. The third condition is the given equality f2(x1, x2) = 0. It seems that
we have three equations in four unknowns. However, as can be seen from relations
(2.4), there is no need to define the Lagrange multipliers separately. It is enough to
determine the ratio38 λ2/λ1.

Example 2.12 Find a rectangle of maximum area for a given perimeter39.

A rectangle is characterized by the lengths x1 and x2 of its sizes. The area of
the rectangle is determined by the formula S = x1x2, and its perimeter is equal
to p = 2(x1 + x2). Thus, we minimize the function f1(x1, x2) = –S = –x1x2 with
condition f2(x1, x2) = p–2(x1 + x2) = 0. Determine the Lagrange function

L(x, λ) = λ1f1(x1, x2) + λ2f2(x1, x2) = –λ1x1x2 + λ2[p–2(x1 + x2)].

The equalities (2.4) have the form

λ1x1 + 2λ2 = 0, λ1x2 + 2λ2 = 0.

Therefore, x1 = x2. From the equality f2(x1, x2) = 0, we obtain p = 4x1,
x1 = x2 = p/4. Thus, the rectangle of maximum area for a given perimeter is a square.
Note that problems of this nature are called isoperimetric40.

2.2.3 Penalty method

One can find an approximate solution of Problem 2.2 by transformation in to the
unconditional function minimization problem with using of the penalty method41.
Consider the function

fε(x1, x2) = f1(x1, x2) + 1
2ε

[
f2(x1, x2)

]
,

where ε is a small positive parameter. If the value under the square brackets is large
enough, then the corresponding value of the function Fε is large. Therefore, we can
have its minimum only for the case with small enough value under that brackets that
corresponds to the approximate realization of the equality f2(x1, x2) = 0. Using this
idea, we can find the approximate solution of the initial problem42.

Find the point of minimum for the function Fε using the Fermat theorem by
equaling to zero the partial derivatives of this function or by approximate methods of
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non-conditional optimization; see Section 2.2.5. Particularly, the stationary condition
for this problem gives us two equalities.

∂Fε(x1, x2)
∂xj

= ∂f1(x1, x2)
∂xj

+ 1
ε

∂f2(x1, x2)
∂xj

= 0, j = 1, 2.

Denote λ = ε−1f2(x1, x2). Now we have three equations

∂f1(x1, x2)
∂xj

+ λ
∂f2(x1, x2)

∂xj
= 0, j = 1, 2; f2(x1, x2) = ελ

with respect to the three unknown values x1, x2, and λ. Two first equalities here
correspond to (2.4) for λ = λ2/λ1, and the third one with small enough value ε
can be interpreted as an approximation of the equality f2(x1, x2) = 0. Thus, the
penalty method really allows one to find an approximate solution to the function
minimization problem with a constraint in the form of equality43.

For Example 2.12, we have f1(x1, x2) = –x1x2, f2(x1, x2) = p–2(x1 + x2). Then
the above three equalities take the form

x2 + 2λ = 0, x1 + 2λ = 0, p–2(x1 + x2) = ελ.

From the first two conditions, follows x1 = x2 = –2λ. Then the third equality is
written as p + 8λ = ελ. Now we obtain λ = p/(ε–8); so x1 = x2 = p/(4–ε/2).
Obviously, for small enough values of ε, we actually obtain values that are close
enough to the previously established exact solution of the problem.

2.2.4 Gradient methods

In all the examples described earlier, rather simple functions were considered. As a
result, finding a solution to the corresponding optimality condition did not cause any
particular difficulties. However, in the general case, we are dealing with a non-linear
algebraic equations, the analysis of which is far from obvious. Here one can use the
general methods for solving algebraic equations.

Suppose we have the equation

F (x) = 0.

For its approximate solving, one can use the following algorithm44:

xk+1 = xk + θkF (xk), (2.6)

where θk is a numerical parameter. It is chosen in such a way that convergence θk → θ
takes place. Assume that the sequence {xk} is convergent 45, i.e., has a limit x. Then,
as a result of passing to the limit in equality (2.4), in the case of continuity of the
function F , we obtain x = x + θF (x). Thus, this limit turns out to be a solution of
this equation.
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As is known, the problem of minimizing a function f is reduced to solving the
algebraic equation f ′(x) = 0. Then relation (2.6) is written as follows

xk+1 = xk + θkf
′(xk).

However, note a circumstance that is not typical for general algebraic equations. This
is related to the fact that in reality the object of study is not an equation, but the
function minimization problem; see Figure 2.11. If the derivative of the function is
positive at a point xk, then the function itself is increasing at that point. Therefore,
at the next step of the algorithm, we would like to obtain the value xk+1 less than xk.
If the derivative f ′(xk) is negative, then the function at the point xk decreases. Then
it is desirable to get the value xk+1 greater than xk. Both options are implemented
when the parameter θk is negative. Thus, we have the following algorithm

xk+1 = xk − βkF (xk), (2.7)

where βk > 0, which corresponds to the gradient method46.

Figure 2.11 Relations between the current and subsequent approximations.

Example 2.6 sets the task of minimizing the function f(x) = x2/2 + e–x. The
corresponding derivative is f ′(x) = x–e–x. Then equality (2.7), which underlies the
gradient method, takes the form xk+1 = xk − βk

(
xk–e–xk

)
.

For the problem of minimization the function f on the interval [a, b], we can use of
the gradient method, because the value xk+1 determined in accordance with formula
(2.7) may go beyond the considered interval. Then one can do the following. First, at
the kth iteration, the value yk = xk–βkf

′(xk). As a subsequent approximation xk+1,
the value of yk is chosen if it belongs to the given segment, and the boundary of this
segment closest to yk if this value lies outside it. Thus, we obtain the equality

xk+1 =


a, if yk < a,
yk, if a ≤ yk ≤ b,
b, if yk > b.

(2.8)

This is the gradient projection method47.



56 ■ Optimization: 100 examples

Example 2.1 considered the minimization problem for the function f(x) = (x+1)2

on the segment [a, b]. Then, in accordance with the gradient projection method, at
the kth step, we determine the value yk = xk–2βk(xk + 1). Further, this value is
chosen as a new approximation if it belongs to the given segment, the number a, if
the resulting value is less than a, and the number b, if yk is greater than b. According
to Theorem 2.1, the solution of the problem of minimizing a function on an interval
satisfies the variational inequality. Thus, the gradient projection method, in the case
of its convergence, gives a solution to the corresponding variational inequality.

2.2.5 Hadamard well-posedness of extremum problems

Examples 2.3 and 2.4 dealt with minimization problems for functions that depend
on a parameter. Moreover, in the first case, the solution of the problem continuously
depended on the parameter, which corresponds to the Hadamard well-posedness of
the problem. In the second case, this property did not take place. Below, we present
one result on the well-posedness of the function minimization problem.

Consider the problem minimization for the function f = f(µ, x) for a fixed value
of the parameter µ. The following assertion is true48.

Theorem 2.5 Suppose that the function f = f(µ, x) is continuous with respect to
the first argument uniformly in x and strongly convex in the second argument for any
µ, and the considered problem has a solution for all µ. Then this problem is Hadamard
well-posed.

Proof. Consider an arbitrary convergent sequence of parameters {µk}. Thus,
there is such a value µ, that µk → µ. Denote by xk and x the solutions to the min-
imization problems for the functions gk = gk(y) = f(µk, y) and g = g(y) = f(µ, y).
To prove theorem, it suffices to establish the convergence xk → x.

Consider the equality

g(xk)–g(x) = [g(xk)–gk(xk)] + [gk(xk)–gk(x)] + [gk(x)–g(x)].

Considering that xk and x are solutions of the corresponding extremal problems, we
have the inequalities

0 ≤ g(xk)–g(x), gk(xk)–gk(x) ≤ 0.

Now we obtain

0 ≤ g(xk)–g(x) ≤
∣∣g(xk)–gk(xk)

∣∣ +
∣∣gk(x)–gk(x)

∣∣ ≤ 2 sup
y

∣∣gk(y)–gk(y)
∣∣.

Since the mapping µ → f(µ, y) is continuous uniformly in y, the value on the right-
hand side of the last inequality tends to zero. Thus, we get f(µ, xk) → f(µ, x).
This means that the sequence {xk} is minimizing for the function g. However, if the
function f is strongly convex in the second argument, the minimization problem for
the function g is Tikhonov well-posed. As a result, we obtain the convergence xk → x,
and hence the problem Hadamard well-posedness. □
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Example 2.3 considered the function f(µ, x) = (x–µ)2. We check the convexity
property by the second argument. For any values of µ, x, y, and α ∈ (0, 1) we find
the value

f(µ, αx+ (1–α)y)–αf(µ, x)–(1–α)f(µ, y) = [αx+ (1–α)y–µ]2–α(x–µ)2–(1–α)(y–µ)2

= –α(1–α)
[
(x–µ)2–2(x–µ)(y–µ) + (y–µ)2]

= –α(1–α)(x–y)2.

Thus, the condition of strong convexity in the form of equality with constant c = 1
is true. Now check the property of continuity with respect to the first argument. For
any values of µ, ν, and x we have

|f(µ, x)–f(ν, x)| = |(x–µ)2–(x–ν)2| ≤ (2|x| + |µ| + |µ|)|µ–ν|.

Therefore, this function is continuous in the second argument for any x. This is
not enough to apply Theorem 2.5, which requires uniform continuity49. However, in
the case when the considered function is minimized on a limited set, for example,
on a segment, the last inequality already implies uniform continuity , and hence
the well-posedness of the corresponding problem. At the same time, the function
f(µ, x) = 3x4–16x3 + 6µx2 considered in Example 2.4 is not convex at all; see Figure
2.2. Thus, the previously established lack of well-posedness of the problem of its
minimization seems to be quite natural.

2.2.6 Approximate solutions to the function minimization problem

As already noted, in practice, the problem of finding the function extremum, as a rule,
is solved approximately, i.e., some error in determining such a solution is allowed. In
this case, different types of approximate solutions are possible, depending on what
exactly is meant with error.

Consider first the problem for the unconditional extremum of a function.

Definition 2.6 A number x is called a strong approximate solution to the func-
tion minimization problem if, for a sufficiently small number δ > 0, the inequality
|x–xopt| ≤ δ is true, where xopt is the exact solution of this problem. The number x is
called a weak approximate solution of the minimization problem for the function
f if for a sufficiently small number ε > 0 the inequality f(x) ≤ min f + ε is true50.

Obviously, for continuous functions, any strong approximate solution is a weak
approximate solution, which justifies the terminology used51.

Example 2.13 Find a point of minimum of the function f(x) = 3x4–16x3 + 12x2.

This corresponds to Example 2.4 with µ = 2. Obviously, the value of this function
at zero only slightly exceeds its minimum possible value, while the point x = 0 itself
differs significantly from the point xopt of the minimum of the considered function.
Thus, we are dealing with a weak, but not a strong, approximate solution of this
minimization problem; see Figure 2.12. Thus, we have a weak, but not a strong,
approximate solution of the considered problem52.
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Figure 2.12 Weak approximate solution for Example 2.13 is not strong.

Example 1.7 considered the Tikhonov ill-posed problem of minimizing the func-
tion

f(x) = x2

1 + x4 .

It has a single minimum point x = 0, and f(0) = 0. Obviously, for sufficiently large
values of x, the number f(x) will be arbitrarily close to zero, i.e., to the minimum
of this feature. Thus, the point x turns out to be a weak approximate solution of
the problem, but by no means its strong approximate solution. Tikhonov-ill-posed
problems are natural examples of problems in which the weak approximate solution
may differ from their strong approximate solutions.

Example 2.14 Find a point of minimum of the Dirichlet function that takes the
value 1 for all rational values of the argument and the value 0 for irrational values.

Obviously, the minimum of this function is equal to zero and is reached at all
irrational points. As one knows, in an arbitrarily small neighborhood of any irrational
point, there is a rational point53. Thus, any rational point can be understood as a
strong approximate solution of the Dirichlet function minimization problem. At the
same time, the value of this function at this rational point differs significantly from
its minimum, which means that the latter is not a weak approximate solution. This
example shows that for discontinuous functions, a strong approximate solution to the
function minimization problem may not be a weak approximate solution.

Let us now turn to the problem of the conditional function extremum. Let it be
required to minimize the function f on a set U . A strong approximate solution of this
problem is introduced by analogy with Definition 2.6. However, when characterizing
a weak approximate solution, one can introduce some refinement, the meaning of
which is illustrated by the following example.

Example 2.15 Find a point of minimum of the function f(x) = x on the set U of
positive numbers.

Obviously, the solution of this problem does not exist, because of the absence of
a minimum positive number. However, an arbitrarily small positive number makes
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sense, i.e., such an element of the set U , on which the value of the minimized function
is arbitrarily close to the lower bound of this function on the given set. It is quite
reasonable and can be chosen as a weak approximate solution, although the exact
solution of the problem does not exist54.

Definition 2.7 The number x ∈ U is called a strong approximate solution to
the problem of minimizing a function on a given set if the inequality |x–xopt| ≤ δ
is true for a small enough number δ > 0, where xopt is the exact solution of this
problem. The number x ∈ U is called a weak approximate solution of the problem
of minimizing the function f on the set U, if the inequality f(x) ≤ min f + ε is true
for a small enough number ε > 0.

In particular, a sufficiently small positive number can be chosen as a weak ap-
proximate solution to the problem from Example 2.14, which does not have an exact
solution55.

Thus, when determining the approximate solution of the problem, a small error
is allowed in determining the minimum point of the function or the minimum of this
function. However, when solving the conditional extremum problem in Section 2.2.3,
a small error in the fulfilment of the given constraints was also allowed, which leads
to another type of approximate solution of the problem.

Definition 2.8 The number x is called a strong conditional approximate so-
lution to the problem of minimizing the function f on the set U if the inequality
|x–xopt| ≤ δ is true for a small enough number δ > 0, where xopt is the exact solution
of this problem. The number x is called a weak conditional approximate solu-
tion of this problem, if the inequalities f(x) ≤ min f + ε and |x–y| ≤ χ are true for
an element y ∈ U and small enough numbers ε > 0 and χ > 0.

A feature of the conditional approximate solution is that the point x does not
have to belong to the set U , but it turns out to be close enough to some element of
this set. For a strong conditional approximate solution, this is the exact solution of
the problem, and for a weak conditional approximate solution, it is some point y of
this set, moreover, the exact solution may not exist. Thus, we can assume that for
conditional approximate solutions, minor deviations from the implementation of the
given restrictions are allowed56.

In particular, as a result of applying the penalty method to the problem from
Example 2.12 (finding a rectangle of maximum area for a given perimeter p), the
sides of the corresponding rectangle x1 = x2 = p/(4–ε/2) were determined. The
perimeter of this rectangle is 4p/(4–ε/2), i.e., not at all p. Thus, the given restriction
is violated. However, the found values for small ε turn out to be quite close to the
exact solution of the problem equal to p/4. Consequently, we have indeed found a
strong conditional approximate solution to the problem.
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2.2.7 Minimization of functions of many variables

The obtained results are naturally extended to minimization problems for functions
of many variables. First, consider the conditional minimization problem for a function
of many variables57.

Problem 2.3 Find a point of minimum of the function f = f(x1, x2, ..., xn) on a set
U of n-dimensional Euclidean space.

In order for a differentiable function of many variables f = f(x) to have its
minimum at a point x = (x1, x2, ..., xn) on a set U , it is necessary, and if the function
is convex, it is sufficient that it satisfies the variational inequality〈

▽f(x), y − x
〉

≥ 0 ∀y ∈ U.

Problem 2.4 58 Find a point of minimum for the function of many variables
f0 = f0(x) on the set of such vectors x of the nth order that satisfy the equalities
fi(x) = 0, i = 1, ..., s, where s < n.

For n = 2, s = 1, we have Problem 2.2. Using the Lagrange multiplier method,
determine the Lagrange function

L = L(x, λ) = L(x1, ..., xn;λ1, ..., λs) =
s∑

i=0
λifi(x1, ..., xn).

Assume that all functions fi are continuously differentiable. The n-th order vector
x∗ is the point of the local extremum of the considered function under the given
constraints if there is such a non-zero vector λ∗ = (λ∗

1, ..., λ
∗
n) that the following

equalities hold
∂L(x∗, λ∗)

∂xj
= 0, j = 1, ..., n.

An approximate solution to Problem 2.4 can also be found using the penalty
method. In this case, the minimization problem for the function of many variables

Fε(x) = f0(x) + 1
2ε

s∑
i=0

[
fi(x)

]2

is solved, where ε is a small positive parameter. We have a concrete implementation
of Problem 1.2, described in Chapter 1.

Finally, consider the multivariate analogues of the previously described gradient
methods. An approximate solution to Problem 1.2, consisting in the unconditional
minimization of a function of many variables f = f(x), can be found using the
gradient method

xk+1 = xk – βk▽f(xk), k = 0, 1, ...,

where βk > 0. The presence of the function gradient on the right side of this equality
explains the name of this algorithm. To solve Problem 2.3 of minimizing a function
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of many variables f = f(x) on a subset U of the Euclidean space, the gradient
projection method is used, characterized by the equality

xk+1 = P
[
xk–βk▽f(xk)

]
, k = 0, 1, ...,

where the operator P is called a projector and maps the given point to the point
of the set U nearest to it, i.e., implements the projection of a vector obtained in
accordance with the usual gradient method onto a given set.

Additional conclusions

Based on the results presented in Appendix, some additional conclusions can be
drawn about the function minimization problem.

• The variational inequality is a necessary and sufficient condition for the mini-
mum of a convex differentiable function on a segment.

• For non-convex functions, the solution of the variational inequality may not be
its minimum point on the segment.

• To solve the problem of minimizing a function of two variables in the presence
of an equality constraint, one can use the Lagrange multiplier method, and the
unknown arguments of the function and the Lagrange multipliers are deter-
mined from the equality to zero of the partial derivatives of the corresponding
Lagrange function and the given constraint.

• The approximate solution of the conditional extremum problem obtained using
the penalty method satisfies the given constraint with some error.

• The problem of minimizing a strongly convex function, uniformly continuous in
a parameter, solvable for all values of this parameter, is Hadamard well-posed.

• In the absence of a strong convexity of a function, the problem of its minimiza-
tion may turn out to be Hadamard ill-posed.

• For an approximate solution of the problem of minimizing a differentiable func-
tion, one can use the gradient method.

• For an approximate solution of the problem of minimizing a differentiable func-
tion on a segment, one can use the gradient projection method.

• The gradient projection method can be an iterative method for solving a vari-
ational inequality.

• A strong and weak approximate solution of a function minimization problem
is, respectively, as an admissible value that is close enough to the exact solution
of the problem, and one on which the value of the minimized function is close
enough to its lower bound on this set.
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• For continuous functions, any strong approximate solution is a weak approxi-
mate solution, although this may not be the case for discontinuous functions.

• A weak approximate solution makes sense even if there is no exact solution to
the problem, if the infimum of the function exists on the given set.

• In problems with constraints, the concept of a conditional approximate solution
makes sense, which can satisfy these constraints not exactly, but approximately.

• The obtained results can be extended to problems of minimizing functions of
many variables.

Notes

1. Problem 2.1 will be used to formulate the maximum condition for the optimal control
problem in Chapter 3.

2. Variational inequalities will be used in what follows to solve optimal control problems; see
Chapters 4, 5, 6, 10, and 13.

3. Indeed, in the absence of restrictions, the relation f ′(x)(y–x) ≥ 0 is realized for all points
y of the real line. For any non-zero number h, choosing y = x + h, we get f ′(x)h ≥ 0. Having
now determined y = x–h, we establish that –f ′(x)h ≥ 0. From the obtained two inequalities,
due to the arbitrariness of h, it follows that f ′(x) = 0. Thus, in the problem of minimizing
a differentiable function on the entire set of real numbers, the variational inequality and the
stationary condition are equivalent. Thus, the stationary condition can be understood as a
special case of variational inequality corresponding to the absence of restrictions. In fact, the
established relationship between the two considered extremum conditions remains valid for the
much more general problem of minimizing a differentiable functional on a convex subset of a
topological vector space; see, for example, [60], [70], [116], [171].

4. For a = –1 and for b = –1, there are actually only two solutions.

5. Examples of optimal control problems for which variational inequality is not a sufficient
optimality condition are considered in Chapters 4, 5, and 10.

6. In the previous chapter, the notion of the Tikhonov well-posedness of an extremal problem
was considered, which has a different meaning. Both types of well-posedness for optimal control
problems are studied in Chapter 8; see also [170], [194], [211].

7. The concept of Hadamard well-posedness makes sense not only for extremum problems; see
for example, Tikhonov. In particular, the famous Hadamard example considers the Cauchy
problem for the Laplace equation, which is ill-posed. In particular, there is no continuous
dependence of the solution on the data at the boundary for it. The boundary value problem
for the heat equation with data at the final moment of time is ill-posed too. Note that well-
posedness for the Cauchy problem for an ordinary differential equation is used in Chapter 3
when deriving an optimality condition.

8. For µ = 0 and µ = 4, we get two stationary points instead of three. The resulting properties
are not of interest to us in this case, although Example 2.10 considers similar effects.

9. For f(x3) = 0, the value of the function at the points x1 and x3 are the same, and the
problem has two solutions.



Additions ■ 63

10. This conclusion is a consequence of the well-known statement of mathematical analysis,
according to which a continuous function that takes values of different signs at the ends of a
certain segment vanishes at some point inside this segment.

11. In this case, Hadamard ill-posedness is due to the fact that the function has two local
minima. In this case, with a small change in the problem parameter, the value of the function
at the point that initially corresponded to the absolute minimum may turn out to be greater
than the value of the function at the point of the second local minimum, despite the fact that
these points themselves can be quite far from each other. Examples of optimal control problems
that are not Hadamard well-posed are given in Chapters 8, 12, 15, and 17.

12. This, of course, is about real solutions, since we consider only functions of a real variable.

13. On the theory of bifurcations, see [96], [107], [184], [201].

14. The bifurcation phenomenon for optimal control problems will be established in Chapters
12 and 15.

15. A transcendental equation is an equation that is not algebraic, i.e., does not correspond
to the equality to zero of some polynomial. On solving transcendental equations, see [41].

16. Various versions of the method of successive approximations will be used in subsequent
parts of this book to solve different problems of optimal control.

17. On the convergence of numerical methods for solving non-linear algebraic equations, see,
for example; [17], [189].

18. The above condition is related to the concept of a contraction mapping (a transformation
that transforms a segment into a segment of smaller length) and goes back to Banach fixed
point theorem; see [94], [106], [158]. In this case, the solution of the equation x = F (x)
corresponds to the point, which is translated by the transformation F into itself, i.e., remains
unchanged under the action of this transformation. The analysis of the equation thus reduces to
the search for fixed points of this transformation. We also note that the equality xk+1 = F (xk)
can be understood as a discrete dynamical system, and the solution of the equation x = F (x)
can be interpreted as the equilibrium position of this system. Moreover, if the sequence {xk}
converges to a solution x for any value of x0 close enough to x, then this equilibrium is called
stable. Otherwise, it is unstable. We will encounter equilibrium positions in Chapters 3, 5, and
7. On the theory of dynamical systems; see, for example, [27], [86]

19. It can be established that the considered function is strictly convex, so that the uniqueness
of its minimum point follows from Theorem 1.4. On the other hand, the existence of a minimum
point can be established using Theorem 1.3, since this function is continuous, lower bounded,
and coercive.

20. Chapter 7 will describe an iterative process for solving a system of optimality conditions
for an optimal control problem that diverges for any initial approximation.

21. For any initial iteration the algorithm does not converge to the stationary point x = 0 that
is the point of local maximum of this function.

22. Similar effects will be encountered in Chapter 5 in the analysis of an optimal control
problem.
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23. About the logistic equation and its properties, see [184]. Continuous analogue of the Ver-
hulst equation x′ = µx(1–x) describes the change in the abundance of a biological species
under conditions of limited food intake; see, for example, [173].

24. This follows from the fundamental theorem of algebra, according to which an nth order
algebraic equation has n solutions on the set of complex numbers; see [192].

25. We will encounter a related phenomenon of multiple bifurcation of solutions in Chapter 12
when analyzing the Chafee–Infante problem; see also Chapter 15.

26. About chaotic dynamics, see [184].

27. This statement remains valid for the problem of minimizing a function on a semi-infinite
interval and on the entire real axis. A necessary optimality condition in the form of variational
inequalities for general extremal problems is established, for example, in Lions. The math-
ematical theory of variational inequalities is given in [102], [117]. Note also that variational
inequalities can be mathematical models of physical and not only physical processes; see [57].

28. For the singularity theory; see [11].

29. For the convergence of approximate methods for solving extremal problems; see [49], [149].

30. In Chapter 8, the concepts introduced will be extended to optimal control problems.

31. A more general statement that a variational inequality is a necessary and sufficient condi-
tion for a minimum of a convex Gateaux differentiable functional on a convex set is given; for
example, in [116], [171].

32. We will meet with examples of the insufficiency of the optimality condition in the form of
variational inequalities in Chapter 5.

33. Lagrange multiplier method naturally extends to the problem of minimizing a function of
many variables with several constraints in the form of equality.

34. Lagrange multiplier method will be used substantially in Chapter 3 in deriving necessary
optimality conditions in the form of the maximum principle. It will also be applied in Chapter 9
when analyzing systems with a fixed final state. In this case, L will no longer be a function, but
a functional. In Chapter 13, the Lagrange multiplier method is used to solve optimal control
problems in the presence of an additional isoperimetric condition.

35. The implicit function theorem is also true in the multidimensional case, and even for
operators; see, for example, in [100].

36. The non-degeneracy of a matrix means that its determinant is non-zero.

37. In fact, a necessary condition for a local extremum of a given function with the considered
constraint is given here. A generalization of Theorem 2.4 to the problem of minimization a
function of many variables with equality constraints is given in [5], [33], [49], [95], [70], [149],
[193], [195]. Its generalization to the functional minimization problem with operator constraints
in the form of equalities goes back to Lyusternik’s theorem on the approximation of a smooth
manifold [125]; see also [56], [95], [140].

38. In this regard, when determining the Lagrange function, the coefficient of the function
being minimized is often, i.e., the first of the Lagrange multipliers is initially assumed to be



Additions ■ 65

equal to one. This is exactly what we will do in Part II when justifying the necessary optimality
condition in the form of the maximum principle.

39. In Chapter 13, a more general problem will be considered, in which it is required to
determine a curve of a given length in such a way that the corresponding curvilinear trapezoid
has a maximum area.

40. In the calculus of variations and the theory of optimal control, isoperimetric problems
are called problems with integral constraints in the form of equalities. Problems of this nature
are the subject of Part IV of this book.

41. The penalty method can also be used to minimize functions with constraints in the form of
inequalities. For the application of the penalty method to various extremum theory problems;
see [42], [49], [70], [118], [193]. We will use the penalty method in Part II when analyzing
optimal control problems with interpretation the state equation of the system is as an equality
constraint; see Chapter 4. The penalty method can also be used to find singular controls; see
Chapter 6. In Chapter 9, the penalty method is used to solve problems of optimal control of
systems with a fixed final state, and the restriction removed using this approach is not a state
equation, but an equality that characterizes the final state of the system. In Chapter 13, the
penalty method is used for solving optimization problems with isoperimetric constraints , and
in Chapter 16, we will apply it for analysis systems with a free initial state.

42. In Section 2.9, we clarify what exactly is meant by an approximate solution in this case.

43. To substantiate this assertion, it is required to prove the convergence of the penalty method,
i.e., show that the solution of the minimization problem for the function Fε converges to the
solution of the considered problem as ε → 0; see, for example, [49]. In Chapter 8, we will prove
the convergence of the penalty method for solving one optimal control problem for a system
with a fixed finite state.

44. The solution of the equation F (x) = 0 can be interpreted as the equilibrium position of
the dynamical system described by the ordinary differential equation x′ = F (x). To solve it,
the derivative can be approximated by the corresponding difference, obtaining the recursive
formula xk+1 = xk +θkF (xk), where θk has the meaning of the argument change step, and the
initial approximation x0 is the known initial state that complements the differential equation.
We will partially encounter the equilibrium position in Chapters 3, 5, and 7. In addition, we
will use this algorithm in solving optimal control problems for systems with a fixed finite state;
see Chapter 9.

45. Naturally, the convergence of the iterative method is not obvious

46. The meaning of the term ”gradient method” is clarified in the Section 2.2.7 when consid-
ering minimization problems for the functions of many variables. On the gradient method for
functions of many variables, as well as for functionals, see, for example, [26] [35], [42], [49], [65],
[68], [70], [79], [82], [149], [193], [195]. We will use the gradient method to study optimal control
problems; see Chapter 4. Note also the conjugate-gradient method; see [49], [65], [70], [149],
[193]. A generalization of the gradient method to non-smooth functions is the subgradient
method, in which one of its subgradients is chosen instead of the derivative; see, for example,
[193]. Among other approximate non-smooth optimization methods, i.e., that do not require
the calculation of derivatives, we note genetic algorithms; see, for example, [70], [132] and
the Nelder–Mead method; see [139].

47. For the gradient projection method in problems of finding the conditional extremum of
functions of many variables and general functionals; see [26], [49], [65], [68], [70], [149], [193],
[195]
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48. A generalization of Theorem 2.5 to optimal control problems is given in Chapter 7.

49. Here it suffices to estimate the value |x| by the maximum of the numbers |a| and |b|, where
[a, b] is the segment on which the minimum of the function is found.

50. There is no point in using the inequality |f(x)– min f | ≤ ε here, since the value of the
function at the point x cannot be less than the minimum of this function.

51. The difference between weak and strong approximate solutions of the problem will be very
significant in optimal control problems that are Tikhonov ill-posed; see Chapter 8, and also
Chapters 12 and 15.

52. This circumstance is a consequence of the ill-posedness of the considered problem.

53. This means that the set of rational numbers is dense in the set of all real numbers.

54. Extension methods for optimal control problems are based on this idea; see Chapter 7.

55. Naturally, it makes sense to use the concept of a weak approximate solution only under
the conditions of the existence of the lower bound of a function on a given set. For example,
for the minimization problem for the function f(x) = –1/x on the set of positive numbers, the
concept of an approximate solution does not make sense.

56. It would seem that if in the conditions of the problem it is required to ensure the validity of
a certain constraint, then we must certainly guarantee the fulfillment of this property. However,
in applied optimization problems, the problem statement itself is usually approximate. In this
regard, the presence of a small error in the fulfillment of the specified restrictions, as a rule,
can be considered acceptable.

57. We will meet with a specific case of Problem 2.3 in Chapter 3 when considering the maxi-
mum principle for the vector optimal control problem.

58. The number of constraints must be less than the number of function arguments. Otherwise,
we will not be able to vary these arguments, and the task of finding will lose its meaning.
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The second part of the book deals with the simplest optimal control problem. The
state of the system is described by a first-order ordinary differential equation with an
initial condition. The control function is included on the right side of the equation
and satisfies some restrictions corresponding to the set of admissible controls. The
optimality criterion contains an integral term that depends on the control and state
function of the system at a time interval, as well as a terminal summand that depends
on the state at the final time.

This part consists of six chapters. Chapter 3 gives the necessary optimality con-
ditions in the form of the maximum principle for the stated optimal control problem.
Examples of problems for which the optimal control can be found analytically or
with the help of an iterative process are considered. Chapter 4 describes alternative
methods for studying optimal control problems: the gradient methods for minimizing
functionals, the variational inequality, the penalty method, and the Bellman equation
are considered. In Chapter 5, the uniqueness of the optimal control and the sufficiency
of the optimality condition are investigated; examples of problems for which these
properties are satisfied or violated are given. In Chapter 6, we study optimal control
problems with a degeneracy of the maximum principle, which corresponds to the
singular control. The problem of the existence of an optimal control is considered in
Chapter 7, where examples of both solvable and unsolvable optimization problems are
given. Finally, Chapter 8 discusses the problem of the well-posedness of optimization
problems and gives examples of both well-posed and ill-posed problems.
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C H A P T E R 3

Maximum principle

The simplest problem of the theory of optimal control is considered1. To solve it, the neces-
sary optimality conditions in the form of the maximum principle are derived. They consist
of maximizing a function that also depends on the state of the system and the solution of the
adjoint system. For fairly simple problems, these optimality conditions can be solved analyt-
ically. However, as a rule, they are solved approximately. Appendix provides a justification
for the maximum principle, investigates a non-linear boundary value problem equivalent to
a system of optimality conditions, describes a class of problems that can be directly solved,
and proves the convergence of the iterative process for a specific example.

3.1 LECTURE

A system described by an ordinary differential equation is given. The right side of the
equation includes a control function, the values of which belong to a certain interval. It is
required to minimize the functional that includes the integral and terminal terms. Section
3.1.1 gives a complete statement of the optimal control problem. To solve this problem,
Section 3.1.2 derives an optimality condition in the form of the maximum principle. Section
3.1.3 considers an example of an optimal control problem for which the optimality condition
has an analytical solution. For the more difficult problem in Section 3.4, an iterative process
is used to find the optimal control.

3.1.1 Statement of the optimal control problem

The optimal control problem, first of all, implies the existence of a mathematical
model2 of the process under study. Any mathematical model is a problem of deter-
mining some quantities that characterize the state of the considered system. We are
dealing with dynamic systems3 whose state changes with time4. In this case, we
restrict ourselves to the study of systems with lumped parameters, the state of
which at each moment of time can be described by a finite set of numbers5.

For simplicity, we assume that there is a unique state function of the system6

x = x(t). Since the state of the system changes over time, we can try to estimate how
quickly x changes. The rate of change of the function is its derivative. In this regard,
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we assume that the basis of the mathematical model is an equality that includes
the derivative x′ of the system state function. Thus, the system is described by an
ordinary differential equation.

In this case, a controlled process is considered, which implies the presence in
the model of some quantities called controls, which can be changed at the will of
the researcher. For simplicity, we assume that there is a unique control7, which is
characterized by a function u = u(t). Thus, this system is described by a differential
equation that includes control. This equation is considered on a certain time interval.
For definiteness, we choose the value t = 0 as the initial moment of time, and denote
the final moment of time by T .

Based on the assumptions made, we conclude that the considered system is de-
scribed by a differential equation

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ), (3.1)

which is called the state equation, where f is a given function of its arguments.
It is known that the solution of a first-order differential equation is determined up
to one arbitrary constant. For the uniqueness of the solution, it is assumed that the
state of the system at the initial moment of time is known and is equal to some value
x0. Thus, the function x also satisfies the initial condition

x(0) = x0. (3.2)

Thus, equation (3.1) with initial condition (3.2), which constitutes the Cauchy
problem, is chosen as the mathematical model of the controlled system.

Suppose that the considered Cauchy problem has a unique solution8 for an ar-
bitrary control. Note, however, that in practice the possibilities for changing control
are usually limited. This means that only admissible controls are subject to con-
sideration. We will assume that at each moment of time the control can change only
within the given limits9, i.e., the set of admissible controls is characterized by the
equality10

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where a and b are given functions; besides, the the first of them can take the value
−∞, and the second +∞.

By specifying different admissible controls, we obtain different variants of the
system evolution. Among all such possible variants, one should choose the one that
is optimal in some sense. Therefore, an optimality criterion I should be set,
according to the quantitative value of which I(u) in each specific case, one can judge
the effectiveness of the selected control u. Since each admissible control (function)
u is associated here with a number I(u), the transformation I turns out to be a
functional.

Suppose that the optimality criterion is determined by the equality

I(u) =
T∫

0

g
(
t, u(t), x(t)

)
dt + h(x(T )),
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where g and h are known functions, and x is a solution of problem (3.1) and (3.2)
that depends on the control u. The presence of the integral makes it possible to take
into account the influence on the values of the control and the state function at each
moment of time at which the system is considered. The presence here of the terminal
summand, i.e., the second term on the right side of the last equality emphasizes the
special role of the final state of the system, which can be extremely important for
assessing the degree of efficiency of the chosen control.

As a result, have the following formulation of the optimal control problem
with a free final state11.

Problem 3.1 Find a function u (the optimal control) from the set U that mini-
mizes on this set the functional I whose definition includes the function x that is the
solution of the Cauchy problem (3.1), (3.2) for the given function u.

Let us describe one of the most effective methods for solving this problem.

3.1.2 Maximum principle

In Problem 3.1, the functional is minimized when the equation of state is satisfied,
which is an equality. In the previous chapter, the Lagrange multiplier method was
used to solve the problem of minimizing a function with a constraint in the form of
equality. At the same time, the Lagrange function was introduced as the sum of the
minimized function and the function characterizing the given constraint, multiplied
by a numerical Lagrange multiplier12. If there are several constraints in the form of
equalities, then the Lagrange multiplier turns out to be a vector, and the definition
of the Lagrange function uses the sum of the products of the components of the
vector Lagrange multiplier by the functions characterizing the constraints, which
corresponds to the dot product of the corresponding vectors13. Now, the given
equality is not numerical, but functional, since the state equation is considered for all
values of t ∈ (0, T ). As a result, the Lagrange multiplier is also considered a function,
and to take into account the state equation at all points, when determining the
function (now the functional) of Lagrange, it is no longer the sum, but the integral14.

Thus, to solve the problem in accordance with the Lagrange multiplier
method15, the Lagrange functional is introduced

L(u, x, p) = I(u) +
T∫

0

p(t)
[
x′(t) − f(t, u(t), x(t))

]
dt,

where p is an arbitrary function (Lagrange multiplier). Obviously, in the case
when the function x satisfies equation (3.1), for any function p, the functionals L and
I coincide.

We combine all the terms under the integral in the definition of the functional L,
which depends explicitly on the control. To this end, we consider the function16

H(t, u, x, p) = pf(t, u, x)–g(t, u, x). (3.3)
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Now, the functional L is

L(u, x, p) =
T∫

0

[
p(t)x′(t) −H(t, u(t), x(t), p(t))

]
dt + h(x(T )).

Let us assume that the function u is an optimal control, i.e., the following in-
equality holds

∆I = I(v)–I(u) ≥ 0 ∀v ∈ U. (3.4)

Therefore, we obtain

∆L = L(v, y, p)–L(u, x, p) ≥ 0 ∀v ∈ U, ∀p, (3.5)

where x and y are the solutions of the Cauchy problem (3.1) and (3.1) for the controls
u and v. Find the functional increment

∆L =
T∫

0

p(t)[y′(t) − x′(t)]dt −
T∫

0

∆Hdt + ∆h,

where
∆H = H(t, v, y, p)–H(t, u, x, p), ∆h = h(y(T ))–h(x(T )).

Suppose all known functions included in the problem statement are sufficiently
smooth. Then, denoting ∆x = y–x and using the Taylor series, we obtain

H(t, v, y, p) = H(t, v, x+ ∆x, p) = H(t, v, x, p) +Hx(t, v, x, p)∆x+ η1,

whereHx = ∂H/∂x, η1 is a value of a higher (greater than the first) order in increment
∆x. Now we get

H(t, v, y, p) = H(t, v, x, p) +Hx(t, u, x, p)∆x+ η1 + η2,

where
η2 =

[
Hx(t, v, x, p) −Hx(t, u, x, p)

]
∆x.

Note that the value η2 also has a second order with respect to the increments17. The
equality

h(y(T )) = h
(
x(T ) + ∆x(T )

)
= h(x(T )) + hx(x(T ))∆x(T ) + η3,

is established in a similar way, where hx = dh/dx; and η3 is a value of a higher order
in increment ∆x(T ). Now, we reduce inequality (3.5) to the following form

T∫
0

p(t)∆x′(t)dt−
T∫

0

[
∆uH +Hx(t, u, x, p)

]
dt+ hx(x(T )) + η ≥ 0 ∀v ∈ U, ∀p, (3.6)

where ∆uH is the increment of the function H with respect to the control

∆uH = H(t, v, x, p)–H(t, u, x, p),
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and η is the remainder term18, determined by the formula

η = η3 −
T∫

0

(η1 + η2)dt,

and having the second order with respect to increments.
Integrating by parts, find the value

T∫
0

p(t)∆x′(t)dt = p(T )∆x(T ) −
T∫

0

p′(t)∆x(t)dt,

because x(0) = y(0) = x0. As a result, formula (3.6) is reduced to the inequality

−
T∫

0

∆uHdt−
T∫

0

[
Hx(t, u, x, p) + p′]∆xdt+

[
hx(x(T )) + p(T )

]
∆x(T ) + η ≥ 0 (3.7)

for all v ∈ U and arbitrary p.
Taking into account the arbitrariness of the function p, choose it in such a way

that formula (3.7) has the simplest possible form. In particular, it is possible to vanish
the second and third terms on the left side of this inequality. To do this, it suffices
to assume that the function p satisfies the equation

p′(t) = −Hx(t, u, x, p), t ∈ (0, T ) (3.8)

with condition
p(T ) = −hx(x(T )). (3.9)

Definition 3.1 Problem (3.8) and (3.9) is called the adjoint system19.

As a result of specifying the function p, inequality (3.7) can be written as follows:

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U. (3.10)

Let τ be a point from the interval (0, T ), and w is an arbitrary admissible control.
Determine the control (see Figure 3.1)

vw
ετ (t) =

{
u(t), if t /∈ (τ − ε, τ + ε),
w(t), if t ∈ (τ − ε, τ + ε),

where ε is a small enough positive number. The function vw
ετ is called the needle

variation20 of the control u. Obviously, it is admissible21, i.e., belongs to the set U .
Substituting the control v = vw

ετ into inequality (3.10) and taking into account
that the controls v and u differ only on the interval (τ − ε, τ + ε), we get

τ+ε∫
τ−ε

{
H

[
t, w(t), x(t), p(t)

]
−H

[
t, u(t), x(t), p(t)

]}
dt − ηw

ετ ≤ 0, (3.11)

where ηw
ετ is the remainder term η for v = vw

ετ .
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Figure 3.1 Needle variation of control.

For small values of ε, the control vw
ετ is close enough22 to u so that their differ-

ence is of the order of ε. It is assumed that the solution of problem (3.1) and (3.2)
continuously depends on the control so that the increment ∆x also has the order23 ε.
Then the value ηw

ετ has the order of ε2, i.e., ηw
ετ/ε tends to zero as ε → 0. We divide

inequality (3.11) by 2ε and pass to the limit as ε → 0, taking into account the mean
value theorem24. We obtain

H
[
τ, w(τ), x(τ), p(τ)

]
−H

[
τ, u(τ), x(τ), p(τ)

]
≤ 0.

Taking into account the arbitrariness of the point τ ∈ [0, T ] and the control value
w(τ) ∈ [a(τ), b(τ)], we have the equality

H
[
t, u(t), x(t), p(t)

]
= max

v∈[a(t),b(t)]
H

[
t, v, x(t), p(t)

]
, t ∈ [0, T ]. (3.12)

As a result, we have the following assertion.

Theorem 3.1 In order for the control u to be a solution to Problem 3.1, it is neces-
sary that it satisfies equality (3.12), where x is the corresponding solution to problem
(3.1) and (3.2), and p is the solution of the adjoint system (3.8) and (3.9).

Definition 3.2 The statements of Theorem 3.1 are called the maximum princi-
ple25, or more fully, the Pontryagin maximum principle, and equality (3.12) is
called the maximum condition26.

In accordance with the maximum principle, to solve the problem, it is required to
find the functions u, x, and p from relations (3.1), (3.2), (3.8), (3.9), and (3.12). The
effectiveness of the maximum principle is due to the fact that we have moved from
the problem of minimizing the original functional to the problem of the conditional
extremum of the function H, which explicitly depends on the control27. However,
for the possibility of this transition, one has to pay with the appearance of another
unknown function p28.
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The practical application of the maximum principle for solving a specific opti-
mization problem is reduced to the following steps:

1. The function H is introduced in accordance with formula (3.3).

2. The adjoint system (3.8) and (3.9) is determined.

3. From the maximum principle (3.12), which is a problem for the conditional
extremum of a function, a control is found that will depend on the functions x
and p.

4. Substituting the established dependence into relations (3.1) and (3.8), we obtain
a system of two first-order differential equations for the functions x and p, for
which there are also two boundary conditions (3.2) and (3.9).

5. Solving the resulting system, we find the functions x = x(t) and p = p(t).

6. Substituting the found functions into the control formula set in step 3, we
determine the dependence u = u(t).

7. Check if the found control is a solution to Problem 3.1.

Let us apply the described method to the analysis of specific examples.

3.1.3 Analytical solving of an optimal control problem

Consider an easy optimal control problem.

Example 3.1 Find a function u = u(t) from the set

U =
{
u

∣∣ 1 ≤ u(t) ≤ 2, 0 < t < 1
}
,

which minimizes there the functional

I(u) =
1∫

0

(u2

2 − 3x
)
dt,

where x is the solution of the Cauchy problem

x′(t) = u(t); t ∈ (0, 1); x(0) = 0.

We have the Problem 3.1 with parameters

f(t, u, x) = u, T = 1, x0 = 0, a(t) = 1, b(t) = 2, g(t, u, x) = u2/2–3x, h(x) = 0.

In accordance with the described method, determine the function

H(t, u, x, p) = pf–g = pu–u2/2 + 3x.

Find the solution of the maximum condition (3.12).
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First of all, using the stationary condition, equal to zero the derivative Hu of this
control function. We get the equality p–u = 0, whence it follows that u = p. Since
the second derivative of the function H with respect to control is equal to –1, i.e.,
is negative, we conclude that the found stationary point really corresponds to the
maximum H. If at a time t the value p(t) belongs to the set of admissible control
values, i.e., on the interval [1,2], then it is chosen as a solution to the maximum
condition. For p(t) < 1, the difference p(t)–u(t) is negative, since, according to the
condition of the problem, the number u(t) must belong to the interval [1,2]. Then,
the derivative Hu is negative here, which means that H is a decreasing function
of control. Therefore, the maximum is reached at the minimum possible point, i.e.,
u(t) = 1. Finally, for p(t) > 2, the difference p(t)–u(t) is positive, since u(t) cannot
be greater than 2. Then the derivative Hu is positive and H is an increasing function
of control. Its maximum is reached at the maximum possible point, i.e., u(t) = 2.
Thus, according to the maximum principle (3.12), the control is determined by the
formula

u(t) =


1, if p(t) < 1,

p(t), if 1 ≤ p(t) ≤ 2,
2, if p(t) > 2.

Now, it is necessary to find the function p. The adjoint system (3.8) and (3.9)
now is

p′(t) = −3, t ∈ (0, 1); p(1) = 0.

Find its solution p(t) = 3–3t. It is less than one at t > 2/3, greater than two at
t < 1/3, and takes values from the segment [1,2] at 1/3 ≤ t ≤ 2/3. Thus, the solution
of the maximum principle is determined by the formula; see Figure 3.2.

u(t) =


1, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3,
2, if 2/3 < t < 1.

It is easy to verify that the obtained value is indeed the solution of the given optimal
control problem29.

Consider now the following example:

Example 3.2 Find the point of maximum for the functional of Example 3.1.

Obviously, a control that delivers a minimum to the functional –I will certainly
deliver a maximum to the functional I. Therefore, if to minimize the functional I it is
required to find the maximum of the function H, then, obviously, the search for the
maximum of the same functional will be reduced to minimizing the same function H.

It is clear that the unique solution of the stationary condition for the function
H, defined above, provides the maximum of this function. Under these conditions,
its minimum can be realized exclusively at the boundaries of the set of admissible
control values, i.e., at points 1 or 2. We determine the corresponding values, taking
into account the previously found solution of the adjoint system p(t) = 3–3t. We have

H|u=1 = p–1/2 + 3x = 2.5–3t+ 3x, H|u=2 = 2p–2 + 3x = 4–6t+ 3x.
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Figure 3.2 Optimal control for Example 3.1.

By the maximum principle, one should choose from the limit values of the control that
corresponds to the smaller of these values. As a result, we find the unique solution of
the optimality conditions

u(t) =
{

1, if 0 < t < 1/2,
2, if 1/2 < t < 1.

It is easy to verify30 that it is optimal for Example 3.2.
The considered examples are in a sense similar to Example 1.1, in which the sta-

tionary condition allowed us to find the only minimum point of the given function31.
However, even for the problem of minimizing a function of one variable in the absence
of any restrictions, it is far from always possible to find a solution explicitly. This
is all the more true for the much more difficult Problem 3.1. However, as for the
problems studied in Part I, the possibility of an approximate solution of the problem
with the help of some iterative methods remains here.

3.1.4 Approximate solving of an optimal control problem

In Examples 3.1 and 3.2, both the equation of state and the functional to be mini-
mized were linear with respect to the state function x. As a result, the function H
also turned out to be linear with respect to x. As can be seen from equality (3.7),
the derivative of H with respect to x includes the right side of the adjoint equation.
Thus, in the considered cases, this derivative does not depend on x. In addition, the
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functional lacked a terminal term defined by the function g. In this connection, the
boundary condition (3.8) turned out to be homogeneous. As a result, the adjoint
system did not include the functions u and x, and it could be solved independently
of the equations of state and the maximum condition. This predetermined the possi-
bility of finding an analytical solution to the formulated problem of optimal control.
The situation changes even with a slight complication of the problem statement.

Example 3.3 32 Find a function u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, 0 < t < 1
}
,

which minimizes there the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where x is the solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (3.13)

Compare Examples 3.1 and 3.3. The state of the system in both cases is described
by the same Cauchy problem. The fact that in the first case the control values are
chosen from the interval [1,2], and in the second case, we have the interval [–1,1], is of
no fundamental importance33. However, in the first case the functional is linear with
respect to the function x, and in the second case it is quadratic, which, as we will
soon see, is very important. Nevertheless, we try to solve this problem by a known
method34.

To reduce this problem to the standard form, we define

f(t, u, x) = u, T = 1, x0 = 0, a(t) = 1, b(t) = 2, g(t, u, x) = (u2 + x2)/2, h(x) = 0.

Determine the function
H = pu–(u2 + x2)/2.

The adjoint system (3.7) and (3.8) takes the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (3.14)

Consider now the maximum condition (3.12).
Equating to zero the derivative of the function H with respect to control, we

obtain the same equality u = p as in the previous example. Taking into account the
negativity of the corresponding second derivative, we conclude that we are dealing
with a maximum point. However, at each time t, the value of p(t) can be located
differently relative to the given set of admissible control values [–1,1]; see Figure
3.3. When p(t) < 1, the function H decreases with respect to the control on this
segment, which means that its maximum is reached at the minimum allowable control
value, i.e., u(t) = –1. If p(t) > 1, then the function H increases on a given interval,
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and, consequently, its maximum is reached on the maximum admissible control, i.e.,
u(t) = 1. Finally, for |p(t)| ≤ 1 the value u(t) = p(t) is admissible, which means it
turns out to be the solution of the maximum condition. As a result, we get

u(t) =


−1, if p(t) < −1,
p(t), if − 1 ≤ p(t) ≤ 1,

1, if p(t) > 1.
(3.15)

Figure 3.3 Conditional maximum of the function H.

Thus, for three unknown functions u, x, and p, we have obtained a problem that
includes the equation of state with initial condition, the adjoint system, and the
formula for finding a control. At the same time, unlike Example 3.1, each of these
tasks connects two unknown functions, which does not allow finding any of them
regardless of the others35.

Formula (3.15) gives a solution to the maximum condition, so we can find the
control if the function p is known; see Figure 3.4. Substituting this value into rela-
tion (3.13), we obtain a system (3.13) and (3.14) of two differential equations with
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two boundary conditions for the unknown functions x and p. Unfortunately, the con-
nection between the functions u and p according to condition 3.15) turns out to be
essentially non-linear. As a result, we are unable to find an analytical solution of the
resulting system. However, it remains possible to find its approximate solution.

Figure 3.4 Solution of the maximum principle with the given function p.

If the boundary conditions for the functions x and p were given at the same end of
the time interval, then the approximate solution of the Cauchy problem for a system
of two (even if non-linear) differential equations would not cause any difficulties36.
However, in reality, the additional condition for the function x is given at the initial
time, and the function p has the condition at the end time. In this case, the existing
system can be solved exclusively iteratively37.

Choose an initial approximation control38 u0. Suppose that at the kth iteration we
know the corresponding approximation uk. Substituting this value into the equations
of state (3.13), we find the function xk, solving the problem

x′
k(t) = uk(t), t ∈ (0, 1); xk(0) = 0.

Then, we find the function pk from the adjoint system

p′
k(t) = xk(t), t ∈ (0, 1); pk(1) = 0.

Finally, we find the new iteration uk+1 be the formula

uk+1(t) =


−1, if pk(t) < −1,

pk(t), if − 1 ≤ pk(t) ≤ 1,
1, if pk(t) > 1.

Thus, the solution of the system of optimality conditions can be defined as the limit
of the sequence {uk}, if, of course, it exists39.
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RESULTS

Here is a list of questions devoted to the simplest problems of optimal control and the
optimality condition in the form of the maximum principle, the main conclusions, as well
as additional problems that arise in this case, partially solved in Appendix, partially taken
out in Notes.

Questions

It is required to answer questions concerning the properties of the optimal control
problem and the optimality condition in the form of the maximum principle.

1. What does the optimal control problem include?

2. What is the fundamental difference between the function minimization problem
and the optimal control problem?

3. Why, when posing the optimal control problem, did we separately include the
term characterizing the final state of the system in the formula for the optimal-
ity criterion, and did not include the term characterizing its initial state?

4. Can the optimality criterion not explicitly depend on the control?

5. Can the optimality criterion not depend explicitly on the state function of the
system?

6. Can there be no integral term in the formula for the optimality criterion?

7. Can only the integral term be present in the formula for the optimality crite-
rion?

8. Is it possible to select the initial state of the system as control?

9. Why was it necessary to introduce an additional unknown function when de-
riving the maximum condition?

10. Why does the Lagrange functional combine all terms that explicitly depend on
control?

11. In the formula for the increment of the functional (3.7), the function p is ar-
bitrary. Why is the solution of problem (3.8) and (3.9) chosen as p in what
follows?

12. Can an adjoint system be characterized by a non-linear differential equation?

13. Why is an additional condition specified for the equation of state at the initial
moment of time, and for the adjoint equation we have the final condition?

14. Why and in what sense does the needle variation turn out to be sufficiently
close to the optimal control?
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15. Needle control variation is a discontinuous function. How justified is the choice
of discontinuous control, both from a theoretical point of view (state equation
must make sense) and from a practical point of view (control must be technically
feasible)?

16. What stage of the proof of Theorem 3.1 actually remained unfounded?

17. What class of problems does the maximum condition belong to?

18. The maximum principle does not solve the stated problem of optimal control,
but reduces it to another extremal problem. What then is the meaning of these
transformations?

19. Is it possible to use the maximum principle for the optimal control problem in
the absence of restrictions on the control?

20. What will the optimality conditions look like if in Problem 3.1 it is required to
find not the minimum, but the maximum of the given optimality criterion?

21. How are the methods of minimization and maximization of the same functional
related?

22. Why is the optimal control for Example 3.1 turned out to be continuous, and
the solution for Example 3.2 can be discontinuous?

23. Why is it not possible to use non-iterative methods for the approximate solution
of ordinary differential equations for a system of differential equations that
includes an equation of state and an adjoint equation?

24. Why was it possible to solve the optimal control problems for Examples 3.1
and 3.2 without using iterative methods, while in the case of Example 3.3 the
solution is found iteratively?

25. To what class of function does the solution of the maximum condition (3.15)
for Example 3.3 belong in the general case?

26. Why is it precisely the control that is specified as the initial approximation,
and not the state function and the solution of the adjoint system, although the
system is being solved with respect to three unknown functions?

27. What type of problem has to be solved at each step of the iterative process in
the practical solution of the system of optimality conditions?

28. Is it possible, in the case of convergence of the iterative considered process,
to conclude that the corresponding limit is a solution to the optimal control
problem?
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Conclusions

Based on the study of the general problem of optimal control using the maximum
principle and the results of the analysis of specific examples, we can draw the following
conclusions.

• The optimal control problem consists in minimizing some functional on a set of
admissible controls, and the functional depends on the control both explicitly
and implicitly, by means of a state function that satisfies an equation that
includes the control.

• The simplest optimal control problem is considered for the case when the system
is described by the Cauchy problem for an ordinary differential equation, the
optimality criterion is an integral functional, and the set of admissible controls
is characterized by a given range of change in control values at each moment
of time.

• To solve the optimal control problem, one can use the necessary optimality
condition in the form of the maximum principle.

• The maximum principle is based on the problem of maximizing a some function
on the set of admissible control, and this function also depends on the state
function of the system and the solution of the adjoint system.

• The adjoint system is a linear differential equation with a condition at the final
time.

• In the simplest case, the system of optimality conditions can be solved analyt-
ically.

• To solve the problem of maximizing a functional, instead of finding the max-
imum of the function H from the corresponding minimization problem, it is
required to minimize the same function.

• As a rule, the system of optimality conditions can be solved approximately,
and additional difficulty is due to the fact that the boundary conditions for the
state equation and the adjoint equation are set at different ends of a given time
interval.

• The approximate solution of the optimality conditions is carried out iteratively,
and at each iteration, the solution of the state equation (Cauchy problem), the
solution of the adjoint system (Cauchy problem in the reverse direction of time),
and the control at the next iteration (problem for the conditional maximum of
the function) are successively found.
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Problems

Based on the results obtained above, we have extra the following problems.

1. Substatiation. In fact, we have not given a complete proof of Theorem 3.1,
which is connected with the transformation of inequality (3.11). The justifica-
tion of the maximum principle is given in Appendix; see also Notes40.

2. Generalization of the state equation. We limited ourselves to considera-
tion of systems described by unique ordinary differential equation. In Appendix,
these results are extended to systems of differential equations. Regarding opti-
mal control problems for a wider class of state equations; see Notes41.

3. Generalization of the state constraints. The extension of the results to
the case when the control is a vector quantity is trivial. All formulas remain
valid, but the maximum principle is a problem of maximizing a function of
many variables. Next, we considered the case where restrictions are imposed
exclusively on control values. Part III will consider systems with a fixed final
state, i.e., only those controls are admissible that not only belong to a given set,
but also transfer systems to a given final state. In Part IV, we study the case of
isoperimetric constraints given by some integral equalities, which include both
the control and the state function of the system. Regarding optimal control
problems with general constraints, see Notes42.

4. Optimal control for singular systems. Problem 3.1 was solved under the
assumption that the considered system is regular in the sense that, for any
admissible control, the equation of state has a unique solution that continuously
depends on the control. However, in practice it is not always possible to justify
the regularity of the system. Moreover, the system can, in principle, turn out to
be singular. Under these conditions, the applied research method is not effective.
The problem of optimal control of one singular system is given in Chapter 4,
see also Notes43.

5. Transformation of the optimality conditions. The optimality condition
is a system of equations in three unknowns. In this regard, one can try to
analyze this system using the method of eliminating unknowns. This idea is
implemented in Appendix for Example 3.3.

6. Maximisation problem for the functional from Example 3.3. Examples
3.1 and 3.2 are related to the study of the same functional, which is minimized
in the first case and maximized in the second. Although these problems were
studied by the same method, the solution of the first of them turned out to be
a continuous, but not differentiable function, and the solution of the second one
turned out to be a discontinuous function. Of interest is the problem of finding
the maximum of the functional from Example 3.3. It is addressed in Chapter 5.

7. Solving of maximum condition. In the considered examples, from the max-
imum condition, we quite easily found the dependence of the control on the
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state function and the solution of the adjoint system. However, in some cases
fundamental difficulties arise at this step. Examples of such tasks are discussed
in Chapter 6.

8. Solvability. In the considered examples, the optimal control exists. However,
as noted in Part I, even the much simpler problem of minimizing a function
of one variable is not always solvable. Examples of unsolvable optimal control
problems and sufficient conditions for the existence of an optimal control are
given in Chapter 7.

9. Uniqueness. In the considered examples, the optimal control was unique. How-
ever, as we know, already in the problem of minimizing a function of one vari-
able, the solution may not be unique. Examples of optimization problems with
non-unique solutions and sufficient conditions for the uniqueness of optimal
control are given in Chapters 5 and 6.

10. Sufficiency. In the considered examples, the optimality condition turned out
to be necessary and sufficient. However, as was shown earlier, in the process
of solving the necessary condition for the extremum of a function, values that
are not minimum points can be found. Chapters 5 and 6 will give examples
of problems for which the maximum principle is not a sufficient optimality
condition.

11. Direct solving of the optimality conditions. In the process of studying
Examples 3.1 and 3.2, we managed to find solutions to the problem without
using an iterative process. This was explained by the fact that in the case of
linearity of both the state equation and the optimality criterion with respect
to the state function, the adjoint system did not include the state function
and could be solved independently of the state equation. At the same time, for
Example 3.3, the functional was quadratic with respect to the state function,
and an iterative method had to be used to solve the optimality conditions. It
will be shown in Appendix that, in the absence of restrictions on controls for a
linear system with a quadratic functional, it is also possible to find a solution
to the problem without resorting to the iterative process.

12. Convergence. In the analysis of Example 3.3, an iterative algorithm was used.
In Appendix, its convergence will be proved. Chapter 7 describes the optimal
control problem, for which a similar algorithm diverges for any initial iteration.

13. General iterative methods. In the previous chapter, different iterative pro-
cesses were used to solve problems of minimizing a function on the entire real
line and on a segment. Their analog for the optimal control problem will be
considered in Chapter 4.

14. Problems with parameters. In Chapter 2, the problem of minimizing a
function depending on a parameter was considered. Similar questions for the
simplest optimal control problem will be considered in Chapter 8.
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15. Variational inequalities. In Chapter 2, variational inequalities were used to
solve the problem on the conditional extremum of a function. In Chapter 4,
we will show that this form of the optimality condition is also applicable to
optimal control problems.

16. Penalty method. In Chapter 2, for the problem of minimizing a function in
the presence of equality-type constraints, along with the method of Lagrange
multipliers, the penalty method was used. In Chapter 4, it will be used to
analyze optimal control problems.

17. Sufficient optimality conditions. The maximum principle is a necessary
condition for optimality. Of interest is also sufficient optimality conditions, i.e.,
such relations, the solutions of which (if, of course, they exist) will surely be
optimal controls. One such statement is given in Chapter 4.

3.2 APPENDIX

Below, we present some additional results related to the analysis of the simplest optimal
control problems. Theorem 3.1 given in the Lecture was not fully substantiated. Section 3.2.1
provides its proof. The optimality conditions obtained earlier are a system of equations for
the control, the state function, and the solution of the adjoint system. In Section 3.2.2, to
analyze this system in relation to Example 3.3, the elimination method is applied. Earlier,
for Examples 3.1 and 3.2, an analytical solution of the problem was found. Section 3.2.3
describes a class of problems that can also be solved without using an iterative process. In
the study of Example 3.3, on the contrary, an iterative solution method was used. Section
3.2.4 proves its convergence. The final subsection is devoted to the vector analog of the
general optimal control problem.

3.2.1 Existence of function minimum

Theorem 3.1 presented in the lecture cannot be considered strictly substantiated. In
particular, we have not substantiated the necessary properties of the remainder term
η in the formula for the increment of the functional, leading to inequality (3.10). We
had

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U. (3.16)

This characterizes the increment of the minimized functional, and the remainder term
was defined in the Lecture.

From equalities (3.1) and (3.2), it follows that the function ∆x satisfies the dif-
ferential equation

∆x′(t) = f(t, v(t), x(t) + ∆x(t)) − f(t, u(t), x(t)), t ∈ (0, T )
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with homogeneous initial condition. Integrating this equality, we get

∆x(t) =
t∫

0

[
f(ξ, v(ξ), x(ξ) + ∆x(ξ)) − f(ξ, u(ξ), x(ξ))

]
dξ.

The following inequality holds

|∆x(t)| ≤
t∫

0

∣∣∣f(ξ, v(ξ), x(ξ) + ∆x(ξ)) − f(ξ, u(ξ), x(ξ))
∣∣∣dξ, t ∈ (0, T ).

Assume that the function f satisfies the Lipschitz condition, i.e., there exists
a constant L > 0 such that44

∣∣f(t, v1, y1) − f(t, v2, y2) ≤ L
(
|v1 − v2| + |y1 − y2|

)
for all v1, v2, y1, y2, and t ∈ (0, T ). Then from the previous inequality we obtain

|∆x(t)| ≤ L

t∫
0

∆x(ξ)dξ + L

t∫
0

|v(ξ) − u(ξ)|dξ, t ∈ (0, T ). (3.17)

Further transformations require the following assertion named Gronwall
lemma45

Lemma 3.1 If a continuous function φ = φ(t) satisfies the condition

|φ(t)| ≤ α

t∫
0

φ(ξ)dξ + β, t ∈ (0, T ),

where α, β are positive constants, then the following inequality holds

|φ(t)| ≤ βeαt, t ∈ (0, T ).

Using the Gronwall lemma from inequality (3.17), we obtain the following estimate

|∆x(t)| ≤ c

t∫
0

|v(ξ) − u(ξ)|dξ, t ∈ (0, T ).

where c is a positive constant. When deriving the maximum condition in Section
3.1.2, the needle variation of the control was chosen as the function v

vw
ετ (t) =

{
u(t), if t /∈ (τ − ε, τ + ε),
w(t), if t ∈ (τ − ε, τ + ε),
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where τ is an arbitrary point of the interval (0, T ), w is an arbitrary admissible
control, and ε is a small enough positive number. Then, the previous inequality takes
the form

|∆x(t)| ≤ c

τ+ε∫
τ−ε

|w(ξ) − u(ξ)|dξ, t ∈ (0, T ).

According to the mean value theorem used in the Lecture, for any bounded inte-
grable function φ on the interval [a, b] there exists a positive constant δ such that

b∫
a

φ(ξ)dξ = δ(b− a).

Then the previous inequality implies the estimate

|∆x(t)| ≤ c1ε, t ∈ (0, T ), (3.18)

where c1 is a positive constant.
Now it seems possible to analyze the remainder term η, which is determined by

the formula

η = η3 −
T∫

0

(η1 + η2)dt,

where η3 is higher order value than ∆x(T ), η1 higher order value than ∆x, and
η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x. From the inequality (3.18) it follows, that η1
and η3 have the higher order of smallness than ε. Using the inequality (3.18), we get

∣∣∣ T∫
0

η2dt
∣∣∣ ≤

T∫
0

∣∣Hx(t, v, x, p)–Hx(t, u, x, p)
∣∣|∆x(t)|dt ≤

c1ε

τ+ε∫
τ−ε

∣∣Hx(t, w, x, p)–Hx(t, u, x, p)
∣∣.

The integral on the right side of the obtained formula itself has the order ε due to
the existing integration interval. Thus, the value of η2, and hence the remainder term
η has an order of smallness higher than ε.

Let us now divide the inequality (3.18) with v = vw
ετ by 2ε and pass in it to the

limit as ε → 0, taking into account the mean value theorem. We get

H
[
τ, w(τ), x(τ), p(τ)

]
–H

[
τ, u(τ), x(τ), p(τ)

]
≤ 0,

whence, due to the arbitrariness of the point τ ∈ [0, T ] and w(τ) ∈ [a(τ), b(τ)], the
maximum condition follows

H
[
t, u(t), x(t), p(t)

]
= max

v∈[a(t),b(t)]
H

[
t, v, x(t), p(t)

]
.

Thus, the maximum principle can be considered justified.
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3.2.2 Elimination method

When studying Example 3.2, the system of optimality conditions (3.13)–(3.15) with
three unknown functions u, x, and p was obtained. The most natural way to solve
a system of equations is based on the sequential elimination of unknowns from the
system, which corresponds to the elimination method46. Let us transform the
resulting system by excluding two unknown functions from it.

Formula (3.15), which follows from the maximum principle, can be written as
u(t) = F (p(t)), where F (p) denotes the value on the right side of equality (3.15).
Substituting it into the right side of the equation of state (3.13), we have

x′(t) = u(t) = F (p(t)).

Then, differentiating the adjoint equation (3.14), we obtain

p′′(t) = x′(t) = F (p(t)).

Now the function p turns out to be a solution to the following boundary value
problem for a second-order non-linear differential equation

p′′(t) = F (p(t)), t ∈ (0, 1), p(1) = 0, p′(0) = 0. (3.19)

Thus, the system of optimality conditions can be reduced to the boundary value
problem (3.19). In view of the equivalence of this problem to the system of optimality
conditions (3.13)–(3.15), we conclude that this problem has a unique solution, which
is a function equal to zero.

Consider now the non-linear heat equation

∂y(τ, ξ)
∂τ

= ∂2y(τ, ξ)
∂ξ2 − F (y(τ, ξ)), τ > 0, 0 < ξ < 1 (3.20)

with boundary conditions

∂y(τ, 0)
∂ξ

= 0, y(τ, 1) = 0, τ > 0 (3.21)

and some initial condition, where the function F has the same form as in problem
(3.19). We know, that with an unlimited increase in time τ , the solution of an equation
of this type can go into an equilibrium position. This is such a state that if the
system got there, then it will not leave it47. To find the equilibrium position, it
is enough to equate the derivative of y with respect to τ to zero. Obviously, the
equilibrium position z = z(ξ) for system (3.20), (3.21) is a solution to the boundary
value problem

z′′(ξ) = F (z(ξ)), ξ ∈ (0, 1), z(1) = 0, z′(0) = 0,

which, up to notation, coincides with problem (3.19). Then, based on the results
obtained earlier, we conclude that the system characterized by equation (3.20) with
boundary conditions (3.21) has a unique equilibrium position that is a function iden-
tically equal to zero48.
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3.2.3 Decoupling method

In Examples 3.1 and 3.2, we found an explicit solution to the optimal control problem
without resorting to an iterative process. This is explained by the fact that the
equation of state and the optimality criterion were linear with respect to the state
function. As a result, the adjoint system did not include other unknown functions,
and its solution could be found independently of the control and the state function.
At the same time, in Example 3.3, the optimality criterion was quadratic, and it was
not possible to separate the adjoint equation from other components of the optimality
conditions. Therefore, some iterative method was used to solve the problem. However,
for linear systems with a quadratic functional, in the absence of a control constraint,
one can do it without the use of an iterative algorithm by using the decoupling
method49.

Consider the system described by the Cauchy problem

x′(t) = a(t)x(t) + b(t)u(t) + f(t), t ∈ (0, T ); x(0) = x0, (3.22)

where the functions a, b, f , and the number x0 are known. Determine the functional

I(u) = 1
2

T∫
0

{
α

[
x(t) − z(t)

]2 + β[u(t)]2
}
dt,

where a function z and positive constants α, β are known, and x is the solution of
the problem (3.22).

Problem 3.2 The linear-quadratic optimal control problem with a free finite
state consists in finding a function u that minimizes the functional I whose definition
includes the function x, which is the solution of the Cauchy problem (3.22) for the
given control u.

In accordance with the method described earlier, we determine the function

H = p(ax+ bu+ f)–[α(x–z)2 + βu2]/2.

Then the adjoint system takes the form

p′(t) = α[x(t)–z(t)] − a(t)p(t), t ∈ (0, T ); p(T ) = 0. (3.23)

Unlike the examples considered earlier, there are no restrictions on control here.
Thus, the maximum condition implies an unconditional extremum of the function H.
Equaling its control derivative to zero, we find

u(t) = β−1b(t)p(t), t ∈ (0, T ). (3.24)

Since the corresponding second derivative is negative, we conclude that this equality
does give the maximum point of the function H.
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Thus, the system (3.22)–(3.24) with respect to three unknown functions u, x, and
p, is obtained. From equality (3.24), we substitute the control value into the equations
of state

x′(t) = β−1b(t)2p(t) + a(t)x(t) + f(t), t ∈ (0, T ); x(0) = x0. (3.25)

We have a system of two linear differential equations with two boundary conditions
(3.23) and (3.25). As a result, we can assume that the relationship between the
functions x and p is also linear too. Then there are some functions r and q, which
satisfy the equality50

p(t) = r(t)x(t) + q(t), t ∈ (0, T ). (3.26)

To find these functions, we substitute the function p from equality (3.26) into the
adjoint equation. We get

r′x+ rx′ + q′ = α(x− z) − a(rx+ q).

Taking into account the first equality (3.24), we have

r′x+ r
(
β−1b2p+ ax+ f

)
+ q′ = α(x− z) − a(rx+ q).

Substituting here the value of the function p from equality (3.22), we obtain(
r′ + β−1b2r2 + 2ar − α

)
x +

(
q′ + β−1b2rq + aq + fr + αz

)
= 0.

Equalling in equality (3.25) t = T and taking into account the boundary condition
for the adjoint system, we have

r(T )x(T ) + q(T ) = 0.

The last two formulas represent equalities to zero of some linear functions with
respect to the state function, respectively, at an arbitrary and final time. These
equalities can be satisfied if both the coefficients in front of x and the free terms in
them vanish. As a result, we determine the following problems with respect to the
functions r and q:

r′(t) + β−1b(t)2r(t)2 + 2a(t)r(t) = α, t ∈ (0, T ) r(T ) = 0. (3.27)

q′(t) + β−1b(t)2r(t)q(t) + a(t)q(t) + f(t)r(t) +αz(t) = 0 t ∈ (0, T ) q(T ) = 0. (3.28)

Based on the results obtained, we have the following algorithm for solving the
considered problem:

1. The Cauchy problem (3.27) is solved in the backward direction of time for the
ordinary differential equation with a quadratic non-linearity, called the Riccati
equation51 with respect to the function r.

2. The Cauchy problem (3.28) is solved in the backward direction of time for the
linear ordinary differential equation with respect to the function q.
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3. Based on formulas (3.24) and (3.26), an explicit dependence of the control on
the system state function is determined52

u(t) = β−1b(t)[r(t)x(t) + q(t)], t ∈ (0, T ) (3.29)

with known functions r and q.

4. After substituting the control from formula (3.29) into problem (3.22), the state
function x is found.

5. By formula (3.29), the solution of the problem is calculated.

Thus, a complete analysis of Problem 3.2 can be carried out explicitly without
using an iterative process. Consider one particular case.

Example 3.4 It is necessary minimize the functional

I(u) =
1∫

0

(
u2 + x2)

dt,

where x is the solution of the problem

x′(t) = u, t ∈ (0, T );x(0) = 0.

The difference from Example 3.3 here is solely in the absence of control restric-
tions. We have Problem 3.2 with the following parameter values:

a = 0, b = 1, f = 0, x0 = 0, z = 0, α = 1, β = 1, T = 1.

In accordance with the described method, we define the problem (3.28)

r′(t) + r(t)2 = 1, t ∈ (0, 1); r(1) = 0.

It has the solution
r(t) = e2t−2 − 1

e2t−2 + 1 .

The problem (3.28) take the form

q′(t) + r(t)q(t) = 0, t ∈ (0, 1); q(1) = 0.

It has zero solution. Then the dependence of the control on the state function is
determined by the formula u(t) = r(t)x(t) with the function r found above. After
substituting this control into the equation of state, we again obtain a linear homoge-
neous equation with a homogeneous initial condition

x′(t) + r(t)x(t) = 0, t ∈ (0, 1); x(0) = 0.

It has a zero solution. Taking into account the previously obtained formula for control,
we conclude that u(t) = 0.

In reality, the optimality criterion takes exclusively non-negative values. Equality
to zero here is possible only for u(t) = 0. Thus, we actually found the only solution
to the problem53.
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3.2.4 Algorithm Convergence for Example 3.3

To solve the optimal control problem described in Example 3.3, an iterative process
was used, characterized by the equalities

x′
k(t) = u(t), t ∈ (0, 1), xk(0) = 0;

p′
k(t) = xk(t), t ∈ (0, 1), pk(1) = 0,

uk+1(t) =


−1, if pk(t) < −1,

pk(t), if − 1 ≤ pk(t) ≤ 1,
1, if pk(t) > 1.

Prove its convergence.
Choose some initial approximation u0. It must certainly be an element of the set

of admissible controls, and therefore satisfy the inequality

–1 ≤ u0(t) ≤ 1, t ∈ [0, 1].

Integrating the last relation from zero to an arbitrary value of t and using the equation
of state, we have

–t ≤ x0(t) =
t∫

0

u0(t)dt ≤ t, t ∈ [0, 1].

As a result of integrating the resulting inequality from some value of t to unity, we
obtain

−1
2 ≤ t2 − 1

2 ≤ p0(t) = −
1∫

t

x0(t)dt ≤ 1 − t2

2 ≤ 1
2 , t ∈ [0, 1].

Since the values of p0 do not go beyond the specified interval [–1,1], in accordance
with the above formula, we find a new control approximation u1(t) = p0(t). In this
case, the following inequality holds

–1/2 ≤ u1(t) ≤ 1/2, t ∈ [0, 1].

Integrating the obtained relation, we have

– t2 ≤ x1(t) =
t∫

0

u1(t)dt ≤ t

2 , t ∈ [0, 1].

As a result of integrating this inequality from some value of t to 1, we obtain

−1
4 ≤ t2 − 1

4 ≤ p1(t) = −
1∫

t

x1(t)dt ≤ 1 − t2

4 ≤ 1
4 , t ∈ [0, 1].

Then the new control approximation will satisfy the inequality

–1/4 ≤ u2(t) ≤ 1/4, t ∈ [0, 1].
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Repeating the calculations above, at the next iteration we get

–1/8 ≤ u3(t) ≤ 1/8, t ∈ [0, 1].

In the general case, at the kth iteration, the estimate

|uk(t)| ≤ 2−k, t ∈ [0, 1].

Thus, for k → ∞ there is a convergence uk(t) → 0.
The obtained results show that for any initial approximation of the control chosen

from the set U , the sequence {uk}, determined in accordance with the method of
successive approximations, converges to the function u∗, which is equal to zero.

A natural question arises: is the found value u∗ be a solution to the optimal control
problem? To answer this question, let us return to the formulation of the considered
problem. Since the integrand in the functional to be minimized is non-negative, the
inequality I(u) ≥ 0 holds true for any admissible control u. The zero value of the
functional can be achieved only when the equalities u(t) = 0 and x(t) = 0 are fulfilled
for all t ∈ [0, 1]. The zero value of the control is admissible, and it corresponds
exactly to the value of the state function, which is identically equal to zero. Thus,
the zero value of the functional is achieved exclusively on the admissible control u∗,
and the negative values of the minimized functional are not realized. Consequently,
the optimal control problem under consideration has a unique solution, which was
found as a result of an approximate solution of the obtained optimality conditions.
In this case, the rate of convergence of the algorithm is exponential54.

3.2.5 Vector optimal control problem

The above results naturally extend to the vector case, when the control and the state
function are vector functions

u = (u1, u2, ..., ur), x = (x1, x2, ..., xn).

In this case, the state equation

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0

is the Cauchy problem for the system of differential equations, where f is nth order
vector function of r + n+ 1 variables, and x0 is nth order vector. A vector control u
belongs to the set

U =
{
u

∣∣u(t) ∈ G(t); t ∈ (0, T )
}
,

where G(t) is a subset of r-dimensional Euclidean space. The optimality criterion is
determined by the formula

I(u) =
T∫

0

g(t, u(t), x(t))dt+ h((x(T ),

where g is a function of r + n + 1 variables, h is a function of n variables. We have
the following vector optimal control problem with free final state55.
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Problem 3.3 Find a vector function u from the set U that minimizes on this set the
functional I whose definition includes the function x, which is the equation of state
for the given function u.

By analogy with the formula (3.3), the function r+2n+1 variables is determined

H(t, u, x, p) = ⟨p, f(t, u, x)⟩ − g(t, u, x).

On the right side of this equality is the corresponding dot product. By the maximum
principle, the optimal control satisfies the condition

H
[
t, u(t), x(t), p(t)

]
= max

v∈G(t)
H

[
t, v, x(t), p(t)

]
, t ∈ [0, T ],

where p is a solution of the adjoint system

p′(t) = −Hx(t, u, x, p), t ∈ (0, T ) p(T ) = −hx(x(T )).

The maximum condition here is a problem for the conditional extremum of the func-
tion H with respect to r variables, i.e., controls. The adjoint system includes n equa-
tions with corresponding boundary conditions. Here, the vectors Hx and hx each
include n components that are partial derivatives with respect to the variables xi,
i = 1, . . . , n.

We can also consider the vector analog of Problem 3.2, i.e., vector linear-
quadratic optimal control problem with a free final state.

Problem 3.4 Find a point of minimum of the functional

I(u) = 1
2

T∫
0

[
α

∥∥x(t) − z(t)
∥∥2 + β

∥∥u(t)
∥∥2]

dt,

where the vector function x is a solution of the problem

x′(t) = A(t)x(t) +B(t)u(t) + f(t), t ∈ (0, T ); x(0) = x0,

besides, under the integral are the norms of the corresponding vectors, α and β are
positive constants, z and f are vector functions, and x0 is a n-order vector, A and
B are matrix functions of orders n× n and n× r.

For this problem, the maximum principle is used first (see above), and then, in
accordance with the decoupling method, we can try to find the function p by the
formula

p(t) = R(t)x(t) + q(t), t ∈ (0, T ),

where R is a matrix function of order n×n, and q is an n-order vector. They satisfy,
respectively, the system of differential equations with quadratic non-linearity of order
n× n (matrix Riccati equation56) and the system of linear differential equations
of order n.
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Additional conclusions

Based on the results given in Appendix, we can draw some additional conclusions
about the optimal control problem and the considered examples.

• Justification of the maximum principle is reduced to estimating the remainder
term in the functional increment formula.

• Using the method of elimination of unknowns, the system of optimality condi-
tions can be reduced to a boundary value problem for a non-linear second-order
differential equation.

• For a system that is linear both in control and in the state of the system,
in the absence of restrictions on control, the solution to the problem can be
found without using an iterative process due to the linearity of the system of
optimality conditions.

• The iterative process for solving the system of optimality conditions in Example
3.3 converges to the optimal control for any initial approximation, and the rate
of convergence is exponential.

• Almost all the results obtained earlier can be extended to the vector optimal
control problem.

Notes

1. General questions of optimal control theory are considered, for example, in [5], [13], [28],
[42], [49], [44], [67], [70], [74], [93], [95], [123], [152], [162], [180], [193], [194], [195], [200], [208].

2. For mathematical modeling, see, for example, [30], [173], [203].

3. The general theory of dynamical systems is considered, for example, in [10], [83], [144].

4. The considered systems are also called evolutionary. There are also stationary systems,
the state of which does not depend on time, but may depend on spatial coordinates. They can
be described by elliptic partial differential equations.

5. For systems with lumped parameters, the corresponding phase space (the set of pos-
sible values of the state function of the system) is finite-dimensional, i.e., it is described
by a finite set of numbers at any point in time. Systems with distributed parameters are
also considered, for which the phase space is infinite-dimensional, i.e., the corresponding
state of the system at each moment of time cannot be characterized by a finite set of num-
bers. If systems with lumped parameters are most often associated with ordinary differential
equations, then systems with distributed parameters, as a rule, are associated with partial
differential equations.

6. The requirement for the uniqueness of the state function is introduced solely for reasons
of simplicity. The results obtained naturally extend to the case when the state of the system
is characterized by a vector function; see Appendix.

7. Naturally, the uniqueness assumption of the control function is not necessary; see Ap-
pendix. The control can be a number, a vector, or a vector function. For systems with dis-
tributed parameters, the control can be a function of many variables.
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8. The existence and uniqueness of a solution of the considered Cauchy problem is established
by means of the theory of differential equations; see, for example, [10], [86]. In principle,
optimal control problems are also studied in the absence of the requirement that the state
equations be uniquely solvable; see [73], [118]. Chapter 4 considers optimal control problems
for systems described by differential equations in the absence of existence or uniqueness of a
solution.

9. Optimal control theory also considers problems with restrictions on the state function of
the system, i.e., with phase constraints. The simplest problems of this nature are considered
in later parts of the book. Significantly more general optimal control problems with phase
constraints are considered; for example, in [5], [56], [95], [140].

10. In fact, when specifying the set of admissible controls, it is required to indicate not only
the restrictions that are imposed on the controls, but also the functional properties of these
controls, i.e., function space to which they must all belong, including the boundary functions a
and b. At this stage of the study, we do not need to specify this space, although the functional
class of control largely determines the properties of the system state function and is used to
justify the optimality condition. In Chapter 7, we will return to this question when we study
the problem of the existence of an optimal control.

11. Optimal control problems with a fixed final state are considered in Part III. Functional
minimization problems are also studied in the framework of the calculus of variations; see
[37], [61], [208]. However, this implies an explicit dependence of the functional on the unknown
function. In optimal control problems, this dependence is implicitly specified by means of an
equation of state, the solution of which depends on the control and affects the optimality
criterion.

12. More precisely, in Chapter 2, when defining the Lagrange function, the minimized function
was multiplied by another Lagrange multiplier. However, it was noted that the latter can be
assumed to be equal to unity.

13. See in particular the final subsection of Chapter 2.

14. The resulting value can also be interpreted as a dot product in some function space. Actu-
ally, the sum is a discrete analog of the integral, and the integral is the continuous analog of the
sum. Behind this is the same construction, namely integration over a measure. The difference
here is solely in the type of measure; see [158]. If the state of the system turns out to be a
vector quantity, then so will the Lagrange multiplier. In this case, the definition of the Lagrange
functional will use the integral of the sum of the product of the vector Lagrange multiplier and
the vector of the right-hand sides of the equations of state, which again corresponds to the dot
product of the corresponding quantities in the vector functional space.

15. The Lagrange multiplier method is used in the calculus of variations to minimize functionals
when there are additional constraints in the form of equalities; see [37], [61], [208].

16. In the calculus of variations, the function H corresponds to the Hamiltonian; see [37],
[61], [208]. As applied to physical problems, the Hamiltonian has the sense of the total energy
of the system; see [110].

17. We have the difference between the values of two functions on the controls v and u, mul-
tiplied by the increment ∆x.

18. The form of the remainder term will be used in Chapter 5 when studying the sufficiency
of the optimality condition in the form of the maximum principle.
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19. In Hamiltonian mechanics, closely related to the calculus of variations, the function
(usually a vector function) p corresponds to the generalized momentum of the system; see
[110].

20. Needle variation is used in the calculus of variations to derive the Weierstrass condition
of a functional; see [37], [61], [208]. Other types of variations are considered, for example, in
[75], where they are used they are used in deriving the necessary optimality conditions for
singular controls; see Chapter 6.

21. We pay attention to the fact that the needle variation of the control is a discontinuous
function. The choice of a discontinuous function as a control is justified, first of all, by the fact
that differential equations with discontinuous parameters make sense; see [10], [86]. This choice
also makes sense from a practical point of view, since discontinuous functions are technically
realizable. The control system may include a certain switch, which, if necessary, at a certain
point in time, transfers the system from one state to another.

22. The concept of proximity of functions is far from obvious. The general notion of proximity
is related to topology; see [101]. Various forms of closeness of functions are defined in functional
analysis; see [94], [100], [106], [158]. If two continuous functions u and v defined on the interval
[0, T ] are considered, then they can be considered sufficiently close if the maximum value
of the modulus of the difference |u(t)–v(t)| over all values of t from the specified interval is
sufficiently small. This quantity is called the norm of the difference of the considered functions
in the space of continuous functions C[0, T ]. Naturally, in this sense, the optimal control and
its needle variation will not be close, unless the functions u and w take different values at the
point τ . However, in optimal control problems, continuity of the control is usually not required,
and the closeness of the considered functions is understood in the sense of the smallness of the
Lebesgue integral of the difference |u(t)–v(t)| (or from the power p of this value, greater than
one) over all values of t from the interval [0,T]. This corresponds to the norm in the space
L1(0, T ) (respectively, in the space Lp(0, T )). It is easy to see (this follows from the mean
value theorem, see Note 23) that in this case the difference between the optimal control and its
needle variation is of the order of smallness ε. In this sense, in the calculus of variations, strong
and weak local extrema of functionals are distinguished. A function x = x(t) is called a weak
minimum of a given functional if its value in it does not exceed the value of the functional at
all points y = y(t) sufficiently close to x in the sense of being small as the values |x(t)–y(t)| and
|x′(t)–y′(t)|. At the same time, for a strong minimum, the corresponding relation holds only
if |x(t)–y(t)| is small. Obviously, a strong extremum is always weak, but the converse statement
is not always realized. The needle variation is sufficiently close to the optimal control only in
the sense of the closeness of the functions, but not their derivatives.

23. Here, we use the assumption that for any function u problem (3.1) and (3.2) has a unique
solution that depends continuously on the control. This corresponds to the Hadamard well-
posedness of the problem, defined in Chapter 2. This property, under certain restrictions, is
established by means of the theory of ordinary differential equations; see [10], [86].

24. By the mean value theorem, the integral of some function is equal to the value of the
function at some point in the integration interval, multiplied by the length of this interval; see,
for example, [158]. In this case, the integral of the corresponding function is calculated from
the point τ − ε to the point τ + ε. The length of this interval is 2ε. Therefore, after dividing by
2ε, we obtain the value of the integrand at some point from the segment [τ − ε, τ + ε]. After
passing to the limit at ε → 0, we obtain the value of this function at the point τ .

25. The concept of the maximum principle is also used in the theory of functions of a complex
variable and in problems of mathematical physics. However, there it has a completely different
meaning.
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26. In the calculus of variations, an analog of the maximum principle is the Weierstrass
condition, which gives a necessary condition for a strong minimum of the corresponding
functional; see [37], [61].

27. In fact, for each value of t, we have a conditional extremum problem for a function of one
variable, i.e., Problem 2.1.

28. Another price to pay for the transition from functional to function is the absence of suf-
ficiency of the optimality condition; see Chapter 5. However, we encountered a similar phe-
nomenon when minimizing the function in Chapter 1.

29. In Chapter 5, we will see that the maximum principle for Example 3.1 is a necessary and
sufficient condition for optimality. This implies that the only solution of the maximum principle
is the optimal control. Moreover, in Chapter 7 we will show that the considered optimal control
problem is solvable, which means that the optimality condition certainly has a solution. Finally,
in Chapter 9 we will show that the resulting optimal control also minimizes this functional on
the subset U of functions that ensure the transfer of the system to the state x(1) = 3/2.

30. This statement is justified in the same way as the similar result for Example 3.1; see also
Chapters 5 and 7.

31. In Chapter 9, optimal control problems with a fixed final state will be considered, for
which the exact solution will also be found using the maximum principle without involving any
iterative methods; see Examples 9.1 and 9.2. There, as for Examples 3.1 and 3.2, the equation
of state and the optimality criterion are linear in the state of the system. In Chapter 13, we will
find an analytical solution to the problem of optimal control of the system with an additional
integral constraint in the form of equality; see Example 13.1. Similar examples for optimal
control problems in the absence of initial conditions are considered in Chapter 16.

32. Chapter 5 will show that the functional maximization problem from Example 3.3 has
qualitatively different properties; see Example 5.1. The problem given in Example 7.3 from
Chapter 7 also has completely different properties, differing from the given one only in the set
of admissible controls. Chapter 12 will consider the minimization problem of the functional
from Example 3.3 with an additional constraint, when the final state of the system is fixed.

33. Between any two closed finite segments, one can establish a one-to-one correspondence
with the preservation of almost all properties that we take into account. Two such objects are
called and, in principle, are indistinguishable from the standpoint of the subject area under
consideration.

34. In Chapter 4, we will use the variational inequality and the penalty method to analyze
this example.

35. This is due to the presence of a quadratic term with respect to the state function in the
optimality criterion.

36. For numerical methods for solving ordinary differential equations; see, for example, [84].

37. This algorithm can also be used to solve the optimality conditions corresponding to Prob-
lem 3.1 of a general form. In this case, at each iteration, first, from the known control, the
function x is found from the equations of state. Then the adjoint system is solved. Finally,
a new control approximation is determined from the maximum condition. In Chapter 9 this
algorithm will be extended to optimal control problems with a fixed final state, and in Section
13 to problems with isoperimetric constraints. For iterative methods for solving optimality
conditions; see, for example, [46], [65], [70], [149].
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38. In principle, any of them can be set as the initial approximation. However, only about
the control we have initially defined information, namely, its belonging to a given set. In this
regard, it is natural to begin calculations with the control. In the next section, we will show
that in a specific case, the formula for solving the optimality condition allows us to refine the
choice of the initial approximation, which increases the efficiency of the iterative process.

39. Naturally, we must also prove the existence of the limit. In addition, we have to make sure
that this limit is not just a solution to the system of optimality conditions, but also turns out
to be an optimal control for the considered problem. The corresponding results are given in
Appendix. In the next chapter it will be shown that the solution of this problem is unique, and
the maximum principle is a necessary and sufficient condition for optimality. From here it will
also follow that the limit of the considered sequence is an optimal control.

40. Justification of the maximum principle for systems described by differential equations in
the vector case is given in Appendix; see also [5], [42], [62], [70], [74], [95], [103], [152], [162],
[182], [193], [195].

41. The obtained results are naturally extended to the case when the state function is a vector
quantity, and we have a system of differential equations. In this case, the formula for the function
H has the same form as before H(t, u, x, p) = pf–g, but here x is the vector of system states
(vector function), f is the vector of the right parts of the system of differential equations, p is
the adjoint state vector, and pf has the meaning of the dot product, i.e., the sum of products
of vector components. In this case, p is determined from the adjoint system, again determined
by the equation p′ = –Hx, where the derivative of the vector function is on the left side, and
the vector Hx of partial derivatives of the function H. Optimal control problems for systems
of differential equations are studied, for example, in [5], [42], [62], [70], [74], [152], [162], [193];
for partial differential equations, see [9], [24], [36], [59], [73], [104], [111], [116], [118], [119],
[121], [124], [136], [137], [138], [155], [165], [171], [177], [178], [186], [185], for integral equations
see [20], [50], [53], [164], [176]; for integro-differential equations [2], [135], [209]; for differential
inclusions, see [126]; for the system described by variational inequalities see [22], [186], [198],
[204]; for discrete dynamical system, see [28], [29], [38], [42], [70], [193], [194], [195]. Optimal
control problems under conflict or uncertainty are studied using differential, see [42], [97]. On
optimal control of stochastic systems, see [8], [31], [42], [62], [67], [70], [177].

42. Optimal control problems for systems with phase constraints are considered; for example,
in [5], [42], [95], [140].

43. Optimal control problems for singular systems are considered in [73], [118].

44. It is easy to verify that the Lipschitz condition is satisfied by any continuously differen-
tiable function. Thus, the Lipschitz condition is stronger than the continuity and weaker than
the differentiability of the function.

45. The name Gronwall–Bellman lemma is also used. The proof of this assertion is given, for
example, in [86], [143], [193].

46. The Gauss method for solving systems of linear algebraic equations is based on this idea;
see [14]. The fact that in this case we are dealing with neither algebraic nor linear equations
(the dependence of u on p is non-linear) does not play a fundamental role. We will use the
method of eliminating unknowns in order to reduce the system of optimality conditions to a
problem that includes only one unknown function in the subsequent sections of the book.

47. On the equilibrium position of dynamical systems; see, for example, [10], [86]. Similar
questions for non-linear equations of parabolic type see [88].
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48. On boundary value problems for non-linear differential equations; see [10], [61], [81], [86].
The transition to an equation of the heat conduction type is associated with the establishment
method for solving the corresponding boundary value problem. In Chapters 5, 7, and 12, the
solutions of the system of optimality conditions for various optimal control problems will also
be interpreted as the equilibrium positions of some non-stationary systems. In Chapters 5 and
7, we will consider boundary value problems that differ from (3.19) only in the form of the
function F . However, the properties of these problems differ radically from the considered one.

49. On the decoupling method for systems described by partial differential equations; see
[116]. In Chapter 8, the linear-quadratic optimal control problem with a fixed finite state is
studied in a similar way and in Chapter 16 this method is used for a problem with a free initial
state

50. In the vector case, r is a matrix function, see Section 3.2.5, and in the case of partial
differential equations, r is some operator; see [116].

51. On the Riccati equation, see [59], [159], [210]. Extending these results to partial differen-
tial equations, at this stage, an operator equation is established, which reduces to the analysis
of an integro-differential equation with a quadratic non-linearity; see [116]. On the numerical
solution of the Riccati equation; see [149]. We will meet the Riccati equation again in Chapter
4 when using the Bellman equation to analyze a linear-quadratic optimal control problem and
also in Chapters 9 and 16 when studying linear-quadratic optimal control problems with a
fixed final state and a free initial state, respectively.

52. Defining the dependence of the optimal control on the state function is the subject of
the synthesis problem of great importance in the automatic control theory; see [4], [42],
[59], [67], [113], [212]. In a program control problem, optimal control is defined as a function
of independent variables (in this case, time). In practice, the control is given directly. The
practical application of the synthesis problem is reduced to the consideration of a system
with feedback, in which, based on the results of measuring the state of the system, control
is determined, which, in turn, regulates the course of development of the controlled process.
This approach seems to be especially relevant in the analysis of stochastic systems subject to
random influences; see [4], [42], [59], [67], [212].

53. An iterative method for solving the optimal problem from Example 3.4 is described in
Chapter 4, and the existence of its solution is proved in Chapter 7.

54. Although the optimal control for Example 3.3 has already been found, we will repeatedly
return to its study in subsequent chapters in order to illustrate the features of certain results
obtained in the future.

55. A vector optimal control problem with a fixed final state is considered in Chapter 9.

56. The matrix Riccati equation; see [59], [67], [159], [212].



C H A P T E R 4

Alternative methods

In the previous chapter, we considered the simplest problem of optimal control theory. It was
analyzed using optimality conditions in the form of the maximum principle. However, there
are other methods for solving such problems. In particular, we note approximate methods
for minimizing functionals, which are natural generalizations of the corresponding methods
for minimizing functions, described in Chapter 2. To solve optimal control problems, we
will also use variational inequalities and the penalty method, which were previously used to
minimize functions under certain restrictions. In addition, sufficient optimality conditions
are considered.

4.1 LECTURE

The subject of this lecture is again the problem of minimizing an integral functional for
a system described by an ordinary differential equation with an initial condition in the
presence of restrictions on the control values. In the previous chapter, the necessary opti-
mality conditions in the form of the maximum principle were used to study it. However,
optimization methods are not limited to this. First of all, we recall that for the function
minimization problems, along with minimum conditions, some iterative methods were used.
In particular, in Chapter 2, gradient methods for minimizing functions were described. We
give a generalization of these methods to optimal control problems, confining ourselves to
some specific examples; see Section 4.1.1. The variational inequality, which was also applied
in Chapter 2 to solve the problem of minimizing a function on an interval, is fairly close to
the maximum condition. We use it to analyze considered before Problem 3.1; see Section
4.1.2. Chapter 2 also used the penalty method to solve the function minimization problem
in the presence of an additional constraint in the form of equality. In Section 4.1.3, it is
applied to the approximate solving of optimal control problems. Finally, in Section 4.1.4,
the Bellman equation is derived, which gives a sufficient optimality condition for Problem
3.1.
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4.1.1 Iterative methods for solving an optimization problem

In Chapter 2, iterative methods were used to solve the problem of minimizing a
differentiable function. Let us show that they can also be used to solve optimal
control problems. We confine ourselves easy examples. Let us start with an Example
3.4. It is required to minimize the functional

I(u) = 1
2

1∫
0

(
u2 + x2)

dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

In Chapter 3, its solution was found using the maximum principle and the decoupling
method. In this case, we try to use iterative methods.

Let u be a solution of this problem. Consider the control v = u+ σh, where σ is
a positive number, h is an arbitrary function1. The following inequality holds

I(v) − I(u) = 1
2

1∫
0

[
(v2 − u2) + (y2 − x2)

]
dt,

where y is the solution of the considered Cauchy problem corresponding to the control
v. The last inequality can be written as

σ

1∫
0

uhdt +
1∫

0

x∆xdt + 1
2

1∫
0

(
σ2h2 + ∆x2)

dt ≥ 0, (4.1)

where ∆x = y − x.
The function ∆x is the solution of the problem

∆x′(t) = σh(t), t ∈ (0, 1); ∆x(0) = 0.

Multiplying the first equality by an arbitrary differentiable function λ and integrating
the result using the second equality, we get

σ

1∫
0

λhdt =
1∫

0

λ∆x′dt = λ(1)∆x(1) −
1∫

0

λ′∆xdt.

Choose here as λ the solution of the problem2

p′(t) = x(t), t ∈ (0, 1); p(1) = 0.

We obtain

σ

1∫
0

phdt = −
1∫

0

x∆xdt.
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Then inequality (4.1) takes the form

σ

1∫
0

(u− p)hdt + 1
2

1∫
0

(
σ2h2 + ∆x2)

≥ 0.

Obviously, the function ∆x is

∆x(t) = σ

t∫
0

h(τ)dτ,

i.e., proportional to σ. Then, dividing the previous inequality by σ and passing to
the limit as σ → 0, we obtain

1∫
0

(u− p)hdt ≥ 0.

The resulting relation is valid for any function h. Then we can replace h with –h and
get the inequality

1∫
0

(u− p)hdt ≤ 0.

Since both last conditions are true, we have the equality

1∫
0

(u− p)hdt = 0

for all functions h.
In fact, we have established the formula

lim
σ→0

I(u+ σh) − I(u)
σ

=
1∫

0

(u− p)hdt = 0 ∀h. (4.2)

Thus, the corresponding limit3 exists and is linear with respect to the function h.
This result is related to some generalization of the concept of the function derivative.

Definition 4.1 The value under the integral in equality (4.2) and multiplied by an
arbitrary function h is called the Gateaux derivative4 of the functional I at the
point u and is denoted by I ′(u).

It is easy to verify that the Gateaux derivative of a differentiable function of one
variable coincides with its usual derivative, and of a function of many variables with
its gradient5. In our case, we have found the Gateaux derivative of the considered
functional, i.e., we have I ′(u) = u–p.
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It follows6 from the formula (4.2) that u–p = 0, and hence u = p. In fact, we
have proved here that the Gateaux derivative I ′(u) of the considered functional at
a given point, equal to u–p vanishes if the control u is optimal. This corresponds to
the stationary condition for our problem7.

Now, we can use the method of successive approximations, similar to that
used in the analysis of Examples 2.6–2.11. Assume that at the kth iteration, the
control approximation uk is known. Substituting this value into the equation of state,
we find the function xk as a solution to the Cauchy problem

x′
k(t) = uk(t), t ∈ (0, 1); xk(0) = 0.

Next, the function pk is defined as a solution to the problem

p′
k(t) = xk(t), t ∈ (0, 1); pk(1) = 0.

The new approximate control uk+1 is determined by the formula

uk+1(t) = pk(t), t ∈ (0, 1). (4.3)

Another version of the algorithm corresponds to the gradient method8

uk+1 = uk − βkI
′(uk),

considered in Chapter 2, where the positive constant βk is an algorithm parameter.
For Example 3.4, the gradient method is characterized by the equality

uk+1(t) = uk − βkpk(t), t ∈ (0, 1). (4.4)

In Example 3.3, we considered the problem of minimizing the same functional
on the set of such controls whose values at each point lie on the interval [–1,1]. In
Chapter 2, to solve the problem of minimizing a function on a segment, the gradient
projection method was used, according to which, at this step of the algorithm, the
usual gradient method was first used. If the found value satisfies the given constraints,
then it is chosen as a new approximation of the desired value. Otherwise, the closest
point to the found value that satisfies these restrictions is chosen as such. In the
general case, the gradient projection method is characterized by the equality

uk+1 = P
[
uk − βkI

′(uk)
]
,

where P is an operator of projection onto the set of admissible controls, also called a
projector . The projector transforms an arbitrary point of the space under consid-
eration into the point of the given set closest to it. Thus, for Example 3.3, formula
(4.4) is replaced by the equality

uk+1(t) =


−1, if vk(t) < −1,

vk(t), if − 1 ≤ vk(t) ≤ 1,
1, if vk(t) > 1,
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where vk = uk–βkpk. However, one can also use an analog of formula (4.3) that is

uk+1(t) =


−1, if vk(t) < −1,

pk(t), if − 1 ≤ vk(t) ≤ 1,
1, if vk(t) > 1,

This result exactly corresponds to what was obtained in Chapter 3 using the iterative
method for solving the system of optimality conditions obtained by the maximum
principle.

4.1.2 Variational inequality

In Chapter 2, a variational inequality was used to solve the problem of minimizing a
function on an interval. Let us show that this extremum condition is also applicable9

to the solution of Problem 3.1. It consists in minimizing the functional

I(u) =
T∫

0

g(t, u(t), x(t))dt+ h(x(T ))

on the set of admissible controls

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where x is a solution of the Cauchy problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0.

In the previous section, the following function was defined

H(t, u, x, p) = pf(t, u, x)–g(t, u, x),

where p is a solution of the adjoint system

p′(t) = −Hx(t, u(t), x(t), p(t)), t ∈ (0, T ); p(T ) = −hx(x(T )).

In doing so, inequality (3.10) was determined that is

−
T∫

0

∆uHdt+ η ≥ 0,

with a remainder term η.
For any function s ∈ U , the control10 vσs = u + σ(s–u) is admissible for any

number σ ∈ (0, 1). We assume in the above inequality v = vσs. Note that for small
enough values of σ, the control vσs is be arbitrarily close to u. Assuming again the
continuous dependence of the solution of the considered Cauchy problem on the
control, we establish that for small σ the corresponding increment of the state function
∆x is of the order of σ. Then the remainder term η has the order σ2. Assuming the
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functions f and g to be differentiable with respect to control, after dividing the last
inequality by σ and passing to the limit as σ → 0, we have

T∫
0

Hu(t, u(t), x(t), p(t))(s− u)dt ≤ 0 ∀s ∈ U.

For further transformations of the obtained relation, we choose as the control s
the needle variation of the control defined in Chapter 3

vw
ετ (t) =

{
u(t), if t /∈ (τ − ε, τ + ε),
w(t), if t ∈ (τ − ε, τ + ε)

with an arbitrary point τ from the interval (0, T ), small enough number ε, and an
arbitrary control w. We get

τ+ε∫
τ−ε

Hu(t, u(t), x(t), p(t))[w(t) − u(t)]dt ≤ 0.

Dividing the resulting inequality by 2ε and passing in it to the limit as ε → 0,
similarly to how it was done in the justification of Theorem 3.1, we obtain

Hu(τ, u(τ), x(τ), p(τ))[w(τ)–u(τ)] ≤ 0.

Hence, due to the arbitrariness of the point τ and the control w, we get the varia-
tional inequality11

Hu(t, u(t), x(t), p(t))[v–u(t)] ≤ 0 ∀v ∈ [a(t), b(t)], t ∈ (0, T ). (4.5)

We formulate the results obtained in the form of a theorem12.

Theorem 4.1 Under the assumptions made, in order for the control u to be optimal,
it is necessary that it satisfies the variational inequality (4.5).

Now, we check this theorem in a concrete situation. Let us turn to Example 3.1,
which consists in minimizing the functional

I(u) =
∫
0

(u2

2 − 3x
)
dx

on the control set
U =

{
u

∣∣ 1 ≤ u(t) ≤ 2, 0 < t < 1
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The function H is determined here by the formula

H(t, u, x, p) = pu – u2/2 + 3x.
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Then the variational inequality (4.5) takes the form

[p(t)–u(t)][v–u(t)] ≤ 0 ∀v ∈ [1, 2], t ∈ (0, 1).

To solve it, we use the technique described in Chapter 2. On the left side of this
inequality is the product of two quantities, the first of which is fixed, and the second
varies. The first multiplier can have any sign. Consider all three possible cases.

Suppose p(t)–u(t) > 0. Then, dividing the inequality by the first multiplier, we
get v–u(t) ≤ 0 for all v ∈ [1, 2], i.e., u(t) must be no less than all numbers from
the interval [1,2]. However, the control value itself belongs to this segment. Then
the preceding assertion can only be true for u(t) = 2. Therefore, if the value of p(t)
is greater than u(t), equal to 2, then u(t) = 2. Thus, this equality is satisfied for
p(t) > 2.

If p(t)–u(t) < 0, then after dividing the variational inequality by the first mul-
tiplier, we obtain that v–u(t) ≥ 0 for all v ∈ [1, 2], i.e., u(t) must not be greater
than all numbers from the interval [1,2]. This is possible only for u(t) = 1. Thus, if
p(t) is less than u(t), which is equal to 1, then u(t) = 1. Thus, this equality holds for
p(t) < 1.

Finally, the equality p(t)–u(t) = 0 is possible, and hence u(t) = p(t). However,
this control is admissible only for p(t) ∈ [1, 2].

Previously, it was found that p(t) = 3–3t. Then the solution of the variational
inequality (4.5) for the considered example leads to the formula

u(t) =


2, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3,
1, if 2/3 < t < 1.

This result is exactly the same as what was obtained earlier using the maximum
principle, and gives a solution to the maximum principle. Thus, the solution of the
optimal control problem for Example 3.1 based on the variational inequality and the
maximum principle leads to the same results.

For Example 3.3, the function H is equal to pu–(u2 + x2)/2. Then we obtain the
variational inequality

[p(t)–u(t)] [v–u(t)] ≤ 0 ∀v ∈ [−1, 1]. (4.6)

If p(t)–u(t) > 0, then, dividing inequality (4.6) by the first multiplier of its left side,
we get v–u(t) ≤ 0 for all v ∈ [–1, 1]. Taking into account that the value u(t) itself
belongs to the segment [–1,1], from the last inequality, we deduce u(t) = 1. Thus, if
p(t) is greater than u(t), equal to 1, then u(t) = 1. If p(t)–u(t) < 0, then, dividing
inequality (4.6) by the first multiplier of its left side, we obtain v–u(t) ≥ 0 for all
v ∈ [–1, 1]. This is possible only u(t) = –1. Thus, if p(t) is less than u(t), equal to
–1, then u(t) = –1. Finally, inequality (4.6) is satisfied for u(t) = p(t). However, this
value is only true if p(t) ∈ [–1, 1]. As a result, we have the formula

u(t) =


−1, if p(t) < −1,
p(t), if − 1 ≤ p(t) ≤ 1,

1, if p(t) > 1
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determined in the previous chapter by the maximum principle. Thus, for Example
3.3, the variational inequality and the maximum condition also lead to the same
result13.

4.1.3 Penalty method

In Chapter 2, to find an approximate solution to the problem of minimizing the func-
tion in the presence of a constraint in the form of equality, the penalty method, a
former specific alternative to the Lagrange multiplier method. It suggested a transi-
tion to an unconditional extremum problem to with a small parameter. In the optimal
control problem by restriction in the form of equality, one can understand the state
equation, which opens up certain prospects for the application of the penalty method.
Apply it for analysis of Example 3.4. In this case, it is required to minimize the func-
tional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where the function x is a solution of the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Using penalty method, we determine the functional of two variables

Jε(u, x) = 1
2

1∫
0

(u2 + x2)dt + 1
2ε

1∫
0

(x′ − u)2,

where ε is a small positive parameter. Consider its minimization problem with addi-
tional condition x(0) = 0.

Suppose the pair (uε, xε) is a solution of this problem, i.e., its optimal pair14.
To find it, we use the method described in Section 4.1.1, taking into account the fact
that the functional Jε depends on the two variables. We have the inequality

Jε(uε + σh, xε) − Jε(uε, xε) ≥ 0

for any function h and all positive numbers σ. The following inequality holds

σ

2

1∫
0

(2uεh+ σh2)dt + σ

2ε

1∫
0

[
− 2(x′

ε − uε)h+ σh2]
dt ≥ 0.

Dividing this formula by σ and passing to the limit as σ → 0, we get
1∫

0

(
uε − x′

ε − uε

ε

)
hdt ≥ 0.

The function h is arbitrary, so we obtain

uε − ε−1(x′
ε − uε) = 0.
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Defining the function
pε = ε−1(x′

ε − uε), (4.7)

we have the equality
uε = pε. (4.8)

Similarly for any continuously differentiated function h, equal to zero at the initial
time moment15, and positive numbers σ the following inequality holds

Jε(uε, xε + σh) − Jε(uε, xε) ≥ 0.

Now we have

σ

2

1∫
0

(2xεh+ σh2)dt + σ

2ε

1∫
0

[
− 2(x′

ε − uε)h′ + σh′2]
dt ≥ 0.

Dividing this inequality by σ and passing to the limit as σ → 0 using formula (4.8),
we have

1∫
0

(xεh− pεh
′)dt ≥ 0.

Integrating by parts, we get

1∫
0

pεh
′dt = −

1∫
0

p′
εhdt + pε(1)h(1),

because h(0) = 0. Now the previous inequality takes the form

1∫
0

(xε − p′
ε)hdt + pε(1)h(1) ≥ 0. (4.9)

This formula is true for all functions h, including those that satisfy equality
h(1) = 0. For them, this inequality is

1∫
0

(xε − p′
ε)hdt ≥ 0.

Using the previously described technique, taking into account arbitrariness of h, we
establish that p′

ε = xε. Then from inequality (4.9) it follows that pε(1)h(1) ≥ 0.
From here, due to arbitrariness of h, it follows that pε(1) = 0. Therefore, the function
pε is a solution to the problem

p′
ε(t) = xε(t), t ∈ (0, 1); pε(1) = 0. (4.10)

Using the formula (4.8) and given initial condition, determine the Cauchy problem

x′
ε(t) = uε(t) + εpε(t), t ∈ (0, 1); xε(0) = 0. (4.11)
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Now, we have the system16 (4.8), (4.10), and (4.11) for finding three unknown func-
tions uε, pε, and xε. At the same time, the problem (4.10) is a standard adjoint
system, and equality (4.8) is a solution to the conditions of the maximum principle
and variational inequality for the example considered. The same result was obtained
in Section 4.1.1. Finally, the Cauchy problem (4.11) with small values ε can be inter-
preted as an approximation of a given state equation. We have established formulas,
which in a certain sense an approximation of the previously obtained system of op-
timality conditions for this example. Thus, using the penalty method, we can really
get the approximate value of optimal control17 for Example 3.4.

4.1.4 Bellman equation

We return to the general optimal control problem discussed earlier in Chapter 3 and
Section 4.1.2. In this case, this problem is analyzed using dynamic programming18.
It is based on the Bellman optimality principle, according to which the optimal
control does not depend on the history of the system and is determined by the state
of the system at a given moment. Thus, if u = u(t) is the optimal control of the
system on the time interval (0, T ), then for any point ξ of this interval, the same
function will be the optimal control of the system on the interval (ξ, T ), i.e., any final
part of the optimal control of the system is itself optimal19.

When solving a problem using dynamic programming, the following function of
two variables is definite

B(t, x) = min
v∈U(t)

[ T∫
t

g(τ, v(τ), y(τ))dτ + h(y(T ))
]

(4.12)

for all numbers t ∈ (0, T ) and x, where

U(t) =
{
u

∣∣ a(τ) ≤ u(τ) ≤ b(τ), τ ∈ (t, T )
}
,

and y = y(τ) is a solution of the Cauchy problem

y′(τ) = f(τ, v(τ), y(τ)), τ ∈ (t, T ); y(t) = x. (4.13)

Thus, there is a family of optimal control problems of the type of Problem 3.1,
differing only in the starting point t and the state of the system x at this moment
in time, and the function B characterizes the minimum value of the corresponding
functional.

Definition 4.2 The function B is called the Bellman function.

Consider a small enough time interval ∆t. We have

B(t, x) = min
v∈U(t)

[ t+∆t∫
t

g(τ, v(τ), y(τ))dτ +
T∫

t+∆t

g(τ, v(τ), y(τ))dτ + h(y(T ))
]
.
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Because of the Bellman optimality principle, the solution of the optimal control
problem on the segment (t, T ) turns out to be optimal on the interval (t + ∆t, T ).
Then the last equality can be written as

B(t, x) = min
v∈U(t)

{ t+∆t∫
t

g(τ, v(τ), y(τ))dτ+ min
v∈U(t+∆t)

[ T∫
t+∆t

g(τ, v(τ), y(τ))dτ+h(y(T ))
]}
.

Using the definition of the Bellman function, we get

B(t, x) = min
v∈U(t)

[ t+∆t∫
t

g(τ, v(τ), y(τ))dτ + B(t+ ∆t, x+ ∆x)
]
,

where ∆x = y(t + ∆t)–y(t) is determined by the control on the interval (t, t + ∆t).
Using Taylor formula20, we have

B(t+ ∆t, x+ ∆x) = B(t, x) +Bt(t, x)∆t+Bx(t, x)∆x+ η =

B(t, x) +
[
Bt(t, x) +Bx(t, x)∆x

∆t
]

+ η,

where η is a value that has a higher order of smallness with respect to increments.
Then the previous equality takes the form

B(t, x) = min
v∈U(t)

{ t+∆t∫
t

g(τ, v(τ), y(τ))dτ +B(t, x) +
[
Bt(t, x) +Bx(t, x)∆x

∆t
]

+ η
}
.

The value B(t, x) here does depend from the control. Therefore, we can replace it
before the minimum at the right-hand side of this formula.

Divide this equality by ∆t and pass to the limit as ∆t → 0. Using the mean value
theorem, we get

lim
∆t→0

1
∆t

t+∆t∫
t

g(τ, v(τ), y(τ))dτ = g(t, v(t), y(t)) = g(t, w, x),

where w = v(t). Using the equation (4.13), determine

lim
∆t→0

∆x
∆t = lim

∆t→0

y(t+ ∆t) − y(t)
∆t = y′(t) = f(t, v(t), y(t)) = f(t, w, x).

Finally, η/∆t → 0 as ∆t → 0. Now we obtain

0 = min
[
g(t, w, x) +Bt(t, x) +Bx(t, x)f(t, w, x)

]
.

On the right side of this equality, the minimum is taken over the control. However,
the value under square brackets depends only on w, which is the control at time t.
It follows from the definition of the set of admissible controls that it belongs to the
interval [a(t), b(t)]. Then, taking into account that the derivative Bt(t, x) does not
depend on the control, we reduce the last equality to the form

Bt(t, x) + min
w∈[a(t),b(t)]

[
g(t, w, x) +Bx(t, x)f(t, w, x)

]
= 0. (4.14)
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Definition 4.3 The equality (4.14) is called the Bellman equation21

Obviously, this is a first-order partial differential equation. Passing at (4.12) t = T ,
we obtain the final condition for the Bellman equation22

B(T, x) = h(x). (4.15)

The following assertion holds23.

Theorem 4.2 Suppose the exists a Bellman function B = B(t, x), which is a solu-
tion of problem (4.14), (4.15), and the control u = u(t), which minimizes the cor-
respondence function of the Bellman equation. Then this control is the solution of
Problem 3.1.

Theorem 4.2 gives the sufficient optimality conditions24 for Problem 3.1,
because by this result the control determining after analysis of the Bellman equation
is optimal. However, this is not guaranty that any optimal control can be determined
by this method25.

Use Theorem 4.2 for the analysis of the considered before linear-quadratic
optimal control problem; see Problem 3.2. We have the problem of minimization
of the quadratic functional

I(u) = 1
2

T∫
0

{
α

[
x(t) − z(t)

]2 + β
[
u(t)]2

}
dt,

where x is a solution of the linear problem

x′(t) = a(t)x(t) + b(t)u(t) + f(t), t ∈ (0, T ); x(0) = x0.

The constraints with respect to the control are absent here. Consider an easy case
with z(t) = 0, f(t) = 0.

The value under the square brackets of the Bellman equation is

Ψ(w) = Bx(t, x)
[
a(t)x) + b(t)w

]
+ αx2 + βw2.

Differentiate the function Ψ and equal the result to zero. We find the corresponding
stationary point that is

u(t) = –(2β)−1Bx(t, x)b(t).

The second derivative of Ψ is positive, so this is the point of minimum. Putting it to
the Bellman equation, we get

Bt(t, x) +Bx(t, x)a(t)x+ αx2 − (4β)−1
[
Bx(t, x)b(t)

]2
= 0. (4.16)

Try to find the solution of this equation by the formula

B(t, x) = r(t)x2,
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where the function r will be chosen later. Find the partial derivatives

Bt(t, x) = r′(t)x2, Bx(t, x) = 2r(t)x.

Now the control is determined by the formula

u(t) = β−1r(t)b(t)x; (4.17)

and the equality (4.16) takes the form[
r′(t)–β−1r(t)2b(t)2 + 2a(t)r(t) + α

]
x2 = 0.

Besides, from the formula (4.15) it follows

r(T )x2 = 0.

Two previous equalities are true if the coefficients before x2 for both cases are zero.
This is possible if the function r is a solution of the problem

r′(t)–β−1r(t)2b(t)2 + 2a(t)r(t) + α = 0, t ∈ (0, T ); r(T ) = 0. (4.18)

We have the Riccati equation, which is exactly the same as equation (3.28), which
was obtained in Chapter 3.

Now the algorithm for solving the problem is as follows.

1. The function r is found from system (4.18).

2. The explicit dependence of the control on the state function is determined by
formula (4.17), which corresponds to the solution of the synthesis problem.

3. After substituting the control from formula (4.17) into the state equation and
its solving, the function x is found.

4. Optimal control as a function of time is determined by formula (4.17) with
previously defined functions r and x.

Consider, in particular, Example 3.4, which consists in minimizing the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where x is a solution of the system

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The problem (4.18) takes the form

r′(t) + r(t)2 = 1; r(1) = 0.

Its solution was found in the previous chapter. After its substitution, first into formula
(4.18), and then into the state equation, the Cauchy problem is obtained

x′(t) = r(t)x(t), t ∈ (0, 1); x(0) = 0.

which has zero solution. Then it follows from equality (4.18) that u(t) = 0. This
control, as we already know, is the solution of the considered optimal control problem.
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RESULTS

Here is a list of questions devoted to the described methods for solving optimal control
problems and the examples considered, the main conclusions on this topic, as well as the
additional problems that arise in this case, partially solved in Appendix, partially explained
by the Notes.

Questions

It is required to answer questions concerning the properties of the optimal control
problem and the optimality condition in the form of the maximum principle.

1. In the process of analyzing Example 3.4, inequality (4.1) was obtained. Subse-
quently, this formula was divided by σ, and the passage to the limit was carried
out as σ → 0. Why does the summand, which includes the square of the state
increment ∆x, tend to zero?

2. Why, after obtaining inequality (4.1), it was necessary to consider the problem
for the increment ∆x?

3. How did the function λ appear when calculating the limit (4.2)?

4. For what purpose, in the study of Example 3.4 in Section 4.1.1, the function λ
specially chosen?

5. On the basis of what, after passing to the limit in the corresponding inequality
in Section 4.1.1, was it concluded that the equality u = p is true?

6. What is the Gateau derivative of the differentiable function?

7. How can the stationary conditions for functions of one and many variables be
derived from the equality to zero of the Gateaux derivative of an arbitrary
functional at an extremum point?

8. Why was the formula v = u+ σh used in the analysis of Example 3.4 replaced
by another formula in the analysis of Example 3.3?

9. Why are the algorithms characterized by equalities (4.3) and (4.4) not suitable
for the analysis of Example 3.3?

10. Is there any difference between the iterative method of solving the optimality
condition in the form of the maximum principle for Example 3.3 used in Chapter
3 and the gradient projection method described in the Lecture?

11. Whence does it follow that the control vσs used in the derivation of the varia-
tional inequality is admissible?

12. What property of the state equation was used in the derivation of the variational
inequality?
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13. What requirements and why were imposed on the functions f and g when
deriving the variational inequality?

14. Which of the methods (maximum principle or variational inequality) is more
effective in the analysis of Example 3.1?

15. Can variational inequalities be used to analyze Example 3.4?

16. Why is the equality u(t) = p(t) obtained during the study of Example 3.1 only
meaningful for p(t) ∈ [1, 2]?

17. What is the point of using the penalty method for solving optimal control
problems?

18. When analyzing Example 3.4 using the penalty method, inequality (4.9) was
obtained. How was problem (4.10) derived from it?

19. What is the difference between the system (4.8), (4.10), and (4.11) obtained in
the analysis of Example 3.4 and similar relations for the same example obtained
in Section 4.1.1?

20. How can the approximate value of the optimal control be found using the
penalty method?

21. Is it possible to find an exact, rather than an approximate, solution to an
optimal control problem using the penalty method?

22. What is the meaning of Bellman optimality principle?

23. How is the Bellman optimality principle used in deriving the Bellman equation?

24. What class of equations does the Bellman equation belong to?

25. The Bellman equation includes the first derivatives of the function B with
respect to both variables. Why does it get a boundary condition for t and not
a condition for the variable x?

26. From what considerations was problem (4.18) obtained with respect to the
function r in the considered example?

27. What happens if one applies the Bellman equation to analyze Example 3.4?

Conclusions

Based on the study of the considered optimization methods, the following conclusions
can be drawn.

• The stationary condition can be extended to problems of minimizing functionals
using Gateaux derivatives.
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• Gradient methods can be extended to minimization problems for functionals
using Gateaux derivatives.

• For finding the optimal control, iterative methods for solving the corresponding
system of optimality conditions can be applied.

• The system of optimality conditions for Example 3.4 can be solved iteratively
using the method of successive approximations or the gradient method.

• The system of optimality conditions for Example 3.3 can be solved iteratively
using the gradient projection method.

• To solve optimal control problems, along with the maximum principle, varia-
tional inequalities can be used.

• Variational inequality is a necessary condition for optimality for the considered
class of problems.

• For Example 3.1, the maximum principle and variational inequality are equiv-
alent.

• For Example 3.3, the maximum principle and variational inequality are equiv-
alent.

• For an approximate solving of optimal control problems, one can use the penalty
method, which involves solving the problem of unconstrained minimization of
a functional with a small parameter.

• Application of the penalty method for Example 3.4 results in a system that
differs from the system of optimality conditions obtained for it in Chapter 3
only by a relation that can be interpreted as an approximate equation of state.

• Dynamic programming can be used to solve optimal control problems.

• Dynamic programming provides a sufficient optimality condition based on the
Bellman equation.

• The Bellman equation is a first-order partial differential equation that includes
the solution of a function minimization problem.

• Using the Bellman equation, one can obtain a solution to a program control
problem and a synthesis problem for a linear-quadratic problem.

• In the process of applying the Bellman equation for a linear-quadratic optimal
control problem, the Riccati equation is obtained.
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Problems

Based on the described optimization methods and the considered examples, we have
the following problems.

1. Application of iterative methods for the practical solving of opti-
mality conditions. In the Lecture, iterative methods were used to study the
optimality conditions for Examples 3.3 and 3.4. It is of interest to use them for
a wider class of problems to be solved. Similar methods will be used in Chapters
5, 6, and 7.

2. Convergence of iterative methods. In connection with the practical ap-
plication of iterative methods for solving optimal problems, the problem of
justifying their convergence arises, see Notes26

3. Applicability of iterative methods. We would like to know the limits of
applicability of the iterative methods described in Section 4.1.1. One result in
this direction is given in Appendix.

4. Justification of the variational inequality. The Lecture actually lacked
the substantiation of Theorem 4.1. For justification of optimality conditions in
the form of variational inequalities, see Notes27.

5. Relationship between the maximum condition and the variational
inequality. For the considered examples, the variational inequality and the
maximum condition turned out to be equivalent. However, it remains unclear
whether this equivalence holds in the general case. The answer to this question
is given in Appendix.

6. Application of variational inequality for the analysis of different op-
timal control problems. We limited ourselves to applying the variational
inequality to solve the problems from Examples 3.1 and 3.3. In Appendix, this
optimality condition will also be used to analyze Example 3.2. In Chapters 5,
6, 9, and 13, variational inequalities are applied to study other problems.

7. Application of the penalty method to solve general optimal control
problems. In the Lecture, we limited ourselves to applying the penalty method
to the analysis of Example 3.4. In Appendix, it is used to study two more
difficult problems. Regarding the application of this method to solving a wide
class of optimal control problems, see Notes28.

8. Penalty method for problems with constraints on control values. We
used the penalty method for the analysis, in which there were no restrictions
on the control values. However, problems with control constraints are more
interesting. In Appendix, this method is used for a problem with a control
constraint.

9. Optimal control of singular systems. The solution of optimal control prob-
lems was carried out under the assumption that the system under consideration
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is regular in the sense that for any admissible control the equation of state has
a unique solution that continuously depends on the control. However, in prac-
tice it is not always possible to justify the regularity of the system. Moreover,
the system can, in principle, turn out to be singular. Under these conditions,
the applied research methods are not effective. Optimal control problems for
two qualitatively different singular systems are studied in Appendix using the
penalty method, see also Notes29.

10. Justification of the Bellman equation. In Lecture, Theorem 4.2 remained
virtually unfounded. Justification of the Bellman equation is given in Appendix,
see also Notes30.

11. Applicability of Bellman optimality principle. The derivation of the Bell-
man equation was carried out on the basis of the Bellman optimality principle.
It is of interest to identify the limits of its application. Appendix shows that it
is being readied for Example 3.1. In Chapter 10, we will show the applicability
of this statement to one optimal control problem for a system with a pinned
finite state. An example of an optimal control problem for which the Bellman
optimality principle does not apply is given in Chapter 15.

12. Application of dynamic programming for solving optimal control
problems. For practical applications of dynamic programming, see Notes31.

13. Relationship between the maximum principle and dynamic program-
ming. To analyze the general problem of optimal control, use the maximum
principle and dynamic programming. The connection between these approaches
is discussed in Appendix, see also Notes32.

4.2 APPENDIX

Some additional information about the methods for solving optimal control problems de-
scribed in the Lecture is given below. In particular, Section 4.2.1 considers an optimal
control problem for which the methods of Section 4.1.1 turn out to be inapplicable due to
the non-differentiability of the optimality criterion. Section 4.2.2 analyzes Example 3.2 us-
ing a variational inequality, which leads to a different result from that obtained earlier using
the maximum principle. In Section 4.2.3, the penalty method is used to solve a constrained
optimal control problem, in which case it is used in conjunction with a variational inequal-
ity. In Section 4.2.4, we consider the optimal control problem of the system, for which it is
impossible to guarantee the existence of a solution to the state equation on a given time in-
terval for an arbitrary admissible control, and in Section 4.2.5, there is no uniqueness of the
solution to the Cauchy problem. Under these conditions, the penalty method turns out to be
quite effective. Section 4.2.6 provides a justification for Theorem 4.2 on sufficient optimality
conditions, and Section 4.2.7 establishes a connection between dynamic programming and
the maximum principle. Section 4.2.8 shows that for Example 3.1 the Bellman optimality
principle is implemented.
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4.2.1 Problem with a non-smooth functional

In Section 4.1.1, we considered optimal control problems that were solved using dif-
ferent iterative methods. However, it is not always possible to use them. Consider the
following problem33.

Example 4.1 Find the minimum of the functional

I(u) = 1
2

1∫
0

[
x(t) − z(t)

]2
dt,

where z is a given function, and x is a solution of the Cauchy problem

x′(t) = f(t, u), t ∈ (0, 1); x(0) = 0,

besides
f(t, u) =

{
f1, if 0 < t < u,
f2, if u < t < 1,

with known values f1 and f2.

To solve the problem, we try to use the iterative methods described in Section
4.1.1. Suppose u is the solution to this problem. Let us find the Gateaux derivative
of the minimized functional at this point. We define v = u+ σh, with some numbers
h and σ. Determine the difference

I(v) − I(u) = 1
2

1∫
0

[
(y − z)2 − (x− z)2]

dt,

where y is a solution of the same Cauchy problem for the control v. The previous
equality takes the form

I(v) − I(u) =
1∫

0

(x− z)∆xdt+ 1
2

1∫
0

∆x2dt, (4.19)

where ∆x = y − x. This can be transformed to the equality34

I(v) − I(u) =
1∫

0

p
[
f(t, v) − f(t, u)

]
dt+ 1

2

1∫
0

∆x2dt, (4.20)

where p is a solution to the problem

p′(t) = x(t) − z(t), t ∈ (0, 1); p(1) = 0.

Using the state equation, we find

∆x(t) =
t∫

0

[
f(τ, v) − f(τ, u)

]
dτ. (4.21)
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Determine the integral
1∫

0

p
[
f(t, v) − f(t, u)

]
dt =

[ u+σh∫
0

pf1dt−
u∫

0

pf1
]
dt+

[ 1∫
u+σh

pf2dt−
1∫

u

pf2
]
dt.

Further transformation depends on the sign of the number h. Suppose the value of h
is positive. Then we get

1∫
0

p
[
f(t, v) − f(t, u)

]
dt = (f1 − f2)

u+σh∫
u

p(t)dt.

From equality (4.21), it follows that the increment ∆x(t) is zero for t < u, the value
(f1–f2)(t–u) for u < t < u + σh and (f1–f2)σh for t > u + h. Then the second
term on the left side of equality (4.20) does not exceed (|f1–f2|σh)2/2. As a result,
condition (4.20) implies

I(u+ σh) − I(u)
σ

= (f1 − f2) 1
σ

u+σh∫
u

p(t)dt+ 1
2σ

1∫
0

∆x2dt.

Passing here to the limit as ∆x → 0, using the mean value theorem, we obtain

lim
σ→0

I(u+ σh) − I(u)
σ

= (f1 − f2)p(u)h. (4.22)

For negative values h, we have
1∫

0

p
[
f(t, v) − f(t, u)

]
dt = (f2 − f1)

u∫
u+σh

p(t)dt.

From inequality (4.20), after dividing by h, we have

I(u+ σh) − I(u)
σ

= (f2 − f1) 1
σ

u∫
u+σh

p(t)dt+ 1
2σ

1∫
0

∆x2dt.

For the increment ∆x(t) in this case, the same estimate is set as in the previous case.
Then after passing to the limit, we have

lim
σ→0

I(u+ σh) − I(u)
σ

= (f2 − f1)p(u)h. (4.23)

Combining equalities (4.22) and (4.23), we obtain

lim
σ→0

I(u+ σh) − I(u)
σ

= (f1 − f2)p(u)|h|.

Thus, the limit of the value, which is here on the left side of the equality, exists, but
is not linear with respect to h. This means that the functional to be minimized is
not Gateaux differentiable. As a result, it is not possible to use the iterative methods
described in Section 4.1.1 for the analysis of Example 4.1. At the same time, it is
possible to determine the subgradient of the functional (see Chapter 1) and use non-
smooth optimization methods35.



124 ■ Optimization: 100 examples

4.2.2 Non-equivalence of the variational inequality and maximum condition

As we already know, along with the maximum condition, variational inequality can
be used to solve optimal control problems. The corresponding optimality conditions
are quite close, including the state equation, the adjoint system, and the optimality
condition itself. In the Lecture, it was shown that, in relation to Examples 3.1 and
3.3, these methods turned out to be equivalent, since they led to the same result. We
now apply the variational inequality to study Example 3.2, in which it is required to
find the maximum of the functional from Example 3.1. Thus, it is required to find
the maximum of the functional

I(u) =
1∫

0

(u2

2 − 3x
)
dt

on the control set
U =

{
u

∣∣ 1 ≤ u(t) ≤ 2, 0 < t < 1
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

As already noted, the problem of maximizing the functional I is equivalent to the
problem of minimizing the functional –I. With regard to the use of the variational
inequality, this only leads to the replacement of the relation ≤ included in it by ≥.
We define the function H by the formula

H(t, u, x, p) = pu–u2/2 + 3x,

same as for Example 3.1 where, as established in Chapter 3, p(t) = 3–3t. Then the
optimal control will satisfy the variational inequality

[p(t)–u(t)][v–u(t)] ≥ 0 ∀v ∈ [1, 2], t ∈ (0, 1).

The unique difference from the analogous inequality for Example 3.1 is the presence
here of the relation ≥ instead of ≤. We again have a product of two quantities, the
first of which is concrete, and the second varies.

Assume that p(t)–u(t) > 0. Then, dividing the inequality by the first multiplier,
we establish that v–u(t) ≥ 0 for all v ∈ [1, 2], i.e., u(t) must not be greater than all
numbers from the interval [1,2]. Considering that the value of the control itself belongs
to this segment, we conclude that the last inequality is possible only for u(t) = 1.
Therefore, if the value of p(t) is greater than u(t), equal to one, then u(t) = 1.
Thus, this equality is satisfied for p(t) > 1. If p(t)–u(t) < 0, then after dividing
the variational inequality by the first multiplier, we obtain that v–u(t) ≤ 0 for all
v ∈ [1, 2], i.e., u(t) must be no less than all numbers from the interval [1,2], which is
possible for u(t) = 2. Thus, if p(t) is less than u(t), which is equal to 2, then u(t) = 2.
Thus, this equality holds for p(t) < 2. Finally, the equality p(t)–u(t) = 0 is possible,
and hence u(t) = p(t). However, this equality is admissible only for p(t) ∈ [1, 2].
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Previously, it was found that p(t) = 3–3t. Obviously, p(t) is greater than 2 for
t < 1/3, belongs to the interval [1,2] for 1/3 ≤ t ≤ 2/3, and is less than 1 for t > 2/3.
Based on the results obtained earlier, we conclude that u(t) = 1 for t < 1/3, u(t) = 2
for t > 2/3, and can take one of the three values 1, 2, or 3–3t for 1/3 ≤ t ≤ 2/3. At
the same time, using the maximum principle, the optimal control is

u(t) =
{

1, if 0 < t < 1/2,
2, if 1/2 < t < 1.

Obviously, the previous result coincides with this one for t < 1/3 and t > 2/3.
However, for 1/3 ≤ t ≤ 2/3, the maximum principle allows one to determine the
solution of the problem uniquely, while, by the variational inequality, one of the
three specified values can be optimal, but it is not clear in advance which one. Thus,
for this example, the considered optimality conditions are not equivalent, and the
variational inequality turns out to be only a necessary, but not sufficient, optimality
condition36.

4.2.3 Penalty method in the optimal control problem with constraints

In the Lecture, the penalty method was applied to the study of Example 3.4, in which
there were no restrictions on the control values. Let us show that this method is also
applicable to problems with constraints. Consider, in particular, Example 3.3, which
is a generalization of Example 4.1 to problems of optimal control with constraints.
In this case, it is required to minimize the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, T )
}
,

where the function x is a solution of the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

As in the case of Example 3.4, we introduce a functional of two variables

Jε(u, x) = 1
2

1∫
0

(u2 + x2)dt + 1
2ε

1∫
0

(x′ − u)2dt,

where ε is a small positive number. We consider the problem of its minimization on
the set of admissible pairs, characterized by the control belonging to the set U and
the fulfillment of the initial condition x(0) = 0. Due to the presence of restrictions
on the control, we use the variational inequality to solve this problem.
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Assume that a pair of functions (uε, xε) is a solution to this problem. To ana-
lyze it, we will use the previously described method, corrected for the fact that the
functional Jε depends on two variables. The following inequality holds

Jε(uε + σ(s–uε), xε) – Jε(uε, xε) ≥ 0

for any function s ∈ U and all numbers σ ∈ (0, 1). We get

σ

2

1∫
0

[
2uε(s− uε) + σ(s− uε)2

]
dt+ σ

2ε

1∫
0

[
− 2(x′

ε − uε)(s− uε) + σ(s− uε)2
]
dt ≥ 0.

Dividing this inequality by σ and passing to the limit as σ → 0, we have

1∫
0

(
uε − x′

ε − uε

ε

)
(s− uε)dt ≥ 0 ∀s ∈ U.

Denoting
pε = ε−1(x′

ε − uε), (4.24)

we obtain
1∫

0

(uε − pε)(s− uε)dt ≥ 0 ∀s ∈ U.

We have here a variational inequality similar to that established in Section 4.1.2.
Using here the needle variation of the control (see Section 4.1.2), we obtain the
pointwise variational inequality

[uε(t)–pε(t)][v–uε(t)] ≥ 0 ∀v ∈ [–1, 1], t ∈ (0, T ), (4.25)

which is the partial case of the formula (4.5). Moreover, up to notation and the form
of the set of admissible controls, it coincides with the variational inequality obtained
in the Lecture when analyzing Example 3.1. Using the well-known method, we find37

uε(t) =


−1, if pε(t) < −1,

pε(t), if − 1 ≤ pε(t) ≤ 1,
1, if pε(t) > 1.

(4.26)

Further, for any continuously differentiable function h equal to zero at the initial
time moment, and positive numbers σ, we have the inequality

Jε(uε, xε + σh) – Jε(uε, xε) ≥ 0.

Repeating here the same transformations as for the analogous inequality from Section
4.1.3, we arrive at the adjoint system

p′
ε(t) = xε(t), t ∈ (0, 1); pε(1) = 0, (4.27)

which coincides with the problem (4.10).
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Equality (4.24), taking into account the given initial condition, implies the Cauchy
problem

x′
ε(t) = uε(t) + εpε(t), t ∈ (0, 1); xε(0) = 0, (4.28)

which coincides with problem (4.11). Now, with respect to three unknown functions
uε, pε and xε, the system (4.26)–(4.28) is obtained. Comparing it with the system of
optimality conditions (3.13)–(3.15), we note that the only difference here is equation
(4.28), which, for small enough ε, can be interpreted as an approximation of the
initially given equation of state. Practical finding of the solution of the obtained
system can be carried out using the iterative process described in Chapter 3.

4.2.4 Optimal control of a singular system

All previously obtained results were established under the assumption that the state
equation with the corresponding initial condition has a unique solution that depends
continuously on the control38. However, singular systems for which these requirements
are not met can also be the object of study.

Example 4.2 Find a minimum of the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where x is a solution of the Cauchy problem

x′(t) = x(t)2 + u(t), t ∈ (0, 1); x(0) = 2. (4.29)

The main difference from Example 3.4 here is the presence of a non-linear term
x2 in the state equation.

At first, we analyze the properties of the problem (4.29). Let us define, for exam-
ple, u(t) = 0. Then this equation is reduced to the form

dx

x2 = dt.

After integration, we get
− 1
x

= t+ c,

where c is an arbitrary constant. Thus, the general solution of the equation is

x(t) = − 1
t+ c

.

Obviously, x(t) → ∞ as t → 1/2. Thus, there exists a control for which problem
(4.29). has no solution39 on the time interval (0,1).

Let us now set the control u(t) = 4. Equating to zero the value on the right
side of the first equality (4.29), we find the value x(t) = 2 corresponding to the
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equilibrium position of the system. However, at the initial time, the system is
already in equilibrium, which means that it will be in it subsequently. Consequently,
there exists a control for which problem (4.29) has solutions on the time interval
(0,1).

Thus, the state equation, depending on the choice of control, may or may not
have a solution on a given interval. Now we have the following definition.

Definition 4.4 The function pair (u, x) is called admissible for system (4.29) if it
satisfies these equalities.

We would like to minimize the given functional for system (4.29). Naturally, if
under some control the Cauchy problem has no solution, then it makes no sense to
consider such a control as a possible solution to the optimization problem. In this
connection, we can assume that our problem is to minimize the functional I on the
set of admissible pairs of the system (4.29). At the same time, we do not know the
set of controls under which the equation of state makes sense. As a result, it is not
possible to use the maximum principle or variational inequality to solve the problem,
since in the process of variation of the control, when deriving optimality conditions,
we can reach such a control for which the equation of state does not make sense.
However, we can understand control and states as equal arguments of the minimized
functional and interpret the equation of state as a constraint on the system, given
as an equality. In this case, the penalty method described above makes it possible to
find an approximate solution to the problem.

Consider the functional

Jε(u, x) = 1
2

1∫
0

(u2 + x2)dt + 1
2ε

1∫
0

(x′ − x2 − u)2dt,

where ε is a small positive parameter. The problem of its minimization under the
additional condition x(0) = 2 is considered. To solve it, we use the technique
described in the previous subsection.

Suppose the pair (uε, xε) is a solution of this problem. We have the inequality

Jε(uε + σh, xε) – Jε(uε, xε) ≥ 0

for any function h and all positive number σ. We get

σ

2

1∫
0

(u2
ε + x2

ε)dt + σ

2ε

1∫
0

[
− 2(x′

ε − x2
ε − uε)h+ σh2

]
dt ≥ 0.

After division by σ and passing to the limit, as was done in Section 4.1.3, we have

1∫
0

(
uε − x′

ε − x2
ε − uε

ε

)
hdt ≥ 0.
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Hence it follows
uε − ε−1(

x′
ε − x2

ε − uε

)
= 0.

By analogy with equality (4.7), having defined the function

pε = ε−1(
x′

ε − x2
ε − uε

)
, (4.30)

we obtain the equality
uε = pε. (4.31)

Similarly, for any continuously differentiable function h, equal to zero at the initial
time, and positive numbers σ, the following inequality holds

Jε(uε, xε + σh) – Jε(uε, xε) ≥ 0.

Now we obtain

σ

2

1∫
0

(2xεh+ σh2)dt + σ

2ε

1∫
0

[
2(x′

ε − x2
ε − uε)(h′ − 2xεh) + σh′2 + σh2

]
dt ≥ 0.

Divide this inequality by σ and pass to the limit, taking into account equality (4.31).
We have

1∫
0

(
xεh− 2pεxεh+ pεh

′)dt ≥ 0.

Integrating by parts and performing the same transformations as in the previous
chapter, we have the problem

p′
ε(t) = xε(t) − 2xε(t)pε(t), t ∈ (0, 1); pε(1) = 0, (4.32)

which is analog of (4.10). Finally, from equality (4.30), taking into account the given
initial condition, it follows

x′
ε(t) = xε(t)2 + uε(t) + εpε(t), t ∈ (0, 1); xε(0) = 2. (4.33)

Thus, with respect to three unknown functions uε, pε and xε, the system
(4.31)–(4.33) is obtained, and for a sufficiently small ε, problem (4.33) is an approxi-
mation of the equations of state (4.29). Thus, the penalty method really provides an
opportunity to find an approximate solution to the problem of optimal control of a
singular system40.

4.2.5 Optimal control of a singular system with constraints

Consider an optimal problem of control for a qualitatively different singular system41.

Example 4.3 Find a minimum of the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt
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on the set
U =

{
u

∣∣ 0 ≤ u(t) ≤ 1, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem42

x′(t) =
√
x(t) + u(t), t ∈ (0, 1); x(0) = 0. (4.34)

Let us establish the properties of the given Cauchy problem43. Choose a concrete
admissible control, for example, identically equal to zero. By a direct check, one can
verify that the function

xξ(t) =
{

0, if 0 ≤ t ≤ ξ,
(t− ξ)2/4, if t > ξ

for any non-negative ξ is the solution to problem (4.34). Thus, a situation is possi-
ble when the state equation has an infinite set of solutions44; see Figure 4.1. This
circumstance cannot serve as an obstacle to solving the problem of minimizing this
functional on the set of admissible pairs of the system using the penalty method.

Figure 4.1 Solutions of problem (4.34) for u = 0.

Determine the functional

Jε(u, x) = 1
2

1∫
0

(u2 + x2)dt + 1
2ε

1∫
0

(
x′ −

√
x− u

)2
dt,

where ε is a small positive parameter. We consider the problem of its minimization
under the initial condition x(0) = 0.

Let (uε, xε) be a solution of this problem. The following inequality holds

Jε(uε + σh, xε) – Jε(uε, xε) ≥ 0

for any function h and all positive number σ ∈ (0, 1). We get

σ

1∫
0

(uε(s− uε)dt + σ

ε

1∫
0

(
x′

ε −
√
xε − uε

)
(s− uε)dt + o(σ) ≥ 0,
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where o(σ)/σ → 0 as σ → 0. Denote
pε(t) = ε−1(

x′
ε −

√
xε − uε

)
. (4.35)

Then, after dividing the previous inequality by σ and passing to the limit at σ → 0,
we obtain the variational inequality

1∫
0

(uε − pε)(s− uε)dt ≥ 0.

Up to the meaning of the quantities included in it, it coincides with the analogous
relation from Section 4.2.4. After using the needle variation, we obtain the variational
inequality [

uε(t) − pε(t)
] [
v − uε(t)

]
≥ 0 ∀v ∈ [0, 1], t ∈ (0, 1),

which is an analog of (4.25). Repeating the same reasoning as in solving the latter,
we have the formula

uε(t) =


0, if pε(t) < 0,

pε(t), if 0 ≤ pε(t) ≤ 1,
1, if pε(t) > 1,

(4.36)

which is an analog of (4.25). Now, for any continuously differentiable function h equal
to zero at the initial time, and positive numbers σ, we have the inequality

Jε(uε, xε + σh) – Jε(uε, xε) ≥ 0.
Using the equality √

xε + σh = √
xε + 1

2√
xε
σh+ o(σ),

transform the previous inequality to the form

σ

1∫
0

xεhdt + σ

ε

1∫
0

(
x′

ε −
√
xε − uε

)(
h′ − h

2√
xε

)
dt + o(σ) ≥ 0.

After division by σ and passage to the limit as σ → 0 using equality (4.35), we get

σ

1∫
0

xεhdt +
1∫

0

pε

(
h′ − h

2√
xε

)
dt ≥ 0.

Carrying out the standard transformations here (see Section 4.1.3), taking into ac-
count the arbitrariness of the function h, we obtain the adjoint system

p′
ε(t) + 1

2
√
xε(t)

pε(t) = xε(t), t ∈ (0, 1); pε(1) = 0. (4.37)

Now from equality (4.35) follows the approximate state equation

x′
ε(t) =

√
xε(t) + uε(t) + εpε(t), t ∈ (0, 1); xε(0) = 0. (4.38)

Thus, we get the system (4.36)–(4.38) for finding three unknown functions uε, pε, and
xε. Solving this system for sufficiently small values of ε, it is possible, in principle, to
find an approximate solution to the formulated problem of optimal control45.
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4.2.6 Justification of the sufficient optimality condition

The Lecture considered the Bellman equation as a sufficient optimality condition for
Problem 3.1. However, Theorem 4.2 given there was not substantiated. We give a
proof of this assertion.

Let the function B = B(t, x) be a solution to the Bellman equation

Bt(t, x) + min
w∈[a(t),b(t)]

[
Bx(t, x)f(t, w, x) + g(t, w, x)

]
= 0

with the final condition
B(T, x) = h(x).

Then for any control v from the set U the following inequality holds

Bt(t, x) + Bx(t, x)f(t, v(t), x) + g(t, v(t), x) ≥ 0.

Let us define here as x the solution y(t) of the problem

y′(t) = f(t, v(t), y(t)), t ∈ (0, T ); y(0) = x0.

As a result, the preceding inequality takes the form

Bt(t, x) + Bx(t, y(t))y′(t) + g(t, v(t), y(t)) ≥ 0.

We have the equality

d

dt
B(t, y(t)) = Bt(t, y(t)) + Bx(t, y(t))y′(t).

Thus, the following inequality holds

d

dt
B(t, y(t)) + g(t, v(t), y(t)) ≥ 0.

Integrating it from t = 0 to t = T , we get

B(T, y(T )) − B(0, y(0)) +
T∫

0

g(t, v(t), y(t)) ≥ 0,

where B(T, y(T )) = h(y(T )). The sum of this value with the integral from the last
inequality is the value I(v) of the functional to be minimized on an arbitrarily chosen
admissible control v. Taking into account the initial condition y(0) = x0, we obtain
the inequality

I(v) ≥ B(0, x0). (4.39)

Now let u be the control on which the minimum in the Bellman equation is
reached. Then we obtain the equality

Bt(t, x) + g(t, u(t), x) + Bx(t, x)f(t, u(t), x) = 0.
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Choose as x the solution x(t) of the problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0.

We have the problem

Bt(t, x(t)) + Bx(t, x(t))x′(t)) + g(t, u(t), x(t)) = 0.

Then the following equality holds

d

dt
B(t, (t)) + g(t, v(t), y(t)) = 0.

After integration, we get

B(T, y(T )) − B(0, y(0)) +
T∫

0

g(t, u(t), x(t)) = 0.

This equality is reduced to the form

I(u) = B(0, x0).

Taking into account inequality (4.39), we obtain I(v) ≥ I(u). Hence, since the ad-
missible control v is arbitrary, it follows that the control u is optimal. This completes
the proof of Theorem 4.2.

4.2.7 Relationship between dynamic programming and the maximum principle

The maximum principle and dynamic programming were used to solve optimal con-
trol problems. Let us establish a connection between the corresponding optimality
conditions for the considered Problem 3.1.

Assume that there exists a function B = B(t, x) satisfying the Bellman equation
(4.14) with boundary condition (4.15). Define the function

R(t, v, y) = Bt(t, y) + By(t, y)f(t, v, y) + g(t, v, y).

Let u = u(t) be an optimal control, and x = x(t) be a corresponding state system
that is a solution of the problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0. (4.40)

From Bellman equation, it follows the relations

R(t, u(t), x(t)) = 0, (4.41)

R(t, w, y) ≥ 0 ∀w ∈ [a(t), b(t)], ∀y. (4.42)
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Thus, the function R has its minimum in the second and third arguments at the
point (u(t), x(t)). In accordance with the stationary condition, the derivative of R
with respect to the third argument at the point x(t) is equal to zero. Find the value46

Rx(t, u(t), x(t)) = Btx(t, x(t)) + ∂

∂x

[
Bx(t, x(t))f(t, u(t), x(t))

]
+ g(t, u(t), x(t)) = 0.

Calculating the derivative on the right side of this equality and using the state equa-
tion, we obtain

Btx(t, x(t)) + Bxx(t, x(t))x′(t) + Bx(t, x(t))fx(t, u(t), x(t)) + gx(t, u(t), x(t)) = 0.

Now we have
d

dt

[
Bx(t, x(t))

]
+ fx(t, u(t), x(t))Bx(t, x(t)) + gx(t, u(t), x(t)) = 0.

Introduce the notation
p(t) = −Bx(t, x(t)).

Then the previous equality takes the form

p′(t) = gx(t, u(t), x(t)) − fx(t, u(t), x(t))p(t).

Determine the function

H(t, v, y, p) = pf(t, v, y) − g(t, v, y).

Thus the function p satisfies the equation

p′(t) = −Hx(t, u(t), x(t), p(t)). (4.43)

Besides, from the equality B(T, x) = h(x) and the definition of the function p it
follows the equality

p(T ) = –hx(x). (4.44)
Problem (4.43) and (4.44) exactly coincides with the adjoint system obtained in

accordance with the maximum principle. Conditions (4.41) and (4.42) also imply the
inequality

R(t, u(t), x(t)) ≥ R(t, w, x(t)) ∀w ∈ [a(t), b(t)]
that is,

Bt(t, x(t)) + Bx(t, x(t))f(t, u(t), x(t)) + g(t, u(t), x(t))
≥ Bt(t, x(t)) + Bx(t, x(t))f(t, w, x(t)) + g(t, w, x(t)) ∀w ∈ [a(t), b(t)].

Using the definition of the functions H and p, we obtain the equality

H(t, u(t), x(t), p(t)) = max
w∈[a(t),b(t)]

H(t, u(t), x(t), p(t)), (4.45)

i.e., the maximum principle.
Thus, the optimal control is determined by relations (4.40), (4.42)–(4.45), which

exactly coincide with the system of optimality conditions obtained in Chapter 3 based
on the maximum principle.



Alternative methods ■ 135

4.2.8 Applicability of Bellman optimality principle

Let us check the validity of the Bellman optimality principle for Example 3.1. Here,
we minimize the functional

I(u) =
1∫

0

(u2

2 − 3x
)
dt

on the set
U =

{
u

∣∣ 1 ≤ u(t) ≤ 2, 0 < t < 1
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Chapter 3 found its unique solution

uε(t) =


2, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3,
1, if 2/3 < t < 1.

(4.46)

Let us now consider a family of problems that differ from the one above only in
the initial time ξ and the initial state x. In this case, it is required to minimize the
functional

Ix
ξ (v) =

1∫
ξ

(v2

2 − 3y
)
dt

on the set
U(ξ) =

{
v

∣∣ 1 ≤ v(t) ≤ 2, ξ < t < 1
}
,

where y is a solution of the Cauchy problem

y′(t) = v(t), t ∈ (ξ, 1); y(ξ) = 0.

Using the maximum principle, we determine the function

H = pv–v2/2 + 3y,

where p is a solution of the adjoint system

p′(t) = −3, t ∈ (ξ, 1); p(1) = 0.

The corresponding optimal control is found from the maximum condition for the
function H with respect to the control. The result is the formula

v(t) =


1, if p(t) < 1,

p(t), if 1 ≤ p(t) ≤ 2, t ∈ (ξ, 1),
2, if p(t) > 2,
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similar to the one that was obtained in Chapter 3 when analyzing Example 3.1.
Determine p(t) = 3–3t. Obviously, this function decreases, and takes the value 2 at
t = 1/3 and the value 1 at t = 2/3. Thus, we find

v(t) =


2, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3, t ∈ (ξ, 1),
1, if 2/3 < t < 1.

Naturally, for ξ > 2/3 the control can only take the value 1, for 1/3 < ξ < 2/3 the
control is equal to 3–3t for ξ < t ≤ 2/3 and equal to 1 for 2/3 < t < 1. Finally, for
ξ < 1/3 the control takes the value 2 for ξ < t < 1/3, 3–3t for 1/3 ≤ t ≤ 2/3 and
1 for 2/3 < t < 1. Thus, the control u, which is optimal in Example 3.1 with a time
interval (0,1), remains optimal when considering the problem on an arbitrary finite
interval (ξ, 1). Thus, the Bellman optimality principle is indeed realized47.

Additional conclusions

Based on the results presented in Appendix, some additional conclusions can be
drawn about methods for solving optimal control problems.

• A situation is possible when the optimality criterion turns out to be Gateaux
non-differentiable, as a result of which there is a need to use methods of non-
smooth optimization.

• The variational inequality is, in generally, a necessary but not sufficient op-
timality condition, i.e., a control that satisfies a variational inequality is not
always optimal.

• For Example 3.2, the maximum principle turns out to be more efficient than
the variational inequality, since the set of solutions of the corresponding varia-
tional inequality turns out to be much wider and includes obviously non-optimal
controls.

• The penalty method can also be used to solve optimal control problems with
constraints on control values, and in this case it is used together with the
variational inequality.

• In the absence of a unique solvability of the equation of state on the entire
set of admissible controls, the optimal control problem makes sense, and the
optimality criterion is minimized on the set of admissible pairs of the system,
i.e., “control-state” pairs, on which the equation of state makes sense and the
specified constraints on the system are satisfied.

• To solve problems of optimal control of singular systems in the absence of a
unique solvability of the equation of state on the entire set of admissible con-
trols, it is not possible to use the maximum principle or variational inequalities.
This is explained by the fact that when deriving the optimality conditions in
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the process of variation of the control, we can reach a control under which the
equation of state either does not have, or has a non-unique solution.

• For an approximate solution of problems of optimal control of singular systems,
one can use the penalty method, in which the equation of state is interpreted
as an equality constraint imposed on the system.

• The Bellman equation can be justified.

• There exists a relation between the dynamical programming and maximum
principle.

• The Bellman optimality principle holds for Example 3.1.

Notes

1. In the calculus of variations, the function v is called the extremal variation; see [37],
[61], [208]. An extremal is a smooth solution of the most important necessary condition for
the extremum of the calculus of variations that is the Euler equation.

2. In fact, we have here the adjoint system (3.14).

3. In the calculus of variations, this limit is called the functional variation; see [37], [61],
[208].

4. More precisely, the Gateaux derivative of an arbitrary functional I defined on a normed
vector space V at a point u is a linear continuous functional I ′(u) (this is an element of the
adjoint space of V ; see [94], [106], [158]), which satisfies equality

lim
σ→0

I(u + σh) − I(u)
σ

= I ′(u)h ∀h ∈ V.

5. For differentiation of functionals and general operators; see [94], [158], [171]. Differentiation
in non-normed spaces is considered in [71].

6. This follows from the Lagrange–Euler lemma; see [37], [61], [208], or the statement that
a linear continuous functional that maps an arbitrary function to zero is the zero element of
the corresponding dual space; see [94], [158].

7. A necessary condition for a local extremum of an arbitrary differentiable functional at some
point is that its Gateaux derivative vanishes at that point, which corresponds to the general
form of the stationary condition; see, for example, [60], [116], [171]. From this, one can derive
the stationary condition for a function of one and many variables, obtained in Chapter 1, as
well as a significant number of extremum conditions obtained in the calculus of variations. The
stationary condition for the functionals will be used in Chapter 10 to solve one optimal control
problem for a system with a fixed final state.

8. For the gradient method for solving functional minimization problems; see [49], [70], [171],
[194].

9. This is true, of course, under the differentiability of the functions included in the problem
statement.
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10. In fact, we use here the convex property of the set U . It is natural to call the corresponding
form of control variation the convex variation.

11. We again actually obtain a relation that is valid almost everywhere on the considered time
interval.

12. The variational inequality naturally extends to the problem of minimizing a Gateaux dif-
ferentiable functional I in the on a convex subset U of a topological vector space; see [60], [70],
[116], [171]. In particular, for the point u to be a solution to this problem, it is necessary that
the derivative I ′(u) satisfy the variational inequality I ′(u)(v–u) ≥ 0 for any point v from
the set U . Of course, we did not give the complete proof of the considered theorem.

13. Other examples of the coincidence of optimality conditions in the form of the maximum
principle and variational inequalities will be described in Chapters 6, 9, and 13. In Appendix, as
well as in the subsequent section, we will make sure that this situation is not always observed.

14. We will meet the concepts of an optimal and admissible pair (in this case, any pair of
functions (uε, xε) satisfying the equality x(0) = 0) in Part V when considering optimal control
problems for systems with a free initial state.

15. The conditions imposed on the function h are such that the function xε +σh has the prop-
erties of the state function of the system, in particular, satisfying the given initial conditions.
For this, it is required that h(0) = 0.

16. In fact, this system was obtained from the condition that the Gateaux derivative of the
functional Jε vanishes, which corresponds to the stationary condition for the problem of its
minimization.

17. To substantiate this assertion, it is necessary, of course, to prove that for ε → 0 the solution
to the problem of minimizing the functional Jε converges to the optimal control for Example
3.4. We also note that an approximate solution of the problem here means a pair (u, x), that
satisfies the equation of state with a sufficiently high degree of accuracy. For various forms
of approximate solution of optimal control problems; see Chapter 8. The convergence of the
penalty method for one optimal control problem is proved in Chapter 10. In addition, to find
the optimal control in practice, one should also find a solution to system (4.8), (4.10), and
(4.11). To do this, you can use the method of successive approximations described in Chapter
3.

18. For dynamic programming; see, for example, [28], [29], [34], [42], [62], [70], [103], [179],
[193], [195].

19. In other words, the restriction of an optimal control to any finite part of its domain of
definition is itself optimal. Chapter 13 gives an example of an optimal control problem for
which the Bellman optimality principle does not hold.

20. We suppose here the differentiability of the Bellman function that is obviously.

21. The Bellman equation is an analog of the well-known Hamilton–Jacobi equation of the
calculus of variations; see [37], [61], [208].

22. When we solved the same Problem 3.1 using maximum principle, we had the adjoint
equation with final condition too.

23. The proof of the Theorem 4.2 is given in Appendix; see also [28], [29], [34], [70], [193],
[195].
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24. In the calculus of variations, Weierstrass and Legendre sufficient extremum condi-
tions are used; see [37], [61]. For sufficient optimality conditions for optimal control theory;
see [108], [193]. Note also that Theorem 4.2 assumes the existence of the Bellman function and
its smoothness.

25. This corresponds to the absence of the need for an optimality condition in the general case.

26. For the convergence of iterative methods for solving optimal control problems; see [49],
[46], [65], [149].

27. Justification of the variational inequality for abstract functional minimization problems is
given in [60], [116], [171]. In [73], [116], [118], [171], variational inequalities are used to solve
optimal control problems for systems with distributed parameters.

28. The penalty method for optimal control problems is for systems described by ordinary
differential equations (see [32], [54]), for partial differential equations (see [118], [138], [168]),
for integral equations (see [206]), for systems described by variational inequalities (see [22]),
for multiextremal problems (see [207]).

29. For application of the penalty method to the analysis of distributed singular systems, see
[118]. Optimal control problems for singular systems are also considered in [73], [72], [168].

30. Justification of the Bellman equation is given; for example, in [28], [29], [67], [193], [195].

31. References [28], [29], [67], [193], [195] give examples of applying dynamic programming to
solve various optimal control problems.

32. For the connection between dynamic programming and the maximum principle; see, for
example, [193], [195].

33. Example 4.1 goes back to one inverse problem in geophysics; see [175]. In this case, the
system is described by the Poisson equation with respect to the potential of the gravitational
field. The right side of the equation includes the distribution of the medium density. In this case,
the medium is inhomogeneous and consists of two different materials, as a result of which the
density turns out to be a piecewise constant function (an analog of the function f considered
in the example with the values f1 and f2). It is required to determine the interface between
these materials based on the results of measuring the derivative of the potential field of the
region. The desired boundary (“control” u) is determined from the problem of minimizing the
corresponding root-mean-square deviation (functional I).

34. Indeed the function ∆x is a solution of the Cauchy problem

∆x′(t) = f(t, v) − f(t, u), t ∈ (0, 1); ∆x(0) = 0.

Multiplying the first equality by an arbitrary differentiable function λ and integrating the
result, taking into account the second equality, we obtain

1∫
0

λ
[
f(t, v) − f(t, u)

]
dt =

1∫
0

λ∆x′dt = λ(1)∆x(1) −
1∫

0

λ′∆xdt.

Choose here as λ the solution of the problem

p′(t) = x(t) − z(t), t ∈ (0, 1); p(1) = 0.
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We get
1∫

0

p
[
f(t, v) − f(t, u)

]
dt = −

1∫
0

(x − z)∆xdt.

Then equality (4.19) takes the form (4.20).

35. For methods of non-smooth optimization; see, for example, [47], [48], [60], [133], [132], [139].
Note that the lack of differentiability of the functional in the sense of Gateaux can be due not
only to the presence of non-smooth terms of the module type, but also to the insufficiently
strong convergence of the corresponding value for σ → 0 ; see [171].

36. The variational inequality is a necessary and sufficient optimality condition for convex
functionals; see [116]. In particular, the minimized functional for Example 3.1 turns out to be
convex (this will be established in Chapter 5), while the corresponding functional for Example
3.2, which differs from the previous one only in sign, is not convex. In Sections 9 and 10, for
analog of Examples 3.1 and 3.2 in the presence of a fixed final state, the maximum principle
and variational inequality will be applied. At the same time, both approaches turn out to
be equivalent in the minimization problem, and in the maximization problem, the maximum
principle turns out to be more effective.

37. When uε(t)–pε(t) > 0, it follows from (4.25) that v ≥ uε(t) for all v ∈ [–1, 1]. Then
uε(t) = –1, and this equality is true for pε(t) < –1. When uε(t)–pε(t) < 0, it follows from (4.25)
that v ≤ uε(t) for all v ∈ [–1, 1]. Then uε(t) = 1, and this equality is valid for pε(t) > –1.
Finally, the case uε(t)–pε(t) = 0 is possible, which means that uε(t) = pε(t). However, this
case is admissible for pε(t) ∈ [–1, 1]. As a result, we get the formula (4.26).

38. This corresponds to the well-posedness of the state equations. We will consider the well-
posedness of optimal control problems in Chapter 8.

39. In this situation, we have only about the existence of a local solution for the Cauchy
problem; see [86].

40. Naturally, this also requires justification of the penalty method, i.e., proof that the solution
to the problem of minimizing the functional Jε converges to the optimal control for Example
3.4. It is also desirable to show that both of these problems have a solution. For the considered
equation of state, one could consider an optimal control problem with restrictions on the
control values. In this case, to minimize the functional Jε, a variational inequality is established
similarly to how it was done in Section 4.2.2. The penalty method can also be used to find
the singular control in practice; see Chapter 6. In Chapter 10, the penalty method is used to
solve the optimal control problem for a system with a fixed final state, and in this way not the
equation of state is removed, but an additional condition characterizing the final state of the
system. At the same time, the convergence of the method for one specific example is proved.
A justification for the penalty method for a wide class of systems described by singular partial
differential equations is given in [118].

41. A similar problem in the absence of an initial condition will be considered in Chapter 14.

42. This differential equation is considered in [88] without regard to optimal control theory.

43. Note, first of all, that from the definition of the set of admissible controls it follows that
the derivative of the function x is not negative. From here and from the initial condition it
follows that this function cannot take negative values, as a result of which the value under the
root in the state equation is not negative.



Alternative methods ■ 141

44. Obviously, the state equation on a given control has even a non-countable set of solutions.
In Part V, optimal control problems will be considered for systems described by ordinary
differential equations in the absence of initial conditions. In this case, each control corresponds
to a general solution to the equation, the definition of which includes arbitrary constants. Thus,
the optimality criterion is also minimized on a set of pairs of “control-state” functions related
by the state equation.

45. Naturally, all this needs justification. However, based on the formulation of the problem,
it is easy to see that it has a unique solution equal to zero.

46. Here, it is assumed that the corresponding derivatives exist.

47. In Chapter 10, an example will be given where the validity of the Bellman principle of
optimality is realized for a problem with a fixed final state, and in Chapter 15, examples of
violation of the Bellman principle for problems with an isoperimetric condition will be given.



C H A P T E R 5

Uniqueness of the optimal
control and sufficiency of
optimality conditions

Part II discusses methods for studying optimal control problems. In particular, in Chapter
3, the maximum principle was used, which consists in maximizing, on the set of admissible
control values, a certain function depending on the control, the state function, and the
solution of the ad-joint system. The optimal control there was found directly or by some
iterative process. In this chapter, we study a rather simple example, for which the described
technique encounters certain difficulties. In particular, we do not have the uniqueness of the
optimal control and the sufficiency of the optimality conditions. The Lecture analyzes this
example, and Appendix provides some additional information about the studied problems.

5.1 LECTURE

In Chapter 3, the simplest optimal control problem was considered, for which the maximum
principle was applied. The corresponding optimal controls were found analytically in the
case of Examples 3.1, 3.2, and 3.4 or by iterative process for Example 3.3. Below we consider
a problem that differs from Example 3.3 only in the type of extremum; see Section 5.1.1.
In Section 5.1.2, a system of optimality conditions is obtained. For its analysis, Section
5.1.3 uses the iterative process described in Chapter 3. In this case, two solutions are found
corresponding to different initial approximations. Section 5.1.4 gives sufficient conditions for
the uniqueness of optimal control and shows that the examples of optimal control problems
considered in Chapter 3 have unique solutions. The study of the considered example is
finished in Section 5.1.5, where the complete set of solutions of the corresponding system
of optimality conditions is determined and optimal controls are found.
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5.1.1 Problem statement

Continuing the study of optimal control problems based on the maximum principle,
consider an example1 that is fairly close to Example 3.3.

Example 5.1 The optimal control problem is to find such a function u = u(t) from
the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

that maximizes there the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (5.1)

This problem differs from Example 3.3 only in the type of extremum. To study
it, we will use the same technique as in the previous chapter. As already noted, a
control that minimises the functional −I will certainly maximises the functional I.
Therefore, if to minimize the functional I it is required to find the maximum of the
function H, then the search for the maximum of the same functional is reduced to
minimizing the same function H.

5.1.2 Maximum principle

To bring the problem to the standard form described in Chapter 3, we define

f(t, u, x) = u, T = 1, x0 = 0, a(t) = 1, b(t) = 2, g(t, u, x) = (u2 + x2)/2, h(x) = 0,

which is exactly the same as in Example 3.3. In accordance with formula (3.3), we
determine the function

H = pu–(u2 + x2)/2.

Then the adjoint system (3.8), (3.9) takes the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (5.2)

This is the problem (3.14). Since in this case the maximization of the given func-
tional is carried out, and not its minimization, as in the previous case, the maximum
condition (3.12) represents equality

H(u) = min
|v|≤1

H(v). (5.3)

Thus, to find three unknown functions u, x, p, we have three conditions2 (5.1) – (5.3).
They differ from the system (3.13) – (3.15) considered in the previous section only
in the type of extremum of the function H.
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We find a solution to problem (5.3). Equating to zero the derivative of the function
H with respect to control, we have

∂H

∂u
= p–u = 0.

It follows that the function H has a local extremum point3 u = p. Since the second
derivative of H is negative, we have its maximum, not minimum. This means that
the given function has no local minima at all. Thus, the minimum of the function H
can be achieved only on the boundary of the set of admissible controls4.

Check the values of this function on the boundary of this set, i.e., at points 1 and
−1. We find

H(1) = p–(1 + x2)/2, H(−1) = −p–(1 + x2)/2.

The solution of minimum condition (5.3) corresponds to the smallest of these two
values. They differ only in the sign of the first term, which is a variable, in particular,
the solution of adjoint system (5.2). Thus, we obtain the following formula

u(t) =
{

1, if p(t) < 0,
−1, if p(t) > 0. (5.4)

Formula (5.4) allows us to find the control by the known solution of the adjoint
system; see Figure 5.1.

Figure 5.1 Solution of minimum condition (5.3).

Thus, to find three unknown functions u, x, and p we have system (5.1), (5.2),
and (5.4). Its analytical solution is difficult in view of the non-linear dependence of
the function u on p by equality (5.4). However, this problem can be solved iteratively
in the same way as it was done in the analysis of Example 3.3.

5.1.3 Analysis of optimality conditions

To solve the resulting system of optimality conditions, we use the method of suc-
cessive approximations5 described in the previous section. The initial approximation
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of the control is set. At the current iteration, given the known control from the
Cauchy problem (5.1), the corresponding system state function is found. Then the
adjoint system (5.2) is solved. After that, according to formula (5.4), a new control
approximation is determined.

In Chapter 3, when analyzing Example 3.3, it was noted that the choice of the
initial approximation is due to the fact that the control must belong to a given set,
i.e., we have some a priori information about it. In this case, we have additional
information, since according to formula (5.4) the control can take only two values 1
and −1, the choice of which is determined by the sign of the function p.

We choose one of the possible control values, for example, the first of them as an
initial approximation, i.e., determine

u0(t) = 1, t ∈ (0, 1).

Substituting this control into a problem (5.1), we find the state function

x0(t) =
t∫

0

u0(τ)dτ = t.

In accordance with problem (5.2), we integrate this equality from an arbitrary value
t to 1. We get

p0(t) = −
1∫

t

x0(τ)dτ = −
1∫

t

τdτ = t2 − 1
2 .

It follows that the function p0 = p0(t) at t ∈ (0.1) takes exclusively negative values.
Then, according to formula (5.4), at the next iteration, we obtain the control u1,
which is identically equal to 1. Thus, the considered iterative process converged in
one iteration. The results obtained indicate that the triple of functions

u(t) = 1, x(t) = t, p(t) = (t2–1)/2, t ∈ (0, 1) (5.5)

is the solution of problem6 (5.1), (5.2), (5.4).
Having determined the solution of the system of optimality conditions, it would

seem that we can complete the research. However, in Chapter 2, we encountered a
situation where a change in the initial approximation led to finding a new solution to
the problem7. Note that, according to formula (5.4), the control could also be equal
to the value −1.

Thus, now let us try to choose as the initial approximation the function

u0(t) = −1, t ∈ (0, 1).

The corresponding solution of Cauchy problem (5.1) is

x0(t) =
t∫

0

u0(τ)dτ = −t.
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Solving the problem (5.2), we find

p0(t) = −
1∫

t

x0(τ)dτ =
1∫

t

τdτ = 1 − t2

2 .

It follows that the function p0 = p0(t) at t ∈ (0.1) takes exclusively positive values.
Then, in accordance with formula (5.4), a new control approximation u1(t) = −1
is found. Considering that it coincides with the value of the control at the previous
iteration, we conclude that the iterative process has converged again. Therefore, the
functions

u(t) = −1, x(t) = −t, p(t) = (1 − t2)/2, t ∈ (0, 1) (5.6)
satisfy the system of optimality conditions (5.1), (5.2), (5.4).

Thus, we have found two solutions to the optimality conditions. We have already
encountered a similar situation in Chapter 1 when studying function minimization
problems. In particular, for Example 1.2, only one of the solutions to the stationary
condition minimized the considered function, which means that the extremum condi-
tion turned out to be insufficient. At the same time, in Example 1.3, there were two
minimum points of the function, i.e., the solution to the problem was not unique.
Thus, we have to find out whether the two found solutions of the optimality con-
ditions are equal, and then we may be dealing with the absence of uniqueness of
the solution to the problem, or these solutions are not equal, which means that the
optimality condition is certainly not sufficient.

Calculate the corresponding values of the functional

I(1) = 1
2

1∫
t

(1 + t2)dt = 2
3 , I(−1) = 1

2

1∫
t

[
(−1)2 + (−t)2]

dt = 2
3 .

Thus, the value of the functional on both found controls is the same, i.e., both of
these values are completely equal. The results obtained suggest that the solution of
the optimal control problem for the considered example is not the only unique8.

5.1.4 Uniqueness of the optimal control

The very fact that some extremal problems have a unique solution, while others do
not, is not particularly surprising9. A kind of analog of the optimal control problems
from Examples 3.3 and 5.1 is the study of the extremum of the quadratic function
f(x) = x2. It has one minimum point, but two maximum points on the segment
[−1, 1]; see Figure 5.2.

In Chapter 1, a condition was established that guarantees the uniqueness of the
minimum point of the function. According to Theorem 1.4, a strictly convex function
on a segment cannot have two minimum points, i.e., the solution to the problem, if
it exists, is necessarily unique. By Definition 1.5, a function f is strictly convex on
the segment [a, b] if the following relation holds

f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y) ∀x, y ∈ [a, b], α ∈ (0, 1), (5.7)
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Figure 5.2 The parabola on the segment [-1,1] has one minimum, but two maximums.

and equality here is realized only when x = y. In particular, a strictly convex func-
tion f(x) = x2 has a unique minimum point, while the minimization problem for a
non-convex function g(x) = –x2 on the interval [−1, 1], which is equivalent to the
maximization problem there function f , has two solutions; see Figure 5.2.

It was noted earlier that Theorem 1.4 can be extended to functions of many
variables. We would like to establish conditions that guarantee the uniqueness of the
minimum point of an arbitrary functional I on a set U . It is necessary first define strict
convexity for functionals. However, in order to obtain some analog of inequality (5.7),
it is necessary to reveal certain properties of the given set under which this inequality
makes sense.

Thus, we pass from the segment [a, b] to the set U of a general form, i.e., points
x and y are chosen from this set. On the left side of inequality (5.7), they are first
multiplied by the numbers α and (1 −α), and then the results are added. Therefore,
on the set U , the operations of addition and multiplication by a number must at
least make sense. This is certainly true for the Euclidean space, where the operations
of vector addition and multiplication of vectors by numbers are defined. Sets with
similar properties are called vector or linear spaces10.

Note that the segment [a, b] itself is not a vector space11. It represents only a
subset of the number line, which is the vector space. Thus, in order to extend the
uniqueness theorem to the consideration problems, the corresponding set U must be
a subset of the vector space. Moreover, in order for us to replace the segment in
inequality (5.7) with a set of a general nature, the latter must have an additional
property: the argument of the function (now a functional) on the left side of the
relation under consideration must surely belong to this set. As a result, we have the
following definition, which is a generalization of Definition 1.9.

Definition 5.1 A subset U of a vector space is called convex12 if for all its points
x and y it contains the points αx+ (1–α)y for any α ∈ [0, 1].

Now we can give the definition of the functional convexity13.

Definition 5.2 A functional I defined on a convex subset U of a vector space is called
convex if the following inequality holds

I[αz + (1 − α)y] ≤ αI(x) + (1 − α)I(y) ∀x, y ∈ U, α ∈ (0, 1).
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If this condition is satisfied in the form of equality only for x = y, then the functional
is called strictly convex.

Now we can formulate the uniqueness theorem for the minimum of the func-
tional14.

Theorem 5.1 A strictly convex functional on a convex subset of a vector space can-
not have two minimum points.

Proof. Suppose that there are two distinct points x and y of the minimum of a
strictly convex functional I on a convex set U . Then the element αx + (1 − α)y for
any number α ∈ (0, 1) due to the convexity of the set U belongs to this set. Taking
into account the strict convexity of the functional, we establish the inequality

I[αx+(1−α)y] < αI(x)+(1−α)I(y) = αmin I(U)+(1−α) min I(U) = min I(U).

Therefore, there is such an element of the set U , on which the value of the functional
is less than the minimum possible value. Thus, the assumption of the existence of
two different minimum points led to a contradiction. □

To use this result in the study of optimal control problems, it must be borne in
mind that the dependence of the optimality criterion on the control is characterized
both explicitly and by the state equation15. This circumstance introduces certain
difficulties, but does not serve as an insurmountable obstacle. However, to obtain the
desired result, it is required here to set some properties of the dependence of the
system state function on the control.

Let u1 and u2 be diverse admissible controls, and x1 and x2 are the corresponding
solutions of the system (5.1). Then we obtain

x′
i(t) = ui(t), t ∈ (0, 1), xi(0) = 0, i = 1, 2.

Denoting by y the solution of problem (5.1) corresponding to the control v = αu1 +
(1 − α)u2, we have

y′(t) = v(t), t ∈ (0, 1), y(0) = 0.

Based on the results obtained, determine the following equality16 y = αx1 + (1–α)x2.
Find the integral

I(v) = 1
2

1∫
0

(v2 + y2)dt.

Due to the strict convexity of the quadratic function, for any value of t ∈ (0, 1), the
following inequalities hold

v(t)2 = [αu1(t) + (1–α)u2(t)]2 < u1(t)2 + (1–α)u2(t)2,

y(t)2 = [αx1(t) + (1–α)x2(t)]2 < x1(t)2 + (1–α)x2(t)2.
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After integration, we get

I[αu1 + (1 − α)u2] = 1
2

1∫
0

(v2 + y2)dt <

<
α

2

1∫
0

[
(u1)2 + (x1)2

]
dt + 1 − α

2

1∫
0

[
(u2)2 + (x2)2

]
dt = αI(u1) + (1–α)I(u2).

Thus, the functional I = I(u) is indeed strictly convex. Then it follows from
Theorem 5.1 that the problem of its minimization on the set U , i.e., the optimal
control problem considered in Example 3.3 does indeed have a unique solution17. The
problem from Example 3.4 also has a similar property, differing from the previous
one only in the absence of restrictions on control. At the same time, the problem of
its maximization, which is the subject of Example 5.1, no longer has this property. As
a result, the result obtained earlier on the coincidence of the values of the functional
on two solutions of the optimality conditions seems to be quite natural18.

In Example 3.1, the state equation is the same, but the functional has the form

I =
1∫

0

(u2

2 − 3x
)
dt.

It is the sum of a quadratic functional with respect to the control and a linear
functional with respect to the state. We determined before the relations

v(t)2 < αu1(t)2 + (1 − α)u2(t)2, y(t) = αx1(t) + (1–α)x2(t).

Dividing the first inequality by 2 and subtracting the second equality multiplied by
3, after integration we come to the conclusion that the functional to be minimized is
strictly convex, and hence that the solution of the problem is unique.

The optimality criterion in Example 3.2 differs only in sign from the one consid-
ered above. Then it follows from the last inequality that this functional is not convex.
Nevertheless, the optimal control here is unique, which does not contradict the The-
orem 5.1, which gives only sufficient conditions for the uniqueness of the solution of
the problem19.

5.1.5 Completion of the analysis of optimality conditions

Having established the absence of uniqueness of the optimal control for Example 5.1,
we again return to system (5.1), (5.2), and (5.4). It is natural to ask the question:
does this system have other solutions?

As can be seen from formula (5.4), the control can take only two values, depending
on the sign of the function p. At first glance, we have already considered all possible
cases20. However, we recall that p is a function, which means that, in principle, it can
change sign somewhere. Suppose that there is such a point ξ from the interval (0,1)
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that for t < ξ the function p is positive, and for t > ξ it is negative. According to
equality (5.4), we choose the corresponding function u as the initial control. Thus,
we set the function

u0(t) =
{

1, if t < ξ,
−1, if t > ξ,

The solution of the problem (5.1) for u = u0 is x0(t) = t for t < ξ. Then x0(ξ) = ξ.
For t > ξ, we get

x0(t) = x0(ξ) −
t∫

ξ

dτ = 2ξ − t.

Therefore, the state of the system at the zero iteration is determined by the formula

x0(t) =
{

t, if t < ξ,
2ξ − t, if t > ξ.

Since the adjoint state is known at the final time, the solution to the problem (5.2)
is first determined for t > ξ.

p0(t) = −
1∫

t

(2ξ − τ)dτ = 2ξ(t− 1) + (1 − t2)/2 = (1 − t)
[
(1 + t)/2 − 2ξ

]
.

We are interested in such a function p, which at the point t = ξ changes sign, i.e.,
goes to zero. As a result, we obtain the formula

p0(ξ) = (1–ξ)(1–3ξ)/2 = 0.

This is the square equation with respect to the parameter ξ. It has two solutions:
ξ = 1 and ξ = 1/3. The first of these is trivial, since it is known from the outset that
the function p vanishes at a finite time. Of particular interest is the value ξ = 1/3,
which belongs to the given time interval.

Thus, there is a unique point ξ = 1/3 at which the solution to problem (5.2) can
vanish. Solving this problem from an arbitrary time t ∈ (0, 1/3) to 1/3, we find the
solution of the adjoint system

p0(t) =
{

−(1/3 − t)(t+ 1/3)/2, if t < 1/3,
(1 − t)(t+ 1/3)/2, if t > 1/3.

Obviously, the function p0 takes negative values for t < 1/3 and positive values for
t > 1/3. Then, in accordance with formula (5.4), the control at the next iteration is

u1(t) =
{

1, if t < 1/3,
−1, if t > 1/3.

This value coincides with the function u0 at ξ = 1/3. Thus, the iterative process again
converged in one iteration. This means that the system of optimality conditions (5.1),
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(5.2), (5.4) has one more solution, already the third in a row. Characteristically, unlike
the first two solutions, the corresponding control is a discontinuous function.

The appearance of the third solution of the optimality conditions, which differs
significantly from the two previous ones, leads to certain thoughts. Moreover, it is
easy to verify that the control, which differs from the latter only in sign, is also the
solution to the system of optimality conditions. Thus, for problem (5.1), (5.2), and
(5.4) there are four solutions. We already know that the value of the functional I
on the first two found controls (identically equal to 1 and −1) coincide with each
other. There is no doubt that the functionals on the last two controls coincide, as
long as they differ only in sign. However, it is not at all clear whether the values of
the optimality criterion coincide on the first and third of the found controls?

Let us find the value of the functional on the resulting discontinuous control. We
have

I(u) = 1
2

( 1∫
t

u2dt+
1∫

t

x2dt
)

= 1
2

[
1+

1/3∫
1

t2dt+
1/3∫
0

(2
3 − t

)2
dt

]
= 1

2
(
1+ 1

27
)

= 14
27 .

This value does not coincide with what was established earlier, which means that
on different solutions of the system of optimality conditions, this functional takes
on different values. Thus, some functions that satisfy the maximum principle (in
particular, the third and fourth ones) turn out to be worse than others (the first
and second ones)21. As a result, we can conclude that the maximum principle is not
sufficient optimality condition22.

We could conclude that the considered optimal control problem has two solutions
(functions identically equal to 1 and −1) if we were sure that all solutions of the
system of optimality conditions were found. However, is this true? We have found
the first pair of solutions to this system, assuming that the function p is of constant
sign. The second pair of solutions corresponds to the case where p changes sign
somewhere. However, the situation is not excluded that this function changes sign
twice. The corresponding control has two break points. Consider now a piecewise
constant control having two discontinuity points ξ and η such that 0 < ξ < η < 1.
Thus, the function

u(t) =


1, if 0 < t < ξ,

−1, if ξ < t < η,
1, if η < t < 1

can be chosen as an initial iteration. The corresponding solution of problem (5.1) is

x(t) =


t, if 0 < t < ξ,

2ξ − t, if ξ < t < η,
2ξ − 2η + t, if η < t < 1.

As a result of integrating the adjoint equation by the intervals (ξ, η) and (η, 1), taking
into account the fact that the function p must vanish at each of their boundaries, we
obtain equalities

η∫
ξ

(2ξ − t)dt = 0,
1∫

η

(2ξ − 2η + t)dt = 0.
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As a result, we obtain

2ξ(η − ξ) − (η2 − ξ2)/2 = 0, (2ξ − 2η)(1 − η) + (1 − η2)/2 = 0.

Considering that the trivial solutions ξ = η and η = 1 do not suit us (under these
conditions, we will not get two control break points), we establish the following system
of equations for the control break points:

2ξ(η + ξ)/2 = 0, (2ξ − 2η) + (1 + η)/2 = 0.

Therefore, there is a unique pair of points ξ = 1/5 and η = 3/5 that have the
necessary properties.

Determine the solution of the adjoint system on each of the three obtained inter-
vals. For t ∈ (0, 1/5) we have23

p(t) =
1/5∫
t

τdτ = 1
2

(
t2 − 1

25
)
.

Obviously, all these values are negative. Further, at t ∈ (1/5, 3/5) we get

p(t) = −
3/5∫
t

(2
5 − τ

)
dτ = 1

2
(3

5 − t
)(
t− 1

5
)
.

Therefore, the function p is positive on the second interval. Finally, at t ∈ (3/5, 1)
we have

p(t) = −
1∫

t

(
τ − 4

5
)
dτ = 1

2
(
t− 3

5
)(
t− 1

5
)
.

All obtained values of this function are negative.
Thus, with the above choice of control discontinuity points, the function sign

of the corresponding function p is consistent with the behavior of the control, i.e.,
equality (5.4) actually holds. This means that when this control is chosen as the
initial approximation, the iterative process converges in one iteration, and we again
obtain the solution of the system of optimality conditions, already the fifth in a row.
Naturally, the sixth solution is obtained from the fifth by changing the sign.

Similar reasoning can be carried out in a general form. For an arbitrary number
k, we divide the segment [0,1] into 2k+1 equal parts, k = 0,1,... On the first of them,
the control is chosen equal to 1, on the next two sections we set it equal to −1, on the
next two it is equal to 1, then −1, etc. The resulting function is denoted by u+

k . The
corresponding solution x+

k to problem (5.1) is a piecewise linear function, and the
solution p+

k to problem (5.2) is a differentiable function that changes sign at control
discontinuity points; see Figure 5.3. The resulting triple of functions satisfies the
considered system of optimality conditions. Along with this, there is also a solution
u−

k = u+
k . Thus, each value of k (the number of discontinuity points) corresponds

to exactly two controls that satisfy the optimality conditions. Thus, problem (5.1),
(5.2), and (5.4) has an infinite set of solutions24.



Uniqueness and sufficiency ■ 153

Figure 5.3 Solutions of optimality conditions for Example 5.1.

In order to find out which of these solutions is optimal, we find the values of the
functional

I(u+
k ) = I(u−

k ) = 1
2

1∫
0

[(
u+

k

)2
+

(
x+

k

)2]
dt = 1

2 + 2k + 1
2

1/(2k+1)∫
0

(
x+

k

)2
dt =

= 1
2 + 2k + 1

2
1

3(2k + 1)3 = 1
2 + 1

6(2k + 1)2 , k = 0, 1, ... .

The results obtained indicate that with the growth of the parameter k, the value
of the functional decreases. Therefore, the considered problem has exactly two solu-
tions25 that are the controls, identically equal to 1 and −1. Thus, despite the fact
that the maximum principle (in this case, the minimum condition for the function
H) is not a sufficient condition for optimality, and the set of its solutions is infinite,
we were able to find the optimal control by choosing among all such solutions the
one on which this criterion optimality takes the largest value26.

RESULTS

Here is a list of questions on the uniqueness of optimal control and the sufficiency of the
optimality condition in the form of the maximum principle, the main conclusions on this
topic, as well as additional problems that arise in this case, partially solved in Appendix,
partially taken out in the Notes.
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Questions

It is required to answer questions concerning the properties of the optimal control
problem and the maximum principle based on the results of the analysis of Example
5.1.

1. Why does the minimum condition for the function H turn out to be a necessary
condition for the maximum of the functional?

2. Is it possible, without solving the problem (5.3), to establish the existence of
its solution?

3. Is it possible, without solving problem (5.3), to establish the uniqueness of its
solution?

4. Why, for Example 5.1, the unique stationary point of the function H is excluded
from consideration, and its minimum can be reached only on the boundary of
the set of admissible controls?

5. What class of functions does the solution of the optimality condition for Ex-
ample 5.1 refer to in the general case?

6. What determines the choice of the initial approximation when solving the sys-
tem of optimality conditions for Example 5.1?

7. On what basis was it concluded that the iterative process for the considered
example converged in one iteration?

8. Why, having established the convergence of the iterative process to the solution
of the system of optimality conditions, should we continue further analysis of
the problem?

9. Why do the found solutions (5.5) and (5.6) of the system of optimality condi-
tions differ only in signs?

10. Why, by changing the sign in solving the system of optimality conditions for
Example 5.1, we get a new solution, but we do not get a new solution for Exam-
ple 3.3, although the formulations of both optimization problems are invariant
under the sign change for the ”control-state” pair?

11. On the basis of what is the conclusion made that the solution of the considered
problem is not unique, and how justified is this conclusion?

12. Why is it important in Theorem 5.1 that the functional is minimized on a
subset of the vector space?

13. Why is there a requirement that the set of admissible controls be convex in the
conditions of Theorem 5.1?

14. Why is the set of admissible controls from Example 5.1 convex?
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15. Can an optimal control problem with a non-convex functional have a unique
solution?

16. Why is the assumption of discontinuity of optimal control acceptable from both
theoretical and practical points of view?

17. Why do we have the opportunity to find a solution to the considered optimal
control problem, despite the fact that the system of optimality conditions has
an infinite set of solutions?

18. Is it possible to conclude that the maximum principle for the considered exam-
ple turned out to be effective?

Conclusions

Based on the study of the considered optimization methods, the following conclusions
can be drawn.

• The optimal control problem for Example 5.1 differs from that considered in
Example 3.3 only by the type of extremum.

• The solution of the functional maximization problem is reduced to the mini-
mization of the corresponding function H.

• According to the maximum principle, the solution of this optimal control prob-
lem at any time can take only the values 1 and −1, corresponding to the bound-
aries of the set of admissible controls.

• The choice of the initial approximation for the iterative process for the opti-
mality conditions should be carried out taking into account the results of the
analysis of the maximum principle, i.e., from the class of functions that can
take only the values 1 and −1.

• The iterative process for solving the system of optimality conditions with any
initial approximation converges in one iteration.

• If a triple of functions u, x, p is a solution of the obtained optimality conditions,
then the triple of functions that differ from the original one only in signs also
turns out to be a solution of the optimality conditions.

• Any two admissible controls for Example 5.1, which differ only in signs, turn
out to be equal in the sense that they correspond to the same value of the
optimality criterion.

• The uniqueness of the optimal control is guaranteed for the problem of mini-
mization of a strictly convex functional on a convex subset of a vector space.

• The system of optimality conditions for the considered example has an infinite
set of solutions, two of which are continuous, two have one discontinuity point,
two have two dis-continuity points, and so on.
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• The choice of optimal controls from the set of solutions of the system of op-
timality conditions is carried out by comparing the values of the optimality
criterion on these solutions.

• Optimal controls for the considered example are functions that are identically
equal to 1 and −1.

Problems

Based on the results obtained above, we can have the following problems.

1. Transformation of solutions of optimality conditions. In the process of
analyzing the optimality conditions for Example 5.1, it turned out that as a re-
sult of a sign change in their solution, a new solution to the system of optimality
conditions is obtained27. Appendix explains why this result is true. In Chapters
11 and 14 we will have the problem of finding non-trivial transformations that
translate one solution of a system of optimality conditions into another.

2. Sufficiency of optimality conditions. For the considered example, the max-
imum principle turns out to be a necessary but not sufficient condition for op-
timality. In Appendix, properties are established under which the optimality
condition is both necessary and sufficient, and an example is given when suffi-
ciency is realized even if these properties are violated. Some additional results
in this direction will be given in the next chapter, see also Notes28.

3. Non-optimal solutions of optimality conditions. As we already know, the
stationary condition is also in the general case a necessary but not sufficient
condition for the minimum of a function. At the same time, at stationary points
that are not solutions of the minimization problem, the function invariably has
some special properties. Appendix gives a result that characterizes the prop-
erties of non-optimal solutions of the optimality condition for the considered
example.

4. Sufficiency and uniqueness. The optimal control problems considered in
Chapter 3 had a unique solution, and the corresponding optimality conditions
were necessary and sufficient. In Example 5.1, on the contrary, both the unique-
ness of the solution and the sufficiency of the optimality conditions were ab-
sent. It would be interesting to give examples of problems where only one of
the indicated properties was violated. An optimal control problem that admits
non-uniqueness of the solution with sufficient optimality conditions is consid-
ered in Chapter 6. Chapters 6 and 14 describe examples of problems for which
the optimal control is unique, but the optimality conditions are not necessary
and sufficient.

5. Variational inequalities. In Chapter 2, for the problem of minimizing a func-
tional on an interval, a variational inequality was used. In Chapter 3, this form
of the optimality condition was applied to the analysis of Examples 3.1 and



Uniqueness and sufficiency ■ 157

3.3, for which it turned out to be equivalent to the maximum principle. Ap-
pendix presents the results of using the variational inequality for Example 5.1
under conditions of insufficiency of the maximum principle. Regarding the use
of variational inequalities to study more difficult optimal control problems, see
Notes29.

6. Boundary value problems for non-linear differential equations. The
system of optimality conditions for Example 5.1 includes a state equation, an
adjoint equation, and control formulas derived from the maximum principle
with respect to three unknown functions. In accordance with the method of
eliminating unknowns, one can eliminate two unknown functions and establish
a boundary value problem for a second-order differential equation with respect
to the third function, as was done in the previous chapter. In Appendix, it
is established that the resulting boundary value problem has very unexpected
properties. An even more unexpected result for boundary value problems, to
which optimality conditions are reduced, is obtained in Chapters 7, 11, and 12.

7. Uniqueness and sufficiency when the conditions of the uniqueness
and sufficiency theorems are violated. In Chapter 1, it was noted that
the properties established there that guarantee the uniqueness of the minimum
point of the function and the sufficiency of the stationary condition are not
necessary for the fact that the minimum point was unique, and the stationary
condition was a necessary and sufficient condition for the minimum of the func-
tion. Appendix gives an example showing that similar results can be observed
for optimal control problems.

5.2 APPENDIX

Some of the problems that arose during the analysis of Example 5.1 and need additional re-
search are considered below. In particular, Section 5.2.1 establishes the reason why changing
the sign in solving the system of optimality conditions leads to its new solution. Section 5.2.2
provides conditions that guarantee the sufficiency of the maximum principle and explains
why in Examples 3.1, 3.2, and 3.3 the optimality condition was sufficient, but in Example
5.1 it was not. One result concerning the properties of non-optimal solutions of the max-
imum principle for Example 5.1 is given in Section 5.2.3. In Section 5.2.4, the analysis of
the considered example is carried out on the basis of a variational inequality. In Section
5.2.5, the system of optimality conditions is reduced to a boundary value problem for a
non-linear second-order differential equation with non-trivial properties. These solutions
also turn out to be equilibrium positions for some non-linear heat conduction equation with
the corresponding boundary conditions. In Section 5.2.6, we consider the optimal control
problem, which differs from Example 5.1 only in the set of admissible control values. Nev-
ertheless, for it the optimal control turns out to be unique, and the optimality conditions
are necessary and sufficient, although the conditions of both theorems considered in this
chapter are violated. Finally, the final subsection gives an example of a problem that has
three solutions.
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5.2.1 Invariance of the solution under sign change

Attention is drawn to the fact that the functions defined by equalities (5.5) and (5.6)
and characterizing the first two solutions of the system of optimality conditions differ
only in signs. Let us try to assess how natural this fact is. Assume that a triple of
functions u, x, p is a solution to system (5.1), (5.2), and (5.4). Then the equalities
hold

(−x)′(t) = (−u)(t), t ∈ (0, 1); (−x)(0) = 0;

(−p)′(t) = (−x)(t), t ∈ (0, 1); (−p)(1) = 0;

(−u)(t) =
{

1, if (−p)(t) < 0,
−1, if (−p)(t) > 1.

It follows that the functions –u, –x, and –p also satisfy this relation. Thus, if there
is some solution to the system of optimality conditions, then, by changing the sign,
we get a new solution of the same system30. This circumstance explains the fact that
each previously obtained solution u+

k corresponds to a solution u−
k that differs from

it only in sign.
However, the question arises, why does the system of optimality conditions have

this property? To do this, we should turn to the formulation of the optimal control
problem. Consider an arbitrary admissible control u, which corresponds to a solution
x of Cauchy problem (5.1). Then the control –u is the element of the set of admissible
controls. In this case, as already noted, the function –x turns out to be a solution to
problem (5.1) corresponding to the control –u. Then the following equalities hold

I(u) = 1
2

1∫
0

(u2 + x2)dt = 1
2

1∫
0

[
(−u)2 + (−x)2]

dt = I(−u).

Thus, on the controls u and –u, the considered functional takes the same value. Thus,
if the maximum of the functional I on the set U is reached on the control u, then on
the control –u this functional takes the same value, and hence –u is also a solution to
the problem. Therefore, the invariance of solutions of the optimality conditions with
respect to sign change is a consequence of the very formulation of the problem31.

The determining factors that ensure the above property of setting the optimal
control problem under study are the invariance of the set of admissible controls with
respect to sign change (if the control is admissible, then the control taken with the
opposite sign also turns out to be admissible), the invariance of the equations of state
with respect to sign change (if the ”control-state” pair satisfies the state equation,
then the pair that differs from it only in sign also satisfies this equation) and the
independence of the value of the functional from the sign of the control32.

5.2.2 Sufficiency of the maximum principle

As we already know, in the examples considered in Chapter 3, the necessary optimal-
ity condition in the form of the maximum principle also turned out to be sufficient,
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i.e., any solution of the maximum principle is necessarily optimal. However, for Ex-
ample 5.1 this is no longer the case, since only two of an infinite number of solutions
to the system of optimality conditions turn out to be optimal. We have already en-
countered a similar problem when analyzing the stationary condition in the function
minimization problem. Let us try to establish why the fulfillment of the maximum
condition for an arbitrary control does not guarantee its optimality, and why in some
cases sufficiency is nevertheless realized.

The derivation of optimality conditions in the form of the maximum principle in
the previous chapter was carried out by us according to the following scheme. If an ad-
missible control is optimal, then the corresponding increment of the functional must
be non-negative. As a result of the transformation of the formula for the functional
increment the maximum condition was obtained. Thus, from the optimality of a con-
trol, the validity of the maximum principle followed for it, which corresponds to the
necessity of optimality conditions. The sufficiency of the optimality condition, on the
contrary, implies that any of its solutions is necessarily an optimal control33. Thus,
the absence of the sufficiency of the maximum condition means the irreversibility of
the chain of reasoning connecting the assumption about the optimality of the control
(reason) with the statement about the validity of the maximum principle (conse-
quence). The question arises, at what stage of the derivation of optimality conditions
was the reversibility of cause and effect violated? We minimize the functional

I(u) =
T∫

0

g
(
t, u(t), x(t)

)
dt+ h

(
x(T )

)
on the set

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where x is a solution of the problem

x′(t) = f
(
t, u(t), x(t)

)
, t ∈ (0, T ); x(0) = x0.

Let us return to the maximum principle derivation scheme described in the previous
chapter.

The assumption of the optimality of the control u means the fulfillment of the
inequality

I(v) – I(u) ≥ 0 ∀v ∈ U. (5.8)

This is equivalent to formula (3.5), i.e.,

L(v, y, λ) –L(u, x, λ) ≥ 0 ∀v ∈ U, ∀λ,

where L is a Lagrange functional, x and y are the state functions for the controls
u and v respectively. Using equivalent transformations, then it was transformed to
inequality (3.7), i.e.,

−
T∫

0

∆uHdt −
T∫

0

(Hx + λ′)∆xdt +
[
hx + λ(T )

]
∆x(T ) + η ≥ 0 ∀v ∈ U, ∀λ,
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where ∆uH is the increment of the function

H(t, u, x, λ) = λf(t, u, x)–g(t, u, x)

with respect to the control, and η is the remainder term determined in the previous
chapter. After choosing the solution p of the adjoint system (3.8), (3.9) as λ, we get
the inequality

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U. (5.9)

So far, all reasoning has been reversible. Indeed, if a certain function u satisfies
inequality (5.9), then the increment of the Lagrange functional on this control for
the chosen value of the function λ will not be negative. However, by definition, the
Lagrange functional at any value of the function λ, including at λ = p, coincides with
the optimality criterion.This implies the fulfillment of inequality (5.8), and hence the
optimality of the control u.

Further transformations consisted in choosing as an arbitrary control v the needle
variation

vw
ξτ (t) =

{
u(t), if t /∈ (τ − ξ, τ + ε),
w(t), if t ∈ (τ − ξ, τ + ε),

where w is an arbitrary admissible control, τ is an arbitrary point of the interval
(0, T ), and ε is a small enough positive number. Then dividing by ε and passing to
the limit as ε → 0 we get

H
[
τ, w(τ), x(τ), p(τ)

]
− H

[
τ, u(τ), x(τ), p(τ)

]
≤ 0. (5.10)

Hence, due to the arbitrariness of the point τ and the admissible control w, the
maximum condition follows

H
[
t, u(t), x(t), p(t)

]
= max

v∈[a(t),b(t)]
H

[
t, v, x(t), p(t)

]
, t ∈ (0, T ), (5.11)

If now the control u satisfies the maximum condition (5.11), then inequality (5.10)
also holds. However, the transition from here to formula (5.9) is far from obvious, and
in the general case, it is not realizable. Indeed, as a result of integrating inequality
(5.10), we obtain

−
T∫

0

∆uHdt ≥ 0 ∀v ∈ U.

This does not guarantee the fulfillment of condition (5.9), and hence the optimality of
the control u. However, if now the remainder term η is not negative, then by adding
the value η to the left side of the last inequality, we actually have the relation (5.9),
which implies that the control u is optimal. Thus, the maximum principle turns out to
be a necessary and sufficient condition for optimality in the case of non-negativity of
the remainder term. Let us try to find out what properties of the problem statement
guarantee the validity of the inequality η ≥ 0.
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In the previous chapter, the following formula was established

η = η3 −
T∫

0

(η1 + η2)dt. (5.12)

Here, the value η3 corresponds to the second-order term obtained as a result of the
transformation of the part of the optimality criterion, which characterizes the state
of the system at the final time. The value of η1 is associated with terms of the second
order in the expansion of the value H(t, u, x + ∆x, p) in a series of ∆x. Finally, we
have η2 = [Hx(t, v, x, p) −Hx(t, u, x, p)]∆x.

Suppose the following equalities hold

f(t, u, x) = f1(t, u) + cx, g(t, u, x) = g1(t, u) + g2(t, x), (5.13)

where a constant c and a function f1 are arbitrary, and functions g1, g2 satisfy the
inequalities

d2h

dx2 ≥ 0, ∂2g

∂x2 ≥ 0. (5.14)

The first of the inequalities (5.14) guarantees the condition η3 ≥ 0. When equalities
(5.13) are fulfilled, the derivative Hx does not depend on the control, and hence
η2 = 0. Finally, equalities (5.13) together with the second inequality (5.14) lead
to the condition η1 ≤ 0. As a result, from formula (5.12), it follows that η ≥ 0,
which means that the maximum principle gives a necessary and sufficient optimality
condition. We obtain the following result

Theorem 5.2 Suppose η ≥ 0, particularly, the conditions (5.13), (5.14) hold. Then
the maximum principle gives the necessary and sufficient optimality condition.

Example 3.1 satisfies the equalities

f(t, u, x) = u, T = 1, x0 = 0, a(t) = 1, b(t) = 2, g(t, u, x) = u2/2–3x, h(x) = 0.

This implies the validity of equalities (5.13) with the values f1(t, u) = u, g1(t, u) =
u2/2, g2(t, x) = –3x. In this case, formulas (5.14)) are satisfied in the form of equali-
ties. Thus, the conditions of Theorem 5.2 are satisfied, which means that the maxi-
mum principle for this example gives a necessary and sufficient optimality condition.
Previously, it was shown that the optimality condition here has a unique solution,
which is optimal. Example 3.2 differs from Example 3.1 only in the sign of the func-
tion g, which does not affect the validity of relations (5.14) in the form of equality. As
we know, here too the maximum principle gives a necessary and sufficient condition
for optimality.

For Example 3.3 we have

f(t, u, x) = u, T = 1, x0 = 0, a(t) = 1, b(t) = 2, g(t, u, x) = (u2 + x2)/2, h(x) = 0.
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Therefore, the equalities (5.13) hold such that f1(t, u) = u, g1(t, u) = u2/2, g2(t, x) =
x2/2. In this case, the second derivative of the function h is equal to zero, and the
second derivative of g2 is equal to 1. Thus, inequalities (5.14) are also satisfied, which
means that the optimality condition for Example 3.3 is necessary and sufficient. As
we know from the previous chapter, it has a unique solution, which is the optimal
one. Example 3.4 also has similar properties, differing from the previous one only in
the absence of constraints.

Example 5.1 differs from Example 3.3 only in the type of extremum. To use
Theorem 5.2, we pass here to the problem of minimizing the functional from the
previous example, taken with the opposite sign. In this case, the only difference from
the example considered above is the function g(t, u, x) = –(u2+x2)/2. Then equalities
(5.13) are again valid, but with the function g2(t, x) = –x2/2. Its second derivative
is equal to −1, which means that the second inequality (5.14) does not hold. Thus,
the conditions of Theorem 5.2 are not satisfied, and it is not possible to establish
the sufficiency of the optimality condition34. Earlier it was shown that sufficiency
does not really hold. Thus, Theorem 5.2 provides a fairly effective tool for analyzing
optimality conditions in the form of the maximum principle35.

Note that the first equality in (5.13) corresponds to linear equations. Both equal-
ities (5.13) assume that the control and the state function enter both the equation
and the optimality criterion separately, i.e., the case of the presence of control in the
coefficients at the state function is excluded36. Finally, inequality (5.14) is realized in
the case of convexity of the functional with respect to the state function. It is clear
that all these properties are realized only for a rather narrow class of problems37.

5.2.3 Properties of non-optimal solutions of the maximum principle

As we have already seen, the maximum principle is, in generally, a necessary con-
dition for optimality, i.e., not every its solution is optimal. We also encountered a
similar situation when analyzing the stationary condition. At the same time, those
solutions of the stationary condition that do not minimize the considered function,
nevertheless, have some important properties. Perhaps they correspond not to the
minimum, but to the maximum of the function, they deliver a local, and not an ab-
solute minimum; they are inflection points, etc. It can be expected that non-optimal
solutions of the maximum principle also have some interesting properties with respect
to the considered functional. We present one result in this direction.

It was previously established that all non-optimal solutions of the maximum con-
dition are piecewise constant functions that take the value of unity modulo. Consider,
for example, an arbitrary function of this form with one break point

u(t) =
{

1, if t < ξ,
−1, if t > ξ,

where ξ is a constant from the interval (0,1). Consider a newly controlled system
described by the Cauchy problem (5.1), where the above function u is chosen as the
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control. The problem is to study the dependence on ξ of the given optimality criterion

I = 1
2

1∫
0

(u2 + x2)dt.

As a result of integrating the state equation, we find the function x(t) = t for t ∈
(0, ξ). In this case, x(ξ) = ξ. Now integrating the equation of state from ξ to an
arbitrary value t, we obtain x(t) = 2ξ–t for t ∈ (ξ, 1). Now we calculate the value

2I =
1∫

0

dt +
ξ∫

0

t2dt +
1∫

ξ

(4ξ2 − 4ξt+ t2)dt = 4
3 − 2ξ + 4ξ2 − 2ξ3.

Find the derivative
dI

dξ
= −(3ξ2 − 4ξ + 1).

It can be equal to 0 for the values38 ξ = 1 and ξ = 1/3. The first of these values does
not belong to the considered interval, for which we do not obtain a discontinuous
function. Thus, of interest is the second value, which exactly coincides with the dis-
continuity point of the corresponding solution of the maximum principle. However,
the second derivative of I at this point is equal to 2, i.e., positive. Therefore, at this
point, the minimum of the optimality criterion is reached.

Thus, on the third solution of the system of optimality conditions (see Section
5.1.5), the minimum of this functional is achieved in the class of all functions that
change the value from 1 to −1 once. Obviously, the corresponding fourth solution
minimizes the functional in the class of all functions that change the value from
−1 to 1 once. Similar results can be obtained for other solutions of the optimality
conditions obtained earlier. Thus, non-optimal solutions of the maximum principle
have some special properties, like non-optimal solutions of the stationary condition39.

5.2.4 Variational inequality in case of insufficiency of the maximum principle

In the previous chapter, to study Examples 3.1 and 3.3, a necessary optimality con-
dition was applied in the form of a variational inequality. These results coincided
with the result of applying the maximum principle. For Example 3.2, the maximum
principle gave a stronger result. All these examples are united by the circumstance
that the maximum principle for them was a necessary and sufficient condition for
optimality. In this regard, the question arises, what result will we come to by using
the variational inequality to solve Example 5.1, when the maximum principle is not
a sufficient condition for optimality, and the problem being solved has non-unique
solution.

According to Theorem 4.1, the optimal control in the functional maximization
problem satisfies the variational inequality

Hu(t, u(t), x(t), p(t))[v–u(t)] ≥ 0 ∀v ∈ [a(t), b(t)].
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For Example 5.1, the function H is defined by the formula

H = pu–(u2 + x2)/2.

Then the corresponding variational inequality takes the form

[p(t)–u(t)][v–u(t)] ≥ 0 ∀v ∈ [–1, 1]. (5.15)

Find its solutions.
Assume again that p(t)–u(t) > 0. Then dividing inequality (5.15) by the first

multiplier of its left side, we establish that v–u(t) ≥ 0 for all v ∈ [–1, 1]. This is
possible only for u(t) = −1. Thus, if p(t) is greater than u(t), equal to −1, then
u(t) = −1. If p(t) − u(t) ≤ 0, then, dividing inequality (5.15) by the first multiplier
of its left side, we establish that v − u(t) ≤ 0 for all v ∈ [–1, 1]. This implies that
u(t) = 1. Therefore, in the case when p(t) is less than u(t), equal to 1, then u(t) = 1.
Finally, inequality (5.15) is satisfied for u(t) = p(t), which is admissible only for
p(t) ∈ [–1, 1]. Thus, for p(t) < −1 we have u(t) = 1, and for p(t) > 1 we have
u(t) = −1. These results correspond exactly to those obtained on the basis of the
maximum principle; see formula (5.4). However, at p(t) ∈ [–1, 1] three values are
allowed at once: 1, −1 and p(t). It follows from this that the variational inequality
turns out to be less effective for this example than the maximum principle, since in
the general case it does not give a unique dependence of the control on the solution
of the adjoint system40.

5.2.5 Elimination method

Let us return to the consideration of the system of optimality conditions (5.1), (5.3),
(5.4). We apply for it the elimination method, considered in the previous section.
Let us try to reduce this system to a problem with respect to a single unknown
function. Eliminating the functions u and x from it, we obtain the boundary value
problem

p′′(t) = F (p(t)), t ∈ (0, 1); p(1) = 0, p′(0) = 0, (5.16)

where F (p) denotes the value at the right-hand side of the equality (5.4). Due to
the equivalence of problem (5.16) to the system of optimality conditions, we come to
the following interesting conclusion: the boundary value problem for the second-order
differential equation (5.16) has an infinite set of solutions41. This statement has one
curious consequence.

Consider now the non-linear heat equation

∂y(τ, ξ)
∂τ

= ∂2y(τ, ξ)
∂ξ2 − F (y(τ, ξ)), τ > 0, 0 < ξ < 1 (5.17)

with the boundary conditions

∂y(τ, 0)
∂ξ

= 0, y(τ, 1) = 0, τ > 0 (5.18)
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and an initial condition, where the function F has the same form as in problem (5.16).
To find the equilibrium position of the considered system, it is sufficient to equate the
derivative of y with respect to τ to zero. Obviously, the equilibrium position z = z(ξ)
for system (5.17), (5.18) is a solution to the boundary value problem

z′′(ξ) = F (z(ξ)), ξ ∈ (0, 1); z(1) = 0, z′(0) = 0,

which, up to notation, coincides with problem (5.16). Then, based on the results
obtained earlier, we conclude that the system characterized by equation (5.17) with
boundary conditions (5.18) has an infinite set of equilibrium positions42.

5.2.6 Modification of Example 5.1

Consider now a modification of Example 5.1

Example 5.2 Find the maximum of the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

on the set
U =

{
u

∣∣ 0 ≤ u(t) ≤ 1, t ∈ (0, 1)
}
,

where x is a solution of the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

This example differs from the previous one only in the set of admissible controls.
As a result, the function H has the same form as before, i.e., H = pu–(u2 + x2)/2.
Remains unchanged and the adjoint system

p′(t) = x(t), t ∈ (0, 1); p(1) = 0.

As in Example 5.1, the unique stationary point u = p of the function H corre-
sponds to its minimum, which means that the solution of the optimality condition is
achieved on the boundary of the set of admissible controls. Find the values

H(0) = −x2/2, H(1) = p− (1 + x2)/2.

The solution of the optimality condition corresponds to the smallest of them. As a
result, we determine the control

u(t) =
{

1, if p(t) < 1/2,
−1, if p(t) > 1/2 (5.19)

that is the analogue of formula (5.4).
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To find a solution to the resulting system of optimality conditions, one could use
the previously described algorithms. However, we try to estimate the set of possible
solutions of the adjoint system, which have the form

p(t) = −
1∫

t

x(τ)dτ.

The system state function is found by the formula

x(t) =
t∫

0

u(τ)dτ.

Integrating the inequality 0 ≤ u(t) ≤ 1, which follows from the definition of the set of
admissible controls, from zero to an arbitrary value t, we conclude that 0 ≤ x(t) ≤ t
for any admissible control. Integrating the resulting relation from an arbitrary value
of t to 1, we have

0 ≤
1∫

t

x(τ)dτ ≤ 1 − t2

2 .

This implies the estimate (t2–1)/2 ≤ p(t) ≤ 0. Thus, for any admissible control and
for all values t ∈ (0, 1) the function p can take exclusively negative values. Then
formula (5.19) implies that the optimality conditions have a unique solution u(t) = 1
for all t.

Let us verify that this is indeed a solution to the optimal control problem. Indeed,
it follows from the inequalities u(t) ≤ 1 and x(t) ≤ t that for any admissible control
the estimate

I(u) = 1
2

1∫
0

(u2 + x2)dt ≤ 1
2

1∫
0

(1 + t2)dt ≤ 2
3 .

In this case, the value I(u) = 2/3 is possible only when u = 1. Thus, the found
solution of the optimality conditions is indeed optimal43.

Thus, in the considered example, the uniqueness of the optimal control and the
sufficiency of the optimality conditions are realized. It is characteristic that the gen-
eral properties of the optimality criterion and the set of admissible controls for Ex-
amples 5.1 and 5.2 coincide. In particular, when passing to the corresponding min-
imization problems, one obtains a non-convex functional with the same remainder
term. However, in the second case, the optimal control is unique, and the optimality
conditions are necessary and sufficient, while in the first case, both of these properties
are violated. Thus, the uniqueness of the optimal control for Example 5.2 is obtained
when the conditions of the previously given uniqueness theorem are violated, and the
sufficiency of the maximum principle is realized when the conditions of the theorem
proved earlier on the sufficiency of optimality conditions are violated44.
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Additional conclusions

Based on the results given in Appendix, we have additional conclusions about the
uniqueness of the solution of optimal control problems and the sufficiency of the
optimality conditions.

• The system of optimality conditions for Example 5.1 is sign-invariant in the
sense that if a triple of functions u, x, p is a solution to a system of optimality
conditions, then a triple of functions that differs from it only in sign is also a
solution to this system.

• The optimal control problem from Example 5.1 is sign-invariant, i.e., the values
of the optimality criterion for two controls that differ only in signs are the same.

• The maximum principle is a necessary and sufficient condition for optimality
in the case of non-negativity of the remainder term in the functional increment
formula.

• The sufficiency of the maximum principle is guaranteed in the case when the
equation of state is linear and does not include control in the coefficients before
the state function, the control and the state function are included in separate
terms of the integrand of the optimality criterion, and the term depending on
the state and the terminal term of the optimality criterion have non-negative
second derivatives.

• Non-optimal solutions of the maximum principle may have some special prop-
erties. The variational inequality for Example 5.1 turns out to be less efficient
than the maximum principle, since it has a wider set of solutions.

• The system of optimality conditions for Example 5.1 is reduced to a boundary
value problem for a non-linear second-order ordinary differential equation with
an infinite set of solutions.

• There is a boundary value problem for a non-linear heat equation with an
infinite set of equi-librium positions corresponding to the solutions of the system
of optimality conditions for Example 5.1.

• Despite the fact that the optimal control problems considered in Examples
5.1 and 5.2 differ only in the sets of admissible control values (the segment
[−1, 1] in the first case and [0,1] in the second), these problems themselves
differ significantly according to its properties (in the first case there are two
optimal controls with an infinite set of solutions to the optimality conditions,
while in the second case both the problem itself and the optimality condition
have a unique solution).

• Optimal control problems can have any number of solutions.

• The optimal control problem from Example 5.3 has three solutions.
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• A situation is possible when the optimality criterion turns out to be Gateaux
non-differentiable, as a result of which there is a need to use methods of non-
smooth optimization.

Notes

1. Example 5.1 is provided in [170]. Chapters 11 and 12 will consider the functional maxi-
mization problems from Example 5.1 in the presence of an additional boundary condition for
the state of the system; see Examples 11.1 and 12.7.

2. It is interesting that we will meet the system of optimality conditions (5.1), (5.2), and
(5.4) in the subsequent section, where it will characterize the set of non-singular solutions of
optimality conditions for another optimal control problem. In Chapters 6 and 7, two different
optimal control problems will be considered, in which a system is obtained that differs from
the given one solely by the sign in the control formula. It turns out that this circumstance
qualitatively changes the properties of the optimality conditions.

3. Naturally, this is the same control as in Example 3.3

4. Indeed, formula (5.3) is the problem of finding the minimum of a control-continuous func-
tion H on a closed set (segment) [–1, 1]. By the Weierstrass theorem (see Chapter 1), this
problem has a solution. In the absence of local minimum points, only a boundary point of a
given set can be such.

5. Interestingly, for the analog of Example 5.1 considered in Chapter 12, in the presence of
an additional boundary condition, the desired result is obtained without using an iterative
process, although the optimal control problem of a system with a fixed final state is considered
there is more difficult than the corresponding system with a free final state.

6. This can be easily verified by substituting these values into the given system.

7. See, in particular, Example 2.10.

8. Other examples of the non-uniqueness of optimal controls are considered in Chapters 6,
11, 14, 15, and 17.

9. We have already encountered the absence of the uniqueness of minimum points for functions
in Examples 1.3, 1.5, and 1.6.

10. More precisely, a set X is called a vector or linear space if the sum of any two elements
from X, as well as the product of any element from X by an arbitrary number (scalar),
belong to the same set. Moreover, the set X forms an Abelian group with respect to addition
(the associativity and commutativity conditions are satisfied, there is a neutral element, and
each element is invertible), multiplying any element by 1 gives this element itself, and some
distributivity conditions are satisfied; see [94], [100], [106], [158].

11. Naturally, the sum of elements of a numerical segment cannot to be an element of the same
segment.

12. Figure 1.18 shows convex and non-convex sets in the plane.

13. The properties of convex sets and convex functionals are the subject of convex analysis;
see [60], [91], [161].
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14. The following chapter will give an example of an optimal control problem with a convex
but not strictly convex functional that has an infinite number of solutions; see Example 6.1. We
already encountered a similar situation in Example 1.6, where a convex but not strictly convex
function has an infinite set of minimum points. On the other hand, a convex but not strictly
convex function f(x) = |x| has a unique minimum point. Theorem 5.1 gives conditions that
guarantee the uniqueness of the solution to the problem, but if these conditions are violated,
the solution may also turn out to be unique. An example of a uniquely solvable optimal control
problem with a convex but not strictly convex functional is given in Chapter 9; see Example
9.1.

15. Actually, this distinguishes the problems of optimal control from the problems of the cal-
culus of variations, which are characterized by a direct dependence of the functional on the
unknown function.

16. This means that the dependence of the state function on the control is an affine operator .
Naturally, any linear operator , i.e., such an operator L for which the equality L(αx + βy) =
αLx+βLy is valid for any elements x and y from its domain and any numbers α and β is affine.
Any affine operator A, defined on a vector space, is characterized by the equality Av = Bv + c,
where B is a linear operator acting in the same spaces as A, and c is some point from the set
of values of the considered operator.

17. More precisely, it follows from the theorem that this problem cannot have two solutions.
However, we already know the existence of a solution to the problem. Theorem 5.1 will be used
to prove the uniqueness of the optimal control for a system with a fixed final state in Chapter
9, for a system with an isoperimetric condition in Chapter 13 and for a system with a free
initial state in Chapter 16.

18. One should not think that checking the convexity of a functional for general optimal
control problems is such a simple problem. In this case, the achievement of the desired goal is
associated with a linear (more precisely, affine) property of the dependence of the state function
on the control. This, in turn, is explained by the fact that both the control and the state of
the system enter problem (5.1) linearly. At the same time, the equation of state for Example
4.1 is non-linear with respect to control, and for Examples 4.2 and 3.3, it is non-linear with
respect to the state of the system. Checking the convexity of the functional criterion, even for
sufficiently simple non-linear equations, is extremely difficult. In this regard, the justification
of the uniqueness of the optimal control for non-linear systems can only be carried out in
exceptional cases; see, in particular, [73], [148], [156], [165]. It should also be borne in mind
that any positive property, in particular, the uniqueness of the solution of the problem, is
usually an exception.

19. Another example of a uniquely solvable optimal control problem when the conditions of
Theorem 5.1 are violated is given in Appendix, but the solution of the problem is continuous
there; see also Example 11.1.

20. The zero value of the function p does not give new results. We can determine the control
equal to 1 for both negative and non-positive values of this function.

21. We have already met with a similar situation in Examples 1.2, 1.3, and 1.5, when mini-
mizing various functions of one variable.

22. Other examples of insufficiency of optimality conditions are given in Chapter 6, where
insufficient solutions of the maximum principle are singular controls, in Chapter 11, where
systems with fixed finite states are studied, in Chapters 14 and 15, when studying optimal
control problems with isoperimetric conditions, and in Chapter 17, for systems with a free
initial state.
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23. Usually, the adjoint system is solved in the reverse direction of time. However, in our case,
this is not essential, since the values of the function p at the three points 1/5, 3/5, and 1 are
known.

24. Curiously, for the analog of this problem considered in Section 12 for a system with a fixed
final state, the set of solutions to the optimality condition is also infinite. However, it does
not include continuous controls, since they do not guarantee the output of the system to the
desired final state. In the following section, we will encounter a situation where the optimality
conditions have not just an infinite, but not even a countable set of solutions.

25. For the analogue of Example 5.11 considered in Chapter 12 for a system with a fixed final
state, in which the set of solutions of the optimality condition is also infinite, the controls
with one discontinuity point turn out to be optimal. The following section gives an Example
of an optimal control problem with an infinite number of solutions. Examples of optimization
problems that have a non-unique solution are given in [75], [116], [165], [170]. Examples of
optimal control problems for which the necessary optimality conditions are not sufficient are
also given in Chapters 6, 11, 14, 15 and 17.

26. A similar example will be considered in Chapter 11 for the problem of optimal control of
a system with a fixed final state. Chapter 15 gives examples of optimal control problems with
an isoperimetric condition that have an infinite number of solutions.

27. We already met with a similar effect in Chapter 1 when analyzing the function f(x) =
x4–2x2.

28. For the sufficiency of optimality conditions in the form of the maximum principle; see [74].

29. Using variational inequalities to analyze a wide class of optimal control problems for sys-
tems described by partial differential equations; see [116], [171].

30. From an algebraic point of view, this means that on the set of solutions of the optimality
conditions, a first-order operation is defined, which consists of changing the sign of the function.
On the other hand, we can consider the set of transformations X = {e, s}, which translates the
set of solutions of the optimality conditions into itself, where e is the identity transformation,
and s is the sign change. On the set X, one can define a second-order operation • consisting in
successive realization of two transformations, i.e., superposition of transformations. Obviously,
the equalities e • e = e, s • s = e, e • s = s, s • e = s are valid. It follows from these equalities
that the given operation is associative, and e is the unit with respect to the given operation.
Moreover, both elements of the set X are invertible, and this element itself turns out to be the
inverse element. Thus, we are dealing with a group of transformations of the set of solutions
of optimality conditions. The search for transformations that ensure the transition from one
solution of the system to another makes it possible to find new solutions to the problem based
on the existing ones. We will use this technique in Chapters 12 and 14.

31. The result obtained is a manifestation of the Curie principle, according to which, when
certain causes cause certain consequences, then the symmetry elements of the causes should
appear in the consequences caused by them. This statement was formulated by Pierre Curie
in connection with the problems of crystallography. Note that the phenomenon of symmetry
is invariably investigated using group theory; see [163], [192].

32. The optimal control problem for a system with a fixed finite state, considered in Chapter 9;
see Example 9.1, and an optimal control problems with an isoperimetric condition; see Chapters
14 and 15, have similar properties. Example 3.2, the problem of minimizing this functional also
has all the described properties. At the same time, it has a unique solution. The point is that
this solution is zero, so changing the sign does not give a new solution. It is characteristic that
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the problem from Example 9.1 has two solutions that differ in signs, however, the corresponding
optimality conditions also have a non-optimal zero solution.

33. We recall that it was in this way that the sufficiency of the optimality condition obtained
in accordance with dynamic programming in the previous chapter was established.

34. Theorem 5.2 only gives conditions under which the maximum principle is certainly a suf-
ficient condition for optimality. It is clear that if these conditions are violated, the maximum
principle can, nevertheless, also turn out to be a sufficient optimality condition, which is realized
for Example 5.2.

35. It should be borne in mind that, as a rule, it is not possible to establish the sign of
the remainder term in the formula for the increment of the functional for sufficiently difficult
optimal control problems. Establishing the sufficiency of the maximum principle for systems
described by non-linear equations is a problem of an exceptionally high degree of difficulty.

36. Coefficient control problems often arise in coefficient inverse problems; see [43], [99], [120]
and in area control problems; see [119], [136], [137], [178], [185]. Applied control problems in
coefficients for distributed parameter systems are considered; for example, in [9], [119], [124].
Justification of optimality conditions for control problems in coefficients for such systems is
carried out; for example, in [116], [119], [124], [136], [137], [155], [171], [178].

37. The following chapter gives an Example of an optimal control problem with qualitatively
different properties, for which the maximum principle is a necessary and sufficient optimality
condition in accordance with Theorem 5.2. In Chapter 9, this theorem is used to prove the
sufficiency of optimality conditions for an optimal control problem with a fixed final state,
in Chapter 13 the sufficiency of optimality conditions for a problem with an isoperimetric
condition is similarly proved, and in Chapter 16, for a problem with a free initial state.

38. It is at these points that the derivative of the solution of the adjoint system vanishes; see
Section 5.1.5.

39. Chapter 15 will consider an optimal control problem in which non-optimal solutions of the
optimality conditions form a minimizing sequence for a given optimality criterion.

40. The sufficiency of the necessary optimality condition in the form of a variational inequality
for Examples 3.1 and 3.3 is due to the fact that the minimized functional for these problems
is convex. At the same time, for Example 5.1, the corresponding minimized functional is non-
convex. As a result, the set of solutions to the optimality condition turns out to be much
wider than the set of optimal controls. Despite the obtained result, it cannot be said that
the variational inequality is generally inapplicable for this example. Indeed, if the value p(t)
does not belong to the interval [−1, 1], then the dependence of the function u on p is uniquely
established. If p(t) belongs to this interval, then we still got serious information about the
optimal control. If initially we knew that at any moment of time it could take any values from
the interval [−1, 1], now we conclude that only one of the three specified values is possible, i.e.,
as a result of applying the variational inequality, the measure of uncertainty is significantly
reduced.

41. It is curious that, by changing the sign in front of the function F , we get a boundary value
problem for a non-linear differential equation of the second order, which has no solution at all;
see Chapter 7.

42. The tendency of the system to a specific equilibrium position is due to the choice of the
initial state of the system, just as the output of the iterative process for an ambiguously solvable
equation to a specific solution is due to the choice of the initial approximation; see Example
5.1.
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43. The optimality of the control u = 1 for Example 5.2 can be proved in another way. In
Example 5.1, it was shown that this control maximizes this functional on the set of controls
with values from the interval [−1, 1]. Then, all the more, it minimizes the functional on the
set of functions with values from the narrower set [0,1], which means that it is also an optimal
control for Example 5.2. The second optimal control u = −1 in Example 5.1 is not admissible
in this case, and therefore cannot be a solution to the considered problem. Thus, the control
u = 1 is the only solution to the problem for Example 5.2.

44. In Example 3.2, the uniqueness of the optimal control was also observed when the condi-
tions of Theorem 5.1 are violated. However, in this case, the conditions of Theorem 5.2 were
satisfied, as a result of which the corresponding optimality condition was necessary and suffi-
cient. In this case, however, the conditions of Theorem 5.2 are violated. However, the optimality
conditions are also sufficient.
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Singular controls

To solve optimal control problems in the previous chapters, we used the maximum principle,
according to which the optimal control delivers the maximum of some function on the set
of admissible control values. However, sometimes the maximum principle degenerates, as a
result of which it is difficult to determine control explicitly from the optimality condition.
The corresponding solutions to the optimality conditions are called singular controls and
may (but need not) also be optimal1. This chapter provides examples of such problems,
studies the problems of the uniqueness of optimal control and the sufficiency of the opti-
mality condition when the maximum principle degenerates, establishes conditions for the
existence of singular controls, estimates their number and provides necessary conditions for
the optimality of singular controls.

6.1 LECTURE

In Chapter 3, for the optimal control problem a necessary optimality condition in the form
of the maximum principle was established. The resulting system can be solved analytically
or by some iterative process. Below, we study an example of an optimal control problem
for which the maximum principle degenerates. In this case, the optimality conditions have
specific solutions, called singular controls. The problem of the existence of singular controls,
as well as the size of the set of singular controls, is condemned.

6.1.1 Problem statement

In the previous chapters, we considered optimal control problems, for which the
maximum principle was used. The system of optimality conditions included a state
equation with an initial condition, an adjoint system, and a maximum condition,
which is the problem of maximizing a certain function on a given set. Next, we found
the control from the maximum condition and substituted the result into the state
equation and the adjoint system, after which we found the solution of the problem
either directly from the optimality conditions (Examples 3.1 and 3.2), or using the
decoupling method (Example 3.4), or using an iterative algorithm (Examples 3.3
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and 5.1). However, there are situations when all these techniques do not lead to the
desired goal.

Example 6.1 It is required to minimize the functional2

I(u) =
1∫

0

u(t)x(t)dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (6.1)

Note that the such state equation and the set of admissible controls were previ-
ously considered in Examples 3.3 and 5.1, and the optimality criterion is extremely
simple. These circumstances do not seem to portend any surprises. To study this
problem, we use the previously described method.

The characteristics of the general optimal control problem from Chapter 3 are
given as follows:

f(t, u, x) = u, T = 1, x0 = 0, a(t) = −1, b(t) = 1, g(t, u, x) = ux, h(x) = 0.

In accordance with formula (3.3), we determine the function

H = pu – ux.

Then the adjoint system (3.8), (3.9) takes the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (6.2)

According to the maximum principle, the optimal control must maximize the function
H on the set U , which corresponds to the equality

H(u) = min
|v|≤1

H(v). (6.3)

Thus, to find the optimal control, we have the system (6.1)–(6.3). To analyze this
system, we will use the methods described before3.

6.1.2 Analysis of optimality conditions

The first step in the analysis of the system of optimality conditions is to find the
control from the system of optimality conditions. Using the standard method, we
find the derivative

∂H/∂u = p− x.
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Equating this derivative to zero, we could find the corresponding stationarity points.
However, unlike the previous cases, the resulting value does not explicitly depend on
the control4. Therefore, we can conclude that the function H has no local extrema.
In view of the absence of stationary points, the conditional extremum of the function
H can be achieved only on the boundaries of the set of admissible controls. We
encountered a similar situation in Example 5.1, where the stationary point existed
but was not a solution to the optimality condition.

Find the boundary values

H(1) = p− x, H(−1) = x− p.

Then the solution of the maximum principle is determined by the formula

u(t) =
{

1, if p(t) − x(t) > 0,
−1, if p(t) − x(t) < 0. (6.4)

The resulting relation is similar to equality (5.4) from the previous chapter and means
that the optimal control must be constant or piecewise constant. Consider the system
of equations (6.1), (6.2), and (6.4).

Since the dependence of the control on the functions x and p is essentially nonlin-
ear, we cannot find an analytical solution, as it was for Examples 3.1 and 3.2. We also
do not have the possibility of using the decoupling method, as for Example 3.4, due
to the non-linear dependence (6.4) between unknown functions. However, there is no
obstacle to applying the iterative method successfully used earlier in the analysis of
Examples 3.3 and 5.1. In particular, at the kth iteration, with a known control uk,
the system state function is found from the relations

x′
k(t) = uk(t), t ∈ (0, 1); xk(0) = 0.

Then the adjoint system is solved

p′
k(t) = xk(t), t ∈ (0, 1); pk(1) = 0.

Finally, the new control approximation is determined by the formula

uk+1(t) =
{

1, if pk(t) − xk(t) > 0,
−1, if pk(t) − xk(t) < 0.

Let us try to prove the convergence of the described algorithm. From formula
(6.4) it follows that at any t the control can take only one of two values: −1 or 1. In
this case, the variant is not excluded, in which at some moments the control switches
from one of these values to another, as it was for Example 5.1.

To begin with, we choose the constant control u0(t) = 1 as the initial approxima-
tion. The corresponding state function is

x0(t) =
t∫

0

u0(τ)dτ = t.
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Find the solution of the adjoint system

p0(t) = −
1∫

t

u0(τ)dτ = t− 1.

We calculate the difference p0(t) − x0(t) = −1. Since this value is negative, in accor-
dance with formula (6.4), we determine a new approximation control u1(t) = –1. It
corresponds to the state function x1(t) = –t and the solution of the adjoint system
p0(t) = 1− t. Calculating the difference p0(t)−x0(t) = 1, we conclude that u2(t) = 1.
This value coincides with the initial approximation of the control. It is clear that at
the next iteration the control is equal to −1, and so on. Thus, for the chosen initial
approximation, the iterative process does not converge.

The divergence of the algorithm for a particular initial approximation is, of course,
an unpleasant situation. However, this can hardly be considered fatal, since we can use
the algorithm with other initial approximations5. It is clear that by choosing u0 = –1
as the initial approximation, we obtain the value u1 = 1 at the next iteration. Then we
get –1, then again 1, etc., which again means the divergence of the iterative process6.
Of course, we still have the possibility to choose discontinuous controls as the initial
approximation. For Example 5.1, such a choice made it possible to find new solutions
to the system of optimality conditions. However, we will do otherwise.

Let us try to exclude two of the three unknown functions from the system of
optimality conditions7 (6.1), (6.2), and (6.4). Obviously, the solution of the Cauchy
problem (6.1) is

x(t) =
t∫

0

u(τ)dτ.

The solution to problem (6.2) is found similarly

p(t) = −
1∫

t

u(τ)dτ.

Now we determine the difference

p(t) − x(t) = −
1∫

t

u(τ)dτ −
t∫

0

u(τ)dτ = −
1∫

0

u(τ)dτ.

Substituting this value into equality (6.4), we obtain the peculiar equation for the
control8

u(t) =


1, if

1∫
0
u(τ)dτ < 0,

−1, if
1∫
0
u(τ)dτ > 0.

(6.5)

Obviously, the value on the right side of the resulting formula does not depend on
t. Thus, the control turns out to be a constant, which means that it is always equal
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to either 1 or –1. However, for u(t) = 1 the integral of the control is positive, and for
u(t) = –1 it is negative. In both cases, equality (6.5) is not valid. Therefore, equation
(6.5) has no solution9. However, it is equivalent to system (6.1), (6.2), and (6.4). As
a result, we come to the conclusion that this system also has no solution10.

Based on the results obtained, it would seem that one could conclude that the
optimality conditions have no solution at all. We already encountered a similar sit-
uation in Chapter 1 when studying the function f(x) = x. The stationary condition
for it reduces to the equality 1=0, which is meaningless. However, the solution of
the minimization problem must surely satisfy the necessary minimum condition. The
absence of an object that satisfies this condition is a sure sign of the absence of a
solution to the minimization problem itself. In particular, the above function f has no
minimum points. Having established the absence of a solution to problem (6.1), (6.2),
and (6.4), it would seem that we should conclude that the considered optimal control
problem has no solution. The more striking is the fact that the optimal control for
this problem still exists11.

6.1.3 Singular controls

We have a paradoxical situation. On the one hand, the solution of the optimal con-
trol problem exists12, and, on the other hand, the resulting system (6.1), (6.2), and
(6.4) has no solution. However, an optimal control must always satisfy the necessary
optimality condition. The way out of this situation is possible only in the case when
this system is not the necessary condition of optimality. The only way out of this
paradox is to admit that formula (6.4) is not equivalent to the maximum condition
(6.3), which, without a doubt, gives the necessary optimality condition.

The maximum condition (6.3) has the following form[
p(t) − x(t)

]
u(t) = max

|v|≤1

[
p(t) − x(t)

]
v, t ∈ [0, 1].

Obviously, this equality will certainly hold if the value in square brackets vanishes.
Indeed, in this case, the maximum principle is fulfilled in the trivial form 0=0. Charac-
teristically, this value corresponds to the derivative of the function H with respect to
control. Consequently, its equality to zero is a stationary condition for this function.

Definition 6.1 The situation in which the maximum principle is satisfied in a trivial
form is called its degeneration, and any admissible control on which the maximum
principle degenerates is called a singular control. Non-singular solutions of the
maximum principle are called regular.

Previously, it was established that the maximum principle for the considered
example does not have a regular solution, i.e., if the optimality conditions have a
solution, then it must necessarily be a singular control. Obviously, singular control,
being a specific form of solving the maximum principle, may turn out to be optimal,
but it does not have to be that way. Let us first try to determine which admissible
control turns out to be singular. The p–x difference was determined earlier. Then
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the degeneration of the maximum principle is realized when the following equality
holds13

1∫
0

u(τ)dτ = 0. (6.6)

Thus, the set of all singular controls for the considered example is characterized by
the equality

U0 =
{
u ∈ U

∣∣∣ 1∫
0

u(τ)dτ = 0
}
.

The question arises, how wide is the set of singular controls U0? Obviously, it
includes a function identically equal to zero; any function equal to some number a
from the segment [–1, 1] at t ∈ (0, 1/2) and equal to −a at t ∈ (1/2, 1); a function of
the form a sin 2kπt, where k is a natural number and much more; see Figure 6.1.

Figure 6.1 Singular controls for Example 6.1).

Thus, the maximum principle has an infinite and not even countable set of so-
lutions14, all of which are singular controls. Now a natural question arises, which of
them is optimal? In Chapter 5, we have already encountered a situation where the
optimality condition has an infinite number of solutions. To choose the best of them,
i.e., optimal control, we then calculated the value of the optimality criterion on an
arbitrary solution of the optimality conditions, which made it possible, as a result, to
find a solution to the original problem. In this case, such a technique, it would seem,
should not be effective, since, unlike Example 5.1, we do not have a formula for an
arbitrary singular control. However, we will try to use it.

Let us find the value of the functional to be minimized on an arbitrary singular
control, i.e., on any admissible control satisfying equality (6.6). Substituting the value
of control into the optimality criterion, we have

I =
1∫

0

xudt =
1∫

0

xx′dt = 1
2

1∫
0

d

dt
x2dt = x(1)2

2 . (6.7)
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Taking into account the well-known formula for solving problem (6.1), we find the
value

x(1) =
1∫

0

u(τ)dτ.

As a result, we determine the value of the functional on an arbitrary control

I(u) = 1
2

[ 1∫
0

u(τ)dτ
]2
. (6.8)

Obviously, this value is not negative, and here the equality to zero is possible if and
only if the integral is equal to zero. However, this exactly corresponds to equality
(6.6), i.e., description of the set U0 and definition of singular controls. As a result,
we conclude that the considered problem has an infinite and even non-countable set
of optimal controls, all of which are singular15.

6.1.4 Existence of singular control

In Example 6.1, we encountered singular controls, while for the optimization problems
discussed in the previous chapters, there seemed to be no singular controls. The
question arises, why does singular control exist in some problems, but not in others?
Let us return to the general optimal control problem posed in Chapter 3.

We consider the general problem of minimizing the functional

I(u) =
T∫

0

g(t, u(t), x(t))dt + h(x(T ))

on the set
U =

{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where x is a solution of the Cauchy problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0

with known functions a, b, f , g, h and numbers T , x0. In accordance with Theorem
3.1, the optimal control satisfies the maximum condition

H
(
t, u(t), x(t), p(t)

)
= max

v∈[a(t),b(t)]
H

(
t, v, x(t), p(t)

)
,

where p is a solution of the corresponding adjoint system, and the function H is
determined by the equality

H(t, u, x, p) = f(t, u, x)p – g(t, u, x).

Suppose the functions f and g satisfy the conditions

f(t, u, x) = f1(t, x)φ(u) + f2(t, x), g(t, u, x) = g1(t, x)φ(u) + g2(t, x), (6.9)
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where f1, f2, g1, g2, and φ are some functions of their arguments. Then the function
H takes the following form

H(t, u, x, p) =
[
f1(t, x)p–g1(t, x)

]
φ(u) +

[
f2(t, x)p–g2(t, x)

]
.

As a result, we obtain the maximum condition[
f1(t, x(t))–g1(t, x(t))

]
φ(u(t)) = max

v∈[a(t),b(t)]

[
f1(t, x(t))–g1(t, x(t))

]
φ(v), t ∈ (0, T ).

(6.10)
If now there is a control u from the set U such that

f1(t, x(t))p(t) – g1(t, x(t)) = 0, t ∈ (0, T ), (6.11)

then equality (6.10) is certainly satisfied in a trivial way. This corresponds to the
degeneration of the maximum principle. Thus, the following assertion is true.

Theorem 6.1 A singular control exists if equalities (6.9) are satisfied, and the set
of admissible controls for which conditions (6.11) are valid is not empty16.

Note that, according to equalities (6.9), the control enters equally into both the
state equation and the optimality criterion. In particular, for Example 6.1, we have
f(t, u, x) = u, g(t, u, x) = ux. Thus, the functions entering into conditions (6.9) are
f1(t, x) = 1, f2(t, x) = 0, g1(t, x) = x, g2(t, x) = 0, φ(u) = u. Equality (6.11) here
takes the form p(t) − x(t) = 0 and determines the set U0 of singular controls for
this example; see Section 6.2.1. However, for Example 3.1 we have f(t, u, x) = u,
g(t, u, x) = u2/2–3x, and for Examples 3.3 and 3.4 we have f(t, u, x) = u, g(t, u, x) =
(u2 +x2)/2. Examples 3.2 and 5.1 differ from Examples 3.1 and 3.3, respectively, only
in the type of extremum. Thus, the function f is the same in them, while g differs only
in sign. In all five cases, equalities (6.9) do not hold, and the function H includes the
square of the control without any coefficients that could vanish. Consequently, the
degeneration of the maximum principle is impossible here, and there are no singular
controls.

6.1.5 Finiteness of the set of singular controls

In Example 6.1 the set of singular controls is infinite, while in Examples 3.1–3.4
and 5.1 this set is empty. We would like to know whether this set can be finite and
non-empty. Consider another example17.

Example 6.2 It is required to minimize the functional

I(u) = 1
2

1∫
0

x(t)2dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (6.12)
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Determine the function H = pu–x2/2. Then the adjoint system takes the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (6.13)

The corresponding maximum condition is written as follows

p(t)u(t) = max
|v|≤1

p(t)v, t ∈ (0, 1). (6.14)

Due to the linearity of the function H, its maximum, as if it exists, can only be
located on the boundary of the set of admissible controls, which leads to the relation

u(t) =
{

1, if p(t) > 0,
−1, if p(t) < 0. (6.15)

Thus, it seems that the optimal control is identically modulo one.
However, the considered problem is so simple that its solution can be found with-

out recourse to the maximum principle18. Indeed, by definition, the functional to be
minimized is non-negative. Equality to zero here is possible only in the case when the
state of the system is identically equal to zero, which, in turn, is realized on a single
control u = 0. The latter, being an element of the set of admissible controls, turns
out to be optimal. Therefore, the optimal control problem considered in Example 6.2
has a unique solution u = 0.

The obtained result comes into direct conflict with equality (6.15). However, this
relation characterizes exclusively regular solutions of the maximum principle, pro-
vided that they exist19. The discrepancy between representation (6.15) and the estab-
lished type of optimal control suggests that the maximum principle should determine
some singular controls.

If we exclude the controls defined by formula (6.15), then the maximum condition
(6.14) is satisfied only when the control coefficient vanishes. As a result, we obtain
the equality p = 0. As can be seen from problem (6.13), the equality to zero of the
solution of the adjoint system is possible only for x = 0. Substituting this value
into equality (6.12), we find a singular control u = 0, which, as we already know, is
optimal20.

In Example 6.1, there were an infinite number of singular controls; in Example 6.2,
there was only one singular control21, and in other examples there were no singular
controls at all. The question arises whether the situation is possible when the set of
singular controls is finite, but their number is greater than one. Consider another
example22.

Example 6.3 It is required to minimize the functional

I(u) =
1∫

0

(x3

3 − x2t

2
)
dt

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.



182 ■ Optimization: 100 examples

Find the function
H = pu− x3

3 + x2t

2 ,

where p is a solution of the adjoint system

p′(t) = x(t)2 − tx(t), t ∈ (0, 1); p(1) = 0.

Based on the form of the function H, we conclude that the degeneration of the
maximum principle is possible only at p = 0. Then the derivative of p also vanishes.
This is possible in two cases: for x(t) = 0 and for x(t) = t. The obtained states of
the system are implemented, respectively, under the controls u(t) = 0 and u(t) = 1.
Thus, for Example 6.3, there are two singular controls23. Note that in this case, we
do not ask ourselves whether these controls are optimal or not24. It was important
for us to establish that for the considered example, there are two singular controls.

RESULTS

Here is a list of questions devoted to the degeneration of the maximum principle and singular
controls, the main conclusions on this topic, as well as additional problems that arise in this
case, partially solved in Appendix, partially taken out in the Notes.

Questions

It is required to answer questions concerning the degeneration of the maximum prin-
ciple.

1. Why is the adjoint system for Example 6.1 independent of the state function,
unlike the examples described in previous chapters?

2. What is unusual about the properties of the maximum principle for Example
6.1?

3. Why does the maximum principle for this example have properties that essen-
tially distinguish it from the examples considered earlier?

4. Can the iterative process for the system (6.1), (6.2), and (6.4) converge for some
initial approximation?

5. Why did the iterative process for the considered example not lead to the desired
results?

6. Why are relations (6.3) and (6.4) not equivalent?

7. What is the difference between singular and regular solutions of the maximum
principle?

8. What class of equations does relation (6.5) belong to?
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9. On what basis was it concluded that problem (6.5) has no solution?

10. What class of problems does relation (6.6) belong to?

11. Is it possible to find solutions to equation (6.6) different from those given ear-
lier?

12. Why is an arbitrary singular control for the considered example turned out to
be optimal?

13. How many solutions does the considered optimal control problem have?

14. Can we say that the maximum principle for this example turned out to be
ineffective?

15. Is the maximum principle for this example a necessary and sufficient optimality
condition for why?

16. What happens if we use a variational inequality for Example 6.1?

17. Is it possible to use the penalty method for an approximate solution of the
considered problem?

18. Why does singular control exist in the examples described above, but not in
the problems from the previous chapters?

19. Under what conditions can the maximum principle degenerate?

20. How many singular controls can there be?

21. How to obtain an optimization problem in which there would be exactly three
singular controls?

Conclusions

Based on the results obtained, the following conclusions can be drawn.

• To solve the considered problem, one can use the maximum principle.

• A feature of this problem is the linearity of the function H with respect to
control, as well as the absence of a state function in the adjoint system.

• Choosing the boundary values of the control as a solution to the maximum
condition, we obtain a system with respect to the functions u, x, and p, which,
in principle, can be solved iteratively.

• The resulting iterative process does not converge for any initial approximation.

• The convergence of the iterative process is impossible due to the absence of a
solution to the resulting system.



184 ■ Optimization: 100 examples

• For the considered problem, the maximum principle can be fulfilled in a de-
generate form, when the pre-control coefficient in the function H definition is
zero.

• Admissible controls for which the maximum principle degenerates are singular.

• The set of singular controls for the considered example is infinite and not even
countable.

• All singular controls for this example are optimal, which means that the set of
optimal controls is infinite and not even countable here.

• Singular controls can exist if the control is equally included in the state equation
and in the optimality criterion.

• Singular controls exist if the value in the definition of the function H, which is
a multiplier in the term that takes into account all dependence on the control,
vanishes. The set of singular controls can be empty, consist of an arbitrary
number of elements, or be infinite.

• The set of singular controls can be empty, consist of an arbitrary number of
elements, or be infinite.

• The maximum principle for the considered example is a necessary and sufficient
optimality condition.

Problems

Based on the results obtained above, we have the following problems related to the
subject under study, the solution of which is of undoubted interest.

1. Coexistence of singular and regular solutions of the maximum princi-
ple. In Example 6.1, there are exclusively singular controls, while in all previous
problems the solutions of the maximum principle were not singular controls. We
would like to know whether a situation is possible when the maximum principle
has both singular and regular solutions at the same time. The answer to this
question is given in Appendix.

2. Finding singular controls. For Example 6.1, the set U0 of all singular con-
trols was allocated. It is clear that this is possible only in exceptional cases.
The question arises, how can one find special singular controls in a particular
situation? For this problem, see Notes25.

3. Optimality of singular control. In Example 6.1, any singular control turns
out to be optimal. We would like to know if this is always done? The answer
to this question is given in Appendix.

4. Uncountable set of non-singular optimal controls. In Example 6.1, there
is an uncountable set of optimal controls, all of which are singular. It would be
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interesting to establish such a property for the case when the optimal controls
are not singular. Such an example is given in Chapter 15.

5. Existence of singular controls located on the boundary of the set of
admissible controls. In the example considered, the special control turns out
to be an internal point of the set of admissible controls. It would be interesting
to consider the case when it belongs to the boundary of this set. Such an
example is given in Appendix.

6. Optimality of part of singular controls. We would like to find out whether
some of the singular controls can be optimal, and some can be non-optimal.
The answer to this question is also given in Appendix.

7. Optimality condition for singular control. For Example 6.1, the proof of
the optimality of singular controls did not cause serious difficulties. However,
it is clear that such a result is explained by the simplicity of the problem and
is established only in exceptional cases. We would like to be able to check in
particular case whether a particular singular control is optimal or not. Such a
condition is given in Appendix.

6.2 APPENDIX

In the Lecture, an example of the optimal control problem was given, for which there is
a set of singular controls that are specific solutions of the maximum principle, and all
of them turned out to be optimal. Below is some additional information about singular
controls. In particular, the theorems of the uniqueness of optimal control and the sufficiency
of optimality conditions for the considered example are used (Section 6.2.1), the control
rejected in the process of analyzing regular solutions of the maximum principle turns out to
be its singular solution, and it is achieved on the boundary of the set of admissible controls
(Section 6.2.2), examples are considered in which the singular controls are not optimal
(Section 6.2.3), necessary conditions for the optimality of the singular control are given
(Sections 6.2.4 and 6.2.5).

6.2.1 Application of uniqueness and sufficiency theorems

The analysis of Example 6.1, in principle, could be considered complete. However, it
is interesting to check the effect in this case of the statements given in the previous
chapter. We are talking about Theorems 5.1 and 5.2, which establish the uniqueness
of the optimal control and the sufficiency of the optimality condition.

According to Theorem 5.1, the problem of minimizing a strictly convex functional
on a convex set cannot have two solutions. The convexity of the set U of admissi-
ble controls for Example 6.1 is beyond doubt26. Let us check the properties of the
optimality criterion whose definition reduces to equality (6.8). Determine the value

I
(
αu+ (1 − α)v

)
= 1

2
[
α

1∫
0

u(τ)dτ + (1 − α)
1∫

0

v(τ)dτ
]2
.
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We noted earlier that the squaring function is convex, which allows us to establish
the inequality

I
(
αu+ (1 − α)v

)
≤ α

2
[ 1∫

0

u(τ)dτ
]2

+ 1 − α

2
[ 1∫

0

v(τ)dτ
]2

= αI(u) + (1 − α)I(v).

Thus, the functional I is convex.
Now determine the function u and v such that u(t) = 1, v(t) = –1 for t < 1/2 and

u(t) = –1, v(t) = 1 for t > 1/2. Obviously, they are the admissible controls. Then for
any α, we get

I
(
αu+ (1 − α)v

)
= αI(u) + (1 − α)I(v).

Thus, the considered functional is not strictly convex, as a result of which we cannot
use Theorem 5.1 on the uniqueness of the optimal control. Thus, the absence of
uniqueness of the problem solution for Example 6.1 seems quite natural27.

Let us now turn to Theorem 5.2 on the sufficiency of the optimality condition
in the form of the maximum principle. This property is satisfied in the case of non-
negativity of the remainder term in the functional increment formula, which has the
following form

η = η3 −
1∫

0

(η1 + η2)dt.

Here, the value η3 is a second-order term obtained as a result of expansion into a
Taylor series of a part of the optimality criterion that characterizes the state of the
system at the final time, η1 corresponds to a second-order term in the expansion of the
function H(t, u, x+∆x, p) in a series in ∆x, and η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x.

For the considered example, the optimality criterion is determined exclusively by
the integral, which means that η3 = 0. The function H = pu–ux is linear in x. Then
H(t, u, x + ∆x, p) = pu–u(x + ∆x). In the right part of this equality, there are no
second-order terms with respect to ∆x, which means that η1 = 0. Finally, we find
the value η2 = (u–v)∆x. Thus, the remainder term is

η =
1∫

0

(v − u)∆xdt.

Equation (6.1) implies that the difference v–u is equal to the derivative of ∆x. As a
result, we find

η =
1∫

0

∆x′∆xdt = 1
2

1∫
0

d

dt
(∆x)2dt = 1

2
[
∆x(1)

]2
.

Thus, the remainder term is non-negative, which means that for the considered
optimal control problem, the maximum principle gives the necessary and sufficient
optimality conditions by virtue of Theorem 5.2. This is consistent with the previously
established results.
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Return now to the consideration Example 6.2. Of course, we have the convex
set of admissible controls, and our functional is strongly convex28. Therefore, the
corresponding optimal control problem has a unique solution. Determine the sign of
the remainder term for this example. We determine again the equality η3 = 0 because
of the absence of the terminal term at the optimality criterion. For the considered
problem, we have the equality H = pu–x2/2. Therefore, Hx = –x. This value does
not depend from the control, so η2 = 0. Besides, η1 = ∆x2. Thus, the remainder
term is non-negative. Using Theorem 5.2, we conclude that the necessary conditions
of optimality are sufficient here. However, we have some problems with analysis of
Example 6.3 by means the theorems from the previous chapter because of properties
of the optimality criterion29.

6.2.2 Control is optimal as singular and not optimal as regular

Let us consider another example, quite close to the ones above30.

Example 6.4 It is required to minimize the functional

I(u) = 1
2

1∫
0

[
x(t)2 − 2x(t)t

]
dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Define the function
H = pu – (x2–2xt)/2.

The adjoint system takes the form

p′(t) = x(t) − t, t ∈ (0, 1); p(1) = 0.

Optimal control is determined from the condition of maximum function H on the
interval [–1, 1]. Here, in principle, two situations are possible: either the solution is
achieved on the boundary of a given set, or it is singular.

For the regular case, control is determined by the formula

u(t) =
{

1, if p(t) > 0,
−1, if p(t) < 0. (6.16)

Let us assume that u(t) = 1 for any t, which, by virtue of equality (6.16), is possible if
the function p is positive everywhere. Then we find x(t) = t. In this case, the adjoint
system has a solution p(t) = 0 for all t. However, this contradicts the previously ac-
cepted assumption. Therefore, a control identically equal to one cannot be a solution
to the maximum principle31.
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Let now u(t) = –1, which is possible if the function p takes only negative values.
Then x(t) = –t. Consequently, the adjoint equation takes the form p′ = –2t. Thus,
the function p is strictly decreasing. However, at the end point it is zero. Then before
this it was positive, which contradicts equality (6.16). However, the case has not yet
been ruled out when the control is piecewise constant.

Thus, if there exists a regular solution to the maximum condition, then it cannot
be constant. Somewhere there is a discontinuity, which, by virtue of (6.16), means
that the function p vanishes there. Let us assume that ξ is the first control discon-
tinuity point, and it does not matter whether there are other such points. Suppose
the equality u(t) = 1 is initially true that is possible if the function p is positive on
the interval (0, ξ). Solving the equation of state, we find x(t) = t at t ∈ (0, ξ). Con-
sequently, on this interval the adjoint equation takes the form p′(t) = 0. Considering
that p(ξ) = 0, we conclude that over the entire interval where the control is 1, the
function p must be equal to zero, which cannot be the case.

The case when the control, when passing through the first break point ξ, switches
from the value –1 to 1, also assumes the equality p(ξ) = 0. However, now at all
previous points the function p must take negative values, and at subsequent points32

positive. In this case, the equality x(t) = –t at t ∈ (0, ξ) is valid. Consequently, the
adjoint equation here takes the form p′ = –2t. Then the function p on the specified
interval must decrease. However, at the end of this interval it becomes zero, which is
possible if it was positive before. Thus, this option is not implemented either.

Thus, we conclude that the maximum condition cannot have regular solutions.
Singular control here is possible only if the function p is identically equal to zero.
Then the conjugate equation implies the equality x(t) = t. This state corresponds
to control u(t) = 1, which is special. Obviously, this is the unique optimal control33.
However, what is important for us here is the fact that the control u, identically equal
to 1, which we had previously rejected as a possible regular solution to the maximum
condition, turned out to be its singular solution, and the optimal one.

6.2.3 Non-optimal singular controls

In Examples 6.1 and 6.2, all singular controls are optimal. A natural question arises:
is a singular control always optimal? If this turned out to be the case, then the
solution of the optimization problem would be reduced to finding a singular control,
if, of course, one exists. Consider the following example34.

Example 6.5 It is required to maximize the optimality criterion defined in Example
6.2 on the same set of admissible controls.

As we noted earlier, to solve such a problem, one should define the same function
H as for the corresponding minimization problem, but at the same time look for the
optimal control from the minimum condition for this function on the set of admissible
control values. Thus, the solution of this problem satisfies the equality

p(t)u(t) = min
|v|≤1

p(t)v, t ∈ (0, 1). (6.17)

where the function p again is the solution of problem (6.13).
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Obviously, in the case when the function p is identically equal to zero, equality
(6.17) is satisfied for sure, which corresponds to the degeneration of the optimality
condition. However, the state equation and the adjoint system in Examples 6.2 and
6.5 are the same. Therefore, for this problem there is a unique singular control u = 0,
the same as in the problem of minimizing the considered optimality criterion. It is
already known that this control delivers a minimum rather than a maximum to the
functional, which means that it cannot be a solution to this optimal control problem35.

Note that in the general case, the singular controls in the problems of minimization
and maximization of the same functional are the same36. Consider, in particular, the
following example37.

Example 6.6 It is required to maximize the optimality criterion defined in Example
6.1 on the same set of admissible controls.

For this problem, there is an infinite set of singular controls U0 defined in the
Lecture. However, these controls again deliver a minimum, and not a maximum, to
the optimality criterion, which means that the singular controls are no longer be
optimal for the problem being solved in this case. Thus, the maximum principle for
this example is not a sufficient condition for optimality38 We conclude that a singular
control can be, but not necessarily optimal39.

The question arises, what is the solution of the optimization problem considered
in Example 6.6? To answer this, let us return to the optimality condition. Taking
into account the previously defined form of the function H = pu–ux, we have the
optimality condition[

p(t) − x(t)
]
u(t) = min

|v|≤1

[
p(t) − x(t)

]
v, t ∈ (0, 1).

Eliminating obviously non-optimal singular controls, we conclude that the solution
of the last relation has the form

u(t) =
{

−1, if p(t) − x(t) > 0,
1, if p(t) − x(t) < 0,

which differs from formula (6.4) only in sign40.
Section 6.1.3 established the equality

p(t) − x(t) = −
1∫

0

u(τ)dτ.

Then the previous formula takes the following form

u(t) =


−1, if

1∫
0
u(τ)dτ < 0,

1, if
1∫
0
u(τ)dτ > 0,

(6.18)
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which again differs only in sign from relation (6.5). Since the value on the right side
of equality (6.18) does not depend on t, we conclude that we are dealing with a
constant function. It can only take the value 1 or −1. Obviously, both of them satisfy
equality (6.18), and hence are solutions of the optimality condition. Considering that
the remaining solutions of the maximum principle, i.e., singular controls are not
optimal, we conclude that the optimal control problem for Example 6.7 has exactly
two solutions41. There are the functions that are identically equal to 1 or −1.

In Examples 3.1–3.4 and 5.1, all solutions of the maximum principle were not
singular controls. In contrast, in Examples 6.1 and 6.2 the maximum principle had
only singular solutions. Example 6.6 is also interesting because in it the maximum
principle has singular and regular solutions at the same time.

Example 6.5 has similar properties. In particular, the conditions of Theorems
5.1 and 5.2 are violated for it, i.e., it is not possible to establish on their basis the
sufficiency of optimality conditions and the uniqueness of the maximum principle.
Finding optimal controls for this example is not difficult. Since the only singular
control is obviously not optimal, from relation (6.17), we can find the function

u(t) =
{

1, if p(t) < 0,
−1, if p(t) > 0. (6.19)

Thus, the optimal control for Example 6.5 satisfies the system (6.12), (6.13), and
(6.19). However, this is consistent with the system (5.1), (5.2), and (5.4) for Example
5.1 of previous chapter.

Using the results of Chapter 5, we conclude the set of all regular solutions of the
optimality conditions is infinite. For determining the arbitrary solution, we divide
the interval [0,1], i.e., the domain of the considered functions, by 2k + 1 equal parts,
where k = 0, 1, .... Let the control be 1 on the first interval, −1 on two next intervals,
1 on two next intervals, etc. The resulting control u+

k and the function u−
k = −u+

k

satisfy the equalities (6.12), (6.13), and (6.19). The corresponding state functions
x+

k and x−
k = −x+

k are piecewise linear; see Figure 5.3. Calculate the corresponding
values of the optimality criterion similar to how it was done in Chapter 5.

I(u+
k ) = I(u−

k ) = 1
2

1∫
0

(
x+

k

)2
dt = 2k + 1

2

1/(2k+1)∫
0

(
x+

k

)2
dt = 1

6(2k + 1)2 , k = 0, 1, ... .

The maximal values here correspond to the functions which are equal to 1 and −1.
There are the solutions of Example 6.5.

6.2.4 Kelley condition

We know that a singular control can be optimal (Examples 6.1, 6.2, and 6.4) or
non-optimal (Examples 6.5 and 6.6). The sufficiency of optimality conditions or its
absence was determined directly or by means of Theorem 5.2 after finding the sign of
the remainder term. This analysis is possible only for easy enough problems. Besides,
it does not use properties of singular controls. However, there exists an optimality
condition of singular controls42.
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Theorem 6.2 Suppose the functions of the problem statement are smooth enough.
Then the singular control is optimal if it satisfies the Kelley condition

∂

∂u

d2

dt2
∂H

∂u
≥ 0. (6.20)

By this result, if a singular control satisfies the Kelley condition, then it can be
optimal. However, if the inequality (6.20) is false, then the corresponding singular
control is non-optimal43.

Use Theorem 6.2 for the analysis of Example 6.2. The function H is determined
by the formula H = pu–x2/2. Find the derivative

∂H

∂u
= p.

Using the adjoint system (6.13), we get

d

dt

∂H

∂u
= p′ = x.

Using the state equation (6.12), we obtain

d2

dt2
∂H

∂u
= x′ = u.

Now we calculate
∂

∂u

d2

dt2
∂H

∂u
= 1.

Thus, the Kelley condition is true; so the singular control u = 0 can be optimal. We
know, that this is optimal control, in reality.

Example 6.5 differs from Example 6.2 only in the type of the extremum. The
corresponding function H differs from considered before only by the sign. Besides,
the state equation and the adjoint system coincide for both examples. Therefore, we
obtain the equality

∂

∂u

d2

dt2
∂H

∂u
= −1.

The inequality (6.20) gets broken, and the corresponding singular control is not opti-
mal. We determined this result before directly. Thus, by means of the Kelley condition
we can exclude non-optimal singular controls.

Try to use Theorem 6.2 for the analysis of Example 6.1 with function H = pu–xu.
Using equalities (6.1) and (6.2), we obtain

d

dt

∂H

∂u
= p′ − x′ = u− u = 0.

After differentiation by t and then by u, we prove that the relation (6.20) is true for
any singular control in the form of equality. Therefore, all singular controls can be
optimal. We know that they are optimal, in reality.
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Example 6.6 differs from Example 6.1 only by the type of the extremum. The
corresponding functions H differ by the sign. Then we obtain again Kelley condition
in the form of equality; and the singular controls can be optimal. However, we know
that they are not optimal. This result does not contradict Theorem 6.2, according to
which a special control that satisfies the Kelley condition may be optimal, but need
not be so.

For Example 6.4, find the derivative

∂H

∂u
= p.

Taking into account the adjoint equation, we obtain

d

dt

∂H

∂u
= p′ = x− t.

Using the state equation, determine

d2

dt2
∂H

∂u
= x′ − 1 = u− 1.

As a result, we get
∂

∂u

d2

dt2
∂H

∂u
= 1.

Thus, the Kelley condition is satisfied, which means that the special control u = 1
can be optimal, and indeed it is.

Verify the validity of the Kelley condition for singular controls from Example 6.3.
In this case, the function H is defined by the formula

H = pu− x3

3 + x2t

2 .

Its derivative with respect to the control is p. Taking into account the form of the
adjoint system, we find

d

dt

∂H

∂u
= x2 − tx.

Using the state equation, we get

d2

dt2
∂H

∂u
= (2x− t)x′ = (2x− t)u− x.

Finally, we obtain
∂

∂u

d2

dt2
∂H

∂u
= 2x− t.

Check the sign of this value for the two singular controls u = 0 and u = 1. For
the first of them, the equality x(t) = 0 is valid. This means 2x–t = –t, which is
negative for t > 0. Thus, the Kelley condition is not satisfied, which means that the
singular control u = 0 is certainly not optimal. On the other hand, for u = 1 we have
x(t) = t. This means 2x–t = t, which is positive. Thus, the singular control u = 1
can be optimal44.
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Check the validity of Kelley condition for Example 6.4. Indeed, the derivative of
the function H with respect to the control is equal to p. Its derivative with respect to
t, by virtue of the adjoint equation, gives x–t. As a result of repeated differentiation
taking into account the equation of state, we have u–1. Finally, the new differentiation
with respect to control gives 1, which means Kelley condition is satisfied.

Consider another example.

Example 6.7 It is required to minimize the functional

I(u) =
1∫

0

(
x6 − 2x4t2 + x2t4

)
dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Determine the function

H = pu–x6 + 2t2x4–t4x2.

Then the adjoint system takes the form

p′(t) = 6x(t)5 − 8t2x(t)3 + 2t4x(t), t ∈ (0, 1); p(1) = 0.

Since the function H is linear with respect to the control and there are no restrictions
on the control, there are no regular solutions of the maximum principle.

Singular controls are obtained if the value on the right side of the adjoint equation
is equal to zero. Fifth-order algebraic equation

6x5 – 8x3t2 + 2xt4 = 0

has five solution

x1 = 0, x2 = t, x3 = −t, x4 = t/
√

3, x5 = −t/
√

3.

They are state functions corresponding to controls

u1 = 0, u2 = 1, u3 = −1, u4 = 1/
√

3, u5 = −1/
√

3.

Thus, for the considered example, the maximum condition has five solutions, which
are singular controls.

Let us check the validity of the Kelley condition. Find the derivative

∂H

∂u
= p.

Taking into account the adjoint equation, we determine

d

dt

∂H

∂u
= p′ = 6x5 − 8t2x3 + 2t4x.
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Differentiate this equality taking into account the state equation. We get

d2

dt2
∂H

∂u
=

(
30x4 − 2t2x2 + 2t4

)
u− 16tx3 + 8t3x.

Now we obtain
∂

∂u

d2

dt2
∂H

∂u
= 30x4 − 2t2x2 + 2t4.

We calculate this value for all five singular controls:

∂

∂u

d2

dt2
∂H

∂u

∣∣∣
u=0

= 2t4, ∂

∂u

d2

dt2
∂H

∂u

∣∣∣
u=±t

= −8t4/3, ∂

∂u

d2

dt2
∂H

∂u

∣∣∣
u=±t/

√
3

= −8t4/3.

The first three singular controls satisfy the Kelley condition, which means that they
can be optimal. The last two do not satisfy this condition, which means that they
are obviously not optimal.

Let us estimate the value of the optimality criterion for three singular controls
that may turn out to be optimal. Note that the functional to be minimized can be
written in the form

I(U) =
1∫

0

[
x(x− t)(x+ t)

]2
dt.

Obviously, all its values are non-negative, and equality to zero is realized only in
three cases, which correspond to special controls that satisfy the Kelley condition.
Therefore, the optimal control problem under consideration has three solutions, which
were previously defined.

Now we consider the following example.

Example 6.8 It is required to maximize the optimality criterion defined in Example
6.7 on the same set of admissible controls.

Due to the linearity of the function H and the absence of restrictions on the
maximum principle solution controls, here there can also be only singular controls,
which are the same as for Example 6.7. In this case, in the Kelley condition, it is
required to change the sign ≥ to ≤. Then the previously defined singular controls u0,
u1, and u2 do not satisfy this condition and, therefore, are not optimal. The controls
u3 and u4 satisfy the Kelley condition, which means that they can be optimal, and
would turn out to be so if the problem is solvable45.

We have carried out a complete analysis of all seven examples of this chapter46.

6.2.5 Kopp–Moyer condition

As seen in Examples 6.1 and 6.6, there are situations where the Kelley condition is
true in the form of equality. Then we do not get any information about the opti-
mality of the singular control, as a result of which this case can be interpreted as a
degeneration of the Kelley condition. However, sometimes it is possible to establish
an additional optimality condition for a singular control.
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Example 6.9 It is required to minimize the functional

I(u) = 1
2

1∫
0

x1(t)2dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

where x1 is a solution of the Cauchy problem

x′
1(t) = x2(t), x′

2(t) = u(t), t ∈ (0, 1); x1(0) = 0, x2(0) = 0. (6.21)

Consider the function

H = p1x2 + p2u− x2
1/2,

where p1 and p2 are solutions of the adjoint system

p′
1(t) = x1(t), p′

2(t) = −p1(t), t ∈ (0, 1); p1(1) = 0, p2(1) = 0. (6.22)

The degeneration of the maximum principle here is possible for p2 = 0. Then it follows
from the second equation (6.22) that p1 = 0, and from the first equation that x1 = 0.
Substituting this value into the first equation (6.21), we find x2 = 0. It follows from
the first equation (6.21) that u = 0. This function is the unique special singular for
this example.

Let us check the validity of the Kelley condition. We find

∂H

∂u
= p2.

Taking into account the second adjoint equation, we determine

d

dt

∂H

∂u
= p′

2 = −p1.

Differentiate this equality taking into account the second adjoint equation of state.
We get

d2

dt2
∂H

∂u
= −p′

1 = −x1. (6.23)

This implies
∂

∂u

d2

dt2
∂H

∂u
= 0.

Thus, the Kelley condition is satisfied in the form of equality (i.e., degenerates),
as a result of which we cannot conclude that the singular control is optimal. However,
one can try to use the following assertion47.

Theorem 6.3 If for a singular control the Kelley condition degenerates, then for its
optimality, it is necessary to fulfill the Kopp–Moyer condition

∂

∂u

d4

dt4
∂H

∂u
≤ 0. (6.24)
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Let us check the validity of the Kopp–Moyer condition for Example 6.9. We
differentiate equality (6.23) taking into account the first equation (6.21). We have

d3

dt3
∂H

∂u
= −x′

1 = −x2.

After repeated integration, taking into account the second equation (6.21), we obtain

d4

dt4
∂H

∂u
= −x′

2 = −u.

Finally, we determine the value

∂

∂u

d4

dt4
∂H

∂u
= −1.

Thus, for Example 6.9, the Kopp–Moyer condition is satisfied, which means that the
singular control u = 0 may turn out to be optimal. Indeed, the minimized functional
is non-negative, and its equality to zero is possible only for x1 = 0. The resulting
equality is realized for x2 = 0, which is true only for u = 0. Thus, the singular control
is the only optimal control.

It is now natural to consider the functional maximization problem from Example
6.9.

Example 6.10 It is required to maximize the optimality criterion defined in Example
6.9 on the same set of admissible controls.

As is known, in the problems of minimization and maximization of the same
functional, the singular controls are the same. However, when using the Kopp–Moyer
condition for the maximization problem in relation (6.24), the sign should be changed.
Considering that the function H is the same in both problems, we conclude that for
Example 6.10 the Kopp–Moyer condition is not satisfied. Thus, the only singular
control u = 0 is certainly not optimal, which is not surprising, since it delivers a
minimum, not a maximum, to the given functional. Thus, when examining Exam-
ple 6.10, Theorem 6.3 proved to be effective. The optimal controls here are regular
solutions of the maximum principle.

We can now try to use Theorem 6.3 to analyze Examples 6.1 and 6.6. However,
in the previous subsection, the inequality was established for them

d

dt

∂H

∂u
= 0.

This implies the degeneration of the Kopp–Moyer condition. Thus, using this result,
we cannot distinguish the problem of minimizing a functional from the problem of
its maximization.

The following examples are natural generalizations of the problems considered
earlier.
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Example 6.11 It is required to minimize the functional

I(u) = 1
2

1∫
0

x1(t)2dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where x1 is determined from the system

x′
1(t) = x2(t), x′

2(t) = x3(t), x′
3(t) = u(t), t ∈ (0, 1); xi(0) = 0, i = 1, 2, 3.

Example 6.12 It is required to maximize the optimality criterion defined in Example
6.11.

Consider the function

H = p1x2 + p2x3 + p3u− x2
1/2,

where pi are solutions of the adjoint system

p′
1(t) = x1(t), p′

2(t) = −p1(t), p′
3(t) = −p2(t), t ∈ (0, 1); pi(1) = 0, i = 1, 2, 3.

The maximum principle for these examples degenerates at p3 = 0. Substituting this
value into the third adjoint equation, the result into the second, and the result into
the first, we conclude that x1 = 0. Substituting this value into the first equation
of state, the result into the second, and the result into the third, we conclude that
u = 0. The found function is the unique singular control of the considered examples.

Calculate the value
d2

dt2
∂H

∂u
= d2p3

dt2
= −dp2

dt
= p1.

Hence, after differentiation with respect to the control, the Kelley condition degen-
erates. We continue to calculate the derivatives

d4

dt4
∂H

∂u
= d2p1

dt2
= dx1

dt
= x2.

As a result of differentiation of this equality with respect to control, we now establish
the degeneration of the Kopp–Moyer condition too. However, the following statement
is true48:

Theorem 6.4 If the following conditions are true for a singular control

∂

∂u

ds

dts
∂H

∂u
= 0, s = 0, ..., 2r − 1; ∂

∂u

d2r

dt2r

∂H

∂u
̸= 0,

then for its optimality it is necessary to fulfill the generalized Kopp–Moyer con-
dition of order r

(−1)r ∂

∂u

d2r

dt2r

∂H

∂u
≤ 0.
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We continue the analysis of the considered examples. Then

d6

dt6
∂H

∂u
= d2x2

dt2
= dx3

dt
= u.

Now we obtain
∂

∂u

d6

dt6
∂H

∂u
= 1.

Thus, for Example 6.11 the generalized Kopp–Moyer condition of the third order
is satisfied, and for Example 6.12 it is violated. Then, according to Theorem 6.4,
the control u = 0 is certainly not optimal for Example 6.12, but may be optimal
for Example 6.11. Obviously, in the latter case it is the unique optimal control. As
for Example 6.12, there are two regular optimal controls u = 1 and u = –1 for it.
It is easy to see that for Examples 6.12 and 6.6, Theorem 6.4 also turns out to be
ineffective.

Let us consider generalizations of the last problems.

Example 6.13 It is required to minimize the functional

I(u) = 1
2

1∫
0

x1(t)2dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where x1 is determined from the system

x′
i(t) = xi+1(t), i = 1, ..., r − 1, x′

r(t) = u(t); t ∈ (0, 1); xi(0) = 0, i = 1, ..., r.

Example 6.14 It is required to maximize the optimality criterion defined in Example
6.13.

Determine the function

H =
r−1∑
i=1

pixi+1 + pru− x2
1/2,

where the functions pi satisfy the equalities

p′
1(t) = x1(t), p′

i(t) = −pi−1(t), i = 2, ..., r, t ∈ (0, 1); pi(1) = 0, i = 1, ..., r.

The maximum principle now degenerates at pr = 0. Substituting this value into
the last adjoint equation, the result obtained into the penultimate one, etc., having
reached the first equation, we establish that x1 = 0. Substituting this value into
the first state equation, the result into the second one, etc., having reached the last
one, we conclude that u = 0. The found function is the only singular control for the
examples under consideration.
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Using adjoint equations, we sequentially calculate the values

∂H

∂u
= pr,

d

dt

∂H

∂u
= −pr−1, ...,

dr−1

dtr−1
∂H

∂u
= (−1)r−1p1,

dr

dtr
∂H

∂u
= (−1)rx1.

We note that so far no explicit control has been encountered anywhere. Thus, as a
result of differentiation with respect to the control of the value on the left side of any
of these equalities, we obtain zero. This means that while the Kelley condition and
its generalizations degenerate.

We continue differentiation taking into account the equations of state until the
first appearance of the control. We have

dr+1

dtr+1
∂H

∂u
= (−1)rx2,

dr+2

dtr+2
∂H

∂u
= (−1)rx3, ...,

d2r−1

dt2r−1
∂H

∂u
= (−1)rxr,

d2r

dt2r

∂H

∂u
= (−1)ru.

As a result, we find

(−1)r ∂

∂u

d2r

dt2r

∂H

∂u
= 1.

Thus, for Example 6.13, the generalized Kopp–Moyer condition of order r is sat-
isfied, which means that the singular control u = 0 found earlier can be optimal. It
really is such, since this functional cannot have negative values, and zero is reached
exclusively on the indicated control. At the same time, for the maximization problem,
under the condition of optimality of the singular control, the inequality sign should
be changed to the opposite ones. As a result, it turns out that the generalized Kopp–
Moyer condition of order r for Example 6.14 is not satisfied, which means that the
singular control u = 0 is obviously not optimal here. The solutions of this problem
turn out to be non-singular solutions of the maximum condition u = 1 and u = –1.

Additional conclusions

Based on the results presented in Appendix, some additional conclusions can be
drawn about the properties of singular controls.

• The optimality criterion for Example 6.1 is convex, but not strictly convex, so
the optimal control uniqueness theorem is not applicable.

• The remainder term in the functional increment formula for Example 6.1 is non-
negative, which allows us to establish the sufficiency of the maximum principle
for it using the corresponding theorem.

• The singular control for Example 6.4 belongs to the boundary of the set of
admissible controls.

• An optimal control problem can have no singular controls at all, have only
singular solutions of the maximum principle, or have both singular and regular
solutions of the maximum principle at the same time.
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• The singular controls in the problem of minimization and maximization of an
arbitrary functional are the same.

• The singular controls can be both optimal and non-optimal.

• A situation is possible when some singular controls are optimal, while others
are not optimal.

• If a singular control does not satisfy the Kelley condition, then it is not optimal.

• If a singular control satisfies the Kelley condition, then it may be optimal, but
not necessarily so.

• In the case of degeneracy of the Kelley condition, one can use the Kopp–Moyer
condition to test for the optimality of the singular control.

• If a singular control does not satisfy the Kopp–Moyer condition, then it is not
optimal.

• If a singular control satisfies the Kopp–Moyer condition, then it may be optimal,
but it need not be.

• If the Kopp–Moyer condition degenerates to estimate the optimality of a singu-
lar control, then in some cases, it is possible to use the generalized Kopp–Moyer
condition.

• If a singular control does not satisfy the generalized Kopp–Moyer condition,
then it is not optimal.

• If a singular control satisfies the generalized Kopp–Moyer condition, then it
may be optimal, but it is not necessarily so.

Notes

1. The book [75] is devoted directly to the theory of singular controls; see also [42], [160], [190],
[205]. For singular controls for distributed parameters systems see [12], for minimax problems
see [6].

2. This example is given in [75]; see also [170]. In Section 15, we will consider the problem
of minimizing the same functional in the presence of an additional isoperimetric condition; see
Example 15.8

3. For the considered problem, one could also use the necessary optimality conditions in the
form of variational inequalities too; see Chapter 4. The corresponding variational inequality
takes the form Hu(v−u) ≤ 0 for all v ∈ [–1, 1], where Hu is the derivative of the function H with
respect to the control. This function for the considered example is equal to H = pu–xu, so we
conclude the variational inequality (p − x)(v − u) ≤ 0 for all v ∈ [–1, 1], which in coincides with
relation (6.3). Thus, for Example 6.1, the maximum principle and the variational inequality
are coincide. Example of the coincidence of these optimality conditions is given in Chapter 9,
which deals with optimal control problems for systems with a fixed final state.
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4. This circumstance should not surprise us, since the function H is linear with respect to
the control.

5. We encountered a similar situation in Example 2.8, for which the algorithm for solving the
stationary condition diverged for some initial approximations, but converged for others.

6. In fact, we could not check the convergence of the iterative process with the initial approx-
imation of the control u0 = –1, since we received the value –1 as a control at the first iteration
with the previous choice of the initial approximation.

7. The same technique was used in Chapters 3 and 5, when, having excluded the control and
the state function from the system of optimality conditions, we obtained a boundary value
problem for the function p for a non-linear second-order differential equation. This corresponds
to the elimination method.

8. This equation, apparently, should be classified as integral, since the unknown function here
is under the integral sign. However, this is clearly not the object that is usually studied in the
standard theory of integral equations; see [107], [151].

9. This is not surprising, since otherwise the previously described iterative process would
certainly converge.

10. This circumstance explains the fact that the iterative process for solving this system does
not converge. It can be seen that by choosing a discontinuous control as the initial approxima-
tion, as was done in the study of Example 5.1, we again obtain the oscillation of the algorithm.
However, it cannot converge, because there is nowhere to converge.

11. We will return to proving the existence of an optimal control for Example 6.1 in a later
chapter.

12. The existence of a solution is not yet obvious, but we will find it soon.

13. Formula (6.6) corresponds to the Fredholm integral equation of the first kind. In
general, such an equation is

b∫
a

K(t, τ)u(τ)dτ = f(t), t ∈ (a, b).

For our case, a = 0, b = 1, K(t, τ) = 1, f(t) = 0 for all t, τ ∈ (0, 1). About integral equations;
see [107], [151].

14. In Chapter 1, we considered a function that has a continuum of minimum points.

15. In Chapter 11, we will consider the problem of minimizing the considered functional on a
subset of such controls from U that ensure the fulfillment of some additional condition. Chapter
15 gives an example of an optimal control problem in which the set of optimal controls is also
infinite and uncountable. However, they are all discontinuous and are not singular controls.
Chapter 17 will consider the problem of minimizing the functional from Example 6.1 in the
absence of an initial condition. Moreover, if in this case all singular controls are optimal, and
the optimality conditions turn out to be necessary and sufficient, then in Example 17.9 the
same singular controls are not optimal, and a solution to the problem does not exist.

16. Chapter 9 gives an example for which conditions (6.9) are implemented; see Example 9.1
However, there is no admissible control under which equality (6.11) is satisfied. As a result,
there is no singular control there.
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17. Chapter 8 will show that the considered optimal control problem is Tikhonov ill-posed.
Chapter 12 will consider the problem of minimizing the functional from Example 6.2 with
an additional boundary condition (see Example 12.3), and Chapter 15 with an isoperimetric
condition (see Example 15.4) and Chapter 17 without an initial condition.

18. Chapter 11 will consider a fairly close optimal control problem for a system with a fixed
final state. Moreover, it is the presence of an additional condition at a finite time that makes
it quite easy to prove the absence of a non-singular solution of the maximum condition.

19. It is easy to see that problem (6.12), (6.13), and (6.15) has no solution, and the corre-
sponding iterative process does not converge. Let, for example, in accordance with formula
(6.15) the initial approximation u0 = 1 be chosen. The solution to problem (6.12) here is equal
to x0(t) = t. We find the solution of the adjoint system p0(t) = (t2–1)/2. Since this value is
negative, in accordance with formula (6.15) we determine a new approximation control u1 = 1.
It corresponds to the solution x1(t) = –t of problem (6.12) and the solution to the adjoint
system p1(t) = (1–t2)/2. Therefore, u2 = 1, i.e., we are back to the initial approximation. It is
easy to see that a similar situation is observed for a different choice of the initial approximation.
We will meet with the system (6.12), (6.13), and (6.15) in the next chapter when analyzing
another optimal control problem with fundamentally different difficulties; see Example 7.1.

20. For the problem under consideration, the equalities f(t, u, x) = u, g(t, u, x) = x2/2 are
valid. This implies the fulfillment of relations (6.9) for f1(t, x) = 1, f2(t, x) = 0, g1(t, x) = x2/2,
g2(t, x) = 0, φ(u) = u. Equality (6.10) takes the form p(t) = 0. This is possible only for the
control u(t) = 0, which is the unique solution to this problem. It is easy to see that for
Example 6.2 the conditions of Theorems 5.1 and 5.2 are satisfied, which implies, respectively,
the uniqueness of the optimal control and the sufficiency of the optimality conditions. Indeed,
the considered Example differs from Example 3.3 only in a simpler form of the minimized
functional. In the previous Chapter, the uniqueness of the optimal control and the sufficiency of
the optimality condition for Example 3.3 were proved. Rejecting the square of the control under
the integral in the optimality criterion does not change its properties of lower boundedness,
continuity and strict convexity, as well as the sign of the remainder term. Thus, the uniqueness
of the solution of the problem and the sufficiency of the optimality condition for Example 6.2
can be established quite easily. In the next chapter, we will prove the existence of an optimal
control for it. Moreover, it is easy to show that for this example, the variational inequality
leads to the same result as the maximum principle. Further exploration of this example will
be continued in Chapter 8, where it will be established that this problem has, however, one
unusual property.

21. In the next chapter, another example will be considered with a single special control, but
with qualitatively different properties.

22. Chapter 15 will consider a similar problem with an additional isoperimetric constraint; see
Example 15.6.

23. It is easy to establish that with a given equation of state it is possible to choose such
an integrand function f = f(t, x) so that its derivative with respect to the second argument
vanishes for n different functions x vanishing at t = 0. Then the derivatives of all these functions
turn out to be singular controls if the set of admissible controls is chosen so that it includes them
all. Thus, the optimal control problem can include an arbitrary number of singular controls. In
particular, Example 6.7 considers a problem with five singular controls, and Chapter 11 deals
with three singular controls, of which only two are optimal. In another example from Chapter
11 there are also three singular controls, but none of them is optimal.

24. This problem is clarified in Section 6.2.4.
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25. To find the singular control in practice, regularization methods can be used. In this
case, a certain term with a small parameter is introduced into the equation of state or into the
optimality criterion so that the regularized problem can no longer contain singular controls (the
conditions of Theorem 6.1 are violated). Due to the smallness of the corresponding parameter,
the regularized problem turns out to be quite close to the original one, which in some cases
allows one to choose the solution of the regularized problem as an approximate solution to the
original problem; see [205]. One such algorithm will be discussed in Chapter 8 to overcome
another difficulty. For general regularization methods; see [79], [187], [194]. We also note that
an approximate solution to the problem can be found using the previously described penalty
method, which is not related to the problem of degeneracy of the maximum principle.

26. It exactly coincides with the set of admissible controls for the previously considered Ex-
amples 3.3 and 5.1.

27. Recall that Chapter 1 dealt with the problem of minimizing a convex but not strictly
convex function f(x) = |x|, which nevertheless has a unique solution. This is quite natural,
since Theorem 5.1 gives only sufficient conditions for the uniqueness of the optimal control,
i.e., violation of the conditions of the theorem does not necessarily lead to violation of its
statements.

28. These results are obtained, in reality, in Chapter 5.

29. This functional is non-convex, besides we cannot determine the sign of the corresponding
remainder term. In reality, the properties of Example 6.3 are not very easy; see Appendix.

30. Chapter 17 considers the same example but without the initial condition; see Example
17.8.

31. In fact, we have only proved that it cannot be a regular solution of the maximum principle.

32. More precisely, to the next break point, if it exists.

33. Let us note that the integrand of the functional being minimized can be written in the
form [x(t)–t]2 + t2. Here, the second term does not depend on the control, and the first, being
non-negative, can be identically equal to zero only if the equality x(t) = t is satisfied for all t.
According to the state equation, this corresponds to a control identically equal to unity, which
thereby turns out to be the unique solution to the considered optimal control problem.

34. Chapter 15 considers the problem of maximizing the same functional in the presence of an
additional isoperimetric condition; see Example 15.5.

35. Obviously, the optimal controls here are functions that are identically equal to 1 or –1 and
are regular solutions of the maximum principle.

36. This is explained by the fact that in both cases the same function H is considered, only in
one case it is minimized, and in the other it is maximized. However, the presence or absence
of degeneracy of the optimality condition is not related to the type of extremum.

37. Chapter 15 considers the problem of maximizing the same functional in the presence of an
additional isoperimetric condition; see Example 15.9.

38. The absence of sufficiency of the maximum principle for Examples 6.3 and 6.6 can be inves-
tigated using Theorem 5.2. According to this statement, the sufficiency of the optimality con-
dition is guaranteed if the remainder term in the functional increment formula is non-negative
and is not guaranteed otherwise. It is clear that the remainder term in the maximization prob-
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lem will be equal to the remainder terms in the corresponding minimization problem, taken
with the opposite sign. In particular, for Example 6.1, an explicit form of the remainder term
was found η = 1

2

[
∆x(1)

]2. Then for Example 6.6 we get η = − 1
2

[
∆x(1)

]2. Since this value is,
generally speaking, negative, the condition of the sufficiency theorem is violated, which means
that we cannot use it to establish the sufficiency of the optimality conditions. In fact, sufficiency
is not realized, as we established above.

39. Actually, there is nothing surprising in this. A singular control is a specific solution of the
maximum principle, which is a necessary, but generally speaking, not a sufficient condition for
optimality. Being a solution of the maximum principle, a singular control may turn out to be
optimal, but does not have to be.

40. We recall again that the problem of maximizing a certain functional is reduced to the
problem of minimizing the same functional taken with the opposite sign.

41. In Section 6.2.1, it was stated that the minimized functional in Example 6.1 is convex,
but not strictly convex. If we go to Example 6.6 and change the sign, then the corresponding
functional will not even be convex. As a result, the conditions of Theorem 5.1 on the uniqueness
of the optimal control are violated. In this regard, the presence of two solutions for Example
6.6 is not surprising.

42. The proof of Theorem 6.2 is given in [42], [75].

43. There is some analogy here with Theorem 1.6 given in Chapter 1. If at a stationary point the
second derivative of the minimized function is positive, then at this point the local minimum of
this function is reached. Thus, the violation of this condition indicates that the stationary point
does not minimize the function under consideration. In both cases, we are dealing with second-
order extremum conditions. Note also the Legendre condition of the calculus of variations,
where the second derivative also appears; see [37], [61]. In a sense, we can consider that the
Kelley condition is a generalization of the Legendre condition.

44. It is also necessary to prove that the optimal control problem has a solution. This problem
is considered in the next chapter. Due to the necessity of the maximum principle, the optimal
control satisfies it. The singular control u = 0 is not optimal due to the Kelley condition. Then
the second singular control u = 1 is surely optimal. In particular, one can find the value of the
optimality criterion for both singular controls: I(0) = 0, I(1) = –1/24.

45. In reality, the maximized functional can turn out to be arbitrarily large with a proper
choice of control, which is possible due to the absence of restrictions on the values of the
control.

46. We also note that in all considered problems, except for Example 6.3, they are invariant
under control sign change, i.e., changing any control to a function with the opposite sign leads
to exactly the same value of the optimality criterion. In Example 6.3, changing the sign of the
control leads out of the set of valid controls and leads to a change in the value of the criterion.

47. The proof of this theorem is given in [42], [75].

48. The proof of this theorem is given in [42], [75].



C H A P T E R 7

Unsolvability of optimal
control problems

To solve optimal control problems, earlier, as a rule, the maximum principle was used, which
is a system that includes a state equation, an adjoint system, and a maximum condition for
a certain function. The practical solving of this system is most often carried out iteratively.
In the process of using this technique to solve even fairly simple problems, certain difficulties
may arise. In particular, the system of optimality conditions can have too many solutions,
which are not always optimal controls. However, the opposite situation is also possible. The
iterative process for solving the corresponding system of optimality conditions sometimes
does not converge for any initial approximation. We encountered a similar phenomenon when
the maximum principle degenerates, when its solution turns out to be singular. However,
this situation is also possible in the absence of singular control. The algorithm simply has
nowhere to converge, if the problem has no solution at all. The subject of this chapter is
the study of the solvability of optimal control problems.

7.1 LECTURE

Below is an example of a fairly simple optimal control problem for which the iterative process
for a system of optimality conditions does not converge for any initial approximation. The
reason for this situation is the absence of optimal control1. An existence theorem for a
solution to an optimization problem is proved, which is used to justify the solvability of the
problems considered earlier.

7.1.1 Statement of the problem and its analysis

To solve optimal control problems in the previous chapters, as a rule, we applied the
maximum principle. The resulting system of optimality conditions is generally solved
iteratively. In the process of studying this system, we encountered difficulties due to
the absence of a sufficiency condition for the optimality or uniqueness of the solution
to the problem, as well as the degeneration of the maximum principle. However, there
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is another serious nuisance that we already encountered in Part I when studying the
problem of minimizing a function of one variable2.

Example 7.1 It is required to minimize the functional

I(u) =
1∫

0

[
x(t)2 − u(t)2]

dt

on the set
U =

{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (7.1)

We considered this system and the set of admissible controls for Examples 3.3,
5.1, 6.1, 6.2, 6.5, and 6.6. However, the optimality criterion is another. For example,
the both terms under the integral have the sign plus in Example 3.3 and the sign
minus in Example 5.1. For the first case, the problem has a unique solution, and the
optimality conditions are necessary and sufficient, but for the second one, the solution
of the problem is non-unique, and the optimality conditions are only necessary. We
will prove that under the presence of the terms with different signs, the optimal
control problem has another property.

Try to analyze this problem using the standard method. Determine the function
H = pu− (x2–u2)/2. Then the adjoint system takes the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (7.2)

Now the optimal control u satisfies the maximum condition

H(u) = max
|v|≤1

H(v). (7.3)

Equaling to zero the derivative of the function H with respect to the control, de-
termine u = p. The corresponding second derivative is 1, so we have the point of
minimum. In this situation, we can have the maximum of the function at the bound-
ary points. Find the values

H(1) = p–(x2 − 1)/2, H(−1) = −p− (x2 − 1)/2.

Choosing the maximum of them, we get

u(t) =
{

1, if p(t) > 0,
−1, if p(t) < 0. (7.4)

Thus, we can find the solution of the problem from the system (7.1), (7.2), (7.4)
that is an analog of the optimality conditions for the examples, which were considered
before3. Try to solve it using the iterative method.
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The function u of formula (7.4) can have only two values. Choose the control
u0 = 1 as the initial iteration. This corresponds to the function p that is positive
everywhere. Putting this control to the state equation, we find x0(t) = t. Then the
solution of the adjoint system is

p0(t) = −
1∫

t

x0(τ)dτ = −
1∫

t

τdτ = t2 − 1
2 .

This function is negative. Then the next iteration is u1 = –1. After solving of the
problem (7.1), we find x1(t) = –t. The corresponding solution of problem (7.2) is

p1(t) = −
1∫

t

x1(τ)dτ =
1∫

t

τdτ = 1 − t2

2 .

This function has positive values only, so the next iteration of control is 1. Thus, we
return to our initial iteration. If we choose –1 as initial iteration of control, then we
get u1 = 1, and after iteration we return again to the value –1.

However, it is possible that the control has jumps; see Example 5.1. Then the
function p changes the sign at the jump points of the control. Suppose ξ is a minimal
point with these properties. Let the control be 1 before this value, and –1 after that.
This corresponds to the inequality p(t) > 0 for t < ξ and p(t) < 0 for t > ξ. Then
the solution of the problem (7.1) is x(t) = t for t < ξ. Solve the adjoint equation
with boundary condition p(ξ) = 0; we find p(t) = (t2–ξ2)/2. This value is negative
for t < ξ, but we would like to obtain positive values here. Therefore, the control
that changes the sign from 1 to –1 does not exist. Suppose now the u = –1 before
the point ξ and u = 1 after this point. Then t(t) = –t for t < ξ. The corresponding
solution of the adjoint equation with boundary condition p(ξ) = 0 is p(t) = (ξ2–t2)/2.
This is positive on the considered interval, not negative. Therefore, our supposition is
not realized4, so the control determined by formula (7.4) cannot to be discontinuous
too. Thus, the problem (7.1), (7.2), and (7.4) has no solution, and the corresponding
iterative method does not converge for any initial iteration5.

At first glance, the conclusion drawn is not so catastrophic. We had analogical
situation in the previous chapter, when we analyzed Example 6.1 and 6.2. Particularly,
the system (6.1), (6.2), and (6.4) is very similar to the above system (7.1), (7.2), and
(7.4), and the system (6.12), (6.13), and (6.15) is exactly the same with it. For both
these cases, the iterative method does not converge because of the absence of the
solutions for the considered system. However, we found the corresponding optimal
controls. This is clear because these systems were not equivalent to the maximum
principle, and the solutions of the problems were singular control. The principle
difference of Example 7.1 from previous examples is the absence of singular control.
We can prove it using Theorem 6.1. Particularly, the function H includes the square of
control without any coefficient that can be zero6. Therefore, formula (7.4) is equivalent
to the maximum condition (7.3).

Thus, no admissible control satisfies the necessary optimality conditions. We had
an analogical situation in Chapter 1 for the minimization problem of the function
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f(x) = x. The corresponding stationary condition gives the false equality 1=0. The
meaning of the necessary extremum condition is that any solution of an extremal
problem must satisfy it, which means that the set of solutions of the optimization
problem is embedded in the set of controls that satisfy the necessary optimality
condition. If the last set turns out to be empty, then, generally speaking, a narrower
set of solutions to a given optimal control problem is inevitably empty. Thus, this
problem turns out to be unsolvable7. Under these conditions, the maximum principle
and the original optimal control problem are equivalent, i.e., the optimality conditions
turn out to be necessary and sufficient8.

In this case the divergence of the algorithm for solving the optimality conditions
for any initial approximation is due to the fact that there is simply nowhere to
converge9.

We proved the unsolvability of the problem, starting from the optimality condi-
tion. However, it would be interesting to establish this result directly without using
to the maximum principle.

7.1.2 Unsolvability of the optimization problem

Let us try to give a direct proof of the unsolvability of the optimization problem.
Taking into account the definition of the set of admissible controls, we establish the
inequalities

x(t)2 ≥ 0, u(t)2 ≤ 1, t ∈ (0, 1).

Then, for any admissible control, we get

I = 1
2

1∫
0

x2dt− 1
2

1∫
0

u2dt ≥ 1
2 . (7.5)

Inequality (7.5) gives a lower bound for the value of the functional to be minimized
on the set of admissible controls.

Consider a sequence of controls characterized by equality; see Figure 7.1

uk(t) =
{

1, if 2j/2k ≤ t < (2j + 1)/2k,
−1, if (2j + 1)/2k ≤ t < (2j + 2)/2k,

(7.6)

where j = 0, 1, ..., k–1. Obviously, all these functions belong to the set of admissible
controls.

Find the solution xk of problem (7.1) for u = uk. For 2j/2k ≤ t < (2j+ 1)/2k we
get

xk(t) =
t∫

0

uk(τ)dτ =
j−1∑
i=0

[ (2i+1)/2k∫
2i/2k

uk(τ)dτ +
(2i+2)/2k∫
2i+1/2k

uk(τ)dτ
]
+

+
t∫

2j/2k

uk(τ)dτ =
j−1∑
i=0

( 1
2k − 1

2k
)

+
(
t− 2j

2k
)

= t− 2j
2k .
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Figure 7.1 Minimizing sequence for Example 7.1.

Analogically, for (2j + 1)/2k ≤ t < (2j + 2)/2k we obtain

xk(t) = 1
2k −

(2j + 1
2k − t

)
= 2j + 2

2k − t.

The elements of the state function sequence10 are shown in Figure 7.2.

Figure 7.2 State sequence for Example 7.1.

Based on the established relations, we obtain the inequality

0 ≤ xk(t) ≤ 1/2k, t ∈ (0, 1), k = 1, 2, ... .

Using the inequality (7.5), we get

−1
2 ≤ Ik = 1

2

1∫
0

(x2
k − u2

k)dt ≤ 1
8k2 − 1

2 , k = 1, 2, ... .

Passing to the limit as k → ∞, determine Ik → –1/2.
By inequality (7.5), on any admissible control, the value of the minimized func-

tional cannot be less than –1/2. At the same time, for a sufficiently large number k
on the control uk defined by formula (7.6), the value of the functional is arbitrarily
close to the value of –1/2. This means that the number –1/2 is the lower bound of
the considered functional on the set of admissible controls.
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Definition 7.1 A sequence of admissible controls is called minimizing if the values
of the minimized functional on it tend to its lower bound on the set of admissible
controls.

Thus, the sequence of controls determined by formula (7.6) is minimizing for the
considered problem.

It follows from condition (7.5) that the admissible control, on which the lower
bound of the functional on the set of admissible controls is reached, must be such
that the following two equalities are simultaneously satisfied

1∫
0

x2dt = 0,
1∫

0

u2dt = 1. (7.7)

The function x here is a solution to the Cauchy problem (7.1) and is defined by the
formula

x(t) =
1∫

0

u(τ)dτ.

In the case of control integrability, this function turns out to be continuous. Then
it follows from the first formula (7.7) that the function x is identically equal to 0.
Turning to equation (7.1), we conclude that the corresponding control must also
be identically equal to 0. However, in this case, it can no longer satisfy the second
equality (7.7). Thus, equalities (7.7) cannot hold simultaneously. However, the simul-
taneous fulfillment of these relations is the only way to achieve the lower bound of
the functional. As a result, we conclude that the lower bound of the functional is not
achievable11, which means that there is no optimal control for Example 7.1.12.

The result obtained, it would seem, is surprising. By setting a concrete control,
we obtain a value of the optimality criterion. Another control corresponds to another
value of the minimized functional. Thus, one of the selected controls will be better
than the other in terms of the chosen criterion. It is natural to assume that, due to
the limited set of admissible controls, one of the controls will be better than all the
others13.

The absence of an optimal control for the considered example means that no
matter which control is chosen, there will always be an admissible control on which
the value of the functional will be even less. In particular, for any admissible control
v there is a number k such that the value of the functional I on the control uk defined
by formula (7.6) is less than on the control v14.

The question arises why some optimization problems are solvable, while others
are not? In order to answer this question, we have to establish how it is possible
to find out in advance (that is, before obtaining the optimality conditions) that the
optimal control problem has a solution.

7.1.3 Existence of optimal control

Chapter 1 considered the problem of solvability of the function minimization problem;
see Theorem 1.2 and 1.3. Try to extend it to the general extremum problem.
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Problem 7.1 It is required to minimize a functional I on a set U.

Determine sufficient conditions of solvability of this problem using the method of
Chapter 1. In the course of the reasoning, we will impose restrictions on the functional
I and the set U necessary to go through the entire proof path, and we will give the
formulation of the corresponding theorem after that.

Theorem 1.2 (Weierstrass theorem) analyzes the minimization problem for the
function f = f(x) on a numerical set U . The first step there was the proof of the
lower boundedness of the value set f(U), which is true if the function is continuous,
and the given set is bounded. We determine the boundedness of the numerical set
I(U) for Problem 7.1 if the functional I is lower bounded on the given set15. Then
there exists a minimizing sequence, i.e., a sequence {uk} of the set U such that
I(uk) → inf I(U). However, we do not know the properties of the sequence {uk}.

Weierstrass theorem uses the boundedness of the set U . Under this supposition,
the minimizing sequence {xk} for the function f is bounded, because its elements
belong to the bounded set. Therefore, this sequence has a convergent subsequence
{xs} by the Bolzano−Weierstrass theorem, so there exists a number x such that
xs → x. Some difficulties arise if we try to use this idea for Problem 7.1.

At first, it is necessary to specify what is the boundedness of the arbitrary set U .
Suppose this includes to a control space V that is a normed vector space, i.e.,
a vector space such that for any its element u one determines a non-negative number
∥u∥ called the norm with some properties16. A subset U of the normed vector space
is called bounded17 if there exists a number c > 0 such that ∥u∥ ≤ c for all u ∈ U .

We used the boundedness of the set of the function minimization problem
for determining the boundedness of the minimizing sequence and using of the
Bolzano−Weierstrass theorem for determination of its convergent subsequence. Un-
fortunately, this theorem has very limited application area18. However, there ex-
ists a very important class of spaces for which we can use an extension of the
Bolzano−Weierstrass theorem called the Banach−Alaoglu theorem. Suppose V is
Hilbert space, i.e., complete vector space with dot product19. The norm is a root
of the scalar square here, i.e., the following equality holds ∥u∥2 = (u, u). By the
Banach−Alaoglu theorem, for any bounded sequence {uk} of the Hilbert space20

one can extract a weakly convergent subsequence, i.e., a subsequence {us} such
that there is convergence in the sense of the dot product (us, v) → (u, v) for all
elements v of V .

Thus, assuming that the set of admissible controls U is a bounded subset of a
Hilbert space V , we conclude that the minimizing sequence {uk} for Problem 7.1 is
bounded, and, by virtue of the Banach–Alaoglu theorem, we can extract from it a
subsequence {us} such that us → u weakly in V . At this stage of the proof of the
existence theorem for a solution to Problem 7.1, a certain element u appeared, which
is the weak limit of the indicated subsequence. It certainly belongs to the space V ,
but generally speaking, it may not belong to the set U , which means that it may not
be the subject of our consideration21.

At the next step of the proof, we used the assumption that the set on which the
function is minimized is closed. The closedness of a set implies that any convergent
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sequence of elements of this set necessarily includes an element of this sequence. The
concept of closed set also makes sense for Hilbert spaces22. We can require the set U
to be closed under the conditions of Problem 7.1, but this will not be enough to justify
the inclusion of the above element u in this set, since we are not dealing with strong
convergence (i.e., convergence in the sense of the norm), but with weak convergence23.
There are significantly more weakly convergent sequences than strongly convergent
ones, as a result of which it is much more difficult to ensure that all weak limits
belong to this set. However, the desired goal can be achieved if, in addition to the
closedness of the set U , we also require its convexity. A convex closed set is weakly
closed24, which means it contains all the limits of its weakly convergent sequences.
This implies the inclusion u ∈ U .

We have established that the subsequence of the minimizing sequence for Problem
7.1 has a weak limit that belongs to the set of admissible controls. However, we do
not yet know whether it is really optimal, i.e., it is on it that the infimum of the
minimized functional is attained.

We return again to the Weierstrass theorem, more precisely, to its final stage. We
had the convergence of a subsequence of the minimizing sequence xs → x, and the
point x belonged to the set U . Assuming the continuity of the minimized function
f , we deduced from this the convergence of the sequence of values of the function
f(xs) → f(x). However, since the value of the function on the minimizing sequence,
and hence on any of its subsequences, converges to the lower bound of this function on
the given set, then f(xs) → inf f(U). As a result, we conclude that f(x) = inf f(U),
i.e., at the point x, the infimum of the given function is attained on the considered
set.

For Problem 7.1, we can also assume that the functional I is continuous on the
set U . However, we have established only a weak convergence us → u in the space
V . Since this convergence is much weaker than convergence in the sense of the norm,
there are many more weakly convergent sequences than strongly converging. As a
result, it is much more difficult to establish the convergence of the values of the
functional. In particular, the continuity of the functional alone is not enough for this,
and it is required to impose an additional restriction on it. This is the property of
convexity. In particular, a convex continuous functional turns out to be weakly lower
semicontinuous25. This means that from the weak convergence of the sequence of
space elements it follows that the value of the functional at the limit of this sequence
does not exceed the lower limit26 of the sequence of values of the functional. In our
case, this corresponds to the inequality

I(u) ≤ inf lim I(us),

on the right side of which is the lower limit of the considered sequence.
According to the obtained inequality, the limit of any subsequence of the sequence

{I(us)} is not less than the value of I(u). However, as we already know, the entire
sequence27 {I(us)} and hence any of its subsequences, has the value inf f(U) as its
limit. Therefore, the last inequality takes the form

I(u) ≤ inf f(U).
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However, the element u belongs to the set U . The value of the functional on it
cannot be less than the lower bound of the functional on this set. Then the last
condition can only be satisfied in the form of equality. We have proved the existence
of such an element u of the set U , on which the infimum of the functional on the
given set is attained. Thus, this element turns out to be a solution to Problem 7.1,
which means that this problem has a solution.

The results obtained can be formulated as a theorem.

Theorem 7.1 The problem of minimizing a convex continuous lower bounded func-
tional on a convex closed bounded subset of a Hilbert space has a solution.

Naturally, this theorem gives only sufficient conditions for the solvability of the
optimal control problem, i.e., the existence of an optimal control is also possible if its
conditions are violated28. The uniqueness theorem for the solution of the problem was
given earlier; see Theorem 5.1. If the conditions of both these theorems are realized,
then the existence of a unique solution to the problem will be guaranteed. To do this,
it suffices, under the conditions of Theorem 7.1, to require the strict convexity of the
functional. Let us use this theorem to analyze the optimization problems considered
earlier.

7.1.4 Application of the existence theorem

Let us return to the consideration of Example 3.3, the analysis of which has long
been completed, and the corresponding optimal control has been found. Consider the
Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

It is required to find such a function u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which minimizes on this set the functional

I = 1
2

1∫
0

(u2 + x2)dt.

In order to use Theorem 7.1 to prove the solvability of this problem, one should
first of all take into account that the dependence of the functional on the control
here (as in any other optimal control problem) is determined not only directly, but
also through the state of the system. We have already taken this circumstance into
account when we applied the uniqueness theorem for optimal control to the same
problem; see Chapter 5.

So far, we have not been interested in what functional properties the control
should satisfy. The existence theorem for an optimal control confronts us with the
need to concretize the set U by specifying the functional class to which any admissible
control must belong. Let us pay attention to the fact that the optimality criterion
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includes the integral of the squared control. In this connection, as the control space V ,
we will consider the space L2(0, 1) that is square-integrable in the sense of Lebesgue
on a given time interval, i.e., those for which the following inequality holds

1∫
0

|u(t)|2dt < ∞.

This is the Hilbert space with the dot product

(u, v) =
1∫

0

u(t)v(t)dt

and the norm determined by the equality29

∥u∥2 =
1∫

0

|u(t)|2dt.

To prove the solvability of the problem under consideration using Theorem 7.1,
it is required to establish that the set of admissible controls and the functional to be
minimized satisfy all the necessary properties. In Chapter 5, in the process of proving
the uniqueness of the optimal control, the convexity of the set of admissible controls
was already established. Let us show that this set is closed. It suffices to show that
any convergent sequence of elements of the set of admissible controls has as its limit
an element of the same set.

Consider an arbitrary sequence {uk} of elements of the set U such that uk → u
in L2(0, 1), i.e., the norm of the difference between the elements of the sequence
and its limit tends to zero. As is known, if a sequence of elements of the space
L2(0, 1) converges in the sense of the norm of this space, then one can extract from
it a subsequence that converges almost everywhere30. Therefore, from {uk} one can
extract a subsequence {us} such that we have the numerical sequence us(t) → u(t)
for almost values of t from the interval (0,1).

Since the function us belongs to the set U , we have the inequality

|us(t)| ≤ 1, t ∈ (0, 1).

Passing in it to the limit, taking into account the established convergence, we obtain

|u(t)| ≤ 1, t ∈ (0, 1).

Then the inclusion u ∈ U is true, which means that the considered set is closed31.
Thus, the set of admissible controls has all the necessary properties. We now

turn to the functional to be minimized. Obviously, it takes exclusively non-negative
values, which means that it is bounded from below. The convexity of the functional
was established earlier when proving the uniqueness of the solution to the problem32;
see Chapter 5. Thus, it remains only to establish its continuity.
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Assume that uk → u converges in L2(0, 1), i.e., the norm of the difference between
the elements of the sequence and its limit tends to zero. Using the equation of state,
we establish the formula

∣∣xk(t) − x(t)
∣∣ =

∣∣∣ t∫
0

[
uk(τ) − u(τ)

]
dτ

∣∣∣ ≤
1∫

0

∣∣uk(τ) − u(τ)
∣∣dτ,

where xk and x are the system states for the controls uk and u. For any elements a
and b in Hilbert spaces, the Schwarz inequality holds∣∣(a, b)∣∣ ≤ ∥a| ∥b∥.

We choose as a a function identically equal to 1, and as b the function |uk–u|, from
the preceding inequality, we obtain

∣∣xk(t) − x(t)
∣∣ ≤

( 1∫
0

12dt
)1/2[ 1∫

0

∣∣uk(τ) − u(τ)
∣∣2dt]1/2

= ∥uk − u∥.

This implies that for any t convergence xk(t) → x(t), and hence, xk → x in L2(0, 1)
and even in the class of continuous functions.

Using the Schwartz inequality, we get

∣∣I(uk) − I(u)
∣∣ ≤ 1

2
[ 1∫

0

(uk − u)(uk + u)dτ +
1∫

0

(xk − x)(xk + x)dτ
]

≤

1
2

[
∥uk − u∥ ∥uk − u∥ + ∥xk − x∥ ∥xk − x∥

]
.

Any admissible control v at an arbitrary point does not exceed 1, whence follows the
estimate

∥v∥2 =
1∫

0

∣∣v(τ)
∣∣2dt ≤ 1.

The corresponding system state y satisfies the inequality

∣∣y(t)
∣∣ =

∣∣∣ t∫
0

v(τ)dτ
∣∣∣ ≤

t∫
0

|v(τ)|dτ ≤ t ≤ 1,

whence we obtain the condition ∥y∥ ≤ 1. Thus, arbitrary admissible controls and
their corresponding state functions do not exceed unity in norm.

It is known that the norm of the sum of two elements does not exceed the sum
of norms33. Then we obtain

∥uk + u∥ ≤ ∥uk∥ + ∥u∥ ≤ 2, ∥xk + x∥ ≤ ∥xk∥ + ∥x∥ ≤ 2.

As a result, we get∣∣I(uk) − I(u)
∣∣ ≤ 1

2
[
∥uk −u∥ ∥uk −u∥ + ∥xk −x∥ ∥xk −x∥

]
≤ ∥uk −u∥ + ∥xk −x∥.
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Hence, the convergence I(uk) → I(u) takes place. Thus, all the conditions of Theorem
7.1 for Example 3.3 are satisfied, so the corresponding optimal control problem has
a solution.

Similarly, the solvability of the optimization problem for Example 6.2 can be
proved, which differs from Example 3.3 only in the absence of a control-dependent
term in the optimality criterion. It is clear that the exclusion of this term under
the integral does not affect the proof of the boundedness from below, convexity and
continuity of the functional.

In Example 3.1, the equation of state is the same, the set of admissible controls is
characterized by a segment, and the functional is quadratic with respect to the control
and linear with respect to the state of the system. The convexity of the functional
was proved in Chapter 5, the boundedness is derived from the boundedness of the
set of admissible controls, and the continuity of the functional is proved in the same
way as for Example 3.3.

Let us now turn to Example 6.1, which differs from the one considered above only
in the form of the optimality criterion, which is defined as follows

I =
1∫

0

u(t)x(t)dt.

To prove the existence of an optimal control using Theorem 7.1, it is required to es-
tablish its lower boundedness, convexity, and continuity. We recall that the convexity
of the functional was established in Chapter 6. It was also shown there that it can
be converted to the form

I(u) = 1
2

[ 1∫
0

u(t)dt
]2
.

Thus, the functional takes only non-negative values, i.e., bounded below by zero.
Thus, it remains only to establish its continuity.

Let the convergence uk → u again take place in L2(0, 1). Since the state equation
in this case is the same as in the previous one, we obtain the convergence xk → x in
L2(0, 1). Let us estimate the value

∣∣I(uk) − I(u)
∣∣ ≤

∣∣∣ 1∫
0

(
ukxk − ux

)
dt

∣∣∣ ≤
∣∣∣ 1∫

0

(uk − u)xdt
∣∣∣ +

∣∣∣ 1∫
0

u(xk − x)dt
∣∣∣.

Using the Schwartz lemma, we establish the inequality∣∣I(uk) − I(u)
∣∣ ≤ ∥uk − u∥ ∥x∥ + ∥u∥ ∥xk − x∥ ≤ ∥uk − u∥ + ∥xk − x∥

because of the previously established estimates of the control norms and the state
function. As a result, we conclude that I(uk) → I(u). Thus, according to Theorem
7.1, the optimal control problem for Example 6.1 does indeed have a solution34. Let
us now try to apply the existence theorem for Example 7.1. For it, the state equation
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and the set of admissible controls are defined in the same way as for the examples
considered above, but the optimality criterion has the form

I =
1∫

0

(x2 − u2)dt.

Its lower boundedness was established earlier, and the continuity is proved in the
same way35 as for Example 3.3. Since we know for sure that in this example the
optimal control does not exist, we come to the conclusion that the given optimality
criterion is not convex36.

The question arises whether the absence of convexity of the minimized functional
always corresponds to an unsolvable optimal control problem? Recall that Example
5.1 differs from Example 3.3 considered above only in the type of extremum. For
the latter, the functional is strictly convex. Therefore, the problem of maximizing a
strictly convex functional considered in Example 5.1 turns out to be equivalent to
minimizing a strictly concave, and therefore certainly not convex, functional. Thus,
the conditions of Theorem 7.1 are violated for it. However, the corresponding op-
timization problem has a solution. The same can be said about Examples 3.2 and
6.2. Thus, the optimal control problem can also have a solution in the absence of
convexity of the minimized functional37.

RESULTS

Here is a list of questions in the field of the existence of optimal control, the main conclusions
on this topic, as well as the problems that arise in this case, partially solved in Appendix,
partially taken out in the Notes.

Questions

It is required to answer questions concerning the example considered in the lecture
and the existence of a solution to optimal control problems.

1. Why is formula (7.4) obtained from the maximum condition (7.3), although the
stationary condition for the function H has a solution?

2. Why does the iterative process for solving the system of optimality conditions
in Example 7.1 not converge for any initial iteration?

3. Why for different Examples 5.2 and 7.1 the same system (7.1), (7.2), (7.4) is
obtained, derived from the optimality conditions?

4. Why are there qualitatively different conclusions based on the divergence of
iterative processes for Examples 5.1, 5.2, and 7.1?

5. Why is it impossible for Example 7.1 to have a singular control?
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6. On what basis can we conclude that the system of optimality conditions for
Example 7.1 has no solution?

7. Based on what can we conclude that the optimal control problem considered
in Example 7.1 has no solution?

8. Whence follows the existence of the lower bound of the functional for Example
7.1?

9. Why is the sequence of controls defined by equalities (7.6) minimizing?

10. Why is the sequence of controls defined by equalities (7.6) not convergent in
the natural sense?

11. What properties does the sequence of states corresponding to the considered
minimizing sequence of controls have?

12. Why cannot equalities (7.7) and (7.8) hold simultaneously?

13. The derivation of the optimality condition in the form of the maximum principle
in Chapter 3 began with the assumption of the existence of optimal control.
What is the point of the above reasoning if in reality optimal control for the
example considered does not exist?

14. What happens if for Example 7.1 we try to apply the unique optimal control
theorem from Chapter 5?

15. What happens if, for Example 7.1, we try to apply the theorem on the sufficiency
of optimality conditions from Chapter 5?

16. Can Theorem 7.1 be considered as a generalization of the Weierstrass theorem
from Chapter 1?

17. Why does Theorem 7.1 require boundedness of the set of admissible controls?

18. Why does Theorem 7.1 require the convexity of the set of admissible controls?

19. Why does Theorem 7.1 require the closedness of the set of admissible controls?

20. Why does Theorem 7.1 require the lower boundedness of the minimized func-
tional?

21. Why does Theorem 7.1 require convexity of the functional to be minimized?

22. Why does Theorem 7.1 require the continuity of the functional to be minimized?

23. Is it possible to have an optimal control if the conditions of Theorem 7.1 are
violated?

24. Why is L2(0, 1) chosen as the control space to prove the existence of a solution
to the problem from Example 3.3?
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25. Why is L2(0, 1)) chosen as the control space to prove the existence of a solution
to the problem from Example 6.1?

26. Why is Theorem 7.1 not applicable to the analysis of Example 7.1?

Conclusions

Based on the analysis carried out, the following conclusions can be drawn about the
existence of a solution to the optimal control problems.

• A situation is possible when the iterative process for solving the optimality
conditions diverges for any initial approximation, which can be explained by
the absence of a solution to the optimality conditions.

• In the process of solving of optimal control problems, a situation is possible
when the iterative process diverges for any initial approximation, which can be
explained by the absence of solution of the optimality conditions.

• The absence of a solution to the optimality conditions can be caused by the
unsolvability of the optimization problem.

• The absence of a solution to the optimal control problem lies in the fact that
there is no admissible control on which the lower bound of the functional is
reached.

• The absence of a solution to the optimal control problem lies in the fact that
for any admissible control it is possible to find another admissible control with
a smaller value of the minimized functional.

• The optimal control problem for Example 7.1 has no solution.

• The optimality conditions for Example 7.1 are necessary and sufficient.

• The presence or absence of optimal control, in principle, can be established in
advance, before the start of the direct solution of the optimization problem.

• When justifying the solvability of an optimal control problem, it is required to
indicate the space to which the control must belong.

• When proving the existence of an optimal control, the properties of lower
boundedness, convexity and continuity of the functional, as well as convexity,
closure and boundedness of the set of admissible controls were used.

• All the conditions of Theorem 7.1 are satisfied for Example 3.3, which allows
us to establish the solvability of the corresponding optimal control problem.

• All the conditions of Theorem 7.1 are satisfied for Example 6.1, which allows
us to establish the solvability of the corresponding optimal control problem.

• The reason for the unsolvability of the problem from Example 7.1 is the non-
convexity of the minimized functional.
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• The optimal control problem can also be solvable in the absence of convexity
of the functional, which is observed for Example 5.1.

Problems

Based on the results obtained above, we get the following problems related to the
solvability of optimal control problems.

1. Generalization. In the lecture, one statement was given that guarantees the
existence of an optimal control, which was used to prove the solvability of the
problems considered earlier. In Appendix, a result will be given that allows one
to establish the existence of an optimal control in the case of an unbounded set
of admissible controls, in particular, for Example 3.4. Additional results in this
direction are given in the Notes38.

2. Unsolvability and insufficiency. When studying Example 7.1, it was noted
that there is no solution to both the original optimal control problem and the
system of optimality conditions, i.e., the optimality conditions turned out to be
necessary and sufficient. However, when studying the problem of minimizing
the function f(x) = x3 in Chapter 1, we encountered a situation where the
stationary condition has a solution x = 0, although the problem itself has no
solution. Thus, we simultaneously encounter the unsolvability of the problem
and the insufficiency of the extremum condition. It would be interesting to give
an example of an optimal control problem with similar properties. Such an
example is given in Appendix.

3. Unsolvability of the problem with a convex functional. In Example 7.1,
the absence of optimal control is due to the non-convexity of the minimized
functional. We would like to consider the unsolvable problem of minimizing a
convex functional. Such an example is given in Appendix.

4. Analysis of unsolvable optimal control problems. At first glance, unsolv-
able optimal control problems do not make sense at all. However, the lower
bound of the functional exists even in the absence of an admissible control on
which it is attained. This suggests that the absence of optimal control cannot
serve as a basis for refusing to analyze the problem at hand. Some ideas in this
direction are presented in Appendix.

5. Features of non-linear boundary value problems. In Chapter 5, we con-
sidered an optimal control problem with an infinite set of solutions to a system
of optimality conditions. It was shown that this system is equivalent to a bound-
ary value problem for some non-linear second-order differential equation. As a
result, the corresponding boundary value problem has completely non-trivial
properties. It would be interesting to try in a similar way to reduce the un-
solvable system of optimality conditions for Example 7.1 to some boundary
value problem and establish its properties. These properties are addressed in
Appendix.
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7.2 APPENDIX

Below, we present some additional results related to Example 7.1 and the problem of solv-
ability of optimal control problems. In particular, Section 7.2.1 gives an optimal control
existence theorem for problems in an unbounded domain, which is a natural generalization
of a similar result from Chapter 1. Section 7.2.2 gives an example of an unsolvable optimal
control problem for which the maximum principle nevertheless has a solution, and in Section
7.2.3 there is no optimal control, although the problem of minimizing a convex functional
is considered. Some considerations regarding the analysis of unsolvable problems are given
in Subsection 7.2.4. Finally, in Subsection 7.2.5, the system of optimality conditions for Ex-
ample 7.1 is reduced to a boundary value problem for a second-order differential equation
with very non-trivial properties.

7.2.1 Existence of an optimal control when the set of admissible controls is un-
bounded

Theorem 7.1 gives sufficient conditions for the solvability of the optimal control prob-
lem for a bounded set of admissible controls. However, the optimal control problem
considered in Example 3.4 has a solution, although the set of admissible controls is
unbounded there. Note that in Chapter 1, a statement was made about the existence
of a minimum of a function in an unbounded area. This result was obtained in the
case when an additional requirement of coercivity is imposed on the function; see
Theorem 1.3. To generalize this theorem to optimal control problems, it is necessary
to define the concept of functional coercivity.

Definition 7.2 A functional I defined on a normed space is called coercive if, for
∥vk∥ → ∞ we have I(vk) → +∞.

The following assertion is true39.

Theorem 7.2 The problem of minimizing a convex continuous coercive lower
bounded functional on a convex closed subset of a Hilbert space has a solution.

Proof. In this case, all the conditions of Theorem 7.1 are satisfied, except for the
boundedness of the set of admissible controls, which was used earlier only to justify
the boundedness of the minimizing sequence. Therefore, to prove the theorem, it
suffices to show that the condition for the coercivity of the functional guarantees the
boundedness of the minimizing sequence. Let there be a sequence {uk} of elements
of the set U such that I(uk) → inf I(U). Assume that this sequence is not bounded.
Then the condition ∥uk∥ → ∞ is true, whence, due to the coercivity of the functional,
it follows that I(uk) → +∞, which contradicts the convergence of the sequence
{I(uk)}. As a result, we conclude that the sequence {uk} is bounded, which allows
us to complete the proof in the same way as in Theorem 7.1. □

As an application of Theorem 7.2, consider Example 3.4, which consists in mini-
mizing the functional

I = 1
2

1∫
0

(u2 + x2)dt,
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where x is the solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The only difference from Example 3.3 considered earlier is the absence of restrictions
imposed on the control. This does not allow using Theorem 7.1 to prove the existence
of an optimal control. However, in view of the obvious coercivity of the functional
defined by the squares of the control and state norms, the solvability of this problem
follows from Theorem 7.240. Its unique solution is a function identically equal to zero,
on which the functional takes on a zero value41.

7.2.2 Unsolvability of a problem with insufficient optimality conditions

In Example 7.1, we considered an optimal control problem that has no solution. In
this case, the optimality conditions also turned out to be unsolvable. This situation,
of course, should be recognized as highly undesirable. However, a much worse case
is possible. In practice, it is often necessary to solve problems in the absence of
their complete mathematical analysis. Failure in the practical implementation of the
system of optimality conditions may lead to the idea that the problem lies in the
problem statement itself, and, therefore, it is necessary either to correct the problem
statement itself or to fundamentally change the research method (see Subsection
7.2.4). However, in Chapter 1, when solving the problem of minimizing the function
f(x) = x3, we encountered a much more unpleasant situation, when the extremum
condition has a solution, although the problem itself turns out to be unsolvable. In
such a case, in the absence of information about the possible unsolvability of the
problem, one can come to the erroneous conclusion that the found solution of the
optimality conditions is optimal. Let us consider one such example.

Example 7.2 It is required to minimize the functional

I(u) = 1
2

1∫
0

[
x(t)2 + (1 − t2)u(t)

]
dt,

in the absence of control constraints, where x is the solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Determine the function

H(u, x, p) = pu− 1
2x

2 − 1
2(1 − t2)u.

The function p here is a solution of the adjoint system

p′(t) = x(t), t ∈ (0, 1); p(1) = 0.

Optimal control u is determined from the minimum condition for the function H[
p− 1

2(1 − t2)
]
u− 1

2x
2 = min

v

{[
p− 1

2(1 − t2)
]
v − 1

2x
2
}
.
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Obviously, the function H is linear, and therefore not bounded. Taking into ac-
count the absence of restrictions on control, we conclude that the last relation can
have a solution exclusively in the form of singular control42. It is realized in the
case when the coefficient at the term in the function H, which includes the control,
vanishes. As a result, we obtain the equality

p = 1
2(1 − t2).

Substituting this value into the adjoint equation, we conclude that the existence of
a singular control is possible only when the equality x(t) = –t is fulfilled. This state
is implemented for the control u(t) = –1, which is singular.

Thus, the maximum principle in Example 7.2 is satisfied by the unique control
that is singular. Chapter 6 noted that the optimal singular control in the optimality
criterion maximization problem satisfies the Kelley condition

∂

∂u

d2

dt2
∂H

∂u
≤ 0.

Find the value
∂H

∂u
= p− 1

2(1 − t2).

Taking into account the adjoint equation, we determine the derivative

d

dt

∂H

∂u
= p′ + t = x+ t.

We differentiate this equality taking into account the state equation.

d2

dt2
∂H

∂u
= x′ + 1 = u+ 1.

As a result, we find the value
∂

∂u

d2

dt2
∂H

∂u
= 1.

Thus, the Kelley condition is not satisfied, which means that the existing singular
control is not optimal. However, there are no other controls that satisfy the maxi-
mum principle. The non-optimality of the only solution of the necessary optimality
condition is possible only in the case when the solution of the problem does not exist,
and the optimality condition is not sufficient43.

7.2.3 Minimization of a functional on a non-convex set

In the considered examples, the absence of a solution to the problem of optimal
control was due to the non-convexity of the minimized functional. Let us show that
the problem may turn out to be unsolvable even in the case of convexity of the
optimality criterion44.
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Example 7.3 It is required to find a function u = u(t) that minimizes on the set

U =
{
u

∣∣ 1 ≤ |u(t)| ≤ 2; t ∈ (0, 1)
}

the functional

I(u) = 1
2

1∫
0

(
u2 + x2)

dt,

where the state function is a solution of the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (7.8)

This problem differs from the one considered in Example 3.3 only by the set of
admissible controls. Define the function

H = pu–(u2 + x2)/2.

In this case, the adjoint system has the form

p′(t) = x(t), t ∈ (0, 1); p(1) = 0. (7.9)

Obviously, the only stationary point of the function H is zero. Although it max-
imizes this function, it does not belong to the set of admissible controls. Therefore,
the maximum of this function can be achieved only on the boundary of this set. We
find the values of H at all four boundary points.

H(1) = p–(1 + x2)/2, H(–1) = –p–(1 + x2)/2,

H(2) = p–(4 + x2)/2, H(–2) = –p–(4 + x2)/2.

Choosing the largest of these values, we determine the solution of the maximum
condition

u(t) =


−2, if p(t) < −3/2,
−1, if − 3/2 < p(t) < 0,

1, if 0 < p(t) < 3/2,
2, if p(t) > 3/2.

(7.10)

To study the system (7.8) – (7.10), let us estimate the set of possible values of
the function p. The definition of the set U implies the inequality –2 ≤ u(t) ≤ 2. As
a result of its integration, we obtain an estimate for the solution of problem (7.8)
–2t ≤ x(t) ≤ 2t. Integrating the resulting relation from an arbitrary value of t to 1,
we establish an estimate for the solution of problem (7.9) −t2 ≤ p(t) ≤ t2. Thus, the
inequality |p(t)| ≤ 1 is true, which means that the control values –2 and 2 are not
allowed. As a result, formula (7.10) takes the form

u(t) =
{

−1, if p(t) < 0,
1, if p(t) > 0. (7.11)
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Let us try to find a solution to the system (7.8), (7.9), (7.11). According to formula
(7.11), the control can take only two values. For u = 1, the solution to problem (7.8)
is determined by the formula x(t) = t. The corresponding solution to the adjoint
system (7.9) has the form p(t) = (t2–1)/2. This function takes exclusively negative
values, which contradicts formula (7.11). If u = –1, then we get x(t) = –t, which
means p(t) = (1–t2)/2. Thus, the solution of the adjoint system in this case turns
out to be positive, which again does not agree45 with equality (7.11).

Suppose that the control takes the value 1 on the interval (0, ξ), after which it
changes sign (possibly repeatedly). Then on this interval the solution of problem
(7.8) has the form x(t) = t. The result is the adjoint equation p′(t) = t. Since the
derivative is positive, the function p increases on this interval. However, according
to the assumption made at the point t = ξ, it changes sign, and therefore vanishes.
Therefore, before that it must have been negative, which again contradicts equality
(7.11). The impossibility of the existence of a control, which was initially equal to
–1, and at some point, becomes equal to 1, is proved similarly. Thus, the system of
optimality conditions has no solution at all.

Let us now try to establish the properties of the optimal control problem under
consideration directly, without resorting to optimality conditions. Based on the form
of the set of admissible controls, we establish the inequality |u(t)| ≥ 1. Obviously,
|x(t)| ≥ 0. Then the integrand in the definition of the functional to be minimized
turns out to be at least one. Thus, the condition I(u) ≥ 1/2 is valid for all admissible
controls.

Consider the sequence

uk(t) =
{

1, if 2j/2k ≤ t < (2j + 1)/2k,
−1, if (2j + 1)/2k ≤ t < (2j + 2)/2k,

considered earlier in the study of Example 7.1. It was also shown there that for the
corresponding sequence of solutions of the equations of state, the inequality

0 ≤ xk(t) ≤ 1/2k, t ∈ (0, 1), k = 1, 2, ... .

Thus, xk(t) → 0 for all t. As a result, we conclude that I(uk) → 1/2, which implies
the equality inf I(U) = 1/2.

Let us now assume that for some admissible control the equality I(u) = 1/2 is
true. This is possible only if the following two equalities are fulfilled simultaneously46

1∫
0

x2dt = 0,
1∫

0

u2dt = 1.

According to the first of them, the function x vanishes. However, this not only contra-
dicts the second of the above equalities, but also corresponds to zero control, which
is not admissible.

Based on the results obtained, we conclude that the optimal control problem
under consideration has no solution, and the optimality conditions are necessary and
sufficient47. We also note that, in this case, a bounded from below, continuous, and
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(which is especially important) convex functional is minimized. In this case, the set of
admissible controls is closed and bounded. However, it is not convex48, which explains
the absence of optimal control49.

7.2.4 Extension methods

We have some optimal control problem, which, as it turned out, has no solution.
What can be done in such a situation? The most natural, it seemed, would be to
correct the formulation of the problem in such a way that a solution would certainly
exist in the new formulation. However, is it really a meaningless problem of optimal
control that has no solution?

Let us go back to Example 7.1. As we have established, here there is no admissible
control on which the lower bound of the functional is attained. However, the lower
bound itself exists. This means that there is such an admissible control, the value
of the functional on which is arbitrarily close to this lower bound. Indeed, the value
of the functional on the control uk defined by formula (7.6) for a sufficiently large
number k differs from this lower bound by an arbitrarily small amount. Therefore,
maybe it makes sense to consider this control as an approximate solution of the
optimal control problem under consideration? In a real situation, we almost never
can find an exact solution to the problem, as a result of which we have to be content
with its approximate solution.

It should also be borne in mind that the problem, which is initially unsolvable,
can turn into solvable if we expand the class of objects from which the solution of the
problem is chosen. For example, the equation 2 + x = 1 has no solution on the set
of natural numbers, it becomes solvable on the set of integers. The equation 3x = 2
has no solution on the set of integers, but it turns out to be solvable when passing to
rational numbers. The equations of mathematical physics under certain conditions do
not have a classical solution, which is understood as a sufficiently smooth function.
However, it can have a generalized solution, which is an element of a much wider
Sobolev space50. Such reasoning makes sense not only for equations of one nature
or another, but also for problems of extremum theory. In particular, the problem of
minimizing the function f(x) = x on the set of positive numbers has no solution,
but it turns out to be solvable on a wider set of non-negative numbers. Methods
for analyzing extremal problems based on these considerations are called extension
methods.

It is not our intention to describe specific extension methods51. We confine our-
selves to presenting only the main idea of these methods. Let there be a problem
of minimization of some functional I on the set U , which has no solution. First of
all, let us consider a wider set V such that any of its elements can be approximated
arbitrarily accurately by elements of the original set52. More precisely, there is an
operator A : U → V such that for any element v of the set V there exists an ele-
ment u from the set U such that the value Au will be arbitrarily close to v. Next,
we consider some continuous functional J such that J(Au) = I(u) for all u ∈ U ,
the problem of minimizing the functional J on the set V has a solution, besides the
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following equality holds
min J(V ) = inf I(U).

Now we can solve the minimization problem for the functional J on the set V (ex-
tended problem), which has a solution v. By construction, there is such an element
u ∈ U that the value of Au will be arbitrarily close to v. Then, due to the continuity
of the functional J , the number J(Au) equal to I(u) is arbitrarily close to J(v) equal
to min J(V ), and hence also inf I(U). This defines a control u from the set U , the
value of the functional I on which turns out to be arbitrarily close to its lower bound
on this set. It can be understood as an approximate solution of the problem under
conditions when the exact solution of the problem does not exist53.

For the specified simplest example, as U we have a set of positive numbers, and
V is a wider set of non-negative numbers. Obviously, any non-negative number is
arbitrarily accurately approximated by a positive number. As an operator A : U → V ,
a transformation is chosen that matches each positive number with its own, but
understood as a non-negative number54. The functional I corresponds to the function
I(u) = u, defined on the set U , and to the functional J , the function J(v) = v, defined
on the set V , i.e., extension of the function I to the set U . The solution to the problem
of minimizing the functional J on the set V is the number v = 0, which does not
belong to the set U . However, there exists an arbitrarily close number u from this
set, and the value of I(u) turns out to be arbitrarily close to the unattainable lower
bound of the functional I on the set U . Thus, in the absence of a minimal positive
number, one can find an arbitrarily small positive number, which is understood as
an approximate solution of the original problem.

7.2.5 Some features of non-linear boundary value problems

Chapter 5 considered an optimal control problem for which the corresponding system
of optimality conditions had an infinite number of solutions. This system, in accor-
dance with the method of elimination of unknowns, was reduced to a boundary value
problem for a non-linear second-order differential equation with very unusual prop-
erties. Let us try to carry out similar transformations for the optimality conditions
corresponding to Example 7.1.

We have the state system

x′(t) = u(t), t ∈ (0, 1); x(0) = 0,

the adjoint system
p′(t) = x(t), t ∈ (0, 1); p(1) = 0

and the formula
u(t) = F (p(t)) =

{
1, if p(t) > 0,

−1, if p(t) < 0.

Differentiating the adjoint equation using the equation of state and the formula for
finding the control, we determine the boundary value problem

p′′(t) = F (p(t)), t ∈ (0, 1); p(1) = 0, p′(0) = 0. (7.12)
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It differs from the boundary value problem (5.16) only by the sign in the correspond-
ing function F . However, being equivalent to the system of optimality conditions for
Example 7.1, it has qualitatively different properties. If the boundary value problem
(5.16) has an infinite set of solutions, then problem (7.12) has no solution at all due
to the absence of solutions for the optimality conditions for the considered example55.

As in Chapter 5, we will also consider the non-linear heat equation

∂y(τ, ξ)
∂τ

= ∂2y(τ, ξ)
∂ξ2 − F (y(τ, ξ)), τ > 0, 0 < ξ < 1 (7.13)

with the boundary conditions

∂y(τ, 0)
∂ξ

= 0, y(τ, 1) = 0, τ > 0 (7.14)

and an initial condition. Obviously, the equilibrium position z = z(ξ) for this system
satisfies the equalities

z′′(t) = F (z(t)), t ∈ (0, 1); z(1) = 0, z′(0) = 0

coinciding with the boundary value problem (7.12). Since the latter has no solution,
we conclude that the system characterized by equation (7.13) with the boundary con-
dition (7.14) generally does not have an equilibrium position56. However, by changing
the sign before the function F , we get the system considered in Chapter 5 with an
infinite set of equilibria.

Additional conclusions

Based on the results obtained in Appendix, we can draw the following additional
conclusions about the problem of solvability of optimal control problems.

• The existence of an optimal control is guaranteed if, in the corresponding theo-
rem, the requirement that the set of admissible controls be bounded is replaced
by the coercivity of the functional to be minimized.

• The optimal control problem from Example 3.4 has a solution in accordance
with Theorem 7.2, although the conditions of Theorem 7.1 are violated for it.

• For Example 7.2, both the solvability of the optimal control problem and the
sufficiency of optimality conditions are simultaneously absent.

• For Example 7.2, there is a singular control in the absence of a solution to the
considered problem under.

• In Example 7.3, there is no optimal control, although a convex functional is
minimized.

• The reason for the unsolvability of the problem from Example 7.3 is the absence
of convexity of the set of admissible controls.
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• In the absence of an optimal control, one can pose the problem of finding such
an admissible control, the value of the functional on which is arbitrarily close
to its lower bound. An analysis of an unsolvable optimal control problem can
be carried out using extension methods.

• The system of optimality conditions for Example 7.1 is reduced to a boundary
value problem for a non-linear second-order ordinary differential equation that
has no solution.

• There is a boundary value problem for a non-linear equation of the heat con-
duction type, for which the equilibrium position does not exist.

Notes

1. Examples of the absence of a solution to problems in the theory of extremum, related to the
calculus of variations, are given in [5], [67], [44], [60], [142], [200]; for optimal control problems
described by ordinary differential equations; see [5], [95], [60], [170], [200]; for optimal control
problems related to partial differential equations; see [36], [116], [121], [124], [136], [137].

2. See Examples 1.9, 1.10, and 1.11.

3. This system of optimality conditions exactly coincides with the system (6.12), (6.13), and
(6.15) obtained in the analysis of Example 6.2 and differs only in the sign in the control formula
from system (5.1), (5.2), and (5.4). We also note that the resulting system is invariant under
sign change, just like the original control problem. We have already encountered this property
many times before.

4. Here we can use the invariance of the system (7.1), (7.2), and (7.4) with respect to sign
change.

5. As already noted, system (7.1), (7.2), and (7.4) differs from system (5.1), (5.2), and (5.4)
considered in Chapter 5 only by the sign in the formula for determining the control. In both
cases, the control can only take the values 1 or −1, with the possibility of switching from one
of these values to another. If in that case, any choice of the initial approximation through
iteration led to the same value, which corresponded to the convergence of the iterative process,
then in this case, through iteration, a value with the opposite sign is obtained, which means
the oscillation of the algorithm.

6. It is present with a constant multiplier, as a result of which it is impossible to realize the
degeneration of the maximum principle.

7. In connection with the above reasoning, certain doubts may arise. We proved the absence
of optimal control by establishing the unsolvability of the system of necessary optimality con-
ditions. However, the derivation of the maximum principle began with the assumption of the
existence of an optimal control. One might get the impression that we are dealing with a vicious
circle. First, the maximum principle is derived under the assumption that an optimal control
exists, and then a conclusion is made that there is no optimal control due to the unsolvability of
the maximum principle, which itself is established under the assumption that a solution exists.
Nevertheless, the conclusions made are quite justified. We can state that if an optimal control
exists, then it would satisfy the maximum principle. However, since the maximum principle
does not really have a solution, our initial assumption about the solvability of the optimization
problem turned out to be false.
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8. The sufficiency of the optimality conditions for the example under consideration can be
established using Theorem 5.2 given in Chapter 5. Its conditions imply that the function f ,
which is the right side of the equation of state, can be represented as f(t, u, x) = f1(t, u)+cx, the
integrand g in the definition of the optimality criterion is equal to g(t, u, x) = g1(t, u)+g2(t, x),
where c is some constant and f1, g1 and g2 are some functions, and the second derivatives
with respect to x of g2 and the function h, which determines the final state of the system in
optimality criteria is not negative. For Example 7.1, we have f = u, g = (x2–u2)/2, h = 0. Thus,
all the conditions of Theorem 5.2 are satisfied, which means that the optimality conditions are
indeed necessary and sufficient.

9. An iterative process for solving a system of necessary optimality conditions for an unsolv-
able optimal control problem can converge, but, of course, not to a solution of the problem,
which is absent. This situation is possible in the case when the optimality conditions are neces-
sary, but not sufficient, having some solution. In particular, the function f(x) = x3 considered
in Chapter 1 has no minimum points, but the corresponding stationary condition has a solution
x = 0. If we try here to use approximate methods for solving the stationary condition, then
we can quite get this point as a limit, although it does not minimize the function, but is its
inflection point. The most unpleasant thing here is that in practice we often have to solve the
problem formally, without knowing in advance whether the system of optimality conditions
has a solution or not. Under these conditions, in the case of an observed divergence of the
algorithm, we may not understand whether this circumstance is caused by the fundamental
absence of a solution or by the negative properties of the algorithm itself, for example, an un-
successful choice of the initial approximation. However, it is clear that the absence of a solution
can undoubtedly be one of the reasons for the divergence of the algorithm.

10. Of interest are the properties of the sequence {xk}. Obviously, we are dealing with a
sequence of continuous functions converging pointwise to a function identically equal to zero. At
the same time, each function xk has no derivative at all those points at which the corresponding
control uk has a discontinuity. Thus, the set of points of non-differentiability grows indefinitely,
and in an arbitrarily small neighborhood of any point from the domain of the considered
functions, for sufficiently large k, there are points at which xk has no derivative. Nevertheless,
the limit function x, which is identically equal to zero, turns out to be infinitely differentiable.
Consider now the sequence {l(xk)} of lengths of curves xk on the unit interval. Obviously, the
equality l(xk) =

√
2 is true for any k. However, l(x) = 1. Thus, the length of the limit curve

does not coincide with the limit of the sequence of lengths of curves.

11. Examples of unsolvable optimal control problems for systems with a fixed finite state are
given in Chapter 11. Chapters 15 and 17 consider optimal control problems that have no
solution, which differ from Example 7.1, respectively, only in the presence of an additional
isoperimetric condition and the absence of the initial condition.

12. The absence of an optimal control is also surprising because we seem to have a sequence
of admissible controls {uk} defined by relations (7.6). We know that it is minimizing, i.e., as
the number k increases, the corresponding values of the functional converge to its lower bound
on the set of admissible controls. What prevents us from considering the limit of this sequence
as an optimal control? Indeed, if this sequence converges to a function u, then, due to the
continuity of the functional, which will be proved in Subsection 7.2.1, it would be possible
to establish the convergence of I(uk) → I(u). However, as is already known, the sequence
of values {I(uk)} converges to the lower bound of the functional. Then, on the basis of the
established results, one could come to the conclusion that the function u turns out to be a
solution to the same problem, the absence of which we have established, even in two different
ways. All possible contradictions will be eliminated if the sequence {uk} defined above does not
converge at all, i.e., has no limit in any reasonable class of functions. Indeed, as the number k
increases, the number of discontinuities of the corresponding control also increases indefinitely.
Moreover, for a sufficiently large number k, on any arbitrarily small interval, the function uk
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has an arbitrarily large number of discontinuity points. In this connection, we can conclude that
the sequence {uk} has no limit. Naturally, one can speak about the convergence of a sequence,
especially a functional one, only when it is indicated in what sense this convergence should be
understood. The indicated phenomenon in control theory is called the sliding mode; see [58],
[191]. Note, however, that the elements of this sequence with sufficiently large numbers can
be chosen as weak approximate solutions of the problem under consideration, since they are
admissible, and the values of the minimized functional corresponding to them are close enough
to the lower bound of the latter; see Chapter 8.

13. In all the examples considered in Chapter 1, the absence of minimum points of a function
was observed in problems for an unconditional extremum, i.e., in the case of unboundedness of
the set on which the minimization problem is solved.

14. Here there is a complete analogy with the problem of determining the minimum number
of an open interval (0, 1). No matter how small a positive number we take, there is always a
positive number with an even smaller value. Even though the interval (0,1) is limited, we will
never be able to specify the smallest of its elements for the simple reason that the minimum
positive number simply does not exist.

15. The functional boundedness means that there is a number that does not exceed the value
of the functional on any admissible control. The important thing here is that we are working
with a functional, and not with a general operator. As a result, the image of any set under its
action turns out to be a numerical set, which means that the limitedness of this image has a
natural meaning.

16. It is assumed that the number ∥u∥ equals zero if and only if u is the zero element of the
space, and for any elements u and v of the space and numbers λ the following relations hold
∥u + v∥ ≤ ∥u∥ + ∥v∥, ∥λu∥ = |λ|∥u∥; see [94], [100], [106], [158].

17. The concept of boundedness can be defined not only for normed spaces, but also for a
much wider class of metric spaces. However, metric properties are not enough to obtain further
results, in particular, due to the absence of an analogue of the Bolzano–Weierstrass theorem
for this class of spaces.

18. The Bolzano−Weierstrass theorem is valid only for finite-dimensional spaces, to which
function spaces do not apply. In particular, the sequence {uk} defined earlier in accordance
with equalities (7.6) is bounded in the space of integrable functions, but does not have a
subsequence that converges in the natural sense (that is, in the sense of the corresponding
norm).

19. For Hilbert spaces see [94], [100], [106], [158]. The dot product over the field of real
numbers on the vector space V is such a transformation that assigns to any two elements
u and v from V the number (u, v), and the equalities (u, v) = (v, u), (u, v + w) = (v, u)+ (u, w)
and (u, λv) = λ(u, v) for any number λ, and moreover, the scalar square (u, u) is non-negative
and vanishes exclusively for zero space elements. Sometimes, in addition, they require that
the space be infinite-dimensional. The completeness of a space means that any sequence in it
whose elements converge indefinitely (i.e., the fundamental sequence) is convergent. Among
the Hilbert spaces is the space L2 of measurable functions that are Lebesgue integrable with a
square in some domain, which we work with in a number of specific examples.

20. In fact, the Banach−Alaoglu theorem is valid not only for Hilbert spaces, but also for a
wider class of reflexive Banach spaces, i.e., complete normed vector spaces (Banach spaces)
whose second conjugation coincides with the original space, where weak convergence can also
be defined; see [94], [100], [106], [158]. Moreover, there is an even wider class of spaces adjoint
to Banach spaces, where one can also use this assertion with the weak convergence replaced by
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an even weaker convergence, called *-weak. For reflexive spaces, weak and *-weak convergence
coincide, and in the finite-dimensional case, weak convergence coincides with strong conver-
gence when the norm of the difference between an arbitrary element of the sequence and its
limit tends to zero. Thus, in the finite-dimensional case, the Banach–Alaoglu theorem actually
reduces to the Bolzano–Weierstrass theorem. Reflexive Banach spaces include the space Lp

of measurable functions Lebesgue integrable with degree p > 1 in some domain. The space
L∞ of essentially bounded functions is not reflexive, but is adjoint to the Banach space L1
of Lebesgue integrable functions, as a result of which this statement remains valid. But L1
itself is not adjoint to any Banach space, as a result of which it is not possible to use the
Banach–Alaoglu theorem for it. On spaces Lp; see [94], [100], [106], [158].

21. The sequence of numbers {1/k} from the interval (0,1) converges in the space of real
numbers. However, the corresponding limit does not belong to this interval, since the latter is
not a closed set.

22. The closedness of a set makes sense on a much wider class of topological spaces, which
include normed vector spaces and not only them; see [101].

23. For example, the sequence {sin kπt}, which we will encounter in the next chapter, converges
weakly, but not strongly.

24. This assertion follows from the Mazur’s lemma; see [60].

25. For the semicontinuity of a functional; see, for example, [44], [60], [95].

26. The lower limit of a sequence is the lower bound of the limits of all its subsequences.

27. Moreover, the entire sequence {I(uk)} converges to the lower bound of the functional.

28. For the existence of an optimal control, much more general objects can be used as the
control space. We restrict ourselves to the use of Hilbert spaces solely because they are sufficient
to study the considered examples. In Chapter 14, the solvability of one optimal control problem
with a non-convex set of admissible controls will be established.

29. It was noted earlier that the norm can be equal to zero only on the zero element of the
corresponding vector space. However, the integral is equal to zero not only for a function that
is identically equal to zero, but also for functions that differ from zero only at individual points,
and even for a Dirichlet function equal to zero at all irrational points and one for all rational
points. Here, it should be borne in mind that we are dealing with measurable functions in
the sense of Lebesgue. Moreover, two functions that differ only on a set of zero measure (the
set of rational numbers just has zero measure) are understood in measure theory as one and
the same object. This means that, in fact, the elements of the space L2(0, 1) are not separate
functions, but classes of functions that coincide almost everywhere (differ only on a set of zero
measure), i.e., we are dealing with a quotient space. From this, in particular, it follows that in
the definition of the set U , the validity of the inequality |u(t)| ≤ 1 can be realized not for all,
but for almost all values of t ∈ (0, 1).

30. This means that the set of points in a given interval for which the specified condition is
not satisfied has zero Lebesgue measure; see [94], [100], [106], [158]. The indicated literature
also provides a proof of the assertion under consideration.

31. In fact, we have established the validity of the inequality |u(t)| ≤ 1 not for all, but for
almost all values of t ∈ (0, 1). However, as already noted, the elements of the space L2(0, 1)
are defined up to a set of zero measure, as a result of which the result obtained is sufficient to
justify the inclusion u ∈ U .
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32. Even the strict convexity of the functional was proved earlier, although strict convexity
is not needed in Theorem 7.1. In fact, this functional has even stronger properties; see next
Chapter.

33. This property is included in the definition of the norm.

34. In Chapter 9 Theorem 7.1 will be used to prove the existence of an optimal control for a
system with a fixed final state, and in Chapter 13 for a system with an isoperimetric condition.

35. The difference in signs in front of the control square does not affect the continuity proper-
ties.

36. It was already noted earlier that a change of sign in a convex function turns it into a
concave function. Remember that for Example 7.1, a minimizing sequence {uk} was defined,
which is a sequence of piecewise constant controls with an increasing number of discontinuity
points; see Figure 7.1. Using the Banach–Alaoglu theorem, we establish that it is possible
to extract from it a weakly convergent subsequence in the space L2(0, 1). However, we have
previously argued that this sequence does not converge. Thus, we are dealing with a sequence
that converges weakly and does not converge strongly in the sense of the space L2(0, 1). It can be
seen that the weak limit of this sequence is a function identically equal to zero. It is certainly an
element of the set of admissible controls (recall that this set is convex and closed, and therefore
weakly closed, i.e., contains its own weak limits). The question arises why the weak limit of the
minimizing sequence is not an optimal control? We know that the functional to be minimized
is continuous. However, this property is not yet sufficient to derive the convergences of the
sequence of functionals from the weak convergence of the sequence of controls. This requires
weak continuity (or at least semicontinuity) of the functional. The absence of convexity of the
functional did not allow us to derive its weak lower semicontinuity from its strong continuity.
However, in this case we can assert that the functional to be minimized is not weakly lower
semicontinuous at all, since otherwise, having weak convergence of controls, we could prove the
optimality of the corresponding weak limit. Thus, the minimized functional for Example 7.1 is
continuous, but not weakly lower semicontinuous.

37. We also note the solvability of the problem from Example 3.4 with an unbounded set of
admissible controls.

38. General existence theorems for solutions to extremal problems are given in [5], [60], [95],
[116], [194]. The solvability of the calculus of variations is considered in [5], [95], [200], [208];
for optimal control problems described by ordinary differential equations see [5], [44], [200]; for
optimal control problems described by partial differential equations see [73], [116], [118], [171].
We also note the study of the solvability of optimal control problems for integral equations
[20], for stochastic systems [87], for minimax problems [19], and for multi-extremal problems
[209].

39. Chapter 14 will consider a solvable minimization problem for a lower bounded convex
continuous coercive functional on a non-convex subset of a Hilbert space; see Example 14.2.
However, the set under consideration is weakly closed. This property is quite sufficient to prove
the existence of an optimal control.

40. In Chapter 14, Theorem 7.2 will be used to prove the existence of a solution to the optimal
control problem in the presence of an isoperimetric condition and a fixed final state of the
system. This statement will also be used in Chapter 16 to prove the existence of a solution to
optimal control problems for systems with a free initial state, when the optimality criterion is
minimized on a set of ”control-state” pairs.

41. The same control, of course, was also optimal in Example 3.3.
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42. It is easy to see that for the example under consideration the conditions of Theorem 6.1
are realized, under which the existence of a singular control is guaranteed.

43. Let us establish the unsolvability of the optimal control problem under consideration di-
rectly. Let us define the sequence of controls {uk} in accordance with the equality uk(t) = k.
The corresponding state of the system is xk(t) = kt. Let us find the values of the functional

I(uk) = 1
2

1∫
0

[
x2t2 + (1 − t2)k

]
dt ≥ 1

2

1∫
0

(
k2t2 + k

)
dt = k3

6 + k

2 .

It follows that I(uk) → ∞ at k → ∞. Thus, the value of the functional to be maximized
can be arbitrarily large. Therefore, the problem under consideration does not really have a
solution. Note the fundamental difference between Examples 7.1 and 7.2. In the first case, in
the absence of minimum points of the functional on the set of admissible controls, there exists
a corresponding infimum of the functional. In the second case, the functional to be maximized
is not bounded from above, which means that its upper bound does not exist on the set of
admissible controls.

44. In fact, this functional is even strongly convex; see the following chapter.

45. Actually, the last result is a consequence of the invariance of the problem with respect to
the sign change.

46. We are dealing with the already familiar equalities (7.7).

47. Note that this sequence {uk} can be used to find a weak approximate solution to the
problem.

48. In fact, this set is not even connected, being made up of two disjoint parts; see [101].

49. One should not think that the absence of convexity of the set characterizing the constraints
on the system necessarily entails the unsolvability of the extremal problem. Particularly, in the
Weierstrass theorem on the existence of an extremum of a function, the convexity of its domain
of definition is not required. In this case, the problem of minimizing the considered functional
on any non-convex set that includes the zero point (solution of the problem from Example
3.3) will be solvable. A solvable optimal control problem with a non-convex set of admissible
controls is considered in Chapter 14.

50. On generalized solutions to problems of mathematical physics see [63], [116], [130], [172].

51. On extension methods for extremum theory problems see [95], [44], [60], [108], [166], [167],
[200], [208].

52. This means that the set U is dense in V , that is, its closure coincides with V ; see [94],
[100], [106], [158]. Thus, the set of rational numbers is dense in the set of real numbers, i.e.,
any real number can be arbitrarily accurately approximated by rational numbers. Similarly,
the set of polynomials is dense in the set of continuous functions on an interval according to
the Weierstrass theorem, i.e., any continuous function can be approximated as accurately as
polynomials.

53. A rigorous definition of an approximate solution to an optimal control problem will be
given in a subsequent chapter.

54. Such an operator is called an embedding.
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55. The boundary value problem for a second-order differential equation obtained from the
system of optimality conditions for Example 7.3 has a similar property.

56. The boundary value problem for the heat equation associated with the system of optimality
conditions for Example 7.3 has a similar property.



C H A P T E R 8

Ill-posed optimal control
problems

As is known, various kinds of difficulties can arise in solving optimal control problems. In
particular, there may be no solution to the problem at all or be non-unique, the necessary
optimality conditions may not be sufficient or degenerate, and the corresponding iterative
processes may diverge. However, other side effects are also possible. We will consider an
optimal control problem that has a unique solution, the corresponding necessary optimality
conditions are sufficient. Nevertheless, it is possible to construct such a sequence of ad-
missible controls, the values of the functional on which tend to its minimum, while this
sequence itself does not converge to the optimal control. A similar situation is typical for
optimization problems that are ill-posed in the sense of Tikhonov. The lecture establishes
sufficient conditions for the well-posedness of the problem. In addition, an example of an
optimal control problem is given for which there is no continuous dependence of the solu-
tion on the parameter, which corresponds to the absence of the Hadamard well-posedness.
Appendix defines various types of approximate solutions to optimal control problems, es-
tablishes conditions that guarantee the well-posedness in the sense of Hadamard, and also
describes some methods for studying ill-posed problems.

8.1 LECTURE

We consider a fairly simple optimal control problem for which there is a unique solution,
and the optimality conditions are necessary and sufficient. An example of a minimizing
sequence that does not converge to an optimal control is given. This situation corresponds
to the absence of the Tikhonov well-posedness of the problem. Sufficient conditions for the
Tikhonov well-posedness of the problem are given. For another example, the absence of a
continuous dependence of the optimal control on some parameter is established, which is
due to the Hadamard ill-posedness.
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8.1.1 Tikhonov well-posedness

To solve the optimal control problems, we used optimality conditions in the form of
the maximum principle and other methods. We know that various difficulties arise
in their practical application. However, the list of these difficulties is far from being
exhausted.

Let us return to Example 6.2. The optimal control problem is to find such a
function u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which minimizes on this set the functional

I(u) = 1
2

1∫
0

x(t)2dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (8.1)

In Chapter 6, the unique solution to this problem u = 0 was found. It would seem
that a complete analysis has been carried out for the considered example. However,
this optimal control problem has another surprising property.

Consider the sequence of controls defined by the formula; see Figure 8.1

uk(t) = sin kπt, k = 1, 2, ... . (8.2)

Obviously, these functions are infinitely differentiable and do not exceed unity in
absolute value. Thus, we are dealing with a sequence of admissible controls.

Figure 8.1 Minimizing sequence for Example 6.2.

The corresponding solutions to problem (8.1) are defined as follows; see Figure
8.2

xk(t) =
t∫

0

sin kπτdτ = 1 − cos kπt
kπ

. (8.3)
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Figure 8.2 The sequence of states determined by the formula (8.3).

The following inequality holds

0 ≤ xk(t) ≤ 2/kπ, t ∈ (0, 1), k = 1, 2, ... .

From this follows the relation

0 ≤ I(uk) =
1∫

0

x2
kdt ≤ 4

(kπ)2 , k = 1, 2, ... .

Then the sequence of functionals corresponding to the controls {uk} converges to 0,
i.e., to the minimum value of the optimality criterion on the set of admissible controls.
Thus, the sequence of controls {uk} determined by formulas (8.2) is minimizing for
this example.

A natural question arises: does the minimizing sequence converge to the optimal
control u0? The convergence of a sequence to its limit in a normed space means that
the numerical sequence of the norms of the difference between the elements of the
sequence and this limit tends to 0. In the space L2(0, 1) the square of the norm of
a function is equal to the integral of the square of this function. Let us estimate the
value

∥uk − u0∥2 =
1∫

0

∣∣uk(t) = u0(t)
∣∣2dt =

1∫
0

sin2 kπtdt = 1
2 .

Thus, the optimal control u0 is not the limit of the sequence {uk}. Thus, the unique
solution to the optimal control problem is not the limit of the minimizing sequence1

Obviously, this sequence does not converge at all. Indeed, if this sequence con-
verged to some limit u∗, then, due to the continuity of the functional, the correspond-
ing limit of the sequence of functionals would be equal to the value of the functional
at the limit of this sequence, i.e., I(u∗). However, this limit is equal to the minimum
of the functional on the set of admissible controls, which means that the control
u∗ would be optimal. However, we already know that the only optimal control in
this case is u0, to which the minimizing sequence does not converge. Therefore, the
sequence {uk} has no limit at all2. As a result, we conclude that the minimizing se-
quence for an optimal control problem with a continuous functional either converges
to the optimal control or diverge altogether.

The divergence of the minimizing sequence, in principle, should not cause much
surprise. We have already encountered a similar situation in the previous chapter
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when examining Example 7.1. In particular, the control sequence depicted in Figure
7.1 diverges, being minimizing for the corresponding optimal control problem3. How-
ever, optimal control did not exist there at all, i.e., the minimizing sequence simply
had nowhere to converge. In this case, the optimal control exists, but the sequence
of controls under consideration does not converge to it. This suggests that we are
faced with a qualitatively different effect, consisting in the fact that the minimizing
sequence does not always converge to the existing optimal control4.

Definition 8.1 The optimal control problem is called Tikhonov well-posed 5 if
any minimizing sequence for it converges to an optimal control. Otherwise, this is
called Tikhonov ill-posed.

Thus, the optimal control problem for Example 6.2 is Tikhonov ill-posed6. We
are convinced that even if there is a unique optimal control and if the necessary
optimality conditions are sufficient, we are not immune from certain surprises. In
ill-posed problems, even having a control, the value of the minimized functional, on
which is arbitrarily close to its lower bound, we cannot be sure that we will find the
control with any predetermined degree of accuracy7.

Obviously, an unsolvable optimization problem is not Tikhonov well-posed, since
there is no optimal control for it at all. The question arises whether the situation is
possible when the optimal control problem has not a unique solution, but is Tikhonov
well-posed? Let us consider the situation when the optimal control problem has two
different optimal controls u and v. Consider an arbitrary sequence of admissible con-
trols {uk} and {vk} converging to u and v, respectively. Then, in the case of continuity
of the minimized functional I, the conditions I(uk) → inf I(U) and I(vk) → inf I(U)
are valid. Let us define a sequence {wk} whose elements take the values uk and vk

alternately. Obviously, the sequence {I(wk)} converges to the value inf I(U), since
all its subsequences have this property. Thus, the sequence {wk} turns out to be
minimizing. At the same time, it does not converge because it has subsequences that
converge to different limits. Hence, it follows that the considered problem is Tikhonov
ill-posed.

Thus, we are convinced that the class of optimal control problems that are
Tikhonov well-posed is narrower than the class of problems that have a unique solu-
tion. In particular, the optimal control problem for Example 6.2 is uniquely solvable,
but not Tikhonov well-posed. In this regard, we can expect that in order to prove the
well-posedness of the problem, stronger restrictions on the system will be required in
comparison with those that we had in the study of the existence and uniqueness of
the optimal control.

8.1.2 Justification of Tikhonov well-posedness

Our goal is to establish conditions that guarantee the Tikhonov well-posedness of op-
timal control problems8. Note that in the process of proving the existence, the convex-
ity of the minimized functional was used; see Theorem 7.1 To ensure the uniqueness
of the optimal control, a stronger condition was required that is the strict convex-
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ity; see Theorem 5.1. The Tikhonov well-posedness of the optimization problem is
established under an even stronger constraint9.

Definition 8.2 A functional I on a convex subset U of a normed space is said to be
strongly convex if for any elements u, v ∈ U and a number α ∈ (0, 1) the following
inequality holds

I[αu+ (1–α)v] ≤ αI(u) + (1–α)I(v)–cα(1–α)∥u− v∥2,

where c is a positive constant.

Obviously, any strongly convex functional is strictly convex, and even more so,
convex.

The following assertion is true.

Theorem 8.1 If the problem of minimizing a strongly convex functional on a convex
subset of a Hilbert space has a solution, then it is Tikhonov well-posed10

Proof. Let us assume that the function u is a solution to the problem of min-
imizing a strongly convex functional I on a convex set U . Consider an arbitrary
minimizing sequence, i.e., such a sequence {uk} of elements of the set U that the
convergence I(uk) → inf I(U) takes place. Then we have the inequality

I[αuk + (1–α)u] ≤ αI(uk) + (1–α)I(u) –c α(1–α)∥uk–u∥2.

From this follows the relation

I[αuk + (1–α)u] − I(u) ≤ α
[
I(uk) − I(u)

]
–c α(1–α)∥uk–u∥2.

Due to the optimality of the control u, the value at the left side of the last inequality
is not negative. As a result, after dividing by α, we have

c(1–α)∥uk–u∥2 ≤ I(uk)–I(u).

Taking into account the arbitrariness of the parameter α, we pass to the limit as
α → 0. Thus, we establish the inequality

0 ≤ c∥uk–u∥2 ≤ I(uk)–I(u).

Since {uk} is a minimizing sequence, the value on the right side tends to 0 here.
Thus, the convergence ∥uk–u∥ → 0 takes place, which means that the sequence {uk}
converges to the optimal control u. Hence, due to the arbitrariness of the minimizing
sequence, it follows that the problem is Tikhonov well-posed. □

As an application, we turn first to Example 3.3. It required to choose such a
control from the set11

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,
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which minimizes on this set the functional

I(u) = 1
2

1∫
0

(
u(t)2 + x(t)2)

dt,

where the state of the system x is described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (8.4)

The existence of a solution to this problem was established in the previous chapter.
Thus, to apply Theorem 8.1, it suffices to establish only the strong convexity of this
functional.

Consider first the quadratic function f(x) = x2. We have the equality

f [αx+ (1–α)y] – αf(x) – (1–α)f(y) = [αx+ (1–α)y]2 =

= α2x2 + 2α(1–α)xy + (1–α)2y2– αx2– (1–α)y2 = –α(1–α)(x–y)2

for all numbers x, y and α ∈ (0, 1). Now we obtain

f [αx+ (1–α)y] = αf(x) + (1–α)f(y) − α(1–α)(x–y)2

As a result, we conclude that the function f is strongly convex, and c = 1.
Assuming in the previous formula x = u(t) and y = v(t) integrating over t, for

all u, v ∈ U , and α ∈ (0, 1) we get

1∫
0

[
αu+ (1–α)v

]2
dt = α

1∫
0

u2dt+ (1–α)
1∫

0

v2dt− α(1–α)
1∫

0

(u–v)2dt.

Hence, it follows that the functional J defined by the formula

J(u) =
1∫

0

u2dt,

is strongly convex such that the equality

J [αu+ (1–α)v] = αJ(u) + (1–α)J(v)–α(1–α)∥u–v∥2.

In Chapter 5, the convexity of the functional was established

K(u) =
1∫

0

x[u]2dt,

where x[u] is solution of the Cauchy problem defined above, corresponding to the
control u. Considering that the functional to be minimized is equal to the half-sum
of the functionals J and K, we establish the inequality12

I[αu+ (1–α)v] ≤ αI(u) + (1–α)I(v)–α(1–α)∥u–v∥2.
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Thus, the minimized functional in Example 3.3 is strongly convex. Then, using The-
orem 8.1, we conclude that the considered optimal control problem is Tikhonov well-
posed.

Let us now turn to the consideration of Example 3.1, which differs from Example
3.3 only in the form of the functional to be minimized. In particular, here it has the
form

I =
1∫

0

(u2

2 − 3x
)
dt.

It can be represented as the sum of the functional J defined above, divided in half,
and the functional

M(u) = −3
1∫

0

x[u]dt,

where x[u] has the same meaning as before. The functional J , as we already know,
is strongly convex. Let us establish properties of the functional M .

Consider the equations of state (8.4) for some admissible controls u and v. We
multiply the first of them by α, and the second by 1–α and adding the results together,
we have

αx′[u] + (1–α)x′[v] = αu+ (1–α)v.

However, the control αu + (1–α)v corresponds to the state x[αu + (1–α)v]. Taking
into account that the initial state of the system is zero, we conclude

x[αu+ (1–α)v] = αx[u] + (1–α)x[v].

Then after integration, we obtain the equality

M [αu+ (1–α)v] = αM [u] + (1–α)M [v].

As a result, we conclude that the functional M is convex, and the convexity relation
for it is realized in the form of the equality13

Thus, the functional I to be minimized for Example 3.1 is the sum of a strongly
convex functional J and a convex functional M . Thus, the functional I turns out
to be strongly convex, which means that the considered optimal control problem is
Tikhonov well-posed.

Of the examples considered earlier, the Tikhonov well-posed problem was consid-
ered in Example 3.4, which differs from Example 3.3 only in the absence of restrictions
on the control14. Problems from Examples 5.1, 5.3, 6.1, 6.6–6.8, 6.10, 6.12, and 6.14
turn out to be ill-posed, since the solution of these problems is not unique, as well as
problems from Examples 6.9, 7.1, and 7.2, for which optimal control does not exist.
The problem from Examples 4.2 and 4.3 is ill-posed, in view of the fact that even for
the equation of state, there is no guaranteed unique solvability. Finally, we cannot
use Theorem 8.1 to study the optimization problems from Examples 3.3 and 6.3 that
have a unique solution due to the lack of convexity properties for the functional being
minimized.
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For Example 8.1, we can establish only strict but not strong convexity of the
functional to be minimized. This is sufficient to prove the uniqueness of the optimal
control; see Chapter 5. However, as we have already established, this problem is
not Tikhonov well-posed. As a result, the corresponding functional here cannot be
strongly convex.

8.1.3 Hadamard well-posedness

So far, we have considered the well-posedness of optimal control problems in the sense
of Tikhonov. However, in the theory of equations of various nature, the concept of
Hadamard well-posedness15 is widely used, which implies the existence of a unique
solution to the problem that continuously depends on its parameters. Let us try to
investigate this problem for optimal control problems.

Example 8.1 It is required to minimize the functional

Ik(u) =
1∫

0

[
(x− yk)2]

dt

on the set
U =

{
u ∈ L2(0, 1)

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where yk(t) = (kπ)–1 sin kπt, k is a numerical parameter16, and x is a solution of the
Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (8.5)

The difference of this problem from all the previous ones is the presence of a
certain parameter that can change. In fact, we have not one, but a family of op-
timization problems. We have not only to find the corresponding optimal control,
but also to investigate its dependence on the parameter k. We have already done
something similar in Chapter 2 when studying function minimization problems.

Let us explicitly find a solution to the problem posed. Obviously, the value of
the minimized functional is not negative. Its equality to 0 is possible only under the
condition x(t) = yk(t) for all t. Substituting this value into problem (8.5), we find
the function

uk(t) = y′
k(t) = cos kπt.

Given that this control is admissible, we conclude that it is the unique optimal con-
trol17 for Example 8.1.

Passing to the limit in the formula of the optimality criterion, we find

I∞ = lim
k→∞

Ik(u) =
1∫

0

(x− y∞)dt =
1∫

0

x2dt,

where y∞ is the limit of the sequence {yk}, i.e., y∞ = 0. Obviously, the problem of
minimizing the functional I∞ on the set U , which coincides with Example 6.2, has a
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unique solution u∞ = 0. The question arises whether the sequence of solutions {uk}
converges to the solution u∞ of the limit problem?

Let us estimate the value

∥uk − u∞∥2 =
1∫

0

∣∣uk(t) − u∞(t)
∣∣2dt = 1

2 .

Thus, the optimal control u∞ for the limit problem is not the limit of the sequence
{uk} of solutions to the original problem. Thus, for the considered problem, there is
no continuous dependence of the solution on the parameter.

Definition 8.3 An optimal control problem is called Hadamard well-posed if it
has a unique solution that depends continuously on the parameters of the problem.

Based on the analysis, we conclude that the optimal control problem for Example
8.1 is not Hadamard well-posed18.

The meaning of the Hadamard ill-posedness of the problem it is as follows. When
setting any applied problem of optimal control, there are always some characteris-
tics that are determined experimentally, and therefore known with a certain degree
of accuracy. For Hadamard well-posed problems, a small error in determining the
system parameters does not cause a large error in optimal control. In the absence
of well-posedness, the situation changes. Let us assume that the true value (that is,
corresponding to the practical formulation of the problem) is the value y∞ corre-
sponding to the functional I∞. However, during the measurement process, the value
of yk was obtained, which is quite close to y∞ for large enough k. Thus, instead of the
true functional I∞, we actually minimize the functional Ik, which is sufficiently close
to it. We, as if, have the right to expect that a small error in the experiment should
cause a small error in the optimal control. However, instead of a true optimal control
u∞, we get a solution uk of the problem under consideration that is very far from it.
Thus, in the process of practical solution of a problem that is Hadamard ill-posed,
strong distortions of the results are obtained19.

RESULTS

Here is a list of questions in the field of well-posedness of optimal control problems, the
main conclusions on this topic, as well as the problems that arise in this case.

Questions

It is required to answer questions concerning the well-posedness of optimal control
problems according to Tikhonov and Hadamard.

1. What are the properties of the optimal control problem in Example 6.2?

2. What properties does the optimality criterion for Example 6.2 have?
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3. What properties does the sequence of controls {uk} defined by formula (8.2)
have?

4. What properties does the sequence of states {xk} defined by formula (8.3) have?

5. How can one experimentally detect the absence of Tikhonov well-posedness?

6. Why is the absence of Tikhonov well-posedness an undesirable phenomenon?

7. Can a well-posed Tikhonov problem have a non-unique solution?

8. Can a minimizing sequence in a Tikhonov ill-posed problem converge to an
optimal control?

9. Why is the optimal control problem Tikhonov well-posed for Example 3.3, but
ill-posed for Example 6.2?

10. Why is there an assumption about the existence of an optimal control under the
conditions of Theorem 8.1, but there is no assumption about its uniqueness?

11. How do the concepts of convexity, strict convexity, and strong convexity relate
to each other?

12. What do the optimal control problems from Examples 6.2 and 8.1 have in
common, and how do they differ?

13. What is the difference between Tikhonov and Hadamard well-posedness?

14. What is the similarity between Hadamard well-posedness?

15. Why, when analyzing the Tikhonov and Hadamard well-posedness, it is neces-
sary to take into account the functional properties of the control?

16. Why is the absence of Hadamard well-posedness an undesirable phenomenon?

17. What properties does the optimality criterion for Example 8.1 have?

18. Why does the optimal control problem in Example 8.1 have a unique solution?

19. What properties does the sequence of controls {uk} considered for Example 8.1
have?

20. What properties does the sequence of states {xk} considered for Example 8.1
have?

Conclusions

Based on the study of the well-posedness of optimal control problems, we can come
to the following conclusions.

• Not every minimizing sequence converges to an optimal control, which is due
to the absence of Tikhonov well-posedness of the problem.
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• The optimal control problem from Example 6.2 is Tikhonov ill-posed.

• The minimizing sequence used in the analysis of Example 6.2 is weakly but not
strongly convergent.

• For Tikhonov ill-posed optimal control problems, an admissible control on
which the value of the minimized functional is sufficiently close to its mini-
mum may not be close to the optimal control.

• The class of Tikhonov well-posed optimization problems is narrower than the
class of uniquely solvable optimization problems.

• The Tikhonov well-posedness of the optimization problem can be established
under the condition of strong convexity of the minimized functional.

• The optimality criterion for Example 6.2 is strictly convex, but not strongly
convex.

• In optimal control problems, it is possible that the solution does not depend
continuously on the parameters of the problem, which is due to the absence of
the Hadamard well-posedness.

• The optimal control problem from Example 8.1 is Hadamard ill-posed.

• In the absence of the Hadamard well-posedness, a small error in determining
the parameters of the system can cause significant distortion of the results.

• In the absence of the Hadamard well-posedness, various kinds of algorithmic
errors can cause significant distortions of the results.

Problems

Based on the analysis of the well-posedness, the following additional problems arise.

1. Meaning of the approximate solution. The main conclusion in the analysis
of Example 6.2 and the concept of Tikhonov well-posedness of the optimal
control problem was that the meaning of the approximate solution is far from
unambiguous. What should be understood by this approximate solution? Is it a
control that is close enough to the optimal one or one for which the value of the
minimized functional turns out to be sufficiently close to its lower bound? We
also recall the penalty method considered in Chapters 2 and 3, which provided
an approximate solution to problems for a conditional extremum. In contrast to
the examples considered above, a slight violation of the given restrictions was
also allowed there, which corresponds to a qualitatively different form of the
approximate solution. Appendix gives various definitions of the approximate
solution of optimal control problems.

2. Justification of the Hadamard well-posedness. Theorem 8.1 was pre-
sented in the Lecture, in which the restrictions are indicated that guarantee
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the Tikhonov well-posedness of the problem. However, there is no similar state-
ment in relation to Hadamard well-posedness. At the same time, in Chapter 2,
properties were described that guarantee the Hadamard well-posedness of the
problem of minimizing a function of one variable. In Appendix, this assertion
is extended to optimal control problems.

3. Relationship between Tikhonov and Hadamard well-posedness. The
two considered types of well-posedness of optimal control problems definitely
differ. However, comparing Examples 6.2 and 8.1 of both types of ill-posed
problems, one can note their undoubted closeness. In this regard, it can be
assumed that these concepts are somehow related to each other. The connection
between Tikhonov and Hadamard well-posedness is established in Appendix.

4. Analysis of ill-posed problems. If we have an ill-posed problem, then, in
principle, we can simply try to correct the problem statement so that the new
problem turns out to be well-posed. However, there are situations when the
object of research is obviously not a well-posed problem, and it is necessary to
solve it. It should also be borne in mind there are significantly more ill-posed
problems than correct ones. In this regard, it seems extremely important to
develop methods for solving ill-posed optimal control problems. Some results
in this direction are given in Appendix.

8.2 APPENDIX

Below, we present additional results concerning the well-posedness of optimal control prob-
lems. In particular, the absence of Tikhonov well-posedness means that ensuring the close-
ness of the approximate solution to the exact one in the sense of controls and functionals
can be implemented by different means. In this regard, it is of significant interest to clarify
what is meant by an approximate solution of an optimal control problem. Subsection 8.2.1
is devoted to these issues. Next, we give a theorem that makes it possible to establish the
Hadamard well-posedness of the problem. The final subsection deals with methods for the
practical solution of ill-posed optimal control problems.

8.2.1 Types of approximate solution of the problem of finding an extremum

As has been repeatedly noted, the practical solving of optimal control problems, as a
rule, is carried out approximately. In this case, it is desirable to clarify what exactly is
meant by an approximate solution of the problem. This problem is of particular rele-
vance when considering problems that are Tikhonov ill-posed. In Chapter 2, various
types of approximate solutions to the function minimization problem were defined.
Let us extend them to problems of functional minimization of a general form and
problems of optimal control. Consider the first of them.

Problem 8.1 It is required to minimize a functional I on a subset U of a normed
space.
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By analogy with Definition 2.7, the following concepts are introduced.

Definition 8.4 A control u ∈ U is called a strong approximate solution of Prob-
lem 8.1 if it is close enough to the optimal control uopt, i.e., the inequality ∥u–uopt∥ ≤ ε
holds for a small enough positive number ε. The control u ∈ U is called a weak ap-
proximate solution of the optimal control problem if the value of the functional I
corresponding to it is close enough to its lower bound on the set U, i.e., the inequality
I(u) ≤ inf I(U) + δ holds20 for a small enough positive number δ.

In the case of continuity of the minimized functional, any strong approximate so-
lution of the problem turns out to be its weak solution. If the optimal control problem
is Tikhonov well-posed, then any weak approximate solution of the problem turns
out to be its strong solution. However, in ill-posed problems, a weak approximate
solution may not be strong. In particular, the function uk defined by formula (8.2)
for sufficiently large k is a weak but not strong approximate solution of the problem
for Example 6.2.

For an unsolvable problem, the existence of an infimum of the functional on the
set of admissible controls is possible; see Example 7.1. In this connection, the notion
of a weak approximate solution makes sense for such a problem. In particular, the
function uk, defined by formula (7.6) for a large enough number k, turns out to be
a weak approximate solution. It is the search for a weak approximate solution that
the methods of extension of optimal control problems are oriented to; see Section 7.
On the other hand, for the problem of maximizing the functional in Example 7.2, the
upper bound of the functional does not exist. As a result, for such an example, a weak
approximate solution does not make sense here, and the use of extension methods
noted in the previous chapter is meaningless.

In Chapter 2, it was noted that in problems on the conditional extremum of
a function, it makes sense to have such an approximate solution that satisfies the
existing restrictions with a certain degree of accuracy. It can be naturally generalized
to Problem 8.1.

Definition 8.5 A control u is called a strong conditional approximate solu-
tion to Problem 8.1 if, for a small enough number δ > 0, the inequality ∥u–uopt∥ ≤ δ
is true, where uopt is the exact solution of this problem. The control u is called a weak
conditional approximate solution of this problem if for small enough numbers
ε > 0 and χ > 0 the following inequalities hold I(u) ≤ inf I(U) + χ and ∥u–v∥ ≤ χ
for an element v ∈ U .

A conditional approximate solution of the problem may not be an element of a
given set, but it certainly turns out to be close enough to some element of a given
set21.

Let us now turn to optimal control problems.

Problem 8.2 It is required to minimize the functional I = I(u, x) on a subset U
of some normed space, where x is the solution of the state equation22 of A(u, x) = 0
defined by some operator A, corresponding to the control u.
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For Problem 8.2, we can introduce the concepts of strong and weak approximate
solutions, as well as the corresponding conditional approximate solutions based on
Definitions 8.1 and 8.2, assuming that the equation of state determines the implicit
dependence x = x[u]. However, another type of approximate solution arises in con-
nection with the use of the penalty method; see Chapter 3.

Definition 8.6 A pair (u, x) is called a strong approximate solution of Prob-
lem 8.2 if, when under the inclusion u ∈ U it is close enough to the optimal
pair (uopt, xopt), i.e., the inequalities ∥u–uopt∥ ≤ ε1 and ∥x–xopt∥ ≤ ε2 hold for
small enough positive numbers ε1 and ε2. A pair (u, x) is called a weak approxi-
mate solution of Problem 8.2 if under the inclusion u ∈ U satisfy the inequalities
I(u) ≤ inf I + ε and ∥A(u, x)∥ ≤ χ for sufficiently small positive numbers ε and χ,
where inf I is the infimum of the mapping I on the set of all pairs (v, y) satisfying
the equality A(v, y) = 0 and the inclusion v ≤ U .

According to Definition 8.6, the approximate solution (u, x) does not necessarily
satisfy the equation of state A(u, x) = 0, but in some sense satisfies it approxi-
mately23. In particular, in Example 3.3, the relation A(u, x) = 0 was considered to
correspond to an equation x′ = u with an initial condition. However, in the pro-
cess of applying the penalty method, a pair (uε, xε), was determined that satisfies
an equation x′

ε = uε + εpε with a small parameter ε, where pε is the solution of
the corresponding adjoint system. Similarly, in Example 4.2, the state equation was
x′ = x2+u. However, during the analysis, a pair (uε, xε), was obtained, which satisfies
the equality x′

ε = x2
ε + uε + εpε.

8.2.2 Justification of Hadamard well-posedness

The concepts of the well-posedness of an optimization problem in the sense of
Tikhonov and Hadamard differ significantly by definition. However, there is a lot
in common between them. In particular, for each fixed value of the parameter k,
the problem from Example 8.1, which is Hadamard ill-posed also turns out to be
Tikhonov ill-posed. In both cases, the ill-posednes manifests itself as the absence of
convergence of the corresponding sequence of controls. Taking into account the ex-
plicit connection between the concepts of well-posedness under consideration, we can
expect that both the principle of proof of well-posedness and the methods for solving
ill-posed problems of both types will be somewhat similar.

Suppose that there is some functional I = I(µ, u), where µ is a parameter that
takes values from some set24 M , and u is a control defined on the set U . The problem
of minimizing the functional I is posed for a fixed value of the parameter µ ∈ M on
the set U . The following statement25, takes place, which is a natural generalization
of Theorem 2.2 from Chapter 2.

Theorem 8.2 Suppose that for any fixed value µ ∈ M the problem of minimizing
the functional I = I(µ, u) on the set U is Tikhonov well-posed, and the mapping
µ → I(µ, u) is continuous on M uniformly 26 in u ∈ U . Then the considered extremal
problem is Hadamard well-posed.
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Proof. Consider an arbitrary sequence {µk} converging on M . Then there exists
such an element µ ∈ M that convergence µk → µ takes place. Denote by Jk and J
the functionals characterized by the equalities Jk(u) = I(µk, u) and J(u) = I(µ, u).
As is well known, a Tikhonov well-posed problem has a unique solution. Denote by
uk and u the solutions of minimization problems on the set U of the functionals Jk

and J , respectively. To prove the theorem, it suffices to establish that the sequence
of solutions {uk} converges to the value u.

We have the equality

J(uk)–J(u) = [J(uk)–Jk(uk)] + [Jk(uk)–Jk(u)] + [Jk(u)–J(u)].

Considering that the quantities uk and u are solutions of the corresponding extremal
problems, we establish the inequalities

0 ≤ J(uk)–J(u), Jk(uk)–Jk(u) ≤ 0.

As a result, we get

0 ≤ J(uk)–J(u) = [J(uk)–Jk(uk)] + [Jk(uk)–Jk(u)] + [Jk(u)–J(u)] ≤

2 sup
v∈u

|Jk(v) − J(v)|.

Since the mapping µ → I(µ, v) is continuous on M uniformly in v ∈ U , the value on
the right side of the last inequality tends to zero. Thus, the convergence J(uk) → J(u)
takes place. This implies that the sequence {uk} is minimizing for the functional J .

By the hypothesis of the theorem, the problem of minimizing the functional J is
Tikhonov well-posed. Then the minimizing sequence {uk} converges to the optimal
value u. Therefore, the convergence of the parameters µk → µ implies the convergence
of solutions of the corresponding extremal problems uk → u, which means that the
considered problem is Hadamard well-posed. □

According to Theorem 8.2, proof of the Hadamard well-posedness of optimization
problems is reduced to proving its correctness in the sense of Tikhonov for a fixed
value of the parameter and justifying the uniform continuity of the functional. As an
application, consider the following example.

Example 8.2 It is required to minimize the functional

I(µ, u) =
1∫

0

[
(x− µ)2 + u2]

dt

for a fixed square-integrable function µ on the set

U =
{
u ∈ L2(0, 1)

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.
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The Tikhonov well-posedness of this problem for a fixed value of the parameter µ
is proved using Theorem 8.1 in the same way as for a similar problem from Example
3.3. Let us establish that the functional under consideration is uniformly continuous.

For arbitrary values of the functions µ and ν, the following equality holds

sup
v∈U

∣∣I(µ, u) − I(ν, u)
∣∣ ≤

∣∣∣ 1∫
0

[
(x− µ)2 − (x− ν)2]

dt
∣∣∣ =

∣∣∣ 1∫
0

(2x− µ− ν)(µ− ν)dt
∣∣∣.

This implies the inequality27

sup
v∈U

∣∣I(µ, u) − I(ν, u)
∣∣ ≤ ∥2x− µ− ν∥ ∥µ− ν∥ ≤

(
2∥x∥ + ∥µ∥ + ∥ν∥

)
∥µ− ν∥. (8.6)

From the state equation, we find the function

x(t) =
t∫

0

u(τ)dτ.

Since any admissible control takes values from the interval [–1, 1], we conclude that the
state of this system takes values from the interval [–t, t], which means that ∥x∥2 ≤ 1/3.
Thus, inequality (8.6) implies the uniform continuity of the considered functional.
Now Theorem 8.2 implies Hadamard well-posedness of the considered optimal control
problem28.

The absence of Hadamard well-posedness according to for Example 8.1 is due
to the Tikhonov ill-posedness of the corresponding problem for a fixed value of the
parameter.

8.2.3 Regularization of optimal control problems

In the practical solution of ill-posed extremal problems, certain difficulties arise. In
particular, algorithms that ensure the minimization of the functional may not guar-
antee finding the optimal control with the desired degree of accuracy. Various regu-
larization methods are used to overcome the difficulties that arise29.

Let us turn, in particular, to Example 8.1, in which we studied the optimal control
problem that was Tikhonov ill-posed. The Tikhonov regularization method for
this problem involves considering the functional

Iε(u) = I(u) + ε

1∫
0

u2dt,

where ε > 0 is a regularization parameter. Obviously, the problem of minimizing
a regularized functional up to a constant factor coincides with the problem from
Example 3.3, the well-posedness of which was established earlier. Thus, the solution
of the regularized optimal control problem should not cause serious difficulties. Let
the solution uε of the regularized problem be somehow found30. Then the solution of
the original problem can be obtained as a result of passage to the limit as ε → 0.
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In practice, they usually proceed as follows. Initially, the value of ε is set relatively
large. This is explained by the fact that the convergence of the iterative process for
solving a regularized problem is the better and the less dependent on the choice of
the initial approximation, the larger the regularization parameter. Therefore, despite
the fact that the initial approximation for the iterative process is given arbitrarily,
and therefore, generally speaking, far enough from the solution of the problem, the
algorithm will converge relatively quickly. Then the parameter ε decreases, and as
the initial approximation of the iterative process at the new step of the regulariza-
tion method, the control obtained from the previous step of the iterative method is
selected. The deterioration in the convergence of the algorithm due to the approxima-
tion to the original ill-posed problem is compensated to a certain extent by refining
the initial approximation for the iterative process31. The specified procedure for split-
ting the regularization parameter is repeated many times until the desired degree of
accuracy is achieved32.

The described algorithm implies a nested iterative process, in which, at each step
of the regularization method, the regularized optimal control problem is solved, for
example, using the method of successive approximations described earlier. Iterative
regularization often turns out to be more effective, in which at each step of the
method of successive approximations, the parameter ε is gradually reduced33. An
additional opportunity to improve the efficiency of the algorithm for solving the
problem is related to the error in the numerical solution of the equation of state and
the adjoint system34.

In the previous subsection, the connection between the concepts of Tikhonov and
Hadamard well-posedness was noted. In this regard, we can conclude that the use of
regularization methods can also be effective for solving problems that are Hadamard
ill-posed.

Let us note also that the maximum principle for Example 6.2 degenerates, i.e., the
optimal control is singular. This circumstance significantly complicates the practical
solution of the problem. At the same time, in a regularized problem, the maximum
condition no longer degenerates35, and its solution at a fixed step of the method
of successive approximations is found explicitly36. Thus, regularization methods can
also be used for practical finding of singular controls.

Additional conclusions

Based on the results presented in Appendix, we can draw some additional conclusions
regarding the well-posedness of optimal control problems and methods for solving ill-
posed problems.

• There are various types of approximate solutions to optimal control problems.

• A strong approximate solution of the problem is close enough to its exact
solution.

• The value of the functional on a weak approximate solution is sufficiently close
to its lower bound on the set of admissible controls.
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• If the functional is continuous, a strong approximate solution is always a weak
approximate solution.

• In Tikhonov well-posed problems, a weak approximate solution turns out to be
a strong approximate solution.

• A weak approximate solution exists for unsolvable problems, provided that the
lower bound of the functional exists.

• The conditional approximate solution allows minor violations of the state equa-
tion and given constraints.

• The Hadamard well-posedness of an optimization problem is related to its
Tikhonov well-posedness.

• When justifying the Hadamard well-posedness of the problem, the uniform
continuity of the functional with respect to the parameter is used.

• For the practical solution of ill-posed problems, one can use the Tikhonov reg-
ularization method.

• To improve the efficiency of the algorithm for solving an ill-posed problem,
iterative regularization can be used.

• Regularization methods can also be used to find a singular control.

Notes

1. In fact, this is quite natural. It is enough to compare the elements of the indicated sequence,
i.e., sinusoids with an infinitely increasing frequency of oscillation; see Figure 8.1 with optimal
control, identically equal to zero.

2. Curiously, the sequence {uk} tends to u0 weakly in the space L2(0, 1). Indeed, weak con-
vergence in a Hilbert space is convergence in the sense of the corresponding dot product,
i.e., convergence to 0 of the numerical sequence (uk–u0, λ) for any function λ from the space
L2(0, 1). Let us find the value

(uk − u0, λ) =
1∫

0

[
uk(t) − u0(t)

]
λ(t)dt =

1∫
0

sin kπtλ(t)dt.

The value on the right side of this equality, up to a constant set, is the coefficient of the
expansion of the function λ in a Fourier series in terms of sines; see [94], [100], [106], [158].
Due to the convergence of the corresponding series for any element of the space L2(0, 1), the
corresponding Fourier coefficients must converge to zero, which implies the weak convergence of
the sequence {uk} to u0. By the way, for the sequence under consideration, the Banach–Alaoglu
theorem on the existence of a weakly convergent subsequence of any bounded sequence is
applicable. The boundedness of the minimizing sequence is realized in view of the obvious
boundedness of the set of admissible controls.

3. In that case, with an increase in the number of the element of the sequence, the number
of discontinuity points of the function increased indefinitely, while in this case, the oscillation
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frequency of the periodic function increases indefinitely. Another form of minimizing control
sequence divergence will be encountered in Chapter 11.

4. Naturally, in this case there also exist convergent minimizing sequences. Indeed, an arbi-
trary sequence of admissible controls descending to u0 turns out to be minimizing due to the
continuity of the functional.

5. On the Tikhonov well-posedness of optimization problems; see [60], [70], [122], [134], [187],
[194], [211].

6. Examples of ill-posed optimal control problems are given in [67] and [194]. Tikhonov ill-
posed optimal control problems are considered in Chapters 11 (Example 11.2) and 12 (Example
12.3) in the case of a pinned finite state, in Chapter 15 for a problem with an isoperimetric con-
dition (Example 15.12), and in Chapter 17 for a system without the initial condition (Example
17.3).

7. The fact that the minimizing sequence under consideration weakly converges to the optimal
control is a small consolation here, since the elements of the sequence, which are sinusoids with
increasing frequency, do not in any way remind us of the optimal control, which is a function
identically equal to zero. We could call the problem of optimal optimality weakly Tikhonov
well-posed according to, but this concept can hardly be considered as meaningful.

8. Experimentally, it is possible to detect the absence of Tikhonov well-posedness correctness
tracking the value of the optimality criterion at each step of the algorithm. If it turns out
that the sequence of functionals converges and even decrease, while the sequence of controls
corresponding to it does not converge, then this is a sure sign of the lack of Tikhonov ill-
posedness.

9. In fact, to justify Tikhonov well-posedness, it is sufficient to have the property of strictly
uniformly convexity of the functional; see [194]. A functional I on a convex set U is called
strict uniform convex if there exists such a continuous function δ = δ(τ) satisfying the condi-
tions δ(0) = 0, δ(τ) > 0 for τ > 0 and δ(τ) → ∞ for τ → ∞, which for any elements u, v ∈ U
and α ∈ (0, 1) takes place the inequality

I[αu + (1–α)v] ≤ αI(u) + (1–α)I(v)–α(1–α)δ(∥u–v∥).

Obviously, any strictly uniformly convex functional is strictly convex, and even more so, convex.
In this case, a strongly convex functional is strictly uniformly convex for the case when the
function δ is quadratic.

10. Naturally, the conditions of the theorem implicitly contain restrictions that guarantee
the solvability of the optimal control problem. We do not require here the uniqueness of the
solution of the problem, since it is already guaranteed by the strong convexity of the functional.
However, it is also possible to relax the requirement on the functional space, and also to use
in the definition of strong convexity not the square of the norm, but any power greater than
or equal to one. The choice of the square of the norm is due solely to the association with the
definition of the Hilbert space norm.

11. In Chapter 3, we did not focus on the functional properties of the control. However, they
would be indicated in Chapter 7 when substantiating the existence of an optimal control for
this example.

12. In passing, we note that the sum of a convex and strongly convex functional is always
strongly convex.

13. This means that this functional is affine.
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14. The Tikhonov well-posed problem for a system with a fixed final state is considered in
Chapter 12; see Example 12.1. In Chapter 13, we will establish the well-posedness in the sense
of Tikhonov of optimal control problems with the isoperimetric condition.

15. Concerning the general concept of problem correctness; see [70], [99], [187].

16. Obviously, when yk = 0 we have (up to a constant factor in front of the integral) the
previously considered Example 6.2.

17. This problem has almost all the properties of the optimal control problem from the previous
example. Using the technique described earlier, we can prove that this problem has a unique
solution, the maximum principle for it is the necessary and sufficient condition for optimality,
and the corresponding optimal control is singular.

18. An example of a Hadamard ill-posed optimal control problem for a system with a fixed
final state is given in Chapter 12; see Example 12.4. Chapter 15 gives examples of optimal
control problems with an isoperimetric condition that are Hadamard ill-posed; see Examples
15.7 and 15.13. In Chapter 17, we study the Hadamard ill-posed problem for a system with a
free initial state; see Example 17.6.

19. The negative effects of ill-posed problems according to Hadamard appear even when all
parameters of the problem are determined absolutely exactly. The fact is that in the process
of practical calculation, individual procedures (numerical solution of differential equations, nu-
merical integration, calculation of special functions, roots, etc.) are carried out approximately.
In ill-posed problems, small computational errors can cause a large error in determining the
solution to the problem. Chapter 12 will consider an optimal control problem with extremely
unusual properties that can be interpreted as a strong form of Hadamard ill-posedness; see
Examples 12.5 and 12.6.

20. It makes no sense to use the inequality |I(u)– min I(U)| ≤ δ, since the value of the func-
tional on an admissible control u cannot be less than its minimum on the set of all admissible
controls.

21. We can also say that a weak conditional approximate solution u of the problem is close
enough to the set U itself, where the distance ρ(u, U) from the point u to the set U is determined
by the formula ρ(u, U) = inf ∥u–v∥, and the infimum is taken over all elements v from the set
U .

22. For the optimal control problems under consideration, the equality A(u, x) = 0 reduces to
the corresponding Cauchy problem.

23. By analogy with Definition 8.5, here one could define a conditional approximate solution,
for which the inclusion u ∈ U is also implemented not exactly, but approximately.

24. In what follows, the convergence of the sequence of parameters will be determined, as a
result of which it is assumed that the structure of the topological space is defined on the set
M .

25. An analysis of Hadamard well-posedness for problems of the calculus of variations is carried
out in [21], [60], [122], [145]; for optimal control problems for systems with lumped parameters in
[197], [211] (including, in the presence of phase constraints in [128]); for systems with distributed
parameters in [36], [60], [165], [127]; for systems described by variational inequalities in [115];
for minimax problems in [114]; for vector optimization problems in [51].
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26. The uniform continuity of the mapping µ → I(µ, u) in u ∈ U means that in the case of
convergence µk → µ we have sup |I(µk, u)–I(µ, u)| → 0, where the upper bound is taken over
all controls u ∈ U .

27. Here, we use the Schwartz inequality and the fact that the norm of a sum does not exceed
the sum of norms.

28. An example of a well-posed optimal control problem for a system with a fixed final state
is given in Chapter 12; see Example 12.2.

29. About regularization methods for ill-posed problems; see [70], [99], [187], [194].

30. For example, according to the iterative method described in Chapter 3.

31. To improve the efficiency of the algorithm, it is also desirable to match the rate of decrease
in the regularization parameter with the criterion for terminating the iterative process.

32. Naturally, it is not always possible to find the optimal control using Tikhonov regularization
method. However, for a fairly wide class of problems to be solved, in particular, for Example
8.1, the desired result is indeed achieved.

33. It would be desirable, of course, to reduce the regularization parameter quickly in order to
implement a relatively small number of regularization method steps. However, reducing it too
quickly can lead to the divergence of the algorithm.

34. Suppose we are considering some optimal control problem that is solved iteratively without
regard to the well-posedness problem, as was done in Chapter 3. We will assume that the
algorithm used is sufficiently efficient so that the minimized functional decreases from iteration
to iteration. It seems that the longer we count, the more accurate the final result will be.
However, in practice, the situation is often different. After a certain number of steps, the
decrease in the functional stops. This is explained by the fact that the differential equations (the
original and adjoint systems) usually solve themselves approximately, i.e., there is some error
due to the approximation method used. Equations, as a rule, are solved relatively accurately,
i.e., the approximation error is quite small. At the initial stage of the iterative process, we
are far enough from the exact solution so that the iterative error is large enough, and the
approximation error does not affect the process. However, as the algorithm converges, the
iterative error decreases and at some stage becomes comparable with the approximation error.
Further refinement of the algorithm becomes impossible, since now the approximation error
becomes decisive, and the algorithm is not tuned to reduce it. If the regularization method is
also used, then we have three types of error that are iterative, due to the initial approximation,
regularization, associated with the regularization parameter, and approximation, determined
by the steps with which the differential equations are solved. The efficiency of the algorithm
is determined by the ways of matching the indicated types of error. In particular, at an early
stage of the algorithm, it makes no sense to solve the equations accurately enough. In this
regard, a fairly coarse grid can be used here. However, as the current approximation is refined
(the iterative error decreases) and the regularization parameter decreases (the regularization
error decreases), it is possible to switch to a finer grid using interpolation, thereby reducing
the approximation error. The corresponding algorithm with corrective approximation can be
effective in solving optimal control problems for rather complex equations of state, in particular,
for partial differential equations; see [174].

35. Due to regularization, the conditions for the existence of a singular control are violated;
see Theorem 6.1.

36. The description of this algorithm for a problem that practically does not differ from a
regularized one was given earlier.
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Part II dealt with optimal control problems for systems described by ordinary
differential equations. In this case, the initial state of the system was considered to
be known. However, in practice, problems often arise with a known final state, i.e.,
we are talking about the transfer of the system from one given state to another
when a certain result is achieved. This may be minimizing the cost of performing
some action, maximizing the quality or quantity of output, minimizing the time to
transfer the system to the desired state, etc. In this case, we have a system with
a fixed final state, and the control is considered admissible not only if the given
restrictions on its value are realized. It is also required that it guarantees the transfer
of the system to the desired state. Problems of this nature form the third part of this
book, which consists of four chapters. Chapter 9 establishes the maximum principle
for systems with a fixed final state. Chapter 10 describes alternative methods for
solving such problems. Chapter 11 gives examples of problems of this nature for
which the existence or uniqueness of a solution is not realized, as well as cases where
the maximum principle is not a sufficient condition for optimality or degenerates.
Finally, Chapter 12 considers ill-posed optimal control problems with a fixed final
state.
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C H A P T E R 9

Maximum principle for
systems with a fixed final
state

The problem of optimal control of a system described by an ordinary differential equation
with given initial and final states is considered. In this case, certain restrictions are imposed
on the control values, and it is required to minimize an integral functional. For this problem,
the necessary optimality conditions are derived in the form of the maximum principle. In
the simplest case, they have an analytical solution. In the general case, the problem is solved
iteratively.

9.1 LECTURE

The subject of this lecture is optimal control problems for systems described by ordinary
differential equations with given initial and final states. It is required to choose such a
control, satisfying some additional restrictions, which delivers a minimum to an integral
functional. This problem is solved by the maximum principle used earlier for solving optimal
control problems with a free final state. The maximum condition here has the same form
as in the problems described in Part II. However, in this case, there are no boundary
conditions for the adjoint equation, while for the equation of state, on the contrary, there
are conditions at both ends of the considered interval. Although this form of the system of
optimality conditions turns out to be much more difficult, in the simplest case the optimal
control can be found analytically. In the general case, the problem is solved iteratively using
the shooting method.

9.1.1 Problem statement

We again consider the controlled system described by the Cauchy problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, 1); x(0) = x0 (9.1)
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with a known function f and a number x0. Here u is a control chosen from the set1

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where a and b are known functions. The functional

I(u) =
T∫

0

g(t, u(t), x(t))dt

is chosen as an optimality criterion2, where g is a known function. A feature of this
problem is the presence of an additional condition

x(T ) = xT , (9.2)

where the final state of the system xT is known. Now we get the following optimal
control problem with a fixed final state3.

Problem 9.1 It is required to find a function u from the set U that ensures the
fulfillment of condition (9.2) and minimizes the functional I on the subset of the
function from U that guarantees the fulfillment of equalities (9.2).

Thus, the solution of the optimal control problem is such a control function from
a given set that transfers the system characterized by the given equation from one
known state to another, while minimizing the optimality criterion. The presence of
an additional condition (9.2) is the main feature of this problem, as a result of which,
in order to solve it, it is necessary to modify the mathematical apparatus at our
analysis.

9.1.2 Maximum principle

To determine the necessary optimality condition, we use the previously described
method. Let us assume that a function u is an optimal control, so the following
inequality holds

∆I = I(v, y)–I(u, x) ≥ 0,
where x is the optimal state of the system, and v is an arbitrary control from the set
U , for which the corresponding state y satisfies the equalities4 (9.1) and (9.2).

As in Chapter 3, we use the Lagrange multiplier method to account for the
state equation5. Introduce the Lagrange functional

L(u, x, p) = I(u) +
T∫

0

p(t)
[
x′(t) − f(t, u(t), x(t))

]
dt,

where the function p is arbitrary. Then we obtain the inequality

∆L = L(v, y, p)–L(u, x, p) ≥ 0 ∀v, p, (9.3)

similar (3.5).
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Combine all the terms that are under the integral in the functional L, which
explicitly depend on the control, as was done in Chapter 3. We have the function

H(t, u, x, p) = pf(t, u, x) − g(t, u, x).

As a result, inequality (9.3) takes the form

T∫
0

(
p∆x′ − ∆H

)
dt ≥ 0 ∀v, p, (9.4)

where ∆x = y − x, ∆H = H(t, v, y, p) −H(t, u, x, p).
The first term under the integral in inequality (9.4) is transformed using the

formula of integration by parts

T∫
0

p∆x′dt = p(T )∆x(T ) − p(0)∆x(0) −
T∫

0

p′∆xdt.

This takes into account that both the initial and final values of the state function are
fixed, which means that they take the same values for any control, as a result of which
the increment ∆x at the initial and final time is equal to zero6. The ∆H increment
is converted using the Taylor series expansion in the same way as in Chapter 3 using
the notation adopted there. We have

∆H = ∆uH +Hx(t, u, x, p)∆x+ η1 + η2,

where ∆uH = H(t, v, x, p)–H(t, u, x, p), Hx is the partial derivative of the function H
with respect to x, η1 is a second order term with respect to ∆x, obtained by expanding
the value H(t, u, x+ ∆x, p) in a Taylor series, η2 = [Hx(t, v, x, p) −Hx(t, u, x, p)]∆x.

As a result, inequality (9.4) is reduced to the form

−
T∫

0

∆uHdt −
T∫

0

[
Hx(t, u, x, p) + p′]∆xdt + η ≥ 0 ∀v, p, (9.5)

where the remainder term η is determined by the formula

η = −
T∫

0

(η1 + η2)dt.

The resulting formulas differ from similar relations from Chapter 3 only by the ab-
sence of terminal term7.

At the next stage, inequality (9.5) is simplified by choosing the solution of the
adjoint system as an arbitrary function p. This was achieved in Chapter 3 by equaliz-
ing the value to zero, multiplied by the increment of the state function ∆x under the
integral and in the terminal term. As a result, a differential equation was obtained for
the function p with the condition at the final moment of time, which corresponded
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to the adjoint system (3.8) and (3.9). In this case, since there is no terminal term in
inequality (9.5), we can only obtain the adjoint equation

p′(t) = −Hx(t, u, x, p), t ∈ (0, T ), (9.6)

coinciding with (3.8), but without an additional condition at the final time. As a
result of such a choice of the function p, inequality (9.5) takes the form

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U.

The resulting value differs from the analogous inequality (3.10) only in the absence
of a terminal component in the remainder term. By analogy with Theorem 3.1, we
prove the following assertion8.

Theorem 9.1 In order for the control u to be a solution to Problem 9.1, it is neces-
sary that it satisfies the maximum condition

H
[
t, u(t), x(t), p(t)

]
= max

v∈[a(t),b(t)]
H

[
t, v, x(t), p(t)

]
, t ∈ (0, T ), (9.7)

where x is the solution of problem (9.1) corresponding to it, which also satisfies con-
dition (9.2), and p is the solution of the conjugate equation (9.6).

Thus, the system of optimality conditions is characterized by formulas (9.1), (9.2),
(9.6), and (9.7), whence it is required to find three unknown functions u, x, p. At
first glance, the resulting system is obviously not correct. On the one hand, the
problem regarding the state function is overdetermined: for a first-order differential
equation, two boundary conditions are set at once. On the other hand, for the adjoint
equation, there are no additional conditions at all. However, in reality, we can find
from the maximum condition the dependence of the control on the functions x and
p and substitute it into the equation of state and the adjoint equation. The result
is a system of two differential equations of the first order, for which there are two
boundary conditions. In this connection, the given optimality conditions make sense.

Let us now turn to the practical solution of the optimality conditions.

9.1.3 Example of an analytical solving to a problem

In Chapter 3 it was shown that for fairly simple examples, the solution to the system
of optimality conditions can be found analytically without using any iterative process.
Let us show that a similar situation is also possible for systems with a fixed final state.

Example 9.1 It is required to minimize the functional

I(u) =
1∫

0

(u+ x)dt
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on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ 0 ≤ u(t) ≤ 2, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0, (9.8)

ensure the fulfillment of the condition

x(1) = 1. (9.9)

We have Problem 9.1 with the following parameter values:

f(t, u, x) = u, T = 1, x0 = 0, xT = 1, a(t) = 0, b(t) = 2, g(t, u, x) = u+ x.

In accordance with the method described above, we determine the function

H(t, u, x, p) = pf–g = pu–u–x.

Then the adjoint equation (9.6) has the form

p′(t) = 1, t ∈ (0, 1). (9.10)

According to Theorem 9.1, the optimal control satisfies the maximum condition[
p(t) − 1

]
u(t) − x(t) = max

v∈[0,2]

[
p(t) − 1

]
v − x(t), t ∈ (0, 1). (9.11)

Thus, to find three unknown functions u, x, p there is a system (9.8) – (9.11).
Note that the adjoint equation (9.10) does not depend on other unknown func-

tions. Then one can find its general solution p(t) = t + c, where c is an arbitrary
constant. It can be found after substituting the value of the function p into the max-
imum condition (9.11) and considering the resulting relation together with equalities
(9.8) and (9.9).

Let us now turn to the solution of the maximum principle (9.11). First of all, we
check whether there is a singular control for this problem. Note that in this case there
is the possibility of the control coefficient vanishing in the definition of the function
H. This is realized when p(t) = 1. However, it was previously established that the
function p is a variable. Thus, the maximum principle cannot degenerate.

Taking into account the linearity of the function H with respect to the control,
we conclude that the solution of the maximum condition is reached on the boundary
of the set of admissible controls. Thus, we find

u(t) =
{

2, if p(t) > 1,
0, if p(t) < 1.

Note that the function p is increasing. As a result, three variants of control behavior
are possible. Either the function p at the initial time, and hence all the time, is greater
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than 1, and then the control is identically equal to 2; either p at the final moment of
time, and hence all the time, is less than 1, and then the control is identically equal
to 0; or at some point from the interval (0,1) the function p, increasing, reaches the
value of 1, and then before this time the control is equal to 0, and after that this is
equal to 2. Let us consider all three options.

If the control is identically equal to 2, then the corresponding solution to problem
(9.8) is equal to x(t) = 2t. Then x(1) = 2, which contradicts condition (9.9). If the
control is identically equal to 0, then the corresponding solution to problem (9.8) is
equal to x(t) = 0, and hence x(1) = 0. This also contradicts condition (9.9).

Now let there be a point ξ ∈ (0, 1) such that u(t) = 0 for t < ξ and u(t) = 2 for
t > ξ. Then the solution to problem (9.8) for t < ξ is equal to x(t) = 0. In particular,
x(ξ) = 0. This value is chosen as the initial condition when solving the equation of
state for t > µ. The corresponding solution has the form x(t) = 2(t–ξ), and hence
x(1) = 2(1–ξ). Taking into account equality (9.9), we conclude that ξ = 1/2. Thus,
the unique solution to the necessary optimality condition has the form9

u(t) =
{

0, if t < 1/2,
2, if t > 1/2.

It is the solution of the considered optimal control problem10.
This Example is in a certain sense similar to Examples 1.1, 3.1, and 3.2, in which

the necessary extremum condition had a unique solution, which was found analyt-
ically and turned out to be a solution to the problem posed11. Naturally, for more
difficult systems, the optimal control can only be found using some iterative methods.

9.1.4 Approximate solving of a problem with a fixed final state

As seen in Example 9.1, the system of optimality conditions for optimal control
problems with a fixed final state can be analyzed analytically. The possibility of
finding an analytical solution in this case is due to the fact that both the equation
of state and the optimality criterion are linear with respect to the function x, as a
result of which the solution of the adjoint equation was found without resorting to
the equation of state and the maximum condition12. For more difficult problems, it is
not possible to explicitly find the optimal control, and the desired result is established
using some iterative methods.

To find an approximate solution to Problem 9.1, one could try to use the method of
successive approximations described in Chapter 3 and repeatedly used earlier. Indeed,
from the maximum condition (9.7), in principle, one can find an explicit dependence of
the control on the functions x and p, as was done in Part II. Next, one can specify some
initial approximation of the control from the set U and substitute it into the Cauchy
problem (9.1). However, it is extremely unlikely that the corresponding function x
will satisfy the final condition (9.2). Moreover, even if we succeed, we are not be
able to find a function p from equality (9.6) in view of the absence of an additional
condition for this differential equation. Therefore, we cannot to move to the next
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iteration using the maximum condition. Thus, to find a solution to the problem, it is
necessary to use a qualitatively different iterative method.

Difficulties in the practical solution of the optimality conditions in this case are
due to the fact that we are actually dealing not with the Cauchy problem, but with a
boundary value problem for differential equations, since the function x has conditions
at both ends of the interval (0, T ). As a result, to find an approximate solution to
the system of optimality conditions, we use the shooting method, which allows us
to reduce the boundary value problem to the Cauchy problem13

As already noted, we cannot proceed to the next iteration in accordance with the
iterative process described in Chapter 3 due to the absence of an additional condition
for the p function. We set this condition artificially

p(T ) = ψ, (9.12)

where ψ is unknown numeric parameter. Let us now assume that from the maximum
condition (9.7) we have succeeded in determining the control as a function of x and p.
Then, by setting some value of the number ψ and solving the Cauchy problem (9.1),
(9.2), (9.6), and (9.12), one can find the functions x and p, which naturally depend
on the choice of the number ψ. Then for each number ψ we can define the function
F = F (ψ) defined by the formula

F (ψ) = x(T ) − xT ,

where x(T ) is the value of the function x = x(t), corresponding to the given value of
the parameter ψ, at the point t = T . For the validity of condition (9.2), it is required
to choose the parameter ψ in such a way that the following equality holds

F (ψ) = 0. (9.13)

Considering that the parameter ψ is numerical, equality (9.13) can be interpreted
as a non-linear algebraic equation with respect to ψ. For its approximate solution,
one can use any iterative method. As such, one can choose, for example, the following
iterative method14

ψk+1 = ψk − βkF (ψk), (9.14)

where βk is an iterative parameter.
The practical implementation of the described algorithm is as follows15.

1. The initial approximations of the control u0, the final value ψ0 of the function
p and a sequence of algorithm parameters {βk} are chosen.

2. At the current k-th iteration, from the Cauchy problem (9.1), with a known
value u = uk, the corresponding value of the state function x = xk is deter-
mined.

3. With known values u = uk, x = xk and ψ = ψk, the solution p = pk, of the
problem (9.6) and (9.12) is calculated.
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4. With known values x = xk and p = pk from maximum condition (9.7) the next
iteration of control uk+1 is determined.

5. A new approximation of the parameter ψk+1 = ψk–βk[xk(T )–xT ] is calculated.

In the case of convergence of the described algorithm, the result is a solution to
the system of optimality conditions.

RESULTS

Here is a list of questions about problems of optimal control of systems with a fixed final
state, the main conclusions on this topic, as well as the problems that arise in this case and
require additional research.

Questions

It is required to answer questions concerning optimal control problems for systems
with a fixed final state and the optimality condition for such problems.

1. Why are optimal control problems for systems with a fixed final state of prac-
tical interest?

2. In Problem 9.1, the state is described by a first-order ordinary differential equa-
tion with two boundary conditions, i.e., the system is redefined. Why does the
equation of state underlying the optimal control problem make sense under
these conditions?

3. In the general optimal control problem considered in Chapter 3, the optimality
criterion consisted of integral and terminal terms. Why is there no terminal
term in Problem 9.1?

4. Which control in Problem 9.1 is considered acceptable?

5. Does there always exist a control from a given set U that transfers the system
from one given state to another in a specified time?

6. Is there any difference between the form of the remainder term in the functional
increment formula for similar systems with a free and a fixed final state?

7. What is the fundamental difference between optimality conditions for systems
with a free and a fixed final state?

8. What is the reason for the difference between the optimality conditions for
systems with a free and with a fixed final state?

9. Is there a difference between the maximum condition for systems with a free
and a fixed final state?
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10. Why is there no boundary condition when deriving optimality conditions for
an unknown function p?

11. Why do the above transformations not provide a complete justification of the
maximum principle for Problem 9.1?

12. How many controls from a given set U take the system considered in Example
9.1 from a given initial state to a given final state?

13. Can the solution of the maximum principle for Example 9.1 be a singular con-
trol?

14. Can, in principle, the solution of the maximum principle for a system with a
fixed final state be a singular control?

15. Why was it possible to find the optimal control for Example 9.1 without
uniquely defining the solution of the adjoint equation?

16. Why was it possible to obtain the optimal control analytically for Example 9.1?

17. Why did the optimal control for Example 9.1 turn out to be a piecewise constant
function?

18. How reasonable is the assertion that the formula for control obtained as a
result of the analysis of the optimality conditions for Example 9.1 really gives
a solution to this problem?

19. Why is it not possible to use the iterative algorithm used in solving optimal
control problems for systems with a free final state for a system of optimality
conditions for systems with a fixed final state?

20. What is the meaning of the shooting method?

21. In accordance with the shooting method for the adjoint equation, the missing
condition (9.12) is added. What does it give if the parameter a included in it
is still not known in advance?

22. Why is it not enough to set the control at the initial iteration in the considered
iterative process?

23. Is there any confidence that in the case of convergence of the iterative process,
we get a control that guarantees the fulfillment of the final condition (9.2)?

24. Is there any confidence that in the case of convergence of the iterative process,
we really get the solution of the optimal control problem?
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Conclusions

Based on the study of the optimal control problem for systems with a fixed final
state, we can come to the following conclusions.

• The problems of optimal transfer of a system from one state to another are of
great practical interest.

• For problems of optimal control of systems with a fixed final state, one can use
the maximum principle.

• Optimality conditions for problems with a fixed final state include a maxi-
mum condition, a state equation with two boundary conditions, and an adjoint
equation without boundary conditions.

• In the simplest case, the solution of optimality conditions for systems with a
fixed final state can be found analytically.

• In the general case, the solution of optimality conditions for systems with a
fixed final state can be found approximately.

• The previously described iterative method for solving optimality conditions
in the form of the maximum principle turns out to be unsuitable for solving
problems with a fixed final state due to the overdetermination of the equation
of state and the underdetermination of the adjoint system.

• For a practical solving of the system of optimality conditions in this case, one
can use the shooting method.

• The shooting method is based on the reduction of the boundary value problem
for differential equations to the Cauchy problem.

• The shooting method involves introducing the missing boundary condition for
the adjoint equation with an unknown value of the corresponding function and
interpreting the final condition for the state function as an algebraic equation
with respect to the specified unknown value.

• For the practical application of the shooting method, at the initial iteration,
the control and the final state for the adjoint equation are set.

Problems

In the process of analyzing optimal control problems for systems with a fixed final
state, additional problems arise that require additional research.

1. Nontriviality of the problem statement. In principle, we do not know in
advance whether there is at least one control from a given set U that transfers
the system from one given state to another. These questions constitute the
problem of system controllability, see Notes16
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2. Justification of the maximum principle. Theorem 9.1 is given without a
full justification. Regarding the substantiation of the maximum principle for
various systems with a fixed final state, see Notes17

3. Vector case. The above results are naturally generalized to the case when
both the state function and the control are vector quantities. Such problems
are discussed in Chapter 10.

4. Generalization of restrictions. We consider here two types of constraints
that are explicit constraints on control values and fixing the final state of the
system. In Part IV, optimal control problems will be considered, in which some
integral constraints, called isoperimetric constraints, are additionally assumed
to be satisfied. In this case, both systems with a free final state and with a fixed
final state will be considered.

5. Qualitative analysis of Example 9.1. Part II presents general results con-
cerning the existence and uniqueness of solutions to optimal control problems,
as well as the sufficiency of optimality conditions. It is of interest to extend
them to systems with a fixed final state. In Appendix, these results are applied
to the analysis of Example 9.1.

6. Maximizing the functional from Example 9.1. Previously, we have re-
peatedly encountered a situation where the minimization and maximization
problems of the same functional have qualitatively different properties. In this
regard, it is of interest to solve the problem of maximizing the functional from
Example 9.1. Its solving is carried out in Appendix.

7. Examples from Part II. In Part II, we considered examples of optimal control
problems for systems with a free final state that has an analytical solution. It
would be interesting to consider similar examples for systems with a fixed final
state. Appendix considers an analogue of Example 3.1.

8. Decoupling method. In Chapter 3, it was shown that for a linear system with
a free final state with a quadratic functional in the absence of restrictions on
controls, the system of optimality conditions can be solved by the decoupling
method without using an iterative process. In Chapter 10, these results are
extended to systems with a fixed final state.

9. Variational inequality. The Lecture described a method for solving the sim-
plest optimal control problem with a fixed final state using the maximum prin-
ciple. However, in Chapter 4, a variational inequality was used to solve the
problem with a free final state. In Chapter 10 it is used to analyze optimal
control problems for systems with a fixed final state.

10. Penalty method. To solve problems of finding an extremum with equality-
type constraints, we have previously repeatedly used the penalty method; see
Chapters 2 and 4. It is based on removing the existing constraint by introducing
an additional parameter with a small parameter in the denominator into the
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optimality criterion. It seems natural to use this idea to solve optimal control
problems for systems with a fixed final state. In this case, the equality that
specifies the final state for the system is interpreted as a restriction removed
using the penalty method. The corresponding results are given in Chapter 10.

11. Counterexamples for optimal control problems for systems with a
fixed final state. For Example 9.1, as well as for the examples studied in
Appendix, there is a unique optimal control, and the maximum conditions are
necessary and sufficient and do not degenerate. However, in Part II, examples
of problems with a free final state were given, where these properties were
violated. It is of interest to consider optimal control problems for a system
with a fixed final state, for which these properties are not satisfied. Examples
of such problems are given in Chapter 11. Examples of ill-posed optimal control
problems for a system with a fixed final state are given in Chapter 12.

12. Optimal control problems with a free initial state. Moving from Part
II to Part III, we imposed an additional condition on the system, considering
the final state of the system to be known. However, the opposite situation is
also possible, when the initial state of the system re-mains unknown. Part V is
devoted to consideration of optimal control problems with a free initial state.

9.2 APPENDIX

Below, we present additional results in the field of optimal control theory for systems with a
fixed final state. In particular, in Section 9.2.1, the existence and uniqueness of the optimal
control for Example 9.1 are proved, as well as the sufficiency of the corresponding optimal-
ity conditions. Section 9.2.2 maximizes the functional from Example 9.1. In Section 9.2.3,
problems of optimal control of systems with a fixed final state with a functional quadratic
in control and linear in the state of the system are studied, which are analogues of Examples
3.1 and 3.2.

9.2.1 Qualitative analysis of Example 9.1

Chapter 5 provides theorems on the uniqueness of solutions to optimal control prob-
lems and on the sufficiency of the optimality condition in the form of the maximum
principle. In Chapter 7, Theorem of the existence of an optimal control is proved. Let
us apply these results to the analysis of Example 9.1.

Theorem 5.2 provides properties that guarantee the sufficiency of optimality con-
ditions for a system with a free final state, based on the non-negativity of the remain-
der term in the functional increment formula. These properties make it possible to
reverse the whole chain of reasoning, starting with the assumption that some control
is optimal and ending with the conclusion that it satisfies the maximum condition.
In this case, the presence or absence of a final condition for the state function affects
only the absence or presence of a similar additional condition for the adjoint equa-
tion. Thus, the non-negativity of the remainder term guarantees the sufficiency of
the optimality condition for the considered class of problems.
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As noted earlier, the remainder term for Problem 9.1 is calculated by the formula

η = −
T∫

0

(η1 + η2)dt,

where η1 is determined by terms of the second order when expanding the value
H(t, u, x + ∆x, p) in a series of ∆x, and η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x. For
Example 9.1, we have is H = pu–u–x. Considering that its derivative with respect to
the state of the system is constant, we find η = 0, which guarantees the sufficiency of
the optimality condition. It was previously established that the system of optimality
conditions has a unique solution. If the optimality conditions are sufficient, both the
existence and the uniqueness of the optimal control already follow from this. However,
we will try to establish these properties based on the general results obtained in Part
II.

According to Theorem 5.1, a strictly convex functional on a convex subset cannot
have two minimum points. In this case, a control belonging to the set

U = {u| 0 ≤ u(t) ≤ 2, t ∈ (0, 1)},

which ensures the fulfillment of condition (9.2), i.e., equalities x(1) = 1. From problem
(9.2) we find

x(1) =
1∫

0

u(t)dt.

Thus, the optimality criterion is minimized at the intersection of the sets U and

V =
{
u

∣∣∣ 1∫
0

u(t)dt = 1
}
.

Let there be two functions u and v belonging to both these sets, i.e., satisfying
inequalities

0 ≤ u(t) ≤ 2, 0 ≤ v(t) ≤ 2, t ∈ (0, 1)
and equalities

1∫
0

u(t)dt = 1,
1∫

0

v(t)dt = 1.

For an arbitrary number α ∈ (0, 1) we multiply the first of the above inequalities by
1–α, the second one by α and add the resulting values. We have inequality

0 ≤ (1 − α)u(t) + αv(t) ≤ 2, t ∈ (0, 1),

whence follows the convexity of the set U . Now we multiply the first of the above
integral equalities by 1–α, the second by α and add the results. We get

1∫
0

[
(1 − α)u(t) + αv(t)

]
dt = 1.

Thus, the set V is convex, and hence its intersection with U is convex too.
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It remains to investigate the properties of the optimality criterion. Taking into
account the representation of the solution of the Cauchy problem (9.1), we define the
functional

I(u) =
1∫

0

[
u(t) + x(t)

]
dt =

1∫
0

[
u(t) +

t∫
0

u(τ)dτ
]
dt.

Obviously, this one is linear. As a result, we obtain the equality

I
(
(1–α)u+ αv

)
= (1–α)I(u) + αI(v).

Thus, the minimized functional is convex, but not strictly convex. Therefore, we are
unable to use Theorem 5.1 to prove the uniqueness of the solution to the problem.
Nevertheless, the optimal control is unique, since only one control satisfies the opti-
mality condition18.

Let us now try to use Theorem 7.1 to prove the existence of a solution to the
problem under consideration. According to this statement, the problem of minimizing
a convex continuous functional bounded below on a convex closed bounded subset of
a Hilbert space has a solution.

We investigate the properties of the set of admissible controls for Example 9.1,
which is the intersection U ∩ V of the sets defined above. First of all, we clarify that
the control in this example can again be chosen from the Hilbert space L2(0, 1) of
square-integrable functions on the given interval (0,1). The boundedness of the set
under consideration is obvious19, and its convexity was established above. Let us
show that this set is closed.

Let there be a sequence of functions {uk} of the set under consideration such
that uk → u in L2(0, 1). It is required to establish that the limit u belongs to the
sets U and V . As already noted in Chapter 7, the convergence of a sequence in the
space L2(0, 1) implies the existence of some of its subsequences converging almost
everywhere. Thus, from {uk} one can single out a subsequence {us} such that the
numerical sequence us(t) → u(t) converges for almost values of t from the interval
(0,1). The inclusion us ∈ U implies the validity of the inequality 0 ≤ us(t) ≤ 2.
Hence, as a result of passing to the limit, we obtain the inequality20 0 ≤ u(t) ≤ 2.
Therefore, the inclusion u ∈ U is true.

Let us now show that the indicated limit also belongs to the set V . It is known that
the strong convergence of a sequence in a Hilbert space implies its weak convergence21,
i.e., condition (uk, v) → (u, v) for all v from L2(0, 1). We choose here as v a function
that is identically equal to unity. As a result, we get the convergence

1∫
0

uk(t)dt →
1∫

0

u(t)dt.

Given that the left side of this ratio is equal to one, we conclude that its right side
is the same, and hence u ∈ V . Thus, the optimality criterion for Example 9.1 is
minimized on the closed set.



Maximum principle for systems with a fixed final state ■ 275

Let us now turn to the properties of the functional to be minimized. Its convexity
has been proven above. Let us establish that it is lower bounded. It follows from the
definition of the set U that all values of the admissible control u are non-negative.
Then all values of the corresponding state function

x(t) =
t∫

0

u(τ)dτ

are also non-negative. This implies that the optimality criterion on any admissible
control cannot take negative values, and hence is lower bounded.

Let us now establish the continuity of the optimality criterion. Let the convergence
uk → u again take place in L2(0, 1). Denote by xk and x the solutions to problem
(9.1) corresponding to the controls uk and u. We get the inequality

∣∣xk(t) − x(t)
∣∣ =

∣∣∣ t∫
0

[
uk(τ) − u(τ)

]
dτ

∣∣∣ ≤
t∫

0

∣∣uk(τ) − u(τ)
∣∣dτ ≤

1∫
0

∣∣uk(τ) − u(τ)
∣∣dτ.

Here, the function under the integral on the right-hand side can be interpreted as the
scalar product of the given expression and a function that is identically equal to one.
Then, applying the Schwartz inequality, we obtain the estimate∣∣xk(t) − x(t)

∣∣ ≤ ∥uk − u∥,

and hence xk(t) → x(t). Taking into account the previously established convergence
of the sequence of integrals of controls, we have

1∫
0

[
uk(t) + xk(t)

]
dt →

1∫
0

[
u(t) + x(t)

]
dt,

and hence I(uk) → I(u). Thus, the minimized functional is continuous. Thus, all the
conditions of Theorem 7.1 are satisfied, which means that the optimal control for
Example 9.1 does indeed exist22.

9.2.2 Maximizing the functional from Example 9.1

As already noted, the problems of minimizing and maximizing the same functional
often have qualitatively different properties23. Let us now turn to the problem of
maximizing the functional from Example 9.1.

Example 9.2 It is required to maximize the functional

I(u) =
1∫

0

(u+ x)dt
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on a subset of such functions u=u(t) from the set

U =
{
u

∣∣ 0 ≤ u(t) ≤ 2, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

ensure the fulfillment of the condition

x(1) = 1.

As in Example 9.1, the function H is defined by the formula

H(t, u, x, p) = pu–u–x,

where p is a solution of the adjoint equation

p′(t) = 1, t ∈ (0, 1),

coinciding with (9.10). However, instead of the maximum condition (9.11), the opti-
mal control satisfies the corresponding minimum condition[

p(t) − 1
]
u(t) − x(t) = min

v∈[0,2]

[
p(t) − 1

]
v − x(t), t ∈ (0, 1).

The solution of the adjoint equation is again defined by the formula p(t) = t+ c,
where c is an arbitrary constant, i.e., the function p is increasing. However, the
solution of the optimality condition now has the form

u(t) =
{

0, if p(t) > 1,
2, if p(t) < 1.

Compared to the similar formula from Example 9.1, here the boundaries are reversed.
We again have three possible behaviors of the system. Here, either the function p at
the initial time, and hence all the time, is greater than one, and then the control is
identically equal to zero; either p at the final time, and hence all the time, is less
than one, and then the control is identically equal to two; or at some point in time
from the interval (0,1), the function p, increasing, reaches the value of one, and then
before this time the control is equal to two, and after that it is equal to zero.

As noted in the study of Example 9.1, controls that are identically equal to zero
or two do not guarantee the fulfillment of the equality x(1) = 1, which means that
they are certainly not solutions to the problem. Thus, it suffices to consider only
the third case. Now let there be a point ξ ∈ (0, 1) such that u(t) = 2 for t < ξ
and u(t) = 0 for t > ξ. Then the solution of the Cauchy problem for t < ξ is
x(t) = 2t. In particular, x(ξ) = 2ξ. Since the function x does not change in the
next time interval (its derivative, i.e., the control is equal to zero), then the equality
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Figure 9.1 Solutions of problems from Examples 9.1 and 9.2.

x(1) = 2ξ is satisfied. As a result, we find ξ = 1/2. Therefore, the unique solution to
the optimality condition is

u(t) =
{

2, if t < 1/2,
0, if t > 1/2.

Compared to Example 9.1, the values that the control takes in the first and second
half of the considered time interval have changed here; see Figure 9.1.

Since the remainder term in the minimization and maximization problem is the
same, and in the preceding Subsection it is stated that it is equal to zero, we con-
clude that the optimality conditions for Example 9.2 are also necessary and suf-
ficient24.Thus, the above formula does indeed give a solution to the optimization
problem25.

9.2.3 Problem with a quadratic functional

Examples 9.1 and 9.2 considered earlier, the solution of which was found analytically,
are characterized by a linear functional. However, in Chapter 3, the solution to the
problem for Examples 3.1 and 3.2 was found analytically, although the optimality
criterion was quadratic with respect to control. Let us show that similar results can
be obtained for a system with a fixed final state.
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Example 9.3 It is required to minimize the functional

I(u) =
1∫

0

(1
2u

2 − 3x
)
dt

on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ 1 ≤ u(t) ≤ 2, t ∈ (0, 1)
}
,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0 (9.15)

ensure the fulfillment of the condition

x(1) = 3/2. (9.16)

This problem differs from the one considered in Example 3.1 only by the presence
of an additional condition (9.16). To solve it, we use Theorem 9.1. Define a function

H = pu–u2/2 + 3x.

The function p in this formula is a solution to the adjoint equation

p′(t) = −3, t ∈ (0, 1). (9.17)

From the condition of the maximum of the function H with respect to the control on
the interval [1,2], we find the control

u(t) =


1, if p(t) < 1,

p(t), if 1 ≤ p(t) ≤ 2,
2, if p(t) > 2.

(9.18)

The result obtained exactly coincides with what was established in the analysis
of Example 3.1. However, in that case for the adjoint equation (9.17) there was
an additional condition for t = 1. Thus, for the function p, the Cauchy problem
was obtained, the solution of which was then substituted into formula (9.18). The
resulting formula determined the optimal control for Example 3.1.

In this case, due to the presence of additional condition (9.16), there is no bound-
ary condition for the adjoint equation. Thus, we cannot define the function p uniquely.
We can only assert that equation (9.17) is satisfied by any function of the form
p(t) = c–3t, where c is an arbitrary constant. As a result, formula (9.18) takes the
form

u(t) =


2, if c− 3t > 2,

c− 3t, if 1 ≤ c− 3t ≤ 2,
1, if c− 3t < 1.

(9.19)
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Further, in principle, one should substitute the found control into the equation of
state (9.15). Naturally, the solution of the latter will depend on the choice of the
constant c, which should be chosen in such a way that condition (9.16) is satisfied.

Note that, regardless of the constant c, the function p is decreasing. As a result,
the following behaviors of the system are possible. Either c > 5, which means c–3t > 2
for all t ∈ (0, 1), and then u(t) = 2; or c < 1, and hence c–3t < 1 for all t ∈ (0, 1),
and then u(t) = 1; or 1 ≤ c ≤ 5, and then the control, in accordance with formula
(9.19), has one or two discontinuity points on the interval (0,1).

For u(t) = 2, for any t, problem (9.15) has a solution x(t) = 2t, and hence
x(1) = 2. However, this contradicts condition (9.16). For u(t) = 2, for all t, problem
(9.15) has a solution x(t) = t, and hence x(1) = 1, which also contradicts equality
(9.16). Consequently, the control is discontinuous. This means that there are points
ξ and η such that 0 ≤ ξ < η ≤ 1, and the following equalities hold

c− 3ξ = 2, c− 3η = 1. (9.20)

Note that for ξ = 0 and for η = 1 there is only one discontinuity point, and in other
cases, the control takes the value 2 on the interval (0, ξ), equals the function c–3t on
the interval (ξ, η), after which it takes value 1. Let us find the corresponding solution
of problem (9.15).

Integrating the equality x′(t) = 2 from 0 to ξ, taking into account the initial
condition x(0) = 0, we find the value x(ξ) = 2ξ. It is the initial condition for the
equation x′(t) = c − 3t on the interval (ξ, η). From equalities (9.20) we find the
constants c = 3ξ + 2 and η = ξ + 1/3. Thus, there is an equation x′(t) = 2 + 3ξ − 3t
on the interval (ξ, ξ+ 1/3) with the initial condition x(ξ) = 2ξ. As a result of solving
this Cauchy problem, the value x(ξ + 1/3) = 2ξ + 1/2 is determined. Finally, we
obtain an equation x′(t) = 1 on the interval (ξ + 1/3, 1) with the initial condition
x(ξ + 1/3) = 2ξ + 1/2. Solving this problem, we determine x(1) = ξ + 7/6.

Comparing the result obtained with formula (9.16), we conclude that ξ = 1/3.
Taking into account the connection between the numbers c, η and ξ indicated earlier,
we conclude that c = 3 and η = 2/3. Substituting the found values into formula
(9.19), we find the unique solution of the optimality conditions

u(t) =


2, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3,
1, if 2/3 < t < 1.

The result obtained exactly coincides with the optimal control for Example 3.1 and is
the solution of the optimal control problem for the considered example26. Thus, this
problem has a unique solution, and the optimality conditions used for it are necessary
and sufficient27.

Let us consider one more example.

Example 9.4 It is required to find the maximum of the functional from Example 9.3
on the same set.
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The only difference from Example 9.3 here is that the solution to the problem
is determined from the minimum condition for the function H. Its only stationary
point corresponds to the maximum of this function. Thus, its minimum can be reached
exclusively at the boundary. Find the values

H(1) = p–1/2 + 3x, H(2) = 2p–2 + 3x.

Now we obtain
u(t) =

{
1, if p(t) > 3/2,
2, if p(t) < 3/2.

The solution of the adjoint equation again has the form p(t) = c–3t, where c is an
arbitrary constant, which means that the function p is decreasing. Therefore, there
are three possible behaviors of the system. Either the function p is always greater
than 3/2, and the control is equal to one; either p is always less than 3/2 and the
control is two; or p is first greater than 3/2 and then less than this value, and the
control has a jump from value 1 to 2. When examining Example 9.3, it was noted
that the first two cases cannot ensure the condition x(1) = 3/2. Thus, only the last
option remains.

Suppose that there is a point ξ from the interval (0,1), that u(t) = 1 for t < ξ and
u(t) = 2 for t > ξ. From the equation x′ = 1 with the initial condition x(0) = 0 we
find x(ξ) = ξ. Choosing this value as the initial condition for the equation x′ = 2, we
determine x(1) = ξ + 2(1–ξ). Equating the result 3/2, we find the control switching
point ξ = 1/2. Thus, the solution to the problem is determined by the formula

u(t) =
{

1, if 0 < t < 1/2,
2, if 1/2 < t < 1.

The resulting function exactly coincides with the optimal control for Example
3.4, which is quite natural, since the latter minimizes this functional on the entire set
U , and not just on its subset, which ensures the equality x(1) = 3/2.

Additional conclusions

Based on the study of examples of optimal control problems for systems with a fixed
final state, carried out in Appendix, we can draw the following additional conclusions.

• For problems of optimal control of systems with a fixed final state, one can
use the previously obtained assertions about the existence and uniqueness of a
solution and the sufficiency of optimality conditions.

• The set of controls from a given set that guarantees the transfer of the system
to a given state from Example 9.1 is convex, closed and bounded.

• The solution of the optimal control problem from Example 9.1 is unique, al-
though the minimized functional for it is convex, but not strictly convex.
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• The maximum principle for Example 9.1 gives the necessary and sufficient con-
ditions for optimality.

• For Example 9.2, which differs from Example 9.1 only in the type of extremum,
there is also a unique solution that can be found analytically.

• The maximum principle for Example 9.2 gives the necessary and sufficient con-
ditions for optimality.

• The optimal control problem from Example 9.3, which differs from the one
considered in Example 3.1 only by the presence of a pinned final state condi-
tion, admits an analytical solution that coincides with the optimal control from
Example 3.1.

• The optimal control problem from Example 9.4, which differs from that con-
sidered in Example 3.2 only by the presence of a pinned final state condition,
admits an analytical solution that coincides with the optimal control from Ex-
ample 3.2.

Notes

1. To substantiate the maximum principle, it is required to indicate the functional properties
of admissible controls. However, in this case, our goal is not maximum rigor. We only want to
establish the form of the necessary optimality conditions for a problem with a fixed final state.

2. Note that there is no terminal term in the definition of the optimality criterion. This is
due to the fact that the final state of the system in this case is given, and therefore does not
change with a change in control.

3. Optimal control problems for distributed systems with a fixed finite state are considered;
for example, in [25], [169].

4. In this case, we ignore the question of how to find a control that is an element of the set
U and transfers the system from one known state to another, and whether it exists at all. The
goal is to obtain relations that are satisfied by the optimal control.

5. Naturally, the penalty method can also be applied here; see Chapter 10.

6. Chapter 3 dealt with an optimal control problem with a free final state. As a result, the
increment of the state function at the final moment of time was, generally speaking, different
from zero. It is this circumstance that predetermined the presence of a final condition for the
adjoint equation for systems with a free final state and its absence for systems with a fixed
final state.

7. This is a consequence of fixing the final state of the system, i.e., condition (9.2)

8. Naturally, the assertions of the theorem must be rigorously substantiated. To do this, we
can use the same technique as in Chapter 3.

9. Chapter 10 will show that applying the variational inequality for this example leads to the
same result.
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10. For this conclusion to be true, we must also verify that the optimal control problem has
a solution. Recall the problem of minimizing the function f(x) = x3 considered in Chapter 1,
for which the unique solution of the stationary condition x = 0 is not the minimum point of
this function.

11. Chapter 10 will consider other optimal control problems for systems with a fixed final state,
the solution of which is also found analytically; see Examples 10.2 and 10.3. It is characteristic
that there the maximum principle has three solutions, which turn out to be special controls,
and only two of them are optimal. Chapter 13 will also provide an analytical solution to the
optimal control problem for a system with isoperimetric constraints; see Example 13.1.

12. A similar situation was observed for Example 3.1.

13. On the shooting method for the practical solution of boundary value problems for differen-
tial equations; see [46], [65], [149], [154], [183]. In Chapter 13, the shooting method is extended
to problems with a fixed final state in the presence of an additional isoperimetric condition. In
Chapter 16, optimal control problems of systems with a free initial state will be considered.
In this case, on the contrary, there is no initial condition for the equation, and for the adjoint
equation there are two boundary conditions. To approximately solve the optimality conditions
in this case, you can also use the shooting method.

14. We already used this method in Chapter 2 to approximate the problem of minimizing a
function of one variable.

15. In the described algorithm, the fourth and fifth steps can be interchanged.

16. The general theory of systems controllability is considered in [66], [98], [150], [182], [196].
On controllability of systems with distributed parameters, see [18], [64], [66], [89], [105], [116];
for integral equations, see [7]; for integro-differential equations, see [18]; for lagging systems,
see [80]; for stochastic systems, see [199]; for differential inclusions, see [45]. Examples of non-
controllable systems are given in [73], [89].

17. Regarding the substantiation of the maximum principle for a wide class of systems de-
scribed by ordinary differential equations; see [5], [74], [95], [152], [193].

18. In Chapter 5, we encountered a situation where a convex but not strictly convex functional
has an infinite set of solutions. At the same time, convex but not strictly convex f(x) = |x|
has a unique minimum point.

19. The boundedness of the set U is obvious. We recall here that the boundedness of a subset
of a normed space means the uniform boundedness of the norms of the elements of this set. In
our case, all values of the functions under consideration lie on the interval [0,2], which implies
the corresponding boundedness of the norms.

20. We remind you that a function from the space L2(0, 1) is defined up to a set of zero
measure. As a result, the presence of convergence us(t) → u(t) for almost all t is sufficient to
pass to the limit in the last inequality and obtain the desired result.

21. In fact, such a statement is true not only for Hilbert spaces; see [94], [100], [106], [158].
However, in Hilbert spaces it is easily established using the Schwartz inequality given in Chapter
6. In particular, for any function v from the space under consideration, we have

|(uk, v)–(u, v)| = |(uk–u, v)| ≤ ∥uk–u∥ ∥v∥.

Then the convergence of uk → u in the sense of the L2(0, 1) norm implies that (uk, v) → (u, v)
for all v from L2(0, 1), i.e., corresponding weak convergence.
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22. However, we already know this, since earlier a unique solution of the optimality conditions
was found and it was proved that they are sufficient. Similarly, the existence of an optimal
control will be proved in Chapter 13 for one problem with the isoperimetric condition.

23. Thus, the problem of minimizing the function f(x) = x2 on the entire real line has a
solution, but the problem of maximizing the same function has no solution. The solution of
the minimization problem for the same function on the interval [–1, 1] is unique, and the
corresponding maximization problem has two solutions. The functional minimization problem
from Example 3.3 has a unique solution, and the corresponding necessary optimality conditions
are sufficient for it. At the same time, Example 5.1, which differs from Example 3.3 only in the
type of extremum, is characterized by the presence of two optimal controls and an essentially
insufficient optimality condition.

24. In Chapter 10, to solve this example, the variational inequality will also be applied, which
in this case is not a sufficient condition for optimality.

25. Examples 9.1 and 9.2 consider the functional

I =
1∫

0

(u + x)dt.

The solution of the equations of state at a specific point t is equal to the integral of the control
from zero to t. Therefore, the condition x(1) = 1 is equivalent to the unity of the integral of
the control on the interval (0,1). Thus, in the optimality criterion, in fact, only the integral of
the function x can vary. This value is actually equal to the area of the figure bounded by the
curve x = x(t). As can be seen from Figure 9.1 for Example 9.1 this area is minimal, and for
Example 9.2 it is maximal.

26. This should not be surprising, since condition (9.16) is realized on this control. The optimal
control from Example 3.1 delivers a minimum to this functional on the set U . Naturally, it also
minimizes this functional on the subset of functions from U that guarantee the fulfillment of
condition (9.16). Note that, by changing the type of extremum, it is easy to establish that the
solution of the corresponding problem will be the optimal control from Example 3.2, which
maximizes the given functional on the entire set U , and not only on its specified subset.

27. These statements can be justified in the same way as for Example 9.1. Moreover, one
can establish a strong convexity of the functional, as was done in Chapter 8, and prove the
well-posedness of the optimal control problem in the sense of Tikhonov.
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Addition

The previous chapter considers the optimal control problems for systems described by an
ordinary differential equations with given initial and final states. To solve this problem,
the maximum principle was used. However, in Part II, other methods were used to solve
optimal control problems for systems with a free final state. In this chapter, these results are
extended to the class of problems under consideration. The decoupling method, variational
inequality and the penalty method will be considered. Appendix establishes the applicability
of the Bellman optimality principle, considers the vector problem of optimal control of a
system with a fixed final state, and solves two problems of this class that have practical
meaning.

10.1 LECTURE

The subject of this lecture is the optimal control problem posed in the previous section,
which is described by ordinary differential equations with given initial and final states. It
is required to choose such a control, subject to some additional restrictions, which delivers
a minimum to the integral functional of a general form. To solve it, the decoupling method
described in Part II, the variational inequality and the penalty method are used.

10.1.1 Decoupling method

In Examples 9.1 and 9.2, the solution of the optimal control problem for systems with
a fixed final state was found without using an iterative process. This is explained by
the fact that both the state equation and the optimality criterion there were linear
with respect to the state and control functions. In Examples 9.3 and 9.4, a similar
result was achieved in the case of a functional that is quadratic with respect to the
control. In the general case, to find an approximate solution to the problem, one can
use the previously described shooting method. However, in Chapter 3 it was shown
that for the analysis of general linear systems with a quadratic functional without
restrictions on the control, iterative methods can be dispensed with. Similar method
is also applicable for systems with a fixed final state.
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We consider a system described by the following Cauchy problem

x′(t) = a(t)x(t) + b(t)u(t) + f(t), t ∈ (0, T ); x(0) = x0, (10.1)

where the functions a, b, f , and the number x0 are known. The final state of the
system is fixed, i.e., the following equality holds

x(T ) = xT . (10.2)

Consider the functional

I(u) = 1
2

T∫
0

{
α

[
x(t) − z(t)

]2 + β
[
u(t)

]}
dt,

where the function z and the positive constants α and β are known, and x is the solu-
tion to problem (10.1). We pose the linear-quadratic optimal control problem
with a fixed final state.

Problem 10.1 It is required to find a function u that minimizes the functional I on
the set of controls that guarantee the fulfillment of the equality (10.2).

This problem is a partial case of Problem 9.1 and differs from Problem 3.2 only
in the presence of the additional condition (10.2). In accordance with Theorem 9.1,
define the function

H = p
(
ax+ bu+ f

)
–

[
α(x–z)2 + βu2]

/2.

Then the adjoint equation (9.6) takes the form

p′(t) = a(t)[x(t) − x(t)] − b(t)p(t), t ∈ (0, T ). (10.3)

In contrast to problem (3.24), there is no final condition here. The solution of the
maximum condition for the function H with respect to the control is the function

u(t) = β−1b(t)p(t), t ∈ (0, T ). (10.4)

The result obtained coincides exactly1 with formula (3.25).
Thus, with respect to three unknown functions u, x, the system (10.1)–(10.4)

is obtained. It differs from the system (3.23)–(3.25) obtained in Chapter 3 only by
the presence of the final condition (10.2) for the state function and the absence of
a similar condition for the function p. Substituting the control from formula (10.4)
into the first equality (10.1), we have the Cauchy problem

x′(t) = β−1b(t)2p(t) + a(t)x(t) + f(t), t ∈ (0, T ); x(0) = x0 (10.5)

exactly coinciding with (3.26). The result is a system of two linear differential equa-
tions (10.3) and (10.5) with two boundary conditions (10.2).
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When solving Problem 3.2, two linear differential equations with two bound-
ary conditions were also obtained. It was assumed that the functions x and p are
connected between some kind of linear transformation. The search for such a trans-
formation was the basis for using the decoupling method and solving the problem
under consideration without using an iterative process. Let us show that a similar
technique is applicable for Problem 10.1.

Let us define the system state function by the formula

x(t) = r(t)p(t) + q(t), t ∈ (0, T ), (10.6)

where the functions r and q are chosen in such a way that the result is a solution
to system (10.2), (10.3), and (10.5). In contrast to the similar formula (3.27), here
we determine x as a function of p, and not vice versa. This is explained by the fact
that in this case the condition at the final moment of time is given by the function
x, and not p. Such a representation will later allow us to obtain final conditions for
the functions r and q.

Substituting the function x from equality (10.6) into equation (10.5), we obtain

r′p+ rp′ + q′ = β−1b2p+ a(rp+ q) + f.

Taking into account equation (10.3), we have

r′p+ r
[
α(x− z) − bp

]
+ q′ = β−1b2p+ a(rp+ q) + f.

Substituting here the value of the function x from equality (10.6), we get[
r′ + αr2 − (a+ b)r − β−1b2]

p +
(
q′ + αrq − aq − αzr − f

)
= 0.

Determining in equality (10.6) t = T and taking into account condition (10.2), we
have

r(T )p(T ) + q(T ) = xT .

The last two relations represent the equalities to zero of some linear functions
with respect to the function p, respectively, at an arbitrary and final time. These
equalities can be satisfied if both the coefficients before p and the free terms in them
vanish. As a result, we arrive at the following problems for the functions r and q

r′(t) + αr(t)2 −
[
a(t) + b(t)

]
r(t) = β−1b(t)2, t ∈ (0, T ); r(T ) = 0; (10.7)

q′(t) + αr(t)q(t) − a(t)q(t) − αz(t)r(t) = f(t), t ∈ (0, T ); q(T ) = xT . (10.8)

Note that, as in Problem 3.2, the equation for the function r includes a quadratic
non-linearity, i.e., is the Riccati equation, and the equation for the function q is
linear.

Based on the results obtained, we arrive at the following algorithm for solving
the considered problem:

1. The Cauchy problem (10.7) is solved in the reverse direction of time for the
Riccati differential equation with respect to the function r.
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2. The Cauchy problem (10.8) is solved in the reverse direction of time for a linear
differential equation with respect to the function q.

3. After substituting the function p = r−1(x–q) into problem (10.5), we find the
function x from the Cauchy problem for the linear differential equation

x′(t) =
[
β−1b(t)2r(t)−1+a(t)

]
x(t)+

[
f(t)−β−1b(t)2r(t)−1q(t)

]
, t ∈ (0, T ); x(0) = x0.

(10.9)

4. Using formulas (10.4) and (10.6), we find the control2

u(t) = β−1b(t)r(t)−1[x(t)–q(t)], t ∈ (0, T ). (10.10)

Thus, the solution of the considered optimal control problem can be found
explicitly without using the iterative process3.

As an application, consider the following example.

Example 10.1 It is required to minimize the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0,

satisfying the condition x(1) = 0.

This example differs from Example 3.4 only in the presence of an additional
condition at the end time. We have Problem 10.1 with the following parameter values

a = 0, b = 1, f = 0, x0 = 0, z = 0, α = 1, β = 1, T = 1.

Problems (10.7) and (10.8) here have the following form

r′(t) + r(t)2 − r(t) = 1, t ∈ (0, 1); r(1) = 0,

q′(t) + r(t)q(t) = 0, t ∈ (0, 1); q(1) = 0.

Note that the last of them has a zero solution. Then problem (10.9) is transformed
to the form

x′(t) = r(t)−1x(t), t ∈ (0, 1); x(0) = 0,

and also has a zero solution. Then it follows from formula (10.10) that u = 0. This
corresponds to the optimal control in Example 3.4, which satisfies the condition
x(1) = 0.
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10.1.2 Variational inequality

In Part II, to study optimal control problems, along with the maximum principle, we
also used the optimality condition in the form of a variational inequality. Let us show
that, in principle, it can also be used to analyze systems with a fixed final state. For
simplicity, we restrict ourselves to the examples described in the previous chapter.

In Example 9.1, the problem is to minimize the functional

I(u) =
1∫

0

(u+ x)dt,

where x is a solution of Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0,

on the set of functions u satisfying the inequality 0 ≤ u(t) ≤ 2, t ∈ (0, 1) and ensuring
the fulfillment of the condition x(1) = 1.

Let u be a solution to this problem and x the corresponding solution to the
Cauchy problem. Then the given functional I satisfies the inequality

I(v, y) – I(u, x) ≥ 0,

where v is an arbitrary admissible control and y is the corresponding solution to the
Cauchy problem. We define the Lagrange functional

L =
1∫

0

[
(u+ x) + p(x′ − u)

]
dt

with arbitrary function p. Then the following inequality holds
1∫

0

(1 − p)(v − u)dt +
1∫

0

(∆x+ p∆x′)dt ≥ 0,

where ∆x = y–x. After integrating by parts, taking into account that the initial and
final states of the system do not depend on the control, we obtain

1∫
0

(1 − p)(v − u)dt +
1∫

0

(1 − p′)∆xdt ≥ 0.

Here, we choose the function p so that it satisfies the condition

p′(t) = 1, t ∈ (0, 1),

which corresponds to the adjoint equation. Then the previous inequality takes the
form

1∫
0

(1 − p)(v − u)dt ≥ 0.
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Choosing here as v the needle variation of the control, taking into account the
constraints on the control, as was done in Chapter 3, we obtain the variational in-
equality

[1–p(t)] [w–u(t)] ≥ 0 ∀w ∈ [0, 2].

Obviously, it is equivalent to the maximum condition (9.11), and hence leads to the
same result

u(t) =
{

0, if t < 1/2,
2, if t > 1/2.

Thus, the maximum principle and the variational inequality for Example 9.1 are
equivalent4.

Example 9.2 differs from the one considered above only in the type of extremum.
Then the variational inequality for it is obtained by replacing the relation ≥ in the
previous inequality with ≤. The corresponding optimality condition

[1–p(t)] [w–u(t)] ≤ 0 ∀w ∈ [0, 2]

is also identical to the maximum principle for this example and has a solution

u(t) =
{

2, if t < 1/2,
0, if t > 1/2.

Consider now Example 9.3, which consists in minimizing the functional

I(u) =
1∫

0

(u2

2 − 3x
)
dt,

where x is a solution of Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

on the set of functions u satisfying the inequality 1 ≤ u(t) ≤ 2 for 0 < t < 1 and
guaranteeing the fulfillment of the condition x(1) = 3/2. Let u be a solution to this
optimal control problem, and x be the corresponding state of the system. Then we
get the inequality

I(v, y) – I(u, x) ≥ 0,

where v is an arbitrary admissible control and y is the corresponding solution to the
Cauchy problem. We define the Lagrange functional

L =
1∫

0

[(u2

2 − 3x
)

+ p(x′ − u)
]
dt.

Then we get the inequality
1∫

0

[(v2 − u2

2 − 3∆x
)

+ p∆x′ − p(v − u)
]
dt ≥ 0.
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We choose the function p so that it satisfies the condition

p′(t) = −3, t ∈ (0, 1).

Then the previous inequality takes the form
1∫

0

[v2 − u2

2 − p(v − u)
]
dt ≥ 0.

It is easy to show that the set of controls that satisfy both given constraints is convex5.
Then, using the convex variation of the control, i.e., v = u+σ(s–u), where σ ∈ (0, 1),
and s is an arbitrary control that satisfies the given constraints, we have

σ

1∫
0

[
(u− p)(s− u) + σ(s− u)2/2

]
dt ≥ 0.

After dividing by σ and passing to the limit at σ → 0, we obtain the variational
inequality

1∫
0

(u− p)(s− u)dt ≥ 0 ∀s.

Choosing here as s the needle variation and passing to the limit taking into account
the mean value theorem, as has already been done repeatedly, we obtain the varia-
tional inequality

[p(t)–u(t)] [w–u(t)] ∀ ≤ 0 ∀w ∈ [1, 2],

exactly the same as corresponding condition obtained in Chapter 4 for Example 3.1.
Its solution, as is already known, has the form

u(t) =


2, if 0 < t < 1/3,

3 − 3t, if 1/3 ≤ t ≤ 2/3,
1, if 2/3 < t < 1.

The resulting relation coincides with formula, established for the example under con-
sideration using the maximum principle. Thus, the variational inequality for Example
9.3 again turns out to be equivalent to the maximum principle.

Let us now turn to Example 9.4, in which it is required to find the maximum
of the functional from Example 9.3. The corresponding variational inequality for it
is obtained from the previous one by replacing the sign ≤ with ≥, i.e., looks like
coinciding with the similar inequality obtained in Chapter 4 for Example 3.2. It was
shown that u(t) = 1 for p(t) > 1, u(t) = 2 for p(t) < 2, and u(t) = p(t) for p(t) ∈ [1, 2].
Thus, for p(t) ∈ [1, 2] the solution of this variational inequality can take three values
at once 1, 2, and p(t). Now the set of its solutions turns out to be wider than the
set of solutions of the maximum principle, i.e., the latter is more efficient. Thus, the
relationship between the considered optimality conditions for a system with a fixed
final state remains the same as for a similar system with a free final state.
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10.1.3 Penalty method

In Chapters 2 and 4, the penalty method was used to solve extremal problems with
constraints in the form of equalities. It is quite natural to try to use it to solve
problems with a fixed final state. In this case, it is the additional condition at the
final moment of time that can be eliminated by introducing an additional term into
the optimality criterion with a small parameter.

Let us return to the consideration of the general Problem 9.1. It consists in finding
such a control u from the set

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

guaranteeing the fulfillment of the condition

x(T ) = xT

for a function x that is a solution to the problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ), x(0) = x0

while minimizing the functional

I =
T∫

0

g(t, u(t), x(t))dt.

In accordance with the penalty method, the functional is define the functional

Iε =
T∫

0

g(t, u(t), x(t))dt + 1
2ε

[
x(T ) − xT

]
,

where ε is a small positive parameter. The problem of minimizing the functional Iε on
the set U is a partial case of the previously considered Problem 3.1. In this case, the
second term on the right side of this functional corresponds to the terminal term of
the optimality criterion. To solve the problem obtained, we use the method described
earlier.

We define
H(t, u, x, p) = pf(t, u, x)–g(t, u, x).

The solution of the adjoint system is chosen as the function p

p′(t) = −Hx(t, u(t), x(t), p(t)), t ∈ (0, T ), p(T ) = ε−1[xT − x(T )].

The optimal control is now determined from the maximum condition

H(t, u(t), x(t), p(t)) = max
v∈[a(t),b(t)]

H(t, v, x(t), p(t)), t ∈ (0, T ).
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The resulting system of optimality conditions is solved iteratively, as was done in Part
II. The result for small enough values of the parameter ξ is chosen as an approximate
solution of Problem 9.1.

In particular, for Example 9.1, the corresponding adjoint system has the form

p′(t) = 1, t ∈ (0, 1), p(1) = ε−1[1 − x(1)].

The function H here is equal to pu–u–x, i.e., is defined in the same way as in Chapter
3. Accordingly, the solution of the maximum condition is again calculated by the
formula

u(t) =
{

2, if p(t) > 1,
0, if p(t) < 1.

Find a solution to the adjoint system

p(t) = t− 1 + ε−1[1 − x(1)].

Note that the function p is monotonically increasing. Therefore, in principle, three
cases are possible. Either the function p is always greater than 1, or it is always less
than 1, or it is first less than and then greater than 1. Let us consider these three
cases.

Assume that p(t) is always greater than 1. Then we have a control u(t) = 2 for all
t. Therefore, x(t) = 2t, and hence x(1) = 2. In this case, the solution of the adjoint
system is p(t) = t–1–ε−1. For sufficiently small ε, the function p certainly takes a
value less than 1, which contradicts the assumption made, which means that this
case is not realized at all.

Suppose now that p(t) is always less than 1. Then we have the control u(t) = 0
for all t. Therefore, x(t) = 0, and hence x(1) = 0. In this case, the solution of the
adjoint system p(t) = t–1+ε−1. For sufficiently small ε, the function p certainly takes
on a value greater than 1, which again contradicts the assumption made. Therefore,
this case is also not implemented.

Now let there be a point ξ from the interval (0,1) at which the increasing function
p is equal to one. Then the control u(t) is equal to 0 for t < ξ and equal to 2 for t > ξ.
We find the state function x(t) = 0 for t < ξ, which means x(ξ) = 0. For t > ξ we have
x(t) = 2(t–ξ), and then x(1) = 2(1–ξ). As a result, we find p(t) = t–1 + ε−1(2ξ–1).
According to the assumption made, the equality p(ξ) = 1 should hold. Having defined
t = ξ, in the previous formula, we have p(ξ) = ξ–1 + ε−1(2ξ–1) = 1. From here, we
find the point

ξ = 2 + ε−1

1 + 2ε−1 = 1 + 2ε
2 + ε

.

For small enough values of ε, the point ξ really lies on the interval (0,1), which means
that the function

uε(t) =
{

0, if t < 1+2ε
2+ε ,

2, if t > 1+2ε
2+ε

is the unique solution to the system of optimality conditions for the problem of
minimizing the functional Iε. It is the minimum point of this functional6.
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Passing to the limit in the last equality as ε → 0, we find the function

uε(t) =
{

0, if t < 1/2,
2, if t > 1/2

which we know is the optimal control for Example 9.1. Thus, using the penalty
method, we can find not only an approximate, but also an exact solution to this
problem7.

RESULTS

Here is a list of questions in the field of various methods for solving problems of optimal
control of systems with a fixed final state, the main conclusions on this topic, as well as the
problems that arise in this case and require additional research.

Questions

It is required to answer questions concerning optimal control problems for systems
with a fixed final state and the optimality condition for such problems.

1. Why did the decoupling method turn out to be applicable for the linear-
quadratic problem of optimal control of systems with a fixed final state?

2. What is the difference between the decoupling method for the systems with
free and fixed final state?

3. Why is the function p expressed in terms of x when using the decoupling method
for systems with a free final state, and vice versa for systems with a fixed final
state?

4. What is the difference between the algorithm for finding the optimal control
in accordance with the decoupling method for systems with a free and a fixed
final state?

5. Can the decoupling method be used to solve the problem in Example 9.1?

6. What is the reason for the possibility of applying the variational inequality in
the study of Examples 9.1–9.4?

7. Whence follows the convexity of the set of controls that satisfy all the given
constraints for the considered examples?

8. Why, for the considered examples, the variational inequality is sometimes a
sufficient condition for optimality, and sometimes it is not?

9. Why, for the considered examples, is the variational inequality sometimes equiv-
alent to the maximum principle, and sometimes not equivalent?



294 ■ Optimization: 100 examples

10. Can the variational inequality be applied to the analysis of Example 10.1?

11. What is the point of using the penalty method for solving optimal control
problems for systems with a fixed final state?

12. Why, unlike the problems considered earlier, for Example 9.1, using the penalty
method, not only an approximate, but also an exact solution of the problem is
found?

13. Can the penalty method be applied to the analysis of Examples 9.2 and 10.1?

14. Which of the methods of analysis of Example 9.1 seems to be more effective?

Conclusions

Based on the study of the optimal control problem for systems with a fixed final
state, we can come to the following conclusions.

• The decoupling method is applicable for solving the linear-quadratic optimal
problem with a fixed final state.

• When using the decoupling method for a linear-quadratic optimal problem with
a fixed final state, the state function is determined through the solution of the
adjoint equation, and not vice versa, as for systems with a free final state.

• The decoupling method allows solving the synthesis problem.

• As a result of applying the decoupling method, the Riccati equation is obtained.

• The use of variational inequalities for solving the optimal problem with a fixed
final state is possible if the set of controls that satisfy the given constraints and
guarantee the transfer of the system to the given final state is convex.

• The variational inequalities for Examples 9.1, 9.2, and 9.3 are equivalent to the
maximum principle and are necessary and sufficient conditions for optimality.

• The variational inequality for Example 9.4 is not equivalent to the maximum
principle and are not sufficient optimality conditions due to the non-convexity
of the optimality criterion.

• The penalty method allows one to reduce a problem with a fixed final state to
a problem with a free final state.

• The penalty method allows one to find an approximate solution to an optimal
control problem with a fixed final state.

• The penalty method for Example 9.1 allows you to find the exact value of the
optimal control by passing to the limit in the formula for solving the problem
of minimizing the penalty functional.
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Problems

In the process of analyzing optimal control problems for systems with a fixed final
state, additional problems arise that require additional research.

1. Bellman principle. In Chapter 4, to solve the problem of optimal control
with a free final state, dynamic programming was used, which is based on the
Bellman principle. At the same time, the applicability of this statement for a
concrete example was proved. In Appendix, a similar result will be obtained
for one system with a fixed final state.

2. Penalty method and alternative methods. The penalty method made it
possible to reduce a problem with a fixed final state to some problem with a
free final state. For the latter one can use not only the maximum principle, but
also other methods. These results are obtained in Appendix.

3. Vector case. The above results are naturally generalized to the case when
both the state function and the control are vector quantities. In this case, in
the state equation, the adjoint equation, and the maximum condition, u, x, and
p are vector quantities. Such a problem is considered in Appendix.

4. Practical applications. Interest in optimal control problems for systems with
a fixed final state is largely due to their practical significance. In this regard,
these problems with real practical meaning are of interest. In Appendix, two
such problems are solved, one of which relates to geometry, and in mechanics.

5. Insufficiency of the maximum condition for systems with a fixed final
state. The maximum principle for the considered examples gives a necessary
and sufficient optimality condition. However, in Part II, examples of problems
with a free final state with an insufficient optimality condition were given. It is
of interest to consider the problem of optimal control of a system with a fixed
final state, for which the maximum principle turned out to be a necessary but
not sufficient optimality condition. Such an example is given in Chapter 11.

6. Non-uniqueness of the solution in optimal control problems for sys-
tems with a fixed final state. The optimal control for the considered ex-
amples turned out to be unique. However, in Part II, examples of problems
with a free final state with a non-unique solution were given. It is of interest to
consider the problem of optimal control of a system with a fixed final state, the
solution of which would not be unique. Such an example is given in Chapter
11.

7. Absence of a solution in optimal control problems for systems with
a fixed final state. The solution of optimal control problems in all considered
examples exists. However, in Part II, examples of unsolvable problems with a
free final state were given. It is of interest to consider the problem of optimal
control of a system with a fixed final state, the solution of which does not exist.
Such an example is given in Chapter 11.
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8. Optimal control problems for systems with a fixed final state with
singular controls. The maximum principle does not degenerate for all the
considered examples. However, in Part II, examples of problems with a free
final state were given, for which the solutions of the maximum condition turned
out to be special controls. It is of interest to consider the problem of optimal
control of a system with a fixed final state, in which the maximum principle
degenerates. Such an example is given in Chapter 11.

9. Well-posedness of optimal control problems for systems with a fixed
final state. When studying optimal control problems for systems with a free
final state, we encountered various manifestations of their ill-posedness. Exam-
ples of ill-posed optimal control problems for a system with a fixed final state
are given in Chapter 12.

10.2 APPENDIX

Below, we present some additional results in the field of optimal control theory for systems
with a fixed final state. In particular, Section 10.2.1 shows the applicability of Bellman
optimality principle to an example of an optimal control problem for a system with a fixed
final state. Section 10.2.2 solves one geometric problem of the type under consideration.
Section 10.2.3 shows that the penalty method can be used in conjunction with various
derivative-based methods. In Section 10.2.4, the results obtained earlier are extended to
the case when both the control and the state of the system are vector quantities. As an
application, Section 10.2.5 investigates the time optimal problem.

10.2.1 Applicability of Bellman optimality principle

The analysis of optimal control problems for systems with a free final state in Part
II was also carried out using dynamic programming. It is based on the Bellman opti-
mality principle. It was shown in Chapter 4 that it holds for one particular example.
Let us verify the validity of the Bellman optimality principle for an optimal control
problem for a system with a fixed final state, in particular, for Example 9.1.

In this example, it was required to minimize the functional

I(u) =
1∫

0

(u+ x)dt,

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

on the set of functions u satisfying the inequality 0 ≤ u(t) ≤ 2 for t ∈ (0, 1) and
ensuring the equality x(1) = 1. The solution to this problem, as is already known,
has the form

u(t) =
{

0, if t < 1/2,
2, if t > 1/2. (10.11)
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The corresponding state of the system is determined by the formula

x(t) =
{

0, if t < 1/2,
2t− 1, if t > 1/2. (10.12)

Consider a family of problems that differ from the one above only in the choice
of the initial time ξ and the initial state x. In this case, it is required to minimize the
functional

Ix
ξ (v) =

1∫
0

(v + y)dt,

where y is a solution of the Cauchy problem

y′(t) = v(t), t ∈ (ξ, 1); y(0) = x

on the set of functions v satisfying the inequality 0 ≤ v(t) ≤ 2 for ξ < t < 1 and
ensuring the equality y(1) = 1.

In accordance with the maximum principle, we introduce the function

H = pv–(v + y),

where p satisfies the adjoint equation

p′(t) = 1, t ∈ (ξ, 1).

In this case, the corresponding optimal control is found from the condition of the
maximum of the function H with respect to the control. The result is the formula

v(t) =
{

2, if p(t) > 1,
0, if p(t) < 1,

similar to the one that was obtained in Chapter 9 when examining this example.
The adjoint equation has a solution p(t) = t+ c, where c is an arbitrary constant.

Thus, the function p is increasing. There are three possible options here. Either the
function p in is always greater than 1, in which case the control v is identically equal
to 2; or p is always less than 1, in which case the control is identically equal to 0;
or at some point in time from the interval (0,1), the function p, increasing, reaches
unity, and then before this time the control is equal to 0, and after that it is equal
to 2.

For v = 0, the considered Cauchy problem has a solution y(t) = x. The condition
y(1) = 1 is possible only for the initial state x = 1. However, as can be seen from
formula (10.12), the optimal state of the system for Example 9.1 reaches the value 1
only at the final time. Therefore, this case is of no interest.

For v = 2, the Cauchy problem has a solution y(t) = x + 2(t − ξ). The equality
y(1) = 1 is admissible if the initial time and the initial state of the system are
related by the equality x = 2ξ–1. We turn to formula (10.12), which characterizes the
optimal state of the system under study. We see that x(t) = 2t–1 for t > 1/2, which
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corresponds to the previously obtained equality. Thus, when ξ > 1/2, as an optimal
control on the interval (ξ, 1), one can choose a function that is identically equal to 2,
which is consistent with formula (10.11).

Now let there be a point η from the interval (ξ, 1) such that v(t) = 0 for t < η
and v(t) = 2 for t > η. Then y(η) = x and y(1) = x+ 2(1–η). Equating the last value
to one, we find η = (x + 1)/2. Thus, if at time ξ the system is in state x, then at
t < (x+ 1)/2 the control takes the value 0, and at t > (x+ 1)/2 it takes the value 2.
Here, we should distinguish between two cases: whether the starting point ξ is before
or after the switching point 1/2 of the optimal control for Example 9.1; see formula
(10.11).

For ξ < 1/2, the state of the system at this point in time, according to formula
(10.12), is equal to x = 0. Then from the formula η = (x + 1)/2 it follows that the
control switching point is equal to η = 1/2. Therefore, the optimal control v on the
section (ξ, 1) coincides with the final part of the optimal control determined by the
formula (10.11).

For ξ > 1/2, the state of the system at this point in time, according to formula
(10.12), is equal to x = 2ξ–1. Then the point η starting from which the control takes
the value 2 is equal to η = (x + 1)/2 = ξ. Hence, in this case, v(t) = 2 for t > ξ,
which is consistent with the optimal control for Example 9.1.

Thus, the optimal control for this example always remains optimal when consid-
ering the problem on any finite interval (ξ, 1), i.e., the Bellman optimality principle
is indeed satisfied8.

10.2.2 Shortest Curve

Consider now a geometric problem, which is a special case of Problem 9.1.

Example 10.2 It is required to find the curve x = x(t) passing through two given
points and having the smallest length.

We select the coordinate system in such a way that one of these points is at
the origin, which corresponds to the initial condition x(0) = 0. Denote by (T,X)
the coordinates of the second given point, which corresponds to the final condition
x(T ) = X. For a complete statement of the problem, it is required to obtain a formula
characterizing the length of the curve.

Consider a part of the curve x = x(t), bounded by points M with coordinates
(t, x) and N with coordinates (t+ ∆t, x+ ∆x); see Figure 10.1. For sufficiently small
values of ∆t, the length of the arc of the curve connecting these points is close enough
to the length of the segment ∆s connecting them. The latter is calculated using the
Pythagorean theorem

∆s =
√

∆t2 + ∆x2 =

√
1 +

(∆x
∆t

)2
∆t.

This implies the formula for an infinitely small element of length9

ds =
√

1 + x′(t)2dt.
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Figure 10.1 Arc length calculation.

To calculate the length of the arc of the curve connecting two initially given points,
one should integrate this equality10. We get the equality

S =
T∫

0

√
1 + x′(t)2dt.

To reduce the problem of minimizing the arc length of a curve connecting two
given points to Problem 9.1, we denote the derivative of the function x by u. As a
result, we obtain the problem of minimizing the functional11

I(u) =
T∫

0

√
1 + u(t)2dt.

on the set of all functions satisfying the condition x(T ) = X, where x = x(t) is a
solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, T ); x(0) = 0.

To solve the problem under consideration, we use the previously described
method12. Define a function

H = pu−
√

1 + u2.

Considering that it does not depend on x, we conclude that the adjoint equation (9.6)
here has the form p′ = 0. This implies that p is a constant c.

Let us now turn to the maximum condition (9.7). We draw attention to the
absence of explicit restrictions on control. As a result, we have a problem for the
unconditional maximum of the function H. We vanish the derivative of this function.
We get

Hu = c− u√
1 + u2

= 0.
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After squaring, we find

u2 = c2

1 − c2 .

The value on the right side is some constant. Then the modulo of the function u is
equal to a constant. However, it follows from the preceding equality that u and c
have the same sign. Therefore, the function u cannot change sign, and hence it is
some constant c1. It is easy to verify that the second derivative of the function H
is negative, which means that the function u(t) = c1 is indeed the solution of the
maximum13.

To find the unknown constant, we turn to the equation of state. Obviously, the
solution to the existing Cauchy problem for a given control is determined by the
formula x(t) = c1t. This implies that x(T ) = c1T . However, according to the condition
of the problem, this value is equal to X. As a result, we find a constant and determine
the optimal control u(t) = X/T . It corresponds to the function x(t) = Xt/T . Thus,
the curve of least length connecting two fixed points is a straight line passing through
these points, which is quite natural.

The considered example is connected in some way with the most amazing math-
ematical object that is the Cantor function14. For simplicity, we confine ourselves to
considering the case X = T = 1. On the segment [0,1], we construct some set M
using the following procedure. At the first step, we include in it the middle third
of the segment under consideration – the interval (1/3,2/3). At the second step, we
add to M the middle thirds of the remaining segments – the intervals (1/9,2/9) and
(7/9,8/9). Next, we complement M with the middle thirds of the remaining segments.
Continuing this process ad infinitum, we obtain the desired set M . The Cantor set
C is the complement in [0,1] to the resulting set; see Figure 10.2. This set is surprising
in that it has the cardinality of the continuum15 and zero measure16.

Figure 10.2 Construction of the complement to the Cantor set.

Let us now set the function x = x(t), setting it equal to 1/2 on the interval
(1/3,2/3), 1/4 on the interval (1/9,2/9), 3/4 on the interval (7/9,8/9), 1/8 on the
interval (1/27,2/27), etc.; see Figure 10.3. This defines a certain function on the
previously indicated set M . Extending it by continuity to the Cantor set, we obtain
the Cantor function, which turns out to be continuous and non-decreasing on the
unit interval.

Note that the Cantor function is constant on each interval that makes up the set
S, i.e., outside the Cantor set, which has zero measure. Consequently, its derivative
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Figure 10.3 Cantor function.

v = x′ vanishes almost everywhere on the unit interval. In addition, this function
satisfies the boundary conditions from Example 10.2 at X = T = 1. In this regard,
there is a temptation to pass it off as a solution to the corresponding problem, con-
sidering I(v) = 1, while the value of the functional on the previously found optimal
control is clearly greater and equal to

√
2 for X = T = 1. However, the derivative of

the Cantor function is not defined on the entire interval [0,1], as a result of which we
cannot substitute it into the optimality criterion.

10.2.3 Penalty method with functional differentiation

It was shown in the Lecture that, using the penalty method, Problem 9.1 can be
reduced to an optimal control problem with a free final state. In particular, the
problem of minimizing the functional

Iε(u) =
T∫

0

g(t, u(t), x(t))dt + 1
2ε

[
x(T ) −X

]2

with a small positive parameter ε on the set

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where x is a solution of the Cauchy problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ), x(0) = x0.

To solve it, the maximum principle described in Part II was applied. However, as was
shown in Chapter 4, similar problems can be solved by other methods.
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We note, in particular, methods related to the differentiation of functionals. As
is known, if u is a minimum point of a differentiable functional I on a convex set U ,
then the variational inequality

I ′(u)(v–u) ≥ 0 ∀v ∈ U,

where I ′(u) is the derivative of this functional at the considered point. For an ap-
proximate solution of this problem, one can use the gradient projection method

uk+1 = P
[
uk–βkI

′(uk)
]
,

where k is the iteration number, the positive constant βk is the algorithm parameter,
and P is the projection operator onto the set of admissible controls. Note that the
direct application of these results for Problem 9.1 in the general case is not possible,
since the set of admissible controls there is characterized not only by explicit restric-
tions on the values of the control, but also by fixing the final state of the system. It
is possible to establish the convexity of this set only in exceptional cases17. At the
same time, the minimization of the penalty Iε obtained as a result of applying the
method is carried out directly on a given set U , which is convex.

As an illustration, let us return to the consideration of Example 10.2, in which it
is required to minimize the functional

I(u) =
T∫

0

√
1 + u2dt

on the set of all functions ensuring the fulfillment of the condition x(T ) = X, where
x = x(t) is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, T ), x(0) = 0.

The corresponding functional Iε is characterized by the equality

Iε(u) =
T∫

0

√
1 + u2dt + 1

2ε
[
x(T ) −X

]2
.

Because of the absence of explicit restrictions on the control, the variational inequality
here reduces to the stationary condition (equality to zero of the derivative of the
functional at its minimum point), and the gradient projection method to the usual
gradient method (the projection operator is a unitary operator).

Let us find the derivative of the considered functional. We recall that the Gateaux
derivative of a functional J defined on a normed vector space V at a point u is a
linear continuous functional J ′(u) that satisfies the relation

lim
σ→0

J(u+ σh) − J(u)
σ

= J ′(u)h ∀h ∈ V.



Addition ■ 303

It is easy to establish that the derivative of the functional Iε at the point u is equal
to18

I ′
ε(u) = u√

1 + u2
+ p,

where p is a solution to the problem

p′(t) = 0, t ∈ (0, T ), p(T ) = 1
ε

[
y(T ) −X

]
.

Because of the absence of explicit restrictions on the control, we use the stationary
condition, equating the derivative of the functional to zero. We get

u√
1 + u2

+ p = 0.

Let us compare these results with those obtained in the previous subsection.
The function x in both cases is a solution to the same Cauchy problem. The last
equality exactly coincides with what was established earlier when using the maximum
principle. The adjoint equation is the same in both cases. The only difference has to
do with the end condition. Previously, it was set for the function x and had the form
x(T ) = X. In this case, there is a final condition for the function p. However, it can
be written as εp(T ) = x(T )–X. Note that for sufficiently small values of ε, the term
on the left side of the last equality will be arbitrarily close to zero, which means
that this relation can be interpreted as an approximate final condition for the state
function. Thus, there is reason to believe that as a result of applying the penalty
method, we obtain an approximate solution of this problem.

Indeed, since the stationary condition and the adjoint equation have the same
form as in the previous subsection, we can again conclude that the control is constant,
i.e., u(t) = c1. The equation of state also has the same form as before, which means
that the function x is linear, i.e., x(t) = c1t+ c2. Taking into account the zero initial
condition, we conclude that c2 = 0. Another constant was previously found from
the end condition for the function x. In this case, there is a similar condition for
the function p. This function itself is connected with the control of the stationary
condition. We get the equality

p = − c1√
1 + c2

1

.

Thus, the constant c1 is found from the equality

− c1√
1 + c2

1

ε = c1T −X.

Obviously, for small ε the left side of the equality is arbitrarily small, and hence
c1 ≈ X/T , which is consistent with the result obtained earlier. Naturally, for ε → 0,
the equality c1 = X/T is true, which means that the desired curve is characterized
by the formula x(t) = tX/T .
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10.2.4 Vector optimal control problem with a fixed finite state

When analyzing optimal control problems for systems with a free final state, we
actually limited ourselves to considering the scalar case, when there was one control
and one state function. However, in the final part of Chapter 3, a general scheme for
solving problems with many controls and system states was described. We proceed
in the same way for systems with a fixed final state.

We assume that the control and the state functions are vector functions

u =
(
u1, u2, . . . , ur

)
, x =

(
x1, x2, . . . , xn

)
.

In this case the state system

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0

is a Cauchy problem for a system of differential equations, where f is an nth order
vector function of r+n+1 variables, and x0 is some n-dimensional vector. The control
u belongs to the set

U =
{
u

∣∣ u(t) ∈ G(t), t ∈ (0, T )
}
,

where G(t) is some subset of the r-dimensional Euclidean space. The final state of
the system is fixed, i.e., we have the equality

x(T ) = xT .

The optimality criterion is determined by the formula

I =
T∫

0

g(t, u(t), x(t))dt,

where g is a function of r + n+ 1 variables. We have the following vector optimal
control problem with a fixed final state19.

Problem 10.2 Find a vector function u that minimizes the functional I on sets U
for a fixed final state of the system.

To solve this problem, a function of r + 2n+ 1 variables is defined

H(t, u, x, p) =
〈
p, f(t, u, x)⟩ − g(t, u, x),

where on the right side of the equality is the dot product of the corresponding vec-
tors. In accordance with the maximum principle, the optimal control satisfies the
condition

H
(
t, u(t), x(t), p(t)

)
= max

v∈G(t)
H

(
t, v, x(t), p(t)

)
, t ∈ (0, T ),

where p is a solution if the adjoint equation

p′(t) = −Hx

(
t, u(t), x(t), p(t)

)
, t ∈ (0, T ).
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Here the maximum condition is a conditional extremum problem for the function
H with respect to r variables. The adjoint equation actually includes n differential
equations, and Hx is a vector whose elements are partial derivatives of H with respect
to the variables xi, i = 1, . . . , n.

In a concrete case, to find the optimal control, one should first find the depen-
dence of the control on the state of the system and the solution of the adjoint equation
from the maximum condition, which corresponds to Problem 2.3. The result is sub-
stituted into the equation of state and the adjoint equation, resulting in a system
of 2n differential equations with 2n boundary conditions for the state of the system.
Substituting the solution of this problem into the formula for the control from the
previous step, we find the solution to the optimality conditions.

One example of a vector optimal control problem with a fixed final state that
admits an analytical solution is considered in the next subsection.

10.2.5 Time optimal problem

Let us consider one more applied optimal control problem for a system with a fixed
final state, which arises in mechanics.

Example 10.3 There is some body that makes a rectilinear movement under the
action of a force. It is required to select this force, acting within the given limits, in
such a way as to transfer the body from one state to another in the minimum time.

This corresponds to the time optimal problem20. Let us give a mathematical
formulation of this problem. First of all, we note that the rectilinear motion of a body
is described by Newton’s second law

mx′′(t) = F (t),

where t is the time, x is the coordinate of the body in the direction of motion, m is
the mass of the body, and F is the acting force. The body mass is considered known.
After dividing the last equality by it, we obtain the equation

x′′(t) = u(t), (10.13)

where u is the acceleration, which is chosen as a control. The initial state of the system
is characterized by its initial position a and initial velocity v, which are considered
to be known. Choosing the moment of time t = 0 as the starting point, we obtain
the initial conditions

x(0) = a, x′(0) = v. (10.14)

We choose the coordinate system in such a way that the final state of the system
is zero. Thus, it is required that at the final time T the system should move to the
origin of coordinates and at the same time have zero velocity21. As a result, the final
state of the system is characterized by the equalities

x(T ) = 0, x′(T ) = 0. (10.15)
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By the condition of the problem, the force acting on the system, and hence the cor-
responding acceleration, are limited. Thus, there are some restrictions on the control
values at an arbitrary point in time. For definiteness, we assume that the set of
admissible controls has the form

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, T )
}
.

Thus, the problem of optimal control is to find such a function u from the set U that
transfers the system described by equation (10.13) from the initial state (10.14) to
the final state (10.15) in the minimum time T .

Now we need to convert this problem to the standard form. First of all, we note
that equation (10.13) is of the second order. However, it can be reduced to a system
of two first-order equations by introducing the unknowns x1 = x, x2 = x′. As a result,
we obtain a system of equations

x′
1(t) = x2(t), x′

2(t) = u(t), t ∈ (0, T ). (10.16)

Accordingly, the initial conditions (10.14) and the final conditions (10.15) are written
as

x1(0) = a, x2(0) = v; (10.17)

x1(T ) = 0, x2(T ) = 0. (10.18)

To obtain a special case of Problem 10.2, it remains to bring the minimized functional
(in this case, the time of movement T ) to the standard integral form. Obviously, it
can be written as follows

I(u) =
T∫

0

dt,

which corresponds to the optimality criterion in Problem 10.2 with the subintegral
function g = 1. Thus, it is required to choose such a control u from the set U that
transfers the system described by equations (10.16) from the initial state (10.17) to
the final state (10.18), while minimizing the functional I.

Let us now turn to the solution of the problem. First of all, the function H is
introduced. Previously, it was defined by the formula

H(t, u, x, p) =
〈
p, f(t, u, x)

〉
–g(t, u, x).

In this case, x is a second-order vector function whose components are the functions
x1 and x2 defined above (the coordinate and velocity of the body). Then f also turns
out to be a vector quantity whose components are the values on the right-hand sides
of the system (10.16), i.e., x2 and u. The function p also turns out to be a vector
function with some components p1 and p2. In this case, ⟨p, f⟩ is a dot product, i.e.,
the sum of the products of the components of the corresponding vectors. Thus, the
function H in this case has the form

H = p1f1 + p2f2–g = p1x2 + p2u–1.
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The adjoint equation, which has the form p′ = –Hx, also turns out to be a vector
equation, i.e., a system of differential equations. Here Hx is the vector of partial
derivatives of the function H with respect to the variables x1 and x2. As a result, we
obtain the adjoint system of equations

p′
1(t) = 0, p′

2(t) = − p1(t), t ∈ (0, T ). (10.19)

Finally, the maximum condition implies the maximization of the control function H
defined above on the previously specified set U . Taking into account the linearity of
the dependence of H on u, we conclude that its maximum can be achieved only at
the ends of the given segment [–1, 1], depending on the sign of the function p2. As a
result, we find

u(t) =
{

1, if p2(t) > 0,
−1, if p2(t) < 0. (10.20)

Thus, the optimal control is determined from the equalities (10.16)–(10.20).
Let us find a solution to the resulting system. Note that the adjoint system

(10.19) does not depend on other unknown functions. Find its solution p1(t) = c1
and p2(t) = –c1t+c2, where c1 and c2 are constants. Their arbitrariness should not be
embarrassing, since as a result of substituting the control with the indicated function
p2 into equations (10.16), a system of two differential equations with four boundary
conditions (10.17) and (10.18) is obtained.

According to formula (10.20), the control depends on the sign of the function
p2, which is linear. A linear function can change sign on the interval [0,1] at most
once. If it does not change sign at all, then it is either everywhere positive, in which
case u(t) = 1, or it is negative everywhere, in which case u(t) = –1 for any t. If the
function p2 changes sign once, then either u(t) first takes the value 1 and then –1 if
p2 is decreasing, or vice versa if p2 is increasing. Thus, four scenarios are possible.

For u(t) = 1 for all t, the solution to the Cauchy problem (10.16) and (10.17) has
the form x1(t) = a+ vt+ t2/2, x2(t) = v+ t. Eliminating the parameter t from these
equalities, we establish the following connection between the functions x1 and x2

x1(t) =
(
a− v2

2
)

+ [x2(t)]2
2 .

In the x1 and x2 plane, called the phase plane, the set of points with coordinates
x1(t), x2(t) for all possible values of t forms a certain curve, called the phase curve22,
which is a parabola. Naturally, any pair of initial states a, v has its own parabola; see
Figure 10.4, and the arrows here indicate the direction of movement of the point in
the phase plane with increasing time t, due to the fact that at u = 1 the function x2
increases. Note that there is a single parabola, moving along which one can eventually
get to the origin, which corresponds to the fulfillment of the final conditions (10.18).
It corresponds to positive values of the parameter a and v = −

√
2a. Thus, for the

indicated sets of parameters a and v, the solution to the problem is the function u,
which is identically equal to 1.

For u(t) = –1 for all t, the solution to the Cauchy problem (10.16) and (10.17)
has the form x1(t) = a+ vt–t2/2, x2(t) = v–t. Once again excluding the parameter t
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Figure 10.4 Phase curves for system (10.16) with constant controls.

from these equalities, we establish the following connection between the functions x1
and x2

x1(t) =
(
a+ v2

2
)

− [x2(t)]2
2 .

The set of points with coordinates x1(t), x2(t) for all possible values of t again forms
a parabola defined by the parameters a and v. The direction of change of functions
is due to the fact that at u = –1 the function x2 decreases. Here, too, there is a
single parabola, moving along which you can get to the origin, thereby ensuring the
fulfillment of conditions (10.18). It corresponds to negative values of the parameter
a and v =

√
−2a; see Figure 10.4. Thus, for the specified set of parameters a and v,

the solution to the problem is the function u, which is identically equal to –1.
Let us now assume that at the initial moment of time the system is at some point

A of the phase plane with coordinates a and v that do not satisfy the above conditions.
Let it lie above a curve made up of two halves of parabolas, moving along which you
can get to the origin; see Figure 10.5. This corresponds to the initial states a > 0,
v > −

√
2a or a < 0, v <

√
−2a. In this case, the control is initially assumed to be

u(t) = –1. The movement along the corresponding parabola continues until reaching
point B, which lies on the parabola leading to the origin. This happens at the moment
of time τ , when the following conditions holds x1(τ) > 0, x2(τ) = −

√
2x1(τ). For

t > τ , we have u(t) = 1.

Figure 10.5 Solution of the time optimal problem.
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If the initial states of the system satisfy the conditions a < 0, v < −
√

2a or a > 0,
v >

√
−2a, then the control is first assumed to be equal to u(t) = 1, which corresponds

to motion in the phase plane until reaching the parabola leading to the origin. This
happens at the moment of time τ , when x1(τ) < 0 and x2(τ) =

√
−2x1(τ). For t > τ ,

we have u(t) = –1.
Thus, the solution of the problem of optimal speed is found for any values of the

initial position a and initial velocity v of the considered body.

Additional conclusions

Based on the additional analysis of optimal control problems for systems with a fixed
final state, carried out in Appendix, we can draw the following additional conclusions.

• The Bellman optimality principle for the problem of optimal control of a system
with a fixed final state, considered in Example 9.1, is satisfied.

• The problem of finding the curve of the smallest length passing through two
given points is reduced to the problem of optimal control of a system with a
fixed final state. The curve of least length is a straight line.

• The penalty method can be used in conjunction with various methods related
to calculating the derivative of a functional, particularly, with variational in-
equalities.

• The maximum principle naturally extends to the vector problem of optimal
control of a system with a fixed final state.

• The time optimal problem is reduced to a vector problem of optimal control of
a system with a fixed final state.

• The time optimal problem admits an analytical solution for any initial position
and initial velocity of the body.

Notes

1. This is quite natural, since the function H is the same in similar problems with a free and
a fixed final state.

2. The obtained analytical dependence of the optimal control on the state function, as in
the case of the system with a free final state considered in Chapter 3, gives a solution to the
problem of the synthesis problem.

3. In Appendix, these results are extended to the vector case.

4. This is explained by the linearity of the equation of state and the optimality criterion
both in terms of control and state. We have already met with the equivalence of the indicated
optimality conditions in Examples 3.1, 3.2, and 3.3. However, for Example 5.1, the maximum
principle turned out to be more efficient, since the set of its solutions was essentially narrower
than the set of solutions of the corresponding variational inequality.
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5. This is proved in the same way as the analogous property for Example 9.1 in Section 9.2.1.
We also note that for non-linear systems, it is rather difficult to establish the convexity of the
set of controls that guarantee the transition of the system to a given final state. As a result,
the use of variational inequalities turns out to be difficult.

6. One can, for example, prove the sufficiency of the optimality conditions using Theorem
5.2.

7. It is clear that it is possible to substantiate the convergence of the penalty method and
find with its help the exact solution of the problem only in exceptional cases.

8. We will deal with the violation of Bellman optimality principle of in Chapter 15.

9. This object is called the differential.

10. We recall that the integral by its nature is, roughly speaking, an infinitely large sum of
infinitely small quantities. As applied to this case, the length of the entire arc of the curve
is the sum of arbitrarily small lengths (differentials) ds, which corresponds to the integration
procedure.

11. Minimization problems for integral functionals are the subject of the calculus of vari-
ations; see [37], [61], [208]. In principle, the problem of minimizing the curve length in the
original formulation, i.e., without introducing control u, is a particular case of the classical
Lagrange problem of the calculus of variations. We are talking about minimizing an integral
functional that explicitly depends on the desired function and its first derivative (in this case,
only on the derivative) on the set of functions that takes known values at the boundaries of the
integration interval. The necessary condition for the extremum here is the Euler equation,
which is some second-order differential equation, which is solved with two given boundary con-
ditions. The system of optimality conditions for the considered example is reduced to the same
boundary value problem as a result of applying the previously considered method of eliminating
unknowns.

12. Let us pay attention to the fact that the optimality criterion in this case does not depend on
the function x, i.e., we have its explicit dependence on the required function u. In this regard,
it seems that we can simply solve the problem of minimizing this functional without resorting
to the equation of state. Obviously, the value of the optimality criterion for any control is not
less than 1. Moreover, I(u) = 1 only for u(t) = 0 for all t. However, in this case x(t) = 0 for all
t, which means that the equality x(T ) = X will not hold. Thus, we cannot ignore the equation
of state, since it implicitly characterizes the set of admissible controls.

13. Indeed, using the formula for the derivative of the quotient of two functions, we find

Huu = −

√
1 + u2 − u2√

1+u2

1 + u2 = − 1
(1 + u2)3/2 .

14. About Cantor function; see [77].

15. Any number from the segment [0,1] can be represented as a ternary fraction. Obviously, all
numbers that fall into M at the first step of the described process have the digit 1 in ternary
notation; see Figure 10.2. At the second step, M includes numbers whose second significant
digit is 1, and at the third step, numbers with one as the third decimal place, and so on. Thus,
the Cantor set includes all those and only those numbers from the segment [0,1] that do not
have units in the ternary notation. Therefore, this set is characterized by the equality

C =
{

0, 0.2, 0.02, 0.22, 0.002, 0.022, 0.202, 0.222, . . .
}

.
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Any element x of the Cantor set can be uniquely associated with the number x/2 from the set

C′ =
{

0, 0.1, 0.01, 0.11, 0.001, 0.011, 0.101, 0.111, . . .
}

.

The latter can be associated with the set C′′, each element of which has the same notation as
the corresponding element C′, but only in the binary system (for example, the second element
0.1 of the set C′ is a fraction 1/3, and the corresponding element 0.1 of C′′ is equal to 1/2).
Obviously, the set C′′ consists of all possible numbers of the interval [0,1] written in binary.
Therefore, up to the notation, the set C coincides with the segment [0,1]. Then the Cantor set,
which is equivalent to it, has the cardinality of the continuum. On the concept of cardinality;
see, for example, [100], [106].

16. The set M is the union of open intervals. Therefore, its measure is equal to the sum of the
measures, i.e., the lengths of its constituent intervals. At the kth step of the set construction
process, we have 2k intervals of length 1/3k. As a result, we find the measure of the set M

µ(M) =
∞∑

k=1

2k+1

3k
= 1

3

∞∑
k=1

(2
3

)k

.

Using the formula for the sum of members of a geometric progression, we establish that
µ(M) = 1. Since the sets C and M form a partition of the segment [0,1] (they do not in-
tersect, and their union makes up the entire segment), the sum of their measures is equal to
the measure of their union, i.e., the length of the considered segment, equal to one. From here,
it follows that the Cantor set has zero measure. About the concept of measure; see [94], [100],
[106], [158].

17. In particular, for Example 9.1 considered in Section 10.1.2, this result is established due
to the linearity of the equation of state of the system both in control and in the state of the
system.

18. Indeed, we find the value

Iε(u + σh) =
T∫

0

√
1 + (u + σh)2dt + 1

2ε

[
y(T ) − X

]2
,

where y is a solution of the problem

y′(t) = u(t) + σh(t), t ∈ (0, T ), y(0) = 0.

Using the Taylor series expansion, we obtain the equality√
1 + (u + σh)2 =

√
1 + u2 + uh√

1 + u2
σ + o(σ),

where o(σ)/σ → 0 as σ → 0. Besides, we get[
y(T ) − X

]2 = [X(T )]2 + 2
[
y(T ) − X

]
z(T ) + [z(T )]2,

where z = y–x. Now we have

Iε(u + σh) − Iε(u) =
T∫

0

[
σ

uh√
1 + u2

+ o(σ)
]
dt + 1

ε

[
y(T ) − X

]
z(T ) + 1

2ε
[z(T )]2.

The function z here is a solution to the problem

z′(t) = σh(t), t ∈ (0, T ), z(0) = 0,
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and hence directly proportional to the number σ. Multiplying the last equation by an arbitrary
function p and integrating over t, after integrating by parts, taking into account the initial
condition, we obtain

−
T∫

0

p′(t)z(t)dt + p(T )z(T ) = σ

T∫
0

p(t)h(t)dt.

We choose here as p the solution of the problem

p′(t) = 0, t ∈ (0, T ), p(T ) = 1
ε

[
y(T ) − X

]
.

Then the following equality holds

Iε(u + σh) − Iε(u) =
T∫

0

[
σ

(
u√

1 + u2
+ p

)
h + o(σ)

]
dt + 1

2ε
[z(T )]2.

Dividing this equality by σ and passing to the limit at σ → 0, we obtain

I ′
ε(u)h =

T∫
0

(
u√

1 + u2
+ p

)
hdt,

whence it follows
I ′

ε(u) = u√
1 + u2

+ p.

19. It is also possible that only a part of the final states of the system are fixed, for example,
the conditions xi(T ) = xT i, i = 1, . . . , l, where l < n are specified. In this case, for the
vector function p at the final moment of time, the conditions corresponding to the indices
i = l + 1, . . . , n.

20. On problems of optimal performance for systems with lumped parameters; see [5], [76],
[61], [62], [67], [90], [140], [152], [182], and for systems with distributed parameters; see [3], [23],
[104], [111], [116], [129], [157].

21. This means that the body not only gets to the origin of coordinates at the final moment
of time, but also remains there afterwards.

22. The phase plane and phase curve are fundamental concepts of the qualitative theory of
differential equations; see [10], [86].
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Counterexamples of optimal
control problems with a fixed
final state

The previous two chapters dealt with optimal control problems for systems with a fixed final
state. The effectiveness of the respective optimization methods was illustrated by specific
examples. However, in the practical solving of such problems, certain difficulties may arise.
They are the subject of this chapter.

11.1 LECTURE

We will consider rather simple examples of optimal control problems for systems with a fixed
final state, for which the application of the standard technique runs into various troubles.
In particular, the Sections 11.1.1, 11.1.2, 11.1.3, and 11.1.4 describe problems, respectively,
with insufficient optimality conditions, with a degeneration of the maximum principle, with
a non-unique optimal control and in the absence of an optimal control. The presence of a
fixed final state complicates the analysis, but is not an obstacle to its implementation.

11.1.1 Insufficiency of optimality conditions

In the examples of optimal control problems with a fixed finite state considered earlier,
the necessary optimality condition was always sufficient. Let us give an example of
the insufficiency of the optimality conditions.

Example 11.1 It is required to minimize the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt

on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
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that guaranty the equality
x(1) = 1/5, (11.1)

where x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.2)

This problem differs from the one considered in Example 5.1 only by the presence
of condition (11.1). As a result, the system of optimality conditions here differs from
the one used in that example only by the presence of a final condition for the state
function and the absence of such a condition for the adjoint equation. In particular,
the function H is defined by the formula

H = pu–(u2 + x2)/2,

where p satisfies the adjoint equation

p′(t) = x(t), t ∈ (0, 1). (11.3)

Using minimum condition for the function H find

u(t) =
{

1, if p(t) < 0,
−1, if p(t) > 0. (11.4)

Thus, the system of optimality conditions includes formulas1 (11.1)–(11.4).
Note, first of all, that controls that are identically equal to 1 or −1 do not guar-

antee the realization of condition (11.1), and therefore are not admissible. Thus, the
solution to the problem can be an exclusively discontinuous function2. Suppose there
exists a point ξ from the interval (0,1) such that the function p is negative if t < ξ
and this is positive if t > ξ. Then the control is 1 on the interval (0, ξ) and –1 on the
interval (ξ, 1). The corresponding solutions to problem (11.2) are determined by the
formulas x(t) = t and x(t) = 2ξ–t. In this case, the condition (11.1) holds that is

x(1) = 2ξ–1 = 1/5.

Find ξ = 3/5. The equality (11.3) on the interval (0,3/5) is p′ = t. By the positiveness
of the derivative, the function p is strictly increasing. However, at the point ξ it must
vanish. Therefore, up to this point it was negative, which is consistent with the
accepted assumption. We have the adjoint equation p′ = 6/5–t for t > 3/5. This
derivative is positive, which means that the function p is still increasing. Taking into
account the equality p(3/5) = 0, we conclude that the considered function is positive
in this interval, which also agrees with the existing assumption. Thus, the control
that takes the value 1 on the interval (0, 3/5) and –1 on the interval (3/5, 1) satisfies
the system of optimality conditions (11.1)–(11.4); see Figure 11.1.

Let now, on the contrary, the control is equal to –1 on the interval (0, ξ) and 1
on the interval (ξ, 1), which means, according to equality (11.4), the function p is
positive on the first set, and negative on the second.
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Figure 11.1 The first four solutions of the optimality conditions for Example 11.1.

The corresponding solution to problem (11.2) is x(t) = –t on the interval (0, ξ)
and x(t) = t–2ξ on the interval (ξ, 1). Then equality (11.1) implies

x(1) = 1–2ξ = 1/5,

which means, ξ = 2/5. The adjoint equation (11.3) on the interval (0,2/5) is charac-
terized by the equality p′ = –t. From here, it follows that the function p decreases
in the initial segment. However, at its right end it must vanish. Therefore, before
that it was positive, as expected. On the interval (2/5,1) the adjoint equation has
the form p′ = t–4/5. Thus, the function p continues to decrease, which means it will
become negative. At point 4/5, the function has a minimum. After that, it increases
and takes the value p(1) = –3/50. Thus, this function remains negative throughout
the interval (2/5,1), as it should be. Thus, the control that takes the value –1 on
the interval (0,2/5), and 1 on the interval (2/5,1) also satisfies the system of opti-
mality conditions; see Figure 11.1. Therefore, the system has two solutions with one
discontinuity point3.

Now let the control have two discontinuity points ξ and η, and it is equal to 1 on
the interval (0, ξ), –1 on (ξ, η), and 1 on (η, 1). Then, according to equality (11.4),
the function p must be negative on the first and third intervals and positive on the
second. The solution x of problem (11.2) is equal to t, 2ξ–t and t+2ξ–2η, respectively,
on the considered intervals. From equality (11.1), we find

x(1) = 1 + 2ξ–2η = 1/5.
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From here, we find η = ξ + 2/5. Consider the adjoint equation p′ = t on the interval
(0, ξ). Obviously, its solution increases here, reaching zero at the point ξ. There-
fore, this function initially takes negative values, as expected. For the next interval
(ξ, ξ + 2/5), we have the adjoint equation p′ = 2ξ–t, besides the solution is equal
to zero at the ends of the interval. Integrating the last equality by this interval, find
ξ = 1/5, so η = 3/5. Then from the equality p′ = 2/5–t, it follows that this function
at t > 1/5 increases to point 2/5 and then decreases to zero. Thus, the considered
function is positive on the second interval. Finally, on interval (3/5,1), we have the
equation p′ = t–4/5. Its solution here has a minimum at the point t = 4/5, with
p(1) = 0. The results obtained are consistent with formula (11.4), which means that
control equal to 1 at interval (0, 1/5) and (3/5, 1) and –1 at interval (1/5, 3/5) also
satisfies the system optimality conditions4; see Figure 11.1.

Now suppose the control is –1 on intervals (0, ξ) and (η, 1) and 1 on (ξ, η). Then
the function p must be positive on the first and third intervals and negative on the
second. The state x is, respectively, −t, t− 2ξ, and −t− 2ξ + 2η successively at the
indicated intervals. From equality (11.1), we find

x(1) = –1–2ξ + 2η = 1/5,

so η = ξ + 3/5. Consider the adjoint equation p′ = –t on interval (0, ξ). The function
p decreases here, reaching zero at the point ξ. Then it is positive on first interval.
The adjoint equation on second interval (ξ, ξ+ 3/5) is p′ = t–2ξ, besides the solution
is zero at its ends. Integrating the last equality by this interval, determine ξ = 3/10,
so η = 9/10. From the equality p′ = t–3/5, it follows that function p at t > 3/10
decreases to point 3/5, where it reaches its minimum, and then increases to zero.
Thus, this function is negative on the second interval. Finally, on the third interval
(9/10,1), we have the equation p′ = –t+ 6/5. Thus, the function p is increasing here
and becomes positive. Therefore, the control equal with value –1 on interval (0,3/10)
and (9/10,1) and 1 on interval (3/10,9/10) is also a solution of optimality conditions;
see Figure 11.1.

Suppose the control has three break points ξ, η, and ζ, besides this function is
equal to 1 on interval (0, ξ) and (η, ζ) and to –1 on (ξ, η) and (ζ, 1). The function x
is t, 2ξ–t, t+ 2ξ–2η and 2ξ–2η + 2ζ–t sequentially on the considered intervals. From
equality (11.1), we get

x(1) = 2ξ–2η + 2ζ–1 = 1/5.

Therefore, ζ = 3/5 + η− ξ. We have the adjoint equation p′ = t on first interval. His
solution rises to zero at the point ξ. Therefore, it is negative on this interval, which
is consistent with equality (11.4). The function p satisfies the equation p′ = 2ξ–t on
interval (ξ, η), besides it is zero at its ends. Integrating this equality over the specified
interval, we find η = 3ξ, so ζ = 3/5 + 2ξ. Then the function p satisfies the equation
p′ = t–4ξ on interval (3ξ, 3/5 + 2ξ), and this is equal to zero at the ends. Integrating
this equality, determine ξ = 1/5. Therefore, η = 3/5 and ζ = 1. Thus, the last point
turns out to be boundary, which means that the previously accepted assumption is
not realized at all5.
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Suppose, on the contrary, that control is –1 on intervals (0, ξ) and (η, ζ) and this is
1 on (ξ, η) and (ζ, 1). The function x is equal to –t, t–2ξ, –t–2ξ+2η and t–2ξ+2η–2ζ
sequentially on the considered intervals. Using equality (11.1), we get

x(1) = 1 − 2ξ + 2η − 2ζ = 1/5.

Find ζ = 2/5 + η–ξ. We have the adjoint equation p′ = t on first interval. Its
solution increases to zero at the point ξ. Therefore, this is negative here, which
is consistent with equality (11.4). The function p satisfies the equation p′ = t–2ξ
on (ξ, η), besides this is zero at the ends. Integrating this equality, we find again
η = 3ξ and ζ = 2/5 + 2ξ. Then on the interval (3ξ, 2/5 + 2ξ) the function p satisfies
the equation the equation p′ = –t + 4ξ, and it is equal to zero on its boundaries.
Integrating this equality over this interval, we determine ξ = 2/15. It follows that
η = 2/5 and ζ = 2/3. It is easy to verify that the corresponding function p has
properties consistent with relation (11.4).

Continuing this process, we can establish that there is a unique solution of op-
timality conditions with each number of discontinuity points greater than two6, and
for an odd number of discontinuity points on the first segment of continuity, control
takes the value –1, and for an even number it takes the value 1. It is easy to make
sure7, that the maximal value of the functional is realized for the control that is equal
to 1 for t < 3/5 and to –1 for t > 3/5. Thus, the problem has the unique solution
with infinite set of solutions of optimality conditions8.

11.1.2 Singular control

In the considered examples of optimal control problems for systems with fixed final
state, the maximum principle did not degenerate. However, the presence of a singular
control is not related to the behavior of the system at the final time. As a result, we
can expect the appearance of singular control for this class of problems as well.

Example 11.2 Consider the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.5)

The control u is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ π, t ∈ (0, 1)
}
.

Besides it guaranties the final condition

x(1) = 0. (11.6)

It is required to minimize on this set the functional

I(u) = 1
2

1∫
0

(
x2 − 2x sin πt

)
dt.
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For solving this problem, we use the standard method. Determine the function

H = pu–
(
x2 − 2x sin πt

)
/2,

where p satisfies the adjoint equation

p′(t) = x(t) − sin πt, t ∈ (0, 1). (11.7)

Due to the linearity of the function H with respect to control, two variants of the solu-
tion maximum condition are possible: either its maximum is reached on the boundary
of the set of admissible controls, or control is singular.

The regular solution is determined by the equality

u(t) =
{

π, if p(t) > 0,
−π, if p(t) < 0. (11.8)

The control here can have only two values that are π and –π. Suppose u(t) = π
everywhere. Then the solution of the problem (11.5) is x(t) = πt, so x(1) = π. How-
ever, this contradicts condition (11.6). If u(t) = –π everywhere, then x(t) = –πt, and
x(1) = –π. This result is also inconsistent with equality (11.6). Therefore, the control
determined by the formula (11.8) can be discontinuous only or that is equivalent, the
function p changes the sign on interval (0,1).

Denote by ξ the first (and possibly not the only) point from the origin in interval
(0,1) where equality p(ξ) = 0 holds. For definiteness, suppose that p(t) > 0 for
0 < t < ξ. Then on this interval u(t) = π, and hence x(t) = πt. Substituting this
value into the adjoint equation (11.7), we find the derivative

p′(t) = πt− sin πt, t ∈ (0, ξ).

Obviously, πt > sin πt, so p′ is positive on interval (0, ξ). Therefore, is function p in-
creases monotonically. Thus, we have a function that, on the considered interval, takes
exclusively positive values and increases. Under these conditions equality p(ξ) = 0 is
impossible. This means that the previously accepted assumption about the behavior
of the function p turned out to be wrong. The impossibility of this function being
negative on the first interval of continuity is proved9.

Thus, the function p cannot be positive or negative. Therefore, the formula (11.8)
is impossible, and the system (11.5)–(11.8) has no solution. This does not exclude
the case p(t) = 0 for all t ∈ (0, 1), which corresponds to the degeneration of the
maximum condition. Therefore, if its solution exists, then it is singular10.

For p = 0, from the adjoint equation it follows that x(t) = sin πt. Note that
function x satisfies both boundary conditions. It turns out to be the solution equation
of the state for u(t) = π cos πt. This satisfies the existing restrictions on the values
of control, which means that it is a solution of the optimality conditions.

In Chapter 6, the Kelley condition was given, which is a necessary condition
for the optimality of the singular control11. By this result, optimal singular control
satisfies the inequality

∂

∂u

d2

dt2
∂H

∂u
≥ 0.
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Thus, if a singular control satisfies the Kelley condition, then it can be optimal.
However, this is not optimal if it does not satisfy this condition.

Check the validity of the Kelley condition for this singular control. We find

∂H

∂u
= p.

Using the adjoint equation, determine

d

dt

∂H

∂u
= p′ = x(t) − sin πt.

By the state equation, we get

d2

dt2
∂H

∂u
= x′ − π cosπt = u− π cos πt.

Now, we have
∂

∂u

d2

dt2
∂H

∂u
= 1.

Thus, the Kelley condition is true; hence, the considered singular control can be
optimal.

In reality, the considered functional is

I = 1
2

1∫
0

(
x− sin πt

)2
dt − 1

2

1∫
0

sin2 πt.

The second term here does not depend on control, and the first one takes non-negative
values, and its equality to zero is possible only for x(t) = sin πt. This corresponds to
singular control u(t) = π cosπt, which is optimal. Thus, the optimal control problem
under consideration has a unique solution, and the optimality conditions are necessary
and sufficient12.

11.1.3 Non-uniqueness of the optimal control

In all the considered problems with fixed final state, the optimal control was the only
one. Consider another example.

Example 11.3 We have the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.9)

The control u is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
.

Besides, it guaranties the final condition

x(1) = 0. (11.10)
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It is required to minimize on this set the functional

I(u) = 1
4

1∫
0

(
x4 − 2x2 sin2 πt

)
dt.

Determine the function

H(t, u, x, p) = pu− 1
4

(
x4 − 2x2 sin2 πt

)
.

Then we have the adjoint equation

p′(t) = x(t)3 − x(t) sin2 πt, t ∈ (0, 1). (11.11)

Optimal control satisfies here the maximum condition

p(t)u(t)− 1
4

[
x(t)4 −2x(t)2 sin2 πt

]
= max

|v|≤1
p(t)v− 1

4
[
x(t)4 −2x(t)2 sin2 πt

]
, t ∈ (0, 1).

(11.12)
Thus, we have the system (11.9)–(11.11) for finding the unknown functions u, x, p.

The function H is linear with respect to control. Therefore, its maximum is
reached on the boundary of the set of admissible controls, or the solution of the
maximum condition is a singular. The absence of a regular solution is set in the same
way as in the previous example13. Then the solution of optimality conditions is sin-
gular14. This is possible only if p(t) = 0 for all t ∈ (0, 1), which corresponds to the
vanishing of the coefficient at control in the definition of the function H. Determining
p(t) = 0 at the adjoint equation (11.11), we get

0 = p′(t) = x(t)3 − x(t) sin2 πt, t ∈ (0, ξ).

We have a cubic equation for x(t). It has three solutions

x1(t) = 0, x2(t) = sin πt, x3(t) = − sin πt.

Note that these functions satisfy the given boundary conditions. These states corre-
spond to controls

u1(t) = 0, u2(t) = – cos πt, u3(t) = cos πt.

Therefore, system of optimality conditions has three solutions, besides these controls
are singular. The question arises, are they (or at least some of them) optimal?

Check the validity of the Kelley condition. Determine the derivative

∂H

∂u
= p.

Using the adjoint equation (11.11), we find

d

dt

∂H

∂u
= p′ = x3 − sin2 πt.
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Using the state equation (11.9), we get

d2

dt2
∂H

∂u
=

(
3x2 − sin2 πt

)
x′ − πx sin 2πt =

(
3x2 − sin2 πt

)
u− πx sin 2πt.

Now, we have
∂

∂u

d2

dt2
∂H

∂u
= 3x2 − sin2 πt.

Substitute in this equality the values of the state functions defined earlier, corre-
sponding to the singular control. We determine

d2

dt2
∂H

∂u

∣∣∣
u=u1

= 3x2
1 − sin2 πt = − sin2 πt,

d2

dt2
∂H

∂u

∣∣∣
u=u2

= 3x2
2 − sin2 πt = 2 sin2 πt,

d2

dt2
∂H

∂u

∣∣∣
u=u3

= 3x2
3 − sin2 πt = 2 sin2 πt.

Obviously, first of these values is negative, and the second and third are positive
for all t ∈ (0, 1). From Kelley condition, it follows that the singular controls control
u2 = – cosπt and u3 = cosπt can be optimal, and the control u1(t) = 0 is not optimal.

It remains to be seen whether control u2 and u3 (or at least one of them) is
actually optimal. Let us return to the consideration of the optimality criterion

I = 1
4

1∫
0

(
x4 − 2x2 sin2 πt

)
dt.

It can be transformed to

I = 1
4

1∫
0

(
x2 − sin2 πt

)2
dt − 1

4

1∫
0

sin4πtdt.

The second integral here does not depend from control. The first one is not negative;
besides it equals to zero only for x2 = sin2 πt. This is possible for x(t) = sin πt or for
x(t) = − sin πt, which corresponds to determined early states x2 and x3. Therefore,
the controls u2 and u3 are in reality optimal15. Thus, the considered optimal control
problem has two solutions16; and the maximum principle is a necessary, but non-
sufficient condition17.

11.1.4 Unsolvable optimal control problem

Consider another optimal control problem for a system with a fixed final state18.

Example 11.4 We have the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.13)
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Control u is determined from such functions that ensure the fulfillment of the condi-
tions

x(1) = 0. (11.14)

It is required to minimize on this set functional19

I(u) =
1∫

0

4
√

1 + u2dt.

Determine the function
H = pu− 4

√
1 + u2.

The optimal control satisfies the maximum condition

pu− 4
√

1 + u2 = max
v

(
pv − 4

√
1 + v2

)
, (11.15)

where p is the solution of adjoint equation

p′(t) = −Hx = 0, t ∈ (0, 1). (11.16)

Thus, we have the system of optimality conditions (11.13)–(11.16).
The formula (11.15) is the non-conditional extremum problem. Equaling to zero

the derivative of the function H with respect to control, we get

∂H

∂u
= p− u

2
(
1 + u2)3/4 = 0.

From equation (11.16) it follows that the function p is constant. From the last equality,
it follows that

u

2
(
1 + u2)3/4 = c, (11.17)

where c is a constant.
We have a nonlinear algebraic equation. Its solution, as it were, can only be a

constant c0 (perhaps not the only one), because the argument t does not appear at
all in this equality20.

Substituting this control to the problem (11.13), we find the function x(t) = c0t.
Determine here t = 1. Using equality (11.14), we get c0 = 1. Thus, there exists the
unique solution of optimality conditions that is the function u0 = 1. We conclude that
there exists the unique constant control u0, for which the derivative of the function H
vanishes when condition (11.14) is satisfied. It is easy to see that the second derivative
of the function H at the point u0 is negative, i.e., we are really having the point of
maximum for this function21.

From the problem (11.13) with u = u0 it follows x0(t) = t. Using equality (11.16),
determine the solution of the adjoint equation p0(t) = 2−7/4. Thus, the functions

u0(t) = 1, x0(t) = t, p0(t) = 2−7/4
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are unique solution of the system of optimality conditions22 (11.13)–(11.16). Let us
try to prove that control u0 is optimal for this example.

Let us turn to a direct analysis of the problem. Obviously, the integrand of the
given functional is in no way less than unity. As a result, we obtain a lower bound
for it I(u) ≥ 1 for any control u. Let us define the sequence of controls23 (see Figure
11.2)

uk(t) =
{

0, if 0 < t < (k − 1)/k,
k, if (k − 1)/k < t < 1, k = 1, 2, ... .

The corresponding state sequence is (see Figure 11.2)

xk(t) =
{

0, if 0 < t < (k − 1)/k,
kt− k + 1, if (k − 1)/k < t < 1, k = 1, 2, ... .

Figure 11.2 Sequences of controls and state for Example 11.4.

Obviously, we have the equality xk(1) = 1, so the final condition (11.14) is true.
Thus, the control uk is admissible. Find the value of the functional

I(uk) =
1∫

0

4
√

1 + u2
kdt =

(k−1)/k∫
0

dt +
1∫

(k−1)/k

4
√

1 + k2dt = k − 1
k

+
4
√

1 + k2

k
.

Now we have the convergence I(uk) → 1 as k → ∞.
Therefore, there is no control on which the given functional takes a value less

than one, but there is a sequence of controls that ensure the transfer of the system
to a given final state, on which the sequence of functionals converges to 1. Hence, it
follows that the lower bound of the minimized functional on the set of controls that
ensure the transfer of the system to a given final state is 1.
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Previously, we defined the unique solution u0 of the maximum principle. It is
natural to assume that it is at this point that the control functional reaches its
minimum equal to 1. However, the following equality holds

I(u0) =
1∫

0

4
√

1 + u2
0dt =

1∫
0

4
√

2dt = 4
√

2.

We are forced to make a seemingly paradoxical conclusion: the value of the minimized
functional on the only found solution u0 of the optimality conditions is greater than
its lower bound on the set of admissible controls.

The possible non-optimality of a concrete solution of the maximum principle is
not surprising. We have encountered a similar situation many times in the case of
insufficient optimality conditions. Not so surprising is the absence of solutions of the
maximum principle in the case of unsolvability of the optimization problem. The
paradox of this situation lies in the fact that it turns out that the unique solution of
the maximum principle is not optimal24.

By definition, a necessary condition is such an optimality condition that any
optimal control necessarily satisfies. The non-optimality of the unique solution of
the maximum principle is possible only in the case when the optimization problem
has no solution at all. Indeed, if optimal control existed, then it would necessarily
satisfy the maximum principle. However, its unique solution u0 is not optimal. This
is possible only in the case when the considered optimal control problem does not
have a solution25.

The absence of optimal control can also be proven directly. Obviously, if the lower
bound of the given functional (i.e., 1) is reached, then control must necessarily be
identically equal to zero. However, the corresponding solution of problem (11.13) will
also be equal to zero, which means that it cannot satisfy the boundary condition
(11.14) in any way. Thus, the only control on which the functional reaches its lower
bound cannot transfer the considered system to the given final state, and therefore is
not admissible. Thus, this optimal control problem does not really have a solution26.

RESULTS

Below, there is a list of questions in the field of optimal control problems for systems with
fixed final state, related to the considered examples, the main conclusions from the results
of the analysis, as well as the problems that arise in this case and need additional research.

Questions

It is required to answer questions about examples of optimal control problems by
systems with fixed final state, discussed in the lecture.

1. Why in Example 11.1, unlike Example 5.1, which is close to it, cannot there be
continuous solutions to the optimality conditions?
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2. Why cannot there be continuous solutions to the optimality conditions in Ex-
ample 11.1?

3. Why in Example 5.1 each number of discontinuity points in control corresponds
to two solutions of optimality conditions, while in Example 11.1 this is true only
for the case of one or two breaks?

4. Why does Example 11.1 have a unique solution, while the optimal control
problem from Example 5.1 with the same equation of state, optimality criterion,
and set U has two solutions?

5. Why some controls from Table 11.1 (see Notes), cannot be solutions of opti-
mality conditions?

6. Why Example 11.2 cannot have regular solutions of the maximum principle?

7. Is it possible to use the method of proving the absence of regular solutions of the
maximum principle from Example 11.2 to obtain a similar result for Example
6.2, which considers a fairly close problem with a free final state?

8. Formula (11.8) does not exclude the presence of several discontinuity points of
control. Why, while studying it, did we limit ourselves to considering only one
point of break?

9. What would change if Example 11.2 did not require control to belong to U?

10. Whence does it follow that the maximum principle for Example 11.2 is a nec-
essary and sufficient optimality condition?

11. What conclusion can be drawn as a result of checking the validity of the Kelley
condition for Example 11.2?

12. What happens if we use the optimal control uniqueness theorem from Chapter
5 for Example 11.2?

13. What happens if for Example 11.2 we use the theorem on the sufficiency of the
maximum condition from Chapter 5?

14. What happens if we use the optimal control existence theorem from Chapter 7
for Example 11.2?

15. What is the fundamental difference between the properties of Examples 11.2
and 11.3?

16. What is the reason for the difference between the properties of Examples 11.2
and 11.3?

17. Why was there one singular control in Example 11.2, but three in Example
11.3?
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18. What conclusion can be drawn as a result of checking the validity of the Kelley
condition for Example 11.3?

19. What happens if we use the optimal control uniqueness theorem from Chapter
5 for Example 11.3?

20. What happens if for Example 11.3 we use the theorem on the sufficiency of the
maximum condition from Chapter 5?

21. What happens if we use the optimal control existence theorem from Chapter 7
for Example 11.3?

22. Why are there no singular controls in Example 11.4, unlike in previous exam-
ples?

23. Why is the optimal control problem in Example 11.4 so different from previous
examples?

24. On what basis is it concluded that the control u0 for Example 11.4 corresponds
to the maximum of the function H?

25. What happens if for Example 11.4 we use the theorem on the sufficiency of the
maximum condition from Chapter 5?

26. Why is the only control u0 determined from the maximum condition not opti-
mal?

27. Whence follows the absence of optimal control for Example 11.4?

28. Is the set of admissible controls for Example 11.4 bounded?

29. Why cannot we use the optimal control existence theorems for Example 11.4?

Conclusions

Based on the study of the considered problems of optimal control systems with fixed
final state, we can come to the following conclusions.

• The optimality conditions for Example 11.1 have an infinite number of solu-
tions.

• All solutions of the optimality conditions for Example 11.1 are discontinuous.

• For Example 11.1, there are two solutions with one and two break points, and
one each with any number of breakpoints greater than two.

• The optimality conditions for Example 11.1 are not sufficient.

• The optimal control problem for Example 11.1 has a unique solution.
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• For Example 11.2, the function H included in the optimality conditions is linear
with respect to control, as a result of which optimal control can be singular or
take values on the boundary of the set of admissible controls.

• The presence of a fixed final state for Example 11.2 allows us to exclude the
regular solution maximum conditions from consideration.

• For Example 11.2, there is a unique singular control.

• The singular control for Example 11.2 satisfies the Kelley condition.

• The singular control for Example 11.2 is optimal.

• The optimal control problem from Example 11.2 has a unique solution.

• The maximum principle for Example 11.2 is a necessary and sufficient condition
for optimality.

• For Example 11.3, the function H included in the optimality conditions is linear
with respect to control, as a result of which optimal control can be singular or
take values on the boundary of the set of admissible controls.

• The presence of a fixed final state makes it possible to exclude the regular
solution maximum conditions from consideration in Example 11.3.

• For Example 11.3, there are three singular controls.

• One of the singular controls for Example 11.3 does not satisfy the Kelley con-
dition, but two do.

• Two singular controls for Example 11.3 are optimal.

• The optimal control problem for Example 11.3 has two solutions.

• The maximum principle for Example 11.3 is not sufficient optimality condition.

• The function H for Example 11.4 has a unique stationary point, where the
second derivative of H is negative.

• For Example 11.4, there exists a minimizing control sequence.

• For Example 11.4, a minimizing sequence of equations is constructed, which is
not limited.

• The value of the optimality criterion in the found stationary point of the func-
tion H from Example 11.4 is greater than the lower bound of functional on the
set of admissible controls.

• The optimal control problem from Example 11.4 has no solution.
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Problems

In the process of analyzing the considered problems of optimal control for systems
with fixed final state, additional problems arise that need to be studied.

1. Singular control for maximization problems with fixed final state. In
Part II, it was noted that in the problems of minimization and maximization
of the same functional, the sets of singular controls coincide. However, when
changing the type of extremum, the properties of the problem can change qual-
itatively. It would be interesting to analyze the problems considered in the
Lecture with a change in the type of extremum. Such results are given in Ap-
pendix.

2. Optimal control problem with fixed final state in the presence of both
singular and regular solutions of the maximum condition. In all consid-
ered problems of optimal control with fixed final state, either singular controls
did not exist at all, or only singular controls exist. However, for problems with
free final states, we encountered a situation where the maximum condition had
both singular and regular solutions at the same time. Appendix provides an
example of a similar problem with fixed final state.

3. Optimal control with fixed final state with infinite set of solution
maximum principle and non-unique optimal control. In the Lecture,
the problem of optimal control with a fixed final state with an infinite set of
solutions of the maximum condition under the uniqueness of the optimal control
was considered. However, for problems with free finite states, we encountered
a situation where the maximum condition had an infinite number of solutions,
and the optimal control was not unique. Appendix gives an example of a similar
problem with fixed final state.

4. Optimal control problem with fixed final state with non-optimality of
all singular control. In all considered optimal control problems with fixed final
state, when the maximum condition degenerates, at least one singular control
was optimal. However, for problems with free final states, we have encountered a
situation where all singular controls are not optimal. Appendix gives an example
of a similar problem with fixed final state.

5. Optimal control problem with fixed final state, in which the singu-
lar control that satisfies the Kelley condition is not optimal. In all
considered problems of optimal control with fixed final state, singular controls
satisfying the Kelley condition turned out to be optimal. However, earlier we
encountered a situation where the validity of the Kelley condition did not guar-
antee the optimality of the singular control. Appendix gives an example of a
similar problem with fixed final state.

6. Complete analysis of maximum conditions for Example 11.4. The anal-
ysis of the optimal control problem from Example 11.4 was in fact incomplete
and not entirely accurate. Appendix completes the analysis of this example.
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7. Optimal control with fixed final state that has an infinite set of solu-
tions. Previously, we have already encountered a situation where the optimal
control problem with a free final state has an infinite number of solutions. It
would be interesting to give a similar example for a system with fixed final
state. Such an example is given in Appendix.

11.2 APPENDIX

We continue to consider examples of optimal control problems with fixed final state. Sec-
tions 11.2.1 and 11.2.2 deal with maximization problems for functionals with one and three
singular controls. Section 11.2.3 completes the analysis of Example 11.4. Sections 11.2.4 and
11.2.5 provide examples of the considered class of optimal control problems with an infinite
set of solutions and degeneration of the Kelley condition.

11.2.1 Maximization of a functional with unique singular control

Consider a problem similar to Example 11.2, but related to the maximization of a
functional.

Example 11.5 Consider the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.18)

The control u is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ 2, t ∈ (0, 1)
}
.

Besides, it guaranties the final condition

x(1) = 1. (11.19)

It is required to maximize on this set the functional

I(u) = 1
2

1∫
0

(x2 − 2xt)dt.

Determine the function
H = pu–(x2–2xt)/2,

where p satisfies the adjoint equation

p′(t) = x(t) − t, t ∈ (0, 1). (11.20)
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The optimal control here can be found from the minimization of the function H. Be-
cause of its linearity with respect to the control, the solution of optimality conditions
can be singular or is reached at the boundary of the set U . Singular control here
corresponds to the equality p(t) = 0, that is realized for x(t) = t. This state satisfies
the equality (11.19) and corresponds to the admissible control u(t) = 1. However,
this is the point of minimum of the given functional27.

The regular solution of minimization problem for the function H is determined
by the formula

u(t) =
{

2, if p(t) < 0,
0, if p(t) > 0. (11.21)

If u(t) = 2 everywhere, then the state function is x(t) = 2t, hence, x(1) = 2 that
contradicts equality (11.19). For u(t) = 0, we get x(t) = 0, so x(0) = 0 that contra-
dicts equality (11.19) too. Therefore, has function u at least one discontinuity point,
besides the function p change the sign there.

Let ξ be a unique discontinuity point of control, besides u(t) = 2 and the function
p is negative for t < ξ and u(t) = 0 and p is positive for t > ξ. From equation (11.20)
it follows that x(t) = 2t for t < ξ. Therefore, x(ξ) = 2ξ. This value does not change
later, which means, x(1) = 2ξ. Using the condition (11.20), we find ξ = 1/2. Thus,
x(t) = 1–t for t > 1/2.

The adjoint equation for t < 1/2 is p′(t) = x(t) − t = t. Obviously, this derivative
is positive, so the function p increases if t < 1/2. At t = 1/2, it vanishes. This means
that it was initially negative, which is consistent with the choice of control. Similarly,
for t > 1/2 we have the adjoint equation p′(t) = x(t) − t = 1 − t This derivative
is again positive, hence the function p increases if t > 1/2. Then it became positive
there, which is consistent with formula (11.21). Thus, the control, which equal to 2
for t < 1/2 and to 0 for t > 1/2 satisfies, in reality, the optimality conditions.

Suppose now u(t) = 0 and p(t) > 0 for t < ξ, and u(t) = 2 and p(t) < 0 for t > ξ.
Then x(t) = 0 for t < ξ. Therefore, x(ξ) = 0. Solving the state equation with this
initial condition, we find x(t) = 2(t–ξ). Particularly, x(1) = 2(1–ξ). Using equality
(11.20), we find ξ = 1/2. Thus, x(t) = 2t–1 for t > 1/2. The adjoint equation is
p′(t) = x(t) − t = −t for t < 1/2. The function p decreases on first interval with zero
value in the middle of this interval. Therefore, initially this function is negative. For
t > 1/2, the adjoint equation is p′(t) = x(t) − t = t − 1. This derivative is negative,
and the function p decreases if t > 1/2. However, it is vanishing at the point t = 1/2.
Therefore, in what follows, this function is negative, which is consistent with the
choice of control. Hence, the control, which is equal to 0 for t < 1/2 and 2 for t > 1/2
also satisfies the system of optimality conditions.

Let us denote the first of the found solutions by u2
1, and the second one by u0

1,
and the corresponding states of the system by x2

1 and x0
1. In order to choose the best

of these controls, we find the corresponding values of functional. Note the equality

I = 1
2

1∫
0

(x− t)2dt− 1
2

1∫
0

t2dt = 1
2

1∫
0

(x− t)2dt− 1
6 .



Counterexamples of optimal control problems with a fixed final state ■ 331

Determine the value of the integral at the right-hand side of this equality, which is
denoted by J . We have

J(u2
1) =

1∫
0

(x2
1 − t)2dt =

1/2∫
0

t2dt+
1∫

1/2

(1 − t)2dt = 1
12 ,

J(u0
1) =

1∫
0

(x0
1 − t)2dt =

1/2∫
0

(−t)2dt+
1∫

1/2

(t− 1)2dt = 1
12 .

Thus, found two solutions are equivalent.
Suppose now there exists two discontinuity points ξ and η of control. Suppose

u(t) = 2 for 0 < t < ξ and η < t < 1 and u(t) = 0 for ξ < t < η. Then function x
successively takes the values 2t, 2ξ, and 2ξ–2η+ 2t on the three considered intervals.
Using condition (11.20), we have x(1) = 2ξ–2η + 2 = 1, which implies η = ξ +
1/2. Thus, there are an infinite number of options for two points of discontinuity28.
However, one should check the signs of the function p at each of the corresponding
intervals.

Suppose u(t) = 2 for 0 < t < ξ. Then x(t) = 2t, and the function p satisfies the
adjoint equation p′(t) = t. Therefore, its derivative is positive, and p increases. Using
the equality p(ξ) = 0, we conclude that this function is negative for 0 < t < ξ. This
is consistent with equality (11.21).

Then we have u(t) = 0 for ξ < t < ξ + 1/2. We get x(t) = x(ξ) = 2ξ, and the
adjoint equation is p′(t) = 2ξ − t. Integrate this equality by the considered interval.
Considering that function p vanishes on its boundaries, we have

0 =
ξ+1/2∫

ξ

(2ξ − t)dt =
(
2ξt− t2

2
)∣∣∣ξ+1/2

ξ
= ξ −

(
ξ + 1

4
)1

2 = ξ

2 − 1
8 .

Now we find ξ = 1/4. Therefore, for 1/4 < t < 3/4 we get the adjoint equation
p′(t) = 1/2 − t. This derivative is positive, hence the function p increases from zero,
and this is positive. The derivative is equal to zero at the point t = 1/2, where the
function p has. Then it decreases and reaches zero at t = 3/4. Thus, it is positive
throughout this interval, which also agrees with equality (11.21).

If t > 3/4, then the control is u(t) = 2, and x(t) = 2t–1. Then we have the
adjoint equation p′(t) = t− 1. Therefore, function p decreases from zero, and this is
negative. This result again agrees with equality (11.21). Thus, the third solution of
the optimality conditions is found.

Determine the value of the functional J at this control u2
2, to which the state

defined above corresponds x2
2. We have

J(u2
2) =

1∫
0

(x2
2 − t)2dt =

1/4∫
0

t2dt+
3/4∫

1/4

(1
2 − t

)2
dt +

1∫
3/4

(t− 1)2dt = 1
48 .
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The resulting value is less than those that were set earlier, which means that the
control optimal is not optimal. We can also find the solution u0

2, which is equal to 0
on intervals (0, 1/4) and (3/4, 1) to 2 on (1/4,3/4). This is not optimal too, and the
corresponding value of the functional J is 1/48.

The existence of solution u2
k for optimality conditions for is established in a similar

way. It is defined as follows. The segment [0,1] is divided into 2k equal parts. On the
first of them, control is assumed to be 2, on the next two this is equal 0, on the next
two this is 2, etc., Finally, on the last this is 2. Solution u0

k is obtained from the
previous one by swapping the values 2 and 0. The corresponding system states are
shown in Figure 11.3. In this case, we determine the values of functional

J(u2
k) = J(u0

k) = 1
3

1
(2k)2 , k = 1, 2, ... .

Thus, the values of this functional decrease with increasing number of discontinuity
points29.

Figure 11.3 State sequence for Example 11.4.

Thus, for Example 11.4, the maximum principle gives a necessary, but not suffi-
cient optimality condition. In this case, there is a unique singular control, which is
not optimal, and an infinite set of regular solutions of the optimality conditions that
differ in the number of discontinuity points30 (two for each number of jump). Two of
them are optimal, having a unique discontinuity point.

11.2.2 Maximization of a functional with three singular controls

Consider the maximization problem for the functional from Example 11.3. For sim-
plicity, we confine ourselves to considering the case when there are no restrictions on
the values of control.

Example 11.6 Consider the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The control u is chosen from the set of functions that enforce the condition

x(1) = 0.
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It is required to maximize on this set the functional

I(u) = 1
4

1∫
0

(
x4 − 2x2 sin2 πt

)
dt.

The optimal control is the point of minimum of the function

H(t, u, x, p) = pu− 1
4

(
x4 − 2x2 sin2 πt

)
,

where p is the solution of the adjoint equation

p′(t) = x(t)3 − x(t) sin2 πt, t ∈ (0, 1).

By linearity of the function H and the absence of the direct limitation for the controls,
the solution of the optimality conditions can be only singular31.

As we already know, the singular controls in maximization and minimization
problems are the same. Thus, have again three singular controls

u1(t) = 0, u2(t) = –π cos πt, u3(t) = π cosπt.

For the maximization problem, the sign in the Kelley condition should be changed.
If in Example 11.3 the first singular control did not satisfy the Kelley condition, but
the second and third ones did and turned out to be the result of optimal control,
then in this case the situation is opposite. Thus, only control u1 satisfies the Kelley
condition. Being the only singular solution of the maximum principle that satisfies
the Kelley condition, it could have optimal control. However, this will only be the
case if the optimal control problem is solvable.

As noted in Section 11.1.3, the optimality criterion can be written as

I = 1
4

1∫
0

(
x2 − sin2 πt

)2
dt − 1

4

1∫
0

sin4 πtdt.

Consider the sequence
xk(t) = k sin πt, k = 1, 2, ... .

There are the states of the system for the controls uk(t) = –kπ cosπt; they satisfy also
the final condition xk(1) = 0. Determine the corresponding value of the functional

Ik = (k2 − 1)2 − 1
4

1∫
0

sin4 πtdt.

Obviously, this value can be arbitrarily large for sufficiently large. Thus, the consid-
ered functional is upper unbounded on the set of admissible controls, which transform
the system to the given final state. Therefore, the problem of its maximization has
no solution32.
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11.2.3 Completion of the analysis of Example 11.4

Return to the analysis of Example 11.4. This is the minimization of the functional

I =
1∫

0

4
√

1 + u2dt

on the set of functions u = u(t) such that the solution x of the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

satisfies the equality x(1) = 1.
We considered the function

H = pu− 4
√

1 + u2.

From equality to zero its derivative was found the only control u0 = 1, under which
the given final condition is guaranteed, and the second derivative of H at this point
is negative. However, this problem does not have a solution, as a result of which it
was concluded that the optimality condition is not sufficient.

Let us now try to check the sufficiency of the maximum condition directly, as was
done in Chapter 5. To do this, consider the remainder term in the formula for the
increment functional. In accordance with formula (5.12), it is equal to

η = η3 −
1∫

0

(η1 + η2)dt.

Here η3 corresponds to the second order term obtained as a result of transforming the
part of the optimality criterion that characterizes the terminal term functional, η1 is
associated with the second order terms when expanding the value H(t, u, x+ ∆x, p)
into a series in ∆x, and η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x. For this example, there
is no terminal term in the optimality criterion, and function H does not depend on x.
This means that η = 0. However, in this case, the optimality conditions will certainly
be necessary and sufficient.

It was previously established that the considered optimal control problem has no
solution, which means that the set of its solutions is empty. If the optimality condition
is necessary and sufficient, then the set of its solutions exactly coincides with the set
of optimal controls, and therefore is certainly empty. The results obtained force us
to reconsider some of the conclusions that we made in the process of studying the
optimality conditions for the problem posed.

Reducing the derivative of the function H to zero, we determined the equality

p − u

2(1 + u2)3/4 = 0,

where p is constant. Note that the zero values of the functions u and p satisfying
the last equality cannot be the solution of the optimality conditions, since the zero
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control corresponds to the zero state of the system, which contradicts the condition
x(1) = 1.

The resulting relation can be written as

cu = f(u), (11.22)

where c = 1/2p, f(u) = (1 + u2)3/4. Depending on the values of the constant c, the
algebraic equation (11.22) may have one, two, or no solutions; see Figure 11.4. The
constant c itself is determined by the solution of the adjoint system, which is constant,
and must be such that the control corresponding to it ensures the fulfillment of the
condition x(1) = 1.

Figure 11.4 The equation (11.22) has one, two or no solution.

If the value of c is sufficiently small in absolute value (in Figure 11.4, this case
corresponds to one of the equalities c = cs or c = −cs, then equation (11.22), and
hence the system of optimality conditions, does not have a solution at all. The only
solution equation (11.22) is realized for two values of the constant c that are a positive
number c0 and the negative one −c0. A positive constant gives us some constant
control u0 (see Figure 11.4), which corresponds to the solution x(t) = u0t of the state
equation, which takes the value x(1) = u0 at the point t = 1. Then the equality
x(1) = 1 is possible only for u0 = 1. Therefore, we have obtained the previously
defined control u0. If equality c = −c0 is true, then the corresponding control is
negative, which means function x is decreasing, the specified equality will not be able
to be performed.

Consider now the case where the constant c is so large in modulus that equation
(11.22) has two solutions. Obviously, if one of the found constants is chosen as control,
then as a result of consideration of the condition x(1) = 1, we either do not get a
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result at all (control is negative), or we get a known value u0 (control is positive).
However, it is possible that control is piecewise constant. Moreover, it can take such
values u1 and u2 that correspond to two solutions of equation (11.22), but to the
same solution of the adjoint equation. As Figure 11.4 shows, both of these values
must have the same sign. Since control, which takes only negative values, ensures
that the function x decreases, and therefore cannot lead to the validity of condition
(11.22), we focus exclusively on positive values of u1 and u2.

Suppose there exists a point ξ ∈ (0, 1) such that

u(t) =
{
u1, if t < ξ,
u2, if t > ξ.

(11.23)

The corresponding state function is

x(t) =
{

u1t, if t < ξ,
(u1 − u2)ξ + u2t, if t > ξ.

(11.24)

Using now the final condition

x(1) = (u1 − u2)ξ + u2 = 1,

we get the value
ξ = u2 − 1

u2 − u1
,

which must belong to the interval (0,1). Therefore, we have the inequality u1 < 1 < u2
for u1 < u2 and the condition u2 < 1 < u1 if u2 < u1.

For definiteness, we denote by u1 the smallest of the values of u1 and u2. Then
the existence of a unique point ξ, for which control, determined by the formula
(11.23) ensures the validity of the final condition, is possible only when the inequality
u1 < 1 < u2 is satisfied. As we can see from Figure 11.4, this relationship does
indeed hold, since equality u0 = 1 holds true. Thus, the triple of functions, including
control and the state, determined by formulas (11.23) and (11.24) with the above
value ξ, as well as the corresponding function p, really give a solution to the system,
which includes the equation of the state with two given boundary conditions, adjoint
equation and equality (11.22); see Figure 11.5.

The values included in formula (11.23) are uniquely determined from equation
(11.22) for a given value of the parameter c. Obviously, for any value c > c0 there
is a unique pair u1, u2 that satisfies the necessary requirements. The constant c0
can be determined from equality (11.22) if u = u0 = 1. As a result, we find the
value c0 = 23/4. Thus, each of the values c > 23/4 corresponds to a unique pair of
positive numbers u1 and u2, which determine the solution of the specified system in
accordance with formulas (11.23) and (11.24); see Figure 11.5. Thus, this system has
an infinite and even uncountable set of solutions.

Assuming that control, which takes only the values u1 and u2, has two discontinu-
ity points, we get a new solution of the system. Characteristically, for each constant c
exceeding c0, one can find its own pair of u1 and u2, and hence a new solution of the
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Figure 11.5 Possible controls with unique break point and the corresponding state functions.

specified system. Moreover, having one such solution, one can shift the discontinuity
point ξ and η. Thus, so that the distance between them remains unchanged, and they
themselves belong to interval (0,1). The result is a new control with two breakpoints,
also satisfying the specified system; see Figure 11.6. Finally, the option of three or
more check breaks is not ruled out.

It should be noted that so far, we have been talking about a system that includes
a state equation with two boundary conditions, adjoint equation and equality (11.22),
which, as it turned out, has an infinite number of solutions. However, it is far from
obvious that the solutions found by her really correspond to the maximum principle
for Example 11.4.

Obviously, the function of one variable H = pu− 4
√

1 + u2 for all fixed p can take
on an arbitrarily large value, which means that point does not have a global maximum
at all. Thus, the condition maximum does not have a solution, which means that it
is indeed a necessary and sufficient optimality condition for the considered example.

11.2.4 Problem with infinite set of solutions

Consider the following optimal control problem.
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Figure 11.6 Possible controls with two break points and the corresponding state functions.

Example 11.7 We have the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (11.25)

The control u is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
.

Besides, it guaranties the final condition

x(1) = 0. (11.26)

It is required to maximize on this set the functional

I(u) =
1∫

0

u(t)x(t)dt.

This problem differs from the one considered in Example 6.1 only by the presence
of a fixed final state. Denote by V is such a subset of controls from U that the state
of the system corresponding to them satisfies condition (11.26). The given example
implies the problem of minimizing functional I on a subset V , in contrast to Example
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6.1, where the problem of minimizing the same functional on the entire set U was
studied without fixing the final state of the system. Naturally, we have the inequality33

min I(U) ≤ min I(V ).

Thus, if a solution of first problem (Example 6.1) belongs to the set V , then it is the
solution of this example.

When analyzing Example 6.1, it was previously shown that the optimal controls
for it are all functions from the set U that satisfy the equality

1∫
0

u(t)dt = 0. (11.27)

Solving the problem (11.25), we get

x(1) =
1∫

0

u(t)dt.

Thus, condition (11.25) will be satisfied by those and only those controls that satisfy
equality (11.27). Thus, all optimal controls for Example 6.1 belong to the set V ,
which means that there will be optimal controls for Example 11.7 as well. Therefore,
the considered problem has an infinite and even uncountable set of solutions34.

11.2.5 Problems with degeneracy of the Kelley condition

In Chapter 6, we considered a situation where not only the maximum principle, but
also the Kelley condition degenerated. Let us give a similar example for a system
with fixed final state.

Example 11.8 We have the system described by the Cauchy problem

x′
1(t) = x2(t), x′

2(t) = u(t), t ∈ (0, 1); x1(0) = x2(0) = 0. (11.28)

The control u is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
.

Besides it guaranties the final condition

x1(1) = 0. (11.29)

It is required to maximize on this set the functional

I(u) = 1
2

1∫
0

(
x4

1 − x2
1 sin2 πt

)
dt.
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Consider also the corresponding maximization problem.

Example 11.9 It is required to maximize the functional from Example 11.8 on the
same set of controls.

Determine the function

H = p1x2 + p2u−
(
x4

1 − x2
1 sin2 πt

)
/2,

where p1 and p2 satisfy the equalities

p′
1(t) = 2x1(t)3 − 2x1(t) sin2 πt, p′

2(t) = −p1(t), t ∈ (0, 1); p2(1) = 0. (11.30)

The degeneration of the maximum principle here is possible for p2 = 0. Then it
follows from the second equation (11.30) that p1 = 0, and from the first one that
x3

1 − x1 sin2 πt = 0. The resulting cubic equation has three solutions: x1 = 0, x1 =
sin πt, and x1 = sin πt. Substituting these values into the first equation (11.28), we
find the corresponding functions x2 = 0, x2 = π cosπt, and x2 = π cosπt. Now it
follows from the first equation (11.28) that for the considered example there are three
special controls u = 0, u = –π2 sin πt, and u = –π2 sin πt. Note that they all belong
to the set U and ensure the fulfillment of condition (11.29).

Let us verify the validity of the Kelley condition for the found singular controls.
We have

∂H

∂u
= p2.

Using the adjoint equation, we get

d

dt

∂H

∂u
= p′

2 = −p1.

After differentiation with using the first adjoint equation, we find

d2

dt2
∂H

∂u
= −p′

1 = −2x1(t)3 + 2x1(t) sin2 πt.

Now we have
d2

dt2
∂H

∂u
= 0,

a.e. the Kelley condition degenerates.
To verify the validity of the Kopp–Moyer condition, we continue the differentiation

d3

dt3
∂H

∂u
= −6x2

1x
′
1 + 2x′

1 sin2 πt+ x1π sin 2πt = −6x2
1x2 + 2x2 sin2 πt+ x12π sin 2πt

because of the first equality (11.30). Using the second equality (11.30), determine

d4

dt4
∂H

∂u
= −12x1x

2
2 − 6x2

1u+ 2u sin2 πt+ 4πx2 sin 2πt+ 4π2x1 cos 2πt.
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Finally, we find the value

∂

∂u

d4

dt4
∂H

∂u
= −6x2

1 + 2 sin2 πt,

that is not zero. Put here the known singular controls, we get

∂

∂u

d4

dt4
∂H

∂u

∣∣∣
u=0

= 2 sin2 πt,
∂

∂u

d4

dt4
∂H

∂u

∣∣∣
u=±π2 sin2 πt

= −(6π2 − 2) sin2 πt.

Thus, for Example 11.7 the Copp–Moyer condition holds for the singular controls
u = –π2 sin πt, and u = –π2 sin πt, and fails for control u = 0, and vice versa for
Example 11.8. Thus, in both cases, the optimality condition is not sufficient, but
in Example 11.7 optimal can be control u = –π2 sin πt, and u = –π2 sin πt, and in
Example 11.8 the control u = 0 can be optimal. It is not difficult to make sure that
these special controls are indeed optimal in the first case35, and in the second case,
either a zero singular control or a regular control equal to 1 for negative values of p2
and –1 for positive values of this function is optimal36.

Additional conclusions

Based on the analysis of the above examples of optimal control problems by systems
with fixed final state, we have the following additional conclusions.

• The maximum principle for Example 11.4 can degenerate, but the correspond-
ing unique singular control is not optimal.

• The maximum principle for Example 11.4 has an infinite number of solutions,
differing in the number of points of break.

• The maximum principle for Example 11.4 is not a sufficient optimality condi-
tion.

• The optimal control problem from Example 11.4 has two solutions, each with
one discontinuity point.

• The maximum principle for Example 11.5 has three solutions that are singular
controls.

• Among the three singular controls for Example 11.5, only one satisfies the
Kelley condition.

• The maximum principle for Example 11.5 is not a sufficient optimality condi-
tion.

• The singular control for Example 11.5 satisfying the Kelley condition is not
optimal.

• The optimal control problem for Example 11.5 has no solution.
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• The remainder term in the formula of functional increment for Example 11.5 is
zero.

• The maximum principle for Example 11.3 is sufficient optimality condition.

• There exists an uncountable set of stationary points of the function H for
Example 11.3, which transform the system to the final state, but they are not
optimal.

• The function H for Example 11.3 is not upper bounded.

• For optimal control problems with fixed final state, there may be an infinite set
of singular controls.

• For optimal control problems with fixed final state, there may be a degeneration
of the Kelley condition; and to check the optimality of special controls, one can
use the Kopp–Moyer condition.

• The maximum principle for Examples 11.7 and 11.8 is not a sufficient optimality
condition.

• The optimal control problem for Example 11.7 has two solutions, which are
non-zero singular controls.

Notes

1. In contrast to the similar system (5.1)–(4.4), there is no sign change invariance here, as a
result of which several other properties can be expected from this system. There is no invariance
under the change of sign in the formulation of the problem itself. Particularly, if some function
is a solution to the problem, then for a function taken with the opposite sign, condition (11.1)
will certainly be get broken.

2. Note that for Example 5.1 these two continuous (constant) functions were optimal controls.

3. We encountered a similar result in Example 5.1, but there the two solutions of the opti-
mality conditions differed only in sign.

4. Curiously, this control is exactly the same as function u+
2 from Example 5.1. This is not

surprising, because this is the only solution of the system of optimality conditions for the spec-
ified example that satisfies equality (11.2). Recall that the optimality conditions for Examples
5.1 and 11.1 differ only in the presence of this equality and the absence of the final condition
for the adjoint equation.

5. We got here the previously discussed solution with two control break points and a value
of 1 on the first interval. There is nothing surprising in this, since function p in the indicated
previous variant vanished not only at points of the control break, but also at t = 1.

6. Table 11.1 shows the distribution of control discontinuity points that are the solution and
the resulting system of optimality conditions for the considered example. In this case, the
second column shows the coordinates of the discontinuity points control with a value of 1 in
the first interval of continuity, and in the third column shows it with a value of –1 in this
interval.
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TABLE 11.1 Distribution of control discontinuity points.
Numbers of Coordinates of breakpoints of controls Coordinates of breakpoints of controls

discontinuity with value 1 on first interval with value –1 on first interval
1 3/5 2/5
2 2/10, 6/10 3/10, 9/10
3 3/15, 9/15, 15/15 2/15, 6/15, 10/15
4 2/20, 6/20, 10/20, 14/20 3/20, 9/20, 15/20, 21/20
5 3/25, 9/25, 15/25, 21/25, 27/25 2/25, 6/25, 10/25, 14/25, 18/25
6 2/30, 6/30, 10/30, 14/30, 18/30, 22/30 3/30, 9/30, 15/30, 21/30, 27/30, 33/30

It is easy to see that in the case of n breakpoints, control, which takes the value 1 on first
interval, has jumps in points

5 + (−1)n+1

10n
(2k − 1), k = 1, 2, ..., n.

If it is equal to –1 there, then the points of discontinuity are

5 + (−1)n

10n
(2k − 1), k = 1, 2, ..., n.

Note that in the resulting formulas, the last point of the break can have a coordinate greater
than or equal to 1 (these values are highlighted in the table), which indicates that such a variant
of control is inadmissible. Thus, there are two solutions of optimality conditions each with one
and two discontinuity points, and one solution each with more than three discontinuity points.

7. Obviously, the square of control included in the optimality criterion for all solutions of
the optimality conditions is equal to 1; however, it is for the specified control that function x
reaches its maximum value. Something similar was observed in Example 5.1. However, there
a continuous function was admissible and turned out to be the very solution of the problem.
Moreover, due to the invariance of the system with respect to the sign change, there were two,
and not one, optimal controls.

8. Characteristically, the uniqueness of the solution of the problem is realized when the
uniqueness theorem presented in Chapter 5 is violated. In particular, in this case we are mini-
mizing a functional that is not convex. The results obtained are significantly different from the
properties of the related problem of optimal control with a free final state from Example 5.1,
characterized by the invariance of the problem under the change of sign of control. There, each
number of discontinuity points corresponds to two solutions of optimality conditions, which dif-
fer in signs, and solutions turn out to be two continuous controls. In Example 12.7, considered
in the following section, we analyze the problem of optimal control, in which the corresponding
homogeneous condition is used instead of the final condition (11.1). In this regard, the problem
statement and optimality conditions become invariant under sign change. As a result, each
number of discontinuity points corresponds to two solutions of optimality conditions, which
differ in signs, and optimal are two controls with one discontinuity point.

9. Indeed, suppose now that p(t) < 0 for 0 < t < ξ, where ξ is the first point in interval
(0,1) such that p(ξ) = 0. Then on the considered interval u(t) = –π, and hence x(t) = –2πt.
Substituting this value into the adjoint equation (11.7), we find the derivative

p′(t) = πt − sin πt, t ∈ (0, ξ).

Thus, p′(t) is negative on interval (0, ξ). Therefore, function p decreases monotonically. Given
that it is negative at this interval, we conclude that equality p(ξ) = 0 is impossible.

10. Existence of singular control for this example can be proved by Theorem 6.1. Note that
for easier Example 6.2, where the analogical system with free final state was be considered,
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we cannot so easily prove the absence of a regular solution of the maximum condition. The
presence of additional condition (11.1) makes it possible to significantly simplify the analysis
at this stage of the study. Chapter 15 gives an example of an optimal control problem with an
isoperimetric condition for which there is a singular control.

11. In Chapter 6, Kelley condition was formulated for the optimal control problem by a system
with a free final state. However, the degeneration of the condition maximum is determined by
the form of the function H and is not related to the presence or absence of an additional
condition at the final time.

12. For the considered example, we can prove the existence of optimal control, its uniqueness,
and sufficiency of optimality conditions using Theorems 7.1, 5.1, and 5.2, respectively. To do
this, it is enough to carry out the same transformations as in the analysis of Example 6.2. Note
also that the obtained results apply to the problem of determining such a control u from the
set

U =
{

u
∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )

}
,

that transforms the system described by Cauchy problem

x′(t) = u(t), t ∈ (0, T ) : x(0) = 0.

to the state x(T ) = xT with minimization of the functional

I = 1
2

T∫
0

[
x − z(t)

]2
dt

under following conditions

z(0) = x0, z(T ) = xT ; a(t) ≤ z′(t) ≤ b(t), t ∈ (0, T ).

In this case, the problem has a unique solution, the optimality conditions are necessary and
sufficient, and the optimal control is singular and equal to z′. We will return to consideration
of Example 11.2 in Chapter 12.

13. Regular solution of the optimality conditions (if it exists) is determined by the formula
u(t) = 1 for positive values p(t) and u(t) = –1 for its negative values. If u(t) = 1 everywhere,
then the solution of the problem (11.9) is x(t) = t, hence x(1) = 1. This contradicts the equality
(11.10). If u = –1 everywhere, then x(t) = –t, so x(1) = –1. This result is also inconsistent
with equality (11.10). Therefore, the regular solution of the maximum condition, if it exists, is
discontinuous, and the function p changes the sign. Denote by ξ the first point from the origin
in interval (0,1) where equality p(ξ) = 0 is satisfied. Suppose p(t) > 0 for 0 < t < ξ. Then
u(t) = 1 here, and x(t) = t. Putting it the adjoint equation (11.11), we find

p′(t) = x(t)3 − x(t) sin2 πt, = t(t2 − sin2 πt), t ∈ (0, ξ).

Obviously, t2 > sin2 πt; hence, p′(t) is positive on interval (0, ξ). Therefore, the function p
increases. Thus, this function has only positive values. In this case, the equality p(ξ) = 0 is
impossible. It means that the supposition that the function p is positive turned out to be
wrong. Suppose now, that p(t) < 0 for 0 < t < ξ, where ξ is the first point from the origin in
interval (0,1) such that p(ξ) = 0. Therefore, u(t) = –1 here and x(t) = –t. Substantiating this
value to the adjoint equation, we find

p′(t) = x(t)3 − x(t) sin2 πt, = −t(t2 − sin2 πt), t ∈ (0, ξ).

From inequality t2 > sin2 πt it follows that the derivative p′(t) is negative on interval (0, ξ).
Therefore, the function p decreases. Because it is negative on this, we conclude that the equality
p(ξ) = 0 is impossible. Thus, the regular solution of optimality conditions is absent.
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14. We can use Theorem 6.1 for proving the existence of singular control. By this result, it
is sufficient so that the right side of the state equation looks like f1(t, x)φ(u) + f2(t, x), the
integrand was represented as g1(t, x)φ(u) + g2(t, x), and there exists an admissible control
such that f1(t, x(t))p(t)–g1(t, x(t)) = 0. For the considered example, f1(t, x) = 1, φ(u) = u,
f2(t, x) = 0, g1(t, x) = 0, g2(t, x) = x4–2x2 sin2 πt. The last condition of theorem corresponds
the equality p(t) = 0, which can be true for three admissible controls because of the equality
(11.7).

15. Note that both the problem statement itself and the condition maximum are sign-invariant.
Therefore, if some control u is optimal, or at least a solution of the optimality condition, then
control –u, which differs from it, will also be so. Therefore, the number of optimal controls and
solutions of the optimality condition must necessarily be even (if it is finite), if their number
does not include control, which is identically equal to zero. The latter does not change when
the sign is changed. In particular, a third (non-optimal) singular control is added to the two
optimal controls, which is identically equal to zero.

16. Examples of optimal control problems with isoperimetric conditions and non-unique solu-
tions will be considered in Chapters 14 and 15.

17. It is easy to see that the conditions of Theorem 5.2 on the sufficiency of the maximum
condition are not realized in this case. We also note that it is possible to construct an example of
the optimal control problem with m optimal singular controls. Let the system be characterized
by the equalities

x′(t) = u(t), t ∈ (0, T ); x(0) = x0, x(T ) = xT .

Consider arbitrary differentiable functions z1,..., zm, satisfying the conditions

zi(0) = x0, zi(T ) = xT , i = 1, ..., m.

Then the minimization problem for the functional

I =
T∫

0

m∏
i=1

[
x(t) − zi(t)

]2
dt

on the set of controls for which the state of the system satisfies the above relations, has the
solutions ui = z′

i, i = 1, ..., m that are singular controls. They are also the solutions of the
problem with additional condition u ∈ U if z′

i ∈ U , i = 1, ..., m. Corresponding examples for
more difficult equations can be determined similarly.

18. A similar example is considered in [142] from the point of view of the calculus of variations;
see also [170].

19. This problem differs from the one considered in Example 10.2 only in that here the integral
is the root of the fourth, and not the second degree.

20. This assertion will be refined later.

21. Obviously, the second derivative is

∂2H

∂u2 = − d

du

[
u

2
(
1 + u2

)3/4

]
= − 2 − u2(

1 + u2
)7/4 .

22. In fact, this statement is erroneous. We will see this in Section 11.2.3.
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23. By the properties of this sequence (see Figure 11.2), we conclude that the set of controls
that transform the system to the given final state is unbounded. This means that does not exist
a positive constant, which is greater than the norm of arbitrary element of this set. Particularly,
the norm of element uk of considered sequence with respect to the space Lp(0, 1) of integrable
functions with degree p is

∥uk∥ =
( 1∫

(k−1)/k

kpdt
)1/p

= k(p−1)/p.

This is arbitrarily large when p > 1. Therefore, the sequence {uk} is not bounded. It is possible
to prove the boundedness of this sequence in the space L1(0, 1) of integrable functions. However,
the Banach–Alaoglu theorem, which is used in the optimal control existence theorems, does
not hold for it. The unboundedness of the set of admissible controls means that when studying
the solvability of this problem, we cannot use Theorem 7.1. However, there is also Theorem
7.2, in which, instead of the boundedness of the set of admissible controls, the coercivity of
the functional being minimized is used. This means that for ∥vk∥ → ∞ the corresponding
sequence of functionals must increase indefinitely. However, this is not the case, at least for
the considered minimizing sequence, since the corresponding sequence of functionals converges
to 1. Thus, the coercivity of functional is not satisfied. Moreover, Theorem 7.2 contains the
convexity property of the functional being minimized. However, the given functional is not
convex, because the integrand function g, determined by the formula g(u) = 4√1 + u2 is not
convex. Thus, we also cannot use Theorem 7.2, which is quite natural, since this optimal control
problem, indeed, does not have a solution. Chapter 14 will prove the existence of an optimal
control for a particular example, not only in the absence of a bounded set of admissible controls,
but even in the absence of its convexity.

24. Appendix will show that this is not entirely true.

25. Actually, we have already met with such a situation in Chapter 1 when minimizing the
function f(x) = x3. The only stationary point x = 0 here does not minimize the considered
function.

26. In Chapter 15, we consider an example of an insolvable optimal control problem for the
system with isoperimetric condition.

27. The considered functional is equal to

I(u) = 1
2

1∫
0

(x − t)2dt − 1
2

1∫
0

t2dt.

The second integral here does not depend from control, and the first one is non-negative. It is
equal to zero for the state x(t) = t, which corresponds to the singular control u(t) = 1. There-
fore, this control actually delivers the minimum, not the maximum, of the given functional.
The non-optimality of this singular control can also be proved using the Kelley condition.

28. The result obtained indicates that at half of the specified interval (0,1) control should take
the value 0, and at half this is 2. A similar pattern can be traced for solutions of the optimality
condition with a large number of point of discontinuity.

29. In a certain sense, this optimal control problem resembles the one considered in Example
5.1.

30. In Part II, we turned to the method of elimination in order to exclude two of their three
unknown functions u, x, and p from the system of optimality conditions and obtain a boundary
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value problem for a differential equation with respect to one of the unknowns. One can do the
same for problem (11.18)–(11.21). It can be reduced to the boundary value problem

p′′(t) = F (p(t)) − 1, t ∈ (0, 1), p(0) = 0, p′(1) = 0,

where F (p) denotes the value on the right side of equality (11.21). The resulting second bound-
ary value problem for a second-order differential equation has an infinite set of solutions that
are discontinuous (piecewise constant) functions.

31. If we have extra the set of admissible controls U = {u| |u(t)| ≤ 1, t ∈ (0, 1)}, then in
addition to the three special controls, there is an infinite number of regular solutions to the
optimality condition, similar to those in Example 11.4. They differ in the number of control
breakpoints and in which of the values 1 or –1 is realized at the initial moment of time.

32. Naturally, if control is required to belong to a bounded set, then the defined control uk

will no longer be valid. The optimality criterion will turn out to be bounded from above, and
regular optimality conditions appear.

33. The minimum of the functional on the whole set does not exceed its minimum on the
subset.

34. Another example of an optimal control problem with an infinite set of solutions is given in
Chapter 15. In this case, some isoperimetric condition is additionally imposed on the system.

35. The given optimality criterion can be written as

I(u) = 1
2

1∫
0

[
x1(t) − sin πt

]2[
x1(t) + sin πt

]2
dt − 1

2

1∫
0

sin4 πt.

Here, the second integral does not depend on control, and the first one is non-negative. It can
only vanish on the specified non-zero singular controls.

36. In this case, it does not matter which control is optimal in Example 11.8. The main thing
is that we are dealing with problems in which there are three singular controls, and for testing
them for optimality, it turns out that not the Kelley condition, but the Kopp–Moyer condition
is effective.



C H A P T E R 12

Ill-posed optimal control
problems with a fixed final
state

We continue to consider optimal control problems for systems described by ordinary differ-
ential equations with given initial and final states. In this case, it was required to minimize
some integral functional in the presence of certain restrictions on the control values. This
chapter deals with a range of issues related to the concept of well-posedness. Examples of
such problems are given that are ill-posed in the sense of Tikhonov and Hadamard, and
also in the presence of an extremal bifurcation.

12.1 LECTURE

The subject of this lecture is the study of questions of the well-posedness of optimal control
problems for systems with a fixed final state. In particular, Section 12.1.1 gives examples
of such problems that are Tikhonov and Hadamard well-posed. Subsections 12.1.2 and
12.1.3 explore the corresponding ill-posed problems. Subsections 12.1.4 and 12.1.5 describe
examples of optimal control problems for systems with a fixed final state in the presence of
parameters that are characterized by bifurcation of extremals.

12.1.1 Well-posed optimal control problems with a fixed final state

For problems of optimal control of systems with a free final state in Chapter 8, the
concept of Tikhonov well-posedness was defined, which implies the convergence of
any minimizing sequence to the optimal control. Consider an analog of this problem
for a system with a fixed final state.

Example 12.1 It is required to minimize the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt
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on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

guarantee the realization of the condition

x(1) = 0.

This problem differs from the one considered in Example 3.3 only by the presence
of a final condition. In Chapter 8, sufficient conditions were given for the Tikhonov
well-posedness of the optimization problem. In particular, according to Theorem 8.1,
if the problem of minimizing a strongly convex functional on a convex subset of a
Hilbert space has a solution, then it is Tikhonov well-posed.

It is clear that the solution of the considered problem under is a control that is
equal to zero, i.e., optimal control exists. The space L2(0, 1) is Hilbert. The optimality
criterion in this case is minimized on a subset of U , guaranteeing the realization of
the final condition. The convexity of this subset is set in the same way as the similar
result1 for Example 9.1. The strong convexity of the functional to be minimized was
proved in Chapter 8. Thus, this optimal control problem turns out to be well-posed
in the sense of Tikhonov by virtue of Theorem 8.1.

Along with Tikhonov well-posedness, Chapter 8 also considered the Hadamard
well-posedness of optimization problems, which implies the existence of a unique
solution that continuously depends on the parameter. In particular, the problem
from Example 8.1 was Hadamard well-posed. Consider an analog of this problem for
a system with a fixed final state.

Example 12.2 It is required to minimize the functional

I = I(µ, u) = 1
2

1∫
0

[
u2 + (x− µ)2]

dt

for a fixed value of the parameter µ on a subset of such functions u = u(t) from the
set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

guarantee the realization of the condition

x(1) = 0.
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According to Theorem 8.2, if for any fixed value µ from a set M , the problem of
minimizing the functional I = I(µ, u) on the set U is Tikhonov well-posed, and the
mapping µ → I(µ, u) is continuous on M uniformly in u ∈ U , then this problem is
Hadamard well-posed. The Tikhonov well-posedness of this problem for a fixed value
of the parameter µ is established in the same way as the similar result for Example
12.1, and the uniform continuity of the functional with respect to the parameter
was established when analyzing Example 8.1. Thus, the optimization problem from
Example 12.2 is Hadamard well-posed.

12.1.2 Tikhonov ill-posed problem

Let us now turn to ill-posed optimal control problems. In particular, the optimal
control problem from Example 6.2 turned out to be Tikhonov ill-posed. Consider a
similar example for a system with a fixed final state.

Example 12.3 It is required to minimize the functional

I(u) = 1
2

1∫
0

x2dt

on a subset of such functions u = u(t) from the set

U =
{
u ∈ L2(0, 1)

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0 (12.1)

guarantee the realization of the condition

x(1) = 0. (12.2)

This problem differs from the one considered in Example 6.2 only by the presence
of an additional condition (12.2). For its analysis, we use the standard method. Here
the function H is defined by the formula

H = pu–x2/2,

where p is a solution of the equation

p′(t) = x(t), t ∈ (0, 1). (12.3)

As in the examples in the preceding chapter, the solution to the maximum con-
dition is either reached at the boundary of the set U or is a singular control.

The regular solution of the maximum condition is characterized by the equality

u(t) =
{

1, if p(t) > 0,
−1, if p(t) < 0. (12.4)



Ill-posed optimal control problems with a fixed final state ■ 351

Assume that u(t) = 1 over the entire interval (0,1). Then the solution of the Cauchy
problem (12.1) is x(t) = t, and hence x(1) = 1. However, this contradicts condition
(12.2). On the other hand, for u(t) = –1 we find x(t) = –t, and hence x(1) = –1. This
result also disagrees with equality (12.2). Consequently, the control characterized
by formula (12.4) can only be discontinuous, which is possible when the function p
changes sign at least at one point in the interval (0,1).

Denote by ξ the first point from the origin of coordinates from the interval (0,1),
where the equality p(ξ) = 0 is fulfilled. For definiteness, we assume that p(t) > 0
for 0 < t < ξ. Then on this interval u(t) = 1, and hence x(t) = t. Substituting this
value into the adjoint equation (12.3), we find the derivative p′(t) = t for 0 < t < ξ.
This implies that the function p is monotonically increasing on the interval under
consideration. Considering that it vanishes at the point ξ, we conclude that for t < ξ
it is negative. However, according to equality (12.4), the function p must be positive
at all points t, where u(t) = 1. If, on the contrary, p(t) < 0 for 0 < t < ξ, then
u(t) = –1, and hence x(t) = –t. Then the adjoint equation has the form p′(t) = –t.
Thus, the function p on the interval (0, ξ) and reaches zero at the point ξ. This is
possible if it is positive, which again contradicts condition (12.4). Thus, the function
p cannot be either positive or negative on any initial subinterval from (0,1). Thus,
the solution of the maximum principle cannot be represented in the form (12.4), i.e.,
can not be regular2.

A singular control is implemented if the coefficient before the control in the defi-
nition of the function H is equal to zero. This corresponds to the equality p(t) = 0.
Then equality (12.3) implies x(t) = 0. Note that this function x also satisfies the final
condition (12.2). Substituting this function into problem (12.1), we find the control
u0(t) = 0. It belongs to the set U and is the optimal control for Example 12.3. The
value of the optimality criterion corresponding to it is equal to I(u0) = 0.

Consider now the sequence of controls characterized by the equalities

uk(t) = cos kπ, k = 1, 2, ... .

The corresponding solutions to problem (12.1) have the form

xk(t) =
t∫

0

cos kτ)dτ = sin πkt
πk

, k = 1, 2, ... .

Note that they all satisfy condition (12.2), and hence the sequence {uk} is admissible.
We find the corresponding values of the minimized functional

I(uk) = 1
2

1∫
0

x2
kdt = 1

2k2π2

1∫
0

sin2 πktdt = 1
4k2π2 .

Obviously, I(uk) → 0 as k → ∞. Thus the sequence {uk} is a minimizing.
Let us check the convergence of this sequence to the optimal control. Calculate

the value

∥uk − u0∥2 =
1∫

0

∣∣uk(t) − u0(t)
∣∣2dt =

1∫
0

cos2 πktdt = 1
2 .
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Therefore, the minimizing sequence does not converge to the optimal control, which
means that the considered problem is not Tikhonov well-posed3.

12.1.3 Hadamard ill-posed problem

Let us give an example of a Hadamard ill-posed optimal control problem for a system
with a fixed final state.

Example 12.4 It is required to minimize the functional

Ik(u) =
1∫

0

(x− yk)2dt,

where yk(t) = (kπ)–1 sin kπt, k is a numerical parameter (natural number) on a subset
of such functions u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem
x′(t) = u(t), t ∈ (0, 1); x(0) = 0

guarantee the realization of the condition
x(1) = 0.

Using the technique described in the previous chapter, we establish that this
problem has a unique solution, the maximum principle gives the necessary and suf-
ficient optimality condition, and the solution here is a singular control, in which the
functional vanishes. This corresponds to the function

uk(t) = y′
k(t) = cos kπt.

Obviously, it belongs to the set U and guaranties the equality x(1) = 0.
Passing to the limit in the formula defining the optimality criterion, we find the

value

I∞ = lim
k→∞

Ik =
1∫

0

x2dt.

The problem of minimizing this functional on a subset U of controls that ensure the
fulfillment of a given final condition corresponds to Example 12.3 and has a solution
u∞ = 0.

Find the value

∥uk − u∞∥2 =
1∫

0

∣∣uk(t) − u∞(t)
∣∣2dt =

1∫
0

cos2 kπtdt = 1
2 .

Thus, the optimal control u∞ for the limit problem is not the limit of the sequence
{uk} of solutions to the original problem. Therefore, the solution of the problem under
consideration is not continuous in the parameter, which means that the problem is
not Hadamard well-posed4.
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12.1.4 Bifurcation of extremals

When analyzing in Chapter 2 problems of minimizing a function depending on a
parameter, we encountered a situation where, with a small change in the parameter,
the solution of the problem does not just change by a considerable amount, which
corresponds to the absence of Hadamard well-posedness. In the process of changing
the parameter of the problem, the number of stationary points of the function under
study may change. This phenomenon, called bifurcation, also arises in problems of
minimizing functionals. Consider an optimal control problem with a fixed final state
and a functional depending on the parameter5.

Example 12.5 It is required to minimize the functional

I(u) =
π∫

0

[u2

2 − µ(1 − cosx)
]
dt

on a set of such functions u = u(t), which transform the system characterized by the
equalities

x′(t) = u(t), t ∈ (0, π); x(0) = 0 (12.5)

to the state
x(π) = 0, (12.6)

where µ is a positive constant that is a problem parameter.

To obtain optimality conditions, we use the standard method6. Define a function

H(u, x, p) = up–u2/2 + µ(1 − cosx).

Then the optimal control satisfies the maximum condition

H(u, x, p) = max
v

H(v, x, p), (12.7)

where p is a solution of the adjoint equation

p′ = −Hx = −µ sin x. (12.8)

Therefore, the system of optimality conditions includes relations (12.5) – (12.8) with
respect to three unknown functions u, x, p. To study it, we use the elimination method
in order to obtain a certain problem with respect to one of the unknown functions.
Turning to zero the derivative of the function H with respect to control, we find
the value u = p. Note that the corresponding second derivative is negative, i.e., the
maximum point of the function H is found. As a result of substituting this value into
the equations of state after differentiation, taking into account equation (12.8), we
obtain a second-order nonlinear differential equation7

x′′(t) + µ sin x(t) = 0, t ∈ (0, π). (12.9)
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Equalities (12.5) and (12.6) imply the boundary conditions

x(0) = 0, x(π) = 0. (12.10)

Obviously, the boundary value problem (12.9) and (12.10) for any values of the
parameter µ has a zero solution. To establish its additional properties, we need one
result from the theory of boundary value problems for nonlinear differential equations.
Consider the following problem

x′′ + f(t, x) = 0, t ∈ (0, T ); x(0) = 0, x(T ) = 0. (12.11)

Definition 12.1 The function y is called a lower solution of problem (12.11) if
the following relations hold

y′′ + f(t, y) ≥ 0, t ∈ (0, T ); y(0) ≤ 0, y(T ) ≤ 0.

The function z is called an upper solution of problem (12.11) if the following rela-
tions hold

z′′ + f(t, z) ≤ 0, t ∈ (0, T ); z(0) ≥ 0, z(T ) ≥ 0.

Obviously, the usual solution to problem (12.11) is always both the lower and the
upper solution of this problem. In this case, all the above relations are true in the
form of equality. Naturally, the converse statement is not true in general.

The following assertion is true8:

Theorem 12.1 If, with sufficient smoothness of the function f, there are lower and
upper solutions y and z, respectively, of problem (12.11), and the inequality y(t) ≤ z(t)
is true for all t ∈ (0, T ), then this problem has a solution x such that

y(t) ≤ x(t) ≤ z(t), t ∈ (0, T ).

We use Theorem 12.1 to analyze the boundary value problem (12.9), (12.10). Let
us define the function y(t) = ε sin t, where ε is some non-negative number. We have

y′′(t) + µ sin y(t) = −ε sin t+ µ sin (ε sin t).

It is known that the sine of a small enough angle is sufficiently close to the value
of the angle itself9. Then, for µ > 1, the parameter ε can be chosen so small that the
term on the right side of the last equality would be non-negative. Taking into account
that the function y vanishes at the ends of the considered interval, we conclude that
it is a lower solution to problem (12.9) and (12.10). Obviously, the constant function
z(t) = π satisfies equation (12.9) and takes positive values at the boundaries of this
interval. Therefore, it is the upper solution of this boundary value problem. In this
case, the inequality ε sin t ≤ π is valid. Thus, the conditions of Theorem 12.1 are
satisfied. Then for µ > 1, there exists a solution x of problem (12.9) and (12.10)
satisfying the condition

ε sin t ≤ x(t) ≤ π, t ∈ (0, π).
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Thus, for any value µ > 1, the boundary value problem (12.9) and (12.10) has
a positive solution. It was noted earlier that it always has a zero solution. It can be
established10 that for µ ≤ 1 there is an exclusively zero solution to this problem.
Thus, the value µ = 1 is its bifurcation point. It can be seen11 that for µ ≤ 1 the
set optimal control problem is a function that is identically equal to zero, and for
µ > 1 it turns out to be the corresponding positive solution to the boundary value
problem (12.9) and (12.10). This effect is called bifurcation of extremals12. As
the parameter increases from the bifurcation point, there is a sharp change in the
optimal control, which means the absence of Hadamard well-posedness13.

12.1.5 Chafee–Infante problem

Let us now consider one optimal control problem for a system with a fixed final state
and a functional depending on two parameters14.

Example 12.6 It is required to minimize the functional

I(u) = 1
4

π∫
0

(
u2 + νx4 − 2µx2)

dt

on a set of such functions u = u(t), which transform the system characterized by the
equalities

x′(t) = u(t), t ∈ (0, π); x(0) = 0 (12.12)
to the state

x(π) = 0, (12.13)
where µ and ν are positive constants that are system parameters.

To obtain optimality conditions, we use the standard method15. Define a function

H(u, x, p) = up–2u2–νx4 + 2µx2.

Then the optimal control satisfies the maximum condition

H(u, x, p) = max
v

H(v, x, p), (12.14)

where p is a solution of the adjoint equation

p′ = −Hx = 4νx3 − 2µx. (12.15)

Thus, to find the optimal control, we have the system (12.12)–(12.15). Reducing
to zero the derivative of the function H with respect to the control, we find its only
stationary point

u = p/4. (12.16)
Obviously, the second derivative of the function H with respect to control is nega-
tive. Thus, the control determined by the formula (12.16) really corresponds to the
maximum of the function H.
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As in the previous example, we reduce the system of optimality conditions to a
problem with respect to a single unknown quantity. Differentiating the state equation
by t and taking into account relations (12.15) and (12.16), we have

x′′ = u′ = p′/4 = νx3 − µx.

As a result, we obtain the equation16

x′′(t) + µx(t) − νx(t)3 = 0, t ∈ (0, π) (12.17)

with boundary conditions
x(0) = 0, x(π) = 0. (12.18)

Boundary value problem (12.17) and (12.18) is called the Chafee–Infante prob-
lem.

If the solution to problem (12.17) and (12.18) is the optimal state of the sys-
tem, then, in accordance with equation (12.12), the optimal control turns out to be
a derivative of the solution under consideration. Thus, to find a solution to the op-
timization problem, it suffices to find solutions to the Chafee–Infante problem, and
then check whether they correspond to the minimum of the considered functional.

The presence of a trivial (zero) solution to the Chafee–Infante problem is obvious.
To prove the existence of a non-trivial solution to the system (12.17) and (12.18),
we again use Theorem 12.1. As in the case of Example 12.5, we define the function
y(t) = ε sin t, where ε is a positive constant. We have

y′′(t) + µy(t) − νy(t)3 = (µ− 1)ε sin t− νε3 sin3 t = ε sin t(µ− 1 − ε2ν sin2 t).

For µ > 1 and small enough ε, the value on the right side of the last equality is non-
negative. Then, taking into account the obvious equalities y(0) = 0 and y(π) = 0,
we establish that the function y is the lower solution to problem (12.17) and (12.18).
Suppose now that the function z takes an exclusively constant value c. Then the
following equality holds

z′′(t) + µz(t) − νz(t)3 = c(µ− νc2).

This value is non-positive for c ≥
√
µ/ν. Hence, the function z(t) = c is the upper

solution of the Chafee–Infante problem.
Choosing the constant

c = max
{
ε,

√
µ/ν)

}
.

we establish the validity of the inequality y(t) ≤ z(t) for all values of t. Using Theorem
12.1, we establish that the problem (12.17) and (12.18) has a solution x satisfying
the inequality

y(t) ≤ x(t) ≤ z(t), t ∈ (0, π).

Thus, for any values of µ > 1, ν > 0 the Chafee–Infante problem has a positive
solution. In fact, it can be shown17, that under these conditions the positive solu-
tion of the problem is unique, and for µ ≤ 1 the Chafee–Infante problem has only
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zero solution. Thus, the value µ = 1 turns out to be the bifurcation point of this
problem, and we again encounter the phenomenon of bifurcation of extremals. The
corresponding control is the derivative of a positive solution to the Chafee–Infante
problem.

Note that if the function x is a solution to problem (12.17), (12.18), then the
function y characterized by the equality y(t) = –x(t) for all t is also a solution to
this problem18. Therefore, changing the sign of the solution is certainly lead to a new
solution of the Chafee–Infante problem, and due to the presence of even powers of the
functions under the integral in the definition of the optimality criterion, the value of
the optimality criterion in both cases will be the same. Naturally, changing the sign
in the zero solution does not change anything. However, according to the positive
solution of the Chafee–Infante problem, a negative solution that differs from it in
sign can be determined. Thus, when µ > 1, there are three solutions (zero, positive,
and negative) to this problem19.

RESULTS

Here is a list of questions in the field of well-posedness of optimal control problems for
systems with a fixed final state, the main conclusions on this topic, as well as the problems
that arise in this.

Questions

It is required to answer questions about examples of optimal control problems by
systems with fixed final state, discussed in the lecture.

1. Why is the optimal control for Example 3.3 still optimal for Example 12.1?

2. Why is Tikhonov well-posedness substantiation technique, described earlier in
relation to systems with a free final state, also applicable to systems with a
fixed final state?

3. What stage of Tikhonov well-posedness justification for systems with a fixed
final state turns out to be much more difficult than the corresponding stage for
systems with a free final state?

4. What about the Hadamard well-posedness of the problem in Example 12.1?

5. Why is the Tikhonov well-posedness proof for Example 12.1 easily extended to
Example 12.2 with an arbitrary parameter µ?

6. Why does Theorem 8.2 turn out to be applicable to justify Hadamard well-
posedness of a problem with a fixed final state?

7. Why in Example 12.3 the solution of the optimality conditions can be either
singular or be achieved on the boundary of the set of admissible controls?
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8. Why cosines were chosen as the minimizing sequence in Example 12.3, and
sines in the analogous Example 6.2?

9. What happens to the sequence {uk} from Example 12.3 when the number k
increases without limit?

10. Will the main properties of the optimal control problem from Example 12.3 still
hold if the control is chosen from the class of continuous rather than square-
integrable functions?

11. Why for Example 12.4 it is not possible to use Theorem 8.2 on the Hadamard
well-posedness of the optimization problem?

12. What properties differ between the optimization problems from Examples 12.2
and 12.4?

13. Is it possible for Example 12.4 to choose control from the space of continuous
functions?

14. Is the optimization problem from Example 12.5 Hadamard well-posed and why?

15. Is it possible to use Theorem 12.1 to analyze the boundary value problem (12.9)
and (12.10) for an arbitrary value of the parameter µ?

16. What happens to the properties of the problem (12.9) and (12.10) in the neigh-
borhood of the parameter value µ = 1?

17. What is the qualitative difference between Examples 12.5 and 12.6?

18. Why does the transformation z(t) = x(π–t), which converts one solution of the
optimality conditions for Example 12.6 to another, not give a new solution of
the optimality conditions?

19. Why does it follow that the positive solution of the optimality conditions for
Example 12.6 has mirror symmetry?

20. Why is the study of Example 12.6 not completed?

Conclusions

Based on the study of the considered problems of optimal control systems with fixed
final state, we can come to the following conclusions.

• To substantiate the Tikhonov well-posedness of optimal control problems for
systems with a fixed final state, the technique described for systems with a free
final state is applicable.

• The optimal control problem from Example 12.1 is Tikhonov well-posed.
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• To substantiate Hadamard well-posedness of optimal control problems for sys-
tems with a fixed final state, the technique described for systems with a free
final state is applicable.

• The optimal control problem from Example 12.2 is Hadamard well-posed.

• The optimal control problem from Example 12.3 is not Tikhonov well-posed.

• The optimal control problem from Example 12.4 is not Hadamard well-posed.

• A situation is possible when the boundary value problem for a second-order
nonlinear differential equation has a different number of solutions depending
on the value of the problem parameter, which corresponds to the bifurcation
phenomenon.

• It is possible that the system of optimality conditions has a different number of
solutions depending on the value of the problem parameter, which corresponds
to the bifurcation of extremals.

• For Example 12.5, the value of the parameter µ = 1 is the bifurcation point.

• For Example 12.5, with µ ≤ 1, there is an exclusively zero solution of the
optimality conditions, which is optimal, and with µ > 1, an additional positive
solution appears, which turns out to be optimal.

• As the parameter in Example 12.5 increases from the bifurcation point, the
optimal control changes abruptly, which means that there is Hadamard ill-
posed.

• For Example 12.6, there is a bifurcation of extremals, and the value of the
parameter µ = 1 is the bifurcation point.

• For Example 12.6, with µ ≤ 1, there is an exclusively zero solution of the op-
timality conditions, which is optimal, and with µ > 1, two additional solutions
appear, which are positive and negative.

• The positive solution of the system of optimality conditions for Example 12.6
is unique.

• The change of sign transforms any solution of the system of optimality condi-
tions for Example 12.6 into a solution of the same system.

• The transformation, which consists of a mirror image about the middle of a
given interval, translates any solution of the system of optimality conditions
for Example 12.6 into a solution of the same system.

• A positive solution to the system of optimality conditions for Example 12.6 is
symmetrical with respect to the middle of the given interval.
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Problems

In the process of analyzing the considered problems of optimal control for systems
with fixed final state, additional problems arise that need to be studied.

1. Maximization problems. When studying optimal control problems for sys-
tems with a free final state, we paid attention to the fact that the problems of
finding the minimum and maximum of the same functional may have qualita-
tively different properties. Appendix considers the problem of maximizing the
functional from Example 12.1.

2. Ill-posedness of problems with unique singular control. In Part II, we en-
countered a situation where a uniquely solvable optimal control problem whose
solution is a singular control turned out to be Tikhonov ill-posed. In Chap-
ter 11, there was an example of a similar problem for a system with a fixed
final state, but questions of well-posedness were not considered in this case.
Appendix will show that it is also Tikhonov ill-posed.

3. General analysis of the bifurcation phenomenon. For questions related
to the phenomenon of bifurcation, see Notes20.

4. Completion of the analysis of the Chafee–Infante problem. When an-
alyzing Example 12.6, the phenomenon of bifurcation of extremals was dis-
covered. At the same time, it was shown that for small values of the prob-
lem parameter, there is a unique solution to the Chafee–Infante problem, and
for sufficiently large values, two new solutions appear. However, this does not
guarantee the absence of other solutions. It will be shown in Appendix that a
multiple bifurcation is observed for this problem.

12.2 APPENDIX

Below, we present some additional results related to the well-posedness of optimal control
problems for systems with a fixed final state. In particular, Section 12.2.1 considers the
functional maximization problem from Example 12.1, which has properties that differ sig-
nificantly from those of the corresponding minimization problem. Section 12.2.2 provides
further analysis of what was dis-cussed in the previous Chapter Example 11.1. It is shown
that the corresponding optimal control problem is Tikhonov ill-posed. Finally, Section 12.2.3
completes the analysis of Example 12.6, where there is a multiple bifurcation of extremals.

12.2.1 Maximization of the functional from Example 12.1

Example 12.1 is a natural analog of Example 3.3 for a system with a fixed final
state. Both of these problems have ideal properties, being Tikhonov well-posed of and
differing by the sufficiency of the optimality condition in the form of the maximum
principle. In Chapter 5 it was shown that changing the type of extremum in Example
3.3 leads to a qualitative change in the properties of the optimal control problem; see
Example 5.1. The optimality conditions here turn out to be essentially insufficient
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and have an infinite number of solutions, and these solutions are arranged in pairs
of functions that differ in signs. There are continuous, with one discontinuity point,
with two discontinuity points, etc. In this case, two continuous solutions turn out to
be optimal, i.e., uniqueness is also violated. Consider the functional maximization
problem from Example 12.1, which is a natural analog of Example 5.1 for a system
with a fixed final state21.

Example 12.7 It is required to maximize the functional

I(u) = 1
2

1∫
0

(u2 + x2)dt

on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

which for solutions of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

guarantee the realization of the condition

x(1) = 0.

In accordance with the maximum principle, the optimal control here is determined
from the minimum condition on a given set of function

H = pu− (u2 + x2)/2,

where p is a solution of the adjoint equation

p′(t) = x(t), t ∈ (0, 1).

We find the function
u(t) =

{
1, if p(t) < 0,

−1, if p(t) > 0. (12.19)

The unique difference from the system of optimality conditions (5.1), (5.2), and (5.4)
for Example 5.1 is that for t = 1, here the condition (also homogeneous) is specified
for the function x, and not for p. However, in view of the presence of a fixed final
state, the study of this system will be carried out differently than it was done in
Chapter 5, i.e., using an iterative process, but using the methodology described in
the previous chapter.

As can be seen from formula (12.19), the control can take only boundary val-
ues. When u(t) = 1 on the entire interval (0,1), then the equation of state has a
solution x(t) = t, and hence x(1) = 1, which contradicts the given final condition.
For u(t) = –1, we have x(t) = –t, and hence x(0) = –1, which also contradicts the
existing restrictions. Therefore, the function u can only be discontinuous.
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Let ξ be the unique discontinuity point of the control, with u(t) = 1 for t < ξ
and u(t) = –1 for t > ξ. Then x(t) = t for t < ξ, and hence x(ξ) = ξ. For t > ξ,
the state function is determined by the formula x(t) = 2ξ–t. Then from the equality
x(1) = 0 we find the only possible break point ξ = 1/2. Thus x(t) = 1–t for t > 1/2.
The adjoint equation for t < 1/2 has the form p′ = t. Since the derivative is positive,
the function p increases for t < 1/2. However, at t = 1/2 it vanishes. This means
that it was initially negative, which corresponds to formula (12.19) for u(t) = 1.
Similarly, for t > 1/2 we have the adjoint equation p′ = 1–t. This derivative is again
positive, which means that the function p increases for t > 1/2. However, at t = 1/2
it vanishes. Therefore, in what follows, this function is positive, which is consistent
with the control u(t) = –1.

Thus, the control equal to 1 for t < 1/2 and –1 for t > 1/2 really satisfies the
system of optimality conditions. It is easy to see that, as a result of the change of
sign, we obtain the second solution of the optimality conditions with one discontinuity
point. This is a consequence of the invariance of this system, as well as of the optimal
control problem itself with respect to sign change.

Let now there are two control discontinuity points ξ and η such that
0 < ξ < η < 1. Suppose that the control takes the value 1 on the intervals
(0, ξ) and (η, 1) and the value –1 on the interval (ξ, η). Then the state function takes
the values t in the first part, 2ξ–t in the second part and t+ 2ξ–2η in the third part.
Then we obtain the equality

x(1) = 1 + 2ξ − 2η = 0.

Hence, we find η = ξ + 1/2, that is the distance between the break points is equal to
half of the considered interval22.

Thus, the equality x(t) = t is true for 0 < t < ξ. Then the adjoint equation has
the form p′ = t, which means that the function p increases. Considering that p(ξ) = 0,
we conclude that this function is negative in the first interval, and therefore equality
(12.19) is satisfied. Then we have x(t) = 2ξ–t for ξ < t < ξ+ 1/2. Hence, the adjoint
equation has the form p′ = 2ξ–t. We integrate this equality over the second interval,
taking into account that the function p vanishes on its boundaries. We have

0 =
ξ+1/2∫

ξ

(2ξ − t)dt =
(
2ξt− t2

2
)∣∣∣ξ+1/2

ξ
= ξ

2 − 1
8 .

As a result, we determine ξ = 1/4. Therefore, when 1/4 < t < 3/4, the adjoint system
takes the form p′ = 1/2–t. For t > 1/4, this derivative is positive, which means that
the function p increases from zero and is positive. At t = 1/2, the derivative vanishes,
after which the function p decreases and reaches zero at t = 3/4. Thus, it is positive
on the second interval, which also agrees with equality (12.19). Finally, for t > 3/4,
we have x(t) = t–1. In this case, we have the adjoint equation p′ = t–1. Therefore,
the function p decreases from zero, and hence is negative. This result again agrees
with equality (12.19). Thus, the third solution of the optimality conditions is found.
The fourth solution is obtained from the third one by changing the sign.
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Repeating the reasoning from the analysis of Examples 11.1 and 11.5, one can
establish the existence of an infinite set of solutions to the system of optimality
conditions. There exist two solutions for each number of control discontinuity points.
At the same time, in contrast to the above, each solution with the same number of
discontinuity points differs only in signs. To determine solutions with k discontinuity
points, the segment [0,1] is divided into 2k equal parts. On the first of them, the
control u+

k is assumed to be equal to 1, on the next two this is –1, on the next two
the control is equal to 1, and so on, and finally, on the last this is 1. The second
control u+

k with k discontinuity points differs from the first one only in sign. On
Figure 12.1 one shows the corresponding states23 x+

k and x−
k .

Figure 12.1 States satisfying the optimality conditions.

Obviously, the values of the functional on both controls with the same number of
discontinuity points are the same. Calculate

I(u+
k ) = I(u−

k ) = 1
2

1∫
0

[
(u+

k )2 + (x+
k )2]

dt = 1
2

(
1 + 2k

1/2k∫
0

t2dt
)

= 1
2 + 1

24k2 .

Hence, it follows that the controls with one discontinuity point u+
1 and u−

1 are opti-
mal24.

12.2.2 Ill-posedness of the problem from Example 11.2

Let us go back to Example 11.2. For simplicity, we restrict ourselves to the case when
there are no restrictions on the control values. Thus, we consider the problem of
minimizing the functional

I(u) = 1
2

1∫
0

(
x2 − 2x sin πt

)
dt.

on a set of functions u = u(t), providing a translation of the system characterized by
the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

to the state x(1) = 0.
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This problem has a unique solution u0(t) = π cosπt, besides the minimum value
of the functional is

min I = −1
2

1∫
0

sin2 πtdt = −1
4 .

Determine the control sequence

uk(t) = π
(

cosπt+ cos kπt
)
, k = 1, 2, ... .

The corresponding sequence of states is characterized by the equality

xk(t) = π

t∫
0

(
cosπτ + cos kπτ

)
dτ = sin πt+ sin kπt

k
.

Note that xk(1) = 0; so the {uk} control sequence is admissible.
Find the value

I(uk) = 1
2

1∫
0

(
xk − sin πt

)2
dt− 1

4 .

The following inequality holds

0 ≤
∣∣xk − sin πt

∣∣ ≤ 1
k
.

Now we have
−1

4 ≤ I(uk) ≤ π

2k2 − 1
4 .

Thus, I(uk) → –1/4 as k → ∞, so the sequence {uk} is minimizing.
Determine the value

∥∥uk − u0
∥∥2 =

1∫
0

∥∥uk(t) − u0(t)
∥∥2
dt =

1∫
0

cos2 kπtdt = 1
2 .

Thus, the optimal control u0 is not the limit of the sequence {uk}, i.e., the minimizing
sequence does not converge to the optimal control. Therefore, the optimal control
considered problem is Tikhonov ill-posed.

12.2.3 Analysis of the Chafee–Infante problem

We return to the analysis of the Chafee–Infante problem, which includes the
equation

x′′(t) + µx(t) − νx(t)3 = 0, t ∈ (0, π) (12.20)

with boundary conditions
x(0) = 0, x(π) = 0, (12.21)

where µ and ν are positive constants. It was noted earlier that it always has a zero
solution x0, which turns out to be unique for µ ≤ 1. When µ > 1, there is also a
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positive solution, which we denote by x+1, as well as a negative solution x−1 = –x+1.
Note that if a function is a solution to problem (12.20), (12.21), then a function that
differs from it only in sign is a solution to the same problem25.

Let us try to establish the possibility of the existence of additional solutions to
problem (12.20) and (12.21). Consider the equation

y′′(t) + µ

4 y(t) − ν

4y(t)3 = 0, t ∈ (0, π)

with homogeneous boundary conditions. Using the arguments from Section 12.1.5
and Theorem 12.1, we establish that for µ > 4 this problem has a positive solution,
which we denote by y+. Define the function

x+2(t) =
{

y+(2t), if 0 < t < π/2,
−y+(2π − 2t), if π/2 < t < π.

Obviously, for 0 < t < π/2 we get

x′′
+2(t) = 4y′′

+(2t) = −µy+(2t) + ν[y+(2t)]3 = −µx+2(t) + ν[x+2(t)]3.

Analogically, for π/2 < t < π we obtain

x′′
+2(t) = −4y′′

+(2π − 2t) = µy+(2t) − ν[y+(π − 2t)]3 = −µx+2(t) + ν[x+2(t)]3.

Therefore, the function defined above satisfies relations (12.20) and (12.21). Thus, for
µ > 4, the Chafee–Infante problem has at least five solutions: zero x0, positive x+1,
negative x−1, and two new solutions x+2 and x−2 = –x+2, which change sign exactly
once. Thus, for 1 < µ ≤ 4, the Chafee–Infante problem has exactly three solutions,
and for µ > 4, at least five solutions.

Similarly, the homogeneous boundary value problem for the equation

z′′(t) + µ

9 z(t) − ν

9 z(t)
3 = 0, t ∈ (0, π)

for µ > 9 has a positive solution, which we denote by z+. Define the function

x+3(t) =


z+(3t), if 0 < t < π/3,

−z+(2π − 3t), if π/3 < t < 2π/3,
z+(3t− 2π), if 2π/3 < t < π.

For 0 < t < π/3 we get

x′′
+3(t) = 9z′′

+(3t) = −µz+(3t) + ν[z+(3t)]3 = −µx+3(t) + ν[x+3(t)]3.

Then for π/3 < t < 2π/3 we have

x′′
+3(t) = −9z′′

+(2π−3t) = µz+(2π−3t)−ν[z+(2π−3t)]3 = −µx+3(t)+ν[x+3(t)]3.

Finally, for 2π/3 < t < π we obtain

x′′
+3(t) = 9z′′

+(3t−2π) = −µz+(3t−2π)+ν[z+(3t−2π)]3 = −µx+3(t)+ν[x+3(t)]3.
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Figure 12.2 Solutions of the Chafee–Infante problem for 4 < µ ≤ 9.

Thus, for µ > 9, the problem has two additional solutions x+3 and x−3 = –x+3, which
change sign twice. Figure 12.2 shows the established solutions to the Chafee–Infante
problem26. Therefore, for 4 < µ ≤ 9, the Chafee–Infante problem has exactly five
solutions, and for µ > 9, at least seven solutions.

In the general case, for µ > k2, the equation

v′′(t) + µ

k2 v(t) − ν

k2 v(t)3 = 0, t ∈ (0, π)

with homogeneous boundary conditions has a positive solution, which we denote by
v+. Define the function

x+k(t) =



z+(kt), if 0 < t < π/k,
−z+(2π − kt), if π/k < t < 2π/k,
z+(kt− 2π), if 2π/k < t < 3π/k,

−z+(4π − kt), if 3π/k < t < 4π/k,
. . . . . . .

By direct substitution, we make sure that it also satisfies relations (12.20) and (12.21)
and changes sign k–1 times. Thus, for (k–1)2 < µ ≤ k2, the Chafee–Infante problem
has exactly 2k–1 solutions, and for µ > k2, at least 2k + 1 solutions. Hence, in this
case, not only is there no continuous dependence of the solution of the problem on the
parameter µ. In this case, the values µk = k2, k = 1, 2, ... are the bifurcation points
for the Chafee–Infante problem. Thus, as in Example 12.5, we are dealing with an
extremal bifurcation, but with an infinite number of bifurcation points.

The general behavior of the solution of the problem with a change in the positive
parameter µ can be described as follows. For small values of this coefficient, the
problem has a unique (zero) solution x0. A change (increase) in the parameter µ does
not affect the solution of the problem in any way, as a result of which there is reason
to believe that there is a continuous dependence of the solution on the parameter.
However, when µ passes through the critical value equal to 1, the problem acquires
two more solutions x+1 and x−1, i.e., the properties of the system have changed
abruptly. Further growth of the parameter µ leads to a gradual change in these
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solutions, although their general structure remains unchanged. This continues until
the parameter µ passes through the second bifurcation point equal to 4, after which
two new solutions x+2 and x−2 appear from somewhere. Until the variable coefficient
reaches the value µ = 9, all non-trivial problems do not change qualitatively, but
exceeding this value leads to the appearance of another pair of solutions x+3 and
x−3. In the general case, as long as the parameter µ changes on the interval between
the squares of two natural numbers, the number of solutions to the Chafee–Infante
problem remains unchanged. However, when passing through the values µ = k2, two
new solutions x+k and x−k appear. Such a striking nature of the influence of the
coefficient µ with the lowest linear term of the equation cannot but cause surprise
and admiration27.

The process described above is shown schematically in Figure 12.3, called the
bifurcation diagram. Here the abscissa axis corresponds to the numerical param-
eter µ, and the ordinate axis corresponds to the functional space X of the problem
solutions. The bifurcation diagram clearly shows that at the bifurcation points, new
ones branch off from the old solutions.

Figure 12.3 Solutions of the Chafee–Infante problem for 4 < µ ≤ 9.

The results obtained are also of interest for studying the non-stationary
Chafee–Infante problem28, which is characterized by the non-linear heat equation

∂u

∂τ
= ∂2u

∂ξ2 + µu− νu3, τ > 0, 0 < ξ < π

with the boundary conditions

u(0, τ) = 0, u(π, τ) = 0, τ > 0
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and the initial condition

u(ξ, 0) = u0(ξ), 0 < ξ < π.

Obviously, the equilibrium position of the non-stationary Chafee–Infante problem
is necessarily the solution of the boundary value problem (12.20), (12.21). Then,
based on the analysis done earlier, we can conclude that for (k–1)2 < µ ≤ k2 the
non-stationary Chafee–Infante problem has exactly 2k–1 equilibria29.

We will not clarify the question of which of the solutions of the boundary value
problem under consideration (optimality conditions) provides the minimum of the
functional, since this is associated with certain technical difficulties. The main thing
for us in this example is to obtain a boundary value problem that meets the optimality
conditions and has amazing properties.

Additional conclusions

Based on the analysis of the above examples of optimal control problems by systems
with fixed final state, we have the following additional conclusions.

• For Example 12.6, there are an infinite number of solutions to the optimality
conditions, which are all piecewise constant functions.

• Each number of discontinuity points corresponds to two solutions of the opti-
mality conditions for Example 12.6, which differ in signs.

• The maximum principle for Example 12.6 is a necessary but not sufficient con-
dition for optimality.

• The optimal control problem from Example 12.6 has two solutions, which are
functions with a unique breakpoint.

• The optimal control problem from Example 11.1 is Tikhonov ill-posed.

• For Example 12.6, there is a bifurcation of extremals.

• The Chafee–Infante problem has an infinite number of bifurcation points.

• If the parameter µ for Example 12.6 satisfies the inequality (k–1)2 < µ ≤ k2,
then the Chafee–Infante problem has exactly 2k–1 solutions.

• Depending on the values of the parameter µ, the Chafee–Infante problem has
one zero solution and two solutions, differing in signs, corresponding to each
number of sign changes of the function.

• For the non-stationary Chafee–Infante problem, the number of equilibrium po-
sitions depends on the value of the parameter µ in Example 12.6.

• The equilibria of the non-stationary Chafee–Infante problem are solutions to
the stationary Chafee–Infante problem.
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Notes

1. In Example 9.1, the interval [0,2] was considered as a set of control values, and in this
case we are dealing with the interval [–1,1]. It is clear that this difference does not affect the
properties of the set under study. However, if the equation is non-linear, proving the convexity
of the set would present serious difficulties.

2. We recall that the absence of regular solutions of the maximum principle for Example 6.2
was proved on the basis of an unsuccessful attempt to apply an iterative process to solve a
system of optimality conditions. The presence of an additional end condition allows you to get
this result directly.

3. The principle of constructing an example of a Tikhonov ill-posed problem for a system
with a fixed final state is quite simple. There is an example of the Tikhonov ill-posed optimal
problem for a system with a free final state. In this case, it is Example 6.2. An additional
condition at the final moment of time is determined by the value of the optimal state of the
system at this moment of time, which in this case gives condition (12.2). Then the optimal
control from the old example will also be optimal for the new example, in which the final
state is fixed. It remains only to choose a divergent minimizing sequence of controls so that
it ensures the transfer of the system to the chosen final state. In particular, in this case, the
functions uk = cos kπt were considered, while in Example 6.2 the functions uk = sin kπt were
used, which do not guarantee the transfer of the system to the desired state. In Chapter 15, an
example of a Tikhonov ill-posed optimal control problem is given, which differs from the one
considered in Example 12.3 only by the presence of an additional isoperimetric condition.

4. The method of constructing an example of an ill-posed Hadamard problem for a system
with a fixed finite state is quite natural. A Hadamard ill-posed problem with a free final state
is chosen. In this case, this is Example 8.1. As the end value of the system state of the new
example, the end value of the optimal state from the old example is chosen. Thus, the optimal
controls in the new and old examples are the same, which makes it possible to obtain the
desired result. Chapter 15 gives an example of a Hadamard ill-posed optimal control problem
with the isoperimetric condition.

5. The considered example is related to the Euler problem on an elastic rod; see [88],
[188]. It considers an elastic rod standing vertically on a flat horizontal surface. A downward
force acts on the upper end of the rod. The profile of the rod is determined from the condition
of minimum potential energy corresponding to the considered functional I. In Chapter 15, we
will consider the problem of optimal control of the system in the presence of an isoperimetric
condition, which is equivalent to this example.

6. Naturally, one can substitute the derivative of the state of the system into the optimality
criterion instead of the control. The result is the Lagrange problem, which can be analyzed by
means of the calculus of variations.

7. Relation (12.9) is the Euler equation for the corresponding problem of the calculus of
variations.

8. Theorem 12.1 is given in [94].

9. Indeed, the sine expands into the Taylor series

sin φ =
∞∑

k=0

(−1)k φ2k+1

(2k + 1)! .

For sufficiently small φ, one can neglect the terms of a higher order of smallness and establish
the relation sin φ ≈ φ.
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10. For proof of this statement; see [88].

11. At small values of the parameter µ, which corresponds to a small force acting on the elastic
rod, the potential energy reaches a minimum when the rod is in a strictly vertical position,
which corresponds to a zero solution. At the same time, for large values of this parameter,
corresponding to a large force, the potential energy minimum is achieved when the rod is bent,
which corresponds to a positive solution to the boundary value problem; see [88].

12. An extremal is a solution to the Euler equation in the calculus of variations; see [37],
[61], [208]. As already noted, relation (12.9) exactly coincides with the Euler equation for the
considered example, if it is interpreted from the standpoint of the calculus of variations. On
bifurcations of extremals see [52].

13. In addition, in accordance with the method of establishment, it is possible to interpret the
solutions of the boundary value problem (12.9) and (12.10) as the equilibrium positions of some
non-stationary system with very unusual properties. However, even more unusual properties
appear in the following problem.

14. Chapter 15 will consider the problem of optimal control of the system in the presence of
an isoperimetric condition, which is equivalent to this example.

15. This example also reduces to a Lagrange problem, for which the corresponding Euler
equation can be obtained.

16. Relation (12.17) is the Euler equation for the considered example.

17. For a proof of this statement; see [88].

18. The existence of a negative solution can also be proved using Theorem 12.1, choosing the
function y(t) = –c as the lower solution, and the function z(t) = –ε sin t as the upper solution

19. It is easy to find one more transformation that takes one solution of the Chafee–Infante
problem to another. It is easy to see that if the function x is a solution to problem (12.17)
and (12.18), then the function z, characterized by the equality z(t) = x(π–t) for all t, is also
a solution to this problem. This action corresponds to a mirror transformation with respect
to the middle of the considered interval (0, π). Thus, one gets the impression that for µ > 1
there is a fourth solution to the Chafee–Infante problem obtained from its positive solution
using the specified mirror image. Then we can expect the presence of the fifth solution, as a
result of a similar transformation of the negative solution. However, since the positive solution
of the problem is unique, we can conclude that it has mirror symmetry, i.e., the equality
x(t) = x(π–t) is fulfilled at t ∈ (0, π). It is clear that the negative solution of the problem has
the same property.

20. On the general theory of bifurcations; see, [96], [107], [184], [201]. On bifurcations of ex-
tremals; see [52].

21. Another analogue of Example 5.1 is the one discussed in the previous Chapter Example
11.1. It differs from Example 12.7 in that the corresponding end condition is non-uniform. In
this case, the invariance of the problem with respect to sign change is violated, as a result of
which the properties of its solution change significantly.

22. Note that the same result was obtained for Example 12.4, where we considered the maxi-
mization of a functional without a quadratic term with respect to the control. This led to the
existence of a singular control. In addition, in that problem, the control changed on the interval
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[0,2], and the final state was the value 1, not 0, as in this case. However, in both cases, the final
state was achieved with a constant control equal to the average value from a given interval.

23. The results obtained are quite close, but do not fully coincide with those that were estab-
lished in the analysis of Examples 5.1 and 11.4; see, in particular, Figures 5.3 and 11.3.

24. Recall that in Example 11.4, controls with one break point were also optimal, and in
Example 5.1, continuous controls. In all these problems, it was required to find the maximum
of the quadratic functional on a limited set of admissible controls.

25. From this, in particular, it follows that the number of solutions to the Chafee–Infante
problem will certainly be odd, since a change of sign for the function x0 does not give a new
solution.

26. Naturally, the solutions of the Chafee–Infante problem depend on the specific values of the
parameters µ and ν. In this regard, the functions depicted in Figure 12.2, only schematically
depict the corresponding solutions.

27. We encountered a similar phenomenon in Chapter 2 when analyzing the logistic equation.

28. A comprehensive analysis of the non-stationary Chafee–Infante problem is carried out in
[88].

29. As in previous examples (see Chapters 3 and 5), a non-stationary problem can be considered
as a means for practically finding a non-trivial solution to the corresponding stationary problem
in accordance with the method of establishing.
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The next part of the book deals with the study of optimal control problems in
the presence of an additional integral constraint in the form of equality, called the
isoperimetric condition. In this case, it is possible, but not necessarily, given the final
state of the system. The part consists of three chapters. The first of them describes
the general principles of analysis of the considered problem class, as well as some
examples illustrating the application of the described theory. In the next chapter,
examples of the violation of the uniqueness of the solution of such problems, as well
as the sufficiency of the corresponding necessary optimality conditions, are given.
Finally, in the final chapter, examples of problems with isoperimetric conditions are
described, for which some effects are observed similar to those that we encountered
in the previous parts of the book.
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C H A P T E R 13

Optimization of systems with
isoperimetric conditions

The subject of this chapter is the problem of optimal control of systems with additional
integral constraints. In the Lecture, the corresponding optimality conditions are derived
and examples of problems of this class are given, for which an analytical solution can be
established in this way. Appendix presents methods for finding an approximate solution
to such problems, conducts a qualitative analysis of the considered examples, solves one
geometric problem with a similar constraint, describes some alternative methods and the
corresponding vector problems.

13.1 LECTURE

In this lecture, we study problems of optimal control of systems with integral constraints in
the form of equality, called isoperimetric conditions. Section 13.1.1 gives a general statement
of such a free finite state problem and derives necessary optimality conditions in the form of
the maximum principle. Section 13.1.2 gives an example of a problem with an isoperimetric
condition that admits an analytical solution. Section 13.1.3 investigates an optimal control
problem with an isoperimetric condition in the presence of a fixed final state, a particular
case of which admits an analytical solution; see Section 13.1.4.

13.1.1 Optimal control problem with isoperimetric condition

We again consider the controlled system described by the Cauchy problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0 (13.1)

with known function f and numbers x0 and T . The control u is chosen from the set

U =
{
u| a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )

}
,
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where a and b are known functions. In contrast to the problems considered earlier, it
is additionally assumed that the condition

T∫
0

q(t, u(t), x(t))dt = 0, (13.2)

where q is a known function of its arguments, and x is a corresponding solution of
problem (13.1), i.e., the state function.

Definition 13.1 Equality (13.2) is called the isoperimetric condition1.

The standard functional is chosen as the optimality criterion

I(u) =
T∫

0

g(t, u(t), x(t))dt + h(x(T )),

where g and h are known functions, x is a solution of Cauchy problem (13.1) for the
control u. The following optimal control problem is posed.

Problem 13.1 It is required to find a function u that minimizes the functional I on
a subset of functions from U that guarantees the equality (13.2).

The presence of an additional condition (13.2) is the main feature of this problem,
which requires some adjustment of the mathematical apparatus at our disposal2.

Let a function u be an optimal control. Then the following inequality holds

∆I = I(v, y) – I(u, x) ≥ 0,

where x is the optimal state, and v is an arbitrary element of the set U such that the
corresponding state y satisfies3 the equality (13.2).

Using the Lagrange multiplier method, determine the functional

L(u, x, p) = I(u) +
T∫

0

p(t)
[
x′(t) − f(t, u(t), x(t))

]
dt + λ

T∫
0

q(t, u(t), x(t))dt,

where the function p and the number λ (Lagrange multipliers) are arbitrary. Then
we get4

∆L = L(v, y, p) –L(u, x, p) ≥ 0 ∀v ∈ U, ∀p, ∀λ. (13.3)
We combine all the terms that are under the integral in the functional L, which
explicitly depend on the control, as was done in Chapters 3 and 9. We get the function

H(t, u, x, p, λ) = pf(t, u, x) + λq(t, u, x) – g(t, u, x).

Now the inequality (13.3) takes the form
T∫

0

(p∆x′ − ∆H)dt + ∆h ≥ 0 ∀v ∈ U, ∀p, ∀λ, (13.4)
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where we use the standard denotations

∆x = y–x, ∆H = H(t, v, y, p, λ)–H(t, u, x, p, λ), ∆h = h(y(T ))–h(x(T )).

Let us transform the terms in inequality (13.4) in the usual way. We have

T∫
0

p∆x′dt = p(T )∆x(T ) −
T∫

0

p′∆xdt,

∆H = ∆uH + Hx(t, u, x, p)∆x + η1 + η2,

∆h = hx[x(T )]∆x(T ) + η3

with the preservation of the previously accepted notation, where η1 is a value of a
higher order with respect to the increment ∆x, η2 =

[
Hx(t, v, x, p, λ)–Hx(t, u, x, p, λ)

]
∆x, η3 is of the second order with respect to ∆x(T ). As a result, inequality (13.4) is
reduced to the form

−
T∫

0

∆uHdt−
T∫

0

[
Hx(t, u, x, p, λ)+p′]∆xdt+hx(x(T ))∆x(T )+η ≥ 0 ∀v ∈ U, ∀p, ∀λ,

(13.5)
where the remainder term η is determined by the well-known formula

η = η1 −
T∫

0

(η2 + η3)dt.

The resulting relation (13.5) is similar to inequalities (3.7) and (9.5).
We define, as usual, the adjoint system

p′(t) = −Hx(t, u, x, p, λ), t ∈ (0, T ); p(T ) = −hx(x(T )). (13.6)

Then inequality (13.5) takes the form

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U, ∀λ.

The resulting formula differs from the analogous inequality (3.10) only in the form
of the function H, which includes an additional term. By analogy with Theorems 3.1
and 9.1, we have the following assertion5.

Theorem 13.1 In order for the control u to be a solution to Problem 13.1, it is
necessary that it satisfies the maximum condition

H(t, u(t), x(t), p(t), λ) = max
v∈[a(t),b(t)]

H(t, v, x(t), p(t), λ), t ∈ (0, T ), (13.7)

where x is the corresponding solution to system (13.1), which also satisfies condition
(13.2), and p is the solution of the adjoint system (13.6).
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Thus, the system of optimality conditions is characterized by relations (13.1),
(13.2), (13.6), and (13.7), whence it is required to find three unknown functions u, x,
p, and the constant λ. Let us give an example of the simplest optimal control problem
with an isoperimetric constraint that admits an analytical solution.

13.1.2 Analytical solving of the problem with isoperimetric condition

Consider the following optimization problem.

Example 13.1 We have a system characterized by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

on a subset of such functions u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

under the isoperimetric condition
1∫

0

x(t)dt = 0,

which minimizes the functional

I = 1
2

1∫
0

u(t)2dt.

We have Problem 13.1 with following values of the parameters

f(t, u, x) = u, T = 1, x0 = 0, a(t) = –1, b(t) = 1,

g(t, u, x) = u2/2, h(x) = 0, q(t, u, x) = x.

In accordance with the described method, we determine the function

H(t, u, x, p, λ) = pf + λq – g = pu+ λx – u2/2.

Then the adjoint equation (13.6) takes the form

p′(t) = −λ, t ∈ (0, 1); p(1) = 0.

The optimal control is determined from the maximum condition for the function
H on a given set. Obviously, its unique stationary point u = p delivers the maximum
of this function because of the negativity of its second derivative. Then the solution
of the maximum condition is

u(t) =


−1, if p(t) < −1,
p(t), if − 1 ≤ p(t) ≤ 1,
−1, if p(t) > 1.

(13.8)
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The solution of the adjoint system has the form p(t) = λ(1–t). Thus, the function
p is linear, its initial value is λ, and the final value is zero. There are three possibilities
here; see Figure 13.1. For λ > 1 on the interval (0,1), there is a point ξ such that
p(t) > 1 for t < ξ and |p(t)| ≤ 1 for t > ξ. For λ < –1 on the interval (0,1), there
exists a point η such that p(t) < –1 for t < η and |p(t)| < 1 for t > η. Finally, for
|λ| ≤ 1 we have |p(t)| ≤ 1 for all t. Let us take a closer look at all three cases.

If λ > 1, then from formula (13.8) it follows that u(t) = 1 for t < ξ and u(t) = p(t)
for t > ξ (see Figure 13.1, dashed line). Thus, control is always positive. Then it
follows from the state equation x′(t) = u(t) that the function x is increasing. However,
it is equal to zero at t = 0. Therefore, this function takes exclusively positive values,
which means that the integral of it is also positive. Thus, the isoperimetric condition
is not satisfied.

Figure 13.1 Possible control behavior for different λ.

Now suppose λ < –1. From equality (13.8), it follows that u(t) = –1 for t < ξ
and u(t) = p(t) for t > ξ (see Figure 13.1, dotted line). Therefore, the control takes
exclusively negative values. In this case, it follows from the equation of state that
the function x decreases. Given the zero initial condition, we conclude that all its
values are negative. Then the integral of it is negative, which again contradicts the
isoperimetric condition.

Now let the inequality |λ| ≤ 1 be true, and hence u(t) = p(t) = λ(1–t). The
solution of the Cauchy problem

x′(t) = λ(1 − t), t ∈ (0, 1); x(0) = 0
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is determined by the formula

x(t) = λ(t–t2/2).

Find the integral6
1∫

0

xdt = λ

1∫
0

(
t− t2

2
)
dt.

Turning the resulting value to zero, we find λ = 0, whence it follows that u = 0.
Thus, the optimality conditions have a unique solution u = 0.

Indeed, the minimized functional takes non-negative values, and equality to zero is
possible only when u = 0. The corresponding solution of the state equation is x = 0.
The integral of this function is equal to zero, which means that the isoperimetric
condition is satisfied. Therefore, we have found a unique solution to the optimal con-
trol problem, and the maximum principle gives a necessary and sufficient optimality
condition7.

13.1.3 Problem with isoperimetric condition and fixed final state

The results obtained can be extended to optimal control problems for systems with
an isoperimetric condition and a fixed final state. The controlled system described
by the Cauchy problem is again considered

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0 (13.9)

with given function f and numbers x0, T . The control u belongs to the set

U =
{
u| a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )

}
,

where a and b are known functions. It is also assumed that the final state of the
system is fixed, i.e., the equality holds

x(T ) = xT , (13.10)

where the final state xT is given. Besides, the following isoperimetric condition is true

T∫
0

q(t, u(t), x(t))dt = 0, (13.11)

where the function q is known. We have the optimality criterion

I(u) =
T∫

0

g(t, u(t), x(t))dt

with known function g. One poses the following optimal control problem.
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Problem 13.2 It is required to find such a function u from the set U that ensures
the fulfillment of conditions (13.10) and (13.10) and minimizes the functional I on
the set of controls that satisfy all given constraints.

This is the extension of Problems 9.1 and 13.1. The problem is solved in a standard
way. Let the function u be the optimal control, and x be the corresponding state
system. Then we obtain the inequality

∆I = I(v, y) – I(u, x) ≥ 0

for all admissible control v with corresponding state y. Define again the functional

L(u, x, p) = I(u) +
T∫

0

p(t)
[
x′(t) − f(t, u(t), x(t))

]
dt+ λ

T∫
0

q(t, u(t), x(t))dt,

where the function p and the number λ are arbitrary. We have the inequality

∆L = L(v, y, p) –L(u, x, p) ≥ 0 ∀v, ∀p, ∀λ,

which is the analog of (13.3). Determine the function

H(t, u, x, p, λ) = pf(t, u, x) + λq(t, u, x) – g(t, u, x).

As a result, the preceding inequality takes the form
T∫

0

(p∆x′ − ∆H)dt ≥ 0 ∀v, ∀p, ∀λ,

while retaining here and below the previously adopted notation. After integrating by
parts, taking into account the existing boundary conditions, we establish

T∫
0

p∆x′dt = −
T∫

0

p′∆xdt.

Using the Taylor series expansion, we get

∆H = ∆uH + Hx(t, u, x, p, λ)∆x + η1 + η2,

where the terms η1 and η2 have the same form as in Section 13.1.2. As a result, we
obtain the inequality

T∫
0

∆uHdt −
T∫

0

[
Hx(t, u, x, p, λ) + p′]∆xdt + η ≥ 0 ∀v, ∀p, ∀λ

with the remainder term

η = −
T∫

0

(η1 + η2)dt.
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Determine the adjoint equation

p′(t) = −Hx(t, u, x, p, λ), t ∈ (0, T ). (13.12)

Then we get the inequality
T∫

0

∆uHdt + η ≥ 0 ∀v, ∀λ,

which is transformed in the standard way. The following assertion is true8.

Theorem 13.2 In order for the control u to be a solution to Problem 13.2, it is
necessary that it satisfies the maximum condition

H(t, u(t), x(t), p(t), λ) = max
v∈[a(t),b(t)]

H(t, v, x(t), p(t), λ), t ∈ (0, T ). (13.13)

Thus, the system of optimality conditions is characterized by formulas (13.9)–
(13.13). An analytical solution here can be established only in exceptionally simple
cases.

13.1.4 Analytical solving of a problem with an isoperimetric condition and a fixed final
state

Consider the following example.

Example 13.2 We have a system characterized by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The problem of optimal control is to find such a function u = u(t) that ensures the
fulfillment of the final condition

x(1) = 1

and the isoperimetric condition
1∫

0

x(t)dt = 1
2 ,

minimizing under these constraints the functional

I = 1
2

1∫
0

u(t)2dt.

Determine the function

H = pu+ λ(x–1/2) – u2/2.
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Obviously, the unconditional maximum of the control function H is achieved at u = p.
In this case, the adjoint equation has the form p′ = –λ. It has a general solution p(t) =
–λt + c, where c is an arbitrary constant. Thus, we find the control u(t) = –λt + c.
Then the function x turns out to be a solution to the Cauchy problem

x′(t) = –λt+ c, t ∈ (0, 1); x(0) = 0.

Find the solution
x(t) = −λt2

2 + ct.

The right side of the obtained equality includes two unknown constants λ and c. To
find them, there is a finite condition for the state of the system and an isoperimetric
condition. We substitute the value of the function x into these relations. We have

x(1) = –λ/2 + c = 1,

1∫
0

x(t)dt =
1∫

0

(
− λt2

2 + ct
)
dt = −λ

6 + c

2 = 1
2 .

As a result, we find λ = 0 and c = 1. Thus, we determine the unique solution of the
system of optimality conditions u(t) = 1. It is easy to verify that it is the solution of
the given optimal control problem9.

RESULTS

Here is a list of questions in the field of optimal control problems with isoperimetric con-
straints, the main conclusions on this topic, as well as the problems that arise in this case
and require further analysis.

Questions

It is required to answer questions concerning the analysis of optimal control problems
with isoperimetric constraints.

1. What is the peculiarity of applying the Lagrange multiplier method for prob-
lems with an isoperimetric constraint?

2. What is the peculiarity of applying the Lagrange multiplier method for prob-
lems with an isoperimetric constraint?

3. Why, when defining the Lagrange functional, is the Lagrange multiplier p a
function, and the other multiplier λ a constant?

4. How will the Lagrange functional be defined if there are not one, but two
isoperimetric constraints?
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5. How will the Lagrange functional be defined if there are not one, but two
equations for two state functions?

6. How will the Lagrange functional be defined if there are not one, but two
controls?

7. Why does Theorem 13.1 remain unfounded?

8. How many unknown values does the system of optimality conditions for Prob-
lem 13.1 include?

9. To what class of equations does the isoperimetric condition belong if it is in-
terpreted as the problem of finding the parameter λ ?

10. Why is the isoperimetric condition used to find the Lagrange multiplier λ,
although the parameter λ itself is not included in this condition?

11. What explains the possibility of finding an analytical solution to the optimal
control problem from Example 13.1?

12. What are the functional properties in the general case, does the control defined
by formula (13.7) have?

13. Why does the parameter λ in Example 13.1 belong to the interval [–1, 1]?

14. Why is the optimality condition for Example 13.1 necessary and sufficient?

15. Why is the Lagrange functional for Problems 13.1 and 13.2 defined in the same
way?

16. What is the difference between the systems of optimality conditions for Prob-
lems 13.1 and 13.2?

17. What explains the possibility of finding an analytical solution to the optimal
control problem from Example 13.2?

18. How does it follow that the control found in the process of analyzing the opti-
mality conditions for Example 13.2 is indeed optimal?

Conclusions

Based on the study of optimal control problems with isoperimetric constraints, we
can come to the following conclusions.

• The isoperimetric condition is an additional constraint in the form of an equal-
ity, taken into account in accordance with the Lagrange multiplier method.

• The maximum principle can also be established for optimization problems with
isoperimetric constraints.
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• The optimality conditions for a problem with an isoperimetric constraint is a
system that includes a state equation and an adjoint equation with the cor-
responding boundary conditions, a maximum condition and the isoperimetric
condition itself with respect to three unknown functions and a numerical La-
grange multiplier.

• The optimal control for Example 13.1 can be found analytically in view of the
linearity of the equation and the isoperimetric condition with respect to the
state function and the absence of an explicit dependence on it of the optimality
criterion.

• The optimal control problem from Example 13.1 has a unique solution, and the
corresponding optimality condition is both necessary and sufficient.

• The results obtained are extended to optimal control problems with isoperi-
metric and fixed final state of the system.

• The optimal control for Example 13.2 can be found analytically in view of the
linearity of the equation and the isoperimetric condition with respect to the
state function, the absence of an explicit dependence on it of the optimality
criterion and the absence of explicit restrictions on the control values.

• The optimal control problem from Example 13.2 has a unique solution, and the
corresponding optimality condition is both necessary and sufficient.

Problems

As a result of the analysis of the optimal control problems for the systems with
isoperimetric conditions, the following additional problems arise.

1. Justification of optimality conditions. Theorems 13.1 and 13.2 are not
justified. For the rationale for these results, see Notes10.

2. Practical solving of optimality conditions. The system of optimality con-
ditions for the considered examples was solved analytically. Naturally, this is
possible only in exceptionally simple cases. In fact, iterative methods are usually
used to analyze optimality conditions; see Appendix.

3. Qualitative analysis of the considered examples. For Examples 13.1 and
13.2, an analytical solution of the optimality conditions was found. However,
the fact that exactly the optimal control was found needs to be substantiated.
This result can be established with the help of a qualitative analysis of the
tasks set, which is carried out in Appendix.

4. Alternative methods. In addition to the maximum principle, based on the
method of Lagrange multipliers, other approaches can be used for the consid-
ered class of problems. In Appendix for case studies, the penalty method and
variational inequality are applied.
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5. Counterexamples. Of interest are optimal control problems with isoperimet-
ric conditions, for which the existence and uniqueness of a solution, the suffi-
ciency of optimality conditions, etc., are violated. The following chapters are
devoted to these issues.

6. Application. Optimization problems with isoperimetric conditions naturally
arise in practical situations. One such problem with geometric meaning is stud-
ied in Appendix.

13.2 APPENDIX

Below, we present some additional results for optimal control problems with isoperimetric
conditions. In particular, Section 13.2.1 describes an algorithm for an approximate solution
of the obtained optimality conditions. In Section 13.2.2, for Examples 13.1 and 13.2, the
existence and uniqueness of an optimal control, Tikhonov well-posedness, and sufficiency of
optimality conditions are proved based on the corresponding theorems from Part II. Section
13.2.3 considers an optimal control problem of a system with an isoperimetric condition,
which has a natural geometric meaning. Section 13.2.4 uses the penalty method to obtain a
problem without an isoperimetric condition, which is analyzed using a variational inequality.
Finally, in Section 13.2.5, the results obtained earlier are extended to the vector case, when
there are an arbitrary number of controls, state functions, and isoperimetric conditions.

13.2.1 Approximate solving of the problem with isoperimetric condition

Naturally, the possibility of an analytical solving of the system of optimality condi-
tions is an exception, typical for fairly simple problems. As a rule, the solution of
such problems is found approximately on the basis of iterative processes.

The system of optimality conditions for Problem 13.1 includes the state system
(13.1), the adjoint system (13.6), the maximum condition (13.7), and the isoperimet-
ric condition (13.2) for three unknown functions u, x, p, and the constant λ. This
system is solved iteratively. In this case, as in the previous cases, the control is de-
termined from the maximum condition, the state of the system is determined from
the Cauchy problem (13.1), and the function p is determined from the adjoint sys-
tem. As a result, with respect to the Lagrange multiplier λ, we have an isoperimetric
condition, which can be interpreted as an algebraic equation with respect to this
parameter. Its approximate solution can be found in the same way as the unknown
final value for the function p in the shooting method; see Chapter 9. As a result, we
have the following algorithm11.

1. Initial approximations of the control u0 and the Lagrange multiplier λ0 are
given. The sequence of algorithm parameters {γk} is chosen, which will be used
when finding the next approximation λ.

2. At the kth iteration, with a known control value uk, the corresponding state
function xk is found from the Cauchy problem

x′
k(t) = f(t, uk(t), xk(t)), t ∈ (0, T ), xk(0) = x0.
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3. The value of pk is determined with the known functions uk, xk, and the param-
eter λk from the previous iteration from the Cauchy problem

p′
k(t) = −Hx(t, uk(t), xk(t), pk(t), λk), t ∈ (0, T ), pk(T ) = −hx(xk(T )).

4. With known values of xk, pk, and λk, a new control approximation is found
from the problem to the conditional extremum of the function

H(t, uk+1(t), xk(t), pk(t), λk) = max
v∈[a(t),b(t)]

H(t, v, xk(t), pk(t), λk), t ∈ (0, T ).

5. A new approximation of the parameter λ is found by the formula

λk+1 = λk − γk

T∫
0

q(t, uk+1(t), xk(t))dt.

In the case of convergence of the described algorithm, the result is a solution to
the system of optimality conditions12.

Let us now turn to the optimality conditions for Problem 13.2. The corresponding
iterative process combines the properties of the algorithm described above with the
shooting method from Chapter 9. In this case, the adjoint equation is supplemented
by the final condition

p(T ) = ψ, (13.14)
where ψ is an unknown numerical parameter. Now, for three unknown functions u,
x, p and two numerical parameters λ and ψ, there are two first-order differential
equations with two boundary conditions (13.9), (13.12), and (13.14), the problem
for the conditional maximum of the function (13.13) and two additional equalities
(13.10) and (13.11). To solve this system, one can use the following algorithm.

1. Initial approximations of the control u0 and the Lagrange multiplier λ0, the
number ψ0 of the equality (13.14), and the sequence of algorithm parameters
{γk} and {βk} are given.

2. At the kth iteration, with a known control value uk, the corresponding state
function xk is found from the Cauchy problem

x′
k(t) = f(t, uk(t), xk(t)), t ∈ (0, T ), xk(0) = x0.

3. The value of pk is determined with the known functions uk, xk, and the param-
eter λk from the previous iteration from the Cauchy problem

p′
k(t) = −Hx(t, uk(t), xk(t), pk(t), λk), t ∈ (0, T ), pk(T ) = ψk.

4. With known values of xk, pk, and λk, a new control approximation is found
from the problem to the conditional extremum of the function

H(t, uk+1(t), xk(t), pk(t), λk) = max
v∈[a(t),b(t)]

H(t, v, xk(t), pk(t), λk), t ∈ (0, T ).
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5. A new approximation of the parameter λ is found by the formula

λk+1 = λk − γk

T∫
0

q(t, uk+1(t), xk(t))dt.

6. A new approximation of the parameter ψ is found by the formula

ψk+1 = ψk – βk[xk(T )–x1].

13.2.2 Qualitative analysis of the considered examples

In the study of Examples 13.1 and 13.2, a solution was found to the system of
optimality conditions. In both cases, due to the uniqueness of the obtained solution,
a conclusion was made about the optimality of the resulting control. However, as
we already know, the unique solution to the optimality condition may not be the
optimal control. This is possible in the case when the problem has no solution at
all, and the extremum condition is not sufficient13. Let us check the sufficiency of
optimality conditions, the existence of a solution for the examples under study, and
at the same time other general properties of extremal problems that we encountered
earlier.

Let us return to the consideration of Example 13.1. We minimize the functional

I = 1
2

1∫
0

u2dt

on the set U of functions u = u(t) satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1)
under the following equality

1∫
0

xdt = 0,

where x is a solution to the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Let us first check the sufficiency of the optimality conditions, as was done in
Chapter 5. To do this, we will show that the remainder term η in the functional
increment formula is non-negative. We have

η = η3 −
1∫

0

(η1 + η2)dt,

where η3 is a value of a higher order with respect to the increment ∆x(T ), determined
by the terminal term of the optimality criterion, η1 is a second-order term with respect
to ∆x, obtained by expanding the function H into a Taylor series in x, and η2 is
determined by the formula

η2 =
[
Hx(t, v, x, p, λ)–Hx(t, u, x, p, λ)

]
∆x.



Optimization of systems with isoperimetric conditions ■ 391

For Example 13.1, there is no terminal term in the optimality criterion, and the
function H has the form H = pu + λx–u2/2. It is linear with respect to x, and
the coefficient at x does not depend on the control. Then η = 0, which guarantees
the sufficiency of optimality conditions. Thus, the set of solutions of the original
problem coincides with the set of solutions of the optimality conditions. The latter
consists of a unique element, which thus turns out to be an optimal control.

Another way to justify this result is related to the proof of the existence of an
optimal control. For this purpose, we use Theorem 7.1, according to which the prob-
lem of minimizing a convex continuous functional bounded below on a convex closed
bounded subset of a Hilbert space has a solution. The boundedness from below,
the convexity and continuity of the quadratic integral functional were established in
Chapter 3. Thus, it remains to check the desired properties of the set of admissi-
ble controls, which is the intersection of a given set U and a set V of controls that
guarantee the isoperimetric condition.

First of all, we again choose L2(0, 1) as the control space. In Chapter 3, the
convexity, closeness, and boundedness of the set U were established. From this, the
boundedness of the intersection U ∩ V already follows14. Thus, it remains to prove
the convexity and closeness of the set V .

Let u and v be elements of the set V , i.e., we have

1∫
0

xdt = 0,
1∫

0

ydt = 0, (13.15)

where x and y are the corresponding states. Then we obtain

x′(t) = u(t), t ∈ (0, 1); x(0) = 0; y′(t) = v(t), t ∈ (0, 1); y(0) = 0.

For any α ∈ (0, 1) the control w = αu + (1–α)v corresponds to the state z that is a
solution of the problem

z′(t) = w(t), t ∈ (0, 1); z(0) = 0.

As a result, we obtain the equality z = αx + (1–α)y. Multiplying the first equality
(13.15) by α, and the second one by (1–α) and summing up the results, we have

1∫
0

zdt = 0.

This implies the inclusion z ∈ V , which means that the set V is convex.
Now let {uk} be a sequence of elements of the set V such that uk → u in L2(0, 1).

By virtue of the inclusions uk ∈ V , the following equalities hold

1∫
0

xkdt = 0, k = 1, 2, ... , (13.16)
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where xk is a solution of the problem

x′
k(t) = uk(t), t ∈ (0, 1); xk(0) = 0.

In Chapter 9, when analyzing Example 9.1 with the same state equation, xk(t) → x(t)
was found to converge for any t, where x is the system state corresponding to the
control limit u. Then, as a result of the passing to the limit in equality (13.16), we
obtain

1∫
0

xdt = 0,

whence follows the inclusion u ∈ V . Thus, the set V is closed. Thus, all the conditions
of Theorem 7.1 are satisfied, which means that the optimal control problem considered
in Example 13.1 does indeed have a solution. Naturally, it must satisfy the optimality
condition. Since the latter has a unique solution, we can again conclude that the
previously found control u=0 is indeed the optimal control.

Let us now turn to Theorem 5.1 on the uniqueness of the optimal control. Ac-
cording to this result, a strictly convex functional on a convex subset cannot have
two minimum points. The convexity of the corresponding set was established above,
and the strict convexity of the quadratic integral functional was proved in Chapter 5.
Thus, the uniqueness of the solution of the considered problem follows from Theorem
5.1.

Further, according to Theorem 8.1, if the problem of minimizing a strongly convex
functional on a convex subset of a Hilbert space has a solution, then it is Tikhonov
well-posed. The strong convexity of the quadratic integral functional was proved in
Chapter 8. Then the optimal control problem from Example 13.1 is Tikhonov well-
posed.

Example 13.2 considers the same state equation with the same optimality crite-
rion. However, there are no explicit restrictions on the control, and the final condition
x(1) = 1 is given in addition to the isoperimetric condition

1∫
0

xdt = 1
2 .

Thus, the set of admissible controls in this case is the intersection of the sets V and W ,
where the set V is determined by the isoperimetric condition, and W is determined
by the fixed final state. The convexity and closure of the first of them can be proved
in the same way as for the previous example. The same properties for the set W were
established in Chapter 9.

Because of the absence of restrictions on the values of the control, here we cannot
establish the boundedness of the set of admissible controls and prove the solvability
of the optimization problem using Theorem 7.1. However, it is obvious that the
quadratic integral functional is coercive. Therefore, the existence of an optimal control
for Example 13.2 follows from Theorem 7.2. With the existing properties of the
optimality criterion and the set of admissible controls, the uniqueness of the optimal
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control, the well-posedness of the problem according to Tikhonov, and the sufficiency
of the optimality conditions are established in the same way as for the previous
example.

13.2.3 Dido problem

Chapter 2 dealt with the problem of finding a square with a given perimeter and
maximum area. Consider its generalization, which consists of finding a curve x = x(t)
of a given length with given ends, for which the area of the corresponding curvilinear
trapezoid bounded by this curve, a segment of the coordinate axis t and straight lines
perpendicular to this axis and passing through the ends of the curve15; see Figure
13.2. This problem is called Dido problem16.

Figure 13.2 Curve of length l enveloping a curvilinear trapezoid of area S.

Let us give a mathematical formulation of this problem. The area of a curvilinear
trapezoid bounded by the curve x = x(t) on the interval (t1, t2) is equal to the integral

S =
t2∫

t1

x(t)dt.

The length of the corresponding arc of the curve is

l =
t2∫

t1

√
1 + [x′(t)]2dt.

The known coordinates of the ends of the curve arc are characterized by the equalities

x(t1) = x1, x(t2) = x2.

We now transform this problem to the standard form17 of Problem 13.2, setting
t1 = 0, t2 = T .
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Example 13.3 The optimal control problem is to find a function u = u(t) that min-
imizes the functional

I(u) =
T∫

0

x(t)dt,

where x is a solution to the problem

x′(t) = u(t), t ∈ (0, T ); x(0) = x1

on the set of such functions u that guaranty the fulfillment of the final condition

x(T ) = x2

and isoperimetric condition
T∫

0

√
1 + [u(t)]2dt = l.

The parameters T , x1, x2, and l are known.

Let us establish the optimality conditions for the considered example. Obviously,
the last equality can be written as

T∫
0

[√
1 + [u(t)]2 − l

T

]
dt = 0.

Determine the function

H = pu + λ
(√

1 + u2 − l

T

)
− x.

The function p here is a solution of the adjoint equation

p′(t) = 1, t ∈ (0, T ).

The control is found from the minimum condition for the function H. Equaling its
derivative with respect to control to zero, we have

∂H

∂u
= p + λ

u√
1 + u2

= 0.

Differentiating the resulting equality, taking into account the adjoint equation, we
establish the relation

1 + λ
d

dt

x′
√

1 + x′2
= 0.

In order to simplify the resulting second-order differential equation, calculate the
derivative18

d

dt

(
x− λ

√
1 + x′2 + x′ λx′

√
1 + x′2

)
= x′ − λx′

√
1 + x′2

x′′+
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+x′′ λx′
√

1 + x′2
+ x′ d

dt

λx′
√

1 + x′2
= x′

(
1 + d

dt

λx′
√

1 + x′2

)
= 0

because of the previous equality. As a result, we obtain the first-order differential
equation

x− λ
√

1 + x′2 + x′ λx′
√

1 + x′2
= c1,

where c1 is an arbitrary constant. Thus, we get the differential equation

x− λ√
1 + x′2

= c1.

Determine a function φ such that x′ = tanφ. Then the previous equality takes
the form

x – λ cosφ = c1. (13.17)

After differentiation by φ, we obtain

dx

dφ
+ λ sinφ = 0.

Now we have
dt = dx

tanφ = −λ sinφdφ
tanφ = −λ cosφdφ.

Integrating this equality, we get

t + λ sinφ = c2, (13.18)

where c2 is an arbitrary constant.
Equalities (13.17) and (13.18) imply19

(x–c1)2 + (t–c2)2 = λ2(cos2 φ+ sin2 φ) = λ2. (13.19)

Thus, the desired curve is a part of a circle20 in the plane (t, x) of radius λ centered
at the point with coordinates (c2, c1). To find concrete values of the radius and coor-
dinates of the center of the circle (three unknowns), there are two boundary and one
isoperimetric conditions21.

13.2.4 Penalty method and variational inequality

The derivation of necessary optimality conditions for problems with isoperimetric
conditions previously relied on the Lagrange multiplier method. However, the prob-
lems of finding an extremum in the presence of constraints in the form of equality
were also studied using the penalty method22. One can try to use this method for
solving the problem with the isoperimetric condition, in particular, for Problem 13.1.

Thus, we have the problem of minimizing the functional

I(u) =
T∫

0

g(t, u(t), x(t))dt + h(x(T ))
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on the set of functions u = u(t) from

U =
{
u| a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )

}
that guaranty the equality

T∫
0

q(t, u(t), x(t))dt = 0,

where x is a solution to the problem

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ); x(0) = x0.

Using the penalty method, determine the functional

Iε(u) = I(u) + 1
2ε

[ T∫
0

q(t, u(t), x(t))dt
]2
,

where ε is a small enough positive number. The minimization problem for the func-
tional Iε can be solved by the standard optimization method. Let us illustrate this
approach with a concrete example.

Consider, in particular, Example 13.1, which poses the problem of minimizing the
functional

I =
1∫

0

u2dt

on the set of functions u = u(t) from U = {u| |u(t)| ≤ 1, t ∈ (0, 1)} such that

1∫
0

xdt = 0,

where x is a solution to the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Determine the functional

Iε(u) =
1∫

0

u2dt + 1
2ε

( 1∫
0

xdt
)2
.

We have obtained the problem of minimizing the functional Iε on a convex set U ,
which can be understood as a subset of the Hilbert space L2(0, 1). Try to solve this
problem naturally with the help of variational inequalities, as was done in Chapters 4
and 10.
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If the functional Iε has a Gateaux derivative I ′
ε(u) at its minimum point u on the

set U , then the variational inequality holds

I ′
ε(u)(v − u) ≥ 0 ∀v ∈ U. (13.20)

However, it is necessary to find a functional derivative.
Find the difference

Iε(u+ σh) − Iε(u) = 1
2

1∫
0

[
(u+ σh)2 − u2]

dt + 1
2ε

[( 1∫
0

ydt
)2

−
( 1∫

0

xdt
)2]

,

where σ is a number, h is an arbitrary element of the space L2(0, 1), and y is a
solution to the problem

y′(t) = u(t) + σh(t), t ∈ (0, 1); y(0) = 0.

We have the equalities

(u+ σh)2 − u2 = 2σuh + σ2h2,

( 1∫
0

ydt
)2

−
( 1∫

0

xdt
)2

=
1∫

0

(y + x)dt
1∫

0

(y − x)dt =
1∫

0

xdt

1∫
0

zdt + 1
2

( 1∫
0

zdt
)2
,

where the function z = y–x is a solution to the problem

z′(t) = σh(t), t ∈ (0, 1); z(0) = 0.

Now we have

z(t) = σ

1∫
0

h(τ)dτ,

so the function z is proportional to the number σ.
Thus, we have the equality

Iε(u+ σh) − Iε(u) = σ

1∫
0

(
uh+ σh2

2
)
dt+ 1

ε

[ 1∫
0

xdt

1∫
0

zdt + 1
2

( 1∫
0

zdt
)2]

. (13.21)

Multiply the equation for z by an arbitrary function p and integrate the result. After
integrating by parts, taking into account the initial condition, we obtain

−
1∫

0

p′(t)z(t)dt + p(1)z(1) = σ

1∫
0

p(t)h(t)dt.

We choose here as p the solution to the problem

p′(t) = 1
ε

1∫
0

xdt, t ∈ (0, 1); p(1) = 0. (13.22)
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Then the equality (13.21) takes the form

Iε(u+ σh) − Iε(u) = σ

1∫
0

(u− p)hdt+ σ2

2

1∫
0

h2dt+ 1
2ε

( 1∫
0

zdt
)2
.

Dividing this formula by σ and passing to the limit as σ → 0 with using the linear
dependence of z from σ, we get

I ′
ε(u)h =

1∫
0

(u− p)hdt ∀h.

As a result, the variational inequality (13.22) takes the form
1∫

0

(u− p)(v − u)dt ≥ 0 ∀v ∈ U. (13.23)

The optimality condition (13.23) was obtained earlier in Chapter 4 by analyzing
Example 3.3. Its solution is determined by the formula

u(t) =


−1, if p(t) < −1,
p(t), if − 1 ≤ p(t) ≤ 1,

1, if p(t) > 1.
(13.24)

Earlier, for this example, optimality conditions were obtained, including the same
equation of state and the same formula for control. The difference is only on the right
side of the adjoint equation, where previously there was a Lagrange multiplier with
the opposite sign –λ, and in this case the integral of the state function divided by ε
is found. Denoting this integral as −λ, we can reproduce the previous analysis and,
in particular, exclude the case when this integral exceeds unity in absolute value.
Since the derivative of p is constant, this function itself is linear and for |λ| ≤ 1 also
does not exceed unity in absolute value, having the form p(t) = λ(1–t). Under these
conditions, it follows from formula (13.24) that u(t) = p(t), and hence u(t) = λ(1–t).
Substituting this value into the equation of state, we have

x′(t) = λ(1 − t) = 1
ε

1∫
0

x(τ)dτ(t− 1).

This is the integro-differential equation.
Integrating this equality with a homogeneous initial condition, we find

x(t) = 1
ε

1∫
0

x(τ)dτ
( t2

2 − t
)
.

After integration, we obtain

ε

1∫
0

x(τ)dτ =
1∫

0

x(τ)dτ
1∫

0

( t2
2 − t

)
dt = −1

3

1∫
0

x(τ)dτ.
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This equality can only hold if the integral of the function x is equal to zero. Then it
follows from the previous equality that x = 0, and hence u = 0. The result obtained
exactly coincides with what was established in the Lecture23.

13.2.5 Vector problem with isoperimetric conditions

The results obtained can be easily extended to the vector case. Let the control and
the state function be vector functions

u = (u1, u2, ..., ur), x = (x1, x2, ..., xn).

Now the state equation

x′(t) = f(t, u(t), x(t)), t ∈ (0, T ), x(0) = x0

is the Cauchy problem for the system of differential equations, besides f is n order
vector function of r + n+ 1 variables, and x0 is an n-dimensional vector. The vector
control u belongs to the set

U =
{
u

∣∣ u(t) ∈ G(t), t ∈ (0, T )
}
,

whereG(t) is a subset of the r-dimensional Euclidean space. In addition, some number
s of isoperimetric conditions are given

T∫
0

q(t, u(t), x(t))dt = 0,

where q is a vector function of order s in r+n+ 1 variables. The optimality criterion
is determined by the formula

I =
T∫

0

g(t, u(t), x(t))dt + h(x(T )),

where g is a function of r + n + 1 variables and h is a function of n variables. We
have the following vector optimal control problem.

Problem 13.3 Find a control u that minimizes on a subset U of functions satisfy-
ing the given isoperimetric conditions the functional I whose definition includes the
function x, which is a solution to the system of state equations for a given control u.

Define the function of r + 2n+ s+ 1 variables

H(t, u, x, p, λ) = ⟨p, f(t, u, x)⟩ + ⟨λ, q(t, u, x)⟩ − g(t, u, x),

where λ is a vector of s order, the first scalar product is understood in the sense n-
dimensional Euclidean space, and the second in the sense of an s-dimensional space.
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In accordance with the maximum principle, the optimal control satisfies the con-
dition

H
(
t, u(t), x(t), p(t), λ

)
= max

v∈G(t)
H

(
t, v, x(t), p(t), λ

)
, t ∈ (0, T ),

where p is a solution to the adjoint system

p′(t) = −Hx(t, u, x, p, λ), t ∈ (0, T ), p(T ) = hx(x(T )).

As a result, a system of optimality conditions is obtained, which includes as unknown
r controls u, n states x and functions p, as well as s numerical Lagrange multipliers
λ. In this case, the maximum condition is a problem for the conditional extremum of
the function H with respect to r variables (controls). The equations of state and the
adjoint system include n differential equations each with the corresponding bound-
ary conditions, and the vectors Hx and hx include n components each, which are
partial derivatives with respect to the variables xi, i = 1, ..., n. Finally, there are s
isoperimetric conditions that ultimately allow us to determine the vector λ.

One can also consider a vector optimal control problem with isoperimetric con-
ditions and fixed final states24. In this case, the equations of state have the same
form as in the previous case. However, in addition to the set U and the isoperimetric
conditions, the final conditions are given

x(T ) = xT ,

where xT is a vector of n order. Determine an optimality criterion

I =
T∫

0

g(t, u(t), x(t))dt.

Problem 13.4 Find a control u that minimizes the functional I, whose definition
includes the function x, which is a system of equations of state for a given control u,
on a subset U of functions that satisfy the given isoperimetric and finite conditions.

To solve this problem, the function H is introduced in the same way as before.
The optimal control here will satisfy the maximum condition given above. However,
the function p will satisfy the adjoint equation

p′(t) = −Hx(t, u, x, p, λ), t ∈ (0, T )

without boundary conditions. The same optimality conditions are obtained with re-
spect to the same set of unknown functions. However, there are 2n boundary con-
ditions for n equations of state, and there are no boundary conditions for n adjoint
equations. The resulting system can, in principle, be solved approximately using the
shooting method.
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Additional conclusions

Based on the properties of optimal control problems with isoperimetric conditions
established in Appendix, we can draw the following conclusions.

• The optimality conditions for a problem with an isoperimetric constraint are
usually solved iteratively.

• The optimality conditions for a problem with an isoperimetric constraint and
a fixed final state are usually solved iteratively using the shooting method.

• The theorems given in Part II on the sufficiency of the maximum condition,
the existence and uniqueness of the optimal control, and the well-posedness
of optimal control problems according to Tikhonov are also applicable to the
analysis of problems with isoperimetric conditions.

• The optimal control problem from Example 13.1 has a unique solution and is
Tikhonov well-posed, and the corresponding optimality conditions are necessary
and sufficient.

• The optimal control problem from Example 13.2 has a unique solution and is
Tikhonov well-posed, and the corresponding optimality conditions are necessary
and sufficient.

• Dido problem belongs to the class of optimal control problems for systems with
an isoperimetric condition and a fixed final state.

• The solution to Dido problem is an arc of a circle.

• A problem with an isoperimetric condition can be reduced to a problem without
an isoperimetric condition using the penalty method.

• Applying the penalty method to the analysis in Example 13.1 leads to the same
result as applying the maximum principle.

• Methods for studying optimal control problems for systems with an isoperi-
metric constraint, both with a free and a fixed final state, are extended to the
vector case.

Notes

1. Chapter 2 dealt with the problem of finding a rectangle with the maximum area of a
given perimeter. A summary of this problem is given in Appendix. Fixing the perimeter is a
kind of restriction in the form of equality. It is in this connection that the term “isoperimetric
condition” appeared. In the calculus of variations, integral constraints in the form of equality
are usually called isoperimetric conditions; see [37], [61], [208].

2. To solve Problem 13.1, we can also use the following idea. We define a new state function
y = y(t) as a solution to the following Cauchy problem

y′(t) = q(t, u(t), x(t)) t ∈ (0, T ); y(0) = 0.
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Then the isoperimetric condition (13.2) is equivalent to the condition y(T ) = 0. Thus, Problem
13.1 is reduced to an optimal control problem for a system of two differential equations with a
fixed final state.

3. We again ignore the question of how to find a control that is an element of the set U and
guarantees the fulfillment of condition (13.2), and whether it exists at all.

4. This is an analogue of the inequalities (3.5) and (9.3).

5. Naturally, the assertions of the theorem must be rigorously substantiated. To do this, one
can use the same technique as in Chapter 3.

6. In principle, one can immediately conclude that for negative λ the function x is everywhere
negative, and for positive values, it is everywhere positive. In both cases, the integral of x does
not vanish in any way, which means that the isoperimetric condition cannot be satisfied. There
remains the case λ = 0, which leads to the optimal control. However, we have chosen just such
a way of research in order to emphasize that in practice the isoperimetric condition is used to
find the Lagrange multiplier λ.

7. This example is in a certain sense similar to Examples 3.1, 3.2, and 9.1, in which the
extremum necessary condition also had a unique solution, which was found analytically and
turned out to be a solution to the problem. Note that here we solved an optimal control problem
with a linear equation and an optimality criterion that does not depend on the function x at
all. As a result, the function H turned out to be linear with respect to x. Then the adjoint
system does not depend on x at all, and its solution can be found without connection with
the state equation. This is precisely what determines the possibility of finding an analytical
solution to the problem.

8. We again refrain from substantiating this assertion.

9. To do this, it is enough to prove the existence of an optimal control or the sufficiency of
optimality conditions; see Appendix.

10. Regarding the substantiation of optimization methods in problems with difficult constraints
[5], [56], [95], [140].

11. In the described algorithm, the actions at the fourth and fifth steps can be swapped.
However, in this case, when calculating the parameter λ, the control is selected at the current
iteration, and when calculating the control, its newly found value at the next iteration is chosen
as λ.

12. Naturally, this does not guarantee that the found limit value of the control will be optimal,
since the optimality condition is not sufficient for the general case.

13. In particular, for the function f(x) = x3, the stationary condition has a unique solution
x = 0, which is not the minimum point of this function.

14. Indeed, the intersection U ∩ V is part of a bounded set U , and hence is also bounded.

15. This problem is considered, for example, in [61].

16. According to legend, the Phoenician princess Dido, having landed on the African coast
of the Mediterranean Sea, received permission from a local tribe to settle for a piece of land
that can be covered with the skin of a bull. Dido cut the skin into narrow straps, wove a rope
out of them, and covered a fairly large part of the coast with it. It is believed that the city of
Carthage was founded in this way.
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17. Naturally, here one can use the methods of the calculus of variations; see [37], [61], [208].

18. In the calculus of variations, the value in brackets on the left side of this equality is called
the first integral, [37], [61], [208].

19. It is enough in each of the equalities to transfer the trigonometric term to the right side
of the equality, the term from the right side to the left, square it, and then add the resulting
equalities.

20. Argument t belongs to the interval (0, T ).

21. Let us consider, for example, the parameters T = 1, x1 = 0, x2 = 0, l = π/2. Then
there are three equations for three unknown parameters λ, c1, and c2. Using two boundary
conditions, from equality (13.19) we obtain two equations

(c1)2 + (c2)2 = λ2, (1–c1)2 + (1–c2)2 = λ2.

Because of the equation
x − λ√

1 + x′2
= c1

the isoperimetric condition takes the form

1∫
0

λdt

x − c1
= π

2 .

Taking into account equality (13.19), we establish the third equation for unknown parameters

π

2λ
=

1∫
0

dt√
λ2 − (t − c1)2

= arcsin 1 − c1

λ
+ arcsin c1

λ
.

It is easy to verify that the resulting system of equations has a solution λ = 1, c1 = 0, c2 = 1.
Thus, the desired curve turns out to be an arc of a circle

x2 + (t–1)2 = 1, t ∈ (0, 1).

22. In Chapter 2, the penalty method was used for function minimization, in Chapter 4 for the
free finite state optimal control problem, and in Chapter 10 for the fixed final state problem.

23. The question arises, what happens if we try to use the variational inequality for Example
13.1 directly, i.e., without using the penalty method. Indeed, we are dealing with the mini-
mization of the original functional I, which has an extremely simple form, at the intersection
of a given set U and a set V , which guarantee the fulfillment of the isoperimetric condition. In
the Lecture it was shown that the intersection U ∩ V is convex. This circumstance allows us to
use the variational inequality to solve this problem. Obviously, the derivative of the functional
I at the point u is equal to I ′(u) = u. Then the corresponding variational inequality has the
form

1∫
0

u(t)[v(t) − u(t)]dt ≥ 0 ∀v ∈ (U ∩ V ).

This inequality is close enough to condition (13.23). However, the solution of the latter was
associated with the use of the needle variation; see Chapter 4. Unfortunately, the needle varia-
tion does not guarantee the isoperimetric condition, so the solution of the obtained variational
inequality is not obvious.
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24. Naturally, an intermediate variant is also possible, when a part of the system states is
specified at the final moment of time. In this case, for the adjoint equation, a part of the
conditions at the final moment of time will be set.



C H A P T E R 14

Absence of sufficiency and
uniqueness in problems with
isoperimetric conditions

The fourth part of the book is devoted to problems of optimal control of systems with
isoperimetric conditions. This and the following chapters provide examples of these prob-
lems, for which the effects that we encountered in the previous parts are realized. This
includes the absence of existence or uniqueness of a solution, insufficiency and degeneration
of optimality conditions, etc. Below are examples of problems of this class, for which the
solution is not unique, and the optimality conditions are not sufficient. In this case, systems
with both free and fixed final states are considered.

14.1 LECTURE

In the previous chapter, optimality conditions were given for optimal control problems
in the presence of isoperimetric conditions. The effectiveness of the research method was
illustrated with relevant examples. However, in the past, when solving extreme problems, we
encountered different difficulties. Similar effects are observed in problems with isoperimetric
conditions. This lecture will give examples of problems of the considered class, for which
there are no sufficiency of optimality conditions and the uniqueness of the solution to the
problem. The first example corresponds to a linear system of optimality conditions, while
in the second case this system turns out to be non-linear.

14.1.1 Linear system of optimality conditions for a fixed final state

We continue to study examples of optimal control problems with isoperimetric con-
ditions.

Example 14.1 There is a system described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (14.1)
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The optimal control problem is to find a function u = u(t) that minimizes the func-
tional

I(u) =
1∫

0

u(t)2dt

under the final condition
x(1) = 0 (14.2)

and the isoperimetric condition1

1∫
0

x(t)2dt = 1. (14.3)

To solve this problem2, we will use the technique described in the previous chap-
ter3. We write the last equality in the form

1∫
0

(x2 − 1)dt = 0.

We have Problem 13.2 with following parameters

f(t, u, x) = u, T = 1, x0 = 0, xT = 0, a(t) = −N, b(t) = N,

g(t, u, x) = u2, h(x) = 0, q(t, u, x) = (x2–1).

Determine the function

H(t, u, x, p, λ) = pf + λq–g = p+ (x2–1)–u2.

Then the adjoint equation takes the form

p′(t) = −2λx(t), t ∈ (0, 1). (14.4)

The control is found from the maximum condition of the function H. As a result, we
determine

u(t) = p(t)/2. (14.5)

Thus, with respect to the three unknown functions u, x, p, and the number λ,
a system of optimality conditions (14.1) – (14.5) is obtained, and for a fixed value
of λ the resulting system is linear4. In accordance with the method of eliminating
unknowns, we will try to reduce the existing system to a problem with respect to the
state function5. We substitute the control from formula (14.5) into the state equation.
After its differentiating, taking into account the adjoint equation, we have

x′′(t) = u′(t) = p′(t)/2 = −λx(t).

Thus, the function x satisfies the second-order differential equation6

x′′(t) + λx(t) = 0, t ∈ (0, 1) (14.6)
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with initially specified boundary conditions

x(0) = 0, x(1) = 0. (14.7)

The number λ included in equation (14.6) is unknown. However, in addition to the
resulting boundary value problem, there is also an isoperimetric condition (14.3).
Note that the solution to problem (14.6) and (14.7) is certainly a function x that
is identically equal to zero. However, in this case equality (14.3) is not hold, and
therefore we will be interested in non-trivial solutions to this problem. As a result,
we give the extremely important concept of the theory of differential equations.

Definition 14.1 The Sturm–Liouville problem7 consists of finding non-trivial
solutions to the boundary value problem (14.6) and (14.7) and the values of λ for
which such a solution exists. These solutions are called the eigenfunctions of a
given problem, and the corresponding numbers λ are called its eigenvalues.

Multiplying equality (14.6) by x and integrating the resulting relation taking into
account condition (14.3), we have

1∫
0

x′′xdt + λ

1∫
0

x2dt = 0.

Integrating the first integral by parts, taking into account boundary conditions (14.7)
and using equality (14.3), we find

λ =
1∫

0

x′2dt.

Substituting the found value into equality (14.6), we obtain

x′′(t) + x(t)
1∫

0

x′2dt = 0, t ∈ (0, 1). (14.8)

Thus, the system of optimality conditions is reduced to a unique integro-differential
equation (14.8) with boundary conditions (14.7).

Let us return to consideration of equation (14.6). From the formula obtained
earlier it follows that the parameter λ cannot be negative. When λ = 0, the general
solution of the equation has the form x(t) = c1 + c2t. As a result of substitution into
equalities (14.7), we determine c1 = 0 and c2 = 0, and therefore x = 0. Thus, the
eigenvalues are positive, which means that the general solution to equation (14.6) is

x(t) = c1 sin
√
λt+ c2 cos

√
λt,

where c1, c2 are arbitrary constants. Using the first of conditions (14.7), we find

x(0) = c2 = 0.
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Using the second equality (14.7), we obtain

x(1) = c1 sin
√
λ = 0.

Taking into account that if the constant c1 is equal to zero, the solution to the
boundary value problem again turns out to be zero, we have the equality

sin
√
λ = 0.

Now we find
λ = λk = (kπ)2, k = 1, 2, ... . (14.9)

Thus, there is an infinite number of values of the Lagrange multiplier λ, i.e., eigen-
values8. The corresponding non-zero solutions to the boundary value problem (14.6),
(14.7) are determined by the formulas

xk(t) = ck sin kπt, k = 1, 2, ... , (14.10)

where ck are arbitrary constants. The equalities (14.9) and (14.10) give a complete
set of solutions to the Sturm–Liouville problem, i.e., corresponding eigenvalues and
eigenfunctions.

We choose the constants ck in such a way as to ensure the fulfillment of the
isoperimetric condition (14.3). We have

1∫
0

[xk(t)]2dt = c2
k

1∫
0

sin2 kπtdt = 1.

Therefore, ck = ±
√

2. As a result, we define the functions9

x+
k (t) =

√
2 sin kπt, x−

k (t) = −
√

2 sin kπt, k = 1, 2, ... .

The corresponding controls are equal

u+
k (t) =

√
2kπ cos kπt, u−

k (t) = −
√

2kπ cos kπt, k = 1, 2, ... .

Thus, the system of optimality conditions (14.1)–(14.5) has the infinite set of solu-
tions.

In order to choose the best of them, calculate the corresponding values of the
optimality criterion

I(u+
k ) = I(u−

k ) = 2(kπ)2
1∫

0

cos2 kπtdt = k2π2, k = 1, 2, ..., .

The minimum of these values, corresponding to k = 1, is the minimum of functionality
for Example 14.1. Thus, the solutions to this problem turn out to be controls

u+
1 (t) =

√
2π cosπt, u−

1 (t) = −
√

2π cosπt.

Therefore, the optimal control problem under consideration has two solutions, and
the corresponding optimality conditions are necessary, but not sufficient10



Absence of sufficiency and uniqueness in problems with isoperimetric conditions ■ 409

14.1.2 Non-linear system of optimality conditions for a fixed final state

The possibility of an analytical solution to the optimal control problem posed in
Example 14.1 is due to the fact that the state equation is linear both in control and
in the state of the system, and the optimality criterion and the isoperimetric condition
are quadratic. As a result, with respect to the three functions u, x, and p, we obtained
a system that reduces to a linear boundary value problem (14.6) and (14.7), admitting
an analytical solution. The situation becomes significantly more complicated with a
slight change in any of the components of the problem statement11.

Example 14.2 There is a system described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (14.11)

The optimal control problem is to find a function u = u(t) that minimizes the func-
tional

I(u) =
1∫

0

u(t)2dt

under the final condition
x(1) = 0 (14.12)

and the isoperimetric condition12

1∫
0

x(t)4dt = 1. (14.13)

One can verify that optimal control for Example 14.2 exists13. Define the function

H(u, x, p, λ) = up + λ(x4–1) – u2/2.

The function p satisfies the adjoint equation

p′(t) = −4λx(t)3, t ∈ (0, 1). (14.14)

Control is found from the maximum condition

H(u, x, p, λ) = maxH(v, x, p, λ). (14.15)

Thus, to find three unknown functions u, x, p, and the number λ, we have a sys-
tem14 that includes two first-order differential equations with two boundary con-
ditions (14.11), (14.12), and (14.14), the problem for the unconditional extremum
(14.15) and the equality (14.13)

To study the resulting system, as in the previous problem, we use the method
of eliminating unknowns. By turning the derivative of the function H to zero, we
find the control u = p, which actually delivers the maximum of this function. Then,
differentiating the state equation (14.11) and taking into account the adjoint equation
(14.14), we have

x′′ = u′ = p′ = −4λx3. (14.16)
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The result is similar to equation (14.6) established for the previous example. However,
unlike the latter, equation (14.16) turns out to be nonlinear, which is a consequence
of the existing isoperimetric condition.

Multiplying the resulting equality by the function x and integrating the result
taking into account the existing boundary conditions, we establish the relation

4λ
1∫

0

x4dt = −
1∫

0

x′′xdt =
1∫

0

x′2dt.

Taking into account the isoperimetric condition (14.13), we reduce the last equality
to the form

4λ =
1∫

0

x′2dt.

Substituting this value into equation (14.16), we obtain the equality

x′′ + x3
1∫

0

x′2dt = 0. (14.17)

Thus, the optimal state of the system satisfies the integro-differential equation
(14.17), similar to (14.8) with homogeneous boundary conditions

x(0) = 0, x(1) = 0. (14.18)

Determine the value15

∥x∥ =

√√√√√ 1∫
0

x′2dt.

Let us set the function
y(t) = ∥x∥2x(t), t ∈ (0, 1). (14.19)

Using equation (14.17), we establish the equality

y′′ = ∥x∥x′′ = ∥x∥3x3 = −y3.

Thus, the function y satisfies the nonlinear ordinary differential equation of the second
order16

y′′(t) + y(t)3 = 0, t ∈ (0, 1) (14.20)

with boundary conditions
y(0) = 0, y(1) = 0. (14.21)

Let us assume that somehow a solution to problem (14.20) and (14.21) has been
found. Condition (14.19) implies the equality

∥y∥ = ∥x∥2.
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Now we find
x(t) = ∥x∥−1y(t) = ∥y∥−1/2y(t), t ∈ (0, 1). (14.22)

Thus, having a solution to problem (14.20) and (14.21), we can determine the
state function for Example 14.2 using formula (14.22). The required control is a
derivative of this function.

Let us now consider the non-linear boundary value problem (14.20) and (14.21).
Obviously, a function identically equal to zero is its solution. At the same time, if
the function x is the optimal state for Example 14.2, then, due to the isoperimetric
condition, it is different from zero, which was also true for the previous example. Then
the function y determined by formula (14.19) is also non-zero and is a solution to
the boundary value problem (14.20) and (14.21). Consequently, this boundary value
problem does not have a unique solution. Along with the trivial one, there is also
a solution that is different from zero and associated with the optimal state of the
system under study17.

A natural question arises: is the set of solutions to the boundary value problem
(14.20) and (14.21) not limited to two elements? If this turned out to be the case, then
the problem under study would have a unique solution. However, it is obvious that in
the case when the function x is the optimal state of the system, the function –x also
satisfies the isoperimetric condition, and the values of the functional I coincide in
both cases. Thus, the solution to the optimal control problem is certainly not unique:
if control u is optimal, then so is control –u. Solutions of equations (14.17) and (14.20)
are also invariant with respect to changing the sign: if a certain function is a solution
to the given equations with homogeneous boundary conditions, then by changing the
sign, in a non-trivial case we obtain a new solution to the same problems. Thus, the
boundary value problem (14.20) and (14.21) has at least three solutions, one of which
is trivial, and the other two correspond to the solutions of the studied optimal control
problem18.

Naturally, we do not yet know whether there are other solutions to the considered
problems. However, the method of proving the existence of the last solution (the
second for the optimality conditions and the third for the boundary value problem)
suggests the direction of further research. Try to find a transformation that converts
one solution to the problem into another.

By direct verification, we are convinced that in the case when the function y is a
solution to the boundary value problem (14.20) and (14.21), then the functions

z1(t) = y(1–t), z2(t) = –y(1–t), t ∈ (0, 1) (14.23)

are also solutions to the same problem. In this case, two options are possible: either
the function y satisfies one of the following conditions of symmetry with respect to
the middle of the time interval (see Figure 14.1)

y(t) = y(1–t), t ∈ (0, 1), (14.24)

y(t) = −y(1–t), t ∈ (0, 1), (14.25)
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and equalities (14.23) do not give new solutions, or the solution is not symmetric and
then we obtain new solutions to the boundary value problem. If a non-trivial solution
to problem (14.20) and (14.21) does not satisfy the symmetry conditions (14.24) or
(14.25), then this problem has at least five solutions, and four non-trivial solutions
determine the solutions to the optimal control problem19.

Figure 14.1 Form of possible symmetric solutions to the problem (14.20) and (14.21).

Thus, the boundary value problem (14.20) and (14.21) has at least three solutions
(in the case of symmetry of the non-trivial solution), and possibly even five solutions
(in the absence of symmetry). However, it is possible that the problem has other
solutions.

Let us consider a boundary value problem of type (14.20) and (14.21) on an
arbitrary interval

z′′(t) + z(t)3 = 0, t ∈ (0, a), (14.26)

z(0) = 0, z(a) = 0, (14.27)

where a is a positive number.
Suppose y is a non-trivial solution of problem (14.20) and (14.21). Define the

function
z(t) = a−1y(t/a), t ∈ (0, a). (14.28)

The following equality holds

z′′(t) + [z(t)]3 = a−3y′′(t/a) + a−3[y(t/a)]3 = a−3{
y′′(t/a) + [y(t/a)]3

}
= 0.

Thus, we obtain a solution to problem (14.26) and (14.27).
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For each value of the parameter a, transformation (14.28) associates a new so-
lution to equation (14.20), which also satisfies the first of the boundary conditions
(14.21). However, the need to ensure the second boundary condition significantly
limits the choice of acceptable specified parameters.

Denote by y1 a non-zero solution to problem (14.20) and (14.21), the existence of
which is known. Then the function

z2(t) = 2y1(2t), t ∈ (0, 1/2)

is a solution to problem (14.26) and (14.27) for a = 1/2.

Figure 14.2 Solutions to problem (14.20) and (14.21).

Consider the function (see Figure 14.2)

y2(t) =
{

z2(t), if 0 < t < 1/2,
−z2(1 − t), if 1/2 < t < 1.

Obviously, the boundary condition (14.21) is satisfied for it. On the interval (0,1/2)
it satisfies equation (14.20), since it is z = z2(t) a solution to equation (14.26) for
0 < t < 1/2. At the same time, the function z = –z2(1–t) is a solution to the same
equation for 1/2 < t < 1. Note that the function y2 defined above at the point t = 1/2
is continuously differentiable (if, of course, the function y1 is such) by construction.
Considering that, according to equation (14.20), its second derivative is equal to the
cube of the function taken with the opposite sign, we conclude that y2 at the point
t = 1/2 is twice continuously differentiable. As a result, we establish that function y2
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turns out to be a solution to problem (14.20) and (14.21), different from all previous
ones. Another solution would be a function that differs from y2 in sign20.

Now we have an algorithm for constructing new solutions to the boundary value
problem under study. Obviously the function

z3(t) = 3y1(3t), t ∈ (0, 1/3)

is the solution to problem (14.26) and (14.27) for a = 1/3. Then the function (see
Figure 14.2)

y3(t) =


z3(t), if 0 < t < 1/3,

−z3(2/3 − t), if 1/3 < t < 2/3,
z3(t− 2/3), if 2/3 < t < 1

is also the solution to the boundary value problem under consideration.
In general, for any natural number k the function

zk(t) = ky1(kt), t ∈ (0, 1/k)

is the solution to problem (14.26) and (14.27) for a = 1/k. Repeating the above
reasoning, we establish that the function

yk(t) =



zk(t), if 0 < t < 1/k,
−zk(2/k − t), if 1/k < t < 2/k,
zk(t− 2/k), if 2/k < t < 3/k,

−zk(4/k − t), if 3/k < t < 4/k,
. . . . . . . . .

is also the solution our boundary value problem. One or three more solutions can be
obtained by acting on this function with the above transformations21. Thus, the sys-
tem of optimality conditions for Example 14.2 has an infinite number of solutions22.
We encountered a similar situation in the previous example.

Now we can return to the study of the original optimization problem. First of all,
in accordance with formula (14.22) using the known solution yk of problem (14.20),
(14.21) we find the solution

xk(t) = ∥yk∥−1/2yk(t), t ∈ (0, 1)

of the integro-differential equation (14.17) with homogeneous boundary conditions.
The corresponding control is As noted earlier, any non-zero solution to this problem
satisfies the system of conditions for Example 14.2. Let us estimate the value of the
functional

I(uk) =
1∫

0

|x′
k(t)|2dt =

1∫
0

[
∥yk∥−1/2y′

k(t)
]2
dt

= ∥yk∥−1
1∫

0

|y′
k(t)|2dt = ∥yk∥−1∥yk∥2 = ∥yk∥.
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Taking into account the definition of the function yk (see Figure 14.2), we find
the integral

1∫
0

|y′
k(t)|2dt = ∥yk∥2 =

k∑
j=1

j/k∫
(j−1)/k

|y′
k(t)|2dt = k

1/k∫
0

|y′
k(t)|2dt.

From the equality
yk(t) = ky1(kt), 0 < t < 1/k

it follows
1/k∫
0

|y′
k(t)|2dt = k4

1/k∫
0

|y′
1(t)|2dt = k3

1∫
0

|y′
1(t)|2dt = k3∥y1∥2.

Now we get
I(uk) = k2∥y1∥2, k = 1, 2, ... .

Thus, among all the previously found solutions to the necessary conditions for
an extremum, only that control that corresponds to the value y1 (and the functions
resulting from it after the action of previously determined transformations) delivers
a minimum to the functional under consideration. To find the optimal state of the
system, you should now use formula (14.22). By differentiating the resulting function,
we find the optimal control23. Thus, this example largely has the same properties as
the previous example24.

RESULTS

Here is a list of questions based on the results of the lecture, the main conclusions on this
topic, as well as problems arising in this case, which are solved partly in Appendix, partly
in the subsequent chapter.

Questions

It is required to answer questions related to the previously given lecture material.

1. Obviously, the minimized functional for Example 14.1 takes exclusively non-
negative values. Why is control u = 0, on which the functional is equal to zero,
not a solution to the optimal control problem under consideration?

2. Why the system of optimality conditions (14.1)–(14.5) for a fixed value of λ
turned out to be linear?

3. Why are only non-trivial solutions considered for the boundary value problem
(14.6) and (14.7)?
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4. Why is the general solution of equation (14.6) not represented in terms of
exponentials?

5. Why was it necessary to establish the dependence of the parameter λ through
x, if the equation (14.8) obtained on its basis is not used in further studies?

6. Are the controls uk obtained by differentiating the functions xk determined by
formula (14.10) solutions to the system of optimality conditions for Example
14.1?

7. How was the isoperimetric condition used to find a solution to the system of
optimality conditions for Example 14.1?

8. Which of the conditions of Theorem 5.1 on the uniqueness of optimal control
is violated for Example 14.1?

9. What is the fundamental difference between the problem statements in Exam-
ples 14.1 and 14.2?

10. What is the fundamental difference between the system of optimality conditions
for Examples 14.1 and 14.2 and what is the reason for this difference?

11. Why is the transition from equation (14.17) to equation (14.20) made?

12. Where do the boundary conditions for equation (14.20) come from?

13. Why, when using equality (14.28) to construct new solutions to the optimality
conditions for Example 14.2, are exclusively the values a = 1/k used, although
the properties of equation (14.26) do not depend on this value?

14. Why cannot the analysis of Example 14.2 be considered complete?

15. How many optimal controls are there for Example 14.2?

16. Why can the properties of Example 14.2 be extended to the case where the
isoperimetric condition contains an arbitrary even power greater than two?

17. What happens if the isoperimetric condition for Example 14.2 has an odd de-
gree?

18. Is it possible to extend the results obtained in the study of Example 14.2 to the
case when under the integral in the isoperimetric condition there is the value
|x|r, where r > 1?

Conclusions

Based on the analysis, we come to the following conclusions.

• The system of optimality conditions for Example 14.1 with a fixed value of
the parameter λ is linear, which predetermined the possibility of a complete
analysis of the problem.
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• The linearity of the system of optimality conditions for Example 14.1 at a
fixed value of the parameter λ is a consequence of the linearity of the equation
of state and the quadraticity of the optimality criterion and the isoperimetric
condition.

• The system of optimality conditions for Example 14.1 is reduced to a boundary
value problem for an integro-differential equation.

• The optimality conditions for Example 14.1 reduce to the Sturm–Liouville prob-
lem.

• The optimality conditions for Example 14.1 have an infinite set of solutions.

• The solutions to the optimality conditions for Example 14.1 form an orthonor-
mal family.

• The optimality conditions for Example 14.1 are not sufficient.

• In Example 14.1, there are two optimal controls that differ in sign.

• Optimal control problems with an isoperimetric condition are characterized by
the absence of convexity of the set of admissible controls.

• The system of optimality conditions for Example 14.2 at a fixed value of the
parameter λ is non-linear, which is due to the presence of the fourth degree in
the isoperimetric condition.

• The system of optimality conditions for Example 14.2 is reduced to a boundary
value problem for a non-linear integro-differential equation.

• Using a special substitution, the integro-differential equation considered in Ex-
ample 14.2 can be reduced to a differential equation.

• A boundary value problem for a second-order differential equation with cubic
non-linearity has an infinite number of solutions that differ significantly in their
properties.

• The optimality conditions for Example 14.2 are not sufficient.

• In conditions of ambiguous solvability of the problem, you can try to find trans-
formations that allow you to construct new solutions to the problem based on
existing ones.

• The optimal control problem for Example 14.2 has at least two solutions.

• The results of the analysis of Example 14.2 were obtained under the assumption
of the existence of optimal control.
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Problems

Based on the results obtained above, we come to the following problems.

1. Systems with a free final state. Lecture examined optimal control problems
with an isoperimetric condition in the case of a fixed final state. Problems with
a free final state in the presence of an isoperimetric condition are also of interest.
Examples of such problems are discussed in Appendix and in the subsequent
chapter.

2. Systems with constraints on control values. In the examples considered,
the set of admissible controls was determined exclusively by the isoperimetric
condition and fixation of the final state of the system, as a result of which the
means of classical calculus of variations could be used to solve such problems.
It would be interesting to consider obtaining the described effects in the case of
optimal control problems in the presence of isoperimetric conditions and explicit
restrictions on the control values. Examples of such problems are discussed in
Appendix and in the subsequent chapter.

3. Sufficiency of optimality conditions in the absence of uniqueness of
optimal control. In the examples considered, both the sufficiency of optimality
conditions and the uniqueness of optimal control were simultaneously violated.
It would be interesting to give an example of an optimal control problem of the
class under consideration, which would have a non-unique solution if the optimal
control conditions are insufficient. One such example is given in Appendix.

4. Uniqueness of optimal control is in the absence of sufficiency of opti-
mality conditions. In the examples in this lecture, the solution to the problem
was not unique, and the optimality conditions were not sufficient. It would be
natural to consider an example with a unique optimal control when the opti-
mality condition is not sufficient. Such an example is given in Chapter 15.

5. Optimal control problem with an infinite set of solutions. In the previ-
ous sections, optimal control problems that admit of an infinite set of solutions
were considered. One would like to get an example of an optimal control problem
with an isoperimetric condition that has a similar property. Such an example
is given in Appendix.

6. Solvability of the optimal control problem for Example 14.2. In Ex-
ample 14.2, a non-linear system of optimality conditions with very non-trivial
properties was obtained. However, the assumption of the existence of optimal
control was used. The proof of the solvability of the problem under considera-
tion is given in Appendix.

7. Unsolvable optimization problems with isoperimetric conditions. Pre-
viously, various extremal problems without solutions were considered. Similar
problems are of interest in the presence of isoperimetric constraints. Such ex-
amples are given in Chapter 15.
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8. Singular controls in problems with isoperimetric conditions. In the
previous parts of the book, examples of various optimal control problems were
given for which the maximum principle degenerates. It would be interesting
to consider problems with isoperimetric conditions in which singular controls
exist. Different problems of this type are given in Chapter 15.

9. Ill-posed optimal control problems with isoperimetric conditions. Pre-
viously, different ill-posed optimal control problems were considered. It would
be interesting to consider ill-posed problems with isoperimetric conditions. Ex-
amples of such problems are given in Chapter 15.

10. Bifurcation of extremals in optimal control problems with isoperi-
metric conditions. Chapter 12 gave examples of optimal control problems
with bifurcation of extremals. We would like to establish a similar effect for
problems with isoperimetric conditions. Examples of such problems are given
in Chapter 15.

11. Optimal control problems with general phase constraints. We limited
ourselves to considering optimal control problems in which only restrictions on
control values, fixation of the final state of the system and integral restrictions
in the form of equality were allowed. However, in practice, problems arise with
integral restrictions in the form of inequalities or restrictions on the values of
the state function at individual points, including boundary ones (phase restric-
tions). For methods for solving similar problems, see Notes25.

14.2 APPENDIX

We continue to study the problems of sufficiency of optimality conditions and uniqueness of
solutions for optimal control problems with isoperimetric conditions. In particular, Section
14.2.1 considers an analog of Example 14.1 in the absence of a fixed final state. Subsection
14.2.2 provides an example of a problem of the class under consideration with constraints
on control values, for which there are quite a lot of solutions. Section 14.2.3 proves the
existence of an optimal control for Example 14.2.

14.2.1 Non-uniqueness and insufficiency for a system with a free final state

In the Lecture, optimal control problems with an isoperimetric condition were studied
for the case when the final state of the system is fixed. Let us consider a similar
problem for a system with a free final state.

Example 14.3 There is a system described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The optimal control problem is to find a function u = u(t) that minimizes the func-
tional

I(u) =
1∫

0

u(t)2dt
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under the isoperimetric condition
1∫

0

x(t)2dt = 1.

This problem differs from the one considered in Example 14.1 only in the absence
of a fixed final state. Define the function

H(t, u, x, p, λ) = pf + λq – g = pu+ λ(x2–1) – u2

and the adjoint system

p′(t) = −2λx(t), t ∈ (0, 1); p(1) = 0.

From the maximum condition, we find

u(t) = p(t)/2.

The resulting system of optimality conditions differs from a similar problem
(14.1)–(14.5) for Example 14.1 only in the presence of a final condition for the func-
tion p and its absence for the state function26. To analyze this system, we will use the
same method as for the above example. Using the equation of state and the adjoint
equation, we obtain the equality

x′′(t) = u′(t) = p′(t)/2 = −λx(t).

Thus, the function x is the solution of the equation

x′′(t) + λx(t) = 0, t ∈ (0, 1), (14.29)

which coincides with (14.6). However, instead of the second boundary value in a
problem with a fixed final state, the following equality from the final condition of
the conjugate system is used. Thus, equation (14.29) is considered with boundary
conditions

x(0) = 0, x′(1) = 0. (14.30)
As a result of the relatively unknown function x and parameter λ, the boundary
value problem (14.29) and (14.30) is obtained, supplemented by the isoperimetric
condition.

Note that the trivial (zero) solution of the boundary value problem does not
satisfy the isoperimetric condition. Therefore, such a solution is not considered. We
are again dealing with the Sturm–Liouville problem for the same equation, but
with boundary conditions (14.30) instead of (14.7).

Multiplying equality (14.29) by x and integrating the result taking into account
equalities (14.30) and the isoperimetric condition in the same way as was done for
Example 14.1, we again obtain the equality

λ =
1∫

0

x′2dt,
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whence the non-negativity of λ follows. When λ = 0, the general solution to equation
(14.29) is determined by the formula x(t) = c1 + c2t. As a result of substitution into
equalities (14.30), we find c1 = c2 = 0, and therefore x = 0. Thus, the value of λ can
only be positive, and the general solution of the equation has the form

x(t) = c1 sin
√
λt + c2 cos

√
λt,

where c1 and c2 are arbitrary constants. Using the first of the boundary conditions,
we find x(0) = c2 = 0. Using the second equality (14.30), we obtain

x′(1) = c1
√
λ cos

√
λ = 0.

Taking into account that if the constant c1 is equal to zero, the solution to the
boundary value problem again turns out to be zero, we get cos

√
λ = 0. From here

we find the eigenvalues

λ = λk =
(π

2 + kπ
)2
, k = 1, 2, ... .

Thus, problem (14.29) and (14.30) has non-trivial solutions

xk(t) = ck sin
(1

2 + k
)
πt, k = 1, 2, ... ,

where the constants ck are arbitrary. To find them, we use the isoperimetric condition
1∫

0

[
x′

k(t)
]2
dt = (ck)2

1∫
0

sin2
(1

2 + k
)
πtdt = 1.

Thus, ck = ±
√

2, so for all k there exist two solutions

x+
k =

√
2 sin

(1
2 + k

)
πt, x−

k = −
√

2 sin
(1

2 + k
)
πt, k = 1, 2, ... .

The corresponding controls are defined as follows

u+
k =

√
2
(1

2 + k
)

cos
(1

2 + k
)
πt, u−

k = −
√

2
(1

2 + k
)

cos
(1

2 + k
)
πt, k = 1, 2, ... .

Thus, the system of optimality conditions for the considered example has an infinite
set of solutions. The optimal control is the one that corresponds to the smallest value
of the optimality criterion. We calculate

I(u+
k ) = I(u−

k ) =
(1

2 + k
)2
π2

1∫
0

cos2
(1

2 + k
)
πtdt = 1

2
(1

2 + k
)2
π2, k = 1, 2, ... .

The smallest of these values corresponds to the value k = 1. Thus, our problem has
two solutions

u+
1 = 3√

2
π cos 3πt

2 , u−
1 = − 3√

2
π cos 3πt

2 .

Thus, the optimal control problems with fixed and free final states considered in
Examples 14.1 and 14.3 have similar properties27.
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14.2.2 System with constraints on control values

In the previous examples there were no restrictions on the control values, as a result
of which these problems could be solved using the calculus of variations. Let us now
consider a problem with explicit restrictions on control in a free final state.

Example 14.4 The system characterized by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The optimal control problem is to find a function u = u(t) from the set

U =
{
u

∣∣ |u(t)| ≤ 1, 0 < t < 1
}

under the isoperimetric condition

1∫
0

x(t)dt = 0, (14.31)

that minimizes the functional

I(u) =
1∫

0

u(t)2dt.

To obtain a minimization problem, it is enough to change the sign in the definition
of the optimality criterion. Thus, we have Problem 13.1 with the following parameter
values:

f(t, u, x) = u, T = 1, x0 = 0, a(t) = –1, b(t) = 1,

g(t, u, x) = –u2, h(x) = 0, q(t, u, x) = x.

Define the function
H(t, u, x, p, λ) = pu+ λx+ u2

and the adjoint system

p′(t) = −λ, t ∈ (0, 1); p(1) = 0.

The control is determined from the condition for the maximum of the function H
on a given set. Note that its unique stationary point u = –p provides the minimum of
this function due to the positivity of its second derivative. Consequently, the solution
to the optimality condition is achieved on the boundary of the set of admissible
controls. Find the corresponding boundary values

H|u=−1 = –p+ λx+ 1/2, H|u=1 = p+ λx+ 1/2.

We get

u(t) =
{

−1, if p(t) < 0,
1, if p(t) > 0.
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The solution to the adjoint system is p(t) = λ(1–t). Considering that t takes
values from the unit interval, we conclude that the function p is of constant sign.
For λ > 0, the function p is positive everywhere, which means u(t) = 1. Then
x(t) = t, and therefore condition (14.31) is violated. For λ < 0, the function p is
negative everywhere, which means u(t) = –1. Then x(t) = –t, and therefore condition
(14.31) is again not satisfied. There remains the case λ = 0, in which p(t) = 0. Then
the function H takes the same value on both boundaries of the set of admissible
controls. Consequently, the control at each point can equally take on the values 1
and –1. However, in this case equality (14.31) must certainly be satisfied. Let us try
to determine under what conditions this is possible.

Let us note, first of all, that both the original formulation of the problem and
the system of optimality conditions are again invariant with respect to a change of
sign. Thus, if the function u satisfies the optimality conditions, then the function –u
also has similar properties. It was noted earlier that control cannot take the values 1
or –1 everywhere, i.e., optimality conditions can only be satisfied by a discontinuous
function.

Let us assume that there is a single control discontinuity point ξ ∈ (0, 1). Suppose
u(t) = 1 for t < ξ and u(t) = –1 for t > ξ. Then from the equation of state, we find
x(t) = t for t < ξ and x(t) = 2ξ–t for t > ξ. Find the integral

1∫
0

x(t)dt =
ξ∫

0

tdt +
1∫

ξ

(2ξ − t)dt = −ξ2 + 2ξ − 1
2 .

Equating this value to zero, we establish a quadratic equation. It has two solutions
ξ = 1 +

√
2/2 and ξ = 1 −

√
2/2. The first of them lies outside the interval (0,1).

Thus, there is a single control discontinuity point at which the corresponding state
function satisfies the isoperimetric condition. Thus, a control equal to 1 for t less than
1−

√
2/2 and –1 for t greater than this value is a solution to the system of optimality

conditions. Naturally, a function that differs in sign from the specified control will
also be a solution to the optimality conditions.

Let now there be two control discontinuity points ξ and η such that 0 < ξ < η < 1.
Suppose that the control is equal to 1 on the intervals (0, ξ) and (η, 1) and equal to
–1 on the interval (ξ, η). The corresponding state function is equal to t on the interval
(0, ξ), 2ξ–t on (ξ, η) and 2ξ–2η + t on (η, 1). We calculate the integral

1∫
0

x(t)dt =
ξ∫

0

tdt +
η∫

ξ

(2ξ − t)dt +
1∫

η

(2ξ − 2η + t)dt = ξ2 + η2 + 2ξ − 2η + 1
2 .

We equate the result to zero in accordance with equality (14.31) and consider the
resulting formula as an equation for η. It has two solutions

η1 = 1 +
√

1/2 − ξ2 − 2ξ, η2 = 1 −
√

1/2 − ξ2 − 2ξ.
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These equalities make sense if ξ2 + 2ξ–1/2 < 0, which, due to the positivity of ξ,
holds when ξ <

√
3/2 − 1. Here, point η1 does not belong to the interval (0,1). Thus,

there is an infinite and not even countable set of pairs of points ξ and η at which
the control has a discontinuity (switching from value 1 to –1 or vice versa) so that
condition (14.31) is satisfied. Each such pair corresponds to two controls that differ
in signs and satisfy the system of optimality conditions.

It is easy to see that there is also an infinite number of solutions with three, four,
etc. break-points (see in particular Figure 14.3). The question arises: which of these
solutions to optimality conditions are optimal? Obviously, for any control from the
set U , the value of the maximized functional does not exceed 1, and the equality
I(u) = 1 is possible only in the case when |u(t)| = 1 for all28 t. Thus, the control
can only take on the values 1 or –1. However, in this case the isoperimetric condition
(14.31) must be satisfied. All solutions to optimality conditions have precisely these
properties. Thus, all solutions of the maximum principle are optimal, i.e., the problem
under consideration has an infinite and not even countable set of solutions, and the
optimality condition is necessary and sufficient29.

Figure 14.3 Optimal controls and states for Example 14.3.

14.2.3 Existence of optimal control for Example 14.2

We return to Example 14.2. It is about minimizing functional

I(u) =
1∫

0

u2dt

on a set of controls that guarantee the fulfillment of the condition
1∫

0

x4dt = 1,
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where x satisfies the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Justification of the solvability of this problem encounters significant difficulties due
to the rather difficult structure of the set of admissible controls.

Let us define functional spaces that allow us to write the problem statement in
a more concise form. The space L4(0, 1) is the set of functions x = x(t) that are
Lebesgue integrable with the fourth degree30 on the interval (0,1), i.e., satisfying the
condition

1∫
0

x(t)4dt < ∞.

Sobolev space H1
0 (0, 1)31 is a set of functions x = x(t), equal to zero at points t = 0

and t = 1 and square-integrable along with its first generalized derivative on the
interval (0,1), i.e., satisfying the inequalities

1∫
0

x(t)2dt < ∞,

1∫
0

x′(t)2dt < ∞.

The space L4(0, 1) is Banach32 with the norm

∥x∥4 = 4

√√√√√ 1∫
0

x(t)4dt,

and the space H1
0 (0, 1) is Hilbert with the norm

∥x∥ =

√√√√√ 1∫
0

x′(t)2dt.

The sequence {xk} is weakly convergent to an element x in the space H1
0 (0, 1) if we

have
1∫

0

x′
k(t)λ′(t)dt →

1∫
0

x′(t)λ′(t)dt ∀λ ∈ H1
0 (0, 1).

Define the space X = H1
0 (0, 1), the set

V =
{
x ∈ X

∣∣∣ ∥x∥4 = 1
}

and the functional
J(x) = ∥x∥2.

Then Example 14.2 reduces to the problem of minimizing the functional J on a subset
V of the space X. In this formulation, the proof of the existence of a solution can be
carried out much simpler.
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Since the functional J is bounded below (non-negative), its infimum exists on the
set V . This means that there is a sequence {xk} from this set such that J(xk) →
inf J(V ). If the sequence {xk} turns out to be unbounded, i.e., for k → ∞ we have
∥xk∥ → ∞, then from the definition of the minimized functional it would follow that
J(xk) → ∞, which contradicts the statement that the sequence {xk} is minimizing.
Thus, this sequence is limited. Using the Banach–Alaoglu theorem, we select from
it a subsequence, which for simplicity, we also denote by {xk}, such that xk → x
converges weakly in X.

In the theory of Sobolev spaces, the Rellich–Kondrashov theorem33 is known,
according to which for xk → x weakly in X, xk → x converges strongly in L4(0, 1),
and therefore ∥xk–x∥4 → 0. Consider the difference

1∫
0

xk(t)4dt −
1∫

0

x(t)4dt =
1∫

0

[∣∣xk(t)
∣∣2 −

∣∣x(t)
∣∣2][∣∣xk(t)

∣∣2 +
∣∣x(t)

∣∣2]
dt.

Obviously, if a function belongs to the space L4(0, 1), then its square is an element
of the space L2(0, 1). Using Schwarz inequality, we get

∣∣∣ 1∫
0

xk(t)4dt −
1∫

0

x(t)4dt
∣∣∣ ≤

∥∥x2
k − x2∥∥

2
∥∥x2

k + x2∥∥
2. (14.32)

By the triangle inequality34, the norm of the sum of elements does not exceed
the sum of their norms. Then we can estimate the second factor on the right side of
inequality (14.32). We have

∥∥x2
k + x2∥∥

2 ≤
∥∥x2

k

∥∥
2 +

∥∥x2∥∥
2 =

√√√√√ 1∫
0

(x2
k)2dt+

√√√√√ 1∫
0

(x2)2dt =
∥∥xk

∥∥2
4 +

∥∥x∥∥2
4.

Due to the convergence of xk → x in L4(0, 1), the sequence of norms {∥xk∥4} is
bounded. Then the last inequality implies the existence of a positive constant c1 such
that the estimate holds ∥∥x2

k + x2∥∥
2 ≤ c1.

We have

∥∥x2
k − x2∥∥

2 =
1∫

0

(
x2

k − x2)2
dt =

1∫
0

(xk − x)2(xk + x)2dt ≤
∥∥(xk − x)2∥∥

2
∥∥(xk + x)2∥∥

2

because of Schwartz inequality. Determine∥∥(xk + x)2∥∥
2 =

∥∥xk + x
∥∥2

4 ≤
(
∥xk∥4 + ∥x∥4

)2
≤ c2,

where c2 is a positive constant.
Finally, from the equality∥∥(xk − x)2∥∥

2 =
∥∥xk − x

∥∥2
4
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and the convergence xk → x in L4(0, 1), it follows that the quantity on the left side
of the last equality tends to zero. As a result, inequality (14.32) implies convergence

1∫
0

∣∣xk(t)
∣∣4dt →

1∫
0

∣∣x(t)
∣∣4dt.

Then, passing to the limit in the equality ∥xk∥4 = 1, following from the inclusion
xk ∈ V , we conclude that x ∈ V .

Obviously, the functional to be minimized is convex and continuous35. Then it is
weakly lower semicontinuous (see Chapter 7), which means that the inequality

J(x) ≤ inf lim J(xk).

Since the sequence {xk} minimizes on the set V , the value on the right side of
the last inequality is inf J(V ). Thus, on the set V there is an element x that satisfies
the inequality J(x) ≤ inf J(V ). However, x is an element of the set V , which means
that the last relation can only be satisfied in the form of equality. Consequently, the
infimum of the functional J on the set V is achievable, which means that the optimal
control problem initially considered has a solution. It is characteristic that this result
was obtained in the absence of convexity of the set of admissible controls36, i.e., when
the conditions of Theorem 7.1, and Theorem 7.1 are violated.

Additional conclusions

Based on the analysis of optimal control problems for systems with isoperimetric
conditions presented in Appendix, the following additional conclusions can be drawn.

• The optimal control problem for a linear system with a quadratic optimality
criterion and an isoperimetric condition, considered in Example 14.3, like a sim-
ilar problem with a fixed final state, is reduced to a linear system of optimality
conditions and then to the corresponding Sturm–Liouville problem.

• The system of optimality conditions for Example 14.3 has an infinite set of
solutions, of which only two are optimal, which differ in sign.

• The optimality conditions for Example 14.4 are necessary and sufficient.

• The optimal control problem from Example 14.4 has an infinite and not even
countable set of solutions.

• All optimal controls for Example 14.4 are discontinuous.

• An infinite and even non-countable set of solutions to an optimization problem
can consist of non-singular controls.

• The existence of an optimal control can be proven even in the absence of con-
vexity of the set of admissible controls, if it can be established that it is weakly
closed.
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Notes

1. It is curious that the set of admissible control values for the problem under consideration
is certainly not convex, since the half-sum of two controls that differ in sign gives a function
identically equal to zero, for which the isoperimetric condition is not satisfied. The isoperimetric
condition characterizes the set of functions lying on the surface of the sphere. In particular,
the isoperimetric condition reduces to the equality ∥x∥2 = 1, where the norm is understood
in the sense of the space L2(0, 1). This corresponds to the equation of a spherical surface of
unit radius centered at zero; see [94], [106], [158]. Naturally, the center itself, i.e., a function
identically equal to zero lies outside the sphere.

2. This problem has a natural physical meaning. Let us consider the process of oscillation
of a spring on a time interval [0, T ]. This is characterized by the function x = x(t), which
is the deviation of the spring from the equilibrium position at a given time. Let us estimate
the kinetic and potential energies of the spring. Kinetic energy is determined by the formula
K = mv2/2, where m is the mass of the spring, and v is its velocity. Velocity is a derivative of
the x coordinate, i.e., v = x′. As a result, we obtain the formula K = mx′2/2. If the velocity
were constant, then the kinetic energy of the system at a given time interval would be equal to
the product of the value of K and the length of the time interval T . In the case of a variable
velocity, the total kinetic energy is obtained as a result of integrating the function K over time,
which gives the value

I = m

2

1∫
0

x′(t)2dt.

Potential energy is equal to the product of force and the distance traveled, i.e., U = F x.
In accordance with Hooke’s law, the elastic force acting on a spring is proportional to the
deviation of the spring from the state of equilibrium, i.e., F = kx, where k is the elasticity
coefficient. As a result, we obtain the formula U = kx2. If the position of the spring did not
change over time, then the potential energy of the spring at a given time interval would be
equal to the product UT . When the position of the spring changes, the time function U is
integrated over time. As a result, we get the value

J = k

1∫
0

x(t)2dt.

Let the initial and final states be given x(0) = x0, x(T ) = xT . One can set the problem of
finding a law of spring motion that, for a given value of potential energy J , ensures a minimum
of its kinetic energy. The example considered earlier is a special case of this problem with
T = 1, x0 = 0, xT = 0, k = 1, m = 1, and J = 2.

3. Due to the absence of explicit restrictions on control, the problem under consideration
can be studied using the calculus of variations; see [37], [61], [208]. To do this, it is enough to
replace the control in the optimality criterion with the function derivative.

4. For linear systems with a quadratic functional, we previously used the decoupling method;
see Chapters 3 and 8. In this case, the optimality conditions were reduced to the Riccati
equations. However, we cannot use a similar technique to study Example 14.1 due to the
presence of an isoperimetric condition. Note also that on the right side of equation (14.4) in
front of the unknown function x there is a coefficient λ, which itself is unknown. Thus, in
general, the system of optimality conditions is nonlinear, and it is linear only for a fixed value
of λ.

5. We have already used this technique many times, starting with Chapter 3.



Absence of sufficiency and uniqueness in problems with isoperimetric conditions ■ 429

6. Formula 14.6 is the Euler equation for the corresponding problem of the calculus of varia-
tions.

7. On the Sturm–Liouville problem; see, for example, [86]. It is closely related to the spectral
theory of operators, see Dunford and is widely used in the theory of equations of mathematical
physics; see [130].

8. The set of all eigenvalues forms the spectrum of the operator corresponding to a given
boundary value problem.

9. It is curious that the found family of functions is orthonormal in the space L2(0, 1), i.e.,
the scalar product of any two different functions of this family is equal to zero, and any two
identical functions are equal to one.

10. Note that the given problem, like many studied earlier, is invariant with respect to changes
in the sign (see Examples 3.1 and 9.1.). In particular, any two controls that differ only in sign
correspond to the same value of the minimized functional. From here (due to the inadmissibility
of a control that is identically equal to zero), it immediately follows that the problem cannot
have a unique solution.

11. This problem differs from the one considered in Example 14.1 only in the type of isoperi-
metric condition. In particular, in that problem the integral was not the fourth, but the second
power of the function x, and the integral itself was equal to two, although the latter circum-
stance, unlike the first, does not play a significant role.

12. The isoperimetric condition, as in the previous example, characterizes a spherical surface
of unit radius with a center at zero. However, in this case we consider the space L4(0, 1) of
functions that are integrable with the fourth power on the unit interval; see Appendix for more
details, where the study of this example will be continued. Naturally, we again encounter a
non-convex set of admissible controls.

13. A proof of the problem solvability for Example 14.2 is given in Appendix.

14. Optimality conditions here can also be obtained using the calculus of variations; see [37],
[61], [208].

15. The number ∥x∥ is the norm of x in the Sobolev space H1
0 (0, 1) of functions that are

square-integrable by Lebesgue together with their derivative on the interval (0,1) and take zero
values on the boundary of this interval; see Section 14.2.3 for more details.

16. [118] considers a more general boundary value problem for the case of a multidimensional
equation. In particular, instead of an ordinary second-order differential equation, the corre-
sponding equation of elliptic type is considered.

17. The trivial solution cannot be an optimal control, since it does not satisfy the isoperimetric
condition.

18. Naturally, this is true provided that optimal control exists. This fact will be established in
Appendix.

19. Let us denote by Y the set of non-trivial solutions to the boundary value problem. As we
already know, at least three transformations are defined on it, which carry out the transition
from one element of the set Y to another (see Figure 14.4):

A1y(t) = –y(t), A2y(t) = y(1–t), A3y(t) = –y(1–t), t ∈ (0, 1).
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We can also consider the identity transformation on Y , which we denote by A0. Obviously,

Figure 14.4 Possible asymmetric solutions to the problem (14.20) and (14.21).

the composition of transformations acting on the set Y also turns out to be a transformation
of the set Y into itself. In this regard, one would expect that by performing the composition
of the indicated transformations, we would be able to find new solutions to the problem.
By direct verification, you can make sure that the composition does not take the indicated
transformations beyond the class Y , i.e., is an operation (more precisely, a group operation)
on this set, see the table called the Cayley table; see Table 14.1.

TABLE 14.1 Cayley table.
A0 A1 A2 A3

A0 A0 A1 A2 A3
A1 A1 A0 A3 A2
A2 A2 A3 A0 A1
A3 A3 A2 A1 A0

Moreover, the set of transformations Y with the indicated composition forms an Abelian
group (the composition of transformations is associative, commutative, there is an identity
transformation, and each transformation is invertible; see [192]).

20. If the function y1 does not satisfy the symmetry conditions (14.24) or (14.25), then using
the previously defined transformations A2 and A3, two more new solutions to the boundary
value problem can be found.

21. As already noted, to construct solutions to equation (14.22), one can choose any value of
the parameter a. However, the fulfillment of the second boundary condition (14.23) can be
achieved only when a = 1/k, where k = 1, 2, .... It should be noted that we are not completely
sure that there are no other transformations that determine new solutions to the problem.

22. The results obtained also make it possible to establish the amazing properties of one
non-linear equation of parabolic type associated with equation (14.22). Let us consider the
non-linear heat equation

∂v

∂τ
= ∂2v

∂ξ2 + v3, ξ ∈ (0, 1), τ > 0

with boundary conditions
v(ξ, 0) = v0(ξ), ξ ∈ (0, 1),

v(0, τ) = 0, v(1, τ) = 0, τ > 0
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It is required to establish the behavior of this system with an unlimited increase in the param-
eter τ . Obviously, if at τ → ∞ the convergence v(ξ, τ) → y(ξ) takes place, then the function
y, which is the equilibrium position of the system under consideration, is a solution to the
differential equation y′′ + y3 = 0 with homogeneous boundary conditions. Thus, the equilib-
rium position for the equation under study turns out to be a solution to the boundary value
problem (14.20) and (14.21). Then, based on the above analysis, we can come to the following
conclusion that the considered non-stationary system under has an infinite number of equilib-
rium positions. The implementation of one or another equilibrium position is determined by
the choice of a specific value of the initial state of the system v0. Note also that the considered
non-stationary system can be used to practically find non-trivial solutions to problem (14.20)
and (14.21).

23. Naturally, we never found the function y1 itself, but only proved its existence with the
corresponding set of properties. To finally solve the problem, a practical solution to problem
(14.20) and (14.21) is necessary. Due to the non-linearity of the equation, this will require some
approximate method for solving boundary value problems for differential equations. However,
due to the significant ambiguity of the solution, a direct search for function y1 may be associated
with significant difficulties. Note also that we do not know whether the function y1 satisfies
the symmetry conditions (14.22) or (14.23), and therefore whether the studied optimization
problem has two or four solutions. This question can be answered after practically finding the
function y1. Strictly speaking, we are not even sure that we have found all the solutions to
the boundary value problem (14.20) and (14.21), and therefore the necessary condition for the
extremum (14.17). If there is at least one more such function, then using the above method
one can determine another infinite set of solutions to the existing boundary value problem.

24. Similar results can be obtained by replacing the fourth power in the isoperimetric condition
with an arbitrary odd power greater than two. Indeed, if in relation (14.13) instead of 4 an
arbitrary power 2m is given, where m is a natural number greater than one, then instead of
(14.15) we obtain the integro-differential equation

x′′ + x2m−1∥x∥2 = 0.

As a result of substitution y(t) = ∥x∥1/(m−1)x(t), the last formula is reduced to the non-linear
differential equation

y′′ + y2m−1 = 0,

possessing properties similar to those of the considered equation (14.20).

25. Optimal control problems with general constraints are considered; for example, in [5], [56],
[95], [140], [193].

26. Naturally, the presence or absence of a fixed final state does not in any way affect the
definition of the function H, and therefore, the form of the conjugate system and the maximum
condition.

27. In Example 14.3, as in Example 14.1, the problem statement is invariant with respect to
the change of control sign, and zero control is unacceptable due to the isoperimetric condition.
Naturally, if in Example 14.1 the final state is non-zero, then the first property is violated, and
the result may turn out to be qualitatively different.

28. More precisely, for almost everyone.

29. In Chapter 5, it was noted that the sufficiency of optimality conditions is guaranteed in the
case of non-negativity of the remainder term in the formula for the increment of the functional.
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In general, it is determined by the formula

η = η3 −
T∫

0

(η1 + η2)dt.

where η3 corresponds to the second-order term obtained as a result of transforming the part of
the optimality criterion characterizing the state of the system at the final moment of time, η1 is
associated with the second-order terms when expanding the value H(t, u, x+∆x, p) into a series
in terms of ∆x, and η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x. For the example under consideration,
there is no terminal term, and the function H is defined by the formula H = pu + λx + u2.
Then η = 0, as a result of which the established sufficiency of optimality conditions is quite
natural.

30. In general, the space Lp(Ω) is the set of Lebesgue measurable functions in the domain Ω
of arbitrary dimension and integrable there with degree p ≥ 1, i.e., such for which the Lebesgue
integral of the modulus of a function raised to the power p is bounded. About spaces Lp(Ω);
see, for example, [94], [106], [158].

31. In general, Sobolev space W m
p (Ω) is the set of functions belonging to the space Lp(Ω)

together with their generalized derivatives up to order m. Space W 0
p (Ω) is identified with

Lp(Ω). For p = 2, the Sobolev space is Hilbert and is denoted by Hm(Ω). The space H1
0 (0, 1)

is a subspace of functions from H1(Ω), that take zero values on the boundary of the region Ω.
On Sobolev spaces; see [1], [181].

32. Banach spaces are complete normed spaces; see [94], [106], [158]. All spaces Lp(Ω) are
Banach, but only L2(Ω) is Hilbert.

33. According to the Rellich–Kondrashov theorem, in the case of a bounded domain Ω, from
the weak convergence of xk → x in the Sobolev space W m

p (Ω) follows its strong convergence
in the space W l

q(Ω) where 1 < p < ∞, 1 < q < ∞, n(1/p–1/q) < (m–l), n is the dimension
of the set Ω. In the our case Ω = (0, 1), n = 1, p = 2, m = 1, q = 4, l = 0. About the
Rellich–Kondrashov theorem; see, for example, [1].

34. The triangle inequality is included in the definition of norm; see [94], [106], [158].

35. The convexity and continuity of the integral of the square of a function has been used many
times before. The presence under the integral not of the function itself, but of its derivative
does not change the properties of the functional, since the differentiation operator is linear.

36. In fact, the convexity condition for the set of admissible controls in the existence theorems
from Chapter 7 was used solely to justify the weak closedness of this set. If this property can
be established in the absence of its convexity, then the solvability of the problem can also be
established.



C H A P T E R 15

Different counterexamples
for optimization problems
with isoperimetric conditions

In the previous two chapters, problems of optimal control of systems with isoperimetric
conditions were considered. In the first of them, general theoretical results were described,
and in the second one we analyzed examples of problems with violation of the uniqueness
of optimal control and the sufficiency of optimality conditions. This chapter provides ex-
amples of similar problems, both with free and fixed final states, for which other effects
are implemented. We have previously encountered them in previous parts of the book. The
Lecture describes unsolvable problems, problems with singular controls, and ill-posed prob-
lems of the indicated class. Appendix discusses some additional properties, in particular,
bifurcation of extremals and violation of Bellman optimality principle.

15.1 LECTURE

In Chapter 13, optimality conditions were given for optimal control problems in the presence
of isoperimetric conditions. The effectiveness of research methods was illustrated with rele-
vant examples. In Chapter 14, examples of similar problems were considered in the absence
of sufficiency of optimality conditions and uniqueness of optimal control. However, when
studying extremal problems of other classes, we previously encountered other difficulties.
This lecture gives examples of problems of the specified class, for which there is no optimal
control, there are singular controls and the effects of ill-posedness of problems appear.

15.1.1 Insolvability of a problem with a free final state

Consider the following problem.
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Example 15.1 Find a function u = u(t), which minimizes the functional

I(u) =
1∫

0

[x(t)2 − u(t)2]dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

satisfying the isoperimetric condition

1∫
0

u(t)2dt = 1, (15.1)

where the function x is determined by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (15.2)

This optimal control problem differs from the one considered in Example 7.1 only
by the presence of the additional isoperimetric condition (15.1). Let us estimate from
below the values of the functional, as was done in Chapter 7. Taking into account
the definition of the set U , we obtain the inequality

I = 1
2

1∫
0

x2dt− 1
2

1∫
0

u2dt ≥ 1
2 .

Consider the control sequence determined by the equalities1

uk(t) =
{

1, if 2j
2k ≤ t < 2j+1

2k ,

−1, if 2j+1
2k ≤ t < 2j+2

2k ,
(15.3)

where j = 0, 1, ..., k–1. All its elements belong to the set U and satisfy the equality
(15.1). The corresponding sequence of the solutions to problem (15.2) takes the form2

xk(t) =
{

t− 2j
2k , if 2j

2k ≤ t < 2j+1
2k ,

2j+2
2k − t, if 2j+1

2k ≤ t < 2j+2
2k ,

(15.4)

where j = 0, 1, ..., k–1. Obviously, we have the inequality

0 ≤ xk(t) ≤ 1/2k, t ∈ (0, 1), k = 1, 2, ... . (15.5)

Then for all t, we have the convergence xk(t) → 0 as k → ∞. Now we get I(uk) →
–1/2. Thus, the 1/2 point is the lower bound of the functional, and the sequence {uk}
is minimizing.

Let us now assume that on some admissible control u the lower bound of the
functional is achieved. This is only possible at x = 0. According to equation (15.2),
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this means that u = 0. However, this control is not admissible, since it does not
satisfy condition (15.1). Thus, the infimum of the functional on the subset of controls
from U that satisfy the isoperimetric condition is not achieved. Thus, the optimal
control problem under consideration has no solution3.

Previously, we have already encountered a situation where, in the absence of
convexity of the functional, a solution to the problem of its minimization does not
exist4. Let us now give an example of a problem with a convex functional for which
optimal control also does not exist.

Example 15.2 Find a function u = u(t), which minimizes the functional

I(u) =
1∫

0

x(t)2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

satisfying the isoperimetric condition

1∫
0

u(t)2dt = 1,

where the function x is determined by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

This problem differs from the previous one only in the absence of a control square
in the optimality criterion, as a result of which this functional turns out to be convex5.

Note that the functional takes only non-negative values. Consider the same se-
quence (15.3) as in the previous example. Obviously, all its elements are admissible.
The corresponding sequence of states {xk} is again characterized by equalities (15.4),
which means that inequalities (15.5) and the convergence of xk(t) → 0 as k → ∞ are
still satisfied. It follows that I(uk) → 0. Thus, the point 0 is the lower bound of the
functional, and the sequence {uk} is minimizing.

Let us now assume that on some admissible control u the lower bound of the
functional is achieved. This is only possible at x = 0, which corresponds to control
u = 0. However, this control is not admissible, since it contradicts the isoperimetric
condition. Thus, the lower bound of the functional on the set of admissible controls
is not achieved, i.e., the considered optimal control problem has no solution6.

15.1.2 Insolvability of problem with a fixed final state

We have given examples of optimal control problems for systems with an isoperimetric
condition in the presence of restrictions on control values with a free final state. Now
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we consider the case when, on the contrary, there are no restrictions on the control
values, and the final state of the system is fixed. Example 14.1 considered an optimal
control problem with an optimality criterion that is quadratic with respect to the
control and an isoperimetric condition that is quadratic with respect to the system
state function. Let us consider the opposite situation.

Example 15.3 We have the following system

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (15.6)

The optimal control problem is to find a function u = u(t) that minimizes the func-
tional

I(u) =
1∫

0

x(t)2dt

under the final condition
x(1) = 0 (15.7)

and the isoperimetric condition

1∫
0

u(t)2dt = 1. (15.8)

Determine the function

H(t, u, x, p, λ) = pu+ λ(u2–1) – x2.

Then the adjoint equation takes the form

p′(t) = 2x(t), t ∈ (0, 1). (15.9)

Equaling the derivative of H with respect to the control to zero, we get

u(t) = p(t)/2λ. (15.10)

However, this value corresponds to the maximum of this function only for negative
values of the parameter λ. For its other values, the maximum condition has no solu-
tion.

The resulting system of optimality conditions differs from the similar system
(14.1)–(14.5) for Example 14.1 in that the parameter λ is present not in the adjoint
equation, but in the control formula. However, the analysis of optimality conditions
in this case is carried out in the same way as in Example 14.1. To eliminate the
functions u and p, we substitute the control from formula (15.10) into the equation
of state. Then after differentiation, taking into account the adjoint equation, we find

x′′(t) = u′(t) = λ−1x(t).
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Thus, the function x satisfies the second order differential equation

x′′(t) − λ−1x(t) = 0, t ∈ (0, 1). (15.11)

with boundary conditions
x(0) = 0, x(1) = 0. (15.12)

The boundary value problem (15.11) and (15.12) includes the unknown parameter
λ and is supplemented by the isoperimetric condition (15.8). Note that the trivial
solution of the boundary value problem in the form of equality (15.6) corresponds to
a zero control, which does not satisfy formula (15.8). Thus, only a non-trivial solution
makes sense, which means we again obtain the Sturm–Liouville problem. Equation
(15.11) differs from (14.6) only in that instead of the value λ, there is the value −λ−1.

Since the solution of optimality conditions is possible only for negative λ, the
general solution to equation (15.11) has the form

x(t) = c1 sin t√
−λ

+ c2 cos t√
−λ

,

where c1, c2 are arbitrary constants. Using the first equality (15.12), we get x(0) =
c2 = 0. From the second equality (15.12), it follows

x(1) = c1 sin 1√
−λ

= 0.

The constant c1 is not equal to zero7, so we get

λ = λk = − 1
(kπ)2 , k = 1, 2, ... . (15.13)

Thus, there exists an infinite set of Lagrange multipliers λ such that the boundary
problem (15.11) and (15.12) has a non-zero solution8

xk(t) = ck sin kπt, k = 1, 2, ... ,

where ck is a constant. Find the corresponding control

uk(t) = kπck cos kπt, k = 1, 2, ... .

This function must satisfy the isoperimetric condition (15.8). Calculate the inte-
gral

1∫
0

u2
kdt = (kπck)2

1∫
0

cos2 kπt = 1.

Now we obtain
ck = ±

√
2

kπ
.

Thus, the system (15.8), (15.11), and (15.12) has an infinite set of solutions

x+
k (t) =

√
2

kπ
sin kπt, x−

k (t) = −
√

2
kπ

sin kπt, k = 1, 2, ... .
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The corresponding controls are

u+
k (t) =

√
2 cos kπt, u−

k (t) = −
√

2 cos kπt, k = 1, 2, ... .

Calculate the value of the optimality criterion for choosing the best of them

I(u+
k ) = I(u−

k ) = 2
k2π2

1∫
0

sin2 kπtdt = 1
k2π2 , k = 1, 2, ... .

Obviously, the sequences {I(u+
k )} and {I(u−

k )} are decreasing and tend to zero. By
definition, the functional to be minimized is non-negative. Note that {u+

k } and {u−
k }

are sequences of admissible controls, since for any of their elements both finite and
isoperimetric conditions are satisfied. Thus, they turn out to be minimizing sequences.
However, the optimality criterion can vanish only at x = 0. This state function is a
solution to problem (15.6) under control u = 0, which does not satisfy the isoperi-
metric condition (15.8). Therefore, the minimum of the functional is not achieved on
the entire set of admissible controls9.

Thus, the considered optimal control problem has no solution. The maximum
principle here is not a sufficient condition for optimality. The system of optimality
conditions has an infinite set of solutions, which, surprisingly, form two minimizing
sequences for the studied problem10

15.1.3 Singular controls

The following examples are related to the degeneration of the maximum principle for
optimal control problems with isoperimetric constraints.

Example 15.4 The optimization control problem is to find a function u = u(t),
which minimizes the functional11

I(u) =
1∫

0

x(t)2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

satisfying the isoperimetric condition

1∫
0

u(t)dt = 0,

where the function x is the solution to the problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.
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Example 15.5 Consider the maximization problem for the functional from Example
15.4 on the same set.

The function H for both problem is determined by the same formula

H = pu+ λu – x2/2,

where p is the solution to the problem

p′(t) = x(t), t ∈ (0, 1); p(1) = 0.

Here, degeneration of the maximum principle is possible if the equality p + λ = 0 is
satisfied, which implies p(t) = –λ. Thus, the function p is constant, which means its
derivative is zero. Then from the adjoint equation, we obtain that x = 0. Substituting
this value into the state equation, we conclude that u = 0. Therefore, in Examples
15.4 and 15.5 there is a unique singular control that is zero.

Now we check the validity of Kelley condition. Finding the derivative

∂H

∂u
= p(t) + λ.

Differentiate this equality by t using the adjoint equation. We obtain

d

dt

∂H

∂u
= p′(t) = 2x(t).

After the next differentiation with using the state equation, we get

d2

dt2
∂H

∂u
= 2x′(t) = 2u(t).

Now we find
∂

∂u

d2

dt2
∂H

∂u
= 2.

For Example 15.4 (minimization problem), the term on the left side of the resulting
equality must not be negative, and for Example 15.5 (maximization problem), it must
not be positive. Thus, the Kelley condition is satisfied for the first example, but not
for the second one. Therefore, the found singular control u = 0 for Example 15.4 may
be optimal, but for Example 15.5, it cannot be.

Obviously, the minimized functional is non-negative, and equality to zero is pos-
sible only for x = 0. From the state equation, it follows that this is implemented for
control u = 0. It belongs to the set U and satisfies the isoperimetric condition, which
means it is admissible. Therefore, it is the unique optimal control for Example 15.4
and cannot be such for Example 15.5.

In the examples considered, singular control was the only one. Here is an example
of a problem with many singular controls.
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Example 15.6 Consider the system, which is described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

The control u = u(t) is chosen from the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

with isoperimetric condition
1∫

0

(ut− x)dt = 0.

The optimal control problem is to minimize the functional

I(u) =
1∫

0

(x3

3 − x2t

2
)
dt.

Determine the function

H = pu + λ(ut− x) − x3

3 + x2t

2 ,

where p is the solution of the adjoint system

p′(t) = x(t)2 − tx(t) + λ, t ∈ (0, 1); p(1) = 0.

Based on the form of the function H, we conclude that the degeneration of the
maximum principle is possible only for p(t) = –λt. This implies the equality p′(t) =
–λ. Comparing the resulting equality with the adjoint equation, we conclude that
x(t)2–tx(t) + 2λ = 0. This is possible at least for λ = 0 in two cases: for x(t) = 0 and
for x(t) = t. The resulting states of the system are implemented, respectively, under
the controls u(t) = 0 and u(t) = 1. Obviously, both functions found belong to the set
U and ensure the fulfillment of the isoperimetric condition12.

Thus, for our example, there are at least two singular controls13. We check the
validity of Kelley condition for them. The derivative of the function H with respect
to control is equal to p+ λt. Taking into account the form of the adjoint system, we
find

d

dt

∂H

∂u
= x(t)2 − tx(t).

Using the state equation, we get

d2

dt2
∂H

∂u
= (2x− t)x′ − x = (2x− t)u− x.

Finally, we calculate
∂

∂u

d2

dt2
∂H

∂u
= 2x− t.
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Let us establish the sign of this value on singular controls. When u = 0, we have
x = 0, which means 2x–t = –t, which is negative. Thus, the Kelley condition is not
satisfied, which means that the singular control u = 0 is not optimal. When u = 1,
we have x(t) = t, which means 2x–t = t, which is positive. Thus, the singular control
u = 1 can be optimal. Therefore, the optimality condition in this case is necessary,
but not sufficient14.

By analogy with Example 15.6, we can consider optimal control problems in the
presence of an isoperimetric condition with an arbitrary number of singular controls15.

15.1.4 Ill-posed problems

Chapter 6 provided examples of ill-posed optimal control problems in the absence
of isoperimetric conditions. Similar problems occur in the presence of similar restric-
tions. Let us return, in particular, to Example 15.4, which considers the problem of
minimizing the functional

I(u) = 1
2

1∫
0

x2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
,

satisfying the isoperimetric condition

1∫
0

udt = 0,

where the function x is described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Obviously, the minimized functional is non-negative, and equality to zero here is
possible only for x = 0. According to the given equation, this is possible for control
identically equal to zero. The latter is an element of the set U and satisfies the
isoperimetric condition. Thus, this optimal control problem has a unique solution
u = 0. The corresponding minimum of the functional is equal to zero.

Consider the sequence

uk(t) = cos kπt, k = 1, 2, ... .

It belongs to the set U , besides the following equality holds

1∫
0

uk(t)dt =
1∫

0

cos kπtdt = 1
kπ

sin kπt
∣∣∣1
0

= 0, k = 1, 2, ... .
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Thus, the isoperimetric condition is also satisfied. Therefore, the considered sequence
of controls is admissible. The corresponding states of the system are determined by
the formula

xk(t) = sin kπt
kπ

, k = 1, 2, ... .

It follows that xk(t) → 0 at k → ∞ for any t. Thus, the convergence I(uk) → 0
takes place. As a result, we conclude that the sequence {uk} is minimizing. However,
it does not converge to optimal control in any reasonable function space. Thus, the
considered optimal control problem is not Tikhonov well-posed.

Consider now the following example16.

Example 15.7 The optimization control problem is to find the function u = u(t),
which minimize the functional

Ik =
1∫

0

(x− yk)2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

satisfying the isoperimetric condition
1∫

0

udt = 0,

where yk(t) = (kπ)–1 sin kπt, k is a numerical parameter (natural number), and the
function x is described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Obviously, the optimality criterion is not negative in this case. Moreover, its
equality to zero is possible only for x(t) = yk(t), which corresponds to the control

uk(t) = y′
k(t) = cos kπt.

This function belongs to the set U and satisfies the isoperimetric condition, which
means it is the unique optimal control.

If k → ∞, then the considered optimal control problem is reduced to the previous
example, which means it has a unique solution u∞(t) = 0. However, the sequence {uk}
does not converge to u∞ in any natural function space. Consequently, the problem
under study is Hadamard ill-posed17.

RESULTS

Here is a list of questions based on the results of the lecture, the main conclusions on this
topic, as well as problems arising from this, partially solved in Appendix.
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Questions

It is required to answer questions related to the previously given lecture material.

1. What does the system of optimality conditions look like for Example 15.1?

2. What is the infimum of the functional on the set of admissible controls in
Example 15.1?

3. What happens to the sequence {uk} from Example 15.1 when k → ∞?

4. On what basis is it concluded that there is no optimal control for Example
15.1?

5. What made the optimal control problem in Example 15.1 insolvable?

6. How to prove that the set of admissible controls is closed for Example 15.1?

7. Is the set of admissible controls from Example 15.1 convex?

8. What properties differ between the problems from Example 15.1 and 15.2?

9. What does the system of optimality conditions look like for Example 15.2?

10. Is it possible to establish the sufficiency of the optimality conditions for Example
15.2 in accordance with Theorem 5.2?

11. How is Example 15.3 different from previous examples?

12. What is the difference between Example 15.3 and the fairly close Example 14.1?

13. What happens to the sequences {x+
k } and {x−

k } from Example 15.3 at k → ∞?

14. What happens to the corresponding control sequences at k → ∞?

15. What properties do the solutions to the optimality conditions for Example 15.3
have?

16. How can an approximate solution be found for Example 15.3?

17. Why is the optimal control for Example 15.4 necessarily singular?

18. Is it possible to establish the sufficiency of the optimality conditions for Example
15.4 in accordance with Theorem 5.2?

19. Can we use Theorem 5.1 to prove the uniqueness of the optimal control for
Example 15.4?

20. What is the fundamental difference between the properties of Example 15.4
and 15.5, and what causes it?

21. Based on this analysis, can we conclude that there are only two singular controls
for Example 15.6?
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22. Based on the analysis, can we conclude that for Example 15.6 the solution to
the maximum principle is necessarily a singular control?

23. What happens to the sequence {uk} from Example 15.7 when k → ∞?

24. What happens to the sequence {xk} from Example 15.7 when k → ∞?

25. In what sense can the uk control from Example 15.7, for sufficiently large k, be
chosen as an approximate solution to the problem?

26. Is the set of feasible controls from Example 15.7 convex?

27. Is the minimized functional from Example 15.7 convex?

Conclusions

Based on the analysis, we come to the following conclusions.

• For optimal control problems with isoperimetric conditions, both with a free
and a fixed final state, there may be no optimal control.

• For optimal control problems with isoperimetric conditions, degeneration of
the maximum principle is possible, and the number of singular controls can be
arbitrary.

• The optimal control problem for Example 15.1 has no solution.

• The insolvability of the problem from Example 15.1 is due to the absence of
convexity of both the set of admissible controls and the optimality criterion.

• The optimal control problem for Example 15.2 has no solution.

• The insolvability of the problem in Example 15.2 is due to the absence of
convexity of the set of admissible controls, while the optimality criterion is
convex.

• There is an infinite set of solutions to the optimality conditions, for Example
15.3.

• The optimality conditions for Example 15.3 are not sufficient.

• The optimal control problem for Example 15.3 has no solution.

• The solutions to the optimality conditions for Example 15.3 form a minimizing
sequence.

• For optimal control problems with isoperimetric conditions, degeneration of
the maximum principle is possible, and the number of singular controls can be
arbitrary.
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• Singular controls in problems with isoperimetric conditions can be either op-
timal or non-optimal, and the Kelley condition can be used to identify non-
optimal singular controls.

• The optimal control problem for Example 15.4 has a unique solution.

• The unique solution to the maximum principle for Example 15.4 is singular
control.

• The singular control for Example 15.4 satisfies the Kelley condition.

• The singular control for Example 15.4 is optimal.

• The maximum principle for Example 15.4 is a sufficient condition for optimality.

• There is only one singular control for Example 15.5.

• The singular control for Example 15.5 does not satisfy the Kelley condition.

• The singular controls for Example 15.5 are not optimal.

• The optimality condition for Example 15.5 is not sufficient.

• For the optimal control problem for Example 15.6, there are at least two singular
controls.

• One of the singular controls for Example 15.6 satisfies the Kelley condition, but
the other does not.

• The optimality condition for Example 15.6 is not sufficient.

• Optimal control problems with isoperimetric conditions may be Tikhonov and
Hadamard ill-posed.

• The optimal control problem for Example 15.4 is Tikhonov ill-posed.

• The optimal control problem for Example 15.7 has a unique solution.

• The optimal control problem for Example 15.7 is Hadamard ill-posed.

Problems

Based on the results obtained above, we come to the following problems.

1. Infinity of the set of singular controls. In the examples discussed in the
Lecture, the set of singular controls was finite. However, we have previously
encountered optimal control problems in which this set is infinite. It would be
interesting to give an example of problems with isoperimetric conditions with an
infinite number of singular controls. Such examples are available in Appendix.
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2. Singular control for problems with fixed final state. Previously, an exam-
ple of optimal control problems with degeneracy of the maximum principle was
given in the case when there is either only an isoperimetric condition, or only a
fixed final state, or both of these conditions are absent. It would be interesting
to consider problems with singular controls when both of these conditions are
present simultaneously. Such an example is given in Appendix.

3. Ill-posed problem with isoperimetric conditions and fixed final state.
Previously, various ill-posed optimal control problems were considered. In the
case when there is either only an isoperimetric condition, or only a fixed final
state, or both of these conditions are absent. It would be interesting to con-
sider problems with singular controls when both of these conditions are present
simultaneously. Such an example is given in Appendix.

4. Bifurcation of extremals in optimal control problems with isoperi-
metric conditions. Chapter 12 gave examples of optimal control problems
with extremal bifurcation. I would like to establish a similar effect for problems
with isoperimetric conditions. Examples of such tasks are given in Appendix.

5. Bellman principle in optimal control problems with isoperimetric
conditions. In the previous parts of the book, examples of optimal control
problems were given in which the Bellman principle was fulfilled. It would be
interesting to check the applicability of Bellman principle for problems with
isoperimetric conditions.

15.2 APPENDIX

Here are examples of optimal control problems with isoperimetric conditions with some
additional features. In particular, Section 15.2.1 considers problems of the indicated class
with an infinite set of singular controls. Sections 15.2.2 and 15.2.3 describe, respectively,
problems with singular controls and ill-posed problems with a fixed final state. Section 15.2.4
provides an example of the considered class of problems with bifurcation of extremals, and
in Section 15.2.5, we give an example with a violation of the Bellman optimality principle.

15.2.1 Problems with an infinite set of singular controls

The Lecture considered optimal control problems in the presence of an isoperimetric
condition with degeneracy of the maximum principle. Moreover, the set of singular
control was finite. However, in Chapter 6 examples of problems with an infinite set of
singular controls were given. Let us make sure that such a situation is also possible
for problems with isoperimetric constraints.

Example 15.8 The optimal control problem is to find a function u = u(t) that
minimizes the functional

I(u) =
1∫

0

x(t)u(t)2dt



Different counterexamples for optimization problems with isoperimetric conditions ■ 447

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}

satisfying the isoperimetric condition

1/2∫
0

u(t)dt = 0, (15.14)

where the function x satisfies the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0. (15.15)

Define the function
H = pu+ λφu – xu,

where φ(t) = 1 for t < 1/2 and φ(t) = 0 for t > 1/2. The function p is here the
solution of the adjoint system

p′(t) = u(t), t ∈ (0, 1); p(1) = 0. (15.16)

The function H is linear with respect to the control. Therefore, we can have two
different variants. Maybe we have the maximum on the boundary on the given set,
but it can be a singular control. For the first (regular) case, the control is determined
by the formula.

u(t) =
{

1, if p(t) − x(t) + λφ(t) > 0,
−1, if p(t) − x(t) + λφ(t) < 0. (15.17)

Solving problems (15.15) and (15.16), we find

p(t) − x(t) + λφ(t) = −
[ 1∫

t

u(τ)dτ +
t∫

0

u(τ)dτ
]

+ λφ(t) = −
1∫

0

u(τ)dτ + λφ(t).

The first term on the right side of the resulting equality does not depend on t,
and the second one is equal to λ for t < 1/2 and zero for t > 1/2. Then, in accordance
with formula (15.17), the control is either a constant, i.e., is identically equal to 1 or
–1, or has a discontinuity at the point t = 1/2, passing there from the value 1 to –1
or vice versa. Obviously, all four of these functions do not satisfy the isoperimetric
condition (15.14), and therefore cannot be solutions to the problem. Thus, if optimal
control for the considered problem exists, then it is certainly singular.

Singular control can be implemented only in the case when the control coefficient
in the definition of the function H is equal to zero. Then, comparing the obtained
result with condition (15.14), from the last equality, we deduce

−
1∫

1/2

u(τ)dτ = 0, t < 1/2; −
1∫

1/2

u(τ)dτ + λ = 0, t > 1/2.
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As a result, we conclude that λ = 0, and all admissible controls (i.e., belonging to
the set U and satisfying the isoperimetric condition) for which the equality

1∫
1/2

u(τ)dτ = 0. (15.18)

is true are singular. Naturally, there is an infinite and not even countable set of such
functions18.

Check the Kelley condition. Find the derivative

∂H

∂u
= p(t) − x(t) + λ.

After differentiation, we get

d

dt

∂H

∂u
= p′(t) − x′(t) = u− u = 0

because of equalities (15.15) and (15.16). It follows that for any singular control the
Kelley condition is realized (in the form of equality), which means that all of them
can be optimal, although, generally speaking, they will not necessarily be so.

To answer the question, which of the singular controls is optimal, we find the cor-
responding values of the optimality criterion. Taking into account the state equation
and the isoperimetric condition, we obtain

I =
1∫

0

xudt =
1∫

0

xx′dt = 1
2

1∫
0

d

dt
x2dt = x(1)2

2 = 1
2

[ 1∫
0

u(τ)dτ
]2

= 1
2

[ 1∫
1/2

u(τ)dτ
]2
.

It follows that for an arbitrary control the optimality criterion is non-negative, and
equality to zero is possible only on those controls that satisfy equality (15.18), and
therefore are singular. Thus, all singular controls turn out to be optimal, which means
that the problem has an infinite and not even countable set of solutions19. It is
characteristic that the optimality condition turns out to be necessary and sufficient.

In the considered example, the singular controls certainly turned out to be opti-
mal. A natural example of the non-optimality of singular controls is provided by the
problem of maximizing this functional20.

Example 15.9 It is necessary to maximize the functional from Example 15.8 on the
same set.

As already noted, the singular controls in minimization and maximization prob-
lems are the same. This property was established earlier for problems without an
isoperimetric condition. However, the degeneracy of the maximum principle is as-
sociated exclusively with the properties of the function H. In the presence of the
isoperimetric condition, this function is supplemented with one more term, which
does not change the situation. Therefore, the singular controls for Example 15.9 will
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be all functions from the set U defined in the previous example that satisfy the
isoperimetric condition (15.14). As was established in the previous chapter, they all
minimize the considered functional, which means they cannot maximize it. Thus, the
singular controls for Example 15.9 are not optimal.

It is also interesting to check the validity of Kelley condition for this example, in
which the corresponding value must (unlike the previous case) be non-positive, since
here we are looking for the maximum, not the minimum of the functional. Since the
function H for Examples 15.8 and 15.9 is the same, we can again obtain the relation
(15.18). It follows that for any singular control the Kelley condition are again satisfied
in the form of equality. However, this circumstance does not contradict the previously
established result about the non-optimality of singular controls21.

In the considered examples, the isoperimetric condition (15.14) is an integral of
the control over the first half of the interval (0,1) on which the system is considered.
The problem in which in equality (15.14) the integral is taken over any part of this
interval has similar properties. A special role is played by the case when the integral
over the entire given set is considered.

Example 15.10 We have the minimization problem from Example 15.8 with chang-
ing the isoperimetric condition (15.14) by the equality

1∫
0

u(τ)dτ = 0. (15.19)

Now we have H = pu + λu–xu. The maximum principle is degenerate if the
coefficient before the control is equal to zero. Thus, we obtain

p(t) − x(t) + λ = −
1∫

0

u(τ)dτ + λ = 0.

Using equality (15.19), we conclude λ = 0. Then any admissible control is singular.
By analogy with Example 15.8, we can determine that all these functions satisfy the
Kelley condition.

We know that the optimality criterion can be determined by the equality

I = 1
2

[ 1∫
0

u(τ)dτ
]2
.

Obviously, this integral vanishes for any control that satisfies condition (15.19). Thus,
all admissible controls turn out to be not only singular, but also optimal. Thus, this
optimal control problem is trivial, but has an infinite and even uncountable set of
solutions, and the maximum principle provides a necessary and sufficient condition
for optimality22.
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15.2.2 Singular controls for problems with a fixed final state

In all previously considered optimal control problems with isoperimetric conditions,
which allowed the degeneration of the maximum principle, there were no restrictions
on the final state of the system. However, it is also possible to consider systems with
a fixed final state in the presence of isoperimetric constraints.

Example 15.11 The optimization control problem is to find the function u = u(t),
which minimizes the functional

I(u) = 1
2

1∫
0

x(t)2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, 0 < t < 1
}
,

which transform the system described by the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0

to the final state
x(1) = 1/2 (15.20)

and guaranty the isoperimetric condition

1∫
0

x(t)tdt = 1/6. (15.21)

Define the function
H = pu+ λ(xt–1/6) – x2/2,

where p satisfies the adjoint equation

p′(t) = x(t) − λt, t ∈ (0, 1).

The degeneration of the maximum principle is possible p(t) = 0. We have the equality
x(t) = λt. Putting this result to the isoperimetric condition, we get

1∫
0

x(t)tdt = λ

1∫
0

t2dt = λ

3 = 1
6 .

Now we find λ = 1/2; so, x(t) = t/2. From the state equation, it follows u(t) = 1/2.
Check the Kelley condition. We find

∂H

∂u
= p(t).
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Determine the derivative
d

dt

∂H

∂u
= p′(t) = x(t) − t

2 .

After differentiation we get

d2

dt2
∂H

∂u
= x′(t) − 1

2 = u(t) − 1
2 .

Finally, we find
∂

∂u

d2

dt2
∂H

∂u
= 1.

Therefore, the singular control satisfies the Kelley condition; so, it can be optimal23.

15.2.3 Ill-posed problem with a fixed final state

Previously, an example of ill-posed optimal control problems was given, when there
was no isoperimetric condition, or fixation of the final state, or when none of these
restrictions were specified. Let us consider problems in which both of these restrictions
are present.

Example 15.12 The optimization control problem is to find the function u = u(t),
which minimizes the functional

I(u) = 1
2

1∫
0

x(t)2dt

on the subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, 0 < t < 1
}

satisfying the final condition
x(1) = 0 (15.22)

and isoperimetric condition24

1/2∫
0

u(t)dt = 0, (15.23)

where the function x is a solution of the Cauchy problem

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Obviously, the minimized functional is non-negative, and equality to zero here
is possible only for x = 0. For a given equation, this is possible only for a control
that is identically equal to zero. This is an element of the set U and guarantees the
fulfillment of both additional restrictions. Thus, this optimal control problem has a
unique solution u = 0. The corresponding minimum of the functional is equal to zero.
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Consider now the control sequence uk(t) = cos 2kπt, where k = 1, 2, ... . Calculate
the integral

1/2∫
0

uk(t)dt =
1/2∫
0

cos 2kπtdt = 1
2kπ sin 2kπt

∣∣∣1/2

0
= 0, k = 1, 2, ... .

Thus, the isoperimetric condition (15.23) is true. Calculate the state function

xk(t) =
t∫

0

cos 2kπtdt = sin 2kπt
2kπ .

Then xk(1) = 0, which means that condition (15.22) is also satisfied. Thus,
the considered control sequence is admissible. In addition, for all t the convergence
xk(t) → 0 takes place, which implies that I(uk) → 0. Thus, the sequence {uk} is
minimizing. However, it does not converge to optimal control, which means that this
problem is Tikhonov ill-posed.

Now we consider another class of well-posedness.

Example 15.13 The optimization control problem is to find the function u = u(t),
which minimizes the functional25

Ik(u) = 1
2

1∫
0

(x− yk)2dt,

where yk(t) = (2kπ)–1 sin 2kπt, k is a numerical parameter (natural number). The
functional is minimized on the such subset of functions

U =
{
u

∣∣ |u(t)| ≤ 1, 0 < t < 1
}

under the final condition
x(1) = 0

and isoperimetric condition
1/2∫
0

u(t)dt = 0,

where the function x is described by the equalities

x′(t) = u(t), t ∈ (0, 1); x(0) = 0.

Obviously, the optimality criterion is non-negative. Besides, it can be equal to
zero only for x(t) = yk(t), i.e., we have

uk(t) = yk(t) = cos 2kπt.

This function belongs to the set U and ensures that both additional conditions are
satisfied. Therefore, it is the unique optimal control.

For k → ∞, the considered optimal control problem is reduced to the previous
example, which means it has a unique solution u∞(t) = 0. However, the sequence
{uk} does not converge to u∞. Therefore, this problem is Hadamard ill-posed.
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15.2.4 Extremal bifurcation for problems with isoperimetric condition

We considered before optimization control problems with the extremal bifurcation;
see Chapter 12. This property is possible for the problems with isoperimetric condi-
tions too.

Example 15.14 The optimization control problem is to find the function u = u(t),
which minimizes the functional

I(u) =
π∫

0

[u2

2 − µ(1 − cosx)
]
dt

under the isoperimetric condition
π∫

0

u(t)dt = 0, (15.24)

where µ is a positive constant (problem parameter), and x is a solution to the problem

x′(t) = u(t), t ∈ (0, π); x(0) = 0.

This problem is quite close to the one discussed in Example 12.5. The unique
difference is that instead of the isoperimetric condition, the set of admissible controls
was characterized by the presence of a fixed final state x(π) = 0. However, from the
state equation it follows that

x(π) =
π∫

0

u(t)dt. (15.25)

It follows that the equality x(π) = 0 is equivalent to condition (15.24), which
means that Example 15.14 actually coincides with Example 12.5. In Chapter 12, it
was shown that for the latter there is a bifurcation of extremals, and the value µ = 1
is the corresponding bifurcation point. Thus, a similar effect is observed for Example
15.14 with the isoperimetric condition (15.24).

In Chapter 12, another example of a problem with bifurcation of extremals was
considered, which could also be reduced to an optimal control problem with an isoperi-
metric constraint.

Example 15.15 The optimization control problem is to find the function u = u(t),
which minimizes the functional

I(u) = 1
4

π∫
0

(
2u2 + νx4 − 2µx2)

dt

on the set of function satisfies the equality
π∫

0

u(t)dt = 0,
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where µ and ν are positive constants (problem parameters), and x is a solution to the
problem

x′(t) = u(t), t ∈ (0, π); x(0) = 0.

The above problem differs from the one considered in Example 12.6 only in that
instead of the isoperimetric condition, the set of admissible controls there was char-
acterized by the equality x(π) = 0. However, due to the coincidence of the equations
of state, in this case formula (15.25) is again valid, which means that Examples 12.6
and 15.15 are equivalent. Then, in accordance with the results from Chapter 12 for
Example 15.15, there is an infinite set of bifurcation points µk = k2, k = 1, 2, ..., and
for (k–1)2 < µ ≤ k2 the corresponding system of optimality conditions has exactly
2k–1 solutions, and for µ > k2 at least 2k + 1 solutions exist.

15.2.5 Applicability of the Bellman principle for problems with isoperimetric conditions

In the previous parts of the book, the Bellman optimality principle was considered,
according to which optimal control does not depend on the history of the system
and is determined by its state at a given moment. Thus, if u = u(t) is the optimal
control of the system on the time interval (0, T ), then for any point ξ of this interval
the same function26 is the optimal control of the system on the interval (ξ, T ), i.e.,
any finite part of the optimal control of the system is itself optimal. Let us check the
feasibility of Bellman principle for a fairly simple optimal control problem with an
isoperimetric condition

Example 15.16 Consider a system described by the Cauchy problem

x′(t) = u(t), t ∈ (ξ, 1); x(0) = 0,

where ξ < 1. The optimization control problem is to find the function u = u(t), which
minimize the functional I(u) = [x(1)]2 on the set of functions satisfying the equality

1∫
ξ

u(t)2dt = 1.

The isoperimetric condition can be transformed to the equality

1∫
ξ

[
u(t)2 − 1

1 − ξ

]
dt = 0.

Determine the function
H = up + λ

(
u2 − 1

1 − ξ

)
.

The function p here is a solution to the adjoint system

p′(t) = 0, t ∈ (0, π); p(1) = −2x(1).
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Equaling to zero the derivative of H with respect to the control, we find

u(t) = –p(t)/2λ.

The solution of the adjoint system is

p(t) = –2x(1);

so, we get
u(t) = x(1)/λ.

Thus, the control is a constant. Then the solution of the state system at the arbitrary
point t is

x(t) = 1 + u(t–ξ) = 1 + (t–ξ)x(1)/λ.

Determine t = 1, we obtain

x(1) = 1 + (1–ξ)x(1)/λ.

As a result, we find
x(1) = λ

λ− 1 + ξ
,

so, we have
u = 1

λ− 1 + ξ
.

Put this value to the isoperimetric condition for finding the constant λ. We get

1 − ξ

(λ− 1 + ξ)2 = 1.

Now, we have
1

(λ− 1 + ξ) = 1√
1 − ξ

,

so the optimal control is

u(t) = 1√
1 − ξ

, t ∈ (ξ, 1).

Thus, each value ξ (origin) corresponds to its own optimal control, which is a constant.
Thus, any final part of the optimal trajectory is not optimal. Consequently, the
Bellman principle for the considered optimal control problem with the isoperimetric
condition is not implemented.

Consider now an example of optimization control problem with an isoperimetric
condition with respect to the state function.

Example 15.17 We have the problem of minimization of the functional

I(u) = 1
2

1∫
ξ

u(t)2dt
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on the set of functions u = u(t) such that the following equality holds
1∫

ξ

x(t)dt = 1,

where ξ < 1 and x is a solution to the problem

x′(t) = u(t), t ∈ (ξ, 1); x(0) = 0.

The isoperimetric condition can be transformed to the equality
1∫

ξ

[
x(t) − 1

1 − ξ

]
dt = 0.

Then the function H takes the form

H = up+ λ
(
x− 1

1 − ξ

)
= u2

2 .

The function p is a solution to the problem

p′(t) = −λ, t ∈ (ξ, 1); p(1) = 0.

Obviously, the control u = p maximizes the function H. Then the solution to
the adjoint system is p(t) = λ(1–t), so the control is determined by the formula
u(t) = λ(1–t). Now we find the state function

x(t) = λ
(
t− ξ − t2 − ξ2

2
)
.

Put the result to the isoperimetric condition. We have the equality

λ

1∫
ξ

(
t− ξ − t2 − ξ2

2
)
dt = 1.

Calculate the integral at the final formula, which is noted by J . We get

J =
1−ξ∫
0

[
τ − τ(τ + 2ξ)

2
]
dτ = (1 − ξ)3

3 .

Now we find the parameter
λ = 1

J
= 3

(1 − ξ)3 .

Putting this value for the formula for the control, we find the optimal control

u(t) = λ(1 − t) = 3(1 − t)
(1 − ξ)3 .

Thus, for any value ξ there exists an optimal control that is the linear function.
Therefore, the any final part of the optimal curve is not optimal. We conclude that
the Bellman principle is not true for the considered example.
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Additional conclusions

Based on the analysis of optimal control problems for systems with isoperimetric con-
ditions carried out in Appendix, the following additional conclusions can be drawn.

• An optimal control problem with an isoperimetric condition can have an infinite
set of singular controls, which can be both optimal and non-optimal.

• For optimal control problems with an isoperimetric condition and a fixed final
state, the existence of singular controls is possible.

• Optimal control problems with an isoperimetric condition and a fixed final state
may turn out to be ill-posed according to both Tikhonov and Hadamard.

• In optimal control problems with an isoperimetric condition, bifurcation of
extremals is possible.

• In optimal control problems with an isoperimetric condition, a violation of the
Bellman optimality principle is possible.

Notes

1. This sequence was considered before; see Chapter 7, Figure 7.1.

2. This sequence was considered before in Chapter 7; see Figure 7.2.

3. One may wonder what properties of the considered problem were the reason for its insolv-
ability? According to Theorem 7.1, the problem of minimizing a convex continuous functional
bounded from below on a convex closed bounded subset of a Hilbert space has a solution. We
choose L2(0, 1) as the control space, which is Hilbert. Lower boundedness and continuity of
the optimality criterion were established earlier. However, as noted in Example 7.1, the con-
sidered functional is non-convex. As a result, the conditions of Theorem 7.1 are violated, and
the absence of optimal control is quite natural.

4. This applies, in particular, to Examples 7.1 and 11.4. Let us also note the functions mini-
mization problems discussed in Chapter 1 f(x) = –x2 and f(x) = x3.

5. A complete proof of the convexity of this functional is given in Chapter 3.

6. One can again ask the question, what properties of this problem were the reason for its
absence of a solution? As already noted, the optimality criterion here is convex, as a result
of which the obtained result can be explained exclusively by the properties of the set of ad-
missible controls. In Theorem 7.1, this set is required to be convex, closed, and bounded. The
boundedness of the set of admissible controls is beyond doubt. In Chapter 7, its closeness was
proven. Then the insolvability of the optimal control problem can only be explained by the lack
of convexity of the set of admissible controls. Indeed, if some control u belongs to the set U ,
then the control –u has also a similar property. However, their half-sum gives a zero function
for which the isoperimetric condition does not hold. Thus, the property of convexity of the set
of admissible controls used in Theorem 7.1 is violated, which makes it possible that there is no
optimal control.

7. Otherwise, we get a trivial solution that contradicts the isoperimetric condition.
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8. It is curious that the resulting formula coincides exactly with the one that was established
in the analysis of the boundary value problem (14.6) and (14.7).

9. However, if optimal control existed, then it would satisfy the system of optimality con-
ditions. However, all solutions of this system are exhausted by families {u+

k } and {u−
k }, the

elements of which are not optimal, since the corresponding values of the minimized functional
are positive.

10. This means that for a large enough number k, the values of the minimized functional on
admissible controls u+

k and u−
k are arbitrarily close to its lower bound on the entire set of

admissible controls, i.e., these controls can be chosen as weak approximate solutions to the
problem.

11. The considered optimal control problem is transformed from Example 6.2 by adding an
isoperimetric condition, which is certainly satisfied by the optimal control for the specified
example.

12. Note that both singular controls are on the boundary of this set.

13. In this case, it was important for us to obtain an example in which for an optimal control
problem with an isoperimetric condition the singular control is not unique. In this regard, the
presence or absence of other singular controls is not significant.

14. In this case, it does not matter to us whether the control u = 1 is optimal and whether
there are non-singular solutions to the maximum principle. Our goal is to get an example with
a non-unique singular control and show that not all singular controls are optimal.

15. Using the methodology described in Chapter 6, we can give examples of optimal control
problems with an arbitrary number of singular controls, some of which may be optimal, and
some of which may not. For this purpose, you can, in particular, use the examples from the
indicated chapter, adding isoperimetric conditions to the corresponding formulations of the
problem so that the solutions to these problems satisfy them.

16. This optimal control problem is derived from the one considered in Example 8.1 by adding
an isoperimetric condition that is likely to be satisfied by the corresponding optimal control.

17. Obviously, the optimal control for Example 15.7 is singular for all k.

18. For example, any function, which is equal to zero on the interval (0,1/2), to number a on
the interval (1/2,3/4), and to –a on the interval (3/4,1) for all a ∈ [–1, 1] is the singular control.

19. In fact, the considered problem differs from Example 6.1 solely in the presence of an
isoperimetric condition. Naturally, any solution to the problem from Example 15.8 is a solution
to the problem from Example 6.1, but not vice versa.

20. In fact, we are dealing with Example 6.6, supplemented by the isoperimetric condition.

21. We recall that the validity of Kelley condition for singular control means only about its
possible optimality, but nothing more. Only the violation of this condition allows us to conclude
that this singular control is not optimal.

22. Naturally, the problem of maximizing this functional also has the same property, since it
takes the same zero value on any admissible control.
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23. In this case, the very fact of the existence of a singular control in a problem with an
isoperimetric condition and a fixed final state is important for us. Therefore, it is not impor-
tant whether non-singular solutions of the maximum principle exist and whether they can be
optimal. However, it is obvious that a regular solution of the maximum principle, if it really
exists, satisfies the equality

u(t) =
{

1, if p(t) > 0,
−1, if p(t) < 0.

In this case, the function u cannot take the values 1 or –1 everywhere, since in this case
both conditions (15.20) and (15.21) are certainly violated. Let us assume that there is a unique
control break point. Finding the corresponding solution to the equation of state and substituting
it into condition (15.20), we obtain a linear equation with respect to this point. However, as
a result of substituting the result into the left side of equality (15.21), the value 1/6 is not
obtained. Thus, if there are regular solutions of the maximum principle, then they have at
least two discontinuity points.

24. If in the isoperimetric condition, we define the integration from 0 to 1, then this constraint
is equivalent to the final condition x(1) = 0. However, this requires an example in which both
constraints are present in a non-trivial way.

25. As in the previous example, the isoperimetric condition, which consists of the equality to
zero of the integral of the function u from 0 to 1, is equivalent to the final condition x(1) = 0.

26. More precisely, its narrowing to the corresponding finite subinterval of a given time interval.
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Previously, we considered optimal control problems for which either only the
initial state of the system, or both the initial and final states are known. The final
part of the book analyzes systems in which the initial and final states are not specified
at all. There are two chapters here, the first of which describes the general theory of
studying such problems, and the second one considers some examples.
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C H A P T E R 16

Optimal control systems with
a free initial state

The purpose of this chapter is to consider optimal control problems for which the initial
state of the system is not known. In this case, each admissible control corresponds not to
a concrete state of the system, but to a whole class of states corresponding to the general
solution of the equation of state, determined up to arbitrary constants. This circumstance
does not turn out to be an obstacle to considering the corresponding optimization problems
if we assume that the optimality criterion here is minimized on the set of control–state
pairs related by this equation. The Lecture deduces the necessary optimality condition in
the form of the maximum principle for the considered optimal control problem, provides
examples of its analytical solutions, and describes an algorithm for approximate solving of
the problem in the general case. Appendix provides a qualitative analysis of the considered
examples based on the general theoretical results given earlier, and also describes other
methods for solving this problem.

16.1 LECTURE

One can imagine a situation, where the state equation of the system is given in the absence
of any boundary conditions. Then we cannot associate each control with a concrete system
state function. It corresponds to an infinite set of solutions to a given differential equation,
forming its general solution. We give below a rigorous formulation of the optimal control
problem for such a case and present the corresponding necessary optimality conditions.
They differ from those discussed in Part II in the absence of boundary conditions for the
state equation and the presence of two boundary conditions for the adjoint equation. In
addition, fairly simple examples of problems of the indicated class are given, for which,
using optimality conditions, it is possible to explicitly find a solution to the problem, and
an algorithm for solving the obtained optimality conditions, based on the shooting method,
is also described.

465DOI: 10.1201/9781003398585-16
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16.1.1 Optimal control problem for a system with a free initial state

We again consider a controlled system described by the differential equation

x′(t) = f
(
t, u(t), x(t)

)
, t ∈ (0, T ), (16.1)

where u is a control, x is a state function, and f is a known function. In Part II, this
equation was supplemented with an initial condition, i.e., the Cauchy problem was
considered. In Part III, in addition, a condition was specified at the final moment
of time, i.e., the object of study was a system with a fixed final state. In this case,
equation (16.1) is considered without any additional conditions, i.e., we have systems
with a free initial state. The control, as before, is chosen from a set

U =
{
u

∣∣ a(t) ≤ u(t) ≤ b(t), t ∈ (0, T )
}
,

where a and b are known functions.
Now we determine the optimality criterion. Let us note that, due to the absence

of an initial condition, the optimality criterion can depend on the initial state of
the system. Thus, in the general case, the minimized functional includes an integral
depending on the control and state of the system over the entire given interval (0, T ),
as well as terms associated with both the final and initial state of the system. Thus,
we obtain the integral

I =
T∫

0

g
(
t, u(t), x(t)

)
dt + h

(
x(T )

)
+ l

(
x(0)

)
,

where g, h and l are known functions.
There is one more important circumstance, characteristic specifically for this class

of problems. In all previous cases, the equation of state was supplemented with an
initial condition, as a result of which the control included in this equation uniquely
determines the state of the system1. Thus, this function, which is included in the
definition of the optimality criterion, is not an independent object. As a result, the
argument of the minimized functional was exclusively control. In this case, due to
the absence of an initial condition for equation (16.1), the control determines only
the general solution of the equation, determined up to an arbitrary constant2.
Thus, the dependence of the state function on control is not unique3. As a result,
the functional I is defined by the pair4 (u, x) related by equality (16.1). Define the
following concept.

Definition 16.1 Admissible pair for the considered system is a pair (u, x), where
the function u belongs to the set U, and x satisfies equality (16.1) for a this function
u.

Let us denote the set of all admissible pairs of the system by W . Now we can
formulate the optimal control problem with a free initial state5.

Problem 16.1 Find an admissible pair (u, x) that minimizes the functional I on the
set W.
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To find the optimal pair, we will try to use the method described earlier, adapt-
ing it to this formulation of the problem. In particular, we will establish optimality
conditions for it in the form of the maximum principle.

16.1.2 Maximum principle for a system with a free initial state

Let the pair (u, x) be optimal for Problem 16.1. Then the following inequality holds

∆I = I(v, y) – I(u, x) ≥ 0 ∀(v, y) ∈ W. (16.2)

Let us define the Lagrange functional, as was done earlier

L(u, x, p) = I(u, x) +
T∫

0

p(t)
[
x′(t) − f(t, u(t), x(t))

]
dt.

Obviously, for any admissible pair (u, x) and arbitrary function p, the value L(u, x, p)
coincides with I(u, x). Then from inequality (16.2) it follows

∆L = L(v, y, p)–L(u, x, p) ≥ 0 ∀(v, y) ∈ W, ∀p. (16.3)

Determine the function

H(t, u, x, p) = pf(t, u, x) – g(t, u, x),

characterizing the explicit dependence of the integrand in the definition of the func-
tional L on the control. Then the previous inequality takes the form

∆L =
T∫

0

p(t)∆x′(t)dt −
T∫

0

∆Hdt + ∆h + ∆l,

where
∆x = y − x, ∆H = H(t, v, y, p) –H(t, u, x, p),

∆h = h(y(T )) – h(x(T )), ∆l = l(y(0)) – l(x(0)).

Let us use standard transformations. We get

H(t, v, y, p) −H(t, u, x, p) = Hx(t, v, x, p)∆x+ η1 = Hx(t, u, x, p)∆x+ η1 + η2,

h(y(T )) = h(x(T )) + hx(x(T ))∆x(T ) + η3,

l(y(0)) = l(x(0)) + hx(x(0))∆x(0) + η4,

where η2 =
[
Hx(t, v, x, p)–Hx(t, u, x, p)

]
∆x, η1, η3, and η4 are second order quantities

relative to increments ∆x, ∆x(T ), and ∆x(0), and Hx, hx, and lx are derivatives of
the corresponding functions. Integrating by parts, we get

T∫
0

p(t)∆x′(t)dt = p(T )∆x(T ) − p(0)∆x(0) −
T∫

0

p′(t)∆x(t)dt.
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As result, inequality (16.3) takes the form

−
T∫

0

∆uHdt−
T∫

0

(Hx+p′)∆xdt+
[
hx+p(T )

]
∆x(T ) +

[
lx+p(0)

]
∆x(0) + η ≥ 0 (16.4)

for all controls v ∈ U and arbitrary function p, where

∆uH = Hx(t, v, x, p)–Hx(t, u, x, p), Hx = Hx(t, u, x, p), hx = hx(x(T )), lx = lx(x(0)),

and the remainder term is determined by the equality

η = η3 + η4 −
T∫

0

(η1 + η2)dt.

Formula (16.4) differs from a similar inequality (3.7), obtained in the analysis of
the optimal control problem with a given initial state, only by the presence of an
additional term on its left side, as well as the value η4 in the formula for the remainder
term. In a similar inequality (9.5), obtained in the analysis of a system with a fixed
final state, for obvious reasons, there were no terms associated with the increment of
the state function at the ends of a given interval, and the remainder term included
only the integral summand.

In all cases considered, at this stage of the study, the adjoint equation was deter-
mined by choosing the function p in such a way that the integrand of the resulting
inequality, multiplied by the increment ∆x, equals zero. As a result, we obtain the
equality

p′(t) = Hx(t, u, x, p), t ∈ (0, T ) (16.5)
having the same form as in both previous cases.

For Chapter 3, in the process of transforming inequality (3.7), we also had the
opportunity to choose the final condition for the resulting equation by setting the
coefficient at ∆x(T ) to zero. As a result, each of the existing first-order differential
equations has one boundary condition, and for the state equation this condition is the
initial one, and for the adjoint equation it is the final one. For Chapter 9, when con-
sidering inequality (9.5), we do not have the opportunity to supplement the adjoint
equation with any boundary condition. However, the system of optimality conditions
obtained later makes sense, since for the existing two interconnected differential equa-
tions there are exactly two boundary conditions in view of the fact that the state of
the system is considered given not only at the initial, but also at the final moment
of time.

In this case, the formula for the increment of the functional (16.4) contains not
only a term containing the increment ∆x(T ), but also a summand including ∆x(0).
By setting the factors before both specified increments to zero, we know the value
of the function p at both ends of the given interval (0, T ). This procedure may seem
incorrect, since for one first-order differential equation (16.5) we obtain thereby two
boundary conditions at once6

p(0) = lx(x(0)), p(T ) = –hx(x(T )). (16.6)
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However, this equation is actually considered together with equation (16.1), for which
there are no boundary conditions at all. Thus, as in the two previous cases, we obtain
a system of two first-order differential equations with two boundary conditions.

Thus, in inequality (16.4) we choose as the function p the solution of the adjoint
system (16.5) and (16.6). As a result, we obtain the following inequality

−
T∫

0

∆uHdt + η ≥ 0 ∀v ∈ U.

It coincides exactly7 with formula (3.10). The derivation from here of the optimality
condition in the form of the maximum principle is carried out in the same way as
in Chapters 3 and 9. Thus, the following statement is true8.

Theorem 16.1 In order for the control u to be a solution to Problem 16.1, it must
satisfy the equality

H
[
t, u(t), x(t), p(t)

]
= max

v∈[a(t),b(t)]
H

[
t, v, x(t), p(t)

]
, t ∈ [0, T ], (16.7)

where x satisfies equality (16.1), and p satisfies equalities (16.5) and (16.6).

Thus, the system of optimality conditions for Problem 16.1 includes differential
equations (16.1) and (16.5) with boundary conditions (16.6) and the maximum con-
dition (16.7) for three unknown functions u, x, and p.

16.1.3 Analytical solution of the problem in the absence of control restrictions

In the previous chapters, we began the direct study of other types of optimal control
problems with the analysis of examples that can be solved analytically. Let us present
one extremely simple special case of Problem 16.1, for which the optimal pair can be
easily determined directly from the optimality conditions.

Example 16.1 Required to minimize functional

I(u, x) = 1
2

1∫
0

(
x2 − xt2 + u2 − 2ut

)
dt,

where the functions x and u satisfy the state equation

x′(t) = u(t), t ∈ (0, 1). (16.8)

We have Problem 16.1 for the following values of its constituent quantities:

T = 1, f = u, g = (x2 − xt2 + u2 − 2ut)/2, a = –∞, b = ∞, l = 0, h = 0.

Determine the function

H = pu − 1
2

(
x2 − xt2 + u2 − 2ut

)
.
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Then the adjoint equation (16.5) takes the form

p′(t) = x(t) − t2/2, t ∈ (0, 1), (16.9)

and the boundary conditions (16.6) are written as follows:

p(0) = 0, p(1) = 0. (16.10)

Setting the derivative of the function H with respect to the control to zero, we find

u(t) = p(t) + t. (16.11)

Taking into account the negativity of the corresponding second derivative and the
absence of restrictions on control, we conclude that this function is indeed a solution
to the maximum condition (16.7).

Thus, to find three unknown functions u, x and p, we have equalities
(16.8)–(16.11). We find the solution to the resulting problem using the method of
eliminating unknowns. In particular, differentiating equality (16.9) and taking into
account equation (16.8), we obtain

p′′(t) = x′(t) − t = u(t) − t = p(t).

Now we have the following boundary value problem with respect to the function p.

p′′(t) − p(t) = 0, t ∈ (0, 1), p(0) = 0, p(1) = 0.

Obviously, it has the solution9 p(t) = 0. Then from formula (16.11) it follows u(t) = t.
Now from equality (16.9) it follows that x(t) = t2/2. One can prove that this is in
reality the optimal control for the considered problem10.

16.1.4 Analytical solution of the problem with control constraint

We considered before the optimal control problem with a free initial state without
any control constraints and find its solution directly. Let us now give an example of
a similar problem with a control constraint11.

Example 16.2 Minimize the functional

I(u, x) = 1
2

1∫
0

(x2 + u2)dt,

where the functions x and u satisfy the state equation

x′(t) = u(t), t ∈ (0, 1), (16.12)

besides, the control belongs to the set

U =
{
u

∣∣ |u(t)| ≤ 1, t ∈ (0, 1)
}
.
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Determine the function

H = pu – (x2 + u2)/2.

Then the adjoint system takes the form

p′(t) = x(t) − t2/2, t ∈ (0, 1); p(0) = 0, p(1) = 0. (16.13)

Find the solution to the maximum principle

u(t) =


1, if p(t) < −1,

p(t), if − 1 ≤ p(t) ≤ −1,
−1, if p(t) > 1.

(16.14)

The resulting system of optimality conditions (16.12)–(16.14), in accordance with
the method of eliminating unknowns, can be reduced to a boundary value problem
for a second order differential equation with respect to the function p, as was done for
Example 16.1. However, in view of the non-linear relationship between the functions
u and p according to equality (16.14), it is very difficult to find an analytical solution
to the problem in a similar way.

Let us consider an auxiliary optimal control problem, which differs from the one
given above only in the absence of restrictions on control. The optimality conditions
for it include equalities (16.12) and (16.13), as well as the formula u(t) = p(t) instead
of condition (16.14). This system is no longer difficult to solve using the method of
eliminating unknowns. In particular, differentiating the adjoint equation and using
equality (16.12) and the last formula, we find p′′ = x′ = u = p. Then the function p
turns out to be a solution to the boundary value problem

p′′(t) − p(t) = 0, t ∈ (0, 1); p(0) = 0, p(1) = 0.

Obviously, it has a zero solution. As a result, it follows from equality (16.13) that
x = 0, which means u = 0 due to equality (16.12). It is clear that the minimum of
the functional in the absence of any restrictions does not exceed the minimum of the
functionality in the presence of restrictions. Then, taking into account that the found
control belongs to the set U , we conclude that the resulting pair of functions (u, x)
also turns out to be a solution to the problem considered in Example 16.212.

16.1.5 Algorithm of solving the optimality conditions

It is clear that it is possible to find an analytical solution to the problem only in
exceptional cases for extremely simple situations. In the general case, optimal control
can be found exclusively approximately using some iterative methods. We return
again to problem (16.1), (16.5)–(16.7).

As before, we can find the control from the maximum condition (16.7) if the
functions x and p are known. However, unlike all previous problems, knowledge of
the control is not enough to determine the function x from the equation of state due to
the absence of an initial condition. On the other hand, for the adjoint equation (16.5)
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there are two boundary conditions at once. We encountered a similar situation in Part
III, with the only difference that the equation of state was overdetermined there, and
the adjoint equation was underdetermined. To approximately solve the optimality
conditions in Chapter 9, we used the shooting method, introducing the missing final
condition for the adjoint equation in the form p(T ) = ψ with an unknown parameter
ψ. In this case, the equation of state was considered with given initial conditions,
and the additionally available final condition for the function x was interpreted as an
equation for the parameter ψ.

To solve the existing system of optimality conditions (16.1), (16.5)–(16.7), we will
also use the shooting method. However, now we add to the equation of state (16.1)
the missing initial condition

x(0) = ψ, (16.15)

where the number ψ is unknown. Now, regarding the four unknowns u, x, p and
ψ, we have system (16.1), (16.5)–(16.7), and (16.15). In this case, equation (16.1)
is considered together with the initial condition (16.15), equation (16.5) is solved
together with the second boundary condition (16.6), and the first condition (16.6) is
understood as an algebraic equation for ψ. Its solution can be found iteratively, for
example, using the algorithm

ψk+1 = ψk – βk

[
pk(0) − lx(xk(0))

]
, k = 0, 1, ... , (16.16)

where xk and pk are solution of the state equation and the adjoint system at the k
iteration, and βk is an iterative parameter. As result, we have the following algorithm.

1. The initial approximations of the control u0 and the initial value ψ0 of the
function x are specified. The sequence of algorithm parameters {βk} is chosen.

2. At the current k-th iteration from the Cauchy problem (16.1) and (16.15) with
the previously determined values u = uk and ψ = ψk the corresponding value of the
state function x = xk is determined.

3. Solving the adjoint equation (16.5) for known values u = uk and x = xk with
the final condition pk(T ) = –hx(xk(T )) we find the function pk.

4. For known values x = xk and p = pk, a new control approximation uk+1 is
determined from the maximum condition (16.7).

5. A new approximation of the parameter ψk+1 is calculated using the formula
(16.16).

If the described algorithm converges, the result is a solution to the system of
optimality conditions.

RESULTS

Here is a list of questions in the field of optimal control problems for systems with a free
initial state, the main conclusions on this topic, as well as problems arising in this case that
require additional research.
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Questions

It is required to answer questions related to the previously given lecture material.

1. Why does the problem of an optimal system described by a differential equation
in the absence of an initial condition make sense?

2. What exactly can be found from the state equation in the absence of an initial
condition?

3. What is the sense of the dependence of the system state function on control in
Problem 16.1?

4. Why does the optimality criterion for Problem 16.1 alone include an additional
term that is absent in the previously considered optimal control problems?

5. Why in the optimal control problems discussed earlier was it necessary to find
a control that minimizes this functional, and in Problem 16.1 the question is
raised about finding the optimal control–state pair?

6. Why, when deriving the optimality condition for Problem 16.1, does the remain-
der term in the formula for the increment of the functional include an additional
term that is absent in the optimal control problems considered earlier?

7. What is the difference between the adjoint system for Problem 16.1 and similar
relations for other types of optimal control problems?

8. Why is it possible to specify two boundary conditions (16.6) for the adjoint
equation (16.5), which is a first-order differential equation?

9. How does the final inequality for the increment of the minimized functional,
differ from similar relations for other types of optimal control problems?

10. How does the system of optimality conditions obtained in accordance with
Theorem 16.1 differ from similar systems for the previously considered optimal
control problems?

11. As a result of what properties could the solution to the optimal control problem
for Example 16.1 be found analytically?

12. How does it follow that Example 16.1 obtained during the analysis process is
really a solution to the problem?

13. Why were we able to find a solution to the problem directly from the system of
optimality conditions for Example 16.1, but for Example 16.2 we cannot obtain
a similar result?

14. How was the solution to the optimal control problem for Example 16.2 found?

15. Do we have confidence that the functions found in the analysis of Example 16.2
actually form solutions to the corresponding optimal control problem?
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16. Why is it not possible to use the method of successive approximations described
in Chapter 3 to find the solution of the system of optimality conditions obtained
in accordance with Theorem 16.1?

17. Why is it possible to use the shooting method for solving of the system of
optimality conditions obtained in accordance with Theorem 16.1?

18. How does the shooting method used in this case differ from the one discussed
in Chapter 9?

19. When using the shooting method for the state equation, is it possible to add a
fictitious final condition rather than an initial condition?

20. Is it possible, when using the shooting method, to consider the adjoint equation
together with the initial condition available for it, and use the corresponding
final condition when specifying the missing boundary condition for the state
equation at the subsequent iteration?

21. Can we be sure that the shooting method is convergent?

22. Can we be sure that if the shooting method converges, we will find a solution
to the existing optimal control problem?

23. Can we be sure that if the shooting method converges, we will find a solution
to the resulting system of optimality conditions?

Conclusions

Based on the study of the problem of optimal control of systems with a free initial
state, we can come to the following conclusions.

• In the absence of an initial condition, each admissible control determines the
general solution of the state equation, so the state of the system according to
a given control is not determined definitely.

• The optimal control problem for a system in the absence of initial conditions
makes sense.

• The absence of initial conditions for the equation of state provides additional
opportunities for solving the optimal control problem, since in addition to the
freedom to choose control, it becomes possible to select one of the partial so-
lutions of the state equation that provides the lowest value of the optimality
criterion.

• For an optimal control problem with a free initial state, the optimality criterion
is minimized on a set of control–state pairs related by a given equation.

• For an optimal control problem with a free initial state, a general scheme for de-
riving the necessary optimality conditions in the form of the maximum principle
is applicable.
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• The system of optimality conditions for the considered problem includes a
state equation without any boundary conditions, an adjoint equation with two
boundary conditions, and a maximum condition, which has the same form as
for other previously considered problems.

• In the simplest case, the solution to the optimality conditions for problems with
a free initial state can be found analytically.

• The optimality conditions for Example 16.1 allow for a direct analytical solu-
tion.

• The functions found in the process of analyzing the optimality conditions for
Example 16.1 are indeed a solution to the corresponding optimal control prob-
lem.

• The solution to the optimal control problem for Example 16.2 is found by
passing to a similar problem in the presence of an initial state.

• The functions determined during the analysis of Example 16.2 are indeed the
solution to the corresponding optimal control problem.

• The solution to a system of optimality conditions for problems with a free initial
state is, as a rule, determined approximately.

• To practically solve a system of optimality conditions for problems with a free
initial state, one can use the shooting method.

• When using the shooting method to solve a system of optimality conditions
in problems in this case, the state equation is supplemented with an initial
condition with an unknown value on its right side, the adjoint equation is
solved with one of the existing boundary conditions, and the second boundary
condition is interpreted as an equation with respect to the unknown initial state
of the system.

Problems

In the process of analyzing optimal control problems for systems with a free initial
state, additional problems arise that require additional research.

1. Qualitative analysis of the considered examples. In the Lecture, two
problems of optimal control of systems in the absence of initial conditions were
solved. It would be interesting to apply the general theorems described in Part
II for them, in particular to prove the existence and uniqueness of a solution to
the problem, as well as the sufficiency of optimality conditions. These results
are presented in Appendix.

2. Linear-quadratic optimal control problems for systems with a free
initial state. In Chapters 3 and 10, for linear systems with quadratic func-
tionals in the absence of explicit restrictions on control using the decoupling
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method, a non-iterative algorithm for solving optimal control problems was de-
scribed. One would like to establish similar results for systems with a free initial
state. The corresponding result is obtained in Appendix.

3. Penalty method in optimal control problems for systems with a free
initial state. In Problem 16.1, the optimality criterion is minimized on the set
of feasible control-state pairs related by the state equation. This interpretation
is also typical for the penalty method described in Chapter 4. In this regard,
it seems natural to use the penalty method directly to solve the problem. In
Appendix, the penalty method will be used to solve specific problems of optimal
control of systems with a free initial state.

4. Optimal control of singular systems with a free initial state. Obviously,
in the absence of an initial condition, any control corresponds to far from a single
state function. Chapter 4 considered an optimal control problem for which the
solution to the state equation has an infinite number of solutions given the
initial condition. It was interesting to consider the optimization problem for
such an equation in the absence of an initial condition. One such example is
given in Appendix.

5. Non-uniqueness of the solutions and non-sufficiency of optimality
conditions for systems with a free initial state. In the considered ex-
amples of optimal control problems in the absence of initial conditions, the
solution to the problem was unique, and the optimality conditions were suffi-
cient. It would be interesting to construct examples of such problems for which
these properties are violated. Such examples are given in the next chapter.

6. Singular controls for systems with a free initial state. Until now, we have
considered only regular solutions of the maximum condition for the considered
systems. Chapter 17 gives examples of problems of this type with singular
controls that may or may not be optimal.

7. Non-solvable optimal control problems for systems with a free initial
state. Previously, for other classes of extremal problems, we were faced with the
absence of a solution to the problem. Chapter 17 provides examples of optimal
control problems without initial conditions that have no solution.

8. Ill-posed optimal control problems for systems with a free initial
state. For other types of optimization problems, there were cases when the
problems under study were ill-posed according to Tikhonov or Hadamard. Sim-
ilar tasks for this class of systems are given in Chapter 17.

9. Optimal control problems for systems with a free initial state under
the isoperimetric conditions. In the previous part, optimal control problems
with a free or fixed final state in the presence of isoperimetric constraints were
considered. However, such problems also make sense for systems in the absence
of initial conditions. Examples of such problems are given in Chapter 17.
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16.2 APPENDIX

Below is some additional information about optimal control problems for systems with a
free initial state. In particular, Section 16.2.1 provides a qualitative analysis (existence and
uniqueness of a solution, sufficiency of optimality conditions) of the examples discussed
in the Lecture based on the general results given in Part II. In Section 16.2.2, the linear-
quadratic problem of optimal control of a system with a free initial state is solved using the
decoupling method. Section 16.2.3 uses one specific example to describe the application of
the penalty method for the class of problems under consideration. Finally, in Section 16.2.4,
the penalty method is used to solve the optimal control problem for a singular differential
equation in the absence of an initial condition.

16.2.1 Qualitative analysis of examples

We return to the analysis of the examples discussed in the Lecture. Let us consider
in particular at Example 16.1. Let us try to apply the general statements given
earlier to study it. The first question of interest to us is the existence of optimal
control. Chapter 7 provides two theorems regarding the solvability of the optimization
problem. In this case, we do not have the opportunity to use Theorem 7.17.1 due to
the absence of explicit restrictions on control, and therefore, the set of admissible
controls is unlimited. However, we still have the second statement at our disposal.

According to Theorem 7.2, the problem of minimizing a convex continuous coer-
cive functional bounded from below on a convex closed subset of a Hilbert space has
a solution. The first step in using this result is to select the space on which the opti-
mality criterion is defined. In this case, the argument of the functional I is the pair
(u, x). Considering the presence of the control square under the integral, it is natural
to assume that u ∈ L2(0, 1). With the same reason we can assume that the function x
must belong to the same space. However, equality (16.8) indicates that the derivative
of this function, equal to the control, also belongs to the space L2(0, 1). The fact that
both the function of one variable itself and its first derivative13 belong to the class
of square-integrable functions corresponds to the Sobolev space H1(0, 1). In this
regard, it is natural to assume that the considered functional is defined on the space
product14 Z = L2(0, 1) ×H1(0, 1). Obviously, it is minimized on the set

W =
{
(u, x) ∈ Z

∣∣ x′(t) = u(t), t ∈ (0, 1)
}
.

Prove the convexity of this set.
Let (u, x) and (v, y) be arbitrary elements of the set W , and σ is a number from

the unit interval. We obtain the equalities

x′(t) = u(t), y′(t) = v(t), t ∈ (0, 1).

Multiplying the first equality by σ, and the second one by 1 − σ, we have[
σx+ (1–σ)y

]′(t) =
[
σu+ (1–σ)v

]
(t), t ∈ (0, 1).

Thus, the pair
(
σu+(1–σ)v, σx+(1–σ)y

)
belongs to the set W , so this set is convex.
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Consider a pair sequence {(uk, xk)} with elements of the set W such that the
following convergence holds15 (uk, xk) → (u, x) in Z. Prove that the limit pair (u, x)
belongs to the set W . We have the equality

x′
k(t) = uk(t), t ∈ (0, 1), (16.17)

and the convergence uk → u in L2(0, 1) and xk → x in H1(0, 1). The last condition
means that in the space L2(0, 1) not only the sequence of functions {xk} converges,
but also the sequence of their derivatives. Thus, we have the convergence of x′

k → x′

in L2(0, 1). In Chapter 7, we noted that if a certain sequence converges in the space
L2(0, 1), then from it we can extract a subsequence that converges for almost all t in
the unit interval16. Then, passing to the limit in equality (16.17), we conclude that
x′(t) = u(t), which implies that the set W is closed17.

Consider now the minimized functional. It takes the form

I(u, x) = 1
2

1∫
0

[(
x− t2

2
)2

+ (u− t)2
]
dt − 1

2

1∫
0

( t4
4 + t2

)
dt.

Since the second integral is a constant, the properties of the functional I are com-
pletely determined by the properties of the first integral. Considering that under the
integral is the sum of two squares, and quadratic functions have been repeatedly stud-
ied previously18, we conclude that we are indeed dealing with a convex continuous
coercive functional.

Thus, all the conditions of Theorem 7.2 are satisfied, which means that the optimal
control problem under consideration has a solution. Moreover, in view of the strict
convexity of quadratic functions, this solution is unique by virtue of Theorem 5.1.

Now we prove the sufficiency of the optimality conditions. As we know (see Chap-
ter 5), this is follow from the non-negativity of the remainder term

η = η3 + η4 −
1∫

0

(η1 + η2)dt. (16.18)

Here, the first two terms on the right side of this equality are obtained by expanding
into a Taylor series the terms in the formula for the increment of the functional,
characterizing the function x at the final and initial times. In our case, the opti-
mality criterion does not contain such terms, as a result of which the value η is
determined exclusively by the integral in equality (16.18). Now we find the value
η2 = [Hx(t, v, x, p)–Hx(t, u, x, p)]∆x. For the given function H, we have Hx = t2/2–x.
Since this value does not depend on the control, we conclude that η2 = 0. Finally, the
value η1 is the second derivative of the function H with respect to x, equal to –1, mul-
tiplied by the square of the increment of the state function. As a result, we conclude
that the remainder term η, determined by formula (16.18), is indeed non-negative,
which means that the maximum principle for the example under consideration pro-
vides a necessary and sufficient condition for optimality.
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Let us now turn to the analysis of Example 16.2. Here, it would seem, due to the
presence of explicit restrictions on control (the formulation of the problem includes
inclusion u ∈ U), we have Theorem 7.1 at our disposal to prove the existence of
a solution to the problem. However, note that the functional is minimized on a set
of control-state pairs. Therefore, if the control actually takes a value from a limited
area, then the state function is not limited due to the absence of initial conditions.
Thus, we again use Theorem 7.2 to prove the existence of an optimal pair.

In this case, we consider again the functional I in the space Z defined above for
the same reasons as for Example 16.1. In this case, we define the set of admissible
pairs as follows:

Y =
{
(u, x) ∈ W

∣∣ u ∈ U
}
,

where the set W was defined above. Obviously, from the previously established con-
vexity and closedness of the sets W and U , the validity of similar properties of the
set of admissible pairs follows19. The optimality criterion in this case is the sum of
two quadratic functionals, for which coercivity, convexity and continuity are already
known. This implies similar properties of this functional I. As a result, the existence
of a solution for Example 16.2 follows from Theorem 7.2. Moreover, in view of the
strict convexity of the quadratic functional, the functional I also turns out to be so.
Consequently, the solution to this problem is unique.

To justify the sufficiency of optimality conditions, we define the remainder term
in accordance with formula (16.18). As for the previous example, the equalities η3 = 0
and η4 = 0 are valid here due to the absence in the definition of the optimality crite-
rion of terms characterizing the boundary values of the state function. The derivative
of the function H in this case is determined by the formula Hx = –x. It follows that
η2 = 0, and the second derivative of the function H is negative. Then the remainder
term η turns out to be non-negative, which means that the optimality conditions are
necessary and sufficient.

16.2.2 Decoupling method

Let us now consider the linear-quadratic problem of optimal control of a system with
a free initial state, which is an analogue of Problems 3.2 and 10.1. Given a system
described by the following Cauchy problem

x′(t) = a(t)x(t) + b(t)u(t) + f(t), t ∈ (0, T ), (16.19)

where the functions a, b, and f are known. Determine the functional

I(u, x) = 1
2

T∫
0

{
α

[
x(t) − z(t)

]2 + β
[
u(t)

]2}
dt,

where the function z and the constants α and β are known, and the relation between
u and x is given by the equality (16.19).
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Problem 16.2 The linear-quadratic optimal control problem with a free
initial state consists of finding a pair (u, x) that minimizes the functional I on the
set of all pairs related by the equality (16.19).

Using the known method define the function

H = p(ax+ bu+ f) – [α(x–z)2 + βu2]/2.

Then the adjoint system takes the form

p′(t) = α
[
x(t) − z(t)

]
− a(t)p(t), t ∈ (0, T ); p(0) = 0, p(T ) = 0. (16.20)

From the maximum condition, we find the control

u(t) = β−1b(t)p(t), t ∈ (0, T ). (16.21)

Thus, we have the linear system of optimality conditions (16.19)–(16.21) that is an
analogue of problems (3.23)–(3.25) and (10.1)–(10.4).

To find a solution to the problem, we will use the decoupling method. In all
three cases of the considered linear-quadratic problem under, we have the same state
equations, adjoint equations and formulas for finding the control. However, in Chapter
3 there was an initial condition for the state function and a final condition for the
function p, and in Chapter 10 there were two boundary conditions for the function
x and no boundary conditions for the function p. In this case, the situation is the
opposite, i.e., the equation of state is considered without boundary conditions, and
the adjoint system includes two boundary conditions.

Using the linearity of system (16.19)–(16.21) with respect to all three unknown
functions suppose again (as previous cases) the existence of linear relation between
the functions x and p. This is the equality

p(t) = r(t)x(t) + q(t), t ∈ (0, T ), (16.22)

where r and q are unknown functions. After differentiation with using the first equality
(16.20) we obtain

r′x+ rx′ + q′ = α(x− z) − a(rx+ q).
Substantiate the derivative of the function x from the equality (16.19) using formula
(16.21), we get(

r′ + β−1b2r2 + 2ar − α
)
x +

(
q′ + β−1b2rq + aq + fr + αz

)
= 0.

Having defined t = 0 in formula (16.22) and taking into account the initial condition
for the function p, we establish

r(0)x(0) + q(0) = 0.

Equating the coefficient of x and the quantity independent of x to zero in the two
equalities obtained, we get the following problems regarding the functions r and q.

r′(t) + β−1b(t)2r(t)2 + 2a(t)r(t) = α, t ∈ (0, T ), r(0) = 0. (16.23)

q′(t) + β−1b(t)2r(t)q(t) + a(t)q(t) + f(t)r(t) + αz(t) = 0, t ∈ (0, T ), q(0) = 0.
(16.24)
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Note that the equations themselves have the same form as before, but the bound-
ary conditions turn out to be different. As a result, we arrive at the following algorithm
for solving the problem under consideration:

1. Solve the Cauchy problem (16.23) in the forward time direction for an ordinary
differential equation with quadratic non-linearity (Riccati equation) with
respect to the function r.

2. Solve the Cauchy problem (16.24) in the forward time direction for a linear
ordinary differential equation with respect to the function q.

3. From formula (16.22) with the already known functions r and q, the explicit
dependence of the function x on p is determined

x(t) = r(t)−1[q(t)–p(t)], t ∈ (0, T ), (16.25)

which is substituted into the adjoint equation.

4. The adjoint equation is solved in the opposite direction with a known homoge-
neous condition at t = T with respect to the function p.

5. Using formulas (16.21) and (16.25) the required pair (u, x) is calculated.
Thus, the completely analysis of Problem 16.2 can be realized directly without
using any iterative algorithm20.

16.2.3 Penalty method

A special feature of problems with a free initial state is the fact that here control and
state are considered as a single whole, the optimality criterion is minimized on a set
of control-state pairs, and the state equation is understood as an equality connecting
the elements of these pairs. A similar idea was used in Chapter 4, where the penalty
method was used instead of the Lagrange multiplier method to solve the problem.
In this regard, it is quite natural to try to use this method to study optimal control
problems with a free initial state.

We consider only Example 16.2. Using penalty method determine the functional

Jε(u, x) = 1
2

1∫
0

(u2 + x2)dt + 1
2ε

1∫
0

(x′ − u)2dt,

where ε is a small positive parameter. We consider the problem of its minimization
on the set of such pairs (u, x), the first element of which is defined on the set U of
functions whose value at any point does not exceed one. Due to the presence of control
restrictions, we use the variational inequality to solve the problem. Let (uε, xε) be a
solution to the given problem. Then the following inequality holds

Jε

(
uε + σ(s–uε), xε

)
– Jε(uε, xε) ≥ 0 ∀s ∈ U, ∀σ ∈ (0, 1).
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As result, we get

σ

2

1∫
0

[
2uε(s–uε) + σ(s–uε)2]

dt + σ

2ε

1∫
0

[
− 2(x′

ε − uε)(s–uε) + σ(s–uε)2]
dt ≥ 0.

Dividing this inequality by σ and passing to the limit as σ → 0, we have
1∫

0

(
uε − x′

ε − uε

ε

)
(s–uε)dt ≥ 0 ∀s ∈ U.

Defining the function
p′

ε = ε−1(x′
ε − uε), (16.26)

we obtain
1∫

0

(uε − pε)(s–uε)dt ≥ 0 ∀s ∈ U.

We analyzed this variational inequality in Chapter 4. It has the solution

uε(t) =


−1, if pε(t) < −1,

pε(t), if − 1 ≤ pε(t) ≤ 1,
1, if pε(t) > 1.

(16.27)

For any continuously differentiable function h and positive number σ the following
inequality holds

Jε(uε, xε + σh) – Jε(uε, xε) ≥ 0.

Therefore, we get

σ

2

1∫
0

(2xεh+ σh2)dt + σ

2ε

1∫
0

[
2(x′

ε − uε)h′ + σh′2]
dt ≥ 0.

Dividing by σ and passing to the limit as σ → 0 using equality (16.26) we obtain

1∫
0

(xεh+ pεh
′)hdt ≥ 0.

Use the formula of integration by parts
1∫

0

pεh
′dt = −

1∫
0

p′
εhdt+ pε(1)h(1) − pε(0)h(0) ≥ 0.

As result, the previous inequality takes the form21

1∫
0

(xε − pε)hdt+ pε(1)h(1) − pε(0)h(0) ≥ 0. (16.28)
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Formula (16.28) is true for all functions h, including those that vanish at the
boundary of a given interval. For them this inequality is written as follows

1∫
0

(xε − pε)hdt ≥ 0.

We considered this inequality in Chapter 4. Using the arbitrariness of the function
h we get the equality p′

ε = xε. Then from inequality (16.28) it follows the inequality
pε(1)h(1) − pε(0)h(0) ≥ 0. The value h(1) is arbitrary here, so it the arbitrariness of
can be equal to zero. As result, we have pε(0)h(0) ≥ 0, so pε(0) = 0 because of the
arbitrariness of h(0). The equality pε(1) = 0 can be obtained analogically. Thus, the
function pε is a solution to the problem

p′
ε(t) = xε(t), t ∈ (0, 1); pε(0) = 0, pε(1) = 0. (16.29)

From formula (16.26), it follows the equality

x′
ε(t) = uε(t) + εpε(t), t ∈ (0, T ). (16.30)

Now we have the system (16.27), (16.29), (16.30) with respect to the unknown func-
tions uε, pε, and xε. It differs from the optimality conditions (16.12)–(16.14) obtained
in the Lecture only by equation (16.30), which for sufficiently small ε can be inter-
preted as an approximation of the state equation (16.12). The practical finding of
a solution to the resulting system can be carried out using the iterative process de-
scribed in Section 16.1.5.

16.2.4 Optimal control problem for a singular system with a free initial state

Chapter 4 analyzed examples of optimal control problems for singular systems. In
them, the equation of state for a specific admissible control could have no solution
at all or have an infinite number of solutions. Similar problems can be posed in the
absence of initial conditions. Let us consider a similar example22.

Example 16.3 Minimize the functional

I(u, x) = 1
2

1∫
0

(x2 + u2)dt

on the set of pairs (u, x) satisfying the equality

x′(t) =
√
x(t) + u(t), t ∈ (0, 1), (16.31)

where the function u belongs to the set

U = {u| 0 ≤ u(t) ≤ 1, t ∈ (0, 1)}.
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A special feature of equation (16.31) is the fact that even when supplemented
with an initial condition, the corresponding Cauchy problem may have significantly
more than one solution23, which, however, is not an obstacle to the analysis of the
posed optimal control problem. In accordance with the penalty method described
above, we define the functional

Jε(u, x) = 1
2

1∫
0

(x2 + u2)dt + 1
2ε

1∫
0

(
x′ −

√
x− u

)2
dt,

where ε is a small positive number. We minimize this functional on the set of all pairs
(u, x) such that the first element belongs to the set U .

Let (uε, xε) be the solution to the problem. The following inequality holds

Jε

(
uε + σ(s–uε), xε

)
– Jε(uε, xε) ≥ 0 ∀s ∈ U, σ ∈ (0, 1).

It takes the form

σ

1∫
0

uε(s–uε)dt + σ

ε

1∫
0

(
x′

ε −
√
xε − uε

)
(s–uε)dt + o(σ) ≥ 0,

where o(σ)/σ → 0 as σ → 0. Define the function

pε = ε−1(
x′

ε −
√
xε − uε

)
. (16.32)

Dividing the previous inequality by σ and passing to the limit as σ → 0 we get the
variational inequality

1∫
0

(uε − pε)(s–uε)dt ≥ 0 ∀s ∈ U.

By analogy with formula (16.27), we find its solution

uε(t) =


0, if pε(t) < 0,

pε(t), if 0 ≤ pε(t) ≤ 1,
1, if pε(t) > 1.

(16.33)

Then for any smooth enough function h and the arbitrary constant σ the following
inequality holds

Jε

(
uε, xε + σh

)
– Jε(uε, xε) ≥ 0.

Dividing by σ and passing to the limit as σ → 0 with using equality (16.32) after
easy transformation24 we get

1∫
0

xεhdt +
1∫

0

pε

(
h′ − h

2√
xε

)
dt ≥ 0.
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Transform this inequality using arbitrariness of the function h as was done in the
previous subsection, we establish the adjoint system

p′
ε(t) + 1

2√
xε
pε(t) = xε(t), t ∈ (0, 1); pε(0) = 0, pε(1) = 0. (16.34)

Now from the formula (16.32) it follows the approximate state equation

x′
ε(t) =

√
xε(t) + uε(t) + εpε(t), t ∈ (0, 1). (16.35)

Thus, we have the system (16.33)–(16.35) with respect to three unknown functions
uε, xε, and pε. Similar systems of optimality conditions were obtained when studying
other examples in this section. By solving this system for sufficiently small values of
ε, it is possible, in principle, to find an approximate solution to the posed optimal
control problem25.

Additional conclusions

Based on the results obtained above, the following additional conclusions can be
drawn.

• For Example 16.1, the existence of a unique pair and the sufficiency of the
optimality conditions are proved in a standard way.

• For Example 16.2, the existence of a unique pair and the sufficiency of the
optimality conditions are proved in a standard way.

• The optimal control problem for a linear-quadratic system with a free initial
state can be solved without using an iterative process.

• To analyze a linear system with a free initial state in the case of quadratic
optimality criterion and the absence of restrictions on controls, one can use the
decoupling method.

• Optimal control problems for systems with a free initial state can be solved
using the penalty method.

• For Example 16.2, an approximate system of optimality conditions is obtained
using the penalty method.

• The penalty method is applicable to the analysis of optimal control problems
for singular systems with a free initial state.

• Using the penalty method, an approximate system of optimality conditions for
one singular system with a free initial state is obtained.
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Notes

1. However, in Chapter 4, we considered an example of a controlled system for which the
Cauchy problem for the corresponding differential equation had more than one solution; see
also Example 16.3.

2. When considering an nth order differential equation or a system of n first-order equations,
the general solution includes n arbitrary constants; see, for example [10], [86].

3. For controllable systems characterized by the Cauchy problem, the dependence of the
state function on the control is characterized by an operator defined by this problem. In the
absence of an initial condition, this dependence is a multivalued mapping that associates
each control with a general solution to the equation, which is determined ambiguously. On
multivalued mappings; see [40].

4. In Chapter 4, we already encountered the problem of minimizing a functional on a set of
control-state pairs due to the fact that the existence of a solution to the state equation for an
arbitrary admissible control was not guaranteed. Thus, the functional was minimized on the set
of those pairs for which, under a given control, there is a corresponding state of the system. In
this case, the situation is the opposite, since for any fixed control the solution to the equation of
state is determined ambiguously, which means that there is an additional possibility, compared
to varying the control, of minimizing the functional by choosing the best of the system states
for a given control.

5. There is an alternative approach to formulating optimal control of a system with a free
initial state (naturally, here we assume the unique solvability of the corresponding Cauchy
problem, which is not always the case; see Examples 4.2 and 4.3). Indeed, we can supplement
equation (16.1) with a fictitious initial condition x(0) = x0, considering the unknown value
x0 as an additional control. Now the pair of controls (u, x0) together with equation (16.1)
uniquely determines the state. Thus, we obtain a standard optimal control problem of the type
of Problem 3.1 (more precisely, a special case of a vector optimal control problem with a free
final state, i.e., Problem 3.3). One could also consider a system in which, in the absence of an
initial condition, the final state of the system is specified. However, this case, by changing the
variables τ = T –t, is reduced to the standard optimal control problem considered in Chapter
3.

6. Let us consider a special case of Problem 16.1, when the equation of state has the form
x′ = u, and there are no restrictions on control. In this case, we can exclude the control from
consideration by substituting the derivative x′ into the optimality criterion instead. As a result,
we obtain the Bolza problem, well known in the calculus of variations, and equalities (16.5)
correspond to the transversality conditions; see [37], [61], [208].

7. Naturally, the coincidence here makes sense up to the type of remainder term.

8. Naturally, this result requires strict justification.

9. Indeed, the general solution of the adjoint equation is p(t) = c1et + c2e−t. Putting this
value to the given boundary condition we get c1 = c2 = 0, so p(t) = 0.

10. Using the equality p = 0, from formula (16.9), we get x(t) = p′(t) + t2/2 = t2/2. Note that
the integrand of the optimality criterion is

x2–xt2 + u2–2ut = (x–t2/2)2–t4/4 + (u–t)2–t2.
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As result, the minimized functional takes the form

I(u) = 1
2

1∫
0

[(
x − t2

2

)2
+ (u − t)2

]
dt − 1

2

1∫
0

(
t4

4 + t2
)

dt.

Obviously, the first integral here takes exclusively non-negative values, and the second does not
depend on the control. Then the minimum value of the optimality criterion is achieved in the
case when the first integral is equal to zero. This is possible only for u(t) = t and x(t) = t2/2,
which corresponds to the control found in the process of analyzing the optimality conditions.

11. This problem differs from the one considered in Example 3.3 only in the absence of an
initial condition for the state equation.

12. The solution to the problem can be found in another way. Obviously, the minimum of a
functional in the presence of restrictions in the absence of initial conditions certainly does not
exceed the minimum of the same functional with the same restrictions, but in the presence of
a fixed initial condition, for example, zero. In the latter case, we get the already mentioned
Example 3.3, the optimal control for which is a function identically equal to zero. The corre-
sponding minimum value of this optimality criterion is zero. Therefore, the minimum of the
functional for Example 16.2 does not exceed zero. However, this functional does not accept
negative values. Therefore, its minimum is zero, which corresponds to zero control and state
values. Then the zero solution is also a solution to this problem. Note that this technique
does not work in the functional maximization problem. Indeed, the problem of maximizing a
given functional with a zero initial condition corresponds to Example 5.1, which has its control
solutions identically equal to 1 and –1, with a maximum of the functional equal to 1/2. It is
clear that the maximum of the functional for Example 16.2 should be no less than this value.
However, this functional is not limited from above due to the arbitrariness of the initial state
of the system. As a result, the well-known solution to the maximization problem from Example
5.1 is not suitable for analyzing the corresponding problem without initial conditions.

13. We consider functions of one variable. For functions of many variables, the Sobolev space
H1 is characterized by functions that are square integrable along with all their first-order
partial derivatives. Note also that since we are dealing with square-integrable functions, the
corresponding derivatives are understood in a generalized sense, i.e., in the sense of distribution
theory.

14. The set product A × B is a set of all pairs (a, b) such that the following inclusions hold
a ∈ A, b ∈ B. If both considered sets are Hilbert spaces, then this is true for their product too;
see, for example, [94], [100], [106], [158].

15. Convergence of pair sequence (ak, bk) → (a, b) is the space product A × B is the
convergence ak → a in A and bk → b in B; see, for example, [94], [100], [106], [158].

16. In reality, this result is true for any space Lp(Ω) of functions, which are integrable with
degree p in the set Ω with arbitrary dimension.

17. As in other examples of justification for the closedness of sets (see Chapter 7), we have
proven the validity of limit relations (in this case the equality x′(t) = u(t) not for all, but for
almost all t from the unit interval. However, the elements of the set L2(0, 1), being measurable
functions, are defined up to a set of measure zero, as a result of which the equality fulfilled
almost everywhere is sufficient to justify the closedness of the set under consideration.

18. The fact that we are working here not with an ordinary square f(z) = z2, but with
functions of the type f(z) = (z–a)2, does not play a fundamental role.



488 ■ Optimization: 100 examples

19. Indeed, consider two elements (u1, x1) and (u2, x2) of the set Y and the number σ ∈ (0, 1).
Due to the convexity of the sets W and U , we have inclusions σ(u1, x1) + (1–σ)(u2, x2) ∈ W
and σu1 + (1–σ)u2 ∈ U , and therefore σ(u1, x1) + (1–σ)(u2, x2) ∈ Y . Now let the sequence
of elements {(uk, xk)} of the set Y converges to some pair (u, x) in the space Z. This means
the convergence of uk → u in L2(0, 1) and xk → x in H1(0, 1). Then, since the sets W and
U are closed, the inclusions (u, x) ∈ W and u ∈ U are valid. Thus, the set Y is convex and
closed. Note that the convexity of the set U was established in Chapter 5, and its closedness
in Chapter 7.

20. It would be possible to consider a more general problem when the optimality criterion
depends quadratically on the boundary values of the state function.

21. The resulting inequality differs from a similar formula from Chapter 4 solely in the presence
of the last term, which is a consequence of the absence of an initial condition for the state
equation.

22. This example differs from Example 4.3 only in the absence of an initial condition for the
state equation.

23. In particular, for a control identically equal to zero, equation (16.31) with a zero initial
condition is solved by a function equal to zero at 0 ≤ t ≤ ξ and the value (t–ξ)2/4 at t > ξ for
any non-negative number ξ; see Chapter 4.

24. The corresponding transformations are carried out in Chapter 4 when studying Example
4.3

25. Naturally, from the statement of the problem itself it is clear that it has a unique solution
equal to zero.



C H A P T E R 17

Different optimal control
problems for systems with a
free initial state

In the previous chapter, optimality conditions were given for optimal control problems
of systems in the absence of initial conditions. The purpose of this chapter is to study
problems of this class for which optimal control does not exist or turns out to be non-
unique, optimality conditions degenerate or are insufficient, and the optimization problems
themselves are ill-posed. In some cases, additional isoperimetric conditions are imposed on
the system.

17.1 LECTURE

Previously, optimality conditions for optimal control problems with a free initial state were
considered, with the help of which some examples were studied. For this class of problems,
the effects described in other parts of the book are possible. Below, we give examples of
optimal control problems for systems with a free initial state, for which the solution does
not exist or is not unique, the optimality conditions are not sufficient or degenerate, and
the ill-posedness of the problems according to Tikhonov and Hadamard are analyzed.

17.1.1 Non-uniqueness and non-sufficiency

The first unpleasant effects that we encountered when studying optimal control prob-
lems were the absence of uniqueness of optimal control and sufficiency of optimality
conditions. It is natural to assume that for the class of problems under consideration
one may encounter similar situations.
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Example 17.1 Minimize the functional

I(u, x) = 1
4

1∫
0

(x4 − 2x2 + 2u2)dt,

where the functions x and u are related by the state equation x′(t) = u(t), t ∈ (0, 1).

We have Problem 16.1 with the following values of the parameters

T = 1, f(t, u, x) = u, g(t, u, x) = (x4 − 2x2 + 2u2)/4,

a = –∞, b = ∞, l(x) = 0, q(x) = 0.

Determine the function

H = pu − 1
4(x4 − 2x2 + 2u2).

Then the adjoint system takes the form

p′(t) = x(t)3 − x(t), t ∈ (0, 1); p(0) = 0, p(0) = 0.

Equaling to zero the derivative of the function H, we find the control u(t) = p(t),
which is the solution of the maximum principle.

After differentiation of the adjoint equation using the state equation and the
found control, we get

p′′ = (3x2–1)x′ = (3x2–1)u = (3x2–1)p.

Thus, the function p is a solution of the boundary problem

p′′(t) =
[
3x(t)2–1

]
p(t), t ∈ (0, 1); p(0) = 0, p(1) = 0. (17.1)

Obviously, the function p that is equal to zero is its solution. Using the obtained
formula for the control we find u0 = 0. From the adjoint equation it follows that
three constant function x1 = 0, x2 = 1, x3 = –1 correspond to this function p.
There are particular solutions of the state equation for the control u0. Thus, we have
three pairs (u0, x1), (u0, x2), and (u0, x3), which are the solutions of the optimality
conditions and can be optimal1.

Find the values of the given functional for these pairs. We obtain

I(u0, x1) = 0, I(u0, x2) = I(u0, x3) = –1/4.

As a result, we conclude that the first pair is non-optimal, so the maximum principle
is not a sufficient optimality condition.

In order to find out whether the second and third pairs are really solutions to this
optimal control problem, we present the optimality criterion in the following form

I(u, x) = 1
4

1∫
0

(x2 − 1)2dt + 1
2

1∫
0

u2dt− 1
4 .



Different optimal control problems for systems with a free initial state ■ 491

Obviously, two integrals here are non-negative. Therefore, the value of the given
functional at the any admissible pair is not less than –1/4. Its equality to this value is
possible only for u(t) = 0 and x(t)2 = 1 for all t. Thus, the function x at the arbitrary
point t is equal to 1 or –1. However, for zero control the corresponding state function is
constant. We conclude that the considered optimal control problem has two solutions2

that are the pairs (u0, x2) and (u0, x3). Thus, we have the absence of the uniqueness
of the problem solution and the sufficiency of the optimality conditions3.

Consider another example with similar properties.

Example 17.2 Minimize the functional

I(u, x) =
1∫

0

sin x(t)dt + 1
2

1∫
0

u(t)2dt,

where the functions x and u are related by the state equation x′(t) = u(t), t ∈ (0, 1).

Determine the function

H = pu – (sin x+ u2/2).

The function p is a solution of the equation p′ = cos x with homogeneous boundary
conditions. From the maximum principle, it follows the equality u = p.

As in the previous example, we try to find a solution to the optimality conditions
corresponding to the values p(t) = 0 for all t. According to the two previous equalities,
this is possible for u(t) = 0 and cosx(t) = 0 for any t. The last equality holds for the
values x(t) = π/2+kπ for all t ∈ (0, 1), where k is an arbitrary integer. Note that any
constant function satisfies the state equation for control u0, which is identically equal
to zero. Thus, at least all pairs (u0, xk), where xk is the kth of the above constant
functions, satisfy the optimality conditions.

Let us now turn to the existing optimality criterion. The first integral in its
definition is estimated from below by the value –1, and the second is non-negative,
which means I(u, x) ≥ –1 for any values of the argument of the functional. Obviously,
the equality I(u, x) = –1 is possible only for u(t) = 0 and x(t) = 3π/2 + 2kπ for any
t ∈ (0, 1) for all integer k. Naturally, all such pairs of functions are related by the state
equation, i.e., are acceptable. It follows that among all solutions to the optimality
conditions there are only pairs (u0, xk) for odd values of k. Thus, in this case, the
optimal control problem has an infinite set of solutions, the optimality conditions are
necessary, but not sufficient, and there is also an infinite set of non-optimal solutions
to the optimality conditions.

17.1.2 Singular controls

For the previously considered classes of optimal control problems, we encountered
the degeneration of the maximum principle. Let us show that a similar situation is
possible for problems with a free initial state.
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Example 17.3 Minimize the functional4

I(u, x) = 1
2

1∫
0

x(t)2dt,

where the functions x and u are related by the state equation x′(t) = u(t), t ∈ (0, 1),
besides u belongs to the set U of functions satisfying the inequality |u(t)| ≤ 1 for all
t ∈ (0, 1).

Determine the function H = pu–x2/2. Then the adjoint system takes the form

p′(t) = x(t), t ∈ (0, 1); p(0) = 0, p(1) = 0.

The corresponding maximum condition is

p(t)u(t) = max
|v|≤1

p(t)v, t ∈ (0, 1).

Obviously, it degenerates if p = 0. Now from the adjoint equation, it follows x = 0.
Using the state equation, we get u = 0. The optimality criterion is non-negative. It
can be equal to zero only for x = 0. Therefore, the optimization control problem has
a unique solution that is the found singular control5.

The optimality condition for the considered example is necessary and sufficient.
Of course, another situation can be possible.

Example 17.4 Minimize the functional

I(u, x) = 1
4

1∫
0

(x4 − 2x2t2)dt

on the set of pairs (u, x), satisfying the state equation x′(t) = u(t), t ∈ (0, 1), besides
u belongs to the set U of functions satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1).

The function H here is determined by the formula

H = pu – (x4–2x2t2)/4.

Now the adjoint system takes the form

p′(t) = x(t)3 – x(t)t2, t ∈ (0, 1); p(0) = 0, p(1) = 0.

We can have a singular control if p(t) = 0 for all t. This is possible, if the function x
has one of these three values t, –t, or 0 at the arbitrary point t. However, from the
state equation, it follows the equality

x(t) =
t∫

0

u(τ)dτ + c,
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where c is an arbitrary constant. Then the function x is continuous. Thus, a singular
control can exist for three state functions x1(t) = t, x2(t) = –t, and x3(t) = 0 for
all t, i.e., the points of jump are impossible here. By the state equation, these state
functions correspond to the constant controls u1 = 1, u2 = –1, and u3 = 0. There are
admissible, so we found the singular solutions of the maximum principle. Check the
validity of the Kelley condition.

Calculate the derivative
∂H

∂u
= p.

Using the adjoint equation, we find

d

dt

∂H

∂u
= p′ = x3 − xt2.

By the state equation, we get

d2

dt2
∂H

∂u
= 3x2x′ − x′t2 − 2xt = u(3x2 − t2) − 2xt.

Now we have
∂

∂u

d2

dt2
∂H

∂u
= 3x2 − t2.

Check the sign of this value for our singular controls. We obtain

∂

∂u

d2

dt2
∂H

∂u

∣∣∣
u=±1

= 3t2 − t2 = 2t2, ∂

∂u

d2

dt2
∂H

∂u

∣∣∣
u=0

= −t2.

Thus, the Kelley condition is true for first two singular controls, and this gets broken
for the third one. Therefore, the controls u1 and u2 can be optimal, but the control
u3 is non-optimal. It is easy to see6 that this problem really has two solutions, which
are the pairs (u1, x1) and (u2, x2).

17.1.3 Insolvability of an optimal control problem

In the process of analyzing other types of optimal control problems, we encountered
another unpleasant situation. Consider the following example.

Example 17.5 Minimize the functional7

I(u, x) = 1
2

1∫
0

(x2 − u2)dt

on the set of pairs (u, x), satisfying the state equation x′(t) = u(t), t ∈ (0, 1), besides
u belongs to the set U of functions satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1).

For this problem, we could write the optimality conditions in the form of the
maximum principle, similar to what was done in the previous examples. However, we
can carry out here the same analysis as in Chapter 7. From the inequalities x(t)2 ≥ 0
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and u(t)2 ≤ 1 for all t ∈ (0, 1), it follows a lower estimate for the value of the
minimized functional

I = 1
2

1∫
0

x2dt − 1
2

1∫
0

u2dt ≥ 1
2 .

Consider now the pair sequence {(uk, xk)}, determined by the equalities8

uk(t) =

 1, if 2j
2k ≤ t < 2j+1

2k ,

−1, if 2j+1
2k ≤ t < 2j+2

2k ,
xk(t) =

 t− 2j
2k , if 2j

2k ≤ t < 2j+1
2k ,

2j+2
2k − t, if 2j+1

2k ≤ t < 2j+2
2k ,

where j = 0, 1, ..., k–1; k = 1, 2, .... Obviously, for any k, we have the inclusion uk ∈ U
and the equality x′

k(t) = uk(t) for all t ∈ (0, 1), i.e., all pairs (uk, xk) are admissible.
Using the conditions

|uk(t)| = 1, 0 ≤ xk(t) ≤ 1/2k, t ∈ (0, 1), k = 1, 2, ...,

determine the inequality

−1
2 ≤ I(uk, xk) = 1

2

1∫
0

(x2
k − u2

k)dt ≤ 1
8k2 − 1

2 , k = 1, 2, ....

Passing to the limit as k → ∞, we conclude that I(uk, xk) → –1/2. Thus, the number
–1/2 is the lower bound of the given functional on the set of admissible pairs, and
the determined pair sequence is minimizing.

If there exists an admissible pair such that the corresponding value of the func-
tional is –1/2, then two equalities hold

1∫
0

x2dt = 0,
1∫

0

u2dt = 1.

From first of them, the function x is zero. Then from the state equation, it follows that
the control is zero too. However, this contradicts the second equality. Consequently,
both of these equalities cannot be satisfied simultaneously, which means that the
lower bound of the functional is not achieved. Thus, the considered optimal control
problem has no solution9.

17.1.4 Ill-posed optimal control problems

In the previous chapters, we encountered ill-posed optimal control problems. Natu-
rally, similar problems arise in the absence of initial conditions for the state equation.
We return to Example 17.3, where we consider the minimization of the functional

I(u, x) =
1∫

0

x2dt



Different optimal control problems for systems with a free initial state ■ 495

on the set of pairs (u, x), related by the equation of state x′(t) = u(t) for all t ∈ (0, 1),
besides u belongs to the set U of functions satisfying the inequality |u(t)| ≤ 1 for all
t ∈ (0, 1).

When studying the problem of well-posedness of a problem, one should indicate
the functional space on which the optimality criterion is defined. As such, we choose
the product L2(0, 1) ×H1(0, 1), discussed in the previous chapter.

It was noted earlier that the solution to the problem posed is a pair of functions
(u0, x0), identically equal to zero. Consider a sequence of pairs of functions {(uk, xk)},
where for an arbitrary number k the equalities uk(t) = cos kπt, xk(t) = sin kπt/kπ
hold. This sequence is admissible, and we have the convergence I(uk, xk) → 0. Thus,
this sequence is minimizing. At the same time, the convergence of uk → u0 in L2(0, 1)
does not take place10, which means that this optimal control problem is Tikhonov
ill-posed.

Now consider the following example.

Example 17.6 Minimize the functional11

Ik(u, x) =
1∫

0

(x− yk)2dt

on the set of pairs (u, x), satisfying the state equation x′(t) = u(t), t ∈ (0, 1), besides
u belongs to the set U of functions satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1),
where yk(t) = (kπ)–1 sin kπt, k is a number.

Obviously, this functional has non-negative values. It can be equal to zero only for
x(t) = yk(t) for all t. Then from the state equation, it follows uk(t) = y′

k(t) = cos kπt.
This control belongs to the set U , so the pair (uk, yk) the unique solution of the
considered optimal control problems.

Passing to the limit at the formula of the optimality criterion, we find the limit
value

I∞ = lim
k→∞

Ik(u, x) =
1∫

0

x2dt.

The problem of minimizing it on the set of admissible pairs, which actually coincides
with Example 17.3, has a zero solution (u0, x0). However, due to the absence of
convergence uk → u0 in L2(0, 1), the sequence of optimal pairs {(uk, yk)} for Example
17.6 does not converge to the limit optimal pair (u0, x0). Thus, the considered optimal
control problem is Hadamard ill-posed.

RESULTS

Here is a list of questions in the area of considered examples of optimal control problems
for systems with a free initial state, the main conclusions on this topic, as well as problems
arising in this case that require additional research.
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Questions

It is required to answer questions concerning optimal control problems for systems
with a free initial state.

1. Is it possible to say that the solution to the optimality conditions for Example
17.1 is necessarily realized when the equality p(t) = 0 for all t is satisfied?

2. On what basis was it concluded that the optimality conditions for Example
17.1 are satisfied by the control that is identically equal to zero?

3. Why do several system states correspond to zero control?

4. Why do only three system states corresponding to zero control determine solu-
tions to the optimality conditions for Example 17.1?

5. The identical equality to zero of the function p for Example 17.1 is realized if
at an arbitrary point t the function x takes one of the three indicated values.
Can this function take on different values at different points from among those
available and why?

6. On what basis is it concluded that the optimality conditions for Example 17.1
are insufficient?

7. On what basis is it concluded that the two solutions to the optimality conditions
for Example 17.1 are optimal?

8. What influenced the absence of uniqueness of the solution and sufficiency of
optimality conditions for Example 17.1?

9. How are Examples 17.1 and 17.2 similar and how are they different?

10. Can we say that we have found all solutions to the optimality conditions for
Example 17.2?

11. Can we say that we have found all the optimal pairs for Example 17.2?

12. On what basis is it concluded that certain solutions to the optimality conditions
for Example 17.2 are optimal?

13. What influenced the absence of uniqueness of the solution and sufficiency of
optimality conditions for Example 17.2?

14. In Examples 6.2 and 17.3, the same functional is minimized on the same set
of admissible controls with the same equation of state, and in both cases the
zero control turns out to be optimal. For the first of these examples, optimal
control corresponds to a unique state of the system, and in the second, a whole
family of solutions to the equation of state corresponds to the absence of an
initial condition. Why do we only take one of them into account?
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15. How does the absence of an initial condition affect the presence or absence of
singular control?

16. How does the absence of an initial condition affect the optimality of a singular
control?

17. Are there regular solutions to the maximum condition for Example 17.3?

18. Is it possible to prove the uniqueness of the optimal control for Example 17.3
using Theorem 5.1?

19. Is it possible to prove the sufficiency of the optimality condition for Example
17.3 using Theorem 5.2?

20. Why is the singular control optimal in Example 17.3, but there is a non-optimal
singular control in Example 17.4?

21. Are there regular solutions to the maximum condition for Example 17.4?

22. Why is there not a unique solution to the problem in Example 17.4?

23. In the process of analyzing Example 17.4, it turned out that the system state
function at any point t takes only one of three values. Why does it follow that
she cannot switch from one of these values to another?

24. How does it follow that one of the three found singular controls is not optimal
for Example 17.4?

25. Whence does it follow that two of the three found singular controls are optimal
for Example 17.4?

26. Example 17.5 differs from Example 7.1 only in the absence of an initial state,
and both of these optimal control problems have no solution. Is it, in principle,
possible for a situation where, by eliminating the initial condition, an unsolvable
problem becomes solvable?

27. How does the analysis of Examples 17.5 and 7.1 differ?

28. In Example 17.5, what would change if no restrictions were placed on the control
values?

29. How does the considered sequence of controls behave for Example 17.5?

30. How does the considered sequence of states behave for Example 17.5?

31. Can the sequence of pairs considered for Example 17.5 be used to find an
approximate solution to the problem?

32. How does the analysis of Examples 17.6 and 6.2 differ?

33. How does the considered sequence of controls behave for Example 17.6?
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34. How does the considered sequence of states behave for Example 17.6?

35. What will change if, in Example 17.6, no restrictions are imposed on the control
values?

Conclusions

Based on the study of specific problems of optimal control of systems with a free
initial state, we can come to the following conclusions.

• In problems of optimal control of systems with a free initial state, a non-unique
solution is possible.

• In optimal control problems for systems with a free initial state, optimality
conditions may be insufficient.

• The optimality conditions for Example 17.1 have at least three solutions.

• The optimal control problem for Example 17.1 has two solutions.

• The optimality conditions for Example 17.2 have an infinite set of solutions.

• Among the solutions to the optimality conditions for Example 17.2, there are
an infinite set of optimal pairs and an infinite set of non-optimal pairs.

• In problems of optimal control of systems with a free initial state, the maximum
condition may degenerate.

• For the optimal control problem in Example 17.3, there is a unique singular
control that is optimal.

• For the optimal control problem in Example 17.4, there are three singular con-
trols.

• Two singular controls from Example 17.4 satisfy the Kelley condition, but one
does not.

• The singular controls from Example 17.4 that satisfy the Kelley condition are
optimal.

• In problems of optimal control of systems with a free initial state, there may
be no solution.

• The optimal control problem in Example 17.5 has no solution.

• Optimal control problems for systems with a free initial state may turn out to
be ill-posed according to both Tikhonov and Hadamard.

• The optimal control problem from Example 17.5 has a unique solution, but is
Tikhonov ill-posed.

• The optimal control problem from Example 17.6 has a unique solution, but is
Hadamard ill-posed.



Different optimal control problems for systems with a free initial state ■ 499

Problems

In the process of analyzing optimal control problems for systems with a free initial
state, additional problems arise that require additional research.

1. Non-uniqueness of optimal pairs and insufficiency of optimality con-
ditions for the case when solutions to optimality conditions differ not
only in states, but also in controls. In the examples discussed in the Lec-
ture, the optimality conditions for systems with a free initial state sometimes
had a non-unique solution, and different solutions turned out to be both opti-
mal and non-optimal. However, the corresponding control-state pairs differed
solely by state. Appendix considers a problem of the indicated class, for which
there are several pairs of solutions to optimality conditions that differ in both
states and controls.

2. Special properties of the singular control. When analyzing singular con-
trols in Chapter 6, we encountered a situation where a certain control, rejected
in the process of searching for regular solutions of the maximum principle, turns
out to be its singular solution, and the optimal one. Appendix gives an example
of an optimal control problem for a system with a free initial state, for which
a similar property is observed.

3. Infinity of the set of singular controls. We have already encountered an infi-
nite number of singular controls, both optimal and non-optimal, when studying
systems with a given initial state. In particular, for the minimization problem
from Example 6.1 all singular controls turned out to be optimal, but in the
corresponding maximization problem they were not optimal. One would like
to find out what happens if the initial condition is eliminated for this system.
This problem is explored in Appendix.

4. Optimal control problems with a free initial state under isoperimetric
conditions. In the previous part, optimal control problems with free and fixed
final states with given initial conditions were considered. It would be interesting
to consider similar problems in the absence of initial conditions. Examples of
problems in this class are given in Appendix.

17.2 APPENDIX

We will consider below examples of optimal control problems for systems with a free initial
state, different from those considered earlier. In particular, Section 17.2.1 analyzes a problem
in which the non-uniqueness of the solution and the insufficiency of the optimality conditions
are realized in a situation where pairs of solutions to the optimality conditions differ not
only in the states of the system, but also in the controls. In Section 17.2.2, the control that
was previously rejected in the study of regular solutions of the maximum principle turns
out to be optimal. In Section 17.2.3, an infinite number of singular controls turn out to be
non-optimal, although for a similar problem with an initial condition they were optimal.
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Finally, Sections 17.2.4 and 17.2.5 consider examples of the class of systems under study in
the presence of isoperimetric constraints.

17.2.1 Non-uniqueness and insufficiency under different controls

In Examples 17.1 and 17.2, the optimality conditions were satisfied by many control-
state pairs, some of which were optimal and some of which were non-optimal. How-
ever, in both examples, the solutions to the optimality conditions differed only in the
state of the system, while the control for all found pairs of each example was the
same. Naturally, such a situation occurs only in exceptional cases.

Example 17.7 Minimize the functional12

I(u, x) = 1
4

1∫
0

(
x4 − 2x2t2 + u4 − 2u2)

dt,

where the functions x and u are related by the state equation x′(t) = u(t), t ∈ (0, 1).

The function H is determined by the formula

H = pu − 1
4

(
x4 − 2x2t2 + u4 − 2u2)

.

Then the adjoint system takes the form

p′(t) = x(t)3 − x(t)t2, t ∈ (0, 1); p(0) = 0, p(1) = 0.

From the maximum condition, it follows the equality

p(t) = u(t)3–u(t), t ∈ (0, 1).

One can try to find the pairs (u, x) satisfying the system of optimality conditions
if p(t) = 0 for all t. In accordance with the previous equality, this is possible only in
the case when the function u for an arbitrary t takes one of three values 0, 1, or –1.
On the other hand, from the adjoint equation for the indicated function p it follows
that for an arbitrary t the function x takes one of three values 0, t, or –t. In this case,
the functions u and x must be related by the state equation. It is easy to verify that
only three pairs (u1, x1), (u2, x2), and (u3, x3) have the indicated properties, where
u1(t) = 0, x1(t) = 0, u2(t) = 1, x2(t) = t, u3(t) = –1, x3(t) = –t for all t ∈ (0, 1).
Thus, these three function pairs satisfy the system of optimality conditions13.

For finding a best pair, transform the integrand of the optimality criterion.

x4 − 2x2t2 + u4 − 2u2 = (x2 − t2)2 − t4 + (u2 − 1)2 − 1.

The second and fourth terms on the right side here are concrete quantities, and the
first and third take exclusively non-negative values. They can be identically equal to
zero only in the case when, for an arbitrary t, the function u takes one of two values
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1 or –1, and the function x takes the values t or –t. Considering that these functions
are related by the equation of state, we conclude that the problem being solved has
exactly two optimal pairs (u2, x2) and (u3, x3). Thus, we are again dealing with the
absence of uniqueness of optimal control and sufficiency of optimality conditions, but
now the solutions to optimality conditions differ not only in the functions of the state
of the system, but also in the controls.

17.2.2 Special property of the singular control

Consider a non-standard relation between regular and singular solutions of the max-
imum principle.

Example 17.8 Minimize the functional14

I(u, x) = 1
4

1∫
0

(x2 − 2xt)dt

on the set of pairs (u, x) related by the state equation x′(t) = u(t) for all t ∈ (0, 1)
satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1).

Determine the function

H = pu–(x2 − 2xt)/2.

Then the adjoint system takes the form

p′ = x–t, t ∈ (0, 1); p(0) = 0, p(1) = 0. (17.2)

In accordance with the maximum principle, there are two options here. In the regular
case, the maximum of the function H reaches at the boundary of the set of admissible
controls, and in the singular case a singular control is implemented.

Consider, at first, the regular case. Find the control from the maximum principle

uε(t) =
{

−1, if pε(t) > 0,
1, if pε(t) < 0. (17.3)

Suppose u(t) = 1 for all t that is possible only for the positive values of the function
p because of the equality (17.3). Then we find x(t) = t + c with arbitrary constant
c using the state equation. Integrating the adjoint equation (17.2) with using the
boundary conditions, we get

1∫
0

p′dt =
1∫

0

cdt = c = 0.

Therefore, x(t) = t. Now the adjoint equation takes the form p′ = 0. Using the corre-
sponding boundary conditions, we conclude that p(t) = 0 for all t, which contradicts
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the formula (17.3). Thus, this control cannot determine the solution of the optimality
conditions15.

Suppose now u(t) = –1 for all t that is possible for negative p. Then the general
solution of the state equation is x(t) = –t+ c, where the constant c is arbitrary. After
integration of the adjoint equation with using the boundary conditions, we obtain

1∫
0

p′dt =
1∫

0

(c− 2t)dt = c− 1 = 0.

We find c = 1, so x(t) = 1–t. Therefore, the adjoint equation can be written as
p′ = 1–2t. Solving this equation with a zero initial condition, we find p(t) = t–t2.
This function is positive on a given interval, which contradicts equality (17.3). To
summarize, we conclude that control cannot be continuous.

Let us assume that ξ is the first control discontinuity point, and initially u(t) = 1,
which is possible if the function p is positive on the interval (0, ξ). In this section
x(t) = t + c. Then p′ = c, i.e., the function p is monotonic. However, it goes to
zero both at the beginning of this interval (initial condition) and at the end (when
passing through point ξ, it changes sign). Consequently, it is equal to zero, which
again contradicts condition (17.3)

Let us assume now that ξ is the first control discontinuity point, and initially
u(t) = –1, which is possible if the function p is positive on the interval (0, ξ). Then
x(t) = –t + c. The adjoint equation on this interval is p′ = c–2t. Integrating this
equality over the interval (0, ξ), we find c = 1. Then p′ = 1–2t. Solving it with a
zero initial condition, we find p = t–t2. This function is positive on the unit interval,
which contradicts equality (17.3).

Thus, there are no regular solutions to the maximum principle. However, the
existence of singular control is possible. This is realized at p = 0, which corresponds
to the equality x(t) = t. Therefore, we obtain u = 1. Previously, we rejected this
control in the process of studying the possibility of the existence of regular solutions
to the maximum principle. However, it turned out to be a singular control. It is easy
to verify that it is optimal16.

17.2.3 Infinite set of singular controls

Many examples considered in this part are analogs of previously studied optimal
control problems with a given initial state of the system. Let us now consider the
corresponding analog of Example 6.1.

Example 17.9 Minimize the functional

I(u, x) =
1∫

0

x(t)u(t)dt

on the set of pairs (u, x) related by the state equation x′(t) = u(t) for all t ∈ (0, 1)
satisfying the inequality |u(t)| ≤ 1 for all t ∈ (0, 1).
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Determine the function H = pu–xu. Then the adjoint equation takes the form

p′(t) = u(t), t ∈ (0, 1); p(0) = 0, p(1) = 0.

Integrating the adjoint equation with the boundary conditions, we get

1∫
0

u(t)dt = 0. (17.4)

Obviously, degeneration of the maximum principle here is possible if the equality17

x(t) = p(t) is true for all t ∈ (0, 1). Thus, the function x satisfies the same conditions
as p, so the following equalities hold

x′(t) = u(t), t ∈ (0, 1); x(0) = 0, x(1) = 0. (17.5)

Note that the second boundary condition (17.5) is a consequence of integrating the
equation of state taking into account the first boundary condition and equality (17.4).

Thus, in this case, any element of the set U that satisfies equality (17.4) has
special control. Naturally, such controls constitute an infinite and not even countable
set. The result obtained exactly coincides with what was established during the study
of Example 6.1. Thus, the solution to the system of optimality conditions for this
example is any pair (u, x), where u is a singular control, and x is a solution to a given
state equation with a zero initial condition.

Let us now turn to the direct study of the optimality criterion. We have

I(u, x) =
1∫

0

xudt =
1∫

0

xx′dt = 1
2

1∫
0

d

dt
(x2)dt = x(1)2

2 − x(0)2

2 .

For a problem with a fixed (zero) state of the system, the second term on the right side
of the last equality becomes zero, and the first is non-negative. Thus, the functional
can be equal to zero only when x(1) = 0, which corresponds to equality (17.4). As
a result, it turned out that any singular control for Example 6.1 turns out to be
optimal, which means that the problem has an infinite number of solutions.

The initial state is not fixed for our case. Transform the previous equality using
the state equation. We obtain

x(1) = x(0) +
1∫

0

u(t)dt.

As a result, the formula for the optimality criterion takes the form

I(u, x) = x(1)2

2 − x(0)2

2 = x(0)
1∫

0

u(t)dt = 1
2

[ 1∫
0

u(t)dt
]2
.
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Based on the set of admissible controls, we conclude that the integral on the right side
of this equality takes values from the interval [–1,1]. However, there are no restrictions
on the value of x(0). As a result, the functional under consideration turns out to
be unbounded from below on the set of admissible pairs (u, x). Thus, this optimal
control problem has no solution, and the optimality conditions are necessary, but not
sufficient18.

17.2.4 Problem with an isoperimetric condition with respect to control

For systems with free and fixed final states, optimal control problems with isoperimet-
ric conditions were previously considered. Systems in the absence of initial conditions
can be studied in a similar way. In this case, in accordance with the Lagrange mul-
tiplier method19, the function H is introduced in the same way as for the previous
problems, i.e., depends additionally on the numerical Lagrange multiplier associated
with the isoperimetric condition. Regarding the optimal control, the maximum con-
dition20 for this function H is valid, the definition of which includes a function x that
satisfies the equation of state without boundary conditions, and a function p that
satisfies the adjoint equation with two boundary conditions.

Example 17.10 Minimize the functional

I(u, x) = 1
2

1∫
0

(
x2 − xt2 + u2 − 2ut

)
dt

on the set of pairs (u, x) related by the state equation x′(t) = u(t) for all t ∈ (0, 1)
under the isoperimetric condition

1∫
0

udt = 1
2 .

In accordance with the described methodology, the following function is determined

H = pu + λ(u–1/2) – (x2 − xt2 + u2 − 2ut)/2.

The function p here is the solution of the adjoint system

p′(t) = x(t) − t2/2, t ∈ (0, 1); p(0) = 0, p(1) = 0. (17.6)

Find the control from the maximum condition

u(t) = p(t) + t+ λ. (17.7)

Now with respect to the three unknown functions u, x, p and the number λ, there is
a system that includes the control formula (17.7), the state equation and the adjoint
equation with two boundary conditions (17.6), as well as the isoperimetric condition.
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Differentiating the adjoint equation, we get

p′′ = x′ – t = u – t = p+ λ.

Integrating the equality (17.7) using the isoperimetric condition, we obtain

1∫
0

udt =
1∫

0

pdt+ 1
2 + λ = 1

2 .

Now we find

λ = −
1∫

0

pdt. (17.8)

Then we have the following boundary value problem for the integro-differential equa-
tion

p′′(t) − p(t) =
1∫

0

p(τ)dτ, y ∈ (0, 1); p(0) = 0, p(1) = 0.

After multiplication by p and integration, we get

1∫
0

p′′(τ)p(τ)dτ −
1∫

0

p(τ)2dτ =
[ 1∫

0

p(τ)dτ
]2
.

Transforming the first integral here using the integration by parts formula and taking
into account the existing boundary conditions, we have

1∫
0

p′(τ)2dτ +
1∫

0

p(τ)2dτ +
[ 1∫

0

p(τ)dτ
]2
.

Obviously, the resulting equality is true only for the function p identically equal
to zero. Then from formula (17.8), it follows that λ = 0. As a result, from formula
(17.7), we find the control u(t) = t, and from the first equality (17.6), we find the state
function x(t) = t2/2. Thus, the system of optimality conditions for the considered
example has a unique solution that is the found pair (u, x). It is easy to verify that
this is the optimal pair for this example21.

17.2.5 Problem with an isoperimetric condition with respect to state

Example 17.10 considered an optimal control problem with a free initial state in the
presence of an isoperimetric condition that includes control. Let us now consider a
problem that differs from the previous one only in that the isoperimetric condition
includes the system state function.
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Example 17.11 Minimize the functional

I(u, x) = 1
2

1∫
0

(
x2 − xt2 + u2 − 2ut

)
dt

on the set of pairs (u, x) related by the state equation x′(t) = u(t) for all t ∈ (0, 1)
under the isoperimetric condition

1∫
0

xdt = 1
6 .

The function H now is determined by the formula

H = pu + λ(x–1/6) – (x2 − xt2 + u2 − 2ut)/2.

The corresponding adjoint system takes the form

p′(t) = −λ+ x(t) − t2/2, t ∈ (0, 1); p(0) = 0, p(1) = 0.

From the maximum condition, it follows

u(t) = p(t) + t.

Let us find a solution to the system of optimality conditions. Integrating the adjoint
equation taking into account the boundary conditions available for it, as well as the
isoperimetric condition, we have

1∫
0

p′dt = −λ+
1∫

0

xdt − 1
2

1∫
0

t2dt = −λ = 0.

Then, after differentiating the adjoint equation, taking into account the equation of
state and the previously obtained formula for control, we obtain

p′′ = x′–t = u–t = p.

The resulting second-order equation with homogeneous boundary conditions has a
solution that is identically equal to zero. Then from the control formula obtained
above we find u(t) = t, and from the adjoint equation, taking into account the found
value of λ, it follows that x(t) = t2/2. Obviously, the resulting pair (u, x) is the only
solution to the optimal control problem under consideration22.

Additional conclusions

Based on the results of the study of the previously discussed examples, the following
conclusions can be drawn.
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• For Example 17.7, the system of optimality conditions is satisfied by three pairs
of functions that differ in both the states they contain and the controls.

• The optimality conditions for Example 17.7 are necessary but not sufficient.

• The optimal control problem from Example 17.7 has two solutions that differ in
sign. Example 17.8 explores the possibility of the existence of regular and sin-
gular solutions to the maximum principle, with a control rejected as a possible
regular solution being a singular control.

• The singular control from Example 17.8 is optimal.

• The optimality conditions for Example 17.8 are necessary and sufficient.

• For Example 17.9, there is an infinite set of singular controls, coinciding with
a similar set for Example 6.1, which differs from the one considered only in the
presence of the initial condition.

• All singular controls for Example 17.9 satisfy the Kelley condition and its gen-
eralizations.

• All the singular controls for Example 17.9 are non-optimal, although for Ex-
ample 6.1 they are all optimal.

• The optimal control problem for Example 17.9 has no solution.

• The optimality conditions for Example 17.9 are not sufficient.

• The optimal control problem for Example 17.10 with the isoperimetric condition
has a unique solution.

• The optimality conditions for Example 17.10 with the isoperimetric condition
are sufficient.

• The optimal control problem for Example 17.11 with the isoperimetric condition
has a unique solution.

• The optimality conditions for Example 17.11 with the isoperimetric condition
are sufficient.

Notes

1. In principle, it is possible that the boundary value problem (17.1) has other solutions.

2. Note that this optimal control problem is invariant under sign changes. In this regard, the
presence of two optimal pairs, differing only in signs, is quite natural.

3. One may wonder why for this example the optimality conditions turned out to be insuffi-
cient, and the optimal control was not unique. If we turn to the general theorems on uniqueness
and sufficiency from Chapter 5, we can pay attention to the requirement that the optimality
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criterion be convex. It is easy to verify that the functional under consideration does not have
this property.

4. This problem differs from the one considered in Example 6.2 only in the absence of an
initial condition.

5. Naturally, to solve this problem it was possible to exclude control from consideration alto-
gether, since the functional depends on the function x. It is clear that the quadratic functional
reaches its minimum when the corresponding integrand is equal to zero.

6. Indeed, the integrand of the minimized functional can be written as (x4–2x2t2) = (x2–t2)2+
t4. Here the second term on the right side does not depend on the choice of control and state,
and the first, being non-negative, can become zero only in the case when at any point t the
function x takes the values t or –t. In the absence of an equation of state, we could conclude
that any function x taking the value t on one part of the interval (0,1) and –t on another part
of it provides a minimum to the functional. However, the presence of an equation of state with
restrictions on controls excludes the possibility of the existence of a discontinuous function x.
Thus, solutions to the problem can only be functions (u1, x1) and (u2, x2).

7. This problem differs from the one considered in Example 7.1 only in the absence of an
initial condition.

8. In Chapter 7, we considered the same control sequence {uk}; see Figure 7.1. After solving
the corresponding state equation with the given initial condition, we determined the considered
state sequence {xk}; see Figure 7.2. Now we can not to determine it after solving the state
equation because of the absence of the initial condition. In this regard, we immediately set the
corresponding sequence of pairs.

9. Obviously, the given minimizing sequence of pairs allows us to determine a weak approxi-
mate solution to the problem.

10. The rationale for this statement is given in Chapter 8, where an example is studied that
differs from the one considered only in the absence of an initial condition; see Example 6.2.
The analysis carried out in this case differs from that done in Chapter 8 by considering not a
minimizing sequence of controls, but a minimizing sequence of control-state pairs.

11. This problem differs from the one considered in Example 8.1 only in the absence of an
initial condition.

12. This problem differs from the one considered in Example 7.1 only in the absence of an
initial condition.

13. In this case, it does not matter whether there are solutions to the optimality conditions
with non-zero values of the function p. The results obtained are already sufficient to justify
both the non-uniqueness of the solution to the problem and the insufficiency of optimality
conditions.

14. This problem differs from the one considered in Example 6.5 only in the absence of an
initial condition.

15. In reality, it cannot be a regular solution, but, as we will soon see, it is a singular control.

16. To do this, it is enough to present the integrand in the optimality criterion in the form
(x–t)2–t2. Does the second term here not depend on the choice of pair? And the first, being
non-negative, vanishes at x(t) = t at all points.
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17. In this case, it does not matter to us whether there are regular solutions to the maximum
principle.

18. As already noted, Example 17.9 differs from Example 6.1 solely in the absence of an
initial condition. For the latter, the validity of Kelley condition and its generalizations was
established in Chapter 6, albeit in a degenerate form. Moreover, all singular controls were
optimal. Obviously, the presence or absence of an initial condition does not affect the validity
of these statements, i.e., for Example 17.9 they are still executed. However, in this case, singular
controls cannot be optimal due to the insolvability of the problem. This does not contradict
the validity of Kelley condition and its generalizations, since they provide necessary, but in the
general case not sufficient conditions for the optimality of a singular control.

19. As before, to study problems with an isoperimetric condition, one can use the penalty
method.

20. This result is justified in the same way as similar statements for other types of systems.

21. Obviously, our integrand can be written as

x2–xt2 + u2–2ut = (x–t2/2)2–t4/4 + (u–t)2–t2 = 0.

Here, the second and fourth terms on the right side do not depend on the choice of pair (u, x),
and the first and third are non-negative. They can vanish exclusively for a pair characterized
by the equalities u(t) = t and x(t) = t2/2, which corresponds to the found solution of the
optimality conditions, which thereby turns out to be optimal. Note also that in this case it
is possible to establish the existence and uniqueness of a solution to the problem and the
sufficiency of optimality conditions based on the theorems given in Part II.

22. In fact, Examples 17.10 and 17.11 consider the same optimal control problem. In the
absence of an isoperimetric condition, its solution is characterized by the functions u(t) = t
and x(t) = t2/2, the first of which satisfies the isoperimetric condition from Example 17.10,
and the second satisfies the isoperimetric condition from Example 17.11. In this regard, adding
isoperimetric conditions does not change the result.
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List of examples

Here is a list of examples discussed in this book, with the example’s own number in
brackets, followed by a description of its most important properties.

PART I. FUNCTION MINIMIZATION

1. (1.1). The stationarity condition has a unique solution and is a necessary and
sufficient condition for a minimum. The problem has a unique solution and is
Tikhonov well-posed.

2. (1.2). The stationary condition has three solutions and is a necessary but not
sufficient condition for a minimum. The problem has only one solution.

3. (1.3). The stationary condition has three solutions and is a necessary but not
sufficient condition for a minimum. The problem has two solutions.

4. (1.4). The stationary condition has five solutions and is a necessary but not
sufficient condition for a maximum. The problem has three solutions.

5. (1.5). The stationary condition has a countable set of solutions and is a neces-
sary but not sufficient condition for a minimum. The problem has a countably
many solutions. The countable set of solutions to the stationary condition are
not the minimum points of the function.

6. (1.6). The stationary condition has a continuum of solutions and is a neces-
sary and sufficient condition for a minimum. The problem has a continuum of
solutions.

7. (1.7). The stationary condition has three solutions and is a necessary but not
sufficient condition for a minimum. The problem has a unique solution and is
Tikhonov ill-posed.

8. (1.8). The stationary condition has no solution and is a necessary and sufficient
condition for a minimum. The problem has no solution.

9. (1.9). The stationary condition has a unique solution and is a necessary but
not sufficient condition for a minimum. The problem has no solution.

10. (1.10). The stationary condition has two solutions and is a necessary but not
sufficient condition for a minimum. The problem has no solution.
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11. (1.11). The stationary condition is not applicable due to the non-smoothness
of the function. The problem has only one solution. The solution is found using
the subgradient of the function.

12. (1.12). The stationary condition is not applicable due to limitations. The prob-
lem has only one solution. The solution is found using the variational inequality.

13. (2.1). The variational inequality has a unique solution and is a necessary and
sufficient condition for a minimum. The problem has only one solution.

14. (2.2). Depending on the values of the parameters, the variational inequality can
have one, two, or three solutions. The problem has only one solution.

15. (2.3). The problem has a unique solution and is Hadamard well-posed.

16. (2.4). The problem has a unique solution, but is Hadamard ill-posed.

17. (2.5). The problem is Hadamard ill-posed. There is a bifurcation of stationary
points.

18. (2.6). The problem has a unique solution and is solved iteratively, and the
algorithm converges for any initial approximation.

19. (2.7). The problem has a unique solution and is solved iteratively, and the
algorithm diverges for any initial approximation.

20. (2.8). The problem has a unique solution and is solved iteratively, and the
algorithm converges for some initial approximations and diverges for others.

21. (2.9). The problem has only one solution. The problem is solved iteratively, and
the algorithm diverges for any initial approximation, but becomes convergent
after modifying the algorithm.

22. (2.10). The problem has two solutions and is solved iteratively. Depending on
the initial approximation, the solution algorithm converges to one or another
solution.

23. (2.11). For the problem, multiple bifurcation of stationary points is observed.
The problem is solved iteratively, and depending on the initial approximation,
the algorithm either converges to one of the stationary points or diverges.

24. (2.12). Problem with equality type constraint. The problem is solved by the
Lagrange multiplier method and the penalty method. The problem has only
one solution.

25. (2.13). A problem in which a weak approximate solution is not strong.

26. (2.14). A problem in which a strong approximate solution is not weak.

27. (2.15). The problem is unsolvable, but a weak approximate solution exists.
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PART II. OPTIMAL CONTROL PROBLEMS WITH A FREE FINAL STATE

28. (3.1). The maximum principle has a unique solution and is a necessary and
sufficient condition for the minimum. The problem has a unique solution and is
Tikhonov well-posed. The variational inequality is equivalent to the maximum
principle. Bellman optimality principle is valid.

29. (3.2). The maximum principle has a unique solution and is a necessary and
sufficient condition for the minimum. The problem has a unique solution. The
variational inequality is not equivalent to the maximum principle.

30. (3.3). The maximum principle has a unique solution and is a necessary and
sufficient condition for the minimum. The problem has a unique solution and is
Tikhonov well-posed. The variational inequality is equivalent to the maximum
principle. The problem is solved iteratively. The algorithm converges for any
initial approximation. The problem is solved using the penalty method.

31. (3.4). The maximum principle has a unique solution and is a necessary and
sufficient condition for the minimum. The problem has a unique solution and
is Tikhonov well-posed. The problem is solved using the decoupling method,
iteratively, using dynamic programming and the penalty method.

32. (4.1). The functionality is not smooth. Standard iterative methods are not
applicable. The problem is solved by non-smooth optimization methods.

33. (4.2). The state equation is not always solvable. The problem is solved using
the penalty method.

34. (4.3). The state equation may have a non-unique solution. The problem is solved
using the penalty method.

35. (5.1). The maximum principle has an infinite number of solutions and is a
necessary but not sufficient condition for the minimum. Iterative methods for
solving the maximum condition converge to different limits for different initial
approximations. The problem has two solutions. The variational inequality is
less effective than the maximum principle.

36. (5.2). The maximum principle has a unique solution and provides a necessary
and sufficient condition for optimality when the conditions of the theorem on
the sufficiency of the optimality condition are violated. The problem has a
unique solution if the conditions of the uniqueness theorem are violated.

37. (5.3). The problem has three solutions, which are found using the maximum
principle.

38. (6.1). The optimality criterion is convex, but not strictly convex. The maximum
principle gives an uncountable set of singular controls and is a necessary and
sufficient condition for optimality. The variational inequality is equivalent to
the maximum principle. All singular controls satisfy the Kelley condition and
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the generalized Kopp–Moyer condition of any order in degenerate form. The
problem has countless solutions.

39. (6.2). The maximum principle has a unique solution that is singular and is a
necessary and sufficient condition for optimality. The singular control satisfies
Kelley condition. The problem has a unique solution, but is not Tikhonov well-
posed.

40. (6.3). The maximum principle has two solutions that are singular and is a nec-
essary, but not sufficient, condition for optimality. One singular control satisfies
the Kelley condition, but the other does not.

41. (6.4). The maximum principle has a unique solution and is a necessary and suf-
ficient condition for optimality. A control suspected of being a regular solution
to the maximum principle turns out to be optimal, being a special control. The
problem has a unique solution.

42. (6.5). The maximum principle has three solutions, of which one turns out to
be singular, is, and provides a necessary, but not sufficient condition for opti-
mality. Singular control does not satisfy Kelley condition. The problem has two
solutions, which are regular solutions of the maximum principle.

43. (6.6). The maximum principle has an infinite set of solutions, of which only two
are regular, and is a necessary but not sufficient condition for optimality. All
singular controls satisfy the Kelley condition and the generalized Kopp–Moyer
condition of any order in degenerate form. The problem has two solutions.

44. (6.7). The maximum principle gives five singular controls and is a necessary,
but not sufficient condition for optimality. Three singular controls satisfy the
Kelley condition, but two do not. The problem has three solutions.

45. (6.8). The maximum principle gives five singular controls and is a necessary, but
not sufficient condition for optimality. Two singular controls satisfy the Kelley
condition, but three do not. The problem has no solution.

46. (6.9). The maximum principle has a unique solution that is special and is a
necessary and sufficient condition for optimality. The singular control satisfies
the Kelley condition in degenerate form, as well as the Kopp–Moyer condition.
The problem has only one solution.

47. (6.10). The maximum principle gives three solutions, one of which is singular
and two are regular. The singular control satisfies the Kelley condition in de-
generate form, but does not satisfy the Kopp–Moyer condition. The problem
has two solutions.

48. (6.11). The maximum principle gives a unique solution that is singular. The
singular control satisfies the Kelley and Kopp–Moyer conditions in degenerate
form, as well as the generalized third-order Kopp–Moyer condition. The problem
has a unique solution, which is a singular control.
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49. (6.12). The maximum principle has three solutions, one of which is singular and
two are regular. Singular controls satisfy the Kelley and Kopp–Moyer conditions
in degenerate form and do not satisfy the generalized third-order Kopp–Moyer
condition. The problem has two solutions that are regular.

50. (6.13). The maximum principle has a unique solution that is singular. The
singular control satisfies the Kelley condition and the generalized Kopp–Moyer
condition of order r − 1 in degenerate form, as well as the generalized Kopp–
Moyer condition of order. The problem has only one solution.

51. (6.14). The maximum principle gives three solutions, one of which is singular
and two are regular. The singular control satisfies the Kelley condition and the
generalized Kopp–Moyer condition of order r − 1 in degenerate form and does
not satisfy the generalized Kopp–Moyer condition of order r. The problem has
two solutions that are regular.

52. (7.1). The functional to be minimized is non-convex. The maximum principle
does not have any solutions, but is a necessary and sufficient condition for the
minimum. The problem has no solution. There is a weak approximate solution
to the problem.

53. (7.2). The maximum principle has a unique solution that is singular. Singular
control does not satisfy Kelley condition. The problem has no solution. There
is no weak approximate solution to the problem.

54. (7.3). The functional to be minimized is convex. The maximum principle does
not have any solutions, but is a necessary and sufficient condition for the min-
imum. The problem has no solution. There is a weak approximate solution to
the problem.

55. (8.1). The maximum principle has a unique solution that is singular. The prob-
lem has a unique solution, but is not Hadamard well-posed. For a fixed value
of the parameter, the problem is not Tikhonov well-posed. An approximate
solution is found by the regularization method.

56. (8.2). For a fixed value of the parameter, the problem is Tikhonov well-posed.
The problem Hadamard well-posed.

PART III. OPTIMAL CONTROL PROBLEM WITH A FIXED FINAL STATE

57. (9.1). The maximum principle has a unique solution. The variational inequality
is equivalent to the maximum principle. The penalty method gives an exact
solution to the problem. Bellman optimality principle is valid. The solution to
the problem is unique, and discontinuous. Changing the type of extremum does
not change the general properties of the problem.

58. (9.2). The maximum principle gives a unique solution. The variational inequal-
ity is equivalent to the maximum principle. The problem has a unique solution,
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although the functional is not strictly convex. The solution to the problem is
discontinuous.

59. (9.3). The maximum principle has a unique solution. The variational inequality
is equivalent to the maximum principle. The problem has only one solution.
Changing the type of extremum changes the general properties of the problem.

60. (9.4). The maximum principle gives a unique solution. The variational inequal-
ity is not equivalent to the maximum principle. The problem has a unique
solution.

61. (10.1). The problem is solved using the decoupling method. The problem has
a unique solution.

62. (10.2). The problem has a geometric meaning. The problem has a unique so-
lution. An approximate solution to the problem is found using the penalty
method.

63. (10.3). The problem is vector and has a physical meaning. The problem has a
unique solution.

64. (11.1). Optimality conditions have an infinite set of solutions, moreover, two
with one and two discontinuities and one with each larger number of discontinu-
ity points. Optimality conditions are not sufficient. The problem has a unique
solution, although the optimality criterion is non-convex.

65. (11.2). The maximum principle has a unique solution that is singular. The
problem is Tikhonov ill-posed.

66. (11.3). The maximum principle has three solutions and is an insufficient condi-
tion for optimality. The problem has two solutions.

67. (11.4). There is an infinite and not even countable set of stationary points of
the function H that are not optimal. The problem has no solution.

68. (11.5). The maximum principle has an infinite set of solutions, of which one is
singular, and all solutions except the singular one are discontinuous. The opti-
mality condition is not sufficient. Singular control is not optimal. The problem
has two solutions.

69. (11.6). The maximum principle has three solutions that are singular. One sin-
gular control satisfies the Kelley condition, but is not optimal. The problem
has no solution.

70. (11.7). The maximum principle has an infinite set of solutions and is a sufficient
condition for optimality. The problem has an infinite and not even countable
set of solutions.
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71. (11.8). The maximum principle has three solutions that are singular. The Kelley
condition is satisfied for all singular controls in degenerate form. Two singular
controls satisfy the Kopp–Moyer condition, but one does not. The problem has
two solutions.

72. (11.9). The maximum principle has three solutions that are singular. The Kelley
condition is satisfied for all singular controls in degenerate form. Two singular
controls do not satisfy the Kopp–Moyer condition, but one does. The problem
has a unique solution.

73. (12.1). The maximum principle has a unique solution. The problem has a unique
solution and is Tikhonov well-posed.

74. (12.2). The maximum principle has a unique solution. The problem has a unique
solution and is Hadamard well-posed.

75. (12.3). The maximum principle has a unique solution that is singular. The
problem has a unique solution and is Tikhonov ill-posed.

76. (12.4). The maximum principle has a unique solution that is singular. The
problem has a unique solution and is Hadamard ill-posed.

77. (12.5). The problem has a unique solution and is Hadamard ill-posed. There
is a bifurcation of extremals. For some values of the problem parameter, the
maximum principle is a necessary and sufficient condition for optimality, but
for others it is not.

78. (12.6). The problem is Hadamard ill-posed. There is a bifurcation of extremals
with an infinite set of bifurcation points.

79. (12.7). There is an infinite set of solutions to optimality conditions. The problem
has two solutions that are discontinuous.

PART IV. OPTIMAL CONTROL PROBLEMS WITH ISOPERIMETRIC CONDI-
TIONS

80. (13.1). The problem with a free final state has a unique solution and is
Tikhonov well-posed. The problem is solved using the maximum principle,
penalty method and variational inequality.

81. (13.2). Problem with a fixed final state has a unique solution and is to well-
posed Tikhonov.

82. (13.3). A problem with geometric meaning. The problem has a unique solution.

83. (14.1). A problem with a fixed final state and a non-convex set of admissible
controls. The system of optimality conditions is linear. The maximum princi-
ple has an infinite set of solutions. Solutions of optimality conditions form an
orthonormal family. The problem has two solutions.
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84. (14.2). The set of admissible controls is not convex. The system of optimality
conditions is nonlinear. Optimality conditions have an infinite set of solutions.
There is a solution to the problem, but it is not unique.

85. (14.3). Problem with a free final state. The set of admissible controls is not
convex. The system of optimality conditions is linear. The maximum principle
has an infinite set of solutions. The problem has two solutions.

86. (14.4). The problem has a continuum of solutions that are not singular controls.
All optimal controls are discontinuous. Optimality conditions are necessary and
sufficient.

87. (15.1). Problem with a fixed final state. The set of admissible controls is not
convex. The minimized functional is non-convex. The problem has no solution.

88. (15.2). Problem with a fixed final state. The set of admissible controls is not
convex. The minimized functional is convex. The problem has no solution.

89. (15.3). System with a free final state. The set of admissible controls is not
convex. There is an infinite set of solutions to optimality conditions. The prob-
lem has no solution. Solutions to the optimality conditions form a minimizing
sequence and can be chosen as weak approximate solutions to a given problem.

90. (15.4). System with a free final state. The solution of the optimality conditions is
a singular control. The singular control satisfies Kelley condition and is optimal.
The problem has a unique solution, but is not Tikhonov well-posed.

91. (15.5). System with a free final state. There exists a unique singular control
that satisfies the Kelley condition, but is not optimal.

92. (15.6). System with a free final state. There are two singular controls on the
boundary of the set of admissible controls. First of them satisfies the Kelley
condition, but the second does not.

93. (15.7). System with a free final state. The problem has a unique solution, but
is Hadamard ill-posed.

94. (15.8). The problem has an infinite and not even countable set of solutions. All
solutions of the maximum principle are singular controls. The Kelley condition
is satisfied for all singular controls.

95. (15.9). There is an infinite and not even countable set of singular controls. The
Kelley condition is satisfied for all singular controls, but all singular controls
are not optimal.

96. (15.10). There is an infinite and not even countable set of singular controls. All
admissible controls are singular. The Kelley condition is satisfied for all singular
controls. The problem has an infinite and not even countable set of solutions.
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97. (15.11). System with a fixed final state. There a unique control that satisfies
Kelley condition.

98. (15.12). System with a fixed final state. There is a unique optimal control, but
the problem Tikhonov ill-posed.

99. (15.13). System with a fixed final state. There is a unique optimal control, but
the problem is Hadamard ill-posed.

100. (15.14). The problem has a point of extremal bifurcation.

101. (15.15). The problem has an infinite set of points of extremal bifurcation.

102. (15.16). A problem with control included in the optimality criterion and a state
included in the isoperimetric condition. The problem has a unique solution.
Bellman principle does not valid.

103. (5.17). A problem with control included in the isoperimetric condition and the
state included in the optimality criterion. The problem has a unique solution.
Bellman principle is not valid.

PART V. OPTIMAL CONTROL PROBLEMS WITH A FREE INITIAL STATE

104. (16.1). A problem without control restrictions has a unique solution. The max-
imum principle is a necessary and sufficient condition for optimality.

105. (16.2). A problem with control constraints has a unique solution. The maximum
principle is a necessary and sufficient condition for optimality. An approximate
solution is found using the penalty method.

106. (16.3). Problem with a singular state equation of. An approximate solution is
found using the penalty method.

107. (17.1). The optimal control problem has two optimal pairs with the same con-
trol. The maximum principle is a necessary but not sufficient condition for
optimality.

108. (17.2). The optimal control problem has an infinite set of optimal pairs with the
same control. The maximum principle is a necessary but not sufficient condition
for optimality. There is an infinite set of solutions to optimality conditions that
are not optimal.

109. (17.3). The problem has a unique solution, which is singular. The maximum
principle is a necessary and sufficient condition for optimality. The problem is
Tikhonov ill-posed.

110. (17.4). The maximum principle has three singular solutions, one of which does
not satisfy the Kelley condition. The optimal control problem has two optimal
pairs with the same control. The maximum principle is a necessary but not
sufficient condition for optimality.
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111. (17.5). The problem has no solution. A weak approximate solution to the prob-
lem is determined.

112. (17.6). The problem has a unique solution, but is Hadamard ill-posed.

113. (17.7). The optimal control problem has two optimal pairs that differ in both
control and state. The maximum principle is a necessary but not sufficient
condition for optimality.

114. (17.8). The problem has a unique solution that is singular, and the correspond-
ing pair was rejected in the process of searching for regular solutions of the
maximum principle.

115. (17.9). The problem has an infinite set of singular controls, all of which satisfy
the Kelley condition and its generalizations. All of them are not optimal, al-
though when adding an initial condition, they become optimal. The problem
has no solution.

116. (17.10). Problem with an isoperimetric condition with respect to control. The
problem has only one solution. The conditions for maximum optimality are
necessary and sufficient.

117. (17.11). Problem with an isoperimetric condition relative to the state. The
problem has a unique solution. The maximum principle is a necessary and
sufficient optimality conditions.
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[138] P. Neittaanmäki and D. Tiba. On the finite element approximation of the
boundary control for two-phase Stefan problem. Lect. Not. Contr. Inf. Sci.,
62:356–370, 1984.

[139] J.A. Nelder and Mead R. A Simplex Method for Function Minimization. Com-
puter Journal, 7(4):308–313, 1965.

[140] L.W. Neustadt. Optimization. Princeton University Press, Princeton, 1976.

[141] J. Nocedal and S.J. Wright. Numerical Optimization. Berlin, Springer, 2006.

[142] C. Olech. Existence theory and optimal control theory. Topol. Funct. Anal.,
Vienna, 1:291–328, 1976.

[143] B.G. Pachpatte. Inequalities for Differential and Integral Equations. Academic
Press, San Diego, 1998.

[144] J.Jr. Palis and W. de Melo. Geometric Theory of Dynamical Systems. Springer,
2012.

[145] L.-H. Peng, C. Li, and J.-C. Yao. Well-posedness of a Class of Perturbed
Optimization Problems in Banach Spaces. J. Math. Anal. Appl., 346(2):384–
394, 2008.

[146] D. Peterson and J.H. Zalkind. A Review of Direct Sufficient Conditions in
Optimal Control Theory. Int. J. Control, 28(4):589–610, 1978.

[147] J.D. Pintér. Global Optimization in Action, Continuous and Lipschitz Opti-
mization: Algorithms, Implementations and Applications. Kluwer Academic
Publishers, Dordrecht, Boston, London, 1996.

[148] V.I. Plotnikov. Necessary and Sufficient Optimality Conditions and Uniqueness
Conditions for Optimizing Functions for Control Systems of General Form. Izv.
USSR Acad. Sci., ser. math., 26(3):652–679, 1972.

[149] E. Polak. Computational Methods in Optimization: A Unified Approach. Aca-
demic Press, New York, 1975.

[150] J. Polderman and J. Willems. Introduction to Mathematical Systems Theory:
A Behavioral Approach. Springer Verlag, New York, 1998.

[151] A. Polyanin and A. Manzhirov. Handbook of Integral Equations. CRC Press,
Boca Raton, 1998.



530 ■ Bibliography

[152] L.S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, and E.F. Mishchenko.
Mathematical Theory of Optimal Processes. Nauka, Moscow, 1974.

[153] M.M. Postnikov. Introduction to Morse Theory. Nauka, Moscow, 1971.

[154] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes. The Art of Scientific Computing. Cambridge University Press, 2007.

[155] U. Raitums. Optimal Control Problems for Elliptic Equations. Zinatne, Riga,
1989.

[156] J.P. Raymond. Existence and Uniqueness Results for Minimization Problems
with Nonconvex Functionals. J. Optim. Theory Appl., 82(3):571–592, 1994.

[157] J.P. Raymond and H. Zidani. Pontryagin’s Principle for Time-Optimal Prob-
lems. J. Optim. Theory Appl., 101(2):375–402, 1999.

[158] M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Functional
Analysis. Academic Press, New York, London, 1972.

[159] W.T. Reid. Riccati Differential Equations. New York, Academic Press, 1972.

[160] H.M. Robbins. A Generalized Legendre–Clebsch Condition for the Singular
Cases of Optimal Control. IBM J. Res. Develop., 11(4):361–372, 1967.

[161] R.T. Rockafellar. Convex Analysis. Princeton, NJ: Princeton University Press,
1997.

[162] I. Ross. A Primer on Pontryagin’s Principle in Optimal Control. San Francisco,
Collegiate Publishers, 2015.

[163] J. Rotman. An Introduction to the Theory of Groups. New York: Springer-
Verlag, 1994.

[164] T. Roubiıcek. Optimal Control of Nonlinear Fredholm Integral Equation. J.
Optim. Theory Appl., 97(3):707–729, 1998.

[165] T. Seidman and H.X. Zhou. Existence and Uniqueness of Optimal Control for a
Quasilinear Parabolic Equations. SIAM J. Contr. Optim., 20(6):747–762, 1982.

[166] S. Serovajsky. Lower Completion and Extension of Extremum Problems. Izv.
vuzov. Math., (5):30–41, 2003.

[167] S. Serovajsky. Sequential extension in the coefficients control problems for
elliptic type equations. J. Inverse Ill-Posed Probl., 11(5):523–536, 2003.

[168] S. Serovajsky. Optimal Control for Singular Equation with Nonsmooth Non-
linearity. J. Inverse Ill-Posed Probl., 14(6):621–631, 2006.

[169] S. Serovajsky. Optimal Control of a Singular Evolutional Equation with Nons-
mooth Operator and Fixed Terminal State. Differ. Equ., 43(2):259–266, 2007.



Bibliography ■ 531

[170] S. Serovajsky. Counterexamples in the Optimal Control Theory. Walter de
Gruyter, 2011.

[171] S. Serovajsky. Optimization and Differentiation. CRC Press, Taylor & Francis
Group, 2017.

[172] S. Serovajsky. Sequential Models of Mathematical Physics. CRC Press, 2019.

[173] S. Serovajsky. Mathematical Modelling. Chapman and Hall/CRC, 2021.

[174] S. Serovajsky and I. Adylova. Numerical Solution of Coefficient Inverse Prob-
lems with Corrective Approximation. Inzhenerno-fizicheskij zhurnal, (5):858–
859, 1988.

[175] S. Serovajsky, M. Sigalovsky, and A. Azimov. Non-smooth Optimization Meth-
ods in the Geometric Inverse Gravimetry Problem. Adv. Math. Models Appl.,
7(1):5–15, 2022.

[176] C. Simionescu. Optimal Control Problem in Sobolev Spaces with Weight. SIAM
J. Control Optim., 14(1):137–143, 1976.

[177] T.K. Sirazetdinov. Optimization of Systems with Distributed Parameters.
Nauka, Moscow, 1977.

[178] T. Slawing. Shape Optimization for Semi-linear Elliptic Equations Based on a
Embedding Domain Method. Appl. Math. Optim., 49(2):183–199, 2004.

[179] M. Sniedovich. Dynamic Programming: Foundations and Principles. Taylor
and Francis, 2010.

[180] J.A. Snyman and D.N. Wilke. Practical Mathematical Optimization: Basic
Optimization Theory and Gradient-Based Algorithms. Springer, Berlin, 2018.

[181] S.L. Sobolev. Some Applications of Functional Analysis in Mathematical
Physics. Amer. Math. Soc., 1963.

[182] E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional
Systems. Springer, 1998.

[183] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
New York, 1980.

[184] S. Strogatz. Nonlinear Dynamics and Chaos. Perseus Publishing, 2000.

[185] D. Tiba. Optimal Control of Nonsmooth Distributed Parameter Systems. In
Lecture Notes in Mathematics, volume 1459. WJ Springer-Verlag, Berlin, 1990.

[186] D. Tiba. New Results in Space Optimization. Math. Repts., 5(4):389–398, 2003.

[187] A.N. Tikhonov and V.Ya. Arsenin. Solutions of Ill-Posed Problems. Halsted
Press, 1977.



532 ■ Bibliography

[188] S.P. Timoshenko and J.M. Gere. Theory of Ellastic Stability. McGraw-Hill,
2017.

[189] J.F. Traub. Iterative Methods for the Solution of Equations. American Mathe-
matical Soc., 1982.

[190] A.I. Tretyak. On Necessary Conditions for Optimality of Odd Order in a Time-
Optimal Problem for Systems That Are Linear in Control. Math. Sbornik,
181(5):625–641, 1990.

[191] V. Utkin. Sliding Modes in Control and Optimization. Springer-Verlag, 1992.

[192] L. van der Waerden. Algebra. Vol. I. Springer, 2003.

[193] F.P. Vasilyev. Optimization Methods. Vol. 1. MTSNMO, Moscow, 2011.

[194] F.P. Vasilyev. Optimization Methods. Vol. 2. MTSNMO, Moscow, 2011.

[195] F.P. Vasilyev, M.M. Potapov, B.A. Budak, and L.A. Artemyeva. Optimization
Methods. Yurayt, Moscow, 2016.

[196] A.A. Voronov. Stability, Controllability, Observability. Nauka, Moscow, 1979.

[197] S. Walczak. Well-posed and Ill-posed Optimal Control Problems. J. Optim.
Theory Appl., 109(1):245–262, 2001.

[198] G. Wang, Y. Zhao, and W. Li. Some Optimal Control Problems Governed
by Elliptic Variational Inequalities with Control and State Constraint on the
Boundary. J. Optim. Theory Appl., 106(3):627–655, 2000.

[199] L.W. Wang. Approximate Controllability for Integrodifferential Equations with
Multiple Delays. J. Optim. Theory Appl., 143(1):185–206, 2009.

[200] J. Warga. Optimal Control of Differential and Functional Equations. Academic
Press, New York, 1972.

[201] M.M. Weinberg and V.A. Trenogin. Theory of Branching of Solutions of Non-
linear Equations. Nauka, Moscow, 1969.

[202] Z.Y. Wu. Sufficient Global Optimality Conditions for Weakly Convex Mini-
mization Problems. J. Global Optim., 39(3):427–440, 2007.

[203] A.I. Yablonsky. Mathematical Models in the Study of Science. Nauka, Moscow,
1986.

[204] Y. Ye and Q. Chen. Optimal Control of the Obstacle in a Quasilinear Elliptic
Variational Inequality. J. Math. Anal. Appl., 294(1):258–272, 2004.

[205] B.P. Yeo. A Modified Quasilinearization Algorithm for the Computation of
Optimal Singular Control. Int. J. Control, 32(4):723–730, 1980.



Bibliography ■ 533

[206] A. Yezza. Relaxed Optimal Control Problems Governed by Integral Equations.
J. Math. Anal. Appl., 175(1):126–142, 1993.

[207] K. Yokoyama. ε-Optimality Criteria for Vector Minimization Problems via
Exact Penalty Functions. J. Math. Anal. Appl., 187(1):296–305, 1994.

[208] L. Young. Lectures on the Calculus of Variations and Optimal Control Theory.
W.B. Saunders Co., Philadelphia, etc., 1969.

[209] A.J. Zaslavski. Solutions for a Class of Optimal Control Problems with Time
Delay, Part 2. J. Optim. Theory Appl., 91(2):455–490, 1996.

[210] M.I. Zelikin. Homogeneous Spaces and the Riccati Equation in the Calculus of
Variations. Berlin, Springer-Verlag, 2000.

[211] T. Zolezzi. A Characterizations of Well-posed Optimal Control Systems. SIAM
J. Control Optim., 19(5):604–616, 1981.

[212] V.I. Zubov. Lectures on Control Theory. Lan, SPb, 2009.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Index

Abelian group, 168, 430
absolute

maximum, 8
minimum, 8

adjoint
equation, 304
space, 137
system, 75, 400

admissible
control, 72
pair, 125, 128, 466

affine operator, 169
approximate solution

strong, 57, 59
conditional, 59

weak, 57, 59
conditional, 59

automatic control theory, 103

Banach
fixed point theorem, 63
space, 231

Banach−Alaoglu theorem, 211
Bellman

equation, 115
function, 113
optimality principle, 113

bifurcation, 41
diagram, 367
of extremals, 355
point, 41, 355

Bolza problem, 486
boundary value problem, 91, 164
bounded

functional, 231
set, 33, 211

calculus of variations, 99, 310
Cantor

function, 300
set, 300

Cauchy problem, 72
Cayley table, 430
Chafee–Infante problem, 356, 364

non-stationary, 367
chaotic dynamics, 64
Clarke derivative, 34
closed set, 33, 211
coercive

function, 21, 28
functional, 221

conjugate-gradient method, 65
continuum, 31
contraction mapping, 63
control, 72

space, 211
controllability, 270, 282
controlled process, 72
convergence

of pair sequence, 487
convex

analysis, 168
function, 22
functional, 147
set, 28, 147
variation, 138

counterexample, 30
critical point, 6
Curie principle, 170

decoupling method, 92, 97, 103
degeneration of maximum principle, 177
Dido problem, 393
differential, 310
Dirichlet

function, 58, 232
problem, 35

dot product, 29, 73, 99, 231

535



536 ■ Index

dynamic
programming, 113
system, 71

eigenfunction, 407
eigenvalue, 407
elimination method, 91, 164, 346
equilibrium position, 63, 65, 91, 102,

128, 431
establishment method, 103
Euler

equation, 34, 137, 310
problem on an elastic rod, 369

evolutionary system, 98
extension method, 226
extremal, 30, 137, 370

variation, 137
extremum

condition
first order, 30
necessary, 9
second order, 34
sufficient, 9

Fermat
condition, 6
theorem, 6

finite-dimensional space, 98
first integral, 403
fixed point, 63
Fourier series, 253
Fredholm integral equation, 201
functional, 72

variation, 137
fundamental theorem of algebra, 64

game theory, 102
Gateaux derivative, 106, 137
Gauss method, 102
general solution, 466
generalized

Kopp–Moyer condition, 197
solution, 226

genetic algorithm, 65
global

maximum, 8

minimum, 8
gradient, 28

method, 55, 60, 65, 107
projection method, 55, 61, 107

Gronwall lemma, 89
group, 170

theory, 170

Hadamard
example, 62
well-posed problem, 39, 244

Hamilton–Jacobi equation, 138
Hamiltonian, 99

mechanics, 100
heat equation, 91, 164, 430
Hessian, 28
Hilbert space, 211
Hooke’s law, 428

implicit function theorem, 51
infinite-dimensional space, 98
inflection point, 32
integral equation, 201
integro-differential equation, 398, 410
isomorphic objects, 101
isoperimetric

condition, 378, 401
problem, 53, 65

iterative regularization, 252

Kelley condition, 191
Kopp–Moyer condition, 195

Lagrange
function, 51, 60
functional, 73
multiplier, 51, 73

method, 51, 60, 73, 262, 378
problem, 34, 310

Lagrange–Euler lemma, 137
Legendre condition, 139, 204
linear

operator, 169
space, 147, 168

linear-quadratic optimal control
problem, 92, 115



Index ■ 537

with a fixed final state, 285
with a free initial state, 480

Lipschitz condition, 89, 102
local

maximum, 8
minimum, 8
solution, 140

logistic mapping, 45
lower

limit, 232
solution, 354

Lyusternik’s theorem, 64

mathematical model, 71
matrix

negative definite, 29
positive definite, 29
Riccati equation, 97

maximum
condition, 76
principle, 76, 97, 304, 400, 469

Mazur’s lemma, 232
mean value theorem, 100
measurable function, 232
measure, 99
method

of simple iteration, 42
of successive approximations, 42, 107

minimizing sequence, 12, 210
Morse theory, 30
multivalued mapping, 486

needle variation, 75
neighborhood, 30
Nelder–Mead method, 65
norm, 100, 211
normed vector space, 211

optimal
control, 73
pair, 111

optimal control problem
with a fixed final state, 262
with a free final state, 73
with a free initial state, 466

optimality criterion, 72

ordinary differential equation, 72, 98
orthonormal functions, 429

partial differential equation, 98
penalty method, 53, 60, 111, 139, 396
phase

constraint, 99
curve, 307
plane, 307
space, 98

Poisson equation, 35, 139
Pontryagin maximum principle, 76
projector, 61, 107

regular solution of maximum principle,
177

regularization method, 203
Rellich–Kondrashov theorem, 426, 432
remainder term, 75
Riccati equation, 93, 103, 116, 286, 481

Schwarz inequality, 215
shooting method, 267, 472
singular control, 177
singularity theory, 49, 64
Sobolev space, 425, 432, 477
space L2(0, 1), 214
space Lp(Ω), 432
space product, 477
spectrum, 429
state

equation, 72
function, 71

stationary
condition, 6, 107, 137
point, 6
system, 98

strictly convex
function, 22
functional, 148

strictly uniformly convex functional, 254
strong

approximate solution, 248, 249
conditional approximate solution,

248
convergence, 232
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extremum, 30
minimum, 100

strongly convex
function, 24
functional, 240

Sturm–Liouville problem, 407, 420
subdifferentiable function, 26
subdifferential, 26, 29
subgradient, 26, 29

method, 65
sufficient optimality condition, 115, 139
synthesis problem, 103, 116, 309
system

with distributed parameters, 98
with lumped parameters, 71, 98

theory of differential equations, 99
Tikhonov

ill-posed problem, 12, 239
regularization method, 251
well-posed problem, 12, 239

time optimal problem, 305
topological space, 232
topology, 100
transcendental equation, 63
transversality condition, 486
triangle inequality, 426

uniformly continuous functional, 256
upper solution, 354

variational inequality, 37, 109, 138
vector

optimal control problem
with free final state, 96

linear-quadratic optimal control
problem

with a free final state, 97
optimal control problem, 399

with a fixed final state, 304
space, 147, 168

Verhulst equation
continuous, 64
discrete, 45

weak
approximate solution, 248, 249
conditional approximate solution,

248
convergence, 211
extremum, 30
minimum, 100

weakly
closed set, 212
lower semicontinuous

functional, 212
Weierstrass

condition for a strong minimum,
100, 101

sufficient optimality condition, 139
theorem, 20
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